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Abstract

Consider the following fundamental problem: given two sets R and G of objects
positioned in d-dimensional Euclidean space, does there exist a surface of some specific
type which separates the objects of R from the objects of G?

Much attention has been given to this problem, for many ciasses of objects and
separating surfaces. However, very few satisfactory alternatives exist when the objects
are not separable by any of the surfaces of the chosen class. In this thesis, a new
combinatorial measure of separability is proposed, based on the largest subset of the
objects in RUG that may be separated using surfaces drawn from a certain class. The
combinatorial and algorithmic questions arising from this weak separation measure are
the main focus of the thesis. The strong relationship between the separable subsets
of point sets and faces of hyperplane arrangements is investigated, and a variety of
algorithms are presented for finding linear and spherical separators for point sets and

sets of hyperspheres.
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Résumeé

Considérons ce probleme fondamental: étant donné deux ensembles R et G d’objets
situés dans ’espace euclidien de dimension d, existe-t-il une surface d’une catégorie
particuliere qui sépare les objets de R des objets de G?

Beaucoup d’attention a été accordée a la recherche des surfaces séparatrices variées
pour plusieurs classes d’objets. Cependant, tres peu d’alternatives satisfaisantes ex-
istent lorsqu’aucune des surfaces de la classe choisie ne peut séparer les objets. Dans
cette these, une nouvelle mesure de “séparabilité” est proposée, fondée sur le plus
grand nombre possible d'objets de R U G qui admettent une surface séparatrice ex-
traite d’une classe spécifique. Les problemes de nature combinatoire et algorithmique
provenant de la mesure de séparation faible sont le principal sujet de cette these. Le
rapport fort qui existe entre les sous-ensembles séparables d’ensembles de points et les
configurations d’hyperplans est étudié, et plusieurs algorithmes sont présentés pour
obtenir les hyperplans séparateurs et hyperspheres séparatrices d’ensembles de points

et d’hypersphéres.

iii




Statement of Originality

Except for the background material in Section 2.2, the hyperplane arrangement con-
struction algorithm of Section 6.2, and the two-dimensional topological line sweep
algorithm in Section 6.5, all elements of this thesis should be considered original
contributions to knowledge. Any other theorems or algorithms appearing in this the-
sis that are the work of others are clearly indicated in the text. Furthermore, no

assistance outside that acknowledged in the preface has been received.
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Chapter 1
Introduction

Consider the following fundamental problem: assume that we are given two sets of
objects positioned in Euclidean space, one consisting of red objects and the other
consisting of green objects. Does there exist a surface of some specific type which
separates the red objects from the green objects? This question may be posed with
various different classes of objects and separators, in spaces of any dimension.

Most of what is already known about separation involves the separator classes of
hyperplanes and hyperspheres, and the object class of finite point sets. Theorems
providing conditions for the existence of linear separators have been known for some
time, notably those of Kirchberger [Kir03], who showed that the exact linear separa-
bility of two sets of points depends on the separability of all subsets of their union
of a certain fixed size. More recently, the same was shown for spherical separability
by Lay [Lay71]. The relationship between linear separability and convexity theory
has also been well studied [DGK63,Valé4]. One of the simpler proofs of Kirchberger’s
theorem relies heavily on the famous combinatorial convexity result of Helly [Hel23].
Stoer and Witzgall [SW70] have shown that two sets of points are linearly separable
if and only if their convex hulls are separable.

Much attention has been given to the problem of finding specific types of sep-
arating surfaces for sets of points. For example, in the setting of two-dimensional

image processing, efficient algorithms to find circular separators for two sets of points
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can be used to recognize disks [Bha88,Fis86,0KM86]. In the pattern recognition set-
ting of two-category point classification, linear separators are often sought for use
as discriminant functions. Many strategies for obtaining these separators exist (see
[DHT73]). However, it often happens that the two point sets cannot be separated by a
simple hyperplane. In these instances, higher-order surfaces such as hyperspheres or
hypercones are sometimes considered as candidate separators, or linear discriminant
functions based on statistical considerations are employed [Cov63). However, these
approaches do not concern themselves with combinatorial alternatives to exact linear
separators in the event that none can be found. One such alternative, explored in
this thesis, is to use discriminant functions that correctly classify the greatest number
of objects in the union of the two sets. Such surfaces, since they are not necessarily
exact separators, shall be called weak separators of the sets. A formal definition of
weak separators will be given later in the thesis.

One of the natural questions to ask, upon being told that a certain surface does
not separate two sets of objects R and G, is which subsets of R and G are separated?
This question will be the motivation behind the combinatorial investigations of the
thesis that will be conducted in Chapters 3 to 5. These chapters will be concerned
with the theoretical aspects of weak separation of point sets by both hyperplanes and
hyperspheres. Chapters 6 and 7 deal with the algorithmic aspects of weak separation.

Chapter 2 contains definitions, terminology, and other background information
upon which the discussions of the thesis are based. The areas touched upon in this
chapter include analytic geometry, elementary topology, hyperplane arrangements,
and linear programming. Also in this chapter, new definitions involving separation
and separators will be introduced.

In Chapter 3, results on the existence of exact separators are presented that are
extensions of the first results of Kirchberger to finite families of arbitrary sets. This
same treatment is applied to the case of exact spherical separation. The results of this
chapter are contained in the paper “Theorems on the existence of separating sets”,
which has been accepted for publication in the journal Discrete and Computational
Geometry.

In Chapter 4, the linearly and spherically separable subsets of two sets of points
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are characterized by establishing a correspondence between separable subsets and
intersections of half-spaces in dual arrangements of half-spaces The transforms used
to develop this correspondence are extensions of transforms that have been used
to solve many problems in computational geometry, notably in the constructions of
convex hulls and higher-dimensional Voronoi diagrams [PS85,Ede87].

In Chapter 5, bounds on the worst-case size of certain fixed-size separable subsets
are given, and their relationship to the theory of k-sets is shown. Also in this chapter,
exact expressions are developed for the number of linearly and spherically separable
subsets of two point sets, based on the relation between point sets and arrangements
established in the previous chapter.

Chapter 6 is devoted to a variety of basic algorithms for finding weak linear and
spherical separators of point sets. These algorithms are ultimately based upon hyper-
plane arrangement constructior and sweeping techniques developed recently by Edels-
brunner, O'Rourke, and Seidel [EOS86}, and Edelsbrunner and Guibas [EGS6].

In Chapter 7, certain applications and extensions of the algorithms of the previous
chapter are examined. In particular, algorithms are presented that determine “wide”
linear separators of point sets; that is, separators that avoid the sets being separited
by the greatest amount, according to a natural metric. These separators are in a
sense of “higher quality” than those found using the more straightforward methods
of the previous chapter. This method of finding wide linear separators of point sets
will be shown to be applicable to the problem of finding a linear separator of two sets
of hyperspheres.

Finally, in Chapter 8, some open problems relating to separation are discussed.




-

—

Chapter 2

Geometric Preliminaries and

Definitions

2.1 Introduction

The topics covered in this thesis fall into the category of discrete and computational
geometry. This discipline straddles the boundary between mathematics and theoret-
ical computer science, and as such encompasses many subfields.

One important text of great relevance to this thesis is “Algorithms in Combi-
natorial Geometry” by Herbert Edelsbrunner [Ede87]. In it, the author explores
in depth the relationship between the combinatorial structure of arrangements of
hyperplanes, and their muny applications in computational geometry. Much of the
background material assumed by this thesis is covered in this text, including the the-
oretical and algorithmic aspects of hyperplane arrangements and Voronoi diagrams,
geometric transforms, and the theory of k-sets. A more introductory (and more gen-
eral) reference for computational geometry is the book “Computational Geometry”
by Preparata and Shamos [PS85].

A solid reference for Euclidean and projective geometry is Borsuk’s “Analytic Ge-
ometry” [Bor69], in which (among others) the topics of duality, homogeneous coordi-
nates, and vector algebra are explored. Other recommended books on transformations

are “Geometric Transformations” by laglom [lag62], and “A Survey of Geometry” by
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Eves [Eve72). For convexity theory, there are many good texts. A good reference
for convexity theory is Valentine’s “Convex Sets” [Val64], which includes the theo-
rems of Kirchberger concerning the linear separability of sets. Many theorems on
convex sets are also to be found in “Helly’s Theorem and its Relatives”, by Danzer,
Grinbaum, and Klee [DGK63]. Two well-known works of Grinbaum, “Convex Poly-
topes” [Gri67] and “Arrangements and Spreads” [Grii72], provide a very thorough
treatment of the combinatorial structure of convex polytopes and hyperplane arrange-
ments.

An excellent book on linear programming is “Linear Programming”, by Vasek
Chviétal [Chv83], a text which may be considered both introductory and advanced.
There is a great variety of texts available on topology. An advanced book is “Prin-
ciples of Mathematical Analysis” by Rudin [Rud64]. For a more introductory text, I
recommend Bartle’s “The Elements of Real Analysis” [Bar76]. Two of the standard
texts on graph theory are “Graph Theory” by Harary [Har69], and “Graph Theory
with Applications” by Bondy and Murty [BM76)].

The next section deals with the definitions and mathematical properties that is
the background of this thesis. The topics discussed include coordinate systems, basic
topological objects and properties, flats, hyperplane arrangements, polytopes, linear
programming, and graph theory. None of the definitions of this section are new; the
reader familiar with these areas should feel free to pass over any part or all of this
section, and to later use it as a reference if necessary.

Section 2.3 contains new definitions pertaining to the separation of sets. The
terminology introduced in this section forms the basis of discussion in the succeeding

chapters.

2.2 Background

The setting for this thesis is the d-dimensional Euclidean space E¢, of which each
point p is represented by its cartesian coordinates, a real-valued d-dimensional vector
(p1,p2y - - - ,pa)- We will let R and R? represent the set of real numbers and real valued

d-dimensional vectors, respectively. Let = = (ry,z3,...,24) and y = (y1,¥2,---,Yd)
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be two points in E? The dot product or inner product of z and y, denoted z - y,
d

is Y z;y,. The (Euclidean) norm of z, denoted ||z||, is defined as +/Z -z, and the
=1

(Euclidean) distance between z and y is defined to be ||z — y||. If fjz|| = 1, z is said

to be a unit vertor. If X and Y are subsets of E¢, the minimum Euclidean distance
between X and Y is 6(X,Y) = min{|lz — y|| |z € X,y € Y}. The point (0,0,...,0)
is called the origin, and shall be represented by the symbol 0. The z,-azis is the set
of all points with zero z-coordinate, for all k # 1.

Another way of representing the points of E? is through the use of homoge-
neous coordinates. These coordinates are (d+1)-dimensional vectors of the form
(Po,P1s-- - s Pa), where each p, € R and po # 0. The point p € E? with cartesian
coordinates (py,p2, ..., pq) is assigned to the set of vectors (A, Apy, Apa, ..., Apa), over
all A € R, A # 0. Any of these vectors can be said to represent the point p. The
point ¢ € E? with homogeneous coordinates (qo,q, - - -, qa), go # 0, then corresponds

to the vector (ﬂl’ 2,...,@-) in cartesian coordinates. When expressing points of

90 9o 90
E? in homogeneous coordinates, it will sometimes be convenient to restrict the first

coordinate go to be positive. The cartesian origin O of E? can be expressed using
homogeneous coordinates as (A,0,...,0), for any A € R, A # 0.

Many of the object and property definitions in this section will be presented using
both cartesian and homogeneous coordinates. Demonstration of the equivalence of
these definitions will be left to the reader. Before proceeding further, some basic
topological concepts are required.

A ball centred at z is the set of all points of E¢ whose distance from z is strictly
less than some fixed radius 7 € R. A subset of E is called open if it is the union of
some ~ollection of balls. A closed set is one whose complement is open. The interior
of X, denoted int(X), is the union of all the open sets contained in X. The closure of
X, denoted cl(X), is the intersection of all closed sets containing X. The boundary
of X, denoted bd(.X), is the set cI(X)\ int(X). A set X is bounded if it is a subset
of some ball. X is disconnected if it is a subset of the union of two disjoint open sets
in E¢, each containing some point of X. Otherwise, X is said to be connected. A

connected component of X is a connected subset of X that is contained in no other
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connected subsets of X'. In E¢, a set is compact if and only if it is closed and bounded.

Let F be a mapping with domain X and range in set Y. If each range element
of F is associated with a unique domain element, we say that F is injective or one-
to-one. If the range of F contains every element of Y, we say that F is surjective, or
onto. A mapping that is both injective and surjective is known as a bijection. If z is a
point and X is a set of poirts, the inverse of F is defined as F~1(z) = {y| F(y) = z},
and F~1(X) = {y| F(y) € X}. I F is a function, then F is continuous if F~1(X) is
an open set whenever X is an open set. In Euclidean space, a function is continuous
if and only if limF(z) = F(a).

Two sets are called isometric if there exists a bijection between them that preserves
distances. Such a bijection is called an isometry. A subset of E¢ isometric to E* is
called an affine subspace or flat of dimension k (also known as a k-flat). A 0-flat is
a point, a 1-flat is a line, and a 2-lat is a plane. A (d—1)-flat is called a hyperplane.
By convention, the empty set is considered to be a (—1)-flat.

A set of points X is called collinear if all the points lie on the same line. X is
coplanar if all the points lie on the same plane. If no k + 2 points are contained in
the same k-flat, X is said to be in general position.

A hypersphere centred at point z and of radius r is defined as the set of points y
such that ||z — y|| = r. A hypersphere of radius 1 is called a unit hypersphere. In E?
and E3, hyperspheres are known as circles and spheres respectively.

The affine hull aff (X) of a subset X of E is the smallest flat containing X. The
dimension of X (denoted dim(X)) is the dimension of its affine hull. A set of k + 1
points of E? is said to be affinely independent if the dimension of their affine hull is

k. A point z € E9 in cartesian coordinates is said to be an affine combination of a

k k
set of points U = {ug,uy,...,ux} if z = Za,u, and Za; = 1. If in addition each a;
1=0 1=0
is non-negative, then r is called a conver combination of U.

If = and U are represented in homogeneous coordinates, then z is an affine combi-
k

nationof Uif z = Za,u. and zo # 0, where at least one of ap, ay,. .., ax is not zero.

1=0
If the first coordinate u,o of each u, is restricted to values greater than zero, and if in

addition each a; is non-negative, then z is a conver combination of U.
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A k-flat may be given as the set of affine combinations of k+1 affinely-independent
points. Therefore, given such affinely-independent points, a k-flat may be parameter-
ized by the set {ag, a1,...,ck} of the preceding definitions. If u and v are distinct
points of E?, then the set of all affine combinatiors of u and v forms a line; the set
of convex combinations of u and v (denoted uT) is known as a (closed) line segment.
The points u and v are called the endpoints of uo. The open line segment joining u
and v is the closed line segment minus its endpoints. A set .X is relatively open if it
is the intersection of some open set with some flat. The relative interior of X is the
union of all the relatively open sets in aff (') that are contained in X.

A point set X is called convez if the closed line segment joining any two points u
and v of X is entirely contained in X. It is easily shown that the common intersection
of convex sets is itself convex. The conver hull of X, denoted by conv(X), is the
smallest convex set containing X. The boundary of the convex hull shall be denoted
by CH(X). In common practice, both conv(X) and CH(X) are called the “convex
hull”.

Using cartesian coordinates, a hyperplane may be expressed as the set of points
h={r € Elu-z=cuc R,cec Ru+# 0}. The vector u is called a normal
vector for h. In homogeneous coordinates, a hyperplane may be expressed as the set
of points h = {z € Eu-z = 0,u € R**',u # 0}. Sometimes, for the sake of brevity,
these conditions on u and ¢ are assumed but not stated.

Hyperplane h splits E? into two regions known as half-spaces. Using cartesian
coordinates, the closed half-spaces defined by h are parameterized as {z € E%|u-z >
c} and {z € EYu-z < ¢}. Using homogeneous coordinates, these half-spaces become
{r€ EYu-z>0.20 >0} and {z € E¥|u-z <0,z > 0}. Alternatively, if one wishes
to consider tuples with zq < 0, it is easily seen that these expressions are equivalent
to {z € EYzo(u- ) > 0} and {z € E¥z4(u- z) < 0}, respectively. The open
half-spaces determined by A are obtained from the closed half-spaces by eliminating
the points of h. The hyperplane % is said to bound its open and closed half-spaces.

A line ! in E? not entirely contained in or parallel to a hyperplane A is split by &
into two parts called rays. The intersection of I and a closed half-space bounded by

h is known as a closed ray; with an open half-space, it is known as an open ray. The
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intersection of / and A is a point, called the endpoint of these rays. A ray is sometimes
called a half-line.

Using cartesian coordinates, a closed ray may be parameterized as u + Av, A > 0,
where u and v represent points of E%, v # 0. In homogeneous coordinates, the
parameterization of a closed ray is u 4+ Av, A > 0, where u is a point of E¢, and
v € R¥*, vy =0, v # 0. In both the cartesian and homogeneous representations,
adding the restriction A > 0 gives an open ray. The endpoint of all these rays is the
point u.

Let the points of E¢ be represented using cartesian coordinates. Aset Y C E¢isa
translation of set X if Y = {z +y|z € X C E?) for some fixed y € E¢. Two flats are
parallel if one is a translate of the other. Two vectors u and v are said to be orthogonal
to each other if u- v = 0. Two intersecting flats f, and f, are orthogonal if, for all
choices of p; in f; and p; in f;, there exists a point p in the intersection of f; and f;
such that the vectors p; — p and p; — p are orthogonal. The orthogonal projection of
a point = onto a k-flat f is the unique point p of f such that the the vectors z — p
and p; — p are orthogonal, for all points p; of f distinct from p. Objects that are
orthogonal to each other will also be referred to as being normal or perpendicular to
each other.

A hyperplane h is said to separate two sets X and Y if X is contained in one
closed half-space bounded by h, and Y is contained in the other. X and Y are then
said to be separable. If neither X nor Y intersect h, then h strictly separates X and
Y, and the sets are strictly separable. Otherwise, if X does intersect h, then h is called
a supporting hyperplane for X.

A set of hyperplanes H = {hj,hs,...,h,} divides E¢ into a set of connected
convex regions called an arrangement, denoted A(H). Let h,* and h,” be the two

open half-spaces bounded by hyperplane A,. For a point z in E? we define

+1 ifzeh™,
vi(z) = 0 ifzeh, and
-1 if I e hl—s
for 1 <t < n. The vector v(z) = (v1(z),v2(z),...,va(z)) is called the position vector

of z. If two points z and y have identical position vectors, then they are considered
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equivalent, and the equivalence classes defined by this relationship are called the faces
of A(H). Since each point of face f has the same position vector, we will sometimes
refer to this vector as v(f). A face f is called a k-face if its affine hull is of dimension
k. Faces of an arrangement are relatively open. A verter is 2 0-face, an edge is a
1-face, a facet is a (d—1)-face, and a cell is a d-face. A face g is called a subface of
face f if the dimension of g is one less than the dimension of f, and g C cl(f). If so,
we say that f is a superface of g, and that f and g are incident upon each other. If
f and g are two faces such that g C cl(f), then g is said to bound f.

If A(H) is an arrangement of n > d hyperplanes, then A(H) is called simple if
every d hyperplanes of H intersect in a unique point, and every d + 1 hyperplanes
have no common intersection. If n < d, then we say that A(H) is simple if the
hyperplanes of H intersect in a common (d—n)-flat. Equivalently, one could define a
simple arrangement as on= in which every d — & hyperplanes intersect in a common
k-flat, for 0 £ k <d - 1. If A(H) is simple, then H is said to be in general position.

A collection C of disjoint relatively open subsets of E? is called a cell complez if E?
is the union of all sets in C, and if the closure of any set in C is composed of the union
of sets in C. A cell complex in E? 1s called a (planar) subdivision. The collection of
faces of a hyperplane arrangement form a cell complex in E®. An arrangement in E?
is often called a line arrangement.

The intersection of a finite number of closed half-spaces is known as a polyhedral
set. If in addition it is bounded, it is called a (convex) polytope. Since all polytopes
considered in this thesis will be convex, we will use the term “polytope” to mean
“convex polytope”. Alternatively, a polytope may be defined as the convex hull of a
finite set of points. A convez polygon is a polytope of dimension 2, and a (convex)
polyhedron is a polytope of dimension 3.

Given a set of distinct points S = {s1,82,...,5,} in E?, the polyhedral sets of
the form v, = {z € E#| ||z —s,|| 2 ||z — s,]|, Vs, € S} determine a cell complex in E*
This cell complex is called the d-dimensional Voronoi diagram of S. The points of S
are also called the sites of the Voronoi diagram.

If P is a polytope, the set of extreme points (or vertices) of P is the smallest set of

points whose convex hull is P. A k-dimensional simplez is a k-dimensional polytope
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with k41 vertices. A 1-dimensional simplex is called a line segment, a 2-dimensional
simplex is a triangle, and a 3-dimensional simplex is a tetrahedron.

Since a bounded cell of an arrangement of hyperplanes is the interior of a polytope,
it is natural that there be some overlap in the terminology used to describe these
objects. Let polytope P be the intersection of the finite set of closed half-spaces H'.
Let H be the set of bounding hyperplanes of H’. Then f C P is a face of P if f is
also a face of A(H). As with arrangements, we define vertices, edges, subfaces, and
so on. However, if P is of dimension k, we shall say that a facet of P is a face of
dimension k — 1.

In Euclidean space, parallel hyperplanes do not intersect. This lack of intersection
often results in the need to examine special cases for theorems and algorithms in E“.
To avoid such problems, one resorts to the use of the projective space P2. For each
line { in E?, consider the set L({) of all lines parallel to I. We obtain P9 from E¢
by the addition of a new point for each such set L(l). These new points are called
improper points, and the original points of E¢ are called proper. Each line in a given
set of paralle] lines is extended to include the improper point corresponding to that
set. These extended lines are called projective lines.

In projective space. distance has no meaning, and isometric mappings are impos-
sible. Hence the definition of a flat in E? cannot be carried over to P?. Instead, a
projective mapping is a bijection of a set of points to a set of points which preserves
projective lines. A set of points in P? which is a projective mapping of P* is known as
a (projective) k-flat. Each k-flat f in E? has a corresponding projective k-flat, which
is obtained by adding to it all the improper points that are projective extensions of
lines contained in f. Every two projective k-flats intersect in a projective (k—1)-flat.
Whether a flat is Euclidean or projective will be understood from the context.

