
Numerical solution of the Poisson interface problem

using the Correction Function Method framework

Philippe Blain

Department of Mathematics and Statistics

McGill University, Montréal

A thesis submitted to McGill University

in partial fulϔillment of the requirements of the degree of

Master of Science

August 2018

© Philippe Blain 2018

Contents

List of Figures . v
List of Tables . vi
List of Algorithms . vi
Abstract . vii
Abrégé . viii
Acknowledgement . ix
Contribution of Authors . x

1. Introduction 1

2. Literature Review 4

3.Methodology 7
3.1.An Elliptic Interface Problem . 7

3.1.1. Problem Deϐinition . 7
3.1.2. Weak Form andWell-Posedness . 9
3.1.3. Representation Formula for the Poisson Problem 13

3.2.Numerical Method . 13
3.2.1. The Correction Function Method Framework 14
3.2.2. The Compact 4Ƙƌ-Order Finite Difference Scheme 18

3.2.2.1. Higher Order Accuracy for Harmonic Functions 20
3.2.2.2. Computation of the Solution Gradient 21

3.2.3. Interface Description . 22
3.2.4. Local Solver for the Correction Function . 24

3.2.4.1.Minimization . 26
3.2.4.2. Bicubic Interpolation . 27

3.2.4.2.1. Reduced Cell-Based Bicubic Interpolation 29
3.2.4.3. Domain Deϐinition . 32
3.2.4.4. Parameterization . 33
3.2.4.5.Mapping to the Reference Domain . 37

3.2.4.5.1. Domain Integral . 38
3.2.4.5.2. Interface Integrals . 40

3.2.4.6. Scaling Coefϐicients . 44

ii

Contents

3.2.4.7. New Correction Function Solver . 45
3.2.5. Fast Poisson Solver . 46

3.2.5.1. Fast Poisson Solver in 1D . 47
3.2.5.2. Fast Poisson Solver for the 5-Point Stencil 49

3.2.5.2.1. The Kronecker Product and Some Properties 49
3.2.5.3. Fast Poisson Solver for the 9-Point Stencil 52

3.3.Code Implementation . 52
3.3.1. MATLAB Code . 53

3.3.1.1.Main Solver : CFM2D and CFM2DOrder4Compact 53
3.3.1.2. Domain Discretizaton : Domain2D, Mesh2D and LevelSet 54
3.3.1.3. Correction Function Solver . 55
3.3.1.4. Visualization and Convergence . 55
3.3.1.5. Linear Solver . 56
3.3.1.6. Parameters and Problem Description 56

3.3.2. C++ Code . 56
3.4.Towards a Correction Function Method for the Navier-Stokes Equations 59

3.4.1. Problem Description . 59
3.4.2. Numerical Method . 61

4. Results 63
4.1.Representation Formula Approximation . 63
4.2.Example 1 . 66

4.2.1. Problem Deϐinition . 66
4.2.2. Numerical Solution . 66
4.2.3. Convergence . 68

4.3.Example 2 . 70
4.3.1. Problem Deϐinition . 70
4.3.2. Numerical Solution . 70
4.3.3. Convergence . 72

4.4.Example 3 . 74
4.4.1. Problem Deϐinition . 74
4.4.2. Numerical Solution . 75
4.4.3. Convergence . 75

4.5.Example 4 . 78
4.5.1. Problem Deϐinition . 78
4.5.2. Numerical Solution . 78
4.5.3. Convergence . 79

5. Discussion 82
5.1.General Remarks . 82

iii

Contents

5.2.Domain of Deϐinition of the Bicubic Interpolants . 83
5.3.CFM-Based Navier-Stokes Solver . 85

6. Conclusion 87

Appendix A.Linear System for the Correction Function Coefϐicients 89

Bibliography 97

iv

List of Figures

3.1. Two-dimensional domain . 8
3.2. One-dimensional domain . 14
3.3. Close-up of the 1D domain near the interface point Γ. 15
3.4. Domain Ω୻ for the correction function problem 17
3.5. Nearest neighbours on a 2D grid . 19
3.6. Linear approximation to the level set in the normal direction 𝑑 23
3.7. The integration domain for the correction function minimization problem . . . 25
3.8. Domain for bicubic interpolation . 28
3.9. Nodes needed for deriving the reduced bicubic interpolants 30
3.10. Local integration domain and transformation boxes 33
3.11. Transformation used to parameterize the interface integrals 34
3.12. Transformation used to map the integration domain to the unit square 38
3.13. Class diagram for the MATLAB version of the code 54
3.14. Class diagram for the C++ version of the code . 57
3.15. MAC grid used for Navier-Stokes . 62

4.1. Domain for the validation of the representation formula approach 64
4.2. Test of the representation formula approach . 65
4.3. Numerical solution of example 1 . 67
4.4. Error in the computed solution of example 1 . 67
4.5. Convergence of the solution for example 1 . 68
4.6. Convergence of the correction function for example 1 69
4.7. Convergence of the solution gradient for example 1 69
4.8. Numerical solution of example 2 . 71
4.9. Error in the computed solution of example 2 . 71
4.10. Error in the computed correction function for example 2 72
4.11. Convergence of the solution for example 2 . 73
4.12. Convergence of the correction function for example 2 73
4.13. Convergence of the solution gradient for example 2 74
4.14. Numerical solution of example 3 . 75
4.15. Error in the computed solution of example 3 . 76
4.16. Convergence of the solution for example 3 . 76

v

4.17. Convergence of the correction function for example 3 77
4.18. Convergence of the solution gradient for example 3 77
4.19. Numerical solution of example 4 . 79
4.20. Convergence of the solution for example 4 . 80
4.21. Convergence of the correction function for example 4 80
4.22. Convergence of the solution gradient for example 4 81

5.1. Domain formerly used for the correction function interpolants 83
5.2. Magnitude of the entries of the minimization matrix 84

List of Tables

3.1. Single indices for the bicubics interpolants . 32
3.2. Four UML relationships . 53

List of Algorithms

3.1. Projection of a point 𝑥଴ on the interface . 24
3.2. Main idea of the Fast Poisson solver . 47
3.3. Projection method for Navier-Stokes with pressure discontinuity 61
4.1. Manufactured solution . 63

vi

Abstract

In this work we study the Poisson interface problem and a numerical method for its solution,
the Correction Function Method. The Poisson interface problem complements the classical
Poisson problem, a partial differential equation given in terms of the Laplacian operator, with
jump conditions on the solution and its normal derivative along a co-dimension one interface
inside the domain. Interface problems arise whenever materials with different properties
come into contact, and thus have important applications in many ϐields of physics and engi-
neering. The Correction Function Method (CFM) is a general framework to solve the Poisson
interface problem in thewider context of ϐinite differencemethods. In essence, itmodiϐies the
ϐinite difference stencils for nodes near the interface in order to take into account the jump
conditions. However, these modiϐications are incorporated, using correction terms, to the
right-hand side of the linear system deriving from the ϐinite difference approximation of the
partial differential equation, leaving the coefϐicient matrix identical to the one resulting from
the regular Poisson problem. This is essential as many efϐicient linear solvers, termed “Fast
Poisson solvers”, are speciϐically designed to solve this system; by keeping the samematrixwe
can use them with no modiϐication. In order to account for the multiple possible geometric
conϐigurations of the interface with respect to the ϐinite difference stencil, we compute the
correction terms locally using a functional minimization approach. Our speciϐic implemen-
tation of the CFM is shown to be fourth-order accurate. We also present preliminary work
towards a CFM-based Navier-Stokes solver for higher-order numerical simulation of multi-
phase ϐlow.

vii

Abrégé

Dans ce mémoire, on étudie le problème de Poisson avec interface ainsi qu’une méthode
numérique de résolution de ce problème, la méthode de la fonction de correction (Correction
Function Method ou CFM). Le problème de Poisson avec interface est basé sur le problème de
Poisson classique, une équation aux dérivées partielles faisant intervenir l’opérateur lapla-
cien. Il y ajoute des conditions de saut sur la solution ainsi que sur sa dérivée normale le long
d’une interface de co-dimension un à l’intérieur du domaine de déϐinition de l’équation. Les
problèmes d’interface apparaissent lorsque deux matériaux ayant des propriétés différentes
sont mis en contact, et ont donc des applications importantes dans plusieurs domaines en
physique et en génie. Laméthode de la fonction de correction fournit un cadre général pour la
résolution numérique du problème de Poisson avec interface dans le contexte des méthodes
de différences ϐinies. Essentiellement, la méthode modiϐie les formules de différence ϐinies
pour les noeuds de discrétisation situées à proximité de l’interface, de façon à incorporer les
conditions de saut. Toutefois, ces modiϐications sont apportées, à l’aide de termes de cor-
rection, au terme de droite du système linéaire résultant de la discrétisation par différences
ϐinies ; la matrice de coefϐicients reste la même que pour le problème de Poisson standard.
Ceci est essentiel puisque de nombreux solveurs linéaires efϐicaces, appelés « Fast Poisson

solvers (solveurs de Poisson rapides) », sont spéciϐiquement conçus pour résoudre ce sys-
tème. Le fait de garder la même matrice permet donc de les utiliser sans modiϐications. Aϐin
de prendre en compte les multiples conϐigurations géométriques de l’interface par rapport à
la grille dediscrétisation, les termesde correction sont calculés localement enminimisant une
fonctionnelle. On montre que notre implémentation spéciϐique de la CFM converge à l’ordre
quatre. On présente aussi des résultats préliminaires en vue de la conception d’un solveur
des équations de Navier-Stokes basé sur la CFM, pour la simulation numérique à ordre élevé
des écoulements multiphases.

viii

Acknowledgement

I want to thank my supervisor, Prof. Jean-Christophe Nave, for his support, his deep insights
and for themany engaging conversationswe had, be it aboutmathematics or not. I also thank
him for his monetary support. Some results presented in this work use parts of a numerical
solver for the Navier-Stokes equations developed by Prof. Nave. I also want to thank Prof.
Gantumur Tsogtgerel for his monetary support. I want to thank the Department of Mathe-
matics and Statistics andmy supervisor Prof. Nave for giving me the opportunity to take part
in the Calcul Québec summer school in high performance computing. I thank Andy Wan for
his help in getting started on some theoretical results presented in this work. I thank Alexan-
dre Noll Marques for clarifying some details of the numerical method and sharingwithme his
code. It helped me a lot to be able to compare my code with his. I am grateful to the Fonds de
Recherche du Québec –Nature et Technologie for grantingme aBourse demaîtrise en recherche

for the duration of my degree. Finally, I want to thank my parents, for their unwavering sup-
port during the course of my studies, as well as my girlfriend for sharing my life for the past
six years.

ix

Contribution of Authors

This thesis was written entirely by Philippe Blain.

x

1. Introduction

Many problems arising in the physical sciences and in engineering model the interaction be-
tweenmaterials with different physical properties, such as viscosity in ϐluid dynamics or per-
mittivity in electromagnetics. Other problems involve different interacting states, such as
a solid interacting with a liquid. These problems are known as interface problems and are
mathematically modeled and studied using partial differential equations (PDEs). Often, in
those problems, both the data and the solution are discontinuous because of the different
physical values of the material properties. Speciϐically, at the interface between the different
materials, or between the different phases, the functions involved in the partial differential
equations present jump discontinuities. However, these functions are usually smooth in the
individual regions of the problem domain corresponding to distinct materials.

This thesis investigates a problem of the kind described above, namely the Poisson interface
problem. This problem complements the classical Poisson problem, a PDE given in terms
of the Laplacian differential operator, with jump conditions on the solution and its normal
derivative along a co-dimension 1 interface inside the domain. The Poisson interface prob-
lem has numerous applications but our driving motivation in this work is the fact that it ap-
pears in themodeling ofmultiphase ϐlow. Multiphase ϐlow refers to the study of the combined
movement ofmore than one liquid or gas, such aswater bubbles in oil orwater droplets in air,
usually modeled through the Navier-Stokes equations. Speciϐically, at the interface between
two ϐluids, the pressure ϐield satisϐies the same kind of jump conditions as the solution of the
Poisson interface problem. Moreover, when discretized in time, the solution algorithm for the
Navier-Stokes equations directly involves the solution of a Poisson interface problem at each
time step.

Several numerical methods exist to solve Poisson interface problems. Most of these methods
fall into the large classes of ϐinite difference methods or ϐinite element methods. In ϐinite dif-

1

ference methods, the general idea is to modify the ϐinite difference stencils in the region near
the interface in order to incorporate the jump conditions. In this work, we use the Correction
Function Method (CFM) [31], which is one such method. This method modiϐies the stencil in
such a way that only the right-hand side of the linear system resulting from the ϐinite differ-
ence discretization is changed ; the coefϐicient matrix is unchanged compared to the regular
Poisson problem. This is an important feature of the method since many linear solvers are
speciϐically designed to solve this linear system by judiciously exploiting the special structure
of the matrix. These solvers are based on the Fast Fourier Transform and are thus computa-
tionally very efϐicient. The fact that we keep the same matrix as the regular Poisson problem
means we can directly use them, without modiϐication.

Another important feature of the Correction FunctionMethod is its generality; the correction
terms used to account for the interface jumps are found by solving a partial differential equa-
tion , whichmeans that in theory they can be computed to arbitrary accuracy and usedwithin
very high-order Poisson discretization schemes. The speciϐic implementation presented here
is fourth-order accurate. The PDE used to determine the correction terms is solved in a lo-
cal fashion by minimizing a functional through a polynomial approximation. This approach
allows us to uniformly handle the numerous ways in which the interface can cut through the
ϐinite difference stencil. The CFM represents the interface through a level set function, which
permits the use of geometric transformations to efϐiciently parameterize the integrals deϐined
on the interface that appear in the functional to be minimized.

The solution of the Poisson interface problem arising in the time discretization of the Navier-
Stokes equation is the main rationale for the Correction Function Method. Since the interface
is described through a level set function, the ϐinite difference grid can be generated without
taking the interface into account : a uniform grid can be used. This is an important consider-
ation with regard to computational efϐiciency because the generation of a non-uniform grid
that conforms to an arbitrary interface — a so-called body-ϐitted grid — can be a very time
consuming task. In time dependent problems, such as the Navier-Stokes equations, the in-
terface evolves in time, so methods using a body-ϐitted grid must regenerate the grid at each
time step. This greatly increases the cost of such methods. Hence, important efϐiciency gains
can be made with methods which use a uniform grid, such as the CFM.

The goal of this project was to study the Poisson interface problem and implement in code

2

Chapter 1. Introduction

the Correction FunctionMethod used for its numerical solution. We also present preliminary
work towards a CFM-based Navier-Stokes solver for multiphase ϐlow. In this thesis, every
effort was made to explain all mathematical aspects of the method and bring this description
as close to the code implementation as possible. This thesis thus serves as a comprehensive
reference on the mathematics and numerics of the CFM.
The remainder of this thesis is structured as follows. In Chapter 2, we brieϐly review the rel-
evant literature pertaining to the numerical solution of interface problems. In Chapter 3, we
present the mathematics of the Poisson interface problem, the Correction Function Method
used for its numerical solution and the implementation of this method in code. In Chapter 4,
we examine the performance of our implementation by showing its convergence for 4 differ-
ent problems. Finally, Chapter 5 contains a discussion of the method, possible extensions to
other related problems as well as the rationale for certain implementation details.

3

2. Literature Review

In this chapter, we present a short review of the literature on the numerical solution of inter-
face problems, concentrating on ϐinite difference approaches. The four methods we examine
are the Immersed InterfaceMethod, the ImmersedBoundaryMethod, the Ghost FluidMethod
and the Correction Function Method, which all use the approach of non-body-ϐitted grids.

The Immersed Interface Method (IIM) was introduced by Li in his Ph.D. thesis [26] to solve
general interface problems where the solution, the coefϐicients and the source term can have
jump discontinuities along an interface. The IIM is a sharp interface method, in the sense
that the jumps in the computed solution at the interface are sharp : no smearing of the so-
lution occur when it crosses the interface [26], [24]. The method relies on modiϐied ϐinite
difference stencils for grid nodes close to the interface. The new ϐinite difference stencils are
found by minimizing the local truncation error, which leads to a constrained quadratic opti-
mization problem [25]. The original implementation of the method is second order accurate,
but more recently it has been extended to fourth order accuracy [25]. The IIM has been ap-
plied to numerous problems such as moving boundary problems [50], wave equations with
discontinuous coefϐicients [51] and has also been used in the context of ϐinite elements [19].

The Immersed Boundary Method (IBM) was introduced by Peskin in [37] to simulate the in-
teraction of blood ϐlow with the cardiac valves. In his work, this problem is modeled using a
coupled Eulerian/Lagrangian approach where the liquid (the blood) is discretized using an
Eulerian grid and the cardiac muscle is discretized using Lagrangian markers [39]. The Eu-
lerian and Lagrangian quantities are coupled through the use of a discrete approximation of
the Dirac delta function, which models a surface force. In contrast to the Immersed Interface
Method, the IBM is a smoothing method: discontinuities in the computed ϐields are smeared
at the interfacebecauseof theuseof thediscretedelta function,which spans a fewgrid cells on
each side of the interface [34]. The Immersed boundarymethod is theoretically second order

4

Chapter 2. Literature Review

accurate but implementation issues often limit it to being ϐirst order [34]. Apart from cardio-
vascular modeling, it has been applied to other problems in the life sciences, to the Poisson
interface problem itself [38] and also to front tracking methods for bubble dynamics [48].

The Ghost Fluid Method (GFM) was presented by Fedkiw and others in [17] to solve multi-
phase compressible ϐlow problems. Themain idea of themethodwas to introduce ghost cells,
where quantities are deϐined on the opposite side of the interface, in order to be able to differ-
entiate smoothly across the interface. These ghost cells are used to accurately track discon-
tinuities occurring at shocks [15]. The ϐield values at the ghost cells are deϐined through ex-
trapolation. The method was extended shortly after to multiphase incompressible ϐlow [22],
in which the Poisson interface problem appears as a subproblem. A GFM-based Poisson in-
terface solver was designed in [27]. In this method, the jump conditions are used to modify
the ϐinite difference stencils for grid nodes close to the interface, similarly to the methods
above. However, the treatment of the jump conditions is done in a dimension-by-dimension
approach. The resulting method has sharp jumps but is only ϐirst order accurate. A conver-
gence proof was presented in [28] for the Poisson interface problem as well as more general
elliptic interface problems. The GFM was also applied to ϐluid-solid interactions in [16].

The Correction Function Method is a general framework to solve the Poisson interface prob-
lem and was introduced in [31]. Similarly to the IIM and the GFMmethods above, it modiϐies
the ϐinite difference stencils near the interface to account for the jump conditions. Also sim-
ilarly to these methods, the stencil corrections are incorporated to the right-hand side of the
linear system in order to keep the system matrix identical to the regular Poisson problem,
as mentioned in Chapter 1. The method is more general than the above methods since as
mentioned above, the correction terms are computed by locally solving a partial differential
equation at each required node. This means that in theory the CFM can be made arbitrarily
accurate. A fourth order implementation is presented in [31], and the method was extended
to handle discontinuous coefϐicients in [32]. The CFM was also recently applied to the wave
equation with discontinuous coefϐicients and irregular boundaries in [1]. The local solver for
the correction function was reϐined in [33], where a new parameterization for interface inte-
grals, based on the level set information, was introduced. This is themethod that is described
and implemented in this thesis.

Although our focus is on ϐinite difference methods, we brieϐly mention ϐinite element meth-

5

ods, where there are two main approaches. The simplest approach, which was the ϐirst to be
introduced, starting with the work of Babuska [2], is to use a body-ϐitted mesh that adapts
to the shape of the interface. Since the interface is taken into account when meshing the do-
main, the domain mesh induces a co-dimension 1 mesh on the interface, which makes it easy
to discretize forms deϐined as integrals over the interface.
The alternative approach is to mesh the domain without taking into account the interface,
letting the interface freely cut through elements. In this non-body-ϐitted approach, elements
which are traversed by the interface must be dealt with in a special way. One approach is
to modify the basis functions to incorporate the jumps conditions, as in [12]. The non-body-
ϐitted approachhas advantages in time-dependent problems. Indeed, the creation of themesh
is often one of the most time-consuming tasks in a ϐinite element simulation workϐlow. In a
body-ϐitted approach, as mentioned above for ϐinite difference methods, the mesh must be
recreated at each time step since the interface usually evolves with the problem. The elimi-
nation of the need for remeshing is thus a way to make important efϐiciency gains.

6

3. Methodology

This chapter presents the theoretical, numerical and code implementation background un-
derlying our results. In Section 3.1, we deϐine the Poisson interface problem and present
some theoretical results pertaining to it and to the classical Poisson problem. In Section 3.2,
we describe in detail the numerical method used to solve the problem. Section 3.3 explains
the design of our implementation of themethod in code, in the programming languages MAT-
LAB and C++. Finally, Section 3.4 presents the Navier-Stokes equations of ϐluid dynamics and
how the Correction Function Method could be applied in this context.

3.1 An Elliptic Interface Problem

3.1.1 Problem Deϐinition

The model problem examined in this project is the Poisson problem with given interface
jumps on the solution and its normal derivative. It is deϐined by :

Δ𝑢 = 𝑓, 𝑥 ∈ Ω (3.1)

[𝑢] = 𝑎, 𝑥 ∈ Γ (3.2)

[𝜕௡𝑢] = 𝑏, 𝑥 ∈ Γ (3.3)

𝑢 = 𝑔, 𝑥 ∈ 𝜕Ω (3.4)

where 𝑢 ∶ Ω → ℝ is the unknown function, 𝑓 ∶ Ω → ℝ is the source data, 𝑎, 𝑏 ∶ Γ → ℝ are
the given jump data on the interface, and 𝑔 ∶ 𝜕Ω → ℝ is the Dirichlet data on the domain
boundary. The domain Ω is split in 2 subdomains Ωା and Ωି by the interface Γ, as illustrated
in ϐigure 3.1 below. Note that the Dirichlet boundary condition (3.4) is used here to complete
the problem, but in practice, either Neumann, mixed or periodic boundary conditions could

7

3.1. An Elliptic Interface Problem

also be applied.
In general, the solution 𝑢 and the source term 𝑓 can be discontinuous along the interface, and
so we deϐine the restrictions𝑤ା, 𝑤ି of a function𝑤 ∶ Ω → ℝ as :

𝑤ା ∶= 𝑤|ஐశ (3.5)

𝑤ି ∶= 𝑤|ஐష (3.6)

Usually 𝑢 and 𝑓 are piecewise continuous ; their restrictions are continuous over each sub-
domain. Using the restrictions of 𝑢 and 𝑓, equation (3.1) can thus be separated in 2 distinct
equations, one for each subdomain Ωା and Ωି:

Δ𝑢ା = 𝑓ା 𝑥 ∈ Ωା (3.7)

Δ𝑢ି = 𝑓ି 𝑥 ∈ Ωି (3.8)

The jump operator [𝑢] is deϐined as

[𝑢] ∶= (𝑢ା − 𝑢ି)|୻ (3.9)

and is to be understood in a limit sense. The notation [𝜕௡𝑢] denotes the jump in the outward
normal derivative to the interface, i.e.

[𝜕௡𝑢] ∶= [∇𝑢] ⋅ 𝑛 = ∇(𝑢ା − 𝑢ି)|୻⋅𝑛 (3.10)

where 𝑛 is the outward normal to the interface.

Figure 3.1. The domainஐ is split in two subdomainsஐା andஐି by a co-dimension 1 interface୻. Image
from [31].

