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Abstract

Different explicit filtering strategies for the Lattice Boltzmann Method (LBM) were imple-

mented and analyzed using the open source solver Palabos and the solver Mathematica. A

von Neumann analysis performed by Ricot et al. showed that instabilities occuring for the

the single relaxation time (BGK) formulation of the LBM are caused by the interaction of

acoustic modes with other modes in the simulations. Moreover, the BGK-VLES (very large

eddy simulation) formulation, which uses a turbulence model, causes high numerical dissi-

pation in the flow field solution. One alternative called the LBM- Multi-Relaxation Times

(LBM-MRT) is to perform collision on moments of the distribution function. This approach

leads to a more stable and physical formulation, but the LBM-MRT tends to increase compu-

tational costs. In the present study, an explicit filter (i.e. SF-7) was first implemented with

the multi-relaxation times (MRT) formulation of the LBM. A Dual Shear Layer benchmark

case was implemented and results compared with the unfiltered BGK and MRT, and filtered

BGK for four grid sizes. It was shown that explicitely filtering the MRT leads to enhanced

stability in comparision with the unfiltered MRT, with the filtered scheme successfully pre-

venting spurious vortices for under-resolved simulations. A three-dimensional Taylor-Green

Vortex test case was also investigated. In three-dimensions, the filtered scheme was shown to

accurately capture the isotropic turbulence decay while significantly decreasing oscillations

in the solution. The Von Neumann analysis of a differential filter, based on the Approxi-

mate Deconvolution Model (ADM) techniques, was performed in conjunction with that of

the BGK without an additional turbulence model. The differential filter was shown to in-

crease the dissipation of some modes in the solution. While this demonstrates the possible

application of an approximate deconvolution-based filter on the LBM, further optimization

of the filter parameters is necessary in order to stabilize the scheme.
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Résumé

Dans la présente thèse, différentes stratégies de filtrage explicites pour la méthode de Boltz-

mann sur Réseau (LBM) ont été implementées et analysées à l’aide des solveurs Palabos

et Mathematica. Une analyse de Von Neumann réalisée par Ricot et al. a montré que les

instabilités visibles pour la formulation de temps de relaxation unique (BGK) de LBM sont

causées par l’interaction des modes acoustiques avec d’autres modes dans les simulations. De

plus, la formulation BGK-VLES (simulations des très grandes structures de turbulence), qui

utilise un modèle de turbulence, conduit à une dissipation élevée dans la solution de champ

d’écoulement. Une alternative consiste à effectuer le processus de collision sur les moments

de la fonction de distribution, ce qui mène à une formulation plus stable et réaliste, la formu-

lation aux temps de relaxation multiples (LBM-MRT). Cependant, cela entrâıne également

des coûts de calcul plus élevés. Un filtre explicite (SF-7) fut d’abord implementé avec la

formulation à temps de relaxation multiples (MRT) de la méthode de Boltzmann sur réseau.

Un cas de référence de double couche de cisaillement a d’abord été réalisé et les résultats

comparés avec les versions filtrées et non filtrées des formulations BGK et MRT pour quatre

tailles de maillage. Il a été démontré que le filtrage explicite du MRT conduit à une stabilité

accrue par rapport au MRT non filtré, le schéma filtré empêchant avec succès les tourbillons

parasites pour les simulations sous-résolues. Une simulation tri-dimensionelle de Taylor-

Green Vortex a également été réalisée. En trois dimensions, le schéma filtré a pu capturer

avec précision la décroissance de la turbulence isotrope tout en diminuant considérablement

les oscillations dans la solution. L’analyse de Von Neumann d’un filtre différentiel, basée

sur les techniques du modèle de déconvolution approximative (ADM), a été menée conjoin-

tement avec le BGK sans modèle de turbulence supplémentaire. Il a été démontré que le

filtre différentiel augmente la dissipation de certains modes dans la solution. Bien que cela

ix



démontre l’application possible d’un filtre basé sur la déconvolution approximative sur le

LBM, une optimisation supplémentaire des paramètres du filtre est nécessaire.
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Chapter 1

Introduction

In this study, new strategies for the stabilization of the LBM were investigated, and verified

through simulations of benchmark test cases. In particular, explicit filtering strategies were

studied. For the first time, an explicit filter was implemented with the Multi-relaxation time

(MRT) scheme of the Lattice Boltzmann Method (LBM). Then, a second filter based on the

approximate deconvolution model (ADM) was implemented. In both cases, a von Neumann

Analysis was conducted and both the dispersive and dissipative properties of the scheme

qualified. Two benchmark tests was conducted: 1) a two-dimensional dual shear layer case;

and 2) a three-dimensional Taylor-Green vortex case. The thesis is organized as follows. In

the first part, governing equations of Computational Fluid Dynamics (CFD) are presented

as well as existing solution methods and turbulence models. Then, the kinetic theory is

presented and the link between the Lattice Gas Automata (LGA) and the LBM explained

and defined.