The points of P? are represented using homogeneous coordinates. Each point
p € P? corresponds to the set of tuples A(po,p1,...,ps), where A € R, A # 0, and
(po,p1y--->p4) # (0,0,...,0). If pg # 0, then the tuple p corresponds to both a point
of P? and a point of E?. If py = 0, then p is an improper point associated with each
of the lines of the form I(q) = {z € E%|z = q + tp,t € R}, for all ¢ € E*.

Some terminology from linear programming is required. Let z be a variable point
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of E%. A mathematical programming problem is one where the goal is to choose
some r maximizing (or minimizing) some real-valued function, called an objective
function, subject to certain constraints on z. The set of points of E? satisfying
the problem constraints is called the feasibility region of the problem. If this region
is empty, the problem is infeasible, otherwise the problem is feasible. A point of
the feasibility region is called a feasible solution of the problem. If there exists a
sequence of feasible solutions upon which the objective function diverges to infinity
(if a maximizing problem) or negative infinity (if a minimizing problem), then the
problem is considered unbounded. Otherwise, the problem is bounded. Unfortunately,
this well-established terminology is somewhat ambiguous: to say that a problem is
bounded is not the same as saying that a problem has a bounded feasibility region.
If the objective function is linear in z, and the constraints describe halfspaces of E¢,
the problem is called a linear programming problem.

We will require only the most basic definitions from graph theory. A graph is a
collection of nodes (also called vertices) and arcs (also called edges), where each arc
relates two nodes of the collection. Such an arc is said to be incident upon these two
nodes. If two nodes are joined by some arc of the graph, they are called adjacent.

Arcs are often represented by ordered or unordered pairs of nodes.

2.3 Weak Separation Definitions

Let S be a class of analytic surfaces in E¢, such that every surface S € § is such that
E?\ S consists of the two connected components S5, and S. Let R and G be finite
families of non-empty subsets of E?, such that the sets of R are labeled red, and the
sets of G are labeled green. The surface S € S can be said to partition the family R

into six disjoint subfamilies (see Figure 2.1):

R. = {RE€R|RC S}
Ry = {RER|RCSs)
R¢ = {RERIRC S}
Rs = {RER|IRC(SUS)}\R=
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Figure 2.1: A partitioning by surface S
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Similarly, G is partitioned into the families G-, G, G<, G5, G<, and Go.

Since the member sets of Ry = R_.UR,UTR contain no points of S, and since
the sets of G¢ = G- UG U G< contain no points of S5, Ry and G¢ are separated
by S. Similarly, the families R¢ = R. UR-UR< and Gy = G-U G, UG5 are also
separated by S. We shall call Ry, UG ¢ and R UGy the two separable components of
R and G determined by S. These components are not necessarily disjoint, since the
member sets of R~ and G_ are contaiaed in both; nor do they account for all sets in
RUG, as the members of subfamilies Ry and Gp are contained in neither component.
Since the members of families Ry and G contain no points of S, these subfamilies
of R and G are strictly separated by S. Accordingly, we call R, UG, and R, UG,
the two strictly separable components of R and G with respect to S. Unlike non-
strictly separable components, a pair of strictly separable components determined by
a common separating surface must be disjoint.

We will say that the size of a separable component, be it strict or non-strict, is

the number of non-empty member sets comprising that component. Let C(R,G) be
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the set of all separable components of R and G, taken over all surfaces in S. Then
a component in C(R,§) of greatest size will be called mazimal, and one of smallest
size will be called minimal. If S is a surface determining a maximal component, then
S is said to be a weak (non-strict) separator of R and G. If this maximal component
contains all of R and G, then S completely separates R from @G, for which we say it is
a strong (non-strict) separator. Analogously, we define mazimal and minimal strictly
separable components, and weak and strong strict separators.

The size of a maximal component gives rise to a measure of the separability of
R and G. Let k be this size, and let n be the number of member sets of R U G.
Then the (strict or non-strict) interpenetration of R and G (with respect to the class
of surfaces §) is n — k; that is, the minimum number of sets of R U G that need be
eliminated to render the remaining sets separable. Interpenetration of zero indicates
that the points are separable with respect to S, and interpenetration approaching
n/2 indicates that the sets are indistinguishable.

This thesis will be largely restricted to the investigation of separation of point
sets with respect to the classes of hyperplanes and hyperspheres in E?. Although the
class of separators will be clear from context, we will often distinguish these classes
through the use of terms such as strict linear separators, weak spherical separation,

and so on.




Chapter 3

Theorems on the Existence of

Separators

3.1 Introduction

Two subsets P and Q of the d-dimensional Euclidean space E? are said to be (strictly)
linearly separable if there exists some hyperplane h such that P is contained in one
of the two open half-spaces bounded by h, and @ is contained in the other. In 1903,
Paul Kirchberger published a fundamental theorem on the existence of strict linear

separators for finite point sets in E¢ [Kir03):

Theorem 3.1 (Kirchberger) Tuwo finite subsets P and Q) of E* are strictly lincarly
separable if and only if, for each set T' consisting of at most d + 2 points of PUQ,
the sets TN P and T N Q are strictly linearly separable.

A notion closely related to that of linear separability is spherical separability.
Two subsets of E? are said to be (strictly) spherically separable if there exists some
hypersphere s such that the interior of s contains one subset and the exterior of s
contains the other. S. R. Lay extended Kirchberger’s theorem to spherical separability

in the following manner [Lay71]:

15
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Theorem 3.2 (Lay) Two finite subsets P and Q of E* are strictly spherically sep-
arable if and only if, for each set T consisting of at most d + 3 points of P U Q, the
sets TN P and TN Q are strictly spherically separable.

One standard proof of Kirchberger’s theorem, that of Rademacher and Schoen-
berg [RS50], employs the well-known theorem due to Helly concerning the existence of
points in the common intersection of convex sets [Hel23,DGK63]. Whereas the orig-
inal theorem of Helly is somewhat more general, we will require only the following

restricted formulation:

Theorem 3.3 (Helly) The members of a finite family K of conver subsets of E¢
have a common intersection point if and only if, for each family T consisting of at

most d + 1 members of K, the members of T have @ common intersection point.

These theorems are similar in that a “global” property of sets (linear separability,
spherical separability, common intersection) is dependent upon the same property
considered “locally” over subsets of bounded cardinality, these cardinalities being d+2
for Kirchberger’s theorem, d 4+ 3 for Lay’s, and d + 1 for Helly’s. It is not difficult
to produce examples which demonstrate that the respective cardinalities cannot be
decreased using the formulations given above. However, there is still a significant
dissimilarity between Helly’s theorem and the others. To illustrate this dissimilarity,
let us consider an example. Let £ = {K, K3,...,K,} be a family of n convex sets
of E? n > d, defined as follows (see Figure 3.1):

1. sets Ky, K,,..., K441 are closed half-spaces whose bounding hyperplanes con-

tain the d + 1 facets of some d-dimensional simplex in E¢,
2. these half-spaces do not contain the interior of this simplex, and

3. the remaining convex sets of X, if any, are closed balls containing the simplex.

It is easily verified that the members of K have no point in common, yet with the
exception of the subfamily {&, K3,..., K41}, every subfamily consisting of at most

d 4+ 1 members of K has a common point of intersection. If one were to test a family
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Figure 3.1: Convex sets in E? with exactly one subfamily of 3 sets non-intersecting

of convex sets for common intersection using Helly’s theorein as a guide, one would
expect to have to test all (dil) different subfamilies of cardinality d 4+ 1, in the worst,
case, before being able to make a decision. On the other hand, it is not hard to see
that there are no examples of point sets P and Q of E', of combined cardinality
n > 3, such that P and @ are not linearly separable but only one subset of P U Q of
cardinality three is not linearly separable. A similar situation exists in the setting of
spherical separability. These observations suggest the possibility that Kirchberger's
and Lay’s theorems are not “optimal,” in that fewer than (d:2> subsets of PUQ in
E? need be tested for local linear separability in order to ascertain whether P and
@ are themselves linearly separable, and fewer than (d:,) subsets need be tested to
ascertain whether P and ) are spherically separable. Indeed, this is reflected in the

following refinement of Kirchberger's theorem, due to Watson [Wat73):

Theorem 3.4 (Watson) Let P and Q be disjoint finale sels of points m E*, and
let © be any pownt in PU Q. P and Q arc strictly hnearly separable +f and only if,

for each set T C PUQ consisting of at most d + 2 pownts and containing x, the sets
TN P and TN Q are strictly lincarly separable.
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The main result of the next section is a generalization of Watson's refinement to
finite families of arbitrary subsets of E?. Two such families R and G shall be said
to be (strictly) linearly separable if there exists some hyperplane h such that the
member sets of R are contained in one of the two open half-spaces bounded by A,
and the member sets of G are contained in the other. In an analogous fashion, we
may also define the spherical separability of finite families. Section 3.3 concerns itself

with similar treatments of Lay’s theorem.

3.2 Separation Using Hyperplanes

Let h = {z € E?|u-z = 1} be a hyperplane avoiding the origin, where u € E%,u # 0.
Of the two open half-spaces delimited by k, we shall say that the half-space containing
the origin, At = {z € E4 u-z < 1}, shall be called the inner half-space of A. Similarly,
the other half-space, h~ = {r € E9|u-z > 1}, shall be known as the outer half-
space of h. Consider the point-hyperplane dual transform D that maps each point
p € E? (p # 0) into the hyperplane D(p) = {z € E%p-z =1}, and each origin-
avoiding hyperplane h = {z € E¢|u-z = 1} into the point D(k) = u. The following

observation is fairly straightforward:

Observation 3.5 Let p be a point in E? other than the origin, and let h be a hyper-
plane of E? avoiding the origin. If pownt p is contained in hyperplane h, then point
D(h) is contained in hyperplane D(p). Otherwise. if p is contained in the inner (outer)
half-space of h, then D(h) is contained in the inner (outer) half-space of D(p).

Let R and G be finite families of subsets of the d-dimensional Euclidean space
E* such that the members of R and G are coloured red and green respectively. We
consider an augmentation D of the dual transform D that maps red sets R € R
into a collection of outer half-spaces D*(R), and green sets G € G into a collection of
inner half-spaces D*(G). That is, if r is an element of some red set R, then the outer
half-space D(r)~ is a member of D*(R); the green case is defined analogously. Since D
is undefined on the origin, we will say that a red point at the origin is mapped under

D* to the empty set @, and that a green point at the origin is mapped to the entire
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space E?. The empty set and the space E? can be thought of as the outer and inner
half-spaces of a hyperplane at infinity, respectively. Finally, if P is a coloured set, we
shall denote the common intersection of the half-spaces of D*(P) as Z(P). It should
be noted that Z(P) is necessarily convex (possibly empty), as it is the intersection of

convex sets. The set Z(P) has an interesting interpretation in light of separation:

Lemma 3.6 Let P be a green (red) subset of E°, and let I(P) be the common in-
tersection of the members of D*(P) as defined above. Then point z # 0 is contained

in Z(P) if and only if its dual hyperplane D(z) has all points of P contained in its
inner (outer) half-space.

Proof Let h* be any member of D*(P). By definition, h* is either an inner (outer)
half-space of some hyperplane h whose dual point D(h) is a point of P, or the entire
space EY (empty set §). If A* = E9, then the point D*(h*) of P is the origin, and
is contained in the inner half-space of every hyperplane that is the dual under D of
points of Z(P) \ {0}. (If A* =, the set Z(P) is empty.) Otherwise, let z # O be a
point of E? contained in h*. Since z is contained in the inner (outer) hall-space of
h, by Observation 3.5 we have green (red) point D(h) contained in the inner (outer)
half-space of hyperplane D(z). Then h*\ {0} is precisely the set of all points of E?
whose dual hyperplanes under D have inner (outer) half-spaces containing green (red)
point D(h). Therefore Z(P)\ {0} is the set of all points of E? whose dual hyperplanes

under D have inner (outer) half-spaces containing P. a

Theorem 3.7 Let R and G be non-empty finite families of subsets of E%, and let P
be any non-empty member of RUG. Then R and G are strictly linearly separable
if and only of for each family B consisting of d + 1 or fewer members of RU G, the
families (BU {P})NR and (BU{P})NG are strictly linearly separable.

Proof It suffices to prove the non-trivial implication. Without loss of generality,
we assume that P is a member of G and that the members of R and G are coloured
red and green respectively. Also without loss of generality, we may translate the sets
of R and ¢ such that the set P contains the origin. Let B be a set of d 4 1 or fewer

members of R UG. By assumption, there exists a hyperplane h that separates the
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families B = (B U {P})NR and Bg = (BU{P})NG. Since P contains the origin,
hyperplane h must avoid it, and P is contained in the inner half-space of A. Thus all
sets of Bg must be contained in the inner half-space of h, and all sets of B must be
contained in the outer half-space. Lemma 3.6 then implies that if B is a member of
Br U Bg, the point D(k) of E?is contained in Z(B), which in turn implies that the
common intersection of these sets is non-empty. Since every such subset Bof d+1 or
fewer members of R UG has this property, Helly’s theorem implies that the common
intersection I of all sets of the form {Z(Q)|Q@ € R UG} is non-empty.

It should be noted that I does not contain the origin: otherwise, since no outer
half-space may contain the origin, the set R would be empty, violating the assumption.
Let x # 0 be a point of I. Since z is contained in I(Q) for each @ € R U G,
Lemma 3.6 again implies that each member R of R is contained in the outer half-space
of hyperplane D(z), and each member G of G is contained in the inner half-space.
Therefore the sets R and G are strictly linearly separable as required. a

The open half-spaces of a linear separator for families R and G may be labeled
according to the family contained by each. In the context of Theorem 3.7, this labeling
involves a degree of freedom that is eliminated by the choice of some distinguished
set P of RUG. In this sense, P acts as a “focus™ or a “reference” for the local tests
of linear separability. The next theorem shows that one may refer to a distinguished
direction instead of a distinguished set.

For simplicity of exposition, we assume that the distinguished direction is that of
the positive z4-axis, and will refer to it as the vertical direction. A hyperplane h that
does not contain a translate of the z4-axis will be said to be non-vertical. The open
half-spaces of h can be described analytically as h* = {z € E? 24 > Y u,z, + uy}
and b~ = {z € E 14 < % u,z, + ug}. The halfspaces h* and h~ will be called
the upper and lower half-spaces of h, respectively. The points of A* will be said to
be above h, and the points of A~ will be said to be below.

Theorem 3.8 Let R and G be non-empty finite families of subsets of E?. Then R
and G are strictly separable by a non-vertical hyperplane with R above the hyperplane
and G below, if and only if for each family B consisting of d + 1 or fewer members of
RUG, the families BNR and BNG are strictly separable by a non-vertical hyperplane
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with BNR above and BN G below.

Proof Let B be a family of d+1 or fewer members of RUG as defined above, and let
hy be a non-vertical hyperplane such that BNR is above hy and BN @ is below. Also,
let P be the intersection of all upper half-spaces of hyperplanes h, over all finitely
many choices of subfamily B of R U §G. Note that P cannot be empty. Then the
families (BU {P}) N (R U{P}) and (BU {P}) NG are linearly separable. Therefore
the families R U {P} and § are strictly linearly separable by Theorem 3.7. But every
vertical hyperplane intersects P, so the separator must be non-vertical. Finally, P

being above the linear separator implies the result. i

3.3 Separation Using Hyperspheres

In the proof of his theorem on spherical separability, Lay transforms an instance of
a spherical separability problem in E?into a linear separability problem in E%t!, by
means of a stereographic projection. In this new setting, Lay applies Kirchberger's
theorem directly to obtain his result. In this section, we will adapt Lay's proof in
proving existence theorems for spherical separators similar to the linear separation
theorems of the previous section.

Let A be a hyperplane in E¢, and let £ be a hypersphere tangent to & at point p.
Let p’ be the point of ¥ antipodal to p. The stereographic projection 1 of point z € h
onto ¥ (based at p’) is defined as being the intersection of the line containing z and
P’ with £\ {p’}. (see Figure 3.2). This establishes a bijective correspondence between
points of A and points of £ \ {p’}. Before presenting the theorems of this section, we
shall present (without proof) some basic properties of stereographic projections. For
additional information on stereographic projections and geometric transformations in

general, the reader is refered to [Eve72,lag62].

Lemma 3.2 Let h be a hyperplane in E*+! and let £ be a d-dimensional hypersphere
of unit radius tangent to h at point p. Let T be the stereographic projection of h onto

Y. based at the point p’ antipodal to p wn . Lel 8 be a (d—1)-dimensional sphere
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Figure 3.2: The stereographic projection of a hyperplane onto a hypersphere

contained in h. and let st and s~ be its interior and ezterior relative to h, respectively.

Then

1. the projection 7(s) of s onto L is the intersection of ¥ and some hyperplane h,,
and

2. the projections (s*) and 7(s™) are each contained in different open halfspaces
defined by h,.

See Figure 3.3 for an illustration of these relationships. A flat f of dimension d -1
contained in h may be viewed as a degenerate (d—1)-dimensional sphere centred at
infinity with infinite radius. Obviously, the stereographic projection of f is contained

in the intersection of ¥ and a hyperplane passing through both p’ and f.

Theorem 3.10 Let R and G be non-empty finite families of subsets of E?, and let
P be any non-empty member of R UG. Then R and G are strictly separable by a
(possibly degenerate) hypersphere if and only if for each family B consisting of d + 2
or fewer members of RUG, the families (BU{P})NR and (BU {P})NG are strictly
separable by a (possibly degenerate) hypersphere.
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Figure 3.3: The stereographic projection of a (d—1)-dimensional sphere

Proof Let E? be embedded in some hyperplane h of E%!, and let £ be a d-
dimensional unit sphere tangent to h at some arbitrary point p. Let 7 be the stereo-
graphic projection of h onto T based at the point p’ antipodal to p. Let B be a family
consisting of d + 2 or fewer members of RU G such that Bg = (BU {P})NR and
B = (BU{P})NG are spherically separable in k by some (d—1)-dimensional sphere
s. If h, is a hyperplane containing 7(s), then Lemma 3.9 implies that the families
r(Br) and 7(Bg) are strictly linearly separable by h,. Therefore by Theorem 3.7, the
families 7(R) and 7(G) are linearly separable.

Let A/ be a linear separator of 7(R) and 7(G) such that k’ intersects ¥ in some
(d—1)-dimensional sphere s’. Since 7(R) and 7(G) are both non-empty, such a sep-
arator must exist. Then the (possibly degenerate) (d—1)-dimensional sphere 7~1(s’)
strictly separates R and G. 0

Figure 3.4 gives an example of two families of sets in ¢ where every subfamily
of five members is strictly spherically separable, but the only separator for the entire
collection is degenerate. It should be noted that the closures of the triangles of
Figure 3.4 intersect the separator h, but the triangles themselves do not. In the

formulation of the previous theorem, if we restrict the members of R and G to be
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A

Figure 3.4: The only spherical separator is degenerate

compact (closed and bounded) sets, we can guarantee the non-degeneracy of the

separating hyperspheres:

Theorem 3.11 Let R and G be non-empty finite families of compact subsets of E?,
and let P be any non-empty member of RUG. Then R and G are strictly spherically
separable if and only if for each family B consisting of d + 2 or fewer members of
RUG, the families (BU{P})NR and (BU{P})NG are strictly spherically separable.

Proof As in Theorem 3.10, we embed E? into a hyperplane A of E4t! and apply a
stereographic projection, arriving at a hyperplane h/, that separates 7(R) and 7(G).
If ' contains the previously-defined point p’, then due to the compactness of 7(R)
and 7(G), we may perturb k! into some new separator " that avoids p’. If s” is
the intersection of A” and X, then the (d—1)-dimensional sphere 7~!(s”) is a non-
degenerate strict separator for R and §. a

In Theorem 3.8, the need for a distinguished set P of R UG for linear separabil-
ity was obviated by the introduction of a distinguished direction. In the setting of
spherical separability, this distinction of direction becomes more natural. Let s* and

s~ be the open interior and exterior of hypersphere s, respectively. We shall say that
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the points of s* are inside s, and that the points of s~ are outside s. We now state

a theorem of spherical separability analogous to Theorem 3.8.

Theorem 3.12 Let R and G be non-empty finite families of subsets of E?. Then
R and G are strictly separable by a hypersphere with R inside the hypersphere and
G outside, if and only if for each family B consisting of d + 2 or fewer members of
RUG, the families BA'R and BNG are strictly separable by a hypersphere with BNR
inside and B N G ovulside.

Proof Let B be a family of d+2 or fewer members of RUG as defined above, and let
3y be a hypersphere whose interior contains BN R and whose exterior contains BNG.
Also, let s, be a hypersphere whose interior contains s, for all finitely many choices
of subfamily B of RUG. If P is the exterior of s,, then the families (BU{P})NR
and (BU {P})N(G U {P}) are spherically separable. Therefore the families R and
G U {P} are (possibly degenerately) strictly spherically separable by Theorem 3.10.
But every hyperplane intersects P, so the separator cannot be degenerate. Finally, P

being outside the spherical separator implies the result. o
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Chapter 4

Separation and Duality

4.1 Introduction

In the preceding chapter, we made use of a well-known dual relationship between
points and hyperplanes to prove results concerning strict strong linear and spherical
separability. In the linear case, member sets were transformed into convex sets,
and strong separators (if they existed) were transformed into points in the common
intersection of these convex sets. A situation where the convex sets have convenient
properties is that in which each member set of both families consists of a single point.
In this case, the convex sets corresponding to these points are simply open half-spaces.
The orientation of each half-space is determined by the family of which its dual
point was a member. Since these half-spaces intersect in a (possibly empty) convex
polytope, the set of strong linear separators for point sets is implicitly characterized.
In some sense, in limiting our attention to this intersection, we sacrifice a great deal
of combinatorial information that is inherent in the arrangement of these half-spaces.

The aim of this chapter is to provide a characterization not only of strict strong
linear and spherical separators for sets of points, but also of weak linear and spheri-
cal separators, separable components, and separable subsets in general, for both the
strict and non-strict cases. This will be achieved through the transformation of the

original setting in E9, with its two sets of points, its hyperplanes, half-spaces, and

26
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hyperspheres, into new settings in E%+! (for the linear case) and E**? (for the spher-
ical case). In these new settings, dual arrangements of half-spaces will be exhibited
that capture all of the combinatorial qualities of the original. In the chapters to fol-
low, these arrangements will be used as a framework for both proofs of combinatorial
results, and for various separation algorithms.

