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AB ;T T

The phosphodiesterase (PDE) inhibitors Pentoxify]lihe (PTX), a general
inhibitor, and Rolipram ( ROL), a type 4 inhibitor, have been shown to have anti-
inflammatory effects. They elevate intracellular cAMP levels and suppressi the
production of inflammatory cytokines such as tumof necrosis factor (TNF)a,
interferon (IFN)y, and interleukin-12 (IL-12). These drugs have also been reported
to modulate the immune response in favor éf Th2 responses and to be
therapeutically effective in various models of autoimmune and/or inflammatory
disorders. Their effects on nitric oxide (NO) production are not well studied.
Inflammatory cytokines and NO are important mediators implicated in islet B-cell
destruction.

In the first part of the study, we examined the effect of PTX and ROL in
prevehting insulitis and diabetes in non-obese diabetes-prone (NOD) mice as a
spontaneous model of insulin-dependent diabetes (IDDM). We found that a 4 week
treatment with either PTX or ROL had a strong protective effect, that was still
apparent 1‘1 weeks after withdrawing the drugs. Both drugs were equally effective
at optimal doses in preventing insulitis and diabetes in NOD mice.

In the second part of the study, we examined the effects of PDE inhibitors
on NO peruction by peritoneal macrophages and RAW 246.7 cells. We also
correlated these effects with elevated cAMP levels. We found that both PTX and

ROL suppress NO production by IFNy and lipopolysaccharide (LPS)-activated
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macrophages. The inhibitory effects correlated with elevated cAMP levels and
were mimicked by other agents which elevate cAMP levels such as dibutyryl
c¢AMP, 8-bromo cAMP, and Forskolin. This suppression was found to be at the
transcriptional level. In vivo, ROL treatment prevented macrophage activation by -
staphylococcal enterotoxin B (SEB) and suppressed NO production by these
macrophages in ex vivo culture.

In the third part of the study, we examined the effects of PDE inhibitors
on NO production by insulin-producing NIT-1 insulinoma cells and normal islet
cells. It has been reported that islet B-cells express PDE3 and PDE4. We found that
inhibitdrs of PDE4 (ROL), PDE3 (Cilostamide; CIL), or a general inhibitor (PTX),
suppressed NO production by islet cells. A combination of ROL and CIL appeared
to have more than an additive effect, suggesting synergism. Like in macrophages,
the suppression was at the transcriptional level and mimicked by other agents
which elevate cAMP levels. /n vivo, ROL treatment suppress iNOS e'xpressiori in
the islets of NOD mice with cyclophosphamide-accelerated disease, as determined
by immunohistochemistry.

These studies establish for the first time that PDE inhibitors have a therapeutic
potential in IDDM and other NO-and/or cytokine-mediated inflammatory

disorders.
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RESUME

La pentoxifylline (PTX), un inhibiteur générale des phosphodiestérases (PDE) et rolipran
(ROL), un inhibiteur spécifique des PDE de type 4 montrent des effets anti-inflammatoire.
Ils augmentent l'adénosine-monophosphate (AMP) cyclique intracellulaire et suppriment la
production des cytokines telles le facteur nécrotique tumoral (TNF-a), l'interféron-g (IFN-
g) et linterleukine-12 (IL-12) impliquées dans le processus. Ces mhibiteurs montrent
également une modulation de la réponse immunitaire vers le type 2 (Th2) et démontrent
une efficacité thérapeutique dans plusieurs modéles de maladies auto-immunes et/ou
inflammatoires. Leur effet sur la production d'oxyde nitrique (NO) n'a pas bien été étudié.
Les cytokines inflammatoires et le NO sont d'importants médiateurs impliqués dans la
destruction des cellules béta des ilots de Langerhans du pancréas. Nous avons examiné
l'implication des inhibiteurs de PDE dans le diabéte.

Dans la premuiére partie de notre étude, nous avons examiné le role de la PTX et du ROL
dans la prévention de l'infiltration de cellules inflammatoires des ilots de Langerhans et le
diabéte chez les souris non-obése susceptible de devenir diabétique (NOD), un modele
spontané de diabéte de type insuline dépendant (IDDM). Nous avons montré que
l'administration de la PTX ou le ROL pendant quatre semaines avaient un important effet
protecteur qui était encore apparent aprés onze semaines du traitement. Les deux
inhibiteurs étaient également efficaces dans la prévention de [linfiltration de cellules
inflammatoires des flots de Langerhans et du diabéte chez les souris NOD.

Dans la seconde partie, nous avons examiné les effets des inhibiteurs de PDE sur la
production de NO par les macrophages péritonéaux et des RAW 246.7, une lignée de

types macrophages. Nous avons également étudié la corrélation avec les taux d'AMP
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cycliques intracellulaires. Nous avons trouvé que PTX et ROL diminuent la production de
NO des macrophages induits par I'INF-g et les lipopolysaccharides (LPS). Leur effet
inhibiteur corélére avec une augmentation de IAMP cyclique intracellulaire et mimique par
les analogues de 'AMP cyclique, le dibutyryl AMP cyclique et le 8-bromo AMP cyclique,
ou par la forskoline. Cet effet est au niveau de la transcription. Les injections de
ROL chez des animaux traités a l'entérotoxine B du staphylocoque qui est connu pour
activer les macrophages du péritoine, supprime la production de NO ex-vivo de ces
macrophages en culture.

Dans la troisiéme partie, nous avons examiné l'effet directe des inhibiteurs des PDE sur la
production d'insuline des insulomes NIT-1 et les cellules des ilots de Langerhans puisqu'l
est connu dans la littérature que les PDE de type 3 et 4 sont exprimées par les des ilots de
Langerhans, Nous avons trouvé que linhibiteur de type 4 (ROL), de type 3
(Cilostamide, CIL) et linhibiteur général des PDE (PTX) supprime la production de NO
par les cellules des ilots de Langerhans. L'utilisation de ROL avec le CIL semble
synergique sur la suppression de NO puisque l'effet est plus qu'additif. Tout comme pour
les macrophages, la suppression se trouve au niveau de la transcription et est imitée par les
agents agissant sur le tau dAMP cyclique. In vivo, ROL supprime la NO syntase
mducible (INOS) exprimé par les des ilots de Langerhans de souris NOD dont le diabéte a
été accéléré par le cyclophosphamide tel que vue par immunochistochimie,

Ces études établissent pour la premiére fois que les inhibiteurs des PDE ont un potentiel
thérapeutiqﬁe dans la prévention de I'TDDM et autres maladies du trouble du NO et/ou de

maladies inflammatoires associées aux cytokines.
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CHAPTER 1

GENERAL INTRODUCTION AND LITERATURE REVIEW



Introduction and literature review
A.1. Diabetes Mellitus

A.1.1. Definition and classification

Diabetes mellitus (DM) is a syndrome with disordered metabolism and
inappropriate hyperglycemia resulting from an absolute or relative lack of insulin.
Diabetes was recognized as early as 1550 BC, when the Egyptians described the
polyuric symptom which characterize it [1]. Generally, diabetes mellitus is classified
into two major clinical forms based on dependency for survival on insulin treatment,
insulin-dependent diabetes mellitus (IDDM) or type I diabetes, and non insulin-
dependent diabetes mellitus (NIDDM) or type II diabetes.

IDDM is a catabolic disorder in which circulating insulin is virtually absent,
plasma glucagon is elevated, and the pancreatic B-cells fail to respond to insulinogenic
stimuli. It occurs most commonly in juveniles but occasionally in adults. Clinically,
IDDM is characterized by polyuria, polydipsia, rapid weight loss and random plasma
glucose of more than 200 mg/dL. This is the most severe form of DM which is usually
associated with ketosis.

On the other hand, NIDDM occurs predominantly in adults but occasionally in
juveniles. More than 90% of all diabetics in the USA are included in this group. In
most cases, the cause is unknown. However, deficiency in the response of B-cells to

glucose and insensitivity of the tissue to insulin had been noted. This form of the



disease is often associated with hypertension, hyperlipidemia, and atherosclerosis.
Two subgroups of patients are currently distinguished by the absence or presence of
obesity. In addition, there is a gestational form of diabetes, and these women have a
markedly increased risk of developing postpartum DM. Unlike type I diabetes, type 11
diabetes lacks an autoimmune component. The focus of this thesis is on the

immunologic aspects of IDDM.

A.1.2 Epidemiology of IDDM

IDDM occurs most frequently in persons of northern European descent. The
disease 1s less common among other racial groups, such as blacks, Native Americans,
and Asians [2]. The incidence ranges from a low of 1 to 2 per 100,000 people per year
in Japan to a high of more than 40 per 100,000 in parts of Finland [3]. In a large
prospective study in Europe, there was a pronounced north-south gradient in the
incidence of diabetes [3]. The difference in the incidences is largely explainable by the
prevailing susceptibility genes for IDDM in racially distinct populations, but
enviroﬁmental factors may also be important. In United States, the prevalence of
IDDM by the age of 20 years is about 0.26 percent [4]. The incidence is markedly age-
dependent, increasing from a near absence during the early months of life to a peak
coincident with pubertal development [5]. However, the disease can occur at any age,
with a small mid-life second peak in incidence [6]. Seasonal variability has been noted

in all parts of the world, with an increased incidence in the late fall or early winter [4].



A.1.3. Pathogenesis

IDDM is characterized by increased plasma glucose. It is an autoimmune
disease characterized by progressive immunologic destruction of insulin-secreting
pancreatic B-islet cells by autoreactive leukocytes and their mediators [7]. Even though
the precise causes of the disease remain unclear, a combination of genetic,
immunologic, and environmental factors appear to contribute to the onset and
progression of IDDM [7,8]. However, it has been difficult to demonstrate a strong
cause-and-effect link between some of these factors and IDDM, which highlights the

need for further investigation [9].

A.1.3.1. Genetic factors

The role of genetic factors in diabetes is complex. It is determined by several
genes, and does not follow a Mendelian pattern of inheritance [10]. The genes
involved in the disease are susceptibility genes rather than disease genes, as the
disease is expressed only in a minor proportion of susceptible individuals. About 60%
of genetic predisposition has been mapped to the major histocompatibility complex
(MHC) class II genes [11, 12], but several other genes contribute importantly. MHC
class I molecules are membrane-associated and they are essential for foreign antigen
recognition by T helper (Th) cell. Few cell types express these molecules, other than

antigen-presenting cells (APCs). APCs present peptides of foreign antigens in context



with these molecules to Th cells. The human MHC is designated histocompatibility
locus A (HLA) (HLA-DP, HLA-DQ, HLA-DR) and the disease association is with DR
and DQ HIL A genes on chromosome 6 [11,12].

Initially, an association was demonstrated with DR3 and DR4, but
subsequently it was found that DQ genes are more strongly implicated. Following
further characterization of HLA genes, and a new nomenclature, studies have indicated
that HLA-DQB1*0302-A1*0301 is more important than any of the 12 or more HLA-
DRB1*04 subtypes [13,14]. It is also demonstrated that the HLA-DRB1*04 subtype,
DRB1*0401 confers a risk that is additive to that of DQB1*0302-A1*0301 [15, 16].
In other words, it may be argued that the DR*0401 allele confers a risk for diabetes
that 1s independent of DQ. On the other hand, HLA-DQ6 is negatively associated with
type I diabetes. It is speculated that HLA-DR or DQ class II molecules associated with
type I diabetes provide antigen presentation that generate T-helper (Th) 1 cells that
initiate immune response to specific islet cell autoantigens.

Several laboratories have used families with muitiple affected members to
carry out complete genome scans to identify other type I diabetes genes [17, 18]. Over
15 such candidate loci have been identified. It is possible that a combination of HLA
with other genetic loci may either enhance or decelerate the type I diabetes process.
The insulin gene on chromosome 11 [19], and cytotoxic T-lymphocyte antigen 4
(CTLA-4) gene on chromosome 2 have been shown to be prominent susceptibility
genes [20]. Upstream of the insulin gene are a variable number of tandem repeats.

Class 1 alleles (26-63 repeats) predispose in a recessive way to type I diabetes, while



class 1T alleles (140-200 repeats) seem dominantly protective. The protective effect of
the latter may be explained by the presence of high concentration of proinsulin mRNA
in thymus, possibly enhancing the immune tolerance to preproinsulin, which is a key
autoantigen [21].

CTLA-4 delivers negative regulatory signals to T cells, and mutation of these
genes have been implicated in various autoimmune diseases. The role of CTLA-4 gene
in type I diabetes is not fully understood; however, it has been speculated that a gene
polymorphism involving an AT repeat at C terminus at the 3” end of the gene may
affect the stability of CTLA-4 mRNA. The longer the repeat, the less stable the
CTLA-4 mRNA. Since CTLA-4 is critical to T-cell suppression, it is possible that the
long AT repeat may lead to greater T-cell activity because the CTLA-4 protein is not
formed.

The role of other genetic loci is not clear, and further experiments will be necessary to

understand their link to type I diabetes.

A.1.3.2 Environmental factors

Several studies in monozygotic twins are consistent with the hypothesis that
environmental factors are important risk factors for type I diabetes. Indeed, genetic
predisposition alone is not sufficient to explain IDDM, since there is a 60 -70%
discordance rate in monozygotic twins [22]. In addition, epidemiological studies show

that the incidence of IDDM correlates with geographic location [23]. Numerous



environmental factors have been proposed and the main candidates among these

factors are viral infections, dietary factors, toxins and stress.

A.1.3.2.1 Viruses

Viral infections have been implicated in the etiology of IDDM for a long time,
but in humans their role remains unclear. Viruses may act either by a direct cytolytic
effect, or by triggering an autoimmune process leading to the destruction of islet [3-
cells [24]. Studies on the association of recent outbreaks of viral infection, such as
Coxsackie B virus (CBV), and the onset of type I diabetes have been published. These
studies reported the presence of specific IgM antibodies to CBV in 39% of the
children who had recently developed diabetes while 5.5% of the control group was
positive [25]. In addition, CBV type 4 was isolated from the pancreas of diabetic
patient [26]. CBV can also induce diabetes in experimental animals [27]. Recent
evidence suggests that this virus is directly cytopathic to islet-§ cell [28].

The most compelling evidence of viral involvement is congenital rubella, which
is strongly associated with the appearance of diabetes in the affected childen [29, 30].
In this case, the disease and HLLA association are similar to usual IDDM, and the
rubella virus appears to predispose to autoimmunity.

Studies from Sweden [31] and Finland [32] have provided evidence that
maternal enterovirus infection increases the risk of type I diabetes in the offspring.
These studies also reported that the group-specific antibodies to enteroviruses were

higher in mothers whose children later developed diabetes as compared with control



mothers. In addition enterovirus RNA was detected in the sera of IDDM patients more
often than in controls [33]

Other viruses such as cytomegalovirus (CMV) are also apparently involved in
the pathogenesis of diabetes in some cases. For instance, a case report indicated an
association between congenital CMV infection and diabetes [34].

Some viruses are clearly diabetogenic in some species. It is thought that there
are two diabetogenic groups of viruses; some of which induce the development of
diabetes and others which suppress its development [35]. The most frequently used
viruses for the induction of diabetes in mice include encephalomyocarditis virus
(EMC) (myocardial strain), mengovirus (clone 2T), and Coxsackie virus (B group)

[36].

A.1.3.2.2 Nutritional Factors

Studies have shown that removal of bovine milk compounds in dietary chows
can prevent diabetes in BB rat [37] or in NOD mice [38]. Based on that, the cow milk
protein hypothesis was developed. In human, several reports also showed that lack of
or short duration of breast-feeding is associated with increased risk for type I diabetes
[39]. In addition, these studies have shown the presence of antibodies to bovine serum
albumin (BSA) in up to 100% of newly diagnosed type I diabetes patients [40].

Some investigators have demonstrated that poor nutritional status correlates

with a high incidence of type I diabetes. [41]. Poor nutritional status has been shown



to produce an environment in which antioxidant defenses are often low, resulting in
higher susceptibility to oxidative damage.

Some substances or their metabolites may be toxic to islet cells. Interestingly,
a Swedish case control study demonstrated that a high dietary intake of N-nitroso
compounds, nitrite or nitrate is a high risk factor of type I diabetes [42], and a dose
response relationship was shown. Nitrosamine compounds reduce the nicotinamide
adenine dinucleotide (NAD) content of B-cells, which may represent a possible

mechanism of B-cell dysfunction and destruction.

A.1.3.2.3. Other environmental factors.

Some chemicals such as Alloxan, streptozotocin, Zinc chelating compounds
and vacor can induce diabetes. Both alloxan and streptozotocin have been shown to
induce the production of free radicals and mediate DNA breaks [43].

Other studies have demonstrated that acute psychological stress may also

increase the incidence of diabetes [44].

A.1.3.3. Autoimmunity

Type I diabetes has an autoimmune etiology. Both humoral and cell-mediated
autoimmunity against islet cells have been identified. Bottazzo and coworkers [45], in
1974, were the first to describe humoral autoimmunity against islet cells. After that,

several autoantibodies were described. These autoantibodies included islet-cell



autoantibodies (ICA) [46], and insulin autoantibodies (IAA) [47]. More recently, anti-
glutamic acid decarboxylase (GAD) autoantibodies were described. [48]. GAD is a
cytoplasmic enzyme found in cells of the brain and in P cells of the pancreas. In
addition, autoantibodies to ganglic;sides [49] and carboxypeptide H [50] were reported.
Most of these autoantibodies against islet cells can be detected in the serum months to
years before the clinical onset of diabetes. Based on this evidence, investigators have
analyzed the titers of various autoantibodies to predict the onset of disease in high-risk
persons, such as siblings of children with diabetes [51].

From animal models (see below), cell-mediated autoimmunity in type I diabetes
appears to be more important than humoral autoimmunity. Inflammatory cell
infiltration of the islets of Langerhans (insulitis) is seen in humans, rats, and mice with
early onset diabetes. Many studies have been performed in non-obese diabetic (NOD)
mice to characterize these cells. It was shown that these infiltrating cells include CD4+
and CD8+ T cells, B cells, macrophages and dendritic cells [52]. Among these cells,
both T cells and macrophages appear to be effector cells mediating -cell destruction.

Another line of evidence for autoimmunity is that the disease can be adoptively
transferred by T Qells [53]. In NOD mice, it has been found that diabetes can be
transferred from newly diabetic to non-diabetic animals with a combination of CD4+
and CD8&+ lymphocytes [54]. Immunosuppressant drugs like cyclosporine prevent
diabetes, but have adverse effects {55, 56]. Moreover, patients with IDDM have a high

risk for other autoimmune diseases [57].
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A.1.4 Animal Models of IDDM:

“ The major breakthroughs in the progress toward the cure of diabetes have been
made by investigation of animal diabetes ” Eleazar Shaffrir 1996 [58].

Much of our present knowledge concerning the etiology, pathogenesis,
treatment and prevention of human diabetes has been acquired from animal models
[58 - 60, 35]. The main models of IDDM can be divided into two groups: spontaneous
models such as Bio-Breeding (BB) rats and NOD mice; and induced models. In the
latter, diabetes can be induced by pancreatectomy, chemicals (alloxan, streptozotocin)

Or Viruses.