1.1 Computational Fluid Dynamics

1.1.1 Navier-Stoke Equations

The Navier-Stokes equations describe the behavior of a fluid and are derived from the prin-

ciples of mass, momentum, and energy conservation. They are expressed as

1



∂ρ

∂t
+
∂ρui
∂xj

= 0, (1.1)

and

∂ρui
∂t

+ uj
∂ρui
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

, (1.2)

with τij the tensor of viscous forces defined as

τij = 2µSij +

(
µB −

2

3
µ

)
Skkδij. (1.3)

The strain rate tensor, Sij, is defined as:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (1.4)

and µB the bulk viscosity. Usually, Stoke’s hypothesis is used and the second term of τij

expressed as
(
−2

3
µ
)
Skkδij.

Finally, the equation of conservation of energy is expressed as

∂ρe

∂t
+
∂ρeui
∂xi

= − ∂qi
∂xi
− p∂ui

∂xi
+ τij

∂ui
∂xj

. (1.5)

Under some assumptions which simplify them, the Navier-Stokes equation can admit

analytical solutions, but in most practical situations require numerical methods to solve

them.

1.1.2 Turbulence Modeling

Real flows are often turbulent and are characterized by a three-dimensional behavior, high

vorticity, and are due to a very high kinetic energy present in the flows. The kinetic energy

is transferred from the large scales to the smallest scales via what is known as the energy

cascade, introduced by Kolmogorov [1]. These smallest scales then dissipate the kinetic

energy with heat production as a by product. This vast range of scales often precludes

direct computation without simplifications, usually through the modeling of the smallest

scales. It is customary in the field to argue that the smallest scales are universal, and so

2



their effect on the largest scales can be modeled. It was Boussinesq [2, 3] who first introduced

the concept of turbulent viscosity, also known as eddy viscosity. He modeled the effect of

turbulent stresses on the mean flow as a modified viscosity. Boundaries conditions were

then considered into subsequent models such as the mixing length model by Prandtl [4],

algebraic models [5], one equation models, and two equation models [6]. In Direct Numerical

Simulation(s) (DNS), all scales in the fluid are directly computed without modeling of the

small scales, with the smallest grid size commensurate the smallest scales in the flow. While

the method is accurate, it also requires very fine grids especially in regions of high gradients

or boundary layers. In more complex cases, involving multiphases or highly turbulent flows,

the computational cost of such simulations is too high and so, alternatives must be sought.

The Reynolds-averaged Navier-Stokes (RANS) equations correspond to a time-averaging of

the governing equations. The solution is a time averaged profile of the variables. Turbulence

models are derived based on either the eddy viscosity or mixing length hypothesis, and some

of the most common are the k−ω [7], k−ε [6], and the Spallart-Allmaras [8, 9]. Each of these

models represent different flow cases. While accurate, these models are based on empirical

constants which may vary from one application to another. Choosing the correct model for

an application is important, as the wrong model can give inaccurate or unrealistic results.

First introduced by Smagorinsky to simulate atmospheric currents of air [10], Large Eddy

Simulations (LES) are a good compromise between DNS and RANS. In this methodology,

a low pass filtering approach is adopted. Larger scales with lower wavenumbers are directly

computed while smaller scales are modeled via a turbulent viscosity approach. Two scales

are particularly relevant in the LES approach: the domain characteristic length  L, and the

grid size, ∇x. Starting from the Navier-Stokes equations,

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (1.6)

filtering is applied as (i.e. in the following and the rest of the thesis, an overbar will be

placed over filtered terms)

∂ρui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

. (1.7)

As the unfiltered variables are unknowns, the term ∂uiuj cannot be directly computed.

3



As ∂ūiūj is known, a substitution is made in the LES framework,

∂ρui
∂t

+
∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2ui
∂xj∂xj

+

(
∂uiuj
∂xj

− ∂ūiūj
∂xj

)
. (1.8)

Let Tij = uiuj − ūiūj. The filtered Navier-Stokes equation can then be expressed as

∂ρui
∂t

+
∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2ui
∂xj∂xj

+

(
∂Tij
∂xj

)
. (1.9)

The quantity Tij englobes the Sub-grid Scales stresses and is the resulting extra term. The

goal of the LES method is then to model Tij, and different models can be chosen depending

on the targeted application. In the Smagorinsky-Lilly SGS model, Tij is defined as

Tij = −µSGS
(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

3
Tiiδii. (1.10)

In this expression, the viscosity µSGS which is defined as

µSGS = ρCSGS∇2S = ρC∇22SijSij. (1.11)

C is a constant and the filtered strain rate tensor is defined as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.12)

Two types of LES models exist; in the explicit LES, the filter function is explicitely

defined whereas in the implicit LES, the grid is assumed to be the cut-off. Scales smaller

than the grid cutoff are not directly computed.

