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Abstract 

Consider the following fundarnental problern: given two se\l,s Rand G of objects 

positioned in d-dirnensional Euclidean space, does there exist a .i\\lfface of sorne specifie 

type which separates the objects of R frorn the objects of G? 

Much attention has been given to this problem, for many ci:l.sses of objects and 

separating surfaces. However, very few satisfadory alternatives exist wh en the objects 

are not separable by any of the surfaces of the chosen class. In this thesis, a new 

combinatorial measure of separability is proposed, based on the largest subset of the 

objects in RuG that rnay be separated using surfaces drawn from a certain class. The 

combinatorial and algorithmic questions arising from this weak separation measure are 

the main foeus of the thesis. The strong relationship between the separable subsets 

of point sets and faces of hyperplane arrangements is investigated, and a variety of 

algorithms are presented for finding linear and spherical separators for point sets and 

sets of hyperspheres. 
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Résumé 

Considérons ce problème fondamental: étant donné deux ensembles R et G d'objets 

situés dans l'espace euclidien de dimension d, existe-t-il une surface d'une catégorie 

particulière qui sépare les objets de R des objets de G? 

Beaucoup d'attention a été accordée à la recherche des surfaces séparatrices variées 

pour plusieurs classes d'objets. Cependant, très peu d'alternatives satisfaisantes ex­

istent lorsqu'aucune des surfaces de la classe choisie ne peut séparer les objets. Dans 

cette thèse, une nouvelle mesure de "séparabilité" est proposée, fondée sur le plus 

grand nombre possible d'objets de RU G qui admettent une surface séparatrice ex­

traite d'une classe spécifique. Les problèmes de nature combinatoire et algorithmique 

provenant de la mesure de séparation faible sont le principal sujet de cette thèse. Le 

rapport fort qui existe entre les sous-ensembles séparables d'ensembles de points et les 

configurations d'hyperplans est étudié, et plusieurs algorithmes sont présentés pour 

obtenir les hyperplans séparateurs et hypersphères séparatrices d'ensembles de points 

et d'hypersphères. 
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Statement of Originality 

Except for the background material in Section 2.2, the hyperplane arrangement con­

struction algorithm of Section 6.2, and the two-dimensional topological line sweep 

algorithm in Section 6.5, aIl elements of this thesis should be considered original 

contributions to knowledge. Any other theorems or algorithms appearing in this the­

sis that are the work of others are clearly indicated in the text. Furthermore, no 

assistance outside that acknowledged in the preface has been received. 
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One of the negative influences over this thesis has bcen the ~lontréal Canadiens. 

Every faU and winter, they can always be relied upon ta siphon away two evcnings per 

week, reaching a glorious peak of five days per week in the spring during the playoffs. 

Another black hole into which much of my effort has fallen is the morass of gaming, 

computer or otherwise. Although 1 suspect that my sanity was prcserved during 

times of great stress by the availability of these diversions, a great many work hours 

were lost thereby. Other perhaps more wholesome di~tractions that nonethcless each 

contributed in sorne smaH way ta the clelaying of my degrce include wcckcnd hockey 

or soccer, recreational reading, sunshine in general, anù language lessons. 

On the positive sicle, first of aIl, 1 would like to thank my family for supporting me 

in my endeavours, even though they still don 't quitc understand what it is that 1 do. 

David Avis, Naji Mouawad, Gilles Pesant, Jean-~-1arc Robert, David Samuel, Tom 

Shermer, and Rafe Wenger have aU helped greatly either by proofreading the various 

technical reports that eventually constituted this thesis, or through interest.ing and 

fruitful discussion pertaining to topies of the thesis, or both. 1 also thank Jean- ~[arc 

for the many discussions concerning joint work that did not make it into this thesis, 

yet which paved the way for the results of Chapter 7. Mike "der Mouse" Parker is 

particularly appreciated for his zeal in hunting clown the last (?) few bugs in this 

thesis. The ?resence of Peter Egyed, Hossam ElGindy, ~linoru Ishii, Alain Leblanc, 

Alexis Maciel, Minou Mansouri, and Marek Teichmann also contributed ta a very 
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Chapter 1 

Introduction 

Consider the following fundamental problem: assume that we are given two sets of 

objects positioned in Euclidean space, one consisting of red objects and the other 

consisting of green objects. Does there exist a surface of sorne specifie type whieh 

separates the red objects from the green objects? This question may be posed with 

various different classes of objects and separators, in spaces of any dimension. 

Most of what is already known about separation involves the separator classes of 

hyperplanes and hyperspheres, and the object class of fini te point sets. Theorems 

providing conditions for the existence of linear separators have b~ll known for sorne 

time, notably those of Kirchberger [Kir03], who showed that the exact linear separa­

bility of two sets of points depends on the separability of aIl subsets of their union 

of a certain fixed size. More recently, the same \Vas shown for spherical separability 

by Lay [Lay71]. The relationship between linear separability and eonvexity theory 

has also been well studied [DGK63,Valô4]. One of the simpler proofs of Kirchberger's 

theorem relies heavily on the famous eombinatorial eonvexity result of Helly [HeI23]. 

Stoer and \Vitzgall [SW70] have shown that two sets of points are linearly separable 

if and only if their eonvex hulls are separable. 

Much attention has been given to the problem of fin ding specifie types of sep­

arating surfaces for sets of points. For example, in the setting of two-dimensional 

image processing, efficient algorithms to find circular separators for two sets of points 

1 
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CHAPTER 1. INTRODUCTION 2 

can be used to recognize disks [Bha88,Fis86,OKM86]. In the pattern recognition set­

ting of two-category point classification, linear separators are often sought for use 

as discriminant functions. Many strategies for obtaining these separators exilit (see 

[DHï3]). However, it often happens that the two point sets cannot be separated by a 

simple hyperplane. In these instances, higher-order surfaces such as hyperspheres or 

hypercones are sometimes considered as candidate separators, or linear discriminant 

functions based on statistical considerations are employed [Cov65]. However, these 

approaches do not concern themselves with combinatorial alternatives to exact linear 

separa tors in the event that none can be found. One such alternative, explored in 

this thesis, is to U5e discriminant functions that correctly classify the greatest number 

of objects in the union of the two sets. Such surfaces, sinee they are not necessarily 

exact separators, shaH be called weak separators of the sets. A formaI definition of 

weak separél.tors will be given later in the thesis. 

One of the natural questions to ask, upon being told that a certain surface does 

not separate two sets of objects Rand G, is which subsets of Rand Gare separated? 

This question will be the motivation behind the combinatorial investigations of the 

thesis that will be conducted in Chapters 3 to 5. These chapters will be concerned 

with the theoretical aspects of weak separation of point sets by both hyperplanes and 

hyperspheres. Chapters 6 and 7 deal with the algorithmic aspects of weak separation. 

Chapter 2 contains definitions, terminology, and other background information 

upon which the discussions of the thesis are based. The areas touched upon in this 

chapter include analytic geometry, elementary topology, hyperplane arrangements, 

and linear programming. Also in this chapter, new definitions involving separation 

and separators will be introduced. 

In Chapter 3, results on the existence of exact separa tors are presented that are 

extensions of the first results of Kirchberger to finite families of arbitrary sets. This 

same treatment is applied to the case of exact spherical separation. The results of this 

chapter are contained in the paper "Theorems on the existence of separating sets", 

which has been accepted for publication in the journal Discrete and Computational 

Geometr'lj. 

In Chapter 4, the linearly and spherically separable subsets of two sets of points 
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CHAPTER 1. INTRODUCTION 3 

are charaderized by establishing a correspondence between separable subsets and 

intersections of half-spaces in dual arrangements of half-spacef' The transforms used 

to develop this correspondence are extensions of transforms that have been used 

to solve many problems in computation al geometry, notably in the constructions of 

convex hulls and higher-dimensional Voronoi diagrams [PS85,Ede87]. 

In Chapter 5, bounds on the worst-case size of certain fixed-size separable subsets 

are given, and their relationship to the theory of k-sets is shown. Also in this chapter, 

exact expressions are developed for the number of lînearly and spherically separable 

subsets of two point sets, based on the relation between point sets and arrangements 

established in the previous chapter. 

Chapter 6 is devoted to a variety of basic algorithms for finding weak linear and 

spherical separators of point sets. These algorithms are ultimately based upon hyper­

plane arrangement constructioJ" and sweeping techniques developed recently by Edels­

brunner, O'Rourke, and Seidel [EOS86], and Edelsbrunner and Guibas [EG86]. 

In Chapter 7, certain applications and extensions of the algorithms of the previous 

chapter are examined. In particular, algorithms are presented that determine "wide" 

linear separators of point sets; that is, separators that avoid the sets being sepanted 

by the greatest amount, according to a natural metric. These separators are in a 

sense of "higher quality" than those found using the more straightforward methods 

of the previous chapter. This method of finding wide linear separators of point sets 

will be shown to be applicable to the problem of finding a !inear separator of two sets 

of hyperspheres. 

Finally, in Chapter 8, sorne open problems relating to separation are discussed. 



Chapter 2 

Geometrie Preliminaries and 

Definitions 

2.1 Introduction 

The topies covered in this thesis faU into the category of diserete and computationai 

geornetry. This discipline straddles the boundary between mathematics and theoret­

icai computer science, and as such encompasses many subfields. 

One important text of great relevance to this thesis is "Algorithms in Combi­

natorial Geometry" by Herbert Edelsbrunner [Ede87]. In it, the author explores 

in depth the relationship between the combinatorial structure of arrangements of 

hyperplanes, and their mu.ny applications in computationai geometry. Much of the 

background material assumed by this thesis is covered in this text, including the the­

oretical and algorithmic aspects of hyperplane arrangements and Voronoi diagrams, 

geometric transforms, and the theory of k-sets. A more introductory (and more gen­

eral) reference for computationai geometry is the book "Computational Geometry" 

by Preparata and Shamos [PS85]. 

A solid reference for Euclidean and projective geometry is Borsuk's "Analytic Ge­

ometry" [Bor69], in which (among others) the topies of duality, homogeneous coordi­

nates, and vector algebra are explored. Other recommended books on transformations 

are "Geometrie Transformations" by Iaglom [Iag62], and "A Survey of Geometry" by 

4 
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CHAPTER 2. GEOMETRIe PRELIj\1INARIES AND DEFINITIONS 5 

Eves [Eve72]. For convexity theory, there are many good texts. A good reference 

for convexity theory is Valentine's "Convex Sets" [VaI64], which includes the theo­

rems of Kirchberger concerning the linear separability of sets. Many theorems on 

convex sets are also to be found in "Helly's Theorem and its Relatives", by Danzer, 

Grünbaum, and Klee [DGK63]. Two well-known works of Grünbaum, "Convex Poly­

topes" [Grü67] and "Arrangements and Spreads" [Grü72], provide a very thorough 

treatment of the combinatorial structure of convex polytopes and hyperplane arrange­

ments. 

An excellent book on linear programming is "Linear Prograrnrning", by Vasek 

Chvatal [Chv83], a text which may be considered both introductory and advanced. 

There is a great variety of texts available on topology. An advanced book is "Prin­

ciples of Mathematical Analysis" hy Rudin [Rud64]. For a more introduetory text, 1 

recommend Bartle's "The Elements of Real Analysis" [Bar76]. Two of the standard 

texts on graph theory are "Graph Theory" by Harary [Har69], and "Graph Theory 

with Applications" by Bondy and Murty [B1176]. 

The next section deals with the definitions and mathematieal properties that is 

the background of this thesis. The topies discussed include coordinate systems, basic 

topological objects and properties, Hats, hyperplane arrangements, polytopes, !inear 

programming, and graph theory. None of the definitions of this section are new; the 

reader familiar with these are as should feel free to pass over any part or aIl of this 

section, and to later use it as a reference if necessary. 

Section 2.3 contains new definitions pertaining to the separation of sets. The 

terminology introduced in this section forms the basis of discussion in the succeeding 

chapters. 

2.2 Background 

The setting for this thesis is the d-dimensional Euclidean space E d, of which each 

point P is represented by its cartesian coordinates, a real-valued d-dimensional vector 

(PI,P2"" ,Pd). We will let R and Rd represent the set ofreal numbers and real valued 

d-dimensional vectors, respectively. Let x = (Xl! X2,"" Xd) and y = (YI, Y2,'" ,Yd) 
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be two points in E d
• The dot product or inner product of x and y, denoted x . y, 

d 

is I>iY" The (Euclidean) norm of x, denoted IIxll, is defined as ~, and the 
,:1 

(Euclidean) distance between x and y is defined to be IIx - yll. If !lxll = 1, x is said 

to he a unit vedor. If X and Y are subsets of E d, the minimum Euclidean distance 

between X and Y is 8(X, Y) = min{l!x - ylll x E X, Y E Y}. The point (0,0, ... ,0) 

is called the ongin, and shall he represented by the symbol O. The xI-axis is the set 

of aU points with zero xk-coordinate, for aIl k ::f. i. 

Another way of representing the points of E d is through the use of homoge­

neous coordinates. These coordinates are (d+ 1 )-dimensional vectors of the form 

(Po, Pt,·· . ,Pd), where each p, E R and Po ::f. O. The point p E E d with cartesian 

coordinates (Pb P2, ... ,Pd) js assigned to the set of vectors P" ÀPb ÀP2" .. , ÀPd), over 

aIl À E R, À ::f. O. Any of these vectors can be said to represent the point p. The 

point q E E d with homogeneous coordinates (go, gt, . .. ,gd), go i- 0, then corresponds 

to the vector (qt, q2, ... , qd) in cartesian coordinates. When expressing points of 
go qo qo 

E d in homogeneous coordinates, it will sometimes be convenient to restrict the first 

coordinate qo to be positive. The cartesian origin 0 of E d can he expressed using 

homogeneous coordinates as (À, 0, ... ,0), for any À E R, À ::f. O. 

Many of the object and property definitions in this section will be presented using 

both cartesian and hornogeneous coordinates. Demonstration of the equivalence of 

these definitions will he left to the reader. Before proceeding further, sorne basic 

topological concepts are required. 

A bail centred at x is the set of aIl points of Bd whose distance from x is strictly 

less th an sorne fixed radius r E R. A subset of E d is called open if it is the union of 

sorne rAllpdion of balls. A closed set is one whose complement is open. The interior 

of X, denoted int(X), is the union of aIl the open sets contained in X. The closure of 

X, denoted cl(X), is the intersection of aU closed sets containing X. The boundary 

of X, denoted bd(X), is the set cl(X) \ int(X). A set X is bounded if it is a subset 

of sorne b .. tll. X is disconnected if it is a subset of the union of two disjoint open sets 

in E d, each containing sorne point of X. Otherwise, X is said to be connected. A 

connected component of X is a connected subset of X that is contained in no other 
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connected subsets of X. In E d, a set is compact if and only if it is closed and bounded. 

Let F be a rnapping wi.th domain X and range in set Y. If each range element 

of F is associated with a unique do main element, we say that F is injective or one­

to-one. If the range of F con tains every element of Y, we say that F is surjective, or 

onto. A mapping that is both injective and surjective is known as a bijection. If x is a 

point and X is a set of points, the inverse of Fis defined as F-l(x) = {yi F(y) = x}, 

and F- 1(X) = {yi F(y) E X}. If F is a function, then Fis continuous if F- 1(X) is 

an open set whenever X is an open set. In Euclidean space, a function is continuous 

if and only if limF(x) = F(a). 
:z;-a 

Two sets are called isomelric if there exists a bijection between them that preserves 

distances. Such a bijection is cêJlled an isometry. A subset of E d isometric to Ek is 

called an affine subspace or fiat of dimension k (also known as a k-flat). A O-flat is 

a point, a 1-flat is a line, a.nd a 2-Hat is a plane. A (d-1)-flat is called a hyperplane. 

By convention, the empty set is cOllsidered to be a (-1 )-flat. 

A set of points X is called co/linear if all the points lie on the same line. X is 

cop/anar if aIl the points lie on the same plane. If no k + 2 points are contained in 

the same k-flat, X is said to be in gen\oral position. 

A hypersphere centred a.t point x and of radius r is defined as the set of points y 

su ch that IIx - yll = r. A hypersphere of radius 1 is called a unit hypersphere. In E 2 

and E3, hyperspheres are known as circ/es and spheres respectively. 

The affine hull aff(X) of a subset X of E d is the smallest fiat containing X. The 

dimension of X (denoted dim(X)) is the dimension of its affine hull. A set of k + 1 

points of Ed is said to be affinely independent if the dimension of their affine hull is 

k. A point x E E d in cartesian coordinates is said to be an affine combinafion of a 
k k 

set of points U = {uo, Uh' .. , Uk} if x = La,u, and La, = 1. If in addition each ai 
,=0 ,=0 

is non-negative, then x is called a convex combination of U. 

If x and U are represented in homogeneous coordinates, then x is an affine combi­
k 

nation of U if x = LQ,U, and Xo =f:. 0, where at least one of 0'0, al, ... ,ak is not zero. 
i=O 

If the first coordinate u,o of each u, is restricted to values greater than zero, and if in 

addition each Qi is non-negative, then x is a convex combination of U. 
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A k-flat may be given as the set of affine combinat ions of k+ 1 affinely-independent 

points. Therefore, given such affinely-independent points, a k-flat may be parameter­

ized by the set {QO, ail" . ,Qk} of the preceding definitions. If u and v are distinct 

points of Ed, then the set of aH affine combinations of u and v forms a line; the set 

of convex combinations of u and v (denoted ü'V) is known as a (closed) line segment. 

The points u and v are called the endpoints of üü. The open Hne segment joining u 

and v is the closed line segment minus its endpoints. A set X is relatively open if 1t 

is the intersection of sorne open set with sorne Hat. The relative intenor of X is the 

union of aU the relatively open sets in afl'(X) that are contained in X. 

A point set X is called convex if the closed !ine segment joining any two points u 

and v of X is entirely contained in X. It is easily shown that the common intersection 

of convex sets is itself convex. The convex hull of X, denoted by conv(X), is the 

smallest convex set contajning X. The boundary of the convex hull shall be denoted 

by CH(X). In common practice, both conv(X) and CH(X) are called the "convex 

hull" . 

Using cartesian coordinates, a hyperplane may be expressed as the set of points 

h = {x E Edl u . x = c, u E Rd, C E R, u ":f. D}. The vector u is called a normal 

vedor for h. In homogeneous coordinates, a hyperplane may be expressed as the set 

of points h = {x E Edl u·x = 0, u E Rd+! , u =1 D}. Sometimes, for the f3ake of brevity, 

these conditions on u and c are assumed but not stated. 

Hyperplane h splits Ed into two regions known as half-spaces. Using cartesian 

coordinates, the c/osed half-spaces deiined by h are parameterized as {x E Edl u . x > 
c} and {x E Edl u , x ~ cl. Using homogeneous coordinates, these half-spaces become 

{x E Edl u·x 2: o. Xo > O} and {x E Edl u·x ~ a,xo > a}. Allernatively, if one wishes 

to consider tuplcs with Xo < 0, it is easily seen that these expressions are equivalent 

to {x E Edlxo(u, x) ;::: a} and {x E Edlxo(u, x) ~ a}, respectively. The open 

half-spaces determined by h are obtained from the closed half-spaces by eliminating 

the points of h. The hyperplane h is said to bound its open and closed half-spaces. 

Aline 1 in E d not entirely contained in or parallel to a hyperplane h is split by h 

into two parts called rays. The intersection of 1 and a closed half-space bounded by 

h is known as a c/osed ray; with an open half-space, it is known as an open ray. The 
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intersection of 1 and h is a point, called the endpoint of these rays. A ray is sornetirnes 

called a hal/-Zine. 

Using cartesian coordinates, a closed ray rnay be parameterized as u + ,\v, À ~ 0, 

where u and v represent points of E d , v i- O. In homogeneous coordinates, the 

parameterization of a closed ray is u + '\v, À ~ 0, where u is a point of Ed, and 

v E Rd+!, Vo = 0, v '# o. In both the cartesian and homogeneous representations, 

adding the restriction ,\ > 0 gives an open ray. The endpoint of aIl these r<,.ys is the 

point u. 

Let the points of E d be represented using cartesian coordinates. A set Y C Ed is a 

translation of set X if Y = {x + yi x E X C E d
} for sorne fixed y E E d

• Two Bats are 

paraUel if one is a translate of the other. Two vectors u and v are said to be orthogonal 

to each other if u . v = O. Two intersecting Bats /1 and h are orthogonal if, for aIl 

choices of Pl in Il and P2 in /2, there exists a point p in the intersection of Il and 12 
such that the vectors Pl - P and P2 - P are orthogonal. The orthogonal projection of 

a point x onto a k-Bat 1 is the unique point p of 1 such that the the vectors x - p 

and p J - P are orthogonal, for aH points p J of 1 distinct from p. Objects that are 

orthogonal to each other will also be referred to as being normal or perpendicular to 

each other. 

A hyperplane h is said to separate two sets X and Y if X is contained in one 

closed half-space bounded by h, and Y is contained in the other. X and Y are then 

said to be separable. If neither X nor Y intersect h, then h strictly separates X and 

Y, and the sets are strictly separable. Otherwise, if X does intersect h, then h is caIled 

a supporting hyperplane for X. 

A set of hyperplanes H = {hl! h2 , ••• , hn } divides E d into a set of connected 

convex regions called an arrangement, denoted A( H). Let h, + and hl - be the two 

open half-spaces bounded by hyperplane h" For a point x in E d we define 

{ 

+1 
Vi(X) = 0 

-1 

if x E h, +, 

if x E hll and 

if x E h l -, 

for 1 ~ i < n. Thevector v(x) = (Vl(X),V2(X), ... ,vn (x)) is called the position vector 

of x. If two points x and y have identical position vectors, then they are considered 



t CH.i\PTER 2. GEOMETRIe PRELIMINARIES AND DEFINITIONS 10 

equivalent, and the equivalence classes defined by this relationship are called the faces 

of A(H). Since each point of face f has the same position vector, we will sometimes 

refer to this vector as lI(f). A face f is called a k-face if its affine hull is of dimension 

k. Faces of an arrangement are relatively open. A vertex is a O-face, an edge is a 

1-face, a facet is a (d-l )-face, and a cel! is a d-face. A face 9 is called a subface of 

face f if the dimension of 9 is one less than the dimension of f, and 9 ç dU). If 50, 

we say that f is a superface of g, and that f and 9 are incident upon each other. If 

f and gare two faces such that 9 ç dU), then 9 is said to bound f. 

If A(H) is an arrangement of n ~ d hyperplanes, then A(H) is called simple if 

every d hyperplanes of H intersect in a unique point, and every d + 1 hyperplanes 

have no common intersection. If n < d, then we say that A( H) is simple if the 

hyperplanes of H intersect in a common (d-n)-flat. Equivalently, one could define a 

simple arrangement as on~ in which every d - k hyperplanes intersect in a common 

k-flat, for 0 $ k =:; d - 1. If A(H) is simple, then H is said to be in general posztion. 

A collection C of disjoint relatively open subsets of E d is called a cell complex if Ed 

is the union of ail sets in C, and if the closure of any set in C is composed of the union 

of sets in C. A ceIl complex in E 2 
IS called a (planar) subdivision. The collection of 

faces of a hyperplane arrangement form a cell complex in E d• An arrangement in E2 

is often called a line arrangement. 

The intersection of a finite number of closed half-spaces is known as a polyhedral 

set. If in addition it is bounded, it is called a (convex) polytope. Since ail polytopes 

considered in this thesis will be convex, we will use the term "polytope" to mean 

"convex polytope". Alternatively, a polytope may be defined as thp. convex hull of a 

finite set of points. A convex polygon is a polytope of dimension 2, and a (convex) 

polyhedron is a polytope of dimension 3. 

Given a set of distinct points S = {Sl,S2, ••• ,Sn} in E d , the polyhedral sets of 

the form v, = {x E Edlllx - s,II ~ IIx - 8;11, Vs) E S} determine a cell complex in E d
• 

This cell complex is called the d-dimensional Voronoi diagram of S. The points of S 

are also called the sites of the Voronoi diagram. 

If Pis a polytope, the set of extreme points (or vertices) of Pis the smallest set of 

points whose convex hull is P. A k-dimensional simplex is a k-dimensional polytope 
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with k + 1 vertices. A I-dimensional simplex is called a line segment, a 2-dimensional 

simplex is a triangle, and a 3-dimensional simplex is a tetrahedron. 

Since a bounded ceIl of an arrangement of hyperplanes is the interior of a polytope, 

it is natural that there be sorne overlap in the terminology used to describe these 

objects. Let polytope P be the intersection of the fini te set of closed half-spaces H'. 

Let H be the set of bounding hyperplanes of H'. Then f ç P is a face of P if f is 

also a face of A(H). As with arrangements, we define vertices, edges, subfaces, and 

so on. However, if P is of dimension k, we shaH say that a facet of P is a face of 

dimension k - 1. 

In Euclidean space, parallel hyperplanes do not intersect. This lack of intersection 

orten results in the need to examine special cases for theorems and algorithms in E d• 

To avoid such problems, one resorts to the use of the projective space pd. For each 

line 1 in E d , consider the set L(1) of aIl lines parallel to 1. vVe obtain pd from E d 

by the addition of a new point for each such set L( 1). These new points are called 

improper points, and the original points of Ed are called proper. Each line in a given 

set of parallellines is extended to include the improper point corresponding to that 

set. These extended lines are called projective lines. 

In projective space. distance has no meaning, and isometric mappings are impos­

sible. Renee the definition of a fiat in E d cannat be carricd over to pd. Instead, a 

projective mapping is a bijection of a set of points to a set of points which preserves 

projective lines. A set of points in pd which is a projective mapping of pk is known as 

a (projective) k-flat. Each k-fiat fin E d has a corresponding projective k-fiat, which 

is obtained by adding to it an the improper points that arc projective extensions of 

Hnes contained in f. Every two projective k-flats intersect in a projective (k-l)-flat. 

vVhether a fiat is Euclidean or projective will be understood from the context. 