In the next section, the dual transform of Chapter 3 will be extended for the case
of linear separation. Points, hyperplanes, and open and closed half-spaces will all be
given an interpretation in the transformed space. In Section 4.2, the properties of the
dual arrangement with respect to separation will be examined. In Section 4.4, the
spherical case will be considered. The transformations of this section are extensions
of a geometric transformation due to Edelsbrunner and Seidel [ES86] that relates
Voronoi diagrams in E? with hyperplane arrangements in E?*!, Their transform is
in turn an extension of the connection established by Brown [Bro79,Bro80] between

Voronoi diagrams in two dimensions and convex hulls of point sets in three dimensions.

4.2 Dual Transforms for Linear Separation

Let p be a point in E¢, expressed in homogeneous coordinates as (po, p1, - - ., pd),
and let A = {z € EYu-z = 0} be a hyperplane in E?, whose points are also
represented using homogeneous coordinates. Note that for A to be well-defined, the
vector u = (ug, u1,...,uq) must have u, # 0 for some : € {1,2,...,n}. Consider the
dual transform D from E¢ to E? that maps the point p into the hyperplane D(p) =
{z € E¢|p-z = 0}, and the hyperplane % into the point D(h) = u. Unfortunately, this
transform is ill-defined if p is the cartesian origin of E, or if uo = 0; in the former
case, the origin is mapped to the “hyperplane at infinity”, and in the latter, any
hyperplane containing the origin is mapped to a point “at infinity”. These annoying
features may be eliminated by abandoning Euclidean space in favour of projective
space. However, with this approach new difficulties arise.

In the d-dimensional space P¢, a hyperplane is parameterized using homogeneous
coordinates as k = {z € P%u-z = 0}, where u is a vector in R%! other than

(0,0,...,0). Let us examine the constraint {z € P%u -z > 0}. At first glance,
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this constraint would seem to describe a half-space bounded by h. However, noting
that the homogeneous tuples z and —xz represent the same point of P and that
t« (—z) = —u -z, the constraint is meaningless for all z g h. This ambiguity may
be eliminated for the proper points of P* with the introduction of the additional
constraint z5 > 0. Since an improper point z has zq = 0, the constraints are still
without meaning for these points. Indeed, the assignment of an improper point to one
of the two open half-spaces bounded by h cannot be done except in some arbitrary
fashion. Consequently, we are forced to reject projective space as being unsuitable
for our purposes. Instead, we shall rely upon a natural embedding of E? in E4+1,

A tuple representing a point of E¢ in homogeneous coordinates can also be made
to represent a point of E4** in cartesian coordinates. When not otherwise clear from
the context, the tuple r = (zg,z;,...,24) will be written z = (2o, Z1,...,%4)y when
denoting a point of EY, and written z. = (o, Z1,...,%4)c when denoting a point of
E1, Using this notation, we reinterpret the d-dimensional “homogeneous” space
E? as a subset of the (d+1)-dimensional “cartesian” space E?*!. By the definition
of homogeneous coordinates, if p, represents a point of E?, then Ap, represents the
same point, for any scalar A # 0. Interpreted as cartesian coordinates, these tuples
define a pair of oppositely-oriented open rays with the origin of E“*! as their common
endpoint. '

Given that our problem concerns the linear separation of two point sets, we in-
troduce two labels, red and green, to be applied to the points of E4. A red point of
E*¢ will be represented by tuples of the form py = (po,p1,- .. ,Pd)u, Where pg > 0. In
contrast, a green point will be represented by tuples where po < 0. In this sense, the
first coordinate is made to carry information concerning the labeling of the point.

In the cartesian space, a labeled point corresponds to one of the pair of oppositely-
oriented rays mentioned above: the ray lying in the half-space {z. € E%*|zo > 0}
corresponds to the point with label red, and the ray contained in the complementary
open half-space corresponds to the point with label green. Let E%*+1 be the set of
all open rays with endpoint the origin of E%*!. The set of rays of Ed+1 contained
in {zc € E*Yz, > 0} shall be denoted by E&+' that is, E&H consists of those

rays of 9! associated with red points of E?, Similarly, the set of rays contained in
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{zc € E**'| 2y < 0} shall be called £21. Note that not all ravs i FOY Cone pond
to points of EY; namely, those rays contained in {r.. € E¥*'ry: 0} The et of
such rays we shall call £f*",

If p is a labeled point in E4, we will denote its nmique corresponding ray m F44
by r(p) Naturally enough, the ray —Rp) 15 associated with that libeled pomt with
the same location as p. but with the opposite labeling I P 15 a set of labeled pomte,
in E?, we will denote by T(I’) the set of rays in £+ assoctated with the pomts of I

In order to interpret the hyperplanes and half-spaces of E4in the igher dimenaonal
setting, the inner product operation for points of E¥ must be extended to the rays of

E**! For @ and @ in E**!| let us define the ray inner product @ -7 as follows

1 faed and be = a-b>0,
TRRTES 0 if aed and be v a bh=0,

-1 if eed and be v = ua b2

To verify that the ray product is well-defined, consider the points a « i wnd b e o
Every point of i and ¢ may be expressed as Ma and €b, respectively, for some choice

of A\>0and ¢ >0. Then
(Aa)- (€b) = \e(a - b),

which is guaranteed to have the same sign as a - b

Using the ray inner product, we may parameterize the cartesian equivalent of
hyperplanes in E? in terms of the rays of F4V If we consider these hy perplanes as
consisting of both red and green points of E4, the expressionh = {r, ¢ K u r, 0}
for a hyperplane in the homogencons space E1 i the cartesian setting of E714Y,
becomes f(h) = {Z € EMi-7 =0}, whete F s not a ray of EST 10 will be
convenient at times to ignore this restriction on the rays of {(h) This allows us to
think of the collection of points contaned m rays of I{h) as a hypetplane i J4!
passing through the origin. Certainly, there exists a nnigne hyperplane m B+
containing all the rays of F(h). We will denote by T the set of all “hyperplanes”
in E**! of the form {Z € E**'| -5 = 0}, for every chowe of i 1o [ 14!

The cartesian equivalents of half-spaces in E' may also be parametenized moterme

d41

of the rays of ™. The homogeneous expressions h, = {ry ¢ E'rglu 1) -~ 0}
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Figure 4.1: A half-space of E? in the cartesian setting of E4+!

and he = {z, € E% zo(u-z,) < 0} for the closed half-spaces bounded by hyperplane

h in E? become

l(hy) = {Fe ESYaT-£20)U{Fe ES'|T-7<0} and
(he) = {feEfa-£<0)u{Fe Egi-220),

respectively, in the new setting of E!, Informally, these expressions describe
“wedges” bounded by the hyperplanes f(h) and E3*! (see Figure 4.1). As expected,
the expressions associated with the open half-spaces of E¢ are obtained from those
associated with the closed half-spaces by making the inequalities strict.

In the same way that the set & = {# € E*d-Z = 0} can be said to be
a hyperplane of E*™! parameterized using the rays of B+ expressions such as
(£ € B @-F >0} and {7 € E*'|d-7 > 0} can be said to denote closed and
open half-spaces of E4*!, respectively, whose bounding hyperplanes pass through the
origin. Let ﬁg’*‘ be the family consisting of all the closed half-spaces of this type,
and let TI%+1 be the family of all such open half-spaces.

The parameterization of half-spaces in terms of rays induces bijective mappings
between the rays of 4+ and the half-spaces of [1¢*! and [1%*'. Consider the trans-

form p, that maps ray @ € E%*! to the open half-space p (i) = {f € E**|@-F >
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0} € II4* and the open half-space h, = {F € E*Y¢ F > 0} ¢ 11 to the
ray po(hy) = 0 € E*L It is easily verified that p, is indeed a bijection, and that
Po(po(@)) = T and py(py(h,)) = hy. Moreover, we observe that p, preserves incidence

between rays and half-spaces, the proof of which 1s obvious:

Observation 4.1 Let  be a ray 1n E4*Y, and let h, be a half-space in 44 Then

il is contained in h, if and only if ray p,(h,) is contaned in half-space p (i),

In an entirely analogous manner, we may define the dual transform p, mappimg
rays in E%*' to closed half-spaces in ﬁg“. Observation 4.1 is also true for p,, with
the set T19*! replaced by T4+, For the ray i € E4+! the hyperplane Lounding the
half-spaces p,(#) and p (@) is also of interest. We define p(i7) to be the hyperplane
{f € E*!|@-% = 0} consisting of all rays of Ed+! orthogonal to 4. Sme p() =
p(—u), p is not a bijection. However, each hyperplane passing throngh the ongin is

associated with exactly one pair of rays of the form (i, 7).

4.3 Linear Separation and Arrangements

Let R and G be sets of points in EY, where the points of 18 are labeled wd, and
the points of G are labeled green Let P = {py,ps,. .,pn} be the union of # and
G. Each point p, of P, being labeled, corresponds uniquely to the ray {{p,) of F4+1.
Applying the transform p, to the rays of f(l’) yields a collection of open half spaces
in ﬁg"”l, which we will call po(f([’)). The collection of closed hall spaces in ﬁg“
obtained through the application of p, on {{P) will be denoted p,(1112)). and the set
of hyperplanes bounding these half-spaces will be called p(If 7))

The hyperplanes of p(f(P)) form a homogeneous arrangement Al p(l{ Py))ym Et4Y
so called because each hyperplane may be expressed as a homogenous linear equation
in d + 1 variables. For the same reasou. the arrangement 15 symmetric about the
origin. Since each f{ace of A(p(f(f’))) can be expressed as the intersection of half
spaces whose bounding hyperplanes contain the origi, each ray of EH helongs to
precisely one face. As with the hyperplanes of IT'*! and the half-spaces of [11+ and

T1#+1, the faces of .A(p(i-‘(P))) may be parameterized in terms of the rays of E441, I
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this fashion, the faces can be considered not as sets of points in E9+1, but rather as
sets of rays.

The only face of A(p(I(P))) that could possibly contain no rays of E4+! is a vertex
at the origin. In fact, it is the only vertex possible in a homogeneous arrangement, all
other faces being unbounded. Strictly speaking, however, the origin is contained in
no ray of E4*1, and no hyperplane of [I¢+1, except where it is convenient to consider
it so. For this reason, the vertex at the origin is an artificial entity, the “empty set”
of rays, whose presence completes the structure of the homogeneous arrangement.

Fach ray of E%*! may be classified according to the region of A(p(I{ P))) in which
it lies. Usually, this is accomplished by evaluating the ray according to its position
with respect to each hyperplane of the arrangement — information obtainable by
means of the ray inner product. Given a ray @ € E+! its position vector is v(d) =

Py

(v1(@), vo(D), . . ., va(W)), where v,(T) = (p;) -4, forall i = 1,...,n. Thus,if »,(&) =0,
4 lies in the hyperplane p(f(p;)) and the closed half-space pc(f(p,)), but not in the
open half-space po({(p,)). If n(&) = 1, @ is contained in both half-spaces, and if
v,(4@) = —1, it is contained in neither.

Since every face f of the arrangement (other than the possible vertex at the
origin) consists of rays sharing a common position vector, we will let v(f) = v(&)
for any € € f. To the vertex at the origin, if it exists, we assign the position vector
(0,0,...,0), since it is the common intersection of all the hyperplanes of p(f(P))

The arrangement A(p({(P))), together with the half-spaces of p,({{ P)) and p.({(P)),
completely captures the combinatorial nature of the linearly separable components
of P. Thus, we will refer to the hyperplane arrangement .A(p(f(P))), together with
the position vectors as defined above, as the homogeneous half-space arrangement
A(po(llPY) in B4+,

The following lemma shows how the linearly separable components of P with
respect to the hyperplane & of E¢ may be derived from the positions of the rays @

and —i in the arrangement, where @ is the ray such that p(&) = p(—1) = I(h):

Lemma 4.2 Let P = {py,pa,...,Pn} be a set of labeled points in E9, and let h be a
hyperplane. Let @ and —u be the rays of E4*1 such that p(d) = p(—u) = f(h) Then
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1. The strictly hincarly separable components of P with respect to b are
{p € PIT € p(l(p.))} and {p. € P|-il € p.(iip))}.

2. The non-strictly linearly separable components of P with respect to h arr

—

{p.€ PlT € p.(l(p.)} and {p. € P|=i € p.(l(p)}.
Proof We will prove only the first claim, the proof of the second beng simlbar to
that of the first. Let R and G be the sets of red and green points of £, respectively
Let h be parameterized as {ry € E*|uy -z, = 0}, where (without loss of generahity)

up is assumed to be positive. The two open half-spaces bounded by h can then be

expressed in the cartesian setting as

o)

hy) = {T¢€ Eﬁ*‘]ﬁ-f)O}U{fEEé“|17~f(0} and
he) = {Fe Ef'la-F<0ju{fe EMa £>0).

i

By definition, the strictly linearly separable components of P with tespect to A oare
Ci=(RNhy,)U(GNh)and C; = (RNAHU(GN L), In the cartesian setting of

E**! we have

(C) = (Bn{ze EFa-2>0)u@dmn{se £V 7. o))

and similarly

[(C2) = {llp) € UP)|w(T) < 0) = {Iip,) € IPY il ~it) 2 1)
Interpreting these conditions in the context of the half-spaces of p, ([ 1)) yields €7y =
{p € Plii € po(I(p,))} and Cz = {p, € P| =T € p,(lip,))) 0
An immediate implication of Lemma 1.2 concerns the strong and weak separation
of Rand G. Let x,(£)and v (I) be the number of half-spaces ufp,,(f(l’)) and p,(r( "y,
respectively, that contain ray £ € EZ*'. If i 15 (almost) any ray of £ quch that

Xo{#) = n, then the hyperplane h such that f(h) = pliy 15 a strong stnct Linear
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separator of R and G in E*. If instead x,(&) < n, and there exists no # € £¢*! such
that x,(¥) > xo(@), then h is a weak strict linear separator of R and G. The same is
true for non-strict separation, using x.(i) in place of x,(#). The only rays of £¢*! that
are exceptions to the above observations are 7, = {\(1,0,...,0)c; € E%!|\ > 0}
and its opposite, —7, as it is this pair of rays that maps to Eg“ under p.

Another implication of Lemma 4.2 concerns the linearly separable subsets of P,
both strict and non-strict. Given any subset () of P, we wish to know whether the
sets @ N R and @ N G are linearly separable. If we pose this question in the context
of the arrangement A(p,([{Q))), the lemma leads us to the following corollary for the
strict case:

Corollary 4.3 Let P = {p,,ps,...,Pn} be a set of labeled points in E°, and let Q be
a subset of P. The points of @ are strictly linearly separable if and only if there exists
some ray @ € E**' contained in the intersection of all the half-spaces of po(1{Q)).

The corollary holds equally well for non-strict linear separability when considering
p. in place of p,.

The faces of A( po(f(P))) may also be related to the linearly separable subsets and
components of the labeled point set P in E¢. Since all rays forming a given face f of

-

A(p.(I(P))) have identical position vectors, and are contained in the same half-spaces
of po(I(P)) and p((P)), we let xo(f) = Xo(%) and Xc(f) = Xc(#) for any ray @ € f.
In this manner, every face of the arrangement (other than the possible vertex at the
origin) can be said to correspond to one strict and one non-strict linearly separable
component - so long as the vertex at the origin exists. Without it, there would be
some face g such that if ray @ is contained in g, its opposite ray — is also contained

in g. The face ¢ would then correspond to two components of each type.

Lemma 4.4 Let P be a set of labeled points of E¢. There exists a vertez of A(p.(I(P)))
at the oregin of E%*? if and only if there ezists no hyperplane of E® containing all
points of P.

Proof Let h be a hyperplane in E?. Let @ and —# be the rays of E4+! such that
p(@0) = p(—i@) = (k). Let p be a point of P. By Observation 4.1, i{(h) contains i(p)
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if and only if p(f(p)) contains @ and —ii. Therefore h contains all points of P if and
only if @ and —i are contained in all hyperplanes of A(p.{I{P))); that is, if there is
no vertex of A(p,(I{P))) at the origin. 0

The fact that some face of the arrangement must contain 7, causes no great
inconvenience, as the following argument shows. first, we observe that no ray of
T(P) lies in E.g“. Hence there exists no ray Rp) € r(P) such that hyperplane p(R])))
contains 7,,. Therefore 7,, and -7, can only be contained in cells of A(;)L,(F(P))), and
are not the only rays of these cells. Despite containing rays which do not correspond

to a separator under p, these cells still may be associated with components of R and

G.

4.4 Dual Transforms for Spherical Separation

In the previous sections, a transformation of instances of labeled sets in EY into
homogeneous half-space arrangements in E4*! was exhibited - a transformation that
preserves the combinatorial structure of linear separation We shall now do the same
for spherical separation, also by means of a transformation imto the setting of homo-
geneous arrangements, this time in E*™?. Following the precedent estabhished for
linear separation, the transformation for the spherical case makes the following cor-
respondences:
PRIMAL DUAL
point +«—— hyperplane through origin,
hypersphere «—— open ray with endpoint the origin,

labeled point +«~— half-space with bounding hyperplane through origin.

The approach will be based upon one used by Edelsbrunner and Seidel [ES86] to
relate Voronoi diagrams in E* with hyperplanc arrangements in E4*', Before intro-
ducing the spherical separation transforin, we briefly deseribe their Voronoi transform
and how it relates to spherical separation.

Consider the bijective mapping V of every site v of the set of Voronoi sites V
(represented using cartesian coordinates) onto the hyperplane h(r) =20 -z - v - v

in E%*!, This hyperplane may be visualized as the tangent hyperplane to the unit
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Figure 4.2: Mapping of Voronoi sites in E? to hyperplanes in B!

paraboloid U(z) = z -z in E**! (see Figure 4.2). Since the square of the distance
fromztovis|lz-v|’=2z-2-2v-z+v v, ||z —v]| = /JU(z) — hy(z). Hence the
closest Voronoi site to z € E? is that whose associated hyperplane k, is such that
hy(z) 2 hy(z) forall w e V.

The arrangement of these hyperplanes provides much more information than is
required for the construction of Voronoi diagrams. If the hyperplanes are evaluated
at z € E% and are then considered in order of decreasing value, their associated
Voronoi sites are ordered by increasing distance from the point z. Thus a point
¥ = (Y1,¥1,. - -, Yds1)c located in this arrangement could be thought to correspond to

a hypersphere in the primal space E¢ with centre (y1,¥1,---,¥d)c and radius

4
> ¥ =y
=1

The sites inside the hypersphere in the primal space would have as dual hyperplanes
those “above” the point y, where “above” is defined as being in the direction of the
positive z44;-axis. The sites outside the hypersphere would have as dual hyperplanes
those “below” the point y.

One feature of the linear separation transform that is shared by this transformation
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strategy is that potential separating surfaces are mapped into locations within au
arrangement of hyperplanes. However, the Voronoi transform cannot differentiate
between two sets of points in E? In the linear separation case, this differentiation
was possible due to the introduction of labeled points of E*, and the conversion of
these points into rays of £%*1, For the case of spherical separation. we shall apply
the techniques of the Voronoi transform in the conversion of the labeled points of E*
into hyperplanes and half-spaces in E4*2,

Let u be a point of E?, represented in cartesian coordinates. The image of u under

the Voronoi transform V is the hyperplane

d
V(u) = {xc € Ed“l —u-u+ ZQu.x, — T4 = 0}_

1==1

Expressed in homogeneous coordinates, this expression becomes
V(u) = {zy € E**Y(~u-u,2u;,2u,,...,2u4,~1) 24 = 0}.

Exploiting the relationship between points in E9*! represented using homogencous
coordinates, and the rays of E4+2 we may convert the hyperplane V(u) into a hyper-
plane of E4+2, With this goal in mind, we introduce notation that will simplify the
representation of this hyperplane in E4+2,

Let p be a labeled point of E?, represented using cartesian coordinates. The ray

of E*? with which we will associate p shall be given by

sp) = {Mp - p,=2p1, =2p2,..., =2py, 1) € E™Y X > 0} if pis red, and
{-=Mp-p,—2p1,—2p2,...,—2pg,1) € Ed”l A >0} ifpis green.

Although this relationship is not bijective, it is certainly injective. A ray of E4+2
can be the image of only one labeled point of E4 under this transformation. Also, as
one would expect, the ray —3(p) is associated with that labeled point with the same
location as p, but with the opposite labeling. If P is a set of labeled points in E4,
the set of rays that are the images of points of P will be denoted by 5(P).

Except for the the points at the origin, the red points of E? ate mapped onto

d+2 +2

rays of £&t% and the green points are mapped onto rays of Eft?. The origin of E*
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is mapped to the ray {A(0,0,...,0,1) € E4*2| ) > 0} if labeled red, and to the ray
{X(0,0,...,0,-1) € E4+?| X > 0} if labeled green.

Let u be a labeled point of E?. If we extend the definition of the ray inner product
to rays of E 4+2 we may express the set of rays of Ed+2 corresponding to the points
of hyperplane V(u) as o(5(u)) = {7 € E**?|5(u) - Z = 0}. Since o(—d) = o(d),
the labeling of u is not relevant in the determination of the rays of this hyperplane.
However, the labeling does provide information that determines the orientation of the
half-spaces o,(&) and o.(%).

The function o, as well as the dual transforms ¢, and o, may be used to convert
the labeled point set P = {p;,pz,...,p»} of E? into the homogeneous half-space
arrangement A(g,(5{(P))) in E%*2. The position vector of the ray @ € E%+? with
respect to the arrangement is v(%) = (v (@), vo(%), ..., va(@)), where v;(4) = 3(p;) - ¥,
for all i = 1,...,n. Thus, if »(&) = 0, @ lies in the hyperplane o(5(p,)) and the
closed half-space o.(3(p,)), but not in the open half-space o,(5(p.)). If (7)) =1, dis
contained in both half-spaces, and if v,(&) = —1, it is contained in neither. As in the
previous section, the position vector of a face f of the arrangement shall be taken to
be the position vector shared by the rays contained in f.

To show how the arrangement A(o,(5(P))) captures the combinatorial properties
of the spherically separable components of P, we must first show how the hyperspheres
of E? relate to the rays of E4+2. The hyperspheres of E? are often parameterized
in terms of the cartesian coordinates of their centres, and their radii. Let s be a
hypersphere with centre ¢ = (¢, ¢1,...,¢4)c and radius r. An equally viable param-

eterization for s is the (d+1)-tuple (s1,82,...,8441), where s, = ¢, fori=1,2,...,d,

and sq4; = zd:sﬁ — r2, This tuple may be interpreted as the cartesian coordinates

of a point inl=I'13d+‘. It should be noted that not e;/ery point of E?+! corresponds to

a hypersphere of E* in this manner; if sq41 = Y 3,2, then r2 < 0. Consider now
i=1

the homogeneous coordinate equivalents of the points of E4+1. If z € E?*! is repre-

sented by the homogeneous tuple =4 = (2o, Z1,...,Zd+1)n, Where zq # 0, point z is
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D

F 3

Figure 4.3: A sequence of hyperspheres tending toward a hyperplane in E¢

associated with the unique hypersphere of E¢ with centre and squared radius

Td+1

?
Zo

ctr(z) = %—(xl,xl, ...1Z4)c and rad*(z) = ctr(z) - ctr(z) -
0

respectively.