8

Chapter 3. Methodology

We assume that the interface Γ is described by the zero level-set of a smooth function
𝜙 ∶ Ω → ℝ such that

Γ = {𝑥 ∈ Ω ∣ 𝜙(𝑥) = 0} (3.11)

and the subdomains are then deϐined as

ቐ
𝜙 > 0, 𝑥 ∈ Ωା

𝜙 ≤ 0, 𝑥 ∈ Ωି
(3.12)

3.1.2 Weak Form andWell-Posedness

In this section, wederive aweak form for the problem (3.1)-(3.4) and show itswell-posedness
under some assumptions. This work is inspired by [28]. These assumptions are as follows :

𝑓 ∈ 𝐿ଶ(Ω) (3.13)

𝑎 ∈ 𝐻 భ
మ (Γ) (3.14)

𝑏 ∈ 𝐿ଶ(Γ) (3.15)

𝑔 ∈ 𝐻 భ
మ (𝜕Ω) (3.16)

Note that in this section, keeping in line with the literature on the analysis of the classical
Poisson problem,we add aminus sign in front of equations (3.7-3.8) (this simply corresponds
to making the change to the source term 𝑓 → −𝑓) :

−Δ𝑢ା = 𝑓ା 𝑥 ∈ Ωା (3.17)

−Δ𝑢ି = 𝑓ି 𝑥 ∈ Ωି (3.18)

We begin bymultiplying each one of equations (3.17-3.18) by a smooth function 𝑣 deϐined on
Ω such that 𝑣|డஐ= 0 and integrate on each subdomain :

−න
ஐశ

Δ𝑢ା𝑣 = න
ஐశ

𝑓ା𝑣 (3.19)

9

3.1. An Elliptic Interface Problem

−න
ஐష

Δ𝑢ି𝑣 = න
ஐష

𝑓ି𝑣 (3.20)

In Ωି, we set
𝑢ି = 𝑢ି଴ − �̄� (3.21)

where 𝑢ି଴ and �̄� are deϐined on Ωି such that 𝛾ି (�̄�) = 𝑎, 𝛾ି ൫𝑢ି଴ ൯ = 0. Here 𝛾ି (⋅) is the trace
operator onΩି. The assumption (3.14) permits us to deϐine �̄� in this way. For future purpose
we also deϐine 𝛾ି୻ (⋅) ∶= 𝛾ି (⋅).

Similarly, in Ωା, we ϐirst extend the deϐinition of 𝑔 to the whole of 𝜕Ωା = 𝜕Ω ∪ Γ by deϐining
𝑔∗ such that

𝑔∗ ∶= ቐ
𝑔 𝑥 ∈ 𝜕Ω

0 𝑥 ∈ Γ

Since we have 𝑔 ∈ 𝐻 భ
మ (Γ), then we also have 𝑔 ∈ 𝐻 భ

మ (𝜕Ωା) and thus we can deϐine �̄� in Ωା

such that 𝛾ା(�̄�) = 𝑔∗, where 𝛾ା(⋅) is the trace operator on Ωା. We then set

𝑢ା = 𝑢ା଴ + �̄� (3.22)

where 𝑢ା଴ is deϐined on Ωା such that 𝛾ା(𝑢ା଴) = 0. We also deϐine the partial trace
𝛾ା୻ ∶ 𝐻ଵ(Ωା) → 𝐿௣(Γ) by the restriction to Γ of the image of the trace operator 𝛾ା. This oper-
ator is well-deϐined and continuous since Γ is a closed subset of 𝜕Ωା.

Interpreting the restriction to the boundary in the deϐinition (3.9) in the sense of traces, we
have

[𝑢] ∶= (𝑢ା − 𝑢ି)|୻ = 𝑢ା|୻−𝑢ି|୻
= 𝛾ା୻ (𝑢ା) − 𝛾ି୻ (𝑢ି)

= 𝛾ା୻ (𝑢ା଴ + �̄�) − 𝛾ି୻ (𝑢ି଴ − �̄�)

= 0 − (0 − 𝑎) = 𝑎

as desired.

Using the decompositions (3.21) and (3.22), we then integrate by parts in (3.20) and (3.19).

10

Chapter 3. Methodology

We get :

න
ஐష

𝑓ି𝑣 = −න
ஐష

൫Δ𝑢ି଴ − Δ�̄�൯ 𝑣

= න
ஐష

∇𝑢ି଴ ⋅ ∇𝑣 − න
డஐష

൫∇𝑢ି଴ ⋅ 𝑛൯ 𝑣 − න
ஐష

∇�̄� ⋅ ∇𝑣 + න
డஐష

(∇�̄� ⋅ 𝑛) 𝑣

= න
ஐష

∇𝑢ି଴ ⋅ ∇𝑣 − න
ஐష

∇�̄� ⋅ ∇𝑣 − න
డஐష

(∇𝑢ି ⋅ 𝑛) 𝑣

= න
ஐష

∇𝑢ି଴ ⋅ ∇𝑣 − න
ஐష

∇�̄� ⋅ ∇𝑣 − න
୻
(∇𝑢ି ⋅ 𝑛) 𝑣 (3.23)

and

න
ஐశ

𝑓ା𝑣 = −න
ஐశ

൫Δ𝑢ା଴ + Δ�̄�൯ 𝑣

= න
ஐశ

∇𝑢ା଴ ⋅ ∇𝑣 − න
డஐశ

൫∇𝑢ା଴ ⋅ 𝑛ା൯ 𝑣 + න
ஐశ

∇�̄� ⋅ ∇𝑣 − න
డஐశ

(∇�̄� ⋅ 𝑛ା) 𝑣

= න
ஐశ

∇𝑢ା଴ ⋅ ∇𝑣 + න
ஐశ

∇�̄� ⋅ ∇𝑣 − න
డஐశ

(∇𝑢ା ⋅ 𝑛ା) 𝑣

= න
ஐశ

∇𝑢ା଴ ⋅ ∇𝑣 + න
ஐశ

∇�̄� ⋅ ∇𝑣 − න
డஐ

(∇𝑢ା ⋅ 𝑛ା) 𝑣
ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
ୀ଴ since ௩|ങಈୀ଴

−න
୻
(∇𝑢ା ⋅ 𝑛ା) 𝑣 (3.24)

where 𝑛ା is the outward normal to Ωା. Adding (3.24) and (3.23) we get

න
ஐశ

𝑓ା𝑣 + න
ஐష

𝑓ି𝑣 = න
ஐష

∇𝑢ି଴ ⋅ ∇𝑣 − න
ஐష

∇�̄� ⋅ ∇𝑣 − න
୻
(∇𝑢ି ⋅ 𝑛) 𝑣

+ න
ஐశ

∇𝑢ା଴ ⋅ ∇𝑣 + න
ஐశ

∇�̄� ⋅ ∇𝑣 − න
୻
(∇𝑢ା ⋅ 𝑛ା) 𝑣

Nowwe note that 𝑛ା = −𝑛 on Γ so we can rewrite the above as

න
ஐ
𝑓𝑣 = න

ஐ
∇𝑢଴ ⋅ ∇𝑣 − න

ஐష
∇�̄� ⋅ ∇𝑣 + න

ஐశ
∇�̄� ⋅ ∇𝑣 + න

୻
(∇𝑢ା − ∇𝑢ି) ⋅ 𝑛 𝑣 (3.25)

where we deϐined 𝑢଴ as

𝑢଴ ∶= ቐ
𝑢ା଴ 𝑥 ∈ Ωା

𝑢ି଴ 𝑥 ∈ Ωି
(3.26)

In (3.25) above, we recognize the jump in the normal derivative [𝜕௡𝑢] ∶= (∇𝑢ା−∇𝑢ି) ⋅𝑛 and

11

3.1. An Elliptic Interface Problem

so we can write

න
ஐ
∇𝑢଴ ⋅ ∇𝑣 = න

ஐ
𝑓𝑣 + න

ஐష
∇�̄� ⋅ ∇𝑣 − න

ஐశ
∇�̄� ⋅ ∇𝑣 − න

୻
𝑏𝑣 (3.27)

We thus deϐine the weak form of the problem as : ϐind 𝑢଴ ∈ 𝐻ଵ
଴(Ω) such that

𝑎(𝑢଴, 𝑣) = 𝐿(𝑣) 𝑣 ∈ 𝐻ଵ
଴(Ω) (3.28)

with

𝑎(𝑢଴, 𝑣) = න
ஐ
∇𝑢଴ ⋅ ∇𝑣 (3.29)

𝐿(𝑣) = න
ஐ
𝑓𝑣 + න

ஐష
∇�̄� ⋅ ∇𝑣 − න

ஐశ
∇�̄� ⋅ ∇𝑣 − න

୻
𝑏𝑣 (3.30)

and the solution of the problem is

𝑢 = 𝑢଴ + 𝜒ஐశ�̄� − 𝜒ஐష �̄� (3.31)

where we have used the characteristic functions of Ωା and Ωି.

It is known that the bilinear form (3.29), which is the standard bilinear form for the regular
Poisson problem, is coercive and continuous over𝐻ଵ

଴ (Ω) functions. Regarding the linear form
𝐿(𝑣), we can use the triangle inequality and Cauchy-Schwarz’s inequality to show that

|𝐿(𝑣)| ≤ 𝑐 ቀ‖𝑓‖௅మ(ஐ) + ‖�̄�‖ுభ(ஐ) + ‖�̄�‖ுభ(ஐ) + ‖𝑏‖௅మ(୻)ቁ ‖𝑣‖ுభ(ஐ) (3.32)

for some constant 𝑐 > 0. The fact that the norms in (3.32) are allwell-deϐined follows from the
assumptions (3.13-3.16) ; the existence anduniqueness of a solution𝑢଴ of (3.28) follows from
the Lax-Milgram theorem. Uniqueness of 𝑢 itself can also be shown, as well as continuous
dependence on the data, as in [9] and [7], and thus the problem is well-posed in the sense of
Hadamard.

12

Chapter 3. Methodology

3.1.3 Representation Formula for the Poisson Problem

The classical Poisson problem with Dirichlet boundary conditions, given by

−Δ𝑢 = 𝑓, 𝑥 ∈ Ω (3.33)

𝑢 = 𝑔, 𝑥 ∈ 𝜕Ω (3.34)

is a relatively simple problem that has been extensively studied. Here we simply list a few
results pertaining to this problem, taken from [14], that we use in section 3.2.4.7.

The Poisson problem has a fundamental solutionΦ(𝑥, 𝑦) given in 2 dimensions by

Φ(𝑥, 𝑦) ∶= −1
2𝜋 logඥ𝑥

ଶ + 𝑦ଶ (3.35)

For every point 𝑥଴ ∈ Ω, every solution 𝑢 ∈ 𝒞ଶ൫Ω൯ to the PDE (3.33) satisϐies the following
identity, which we refer to in the sequel as the representation formula for the Poisson prob-
lem :

𝑢(𝑥଴) = −න
ஐ
Φ(𝑥 − 𝑥଴)Δ𝑢(𝑥)𝑑𝑥 − න

డஐ
𝜕௡Φ(𝑥 − 𝑥଴)𝑢(𝑥)𝑑𝑠(𝑥)

+ න
డஐ

Φ(𝑥 − 𝑥଴)𝜕௡𝑢(𝑥)𝑑𝑠(𝑥)
(3.36)

where the normal derivative of the fundamental solution is given by

Φ(𝑥, 𝑦) ∶= −1
2𝜋 (𝑥ଶ + 𝑦ଶ)൫𝑥𝑛௫ + 𝑦𝑛௬൯ (3.37)

3.2 Numerical Method

In this section, we explain how the Poisson interface problem deϐined above is solved nu-
merically using the framework of the Correction Function Method. Section 3.2.1 presents the
Correction FunctionMethod as it was introduced in [31]. Section 3.2.2 describes the 2D ϐinite
difference scheme used to discretize the problem. In Section 3.2.3, we focus on the discrete
representation of the interface. The local solver used to correct the stencils for nodes near the
interface is presented in Section 3.2.4. Finally, the Fast Poisson solver used for the solution of
the linear system resulting from the ϐinite difference discretization is derived in Section 3.2.5.

13

3.2. Numerical Method

3.2.1 The Correction Function Method Framework

The Correction Function Method (CFM) was introduced in [31] as a general framework to
solve the Poisson interface problem in 2 or 3 spatial dimensions, in the context of ϐinite differ-
ence approximations. The basic idea of the method is more concisely explained in a 1 dimen-
sional setting. In one dimension (1D), the Poisson interface problem reduces to the following
boundary value problem :

𝑢ା௫௫ = 𝑓ା, 𝑥 ∈ Ωା (3.38)

𝑢ି௫௫ = 𝑓ି, 𝑥 ∈ Ωି (3.39)

[𝑢] = 𝑎, 𝑥 ∈ Γ (3.40)

[𝑢௫] = 𝑏, 𝑥 ∈ Γ (3.41)

𝑢 = 𝑔, 𝑥 ∈ 𝜕Ω (3.42)

Notice that in 1D the interface Γ is simply a point 𝑥୻ in the domain interval Ω = (𝑥௅, 𝑥ோ), the
boundary 𝜕Ω = {𝑥௅, 𝑥ோ} and the jump conditions 𝑎 and 𝑏 are constants. A typical solution
and its domain are illustrated in ϐigure 3.2 below.

-4 0 4Γ"Ω+" Ω–"

Figure 3.2. A one-dimensional domain ஐ is split in two subdomains ஐା and ஐି by an interface point
୻. Here ௫௅ ୀ ଴ and ௫ோ ୀ ସ.

The main idea of the correction function method is based on the following reasoning. Away
from the interface, the ordinary differential equations (ODEs) for 𝑢ା and 𝑢ି in (3.38-3.39)
are discretized using standard ϐinite-difference stencils. For example, a second-order scheme

14

Chapter 3. Methodology

would use the standard stencils

𝑢ା௜ିଵ − 2𝑢ା௜ + 𝑢ା௜ାଵ
ℎଶ = 𝑓ା௜ (3.43)

𝑢ି௜ିଵ − 2𝑢ି௜ + 𝑢ି௜ାଵ
ℎଶ = 𝑓ି௜ (3.44)

However, near the interface, these stencils need to bemodiϐied somehow because they strad-
dle the interface and hence do not give an appropriate approximation to the second derivative
of either 𝑢ାor 𝑢ି. Indeed, consider the situation illustrated in ϐigure 3.3 below. Node 𝑘 is the
last node in subdomain Ωା, and the interface Γ is situated between nodes 𝑘 and 𝑘 + 1.

1,6 2 2,4 2,8 3,2

Γ"
Ω+" Ω–"

k"–"2# # #####k#–#1" " ""k" k#+1# # #####k#+"2#

!!

!!

Figure 3.3. Close-up of the 1D domain near the interface point ୻.

Writing the second-order stencil at node 𝑘 results in :

𝑢ା௞ିଵ − 2𝑢ା௞ + 𝑢ା௞ାଵ
ℎଶ = 𝑓ା௞ (3.45)

In this equation, 𝑢ା௞ାଵ does not have a well-deϐined value, since at node 𝑘 + 1 the solution
is given by 𝑢ି and not by 𝑢ା. Suppose, however, that we could extend 𝑢ା in the subdomain
Ωି, up to a small distance from the interface, and in the same way extend 𝑢ି in Ωା (these
extensions are represented in dashed blue in ϐigure 3.3). Then we could write the value of
𝑢ା௞ାଵ as

𝑢ା௞ାଵ = 𝑢ି௞ାଵ + 𝐷௞ାଵ (3.46)

where𝐷௞ାଵ is a correction term (whichwould be negative in the situation of ϐigure 3.3) quan-
tifying the difference between 𝑢ାand 𝑢ିat node 𝑘 + 1. That correction term permits us to

15

3.2. Numerical Method

write the stencil at node 𝑘 using the real solution at node 𝑘 + 1, 𝑢ି :

𝑢ା௞ିଵ − 2𝑢ା௞ + ൫𝑢ି௞ାଵ + 𝐷௞ାଵ൯
ℎଶ = 𝑓ା௞ (3.47)

If this correction term can be computed in a way that is independent of the solution 𝑢, then
it can be moved to the right-hand side (RHS) of the equation, as a modiϐication to the source
term :

𝑢ା௞ିଵ − 2𝑢ା௞ + 𝑢ି௞ାଵ
ℎଶ = 𝑓ା௞ − 𝐷௞ାଵ

ℎଶ (3.48)

This is essential because many linear solvers have been speciϐically designed to efϐiciently
solve the linear system resulting from the Poisson problem in 1, 2 or 3 dimensions. These
solvers, termed “Fast Poisson solvers”, make use of the fast Fourier transform, as will be dis-
cussed in section 3.2.5. Their high performance relies of the structure of the ϐinite difference
matrix on the left-hand side of the linear system (in the 1D case above, a tridiagonal, sym-
metric matrix). If the correction terms are placed on the right-hand side, the structure of
the coefϐicient matrix is unchanged compared to the standard Poisson problem and the Fast
Poisson solvers can still be used, only with a modiϐied right-hand side.

Returning to the general 2D or 3D case, we deϐine a correction function 𝐷 ∶ Ω୻ → ℝ in a
small domainΩ୻ that forms a narrow band around the interface (see ϐigure 3.4). This domain
should be small but still large enough to cover all the nodes where corrections are needed ;
this means all nodes that are part of a ϐinite difference stencil that crosses the interface. The
correction function is deϐined as

𝐷 ∶= 𝑢ା − 𝑢ି, 𝑥 ∈ Ω୻ (3.49)

Using this deϐinition, subtracting (3.7) and (3.8) and using the jump conditions (3.2-3.3), we
discover that the correction function is the solution of the problem

Δ𝐷 = 𝑓஽, 𝑥 ∈ Ω୻ (3.50)

𝐷 = 𝑎, 𝑥 ∈ Γ (3.51)

𝜕௡𝐷 = 𝑏, 𝑥 ∈ Γ (3.52)

16

Chapter 3. Methodology

Figure 3.4. The domainஐ୻ over which the correction function is sought, in grey, forms a band around
the interface ୻. The grid nodes where corrections are required appear in orange.

where 𝑓஽ ∶= 𝑓ା − 𝑓ି. This deϐinition assumes that we can sensically extend 𝑓ା past the
interface inside Ωି, and in the same way extend 𝑓ି inside Ωା, at least far enough so that 𝑓஽ is
deϐined over the whole Ω୻. Note that the width of the band domain Ω୻ is of the order of the
step size of the ϐinite difference stencil.
The problem (3.50-3.52) is a Poisson problemwith Cauchy data ; we impose both the function
value and the normal derivative. In this speciϐic case, the data is given on a curve Γ located
inside Ω୻, i.e. the Cauchy data is not on the boundary of the domain. In [31], it is argued
that even though such a problem is in general ill-posed, here it is well-posed because we are
looking for a solution only at a small distance (of the order of ℎ) from the curve Γ, and the
numerical nature of the problem implies that there is a frequency cut-off in the problem data,
i.e. 𝑎, 𝑏, 𝑓஽ and Γ are only known at grid points. Once (3.50) is solved and the correction
function is known at each node where the correction terms are needed, the linear system can
be solved.
Since the correction function is deϐined as the solution of a partial differential equation (PDE),
this framework gives a lot of ϐlexibility ; any scheme can be designed to solve this PDE, so
in theory it can be solved to any degree of accuracy. In practice, it is sufϐicient to solve the

17

3.2. Numerical Method

correction function to the same accuracy as the ϐinite difference scheme used, as is argued in
[31]. The way we solve for the correction function is explained in section 3.2.4.

3.2.2 The Compact 4Ƙƌ-Order Finite Difference Scheme

The ϐinite difference scheme used to solve the Poisson problem in 2D is the 9-point stencil for
the Laplacian. This stencil is of order 4 for general functions. Its derivation is outlined below.
We start with the standard, 2ⁿƈ order 5-point stencil for the Laplacian Δହ௜௝ , which is simply the
1D, second-order standard stencil applied in both dimensions :

Δହ௜௝𝑢 ∶= �̂�௫௫𝑢௜௝ + �̂�௬௬𝑢௜௝ (3.53)

where �̂�௫௫ and �̂�௬௬ are the second-order centered stencils for the second derivative in the 𝑥
and 𝑦 directions :

�̂�௫௫𝑢௜௝ ∶=
𝑢௜ିଵ,௝ − 2𝑢௜௝ + 𝑢௜ାଵ,௝

ℎଶ௫
�̂�௬௬𝑢௜௝ ∶=

𝑢௜,௝ିଵ − 2𝑢௜௝ + 𝑢௜,௝ାଵ
ℎଶ௬

(3.54)

Using Taylor series expansions centered at node (𝑖, 𝑗), it is easy to show that

Δହ௜௝𝑢 = Δ𝑢 + ℎଶ௫
12𝑢௫௫௫௫ +

ℎଶ௬
12𝑢௬௬௬௬ + 𝒪൫ℎସ൯ (3.55)

Here and hereafter, the notation 𝒪൫ℎସ൯ encompasses all error terms of order 4, i.e. terms of
order ℎସ௫, ℎସ௬ and ℎଶ௫ℎଶ௬. In order to get a 4Ƙƌ order stencil, we simply approximate the leading
order error term using ϐinite differences of order 2. Hencewewant to approximate 𝑢௫௫௫௫ and
𝑢௬௬௬௬. However, we also wish to keep the stencil compact, i.e. only ϐirst and second nearest
neighbours are to be allowed in the stencil (see ϐigure 3.5). This way, the stencil does not have
to be modiϐied near the boundary.
These two facts at ϐirst seemcontradictory, since the secondorder stencil for the 4Ƙƌ derivative
needs 5 points and is thus not appropriate for our compact scheme :

𝑢௫௫௫௫ =
𝑢௜ିଶ − 4𝑢௜ିଵ + 6𝑢௜ − 4𝑢௜ାଵ + 𝑢௜ାଶ

ℎସ௫
+ 𝒪൫ℎଶ௫൯ (3.56)

However, we can use the Poisson equation (3.1) to get a different expression for the fourth

18

Chapter 3. Methodology

Figure 3.5. Nearest neighbours on a 2D grid. Image from [41].

derivatives. By differentiating twice with respect to 𝑥 on each side of (3.1), we get

𝑢௫௫௫௫ = 𝑓௫௫ − 𝑢௫௫௬௬ (3.57)

Similarly, by differentiating twice with respect to 𝑦 we obtain :

𝑢௬௬௬௬ = 𝑓௬௬ − 𝑢௫௫௬௬ (3.58)

The mixed derivative 𝑢௫௫௬௬ can be approximated compactly to second order :

𝑢௫௫௬௬ = 𝜕௫௫𝑢௬௬
= �̂�௫௫𝑢௬௬ + 𝒪൫ℎଶ௫൯

= �̂�௫௫�̂�௬௬𝑢 + 𝒪൫ℎଶ௫൯ + 𝒪൫ℎଶ௬൯

= 1
ℎଶ௫ℎଶ௬

ൣ𝑢௜ିଵ,௝ିଵ + 𝑢௜ିଵ,௝ାଵ + 𝑢௜ାଵ,௝ିଵ + 𝑢௜ାଵ,௝ାଵ

−2 ൫𝑢௜ିଵ,௝ + 𝑢௜ାଵ,௝ + 𝑢௜,௝ିଵ + 𝑢௜,௝ାଵ൯ + 4𝑢௜௝൧ + 𝒪൫ℎଶ൯ (3.59)

We can now use (3.57), (3.58) and (3.59) to rewrite (3.55) :

Δହ௜௝𝑢 −
ℎଶ௫
12(𝑓௫௫ − �̂�௫௫�̂�௬௬𝑢) −

ℎଶ௬
12(𝑓௬௬ − �̂�௫௫�̂�௬௬𝑢) = Δ𝑢 + 𝒪൫ℎସ൯ (3.60)

We then deϐine
Δଽ௜௝𝑢 ∶= �̂�௫௫𝑢 + �̂�௬௬𝑢 + ቆ

ℎଶ௫ + ℎଶ௬
12 ቇ �̂�௫௫�̂�௬௬𝑢 (3.61)

19

3.2. Numerical Method

and using Δଽ௜௝ , our 4Ƙƌ order scheme for the Poisson equation is

Δଽ௜௝𝑢 = 𝑓௜௝ +
1
12 ൬ℎ

ଶ
௫൫𝑓௫௫൯௜௝ + ℎଶ௬ ൫𝑓௬௬൯௜௝൰ (3.62)

The scheme above assumes we have access to the second derivatives of the source terms 𝑓ା,
𝑓ି in order to evaluate them at node (𝑖, 𝑗). If the source is only known at grid points, then
its derivatives can be approximated using the standard second-order ϐinite difference sten-
cil without losing the fourth order accuracy of the scheme since they are multiplied by the
step size, resulting in an error term of order 4. However, if the source term is discontinuous
(𝑓ା ≠ 𝑓ି), then for nodes near the interfacewe cannot use the standard stencil for the second
derivative because it would cross the interface. To alleviate this issue, we can use the second
order, off-centered stencils for the second derivative, which are 4 nodes wide :

𝑓right௫௫ = 2𝑓௜ − 5𝑓௜ାଵ + 4𝑓௜ାଶ − 𝑓௜ାଷ
ℎଶ + 𝒪൫ℎଶ௫൯ (3.63)

𝑓left௫௫ = −𝑓௜ିଷ + 4𝑓௜ିଶ − 5𝑓௜ିଵ + 2𝑓௜
ℎଶ + 𝒪൫ℎଶ௫൯ (3.64)

3.2.2.1 Higher Order Accuracy for Harmonic Functions

It is interesting to note that the scheme (3.62) is sixth order for harmonic functions in the
special case of a square grid (ℎ௫ = ℎ௬ =∶ ℎ). In that case, the fourth order error term is

ℎସ
360ቀ𝜕

଺
௫𝑢 + 𝜕଺௬𝑢 + 5 ൫𝜕ସ௫𝜕ଶ௬𝑢 + 𝜕ଶ௫𝜕ସ௬𝑢൯ ቁ (3.65)

The derivatives appearing above can be rewritten as

ቀ𝜕଺௫𝑢 + 𝜕଺௬𝑢 + 5 ൫𝜕ସ௫𝜕ଶ௬𝑢 + 𝜕ଶ௫𝜕ସ௬𝑢൯ ቁ = Δଷ𝑢 + 2 ൫𝜕ସ௫𝜕ଶ௬𝑢 + 𝜕ଶ௫𝜕ସ௬𝑢൯

= Δଷ𝑢 + 2𝜕௫௫௬௬(Δ𝑢)

= 0

where the ϐirst and third power of the Laplacian appear, making the term zero for harmonic
functions.