A.1.4.1 Spontaneous animal models of IDDM

Spontaneous animal models of IDDM have been particularly useful for
studying the role of genetic factors and immune responses in the pathogenesis of
IDDM. At present, the best models are the BB rat and NOD mouse, as their diabetic
syndrome closely resembles human IDDM [43]. Other species with at least occasional
spontaneous type I diabetes [35, 43] are: the Long-Evans Tokushima Lean rat; the

Chinese hamster; the Keeshond dog; the Macaca nigra (Celebes black ape); some
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Colonies of guinea-pigs; and the New Zealand white rabbit. However, these animals

have received much less attention than BB rats and NOD mice.

A.1.4.1.1 NOD mouse

The NOD mouse was discovered in 1974 in Osaka, Japan. The diabetic
syndrome of this animal is similar to that of human IDDM, including glucosuria,
hyperglycemia and hypoinsulinemia. Insulitis is observed in virtually all diabetes-
prone NOD as early as 4-5 weeks of age. Diabetes starts at about 12 weeks of age, and

by 27 weeks of age over 80% of females and 20% of males are diabetic [61].

A.1.4.1.1.1 Immunologic factors

Humoral autoimmunity occurs in the pre-diabetic state in NOD mice, as the
presence of ICA and IAA have been reported. However, the role of these
autoantibodies in the pathogenesis of the disease appears to be minor, and cell-
mediated responses are considerably more relevant. In islet-cell infiltrates, Th cells,
CTLs, NK and other immune cells are found [43]. Initially, there is a non-destructive
perinsular infiltrate, which is characterized by a T helper type 2 (Th2)-associated
cytokine pattern. This progresses to an intra-islet infiltration and B-cell destruction,
associated with Th1 type immune reaction [62]. In addition, GAD-autoreactive T cells

have been detected in NOD mice [63]. Of the immunologic questions under study in
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NOD mice, the putative autoantigens, the effector cells (macrophages, Th, CTLs), and

the role of cytokines are of chief interest.

A.1.4.1.1.2. NOD-mouse Genetics

Research into the genetics of IDDM in NOD mice is very active, and it is
hoped that it will clarify some aspects of the genetics of human IDDM [64]. The genes
involved have been provisionally designated Idd genes, pending precise
categorization. As in humans, the contribution of the MHC is strong. There is
expression of a unique MHC class I A-beta locus (histidine as residue number 56 and
serine as residue number 57), homologous to diabetogenic HLA-DQ non-aspartic
acid 57 containing alleles [65]. Moreover, the contribution of several non-MHC genes
has been demoﬁstrated, and they are located on several chromosomes. These genes
appear to interact with a diabetogenic MHC haplotype to create the threshold of

susceptibility required for IDDM development {64].

A.1.4.1.1.3 Cyclophosphamide (CYP) accelerated diabetes

Cyclophosphamide (CYP) is widely used clinically as an immunosuppressive
agent, particularly in autoimmune diseases. However, although it is known o bé an
alkylating agent that kills dividing cells, the mechanisms of its therapeutic effect are
not always clear, and in some situations it augments immune responses. Thus, the

administration of CYP before sensitization increases delayed type of hypersensitivity
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(DTH) responses [66], antibody-dependent cell-mediated cytotoxicity (ADCC) [67],
and enhances the expression of experimentally-induced diabetes [68]. CYP also
accelerates the development of diabetes in NOD mice [69]. The diabetogenic effect of
CYP dose not appear to be mediated by direct toxicity on B-cell. However, CYP
administration induces a burst of IFNy release, with an increase in both the circulating
levels and intra-islet production. This is associated with the rapid onset of insulitis and
diabetes and blocked by neutralizing IFNy with mAbs or soluble receptors [70-72].
IFNy induces macrophages to express an inducible form of nitric oxide synthase
(INOS), and release large amounts of NO which appears to be one of the major toxic
products for islets [73]. IFNy production is associated with other features of Thl

mediated immunity.

A.1.4.1.2 BB rats

Th¢ BB rat was discovered in 1974 in a commercial breeding company (Bio
Breeding Laboratories, Ottawa, Ca). The diabetic syndrome of this animal has many
aspects in common with the human disease. Clinical onset usually occurs at the age of
3 months, equally in both sexes, often coinciding with puberty. Weight loss,
glucosuria, hyperglycemia and hypoinsulinemia are reported. This progresses to
diabetic ketoacidosis, which is fatal if exogenous insulin is not administered [74]. The
onset of the disease is associated with insulitis which is similar to human IDDM, with
infiltration of islets with Th cells, CTLs, macrophages, NK cells, and B lymphocytes

[43].
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Genetic susceptibility is associated with the MHC, just as in humans and NOD
mice. There are also at least two non-MHC genes that participate in the pathogenesis
of the disease [43]. Similar to humans and mice, autoantibodies against islet cell
antigens have been described. As well, there is an increased frequency of
autoantibodies against antigens in other organs such as thyroid and stomach [75].
Interestingly, GAD antibodies and GAD-reactive T-cells have been reported in BB
rats, as in NOD mice [63]

One characteristic of BB rats is lymphopenia, i.e. a lack of T-lymphocytes mainly
of the CD8+/RT6+ subtype [75-77,63]. These appear to be regulatory T cells which

protect against autoimmune response.

A.1.4.2 Induced animal models of IDDM

A number of chemicals have been shown to induce diabetes, with alloxan and
streptozotocin being the most widely used. Alloxan and streptozotocin can interfere
with several 3-cell functions, e.g., cell-membrane glucose transport mechanisms,
glucose kinase activity, and mitochondrial activity. These drugs induce the formation
of toxic free radicals [43].

Multiple low doses of streptozotocin administered to genetically susceptible mice
induce IDDM ([78]. It has been recently demonstrated that streptozotocin induces

apoptosis in p-cells [79].
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B.1. Cytokines

B.1.1. General overview

Cytokines are low molecular weight proteins that are important mediators of
inflammatory and/or autoimmune diseases [80-82]. Most cell types produce one or
more cytokines, but leukocytes are distinguished by producing a wide variety.
Cytokinesﬁ,’unlike endocrine hormones, are usually short range mediators that operate
through paracrine and/or autocrine signals. They are pleiotropic molecules and, as
such, are considered as a network, with the function of one cytokine commonly
overlapping that of another [83]. Cytokines are produced mostly by activated cells.
Moreover, molecular receptor expression is often low or absent unless target cells are

activated [84]

B.1.2. The JAK-STAT pathway

The majority of cytokines act through specific membrane-bound hetero- or
homodimeric receptors which lack intrinsic kinase activity and rely on the activation
and recruitment of intracellular tyrosine kinase proteins [85,86]. The best described are
the Janus Kinase (JAK) family [87]. JAK-related transcription factors are termed
‘signal transducers and activators of transcription’ (STATs). Upon ligand binding and
dimerization of the cytokine receptor subunits, the JAK kinases induce tyrosine
phosphorylation of the receptor, creating docking sites for the associated STATs.

These STATSs are phosphorylated and then, as dimers, translocate to the nucleus.
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STAT dimers bind their respective DNA response elements and thereby initiate

cytokine-directed gene transcription [86,88]

B.1.3. Cytokines and T cell immunoregulation

Mosmann and colleagues in the mid 1980s, observed that many mouse Th
clones consistently expressed one of two cytokine profiles [89]. The Thl cells
expressed IL-2, IFNy,and TNFB; while Th2 cells expressed IL.-4 and IL-5 [90]. No
phenotypic differences were found between these subsets, and they were distinguished
by their cytokines expression profile. More recently, some markers such as IL.-12
receptor or chemokine receptor expression have been found to differentiate these cells.
A third type, ThO cells, are not restricted in their cytokine profile, and produce a
mixture of Th1 and Th2 cytokines.

Recently, it has been proposed that there is an additional subset of CD4+ T
cells, Th3 cells, which are generated during oral administration of autoantigens,
produce variable amounts of 1L-4 and IL-10, but differ from Th2 cells in their capacity
to produce large amounts of TGF-1 [91]. Th3 cells have a regulatory function, and

are protective in some autoimmune diseases.

B.1.4 Cytokines and their role in IDDM
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IDDM, like other organ-specific autoimmune diseases, results from a
dysregulation of immune responses. T cells directed against islet B-cells are activated,
expand clonally, activate the macrophages, and provoke a cascade of immune and/or
inflammatory processes in the islet [92]. The current paradigm is that the pathogenic
immune response is mediated by the Th1 subset of T cells, whereas a protective
immune response is mediated by Th2 subset [92]. However, recent evidence suggests

that Th3-like cells may be the protective subset [93]

B.1.4.1 Cytokine regulation of immune responses

Thl and Th2 subsets have distinct patterns of cytokine secretion that lead to
strikingly different T cell action [94c¢]. Thl cells and their cytokine products (IL-2,
IFNy, TNFo, TNFB) are the mediators of delayed-type hypersensitivity. Thl cell-
derived cytokines activate vascular endothelial cells, recruit circulating leukocytes
into the tissue at the site of antigen challenge, and activate macrophages. In addition,
Thl-derived IL-2 and IFNy activate CTLs and NK cells. In contrast, Th2 cytokines
stimulate the humoral immune response, especially IgE production by B lymphocytes.
Furthermore, Thl and Th2 cells are mutually inhibitory. Thus, [FNy inhibits the
production of Th2 cytokines and IL-4 and IL-10 inhibit Thl cytokine production [94-

96].
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B.1.4.2. Cytokine effects on isolated islets

IL-1, TNFy, TNFp, and IFNy in very low concentrations (pico- to nanomolar
concentrations) are toxic to fB-cells [97-98]. Each of these individual cytokines inhibits
insulin secretion in response to glucose stimulation. That effect s largely recovered
after cytokine removal. These cytokines can also be cytocidal, particularly when added
in combination, to B-cells of both rodents and humans. However, the cytodestructive
effects of cytokines on f-cells in vitro are not specific to B-cells, since a 1slet cells are

also damaged.

B.1.4.3. Cytokines studies in vivo

Several cytokines have been found to be expressed at the gene and/or protein
level in islet lesions in NOD mice, BB rats, or IDDM patients [93]. However, the
simple presence of cytokines does not identify their role in IDDM. These cytokines
may be proinflammatory, or alternatively they may be regulatory, suppressing the
inflammatory process.

IFNy, Which is an inflammatory cytokine produced by Thl cells, CTLs and NK
cells, has an important role in IDDM. For instance, IFNy mRNA expression correlates
with B-cell destructive insulitis [99], and monoclonal antibodies to IFNy protect
against diabetes in NOD mice [100] and BB rats [101]. Transgenic expression of IFNy
by islet B-cells in normal mice leads to immune-mediated insulitis, $-cell destruction

and IDDM [102]. In addition, recent gene therapy experiments have shown that
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intramuscular injection of a nonviral vector encoding an IFNy receptor/IgG1 fusion
protein prevented NOD-mouse diabetes and multiple low-dose streptozotocin-
induced diabetes in CD-1 mice [103]. IFNy has been also detected in the islets of
human subjects with recent-onset IDDM [104].

Another proinflammatory cytokine that seems to have a role in the pathogenesis
of IDDM is IFNa, which has been detected in recént—onset diabetic patients [105].
IFNa mRNA expression was increased significantly in the pancreata of IDDM
patients as compared with control human pancreata [106]. In addition, islet expression
of IFNa preceded insulitis and diabetes in BB rats [107]. Moreover, transgenic
expression of [FNa by islet 3-cells in normal mice elicited an autoimmune destruction
of P-cells, which was prevented by anti-IFNo antibodies [108]. IFNo is a product of
many cell type that are virally infected or otherwise stressed, suggesting that initial -
cell stress or viral infection may induce the production of this cytokine by p-cells.
IFNo may recruit immune cells and initiate f3-cell destruction.

Several studies in transgenic mice have demonstrated the proinflammatory role
of TNFa [109], TNFf [110], and IL-2 [111] produced locally in the islets. On the
other hand, IL-4, which is produced by Th2 cells, has been shown to have protective
effects. Administration of either IL-4 [112], or a plasmid encoding IL-4/IgG1 [113],
protected NOD mice from diabetes.

Systemic administration of other cytokines to NOD mice and BB rats in vivo
has also revealed protective effects, though mechanisms are unclear. This includes IL-

1,1L-2, IL-10, TNFa and TNFp [reviewed in 114]. Deficiencies in the endogenous
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production of IL-1, IL-2, IL-4, TNFa and TNFJ also have been reported [114] in
diabetes-prone NOD mice and/or BB rats. It is possible that the preventive effects of
chronic administration of these cytokines result from a correction of specific deficits in
cytokine production. In addition, systemically administered cytokines may act on
targets outside the immune system, e.g., IL-1 and TNF can stimulate the
hypothalamic-pituitary axis, leading to secretion of adreno-corticotropic hormone and

adrenal corticosteroids which suppress inflammatory cells [115].

B.1.5. Effector mechanisms

B-cell destruction is mediated by both immune cells (T-cells and macrophages)
and their mediators (cytokines, free radicals, and others). The current concept is that
certain islet B-cell proteins act as autoantigens (B-Ag), after being processed by
antigen presenting cells (APC), such as macrophages and dendritic cells. These cells
present the antigen in the context of MHC-II molecules on the surface of APC. B-Ag-
MHC-II complexes, accessory molecules on APC (B7 molecule), APC-derived 11.-12
and possibly other signals will direct the immune response toward a CD4 * Th1
response. These Thl cells stimulate effector mechanisms involving macrophages,
CTLs or NK cells. Effector cells may kill islet B-cells by at least three mechanisms: 1.
Direct interactions of antigen-specific CTLs with B-cell autoantigen-MHC-I
complexes on the B-cell membrane; 2. Non-antigen-specific killing by NK or

macrophages; 3. The toxic action nonspecific inflammatory mediators such as
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cytokines (IL-1, TNFa, TNFB, IFNy), nitric oxide (NO) and other free radicals

(Reviewed by Rabinovitch et al 1998) [114].

B.1.6. Molecular mechanisms of cytokine actions on [-cells

The exact mechanisms of cytokine cytotoxic effects on islet B-cells are not
totally elucidated. Some authors have proposed that the cytotoxic effects of cytokines
on P-cells are mediated at least in part by NO and other free radicals {116, 117]. In
addition cytokines may sensitize B-cells to T-cell mediated cytotoxicity. For example,
IFNy up-regulates MHC-1 expression on B-cells, and IL-1 (possibly also IFNy and
TNFa) induces Fas (CD95) expression on f3-cells [118]. The Fas molecule can deliver

an apoptosis-induced signal to islet cells.

C.1. Nitric oxide (NO)
C.1.1 Overview

NO is the smallest molecule, and the first gas, known to act as a biological
messenger in mammals. The molecule has one unpaired electron, making it a free
radical that avidly reacts with other molecules. In the presence of oxygen, NO may
vanish a few second after it forms, although its life span in the human body is
unknown. NO was chosen by Science as a molecule of the year in 1992 [119]. In the
atmosphere, NO is a noxious chemical; while in the body, in small-controlied doses, it

is a physiological mediator.
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Indeed, NO has been identified as a pleiotropic intercellular messenger molecule
regulating a variety of diverse cellular functions in many tissues. Initial reports
characterized NO as an endothelium-derived relaxation factor (EDRF) important for
the maintenance of vascular tone and the regulation of blood pressure. In the brain, it
participates in the action of excitatory neurotransmitters such as glutamate, and seems
to have important roles in learning and memory processes. In males, it is a mediator of
penile erection. In macrophages, it is a cytotoxic mediator and contributes to the
antimicrobial and tumoricidal activity of these cells [120]. Moreover, NO has been
linked to pathophysiological effects, and it may account for the destruction of islet f3-

cells and the development of IDDM.

C.1.2 Nitric oxide synthase

NO 1s produced by the enzyme nitric oxide synthase (NOS), in a reaction where
arginine and oxygen are converted into citrulline and NO. There are two major classes
of the enzyme [121]: the constitutive isoforms present either in neurons (nNOS or type
1) or in the endothelial cells (eNOS or type 3); and the inducible isoform (iNOS or
type 2) which was originally described in macrophages but now known to be
expressed in a large variety of cells. This includes renal mesangial cells, islet cells,
hepatocytes, chondrocytes, endothelial cells, smooth muscle cells, megakaryocytes
and thyrocytes [122].

The constitutive isoforms are calcium and calmodulin dependent, and produce

small amounts of NO for physiological activities. On the other hand, iNOS expression
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requires de novo synthesis following cellular stimulation by cytokines or bacterial
lipopolysaccharide (LPS). This results in the production of large amounts of NO
independent of the calcium or calmodulin levels. NO exerts lethal effects on several
pathogens including protozoa, fungi, bacteria and viruses [122]. It has been proposed
that this free radical is part of an “innate” defense system against invading
microorganisms [123]. This system appears to be activated rapidly at the target cell
level, even before the immune system responds. If this is the case, it may explain why
so many nucleated cells express iNOS.

It is noteworthy that there are important species and tissue differences in the
requirements for iNOS induction. Human hepatocytes [124] and pancreatic islet cells
[125,126] produce large amounts of NO in response to cytokines. In human

macrophages iINOS is produced in lower amounts than in rodent macrophages [127].

C.1.2.2 NOS genes and proteins

The nNOS (NOS1) gene, which is one of the two constitutively expressed
forms, was cloned from neuroectodermal cells. It is-a 161-kDa protein translated from
a10 kilobase (kb) mRNA [128, 129]. The other constitutively expressed NOS was
cloned from endothelial cells (eNOS or NOS3),’is transcribed as an approximately 4.7
kb mRNA and translated into a 133-kDa protein [130,131]. nNOS has been associated
with neuronal signal transduction [132], and eNOS with the regulation of vascular tone
[133]. They share approximately 60% amino acid sequence similarity [130]. The

inducible form (iNOS) was cloned from IFNy and LPS-stimulated mouse macrophages
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[134-136], and shows only 50% amino acid sequence identity with the constitutive
NOS isoforms. An approximately 4.4 kb mRNA translates into a 131-kDa protein. In
their active forms, the three NOS are homodimers. They contain flavine adenine
dinucleotide (FAD), and flavine mononucleotide (FMN), and require
tetrahydrobiopterin and reduced nicotinamide adenine nucleotide phosphate (NADPH)
for their activity [137].

iNOS is mostly regulated at the transcription/translation level by a variety of
inflammatory stimuli [138]. On the other hand, the two-dimensional gel analysis of
recombinant rat islet iNOS expressed in human fibroblast suggests the possibility of
post translational control by phosphorylation [139]. Different patterns of stimulation
are required to induce iNOS gene expression in different cells. For example, in rat,
IFNy and LPS are required to induce macrophage iNOS, while IL-1f is the main
stimulant for islet B-cells [135, 136]. Human islet cells require a combination of IL-1f3,
I[FNy and TNFa for iNOS induction [125, 126]. Cloning of the iNOS gene from rat
islets and a rodent P-cell line [139], and recently from human islets [140], revealed

that iNOS is the same in macrophages and islet cells [141].

C.1.2.3 Chromosomal localization of NOS

In humans, the chromosomal localization of the three NOS genes has shown that
the nNOS (NOS1) maps to the position q24.2-24.31 on chromosome 12 [142], eNOS
(NOS3) to position q35-36 on chromosome 7 [143], and iNOS (NOS2) to position

p11.2-q12 on human chromosome 17 [144]. In mice, the iNOS gene has been mapped
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to chromosome 11, which has been previously associated with IDDM in the
spontaneously diabetic NOD mouse through a polymorphic region (1dd4) [145].
Interestingly, the iNOS gene is located in the middle of this Idd4 region [146].
Furthermore, iINOS mRNA has been detected in the islets from both NOD mice [147]
and BB rat [148] around the time of spontaneous diabetes onset.