The points of pd are represented using hornogeneous coordinates. Each point 

P E pd corresponds to the set of tuples ).(Po,Pt, ... ,Pd), where ). E R, ). -:f. 0, and 

(Po! Pl" .. ,Pd) -:f. (0,0, ... ,0). If Po -::f 0, then the tuple p corresponds to both a point 

of pd and a point of Ed. If Po = 0, then P is an improper point associated with each 

of the Hnes of the fOl'm l(q) = {x E Edl x = q + tp, tER}, for aIl q E E d
. 

Sorne terrninology from linear programming is required. Let x be a variable point 

l 

---~ 
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of Ed. A mathematical programming problem is one where the goal is to choose 

sorne x maximizing (or minimizing) sorne real-valued function, called an objective 

functzon, subject to certain constraints on x. The set of points of E d satisfying 

the problem constraints is called the feasibility region of the problern. If this region 

is empty, the problem is infeasible, otherwise the problem is feasible. A point of 

the feasibility region is called a feasible solution of the problem. If there exists a 

sequence of feasible solutions upon which the objective function diverges to infinity 

(if a rnaximizing problern) or negative infinity (if a minimizing problern), then the 

problern is considered unbmmded. Otherwise, the problem is bounded. Unfortunately, 

this well-established terminology is sornewhat arnbiguous: to say that a problem is 

bounded is not the same as saying that a problem has a bounded feasibility region. 

If the objective function is linear in x, and the constraints describe halfspaces of Ed, 

the problem is cal1ed a linear programming problern. 

We will require only the rnost basic definitions from graph theory. A graph is a 

collection of nodes (also called veriices) and arcs (also called edges), where each arc 

relates two nodes of the collection. Such an arc is said to be incident upon these two 

nodes. If two nodes are joined by sorne arc of the graph, they are cal1ed adjacent. 

Arcs are often represented by ordered or unordered pairs of nodes. 

2.3 Weak Separation Definitions 

Let S be a class of analytic surfaces in E d , such that every surface SES is such that 

E d \ S consists of the two connected cornponents S> and S<. Let n and 9 be finite 

families of non-ernpty subsets of E d
, such that the sets of n are labeled red, and the 

sets of gare labeled green. The surface SES can be said to partition the family n 
into six disjoint subfamilies (see Figure 2.1): 

'R,= - {R E nlR ç S} 

n> - {R E nlR ç S>} 

n< - {R E ni R ç s<} 

n? - {R E ni R ç (S U s>)} \ 'R,= 
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Figure 2.1: A partitioning by surface S 

'R< - {R E ni R ç (S U S <)} \ 'R= 

'Ro - 'R \ ('R= UR> U 'R< U 'R.~ U 'R.~) 

Similarly, g is partitioned into the fa mi li es g:, g>, g<l g~l g~, and 90. 
Sinee the member sets of 'R> = R= U R> U n~ contain no points of S<, and sinee 

the sets of g< = Q= U Q< U Q~ contain no points of S>l 'R.> and g< are separated 

by 5'. Similarly, the families R< = n:;: U R< U n~ and g> = g= U g> U g~ are also 

separated by S. We shaH caH n:>ug< and R< ug> the two separable components of 

'R and 9 deterrnined by S. These components are not necessarily disjoint, sinee the 

rnernber sets of 'R= and g= are contaiaed in both; nor do they account for aU sets in 

nu g, as the members of subfamilies no and go are contained in neither eomponent. 

Sinee the members of families n> and g< contain no points of S, these subfamilies 

of n and gare strictly separated by S. Aecordingly, we cali 'R.> U g< and R< U g> 

the two strictly separable components of Rand 9 with respect to S. Unlike non­

strictly separable components, a pair of strictly separable components deterrnined by 

a common separating surface must be disjoint. 

We will say that the size of a separable component, be it strict or non-strict, is 

the number of non-empty member sets eomprising that component. Let C('R, g) be 
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the set of aIl separable components of n and g, taken over aIl surfaces in S. Then 

a component in ë(n, Q) of greatest size will be called maximal, and one of smallest 

size will be caUed minimal. If S is a surface determining a maximal component, then 

Sis said to be a weak (non-strict) separator of n and Q. If this maximal component 

contains aU of n and Q, then S completely separates 1<., from Q, for which we say it is 

a strong (non-strict) separator. Analogously, we define maximal and minimal strictly 

separable components, and weak and strong strict separators. 

The size of a maximal component gives rise to a measure of the separability of 

n and Q. Let k be this size, and let n be the number of member sets of n u Q. 

Then the (strict or non-strict) interpenetration of n and Q (with respect ta the class 

of surfaces S) is n - k; that is, the minimum number of sets of n u g that need be 

eliminated to render the remaining sets separable. Interpenetration of zero indicates 

that the points are separable with respect to S, and interpenetration approaching 

n/2 indicates that the sets are indistinguishable. 

This thesis will be largely restricted to th~ investigation of separation of point 

sets with respect to the classes of hyperplanes and hyperspheres in Ed. Although the 

class of separators will be clear from context, we will often distinguish these classes 

through the use of terms such as strict linear separators, weak spherical separation, 

and so on. 



T 

Chapter 3 

Theorems on the Existence of 

Separators 

3.1 Introduction 

Two subsets P and Q of the d-dirnensional Euclidean space E d are said to be (slrictly) 

linearly separable if there exists sorne hyperplane h such that P is contained in one 

of the two open half-spaces bounded by h, and Q is contained in the other. In 1903, 

Paul Kirchberger published a fundamental theorem on the existence of strict linear 

separators for fini te point sets in E d [Kir03]: 

Theorem 3.1 (Kirchberger) Two finite subsels P and Q of E d are strictly linearly 

separable if and only if, for rach set T consisting of at most d + 2 points of P U Q, 

the sets Tnp and T n Q are strictly lincarly separable. 

A notion closely related to that of linear separability is spherical separability. 

Two subsets of E d are said to be (strictly) spherically separable if there exi~ts sorne 

hypersphere s such that the interior of s contains one subset and the exterior of oS 

contains the other. S. R. Lay extended Kirchberger's theorem to spherical separability 

in the following manner [Lay71]: 

15 
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Theorem 3.2 (Lay) Two finite subsets P and Q of E d are strictly spherically sep­

arable if and only if, for each set T consisting of at most d + 3 points of Pu Q, the 

sets Tnp and T n Q are strictly spherically separable. 

One standard proof of Kirchberger's theorem, that of Rademacher and Schoen­

berg [RS50], employs the well-known theorem due to Helly concerning the exi~tence of 

points in the common intersection of convex sets [He123,DGK63]. Whereas the orig­

inal theorem of Helly is somewhat more general, we will require only the following 

restricted formulation: 

Theorem 3.3 (Helly) The members of a finite family K. of convex subsets of Ed 

have a common intersection point if and only if, for each family T consisting of at 

most d + l members of K, the members of T have a common intersection point. 

These theorems are similar in that a "global" property of sets (linear separability, 

spherical separability, common intersection) is dependent upon the same property 

considered "locally" over subsets of bounded cardinality, these cardinalities being d+ 2 

for Kirchberger's theorem, d + 3 for Lay's, and d + 1 for Helly's. lt is not difficult 

to produce examples which demonstrate that the respective cardinalities cannat be 

decreased using the formulations given above. However, there is still a significant 

dissirilllarity between HeUy's theorem and the others. To illustrate this dissimilarity, 

let us consider an exarnple. Let K = {I(b K2 , ••• ,Kn} be a farnily of n convex sets 

of E d
, n > d, defined as follows (see Figure 3.1): 

1. sets Kll!{ '}., ... , [( d+l are closed half-spaces whose bounding hyperplanes con­

tain the d + 1 facets of sorne d-dimensional simplex in Ed, 

2. these half-spaces do not contain the interior of this simplex, and 

3. the remaining convex sets of K., if any, are closed balls containing the simplex. 

It is easily verified that the mernbers of K have no point in cornmon, yet with the 

exception of the subfarnily {KI, [(2,'" ,J(d+l}, every subfamily consisting of at most 

d + 1 mernbers of K. has a common point of intersection. If one were to test a family 
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Figure 3.1: Convex sets in E 2 with exactly one subfamily of 3 sets non-intersecting 

of convex sets for cornmon intersection using Helly's th<'ore!TI as a guide, one would 

expect to have to test aU (d:l) different subfamilies of cardinality d + l, in the worst 

case, before being able to make a deciRion. On the other hand, it is not hard to Sf't' 

that there are no examples of point sets P and Q of El, of comhiller! Glrdinality 

n > 3, such that P and Q are not linearly separahle bllt only 011(' :,uh:,d of Pu Q of 

cardinality three is not linearly separablf'. A similar situation exist:, in the sdting of 

spherical separability. These observation~ l>ugg('st the possibility that Kirchlwrger's 

and Lay's theorems are not "optimal," in that ft'wer thdn C:2) SlIl):,/!ts of PU Q in 

Ed need be tcsted for local linear ::.cparability in order to a:'ït'rLtin w l}(~thN P and 

Q are themselves linearly separable, and f(~wer than C: 1) sub:'l'ts rH't!d b(· tested to 

ascertain whether P a.nd Q are sphcrically ::'t~parahle. IIId(~ed, this is rdlt~d(,d in the 

following rcfinement of Kirchbergf'r's theorcm, dll(~ to \Vat~on [Wat73]: 

Theorem 3.4 (Watson) Ld P and Q fie dZ:'JOlnl finzlc sd.'i of fJoinl.s zn E'i, and 

let x be any pomt in PU Q. P and Q arc ,~lncl/y IlTH'ar/y !":']Jllmble lf aT/d only if, 

for each set T ç Pu Q con/mlmg of at mosl d + 2 pOlllts and cOT1lamiTlg X, tI!(~ !,ris 

TnP and T n Q are sind/y lincar/y .5cparaMc . 
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The main resuit of the next section is a generalization of \Vatson's refinernent to 

flnite families of arbitrary subsets of E d• Two such families 'R and 9 shall he said 

to he (strictly) Iinearly separable if there exists sorne hyperplane h such that the 

mernber sets of Rare contained in one of the two open half-spaces bounded hy h, 

and the member sets of gare contained in the other. In an analogous fashion, we 

may aiso define the spherical separabiIity of finite families. Section 3.3 concerns itself 

with similar treatments of Lay's theorem. 

3.2 Separation Using Hyperplanes 

Let h = {x E Edl u· x = 1} be a hyperplane avoiding the origin, where u E E d , U f:. O. 

Of the two open half-spaces delimited hy h, we shaH say that the haif-space containing 

the origin, h+ = {x E Edl u·x < 1}, shaH be called the inner half-space of h. Similarly, 

the other half-space, h - = {x E E d 
1 u . x > 1}, shaH be known as the outer half­

space of h. Consider the point-hyperplane dual transform V that maps each point 

p E Ed (p f:. 0) into the hyperplane V(p) = {x E Edlp' x = I}, and each origin­

avoiding hyperplane h = {x E Ed 1 u . x = 1} into the point V( h) = u. The following 

observation is fairly straightforward: 

Observation 3.5 Let p be a point in E d other th an the origin, and let h be a hyper­

plane of E d avoiding the origin. If pOint P is coniained in hyperplane h, then point 

V(h) is contained in hyperplane 1)(p). Otherwise. ifp is coniained zn the inner (outer) 

half-space of h, then 1)(h) is contained zn the znner (outer) half-space of1)(p). 

Let 'R and ç be finite families of subsets of the d-dimensionai Euclidean space 

E d, such that the rnernhers of 'R and gare coloured red and green respectiveIy. vVe 

consider an augmentation V" of the dual transform 1) that rnaps red sets R E 'R 

into a collection of outer half-spaces V"'(R), and green sets GE 9 into a collection of 

inner haif-spaces V",( G). That is , if r is an element of sorne red set R, then the outer 

half-space 'D(rf is a mernber of 1)·(R)j the green case is defined analogously. Since 'D 

is undefined on the origin, we will say that a red point at the origin is mapped under 

1)* to the empty set 0, and that a green point at the origin is mapped to the entire 
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space Ed. The empty set and the space E d can be thought of as the outer and inner 

half-spaces of a hyperplane at infinity, respectively. Finally, if P is a coloured set, we 

shall denote the conunon intersection of the half-spaces of V*(P) as I(P). It should 

be noted that I(P) is necessarily convex (possibly empty), as it is the intersection of 

convex sets. The set ICP) has an interesting interpretation in light of separation: 

Lemma 3.6 Let P be a green (red) subset of Ed, and let I(P) he the common in­

tersection of the members of D*(P) as defined above. Then point x 1= 0 is coniained 

in I( P) if and only if its dual hyperplane 'D( x) has ail pomts of P contained in ils 

inner (outer) half-space. 

Proof Let h* be any rnernber of V*(P). By definition, h* is either an inner (outer) 

half-space of sorne hyperplane h whose dual point D(h) is a point of P, or the entire 

space E d (empty set 0). If h* = E d
, then the point V*(h*) of P is the origin, and 

is contained in the inner half-space of every hyperplane that is the dualunder Vof 

points of I(P) \ {O}. (If h* = 0, the set I(P) is empty.) Otherwise, let x =1- 0 be a 

point of E d contained in h*, Since x is contained in the inner (outer) half-space of 

h, by Observation 3 .. 5 we have green (red) point V(h) contained in the inner (o1lter) 

balf-space of hyperplane V(x). Then h* \ {O} is precisply the set of al! points of E d 

whose dual byperplanes under D have inncr (outer) half-spaces containing green (red) 

point V(h). Therefore I(P) \ {a} is the set of aB points of E d whose dual hypcrplanes 

under 1> have inner (outer) half-spaces containing P. o 

Theorem 3.7 Let n and ç; be non-empty finzle families of subscls of Ed, and let P 

be any non-empty member of 'Tl U g. Then n and gare slrictly linearly separable 

if and only lf for each famzly B consisting of d + 1 or fewer members of nu g, the 

families (B U {P}) n Rand (B U {P}) n gare strictly linca,.{y sFparable. 

Proof It suffices to praye the non-trivial implication. Without Joss of g('neraJity, 

we assume that P is a mernber of 9 and that the membf~rs of n and gare coloured 

red and green respectively. Also without 10ss of generality, wc may translate Hw sets 

of n and 9 such that the set P contains the origin. Ld B be a. s('t of d + l or few(>r 

rnernbers of n u g. By assumption, there exists a hyperplatlP h that sepa.ra.les the 
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families BR = (13 U {P}) n n and Ba = (13 u {P}) n g. Since P contains the origin, 

hyperplane h must avoid it, and P is contained in the inner half-space of h. Thus aIl 

sets of Ba must be contained in the inner half-space of h, and aIl sets of 8 R must be 

contained in the outer half-space. Lemma 3.6 then irnplies that if B is a member of 

BR U Ba, the point 'D(h) of E d is contained in I(B), which in turn implies that the 

common intersection of these sets is non-empty. Since every such subset Bof d + 1 or 

fewer mernhers of n U 9 has this property, Helly's theorem implies that the common 

intersection J of aU sets of the form {I(Q)I Q E nu g} is non-empty. 

It should be noted that 1 do es not contain the ori,~in: otherwise, since no outer 

half-space rnay contain the origin, the set n would be ernpty, violating the assumption. 

Let x =1 0 he a point of J. Since x is contained in I(Q) for each Q E nu Q, 

Lemma 3.6 again implies that each member R of n is contained in the outer half-space 

of hyperplane D(x), and each mernber G of 9 is contained in the inner half-space. 

Therefore the sets n and ç are strictly linearly separable as required. 0 

The open half-spaces of a linear separator for farnilies n and 9 may be labeled 

according to the family contained by each. In the context of Theorem 3.7, this labeling 

involves a degree of freedom that is eliminated by the choice of sorne distinguished 

set P 0 f n u ç. In this sense, P a cts as a "focus" or a "reference" for the local tests 

of linear separability. The next theorem shows that one may refer to a distinguished 

direction instead of a distinguished set. 

For simplicity of exposition, we assume that the distinguished direction is that of 

the positive xd-axis, and will refer ta it as the verlzcal direction. A hyperplane h that 

does not contain a translate of the xd-axis will be said to be non-vertzcal. The open 

half-spaces of h can be described analytically as h+ = {x E Edl Xd > 'L.:~lu,x, + Ud} 

and h- = {x E Edl Id < 'L.:;;llU,X, + Ud}' The halfspaces h+ and h- will be called 

the upper and lower half-spaces of h, respectively. The points of h+ will he said ta 

be aborc h, and the points of h - will be said to be below. 

Theorem 3.8 Let Rand 9 be non-empty finite Jamilies of subsets of Ed. Then n 
and ç are strictly separable by a non-vertical hyperplane with n above the hyperplane 

and g below, if and only if for each family l3 consisting of d + 1 or fewer members of 

RU9, the families Bn1? and Bnç are strictly separable by a non-vertical hyperplane 
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with B n R above and 8 n 9 below. 

Proof Let 8 be a family of d + 1 or fewer members of 'R u ç as defined above, and let 

hb be a non-vertical hyperplane such that B n n is above hb and B n ç is below. Also, 

let P be the intersection of aIl upper half-spaces of hyperplanes hb over aU finitely 

many chai ces of subfamily B of n u ç . Note that P ca.nnot be empty. Then the 

families (8 U {P}) n (n u {P}) and (B U {P}) n gare linearly separable. Therefore 

the familles nu {Pl and ç are strictly linearly separable by Theorem 3.7. But every 

vertical hyperplane intersects P, sa the separator must be non-vertical. Finally, P 

being above the linear separator implies the result. 0 

3.3 Separation Using Hyperspheres 

In the praof of his theorem on spherical separability, Lay tram;[orms an instance of 

a spherical separability problem in E d into a linear separability problem in E d+!, by 

means of a stereographie projection. In this new setting, Lay applies Kirchberger's 

theorem directly ta obtain his result. In this section, we will adapt Lay's proof in 

proving existence theorems for spherieal separators similar ta the linear separation 

theorems of the previous section. 

Let h be a hyperplane in E d
, and let E be a hypersphere tangent ta h at point p. 

Let p' be the point of L; antipodal ta p. The stereographie projection T of point x E h 

onto L; (based at p') is defined as being the intersection of the line containing x and 

p' with L; \ {p'}. (sce Figure 3.2). This establishes a bijective correspondence between 

points of h and points of E \ {p'}. Before presenting the theorems of this section, we 

shall present (without proof) sorne basic properties of stereographie projections. For 

additional information on stereographie projections and geometric transformations in 

general, the reader is refered ta [Eve72,Iag62]. 

Lemma 3.9 Let h be a hyperplane in Ed+l and let E be a d-dtrnensional hypersphere 

of unit radius tangent to h at point p. Let T be the stereographie projection of h onto 

E based at the point p' antlpodal to p HI E. Lel 8 be a (d-l)-dlmensional sphere 
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p' 

h 

x p 

Figure 3.2: The stereographie projection of a hyperplane onto a hypersphere 

conlained in h. and let s+ and s- be its interior and exterior relative lo hl respectively. 

Then 

1. the projection 1'( s) of s onto E is the intersection of L. and sorne hyperplane hll 

and 

2. the projections 1'( s+) and 1'(S-) are each conlained in different open halJspaces 

defined by h3' 

See Figure 3.3 for an illustration of these relationships. A fiat f of dimension d-1 

eontained in h may be viewed as a degenerate (d-l)-dimensional sphere centred at 

infinity with infinite radius. Obviously, the stereographie projection of f is contained 

in the intersection of ~ and a hyperplane passing through both p' and f. 

Theorem 3.10 Let Rand ç be non-empty finite families of subseis of E d
, and let 

P be any non-empty member of R U ç. Then Rand 9 are strictly separable by a 

(possibly degenerate) hypersphere if and only if for each family B consisting of d + 2 

or f~wer members ofR U 9, the families (BU {P}) nR and (BU {P}) nQ are strictly 

separable by a (possibly dcgenerate) hypersphere. 
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p' 

h 

Figure 3.3: The stereographie projection of a (d-l )-dirnensional sphere 

ProoC Let E d be ernbedded in sorne hyperplane h of E d+1, and let E be a d­

dirnensional unit sphere tangent to h at sorne arbitrary point p. Let T be the stereo­

graphie projection of h onto E based at the point p' antipodal to p. Let B be a family 

consisting of d + 2 or fewer rnembers of R U Q such that BR = (B U {P}) n Rand 

Ba = (EU{p})nQ arespherically separable in h bysome (d-l)-dimensional sphere 

s. If h6 is a hyperplane containing r(s), then Lernrna 3.9 implies that the farnilies 

r(BR ) and r(8a ) are strictly linearly separable by h!. Therefore by Theorem 3.7, the 

farnilies r(R) and r(Ç) are linearly separable. 

Let h~ be a linear separator of r(R) and r(Q) such that h~ intersccts E in sorne 

(d-l)-dirnensional sphere s'. Since T(R) and T(Q) are both non-empty, such a sep­

arator must exist. Then the (possibly degenerate) (d-l)-dirnensional sphere r-l(s') 

strictly separa tes n and Q. 0 

Figure 3.4 gives an exarnple of two farnilies of sets in El whcre evcry subfamily 

of five rnembers is strictly spherically separable, but the only separator for the entire 

collection is degenerate. It should be noted that the dosures of the triangles of 

Figure 3.4 intersect the separator h, but the triangles thems('lves do not. In the 

formulation of the previous theorem, if we restrict the members of Rand Q tü be 
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o 
o o 

o 
h 

Figure 3.4: The only spherical separator is degenerate 

compact (closed and bounded) sets, we can guarantee the non-degeneracy of the 

separating hyperspheres: 

Theorem 3.11 Let n and 9 be non-empty finite families of compact subsets of E d, 

and let P be any non-empty member of R U g. Then n and 9 are strictly spherically 

separable if and only if for each family B consisting of d + 2 or fewer members of 

'Rug, the families (BU {p})nn and (BU {p})ng are strictly spherically separable. 

Proof As in Theorem 3.10, we embed E d into a hyperplane h of Ed+l and applya 

stereographie projection, arriving at a hyperplane h~ that separates T(R) and T(9). 

If h~ contains the previously-defined point p', then due to the compactness of T(R) 

and T(9), we may perturb h~ into sorne new separator h" that avoids pl. If S" is 

the intersection of h" and ~, then the (d-l)-dimensional sphere T- 1(S") is a non­

degenerate strict separator for n and g. 0 

In Theorem 3.8, the need for a distinguished set P of nu 9 for linear separabil­

ity was obviated by the introduction of a distinguished direction. In the setting of 

spherical separability, this distinction of direction becomes more natural. Let s+ and 

s- be the open interior and exterior of hypersphere s, respectively. We shaH say that 
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the points of s+ are inside s, and that the points of 8- are oulside s. We now state 

a theorem of spherical separability analogous to Theorem 3.8. 

Theorem 3.12 Let 1(, and 9 be non-empty finite famzlies of subsets of E d • Then 

1(, and gare strictly separable by a hypersphere with 1(, inside the hypersphere and 

9 outside, if and only if for each family B consisting of d + 2 or fewer members of 

1(, U g, the families B n 1(, and B n 9 are strictly separable by a hypersphere with B n 1(, 

inside and B n ç uutside. 

ProoC Let B be a family of d + 2 or fewer members of 1(,U Q as defined ab ove, and let 

Sb be a hypersphere whose interior contains B n Rand whose exterior contains B n Q. 

Also, let sp be a hypersphere whose interior contains Sb for aIl finitely many choices 

of subfamily B of 1(, U Q. If P is the exterior of Sp, then the fa mi li es (B U {P}) n 1(, 

and (B U {P}) n (Q u {P}) are spherically separable. Therefore the families R a.nd 

9 U {Pl are (possibly degenerately) strictly spherically separable by Theorem 3.10. 

But every hyperplane intersects P, 50 the separator cannot be degenerate. Finally, P 

being outside the spherical separator implies the result. 0 
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Chapter 4 

Separation and Duality 

4.1 Introduction 

In the preceding chapter, we made use of a well-known dual relationship between 

points and hyperplanes to prove results concerning strict strong linear and spherical 

separability. In the linear case, member sets were transformed into convex sets, 

and strong separators (if they existed) were transformed into points in the cornmon 

intersection of these convex sets. A situation where the convex sets have convenient 

properties is that in which each member set of both families consists of a single point. 

In this case, the convex sets corresponding to these points are simply open half-spaces. 

The orientation of each half-space is determined by the family of which its dual 

point was a member. Since these half-spaces intersect in a (possibly empty) convex 

polytope, the set of strong linear separators for point sets is implicitly characterized. 

In sorne sense, in limiting our attention to this intersection, we sacrifice a great deal 

of cornbinatorial information that is inherent in the arrangement of these half-spaces. 

The aim of this chapter is to provide a characterization not only of strict strong 

linear and spherical separators for sets of points, but also of weak linear and spheri­

cal separators, separable components, and separable subsets in general, for both the 

strict and non-strict cases. This will be achieved through the transformation of the 

original setting in Ed, with its two sets of points, its hyperplanes, half-spaces, and 

26 
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hyperspheres, into new settings in Ed+! (for the linear case) and Ed+2 (for the spher­

ical case). In these new settings, dual arrangements of half-spaces will be exhibited 

that capture aU of the combinatorial qualities of the original. In the chapters to fol­

low, these arrangements will be used as a framework for both proofs of combinatorial 

results, and for various separation algorithms. 

In the next section, the dual transform of Chapter 3 will be extended for the case 

of linear separation. Points, hyperplanes, and open and closed half-spaces will aU be 

given an interpretation in the transformed space. In Section 4.2, the properties of the 

dual arrangement with respect to separation will be examined. In Section 4.4, the 

spherical case will be considered. The transformations of this section are extensions 

of a geometric transformation due to Edelsbrunner and Seidel [ESS6] that relates 

Voronoi diagrams in E d with hyperplane arrangements in Ed+l. Their transform is 

in turn an extemion of the connection established by Brown [Broï9,BroSO] between 

Voronoi diagrams in two dimensions and convex hulls of point sets in three dimensions. 