In Chapter 3 we allowed the use of hyperplanes as degenerate spherical separators,
since a hyperplane of E¢ may be regarded as the limit of some infinite sequence of
hyperspheres whose centres are successively farther from the origin, and whose radii
grow proportionately (see Figure 4.3). A hyperplane of E? may be parameterized
as follows: let o be some fixed real value, and let ¢ = (¢y,¢y,...,¢4)c be a point of
E*? other than the origin. Let ¢ represent the unit vector in the direction of ¢. The
unique hyperplane of E¢ with normal vector ¢ and passing through the point oé is
given using cartesian coordinates by the expression h = {z € E|c -z = af|c]|]}. We
will determine the homogeneous tuples to which hyperplane h may be associated by
first constructing a sequence of hyperspheres that converges to h, and then taking
the limit of homogeneous tuples representing these hyperspheres.

Let t(t) be the hypersphere of E¢ with radius r and with centre tc, where t > n‘-:n
In addition, let us restrict the radius r to be |jtc|| — e, for some fixed real value a.

The condition on t ensures that the radius of 1(t) is positive. The point aé belongs
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to ¢(t) for any t > Tep since
llte — el = (lltell = a)l&]] = .

Clearly, h is tangent to () for all > i since it passes through aé and is orthogonal
to the line passing through aé and tc. Since the radius of ¥(t) increases as t — oo,
h= e

Let z,(t) be a homogeneous tuple of E%*! representing the hypersphere ().

Hence

zy(t)

A (1,t61, ooy leg, (tc) * (tC) - r?)
= A1, tey,... teq (lEef] = r)({lte]l + 7))
A (1, te, . tea, 2alte] - o),

for any choice of A # 0. Let ¢ — co and At — ¢, for some real-valued choice of £ # 0.

These conditions together cause A to tend to zero. The resultant limit of z 4(t) is

£(0ycrr. v car20xlc])

Noting that h = {z € E¢|c-z = a|c||}, we conclude that the homogeneous tuples of
the form €(0,uy,uz,...,u%d41), and only these tuples, correspond to the hyperplane

d
{z € BY2) iz, = ugs1} of E%.

i=1
As with the linear separation transformations, the homogeneous tuples of Ed+!

representing hyperspheres of E¢ (both degenerate and non-degenerate) shall be inter-
preted as cartesian coordinates in E4*?. Hence every such hypersphere corresponds
to a pair of oppositely-oriented rays of Ed*2; the non-degenerate hyperspheres cor-
respond to rays of E‘f{” and E‘g‘”, and the degenerate hyperspheres are associated
with rays of E4*2. Again, not all rays of E%+2 are associated with hyperspheres of
E9. The subset of E4*2 whose elements do represent non-degenerate hyperspheres or
hyperplanes will be called E%*2. If @ is an element of E£4+2, then we let (&) denote

the unique (possibly degenerate) hypersphere associated with .
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4.5 Spherical Separation and Arrangements

So far, we have detailed a transform mapping the labeled points of P in E? into a
homogeneous arrangement in E%t?, and related rays in E%*? with hyperspheres and
hyperplanes in E¢. However, we have not yet seen how these transformations mesh
together. The following lemma shows how the combinatorial structure of the dual
arrangement of a point set in E? reflects the combinatorial structure of this set with

respect to spherical separation.

Lemma 4.5 Let P = {p1,p2,...,pn} be a set of labeled points in E?, and let s be
a (possibly degenerate) hypersphere. Let @ and —u be the rays of Ed+2 such that
(@) = 4(—u) = 5. Then

1. The sirictly spherically separable components of P with respect to s are
{pi € P|i € 0,(5(p.))} and {p, € P|-1 € 0,(5(p.))}.

2. The non-strictly spherically separable components of P with respect to s are
{p. € Pld € 0i(3(p.))} and {p, € P| -1 € 0.(5(p.))}.

Proof We will prove only the first claim, the proof of the second being similar to
that of the first. Let R and G be the sets of red and green points of P, respectively,
and let u = (ug,uy,...,uq41) be a point contained in @. Without loss of generality,
we assume that ug > 0. Consider point p, € P. If ray @ is contained in ¢,(5(p,)) =
{Z € E**?|§(p;) - > 0}, and if p, is red, then

d
(ZP:Q,—2;01,—2172,-..,-2p4, 1) -u > 0,

=1

or equivalently,

d d
uoz:p,'2 - QZU,'p, +uger > 0. (4.1)

=1 =1

Instead, if p; is green, then similarly

d d
uo}:p.2 - QZu,p. +ugyy < 0. (4.2)

1=1 i=l
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If s is non-degenerate, then ug > 0, and the parameterization of s using cartesian
coordinates is

s = {eem|S (o HY 3 (1) - tn)

Ug

d d 2 d U Udi1
= .’L'EE z.’l.‘, *QZ(‘—')I‘—{-T:O
= = [¢]

Ug

d d
== {.Z' S .Ed UOZ 1',2 - 22“.2, + Ud4y = 0}

=1 =1

The open connected components of E?\ s are the regions

8y = {zGE“

d d
uoz z,t— 2Zu,:c, + Ugyy > 0} and

=1 =1

d d
Uoz z;? - QZu,:c; + Uz < 0} ,

=1 s=1

S = {erd

respectively. By definition, the strictly spherically separable components of P with
respect to s are C; = (RNsy,)U(GNse)and Cp = (RNs)U(GNsy). Of the
points of R, only those contained in s, satisfy (4.1), and of the points of G, only
those contained in s¢ satisfy (4.2). Therefore Cy = {p, € P|d € o,(5(p.))}. The
same argument applied for the ray —@ yields Cy = {p, € P| ~ 4@ € o,(3(p.))}.

If s is degenerate, and the parameterization of s using cartesian coordinates is

d
{z € EY ) 2u,z, = ug4,}, the open half-spaces bounded by s are

1=1

3> == {:t 6 Ed

d
=23 uz, + ugp1 > 0} and

t=1

3¢ = {.rEEd

d
-—22 UL, + Ugpy < 0} )

=1

respectively. Noting that ue = 0, the arguments used for the non-degenerate case

also suffice here. Hence the result follows. o
One of the by-products of this lemma concerns the incidence relation between

points and hyperspheres of E%. If o is considered in place of o, in the above proof,

one arrives at the following corollary:
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Corollary 4.6 Let p be a point of E?, and let @ be a ray of F142 Then pont p s

contained in hypersphere v(4@) if and only if ray @ 1s contained in hyperplane o(S(p))
Of Ed+2.

As in the linear separation case, we may define y,(Z) and y.(F) to be the number of
half-spaces of o,(3(P)) and o.(3(P)), respectively, that contain ray 7 of £4+2 These
quantities may also be applied to the faces of A(a,(5(F))), since the rays constituting
a particular face of the arrangement share a common position vector If @ is any ray
of E:l+2 such that x,(@) = n, then the hypersphere s such that s(s) = o (i) Is a strong
strict spherical separator of R and G in E*. If instead \,(i7) < n, and there exists
nov € E-"f” such that x,(7) > x.(¥), then s is a weak strict sphenical separator of B
and G. The same is true for non-strict separation, using x.(@) in place of ().

We now state two additional corollaries of Lemima 4.5. ‘The next corollary is
analogous to Corollary 4.3, and concerns the spherical separability of subsets of P
Corollary 4.8 deals with the distinction between the separable components of P with
respect to the hypersphere s, relative to which points are contained in the interior of

s, and which are contained in the exterior.

Corollary 4.7 Let P = {py,ps,...,Pa} be a set of labeled pownts m E?, and let ()
be a subset of P. The pownts of Q are strictly spherically separable 1f and only of

there ezists some ray 4 € Ef” contained 1n the interscction of all the half-spaces of

oo(5(Q))-

Corollary 4.8 Let P = {py,pas,...,pPn} be a set of labcled points i E*, and let o
be a ray of E4*2. Let s be the hypersphere (i) m E*. If i € Ef*) then the strud
spherically separable component C = {p, € P|d € a,(5(p.))} of P wuth respeet to s
consists of the red points ezxteror to s and the green points wnterwor to s If instead
U € Eé”, then C consists of the green poants exterior to s and the red pomts imterior

to s.

Both Corollary 4.7 and Corollary 4.8 hold for non-strict spherical separation when
considering o. in place of o,, and the closures of the exterior and interior of ¥ in place

of the (open) exterior and interior. Corollary 4.8 indicates that if one limits one’s
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attention to that part of A(o,(3(P))) contained in E"ﬁ“, only the spherically separable
components with red points exterior to the separator are considered. The part of
A(0,(3(P))) contained in E&? yields compenents with green points exterior to the
spherical separator, and the part of the arrangement contained in Eg“ correponds
to degenerate spherical separators — that is, to linear separators. By taking the
intersection of A(c,(3(P))) with EZ*?, one obtains a (d+1)-dimensional homogeneous
arrangement that captures the combinatorial qualities of P with respect to linear
separation, equivalent in every respect to A(p.(I(P))).

One concern that will arise in later chapters is whether every face of A(a,(5{P)))
(except for the vertex at the origin, if it exists) contains a ray of £9+2, This is indeed
the case. Recall that in EZ*?, only the rays 7= {A(0,0,...,0, 1) € E#?| )\ > 0} and
—Z are not members of Ef“. However, given the labeled point p € P, the ray inner
product 5{p) - £'is always either 1 or —1, and therefore # and —Z are contained in
cells of A(o,(5(P))). As aresult, if Z or —Z'is contained in cell f of the arrangement.
there exists some other ray @ of ES*! in f such that & € E9+2,

In E}?” and E3'? recall that the rays of the form {\z € E%*?|) > 0,z # 0}
d
that are not elements of E¢*? are those where Y 2,2 — 297441 < 0; that is, those that

would correspond to hyperspheres having the ;txare of their =~ 4ii less than or equal
to zero. The rays of E*ﬁ” U Eé“ not in Ef+2 consist of two connected components
symmetric with respect to the origin, one in E§'? and the other in E&*%. Let us
restrict our attention to the former, and denote it by p.

Let 7 be a ray of g, and let p be a red point of P. Let £ € E4*? be that point of

Z where o = 1. Then

d
p-p—2) piz,+ Tupt

=1

d d
p-p- QZP,Z‘, + thz
=1

=1
Z ”P - .17'”2,

(P " Py _2p11 _2p2" vy —2pd’ 1) T

v

where z' = (£1,23,...,24) in E4. This implies that 7 is contained in ¢(5{p)) if and

only if z’ = p, which is true for only one ray in E";ig“. Otherwise, it is contained
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in a,(3(p)). Similarly, if p is labeled green, ' is contained in o(5(p)) if and only \f
z' = p, but otherwise, it is contained in the complement of ¢.(s{p)). Thus all but a
finite number of rays of p are contained in a common cell f, the remaining rays being
located in faces contained in the closure of f.

Let g a face in the closure of f, where dim(g) > 1 and gN E‘}‘{” #9. i diin(g) > 1,
then g N Ed}‘;” contains an infinite number of rays, and therefore some ray of E3+?2
Otherwise, g consists of a single .ay of E‘fg”, and is contained in the intersection of
at least d hyperplanes of A(a,(5{P))). Let this ray be an element of g, say . Then
z’ = p for at least d choices of p in P, which is an impossibility. Therefore g contains
some ray of E¢+2,

This leaves only the face f to be considered. Let us assume that f N E&+? is
entirely contained in p. Since the set g is closed relative to E}’{'z, the closure of f in
E}’;’z must also be entirely contained in g, which is a contradiction.

We summarize these arguments in the following lemma:

Lemma 4.9 Let P = {p1,p2,...,Pn} be a set of labeled points in E4, and let [ be a
face of A(o,(5(P))) of dimensionality at least 1. Then f contans at least one ray of
Ed+2,

From this lemma we may conclude that the faces of A(~ ,(5(’))) have the same
significance as those of A(p,,(f(P))), in that each face of both arrangements of dimen-
sionality greater than zero corresponds to one strict and one non-strict component
of the appropriate type — again, only if the arrangement has a vertex located at the
origin.

Lemma 4.10 Let P be a set of labeled points of E'. There erwsts a verter of
A(a,(5(P))) at the origin of E**? of and only of there erwsts no hypersphere of E*,

degenerate or non-degenerate, that contains all points of P

Proof Let s be a hypersphere in E?. Let @ and —i be the rays of E4! such that
(&) = 4(—a) = s. Let p be a point of P. By Corollary 4 6, hyperplane a(ii) = o(—i)
contains ray §(p) of E4*2 if and only if hyperplane a(5(p)) contains rays @ and —i.,
Therefore s contains all points of P if and only if @ and —i are contained in all

hyperplanes of o(5{P)); that is, if there is no vertex of A(o,(5(P))) at the ongin. O




Chapter 5

Separable Subsets and

Components

5.1 Introduction

The setting of half-space arrangements will prove to be very convenient for both the
investigation of combinatorial properties of sets of points with respect to linear and
spherical separation, and the algorithms determining the various linear and spherical
separators of point sets and other object classes. In this chapter, we address two com-
binatorial topics; the first concerns separable components, and the second concerns
separable subsets.

In the next section, we will provide upper bounds on the maximum number of
separable components of fixed size k of a set of labeled points. More precisely, given
a set P of n distinct labeled points of E?, we will bound the number of separable
components of P of size less than or equal to k, in each of the linear and spherical
cases, and the strict and non-strict cases.

The bound for the case of linear separation will also turn out to apply to the
number of k-sets in d dimensions. Let & be a hyperplane in E?, and let hs and k¢
be the two open half-spaces bounded by k. If £ is the cardinality of PNk, then the
point set PNh, is called a k-set of P, and the point set PNh¢ is called an (n—k)-set
of P, If the points of P all share the same label, then the k-sets of P are identical to

46
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|

Figure 5.1: A 5-set and an 8-set

the strict linearly separable components of P of size k (sce Figure 5.1).

The theory of k-sets has many applications, generally involving the analysis of
space and time complexities of algorithms. Some notable examples include higher-
order Voronoi diagram construction [Lee82,Ede87], half space range queries {('PR6,
Cla88], and approximation of sets of points by hyperplanes [YKIISS]. The first asymp-
totic bounds on the number of k-sets of m points in the plane were developed by
Lovész [Lov71] and Erdés. Lovdsz, Simmons, and Strauss [ELSS73]. These bounds
of O(nvk) and Q(nlog(k +1)) are still the best known to date in two dinensions. In
[Ede87], Edelsbrunner credits Raimund Seidel with an extension of this lower bound
to higher dimensions for the case k = n/2, obtaining the bound Q(n*'ogn). In
three dimensions, Chazelle and Preparata [CP86] derived an upper bound of O(nk?),
which was subsequently improved for large values of k to O(n?k) by Cole, Sharir,
and Yap [CSY87]. Very recently, Barany, Furedi, and Lovasz [BFLSY] showed that
for k = n/2, the bound may be reduced to O(n??®). In higher dimensions. Clarkson
[Cla88] obtained an upper bound of O(n ¥4k ysing random sampling methods.

In Chapter 3, the strong strict linear and spherical separability of a set of labeled

points P was related to the existence of separable subsets of P having a certain
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cardinality dependent upon d alone. In Section 5.3, expressions shall be given for the
number of linearly and spherically separable subsets, both strict and non-strict, and
of both fixed and arbitrary cardinalities. These expressions will be the summations
of functions of x,(f) and x.(f) over all faces f of the appropriate dual arrangement.

The implication of these formulae is that separable subsets may be counted with-
out generating them explicitly. If P is a set of n labeled points in E¢, the number of
separable subsets of P may approach 2". However, this number may be determined
in time proportional to the number of faces of the dual half-space arrangement of P.
Indeed, as we shall see in the next chapter, it is well known that the number of these

faces is polynomial in n with order dependent upon d.

5.2 Upper Bounds for Separable Components

Let P be a set of distinct labeled points of E9, such that no hyperplane contains
every point of P. Consider the homogeneous hyperplane arrangement A(p,(I{(P)))
in B4+, Since the arrangement has a vertex located at the origin. each face of the
arrangement has associated with it precisely one strict and one non-stiict linearly
separable component of P. The following lemma shows that only the cells of the
homogeneous arrangement need be considered when looking for strict linearly sepa-

rable components.

Lemma 5.1 Let P be a set of distinct labeled points of E?, such that no hyperplane
contains every point of P. Let f be a face of .A(po(f(P))) associated with the strict
linearly separable component C of P. Then there ezists some cell g of A(po(r(P))),

also associated with C, whose closure contains f.

Proof Let H be the set of hyperplanes of p(f(P)) containing face f, and let Hs be
the set of half-spaces of po(f(P)) bounded by the hyperplanes of H. Let H. be the set
of open half-spaces complementary to those of H,,. Consider the common intersection
of the half-spaces of the set H. N (p(T(P)) \ Hs). This common intersection is a cell

g of .A(p,,(f(P))) contained in the same half-spaces of po(f(P)) as f. Clearly, f is
contained in the closure of g. a



CHAPTER 5. SEPARABLE SUBSETS AND COMPONENTS 49

The proof of this lemma applies equally well to the case of strict spherical separa-
tion and the setting of A(c,(5(P))). If no hypersphere or hyperplane of E? contains
every point of P, then every face of the homogeneous arrangement A(o,(5(P))) in
E%*? corresponds to one strict and one non-strict spherically separable component of

P. Accordingly, we state the following corollary:

Corollary 5.2 Let P be a set of distinct labeled points of E?, such that no hyper-
sphere or hyperplane contains every point of P. Let f be a face of A(0,(3(P)))
associated with the strict linearly separable component C of P. Then there exists

some cell g of A(a,(5(P))), also associated with C, whose closure contains f.

Quite clearly, no two cells of A(p,(I{ P))) correspond to the same strict linearly
separable component, and no two cells of A(po(r(P))) correspond to the same strict
spherically separable component. For both the linear and spherical cases, one may
conclude that each strictly separable component corresponds to a unique cell of the
appropriate arrangement.

Another corollary of Lemma 5.1 deals with the non-strict components of labeled

point sets:

Corollary 5.3 Let P be a set of distinct labeled points of EY, such that no hyperplane
contains every point of P. Let f be a face ofA(po(r(P))) associated with the non-strict
linearly separable component C of P. Then there ezists some edge g of A(po(I(P))),

also associated with C, contained in the closure of f.

Naturally, Corollary 5.3 holds equally well for non-strict spherically separable
components and the arrangement A(o,(35(P))).

The number of strictly separable components of P of size k or less, whether linear
or spherical, may be enumerated by counting the number of cells f of the appropri-
ate dual arrangement of P having x,(f) < k. By obtaining an upper bound on the
number of such cells over all homogeneous arrangements in E™, we now derive upper
bounds on the number of strict components of cardinality k or less, over all distribu-
tions of n point: in d dimensions into the labeled sets R and (. Once these bounds

have been derived, we will see how they apply to the case of non-strict components.
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Let H be a set of n hyperplanes in E™ whose common intersection consists of the
single point 0. Of course, this implies that n > m. For every hyperplane h € H, let us
define hy and h¢ to be the two open half-spaces of E™ bounded by h. The set of half-
spaces {hs|h € H} shall be denoted by H, and the set of half-spaces {h<|h € H}
shall be denoted by H.. Given a face f of the homogeneous half-space arrangement
A(Hs), let xo(f) be the number of half-spaces of H containing face f, and let x.(f)
be the number of half-spaces of Hs whose closures contain f. Equivalently, x.(f) is
the number of half-spaces of H¢ avoiding f. With these definitions, A(H) may be
considered as a half-space arrangement in E™.

Let AT be the set of all such homogeneous half-space arrangements in E™ having
n distinct hyperplanes, and containing the vertex located at the origin. Given some
integer k between 0 and n, inclusive, let us define C(m, k, n) to be the maximum num-
ber of cells f of A(H,) where x,(f) = k, over all arrangements A(H,) in AT. Also,
givén integers ky and k, such that ky < k2, we let C(m, ky : k2,n) be the maximum
number of cells f where k; < x,(f) < k;, over all arrangements 1n A7, We will adopt
the convention that C(m, k,n) = 0 for all integer values of k less than 0 and greater
than n. Also, we will say that C(m,k; : k2, n) = C(m, ky : n,n) if ky > n, and that
C(m,ky: ko,n) =C(m,0: kz,n) if k; < 0.

It should be noted that C(m,0,n) = C(m,n,n) = 1. Also, we have C(m, k,n) =
C(m,n—k,n) and C(m,k, : k3yn) = C(m,n —ky:n— ky,n), as the following ar-
gument shows: Let H, H,, and H. be defined as above, such that A(H) is an
arrangement in E™. If f is a cell of A(H) such that x,(f) = k, then the cell —f
radially opposite from f about the origin has x,(~f) = n — k. Hence the maximum
number of cells f of A(H,) where x,(f) = k, over all arrangements A(H,) in A7, is
the same as the maximum number of cells g where Y,(g) =n — k.

A hyperplane h of H, when intersected with the remaining n — 1 hyperplanes of
H, yields a set of (m~—1)-dimensional flats H’' = (H \ {h})N A in h. The half-spaces
of H, and H., when intersected with h, are given by H'y = (H5 \ {h;}) Nk and
H' = (He \ {he)) N A, respectively. Since every hyperplane of H passes through
the origin of E™, these intersections of hyperplanes and half-spaces with h are all

non-empty. Also, the common intersection of the flats of H' must be the vertex of
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A(H) at the origin. For these reasons, the flats of H’, together with the sets H',
and H', form an (m-1)-dimensional homogeneous half-space arrangement A(H'S)
in h.

Each cell f’ of A(H',)is an (m—1)-face of A(H), and as such is a facet contained
in the closure of exactly two cells f; and f, of A(H>). We will let Cu(ky 1 k;) denote
the number of cells f of A(Hs), such that k; < x,(f) < k; and f has a bounding
facet contained in h. With these definitions and observations, we are now able to

prove the following lemma:

Lemma 5.4 Let A(H,) be a homogeneous half-space arrangement of AT as defined
above. If h is a hyperplane of H, then

Ch(0:k) <C(m-1,0:k,n—1),
for0<k<nandm>2.

