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Abstract

The reason behind why some people have severe COVID-19 and others develop asymp-

tomatic infection is not well understood. Understanding this phenomenon may help to

provide insights into the causes of severe COVID-19 and identify individuals at high risk

of suffering from it. Currently, the biological mechanisms involved in severe COVID-19

are not fully understood, and it remains difficult to predict the clinical outcomes of in-

fected patients. The mechanisms underlying COVID-19 infection can be studied through

host genetics and proteomics methods and could enable the development of better ther-

apeutics to treat and reduce the complications of COVID-19. One way to quickly assess

thousands of potential biological mechanisms leading to severe COVID-19 is to use cir-

culating proteins. These proteins are privileged drug targets because they are found in

circulation and can be easily measured with a blood test. To approach this problem, we

measured the abundance of 4,701 circulating human proteins in two independent cohorts

totaling 986 individuals. We then used these measures along with several clinical factors

relevant to COVID-19 to develop predictive models for severe COVID-19 in 417 partic-

ipants and validated these models in a separate cohort of 569 people. We also tested

whether the model including circulating proteins better predicted severe COVID-19 com-

pared to models including clinical risk factors without proteins. A baseline model in-

cluding age and sex provided an area under the receiver operator curve (AUC) of 65%

in the test cohort. The addition of 92 proteins from the 4,701 unique protein abundances

improved the AUC to 88% in the training cohort, and to 86% in the test cohort, suggest-

ing good generalizability. All 92 selected proteins were enriched for cytokine receptors,
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but more than half of the enriched pathways were not immune-related. In summary,

these results suggest that measuring circulating proteins can allow reasonably accurate

predictions of clinical outcomes of COVID-19. In order to understand how to incorpo-

rate protein measurement and translate findings into clinical care, further research will

be needed.
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Abrégé

La raison pour laquelle certaines personnes développent une COVID-19 sévère et d’autres

une infection asymptomatique demeure incomprise. Une meilleure compréhension de ce

phénomène pourrait aider à mieux cerner les causes de la COVID-19 sévère et identi-

fier les individus à haut risque d’en souffrir. Actuellement, les mécanismes biologiques

impliqués dans la COVID-19 sévère ne sont pas entièrement comprises, et il demeure

difficile de prédire les issus cliniques des patients infectés. Les mécanismes sous-tendant

l’infection au COVID-19 peuvent étudiés grâce à des méthodes de génétique et de protéomique

de l’hôte, et pourrait permettre le développement de meilleurs traitements pour traiter

et réduire les complications de la COVID-19. Une façon d’évaluer rapidement des mil-

liers de mécanismes biologiques potentiels conduisant à un COVID-19 grave consiste à

utiliser des protéines circulantes. Ces protéines sont des cibles pharmaceutiques à po-

tentiel élevés car elles se trouvent dans la circulation, et facilement mesurables avec une

analyse sanguine. Ainsi, l’études es protéines circulantes pourrait permettre l’élaboration

de modèles prédictifs de la COVID-19 sévère et faciliter le développement de meilleures

thérapies. Pour résoudre ce problème, nous avons mesuré l’abondance de 4 701 protéines

humaines en circulation dans deux cohortes indépendantes totalisant 986 individus. Nous

avons ensuite utilisé ces mesures ainsi que plusieurs facteurs cliniques pertinents à la

COVID-19, et avons développé des modèles de prédiction pour la COVID-19 sévère chez

417 participants. Nous avons ensuite validé ces modèles dans une cohorte distincte de

569 personnes. Nous avons aussi testé si le modèle incluant des protéines circulantes

prédisait mieux la COVID-19 sévère par rapport aux modèles incluant les facteurs de
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risque clinique sans protéines. Un modèle de référence incluant l’âge et le sexe du pa-

tient obtient une aire sous la courbe récepteur-opérateur (AUC) de 65% dans la cohorte

test. L’ajout de 92 protéines parmi les 4 701 mesurées augmente l’AUC à 88% dans la co-

horte d’entraı̂nement, et à 86% dans la cohorte test, suggérant une bonne généralisabilité.

L’ensemble des 92 protéines sélectionnées est enrichi en récepteurs de cytokines, mais

plus de la moitié des voies enrichies n’étaient pas non plus directement liées au système

immunitaire. En résumé, ces résultats suggèrent que la mesure des protéines circulantes

peut permettre des prédictions raisonnablement précises des issus cliniques de la COVID-

19. Afin de comprendre comment intégrer la mesure des protéines et traduire les résultats

en soins cliniques, des recherches supplémentaires seront nécessaires.
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Contributions

The main contribution of this thesis is the use of machine learning in the evaluation of

one of the largest datasets of circulating proteins in the world in COVID-19 patients to

predict whether an individual will be more susceptible to COVID-19 infection or develop

severe disease. In summary, the two main contributions of this work are as follows: 1) to

utilize a dataset composed of the largest set of circulating protein biomarkers measured in

COVID-19 patients collected over the course of disease progression to design an accurate,

clinically relevant multiprotein machine learning model for the prediction of COVID-19

adverse outcomes. 2) To externally validate the robustness of the model in a separate

dataset from collaborators at Mount Sinai in New York, who have generated the same

proteomic profiling and clinical outcomes.

Preliminary parts of the work in this thesis has been accepted as an abstract at the

American Society of Human Genetics (ASHG) in Oct 2021 and presented as a poster pre-

sentation by the author of this thesis who is a first co-author of the work along with two

other first authors: Drs. Sirui Zhou, and Edgar Gonzalez-Kozlova, and a senior author:

Dr. Brent Richards. Major parts of this work has also been submitted to Scientific Reports

and is under review at the current preparation stage of this thesis. Both Drs. Sirui Zhou,

Edgar Gonzalez-Kozlova, and Brent Richards have acknowledged the use of the abstract

and the manuscript in this thesis submission.

v



Acknowledgements

First and foremost, I would like to thank everyone that has been a part of my life over the

past two years of my Master’s (Sept 2020 – June 2022). Due to COVID-19, my graduate

school experience was not the same as I had hoped and dreamed of, but it would not have

been as stimulating, fun, and memorable without those that helped me and were with me

along the way. Thank you to my supervisors Dr. Joelle Pineau and Dr. Brent Richards

for their advice and supervision. Dr. Joelle Pineau provided helpful discussions and

guidance on the use of machine learning properly. Dr. Brent Richards provided crucial

expertise and knowledge in the field of human genetics and led me to the important

problems that should be tackled to improve clinical care.

I am deeply grateful for Dr. Sirui Zhou who was a postdoc in Dr. Brent Richards’

lab until Dec 2021 (now assistant professor in human genetics at McGill University) for

her support and guidance throughout my entire Master’s. She was instrumental to my

success and taught me so much in the field of genetics and proteomics. I would not be

where I am right now without her. I would like to thank Marc-André Legault who was
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Chapter 1

Introduction

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-

2 (SARS-CoV-2) remains to be one of the most difficult challenges countries around the

world face today [1]. In particular, the emergence of novel strains may reduce the efficacy

of vaccines and lead to more breakthrough cases. Currently, few disease specific therapies

exist for treating severe SARS-CoV-2 infection [2] and the prediction of which individuals

will experience these adverse outcomes is difficult.

Proteins are complex biomolecules which play major roles in the human body such

as modulating disease, regulating key biochemical processes, and maintaining repair

functionality. Within the human genome, nearly 30,000 proteins are encoded by 19,000

genes [3]. The expression patterns and regulation of proteomic biomarkers may enable

novel discoveries into how immune responses to viral infection occur [4]. Determining

proteins that play key roles during viral infection can provide useful information to iden-

tify groups of individuals who are at risk for severe COVID-19 outcomes, such as intu-

bation and death. We hypothesize that large-scale blood proteomic data in COVID-19

patients can be used to predict the course and outcome of the disease. Further, changes in

protein abundances in patients during infection may be driven by the host genome and

the identification of these drivers may assist drug development. This is because human

genetic findings can help to pinpoint critical control points in disease etiology.

1



A remarkable feature of COVID-19 disease is its highly variable clinical course, where

some individuals manifest severe disease or death, and others remain asymptomatic. Sev-

eral clinical and genetic risk factors explain a proportion of these outcomes [4–8], yet most

of the host biological causes of these adverse COVID-19 outcomes remain unknown.

Recent reports have identified some of the biologic pathways influencing risk of ad-

verse COVID-19, such as immune responses [9–12], interferon pathways [13–15], and

T-cell dysfunction [16, 17]. However, many such studies have focused on narrow sets

of pre-selected cytokines. To expand this analysis, proteomic studies can rapidly assess

thousands of potential biomarkers associated with the severity of COVID-19 through the

measurement of blood circulating proteins. Such circulating proteins may be useful be-

cause they can help to identify pathways influencing severity of disease. They may also

identify individuals at high risk of a severe COVID-19 clinical course. Similarly, circulat-

ing proteomic biomarkers have recently been shown to serve as predictors of other com-

mon diseases [18–24] including cardiovascular disease. They are also relevant in drug

discovery because they are generally more accessible to pharmacological manipulation

than intracellular proteins [25–29]. Thus, understanding the circulating proteins associ-

ated with adverse COVID-19 outcomes may be helpful to address major challenges raised

by the current pandemic [16, 30–41].

There are two main objectives of this research work: 1) to utilize a dataset composed

of the largest group of circulating protein biomarkers for COVID-19 patients collected

over the course of disease progression to design an accurate, clinically relevant multipro-

tein machine learning model for the prediction of COVID-19 adverse outcomes. 2) To

externally validate the robustness of the model in a separate dataset from collaborators at

Mount Sinai in New York, who have generated the same proteomic profiling and clinical

outcomes. These two objectives are described and presented in further detail in chapter 4

of this thesis.

For this project, we used already measured and publicly available circulating protein

levels of patients enrolled in the Biobanque Québécoise de la COVID-19 (BQC19) [42].
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Protein levels were measured using the SomaLogic SomaScan platform [43], and to date,

this data consists of 1,957 blood samples collected from 1,253 individuals across two

batches with 4,701 protein measurements for each sample. Due to the earlier comple-

tion date of the work presented by the first two objectives of this thesis (chapter 4), only

half of the samples (1,039 samples) from 504 individuals were available.

In chapter 4 of this thesis, the overarching goal is to identify a proteomic signature

for COVID-19 outcomes. In the first objective of this thesis, COVID-19 outcomes are

classified into two groups based on different levels of disease severity, and 4,984 nucleic

acid aptamers (SOMAmer reagents) [44] targeting 4,701 proteins measured on the Soma-

Logic platform are leveraged along with clinical and demographic variables to predict

these outcomes using dimensionality reduction models. Previous studies have shown

the effectiveness of leveraging a similar set of proteomic biomarkers as prognostic tools

for developing predictive models related to COVID-19 infection [19] and other disease

statuses [18,20]. Here, we developed and utilized machine learning algorithms and mod-

els such as Least Absolute Shrinkage and Selection Operator (LASSO), Ridge regression,

and elastic-net logistic regression to predict COVID-19 outcomes. One challenge to over-

come in order to produce accurate predictions is to reduce the number of proteins to a

manageable amount before inputting them into the models. Methods such as Principal

Component Analysis (PCA), LASSO, and uniform manifold approximation and projec-

tion (UMAP) were used for this task of dimensionality reduction. In addition, we used

False Discovery Rate (FDR) corrected P values from logistic regression to filter out non-

significant proteins.

In the second objective of this thesis, we tested the external validity of our findings

by replicating our results in the Icahn School of Medicine at Mount Sinai COVID-19

biobank [45], which consists of 4,701 proteins measured from 569 individuals. To do so,

we selected the optimal model trained in the BQC19 cohort and applied it to the Mount

Sinai COVID-19 biobank. We then tested the sensitivity, specificity, positive and negative

predictive values of our model in the external cohort to determine the generalizability of

3



the model. We conclude the chapter with a discussion on how the enhancement, sharing

of resources, and collaboration between the BQC19 and Mount Sinai COVID-19 biobanks

allows for the increase in the power and validity of the potential findings.

The novelty of the work presented in chapter 4 is in the inclusion of an independent

cohort which represents best practices for model development and validation [46]. Test-

ing of a prediction model in a cohort separate from the training cohort is vital. By in-

cluding samples recruited from three separate hospitals, across two separate health care

systems in two different countries, we increased the probability that the results presented

are generalizable and not overfitted to the training data [47]. In addition, many previous

studies that have tested the association between protein levels and COVID-19 outcomes

have focused solely on circulating cytokines and chemokines [16, 48–54]. While this is a

reasonable approach given the nature of the disease, we are unaware of any other studies

of this scale that have tested the association of 4,701 circulating proteins with COVID-19

outcomes.

In summary, the overall structure for this thesis is as follows: chapter 2 contains

pertinent background information required to understand the technicalities of the work

presented in chapter 4 and includes a summary of existing literature on proteomics, ge-

nomics, and COVID-19. Chapter 3 provides a primer on machine learning and statistics

related topics that are relevant to understanding the methods used in chapter 4. Chapter

4 describes the work performed on circulating proteins to identify a proteomic signature

for COVID-19 outcomes. Finally, in chapter 5 we provide a conclusion to the thesis and

discuss possibilities for future work.
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Chapter 2

Background and Literature Review

In this section, we provide a review on the existing literature involving work on pro-

teomics and genomics in the context of COVID-19 as well as subsections on relevant

background knowledge important to later sections of this thesis.

Determining the genetic determinants of what causes severe COVID-19 disease is an

important question. While it is already known that COVID-19 disproportionately affects

older adults and that severe disease is more likely to occur in older adults [55] as well

as those that are immunosuppressed [56], it is unknown why young, healthy individuals

die from disease.

The predisposition for severe COVID-19 may lie within the genome and variation

in the genetic variants everyone holds. By linking genomic data with high-dimensional

proteomic data, novel findings related to COVID-19 infection can be rapidly discovered

allowing for greater insights into the disease etiology.

The use of high-throughput proteomic analysis where thousands of protein measure-

ments are extracted per sample has contributed insight into how plasma proteins may

be used to assess and prevent future risk of common chronic or age-related morbidities.

Williams et al. 2019 [18] have shown that protein scanning can serve as a source for

observing potential health risks in individuals with only a single blood sample being re-

quired. In their work, they analyzed a similar set of 5,000 plasma proteins and developed
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predictive machine learning models to investigate the health state of individuals with re-

gards to 11 different health indicators such as liver fat, kidney filtration, percentage body

fat, visceral fat mass, lean body mass, cardiopulmonary fitness, physical activity, alcohol

consumption, cigarette smoking, diabetes risk, and primary cardiovascular event risk.

