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Abstract

Differentiable functions with a locally flat surface (LI'S) have been recently introduced
and studied in convex optimization. Here we extend this notion in two directions: to
non-smooth convex and smooth generalized convex functions. An important feature
of these functions is that the Karush-Kuhn-Tucker condition is both necessary and
sufficient for optitnality. 'Then we use the propettics of lincar LFS functions and basic
point-to-set topology to study the “inverse” programming problem. In this problem,
a feasible, but nonoptimal, point is made optimal by stable perturbations of the
parameters. The results are applied to a case study in optimal production planning.
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Résumé

Récemment, on a introduit dans I'étude d’optimisation convexe les fonctions dérivables
a surface localement plate (SLP). Ici, nous développons cette idée dans deux direc-
tions: fonctions convexes non-dérivables, et fonctions convexes géncralisées dérivables.
Une caractéristique importante de ces fonctions est le fait que la condition Katush-
Kuhn-Tucker est non-sculement suffisante mais aussi nécessaire pour Poptinalité
Ensuite, nous utilisons les propric¢tés des fonctions SLP linéaires et la topologic pomt-
par-ensemble dans 1’étude du probleme de la programmation “inverse”™. lei, un point
réalisable, mais non-optimale, devient optimale par des pertubations stables des
parametres. On applique les résultats dans une é¢tude de cas qui concerne la planifi-
cations de la production optimale.
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Introduction

Characterizations of optimal solutions of convex programs were formulated in mid-
and late seventics. They arc part of the theory formulated by Ben-Israel, Ben-"Tal
and Zlobee, and their colleagues (sce, c.g., [1,6]). In the presence of extrancous
conditions, their results recover the classical theory of Karush, Kuhn and Tucker {16].
On the other hand, characterizations of “optimal inputs”(optimal parameters) over
“regions of stability” (i.c., 1egions of continuity of outputs) and thus characterizations
of “optimal recalizations” of lincar and convex models are quite recent (seey e.g. |7,
24,26,25,32,34,37]). The concept of a differentiable convex function wlt.h i lumlly
flat surface” (LFS) was recently introduced in [31]. These functions enjoy some
interesting and important properties. One such property is that for these functions
the Karush-Kulin-Tucker condition is both necessary and suflicient for optimality, If
some constraints do not belong to this class, then the optimality conditions assume
an asymptotic form.

The purpose of this thesis is twolold: The first objective is to study convex (notl
necessarily differentiable) as well as differentiable generalized convex funetions with
a locally flat surface. "The second is to find a solution to the “inverse problem” for

linear mathematical 1inodels.

Chapter 1 extends the concept of differentiable convex programs with LIS prop-
erty to the non-smooth (i.c., not-necessarily-different’able) convex case. Unlike the
differentiable case, providing an algebraic characterization for LIS lunctions in the
gencral case is not trivial. However, several results (specially Corollary 1.3) help us
identify these functions. Given a mathematical program, we regroup the constraints
to those that have LI'S property at a given feasible point and to those that do not,
Using the program rewritten in this form, we then take the approach by Ben-Istael,
Ben-Tal and Zlobec [4,6] and characterize optimality in “primal”, “dual” and “saddle-
point” forms. The “primal” form (Theorem 1.6) involves only elements (solutions and
directions) of the primal (decision variable) space. The “dual” forms (‘Theorems 1.7,
1.8, Corollaries 1.4, 1.5 and 1.6) involve elements (dual sets and Lagrange multipliers)
of the dual space. The “saddle-point” form (I'heoremn 1.9) involves the Lagrangian
function. Some applications of these LI'S Tunctions in single- and multi-objective
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programming conclude the chapter,

In Chapter 2, the concept of differentiable convex functions with LFS property is
further extended to the diffcrentiable generalized convex case. These functions are
then charactenized geometiically (Theorem 2.1 and Corollary 2.1) and algebraically
(Theorem 2.2). Again, we tegroup the constraints to those with LFS property at a
given point and to those without this property, in order to derive characterizations
of optimality similar to what we detived in the convex case. It is interesting that
the saddle-point-necessary optimality condition does not hold here even when all the
functions are pseudoconvex and enjoy the LFS property at an optimal solution (Exam-
ple 2.2). in the completely pseudoconvex case, if someof the constraints do not belong
to the dass of LIS functions, the optimality conditions again assume an asymptotic
form (‘Theorem 2.7). The last section of the chapter extends the characterizations
of differentiable convex multi-objective programs, which have appeared recently (sce,
e.g., [30,32]), to the pscudoconvex case. It further illustrates the role of differentiable
quasiconvex functions with LI'S property in multi-objective programming.

In Chapter 3, we focus our atlention to mathematical models and input opti-
mization. A new notion of stability is introduced and compared with the usual one
(sce, e.g., [32]) in input optimization and also with the “weak stability” introduced
m [21]. We then study optimal inputs with respect to this new notion of stability and
compate the results with the related ones from the literature. These results are then
applied to the classical control problem of Zermelo, adapted from [27].

T'he most important subject of Chapter 3 is the inverse problem. Considering
a mathematical model initially running with some input and a nonoptimal feasible
point, our objective is to perturb the system in a stable way so as to reach an input
at. which the feasible point becomes optimal. This objective may not be achievable,
in which case an alternative is to scarch for an optimal parameter at which the given
feasible point becomes as close as possible to being optimal. For the sake of simplicity,
we study only the inverse problem for linear models, i.e., an important subclass of
LI'S models. Tn particular, we give a characterization of optimal parameters for the
inverse problem using the duality propertics of linear programming (Theorem 3.15).
We also study the relation between the stability of the primal and dual linear models.
A numerical algorithm for finding a stable path that leads to an optimal paramcter
is adapted from [7]. The results are applied to a case study that was first studied, in

a simpler form, in [15].
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Chapter 1

LFS Functions in Convex
Programming

We will first 1ccall some basic notions in convex programming and then introduce a
class of differentiable and nondifferentiable convex functions for which the Karnsh-
Kuhn-Tucker condition is necessary for optimality. We regroup the constraints of
a given convex program to those that belong to this class and those that do not
For this form of the convex program, we will then give primal, dual and a saddle-
point characterization of optimality. We will further show that for the functions that
belong to this class in multi-objective optimization, Parcto solutions coincide with
strong Pareto solutions.

We recall that a function [ : £2* — 2 is convez if
S(Az+ (1 = Ny) S M(x)+ (1 -A)[(y)

for every 2, y € R* and every 0 < X < 1. We will study mathematical programs of
the form
Min f%)
(P) s.4.
JHz) L0, t€P={l,...,m}
where all the functions f7 : B* — R, 3 € {0} U P, are assumed to be continnous.
Such programns are called <onver if all the functions are further asstumed to be convex.

At a feasible point
g elF={zeR": fi(r)<0,1€ P},
with F referred to as the fcasible set, we denote the set of feasible ditections by

Fz)={de R :3T>0 5 2 +tde F YO <L <T)



and the set of active constraints by
Pz*)={ieP: f'(z") =0}
Furthermore, we 1ecall the set
D)= {de " :V['(z")d <0, i €P(z™)}.
Associated with the convex program (P), is also the minimal index set of active
constraints denoted by

P=={ieP:zeF = [(z)=0}

We recali that a set €' in It" is called a cone if it is closed under multiplication by
nonnegative scalars. It is a blunt cone if it is closed under multiplication by positive
scalars. It is a polyhedral cone, if it can be written in the form

C={r € R": Az <0} for some A € R™*".
We also recall that for any nonempty set S in R, the polar of S is the set
St ={ue R":(v,z) 20, z€S}
and the eonver hull of S, conv{S}, is the smallest convex set containing S.
The cones of directions of constancy, nonascent and descent are respectively de-
noted by
D7(e*) = {deR":3a>03 f(2"+ad)=f(2"), 0<a<al,
Di(e*) = {del”: 3a>0 3 f(a*+ad) £ f(x*), 0<a<a)
and
Di(eYy={delk": 3a>0 3 f(z" +ad) < f(z"), 0<a<a}l
IE{/* : k€ Q) is a set of functions indexed by a set €, then for each of the relations

. a
“l‘(‘ldthll” 2 “=”, “S”s “<”’ “Z” , ete.

we use the following abbreviation:

relation, _«y A relation, «
Dy ()= N D (7).
keq

We will denote the domain of a convex function f by dom f and the intericr of
the donvain of [ by int(dom f). The relative interior of the domain of f, ri(dom f), is
defined as the interior which results when dom f is regarded as a subset »f its affine
hull (the smallest afline set containing dom f). Unless otherwise specified, we a.iways
assumie that a function [ is of finite value at any point in its domain.

We now colleet some useful properties in the following lemma. More details and

prools can be found in [4].



Lemma 1.1 Let j be a real-valued conver function, and let x* € domf. Furthermor,
let S and T be nonempty subsets of R*. Then

(a) compDF(r*) = sz(a'*) where comp denotes the complement;
() D5 (a*) = DF (") U DF(a);

(c) the blunt cone Df(x*) is convex;

(d) the conc D;(IIJ*) is conver;

(¢) conv{D7(z*)} C Df(.v*);

(f) Dp=(z*) is convez;

(9) P= is the mazimal subset Q of P(x) with the property that, for cvery k € Q,
de F(x) = d e D5(z);

(h) St = {conv{S}}* = {clS}*;

(i) if S and T are closed and convex cones, (SNT}t = cl[S* +T*]. Morcover, if
S and T are polyhedral, the “closure” can be omulled.

1.1 Differentiable LF'S functions

For a differentiable function f, we denote the null space of its gradient (considered
as a row vector) at a point a* € dom f by

N(Vf(a*)={de R" : V[(z")d = 0}.
Definition 1.1 A differentiable convez function [ has a locally flut surfucc al &* if

N(V f(z*)) = D7(z*).
The abbreviation “LIFS” is used for such functions.

Theorem 1.1 Consider the convex funclion [, diffcrentiable al &' € dom [, such
that Vf(z*) # 0. Then [ has LIS propety at «* if, and only +f, the cone I)f(:r‘) s

polyhedral.
Proof: (Sufficiency:) Since Vf(a*) # 0, it follows that Df(z*) # 0.

DS(z") = {d:V/(z")d <0}
by polyhedrality and V f(z*) # 0 assumptions
D5 (a*)U N(Vf(z")).

5
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Also
D3 (z*) = Df(2") U D7 (z*).

In cither case I)}S (z*) is represented as a union ot two disjoint sets. Hence
Dy (z*) = N(V f(z")),

i.c., f has LI'S property at z*.
(Necessity:) Assume that f has LFS property at z*. Then, by Definition 1.1,

D7 (z*) = {d : Vf(z*)d = 0}.

Therefore
D3 (z*) = Dj(z*)U DF(z*)
= {d:Vf(z*)d <0},

which is a polyhedral cone.

Remark: Note that the assumption V f(2*) # 0 is not required for the necessity part
of the proof. Thercfore, if f has the LFS property at a*, then D; (z*) is polyhedral
regardless of whether the gradient of f is zero at 2* or not. On the other hand, as
the following example shows, if Vf(2*) = 0, then Dfs(a:*) being polyhedral does not
imply that f has the LFS property at z*.

Example 1.1 Consider f(z) = 22 + 22 at z* = (0,0)7. Here

D7 (x*) = {0}, Df(2*) = @ and D}S(a;*) = {0} (a polyhedral cone). While

N(Vf(z*)) = R since V f(z*) = 0.

O

Theorem 1.1 may not help us identify an LFS function easily. For a faithfully
convex function, i.c., a function of the form

(@) =hAz 4+ b) + a2z + «, (1.1)

where b 2 ™ — R is strictly convex, A € R™**, a, 2 € R*, b € R™ and a € R,
Zhou [30] proved the following result:

Theorem 1.2 Let f be a differentiable convex function of the form (1.1) and z* €
domf. IfVf(a*) =0, then [ has LFS property at z* if, and only if, f is constant.
N f(a*) # 0, then [ has LES property at a* if, and only i,

a

rank[ AT ] = 1. (1.2)



Consider a program of the form (P) where all the functions are differentiable but
not necessarily convex. We refer to the systemn

VRN + Y M) =0

1EP(x*)
A0, i€ P

as the Karush-Kuhn-Tucker system or the KK'T system for short. Conditions that
guarantee consistency of the KKT system are known in literature as the constraint
qualifications. An important application of the LIS functions then follows.

Theorem 1.3 Consider the conver program (P) where all the functions ave differ-
entiable and the constraint funclions have LIS property ai a feasible pownt x*. Then
z* is optimal if, and oniy if, the NK'T system 1s consistent.

Proof: It is shown in [4] that a* € F is not optimal if, and only if, the system

Vf>ad < 0
Vfi(ad < 0, i€ P(a¥)
with  “=" if, and only if, d € D7, (2*)

is consistent. If the constraint functions have LIS property at «*, then the condition

on “=" can be omitted. An application of the Farkas lemma (sce, c.g., [17]) proves

the thecorem.

Remark: It is well known (sce, c.g., [29]) that if all the functions in program (1)
are differentiable, then the condition

cdF(z*) = D(a*) (1.3)

is a constraint qualification. An indirect proof shows that the LIS property implies
(1.3). Indeed, the implication is true, because

F(z*) = {d:Vf'(2")d <0, i€ P(2*)}U Dp(x")
= {d:Vf(z*)d <0, i€ P(z*)} for LFS functions
= clF(z")
= D(z*).

1.2 Nondifferentiable LFS Functions

Now consider convex, but not-necessarily-diflerentiable (non-siooth), functions. First
we recall some concepts dealing with dizcctional derivatives and subgradients.

7
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Definition 1.2 Let f be an arbitrary function from R™ to R, and let z* € domf.
The directional derivative of f at * in the direction d € R* is defined as

f(a* +2d) = f(a*)

1eo *, _n
flasd) = lim, X

For a convex function f, the directional derivative exists for any direction d and

at any point in the domain of f (sec, e.g., [21]).

Definition 1.3 A vector h € R" (considered as a row vector), is a subgradient of the
function [: " — R at 2* € domf if

f(z) 2 f(a*) + h{z — 2*) for every z € R".

The sct of all subgradients of f at z* is denoted by df(z*) and is called the
subdifferential of f at z*. If f is convex and differentiable, then 9 f(z*) = {V f(z*)}.
We now recall the following two useful lemmas from [21].

Lemma 1.2 Let f be a convex function, and let z* € domf. Then h is a subgradient

of [ al a* if, and only 4,
f'(a*;d) 2 (h,d) (1.4)

Jor any d € It".

Lemma 1.3 If f is a convex function, then at each point a* € int(domf) the subd-
ifferential Of(a*) is a nonempty, compact and convex set; furthermore,

f(a*;d) = max{(h,d) : h € Of(z*)}.
We can therelore conclude the following corollary.
Corollary 1.1 Let f be a conver function, and let z* € int(domf). Then
{d: f(z*d) <O} = Of(a") : A < 0},
where {A0f(x*) : A <0} ={dy:y € df(a*), A<0}.
Proof: It follows from Lemma 1.3 that
{d: f'(2*;d) <0} = {d: (h,d) <0, headf(a")}.

Since

{d:(h,d) <0, hedf(z*)}t ={N0f(z*): ) <0}

the result immediately follows.

The following lemma is a well-known result (see [21, Chapter 23)).

8




Lemma 1.4 Let f be a conver function, and let x* € ri(domf) be a point where f
does not achieve its minimum. Then

{DF(c*)}* = c{AOf(+*) : A S0},
Furthermore, if z* € int(domf), then
{DF(x*)}* = {AOf(a*): A <0).

Remark: The assumption that f does not achieve its minimum at «* is the same as
Df(z*) # @ or 0 ¢ 9f(a*).
Definition 1.4 Consider the conver function f and assume that x* is a pont in the
domain of f. Then we say that f has generalized LFS property at x* if

{d: fl(a%d) = 0} = DF(c").
The abbreviation “GLFS” is used for such functions. A graphic illustration of a GLI'S
function is given in Figure 1.1. This is the graph of the function f(zx) = || + |,

Figure 1.1: Graph of the GLFS function f(z) = || + |z

which has the GLFS property at any z* in its domain. At any point on the surface,
the directions along which the directional derivatives vanish are exactly the directions
of constancy. We now give two important properties of these functions.

9
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Corollary 1.2 Consider a convez funclion f. Assume thal f has GLFS property at
z* € inl(dom f) where it achieves ils minimum, that is Dy (2*) = @. Then

(DF (")} = (2f(a*): A < 0}.
Proof: Since Df(z") = @, then
{d: f'(z%d) = 0} = {d: f'(a*d) < 0},
This together with the GLFS property of f imply that

(PN = (d: fiaid) = 0}
= {d:(h,d)<0, hedf(z")}*
= {Af(z"): XA <0}

Theorem 1.4 Let [ be a convez function and z* € dom f. Assume that Df(z*) # 0
and I)f(a‘*) is a polyhedral cone. Then f has GLFS property at x*.

Proof: Since l)js(a;*) is a polyhedral cone, it is closed and convex. Therefore

On the other hand

Di(z*) c {d: f'(z*;d) = 0} (see [4, Lemma 1.4(b)))
and
D(a") = {d: f(a%d) <0} £ O

imply that

d(D(2*)) = cl(Df(a*))

This together with

D3 (2*) = D7 (2*) U D§(a*)

imply that
D7 (x*)U DT (2*) = D5 (a*) U {d: ['(z*; d) = 0}.

Since

Di(eyn{d: fia"d)=0}=0Q

and

Df(z*)yn D7(2*) = @,

10
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it follows that
D7 (2*) = {d: f'(x*;d) = 0},

thus proving the theorem.

The following example shows that the converse of Theorem 1.4 is not true.

Example 1.2 Consider the convex function

flz1,22,23) = \/-"L"f + 23— a3

at 2* = (0,0,0)7.
It can easily be seen that

Di(z*)={de R :dy = \/d} + &3}

This is a cone yet not a convex cone (note that f is not differentiable at #*). Fui-
Df(z*)={d € I’ : d3 > \/d} + d}},

which is a nonempty set. Thercfore
Df(a*) = {d€ R®:dy > \/d} + 3},

which is a closed and convex cone but not polyliedral. On the other hand

VT NP — A
fi(z*;d) = lim a 2 k

A—0t A
= V(I% +d% - (13.

{d: fi(z*;d) =0} = DT (a*),
i.e, f has GLFS property at z* and Df(z*) # O, yet 1),5(.7:*) is not a polyhedral
cone.

thermore

Therefore

Theorem 1.5 Assume that f is differentiable at z*. Then [ has LIS property al z*
if, and only if, it has GLFS property at z*.

Proof: (Sufficiency:) Assume that f has GLFS property at z*. Then
D7(2*) = {d: ['(z*d) = 0}
and, since f is differentiable at z*,
fi(a"d) = V[(z*)d.

11
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Therefore

D7 () = N(Vf(z")),

proving that f has LIS property at z*.
(Necessity:) Immediately follows from the definition of the LFS functions.
]

We now extend the definition of LFS functions from differentiable to non-smooth

convex functions.

Definition 1.5 Consider a conver funclion f. Assume that z* € domf. Then f has
LIS property al x* of it salisfies one of the following two conditions at x*:

(i) D7 (z*) # O and Djs (%) ts polyhedral;

(i) D5 (2*) = 0, [ has GLFS properly at 2*, and D7 (2*) is polyhedral.
Notc that Df(2*) # @ is the same as 0 ¢ df(z*), and DF(2*) = @ is the same as
e df(x*).

At this point we first recall some more results from [21] to help us identify some
of the LI'S functions. We will then give examples of LFS functions and also examples

of functions that arec GLFS but not LFS.

The set

{(2,1): 2 € domf, p€ R, f(z) < p}
is called the epigraph of f and is denoted by epif.

Definition 1.6 A polyhcdral convex function is a convez function whose epigraph is

polyhedral.
Polyhedral convex functions enjoy the following two properties (see [21]).

Lemma 1.5 Assume that f is a poiyhedral conver funcltion and x* € domf. Then
af(x*) 1s a polyhedral convexr set and f'(z*;d) is a polyhedral convex function.

Lemma 1.6 If [ and [? are polyhedral convex functions, then so is f} + f2.

Using the above lemmas, we can now conclude the following important result.

Corollary 1.3 If [ is a polyhedral convex function, and if it has GLFS properiy at
2%, then f has LIS property at a*.



Proof: By Lemma 1.5, f'(z*;d) is a polyhedral convex function. Thevefore, its
level sets are polyhedral. It follows that {d : f/(x*;d) < 0} is a polyhedral cone.
Furthernore, since f has GLFS property at .*, the cone

Df(a*) = {d: f'(x™;d) £ 0)

is also a polyhedral cone. This implies that f always satisfies one of the twe conditions
of Definition 1.5 and thus has LFS property at x*,
a

Functions
f(@) = lz|ly = |zo] + oo 4+ + |a]
and

J(2) = llzlloo = max{lei],...., Jznl}

are polyhedral convex functions. Since lincar functions are polyhedral functions, it
can easily be seen from Lemma 1.6 that

(2)=a"z + ) |z,

JEB

where B C {1,2,...,n} is also a polyhedral convex function.

We will show that these functions also enjoy the GLI'S property at any point in
their domain and thus have LIS propeity at any point in their domain. ‘T'he next
result is nontrivial, so we state it as a lemma.

Lemma 1.7 Consider

f@)=a"z+ 3 |z,

1€B
where B C {1,2,...,n}. Then f has GLFS property at any =* € R™.

Proof: Since D7 (2*) C {d: f'(z*;d) = 0}, it is enough to show that
{d: f'(z*;d) = 0} C D7 (z*).

Consider

[aT(z* + M) + Z lz; + YIRS [a"‘w' + Z |1:;”

f'(z*;d) = lllTl 2€P ; 268

where B = By U B,, with
By ={jeB:z]=0]

and
By ={j€ B:a;#0}.

13
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For A > 0 sufficiently close to zero,

sgn(z; + Ad,) = sgn(z}), € B,.

Therefore
Aald + Y [sgn(e))(z) + Md,) — sgn(z})(2])] + > |Ad,|
f(z*;d) = lim 1€5; 1€5,
A—0t A
It then follows that
Patd)=aTd+ Y sqn(at)dy + 3 14,1, (15)
JEB, JEB;

This mecans that

{d: fi(a*d) =0} ={d:a"d+ 3 sgn(z)d, + > |d,| = 0}. (1.6)

JEB, JEB,

Now, for every d € {d: f'(z*;d) = 0} there exists an @ > 0 such that
sgnu(z; + ad) = sgn(z}), j€B;and 0L a<a (1.7)

Therefore, given any d that satisfies (1.6), there exists an @ > 0 such that for 0 <
a < a the following holds:

J@* +ad) = @ +ad)+ Y Iy + ad,)]

JEB
= d'v*+ad+ Y sgn(z (@) +ad) + Y ald)]
]EBz 1€B;
= (a2 + Y sgn(a})(@)] +alaTd+ Y sgn(z})d, + Y |d,]]
JEB:2 J€B; 1EB)
= a'2*+ Y |a}| by (1.6)

JEB,

= J).

This means that d € D7(a*), proving the lemma.

It immediately follows from the above lemma that the function

T(r) = [l

has GLFS property at any a* € R*. The next result is also nontrivial, so it is again
stated as a lemma,
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Lemma 1.8 The function
f(z) = ||rflo
has GLFS property at any z* € R".

Proof: It is shown in [21, Chapter 23] that
af(0) = conv{tey,---,*e,}

and if z* # 0, then
df(a*) = conv{sgn(x})e, : j € Jpu}
where Jo» is defined by Jo« = {j € {1,...,n} : |24] = f(aN)}.
Now, for 2* =0,

1o o max{|AMd] 1 <0<}
Samd) = lim )

= ]

Therefore

{d: f(z*;d) = 0} = D} (a*).

If z* # 0, then
e = X Asgn(al)e,

JE€EJzx
where
oA =1, 420
JEJ
(Note that z* # 0 implies that sgn(z}) # 0 for all j € J,+.) Therefore, by Lemma 1.3,
f'(z*;d) = max{ Z Assgn(a))d, YA =1, 4 20} (1.8)
J€Jw 1€Jgx

The following four cases can occur:
(i) If sgn(a?)d;, > 0 for every j € Jpx, then f'(z*;d) will be stiictly positive;
(ii) If sgn(z})d, < 0 for every j € Jyv, then f'(z*;d) will be strictly negative;

(iii) If sgn(z7)d, > 0 for at least one j € Jyv, and sgn(z})d, < 0 for the rest of the
indices j € Jy«, then f'(a*;d) will be strictly positive;

(iv) If d; = G for at least one j € Jgs, and sgn(z})d, <0, j # 7, then f'(z*;d) will
be zero.

15



Therefore

d, e R if j € Jow
{d: fi(z";d) =0} = {(d,): sgn(z})d, <0 . (1.9
(with at least one equality) if j € Jz«

Since [zf| < |a}| for © @ Jov and j € Jgw, then for any d satisfying (1.9) there exists
an @ > 0such that ferall0 < a < @

max{lal + ad,|} < |z
Besides, sgn(x})d, < 0 (with at least one equality) together with the fact that « > 0
imply that

l&) + ad,| < |z7], j € Jux (with at least one equality).

It, therefore, follows that

f(@* +ad) = max{|z]+ ad|}
JEJI x
= |aj]

= f(z").

Thus, d € D7 (a*) i, {d: f'(2*;d) = 0} C Dy (z*) proving the iemma.
The following result has been borrowed from [28].

Lemma 1.9 Consider the function
f(2) dist(z — 2™, K)

inf ||(z — 2%) - ||

> 1l

where K is a conver cone and x, * € R*. Then f is a convex function on R* and

has GLES property at a*. Furthermore

0 ifde K
positive  otherwise.

H'ahd) =dist(d,K) = {
Now using Corollary 1.3 and the last thrce lemmas, we conclude the following
results:

(i) f(x) =aTz+ > |r,), in particular f(2) = ||z||;, are LFS at any z* € R";
JEB

(i1) f(x) = |||l is LFS at any «* € RY;
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(iii) f(z) = dest(z — x*, K) is LFS at x* where x, 2* and A are as in Lemma 1.9
and K is, in addition, a polyhedral cone.

Let us remind the reader that not every GLIS function is LI'S. Consider, for
example, the function _
S, xo,03) = ol + 13— ay
at z* = (0,0,0)7, from Example 1.2. As we showed in that example this function has
GLFS property at 2* yet does not have LIS property at that point. Furthermore,
the function

f(z) =dist(ax — 2", K)
has GLFS property at 2* whenever K is a convex cone but does not have LI'S property
at that point if A" is not a polyhedral cone.

1.3 Characterizations of Optimality

Let us split the constraints of the convex program (P) into those that have LIS
property at a given feasible point 2* and those that do not. Let the indices of the
former group belong to @ and the indices of the latter to R, where P = QU R. We
obtain the following program :

Min  f9x)
s.t.
(P7) J(x)<0 i€ Q
JH(z) L0 e R=P\Q.