Proof Let f' be a cell of A(H';), and let f, and f, be the two cells of A(Hs) having
f' as a common facet. Without loss of generality, we assume that f, is contained in
h, and that f; is contained in h.. Because f;, f,, and f' are all contained in the
same half-spaces of H, \ {h,}, we have x,(fi) = xo(/') + 1 and xo(f2) = Xo{f)-
Hence if f is a c2ll of A(H5) with facet g contained in h, then yo(f) = j implies that
Xo(9) equals either j or j — 1. We thercfore have

Ca(0:k)<C(m-1,0:k,n-1)

as desired. a

By summing the quantity C4(0 : k) over all hyperplanes h in A(Hs ), we arrive at
the following lemma:

Lemma 5.5 C(m,0: kn) < —C(m —1,0:k,n—1), for0 < k<nandn>m > 2.

3=

Proof Let A(H) be a homogeneous half-space arrangement of AT as defined
above. Let n be the number of hyperplanes in H. Consider the sum of Cn(0: k) over
all hyperplanes h in H. By Lemma 5.4,

Y Ca(0: k) < > Cm=1,0:kn—1)

heH heH
< nC(m-1,0:kn~-1).
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But each cell f having x,(f) < k is counted exactly as many times as it has bounding

hyperplanes. Since cell f has a vertex at the origin in its closure, it must have at
least m facets. Thus

Cim,0: kyn) < =3 Ca(0: &)
M heH

Ze(m—=1,0:kn—1)
m

IA

as required. n

Lemma 5.5 gives us a recurrence relation that we will exploit in deriving our
bound of Theorem 5.8. The boundary conditions for the recurrence arise out the
examination of the two-dimensional situation. However, we first need the following
result concerning the overlap of rays on the real line. Let Q = {q1,92,...,q:} be
a sequence of distinct points on the real line, in increasing order, and let Q* =
{¢5,¢5,...,q5} be a seqdence of rays such that ray ¢,* has endpoint ¢,. Also. let Q*
and @~ be the subsequences of positively-directed and negatively-directed rays of Q*,
respectively.

Let I = {Iy, I1,...,1,} be the sequence of open intervals where I; = (—o0,q,),
I, = (qn,0), and I, = (g,,q,41) for all : = 1,2,...,n — 1, For every interval I, € I,
let us define r*(I,) and r~(I,) as the number of rays of Q* and Q -, respectively, that
contain I,. Note that if i < j, then r*(J,) 2 r*(I,) and r~(1,) < r=(I,). Given some
integer k between 0 and n, inclusive, we wish to find the maximum number of intervals
I, such that r¥(I) + r=(I,) < k, over all such sequences of rays Q*. Denoting this
number by r(k,n), and using these definitions, we prove the following by induction

on k:
Lemma 5.6 r(k,n) <2k +1, for0<k <n.

Proof The lemma holds trivially for k = 0. Assume that the claim is true for all
k=0,1,...,k = 1. We will show that it must be true for k = &’.

Let @* be a set of n rays, as defined above, that realizes the maximum r(k',n).
Let I, be an interval of I such that r*(1,) 4+ r~(1,) = k’. If no such interval exists,
then r(k’,n) < r(k’— 1,n), and the lemma holds.
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Figure 5.2: Construction for the proof of Lemma 5.6

Otherwise, let I, be the unique interval such that r=(1,) = k’, if it exists. If not,
let I, = Io. Similarly, let I, be the interval such that r*(I,) = k', if it exists. If not.
let Iy = I,,. Note that a < ¢ and b > ¢. By construction, there can be no cells I, with
j < aorj> bsuch that r+(l,) + r=(I,) < k' (see Figure 5.2).

There can be no more than k¥’ — r~([,) rays of @~ with endpoints between I, and
I,, and similarly no more than &'—r*(I;) rays of @* with endpoints between I, and I;.
Since r*(I,) + r=(1,) = k', there are at most r*(1,) endpoints of rays of Q* between
I, and I, and at most r~(/,) endpoints of rays of Q= between I, and I,. Therefore
the total number of points of Q between I, and I is no more than 24, implying that
r(k',n) <2k + 1. o

The bound of the previous lemma, while certainly correct, is not very meaningful
for k > n/2, since there are only n + 1 intervals on the line. Despite this seeming
deficiency, we use Lemma 5.6 to justify the boundary conditions for the recurrence of

Lemma 5.5.
Lemma 5.7 C(2,0: k,n) <4k, for1 £k < n.

Proof Let H = {h1,h;,...,h,} be a set of n lines passing through the origin of E?,
and let H* = {h{,h,..., h}} be a set of open half-planes where k] is bounded by h,
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Figure 5.3: Construction for the proof of Lemma 5.7

forall j = 1,2,...,n. Without loss of generality, let us assume that h, coincides with
the “horizontal” axis, and that A? is bounded by h, “from above”. Then the lines of
H, together with the half-planes of H*, form a half-plane arrangement A(H") in AZ.

Consider two lines I, and I, parallel to and distinct from h,, such that [, is
contained in A, but [, is not (see Figure 5.3). The intersection of {; and the half-
planes of H*\ {h>} form a collection of rays in the line [;; we have a similar collection
of rays in l;. If fi is a cell of A(H*) intersecting l;, then the interval fi N {; in
Iy is contained in x,(fi) rays of the collection. If f, is a cell intersecting l;, then
the interval f, N I 1s contained in x,(f,) — 1 rays of the collection in I;. Hence
C(2,0: k,n)<rlkyn—1)+r(k—-1,n—1) =4k Q

We may now state and prove the main theorem of this section.

8k

. : v < 1
Theorem 5.8 C(m,0: k,n) < m(m ~ 1)

( " \,forlSkSnandn?_m_>_2.
m-—2)
Proof By induction on m. If m =2, then

8k n
c k < TS e——————
C2,0: km) < 4k = _1)( _2)
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by Lemma 5.7. Otherwise, if m > 2, assume that the theorem holds for dimensions
less than m. By Lemma 5.5,

C(m,0: k,n) < %C(m—l,O:k,n ~1)

n 8k n-—1
< 2 e=teln)
< 8k ( n )
- mim-1)\m-2
as required. a

The bound of Theorem 5.8 holds equally well for homogeneous half-space arrange-
ments in E™ that are not in AT; that is, for those whose hyperplanes do not intersect
in a vertex of the arrangement. If A(H,) is such an arrangement, with H the set of
hyperplanes of the arrangement, let z be the common intersection of the hyperplanes
of H, where dim(z) > 0. Any hyperplane h of H may be perturbed infinitesimally
into the hyperplane A’ containing the origin, such that the intersection z’ of the hyper-
planes of (H \ {h})U{h'} has dim(z") = dim(z) — 1. If the perturbation is sufficiently
small, none of the cells of the arrangement are destroyed (althongh some new cells are
created), and these cells are still contained in the same half-spaces (with 4’5 replacing
the half-space h,). These perturbations may be repeated until an arrangement of A7
is produced; this arrangement has at least as many cells f with x,(f) < k as does
A(H>), and therefore the bound of Theorem 5.8 applies to A(H).

Given a labeled point set P, Theorem 5.8 may be directly applied to bound the
number of its strict linearly or spherically separable components of a given size or
smaller. We also use this result to bound the number of non-strict separable com-
ponents, by noticing that if C is a strict separable component of P, either linearly
or spherically, then the set P \ C is a non-strict separable component. Thus the
bound on the number of strict separable components of size n — & or more also
bounds the number of non-strict separable components of size k or less. Recalling

that C(m,0: k,n) = C(m,n ~ k : n,n), we now state the following corollaries:
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Corollary 5.9 Let P be a set of n labeled distinct points of E¢, wheren > d 4 1,

Let k be an integer between 1 and n ~ 1, inclusive. Then the ezpression

e )

is an upper bound for

1. the number of strict linearly separable components of P of size < k,

2. the number of strict linearly separable components of P of size > n -k,
3. the number of non-strict linearly separable components of P of size < k,

4. the number of non-strict linearly separable components of P of size > n - k.

Corollary 5.10 Let P be a set of n labeled distinct points of E¢, wheren > d + 2.

Let k be an integer between 1 and n — 1, inclusive. Then the ezpression

8k (n)
(d+1)(d+2)\d
is an upper bound for

1. the number of strict spherically separable components of P of size < k,
the number of strict spherically separable components of P of size > n-- k,

the number of non-strict spherically separable components of P of size < k,

b

the number of non-strict spherically separable components of P of size > n  k

The asymptotic behaviour of these bounds, for fixed dimension d, is O(kn?~!) in
the linear case and O(kn?) in the spherical case. The best known result for k-sets
in dimensions higher than three has been recently developed by Clarkson [Cla88],
who gives asymptotic bounds of @(nl#/2k/4/?) for the maximum number of j-sets,
summed over all j < k, and taken over all sets of n points in E?. Here d is taken
to be fixed. and n/k — oc. Clearly, the lower bound Q(n!#/2k[¥?) applies to the

aumber of strict linearly separable components of P of size < kor > n — k.
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5.3 Counting the Number of Separable Subsets

We now shift our attention to the separable subsets of a set of labeled points. Let P be
a set of distinct labeled points of E. Corollary 4.3 relates the linear separability of a
subset @ of P to the existence of a ray in the common intersection of the half-spaces of
po(r(Q)) or pc(T(Q)), depending upon whether the separability is strict or non-strict.
Similarly, Corollary 4.7 relates the spherical separability of Q to the existence of a ray
in the common intersection of the half-spaces of a,(5(Q)) or 0.(5(Q)). In this way, the
strict and non-strict separable subsets of labeled point sets relate to the intersecting
subsets of sets of open half-spaces and sets of closed half-spaces, respectively. In this
section, we shall first develop expressions for the number of intersecting subsets in
homogeneous half-space arrangements. and the number of intersecting subsets of fixed
size. We shall then exl')loit. these relationships by reinterpreting these results in the
original setting of labeled point sets.

Let A(H,) be a homogeneous half-space arrangement in A7, where I, consists
of n open half-spaces whose bounding hyperplanes pass through the origin. Let H
be the set of these bouuding hyperplanes, and let H, and H, be the sets consisting
of the open and closed half-spaces bounded by hyperplanes of H, respectively 1.et
@, be a non-empty subset of H,, and let (). be a non-empty subset of H, We define
the open cone A(Q,) of @, to be the set of faces of A(H) contained in the region
of intersection of the half-spaces of Q),, and the closed cone A(Q.) of Q. to be that
part of A(H,) contained in the region of intersection of the half-spaces of Q. (see
Figure 5.4). If a cone contains no ray of E™ then it will be called empty; otherwise,
it will be said to be non-empty. Let @ be the set of bounding hyperplanes of @,
and Q.. The common intersection of the hyperplanes of @ shall be called the apez of
A(Q,) and A(Q.).

Given an arrangement A(H,) in AT, our goal is to develop expressions for the
number of subsets of H, and H; determining non-empty open and closed cones,
respectively. We also wish to know the number of subsets of /I, and I of fixed
cardinality k that determine non-empty open and closed cones. In the first step in

the derivation of these expressions, we will make use of Euler’s relation for convex
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Figure 5.4: A closed cone in a homogeneous half-space arrangement

polytopes in E“ - an important result usually attributed to Ludwig Euler [Eull,Eul2],
but first proven in its higher dimensional form by Schlafli [Sch01]:

Theorem 5.11 (Euler’s Relation) Let 7 be a convez polytope in E®. Let ¢,(r) be

the set of faces of # of dimension t. Then

d
S Y 1=t
1=0 F{-NE]
Here, as well in the rest of this chapter, we will adopt the convention that any

summation over an empty range evaluates as zero. In particular, if ¢,(r) = @, then

}: 1=0.

fehin)

In effect. Euler's relation states that if the number of faces of odd dimension is
subtracted from the number of faces of even dimension, the difference is always 1.
Another way of looking at Euler’s relation is that the sum of (—1)3M(f) over all faces f
of r is always 1. We choose to express Euler’s relation in the manner of Theorem 5.11

hecause the range of dimensions of the faces of = is given explicitly.
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Consider now the intersection of a polytope = in E? with some hyperplane k Let
hy and h¢ be the two open half-spaces bounded by h. If f is a face of 7, there are
three possible ways in which f may interact with A:

1. f may be contained in A,
2. f may avoid A entirely, and

3. f may be split by & into the faces f,, f=, and f., contained in hs, h,and k.,
respectively.

The main question here is how Euler’s relation may be extend to account for the
“splitting” of the polytope by h. In the first two cases mentioned, the face f does
not change. In the third case, f is replaced by three new faces, two of which (f> and
f<) have the same dimension as f; the other (f.) having dimension one less. Thus

we have

(-1)dim(s>) 4 (=1)dim(f=) 4 (—1)dim(f<)

(__
(_ l)dlm(f).

If the summation of Euler’s relation is applied to the new faces of the “split” polytope,
the result is the same. Indeed, if new hyperplanes are successively introduced, the
same argument shows that Euler’s relation still holds. A (closed) polytope 7, together

with a set of hyperplanes H, shall be said to form a sliced polytope m(H). With this

definition, we state the following variant of Euler’s relation:

Lemma 5.12 Let n(H) be a closed sliced polytope in E¢, and le! (7 (H)) be the set
of faces of n(H) of dimension i. Then

Y- Y 1=1.
1=0 f€d (x(H))

The technique of polytope slicing is not new; in fact, the proof of Euler’s relation
due to Nef [Nef81,Nef84] relies on it.
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Later in this section, we will need a result similar to Lemma 5.12 for open sliced
polytopes. As a starting point, consider this contrived but not entirely pointless

statement of Euler’s relation for open polytopes.

Observation 5.13 Let 7 be the non-empty interior of a convez polytope in E*. Let
@.(x) be the set of faces of  of dimension i. Then

d

Z(—l)‘” Z 1=1.
i=0 f€b(m)

The only face of 7 is the d-dimensional face = itself, and so of course the ob-
servation is true. However, the same splitting argument used in the case of closed
polytopes is equally effective in this setting. In fact, it is effective even when 7 is
taken to be an unbounded polyhedral set. Observation 5.13 thus gives way to the

more usefu]l Lemma 5.14:

Lemma 5.14 Let x(H) be ¢ non-empty open sliced polyhedral set in E®, and let
@ (m(H)) be the set of faces of (H) of dimension i. Then

i(»l;'“ Z 1=1.
1=0 J€d\(n(H))

Lemma 5.14 and Lemma 5.12 allow us to extend Euler’s relation to open and
closed cones, respectively. For the remainder of the chapter, we will use the following
notation to refer to the faces of an open or closed cone. If A is a cone located in
the arrangement A(H,) of A™, we shall define ¢,(A) to be the set of faces of A

of dimension :. With this notation, we state Euler’s relation for closed cones in

homogeneous half-space arrangements:

Lemma 5.15 Let A(H>) be a homogeneous half-space arrangement of AT, where
m > 2, and let Q. be a non-empty subset of the set of closed half-spaces H.. If the
closed cone A(Q).) ts non-empty, then the faces of A(Q.) satisfy

f:(—l)'-‘ Yo o 1=1.

=1 f€6,(A(Q:))
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I
|
|

AR

Figure 5.5: Construction for proof of Lemma 5.15

Proof By induction on the dimensionality of the apex of A(Q.). First, let us
assume that the apex of A(Q.) has dimension zero; that is, the apex is the vertex of
A(H) at the origin. Then there must be a hyperplane ¢ passing through the apex of
A(Q.) and avoiding the remaining faces of the non-empty cone A(Q.) (see Fizure 5.5).
Also, there must exist a translate ¢’ of ¢ intersecting every ray contained in the faces
of A(Q.). The intersection of ¢’ with the closed cone A{Q,.) vields a closed sliced
polytope of dimension m — 1. Every face f € A(Q.) of dimension greater than zero
intersects ¢’ in the face f’ of the sliced polytope. Noting that dim(f) = dim(f") +1,
Lemma 5.12 may be applied to obtain the result for this case.

Now let us assume that the lemma holds for cones whose apices are of dimension
less than j, where j > 1. We shall show that the lemma is true for cones with
apices of dimension j. Let the apex of A(Q.) be a j-flat passing thiough the origin.
Since A(H) is an arrangement in AT, a vertex of A([],) is situated at the origin.
Hence, if H is the set of bounding hyperplanes of the half-spaces of H, there must
exist some h € H that does not contain the apex of A(Q.). Let hy and h< be the
closed half-spaces bounded by h. The sets @1 = Q.U {h>}, @2 = Q.U {h<}, and

@3 = Q.U {h3, h} all determine closed cones of A(H,) having apices of dimension
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Jj-1L
The faces of A(Q.) avoiding h lie in @, or Q-, but not both. The faces contained
in h lie in Q;, @3, and Q3. Hence

m m
(=07 3 1= Y (-D)TT 31
=1 F€4.(A(Qc)) =1 Jea(A(@Q1)

m m

D CVEED DS ED W S D DI
=1 €6 (A(Qa)) =1 J€4,(A(Qa))
= l4+1-1=],
by the induction hypothesis. O

An inductive proof was used here because no hyperplane may intersect all faces f
of a closed cone A such that dim(f) > 0, if the apex of A is of dimension greater than
zero. The only hyperplane that could possibly intersect all 1-faces of the apex is one
passing through the origin — but in addition to other shortcomings, this hyperplane
would avoid all faces of A not in the apex. For the case of an open cone, there
always exists a hyperplane intersecting all faces, and thus we avoid having to resort

to induction.

Lemma 5.16 Let A(H,) be a homogeneous half-space arrangement of AT, where
m 2 2, and let @, be a non-empty subset of the set of open half-spaces H,. If the
open cone A(Q,) is non-empty, then the faces of A(Q,) satisfy

m

St Y 1=l

1=1 J€4(A(Q0))

Proof Let q be a hyperplane passing through the apex of A(Q,) and avoiding
the remaining faces of the non-empty cone A(Q,). Because cone A(Q,) is open and
convex. such a hyperplane may always be exhibited. There must exist a translate
¢’ of g intersecting every ray contained in the faces of A(Q,). The intersection of ¢
with the open cone A(Q,) yields not necessarily an open sliced polytope, but an open
sliced polyhedral set of dimension m — 1 in ¢’. Every face f € A(Q.) intersects ¢’ in
the face f' of the sliced polyhedral set. Noting that dim(f) = dim(f’) + 1, we have

(_1)dlm(j)+m = (_l)dlm(f’)+m+l - (_1)dim(j’)+m-l‘
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By applying Lemma 5.14 to the faces of the sliced polyhedral set, the result follows.
a

Lemma 5.15 and Lemma 5.16 allow us to prove the main theorem of this section.
For this proof, we will follow the convention that the combination (2) equals 0, if a
and b are integers such that b > a. If H* is a set of half-spaces, either all closed or all
open, let I'( H*) be the family of subsets of H* whose associated cones are non-empty,
and let |[['(H*)| be the cardinality of I'(H*). Also, for integer k greater than 1, let
[ (H*) be the family of subsets of H* of fixed cardinality k whose associated cones
are non-empty, and let |I'x(H*)| be the cardinality of T'(H*). Lastly, if A(H,) is a
homogeneous half-space arrangement, we will denote by A,(H>) the set of faces of
A(H,) having dimensionality <.

Theorem 5.17 Let H,, be a collection of half-spaces in E™ forming the homogeneous
arrangement A(H,) of A7, form > 2. Let Hy be the set of half-spaces generated by
taking the closures of the half-spaces of Hs. Then

2 Tl = -1 % (’“‘f)),

=1 seas)\ kK

o ) = S 3 (),
=1 feA(H>)

c) ID(Hy)| = Y (-1)0' Y (2xN-1), and
‘:1 feA(H>)

d)y [T(H>) = Y (-1 . (2wh-1),
=1 JeAH>)

Proof We shall prove only the first and last claims; the proofs of the other two

follow from the same arguments.
Given some face f in A,(H5), the number of half-spaces of H containing f is

X<(f), and the number of subsets of Hy of cardinality & containing f is

Qyelu(Hy ) f€4(AMQ3)) k

This summation may be thought of as a contribution of 1 from every non-empty




CHAPTER 5. SEPARABLE SUBSETS AND COMPONENTS 64

closed cone of I'y(H3) containing f. Hence we have
Z(_l)i—l z (‘(cl(cf)) — Z(_l)n-—l ( E ( Z 1))
=1 fEA(H>) v=1 SeA(H>) \Qxelu(H) fed(AQ>))
=1 Q>€l‘h(H>) €¢-(A(Q>))

Qs €lu(Hy) ('-—1 (f6¢‘(A(Q>)) ))

= X

Q_>_61‘:.(H2)
by Lemma 5.15. Thus the first claim holds.
For the last claim, the argument is very similar to that for the first. Given some

face f in A,(H,), the number of half-spaces of H, containing f is x,(f), and the
number of non-empty subsets of H of cardinality k containing f is

1 = e,
Q> €l(H5 ) fen (A(Q5))

Hence we have

S S ey ( > )
=1 TEA(H5) JeA(HS) \Q>€lIHS )Y rea{A(Q>))
Q>EF(H>) f€¢c(MQ>))

. (Z (o Fot)
Q>€l(Hs) \1=1 1€8,(MQ5))
= Z 1

Qs el(H3)

by Lemma 5.16. Thus the last claim also holds. 0

Interpreted in the original settings of linear and spherical separation of point sets
in E4, these expressions count the number of separable subsets of a given labeled
point set, whether strict or non-strict, linear or sphericai, of fixed cardinality or of all

cardinalities. The next two corollaries summarize these results.
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Corollary 5.18 Let P be a set of n distinct labeled points of E®, such that no hyper

plane contains every point of P. Let k be a positive integer.

1. The number of non-empty non-strict linearly separable subsets of P of fized

cardinality k is given by
d+1
—1)—1 Xc(f)
5 E (5 )
' 1€A (s P)))

2. The number of non-empty strict linearly separable subsets of P of fized cardi-
nality k is given by

Sy ¥ ().

=1 jGA.(Po(r(P)))

8. The number of non-empty non-strict linearly separable subsets of P is qiven by

d+1
Z(-—l)'_l Z (2Xc(f) -— 1)_
=1 FE€A (2ol P)))

{. The number of non-empty strict linearly separable subsetls of P is given by

d+1

Z(__l)|+d+1 }: (210(1) - 1).