1.1.3 Turbulence Modelling in LBM

Smagorinsky Model

In the Large Eddy Simulations (LES) approach, the effect of turbulent scales can be ac-

counted for via a modification of the viscosity to yield an effective viscosity. In the LBM,

a similar approach is adopted. As viscosity is linked to the relaxation time, subgrid scales

models can be implemented via a modification of the relaxation time [11, 12, 10],
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τeff = τ + τSGS, (1.13)

with τSGS the relaxation time corresponding to the turbulent eddy-viscosity νSGS

τSGS = νSGScs
2∆t. (1.14)

The effective viscosity is expressed as

νeff = ν + νSGS, (1.15)

with

ν = cs
2τ − 12∆t, (1.16)

and

νSGS = cs∆
2 ∗ (|S| − S). (1.17)

S is the strain rate tensor defined as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.18)

This approach is most commonly called “LBM-VLES”, where the “VLES” stands for

“Very Large Eddy Simulations”.

1.2 Lattice Gas Automata (LGA)

The Lattice gas Automata, introduced by Hardy, Pomeau, and de Pazzis in the 1970’s, is

the precursor to the LBM [13, 14]. In the LGA model, particles are free to move between

the sites of a lattice. Each site has a Boolean state. At any moment in time, a particle

may or may not be present on the site. Particles move along the links of the lattice while

following streaming and collision rules when two particles reach the same state at the same

time. While being a simple model, such Boolean description of the fluid flow has some

disadvantages. It tends to produce significant statistical noise as each particle needs to

be tracked independently. In addition, a large number of particles is necessary to reach a
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realistic solution, which increases computational costs. Finally, it lacks Galilean invariance.

The Lattice Boltzmann Method circumvents these problems by replacing the Boolean states

by a particle distribution function which translates the probability for a group of particles

to be moving in a certain direction. The distribution function itself is an averaged quantity,

so there is no need to perform further averaging over the cells.

1.3 Lattice Boltzmann Equation (LBE)

The dynamics of particles for an ideal gas can be described via the Boltzmann equation (BE)

[15],

∂f

∂t
+ ~u • ∇f = Ω. (1.19)

In this equation f(x, t) the particle distribution function, ~u the particle velocity, and Ω

the collision operator. The Lattice Boltzmann Method simplifies this idea by reducing the

number of possible directions, and forcing particles to move on a discrete lattice, yielding

the Lattice Boltzmann Equation (LBE) [16] as

fi(~x+ c~ei∆t, t+ ∆t) = fi(x, t)−
1

τ
[fi(x, t)− fieq(x, t)]. (1.20)

In this equation, fi(~x, t) are the initial particle distributions , fi(~x + c~ei∆t, t + ∆t) are

the updated populations, fi
eq(~x, t) the equilibrium distribution, and τ is the relaxation time

towards equilibrium (i.e. the time it takes for particle populations to reach their equilibrium

values).

This is usually known as the LBM-Single Relaxation Time (LBM-SRT) or LBM-Bhatnagar-

Gross-Krook (LBM-BGK) formulation.

1.4 From the LBE to the Navier-Stokes Equations

It is mandatory to be able to relate the Lattice Boltzmann Equation to the macroscopic

equations [17]. In particular, one might want to relate the relaxation time τ to the macro-

scopic viscosity ν. It can be shown [18] that, at very small scales, characterized by a small

6



Knudsen number (i.e Kn = ε → 0), f = f eq is solution to the Euler equations. At these

scales, the flow behavior is free of viscosity and heat effects and is completely described by

the Euler equations. The argument is then that, since the Navier-Stokes equations are sim-

ilar to the Euler equations, their solution, f , must be close tof eq. A multi-scale expansion

can then be introduced; f can then be considered as a small deviation from f eq, with

f = f eq + fneq, (1.21)

and

f = f 0 + εf 1 + ε2f 2, (1.22)

where f 0 = f eq. This translates the fact that different physical phenomena occur at different

scales; at microscopic scales when f = f eq, the flow is entirely described by the Euler

equations whereas at microscopic scales when f deviates from f eq, the Navier-Stokes are

needed to account for the effects of viscosity. This procedure is known as the Chapman-

Enskog expansion[19]. More details are given in the Appendix.

1.5 Lattice Boltzmann Applications

Due to its simplicity and reduced computational costs, the Lattice Boltzmann Method (LBM)

has gathered significant interest for numerical simulations of industrial flows. As a mesoscopic

method, the LBM tracks the local motion of groups of particles who can stream to their

immediate neighbor cells during each time step. Therefore, the algorithm is considered local

and simulations can be easily parallelized, making them fast and efficient. Another advantage

lies in the straightforward handling of boundary conditions. There is no need to generate a

computational mesh defined by analytical functions. As in the immersed boundary method,

surfaces can be represented as solid objects within a uniform isometric grid.

These advantages have led to the use of the LBM in areas as diverse as aeroacoustics

[20, 21, 22], aerodynamics [23, 24, 25], porous media flows [26, 27], earth sciences (i.e. soil

filtration) [28], simple flows [29], mold filling [30], and biomedical flows such as blood flows

[31, 32, 33, 34, 35], among others.
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In the last decade, the LBM has also gathered growing interest in detailed flow simulations

and more specifically aeroacoustic simulations. In such simulations, the ability of the method

to handle complex boundaries enables the inclusion of the jet nozzle in the computational

domain. Many studies have also implemented the LBM with a Large Eddy Simulations or a

Direct Numerical Simulation approach.