Using this form of a convex program, we will give necessary and sufficient conditions
for optimality in primal, dual and saddle-point inequality forms.
1.3.1 Primal and Dual Characterizations
Associated with a convex program in the form (') we define
RE={ieR:z€F= f'(z) =0},
Rz")={ie R: ['(z*) =0}
and
Qz*)={ie Q: f'(z") = 0}.
Note that the same algorithms for computation of P= (sce, e.g., [4,6,39]) can be
applied to compute R= by considering only the con-tramnts in the sct R,
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Lemma 1.10 Consider the convex program in the form (P'). If R(z*)\ R= # 0,

then there exisls 2 € I such that
fH#) <0, keR(a*)\ R
Proof: From the definition of R=, it follows that
R(z* )\ R= = {k € R(z*): Fz*€ F > f*(z*) <0}.

By convexity of the f%’s, the “center of gravity” of {zF : k € R(z*) \ R=},

. 1 k
&= z~,
card(R(z*) \ R=) keR(xZ*)\TF

is feasible and f*(3) <0, k€ R(z*)\ R=.

Theorem 1.6 A feasible point a* is an optimal solution of the convexr program (P')
if, and only i,

INESTE l)é(“)\m (z*) Neonv{DxR=(z*)} N DQ(I*)( )= 0. (1.10)

Proof: (Suflicicucy:) Assume that 2* € F is not optimal. Then there exists & € F

such that

’ f(z*)
0 :e€ Q%)
0 1€ R(z*)\R™

0 1eR".

Sy

')
')

1

(4
(4
(&
(

AN IA A

—~

B3>ty R
g

1

~

')

This and the convexity of the functions imply that

(i = (f — .1'*) € 1)0<( ) N DT’(.’L‘*)\R ( ) N DQ(:L‘*)( ) N D7'<z= (z*).

But this also means that d is a fcasible direction, and since R= C P=, it follows from
Lemma 1.1(g) that
d € D5 (z%).

Therefore
d=(}—a*) € D§(x )N D5 e\r= (2 )nDQ(z;*)( *) 0 Dx-(z%),
implying that
d = (i = &) € DS (%) N Df gapr=(27) N D§(eny(a®) N conv{ D= (")},
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which is a nonempty set.
(Necessity:) Assume now that

D§(2*) 0 D§ popr=(2*) N DFpey(2*) 0 conv{ D7 (a*)} # O.
This means that there exist
d € D5 (2*) N DR (pay\r=(2*) N Dé(l.*)(.l'*) N conv{ Dyp=(")}

and a > 0 sufficiently small such that for any 0 < a < @, we have

Pz*+ed) < fO%a*)
fi(@*+ad) < 0, ieQ(x*)
ff@*+ad) < 0, ieR(x*)\R=
fle*+ad) < 0, i€R".

Besides, f(2*) <0, j € P\ (R(z*) U Q(z*)) which implics that
fl(@*+ad) L0, j€P\P(a")

for all @ > 0 sufficiently small, by continuity. Hence, & = a* + ad for all o« > 0
sufliciently small, is feasible, and f°(£) < f9(z*), contradicting optimality of a*.

Theorem 1.7 (Dual Version of Theorem 1.6) A feasible poinl 2* is an oplimal
solution of the convex program (P') if, and only if, there crist veclors

0#y° € {D5 (@)}, y' € {DR(=")}Y, i € R(x")\ R™,

and N
y€ {corzv{l),"z=(a;*)} n Dé(ﬁ)(m*)} (1.11)

such that

¥+ ) y+y=0
EER(z*)\R=

Proof: By Theorem 1.6, z* € F is optimal if, and only if, (1.10) holds. ‘The
cones D§(z*) and D7(z*), 7 € R(z*) \ R=, are open and convex cones. The cone
conv{Dz=(z*)} N Dé(z,)(a;*) is also convex but not necessarily open. Therefore, by
the Dubovitskii-Milyutin theorem, (sce, e.g., [4]), 2* is optimal if, and only if, there
exist vectors

y’ € {D5(a*)}, vt € {Dfi(a*)}F, i € R(z") \ R™,

and
y € {co7w{D7=c=(a:*)} N Dé{z,)(:ﬂ")}+ not all zcro (1.12)
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such that
¥+ Y y+y=0
1ER(z*)\R=
Now we must show that y© # 0. Note that (1.11) implies (1.12) which proves
sufficiency. To prove necessity, assume that z* € F is optimal and 3° = 0 in (1.32).
Then ouly two cases may occur. If R(z*) \ R= = @, then in (1.12)

y°+y=0.

But this and y° = 0 imply tha. ¥ = 0. We have obtained a contradiction since not all
vectors in (1.12) are zero. On the other hand, if R(z*)\ R= # O then by (1.12) there
exists y?, for some j € R(z*) \ R7, such that y? # 0 (since y° = 0). Now applying
the Dubovitskii-Milyutin theorem to

Y. yty=0,
1tER(z*)\R=
il follows that
D op\r=(2") OV conv{ DZ=(2*)} N D (") = O. (1.13)

But since R(z*) \ R= # @, by Lemma 1.10, there exists € F such that
&) €0, ieQ(z)
fl&) < 0, ieR(z")\R™

fH) = 0, 1eR~.

>

lHencee it follows that
d £ & — 2% € DFr=(2") N Dy (2”) N D5 (2*).

But this also means that d € F'(z*), which imlies that d € D3. (2z*) by Lemma 1.1(g).
Therefore

7 A < =
(l = (.'L' -_ :l:*) € Dé(l.*)\n= (.’L'*) N Da(z*)(.z‘*) N DR: (.z*),
which is a nonempty set. Thus
D5 pr=(*) 0 D 1y (2*) N conv{D5-(z*)} # O,

a contradiction to (1.13). This completes the proof.
0

We now use this result to derive a dual characterization involving subgradients.



Theorem 1.8 Consider the conver program (P'), and assume that r* is a feasible
solution satisfying

* € N int(domf*)

i€{0}JUR (z*)\R=

and that conv{D3.(2*)} is closed. Then x* is oplimal if, and only if, the syslem

BT+ Y A€ o [{DR= () + (D0 (2} ]
1E€R(z*)\R=

A 20, ieR(*)\R" (1.14)
is consislent for some h' € f*(x*), 1 € {0}UR(a*)\ R=.
Proof: (Sufficiency:) Let

REEOT+ X M) € el [{DR= (@)} + {D§y ()] (1.15)

1ER(zH)\R=
where h' € 0 f*(a*), ¢ € {0} U R(a*)\ R=. Since by definition,
f'(e) 2 ['(z") + Wz —27), i€ {0}UR(a")\ R™
for every z € R", then

S+ Y Afi@) 2 )+ 2 AL
1ER(z*)\R= ER(z*)\R=
+ B+ Y Ak (x -2, (1.16)
1ER(z*\R=

Moreover, since f'(z) <0,for i € Pand z € I, and f*(2*) =0, ¢ € R(z*), it follows
from (1.15) and (1.16) that

fo(z) > fO>z*) + h(z —2*) for every z € I,
By convexity of F', we have z — 2* € FF(z*). Thus
z—-z* € Di-(z). (1.17)
Besides, since F(z2*) C Dé(z,)(x*), we also have z —2* € I)é(l_.)(:l:*). Therefore
z — 2" € (conv{DR=(2")} N D, (). (1.18)

On the other hand, since the cone Dé(z,,) (z*) is polyhedral and the cone conv{ DF. (2*)}
is closed by assumption, by Lemma 1.1(h,i) we have

ol [{Dz=(2")}* + {D§(p)(z")}] = {conv{ D5-(z")} 1 Dg(,.,(z*)}* . (1.19)
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Hence (1.15), (1.18), and (1.19) imply that h(x — z*) > 0. Therefore
f°(z*) < fz) forevery z € F.

(Necessity:) Assume that * € F is optimal. [f £* is a (unconstrained) minimizer
of [ then L§(z*) = @ which also means 0 € 9f°(z*) and the theorem holds with
A =0, 7 € R(z*)\R=. If 2* is not a minimizer of f°, then D§ (z*) # @ and therefore

{D5 (")} = {uodf°(a") : po <0} (1.20)

Also, for cachi € R(z*)\ R=, z* is not a minimizer of f*since by Lemma 1.10 there

exists £ € I such that

(3 <0, i€ R(z*)\ R=.

This and the assumption that 2* is in the interior of the domain of f*, i € R(z*)\R=,
imply that, by Lemma 1.4, for each 7 € R(z*) \ R=

{Df (@)} = {mof'(a*) :p S0} (1.21)

Again polyhedrality of Dé(u;(‘"*) and closedness of conv{Dz=(z*)} imply that (1.19)
holds. Tt follows from Theorem 1.7 that

—y=3"+ Y . (1.22)
IER(z*)\R=

Now by (1.20) and (1.21)
¥ € {1odf*(z*) :po < 0}

and
v e {0 (2*) i <0}, i€ R(z*)\ R~

Henee, it follows that there exist
o < 0 (since y°#0) ,;, <0 ,i€ R(2*)\ R and

e dfi(z*), i€ {0}UR(z*)\R"

such that

—y = puoh® + Z TR
i€R (z%)\R=

Let = —2% and A, = £ for i € R(z*)\ R=. Then

h=h+ 3 AR
FER(s*)\R=

(&3
o



where h € ¢l [{D7=z=(:c*)}+ + {Dé(r*)(:r*)}*’]. This completes the proof.
(1]

If in the above theorem we assume further that +* also belongs to the interior
of the domain of f*, k € Q(z*), then LFS property of f*, k € Q(a*), at a*, by
Lemma 1.1(i), Lemma 1.4 and Corollasy 1.1, implies that

{Dg(,~.«)(~’3*)}+ = Z {Dfsk(-l'*)}+
hEQ(x*)

= 3 {mdf*(a*) 1 <0}

keQ(x*)

This yields the following result.

Corollary 1.4 Consider the convex program (P') , and assume that x* € I is such
that

T* € N wl(domf*),
1€{O}UP(z*)\R=

and that conv{Dx-(2*)} is closed. Then x* is optimal if, and only if, the system
)+ 3 AW ed[{Di-N + S {mdfe) i < 0)]
1ER(z*)\R= keQ(z*)
Az 0, 1€ R(2")\R™ (1.23)
is consistent for some h* € 3f'(2*), i € (0} UR(z*) \ R™.

Note that the closure can be omitted in Corollary 1.4 if the cone D5 (z*) is polyhe-
dral. This immediately yields our next result.

Corollary 1.5 Consider the convez program (P') , and assuinc that 2* € I 1s such
that

z* € N inl(dom f*).
1€{0}UP(z*)\R=

Furthermore, assume that the cone D3-(z*) is polyhedral. Then z* is optimal if, and
only if, the system

T+ 3T A e (Di-(ah)}?
1€P(z*)\R=

A >0, i€ Pa")\R* (1.24)
is consistent for some h* € 4f*(z*}, i € {0} UP(z*) \ R=.

Finally, if all the functions f*, k € P(z*) have LFS property at z*, then Corollary 1.5
is further simplified to our next result.
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Corollary 1.6 Consider the convez program (P’'), and assume that z* € F is such

that
z*e () int(domf*).
1€{0}UP(z¥)
Furthermore, assume that f*, k € P(x*), have LFS property at z*. Then z* € F is
oplimal if, and only if,

0€df(=)+ Y. Nofi(z*) (1.25)
i€P(z*)

Jor some A, 20, 1 € P(z*).

We recall that conditions under which (1.25) holds are also constraint qualifica-
tions. Thus, using Corollaries 1.5 and 1.6, we can conclude the following important

result.

Corollary 1.7 Consider the convezr program (P') at a feasible point z*. Then the
Jollowing condiltions are constraint qualifications:

(i) All the functions f*, i € P(z*), have LFS property at z*;
(it) There cxists & € I' such that f1(z) <0, 7 € R.

The following example shows that closedness of conv{DZ%=(z*)} is required in Theo-
tem 1.8, The constraints of the example have been borrowed from [28].

Example 1.3 Consider the program

Min f%°(2)=z1 — 2,
s.t.
f{(z)<0
fi(z) <0,

where

f(z) = (a2 +22—-1)% ifal+222>0

) 0 otherwise
and

f(@)=dist(e - 2*,K), K={zr€R':z;>0, z,> 0},
around 2* = (1,0)7. Then
F={z*} ,Q(z") = {2} and R = {1}.

Furthermore, the cone

conv{D%=(2*)} = Dz=(2*) = {d € R*: d; <0} U {0}
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is not closed. Moreover
D (@) = {d: fi(z*d) =0} = K, V") = (1,-1),
K* = K, {Dz=(2")}* = {(d1,0)" :d; <0}

and
ol [{DR= (")}t + {D§ oy (a)}H] = {d € B : d < 0).

The optimality condition from Theorem 1.8 beconics
(VS2(2*)T € el [{DR= (@)} + { Doy (2M)}]
ie.,
(1,-1" e {d e R*: d; >0}.

This is clearly an inconsistent system.
(8]
The following example shows that the polyhedrality of the cone Dj=(z*) is re-
quired in Corollary 1.5.

Example 1.4 Consider the program

Min [ =22 4z,
s.t.
fl=2,<0
[?=dist(z —z*,C) <0,

where
C={zeR: 2z, >23 x>0, 2, >0}

is the self-polar (“ice-cream”) cone and z* = (0,0,0)7. (Note that f? is not differen-
tiable at z*.) Then

T 0
F=Cn | it <0} = Ty | 122207},
I3 0

R* = {2}, Q@=") = {1},
Dg(x,)(:v*) = {z€ R® : 2z, <0} and D5 (2*) = C.

Furthermore
Iy
{Dé(z*)(ﬂf*)}Jr = 0 | :z; <0} and {Dgp-(z")}t =C* =C.
0
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The optimality condition from Corollary 1.5 becomes

(V)" + (V") € C,

i.c.,
0 1 c1
0l+M|0]|=]c
1 0 C3

for some A, > 0 where 2¢,¢; > ¢3, ¢ 2 0, ¢z 2 0. This is obviously an inconsistent
system,

The asymptotic version from Theorem 1.8 becomes

(VS2%e*)T € el [{D§en(=)} +C]

1.Cy
0
0 | = lim (d + ")
k—oo
1
for some sequences
dk
1
d=|0|,d<0
0
and ¢t € C, k=1,2,... . Indced, the choice
~k k
k k
&= 01, c= ﬁ
0 1

confirms the consistency of the asymptotic version.
(W]

If all the functions in the convex program (P') are differentiable, then Theorem 1.8
and Corollary 1.5 are further simplified to our next two corollaries. These two corol-

larics are also directly derived in [31].

Corollary 1.8 Consider the convex program (P') where all the functions are differ-
entiable at x*. Furthcrmore, assume that D3=(2*) is closed. Then o> € F is optimal

if, and only if, the system

(VN + 5 MV € d[{DF-()} + {DFn()}]
KER(z*\R=

is consistent for some

M0, keR(z)\R=

26




-

Corollary 1.9 Consider the conver progr. ' P’} where ail the functions are differ-
entiable at =*. Furthermore, cssume that Di.(a*) is polyhedral. Then 2* € F is
optimal if, and only if, the system

(VAEN + Y MV € (DR-(eM))
kEP(z*)\R=
is consistent for some

A 20, kePa*)\ R

The following example shows that polyhedrality of DF=(a*) is also required in the
above corollary although all the functions are differentiable. A slightly ditferent ex-
ample is given in [31].
Example 1.5 Consider the program

Min f® =22 424

5.t.

fl=a, 20
2 = (dist(z,C))? < 0,

where again
C={zeR: 2myz, 223 x>0, 2, >0}

is the self-polar (“ice-cream”) cone and z* = (0,0,0)". Note that f? is differentiable
at 2* since

: 2
inf{itd — |

(f3 (e d) = tlim =0 foreveryd € It

-0+ t
Therefore, all the functions are differentiable, Furthermore
Dp(z*)=C,
R= = {2}, Q@ = {1},
Dipn(z") = {z € B : 21 <0} and Dg. (") = C.

The rest of the example is exactly the same as in Example 1.4.

1.3.2 A Saddle-Point Characterization

Before deriving a saddle-point characterization, we introduce the following Lagrangian
function for a convex program in the form (/).

LieN) =)+ ¥ M (z)

keP\R=
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Recall that
RE={ieR:z€F= f(z) =0}

We denote
F={zeR": f'(z) =0, i€ R"}.

Furthermore, let ¢ = card(P \ R=).

Now using Corollary 1.5, we will derive the next characterization of optimality in
the saddle-point inequality form.
Theorem 1.9 Consider the convezr program (P’). Assume that a* € F§ is such that

Tt € N int(domf*),
k€{0}UP(z*)\R=

and the cone Dj.(z*) is polyhedral. Then 2* is optimal if, and only if, there exists
At € R such that

Li(a*,A) < Li(a*N) < L5(x, M) (1.26)
Jor all A€ % and for all x € {a*+ Dz-(z%)}.

Proof: (Suflicienc; ') Assume that z* € F7 satisfies (1.26). Then the left-hand
incquality of (1.26) implies that for every A; > 0,
> MffE) < X AL ). (1.27)
P\R= P\R=
First we show that z* is feasible, i.e., ff(z*) < 0, k € P\ R=. If f*(z*) > 0 for
some k € P\ R=, then (1.27) is violated by choosing A, sufliciently large. Next, since
a* € Fand Ap € Y

Yo N <0,
reP\R=
But from (1.27) with Ay, =0
S A 0.
keP\R=
Therefore
Yo M) =0, (1.28)
keP\R=

Now, the right-hand inequality of (1.26) implies that

N+ MEY) SO+ Y MSfie) for every z —z* € D (z*). (1.29)
P\R= PA\R=

Since

F(a*) C Dg=(x™),
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then (1.29) holds, in particular, for all z satisfying
r—z* € F(z*)
and hence for all z € F, by convexity of F. Thus, by (1.28) and (1.29),

L) < o)+ Y M),

P\R=
for every x € F. This implics that for every r € F,
@) < f(x)
(since f¥(z) < 0 for every z € F). This completes the sufficiency part.
(Necessity:) Let 2* be an optimal solution of (P’). Then by Corollary 1.5, there exist,
X >0, keP(z*)\R™, and k¥ € aff(z*), k€ {0} U (P(a*)\ R7)

such that
R+ 3 M e {DRa(a*)}Y
keP(z*)\R=

Let A =0 for k € P\ P(2*). Then the above can be augmented in the following
way: There exist

At >0, ke P\R™, and h* e d/%a*), ke {0}u(P\R")

such that

K+ 3 Mhr e {DR=(2)}7. (1.30)
kEP\R=

From k* € 9f%(a*), k € P\ R=, it follows that for every z € R™,
Hx) > () + bz - o).
Therefore

P@)+ X Nf@) 2@+ X M)+ R+ Y A - ).

keP\R= keP\R= heP\R=

But, (1.30) implies that for x — z* € DZ-(z*), we have

K+ 5 Az —-=z%)>0.
kEP\R=

Thus, for every z — z* € D3 (z*),

Pl)+ Y i) 2 )+ Y NS,

keP\R= keP\R=
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proving the right-hand incquality. On the other hand, it is easily seen that

> W) =0

kEP\R=

which implies that, for every Ay > 0, we have

fU(I*)'f' Z Akfk(x*) S fO(z*)

keP\R=
< fle)+ X NfHEY.
LeP\R=
This proves the lelt-hand inequality.
a
If, in Theorem 1.9, R= = @, then the Lagrangian function becomes the usual

Lagrangian, £(x, ), and the sets Fi§ and z* + Dz-(z*) become R*. One such case
is when all the functions f*, 7 € P(z*) have LFS property at z* yielding our next

result.,

Corollary 1.10 Consider the convex program (P'). Assume that z* € R" is such

that
g*e () nt(domf*),
ke{0}uP(c*)

and that all the functions i, i € P(z*) have LFS property at z*. Then z* is optimal
if, and only if, there exists \* € R} such that

Lz A) < L(2*,A") < L(z,A") (1.31)
Jorall X @ R} and for all 2 € R".

We will illustrate the result given in Theorem 1.9 by an example.
Example 1.6 Consider the program

Min f% = -z, + ™

s.t.
fl=]n]+ ]zl -1<0
f2=|$¥—$2|—130
fP=g(z)<0

where

0 lf 17120, 32220
2 .

_ )0 if £,<0, 2,20

g(r) = xl if 20, 2,<0

ei4+al if 2,<0, 2,50



at z* = (1,0)T. Then
F={zeR*: 0<x, <1, 0<r, <1},
Q™) ={1}, R(x*)={2,3}, R~ = {3}

and
Dz-(z*) ={d € R*:d, > 0}.

The saddle-point optimality condition from Theorem 1.9 becomes
0<0< —21 +€™+ Af(Jaa] + |ag] = 1) + Ny(Ja2 = 2g] = 1)

for some A} > 0, A5 > 0 and for all 2 € {(1,22)T : z; > 0}. Indeed, the choice
A} =1 and A} = 0 confirins the consistency of the saddle-point version. Therefore,
z* is optimal. Furthermore, we have

f°(z*) ={(~1,1)}, af'(z") = {(1,2a—1): 0<a <1}, Of%(a*) ={(2 1))
and
{Dz=(a*)}* = {(0,dy)" : dy > 0}.

Therefore, the optimality condition from Corollary 1.5 becomes

-1 1 2 0 o~
lafun ]2l e

forsome0<a<1,8>0, )\ >0 and A, > 0. Indeed, the choice
AMm=1, A=0, a=land =2
confirms consistency of the above system and optimality of z*.

Remark: Wolkowicz {28] used the approach of Gould and Tolle to derive several
optimality criteria which use the cones of directions of constancy. He defined P¥(2*),
the set of “badly behaved” constraints, as follows :

Pi(a*) = {k € P=:(DZ (") N Cppe)(z*)) \ cl[D7-(2")] # ¥)
where
Cpn(a’) = {d € B*: (f*) (a5d) S 0, k € Pa*))}.

These are the constraints in P= whose analytic propertics (given by the directional
derivatives) do not fully describe the gcometry of the feasible sct (given by the feasible
directions). The set P(a*) is also the sct of constraints that creates problems in the
Kuhn-Tucker theory. With

Bpy(z®)={h:h = Z AehF for some A\ >0, A ¢ S (z")},
kEP(z*)

he derived the following result.
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Theorem 1.10 Consider the convez program (P). Suppose that z* € F', that the set
Q) salisfies

Pia*)C Q C P
and that both convD5(z*) and —Bp«(z*) + {Dg(z*)}t are closed. Then z* is
oplimal tf, and only tf, the system

0€af°(z*)+ > MAfia*)— {Dg(=*)}* (1.33)

kEP(z*)
is consistent for some A\, > 0, k € P(z*).
He further concluded that
PXz*)=@ and Bppy(z*) closed

is a nccessary and sufficient condition for the Kuhn-Tucker theory to hold at z*, i.e.,
it is a weakest constraint qualification. he referred to this condition as “WCQ”.

The interesting point is that if the convex function f has GLFS property at z*,
then it is never “badly behaved” at that point. Therefore, using Wolkowicz results, we
notice that if in the program (') all the active constraints at =* have LFS property
at that point, then Bp(+)(2*) will be polyhedral and therefore closed. Furthermore,
since functions with LI'S property at x* have GLFS property at z* by their definition,
we have P(a*) = @. Hence, the condition “WCQ” is indeed satisfied, implying that
Corollary 1.6 is a special case of “WCQ",

1.4 Applications in Single- and Multi-Objective
Programming

The characterizations of optimality derived in this chapter are simpler than the usual
characterizations of optimality in the sense that R= is a smaller set than P=. How-
ever, when considering the parametric programs in input optimization, we notice that
the set P=(0) plays a very important role in determining the stability of the mathe-
matical model, whereas the set R=(0) may give us no information about the stability
of the model. For example, for any linear model the set R=(0) is always empty,
giving no information about the stability of the model. Therefore, while considering
mathematical models, we always need the set P=(0). However, the LFS properties
simplify the calculation of the sct P=(0) at a fixed 0 as shown below.

Consider the convex model (P, 0). If at 0 = 0* there exists 2* € F'(0*) at which
all the functions have LIS property, then the algorithm by Zlobec and Craven [39]
for calculation of P=(0*) is significantly simplificd as follows:
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The algorithm begins with Q(0*) = P(a*,0*) and ends with Q(0*) = P=(0*). AL
ever™ iteration the program
I\(’Idi)n Z Vit (a*, 0%)d

kef(8%)
s.t.

(L, Q(0%)) Vk(a*,00)d <0, ke P(a*,0%)
Hdif: <1

is solved.

Initialization: Find a* € I7(0*) such that all the constraints liave LIS property at
z*, for the given ¢*. Calculate P(z*, 0*) and set (0*) = P(a*, 0*).

Step 1: Find an optimal solution d of (L,2(0*)). Calculate

g0 = Y Vfk@a,0%)d
keN(8%)

Step 2: If §(0*) < 0, determine
K = {k € P(z*,0%): Vf*(a*,0%)d < 0};

set ©2(0*) = Q(0*) \ K and return to step 1. Otherwise, stop; Q(0*) = P=(0*).

Recall that in the algorithm for the general case, given in [39], the program solved
in each iteration is
Min  )° V f¥a*, 0*)d

() kef)(6%)
s.t.

(P, Q(O*)) ka(:l:*,0*)d+ @”d—— 51:”l <0
6k S .ka(.’l)*)
ldly <1, 68| <1, k € P(a*, 0%),

Note that the constraints represent the set of feasible directions of (P, 0*) at x*. A
parameter © > 0 is involved, and the iterations must be continued until the optimal
value §(0,0*) < 0 for all sufficiently small © > 0. In the algorithm that we gave
above for the LFS case, on the other hand, there is no © involved since the set of
feasible directions at z* for 0 = 0* is simplificd to {d : V f*(2*, 0*)d < 0} dueto LIS
property.

We will now illustrate the above result by an example.

Example 1.7 Consider the coustraints

fl = —le + 011:? S 0

33



2= 5 <0
2 = —z3-0,23<0
ft = 03¢t —-1<0
fP= 21 +25,<0

at 0=0"=(1,1,1)7.

Initialization: Let z* = (0,0,0)7. ‘then

Pz, 0") = {1,2,3,4,5}

Vfl(m*’O*) = (—Qa 0’0)
vz 00) = (1,0,0)
vt 0%) = (0,—1,-1)
Vi) = (0,1,1)
Vi) = (1,2,0).
Iteration 1:
Step 1: The corresponding (L, P(z*,0%)) is
Min 2(12
(2)
s.t.
—2(11 S 0
dy <90
—~dy—ds <0
dy + ds <0
di+2d <0
id.| <1, 1<€{1,2,3}

and its optimal solution is d = (0,-1,1)T with § = —2.