20

Chapter 3. Methodology

3.2.2.2 Computation of the Solution Gradient

For several applications of the Poisson interface problem, aswe shall later see, the quantity of
interest is not the solution 𝑢 but rather its gradient, ∇𝑢. Once we have computed the solution,
the gradient is computed using once again a compact stencil, which we derive using the PDE
3.1. We start with the second order ϐinite difference stencil for the ϐirst derivative,

�̂�௫𝑢௜௝ ∶=
−𝑢௜ିଵ,௝ + 𝑢௜ାଵ,௝

2ℎ௫
�̂�௬𝑢௜௝ ∶=

−𝑢௜,௝ିଵ + 𝑢௜,௝ାଵ
2ℎ௬

(3.66)

Using Taylor series , we have that

�̂�௫𝑢௜௝ = 𝜕௫𝑢 +
ℎଶ௫
6 𝑢௫௫௫ + 𝒪൫ℎସ௫൯ (3.67)

We differentiate the PDE 3.1 with respect to 𝑥 to rewrite the third derivative and then we
approximate :

𝑢௫௫௫ = 𝜕௫𝑓 − 𝑢௫௬௬ (3.68)

= �̂�௫𝑓 − �̂�௫𝜕௬௬𝑢 + 𝒪൫ℎଶ௫൯ (3.69)

= �̂�௫𝑓 − �̂�௫�̂�௬௬𝑢 + 𝒪൫ℎଶ௫൯ + 𝒪൫ℎଶ௬൯ (3.70)

A similar procedure can be carried out for the 𝑦-derivative, and thus the 9-point, fourth-order
approximation to the gradient, ∇ଽ௜௝ , is

∇ଽ௜௝𝑢 ∶= ൮
�̂�௫𝑢 +

ℎଶ௫
6 ൫�̂�௫�̂�௬௬𝑢 − �̂�௫𝑓൯

�̂�௬𝑢 +
ℎଶ௬
6 ൫�̂�௬�̂�௫௫𝑢 − �̂�௬𝑓൯

൲ = ∇𝑢 + 𝒪൫ℎସ൯ (3.71)

Once again, the ϐirst derivatives of the source term can be computed using second order ϐinite
differences if their exact expressions are not available.
Note that for nodes near the interface, this stencil will involve nodes in bothΩା andΩି. How-
ever, this is not a problem since we can always use the correction function 𝐷, which we store
once it is computed, to correct the solution.
At a node 𝑥௜௝ ∈ Ωା , let 𝑆 be the set of nodes appearing in an arbitrary ϐinite difference stencil
𝐹௛, and let 𝑆ା and 𝑆ି denote the subsets of these nodes located in Ωା and Ωି respectively.

21

3.2. Numerical Method

Then we can write, using 𝑐 as the stencil coefϐicients, and making use of the deϐinition of 𝐷
in (3.49),

𝐹௛(𝑢ା௜௝) =෍
௜∈ௌ

𝑐௜𝑢ା௜

= ෍
௜∈ௌశ

𝑐௜𝑢ା௜ + ෍
௜∈ௌష

𝑐௜ ൫𝑢ି௜ + 𝐷௜൯

=෍
௜∈ௌ

𝑐௜𝑢௜ + ෍
௜∈ௌష

𝑐௜𝐷௜ (3.72)

and similarly, for a node in Ωି,

𝐹௛(𝑢ି௜௝) =෍
௜∈ௌ

𝑐௜𝑢௜ − ෍
௜∈ௌశ

𝑐௜𝐷௜ (3.73)

The fact that the gradient stencil involves the computed correction function for nodes near the
interface means that fourth order accuracy is not guaranteed, since the computed correction
function is not necessarily smooth, as argued in [31]. In fact, the gradient will be accurate to
third order in the worst case.

3.2.3 Interface Description

As mentioned in section 3.1, the interface between the two subdomains Ωା and Ωି is de-
scribedby a level set function𝜙, i.e. the interface is the zero level set of𝜙. Weuse the gradient-
augmented level set method of [35] to discretize the level set. We thus have 3 grid functions,
𝜙,𝜙௫ and𝜙௬ andwe use the reduced bicubic interpolants described in section 3.2.4.2 to com-
pute the value of the level set or its derivatives at arbitrary locations in the computational
domain.

Note that if we are only given 𝜙 on a grid, we can still use the reduced bicubic interpolants as
long aswe can compute𝜙௫ and𝜙௬ on the grid to𝒪൫ℎଷ൯ (see 3.2.4.2). Speciϐically, if𝜙 is known
to𝒪൫ℎସ൯, we can use fourth order ϐinite differences for the ϐirst derivatives to approximate𝜙௫
and 𝜙௬, and our level set representation will still be fourth order.

We often need to compute the unit normal and tangent vectors to the interface at a point 𝑥.

22

Chapter 3. Methodology

These unit vectors are computed in the following way [36] :

𝑛(𝑥) = ∇𝜙(𝑥)
‖∇𝜙(𝑥)‖ (3.74)

𝑡(𝑥) = ൫−𝑛௬, 𝑛௫൯ (3.75)

where 𝑥 ∈ ℝଶ. Note that since these vectors are deϐined using the level set function, they can
be computed at any point in the domain.

We also need to compute the projection on the interface of a point 𝑥଴ in the domain, that is,
the closest point on the interface to point 𝑥଴. For points near the interface, we assume the
level set can be approximated linearly, so a plot of 𝜙 in the normal direction would look like
ϐigure 3.6.

Figure 3.6. Linear approximation to the level set in the normal direction ௗ

The linear approximation permits us to write

𝜙൫𝑑 (𝑥଴)൯ = 𝛼 𝑑(𝑥଴)

where 𝑑(𝑥଴) is the distance from the interface to 𝑥଴ in the normal direction and 𝛼 is the slope
of the linear approximation. Taking this slope as the value of the gradient at 𝑥଴, we can then

23

3.2. Numerical Method

write
𝑑(𝑥଴) =

𝜙(𝑥଴)
‖∇𝜙(𝑥଴)‖

Hence if wemove a distance 𝑑(𝑥଴) in the normal direction, we should be close to the interface
if the level set is well approximated linearly. In the general case, we can repeat this procedure
as a ϐixed point algorithm. We deϐine the projection operator

𝑃(𝑥) ∶= 𝑥 − 𝜙(𝑥)
‖∇𝜙(𝑥)‖ᇣᇧᇧᇤᇧᇧᇥ

approximate distance

∇𝜙(𝑥)
‖∇𝜙(𝑥)‖ᇣᇧᇧᇤᇧᇧᇥ

normal

= 𝑥 − 𝜙(𝑥) ∇𝜙(𝑥)
‖∇𝜙(𝑥)‖ଶ

(3.76)

and we have the following algorithm, given a small tolerance 𝜖 :

Algorithm 3.1 Projection of a point 𝑥଴ on the interface
𝑥(଴) ← 𝑥଴
repeat 𝑥(௞ାଵ) = 𝑃 ൫𝑥(௞)൯
until 𝜙 ൫𝑥(௞)൯ ≤ 𝜖

Usually, only one iteration is sufϐicient to get a good projection if the starting point 𝑥଴ is not
too far from the interface.

3.2.4 Local Solver for the Correction Function

In this section we describe how we solve the problem (3.50-3.52) in order to get the value
of the correction function 𝐷 at each grid point where corrections are needed. Let us ϐirst
emphasize that a local solver is used : the value of the correction function at each required
node is computed independently. As argued in [31], a local solver for the correction function
is appropriate because we only require the solution at a small distance from the interface
(on the order of the step size ℎ). The correction function equation is solved at node (𝑖, 𝑗) by
minimizing the following integral quantity :

𝐽(𝑢) ∶= 𝑐ଵන
ஐ೔ೕ౳

(Δ𝑢 − 𝑓஽)ଶ 𝑑𝑥 + 𝑐௣
ே೔ೕ

෍
௞ୀଵ

න
୻೔ೕೖ
ቂ𝑐ଶ (𝑢 − 𝑎)ଶ + 𝑐ଷ (𝜕௡𝑢 − 𝑏)ଶቃ 𝑑𝑠(𝑥) (3.77)

24

Chapter 3. Methodology

The ϐirst term is an integral over the local domainΩ௜௝୻ , which is deϐined in section 3.2.4.3 and is
shown in ϐigure 3.7. The second and third terms are integrals over the interface, that is, a line
integral in 2D (or a surface integral in 3D); 𝑑𝑠(𝑥) is the line element (or the surface element
in 3D). The interface domains Γ௜௝௞ , 𝑘 = 1, ..., 𝑁௜௝ are deϐined in sections 3.2.4.3-3.2.4.4 below
and are also shown in ϐigure 3.7. The coefϐicients 𝑐ଵ, 𝑐ଶ and 𝑐ଷ are scaling coefϐicients, derived
in section 3.2.4.6. They are designed to make each term of the integral have the same units,
so they scale in the same way when the grid is reϐined. The coefϐicient 𝑐௣ is a penalization
coefϐicient ; it controls howmuch the solution will be inϐluenced by the interface integral.

Figure 3.7. The integration domain for the correction function minimization problem

It is clear that the value of the above functional 𝐽(𝑢) ≥ 0 and that when evaluated at the
solution 𝐷 to problem (3.50-3.52), it is zero. This method of solving the correction function
problem was introduced in [31] and was further improved in [33], where the decoupling be-
tween Ω௜௝୻ and Γ௜௝௞ was introduced, leading to the functional (3.77). Note that in the case of a
discontinuous source term (𝑓ା ≠ 𝑓ି), as mentioned above (see the discussion below prob-
lem (3.50-3.52)), 𝑓ା and 𝑓ି need to be extended on the other side of the interface so that the
function 𝑓஽ can be deϐined. If both 𝑓ା and 𝑓ି are only deϐined on a grid on their respective
domains, thismeans an extrapolation schememust be used to perform these extensions. This
case is not covered by the example problems examined in this work.

25

3.2. Numerical Method

To minimize the functional, we ϐirst substitute the correction function 𝐷 by a polynomial ap-
proximation :

𝐷(𝑥) = �̂�(𝜉) =
௡

෍
௠ୀଵ

𝐵௠(𝜉)�̂�௠ (3.78)

where the𝐵௠ are polynomial basis functions, the �̂�௠ are scalar coefϐicients and 𝑛 is the num-
ber of basis functions. The polynomial basis used is described in section 3.2.4.2. The func-
tion �̂�(𝜉) is a transformed version of the correction function 𝐷 under a geometric mapping
described in section 3.2.4.5. The integrals are then parameterized (see section 3.2.4.4) and
discretized using Gauss-Legendre quadrature [42] (see Appendix A), leading to ෤𝐽, the discrete
version of the functional.

3.2.4.1 Minimization

Once discretized, the functional ෤𝐽 becomes a quadratic function of the polynomial coefϐicients
𝐷௠, i.e.

෤𝐽 = 𝑥ୃA𝑥 + 𝑑ୃ𝑥 + 𝑔 (3.79)

where A ∈ ℝ௡×௡, 𝑥, 𝑑 ∈ ℝ௡, 𝑔 ∈ ℝ and 𝑥 = (�̂�ଵ, �̂�ଶ, ..., �̂�௡)ୃ. We wish to minimize this
functional, that is, we want to solve the optimization problem

min
௫∈ℝ೙

𝑥ୃA𝑥 + 𝑑ୃ𝑥 + 𝑔 (3.80)

This is an unconstrained quadratic optimization problem. Its solution can be computed di-
rectly by applying the ϐirst-order necessary condition for optimality (see [6], section2.2) lead-
ing to

0 = ∇ ൫𝑥ୃA𝑥 + 𝑑ୃ𝑥 + 𝑔൯ = 2A𝑥 + 𝑑 (3.81)

⟹ 𝑥 = −(2A)ିଵ 𝑑

𝑥 = −Aିଵ𝑑
2 (3.82)

The coefϐicients �̂�௠ describing the correction function at node (𝑖, 𝑗) are thus recovered by
solving a 𝑛 × 𝑛 linear system, and the polynomial solution makes the discretized functional ෤𝐽
exactly zero (at least to machine precision). The complete expression of the matrix A and of

26

Chapter 3. Methodology

the vector 𝑑 are derived in Appendix A. A similar linear systemmust be solved for each node
where the correction function is needed. The method is thus intrinsically highly paralleliz-
able ; the value of the correction function at each required node is computed independently
from every other node.

3.2.4.2 Bicubic Interpolation

The polynomial interpolation framework used is the bicubic interpolation described in [35].
In this section, to streamline the notation we write (𝑥, 𝑦) = (𝑥଴, 𝑥ଵ) and 𝑥 = (𝑥଴, 𝑥ଵ) ∈ ℝଶ.
Given a function 𝑓(𝑥) ∶ 𝑆 → ℝ deϐined over the rectangular domain 𝑆 = [𝑎଴, 𝑏଴] × [𝑎ଵ, 𝑏ଵ] ⊂
ℝଶ, we approximate it using the following linear combination of monomials :

𝑓(𝑥) ≈ �̃�(𝑥) ∶=
ଷ

෍
௜ୀ଴

ଷ

෍
௝ୀ଴

𝑎௜௝𝑥௜଴𝑥௝ଵ (3.83)

The name “bicubic” comes from the fact that each exponent goes up to order 3. However, this
monomial basis is not well-conditioned, so we use a different basis.

The bicubic interpolants, or bicubics, are designed to interpolate a function 𝑓 given the fol-
lowing data : 𝑓, 𝑓௫, 𝑓௬ and 𝑓௫௬ on each corner of the domain 𝑆. This amounts to 16 pieces of
information, or data points, enough to ϐix the 16 coefϐicients 𝑎௜௝ in (3.83). We use the multi-
index 𝜈 ∈ {0, 1}ଶ to designate the four corners of the domain, with the ϐirst index correspond-
ing to the 𝑥଴ dimension and the second corresponding to the 𝑥ଵ dimension (see ϐigure 3.8).
Similarly, we use the multi-index 𝛼 ∈ {0, 1}ଶ to designate the derivatives of 𝑓, with the ϐirst
index again corresponding to the 𝑥଴ variable and the second index corresponding to the 𝑥ଵ
variable. The data point 𝑓ఔఈ is then deϐined as

𝑓ఔఈ ∶= 𝜕ఈ𝑓(𝑥ఔ) (3.84)

where 𝑥ఔ is the coordinate of corner 𝜈 and we write the interpolant as

෥𝑓(𝑥) ∶= ෍
ఔ,ఈ ∈ {଴,ଵ}మ

𝑓ఔఈ 𝐵ఔఈ(𝑥) (3.85)

27

3.2. Numerical Method

Figure 3.8. The domain ௌ over which the bicubic interpolants are deϐined.

where 𝐵ఔఈ are the bicubic polynomial basis functions given by the following deϐinitions

𝐵ఔఈ(𝑥) = Δ𝑥ఈ𝑊ఔ
ఈ (𝑥), (3.86)

Δ𝑥 = (Δ𝑥଴, Δ𝑥ଵ) = (𝑏଴ − 𝑎଴, 𝑏ଵ − 𝑎ଵ) ∈ ℝଶ, (3.87)

𝑊ఔ
ఈ (𝑥) =

ଵ

ෑ
௜ୀ଴

𝑤ఔ೔ఈ೔൫𝑥௜൯, (3.88)

𝑥௜ =
𝑥௜ − 𝑎௜
Δ𝑥௜

(3.89)

The univariate polynomials𝑤ఔ೔ఈ೔ are deϐined by

𝑤଴
଴ (𝑥) = 𝑓(𝑥) 𝑤ଵ

଴ (𝑥) = 𝑓(1 − 𝑥) (3.90)

𝑤଴
ଵ (𝑥) = 𝑔(𝑥) 𝑤ଵ

ଵ (𝑥) = −𝑔(1 − 𝑥) (3.91)

and the cubic polynomials 𝑓 and 𝑔 are

𝑓(𝑥) = 1 − 3𝑥ଶ + 2𝑥ଷ (3.92)

𝑔(𝑥) = 𝑥(1 − 𝑥)ଶ (3.93)

28

Chapter 3. Methodology

It is shown in [35] that if the bicubic interpolants are constructed from data 𝑓ఔఈ known to
𝒪൫ℎସି|ఈ|൯, then

𝜕ఈ ൫𝑓(𝑥) − ෥𝑓(𝑥)൯ = 𝒪൫ℎସି|ఈ|൯ (3.94)

The polynomials 𝐵ఔఈ are generalized Lagrange polynomials in the sense that for multi-indices
𝛾, 𝛿 ∈ {0, 1}ଶ,

𝜕ఊ𝐵ఔఈ(𝑥ఋ) = ቐ
1 𝛾 = 𝛼, 𝛿 = 𝜈

0 otherwise
(3.95)

3.2.4.2.1 Reduced Cell-Based Bicubic Interpolation

The result (3.94) above relating the accuracy of the bicubic interpolant to the accuracy of the
data deϐining it permits us to reduce the number of parameters needed to determine the bicu-
bics interpolants, without reducing the accuracy of the result, as explained in [35]. Indeed,
we can describe the interpolant using only the data 𝑓, 𝑓௫ and 𝑓௬ at the four corners, without
necessitating themixed derivative 𝑓௫௬. In fact, themixed derivative can be computed to𝒪൫ℎଶ൯
from the ϐirst derivatives using ϐinite differences and bilinear extrapolation, as we next show.
We ϐirst compute the mixed derivative at the midpoint of each face of the rectangular cell
(points A-D in ϐigure 3.9). We use the standard ϐinite difference formula for the ϐirst deriva-
tive :

𝑓A௫௬ =
𝑓ଶ௬ − 𝑓ଵ௬
Δ𝑥 + 𝒪൫Δ𝑥ଶ൯ 𝑓C௫௬ =

𝑓ଷ௬ − 𝑓ସ௬
Δ𝑥 + 𝒪൫Δ𝑥ଶ൯ (3.96)

𝑓B௫௬ =
𝑓ଷ௫ − 𝑓ଶ௫
Δ𝑦 + 𝒪൫Δ𝑦ଶ൯ 𝑓D௫௬ =

𝑓ସ௫ − 𝑓ଵ௫
Δ𝑦 + 𝒪൫Δ𝑦ଶ൯ (3.97)

We then compute the mixed derivative at points numbered i-iv in ϐigure 3.9, located at the
midpoints of segments 𝐴𝐵, 𝐵𝐶, 𝐶𝐷 and 𝐷𝐴, by taking means :

𝑓i௫௬ =
𝑓A௫௬ + 𝑓B௫௬

2 + 𝒪൫ℎଶ൯ 𝑓ii௫௬ =
𝑓B௫௬ + 𝑓C௫௬

2 + 𝒪൫ℎଶ൯ (3.98)

𝑓ii௫௬ =
𝑓C௫௬ + 𝑓D௫௬

2 + 𝒪൫ℎଶ൯ 𝑓iv௫௬ =
𝑓D௫௬ − 𝑓A௫௬

2 + 𝒪൫ℎଶ൯ (3.99)

Finally, we use bilinear extrapolation to compute the mixed derivative at the corners of the

29

3.2. Numerical Method

	a
0

	c
0

	d
0

	b
0

	a
1

	c
1

	d
1

	b
1

1 2

34

	S

A

C

BD

i

ii

iv

iii

	x
0

	x
1

Figure 3.9. Nodes needed for deriving the reduced bicubic interpolants

cell. The formula is the same as bilinear interpolation, but the interpolant is evaluated outside
the rectangular box of size (Δ𝑥/2 × Δ𝑦/2) deϐined by points i-iv :

𝑓௫௬(𝑥, 𝑦) =
1

(𝑑଴ − 𝑐଴) (𝑑ଵ − 𝑐ଵ)
ቂ 𝑓iv௫௬ (𝑑଴ − 𝑥) (𝑑ଵ − 𝑦) + 𝑓i௫௬ (𝑥 − 𝑐଴) (𝑑ଵ − 𝑦)

+𝑓iii௫௬ (𝑑଴ − 𝑥) (𝑦 − 𝑐ଵ) + 𝑓ii௫௬ (𝑥 − 𝑐଴) (𝑦 − 𝑐ଵ) ቃ
(3.100)

For example, at point 2, we have (𝑥, 𝑦) = (𝑏଴, 𝑎ଵ) so using

𝑑଴ − 𝑥 = −Δ𝑥
4 𝑑ଵ − 𝑦 = 3Δ𝑦

4
𝑥 − 𝑐଴ =

3Δ𝑥
4 𝑦 − 𝑐ଵ =

−Δ𝑦
4

and simplifying, we get
𝑓ଶ௫௬ =

1
4𝑓

i
௫௬ +

1
4𝑓

ii
௫௬ −

3
4𝑓

iii
௫௬ −

3
4𝑓

iv
௫௬ (3.101)

Using the formula (3.100) and equations (3.96-3.99), we can then write the mixed derivative
at the corners as linear combinations of the other data :

𝑓଴଴௫௬ = 3
4Δ𝑥൫𝑓

ଵ଴
௬ − 𝑓଴଴௬ ൯ + 3

4Δ𝑦൫𝑓
଴ଵ
௫ − 𝑓଴଴௫ ൯ − 1

4Δ𝑥൫𝑓
ଵଵ
௬ − 𝑓଴ଵ௬ ൯ − 1

4Δ𝑦൫𝑓
ଵଵ
௫ − 𝑓ଵ଴௫ ൯ (3.102)

30

Chapter 3. Methodology

𝑓ଵ଴௫௬ = 3
4Δ𝑥൫𝑓

ଵ଴
௬ − 𝑓଴଴௬ ൯ + 3

4Δ𝑦൫𝑓
ଵଵ
௫ − 𝑓ଵ଴௫ ൯ − 1

4Δ𝑥൫𝑓
ଵଵ
௬ − 𝑓଴ଵ௬ ൯ − 1

4Δ𝑦൫𝑓
଴ଵ
௫ − 𝑓଴଴௫ ൯ (3.103)

𝑓଴ଵ௫௬ = 3
4Δ𝑥൫𝑓

ଵଵ
௬ − 𝑓଴ଵ௬ ൯ + 3

4Δ𝑦൫𝑓
଴ଵ
௫ − 𝑓଴଴௫ ൯ − 1

4Δ𝑥൫𝑓
ଵ଴
௬ − 𝑓଴଴௬ ൯ − 1

4Δ𝑦൫𝑓
ଵଵ
௫ − 𝑓ଵ଴௫ ൯ (3.104)

𝑓ଵଵ௫௬ = 3
4Δ𝑥൫𝑓

ଵଵ
௬ − 𝑓଴ଵ௬ ൯ + 3

4Δ𝑦൫𝑓
ଵଵ
௫ − 𝑓ଵ଴௫ ൯ − 1

4Δ𝑥൫𝑓
ଵ଴
௬ − 𝑓଴଴௬ ൯ − 1

4Δ𝑦൫𝑓
଴ଵ
௫ − 𝑓଴଴௫ ൯ (3.105)

This means that we can now construct the bicubic interpolants using only the function val-
ues and ϐirst derivatives at the four corners of the cell. We can also deϐine reduced bicubic
interpolants, by combining the polynomials 𝐵ఔఈ and the mixed derivative data (3.102-3.105).
Using the new indices𝑚 in table 3.1, we deϐine the reduced bicubic polynomials 𝐵௠ :

𝐵௜ = 𝐵௜ , 𝑖 = 1,… , 4 (3.106)

𝐵ହ = 𝐵ହ +
1
4Δ𝑦ቀ−3𝐵ଵଷ + 𝐵ଵସ − 3𝐵ଵହ + 𝐵ଵ଺ቁ (3.107)

𝐵଺ = 𝐵଺ +
1
4Δ𝑦ቀ𝐵ଵଷ − 3𝐵ଵସ + 𝐵ଵହ − 3𝐵ଵ଺ቁ (3.108)

𝐵଻ = 𝐵଻ +
1
4Δ𝑦ቀ3𝐵ଵଷ − 𝐵ଵସ + 3𝐵ଵହ − 𝐵ଵ଺ቁ (3.109)

𝐵଼ = 𝐵଼ +
1
4Δ𝑦ቀ−𝐵ଵଷ + 3𝐵ଵସ − 𝐵ଵହ + 3𝐵ଵ଺ቁ (3.110)

𝐵ଽ = 𝐵ଽ +
1
4Δ𝑥ቀ−3𝐵ଵଷ − 3𝐵ଵସ + 𝐵ଵହ + 𝐵ଵ଺ቁ (3.111)

𝐵ଵ଴ = 𝐵ଵ଴ +
1
4Δ𝑥ቀ3𝐵ଵଷ + 3𝐵ଵସ − 𝐵ଵହ − 𝐵ଵ଺ቁ (3.112)

𝐵ଵଵ = 𝐵ଵଵ +
1
4Δ𝑥ቀ𝐵ଵଷ + 𝐵ଵସ − 3𝐵ଵହ − 3𝐵ଵ଺ቁ (3.113)

𝐵ଵଶ = 𝐵ଵଶ +
1
4Δ𝑥ቀ−𝐵ଵଷ − 𝐵ଵସ + 3𝐵ଵହ + 3𝐵ଵ଺ቁ (3.114)

The reduced interpolant is then written

෥𝑓(𝑥) =
ଵଶ

෍
௠ୀଵ

𝑓௠𝐵௠(𝑥) (3.115)

and the accuracy result (3.94) still holds.

