SOME LOGICAL CHOROCTERIZATIONS OF THE DOT-DEPTH HIERQRCHY
oD PYLICATIONG

Francine Blanchet-Sadri
Department of Mathematics and Statistics
McGill University, Mntreal

Mey 1989

R thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfiliment of the requirements for the degree of
Philosophiae dactor

(¢c) Francine Blarchet-Sadri, 1989




LoCIUAL

CHARACTERI ZATIOND

oF

HE LOT DEPTH HITRNECHY GND aPPLICHTIONS




i1

fibstract

Hew connections are discavered between farmal language theory and
mode! theory. Ue give lagical characterizal ions of natural
subhierarchies of the Straubing hierarchy of star-free languages using
logical nmotions such as quantifier camplexily of first aorder sentenoes.
f version of the Ehrenfeuchl-Fraisse game is used te obtain a
characterization of the slar—free languages in terms af congruences.

This thesis, which studies the fine structure of the Straubing
hierarchy, is concerned wilh applications of the above logical
characterizations. BAmong them are: a conjecture of Pin cuncerning
tree hierarchies of monoids is shown toc be false; the studying of
properti1es of the characterizing congruences amd equation systems far
the varieties aof monoids corresponding o the levels aof the Straubing
hierarchy are closely related; upper and lower bounds aon dot-depth are
obtained.
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De nouvelles relations sont obtenues entre la théarie des
langages formels et Ia thear e des modeles. Des caractarisations
{fogiques de sous-hierarchies naturelles de ta hierarchie de
concatenation de Straubing des langages sans etorles uti! i1sant des
nations logiques comme la complex:té de quantificateurs de forrulies du
premier ardre sont donnees. Une version du Jeu de Ehrenfeucht-Fraisse

- -~
est ut1lisee pour obtenir une caracterisat ion de ces langages en terme
de congruences .

Celle th;se, quli etudie la fine structure de [a hxéfarchte de
Straubing, contient plusieurs applications des caracterisat tans
logiques ment xonnées, parmi elles sant: wune conjgecture de Pin
concernant les hierarchies d*arbres de monoides est demontree fausse;
'etude de prapmété:s des congruences caractgmsttques et de syst?mes
d’é;quatmn.s rel iées aux varietes de monoides corres pondant aux niveaux
de la hierarchie de Straubing sont en rapport tres gtmxt; des bornes

supé’.rzeures et inferieures de dalt-deplh sanl oblterxzes.
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Traditionally, algebraic automta theory uses nonoids as models

for finite state machines. One looks at a finite state machine as
processing sequences of symbols drawn from a finite input alphabet.
Denoting the input alphabet by A, the universe of possible inputs 1s
the free monoid Q* and a finite state machine can be thought of as a
gquotient of A" by a finite index congruence ~. Q*/nr being a finite
monoid one 1s then led to snwvestigate relationships between the
structure of this algebraic system and the combinatorial processing of
input sequences. The theory of varieties of Eilenberg constitutes an
elegant framework for discussing these relationships between
combinatorial descriptions of languages arnd algebraic properties of
their recognizers. The interplay between the two points of view leads

to i1nteresting classifications of languages and finite monoads.

Let A be a given finite alphabet. The regular, or
recognizable, languages over f are those subsets of Q* constructed
from the finite languages ower A by the boolean operations
U, N, ~) as well as the concatenation product (.,) and the star

(#) (the concatenationof L, and L2, denoted LlL i1s the set

1 2'
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{xy| % 15 1n L and y 1s 1n L,}. Define 1?2 - 1) where 1 1s the
- "
empty word and o=t ! for 1 21, L = U“QLI). The star-free

languages consist of those regular languages which can be obtained from
the finite languages by boolean operations and the concatenation
product only. According to a fundamental theorem of Schut zenberger
(5¢6351, L ¢ A* 15 star-free if and only 1if 1ts syntactic monoid M(L)
1s finite and aperiodic, that is, M(L) contains only triwual
subgroups. For example, (ab)“ 1s star-free since

(ah™ = (@A™ na"p) n ~a%aad" U A"BEA" YD U €12, Bt @)™ is ot
star-free, a consequence of the theorem of Schi'xtzenberger. General
references on the star-free languages are IMcNaughton and Papert [(MP71],

Eilenberg {E176) or Pin [P184al.

Natural classifications of the star—free languages are obtained
based on the alternative use of the boolean operations and the

concatenation product. Let A+ = ~{1}. Define

Q+$0 = {L ¢ Q+[ L 1s finte or cofinitel,

Q+$k+1 = {L € ﬂ+l L 15 a boolean combination of languages of the

+
form Ll"'l“n (nz 1) wth Ll’ ceny Lneﬂ‘ﬂk}.

For technical reasons, only nonempty words ower A are considered to
define this hierarchy; in particular, the conplement operation is
applied wath respect to A+. The language classes A+$0, A*Bl,
form the so-called dot-depth hierarchy introduced by Cohen and

Brzozowski [CB71]1. The union of the classes A+8 ’ A+B is the

o 1' LR N
class of star-free languages.



Most of our attention will be directed toward a closely related

hierarchy, this one in a*. It was introduced by Straubing [5t83].

Let

* *
Vo= 8 A,
A*Vkﬂ = (L ¢ A*l L is a boolean combination of languages of the
, n
form Loall..laz...a L (n >0 with Lo, ceay LnE AVK and
ayy rey anéﬁ}.

Let A"V = Yo A'v.. L A" is star-free if and only if L € a“vk
for some k > 0. The daot-depth of L is the smallest sswch k. The
Straubing hierarchy appears to be the more fundamental of the two for
the following reasons explained in [St86]. From the semigroup point of
view, if k1, level k of the Straubing hierarchy corresponds to
the variety of finite monoids consisting exaotly of those in the
variety of finite semigroups corresponding t; level k of the dot-depth
hierarchy. From the logical point of view, the lewels of the
Straubing hierarchy are exactly those defined by sentences of a first
order language sinmpler than the one required for the levels of the
dot-depth hierarchy. For more details concerning the Straubing
hierarchy and its relation to the dot-depth hierarchy, see Pin [PiB4al

or [PiB4bl.

In the framework of semigroup theory, Brzozowski and Enast

[BX78]1 showed that the dot-depth hierarchy is infinite, in fact, that




a"mk“ > a*:k but n*ak“ 2 n*ak for k > @. Thomas [Tho84] gave a

new proof of this result, wvhich shows also that the Straubing
hierarchy is infinite, based on a logical characterization of the
dot—depth hierarchy that he obtained in [Tho82]1. His proof does not
rely on semigroup theory; instead, an intuitively appealing wodel

theoretic technique was applied: the Ehrenfeucht-Fraisse game.

It was the work of Buchi [Bud] and Elgot [E161] that first
showed how to use certain formilas of mthematical logic in order to
describe properties of regular languages. These formulas, Lknowi as
mmadic second order formulas, are bhuilt up from variables
X, ¥V, :..; 8et variables H, Y, ..., a 2-place predicate sywmbol
< and a set (Qal a €AY of 1-place predicate synbols in one-to-one
correspondence with the alphabet A. Starting with atomic formulas of
the form x =y, x <y, an and Xx, formulas are built up in the
usual way by means of the commectives -, V, A and the quantifiers
3 and v binding up both types of variables. Awnrd w on A
satisfies a sentence ¢ if ¥ is true when variahles are interpreted
as integers, set variables as sets of integers, the predicate < as
the usual relation on integers and the formula an as the letter in

position x in w is an a.

Ladner {Lad?77] and McNaughton {Mc74]1 were the first to consider

the case vhere the set of formilas is restricted to first order, that

is, vhen set variables are ignored. They proved that the languages



defined 1n this way are precisely the star-free languages.

Thomas [Tho82] showed that the dot-depth hierarchy corresponds in
a very natural way with a classical hierarchy of first order logic
based on the alternation of existential ard universal quantifiers.
Perrin and Pin [PP86] gave a substantially different proof of the

result of Thoms for the Straubing hierarchy.

For each k * @, there is a variety vk of finite monoids such
that for L € ﬁ*, L € Q*Vk if and only 1f M(L) € vk. An outstanding
open problem i1s whether one can decide 1f a language has dot-depth k.
This 1s equivalent to the question “is Vk decidable?”, 1.e., does
there exist an algorithm which enables us to test i1f a finite monoid is
or 1s not in vkv The variety Vo consists of the trivial monoad
alone. The variety Vl consists of all finite ¥F-traivial nonoids
{S175]). Straubing £5t861 conjectured an effective criterion, based on
the syntactic wonoid of the language, for the case k = 2. His
condition 1s shown to be necessary in general, and sufficient in an
inportant special case, 1.e., for an alphabet of tw elements. The

condition 1s formulated 1n terms of a novel use of categories in

semigroup theory, recently developed by Talson [Ti87],

This thesis 1s concerned with the decidability problem of the
Straubing hierarchy, i.e2., can we effectively characterize the

varieties Vk? The aim of chapter two is to state those logical
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characterizations of the star-free languages which are useful in
attacking the decidability question. In section one, a logical
characterization of natural subhierarchies of the Straubing hierarchy
refining the logical characterization of the hierarchy by Thomas 1s
gven, This logical characterization is useful when treating the
question whether dot-depth 1s computable. As an application we can get
upper bounds on the conplexity of a star-free language by considering
1ts description in the first order logical language. In section two,
ve state the version of the Ehrenfeucht-Fraisse game which was used in
Thomes [(Tho841 to prove that the Straubing hierarchy is infinite. For
a seguernce m = (ml,...,mk) of positive integers, congruences

related to that version of the game are defined. Then we

N(ml, .o '"\()
give a characterization of the star—free languages of level kK in terms
of the congruences -~ generalizing a result of Simon

(ml, e ,mk)

[Si72]. A characterization of the varieties of monoids related to the
Straubing hierarchy through Eilenberg’s correspondence follows.

Subclasses & of lanquages of lewel kK are defined.

(ml,-..,lﬂk)

In chapter three, we study some properties of the characterizing
congruences. Section one establishes an induction lemm. Section two

gives a condition vhich insures l,( 1s included in

ml""’"\z)

£ L]
(m’l,. ..,m’k,)

Chapter four deals with a first application of the above logical
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characterizations. We show that a conjecture of Pin concerning tree
hierarchies of monoids (the dot-depth and the Straubing hierarchies
being particular cases) is false. More precisely, (@, A*} 18

assoclated to the tree reduced to a point. Then to the tree

is associated the boolean algebra \ft generated by the languages of

the form L. a, L. a,.
i, 11,2
@ 1 r

@<ysr, L €V, . Pin(Pi84b] conjectured that V, C V., 1f and

1
J J

only 1f t 1is extracted from t’., Decidability and inclusion problems

..a L. with @< i, < ... <1 2n where, for
ri @ r

are discussed. & are shown to be decidable.

(ml,...,mk)

Chapter five 1s concerned waith a second application of the
mentioned logical characterizations. Games are shown to be a way in
verifying equations which are used for finding lower bounds on the
dot-depth of a given star-free language or a star-free language's
complexity. We define systems of equations satisfied in the monoid
varieties of sublevels of level 1| of the Straubing hierarchy.

({LEnB83al, [KEn83b] provide an equation system for level ! of the
dot-depth hierarchy without using Ehrenfeucht-Fraisse games). In a few
cases, we show that these equation systems characterize the sublevels.

In particular, the third sublevel is characterized by the equations

(xy)3 = (yx)a, KZYHVHWY = HZAynoxwy amd ywvxyzx = ywxuxyszx, or,



equivalently, by the equations (xy)3 = (yx)a, RURUY = xux2vx,

xzyxzwy = azxyxzwy and ywxzyzx = ymzyxzx. We show how some of the
equations can be selected for sublewels of higher levels i1n the

hierarchy. Equations satisfied in higher lewvels are discussed.

Other applications of the mentioned logical characterizations are
the subject of chapter six. Given any finite alphabet f, a necessary

and sufficient condition is given for the monoids A*/~ to
(ml,m.z,ma)

be of dot-depth eractly 2. An equational characterization of the

first sublevel of level 2 of the Straubing hierarchy for an alphabet

of tw letters is given.

In the following, notation and basic concepts are i1ntroduced.
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i. Algebraic prel imnaries

For wore information on the matters discussed 1n this section,

see the books by Eilenberg {E1761, lallement [Lal79] and Pin [P184al.

A semigroup 1s a set equipped with an associative binary

operation (generally denoted multiplicatively). A monoid 15 a set M

equipped with an associative binary operation and a @-ary operation ,
denoted by {, such that for all ®x €M, 1x = x1l =x. A group is a
set M equupped with an associative binary operation and a @-ary
operation as abowe, such that for all x € M, there exists x’ € M
satisfying xx’ = x’x =1. If M' 15 a semgroup, them MC M 1is
subsermigroup 1if Hz €M If M also has an identity, then M 1s a
wonoid in M*. M is a submonoid of M if M' 2 M are both wonoids,
with the same identity. We say that M divides M, M-+, 1f M
15 a worphic image of a submonoid of M'. fll the semigroups
considered in this thesis are finite (except for free semigroups and
free monoids). W is aperiodic if every growp 1n M 1s a trivial one
element group, or, if there exists n such that X = xnﬂ for all

x €M If M 15 anonoid and m m.ZEH, then m is said to be

1’ 1

J-below m,2, witten m, 53 LY 1 £ mo= X,y for come x, y €M;

m,  and m, are said to be %-equivalent, written m g My if

1
m1 53 "b and m2 5? ml. M is said to be F-trivial if this

equivalence relation 1i1s the identity.

a
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let A be a finite set. Q*, the free monoid generated by A,
is the set of all sequences of length > @ of elements of A with
concatenation being the operation (such sequences are called words).
The unique string of length @, denoted by 1 and called the enpty
ward, acts as the identity. A language over A is a subset of R*.
jw] denotes the length of the word w, and |"’|a the number of
occurrences of the letter a in w. wx denotes the set of letters in
w. Aword u is a prefix of w 1f there exists a word v such that
w=w. Aword u is a suffix of w if there exists a word v such
that vu=w. Aword u is a factor (or segment) of a word v if
there exist words % and y such that v =nuy,. Awrd u-= age..an
(vhere Ay +eey A are letters) is a subword of v if there exist
words Vgt et Vg such that v = Vo Vi3t Yy

fin equivalence ~ on n" is a congruence if x ~ y 1implies
wv ~ uyv for all u, v, x, y € A*. A congruence ~ is aperiodic
if there exists n» @ swh that »" ~ x™!, for all x. The
~-class of x is Ix]_={y | x ~ y>. The set of all ~-classes is
denoted by 9*/~ and the index of ~ 1s defined as the cardinality of
A*/‘v. This set becomes a monoid by considering the operation
(x1 [yl =[xyl ; (11 acts as identity. There exists a surjective
morphism ~ : A + A" /~, defined by x~ = [x] . Conversely, any
nmorphism ¢ 3 A* 4+ M induces a congruence on B“ defined by x Py
if and only if x¥ = y¥?. Note that we use the sanw symbol to denote

the congruence and the related morphism. If ¢ is surjective, there
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*
exists an isonorphism between A /¥ and M. finy monoid can then be

represented as a quotient of Q* by a congruence.

If L ¢ A* 1s a union of ~-classes, we say that L 1s a
~-language. For any language L over A, the syntactic congruence of
L 1s defined by = LY 1f and only 1f for all u, v € Q*, uxv € L
1f and only i1f uyv € L. L 15 the congruence of muinimal i1ndex with
the property that L 1s a ~-language, 1.e., for any congruence ~
on ﬂ*, L 1s a ~-language 1f and only if ~ ¢ L The quotient
monoad a*/~L 15 denoted M(L) and 1s called the syntacti:c monoid of
L. If M 1s a nonoid and there exists a morphism ¢ : A* - M suoch
that L=5f "' for some § ¢ M, we say that M recognizes L. We
also say, 1n such an instance, that the morphism ¢ recognizes L.
A language is said to be recaognizable 1f i1t 15 recognized by a finite
monoid. It 1s not difficult to see that recognition by a finite wonoid
1s equlvalent to recognition by a finite automston, so Kleene’s
theorem asserts that the regular languages in A* are exactly those
recognized by finite monoids. It i1s well known that M(L) 1s the
monoid M of minimal cardinality with the property that M recognizes
L; 1in fact, ML) <M 1if and only 1f M recognizes L. PMoreover,
if o and ~, are two congruences on A" and 1f ~1 < ~ot then

a"/~2 < A%~. Also L 1s regular if and only if ~  has finite

index 1f and only 1f M(L) 1s finite,



W 15 a vartety of monoids (the term variety 1s being used in a

slightly different sense that the usual), or M-variety, 1if

(1) it 1s a class of finite wonoids closed under division, 1.e., 1f
MEW and M <M, then M €W, and

(2) it 1s closed under finite direct product, 1.e., 1f M, M € W,

then M x M’ € W.

For any class C of finite nobnoids, we denote by (C)H the
least M-variety containing €. Clearly, ME€ (C)" 1f and only if
there exists a finite sequence Hl, coey Hn of monoids of ¢ such

that M < 1'11 X ... A l'ln. We call (C)H the Mvariety generated by C.

Eilenberg [E176] has shown that there exists a one-to-one
correspondence between M-varieties and some classes of recognizable
languages called %-varieties. W 1s a ¥-variety of languages if
(1) for every finite alphabet A, Q*U denotes a class of

recognizable languages over fl closed under boolean operations,

1

(2) 1f LEA™M and a€Q, then a L=4wé€A |aw€Ll) and

tal - twen"| meLy are :n A", and
) * * %
(3) if L€AW and ¢ : B <+ A 15 a norphism, then
el = qwe B Pw ey € B
To a given #*-variety of languages W corresponds the M-variety
W={L) |LE A"W for some A} and to a given M-variety W
*
corresponds the %-variety of languages V¥ where A*w - (L ch | there
is M€ W recognizing L). The notion of variety captures the

conditions under vhich a family of languages can be characterized by
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nmonoids and vice versa.

The Straubing hierarchy gives examples of #*-varieties of
languages. One can show that VvV and Vk are ¥*-varieties of
languages. Let the corresponding M-varieties be denoted by ¥V and
Vh respectively. VU is the M-variety of aperiodic monoids. We have
that for L C A, LEAV if and only if ML) €V and for each

if and only if ML) € V.

k>@ LEAY 5

k
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2. Logical preliminaries

For nore information on the mtters discussed in this section,

see the book by BEnderton [En721.