Step 2: K = {5} and Q(0*) = P(a*,0*) \ K = {1,2,3,4}.

Iteration 2:
Step 1: The lincar program (L, Q(z*,0%)) is now

Min -d,

(d)

s.t.
—2d, <0
d, <0
~dy —dy <0
dy+d; <0
di +2d; <0
1d,| <1, ie{1,23}



and an optimal solution of it is d = (0, =1, 1)7 with § = 0.
Step 2:
P=(0%) =Q0") = {1,2,3,4}.
a

Another application of LFS functions will now be given in multi-objective pro-
grams. Let us consider the multi-objective program

Min {¢*(z):k € Q)
(MP) s.t.

where P = {1,.-,m} and Q@ = {1,---,q}. We recall that 2* € F is a Parcto
minimum (or “efficient point”) if there is no other x € F such that

¢*(2) < ¢5(a*), keqQ
with at least one strict inequality. If there is a constant 8 > 0 such that, whenéver
¢*(z) < ¢*(2*), 2 € F, for some k € Q,

we have
¢*(z*) — ¢*(x)
¢F(z) ~ $*(2*)
for some k € Q satisfying ¢F(z) > ¢*(x*), then such 2* € F is called a strong
Pareto minimuin (or “properly efficient point”) (see, e.g., [11]). There exists a simple
characterization of strong Pareto minima.

<8

Theorem 1.11 Consider the convex multi-objective program (M P). A poinl z* € I°
is a strong Pareto minimum if, and only if, z* is an optimal solution of the single-
objective program

Min )" Mgt (=)
reQ
s.t.

zerl
for some weights A\, >0, k€ Q.

We will now prove that if all functions in (M P) have LIS property, then the
strong Pareto and usual Pareto minima coincide.

Theorem 1.12 Consider the convezr multi-objective program (M P), where all the
functions have LFS property at a fecasible poinl z* such that

Tt € ( N z'nt(domf')) N (ﬂ int(domd)k)).

1€P(z*) keQ@
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Then z* is a Pareto optimum if, and only if, 2* solves the problem

Min Z(l I
keQ
(SP,N) s.t.
f(z) <0, i€P

Jor some weights A\, 20, k € Q.

Proof: Assume that z* solves (SP, A*). Then z* is a strong Pareto optimum and
therefore a Parcto optimum. Conversely, if z* is a Pareto optimum then z* solves the

problem
Min Y ¢*(z)
keQ
s.t.

¢*(z) < #*(2*), k€Q
[i(z)<0, ieP.

Since all functions have LFS property at z*, we use Corollary 1.6 to conclude that

the system

0€ ) (1+ X)) + ) waf'(z*)

ke@ 1€P(z*)
AN20,keq@
uy 20, i€ P(z*)

is consistent. lence it follows that z* solves the program (S P, A*). This completes

the proof.

Corollary 1.11 Consider the conver multi-objective program (MP) where all the
Junctions have LIS property al a feasible point x* such that

at € ( N int(domf')) n (ﬂ z'nt(d01n¢k)).

1E€P (%) AeQ

Then a* € I is a Pareto optimum if, and only if, z* is a strong Pareto optimum.

We denote the Lagrangian of the multi-objective program (MP) by

Lo(a, M u) = (14 A3)84 () + 3 wif ().

ke@ t€EP

Then the following saddle-point characterization immediately follows.
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Theorem 1.13 Consider the conver multi-objective program (M P) where all the
functions have LFS property at a feasible point x* such that

zr e ( N int(domf')) N (ﬂ int(domq&"')).
1€P(z*) keQ

Then z* is a Pareto optimum if, and only if, there exists \* > 0 and v* > 0 such that
Lo(z*, X u) < Ly(a*, A, u*) < Ly(a, X, u?)
forallz € R* and u 2 0.

Remark: Note that the condition on the interior of the domain of functions can be

dropped if the functions are defined on the entire space R™.
O

In what follows, we will give a characterization of Parcto optimality using a lin-
earization approach. We consider the convex program (M FP) where all the functions
are differentiable and have LFS property at a point = in the intersection of their do-
mains. Around z, we approximate the functions ¢*, k€ Q and f*, i € P by their
linear parts

¢(z +d) = ¢'(z) + V'(x)d, keQ
flz+d) = fiiz)+ VS (x)d, ie€P
thus obtaining the following approximation to the program (A P)
Min {¢*(z) + Véi(z)d, k€ Q}
(LMP,z) s.t.
f(2)+Vfi(z)d <0, ieP.
Program (LMP,z) is called linearization of (MP) at z. The following two single-

objective programs, corresponding to (M P) aud (LM P, z), respectively, will be used
in a characterization of Pareto optima under the lincarization:

Min Y (14 \)¢*(z)

keQ
(SP,A) s.t.
fl(z) <0, ieP
and
Min Z(l + Ak)(¢k(m) + Véi(z)d, k€ Q)
keQ
(LSP, )\, 2) s.t.

f(z)+Vf(z)d <0, i€ P.
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Theorem 1.14 Consider the convez multi-objective program (M P) and a feasible
point x* al which all the functions have LFS property. Then z* is a Pareto optimum
Jor (M P) if, and only if, d = 0 is a Pareto optimum for (LMP, z*).

Proof: Assume that z* € F'is a Pareto optimum for (M P). Then there exists \* > 0
such that z* is an optimal solution of (S P, A ). This implies that d = 0 is an optimal
solution of (LS P, A*,z*) (sce [38, Theorem 1]). It then follows that d = 0 is a Pareto
optimum for (LM P, z*).

Converscly, if d = 0 is a Pareto optimum for (LM P, z*), then there exists \* > 0
such that d = 0 is an optimal solution of (LSP, A\*, z*), which implies that z* is an
optimal solution of (S, A*). Therefore, z* is a Pareto op*imum for (M P).



Chapter 2

LFS Functions and Generalized
Convexity

In this chapter we extend the definition of differentiable convex LIS functions to the
differentiable generalized convex functions. We will show that for such functions the
Karush-Kuhn-Tucker condition is necessary for optimality. Again if some constraints
do not belong to this class, we will regroup them to those that have LI'S property
at z* and those that do not and give characterizations of optimality for a program
rewritten in this form. We will further characterize Parcto optimality for differentiable
pseudoconvex multi-objective programs (without considering LI'S functions) and later
consider the special case where all the functions are pseudoconvex with LI'S property.

2.1 Quasi- and Pseudoconvex LFS Funciions

We first recall some basic notions from generalized convexity (see, e.g., [1,17]) and then
introduce quasiconvex and pseudoconvex LFS functions. We will give geometric and
algebraic characterizations for special classes of differentiable quasiconvex functions

with LFS property as well.

Definition 2.1 A function f : R* — R, defined on a conver sel e K", is called
quasiconvez if all its level sets

{z:f(z) < a}, a€R
are convez.
The following are equivalent (sce [4]):
(a) f is quasiconvex;
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(b) f(z+d) < f(z), 0 <A<l = f(z+ AMd) < f(z) for every z, z+ d € domf;

(c) fOz+ (1 = Ny) < max{f(z),f(y)} forany 0 < A < 1and for every z, y €
domf.

Definition 2.2 A function [ : R* — R, defined on a convex set in ", is called
strictly quasiconvez if, for all z, z + d € domf,

f(z+d) < f(z), 0<A<1= f(z+ M) < f(z).

The following are equivalent (see [1]):
(a) [ is strictly quasiconvex;

(b) f(Az+(1 = A)y) < max{f(z), f(y)} for any 0 < A< 1 and for all z, y € domf
such that f(x)# f(y).

Lemma 2.1 Let [ be differentiable on an open convex set I' C R*. Then f is quasi-
conver tf, and only o, for any z, y € T such that

f) < f(=2),

we have

Vi(z)(y —z) <0.
(The proof of the above lemma can be found in [1].)

Definition 2.3 A function [: R* — R, defined and differentiable on a convex set T’
in R*, is called pscudoconvex on T if, for all z, y € T,

Vi) y—z)20= f(y) = f(z). (2.1)

We can place a further restriction on a pseudoconvex function by requiring the
implied incquality in (2.1) to be a strict inequality for  # y. In this case, the function
is called strictly pseudoconver.

Lemma 2.2 If f s differentiable and pseudoconvez and z* € domf, then
(«) Df(a*) = {d: Vf(a*)d <0};
(b) D7 (x*) is a conver cone and D7 (2*) C {d: V f(z*)d = 0};
(¢) D%(.r*) ={d: Vf(2*)d <0 with equality only if d € D7 (z*)}.
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Recall that Lemma 2.2(a) does not hold for strictly quasiconvex functions. Fur-
thermore, Lemma 2.2(b) may fail for differentiable quasiconvex functions. For counter-
examples see [5].

Without lower semicontinuity, strict quasiconvexity does not imply quasiconvexity
(as the well-known example

1 ifx=0
f(”)={ 0 ife#0

shows). However, since we assume that all the functions are differentiable, the fol-
lowing implications can be concluded.

convexity = pseudoconvexity = strict quasiconvexity =» quasiconvexity.

Definition 2.4 A differentiable quasiconvex function f: R* — R has a locally flut
surface at z* if

N(Vf(z*) = D5 (z").

Ior pseudoconvex functions with LIS property at any point a* € R* where
V f(z*) # 0, we have the following geometric characterization.

Theorem 2.1 Let f be a pseudoconvez function and 2* € R*. If Vf(x*) # 0, then
f has the LFS property at x* if, and only if, ils cone of divcctions of nonascent is
polyhedrai at z*.

Proof: (Sufficiency:) Since V f(z*) # 0, we observe that Df(z*) # @. Here pscudo-
convexity of f and polyhedrality of Dfs(a:*), by Lemma 2.2(a,c), imply that

Df(a*) = {d:Vf(z)d<0)
= Df(=*) UN(Vf(z")).

Besides (see, e.g., [5, Lemma 3.1(b)])
D% (z*) = Df(z*) U D7 (z*).
In either case Df (z*) is represented as a unoin of two disjoint scts. Hence
D(*) = N(V (")),
(Necessity:) If f has the LI'S property at z*, then, by Lemma 2.2,
Df(z*) = {d: V[(z*)d < 0},

which is a polyhedral cone.
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Ferland (sce, e.g., [1]) showed that, if f is a twice differentiable quasiconvex func-
tion on a solid {with a nonempty interior) convex set I' C R", then f is pseudoconvex
at any point z* € I' where V f(z*) # 0. Therefore, we can derive the following
geometric characterization for such quasiconvex functions using Theorem 2.1.

Corollary 2.1 Let f be a twice differentiable quasiconvezr function and ' C R" be a
convez sel with a nonemply interior. Furthermore, assume that z* € T' and V f(z*) #
0. Then [ has LES property at =* if, and only if, its cone of directions of nonascent

is polyhedral at z*.

In the following two lemas, we will introduce classes of quasiconvex and pseu-
doconvex functions for which the cones of directions of constancy can be easily cal-

culated.
Lemma 2.3 Let the function f : R* — R be given as
f(z)= h(Az + b) (2.2)

where A s an m x n matriz and h : R™ — R is a strictly pseudoconver function.

Then f is pscudoconver and

D7 (z*) = N(A)
independently of a* € R™.
Proof: First we prove pseudoconvexity of f. For all z, z* > 0,
Vi@ ) z-2*)20 = (Vh(A2*+b))A(z—2*)20
= (Vh(Az*+b))(Az - Az*) >0
= h(Ax +b) > h(Az* + b) by strict pscudoconvexity of &
= [flx) = f(z*).

Now if d € N(A), that is Ad = 0, then d € DF(z*), by (2.2), regardless of the special
assumptions on h. Conversely, let d € D7 (z*). Then there exists an @ > 0 such that,

forall 0 < o < @,
f(¥* +ad) — f(z*) = h{(Az*+b) + aAd) — h(Az* + b)
= 0,
which shows that A is constant on the interval
[Ax™ + b, Az™ + b+ aAd].

This 1s a contradiction to strict pscudoconvexity of & unless Ad = 0. Therefore

d e N(A).
a



Lemma 2.3 can be extended to a much larger class of differentiable quasiconvex
functions under some additional assumptions.

Lemma 2.4 et the function f: R* — R be given as
f(z) = h(Ax + D) (2.3)

where A is anm X n matriz, b€ R™ and h: ™ — R is a differentiable quasiconver
Junction. Furthermore, assume that 2* € R" and that Vf(a*) # 0. Then [ is
quasiconver and

D7 (a*) = N(A).

Proof: The quasiconvexity of f trivially follows from the quasiconvexity of h, since
forallz, y € domf and 0 < X <1,

fOz + (1= A)y) h(A(Ar + (1 = A)y) + )
h(A(Azx +b) + (1 = A)(Ay + b))
max{h(Az + b), h(Ay + b)}

max{f(m), f(y)}.

Now if d € N(A), then trivially d € D7 (z*) by (2.3). Converscly, let d € D7 ().
Then there exists an @ > 0 such that, for all 0 < « < &,

IA IA A

f(@*+ad)— f(z*) = h((Az" +b) + cAd) — h(Az* + b)
= 0,

which again shows that A is constant on the interval
[Az* + b, Az™ + b+ aAd].

This implies that
Vh(Az* +b) =0,

which further implies that
V/f(z*) = (Vh(Az* + b))A = 0.

We have reached a contradiction (since, by assumption, V f(z*) # 0) unless Ad = 0.

Therefore, d € N(A).
0

Lemma 2.3 and Lemma 2.4 help us find an algebraic characterization for iden-
tification of quasiconvex or pseudoconvex LIS functions as the following theorem
shows.
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Theorem 2.2 Let [ be a differentiable quasiconvez function of the form (2.8) and
z* € R* such that V f(z*) #£0. Then f has the LFS property at z*, if and only if

rank[A] = 1.
"The proof of the rank condition is exactly the same as the proof of the rank condition

for the faithlully convex case, given in [30].

Example 2.1 The following functions are strictly pseudoconvex with the Li'S prop-
erty. The claim can be verified by Theorem 2.1. The function

1
@) =55
is LIS at any 2~ € R" such that a”z* + 8 # 0 (here a € R" and 8 € R). Also
g(z) = (aT2)* + a”2

is LFS at any 2* € R™.
On the other hand, the following functions are quasiconvex with the LFS property.
The function

f(z) = (a"z + B)*™*,

where m is a positive integer, is LFS at any z* # 0. Also the function
g(z) = (aTz + B)° + (a"z + B)®

is LI'S at any «* # 0.
]
We will now turn our attention to characterizations of optimality with LFS func-
tions in generalized convexity.

2.2 Optimality Conditions

In this section, we will give a condition under which the Karush-Kuhn-Tucker con-
dition is necessary for optimality. We will, in addition, show that the saddle-point-
necessary optimality condition does not hold when all the functions are pseudoconvex
even with LIFS property. First we need an important property of quasiconvex LFS

functions.

Lemma 2.5 Let f be a differentiable quasiconver function. If f has LFS property at
e R then
D3(a*) = {d: V f(2*)d < 0}.
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Proof: The LFS property at 2* implies that
D7 (z*) = {d: Vf(a*)d = 0}.

Clearly
{d: Vf(2*)d <0} C Df(a").

Therefore

{d:Vf(x)d <0} C Df*)UN(VS(a"))
= Dj(z*)U Dy (z*)
= D;(x*) (see, c.g., [5, Lemma 3.1(b)]). (2.4)

On the other hand
de D,S(m*) = f(z*+ ad) < f(z*), 0<a<a, forsomea >0,

which, by Lemma 2.1, implies that

Vf(z*)d <0.
Therefore
Df(z*) C {d: V[(2*)d < 0}. (2.5)
It then follows from (2.4) and (2.5) that
Df(z*) = {d: Vf(a*)d < 0}.
]

We will state optimality conditions for the programs of the form

Min f°(z)
s.t.

(QP) f(z) <0, ieP

where all the functions are differentiable and quasiconvex. The definitions of the sets
F, F(z*), P, P= and P(z*) (given in Chapter 1), where 2* is a feasible point of
(QP), remain unchanged.

Theorem 2.3 Consider the program (QP). Assume that at an oplimal solulion z*,
the constraints have the LFS property. Then the KKT system: is consistent.

Proof: Lemma 2.5 and the LIS property of the constraints at z* imply that

Fz*)= [\ Di(z")={d:Vf'(z")d <0, i€ P(z*)},

1€P(z*)
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which is a constraint qualification ( see [29]).
0
The following theorem is a well-known result ( sce, e.g., [29]). It will be introduced

here for the sake of completeness.

Theorem 2.4 Consider the differentiable and quasiconvexr program (QP). Assume
that [% is, in addition, pscudoconvez. If * salisfies the KKT system, then z* is an

optunal solution of (QP).
We can now characterize optimality.

Corollary 2.2 Consider the differentiable program (QP) where [° is pseudoconvex
and the constraints are quasiconver and have the LES property at a* € R*. Then a*

is oplunal if, and only if, the KK'T systcm is satisfied.

It is well known that saddle-point-necessary optimality condition does not hold
for pscudoconvex programs. We will show in the following example that saddle-
point-necessary optimality condition does not hold even when all the functions are
pscudoconvex and enjoy the LFS property at an optimal solution a*.

Example 2.2 Consider
Min -z
s.t.
x4+ 23 <0.

Here a* = 0 is the unique optimal solution. The right-hand inequality of the saddle-

point condition becomes

0< —z+ Ma+2%

lor some A* > 0 and for all @ € R, clearly an inconsistent system.

2.3 Programs with Non-LFS Functions

Let us first 1ecall some optimality conditions regarding generalized convex functions.

For mote details and proofs see, e.g., [5].

Lemma 2.6 Let a* be a feasible point of the program (QP), where f© is strictly
quasiconvex and the constraints are quasiconver. Then a* is oplimal if, and only if

D§(a*) N F(z*) = O.

As discussed in [5] optimali‘y can be characterized in terms of the single subset

P= of P(x*), but it requires the strict quasiconvexity of all functions.
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Theorem 2.5 Let z* be a feasible solution of (Q P) where all the functions are strictly
quasiconver. Then z* is optimal if, and only i,

D§ (2*) N D<(poy{2™) 0 D= (2*) = O,
or, dually, if, and only if, there exist vectors,
0#1° € (DS, v € (DS, i€ P, y € {D5-(*)}*

such that
¥+ Y y+y=0
1EP<(x*)

We will derive an optimality condition similar to the coundition in Theorem 2.5,
using the index set R=, to be deiined shortly, instead of P=. We will then have to
assume all the functions are quasiconvex since Theorem 2.5 will be a special case of
our result when Q(z*) = @. We will further simplify this optimality condition when
the functions are pseudoconvex using Lemma 2.2,

Now consider the program
Min f9(z)
s.t.

(SQP) fi(z)<0, ieP

where all the functions are strictly quasiconvex and differentiable. Let us split all the
constraints of (SQP) into those that have the LI'S property at a given «* € I' and
those that do not. Let the indices of the former group belong to Q and the indices
of the latter to R, where P = Q UR. We can now rewrite (SQP) as

Min f°(z)
s.t.
(SQP") f{z) <0, i€ @
S (z) <0, jER.

As in the convex case, we use the following index sets:
RE={ieR: [(z)=0 Vze I},
Qa")={i€ Q:J'(a") =0}

and
R(z*)={j € R: fi(z") = 0},

Lemma 2.7 Consider the program (SQP'). If R(z*) \ R= # @, then there exisls u
point T € F such that
[(3) <0, i€R()\R"
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Proof: Clearly
R(z*)\ R= = {k € R(z*) : ¥ € F 5 f*(a*) < 0}.

L(!L 1
T = E :L‘k.

card{R(z*) \ R=} LeR(E\R=

Then z is fcasible since F is a convex set. Furthermore, the following claim follows
from strict quasiconvexity of the constraints. Given any ¢ € R(x*) \ R=, if

f'(a') = f'(a"), 1eR(z*)\R7,

then trivially

£(8) < (@) <.
Otherwise
| W (] k < 0.
J'(@) < max_ {f'(2")} <
Therefore

fi#) <0, ieR(x*)\R".
Theorem 2.6 A feasible point z* is an optimal solution of (SQP') if, and only if,
D5 (2*) N DR (pepr=(27) N DF ) (2%) N conv{ D= (%)} = 0, (2.6)
or, dually if, and only if, there exist vectors,
0#y" € {D5(a")}*, ¥ € {Di(e")}*, i€ R(z*)\ R™

and
y € {conv{Dz=(z*)} N Dé(z*)(x*)}"' (2.7)
such that
'+ Y y+y=0.
tER(z*)\R=

Proof: (Primal version:) (Sufficiency:) Suppose that (2.6) holds and that z* is
not optimal. Then, by Lemma 2.6,

D§ (z*) N F(3*) # @.
This means that there exists d € R"® such that

d € D§(a*) N D5 y\r=(2%) N Dy (2*) N D3= (%) # O.
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By Lemma 2.7, there exists & € F such that f{(#) < 0, i € R(+*)\R=. Let d=i-2*.
Then from strict quasiconvexity it follows that

d € D§p\r=(2") N D0 (2*) N DR ().
Denote d* = Ad + (1 — A)d for 0 < A < 1. Then, by the choice of d and d, we have
d* € DF(opr=(2") N Dy (¢¥) N DF=(2).
But d* € F(2*) and R= C P=. Therefore (sce [5, Lemma 3.9(a)])
d* € D3 ().

It follows that
d* € Dip\r=(2") N D, (2*) N D= (2%),

and hence
< * = *
d* e D3 pr= (%) N DGz 0 conv{ D7a (")}

Besides
et +td) = fM=* +td) + (1 = N)(a* + td))
< f%z*), for t sufficiently small,
which follows by continuity from f°(z* + td) < f°(z*). Thercfore
d* € D§(2*) N D papr=(2") N D, uy(2*) N cono{ Dza (2*)},

which is a contradiction to (2.6).
(Necessity:) Assume that z* is optimal and

D5 (2*) N DRpipr= ()N Dé(z,)(m*) N comv{Dx=(z*)} # .
Then there exist a direction
L€ D§(2*) N Djuupys (') N Dy (&) 1 com( D5 (2*))
and an & > 0 such that, forall0 < a< a,
e +ad) < [z
f(z*+ad) < 0, jeR(z")\R™
f(@*+ad) < 0, jeQ(z*)UR".
Furthermore, f?(z*) < 0, j € P\ P(z*), and continuity imply that
@+ ad)<0, jeP\P(z"),

ior @ > 0 sufficiently small. This means that z* is not optimnal, which is again a
contradiction.

(Dual version:) The dual characterization follows from the Dubovitskii-Milyutin
theorem (see Theorem 1.7).
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Theorem 2.7 Consider the program (SQP') and z* € F. Assume that all the func-
lions

I i€ {0JUR(z"),
are pseudoconver and conv{DF=(z*)} is closed. Then x* is optimal if, and only if,
the syslem

OPE) + Y ML) €l [{Din()) + (D5-(="))]
1ER (z*)\R=

is consistent for some A, >0, i€ R(z*)\R™.

Proof: The theorem is an immediate result of Theorem 2.6, Lemma 2.2 and the basic

properties of the polar sct.

Corollary 2.8 Cousider the program (SQP') and z* € F. Assume that all the
Junctions are pscudoconver and that the cone Dg-(x*) is polyhedral. Then z* is
optimnal if, and only if, the system

(VOGN + ¥ M) € {Dr-(z")}*

1€P(z*)\R=
is consistent for some X, >0, i€ P(z*)\R=.

Note that if all the functions are convex, then the above two results recover Corol-
lary 1.8 and Corollary 1.9.

Remark: Recently, the characterization of local minima of differentiable nonlin-
car programs in terms of some classical second-order conditions were investigated
by Pang [20]. He obtained various necessary and sufficient conditions for a Karush-
Kulin-"Tucker point to be an isolated (and/or a strict) local minimum of a differentiable
nonlincar program. There were no convexity or psedoconvexity assumptions. In his
paper, he also referred to the differentiable convex LFS functions. The interesting
point is that, under convexity or pseudoconvexity assumptions, some of his condi-
tions on the objective function and the inequality constraints reduce to having LIS

property.

2.4 Generalized Convexity and Pareto Optimal-
ity

Recently, several characterizations of Pareto optimality for convex multi-objective
programs have appeared (see, e.g., [3,30,32,35]). In this section, we will show that
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Pareto optimality can be characterized for pseudoconvex multi-objective programs as
well. We will further consider a special case where all the functions are quasiconvex
and have the LFS property at a feasible point x*, and give a necessary condition for
optimality in that case.

Consider the multi-objective program
Min {¢*(z) : k € Q}
(MP) s.t.
f(2) L0, ieP.
Recall that ' = {x € R*: fi(z) <0, i€ P}. Following the definitions in [30,32),
for any a* € F, let

Fo(z) = {z€R™: ¢z) < ¢(e%), ke Q)
P=(z*) = {i€eP:zeFNF)=f(x)=0}
and, for every r € @,
Fi(z*) = {zeF:¢) < ¢, ke @\ {r})
Q7 (z") = {ke@\ {r}:a € F(a*) = ¢(z) = ¢*(«"))
Q~(z") = %Qf("v*)-

Our first result is an extension of two lemmas from [30] to generalized convexity.

Lemma 2.8 Consider the pseudoconver multi-objective program (MP). A [casible
point z* is not Pareto optimal if, and only if, both Q \ Q=(2*) # O and there exisls
& such that

#(£) < ¢'(27), 7€ Q\Q™(z")
$(&) = ¢'(z"), i€ Q) (2.8)
T € F

Proof: (Necessity:) If z* is not a Parcto optimum, then there exists r € /' and

ko € @ such that
() < ()
$5(z) < #"(z"), keQ\ {k}. (2.9)

It follows from the definition of ()=(z*) that

Q\Q%(=") M Q\Q7(z*) (2.10)
reQ

{teQ:VreQ\{i}, I € F(z*) such that ¢'(z) < ¢'(z")}.
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Thus ko € Q\ Q=(z*), which is therefore nonempty.
We will now show that for every j € @ \ @Q=(z*), there exists y? € F such that

Py’) < ¢'(z7)
#y) < ¢(=*), le Q\{j} (2.11)
Obviously, for j = ko, (2.11) is true by (2.9). Let y* = . We will costruct y’ for

j # ko, in the following way. Note that j € Q \ @F, (z*). This, by the definition of
Q7 (z*), mecans that there exists 2/ € F such that

$(F) < ¢(z%)
¢'(z) < ¢'(z*), 1e @\ {h}. (2.12)
Consider
Y =A27+(1-X)z, 0<AI<].
It follows, from the convexity of F, that for j € @ \ Q%,, ¥’ € F. Furthermore (2.9)
and (2.12) together with pseudoconvexity (strict quasiconvexity) imply that
¢#(y') < max{¢’(),¢'(7)} < ¢'(z7)
(') < max{g(2),¢'(2)} < ¢'(z*), 1€ Q\ {ho,j}.