31

3.2. Numerical Method

Table 3.1. Single indices for the bicubics interpolants

𝛼 𝜈 𝑚 𝛼 𝜈 𝑚

00
00 1

01
00 9

10 2 10 10
01 3 01 11
11 4 11 12

10
00 5

11
00 13

10 6 10 14
01 7 01 15
11 8 11 16

3.2.4.3 Domain Deϐinition

For each node 𝑥௜௝ where corrections are needed, we deϐine a domain Ω௜௝୻ using the node-
centered approach discussed in [31]. This domain is a square box of side 𝑠 ∶= √2ℎ where
ℎ ∶= ටℎଶ௫ + ℎଶ௬. Its center 𝑥௖ is given by the projection of node 𝑥௜௝ on the interface. We use
the level set function to perform this projection, using the ϐixed point algorithm described in
section 3.2.3. The corners of the square are situated at

𝑥ଵ = 𝑥଴ + ℎ𝑡 𝑥ଶ = 𝑥଴ + ℎ𝑛 (3.116)

𝑥ଷ = 𝑥଴ − ℎ𝑡 𝑥ସ = 𝑥଴ − ℎ𝑛 (3.117)

where 𝑛 and 𝑡 are the normal and tangent unit vectors to the interface at 𝑥௖ .

Also, for each computational cell crossed by the interface, we deϐine a transformation box𝑀.
This box is used to deϐine the interface segments Γ௜௝௞ in the second and third terms of (3.77),
as explained in section 3.2.4.4. We ϐirst project the cell center 𝑥௞ onto the interface, at point
𝑥଴௞ . The transformation box𝑀 is a square of side ℎ, centered at 𝑥଴௞ . Its corners are situated at

𝑥଴଴ = 𝑥଴௞ +
ℎ
2(−𝑛 − 𝑡) 𝑥ଵ଴ = 𝑥଴௞ +

ℎ
2(𝑛 − 𝑡) (3.118)

𝑥଴ଵ = 𝑥଴௞ +
ℎ
2(−𝑛 + 𝑡) 𝑥ଵଵ = 𝑥଴௞ +

ℎ
2(𝑛 + 𝑡) (3.119)

where 𝑛 and 𝑡 are the normal and tangent unit vectors to the interface at 𝑥଴௞ . The interface

32

Chapter 3. Methodology

segments included in the integral (3.77) are all those for which the center 𝑥଴௞ of their trans-
formation box is at a distance of ℎ or less from 𝑥௖ , the center of the domain Ω௜௝୻ (see ϐigure
3.10).

Figure 3.10. The node (௜, ௝) where corrections are needed is marked in red, and its projection on the
interface ௫௖ is marked with a blue cross. The cell centers of cells crossed by the interface are marked
with black circles, and their projections on the interface are marked with black crosses. Those inside
a radius of ௛ around ௫௖ , located inside the blue circle, are used to deϐine the transformation boxesெଵ
andெଶ. In the case depicted above,ே௜௝ ୀ ଶ in equation (3.77).

3.2.4.4 Parameterization

The interface integrals in (3.77) must be parameterized before we can discretize them. To
do so, we use a transformation 𝑇 ∶ ℝଶ → ℝଶ, designed to map the interface segment Γ௜௝௞
associated with a cell crossed by the interface to a straight line. The transformation 𝑇 maps
the real domain coordinates (𝑥, 𝑦) (“the 𝑥-space”) to the parameter space (𝜃ଵ, 𝜃ଶ) (the “𝜃-
space”). This transformation is illustrated in ϐigure 3.11 and is deϐined using the level set
function as

𝜃 = ቌ
𝜃ଵ
𝜃ଶ
ቍ = 𝑇(𝑥) ∶= ⎛

⎜

⎝

𝜙(𝑥)
ℎ ∇𝜙଴

+ 1
2

𝑡 ⋅ (𝑥 − 𝑥଴)
ℎ + 1

2

⎞
⎟

⎠

(3.120)

33

3.2. Numerical Method

where 𝑥଴ is the center of the transformation box𝑀 and 𝑡 is the tangent at 𝑥଴, computed from
the level set information (see section 3.2.3). The use of the level set insures that the 𝜃 coor-
dinates are aligned with the interface. The transformation 𝑇 is designed to map the interface
segment Γ௜௝௞ to the line segment

𝜃ଵ = Θ ∶= 0.5, 𝜃ଶ ∈ [0, 1] (3.121)

(a) (b)

Figure 3.11. The transformation ் maps the boxெ in ௫-space (a) to the parameter space ఏ (b). The
interface segment ୻௜௝௞ is transformed to a straight line.

We parameterize the interface integral using the inverse transformation, 𝑇ିଵ, which maps
from the parameter space 𝜃 to the real space 𝑥. To integrate a general function 𝑓 on the inter-
face segment Γ௜௝௞ , we use

න
୻೔ೕೖ
𝑓(𝑥)𝑑𝑠(𝑥) = න

ଵ

଴
𝑓 ൫𝑇ିଵ (Θ, 𝜃ଶ)൯ ብ

𝜕𝑇ିଵ
𝜕𝜃ଶ

ብ
(஀,ఏమ)

𝑑𝜃ଶ (3.122)

Notice 𝑇ିଵ involves the inverse of the level set function 𝜙 (see (3.120)), for which an exact
expression is usually unavailable. To overcome this limitation, we use the reduced bicubic
interpolants described in section 3.2.4.2 to approximate the inverse transformation. Wewrite
𝑇ିଵ as

𝑥 = 𝑇ିଵ(𝜃) ≈ ෥𝑇ିଵ(𝜃) ∶= ቌ
𝐻ଵ(𝜃ଵ, 𝜃ଶ)
𝐻ଶ(𝜃ଵ, 𝜃ଶ)

ቍ (3.123)

34

Chapter 3. Methodology

where ෥𝑇ିଵ is the approximate inverse transformation and 𝐻ଵ and 𝐻ଶ are reduced bicubic
interpolants. We determine the coefϐicients of these bicubics by solving two linear systems.
We have 24 coefϐicients to determine ; 12 for 𝐻ଵ and 12 for 𝐻ଶ. Since locally, at the level of
the transformation box𝑀, the interface is close to a straight line (or a ϐlat surface in 3D), we
can write

𝑇 ∘ ෥𝑇ିଵ = 𝐼 + 𝒪൫ℎସ൯ (3.124)

This comes from the fact that the interface is locally quasi-straight and thus is well approx-
imated by a polynomial. The fourth-order bicubics used for the level set representation as
well as to approximate the inverse transformation guarantee the fourth-order accuracy, as
argued in [33]. Equation (3.124) allows us to write

𝐷𝑇𝐷෥𝑇ିଵ ≈ 𝐼 (3.125)

where the total derivative 𝐷 corresponds to the Jacobian matrix. To determine the coefϐi-
cients of the bicubics 𝐻ଵ and 𝐻ଶ, we simply evaluate the interpolants and their derivatives
at convenient locations: the corners 𝑥ఊ, 𝛾 ∈ {0, 1}ଶ of the transformation box𝑀 (see (3.118-
3.119) and ϐigure 3.11). Using the forward transformation 𝑇, we compute the transformed
coordinates

𝜃ఊ ∶= 𝑇(𝑥ఊ) (3.126)

and then we use the approximate inverse transformation to write

෥𝑇ିଵ(𝜃ఊ) = 𝑥ఊ (3.127)

Also, making explicit the Jacobians in (3.125), we get

𝜕𝑇
𝜕𝑥 ቤ௫ം

𝜕෥𝑇ିଵ
𝜕𝜃 ቤ

ఏം
≈ 𝐼 ⟹ 𝜕෥𝑇ିଵ

𝜕𝜃 ቤ
ఏം

= ቌ 𝜕𝑇𝜕𝑥 ቤ௫ം
ቍ
ିଵ

(3.128)

35

3.2. Numerical Method

In a compact way, both 12 × 12 linear systems are thus given by

⎧
⎪
⎨
⎪
⎩

෥𝑇ିଵ(𝜃ఊ) = 𝑥ఊ

𝜕෥𝑇ିଵ
𝜕𝜃 ቤ

ఏം
= ቌ 𝜕𝑇𝜕𝑥 ቤ௫ം

ቍ
ିଵ (3.129)

with 𝛾 ∈ {0, 1}ଶ. The ϐirst line is a vector expression and encompasses 2 equations, and the
second is amatrix expression and encompasses 4 equations. Whenwe evaluate these 6 equa-
tions on each of the four corners 𝜃ఊ, we arrive at a total of 24 equations, as needed to com-
plete both linear systems. To explicitly write these systems, we deϐine the inverse Jacobian
elements

𝜕𝑥
𝜕𝜃 = ⎛

⎜

⎝

𝜕𝑥
𝜕𝜃ଵ

𝜕𝑥
𝜕𝜃ଶ

𝜕𝑦
𝜕𝜃ଵ

𝜕𝑦
𝜕𝜃ଶ

⎞
⎟

⎠

∶= ቆ𝜕𝑇𝜕𝑥ቇ
ିଵ

(3.130)

and we can then use the expression of the bicubics (3.115) to write the linear systems :

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝐵௜(𝜃ఊ)ℎଵ௜ = 𝑥ఊ

𝜕ఏభ𝐵௜(𝜃ఊ)ℎଵ௜ =
𝜕𝑥
𝜕𝜃ଵ

ቤ
௫ം

𝜕ఏమ𝐵௜(𝜃ఊ)ℎଵ௜ =
𝜕𝑥
𝜕𝜃ଶ

ቤ
௫ം

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝐵௜(𝜃ఊ)ℎଶ௜ = 𝑦ఊ

𝜕ఏభ𝐵௜(𝜃ఊ)ℎଶ௜ =
𝜕𝑦
𝜕𝜃ଵ

ቤ
௫ം

𝜕ఏమ𝐵௜(𝜃ఊ)ℎଶ௜ =
𝜕𝑦
𝜕𝜃ଶ

ቤ
௫ം

𝛾 ∈ {0, 1}ଶ (3.131)

wherewe used the Einstein summation convention (repeated indices are summed, here from
𝑖 = 1,… , 12). In equation (3.131) above, 𝑥ఊ and 𝑦ఊ are the ϐirst and second coordinates in 𝑥-
space, and ℎଵ௜ and ℎଶ௜ , 𝑖 = 1,… , 12 are the coefϐicients of the bicubics 𝐻ଵ and 𝐻ଶ respectively.
Notice both linear systems have the same matrix but different right-hand side vectors, a fact
that can be leveraged to efϐiciently solve both systems as the same time (see, for example,
[18]). The two linear systems (3.131) must be solved for each transformation box 𝑀. Once
again, this is done in a completely independent fashion for eachbox and thus provides another
opportunity for parallelization of the implementation.

Making use of the bicubic interpolants for the approximate inverse transformation, we can

36

Chapter 3. Methodology

rewrite the interface integral (3.122) as

න
୻೔ೕೖ
𝑓(𝑥)𝑑𝑠(𝑥) = න

ଵ

଴
𝑓 ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ ብ

𝜕෥𝑇ିଵ
𝜕𝜃ଶ

ብ
(஀,ఏమ)
𝑑𝜃ଶ

= න
ଵ

଴
𝑓 ൫𝑇ିଵ (Θ, 𝜃ଶ)൯ ብቆ

𝜕𝐻ଵ
𝜕𝜃ଶ

𝜕𝐻ଶ
𝜕𝜃ଶ

ቇብ
(஀,ఏమ)
𝑑𝜃ଶ

= න
ଵ

଴
𝑓 ൫𝑇ିଵ (Θ, 𝜃ଶ)൯ ඨቆ

𝜕𝐻ଵ
𝜕𝜃ଶ

ቇ
ଶ
+ ቆ𝜕𝐻ଶ

𝜕𝜃ଶ
ቇ
ଶ
ቮ
(஀,ఏమ)

𝑑𝜃ଶ (3.132)

3.2.4.5 Mapping to the Reference Domain

We use an afϐine transformation, �̂�, to map the integration domain Ω୻ from the unit square
𝐾 ∶= [0, 1]ଶ, denoted as the 𝜉-space with coordinates (𝜉, 𝜂), to the real space 𝑥. The goal
of this second transformation is to use bicubic interpolants deϐined on 𝐾— instead of being
deϐined on the real space 𝑥— for the approximation of the correction function𝐷, for reasons
which are explained in section 5.2. Since the domain Ω௜௝୻ is a square, the transformation �̂�
is simply a composition of a rotation, a scaling and a translation, and its inverse is readily
available :

𝑥 = �̂�(𝜉) ∶= 𝑠 ቌ
cos𝜑 − sin𝜑
sin𝜑 cos𝜑

ቍ (𝜉 − 𝜉௖) + 𝑥௖ (3.133)

𝜉 = �̂�ିଵ(𝑥) ∶= 1
𝑠 ቌ

cos𝜑 sin𝜑
− sin𝜑 cos𝜑

ቍ (𝑥 − 𝑥௖) + 𝜉௖ (3.134)

where 𝑠 and𝑥௖ are the side length and center ofΩ௜௝୻ ,𝜑 = arctanቀ௬భି௬మ௫భି௫మ ቁ is the angle of rotation
ofΩ୻with respect to the𝑥-axis and 𝜉௖ = ቀଵଶ ,

ଵ
ଶቁ. This transformation is shown in ϐigure3.12. In

the next sections, we use the transformation �̂� to transform the minimization integral (3.77)
to the reference domain 𝐾.

37

3.2. Numerical Method

(a) (b)

Figure 3.12. The transformation ்̂ maps the unit square ௄ in the integration space క (b) to the inte-
gration domainஐ௜௝

୻ in ௫-space (a). The transformed normals ௡̂ (see equation(3.156)) appear in (b).

3.2.4.5.1 Domain Integral

The integral on the domain of a general function 𝑓 is transformed according to

න
ஐ౳
𝑓(𝑥)𝑑𝑥 = න

௄
𝑓 ൫�̂� (𝜉)൯ ቤ𝜕�̂�𝜕𝜉 ቤ 𝑑𝜉 (3.135)

=∶ න
௄

̂𝑓(𝜉)ቤ𝜕�̂�𝜕𝜉 ቤ 𝑑𝜉 (3.136)

where we introduce the notation

̂𝑓(𝜉) ∶= 𝑓 ൫�̂� (𝜉)൯ (3.137)

to denote the composition of a function 𝑓 with the coordinate transformation �̂�. Referring to
(3.77), we need to transform the Laplacian of the correction function 𝐷 to the reference do-
main. We thus have to relate the second derivatives with respect to 𝑥 and 𝑦 to the derivatives
of �̂�, the transformed correction function. We start with the ϐirst derivatives :

𝜕௫𝑓 = 𝜕௫ ̂𝑓 ൫�̂�ିଵ (𝑥, 𝑦)൯ = 𝜕క ̂𝑓𝜕௫𝜉 + 𝜕ఎ ̂𝑓𝜕௫𝜂 (3.138)

𝜕௬𝑓 = 𝜕௬ ̂𝑓 ൫�̂�ିଵ (𝑥, 𝑦)൯ = 𝜕క ̂𝑓𝜕௬𝜉 + 𝜕ఎ ̂𝑓𝜕௬𝜂 (3.139)

38

Chapter 3. Methodology

Note that the gradient of 𝑓 is then written

∇௫𝑓 = ቌ
𝜕௫𝜉 𝜕௫𝜂
𝜕௬𝜉 𝜕௬𝜂

ቍቌ
𝜕క ̂𝑓
𝜕ఎ ̂𝑓

ቍ

= 𝐷�̂�ିୃ∇క ̂𝑓 (3.140)

= 1
𝑠 ቌ

cos𝜑 − sin𝜑
sin𝜑 cos𝜑

ቍ∇క ̂𝑓 (3.141)

For the second derivative with respect to 𝑥, we have :

𝜕ଶ௫𝑓 = 𝜕௫ቀ𝜕క ̂𝑓𝜕௫𝜉 + 𝜕ఎ ̂𝑓𝜕௫𝜂ቁ

= 𝜕௫ ൫𝜕క ̂𝑓൯ 𝜕௫𝜉 + 𝜕క ̂𝑓𝜕ଶ௫𝜉 + 𝜕௫ ൫𝜕ఎ ̂𝑓൯ 𝜕௫𝜂 + 𝜕ఎ ̂𝑓𝜕ଶ௫𝜂

= ቂ𝜕ଶక ̂𝑓𝜕௫𝜉 + 𝜕ఎ𝜕క ̂𝑓𝜕௫𝜂ቃ𝜕௫𝜉 + 𝜕క ̂𝑓𝜕ଶ௫𝜉

+ ቂ𝜕క𝜕ఎ ̂𝑓𝜕௫𝜉 + 𝜕ଶఎ ̂𝑓𝜕௫𝜂ቃ𝜕௫𝜂 + 𝜕ఎ ̂𝑓𝜕ଶ௫𝜂

= 𝜕ଶక ̂𝑓൫𝜕௫𝜉൯
ଶ + 2𝜕క𝜕ఎ ̂𝑓𝜕௫𝜉𝜕௫𝜂 + 𝜕ଶఎ ̂𝑓൫𝜕௫𝜂൯

ଶ (3.142)

Notice that the second derivatives of the transformation, 𝜕ଶ௫𝜉 and 𝜕ଶ௫𝜂, are zero since �̂� is
afϐine, so the two terms involving them do not appear on the last line. A similar derivation for
𝑓௬௬ yields

𝜕ଶ௬𝑓 = 𝜕ଶక ̂𝑓൫𝜕௬𝜉൯
ଶ + 2𝜕క𝜕ఎ ̂𝑓𝜕௬𝜉𝜕௬𝜂 + 𝜕ଶఎ ̂𝑓൫𝜕௬𝜂൯

ଶ (3.143)

We can now write the transformed Laplacian using (3.142-3.143) and the deϐinition of the
inverse transformation, (3.134):

Δ௫𝐷 = 𝜕ଶ௫𝐷 + 𝜕ଶ௬𝐷

= cosଶ 𝜙
𝑠ଶ 𝜕ଶక �̂� − 2 sin𝜙 cos𝜙

𝑠ଶ 𝜕క𝜕ఎ�̂� + sinଶ 𝜙
𝑠ଶ 𝜕ଶఎ �̂� +

sinଶ 𝜙
𝑠ଶ 𝜕ଶక �̂� + 2 sin𝜙 cos𝜙

𝑠ଶ 𝜕క𝜕ఎ�̂� + cosଶ 𝜙
𝑠ଶ 𝜕ଶఎ �̂�

= 1
𝑠ଶ ቀ𝜕

ଶ
క �̂� + 𝜕ଶఎ �̂�ቁ

= 1
𝑠ଶΔక�̂� (3.144)

39

3.2. Numerical Method

The transformed correction function �̂� is deϐined on the reference domain𝐾 and can thus be
approximated using bicubic interpolants also deϐined over 𝐾 :

�̂�(𝜉) ≈
ଵଶ

෍
௠ୀଵ

𝐵௠(𝜉)�̂�௠ (3.145)

The ϐirst term of the functional (3.77) can then be written as

𝐼ଵ ∶= 𝑐ଵන
ஐ೔ೕ౳
(Δ𝑢 − 𝑓஽)ଶ𝑑𝑥

= 𝑐ଵන
௄
ቆ 1𝑠ଶΔ�̂�(𝜉) − 𝑓஽ ൫�̂� (𝜉)൯ቇ

ଶ
𝑠ଶ𝑑𝜉

= 𝑐ଵන
௄
ቆ 1𝑠ଶ ቂ𝜕

ଶ
క �̂�(𝜉) + 𝜕ଶఎ �̂�(𝜉)ቃ − 𝑓஽ ൫�̂� (𝜉)൯ቇ

ଶ
𝑠ଶ𝑑𝜉

= 𝑐ଵන
௄
ቌ 1
𝑠ଶ ෍

௠
ቂ𝜕ଶక𝐵௠(𝜉) + 𝜕ଶఎ𝐵௠(𝜉)ቃ �̂�௠ − 𝑓஽ ൫�̂� (𝜉)൯ቍ

ଶ

𝑠ଶ𝑑𝜉

= 𝑐ଵන
௄
ቌ 1
𝑠ଶ ෍

௠
𝐿௠(𝜉)�̂�௠ − 𝑓஽ ൫�̂� (𝜉)൯ቍ

ଶ

𝑠ଶ𝑑𝜉 (3.146)

where we explicitly computed the Jacobian determinant ቤ𝜕�̂�𝜕𝑥 ቤ = 𝑠ଶ and introduced the short-
cut notation

𝐿௠(𝜉) ∶= 𝜕ଶక𝐵௠(𝜉) + 𝜕ଶఎ𝐵௠(𝜉) (3.147)

3.2.4.5.2 Interface Integrals

To transform the interface integrals, we use the following formula to transform the integral
of an arbitrary function 𝑓 on the curve 𝒞 :

න
𝒞
𝑓(𝑥)𝑑𝑠(𝑥) = න

்̂షభ(𝒞)

𝑓 ൫�̂� (𝜉)൯ ቤ𝜕�̂�𝜕𝑥 ቤ‖𝐷�̂�
ିୃ𝑛௄‖𝑑�̂�(𝜉) (3.148)

where 𝑛௄ and 𝑑�̂�(𝜉) are respectively the unit normal and the line element in the 𝜉-space.
Since we integrate on 𝒞 = Γ௜௝௞ , we parameterize this integral using the transformation de-

40

Chapter 3. Methodology

scribed above in section 3.2.4.4, making note of the relation 𝑥 = �̂�(𝜉) = ෥𝑇ିଵ(𝜃) :

න
்̂షభቀ୻೔ೕೖ ቁ

𝑓 ൫�̂� (𝜉)൯ ቤ𝜕�̂�𝜕𝑥 ቤ‖𝐷�̂�
ିୃ𝑛௄‖𝑑�̂�(𝜉) = න

ଵ

଴
𝑓 ൫෥𝑇ିଵ (𝜃)൯ ቤ𝜕�̂�𝜕𝑥 ቤ‖𝐷�̂�

ିୃ𝑛௄‖ብ 𝜕𝜉
𝜕𝜃ଶ

ብ𝑑𝜃ଶ

The factor ‖𝐷�̂�ିୃ𝑛௄‖ is easily computed :