Their protein-phenotype models utilized elastic-net linear regression for predicting con-

tinuous outcomes, elastic net logistic regression for dichotomous outcomes, or survival

models for longitudinal events. For dimensionality reduction, LASSO was used and false

discovery rate (FDR)-corrected P values were used to rank candidate features. Models

were trained using cross validation with data split into training, validation, and testing

sets and evaluated using the AUC score, r2, or accuracy. While effective in certain sce-

narios, such as the protein model for percentage body fat producing an r2 of 0.91, the

results produced by Williams derived data from a single blood draw with no follow up

longitudinal analyses. In our case, data includes multiple sample points, allowing the

assessment of the sensitivity of such longitudinal analyses. Furthermore, major features

such as demographic data, risk factors, and genetic information were not included in their

model development due to the goal of reducing costs and simplifying measures required

for a future health checkup.

Other studies have also utilized protein-based models for predicting disease outcomes.

Ganz et al. 2016 measured 1,130 proteins from 2,496 samples to predict cardiovascular

outcomes [20]. LASSO was used as a form of feature selection to select 16 proteins and

this set was further reduced down to a 9-protein model using stepwise backward elim-

ination. The final 9-protein model was used to predict 4-year probability of myocardial

infarction, stroke, heart failure, and all-cause death with performance measured by the

C-statistic. In addition, plasma proteins have also been used as diagnostic tools in previ-

ous studies related to lung cancer [57,58] and a previous study implementing a 27-protein

model for predicting cardiovascular disease risk has been shown to be an effective pre-

dictor of adverse effects of COVID-19 [19].
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Previous studies have attempted to identify a proteomic signature for COVID-19 out-

comes by profiling metabolic biomarkers using nuclear magnetic resonance spectroscopy

[59], however this has limitations due to the intrinsic insensitivity of the methods. A

team at the Massachusetts General Hospital (MGH) worked on a longitudinal COVID-19

study in collaboration with Olink Proteomics (a Swedish company specializing in pro-

teomics and biomarker discovery) where over 1,400 plasma proteins were measured for

each individual. The cohort involved 384 patients with 306 COVID positive and 78 virus-

negative individuals who were enrolled due to the presentation of at-risk symptoms of

COVID. Symptoms included ”1) tachypnea ≥ 22 breaths per minute; 2) oxygen saturation

≤ 92% on room air; 3) a requirement for supplemental oxygen; or 4) positive-pressure

ventilation” [33]. Of the entire cohort, 306 patients (80%) tested positive for SARS-CoV-2

while the rest of the group (78 individuals) did not.

For this MGH cohort, over 1,400 plasma proteins were measured for each patient

which was at the time of release, one of the largest longitudinal studies on COVID-19.

Plasma protein levels were sampled from COVID positive patients (n = 306) over the

course of a week with measurements on days 0, 3, and 7. For COVID negative individ-

uals, plasma proteins were only sampled on day 0. In addition, COVID outcomes for

the entire cohort were also collected and each individual had an outcome classified based

on the World Health Organization (WHO) COVID-19 outcomes scale, which measures

patient health status at defined time intervals over the course of a 28-day window once

they have been diagnosed with COVID. The time points are at day 0, 3, 7, and 28 where

for each day, individuals are classified using a numerical scale into one of the 6 categori-

cal groups ranging from 1 to 6 with lower values representing higher severity of COVID

infection. The scale is defined as follows: 1 = Death within 28 days; 2 = Intubated, ven-

tilated, survived to 28 days; 3 = Non-invasive ventilation or high-flow nasal cannula; 4

= Hospitalized, supplementary O2 required; 5 = Hospitalized, no supplementary O2 re-

quired; 6 = Not hospitalized. In this study, protein levels were quantified according to
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Normalized Protein eEXpression (NPX) levels where a larger magnitude indicates higher

concentration of that protein.

While studies such as [33] have developed protein-based models for COVID out-

comes, none have analyzed proteins at such a large-scale as performed in chapter 4 which

contains work performed on one of the largest COVID-19 circulating protein datasets in

the world. The identification of proteins that may be causally involved in the devel-

opment of severe COVID-19 in patients is important and proteins such as OAS1 have

been shown to affect COVID-19 outcomes [4]. Further, the gene coding for angiotensin-

converting enzyme 2 (ACE2) which is a cell surface protein has been discovered to affect

the ability of COVID-19 to enter host cells [60]. Thus, by analyzing massive scale pro-

teomics and pinpointing important proteins involved in adverse COVID-19 outcomes, we

can accelerate and enable drug repurposing, identification of new drug candidates, pre-

dict disease progression, and allow opportunities for further therapeutic development.

2.1 Basic Epidemiological Terminology

In this section, we provide an overview of a few key terms and important definitions that

are relevant to later sections of this work.

• Prospective study (prospective cohort study): enrolling participants into study prior

to the development of the disease or outcome. e.g. Randomized Controlled Trials

(RCTs).

• Case control studies (retrospective studies, case-referrent studies): studies where

the advantages include:

– ability to simulataneously study multiple risk factors.

– association between a risk factor and outcome can be initially tested for.

– less time required than prospective studies due to disease or outcome already

having happened.
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• Case: a subject with a disease or outcome of interest.

• Control: a subject without the disease or outcome of interest present.

• Confounding: when a third variable is strongly associated with both the exposure

and outcome variable and is not in the causal pathway between the exposure and

outcome.

• Meta-analysis: combining data from multiple studies together to reach a conclu-

sion. Advantages: greater statistical power, allows confirmation of results from in-

dividual studies, improved capability of generalizing, and extrapolating data to the

general population affected by disease.

• Matched design: each case has a control that is matched (i.e. by age, gender) indi-

vidually for that case. e.g. Case = 35 year old male with disease; Control: 35 year

old male without disease.

• Unmatched design: controls are sampled from a non-affected population.

• Epidemiology: the study of health and disease patterns within the population. Dis-

tinction between classical epidemiology (without genetic factors) and genetic epi-

demiology (epidemiology with the use of genetic factors).

• disease etiology: the cause of a disease.

• Risk factor: usually the ”exposure variable”.

2.2 Human Genetics

The central dogma of molecular biology encompasses that shown in Figure 2.1. This

diagram displays the flow of information from DNA to mRNA through the process of

transcription and finally to proteins by a process called translation. Each step can be mea-

sured by different omics approaches such as genomics, transcriptomics, and proteomics
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and these technologies are important in investigating different biological questions. For

instance, trait heritability can be studied through genomics. Proteins are the functional

products within the body that are influenced by both an individual’s genetics at birth and

their environment and can be studied using proteomics. The effect of the environment can

be at the micro level involving cells, or at the macro level involving diet, lifestyle changes,

or pharmacological interventions involving drugs and chemicals. One of the central goals

of human genetics is to identify genetic risk factors for diseases. Diseases may be com-

plex diseases that are common within the population such as Alzheimer’s disease, au-

toimmune diseases, type II diabetes, and many more. Other diseases such as sickle-cell

anemia, Huntington’s disease, and cystic fibrosis are examples of rare Mendelian dis-

eases. A complex disease is one caused by a combination of factors including lifestyle

choices, genetics, and the environment, while Mendelian disorders (single gene diseases)

are caused by alterations in the genome of an individual and tend to be rare. Many tools

exist for finding genetic risk factors and one such tool is a genome-wide association study

(GWAS) which is described in section 2.3.

Figure 2.1: OMICS technologies: Moving from DNA to phenotype. Retrieved from [61]

2.3 Genome-Wide Association Studies

Genome-wide association studies (GWAS) provide a way for investigating the genetic

architecture of common diseases [62] and also relatively rare diseases [63]. Genetic varia-

tion in the genome occurs through single nucleotide variants (SNVs) which are any single
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nucleotide change that occurs in the genome (rare and common single nucleotide varia-

tions) or indels which are insertions or deletions of bases that occur in an organism’s

genome. In DNA, there are four nucleotides: guanine (G), adenine (A), cytosine (C), and

thymine (T). Thus, an example of a SNV can be a replacement of the nucleotide thymine

(T) with the nucleotide cytosine (C) within the genome. Single nucleotide variants (SNVs)

and indels are one of the most common types of genetic variation which are identified by

GWAS to determine how genetic variations contribute to an individual’s risk for complex

diseases. Some SNVs are known as single nucleotide polymorphisms (SNPs) if the vari-

ant is a common variant present in 1-5% of the population. SNPs will rarely have a high

impact or effect on the disease or gene function whereas less common SNVs and indels

(rarity due to selective pressure) may have real high effect on the function of a gene. For

example, when the position of a SNV is within a gene or in close proximity to a gene such

as in a regulatory region, they may act as important biomarkers enabling the elucidation

of gene-disease associations and may even affect gene function.

The association between genetic variation and diseases can be investigated through

GWAS and visualized with Manhattan plots (Figure 2.2). Manhattan plots display the

association between genetic variants in the entire genome (X-axis) and a disease outcome,

for example COVID-19 severity, represented by the statistical significance or P value (Y-

axis) in negative logarithmic scale. Each data point represents a single SNP or indel and

displays the association between that SNP at a particular position on a chromosome and

a trait of interest across all individuals.

Statistical significance in GWAS requires a P value less than 5×10−8 due to there being

approximately 1 million common, independent SNPs in the genome ( 0.05
1×10−6 ). Note that

there are different terms for SNPs such as ”tag” SNPs which are those used on genotype

microarrays and ”lead” or ”index” SNPs which refer to SNPs that have the smallest and

therefore most significant P values in a particular region of interest [64].

GWAS have many applications and one of the ways they can be used is to generate

polygenic risk scores (PRS). A polygenic risk score is a single scalar value estimating the
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genetic risk of an individual for a phenotypic trait or disease. The calculation of a PRS

involves summing over all of an individual’s risk alleles and weighting each risk allele by

the effect size computed for that allele from GWAS. Note that in the construction of a PRS,

linkage disequilibrium (LD) must be accounted for when computing weights and this is

done by linkage disequilibrium pruning, which removes loci that have a large pairwise

LD value. By providing a single value estimate of an individual’s genetic liability to a

trait or disease, polygenic risk scores combine and summarize the effects of many SNPs

and enable the ability to provide a risk prediction of complex traits such as mental disor-

ders, autoimmune diseases, cardiovascular disease, diabetes, height, and hair colour. In

the future, polygenic risk scores may be more widespread in precision and personalized

medicine for the prediction and prevention of disease.

Figure 2.2: Manhattan plot. Retrieved from [64]

2.4 Multiple Testing

The problem of multiple comparisons or multiple testing occurs when many statistical

inferences are made simultaneously with each statistical test likely to yield a discovery.

For example, if 1 million SNPs are tested for association at the 5% level of significance,

the expected number of false positives would be 50,000 [65]. In genomics, there are two
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common methods for addressing the multiple comparisons problem which are discussed

in this section.

2.4.1 Bonferroni Correction: Controlling the Familywise Error Rate

The Bonferroni correction is a more conservative approach and one of the simplest and

most widely used methods for counteracting the problem of multiple comparisons [66].

The occurrence of false positives or Type I errors is controlled by thresholding the family-

wise error rate or the probability that a false conclusion is made when a series of hypoth-

esis tests are performed.

Bonf(P) = P/i

where i is the number of tests.

For example, if 1,000 independent tests are performed and the threshold for significance

has been set to P<0.05 then the Bonferroni corrected P value to be significant is P< 0.05
1000

=

5× 10−5.

Generally, when the entire set of tests performed are all independent from one an-

other, then the adjustments made by the Bonferroni correction method will be perfect.

However, if positive correlation occurs between any of the test statistics (and thus some

tests are dependent), the Bonferroni correction may not be the most suitable method in

multiple hypothesis testing. Despite this fact, the Bonferroni correction is still widely ac-

cepted and used in genetic association studies. A reason being due to high false positivity

rates in GWAS due to population structure and family relatedness which is mitigated by

being overly conservative. However, due to the conservative nature of this approach, a

consequence is the reduction of statistical power resulting from the increased probability

of producing false negatives. Thus, other methods should be used such as the Benjamini-

Hochberg procedure [67] to prevent the loss of potentially valuable information.
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2.4.2 Benjamini-Hochberg Procedure: Controlling the False Discovery

Rate (FDR)

Aside from the Bonferroni correction, an alternative method for controlling for multiple

comparisons is the Benjamini-Hochberg (BH) procedure [67] which is more practical and

widely used in genomics problems.

If the goal of a study is discovery, the BH procedure can be used and is preferable to

the Bonferroni correction method. The idea of discovery in a statistical context constitutes

the rejection of a hypothesis (e.g., reject the null hypothesis. In a GWAS context, the null

hypthesis is that none of the SNPs are associated with the disease or trait of interest).

Therefore, controlling for the false discovery rate involves limiting or setting a threshold

for the number of incorrect rejections of a hypothesis. The false discovery rate is the

likelihood that an incorrect reject of a hypothesis occurs and can be preset according to

the problem of interest. For example, setting an FDR of 10% corresponds to a willingness

to have 10% of results being false positives.

pBH
(i) = min{min

j≥i
{
mp(j)
j

}, 1}.

where m is the total number of tests, j is the rank order of the P value, and p is the P value.

The method is as follows:

1. First, order all P values from small to large. Then multiply each value by the total

number of tests and divide by its rank order.

2. Second, make sure that the resulting sequence of P values is non-decreasing: if it

ever starts decreasing, make the preceding value equal to the subsequent (repeat,

until the whole sequence becomes non-decreasing).

3. If any value ends up larger than 1, make it equal to 1.
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Chapter 3

Primer on Machine Learning

Machine Learning (ML) has been commonly defined as the set of algorithms and statis-

tical models that are used by computer systems to perform a specific task without the

use of explicit instructions. ”A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance at tasks in

T, as measured by P, improves with experience E” [68]. In essence, the goal is to build a

model that best represents the structure of a given dataset and use this model to predict

or generalize to unseen data.

A machine learning model is given some input (also known as variables, features,

attributes, predictors) and produces an output (also known as variables, targets, labels,

predictions). To train such a model, the dataset is generally divided into a training set and

a testing set. The training set is used to build and update the model and evaluation of the

final performance or generalizability of the model is performed by running the trained

model on the test set [69]. The algorithm should not have access to the test set during

training to prevent information leakage and prediction bias. Since the test set is used to

evaluate machine learning methods, the performance of a model on testing data is the

most important indicator of performance.