4.2 Dual Transforms for Linear Separation 

Let P be a point in E d
, expressed in homogeneous coordinates as (Po, Pb" . ,Pd), 

and let h = {x E Edl u . x = O} be a hyperplane in E d, whose points are also 

represented using homogeneous coordinates. Note that for h to be well-defined, the 

vector U = (uo, Ul, ••• ,Ud) must have U1 f= 0 for sorne i E {l, 2, ... , n}. Consider the 

dual transform 'D from E d to E d that maps the point pinto the hyperplane V(p) = 
{x E Edl p'X = O}, and the hyperplane h into the point V(h) = u. Unfortunately, this 

transform is ill-defined if P is the cartesian origin of E d
, or if Uo = 0; in the former 

case, the origin is mapped to the "hyperplane at infinity", and in the latter, any 

hyperplane containing the origin is mapped to a point "at infinity". These annoying 

features may be eliminated by abandoning Euclidean space in favour of projective 

space. However, with this approach new difficulties arise. 

In the d-dimensional space pd, a hyperplane is parameterized using homogeneous 

coordinates as h = {x E pdl U • x = O}, where U is a vector in Rd+! other than 

(0,0, ... ,0). Let us examine the constraint {x E pdl u , x > O}. At first glance, 
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this constraint would seem to describe a half-space bounded by h. However, noting 

that the homogeneous tuples x and -x represent the same point of pd, and that 

U· (-x) = -u . x, the constraint i5 meaningless for aU x ri. h. This ambiguity ma}' 

be elirrùnated for the proper points of pd with the introduction of the additional 

constraint Xo 2: O. Since an irnproper point x has Xo = 0, the constraints are still 

without meaning for these points. lndeed, the assignment of an irnproper point to one 

of the two open half-spaces bounded by h cannot be done except in sorne arbitrary 

fashion. Consequently, we are forced to reject projective space as being unsuitable 

for our purposes. Instead, we shall rely upon a natural embedding of E d in Ed+!. 

A tuple representing a point of E d in hornogeneous coordinates can also be made 

to represent a point of Ed+l in cartesian coordinates. When not otherwise clear from 

the context, the tuple x == (xo, XI!'" ,Xd) will be written XH = (xo! Xli' •• , Xd)H when 

denoting a point of E d
, and written Xc = (xo, Xl, •.• , Xd)C when denoting a point of 

E d+1• Using this notation, we reinterpret the d-dirnensional "homogeneous" space 

Ed as a subset of the (d+l)-dimensional "cartesian" space E d+1• By the definition 

of homogeneous coordinates, if PH represents a point of E d, then ÀPH represents the 

sarne point, for any scalar À =f O. Interpreted as cartesian coordinates, these tuples 

define a pair of oppositely-oriented open rays with the origin of E d+l as their common 

endpoint. 

Given that our problem concerns the linear separation of two point sets, we in­

troduce two labels, red and green, to be applied to the points of E d• A red point of 

Ed will be represented by tuples of the form PH = (Po, Pl! ... ,Pd)H, where Po > O. In 

contrast, a green point will be represented by tuples where po < O. In this sense, the 

first coordinate is made to carry information concerning the labeling of the point. 

In the cartesian space, a labeled point corresponds to one of the pair of oppositely­

oriented rays mentioned above: the ray lying in the half-space {xc E E d+11 Xo > O} 

corresponds to the point with label red, and the ray contained in the complementary 

open half~space corresponds to the point with label green. Let Bd+1 be the set of 

aIl open rays with endpoint the origin of Ed+1. The set of rays of Ëd+1 contained 

in {xc E E d+11 Xo > O} shan be denoted by Ë'A+1i that is, Ë'A+1 consists of those 

rays of Ëd+1 associated with red points of E d
• Similarly, the set of rays contained in 
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{xc E Ed+ll.ro < D} sha1J bl' callet! l~//', ;-';0(1' th.lt nol .111 r.,~~ III (/+ 1 '''11'''1'''11<1 

to points of E d; nanwly, thosf' rays cOlltaill!'d in {.r,. E E,Jt Il.r.,: III 1 1 If' ",,1 • .( 

such rays wc shaH caIl ËJ+ 1. 

If pis a labded point in E,j, WI' will dt'llOfl' its 1\II11plP clIrr""p"lldllll!, I.I\' III /.:,Ij 1 

by 4p). Naturally enough. the ray -nI') is a.~!-Io('iat(·d Wlt h t h.,1 ""l1·I".! JlIlIIlI '" Il Il 

the same location as p. bllt with the opposif" l.d)f'lill~ If JI 1" ,l. ~"t of },\Ilf'I,·,f P"IIII', 

in Ed, we will denote by np) the set of ray., ill gi+1 é'l.",",on.\tl'd wlth th,' !l'lIlll:; of JI 

In order to interpret the hyperpl,uH's él.ud lt.df·"p.1Cl·~ of E./ in t II!' hlL',llf'r d11l1f'W11 l\I.d 

setting, the inner product operation for points of E,j mll..,1 IH' ('xll'lld,'d to 1/\1' r.I.\'''' Ilf 

Ëd+l, For il and v in Ëd+l, let us llcofine tlw my ÎIlJlPr PIO"1)( l ,7· i, iL.., fll!!I)\\" 

1 if a E ,7 and bE li ~, Il ' b > O. 

- - { D if a E ,1 and bE il ,.;. Il !J := O. u' v = 
-1 if aEil and li E ii =~. Il ' b <: 0, 

Ta verify that the ray product is \\'pll-deflnpd, rOIl"Hdf\f tilt' P()jllt~ 11 (_ li ,tlld h ( ,: 

Every point of ü and v may be expn'ssed as ,\Il illlfj (h, n'~I)('ct iv/'Iy, for ,,(j1J1I' / hlllll' 

of ,\ > 0 and ç > 0, Then 

(,\(1) , (ç!J) = .\ç(a . b), 

which is guaranteed tü have the sarne sign a." fi ' ,) 

Using the ray inner produd, WI' may IMrallwtPJi/,p li", c.tft(':-,i.m l"I'liv.d"llt <If 

hyperplant.'S in E'J. in tcrms of tilt' rays of Pol! l, If W/' ('(III',id/'r 1111"," Il.\ 1"'1 p1.L/II'" .L" 

consisting of bath rcd anJ gn'f>n pOÎJlt~ of E d
, th" /'XIIII",o.,IO!l Il ~. {rll (- /-.:'/1 Il r ll (J f 

for a hyperplane in the hornow'n('oll:-' ~rJtl(/' E'/, III titi' /.IIII''1i.1/1 'l/'!tlfll!, I)f J.,"/II, 

becomes nh) = {i E Ed+ll;;' i = O}, wll('(I' i 1:-' JlO!, il ray (jf (rit 1 Il will 1". 

convenient at times to ignore this r('~tricti{JlI on li1/' ray., IIf j( IL) Thl" illl"\\',, Il'' 1." 

think of the collection of point., nllll,wwd III riLy<; of ïth) il'-, a h\'Ji/'rpLII\I' III J.;./II 

passing through the origin, Ct'rtaifdy, IllI'f/' l'XI.,t.., ,l IIl1il('II' ltYPI'1 1'1.\ 1\1' III J',' 1+ 1 

containing ail the rays of nh). WI! will d"JI(Jfto by If,lll tl\l' '-,f't ()f .dl "hypl·rjJl.lIlf<' 

in Ed+l of the fonn {i E EH1! il ' i = O}, f')r l'vf'ry (!JOI'" ,)f 17 III (1 + 1 

The cartesian er)uivalent'> of hdlf'''rJilu~'-, ill gl mil)' al.,o }w PM.lJllI'f"r1/,I,d 111 tf'rfTI', 

of the rays of f;'i+ 1. TIl(' hOrn()~"lwolI" f'X p r""''' 1 rlll '1 "-, c_ {J' /1 .. I~' ': r 1)( Il .r If) -' "1 
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-F.J+l 

Figure 4.1: A half-space of E d in the cartesian setting of E d+t 

and h$ = {x H E Edl xo(u, x H ) :5 D} for the closed half-spaces bounded hy hyperplane 

h in E d become 

~h» :: {x E Ë~+11 a· i ~ D} U {i E Ë~+ll a· x:5 D} and 

i(h$) :: {xEË~+1la.x~O}U{xEË~+1lü.x~D}, 

respectively, in the new setting of Edtl. In fo rmall y, these expressions describe 

"wedges" bounded by the hyperplanes nh) and Ëg+l (see Figure 4.1). As expected, 

the expressions associated with the open half-spaces of E d are obtained from those 

associated with the closed half-spaces by making the inequalities strict. 

In the same way that the set h = {i E Ëd+11 ü . x = O} can be said to be 

a hyperplane of Ed+l parameterized using the rays of Ed+t, expressions sueh as 

{x E Ëd+ll il· x 2 a} and {x E Ëd+I1 ü· x > D} can he said to denote closed and 

open half-spaces of Edtl , respectively, whose bounding hyperplanes pass through the 

origin. Let :fi~+1 be the family consisting of aIl the closed half-spaces of this type, 

and let IÏ~+1 he the farnily of aIl such open half-spaces. 

The parameterization of half-spaces in terms of rays induces bijective mappings 

between the rays of Ëd+l and the half-spaces of fi~+l and fi~+1. Consider the trans­

form po that maps ray 11 E Ëd+! to the open half-space poe il) :: {x E Ëd+11 il . x > 
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O} E IÏ~+l, and the open half·space ( = {i E ËJj. 11t7 i > U} ( lï,~tl tu tlll' 

ray p~(h:) == v E Ëd+l. It is ef\sily v(>rified thtil p" is illd,'t'd il bij,·dlllll. a/ld lh.ll 

Po(p.,(ü)) == il and Po(Po(h~J)) = h:. ~Il)rt'o\'{'r\ \\1' uh:-'I'rn' lhat l'" pll':-'I'r\'/' ... illl id"I1'" 

between rays and half-spaces, tlw pr~)of of whl~ il IS ol'\'loll~' 

Observation 4.1 Let il be a ray an Rd+l, and Id I~, bt' Il IIIl'f-~I)(I(t' Hl IÎ::tl. l'ht·" 

i1 is conlained in h: if and only If my p,Ah~J) Îs contamrd in heLlf-'11/1t t· p,,( '-i). 

In an entirely analogous manner, wc may d"firll' tilt' dll.li 1 r.lII" for 1IJ J'. 1Il"PPIlI)l, 
~d ~ 

ray5 in E +1 to closcd half-spaces in n~+l. ObM'rvatioll ·1.1 is .d~1) tnw fOI' p., Wlf h 

the set n~+I rcplaceJ hy ti~+ 1. For th<> ray iL E Ed+ l, tltl> hY}H'rpl.llll' 1)()Il11dilJ)l, H ... 

half-spaces Po(il) anJ Pc{ il) is also of inle[f':-.t. \VI' ddllll' (J( il) tu tH' t tH' hYlH'rpla.llf' 

{x E Ëd+11 il· x == a} consisting of al! rays of fd+ 1 orth()~()lldl 1.0 u. Sllll" ,,( Il") = 

p( -ü), p is not a bijection. Howevl>r, each hypt·rpl.uw pa:--:-'lIlg t/lroll~h t III' ollgin j~ 

associated with exactly one pair of rays of tl1P fOrIlI (ir, - ii). 

4.3 Linear Separation and Arrangen}(~nts 

Let Rand G be sets of points in Er/, wlll'[1' the poi,,'" of Il MI' I.dwlt·d 7Yt!, a.nd 

the points ofC are labeled green Let p;::; {Pl,Pl" .,p,,} lw tl", 1Jllioll of /{ and 

G. Each point p, of P, being lahf!I"d, ('{)rr('~pl)nd:-, uIli11'1I'ly t.o the "IY l(p,) of }.;<I+I. 

Applying the tramform Po to the rays of n 11) YU'lds il 1'1)11/" fil/II I)f 1)1'1'11 !t.tlf '>pil('f'h 

in n~+l, which we will call po(np)). The w\lC'ctioll of Ilo'>l·d !J.df ..,p.UI", ill lî~"l 
obtained through the application of Pt: 011 np) will bl' d"lllJt,'d !I.(li }))). ,IIld Ill" ';fOt. 

of hyperplanes bounding these half-spaCf's will Iw call1'd !I( j( }))) 

The hyperplanes of p( n P)) fOrIn a hom O!Jf Tl, () Il'> .trr.UI~"!1 j('Jl t A ( IiI Ill)))) III ,.;,{. l , 

50 called because each hyperplane may tH' (!Xr)f(,.,,,pd a., il hOIlI I II!,I'll l lll'l li/I"olf 1'1111;11 l'Ill 

in d + 1 variables. For the same re~.'iOfl. t!1f' arrilllW'lJl l 'lIl 1" "')'11111\1'1 [H dhont 1.1\1' 

origin. Since each face of A(p(np))) cali \)1' f>XIH"'>"I't! il" tlJ!' illtfOr',f'l f.IOII I)f b,df 

spaces whose bounding hyperpla.nf's c:onl.ilill ttw ori1!,lIl. f',iI li ray of p,{ t 1 \)l'lon~,, to 

prccisely one face. As with the hypf'rplùn('" of IIdtl dllt! tllf' h.df-"p.H'''" of lï: t' and 

IÏ~tl, the faces of A(p(np))) TIlay be parauwlNizf>d ill t.1·ml'" (Jf Il)/' ray,; /J[ R,{tl. In 
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this fashion, the faces can be considered not as sets of points in E d+1, but rather as 

sets of rays. 

The only face of A(p(i(P))) that could possibly contain no rays of Ëd+I is a vertex 

at the origin. In fact, it is the only vertex possible in a homogeneous arrangement, aU 

other faces being unbounded. Strictly speaking, however, the origin is contained in 

no ray of Ëd+1, and no hyperplane of nd+l, except where it is convenient to consider 

it 50. For this reason, the vertex at the origin is an artificial entity, the "empty set" 

of rays, whose presence completes the structure of the homogeneous arrangement. 

Each ray of Ëd+1 may be classified according to the region of A(p(~ P))) in which 

it lies. Usually, this Is accomplished by evaluating the ray according to its position 

with respect to each hyperplane of the arrangement - information obtainable by 

means of the ray inner product. Given a fay Ù E Ëd+1, its position vector is v( it) = 
(VI (ü), vli1) , ... ,Vn ( it)), where v,( ü) = nPi)' ü, for aU i = 1, ... ,n. Thus, if v,( ü) = 0, 

ü lies in the hyperplane p(~Pi)) and the closed half-space Pc(i(p,)), but not in the 

open half-space Po(<<p,)). If v,( ü) = l, ü is contained in both half-spaces, and if 

v,(ü) = -1, it is contained in neither. 

Since every face f of the arrangement (other than the possible vertex at the 

origin) consists of rays sharing a CO'1lIl1on position vector, we will let v(J) = v( ü) 

for any ü E f. To the vertex at the origin, if it exists, we assign the position vector 

(0,0, ... ,0), sinee it is the common intersection of aIl the hyperplanes of p(ï( P)). 

The arrangement A(p(i(P))), together with the half-spaces of Po(Ï(P)) and Pc(Ï(P)), 

completely captures the combinatorial nature of the linearly separable components 

of P. Thus, we will refer to the hyperplane arrangement A(pmp))), together with 

the position vectors as defined above, as the homogeneous half-space arrangement 

A(po(np))) in Ed+!. 

The following lemma shows how the linearly separable components of P with 

respect ta the hyperplane h of E d may be derived from the positions of the rays ü 

and -ü in the arrangement, where ü is the ray such that p(û) = p(-ü) = nh): 

Lernma 4.2 Let P = {Pl,P2"" ,p,.J be a set of labeled points in E d
, and let h be a 

hyperplane. Let il and -ü be the rays of Ëd+1 such that p(ü) = p( -il) = i(h). Then 
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1. The stnetly lmcarly st'/JIlmblr r(}mp()nr"t.~ of l' Il'Itl! fY',~pfll 10 li Iln 

{PI E PI il E p.,(nPI))} and {]I. E 1'1-17 E p.,(n p,))}. 

2. The non-slnclly linearly M'!)(zmblr l'OIT/Jlt!n(,lIt.~ of /> 11'1/11 1'1','/'1 d (" " tllY 

{PI E PI ii E pc(np,))} and {p, E PI-ii E l'An".))}. 

.11 

Proof vVe will prove only the fir!lt cltlÎm, the prouf of tht> SI', out! 1".111", ',111111.11 1., 
that of the first. Let Rand G b(~ the S(,ts of Tf'd and grt>('11 points of l', rt· ... p'·l t Î"I·ly 

Let h be parameterized as {.ru E E"luu' XII = a}, wllf'rt· (withollt ln" ... of gl'lIl'l.dlly) 

'Uo is assumed to be positive. Tht' two Opt'n half-sp,lces bound,'d Ily ft «.111 t 111'11 Ill' 

expressed in the cartesian sC'tting il.'i 

nh» = fiE È~+l117.x>O}U{iEËJ+\lil.iéO} and 

nh<) = {i E Ë~+'I 17· x < O} U {i E Ë~+ll û· i> O}. 

By definition, the strictly linearly separablt' compon('Ilt.:-. 1)[ P wilh \""IH'( 1 \0 ft MI' 

Cl = (R n h» U (Gn h<) and C2 = (R n h<) U (G n h». In tilt" <lrtp"i,1/1 .,1'1 1 ill.!; of 
Ed+l we have 

«Cd = (l(R)n{iE Ëttl17·Ï>O})U(nR)n{.ir: r~/!llli.;. O}) 

U (n G) n {x E Ê~+ JI û· i < O} ) U (n G) n {i E p;~ t Il li / . ()} ) 

{x E l( R) 1 il' x > O} U {i E n (,') 111 . i > O} 

= {«PI) E np)III,(il) > D}, 

and similarly 

Interpreting these conditions in the omU':-,t of t.11f' b,tlf-">!M( , . ., I)f fi) j( Il)) yJC'ld" CI :. 

An immediate implication of Lemma ,1.2 ronu'rTl'i t Ilf' :-.t.rfJng 'lnd Wf·,lJ.. ""pMa! icm 

of Rand G. Let X<l(i) and \'L(i) bp. the Ilumbf'r of half-"'PiHf"" of pJnl))) ,wei rd fi IJ)), 

respectively, that contaÎn ray i E {'J+I. If ii \.., (illmo..,q illly rit y "f PI~1 ""I(h th.1I 

Xo(û) = n, then the hyperpliUlc h ~ll(h thnt Î(h) = p(17) Î:-. a :,trrHlg ... !ncl IlIlI'tlI 
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separator of Rand G in Ed. If instead Xo( 11) < n, and there exists no v E Ëd+l such 

that Xo(V) > XoCü), then h is a weak strict linear separator of Rand G. The same is 

true for non-strict separation, using Xc( 11) in place of Xo( il). The only rays of Éd+l that 

are exceptions to the above observations are roo = P(l, 0, ... ,O)c E Ed+ll,\ > O} 

and its opposite, -rQO, as it is this pair of rays that maps to tg+1 under p. 

Another implication of Lemma 4.2 concerns the linearly separable subsets of P, 

both strict and non-strict. Ghlen any subset Q of P, we wish to know whether the 

sets Q n Rand Q n Gare linearly separable. If we pose this question in the context 

of the arrangement A(pO(~Q»)), the lemma leads us to the following corollary for the 

strict case: 

Corollary 4.3 Let P = {Pl1Pz"" ,Pn} be a set of labeled points in E d
, and let Q be 

a subset of P. The points of Q are strictly linearly separable if and only if there exists 

sorne ray ii E Ëd+1 contamed in the intersection of all the half-spaces of Po( n Q)). 

The corollary holds equally well for non-strict linear separability when considering 

Pc in place of PO' 

The faces of A(po(~P))) may also be related to the linearly separable subsets and 

cornponents of the labeied point set P in Ed. Since all rays forming a given face f of 

A(Po(i(P»)) have identical position vectors, and are contained in the same half-spaces 

of po(i(P») and Pc(i(P)), we let Xo(f) = Xo(i1) and Xc(f) = Xc(iI) for any ra)' 11 E f· 
In this manner, every face of the arrangement (other than the possible vertex at the 

origin) can be said to correspond to one strict and one non-strict linearly separable 

component - so long as the vertex at the origin exists. Without it, there would be 

sorne face 9 such that if ray il is contained in g, its opposite ray -il is also contained 

in g. The face 9 would then correspond to two components of each type. 

Lemma 4.4 Let P be a set of labeled points of E d• There exists a 't'ertex of A(Po(i(P))) 

at the oïtgm of E d+2 if and only if there exists no hyperplane of E d containing aU 

points of P. 

Proof Let h be a hyperplane in Ed. Let 11 and -ü be the rays of Ëd+l such that 

p(il) = p( -11) = L(h), Let p be a point of P. By Observation 4.1, 1(h) contains L(p) 
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if and only if p(np)) contains ü and -t7. Then'f\)re h contains ail poillb uf P if ,wd 

only if ü and -il are contained in ail hyperplant's of A(p,;(<<P))); t1lal i::i, if tht're il> 

no vertex of A(po(np))) at the origin. fJ 

The ract that sorne face of the arrangenlt'nt mllht cOlltaill 1-::"", CetUh(''; no g[l',LI. 

inconvenience, as the following argument ShOWh. first, wc obs('rv(' thal no ray of 

Î(P) lies in Ëg+l. Hence there exists no ray np) E np) s\leh that hYlH'rplane p(np)) 

contains roo. Therefore roo and -roo can only be contd.int'd in cells of A(p,,(np))), and 

are not the only rays of these ceUs. Despite contaming rays whi< li do Ilot (oJ'[Pspond 

to a separator under p, these cells still may be assoriatt'd wit.h compolH'llls of R a.nd 

G. 

4.4 Dual Transforms for Spherical Separation 

In the previous sections, a transformation of in::,tanc/'s of laL(·II'd h(·t5 in E d illto 

homogeneous half-space arrangements in E d+l was exhibit,('(i - a trallhforlllatioll that 

preserves the combinatorial structure of linear sc'paral ion \\'1' hh,l.lI now do t.be Silllll' 

for spherical separation, also by means of a transformatioll 1IJ1,o tl\{' ::idt,illg of bOll1o­

geneous arrangements, this time in E rl+2. Followiug the (>W( (·dl'Ilt ('~tahh')llI'd for 

linear separation, the transformation for the spherical Ca."'I~ ll1<tk('~ t1\1' followillg (or­

respondences: 

PRIMAL lWA.L. 

point +--+ hyperplane through origin, 

hypersphere +--+ open ray with enopoint tlH~ origin, 

labeled point +--+ half-space with boulIdiIlg h.YJwrplêtlle throllgh origin. 

The approach will be bdSed upon one u~cd by EdeisbruIlI\I'r aud St'id"l [ES8G] to 

relate Voronoi diagrams in E tl with hyperplane arrang('lTl1'lIts ill E d+ t. B"for'-' intro­

ducing the spherical separation tran~form, we hridly d('hnibe till'ir Vorolloi tramf(Jrrn 

and how it relates to spherical separation. 

Consider the bijective mapping V of eV(~ry ~it(~ v of th(' set {Jf V{)Iolloi ~it(·s V 

(represented using cartesian coordinates) onto the hYlwl plalll' hu(.r) = 2v . .r; - 1) • v 

in EH1, This hyperplane may be visualizpd as t111~ trlIlW'nt b)'fwrplillw 10 t}lI' uuit 
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Figure 4.2: Mapping of Voronoi sites in Et/. to hyperplanes in EdH 

paraboloid U(x) = x· x in EdH (see Figure 4.2). Since the square of the distance 

from x to v is IIx - vll 2 = X • X - 2v· x + v· v, IIx - vII = JU(x) - hv(x). Hence the 

closest Voronoi site to x E E d is that whose associated hyperplane h1J is such that 

h1J(x) ~ hw (x) for aIl w E V. 

The arrangement of these hyperplanes provides much more information than is 

required for the construction of Voronoi diagrams. If the hyperplanes are evaluated 

at x E E d, and are then considered in order of decreasing value, their associated 

Voronoi sites are ordered by increasing distance from the point x. Thus a point 

y = (Yb YI, ... ,Yd+l)C located in this arrangement could be thought to correspond to 

a hypersphere in the primaI space E d with centre (yt, Yt, ... 1 Yd)C and radius 

d 

LYi2 
- Yd+l. 

1==1 

The sites inside the hypersphere in the primaI space would have as dual hyperplanes 

those "ab ove" the point y, where "above" is defined as being in the direction of the 

positive Xd+l-axis. The sites outside the hypersphere would have as dual hyperplanes 

those "below" the point y. 

One feature of the linear separation transform that is shared by this transformation 
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strategy is that potential separating surfaces are mappeJ iuto locations within ail 

arrangement of hyperplanes. Howcver, the Voronoi transform cannot dilft'relltl<lt.e 

belween two sets of points in E d• In the linear sep<tration caSt', this difft'I('Ilt.i.üioll 

was possible due to the introduction of lalwled points of E d , and tlH' conversion of 

these points into rays of Ëd+!. For the case of spherical separation. wc shaH apply 

the techniques of the Voronoi transform in the conversion of the labeled points of E d 

into hyperplanes and half-spaces in E d+2
• 

Let u he a point of E d
, represented in cartesian coordinates. The image of U llndf'r 

the Voronoi transform V is the hyperplane 

d 

V(u) = {xc E E d+11 - u· u + L2u,x, - Xd+1 = O}. 
t=1 

Expressed in homogeneous coordinates, this expression hecomes 

Exploiting the relationship hetween points in E d+! rcpresentcd tlsing hornogelH'OUS 

coordinates, and the rays of Ëd+2, we may COIlvert the hyperplarH' V( u) into a hY[wr­

plane of E d+2. With this goal in mjnd, we introduce notation th,ü will sirnplify the 

representation of this hyperplane in E d+2• 

Let p be a labeled point of E d
, represented using cartcsian coordina.tes. Tlw ray 

of Ëd+2 with which we will associate p shaH be given hy 

S( ) = { {.\(p. p, -2pt. -2p2,"" -2Pd, 1) E Ed+21" > O} if p is rt'll, alld 

p {->.(p . p, -2Ph -2p2," . , -2Pd, 1) E E rl+21 " > O} if p is grt'cn. 