‖𝐷�̂�ିୃ𝑛௄‖ = ቯ1𝑠 ቌ
cos𝜑 − sin𝜑
sin𝜑 cos𝜑

ቍቌ
𝑛௄క
𝑛௄ఎ
ቍቯ

= 1
𝑠ቯቌ

𝑛௄క cos𝜙 −𝑛௄ఎ sin𝜙
𝑛௄క sin𝜙 𝑛௄ఎ cos𝜙

ቍቯ

= 1
𝑠 ቈ൫𝑛

௄
క ൯

ଶ cosଶ 𝜙 + ൫𝑛௄ఎ ൯
ଶ sinଶ 𝜙 − 2𝑛௄క 𝑛௄ఎ cos𝜙 sin𝜙

+ ൫𝑛௄క ൯
ଶ sinଶ 𝜙 + ൫𝑛௄ఎ ൯

ଶ cosଶ 𝜙 + 2𝑛௄క 𝑛௄ఎ cos𝜙 sin𝜙቉
ଵ/ଶ

= 1
𝑠 ቈ൫𝑛

௄
క ൯

ଶ + ൫𝑛௄ఎ ൯
ଶ ቉

ଵ/ଶ

(3.149)

= 1/𝑠 (3.150)

The Jacobian of the parameterization ብ 𝜕𝜉
𝜕𝜃ଶ

ብ is computed below. Let �̂�ିଵଵ and �̂�ିଵଶ denote the

two components of the inverse transformation �̂�ିଵ, we have that

ቌ
𝜉
𝜂
ቍ = ቌ

�̂�ିଵଵ (𝑥, 𝑦)
�̂�ିଵଶ (𝑥, 𝑦)

ቍ = ቌ
�̂�ିଵଵ ൫𝐻ଵ(𝜃), 𝐻ଶ(𝜃)൯
�̂�ିଵଶ ൫𝐻ଵ(𝜃), 𝐻ଶ(𝜃)൯

ቍ (3.151)

and so

𝜕
𝜕𝜃ଶ

ቌ
𝜉
𝜂
ቍ = ⎛

⎜

⎝

𝜕�̂�ିଵଵ
𝜕𝑥

𝜕𝐻ଵ
𝜕𝜃ଶ

+ 𝜕�̂�ିଵଵ
𝜕𝑦

𝜕𝐻ଶ
𝜕𝜃ଶ

𝜕�̂�ିଵଶ
𝜕𝑥

𝜕𝐻ଵ
𝜕𝜃ଶ

+ 𝜕�̂�ିଵଶ
𝜕𝑦

𝜕𝐻ଶ
𝜕𝜃ଶ

⎞
⎟

⎠

41

3.2. Numerical Method

= 1
𝑠
⎛
⎜

⎝

cos𝜙𝜕𝐻ଵ
𝜕𝜃ଶ

+ sin𝜙𝜕𝐻ଶ
𝜕𝜃ଶ

− sin𝜙𝜕𝐻ଵ
𝜕𝜃ଶ

+ cos 𝜃𝜕𝐻ଶ
𝜕𝜃ଶ

⎞
⎟

⎠

Finally,

ብ 𝜕𝜉
𝜕𝜃ଶ

ብ = 1
𝑠 ቈ cos

ଶ 𝜙ቆ𝜕𝐻ଵ
𝜕𝜃ଶ

ቇ
ଶ
+ sinଶ 𝜙ቆ𝜕𝐻ଶ

𝜕𝜃ଶ
ቇ
ଶ
+ 2 cos𝜙 sin𝜙𝜕𝐻ଵ

𝜕𝜃ଶ
𝜕𝐻ଶ
𝜕𝜃ଶ

+ sinଶ 𝜙ቆ𝜕𝐻ଵ
𝜕𝜃ଶ

ቇ
ଶ
+ cosଶ 𝜙ቆ𝜕𝐻ଶ

𝜕𝜃ଶ
ቇ
ଶ
− 2 cos𝜙 sin𝜙𝜕𝐻ଵ

𝜕𝜃ଶ
𝜕𝐻ଶ
𝜕𝜃ଶ

቉
ଵ/ଶ

= 1
𝑠 ൥ቆ

𝜕𝐻ଵ
𝜕𝜃ଶ

ቇ
ଶ
+ ቆ𝜕𝐻ଶ

𝜕𝜃ଶ
ቇ
ଶ
൩
ଵ/ଶ

= 1
𝑠ብ

𝜕𝑥
𝜕𝜃ଶ

ብ (3.152)

The interface integral thus becomes

න
୻೔ೕೖ
𝑓(𝑥)𝑑𝑠(𝑥) = න

ଵ

଴
𝑓 ൫෥𝑇ିଵ (𝜃)൯ ቤ𝜕�̂�𝜕𝑥 ቤถ

௦మ

‖𝐷�̂�ିୃ𝑛௄‖ᇣᇧᇧᇤᇧᇧᇥ
భ
ೞ

ብ 𝜕𝜉
𝜕𝜃ଶ

ብ
ᇣᇧᇤᇧᇥ
భ
ೞቛ

ങೣ
ങഇమ ቛ

𝑑𝜃ଶ

= න
ଵ

଴
𝑓 ൫෥𝑇ିଵ (𝜃)൯ ብ 𝜕𝑥

𝜕𝜃ଶ
ብ𝑑𝜃ଶ (3.153)

The third term in the functional (3.77) involves the normal derivative of the correction func-
tion, 𝜕௡𝐷. Once again, we transform it to the reference domain so we can use the bicubics
deϐined over 𝐾:

𝜕௡𝐷 = ∇௫𝐷(𝑥) ⋅ 𝑛

= 𝐷�̂�ିୃ∇క�̂�(𝜉) ⋅ 𝐷�̂�ିୃ�̂�

= 1
𝑠 ቌ

cos𝜑 − sin𝜑
sin𝜑 cos𝜑

ቍቌ
𝜕క�̂�
𝜕ఎ�̂�

ቍ ⋅ 1𝑠 ቌ
cos𝜑 − sin𝜑
sin𝜑 cos𝜑

ቍቌ
�̂�క
�̂�ఎ
ቍ

= 1
𝑠ଶ ቌ

�̂�క cos𝜙 − �̂�ఎ sin𝜙
�̂�క sin𝜙 + �̂�ఎ cos𝜙

ቍ ⋅ ቌ
�̂�క cos𝜙 − �̂�ఎ sin𝜙
�̂�క sin𝜙 + �̂�ఎ cos𝜙

ቍ

42

Chapter 3. Methodology

= 1
𝑠ଶ ቂ ൫�̂�క cos𝜙 − �̂�ఎ sin𝜙൯ ൫�̂�క cos𝜙 − �̂�ఎ sin𝜙൯+

൫�̂�క sin𝜙 + �̂�ఎ cos𝜙൯ ൫�̂�క sin𝜙 + �̂�ఎ cos𝜙൯ ቃ

= 1
𝑠ଶ ቂ�̂�క�̂�క cos

ଶ 𝜙 − �̂�క�̂�ఎ cos𝜙 sin𝜙 − �̂�ఎ�̂�క sin𝜙 cos𝜙 + �̂�ఎ�̂�ఎ sinଶ 𝜙

+ �̂�క�̂�క sinଶ 𝜙 + �̂�క�̂�ఎ sin𝜙 cos𝜙 + �̂�ఎ�̂�క cos𝜙 sin𝜙 + �̂�ఎ�̂�ఎ cosଶ 𝜙ቃ

= 1
𝑠ଶ∇�̂�(𝜉) ⋅ �̂� (3.154)

In (3.154), �̂� is the transformed normal, that is, the unit normal 𝑛 in 𝑥-space transformed
under �̂�. Speciϐically, the normals transform according to

𝑛 = 𝐷�̂�ିୃ�̂� (3.155)

�̂� = 𝐷�̂�ୃ𝑛 (3.156)

Note that 𝑛 is unitary but �̂� is not. Equation (3.155)was used on the second line of the deriva-
tion of (3.154).

The interface integrals in (3.77) can now be rewritten using the transformed correction func-
tion, �̂�, noting that 𝜉 = �̂�ିଵ(𝑥) = �̂�ିଵ ൫෥𝑇ିଵ (𝜃)൯ :

𝐼௞ଶ ∶= න
୻೔ೕೖ
ቂ𝑐ଶ൫𝐷 (𝑥) − 𝑎 (𝑥)൯ଶ + 𝑐ଷ൫𝜕௡𝐷 (𝑥) − 𝑏 (𝑥)൯ଶቃ 𝑑𝑠(𝑥)

=න
ଵ

଴
൥𝑐ଶቀ�̂� (𝜉) − 𝑎 ൫෥𝑇ିଵ (𝜃)൯ቁ

ଶ
+ 𝑐ଷቆ

1
𝑠ଶ∇�̂�(𝜉) ⋅ �̂� − 𝑏 ൫෥𝑇ିଵ (𝜃)൯ቇ

ଶ
൩ ብ 𝜕𝑥

𝜕𝜃ଶ
ብ𝑑𝜃ଶ

= න
ଵ

଴
൥𝑐ଶቆ�̂�ቀ�̂�ିଵ ൫෥𝑇ିଵ (𝜃)൯ቁ − 𝑎 ൫෥𝑇ିଵ (𝜃)൯ቇ

ଶ

+ 𝑐ଷቆ
1
𝑠ଶ∇�̂�ቀ�̂�

ିଵ ൫෥𝑇ିଵ (𝜃)൯ቁ ⋅ �̂� − 𝑏 ൫෥𝑇ିଵ (𝜃)൯ቇ
ଶ
൩ብ 𝜕𝑥
𝜕𝜃ଶ

ብ𝑑𝜃ଶ

= න
ଵ

଴
൥𝑐ଶቆ�̂�ቀ�̂�ିଵ ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ቁ − 𝑎 ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ቇ

ଶ

+ 𝑐ଷቆ
1
𝑠ଶ ቂ�̂�కቀ�̂�

ିଵ ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ቁ�̂�క + �̂�ఎቀ�̂�ିଵ ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ቁ�̂�ఎቃ

− 𝑏 ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ ቇ
ଶ
൩ ඨቆ𝜕𝐻ଵ

𝜕𝜃ଶ
ቇ
ଶ
+ ቆ𝜕𝐻ଶ

𝜕𝜃ଶ
ቇ
ଶ
ቮ
(஀,ఏమ)

𝑑𝜃ଶ

43

3.2. Numerical Method

= න
ଵ

଴
൥𝑐ଶቆ෍

௠
𝐵௠ቀ�̂�ିଵ ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ቁ�̂�௠ − 𝑎 ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ ቇ

ଶ

+ 𝑐ଷቆ
1
𝑠ଶ ෍

௠
ቂ𝜕క𝐵௠ቀ�̂�ିଵ ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ቁ�̂�క + 𝜕ఎ𝐵௠ቀ�̂�ିଵ ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ቁ�̂�ఎቃ�̂�௠

− 𝑏 ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ ቇ
ଶ
൩ ඨቆ𝜕𝐻ଵ

𝜕𝜃ଶ
ቇ
ଶ
+ ቆ𝜕𝐻ଶ

𝜕𝜃ଶ
ቇ
ଶ
ቮ
(஀,ఏమ)

𝑑𝜃ଶ

= න
ଵ

଴
൥𝑐ଶቆ෍

௠
𝐵௠ቀ�̂�ିଵ ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ቁ�̂�௠ − 𝑎 ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ ቇ

ଶ

+ 𝑐ଷቆ
1
𝑠ଶ ෍

௠
𝑟௠ቀ�̂�ିଵ ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ቁ�̂�௠ − 𝑏 ൫෥𝑇ିଵ (Θ, 𝜃ଶ)൯ ቇ

ଶ
൩

× ඨቆ𝜕𝐻ଵ
𝜕𝜃ଶ

ቇ
ଶ
+ ቆ𝜕𝐻ଶ

𝜕𝜃ଶ
ቇ
ଶ
ቮ
(஀,ఏమ)

𝑑𝜃ଶ

(3.157)

where we introduced the shortcut notation

𝑟௠(𝜉) ∶= 𝜕క𝐵௠ (𝜉) �̂�క + 𝜕ఎ𝐵௠ (𝜉) �̂�ఎ (3.158)

Note that in equation (3.157), the transformation ෥𝑇ିଵ and thus the polynomials 𝐻ଵ and 𝐻ଶ

from which it is constructed carry an implicit dependence on the subscript 𝑘, which indexes
the transformation box𝑀. Indeed, the transformation is deϐined for every cell that is crossed
by the interface, whereas the integral (3.77) is computed at each node where the correction
function is needed (see ϐigures 3.7 and 3.10). This index is left out to lighten the notation.

The discretization of the integrals (3.146) and (3.157) using Gauss-Legendre quadrature and
theminimizationproceduredescribed in section3.2.4.1 leads to the linear system2A𝑥+𝑑 = 0
in equation (3.81). The matrix A and the right-hand side vector 𝑏 are derived in Appendix A.

3.2.4.6 Scaling Coefϐicients

Here we derive the scaling coefϐicients 𝑐ଵ, 𝑐ଶ and 𝑐ଷ appearing in the minimization functional
(3.77). Let J⋅K denote the physical units of some quantity, and let

J𝐷K = 𝑈 (3.159)

44

Chapter 3. Methodology

J𝑥K = 𝐿 (3.160)

Then we have

JΔ𝐷K = s𝜕ଶ𝐷
𝜕𝑥ଶ +

𝜕ଶ𝐷
𝜕𝑦ଶ

{
= 𝑈
𝐿ଶ ⟹

s
න(Δ𝐷 − 𝑓஽)ଶ𝑑𝑥

{
= ቆ 𝑈𝐿ଶቇ

ଶ
𝐿ଶ = 𝑈ଶ

𝐿ଶ (3.161)

J𝐷K = 𝑈 ⟹
s
න(𝐷 − 𝑎)ଶ𝑑𝑠(𝑥)

{
= 𝑈ଶ𝐿 (3.162)

J𝜕௡𝐷K = s𝜕𝐷
𝜕𝑥 𝑛௫ +

𝜕𝐷
𝜕𝑦 𝑛௬

{
= 𝑈

𝐿 ⟹
s
න(𝜕௡𝐷 − 𝑏)ଶ𝑑𝑠(𝑥)

{
= ቆ𝑈𝐿 ቇ

ଶ
𝐿 = 𝑈ଶ

𝐿 (3.163)

We desire that each term do not involve the dimension 𝐿, so that when the grid is reϐined all
terms scale in the same way. We thus want

J𝑐ଵK = 𝐿ଶ (3.164)

J𝑐ଶK = 1/𝐿 (3.165)

J𝑐ଷK = 𝐿 (3.166)

We use the integration domain side length 𝑠 and the local interface length 𝑠௞୻ , deϐined below,
to deϐine the scaling coefϐicients :

𝑐ଵ = 𝑠ଶ (3.167)

𝑐ଶ = 1/𝑠௞୻ (3.168)

𝑐ଷ = 𝑠ଶ/𝑠௞୻ (3.169)

where
𝑠௞୻ ∶= න

୻೔ೕೖ
𝑑𝑠(𝑥) = න

ଵ

଴
ብ 𝜕𝑥
𝜕𝜃ଶ

ብ
(஀,ఏమ)
𝑑𝜃ଶ (3.170)

3.2.4.7 New Correction Function Solver

Initially, we investigated a new way to solve the correction function problem (3.50-3.52),
based on the representation formula for the Poisson problem (3.36). The idea was that since
the fundamental solutionΦ(𝑥, 𝑦) is a decaying function, we could use a version of (3.36) with

45

3.2. Numerical Method

spatially truncated integrals and keep the idea of a local solver. Speciϐically, since the data
for the correction function problem corresponds to the quantities Δ𝑢, 𝑢 and 𝜕௡𝑢 appearing in
(3.36), the correction function 𝐷 at node 𝑥ି௜௝ inside Ωି would have been given by

𝐷(𝑥ି௜௝) ≈ −න
ஐ೔ೕ౳

Φ(𝑥 − 𝑥௜௝)𝑓ି(𝑥) 𝑑𝑥 − න
୻ ∩ ஐ೔ೕ౳

𝜕௡Φ(𝑥 − 𝑥௜௝)𝑎(𝑥)𝑑𝑠(𝑥)

+ න
୻ ∩ ஐ೔ೕ౳

Φ(𝑥 − 𝑥௜௝)𝑏(𝑥)𝑑𝑠(𝑥)
(3.171)

A similar formula would have been used for nodes in Ωା.
To evaluate how well 𝐷(𝑥ି௜௝) is approximated by the above formula, we evaluated the be-
haviour of the approximation

𝑢ఢ(𝑥) ∶= −න
ஐ ∩ ஻ച(௫)

Φ(𝑦 − 𝑥)Δ𝑢(𝑦) 𝑑𝑦 − න
డஐ ∩ ஻ച(௫)

𝜕௡Φ(𝑦 − 𝑥)𝑢(𝑦)𝑑𝑠(𝑦)

+ න
డஐ ∩ ஻ച(௫)

Φ(𝑦 − 𝑥)𝜕௡𝑢(𝑦)𝑑𝑠(𝑦)
(3.172)

where𝐵ఢ(𝑥) is the ball of radius 𝜖 centered at 𝑥, for a solution 𝑢 of the Poisson problem (3.33-
3.34). These results are shown in section 4.1.

3.2.5 Fast Poisson Solver

In this section we explain how we can efϐiciently solve the linear system associated with the
ϐinite difference approximation of (3.1) by exploiting the structure of the ϐinite difference
matrix. We begin by presenting the idea of the Fast Poisson solver in one dimension, before
moving to the 2D case.
The main idea of the Fast Poisson solver is the following : suppose we want to solve

A𝑥 = 𝑏 (3.173)

and that we know the spectral decomposition of the matrix A, i.e.

A = QΛQିଵ (3.174)

46

Chapter 3. Methodology

where Q and Λ are respectively the matrix of eigenvectors and the matrix of eigenvalues of A.
Let

𝑦 ∶= ΛQିଵ𝑥 (3.175)

𝑧 ∶= Qିଵ𝑥 (3.176)

Then we can solve the system in 3 steps :

Algorithm 3.2Main idea of the Fast Poisson solver
1. Solve Q𝑦 = 𝑏 for 𝑦
2. Solve Λ𝑧 = 𝑦 for 𝑧
3. Solve Qିଵ𝑥 = 𝑧 for 𝑥

Note that in step 2, the matrix Λ is diagonal so solving for 𝑧 is done in 𝒪(𝑛) steps, namely

𝑧௞ = 𝑦௞ / 𝜆௞ , 𝑘 = 1,… , 𝑛 (3.177)

3.2.5.1 Fast Poisson Solver in 1D

In 1D, the discretization of problem (3.38-3.42) using the standard stencils (3.43-3.44) over
𝑛 discretization nodes leads to the linear system

A௫𝑥 = 𝑏 (3.178)

where A௫ is a tridiagonal matrix :

A௫ ∶=
1
ℎଶ௫

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1
−1 2 −1

⋱ ⋱ ⋱
−1 2 −1

−1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.179)

47

3.2. Numerical Method

The eigenvectors and eigenvalues 𝜆௫௞ of A௫ can be derived using recurrence relations, leading
to zeros of Chebyshev polynomials (see [18], section 4.8). We get

𝜆௫௞ ∶=
1
ℎଶ௫

ቈ2 − 2 cos ቆ 𝑘𝜋
𝑛 + 1ቇ቉ (3.180)

𝑄௜௞ ∶= sin ቆ 𝑖𝑘𝜋
𝑛 + 1ቇ (3.181)

where 𝑄௜௞ refers to the entry (𝑖, 𝑘) of the matrix Q, i.e. 𝑄௜௞ is the 𝑖-th entry of the 𝑘-th eigen-
vector. Similar formulas are easily derived for other types of boundary conditions, such as
Neumann, mixed or periodic boundary conditions (see [18]).

In step 1 of algorithm 3.2, we want to solve Q𝑦 = 𝑏, that is we want to ϐind a vector 𝑦 such
that

𝑏 =
௡

෍
௞ୀଵ

𝑞௞𝑦௞ (3.182)

where 𝑞௞ is the 𝑘-th eigenvector of A௫ and 𝑦௞ is the 𝑘-th component of 𝑦. Since the eigenvec-
tors ofA௫ are sines, (3.182) amounts to computing the discrete sine transform of the vector 𝑏.
This transform is closely related to the discrete Fourier transform, and thus can be computed
in 𝒪(𝑛 log 𝑛) steps using the Fast Fourier transform (FFT) [8].

Similarly, in step 3, we solve Qିଵ𝑥 = 𝑧, which is equivalent to

𝑥 = Q𝑧 ⟹ 𝑥 =
௡

෍
௞ୀଵ

𝑞௞𝑧௞ (3.183)

which amounts to computing the inverse discrete sine transform of 𝑧. The total work for
algorithm 3.2 in 1D is thus

𝒪(𝑛) + 2𝒪(𝑛 log 𝑛) = 𝒪(𝑛 log 𝑛)

Note that the linear system(3.178) canbe solvedmore efϐiciently using theThomasalgorithm,
which computes the solution 𝑏 in 𝒪(𝑛) steps. The real advantage of the Fast Poisson solver
thus comes into play in higher dimensions.

48

Chapter 3. Methodology

3.2.5.2 Fast Poisson Solver for the 5-Point Stencil

It iswell known (see, for example, [23]) that discretizing thePoisson equation in 2dimensions
using the standard, second order 5-point stencil (3.53) and a lexicographic ordering of the
nodes leads to a systemmatrix of the form

Aହ௫௬ ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A௫ + 2𝐼 −𝐼
−𝐼 A௫ + 2𝐼 −𝐼

⋱ ⋱ ⋱
−𝐼 A௫ + 2𝐼 −𝐼

−𝐼 A௫ + 2𝐼

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.184)

where Aହ௫௬ ∈ ℝே×ே, 𝑁 = 𝑛௫𝑛௬ being the total number of nodes. Let us assume for simplicity
that 𝑛௫ = 𝑛௬ =∶ 𝑛. Aହ௫௬ is a block tridiagonal matrix with tridiagonal blocs, and has band-
width 𝑤 = 𝑛. Methods for solving this linear system include banded Gaussian elimination
and banded Cholesky decomposition, which both solve the system in 𝒪൫𝑁𝑤ଶ൯ = 𝒪൫𝑛ସ൯ steps.
To design a 2D Fast Poisson solver, we ϐirst need to know the eigenvectors and eigenvalues of
Aହ௫௬. These are easily found by recognizing that Aହ௫௬ can be written as a Kronecker product, a
matrix operation that is described next.

3.2.5.2.1 The Kronecker Product and Some Properties

Deϐinition 3.2.1. Kronecker product. Let A ∈ ℝ௠×௡ and B ∈ ℝ௣×௤ . Then A⊗B ∈ ℝ௠௣×௡௤ is
the Kronecker product of A and B, deϐined as

A⊗ B ∶=
⎡
⎢
⎢
⎢
⎣

𝑎ଵଵB 𝑎ଵଶB … 𝑎ଵ௡B
⋮ ⋮ ⋱ ⋮

𝑎௠ଵB 𝑎௠ଶB … 𝑎௠௡B

⎤
⎥
⎥
⎥
⎦

(3.185)

Proposition 3.2.2. Mixed product rule. Let A ∈ ℝ௠×௡, B ∈ ℝ௣×௤ , C ∈ ℝ௡×௥ , and D ∈ ℝ௤×௦.

Then

൫A⊗ B൯൫C⊗ D൯ = AC⊗ BD (3.186)

49

3.2. Numerical Method

Proof. Using block matrix multiplication, we can write the product as

൫A⊗ B൯൫C⊗ D൯ =
⎡
⎢
⎢
⎢
⎣

𝑎ଵଵB … 𝑎ଵ௡B
⋮ ⋱ ⋮

𝑎௠ଵB … 𝑎௠௡B

⎤
⎥
⎥
⎥
⎦ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

௠×௡ blocks of size ௣×௤

⎡
⎢
⎢
⎢
⎣

𝑐ଵଵD … 𝑐ଵ௥D
⋮ ⋱ ⋮

𝑐௡ଵD … 𝑐௡௥D

⎤
⎥
⎥
⎥
⎦ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ

௡×௥ blocks of size ௤×௦

=
⎡
⎢
⎢
⎢
⎣

Eଵଵ … Eଵ௥
⋮ ⋱ ⋮

E௠ଵ … E௠௥

⎤
⎥
⎥
⎥
⎦ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ

௠×௥ blocks of size ௣×௦

where each block E௜௝ is deϐined as

E௜௝ =
௡

෍
௞ୀଵ

𝑎௜௞B𝑐௞௜D

=
௡

෍
௞ୀଵ

𝑎௜௞𝑐௞௜BD

= (AC)௜௝BD

which we can write as AC⊗ BD according to deϐinition 3.2.1.