By choosing y’ sufficiently close to Z, i.e., by choosing ) sufficiently close to zero, we
can conclude, by continuity, that

#*(y’) < ™(z*).
Therefore (2.11) is proved. Now let
T = Z )‘Jyja
1EQ\Q=(z*)

where

X A=1 A4 >0 j€Q\Q7().

JEQ\Q=(=*)
Again, by convexity of f, & € F. Furthermore, for every ¢ € Q=(z*), it follows from
pscudoconvexity (strict quasiconvexity) and (2.11) that

S S _max ($() < #). (213)

In fact, equality holds in (2.13), since otherwise the definition of @=(z*) is contra-
dicted. On the other hand, for every j € @ \ @7 (z*) we have the following situation.

I (y) = ("), 1€Q\Q(*), then
¢'(2) < #(y) < ¢'(z7).
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Otherwise

P@) < uax {$1)) < ¢,

‘Therefore
¢'(2) < ¢'(z%), j €Q\Q™(z"),
proving the necessity part.

(Sufficiency:) This part immediately follows from the definition of a Parcto optimum.
0

Using this lemma, we can conclude the following more explicit result.

Lemma 2.9 Consider the pseudoconvex mulli-objective program (M P). Then a fea-
stble point 2* is not Pareto optimal if, and only if, both Q \ Q= (a*) # @ and there
exists a § € F such that

$*(9) < ¢, keQ\Q7(z")

@) = ¢'(x*), 1eQ=(z*) (2.14)
@) < 0, jeP@E)\P(a")

1) = 0, ie P

Proof:(Sufliciency:) This part immediately follows from the definition of a Parcto
minimum.

(Necessity:) Suppose that z* is not a Pareto minimmum. Then
Fo(z*)NF £ Q.
Let & € Fy(z*) N F. Now, by the definition of P=(z*), for any feasible poini r,
[(z)=0, i€P(z").

Moreover, by the definition of P=(z*), for every j € P(z*) \ P=(z*), theie exists +7
such that
f2(z%) < 0 and 27 € Fy(z*)N F.

Choose
¥= > A, z?
JEP(z*)\P=(a*)
where A\, >0, j € P(z*) \ P7(z*) and Y, A, = 1. Then, by convexity of
IEP(z*\P=(x*)
Fn Fo(w*),
j € F N Fo(z*).
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Besides, by pseudoconvexity (which implies strict quasiconvexity) we have the follow-
ing situation. Given any ¢ € P(z* \ P=(z*), if

f'(@') = fi(a), 1eP(=*)\ P=(z%),

then simply

fi@) < fi(=*) <0.
Otherwise
1= $f..] <.
@< pmax  Af()}<0
Therefore

I'(y) <0, ieP(z")\P=(z). (2.15)
Since z* is nol a Pareto minimum, then, by Lemma 2.8, there exists £ € F such that
$"(2) < ¢*(=*), keQ\Q(z")
$'(3) = ¢'(«*), €@ (z")

Now, let § = %-" Then g € F and

$5(9) < (@) <4 @Y), iTkeQ\Q7(x), ¢%2)=4"(®)
$'(@) < max{¢"(#),¢*(5)} < ¢*(a"), ilke @\Q(c"), () # ¢"(H)
$(5) < max{¢'(8),4'(®)} < ¢'(z"), ifle Q(z").
Similarly
F @) < 0, jeP(@)\P7(s")
'@ £ 0, ieP™(z).

Hence, by the definitions of the index sets @Q=(z*) and P=(z*), we conclude that
¢(7) = ¢(@), leQ (")
(@ =0, i e P(z*).

This completes the proof.

Remark: In fact, as the proofs show, Lemma 2.8 also holds when all the objective
functions are strictly quasiconvex and the constraints are quasiconvex. Lemma 2.9

also holds when all the functions are strictly quasiconvex.
a

We will use the following abbreviations:

Dg-enf@)= (1 D3(a)
keQ=(z*)
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and

D;-'(a:*)(x*) = n D?.(:lt*).
1EP=(x*)

Then we have the following major theorem.

Theorem 2.8 Consider the pseudoconver multi-objective program (M P). Then a
point x* € F is a Pareto minimum if, and only if, either Q = Q=(x*) or therc cxist

w' = (wp) 20, ke@\Q7("), w'#0,
w = (u) 20, ieP\P(a*) (2.16)

such that

Yo wiVe(at) + Yo V() € {DG=(eny(a) + Dra( ()}
kEQ\Q=(z*) 1€P(z%)\P=(a*)

Proof: By Lemma 2.9, the feasible point z* is not Parcto minimal if, and ouly if|
both @ \ Q=(z*) # O and there exists § € F such that (2.14) is satisfied. This
together with pseudoconvexity and the definitions of Q=(.&*) and P=(x*) imply that
the following system

Vg (a)d < 0, k€Q\Q™(a")
Vfi(z)d < 0, i€ Pa*)\P(z%) (2.17)
d € {Dg=(er)(z*) N Dp=(zn(z’)}
is consistent. This means that z* € F' is optimal if either Q\ Q=(z*) = O or (2.17) is
inconsistent. Applying the Dubovitskii-Milyutin theorem to the inconsistent system
(2.17) yields that z* is optimal if, and only if, either @ \ Q=(z*) = @ or there exist,
v = (uf) 20, ke Q\Q=(a")
v o= (4)=20, i€ P\P(z"), (2.18)

not all zero, such that

Y wiVe @)+ Y wV(2") € {DGe(n(@") + Diaun(a))
FEQ\Q=(¥) 1€P(a%)\P=(a%)

We must now show that w* # 0. Note that (2.18) implies (2.16) which proves the
sufliciency. To prove nccessily, assume that w* = 0. Then we can have two cases:
If P(z*) \ P=(z*) = @ then, (2.18) is violated; if P(z*) \ P=(z*) # @ then, at least
one u¥, i € P(z*)\ P=(z*) is nonzero ,which together with the Dubovitskii-Milyutin
theorem applied to (2.18) imply that

D;(z*)\'p=(zﬁ)(x*) n D;'—'(I*)(w*) n [);r,(xp)(.'l:*) = @. (2.1!))
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But by (2.15) there exists § € F' N Fy(z*) such that
f(5) <0, ieP(z)\P(s"),
which together with the decfinitions of @=(z*) and P=(z*) imply that
d = - " € D\ pe(en)(@*) N Dga (zoy(z*) N D= (ze(z*). (2.20)

But (2.20) contradicts (2.19). Therefore w* # 0 and the proof is complete.
O

In our final theorem of this section, we will illustrate the role of LFS quasiconvex

functions in multi-objective programming.

Theorem 2.9 Consider the multi-objective program (MP) where all the functions are
quasiconver, diffcrentiable and have the LFS property at a feasible point *. If z* is
a Pareto minimum then the system

> wpVé*(z*) + Y wVfi(a)=0

kEQ 1€P(z*)

wr > 0, kEQ
u, 2 0, 1€P(z)

s consislent,

Proof: Assume that 2* is a Pareto minimum. Then, by the Charnes and Cooper
observation (sce, e.g., [8,32]), x* solves
Min > ¢*(z)
keQ
s.t.
¢*(x) < ¢4(a*), keQ
fi(z)<0, teP.
Since all functions are quasiconvex with LFS property at z*, we use Theorem 2.3 to

conclude that the system

Y +MVE)+ Y wVfiE*) =0

heQ t€P(z*)
Ak 2 01 k € Q
u, > 0, 1€P(z*)

1s consistent. Let wy =14 A, k € Q. This completes the proof.
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Chapter 3

Inverse Programming

This chapter deals mainly with mathematical programming models. These are mathe-
matical programs that contain two sets of variables. One set are the parameters that
can be directly influenced or controlled, and the other set are the decision variables.
The level of optimization, dealing with continuous optimization of mathematical mod-
els is termed input optimization. We first recall and elaborate on some of the basic
notions in input optimization such as stability and optimal inpul. We will then intro-
duce and study the inverse programming problem for a large class of LIS functions,
namely linear functions.

3.1 Modified Optimality Conditions

In the two previous chapters, we have studied characterizations of optimality that
use a subset of P=. In this section, another index sct that is larger than P= will
be introduced and studied in convex programming. Using this larger index set to
characterize optimality is motivated by the Charnes-Cooper formulation of Pareto
optimality [8]. This set is used to characterize optimality in multi-objective program-
ming [30]. However, we study it in single-objective programining. This set will then
be studied for parametric problems in the next section.

We recall the convex program (P) from Chapter 1 and, associated with a fixed
feasible point 2*, define the following scts:

P= {keP:zeF, f%)< f@*)= fHz)=0};
F(z*) = {zeR":[¥z)=0, ke P7};
Fi(z*) = {zeR": ffz)<0, ke P7).

i

Note that the set F=(z*) is not generally convex and PS # P=, as the following
example shows,
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Example 3.1 Consider

Min f°=(z; - 1) + 2

s.t.
fl=($1+])2+($2—1)2-250
P=(z1+ 1) +(z,+1)*-2<0

at * = (0,0)". Here P= = {1,2} and

me- {14}

Clearly, I'=(z*) is not a convex set. Furthermore, P= = @ which is different from

the index set PT.
0

We begin our theory of optimality, using the index set P, with a simple but

important lemma.

Lemma 3.1 Consider the convex program (P). If P\ Py # @, then there exists
z € I such that

f2z) < fO%z*) and f¥(2) <0, ke P\ P~ (3.1)

Proof: Clearly
P\P=={keP:3*eF> f*) < fOa*) and f¥a*) <0}.
For a%s from P\ PZ, choose
1 k

= ———— z".

card{P\ P}, pvps
Then, by the convexity of f*, i € {0} U P, we conclude that £ € F and that (3.1) is

satisfied.

O
Let us define
L a,u) = f2)+ Y wf(z)
t€P\PF
to be the restricted Lagrangian function associated with a fixed z*. Also let ¢ =

card{P \ P7}. Then we have the following characterization.

Theorem 3.1 A point +* € F is an optimal solution of the convex program (P) if,
and only if, there exist uf > 0, 1 € P\ P, such that

L*(z*,u) < L (2%, u*) < Lz, u*) (3.2)

Jor all v € conv{F=(a*)} and for allu € RS.

58




Proof: (Sufficiency:) Assume that (3.2) holds. Then the left-hand incquality of (3.2)
implies that

fo(z*) + Z u, f'(z*) < [P + Z uy fr(a"). (3.3)

ieP\Pz 1€P\PF

Now, for u; = 0, i € P\ P7, the inequality (3.3) implics

d° ulfi(z*)>0.

i€P\P;
But
2. uif(a*) <0,
1EP\PF
since z* € F and u} 20, 7 € P\ P7. Therefore
> ulf(z)=0. (3.4)
1€P\P;
Note that

{Fofz: f2(z) < f2(=")}} € F7(2*) C conv{F=(a*)}.

Now for every & € conv{F=(z*)}, and therefore for every & € FF' N {x : [(=) <

fo(w*)}’
=) < P+ Y ulfie)

1€P\P7
< fPa)+ Z u; f*(x) by the right-hand inequality of (3.2)
i€P\PF

< f(a).

Therefore
@) < f°(z*) for every s € P : f%z) < f°(s")}

which means that z* is optimal.

(Necessity:) Assume that z* is an optimal solution of the convex program (7). We
can assume, without loss of genecrality, that the first ¢ indices constitute the set P\PE.
Define, in R**!, the sets

S(z)
1
z = *
Ki={y:y> / ( ) for at lcast one = € conv{F=(z")}

f(z)
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and
f(=*)
0
Ko =qy:y<

0

Both sets are convex and Ky N K; = @, for if the latter were not true, there would

exist 2 € conv{F=(z*)} and § € R°*! such that

£43) 0

This would mean that & € F and f°(%) < f°z*), contradicting optimality of z*.
Therefore, there exists a hyperplane that separates I; from ¢lK,. That is, there

exists ¢ # 0 and a such that

(a,y') > a > (a,y°) foreveryy' € K; and for every y® € clK,.

Clearly, a is nonnegative. Specify, for an arbitrary z € conv{F=(z*)},

(r) f°(a)

f'(e) 0
p=| " | ad =

J4(@) 0

Then
wf@)+ X afi(2) 2 afa)

IEP\PS

We claim that ag > 0, for if this were not true, we would have

Y afi(z) 20 forevery z € conv{F=(z*)}.
1€P\PS

But, by Lemima 3.1, there would exist & € F such that
f2(2) < f°(a*) and f¥&) <0, ke P\ P~
But not all a,, i € P\ PZ, are equal to zero. Therefore

Y, af(f) <0,

1EP\PF
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a contradiction to (3.5). Now let
w=2 ieP\P-
Then

Lzu?) = @)+ 3 wf(2)2 ) for every r € cono{ F=(a*)}.
iEP\PF

In particular, for x = a* this gives

Yo ufi(*) 20,

i€EP\PF

But, since z* € F and v} > 0, i € P\ P,

> wli@") L0

1EP\PE
Therefore
Y, ulff(e*)=0

1EP\PE
and so L*(z*,u*) = f°(a*). Hence, by (3.6),
Lz, u*) > L*(z*,u*),

proving the right-hand inequality. Besides

L u) 2 o)+ ) wf'(e”)

1€P\PF

proving the left-hand inequality.
Cl

If in Theorem 3.1, we use the convex set F<$(z*), instead of conv{l'=(z*)}, we
obtain the following theorem, the proof of which is exactly the same as the proof of
Theorem 3.1 except that conv{F=(z*)} is replaced by F75(a”).

Theorem 3.2 A point z* € F' is an oplimal solution of the convez program () 1f,
and ounly if, there exist w* > 0, i € P\ P, such that

LH(z*,u) < L*(z*,u*) < LMz, u”) (13.6)
for all z € F<(2*) and for all u € RS.
The following Corollary then follows.
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Corollary 3.1 A point z* € F is an optimal solution of the convex program (P) if,
and only if, there exist ur > 0, ¢ € P\ PT, such that

£7(a*,u) < L7(*u*) S £(z,u") (3.7)
Jor all z € I'=(x*) and for all u € It

Proof: (Sufficicncy:) The proof is exactly the saine as the proof given in the suffi-
ciency part of Theorem 3.1 since

{IF0{x: fO2) £ f2(2a")}) € F7(2*) C conv{F=(z*)}.

(Necessity:) Assume that 2* is optimal. Then by Theorem 3.1 there exist u] >

0, i€ P\ P, such that (3.2) holds, for all € conv{F=(z*)} and all u € R;. Note
that

F=(z*) C conv{F=(z*)}.
By choosing the same u* as in the proof of Theorem 3.1, (3.7) holds for all z € F'=(z*)

and all v € .
0

We recall from [32] the set
F=={zeR": f'(z)=0,i€P7}
and the usual Lagrangian for the convex program (P)

Llx,u)= fz)+ ) uf(2).
tEP\P=
Then it is well known (sce, e.g., [32,36]) that 2* € F= is an optimal solution of the
convex program () if, and only if, there exists u = (%,) 2 0, i € P\ P=, such that

L(r*u) < L(z*,u*) < L(x,u").

Unlike the minimal index set and the Lagrangian function of the above well-known
result, the index set and the Lagrangian function of the saddle-point results derived
in this scction depend on x*, the candidate for optimality. Furthermore, it is well
known that /= is a convex set and obviously independent of the feasible point z*
while we showed that F=(a*) is not generally convex and depends on z*.

Our objective is now to give a subdifferentiable and a differentiable version of
Corollary 3.1. To this end, we need several preliminary results. The following result

is very trivial, so we give it without proof.
conv{F=(a")} —a* = conv{F~(a™) — z*}.
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Hence
{conv{F=(a*)} — £*}* = {conv{F=(a*) - 2*}}* = {F=(2*) — 2*}*.
The following important lemma can therefore be derived.
Lemma 3.2 Consider the convexr program (P) and a point x* € F. Then
{F=(z*) —a*}* € {D5= (")} (3.8)
Proof: Let y € { F=(z*) — «*}*. Then
yz 20 for every z € {F=(2*) — 2*}.

Given any d € Dp=(z*), there exists an & > 0 sufficiently small such that, for all
0 <a< a, we have
ffz* +ad) =0, ke PT.

Soz*+ad e F=(z*)for all 0 < a < @, or
ad € {F=(z*) - 2"}.
Therefore y(ad) = 0, which implies that yd > 0. This means that

y € {D5= (2}
L)

Note that the reverse inclusion {D5=(z*)}* C {#*=(2*) — 2*}* is not generally true
as the next example shows.

Example 3.2 Consider again the problem
Min fY=(z,-1)? 4 22
s.t.

fl=(zi+ 1P+ (2= 1) =220
=+ 1)+ (2, +1)2 =250

at z* = (0,0)7. Then

P- ={1,2}, F=(z") ={[ g }, { -g }} and Dy (") = {[ 3 ”

Therefore
{Dp=(2*)}* = It?,

while

{(F(z")~ 2"} = {d e i*:d; <0},
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Let us introduce the Lagrangian function

L'(z,u’) = f(z)+ 3 uiff(e).

kEP(z*)\PS

Also, let é = card{P(x*)\ P7}. Then Theorem 3.1 can be rephrased as follows:

Lemma 3.3 Consider a convez program (P). A point o* € F is optimal if, and only
if, * minimezes L (x,u*) on conv{F=(z*)} (or on F<(a*)) for some u* € RS.

Proof: Since we alrcady have the feasibility of z*, to prove the lemma, it suffices
to show that we can replace £*(z,u*) with L*(z,u*) in (3.2). We have, by equation

(3.4),
Y ulf'(z*) =0.

1€P\PS
But w [*(2*) €0, 1+ € P. llence, we have

uy f((z*) =0, 1 € P.
This implies that
uy =0, i€ P\P(z).

So the Lagrangian in (3.2) is indeed equal to L*(z, u*).

We now derive a characterization for the subdifferentiable case.

Theorem 3.3 Consider a conver program (P). A point z* € F is optimal if, and
only if, thcre crist
h* e aft(a®), i € {0} U (P(=")\ Py)

and

wl >0, keP@r)\P:

such that
(r" 4+ Y wi(hY e (DR (2}, (3.9)
keP(z*)\PZ
Proof: (Sulliciency:) Since it € 9f*(a*), i € {0} U (P(z*) \ PF), for every z € R™,
we have

Si@) 2 1) + M2~ a7), e {0}u(P(M)\P]). (3.10)

Therefore

P@+ Y wiffe) 2 e+ Y uff)

KeP (e )\ P= keP(N\PT

+(°+ Y k) (a-2%).
keP(c)\PE
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Now, forz € Fn{x : f%x) < f%z*)}, it follows that
foz) > fO(z*)+ (h° + Z u}:hk)(.r -x*).

heP(r*\PF
Besides, for such z, the convexity of the set F N {x: fO(r) < fO(a*)} implics that
x -2 € {F(a*)n Dj (")}
(Note that F'(z*) is the set of feasible directions at &* defined in Chapter 1.) By the
definition of the set PZ, this implies that
r— "€ D5 (a").
Therefore

(h° + Z uph" )@ —2*) > 0 forevery r € Ffr: fO(r) < fO(Y)).
keP (= \PF

This implies that

f2(2) = [)(a*) forevery z € F{z: fO(x) < fO")),
proving optimality of x*.
(Necessity:) Assume that 2* is optimal. Then, by Theorem 3.3, o* minimizes L*(r, u*)
for some u* € RS and for all © € conv{F=(a*)}, whete é = card{P(a*) \ P7}. This
means that there exis.s
h=(h®+ > uph*y € OL*(x*,u*)
keP(z*)\PF
such that
h(z—2) 20 forevery & € conv{l"=(:")}.
Therefore
KT € {conv{F=(z*)} — 2*}F = {(F=(z*) = 2*}*.
It follows, by Lemma 3.2, that
K € {D5=(z*)}*.
]
A realization of the above result to differentiable functions is obvious.

Corollary 3.2 Consider a convezr and differentiable program (1?). Then o* € 17 s
optimal if, and only 1f, there exist

up 20, keP(e*)\P],

such that

(VO + Y w(ViE)" € {Dp:(2")}. (3.11)

kEP(z*)\PZ
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Note that the difference between the characterizations in Theorem 3.3 and Corol-
lary 3.2 and the usual characterizations of optimality in the subdifferentiable and
differentiable forins (see, e.g., [4]) is that the index set P; is used instead of the usual
index set P=. As we stated earlier the former set depends on z*, the candidate for
optimality, while the latter does not.

One interesting point about the modified optimality conditions derived in this
section is that although they require the calculation of P each time a point z* is
tested for optimality, they usually provide more trivial sufficient optimality conditions.
In other words, since P= C P, these optimality conditions usually involve fewer
Lagrange multipliers, and the set F'=(z*) is usually a smaller sct than F=. We will
now illustrate some of these optimality conditions by the following example.

Example 3.3 Cousider, once more, the problemn

Min f0= (2, —1)® + 22

s.1.
fl=(@1+1) +(2,-1)2-2<0
[P=(z 4+ 1)+ (22+1)2-2<50

at r* = (0,0)". where

Pz = {12}, ""=(‘T*)={[g]’ [—g]} and D;f(:c*)={[g]}.

Furthermore

{D1=>,f*(33*)}+ =R
In this case P\ PS = 0, and thercfore
L(z,u) = f(2).

The optimality condition from Corollary 3.1 becomes: (Note that there are no La-

grange multipliers in this case.)
(") < f(a)

for every @ € I'=(2*). Clearly, this is a consistent ~ystem, verifying optimality of z*.

On the other hand

VfOa*) = (~2,0).

Therefore, the optimality condition from Corollary 3.2 becomes

-9 )
e
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which is clearly a consistent system.
ju]
We now show how to calculate the set P7. Any method for calculating the index
set P= should work for P as well, provided that the constraint fO(x) — f*(*) <0
is added to the constraints of the program (P). Here, we give an algorithin which is
a slight extension of the algorithm for calculating P=, given in [39], except that an
extra constraint due to the objective function has been added to the problem. The
algorithm starts with @ = P(z*) and ends with @ = P7. At cvery iteration the
program
Min Y Vf*@a")d
kes
s.t.
Vikar)d+ 0)|d- 6], <0
(P*,0,9Q) 6% € Dyu(a*)
ld] <1, |65] <1 ke P@E) U0}, i=1,...,n

is solved. Let i = {k € P(a*) : Vf¥(a*)d < 0}. Then the steps of the algorithm are
as follows:
Initialization: Calculate P(z*) and D« (z*), k € P(x*) U {0}. Specily a tolerance
€ >0, and set 0 > € and 2 = P(z*).
Step 1: Find an optimal solution of (P*, 8,Q) d, &. Calculate its optimal value
§(0) = 3 V),
keq
Step 2: If §(0) < 0, determine K, set 2 = Q\ A and return to Step 1. Otherwise
continue.
Step 3: If §(0) = 0,sct 0 = 1. IT 0 > ¢, return to Step 1. 11 0 < ¢ stop; § = PF.
'}

If all the functions, including the objective function are faithfully convex, i.e, if
f¥(2) = ¢*(Arz+bi)+aFz+a, k € {0JUP, whete ¢%, k € {0}UP, are stiictly convex,
then the program (P*,0,9Q) is significantly simplificd to the following progran:

Min Y Vf¥2*)d

keq
s.t.
(L*,0,9) Vik(a*)d + 0 (Wz] + Z]A ¢z|)
[d| <1, kePlzr)u {0 =1,.

where A}, is the 7, row of Ay (see [39]). The above algorithm for calculating P then
applies with minor changes.
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Initialization: Calculate P(z*) and identify Ag,bi,ax, k € P(z*) U {0}. Specify a
tolerance € > 0; set 0 > ¢ and Q = P(z*).

Step 1: Find an optimal solution of (L*,0,). Calculate its optimal value

=) Vf k(z*)d
keqQ
Steps 2 and 3 remain unchanged.
In order to demonstrate how the algorithm works, we borrow the next example
from [4] and modify it by adding an objective function and fixing a feasible point z*.

Example 3.4 Consider

Min f%= ¢4 €™

s.t.
fl=e1+22-1<0
fP=clt+ai+e™-1<0
=z +22+22-1<0
fl=e*-1<0
P=(z—1)2+22-1<0
=z, 4+ —-1<0
ff=z,4e% —-1<0

and 2* = (0,0,0,0,0)7.

Initialization: llere

3

—
=

3

= {1,2,4,5,6,7})
(0,0, 1,0,0)
(1,0,0,0,0)
(0,0, —1,0,0)
m—loom
(-

(

(

4
—
PR

p‘

*

<
e
=

<
=

=
*

<
=

2,0,0,0,0)
1,0,0,-1,0)
0,1,0,0,—1).

<
S~y
(2]

2

*

.
e ewe e s e B
2 8 3 3
* %

8

<
=

Furthermere, we identify

Ay = a1=ag=a4=a5=0
a = (1,0,0,0,0)T
e = (0,1,0,0,0)7
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10000
Ao = [00100]

A = A5=[1°0°°]

01000

10000
01000
00100

Ay = (0,1,0,0,0)
Ae¢ = (0,0,0,1,0)7
A; = (0,0,0,0,1)7.

Az

Iteration 1: For 0 = 0.1 the optimal solutien of the corresponding (L*,0, P(r*)),
i.e., of
Min gO = —d3 - d.l - (15
s.t.
_(]] = d3 + 0('(11' + '(lJl) S 0

9 =di+0(ldi]+ |d]) 0

9> = ~dy + 0(|di| + |da| + |ds]) <0
g = ~dy + 0(|d]) < 0

9% = =2 + 0(|dy| + |d]) <0

¢ =di—di+0(|di| + |ds]) <0

T=dy—ds +0(|d2] + |ds]) <0
dl<1i=1,....5

=«

is d = (0,0,0,1,1)T, which gives §(0) = —2. It then follows that
K =P(x*)\ {6,7} = {1,2,4,5}.

Iteration 2: Using again 0 = 0.1, we solve the program (1*,0, {1,2,4,5}) which is
Min —dj, subject to the samne coustraints as in the above (L*,0,P(z*)). It tutnus out,
that §(0) = 0, regardless of 0 > 0. Thercfore

8]

The set PZ in the above example has also heen calculated by a different method

in [30].
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3.2 Basic Point-to-Set Topology

In this section we will extend the definition of P7 to parametric problems. First
let us recall some basic notions from point-to-set topology that are used in input
optimization. We study the mathematical models of the form

Min f%(z,0)

()

(F0) s.t.
fr(z,0) <0, keP={1,...,m}

where & € 11" is a decision variable, ) € [ C RP is a parameter and f* : R" X
It" - R, i € {0} UP, are continuous functions. We assume that all functions
SY(,0): R* — R, i€ {0} UP, are convex for cvery 0. Such (P,0) is referred to as
a conver wodcd. With every “input” (parameter) 0, we associate the “output” triple,

that is the feasible sct
F(0y={z: f(z,0) <0, 1 €P};

the set of optimal solutions #(0)

and the optimal value
F(0) = 1°(2(0),0).