Although this relationship is not bijective, it is cert,tinly injPdivp.. A ra.y of È'l+2 

can he the image of only one labeled point of E d undcr thi1> trant,forrnation. Al~o, a'l 

one wou Id expect, the ray -s(p) is associated with t!t,ü lab.,ll,d point with the same 

location as p, but with the opposite labeling. If P is a set of la}w]pd points in Erl, 

the set of rays that are the imag~s of points of P will he d(,Tlot,('ll by .".i( P). 

Except for the the points at the origin, the rcd points of E,J a(~ mapped onto 

rays of Ë~+2, and the green points are maplJed outo rays of Ë~~+ï.. Tlw origin of Er/ 
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is mapped to the ray {.\(O,O, ... , 0, 1) E Ed+2p > O} if labeled red, and to the ray 

{.\(O,O, ... ,O,-l) E E d+21.\ > O} iflabeled green. 

Let u be a labeled point of Ed. If we extend the definition of the ray inner product 

to rays of Ëd+2, we may express the set of rays of Ëd+2 corresponding to the points 

of hyperplane V(u) as O'(s(u)) = {i E Ëd+ 2
1 S(u) . i = O}. Since 0'( -il) = O'(il) , 

the labeling of u is not relevant in the determination of the rays of this hyperplane. 

However, the labeling do es provide information that deterIIÙnes the orientation of the 

half-spaces 0'0 (iZ) and 0' c( il). 

The function u, as weIl as the dual transforms U o and O'c, may be used to convert 

the labeled point set P = {PlIP2"" ,Pn} of Ed into the homogeneous half-space 

arrangement A(uo(S(P))) in E d+2. The position vector of the ray il E Ëd+2 with 

respect to the arrangement is veil) = (vl(il), v2(il), ... ,vn(ü)), where vi(il) = sCp,)· il, 

for aIl i = 1, ... , n. Thus, if v,( il) = 0, il lies in the hyperplane 0'( .S'(p,)) and the 

closed half-space uc(s(p,)), but not in the open half-space O'o(s(p,)). If v,(il) = 1, il is 

contained in both half-spaces, and if v.(il) = -1, it is contained in neither. As in the 

previous section, the position vector of a face f of the arrangement shaH be taken to 

be the position vedor shared by the rays contained in f. 
To show how the arrd.ngement A(O'o(.S'(P))) captures the combinatorial properties 

of the spherically separable components of P, we must first show how the hyperspheres 

of E d relate to the rays of Ëd+2. The hyperspheres of E d are often parameterized 

in tenns of the cartesian coordinates of their centres, and their radii. Let s be a 

hypersphere with centre c = (Cl, Ch' .. , Cd)c and radius r. An equally viable param­

eterization for 8 is the (d+l)-tuple (81,82, ••• ,Sd+!), where s. = c, for i = 1,2, ... , d, 
d 

and Sd+! = 2::>,2 - r2. This tuple may be interpreted as the cartesian coordinates 
,=1 

of a point in E d+!. It should be noted that not every point of E d+l corresponds to 
d 

a hypersphere of E d in this manner; if Sd+! ~ Ls,2
, then r 2 

::; O. Consider now 
';=1 

the homogeneous coordinate equivalents of the points of E d+1• If x E Ed+1 is repre-

sented by the homogeneous tuple X H = (xo, XI!"" xd+dH' where Xo =j:. 0, point x is 
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Figure 4.3: A sequence of hyperspheres tending toward a hyperplane in E d 

associated with the unique hypersphere of E d with centre and squared radius 

1 2 Xd+1 ctr(x) = -(X17Xl,'" ,Xd)c and rad (x) = ctr(x) . ctr(x) - --, 
Xa Xa 

respecti vely. 

In Chapter 3 we allowed the use of hyperplanes as degenerate spherical separators, 

since a hyperplane of E d may be regarded as the limit of sorne infinite sequence of 

hyperspheres whose centres are successively farther from the origin, and whose radii 

grow proportionately (see Figure 4.3). A hyperplane of E d may be pararnetcrizcd 

as follows: let a be sorne fixed real value, and let c = (Cl, Cl, ... ,C.J)c be a point of 

Ed other than the origin. Let ê represent the unit vector in the direction of c. The 

unique hyperplane of E d with normal vector c and passing through the point aê is 

given using cartesian coordinates by the expression h = {x E Ec/I c . x = ollell}. Wc 

will determine the homogeneous tuples to w hich hyperplanc h may be associated by 

first constructing a sequence of hyperspheres that converges to h, and then taking 

the limit of homogeneous tuplcs representing these hyperspheres. 

Let t/;(t) be the hypersphere of E d with radius rand with centre tc, where t > Il;11' 

In addition, let us restrict the radius r to be IItell - a, for sorne fixed rcal value o. 

The condition on t ensures that the radius of "p(t) Îs positive. The point aê belongs 



1 

1 

CHAPTER 4. SEPARATION AND DUALITY 40 

to .,p( t) for any t > II~II' Binee 

IItc - oêll = (!Itcll- o)llêll = r. 

Clearly, h is tangent to .,p(t) for ail t > 1I~1l' sinee it passes through aê and is orthogonal 

to the line passing through oê and te. Sinee the radi us of tf;( t) inereases as t ..... 00, 

h = lirn tP( t). 
t-oo 

Let xH(t) be a homogeneous tuple of Ed+I representing the hypersphere .,p(t). 

Hence 

XH(t) - '\(l,tct, ... , tcd,(tc).(tc)-r'2) 

- .,\ (1, tCll"" tCd, (IItcll- r)(IItcli + r)) 

- .\ (1, tclJ ... , tCd, 2alltcll - 0'(2) , 

for any choice of .\ ~ O. Let t -+ 00 and .,\t -+ e, for sorne real-valued choice of ç =F O. 

These conditions together cause .,\ to tend to zero. The resultant limit of xH(t) is 

Noting that h = {x E Edl c· x = ollel!}, we conclude that the hornogeneous tuples of 

the form ç(O, Ut, U2, • •• ,Ud+l), and only these tuples, correspond to the hyperplane 
d 

{x E EdI2:EUiX, = Ud+l} of Ed. 
i=l 

As with the linear separation transformations, the homogeneous tuples of EdH 

representing hyperspheres of E d (both degenerate and non-degenerate) shaH be inter­

preted as cartesian coordinates in E d+2. Hence every such hypersphere corresponds 

to a pair of oppositely-oriented rays of Ëd+2: the non-degenerate hyperspheres cor­

respond to rays of Ë~+2 and Ë~+2, and the degenerate hyperspheres are associated 

with rays of Ëg+2. Again, not aU rays of Ëd+2 are associated with hyperspheres of 

E d• The suhset of Ëd+2 whose elements do represent non-degenerate hyperspheres or 

hyperplanes will be called Ê!+'l. If ü is an element of Ë!+'2, then we let "'1 ( ü) denote 

the unique (possibly degenerate) hypersphere associated with ü. 
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4.5 Spherical Separation and Arrangements 

So far, we have detailed a transform mapping the labeled points of P in E d into a 

homogeneous arrangement in Ed+2, and related rays in E'l+2 with hyperspheres and 

hyperplanes in E d• However, we have not yet seen how these transformations mesh 

together. The following lemma shows how the combinatorial structure of the dual 

arrangement of a point set in E d refiects the comhinatorial structure of this set with 

respect to spherical separation. 

Lemma 4.5 Let P = {Pt,P2,." ,Pn} be a set of labe/ed points in E d, and let s be 

a (possibly degenerate) hypersphere. Let a and -a be the mys of Ë:+2 such that 

,( a) = ,( -11) = s. Then 

1. The strictly spherically separable components of P with respect to s are 

{pi E PI 11 E O"o(s(p,»} and {PI EPI-a E O"o(s(p,))}. 

2. The non-strictly spherically separable components of P with respect to sare 

{PI E PI il E O"c(.5(p,))} and {Pl EPI-il E O"c(S(p,))}. 

Proof \\'e will prove only the first daim, the proof of the seconù bcing similar to 

that of the first. Let Rand G be the sets of red and green points of P, respectivc1y, 

and let U = (uo, Ul," . , ud+d he a point contained in il. Without 1055 of generality, 

we assume that Uo ;::: a. Consider point p, E P. If rayais conti\ined in O'o(s(p,)) = 
{i E ËdHI S(Pi) . i > a}, and if p, is red, then 

( tp,2,-2Plt-2P2, ... ,-2Pd,1).U > 0, 
'=1 

or equivalently, 

d d 

UOL)i
2 

- 22:>iP, + Ud+l > O. (4.1) 
Î=1 ,=1 

Instead, if Pi is green, then similarly 

d d 

uoLP,2 - 2LU,P, + Ud+l < O. (4.2) 
t=1 i=1 

___ J 
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If s is non-degenerate, then Uo > 0, and the parameterization of s using cartesian 

coordinates is 

s _ {x E Ed t (x\ _ Uj) 2 = t (Uj) 2 _ Ud+l } 

\=1 Ua 1=1 Ua Ua 

_ {x E Ed 1 t X,2 - 2t (~i) x, + Ud+l = o} 
1=1 1=1 0 Uo 

= {x E E' 1 uot, x.' - 2t,U'X. + U'H - o} 
The open connected components of E d \ s are the regions 

s, - {x E E' uot, x.' -2t,U.X. + U'+1 > o} and 

s< = {x E E' Iuot, x;' - 2t,U'X; + UHl < o}. 
respectively. By definition, the strictly spherically separable components of P with 

respect to s are Cl = (R n s» U (G n s<) and C2 = (R n sd U (G n s». Of the 

points of R, only those contained in s> satisfy (4.1), and of the points of G, only 

those conlained in s< salisfy (4.2). Therefore Cl = {PI E Pl ü E O"o(.s(p,))}. The 

same argument applied for the ray -il yields C2 = {PI E PI - ü E O"o(s(p,))}. 

If s is degenerate, and the parameterization of s using cartesian coordinates is 
d 

{x E Edl :L)u,x, = Ud+l}, the open half-spaces bounded by sare 
1==1 

s> - {XEE'I-2~U.X.+U'tl>O} and 

"< = {x E E' 1-2~ U;X. + U'H < o} . 
respectively. Notiüg that Uo = 0, the arguments used for the non-degenerate case 

also suffice here. Renee the result follows. 0 

One of the by-products of this lemma concerns the incidence relation between 

points and hyperspheres of Ed. If 0" is considered in place of 0"0 in the above proof, 

one arrives at the following corollary: 
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Corollary 4.6 Let p be a poillt of Ed 1 and let il be a ray of f::+ J • Tht'Tl pOl1d l' tb 

contained in hypersphere ,(il) if and only lf ray il zs (,oTltamed in hypt'T-pltLlll' 11(.;;"(1')) 

of E d+2 • 

As in the linear separation case, we may define \'o(i) and \Cp-:) tü})(' tilt' llulIllH'r of 

half-spaces of a'o(s(P)) and fJ'c(s(P)), respectively, that contdin ra)' ; of Pdt2, Tht"H' 

quantities may abo be applied to the faces of A(O'o(.?( P))), Sill(,(~ tht' rays constitlltill.R; 

a particular face of the arrangement share a common position \l'clll[ If Il is ail)' ray 

of Ë:+2 such that Xo(il) = n, then the hypersphere S slIch tbat .;;'"(8) ::: 0'(17) is a strong 

strict spherical separator of Rand G in E d
• If instead \o{ 17) < n, alld tllt'f!' pxi:;1 ~ 

no V E Ë:+2 such that XoCù') > xlü), then ,'; is a Wedh. ~trict. spllf'nral SI'[Mrator of n 
and G. The same is true for non-strict separation, using Xc( 17) in placf' of \,,( 17). 

We now state two additional corollaries of Lemma 4..5. The I1f'xt rorollary is 

analogous to Corollary 4.3, and concerns the spherical !:>('parahilit) of S1Jh!>I't:-, of P 

Corollary 4.8 deals with the distinction betwœn the beparable COrnpOIlI'IIt.S of /' with 

respect to the hypersphere s, relative to which points a[f' C01I1 aiw·d in t ht' intl'rior of 

5, and which are contained in the exterior. 

Corollary 4.7 Let P = {Pl,P2,'" ,Pn} be a set of labd,'d pOl1lt.<; f1l E d
, a1ld Id (2 

be a subset of P. The poznts of Q are stnclly sphcncally sfpamblt; lf (Ind ollly lf 

there exists sorne ray ü E Ë:+2 contazned zn the inte1'scctum of ail Iht: half-8JIIll'r .... of 

uo(s(Q)). 

Corollary 4.8 Let P = {Ph P2,'''' Pn} be a set of lulu led poinls !Tl Er', (Ind Id ,i 

be a ray of Ë:+2. Let s be the hypersphere ,( ü) 11l E'I, If l7 E f;:r~ 1 tlIt'TI tIlt .. II/fi 

spherical/y separable component C = {PI E PI ü E O"o(';'(p,))} of P 1/)zl" 1",,,WI'f 10 ,~ 

consists of the red points extenor to s and the g1'(;('11 p01Ttl,~ wln'lOT' 10.., If whl, lui 

ü E Ë~+2, then C conslsts of the green poznt.s alr-nor to ,'i and lIu T'frf 1'01111 ... ml, T'lor 

to s. 

Both Corollary 4. ï and Corollary 4.8 hold for non-~trict splH'rÎc al ~wpal'iltion w IWfI 

considering fJ' c in place of fJ' 0' and the c1os1ln!s of titt> f'xtcrior dUel in! Nior of ~ in pl ,\('f' 

of the (open) exterior and intf>rior, C orollary 4.8 iud ieitt(".; t hat If !HW li /llit ~ Olll' '.., 
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attention to that part of A( (J' o( s( P))) contained in Ë~+2, only the spherically separable 

components with red points exterior to the separator are considered. The part of 

A( CT o( s( P))) contained in Ë~+2 yields compcnents wi th green points exterior to the 

spherical separator, and the part of the arrangement contained in Ëg+2 correponds 

to degenerate spherical separators - that is, to linear separators. By taking the 

intersection of A((J'o(s(P))) with Ëg+2, one obtains a (d+l)-dimensional homogeneous 

arrangement that captures the combinatorial qualities of P with respect to linear 

separation, equivalent in every respect to A(po(~P))). 
One concern that will arise in later chapters is whether every face of A(O'o(i(P))) 

(except for the vertex at the origin, if it exists) contains a ray of Ë:+2. This is indeed 

the case. Recall that in Êg+2, only the rays z = {.\(O, 0, ... ,0, 1) E E dt2 1 À > O} and 

-z are not rnembers of Ë:+2. However, given the labeled point pEP, the ray inner 

product S(p) . ; is always either 1 or -1, and therefore ; and - z are contained in 

cells of A((J'o(;(P))). As a result, if z or -zis contained in ceU f of the arrangement. 

there exists sorne other ray i1 of ËgH in f such that i1 E Ë:+2. 
In Ë~+'l and Ë~+2, recall that the rays of the form px E E d+21 À > 0, Xo :f. O} 

d 

that are not elements of Ë:+2 are those where LX.2 - XOXdH ~ 0; that is, those that 
.=1 

would correspond to hyperspheres having the square of their r • ..fii less than or equal 

to zero. The rays of E~+2 U Ë~+2 not in Ë1+2 consist of two connected components 

symmetric with respect to the origin, one in Ë~+2 and the other in Ë~+2. Let us 

restrict our attention to the former, and denote it by (J. 

Let z be a ray of (l, and let p be a red point of P. Let x E Ed+2 be that point of 

; where Xo = 1. Then 

ri. 

(p. p, -2P1' -2P2"'" -2Pd, 1) . x - p' p - 2LP,x, + Xd+l 

1=1 
ri. d 

> p' P - 2LP1X, + 2>,2 
.=1 i=l 

> IIp-x'1I 2 , 

where x' = (Xl, X2, ... , Xd) in E d
• This implies that ; is contained in (J'(S(p)) if and 

only if x' = p, which is true for only one ray in Ë~+l. Otherwise, it is contained 
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in G'o(s(p)). Si mi 1 arly, if p is labeled green, z is contained in <7(i(p)) if and only If 

x' = p, but otherwise, it is contained in the complement of <7,;(';"tp)). Thus all but a 

fini te number of rays of ~ are contained in a common cell f, the rf'maining rays being 

located in faces c"lntained in the clos ure of f. 
Let 9 a face in the closure of f, where dim(g) ~ 1 and gn Ë~+2 i: 0. If Jim(g) > 1, 

then 9 n Ë~+2 contains an infinite number of rays, and therefore sorne ray of E:+2 

Otherwise, 9 consists of a single lay of Ë~+2, and is contaim·d in the intersf'ction of 

at least d hyperplanes of A(G'o(.s(P))). Let this ray be an element of f!, say z. Tlwn 

x' = p for at least d choices of pin P, which is an impossihility. Theu'fore 9 contains 

sorne ray of Ë:+2. 

This leaves only the face J to be considered. Let us assume that f n Ë~+2 is 

entirely contained in Il. Since the set {! is closed relative to Ë~+2, the closure of f in 

Ë~+2 must also be entirely contained in P., which is a contradiction. 

We summarize these arguments in the following lemma: 

Lemma 4.9 Let P = {PlI P2,' .. ,Pn} be a set of labe/cd points in E d
, and let f be a 

face of A(G'o(i(P))) of dimensionality at least 1. Then f contazn.9 at It'ast ont' my of 
~d+2 
E* . 

From this lemma we may conclude that the faces of Â( 11 ,( ~ .. ( P))) have the same 

significance as those of A(po(np))), in that each face of hofh arrangprnents of dinwn­

sionality greater than zero corresponds to one strict and one nOH-strict cOrnpOnf'Ilt 

of the appropriate type - again, only if the arrangen1f'nt hdo" a vprtf'X 101',1 !.,·d at 0)(' 

ongm. 

Lemma 4.10 Let P be a set of labele.d point . ., of E d • l'hep; eJ'l,~/.<; a t'fTfu of 

A(G'o(.s(P))) at the origin of E d+2 lf and only If lIU'TT en"I.' no hypf'r,c;phu'(' of E'l, 

degenerate or non-degenerale, that contaÎns ail pOL lit" of P 

Proof Let.., be a hypersphere in E d. Let il alld -il he tIlt' r,tys of Ëd+l slIch tbat 

'Y(ü) = 'Y( -il) = .5. Let p be a point of P. Dy Corollary·1 6, h'ypf'rpla.nl~ t1(I7) = t1( -17) 

contains ray s(p) of Ë:+2 if and only if hyperplane t1(.;(p)) contilÎlI~ ray" ii and -Il. 

Therefore s contains aU points of P if and only if il and -11 an' cOlltaÎIIf'd in ail 

hyperplanes of G'(;(P)); that is, if thcrC' is no vertex of A(l1'o(';( P))) al tl!!' I)n~JlI. Cl 
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Chapter 5 

Separable Subsets and 

COIllponents 

5.1 Introduction 

The setting of half-space arrangements will prove to be very convenient for both the 

investigation of combinatoriai properties of sets of points with respect to linear and 

spherical separation, and the algorithms determining the various linear and sphencal 

separators of point sets and other object classes. In this chapter, we address two com~ 

binatorial topicsj the first concerns separable components, and the second concerns 

separable subsets. 

In the next section, we will provide upper bounds on the maximum number of 

separable components of fixed size k of a set of labeled points. More precisely, given 

a set P o[ n distinct labeled points of E d , we will bound the number of separable 

componeuts of P of size less than or equal to k, in each of the Iinear and spherical 

cases, and tIlt.' strict and non-strict cases. 

The bound for the case of linear separation will also turn out to apply ta the 

number of k-sets in d dimensions. Let h be a hyperplane in E d, and let h> and h< 

be the two open haif-spaces bounded by h. If k is the cardinality of P n h>, then the 

point set P n h> is called a k-set of P, and the point set P n h< is called an (n-k) -set 

of P. If the points of P an share the same label, then the k-sets of Pare identical to 

46 
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Figure 5.1: A 5-set and an 8-set 

the strict linearly separable components of P of size k (set' Figun~ 5.1). 

The theory of k-sets has many applications, generally invol ving the anitly:-js of 

space and time complexities of algorithllls. Sorne notable f'xamph's Îndud(> Iiight>r­

order Voronoj diagram construction [Lee82,Edc87], half~pa("e rang(' qt)('rÎl's [l.'I'l-;6, 

ClaS8], and approximation of sets of points by hYP('I plane.., [YJ\ 1 I~~;. The fir..,t, asymp­

totie bounds on the number of k-sets of n points in Hl(' plrlI)(' WCfP d('\'(·lopf'r} hy 

Lovasz [Lovil] and Erdos. Lovasz, Simmons, and St fauss [ELSS7:q. Thl"i(' hotlnlls 

of O( n v'k) and f2( n log( k + 1)) are still the Le~ t known to d.d.e Î 11 t. Wu dllIH'Il..,ioIlS. In 

[Ede87], Edelsbrunner credits Raimund SeiJp! with ilIl pxtf>I1~iOIl I)f this 10\\'('r !JOtlnd 

to higher dimensions for the case k = n/2, obta.ining t11(' boune! WII,l-II.)g n). In 

three dimensions, Chazelle and Preparata [CP8G] derivl'd aIl IIpl>"r !JlilJl1d of O(nk s), 

which was subsequently improveJ for large valtlPs of k tü Q(71 2k) J)y Colt·, Sharir, 

and Yap [CSY8ï]. Very recently, Baniny, Füredi, allJ Lova...,,, [BFLS~J] shOWf><! that 

for k = n/2, the bound may be reduced to O(n 29UI!). In hÎ~!J('r dilll(·Il..,ioIl ... Clarhon 

[Cla88] obtained an upper büund of O(nldl.lJkr'l/zl) u~ing random ..,alIlpling m(·t!tods. 

In Chapter 3, the strong strict linear and spherical 'wparability of a sf't of lalH'lt>d 

points P was relatcd ta the existence of separablf' subsl't.s of P hilving a (('rtain 
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cardinality dependent upon d alone. In Section 5.3, expressions shaH be given for the 

number of linearly and spherically separable subsets, both strict and non-strict, and 

of both fixed and arbitrary cardinalities. These expressions will be the summations 

of functions of Xo(f) and Xc(f) over aH faces f of the appropriate dual arrangement. 

The implication of these formulae is that separable subsets may be counted with­

out generating them explicitly. If P is a set of n labeled points in Ed, the number of 

separable subsets of P may approach 2". However, this number may be determined 

in time proportional to the number of faces of the dual half-space arrangement of P. 

lndeed, as we shaH see in the next chapter, it is weIl known that the number of these 

faces is polynomial in n with order dependent upon d. 

5.2 Upper Bounds for Separable Components 

Let P be a set of distinct labeled points of E d , such that no hyperplane contains 

every point of P. Consider the homogeneous hyperplane arrangement A(Po(Ï( P))) 

in E d+1
• Since the arrangement has a vertex located at the origin. each face of the 

arrangement has associated with it precisel)' one strict and one non-stlict linearly 

st'parable component of P. The following lemma shows that only the ceUs of the 

homogeneous arrangement need be considered when looking for strict linearly sepa­

rable components. 

Lemma 5.1 Let P be a set of distinct labeled points of E d, such that no hyperplane 

contains et'ery point of P. Let f be a face of A(Po(Ï( P»)) associated with the strict 

linearly se.parable component C of P. Then there exists sorne cell 9 of A(po(np))), 
also assoclated with C! '!L'hose closure contains f. 

Proof Let H be the set of hyperplanes of p(Ï(P)) containing face f, and let H> be 

the set of half-spaces of Po( Ï( P)) bounded by the hyperplanes of H. Let H < be the set 

of open half-spaces complementary to those of H >. Consider the common intersection 

of the half-spaces of the set H < n (p( i( P» \ H». This common intersection is a ceIl 

9 of A(Po(ï(P») contained in the same half-spaces of Po(Ï(P» as f. Clearly, f is 

contained in the closure of g. o 
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The proof of this lemma applies equally well to the case of strict sphericaI separa­

tion and the setting of A( 17 o(.S'( P))). If no hypersphere or hyperplane of E d contains 

every point of P, then every face of the homogeneous arrangement A( 0'o(.5( P))) in 

E d+2 corresponds to one strict and one non-strict spherieally separable cornponent of 

P. Accordingly, we state the following corollary: 

Corollary 5.2 Let P be a set of distinct labeled points of E d, such that no hyper­

sphere or hyperplane contains every point of P. Ld f be a face of A( O'()(S(P))) 

associated with the strzct linearly separable component C of P. Then there exists 

sorne cell 9 of A(l7o(.S'(P))), a/sa associated with C, whose closure contains f. 

Quite clearly, no two eeUs of A(po(n P))) correspond to the sarne strict linearly 

separable component, and no two cells of Â(Po(i(P))) correspond to the same strict 

spherically separable component. For both the linear and spherical cases~ one may 

conclude that each strictly separable component corresponds to a unique ceIl of the 

appropriate arrangement. 

Another corollary of Lemma 5.1 deals with the non-strict components of labeled 

point sets: 

Corollary 5.3 Let P be a set of distinct labeled points of E d, such that no hyperplane 

contains every point of P. Let f be a face of A(po(n P))) associated wilh the non-strict 

linearly separable component C of P. Then there exists some edge 9 of Â( Po{ n P))), 

also associated wlth C, contained in the closure of f. 

Naturally, Corollary 5.3 holds equally weIl for non-strict sphcrical1y separable 

components and the arrangement A(O'o{.5'(P))). 