In a 2010 report, Lew et al. [20] simulated a subsonic turbulent round jet and predicted

the noise field in the far field. In the near-field, parameters such as turbulence and vorticity

levels and isosurfaces, and jet velocity decay rate on the jet centerline were gathered. Results

were then compared with experimental and Navier-Stokes based LES simulations, and good

agreement was observed, with a 2 dB difference in the noise levels. In his thesis, Gong

[21] used the LBM-based solver PowerFLOW to simulate the flow through lobed mixers

and directly compute the associated radiated sound. Different parameters were studied:

the number of lobes, the lobe depth, and the scalloping. In the near field, results such as

vorticity isocontours and jet centerline velocity decay rate were obtained. In the far-field,

acoustic levels (i.e. Overall Sound Pressure Level, OASPL and Sound Pressure Level, SPL)

were obtained. Results were then compared with experimental results from a NASA report

[36]. In that report, results of experimental testing of various models of lobed mixers with

different operating conditions are reported. and Very good agreement was found between

the two. More recently, Brionnaud et al. [22] validated the LBM-based solver XFlow on

three aeroacoustic cases used for industrial benchmarking. A duct flow past a thick orifice

plate was first simulated. The power spectral density of the axial velocity and pressure was

compared to the reference data and similar spectra was obtained. A subsonic jet through

a straight pipe was then simulated. A broadband noise of 37 dB and a lower frequency

peak around 60 dB were accurately predicted half a meter away from the exit. Finally,

the LAGOON two-wheels landing gear test case was benchmarked. The LAGOON is a

landing gear noise database and validation case funded by Airbus in 2006, and part of the

Benchmark for Airframe Noise Computations (BANC) aeroacoustics database [37, 38, 39].

The averaged pressure coefficients, and velocity profile for both mean and RMS velocity

components were obtained and very good agreement established with experimental steady

and unsteady aerodynamics F2 wind tunnel measurements [39, 40, 22].
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In blood flow (i.e. hemodynamics), the LBM makes tracking of microscopic particles

straightforward , due to its kinetic representation of the flow as a discrete set of particle

populations. In a 2008 report [31], Sun and Munn used it to simulate the interactions

between white and red cells as they flow through the vascular network of both normal and

tumoral tissue. Parameters such as forces between the cells, their trajectories, and pressure

changes were computed. They developed an LBM with the blood modeled as a suspension of

particles in a plasma, while accounting for cell-cell and cell-wall interactions. The LBM was

deemed reliable for the prediction of blood flow properties in any vessel geometry and blood

composition [31]. In another study, Raheed [32] developed a mesoscopic technique based

on the D2Q9 LBM to simulate the two-dimensional elastic deformation and displacement

of red blood cells under various types of loadings in microvessels. An Immersed Boundary

Method (IBM) was used in conjunction with the model, to handle the deformation of the red

blood cells. The method was successfully benchmarked for various types flows (i.e Poiseuille

flow, channel flow, and flow past obstacles) [32]. The method has also been used for the

simulation of pulsatile flow in arteries. In a 2015 article, Vargas and Argenta [33] built an

idealized Lattice Boltzmann model to represent pulsatile flow of blood through arteries. The

model was then applied to the femoral artery and results compared with those of medical

literature. Qualitatively satisfactory results were obtained [33].

The method has also been successfully used to simulate aerodynamics flows. As early

as 2009, Kotapati and Chen [23] used the CFD software LBM-based solver PowerFLOW to

perform detailed flow and sound simulations complex vehicle geometries. The aerodynamics

of the flow over an Ahmed body were first studied. The Ahmed body is a simplified car

geometry shown to reproduce flow features such as vortices, separations, and reattachments

[41]. Parameters such as the total and component drag were accurately predicted for a large

range of rear slant angles. The aeroacoustics of the Daihatsu wedge box, a simplified model

of an automotive greenhouse, were then studied. The box can reproduce flow structures

linked to pressure fluctuations on the surfaces, similar to those present on the A-pillar and

side glass of a vehicle. Noise levels were very accurately predicted by the LBM, up to a

frequency of 3000 Hz [23]. The method has also been used for the computation of indoor

airflows aerodynamics. In a 2019 article, Han et. al [24] developed an LBM-LES approach
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for application to indoor flows. Indoor isothermal, forced-convection flow was simulated for

various grid resolutions, relaxation time schemes, and discrete velocity schemes, with both

the LBM and the Finite Volume Method (FVM). The LBM and FVM were then compared

in terms of computational speed and computational efficiency, and it was found that the

LBM was faster when using more cores. In addition, the parallelizing efficiency of the LBM

was significantly higher than that of the FVM [24]. More recently, in 2020, an LBM method

for generalized curvilinear coordinates was developed by Reyes Barraza and Deiterding [25].

The method was tested on various two-dimensional cases at low Reynolds numbers, including

a cylinder and a NACA0012, and it was found to be accurate [25].