We assure that we have been given infinitely many distinct
objects, which we call symbols, arranged as follows:

Logical symbols
(1) parentheses: ¢(,),
(2) sentential connective symbols: -, V, A,
(3 wvariables: %X, ¥, ..y
() equality symbol (optiomal): =.

Nonlogical symbols
(1) quantifier symbols: 3, v,
(2) predicate symbols: for each positive integer n, some set
(possibly empty) of symbols, called n-place predicate synbols,
(3) constant sywbols: some set (possibly empty) of synbols,
(4) function symbols: for each positive integer n, some set
(possibly enmpty) of symbols, called n-place function symbols.,
The equality symbol is a 2-place predicate symbol but is distinguished
from the other 2-place predicate synbols by being a logical sywbol
rather than a nonlogical one. We do assume that soom n-place

predicate symbo! is present for som n.
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A (finite) similarity type, T = (Pl""’Pi’cl"'"C,j’fl""’fk)’
1s a sequence of predicate symbols, constant symbols and function
symbols. If T is any type, then &(1l, the first order language of
T, 15 the set of all formulas built up from the symbols of T using
the connective symbols, wvariables and the quantifiers 3 and V.
More precisely, the terms are constant symbols, wvariables or of the
form E‘tl,..tn, where f 15 an n-place function symbol and
tl’ ceny tn are terms. The atomic formuias are of the form
Ptl"'tn’ where P 1s an n-place predicate symbol and tl, .aey tn

are terms. The formulas are built up from the atomc formulas by use

of the connective symbols and the quantifiers.

.,xn) will denote a formula in which Xis +eey X are ‘

Pix
n

1, a s
the only free variables. If no variable occurs free in the formula ¢,
then ¢ 1s a sentence. ¥ 2 ¥ will abbreviate PV ¥ and ¥ & ¥
will abbreviate (¥ 9 ¥) A (¥ 3 P).

Al structure U = (U,P?,...,P?,c}l,...,c}l,f‘il,...,f:‘l) for a given
first order language &[711, 7T = (Pl""’Px’cl""'CJ’fl""’fk)'
consists of
(1> a non-empty set U, called the umiverse of 1,

U U
(2) an n-ary reiation P ¢ Un, 1.e., P 15 a set of n-tuples of
members of the universe, for each n-place predicate symbol P,

(3) a mewber cu of the universe, for each constant symbol c,

(4) an n-ary operation f“ on U, 1i1.e., fu: Un—’U, for each




n-place function sywmbal f.

The i1dea 1s that Y assigns meaning to the nonlogical sywbols. Vv 1is
to mean “for everythang in U". The symbol © 15 to name the point
cu. The atomic formula Ptl" .tn 15 to mean that the n-tuple of

noints named by t tn 1s in the relation Pu. The nuwber of

'ERERERY

elements 1n the umiverse of U 1s abbreviated [U].

A sentence ¥ 1n £[7] 1s given meaning by a structure U of
type T as follows: the symbols from T are interpreted by the
relations, constants and operations in 4. The quantifiers in ¢
range over the elements of the universe U. ¥ 1s tre in 1%, or 1
1s a model of ¥, is denoted Uk ¥. Two formulas ¥ and ¥ are
called equivalent 1f Y E ¥ e2 ¥ for all structures U, or

equivalently, Uk ¥ 1f and only 1f Uk ¥ for all structures .

The quant:fier depth of a sentence ¥, qd(¥), 1s the depth of
nesting of quantifiers in ¥. Inductively:
qd((v)¥P) = qd((Ix)P) = qd(P)+l,
qd(P V ¥) = qd(? A ¥) = max(qd(¥),qd(¥)), and

qd(~P) = qd(¥).

A formala ¢ is in prenex normal form 1f P = (Q;l)‘f’, where
(Qx) 1s a string of quantifaiers axi, \mi, and ¥ 1s
quantifier-free. If the prefaix (Q;l) consists of k alternating

blocks of quantifiers such that the first block contains only




existential quantifiers, the second block only universal ones, etc.,

and each block 1s nonempty, then (Qx)¥ 1s a L -formila. Simlarly,
1f (Qx) consists of k blocks beginning with a block of universal
quantifiers, (Q;)'f' 15 a lfk-—f‘ormla, thus the Eo—f‘ornulas and the
ﬂo-i‘ormlas are the gquantifier-free formulas. Any formla is
equivalent to one 1n prenex normal form. The rules needed for this
transformation are given by

(1) a negation of a Ek-fornula 15 equivalent to a Ilk-fomula,

(2) a disjunction or conjunction of Ek—fornulas 15 equivalent to a

Ek—fornula,

(3) a boolean combination of Ek—fomulas, or B(L‘k)—fornula, 18

equivalent to a Ekﬂ-formxla,

(4) the statements (1)-(3) hold in dual form for Ilk-!‘ornulas.

WY W
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1. A quantifier coamplexily characterization

Let us first state the mentioned logical characterization of the
Strauvbing hierarchy by Thoms. One identifies any word w € Q*, say
of length |w|, with a vord wodel w = ({1,...,|w|>, <%, (Q:).en>
vhere the wmiverse C'l,...,lwl} represents the set of positions of
letters in the word w, " denotes the <-relation in w, and Q:'
are unary relations over (1,...,|w|> containing the positions with
letter a, for each a € A. Somtimes it is convenient to assume that
the position sets of two words u, v are disjoint; then one takes any
two nonoverlapping segments of the integers as the position sets of u
and v, lLet & be the first order language with equmlity and
nonlogical symbols «, Qa' a€f, i.e., & =LHT1)] vhere T is the
similarity type (="’(Qa’aen)‘ Then the satisfaction of an
&-sentence ¥ in avwrd w, witten wk?P, is defined in a natural
way, and we say that L C A" is defined by the &-sentence ¢ if
L =LY ={we€ A'[ wik ¥). We also consider the formulas @ (false)

and 1 (true). Observe that L(@) = @ and L(1) = n*.

Theoren 2.1.1 Thoms [Tho82]
A lanquage L ¢ A" belongs to A", if adonly if L is

defined by a B(lk)-sentencc of ¢&.
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R RIS AN

Corollary 2.1.2 ladner [Lad77] and McNaughton (MP71]
A language L 1s star-free 1f and only if there exists a first

order &-sentence ¥ such that L = L(¥).

For k > 1, let us define subhierarchies of A*V as follows:

for all m:z 1, let

Q*Vk o= L Q*I L 1s a boolean combination of languages of the
1

»
form LoalLlaZ"'anLn (@< n<m wth LO' ey Ln € Avk_l and

a .aay a_ € f),
n

1!

* * * »*
e have AV, UL AV . Easily, AV SAV., L

| » » +
; < . i i can
; A vk,m CA vk,mﬂ Similarly, subhierarchies of A 3k be
j defined. One can show that Vk m 1s a #*-variety of languages. Let
]
the corresponding M-varieties be denoted by Vk m’ We have that for
)
kK>1, m21, LEAW +f and only if M(L) € ¥

k,m k,m’

In A+‘81 several hierarchies and classes of languages have been
studied; the nmost promunent exanples are the B-hierarchy (BS73], also
called depth-one finite cofinite hierarchy, and the class of locally
testable languages. In Thomas {Tho82] 1t was shown that both are

characterized by natural restrictions on the form of L‘l-sentenoes of a

certain first order language extending &.

e The purpose of this section 1s to giwe a logical characterization
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vhich follows from an analysis of the proof of theorem 2.1.1 of the
subhierarchies of A*V‘ refining the theorem of Thoms. It will be
useful to extend & by adding constant symbols s, for ewry natural
nuvber s. For a word model w, the interpretation s¥ of s wll
be the sth element of w. Let W"l"" ,xm) be a formula i1n which

LTE T I are the only free variables., let s .y S_ be

| RO m

positive integers. The meaning and usage of (s . ,sm) should be

1,1!
quite clear 1n what follows. ‘P(sl,...,sm) 1s obtained from

‘P(xl,...,xm) by replacing simltaneously all free occurrences of X,

in ¥ by the constant Spr vy X by Sm' The interpretation of

the formula ¥P(x) = 'P(xl,...,xm) in a word mmdel w with universe
{1y...,|w[>} and elements Syy eeer S €L, |wl? is defined in
the natural way; we waite wk ‘P(sl,...,sm) 1if ¥ is satisfied 1n w

when interpreting ®, by S4 for 1 21 4 m

i logical characterization of the subhierarchies of Q*V 1s

based on the following two lemmas. In what follows, if w= a...a

isavwwrdand 1 <s $£s’ £n ws,s’]l, wis,5'), wis,s’] and
ws,s’) will denote respectively the segwents a_-ra_,

a eeed a Y- | and a _...a .
s+l s'-1 ' Ts+1 5! 5 s'-1
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Lewsa 2.1.3 Perrin and Pin (PP86]

For k * @ and for each B(Ek)—sentence £, there exist
B(L‘k)-i‘ormlas ‘Pl(x), ‘Pr(x), ‘Pm(x,y) in vhich x (x,y) 15 (are)
the only free variable(s) and such that for every n and for .very
word w of length n we have
(1) we L(‘I’l(s)) if and only 1f wil,s) € L(¥), and
(2) we€L(P (s)) 1f and only 1f  w(s, |w]1 € L(P) for every integer
s such that 1 < s < n, and
(3) we L(‘Pm(s,s')) 1f and only if w(s,s’) € L(¥) for every
integers s, s' such that {1 < s < s’ 2 n.

Proof WUWe define ‘Pm for every formula ¢. Pm 1s constructed by

induction as follows (the constructions are similar for 'Pl and ‘Pr):

1if ¥ 1s quantifier—free, then ‘Pm=‘l’. Otherwise, we set

(32¥) Jz (g <2< y) AP,
m m

(wz?P) V2 ((x <z <vy)af ),
m m

(~#) -,
m

m

(P VP
m

(P AY¥)
m

"

P VY,
m m

P AY .

m m

Then one can werify by inductionon k > @ the following properties:
(1) if ¢ and ¥ are equivalent formulas, then ‘Pm and ‘Pm are
equivalent,

(2 if ¢ as B(Zk), then ‘Pm 1s equivalent to a B(Ek)-for‘nula,
(3) let ¢ be asentence. If |w|=n and if 1 £s<s"<n, w

satisfies 'Pm(s,s') 1f and only 1f w(s,s’) satisfies ¢.[]
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Lewm 2.1.4
Given a B(Z )-formula ®(x.,...,x ) (n: 1), there is a system
k 1 n

i rdo_ g J J *
{L ),j< of sequences LY = “"0""'Ln) of languages Li eavk and

p
(S‘j)jq’ of sequences S‘i = (af,...,ai), a‘ii €48 swuwh that for any w
and s, <... <5 in Uy, |w]d, wEk P(s,,...,5 ) if and only if
there is j < p swch that

. w
(1) wii,s)) € L% and Qaij S

. w

(2) wis ,s.,,) eul’ and Q“fﬂ S4gr 13 i¢n, and

(3 wis ,|w]) € L.
Praoof By induction on k (see the proof of theorem 2.1.1 [Tho823. If

n =09, this is just theorem 2.1.1).[]

Let ¢ be an &-sentence. If ¥ is a boolean combination of
the L‘k-sentenc-s 9’1, snny ‘Pn, define the quant if ier rank oqr(¥)
to be the maximmn number of quantifiers cccurring in the leading block
of one of the formulas 'Pl, aevy 'Pn. let us now prove a refinement

of Thomas'’ theorem.

Thearem 2.1.9
let k> 1, m> 1. A lanquage L C A" is defined by a
B(Zh)-senteme of &, ¥, vhere qr(¥) <m if and only if L belongs
*
to avk’m.

Proof The case k =1 is the following. Let m: 1. let L be a

language of the form ﬁ*aiﬂ*az...ama* vhere a, €A, i=1, ..., m
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We have to find a boolean combination ¢ of El-sentemes defining L
such that qr(¥) : m. The assertion w€ L can be expressed by a
£l-sentenr;e as follows:

3x13x2...3xm (xl < x2< ves ° xmA Qalxx A Qa2x2 A ... A Qamxm). Hence

I. 1s defined by a sentence of the required farm.

Conversely, we show that a given El—sentem:e Bxl...me Pix)

defines a language 1n Q*V where P(x) 1s equivalent to a

1,m
conjunction of atomc formulas of the form an, K<y or x=1y

(for X, y wvariables and a € A) or their regation. Let

ordl()—(), ceey ordr(;—() be the conjunctions saying x < ..

A
Ed

where “l""'lm} = {1,...,m}. Then Ix P(X) 1S equivalent to

vl-‘1<r Ix (ordl():) A P(x)). Let us consider a typical mewber of this

disjunction, say Ix (x1 < ... % xmA‘P(;)) (identify variables 1if

equalities occcur between the xl's). 1t suffices to show that the

language L defined by ¥ = 3Ix (x, < ... < xmA‘P()—()) 15 1 AV

1 t,m

But ¥ defines either @ or 1s equivalent to a disjunction of

formilas of the form 3x (x]L 2 e < xmA‘P'()_{)) where ¢'(x) 1s a

conjunction of atomc formulas of the form an, —anX for x a
variable and a € f. In either case; L 1s easily seen to belong to
A"bA",

Aty For example, L(3x Q_x) = A%an*, L Q%) =

L,m UbEﬂ yb#a

Lidy3z (y <z AQy A Q2) = a*an*ba"  and
L(3yIz (~(y < z) AQay A waz))
=Ly (Qy A -Qy» ULGydz (z<y AQy A Q2)).
Now let us assume k > 1, m> {. Let L be a language of the

"
form LOalLlaT"amLm vhere a, € A, l..i € A vk-l' 1 =0, ..., m
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We have to find a boolean combination ¥ of xk~sentences defining L

such that qr(®) < m. By Thomas' theorem 2.1.1, let
"] 1 m L.
P, ., ¥ be B(Ek_l)-senternes defining LQ, Ll' esey L

respectively. UWe can find B(Z:k 1) ~faormlas

'P?(x), Té(x,y), 'P:(x,y), cesy S’:?(x) satisfying lemm 2.1.3. Hence
the assertion w € L can be expressed by the following sentence:

axlaxz...axm (By < %y € oun < xmAQalxl A

Q ¥y A -en AQ X A? (x,) Av () %) A2 S(ikg) A L. AP:'(xm)),

2 m M |
which is easily seen to be equivalent to a B(Eh)-senteme of the

required form.
Conversely, consider a L‘h-senteme axl...axm ‘P(s-(), where
P(x) 15 a B(Z, _,)-formala. Afs in the proof of the case k =,

m2z 1, it suffices to consider a tk-sentenoc of the form

Po=3m.. 3 (e < <A P(x)). Then, by lemm 2.1.4, there is

id Td _ J
a system (L ),j4p of sequences L° = (LG""'Lm) of languages

J zd = J J J
L eavk -1 and (a >J<p of sequences a' = (al,...,ln), aiEA

such that for any w and s, < ... < s in 1,..., |w|?,

wk (s ,...,8 ) if and only if there is j < p swuch that

1 m

Jady dgd  Jdpd . Jpdyd Jy J
w € Laalll..1 2...aml..m. Brt for every j < p, l..oall.,1 9 -2 Lo LY € n V&’m.
Hence ¥ defines a boolean conbination of languages of the required

form and the proof is complete.[]
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2. A congruence character:ization related to a version of the

Ehrenfeucht-Fraisse game

Thomas [Tho841, in order to show that the dot-depth hierarchy is
infinite, defined some congruences which we state after describing the
version of the Ehrenfeucht-Fraisse game vhich was used in his proof.
Those congruences will be shown to characterize the star-free

languages. The next three paragraphs restate [Tho84l).

First we define what we mean by m-formulas of &£. For a

sequence m = (ml,...,n\k) of positive integers, vhere k > 0, let

length(m) = k and sun(im} = m

1-v...i»trh. The set of mformulas of &

is defined by induction on leu;th(il): if length(m) = @, it is the
set of quantifier-free &-formulas; and for ms (m,ml,...,nk), an
m-formila is a boolean combination of formulas le. . .E!xm ¥ vhere ¢

is an (ml,...,mk)-toruula. We write U=z v if u and v satisfy

the same mrsentences of &. For m= (ml""’"\()’ the mformulas of

& are seen to be B(L‘k)—fmulas ? such that gr(¥) x m, . Moreover,

. M
languages in fi vk,m are defined by (m,mz,...,mk)-tmmlls for some
LA i=2, ..., k. The following game ga(u,v) is useful for

showing E'-n-equiua lence.

The game G-(u,v), whers w = (myy.oym ), 13 played betwen




SOME LOGICAL. CHARACTERIZATIONS OF THE STRAUBING HIERARCHY 2-10

two players [ and II on the word models u and wv. £ play of the game

consists of k wmoves. In the 1th move, player I chooses, 1n u or

in v, a segquence of m positions; then player II chooses, 1in the

remining word (v or u), also a sequence of m positions. After

k woves, by concatenating the position sequences chosen from u and |
from v, tw sequences of positions Py-+-P, from u and q,.--q,

from v have been formed vhere n = sum(m). Player II has won the

play if

1y

(1) P, <upJ 1f and only 1if qi4 q

¥

J
(2) Q:pi 1f and only if qux’ a€fN forl<i, g <n.

Equivalently, the two subwords 1n u and v given by the position
sequences p,...p, and q,..-9, should coincide. If there is a
winning strategy for II in the gawe to win each play we say that player
ITI wins g‘-;‘(u,v) and wite u =% “m naturally defines a

congruence on ﬂ* vhich we w1ll denote also hy ~oe

The standard Ehrenfeucht-Fraisse gane is the special case of
g;'(u,u) vhere m = (1,...,1), For a detailed discussion see
Rosenstein [Ro82) or Fraisse [Fr721. If length(r-r-r) = k and
m= (1,...,1) we wite G, (wv) 1nstead of G-(u,v) and u ~ v
instead of u "oV Note that in this case the m-formulas are up to
equivalence just the formulas of quantifier depth k (remark: one
should not confuse Qk(u,v) and g(k)(u,v); a play of the game

gk(u,u) consists of k moves but a play of the game g(k)(u,v) of 1
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move), We have the following rmportant

Theorem 2.2.1 Ehrenfeuwcht and Fraisse [(Eh6ll
For all m = (ml,...,n‘() with k > 0 and m > @ for

1 =1, ..., k, we have u=- v 1f and only 1f u ~- v

m

Sinon [S172] calls -languages piecewise testable languages.