There are three major recognized categories in machine learning: supervised learning,

unsupervised learning, and reinforcement learning. Supervised learning trains models on
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data where the desired outcome or labels are already known and includes two categories

of algorithms: regression and classification. In classification, the predictions are categor-

ical variables representing discrete values, whereas in regression, the output produced

by the model are numerical and represent continuous values. Unsupervised learning in-

volves training models with unlabeled data. This category of machine learning involves

methods such as clustering, where the labels or classes are inferred and not provided to

the algorithm, dimensionality reduction, and generative modeling, where the algorithm mod-

els the distribution of data and learns to generate the data instead of directly categorizing

the instances into different classes. Reinforcement learning involves an algorithm known

as an “agent” that interacts with an environment, and uses weak supervision through the

reward signal to perform tasks within the environment. Semi-supervised machine learn-

ing algorithms also exist. These algorithms combine aspects from both supervised and

unsupervised learning and uses a few labeled examples to train itself.

While machine learning has been used in a variety of applications and proven effective

in domains such as healthcare [70], image recognition [71], self-driving cars [72], fraud de-

tection [73] and many more, there are many shortcomings that still need to be addressed

involving privacy, bias (errors due to incorrect assumptions of the model), generaliza-

tion [74], and the misuse of machine learning algorithms such as deepfakes [75].

In the following subsections, linear models are explored in more detail as they are

discussed significantly in chapter 4 of this thesis.

3.1 Regression Models

In this section, we provide background on types of generalized linear models used in

later sections of this thesis. Generalized linear models are a generalization of the concepts

and abilities of regular linear models, and models such as linear regression and logistic

regression are detailed in the following subsections.
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3.1.1 Linear Regression

Linear regression also referred to as least squares regression attempts to discover the best

fitting line to the data [76]. The goal is to find the line that results in the minimum sum

of squared residuals where the residuals are the differences between the real data and

the predicted value by the model. We define x as the predictor variable (also termed the

input or independent variable) and y as the response variable (also termed the output

or dependent variable). Assuming we have i = 1, . . . , n instances, we want to minimize∑n
i=1 r

2
i , where ri is the residual defined as ri = yi−f(xi, β) and β is the vector of weights.

The f is the model or function which takes an input x and outputs a prediction y. In

two dimensions, f(xi, β) = β0 + β1x which is a straight line. The ultimate goal is to find

the optimal values for the intercept β0 and the slope β1. Linear regression is also termed

”Least squares” since the final model finds the line that results in the smallest sum of

squares by searching for values for βi which provide the best fitting line to the training

data.

If we define X as a matrix with full column rank, then the analytical solution for a

linear regression model of the form y = Xβ has the least squares solution

β̂ = argmin ∥Xβ − y∥2,

which is given by

β̂ = (XTX)−1XTy.

However, if X is large and dense, and the closed form solution becomes computa-

tionally intractable, an iterative algorithm like gradient descent should be used to fit the

model parameters [77].

Theoretically, gradient descent is an algorithm that minimizes functions. Given a func-

tion defined by a set of parameters, gradient descent starts with an initial set of parame-

ters and iteratively moves towards a set of parameter values that minimize the function.
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For the iterative minimization step, we take steps in the negative direction of the function

gradient.

Given Error function: Error(m,b) = 1
N

∑N
i=1(yi − (mxi + b))2, we compute a partial

derivative for each parameter (in this case, m and b)

∂

∂m
=

2

N

N∑
i=1

−xi(yi − (mxi + b))

∂

∂b
=

2

N

N∑
i=1

−(yi − (mxi + b))

where m is defined as the slope or gradient of the function and b is the bias parameter. In

the algorithm, we can initialize our search at any pair m and b values. Each iteration will

update m and b to give a line that gives slightly less error than the previous iteration and

thus gives a better fitted line to the data.

In linear regression, there is a single global minimum so the error surface is con-

vex [78]. If a problem has local minima, then gradient descent may get stuck and the so-

lution is to use stochastic gradient descent [79] to solve this optimization problem. To de-

termine when to stop the descent, we look for small changes in error iteration-to-iteration

to determine convergence.

In general, in most nonlinear regression problems, such as logistic regression dis-

cussed in section 3.1.2, no closed form solution exists and numerical or iterative methods

must be used to solve the optimization problem.

Linear Mixed Models

Fixed effects model are models where model parameters are fixed or non-random, while

random effects models, also called Variance components models, are models where the

parameters are random variables [80]. In a Mixed model [81] (also known as Mixed-

Effects Model or Mixed Error-Component model) both fixed effects and random effects

are included. A Linear Mixed model can be defined as
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y = Xβ + Zu+ ϵ,

where y is the target vector, X is the fixed effect features (unknown), β is the estimate

of the fixed effect, u is an unknown vector of random effects, ϵ is an unknown vector of

random errors, and Z is the random effect features (unknown).

3.1.2 Logistic Regression

Odds

The odds represent the likelihood of a particular outcome. Odds do not characterize prob-

abilities but instead represent the ratio of an event happening to an event not happen-

ing. For example, disease
no disease . Odds can be computed from probabilities: Odds(disease) =

p(disease)
1−p(disease)

or from counts: number of times disease occurs
number of times no disease occurs

Log Odds

Assume that the odds of having a disease is 1 to 4, 1
4
= 0.25. If the odds of having this

disease was worse, for example 1 to 32, 1
32

= 0.031 then we notice that as the odds of

having a disease become worse, the odds approach closer and closer to 0. In other words,

if the odds were against having a disease, then they will lie between 0 and 1.

On the other hand, assume that the odds of having a disease were high, for example

4/3, or 1.3. If the odds of having this disease were even higher such as 32/3 or 10.7 then

we notice that the more likely the disease, the higher the odds and this value can increase

without bound. Thus, the odds of having this disease will range between 1 and ∞.

Due to the large asymmetry between the odds for (Odds ∈ [1,∞)) and against (Odds ∈

[0, 1]) a disease, this creates difficulty in comparing them. By taking the log of the odds,

this incompatibility can be mitigated since the log scale is symmetrical and easier to in-

terpret. Thus, if the odds are against a disease, for example, 1 to 6 then the log(Odds) are
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log(1/6) = log(0.17) = −1.79 and if the odds are for a disease 6 to 1, then the log(Odds) is

log(6/1) = 1.79, which is symmetrical and comparable.

For logistic regression, we can make the model assumption:

log
p(y|x1, x2)

1− p(y|x1, x2)
= model(x1, x2) = β0 + β1x1 + β2x2, (linear model) (3.1)

y ∈ {0, 1}, x1, x2 ∈ R, (3.2)

where log( p
1−p

), the log of the ratio of the probabilities is called the logit function and

forms the basis for logistic regression.

For a given input x (commonly termed the exposure), the odds are defined by

Odds(x) =
p(1|x1, x2)

p(0|x1, x2)
=

p(1|x1, x2)

1− p(1|x1, x2)
= exp(model(x1, x2)). (3.3)

For given (x1, x2), (x
′
1, x

′
2), the odds ratio can be defined as follows:

Odds(x′
1, x

′
2)

Odds(x1, x2)
.

The odds ratio refers to a ”ratio of odds”, and calculates the ratio between the odds of

the outcome in the presence of the exposure, and the odds of the outcome in the absence

of the exposure. The values correspond to effect sizes where larger values mean that the

exposure is a good predictor of the outcome, while smaller values mean that the exposure

is not a good predictor of the outcome.
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Using the odds ratio, we can solve the logistic regression model:

log
Odds(x1 + 1, x2)

Odds(x1, x2)

= logOdds(x1 + 1, x2)− log Odds(x1, x2)

= (β0 + β1(x1 + 1) + β2x2)− (β0 + β1x1 + β2x2)

= β1,

Odds(x1 + 1, x2)

Odds(x1, x2)
= eβ1

Odds(x1, x2 + 1)

Odds(x1, x2)
= eβ2 .

Logistic Regression is a specific type of Generalized Linear Model (GLM) where the out-

come depends on the sum of the inputs and parameters. The model can make predictions

whether the dependent variable is dichotomous or contains multiple classes. The classi-

fier uses a logistic function and assumes the absence of any outliers which are removed

after converting continuous features to standardized scores. Logistic regression is similar

to linear regression except it is used for classification and predicts categorical instead of

continuous outcomes. Thus, instead of fitting a line to the data, logistic regression fits an

”S”-shaped ”logistic function” (refer to Figure 3.1). The range of the logistic function lies

between 0 and 1 and represents the probability that the independent variable X is equal

to the dependent variable y. This function allows the modelling of binary outcomes using

the sigmoid function:

σ(t) =
1

1 + e−t
.

Logistic regression is generally a good option as a classifier when features are corre-

lated with one another. However, the correlation between features should be less than

0.90, and as long as this is satisfied, the assumption of absence of multicollinearity is

met [83]. Moreover, logistic regression is a model that is used to calculate the probability
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Figure 3.1: Plot of logistic function. Retrieved from [82].

of a model belonging to a class and uses a maximum a posteriori estimation, instead of

directly predicting by classification [84]. If some features are correlated with each other,

logistic regression is affected to a lesser degree as it compensates by weighting the fea-

tures lower. However, if unnecessary features are not removed, logistic regression may

make less accurate predictions. Furthermore, when training size is limited, logistic regres-

sion may overfit because of insufficient samples. When there are fewer training instances

than features, Least Absolute Shrinkage and Selection Operator (LASSO) and Ridge re-

gression can serve as regularization methods which may help improve the performance

of logistic regression. Both of these methods are explained in further detail in sections

3.3.1 and 3.3.2, respectively.

3.2 Bias-Variance Trade-off

It is important to note that training of models such as logistic regression requires optimiz-

ing a tradeoff between bias and variance, often termed the Bias-Variance Trade-off. Bias is

the inability for an ML algorithm to capture the true structure of the data due to incorrect

assumptions of the model. For example, if data points in a 2D space were arranged in a

curve but the model fitted to this data is a straight line, this represents high bias. A case
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of low bias would occur when the model fits every single data point in the training set.

Variance occurs when the predictions of the model fluctuate when small changes to the

data are made. For example, a model that is overfitting the training data would result in

the case of high variance. If a model fits the training set well but not the testing set, then

we say the model is overfit. In machine learning, the ideal algorithm has low bias (sig-

nifying that the model is accurately modelling the true relationship within the data) and

low variance (suggesting that the model is producing consistent predictions across differ-

ent datasets). This is accomplished by searching for an optimal choice between a simple

model and a complex model. There are three commonly used methods for finding this

ideal solution between simple and complicated models which are regularization, boost-

ing, and bagging. Regularization is one of the main methods to avoid overfitting which

reduces the generalization and accuracy of a model and is used in the work presented in

chapter 4. The following section explains regularization in more detail.

3.3 Sparse Models and Regularization

Regularization is a technique for shrinking and constraining model coefficients to reduce

the complexity of the model and thus reduce the possibility of overfitting to the training

set during model training. There are three regularization techniques that are commonly

used to decrease the size of coefficients which are discussed in sections 3.3.1, 3.3.2, 3.3.3:

L1 regularization (LASSO Regression) [85], L2 regularization (Ridge Regression) [86], and

Elastic Net which uses a linear combination of L1 and L2 penalties from Lasso and Ridge

regression [87].

3.3.1 L1 Regularization

The Least Absolute Shrinkage and Selection Operator (LASSO) regression method penal-

izes the L1 norm by regularizing on the absolute sum of the model coefficients. Logistic
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Regression with L1 regularizer (LASSO) minimizes the cost function:

min
w,b

||w||1 +
1

λ

n∑
t=1

log(e(−yi(X
T
i w+b)+1)), (3.4)

where a small λ corresponds to less regularization. Note that notation used here assumes

binary classification, yi ∈ {−1, 1}.

Since LASSO induces sparsity within the model parameters (w in Equation 3.4) it can

be used as a form of feature selection. Feature selection is used to avoid overfitting and

retain the predictive power of the model. This is especially important in cases where fea-

tures outnumber the number of observations (samples). As the penalty term λ increases,

LASSO sets more coefficients of features to zero which reduces the number of dimensions.

However, a limitation of LASSO is that if two features are collinear, it randomly selects

one of them.

3.3.2 L2 Regularization

In cases where features are highly correlated (multicollinearity), ridge regression can be

used which penalizes coefficients using L2 regularization.

Logistic Regression with L2 regularizer (Ridge) is defined as follows:

min
w,b

1

2
wTw +

1

λ

n∑
t=1

log(e(−yi(X
T
i w+b)+1)), (3.5)

where a small λ corresponds to less regularization. Note that notation used here assumes

binary classification, yi ∈ {−1, 1}.

The error function can equivalently be written as:

Error(w) =
1

2

N∑
n=1

{y(xn, w)− tn}2 +
λ

2
||w||2,
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(usually divide Least Squares by N to scale the error) where ||w||2 ≡ wTw = w2
0 + w2

1 +

. . .+ w2
M i.e. the square of the slope, which we denote as ∆2.

Note that ∆2 (usually the bias term w0, sometimes denoted by b, or intercept term, is

excluded from the regularizer) adds a penalty to the traditional Least Squares method,

while the λ term determines how severe that penalty is.

Ridge regression shrinks coefficients but never sets them to zero. Thus, it does not

reduce the number of features since none of the features have coefficients set to 0. The

main idea behind Ridge Regression is to reduce the complexity of the model in order to

prevent the model from fitting the training data too closely. In other words, L2 regulariza-

tion introduces a small amount of bias into the model and in return results in a significant

drop in variance. By beginning with a slightly worse fit, Ridge Regression can provide

better long term predictions.

To determine the choice of λ, many different values must be tested. A method for find-

ing the optimal λ is by cross-validation (section 3.4), which determines which λ parameter

results in the lowest expected error. Applying L2 regularization to Logistic Regression in-

volves optimizing the sum of the likelihoods instead of the squared residuals such as in

linear regression since logistic regression is solved using Maximum Likelihood. i.e. sum

of likelihoods + λ×∆2 (excluding the bias term in the slope)

3.3.3 Elastic Net Regularization

Elastic net regularization is a generalized form of LASSO and Ridge and combines both L1

and L2 regularization in its penalty term. Logistic Regression with elastic-net regularizer

is defined as:

min
w,b

1− α

2
wTw + α||w||1 +

1

λ

n∑
t=1

log(e(−yi(X
T
i w+b)+1)), (3.6)
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where α determines the ratio of L1 vs. L2 regularization, and a small λ corresponds to less

regularization. Note that notation used here assumes binary classification, yi ∈ {−1, 1}.

Elastic net is particularly useful when correlation occurs between multiple features

in the data (LASSO selects one randomly while elastic-net will select both). Due to this

reason, in general, elastic net performs better than LASSO on data with many correlated

features.

3.4 Cross-Validation

Regularization is important due to its ability to reduce the variance of the model without

increasing the bias substantially. However, the value of the tuning parameter λ must

be carefully chosen. Larger values of λ reduce the size of coefficients and thus reduce

the model variance but as λ increases more, the reduction in coefficient sizes leads to

important information being lost and results in an increase in the bias. One way to tune

the hyperparameters within a model is cross-validation.