The number of strictly separable components of P of size k or bis, whethcr linear 

or spherical, may be enumerated by counting the Humber of cells f of the appropri­

ate dual arrangement of P having Xo(f) :s k. By obtailling an uPlwr bound on the 

number of su ch cells over aU homogeneous arrangements in EJn, wc now derive upper 

bounds on the number of strict components of cardinality k or less, over aH di:.t.rihu­

tions of n pointl in d dimensions into the labelcd set~ Rand G. Once these bOIl nds 

have been derived, we will see how they apply to the case of non-:.tric:t componcnts. 
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Let H he a set of n hyperplanes in Em whose common intersection consists of the 

single point O. Of course, this implies that n ~ rn. For every hyperplane h EH, let us 

define h> and h< to he the two open half-spaces of Em hounded by h. The set of haU­

spaces {h>1 h E H} shaH be denoted by H>, and the set of half-spaces {hd h EH} 

shall be denoted by H <. Given a face J of the homogeneous half-space arrangement 

A(H», let Xo(f) be the number of half-spaces of H> containing face J, and let )(c(f) 

be the number of half-spaces of H> whose closures contain f. Equivalently, Xc(f) is 

the number of half-spaces of H< avoiding f. \Vith these definitions, A(H» may be 

considered as a half-space arrangement in Em. 

Let A~ he the set of ail such homogeneous half-space arrangements in Em having 

n distinct hyperplanes, and containing the vertex located at the origin. Given sorne 

integer k between 0 and n, inclusive, let us define C(rn, k, n) to be the maximum num­

ber of cells f of A(H» where Xo(1) = k, over aIl arrangements A(H» in A:'. Also, 

given integers ki and k2 such that kl ~ k2 , we let C(rn, kl : k2 , n) he the maximum 

numher of celis J where kl :::; )(o(f) :::; k2 , over aH arrangements 10 A~. vVe will adopt 

the convention that C(rn, k, n) = 0 for aU integer values of k less thall 0 and greater 

than n. Also, we will say that C(m,k l : k2 ,n) = C(m,k1 : n,n) if k2 > n, and that 

C(m,k l : k2 ,n) =C(rn,O: k2,n) if k l < O. 

It should be noted that C(rn, 0, n) = C(rn, n, n) = 1. Also, we haH~ C(rn, k, n) = 

C(rn, n - k, n) and C(rn, k l : k2, n) = C(m, n - k2 : n - kl , n), as the following ar­

gument shows: Let H, H>, and H< be defined as above, such that A(H» is an 

arrangement in Em. If f is a ceIl of A(H» such that Xo(f) = k, then the cell - f 
radially opposite from f about the origin has Xo( - f) = n - k. Renee the maximum 

number of cells J of A(H» where Xo{f) = k, over all arrangements A(H» in A~, is 

the same as the maximum number of cells 9 where Xo(g) = n - k. 

A hyperplane h of H, when intersected with the remaining n - 1 hyperplanes of 

H, yields a set of (m-l)-dimensional fiats H' = (H \ {h}) n h in h. The half-spaces 

of H> and H<, when intersected with h, are given by lI'> = (lI> \ {h>}) n h and 

H' < = (H < \ {hd) n h, respectively. Since every hyperplane of II passes through 

the origin of Em, thesc intersections of hyperplanes and half-spaces with h are aH 

non-empty. Also, the common intersection of the Hats of H' must be the vertex of 
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A(H» at the origin. For these reasons, the flats of H', together with the sets H'> 

and H' <, form an (m-1 )-dimensional homogeneous half-spaee arrangement A( H' » 
in h. 

Each ceU f' of A(H'» is an (m-1)-face of A(H», and as such is a facet contained 

in the closure of exactly two cells fI and f2 of A(H». We will let Ch(k1 : k2) denote 

the number of cells f of A(H», such that k1 ~ Xo(J) ~ k2 and f has a bounding 

facet contained in h. With these definitions and observations, we are now able to 

prove the following lemma: 

Lemma 5.4 Let A(H» be a homogeneous half-space arrangement of A~ as defined 

above. If h is a hyperplane of H, then 

Ch(O: k) ~ C(rn -1,0: k,n -1), 

for a < k ~ n and m ~ 2. 

Proof Let J' be a cell of A(H'», and let fI and f2 be the two cells of A(H» having 

f' as a common facet. Without 1055 of generality, we assume that ft is contained in 

h> and that f2 is contained in h<. Because fb 12, and f' are aIl contained in the 

same half-spaces of H> \ {h>}, we have XO(Jl) = xAJ') + 1 and Xo(12) = Xo(f'). 

Renee if fis a cdl of A(H» with facet 9 contained in h, then Xo(J) = j implies that 

Xo(g) equals either j or j - 1. We therefore have 

Ch(O: k) ~ C(rn -1,0: k,n -1) 

as desired. o 
By summing the quantity Ch(O : k) over aIl hyperplanes h in A(H», we arrive at 

the following lemma: 

n 
Lemma 5.5 C(m,O: k,n) ~ -C(m -1,0: k,n -1), fora ~ k::; n andn ~ rn ~ 2. 

m 

Proof Let A(H» be a homogeneous half-space arrangement of A~ as defined 

above. Let n be the number of hyperplanes in H. Consider the sum of Ch(O : k) over 

aIl hyperplanes h in H. By Lemma 5.4, 

< L:C(m-1,O:k,n-l) 
heH 

::; nC(m-1,0:k,n-1). 



, 

1 

CRAPTER 5. SEPARABLE SUBSETS AND COMPONENTS 52 

But each cell f having Xo(f) < k is counted exactly as many times as it has bounding 

hyperplanes. Since cell f has a vertex at the origin in its closure, it must have at 

least m facets. Thus 

as required. 

C(m, ° : k, n) ~ .!.. L:Ch(O : k) 
m hEH 
n 

~ -C(m-l,O:k,n-l) 
m 

Cl 

Lemma 5.5 gives us a recurrence relation that we will exploit in deriving our 

bound of Theorem 5.8. The boundary conditions for the recurrence arise out the 

examination of the two-dimensional situation. However, we first need the following 

result concerning the overlap of rays on the real !ine. Let Q = {ql' q2, ... , qn} be 

a sequence of distinct points on the real line, in increasing arder, and let Q" = 
{q;, qi, ... , q~} be a seq~ence of rays such that ray ql" has end point q •. Also. let Q + 

and Q- be the subsequences of positively-directed and negatively-directed rays of Q", 
respectively. 

Let 1 = {lo, Il!' .. , In} be the sequence of open intervals where la = (-00 , qd, 
In = (qn,oo), and l, = (q"q'+l) for all i = 1,2, ... ,n -1. For every interval 1. E l, 

let us define r+(I.) and r-(I.) as the number of rays of Q+ and Q-, respectively, that 

contain l,. Note that if i < j, then r+(I.) > r+(IJ) and r-(I.) ~ r-(I1)' Given sorne 

integer k between 0 and n, inclusive, we wish ta find the maximum number of intervals 

l, such that r+(I,) + r-(I,) $ k, over aU such sequences of rays Q*. Denoting this 

number by r( k, n), and using these definitions, we prove the following by induction 

on k: 

Lemma 5.6 r(k, n) $ 2k + 1, for 0 ~ k 5 n. 

Proof The lemma holds trivially for k = O. Assume that the daim is true for aIl 

k == 0,1, ... ,k' - 1. We will show that it must be true for k = k'. 

Let Q* be a set of n rays, as defined above, that realizes the maximum r(k', n). 

Let Il be an interval of 1 such that r+(I,) + r-(I.) = k'. If no such interval exists, 

then r(k',n):$ r(k' -l,n), and the lemma holds. 
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(rt r") 
l 

• • • • • • • • • • 

(O,IQl) (?,k') (x,k'-x) (k',?) 

Figure 5.2: Construction for the proof of Lemma 5.6 

Otherwise, let la be the unique interval such that r-(1a) = k', if it exists. If not, 

let la = 10, Similarly, let h be the interval such that r+(h) = k', if it exists. If not. 

let lb = In. Note that a :5 i and b ~ i. By construction, there can be no cells IJ with 

j < a or j > b such that r+(I,) + r-(IJ) ::; k' (see Figure 5.2). 

There can be no more than k' - r-( 'I) rays of Q- with endpoints between la and 

10 and similarly no more than k' - r+(Ii) rays of Q+ with endpoints betwecn Il and h. 
Since r+(I,) + r-(II) = k', there are at most r+(1I) endpoints of rays of Q+ between 

la and 1" and at most r-(II) endpoints of rays of Q- betwecn l, and h. Therefore 

the total number of points of Q between la and h is nû more than 2k', implying that 

r(k',n)$2k'+1. 0 

The bound of the previous lemma, while certainly correct, is not very meaningful 

for k ~ n/2, since there are only n + 1 intervals on the line. Despite this seeming 

deficiency, we use Lemma 5.6 to justify the boundary conditions for the recurrence of 

Lemma 5.5. 

Lemma 5.7 C(2,O: k,n):5 4k, for 1:5 k:5 n. 

Proof Let H = {h il h2 , ••• ,hn } be a set of n lines passing through the origin of El, 

and let H* = {hi, h2, •. • ,h~} be a set of open half-planes wherc h; is bounded by hJ 
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ll------------~~--~--~------~--------~~-----

------~~------~~----+---~--~~----------- ~ 

Figure 5.3: Construction for the proof of Lenuna 5.7 

for al1 j = 1,2, ... , n. Without 10ss of genera1ity, let us assume that hn coincides with 

the "horizontal" axis, and that h~ is bouncled by hn "from above". Then the Hnes of 

H, together with the half-planes of H*, form a half-plane arrangement A(H-) in A~. 

Consider two lin es 11 and h parallel to and distinct from hn , such that /2 is 

contained in h~, but /1 is not (see Figure 5.3). The intersection of /1 and the half­

planes of H- \ {h~} form a collection of rays in the line Il; we have a similar collection 

of rays in [2' If JI ig a cell of A(H*) intersecting /1' then the interval JI n /1 in 

/1 is contained in Xo(Jt} rays of the collection. If 12 is a ceU intersecting [2, then 

the interval fl n /2 is contained in Xo(J2) - 1 rays of the collection in 12. Hence 

C(2,O: k,n) S; r(k,n -1) + r(k -1,n -1) = 4k. 0 

We may now state and prove the main theorem of this section. 

Bk (n \ 
Theorem 5.8 C(m,O : k, n) ~ ( ) 21, for 1 ~ k ~ n and n ~ m ~ 2. 

mm-l m-J 

Proof By induction on m. If m = 2, then 

8k (n) C(2,O:k,n)$4k= m(m-l) m-2 
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by Lemma 5.7. Otherwise, if m > 2, assume that the theorem holds for dimensions 

less than m. By Lemma 5.5, 

as required. 0 

The bound of Theorem 5.8 holds equally well for homogeneous half-space arrange­

ments in Em that are not in A~j that is, for those whose hyperplanes do not intersect 

in a vertex of the arrangement. If A(H» is such an arrangement, with H the set of 

hyperplanes of the arrangement, let z be the cornmon intersection of the hyperplanes 

of H, where dim(z') > D. Any hyperplane h of H may be perturbed infinitesirnally 

into the hyperplane h' containing the origin, such that the intersection z' of the hyper­

planes of (H\ {h})U{h'} has dim(Z') = dim(:::)-l. If the perturbation is sufficiently 

small, none of the cells of the arrangement are destroyed (although sorne new celIs are 

created), and these ceils are still contained in the same half-spaces (with h' > replacing 

the half-space h». These perturbations may be repeatpd until an arrangement of A~ 

is producedj this arrangement has at least as many cells f with Xo(J) ::; k as does 

A(H», and therefore the bound of Theorem 5.8 applies to A(H». 

Given a labeled point set P, Theorem 5.8 may be directly applied to bound the 

number of its strict linearly or spherically separable components of a given size or 

smaller. We also use this result to bound the number of non-strict separable com­

ponents, by noticing that if C is a strict separable component of P, either linearly 

or spherically, then the set P \ C is a non-strict separable cornponent. Thus the 

bound on the number of strict separable components of size n - k or more also 

bounds the number of non-strict separable components of size k or less. Recalling 

that C(m,O: k,n) = C(m,n - k: n,n), we now st.ate the following corollaries: 
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Corollary 5.9 Let P be a set of n labeled distinct points of E d, where TL ~ d t 1. 

Let k be an integer between 1 and n - l, inclusive. Then the expression 

8k (n) 
d(d + 1) d - 1 

is an upper bound for 

1. the number of strict linear/y separable components of P of size < k, 

2. the number of strict linearly separable components of P of size > n - k 1 

9. the number of non-strict /inearly separable components of P of size ~ k, 

4. the number of non-strict linearly separable components of P of size ;? n -- k. 

Corollary 5.10 Let P be a set of TL labeled distinct points of E d, where n ~ d + 2. 

Let k b~ an integer between 1 and n - 1, mclusive. Then the expression 

8k (n) 
(d+l)(d+2) d 

is an uppFr bound for 

1. the number of strict spherically separable components of P of size ~ k, 

2. the number of strict sphencally separable components of P of size ~ TL .- k, 

3. the number of non-strict spherically separable compüne7tts oj P of size ~ k, 

r the nurnber of non-sinet spherically separable components of P of size 2 n k 

The asymptotic behaviour of these bounds, for fixed dimension d, is O(knd
-

1
) in 

the linear case and O( kn d) in the spherical case. The best known result for k-sets 

in dimensions higher than three has been recently dcveloped by Clarkson [Cla8S}, 

who giV(~s asymptotic bounds of 0(n ld/ 2J /)d/21) for thé maximum number of j-sets, 

summed Qvcr aIl j ~ k, and taken over a1l sets of n points in Ed.. Here d is taken 

to be f1xed. and n/k -+ 00. Clearly, the lower bound n(nld/2Jkrd/21) applies to the 

number of strict linearly separable components of P of size < k or ~ n - k. 
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5.3 Counting the Number of Separable Subsets 

We now shift our attention to the separable subsets of a set of labeled points. Let P be 

a set of distinct labeled points of E d• Corollary 4.3 relates the linear separability of a 

suhset Q of P ta the existence of a ray in the common intersection of the half-spaces of 

po(nQ)) or pcmQ)), depending upon whether the separabllity is strict or non-strict. 

Similarly, Corollar)' -4.7 relates the spherical separability of Q to the existence of a ray 

in the common intersection of the half-spaces of O'a(.s(Q)) or O'c(.s(Q)). In this way, the 

strict and n(1n-strict separable subsets of lab.'led point sets relate to the intersecting 

subsets of sets of open half-spaces and sets of closed half-spaces, rC'ipt>ctively. In thi!) 

section, we shaH first develop expressions for the number of intersecting subsets in 

homogeneous half-space arrangements. and the number of intersecting ",ubsets of fixed 

size. vVe shaH then exploit these relationships by reinterpreting the~)f' results in the 

original setting of labeled point sets. 

Let A(H» be a homogeneous half-space arrangement in A;, where II> consists 

of n open half-spaces whose bounding hyperplanes pass through th(, origlll. Let Il 

he the set of these bouuding hyperplanes, and let Ha and JJ c be the sets consi"ti ng 

of the open and closed half-spaces boundcd hy hyperplanes of H, respect l\ely l,et 

Qo be a non-empty subset of Ho, and let Qc be a non-ernpty sub~t>t of HL Wc oefwe 

the open cone 1\(Qo) of Qa to he the set of faces of A(H» conlailH'd in the region 

of intersection of the halr-spaces of Qo, and the clo.,ed cOTIe .\(Q,) of Qc to he that 

part of A(H» contained in the region of intersection of the half.:>IMcCS of Qc (sec 

Figure 5.4). If a cone contains no ray of Ëm, then it will !w call('J empty; otherwlst', 

it will be said to be non-empfy. Let Q be the set of bounding hyperpldncs of Qu 

and Qc. The common intersection of the hyperplalll's of Q shall hl' called the apf'Iof 

1\(Qo) and A(Qc)' 

Given an arrangement A( If» in A~\ our goal is to develop expressioll,) for the 

number of suhsets of H> and lI? detcrmining non-empty open and cJo.wd cones, 

respectively, We also wish to know the number of subsets of lI;> and I/? of fixed 

cardinality k that detcrmine non-empty oppn and closed cones. In the first stcp in 

the derivation of these expressions, we will make me of Euler's relation fur convex 
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o 

Figure 5.4: A closed cone in a bomogeneous half-space arrangement 

polytopes in E d 
- an important result usually attributed to Ludwig Euler [EuH ,EuI2}, 

but first proven in its higher dimensional form by Schlâfli [SchOlJ: 

Theorem 5.11 (Euler's Relation) Let 7r be a convex polytope in E d• Let 4>,(11') be 

the set of faces of 7r of dlmenswn i. Then 

d 

2)-1)' L 1 = 1. 
1:0 /EcP,(7r) 

Here, as weIl in the rest of this chapter, we will adopt the convention that any 

summatiun over an empty range evaluates as zero. In particular, if 1/>.(11') = 0, then 

In effer't. E'ller's relation states that if the number of faces of odJ dimension is 

subtracted frorn the nurnber of faces of even dimension, the difference is always 1. 

Another way of looking at Euler's relation is that the sum of ( -1 )dim(J) over aU faces f 
of 11' is a.lways 1. We choose to express Euler's relation in the manner of Theorern 5.11 

hecause the range of dimensions of the faces of 11' is given explicitly. 
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Consider now the intersection of a polytope 7r in E d with sorne hyperplane h Let 

h> and h< be the two open half-spaces bounded by h. If / is a face of rr, there are 

three possible ways in which f may interact with h: 

1. / may be contained in h, 

2. / may avoid h entirely, and 

3. f may be split by h into the faces 1>1 f., and f<, contained in h>, h, and h<, 
respectively. 

The main question here is how Euler'g relation may be extend to account for the 

"splitting" of t be polytope by h. In the first two cases mentioned, the face 1 does 

not change. In the third case, fis replaced by three new faces, two of which U> and 

Id have the sarne dimension as fj the other (/=) having dimension one less. Thus 

we have 

(-1 )dim(f» + (-1 )dimu .. ) + (-1 )dimUd 

_ (-1 )dim(f) + (-1 )dim(f)-l + (-1 )dim(J) 

= (_l)dlm(J). 

If the summation of Euler's relation is applied to the new faces of the "split" polytope, 

the result is the same. lndeed, if new hyperplanes are successively introduced, the 

same argument shows that Euler's relation still holds. A (closed) polytope 11', together 

with a set of hyperplanes H, shaH be said ta form a sliced polytope rr(H). \VIth t.his 

definition, we state the following variant of Euler 's relation: 

Lemma 5.12 Let 7r(H) be a c/osed sliced polytope in E d
J 

and let tPl(rr(H)) be the set 

of faces of rr(H) of dimension i. Then 

d 

L)-l)' L 1 = 1. 
,=0 IEt/>,('If(H) 

The technique of polytope slicing is not new; in fact, the praof of Euler's relation 

due to Nef [Nef81,Nef84] relies on it. 
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Later in this section, we will need a result similar to Lemma 5.12 for open sliced 

polytopes. A~ a starting point, consider this contrived but not entirely pointless 

statement of Euler's relation for open polytopes. 

Observation 5.13 Let 11' be the non.empty interior of a convez polytope in E d• Let 

4>,('11') be the set of faces of1l' of dimension i. Then 

li. 

2) _1)'+d L 1 = 1. 
Î=O fE<J>,(7!') 

The only face of '11' is the d-dimensional face '11' it5elf, and 50 of course the ob­

servation is true. However, the same splitting argument used in the case of closed 

polytopes is equally effective in this setting. In fact, it is effective even when '11' is 

taken to be an unbounded polyhedral set. Observation 5.13 thus gi~es way to the 

more useful Lemma 5.14: 

Lemma 5.14 Let 1I'(H) be a non-emply open sliced polyhedral set in Edl and let 

4>,(1I'(H)) be the set of faces of 7r(H) of dimension i. Then 

d 

2:(-1 J'+d L 1 = 1. 
1:=0 fE<I>,(7!'(H)) 

Lemma 5.14 and Lemma 5.1:1 allow us to extend Euler's relation to open and 

closed cones, respectively. For the remainder of the chapter, we will use the following 

notation to refer to the faces of an open or closed cone. If A is a cone located in 

the arrangement A( li» of A:, we shaH define 4>,( A) to be the set of faces of A 

of dimension l. \Vith this notation, we state Euler's relation for closed cones in 

homogeneous half-space arrangements: 

Lemma 5.15 Let A(ll» be a homogeneous half-space arrangement of A:, tchere 

m ~ 2, and let Qc be a non-emply subset of the set of closed hallspaces He. If the 

c/osed cane A(Qc) is non-empty, then the faces of A(QJ satisfy 

m 

2)_1)'-1 L 1 = 1. 
,=1 /Eq,.(A(Q,,)) 
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q' 

q 

Figure 5.5: Construction for proof of Lemma 5.15 

Proof By induction on the dimensionality of the apex of A(Q,} First, let us 

assume that the apex of A( Qc} has dimension zero; that is, the apex is the vertex of 

A(H» at the origin. Then there must he a hyperplane q passing through the apex of 

h(Qc) and avoiding the remaining faces of the non-empty cone A(Q.;) (Sf'e fi~llre .5.5). 

Also, there must exist a translate q' of q intersecting every ray contaim'd in t he faces 

of A(Qc)' The intersec~ion of q' with the closed cone A(Qc} yielJs a closed sliced 

polytope of dimension m - 1. Every face f E A(Qc) of dimension greater than zero 

intersects q' in the face f' of the sliced polytope. Noting that dim(f) = dim{f') + 1, 

Lemma 5.12 may be applied to obtain the result for this case. 

Now let us assume that the lemma holds for cones whose apices are of dimension 

less than j, where j 2:: 1. We shaH show that the lemma is truc for cones with 

apices of dimension j. Let the apex of A(Q.,) be a j-flat passing thlough the origin. 

Since A(H» is an arrangement in A::', a vertex of A(l!» is situaled al the origin. 

Hence, if Il is the set of hounding hyperplanes of the half-spaccs of 11>\ there must 

exist sorne h E Ii that do es not contain the apex of "\(Qc). Let h? and h~ be the 

closed half-spaces bounded by h. The sets QI = Qc U {h;:J, Q2 ::: Qc U {h~}, and 

Q3 = Qc U {h?, h~} al! detcrmine closed canes of A(H» having apices of dimension 
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j-l. 

The faces of A(Qc) avoiding h lie in QI or Q?J but not bath. The faces contained 

in h lie in Qb Q21 and Q3. Hence 

1 

m m 

+ L) _l)i-l E 1- E( _1)'-1 L 1 
1=1 JU.(A(Q'l)) 1=1 !E4>.(h(Q3» 

- 1 + 1 -1 = 1, 

by the induction hypothesis. a 
An inductive proof was used here because no hyperplane may intersect al! faces f 

of a closed cone A such that dim(f) > 0, if the apex of A is oC dimension greater than 

zero. The only hyperplane that could possibly intersect aH 1-faces of the apex is one 

pas&ing through the origin - but in addition to other shortcomings, this hyperplane 

would avoid a1l faces of A not in the apex. For the case C)f an open cane, there 

always exists a hyperplane intersecting aU faces, and thus we a,void having ta resort 

to induction. 

Lemma 5.16 Let A(H» be a homogeneolLs half-space arrangement of A~, u:here 

m ~ 2, and let Qo be a non-empty subset of the set of open half-spaces Ho. If the 

open cone A( Q 0) is non-empty, then the faces of A( Q 0) satisfy 

m 

2) _l)'+m L 1 = 1. 
1=1 JE1>,(h(Qo» 

Proof Let q be a hyperplane passing through the apex of A(Qo} and avoiding 

the remaining faces of the non-empty cone A( Qo). Because co ne A( Qo} is open and 

com'ex. such a hyperplane may always be exhibited. There must exist a translate 

q' of q inter:1ecting every ray contained in the faces of A( Qo). The intersection of q' 

with the open cane A( Q 0) yields not necessarily an open sliced polytope, but an open 

sliced polyhedral set of dimension m - 1 in q'. Every face f E A(Qc) intersects q' in 

the face l' of the sliced polyhedral set. Noting that dim(f) = dim(f') + l, we have 

(_l)dJm(J)+m = (_l)dlm(JI)+m+l = (_l)dimU')+m-l. 
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By applying Lemma 5.14 to the faces of the sliced polyhedral set, the result follows. 

o 
Lemma 5.15 and Lernma 5.16 allow us to prove the main theorem of this section. 

For this proof, we will follow the convention that the combination (:) equals 0, if a 

and b are integers su ch that b> a. If H* is a set of half-spaces, either aIl closed or aIl 

open, let r(H*) he the family of subsets of H* who se associated cones are non-empty, 

and let Ir(H*)1 he the cardinality of r(H*). Also, for integer k greater than 1, let 

rlc(H*) he the family of suhsets of H* of fixed cardinality k whose associated cones 

are non-empty, and let Ifk(H*)1 be the cardinality of rk(H*). Lastly, if A(H» is a 

hornogeneous half-space arrangement, we will denote by A,(H» the set of faces of 

A(H» having dimensionality i. 

Theorem 5.11 Let H> be a collection of half-spaces in Em fonning the homogeneous 

arrangement A(H» of A~\ for m ~ 2. Let H~ be the set of half-spaces generaled by 

taking the closures of the half-spaces of H>. Then 

a) Irk(H»1 = fJ _1),-1 L (xci!)), 
,=1 JEÂ.(H» 

h) Irk(H»! - f)-1),+m L (X ok!)) , 
,=1 !EÂ,(H"» 
m 

c) If(H~)1 - 2J-1)'-1 L ( :rXc( f) - 1), and 
,=1 fEA.(H> ) 
m 

d) If(H»1 = 2::) _l),+m L (2,-,,(f) -1). 
'=1 JEÂ.(H» 

Proof \Ve shaH prove only the first and last daims; the proofs of the other two 

follow frorn the same arguments. 