“tm)
They constitute level | of the Straubing hierarchy. The purpose of

this section 1s to characterize simlarly the hierarchy, each level of

i1t and also each subhierarchy.

To do so, we use theorem 2.1.5 and follow the technique used in

[{Tho82}. For a word w, ve can define, by induction on lenqth(r_n),

a sentence ‘Pz vhich 1n a certain sense guarantees the satisfaction of
all msentences of & which are satisfied by w. The following

lerma says that each equivalence class of ~o s def inable by some

m-sentence, more precisely, (wl_ _ 1s defined by ?3.
m

lewmm 2.2.2 Thowmas [ThoB2)

There 1s a formila ‘P: such that

(1) wh‘P’v';,

(2) 'Pz 15 equivalent to a r—n-senteme,

(3) For all w and u, 1f ul=?$ then every m-sentence satisfied

iIn w 1s also satisfied in u.
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We have

1owma 2.2.3
The following are equivalent:

(1) L =LY for some msentence P,

2-12

(2) L is closed under B TLIY if u €l and u v vy then

v EL, and

(3) L is a ~'-n-lan;uage.

Proof (1) i1mplies (2) by theorem 2.2.1.

(2) implies (3) is

trivial. (3) implies (1) wuses theorem 2.2.1, lewm 2.2.2 and the

fact that o has only finitely many equivalence classes.[]

We can now prove

Theorewm 2.2.4

et k> 1, m>1. L €AV if and only if L 1s a

k,m
"E'-lamge fDP some E\ = (m,“b,npu’“h)n

Proof L € A*vk _if and only if L = L)
?

with m = (m,mz,...,mk) for some fixed My

for some m-sentence ¢

ey M by theorem

2.1.5. The result follows from lemm 2.2.3.[1

Corollary 2.2.5

Let k> 1. L € /'

K if and only 1if

some m = (ml""’"h)'

L 1s a ~'-n-1anguage for
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Corollary 2.2.6

L 1s star-free if and only if L is a ~--lanquage for some .

We end this section with a few notes on the preceding
corollaries. Corollary 2.2.6 states precisely which are the important
congruences related to the study of star-free languages. Kleene's
theorem [Kl136), stated in terms of congruences, asserts that L is
reqgular if and only if there exists a finite index congruence ~ such
that L is a ~-language. Sc!ﬁitzenberqer’s theorem [{Sc63]1 states that
L is star-free 1f and only if there exists a finite index aperiodic
congruernce ~ such that L is a ~-langumge. One can show that the
~n are finite index aperiodic congruences (see Rosenstein [Ro82] and
results in the next chapter). Corollary 2.2.5 implies that the problem
of deciding whether a language has dot-depth k is equivalent to the
problem of effectively characterizing the monoids M = n"/~ with

- . »
~ 2 ~= for som® m= (m,...,m), i.e, ¥ ={(A /~|~2~’-'-‘ for some

m = (ml, . ..,m‘l)).
Later chapters will be concerned with applications of theorem
2.2.4 and its corollaries. In the sequel, & will denote
‘ml'l LN ’W)
the class of -languages.

~(ml,.. . '"k)
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. An induction lemma

The following lemm is a basic result (similar to one in [Ro821 |
regarding "k) vhich will allow us to resolve games with k+i mouvas
into gamrs with k moves and thereby allow us to perform induction
arguments. We remind the reader that ufl,p) (u(p,|u|l) denotes the
segment of u to the left (right) of position p and u(p,q) the

segment of u between positions p and q.

Lewmm 3.1.1

Let 5=(m1,...,n»k). u~ if and only if

(m,ml,...,nk) v
(1) for every Py +eoy meu (pls spm) there are
PR R qmev (qls...sqm) such that

(i) Q:pl. if and only if Q:qi, a€A for 15i<m,

(ii) utl,pl) = v[l,ql),
(iii) U(pi'piﬂ) “m v(qi,qiﬂ) for 1 2i twml,
(iv) ulp_, jull ~= vig juil and
(2) for every 9y aeery quV (qli $qm) there are
Pyp +enr Pp€u (p ... <p) swh that (i), (ii), (iii) and
(iv) hold.
Proof Suppose that player II has a winning strategy in

g(m,ml'.“,mk)(u,u) and supposa that pl, csey meu,

Py £ v § Py Using the strategy we can find positions




P

SOME PROPERTIES OF THE CHARACTERIZING CONGRUENCES 33

Qer ey qu.v, qlﬁ 5q_m such that if player I chooses
Pyy ey P € u at his first move, then player II should choose
L 'URCERT I 58 € v. Moreover, Q:pi if and only if Q:qi’ a €A for

i<dm There are now k moves left in the game

-
A

G(m’ml’”_'“&)(u,v). Wenever player I chooses positions in ull,p,)

or v[l,ql), the strategy, since it produces a win for player II,
will always choose positions in v[l,ql) or utl,pl). Thus player

II's winning strategy for g(m {(u,v) includes within it a

ml""'"h)
winning strategy for g';(utl,pl),utl,ql)), and similarly it includes a
winning strategy for gﬁt(mpi’piﬂ)'V(qi'qiﬂ” for 1 £ istmi, ad
G- (utp_, lull,v(qm, [v}3). This proves (1). By symmetry, (2) also
holds.

Conversely, assuming that (1) and (2) hold, we describe a

winning strategy for player II in g(m (u,v). If player I
]

ml""'"k)
chooses positions Pys  weos pme u (p1 £ .00 £ pm) on his first
move, then player II uses (1) to find positions C PEREERY 9 €v
(q1 2 ... 2 qm). Thereafter, vhenever player I chooses positions of
u[l,pl) or v[l,ql), player 1l uses his winning strategy in
g'-"(utl,pl),vu,ql)) to respond; and similarly, whenever player I
chooses positions of u(p,p;,,) or vl(q.,q, 0 (ualp, Jull or

vigq [v]1), player II uses his wirning strategy in

G (P Py, Yevta g, ) (Cotulp, |u|1,v(qm, v|1)) to reply. Since

there are only k subsequent moves in the game and

~(m1, e |'%)

. . . ,
inplies (mi""’“‘:;) for all mi < m, player I can choose no nore
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than k times from u[l,pl) or v[l,ql), ("(pi’piﬂ) or
uig ,q;,,") (u(pm,|u|]or v(qm,|vl]) and no wore than m, positions

each time. Hence player II’s winning strategies in

g;‘(utl,pl),vu,ql)), (gﬁ(u(pi’plﬂ)’"(qi'qiﬂ)))

(C-tutp_, Jull,viq, vj3)) provides him with moves in all
contingencies. If, on the other hand, player I chooses positions
ey --=s 9y € v, then player II uses (2) to find his correct first
move arxd then proceeds analogously to the abowe. Thus player II has a

winning strategy in g(m’ml'“”““)(u,v). [l
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2. A condition for inclusion

Let us find a condition vhich insures

2 ce . A trivial condition is the following:
(m . ) myee.,m,)
pree Lreee o™

k sk’ and 315i1<... <ik5k’ such that
1]
LI mil
4
M * M
Daf ine N(ml,...,nk) =
ml+ LN ) +W
+ 2 . . mow + .., +Z . . m acom, +
15114125h i, 12 1511<...<1k_15k i iy
ml.-.m'

A Simlel" definition is N(ml,---,"h) = (ml"l).--‘ﬂk"‘l)‘l-

Proposition 3.2.1

N = N(ml'---'%)n

Proof The proof is similar to the one of a property of K in
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1]
[ThoBAl. First, x" x* for n, n’: N. To see this,

~(m1, .o '"h)
n n’

consider the natural decompositions of ua=x and v = x into
x-seqments. DBefore each move we have in u and v certain segments
in which positions have been chosen, and others vhere none have been.
A maximal segment of succeeding x-sagments without chosen positions
will be called a gap which my be ewpty. Before each nove there is a
natural correspondence between the gaps in u and v given by their
order. By induction on k-i, II chooses his segments in the following
manner: for i =k, uhen ™, elenents are still to be chnsen by both

players, two corresponding gaps both consist of any

n

number > " N(“k) of x-segments, or else both consist of the same

nunber <mk N("i() of x-segments, For 2 < i+l <k, when
mi+...+nk elements are still to be chosen by both players, two

corresponding gaps both consist of any

mmberzmi'&(m +1)N(miu,...,mk) N(mi""'"i() of sx-segments, or

i

else both consist of the same

nurber < mi+(mi+1m(mi+l, ses ’"i)

N(mi,...,mk) of x-segmmts. In
mi+(mi+1)N(mi“,...,mk), the first m corresporgis to the number of
elements chosen in the il moue, m 41 is the mumber of gaps formed by
those m, positions, and "("‘in"“"’h’ is the munimum number of
x-segments in any of those gaps that are necessary for player 11 to win
in case the numbers of x-seqments in two such corresponding gaps were
different. Of course, inside his segments, II picks exactly those
positions vhich mtch the ones chosen by I in the corresponding

segments. Next, we apply the strategy above to u = lyxnzx and
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]
v = xyxn z¢ with n, n’ > N-2 ignoring y and 2z (except when
player I forces considering y and z). Uhen player I chooses either

of the tw end x-seqments, the strategy that we have tells us to

choose the same end x—segment.i]

Note that N(1,...,1) = 21, By putting y =z = 1 in the
above proposition, we get as a corollary that if m, m' > 2k-1, then
()™ ~ (w)m' . N= N(ml,...,mk) is seen to be the smllest n swich

k
that x" ~(m m ) 1 for |x] =1 (remark: y =z =1 implies
1'.-.'
xN . “Rﬂ. and N-1

(ml""'"h)

considering the play of the game g(m "h)(
l'ill,

in the first mowe chooses w, x's in KN separated by N("Z""'"h)

N < .
*("'1""""[() ® as is easily seen by

xN-l,x") where player I

®'s starting with the N(m,,,....,mk)'vlth x. Then in the sacond wove,
I chooses a gap in xN carresponding to a gap in xu‘l with a number
aof x's < N(mz,...,n&) and so an). Morecver, we sae that if

»*
u, vEA and u~(ml,“”mk) v, then Ju] = |v| <Nmg,...,m)

or Iula, |v|al z N(m ,...,m ). 8lso, similarly to the above proof,

(m mk)vand k+2, then either u-=v
XEERL

or u and v have a comon prefix and suffix of length > Mo

one can show that if u ~

Proposition 3.2.2

(1) and

”(ml,...,mk) £ ~(N(m1,...,m&))'

(2) "Cmy g ee gy ) ¢ " (NGmyy e D
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Proof By the preceding proposition, choosing |[x| = 1, we have
U = xN(ml,...,n\() - xN(ml,...,trh)ﬂ = u. N(m n\()ﬂ
ml,...,mk)

15 a subword of length N(m n}{)ﬂ of v but not of u. This

gives (2). (1) follows easily from lemma 3.1.1.(1]

Another condition for & to be included in

(ml""'"k)

£ ’ is stated in

Proposition 3.2.3

If k £ kR’ and 30 = = k' such that

Iy

ﬂ,...,m’J) for 1 £ 1 4k, then

m1 £ N(m!
"1~1 1

C ~ .
(m’ .- ,rnk, = (ml,...,mk)

Proaf The result comes from the following observation: for

1 212 32k’ we have
(ml,...,m ,...,m, ..,mk,

MmN vhich is a consequence of

the preceding proposition (1).(]

Proposition 3.2.3 implies that if n > sum(m) and u ~, V» then

u~;‘v. Moreover, 1if then

C ~
congm ) S Tmy e ym )

C ~ . Hence by proposition 3.2.2
.,n}",) (N(ml""'“h)) !
N(ml,...,mk) < N(m’x,...,m’k,). The next chapters include other

results of inclus:ion. N(ml""'"&) will appear several times in the

sequel.
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Chapter 4

AN ASWER TO A CONJECTURE OF PIM

First we introduce sore terminology. The study of the
concatenation product leads to the definition of the Schﬁtzenberger
produwet of finite nonoids. The reader is referred to (St811 for the
inportant properties of this construction. Let "1’ veuy Hn be
finite monoids. The Schutzenberger product of M, ..., M, denoted
by <)nml""’"n)' is the submonoid of upper triangular n x n
matrices with the usual product of matrioes, of the form p = (pi,i)

1 £i, j<£n in which the (i, j)-entry is a subset of "1 K oeeo X "n

and all of whose diagonal entries are singletons, i.e.,

(1 pi‘i=¢ if 1>,
(2) Pj; = {(1,...,1,mi,1,...,1)} for some ™, € Hi’
ﬁth
(3 p; € Um,.m) €M x .ol X Mlm=...=2m_ =1
= m\i"l E L., ® mn}.

Condition (2) allows to identify the coefficient P with an element
of Hi and condition (3) pi,j with a subset of “i R 2.0 R "J' It
g = (mi,....m‘i) € l“li X oeo X HJ and

o= (m'j,...,m'k) EM. x ... x "k' then we def ine

J
ut = (mi""’mj—l'mjm’,i’m’,jﬂ"'"m’k)' This product is extended to
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sets 1n the usual fashion; addition 1s given by set union.

Straubing [S5t81) has demnonstrated that 1f the languages Lx < A'
(@ 21 £ n) are recognized by the monoids 311, then the language

LoalLlaT"anLn’ where the a are letters, 1s recognized by the

monoid <)n+1(H0""’"n)' It 15 easy to verify that i1f @ < lg ¢ eee <
1. 4 n, then ()rﬂ(nlo,...,ﬂlr) 1s a submonoid of ()nH(HO""'Hn)
“)rﬂ("x ,...,M1 ) < ()nﬂ(l,...,l,l"l1 ,1,...,1,1“!1 ,...,l"‘lx slyeieydd).

U r Q 1 r

This implies that the monoid ()nﬂ(ﬂo,...,ﬂn) recognizes all

languages of the form L a L a,...a L , where L 1s recognized
1o 1 by 2 ro 1

by l’l1 y 1n particular, boolean combinations of languages of the form
k

1 ’
[.0«'=11L132...3“Ln vhere the "1 s recognize the L1 s. A converse has

been established. The case n =1 has been treated by Reutenauer

{Re79] and the general case by Pin [P184b]. Ue have that 1f a language

»*
C zed .
L¢cAh 1S recogni by (>n+1("0"' ,Hn) then L 1s in the boolean
algebra generated by the languages of the form L a L a_ ...al
1, 11, 2 ri
'/ 1 r
where @< 1, < ... <1 <n where for 05k5r,ak€AandL
] r 1

k

15 a language recognized by Hl .
k

let W be a Mwvariety. UWe define ()W, to be the variety of

all finite monDnids that divide some Schiitzenberqer product

()nml""’"n) for some n, where r‘l1 €W for 21 =1, ..., n.
From the above discussion, we have that for k > O, vk*l = ()Uk. In
particular, vl =J = O and 02 = ()J vhere 1 denotes the variety

consisting of the trivial monoid alone and J of all finite 9$-trivial

nmonoids.
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1. Decidability and inclusion probiems

Pin [P184bl demonstrated that the Straubing hierarchy 1s a
particular case of a more general construction obtained in associating
varieties of languages not to integers but to trees in the following

fashion. A variety of languages 15 associated by definition to the

tree reduced to a point. Then to the tree

i

15 associated the boolean algebra generated by the languages of the

form L a L. a,...a L. with @ £ 1, < ... < i <n where, for
1, 17i, 2 ri 7] r
" 1 r
@2 jz2r, Li is member of the variety of languages associated to
J
the tree 1:i . Since the Schﬁtzenberger product 1s perfectly adapted
J

to the operation (LQ""’Ln) - LoalLlaT"anLn’ 1t permits us to
construct, without reference to lanquages, hierarchies of varieties
of monoids corresponding, via Eilenberg’s theorem, to the hierarchies

of languages previously constructed. Starting with a variety of

mwnoids W, we associate with each tree t, respectively with each
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set of trees T, a variety of monoids ()t(ll) () (W)). Descraiptions

T

of the hierarchies of nonoids are given after a few definitions.

We will denote by 9 the set of trees on the alphabet {a,a}.
Formally, 7 1s the set of words 1in {a,g)* congruent to 1 1in the
congruence generated by the relation aa = 1. Intuitively, the words
in 7 are obtained as follows: we draw a tree and starting from the

root we code a for going down and a for going up. For example,

1s coded by aaaaaaaaaaaaaa. The number of leaves of a word t 1n
(a,a_n}*, denoted by [I(t), 15 by definition the number of occurrences

of the factor aa 1in t. Each tree t factors unique ly into

t = at, aat ;...atns vhere n > ® and where the tl's are trees. Let

172

t be a tree and let t = tlat25t3 be a factorization of t. We say

that the occurrences of a and a defined by this factorization are

related 1f t 1s a tree. let t and t' be two trees. We say that

2

t 1s extracted from t' 1f t 1s obtained from t' by remouving in
t' a certain nutber of related occurrences of a and a. We now
state the algebraic interpretation of the above stated hierarchy

construction using the Schfrtzenberger product.
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To each tree t and to each sequence “1’ cany “I(t) of
varieties of monoids, we assoclate a variety of nonoids

()t(lll, . "'“I(t)) defined recursively by:

(1) ()1(U) = W for ewery I[Fvariety W,

(2) 1f t = at,aat a'...atnS with n>® and t t €7,

{ 2 EREREE

Ot(wl""'ul(t)) is the variety of monoids M such that M divides

some (3 (M ,...,M) with M €O (,...,W

), -I.'
tl i I(tl)

l’!n € ()t (“I(t Y.L+t )+1""'“I(t Y. HI(t ))'
n i n-1 1 n

When “1 = Li. = “I(t) = ¥, we denote sinply <>t<m the

variety ()t(ul""’ul(t))' More generally, 1f T is a language

contained 1In 7, we denote ()T(H) the smallest wvariety containing

the varieties ()t(m wath t € T.

A consequence of the above definition is that if
t = atlaatza...atna with tl’ vy tn € 7, we hawe
O, = Q, =), (WM,...,<), (W).

t (aa) t t
1 n
The following proposition allows us, by recursion, to describe

the languages associated to the varieties <>t(u1, .. ""I(t)) for each

tree t.
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Proposition 4.1.1 Pin [PiB4b]

Let n be a positive integer and “0' . “n be
M-varieties. We dennte respectively by HJ and W the #-varieties
of languages corresponding to W, (@ £ j < n) and to

J

) (a3,1*1(Wpy.. ., W ). Then for each alphabet A, R'W is the boolean

algebra generated by the languages of the form L a,L, a....a L

101112 rir

where 0510(...<ir5n vhere for 0 < j<r, aJGB and
L, €AW, .
J J

The Straubing hierarchy ¥V can be desoribed in the following

k
fashion. Let Tk be the sequence of languages def ined by 'l'o = {12}
and Tku = (aTk;)*. Intuitively, we can represent the languages by

trees infinite in width:
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Proposition 4.1.2

For k 2 O, Vk

K To

{>d.