Cross-validation provides a few advantages aside from selection of optimal hyperpa-

rameters such as allowing the comparison of different learning procedures (comparing

different algorithm performances) and in the case where data is limited, cross-validation

allows for the better usage of all data. Further, it can provide a preliminary estimate of

the generalization performance of the model as well as provide statistics such as the mean

and variance during training.

Cross-validation can be generalized as N -fold cross-validation where data is split into

N blocks and 1 block is used for testing. An extreme case of cross-validation is Leave One

Out Cross-Validation [88] where each data point is a block so each data point is used as the

validation set eventually. The choice of N in N -fold cross-validation generally depends

on the size of the dataset as well as the computational budget. An illustration of 5 sets

of five-fold cross-validation is provided in figure 3.2 which splits data into folds and uses

each fold for validation and the rest for training.
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Figure 3.2: Illustration of Cross-Validation. Retrieved from [89]

3.5 Model Evaluation and Assessment

In this section, we provide a few metrics for determining and evaluating the performance

of a model.

3.5.1 Confusion Matrix

The confusion matrix provides a table layout to determine the performance of a machine

learning algorithm [90]. An example is shown in figure 3.3 where each position in the

matrix holds an integer value for the number of cases classified into each positive or neg-

ative category. Columns are shown as the prediction of the algorithm and rows are the

ground truths. A prediction is a true positive (TP) when an algorithm correctly predicts

the presence of a characteristic (such as the presence of a disease). When an algorithm cor-
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rectly predicts the absence of a characteristic (absence of a disease), this is known as a true

negative (TN). On the other hand, if an algrithm predicted the presence of a characteristic

when the characteristic was absent this is known as a false positive (FP). Predicting the

absence of a characteristic when the characteristic is in fact present is known as a false

negative (FN). The true positives (TP) and true negatives (TP) make up the number of

correct predictions while the false positives (FP) and false negatives (FN) represent the

number of times the algorithm outputted an incorrect prediction. Generally, a model

should be selected which produces the highest number of correct predictions (TP+TN)

and lowest number of incorrect predictions (FP+FN). Additional metrics can also be used

to evaluate a model such as the sensitivity, specificity, and area under the curve (AUROC)

which are described in the following sections.

Figure 3.3: Example of a confusion matrix.
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3.5.2 Precision/Recall Curves; Sensitivity/Specificity

The confusion matrix allows the calculation of more performance metrics to evaluate the

predictive abilities of a model. A few metrics that are used in chapter 4 are discussed

here.

One such metric is the sensitivity (also known as the true positive rate) which is the

probability of a positive prediction.

Sensitivity = Recall =
TP

TP + FN
=

TP

number of people with illness
.

Another metric is the specificity (also known as the true negative rate) which repre-

sents the probability of a negative prediction.

Specificity = Selectivity =
TN

TN + FP
=

TN

number of people without illness
,

Precision = Positive Predictive Value =
TP

TP + FP
,

Negative Predictive Value =
TN

TN + FN
.

3.5.3 Area under the Receiver Operating Characteristic

The area under the receiver operating characteristic (AUROC) or area under the curve

(AUC) provides a way of measuring the performance of classification algorithms [91]. It

can be used to measure the goodness of fit for logistic regression binary outcomes. An ex-

ample is shown in figure 3.4. The Y-axis displays the True Positive Rate (Sensitivity) while

the X-axis displays the False Positive Rate (1 - Specificity). The AUC is also commonly

referred to as the C-Statistic (concordance statistic, C-index) [92].
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Figure 3.4: Area Under the Receiving Operating Curve example. Retrieved from [93].

3.5.4 Youden’s J Statistic

Youden’s J statistic is a metric often used with AUROC analysis that allows the evaluation

of the performance of binary classifiers [94]. It is defined as follows:

J = Sensitivity + Specificity − 1,

=
TP

TP + FN
+

TN

TN + FP
− 1.

Youden’s J ranges between 0 and 1 (inclusive) where a perfect model would produce

a value of 1 representing the absence of false positives or false negatives.
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The statistic can be computed at every single point of an AUROC curve to determine

the optimal threshold for the outcome prediction. By selecting the point on the AUROC

curve corresponding to the largest J, the sensitivity and specificity of the classifier can be

maximized since this point corresponds to the threshold the model should use to output

dichotomous predictions.

3.6 Dimensionality Reduction

Dimensionality reduction involves the transformation of high dimensional data to a low

dimensional space while preserving the intrinsic properties of the original data. Dimen-

sionality reduction can be used for clustering, reducing noise in the data, and for data

visualization.

Both linear and nonlinear methods exist. One of the most extensively used linear

methods is Principal Component Analysis (PCA) [95]. In essence, principal component

analysis is a linear dimensionality reduction method that transforms data within a high

dimensional space and applies linear transformations to it to reduce it down to a lower

dimensional space while minimizing information loss. It is useful in dimensionality re-

duction, data visualization, and feature extraction and essentially displays highly corre-

lated data close to one another in a cluster. Importantly, the principal component axes are

ranked in order of the percentage of variability they explain. Since principal component 1

(PC1) explains more variability than PC2, if two clusters are the same Euclidean distance

on the PC1 axis compared to two clusters that are the same distance along the PC2 axis,

then the two clusters along the PC1 axis are more different from one another than the two

clusters on the PC2 axis.

For nonlinear methods, Uniform Manifold Approximation and Projection (UMAP)

[96] is commonly used which improves on the earlier method t-distributed Stochastic

Neighbor Embedding (t-SNE) [97] in speed and preservation of global structure. UMAP

makes assumptions about the data that allows for the lower dimensional embedding to
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be modelled as a fuzzy topological structure. This fuzzy complex represents a weighted

graph with edges being the likelihood of two points being connected to one another.

UMAP extends a radius outward from each point and assumes points are connected if

their radii intersect. As the radius increases, UMAP decreases the likelihood that points

are connected thereby creating a ”fuzzy” structure. Compared to PCA, UMAP may

achieve better data separation and is more effective at displaying clusters of data and

their proximity to one another. PCA, on the other hand, may be highly influenced by out-

liers in the data and is also unable capture nonlinear dependencies due to being a linear

projection.
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Chapter 4

Circulating Proteins to Predict Adverse

COVID-19 Outcomes

In this chapter, we describe how circulating proteins can be used to predict adverse

COVID-19 outcomes. We undertook a large-scale study to assess the relationship of thou-

sands of circulating proteins with COVID-19 outcomes. To do so, we used machine learn-

ing methods to develop a predictive model of COVID-19 severity using the circulating

blood protein abundances as predictors. Proteins were measured using 4,984 nucleic acid

aptamers (SOMAmer reagents) [44] targeting 4,701 unique circulating human proteins in

two cohorts collected from two countries, which in total included 986 individuals. The

training cohort was comprised of 417 individuals from the Biobanque Québécoise de la

COVID-19 (BQC19 cohort). This cohort was used to train a model to predict adverse

COVID-19 outcomes. This model was then tested in a separate test cohort of 569 individ-

uals from the Mount Sinai Hospital in New York City, which was similarly characterized

for the same protein measurements and COVID-19 outcomes.

This large-scale study across two countries and two geographically separated cohorts

identified circulating proteins associated with COVID-19 outcomes measured at a large-

scale in well-characterized cohorts. These findings provide insights into the biological
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pathways influencing these outcomes and the ability of proteomics to predict these out-

comes.

4.1 Methods

In this section, we describe relevant information pertaining to the conduction of the

project as well as technical details of specific experimental procedures, datasets, and se-

lection of models.

4.1.1 Cohorts

The Biobanque Québécoise de la COVID-19 (BQC19) is a Québec-wide biobank which

was launched to enable research into the causes and consequences of COVID-19 disease

(see bqc19.ca) [42]. It includes datasets on clinical and phenotypic data, transcriptomic

data, immune-serology, and metabolomic data. The BQC19 recruits patients from around

Quebec, Canada and collects blood samples from participants presenting severe and non-

severe COVID-19 to enable data sharing among researchers around the world in a global

effort to determine the etiology behind SARS-CoV-2 infection. In addition, the BQC19

also contains control samples which are collected from participants without COVID-19.

Support for the BQC19 is provided by the Fonds de recherche du Québec – Santé (FRQS)

and Génome Québec and the Public Health Agency of Canada. To date (as of Dec 10,

2021), blood samples have been collected from 3,553 consenting Quebecers across four

regions of the province at nine different clinical sites totaling 30,353 samples.

For our study, we used BQC19 blood samples from 417 patients (313 SARS-CoV-

2 nasal swab PCR positive patients (mean and median time since symptom onset in

COVID-19 patients = 7.0 days, respectively; standard deviation = 3.96 days) and 104 in-

dividuals who presented with symptoms consistent with COVID-19 but had negative

SARS-CoV-2 PCR nasal swabs) with available proteomic data from the SomaScan Soma-

Logic® assay. The subjects were recruited at the Jewish General Hospital (JGH) and Cen-
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tre Hospitalier de l’Université de Montréal (CHUM) in Montréal, Québec, Canada, both

of which are university affiliated hospitals. For each individual, blood samples drawn

at the earliest time point were used for training when an individual had multiple blood

draws. Selecting the blood sample at the earliest time point reflects the protein measure-

ments during the acute phase of COVID-19 disease. The demographic characteristics of

the participants in the BQC19 cohort who underwent SomaScan® assays is detailed in Ta-

ble 4.1. The demographic characteristics were obtained by medical chart review or patient

interview performed by trained clinicians or trained research coordinators.

The Mount Sinai cohort used in this study was composed of blood samples collected

from 569 patients made up of 472 SARS-CoV-2 positive patients and 89 SARS-CoV-2 neg-

ative patients confirmed through PCR tests, one COVID-19 positive patient diagnosed by

a chest CT while the remaining 7 individuals were COVID-19 negative and did not have

COVID-19 symptoms during specimen collection but may have had a history of exposure.

The samples donated by the patients in the Mount Sinai cohort underwent the same pro-

teomic data collection and profiling performed as in the BQC19 cohort. The subjects were

recruited at the Mount Sinai Hospital in New York City which is affiliated with the Icahn

School of Medicine. Table 4.1 lists the demographic and sample processing parameters of

participants in the Mount Sinai cohort that underwent SomaScan® assays. Demographic

characteristics were obtained similarly to that of the BQC19 cohort.

4.1.2 Demographic, Sample Processing, and Clinical Variable Defini-

tions

Age and sex from the BQC19 and Mount Sinai cohorts were collected. Sample processing

time and hospital site were collected for BQC19 samples with the former being a con-

tinuous variable that quantifies the time in hours between sample collection and sample

freezing.
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Dataset Training Cohort (BQC19)
COVID-19 Severity Severe Critical

All Samples
(n=417)

Cases
(n=175)

Controls
(n=242)

Cases
(n=93)

Controls
(n=324)

Age in years * 65.3 (18.4) 67.6 (17.6) 63.7 (18.8) 66.7 (16.5) 64.9 (18.9)
Female sex ** 200 (48.0) 82 (46.9) 118 (48.8) 36 (38.7) 164 (50.6)
Sample Processing
Time (hours) * 9.7 (13.4) 7.5 (6.5) 11.3 (16.5) 7.0 (6.3) 10.4 (14.8)

Hospital Site **
CHUM 105 (25.2) 42 (24.0) 63 (26.0) 32 (34.4) 73 (22.5)
JGH 312 (74.8) 133 (76.0) 179 (74.0) 61 (65.6) 251 (77.5)
Diabetes **
No 288 (69.1) 100 (57.1) 188 (77.7) 54 (58.1) 234 (72.2)
Yes 127 (30.5) 75 (42.9) 52 (21.5) 39 (41.9) 88 (27.2)
Chronic Obstructive
Pulmonary Disease **
No 358 (85.9) 145 (82.9) 213 (88.0) 77 (82.8) 281 (86.7)
Yes 57 (13.7) 30 (17.1) 27 (11.2) 16 (17.2) 41 (12.7)
Chronic Kidney
Disease **
No 363 (87.1) 151 (86.3) 212 (87.6) 77 (82.8) 286 (88.3)
Yes 52 (12.5) 24 (13.7) 28 (11.6) 16 (17.2) 36 (11.1)
Congestive Heart
Failure **
No 355 (85.1) 152 (86.9) 203 (83.9) 80 (86.0) 275 (84.9)
Yes 60 (14.4) 23 (13.1) 37 (15.3) 13 (14.0) 47 (14.5)
Hypertension **
No 179 (42.9) 67 (38.3) 112 (46.3) 31 (33.3) 148 (45.7)
Yes 235 (56.4) 107 (61.1) 128 (52.9) 61 (65.6) 174 (53.7)
Liver disease **
No 403 (96.6) 172 (98.3) 231 (95.5) 91 (97.8) 312 (96.3)
Yes 12 (2.9) 3 (1.7) 9 (3.7) 2 (2.2) 10 (3.1)
Smoking Status **
Current Smoker 13 (3.1) 6 (3.4) 7 (2.9) 5 (5.4) 8 (2.5)
Ex-smoker 47 (11.3) 21 (12.0) 26 (10.7) 11 (11.8) 36 (11.1)
Never smoker 233 (55.9) 98 (56.0) 135 (55.8) 40 (43.0) 193 (59.6)
Dataset Testing Cohort (Mount Sinai)
COVID-19 Severity Severe Critical

All Samples
(n=569)

Cases
(n=392)

Controls
(n=177)

Cases
(n=233)

Controls
(n=336)

Age in years * 59.6 (19.4) 63.0 (17.1) 52.1 (22.1) 63.7 (16.7) 56.8 (20.6)
Female sex ** 238 (41.8) 154 (39.3) 84 (47.5) 87 (37.3) 151 (44.9)

Table 4.1: Demographic characteristics of the participating cohorts. Notes are listed in

Table 4.2
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* Mean (SD)
** N (%). When the counts of each cell do not sum to the total sample size, this is due
to missing data or the patient answering, “I do not know”.
Severe - Cases: individuals who tested positive for COVID-19 and died or
required any type of respiratory support (including oxygen delivered by nasal
prongs). Controls: individuals with COVID-19 who did not meet severe case
criteria or individuals who presented with symptoms of COVID-19 but were
SARS-CoV-2 PCR negative.
Critical - Cases: individuals who tested positive for COVID-19
and died or required respiratory support (intubation, continuous positive
airway pressure, bilevel positive airway pressure, continuous external
negative pressure, or high flow positive end expiratory pressure oxygen).
Controls: individuals with COVID-19 who did not meet critical
case criteria or individuals who presented with symptoms of COVID-19 but were
SARS-CoV-2 PCR negative.
Sample Processing Time: time in hours between sample collection and sample
freezing
CHUM: Samples recruited from the Centre Hospitalier de l’Université de Montréal
JGH: Samples recruited from the Jewish General Hospital

Table 4.2: Notes for Table 4.1

The clinical variables were collected for the BQC19 cohort only. Clinical variables

included smoking status and six different comorbidities: diabetes, COPD, chronic kidney

disease, congestive heart failure, hypertension, and liver disease. All seven variables

were collected as categorical values with the six comorbidities having three options (0

No, 1 Yes, and -1 Don’t know) while smoking status contained 4 categories (0 Current

Smoker, 1 Ex-smoker, 2 Never smoked, and -1 Don’t know).