Furthermore, the LBM has also been used for the simulation of multi-phase flows. Due to

its local and parallelizable capabilities, the LBM enables the modelling of interfaces as well

as the interactions between the phases [30]. For instance, in a 2017 study, the LBM was used

to simulate casting mold filling, a two-phase liquid metal-gas flow process, and was shown

to correctly simulate effects such as the formation of gas bubbles and the air back pressure

[30]. In earth soil studies, it was used by Hu et. al [42] to study the thermal performance

of phase transition in a saturated, freezing porous soil. Differences in specific heat capacity

between the liquid and solid phases, porosity, and thermal diffusivity ratio of the porous

medium to the fluid, were investigated [42]. In another report [43], Wang et. al used a

couple bonded particle LBM (BPLBM) scheme to study the erosion process of soil particles

and their microscopic migration, in granular filters found in earth dams. To account for the

fluid/solid interaction, an Immersed Moving Boundary scheme was implemented. Results

were found to be in close agreement with empirical data [43].

In porous media flows, the LBM was used by Zhang in 2011 [26] to study the permeability

and tortuosity of two-phase isothermal fluid flow in porous media. The Shan-Chen multi-

phase model for non-ideal fluids was incorporated, enabling the existence of two-phases in a

single substance. Results for phase separation, surface tension, and pipe flow, among others,

were validated against existing theoretical and laboratory experiments data. The method was

also shown to accurately reproduce the critical flooding phenomena under strong wettability

conditions [26]. In 2007, Nabovati and Sousa [27] performed LBM-based flow simulations in

two-dimensional random porous media, with randomly placed rectangular obstacles. Values
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of permeability and tortuosity were computed and found to be close to those given in the lit-

erature [27]. More recently, in 2018, the LBM was used to study the permeability of the flow

in various three-dimensional granular porous structures by Gharibi et al [44]. To account for

the solid-fluid interactions, a Smoothed Profile Method (SPM) with the LBM-Multi Relax-

ation Time scheme was used. Permeability results were compared with analytical data, and

very good agreement was found [44].

1.6 Motivation

Due to the ever-increasing interest of LBM for jet noise and aeroacoustic studies, two im-

portant aspects must be considered for an LBM scheme to be deemed reliable. Firstly,

acoustic waves must be preserved for aeroacoustic simulations, and secondly, stability must

be ensured at under-resolved simulations.

The simplest formulation of the LBM, the LBM-Single Relaxation Time (LBM-SRT) or

LBM-Bhatnagar-Grook-Cross (LBM-BGK), is known to cause instabilities at low viscosities

and high wavenumbers due to the use of a single relaxation time τ for all particle populations.

An alternative is to use Multi-Relaxation Times (MRT) without additional filtering, which

leads to increased computational costs, but enhanced stability. However, some instabilities

persists for under-resolved simulations, as will be seen in Chapter 6. Another solution,

introduced by [45], is to introduce explicit filtering in conjunction with the BGK. This

work seeks to investigate alternative explicit filtering strategies for the Lattice Boltzmann

Method. In particular, an explicit filter (i.e. SF-7 [46]) was implemented with the MRT.

Both a stability analysis and benchmark tests were conduced. A von Neumann analysis was

also conducted on the LBM-BGK with an ADM-based explicit filter.

1.7 Objectives

The first objective of this Masters project was to implement a selective filter based on the

MRT formulation of the LBM. The second objective was to conduct a stability analysis and

quantify the dispersive, dissipative, and stability properties of the explicitely filtered MRT.
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The third objective was to benchmark the selective filtered MRT formulation in two- and

three dimensions, and compare the results with those of the unfiltered MRT, and both the

filtered and unfiltered BGK formualtions. The fourth and final objective was to perform a

stability analysis of a filter based on the ADM implemented with the BGK, and quantify its

dispersive, dissipative and stability properties.

1.8 Thesis Organization

This thesis is organized as follows. In Chapter 2, the Lattice Boltzmann Method is presented.

Different formulations, boundary conditions, and the relation with the Navier-Stokes equa-

tions are detailed. In Chapter 3, explicit filtering as a stabilization method for the LBM is

described, and various strategies of explicit filtering with the MRT introduced. In the next

chapter, Chapter 4, Large Eddy Simulations-based filtering strategies are introduced and an

ADM-based differential filter introduced. In Chapter 5, various steps of the von Neumann

analysis as applied to the Lattice Boltzmann Method are described. The von Neumann anal-

ysis is applied on the LBM-MRT with the SF-7 explicit filter and on the LBM-BGK with

the ADM-based filter. In Chapter 6, the LBM-MRT scheme with the SF-7 explicit filter is

benchmarked with a two-dimensional dual shear layer and a three-dimensional Taylor-Green

vortex test cases. Results are compared for various grid sizes and againsts various schemes.

Finally, a conclusion is provided in Chapter 7 with recommendations for future studies.
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Chapter 2

Lattice Boltzmann Method

2.1 From the Lattice Gas Automata to the Lattice

Boltzmann Method

Although this thesis is concerned with the LBM, the Lattice Gas Automata (LGA) will be

first presented, for clarity. Considered as a precursor to the LBM, the LGA was developed

by Hardy, Pomeau, and de Pazzis in the 1970’s [13]. It was further extended in [47] and [48].