The possible existence of INOS gene polymorphism was studied in rats, but none
was found [149]. On the other hand, minor differences in human iNOS cDNA
sequences, potentially representing polymorphisms in the gene, have been reported.
However, it is unknown if this influences susceptibility to diabetes.

Most of the available data suggests the presence of only one iNOS gene within
the genome. However, the presence of at least three iNOS-related genes in murine and
human genomes has been proposed [150-153]. It remains to be determined whether
any of these multiple iNOS-like sequences are pseudogenes or authentic,

transcriptionally active genes.

C.1.2.4 5’ Region and promoter elements in the iNOS gene

Several agents such as cytokines, cAMP, LPS, glucocorticoids, prostaglandin
E2, picolinic acid, etc., can up- or down-regulate iNOS gene expression in different
tissues. In the mouse iNOS promoter regions, there are transcription factor motifs for
IFNy-response element (y-IRE), y-activated site, nuclear factor B (NF.B), IFNa-

- stimulated response element (ISRE), activator protein 1 (AP1), TNF response element
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(TNF-RE), nuclear factor interleukin-6 (NF-IL-6), shear stress response element
(SSRE), X box, and hypoxia-responsive enhancer (HRE) [154-157].

The macrophage iNOS géne promoter contain two major positively regulating
regions, 48 to 209 (region 1) and 913 to 1029 (region 2), upstream of a putative TATA
box [155]. Region 1 contains LPS-related responsive elements, including binding sites
for NF-1L-6 and NFB, and promotes the transcription activity. Region 2
potentiates/augments the promoting activity of region 1, and contains motifs of IFN-

related transcription factors.

C.1.2.5. 3’ Region and mRNA stability

Both murine and human iNOS mRNA have a conserved region in the 3’
untranslated end with high homology to an octanucleotide sequence UUAUUUAU
[158]. This sequence has been shown to decrease mRNA stability in the TNF gene,
probably by allowing binding of labile cyclbheximide-sensitive proteins
(cycloheximide is an inhibitor of protein synthesis) [159]. On the other hand,
cycloheximide prolongs iNOS mRNA half life in smooth muscle cells and
chondrocytes by inhibiting the synthesis of proteins required for mRNA degradation
[160]. The iNOS activity in IL-1-treated human chondrocytes was inhibited by
elevating intracellular calcium and reducing iNOS mRNA stability [161]. Similarly,
TGFB decreases iNOS content in macrophages by increasing iNOS mRNA

degradation [162]. In islet cells, IL-1-induced iNOS transcription is arrested by
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blockers of gene transcription, e.g. actinomycin D [163], which suppress 50% of INOS
mRNA content within 2h.

These findings suggest a role for mRNA stability in the regulation of cellular
iNOS mRNA content. This may represent one of several factors responsible for the

different iNOS mRNA kinetics reported among different species and different tissues.

C.1.3.2. iNOS gene expression and regulation in pancreatic islets

Rat islets express iNOS mRNA after 4h of exposure to IL-1p [164]. An
insulinoma cell line of rat origin (RIN) also expresses iNOS and produces NO after
exposure to IL-1f or a combination of TNFo and IFNy. iNOS expression rises after
4h, peaks after 6h, and progressively decreases after 12-48 h, in spite of the continuous
presence of IL-1P [163]. This is possibly due to negative feedback by NO on iNOS
transcription, as suggested by the observation that NO donors inhibit cytokine-induced
iNOS expression in insulin-producing cells [163], macrophage-like RAW 264.7 cells
[165], and glial cells [166]. There is evidence that NO decreases iNOS expression by
preventing NF, B activation [167], and this effect is mediated by induction and
stabilization of I B (see below). NO has been shown also to inhibit iNOS enzymatic
activity in macrophages by interacting with enzyme-bound heam [168]. Thus, NO-
mediated negative feedback on its own production could represent a cellular protective
mechanism against the deleterious effects of this radical.

Pancreatic islets contain a heterogeneous cell population, making it difficult to

identify the cellular source(s) of NO production. However, there is evidence that

28



differentiated B-cells [169] and clonal insulin-producing hamster [170] and rat cells
[163] can be induced to produce a large amount of NO. Immunohistochemical
staining of islet sections, and Western blot analysis of proteins from sorted cells have
shown that the iINOS gene is expressed in -cells but not in a-cells [171, 172]. Thus,
IL-1p alone induces iNOS expression in both intact whole islets and isolated B-cells,
but not in a-cells [170]. TNFa alone induces a low level of iINOS expression in rat
insulin producing RIN cells, but neither IFNy nor LPS by themselves induce iNOS
expression in these cells [163,173]. A combination of LPS and TNFa induces iNOS
expression in intact isolated islets but not in single p-cells, suggesting that LPS +
TNFa stimulate intra-islet IL-1{ release, which subsequently induces iNOS
expression in the B-cells [170]. Both TNFa and IFNy potentiate IL-1p-induced iNOS
expression in a rodent insulin-producing cell line [163, 173]. Of note, IFNy increases
NO production by mouse pancreatic islet cells, similar to the IL-1§ effect [173]. As
described for other cell types [141], iNOS mRNA expression in B-cells is mainly
regulated at the transcriptional level [174, 175].

IL-4 and IL-10, two cytokines known to suppress iNOS mRNA in macrophages
[176, 177], do not have the same effect on insulin-producing cells [178]. Another
potential suppressor cytokine in this context is TGFp, previously shown to prevent
iNOS activation and NO production by macrophages [176, 177]. TGF[ has also been

reported to decrease IL-1B-induced NO production by p-cells [179].
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C.1.3 IL-1 induced signal transduction and iNOS activation

Several investigators have presented indirect evidence for the presence of IL-1
receptors (IL-1Rs) on islet cells [180-182]. Recently, islet cell receptors for IL-1 were
characterized in NOD mice [183]. Insulin producing cells express mRNA for both type
I and type II IL-1Rs. The type I IL-1 receptor appears to be the main mediator of the
biological effects of IL-1 in these cells, as suggested by the observation that both TL-1
R antagonist protein [184] and monoclonal antibodies against type 1 IL-1R [185]
prevented the effects of IL.-1a and IL-1P on rat and mouse islet-cell function. IL-1R
appears to associate with a putative serine/threonine protein kinase.

IL-1-induced signal transduction involves at least three major signaling
pathways, namely the transcription factor NF;B, the stress-activated protein kinases
(SAPK/JNK) and PKC. The three pathways seem to activate specific sets of
transcription factors that may interact to induce iNOS and possibly other genes in
insulin-producing cells. The signaling pathway involving NF,B is the most studied

and will be reviewed.

C.1.4. Nuclear factor (B (NF¢B)

NFB is a nuclear transcription regulatory factor, present in most cells, and acts

" mainly as an early immune and inflammatory mediator [186]. It is activated by various
factors such as viruses, bacteria, oxidative stress and cytokines, and induces the
transcription of genes encoding defense and signaling proteins. NF,B is sequestered in

the cytosol of non-stimulated cells as an inactive trimer consisting of p50, Rel-A (p65)
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and I;B. Upon acti\?ation, IB is phosphorylated and proteolysed, which leads to the
release and translocation of p50 and Rel-A dimer to the nucleus where it binds to the B
motif (a decameric DNA sequence motif) [187].

In insulin producing-cells, IL-1 induces a rapid translocation of NFB from the
cytosol to the nucleus. This process has been shown to be inhibited by protease
inhibitors [188]. Recent findings show that NF,B inhibitors such as pyrrolidine
dithiocarbamate (PDTC) suppress iNOS expression in IL-1-stimulated insulin-
producing cells [188,189], suggesting that NF;B activation is necessary for IL-1 to
induce i,NOS. PDTC is an antioxidant, and might counteract free radical-induced
activation of NF;B. Furthermore, radical scavengers such as N-acetyl cysteine prevent
NFB activation and iNOS expression in RINmSF cells [190]. In addition, PDTC also
inhibits cytokine- (IL-1p + IFNy +TNFa) induced iNOS expression in human islets
[191], suggesting that NF,B plays an important role in the induction of iNOS
transcription in these cells.

The fact that different cell types require different patterns of sﬁmulation to
induce iNOS expression suggests that NF, B is necessary but not sufficient to evoke
iNOS expression in some cells, such as human islet cells. Recently, it was found that
macrophages from knock-out mice defective in the interferon response factor-1 (IRF-
1) do not produce NO in response to immunostimulants [192]. It is conceivable that
activation of both NF;B and IRF-1 are needed to induce iNOS transcription. Other

transcription factors of potential relevance are AP-1 and c-fos. However AP-1
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activation is not sufficient for INOS expression in insulin-producing cells [189], and

increased c-fos expression did not affect INOS mRNA [189].

C.1.5 NO as a mediator of B-cell destruction

NO may damage the p-cell plasma membrane and also diffuse intracellularly to
cause further damage. It can inactivate the iron-sulfur centers of iron-containing
enzymes such as mitochondrial aconitase, leading to decreased oxidative
phosphorylation required for glucose oxidation and insulin release [193]. This results
in decreased glycolysis, and consequently decreased ATP levels and impaired insulin
secretion. Higher levels and/or long-lasting production of NO may increase damage to
cellular constituents, e.g., membrane phospholipids, cellular enzymes, and DNA.

These biochemical mechanisms ultimately lead to B-cell death [194].

C.1.6. Pancreatic islets are highly susceptible to oxidative stress

Several key enzymes involved in the defense against reactive oxygen species are
unusually low in pancreatic islets compared with other tissues, suggesting that the islet
cells are uniquely susceptible to oxidative stress-induced damage. Thus, gene
expression and activity of several key antioxidant enzymes such as CuZnSOD,
MnSOD, glutathione peroxidase (Gpx) and catalase are all markedly decreased (30-
40% of normal level) compared with other tissues such as liver [195]. For instance,

GPx expression was only 15% of liver levels, and catalase gene expression was not
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detectable in islets [196]. This may account for the exquisite sensitivity of B-cells to
free radicals including NO-induced damage. The uptake of alloxan by both liver and
pancreatic islet cells was studied [197], and the cytotoxicity of alloxan was apparent
only in pancreatic islets.

Interestingly, several studies have demonstrated a significant reduction in total
antioxidant status in both plasma and serum samples from IDDM patients compared to
age-matched controls [198]. Diabetic children also have a significant decrease in
erythrocyte glutathione peroxidase (Gpx), total glutathione, plasma o-tocopherol, and
plasma B-carotene [199]. More recent studies have established that in the prediabetic
condition, antioxidant status appears to be compromised [200]. ICA serve as a
serological markers for risk of developing IDDM. Total plasma antioxidant status was
assessed in both ICA-positive and ICA-negative first-degree relatives of patients with
IDDM. Antioxidant status was significantly lower in ICA-positive subjects compared
to ICA-negative relatives and healthy unrelated subjects. Hence, antioxidant status is

probably another contributing risk factor in the development of IDDM.

C.1.7. Efficacy of NOS inhibitors in animal models of IDDM
Guanidines such as N®-nitro-L-arginine, L-N°-monomethyl-arginine (L-NMMA),
N-nitro-L-arginine-methylester (L-NAME) and aminoguanidine (AG) have the ability
to inhibit NOS, probably due to their structural similarity to L-arginine.
In animal models of IDDM, activated islet-infiltrating macrophages secrete a

number of cytokines, including IL-1f that either alone or in combination, can elicit
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INOS expression. On the basis of this observation, it has been suggested that
therapeutic intervention using these NOS inhibitors might confer a protective effect
against the development of IDDM. Several studies have shown that treatment of mice
with L-NMMA [201] and L-NAME [202, 203] suppressed multiple low dose
streptozotocin-induced-diabetes (MDSD). On the other hand AG failed to decrease the
incidence of IDDM in NOD mice [204], BB rats [205] or MDSD in C57BL/Ks mice
[206]

AG has been shown to be an effective iNOS inhibitor, but a less potent eNOS or
nNOS inhibitor. However, the other NOS inhibitors (L-NMMA, L-NAME, N%Nitro-
L-arginine) are less potent iNOS inhibitors, and more effective nNOS and eNOS
inhibitors [207-209]. Inhibition of eNOS markedly increases blood pressure and leads
to changes in the circulation [210], and inhibition of nNOS leads to neurologic
disorders and influences the memory process. These undesirable effects will limit the
potential benefit of these inhibitors in preventing diabetes. In addition, the most
specific iINOS inhibitor, AG, has been found to inhibit catalase and generate free
oxygen radical hydrogen peroxide in rat liver cells and human erythrocytes. [211]. AG
has also been shown to inhibit insulin production by human pancreatic islets in vitro

[212].

D. Therapeutic perspectives

Evidence suggests that IDDM results from an immunoregulatory imbalance in

which Thl cells and their cytokines dominate over Th2 or Th3 cells and their
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cytokines. Therefore, the current notion is that therapies aimed at IDDM prevention
should be directed at increasing Th2/Th3 function and/or decreasing Thl function.
Bacterial products and immune adjuvants can prevent diabetes in NOD mice and BB
rats by stimulating a type 2 cytokine response [213]. However, these reagents are
immunostimulatory, and have undesirable side effects. More selective
immunostimulation can be obtained by administration islet 3-cell autoantigens such as
GADG65 which prevents diabetes in NOD mice. This protection is associated with
induction of specific tolerance to this antigen [214, 215], with suppression of GADG65-
responsive Thl cells [215]. In addition, a strong humoral response to GAD correlates
with slow progression to IDDM. Administration of other -cells autoantigen (e.g.,
insulin) has been reported to prevent diabetes in NOD mice, BB rats, and human
subject at high risk for IDDM [216].

Another approach to shifting the balance of cytokines production in favor of Th2
may be by manipulating the expression of costimulatory molecules, such as B7 on
APC. Treatment of NOD mice with CTLA-4 immunoglobulin (CTLA4-Ig), which
binds to B7 molecules on APCs and prevent their binding to CD28 on T cells, has
been reported to protect NOD mice from diabetes [217].

Cytokine-based therapies for IDDM prevention may take several forms. This
mcludes blocking type 1 cytokines by administering antibodies to these cytokines or to
the corresponding cytokine receptors. Alternatively, cytokines can be blocked with
soluble cytokine receptors, or receptors antagonists. In addition, Th2 cytokine such as

IL-4 can be directly administered.
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Another approach to protect B-cell against proinflammatory cytokines is by
blocking the production or the action of oxygen and nitrogen-based free radicals. A
variety of antioxidants, such as nicotinamide, deferoxamine, SOD, a-tocopherol,
probucol and lazaroid, have been shown to provide protection in NOD mice and BB
rats [218-220]. However, in this thesis, we are presenting a novel approach to prevent

diabetes in NOD mice, i.¢., the administration of phosphodiesterase inhibitors.

E.1 The phosphodiesterase inhibitors.

E.1.1 Overview of Cyclic-3’, 5’-adenosine monophosphate

More than 35 years ago, Robinson, Butcher and Sutherland [221] discovered
that hormones, autocoids, and neurotransmitters exert their regulatory effect on cell
functions through intracellular production of a specific adenine nucleotide, cAMP.
Shortly after that, cyclic-3’, 5’-GMP (¢GMP) was also identified as a messenger [222].
Since this pioneering era, numerous intracellular signaling pathways have been
discovered. However, the intricate mechanisms by which cAMP acts in cellular
signaling are far from being completely understood. Indeed, novel aspects of cAMP
signaling function are still being revealed. cAMP is synthesized by a membrane-bound

adenylate cyclase enzyme family. The biosynthesis is regulated by hormonal agents.
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Of relevance to our work, as discussed below, cAMP is degraded by a family of

enzymes, i.e., the phosphodiesterases (PDE).

E.1.2 cAMP and T cell subsets

T cell activation by specific antigens, mitogens, or monoclonal antibodies
against the T cell receptor (TCR) induces hydrolysis of phosphatidylinositol 4’5’
biphosphate by phospholipase C. This hydrolysis leads to production of second
messengers, such as diacylglycerol (DAG), and inositol triphosphate (InsP3). DAG
can activate protein kinase C (PKC), and InsP3 increases the intracellular calcium
concentrations. It is thought that these second messengers lead to increased production
of lymphokines, expression of lymphokine receptors, cellular proliferation, and proto-
oncogene mRNA expression. Another pathway involves activation of adenylate
cyclase and accumulation of intracellular cAMP which activate a cAMP-dependent
protein kinase A (PKA) pathway. The PKA- and PKC- pathways interact in certain
cells.

In 1990, Munoz and his colleagues [223] found that Th1 and Th2 cells use
different signaling pathways after TCR-mediated stimulation. They reported that PKC
was the major pathway of activation in Thl cells, whereas Th2 cells were less
dependent on this pathway. Th2 cells may use a different second messenger, probably
cAMP. Recently, PKA activation pathway was found to play a prominent role, as high
levels of cAMP favored the production of type 2 cytokines [224], and Thé cells

maintained significantly higher levels of intracellular cAMP than Th1 cells [225]. The
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accumulation of cellular cAMP blocks Thl cytokine but not Th2 cytokine production

(see below).

E.1.3. cAMP and cytokine production

Cholera toxin, which promotes accumulation of intracellular cAMP, inhibits the
production of IL-2 but not IL-4, and also inhibits the proliferation of Th1 but not Th2
cells in response to TCR-mediated stimulation [223]. This correlates with increased
IL-4 mRNA and decreased in IL-2 mRNA levels. A study in the mouse thymoma cell
line EL-4, revealed that cAMP activated the IL-5 (Th2 cytokine) promoter through the
PKA pathway [226].

The inhibitory effects of elevated cAMP on TNFo production are well
documented [228, 229]. In addition, there are recent studies examining the relationship
between cAMP and IL-12, which is a potent inducer of Thl responses, and alters the
Th1/Th2 balance in the favor of Thl cells. Prostaglandin E2 (PGE2) elevates
intracellular cAMP levels via stimulation of adenylate cyclase, and has been found to
inhibit LPS-induced IL-12 production. The inhibitory effect of PGE2 on IL-12 1s
independent of IL-10, since neutralization with anti-IL-10 antibodies does not reverse
this inhibition. The inhibitory effect is correlated with elevated cAMP levels, and is
mimicked by other agents which elevate cAMP [227]. Rolipram (ROL) and
pentoxifylline (PTX), PDE inhibitors which increase intracellular levels of cAMP, also

suppress IL-12 production by activated peritoneal macrophages [228].
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Dibutyryl cAMP (db-cAMP), an active cAMP analogue that is lipid soluble and
crosses the cell membrane, has been reported to inhibit IFNy mRNA expression
without affecting I1.-10 [224]. Cholera toxin and PGE2 have also been reported to
inhibit the expression of [FNy mRNA, while the expression of IL-4 and IL-13 mRNA
were not inhibited. At the protein level, IFNy was also inhibited by PGE2 or db-
cAMP, whereas I1.-10 was enhanced. ROL and PTX have also been shown to inhibit

IFNy production by activated T cells [228].