Deϐinition 3.2.3. Kronecker sum. Let A ∈ ℝ௡×௡, B ∈ ℝ௠×௠, and let 𝐼௥ denote the identity
matrix of size 𝑟 × 𝑟. The Kronecker sum of A and B, denoted A⊕ B, is deϐined as

A⊕ B ∶= A⊗ 𝐼௠ + 𝐼௡ ⊗B (3.187)

Proposition 3.2.4. Let A ∈ ℝ௡×௡, B ∈ ℝ௠×௠, and let (𝜆௜ , 𝑢௜) and (𝜇௝ , 𝑣௝) respectively denote
the eigenpairs of A and B, i.e.

A𝑢௜ = 𝜆௜𝑢௜ , 𝑖 = 1,… , 𝑛

B𝑣௜ = 𝜇௜𝑣௜ , 𝑗 = 1,… ,𝑚

and let 𝐼௥ denote the identity matrix of size 𝑟 × 𝑟. Then

൫A⊗ B൯ ൫𝑢௜ ⊗𝑣௝൯ = 𝜆௜𝜇௝ ൫𝑢௜ ⊗𝑣௝൯ (a)

൫A⊕ B൯ ൫𝑢௜ ⊗𝑣௝൯ = ൫𝜆௜ + 𝜇௝൯ ൫𝑢௜ ⊗𝑣௝൯ (b)

The result (a)means that the eigenvalues of the Kronecker product ofA andB are the product

50

Chapter 3. Methodology

of the eigenvalues of A and those of B, and the eigenvectors of the product are the Kronecker
product of their eigenvectors. The result (b)means that the eigenvalues of the Kronecker sum
of A and B are the sum of the eigenvalues of A and those of B, and the eigenvectors of the sum
are the Kronecker product of their eigenvectors.

Proof. (a) Using the mixed product rule 3.2.2, we can write

൫A⊗ B൯ ൫𝑢௜ ⊗𝑣௝൯ = A𝑢௜ ⊗B𝑣௝ = 𝜆௜𝑢௜ ⊗𝜇௝𝑣௝ = 𝜆௜𝜇௝ ൫𝑢௜ ⊗𝑣௝൯

(b) Again using the mixed product rule and the deϐinition 3.2.3, we can write

൫A⊗ 𝐼௠൯ ൫𝑢௜ ⊗𝑣௝൯ = A𝑢௜ ⊗ 𝐼௠𝑣௝ = 𝜆௜𝜇௝ ⊗𝑣௝ = 𝜆௜ ൫𝑢௝ ⊗𝑣௝൯ (i)

൫𝐼௡ ⊗B൯ ൫𝑢௜ ⊗𝑣௝൯ = 𝐼௡𝑢௜ ⊗B𝑣௝ = 𝑢௜ ⊗𝜇௝𝑣௝ = 𝜇௝ ൫𝑢௝ ⊗𝑣௝൯ (ii)

The result (b) is recovered by summing (i) and (ii).

The eigenvalues and eigenvectors of Aହ௫௬ can now be found by recognizing that

Aହ௫௬ = A௬ ⊕A௫ = A௬ ⊗ 𝐼௡ೣ + 𝐼௡೤ ⊗A௫ (3.188)

where A௬ is deϐined similarly to (3.179). Then (b) implies the eigenvalues and eigenvectors
of Aହ௫௬ are given by

𝜆௫௬,ହ௞௟ ∶= 𝜆௫௞ + 𝜆௬௟ (3.189)

𝑄ହ
௜௝,௞௟ ∶= sin ቆ 𝑖𝑘𝜋

𝑛௫ + 1ቇ sin ቆ
𝑗𝑙𝜋

𝑛௬ + 1ቇ (3.190)

where 𝑄ହ
௜௝,௞௟ refers to the entry (𝑖, 𝑗) of the eigenvector (𝑘, 𝑙) and 𝜆௬௟ is deϐined similarly as

(3.180). This product of sines implies that (3.182) and (3.183) correspond to the 2D discrete
sine transform, which can be computed very efϐiciently using the 2D FFT. This means that the
linear system can be solved in 𝒪(𝑁 log𝑁) steps, which for 𝑛௫ = 𝑛௬ = 𝑛 is 𝒪൫𝑛ଶ log 𝑛ଶ൯, a
considerably cheaper cost than the traditional methods. Note that in this approach the ϐinite
difference matrix Aହ௫௬ is not used; it does not have to be neither stored nor computed.

51

3.3. Code Implementation

3.2.5.3 Fast Poisson Solver for the 9-Point Stencil

We are now in a position to describe the Fast Poisson solver for the 9-point stencil. Starting
from results in [29], it can be shown that the systemmatrix associatedwith the 9-point stencil
(3.61), Aଽ௫௬, can be written

Aଽ௫௬ = Aହ௫௬ +
ℎଶ௫ + ℎଶ௬
12 ൫A௬ ⊗A௫൯

= A௬ ⊕A௫ +
ℎଶ௫ + ℎଶ௬
12 ൫A௬ ⊗A௫൯ (3.191)

Immediately, (a) implies the eigenvalues of the cross term A௬⊗A௫ are 𝜆௫௬, cross௞௟ ∶= 𝜆௫௞𝜆௬௟ , and
its eigenvectors are given by (3.190) ; they are the same as those of Aହ௫௬. This means that if 𝑣
is an eigenvector, we can write

Aଽ௫௬𝑣 = ቈA௬ ⊕A௫ +
ℎଶ௫ + ℎଶ௬
12 ൫A௬ ⊗A௫൯቉𝑣

= ൫A௬ ⊕A௫൯𝑣 +
ℎଶ௫ + ℎଶ௬
12 ൫A௬ ⊗A௫൯𝑣

= 𝜆௫௬,ହ௞௟ 𝑣 +
ℎଶ௫ + ℎଶ௬
12 𝜆௫௬, cross௞௟ 𝑣

= ቈ𝜆௫௬,ହ௞௟ +
ℎଶ௫ + ℎଶ௬
12 𝜆௫௬, cross௞௟ ቉𝑣

and the eigenvalues of Aଽ௫௬ are thus given by

𝜆௫௬,ଽ௞௟ ∶= 𝜆௫௞ + 𝜆௬௟ +
ℎଶ௫ + ℎଶ௬
12 𝜆௫௞𝜆௬௟ (3.192)

Having determined the eigenvalues and eigenvectors ofAଽ௫௬, we can use algorithm3.2 and the
2D Fast Fourier transform to efϐiciently solve the linear system associated with the 9-point
stencil.

3.3 Code Implementation

The method described in section 3.2 was ϐirst implemented in code using the MATLAB pro-
gramming language. A second version of the code was made using the C++ programming
language. They are described in the next sections. Both versions are very similar but have

52

Chapter 3. Methodology

a few differences. Both codes were written using an object-oriented design. In software en-
gineering, the object-oriented programming paradigm uses what are called classes to model
application-level abstractions that are used as user-deϐined types. The actual instances of a
class, used in the code, are called objects. The two versions of the code use a very modular
design that can be easily extended.

3.3.1 MATLAB Code

The MATLAB version of the code was developed ϐirst and is called CFM2D. A diagram rep-
resenting the principal classes of the code is shown in ϐigure 3.13. This diagram uses the
Uniϐied Modeling Language (UML) [21] to indicate the relationships between the different
classes. UML is an ISO standard used to graphically represent the design of a system. Four
different relationship types are used in the ϐigure, and are explained in table 3.2. The role of
the different classes is explained below.

Table 3.2. Four UML relationships

Symbol Name Meaning
A B Inheritance B is a specialization of class A
A B Aggregation A contains an object of class B
A B Composition A contains an object of class B and manages its lifetime
A B Dependency A uses an object of class B

3.3.1.1 Main Solver : CFM2D and CFM2DOrder4Compact

The class CFM2D is themain class of the code. It is the primary user interface of the code, with
member functions to solve the Poisson interface problem and compute the gradient of the
solution once the latter is found. However, CFM2D is an abstract class. Its member functions
are declared but are not implemented in the class. They are implemented in the derived class
CFM2DOrder4Compact, which is a specialization of the solver in the case of the compact 4Ƙƌ
order scheme presented in section 3.2.2. This modularity enables the code to be extended
with minimal modiϐication if a version using a different ϐinite difference stencil needs to be
written. The class CFM2DOrder4Compact is also responsible for setting up the ϐinite differ-
ence stencil, computing the right-hand side of the linear system (without corrections) and
applying the Dirichlet boundary conditions.

53

3.3. Code Implementation

CFM2D

CFM2DOr der 4Compact Cor r ect i onFunct i onSol ver

Cor r ect i onFunct i onSol ver Exact

Cor r ect i onFunct i onSol ver Tr ansf or mat i on

Level Set

Level Set Exact

Level Set Her mi t eBi cubi cs

Level Set Her mi t eBi cubi csFD

Li near Sol ver

Li near Sol ver Backsl ash

Li near Sol ver FFT

Mesh2D

MeshCFM2D

Conver genceCFM2D CFM2DVi sual i zer

Bi cubi cs

Par amet er sDomai n2D

Gauss1D

Gauss1DUni t

Figure 3.13. Class diagram for the MATLAB version of the code. The class CFM2D, in the center of the
diagram, is the main class of the code.

3.3.1.2 Domain Discretizaton : Domain2D, Mesh2D and LevelSet

The code uses a rectangular domain aligned with the computational grid. The continuum
domain is described by the simple class Domain2D. It is passed to the class Mesh2D, which
is responsible for the domain discretization. The derived class MeshCFM2D, which is actually
used in the code, is, moreover, responsible for the discretization of the two subdomains Ωା

andΩି. Also, it is used to determinewhich cells are crossed by the interface andwhich nodes
are close enough to the interface to require a correction. This is done with the help of the ab-
stract class LevelSet. This classmodels the level set function𝜙 used to deϐineΩା andΩି and
is used to compute the level set and related computations : the normal and tangent vectors
to the interface and the projection operation described in algorithm 3.1. Three actual imple-
mentations of LevelSet are provided : LevelSetExact, LevelSetHermiteBicubics and
LevelSetHermiteBicubicsFD. The class LevelSetExact uses the exact expression of the
level set to compute its value at arbitrary location on the grid. LevelSetHermiteBicubics

54

Chapter 3. Methodology

receives the exact expression of the level set and its ϐirst derivatives, but only values at grid
nodes are used. The level set values at arbitrary grid locations are computed using reduced
bicubic interpolation, as described in sections 3.2.3 and 3.2.4.2. The bicubic interpolants are
implemented in the class Bicubics. Finally, LevelSetHermiteBicubicsFD receives only
the exact expression of the level set, and computes the gradient at grid nodes using 4Ƙƌ or-
der ϐinite difference stencils. This approach guarantees 4Ƙƌ order convergence, as discussed
above.

3.3.1.3 Correction Function Solver

The correction functionproblem is solvedby theabstract classCorrectionFunctionSolver.
The derived class CorrectionFunctionSolverExact was used for testing during develop-
ment and simply computes the exact expression of the correction function, 𝐷 = 𝑢ା − 𝑢ି.
The method described in section 3.2.4 is implemented in the class CorrectionFunction-
SolverTransformation. This class, as well as the rest of the code, fully uses the vectoriza-
tion capabilities of MATLAB . The data needed to construct the linear systems (3.131) is com-
puted at the same time for every crossed cell ; the integration data is transformed under both
transformations 𝑇 and �̂� for every node requiring a correction and for every crossed cell all
at the same time, etc. The only places loops are used are when we actually solve the systems
(3.131) for every crossed cells and when we solve the minimization system (3.82) for every
node requiring a correction (the construction of the systems, however, is vectorized). The
1D Gauss-Legendre integration nodes and weights are computed on demand on the interval
[−1, 1] by the class Gauss1D, using a matrix approach taken from [47]. They are transformed
to the unit interval in the derived class Gauss1DUnit. Once the correction function is known,
the class CorrectionFunctionSolver is also responsible for applying the corrections to the
right-hand side of the linear system.

3.3.1.4 Visualization and Convergence

The class CFM2DVisualizer is responsible for plotting the solution and its gradient and is
used to create the plots presented in the Chapter 4. The class ConvergenceCFM2D is respon-
sible for running the code several timeswhile reϐining the grid, in order to verify the accuracy
of the method.

55

3.3. Code Implementation

3.3.1.5 Linear Solver

The abstract class LinearSolver is responsible for solving the linear system once all correc-
tions are applied to the right-hand side. Two implementations are provided : LinearSolver-
FFT implements the fast Poisson solver for the9-point stencil derived in section3.2.5.3,whereas
LinearSolverBackslash uses theMATLAB backslash operator (\) to solve the system. This
solver determines the best method to solve the system depending on the structure of the co-
efϐicient matrix. In the case of the symmetric matrix associated with the 9-point stencil, MAT-
LAB uses theMA57 algorithmdescribed in [13], which is based on the LDL’ factorization (see,
for example, [18]).

3.3.1.6 Parameters and Problem Description

The code uses a conϐiguration ϐile in the INI format to manage the choice of different options,
such as the implementation to use for the classes CorrectionFunctionSolver, Linear-
Solver and LevelSet. This permits us to test the numerical method with different imple-
mentation options without any changes to the code. The conϐiguration ϐile also holds the lim-
its of the domain, the number of nodes for its discretization and the exact expressions for the
functions deϐining the problem : 𝑓ା, 𝑓ି, 𝑎, 𝑏, 𝜙, 𝑔 and the exact solution 𝑢ା, 𝑢ି. We use the
method of manufactured solutions to be able to compute the error in the computed solution
and verify the fourth order convergence of the method. The conϐiguration ϐile is read by the
class Parameters, which is passed to the other classes in order to make the chosen options
available to them. The class Parameters is also responsible for transforming the textual rep-
resentation of the functions describing the problem into MATLAB function handles. We use
the capabilities of the Symbolic Math Toolbox in MATLAB to compute the exact derivatives
of these functions that are needed in the code, such as the derivatives of the source term (see
equations (3.62) and (3.71)).

3.3.2 C++ Code

A second version of the code was written in C++. The reason a second version was made
is to use the code in conjunction with another code written in C by Jean-Christophe Nave,
called bubbles, which solves the Navier-Stokes problem described in section 3.4. The C++

56

Chapter 3. Methodology

versionof theCFMcode is calledcfm-petsc. It uses thenumerical libraryPETSc ([3], [4], [5]).
This library is used as it provides classes for storing vectors and matrices and also provides
several linear algebra solvers. Moreover, it provides functions to efϐiciently handle the domain
discretization on a structured Cartesian grid. The class diagram for cfm-petsc is presented
in ϐigure 3.14. Most of the classes have the same name and purpose as those in CFM2D, but a
few differences are noted below.

CFMSol ver 2D

CFM2DOr der 4Compact

Cor r ect i onFunct i onSol ver

Cor r ect i onFunct i onSol ver Exact

Cor r ect i onFunct i onSol ver Tr ansf or mat i on

Gr i dFunct i on2DExact

Gr i dFunct i on2DHer mi t eBi cubi cs

Gr i dFunct i on2DHer mi t eBi cubi csFD

Li near Sol ver

Li near Sol ver Pet sc

Mesh2D

Conver genceCFM2DPoi ssonI nt er f acePr obl em

Bi cubi cs

Par amet er sDomai n2D

Gr i dFunct i on2D

Level Set

Expr essi on2D

Gr i dFunct i on2DDi scont i nuousExact

Figure 3.14. Class diagram for the C++ version of the code. The class CFMSolver2D, in the center of the
diagram, is the main class of the code.

The main difference between the two versions of the code is the introduction of the class
GridFunction2D. This class represents a mathematical function deϐined over a computa-
tional grid. Four versions are implemented, GridFunction2DExact, GridFunction2D-
HermiteBicubics, GridFunction2DHermiteBicubicsFD and GridFunction2DDiscon-

tinuousExact. The ϐirst three correspond to the three implementations of the level set de-
scribed above. However, the class GridFunction2D is not used only for the level set ; every

57

3.3. Code Implementation

function in the problem deϐinition (𝑓ା, 𝑓ି, 𝑎, 𝑏, 𝜙, 𝑔) is modeled using a GridFunction2D
object. This permits us to receive all problem data on a grid instead of using exact expres-
sions. This is essential when interfacing with other software (such as the code bubbles), for
which the problem data might be known only at grid nodes. The class GridFunction2DDis-
continuousExact is used to model a discontinuous function, such as the source term 𝑓. For
the class GridFunction2DExact, whichwas used for testing during development, we use the
C++ library Lepton [40] to parse the mathematical expressions in the conϐiguration ϐile and
evaluate them.

All problem data is managed by the class PoissonInterfaceProblem, which is passed to
the solver CFMSolver2D and the convergence driver ConvergenceCFM2D. Note also that the
class Parameters, which has a similar role as in CFM2D, allows changing different options at
runtime, without any need for recompilation of the code.

Another difference between the codes is the fact that cfm-petsc handles both Dirichlet and
periodic boundary conditions, in order for it to be used alongside bubbles. In both cases,
the matrix associated with the ϐinite difference stencil is solved using the iterative linear
solversprovidedbyPETSc,which canbe chosenat runtime. Bydefault, PETScuses theGMRES
method. All linear solvers provided by PETSc can solve a singular system if the null space is
known. Asmentioned in section 3.4, for the Navier-Stokes simulationwe use periodic bound-
ary conditions, which lead to a singular linear systemmatrix. However, its null space is known
; it contains all constant functions, reϐlecting the fact that any solution is unique up to an ad-
ditive constant. The PETSc solvers can solve singular systems by removing the null space
component of the solution at each iteration. The class LinearSolverFFT is not present in
cfm-petsc.

Note that one of the main features of the Petsc library is to handle distributed linear algebra
andgridswith thehelpof theMessagePassing Interface (MPI) standard [11]. This is oneof the
reasons this library was chosen over others with similar features : to make the code scalable.
However, althoughwemade all efforts to write the code with distributed parallelism inmind,
cfm-petscwas not tested in the distributed case.

58

Chapter 3. Methodology

3.4 Towards a Correction Function Method for the Navier-

Stokes Equations

As stated in the introduction, our main motivation in this work is the Poisson interface prob-
lem appearing in the numerical solution of the Navier-Stokes equations of ϐluid dynamics. In
this sectionwe describe the Navier-Stokes problem (Section 3.4.1) and its numerical solution
using the projection method (Section 3.4.2).

3.4.1 Problem Description

The Navier-Stokes equations are a system of partial differential equations used to model the
movement of viscous ϐluids. They relate the ϐluid velocity, 𝑢 ∶ Ω ⊂ ℝௗ → ℝௗ , where 𝑑 is the
spatial dimension, and the pressure of the ϐluid 𝑝 ∶ Ω → ℝ. For the case of incompressible
ϐlow, for which the ϐluid density 𝜌 is constant in a ϐluid parcel moving with the ϐlow, they are
given by

𝜕௧𝑢 + 𝑢 ⋅ ∇𝑢 = −∇𝑝
𝜌 + 𝜈Δ𝑢 + 𝑓 (3.193)

∇ ⋅ 𝑢 = 0 (3.194)

where 𝜈 is the kinematic viscosity of the ϐluid, a physical property of the ϐluid, ∇𝑢 is the covari-
ant derivative of the vector ϐield 𝑢 [46] and 𝑓 are body forces acting on the ϐluid, for example
the gravitational force. The convective acceleration term 𝑢 ⋅ ∇𝑢 can be shown to be

𝑢 ⋅ ∇𝑢 = 𝑢 × (∇ × 𝑢) + 1
2∇ (𝑢 ⋅ 𝑢) (3.195)

which in Cartesian coordinates reduces to

𝑢 ⋅ ∇𝑢 =
ௗ

෍
௜ୀଵ

(𝑢 ⋅ ∇𝑢௜) �̂�௜ (3.196)

59

3.4. Towards a Correction Function Method for the Navier-Stokes Equations

where 𝑢௜ is the 𝑖-th component of 𝑢 and �̂�௜ is the unit vector in the 𝑖-th dimension. The vector
Laplacian Δ𝑢 is deϐined by

Δ𝑢 ∶= ∇ (∇ ⋅ 𝑢) − ∇ × (∇ × 𝑢) (3.197)

In Cartesian coordinates, this reduces to

Δ𝑢 =
ௗ

෍
௜ୀଵ

Δ𝑢௜ �̂�௜ (3.198)

The modeling of multiphase ϐlow falls within the range of problems for which the Correction
Function Method would be useful. Indeed, in multiphase ϐlow the material properties (the
viscosity and the density) of the different ϐluids in contact are usually discontinuous at the
interface between the ϐluids, as is the pressure ϐield. Here we examine the simpler case of
monophase ϐlow with pressure discontinuity. This would model, for example, thin soap bub-
bles ϐloating in air.

In this, case, equation (3.193) is coupled to an advection equation describing the evolution of
the level set function 𝜙 representing the interface :

𝜕௧𝜙 + 𝑢 ⋅ ∇𝜙 = 0 (3.199)

with the interface Γ still represented by (3.11). Equation (3.199) indicates that the interface
moves with the local velocity of the ϐluid. In [22], it is shown that applying physical conserva-
tion laws to the Navier-Stokes interface problem leads to a discontinuous pressure along the
interface with jump conditions given by

[𝑝] = 𝜎𝜅

[𝜕௡𝑝] = 0
(3.200)

where 𝜎 is the surface tension coefϐicient, a physical property of the ϐluid, and 𝜅 is the local
interface curvature. These conditions mean that the net stress acting on the interface is zero
since it has no mass [22]. The curvature can be computed from the level set function as

𝜅 = ∇ ⋅ ቆ ∇𝜙
|∇𝜙|ቇ (3.201)

60

Chapter 3. Methodology

Appropriate boundary conditions for the velocity and pressure must be used to complete the
system. In this work, for simplicity we use periodic boundary conditions.

3.4.2 Numerical Method

To solve the coupled equations (3.193, 3.194, 3.199, 3.200), the projection method of Chorin
can be used. As outlined in [22], algorithm 3.3 describes one time step of the method.

Algorithm 3.3 Projection method for Navier-Stokes with pressure discontinuity
1. Compute tentative velocity 𝑢∗ :

𝑢∗ − 𝑢௡
Δ𝑡 = −𝑢௡ ⋅ ∇𝑢௡ + 𝜈Δ𝑢௡ + 𝑓 (3.202)

2. Solve for pressure :
Δ𝑝
𝜌 = ∇ ⋅ 𝑢∗

Δ𝑡 (3.203)

3. Update velocity :
𝑢௡ାଵ − 𝑢௡

Δ𝑡 = −∇𝑝
𝜌 (3.204)

4. Advect level set :
𝜙௡ାଵ − 𝜙௡

Δ𝑡 = −𝑢௡ ⋅ ∇𝜙௡ (3.205)

Steps1-3 correspond to theprojectionmethod, inwhich thedivergence-free condition (3.194)
is enforced by choosing the pressure that insures a divergence-free solution. This corre-
sponds to a projection of the tentative velocity 𝑢∗ onto the space of divergence-free velocities.
In step 2, we solve a Poisson problem for the pressure, subject to the jump conditions (3.200).
This is exactly the Poisson interface problem described in section 3.1.1. In [22], this problem
is solved using the Ghost FluidMethod. The projectionmethod is ϐirst-order in time [10]. The
actual time-stepping algorithm used in [22] is a third order Runge-Kutta TVD (total variation
diminishing) scheme [45].
The algorithmabove is applied on amarker-and-cell (MAC) grid, which is a staggered grid that
was introduced in [20]. A grid cell is illustrated in ϐigure 3.15. For stability reasons, the two
components of the velocity (𝑢 and 𝑣) and the scalar quantities (𝜙 and 𝑝) are not computed at
the same location.
The spatial differential operators appearing in the equations of algorithm 3.3 (the gradient,
divergence and Laplacian) are usually discretized using second order ϐinite differences, as is

61

3.4. Towards a Correction Function Method for the Navier-Stokes Equations

Figure 3.15. One cell of the MAC grid. The velocity components are computed on the cell edges, and
the scalar quantities (pressure and level set) are computed at the cell centers.

done in [22]. It is important to note that these second order discrete approximations satisfy
discrete versions of the classical vector calculus identities exactly. Thismimetic discretization
contributes to the stability of the scheme [49]. Thediscretization of the level set equationuses
the WENO scheme of [17].
If a higher order scheme for the Navier-Stokes problem with pressure discontinuity was to
be designed, the Correction Function Method would be the method of choice for step 2 of the
algorithm, since this method can easily handle high-order ϐinite difference schemes. As a ϐirst
step in this direction, we used the code bubbles, developed by Jean-Christophe Nave, along
with cfm-petsc for the 2ⁿƈ step, to implement algorithm 3.3.