=1 FeA(poll(P)))

Corollary 5.19 Let P be a set of n distinct labeled points of E®, such that no hyper-

plane or hypersphere contains every point of P. Let k be a positive integer.

1. The number of non-empty non-strict spherically separable subsets of P of fired
cardinality k is given by

df(ul),_, (xc(f))_
=1 JeA (a0(5(P))) k

2. The number of non-empty strict spherically separable subsets of P of fized car-
dinality k is given by

d+2

SR (nif))
=1 JEA(a,{5(P)))
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3. The number of non-empty non-strict spherically separable subsets of P is given

by
d+2 _
(-0 Y (exe-,
i=1 FEA(ao(STP)))

4. The number of non-empty strict spherically separable subsets of P is given by

d+2
Z(_l)wd Z (2%l - 1).
=1 J€A(o0(3(P)))

If the points of P are contained in a hyperplane A, then the expressions of Corol-
lary 5.18 are not valid. The proof of Theorem 5.17 relies heavily upon the existence of
a vertex at the origin in the dual homogeneous half-space arrangement. However, all
subsets of P are nou-strictly separable by the hyperplane & itself. To count strictly
separable subsets, it suffices to consider the problem in the (d—1)-dimensional set-
ting of h, by converting the coordinates of P in E? into suitable coordinates in E4-!.
Alternatively, one could handle this in the dual space itself, by cutting every face of
A(p.(I{P))) with a hyperplane A’, and applying the counting methods recursively. Of

course, this second strategy lends itself equally well to the spherical case.



Chapter 6

Weak Separation Algorithms

6.1 Introduction

Up to this point in the thesis, we have been concerned with the combinatorial aspects
of separation. In this chapter, and in the chapter to follow, we will investigate the
algorithmic aspects of separation. Most of the algorithms of this chapter will be based
upon the transformations of Chapter 4 which map sets of labeled points in E? into
homogeneous half-space arrangements in E4*! and E*+2,

Several algorithms already exist for finding strong linear and spherical separators
of labeled point sets. It has been known for some time that the problem of finding a
strong linear separator may be expressed as a linear programming problem. With the
techniques due to Megiddo [Meg84], and later refined by Dyer [Dye86] and Clarkson
[Cla86], such problems may be solved in time and space linear in the number of points,
assuming that the dimension of the problem is fixed. The problem of finding strong
separators with certain desirable qualities will be discussed in Chapter 7.

For strong spherical separation in E?, O'Rourke, Kosaraju, and Megiddo [OKXM86]
have shown that the problem of finding a smallest separating circle in two dimensions
may be performed in linear time, also using the techniques of [Meg84]. They also
show that a largest such circle may be found in optimal O(nlogn) worst-case time,
where n is the number of labeled points to be separated. Using nearest-point and

farthest-point Voronoi diagrams, Bhattacharya [Bha88] presented an algorithm to

67
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determine the set of all circular separators in O(n log n) worst-case time.

In this chapter, we will focus on the problem of finding weak separators of various
types. Initially, we will examine the hyperplane construction algorithm due to Edels-
brunner, O'Rourke, and Seidel [EOS86], including the data structures appropriate
for the storage of such an arrangement. Secondly, in Section 6.3, modifications to
this algorithm will be outlined that allow the degenerate character of homogeneous
arrangements to be exploited: it will be shown that homogeneous arrangements in
E™*! may be constriucted using time and storage of the same order as in the con-
struction of non-homogeneous arrangements in E™. In Section 6.4, an algorithm
is presented that enables the determination of weak linear and spherical separators
in arbitrary dimensions. Finally, in Section 6.5, the topological sweep approach of
Edelsbrunner and Guibas [EG86] will be used to reduce the storage required for some
of these separation problems.

Throughout this chapter, we will assume that the primitive comparative and
arithmetic operations (addition, subtraction, multiplication, and division) may be
performed in unit time. Also, we assume that the storage required by a real number
or integer is unit space. Thus a point in E? requires O(d) storage space. However, in
the discussions of the asymptotic complexities of these algorithms, we will consider

the dimension of the problem to be fixed.

6.2 Constructing Homogeneous Hyperplane Ar-

rangements

To represent an arrangement of hyperplanes in storage, a data structure known as
an incidence graph is used. This representation technique was first developed by
Griinbaum [Gri67 for convex polytopes.

Let A(H) be an arrangement of hyperplanes in E™, not necessarily homogeneous.
For convenience, we define the two improper faces of A(H) as being the (—1)-face
P and the (m+1)-face A(H). We say that the (—1)-face @ is incident upon every
vertex of A(H), and that the (m+1)-face A(H) is incident upon every cell of the




CHAPTER 6. WEAK SEPARATION ALGORITHMS 69

Figure 6.1: A line arrangement and its incidence graph

arrangement. The usual 0- to m-dimensional faces will be called proper. The incidence
graph of A(H) shall be denoted by Z(H), and is defined as follows: for each proper
and improper face of A(H), there exists a node of Z(H). If faces f; and f, are
incident upon each other, then their nodes in I(H) are adjacent. An example of a
line arrangement and its corresponding incidence graph is shown in Figure 6.1. In
discussing the incidence graph, we will often refer to a given node by the face it
represents.

In the implementation of the incidence graph, each node is represented by a record
that contains a description of the face to which it corresponds, additional space for
such accounting purposes as marking of faces and so forth, and two lists of pointers
to other node records. One of these lists is devoted to the subfaces of the current
face, and the other is devoted to its superfaces. Each of the pointers may also have
additional space associated with them, for the labeling of incidences between faces, or
for other purposes. The description of a face usually consists of some parameterization
of the affine hull of the face, and the coordinates of some point belonging to the face.
There are many ways of choosing such a point; for most applications, the actual choice

itself is irrelevant. The exact allocation of additional space depends heavily upon the
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Figure 6.2: A node of the incidence graph of Figure 6.1

algorithms using this data structure. The two improper nodes allow access to the
structure: the vertices of A(H) may be accessed using the list of superfaces in the
node corresponding to improper face §, and the cells of A(H) may be accessed using
the list of subfaces in the node corresponding to the improper face A(H). Figure 6.2
contains a description of the internal layout of a node of the incidence graph of
Figure 6.1.

The size of the incidence graph Z: ) is strictly proportional to the number of
faces and incidences between faces of the arrangement A(H). We define f (H) to be
the number of k-faces of A(H), for 0 < k < m, and define i,(H) to be the number
of incidences between k-faces and (k+1)-faces of A(M), for 0 < k < m — 1. We also
define f, .(n) and ix,a(n) to be the maxima of f(H) and i,(H) respectively, taken
over all sets of n hyperplanes H in E™. Using the well-known results due to Buck
[Buc43] for f, ,.(n) and i, ,(n). we can place a bound on the size of Z(H) in terms

of the cardinality and dimensionality of f.

Theorem 6.1 (Buck) Givenn >1 endm > 1, then

k .
Fem(n) < Z(TZ_Z)( " .),forOSkSm, and

+=0 m—1
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tim(n) < 2m—k)fin(n), for0<k<m-1.

In addition, if H 15 a set of n hyperplanes in E™, then f (H) = f, (n) andi,(H) =
tem(n) if and only if A(H) 1s simple.

Theorem 6.1 readily implies that the worst-case amount of space required to store
the incidence graph of a set of n hyperplanes in m dimensions is in @(n™).

Given a set of hyperplanes in E™, the incidence graph Z(H) may be constructed
in O(n?) time using the incremental algorithm of Edelsbrunner, O'Rourke, and Sei-
del [EOS86]. However, due to the degenerate structure of homogeneous hyperplane
arrangements, with some modifications, their algorithm may be used to construct
homogeneous arrangements in E™ using only O(n™"!) time and space. Before jus-
tifying this claim, we must first understand some of the workings of their algorithm.
In the description that follows, we will not diflerentiate between the faces of the
arrangement A(H), and the nodes of the graph I(H).

Initially, a subset H' of H of size m is obtained whose hyperplanes intersect in
a common vertex of A(H). If no such subset exists, then the normal vectors of the
hyperplanes of /I are contained in a single (m—1)-flat, and thus the arrangement may
instead be constructed in this flat. Otherwise, the arrangement A(H') is constructed
using some ad hor method.

The main step of the algorithm consists of introducing the hyperplanes of H \ H',
one by one, into the growing arrangement. The order in which these hyperplanes
are added is irrelevant. Let us assume that hyperplane h is being added to the
arrangement A(H'). First, an edge eg of A(H’) is found whose closure cl(e;) intersects
h. Next, starting from eo, all faces of A(H') whose closure intersects h are marked.
Finally, each marked face is updated. Those faces intersected by h are split into new
faces if necessary. When the last hyperplane of h has been added, the algorithm
terminates.

The time required to insert one hyperplane A into an existing arrangement A(H')
is bounded by the number of faces of A(H'U {h}) contained in the closures of cells
bounded by k. This subset of the faces of A(H'U {h}) is known as the zone of
the arrangement defined by h (see Figure 6.3). In the analysis of their algorithm,
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Figure 6.3: A zone in an arrangement of lines

Edelsbrunner, O’Rourke, and Seidel show that the worst-case complexity of a zone
in an arrangement of hyperplanes in E™ is in ©(n™"1). Thus the time required to
perform all the incrementations of the arrangement is O(n™). The worst-case time
comp!-xity of their algorithm, being dominated by the incremental step, is then the
same as the worst-case space complexity: O(n™).

The space complexity of a homogeneous arrangement in A™ certainly does not
attain the worst case for arrangements in E™. Since every 1-face of a homogeneous
arrangement is a ray of E™, there must exist some hyperplane A’ passing through
the origin that intersects no 1-face. Since the closures of the 1-faces contain the
origin, given any pair of hyperplanes h, and h, parallel to A’ and on opposite sides
of &', every 1-face must intersect either h, or h, in a single point. Thus h, and h,
together intersect every face of the arrangement other than the vertex at the origin.
Since the intersections of the homogeneous arrangement with h, and hy form (m-—1)-
dimensional arrangements in h, and h;, the worst-case size of the incidence graph of
a homogeneous arrangement is O(n™"?).

The highly degenerate structure of a homogeneous arrangement suggests that the

construction time may be reduced by limiting the number of faces of the homogeneous
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arrangement that are marked unnecessarily. The rest of this section shall be devoted
to this topic. Due to the complexity of the marking and update technique of the
standard construction algorithm, in the following discussion we will concern ourselves
only with the problem of which faces need to be marked, and how to visit these faces.
The nature of the mark values assigned to each face will not change, nor will the
method of updating marked faces.

In the standard algorithm, the faces that are marked initially are the vertices,
edges, and 2-faces of A(H') whose closures intersect the new hyperplane h, using
a breadth-first search strategy starting from an initial edge e, whose closure cl(eg)
intersects h. The feasibility of this step is affirmed by observing that the intersection
of h with the union of the vertices, edges and 2-faces of A(/1’') is connected. The
incidence graph of A(H') is then used iteratively to visit the (i+1)-faces which are
superfaces of the marked i-faces, for i increasing from 2 to m — 1. In this manner,
all faces that could possibly require updating when inserting A into the arrangement
have been marked.

Now let us consider the case where A(H') 1s a homogeneous arrangement contain-
ing the vertex at the origin. If f is a face of A(H') whose intersection with & is a
single point, then f must be an edge containing the origin. Since A(H’) contains the
vertex at the origin, such an edge f cannot exist. This implies that a face of A(H')
whose closure intersects h in a single point (the origin) must itself not intersect h.

This argument leads us to the following observation.

Observation 6.2 Let H' be a set of hyperplanes such that A(H') 1s a homogeneous
hyperplane arrangement in E™ containing the verter at the origin. Let h be a new
hyperplane to be added to A(H'), such thet h passes through the ~~~in. Then for
any face f € A(H'), if cI(f) N h = {0}, the vertex at the oryin, then face f and its

incidences are unchanged after the insertion of h.

Therefore, for homogeneous arrangements, we need only mark and update those
cells whose closures intersect % in a face of A(H’U {h}) of dimension at least 1. The
vertex at the origin is handled in a very straightforward manner: since it is a subface

of all edges of a homogeneous arrangement, it may be updated as each new edge is
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created. To start the marking process, we find an initial 2-face fy where cl(fy)N A is of
dimensionality greater than 0. Observing that a 2-face in a homogeneous arrangement
of AT has exactly two 1-dimensional subfaces, and that h intersects every 2-flat in
the arrangement, we may pick any 2-flat and sweep radially about the origin until A

is encountered:

Find starting 2-face fy
(1) Let e be an arbitrary edge of A(H') and let f be a 2-face incident with e.

(2) While cI(f) Nk = {0} do the following: let ¢’ be the edge incident with f
other than e, and let f’ be the 2-face incident upon ¢’ and different from f,
such that aff (f') = aff(f). Set e +— ¢  and f ~ f".

(3) Set fo~ f.

Once the starting 2-face f, is obtained, we must be sure that all faces of A(H’)
whose closures intersect h\ {0} may be reached from f; without accessing the vertex
at the origin. Let h* be a hyperplane avoiding the origin and orthogonal to h. The in-
tersection of h* with the homogeneous arrangement A(H') yields a non-homogeneous
(m~1)-dimensional arrangement in A*. Since the intersection of A with the union of
the vertices, edges, and 2-faces of this arrangement in h* is connected, and since the

choice of h* is arbitrary, we make the following observation:

Observation 6.3 Let H' be a set of hyperplanes such that A(H') is a homogeneous
hyperplane arrangement in E™ containing the vertezr at the origin, for m > 3. Let h
be a hyperplane not in H', such that h passes through the origin. Then the intersection

of h with the union of 1-faces, 2-faces and 3-faces in A(H') is connected.

From this observation, it follows that every 1-face, 2-face, and 3-face whose closure
contains a ray in h is reachable from fq. By visiting the superfaces of these faces,
and iterating upon the superfaces as in the standard algorithm, every face of A(H')

whose closure contains a ray in A may be visited and marked.
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6.3 Constructing Half-Space Arrangements

Although we have seen all the modifications that will allow the construction of homo-
geneous hyperplane arrangements, nothing described as yet allows for the construction
of half-space arrangements. Before summarizing the modifications of the incremen-
tal construction algorithm, we discuss how information stored with the arcs of the
incidence graph will prove useful for the algorithms of the next section.

Let H, be a set of open half-spaces in ﬁg“, such that the set of hyperplanes
bounding half-spaces in Hy is H. Furthermore, let us assume that no two half-spaces
of H, share a common bounding hyperplane. Let f and g be proper faces of A(H),
such that g is a subface of f. Let H* the set of hyperplanes containing g but avoiding
f, and let HS be the set of hali-spaces of H, bounded by the hyperplanes of H. Note
that f and g are contained in the same hyperplanes and half-spaces of H \ H* and
H, \ HS, respectively. The set H* may be thought of as those hyperplanes of /1 that
“distinguish” f from g¢.

In the incidence graph I(H), we may label the arcs from f to g and g to f in
accordance with the sets H* and HS. The set H may be partitioned into two sets,
H?7 and H?, where the former consists of the those half-spaces of II* containing f, and
the latter consists of those avoiding f. With both arcs f — g and g - f, we associate
the differential values x4(f,g9) = x+(g,f) = |H}] and x_(“.g) = x-(y, f) = |HZ].
With these values, if we know the quantities y,{(g) and yx.(g), then

Xo(f) = Xxolg) + x+(g,f) and x.(f) = x.(9) — x-(g.f) (6.1)

Alternatively, if we know the quantities v,(f) and x.(/), then

Xol9) = Xo(f) = x+(fr9) and  x.(9) = x.(f) + x-(/.9) (6.2)

In the incremental construction algorithm, when a hyperplane A is introduced into
an arrangement A(H), not necessarily homogeneous. the sets of faces of A(H U {h})
contained in h become available, as well as the superfaces of these faces. If the
hyperplanes of H are associated with open half-spaces of H, and if differential values

are being maintained, the new differential values resulting from the introduction of A
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Figure 6.4: Updating differential values when inserting hyperplane A

are easily calculated from the old values when the marked faces of A(H) are updated.
While we will not give the formal details of the update process, we shall illustrate
how the differential values are maintained on an example.

In Figure 6.4, the orientation of the open half-space h associated with h is given
by the arrows. The old face g (shaded) is split by h into new the faces g-. go

and g. as shown. Since these faces have been newly created, the differential values

X+(9>:90) = x+(90,9>) and x-(g9>,90) = x-(90,95) are set to 1 and 0, respectively.

The values x +(9<,90) = x+(g0,9<) and x-(9<, go) = x-(go,9<) are set to 0 and 1,
respectively. The differential values of g5, g0, and g with respect to other faces are

inherited from ¢, unchanged. In the case of face f, a face of A(H) entirely contained in
k, the differential values with respect to its superfaces are incremented appropriately.
The values with respect to its subfaces are inherited as in the case of g, since these
subfaces are also contained in h.

We shall now summarize the modifications of the incremental arrangement con-
struction algorithm for homogeneous arrangements with a vertex at the origin. The
input is assumed to be a set of half-spaces Hs in E™, for m > 3, whose bound-

ing hyperplanes contain the origin. Furthermore, if H is the set of these bounding
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hyperplanes, no two half-spaces of H, are bounded by the same hyperplane of H.
Finally, we assume that there exists some subset H' of H whose hyperplanes intersect
in the single point 0. Otherwise, if there exists no such subset H’, the arrangement

is constructed in a lower dimensional setting, as in the standard method.

MODIFIED-CONSTRUCTION

(1) Find subset H', and construct the homogeneous arrangement A(H’) containing
the vertex at the origin, as in the standard method. Initialize the differential

values of the incidences of A(H').

(2) If H \ H'is empty, terminate. Otherwise, let h be a hyperplane of H \ H'.

Label the vertex at the origin as being entirely contained in A.
(3) Find a 2-face fo of A(H') such that cl(fo) N h # {0} as detailed earlier.

(4) Visit and mark the faces f of A(H') where cI(f)Nh # {0} as in the standard
method, but with every reference to i-faces replaced by a reference to (i+1)-

faces.

(5) Update the marked faces as in the standard method, as well as their differential
values. Add h to H’, and go to step 2.

We now investigate the time complexity of the modified algorithm. The time re-
quired to add a new hyperplane A to an arrangement A(H'), including the time spent
updating the differential values, is of the order of the number of faces of A(H'U {h})
contained in the closures of cells f such that cl(f) N & is of dimension at least one.
This subset of the faces of the homogeneous arrangement A(H' U {h}) we shall call
the homogeneous zone of A(H' U {h}) defined by A.

As was established earlier, there exist parallel hyperplanes h, and h, that be-
tween them intersect every face of A(H'U {h}) (other than the vertex at the origin).
Thus each face of the homogeneous zone defined by h contains a face of the non-
homogeneous zone of h, N h in the (m—1)-dimensional arrangement formed by the
intersection of A(H' U {A}) and A, or of the zone of hyNk in the arrangement formed

by A(H’ U {h}) in hs. Since the size of a zone in an (m~1,-dimensional arrangement
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is O(n™"?), the size of a homogeneous zone in A(H’U {k}) must also be of order
O(n™?), and therefore the time required te insert h into A(h') is O(n™=?). Sum-

ming this time cost over all the incrementations, we arrive at the following:

Lemma 6.4 Let Hy be a set of half-spaces in E™, for m > 3, such that no two
half-spaces of Hy share a common bounding hyperplane, and such that the bounding
hyperplanes contain the origin. Then the homogeneous arrangement A(H) may be

constructed in O(n™" ') time using O(n™"?) space.

Because the vertex at the origin of the homogeneous arrangement is contained in
every hyperplane of the arrangement, it is a subface of every edge. Hence there is no
need to maintamn the improper face § to allow access to the faces of the arrangement
of low dime..sion. Accordingly, we may omit the improper face § from the incidence

graph, and consider the vertex at the origin to be an improper face.

6.4 Finding Weak Separators

We shall now outline an algorithm to determine the maximum values of x,(f) and
Xc(f) over all faces f of a homogeneous half-space arrangement, and to locate faces at-
taining these maximum values. If the half-space arrangement is the dual arrangement
of a set of labeled points, then the faces produced correspond to maximal components
of these points. The algorithm first constructs the homogeneous arrangement using
the modification of the incremental algorithm due to Edelsbrunner, O’'Rourke, and
Seidel, and then performs a breadth-first search within the arrangement to visit all
faces.

The input to Algorithm MAXCOMP consists of a set of n distinct open halfspaces
H, whose bounding hyperplanes contain the origin. Let H be the set of such bound-
ing hyperplanes. We assume that no two half-spaces of H are bounded by the same
hyperplane of H. We also assume that the hyperplanes of H have as their common
intersection the single point 0. Otherwise, the algorithm is applied in an appropriate

lower dimensior.
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The output of Algorithm MAXCOMP will be the incidence graph I(H), whose
arcs will be augmented by the differential values, as well as two pointers, maxstrict
and maxnonstrict, to proper faces f and g of Z(H) attaining the maximum values of
Xo(f) and x.(g), respectively.

Each record of I(H) has space reserved for labeling purposes. Each facet of
the arrangement, being contained in precisely one hyperplane A(f) of H, shall have
storage space for a parameterization of the unique half-space h(f) of H5 bounded by
h(f). With each face f of the arrangement, we will also reserve space for two integers:
the quantities x,(f) and x.(f). With each arc f — g in T(H), we shall reserve space
for the differential values x ,(f,9) and x-(f,g). In additior, we maintain a queue Q
of pointers to nodes of T(H).

MAXCOMP

| (1) From the hyperplanes of H, and the half-spaces of H, construct the }.omoge-
| neous hyperplane arrangement A(H,), including the differential values, using
the modified incremental arrangement construction algorithm of the previous

| sections.

(2) Choose any cell fo of A(H), and mark it as being wvisited. Determine x,(fo)
by testing the representative point of f for inclusion in each of the half-spaces
of Hy. Set x.(f) « Xx.(fo). Set maxstrict «— 1f,, and set maxnonstrict «
Tfo. Initialize queue @ to contain 1 fo.

(3) If Q is empty, terminate. Otherwise, dequeue the pointer to face f from Q.
(4) For every unvisited proper subface and superface g of f do:

(4a) Using the equations (6.1) and (6.2), calculate the quantities x,(g) and
Xc(g) from the differential values x4+(f,g) and x-(f,g), and store them

in g.

(4b) Let g, and g, be the faces pointed to by maxstrict and maxnonstrict,
. respectively. If x,(9) > xo(g.), then set maxstrict — Tg. If x.(g) >

Xc(gc), then set maxnonstrict « 1g.
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(4c) Mark g as visited, and enqueue g onto Q.
() Go to Step 3.