Given sorne face f in A,(H», the number of half-spaces of H?, containing f is 

Xc(f), and the number of suhsets of ll~ of cardinality k containing f is 

This summation may be thought of as a contribution of 1 from every non-empty 
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dosed cone of r k( H ~) containing f. Renee we have 

by Lemma 5.15. Thus the first daim holds. 

For the last daim, the argument is very similar to that for the first. Given sorne 

face fin A.(H», the number of half-spaees of H) containing f is Xo(J), and the 

number of non-ernpty subsets of H> of cardinality k containing f is 

L 1 = 2xo(f) - 1. 
Cher(H>)I !€.p,(A(Q>)) 

Renee we have 

m Le _l)l+m L (2 xo (f) - 1) 
1=1 !€,A.(H>1 

by Lemma .5.16. Thus the last daim also holds. o 

Interpreted in the original settings of linear and spherical separation of point sets 

in E d , these expressions count the nurnber of separable subsets of a given labeled 

point set, whether strict or non-strict, linear or spherical, of fixed cardinality or of aU 

cardinalities. The next two corollaries summarize these results. 
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Corollary 5.18 Let P be a set ofn distinct labeled points of E d, su ch that no hyper 

plane contains et'enJ point of P. Let k be a positzve integer. 

1. The number of non-empty non-strict linearly separable subsets of P of flud 

cardinality k is given by 

):( _1)'-1 L (xckn) . 
.. :1 IE.A,(po(I'tP))) 

2. The number of non-empty strict linearly separable subsets of P of flud cardi­

nality k is given by 

~(_l)i+d+l L ~ (xoif)). 
1:;::1 IEA,{Po(l(P))) 

9. The number of non-empty non-strict linearly separable subsets of P is gwen by 

(2xc(f) - 1). 

4. The number of non-empty strict /inearly separable subsels of P is given by 

(2\0(/) - 1). 

Corollary 5.19 Let P be a set ofn distmct labe/ed points of E d, such that no hyper­

plane or hypersphere contams every point of P. Let k be a positive integer. 

1. The number of non-empty non-strict spherically separable subsets of P of flud 

cardinality k is given by 

2. The number of non-empty strict spherically separable sub~ets of P of fixed car­

dinality k is given by 
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9. The number of non-empty non-strict spherically separable subsets of P is given 

by 
d+2 L( _l)i-l L (2xdJ) - 1). 
i=1 JEÂ. (0'0 (i(P))) 

4. The number of non-empty strict spherically separable subsets of P is given by 

d+2 
L( _1)'+d L (2'<o(J) -1). 
i=1 JeÂ. (0'0 (i(P))) 

If the points of Pare contained in a hyperplane h, then the expressions of Corol­

lary 5.18 are not valid. The proof of Theorem 5.17 relies heavily upon the existence of 

a vertex at the origin in the dual homogeneous half-space arrangement. However, aIl 

subsets of Pare nou-strictly separable by the hyperplane h itseU. Ta caunt strictly 

separable subsets, it suffices to consider the problem in the (d-l )-dirnensional set­

ting of h, by converting the coordinates of P in E d into suitable caordinates ln Ed-l. 

Alternatively, one could handle this in the dual space itself, by cutting every face of 

A(po(np)) with a hyperplane h', and applying the counting methocls recursively. Of 

course, this second strategy lends itself equally weIl to the spherical case. 
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Chapter 6 

Weak Separation Algorithms 

6.1 Introduction 

Up to this point in the thesis, we have been concerned with the cornhinatorial aspects 

of separation. In this chapter, and in the chapter to follow, we will investigate the 

aJgorithmic aspects of separation. Most of the algorithms of this chapter will he hased 

upon the transformations of Chapter 4 which map sets of labeled points in E d into 

homogeneous half-space arrangements in E d+1 and E d+2 • 

Several algorithms already exist for finding strong linear and spherical separators 

of labeled point sets. It has been known for sorne time that the problem of finding a 

strong linear separator rnay be expressed as a linear prograrnrning prohlcm. \Vith the 

techniques due to Megiddo [Meg84], and latf'f refined by Dyer [Dye86] and Clarkson 

[Cla86], such problems may be solved in time and space linear in the number of points, 

assuming that the dimension of the problem is fixed. The problern of finding strong 

separators with ceriain desirable qualities will be discussed in Chapter 7. 

For strong spherical separation in E1., Q'Rourke, Kosaraju, and Megiddo [QK~rs61 

have shown that the problem of finding a smallest separating circ1e in two dimensions 

may be performed in linear time, also using the techniques of [Meg84]. They also 

show that a largest such circle may be found in optimal O(n logn) worst-case time, 

where n is the numher of labeled points to be separated. Using nearest-point and 

farthest-point Voronoi diagrams, Bhattacharya [Bha881 presented an algorithm to 

67 
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determine the set of aU circular separators in O(n log n) worst-case time. 

In this chapter, we will foeus on the problem of finding weak separators of various 

types. Initially, we will examine the hyperplane construction algorithm due to Edels· 

brunner, O'Rourke, and Seidel (EOS86], including the data structures appropriate 

for the storage of such an arrangement. Secondly, in Section 6.3, modifications to 

this algorithm will be outlined that allow the degenerate character of homogeneous 

arrangements to be exploited: it will be shown that homogeneous arrangements in 

Em+I may be constructed using time and storage of the same order as in the con­

struction of non-homogeneous arrangements in Em. In Section 6.4, an algorithm 

is presented that enables the determination of weak linear and spherical separators 

in arbitrary dimensions. Finally, in Section 6.5, the topological sweep approach of 

Edelsbrunner and Guibas [EG86] will be used to reduce the storage required for sorne 

of these separation problems. 

Throughout this chapter, we will assume that the primitive comparative and 

arithmetic operations (addition, subtraction, multiplication, and division) may be 

performed in unit time. Also, we assume that the storage required by a real number 

or integer is unit space. Thus a point in E d requires O( d) storage space. However, in 

the discussions of the d.Symptotic complexities of these algorithms, we will consider 

the dimension of the problem to be fixed. 

6.2 Constructing Homogeneous Hyperplane Ar­

rangements 

To represent an arrangement of hyperplanes in storage, a data structure known as 

an incidence graph is used. This representation technique was first developed by 

Grünbaum [Grü67: for convex polytopes. 

Let A(H) be an arrangement of hyperplanes in Em, not necessarily homogeneous. 

For convenience, we define the two improper faces of A(H) as being the (-l)-face 

o and the (m+l)-face A(H). vVe say that the (-l)-face 0 is incident upon every 

vertex of A(H), and that the (m+l)-face A(H) is incident upon every cell of the 
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Figure 6.1: A line arrangement and its incidence graph 

arrangement. The usuai 0- to m-dirnensional faces will be called proper. The incidence 

graph of A(H) sha11 be denoted by I(H), and is defined as follows: for each proper 

and improper face of A(H), there exists a node of I(H). If face~ fI and 12 are 

incident upon each other, then their nodes in I(H) are adjacent. An cxample of a 

line arrangement and its corresponding incidence graph is shawn in FIgure 6.1. In 

discussing the incidence graph, we will oHen refer ta a given node by the face it 

represents. 

In the irnplernentation of the incidence graph, each no de is represented by a record 

that contains a description of the face to which it corresponds, additional space for 

such accounting purposes as marking of faces and 50 forth, and two lists of pointers 

to other node records. One of these lists is devoted to the subfaces of the current 

face, and the other is devoted to its superfaces. Each of the pointers ma)' also have 

additional space associated with them, for the labeling of incidences between faces, or 

for other purposes. The description of a face usually consists of sorne pararneterization 

of the affine hull of the face, and the coordinates of sorne point belonging to the face. 

There are rnany ways of choosing such a point; for most applications, the actual choice 

itself is irrelevant. The exact allocation of additional space depends heavily upon the 

_J 
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Aux. Aux. • 
1 Inf. Inf. 

Auxiliary Infonnation • • 
L Aux. , - Aux. (I 

Inr. Inr. 

Figure 6.2: A node of the incidence graph of Figure 6.1 

algorithms using this data structure. The two improper nodes allow access to the 

structure: the vertices of A( H) may he accessed using the list of superfaces in the 

node corresponding to irnproper face 0, and the ceUs of A(H) may he accessed using 

the Iist of subfaces in the node corresponding to the improper face A(ll). Figure 6.2 

contains a description of the internaI layout of a no de of the incidence graph of 

Figure 6.1. 

The size of the incidence graph TI, El) is strictly proportional to the numher of 

faces and incidences between faces of the arrangement A(H). We define Ik(H) to he 

the number of k-faCf'::i of A(H), for 0 ~ k ::s m, and define ik(H) to be the number 

of incidences between k-faces and (k+l)-faces of AU!), for 0 ::s k ::s m - 1. We alw 

defiue Ik,m(n) and ik.rn(n) to be the maxima of Ik(H) and ik(H) respectively, taken 

over aIl sets of Tl hyperplanes H in Em. Using the well- known results due to Buck 

[Buc-13} for 1 k,m(n) and il...m(n). we can place a hound on the size of I(H) in terms 

of the cardinality and dimensionality of Il. 

Theorem 6.1 (Buck) Given n 2:: 1 and m 2:: 1, then 

fkm(n) < t(m
k 
-~)( n .), forO~k~m, and 

1 1=0' - Z m - l 
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i".m(n) ~ 2(m - k)!",m(n), for 0 :5 k ~ m - 1. 

In addition, if H lS a set ofn hyperplanes in Em, then !,,(H) = !",m(n) andi,,(H) = 

i",m(n) if and only if A(H) is simple. 

Theorem 6.1 readily implies that the worst-case amount of space required to st.ore 

the incidence graph of a set of n hyperplanes in m dimensions is in 6(nm ). 

Gi ven a set of hyperplanes in Em, the incidence graph T( H) may be constructed 

in O(n d) time using the incrernental algorithm of Edelsbrunner, O'Rourke, and Sei­

del [EOS86]. Howe\'er, due to the degenerate structure of homogerwous hyperplane 

arrangements, with sorne modifications, their algorithm may be used to construct 

homogeneous arrangements in Em using only O(nm-l) time and space. BeCore jus­

tifying this daim, we must first understand sorne of the working'i of their algorithm. 

In the description that follows, we will oot differentiate between the faces of the 

arrangement A(H), and the oodes of the graph T( H). 

Initially, a subset H' of H of size m is obtained who':it> hyperplanes intersect in 

a corn mon vertex of A(ll). If no such subset exists, th('n the normal vectors of the 

hyperplanes of Il are contained in a single (m-l )-flat, and thu8 the arrangement may 

instead be constructed in this flat. Otherwise, the arrangement A( H') is constru( ted 

using sorne ad ho(' met hod. 

The main step of the algorithm consists of introdllcing the hyperplanes of H \ H', 

one by one, into the growing arrangement. The order in which these hyperplanes 

are added is irrelevant. Let us assume that hypt>rplane h is being addeù to the 

arrangement A(H'). First, an edge eo of A( Il') is found whose dO~llr(' cl(co) intersects 

h. Next, starting from eo, aIl faces of A(H') whose clfJ~ure iutersecb h are n1drkcd. 

Finally, each marked face is updated. Those faces intersected by h are split mto new 

faces if necessary. When the last hyperplane of h has been added, the algorithm 

terminates. 

The time required to insert one hyperplane h into an existing arrangement A( H') 

is bounded by the number of faces of A( H' U {h}) contained in the closures of ceUs 

bounded by h. This subset of the faces of A( H' U {h}) is known as the zone of 

the arrangement defined by h (see Figure 6.3). In the analysis of their algorithm, 
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h+-----~~------~--~~--------~----~--~~--+__+ 

Figure 6.3: A zone in an arrangement of lines 

Edelsbrunner, O'Rourke, and Seidel show that the worst-case complexity of a zone 

in an arrangement of hyperplanes in Em is in 0(nm - 1 ). Thus the time re-quired to 

pe-rform aU the incrementations of the arrangement is O(n m ). The worst-case time 

comp1.'xity of their al~orithm, being dorninated by the incremental step, is then the 

same as the worst-case space complexity: O(nm
). 

The space complexity of a homogeneous arrangement in A~ certainly does not 

attain the worst case for arrangements in Em. Since every I-face of a homogeneous 

arrangf'rnent is a ray of Ëm, there must exist sorne hyperplane h' passing through 

the origin that intersects no I-face. Since the dosures of the I-faces contain the 

origin. gi\'en any pair of hyperplanes ha and hb paraUel to h' and on opposite sides 

of h', every I-face must intersect either ha or hb in a single point. Thus ha and hb 

together intersect every face of the arrangement other than the vertex at the origin. 

Since the intersections of the homogeneous arrangement with ha and hb form (m-l)­

dimensional arrangements in ha and hb, the worst-case size of the incidence graph of 

a homogeneous arrangement is O(nm-l). 

The highly degenerate structure of a homogeneous arrangement suggests that the 

construction time may be reduced by limiting the number of faces of the homogeneous 
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arrangement that are marked unnecessarily. The rest of this section shaH be devoted 

to this topic. Due to the compleXlty of the marking and update technique of the 

standard construction algorithm, in the following discussion we will concern ourselves 

only with the problem of which faces need ta be marked, and how to visit these faces. 

The nature of the mark values assigned ta each face will not change, nor will the 

method of updating marked faces. 

In the standard algorithm, the faces that are marked initially are Hw vertices, 

edges, and 2-faces of A( H') whose closures intersect the new hyperplane h, using 

a breadth-first search strategy starting from an initial edge eo whose closme cl(eo} 

intersects h. The feasibility of this step is affirmed by observing that the intersection 

of h with the union of the vertices, edges and 2-faces of A( /l') is connected. The 

incidence graph of A(H') is then used iteratively to visit the (i+l)-faces which are 

superfaces of the marked i-faces, for i increasing from 2 to m - 1. In this manner, 

aH faces that could possibly require updating when inserting h into the arrangement 

have been marked. 

Now let us consider the case where A(/!') lS a homog<,neous arrangement contain­

ing the vertex at the origin. If 1 is a face of A( H') whose intersection with h is a 

single point, then f must be an edge containing the origin. Smce A(lI') contains the 

vertex at the origin, such an edge f cannot exist. This implies that a face of A(J/') 

whose closure intersects h in a single point (the origin) must itsclf not intersect h. 

This argument leads us to the following ob..,ervation. 

Observation 6.2 Let H' be a ~et of h!Jptrplan"s such lhat A(H') lS a homogeneous 

hyperplane arrangement in Em containing the ver·tex at the origzn. Let h be a new 

hyperplane to be added to A(H'), suck thl1i h pas..,es through the -~;ni1l. Then for 

any face 1 E A(H'), if dU) n h = {a}, the vertex at the (mgin, then lace 1 and its 

incidences are unchanged after the insertion of h. 

Therefore, for homûgeneous arrangements, we neecl only mark and update those 

cells whose dos ures intersect h in a face of A( H' U {h}) of dimension at least 1. The 

vertex at the origin is handled in a very straightforward manner: sinee it is a subface 

of aU edges of a homogeneous arrangement, it may be updated as each new edge is 
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created. Ta start the marking process~ we find an initia12-face Jo where cl(fo)n h is of 

dirnensionality greater than O. Observing that a 2-face in a homogeneous arrangement 

of A: has exactly two 1-dimensional suhfaces, and that h intersects every 2-flat in 

the arrangement, we may pick any 2-flat and sweep radially about the origin until h 

is encountered: 

Find starting 2-face Jo 

(1) Let e he an arhitrary edge of A(H') and let 1 be a 2-face incident with e. 

(2) \Vhile d(f) n h = {O} do the following: let e' be the edge incident with J 
other than e, and let J' be the 2-face incident upon e' and different from l, 
su ch that aff(f') :: aff(f). Set e +- e' and J +- l', 

(3) Set Jo +- 1. 

Once the starting 2-face Jo is obtained, we must he sure that aU faces of A(H') 

whose closures intersect h \ {o} may be reached from Jo without accessing the vertex 

at the origin. Let h * he a hyperplane avoiding the origin and orthogonal to h. The in­

tersection of h* with the homogeneous arrangement A(H' ) yjelds a non-homogeneous 

(m-l )-dimensional arrangement in h *, Since the intersedion of h with the union of 

the vertices, edges, and 2- faces of this arrangement in h· is connected, and since the 

choice of h· is arbitrary, we make the following observation: 

Observation 6.3 Let H' be a set of hyperplan es such that A(H') is a homogeneous 

hyperplaTlf armngement in Em contaming the vertex at the orzgin, for m ~ 3. Let h 

be a hypt' t'plane nol ln il', such tltat h passes through the origin. Then the intersection 

of h 'U'lth the unIOn of I-faces, 2-faces and 3-faces in A(lJ') is connected. 

From this observation, it follows that every 1-face, 2-face, and 3-face whose closure 

contains a ray in h is reachable from 10, By visiting the superfaces of these faces, 

and iterating upon the superfaces as in the standard algorithm, every face of A(H') 

whose closure contains a ray in h may be visited and marked. 
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6.3 Constructing Half-Space Arrangements 

Although we have seen aH the modifications that will allow the construction of horno­

geneous hyperplane arraLgements, nothing described as yet allows for the construction 

of half-space arrangements. Before summarizing the modifications of the incremen­

tal construction algorithm, we discuss how information stored with the arcs of the 

incidence graph will prove useful for the algorithms of the next section. 

Let H> be a set of open héLlf-spaces in fi~+t, such that t~e set of hyperplanes 

bounding half-spaces in H> is H. Furthermore, let us assume that no two half-spaces 

of H> share a common bounding hyperplane. Let f and 9 be proper faces of A(H), 

such that 9 is a subface of J. Let H· the set of hyperplanes containing 9 but avoiding 

J, and let H; be the set of half-spaces of H> bounded by the hyperplanes of Il. Note 

that f and gare contained in the same hyperplanes and haU-spaces of H \ H* and 

H> \ H;, respectively. The set H* may be thought of ac; those hyperplanes of Il that 

"distinguish" f from g. 

In the incidence graph I(H), we may label the arcs from f to 9 and 9 to f in 

accordance with the sets H* and H;. The set JI; may be partitiollt'd into two sets, 

Hf. and H':..., where the former consists of the those half-sp,tees of II· contalfl i ng J, and 

the latter consists of those avoidmg f. \Vith both arcs f ~ 9 and 9 --+ J, we associate 

the differenlia/ values X+(J,g) = X;.(g,1) = II/~I and X-(,'·g) = \-(g,f) = 11I:1· 
With these values, if we know the quantities >':o(g) and XAg), then 

Xo(f) = Xo{g) + X+(9, 1) and XL(J) = ;xJg) - '(- (9,1)· (6.1) 

Alternatively, if we know the quantitles '(,A!) and XcU), then 

Xo(g) = Xo(f) - X+(1,g) and Xc(g) = -;( . ..(1) + x-(f,g)· (6.2) 

In the incremental construction algorithm, when a hyperplane h is introduced into 

an arrangement A(H), not necessarily homogeneous. the sets of faces of A( HU {h}) 

contained in h become available, as weIl as the superfaces of these faces. If the 

hyperplanes of H are associated with open half-spaces of H>. and if differential valuf's 

are being maintained, the new differential values resulting from the introduction of h 
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l 

Figure 6.4: Updating differential values when inserting hyperplane h 

are easily calculated from the old values when the marked faces of A(H) are updated. 

While we will not give the formaI details of the update process, we shall illustrate 

how the differential values are maintained on an example. 

In Figure 6..1, the orientation of the open half-space h> associated with h is given 

by the arrows. The old face 9 (shaded) is split by h into new the faces 9>, 90 

and 9< as shawn. Since these faces have been newly created, the differential values 

X+(9),90) = X+(90,9» and X-(9),9o) = X-(90,9» are set to land 0, respectively. 

The values ,\+(9<,90) = X+(90,9<) and X-(9<, 90) = X-(go,9<) are set to 0 and 1, 

respectively. The differential values of 9>, 90, and 9< with respect to other faces are 

inheritcd from g, unchanged. In the case of face f, a face of A(H) entirely contained in 

h, the differential values with respect to its superfaces are incremented appropriately. 

The values with respect ta its subfaces are inherited as in the case of 9, since these 

subfaces are also contclined in h. 

We shall now sumrr.arize the modifications of the incremental arrangement con­

struction algorithm for homogeneous arrangements with a vertex at the origin. The 

input is assumed tQ be a set of half-spaces H> in Em, for 111. ~ 3, whose bound­

ing hyperplanes contain the origin. Furthermore, if H is the set of these bounding 
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hyperplanes, no two h!\lf-spaces of H> are bounded by the same hyperplane of Il. 

Finally, we assume that there exists sorne subset H' of H whose hyperplanes intersect 

in the single point O. Otherwise, if there exists no such subset H', the arrangement 

is constructed in a lower dimensional setting, as in the standard method. 

MOD/FIED-CONSTRUCTION 

(1) Find subset H', and construct tbe homogeneous arrangement A( H') containing 

the vertex at the origin, as in the standard method. Initialize the differential 

values of the incidences of A(II'). 

(2) If H \ Il' is empty, terminate. Otherwise, let h be a hyperplane of H \ H'. 

Label the vertex at the origin as being entirely contained in h. 

(3) Find a 2·face Jo of A(H') such that dUo) n h =f {O} as detailed earlier. 

(4) Visit and mark the faces f of A(H') where cl(J) n h =1 {O} as in the standard 

method, but with ever; reference to i-faces replaced by a reference to (i+ 1)­

faces. 

(5) Update the marked faces as in the standard method, as weIl as their differential 

values. Add h to H', and go tü step 2. 

We now investigate the time complexity of the modified algorithm. The time re­

quired to add a new hyperplane h to an arrangement A( [J'), including the time spent 

updating the differential values, is of the order of the number of faces of A( lJ' U {h}) 

contained in the closures of celIs f such that dU) n h is of dimension at least one. 

This subset of the faces of the homogeneous arrangf'ment A( H' U {h}) we shaH calI 

the homogeneous zone of A(H' U {h}) defined by h. 

As was established earlier, therc exist parallel hyperplanes ha and hl, that be­

tween them intersect every face of A( H' U {h}) (other than the vertex at the origin). 

Thus each face of the hornogeneous zone defined by h contains a face of the non­

homogeneous zone of ha n h in the (m-1)-dimensional arrangement formed by the 

intersection of A(H' U {h}) and ha, or of the zone of hbn h in the arrangement formed 

by A(H' U {hl) in hl,. Since the size of a zone in an (rn-1,·dimensional arrangement 

, 
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is O( n m-2), the size of a homogeneous zone in A( H' U {h}) must also he of order 

O(nm-2), and therefore the time required tl. insert h into A(h') is O(nm - 2). Sum­

ming this time cost over aH the incrementations, we arrive at the following: 

Lemma 6.4 Let H> be a set of half-spaces in Em, for m 2:: 3, such that no two 

ha/f-spaces of H) share a common boundmg hyperp/ane, and such that the bounding 

hyperplanes contain the origin. Then the homogeneous arrangement A(H) may be 

constructed zn O(nm - 1 ) time using O(nm-l) space. 

Because the vertex at the origin of the homogeneous arrangement. is contained in 

every hyperplane of the arrangement, it is a suhface of every edge. Hence there is no 

need to maintalIl the improper face 0 to allow access to the faces of the arrangement 

of low dimb. ;ion. Accordingly, we may omit the improper face 0 from the incidence 

graph, and consider the vertex at the origin to be an improper face. 

6.4 Finding Weak Separators 

vVe shaH now outline an algorithm to determine the maximum values of Xo(J) and 

Xc(f) Qver aIl faces f of a homogeneous half-space arrangement, and to locate faces at­

taining these maximum values. If the half-space arrangement is the dual arrangement 

of a set of labeled points, then the faces produced correspond to maximal components 

of these points. The algorithm first constructs the homogeneous arrangement using 

the modification of the incremental algorithm due to Edelsbrunner, O'Rourke, and 

Seidel, and thell performs a breadth-first search within the arrangement to visit aH 

faces. 

The input to Algorithm MAXCO~lP consists of a set of n distinct open halfspaces 

H>, whose bounding hyperplanes contain the origin. Let II be the set of such bound­

ing hyperplanes. We assume that no two half-spaces of H> are bounded by the same 

hyperplane of lI. We also assume that the hyperplanes of H have as their common 

intersection the single point O. Otherwise, the algorithm is applied in an appropriate 

lower dimension. 
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The output of Aigorithm MAXCO~IP will be the incidence graph I(H), whose 

arcs will be augmented by the differential values, as well as two pointers, maxstrict 

and maxnonstrict, to proper faces f and 9 of I(H) attaining the maximum values of 

Xo(f) and Xc(g), respectively. 

Each record of I(H) has space reserved for Iabeling purposes. Each facet of 

the arrangement, being contained in precisely one hyperplane h(J) of H, shaH have 

storage space for a parameterization of the unique half-space h>(f) of Il> bounded by 

h(J). With each face / of the arrangement, we will aiso reserve space for two integers: 

the quantities Xo(J) and Xc(J). With each arc f -+ 9 in I(H), we shaH reserve space 

for the differential values X+(J,g) and X-(J,g). In additioil, we maintain a queue Q 

of pointers to nodes of I(H). 

MAXCOMP 

(1) From the hyperplanes of H, and the half-spaces of H>, construct the ).omoge­

neous hyperplane arrangement A(H», including the differential values, using 

the modified incremental arrangement construction aIgorithm of the previous 

sections. 

(2) Choose any cell /0 of A(H), and mark it as being visited. Determine Xo(Jo) 

by testing the representative point of / for inclusion in each of the half-spaccs 

of H>. Set Xc(J) +- Xo(Jo). Set maxstrict +- j fo, and set maxnonstrict +­

i /0, Initialize queue Q to contain ilo. 

(3) If Q is empty, terminate. Otherwise, dequeue the pointer to face / frorn Q. 