E.1.5 cAMP and JAKs/STAT activation

In mammalian cells there are four members of the JAK family (JAK1, JAK2,
JAK3, JAK4) and several member of the STAT family (STAT1a, STATIB, STAT2,
STAT3, STAT4, STATSA, STAT5B, and STAT6). Generally, stimulation by a
cytokine results in the activation of a distinct set of JAKs.

These JAKs activate particular STATs with subsequent activation of several
important genes [230]. For example, IFNy preferentially activates STAT1 [231], [L-4
activates STAT6 [232] and IL-12 activates STAT4 [233]. It was reported that several
signaling pathways could interrupt JAK-STAT signal transduction and modulate
cytokine activity during inflammatory and immune responses [234]. Notably, the
elevation of cAMP levels have been shown to inhibit STAT1 at both the mRNA and
protein levels [230]. Therefore, cAMP may skew cytokine production by inhibiting

STATI.
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A.1.6. cAMP and NO production

The role of cAMP on NO production is not yet clear. However, Bulett et al.
[235] reported that elevation of cAMP by a combination of PGE, and IBMX (a general
PDE inhibitor), suppressed NO production by the murine macrophage cell line J774.
They also reported that this suppression correlated with prolonged, but not transient,
elevation of cAMP. Furthermore, other studies showed that different cAMP elevating
agents such as Forskolin,rPGEz, PGI,, 8-bromo-cAMP and IBMX, reduced iNOS
expression and NO production by the same cell line (J744) [236]. On the other hand,
elevated cAMP induces iNOS expression by rat vascular smooth muscle cells [237],
while controversial results were reported in other cell types such as chondrocytes
[238]. Pentoxifylline (PTX) (a general PDE inhibitor) has been found to suppress NO
production by mouse [239] and rat [240c] peritoneal macrophages, and to enhance
iNOS in rat astrocytes [240]. Rolipram (ROL) (a type IV PDE inhibitor) was reported
to increase NO production by the murine macrophage cell line RAW 264.7 at low
concentrations, while at higher concentrations the effect was reversed [241].
Contradictory results may occur due to differences in promoter elements in different

cells, and/or because cAMP dependent and independent pathways are involved [242].
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E.2 Phosphodiesterases

E.2.1 The Superfamily of PDE isozymes

For many years, PDEs were identified by their catalytic and regulatory
properties [243]. All PDEs inactivate their cyclic nucleotide targets by hydrolytic
cleavage of the 3’-phosphodiester bond, resulting in the formation of the
corresponding inactive 5’-monophosphate. Although it was initially thought that
cAMP and cGMP are hydrolyzed by a single PDE, it is now known that the PDEs
constitute a large superfamily of related isozymes. Mammalian PDEs were initially
grouped into five families based on a variety of biochemical characteristics including
their substrate specificity, mode of regulation, kinetic properties and response to
selective inhibitors [244].

Mammalian PDEs are now known to conétitute at least ten gene families
(PDEL1 - 10). Table 1 summarizes the characteristics of the PDE families. Some PDE
gene families are very diverse whereas others, such as PDE2, PDES, PDE7, PDES and
PDEDY, have no documented isogenes. In some families, several single gene products
(subtypes, PDE4A, 4B, 4C, etc.), and numerous isoform-splice variants (isoforms
PDE4A1A, PDE4A4B, PDE4AS, etc.) have been described [245-249]. PDE isozymes
(products of different genes) and splice-variant isoforms confer great diversity and
specificity to the PDE superfamily system. The various PDE types are selectively

expressed in various tissues and cell types [248-252] (Table 1).
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E.2.2. Molecular structure of PDE isozymes.

Vertebrate PDEs are usually dimers of linear 50-150 kDa proteins. An exception
is the PDEG6 family (a photoreceptor-specific PDE), which is a tetramer [248, 249,
253]. The PDE monomer consists of three domaims, i.e., the N-terminal domain, the
central catalytic core, and the C-terminal domain, connected by hinge regions. The
central catalytic core région is highly conserved in all vertebrate PDEs. It consists of
270 amino acids and is positioned close to the COOH terminus. This core region is
more similar in terms of amino acids identity within one individual PDE gene family

(more than 80%),
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TABLE 1:

PDE Isogenes Isozymes* Characteristics Tissue Examples
family Isoforms distribution of inhibitors
PDE1 3 >9 Ca2+/CaM-stimulated  Heart, brain, lung, Vinpocetine
271, 272] smooth muscle KS-505a
PDE2 1 3 GMP-stimulated Adrenal gland, heart EHNA
[273-275) lung, liver, platelets
PDE3 3 >5 c¢GMP-inhibited B-cells, platelets, heart Cilostazol
[276-279] cAMP>cGMP-inhibited liver, brain, lung, Cilostamide
immunocytes Milrinon
Vesnarrinon
PDE4 4  >15 cAMP-specific Sertoli cells, kidney, = ROL
[280-284] brain, liver, B-cells CDP4380
immunocytes RP 73401
SB207499
CP 80-633
RS 33793
PDES 2 2 cGMP-specific Lung, platelets Dipyridamole
285,249] Sildenafil
Zaprinast
MY-5445
PDE6 3 4 cGMP-specific Photoreceptors Dipyridamole
[248,249] Zaprinast
PDE7 1 cAMP-specific Skeletal muscles, none available
[286] heart, kidney, brain
T lymphocyte
PDE8 2 cAMP-specific Testis, ovary, intestine Dipyridamole
[287, 288]
PDE9 1 4 cGMP-specific Spleen, small intestine, SCH 51866
[289] kidney, thymus, Zaprinast
PDEIO 1 - cAMP inhibited non available IBMX
[290,291] cGMP

*Includes all known enzymes produced in a PDE family.
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than between two distinct gene family (25-40%) [248,250,254]. The core region also
contains signature consensus sequences and motifs that are common among all
vertebrates [255]. Furthermore, it contains two consensus Zn’* binding motifs [256]. In
contrast to the catalytic core, the structure of the NH2- terminal (regulatory domain) of
PDE molecules diverges widely in structure and size among PDE isozymes and
isoforms[245]. The N domain contains sequences that are target sites for various
modes of regulation; including ligand-binding sites, phosphorylation sites, and sites
for several modes of protein-protein interaction. These include binding site for Ca2+-
calmodulin (CaM) and non-catalytic sites for cGMP and phosphatidic acid. There are
also several consensus sequences that are phosphorylation site for various kinases;
Se/Thr protein kinases (PKs), Ca2+k -CaM PKs, PKA, PKG, PKC, and insulin
stimulate PK [256]

The functional significance of the C-terminal domain of PDEs is largely
unknown. Perhaps it has some regulatory or localization functions, since recent report
showed that mitogen-activated protein kinase (MAPK) can phosphorylate serine in the
C-termmal portion of PDE4B2B [257]. This is a possible point of direct interaction

between cAMP and MAPK.

E.2.3 Regulation of the activity of PDE isoforms

PDE gene products demonstrate selective cellular and subcellular localizations
[258 - 260]. Thus, compartmentalization of PDE activity may play an important role in

the local regulation of intracellular cyclic nucleotide content. Moreover, a variety of
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mechanisms allow rapid short-term regulation of the activity of PDE isoforms. First, a
local shift in cyclic nucleotide content through the activity of one PDE family may
affect the activity of other families through allosteric regulation or active site
competition [261,262]. Second, during cellular signaling, individual splice variants are
differentially expressed. Since these isoforms may be confined to specific
compartments, local cyclic nucleotide homeostasis may be affected [263, 264]. Third,
the activity of specific PDE isoforms may be regulated by protein kinase (A, G, or

tyrosine kinase) which mediates protein phosphorylation [265].

E.2.4. PDE expression in immune cells

B and T lymphocytes contain PDE3 and PDE4, and in addition, T lymphocytes
possess PDE1, PDES and PDE7 [266¢]. PDE3 and PDE4 activity is similar in Th and
CTLs, [266, 267c]. Interestingly, differential expression of PDE4 isoforms has been
reported in Th1 versus Th2 clones [266].

In general, PDE4 inhibitors down regulate antigen- or mitogen-induced T cell
proliferation and/or proinflammatory cytokine prdduction. Moreover, PDE4 inhibitors
have been reported to up-regulate the anti-inflammatory cytokines, such as [1.-10 [267,
268]. On the other hand, PDE3 inhibitors do not appear to affect lymphocytes [266],
suggesting a dominant role for PDE4.

Freshly isolated circulating monocytes/macrophages express PDE4, but little or

none of the other PDEs. Some macrophages, such as alveolar macrophages, have been
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shown to express PDE4, PDE3 and PDE1 [269]. Thus, it appears that PDE isozyme
expression depends on the biologic state and environment of the macrophage.
However, PDE4 inhibifors have been shown to down-regulate LPS-induced TNFo and
IL-12 production. PDE3 inhibitors are less efficacious in down-regulating TNFo.
production and demonstrate variable efficacy in modulating macrophage function

[270].

E.3. Characteristics of the main PDEs expressed by lymphoid cells and

islet cells

E.3.1. The PDE3 family

The PDE3 family (¢GMP-inhibited) displays a high affinity for both cAMP and
c¢GMP, but has a far higher affinity for cAMP. The products of two isogenes, PDE3A
and PDE3B, have been found to differ in their organ and tissue distribution [276], as
well as in their regulation [249, 277]. PDE3 A is more sensitive to inhibition by cGMP
thank PDE3B. Both subtypes, PDE3A and PDE3B, are activated by Ser/Thr
phosphorylation on Ser in the N-regulatory domain, which is catalyzed by PKA
[277¢]. Insulin-dependent phosphorylation and activation of PDE3B, catalyzed by
PDE3IK, was reported [277]. However, the whole sequence of steps in signaling by

which the insulin receptor activates PDE3IK is not elucidated. It is likely that an

46



essential step in this pathway involves activation of phosphatidylinositol-3 kinase
[277]. Thus PDE3 is a target for negative cross-talk with cGMP pathways, and
positive cross-talk between insulin, as well as cAMP, signaling pathways. It is
postulated that phosphorylation of PDE3A or PDE3B by PKA represents a short-term
negative feed back regulation. PDE3 isozymes are expressed in different tissues and
cells including lymphocytes, alveolar macrophages, and islet B-cells. Both PDE3A and
PDE3B are sensitive to inhibition by a number of synthetic inhibitors in’cluding
cilostamide, cilostazol, milrinone, amrinone. Both cilostazol [278] and milrinone [279]

have been extensively investigated and approved for clinical use.

E.3.1.2. PDE4 family

The PDE4 family is the most diverse and, with high affinity, selectively
hydrolyzes only cAMP. Therefore, PDE4 is also sometimes referred to as the “cAMP-
specific PDE” [254c]. PDE4 isozymes comprise four subfamilies (subtypes) encoded
by isogenes PDE4A to PDE4D. These, in turn are transcribed and expressed as
numerous splice-variants of PDE4 isoforms [254]. Splice-variant isoforms of PDE4
are distinguished by the structure in the N-terminal domain, which confers diverse
regulatory properties and the capacity of interactions with other cellular structures.
Some isozymes of PDE4 can be up-regulated by cAMP via two possible mechanisms.
Short isoforms, which are less than 72 kDa, such as PDE4D1 or PDE4D2, are subject
to long-term up-regulation by cAMP via transcriptional control mechanisms [280-

281]. An increase in the cellular cAMP level enhances synthesis of mRNA and de
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novo synthesis of the enzyme mdlecule [280- 282], and this induction can be blocked
by actinomycin D and cycloheximide [283]. Interestingly, elevated cAMP in T cells
resulted in an induction of PDE4D and simultaneous decrease of PDE4A [283].

On the other hand, long isoforms of PDE4, which are more than 93 kDa, such
as PDE4D3, are activated by CAMP through reversible phosphorylation by PKA
[284c]. This phosphorylation causes a several fold increase in the catalytic activity of
PDE4 and greatly increases the sensitivity to selective inhibitors such as ROL [284].
Other selective inhibitors for PDE4 isozymes are RO-20-1727, RS-33793 and
denbufylline. However, recently a large number of newer PDE4 inhibitors have been
synthesized such as CP77059, CP80,633, RS33793, RP73401, and CDP840, and they

display up to 1000 times more affinity to PDE4 than ROL (reviewed in [256]).

E.4. PDE inhibitors used in our studies

E4.1 PTX

PTX [3,7-dimethyl-1-(5-oxohexyl) xanthine], a non-specific PDE inhibitor, has
been used clinically for many years under the trade name Trental. It is used to treat
peripheral vascular disorders, such as intermittent claudication [292], and diabetes-
induced peripheral Vasculaf disease [292, 293]. It increases erythrocyte [294] and

leukocyte [295] flexibility, thus lowering the blood viscosity, and improving

48



microcirculatory blood flow. PTX also inhibits platelet aggregation [296], and
improves mobility and viability of spermatozoa [297].

PTX has been found to suppress the inflammatory cytokines, i.e., TNFa, IFNy,
and IL-12 [228]. It is therapeutically useful in many infammatory and/or autoimmune
disorders, such as scleroderma [299], vasculitis [300], theumatoid arthritis [301], and
septic shock [302]. Interestingly, PTX has also been reported to decrease the
requirement of insulin in children with recent onset diabetes [303]. In this trial, 21
childen with new onset type 1 diabetes, aged 6 to 20 years, received PTX (1200-2400
mg/d) in addition to routine treatment with insulin. The daily insulin dose of the PTX-
treated group was significantly lower at 3-12 months of PTX treatment compared to an
age-matched control group. However, PTX failed to prevent the disease. Notably, the
drug was administered after the diagnosis of diabetes, which is probably too late to
interfere with disease expression. However, PTX treatment prolonged the honeymoon
period; or non-insulin required period, in the treated vs the control group.

Pharmacokinetics studies of PTX showed that it is almost completely
absorbed after oral administration. It reaches a peak plasma concentration of less than
3 pg/ml 2-3 hours after oral administration of 400 mg, and this level is maintained for
a few minutes [304]. The plasma concentration has been found to reach a higher level
when PTX is administered parentally [305]. The drug is metabolized and its
biotransformed products are eliminated almost exclusively by the kidney [306]. PTX
has limited adverse effects. The most frequent are nausea (14%), dizziness (9.4%),

headache (4.9%), and vomiting (3.4%). Flushing, abdominal discomfort, bloating,
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diarrhea, dyspepsia and malaise are reported in 1-3% of the cases. Other rare side
effects, such as chest pain, arrhythmia, hypertension, drowsiness, tremor, abdominal
pain, decreased serum fibrinogen, pruritus, blurred vision, scotoma, etc., are reported

in less than 1% of the cases [306].

E.4.2. ROL

ROL, [(x)-4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone], a specific
PDE4 inhibitor, was first studied as an anti-depressant [307]. It was reported that ROL
at a dose between 0.25 and 3 mg t.d. was more effective as an antidepressant than
drugs such as the tricyclic antidepressants [308]. Recently, immunologists found that
ROL could be useful as an anti-inflammatory agent. ROL has been reported to have
inhibitory effects in asthma [309], theumatoid arthritis [310], glomerulonephritis [311]
multiple sclerosis [312], acute respiratory distress syndrome [313] and septic shock
[314]. ROL has also been reported to suppress proinﬂamfnatory cytokines such as,
TNFa, IFNy, and 1L.-12 [228], and to prevent diabetes in NOD mice (our studies
described later).

Pharmacokinetics studies in healthy volunteers reveal that ROL is rapidly
absorbed after oral administration. It is reported that oral administration of 1 mg of
ROL gives a peak of plasma concentration of 16 ng/ml after half an hour. Thereafter,
the plasma levels decline in three phases, with half-lives of 0.1h, 0.5 h, and 9.4 h

respectively [315].
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The reported adverse effects of ROL include nausea, vomiting, increased gastric
secretion and psychotropic activity [316, 317]. The toxicity of repeated exposure to
ROL (up to 100 mg/kg/day) has been studied in rats [318], and a number of
histopathological alterations, involving the liver, heart, salivary glands, mesentry and
stomach were observed, but only at high doses. In clinical trials, it was reported that
patients tolerated therapeutic doses, and there was no evidence casting doubt on the

drug’s safety at these doses [319].
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1. Hypothesis, rationale, and objectives of research

PDE inhibitors augment intracellular cAMP levels and have been shown to be
therapeutically effective in animal models of autoimmune and/or inflammatory
diseases, such as experimental allergic encephalomyilitis, rheumatoid arthritis, septic
shock, and asthma (as described before). Both PTX and ROL have suppressive effects
on the production of the proinflammatory cytokines TNF, IFNy, and IL-12, which
are important mediators of B-cell destruction. On the other hand, these drugs show
either no suppressive effect or even stimulatory effects on Th2 cytokines such as IL-4
and IL10. The latter cytokines seem to have protective effects on diabetes. Moreover,
PDE inhibitors might inhibit the production of NO, a f-cell toxic mediator. However,
the effects of these drugs on NO production have not been extensively studied, and
contradictory results have been reported.

Our hypotheses were:
1) PDE inhibitors, such as PTX and ROL would prevent insulitis and diabetes in NOD
mice by suppressing inflammatory cytokine production or by other anti-inflammatory
effects.
2) PDE inhibitors would protect islets, at least in part, by suppressing iNOS expression
and NO production by macrophages.
3) PDE inhibitors would also protect by suppressing iNOS/NO expression in islet -
célls.
4) Selective PDE3 or PDE4 inhibitors would be effective since these isoforms are

expressed by islet cells and macrophages.
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5) The anti-inflammatory and immuno-protective effects of PDE inhibitors are
dependent on elevated intracellular cAMP levels.

This study is divided into three main parts. In the first part, we investigate the
effectiveness of two PDE inhibitors, PTX and ROL, in preventing insulitis and
diabetes in NOD mice. In the second part of the study, we examine the effect of PTX
and ROL on NO production by a macrophage cell line (RAW246.7) and normal
peritoneal macrophages, and we correlate these effects with elevated cAMP levels. In
the third part of the study, we examine the effects of PDE inhibitors on NO production
by an insulinoma cell line (NIT-1) and normal mouse islet cells. We also correlate

these effects with cAMP levels.
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ABSTRACT

The phosphodiesterase (PDE) inhibitors, pentoxifylline (PTX), a general

inhibitor, and rolipram (ROL), a type 4 specific inhibitor, have been shown to suppress
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the production of proinflammatory cytokines such as TNFa, IFNy, and IL-12, which
are implicated as mediators of B-cell destruction and diabetes development. Recently,
both PTX and ROL were reported to prevent insulitis and diabetes in
cyclophosphamide-accelerated-diabetes in NOD mice.

In this study, we examined the effects of PDE inhibitors in preventing insulitis
and diabetes in the natural course of disease in NOD mice. We found that treatment of
female NOD mice (12 weeks) with either PTX (80 mg/kg i.p.,b.i.d.) or ROL (7-14
mg/kg i.p.b.i.d.), significantly reduced the severity of insulitis and prevented diabetes
in NOD mice (P < 0.005 treated vs control group). Thus a relatively short course of
treatment between weeks 12 to 16 of life had a lasting protective effect, which was
observed over 10 weeks after withdrawal of the drug treatment. At optimal doses,
there was no statistically significant difference in the effectiveness of these two
inhibitors. It appears that blocking the activity of PDE type 4 is sufficient to mediate
the effects reported, since ROL inhibits only this isoform. PTX and ROL may be
effective in the treatment of autoimmune diabetes and/or other conditions

characterized by excessive production of inflammatory cytokines.
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INTRODUCTION

NOD mice spontaneously develop a form of IDDM similar to human disease,
caused by an autoimmune destruction of islet B-cells. The precise mechanisms of islet
destruction are not totally elucidated, but there is substantial evidence for a Thl
mediated response with IFNy production associated with macrophages activation and
production of TNFa, IL-1, 11.12, and nitric oxide (NO) [1-7]. Immunosuppressive
drugs, such as cyclosporin A, can prevent IDDM in rodent and may be of benefit in
human [8] but have substantial adverse effects.