4.1.3 Proteomic Measurement using the Somascan Platform

Blood samples from both the BQC19 and Mount Sinai cohorts were collected using acid

citrate dextrose (ACD) tubes. Proteomic measurement was performed at Somalogic using

the Somascan v4.0 platform. In the BQC19 cohort, a total 1,038 samples collected at up

to five different time points from 503 individuals were sent to SomaLogic for proteomic

profiling as previously described [4], while the Mount Sinai cohort contained 1,200 sam-
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ples collected at multiple time points from 592 individuals that were sent to SomaLogic

for proteomic profiling.

SomaLogic uses the Somascan proteomic platform which provides measurements on

4,701 unique human circulating proteins using 4,984 Slow Off-Rate Modified Aptamers

(SOMAmer reagents) and quantifies protein levels in the form of relative fluorescence

units (RFUs). Normalization and calibration steps were performed by SomaLogic to re-

move any systematic biases stemming from raw assays or samples. The normalization

procedure involved three steps performed in a non-consecutive fashion: hybridization

control normalization, intraplate median signal normalization, as well as plate scaling

and calibration. More details on SomaLogic normalization can be found in their Techni-

cal Note [43].

4.1.4 SomaLogic Quality Control and Normalization

SomaLogic normalization is generally performed using the normal population reference

derived from Ethylenediaminetetraacetic acid (EDTA) plasma samples. Due to plasma

samples in the BQC19 cohort being collected using acid citrate dextrose (ACD) tubes, in-

stead of EDTA tubes, the samples were normalized against the median of uncalibrated,

unnormalized results, and this normalization reference was applied across all samples

and plates. After normalization, samples are expected to lie in the acceptance range of

[0.4-2.5] and samples outside this range are flagged. Normalization scaling values on the

lower end of the acceptance range (closer to 0.4) reflect higher concentration of plasma

proteins compared to values on the upper end of the acceptance range (2.5). Interestingly,

we observed a higher proportion of flagged samples than usual compared to previous

SOMAscan studies. A large starting blood volume in ACD tubes as well as discrepan-

cies in the blood volume may explain the higher rates of flagging on the upper end of

the normalization scaling acceptance range (low signal flags). Further, COVID-19 sever-

ity is associated with higher rates of flagging on the lower end of the acceptance range

(high signal flags) which may in part be due to excessive amounts of proteins present in
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extremely ill patients undergoing an acute inflammatory response. (Note: samples col-

lected from the CHUM hospital site of the BQC19 generally consisted of hospitalized and

thus more severe COVID-19 patients).

SomaLogic data is provided in two forms: a normalized dataset and another dataset

without sample normalization. For this project, we used the sample normalized dataset

although further exploration evaluating alternative methods for normalization may be

undertaken in the future.

4.1.5 Data Preprocessing

A per-sample normalization process involved using a scale factor for a set of SOMAmer

reagents to compute against a reference value generated from the median of all calibrated,

unnormalized samples, and then aggregating the results within a dilution. This was done

because using a normal population reference generated from EDTA plasma tubes would

have been inappropriate for normalization, since samples in this study were from ACD

plasma tubes. Due to the nature of the samples that were collected from patients during

acute infection, we did not apply the recommended scale [0.4-2.5] to remove samples. The

raw dataset composed of 5,284 SOMAmer reagents was first processed with SomaLogic

package SomaDataIO v3.1.0. We removed any SOMAmer reagents that represented non-

human proteins or controls (NoneX, NonHuman, Spuriomer, HybControlElution, Non-

Biotin, NonCleavable) and retained 4,984 unique SOMAmer reagents for analysis.

4.1.6 Curation of Samples from the Longitudinal Dataset

To investigate our primary study question, we focused on samples collected during the

acute infection stage. Samples from the acute infection stage were defined as samples col-

lected from SARS-CoV-2 PCR positive patients within 14 days of symptom onset. When

an individual provided multiple samples collected within 14 days of symptom onset, the

sample collected at the earliest timepoint was retained for analyses. We chose to use sam-
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ples close to symptom onset to reflect the proteome of acute COVID-19, rather than its

recovery phase. Both the BQC19 and Mount Sinai samples adhered to these rules.

4.1.7 COVID-19 Outcome Definitions

We defined two sets of severity outcomes for COVID-19: severe COVID-19 and critical

COVID-19. Positive SARS-CoV-2 results were confirmed by SARS-CoV-2 viral nucleic

acid amplification tests (NAAT) from relevant biologic fluids.

Cases for severe COVID-19 were defined as individuals who tested positive for COVID-

19 and died or required any type of respiratory support (including oxygen delivered by

nasal prongs) at any timepoint. Controls for severe COVID-19 were defined as individ-

uals who did not meet these severe case criteria; thus, controls were individuals with

COVID-19 but did not meet severe case criteria or were individuals who presented with

symptoms of COVID-19 but were SARS-CoV-2 PCR negative. This definition for controls

is consistent with recent successful large-scale genetic studies [5].

Cases for critical COVID-19 were defined as individuals who tested positive for COVID-

19 and died or required invasive respiratory support (intubation, continuous positive air-

way pressure, bilevel positive airway pressure, continuous external negative pressure, or

high flow positive end expiratory pressure oxygen) at any timepoint. Controls for crit-

ical COVID-19 were individuals with COVID-19 but did not meet critical case criteria

or were individuals who presented with symptoms of COVID-19 but were SARS-CoV-2

PCR negative.

4.1.8 Multivariable Logistic Regression

Multivariable logistic regression models were used to test the associations of either severe

or critical COVID-19 on four covariates along with each SOMAmer reagent: age, sex,

sample processing time, and hospital site. We used R package “glm” to perform 4,984

logistic regression models in the BQC19 cohort. We first applied a false discovery rate of
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P < 0.01 (corrected P values were determined using the Benjamini-Hochberg procedure

[67], p.adjust with method set to “BH” in R) to select a subset of proteins associated with

severe or critical COVID-19 outcomes. Volcano plots measuring the uncorrected -log10 P

values as a function of the effect size estimates of each SOMAmer reagent were generated

using the bioinfokit version 2.0.4 package in Python 3.7.

4.1.9 Regularized Logistic Regression Models

We defined two model types differing in the covariates used to train the model. The

first model type is a “baseline model” which was trained using age, sex, sample process-

ing time, and hospital site. We then evaluated whether the addition of proteins would

improve the identification of which patients developed adverse COVID-19 outcomes by

adding 4,984 SOMAmer reagents to the baseline model. This second model type is a “pro-

tein model” which is trained using age, sex, sample processing time, hospital site, and

4,984 SOMAmer reagents. We used the baseline model in our analyses as a performance

benchmark to compare the results of the protein model which we expected to perform

better.

To predict the two COVID-19 severity outcomes defined above, we used LASSO re-

gression [85] and elastic nets [87]. Specifically, for LASSO regression we used L1 Regular-

ized Logistic Regression (Sparse Logistic Regression) as implemented in the “LogisticRe-

gression” module from Sci-kit learn version 0.24.1 [98], a machine learning library, with

the penalty set to “L1”. The L1 norm penalty adds a constraint to the effect estimates of

the regression model by setting many variables to have a null effect or a coefficient of 0.

This in turn allows a form of feature selection to occur and also prevents overfitting to

the training dataset by forcing the model to be less complex. In addition, when multiple

variables are correlated with one another such as in the case of highly correlated proteins,

the penalty term from LASSO may select a single variable from the group, thus allowing a

subset of uncorrelated proteins to be selected. It is important to note that although LASSO

tends to select a single variable from a group of highly correlated variables, this property
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is not a certainty. LASSO may occasionally select more than one variable depending on

the size of the dataset and the value of the penalty term. To train this model, the hyper-

parameter “λ”, which controls the amount of L1 regularization to add to the model, was

first tuned through cross-validation as per equation 3.4 (details are described in the next

section). A larger value of λ increases the amount of L1 regularization and forces more of

the variables to have a null effect. On the other hand, training the model on a smaller λ

value will result in a model with more nonzero coefficients.

4.1.10 Using Elastic Net to Select Uncorrelated Proteins

For elastic net, we used elastic net regularized logistic regression (linear combination of

L1 and L2 regularization). To implement this elastic net, we used the “LogisticRegres-

sion” module from sci-kit learn with penalty set to “elasticnet”. The elastic net penalty

combines both the L1 norm and the L2 norm penalties. The L1 regularization term forces

coefficients to be zero and in effect performs feature selection (as explained above). The

L2 regularization term does not force coefficients to have a null effect but instead reduces

their magnitude, resulting in a model with a greater number of variables but many with

small effect estimates. Therefore, the combination of both of these regularization terms

gives rise to a more generalized form of the L1 regularized logistic regression model used

in the main analysis. For model training, the first step requires tuning two hyperparame-

ters. In addition to the hyperparameter λ which controls the amount of L1 regularization

as previously described for LASSO logistic regression, the hyperparameter, ”α”, must

also be tuned as per equation 3.6. In Sci-kit learn, this parameter is termed the “L1 ratio”

and ranges between 0 and 1 while controlling the amount of L1 to L2 regularization. For

example, if the L1 ratio is set to 1, this is in essence the L1 regularized logistic regression

model. Setting the L1 ratio to the other extreme, 0, results in an L2 regularized logistic

regression model which is termed Ridge Logistic Regression. The tuning of these two hy-

perparameters was also performed through cross-validation. For the λ hyperparameter,

we searched over the same range of values as that used in L1 regularized logistic regres-
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sion in the main analysis. For the L1 ratio, we searched over 11 values: [0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1.0].

For the elastic net regularized logistic regression model, we used a tolerance parame-

ter of 0.01 during training instead of 0.0001 used for L1 regularized logistic regression to

speed up tuning. For reproducibility, the random seed was set to 0 for cross-validation

splits as well as weight initialization during model training. The training performance

between L1 and elastic net logistic regression was generally similar, so we decided to use

the L1 regularized logistic regression model to test on the external cohort due to it be-

ing faster to train and less complex than elastic net. We used the best hyperparameter

λ, selected from cross-validation, to train the baseline and protein model using the entire

BQC19 cohort. We pre-processed the training dataset by natural log transforming the pro-

tein levels due to protein levels varying considerably. The binary predictor variables sex

and hospital site were dummy encoded while the continuous variables age and sample

processing time were left as is. All protein variables were standardized to a mean of zero

and unit variance.

4.1.11 Cross-Validation and Hyperparameter Tuning

Due to the relatively small size of our training dataset from BQC19, we used 10 repeats of

five-fold cross-validation to tune the hyperparameter, λ, over 17 different λs (log10 values

of λ from -2 to 2, incremented by 0.25). Each repeat of the five-fold cross-validation pro-

cess involved splitting the dataset into five folds: training on four folds and validating the

trained model on the final fold and performing the process five times to cover each val-

idation fold. We used a stratified cross-validation approach, meaning that the train and

validation folds maintained the same percentage of samples of each class (case/control)

as the original data. This is important because of the unbalanced case/control samples

for the critical COVID-19 outcome (93 cases / 324 controls). A standard five-fold cross-

validation split may result in train and validation folds with varying proportions of cases

and controls. Since classification algorithms tend to weigh each sample equally, the class
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that is overrepresented, such as the controls in the critical COVID-19 outcome, will re-

ceive more weight and thus may bias the results. The stratified cross-validation step was

performed using the RepeatedStratifiedKFold function in Sci-kit learn. Due to the rel-

atively small sample size of our training set (n=417), we performed 10 repeats of this

cross-validation process to stabilize the results from training. Each repeat first shuffled

the entire training set then split the data into five folds which created more variability in

the data used for training.

During training on the four folds, we standardized only the protein levels using the

population standard deviation (i.e., dividing by the number of samples n) and use this

mean and standard deviation to standardize the protein levels in the validation fold prior

to validating. This prevents information leakage which can occur if standardization of

protein levels was performed on the entire dataset rather than just the training folds.

Age and sample processing time were treated as continuous variables, whereas sex and

hospital site were treated using dummy variables (sex [0: Female, 1: Male], and hospital

site [0: CHUM, 1: JGH]).

We used the area under the curve (AUC) to determine the model performance during

cross-validation (as described in section 3.5.3). To select the best value for the hyper-

parameter λ, we compared the average AUC score (computed from 50 validation fold

results) for all λ values and selected the λ value corresponding to the highest average

AUC. Youden’s J statistic was calculated for each receiver operator characteristic (ROC)

curve during training. This performance metric can be calculated by subtracting the false

positive rate from the true positive rate for each data point on a ROC curve and taking the

maximum value. The threshold which corresponds to this maximum Youden’s J statistic

is the threshold that maximizes the sum of the sensitivity and specificity for that partic-

ular ROC curve. We computed the threshold corresponding to the maximum Youden’s

J statistic for each of the 50 ROC curves and averaged the 50 thresholds to get a single

threshold value. This averaged threshold value was computed for each of the baseline

and protein models predicting severe and critical COVID-19 and used to produce two-
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by-two contingency tables and therefore sensitivity and specificity values in the Mount

Sinai cohort during model testing.

4.1.12 Model Testing

We checked the generalizability of the baseline and protein models by testing them in

an external, independent dataset from Mount Sinai. Protein measurements in the test

dataset were first natural log transformed then standardized using the mean and stan-

dard deviation of the corresponding protein in the training set. Similarly, age was not

standardized and kept in years. Since samples were only from a single hospital, the hos-

pital site parameter was left as is and did not need to be dummy encoded. The variable

sample processing time, however, was absent from the testing set. For this reason, we

imputed the sample processing time variable in the test cohort using the mean value of

the sample processing time variable in the BQC19 training cohort.

4.1.13 Protein Correlations

Spearman’s Rank Order Correlation was used to determine the correlations between in-

dividual proteins in the BQC19 cohort. Heatmaps show magnitudes of correlation co-

efficients between values of -1 and 1. Correlation heatmaps showing collected clusters

such as in Figures 4.8, 4.10, and 4.11 were generated using the ggcorrplot function in R

with the parameter hc.order set to TRUE to perform hierarchical clustering. Moreover,

we reduced the dimension of the correlation matrix of 4,984 SOMAmer reagents to a 2-

dimensional space using uniform manifold approximation and projection (UMAP) from

the umap-learn 0.5.1 package using default parameters. We annotated the SOMAmer

reagents selected from the protein model that were associated with severe COVID-19 and

critical COVID-19 as well as the proteins that overlapped between the two outcomes.
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4.1.14 Pathway Enrichment Analyses

Pathway enrichment analysis provides insights into the mechanisms behind genes. By

providing a gene list to this method, it is able to determine biological pathways that may

be more significantly enriched than by chance alone, thus enabling discovery into the

mechanisms of groups of genes generated from commonly performed omics experiments.