()T (I). In particular, . (I) = I,

O (D = J, O (D
T, T,

Proof This is an immediate consequence of proposition 4.1.1.01

n

More precisely,

Proposition 4.1.3

For kzl, mx1, @ = <>(aTk_15)m+1(1).

Prcaf Let Nk m he the #*-variety of lanquages correspording to
1]

O =T = (3 - wmi (O (I)). We hawe to establish the
(aTk_la) (aa) Tk—l

equality Nk’m = vk,m' Proposition 4.1.1 and vk = ()Tk(l) of the

preceding proposition show that for each alphabet A, Q*Hk m is the
]

boolean algebra generated by the languages of the form LQaiLlaQ"'anLn

vy L€AY, ard a

where @<ins<m L k=1 L

0!

result clearly follows.[]

<.y a8 € A, The
n

Let m = (ml,...,mk). By induction on k, we define a tree t;ﬁ
as follows:

if length(m) = f, then t- = @™,
— mH

for m = (m,ml,---,"\k)v t'-n = (at(mlo"'l"&()a) )

It 15 easy to see that [( ) s

(ml,.. . ,mk)

N(ml,- . t,"k)"'l = (ml"'l.)--.(“\k"'l)-



>

AN ANSWER TO A CONJECTURE OF PIN 41-8

let t be a tree and let Vt be the x»-uvariety of languages

assoclated with ()t(l). W2 have

Proposition 4.1.4
v =&

t m, ,... )’
(ml,...,mk) 1? "M
Proof The proof i1s by induction on k. If k = 1, then

()t {(I) = 01 " by proposition 4.1.3. The result then follows from
{(m,) '
1

theorem 2.2.4. Suppose true for k, 1.e., letting El:(ml,...,mk),

v = £-., Let us show that V¥

t- o ¢ From
m

=‘?'(mm y'
(“"mg""'“ﬁ() L "

(X)), using thr

O () = O mi(I) = () —)mfl(()t
m

t mem , (at;‘a') (aa
$Myyees ’“}(

induction hypothesis and proposition 4.1.1, vwe can conclude that for

each alphabet A8, A*Vt 1s the boolean algebra generated
(m,ml,...,mk)

by the languages of the form LoalLlaT"anLn with n 2 m and where

for @<j<n, a. €A and L € Q'8 . The result follows
J J (ml""’"\()

since each ~ ~—class is a boolean combination of sets of
(m,ml,..,,mk)
the form L,a L.a,...al, with n<m and vhere each L is a
o112 nn J

~ —class.[1]
(ml, - ""3()

The following result perhaps constitutes a first step towards the

general solution of the decidability problem.
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Proposition 4.1.5 Pin [PiB84b]

For each tree t, the variety ()t(I) 1s decidable.
Using propositions 4.1.4 and 4.1.5, we get

Proposition 4.1.6

For fixed (m ,...,nh) the M-variety O (I) is
1 4
(ml""’“k)

decidable, so the ¥-variety of languages t(m "‘k) is decidable,
1, " 9 u ,

Among the many problems concerning these tree hierarchies, 1is
the comparison between the varieties inside a hierarchy. More
precisely, the problem consists in comparing the different varieties
<)t(m (or even ()T(H)). A partial result and a congecture on this
problem was given 1n Pin [P184bl. It was shown that for every variety
W, 1f t 15 extracted from t’, then < _ (W) ¢ (.»t,(m, and it was

t

conjectured that 1f t, t' € T*, ()t(l) is contained in ()t,(I) 1f

and only if t is extracted from t’. Here, T' denotes the set of

trees in which each node 1s of arity different from 1.

Theorewm 4.1.7

The above conjecture 1s false.

To see this, 8(1'2) (o 8(2'“ by lemma 4.2.7 of the next

¢ ¢

section. Hence () (N < O (I) by proposition 4.1.4. But
‘ (1,2) (2,11
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it is easy to verify that the tree l‘(1 2) is not extracted from the
$

tree ¢ The min step of the proof of theorem 4.1.7 is given in

(2,1

the next section.

~ <ol
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2. The conjecture is false

This section is devoted to the proof of theorem 4.1.7 of the
preceding section. The proof goes through seven lemms, lemms 4.2.1,

4.2.2, 4.2.3, 4.2.4, 4.2.5, 4.2.6 and 4.2.7.

When is ~(2,m’2) < ~(1,nb)? Of course, if m'2 zm, it is

true. We will be considering the case when m'2 < m,, or,

m .+l € m,.  Assume Uiy, v and lul,, lvl, > 0. Let

u = u,au
o1

u 4 .
Qap i H Qaq .j for i

resdU, U = vav...av, vhere n= ful_, m-= lvla. If

1, «eey ny §j=14, ...y, m then

u, = U(pi’piﬂ.)’ i=1, ..., n-{, UJ = v(qJ,qJ.‘.l),

=1 .y Wl ouy =ull,p), v,=vil,q), unzu(pn,lull,

Vm = V(qm, IVI].

Lewm 4.2.1
(1) ua “1 VO’ u o~y vv1 '
-1 "1 Ym1’ Yn "1 Vm?

2) Wau,...au o vy VaaVae..av .

Proof (1) Player I, in the first move chooses 2 consecutive a’s
anong the first or the last 2 ones (of u ar v). Since

u v, Player II chooses 2 consecutive a’s, the same

“(2,1)
occurrences among the first or the last 2 ones (of v or u). The
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result follows from lemm 3.1.1.
(2) let w be a subword of length < 1 of u,au,. . .au . (or

of vzava...avm_z). Hence w is a subword of vzav,\.*...avm__2 (or of

uzaua...aun_z) because aawaa 1s a subword of length 2 N(2,1) = 5 of

u (or of v) (~(2,“ SN(N(?,I)) by proposition 3.2.2(1)).[]

i1ewm 4.2.2

(1) ulauz...aun *(2) ulav2

uzaua

uaauq...aun N(Z) vaavq...avm y

Y-\
m’

---aun ”(2) Vzava.--avm »

(2) !.xoaul

anul- . -aun_z “'(2) Voavl. . -av“'_z ’

un-a“n_l "'(2) Voavl.,.avm_l ]

anlll- . .aun_3 “'(2) anvl s .aV"‘r_.3

Proof (1) let 1 2i < 3. Let w be a subword of length € 2 in

u,au ., ...au . Consider w' = a'w of length < i+2 < N(2,1).

1+1

u (proposition 3.2.2(1)) and the fact that w' 1s a

TNz, 1 Y
subword of u of lIength < N(2,1) imply that w' is also a subword

of v, and hence w a subword in AL AFFEEEEL L Similarly, for

1

subwords of V,av. o eeav. For (2), we consider wa .[l

1

lessm 4.2.3
(1) u0 ~(2) vo,
(2) un ~2 ’m

Praof (1) let w= wl"'"lw] be a subword of length £ 2 in Ug*

let p, p' €u be suh that psp’ <p, and Q:p, Q:I
1 w

p.
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Consider the following play of the game g(z 1)(u,v). In the first
I
move, player I chaooses p and P- Using lemm 3.1.1, there is

q€v, q*< ql, Q:q and u(p,pl) ~1 v(q,ql). Since w
1

subword of length <1 in u(p,p,) and u(p,p,) ~ wiq,q,), Yyl is

i

a subword of length £ 1 in v(q,ql). Hence w is also a subword in

(" 3 2
a subword of length ¢ 2 in u - Iet p, p' € u be suwch that

v Similarly, for subwords of v,. For (2), let w:wl...wlw' be

pn<p' < p and Q:‘: P Q:p'. In the first mowe, player I
1

fwl

chooses P, and p. The result follows similarly as (1).[1

Levm 4.2.4

(1) Up3U, ~ 5y VadV)

(2 ", 3% "2) " 1®m
Praaf (1) UWe will show that uoau1 ~(2) VodVy . The proof i€ similar

for (2). Lat w=w1...w|w| be a subword of length <2 in upad,

(simlar if starting with veavl). We want to show that w is a

subword of v, av If w 15 a subwrd of Ups W 18 also a subword of

' S

v, by lemma 4.2.3¢1). If pot, let j, 1< j 2 |w|, be the first

@
index suwch that v, .
subword of Up We have that wl"'wj—l is a subword of Yo by lemma

4.2.3(1) but w do not have that wl...w‘j is a subword of VG (if we

..w‘i is not a subword of u, but wl...w‘i_1 is a

had, wl...w‘j would be in Ua for the same reason). If w‘j = a,

w ...w‘i is a subword of U, and UoBs and since Uy oY by lemm

1

4.2.1(1) and 1 2 jg|w], w is a subword of vgav,. If W, #a,
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let p be the first position in u after P, such that Q:: p. Now,
J

since u, ~ Vv by lemma 4.2.1(1), w‘i occurs between q, and qy-

1 171

Let q be the first position in v after q, such that Q: q. If
J

ij...wlwll < 1, the proof 1s conplete. If not, 1.e.,

le...w'wll >1 then j =1, |w] =2. Consider the following play of
the game g(z’“(u,v). Player I in the first mowe, chooses positions
p amd P, in u. Player II should chocse q in v. If mot, II
would choose a position q' in v such that q' > q because he needs
at least 1 a before q', amd q is the first position in v after

q, such that Q: q. But then, player I, in the second mowve could
1

choose an occurrence of wy from vii,q') (nbt possible for II in

ufi,p) from the choice of | and the fact that w'j

cannot choose a position q'' such that Q:q” before q, because he

# a). Player 11

needs at least 1| a before q. Since there is no a between p and
Py there should not be any between ¢ and q''. Hence player Il
should choose q and 9y- Hence u(p,pz) ~ v(q,qz) and (1)

follows.[)

Lewma 4.2.5

Let p’l, ceny p'S in (p'1 € ... <% p’s) (q’l, ey q",
in v (q’l < . < q’s,)) be the positions which spell the first and
the last occurrences of every letter 1n u (v). Then
(1) s = s?,

(2) o;,'p'i if and only 1f Q;q'i, beEA for 1 <i< s,
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(3 uly,p’) ~ vll,q*;) and u(p'i,lull ~(2) v(q'i,lvll for

(2)
1 £1 4%s,
) ? ~ ’ ] -
{(4) wu(p P i+1) 1 u(qg ;4 1“) for 1 21 2 s-4,
(5) for 1 2£i< s-1 and for every p’ € u(p'i,p’iﬂ), there exists
] ] ’
g’ € viq ;04 ”1) such that

(1*) Qp’ 1f and only if Q.g', b €A,

(2) u(p’i,p’) ~1 v(q‘i,q’).
filso, there exists q' € v(q'i,q’i“) (which may be different from |
the one vwhich satisfies (1’), (2?)) such that (1’),

L) ’ ) ~ ] ]
(2°*) wul(p’,p i+1) lu(t:[ 'q i+1)'
Simularly, for every gq' € v(q’i,q’iﬂ), there exists
p' € U(p,x’p’iﬂ) such that (1'), (2') hold <{also (1°*), «(2'")
hold) and
(6) for 1 £ i <s-1 and for every p"l, p”2 € U(p’i'p’iﬂ.)

1 1 1 ) | 3] ’ 9 ’ "
(p g P 2), there exist q 9 2€v(q L i+1) (q '1<q 2)
swch that

1 28 I {3 ) i 4 Y i

(1 )prj1farﬂm1y1f qu i’ befA for 1 £ j< 2,

9 3 ’ ~ L ] 2y

(2 ) ulp 'P 2) 1v(q 09 2).

i L ) ?? 14 ? ’? ’
Similarly, for every q L € v(q i*9 i+l) {(q $ < q ’2),
there exist p”l, p”2 € U(p’i’p'iﬂ) (p"l < p"z) sugh that
(1?') and (2''’) hold.

Proof (1) holds since u “(2.1) Y by chapter three, implies
’

[ul, = lvl, « N2,y =5 ar  fuf, [|v]g 2 M2,1) for every b € 4,
(2) holds since ~(2’“ < "(1,1) and we may consider the plays

of the game g“’“(u,v) vhere player I in the first mowe chooses p’
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for some 1, { 3% 1 3 s,

(3) follows from the arguments i1n the proofs of lemmas 4.2.2 and
4.2.3 since p’i (q'l) 1s ei1ther the first or the last occurrence of
a letter 1n u (v) (1n lemms 4.2.2 and 4.2.3 we were considering Py
(ql) which are the first occurrences of the letter a 1n u (v) and
P, (qm) which are the last occurrences of that letter 1in u (v)).

(4), (95) and (6) follow by considering different plays of the
game g(z,“(u,u). First, from the choice of the p'r's and the
q’r's and lemm 3.1.1, 1f p’i (q’l) 1s arong the positions chosen
in u (v) by player I in the fairst move, then q’l (p'l) should be
among the ones chosen 1n v (u) by player II in the first nmove.
Second, 1f the positions chosen by player I in the first mowe are 1in
u(p'l,p'1+1) (u(q’l,q’“_l)), then the positions chosen by player I1I
in the first move should be 1in u(q’l,q'lﬂ) (u(p’l,p’“l)) for the

same reasons., For (4), consider the play of the game g(z 1)(u,v)
1]

vhere player I, 1in the first move, chooses p’1 and p’ for

1+1;

{(3), I chooses p’1 and p', or p' and p’ for (6), he

1+1?

chooses p”1 and p"z.[]

lewsa 4.2.6

Let p'l, ey p's mn u (p'1< ...<p’5) (q’l, ey q’s
in v (q’1 < .., % q's)) be the positions which spell the first and
last occurrences of every letter 1n u (v) so (satisfying) (2),

(3), (4), (5) and (6) of lemm 4.2.5. For 1 fixed between 1 and

s-1, let p"l, eeay p"Sl n U(p.l'p,ltl) (‘-_,H1 < ... < p"? l)
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(q”l, - q"!‘,i in V(q'i'q'iﬂ) (q”1 4 ... X q"s,i)) be the
positions vhich spell the first and the last occurrences of every

letter in u(p'i,p’ (V(q’i'q'ii-l))' Then

1+1)

(1) s = ',
1 1

(21117) Q:p”j if and only if Q;q"J, b €4 for lijisi and

1319 L] ~ ’ [ ] ~ vy
3 ) ull,p’’ o) vil,q** ) and utp J,Iu[] (2 V¥ J.,lvl]

(2
for 1 £ j < S;-

Proof By (4) of lemmm 4.2.5 we have u(p’i,p'“l) ~ U(q'i’q'iﬂ)'
Now, if in one of these segments, either U(p'i'p'iﬂ) or
V(q'i'q'iﬂ)' there is only one occurrence of some letter and in the
other segment there are two or more occurrences of that same letter,
then player I in the first mouve could choose two of these occurrences
(not possible for II in the remaining seqwent contradicting (6) of the
preceding lemma). Hence (1'’’’) holds.

For (2°'''), consider any two letters, b # o, 1in
U(p'x’p’iﬂ) (and hence 1n V(q'i’q’iﬂ) by lemm 4.2.5(4)) and
consider their first and last occurrences in “(p'i’p,ul) and
V(q,i’q'iﬂ) (by (1'?'?), the nuvbers of these occurrences agree).
We claim that we have the same pattern: there are six possibilities,
namely, pattern 1: bbecec, or, pattern 2: becbe, or, pattern 3i1
bocchb, or, pattern 4: cbbc, or, pattern 5: cbob, or, pattern 6:
ccbb. Expressed differently, the subwords formed by these ococurrences
are the same (similar proof if only one occurrence of a letter instead

of a first and a last: the patterns would be shorter words). lLet us

separate different patterns by considering plays of the game
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g(z'“(u,v). We will illustrate the plays by diagrams. The first mwe
of I will be indicated by (1) and the first move of 11 by [1] . In
each diagram, the segment between the positions chosen by I i1n move |
‘ﬁl the seqment between the positions chosen by II in mowe 1, 1n
contradiction with lemm 4.2.3 (5) or (6). UWe show how to separate
patterns 1-2-3 from patterns 4-5-6, pattern | from patterns 2 and 3,
pattern 2 from pattern 3. The separation of the patterns 4, 5 and 6 1s
similar to the separationof 1, 2 and 3.

To separate patterns 1-2-3 from patterns 4-5-61

pattern 1, 2or 3

]
Py P’iv1

} — or p—b p— ... —~qbr... —oar 4

] ]
; 9 i+

®

pattern 4, Sor 6
q'i q'i'l-l
I"_—_"OPI_—iCT'--. —'b'—l-- _—“_"bf"oil —“m"“_—-—-i

P, P'iet

4] [

The above diagram is in contradiction with lemm 4.2.3(5) (II has to
choose the first occurrence of b but there is an occurrence of c

between the positions that he chooses vhich is not the case for I).
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To separate patterns { ard 3:
’ ]
P P i+
| — or |—— b f— b fp———r—jOHEC p——oy or ; —
1 ’
5 T i41
]
T’ T+t
C 10r  p—— b | { CHEC 4b — —~ Or —y
’
p,i pi+1 |
[1] [1] ’
To separate patterns 2 and 3:
? 3
Py P i+
: ~Hor f—— b |~ c b ¢ {C |~ Or | 4
s 1
i T i+t
] 3
LI 9 541
p— O }—q b q0 b p—or —
?
P’y P’ 41

EINEY
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To separate patterns 1 and 2:

s 3
pn p1+1
t————————o or —4 b~ b — e | ¢ +— or {— —
y ?
qx qxﬂ.
] ?
qx qu-l
| } or ——| bHOo it b} e t { O } —t
? ]
Py P i+t

O O

Here, player 11 cannot choose two b's separated by a c (in
contradiction with 4.2.35(6)).
The diagrams above show that any two letters obey the same

pattern. Q;:p"l if and only if Q;;q"1 1s clear. Now, by induction

A\

on j, assume Q:p"k if and only if Q;;q"k for 1 <k % j.
Suppose, say Q;:p”Jﬂ and Q:q"jﬂ with b #0. But b and c
have the same pattern in “(p'i’p”.j] and in v(q'i,q"d.] by
induction hypothesis and the result follows,

We now prove (3'''’}), Iet 1 < j % s; We will show that

u[l,p"J.) ~(2) v[.l,q”J) (the proof is similar for

¢
’y ~ 1 = .e

u(p J.,]uI] (2 v J,Ivll). let w=w,. Ylw| be a subvord of

length s 2 in u[l,p”j) (similar if in v[l,q”j)). We want to show

that w is a subword of u[l,q"d). 1f |w| = 1, then there is an

ccoury ence of v in ““’p'xl (and hence in v[l,q'i]) from the
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choice of the p’r's and the q'r's and lemma 4.2.5(1,2) and the proof is
complete, If |w| = 2, and w is in ult,p’;), then w is in
V“’q’x) by lemm 4.2.5(3). If there is an occurrence of W, in

ul1,p®,) (and hence in vl1,q’,) by lemma 4.2.5(3)) and pr'i
2

(and hence Q:: c:['1 by lemma 4.2.5(2)) the proof is complete.
2

Otherwise, there is an occurrence of W in u[l,p'i] (and hence in
v[l,q’i]) from the choice of the p'r’s and q'r's aud lemm
4,2.5(1,2) and also an occurrence of i, in u(p’i,p"d). From the

choice of the p"r’s, there exists k, k < j, such that Q: p”k.
2

Hence, from the choice of the q”r’s and (1'*??, 24000, Q:;q”k.[]
2

Lewm 4.2.7

~

0 < Ta,»
Proof Suppose u 2.1 " Then there is a winning strategy for
?

player II in the game 9(2’1)(u,v) to wvin each play. Let us describe
a winning strategy for player II in the game g“’z)(u,v) to win each
play. let p be a position in u chosen by player I in the first
move. Suppose Q:p for some a € f.