Pentoxifylline (PTX) [3,7-dimethyl-1-(5-oxohexyl) xanthine], is a general
phosphodiesterase inhibitor (PDE) that has been available for many years to treat
vascular disorders [9,10]. Rolipram (ROL) [(£)-4-(3 cyclopentyloxy-4-methoxy-
phenyl)-2-pyrrolidone] is a specific PDE4 inhibitor (the major isoform in
macrophages) that has been tested extensively as an antidepressant [11,12]. Both drugs
have anti-inflammatory properties [13-15], can be administered orally, and are well
tolerated. PDE inhibitors induce increased intracellular cAMP levels that have been
reported to suppress TNFa secretion by macrophages [13-15], and to lesser degree, T-
cell secretion of IL-2 and other cytokines [13-16]. A recent study has shown that PTX
and ROL also suppress I1.-12 and IFNy production by macrophages and T cells,
respectively [17]. In addition, PTX and ROL prevented insulitis and diabetes in
cyclophosphamide-accelerated diabetes in NOD mice [17].

In this study, we examined the capacity of PDE inhibitors, PTX and ROL, in

preventing insulitis and diabetes, in the natural course of disease in NOD mice.
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MATERIALS AND METHODS

Mice.

Female NOD mice (10-12 weeks) were obtained from Taconic Farms
(Germantown, NY). These mice exhibit insulitis as early as 4 weeks of age. Diabetes
appears at about 12 weeks of age and reaches a level of ~ 80% at 27 weeks. The mice

were kept under specific pathogen-free condition throughout the experiments.

Drugs.

PTX was a gift of Hoechst-Marion-Roussel Canada (Montreal, Quebec,
Canadé), and ROL was a gift of Shering (Berlin, Germany). PTX was dissolved in
phosphate-buffered saline (PBS), and ROL was dissolved in PBS containing 100 g/
cremophor EL (Sigma, St. Louis, MO). Both drugs were administered by the intra-

peritoneal route.

Treatment of the mice with PTX or ROL

Female NOD mice received PTX (80 mg/kg, i.p.,b.i.d.), ROL (7-14 mg/kg,
L.p.,b.1.d.) or PBS, from week 12 to week16 of life and remained untreated thereafter.

The mice were sacrificed when diagnosed as diabetic, or by 27 weeks of age. The
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pancreata were removed and fixed in 10% formalin, and histological slides were

prepared with hematoxylin and eosin staining.

Diagnosis of diabetes

Mice were diagnosed as having diabetes when random blood glucose
measurements equaled to or exceeded 16 mmol/l for 3 consecutive days. Statistical

analysis was performed with Fisher’s exact test.

Grading of insulitis

Insulitis was graded as described by Charlton et al. [18], based on lymphocytic
infiltration, as follows: grade 0, normal islet free of any peri-islet mononuclear cells;
grade 1, focal peri-islet infiltrate <25% of the islet circumference; grade 2, peri-islet
infiltrate >25% of islet circumference; grade 3, intra-islet infiltration with good
retention of islet cells; and grade 4, extensive intra-islet infiltration with gross
distortion or destruction of islet morphology. Three randomly obtained and
nonadjacent levels of each pancreas were examined independently by two observers
with coded shides, and all islets were scored. Statistical analysis was performed with

the X?test.
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Immunohistochemical staining of insulin producing B-cells

Immunohistochemistry was performed on formalin-fixed tissue with the Histo-
Mouse SP kit (Inter-Medico, Markham, Ontario). The primary antibody was
polyclonal guinea pig anti human insulin which cross reacts with murine insulin
(Cedarlane, Ontario, CA), followed by biotinelated secondary antibody, streptavidin-

peroxidase, conjugate and ABC substrate.

RESULTS

PTX and ROL prevent diabetes in NOD mice

We treated female NOD mice with either PTX or ROL, and we found that a
relatively short course of treatment, from week 12 to week 16 of life, has a lasting
protective effect (Fig. 1). While diabetes appeared at 13 weeks of age in control mice,
the PTX- or ROL-treated mice only started to develop diabetes in small numbers at
week 19. At week 27, 80% of control mice had diabetes, while only 20-25% of PDE
inhibitor-treated mice were hyperglycemic (Fisher’s exact test, P < 0.005 vs control
mice).

Thus 11 weeks after withdrawing drug therapy, the incidence of disease was still
three to four times lower than in non-treated mice. At optimal doses, there was no
statistically significant difference in the effectiveness of these two PDE inhibitors.
Rolipram was effective at doses ranging from 7 to 14 mg/kg b.i.d. (Fig.2), but at lower

doses, larger numbers of mice developed diabetes after withdrawing ROL therapy
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(Fig.2). On the other hand, PTX was effective at a dose of 80 mg/kg b.i.d., but not at

lower doses.

PDE inhibitor treatment reduces the severity of insulitis

Histological studies were performed on the pancreata after the onset of diabetes
(3 consecutive days of hyperglycemia) or after planned death in normoglycemic mice
(week 27 of life). These studies revealed that both PTX- and ROL- treated mice had
less severe insulitis (Table 1). The results represent either the mean scores of a whole
group (nondiabetic plus diabetic, denoted ND + D) or nondiabetic mice only (denoted
ND). All diabetic mice had an insulitis score above 3. In the drug- treated groups of
NOD mice, consistent with the lower incidence of diabetes, there were much larger
number of either normal islets of Langerhans (grade 0) or islets with only peri-insulitis
(grade 1 or 2), i.e., lacking true insulitis (Fig. 3A). The mean grade of insulitis was
significantly higher in non-treated control group (3.4) vs PDE inhibitors-treated group

(1.6 for ROL and 1.8 for PTX) (Fig. 3B) (P<0.0001 vs untreated control mice)

Preservation of insulin producing cells by PDE inhibitor treatment

The immunohistochemical studies to detect insulin producing cells showed that
both PTX and ROL treatment preserved insulin producing f3-cells. On the other hand,
in the control group most of the islets were totally destroyed and it was difficult to find

preserved insulin producing cells.
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DISCUSSION

In this study, we present evidence that the PDE inhibitors PTX (a general
inhibitor) and ROL (a type 4 specific inhibitor) prevent insulitis and diabetes in NOD
mice. At optimal doses both drugs were equally effective in preventing diabetes. A 4
week treatment with either PTX (80 mg/kg i.p.b.i.d.) or ROL (14 mg/kg i.p.b.1.d.) had
a strong protective effect that was still apparent 11 weeks after withdrawing the drugs.
This was associated with a significant reduction in the severity of insulitis. Thus PDE
inhibitors exert an anti-inflammatory or immunosuppressive effect. After withdrawal
of treatment, there was a slow rise in the incidence of disease over the length of the
e?(prerinie’:ntws: Whetherthls c-:ovlrlldrl’)e pfeéﬁ&d by a lovnvgve;c’:;;fsewof therapyls
unknown. Because these drugs have a short half-life in plasma after intraperitoneal
injection [19] it is likely that increasing the frequency of administration would be even
more effective.

Diabetes in NOD mice is an autoimmune process that is dependent on
inflammatory cytokine production. Several cytokines have been implicated as effector
molecﬁles involved in B-cell destruction. T- helper (Th)-1 cytokines (IFNy, IL-2,
TNFa ) have been shown to have a pathogenic effect, while Th2 cytokines (IL4, IL.10)
are protective. The most studied pathogenic cytokines are IFNy, TNFa, and IL-12.
Thus treatment of the mice with an anti-IFNy monoclonal antibody prevented diabetes
in NOD [7]. Transgenic mice expressing IFNy in their islets developed insulitis and
diabetes [20]. Moreover, gene thefapy with a nonviral vector encoding IFNyR/IgG1

fusion protein protected from autoimmune diabetes [21]. IL-12 also has been shown to
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accelerate diabetes by enhancing Thl-dependent response [6]. Administration of an
IL-12 antagonist, i.e., IL-12 (p40) 2, suppressed cyclophosphamide-accelerated-
diabetes [22].

PDE inhibitors induce an increase in intracellular cAMP levels and alter
cytokines production [13-15]. Their effect on suppressing TNFo production by
macrophages is particularly well documented, where they block transcription and
translation (13-15, 23-25). In addition, a recent study [17] showed that the PDE
inhibitors PTX and ROL also suppressed IFN y production by T cells, and 11.-12
production by macrophages, while IL-4 was less sensitive [17]. Thus suppressing
proinflammatory cytokines production by PDE inhibitors may represent a possible
mechanism preventing insulitis and diabetes in NOD mice.

cAMP modifies the activity of many protein kinases and the transcription of
numerous genes, and we cannot exclude the possibility that PDE inhibitors protect
islet cells by mechanisms unrelated to their anti-inflammatory effects. PDE3 and 4 are
expressed in islet cells [26], but while inhibition of PDE 3 can enhance insulin
secretion, the inhibition of type 4 does not [26]. Therefore, the antidiabetic effect of
ROL is unlikely to be related to an effect on insulin secretion. Inasmuch as this drug is
a specific inhibitor of PDEA4, it appears that inhibition of this isoform is sufficient to
mediate all the effects reported in this study.

PTX and ROL prevent experimental allergic encephalomyelitis (EAE) in rodent
[13,14]. PTX has been found to inhibit contact dermatitis in normal mice [24], and to

diminish proteinuria and anti-ds DNA autoantibody production in lupus-prone MRL-
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Ipr/lpr mice [25]. Not surprisingly, these PDE inhibitors can be beneficial in
conditions characterized by massive TNFa release [15,27]. In vitro, PTX reduces the
toxicity of TNFa for islet cells [28]. In addition, PDE inhibitors can probably exert
anti-inflammatory activity by acting on T-cells.

The effects of cAMP clevation on various signaling pathways in both
lymphocytes (expressing type 3, 4 and 7) and macrophages (expressing mainly type 4)
have not been fully elucidated. HoweVer, recent reports indicate that cAMP interrupts
cytokine-triggered JAK-STAT signals [29]. In particular cAMP suppresses STAT 1
activity, which may skew cytokine production to Th2 pattern [30]

Interestingly, in an EAE model, PTX appears to favor Th2 over Thl
differentiation [13], possibly because Thl cells are more sensitive to high levels of
cAMP [16]. We have no evidence that a similar shift occurs in NOD mice, although it
was reported that I1.-4 was suppressed by PDE inhibitors at higher drug concentrations
than either 1L-12 or IFNy [17]

We have not studied the effects of PDE inhibitors in other species. However,
Rabinovitch and Sumoski [31] found that the PDE inhibitor theophylline had a
protectif/e effect in diabetes-prone BB rats and potentiated cyclosporin A protection.
In an unmasked study of 21 children with new onset type 1 diabetes, MacDonald et al.
[32] reported that PTX could reduce (but not abrogate) the insulin requirements or
lengthen the “honeymoon” (non-insulin-requiring) period. Unfortunately, by the time
the diagnosis of diabetes is made, islet-cell destruction is extensive, and it is perhaps

too late to apply this form of treatment. However, in patients known to be at risk of
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developing diabetes, the administration of PDE inhibitors could be considered to arrest
the progression of insulitis and prevent disease. Because PTX and ROL are usually
well tolerated, as demonstrated in clinical trials [9,12,33], they could probably be
administered for prolonged periods of time without serious adverse effects. Moreover,
these inhibitors could be of benefit in a large number of inflammatory disorders in

which there is excessive production of inflammatory cytokines.
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Table 1

Insulitis score in PDE inhibitor-treated mice

Grade of insulitis (%)

Treatment group | Mice (n) 0 1-2 3 4 Mean

grade

PBS ND+D (15) 43 8.7 17.4 69.5 34
ND 3) 59 17.6 235 529 3.05

PTX ND +D(15) 304 39.1 17.4 13.0 1.78*
ND (12) 313 | 469 156 9.4 1.63*

ROL ND +D(15) 33.0 | 408 15.1 11.1 1.6*
ND  (11) 344 40.6 18.8 6.3 1.53*

NOD mice received PTX (80mg/kg i.p.b.i.d.) or ROL (14 mg/kg i.p.b.i.d.) from
week 12 to week 16 and remained untreated thereafter. They were killed after the onset
of diabetes or, in normoglycemic mice, at week 27. The pancreases were examined
histologically and scored for insulitis. ND+D, analysis of a whole group, including
nondiabetic and diabetic mice; ND, analysis of non diabetic mice only. Statistical
analysis was performed by X* test; ND +D treated group vs ND + D untreated control

group P <0.0001; ND treated group vs ND control group, P < 0.001.
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Figure Legends

Figure 1. PTX and ROL treatment reduces the incidence of diabetes in NOD mice.
Mice (n = 15 per group) received PTX (80 mg/kg i.p., b.i.d.) or ROL (14 mg/kg
i.p.,b.1.d.) from week 12 to week 16 of life and remained untreated thereafter. The
results represent the percentage of diabetic mice in the PBS-treated control group

(— --), the PTX-treated group (—), and the ROL-treated group ( ---- ) at various time
points. Fisher exact test was performed (P < 0.005 treated vs control group). At these

doses, there was no statistically significant difference in the effectiveness of PTX and

ROL.

Figure 2: ROL treatment reduces the incidence of diabetes in NOD mice. Mice (n =
15 /group) received ROL (7 mg/kg i.p.,b.i.d.), ROL (14 mg/kg i.p., b.i.d.), or PBS
(untreated control group), from week 12 to 16 of life and remained untreated
thereafter. The result represent the percentage of diabetic mice in PBS treated control
group (— ), ROL 7mg/kg treated group (----), and ROL 14 mg/kg treated group (— -
)- Treatment of mice with ROL at a dose 7 mg/kg prevented diabetes in NOD mice,
but a large number of mice developed diabetes after withdrawal of the drug. Fisher

exact test (P < 0.01 treated vs control group).
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Figure 3: PTX or ROL treatment reduces the severity of insulitis in NOD mice. 12

week-old mice (n = 15 mice per group) received PTX (80 mg/kg i.p., b.i.d.) or ROL
(14 mg/kg i.p., b.i.d.) or PBS (control group), from week 12 to 16 and remained
untreated thereafter. They were killed after the onset of diabetes, or in normoglycemic
mice, at week 27. The pancreata were examined histologically and scored for insulitis.
A. The percent of islets of various grades in control (PBS-treated group), PTX treated
group, or ROL treated group ( P < 0.0001 treated vs control group). B. The mean
grade of insulitis in control (PBS-treated) mice, PTX-treated mice, or ROL-treated
mice

Figure 4: Insulitis grading and immunohistochemical staining. Female NOD mice

(12 week) were treated for four weeks with either PTX (80 mg/kg), ROL (14 mg/kg)
or PBS (non treated control). The mice were killed and the pancreases were recovered
and fixed in 10% formalin. H&E stained slides were used for grading insulitis.
Immunohistochemical staining for insulin was performed in formalin fixed tissue with
Histo-Mouse-SP kit. The primary antibodies were guinea pig anti-human insulin
polyclonal antibodies which cross react with murine insulin

A. Grade 0 insulitis, normal islet from PTX treated group.

B. Grade 1 and Grade 2 insulitis (peri-insulitis) from ROL treated group.

C. Grade 3 msulitis from non-treated control group.

D. Grade 4 insulitis from non-treated control group.

E. Insulin staining showed preserved msulin producing cells from PTX treated group.

F. Negative control for insulin staining.
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Abstract

We studied the effects of the phosphodiesterase inhibitors pentoxifylline (PTX)
and rolipram (ROL) on nitric oxide (NO) production by macrophages and correlated
this with cellular cAMP levels. The RAW 264.7 cell line or mouse peritoneal
macrophages were activated with lipopolysaccharide (LPS) and interferon y (IFNy),
with or without ROL, PTX, cAMP analogues or Forskolin. /n vivo, peritoneal
macrophages were stimulated with staphylococcal enterotoxin B (SEB) with or
without administration of ROL. Nitrite levels in culture and the total cellular cAMP
levels were measured. ROL and PTX suppressed NO production of LPS/IFNy
stimulated macrophages. ROL (IC,;=68-74 uM) was about 40 times more potent than
PTX (IC5,=2.4-2.9 mM). The suppression paralleled increased total cellular cAMP
level (EC;, = 68-72 uM ) and was mimicked by other cAMP elevating agents. ROL
and PTX suppressed inducible NO synthase at the mRNA level. The inhibition of NO
production of macrophages by ROL or PTX could be beneficial in NO-mediated

inflammatory and/or autoimmune disorders
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INTRODUCTION

Nitric oxide (NO) is a free radical found to be a potent and pleiotropic
mediator with physiologic and toxic activity [1, 2, 3]. NO is synthesized by various
isoforms of nitric oxide synthase (NOS) which catalyze the oxidation of L-arginine to
form L-citrulline and NO [2]. NOS exists in constitutive isoforms present in
endothelial cells (eNOS) or neurons (nNOS), and a cytokine or endotoxin inducible
form (iNOS) [3]. The iNOS isoform was first identified in macrophages, but now has
been found in many nucleated cells (hepatocytes, islet cells and others). In contrast to
other isoforms, iNOS is Ca** independent and produces large amounts of NO which
appears to mediate in large part the cytotoxic action of macrophages on some
pathogens and target cells.

cAMP and protein kinase A (PKA) are involved in the regulation of cellular
activation. Phosphodiesterase (PDE) inhibitors, which elevate intracellular cAMP
levels, are potent regulators of various immune processes. There are ten different PDE
families [4]. PDE type IV is the major type in macrophages while lymphocytes
express both the type III and type IV isoforms [5]. We have previously shown that
rolipram (ROL), a selective type IV PDE inhibitor, and pentoxifylline (PTX), a
general PDE inhibitor, can both prevent insulitis and diabetes in diabetes-prone NOD
mice [6]. The role of PTX and ROL in inhibiting tumor necrosis factor-oo (TNFat)
production by macrophages is well documented [6, 7]. However we have found that
these drugs also inhibit interleukin-12 (IL-12) and interferon-y (IFNy) production by

macrophages and lymphocytes, respectively. The effects of PTX and ROL on NO
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production and iNOS stimulation have not been extensively studied. Some studies
have shown inhibitory effects [8] and others stimulatory effects [9]. In this study, we
report on the inhibitory effects of PTX and ROL on NO production in
IFNy/]ipopolysaccharide (LPS) costimulated macrophages, and the relationship to
cellular cAMP levels. We find that ROL suppresses NO production independently of
its inhibitory effects on the secretion of TNFa or IL-12 by macrophages, since
addition of these cytokines to cultures had no effect. We show that ROL and PTX
supress iNOS at the mRNA level. Moreover, the inhibitory effects of ROL and PTX
on macrophage activation are demonstrated in vivo in superantigen-treated mice. Our
results suggest that PDE inhibitors could have a role in the treatment of NO-dependent

inflammatory disorders.