62

4. Results

In this chapter, we present different results that validate our implementation of the Correc-
tion Function Method for the Poisson interface problem. We start by the test of the repre-
sentation formula approach for the solution of the correction function problem presented in
section 3.2.4.7. Next, we apply the CFMmethod described in section 3.2 to four differentman-
ufactured problems. The data for themanufactured problems is computed exactlywithMaple
[30] using the following algorithm :

Algorithm 4.1Manufactured solution
Require: Exact solution 𝑢ା, 𝑢ି and level set 𝜙
1. Compute 𝑓ା = Δ𝑢ା, 𝑓ି = Δ𝑢ି
2. Compute 𝑓஽ = 𝑓ା − 𝑓ି
3. Compute 𝑎 = 𝐷 = 𝑢ା − 𝑢ି
4. Compute 𝑛 = ∇థ

‖∇థ‖
5. Compute 𝑏 = ∇(𝑢ା − 𝑢ି) ⋅ 𝑛

Following what as done in [31], all results presented use a value of 𝑐௣ = 50 for the penaliza-
tion coefϐicient of equation (3.77) and 6 Gauss-Legendre points for the discretization of the
integrals.
We do not present simulation results for the Navier-Stokes equations with pressure disconti-
nuity introduced in section 3.4, as our adaptation of the code bubbles to use the CFM imple-
mentation cfm-petsc for step 2 of algorithm 3.3 did not yield physically meaningful results.
This is discussed in the next chapter.

4.1 Representation Formula Approximation

In order to validate the use of the representation formula (3.171) for the solution of the cor-
rection function problem (3.50-3.52), we investigated the convergence of the approximation

63

4.1. Representation Formula Approximation

(3.172). We set Ω = 𝐵ଵ(0), 𝑥 = (−0.5,−0.6) and computed 𝑢ఢ(𝑥) for different values of
𝜖 ranging from 0.01 to 1.8. At 𝜖 = 1.8, the domain Ω is completely contained in 𝐵ఢ(𝑥), so
𝑢ఢ(𝑥) = 𝑢(𝑥) as given by (3.36). The domain and the ball 𝐵ఢ(𝑥) are shown in ϐigure 4.1 for
𝜖 = 0.1.

Figure 4.1. The domain ஐ used to validate the approximation ௨ఢ(௫). The second and third terms in
(3.172) are integrated on the segment of డஐ between the two purple circles.

To test the approximation, we used 4 different solutions of the Poisson problem (3.33) :

𝑢(𝑥, 𝑦) = sin (𝜋𝑥) sin (𝜋𝑦) (4.1)

𝑢(𝑥, 𝑦) = exp ቆ −1
1 − 𝑥ଶ − 𝑦ଶቇ (4.2)

𝑢(𝑥, 𝑦) = 1 − 𝑥ଶ − 𝑦ଶ (4.3)

𝑢(𝑥, 𝑦) = 1 − 𝑥 − 𝑦 (4.4)

To numerically evaluate the integrals in (3.172), we use the MATLAB functions integral
and integral2 ([44], [43]) which are designed to handle singular integrands such as the
fundamental solution Φ(𝑥, 𝑦). The results are shown in ϐigure 4.2. They show the absolute
value of the error 𝐸 = 𝑢 − 𝑢ఢ as a function of 𝜖.

64

Chapter 4. Results

Figure 4.2. Test of the representation formula approach for different solutions to the Poisson problem.

Weobserve that the approximation 𝑢ఢ is not converging to the real solution at all until the ball
𝐵ఢ almost completely covers Ω, approximately at 𝜖 = 1.7. These results show that the repre-
sentation formula approach is not effective to locally solve the correction function problem ;
the decay of the fundamental solutionΦ is not strong enough to be able to truncate the inte-
grals in (3.36) and thus we cannot compute the solution𝐷 of the correction function problem
using (3.171).

65

4.2. Example 1

4.2 Example 1

4.2.1 Problem Deϐinition

As a ϐirst example, we reproduce Example 1 from [31], in which the interface is a circle. The
problem parameters are given below :

Ω = [0, 1]ଶ

𝑓ା(𝑥, 𝑦) = −2𝜋ଶ sin(𝜋𝑥) sin(𝜋𝑦)

𝑓ି(𝑥, 𝑦) = −2𝜋ଶ sin(𝜋𝑥) sin(𝜋𝑦)

𝜙(𝑥, 𝑦) = (𝑥 − 𝑥଴)ଶ + (𝑦 − 𝑦଴)ଶ − 𝑟ଶ଴ , 𝑥଴ = 𝑦଴ = 0.5, 𝑟଴ = 0.1

𝑓஽(𝑥, 𝑦) = 0

𝑎(𝑥, 𝑦) = sin(𝜋𝑥) exp(𝜋𝑦)

𝑏(𝑥, 𝑦) = 𝜋 exp(𝜋𝑦)(2𝑦 − 1) sin(𝜋𝑥) + (2𝑥 − 1) cos(𝜋𝑥)
ඥ4𝑥ଶ + 4𝑦ଶ − 4𝑥 − 4𝑦 + 2

(E1)

Notice both 𝑎 and 𝑏 are non-zero but 𝑓஽ is zero. The exact solution is given by

𝑢ା(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦)

𝑢ି(𝑥, 𝑦) = sin(𝜋𝑥)൫ sin(𝜋𝑦) − exp(𝜋𝑦)൯

4.2.2 Numerical Solution

The computed solution is shown in ϐigure 4.3. We see the interface jump is very clean and
causes no oscillations of the solution.
The error 𝐸 = |𝑢exact−𝑢approx| is shown in ϐigure 4.4. We see the error is larger by about two
orders of magnitude in the vicinity of the interface.

66

Chapter 4. Results

Figure 4.3. Computed solution of problem E1 on a ହ଴଴ × ହ଴ହ grid. On this grid, 804 nodes require a
correction and 404 cells are crossed by the interface.

Figure 4.4. Error in the computed solution of example 1. The error is larger near the interface, which
appears in grey.

67

4.2. Example 1

4.2.3 Convergence

Figure 4.5 shows the convergence of the solution, in the 𝐿ଵ, 𝐿ଶ and 𝐿ஶ norms. These norms
are discrete norms deϐined for a grid function 𝑢 as

‖𝑢‖௅೛ =

⎧
⎪

⎨
⎪
⎩

Δ𝑥Δ𝑦ቌ
௡ೣ
෍
௜ୀଵ

௡೤

෍
௝ୀଵ

|𝑢௜௝|௣ቍ
ଵ/௣

𝑝 ≥ 1

max
௜௝

|𝑢௜௝| 𝑝 = ∞

(4.5)

The horizontal axis is the step size ℎ, deϐined as ℎ = ටℎଶ௫ + ℎଶ௬. All orders of convergence
presented here are obtained using a linear regression approach. The solution converges to
4Ƙƌ order in the 𝐿ஶ, and to order 4.3 in the 𝐿ଶ and 𝐿ஶ norms. In ϐigure 4.6, we show the con-
vergence of the correction function. Since we use a manufactured solution, we can easily
compute the exact correction function𝐷 = 𝑢ା−𝑢ି and thus we can compute the error in the
computed correction function. We observe a convergence of order 5, 4.6 and 3.9 respectively
in the 𝐿ଵ norm, 𝐿ଶ and 𝐿ஶ norms. Finally, ϐigure 4.7 show the convergence of the gradient of
the solution. It converges to order 3 in the 𝐿ஶ norm, close to order 4 in the 𝐿ଵ norm and to
order 4.2 in the 𝐿ଶ norm.

Figure 4.5. Convergence of the solution for example 1

68

Chapter 4. Results

Figure 4.6. Convergence of the correction function for example 1

Figure 4.7. Convergence of the solution gradient for example 1

69

4.3. Example 2

4.3 Example 2

4.3.1 Problem Deϐinition

The second example corresponds to Example 2 from [31]. In this problem the interface is
more complex ; it is a smooth 5-pointed star. The problem is deϐined by :

Ω = [0, 1]ଶ

𝑓ା(𝑥, 𝑦) = 0

𝑓ି(𝑥, 𝑦) = 0

𝜙(𝑥, 𝑦) = (𝑥 − 𝑥଴)ଶ + (𝑦 − 𝑦଴)ଶ − ቈ𝑟଴ + 𝜖 sin ቆ𝑘 arctan ቆ𝑦 − 𝑦଴
𝑥 − 𝑥଴

ቇቇ቉
ଶ
,

𝑥଴ = 𝑦଴ = 0.5, 𝑟଴ = 0.25, 𝑘 = 5, 𝜖 = 0.05

𝑓஽(𝑥, 𝑦) = 0

𝑎(𝑥, 𝑦) = − exp(𝑥) cos(𝑦)

𝑏(𝑥, 𝑦) = − exp(𝑥)൫ cos(𝑦)𝑛௫ − sin(𝑦)𝑛௬൯

(E2)

We use the Cartesian components of the normal (𝑛௫, 𝑛௬) to simplify the expression of the
function 𝑏. Once again in this problem we have 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑓஽ = 0. The exact solution
is given by

𝑢ା(𝑥, 𝑦) = 0

𝑢ି(𝑥, 𝑦) = exp(𝑥) cos(𝑦)

4.3.2 Numerical Solution

The computed solution of problem E2 is shown in ϐigure 4.8. Once again, the jump is very
sharp. The error in the solution appears in ϐigure 4.9. Again, the error is largest near the
interface. Figure 4.10 shows a close-up of the error in the correction function onΩ୻ at a loca-
tionwhere the error in the solution is larger. We see that the error in the computed correction
function is not smooth, which explains the larger error in the solution.

70

Chapter 4. Results

Figure 4.8. Computed solution of problem E2 on a ଷ଴଴ × ଷ଴ଵ grid. On this grid, 1460 nodes require a
correction and 730 cells are crossed by the interface.

Figure 4.9. Error in the computed solution of example 2

71

4.3. Example 2

Figure 4.10. Error in the computed correction function for example 2

4.3.3 Convergence

In ϐigures 4.11, 4.12 and 4.13, we show the convergence of the solution, the correction func-
tion and the gradient of the solution for problem E2. The solution converges very close to
order 4 (3.8-3.9) in all norms, while the correction function converges to order 4.6 in 𝐿ஶ and
slightly faster than order 5 in 𝐿ଵ and 𝐿ଶ. The gradient converges slightly faster than order 3
in 𝐿ஶ and very close to 4Ƙƌ order 𝐿ଶ and 𝐿ଵ (3.85-3.95).

72

Chapter 4. Results

Figure 4.11. Convergence of the solution for example 2

Figure 4.12. Convergence of the correction function for example 2

73

4.4. Example 3

Figure 4.13. Convergence of the solution gradient for example 2

4.4 Example 3

4.4.1 Problem Deϐinition

For our third example, we designed a simple problem in which the correction function is a
constant in order to determine how it would inϐluence the properties of the solution. The
problem is given by

Ω = [0, 1]ଶ

𝑓ା(𝑥, 𝑦) = −2𝜋ଶ sin(𝜋𝑥) sin(𝜋𝑦)

𝑓ି(𝑥, 𝑦) = −2𝜋ଶ sin(𝜋𝑥) sin(𝜋𝑦)

𝜙(𝑥, 𝑦) = (𝑥 − 𝑥଴)ଶ + (𝑦 − 𝑦଴)ଶ − 𝑟ଶ଴ , 𝑥଴ = 𝑦଴ = 0.5, 𝑟଴ = 0.1

𝑓஽(𝑥, 𝑦) = 0

𝑎(𝑥, 𝑦) = −1

𝑏(𝑥, 𝑦) = 0

(E3)

74

Chapter 4. Results

The exact solution is given by

𝑢ା(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦)

𝑢ି(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦) + 1

4.4.2 Numerical Solution

The solution toproblemE3 is shown in ϐigure4.14below, and aswell as its error in ϐigure 4.15.
We observe that the error is completely smooth ; the simplicity of the correction function
causes no increase of the error size near the interface.

Figure 4.14. Computed solution of problem E3 on a ଷ଴଴ × ଷ଴ଶ grid. On this grid, 480 nodes require a
correction and 240 cells are crossed by the interface.

4.4.3 Convergence

The convergence of the solution, of the correction function and of the solution gradient are
shown in ϐigure 4.16-4.18. We observe very clear 4Ƙƌ order convergence of the solution and
of the gradient, akin to a regular Poisson problem using the 9-point stencil. This is due to the
simplicity of the correction function in this case. In 4.17, we observe that the 𝐿ஶ error of the
correction function stays close to machine precision for all values of the step size ℎ, and the

75

4.4. Example 3

Figure 4.15. Error in the computed solution of example 3

𝐿ଵ and 𝐿ଶ errors are smaller still. This is explained by the fact that the correction function is
constant and thus has a ϐinite Taylor expansion, consisting of only itself.

Figure 4.16. Convergence of the solution for example 3

76

Chapter 4. Results

Figure 4.17. Convergence of the correction function for example 3

Figure 4.18. Convergence of the solution gradient for example 3

77

4.5. Example 4

4.5 Example 4

4.5.1 Problem Deϐinition

As a ϐinal example of a Poisson interface problem, we slightly modify Example 3 from [31]. In
this problem, the interface consists of two distinct circles represented by the same level set
function. The problem is deϐined as

Ω = [0, 1]ଶ

𝑓ା(𝑥, 𝑦) = exp(𝑥)൫(4𝑥 + 2) sin(𝑦) + 𝑦ଶ + 2൯

𝑓ି(𝑥, 𝑦) = − exp(𝑥)൫(4𝑦ଶ − 1) cos(𝑦ଶ) + 2 sin(𝑦ଶ)൯

𝜙(𝑥, 𝑦) = ൫(𝑥 − 𝑥0)ଶ + (𝑦 − 𝑦0)ଶ − 𝑟0ଶ൯ ൫(𝑥 − 𝑥1)ଶ + (𝑦 − 𝑦1)ଶ − 𝑟1ଶ൯ ,

𝑥଴ = 𝑦଴ = 0.5, 𝑟଴ = 0.15 𝑥ଵ = 𝑦ଵ = 0.75, 𝑟ଵ = 0.1

𝑓஽(𝑥, 𝑦) = exp(𝑥)൫(4𝑦ଶ − 1) cos(𝑦ଶ) + 2 sin(𝑦ଶ) + (4𝑥 + 2) sin(𝑦) + 𝑦ଶ + 2൯

𝑎(𝑥, 𝑦) = −exp(𝑥)൫ − 𝑥ଶ sin(𝑦) − 𝑦ଶ + cos(𝑦ଶ)൯

𝑏(𝑥, 𝑦) = − exp(𝑥)ቀ൫−𝑥ଶ sin(𝑦) − 2𝑥 sin(𝑦) − 𝑦ଶ + 𝑐𝑜𝑠(𝑦ଶ)൯𝑛௫

− (−𝑥ଶ cos(𝑦) − 2 sin(𝑦ଶ)𝑦 − 2𝑦)𝑛௬ቁ

(E4)

Notice here we have 𝑓஽ ≠ 0. The exact solution is given by

𝑢ା(𝑥, 𝑦) = exp(𝑥)൫𝑥ଶ sin(𝑦) + 𝑦ଶ൯

𝑢ି(𝑥, 𝑦) = exp(𝑥) cos(𝑦ଶ)

4.5.2 Numerical Solution

The computed solution of problem E4 appears in ϐigure 4.19. We see the jumps along both
interfaces are very sharp. The method and our implementation of it are able to handle nu-
merous interfaces with no modiϐication, as long as those are deϐined by a level set function.

78

Chapter 4. Results

Figure 4.19. Computed solution of problem E4 on a ସ଴଴ × ସଶ଴ grid. On this grid, 1640 nodes require
a correction and 820 cells are crossed by the interface.

4.5.3 Convergence

Figures 4.20-4.22 show the convergence plots for the solution, the correction function and
the solution gradient. The solution converges to 4Ƙƌ order in the 𝐿ଵ and 𝐿ଶ norms, and close
to 4Ƙƌ order in the 𝐿ஶ norm. The correction function shows a convergence order of 4 in the
𝐿ஶ norm, 4.7 for the 𝐿ଶ norm and 5.2 for the 𝐿ଵ norm. The gradient converges to 3Ɩƈ order in
the 𝐿ஶ norm and close to 4Ƙƌ order in the 𝐿ଵ and 𝐿ଶ norms.

79

4.5. Example 4

Figure 4.20. Convergence of the solution for example 4

Figure 4.21. Convergence of the correction function for example 4

80

Chapter 4. Results

Figure 4.22. Convergence of the solution gradient for example 4

81

5. Discussion

In this chapter, we comment on the results obtained in the previous chapter. We ϐirst offer
some general remarks in Section 5.1. We explain an important detail of the local correction
function solver in Section 5.2. Section 5.3 presents some perspective on the design of a high-
order CFM-based Navier-Stokes solver.

5.1 General Remarks

The convergence results presentedabove conϐirmour implementationof theCorrectionFunc-
tion Method is correct. On average, the solution converges to order 4, the correction function
usually converges to order 5 and the gradient, to order 3. These results are in line with the
results presented in [31] and [33].
The CFM, as it is presented, deals with Poisson interface problems, but it is interesting to note
that it can be extended to more general problems easily. Example 2 above shows that the
CFM can be used to solve a regular Poisson problem on an irregular domain, by embedding
this domain inside a rectangular computational box. This can be further extended to Poisson
interface problems posed on an irregular domain, as is explored in [32]. In this paper, the
CFM is coupled with a boundary integral method to solve problems of the form

Δ(𝛽𝑢) = 𝑓 (5.1)

on an irregular domain Ω. In the equation above, 𝛽 is a piecewise constant coefϐicient (it is
constant on each of the subdomains Ωି and Ωା).
Moreover, the method as it is presented can easily handle problems with more than one level
set function, and thusmore than two subdomains. This is not handled by our implementation
but could be easily added. In fact, because of the linearity of the Poisson interface problem,

82

Chapter 5. Discussion

each interface jump can be treated independently. The different interfaces can even overlap,
or touch at a single pointwithout causing a degradation of the solution. Examples of problems
with multiple jumps are presented in [31].

5.2 Domain of Deϐinition of the Bicubic Interpolants

In section 3.2.4.5 we explain how the integrals used to determine the correction function are
mapped to the reference domain, the unit square 𝐾, in order for the bicubic interpolants to
be deϐined over𝐾. Here we explain why this second transformation is needed. In a precedent
version of the code, wedid not use themapping �̂� to transform the integrals to the unit square.
Instead, the bicubics used for the approximation of the correction function were deϐined on a
box 𝐵௜௝ enclosing the integration domain Ω௜௝୻ , as shown in ϐigure 5.1.

Figure 5.1. The box ஻௜௝ encloses the domainஐ௜௝
୻ . In a previous version of the code, the mapping to the

reference domain ௄ presented in section 3.2.4.5 was not used and the bicubics were deϐined in real
space over ஻௜௝ .

However, by examining the deϐinition of the bicubic interpolants in equation (3.86), we see
that the polynomials 𝐵ఔఈ have a prefactor of Δ𝑥ఈ , with the multi-index 𝛼 ∈ {0, 1}ଶ. Since all 12
of the reduced bicubic polynomials are multiplied in pairs in the discretization of the mini-

83

5.2. Domain of Deϔinition of the Bicubic Interpolants

mization integrals (3.146) and (3.157) (see Appendix A), in that case the entries of the min-
imization matrix A in (3.82) vary greatly in magnitude. We can see this variation clearly by
plotting the logarithm of the absolute value of matrix entries, as shown in ϐigure 5.2.

(a) (b)

Figure 5.2. (a) Logarithm of the absolute value of the entries of the minimization matrix ୅ for a previ-
ous version of the code, where the bicubics are deϐined over஻௜௝ . Notice the difference in magnitude of
the ସ×ସ blocks. (a) Logarithm of the absolute value of the entries of theminimizationmatrix୅ for the
ϐinal implementation, where the bicubics are deϐined over the unit square ௄. Notice the magnitude of
the entries is much more even across the entire matrix.

This important variation of magnitude across the matrix entries increased as we reϐined the
grid, since it is dependent on the mesh size. This leads to a very bad conditioning of the min-
imization matrices ; for example, the matrix in 5.2a has a condition number of 9.1 × 10଻, for
a grid size of 31 × 30. This condition number increased rapidly as the grid was reϐined, lead-
ing to almost singular matrices. On the contrary, when the bicubics are deϐined on the unit
square 𝐾, as detailed in section 3.2.4.5, the prefactor Δ𝑥ఈ = (1, 1)ఈ = (1, 1) and thus does
not contribute to the magnitude of the minimization matrix entries. The entries are much
more even across the matrix, as can be seen in 5.2b, leading to a greatly improved condition
number of 1.4×10ଷ. Moreover, themagnitude of this condition number stays constant as the
grid is reϐined.

84

Chapter 5. Discussion

5.3 CFM-Based Navier-Stokes Solver

As stated above, we could not producemeaningful results from the Navier-Stokes solver bub-
blesused in conjunctionwith the C++ version of our CFMcode, cfm-petsc. Namely, the jump
in the pressurewas smeared out, and the level setmoved in nonsensicalways. We suspect this
is due to implementation errors, but it could also come from mathematical incompatibilities
between the codes. These ideas are explored in this section.

The ϐirst thing to note is that our implementation uses periodic boundary conditions. The
convergence of cfm-petsc with these boundary conditions was veriϐied. However, modiϐi-
cations also needed to be made to the code bubbles to implement these conditions. Those
modiϐications could not be tested in isolation (without using the code in conjunction with
cfm-petsc) because it would have required major code changes ; the linear solver imple-
mented in bubbles was not designed to handle the singular system resulting from the peri-
odic boundary conditions. Hence, we could not identify if the implementation of the periodic
boundary conditions in bubbleswas problematic.