Case 13 |u|a = I"la < 5 = N(1,2) = N(2,1),

h occurrence of a in u chosen by player 1 in

If p is the it
the first mve, then player II chooses the same occurrence of a in
v, say position gq. The fact that wull,p) ~(2) vli,q) and
u(p, Ju]3 ~i2) v Jv]l follows from lemms 4.2.2, 4.2.3 and 4.2.4.

Case 2: |u|a = ||, = 5.




g

£
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Same as case 1.
Case 3: [u] =35, |v] >S5.

We include this case because the strategy here for player II is
very easy but the arguments in case 4 are enough to prove the lemm.
If p is the xthoccmreme of a in u (1 3i £ 2) chosen by
player I in the first move, then player II chooses the same occurrence

h
occurrence of a

of a in v, say position q. If p 15 the 6-it
in u (1 £1i 2 2), player II chooses the m—1+1th occurrence of a
in v. The fact that ull,p) ~,, vil,@) and u(p,|u|] ~ ,, uiq,]v|]
follows from lemms 4.2.2, 4.2.3 and 4.2.4. If p = Pqs then player
II chooses position q, an a, anmong the middle ones in v, i.e.,
amng  dqu, ...y Qo Lemma 4.2.2 1mplies that
U AUpaU, v o) Vadls...aV and UpaU A, ~ 5, Vedl) .. .dV . Observe
that if we show UadU,au, ~ o, VeV, av, and Ujaugau, ~ o, Vo LAV av
the proof 1s conplete since we will have Umduau, ~ o, vil,q) and
uawau, ~ ., v(g,|v|? for any position q amng Ggr sevr G o
If player I had chosen p anobng the muddle positions in v, then
player I1I would choose pa in u. So let us show that
u‘z,aulau2 “(2) voavlavz. The proof of Ujauaug o, V22V m-12%m is
similar.

First, let w be a subword of length £ 2 in VoV 3V, Then
w is a subword of length < 2 in wvaav,...av .. But since
UgdU AU, ~ o) VpdY ...av 4y W is a subword of ugdu,au, .

Now, let w= wl'“wlwl be a subword of length $ 2 in

uoaulauz. We want to show that w is a subword of voavlavr If w
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w is a subword of wv_ av

is a subword of anul’ 22Y1 by lemm 4.2.4(1).

1

subword of u.au but w, ...w. 1s a subword of u_au,. We have to
91 1 J-1 @1

consider the case where j =1 and the case whare j = 2. In each

If not, let | be the first index such that w ...w‘j 1s not a

case, uoau'au2 ~(2) Yo?V12Y% will follow by considering different

plays of the game g(z,“(u,v). We will i1llustrate the plays hy

diagrams. The first mowe of I will be indicated by @ and the first

mve of I by .

J = 1: We hawe that wy is not a subword of VpdVys W, #a since

otherwise v would be in Uyau, contradicting the choice of . So

let p' be the first position in u after P, such that Q:; p'.
1

Now, since uq,aulau2 ~(2) v‘Dav'l...awm_3 and w 1S not in VotV

w, occurs between 9, and 9p-2° Let q' be the first position in

1

v after 9, such that Q:;q’. q' is not between 1, and 94 in v
1

because then we would have w,aaaa in v but not in u. Hence q°

1s between 95 and qm—2' Consider the following play of the game

(_‘,(2 1)(u,u) (illustrated in the diagram below). Player I in the first
’

move chooses 9, and q'. Player II should choose an occurrence of a
before the first occurrence of w, In u (which is in uz) because
in VoV there is no occurrence of Wy and since he needs at least

1 a before the occurrence of a that he chooses, he has to choose
Pye II also needs at least I a between and after the positions that
he chooses. Player 1I cannot win this play of the game, a
contradiction on the fact that u “(2,1) v (Il canmot win since there

is no occurrence of wr1 between the positions chosen by player I in
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the first wmouve but there is an occurrence of w, between the positions
chosen by player II in the first wove). Hence j =1 is eliminated.
(remark: Jj =1 1s eliminated can also be seen by considering the play

of the game g(z’“(u,v) where player I in the first move chooses q,

and qq- There is no occurrence of w

1 between q, and q3 bhut

there is one between P, and Py or P, and pq).

v a v a v a a v a v a v
L ) RS S 2 -, i, w2 o wd m,
- +
1
u a u a u, a u a u a
Y 2 L 2 2 " a %
v T E s pan. +—t t 4
w w,
1 1

ar

4+

&

j=2: We have that w, is a subword of v, av but we do not have

1 o 1’

that ww, 1s5a subword of VpdYV If Wy, =a, ww, is a gubword of

1)
voavla and hence of voavlavz. S0, assume w2 #a and let p' be

the first position in u after P, such that Q: p'. MNow, since
2

uydu au, ~ ., voavl...avm_a, v, occurs between q, and 92 lat

q' be the first position in v after q, such that Q: q'. Suppose
2

q' is not betwen q, and 95 in v. If the first ococurrence of w,
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in v is in vy (and hence 1n u, by lemm 4.2.1(1)), consider the

1
following play of the game g(z 1)(‘.v:,u) {1llustrated in the diagram
1]

below). Player I in the first move chooses the first occurrence of w,
in v and 9, n v. Player II cannot win this play of the game, a

contradiction on the fact that u ~ v (Il cannot win since there

2,1

is no vy between the positions chosen by player I 1in the first mowve

but there is an occurrence of W, between the positions chosen by

player II in the first mouve).

, Vo a v 1 a ‘ Vz a 03 Lal V4 :L Vs La . VS;

T T ;1 L B LA L T 1 T

[ “‘0 han ul Aa| llz Ja| ‘13 31 uq gax ‘15.

1 T T Ty aped T 1 T v T L4 1
2

or

If the first occurrence of w, in v is in UoRs player I in the
first move chooses q, and 9, in wv. Player II cannot win this play
of the game, for the same reason as above. Hence q' should be
between q, and qq-
Case 4: ful > 5, [v] »s.

Let p’l, veny p's in u (p'1< ...<p’s) (q'l, veay q'5
in v (q'1 < aas < q's)) be the positions which spell the first and

the last occurrences of every letter in u (v) satisfying (2,3,4,3,6)
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of lemma 4.2.5. Now if p is any middle position in u (amng

Pgs s pn__z) chosen by player I in the first mowe, then

p € u(p’i,p'iﬂ) for some i, 1 £ 1i % s-1. Then player II chooses a
middle position q 1n v (amng Qqs o qm_z) as follows. Llet
p”l, ceey p”sx in U(p,i'p'ul) (p"1< -:p"si)

(q"l, veey q”st in v(q’i,q'i+1) (q"1 < ... % q"si)) be the
positions which spell the first and the last occurrences of every
letter in u(p’l,p’i+l) (v(q'l,q'i“)) satisfying (2''°?* ,3'¥77) of
lemm 4.2.6. First, if p = ]J”"i for scome j, 1 2 J < Si then let
q-= q"J. ul1,p) ~ 5, vil,q) and u(p, |u]l ~(2) v(q, |v]l follow from
lerma 4.2.6(3''"'). Second, 1f p GU(p”,j'p”‘Hl) for some g,
12§ % si-l, then q will be chosen according to the following
rules, rules i to 4, vhich describe different plays of the game
gm’l)(u,v). Rules 1 to 4 depend on p”‘j and p”JH being first or
last occurrences of letters in u(p'l,p’l*l) (remark: it can happen
that, for example, p”J is both a first and a last cccwrrence of a
letter; 1n such a case, q will be chosen according to any of the
rules that apply). We will illustrate the plays by diagrams. The
first move of I will be indicated as before by @ and the first nove
of 11 by [ 1].

Rule 1: Rule 1 1i1s an application of lemma 4.2.5(3). If 1:;”‘i and
p"‘j"1 are first occurrences of letters in u(p'i,p'ul), then
consider the play of the game 9(2'“(u,v) where, in move |, player
I chooses p'i and p. Player II should choose cj'i and a position

q in v(q'l,q'“l) such that Q:q and u(p'i,p) of v(q’i,q). Since
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p"J axﬂ p,lj+1

occurrences of letters in u(p’l,p’iﬂ) (V(q,i’q’nl))’ q must be in

(and hence q"J. and q”J.ﬂ) are first

v(q"J,q”Jﬂ) (otherwise there would be contradiction with

u(p’i.p) “1 v(q'l,q)). More precisely, gq is not in v(q’i,q”‘i) and
q # q”‘i since otherwise there would be an occurrence of the letter of
p”J in u(p’l,p) but not in v(q’i,q); g is not in ‘J(q"‘jﬂ,q’iﬂ)
since otherwmise there would be an ocourrence of the letter of q”‘iﬂ
in v(q’i,q) but not in u(p’i,p); q #q"‘j“ since otherwise
Q‘a’q”Jﬂ and hence Q:p"J+1 contradicting the fact that p""+1 is
the first occurrence of a letter in u(p'i,p’iﬂ) (Q:p and

"y
P <P 4y

first first

_p'. ’ ' ',
' Plr-—-ﬂp’t--ipr-———ﬁP'J+1t—1Pl+1|————-———-1

® ®

— ﬁ'Q’ii :Q"Jl-————-q qu”J+1f-————|Q'i+1 E—

[1] [

Rule 2: Rule 2 is an application of lemmm 4.2.35(35). If p"‘i and

p”‘r’_l are last occurrences of letters in u(p'l,p'nl), then player

I, in the first move chooses p and p,i+1' Player II should choose
? 1 1 ) ] v

9541 and a position g in vig 19 i+1) such that Qaq and
u(p,p'lﬂ) of U(q'q,iﬂ)' Similarly as inrule 1, g must be in

V(q,"j’q”J’i-l)'
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Rules 3 and 4 are applications of lemma 4.2.5(6).

Rule 3: If p”‘i 15 the last occurrence of a letter in U(p'x’p’iﬂ)
and p""j+1 is the first occurrence of a letter in u(p’l,p'iﬂ),
then player I, in the first mowve chooses p”‘j and p”J“. Hence

there exist q’ and gq’’ 1n v(q’l,q'“l) (q’' < g'’) such that

ng’ if and only 1if (.);p”‘j 1f and only 1if Q;:q" ’ Q;q" if and

J
b€A and

1 \
only 1if pr"J.H 1f and only 1f qu”yrl’

U(p”\j’p”‘jﬂ) ~ uig’,g’?). q’ = q”J. (since q"J. 15 the last

occurrence of the letter of q’ and q"‘j i vig'.,q’ ,,)) and

CI”J.+1 £ q'" (since q”.jﬂ is the first occurrence of the letter of

q’'’' and q"Jﬂ in v(q’i,q'i“)). q’ <q”.i or q"J“/.q”

would contradict u(p"J,p" ) ~1 v(q’,q’’'}). Iore precisely,

I+l

q! < q"‘j (q"‘j_*1 < q'’) wuld 1wly an occurrence of the letter of
q"\i (q”,jﬂ) in v(q’,q’’) but there is no suwh occurrence in
U(p,,J’p"J+1>' Hence '-"I’ =q”‘j and q!) = qn

5y )y ~ 1y L] L R ] |
u(p P J“l) y v L ,j+1)' there exists q wn v(q ' j+1)

g Since

such that Q:q.
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Rule 4: If p""i is the first ococurrence of a letter in U(p'i’p'iﬂ)
and 1:»”"+1 is the last occurrence of a letter in U(p’i’p’nl)’ then

player I, in the first mowe chooses p”"i and p"J.“. Hence there

exist q' and q'’ swh that q'’; <q’ <q'’ =¢q’ ,, and

satisfying Q;q’ if and only if Q:p”J. if and only if QZq"J,

\J . u_, . v
qu" if and only if pr ’J+1 if and only 1if qu'.jﬂ.’ befa and

u(p"J,p"Jﬂ) ~ v(q’,q’’'). Since u(p”J,p”J*l) of vlq’,q'’),

there esists q 1n wv(q',q’’) such that Q:q.

first last

—P’; 1 P”‘i t 1P - ‘up”ju} + P’ iet i

Hq’l l'—_————-fQ"JI——i q’l—‘i q P——ﬁq,'f"f q’,J*l f————{q'i+l | a———

[ (]
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In rules { to 4, the facts that ull,p) ~(2) vil,q) and

u(p, [ufl ~ v(g, {v|] will follow similarly as lemm 4.2.6(3'’''),

(2)

We show w(p,|u]l ~ . v(g,|v|] for rule 4. Llet w= Wi Wy be a

2)
subword of length 2 2 1n w(q,|v]|l (simlar 1f 1n utp, juld. we
wvant to show that w is a subword of u(p,|ufl. If |w| =1, then
there 1s an occurrence of w,
u[p'iﬂ,lull) from the choice of the p’ 's and the q’ ’s and lemma

in v[q’iﬂ,lvl] (and hence in

4.2.5(1,2) and the proof is conplete. If |w| = 2, and w 1s in
v(q'i+1,|v|], then w 1s in u(p’. ,|u|]l by lemm 4.2.5(3). If
there 1s an occurrence of v, in v(q’ul,lvll (and hence 1in

U4 U
wp’, 1o ul1 by lemm 4.2.5¢3)) and leq'm (and hence lep'iﬂ

by lemma 4.2.5(2)) the proof is complete. Otherwise, there is an

occurrence of w2

the choice of the p'r's and the q’r’s and lemm 4.2.5(1,2) and there

in VEQ'“UIVII (and hence in u[p'lﬂ,lull) from

15 also an occurrence of Wy in v(q,q’i+1). From the choice of the

q”r’s, there exists k, k > j+1, such that Q::q"k. Hence, from
1

the choice of the p”r's and lemma 4.2.6(1°Y%7 21119), Q::p“k. The
1

result follows.[1
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Chapter 35

FEUATIONS

The problem of finding ~Juations satisfied in the Mvarieties

vk '

of this chapter. Studying properties of the recognizers ﬂ*/~'-'-1 sheds

problem related to the decidability of the Vk’s, 1s the subject
some light on the syntactic monoids of the star-free languages. The

material of this chapter appears in [Bl88al.

let u, v e Q*. A nonoid M satisfies the equation u = v 1f
and only 1f u® = v for all morphisms ¥ : 8 - M. One can show that
the class of monoids M satisfying the equation u =v 1s an
M-variety, denoted by Wu,v). lLet (un,vn)m0 a sequence of pairs
of words of ﬁ*. Consider the followang M-varieties:
W = nmo U(un,vn) and W' = Uw@ nnam H(un,un). We say that W
(W'Y 15 defined (ultimately defined) by the equations “n = v
(n > @): this corresponds to the fact that a monoad M 1s 1n W
(W) if and only 1f M satisfies the equations u =y for all
n>® (for all n sufficiently large). The equational approach to
varieties 1s discussed in Eilenberg fE1761. Eilenberg showed that
every M-variety 1s ultimtely defined by a sequence of equations. For

example, the M-variety V of aperiodic monoids 1s ultimately def ined
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by the equations X" = xml (n > @). One can show that every

Mrvariety generated by a single monoid is defined by a sequence of

*
equations. V being generated by A /~ are the M-varieties

l,m (m)’

vl m defined by a finite sequence of equations? An attempt to answer
]

this open problem is mede in the following section.
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1. Equations related to the first level of the Straubing hierarchy

fin attenpt to generalize the following proposition is made in
this section. A proof of part(2) appears novhere in the literature.
We include a proof based on conbinatorial properties of the congruences

We remind the reader that from corollary 2,2.5, we have for

~

(m)’
k1, M€V ifand only if for every morphism ¥ : A" 4 M there

exists m = (ml,...,mk) suwch that ~m refines ¥, or, nmore

precisely, using theorem 2,2.4, for k 2z i, wm>1, ME vk m 1f and
]

only if{ for every morphism ¢ : Q* 4 M there exists m= (m,mz,...,mk)

such that “m refines %,

Proposition 3.1.1 Simon [8i721

2

(1) The M-variety V¥ is defined by the equations x = x and

i,1

Xy = YR, i.e., vl 1 is the M-variety of idempotent and commutative
1]

monoids.
(2) The M-variety vl 2 is defined by the equations Xyzx = HyXzZx
1

and (xy)2 = (yx)z.

The above proposition follows from the following combinatorial

properties of the congruences ~ m*




Iremm 5.1.2 Simon [5i73)

%
let m: 1. let u, ven. If u~em U then there exists

w such that u is a subword of w, v is a subword of w and

Lewm 5.1.3 Simon (Si731

let m>1. Lot u, vEA'. Then

(1) u~ uw if and only if there exist u,, ..., u ea* such
(m) 1 m

that = u,...u and vaCua€ ... € ua.

1 m m 1

. . . *

(2) u~(m)vu if and only if there exist Uy eren umea such
that u=zu,...u and va Cua€ ... € ua.