One of the basic criteria for using the model (P, @) in practice is its “stability”, i.e.,
continuous dependence of the output on the input. Since the mapping F is closed, it is
considered to be continuous at 0 if it is lower semicontinuous (or, equivalently, open)
at 0. We recall that a point-to-set mapping I' : Z —» X, between two topological
vector spaces Z and X, is lower semicontinuous at some 0* if, {for every open set A,
such that ANP(0*) # O, there is a neighbourhood N(0*) of 6* such that ANT(9) # @
for every 0 € N(0*) (see, e.g. [2]).

We will always assume that the set of optimal solutions at 0* is nonempty and
bounded. The objective functions with this property are called realistic at 0* and for
these there is an important characterization of continuity given in [32].

Theorem 3.4 Consider the conver model (P,0) at 0*. Then the following statements

are equivalent:
(1) The point-to-sct mapping F' is continuous at 0*;

(ii) For ceery realistic nbjective function fO, there is a neighbourhood N(0*) of 0*
such that F(0) # O for cvery 0 € N(0*), and 0 € N(0*), 0 — 0*, implies that
the sequence #(0) s bounded and all its timit points lie in F(0%);
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(iti) For every realistic objective function f° there erists a ncighbourhood N(0*) of
0* such that F(0) # O for every 6 € N(0*), and 0 € N(0*), 0 — 0*, implies
that f(0) — f(0*).

We also recall the following definition from [32].

Definition 3.1 Consider the conver model (P,0). A set S C RP is a region of
stability at 0* € S if for each open set A C R" satisfying AN F(0*) # O, there crists
a neighbourhood N(0*) of 0* such that AN F(0) # O for each 0 € N(0*)N S.

Therefore, S is a region attached to 0* where the mapping I is locally lower semicon-
tinuous. If S can be identified as a neighbourhood, i.c.,if & = N(0*), then the model
is said to be stable at 0*. For example, if Slater’s condition holds for the program
(P,0*), 1.e., if there exists & € R" such that f'(#,0*) <0, ¢ € P, then the model is
stable at 0*. There have been about 20 different regions of stability reported in the
literature (see, e.g., [32]). Two of such regions are

M(0) = {0: F(0*) C F(0))

and

H(0)={0: F(0*) C F7(0)},

where

FF(0)={ze R": f(z,0) <0, i € PZ(0")}.
We denote the limit inferior of a set by

lim T(0) oof {z € R" : There exists a scquence z(0) € I'(0) 3 « = olilbl x(0).}.
9—0* oy Y

The following characterization for a region of stability was recently given in [26).

Lemma 3.4 Consider a convez model (P,0) around some 0* wilh « vealistic objectioe
function. A sct S C RP, conlaining 0%, 1s a reqion of stabiity if, and only if,

F(0*) C lim F=(0).

pES
60— 0™

We will now introduce a slightly different notion of stability. This notion is moti-
vated by the modified optimality conditions of the previous section,

Definition 3.2 Consider the conver model (F,0) with a realistic objective funeclion
at 0* € 1. Then S(0*) C I is a F-stability reqion at 0* if, for cach open sct A C It

satisfying )
ANF(0") # 0,
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there czists a neighbourhood N(0*) of 0* such that
ANF0) £ @ for any 0 € N(0*) N 5(0%).

Note that a F-stability region S(0*) is a region attached to 0* that guarantees lower
semicontinuity of the point-to-set mapping F (rather than F, as is usually the case).
et us denote some properties of F-stability.

Theorem 3.5 Consider the convex model (P,0) with a realistic objective function.
If I is open (lower semicontinuous) at 0*, then f is continuous at 0.

Proof: Since fis assumed to be realistic at 0%, F(0*) # ©. Now consider z* € F(0*)
and 0% € [ such that 0¥ — 0*. Then, by lower semicontinuity of F at 0*, there exists
#(0%) € I°(0%) such that

E(0%) — z* as 0F — 0"
But fY is continuous in both 2 and #. Thercfore

Jim fO(@(0%),0%) = f°(*,0°)

or

Jim f(0) = 7(0).

Corollary 3.3 Consider the convexr model (P,0) with a realistic objective funclion.
If I is open al 0%, then it is also closed at 0*, and therefore it is continuous at 0*.

Proof: By definition,
F(0y = F(0) 0 {z: f°(z,0) = f(0)).

Now since the objective function, the constraints and the optimal value function (by

T'hoerem 3.4) are all continuous at 0%, the closedness of I at 0* easily follows.
O

-~

Therefore, F-stability at 0* implies continuity (both openness and closedness) of the
point-to-set mapping F at 0* and the continuity of the real valued function f at 0*.

At this point, we extend the cquality set P7 to one for the model (P,0). We
define

P(0)={i€P:x€F(O) = f(a,0) =0}

Associated with this equality set, we .lefine the {ollowing sets:

PL0) = P\P(0);

F=(0) = {reR: f(r,0)=0, i e P=(0)};
F20) = {r€R": f(a,0)<0, i €P(0")}
FIO0) = FRO)N{x € R": f*z,0) = f(0)}.
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Similar to the characterization for a region of stability in Lemma 3.4, we have the
following characterization for a F-stability region.

Theorem 3.6 Consider the convex model (P,0) with a realistic objective function at
0*. A set S(0*) C RP is a F-stability region at 0* if, and only if,

F(0*) ¢ lim FZ(0). (3.12)
oed6*%)
6—0%
Proof: Assume that $(0*) is a F-stability region at 0*. Then F is lower semicon-
tinuous at 0*. This means that given any sequence § € S(0*), 0 — 0%, and any
#(0%) € F(0*), there exists #(0) € F(0) such that

B(0%) = ol_ijlol'( z(0).

Since F(0) C F=(0), the inclusion (3.12) holds.
Conversely, assume that the inclusion (3.12) holds for some set S(0*). Take any
z* € F(0*). If P<(0*) = @, then F=(0) = F(0), which trivially implics that S$(0*) is
a F-stability region at 0*. If P<(0*) # @, then by Lemma 3.1, arbitrarily close (for
some € > 0) to 2* there exist points g € I'(0*) satislying
PG = J0Y)
f¥§,0%) < 0 ke P<(0Y) (3.13)
lic-=*ll <«

Now, since

je € F(0*) C lim F7(0),

oe5(o*)
0—0*

there exists a sequence () € F=(0) such that

g = lim g(0).
0€5(0%)
0—0%

But, using (3.13), for all these s, sufliciently close to 0*, we have

F4(0),0) <0 k € P(0*). (3.14)
Now §(0) € F=(0) and (3.14) imply that §(0) € F(0). This completes the proof since
§(0) — g, and . is arbitrarily close to z*. Hence F is open at 0* with respect to

-~

5(0%).
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Remark: The inclusion (3.12), like the inclusion in Lemma 3.4, is of theoretical
rather than practical importance. F-stability regions can also be defined in a similar
way that the twenty or so regions of stability have been defined. However, the obstacle
in calculating F-stability regions is the calculation of the set of optimal solutions (and
thus the optimal value) as a function of @ explicitly. As an illustration, consider

M(0%) = {0: F(0") C F(0)},

(0*) = {0: F(6*) C F=(0)}.
Then it is casily scen that M (0%) and FH(0*) imply the inclusion (3.12) and are,
therefore, F-stability regions. On the other hand, for calculating them we need to
know [7(0) and f(0) explicitly. This problem makes the applications of the results
related to [-stability rather limited. However, there is a condition under which the

two different notions of stability coincide.

Lemma 3.5 Consider the convex model (P,0) around 0* with a realistic objective
Junction at 0*. Assume that S(0*) is a region of stability at 0*. Furthermore, assume
that the point-to-sct mapping F is open at 0* with respect to S(0*). Then S(0*) is a
[-stability region at 0%
The proof of the lemina is obvious.
()

‘This property will make the results related to F-stability more applicable as we will
show later.

Let us illustrate, with two examples, that S(0*) and S(6*) are generally two dif-
ferent regions.

Example 3.5 Consider

I\(’lin fO=—z,

)

s.t.
fl=a;+2,-1<0
fP=—21-02,+1<0
fP=-2, <0
Ji=—2250

around 0* = 1. llere

F(o)y = {[é]} forany 0 € R
flo) = =1 forany0 e R
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{1,2} if0=1
) if0>1
{1,2,4} ifo0<1
P=(0) = {1,2,4)} forany 0 € R
S(0") = M0 )={0:02>1}
S04 = M@O)={0:0€ R).
O
Note that in the above example S(0*) C S(0*). This is not, however, the case in the
following example.
Example 3.6 Consider

Min f°= —x; — 0z,

(z)

s.t.
fl=.131+.’l'2—lS0
fP=—-2,<0
fP=—22<0

around 0* = 1. Here
if0<1

in
oy = | )\fé]+(1—)‘)[?] f0=1and0<A<I
0
1]

if0>1

x -1 ifé<1
10y = { 0 if0>1
) {1,3} o<1
P=(0) = {1} ifo0=1
{1,2} ifo>1
P=(0) = @ foranyd€eR
S0y = {0:0€ R}
S(0*y = {0*}.
In this example, unlike the previous example, S(0*) C S(0*).
(W]
For the sake of completeness, let us also recall another notion of stability, defined

in [24], known as weak-stability. Recall that the limit superior of a set is

1i§n§\3p6'(0) ={z:2(0') >z, {0} C {0}, =(0') € G(0')}.
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Definition 3.3 A region S s called a weak-stability region, for the parametric pro-
gram (P,0) at 0* € S, if for every scquence {0} C S converging to 6* it follows
that )

lim f(0) = F(0")

and thal

0 # limsup F'(0) C F(0*).
G—0r

For a convex model with a 1calistic objective function at 0*, a stability region at
0* is also a weak-stability region at 0*. We will show that for a convex model with a
realistic objective function, a ['-stability region at 0* is also a weak-stability region
at 0%,
Lemma 3.6 Consuder the conver model (P,0) with a realistic objeclive function al

0*. Assume thal S(0*) 1s a F-stability region at 0*. Then 5’(0*) is also a weak stabilty

regron al 0%,

Proof: By Theorem 3.5, lower semicontinuity of F at 0* with respect to 5'(0*) implies
continuity of f at 0*. Fuithermore , closedness of F follows from Corollary 3.3 . This

completes the proof.
a

Henee, for a convex model with a realistic objective function at 0 we have the fol-
lowing implications:

Stability at 0* = weak-stability at 0*;

F-stability at 0* = weak-stability at 0*;

Weak-stability at 0* and lower semicontinuity of F at 0* = F-stability at 0*.

Note that in the rest of the thesis, whenever we refer to stability, we mean stability
in the usual sense (i.e., continuity of the point-to-set mapping F), while F-stability
and weak-stability will be explicitly mentioned.

3.3 Optimal Input

We first recall some well-known results from input optimization and then give a
characterization of optimal inputs with respect to F-stability regions. Denote the
minimal index sel of active constraints by

P0) = {1 €P:x € F(0) = [(z,0) =0},

its complementaiy set by

P(0) = P\ P=(0)
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and the corresponding set by
FE0)={ze R": f'(x,0) =0, i € PF(0)}.
We recall (sce [32]) the following important necessary condition for stability,

Theorem 3.7 Consider the conver model (P,0) at some 0 = 0* € . Let S be a
region of stability at 0*. Then there erists a naghbourhood N(0*) such that

P=(0) CP=(0") (3.15)
fJorale N(0")N S.

This is, in particular, important for the characterization of an optimal input. We
recall the following definition from [32].

Definition 3.4 Consider the conver model (£2,0) at some 0* € I. Let S be a regron
of stabibity at 0*. If f(0*) < f(0) for every 0 € N(0*) O S, where N(0*) is a neigh-
bourhood of 0%, then 0% is a locally optimal inpul with respiet to S and (P,0%) is the
corresponding locally optimal rvealizalion of the mathematical model,

To simplify the notation, let ¢(0) = cardP<(0). The characterization of an optimal
input is stated in terms of the “restricted” Lagrangian defined for 0, around o fixed
candidate of optimality 0* € [, by

L2, 20) = fOa,00+ Y. AS'(r,0).
)

tEP<(04

It has been formulated in [25].

Theorem 3.8 Consider the conver model (I, 0) with a realistic objective funclion al
some 0* € I. Let (0*) be a corresponding optimal solution and let S be an arbul rary
region of stability at 0*. Then 0* is a locally optimal inpul with respect to S of, and
only if, there ezists a neighbourhood N(0*) of 0* and a nonnegative vector funclion

A:N@O NS — R
such that, whenever 6 € N(0*)N S,
L(&(0%),5,0%) < L3(2(07),A(07);0%) < L3(z, A0);0) (3.16)
Jor every A € R') and every x € F=(0).

We will now show that the same characterization for an optimal input holds with
respect to a F-stability region. First we show that the necessary condition for stability
extends to F'-stability.
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Theorem 3.9 Consider the conver model (P, 0) at 0* with ¢ realistic objective func-
tion. Lel #(0%) be a corresponding optimal solution at 0* and 5(0") a F-stability
region al 0*. Then there exists a neighbourhood N(0*) of 0* such that

P=(0) c P=(0") (3.17)
foir cvery 0 € N(0*) N S(0%).

Proof: Assume that such N(0*) does not exist. Then there exists a sequence 0k ¢
S(0*), 0 — 0*, and an index j, € P<(0*) such that

Jo €PE(0Y)NP(0") # O
for infinitely many k's. Now, by definition of P<(#*), there exists a* € 1:"(0*) such

that )
Sz 0) <0, j € POY).

Since jy € P<(0*), it follows that
Jre(e0) < 0. (3.18)
Besides, since jy € P=(04) for the above sequence {0¥},
Jo(x,0%) =0 for every x € F=(0%).
But F(0}) ¢ F=(0%). Thercfore
Jo(2,0%) =0 for every z € F(0%). (3.19)

On the other hand, since 0% € 5’(0*), there exists a sequence & € F'(0%) such that
M r*as 0F = 0*. This means that

(a0t <o

for all ks sufficiently large, by (3.18) and continuity of f%. This contradicts (3.19).
O

The inclusion (3.17) may not hold on a region of stability or even on a weak-stability

region, as the following example shows.
Example 3.7 Cousider again the model

Min f= —z; — Oz,

(x)

s.t.
f‘=:l,‘1+.1)2—1$0
fi=-2<0
=550
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around 0* =1, with
{1,3} ifo<1
P(0)=4 {1} ifo=1
{1,2} if0>1.
The model is stable for all 0 € R. It is also weakly stable at 0%, yet the inclusion
(3.17) 1s not satisfied.
0

However, we have the following result.

Corollary 3.4 Consider the conver model (P,0) at 0* with a realisiic objective func-
tion. Let #(0*) be a corresponding optimal solution at 9 and S(0*) a region of stability
at 0*. Assume that F is open at 0* with respect to S(0*). Then there erists a neigh-

bourhood N(0*) of 0* such that
P=(0) C P=(0") (3.20)
Jor every 0 € N(0*)n S(0*).

The index set P= is thought of (sce [32]) as a measure of how strongly the con-
straints are tied up in the model. Theorem 3.7 has a simple economic interpretation:
Stable economic systems necessarily unfold towards less restricted stales, 1.e., towards
more “frecdom”. Similarly, we can think of the index set P=(0) as a measure of how
strongly the constraints and the optimal value [unction arc tied up in the model, The
inclusion in Theorem 3.9 thus mecans that the set of optimal solutions tends towards
more “interiority” (more “freedom”).

At this stage, we are ready to give a characterization that is both necessary and
sufficient for an input 0* to locally minimize f(0) with respect to a F-stability region
5(0%). We will refer to such 0* as a locally optimal input with respect to $(0*). The
characterization will be stated in terms of the restricted Lagrangian for ¢, around a
fixed candidate for optimality 0*, by

Lz, 00) = [2(z,0)+ S Af(=,0).
1EP<(0%)

Also, let §(0*) = cardP<(0*). Then we have the following modification of Theo-
rem 3.8.

Theorem 3.10 Consider the convex model (P,0) wilh a realistic olyccltive funclion
at some 0* € I. Let 2(0*) be any corresponding optimal solution, and lei S(0*) be a
F-stability reqron at 0*. Then 0* is a locally optimal input wth respect Lo §(0*) if, and
only if, there exists a neighbourhood N(0*) of 0* and ¢ nonncgulive veclor funclion

AN S(0r) - B
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such that, whencver 0 € N(0*) 0 S(0%),
L2(5(0%),:0°) < LE(3(0°), \(0°);0%) < L5 (2, 4;0) (3.21)
Jor every A € If:’;‘o*’ and cvery x € F7(0).

Proof: (Necessity:) Without loss of generality, we assume that the first §(0*) indices
of P are precisely the set P<(0*). Then for every 8 € N(G*) N S(0*), where 0* is a
locally optimal input with respect to S(0*), we construct the following two sets in
Jri* )41,

So(z,0)
f!(z,0) -
Ni(0) =<y:y 2> . for at lecast one z € F
f1)(z,0)
and .
J(0r)

) 0

Ky=4qy:y< :

0

(‘The ordering of the vectors is given componentwise.) Since the set F-(0) is convex
in It" so is I ((0). Convexity of K is obvious. Moreover,

Ki(0)N Ky = 0.

Otherwise, there would exist sequences 0% € S(0*), 0% — 0* and z* € FZ(0*) such
that

JOEE,08) < J(0%), f(a*,0%) <0, ie PO,
violating optimality of 0*. Therefore, the two sets can be separated, i.e., there exists
a nonzero vector ¢ = a(0) and also a scalar a = a(0) such that

(lTy] .>_ a 2 aTy2

for all y' € Iy and all y? € elK;. Clearly a > 0. Specifying, for each z € F(0),

~

fo(x,0) F(0%)
Uz, 0 0
y=| 100 and y*=| . |,
fi0)(z, 0) 0
we get
af(0*) <afo(r,0)+ Y. a.f'(x,0). (3.22)
1€P<(6%)
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The leading cocflicient ap must be strictly positive. Otherwise, we would have

Yo af(r0)20 (3.23)

1EP<(6%)
for every x € FZ(0). But then, by Lemma 3.1, there would exist
# € F(0) c FZ(0)
such that .
J'(&) <0, i€ P<0).
This would further imiply that

(&) <0, ie P,

since P<(0*) C P<(0) for every 0 € S(0*) close enough to 6*, by Theorem 3.9. On
the other hand, ¢, > 0, i € P<(0*), and not all zero. Therefore, we would have

> af(x0) <0,

1€P<(%)
a contradiction to (3.23). Dividing (3.22) by ¢, and introducing the notation
Ay 1€ PS(0Y),

we obtain

f(0*) < LX(a, X 0). (3.21)

But, as is expected,
3 O (E0),0) = (3.25)
1eP<(0*)
establishing the right-hand side inequality in (3.21). The left-hand side inequality is
an immediate consequence of the fact that &(0*) € I'(0*) and of the nonnegativeness
of X, i € P<(0).
(Sufficiency:) Assume that the saddle-point incqualitics hold as required. After set-
ting A = 0, we obtain
z A(0M)f(2(0%),0%) > 0.
tEP<(0*)
But the reverse sign is also true, since Z(0*) € F'(0*) and (A),(O") >0, i€ P(0*)
This gives (3.25) and further (3.24) for every z € F7(0). Hence (3.24) holds for every
z € F(0) C F=(0). In particular, for £(0) € F(0), (3.24) gives
J(or) < jO) + 3 A0)/(30),0)
1€P<(6%)

< f(0) foralloe N(0")n S(0).
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This completes the proof.

()

In the claim of Theorem 3.10 one can replace F= by F=. The result is then in

the following form.

Corollary 3.5 Consider the convezx model (P,0) with a realistic objective function
at some 0* € [. Let (0*) be any corresponding optimal solution and let S(0*) be
a [-stabididy region at 0%, Then 0* 15 a locally optimal input with respect to 5(0%)
of, and only o, there exusts a newghbourhood (N(0*) of 0* and a nonnegative vector
Junction

A N(@@*) N §(0*) - RY™
such that, whenever 0 € N(0*) 0 5(0*),

-~

LE(E(07),2,0%) < L3(2(0%),1(0%);0%) < LL(z,);0) (3.26)
Jor cocry A€ h’iw‘) and cvery x € F=(0).

Proof: (Necessity:) Let 0* € 1 be a locally optimal input with respect to §(0*).
Then, by Theorem 3.10, there exist N(0*) and A > 0 such that {3.21) holds on the
set. F7, for every X € I{'_’,_(m). Note that

FI CFr
Therefore, by choosing the same A, the inequality (3.26) holds for every A € R?;(G*).
(Sufficiency:) Since I(0) € FZ(0), this part of the proof is exactly the same as the

sufliciency part of Theorem 3.10, with F° replaced by f;:
8

We now illustrate the above two characterizations of optimal inputs with respect

to I:'-sl.:nl)i]ity 1egions by an example.

Example 3.8 Consider the model

0 _ —
I\(/lll)n ff= -7 +1
s.t.

fl=a,+2,-1<0
f2=—$1—0$2+150
fP==-050
fl=—2,<0

around 0* = 1. Then

F(0) = {[é]} forany € R

oo
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f(O) = __)—:T forany 0 € R
{1,2} if0=1
P0) = { O if 0>1
{1,2,4) ifo<1
P(0) = {1,2,4) foranyle R
SW@0) = MO )={0:02>1}
S0 = M@ )={0:0¢R).
Furthermore
H+rp;—1 €0
F0)=12: —r;—=0rp+1 <0
-1, <0

The saddle-point inequality from Theorem 3.10 reduces to

—1—X<-1¥< (0_::1:;;_4-7 + i3(0)(——.r|) for every x € F7(0),

for some 5\3(0) > 0 and for all A3 > 0. The left-hand inequality is casily satisfied.
With the choice )3 = 0, the right-hand inequality reduces to

2 < (0 =172+ 1 forall 2y € F7(0),

which holds for all 0 € R. Thercfore, 0* =1 is a locally optimal input with 1espect
to the ﬁ'-stability region 5(0*) = R. Besides, 0* = 1is a locally optimal input with
respect to the region of stability S(0*) = {0:0 > 1}. We can also use Corollary 3.5, in
which case we have = (0) = {(1,0)7} for all 0 € R. This implies that the inequality
(3.26) trivially holds.

)

If theinput 0 does not vary, but is held fixed, then the convex model (P, 0) becomes
the mathematical program (P) and Theorem 3.10 1ccovers the characterization in
Theorem 3.2 .

As mentioned carlicr, the difficulty in using the F-stability regions and the related
results such as Theorem 3.10 or Corollary 3.5 is the calculation of the set of optimal
solutions explicitly as a function of 0. In what follows we will study a special case for
which we can use these results without worrying about the calculation of the set of
optimal solutions as a function of 0. This is the case where the stability region at 0*
and the F-stability region at 0* coincide, i.c., we have usual stability and in addition
lower semicontinuity of the point-to-sct mapping /.

Corollary 3.6 Consider the conver model (P,0) with a realistic objective funclion
at some 0* € I. Let £(0*) be any corresponding optimal solulion, and lel S(0*) be
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a region of stability al 0*. Assume that the mapping F is open at 0* with respect to
S5(0*). Then 0* is a locally optimal input with respect to S(0*) if, and only if, there
exists ¢ newghbourhood N(0*) of 0* and a nonnegative vector function

X:N@0*)n S(0*) - R
such that, whenever 0 € N(0*)N S(0%),
LE(a(07),X; 0°) < L2(3(0%),M(0);0*) < L5 (, %;0) (3.27)
for cvery X € If'iw') and cvery z € FZ(0).

Note that the above characterization is different from the ones given in Theorems 3.8
and 3.10. In order to make Comllary 3.6 more applicable, it will be useful to find
some suflicient conditions for lower semicontinuity of the map F at 0* for a stable
model at 0*. We give one such condition in the following theorem.

"Theorem 3.11 Consider a convex model (P, 0) with a realistic objective function at
0*. Assumce that the mapping I is lower semucontinuous at 0% and that the optimal
solution #(0*) at 0* s unique. Then the mapping F is lower semicontinuous at 0*.

Proof: Since the mapping F' is lower semicontinuous at 0* and f° is realistic at 0*,
by Theorem 3.4, there exists a neighbourhood N(0%) of 0% such that F(0) # @ for
every 0 € N(0*). Furthermore, 0 € N(6*), 6 — 0%, implies that the sequence Z(0) is
bounded and all its limit points lic in £(0%).

Assume now that the mapping I is not lower semicontinuous at ¢*. Then there
exist a sequence 00 — 0% and 6 > 0 such that

[|#(0%) - #(0%)]] > 6 for every £(0%) € F(0%). (3.28)
Now for such {0*}, consider the set

E=2el( | F(O4).
gEN(8%)

Then A is nonempty and bounded, since cach F(0*) is, and is closed by the way it
is defined. Therefore, K is compact and so every sequence in K has a convergent
subsequence. Consider the sequence

H0%) € F(0F), 0 e N(0%), 0F — 0.

Then, by the compactuess of K, the sequence #(6*) has a convergent subsequence,
Le., there exists a subsequence of 0%, say 0, such that 0F() — 0* implies that
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F(0*M) — 2*. But we know from stability of the model at 0* that & € F(0*).
Since F(0*) is a singleton, we must have «* = i(0*). This means that there exists a
subsequence of the sequence #(0%) such that

#O0FD) = 10%) as | — oo
This contradicts (3.28).

The following result trivially follows.

Corollary 3.7 Consider the conver model (P,0) with a realistic objective function
at 0*. Assume that f° is strictly conver wn & at 0* and that the mapping I' s lower
semicontinuous at 0*. Then the mapping I 1s lower semicontinuous at 0*.

We will now apply some of the above results to the following comiol pioblem
adapted from [27] known as Zermelo’s problem,

Example 3.9 Determine the steering angle 0 that will minimize the time @ required
to go from the origin to the target

T={(y,y2): (y1 = 5)* +(y2 — 1)* < 1},

for Zermelo's problem with stream speed V' = 2. The systeimn dynamies in this case
are given by

¥ = 2+4cosl

Y2 = sind.

Under a constant control 0, these diflerential equations are casily integrated and
evaluated at time z and the result may be used to define the target in ternns of a:

(2z +zcos 0 — 5)* + (zsinl — 1)* < 1. (4.29)

The objective is to find a control @ that will minimize @ subject to (3.29). We will
solve this problem using input optimization. The mathematical model associated
with the problem is

Min f®=z
()
(P,0) s.t.
f'=02z +zcos0 — 5%+ (zsinl - 1)* -1 < 0.



The graph of f!(x.0) is shown in Figure 3.1,

Figure 3.1: Graph of f}(z,0).