The method consists of a lattice where particles are free to move on links. At each node

(i.e. “site”), there either is or there is not a particle travelling in a certain direction: this

is a boolean description of the lattice. The unknown is the particle population ni(x, t). It

represents the number of particles on each link of a cell:

Figure 2.1: Particles on a Lattice Gas Automata Lattice.
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2.2 Lattice Boltzmann Method: a Mesoscopic Method

Most traditional Computational Fluid Dynamics methods follow a macroscopic approach;

PDE equations such as the Navier Stokes Equations are solved using the Finite Difference

(FDM), Finite Element (FEM) or Finite Volume Method (FVM). At the other extreme, one

finds the microscopic approach, where molecules are considered individually, the behavior is

governed by Hamilton’s equation. The LBM constitutes an intermediate approach between

the two. In the LBM, groups of molecules are considered and their behavior translated via a

particle distribution function, f , which translates the probability of having particles move in

a certain direction. The time evolution of f is governed by the Boltzmann Equation. As such,

the LBM is classified as a mesoscopic scale method. The LBM has two main advantages.

Firstly, boundary Conditions are easy to implement (i.e. simple bounce-back rules can be

implemented). Secondly, it has a local behavior (i.e. particles distributions stream to their

neighbors during an iteration). However, it is unsuitable for high Mach numbers due to

the presence of an extra term in the Chapman-Enskog expansion (see [18] for more details).

Additionally, it requires the use of a completentary scheme in order to model heat flow.

2.3 From Boltzmann Equation to Lattice Boltzmann

Equation

The Boltzmann Equation, derived by Ludwig Boltzmann, describes the dynamics of an ideal

gas. The motion of particles in space and time is related to macroscopic quantities such as

density and velocity. The exchange of momentum and energy among particles is performed

via successive streamings and collisions.

The original Boltzmann Equation is given by [15] as

∂f

∂t
+ ~u • ∇f = Ω, (2.1)

with f(x, t) the particle distribution function, ~u the particle velocity, and Ω the collision

operator. This equation is valid for an infinite number of dimensions. The LBM simplifies
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this idea by introducing a discrete number of streaming directions and confining the particles

to move on a lattice: this is the Lattice Boltzmann discretization.

2.4 Discretized Lattice Boltzmann Equation

Typical LBM stencils are defined by DnQm, with n the number of dimensions and m the

number of velocities. The three most popular lattice Boltzmann models in one, two and three

dimensions are respectively the D1Q3, D2Q9, and D3Q19 stencils. Other existing schemes

are the D2Q4 and D2Q7 in two dimensions, and the D3Q15 and D3Q27 in three dimensions.

In the D2Q9 model for instance, a particle can move in nine directions, including the central

node at rest.

Figure 2.2: Velocities for the D2Q9 lattice model.

The nine velocities ~ei are expressed as

~ei =


(0, 0) i = 0

(1, 0) , (0, 1) , (−1, 0) , (0,−1) i = 1, 2, 3, 4

(1, 1) , (−1, 1) , (−1,−1) , (1,−1) i = 5, 6, 7, 8

(2.2)

These velocities need to be scaled by the particle propagation speed, c, such that lattice

velocities are expressed as ci = c~ei. Both the velocities and the number of directions are

derived in order to ensure symmetry and Galilean invariance. The particle distribution

function fi (~x, t) then represents the probability for a particle to stream in either one of the
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9 possible directions. It solves the lattice Boltzmann equation, a discretized version of the

Boltzmann equation given by

fi(~x+ c~ei∆t, t+ ∆t)− fi(x, t) = Ωi(x, t), (2.3)

for i = 0, . . . .Q−1. The conservation of mass and momentum after particles have collided

is ensured by the discrete collision operator, Ωi. The velocities and weights for each abscissae,

i are provided below for the D1Q3, D2Q9 and D3Q19 stencils. For all these velocity sets,

the speed of sound is cs = 1/
√

3.

i ei wi

D1Q3
0 (0) 2/3

1− 2 (1), (−1) 1/6

D2Q9

0 (0, 0) 4/9

1− 4 (±1, 0), (0,±1) 1/9

5− 8 (±1,±1) 1/36

D3Q19

0 (0, 0, 0) 4/9

1− 6 (±1, 0, 0), (0,±1, 0), (0, 0,±1) 1/18

7− 18 (±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/36

Table 2.1: Velocities and weights for the D1Q3, D2Q9 and D3Q19 stencils.