1 m 1 m

lesmm 5.1.4 Simon [Si73])

let m>1. let a €8 and u, VGR*. Then uu~(m)uau if

and only if there exist nonnegative integers m, My, mim, > m such

that u ~ ma and v ~ av.
("‘1) ("b)

Proof of praoposition 9.1.1

(1) We have to prove that ME V if and only if it satisfies the

1,1

equations xy = yx and xzx'2 or nev“ if and only if for ewery
]

morphism ?:R*-’H, Ky¥ = yx¥ and x?=x2‘f. Suppose nevll
]

and let ® : A" M be a morphism. Then

xz. Hence w hawe the result.

“(y £ ¥ Now xy ~.,) ¥y

and x ~(1)

Conversely, let ¢ : ﬁ* < M be a surjective worphism satisfying

xyP = yxP and xP = x°P. We wnt to show that ~ . € ¥. Let
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£ ~( 9° Ilemm 5.1.2 permits to consider only the case where f is a
subword of g. We observe also that if f is asubwordof h and h
is a subword of g, we have also f ~) h. Hence we have only to
consider the case vhere f = uww and g = vav. 5o we have

uv v, uav.

*
Case 1: U~y W or u = u,au, for some u, o, € A'. Hance
v = ulauzu‘P = ulazuzv‘l’ (by using x2‘P = Xx¥P) = ulauzav” (by using

xXyP = yP) = uauv?,

* -
av or v =vav, for come v v, EA. Similar to

Case 2: v ~ 139, 1 2

(1)
Case 1.

(2) It M€V, ,, let ®: A" 2 M be a morphism. Then ~,.. C ¥.
1

Now (xy)2 ~(2) (yx)2 and Xyxzx ~(3) ¥YZX. Hernce (xy)z'P = (yx)z'P

and xyxzx¥ = xyzx¥. Now let ¢ : A* -+ M be a surjective morphism
satisfying (xy)z‘l" = (yx)z‘l’ and xyxzx® = xyzx¥. Ue want to show that

CP. let £ ~ Similarly to (1), by lemm 3.1.2 we have

“(2) 2 9°
only to consider the case vhere f = uv and g = wav. So we have

uv ~(2) vav. lemwm 5.1.4 inmplies the existence of m1 and m2 such

that ml-m'n2 *¥2, u ) B and v ~(m2) av., UWe have the following
1

Gases.

Case 1: u ~ ua and v ~ av, Lemm 5.1.3 inplies that

(1) (1

*
u = uwav,, V=V av, for some Uy Uy Vi Yy €A .

uw = uau,v av, and wav = u au,av,av,. Hence w? = uvav® by using

KYKZXYP = wyzx?.

Case 2: u ~(2) B and © ~w@) V- Ilemm 3.1.3 inmplies the existence

u and u EA* sswch that u = u,au.au

N a 123,11 does not

of 1 3

1!
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contain any a and svery letter of g is in either u or u, If

uy = 1, then w? = ulauzauav'? = ulaUQau‘P = ulauzaav‘l’ = vav®?, (by
using xyxzx¥ = xyzx¥). If Uy =a...a, n : 1,

(al, ceny an#a), then v have wmuv¥ = g au,aa

12U, .. .anau‘f

= ulauzaal...an_lanaanav‘f (by using xyxzx¥ = xyzx¥ two times)

=4 lauzaa 1

= ujauaa,...a

«ead aanaanv‘l’ (by using (xy)z'P = (yx)z‘P)

n-i
aanu‘f’ (by using xyxzx?¥ = xyzx? two times)

= uauaa ...a ,a ,aa  ,aa u¥ =u auyaa ...a -3a _.,aa ,a \24

1772 n—-4{ n 1 n
= ulau,zaal...an_zaan_lanv‘? T ae. = “13“2“1“2"'%‘”
= ujau,a aa aa,.. .anv‘P = ulauzaalaalaz...anu? = ulauzaal...anv? = uv?.
Case 3: u ~ @) 2 and w ~(2) 3V Similar to Case 2.[]

We would like to generalize the above proposition 9.1.1. In

order to do this, let us define classes of equations as follows. For

m> 1, c%m) consists of the equations (xy)m =u where u is any

word consisting of w blocks, each block being xy or yx. These
equations describe different ways of permuting an equal number of x
and y, The equation (xy)m= (yx)m is suwch an example. It is easily

satisfy (3l This comes from the fact

f,m (m)’
that if M€V ., then M< A/~ for a suitahle A. Since
]

(m)
A%/~ satisiies ¢ M satisfies
(m) {m?

(m*

seen that monoids in V¢

2
c(m)

of the following equation

For m=1], consists of the equation x = xz, for mz 2,




m2 m1
HYK ~ZH = KyX ZX,

The above equation generalizes xm = xm1 and 1s easily seen to

be satisfied in Vl o @ consequence of proposition 3.2.1. The
9

equations 1n Ur e’ can be reduced to the equations defining v1
4

2 () 2

of proposition 5.1.1(2). UWe have

Proposition 35.1.95

1 2
(1) vl,l 1s defined by C(“ U C(“,
1 2
(2) 01’2 1s defined hy 0(2) U C(z).
Let us now define the class C?m). For 3 < m, c:(}m) consists
of the following equations
3 e m2 e
KZX YV HUXWY = HZX YV KURKWY
e m3 e m2
YWKUXY H ZX = YWKUKY K 2ZX
m3 e m2 e
HZK Y KUYyWH = XZX Y HUywWH
e m3 e m2

KWUXY X ZX = XWUXY X ZX

The class C?m for 4 i m, will consist of the equations

)!

KZK VXY XUHWY

3
:

e w4 e m3
VWHURY XVX ZK = YWKUKY XYyX ZX

mde 2 w3 e 2

X ¥ R yurRwy
2 e m4 2em3
Yy x ZX = YWHUYX Y X ZK

~
®
]
=
N
=
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m4 e 2
XZX ¥ X yuywx
2 e mi
KWyuUyX y X ZX
m4 e
XZX  YXY XUywH
e m-4
HWYURY HYX Zx
m E=1, aury m"'2

These are easy esxercises on the games g(m)

from those vith | < e £ w2 and

r

c(rn)’

for r = m,

. ] m+!
generalizing x = x

inwlving powers of

c’('m), for S5 < rs<m,
mr £
KZX YRy }ml =
f wr
u:,xy Kyx ZX =
mr f
KZX Y XXyu, =
f orr
U, YKy X ZH =
where £ =141, ..., m(r-2), and
m{(r-1) e m(r-2) e
KZK y xu, = xzx V4 mxl
u e“m-(l‘-l)zx - exm—(r-2)
2XY = WXy

® between I and m(r-3).

3<sm (4<wm, every monoid in vlm
y
c:(’m), the instances with e > m1
and 02 Similarl mn Cq
(m* Y (m)’

and satisfied in ©

X not less than wr.

3e?2
m_yxyvywu

2em3
KWYUYH Y X ZX

= KZX

m3 e
YRY KUywWH

xwyvxyexyxm-azx

It

KZX

1]

3

satisfies C
(m)

follow from those with

(m"*

3-8

to verify that for

) In

] 4@ <tmi

the instances with e > m2 follow

3

(m*

c

i,m

will consist of the equations

xm—(r—l )Y"Yf’ml

R

Xz

f m(r-1)
u2xy LY R z
m(r—-1) f
X y mry'u1

Uz}"“‘yf xm—-(r‘-l )zx

xZ

where

and

ZX are in c';;; for some u

We have the following

More precisely,

Further classes of equations
can be described, each containing equations

each equation

the class

10 Y ad




BEQUATIONS 5-9

Theorem 5.1.6

satisfies U Cr
r<m

Every monoid in V (m*

i,m
Praof The result follows from the congruence characterization of !71 m
’

and the properties of ~m stated in lemms 5.1.3 and 5.1.4.[]

Simplifications occur. For exawple,

Proposition 5.1.7

The equations in Ur<3 c!(‘:” reduce to the following system
3 3

{yx)" = (xy)

HZHYHUXWY

|

YWKUKYZK = YWHUKYKZK.

Proof Let us show how the equation (xy)3 = xyzxzy in cfs) comes

xyxyx2y {using the second equation

from the above system. xyzxzy

wnmth z :=y, vi=1 and w:=1) = m2w2y (second equation with
2

yi=1, z:=y, vi=zy and w:z 1) = xyw yxy (third equation with
vie:=1l, w:i:i=1 and z :=1) = xynyny (3econd equation with vy := |,
z2 =y, vizy and w:=1) = (xy)g. The equat:on

RZY XUXWY = xzxyzxvxw in c?a) comes from the above system as

N

follows: xzyzxvxw = x{(zy)yrvnvwy = x(zZy)uyxvxwy (using the second
equation wvith z := zy) = xzyx2yxmrwy (second equation with y := 1,
zZ:=2y, vi=y ad w:=1]1) = xzxyxzyxv;my (second equation with
vi:i=1 and w:= 1) = nzxyaxyxvxwy (second equation wath y := 1,
zZz:=Yy, Vvi=y and w:= 1) = xexyyxuxw (second equation with

zZ = y) = xzxyzxvxwy. The other equations follow similarly.[]
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Propositien 5.1.8

The M-variety V is defined by the equations in proposition

5.1.7.

Proof If M€V _, let ¥: A" M be a morphism. Then ~q € P
]

Now (yx)3 ~(3) (xy)a, RZYKUKWY ~ o, KZKYRUXWY and

YWKUXYZH ~ (D YWHUKYRZX. Hence (yx)3‘l’ = (xy)a'f,
HKZYKURWYP = RZXyxuxwyP and ywxuxyzx¥ = ywkuxyuzx?¥. Now let

P A* 2+ M be a surjective morphism satisfying (yx)a'f = (xy)SP,

RZYRUHWP = wzxyxoxwyP and yuwxoxyzx® = ywnuxyrzx$. Let us state

first some useful consequences of the equations, like (1)

KuxwRP = xuxzvx‘f’, (2) xzyx2wy‘P = xzxyxzwyP and ()

ywxzyzx‘f’ = ywuzyxzx‘f’. We want to show that CP. Let ¢

"3y ¥
Simularly to proposition 3.1.1, by lemm 5.1.2 we have only to

(3

consider the case where f = uv and g = wv., So we have

uy ~ uav. lLemm 5.1.4 1mplies the existence of m, and m, such

(3) 1
that m tm, 2 3, u “m > B and v ~(m2) av. We have the following
1
cases.
Case 1: u ~() U and v ~(1y av lewma 5.1.3 1mplies the existence
#
of Uy Uy Uy Y and v, € A such that u = u,au,au,,
v = vav,, v, and u, do not contain any a and every letter of u
is in either u, or u,. If u, = 1, then uv?¥ = ulauzavlauz‘f’
2
= uau.a ulavz'{’ = wav® (by using (1)). If U, *a;...a, n 1,
(al, rery A # a), then we have m# = ulauzaal...anulavz‘r

2 2
= ulauza alaz...anvlav,z? (by using (1)) = ulauza alaaz...anvlavz?

(by using (3) and the fact that a, is in u, or u2)

3
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2 2 2 2
= ulauza ala aza3. . .anulavz'l’ (1) = ulauza ala azaas. . .anulauz‘f ((3)

and the fact that 32 1s in u1 or u2)

2 2 2
ulauza ala 32a 33...anvlav2‘f’ {1

-uauaaazaazaa2 2auau‘f’
cee T UAULE @,3 3,3 353 -0 3,93

u.a 323 a2a 823 32 323 av av, ? - u.,a 823 aa 323 a2 d & av BU?
13Up3 343 3,53 @asa ...d 3pav,av,” = U al,a a,aa,nd aza -..d ajavav,

= Q,a azaaaaaz azaavav‘P— —uauazaaa a av_av. P

= U)auy3 31353 833 -3 AAV)AVT T eee T UAWA 213837000192

= utauzaalazaa.. .anavlavz'f’ = wmuP.

Case 2: u Yy and v ~(2) av, Similar to case i.

Case 3: u o and v ~ (@) av., lemma 5.1.3 1mplies the existence
*

of Uy Uy Uqs u, and U € A sich that u = ulauzuaauqaus, ug

does not contain any a, ewvery letter of g is 1in either u, or

Uy every letter of Uy and ug is 1n uau,. If ug = 1 and

uy = 1, then w¥? = ulauzuaazu‘!’ = ulau2u3a3u'l’ (by using (1)) = uvav®.
If u, =1 amnd U, = bl"'bn’ nx {, then

wf = ulauzuaabl...bn_lbnau‘? = ulau2u3a2b1b2...bnav‘f‘ (by using (1))

= ulauzuaaznlabz...bnav‘f ((2) and b1 is in ulauz)

= ulauzuaazhiazbzby . .bnav‘l’ 1y = ulauzuaazblazbzab3.. .bnav‘l' ((3)
and b2 is in ulauz) = aee = ulau2u3a2bla2b232b3...bn__lazbnav‘f

= ulauzu:,azblazbzazba. . .bn_lazbnazu‘i’

= ulau2u3a2b1ab2azb3. . .bn_lazbnazv‘l’ (0

= ulauzuaazblbzazba...bn_lazbnazv‘f’ ((3) and b1 is 1n ulauz)

= 4ee = ulau2u3a2b1b2. ..bnazv‘P = ulauzu:}abl.. .bn32W = v, Now, let
Ug = C,-..Cyy t2 1, (Cl’ RETI N # a). We have

2
vavd = ulauzuaauqaclcz...ctaw = U au,U.au,2 C,C,. .ctau‘P (by using

- 2 % &
(1)) = U au,uau,a clacz...ctau‘P (by using (3) and the fact that




c

1s in u, or uq) = u,au,u,.au a2c 32c ...ctav‘P (using (1))

1 3 177273774 "1t "2

2 2 .
= ulau2u3auqa c,a rzacs...ctav‘? (using (3) and the fact that ¢

in 03 or uq)

2 15

(using (1), (3) and the fact that U is 1n u, or uq)

u,au,.u_au a2c a2c azc a2 a2c auvP
1772374 2 ¥ e t

t 2 2 2 2 2 2 . .
u,auu ctb1 b ta cpac,acya...ac, ,a ctaw (ct being in u

3 3
*
t where ut isin A, bt...bz1

i

t
or u implies ujau, = uc b
*t t

4 t

ts 1 or b: 1s1n A, 1 =1, ..., st)

t 2t t 2 2 2 2 2 2 .
= uau,u cfbl...bsta cjac,acm...ac,_,a c.tatﬂ’ (using (1) and the

fact that ct is 1n “l or u2)

= u,au.u c:21)t b ..bt a2c azc a2c: az...azc azc av® (using (3) and

172 1 t2 St 1 2 3 -1 t
the fact that b: 15 in ulauz)
(using (1) and the fact that Cy is in u,
. or u,; and using (3) and the fact that
bt a c (o] are in u_au,)
) 1’ L " t 1772
t t t t 2 2 2 2 2 2 2 2
= ulauzu cfblcsz Ct stc t 1c:tac ac 02 t oy t ¢ 1t.:tat: ao auP
t t 2 t 2 2 2 2 2 2 2
= ulauzu c:fblct cfb t c:‘lc:tact tCZCtacta' . t t- lctactac ac vP

W m

(using (YO P = (xy)°®)

(using (1) and the fact that Cy is in u,

. or u and using (3) and the fact that

t
L bi,

2!

a, ¢© sesy © are in u au,)

I t 1772
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t t, t t 2 2 2 2

= wjau,uc.b b, ..bsta €@ €53 Cq..:Cy_ 2 ac v

= U,au,u,.au azc azc 32c c azacu?—uauuau uP

= Upalpuaalgd ©1a Cpd CGg:r -Gy (3 AC VP = U 13U, U43U,430 80 - +04-13%

(using (1) and (3) and the (act that ug 1is in u, or uq).
Repeating (using Ce y instead of Ct) the steps that showed that
ulauzusauqaclcz...ctav‘? = ulau2u3auqac1c2. . .ct_lactv‘l’ leads to
wavP = u,au,u,au aclcz...ct_zact_lctv‘?. Repeating again (using

4
Cigp *ou Cl) leads to wavf = ulau2uaauqazclcz...ct_lct\ﬁ’. If
u, = 1, then uavy = ulauzusa:}cl.. .ctv‘f’ = ulau:uaazol...ctv'ﬂ (using
(1)) = ulau2u3«aacl...ctw = uavP., If Uy = 3.8, T >» 1, then
uavy = ulau2u3aal..,ara2cl...ctv‘? = ujau,ua al...arazcl.. .ctv‘P (1)

2 2
= ulauzuaa alaaz...ara cl...ctuﬁP ((3) and ai in ulauz)

= au.u 823 aza azc
= auytaa aga as...an

2 2 2 2 2 .
= ulau2u33 ala aza v.ea ara cl...utw ((1> and (3) and a1 in
. 2 2 2 2
ulau2; = ulau2u3a ala aza - 1 aracl...ctv‘P ((3) and ar in ulau2)

2 .
—ulau2u3a alaz...aracl...ctv‘f ((1) and (3) and a1 in ulauz)

= ulauzuaaal...aracl...otu‘? (1) = ulau2u3auqac1...ctu? = uy,

1...ctv¢ (M)

Case 4: u “@) ® and U~y AV Simlar to case 3.[]
Rewark: In the proof of the above proposition, we have used

only (1) xuox = xuxzux, (2) xzyxzw = xzxyxzw, (3)

ywnlyzx = ywoyxze ard  (4) Cxyp)S = (y0)°  ((2)  is used in cases 2

ardd 4). The set of equations in proposition 3.1.7 can be deduwed from

(1), 2>, (3> and (4). For erampie, the equation

KZYRUKWY = KZKYXKUkwy can be deduwed as follows: nuynumwy = nzyxzww

(1) = xzm2W {(2) = xzxywuxwy (1). Similarly for
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YWRUXYyZX = ywxvxnyxzx. (1), (2), (3) and (4) gives another
interesting set of equations for vl 5 since it uses at most fouwr
]

variables.

A better understanding of the equations related to the first
level of the Straubing hierarchy is useful in finding equations for the
higher levels as the following shows. We are now interested i1n the
varieties vk,m for k * 1. We would like to find equations satisfied
in them. Some of these equations may be selected from the classes
previously defined since every o= ref ines some ~ (m) by proposition
3.2.2. We get the following properties of the congruences v“'m),
for m:> ! related to the variety vz’l or the classes z(l,m) by

theorem 2.2.4.