MATERIAL AND METHODS
Mice.

Female NOD mice (8-10 weeks) were purchased from Taconic farms
(Germantown, NY). Male CD-1 mice (8-10 weeks) were purchased from Charles
River Canada (St. Constant, Quebec, Canada). Mice were housed under pathogen-free

conditions.
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RAW 264.7 cell culture and stimulation.

The murine macrophage cell line RAW 264.7 (ATCC, Rockville, MD),
henceforth referred to as RAW, was used for nitric oxide production. Briefly, RAW
cells were plated in 96 well plates in DMEM (GIBCO BRL, Grand Island, NY, USA)
containing 10% heat inactivated fetal bovine serum (FBS) at a density of 2 x 10" cells
/100 uL /well, at 37 °C for 24 h. In all experiment which required nitrite
measurements, phenol red free DMEM media was used. Once the supernatant was
discarded, medium containing IFNy (0.8 ng/ml) and LPS (30 ng/ml) was added to
adherent cells. Where indicated cultures were supplemented with ROL (Shering,
Berlin, Germany), PTX (Sigma, St.Louis, MO), the adenylate cyclase stimulator
Forskolin (Sigma), cAMP analogues (dibutyryl cAMP or 8§-bromo-cAMP [both from
Sigmal), dibutyryl cGMP (Sigma), recombinant murine IL-12 and TNFa (Pepro Tech
INC., Rocky Hill, USA). After a further 24 h of culture supernatant was collected for

nitrite measurement.

Isolation of peritoneal macrophages.

Peritoneal macrophages were isolated as previously described [10]. Briefly,
nonactivated peritoneal wash cells were added to 96 well plates at a density of 2 x 10°
cells/100 pl/well, and incubated for 2 h at 37 °C in RPMI-1640 containing 10% FBS.

Nonadherent cells were then removed by gentle washing. Over 90% of these adherent
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cells are macrophages, as determined by phagocytosis of fluorescent microbeads.

Adherent cells were incubated as described above for RAW cells.

Superantigen injection and recovery of peritoneal macrophages.

The mice were injected 1.p. with either PBS, or ROL (14 mg/kg body weight)
at five time points (0, 15 min., 4 h, 10 h, 18 h). Staphylococcal enterotoxin B (SEB)
(Sigma) was injected (100 pg in 200 pul PBS) i.p. once at 15 min. 24 h after SEB
injection, peritoneal wash cells were recovered, and adherent peritoneal macrophages
prepared as described above. The adherent cells were incubated with or without LPS,

and culture supernatants were collected 24 h later for nitrite measurement.

Nitrite measurement.

Nitrite accumulation, as an indicator of NO production, was measured using
the Griess reagent as we have described [11]. Absorbance was measured at 540 nm in
a microplate reader (Titertek Instruments, Hunstville, AL). Nitrite concentration was
calculated from a NaNO, standard curve,

Percent inhibition of nitrite production = 100 - (the NO’, level with inhibitor) x 100

(the NO, level without inhibitor)
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IC 4, values were calculated from the dose response percent inhibition curve for each

treatment.

DNA content determination by fluorometric assay.

We followed the protocol described by Rago [12] with some modifications.
Briefly, culture supernatants were removed from wells containing adherent
macrophages (96 well plates). The plates were frozen at -80 C and thaWed until they
reached room temperature, and 100 pl of TNE buffer (10 mM Tﬁs, I mM EDTA,2M
NaCl, pH 7.4) was added to lyse the cells. The lysate was transferred to microtubes
with 1 ml of Hoechst (Sigma) 1:2000 dilution of stock solution (200 pg/ml). The
fluorescence emission of the Hoechst dye was measured with a fluorescent
spectrophotometer (Hoefer) at a Wéve length 457 nm. DNA content was measured

from a standard curve obtained with calf thymus DNA (Sigma).

Measurement of cAMP level.

RAW cells were seeded in 24 well plates at a density of 6 x 10" in DMEM with
10% FBS for 24 hours. The total cAMP from both the supernatant and cell lysate,
referred to as total cellular cAMP, was measured for each well using an enzyme
immune assay (EIA) kit from Amersham Pharmacia Bioteck (Quebec, Canada),

following the manufacturer’s instructions.
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Determination of iNOS mRNA by reverse transcription-polymerase chain
reaction (RT-PCR).

RNA extraction and RT-PCR were performed as we have previously described [11].
PCR amplification of cDNA with primers specific for INOS and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was carried out and the products were visualized
by electrophoresis in 2% agarose gel containing ethidium bromide. iNOS primers
were: sense, 5°-CTTCCGAAGTTTCTGGCAGCAGCG-3’; antisense, 5°-
GAGCCTCGTGGCTTTGGGCTCCTC-3’ and the PCR product was 487 bp. GAPDH
primers were : sense, 5’-TCCACCACCCTGTTGCTGTA-3’; antisense, 5°-
ACCACAGTCCATGCCATCAC-3’ and the PCR product was 450 bp. PCR reactions
were run for 25-35 cycles, and were terminated in the linear portion of the

amplification reaction.

Statistical Analysis.

Statistical analysis was performed using Student’s 7 test, and p < 0.05 was

considered significant.
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RESULTS
ROL and PTX inhibit NO production by Macrophages.

A combination of IFNy (0.8 ng/ml) and LPS (30 ng/ml) stimulates RAW cells
and peritoneal macrophages to produce a considerable amount of NO, which is rapidly
transformed to nitrite in culture. We measured nitrite levels as an indication of NO
production. In the absence of LPS and IFNy the cells produce an undetectable amount
of nitrite (not shown). We find that ROL suppresses nitrite production in a dose
dependent manner (Fig. 1A). A concentration of 3.1 uM ROL is sufficient to
significantly inhibit NO production (p = 0.01), and a concentration of 200 uM inhibits
by over 95 % (IC;, = 68 - 74 uM). PTX also inhibited NO production (Fig. 1B), but at
higher concentrations (IC;, = 2.4 - 2.9 mM). Thus, on a molar basis ROL is about 40
times more potent than PTX at inhibiting NO production. Similar results were
obtained when peritoneal murine macrophages were used instead of RAW cells (Fig.
2A and data not shown). In these experiments, suppression of NO production cannot
be attributed to cell death since adherent-cell total DNA content per well was not

significantly reduced by either PTX or ROL (data not shown).

cAMP elevating factors inhibit NO production.
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PTX, ROL, 8-bromo-cAMP (br-cAMP), dibutyryl-cAMP (db-cAMP), and
Forskolin all increase intracellular cAMP activity. These agents all significantly
inhibited NO production by stimulated peritoneal murine macrophages (Fig. 2ZA).
Similar inhibition was observed with RAW cells (not shown). Dose response curves
for 8-bromo-cAMP and dibutyryl-cAMP are shown in (Fig. 2B). Our results show that
dibutyryl cAMP, 8-bromo cAMP and Forskolin all supress NO production, but even at
high concentrations the suppressing effect is only modest. These data are suggestive
that cAMP elevation plays a role in inhibiting NO production, but it is not the only
contributor to this effect. Dibutyryl-cGMP has no effect on NO production of either
RAW cells or peritoneal macrophages (data not shown).

Total DNA content of adherent cells per well was not significantly reduced
with any of these agents, and no DNA fragmentation was observed by electrophoresis
in DNA extracted from stimulated macrophages (not shown). Thus, it is unlikely that

reduced NO production was secondary to cell death by apoptosis or necrosis.

ROL increases the intracellular cAMP level in RAW cells.

~To examine whether the suppression of NO production by ROL was associated
with elevated cAMP, we measured total cellular cAMP levels (total cAMP in cells
and supernatant) in LPS/IFNy-costimulated RAW cells. Our data shows that ROL
increases total cellular cAMP within 10 minutes, peaking at 30 minutes, remaining at
a plateau level before declining after 4 h (Fig. 3A). ROL increases total cellular cAMP

levels in a dose dependent manner (Fig. 3B), and this occurs at drug concentrations
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that block NO production (Fig. 1A). The correlation of these data suggests that ROL

| suppresses NO production at least in part by elevating cAMP level.

ROL and PTX suppress the expression of iNOS mRNA by macrophages.

To determine if ROL and PTX-mediated suppression of NO production is a
pretranslational event, we investigated the expression of iNOS mRNA in IFNy/LPS
stimulated macrophages in the presence or absence of these drugs. iNOS mRNA
expression by macrophages is maximal after 4 hours stimulation with IFNy and LPS,
and either ROL (200 uM) or PTX (5 mM) suppressed iNOS mRNA expression (Fig.

4).

Administration of ROL inhibits macrophage activation in vivo.

Macrophages collected from mice 24 h after i.p. injection of the SEB
superantigen (100 pg) produce a high amount of NO when stimulated with LPS
(without any added IFNy). This reflects in vivo macrophage activation, and may be
mediated at least in part by [FNy inasmuch as it is associated with systemic release of
this cytokine (our unpublished observations). Treatment of the mice with ROL (14
mg/kg body weight) i.p. at different time points prevented any increase in nitrite
production from recovered peritoneal macrophages (Fig. 5). Similar results were
obtained in CD-1 mice which, unlike NOD mice, are not prone to autoimmunity (not

shown).
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TNFa and IL-12 do not restore NO production.

Recombinant murine IL-12 and TNFa were added to the cultures to determine
whether suppression of NO production is secondary to reduced production of these
cytokines by macrophages. IL-12 and TNFa alone did not stimulate nitrite production
in our assay, and ROL suppressed nitrite production with unchanged efficiency when
IL-12 (Fig. 6A), TNFa (Fig. 6B) or both (not shown) were added to culture at various
concentrations. This suggests that ROL does not act indirectly by suppressing these

cytokines.
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Discussion

We present evidence that two PDE inhibitors, ROL and PTX, suppress NO

production by IFNy and LPS costimulated macrophages. This was equally apparent
with the RAW macrophage cell line and normal murine peritoneal macrophages.
Inhibition of NO production is associated with elevated total cellular cAMP.
Moreover, it is mimicked by raising the intracellular cAMP level by different
mechanisms, either by cell membrane permeable cAMP analogues (dibutyryl-cAMP
and 8-bromo-cAMP), or an adenylate cyclase activator (Forskolin).

Agents that elevate cAMP have been previously reported to inhibit NO
production. For example, Bulut et al.[13] found that a combination of prostaglandin
E2 (adenylate cyclase activator) and isobutyl methyl-xanthine (IBMX; a general PDE
inhibitor), induced prolonged elevation of cAMP level and suppressed iNOS activity
in an IFNY/LPS costimulated murine macrophage cell line (J774). However, Greten et
al. [9] reported that while ROL inhibited TNFa production by RAW cells, NO
production was increased. It should be noted that these authors activated the cells with
high levels of LPS (over 300 fold higher than us) in the absence of [FNy. We find that
these conditions are not optimal for stimulating macrophages and result in low NO
production. At any rate, at high concentrations of ROL these authors did observe mild
NO suppression. A caveat is that cell lines may mutate in culture and alter their
response to various stimuli. We obtained similar results with both RAW cells and
normal peritoneal macrophages. Therefore, our findings cannot be attributed to the

particularities of a cell line. We could also demonstrate inhibition of macrophage NO
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production ex vivo in ROL-treated mice (see below). Thus, our data suggest that ROL
can inhibit NO production under physiologically relevant conditions.

There is a time delay between the peak cAMP levels induced by ROL in
culture (< 3 h) and the maximal induction of iNOS mRNA (4 h). However, under the
influence of ROL, cAMP levels remained significantly elevated for at least 24 h.
Moreover, cAMP may be blocking early events related to iNOS gene transcription.
The mechanism(s) by which cAMP suppresses iNOS mRNA expression following
LPS/IFNy stimulation have not been elucidated, but this presumably related to
alterations in the levels or activity of transcription factors that bind to the iNOS
promoter (see below). For instance, elevated cAMP levels could inhibit the expression
of other genes that regulate iNOS gene transcription, and that are only expressed early
(< 3 h) after LPS/ IFNy stimulation.

At any rate, our data show that both ROL and PTX suppress iNOS mRNA
expression, and this appears secondary to increased cAMP levels. In some cells,
increased cAMP is associated with reduced activation of NF-k 3, a transcription factor
that plays an important role in regulating iNOS gene transcription [14]. Interestingly,
some cytokines inhibited by ROL or PTX also have NF-«xB binding elements in their
promoters or enhancers [15]. We speculate that this could represent a common factor
leading to inhibited expression of these genes. Moreover, macrophage iNOS has a
consensus sequence for protein kinase A (PKA) [16], and perhaps phosphorylation of
iNOS reduces its activity. On the other hand, the rat iNOS promoter has a cAMP

response element [17], such that rat iNOS could be induced also by elevating cAMP
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level in an NFB independent pathway [18]. However, the signaling pathways
involved in regulation of iNOS expression are distinct in different cell types [18],
perhaps explaining some contradictory reports on the regulatory effect of elevated
cAMP level on NO production. Our data suggest that both the murine macrophage cell
line RAW 264.7 and murine peritoneal macrophages have the same regulatory
pathway.

PTX and ROL suppress inflammatory cytokine production and they are
therapeutically effective in several experimental inflammatory and/or autoimmune
diseases. ROL is generally more effective than PTX on a molar basis, and it inhibits
PDE IV which is the major isoform found in macrophages. Both PTX [19] and ROL
[20] prevent experimental allergic encephalomyelitis (EAE) in rodents. PTX has been
found to inhibit contact dermatitis in mice [21], and to diminish proteinuria and anti-ds
DNA autoantibody production in lupus-prone MRL-Ipr/[pr mice [22]. In addition,
these PDE inhibitors can reduce inflammatory cytokine production, especially TNFa,
in septic shock {7, 23, 24]. Since ROL is a specific PDE IV inhibitor, it appears that
inhibition of this isoform is sufficient to block inflammatory cytokine production by T
cells and macrophages, as well as NO production by macrophages.

We have recently shown that PTX and ROL prevent insulitis and diabetes in
spontaneously diabetes-prone NOD mice and cyclophosphamide (CYP)-accelerated
diabetes in this strain [6]. These mice develop a form of insulin-dependent diabetes
(IDDM) similar to the human disease, due to an autoimmune destruction of islets 3

cells [25]. The precise mechanisms of islet destruction are not totally elucidated, but
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there is evidence for a T helper-1 (Th-1)-mediated response with IFNy production,
associated with macrophage stimulation and production of IL-12, TNFa, IL-1, and
NO. We have shown that PTX and ROL suppress IFNy production by T cells, as well
as both IL-12 and TNFa production by macrophages [6]. TNFa, like IFNy, can induce
NO production by macrophages [26]. Inhibition of these cytokines could be a
mechanism by which PTX and ROL suppress NO production in macrophages.
However, this is unlikely to be the only mechanism, since we find that addition of
TNFo and IL-12 to stimulated RAW cells in the presence of ROL does not restore
NO production. Inasmuch as IFNy is always added to the medium in our NO
production assays, and it is equally improbable that ROL was acting by suppressing
that cytokine.

Notably, our results are applicable in vivo since ROL suppresses macrophage
activation in SEB-injected mice. In this model, SEB (a potent superantigen) stimulates
both T-cell and macrophage activation by simultaneously binding to T-cell receptor
V[ elements (of some families) and class II MHC molecules of macrophages or other
antigen presenting cells [27]. Bacterial superantigen-induced lymphocyte responses
have been reported to be NO dependent and mediated by IFNy and I1L-12 [27].
Moreover, ex vivo the peritoneal macrophages of SEB-treated mice produce markedly
increased amounts of NO when stimulated with LPS; without addition of IFNy to
cultures [28]. We found that ROL suppresses NO production of peritoneal
macrophages collected 24 h after SEB injection. This effect mimics our observations

in vitro; however, in this case the drug may be acting by suppressing IFNy or other
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cytokine production and this question was not addressed in our study. Since the NOD
peritoneal macrophage has an abnormal phenotype, we examined the effect of ROL in
CD-1 mice, but the results were similar in both strains.

Suppression of NO production by macrophages could be an important
mechanism by which ROL and PTX protect from autoimmune diseases. In
autoimmune diabetes, cytokines have been implicated as immunological effector
molecules that induce dysfunction and destruction of pancreatic 3 cells. Interestingly,
the cytotoxicity of inflammatory cytokines such as IL-1 on iélet cells in vitro is at least
partially mediated by NO [29-31]. Thus, inhibition of NOS by L-arginine analogues (
N°monomethyl-L-argininefNMMA] and N, -nitro-L-arginine methyl ester [L-
NAME]) blocks IL-1-induced NO formation and prevents IL-1 induced inhibition of
insulin release in rat islets [32]. NO has been shown to inactivate important enzymes
in B cells by nitrosylation of target iron sulfur proteins e.g., mitochondial aconitase,
required for glucose oxidation and insulin release [33, 34]. This inactivation impairs f-
cell metabolism, diminishes the capacity of insulin secretion, and may eventually
cause P-cell death. NO is likely to be produced by islet-infitrating macrophages, and
such infiltration is an early event in insulitis and essential for the development of
diabetes. However islet cells can express iNOS [35], and it is possible that ROL and
PTX inhibit nitric oxide production by islet cells.

Our findings suggest that the PDE inhibitors such as PTX and ROL may be
effective in the therapy of autoimmune and/or inflammatory NO-mediated disorders.

PTX (Trental) is already in clinical use for the treatment of vascular diseases, and may
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find a new application in this context.
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Figure Legends

Figure 1. Suppression of NO production by PDE inhibitors. NO production from

IFNy (0.8 ng/ml) and LPS (30 ng/ml) costimulated RAW cells was determined by
measuring nitrite (a stable product derived from NO) using the Griess reagent, in 24 h
culture supernatants. A. Suppression of NO production by ROL. B. Suppression of NO
production by PTX. The results represent the mean of triplicate cultures = 1 SD. A
representative experiment is shown for each drug and three independent experiments

yielded similar results in each case.

Figure 2. Agents which increase intracellular cAMP suppress NO production. A.
Peritoneal wash macrophages from NOD mice (10-12 week old) were collected
without prior activation. The adherent cells were stimulated and supernatants analyzed
as in Fig. 1. Cells were incubated with IFNy and LPS in the presence or absence of
cAMP elevating agents, i.e., ROL (200 uM), PTX (5 mM), dibutyryl cAMP (db-
cAMP; 400 uM), 8-bromo-cAMP (br-cAMP; 250 uM), or Forskolin (Forsk; 200 uM).
The results represent mean levels of nitrite + 1 SD in triplicate cultures in a
representative experiment, and 2 experiments yielded similar results. B. Suppression
of NO production of IFNy and LPS costimulated RAW cells versus the concentration

of 8-bromo-cAMP (AAA) or dibutyryl cAMP(------). The data represent percent
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inhibition of nitrite production + 1 SD of triplicate wells in a representative

experiment, and 3 experiments yielded similar results.