(4) For every unvisited proper subface and superface g of / do: 

(4a) Using the equations (6.1) and (6.2), calcula te the quantities Xo{g) and 

Xc(g) from the differential values X+(J,g) and x-(f,g), and store them 

mg. 

(4b) Let go and gc be the faces pointed to by maxstrict and maxnonstrict, 

respectively. If Xo(g) > Xo(go), then set maxstrict +- Îg. If Xc(g) > 
Xc(gc), then set maxnonstrict +- jg. 
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(4c) Mark 9 as visited, and enqueue ig onto Q. 

(5) Go to Step 3. 

Note that the breadth-first se arch strategy employed here is certainly not the only 

one possible: visiting every face of the arrangement could just as easily have been 

done using depth-first se arch techniques. AIso, upon construction, every facet of the 

arrangement may easily be associated with a pointer to the unique hyperplane of H 

containing it. 

The space required by Algorithm MAXCOMP is proportional to the size of the 

incidence graph I(H); that is, O(nm - 1). Certainly, the size of the queue Q may 

not exceed the size of I(H). The time required is proportional to the time taken 

to build the arrangement, plus a constant amount for every incidence between nodes 

of I(H). By marking the faces as visited when encountered, we are guaranteed 

that each incidence between faces f and 9 in the arrangement may be examined at 

most twice: once from f to g, and once from 9 to f. Since the time required to 

construct the arrangement is O(nm- 1), and the number of incidences between faces 

of a homogeneous arrangement is O( n m-l), the total time required by the algorithm 

is also O(nm
-

1
). 

If the input to the algorithm is the set of open ha.lf-spaces H> = po(np)), for 

sorne set of distinct labeled points P in Ed, then Lemma 4.2 implies that the faces of 

A(H» pointed to by maxstrict and maxnonstrict correspond to maximal strict and 

non-strict linearly separable components of P, respectively. Let these faces be 90 and 

gCl respectively. More precisely, a maximal strict component of P is the subset Co of 

P such that Po(l(Co)) is the set of aU half-spaces of H> containing 90' If H~ is the 

set of closures of half-spaces of H>, then a maximal non-strict component of Pis the 

5ubset Cc of P such that Pc(ÏCCc )) is the set of aIl half-spaces of H~ cont'1ining gc· 

These components may be explicitly obtained in O(n) time by testing representative 

points of go and 9c for inclu:sion in the half-spaces of H> and H?,. 

The represcntative points of go and gc, with one possible exception, correspond to 

hyperplanes in E d that are weak strict and non-strict !inear separators of the red and 

green points ot P. The exception is the set of points on the pair of rays r:o and -roo, 
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discussed in Section 4.3. Since these rays are contained in cells of A(H», and sinee 

the cells are otherwise composed of rays corresponding to valid separa tors in E d, rays 

of go and 9c associated with weak strict and non-strict linear separators, respectively, 

may easily be obtained. 

If the input to the algorithm is instead the set of open half-spaces H) = O'o(:s(P)), 

then Lemma 4.5 irnpIies that the faces 90 and gc correspond to weak strict and non­

strict spherically separable components of P, respectively. The components rnay 

be obtained in O(n) time as in the linear case. Although sorne rays of 90 and 9c 

correspond to valid weak strict and non-strict spherical separators of P, there are 

two cases where sorne rays are not. Sorne care is therefore required in the choice of a 

representative ray frorn these faces. 

Let f be a face of the m-dirnensional arrangement A( H» containing the ray 

r ri. Ë:. Recall that Ë: is the set of aIl rays in Ëm corresponding to degenerate and 

non-degenerate hyperspheres of Em-2. If r corresponds to a hypersphere with squared 

radius "~ 0", then the rays of f n Ë': correspond the non-degenerate hyperspheres 

of Em-2 not containing or intersecting any of the points of P. Hence any empty 

hypersphere guaranteed not to intersect the points of P will do as a representative 

of f. If r corresponds to a degenerate hypersphere, we have seen in Section 4.5 that 

any other ray of f n Er;' will adequately represent of f. 
We surnmarize these results in the following theorem: 

Theorem 6.5 Let P be a set of n distznct labeled points in Ed. A weak strict or 

non-strict linear separator of P may be found in O(nd ) time and space, and a weak 

strict or non-strict spherzcal separator may be found ln O( nd+1) time and space. 

If more than one weak separator Îs desired, lists of pointers to candidate faces 

may be maintained during the visiting of the faces in Algorithrn MAXCOMP. The 

list of faces may be exarnined afterwards for suitable separators. The time and space 

required to maintain these lists is dominated by the complexity of the homogeneous 

arrangement. If non-degenerate weak spherical separators are sought, then those faces 

who se constituent rays correspond solely ta degenera,',e hyperspheres may be easily 

identified and disregarded once visited. 
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Finally, the number of linearly or spherically separable subsets of P, of fixed 

cardinality or of all cardinalities, either strict or non-strict, may be counted by means 

of a slight modification of Algorithm MAXCOMP, where the suros of the formulae 

of Corollary 5.18 and Corollary 5.19 are maintained during the visiting of the faces 

of the homogeneous arrangement A(Po(Ï(P))) or A(ao(8(P))), as appropriate. The 

time and space complexities of the algorithm justify the following theorerns: 

Theorem 6.6 Let P be a set of n distinct labeled points of E d, such tltat no hyper­

plane con tains every point of P. Let k be a positive in/Eger. Then 

1. the number of non-emply non-strict linearly separable subsets of P of fixed car­

dinality k, 

2. the number of non-empty strict linearly separable subsets of P of fixed ca rdin a lit y 

k, 

9. the total number of non-empty non-strict linearly separable subsets of P, 

4. and the total number of non-empfy strict linearly separable subsets of P 

may aIl be calcu/ated in O(nd) time USÎ'lg O(nd) space. 

Theorem 6.7 Let P be a set of n dzstznct labe/ed 1loillts of Ed, such fILat no hyper­

plane or hypersphere contains every point of P. Let k be a positive integer. Then 

1. the number of non-empty non-strict spherically separable subsets of P of fiud 

cardinalil y k, 

2. the number of non-empty strict spherically separable subsets of P of fixed car­

dinalily k, 

9. the tolal number of non-empty non-strict spherically separable subsets of P, 

4- and the total number of non-empty strict spherically separable subsets of P 

may ail be calcu/ated in O(nd+1) time using O(nd+1) space. 
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6.5 Space Reduction Using the Topological Sweep 

One of the drawbacks of the constructive approach of the previous section is that aIl 

the faces of the dual arrangement are constructed before any of them are scanned. 

Despite the intuitive appeal of exploiting the full structure of the arrangement, we 

rnay save a great deal of space by having no more than a limited number of faces on 

hand at any given tirne. This section is devoted to the application of a "topological" 

sweep line algorithm of Edelsbrunner and Guibas [EG86] towards the solution of 

sorne variants of the weak separation problems. The paradigm in its basic form is a 

two-dirnensional one: it may be used to constr'lct a planar arrangement, but as yet 

there is no known extension for arrangement construction in higher dimensions. This 

is not to say that the topological sweep has no benefits towards solving problems 

in dimensions greater than two: in the same paper, the authors describe how the 

two-dimensional topological sweep may be used to enumerate (but not construct) the 

faces of arrangements in higher dimensions. 

We will first provide a brief overview of Edelsbrunner and Guibas' general topo­

logical sweep line method in two dimensions. For further details of their method, the 

interested reader is referred to [EG86]. 

Let 1 be a line in the plane, parameterized using cart,esian coordinates. Line 1 will 

be said to be vertical if 1 is a translate of the cartesian x2-axis. If 1 is non-vertical, a 

point x E E2 will be said to be above 1 if the ray parameterized by x + '\(0,1) does 

not intersect l, w here ,\ is restricted to be non-negative. Point x is below 1 if the same 

holds true with ,\ instead restricted to be non-positive. 

Let L be a set of n non-verticallines in the plane, and let A( L) be the arrangement 

of these Hnes. The unique region IT above alllillcs of L will he called the top region of 

A(L), and the unique region lB helow alllines of L will he called the botlom region. 

A topological sweep line may be vicwed as a sequence of cells and edges of A( L), 

called a cut, such that each eut edge is contained by a different line of L, and every 

line of L contains an edge in the eut. The edges of the r:ut are onlered from top to 

bot tom in that the first edge is on the lower chain of IT, the last edge is on the upper 

chain of lB, and two adjacent edges e, and e,+l are on the upper and \ower chains of 
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Figure 6.5: Examplcs of cuts in an arrangement of liues 

sorne eeU j, respectively. The sweep itself consists of a sequence of cuts, ordercd from 

\:left" to "right". The first or "leftrnost " cut is the seq1lence of left unooundcd edges 

of At L), and the last or "rightmosC' cut consists of the right unbollnded edgt's. 1'wo 

adjacent cuts Kt and 1\,.,-1 differ in thcLt exactl}' one vertex v that is to Hw right of 

1(, is to the left of J{1+l ()ee Figure 6.5). The advancement of the SW('Cp tille from 1(. 

to ](1+1 past v is called ,lU e/cTIlwlar1j sicp. 

Edelsbrunner and Guibas Uhe data strudures they calI horizon trees to store in­

formation concermn!S the regions intersected by the sweep tine. They show that the 

storage required to maintain these trees is O(n), enahling the en1ire sweep to he per­

formed using only linear storage. Initially, thcse trCf'S contain the upper and lower 

ehains of aH the [('gions of A( L) that are unbounded tü the left. As the swcep line ad­

vanees past vertex v, the regions that have v as their unique leftmost bounding vertex 

(unique due to the absence of verticallines in A(L)) have their upper and lower ehains 

immediately available from the horizon trees. This allows certain attributes of new 

faces in the cut tü be ca\culated based on the attributes of the faces in the previous 

eut. Every face of A( L) is examined, sinee those regions without leftmost vertices are 

examined before the first elementary step, and each region having a leftmost vertex 
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must be examined during sorne elernentary step of the sweep. The worst-case time 

required by their algorithm is O(n2). 

Consider now the homogeneous half-space arrangement A(H» in E 3
, where H 

is the set of bounding planes of the half-spaces of H>. Every face f of A(H» 

of dimension greater than zero may be visited, and the quantities Xo(J) and X,;{J) 

produced, using the following application of the topoJogical line sweep algorithm: 

9- TOPOStVEEP 

(1) Produce two paraUel planes ha and hb which together intersect aU faces of 

A( H» except the vertex at the origin, as follows: 

(la) Set bigbl t- bigh2 t- 0 and degenl t- degen2 t- false. 

(lb) For every pair of planes ht, h, in H, for i =1= j, do: 

(lbl) Compute the rays Ut, and -Ul, of Ë3 in the intersection of hi 

and hJ • 

(lb2) Let u = (Ul' U21 U3) be aDY point of ùIJ • Then do: 
u2 

templ +-..::l... 
u'u' 
~ 

temp2 +- ~+ ); Ul U2 

if templ = 0 then 

degenl t- true; 

if temp2 = 0 then 

degen2 t- true 

elseif temp2 > high2 then 

high2 t- temp2 

endlf 

elseif templ > highl then 

highl t- templ 

end if 

(le) If degenl = faise then let v = (0,0,1); otherwise, 

(IcI) If degenl = false then let v = (0, V21 1) be a point such that 

d 2 1 h' V2 > 0, an V2 < l-llJghl; ot erWlse, 



CHAPTER 6. WEAK SEPARATION ALGORITHlvIS 86 

(lc2) Let v = (VI, v2, 1) be a point such that VI, V2 > 0, vi < I-h!gh2' 

and v . v < t-h}ghl' 

(Id) Set ha +- {x E E 3
1 v, x = I}, and Set ha +- {x E E 3

1 V· x = -I}. 

(2) In each of ha and hb do the following' 

(2a) Intersect the planes of JI and the half-spaces of H> with ha, realigning 

the coordinate :1.xes suc::h that no resulting line in ha. is vertical. Let L 

and L> be the respedive intersections of II and II> with ha. 

(2b) For aIl cells and edges f contained in the leftmost cut of A(L», explic­

itly compute Xo(f) and Xc(J). 

(2c) Visit the faces of A(L» using the topological swecp method. At each 

elementar~r step past vertex V, compute Xo(v) and Xc(v), as weIl as Xo(J') 

and Xc(J') for each new face f' in the eut. 

(3) Repeat Step 2 with hb replacing ha. 

Step 1 of the algorithm i5 an explicit construction of two planes inters(>cting every 

face of A( H) of dimension greatcr than zero. The parallel planes ha. and hb are 

constructed in such a way that the only faces of A( :1) that cou Id fail to he intprsected 

is the vertex at the 01 lljin, and any edge contained in the transI al\' of ha. and hb 

containing the origin. The orientation of ha and hb is choscn in arder to guarantee 

the impossibility of the latter. 

Once Step le is reached, the boolean variable dcgcnl holds the value false if and 

only if there exists no eùge of A(H» contained in the plane ho = {x E E 3 1 X3 = O}, 

and degen2 holds the value false if and only if therc exists no edgc contained in the line 

10 = {x E E 3 1 X1. = X3 = D}. If degenl is false, then ha and hb may be safely chosen 

to be translates of ho. Otherwise, we exploit the well-known reldtionship between 

the inner product of two vectors and the angle between them (sec [Bor69] for more 

details ). 

At Step le, the variable highl stores the value 

20 _((Q,Oll)'U)2 U5 
cos 1 - \lull = -u .-u' 
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highl= ....L 
U·U 

v 

(0,0,1) 

Figure 6.6: Finding a plane avoiding aH edges of A( H» 

87 

where 01 is the maximum of the angles between the ray Poo = {,\(D, 0,1) E Ë31'\ > O} 

and the edges of A(H» located in Ëk = {i E Ë31 rao . x > a} (see Figure 6.6). The 

variable bigh2 stores the value 

where O2 is the maximum of the angles between the ray roo = {.\(O, 1,0) E Ë3
1 À> O} 

and the projections of the edges of A( H» loeated in Ëit onto the plane ho. The 

reader is innted to verify that the point v is chosen such that the edges of A(H» in 

Ëit are guaranteed not ta lie in hv = {x E E 3
1 v . x = O}, and those in ho (if any) are 

guaranteed not to lie in hv n ho. 

The time required to perform Step 1 is of the same order as the maximum number 

of edges of A(H» - that is, O(n2). Since no attempt 1S made to store aU pair-wise 

intersections at the same time, the storage required for this step is O(n). 

In Steps 2 and 3, the topological line sweep 1S performed in the planes ha and 

hb' The computation of XO and Xc may be performed in O(n 2
) total time for the 

faces of the initial eut. At each elementary step, the time required to calculate the 

values of Xo and Xc for the new faces of the eut is proportional to the number of these 
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new faces. Henee this computation docs not change the asymptotic time (or spac.e) 

complexity of the algorithm. 

TheOl'em 6.8 Let H> be a set of open ha/f-spaccs of El tdlOSC bounazng plancs 

contain the origin, such thai no two hall-spaces shrzre the same bounding plane. Then 

XO and Xc may be calcu/aled for CL'e7'y face of the h07T!ogcneous half-spllcc arrangement 

A(H» in 0(11 2) time USlng O(n) spuee. 

Three minor refinemf'nts of Algorithm 3-TOPOSWeEP are worthy of mention 

First, we observe that by the syrnrnf'try of thf' arrallgemf'nt A( Ii», Steps 2 and 3 may 

be compressed into one pass over either ha or lib. Secondly, the compl\tatJon of \0 and 

Xc for the faces of the initial eut may be calcuJated in lint'ar time instcad of quadratic 

time, taking advantage of the horizon trcc data structure. In any cvcnt, this has 

no effect on the overall asymptotic time complexity. Thirdly, a [,lce f maxinllZinr; 

Xù(f) ma)' be produeed, as wel1 as thosc half-spaCf's of Il;> containing l, Wll hout 

changing the overall complexity. A face f is abandaned in favour of d. fan'" 9 onJy if 

\o(f) > Xo(5); since \0 ma)' attain only at most n + 1 different valu(',>, thi~ change 

D1ay only occur at mast l! lllnes. Eac h sueh replal'C'mcllt may hl' pf'l fornwrl III O( n) 

tirne. and thus the total cost in time ta II1d.intain this li!>t of half-spa( es i:, O(n 2
). 

Naturally, the same mcthods may be applied in the case of XC' 

In their paper, Edelsbrunner and Gllibas observed that the faces of an arrange­

ment of hyperplanes (not necessarily homog('nt~lls) may be visited by sW('i'ping alonl~ 

two-dimensional slices of the arrangement. We shall now apply Lilis gCllcral Lech 

nique to the weak separation probJerns of the previolls section. lI!:ling AJgorithm 3· 

TOPOSWEEP as a "primitive operation". 

Let H> be a set of n half-space:, in Em, whose boullding; hyperplane::, contain the 

origin, such that no two hyperplanes of H> share a common bounding hyperpJane. Let 

H be the set of these bounding hyperplanes. We shall place the following additional 

restrictions on the hyperplanes of H: every J hyperplanes of II must have an (m- J) 

fiat as their common intersection, for aH j = 1,2, ... , m. Furthermore, no J 1- l 

hyperplanes may intersect in a comrnon (m- j)-flat, for all ) = 1,2, ... , m - 1. The 

hornogeneous half-space arrangement A( H» shaH then be said to be sim pie. 
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One characteristic of simple homogeneous arramgements is that (other than at 

the origin) there are no degeneracies. Every hypeq>lane avoiding the origin. when 

intersected with a simple homogeneous arrangement in Em, produces a simple non­

homogeneous (m-l)-dimensional arrangement. If th.' homogcncous arrangement is 

the image of a set of labeled points under the transforn ~1 of Chapter 4, then the strict 

and non-strict components are easily seen to be the Sdme. For this reason, in the 

algorithm to follow, we will not distinguish between Xo Q',:'1d Xc, and will concentrate 

only upon the cells of Em. AIso, the simplicity of A(H> 1 implies that every subset 

H' consisting of d - 3 hyperplanes of H must intersect in a common 3-fIat cp. The 

intersection of the remaining hyperplanes and their corret)\onding half-spaces III r.p 

forms a (simple) three-dimensional homogeneous half-space ,lrrangement in cp. 

The input to the following algorithm is a set of half-spacc~" H> in Em, for m > 3, 

and their boullding hyperplanes JI, as described above. The output is a ray of Ëm 
and a list component of the half-spaces of H> containing this ray. 

m-TOPOSH'EEP 

(1) Initializc component +- 0. 

(2) For every subset H; consisting of m - 3 half-spaces of H> do: 

(2a) Let H' be the set of bounding hyperplanes of H;, and let <p be the 3-fiat 

formed by the common intersection of the hyperplanes of Hf. Let H­

and H; be the intersections of the members of H \ If' and H> \ H; wi th 

<p, respectively. 

(2b) Apply Algorithm 3-TOPOS\VEEP to determine a face f of A(H;) con­

tained in the greatt:'st number of half-spaccs of H;. Let Ïl> be the set 

of these half-spaces, 

(2c) If 1 component 1 < IH> U H;I, then set component +- H> U H;. 

(3) Find a ray contained in the cornmon intersection of the half-spaces of compo­

nents, using any convenient method (such as linear programming). 
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Each iteration of Step 2 may be perfùrmed in O( n 2) time using O( n) space, due 

to the referf'nce to Aigorithm 3-TOPOS\vEEP in Step 2b. Sillcc there are (m~3) 
iterations, Stf'p 2 requif{~s O(n m - 1

) time o\'crall. If mi:, taken ta be fixed, the O(n) 

linear programming algorithm of ~kgiddo [~regS-!] nldy be used to perform Step ;3 

Clearly, the complexity of Step 2 dominates the algorithm. 

The restriction that the h0n1ogcrwous arrangement A( H» be simple bt'comes 

especially important at Step ~c. In il. simple arrang('m~nt, the cOllnterpart in A(H» 

of every 3-face in A(H;) must be in the clo'illr(,s of prccisdy 2m - 3 celIs of A(H». 

Rence, wc are guarantrcd that the common in!('r'iection of the open half-spaCf's of ÏI > 

i5 non-empty. Otherwisc, we would be forccd to conduct a search of the arrang('ment 

A(ÎI» to find the largcst-cardinality subset of fI> having a non-empty intersf'ction. 

Even given the degeneracy of this arrangement (the half-spacps of fI> all contain <p), 

the potential size of this arrangemf'nt i5 O(n m - 3 ) - much too expcIlsive to perform 

in each of the (m~3) iterations. 

The results of Chapter 4 - notably Lemmas 4_2 and 4.5 - tog('ther with AIgo­

rithm m-TOPOS\VEEP imply the following: 

Theorem 6.9 Lel P be a set of n dzstmrt labe/cd pontis in E d . If the poznls of P 

are in general posItron, then a weal-.: sinct or non-sind lincar separa/or of P may be 

found in O(n d
) tzme and O(n) spI/ce. Fu rlherm ore, if no d + ~ pomts are conlamfd 

in a common hypcrsphcrc, then a weak stnct or non-strict sphcriclli separa/or may be 

found ln O(ndt1 ) ttmc andO(n) space. 

The restrictions on the simplicity of the homogf>neous arrang(>nH'nts, and by ex­

tension on the points of P, may be eliminatcd if non-stnct separators are sought. 

This i5 true since only the edges of the homogeneous arrn.ngement nc('o. bt' examined, 

and each edge of the arrangement is contained in sorne of the ~-dim('nsional slices 

examined by Aigorithrn rn- TOPOS\vEEP. This algoritbm Blay easily be modified to 

5earch for thcsc edges, and for this reason, we shall not repeat the ddails_ Since the 

5implicity of the arrangement is no longer required, wc have the following corollary 

of Theorem 6.9: 
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Corollary 6.10 Let P be a set of n distinct labeled points in Ed. A weak non strict 

linear separator of P may be found in O(n d ) tzme and O(n) space, and a weak non­

strict sphencal separator may be found in O(nd+l) llme and O(n) space. 
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Chapter 7 

Wide Linear Separation 

Algorithms 

7.1 Introduction 

In the previous chapter, we examineo ways in which separators of Iab/lled point sets 

of various types could be obtaineo. Unfortunately, thesc nwthods do not roncern 

themselvcs \VIth the "qlldlIt: " of the sl"'parators produced. 1'\\'0 separators may e.u:h 

determinc maximal separable componŒh. hut Olle may be greatly supf'lior to the 

other when employed as a dl~criminant function Sorne of the wdl-known mcthods 

for obtaining linear scparators, such as straightforward linear programming, too often 

yield extreme separators who~c effcctivcncss as a di!:Jcrirninant fundion is dirninishcd. 

One might prefer instead a separator that doc,> not. approach the points it scparates 

For the ca~c of linear separation of pOlTll sets. one mf',l"lIrc of th(' quality of a 

strong or weak ~('parator may lw the nunirnurn orthogonal Eudldcan di!:Jtall( e hetwcen 

the hyperplane and the points of the maximal component it det.erlllincs. Using this 

critcrion, a weak separator ha of labeled point set P would he judgcd ta be ((better'l 

than another weak separator h~ if 8(Pa, ha) > 8(Pb, hb), whcrc Pa and Pb are the 

maximal components of P \VIth respect to ha and hb. respectively. If ha is such that 

8(Pa, ha} ~ 8(Pb, hb) for aIl other wcak separators hb, then ha can be said to be a 

widest weak separator. Naturally, these concepts extend to strong separation as weil 

92 
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widest strong separator strong separator 
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Figure 7.1: A widest strong separator - unweighted case 

(see Figure 7.1). 

A topie closely relatcd to wide strong linear separation of point sets is the com­

putation of the minimum distance between disjoint convcx polytopes, or more pre­

cisely, two points determining this minimum distance. It is not dlfficult to show that 

the perp~'ndicular biscdor of the line segment joining these two points is a widest 

strotlg linear separator of the polytopes. In two dimensions, EJelsbrunner [Ede8:.:!; 

showed that, with preprocessing, this line segment may be obtamed in O(log n) time. 

Schwartz [SchSl] and Chin and Wang [C\VS2] have also studied this problem. In 

three dImensions, Dobkin and Kirkpatrick [DKS.5] have obtained an O(n) time solu­

tion. Although thcsc rnethods rnay ail be adapted t.o find wide strong linear separators 

of srts of points, the)' require that the co m'ex hull of the point sets be given. The 

next section shall be concerncd '.vith a higher-dirnensional O( n) time solution to a 

more general form of tlH' Wlde separation problem. 

In sorne applications. sorne points of P may be more "import.ant" t.han others. 

Consider the case where every point Pl of P is not only given a label, but also a 

positive real-valued \\!eight w l • The wezghted orthogonal Euclidean distance between 

p, and a hyperplane h is then simply the product w, 8(p" h). A second measure of the 
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quality of a we.\k linear separator is then the minimum weighted orthogonal distance 

betwcen the separator anJ the points of Its maximal component. A wt>ak separator 

having the gred.tl'st stlch minimum di!>t.:lnce is thcn callt'd a 'U'ulcJt wf.tghted wt'ak 

separator. The lInweightt'rl case is !>imply a spe.ial instance of the wpighted case 

where "",', = 1 for aIl puints P, E P Accordingly, for the rnost part, we shaH restrict 

our diSCUSSion in this chapter to the weightl·J case' In this context. we will o[ten refer 

ta widest weighted linear scparators as sim ply "widt''it lillt'ar separatol s". 

In sorne situations, a set of labt>led points ha~ no widcst strong or weak lincar sep­

arators. For imt,ance, if the points of P all shan' the SMl1e lalwl. thell any hyperplane 

avoiding the convex hull of Pis a strong separator of P. This ~j('parator rnay Le moved 

out ta infinity in sllch a way that the minimum (weighted) orthogonal di:,tance to the 

points of P diverges ta infinity. In faet, whenevcr P h,\.8 il maximal strict linearly 

separable componcnt comi!>ting of points shanng a common label, then therc is no 

widest weak separator of P. It is easily Scel~ that this i!> the only situation where a 

widest weak separator docs not exi::,t. 