Proposition 5.1.9

Every monoid 1n v2 N satisfies
1]

(1) Gy ™o)™ = Gy) ™)™ and

(2) (xy)mxy(xy)m = (xy)myx(xy)m for som@e m > 0.
Proof The result follows from the congruence characterization of vl n
1

arnd lewmas 3.1.1, 35.1.3.[1

The equation (xy)mxy(xy)m = (xy)myx(xy)m belongs to c:ml m)’
9
In chapter six, section two, 1t wall be shown that (1) and (2) of the
above proposition are part of a finite system of equations ultimtely

defining V, for an alphabet of two letters. Note that the latter
y

2,1
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. 2
equations are of the form ulxv1 =ux v, and uzxyv2 = u,‘,yxv2 vhere
2

X =x and xy = yx are the defining equations for V This type

1’1.
of equations is called equations in context and has been studiad by
Therien [The8@]. Equations satisfied by a*/~(m ) ™ be selected
1!
r »
from the classes C(N(ml,mz”. It 19 wasy to check that A /~(m1'"‘2)

3 q

L 2
satisfies C faor m‘,> 1 and Cm(ml,mz))

¢
3
(N(ml,mz)) (N(ml,mz))

for m, > 2. In general, for we my be able to choose

~(ml’ﬂIl’W)'
from c" . Equations similar to the one i1n the above
(N(ml,...,mk))

proposition (2) will be studied in the next sectian.
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2. Equations related to higher levels of the Straubing hierarciy

The M-variety vl of F-trivial nonoids is ultimately defined

by the equations X" = xm+1 and (xy)m = (yx)m, or

(xy)mx = (xy)m = y(xy)m {P184al. This gives a decision procedure far
v, based on an algebraic characterization of the mnoids M = A"/
with ~ 2 ~m for scom m M€ vl if and only 1f for all

ke yEM, Gp™= o™ and x™=x™! with m the cardinality of
M. The necessity of the condition is immediate since ﬂ“/«-(m)
satisfies the equations. A generalization of the above equations

follows.

let m:> 1. A sequence of equations is defined industively as

follows:
Eq, _ is xp™ = (yoo™.

Eqk+1,m is obtained from Eqk,m in the following manner: Eqkﬂ,m is
obtained by replacing each occcurrence of x in Ek:[k m by
1]

(xy)mx(xy)m, and each occurrence of y by (xy)my(xy)m. For example,

Er,  is ("G yoam™® = ™y om P Mrom ™™,
?
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For all &k, w2 1, let J'(nk) be the collection of all finite

monoids which satisfy the pair of equations !i‘qk " and x" = x'ml.
]

. (I) (k+1) (k) (k) (k) (k)
C < = i
Easily, Jm < Jm and Jm cJd 1° J Um21 Jm is a

Mvariety and J = J“) < J(z) €C.... The M-varieties J(k) were

introduced in [E78]. Members of J°' are called aperiodic

k-mrtative wonoids. In [St81] 1t was shown that V= U '

The above sequence of equations can also be witten as:

iy is (x(k)y(k))m___ (y(k)x(k))m
k,m

vhere x“) = x, y(l) =y and x(lﬂl) - (x(k)y(k)
y(ki-l) - (x‘k)y(k))my(k)(x(k)y(k))m.

)mx(k) x(k)y(k) m,

( )

A result of Straubing [St81] states that ¥ ¢ J*’. e inclule

another proof of this result based on the game.

Theorem 5.2.1

(k)
Vh cdJ .

Proof let MEV. Wehave M= A/~ with ~ 2 for

k ”(ml,...,mk)

som (m,...,m). Hence A%/~ <« g%/~ . A%/~ satisfies the
1 (ml, . ..,nh)
m mt]

equations Eqk,m and ® = x with m = N(ml,...,wh) since thaey

are satisfied by A /~ A*/~( satisf ies

ml,...,nk)

(ml, “es ,nh)'

K" = “m*l si xN(ml,...,mk)i-l

”(ml,... ,mk)
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proposition 3.2.i. By induction on k, g*/..,( satisf ies
ml""’"h)

» .
Eqk,m' We now show that A/~(m1,_"'"") satisf ies

OGO NOm ey m ) LD (kY Ny )

For k =1, it is

true since A*/N(m) satisf ies (xy)m = (yx)m, i.e.,
(x(l)y(“)u(m) = (y(“x(“)u(m). Suppose true for k, i.e.,
L , satisfies

¥ 1,--. ,"h
(x(k)y(k))N(ml,...,mk) - (y(k)u(k))N(ml,...,nh)- Put

»* .

N = N(m,ml,...,mk). Let us show that A /N(m,ml,...,mk) satisfies
u = (x(‘”“y(kﬂ))N = (y(k“)x(k“))N = v. To see this, consider the

(k+1)_

natural decompositions of u and v i1nto =« and

y(k*“-segnents. I1 should play according to the following strategy.
In the first move, suppose player I chooses from u (the strategy is
similar if player I chooses from wv). I chooses from at most m
segments 1n  u. There i1s a correspondence between the chosen seqgments
in u and some corresponding segments 1n v (shown by triangles or
lires in the diagram below). Ue have

o = (x(k)y(k)’NX(k)(x(k)y(k))N(x(k)y(k))Ny(k)(x(k)y()k) N

() (WO N (), () (KN, (k) (k) N (k), (R (k) N
v = (K y Yy (x y Y (x 'y YR (x 'y
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(k+1)

The positions chosen from the first x -segment (or last
y‘k“)—seqnent) in u should be played 1n the first (last) y(kﬂ)-
and x(k“)-segnents in v, Call a x(kﬂ)- (ar y“”l)-) segment in

(k+1)_

u, a mddle segment, 1i1f it is not the first (the last) «x (or

y(k+1)-) segment. If player I chooses some of his first m positions

from muddie segments in u, then II should pick exactly those

positions which match the positions chosen by I in corresponding
segments. Now, by the induction hypothesis and zN ~ z““’
(ml, “he ,nk)

we can conclude that

(k) (k) N (k) (k) N (k) (k) (k) N (k) (k) N
(% y )y o~ (x 'y Yy (x vy Y (x y Y . To see
(ml,...,mk)
this,
(x(k)y(k))N . (x(k)y(k))Nﬂ . (y(k)x(k))Nﬂ
(ml,...,mk) (ml,...,mk)
ol (k)(x(k)y(k))nx(k). This implies
ml,lll’“k)
(x(k)y(k))}l - (y(k))N(x(k)y(k))N(x(k))N
ml,...,mk)
(kY N, (k) (k). N, (k) N+1 (k) (k) N (k)
~ (y ")t Ty )Y Ax } ~ (x 'y Y.
(ml""'"\c) (ml"“""h)
Simi larly, (x(k)y(k))N " y(k)(x(k)y(k) N. Hence
ml,...,mk)
(k) (k) N (k) (&) 3N
Ty ) (x )

N(ml,...,n'k)
. Henoe the result follows by the

”(ml,...,mk)
(k> (k} N (k), (k) (k) N, (k) (k) N
x 'y )y x y Y (x 'y )

induction lemmma 3.1.1 and the proof is complete.(]

Similarly to the abouve proof, one can show that for every mnonoid

M in vk, there exists m > @ such that M satisfies

(k) (k). m (k) (k) (k). m (k), (K)_(kK).m
(x y ) x = (x 'y Y =y (x 'y -

( )
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The complexity of a congruence is related to its power of

discriminating between words. For example, for ml, m, > 1,

n n

but ~ does not. Hence

and (yw) (n)

~ distinguishers (xy)
(ml,mz)

(xy)n = (yx)n is characteristic to the first level Vl. More

gererally, for sufficiently large m. , distinguishes

”(ml,... '"h)
(k-1)

the words in Eqk_1 m The following theorem proves that vk {J '
]
thus proving the infinity of the Straubing hierarchy for an alphabet of

at least twn letters.

Theorem 3.2.2

(k1)
v, £4J .
)

Proof First, it is easy to see that V, ¢ I For k> 3, we show

that for sufficiently large m., there is no m*> @ such that

* AP .
A /v(mj,""'"h) satisfies the equation
(k-1) (k-1) m
X y

m_ (R ebym v . W illustrate a winning

u_ = ) (y

m
strategy for player I. (I,i) («((II,i}) denotes a position chosen by

player I (II) in the ithmue, i=1 ..., k. Let

N+1

Temyy e m) " (proposition 3.2.1),

. N
N » N(ml,...,mk). Using X

one sses that
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(k-2) (R-2).N
-.-(K Yy ) ) §

Un ~(ml,. .o ,mk)

t

CI1,1)

(k~32_ (k-3) N, (k-2) (k-2) N-2
X y ) (xn y

( ( )

(k-3) N . (k-2) (k-2) N
) yix Yy )

(k-3) (k-3) N (k-3 (k-3) N
X y ) x(x y Yy

(k-3) (k-3)N (k-3) (k-3) N
X y Y rlxn y ¥yl

t t
(1,2)

( x(k-S)y

Similarly,

o ~ (k2 (k-2) R
N Ttmymy T y

t
(I,
D DN D) (k-0 N (k-3)(k-3) )N

(h-2) (k-2) M -1, (k-3) (k-3) N B (k-3) (k~-3) N
® y Y1 T (x y Y xix y )

{
(k~3) (k-3) N (k-3) (k-3).N
X Yy Y uix vy Yy

(

- x(k-S)y(k-i)))N(x(k-Z)y(k—Z) )HZ

t t
(11,2)

(

where H1+P12 = N-2. Player I, 1n the first move, chooses the middle

x of the last x™ %’ followed immdiately by an x*? v

Player II, in the first mwe, has to choose the middle x of the

1ast x* 2 followed imediately by an x*?' in uw, Cif not,

player I in the next k-1 wmwouves could win by choosing in the second

move the middle x of the last two consecutiwve x(k-z)'s in “N)'

Player I, 1in the second mowe, choose= the middle y of the last two

consecutive y'* 215 in uy- Player II, in the second move, cannot

choose the middle y of the last two consecutive y(k—m's

in VN to
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the right of the previously chosen position. Hence he 15 forced to

(k-2) (k-2)
X

choose two vy 's separated by an . Player I, in the third

move, chooses the mddle x of the last two consecutive x(k—m’s

Yy between the positions chosen in the preceding nove by II. Player

II, 1n the third wove, cannot choose the mddle x of the last two

-
consecut ive x(k 3 's 1n Uy between the previously chosen positions

by 1. Hence he is forced to choose two x(k—S)’s separated by an

y(k-m and so on. Player I, in the k—lth move, chooses the last
two consecutive x’s (or y’s) 1n N {or uN) between ‘ne chosen
positions 1n the preceding move by II. Player II, 1in the k—lth move,
1s forced to choose two x's (or y’s) 1n Uy (or VN) separated by
a y (or an x). Player I, 1n the last mwe, selects that y (or
¥). Player Il loses since he cannot choose a y (or x) between the

two consecutive x's chosen in the k—lth mwve by I. The result

follows.[]

Note that similarly to the proof of the preceding thecrem, one
can show that for sufficiently large m there 1s no m* @ such

that R*/'v satisfies
(ml,...,mk)

(k-1) (k-1).m (k-1) (k-1) wm (k-1)

X y Y = (x y P X

(k-1) (k-1).m (k-1) , (k-1) (k-1).m
X y )V =y (x y Y.

( and

(

The two preceding theorems provide exanples of equaticns that can
characterize a lewel, i.e., nmonoids of that level satisfy the

equations arnd some monoids of the next level do not satisfy the
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equations. Although they may not be sufficient to characterize
completely a level, they at least form a subset of equations that

characterize a level.
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3. Lower bounds an dot-depth

In this section, Ehrenfewht-Fraisse games are used to prove

lover bounds on a language's conplexity through equations. Upper
bounds on a language’s complexity are obtained by using Thomas' theorem

2.1.1 or theorem 2.1.4. Llower bounmds can be demonstrated by using the

following criterion:

Criterian for [ower bounds
Given any alphabet A, any language L ¢ Q*, to show that L
is of dot-depth > k, 1t suffices to show that for all
m= (ml""'"k-l)' there exist u— €L, v ¢ L such that U e v
More precisely, to show that L is not in a*v (ﬁ“\f ), it
k-1 k—-%f,m
suffices to shaw that for all m= (m,...,m ) ¢ = (mmy,...m ),

there exist u- €L, v- ¢ L such that u- ~- v~,
™ m m oW om

A criteriun like the above one is useful as long as we know what
kind of words u;'-‘ and v;‘ can be used. Egquations give words u- and

v in ~'—n—relatiun. e give some ekanples.

Example 5.3.1
let L be the set of all words suwh that the loth symbol from

the right end is b. One easily can write a B(L‘z)-senteme of £




-

definirngy L. Hence by Thomas’ theorem 2.1.1, we can conclude that the

dot-depth of L 15 smaller than or equal to 2. Define

u_ = (ba)"basaaaaaaa €L, v = (ba)maaaaaaaaafl... But o~ v
m m m (m) m

since  (ba)™b ~(m (ba)” and Y 1§ @ congruence. Hence by the

ahove criterion the dot-depth of L is 2.

Example 5.3.2

ILet L be the set of all words 1in which every pair of adjacent
a's appears before any pair of adjacent b’s. On® easily can wite a

B(L‘z)—senteme of & defiming L. Hence by Thomas' thsorem , we can

conclisle that the dot-depth of L 1s smller than or equal to 2.

Define u = (ab)™ab)(ab)" €L, w = (ab)™ba)(ab)™ ¢ L. But
(1,m) (1;m)

u(l,m) ~(1,m) U(l,m) by proposition 3.1.9(2). Hence by the above

criterion L ¢ €a,b} Vv It inplies that the B(Z)-sentence of &

2,1 2

defining L is not equivalent toa (l,m)-sentence of £L.

In the preceding examples, the Ehrenfeucht-Fraisse games have
been used to prove lower bounds on the dot-depth of a star—free
lanquage or a star-free lamyuage's conplerity through equations. A
conjecture of an effective crriterion for 02’1 1s the following: for
A a fixed alphabet, L C A", 1f M(L) does not satisfy the equations
in proposition 3.1.9 (with m the cardinality of M(L)), then

LUSIL




Chapter 6

ON DOT-DEFTH TWOD



1. A sequence of monoids of dot-depth two

The material of this section appears in [Bl188bl. UWe show that
»# .
for positive integers m, m, and m,, A /~(m ,mo,m) is of
1"y
dot—depth exactly 2 if and only if m, = 1. The following lemma

shows the necessity of the condition.

Lewsm 6.1.1
let A be an alphabet of at least two letters. Let m, and m

be positive integers. Than R*/‘v is of dot-depth exactly 3.
(ml,2,rrb)

Proof let m> @. Consider u_ = Oy ey ) T ey ™™,

v = ((xy)my(xy)zmu(xy)m)m. Thearem 3.2.1 1mplies that monoids 1n v2

are 2-mutative and hence satisfy U= v “or all sufficiently large

m. However, for every N > N“,z’“, Wy 1,2,1) KN A winning

strategy for player I in the game 3(1,2,1) ‘uﬂ,u“) appears in the

proof of theorem 9.2.2. The result follows.[]

Assume  [u| , l"'. >@. Llet u = URU - -+ )
a

LERY \Y

<
L}

v_av

u v .
221 If Qp;, Qan for i =1, ... lula,

lol,

1, ..., |v|a, then u, = u(p, Yy i=1, ..qy |ul].-t,

Cu.
L}

vy = V(qj'qj+1)' J=1, iuy |v|.-t. uy = ull,p)y vy = vil,q,),
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u ( vl U = u( vll.
uf, = “Pla 11 ¥ = v s 1Vl

a

The next two lemms will be used 1n showing that for positive

integers m, and n\3, ﬂ*/~( 15 of dot-depth exactly 2.

ml,l,ma)
Lewmm 6.1.2
Assume U~im y Ve Then
1™
th u“'p(s—l)mz+1) "(m, -5, m)) "“'q<s-1)m.2+i)'
(2) u(p el T 1) B ulq ety _i1 jU]1 for
lul +1-(s-1)m,-1 (m, ~5,m)) lo] t1-Cs-m-i

i=1, ..., m, and s =1, ..., ml-l.

Praoof (1) let 151*5“\2 and lsssml-l. Let

p'l, ey P’ (p’1 £ ...5p ) be positions 1in

u[l,p(s_” ). Consider the following play of the game

myt

g(m mz)(u,v). Player I, 1in the first nowe, chooses
1)
]
p’l, ey PO oo Hence

P s P y seey P vy Py ’
m2 2'41\2 (s 1)m2 (s l)u\2+1 N

hy the lemm of induction 3.1.!, there exist positions

q'l’ ey q'm_ such

(qQ’, £ ... 2 ¢ Yy in vll
| 1

s m, -5 ey )n12+i)

that player II, by choosing qmz, q2m2, teey q(s-l)mz' q(s-l)n\2+i’
q'l, cony q'm - for the corresponding positions, wins this play of

1
the game. It is clear that

U[l,p'l) ""( ) V[l’q'l)'

™




) ).

~ ’
("'2) viq ml-s'q(s-l)m?'tl

ulp’ WP,
m1 5’7 (s l)mz*i

Note that player II has to choose qmz, q2mz' ceey q(s-l)mz'

~ '
q(s-l)mzﬂ because there 15 a number of a's < m, between any two

consecutive positions among p_ , p ’ evry P, y P,__ .
m, 2’"2 (s l)m.z (s l)mzﬂ

The proof is simlar, when starting with positions 1n

vii ). For (2), we consider plul

q _ < -
PHs-my+i L
p|u|a+1—2m2’ e plulaﬂ—(s-l)mz' p|u|‘+l-—(s—1)rn2-1’

p'l, ey p’m—s'[]
1
lewsm 6.1.3

Assume u ~ v. Then

(ml,mz)

() U(p(s—l)m?ﬁ' ul ~(ml-s,m2) v(q(s'.-l)n-lzﬂ' vl

i.:l, sy "b a!ﬂ 5=1, sesy ml-ln

Proof Similar to lemm 6.1.2.(]

In the following theorem, we talk about positions spelling the
first and last occurrences of every subword of length < m of a word
w. We jillustrate what we mean by this with the following exanple. Let
4 = {a,b,c} and wu = abccccaabbabbacccabababccaaaabbaa. ...

et 1t tir et
P

The six arrows on the left point to the positions vhich spell the first
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occurrences Of every subword of length £ 2 in wull,p) and the eight
arrows on the right (before the one pointing to p) to the positiaons
which spell the last occurrences of every subword of length < 2 in

uli,p).