The set F'(0) after some algebraic manipulations reduces to the set of @ that satisfy

2%(5 + 4 cos0) + z(~20 — 10 cos § — 2sin 0) +25 < 0. (3.30)

This further implies that

F(0) = {z € R:a,(0) <z < ay(0)},

where
20 + 10 cos 0 + 2sind — \/A(0)
a:(0) = 10 + Scosf
and
20 + 10 cos 0 + 2sin 0 + /A (0)
a2(0) = 10 + Scos @

are the roots of the quadratic in (3.30) and
A(0) = 8sinf(—12sin8 + Scos ¥ + 10)

is its discriminant. It can be seen that for all 0 < 8 < 72.905°, A(6) is nonnegative.

[v22]
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F(6)

A graphic illustration of the set F(0) is given in Figure 3.2

0 10 20 30 40 50 60 70
0 (degrees)

Figure 3.2: Graph of F(0).

Let us denote by F the set of 0’s for which the set F'(f) is nonempty. Then

Thus, it follows that
F(0) = {a.(0)}

and

f(0)=a,(0) for all 0 € F.

Since as a function of @, this is a one dimensional problem we can directly use the
Method of Golden Rule to find a candidate for an optimal input for this maodel. (‘The
Method of Golden Rule is described in Section 3.5). Using this Method, atter abont,
20 iterations, we get 6* a2 24.56° and z* = I(0*) ~ 1.406 . This 0” is a candidate for
an optimal input for the model (P,0). Note that for all 0 € F\ {0,72.905°}, Slater’s
condition is satisfied in (P,0). Therefore, (P,0) is stable for all those perturbations
of 8. To verify that this 6* is a locally optimal input, applying Theorem 3.8, we must,
find A(0) such that the saddle-point inequality (3.16) holds in some neighbourhood
of 0*. Since Slater’s condition is satisfied at 0*,

L(z,50) =z+ A2z 4+ zcosh —5)* 4 (wsinl—1)% 1]
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FFurthermore

L(5(0%), A(0%),0%) = z* 7 1.406.

Proving the left-hand inequality is trivial. To prove the right-hand inequality, we
must find A(0) > 0 and N(0*), a neighbourhood of 6*, such that the inequality

0 <2?[A0)(5+ 4cosl)] + z[l+ A(0)(—20 —10cos § — 2sin 0)]
+ [25A(0) - =] (3.31)

holds for every 0 € N(0*) and for every z € R. We denote the discriminant of this
quadratic by D(0). Then we must have

D(0) = X*(0)[(20+ 10 cosf + 2sin0)* — 500 — 400 cos 0]
+ 2X(0)[-20 — 10cos 0 — 2sin 0 + 10z™* + 8z* cos 0)
+1<0 for any 0 € N(0%). (3.32)

Solving this incquality, we conclude that any A(0) that satisfies
is a solution of (3.31), where

204+ 10cosl + 2sinf — 10z* — 8x* cos 0 — 4/¢(0)

hy =

" (20 + 10cos 0 4 2sin 0)2 — 500 — 400 cos 0
and

; 204+ 10cos§ + 2sin0 — 102* — 8zx* cos 0 + +/g(0)

2= (20 + 10cos 0 + 2sin 0)% — 500 — 400 cos 0

are the roots of the quadratic in (3.32), and
g(0) = 4(5 + 4 cos 0)[(4a* — 102*)cos 0 — 2¢* sin0 + 5z*° — 20z* + 25]

is its discriminant. Here g(0) > 0 for all § € F. Hence, we can choose

20 + 10cos 0 + 2sin @ — 10x* ~ 82* cos 0

AO) =
) (20 4 10cos 0 + 2sin 8)? — 500 — 400 cos ¢

which simplifies to

2.97 — 0.624 cos 0 + sin @
40sin 0 + 10sin 20 — 48sin0 °
It can be scen that this A(@) is nonnegative for all ¢ € F\ {0,72.905°}. Therefore,
0* = 21.56° is indeed an optimal input for (P, 0).

\O) =

o
v}



On the other hand, #(6*) is unique, and hence F is open at ¢°. Therelore, we can
use Theorem 3.10 to verify the optimality of 0 as well. Note that P=(0") = {1}, s0

Llr,\;0) =,
(i.e., there are no multipliers) and
FZ(@0) ={zr€R: fl(x,0) <0} = I'(0).
Therefore, to prove the saddle-point inequality (3.21), it is enough to show that
2* <z forevery z € F(0) and every 0 € N(0),

where V(0*) is some neighbourhood of 6*. Because of the structure of the feasible
set, it suffices to show that

1.406 < a,(0) for all 6 € N(0).
This reduces to
r(0) = —98.442 cos® 0 — 44.992 sin O cos @ — 56.24 sin 0 — 14.826 cos 0 + 135.28:4 > 0

for 0 € N(0*). But r(0) > 0 for all 0 <0 < 72.905°, as illustrated in Figne 3.3.

30

20

10

o ¢ (radians)

00 02 04 o6 o8 10 12

Figure 3.3: Graph of r(8).
This confirms that 0* is an optimal input for (P, ).
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Remark: The notion of stability can be extended to multi-objective convex models
(see, e.g., [30]) using the Charnes-Coor. [8] characterization of Pareto optimality.
In this approach, the mode! is converted to single-objective, thus allowing the use of
available input optimization results. The method can further be used to characterize
Parete optima in nonconvex, yet converifiable-by-c-splitting, programs. However, this
should be done with some care, as explained below.

Consider an arbitrary (gencrally nonconvex) multi-objective program
Min {¢*(z): k€ Q}
(MP) s.t.
fi(z) <0, 1€P

where all the functions are assumed continuous. The program is said to be convexitiable
by-a-splitting if for some splitting of the variable = into z = (x,0), all the functions
are convex in z for every fixed 0. Such programs can be written as the convex model

l\(/I_i)u {*(2,0): k € Q)

(MCP,0) s.t.
[(z,0)<0, i€P.
(Note that here all the functions are continuous in z and 0 and convex in & for cach
fixed 0.)
For every fixed 0, and every z*, a Pareto optimum of the convex program (M C I’ 0*),
the mapping F, : R? — R" is defined by
[Hz,0) <0, ieP
F0)=1qz: : .
) {l ¢*(2,0) < ¢%(2*,0%), keQ

Furthermore, z* = (z*,0*) is a {easible point of (M I’} to be tested for optimality. We
recall that (sce, e.g., [30]) a feasible point z* is a strict Pareto optimum for (M P) if

there is no other point = € I such that
#*(2) S ¢4(="), ke Q.

Certainly, we have to distinguish between lo. al and global strict Parcto optima when-
ever the program (M P) is not convex. So, *n general, if there exists a neighbourhood
N(z*) such that there is no other point z € F'0NN(z*) satislying

() < 4'(z"), ke Q.
then z* is a locally strict Pareto solution of (MP).

It is interesting that the point z* is a globally strict Parcto solution of (M ) i,

and only if,
F.(0) =@ for every 0 # 0*.
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(Note that this means that F, is never lower semicontinuous at *, or in other words,
optimality and continuity Jo not go together in this case.) For, a.sume that 2* =
(z*,0*) is a globally strict Paieto solution of (M P). Then by definiton of the strict
Parcto minimum
) < -
Fo(z*,0%) = {(33,0) : é"((z,,(;)) _S(;;k(;*e, ;f), keq } = {(:1:*,0*)}.
This nplies that
Fo(0)=0 forevery 0 # 0.

Coversely, emptiness of the set F, for 0 # 0* implies that the set Fg(z*,0*) is a
singleton and that z* = (2*,07) is a globally strict Parcto solution of (M P). For
locally strict Parcto solutions of (M P), on the other hand, if 7, = 0 for every 0 €
N(0*) such that 0 # 0*, where N(0*) is some neighbourhood of 0%, then Fo(z*,0*) =
{(z*,0*)}. This means that z* = (x*,0*) is a locally strict Pareto solution of (M P).

As an illustration, consider Zermelo’s problem from Example 3.9 again. Assume
that the objectives are now to minimize the time required to go from the origin to
the target while staying as close to the y; axis as possible. More spec fically, assume

that the costs are .
¢' =z, and ¢* =/ |y2(2)|dz
0
with yo(e) = a|sin 0] and y,(0) = 0. The corresponding convex multi-objective model

is
I\(’]in (¢! =a,4* = Ezilsin 0|}
z)

(MCP,0) ..
f'=(2z+zcosf—5)?+(zsin0 ~1)2 -1 <0.

Consider 2 = (2%,0*) = (£,0). Then 2* is a strict Pareto solution of the correspond-
ing program (AfP). Therclore

F.(0)=0 forany 0 # 0"

Similarly, 2* = (1.406, 24.56°) is a strict Pareto solution of (A/F) implying the above
set is empty for any 0 # 0.

3.4 The Inverse Problem

We recall the mathematical models of the form
Min f%(z,0)
(z)

s.t.
(1.0) f{(2,0)<0, ieP
0el.
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where the functions f* : R* x R — R, 2 € {0} U P, are assumed continuous in both
vector variables and convex in x for every fixed 0, and 0 € I C R is the “input”
(parameter). Suppose that the model is initially 1unning with some input ¢ = 89 at
which a desirable point z* is feasible yet nonoptimal. The objective of the inverse
programming is to find 6* from 0° by stable perturbations of the input 6 such that
becomes optimal, i.e., z* € F(0*). (Note that by stability we mean the usual stability
which is continuity of the point-to-set mapping F'.)

This objective may not be achievable, in which case an alternative is to find 0*
from 6°, in a stable way, such that 0* is a solution of the following problem:

Min |f0(a*,0) — f(0)
s.t.

0 € Sx)nsS,

where

S(e*)={0€l:2* € F(0)}

is the “region of feasibility of z*” and S is the sct of stable paths in I cmanating from
0°. We will use input optimization to find a solution to the inverse programming
problem for linear models. As we mentioned carlier, the class of linear functions is a
large well-known subclass of LI'S functions.

We recall the following lemma from [9]. The proof will also be recalled for the
sake of completeness. The idea is to formulate optimality conditions in terms of the
optimal value.

Lemma 3.7 Consider thc program

Min [(z)
(CP) s.t.
ze F,

where f° is a convez and differentiable funclion and I 15 a conver scl. Then a frasible
point &* is optimal if, and only if,

V) z-2*) >0 for everyz € F.
Proof:(sufficiency:) Assume that
Vf%z*)(z —2*) >0 for every z € I
Then, by convexity of f9,
fo2) = (a") 2 V') (z - ') 2 0 for cvery z € I

92



Hence
fz) > f%z*) for every z € F,

which implies that z* is optimal.
(Necessity:) Assuine that z* € I is optimal. Then

f%z*) < f%z) for every z € F.

The minimum point z* is cither an interior point of F* or a boundary point of F'. If
z* is an interior point of F', then we must have

Vf%z*) =0 and hence (z —2*)V f°(z*) = 0.
For any minimum point, ve have by convexity of f° and the set F,
Pa*) < 20 + (1= Na*)
forallz € I and 0 < X < 1. Then, for A >0,

P+ Ma=at) = @)
- >0,

Taking the limit as A approaches zero, we have

V/fz*){z—2*) >0 forevery z € F.

The following corollary immediately follows.

Corollary 3.8 A feasible point z* is optimal for the convex program (CP) if, and
only if, the optumal value of the following program is zero:

Min V[%z*)(z —z*)
s.t.
zel

We can extend this result to mathematical models (having 0 as a parameter).

Corollary 3.9 Consider the conver model (P,0) at some 0* € I. Then z* € F(0*) is
an oplimal solution of (P,0%) if, and only if, the optimal value of the following model
at 0 = 0* is zero:
A(iz)n V/fo(z*,0)(x — z*)
(P1,x*,0) s.t.
x € F(0).
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We will use this result to solve the inverse problem for lincar models. We fivst consider
linear models in the standard form

Max cT(0)x

(x)
s.t.
(L,0) A(0)x < b(0)
r>0
0el,

where A(8) € R™*" and b(0) € R™ are continuous in 0. We will later extend the
results to the linear models in a more gencral form. Although the standard form isa
special case of the general form, we follow this order for pedagogical reasons. For a
linear model (L, #), Corollary 3.9 yiclds the following important result.

Corollary 3.10 Consider the linear model (L,0) al some 0* € [. Then 2* € I(0*)
is an optimal solution of (L,0*) of, and only if, the oplimal valuc of the following
linear model at 0 = 0* is zero:

Min cT(0)(2* — x)

(=)
s.t.
(L1,2,0) A(v)z < b(0)
x>0
0el.

Corollary 3.10 gives the primal formulation. However, later on we will use the
dual of the above model to characterize optimal parameters for the inverse problem.
To this end, we need to study the dual model as well. The next result involves the
dual model.

Corollary 3.11 Conswder the linear model (L,0) al some 0* € [. Then &* € 1'(0*)
is an optimal solution of (L,0*) if, and only if, the oplimal valuc of the Jollowny
linear model at 0 = 0* is zero:

A(ﬁn b (0)v ~ T (0)z*
v)

s.t.

(DI, 2*,0) AT(0) > ¢(6)

v=>10

0el

Proof: By Corollary 3.10, * € F(0*) is an optimal solution of (£,0*) if, and only if,
the optimal value of (LI, z*,0*) is zero. But the optimal value of (L1,z*,0*) is zero
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if, and only if, the optimal value of the following model at 0 = 0* is zero:

Max cT(0)(z — z*)

(=)

s.t.
A(0)z < b(0)
z2>0
0 € ],

or, equivalently, if, and only if, the optimal value of (DI, x*,0) at 0 = J* is zero.
a
Note that (L,0) and (LI,z*,0) have the same constraints (and hence the same
feasible set) and the same set, of optimal solutions at a fixed 0. Besides, the absolute
values of their optimal value functions differ by the constant ¢T(0)a2* at a fixed 0.
Therelore, studying stability of one is exactly the same as studying stability of the
other. The same is true for their duals (D,0) and (DI, z*,0). We will refer to the
feasible sets of (1.,0) and (LI,2*,0) as I(0) and to those of (D,0) and (DI, z*,0) as
Ip(0). Furthermore, let us denote the optimal value of (L1, 2*,0), that is

s T 0 *
min ¢ (0)(z" — =),

by ¢(0), and the optimal value of (DI, z*,8), that is

H T T *
ven’;lgr(lo)b (O)v ~c (0)z7,
by h(0). Note that §(0) = —h(0). We will refer to the model (LI, a*, 0) as the inverse
model of (L,0) and to (D1,2*,0) as the dua, .u+ crse model of (L,0). We now define
the optimal input for the inverse model of (L, 0).

Definition 3.5 Consider (L,0) starting at 0°. Assume that z* is a feasible, yet
nonoptunal solution of (L,0°). Furthcrmore, assume that 8* € S(x*) and S(0*) is a
region of stability at 0*. If §(0*) = §(0) for every 6 € N(0*) N S(0*) N S(z*), where
N(0*) 1s a nesghbourhood of 0*, then we say that 0* is a locally “Approzimate Optimal
Input™ for the mverse model (L1, 2*,0) of (L,0), with respect to S(0*) N S(x*).

We will use the abbieviation “AOI” for “Approximate Optimal Input”.

Definition 3.6 Under the same assumptions as in Definition 8.5 if §(0*) = 0, then
we say that 0* is an “Ideal Optimal Input” for the inverse model (LI, z*,0) with
respect to S(0*) 0 S(a*).

We will use the abbreviation *101™ for “Ideal Optimal Input”.
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Remark: Note that the fact that g(0) <0, for any 0 € S(u*), tmplies that an 101
for (LI,2*,0) is an AOI for (L1, z*,0), for which (0*)= 0
W]

Obviously, at an 101 for (L1, x*,0), x* is an optimal solution of (L,0). If an 101
for this inverse model can not be found, then an AOlis scarched for. A locally AO1
for (L1,2*0) has the following interesting property.

Lemma 3.8 Assume that 0* is a locally AOI for (LI,x*,0) with respect to S(0*) N
S(z*), (0*) is any optimal solution of (L,0*) and i(0) is any optimal solulion of
(L,0). Then

0 < (0 )(&(0*) — z*) < T (O)F(0) — 2*) (3.34)

for all 0 € N(0*) N S(0*) N S(a*), where N(0*) is some neighbourhood of 0*.
Proof: Since 0* is alocally AOI for (L1,2*,0) with respect to S(0*) N .S(a*),
§(0%) = g(0) for every 60 € N(0*) N S(0*) nS(*).

Therefore

* > T . - I S0 St
Igg‘l(g*)c oy (z* -2) > xxel}‘l(r}))c (0)(z* — ) for every 0 € N(0*) N S(0*) N S(a*),
or

cT(0%)(2* — 2(0%) > T(0)(z* = &(0)) for every 0 € N(0*)N S(0*)N S(a*).

t, 9(0) < 0 forevery 0 € S(z*). Thercfore, (3.34) holds for all 0 € N(0*) N
5(0 ) N S(z*).
3
We will now present a condition that is both necessary and sufticient for an input
0* € I to be an AOI for (L1,z*,0) over the region S(z*) N S(0*). As we recalled in
Theorem 3.8, locally optimal inputs for the convex model (£2,0) have been character-
ized using the hyperplane separation theorem (sce, e.g., [32]). The following property
of a locally optimal input 0* makes it possible to use that separation theorem,

fo*) = min min_ f%(z,0).

BEN(0%)RS(0%) € 1(0)

Whereas a locally AOI for (LI, z*,0), which we also denote by 0%, is a solution of the
mazmin problem

) = T(0)(z* ~ r).
) OENW*)”S(U*)F‘IS(I*)rell(b)C (0)(= T)

e

This makes it impossible to follow the same proof, for it is impossible to use the hyper -
plane separation thcorem. lowever, using the duality propertics of lincar program-
ming, taking into account stability of the primal model, we can change the mazmn
problem into a minmin problem and characterize a locally AOI for the inverse model.
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Theorem 3.12 Consider the linear model (L,0) starting at 0°. Assume that z* €
['(0°), yet z* ¢ F(0°). Furthermore, assume that 0* € (z*), S(0*) is a region of
stability at 0* for both (L,0) and (D, 8), and (L,0) has a realistic objective function
at 0*. Then 0% s a locally AQI for (L1,z*,8), with respect to S{0*) N S(2*), if, and
only of, it s a locally optimal input for (DI, z*,0) with respect to S(0*) N S(z*).

Proof: Parameter 0* is an AOl for (L1,z*,0), with respect to S(0*) N S(z*), if, and
only if, there exists a neighbouthood N(0*) of 0* such that

g(0") = 9(0),

= max
0€ N (6%)NS(8*)NS(z*)

or, if, and only if,
(—g(0)).

Since (L,0) has a realistic objective function at 0*, it follows from Theorem 3.4
that there exists a neighbourhood Ny (0*) such that F(0) # @ and bounded for all
0 & Ni(0*) N S(0*). But for all such 0 we have

-g(0") = mit
9(07) OGN(O*)DS(ol*)rIS(x*)

-3(0) = — min 7 (0)(z* —
9(0) RN (0)(=* — =)
_ . T L a*
= xgg;;,)( c (0))(z — z¥)
- T 0 .
nax c (0)(z —z7)
= in b7(0) —cT(0)z*
ity (O =< (O)e
= h(0).
Therefore
§(0*) = 4(0),

max 7
0EN(6*)NN;(9*)NS(6*)NS(z*)

if, and only if,

R(0).

h(0*) = min 3
BEN(8*)N N, (6%)NS(z*)NS(6*)

This completes the proof since S(0*) is assumed to be also a region of stability for
(D, 0) and therelore for (DI, x*,0).

O

Let (£8)pi(v, A;0) be the restricted Lagrangian, (F=)p be the map F=, qp(0*) =

card P5(0*) and 8(0*) be an optimal solution at 0* of the dual inverse problem

(D1,x*,0). Then the following theorem is an immediate result of Theorem 3.12

and Theorem 3.8

Theorem 3.13 Consider (L, 0) starting at 0°. Assume that £* € F(0°), yet z* ¢

~

F(0%). Furthermore, assume that 0* € S(z*), S(0*) is a region of stability at 0* for
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both (L,0) and (D,0) and (L,0) has a realistic objective function at 0*. Then 0* 15 «
locally AOI for (L1, x*,0) with respect to S(6*) N S(x*) if, and only if, there ensts a
netghbourhood N(0*) of 0* and a nonnegative vector function

Az N@*)N S0 N Sa*) — 1@
such that, whenever 0 € N(0*)N S(0*)N S(x*),
(L3)p1((0%), X;0%) < (L) pr(5(6*), A(0°):0%) < (LS)palv, A(0); 0) (3.35)
for all X € RI®Y) and every v € (F=)p(0).

Q

If we rewrite (DI, 2*,0) in the following standard form for a convex model, that is
Mi)n bT(0)v ~ T (0)z~
(v

s.t.
= —al(0)o+¢,(0)<0, i=1,...,n
W =-v, <0, J=1,...,m,

where a,T is the ¢, row of AT then
(LS)pi(v,X:0) = bT(0)o — T(0)* + 30 Apht(v,0),
kePp\P5(0%)

which implies in particular that
(L3)pr(B(0%), A0*);0°) = h(0%) = —3(0*).
This means that if (3.35) is satisficd, and in addition
(L3)oi(9(0%),A(0°);0°) = 0,

then 0* is an IOl for (LI,27,0). However, since §(0) < 0, for any 0 € S(z*), then
§(0*) = 0 implics that §(0*) > g(0) for every 0 € S(z*). Thus, to verify optimality of
an 10l for the inverse model, it is enough to have §(0*) = 0.

Remark: Consider (I,0) starting at 0°. Assume that z* € F'(0°), yet z* ¢ [F(0"),
and that S is the set of stable paths in [ emanating from 0. (Note that for a stable
model the mapping F' is continuous and f© is 1calistic.) If the model (D,0) is also
stable for every perturbation in S, then the problem of finding a locaily AOI for
(L1,z*,0) in SN S(z*) is the same as the problemn of finding a locally optimal input
for (DI,z*,0) in SN S(z*).

8]
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In order to use Theoterns 3.12 and 3.13, we must find conditions under which the
continuity of the point-to-set mapping F' implies continuity of Fp. In particular, we
would like to find out when a region of stability for (L, 0) is also a region of stability
for (D,0). We need to refer to some important results in linear programming first.

Consider the lincar program

Max Tz
s.t.
(L) Az Lb
20
and its dual program
Min bTv
s.t.
(D) ATv > ¢
v 2> 0.

We rewrite (L) in the following standard form for a convex program:

Min —c'z
s.t.
ft=azx-b6<0, i=1,...,m
f1=—z, L0, 1 =1,...,n.
(Note that a, is the ¢, row of A.) Assume that the set of optimal solutions of (L) is
nonempty and bounded. Then associated with z*, a (finite) optimal solution of (L),
are the nonnegative vectors A* = (Ay), i € {1,---,m} and v* = (v), j € {1,---,n},
the components of which are referred to as Kuhn-Tucker multipliers (or “shadow

prices”), such that

—c+ ATV —u* = 0 (3.36)
A(az*=b) = 0, i=1,...,m (3.37)
~uyz; = 0, j=1,...,n (3.38)
>0 (3.39)

u* > 0. (3.40)

The above conditions are referred to as Kuhn-Tucker conditions. Furthermore, the
vectors A* and u* are referred to as Kuhn-Tucker vectors.

Besides satisfying the Kuhn-Tucker conditions, the Kuhn-Tucker vectors have an-
other well-known property that will be recalled in the following lemma, borrowed
from {22]. The proof of the lemma will also be recalled for the sake of completeness.

Lemma 3.9 Assume that * is a finite optimal solution of (L) and consider the
Kuhn-Tucker vectors associated with r*, as defined above. Then the Kuhn-Tucker
vector A* ds an optimal solution to the dual problem (D).
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Proof: Since z* is a finite optimal solution of (L), the Kuhn-Tucker conditions at o*
are satisfied. Equation (3.38) may be written as

(@ AT+ -+ an, AL =) =0 ) =1,...,n. (3.11)
On the other hand, (3.36) and (3.40) imply that «* = ATX* —¢ > 0, or
ATa > ¢ (3.12)
Now (3.39) and (3.42) guarantee the existence of a solution v = \* to the system

ATo

v

AVAREY

0.

These are the constraints of the dual problem (D). Hence, A is a feasible solution of
(D). For any feasible solutions 2 and v to the primal and the dual problems, we niay
write

T T

b'v>c'r,

and, since z* is a feasible solution o the primal problem,

b'o > cl'a*. (313)

The complementary slackness condition (3.37) implies that, for any ¢ = 1,...,m,
cither A¥ =0 or else b, = q,a*. Tt follows that

BIAY = (Az")To = o ATA (3.44)

Similarly, (3.41) implies that

Here (3.44) and (3.45) yield
VA =clar,
Therefore, A* is an optimal solution to the dual problem (D).
f}

We now recall some well-known results from [10]. Consider the nonlinear progiam
with inequality and equality constraints

Max f(z)
s.t.
(NP) g(z) <0, 1=1,...,m
hiz)=0, j=1,...,q,
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where all the functions are real valued and continuously differentiable on R™, and, for
a feasible point z*, consider the Mangasarian-Fromovitz constiaint qualification

(2) There exists a d € R™ such that
Vo (z)d <0 1€ {i:g(z*) =0}
(MFFCQ) Vh(z*)d=0 3=1,...,¢
(22) The gradients {Vh,(z*)}, i=1,...,q are linearly indep 2ndent.
At a local maximum z*, let K'(z*) denote the set of Kuhn-Tucker vectors correspond-
ing to o5 that is, the set of (v, w) € R™ x R¥ such that

m

(Vi) = I wl(Vau(e) + 3w, (Vhy(a*)T

1=l
u, 2 0

wg(r*) = 0, t=1,...,m.
Then the following important result holds.

Lemma 3.10 (Gauvin [10]) Let x* be a iocal marinaum for (NP). Then K(2*) is a
nonemply and bounded set if, and only if, MFCQ is salisfied at z*.

In the case of linear programs of the form (L), the MFCQ is the well-known Slater

condition. That is, we have the following immediate result.

Corollary 3.12 Let 2* be an optimal solution of (L). Then K(z*) is a nonemply
and boundcd sct if, and only if, Slater’s conduion is satisfied.

We will use Corollary 3.12 and Lemma 3.9 to prove the following important result.
The idea is to find conditions under which a region of stability for (L, @) is also a region
of stability for (D, 0).

‘Theorem 3.14 Consider the lincar model (L,0) and its dual (D,0). If (L,0) has a
realistic objective function at 0%, then the constraints of (D, 0) satisfy Slater’s condi-
tion at 0*. Furthcrmore, 1f (D,0) has a realistic objective function at 0*, then it is
slable at 0*.