Note that the breadth-first search strategy employed here is certainly not the only
one possible: visiting every face of the arrangement could just as easily have been
done using depth-first search techniques. Also, upon construction, every facet of the
arrangement may easily be associated with a pointer to the unique hyperplane of H
containing it.

The space required by Algorithm MAXCOMP is proportional to the size of the
incidence graph Z(H); that is, O(n™"1!). Certainly, the size of the queue @ may
not exceed the size of I(H). The time required is proportional to the time taken
to build the arrangement, plus a constant amount for every incidence between nodes
of T(H). By marking the faces as visited when encountered, we are guaranteed
that each incidence between faces f and g in the arrangement may be examined at
most twice: once from f to g, and once from ¢ to f. Since the time required to
construct the arrangement is O(n™"!), and the number of incidences between faces
of a homogeneous arrangement is O(n™~1), the total time required by the algorithm
is also O(n™"1).

If the input to the algorithm is the set of open half-spaces H, = po(f(P)), for
some set of distinct labeled points P in E?, then Lemma 4.2 implies that the faces of
A(H5) pointed to by maxstrict and maxnonstrict correspond to maximal strict and
non-strict linearly separable components of P, respectively. Let these faces be g, and
g., respectively. More precisely, a maximal strict component of P is the subset C, of
P such that po(f(Co)) is the set of all half-spaces of H containing g,. I Hy is the
set of closures of half-spaces of H, then a maximal non-strict component of P is the
subset C. of P such that pc(f(Cc)) is the set of all half-spaces of Hy containing g..
These components may be explicitly obtained in O(n) time by testing representative
points of g, and g, for inclusion in the half-spaces of Hy and H.

The representative points of g, and g., with one possible exception, correspond to
hyperplanes in E% that are weak strict and non-strict linear separators of the red and

green points ot P. The exception is the set of points on the pair of rays and -7,
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discussed in Section 4.3. Since these rays are contained in cells of A(H,), and since
the cells are otherwise composed of rays corresponding to valid separators in E?, rays
of g, and g, associated with weak strict and non-strict linear separators, respectively,
may easily be obtained.

If the input to the algorithm is instead the set of open half-spaces Hy, = 7,(5(P)),
then Lemma 4.5 implies that the faces g, and g¢. correspond to weak strict and non-
strict spherically separable components of P, respectively. The components may
be obtained in O(n) time as in the linear case. Although some rays of g, and g.
correspond to valid weak strict and non-strict spherical separators of P, there are
two cases where some rays are not. Some care is therefore required in the choice of a
representative ray from these faces.

Let f be a face of the m-dimensional arrangement A(H,) containing the ray
7 & L™, Recall that E™ is the set of all rays in E™ corresponding to degenerate and
non-degenerate hyperspheres of E™~2, If ¥ corresponds to a hypersphere with squared
radius “< 07, then the rays of f N EI‘ correspond the non-degenerate hyperspheres
of E™? not containing or intersecting any of the points of P. Hence any empty
hypersphere guaranteed not to intersect the points of P will do as a representative
of f. If 7 corresponds to a degenerate hypersphere, we have seen in Section 4.5 that
any other ray of fN E{," will adequately represent of f.

We summarize these results in the following theorem:

Theorem 6.5 Let P be a set of n distinct labeled points in E¢. A weak strict or
non-strict linear separator of P may be found in O(n?) time and space, and a weak

strict or non-strict spherical separator may be found in O(nt!) time and space.

If more than one weak separator is desired, lists of pointers to candidate faces
may be maintained during the visiting of the faces in Algorithm MAXCOMP. The
list of faces may be examined afterwards for suitable separators. The time and space
required to maintain these lists is dominated by the complexity of the homogeneous
arrangement. If non-degenerate weak spherical separators are sought, then those faces
whose constituent rays correspond solely to degenera'e hyperspheres may be easily

identified and disregarded once visited.
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Fipally, the number of linearly or spherically separable subsets of P, of fixed
cardinality or of all cardinalities, either strict or non-strict, may be counted by means
of a slight modification of Algorithm MAXCOMP, where the sums of the formulae
of Corollary 5.18 and Corollary 5.19 are maintained during the visiting of the faces

of the homogeneous arrangement A(p,({(P))) or A(c,(5{P))), as appropriate. The
time and space complexities of the algorithm justify the following theorems:

Theorem 6.6 Let P be a set of n distinct labeled points of E?, such that no hyper-

plane contains every point of P. Let k be a positive integer. Then

1. the number of non-empty non-strict linearly separable subsets of P of fizred car-
dinality k,

2. the number of non-empty strict linearly separable subsets of P of fired cardinality
k,

3. the total number of non-empty non-strict linearly separable subsets of P,

4. and the total number of non-empty strict linearly separable subsets of P

may all be calculated in O(n?) time using O(n?) space.

Theorem 6.7 Let P be a set of n distinct labeled points of E®, such that no hyper-

plane or hypersphere contains every point of P. Let k be a positive integer. Then

1. the number of non-empty non-strict spherically separable subsets of P of fized

cardinality k,

2. the number of non-empty strict spherically separable subsets of P of fired car-
dinality k,

3. the total number of non-empty non-strict spherically separable subsets of P,

4. and the total number of non-empty strict spherically separable subsets of P

may all be calculated in O(n?*') time using O(n?*') space.
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6.5 Space Reduction Using the Topological Sweep

One of the drawbacks of the constructive approach of the previous section is that all
the faces of the dual arrangement are constructed before any of them are scanned.
Despite the intuitive appeal of exploiting the full structure of the arrangement, we
may save a great deal of space by having no more than a limited number of faces on
hand at any given time. This section is devoted to the application of a “topological”
sweep line algorithm of Edelsbrunner and Guibas [EG86] towards the soluticn of
some variants of the weak separation problems. The paradigm in its basic form is a
two-dimensional one: it may be used to construct a planar arrangement, but as yet
there is no known extension for arrangement construction in higher dimensions. This
is not to say that the topological sweep has no benefits towards solving problems
in dimensions greater than two: in the same paper, the authors describe how the
two-dimensional topological sweep may be used to enumerate (but not construct) the
faces of arrangements in higher dimensions.

We will first provide a brief overview of Edelsbrunner and Guibas’ general topo-
logical sweep line method in two dimensions. For further details of their method, the
interested reader is referred to [EGS6].

Let I be a line in the plane, parameterized using cartesian coordinates. Line [ will
be said to be vertical if | is a translate of the cartesian ro-axis. If [ is non-vertical, a
point z € E? will be said to be above [ if the ray parameterized by z + A(0,1) does
not intersect [, where A is restricted to be non-negative. Point z is below [ if the same
holds true with A instead restricted to be non-positive.

Let L be a set of n non-vertical lines in the plane, and let 4(L) be the arrangement
of these lines. The unique region fr above all lines of L will be called the top region of
A(L), and the unique region fp below all lines of L will be called the bottom region.

A topological sweep line may be viewed as a sequence of cells and edges of A(L),
called a cut, such that each cut edge is contained by a different line of L, and every
line of L contains an edge in the cut. The edges of the cut are ordered from top to
bottom in that the first edge is on the lower chain of fr, the last edge is on the upper

chain of fg, and two adjacent edges e, and e,4; are on the upper and lower chains of
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Leftmost cut

Rightmost cut

N

Figure 6.5: Examples of cuts in an arrangement of lines

some cell j, respectively. The sweep itself consists of a sequence of cuts, ordered from
“left” to “right”. The first or “leftmost™ cut is the sequence of left unbounded edges
of A(L), and the last or “rightmost™ cut consists of the right unbounded edges. Two
adjacent cuts K, and NI, differ in that exactly one vertex v that is to the right of
K, is to the left of K,;; (.ee Figure 6.53). The advancement of the sweep line from K,
to K,41 past v is called an elementary step.

Edelsbrunner and Guibas use data structures they call horizon trees to store in-
formation concerning the regions intersected by the sweep line. They show that the
storage required to maintain these trees is O(n), enabling the entire sweep to be per-
formed using only linear storage. Initially, these trees contain the upper and lower
chains of all the regions of A(L) that are unbounded to the left. As the sweep line ad-
vances past vertex v, the regions that have v as their unique leftmost bounding vertex
(unique due to the absence of vertical lines in LA(L)) have their upper and lower chains
immediately available from the horizon trees. This allows certain attributes of new
faces in the cut to be calculated based on the attributes of the faces in the previous
cut. Every face of A(L) is examined, since those regions without leftmost vertices are

examined before the first elementary step, and each region having a leftmost vertex
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must be examined during some elementary step of the sweep. The worst-case time
required by their algorithm is O(n?).

Consider now the homogeneous half-space arrangement A(H>) in E3, where H
is the set of bounding planes of the half-spaces of H,. Every face f of A(HS)

of dimension greater than zero may be visited, and the quantities x,(f) and x.(f)

produced, using the following application of the topological line sweep algorithm:

3-TOPOSWEEP

(1) Produce two parallel planes k, and hy which together intersect all faces of

A(H) except the vertex at the origin, as follows:

(1a) Set highl « high2 « 0 and degenl « degen2 « false.
(1b) For every pair of planes h,, h, in H, for i # j, do:

(1b1) Compute the rays @,, and —i,, of E® in the intersection of h;
and h,.
(1b2) Let u = (uy,uz,us) be any point of @,;,. Then do:
templ « -;"_g;;
temp2 «— ﬁ%;
if templ =0 then
degenl « true;
if temp2 = 0 then
degen? « true
elseif temp2 > high2 then
high2 « temp2
endif
elseif templ > highl then
highl « templ

endif
(1c) If degenl = false then let v = (0,0, 1); otherwise,

(1cl) If degenl = false then let v = (0,v;,1) be a point such that
vy > 0, and v; < T:E]EH; otherwise,
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(1c2) Let v = (v1,vs,1) be a point such that vy,v; > 0, vZ < -;;;}m,
and v-v < T—'EJFEHT
(1d) Set h, «— {z € E*}|v-x =1}, and Set h, — {z € E’|v-z = —1}.

(2) In each of h, and h; do the following:

(2a) Intersect the planes of A and the half-spaces of Hy with h,, realigning
the coordinate axes such that no resulting line in h, is vertical. Let L

and L. be the respective intersections of If and H- with h,.

(2b) For all cells and edges f contained in the leftmost cut of A(L), explic-
itly compute x,(f) and x.(f).

(2¢) Visit the faces of A(L.) using the topological sweep method. At each
elementary step past vertex v, compute x,(v) and x.(v), as well as x,(f)

and x.(f') for each new face f' in the cut.
(3) Repeat Step 2 with h, replacing h,.

Step 1 of the algorithm is an explicit construction of two planes intersecting every
face of A(H) of dimension greater than zero. The parallel planes h, and h, are
constructed in such a way that the only faces of A(Il) that could fail to be intersected
is the vertex at the onigin, and any edge contained in the translate of h, and h,
containing the origin. The orientation of h, and hy is chosen in order to guarantee
the impossibility of the latter.

Once Step 1c is reached, the boolean variable degenl holds the value false if and
only if there exists no edge of A(H) contained in the plane hy = {x € E?| z3 = 0},
and degen2 holds the value false if and only if there exists no edge contained in the line
lg = {z € B3z, =13 =0}. If degenl is false, then h, and hy may be safely chosen
to be translates of hq. Otherwise, we exploit the well-known relationship between
the inner product of two vectors and the angle between them (sce [Bor69] for more
details).

At Step lc, the variable highl stores the value

cos? 0y = ((0’0’1) : u)2 = u3

I u-u

?
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4
14
\ \ (0?0’ 1) u=(u1,142,1)
N uu
high1=-L 8 h
—

Figure 6.6: Finding a plane avoiding all edges of A(H)

where 8, is the maximum of the angles between the ray 7., = {1(0,0,1) € £% A > 0}

and the edges of A(H>) located in £} = {7 € E3| 7., - %> 0} (see Figure 6.6). The
variable high2 stores the value

cos®f, = ((0,1) : (U1,u2))2 _ "

[l (u, wa)] ui +uf’

where 8, is the maximum of the angles between the ray 7,, = {A(0,1,0) € E3|\ > 0}
and the projections of the edges of A(H) located in E3 onto the plane hy. The
reader is invited to verify that the point v is chosen such that the edges of A(H>) in
E’% are guaranteed not to lie in h, = {z € E®v-z = 0}, and those in ko (if any) are
guaranteed not to lie in A, N hq.

The time required to perform Step 1 is of the same order as the maximum number
of edges of A(Hs) - that is, O(n?). Since no attempt 1s made to store all pair-wise
intersections at the same time, the storage required for this step is Ofn).

In Steps 2 and 3, the topological line sweep is performed in the planes h, and
h,. The computation of x, and x. may be performed in O(n?) total time for the
faces of the initial cut. At each elementary step, the time required to calculate the

values of x, and ¥, for the new faces of the cut is proportional to the number of these
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new faces. Hence this computation does not change the asymptotic time (or space)

complexity of the algorithm.

Theorem 6.8 Let H, be a set of open half-spaces of E* whose bounding planes
contain the origin, such that no two half-spaces share the saume bounding plane. Then

Xo and x. may be calculated for every face of the homogeneous half-space arrangement

A(H5) in O(n?) time using O(n) space.

Three minor refinements of Algorithm 3-TOPOSWEEP are worthy of mention
First, we observe that by the symmetry of the arrangement A(H ), Steps 2 and 3 may
be compressed into one pass over either h, or hy. Secondly, the computation of \, and
X. for the faces of the initial cut may be calculated in linear time instead of quadratic
time, taking advantage of the horizon tree data structure. In any event, this has
no effect on the overall asymptotic time complexity. Thirdly, a face f maxinuzing,
Xo(f) may be produced, as well as those half-spaces of H. containing f, without
changing the overall complexity. A face f is abandoned in favour of 4 face g only if
olf) > xo(5); since \, may attain only at most n + 1 different values, this change
may only occur at most n times. Each such replacement may he petformed in O(n)
time. and thus the total cost in time to maintain this list of half-spaces is O(n?).
Naturally, the same methods may be applied in the case of x..

In their paper, Edelsbrunner and Guibas observed that the faces of an arrange-
ment of hyperplanes (not necessarily homogeneous) may be visited by sweeping along,
two-dimensional slices of the arrangement. We shall now apply this general tech
nique to the weak separation problems of the previous section. using Algorithm 3-
TOPOSWEEP as a “primitive operation”.

Let Hy be a set of n half-spaces in E™, whose bounding hyperplanes contain the
origin, such that no two hyperplanes of A5, share a common bounding hyperplane. Let
H be the set of these bounding hyperplanes. We shall place the following additional
restrictions on the hyperplanes of H: every j hyperplanes of /I must have an (m- j)
flat as their common intersection, for all j = 1,2,...,m. Purthermore, no ) +1
hyperplanes may intersect in a common (m—j)-flat, for all y = 1,2,...,m — 1. The

homogeneous half-space arrangement A(H ) shall then be said to be simple.
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One characteristic of simple homogeneous arrangements is that (other than at
the origin) there are no degeneracies. Every hyperplane avoiding the origin, when
intersected with a simple homogeneous arrangement in E™, produces a simple non-
homogeneous (m—1)-dimensional arrangement. If the homogeneous arrangement, is
the image of a set of labeled points under the transforn. s of Chapter 4, then the strict
and non-strict components are easily seen to be the same. For this reason, in the
algorithm to follow, we will not distinguish between y, «nd ., and will concentrate
only upon the cells of E™. Also, the simplicity of A(H, ) implies that every subset
H' consisting of d — 3 hyperplanes of H must intersect in a common 3-flat 0. The
intersection of the remaining hyperplanes and their corre:ronding half-spaces in ¢
forms a (simple) three-dimensional homogeneous half-space .irrangement in .

The input to the following algorithm is a set of half-spacec Hy in E™, for m > 3,
and their bounding hyperplanes H, as described above. The output is a ray of Em

and a list component of the half-spaces of H containing this ray.
m-TOPOSWEEP

(1) Initialize component « §.

(2) For every subset H. consisting of m — 3 half-spaces of H, do:

(2a) Let H'be the set of bounding hyperplanes of HY, and let ¢ be the 3-flat
formed by the common intersection of the hyperplanes of H'. Let H*

and Hj be the intersections of the members of H\ H’ and H, \ H, with

®, respectively.

(2b) Apply Algorithm 3-TOPOSWEEP to determine a face f of A(H3) con-
tained in the greatest number of half-spaces of H3. Let H be the set

of these half-spaces.

(2c) If |compenent| < |, U HL|, then set component — H, U HY.

(3) Find a ray contained in the common intersection of the half-spaces of compo-

nents, using any convenient method (such as linear programming).
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Each iteration of Step 2 may be performed in O(n?) time using O(n) space, due
to the reference to Algorithm 3-TOPOSWEEP in Step 2b. Since there are (m'is)
iterations, Step 2 requires O(n™"') time overall. If m is taken to be fixed, the O(n)
linear programming algorithm of Megiddo [Meg84] may be used to perform Step 3
Clearly, the complexity of Step 2 dominates the algorithm.

The restriction that the homogeneous arrangement A(Hs) be simple becomes
especially important at Step 2¢. In a simple arrangement, the counterpart in A(H-)
of every 3-face in A(H3) must be in the closures of precisely 2™=2 cells of A(HS).
Hence, we are guaranteed that the common intersection of the open half-spaces of H
is non-empty. Otherwise, we would be forced to conduct a search of the arrangement
A(H) to find the largest-cardinality subset of 5 having a non-empty intersection.
Even given the degeneracy of this arrangement (the half-spaces of H, all contain ),
the potential size of this arrangement is O(n™3) — much too expensive to perform
in each of the (m"_a) iterations.

The results of Chapter 4 — notably Lemmas 4.2 and 4.5 — together with Algo-
rithm m-TOPOSWEEP imply the following:

Theorem 6.9 Let P be a set of n distinct labeled pownts in E®. If the points of P
are in general positron, then a weak strict or non-strict linear separator of P may be
found in O(n?) time and O(n) space. Furthermore, if nod + 2 powmts are contained

in a common hypersphere, then a weak strict or non-strict spherical separator may be

found in O(n**1) time and O(n) space.

The restrictions on the simplicity of the homogeneous arrangements, and by ex-
tension on the points of P, may be eliminated if non-strict separators are sought.
This is true since only the edges of the homogeneous arrangement need be examined,
and each edge of the arrangement is contained in some of the 3-dimensional slices
examined by Algorithm m-TOPOSWEEP. This algorithm may easily be modified to
search for these edges, and for this reason, we shall not repeat the details. Since the

simplicity of the arrangement is no longer required, we have the following corollary
of Theorem 6.9:
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Corollary 6.10 Let P be a set of n distinct labeled points in E®. A weak non strict
linear separator of P may be found in O(n?) time and O(n) space, and a weak non-

strict spherical separator may be found in O(n*') tume and O(n) space.




Chapter 7

Wide Linear Separation

Algorithms

7.1 Introduction

In the previous chapter, we examined ways in which separators of labeled point sets
of various tvpes could be obtained. Unfortunately, these methods do not concern
themselves with the “quality” of the separators produced. Two separators may each
determine maximal separable components. but one may be greatly supetior to the
other when emploved as a discriminant function Some of the well-known methods
for obtaining linear separators, such as straightforward linear programming, too often
yield extreme separators whose effectiveness as a discriminant function is diminished.
One might prefer instead a separator that does not approach the points it separates

For the case of linear separation of point sets, one measnure of the quality of a
strong or weak separator may be the minimum orthogonal Euclidean distance between
the hyperplane and the points of the maximal component it determines. Using this
criterion, a weak separator i, of labeled point set P would be judged to be “better”
than another weak separator hy if §(P,,h,) > 6(P, hy), where P, and P, are the
maximal components of P with respect to h, and h;, respectively. If A, is such that
6(Pa, hy) 2 6(Ps, hy) for all other weak separators hy, then h, can be said to be a

widest weak separator. Naturally, these concepts extend to strong separation as well
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widest strong separator strong separator

Figure 7.1: A widest strong separator — unweighted case

(see Figure 7.1).

A topic closely related to wide strong linear separation of point sets is the com-
putation of the minimum distance between disjoint convex polytopes, or more pre-
cisely, two points determining this minimum distance. It is not difficult to show that
the perpendicular bisector of the line segment joining these two points is a widest
stroug linear separator of the polytopes. In two dimensions, Edelsbrunner {Ede82]
showed that, with preprocessing, this line segment may be obtained in O(log n) time.
Schwartz [Sch81] and Chin and Wang [C\W82] have also studied this problem. In
three dimensions, Dobkin and Kirkpatrick {[DK85] have obtained an O(n) time solu-
tion. Although these methods may all be adapted to find wide strong linear separators
of sets of points, they require that the convex hull of the point sets be given. The
next section shall be concerned with a higher-dimensional O(n) time solution to a
more general form of the wide separation problem.

In some applications, some points of P may be more “important” than others.
Consider the case where every point p, of P is not only given a label, but also a
positive real-valued weight w,. The weighted orthogonal Euclidean distance between

p, and a hyperplane & is then simply the product w, §(p,, k). A second measure of the
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quality of a weak linear separator is then the minimum weighted orthogonal distance
between the separator and the points of 1ts maximal component. A weak separator
having the greatest such minimum distance is then called a widest weighted weak
separator. The unweighted case is simply a special instance of the weighted case
where w, = 1 for all points p, € P Accordingly, for the most part, we shall restrict
our discussion in this chapter to the weighted case In this context, we will often refer
to widest weighted linear separators as simply “widest linear separators™.

In some situations, a set of labeled points has no widest strong or weak linear sep-
arators. For instance, if the points of P all share the same label, then any hyperplane
avoiding the convex hull of P is a strong separator of P. This separator may be moved
out to infinity in such a way that the minimum (weighted) orthogonal distance to the
points of P diverges to infinity. In fact, whenever P has a maximal strict linearly
separable compounent consisting of points sharing a common label, then there is no
widest weak separator of P. It is easily seen that this is the only situation where a
widest weak separator does not exist.

By the criteria given above, a non-strict linear separator that contains some point
of P is a very poor separator indeed. In the previous chapter, we have secen how weak
non-strict separators may be obtained; strong non-strict separators may be obtained
using linear programming techniques. For this reason, we will only consider the strict
aspect of the wide strong and weak linear separation problems.

In this chapter, we will see how wide strong and weak strict linear separators
of labeled point sets may be determined. In Section 7.1, we shall examine how
the problem of finding wide linear separators of labeled sets of points relates to the

problem of finding lincar separators of labeled sets of hyperspheres.