2.5 Single Relaxation Time (SRT) Formulation

In the LBM, the update from the old (fi(x, t)) to the new distribution functions is ensured

by the collision operator, which controls how post-collision populations are updated while

ensuring conservation laws are satisfied. Quite complex in the complete detailed mathemat-

ical model, it has been simplified by Higuera and Jimenez [49] in 1989. They linearized the

collision operator by assuming that the post-collision discrete distribution functions, fi, are

close to their equilibrium value, fi
eq. The resulting linearized operator is expressed as
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Ωi(~x, t) = −Kji (fi − fieq) , (2.4)

where Kji are the entries of the collision matrix, K, that regulates how particle popula-

tions relax towards equilibrium. In the SRT approach, all particle populations are assumed

to relax towards equilibrium at the same rate. The collision matrix Kji has been defined by

Bhatnagar-Grook Kroos as [50]

Kji =
1

τ
. (2.5)

This leads to the LBM-BGK or (LBM-SRT) model [16], given as

fi(~x+ c~ei∆t, t+ ∆t) = fi(~x, t) + Ωi(~x, t), (2.6)

with

Ωi(x, t) = −1

τ
[fi(x, t)− fieq(x, t)]. (2.7)

In this equation, fi(~x, t) corresponds to the initial distribution in the domain. The terms

fi(~x+c~ei∆t, t+∆t) are the updated populations, fi
eq(~x, t) is the the equilibrium distribution,

and τ is the relaxation time towards equilibrium (i.e. the time needed for particle populations

to reach their equilibrium values). The lattice speed is equal to

c = ∆x∆t. (2.8)

For the D2Q9 model, the Chapman-Enskog expansion enables to relate the relaxation

time and the kinematic (υ) and bulk (µυ) viscosities of the fluid as [45, 19]

υ = cs
2τ − ∆t

2
, µυ =

2

D
υ, (2.9)

with D the number of dimensions (two for the D2Q9 model). The lattice speed of sound,

cs, is defined as cs = c√
3
. One notable limitation of the LBM-SRT formulation is that

for relaxation times τ close to 0.5 (with ∆t = 1), issues can arise if the viscosity becomes

negative, yielding unrealistic results. Another limitation is that the bulk and kinematic
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viscosities are linked and thus constrained by each other, which is not physically accurate.

Note that equilibrium populations correspond to distribution values in the absence of external

excitement. In the BGK formulation, the equilibrium distribution is defined as

fi
eq(~x, t) = wiρ

[
1 +

1

CS
2 (~ci • ~u) +

1

2CS
4 (~ci • ~u)2 − 1

2CS
2 |~u|

2

]
, (2.10)

with u the macroscopic velocity and cs the lattice speed of sound, which is equal to 1√
3

for the D2Q9 model and defined as

cs
2 =

8∑
i=1

wicici. (2.11)

The weights wi are derived such that lattice symmetry is ensured, and are given as:

wi =


4/9, i = 0

1/9, i = 1, 2, 3, 4

1/36, i = 5, 6, 7, 8

(2.12)

for an isotropic behavior of the fluid. Finally, the macroscopic density and velocity can

be directly calculated taking moments of the distribution function at each node x of the flow,

 ρ =
∑8

i=0 fi

u = 1
ρ

∑8
i=0 cifi

(2.13)

The equilibrium function given by equation (2.10) is a second-order expansion of the

Maxwell-Boltzmann distribution function, which enables to recover the weakly-compressible

Navier-Stokes equations.

2.6 LBM algorithm

The term on the left hand-side of equation 2.6 corresponds to the streaming process, while

the term on the right-hand side represents the collision process. Starting from an initial

distribution of particles fi(~x, t) at all points in the domain, the populations are first propa-

gated to their neighbors, yielding an intermediary distribution of fi(~x, t) −→ fi
∗(~x, t) in the

domain, which corresponds to the streaming step, with
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fi(~x+ c~ei∆t, t+ ∆t) = f ∗i (x, t). (2.14)

Particles are then collided, when they reach the same site at the same time. Post-collision

updated distributions fi(~x+ c~ei∆t, t+ ∆t) are then computed using equation 2.6 as

fi(~x+ c~ei∆t, t+ ∆t) = f ∗i (x, t)− 1

τ
[f ∗i (x, t)− f eqi (x, t)]. (2.15)

Note that the opposite process can also be adopted: first initialize fi(~x, t) in the do-

main, then compute fi
∗(~x, t) using equation 2.6, and finally set the updated distributions

fi(~x + c~ei∆t, t + ∆t) equal to fi
∗(~x, t). The LBM algorithm consists in first initializing the

distributions f , the velocity u, and the density ρ in the domain. Then, the streaming step

occurs, with the particles streaming to their neighbors. The distribution function, f , is then

updated in the next step. The fourth step is to calculate the updated velocity, u, and density,

ρ. The final step is the collision, with the computation of the updated distribution function,

f .

The streaming process can be visualized in Figure 2.3.

Figure 2.3: LBM streaming process.
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2.7 Boundary Conditions (BCs) in LBM

In the LBM, boundary conditions need to be carefuly implemented in order to accurately

reproduce the macroscopic boundary conditions. Boundary conditions also play an impor-

tant role in ensuring the stability and accuracy of the simulation. Some of the most common

boundary strategies will be presented: the Bounce-back BCs, the Periodic BCs, and the

Zou-He velocity and pressure BCs.

2.7.1 Bounce-Back BCs

Bounce-back boundary conditions simulate a no-slip condition on the boundary. The con-

cept is as follows: when a particle reaches a boundary, it is reflected along the same axis in

the opposite direction. The post reflection distributions are obtained by changing the sign

of the incoming distributions. Two implementations are possible: 1) on-grid; and 2) mid-grid.