In this project, we used the web-based tool g:Profiler (https://biit.cs.ut.ee/gprofiler/gost)

to investigate the possible pathways of the selected proteins as good predictors for both

critical and severe COVID-19 identified by LASSO. The g:SCS algorithm was used to es-

timate the threshold for enrichment against all annotated genes. It is used to compute P

values adjusted for multiple testing after performing pathway enrichment analysis. To

produce the results in Supplementary Figure 4.13, we selected pathways and interaction

databases including Gene Ontology [99], KEGG [100], Reactome [101], TRANSFAC [102],

miRTarBase [103], Human Protein Atlas (proteinatlas.org) [104], and CORUM [105].

4.1.15 Sensitivity Analyses

We tested the effect of six established clinical risk factors which included: diabetes, COPD,

chronic kidney disease, congestive heart failure, hypertension, and liver disease in the

BQC19 cohort to determine whether addition of comorbidities could improve prediction

of COVID-19 severity outcomes. We added these six additional covariates, with charac-

teristics shown in Table 4.1, to the baseline and protein models to perform LASSO regres-

sion analysis. A total of 417 samples from the BQC19 cohort were used for training.

We performed a second sensitivity analysis by adding smoking status along with these

six established clinical variables to the baseline and protein models for LASSO regression

analyses. Therefore, the baseline model contained covariates age, sex, sample processing

time, hospital site, and seven clinical variables while the protein model contained all the

baseline variables along with 4,984 SOMAmer reagents. Since smoking status was not
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available from the CHUM hospital site, this sensitivity analysis only involved 312 samples

from the BQC19 cohort that were collected at the JGH site.

Due to missing data (displayed in Table 4.3), we imputed the values of samples: we

first converted all six comorbidity features to binary values. Any value other than a “Yes”

was converted to a “No” which may include missing values being converted to a “No”.

For smoking status, we grouped all values into three categories: 0 - Current Smoker, 1

- Ex-smoker, and anything else (including missing values and -1) was set as 2 - Never

smoked. Smoking status was dummy encoded and had one of the encoded variables

dropped to prevent collinearity. For both sensitivity analyses, training of the L1 regular-

ized logistic regression models used 10 repeats of stratified five-fold cross-validation as

in the primary analysis.

4.2 Experimental Results

4.2.1 Cohorts

The demographic and clinical characteristics of the participants in the training and testing

datasets are shown in Table 4.1. In the BQC19 cohort, the mean age across all samples was

65.3 years (SD = 18.4 years), and 52% of the cohort were men. In the Mount Sinai cohort,

the mean age was 59.6 years (SD: 19.4 years), and 58.2% of the cohort were men.

For the definition of adverse COVID-19 outcomes, we focused on two levels of sever-

ity as described in section 4.1.7. The overall study design is shown in Figure 4.1, which

outlines the training and testing stages of the study. In the BQC19 training cohort 175

individuals were classified as severe cases and 242 individuals were controls. The con-

trols for severe COVID-19 were comprised of 138 SARS-CoV-2 positive individuals not

meeting case definition and 104 SARS-CoV-2 negative individuals. In the case of critical

disease, 93 individuals out of 313 COVID-19 positive patients were classified as critical

cases and 324 individuals were controls. The controls for critical COVID-19 cases were

220 SARS-CoV-2 positive individuals not meeting case definition and 104 participants
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Dataset Training Cohort (BQC19)
COVID-19 Severity Severe Critical

All Samples
(n=417)

Cases
(n=175)

Controls
(n=242)

Cases
(n=93)

Controls
(n=324)

Diabetes **
No 288 (69.1) 100 (57.1) 188 (77.7) 54 (58.1) 234 (72.2)
Yes 127 (30.5) 75 (42.9) 52 (21.5) 39 (41.9) 88 (27.2)
Patient answering
“I do not know” 2 (0.5) 0 (0.0) 2 (0.8) 0 (0.0) 2 (0.6)

Chronic Obstructive
Pulmonary Disease **
No 358 (85.9) 145 (82.9) 213 (88.0) 77 (82.8) 281 (86.7)
Yes 57 (13.7) 30 (17.1) 27 (11.2) 16 (17.2) 41 (12.7)
Missing 2 (0.5) 0 (0.0) 2 (0.8) 0 (0.0) 2 (0.6)
Chronic Kidney Disease **
No 363 (87.1) 151 (86.3) 212 (87.6) 77 (82.8) 286 (88.3)
Yes 52 (12.5) 24 (13.7) 28 (11.6) 16 (17.2) 36 (11.1)
Missing 2 (0.5) 0 (0.0) 2 (0.8) 0 (0.0) 2 (0.6)
Congestive Heart Failure **
No 355 (85.1) 152 (86.9) 203 (83.9) 80 (86.0) 275 (84.9)
Yes 60 (14.4) 23 (13.1) 37 (15.3) 13 (14.0) 47 (14.5)
Missing 2 (0.5) 0 (0.0) 2 (0.8) 0 (0.0) 2 (0.6)
Hypertension **
No 179 (42.9) 67 (38.3) 112 (46.3) 31 (33.3) 148 (45.7)
Yes 235 (56.4) 107 (61.1) 128 (52.9) 61 (65.6) 174 (53.7)
Missing 3 (0.7) 1 (0.6) 2 (0.8) 1 (1.1) 2 (0.6)
Liver disease **
No 403 (96.6) 172 (98.3) 231 (95.5) 91 (97.8) 312 (96.3)
Yes 12 (2.9) 3 (1.7) 9 (3.7) 2 (2.2) 10 (3.1)
Missing 2 (0.5) 0 (0.0) 2 (0.8) 0 (0.0) 2 (0.6)
Smoking Status **
Current Smoker 13 (3.1) 6 (3.4) 7 (2.9) 5 (5.4) 8 (2.5)
Ex-smoker 47 (11.3) 21 (12.0) 26 (10.7) 11 (11.8) 36 (11.1)
Never smoker 233 (55.9) 98 (56.0) 135 (55.8) 40 (43.0) 193 (59.6)
Patient answering
“I do not know” 124 (29.7) 50 (28.6) 74 (30.6) 37 (39.8) 87 (26.9)

Table 4.3: Rate of missingness for seven clinical variables in the BQC19 training cohort.
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who were SARS-CoV-2 negative. In the Mount Sinai testing cohort, 392 individuals were

classified as severe cases and 177 individuals were controls while for critical disease 233

individuals were cases and 336 were controls. Generally, severe, or critical COVID-19

cases were older than controls in both the training dataset and the testing dataset. Males

were also more likely to have severe or critical COVID-19 as compared to females (Table

4.1). The age and sex distribution of the participants stratified by case/control status for

the two COVID-19 severity outcomes are shown in Figure 4.2. The distributions suggest

that males who develop severe or critical COVID-19 are generally younger than females.

Figure 4.1: Overall study design. Schematic of training and testing stages of this study.

Severe COVID-19 is defined as death or use of any form of oxygen supplementation. Crit-

ical COVID-19 is defined as death or severe respiratory failure (non-invasive ventilation,

high flow oxygen therapy, intubation, or extracorporeal membrane oxygenation).

4.2.2 Association of Protein Abundance with COVID-19 Outcomes

In order to directly assess if any of the measured proteins were associated with COVID-

19 severity, we used multivariable logistic regression to test the association of each of

the 4,984 SOMAmer reagents with the two COVID-19 outcomes while adjusting for age,
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(a) Severe COVID-19 (b) Critical COVID-19

Figure 4.2: Violin plots showing the age and sex distribution of the BQC19 training cohort

for severe and critical COVID-19. a, Severe COVID-19. b, Critical COVID-19. Coloring

indicates the sex of the patient as shown in the legend (F: Female, M: Male).

sex, sample processing time, and hospital site in the BQC19 cohort. These variables were

chosen because they are readily available in the course of clinical care, representing the

minimum set of variables to predict outcomes. Logistic regression identified 1,531 SO-

MAmer reagents to be associated with severe COVID-19 (Appendix A - Supplementary

Table 1) and 1,592 SOMAmer reagents (Appendix A - Supplementary Table 2) to be asso-

ciated with critical COVID-19 when using a Benjamini-Hochberg corrected P value of 0.01

(Figure 4.3). Within these two groups of associated proteins, 1,264 proteins are associated

with both severe and critical COVID-19 outcomes, 328 proteins are only associated with

critical COVID-19, and 267 proteins are only associated with severe COVID-19 for a total

of 1,859 uniquely identified proteins.

4.2.3 Model Selection and Performance Using LASSO

To train both the baseline and the protein models (described in section 4.1.9), we per-

formed 10 repeats of stratified 5-fold cross-validation using LASSO logistic regression in

the BQC19 cohort on both the severe and critical outcomes. We tuned the penalty param-

eter “λ” across each of the 50 cross-validations and selected the λ value corresponding to
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(a) Severe COVID-19 (b) Critical COVID-19

Figure 4.3: Volcano plots. a, Severe COVID-19. b, Critical COVID-19. Each data point

represents the association of a single SOMAmer reagent from multivariable logistic with

these COVID-19 outcomes adjusted for age, sex, sample processing time, and hospital

site. Vertical gridlines are set at β effect estimates of -1.0 and 1.0 while the horizontal

gridline represents the P value with a significant threshold set at P = 0.05. The β effect

estimate shows the change in the log odds of having severe or critical COVID-19 disease

associated with a single standard deviation change in the SOMAmer reagent of interest.

Statistically significant associations between SOMAmer reagents and COVID-19 severity

with large β estimate changes in the negative direction and positive direction are shown

in red and blue, respectively.

the model with the highest area under the receiver operator characteristic curve (AUC),

which was averaged over the 50 cross-validation results. Results from the λ parameter

search are shown in Figure 4.4.

For the best performing model predicting the severe COVID-19 outcome, we selected

a log10 λ value of -1.5 which generated an average training AUC of 59% for the baseline

model. We next selected a log10 λ value of 1.0, which generated an average AUC of 88% for

the protein model. For the best performing model predicting the critical COVID-19 out-

come, we selected log10 λ values of -2.0 and 1.0 corresponding to average cross-validation
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(a) Severe COVID-19 outcome (b) Critical COVID-19 outcome

Figure 4.4: AUC score as a function of regularization strength during L1 regularized logis-

tic regression training to determine the best λ hyperparameter value. Results presented

show model training on the BQC19 cohort. a, Severe COVID-19 outcome. b, Critical

COVID-19 outcome. The baseline model (red) was fitted with covariates age, sex, sam-

ple processing time, and hospital site. The protein model (blue) was fitted with age, sex,

sample processing time, hospital site, and 4,984 SOMAmer reagents. Each data point

represents an AUC score averaged over 50 validation folds. Shaded areas represent 95%

confidence intervals above and below the mean AUC.

training AUC scores of 59% and 89% for the baseline and protein model, respectively

(Figure 4.5). We then used these chosen λ hyperparameters to build baseline and protein

models for severe and critical COVID-19 using the entire BQC19 cohort and evaluated

their performance in the independent external test cohort from Mount Sinai.

1Footnote for Figure 4.5. Standard deviation was calculated assuming the population standard deviation σ
using pandas.DataFrame.std(ddof=0) which is consistent with numpy.std. To calculate confidence intervals
for the population mean µ, we use the sample mean x̄ as follows

µ = x̄± z × σ√
n

where, σ is the population standard deviation, n is the sample size, and for 95% confidence intervals,
z = 1.96. Note that σ√

n
is the standard error.

Here, we calculate 95% CI for the training AUC curves where n = 50 since each data point is averaged
over 50 validation set AUC score.

The 95% CI says that only 5% of the time, the mean will not lie in the range

µ = x̄± z × σ√
n
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Figure 4.5: AUC score results. (Left), L1 regularized logistic regression training and test-

ing results for severe COVID-19 and (Right), critical COVID-19. Blue and red are used

to represent the protein model and baseline model, respectively, while solid and dotted

lines represent the testing and training performance, respectively. Shaded areas denote

the 95% confidence intervals for the training cohort.1

When testing the prediction of severe COVID-19 in the independent Mount Sinai co-

hort, AUC performance of the baseline model improved from 59% in the BQC19 training

cohort to 65% in the Mount Sinai testing cohort. The AUC of the protein model decreased

slightly between training and testing (88% vs. 86%).

The AUC of the protein model for predicting critical COVID-19 also decreased from a

training score of 89% to 80% in the test set. In contrast, prediction of the critical COVID-19

outcome using the baseline model was consistent between training and test performance

(AUC: 59%). The stability of these AUC estimates in the test cohort suggested that both

protein models were robust.

The classification performance of the baseline and protein models in the Mount Sinai

cohort is shown as two-by-two contingency tables in Figure 4.6. The baseline and pro-

tein models used thresholds of 0.417 and 0.486 to predict severe COVID-19, respectively.

These thresholds were selected by computing Youden’s J statistic during training and de-

53



termine the threshold that maximized the sum of the sensitivity and specificity scores

during training. The thresholds selected were roughly consistent with the case to con-

trol ratio in the BQC19 cohort used for training (175 cases, 242 controls). The protein

model achieved a sensitivity of 73.2% compared to 61.0% for the baseline model, and a

specificity of 79.7% compared to 60.5% for the baseline model, when predicting the severe

COVID-19 outcome (Figure 4.6).

When predicting critical COVID-19 using the baseline and protein models, thresholds

of 0.202 and 0.255 were used to predict cases, respectively, using the same method. The

low threshold for predicting critical COVID-19 cases is consistent with the case to control

ratio in training which was 93 to 324 samples. The baseline model achieved a sensitivity

/ specificity score of 50.2% / 57.4% while the protein model achieved 74.3% / 69.6%,

suggesting that the protein model trained to predict critical COVID-19 had decent power

to classify true positives and true negatives (Figure 4.6).

Furthermore, both the baseline and protein models demonstrated higher positive pre-

dictive values than negative predictive values when predicting the severe COVID-19 out-

come, compared to the critical outcome. In contrast, these models produced higher nega-

tive predictive values than positive predictive values when predicting critical COVID-19.