Theorem 6.1.4

let A:(al,...,ar), r> 1. Let m, m, and m, be positive

integers. Then B*/«'(m ) is of dot-depth exaotly 2 i1f and
1™y
only if w, = 1.
»*
£~ i
Praaf If A (ml'"b'"b) is of dot-depth exactly 2, then m, < 2

by lemma 6.1.1. Conversely, we show that for any positive integers

m,  and y & C ~ . To see this,
\ ™ (m1+(m1+1)2m2(r+1)m2,m2) (m  1,m)

] se u-~ v, Then there 15 a winni
uppo (m1+(m1+1)2m:(r+1)mZ,mz) g

strateqgy for player II in the game ¢ (u,v) to
(m1+(m1+1)2m2(r+1)m2,mz)

win each play. A winning strategy for player II in the game

g( 1 )(u,v) to win each play is described as follows. Lat
Mys o™y
p'l. essy P? (p’l £ .00 3 p'm ) be positions in u chosen by

™ 1

player I in the first move. Player II chooses positions

(q’1 £ ... % q'm ) by considering the following play

qQ’yy -y q°
1 1 1

m

of the game g(m1+(m1+1)2m2(r+1)m2.m2)(u’V)' In the first move, player

I chooses p’l, cnay p’m and the positions vhich spell the first
1

and last occurrences of every subword of length < m, in u[l,p’l).



LU L LS PR u(p’  _,,p’ ) and wp’ , jJu]l for a total of no
1 1 1

more than m +(m1+1)2m2(r+1)m2 positions (there are r'2 possible

1
words of length m, for a total of no nmore than mz(rﬂ)mZ positions
to spell the first (last) occurrences of every subvord of

length < m‘!). More details follow for the special case

u v. We have a wvinning strateqy for player II 1in

e1eam (red )"'2,m2>

the game g(1+4m2(r+1>"‘2,m2>‘“’"’ to win each play. Let us describe a
winning strategy for player (I in the game c“ 1 mz)(u,v) to win each
| A |

play. let p be a position in u chosen by player I i1n the first move.

Suppose Q:p for some a € A. If p 15 the 1th occcurrence of a in
u (1 212 N(l,mz) = 2n12+1), then player II chooses the same
occurrence of a in v, say position . The fact that

vig, jJv|] follows from

ulfl,pl ~ ull,q} and u(p,|ull ~

(1ym,) (1,m,)
lemms 6.1.2 and 6.1.3 (N(l,“\z) b (4“5(!‘4'1)“'2”\2). Ift p is the
|u|a+1-ith occurrence of a in u (1 ¢ i 5 N(1,m))), player II

th

chooses the |v|a+1-i occurrence of a in v. If p 1s among

pznb"z! arey P Iu'a_z.'nz_l [
a anmong g .o q _ -
! 2Zm,,+2' ' vl -2my-t

play of the game c(1+4m2(r+1)"5,m2)(u"’)' In the first mowe, player

then player II chooses position q, an

by considering the following

I chooses p, the positions which spell the first and last occurrences
of every subword of length £ m, in ull,p) and in ulp, |u|]. Hence
there exists a position ¢ in v such that player II, by choosing

q, the positions vhich spell the first and last occurrences of every




subword of length 2 m, 1n vll,q) and in w(q, lvl], wins the play

of the game. Let us show that wull,p) ~(1 “_'2) vll,q) (the proof that
]
ulp, ju]l v”'"'z’ vlg, |v|} is similar). Let p’ be a position in

uf1,p) (the proof 1s similar when starting with a position in

vli,q)). Assume Qg p’.
1

Case i: p’' 1s among the positions which spell the first occurrences
of every subword of length < m, 1n ull,p). Let q' be the
corresponding pos:ition among the ones chosen by II in ull,q). It is

clear that u(p?',p) ~(m2) vig’,q) and ull,p’) ~(|TL2) ull,g?).

Case 2: p’ 1s among the positions which spell the last occcurrences of
every subword of length 2 m, 1n ull,p). Simlar to case 1.

Case 3: Otherwise, let p'’ and p’’’ (p*' < p’'’) be the closest
positions to p* 1in ull,p’) and ul(p’,p) respectively among the
chosen positions by player I. Let q'' and q''' (q’’ < q'’’) be
the corresponding positions chosen by player I1. Since

uig?’,q''’), there is q’' in wv(g’’,g’’') such

| ) [ ER] ~
ul(p’?,p ) ("b)

that Q;q'. Let us show that u(p’,p) ~  , vlg’,q). ull,p’) ~

i ™ fmy)
m, in

u(g',q). The proof 1s simlar when starting with w in u(p’,p). If

(DY

vll,q') follows simlarly. Let w:wl...wlwl, [w)

w is a subword of viq''',q), it is clear that w is a subword of

ulp'’’,p), bhence in u(p’,p). So let us assume w is not a subword of

vlq*'',q). let p , ..., P in v(q’,q), at least Py being

1 Ylwl 1

y eees P
w
I

w

3 ¥ IR B i1ti i
in wui(q',q ), be positions which spell wl"'wlwl' P,

1 w|
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are hence positions which spell an occcurrence of a subword of
length < m, in wvll,q). Hence they are smller than or equal to those
positions which spell the last cccurrence of w in vll,q) which are

in vig''’,q). Hence w is a subword of u(p*,p).[]

The following corollary gives another result for inclusion (one

was proposition 3.2.3).

Crollary 6.1.5

let |a] =r. Then ~, _, C ~ .
4] (ml+‘m1+1)2m2(r+1)m2,mz) (my NC1,m))

Proaf From theorem 6.1.4 and proposition 3.2,.3.[]



2. An equational characterization of the first sublevel of the second

level of the Straubing hierarchy

In this section, we show that the equations in proposition 5.1.9

are part of a system ultimately defining v2,1 for an alphabet of two

letters.

lewsm 6.2.1

Let m> 1. Let u, v€A andlet p, ..., p_In u
(1:»1 < ... % ps) (ql, TETI A in v (1:;1 X cen <qs,)) be the
positions which spell the first and last occurrences of every subword

of length<m in u (v)., u-~ v if and only if
(1,m)

(1) 8 = 5',
(2) Q:pi if andonly if Qqg, for i=1, ..., 5 and sone a €A
and
(3) u(pi,p“_l) ~1 V(qi’qiﬂ) for i=1, ..., s-1l,.
Proof Assume (1), (2) and (3) hold. A wimming strategy for player II
in the game gu m)(u,v) to wan each play is described as follows.

]
Let p be a position in u chosen by player I i1n the first nove (the
proof is similar vhen starting with a position in v). Assume Q:p.
Case 1: p is among Pys =ees P i.e., p= P, for some i,

141 s. Since (1) holds, we can consider q = q;- (2) implies

I

that Q:q.
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Case 2: p € U(px’piﬂ) for som i, 1 <1 £ s-1. From (3), there
1s g €vig,,q;,,) such that Q:q. In erther case, (1), (2), (3) and

the choice of gq 1mply that u(p, |u]l ~*em YO jv|l and

)

ull,p? * (m ull,q).

Conversely, assume u ~ v. (1) and (2) obviously hold.

1,m

Also, U(px’piﬂ) YD V(qx'qul) for 1 =1, ..., s-1. To see

this, let p be 1in U(px’piﬂ) (the proof is similar when starting

with g 1n v(ql,q“_l)). Consider the following play of the game
gu m (u,v). Player I, 1n the first mowe, chooses p. Hence there
1

exists q 1in v such that u(p, |u]l of u(q, jv]l and

m)

ull,p) vll,q). Assume that g ¢ U(qi’qul)' Hence g € v[l,qll

T tm)
or q € u[q1+1,|v|]. From the choice of the p.’s and the q;’s,

erther u(p, |ull » wiq, |v|l or wuli,p) » vll,q). Contradiction.

(m) (m)

The result follows.[]

ilewm 6.2.2

let m> 1. Let u, v€A. If u~ v, then there exists

(1,m
wGR* such that u 15 a subword of w, v 15 a subword of w and

u v.

“t,m Y Ta,m

Proof let A ={a;,...,a). If r=1, u=v or |uf, [|v] 2 N(L,m)
by chapter three. Choose w such that |w| = max{|u|,[v]>. For

r*1, let Pys -5 P (p1 < ... < ps) be the positions which

spell the first and last occurrences of every subword of length < m

iIn u. s 15 no nore than 2m(r+1)m. Aissume Qt: pl. Since
i

u by lemma 6.2.1, the positions gy =+oy 9

“i,m V! s
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(c:;1 < ... < qs) in v which spell the first and last occurrences of

every subword of length < wmin v are such that Q;’ q, and
J.
1

U(pi’piﬂ) ~) v(ql,q“l) for 1 =1, ..., s-i. Hence by lemma
9.1.2, since u(pi,piﬂ) ) v(qi,q“x), there exists w; such that
)} is a subword of Wiy V(qi’qiﬂ) is a subword of w, and
WRHP ) Yy Yi Vo V9 ). Let

ws_laj. u is a subvord of w, v is a subword
5

of w and u~ w

(1, m ”(1,m) v by lemm 6.2.1.[1

Now, let us define classes of equations as follows. Far m:2 i,

1 . .
c(l,m) cansists of the equations

Ul-- -umxwlun .Vm = ull . .u“yxvlc -.Vm

vhere the u's and the w's are of the form xey, yex, xye or yxe

for some e, 1 2e < Ni,m. The eqiction

(xy)mxy(xy)m = (xy)myx(xy)m 1s such an exanple.

2

c(l.m) consists of the equations

wiomg mi 2 mj
Uy ..U X RR Jv...v‘i=ul...uix X X dy

1---Vj

vhere the u’s and the v's are as above and @< i, gj<m The

equation (xy)mx(xy)m = (xy)mxz(xy)m is an examplae.




1owma 6.2.3

satisfy (Z1 v 02 for all

The monoids in V© , (,m (1,m

2,1
sufficiently large m.

Proof It is easily seen, using lemme 6.2.1, that monoids in V

2,1
. 1 2 .
satisfy c(l,m) U C“’m) for som m > 1. This comes from the fact
that 1f MEV, , then M< A"/~ for somle m > 1. Since
2,1 (1,m)
# . 1 2 . a 1 2
A /N(l,m) satisfies c(l,m) u c(l’m), M satisfies C“,m) U c(l,m)'
. . . 1 2
Moreover, if M in 02’1 satisfies c(l,m) U c(l,m) for some
m> 1, then 1t satisfies Cl U 02 for all n 2z m since

(1,n) (1,n)

~ C ~ .
(,m S Ta,m for those n.[1

Thearem 6.2.4
Iet M be a monoid generated by two elements. Then M belongs

ta 02 i if and only if it ultimately satisfies the equations
)
1 2

Vet Ct,m Y S1,me

Proaof We have to prove that M € 02 {
]
2

equations in C1 uce for all m sufficiently large. By

(a,m Y Ca,m
1 u ¢? for all
(1, m) (1,m)

if and only 1f it satisfies the

lemmr 6.2.3; monoids in 02 L satisfy C
y
suf ficiently large m.

Conversely, let ¢ : Q* -+ M be a swjective morphism satisfying

1 2

uP = v¥ for every equation u = v 1In Unzm c(l,n) U c(l,n) for some

m> 1. Let us show that H € 02 e It is sufficient to prove that for
4

all x and y in A*, X implies P =yP., For =y =1,

“(,m Y

it is certainly true. Assume x, y # l. Let Pys == Py

(p,‘ 4,0 < pﬁ) (ql, CETI (q1 < ... < qs)) be the positions




,
P
;

which spell the first and last occurrences of every subword of
length < m in x (y). By lemm 6.2.1, they satisfy the following
; if and only if Qz q; 12iss, ad

Jy Jj

X
Q, P

u(pi,p“_l) ) u(ql,qi+1) for 1=141, ..., s-1,

Lemm 6.2.2 implies the existence of z = 3. z,a. 2,...a
IR PIC I O}

satisfying

*“am 2 "am ¥

WP P’ “e1y B Ty YOGy, and
“(pi'piﬂ.) and y(qi,q“l) are subwords of z;
fDr‘ i. = l' ey 5"1-
Hence, lemm 6.2.2 allows us to comsider only the case where

X=a. Hxa, X,...a,

and Y = A, V.3, Vo 3, y._,a
J11J22 J 1J22 5~1

R, _,3. .
s-1 dg dy Jg—1 Jg

vhere Ky is a subword of Y ard x for

: Ty Vi

1 =1, ..., s-1, WUWe observe also that if X, is a subword of w,

and LA a subuword of Yo w2 have also X~ Yir Hence we have

only to consider the case where
X=a, %,a, Hoseeell, UVR. 4..a X_.a._,
dy Vg 20 dy ey dey

y=a. x,a. R ...aj uAva -1 for scome i between |

Vg2 TS

and s-!, som@ 2 in u or in v. Ue have the following cases.

: R__3.
Js-—l Js
Case 1: If P; is the last position amomg the ones vhich spell a
first occurrence of a subword of length s m in x amd P,ey the

first position amng the onss vhich spell a last occurrence of a

subword of length < m i1n x, then using a particular case of
2 . N(i,m) N(l,m+1
X = X

enables us to assume that x and
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y do not contain more than N(1,m) consecutive ococurrences of a

letter. Hence we are able to waite ¥ and y# as

- = ]
X = ul...umt.wvl...um‘f’, vP = “1" .ummwl...vm? where the u's and
. 1 . 1
]
the uv's satisfy the properties stated in c(l,m)' Then using c“,m)
2 . _ .
and C“,m) enables us to wite y¥ as LIREEL S .vm‘P = H¥ since

a is in u or in wv.
Case 2: Otherwise, uv contains only a’s. fAssume uv = v.x’oaugu for

3*
some  u’ U, €EA . The case where a is in v 18 similar. Using

N(L,m)
K

0!
LNt

enables us as i1n Case 1 to assune that ¥ and y
do not contain wmore than N(i,m) consecutive occcurrences of a letter.

From the choice of the aJ. ‘s,
i

A X,Aa. R,ea.8. U, ~ a.xa X....a. u’_a amd
J11J22 Jla(m) ,111,122 ,).10

u(bva‘j“l...aa‘j "s—la‘; ) VgvR: @ Lemma 5.1.3

xs_la -
s~1 5 "ul Js

Jg-1

hence implies the existence of Upy  erey umGA*, Vs seey vaR*

such that a‘i xlaJ X,

Rl u' = u .-.um,
192 i

@ 1

Upa.  c..an R AL = Vioav, fa CuatC... Cua and
dist Jo-1 g

{a) ¢ v,a € ... ¢ vma. Moreover, it is easy to see that one may

assum® that there exist k and 1 betwen @ and m such that

ukﬂa...=u=a=v1=...=u and such that the u's and the

™m m-1?

v's are of the form uey, yex, xye or yxe, for sowe e,

2 . - N(1,m)-k-1 -
1 e < N(l,m. cu’m) gives xf = ul...uka m—lﬂ“'um,
N(1L,m)+i-k-1 -
u...wa vm_lﬂ...vm'l‘ = y¥. The resuit follows.[]




CONODSION

finalogously to ¥-varieties of languages and M-v .ieties of
monoids, +-varieties of languages and S-varieties of semigroups are
defined by replacing # by <+ and monoid by semgroup. The
correspondence between +-varieties and S-varieties holds. ﬁk are
examples of +-varieties of langueges and let us denote by Bk the
corresponding S-varieties. A resuit of Straubing (5t85] states that

if vk is decidable, then %‘ 1s decidable.

Simon’s characterization of the recognizable languages whose
syntactic monoids are §-trivial, i.e., ML) € J 1f and only if L
is a o -language for som@ wm, or vl = J, gives an algorithm to
decide 1f a recognizable languzage 15 of dot—depth A. If W 1is
decidabie, 1s ()W decidable? The solution of this open problem
could provide an algorithm to test if a language is of dot-depth k
since vkﬂ = ()Vk. Simon’s result is the basis for mxh recent
ressarch, for example, the effective characterization of Q+Bl, the
level | of the dot-depth hierarchy. Enast {En83al, (Hn83b]

demonstrated the decidabiiity of Bl' A simpler proof was obtained by

Therien [TheB85] using categories. R number of other consequences of



E«
3
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Simon’s theorem are: a general theory of congruence varieties [The8l1,
the study of languages whose syntactic monoids are p-groups or
nilpotent groups [(E1761, [The84], some purely combinatorial

investigations (Lo83). Sowe other consequences are given in [(5t801.

Most of the proofs of Simon’s theorem that have been published so
far, [E1761, ({Lal?91, (P182al, (S175] for example, depend on a
detailed study of combinatorial properties of the congruences " om
In [STB5], semigroup expansions were used to show the result that
every finite 9J-trivial nmonoid 1s a quotient of a finite nmonoid

admitting a partial order that 1s compatible with multiplication. Afs a

consequence, a radically new proof of Simon's theorem was obtained.

Our future research 1s concerned with more applications of the
logical characterizations stated in chapter two. For example, we
would like to settle some open problems such as a generalization of
Simon’s theorem. The following open questions concerning the
decidability of the Straubing hierarchy remain other goals for later
mnvestigation:

(1) Find a necessary and sufficient condition for & to be

(ml,. "’"\()

included in z(m, Chapters three, four, five and six

[LERE ,m'k,)
include partial results. fl necessary condition 1s

N(ml,. . .,nk) it N(m'l, . .,m'k, ).

(2) Do the equation systems 1in chapter five, section one, conpletely

characterize the M-varieties vl m for m> 47 There, it was shoun
y




-y T W

1,10 Y,z @™ Y 4

(3) let k>1. Let My eeey ™ be positive integers. let A

for any alphabet A.

that they do for V©

contain at least two letters. Find a necessary and sufficient

condition for A"/~ to be of dot-depth exactly d. It is
(ml, . ,mk)
easy to see that Q*/..( 1s of dot-depth exactly 1 if and
ml,...,mk)
only if k = 1. Using theorems 5.2.2 and 6.1.4, A/~ is

(ml,...,nh)
of dot-depth exactly 2 if and only if k=2 or (k =3 and
m, = 1). Also, similarly to lemm 6.1.1, for k ¢ 3, m, positive
integers, and m, 2 2 for 21 =2, ..., k-1, we have that

Q*/-v is of dot-depth exactly k.
(ml 5o ms ,nh)
(4) Generalize the equation systems of chapter six, section two, to
equation systems that characterize 02,1 for any alphabet, A
generalization of these systems for vz'm, m > 1, would provide an

equational characterization of dot-depth 2 monoids.
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