Proof: Since (L,0) has a realistic objective function at 6*, it has a finite optimal
solution at €*, say £(0*). This, by the duality theorem of linear programming, implies
that (D, 0) has a finite optimal solution at 0%, say 0(0*). Now consider
Min bT(0)0
(v)
s.t.
(D, 0) ht = -—alT(O)v +a(0)<0, i=1,...,n,
M =—v, <0, j=1,...,m
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at 9. Let M (0%) = (\7(07)), i=1,....,n and u*(0") = (u)(0*)), J =1,...,m be
the Kuhn-Tucker vectors associated with ©(0*) at 0*. Then, by Lemima 3.9, A* (0" is
an optimal solution of the dual of (D,0*), which is (L,0%). Since (L, 0) has a realistic
objective [unction at 6, 1:"(()*) 15 @ nonempty and bounded set. Therefore N*(0*) is
bounded. Besides, by the Kuhn-Tucker conditions, we have

b(0*) — AN (0") = u*(0") = 0 (3.16)
A (0N =al (099(0%) + c(0%) = 0, i=1,...,n (3.47)
uy(07)0,(07) = 0, y=1,...,m (1.48)

A" >0 (3.19)

uw > 0. {3.50)

But (3.46) implies that
u*(0%) = —-A(0*)X*(0") 4 b(0").

Hence boundedness of A*(6*) implies boundedness of w*(0*). Thus K (0(0*)), the set
of Kuhn-Tucker vectors corresponding to ©(0*), is nonempty and bounded. This, by
Corollary 3.12, means that the constraints of (D, 8) satisly Slater’s condition at 0*.
1€ (D, 0) has a realistic objective function at 0*, then it is also stable at 0*.

0

The following corollary immediately follows.

Corollary 3.13 If (L,0) has a realistic objective function at 0*, then any rcgron of
stability for (L,0) at 0* is also a region of stabibty for (D,0) at 0*.

Let us illustrate these results by the following example.

Exampgle 3.19 Consider

Max z,
(z)
s.t.
ry+ 2z, <1
(L,0) -z — Oy < —1
Xy Z 0
I 2 0

around 0* = 1. Then

e

w00} 021
(0)‘{{(1,0)T} ifg < 1.
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Note that (L,0) is not stable at 0* However, it is stable for S(0*) = {0 : 0 > 1}.
Besides, (L, 0) has a realistic objective function at §*. Now consider its dual

Min v, — v

(v)
s.t.
v — Vg _>_ 0
(D,0) vy — Ovy > 1
" 2 0
V2 Z 0.

We notice that Slater’s condition is satisfied at = 0* and
Fp(0*) = {v* 2 0: v} — v} = 1},

which means that (D, 0) does not have a realistic objective function at * = 1. Note

that (L,0) docs not satisfly Slater’s condition at 6*.
]

Theorem 3.13 can now be restated in the following form.

Theorem 3.15 Consider (L,0) starting at 0°. Assume that z* € F(0°) yet, z* ¢
1'(0°), 0* € S(a*) and S(0*) is a region of stability at 0* for (L,0). Furthermore,
assume that (L,0) has a realistic objective function at 0%, and let ©(0*) be a finite
oplimal solution of (D,0) at 0*. Then 0* is a locally AOI for (L1,2",0) with respect
to S(0*) N S(a*) if, and only if, there ezists a neighbourhood N(0*) of 0* and a

nonnegalwe vetor function
A : N(0*)n S(60*) N $(z*) —» R
such that, whenever 0 € N(0*) N S(0*) N S(x*),
Lp1(0(0%), X;0%) < Lpi((0%), A(0*);0*) < Lpi(v, A(0);0) (3.51)
Jor all X € RY™FP and every v € R™,

Proof: Since (L,0) has a realistic objective function at 0*, by Theorem 3.14, the
constraints of (D,0*) satisly Slater’s condition, under which (£$)pr becomes the
usual Lagrangian Lpy for the dual inverse model. Applying Theorem 3.13 now yields
the result.
Remark: Consider (L,0) starting at 0° Assume that z* € F(0°), yet z* ¢ F'(6°),
and S is a 1egion in which, for every perturbation, the objective functions of (L, 6)
and (D,0) are realistic. Then the problem of finding a locally AOI for (L1,2*,0) in
SN S(e*) is the same as the problem of finding a locally optimal input for (D1, z*,0)
in SNS().

a

From Theorem 3.14 the following important result follows as well.
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Corollary 3.14 If(L,0) and (D,0) both have vealistic objective functions at 0*, then
they both satisfy Slater’s condition at 0* and arc therefore both stable at 0*.

Remark: It was shown in [19] that the set of optimal solutions of (I, 0) and (D, 0),
being nonempty and bounded at 8%, is a suflicieut condition for the continuity of the
optimal value function at #*. By Corollary 3.14, this conditicn is not only suflicient
for continuity of the optimal value function but also sufficient for the continuity of
the point-to-set mappings ¥ and Fp at 0* and thus suflicient for stability of both the
primal and dual linear models.

Note that the objective function of (L,0), being realistic at 0*, does not imply
that the objective function of (D,0) is realistic at 0* as Fxample 3.10 shows. The
following result, however, gives a sufficient condition for the dual ¢bjective function
to be recalistic at 0* whenever the objective function of the primal is realistic at 0.
Although the result is for programs (with no parameters), it can be extended to
models (since here we are interested in the behaviour of the primal and dual models
at a fixed parameter 0*).

Theorem 3.16 Assume that the set of optimal solutions of (L) is noncmply and
bounded and that all the compon: nts of the vector b are strictly positive. Then the set
of optimal solutions of (D) is also nonempty and bounded.

Proof: Since the set of optimal solutions of (1) is nonempty and bounded, for any
{finite) optimal solution & of (L), there exists an optimal solution % of (D) such that

cl'i =0T, (3.52)

If 3;, — +oo for some jo € {1,...,m}, then
b7 — 400

since by assumption b, > 0, 7 =1,...,m. This is, however, a contradiction to (3.52)

since ¢’# is finite.

Linear models with mixed constraints

We now consider the more general form of lincar mathematical models, i.e., lincar
models of the turm

1\(43)" CT(0)X, + CT(0) X2
X

s.t.
(Lm,0) A]](O)Xl + Aw(O))(z S 131(0)
A21(0) Xy + An(0) X2 = By(0)
X1 20 (X unrestricted ),
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and their duals
Min BT(0)V; + B (0)V,

s.t.
(Dm,0) AT (O + AL (0)V; > Ci(0)
A0V + AL(0)Vs = C(0)
Vi 20 (V, unrestricted ),

where the vector X = (z4,...,2n)T is decomposed into two blocks:
Xl = (X{) = (mt)j Ty .>. Oa 1 € Nl

and
X; = (X3) = (z,), =z, (unrestricted), 5 € Na,

and the vector V = (vy,...,v,)7 is decomposed into the following two blocks:
V] = (‘/1') = (va), v 2> O’ i€ Al]

and

Vo = (V§) = (v;), v, (unrestricted), 7 € Ma.

Here N is the set of indices {1,2,...,n}, while M is the set {1,2,...,m}. Furthermore,
Ny and N; are complementary subsets of N with n; and n2 elements respectively, while
M; and M, are complementary subsets of M with m; and m; elements respectively.

The matrix A and the vectors C and B are decomposed into blocks corresponding
to the decompositions of M and N into M; + M, and Ny + N, respectively. These
blocks are Ay, Ajq, Ayr, A2, Cy,Co, By and B;. Besides, as a function of 0, all the
cocflicient matiices aie continuous. Any linear model of the form (Lm, ) can, by
means of well-known transformations of variables and constraints, be modified so
as to involve only nonnegative variables and only inequality constraints. Because
of this equivalence, the theorems and definitions used for linear models (L,0) and
(D, 0) also hold for (Lm,0) and (Dm,0). On the other hand, there are advantages to
using the latter forms. For example, the standard device for eliminating a variable of
unrestricted sign is to 1eplace it by the difference of two new nonnegative variables.
This, however, always results in unbounded sets of optimal solutions in the primal
models. A similar problem also happens on the occurence of equality constraints, for
to cach equality constraint in the primal model, there corresponds an unrestricted

variable in the dual model.

We will show that the results of inverse programming formulations for standard
lincar models can also be extended to linear models with mixed constraints. Theo-
rems 3.12, 3.13, Corallaries 3.10, 3.11, Definitions 3.5, 3.6 and Lemma 3.8 trivially
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hold for (Lm,0) and (Dm,0). We will refer to the inverse model of (Lm,#) as
(LIm, X*,0) and to its dual inverse model as (DIm, X'*,0). Now consider the lincar
program
Max CTX,+CIX;
s.t.
(Lm) All-\,l + Am-\’g _<__ B]
AunXi + A2 X; =B,
X1 20 (X2 unrestricted )
and its dual
Min B;fv, + B.I | A
s.t.
(Dm) ALVi+ ALV, >0
ARV + ARVa = C
V1 20 (V2 unrestricted ).

Then associated with an optimal solution X* of (Lm) are the Kuhn-Tucker vectors

M= (1L A0 ) 20,0t = (w),...,w}, ) (uarestricted) and w* = (uf, ..., u} ) >

0. These vectors have the following interesting property.

Theorem 3.17 Assume that X* is an optimal solution of (Lm) and consider the
Kuhn-Tucker vectors associated with X*, as defined above. Then the vector ()\"1 w0t )
is an optimal solution to the dual problem (Dm).

Proof: We rewrite (Lm) and (Dm) in the following standard forms:

Max CTX,+ CIX! - CIX"
s.t.
ApnXi + ApX) — ApX] < B
(Lm’) A21X1 + Angré —_ Aggxg S Bg
—An Xy — A X + A XY <~ 15
Xl Z 01 Xé 2 Oa )\,g Z 01

and
Min BTVI + B;"VTZ’ — BIv}
s.t.
AL+ ALV — AQ V' 2 G
(D) ALV: + ALV — ALV > G
ATV, — ALY] + ALV 2 ~Cy
Vi20, 720, V>0

Then the Kuhn-Tucker vectors (considered as columns) corresponding to X* will be
M=()20, i=1,...,m, w'=(w")>0, i=1,...,my,
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w* = (w*) 20, i=1,...,my, u=(ul)20, i=1,...,n,

u* = (u*) >0, i=1,...,n, and " = (/") 20, i=1,...,n,.
** w™")T is an optimal solution of (Dm') which implies

Now by Lemma 3.9, (A*T,w'
"* and

that (A", w™*" — w"™")T is an optimal solution of (Dm). But w* = w™* —w

the proof is complete.
]

Theorem 3.18 Consider the linear program (Lm). Then MFCQ) reduces to the fol-

lowing conditions:

(a) There exists a feasible point, X, such that X is a Slater point for the inequality
constraints of (Lm);

(b) The cocfficient malriz corresponding to the equality constraints has full row rank.

Proof: We rewrite (Lm) in the form

Max ClTXl + C;IXQ
s.t.
fJ = Aéle + A%24¥2 = Bg j € Alz
fk=-X1kSO k€N1
Then at a feasible point X*, MFCQ is as follows:
There exists d € B such that
(i) VFX*d<0, ieM(X*)
V(X)) =0, €M
VX" <0, ke Ny(X*)
(22) Vf(X*), j€ M; are linearly independent.
Since all the functions are linear, condition (i) is equivalent to the existence of the
point X = X* 4 ad, a > 0 sufficiently small, such that

f{(X) < 0, e,
FX) =0, jeu,
ff(X) < 0, keN.

This means that X is feasible and is a Slater point for the inequality constraints of
(Lm). On the other hand, condition (ii) is equivalent to the rows of the coeflicient
matrix corresponding to the equality constraints [Ay; Agg] being linearly independent.

This also means that this matrix has full row rank.
0

107




Theorem 3.19 Consider the lincar model (Lm,0) around 0*. Assume that MFCQ s
satisfied at 0* ( i.e., conditions (a) and (b) of Theorem 3.18 hold). Then the point-to-
set mapping F 1s lower semicontinuous at 0*. If (Lm,0) has, in addition, a realistic
objective function at 0*, then it is a stable modcl at 0*.

Proof: Assumethat MFCQ is satisfied at 0*. Then there exists Xe F(0*) such that
AL(0M Xy + AL(ONXy < B0, 1€ M,
ALV Xy + A0 X, = BYOY, e
-X <0, keN,

where the matrix [A21(0*) A2(0*)] has full row rank. This means that there exists
N(0%), a neighbourhood of 8*, such that

P=(0) = P=(0") for every 0 € N(0%). (3.53)

It is well known that (see, [32]) Ri(0*) = {0 : P=(0) = P=(0*)} is a region of stability
at 0%, provided that F= is lower semicontinuous at 0*. Here (3.53) implies that

Ry(0%) = N(0%). (3.51)

On the other hand, since [A2;(0) A2:(0)] has full row rank at 0*, it has full row rank

in a sufficiently small neighbourhood of 0*. It follows that the mapping
FZ:0- {X . A21(0)X1 + AQQ(O).XQ = 1)’2(0)}

is lower semicontinuous at 0*. This together with (3.54) imply that the point-to-set
mapping F is lower semicontinuous at 0*. If (Lm,0) has, in addition, a realistic

objective function at 0*, then it is stable at 0*.
0

Finally, we need to prove the following result for the dual linear model (D, 0)
in order to be able to use Theorem 3.13 to characterize an AOI for the inverse model

(LIm, X*,0).

Theorem 3.20 [f(Lm,0) has a realistic objective function at 0*, then the constraints
of (Dm,0) satisfy MFCQ at 0*. If, in addition to MIFCQ property, (Dm,0) has a
realistic objective function at G*, then it is a stable model at 0*.

Proof: Since (Lm,0) has a realistic objective function at 0*, it has a finite optimal
solution at 0*, say X (0*). By the duality theory of lincar programming, this implics
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that the dual problem (Dm,0) has a finite optimal solution at 0*, say V(O*). Consider
Min BI(0)Vi + B(0)Vs
s.t.
(Dm,0) —(AL 0V - (AL ) (0)Va + (C1)'(0) €0, i € Ny
(AT (Vi + (ALY (0)Va + Ca(0) =0, j € N,
~Vk <0, ke M,.

-~

Then associated with V(0*) are the Kuhn-Tucker vectors
M (0%) = (\(0%), ..., A%, (0°)T >0,

w*(0*) = (w;(O*),...,wfnz(W))T (unrestricted) and
u'(0%) = (uj(0%),...,u;, (0*)T > 0.
By Theorem 3.17, (A*7(0*), w*” (0*))7 is an optimal solution of the dual of (Dm, 0%),

which is (L, 0%). Since (Lm,0) has a realistic objective function at 6*, F(0*) is a
nonempty and bounded set. Therefore, A*(0*) and w*(0*) are bounded. Besides, by

the Kuhn-Tucker conditions,
By (0%) =Au(0%) Aw(07) [ A07) | gy
[B,(0*)J+[—A2,(o*) An(o*)} [w*(o*)] 07 =0
A ((ATDHO VA (0%) + (AT (0)Va(6%) + (C1)'(0%)) 0, ieM
—w(0)(W(0)Y = 0, je M.

Therefore
W*(0*) = [B'(O*) ] 4 [ ~Au(0%)  An(07) ] [/\*(0*) }
B2(0%) —An(0%) Axn(0*) w*(6*) |’

which implies that u*(0*) is bounded. Hence, K(V(6*)), the set of Kuhn-Tucker
vectors corresponding to V(0*), is nonempty and bounded. Thus, by Lemma 3.10,

the constraints of (Dm, 0) satisfy MFCQ at ¢*.
O

An important consequence immediately follows.

Corollary 3.15 If (Lm,0) has a realistic objective function at 0*, then any region of
stability for (Lm,0) at 0* is also a region of stability for (Dm,0) at 0*.

We now illustrate some of these results by an example.
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Example 3.11 Consider the lincar model

Max a,
(X)
s.t.
r+r <1
(Lm, 0) (02 = 0222, =0

ry 20, 1220
around ¢* = (0,0)T. Note that, regardless of 9,
F(0) = {(0,1)"}.

Although (Lm,#) is not stable at 6*, it has a realistic objective function at 0*. Fur-
thermore, the region

S(0%) = {0 € R : 02 = 3)

is a region of stability for (Lm, 0) at 0*. The dual problem is

Min o,
(V)
s.t.
vy + (2 - 02)%v, >0
(Dm,0) v > 1

v 2 0, v, (unrestricted).

The constraiuts of (Dm,0) satisfy MFCQ (in fact Slater’s) condition at 0*. So the
point-to-set mapping Fp is lower semicontinuous at ¢*. But (D, 0) does not have a
realistic objective function at 0* since

Fp(0*)y = {(1,v,)" : v, € R}.

The following result thus follows from Theorems 3.13 and 3.20.

Corollary 3.16 Consider (Lm,0) starling at °. Assume that X* € i°(0°), yet X* ¢
F(6°), and at 0* € S(X*), (Lm,0) has a vealistic objective function. Furthermore,
assume that S(0%) is a region of stability for (Lm,0) at 0* and V(0*) s a finile
optimal solution of (Dm,0). Then 0* 1s a locally AO! for (LIm, X*,0) with respect to
S(0*)NS(X*) tf, and only if, there exist a neighbourhood N(0*) of 0* and « nonnegative
vector function
A N(0*) N S(0*) N S(X*) — e

such that, whenever d € N(0*) N S(0*) N S(X*),

(L)pr(V(07),4:07) < (£5)pr(V(0°), A07);0°) < (L5 )ma(V, A(0);0)  (3.55)

Jor every A € R and every V € (F=)p(0).
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Remark: Consider (Lm,0) starting at 0°. Assume that X* € F(6°), yet X* ¢

#(0°), and S is a region in which, for every perturbation, the objective functions

4 (Lmn,0) and (Drn,0) are realistic. Then the problem of finding a locally AQOI for

‘L, X*,0) in S N S(X*) is the same as the problem of finding a locally optimal
g for (Dfme, X*,0) in S0 S(X™).

O

Ivom Theorem 3.20 the following important result follows as well.

Corollary 3.17 If (Ln,0) and (Dm,0) both have realistic objective functions at 0*,
then they both satisfy MFCQ at 0* and are therefore both stable at 0*.

Remark: This corollary shows that the set of optimal solutions of (Lm,0) and
(D, 0), being nonempty and bounded at 6*, is not only a sufficient condition for
the continuity of the optimal value function at 0*, but also a sufficient condition for

stability of both models at 0*.

3.5 A Numerical Method

Like most inputl optimization problems, solving the inverse problems numerically
involves the constrained optimnization of an optimal value function (such as §(0))
which is explicitly unknown. Therefore, the same difficulties arise when solving the
inverse problems numetically.

It is well known that if all the functions in (P, 8) are jointly convex in (z,0), then
the optimal value function f(0) is convex (see, e.g., [18]). In this case it is possible to
prove the convergence of some of the numerical algorithms for solving the problem of
constrained optimization of the optimal value function. One such case was discussed
in [14].

Unloitunately, jointly convexity of functions is not the case in most, of the math-
ematical models that we study. Therefore, finding a numerical algorithm, and then
proving its convergence, is a formidable task. In spite of all these difficulties, there
do exist tools (though rather primitive) for solving input optimization problems in
the lincar and convex case. Several case studies have actually been solved using these
tools (see, e.g., [7,23]).

There are presently two basic approaches to solving the input optimization prob-
lems. Both are essentially different from the usual numerical methods because they
optimize the explicitly-unknown function f(0) and the optimization is performed only
along the paths of stability. These two approaches are called the “M-method” and
the “MV-method”. The M-method considers the perturbations of 0 along which F(0)
monotonously increases, while the MV-method uses the marginal value formula and
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then searches f(0) along a stable path. More details on these are given in [34].

In this section, we will use a method based on the MV-method to solve the in-
verse problem for linear models numerically. For simplicity, we will use the notation
(L, 8) to refer to both linear models in the staudard form and linear models with
mixed constraints. The corresponding inverse linear model will also be denoted by
(L1,z*,0).

In order to find an AOI for (LI,a*0), starting from 0°, with r* a feasible but
nonoptimal point, we must solve the optimization problem

max g(0 3.506
oes:wsw)J( g (3:56)
where, as denoted earlier,

- . T *
= min ¢ (0)(x* — ),
g= min c )(a* - x)

S is the set of stable paths in I and S(z*) is the region of feasibility of r*. Idcally, we
would like to find a globally optimal solution of (3.56). But this is a very diflicult task
since §(0) is generally not concave. We will develop an algorithm for finding a locaily
AOI for (L1,z*,0) under Slater’s condiiion or under a special case of MFCQ. The
algorithm is the one given in [7] for finding an optimal input, with slight modifications.
The main differences are that instead of looking for a direction of descent we look for
a direction of ascent and that the algorithm is applied to the inverse model rather
than the model itself. Although rather primitive, the algorithm help us show how
to solve some of the inverse programming problems numerically. We will ase the
following marginal value theorem proved by van Rooyen and Zlobhece in [26] stated for
convex models.

Theorem 3.21 Consider a conver model (P,0) with a rcalistic objcclive funclion
at some 0*. Let S(0*) be an arbitrary region of stability at 0*. Assume thal the
mapping FT 1s lower semicontinuous at 0* rclatwe to S(0*), and thet the saddle-
point (£(0%),@(0*)) is unique. Al.o suppose that the gradients V f*(r,0), k € {0} U
P<(0*) are continuous at (&(0*),0*). Then for cvery scquence 0 € S(0*), 0 —
0*, and i(0) — £(0%), for which the limits

0 — 0+ . z(0) ~ x(0*)
= lim ——— and z= lim ——m—
oes(ex) [|0 — 0~ vesey 10— 0|

exist, we have

-~

_i(0) — f(o*) UM IN*N ~(N* * I (N*N =1 ” .
e ——t et e 0 M 0 0 M () l_ N "l"
Ggsm(::) = 0] V. LI(E(0%),a(0%);,0")z + VoL (2(0%),1(0");0%) (14.57)
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For the existence of limits and nonuniqueness of the saddle point, see [24] or [26].
To simplify the problem, we will consider only the conditions under which, for
every 0 € SN S(x*),
VL (2(0),1(0);0)z = 0. (3.58)
The marginal value formula is significantly simplified under such conditions. Slater’s
condition is one such condition (see, e.g., [34]). Another condition is when the per-
turbations of 0 are restricted to the region

S =1{0 € 1:P=(0) = P=(°) and F=(0) = F=(6°)}.

(For more details on these see [34].)

Using the primal formulation in Corollary 3.10, we first determine the regions S
and S(a*) and so SN S(z*). Then We will apply the marginal value formula to the
inverse model (L1,z*,0), the optimal value of which is §(8), to find a direction along
which §(0) increases. The numerical method is iterative, and each iteration yields a
vector 0F such that (0% < (0%) < 0.

It starts at 0¥ = 0" and at each iteration the linear program (LI, z*,0%) is
solved. Since (L, 0%) and (LI,z*,0%) both have the same optimal solutions, to solve
(L1,z*,0%) it is cnough to solve (L,0*) and then determine §(0*) from

§(0%) = <T(0%)a" ~ f(0%),

where f(0%) is the optimal value of (L, 0*). Besides, @(0*) can also be determined by
solving (L,0%). Then we calculate

Vo(£S)1(#(6%), @(6%); 6%),

where (£5)(x,u;0) is the Lagrangian function for the inverse model (LI,z*,0).
Since, at any 0¥ € SN §(x*) for which z* is not optimal, §(0*) is strictly nega-
tive, we want the product V(L) (2(6%),@(0%); 0%)! to be positive. We choose the
path emanating from 0% to 0¥t! to be linear, i.e.,

M =0"+ad, a>0, de RP.

The limit { defined and used in the marginal value formula can therefore be expressed

" = lim _q_:_ﬁ_ = lim _2_‘!__ = i
o—0% |6 — 0% a0t afld]]  |ld||

Henee two miajor decisions are now required for each iteration:

(i) Selection of a direction of ascent d, emanating from 6*;
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(ii) Sciection of a stepsize a@ > 0 along d such that ¢* + ad € S0 S(a*) and
§(6* + ad) > §(C*).

First let us determine the direction of ascent d. We will use a simple rule to
determine the direction d. This choice of d as well as a more cfficient one wete
studied in [7].

Definition 3.7 The vector d is said lo be a direction of stecpest aseent at 0* if ||d)] = 1
and d mazimizes

i L0 +ad) -~ 1(0%)

3.09
a—0t « ( )

Theorem 3.22 Consider the convex model (P,0) with a realistic objective funciton
at 0*, where all the functions arc differentiable at 0*. Assume that S(0*) s a region
of stability for (P,0) at 0*. Furlhermore, assume that the saddle-pownt (#(0*), a(0*))
is unique and

V. LE(&(0%),u(0%);0*)z = 0.

Then for any divection d # 0 cmanating from 0*, thal salisfics
0 +ad € S(0%), 0 <a<a, for some &> 0,

we have . .
lim J10" + ad) = J(O°) = Vo LI(2(0*),q(0"); 0" ). (3.60)

a0t a

Proof: Let 0 = 0* + ad, 0 < a < a. Then

f0) = JOr) _ o T +ed) - J(00)
b=t =0 " emot el

On the other hand, by (3.57),

lim J0) = J07) - _ Vo LI(F(0%), w(0*);0*)1

o~o+ 0 =0+
{
= VeLI(E(0%), 7(0);0") — .
Therefore, 3 N
. f(0*+0d)—f(0*) <~ ” ~ I x d
] = Vel (z(0"),u(0"); 0") .
Jim S oL 0, MR )y

Since d # 0, (3.60) follows.
(]

Remark: It follows, from Theorem 3.22 and under the same assumptions, that if, in
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addition, the model is stable at 0*, then there exists a directiond € B= {d € R :
[Id]| = 1} such that d maximizes the limit (3.59). This d is an optimal solution of the

program
Max VoLS(3(0°),(0);0)d

)

((1’) s.t.

lld}| = 1.
a
Any norm can be used in (G). We will use the I, norm. Thus, d is an optimal

solution of the following program:
N(I(ﬁx VoL (3(0%),a(0*);0%)d

s.b.

ldlioo = 1.

Clearly, if (VoLE(2(0%),4(0%);0%)), = 0, i € P<(0*), then any d of unit vniform norm
is an optimal solution. Otherwise, an optimal solution is

d, = sgn(VoLE(2(0%),w(07);0%)),, 1€ P<(0%).