Overall, these results suggest that the protein models predicting severe and critical

COVID-19 both perform reasonably well in terms of the trade-off between sensitivity

and specificity. The protein model is sensitive (73.2%) at identifying severe COVID-19

cases and similarly sensitive (74.3%) at identifying critical COVID-19 cases. Further, the

positive predictive value for severe COVID-19 was high at 88.9%, while the negative pre-

dictive value was 57.3% (Figure 4.6). These results suggest that a protein model could

predict severe COVID-19 with relatively high confidence.

4.2.4 Training and Performance of Models using Elastic Net

The cross-validation results for elastic net are shown in (Figure 4.7). The best hyperparam-

eters produced training AUCs of 87.3% and 88.5% for the protein model when predicting
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Figure 4.6: Two-by-two contingency table results from the test set are shown for predict-

ing severe (top left, bottom left) and critical COVID-19 (top right, bottom right) using the

protein model (blue) and baseline model (red). The threshold for predicting cases was

determined during training using Youden’s J statistic which selects a threshold that max-

imizes the sum of the sensitivity and specificity score. PPV = positive predictive value,

NPV = negative predictive value.

severe COVID-19 and critical COVID-19, respectively (data not shown). For the base-

line model, training AUC results for predicting severe COVID-19 and critical COVID-19

were 54.6% and 54.9%, respectively (data not shown). The training performance results

for elastic net models were similar to LASSO models with the only improvement demon-

strated by the protein model when predicting severe COVID-19 (LASSO training AUC
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(a) Severe COVID-19: baseline model (b) Severe COVID-19: protein model

(c) Critical COVID-19: baseline model (d) Critical COVID-19: protein model

Figure 4.7: Elastic net logistic regression hyperparameter search results. AUC score as a func-

tion of regularization strength during elastic net regularized logistic regression training on severe

COVID-19 for the a, baseline model and b, protein model. c, AUC score as a function of regular-

ization strength during elastic net regularized logistic regression training on critical COVID-19 for

the c, baseline model and d, protein model.

88.0% vs. elastic net training AUC 87.3%). Due to small differences between LASSO and

elastic net performance, we did not pursue testing of the elastic net model in the external

Mount Sinai cohort since it is more complex and requires more computational time to

train.
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4.2.5 Proteins Prioritized by LASSO to Predict COVID-19 Severity Out-

comes

To predict the severe COVID-19 outcome, the best performing protein model selected 92

proteins along with age and sample processing time (Figure 4.9, Appendix A - Supple-

mentary Table 3). Assessing the correlation of all 92 proteins, we found that, as expected,

most of the proteins did not correlate with each other (mean absolute Spearman’s ρ =

0.17) (Figure 4.8). Of 8,464 total correlations (92 × 92), 8,372 correlations (98.9%) had

Spearman’s absolute ρ < 0.8.

Next, when predicting the critical COVID-19 outcome, the best performing protein

model retained age, sample processing time, and 67 proteins (Figure 4.9, Appendix A -

Supplementary Table 4). The absolute effect estimates of these proteins were generally

larger than the severe COVID-19 model proteins (mean: 0.081 vs. 0.077). As expected, the

67 selected proteins also showed low levels of correlation (mean absolute Spearman’s ρ

= 0.15) (Figure 4.10). Of 4,489 total correlations (67 × 67), 4,422 correlations (98.5%) had

Spearman’s absolute ρ < 0.8. The correlation between the 92 and 67 proteins selected to

best predict severe and critical COVID-19 outcomes is shown in Figure 4.9. Out of 6,164

total correlations (92 × 67), 6,150 correlations (99.8%) had Spearman’s absolute ρ < 0.8. In

general, proteins selected for predicting severe versus critical COVID-19 were not highly

correlated (mean absolute Spearman’s ρ = 0.15). A hierarchically clustered heatmap after

removal of the 14 common proteins in severe and critical COVID-19 showed that the

proteins selected in predicting both outcomes were also generally uncorrelated with one

another where 99.2% of the correlations had Spearman’s absolute ρ < 0.8 (Figure 4.11).

The percent of selected proteins for the prediction of severe and critical COVID-19 that

were cytokines or chemokines was only 5.4% and 4.5%, respectively. Cytokine IFNA7, as

well as chemokines CXCL13, CXCL10, CCL7, and CCL8 were present in the proteins se-

lected for predicting severe COVID-19. Three chemokines, CXCL13, CXCL10, and CCL7

were selected for predicting critical COVID-19. Importantly, among the 14 overlapping
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proteins, those three chemokines, CXCL13, CXCL10, and CCL7 were selected for predict-

ing both severe and critical COVID-19.

In addition, we clustered the 4,984 SOMAmer reagents using uniform manifold ap-

proximation and projection (UMAP) to reduce the feature space to a 2-dimensional space

and highlighted the position of the model-selected proteins predictive of either severe

or critical COVID-19. Our results suggested that LASSO selected proteins were sparsely

distributed across the clusters (Figure 4.12). This provides further evidence that: 1) few

of the selected proteins are closely clustered with one another in UMAP space and 2)

the proteins selected from the severe protein model and critical protein model were also

quite distant from each other in UMAP space. Finally, we performed pathway analysis

on common proteins with non-zero effect estimates that were included in the best pre-

dictive models of severe and critical COVID-19. Since LASSO is designed to pick one

protein from a group of correlated proteins regardless of their biological relevance, we

also included proteins highly correlated (Spearman’s absolute ρ > 0.75) with the proteins

selected by LASSO for the enrichment analysis. As a result, 171 proteins were included in

the severe group (92 LASSO selected proteins and 79 correlated proteins, Appendix A -

Supplementary Table 5); and 96 proteins were included in the critical group (67 LASSO se-

lected proteins and 29 correlated proteins, Appendix A - Supplementary Table 6). Among

which, 32 proteins were common between the severe and critical groups.

We found that these 32 proteins were enriched in 35 pathways (g:SCS adjusted P

value < 0.05), among which 15 were directly related to immune responses (Figure 4.13,

Appendix A - Supplementary Table 7). Prominent pathways included viral protein in-

teraction with cytokines, cytokine and cytokine receptors (IL22RA1, TNFRSF10B, CCL7,

CXCL10, CXCL13, adjusted P=0.0008) and cytokine-cytokine receptor interactions (CD4,

IL22RA1, TNFRSF10B, CCL7, CXCL10, CXCL13, IFNA7, adjusted P= 0.002).

Interestingly, more than half of enriched pathways were not directly related to im-

mune response (e.g., signaling receptor binding, cell activation) as shown in figure 4.13.

This suggests that other non-immune response pathways influence COVID-19 severity.
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In addition, some of these pathways included protein phosphorylation (CTSG, PRKCZ,

PECAM1, CD4, CLEC7A, NPPA, TNFRSF10B, PRDX4, EPHA4, TNXB, CXCL10, IFNA7,

CDH5) and glycosaminoglycan binding (CTSG, CCL7, TNXB, CXCL10, CXCL13), sug-

gesting potential avenues to explore for drug development.

4.2.6 Using Clinical Risk Factors to Predict COVID-19 Outcomes

In order to contrast the prediction capabilities of protein levels with established clinical

risk factors, we performed two sensitivity analyses with results shown in Table 4.4. In

the first analysis, we added six clinical risk factors to the baseline and protein models de-

scribed in the main analyses. These clinical risk factors were diabetes, chronic obstructive

pulmonary disease (COPD), chronic kidney disease, congestive heart failure, hyperten-

sion, and liver disease. The prevalence of these risk factors is shown in Table 4.1.

Addition of these six clinical features to the baseline model improved the training

AUC to 64% (from 59%) when predicting severe COVID-19 and to 61% (from 59%) when

predicting critical COVID-19. However, adding these clinical risk factors to the protein

model resulted in no change in the training AUC performance when predicting severe

COVID-19 (AUC = 88% vs. 88%) and critical COVID-19 (AUC = 89% vs. 89%) (Table 4.4,

Figures 4.14 and 4.15). 95 and 69 features with non-zero β coefficient effect estimates were

selected for the protein models predicting severe and critical COVID-19, respectively, in

this sensitivity analysis (Figures 4.14 and 4.15). Comparing proteins selected by the pro-

tein model in this sensitivity analysis, only one protein, KIT, was added to the 94 features

selected in the main analysis. For critical COVID-19, the 69 features selected remained

the same.

For the second sensitivity analysis, we augmented the first sensitivity analysis with

an extra covariate for smoking status. Due to missing smoking information from the

CHUM hospital site in the BQC19 cohort, only 312 samples were used in model training

for the second sensitivity analysis. The results suggested that the addition of smoking

and 6 clinical risk factors into the original baseline model composed of age, sex, sample
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processing time, and hospital site also slightly improved the training performance when

predicting the severe COVID-19 outcome (AUC = 66% vs. 59%) and the critical COVID-19

outcome (AUC = 61% vs. 59%) (Table 4.4, Figures 4.16 and 4.17). When adding smoking

and these 6 clinical risk factors to the protein model, we found that training performance

actually decreased for the severe COVID-19 outcome (AUC = 85% vs. 88%) and critical

COVID-19 outcome (AUC = 85% vs. 89%). The non-zero β coefficients (i.e., the effect

sizes) of the proteins for severe and critical COVID-19 outcomes are shown in Figures 4.16

and 4.17 with a total of 79 and 51 features being selected, respectively. Comparing the 79

features selected by the protein model in this sensitivity analysis to the original 94 features

selected previously when predicting severe COVID-19, we observed that only 48 features

overlapped. Similarly, the 51 features selected by the protein model in this sensitivity

analysis only had 28 features overlapping with the 69 features selected previously. The

observed decrease in AUC and fewer number of overlapping proteins when comparing

main analyses and sensitivity analyses may be due to the reduction in sample size used

for training.

The results from these sensitivity analyses suggest that the protein measurements are

likely able to act as partial proxies of the tested clinical risk factors. The addition of the

clinical risk factors that we assessed may improve the predictive performance for both

COVID-19 severity outcomes when only demographic and sample processing parameters

are available. However, when protein measurements are available, adding these extra

clinical risk factors may add little for improving predictions.

4.3 Discussion

In this section, we summarize and describe the implications of the work including limi-

tations and novel insights in the context of the current literature on published COVID-19

proteomics studies.
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Main Analysis
(n=417)

Main Analysis plus
6 clinical risk factors

(n=417)

Main Analysis plus
7 clinical risk factors

(n=312)

Baseline
model

Protein
model

Baseline
model

+ 6 CRFs

Protein
model

+ 6 CRFs

Baseline
model

+ 7 CRFs

Protein
model

+ 7 CRFs
Severe

COVID-19 0.59 0.88 0.64 0.88 0.66 0.85

Critical
COVID-19 0.59 0.89 0.61 0.89 0.61 0.85

Table 4.4: Training AUC comparison.

Main Analysis:

Baseline model: age, sex, sample processing time, and hospital site.

Protein model: baseline model and 4,984 SOMAmer reagents.

Main Analysis plus 6 clinical risk factors (CRFs):

Baseline model + 6 CRFs: age, sex, sample processing time, hospital site, and 6 comor-

bidities.

Protein model + 6 CRFs: baseline model + 6 CRFs and 4,984 SOMAmer reagents.

Main Analysis plus 7 clinical risk factors:

Baseline model + 7 CRFs: age, sex, sample processing time, hospital site, 6 comorbidities

and smoking status.

Protein model + 7 CRFs: baseline model + 7 CRFs and 4,984 SOMAmer reagents.

4.3.1 Prediction of COVID-19 Outcomes

A major clinical challenge within the pandemic has been the triaging of patients to iden-

tify those most likely to require admission for hospitalization [106]. A common reason

for hospitalization is the need for oxygen support. Currently, treating physicians are re-

quired to assess the need for admission using models with poor predictive performance.

A model generated in China early in the pandemic to predict COVID-19 severity requires
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a medical history, chest X-ray, and extensive blood testing [107]. Further, the 4C Mortality

Score was able to predict in-hospital mortality, but achieved an AUC of only 77% [108].

4.3.2 Prediction of COVID-19 Outcomes with Circulating Proteins

In this large-scale study testing the association of 4,701 circulating proteins with severe

and critical COVID-19 outcomes, we found that a subset of these proteins were strong

predictors of COVID-19 severity. Specifically, developing a model in 417 individuals and

testing its performance in 569 separate samples from an independent external cohort, we

demonstrated that a proteomic model was able to predict severe COVID-19, defined as

requiring the use of oxygen, with an AUC of 86% and a positive predictive value of 89%.

The addition of several commonly used clinical risk factors for COVID-19 severity did not

improve the performance of this model. The identified proteins were strongly enriched

for cytokine signaling and immune pathways, but also highlighted non-immune path-

ways. Taken together, these findings demonstrate that circulating protein abundances are

able to predict COVID-19 outcomes with reasonable accuracy.

4.3.3 Inclusion of Secondary Cohort

By including an independent cohort in this study, we implemented best practices for

model development and validation [46]. An important aspect of any prediction model

is the testing of the model in a cohort separate from the training cohort. Therefore, a

strength of this study was that our samples were recruited from three separate hospitals,

across two separate health care systems in two different countries. In this study, we used

the same proteomic measurement procedure to both train and test the models. This in-

creases the probability that the results presented are generalizable and not overfitted to

the training data [47]. Indeed, for the severe COVID-19 outcome, there was little change

in the AUC when comparing the training and test cohorts (88% vs. 86%).
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4.3.4 Circulating Cytokines and Chemokines

Further, most studies that have tested the association between protein levels and COVID-

19 outcomes have focused on circulating cytokines and chemokines [16, 48–54]. While

this is a reasonable approach given the nature of the disease, we are unaware of any

other studies that have tested the association of 4,701 circulating proteins with COVID-

19 outcomes. A recent study assessing thousands of proteins and their associations with

COVID-19 outcomes achieved an AUC of 85% with an elastic-net logistic regression model,

but this was not tested in an independent cohort [33]. This model included covariates

such as age, gender, ethnicity, heart disease

Interestingly only 5 of the 14 proteins selected in the final model of both severe and

critical COVID-19 outcome were cytokines or chemokines. There were also proteins se-

lected that were not specific to immune pathway proteins, such as glycosaminoglycan

binding—a favourable set of targets for drug development. This suggests that many of

the biological pathways that influence severity of COVID-19 outcomes may act distinctly

from known cytokine and chemokine proteins.