By the criteria given above, a non-strict linear separator that contains some point 

of P is a very poor separator indeed. In the previolls chapter, wc hdV(' scen how weak 

non-strict sepdrators may be obtained; strong non-strict separa tors ma)' be obtained 

using linear programming tt'chniquc'i. For this rC'<lson, wC' will only cOn'iider the strict 

aspect of the wide strong and we.tk linear separ,ttion problems. 

In this chapter, wc will see how wlùe stl'ong and wCdk strict linear sf'parators 

of labeled point sets rnay be dctermined. In Section i.l, wc shaH examine how 

the prablem of finding wide lineal' separators of lalw\C'd sets of points relates ta the 

problem of finding linear scparators of labeled sets of hypersphcres. 

7.2 Wide Strong Linear Separation 

Let P = {Pl, P2,'" ,Pn} be a set of n distinct labeled points in E d
, and let w, weight 

associated \Vith Pli for aIl z = 1,2, ... , n. Let the (d+l)-tuple h = (h ll h2 , ••• , hd+d E 

Ed+l represent the hyperplane in E d described by {x E Edl h . x + hd+l = O}, 

using cartesian coordinates, where h is the non-zero normal vector (hll h2 , ••• ,hd). 
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Given any (d+l)-tuple z, we will say that z is the d-tuple formcd by taking the first d 

coordinates of ::. If two (d+ 1 )-tuples a and !3 represent the sa me hyperplane, wc shaH 

say that Q: and f3 are equit'alent. and denote this by Q: == ;3. The following straight­

forward observation illustrates the degree of freedom in the choice of (d+ 1 )-tuple ta 

represent a given hyperplane: 

Observation 1.1 Let Q: reprcsent a hyperpillne ln E d• 

1. The (d+l)-tuple f3 loS equivalent to a if and only if there exists sorne t f 0 such 

that ;3 == ta, and 

2. Given arzy k > 0, there exists (d+l)-luple f3 such that f3 == Q: and llfill = k. 

The orthogonal Euclidean distance between a point x E E d and a hyperplane h 

is given by 

(see [Dor69]). If point x has weight W > 0 assigned to it, then the weighted orthogonal 

Euclidean distance between x and h is given hy 

C( h) _.,lx.k+hd+ll WvX, -w _ 

11 h 11 

The expression 

has the same magnitude as ..... ' 6(x, h), but the sign depends upon which open halfspacc 

of h contains x. 

Let P = {PI, P2, ... ,Pn} be a set of n distinct labeled points in E'i, and let W I > 0 

he a weight associated \VIth the point PI E P. Let the set of red points of P he called 

R. and the green points be called G. Let fl(P) = {1l(Pl),Il(PZ),." ,fl(Pn)} be the set 

of (d+l)-tuples defined by Il(PI) = {/ll(PI),1l2(PI),'" ,lld+l(Pt)}, wherc 

if PI E R, 

if PI E C, 
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for j = 1,2, ... , d, and J-ld+1(p,) = W,. Clearly then, if the înequality 

is true for ail i = 1,2, ... , n, then h is a strong strict linear separator for Rand G. 

Conversely, if Rand Gare strictly linearly separable, then their strong separator has 

sorne parameterization h satisfying the illequality for aIl i. 

The problern of finding a widest strong linear separator for P is then reduced to 

the problem of findillg a (d+1)-tuple h satisfying 

maXlmlze 
. J-l(p,) . h 

mm, 11 h11 . (7.1) 

If the optimal value of this problem ii::l negative, then the points of P cannot be 

strongly separated by a hyperplane. Otherwise, the op+' imal value is the minimum 

weighted orthogonal distance from h to the points of P. 

We now establish a strong correspondence between (7.1) and the following convex 

quadratic minimization problem with n constraints and d -t 1 variables: 

mmlmlze ('r.2 ) 

subject to 1 

In [MegS4,!\lcgS3], 11egiddo has shown that convex quadratic minimization problems 

in m variables and n constraints may be solvcd in O(n) time and space, assuming 

that m is fixed. However, the time bound for his method has a "constant" of propor­

tionality doubly-exponential in m. More recently, Clarkson [Cla861 and Dyer [Dye86j 

independently impr0ved his algorithm sllch thd the new constant uf proportionality 

is exponential in m 2. Thus Probl('m (7.2) may be solveJ in O(n) Lime and space, 

assuming that d is fixed. 

The next three lem mas describe the relationshlp betw('cn the formulations of (7.1) 

and (7.2). For their proofs, wc define ~(h) as the value of (7.1) for hi that is, 

A(h) _ . IL(p,)· h 
u - mm - . 

1 11 h 11 

Also, we observe that the origin satisfies none of the constraints of (7.2), and thercfore 

cannot be cOlltained in the feasibility region. 
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Lemma 7.2 Problem (7.2) has a feasible solution if and only if there exists sorne 

feasible solution a of (7.1) such that ~(Cl) > O. 

Proof § 1 Let Cl be a solution of (7.2); that is, min J.L(p,). 0: > 1. Then ~(a) = 
1 

Il!U > o. 
1: 1 Let 0: be a solution of (7.1) such that 6.(0:) > O. Observation 7.1 implies that, 

for any k > 0, there exists (d+l)-tuple!3 == Cl such that Il.811 = k. Since 6.({3) = ~(o:), 
choosing k = ~~CI) gives m}n Jl(PI) .!3 = k6.(o:) = 1. Sin ce fi satisfies the constraints 

of (7.2), Problem (7.2) is feasible. 0 

Lemma 7.3 Problem (7.2) has an optimal value of zero if and only if Problem (7.1) 

is unbounded. 

Proof 1 ===? 1 Let 0: be an optimal solution of (7.2). Then 11611 == o. 
If the feasibility region of (7.2) is contained in the line {x E Ed+lll1xll = A}, then 

the origin must satisfy sorne constraint of (7.2), which is a contradiction. Hence there 

exists sorne f3 feasible for (7.2) that is not contained in this line. By convexity of 

the feasibility region, every (d+lHuple of the form ,Ct) = t;3 + (1 - t)a is feasible 

for (7.2), for aIl t E (0,1]. Since 11611 = 0, \VC have Ili(t)11 :::: tll;3l1. Furth('rmore~ 
min Il(p,) ·,(t) 2 1 irnplies that 6(J(t)) ? i. Therefore (7.1) is unbounded. 

1 

1 ~ 1 If (/,1) is unbounded, there must exist an infini te sequence of solutions (O:J)~l 

such that 6(0:)) diverges monotonically to infinity as j -+ 00. By Observation 7.1, 

each 0'., is equivalt"nt to sorne f3J such that 

- 1 
111']11 = ~(o:,)' 

Since A(O'.J) = ~(!3J)' we have min Jl(Pl) . fJJ = 1, and thus fi, is a feasible solution 
1 

of (7.2). ~loreover, each l') 1S contained in the hyperplane Il(p,) . h = 1 for sorne 

i E {l, 2, ... , n}. Also, since IIS)II ~ ~(~tl' each of the /3] are confined to the closed 

and boundcd region 

(Q {h E Ed+lll'(p.l . h; 1}) n {h E Ed+llllhii < 1/ t.(a,l}· 

Therefore the limit of (,B))~1 as j .... 00 is a feasible solution. Since lim IIP,1! = 0, 
J-CO 

Problem (7.2) has optimal value zero. 0 
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Lemma 7.4 Let Ct be an optimal solution for (7.2), with optimal value greater than 

zero. Then Ct is also an optimal solution for (7.1). 

Proof Let]{c. = II~II' Since a is optimal for (7.2), we have 

min J.l(P.) . Ct ~ 1, and 1lêi:1I > o. 
$ 

Renee Kat ~ A(a). Assume that Ci is not optimal for (7.1)0 Then there must exist 

sorne solution (3 for (7.1) such that Â(j3) > A(a). \Nithout 10ss of generality, by 

Observation 7.1, we can choose 13 such that II~II = 11&11. Then 

that is, 1 < min J.l(p,) . /3, thus 13 is also optimal for (7.2) . 
• 

Let /3min = min J.L(p,) . (3 and let Î = _13
1 

(3. Let Îmm = min J.L(Pi) ';. Then 
1 rrun 1 

. J.L(P.) . (3 1 
;min = mm j3 =. 

1 min 

Therefore 1 is a feasible solution for (7.2). But 

lIill = Il j3~n~1I = ~~~ < II~II = lIâll, 
sinee (3min > 1. This contradict.s the optimality of Ct for (7.2). Therefore a is optimal 

for (7.1). 0 

These three lemmas together imply that the solution technique for com'ex quadratic 

minirnization problems due to Megiddo may be applied ta find widest strong strict 

linear separators of a set of labeled points P. Lemma 7 2 implies that the points of P 

are strictly separable if and only if the minimization prohlem has a feasible solution. 

Lemma 7.3 implies that there is no upper limit on the "width" of strong separators 

of P if and only if the minimization problem has an optimal value of zero. Recall 

that this situation rnay occur only if aIl points of P share the same labeling. 

Theorem 7.5 Let P be a set of n distinct labcled pomts of E d
, for some fixed di­

mension d. Let each of the points of P be associated wilh sorne positive weight. Then 

a widest strong strict linear separator of P may be found, or ils non-existence deter­

mined, in O(n) time. 
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7.3 Wide Weak Linear Separation 

Consider now the case where the set of labeled, weighted points P has no strong strict 

linear separators. The convex quadratic minimization problem (7.2) on J1(P) would 

then be infeasible. However, if Q i5 a subset of P for which the minillÙzation problem 

is feasible on J.L( Q), then the points of Q are separable, and vice-versa. 

One way of finding a widest weak strict linear separator of P is to construct the 

homogeneous dual arrangement A(po(i(P))) of P in Ed+l, using the transformations 

of Section 4.2 and Algorithm MAXCOMP. As was discussed earlier, the output of 

the algorithm optional1y includes a list of pointers to the faces of the arrangement 

associated with maximal strict linearly separable components of P. For each cen in 

the list, we may produce its corresponding maximal component in O(n) time, and 

then compute the widesf strong linear separator of this component, also in O( n) time 

using the methods of the previous section. The widest weak strict linear separator of 

P would then be simply the widest separator found over aH the maximal components 

of P. 

Let Rand G be the points of P labeled red and green, respectl\ ely. By Co rol­

lary 5.9. we know that an asymptotic worst-case bound on the number of maximal 

linearly separable components is O(kn d- 1 + 1), where k is the interpenetration of 

Rand G. The tinw reqllired to find a widest separator using this approach is then 

O(n d
) +O(n )O( kn d- 1 + 1) = O( (k+ 1 )n d

), if the problem dimensionality d is treated as 

being fixed. As the value k gro\\'s, this bound becomes more and more unsatisfactory. 

In the case where the points of Pare unweighted, the upper bound given above 

may be redl1ceJ. To do this, we shaH examine the facets of cells of A(Po(i(P))) 

associated with maximal components of P. 

Let f be a ecll of A(po( /( P))) dctcrmining a maximal component, and let Q be the 

subset of P su ch that the hyperplanes of p(Ï( Q)) each contain a facet of l and every 

sueh facet is contalned in sorne hyperplane of p(/(Q)). The ceIl f must be ('ontained 

in each of the open half-spaces of Po(Ï( Q)), by the following argument: let q be a point 

of Q su eh that the half-space Po( Ï( q)) does Ilot contain f. Let 9 be the cell sharing 

with f the facet of f eonlained in p(/(q)). Then Xo(g) = Xo(J) + 1, contradicting the 
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assumption that f determines a maximal component of P. 

One conclusion that may be drawn from this is that the set of separa tors of 

the maximal component associated wi th f are the same as the set ,f strong linear 

separators of Q. For the purposes of finding any weak separators of P whose duals 

lie in J, only the points of Q are significant; aU other points of Pare redundant. 

With this observation in mind, we now outline a constructive algorithm to find a 

wide (unweighted) 'Neak strict linear separator of a set of n labeled points P in Ed, 

for sorne fixed d. The input accepted by the algorithm is a set of n labeled points P 

in Ed, and the output is a widest weak strict linear separator widest. 

WIDElVEAK 

(1) Let H = p(np)), and let H> = Po(<<P)). Set widest +- niZ and width +- O. 

(2) Construct the homogeneous half-space arrangement A(H» using Aigorithm 

MAXCOMP, producing a list L of pointers to celIs of A(H» corresponding to 

maximal components of P, and marking every facet according to the unique 

hyperplane of lI' containing it. 

(3) For e\'ery cell f rcferencf'd by a pointer in L, do: 

(3a) Let Q be the subset of P su ch that p(nQ)) is the subset of If whose 

hyperplanes contain facets of Q, 

(3b) Using the techniques of Section 7,2. sd templVidest to be the \\ .dest 

strong linear separator of Q, and set tempWldth to be the minimum 

(umveightcd) orthogonal distance from this separatol to the points of 

Q. 

(3c) If tempwidth > width, then set widest +- tempwidest and width ~ 

tempwidth. 

If d is considered fixed, the time cost of executing Steps 3a, 3h, and 3e for a given 

cell f is O(IQl)i that is, of the order of the number of incidences between ceIl f and 

facets of A(po(<<P))). If these steps were performed over all cells of the arrangement, 

then the total time required to execute Step 3 is of the same order as the total 



1 

1 

CHAPTER 7. \VIDE LINEAR SEPAR . .\TION AL GORITHA[S 101 

number of incidences between cells and facets. In Section 6.2, we saw that the size of 

the incidence graph of a homogeneous arrangement in Em was O(nm-1). Therefore, 

Step 3 requires only O(nd ) total time. 

The weighted and unweighted results are both summarized in the following theo­

rem: 

Theorem 7.6 Let P be a set ofn distinct labeled points of E d, for sorne flud dimen­

sion d. Lei k be the interpenetratzon of the points of P, and let each of the points of 

P be associated with sorne positzve weight. Then a '!L'ldcst weak strict [wear separator 

of P may be Jound, or ils non-existence dett.rmined, zn O((k + 1 )n d
) time and and 

O(n d) space. Furthermore, if the weights are identical, then the lime requzred drops 

to O(nd
). 

If the points of P are in general position, the topological sweep method outlined 

in Section 6.5 allows the determination of the strict linear interpenetration of the red 

and green points of P in O(nd) time, but using only O( n) space. In a second pass, 

knowing thls intcrpenetration value (caH it k), each celi J of A(po(<<P))) associated 

with maximal components of P may be enumerated. Unfortunately, the facets of J 
are not available using the sweepline method, even though the maximal component 

corresponding to f may be produced in linear time, as weIl as a widest strong linear 

separator of this component. If this is performed for evcry such celI f, we may 

determine a widcst weak lincar separator of P, in D( n d+ 1) time. 'Ne conclude this 

discussion with the following theorem: 

Theorem 7.7 Let P be a se! of n dtstinct labeled points of E d in general position, 

for sorne flud dimenslOn d. Lel each of the points of P be associated wzth sorne 

positive uczght. Thcn a widest wcak strzct iinear separator of P may be found, or ils 

non-existf;.ncc deicrmzned, in D(nd+1
) time and O(n) space. 

7.4 Linear Separation of Hyperspheres 

The problem of finding a widest strong linear separator for a set of unweighted labeled 

points P is related ta the problem of finding a strong lincar separator for a set of 
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hyperspheres of varying radii, as \';e shaH show in this section. 

Let S = {SlISZ, ••• ,sn} be a set oflabeled hyperspheres in Ed, where each Si is 

defined by 

2. its positive radius rad(s,) E R, 

and the label of St is eitheL red or green. Formally, 

If hyperplane h == (hl, h2, ••• , hd+1) is a strong non-strict linear separator of S, 

then the minimum orthogonal distance between the hyperspheres of Sand h is given 

by 

Furthermore, the sign of ctr(s,) . h + hd+l depends on whether St is labeled red or 

green. 

Consider the set of labeled points P == {PI,P2,'" ,Pn} with associated weights 

}V = {Wt,W2"" ,Wn }, such that p, = ctr(s,L with the same label as Sil and w, = 
raJ(~.), for aIl i = 1,2, ... , n. Then the expression 

min J.L(p~), h > 1 
11 h11 -

holds if and only if 

. Pi' h + hd+l > 1 mm w, if Pt is red, and 
, 11 h11 

. P, . h + hd+l > 
-mm w, _ 1 if P, is green. 

, I\h 1\ 

This in turn is equivalent to the [ollowing: 

mm 
ctr(s,) . h + hd+l 

> rad(s,) if s, is red, and 
IIl~1I 

-min 
ctr(s,) . h + hd+l 

~ rad(s,) if s, is green. 
lI il l\ 
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.. ' 
From this we may conclude that the problem of finding a strong non-strict linear 

separator for S is reduced to the problem of finding a (d+ 1 )-tuple h satisfying 

. IL (PI) . h > 1 mm _ 
1 IIhll-

where P is defined as above. Similarly, the problern of finding a strong strict linear 

separator for S is reduced to the problern of fin ding a (d+l)-tuple satisfying the strict 

version of the above inequality. The problem of finding a strong linear separator of 

a set of labeled hypcrspheres is simply a special case of problem of finding a widest 

strong strict linear scparator of a set of labeled points. Naturally, this problem may 

be solved using the same techniques as in Section 7.'2, \\'hich leads us to the following 

result: 

Theorem 7,8 Let S be a set of Tt labeled hyperspheres of E d
, for sorne fixed dzmen­

sion d, Then a sfrong st Net nr non-strict linear separator of S may be found, or its 

non-existence ddcrmincd, tn O( n) ttme. 

We shall now tackle the prohlem of finding weak linear separators ff)r S. If h 

is a (d+l )-tuple representing a hyperplane (Jf E d , by Obsenation 7.1, we haye the 

freedom to ff'strict Il h il to be aHvays equal ta 1. Hence any h with 11h11 = 1 satisfying 

Jl(p,) . h ~ 1 for all z = 1,2, ... , n 

corresponds to a strong non-strict linear separatcr of S, and any such h aIso satisfying 

the strict inequalities is a strong strict separator. 

Now, Id h be a (d+l)-tuple representing a hyperplane that is not a strong (non­

strict) separator of t.he hyperspheres of S. Let P' be the subset of an points p of P 

such that 

Jl(p) , h 2: 1, 

and let S' be the set of hyperspheres of S corresponding ta the points of p', Clearly, 

h is a strong separator of the hyperspheres of S', 

The constraints given above define closed (and open) half-spaces in E d
+!. We 

shaH denote the sets of these closed and open half-spaces by J(? and J( >, respec­

tive!y; the set of bounding hyperplanes of these half-spaces shall be called f{. Con­

siùer the non-hamageneous half-space arrangement A(I(» in Ed+l, Each face f of 
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A(I\» intersecting the hypercylinJer {h E Ed+1111hll = I} corresponds to a strict 

and non-strict linearly separable componem of the hyperspheres of S) depending on 

the number of half-sp<'ces of f{ > and f{ ~ containing i, respectively. As \Vith hornoge 

neous arrangements) w,~ will denote these numbers of half-spaces by \o(f) and '(c(f), 

respectively. Henee we may obtain \\eak strict and non-strict linear separators of S by 

constructing the arrangement A(1\" », and visiting the faces of the arrangement one 

by one. Of the faces intersectmg the hypercylinder. those al taining the maximum 

value of Xc correspond ta maximal non-stnct linearly sf'parable components of 5; 

those attaining the maximl.m value of '(0 correspond to maximal strict components 

of S. 

Since we have already de\ ~loped the toots that allow us to find these wf'ak sepa­

rators in the previous chapter, we will content ourselves with only a brief o\cn iew of 

the algorithm. The arrangement may be constructeJ using the original inn f'mf'rüal 

construction algorithm of Edelsbrunner, O'Rourke, and Seidel [EOSS6], modified to 

allow the calculation of differenti<d values. When visiting the faces of the arrange­

ment, the values of XO and Xc may be cornputed for evcry fd.Cf' ba!:>ed on the differential 

values, as in the algorithms of the previous chapter. 

Ta test whether the face f interseds the h) pere) IInJcr, the verticcs in the cIo!:>urc 

of f may be examined. The most effective way of pel formmg this i:, hy first testing 

the vertices of the arrangement, then th~~ cdg('s, 2-fc\Ces. and 50 on. U}) untIl the cells 

are tested. The result of the test (inside, outside. or intcrsectmg th(' hypercylinder) 

may be stored with each face for use when testing Its superfacc. The amollut of time 

required to test aU faces in titis manner is propoltional to the size of the éurangemenL. 

Once the desired face f has been isolated, any point of f eontained in the hyper­

cylinder may be selected as a tuple correspondlllg to the wcak (strict or nOIH,trict) 

linear separator of S. The worst-case time and space complcxity of the algorithm is 

bounded by the worst-case time and space required to build the non-homogl'neous 

arrangement in E'{+l: 

Theorem 7.9 Let S be a sd of n distinct labe/ed hyperspheres in E d • A weak strict 

or non-strict linear separator of S may be obtained ln O(nd+1) tmze and space. 
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Unfortunately, there seems to be no elegant \Vay to reduce the space cornplexity 

of this solution through the use of the topological s"'eep rnethod. The intersection 

test described above for f requires the knowledge of the faces in the closure of f -
faces which cannat be obtained during the sweep in dimensions higher than two. 



Chapter 8 

Conclusion 

In this thesis, we have explored the relationship between separable subsets ,Jf point 

sets and homogeneous arrangements, from both algorithmic and combinatorial view­

points, concentrating on the ob ject class of point set s, and the sC'parator classes of 

hyperplanes and hyperspheres. \Vith the notion of \a.:eak separation, a combinatorial 

measure of the separability of two sets ha~ been introduced, and the srpnrabihty issue 

is no longer a binary one. However, there exist ma ny questions related to this topie 

that are yet unanswered. 

Kirchbergcr's theorern concerning the non-strict linear separability of finite sets is 

as follows: 

Theorem 8.1 (Kirchberger) TlL'o ji111te sllbscts P and Q of E'l a 1'" non-slrzctly 

lineady separable if and only If, for each sd T conslsting of al most '2d + :2 pOlTlts oJ 

PU Q, the sets TnP and T n Q are non-stnctly lmear!y separable. 

An open problem that remains is whether the nllmher of sub:'f'ts reqtlired 1,0 test 

for non-strict separability may be reduceo as in the strict case. If 50. techniques 

different to those of Chapter 3 must be employed. Bf'CilU'ie the transforma.tion used 

in the proof of Thcorcm 3.7 ha~ a singlllarity at the origin, some way must be found 

to avoid it. This \Vas accornplished for the strict case by "covering" the origin with a 

distinguished rncmber set from one of the two familips. A strict separator. in avoiding 

this set, would <tIso avoid the origin. A non-stri,:t scparélTt)r. however, would Ilot be 
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constrained to avoid this singularity. This difficulty also prevents the extension of 

Kirebherger's non-strict separability theorem to finite families of arhitrary sets via 

the approach of Chapter 3. 

In [Lay8~], Lay states a quantitative form of Kirchherge!"s theorem that IS close/y 

related to wide Imear separation. He defines a slao as a dosed connected region 

bounded by two distinct parallel hyperplanes, and the lL'ldth of a slab as the distance 

between its bounding hyperplanes. 

Theorem 8.2 (Lay) TlL'O non-emply compact subsds P and Q of El are stnctly 

separable by a slab of u'ulth IL' > 0 if and only if, for eaeh set T consistlng of at most 

d + 2 pomts of P U Q, there exzs!s il slab oJ lL'zdth IL' that strzct/y separates TnP and 

TnQ, 

An interesting ex "tension of this result \",,'Quld be the development of quantitative 

versions of the theorems of Chapter 3. 

Another question that is still very much open is wlwtl1t'r the problem of finding 

separating surfaces other than hypprplanes and hypt'rspheres may he cast into the 

settlllg of hyp<,rplane arrang('mcnts. Even relati\'('ly simple qlladrat ie s~parat ing sur­

faces such a:, cl1ip~('s in E 2 sccm to reslst such transform<lt IIms. A possible solution is 

to abandon the hyperplane arrangemellt apprl)d(h in fd\·our of arrangements of more 

eomplex 5urfdCcs. At thi:, tirnc, very Iittle is knowIl about these arraI'gements. 

The uppt>r bound on the number of sf'parable components of a range of cardinal­

ities is almo:-it certainly not tight. The gap between this upper bound and the lower 

bound for J.:-sr-ts due to Clark50n [ClaSS] 15 yet to be dosed Also, an intC'resting open 

question is whethcr or not the \Vorst-case number of k-sets of n points is of the same 

order as the \Vorst-case number of separable components of size k. 

A very difficult question that still remains to he answered is whether there is a firm 

link bet\\'ccn the Iinear or spherica.l interpenetration of two point sets Rand C, and 

the Ilumber of :,eparable subscts of RuG. Naturally, the number of separable subsets 

rises as the interpenctration dimimshes - interpenetration of zero implies that every 

subset i~ separable, The interpenetration provides a bound on the minimum and 

maximum cardinalities of the appropriate components of Rand C, which of course 
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transforms into upper and lower bounds on Xo and Xc in the dual arrangement. 

Because the expressions of Corollaries 5.18 and 5.19 for the nurnber of separable 

subsets are in terms of -to and Xc, one would hope to be able to bound the number 

of these subsets in terms of the interpenetration. So far, no non-trivial bounds have 

been found. This question is particularly interesting in light of Kirchberger's theorem 

and its extensions: we know tbat if aIl subsets of a certain size are separable, aIl the 

points are separable. If only sorne proportion of these subsets are separable, what i5 

the size of the largest separable subset, in terms of tbis proportion? 

An open problern of an algorithmic nature concerns the time complexity of finding 

weak separators. It is not clear whether the expensively-obtained information inher­

ent in an arrangement of hyperplan es is wholly required to determine weak linear and 

spherical separators of point sets. It seems that a reduction in the time complex­

ities of rnost of the separation algorithrns presented in this thesis would entai! the 

abandonment of the hyperplane arrangement a.s an algorithmic tooI. 
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