Thetefore, considering (L1, x*,0) and using [, norm, at each iteration we choose d
as follows: If

(Vo(LE)1(2(0%), a(0%);0)), =0, i € P<(6*),

then we simply set d = 0 and the method terminates. Otherwise, we set
d, = sgn(Vo(LS)1(2(0%), w(0%);0%)),, i€ P<(0"). (3.61)

The resulting direction d is such that the product Vo(L3)1(2(6*), @(6*); 6*)] > 0 (note
that here ||d)| = 1). If
IVo(L3)1(2(67),a(0%); 0))i] < e
for some 7 € P<(0*) and for some predetermined € > 0, then we set d, = 0. If 6* is
located on a boundary of SNS(2*) and some d,e here e = (e,), where e, =1if y =1
and ¢, = 0 otherwise,) points out of §N S(z*), then that d, is simply reset to zero.
If, at this point, the resulting direction d becomes zero, only then do we solve
Max Vo(L8)(2(0%),4(0*);0*)d
(d)
s.t.
0% +de SnS(z*)
ldl|eo < 1.

If we still get d = 0, then the method terminates. Otherwise, we normalize d and

continue iterating.
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After determining the direction of ascent d, we must determine the stepsize along
d, i.e., a, where 0¥*! = 8% 4 ad. To do this, we mdy first determine @ > 0 which
is the greatest distance along d for which 0* + dad € §n S(a* ) Once a is known,
a could be determined by the Method of Golden Rule (sce, c.g., [1,29]). This is a
one-dimensional search to determine the point that maximizes a mtl valued function
over a closed interval. This method, however, is for a unimodal function (see [1]),
whereas the function §(a) = §(0* + ad) may not be unimodal on the interval [0, .
Nevertheless, using the method of Golden Rule may still yield an « € [0, o] such that
g(e) > g(0).
We recall the following description of the Method of Golden Rule from [29]. The
Method of Golden Rule is iterative and 1equires the use of the Fibonacci fractions
=22 10381066 and £ = ‘/52" :

&

=~ 0.61803.

Given an interval [a, b] of lenght | = b— a, the next interval is selected as follows. Let
wy=a+ [l and we=a+ Fl =b— Il

be points on the interval. If j(w;) > §(ws), then the new interval is [a,wy]. If
g(w) < §(w.), then the new interval is [twy,0]. If §(w;) = §(w,), then the new
interval is either [a,w,] or [w;,b]. The iterations are continued until the interval
being considered has a length less than some predetermined € > 0.

Applying the above Mcthod, a suitable « is chosen. Recall that the function g{«)
is not explicitly known, yet can be evaluated at any «, a € [0,d]. Since the Method
of Golden Rule is an expensive method, there are various stopping rules for it. Ior
example, if

g(0*%) — g(0**)
§(0%-2)

for some predetermined § > 0, then only three iterations of Golden Rule conld he

>6

-~

performed to get an « on the ky, iteration. If the change is less than 6, then the
Golden Rule Method is carried out until the interval being considered has a length
less than some ¢ > 0. It is possible that after thice iterations §(a) < §(0). This may
happen in case §(a) increases close to a = 0 and quickly drops from then on. In this
case the iterations are continued until an o is found with §(a) > §(0) or until there
have been a certain number of iterations to guard against the infinite loops. We can
therefore give the following primitive algorithm.

Algorithm
1. Determine S and S(z*) and hence S N S(z*).

2. Set 0F = 0°, and specify ¢ > 0 and 6 > 0.

116



Pt

. Update the matrix A = A(0*%) and the vectors b = b(#*) and ¢ = ¢(0*).

w

4. Solve (L1I,z*,0%) to get #(0%) and #(0%) and §(0%). If (0*) = 0 or [§(6%)] < ¢
for some predetermined ¢ > 0, stop; in the first case 0¥ is an IOl and in the
second case 0F is an e-approximation of an 101 for (LI, z*,0); if not continue.

5. Calculate Vg(L£2)(#(0%),u(0%); 0%), and determine d as previously described.
If d = 0, stop; 0% is a candidate for an AOI for (L1, z*,0); if not, continue.

6. Calculate @ and then a, by the Method of Golden Rule as described above. If
g§(0**) - g(0* )
§(0~-2)

then perform only three Golden Rule iterations. Otherwise, iterate until the
interval {a,b] has length [ =b—a <e.

> §,

7. Set 0**' = 0* + ad, and repeat from step 3.

O

Clecarly, a development of numerically efficient methods for solving the inverse
problem is a matter left for future research. More sophisticated methods could utilize
some ideas fiom the predictor-corrector path-following methods, recently published
in [13].

3.6 A Case Study

We will show how to apply the theoretical results of inverse programming to solve a
simple case study. This case study has been selected from [15], with extra assumptions
and modifications added to turn it into a suitable linear model for studying the inverse
problem. This problem dates to before 1973, so some of the data may no longer be
realistic.

Giant Transistor (G'T), Inc., manufactures two products: regular transistors and
the newer giant transistors. The plant opeirates at capacity (three shifts, five days a
week). The Viee President in Charge of Operations conducted a study that resulted
in sctting up an optimum operating point tor the whole plant. Following are the
highlights of that study.

GT employs 625 workers per shift in the capacity of direct labour. The available
labour per week was caleulated as follows:

(625 workers per shift)x (three shifts)=1,875 workers

(1.875 workers)x (40 hours per week per worker)=75,000 hours per week
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(75,000 hours per week)x (60 minutes per hour)=4,500,000 minutes per week.
The average wage for the entire plant is $2.10 an hour. Studics have shown that
ten minutes of labour are required for each regular transistor produced, and twenty
minutes of labour are required for each giant transistor produced. For the regular
transistors, the estimated labour cost per unit is

(1/6 hour per unit)x($2.10 an hour)=%0.35 per unit.

For the giant transistors, the estimated labour cost per unit is

(1/3 hour per unit)x($2.10 an hour)=$0.70 per unit.

For regular transistors the average material cost per unit is $0.15, and for giant
transistors it is $0.3. The total decision cost per unit of regular transistors is

(%0.35 for labour)+($0.15 for material)=$0.50 .

The total cost per unit of giant transistors is

($0.7 for labour)+($0.30 for material)=$1.00.

Since GT sells regular transistors for $0.82 per unit, the profit is
$0.82-$0.50=%0.32 per unit.
Giant transistors are sold for $1.63 per unit; hence, the profit is

$1.63-$1.00=5$0.63 per unit.

Other than the labour constraint of 4,500,000 minutes per week for the total three
shifts, the only other critical areas are those of soldering and final assembly. G'T' has
84 electronic soldering machines that are capable of running 24 hours per day. The
available soldering time was calculated as:

(60 minutes/hour) x(8 hours/shift) x (3 shifts/day)x (5 days/week)

X (84 machines) =604,800 minutes each week.
GT has 65 final assembly machines that are capable of running 24 hours per day. The
available final assembly time was calculated as:

(60 minutes/hour)x(8 hours/shift) x (3 shilts/day)x (5 days/week)

% (65 machines)=468,000 minutes cach week.
Regular transistors require one minute of soldering time per unit and [.1 minute of
final assembly time per unit. Giant transistors require 3 minutes of soldering time
per unit and 1.7 minutes of final assembly time per unit. The variables were defined
as follows :

x; =number of regular transistors produced cach wecek;

z2 =number of giant transistors produced each week.
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The objective is to maximize profit. These lead to the following program:

Max 0.32z; + 0.63z,

s.t.
10z; + 20z, < 4, 500,000
1.1z, + 1.7z, < 468. 500
z, 20, :=12.

The optimal solution of this program is
& = (342000, 54000)7,

and its optimal value is

-~

f = 143, 460.

GT has been following this plan and has been producing and selling 342,000 regular
transistors per week and 54,000 giant transistors per week.

In what follows we will add extra assumptions to the above problem to turn it into
a mathematical model and then apply some of the inverse programming results to it.
Assume that, while reviewing the new contracts offered, the operating officers of GT
have noticed an increased demand for giant transistors while the demand for regular
transistors has decreased. In particular, assume that one of the interesting contracts
offered to them requires production of 140,400 regular transistors and 150,000 giant
transistors per week. The operating officers of GT have to decide whether or not they
are able to make their optimal production plan to be

z* = (140400, 150000)7

by first introducing some parameters in the program and then by perturbing them
in a stable way. Note that currently z* is an interior point of the {easible set of the
program and is not optimal.

Assume that by using improved equipment the labour time for production of a
unit of giant transistor can be reduced from 20 minutes by anywhere up to 2 minutes
(i.c.y to & ninimum of 18 minutes). In addition, assume that GT can reassign some of
the workers to another plant, so that the total labour time in this plant can be reduced
from 4,500,000 minutes/week to as low as 3,937,500 minutes/week. Finally, assume
that the available soldering time can be reduced from 604,800 minutes/week to as
low as 590,400 minutes/week (reducing the available soldering time means reducing
the number of hours the soldering machines are running per day thus saving energy).
Therefore the following parameters are introduced :

arg = 20(1 + 0;) where —0.1 <6, <0
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b, = 4,500,000(1 4 0;) where —0.126 < 0, <0
by = 604, 800(1 + 03) where ~0.02380952 < 0; < 0.

(Note that here eight decimal digits are used for the lower bound on 03 to avoid
roundoff errors.)

On the other hand, changing the coefficient ay2 affects the coeflicient e;, the deci-
sion profit for a giant transistor, through

¢ =1.63— (5‘-'-‘-"1 x 2.10 + 0.3) .

60
Hence
cz = 1.63 — (gg(—l-é-—g-@ x 2.10 + 0.3)
or

c2 = 0.63 —0.70,.
Therefore, the following model is set up:

IV(Ia)x 0.32z; + (0.63 — 0.70,)x»

s.t.
10z; + 20(1 + 0;)z, < 4, 500,000(1 4 0;) :
120 7,20
where
-0.1<0, L0
0el={0ec R: ~-0.125 <0, <0

~0.02380952 <0, <0

Note that here the input (parameter) § appears in the matrix A and in the vectors
b and e. If a choice is possible, one must choose carefully which elements of the above
coefficient matrix and vectors should depend on 0 and which should remain constant.
Perturbing a particular element may have no cffect on the optimal value function,
whereas a small perturbation in another element may well affect it. To establish
which elements are most sensitive to small perturbations, one can use the following
well-known formulae (see, e.g., [34]):

af af J
— - *, — T * e d ——— T * o 3.62
0(:[ Iy abk Ug; an adkl Uy, ( )

where [=1,...,n and k = 1,...,m. Note that in the above formulae
f(0) = =c"(0)#(0).
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Furthermore, the second formula yields the economic interpretation of Lagrange mul-
tipliers as “shadow prices”.

Recall that, given the feasible point
z* = (140400, 150000)T at 0° = (0,0,0)7,

we want to sce if it is possible to make a* optimal by changing the introduced pa-
rameters in a stable way and, if so, find the corresponding 0* and a stable path from
0° to 0*. First, we have to determine the region S, that is the set of 6’s for which
(1.,0) is stable (i.e., it has a realistic objective function and the mapping F is lower
scmicontinuous). The point & = (1,1)7 is Slater’s point for every 0 € I. Besides

A(0)>0, 0)>0 andz > 0.

These imply that F(0) is bounded. Therefore, F(0) is a nonempty and bounded set
and the mapping F’ is lower semicontinuous for all § € I; hence S = I. Then we must
determine S(z*). Note that z* satisfies the second and third constraints of (L, ) for

every

0 € {0el:-0.02380952 < 03 < 0}.

For a* to satisfy the first constraint of (L, #), it must satisfy

10(140, 400) + 20(1 + 6,)(150,000) < 4,500, 000(1 + 62),

or
20, — 30, < 0.0064.
Therelore
20, - 30, <0.064
~01<0,<0
K — 0 3: V] =
SN S(a¥) €ER 0125 < 0, <0

—0.02380952 < 0; <0

We now sct the following mode! (the inverse model) suitable for solving the corre-

sponding inverse problem,

Min f°= -0.32z, — (0.63 — 0.70; )2 — 105, 0000, + 139,428

(=)
s.t.
U= 102y + 20(1 + 6;)az — 4, 500,000(1 + 02) < 0
f2 =T + 3&!2 - 604,800(1 + 03) S 0
(L1, 2~ 0) £ =11z, + 1.7z, — 468,000 < 0
fl=-2.<0
f5 = —a3 < 0,
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where # € S N S(z*) and 6° = (0,0,0)7.
Numerical solution of the inverse problem

The algorithm given in the previous section will now be used to solve the problem,
Recall that §(0) is the optimal value of (LI,z*,0) and §(a) = (0% + ad) at ihe
ky, iteration. We will look for 0* € § N S(x*) that maximizes ¢(0) with respect to
SNS(z*). If g(0*) = 0, then 0* will be an 101 for (LI, x*,0). Since Slater’s condition
is satisfied at any 0 € SN S(z*), the Lagrangian for (LI,z*,0) will be the usual
Lagrangian at any § € S. That is

Li(z,u;0) = -0.32z; —(0.63 ~ 0.70,)x; — 105,0000, + 139,428
+ w1 (1021 + 20(1 + 0,)x, — 4, 500,000(1 + 03))
+ ug(zy + 322 — 604, 800(1 + 03))
+ uz(1.12y + 1.7z — 468,000)
+ ug(—x1) + us(—22).

First iteration: At 0 = 0° we have the following situation:

0.0298
#(0°) = [ 35442’000000 ] s 4(0%) = 0 |; §(0%) = —4,032.
’ 0.0199
This gives
-35,016
(VoL (£(0°),a(0°);0°)" = | 134,100
0
Note that uz(0°) =0 and hence, by (3.62),
95 _ - a0y _
-073' = —604,800112(0 ) =0.

Therefore, small perturbations of 63 do not affect §(0). (However, as we will sce later
on, at other points on the path from 0° to 0*, small perturbations of 03 will well affect
§(0). The direction d, using (3.61), can be determined as

-1
d=1] -1
0

Then we determine &, the biggest step that can be taken along d and still remain in
the set SN S(z*). Substituting

01=0°—,B, 02=0—ﬁand03=0,
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for 0 € SN S(z*), then @ > 0 must be the largest § > 0 that satisfies
~28+33 <0064, 0<B<0.1.

This gives @& = 0.064. At this point, we will determine a > 0 by applying the Golden
Rule Method to the function §(0) on the interval [0,&]. After three Golden Rule

iterations, we obtain

a=a=0.064
and
-0.064
0'=0°+ad=| —0.064
0
Second iteration: At 0 = §' we have the following situation:
0.0253
ol 116,502.128 il v/l
: = =10. = —967.149,
#(0") [ 162, 765.957 | w(0) 00(;572 and §(6") 967.149
which gives
91, 242.65
(VoL (2(0Y),1(0");0M)T = | —113,776.6
—-40, 620.25

Note that here it,(0') # 0, so, by (3.62), we have

0§
009, ~604, 800,(6") = —40, 642 .
Thercfore, changes in 0} do affect §(6). This implies that d can be chosen to be
1
d=1| -1
-1

But 0* is on the boundary of §N S(z*) and any perturbation along d; or along d;
points out of the set SNS(z*). Thus, as discussed earlier, we simply reset d; = dy = 0
(to remain in that set). Therefore

o O

d=

It then follows that & = 0.02380952. But §(&) = 0, so a = & and
~-0.064

0" =0*=0"+ad= -0.064
-0.02380952



This 8 is an IOI for (LI, x*,0) since §(6*) = 0. Furthermore
a12(0%) = 18.72, by(60") = 4,212,000. by(0%) = 590 100, c3(0*) = 0.6748

and f(0*) = 146, 148. Comparing £(0*) with f(6°) = 143, 160, we notice an increase
of 1.874% in the profit. Note that here any path in the set SN S(a*) is stable, Thus,
any path in this set from 6° to @* is a solution to the inverse problem.

Here we happened to obtain an 10I for which the profit was more than the initial
profit. However, this may not always be the case. In general, if we want the profit
to increase or remain constant along a stable path, then besides maximizing g(0) we
must also maximize the difference between the profit at any 0 on the chosen stable
path and the initial profit. This shows that the inverse problem, applied in real-life
situations, is typically a multi-objective problem.

The dual numerical approach

The dual model for studying the inverse problem is

Min 4, 500,000(1 + 6)vy + 604, 800(1 + 03)v, + 468,0000;

‘”t’ +105,0000, — 139,428
s.t.

(DI,IL'*,O) —1001—U2~1.103+0.32 SO
~20(1 + 0y)v; — 3v; — 1.7Tv3 + 0.63 — 0.70, < 0
—v;<0, 1=1,2,3.

Since (L, 0) has a realistic objective function at any 0 € SN S(z*), by Theorem 3.14,
the constraints of (D,0) and therefore the constraints of (D1I,z*,0) satisfy Slater’s
condition for every perturbation in SNS(z*). Furthermore, by Theorem 3.16, the dual
inverse model has a realistic objective function for all these perturbations. Thercfore
we can look for a locally optimal input for (DI, z*,0), which will be an AOI for
(LI,z*,0) (as discussed earlier) as well. Applying the same method to the model
(DI, z*,0) to find a locally optimal input with the choice

d, = —sgn(VeLps(5(0*),a(0%);0")),

for the direction d (sce, e.g, [7,34]) at cach itcration, we obtain the same solution as
we obtained using the primal inverse model. This is because, due to the duality prop-
erties, the role of the elements of optimal solution and the corresponding Lagrange
multipliers are exchanged in the dual model. Besides, we use the same saddle points
(with roles of optimal solution and Lagrange multipliets exchanged) as in the primal
approach because of the uniqueness of those points. This results in the same clements
(but of opposite sign) in the gradient of the Lagrangian function for (DI, z*,0), used
to determine the direction d at each iteration. More precisely, for example, in the

124



poy

,«a’.m‘

first iteration we have
35,016

(VoLpr(5(6°),@(0°);0%))" = | 134,100
0

This implies that d = (-1, —1,0)7, as obtained in the first iteration in the primal
approach. However, the primal and dual numerical approches do not always yield the
samne solution when the saddle points along the stable paths are not unique.

A “direct” solution of the problem

Let us note that, in general, finding an 101 for (LI, z*,. lirectly (e.g., using the
Karush-Kuhn-Tucker conditions) is a difficult task, specially in large linear models
with many parameters. Besides, the direct solution does not yield a stable path from
0° to 0*.

In the model for the above case study ((L,0)) only the constraints f! and f?
depend on 0 and the rest of the constraints are not active at *. Therefore, to find
values of 0 € SN §(a*) for which z* is optimal, we must solve the following KKT

system:

10u] +u; = 0.32
(20 + 200, )uy + 3u; = 0.63 — 0.7,
uifi(z*,0) = 0
ufi(x*0) = 0
9 € SnS(z).

This gives, after some manipulation, the following set of all 0 € R® at which z*
becomes an optimal solution of (L, 0):

20, — 30, = 0.064
Sr={0€ R®: -0.1<0, <-0.0074627
03 = —0.02380952

Again, to avoid roundoff error, seven decimal digits are used for the upper bound on
0y. Tt can be casily seen that the 101 that we obtained earlier numerically, i.e.,

—-0.064
0" = -0.064
—0.02380952

also belongs to the set Sj.
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An advantage of this direct approach is that we can find a ¥ € 8 closest to 0°
To find such closest 8 to 6°, we must solve ihe program

Min ||0° — 0|
s.t.
0eS

that is
Min |6,] + %I‘Z(), — 0.064|

s.t.
-0.1 <60, < -0.0074627 .

This implies that the closest 8, in S, to 89 is

-0.0074627
0= -0.0263085
—0.02380952

For the sake of curiosity, the furthest 0, in Sy, to 0° is

~0.1
~0.088
~0.02380952

]
Il

Remarks

(i) It is interesting that the optimal solution of (L, #) is not unique. In fact

- 140,400 380,785.23
- ’ - ' <A<1}.
) {A [ 150,000 ] (=4 [ 28,903.672 ] 0<As 1}

Besides f(é) = 140, 211.582, implying that although z* is optimal, the profit is stnaller
than the initial profit at 0°. In fact, among the clements of Sy, @ yields the smallest
profit. On the conirary, the optimal solution of (L,0) is unique and f(6) = 149, 928,
which gives a larger profit than the initial profit. Also, among the clements of Sy, 0
yields the largest profit.

(ii) Considering the inverse model (LI, z*,0), then we notice that §(6) = 0 for
every 0 in S; (since z* is optimal for any such 0). Furthermore, the set S 0 S(2*) is
a convex set, S C SN S(z*) and we always have §(0) < 0 for every 0 € 50 S5(z*).
Therefore, any ¢ in Sy is also an 101 for the model (L1, z*,0). Besides, it is possible
to go from 0° to any of the elements of S through a straight line. This means that
the shortest stable path in SN S(z*) from 0° $o an 101 for (L1, z*,0) is the straight
line from 0° to 0. Hlowever, this shortest path would result in a drop in the profit.
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(iii) In this particular case study any convex combination of 0 and § is an 101 for
(L1,z*,0). This is, however, not true in general. Consider, for example, the model

Max z; 4z,
()
s.t.
4(1)1 + 2172 S 14
Oz, +22<5
x4+ 02, <5

2,20, 1=12
starting at 0° = (0,0)7, with z* = (2,3)7. llere
SNSE)={0:0<0,<1, 0<6, <1},

and 0 = (1,0)7 and 0* = (0,1)7 are both IOI’s for the model (LI, z*, ). Now consider
0= (3,1)7. Then #(0) = (4,2) and f(0) = ¥, implying that 0 is not an IOI for the
inverse model since §(0) = 3.

(iv) Another choice of parameters 0;, ¢ = 1,2, 3, in our case study would be

a2 1801 + 20(1 - 01)
by = 3,937,5000; +4,500,080(1 — 0,)
b; = 590,40005 + 604,800(1 — 03)

which would result in siinpler bounds for 0,, i = 1,2,3, 1.e.,
0<0,<1, :=1,2,3.

However, this choice would yield a different solution for the problem, i.e., at the
corresponding 0*, we would have

app(0*) = 19.2686, b,(0") = 4,294,293.8, by(0*) = 590,400, c(0*) = 0.6556
and f(0*) = 143,268.108. Note that the profit in this case wonld be smaller than the
initial profit.

A situation where an IOI does not exist

Consider again the program (L), and assume that the only coefficient that can be
changed is the assembly time per unit of a regular transistor. That is, assume that
the decision makers have decided to slow down the assembly process for the regular
transistors since they do not need as many regular transistors as they were initially

127



A

producing. This causes the assembly time per unit of a regular transistor to become
larger. Assume that the following model has therefore been set up:

Max 0.32zr, + 0.63r,
s.t.
10z, 4 20x; < 4,500,000
(1.14 0)z; + 1.7x, < 468,000
z, 20, =12
starting at 0 = 0 with 2* = (140400, 150000)7. It can be scen that
SNS(*)={0e R:0<0 <0417}
Here, the inverse problem uses the following model:
I\('Ii)n —0.32z; — 0.63z2 + 139,428
I
s.t.
10z, + 20z, < 4, 500,000
(LI, z*,0) x, + 3z, < 604,800

(L1 + 0)x; + 1.7, < 468, 000
2,20, i=12

Note that §(0°) = —4,032. Using the algorithm given at the end of the previous
section, we obtain

0* =0.417, #0*) = (131827.429, 157657.524)7 and §(0*) ~ —2,081 .

Obviously, 0* can not be an IOI for (LI,z*,0). Let us verify that the above 0*
is an AOI for (L1,2*,0) using the the characterization in Theorem 3.15 . Here, the
dual inverse model is

I\:Ii)n 4,500, 000v; + 604, 800v, + 468,000vy — 139,428
T
s.t.
—-10‘01 - U — (11 + 0)03 + 0.32 S 0
(DI, z*,0) —20v — vy — 1.Tv3 +0.63 <0
-1,<0, 1=1,2,3.

Solving this program at @ = 0* yields the solution

0
5(0*) = | 0.144
0.116
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and the shadow prices

131, 827.429
157, 657.524
a(0%) = | 28,575,237

0

0

B

Recall that h(0*) = -§(0*) ~ 2,081. We will look for a vector function A(f) > 0 such
that the saddle-point inequality (3.51), in Theorem 3.15, holds in some neighbourhood
of 0*. In order to find such a function, we first fix 8 = 0* to get A(0*), and then use
A(0) (by changing 0 to 0* ) as the vector function that we need. The KKT system at
0* results in the following system of equations:

10X, + 20X + A3 = 4,500,000
A1 +3X2 = 604,800
(1.140")A + 1722 468,000
A = 0 2=4,5.

Solving this system to get A(0*) and then changing 0* to 0, we obtain

375,840
M) = 1% +30

197,280 + 604, 8000
Al0) = 1.6 +30

—504, 000 + 140, 40000
Aa(0) = 1.6 +30

MO) = 0 i=4,5

The left-hand of the saddle-point inequality in Theorem 3.15 is easily satisfied with
this * ,. The right-hand inequality reduces to

18, 140.8 — 43,5030
= 1.6 + 30 ’

which holds for all 0 < 6 < 0417 . Hence, 8* = 0.417 is indeed a globally AOI for
(L1,2*,0) with respect to S N S(a*). This means that, with the above choice of 6*,
the point & is the closest possible to being optimal with respect to the perturbations
in SNS(a*). Any path in SN S(2*) from 6° to 6* is a solution to the inverse problem.

Note that here f(0*) = 141,509, which is smaller than the initial profit. In this
case there are no parameters in the objective function, so it is impossible to increase
the profit or even keep it constant. Therefore, to control the profit in this way, we
must always have parameters in the objective function.
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Conclusions

In the first part of the research we have extended the concept of differentiable LIS
functions to the non-smooth case and to the differentiable generalized convex case.
Also, new characterizations of optimality arc given with respect to a smaller mini-
mal index set rather than the usual minimal set P=. It appears that the programs
with LFS functions are the largest identifiable class of programs for which the KK'T
conditions are nccessary for optimality.

Some of the results of the second part of the work (Chapter 3), specially the no-
tion of F’—stability and characterization of optimal inputs with respect to such regions
of stability, are mostly of theoretical rather than practical importance. While the
results on the inverse problem (Section 3.4) appear to be new, the numerical algo-
rithm (Section 3.5) is basically a modification of existing numetical methods of input
optimization. Therefore, the algorithm is still rather primitive and prescents an open
problem with many directions for possible improvements. One such improvement,, for
example, would be to choose a parabolic path from one 0 to the next in cach itera-
tion, or a combination of straight line segments and parabolae (whichever is better,
depending on the curient 0), or to find a different method to choose the direction d at
each iteration. In addition, a method that employs second-order input optimization
1esults may be faster.

A detailed study of numerical methods in input optimization, and in paticu-
lar for solving the inverse problem, would relate our stability rescarch to, e.g., the
path-following methods of the predictor-corrector type recently developed by Gud-
dat, Guerra Vasgucz and Jongen [13] and other rescarchers in the field of non-smooth
optimization [12]. This is a direction of general rescarch which the anthor may pursae
in the near future.

The inverse problem in this research has been studied only for lincar models using
the elegant duality results in linear programming. Somne of the 1esults could possibly
be exiended to the general convex or even the nonconvex case. In addition, only
single-objective models have been studied, leaving the multi-objective case open for
further 1esearch.
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