7.2 'Wide Strong Linear Separation

Let P = {py,pa,...,Pn} be a set of n distinct labeled points in E¢, and let w, weight
associated with p,, for all : = 1,2,...,n. Let the (d+1)-tuple h = (hy, hq, ..., hay1) €
E4*! represent the hyperplane in E? described by {z € Edliz - + hgy = 0},

using cartesian coordinates, where h is the non-zero normal vector (hy, kg, ..., hy).
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Given any (d+1)-tuple z, we will say that Z is the d-tuple formed by taking the first d
coordinates of z. If two (d+1)-tuples & and 3 represent the same hyperplane, we shall
say that o and 3 are equivalent, and denote this by a = 3. The following straight-
forward observation illustrates the degree of freedom in the choice of (d+1)-tuple to

represent a given hyperplane:
Observation 7.1 Let o represent a hyperplane in E4.

1. The (d+1)-tuple B 15 equivalent to « if and only if there exzists some t £ 0 such
that B = ta, and

2. Given any k > 0, there ezists (d+1)-tuple 3 such that 8 = a and || || = k.

The orthogonal Euclidean distance between a point z € E? and a hyperplane h
is given by
§(z, h) = L2t Aol
(a
(see [Bor69)). If point x has weight w > 0 assigned to it, then the weighted orthogonal
Euclidean distance between z and h is given by

wé(z,h) = wl;r—.—}-lﬂ‘;t—”}ﬁi}—'

The expression )
z-h+hi
1A

has the same magnitude as w §(z, k), but the sign depends upon which open halfspace
of h contains r.

Let P = {p\,p2,.-.,p.} be aset of n distinct labeled points in E%, and let w, > 0
be a weight associated with the point p, € P. Let the set of red points of P be called
R. and the green points be called G. Let p(P) = {u(p1), u(p2),. .., u(ps)} be the set

of (d+1)-tuples defined by u(p,) = {jui(p.), 2(p)y - - s pas1(p) }. where

wp,, if p, € R,
I‘J(pl) = .
"‘w|p|.) lf Pu E Gw




CHAPTER 7. WIDE LINEAR SEPARATION ALGORITHMS 96

for j =1,2,...,d, and p441(p,) = w,. Clearly then, if the inequality

;t(p._) “h
Al

is true for all 1 = 1,2,...,n, then h is a strong strict linear separator for R and G.

>0

Conversely, if R and G are strictly linearly separable, then their strong separator has
some parameterization h satisfying the inequality for all 7.

The problem of finding a widest strong linear separator for P is then reduced to
the problem of finding a (d+1)-tuple A satisfying

#(Pt‘) : h.
Al

If the optimal value of this problem is negative, then the points of P cannot be

maximize

(7.1)

strongly separated by a hyperplane. Otherwise, the optimal value is the minimum
weighted orthogonal distance from A to the points of P.
We now establish a strong correspondence between (7.1) and the following convex

quadratic minimization problem with n constraints and d 4+ 1 variables:

minimize |(}~z||2 (7.2)
subject to pip)-h 2 1

In [Meg34,MegS3], Megiddo has shown that convex quadratic minimization problems
in m variables and n constraints may be solved in O(n) time and space, assuming
that m is fixed. However, the time bound for his method has a “constant” of propor-
tionality doubly-exponential in m. More recently, Clarkson [Cla86] and Dyer [Dye86]
independently improved his algorithm such thit the new constant of proportionality
is exponential in m?. Thus Problem (7.2) may be solved in O(n) time and space,
assuming that d is fixed.
The next three lemmas describe the relationship between the formulations of (7.1)
and (7.2). For their proofs, we define A(h) as the value of (7.1) for h; that is,
. p(p) - b
A(h) = min il
Also, we observe that the origin satisfies none of the constraints of (7.2), and therefore

cannot be contained in the feasibility region.
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Lemma 7.2 Problem (7.2) has a feasible solution if and only if there erists some
feasible solution a of (7.1) such that A(a) > 0.

Proof [=>] Let a be a solution of (7.2); that is, m‘in w(p)-a > 1. Then A(a) =
e > 0-

[==] Let a be a solution of (7.1) such that A(a) > 0. Observation 7.1 implies that,
for any k > 0, there exists (d+1)-tuple 8 = a such that ||3]| = k. Since A(8) = A(a),
choosing k = A(lor) gives m‘in pu(p) - B = kA(a) = 1. Since B satisfies the constraints
of (7.2), Problem (7.2) is feasible. o

Lemma 7.3 Problem (7.2) has an optimal value of zero if and only if Problem (7.1)
is unbounded.

Proof Let a be an optimal solution of (7.2). Then ||a] = 0.

If the feasibility region of (7.2) is contained in the line {z € E4*1]]|z|| = 0}, then
the origin must satisfy some constraint of (7.2), which is a contradiction. Hence there
exists some 3 feasible for (7.2) that is not contained in this line. By convexity of
the feasibility region, every (d+1)-tuple of the form y(t) = t@ 4 (1 — t)a is feasible
for (7.2), for all t € (0,1]. Since ||G]] = 0, we have )l = tlAll. Furthermore,
m'in (p.) -7(t) > 1 implies that A(y(t)) 2 3. Therefore (7.1) is unbounded.

If (7.1) is unbounded, there must exist an infinite sequence of solutions (a,)$2,

such that A(a,) diverges monotonically to infinity as j — oo. By Observation 7.1,

each «, is equivalent to some f, such that

1
I = 75
Since A(a,) = A(fB,), we have min p(p,) - f, = 1, and thus B, is a feasible solution
of (7.2). Moreover, each 3, is C(;ntained in the hyperplane u(p,) - h = 1 for some
i€ {1,2,...,n}. Also, since ||, < o) each of the f, are confined to the closed

and bounded region
(s € B utp) 1= 1}) (ke EMIA) < 1/AG)).

Therefore the limit of (3,)52, as j — oo is a feasible solution. Since }Lxlgollﬁjll = 0,

Problern (7.2) has optimal value zero. ]
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Lemma 7.4 Let a be an optimal solution for (7.2), with optimal value greater than

zero. Then a is also an optimal solution for (7.1).

1
Proof Let K, = —. Since a is optimal for (7.2), we have

&

mﬁin u(p)-a>1, and |&] > 0.

Hence K, < A(a). Assume that o is not optimal for (7.1). Then there must exist

some solution 3 for (7.1) such that A(B) > A(a). Without loss of generality, by
Observation 7.1, we can choose 8 such that ||3] = ||&||. Then

&l < Ada)liall < ABB) = min u(p.) - B;

that is, 1 < min u(p,) - 8, thus B is also optimal for (7.2).
1

1=K,

. 1 .
Let fmin = min u(p,) - § and let y = 3 B. Let Ymn = min p(p;)-y. Then

min =~ = 1.
7 In'ln IBmin
Therefore 7 is a feasible solution for (7.2). But
. Lz 181 van s
130 = B = AL < 31 =

since Bmin > 1. This contradicts the optimality of a for (7.2). Therefore o is optimal
for (7.1). 0

These three lemmas together imply that the solution technique for convex quadratic
minimization problems due to Megiddo may be applied to find widest strong strict
linear separators of a set of labeled points P. Lemma 7 2 implies that the points of P
are strictly separable if and only if the minimization problem has a feasible solution.
Lemma 7.3 implies that there is no upper limit on the “width” of strong separators
of P if and only if the minimization problem has an optimal value of zero. Recall

that this situation may occur only if all points of P share the same labeling.

Theorem 7.5 Let P be a set of n distinct labeled points of E?, for some fized di-
mension d. Let each of the points of P be associated with some positive weight. Then
a widest strong strict linear separator of P may be found, or its non-existence deter-

mined, in O(n) time.
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7.3 Wide Weak Linear Separation

Consider now the case where the set of labeled, weighted points P has no strong strict
linear separators. The convex quadratic minimization problem (7.2) on y(P) would
then be infeasible. However, if @ is a subset of P for which the minimization problem
is feasible on (@), then the points of @ are separable, and vice-versa.

One way of finding a widest weak strict linear separator of P is to construct the
homogeneous dual arrangement A(p,(I(P))) of P in E%*!, using the transformations
of Section 4.2 and Algorithm MAXCOMP. As was discussed earlier, the output of
the algorithm optionally includes a list of pointers to the faces of the arrangement
associated with maximal strict linearly separable components of P. For each cell in
the list, we may produce its corresponding maximal component in O(r) time, and
then compute the widest strong linear separator of this component, also in O(n) time
using the methods of the previous section. The widest weak strict linear separator of
P would then be simply the widest separator found over all the maximal components
of P.

Let R and G be the points of P labeled red and green, respectively. By Corol-
lary 5.9. we know that an asymptotic worst-case bound on the number of maximal
linearly separable components is O(kn?! 4 1), where k is the interpenetration of
R and G. The time required to find a widest separator using this approach is then
O(n)+0(n)O(kn?'+1) = O((k+1)r?), if the problem dimensionality d is treated as
being fixed. As the value A grows, this bound becomes more and more unsatisfactory.

In the case where the points of P are unweighted, the upper bound given above
may be reduced. To do this, we shall examine the facets of cells of A(p,({{P)))
associated with maximal components of P.

—

Let f be a cell of A(p,(I(P))) determining a maximal component, and let ) be the

subset of P such that the hyperplanes of p(f(Q)) each contain a facet of f and every
such facet is contained in some hyperplane of p(f(Q)) The cell f must be contained
in each of the open half-spaces of po(f(Q)), by the following argument: let q be a point

of @ such that the half-space p,(I(g)) does not contain f. Let g be the cell sharing
with f the facet of f contained in p(f(q)) Then x.(9) = xo(f) +1, contradicting the
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assumption that f determines a maximal component of P.

One conclusion that may be drawn from this is that the set of separators of
the maximal component associated with f are the same as the set »f strong linear
separators of Q. For the purposes of finding any weak separators of P whose duals
liein f, only the points of @ are significant; all other points of P are redundant.

With this observation in mind, we now outline a constructive algorithm to find a
wide (unweighted) weak strict linear separator of a set of n labeled points P in E¢,
for some fixed d. The input accepted by the algorithm is a set of n labeled points P

in E%, and the output is a widest weak strict linear separator widest.

WIDEWEAK

- -

(1) Let H = p(I(P)), and let Hy = p,(I(P)). Set widest « nil and width « 0.

(2) Construct the homogeneous half-space arrangement 4(H) using Algorithm
MAXCOMP, producing alist £ of pointers to cells of A(H) corresponding to
maximal components of P, and marking every facet according to the unique

hyperplane of Ji containing it.

(3) For every cell f referenced by a pointer in £, do:

—

(3a) Let @ be the subset of P such that p(I(Q)) is the subset of H whose

hyperplanes contain facets of Q).

(3b) Using the techniques of Section 7.2. set tempwidest to be the w.dest

strong linear separator of @, and set tempwidth to be the minimum

(unweighted) orthogonal distance from this separator to the points of
Q.

(3c) If tempwidth > width, then set widest — tempwidest and width «
tempwidth.

If d is considered fixed, the time cost of executing Steps 3a, 3b, and 3c for a given
cell fis O(|Q|); that is, of the order of the number of incidences between cell f and
facets of A(po(f(P))). If these steps were performed over all cells of the arrangement,

then the total time required to execute Step 3 is of the same order as the total
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number of incidences between cells and facets. In Section 6.2, we saw that the size of
the incidence graph of a homogeneous arrangement in E™ was O(n™"!). Therefore,
Step 3 requires only O(n?) total time.

The weighted and unweighted results are both summarized in the following theo-

renn

Theorem 7.6 Let P be a set of n distinct labeled points of E?, for some fired dimen-
sion d. Let k be the interpenetration of the points of P, and let each of the points of
P be associated with some positive weight. Then a widest weak strict inear separator
of P may be found, or its non-existence determined, in O((k + 1)n%) time and and

O(n®) space. Furthermore, if the weights are identical, then the time required drops

to O(n?).

If the points of P are in general position, the topological sweep method outlined
in Section 6.5 allows the determination of the strict linear interpenetration of the red
and green points of P in O(n?) time, but using only O(n) space. In a second pass,
knowing this interpenetration value (call it k), each cell f of A(po(f(P))) associated
with maximal components of P may be enumerated. Unfortunately, the facets of f
are not available using the sweepline method, even though the maximal component
corresponding to f may be produced in linear time, as well as a widest strong linear
separator of this component. If this is performed for every such cell f, we may
determine a widest weak linear separator of P, in O(n?*!) time. We conclude this

discussion with the following theorem:

Theorem 7.7 Let P be a ser of n distinct labeled points of E¢ in general position,
for some fized dimension d. Let each of the points of P be associated with some
positive veight. Then a widest weak strict iinear separator of P may be found, or its

non-ezistence determined, in O(n4*!) time and O(n) space.

7.4 Linear Separation of Hyperspheres

The problem of finding a widest strong linear separator for a set of unweighted labeled

points P is related to the problem of finding a strong linear separator for a set of
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hyperspheres of varying radii, as we shall show in this section.

Let S = {51,52,...,5,} be a set of labeled hyperspheres in E?, where each s; is
defined by

1. its center ctr(s,) = {cu,Ci,-..,ca) € E?, and
2. its positive radius rad(s,) € R,

and the label of s, is eithe. red or green. Formally,
s, = {z € E? é(z,ctr(c,)) = rad(s,)}.

If hyperplane h = (hj, hy,..., hyt1) is a strong non-strict linear separator of S,
then the minimum orthogonal distance between the hyperspheres of S and A is given
by i

§(s,, h) = min [ctr(s) .h + hasal > rad(s,).
‘ iRl
Furthermore, the sign of ctr(s,) - h + h4yy depends on whether s, is labeled red or

green,

Consider the set of labeled points P = {p;.ps,...,pn} with associated weights
W = {wy,wa,...,w,}, such that p, = ctr(s,), with the same label as s,, and w, =

ra’a‘l(“‘,l)a for all 2 = 1,2,...,n. Then the expression

1) " h
min H_(_I’_l__ >
v Al
holds if and only if
i h+h o
min w.l-)——-}-l”—%,—ﬁ—l- > 1 ifp,is red, and
b+ h
~min w‘&jﬁ}iﬂ—d—ﬂ > 1 if p, is green.
' )

This in turn is equivalent to the following:
tr(s,)-h+h
mmcr(s)-+ 41
' 4]
t “h+h
—min & r(s)) - h+ hayt

- >
' l1Al "

rad(s,) if s, is red, and

rad(s,) if s, is green.
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X

From this we may conclude that the problem of finding a strong non-strict linear

separator for S is reduced to the problem of finding a (d+1)-tuple h satisfying
ppd - h g !

min =2/~
v A
where P is defined as above. Similarly, the problem of finding a strong strict linear
separator for S is reduced to the problem of finding a (d+1)-tuple satisfying the strict
version of the above inequality. The problem of finding a strong linear separator of
a set of labeled hyperspheres is simply a special case of problem of finding a widest
strong strict linear separator of a set of labeled points. Naturally, this problem may
be solved using the same techniques as in Section 7.2, which leads us to the following

result:

Theorem 7.8 Let S be a set of n labeled hyperspheres of E4, for some fized dimen-
sion d. Then a strong strict or non-strict linear separator of S may be found, or its

non-ezistence determined, tn O(n) time.

We shall now tackle the problem of finding weak linear separators for S. If &
is a (d+1)-tuple representing a hyperplane of E4, by Obseriation 7.1, we have the

freedom to restrict ||kj] to be aiways equal to 1. Hence any h with ||k]| = 1 satisfying
u(p)-h 2 lforalle=1,2,...,n

corresponds to a strong non-strict linear separater of S, and any such h also satisfying
the strict inequalities is a strong strict separator.

Now, let h be a (d+1)-tuple representing a hyperplane that is not a strong (non-
strict) separator of the hyperspheres of 5. Let P’ be the subset of all points p of P

such that
wp)-h 21,
and let S’ be the set of hyperspheres of S corresponding to the points of P’. Clearly,
h is a strong separator of the hyperspheres of S'.
The constraints given above define closed (and open) half-spaces in E**!'. We
shall denote the sets of these closed and open half-spaces by K> and I, respec-
tively; the set of bounding hyperplanes of these half-spaces shall be called K. Con-

sider the non-homogencous half-space arrangement A(K) in E“', Each face f of
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A(K,) intersecting the hypercylinder {h ¢ E*'|||A|| = 1} corresponds to a strict
and non-strict lineariy separable component of the hyperspheres of S, depending on
the number of half-speces of K5, and K> containing f, respectively. As with homoge
neous arrangements, we will denote these numbers of half-spaces by x,(f) and y.(f),
respectively. Hence we may obtain weak strict and non-strict linear separators of S by
constructing the arrangement A(K,), and visiting the faces of the arrangement one
by one. Of the faces intersecting the hypercylinder. those attaining the maximum
value of x. correspond to maximal non-strict linearly separable components of S;
those attaining the maximum value of v, correspond to maximal strict components
of S.

Since we have already developed the tools that allow us to find these weak sepa-
rators in the previous chapter, we will content ourselves with only a brief overview of
the algorithm. The arrangement may be constructed using the original inciemental
construction algorithm of Edelsbrunner, O Rourke, and Seidel {EOQS86], modified to
allow the calculation of differential values. When visiting the faces of the arrange-
ment, the values of x, and y. may be computed for every face based on the differential
values, as in the algorithms of the pievious chapter.

To test whether the face f intersects the hy percylinder, the vertices in the closure
of f may be examined. The most effective way of performing this is by first testing
the vertices of the arrangement, then the edges, 2-faces. and so on. up unti} the cells
are tested. The result of the test (inside, outside, or intersecting the hypercylinder)
may be stored with each face for use when testing its superface. The amount of time
required to test all faces in this manner is propoitional to the size of the arrangement.

Once the desired face f has been isolated, any point of f contained in the hyper-
cylinder may be selected as a tuple corresponding to the weak (strict or non-strict)
linear separator of S. The worst-case time and space complexity of the algorithm is
bounded by the worst-case time and space required to build the non-homogeneous

arrangement in E41:

Theorem 7.9 Let S be a set of n distinct labeled hyperspheres in E?. A weak strict

or non-strict linear separator of S may be obtained in O(n*+') time and space.




CHAPTER 7. WIDE LINEAR SEPARATION ALGORITHMS 105

Unfortunately, there seems to be no elegant way to reduce the space complexity
of this solution through the use of the topological sweep method. The intersection
test described above for f requires the knowledge of the faces in the closure of f -

faces which cannot be obtained during the sweep in dimensions higher than two.



Chapter 8
Conclusion

In this thesis, we have explored the relationship between separable subsets of point
sets and homogeneous arrangements, from both algorithmic and combinatorial view-
points, concentrating on the object class of point sets, and the separator classes of
hyperplanes and hyperspheres. With the notion of weak separation, a combinatorial
measure of the separability of two sets has been introduced, and the separability issue
is no longer a binarv one. However, there exist many questions related to this topic
that are yet unanswered.

Kirchberger’s theorem concerning the non-strict linear separability of finite sets is

as follows:

Theorem 8.1 (Kirchberger) Tuwo finite subsets P and Q of E* are non-strictly
linearly separable if and only if, for each set T consisting of at most 2d + 2 points of
PUQ@, thesets TN P and T N Q are non-strictly Linearly separable.

An open problem that remains is whether the number of subsets required to test
for non-strict separability may be reduced as in the strict case. If so. techniques
different to those of Chapter 3 must be emploved. Because the transformation used
in the proof of Theorem 3.7 has a singularity at the origin, some way must be found
to avoid it. This was accomplished for the strict case by “covering” the origin with a
distinguished member set from one of the two families. A strict separator. in avoiding

this set, would also avoid the origin. A non-strict separaror. however, would not be
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constrained to avoid this singularity. This difficulty also prevents the extension of
Kirchberger’s non-strict separability theorem to finite families of arbitrary sets via
the approach of Chapter 3.

In {Lay82], Lay states a quantitative form of Kirchberger's theorem that 1s closely
related to wide linear separation. He defines a slab as a closed connected region

bounded by two distinct parallel hyperplanes, and the width of a slab as the distance

between its bounding hyperplanes.

Theorem 8.2 (Lay) Two non-empty compact subsets P and Q of E* are strctly
separable by a slab of width w > 0 if and only tf, for each set T consisting of at most
d +2 ponts of PUQ, there ezists a slab of undth w that strictly separates T N P and
TNQ.

An interesting extension of this result would be the development of quantitative
versions of the theorems of Chapter 3.

Another question that is still very much open is whether the problem of finding
separating surfaces other than hyperplanes and hvperspheres may be cast into the
setting of hyperplane arrangements. Even relatively simple quadratic separating sur-
faces such as cllipses in E? seem to resist such transformations. A possible solution is
to abandon the hyperplane arrangement approach in favour of arrangements of more
complex surfaces. At this time, very little is known about these arrargements.

The upper bound on the number of separable components of a range of cardinal-
ities is almost certainly not tight. The gap between this upper bound and the lower
bound for k-sets due to Clarkson [Cla88] 1s vet to be closed Also, an interesting open
question is whether or not the worst-case number of k-sets of n points is of the same
order as the worst-case number of separable components of size k.

A very difficult question that still remains to be answered is whether there is a firm
link between the linear or spherical interpenetration of two point sets R and G, and
the number of separable subsets of RUG. Naturally, the number of separable subsets
rises as the interpenetration diminishes - interpenetration of zero implies that every
subset is separable. The interpenetration provides a bound on the minimum and

maximum cardinalities of the appropriate components of R and &, which of course
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transforms into upper and lower bounds on x, and x. in the dual arrangement.
Because the expressions of Corollaries 5.18 and 5.19 for the number of separable
subsets are in terms of y, and x., one would hope to be able to bound the number
of these subsets in terms of the interpenetration. So far. no non-trivial bounds have
been found. This question is particularly interesting in light of Kirchberger's theorem
and its extensions: we know that if all subsets of a certain size are separable, all the
points are separable. If only some proportion of these subsets are separable, what is
the size of the largest separable subset, in terms of this proportion?

An open problem of an algorithmic nature concerns the time complexity of finding
weak separators. It is not clear whether the expensively-obtained information inher-
ent in an arrangement of hyperplanes is wholly required to determine weak linear and
spherical separators of point sets. It seems that a reduction in the time complex-
ities of most of the separation algorithms présented in this thesis would entail the

abandonment of the hyperplane arrangement as an algorithmic tool.
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