Figure 3. Time response curve of ROL effect on total cellular cAMP levels. A. RAW
cells were seeded at a density of 6 x 10* per well in 24 well plates. The cells were
stimulated as in Fig. 1 with a combination of IFNy and LPS in the presence or absence
of ROL (200 puM). The total cellular cAMP concentrations were measured at different
time points, and the results represent the mean of triplicate cultures + 1 SD. The 24 h
level of cAMP was 438.75 £+ 17.3 pmol/well, which is significantly elevated over the
time 0 level (p < 0.05). A representative experiment is shown, and two independent
experiments yielded similar results. B. ROL elevates the total cellular cAMP level in a
dose dependent manner. RAW cells were stimulated with a combination of IFNy and
LPS with or without ROL (3.1 uM - 200uM). The total cellular cAMP levels were
measured after 30 minutes, and the results represent the mean of triplicate cultures * 1

SD.

Figure 4. ROL and PTX suppress iNOS mRNA expression. RAW cells were
stimulated with LPS and IFNy as described in the legend to Figl, with either medium
alone (left panels), ROL (200 pM; middle panels), or PTX (5 mM,; right panels). RT-
PCR with GAPDH and iNOS primers was performed on total RNA extracted at 45
min, 2 h, 4 h, and 6 h after initiation of culture. Agarose gels were stained with

ethidium bromide. Stimulation times are reported inh at the top of the panels. Upper
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panels, iNOS RT-PCR; lower panels, GAPDH RT-PCR; M, molecular size markers

(DNA 100 bp ladder).

Figure 5. Administration of ROL suppresses macrophage activation in vivo. The
peritoneal wash macrophages of NOD mice injected 1.p. with SEB (100 pg) without
ROL treatment (SEB) or with ROL treatment (SEB + ROL), were recovered and
stimulated in culture with LPS (see material and methods). Supernatants were
collected after 24 h in culture for nitrite measurement. The results represent the mean

nitrite levels + 1 SD (n = 6 mice/group).

F iguré 6. Suppression of NO production is not secondary to decreased TNFou and I1.-
12 production. RAW cells were stimulated with IFNy (0.8 ng/ml) and LPS (30 ng/ml)
with or without ROL (200 or 66 uM). A. Recombinant IL-12 was added at the start of
cultures. B. Recombinant TNFo was added at the start of cultures. In both panels,
supernatants were collected after 24 h for nitrite measurement. The results represent
the mean of triplicate cultures + 1 SD. A representative experiment is shown, and three

experiments yielded similar results.
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ABSTRACT

The general phosphodiesterase (PDE) inhibitor pentoxifylline (PTX), and the
PDE type IV mhibitor rolipram (ROL), both increase intracellular cAMP levels and
suppress inflammatory cytokine production by T cells and macrophages. We have
previously shown that PTX and ROL protect from autoimmune diabetes in NOD mice.
These drugs may mediate some of their anti-inflammatory effects by blocking nitric
oxide (NO) production by macrophages. In this study, we investigated the effect of
PDE inhibitors in blocking NO production by insulin secreting NIT-1 insulinoma cells
and mouse islet cells in vitro and in vivo. Insulinoma cells and islet cells produced NO
when stimulated with a combination of inflammatory cytokines and LPS. We found
that both PTX and ROL markedly suppressed this induced NO production. Islet cells
express PDEs 1II and I'V and, accordingly, a PDE III inhibitor cilostamide (CIL) also
suppressed NO production, and a combination of ROL and CIL had a synergistic
effect. This suppression appeared to be mediated at least in part by elevating cAMP
level, and was mimicked by other cAMP elevating agents, i.e., membrane permeable
cAMP analogues (dibutyryl cAMP and 8-bromo cAMP), and an adenylate cyclase
stimulator (Forskolin). PDE inhibitors suppressed the expression of inducible nitric
oxide synthase (iNOS) mRNA. /n vivo, treatment with PTX or ROL prevented iNOS
protein expression in the islets of NOD mice with cyclophosphamide-accelerated
disease. Our findings suggest that PDE inhibitors can protect islets against

autoimmunity.
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INTRODUCTION

The isozymes of cyclic-3’,5” nucleotide phosphodiesterase (PDE) are critically
important components of the cyclic-3’,5” adenosine monophosphate (cAMP) protein
kinase A (PKA) signaling pathway. PDE inhibitors elevate intracellular cAMP levels,
and can regulate many processes including immune responses. There are at least ten
PDE families [1], several subtypes and numerous isoform splice variants. PDE
isozymes differ in molecular structure, catalytic properties, intracellular regulation and
location, sensitivity to selective inhibitors, as well as selective expression in various

cell types.

PDE type IV (PDE4) is the major type in macrophages while lymphocytes
express both type Il (PDE3) and PDE4 [2]. Islet B cells, like lymphocytes, have been
shown to express these two types [3]. Rolipram (ROL), a specific PDE4 inhibitor, and
pentoxifylline (PTX), a general PDE inhibitor, suppress inflammatory cytokines
production and are therapeutically effective in several autoimmune and/or
inflammatory diseases. For example, ROL [4] and PTX [5] prevent experimental
allergic encephalomyelitis in rodents, and PTX has been found to inhibit contact
dermatitis in mice [6]. Suppression of TNFa production by these drugs is well
documented [7, 8]. We have shown that ROL and PTX prevent insulitis and
spontaneous diabetes in NOD mice, as well as cyclophosphamide (CYP)-accelerated
diabetes in the same strain [8]. In addition, we showed that these drugs suppress

interferon gamma (IFNy) and interleukin-12 (IL-12) production.
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Cytokines appear to be important mediators of islet f cell dysfunction and
destruction. Interleukin 1 beta (IL-1[), IFNy and TNFa., particulary in combination,
are toxic to P cells in culture [9, 10]. The molecular mechanisms of toxicity are not
well understood. However, cytokines augment inducible nitric oxide synthase (iNOS)
expression and consequently nitric oxide (NO) production, and some investigators

have proposed that this contributes to islet cell damage [11].

We recently reported that ROL and PTX suppress NO production by
macrophages in vitro and in vivo [12]. However, the effects of these PDE inhibitors on
NO production by islet cells have not been reported. In this study, we demonstrate that
PDE3 or PDE4 inhibitors block NO production by islet cells, and that combined
inhibition is most effective. This inhibitory effect is apparent in vivo, and provides an
important new avenue for the prevention or treatment of inflammatory/autoimmune

diseases.

RESEARCH DESIGN AND METHODS
Mice.

Female NOD mice (5-6 weeks) were purchased from Taconic farm
(Germantown, NY). Male CD-1 mice (5-6 weeks) were purchased from Charles River

Canada (St. Constant, Quebec, Canada). Mice were housed under pathogen-free

conditions.
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NIT-1 cell culture and stimulation.

The NIT-1 insulinoma cell line is of transgenic NOD mouse origin (ATCC,
Rockville, MD). To stimulate NO production, NIT-1 cells were seeded in 96 well
plates in Ham’s F12K medium containing 10% heat-inactivated dialyzed fetal bovine
serum (FBS), at a density of 0.5 X 10° cells /100 pL/well, at 37°C for 40 h. Then, the
supernatant was discarded and replaced with medium containing IFNy (0.4 ng/ml),
LPS (30 ng/ml), (Sigma, ST. Louis, MO), IL-1B (5 ng/ml), and TNFa (10 ng/ml)
(Pepro Tech INC., Rocky Hill, USA). Where indicated, cultures were supplemented
with either ROL (Shering AG, Berlin, Germany), PTX (Sigma), Cilostamide (CIL)
(Biomol), Forskolin (Sigma), or cAMP analogues (dibutyryl cAMP or 8-bromo-
cAMP) (Sigma). After a further 40 h of culture, the supernatant was collected for

nitrite measurement.

Islet isolation and culture.

Mouse islets were isolated from the pancreas of CD-1 mice (5-6 weeks) as
previously described [13], with Liberase RI enzyme digestion (Roch Diagnostic,
Montreal), according to the manufacturer’s instructions. The isolated islets (pooled
from 15-18 mice) were isolated on a Ficoll density gradient and cultured overnight in
CMRL 1066 media supplemented with 10% FBS, soya bean trypsin inhibitors,
fungison and penicillin streptomycin (Gibco). Subsequently, the islets were seeded at a

density of 400 islets/100 pL/well in 96 wells plates in conditioned medium containing
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IL-1pB, IFNy, TNFa, and LPS (as described above). After a further 40 h, the
supernatants were collected for nitrite measurement and the plates were frozen at -80

°C prior to DNA content measurement.

Determination of islet cells purity.

We trysinized the isolated islets into single cells using trypsin solution (0.25%
in PBS). For flow cytometry analysis, the cells were incubated with FITC anti-mouse
CD11b (Mac-1; a macrophage marker) monoclonal antibody (Cederlane, Ontario,
CA). To identify macrophages on the basis of phagocytic activity, we incubated the
cells with fluorescent microbeads (Cederlane, Ontario, Ca.) for 30 min at 37°C. By
fluorescent microscopy, we counted the number of positive cells (3 or more
fluorescent microbeads inside the cell) in 10 pL cell suspention containing 10° cells.

At least 12 x 10 cells were examined from each islet preparation.

Nitrite measurement.

Nitrite accumulation as an indicator of NO production was measured using the
Griess reagent as we have described [14]. Absorbance was measured at 540 nm in a
microplate reader (Titertek Instruments, Hunstville, AL). Nitrite concentration was

calculated from NaNO, standard curve.

153



Percent inhibition of nitrite production = 100 - (the NO’, level with inhibitor) X 100

(the NO, level without inhibitor)

IC,, values were calculated from the dose response percentage of the inhibition curve

for each treatment.

DNA content determination by fluorometric assay.

We followed the protocol described by Rago et al. [15] with some
modifications. Briefly, culture supernatants were removed from the wells containing
islet cells or adherent NIT-1 cells (96 well plates). The plates were frozen in -80 °C
and thawed until they reached room temperature, and 100 pLL of TNE buffer (10 mM
Tris, ] mM EDTA, 2 M NaCl, pH 7.4) was added. The cell lysate was transferred to a
microtube with 1 ml of Hoechst (Sigma) 1:2000 dilution of stock solution (200
pg/ml). The fluorescent emission was measured with a fluorescent spectrophotometer
(Hoefer) at a wave length 457 nm. DNA content was determined from a standard

curve obtained with calf thymus DNA (Sigma).
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Determination of iNOS mRNA by reverse transcription-polymerase

chain reaction (RT-PCR).

PCR amplification of cDNA with primers specific for iINOS and glyceraldehyde
-3-phosphate dehydrogenase (GAPDH) was carried out, and the products were
visualized by electrophoresis in 2% agarose containing ethidium bromide. iNOS
primers were: sense, 5 -CTTCCGAAGTTTCTGGCAGCAGCG-3’; antisense, 5'-
GAGCCTCGTGGCTTTGGGCTCCTC-3’ and the PCR product was 487 bp. GAPDH
primefs were: sense, 5’- TCCACCACCCTGTTGGTGTA-3’; antisense,5’-
ACCACAGTCCATGCCATCAC-3’ and the PCR product was 450 bp. PCR reactions
were run for 25-35 cycles, and reactions were terminated in the linear portion of the

amplification.

Cyclophosphamide-accelerated diabetes in NOD

Female NOD mice (5-6 weeks) were injected i.p. with cyclophosphamide
(CYP) (250 mg/kg). The mice were treated with either ROL (14 mg/kg) or PTX (80
mg/kg) or PBS, i.p.,b.i.d., for 10 days. The mice were killed and the pancreata were

recovered and fixed in 10% formalin, and histological slides were prepared.

155



Immunohistochemical detection of iNOS in the pancreas.

Immunochistochemistry was performed on formalin-fixed tissue with the Histo-
Mouse SP kit (Inter Medico, Markham, Ontario). The primary antibodies were either
polyclonal rabbit anti-mouse iNOS (Biomol Research Laboratory, PA, USA), or
guinea pig antihuman insulin (which cross reacts with mouse insulin), followed by

biotinelated secondary antibody, streptavidin-peroxidase conjugate and ABC substrate.

Grading of insulitis.

Insulitis was graded as described as described by Charlton et al. [16], based on
lymphocytic infiltation, as follows; grade 0, normal islet totally free of any peri-isiet
mononuclear cells; grade 1, focal peri-islet infiltrate <25% of islet circumference;
grade 2, peri-islet infiltrate > 25% of islet circumference; grade 3, intra-islet
infiltration with good retention of islet cells; and grade 4, extensive intra-islet
infiltration with gross distortion or destruction of islet morphology. Coded slides were
examined independently by two observers, and statistical analysis was performed with

the X7 test.
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RESULTS
PTX, ROL and CIL inhibit NO production by NIT-1 cells and islet

cells.

NO is rapidly transformed to nitrite in culture (breakdown stable product), and
we measured nitrite levels as an indication of NO production. In the absence of
stimulation, NIT-1 cells produced an undetectable amount of nitrite (not shown).
When IL-1p was added alone, a small amount of nitrite was detected, but when either
IFNy, TNFa, or LPS were added alone, nitrite was undetectable (not shown).
However, NIT-1 cells produced a considerable amount of NO when stimulated with a
combination of IL-1B (5 ng/ml), TNFa (10 ng/ml), IFNy (0.4 ng/ml), and LPS (30
ng/ml) (Fig.1A- C). This cytokine combination and these concentrations were found

optimal in preliminary experiments, and used subsequently.

We found that ROL suppresses nitrite production in a dose dependent manner
(Fig.1A). A concentration of 6.25 uM ROL was sufficient to significantly suppress
nitrite production (p= 0.009), while 200 uM concentration suppressed 87 % of nitrite
production. PTX also suppressed nitrite production but at a higher concentration (ROL
IC;; =96.5 uM and PTX IC,, _1.48 mM) (Fig. 1B). Thus, on a molar basis ROL was
15 times more potent than PTX. The suppression of NO production cannot be

attributed to cell death since there was no increase in dead cells as determined by
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Trypan blue dye exclusion, and no decrease in adherent-cell DNA content (data not

shown).

CIL, a specific PDE3 inhibitor, also suppressed NO production (IC, = 327.5
uM) (Fig.1A). Notably, a combination of ROL and CIL has a strong suppressive
effect on NO production (Fig. 1C), much higher than either drug alone. Thus, ROL at
12.5 uM + CIL at 12.5 pM markedly inhibited NO production, but not 25 uM of each
inhibitor alone. This was greater than a simple additive effect, suggesting a synergistic

effect.

Mouse islet cells also produced NO when stimulated with the same
cytokine/LPS mixture as with NIT-1 cells and, similarly to insulinoma cells, ROL and
PTX suppressed NO production (P < 0.001) (Fig. 2). Macrophages constituted less
than one cell per 2000 islet celis as determined by flow cytometry analysis with Mac-1
antibody staining, and ingestion of fluorescent microbeads in culture (data not shown).
We found that the amount of nitrite produced by this number of peritoneal
macrophages was less than 2 uM (not shown), which is much less than the values
produced by islet-derived cells. Thus, NO does not appear to be produced by

contaminating macrophages.

ROL and PTX block iNOS mRNA expression.

We analyzed the expression of iNOS mRNA at different time points, in
stimulated (IL-1P, TNF-o, IFN~-y and LPS) NIT-1 cells, in the presence or absence of

ROL or PTX. iNOS mRNA expression was maximal after 4 hours, and severely
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inhibitéd by either ROL (200 uM) or PTX (5 mM) (Fig.3), as determined by semi-

quantitative RT-PCR analysis.

cAMP elevating factors inhibit NO production by NIT-1 cells.

Membrane permeable cAMP analogues, dibutyryl cAMP and 8-bromo-cAMP,
both inhibited NO production by stimulated NIT-1 cells (Fig.4A). Similarly,
Forskolin, which elevates cAMP levels by stimulating adenylate cyclase, suppressed
NO production by NIT-1 cells (Fig.4B). Cell death was not increased by these agents

(not shown).

ROL or PTX treatment inhibits iNOS expression in pancreatic islets

Ten days after receiving a dose of 250 mg/kg of CYP, most islets of control
NOD mice showed insulitis between grade 3 and 4 with many iNOS-positive cells
(Table 1). Even the few remaining islets with low-grade insulitis had visible iNOS-
positive cells (Fig. 5A, B), although these cells were clearly found in higher numbers
in islets with higher grade lesions, such as grade 3 (Fig. 5C). In groups receiving either
ROL (14 mg/kg 1.p., b.i.d.) (Table 1; Fig. D-F) or PTX (80 mg/kg i.p., b.i.d) (Table 1;
Fig. G, H) for 10 days, the severity of insulitis was significantly reduced. In addition,

both ROL and PTX reduced the number of iNOS positive cells (P < 0.0001) (Table 1,
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Fig. 5F, H). Occasional islets of PDE inhibitor-treated mice showed grade 3 lesions,

but even these islets expressed very few iNOS-positive cells (data not shown).

DISCUSSION

NO is 4 potent and pleiotropic mediator with physiologic and toxic activity. NO
is synthesized by various isoforms of nitric oxide synthase (NOS) which catalyze the
oxidation of L-arginine to form L-citrulline and NO [17]. NOS exists in a constitutive
isoforms present in endothelial cells (eNOS) or neurons (nNOS), and a cytokine or
endotoxin inducible form (iNOS) [18,19]. The iNOS isoform was first identified in
macrophages, but now has been found in many nucleated cells, including hepatocytes,
islets cells, chondrocytes, smooth muscle cells, megakaryocytes, thyrocytes, and
’mesangial cells [20-22]. NO inactivates important enzymes in 3 cells by nitrosylation
of target iron sulphur proteins, e.g., mitochondrial aconitase, required for glucose
oxidation and insulin release [23, 24]. This inactivation impairs B-cell metabolism, and
diminishes the capacity of insulin secretion and may eventually cause B-cell death. NO
is likely to be produced by islet-infiltrating macrophages, and such infiltration is an
early event in insulitis and essential for the development of diabetes [25]. However,
islet B-cells could be another source for NO production which contributes to p-cell

damage and death.

Agents that elevate cAMP have been reported to inhibit NO production by

some cells. We have recently reported [22] that both ROL and PTX suppress iNOS
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expression and NO production by the RAW 264.7 macrophage cell line and freshly
isolated peritoneal macrophages. Bulut et al. [26] found that a combination of
prostaglandin E2 (adenylate cyclase activator) and isobutyl methyl-xanthine (IBMX; a
general PDE inhibitor) induced prolonged elevation of cAMP level and suppressed
iINOS activity in an IFNy/LPS costimulated murine macrophage cell line (J774). Other
studies showed that elevated cAMP levels have a cell-type specific effect in terms of

NO production {27, 28].

To our knowledge, the current study is the first to investigate the effect of
cAMP elevating agents on NO production by insulin-producing cells. Cytokine
sttmulation (IL-1p, IFNy and TNFa), combined with LPS stimulation, induced NO
production by both NIT-1 insulinoma cells and normal islet cells. We found that PDE
mhibitors, such as the general inhibitor PTX, suppressed NO production in both cell
types. Islets of Langerhans were isolated from the pancreas of normal CD-1-strain
mice, and NO appeared to be produced by endocrine islet cells, rather than
contaminating macrophages. Macrophages constituted less than one cell per 2000 islet
cells, and the amount of NO (measured as nitrite) produced by equivalent numbers of

macrophages was found to be much less than the values obtained with cultured islets.

Therapeutically, it may be desirable to administer an isoform-specific PDE
inhibitor, rather than a general inhibitor like PTX. Since islet cells express both PDE3
and PDE4 3], it was of interest to compare the effectiveness of selective inhibitors of
these enzymes. For this purpose, we inhibited PDE3 with CIL and PDE4 with ROL.