4.3.5 Limitations

This study has important limitations. While the model was tested in a separate cohort,

and generalized well, it should be tested in additional cohorts, especially in cohorts of

diverse ancestry. Due to sample size limitations, separate prediction models for each an-

cestry was not performed. The control population included individuals who were SARS-

CoV-2 positive and had mild disease, in addition to individuals who were suspected to

have COVID-19 but were SARS-CoV-2 negative. This means that the developed models

provide insight into prediction of individuals who develop severe COVID-19 compared

to mild COVID-19 and other acute diseases having symptoms consistent with COVID-

19. Such control definitions reduce the potential for collider bias, but do not allow direct

prediction of COVID-19 outcomes amongst only COVID-19 patients [109]. Another lim-
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itation of this study is that the identified proteins may only be surrogates of the causal

proteins, since many are highly correlated. Thus, it is difficult to make causal inferences

given these correlations. In addition, approximately half of the patients enrolled in the

BQC19 have developed severe or critical COVID-19 after their baseline proteomic mea-

surement which were used as predictors in this study. This suggests circulating protein

measurements could be considered for predicting COVID-19 severity, but this requires

further study, including more sampling at the onset of symptoms. Moreover, testing data

from Mount Sinai did not include sample processing time, which is an important base-

line model feature, as well as clinical risk factors. Last, the clinical translation of this

study is hindered by the cost involved in measuring 4,701 circulating proteins but could

be improved by developing a specific assay to the selected proteins.

4.4 Miscellaneous

4.4.1 Ethics declarations

All contributing cohorts to the present analyses received ethics approval from their re-

spective research ethics review boards. The Biobanque Québécoise de la COVID-19 (BQC19)

received ethical approval from the IRB of the JGH and the CHUM. This research was re-

viewed and approved by the Icahn School of Medicine at Mount Sinai Program for the

Protection of Human Subjects (PPHS) under study number 20-00341. This research was

considered minimal risk Human Subjects Research.

4.4.2 Data Availability

Code used in this analysis is available at https://github.com/chenyangsu/somalogic

with additional information available upon request. The BQC19 is an Open Science

Biobank. Instructions on how to access data for individuals from the BQC19 at the Jew-

ish General Hospital site is available at https://www.mcgill.ca/genepi/mcg-covid-19-
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biobank. Instructions on how to access data from other sites of the BQC19 is available at

https://www.bqc19.ca/en/access-data-samples.
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Figure 4.8: Correlations of SOMAmer reagents selected by the protein model when

predicting COVID-19 outcomes. Spearman’s rank correlations between the 92 proteins

within the protein model trained to predict the severe COVID-19 outcome. Plot shows

a 92 × 92 heatmap containing 8,464 total correlations with only the bottom portion of

the heatmap being shown. Proteins were hierarchically clustered with 8,372 correlations

(98.9%) having Spearman’s absolute ρ < 0.8.
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Figure 4.9: Feature importance and correlation of SOMAmers selected in the protein

model to predict severe and critical COVID-19. (Rest of caption on next page)
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Figure 4.9: (Previous page.) (Left) Coefficient values of the 92 nonzero SOMAmer

reagents in the final trained L1 regularized logistic regression protein model fitted on

the severe COVID-19 outcome. The original data contained 4,984 SOMAmer reagents

and 4 other variables: age, sex, sample processing time, and hospital site. 92 SOMAmer

reagents remained within the model along with age and sample processing time which

are not shown. The model was trained on the entire BQC19 cohort using λ = 10.0 (log10 λ

= 1.0) which was the best λ value found from the hyperparameter search.

(Bottom) Coefficient values of the 67 nonzero SOMAmer reagents of the final trained L1

regularized logistic regression protein model fitted on the critical COVID-19 outcome.

The original data contained 4,984 SOMAmer reagents and 4 variables age, sex, sample

processing time, and hospital site. 67 SOMAmer reagents remained within the model

along with age and sample processing time which are not shown. The model was trained

on the entire BQC19 cohort using λ = 10.0 (log10 λ = 1.0) which was the best λ value found

from the hyperparameter search.

(Right) Spearman’s rank correlations between the 92 proteins associated with the se-

vere COVID-19 outcome and the 67 proteins associated with the critical COVID-19 out-

come. These results suggest that while there were 14 overlapping proteins (SFTPD,

CXCL10, RAB3A, NAGPA, CDH5, IFNA7, ZNRF3, CBS, CCL7, SETMAR, TNXB,

CDHR1, CXCL13, and CBLN1), in general, the protein levels were uncorrelated with

one another. Out of 6,164 total correlations (92 × 67), 6,150 correlations (99.8%) had a

Spearman’s absolute ρ < 0.8.
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Figure 4.10: Correlations of SOMAmer reagents selected by the protein model when

predicting COVID-19 outcomes. Spearman’s rank correlations between the 67 proteins

within the protein model trained to predict the critical COVID-19 outcome. Plot shows

a 67 × 67 heatmap containing 4,489 total correlations with only the bottom portion of

the heatmap being shown. Proteins were hierarchically clustered with 4,422 correlations

(98.5%) having Spearman’s absolute ρ < 0.8.
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Figure 4.11: Correlations of SOMAmer reagents selected by the protein model when pre-

dicting COVID-19 outcomes. Spearman’s rank correlations between the nonoverlapping

proteins predicting severe (dark blue) and critical (pink) COVID-19 outcomes. Plot shows

a 131 x 131 heatmap containing 17,161 total correlations with only the bottom portion of

the heatmap being shown. Proteins were hierarchically clustered with 17,030 (99.2%) hav-

ing Spearman’s absolute ρ < 0.8.
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Figure 4.12: Unsupervised clustering by uniform manifold approximation and projection

(UMAP) on 4,984 SOMAmer reagents in the BQC19 cohort. Nonlinear dimensionality re-

duction of measured levels of 4,984 SOMAmer reagents from the BQC19 cohort projected

into a 2-dimensional space. Proteins selected by L1 regularized logistic regression for pre-

dicting critical COVID-19 using the protein model are shown in red and proteins selected

for predicting severe COVID-19 are shown in purple. The 14 common proteins that were

selected in protein models trained on both severe and critical COVID-19 are shown in

green.
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Figure 4.13: Pathway analysis on common proteins best predicting severe and critical

COVID-19 outcomes. 32 proteins were common between proteins selected by LASSO that

are predictive of critical COVID-19 plus their highly correlated proteins (N=96, Spear-

man’s absolute ρ > 0.75) and proteins selected by LASSO that are predictive of severe

COVID-19 plus their highly correlated proteins (N=171, Spearman’s absolute ρ > 0.75).

Pathway enrichment was predicted by g:Profiler. Pathways with g:SCS adjusted P < 0.05

are listed. GO BP: Gene Ontology biological process; GO CC: Gene Ontology cellular

component; GO MF: Gene Ontology molecular function; KEGG: Kyoto Encyclopedia of

Genes and Genomes; REAC: Reactome Pathway Database. Diagonally patterned bars

represent immune response pathways.
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(a) Severe COVID-19 (b) Critical COVID-19

Figure 4.14: Main Analysis plus 6 clinical risk factors. We trained a baseline model (red)

with covariates age, sex, sample processing time, hospital site, and 6 clinical features as

well as a protein model (blue) containing all baseline model covariates along with an

additional 4,984 SOMAmer reagents. The sample size used in this analysis was the entire

BQC19 cohort comprising 417 patients.

Train AUC score as a function of regularization strength during L1 regularized logistic

regression when training to predict a, severe COVID-19 and b, critical COVID-19. The

baseline model was fitted with covariates age, sex, sample processing time, hospital site,

and 6 clinical features (diabetes, chronic obstructive pulmonary disease, chronic kidney

disease, congestive heart failure, hypertension, liver disease). The protein model was

fitted with all variables in the baseline model along with 4,984 SOMAmer reagents. Each

data point represents an AUC score averaged over 50 validation folds. Shaded areas

represent 95% confidence intervals above and below the mean AUC.
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(a) Severe COVID-19 (b) Critical COVID-19

Figure 4.15: Main Analysis plus 6 clinical risk factors: model coefficients. (Rest of caption

on next page.)
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Figure 4.15: (Previous page.) a, Absolute values of the 95 nonzero coefficients of the final

trained L1 regularized logistic regression protein model for predicting severe COVID-19.

The original data contained 4,984 proteins and 4 variables age, sex, sample processing

time, hospital site, smoking status along with 6 clinical features. A total of 93 proteins

remained within the model along with age and sample processing time. The model was

trained on the entire training set using λ = 10.0 (log10 λ = 1.0) which was the best λ value

found from the hyperparameter search.

b, Absolute values of the 69 nonzero coefficients of the final trained L1 regularized logistic

regression protein model for predicting critical COVID-19. The original data contained

4,984 proteins and 4 variables age, sex, sample processing time, hospital site, along with

6 clinical features. A total of 67 proteins remained within the model along with age and

sample processing time. The model was trained on the entire training set using λ = 10.00

(log10 λ = 1.0) which was the best λ value found from the hyperparameter search.
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(a) Severe COVID-19 (b) Critical COVID-19

Figure 4.16: Main Analysis plus 7 clinical risk factors. We trained a baseline model (red)

with covariates age, sex, sample processing time, hospital site (JGH only), 6 clinical fea-

tures, and smoking status as well as a protein model (blue) containing all baseline model

covariates along with an additional 4,984 SOMAmer reagents. Due to the smoking status

variable missing from the CHUM data, the sample size was reduced from 417 samples

down to 312 samples for the analysis.

Training AUC score as a function of regularization strength during L1 regularized logis-

tic regression when trained to predict a, severe COVID-19. b, critical COVID-19. The

baseline model was fitted with covariates age, sex, sample processing time, hospital site,

smoking, and 6 clinical features (diabetes, chronic obstructive pulmonary disease, chronic

kidney disease, congestive heart failure, hypertension, liver disease). The protein model

was fitted with all variables in the baseline model along with 4,984 SOMAmer reagents.

Each data point represents an AUC score averaged over 50 validation folds. Shaded areas

represent 95% confidence intervals above and below the mean AUC.
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(a) Severe COVID-19 (b) Critical COVID-19

Figure 4.17: Main Analysis plus 7 clinical risk factors: model coefficients. (Rest of caption

on next page.)
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Figure 4.17: (Previous page.) a, Absolute values of the 79 nonzero coefficients of the final

trained L1 regularized logistic regression protein model for predicting severe COVID-19.

The original data contained 4,984 proteins and 4 variables age, sex, sample processing

time, hospital site, smoking status along with 6 clinical features. A total of 77 proteins

remained within the model along with age and sample processing time. The model was

trained on the entire training set using λ = 10.00 (log10 λ = 1.0) which was the best λ value

found from the hyperparameter search.

b, Absolute values of the 51 nonzero coefficients of the trained L1 regularized logistic

regression protein model for predicting critical COVID-19. The original data contained

4,984 proteins and 4 variables age, sex, sample processing time, hospital site, smoking sta-

tus along with 6 clinical features. A total of 49 proteins remained within the model along

with age and sample processing time. The model was trained on the entire training set

using λ = 10.00 (log10 λ = 1.0) which was the best λ value found from the hyperparameter

search.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The main goal of this work was to build predictive models that can improve the outcomes

for COVID-19 patients using proteomic data since doing so would provide insights into

the causes of severe disease as well as enable the identification of individuals at high

risk of severe COVID-19. In this work, we measured 4,701 circulating human protein

abundances in two geographically separated cohorts across two countries, totaling 986

individuals. We then trained prediction models including protein abundances and clin-

ical risk factors to predict adverse COVID-19 outcomes in 417 subjects and tested these

models in a second, independent cohort of 569 individuals from Mount Sinai. In the

most comprehensive large-scale assessment of the role of the proteome in severe COVID-

19 outcomes to date, we found that circulating proteins were strongly associated with

COVID-19 outcomes and were able to discriminate these outcomes with reasonable accu-

racy. We also found that protein levels were better able to predict COVID-19 outcomes

than nearly all clinical risk factors tested.

In summary, circulating protein levels are strongly associated with COVID-19 out-

comes and able to predict the need for oxygen supplementation or death with reasonable

accuracy. Measured protein levels were superior to predicting COVID-19 severity out-
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comes when compared to nearly all clinical risk factors tested. Further research is needed

to assess whether this proteomic approach can be applied in a clinical setting to assist in

triaging patients for admission to hospital.

5.2 Future Work

The COVID-19 pandemic has presented an unprecedented challenge to economies and

public health worldwide. The cooperativeness and teamwork between researchers in

interdisciplinary fields including infectious diseases, population genetics, and statistics is

crucial to obtain greater insights and treatments for disease. Due to the large collaborative

nature of COVID-19 research as well as the impact of the translation of findings that could

have on the scientific community and general audiences, quicker and simpler methods for

bypassing data sharing agreements may be needed and could be further explored.

The use of federated learning, a machine learning technique which allows training of

a model on decentralized data sources may be valuable in improving cooperation and

communication between both Canadian and international researchers and improve the

speed at which results and findings can be transmitted to benefit not only the scientific

community but also the public.

While the goal was to build an efficient and interpretable predictive model to screen

for individuals who could potentially develop severe COVID-19, more complex models

may be constructed with better predictive performance but at the cost of interpretabil-

ity. Doing so will improve triage of individuals in the emergency room and highlight

individuals who should be monitored more closely for COVID-19 progression to severe

outcomes. Further, an understanding of the association patterns and etiological role of

these circulating proteins will also ultimately allow for potential protective measures in

the form of developmental drug targets regulating key protein expression levels to be

discovered, designed, and distributed for use.
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More research is needed to determine how variation in the human genome and under-

lying proteins affect SARS-CoV-2 infection. With the evidence provided by this research

work, we will enable evidence-based decisions to be made in selecting molecular targets

which can drastically improve the probability of success rates during therapeutic devel-

opment and lead to better research and development of vaccines and drugs to combat

communicable diseases in the future.

Other future work can involve the assessment of how COVID-19 infection affects the

genetic regulation of circulating proteins. By diving into genes regulating the expression

levels of proteins (pQTLs), this may enable the discovery of underlying biomarkers that

can serve as new therapeutic targets to treat COVID-19 infection [110–112]
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Appendix A

Supplementary Tables

Supplementary tables are attached as a separate file called SupplementaryTables.xlsx.

Below are the descriptions of each supplementary table.

• Supplementary Table 1: Logistic regression of a single SOMAmer reagent on severe

COVID-19, adjusting for sex, age, sample processing time, and hospital site.

• Supplementary Table 2: Logistic regression of a single SOMAmer reagent on critical

COVID-19, adjusting for sex, age, sample processing time, and hospital site.

• Supplementary Table 3. Betas of 92 non-zero proteins identified by lasso that were

associated with severe COVID-19.

• Supplementary Table 4. Beta of 67 non-zero proteins identified by lasso that were

associated with critical COVID-19.

• Supplementary Table 5. Proteins with Spearman’s absolute ρ > 0.75 when corre-

lated with one of the proteins in ST3

• Supplementary Table 6. Proteins with Spearman’s absolute ρ > 0.75 when corre-

lated with one of the proteins in ST4

• Supplementary Table 7. Pathway enrichment of 32 common proteins
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• Supplementary Table 8. Mount Sinai COVID-19 Biobank Team
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