Another potential problem is the fact that by using the 4Ƙƌ order 9-point stencil for the Lapla-
cian implemented in cfm-petsc, the mimetic properties of the ϐinite difference discretiza-
tion of the Navier-Stokes equation mentioned in section 3.4 are lost; the discrete gradient,
Laplacian and divergence do not exactly satisfy classical vector identities anymore. It is pos-
sible that this causes important stability issues preventing themethod from being consistent.
Note, however, that in step 3 of algorithm 3.3, we did modify the computation of the gradient
so that all quantities appearing in equation (3.204) are computed at the same location. This
is needed because of the MAC grid ; the pressure and velocities are not deϐined at the same
location. Speciϐically, we use the following compact fourth-order discretization of the ϐirst
derivative of the pressure 𝑝 at the half-step :

𝜕௫𝑝ห௜ିభ/మ,௝ =
𝑝௜,௝ − 𝑝௜ିଵ,௝

ℎ௫
− 1
24ℎ

ଶ
௫ 𝜕ଷ௫𝑝ห௜ିభ/మ,௝ + 𝒪൫ℎସ൯

=
𝑝௜,௝ − 𝑝௜ିଵ,௝

ℎ௫
− 1
24ℎ

ଶ
௫ ቀ𝜕௫𝑓 − 𝑝௫௬௬ห௜ିభ/మ,௝ቁ + 𝒪൫ℎସ൯

=
𝑝௜,௝ − 𝑝௜ିଵ,௝

ℎ௫
− 1
24ℎ

ଶ
௫ ቆ

𝑓௜ − 𝑓௜ିଵ
ℎ௫

− 𝜕௫𝑝௬௬ห௜ିభ/మ,௝ቇ + 𝒪൫ℎସ൯

85

5.3. CFM-Based Navier-Stokes Solver

=
𝑝௜,௝ − 𝑝௜ିଵ,௝

ℎ௫
− 1
24ℎ

ଶ
௫ ൭

𝑓௜ − 𝑓௜ିଵ
ℎ௫

−
𝑝௬௬ห௜ − 𝑝௬௬ห௜ିଵ

ℎ௫
൱ + 𝒪൫ℎସ൯

=
𝑝௜,௝ − 𝑝௜ିଵ,௝

ℎ௫
− 1
24ℎ

ଶ
௫ ൭

𝑓௜ − 𝑓௜ିଵ
ℎ௫

−
�̂�௬௬𝑝௜ − �̂�௬௬𝑝௜ିଵ

ℎ௫
൱ + 𝒪൫ℎସ൯ (5.2)

In the equation above, the function 𝑓 corresponds to the right-hand side of equation (3.203),
the scaled divergence of the tentative velocity. In order for the stability of the scheme to
be preserved, a compact fourth-order discretization of all differential operators appearing in
algorithm 3.3 should be used. We also tried to keep the gradient computation done by the
bubbles code to preserve the mimetic discrete properties, and use cfm-petsc only to solve
the Poisson interface problem for the pressure, but this did not solve the inconsistencies in
the output.
Yet another thing to consider is how the data for the Poisson interface problem is passed
from bubbles to cfm-petsc. Recall that the function 𝑎 that corresponds to the jump in the
pressure at the interface is given by the curvature of the level set 𝜙 (see equation (3.200)).
This curvature is computed following equation (3.201) by the code bubbles using second
order ϐinite differences of the discretized level set 𝜙, and is capped to the inverse of the grid
size to prevent arbitrarily large curvature. When received by cfm-petsc and converted to a
GridFunction2D object, it is discretely differentiated once again to obtain the gradient infor-
mation necessary for the bicubic interpolation used by GridFunction2D (see section 3.2.4.2)
to evaluate it at arbitrary locations in the domain. This discrete gradient is computed using
a fourth-order stencil, as mentioned above, to maintain the accuracy of the bicubic interpo-
lation scheme. It is well possible that the computed curvature does not have the required
smoothness to be differentiated again to fourth-order in the class GridFunction2D. An al-
ternative approach would be to replace the WENO method used to represent and advect the
level set in the code bubbles by the gradient-augmented level set method (GALS) of [35].
This method uses the reduced bicubic interpolants of section 3.2.4.2 to represent the level
set. We could then compute the curvature anywhere on the domain directly using the bicu-
bic interpolation framework, without the need to differentiate it again with ϐinite differences
when passed to cfm-petsc. Moreover, the GALS method was shown in [35] to be superior
to WENO for the advection equation (3.205). A complete high-order implementation of algo-
rithm 3.3 would thus beneϐit from this advection method.

86

6. Conclusion

In this work, we gave a comprehensive presentation of the Correction Function Method, a
numerical method for the solution of the Poisson interface problem. We showed how this
method uses the so-called correction function, deϐined as the solution of a PDE posed on a
narrow band around the interface, to determine the correction terms needed to account for
the interface jumps. We explained how this PDE is solved byminimizing an integral functional
parameterized using the level set information, and detailed the fourth-order ϐinite difference
scheme used for the discretization of the Poisson PDE in 2 dimensions. We also derived the
Fast Poisson solver used to efϐiciently solve the linear system resulting from this discretiza-
tion. We implemented the 4Ƙƌ order CFMmethod in bothMATLAB and C++ and described our
object-oriented code architecture.

We showed convergence of our implementation using four model problems. We also investi-
gated an alternate way to solve the correction function PDE, based on a classical representa-
tion formula for the solution of the Poisson problem, and showed that it could not succeed in
solving the correction function problem in a local fashion. Finally, we explored the coupling of
the CFM to aNavier-Stokes solver to simulate ϐlowwith pressure discontinuities. Althoughwe
were not successful in presenting simulation results for the Navier-Stokes case, we outlined
several issues that ought to be addressed if a high-order, CFM-based Navier-Stokes solver is
to be designed.

Another interesting future development of the method presented here would be to extend it
to handle grid-based discontinuous sources. As mentioned in section 3.2.1, the function 𝑓஽
appearing in the PDE for the correction function (3.50) needs both of the source functions 𝑓ା

and 𝑓ି to be deϐined on the band domainΩ୻. If a single grid function 𝑓 describing both 𝑓ା and
𝑓ି is the only available data for the problem, we need to extend 𝑓ା inside Ωି and 𝑓ି inside
Ωା in order to deϐine 𝑓஽ at the nodes where corrections are needed. These extensions could

87

be deϐined by extrapolation. An idea would be to use the bicubic interpolation framework
and use it for extrapolation. Then, the question of choosing the best location to choose for the
extrapolation data would have to be addressed. Since the conϐiguration of the extrapolated
values with respect to the data would vary considerably depending on the way the grid is cut
by the interface, such an extrapolation method would have to be general enough yet easily
automatized.
At the level of the code implementation, the C++ versionof the codewould greatly beneϐit from
performance optimization and parallelization. The fact that the correction function at each
required node is computed in a completely independent fashion represents an ideal oppor-
tunity for parallelization. Both multi-thread parallelism and distributed parallelism would
be possible, as well as a combination of the two. Moreover, it would be interesting to assess
how a distributed Fast Poisson solver, using a parallel implementation of the Fast Fourier
Transform, would measure to the distributed iterative linear solvers of the PETSc library.

88

Appendix A

Linear System for the Correction Function Coefϐicients

Once parameterized and mapped to the reference domain 𝐾, as described in sections 3.2.4.4
and 3.2.4.5, the functional 𝐽(𝐷) in (3.77) becomes

𝐽(𝐷) = 𝐼ଵ + 𝑐௣
ே೔ೕ

෍
௞ୀଵ

𝐼௞ଶ

= 𝑐ଵ

ଵ

න
଴

ଵ

න
଴

ቌ 1
𝑠ଶ ෍

௠
𝐿௠(𝜉, 𝜂)�̂�௠ − 𝑓஽ ൫�̂� (𝜉, 𝜂)൯ቍ

ଶ

𝑠ଶ𝑑𝜉𝑑𝜂

+ 𝑐௣
ே೔ೕ

෍
௞ୀଵ

ଵ

න
଴

൥ 𝑐ଶቆ෍
௠
𝐵௠ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ଶ)൯ቁ�̂�௠ − 𝑎 ൫෥𝑇ିଵ௞ (Θ, 𝜃ଶ)൯ ቇ

ଶ

+ 𝑐ଷቆ
1
𝑠ଶ ෍

௠
𝑟௠ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ଶ)൯ቁ�̂�௠ − 𝑏 ൫෥𝑇ିଵ௞ (Θ, 𝜃ଶ)൯ ቇ

ଶ
൩

× ඨቆ𝜕𝐻
௞
ଵ

𝜕𝜃ଶ
ቇ
ଶ
+ ቆ𝜕𝐻

௞
ଶ

𝜕𝜃ଶ
ቇ
ଶ
ቮ
(஀,ఏమ)

𝑑𝜃ଶ

(A.1)

In the above we used the shortcut notations 𝐿௠ and 𝑟௠ deϐined respectively in (3.147) and
(3.158). We use Gauss-Legendre quadrature [42] to discretize the integrals above. Denoting
the 2D integration nodes (𝜉ℓ, 𝜂௡) and corresponding 2D weights (𝑤ℓ, 𝑤௡), and the 1D inte-
gration nodes 𝜃ℓ and corresponding weights 𝑤ℓ, the discretized functional ෤𝐽(𝐷) becomes a

89

quadratic function of the correction function coefϐicients �̂�௠ :

෤𝐽(𝐷) = 𝑠ଶ෍
ℓ
෍
௡
ቌ 1
𝑠ଶ ෍

௠
𝐿௠(𝜉ℓ, 𝜂௡)�̂�௠ − 𝑓஽ ൫�̂� (𝜉ℓ, 𝜂௡)൯ቍ

ଶ

𝑠ଶ

+
ே೔ೕ

෍
௞ୀଵ

𝑐௣
𝑠௞୻

෍
ℓ
ቈቆ෍

௠
𝐵௠ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ�̂�௠ − 𝑎 ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ ቇ

ଶ

+ 𝑠ଶቆ 1𝑠ଶ ෍
௠
𝑟௠ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ�̂�௠ − 𝑏 ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ ቇ

ଶ
൩

× ඨቆ𝜕𝐻
௞
ଵ

𝜕𝜃ଶ
ቇ
ଶ
+ ቆ𝜕𝐻

௞
ଶ

𝜕𝜃ଶ
ቇ
ଶ
ቮ
(஀,ఏℓ)

(A.2)

where we used the expressions of the scaling coefϐicients 𝑐ଵ, 𝑐ଶ and 𝑐ଷ from section 3.2.4.6.
Expanding the squared parenthesised terms, we get

෤𝐽(𝐷) = ෍
ℓ
෍
௡
ቆ෍

௣
෍
௤
𝐿௣(𝜉ℓ, 𝜂௡)𝐿௤(𝜉ℓ, 𝜂௡)�̂�௣�̂�௤

− 2𝑠ଶ𝑓஽ ൫�̂� (𝜉ℓ, 𝜂௡)൯෍
௣
𝐿௣(𝜉ℓ, 𝜂௡)�̂�௣ + 𝑠ସ𝑓ଶ஽ ൫�̂� (𝜉ℓ, 𝜂௡)൯ቇ

+
ே೔ೕ

෍
௞ୀଵ

𝑐௣
𝑠௞୻

෍
ℓ
൥ቆ෍

௣
෍
௤
𝐵௣ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ𝐵௤ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ�̂�௣�̂�௤

− 2𝑎 ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯෍
௣
𝐵௣ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ�̂�௣ + 𝑎ଶ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቇ

+ ቆ 1
𝑠ଶ ෍

௣
෍
௤
𝑟௣ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ𝑟௤ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ�̂�௣�̂�௤

− 2𝑏 ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯෍
௣
𝑟௣ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ�̂�௣

+ 𝑠ଶ𝑏ଶ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ ቇ൩ × ඨቆ𝜕𝐻
௞
ଵ

𝜕𝜃ଶ
ቇ
ଶ
+ ቆ𝜕𝐻

௞
ଶ

𝜕𝜃ଶ
ቇ
ଶ
ቮ
(஀,ఏℓ)

(A.3)

wherewe used the indices 𝑝 and 𝑞 to rewrite the squared sumover the index𝑚, and renamed
the lone𝑚 index to 𝑝 for consistency. We can ϐinally isolate the expressions of the entries of

90

Appendix A. Linear System for the Correction Function Coefϔicients

thematrix A and of the right-hand side vector 𝑑 in the linear system (3.81) resulting from the
minimization of ෤𝐽(𝐷) :

A௣௤ = ෍
ℓ
෍
௡
𝐿௣(𝜉ℓ, 𝜂௡)𝐿௤(𝜉ℓ, 𝜂௡)

+
ே೔ೕ

෍
௞ୀଵ

𝑐௣
𝑠௞୻

෍
ℓ
ቈ𝐵௣ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ𝐵௤ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ

+ 1
𝑠ଶ𝑟௣ቀ�̂�

ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ𝑟௤ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ቉

× ඨቆ𝜕𝐻
௞
ଵ

𝜕𝜃ଶ
ቇ
ଶ
+ ቆ𝜕𝐻

௞
ଶ

𝜕𝜃ଶ
ቇ
ଶ
ቮ
(஀,ఏℓ)

(A.4)

𝑑௣ = − 2ቈ𝑠ଶ෍
ℓ
෍
௡
𝑓஽ ൫�̂� (𝜉ℓ, 𝜂௡)൯ 𝐿௣(𝜉ℓ, 𝜂௡)቉

− 2
ே೔ೕ

෍
௞ୀଵ

𝑐௣
𝑠௞୻

෍
ℓ
ቈ𝑎 ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ 𝐵௣ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ

+ 𝑏 ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ 𝑟௣ቀ�̂�ିଵ ൫෥𝑇ିଵ௞ (Θ, 𝜃ℓ)൯ቁ቉

× ඨቆ𝜕𝐻
௞
ଵ

𝜕𝜃ଶ
ቇ
ଶ
+ ቆ𝜕𝐻

௞
ଶ

𝜕𝜃ଶ
ቇ
ଶ
ቮ
(஀,ఏℓ)

(A.5)

91

Bibliography

[1] David S. Abraham, Alexandre Noll Marques, and Jean-Christophe Nave. A Cor-
rection Function Method for the Wave Equation with Interface Jump Conditions.
arXiv:1609.05379 [math], September 2016. arXiv: 1609.05379.

[2] Ivo Babuška. The ϐinite element method for elliptic equations with discontinuous coef-
ϐicients. Computing, 5(3):207–213, September 1970.

[3] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschel-
man, Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G.
Knepley, Dave A. May, Lois Curfman McInnes, Richard Tran Mills, Todd Munson, Karl
Rupp, Patrick Sanan, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang.
PETSc Web page. 2018.

[4] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschel-
man, Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G.
Knepley, Dave A. May, Lois Curfman McInnes, Richard Tran Mills, Todd Munson, Karl
Rupp, Patrick Sanan, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang.
PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.9, Argonne National
Laboratory, 2018.

[5] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efϐicient
Management of Parallelism in Object Oriented Numerical Software Libraries. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors,Modern Software Tools in Scientiϔic Comput-

ing, pages 163–202. Birkhäuser Press, 1997.

[6] J. Frédéric Bonnans, J. Charles Gilbert, Claude Lemaréchal, and Claudia A. Sagastizábal.
Numerical Optimization. Universitext. Springer Berlin Heidelberg, Berlin, Heidelberg,
2003.

92

Bibliography

[7] James H. Bramble and J. Thomas King. A ϐinite element method for interface problems
in domains with smooth boundaries and interfaces. Advances in Computational Mathe-

matics, 6(1):109–138, 1996.

[8] W. Briggs and V. Henson. The DFT: An Owner’s Manual for the Discrete Fourier Transform.
Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics,
January 1995.

[9] Zhiming Chen and Jun Zou. Finite element methods and their convergence for elliptic
and parabolic interface problems. Numerische Mathematik, 79(2):175–202, 1998.

[10] Alexandre Joel Chorin. The numerical solution of the Navier-Stokes equations for an
incompressible ϐluid. Bulletin of the American Mathematical Society, 73(6):928–931,
November 1967.

[11] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. The MPI Message Passing Inter-
face Standard. In Programming Environments for Massively Parallel Distributed Systems,
Monte Verità, pages 213–218. Birkhäuser, Basel, 1994.

[12] John Dolbow and Isaac Harari. An efϐicient ϐinite element method for embedded inter-
face problems. International Journal for Numerical Methods in Engineering, 78(2):229–
252, April 2009.

[13] Iain S. Duff. MA57—a Code for the Solution of Sparse Symmetric Deϐinite and Indeϐinite
Systems. ACM Trans. Math. Softw., 30(2):118–144, June 2004.

[14] Lawrence C. Evans. Partial differential equations. Number v. 19 in Graduate studies
in mathematics. American Mathematical Society, Providence, R.I, 2nd ed edition, 2010.
OCLC: ocn465190110.

[15] Ronald P. Fedkiw. The Ghost Fluid Method for Numerical Treatment of Discontinuities
and Interfaces. In Godunov Methods, pages 309–317. Springer, Boston, MA, 2001.

[16] Ronald P. Fedkiw. Coupling an Eulerian Fluid Calculation to a Lagrangian Solid Calcu-
lation with the Ghost Fluid Method. Journal of Computational Physics, 175(1):200–224,
January 2002.

93

Bibliography

[17] Ronald P Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher. A Non-oscillatory
Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method). Jour-
nal of Computational Physics, 152(2):457–492, July 1999.

[18] Gene H. Golub and Charles F. Van Loan. Matrix computations. 2013.

[19] Yan Gong, Bo Li, and Zhilin Li. Immersed-Interface Finite-Element Methods for Elliptic
Interface ProblemswithNonhomogeneous JumpConditions. SIAM Journal onNumerical

Analysis, 46(1):472–495, January 2008.

[20] FrancisH.Harlowand J. EddieWelch. Numerical Calculation of Time-Dependent Viscous
Incompressible Flow of Fluidwith Free Surface. The Physics of Fluids, 8(12):2182–2189,
December 1965.

[21] Cay S. Horstmann and Timothy A. Budd. Big C++. Wiley, Hoboken, NJ, 2. ed edition, 2009.
OCLC: 403586997.

[22] Myungjoo Kang, Ronald P. Fedkiw, and Xu-Dong Liu. A Boundary Condition Capturing
Method forMultiphase Incompressible Flow. Journal of Scientiϔic Computing, 15(3):323–
360, December 2000.

[23] R. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations.
Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics,
January 2007.

[24] R. LeVeque and Z. Li. The Immersed Interface Method for Elliptic Equations with Dis-
continuous Coefϐicients and Singular Sources. SIAM Journal on Numerical Analysis,
31(4):1019–1044, August 1994.

[25] Z. Li and K. Ito. The Immersed Interface Method. Frontiers in Applied Mathematics.
Society for Industrial and Applied Mathematics, January 2006.

[26] Zhilin Li. The Immersed Interface Method – A Numerical Approach for Partial Differential

Equations with Interfaces. PhD thesis, University of Washington, 1994.

[27] Xu-Dong Liu, Ronald P. Fedkiw, and Myungjoo Kang. A Boundary Condition Capturing
Method for Poisson’s Equation on Irregular Domains. Journal of Computational Physics,
160(1):151–178, May 2000.

94

Bibliography

[28] Xu-Dong Liu and Thomas Sideris. Convergence of the ghost ϐluid method for elliptic
equations with interfaces. Mathematics of computation, 72(244):1731–1746, 2003.

[29] R. E. Lynch, J. R. Rice, and D. H. Thomas. Tensor product analysis of partial difference
equations. Bulletin of the American Mathematical Society, 70(3):378–384, May 1964.

[30] Maplesoft, a division of Waterloo Maple Inc. Maple 17.02, 2013.

[31] Alexandre Noll Marques, Jean-Christophe Nave, and Rodolfo Ruben Rosales. A Correc-
tion Function Method for Poisson problems with interface jump conditions. Journal of
Computational Physics, 230(20):7567–7597, August 2011.

[32] Alexandre Noll Marques, Jean-Christophe Nave, and Rodolfo Ruben Rosales. High order
solution of Poisson problems with piecewise constant coefϐicients and interface jumps.
Journal of Computational Physics, 335:497–515, April 2017.

[33] Alexandre Noll Marques, Jean-Christophe Nave, and Rodolfo Ruben Rosales. Im-
posing jump conditions on nonconforming interfaces via least squares minimization.
arXiv:1710.11016 [physics], October 2017. arXiv: 1710.11016.

[34] Rajat Mittal and Gianluca Iaccarino. Immersed Boundary Methods. Annual Review of

Fluid Mechanics, 37(1):239–261, 2005.

[35] Jean-Christophe Nave, Rodolfo Ruben Rosales, and Benjamin Seibold. A gradient-
augmented level setmethodwith an optimally local, coherent advection scheme. Journal
of Computational Physics, 229(10):3802–3827, May 2010.

[36] Stanley Osher. Level set methods and dynamic implicit surfaces. Springer, Place of publi-
cation not identiϐied, 2012. OCLC: 878109841.

[37] Charles S Peskin. Flow patterns around heart valves: A numerical method. Journal of
Computational Physics, 10(2):252–271, October 1972.

[38] Charles S Peskin. Numerical analysis of blood ϐlow in the heart. Journal of Computational

Physics, 25(3):220–252, November 1977.

[39] Charles S. Peskin. The immersed boundary method. Acta Numerica, 11, January 2002.

95

Bibliography

[40] Peter Eastman. SimTK: LeptonMathematical Expression Parser: Project Home, Novem-
ber 2009.

[41] Peter L Hagelstein. Introduction to Numerical Modeling in Engineering and Applied
Physics (Manuscript). 2013.

[42] Alϐio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical mathematics. Number 37
in Texts in applied mathematics. Springer, Berlin ; New York, 2nd ed edition, 2007.

[43] L. F. Shampine. Matlab program for quadrature in 2d. Applied Mathematics and Compu-

tation, 202(1):266–274, August 2008.

[44] L. F. Shampine. Vectorized adaptive quadrature in MATLAB. Journal of Computational

and Applied Mathematics, 211(2):131–140, February 2008.

[45] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws. In Advanced Numerical Approximation

of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, pages 325–432.
Springer, Berlin, Heidelberg, 1998.

[46] James G Simmonds. A Brief on tensor analysis. Springer, New York, 2013. OCLC:
830021437.

[47] L. Trefethen. Spectral Methods in MATLAB. Software, Environments and Tools. Society
for Industrial and Applied Mathematics, January 2000.

[48] Salih Ozen Unverdi and Grétar Tryggvason. A front-trackingmethod for viscous, incom-
pressible, multi-ϐluid ϐlows. Journal of Computational Physics, 100(1):25–37, May 1992.

[49] YushanWang. Solving incompressible Navier-Stokes equations on heterogeneous parallel

architectures. Ph.D. Thesis, Université Paris Sud - Paris XI, April 2015.

[50] ShengXuandZ. JaneWang. An immersed interfacemethod for simulating the interaction
of a ϐluid with moving boundaries. Journal of Computational Physics, 216(2):454–493,
August 2006.

96

Bibliography

[51] Chaoming Zhang and Randall J. LeVeque. The immersed interface method for acous-
tic wave equations with discontinuous coefϐicients. Wave Motion, 25(3):237–263, May
1997.

97

	Front matter
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Abrégé
	Acknowledgement
	Contribution of Authors

	1. Introduction
	2. Literature Review
	3. Methodology
	3.1. An Elliptic Interface Problem
	3.1.1. Problem Definition
	3.1.2. Weak Form and Well-Posedness
	3.1.3. Representation Formula for the Poisson Problem

	3.2. Numerical Method
	3.2.1. The Correction Function Method Framework
	3.2.2. The Compact 4th-Order Finite Difference Scheme
	3.2.2.1. Higher Order Accuracy for Harmonic Functions
	3.2.2.2. Computation of the Solution Gradient

	3.2.3. Interface Description
	3.2.4. Local Solver for the Correction Function
	3.2.4.1. Minimization
	3.2.4.2. Bicubic Interpolation
	3.2.4.2.1. Reduced Cell-Based Bicubic Interpolation

	3.2.4.3. Domain Definition
	3.2.4.4. Parameterization
	3.2.4.5. Mapping to the Reference Domain
	3.2.4.5.1. Domain Integral
	3.2.4.5.2. Interface Integrals

	3.2.4.6. Scaling Coefficients
	3.2.4.7. New Correction Function Solver

	3.2.5. Fast Poisson Solver
	3.2.5.1. Fast Poisson Solver in 1D
	3.2.5.2. Fast Poisson Solver for the 5-Point Stencil
	3.2.5.2.1. The Kronecker Product and Some Properties

	3.2.5.3. Fast Poisson Solver for the 9-Point Stencil

	3.3. Code Implementation
	3.3.1. MATLAB Code
	3.3.1.1. Main Solver : CFM2D and CFM2DOrder4Compact
	3.3.1.2. Domain Discretizaton : Domain2D, Mesh2D and LevelSet
	3.3.1.3. Correction Function Solver
	3.3.1.4. Visualization and Convergence
	3.3.1.5. Linear Solver
	3.3.1.6. Parameters and Problem Description

	3.3.2. C++ Code

	3.4. Towards a Correction Function Method for the Navier-Stokes Equations
	3.4.1. Problem Description
	3.4.2. Numerical Method

	4. Results
	4.1. Representation Formula Approximation
	4.2. Example 1
	4.2.1. Problem Definition
	4.2.2. Numerical Solution
	4.2.3. Convergence

	4.3. Example 2
	4.3.1. Problem Definition
	4.3.2. Numerical Solution
	4.3.3. Convergence

	4.4. Example 3
	4.4.1. Problem Definition
	4.4.2. Numerical Solution
	4.4.3. Convergence

	4.5. Example 4
	4.5.1. Problem Definition
	4.5.2. Numerical Solution
	4.5.3. Convergence

	5. Discussion
	5.1. General Remarks
	5.2. Domain of Definition of the Bicubic Interpolants
	5.3. CFM-Based Navier-Stokes Solver

	6. Conclusion
	Appendix A. Linear System for the Correction Function Coefficients
	Bibliography