We observed that both PDE inhibitors were effective at suppressing NO production
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when used alone, and several fold more effective than PTX on a molar basis.
Moreover, when used together they had more than an additive effect, suggesting
synergism. This is of obvious clinical interest, since potential adverse effects may be

reduced by administering these drugs in combination at a reduced dose of each.

The suppression of NO production appeared to be at least partly mediated by
elevated cAMP. It was mimicked by raising the intracellular cAMP level by either
cell membrane permeable cAMP analogues (dibutyryl-cAMP and §-bromo-cAMP), or
an adenylate cyclase activator (Forskolin). This suppression was at the transcriptional
level, since iINOS mRNA expression was markedly inhibited by either PTX or ROL.
The mechanism by which elevation of cAMP inhibits iNOS gene transcription, and
ultimately NO production, is yet unclear. In some cells, increased cAMP is associated
with reduced activation of NF-.p, a transcription factor regulating iNOS gene
transcription [29]. Interestingly, some cytokines whose production is inhibited by ROL
and PTX also have NF-. 3 binding elements in their promoters or enhancers [30]. We
speculate that this could represent a common factor leading to inhibited expression of

these genes.

NOD mice develop a form of autoimmune insulin-dependent diabetes
mellitus (IDDM) similar to the human disease [10, 31]. The precise mechanisms of
islet B cells destruction in these mice are not totally elucidated, but there is evidence
for a T-helper type 1 (Thl)-mediated response with IFNy production, associated with
macrophages stimulation and production of IL-12, TNFa, IL-1, and NO. In NOD

mice, ROL and PTX prevent diabetes, perhaps in part by suppressing TNFa, [FNy,
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and IL-12 as we have shown in [8], but prior to this study their effect on NO

production was not known.

To determine if PDE inhibitors alter NO production in vivo, we administered
these drugs to CYP-treated NOD mice. CYP precipitates the onset of diabetes in these
mice [16] and this is associated with increased intra-islet IFNy and NO production. We
found that the NOD mice injected with CYP (250 mg/kg) developed severe insulitis
within 10 days of CYP injection and, unlike control mice, had many iNOS-positive
islet cells. ROL or PTX treatment markedly reduced the severity of insulitis, as well as
the number of iNOS-positive cells in the islets. Thus, from this and previous studies,
we now have evidence that PDE inhibitors block at least four mediators (TNFo, IFNy,

IL-12 and NO) that have been implicated in islet-cell destruction.

Although we have not examined this question in this study, PDE inhibitors
could be altering T-helper type 2 (Th2) activity. Indeed, cAMP clearly has
immunomodulatory activity, and its elevation by PDE inhibitors favors Th2 responses
[5, 32]. Although most cAMP effects are mediated through the PKA pathway, this
does not appear to be the case in lymphocytes. Instead, cAMP stimulates activation of
p38 mitogen-activated protein kinase in the Th2 cells [32]. Activated Th2 cells
produce cytokines (IL-4, [L-10, and IL-13) which inhibit the production of NO and
other inflammatory mediators by macrophages [33]. These cytokines also suppress
IFNy-production by Thl cells [10]. Some of these Th2 cytokines may also act directly
on islet cells [34], but this has not been extensively studied. In any case, Th2 bias

could be one factor protecting mice treated with PDE inhibitors.

163



Clearly, the ability of PDE inhibitors to protect islets from autoimmunity
may be related to suppression of several inflammatory mediators, and not necessarily
NO. Moreover, in vivo, decreased iNOS expression may have been secondary to
decreased cytokine production, rather than a direct inhibitory drug effect on the
transcription of the iNOS gene. In fact, we observed that the great majority of islets in
PDE-treated NOD mice had only low-grade inflammatory lesions. Nevertheless,
occasional islets had higher grade (grade 3) lesions but still very few iNOS-positive

cells, perhaps reflecting noncytokine- related inhibitory effects.

In terms of the pathogenesis of this disease, there is substantial published
evidence that NO can contribute to -cell injury. For instance, incubation of rat islets
with IL-1P results in a concentration and time dependent inhibition of glucose-
stimulated insulin secretion, followed by cell death after prolonged exposure [35]. The
free radical NO appears implicated, inasmuch as p-cell damage can be prevented by
the NOS inhibitors N9 nitro-L-arginine methylester (L-NAME) and N°-monomethyl-
L-arginin (L-NMMA) [36-38]. A recent study in INOS gene-knockout mice suggests
cytokine-induced islet cell apoptosis is NO independent, whereas necrosis required
NO formation [39]. Consistent with this, iNOS deficient mice have increased

resistance to streptozotocin-induced diabetes [40].

Previous studies have shown that inhibition of NO formation prevents IDDM.
Thus, administration of L-NMMA [41] and L-NAME [42] protected against IDDM in
mice treated with multiple low doses of streptozotocin. However, when the NOS

inhibitor aminoguanidine (AG) was administered to either NOD mice [43], diabetes-
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prone Biobreeding rats [44], or in conjunction with low-dose streptozotocin injections
in C57BL/Ks mice [45], it failed to decrease the incidence of IDDM. In this context, it
may be of relevance that AG augments the free oxygen radical hydrogen peroxide by
an inhibition of catalase, in some cell types [46]. In addition, high concentrations of
AG (= 4.55 mM) impaired B-cell function and inhibited insulin release from human
islets [47, 48]. In contrast, PDE3 inhibitors have been reported to enhance insulin

secretion while PDE4 inhibitors have no effect [3].

We show that PDE inhibitors have a therapeutic potential against NO- and/or
cytokine-mediated immunological disorders. Conveniently, these drugs can be
administrated orally. PTX (Trental) is in clinical use for the treatment of intermittent
claudication and is well tolerated. ROL has been studied as an anti-depressant drug,
with side effects including gastrointestinal disorders, dizziness and headache.
Interestingly, a number of newer PDE4 inhibitors have been synthesized, displaying
up to 1000 times more affinity for PDE4 than ROL, and perhaps they will have
therapeutic advantages. In addition, there are several PDE3 inhibitors available for
clinical use, such as cilostamide, cilostazol, milrinone and amrinone. Cilostasol, for
instance, was shown to have minimal side effects and was recently approved for the
treatment of intermittent claudication [47], due to its vasodilatory and platelet
activation inhibitory activities. PDE inhibitors may present a novel therapeutic

approach for diabetes and other autoimmune and/or inflammatory diseases
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Table 1: Reduction of iNOS-positive islet cells in CYP-treated NOD mice

Treatment Groups *

Mean grade iINOS-positive
CYP ROL PTX of Insulitis ” cells/islet °
+ - - 34 7.8
+ - + 1.3° 0.5°
+ + - 1.4° 0.6°

a. Female NOD mice (5-6 weeks) were injected with CYP (250 mg/kg). The mice
were treated with either PTX (80 mg/kg), ROL (14mg/kg) or PBS, i.p.,b.i.d, for 10
days ( n = 10 mice/group). The mice were killed after 10 days of treatment for

examination of tissues.

b. H& E stained slides were used for the grading of insulitis. Immunohistochemical
1dentification of iINOS-positive cells was performed on formalin-fixed tissue with
Histo-Mouse SP kit, using a polyclonal rabbit anti-mouse iNOS primary antibody. The

results represent the mean number of iNOS-positive cells per islet of Langerhans.

¢c. P <0.001 (X* test) versus control mice not receiving ROL or PTX.
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FIGURE LEGENDS

Figure 1. Suppression of NO production by PDE inhibitors. NO production from IL-
IB (5 ng/ml), TNFa (10 ng/ml), IFNy (0.4 ng/ml) and LPS (30 ng/ml) costimulated
NIT-1 insulinoma cells was determined by measuring nitrite levels (a stable product
derived from NO) using the Griess reagent, in 40 h culture supernatants. A.
Suppression of NO production by ROL and CIL. B. Suppression of NO production by
PTX. C. CIL and ROL combination. The results represent the mean of triplicate
cultures + 1 SD. A representative experiment is shown for each drug or combination

and three independent experiments yielded similar results in each case.

Figure 2. Suppression of NO production in mouse islet cells by PDE inhibitors. NO
production from IL-1p (5 ng/ml), TNFa (10 ng/ml), IFNy (0.4 ng/ml) and LPS (30
ng/ml) costimulated mice islets are reported. ROL (200 uM) or PTX (5 mM)
significantly suppressed NO production (P<0.01). The results represent the mean of
triplicate cultures +1 SD. A representative experiment is shown and three independent

experiments yielded similar results.

Figure 3. ROL and PTX suppress iNOS mRNA expression. NIT-1 insulinoma cells
were stimulated as described in the legend to Figure 1, with either medium alone, ROL
(200 uM), or PTX (5 mM). RT-PCR with GAPDH and iNOS primers was performed

on total RNA extracted at 4h after initiation of culture. Agarose gels were stained with
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ethidium bromide. Upper panel, iNOS RT-PCR; lower panel, GAPDH RT-PCR; DNA

100 bp ladder, left lane of upper panel and right lane of lower panel.

Figure 4. Agents which increase intracellular cAMP levels suppress NO production.
The results represent the percent inhibition of nitrite production by NIT-1 insulinoma
cells stimulated as described in the legend to Figure 1. A. cAMP analogues, dibutyryl
cAMP (solid line) or 8-bromo-cAMP (broken line). B. Adenylate cyclase stimulator
(Forskolin). Data represent percent inhibition of nitrite production + 1 SD of triplicate
cultures in a representative experiments, and 3 experiments yielded similar results

(panels A and B).

Figure 5. Immunohistochemical analysis of iNOS expression. Female NOD mice (5-6
weeks) were injected with CYP (250 mg/kg). The mice were treated with either PTX
(80 mg/kg), ROL (14 mg/kg), or PBS, i.p.,b.i.d., for 10 days (n =10 mice/group), and
then killed for examination of tissues. H&E stained slides were used for the grading of
insulitis. Immunohistochemical staining for iNOS or insulin was performed in
formalin fixed tissue with Histo-Mouse SP kit. The primary antibodies were either
polyclonal rabbit anti-mouse iINOS or Guinea pig anti human insulin polyclonal
antibodies which cross react with mouse insulin. A. H&E staining, control CYP-
treated mice (no PDE inhibitors). B. and C. iNOS staining, control CYP-treated mice.

D. H&E, CYP-and ROL-treated mice. E. insulin staining, CYP-and ROL-treated mice.
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F. iNOS staining, CYP-and ROL-treated mice. G. H&E, CYP-and PTX-treated mice.

H. iNOS staining, CYP-and PTX-treated mice
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. DISCUSSION
The PDE inhibitors PTX (a general inhibitor) and ROL (a type 4 inhibitor),
have been reported to have anti-inflammatory effects. They suppress the production of
inﬂa;rnmatory cyto’kines such as TNFa, IFNy and IL-12. These drugs elevate
' intracellular cAMP 1evéls and modulate the immune response in favor of Th2
respbnses. Both PTX and RO"L haﬂfe been répbfted to be ‘therapeutically effective in
various modeis of autoimmuﬁe and/or inﬂaxnmatory diseases sﬁch as EAE, SLE,
~ contact dermatitis and septic shock. Their effects on NO production, an important
inflammatory mediator, are not well studied and there aré contradictory results in the
literature. Hc;we\}er, elevated intracellular cAMP levels suppressed NO production in
‘some;cells’.f
: Qur hypot'heses wér'e: 1) PDE inhibitors would prevent insulitis and diabetes in
NOD mice by shppressmg' inflammatory cytokines and mOdulatihg the immune
responsé. 2) Theée inhibitors would have 1nh1b1tory effects on maérophage NO
production. 3) They would also directly éuppress NO productioh by islet cells. 4)
Selective PDE3 and PDE4 inhibitors would be effective since these PDE types are
expressed in isle’t’ cells and macrophages. 5) The anti—inﬂ’ammatory effects of PDE
inhibitors result from elevated cAMP 1e§els. |
In the ﬁfst part of the”study, we fo’imd thét PDE inhibitors (PTX and ROL)

prevent insulitis and diabetes in NOD mice. A 4 week treatment with either PTX or
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ROL has a strong protective effect, that was still apparent 11 weeks after withdrawing
the drugs. At optimal doses, both drugs were equally effective. These findings are
novel and suggest that these inhibitors have a therapeutic potential. PTX is in clinical
use and ROL was studied as an antidepressant. Both drugs can be administered orally
" and they are tolerated with mild undesirable side effects. The target population could
be people at high risk of developing diabetes such as monozygotic twins when one of
the tWins has diabetés, siblings 6f diabetics, or thbse with ra‘ strong family history of
diabetes. These ‘d'rugs can be‘ useful also in recently diagnosed diaBetic, as they may
reduce the insulin requirement and proloﬁg the hdneymoon (non-insulin-requiring)
period. Currenﬂy, there is no adequate preventive therapy for these high-risk
populations.

The ability to predict diabetes is improving with the use of genetic and
immune techniques. Elevated autoantibody titres, such as ICA, IA-2, IAA, and GAD,
have been shown to have a considerable predictive value. This is improved by analysis
of several autoantibody titers. In additién, the presence of HLA susceptibility genes
can be analysed and’ has a niaj or predictive Vaiﬁe.

The exact mechanisms by which PDE inhibitors prevent diabetes are not
totaliy clear. P cell destruction appears to be mediated mainly by T cells and
macrophages. These two effector cell types can destroy B cell by direct interaction or
by inﬂammafory mediatﬁr production. Cytokihes and NO appear to have important

roles in |3 cell dysfunction and destruction. Moreover, several lines of evidence
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suggest that the cytotoxic effects of cytokines on f cells are mediated at least in part
by the induction of NO production.

The suppression of cytokines using monoclonal antibodies, soluble receptors or
receptor antagonists appears to be effective in animal models of diabetes. Cytokine
gene therapy also has been reported to be effective, but there is still a question
concerning the possibility of human applications. NOS inhibitors have also been
shown to prevent diabetes in animal models. However, these are generally non-
specific inhibitors which can suppreés all forms of NOS. Undé’sirable side effects, such
as hypertension, and learning/memory disorders, will limit the use of these inhibitors
in the clinic. The specific iNOS inhibitor AG has been studied, but unfortunately it
also has undesirable effects such as increased production of H,O, and suppression of
insulin production by P cells.

In the second part of the study, we examined the effects of PTX and ROL on
NO production by peritoneal macrophages and RAW 246.7 cells in vivo and in vitro.
We also correlated these effects with elevated cAMP levels. We found that both PTX
and ROL inhibited NO production by macrophages. These inhibitbry effects
correlated with elevated cAMP levels and were mimicked by other agents which
elevate cAMP levels such as dibutyryl cAMP, 8-bromo-cAMP and Forskolin. The
suppression was found to be at the transcriptional level. Macrophages express mainly
PDEA4, and it was not surprisingly that suppression of PDE4 was sufficient to inhibit
NO production. There was no sighiﬁcant difference in the maximum degree of

suppression of NO production between ROL and PTX. However, on a molar basis
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ROL was about 40 times more effective. Both RAW246.7 cell and peritoneal
macrophages responded sﬁnilarly to these drugs.' Thus, it appears that the regulation of
INOS expression is similar in both cell types. Interestingly, the suppression of NO
production by macrophages was not secondary to the suppression of TNFa, IL-12 or
IFNy, since addition of these cytokines to the medium did not restore NO production.

Our results are applicable in vivo since ROL suppresses macrophage activation
in SEB-injected NOD mice. In this model, SEB stimulates both T-cell and
macrophage activation by simultaneously binding to T-cell receptor V3 elements (of
some families) and class II MHC molecules of macrophages or other APCs. Bacterial
superantigen-induced lymphocyte responses have been reported to be NO dependent
and mediated at least in part by IFNy and I1.-12. We found that ROL suppressed NO
production of peritoneal macrophages collected 24 h after SEB injection. This effect
mimics our observation in vitro. In this case, the drug may be acting by suppressing
IFNy or other cytokines. Since, the NOD peritoneal macrophage has an abnormal
phenotype, we exa;minéd the effect of ROL in CD-1 mice, but the result were similar
in both strains. |

In the third part of the study, we examined the effect of PDE inhibitors on |

iNOS expression and NO production by insuliﬁ producing NIT-1 insulinoma cells and
normal islet cells. We found that PDE inhibitors suppressed NO production by both
NIT-1 and islet cells. As with macrophages, this suppression appears to be mediated
by elevated cAMP levels, and is obse'ryed ét the transcriptional lkevel. Therapeutically,

given the wide tissue distribution of PDEgs, it may be desirable to administer an
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_isoform-specific PDE inhibitor, rather than a general inhibitor like PTX. Since islet
~ cells express both PDE3 and PDE4, it was of interest to compare the effectiveness of
selective inhibitors of these enzymes. For this purpose, we inhibited PDE3 with CIL
and PDE4 with ROL. We observed that both PDE inhibitors were equally effective at
Suppreséing NO production when used alone, and several fold more effective than
PTX on a’molar basis. Moreover, when used together they had more than an additive
effect, suggesting synergism. This is of obvious clinical interest, since potential
adverse éffects may be reduced by administering these drugs in combination at a
reduced dose of each.

PDE’ inhibitors have a therapeutic potential against NO- and/or cytokine-
mediated immunological disorders. Conveniently, these drugs can be administrated
orally. PTX (Trental) is in clinical use for the treatment of intermittent claudication
and is well tolerated. ROL has been studied as an anti-depressant drug, with side
effects including gasfrointestinal disorders, dizziness énd headache. Interestingly, a
number of newer PDE4 inhibitors have been synthesized, displaying up to 1000 times
more affinity for PDE4 than ROL, and perhaps they will have therapeutic advantages.
In addition, there are sevefal PDE3 inhibitors available for clinical use, such as
cilostamide, cilostazol, milrinone and amrinone. Cilostasél, for instance, was shown to
have minimal side effects and was recently approved for the treatment of intermittent
claudication, due to its vasodilatory and platelet activation inhibitory activities.

PDE inhibitors may present a novel therapeutic approach for the prevention of

type 1 diabetes Indeed, these inhibitors suppress various mediators implicated in P cell
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destruction. They elevate cAMP and modify the activity of many protein kinases and

the transcription of numerous genes. However, we cannot exclude the possibility that

PDE inhibitors also protect islet cells by mechanisms unrelated to their anti-

inﬂammatgry action. For instance, inhibition of PDE3 has been shown to enhance

insulin secretion, but inhibition of PDE4 does not appear to have a similar effect.
Thése studies are originai. To dur knowledge, we are the first to show:

1) The PDE inhibitors PTX and ROL prevent insulitis and diabetes in NOD mice.

2) Elevation of cAMP levels mediated by PDE inhibitors or other means, correlates

with suppression of iNOS transcription and NO production by macrophages.

3) Elevation of cAMP levels suppresses iNOS expréssion and NO production by islet

cells.

4) Clinically relevant selective (PDE3 and PDE4) PDE inhibitors suppress NO

production in both macrophages and islet cells.

In conclusion, PDE inhibitors have: a thefapeutic potential in many immune
disorders. These drugs can be considered for long-term prevéntive therapy in patients
at high risk of developing IDDM. Moreover, they may also be relevant in the context
of islet transplantation, since both cytokines and NO have been implicated in the

rejection process.
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