On-grid

In this method, the boundary of the domain is aligned with the nodes. Particles that reach

a wall are simply reflected back into the computational domain. The value of the incoming

distribution functions (i.e. fluid particles) is reversed when these reach the walls. The pro-

cess is shown below. Note that due to the one-sided nature of the process, this method is

first order in accuracy. The process is shown in figure 2.4.
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Figure 2.4: LBM on-grid boundary conditions.

Mid-grid

In this configuration, the boundary is placed between real nodes and fictious nodes. Parti-

cles first stream to the fictious nodes before colliding and reversing their directions. Finally,

bounce-back boundary conditions are implemented on the real nodes. This method is second

order in accuracy. The process is shown in figure 2.5.

Figure 2.5: LBM mid-grid boundary conditions.

2.7.2 Zou-He BCs

Many simulations require a prescribed pressure (i.e density) or velocity at the boundaries.

The velocity and pressure boundary conditions were first introduced by Zou and He [51].

The definition is as follows [52]; the velocity ~uL(ux, uy) is first prescribed on the left

boundary. After streaming, the known distributions are f0, f2, f3, f4, f6, and f7. f1, f5, f8

and ρ are the unknowns. Zou-He [51] then suggested to form a linear system of f1, f5, f8 and
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Figure 2.6: LBM Zou-He boundary conditions.

ρ as

f1 + f5 + f8 = ρ− (f0 + f2 + f3 + f4 + f6 + f7) , (2.16)

f1 + f5 + f8 = ρux − (f3 + f6 + f7) , (2.17)

and

f5 − f8 = ρuy − f2 + f4 − f6 + f7. (2.18)

The density ρ is computed from the first two equations as

ρ =
1

1− ux
[(f0 + f2 + f4 + 2 (f3 + f6 + f7))] . (2.19)

To close the system, a fourth equation is needed. It is derived using the assumption that

the bounce-back condition still applies to the non-equilibrium part of the distributions that

are normal to the boundary. Therefore, it is defined as

f1
neq = f3

neq ⇒ f1 − f1
eq = f3 − f3

eq. (2.20)

f1 is obtained from (2.20) and (2.10), and f5 and f8 subsequently calculated,
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f1 = f3 +
2

3
ρuy, (2.21)

f5 = f7 −
1

2
(f2 − f4) +

1

6
ρux +

1

2
ρuy, (2.22)

and

f8 = f6 −
1

2
(f2 − f4) +

1

6
ρux +

1

2
ρuy (2.23)

A similar procedure can be followed for a pressure boundary condition. Taking uy = 0,

ux is defined as

ux = 1− [f0 + f2 + f4 + 2 (f3 + f6 + f7)]

ρ
. (2.24)

One limitation is that, as the distribution functions are assumed along the normal to

the boundary, the Zou-He boundary conditions can be hard to express for complex bound-

aries. Additionally, the low-compressibility nature of the LBM can cause reflections at the

boundaries. To avoid that, approaches such as non-reflecting boundary conditions can be

introduced [53, 54].

2.7.3 Periodic BCs

These boundary conditions are straightforward to implement. For a flow circulating from

the left to the right, the incoming distributions at left boundary correspond to the outgoing

distributions at the right boundaries. The process is shown in figure 2.7.

2.8 Alternative LBM Formulations

2.8.1 Multi-Relaxation Time (MRT formulation)

The single relaxation time formulation of the LBM was shown to consider one single relax-

ation time, τ , for all distribution functions. This can lead to numerical instabilities as it
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Figure 2.7: LBM periodic boundary conditions.

fails to properly reproduce the macroscopic physics of the flow. In reality, different hydrody-

namic variables (i.e. such as density, and x- and y- momentum) relax towards equilibrium

at different rates. Recall that macroscopic variables can be recovered by taking moments of

different orders of the distribution function, fi, at each point in the flow. To stabilize the

LBM, one strategy is to convert fi to the moments mi, perform the collision process, and

revert back to the fi for the streaming step. Doing so enables to use a different relaxation

time, τi, for each moment, mi.

The LBM-MRT equation is expressed as

fi(~x+ c~ei∆t, t+ ∆t)− fi(x, t) = M−1SM [fi(x, t)− fieq(x, t)]. (2.25)

For the D2Q9 stencil, moments are obtained as: mi = Mfi(~x, t), with
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M =



1 1 1

0 1 0

0 0 1

1 1 1

−1 0 1

0 −1 1

1 1 1

−1 −1 1

1 −1 −1

−4 −1 −1

0 1 −1

0 0 0

−1 −1 2

1 −1 0

0 0 1

2 2 2

0 0 0

−1 1 −1

0 −2 0

0 0 −2

4 −2 −2

2 0 1

0 2 1

−2 −2 1

−1 −1 1

1 −1 −1

1 1 1



. (2.26)

The first moment corresponds to density and can be recovered as follows for example,

ρ =
8∑
i=0

M1jfj =
8∑
i=0

1 ∗ fj. (2.27)

The term S is a diagonal matrix where each diagonal entry τi corresponds to the relax-

ation time of the moment mi. In the MRT formulation, collision is performed in the mo-

mentum space, while streaming is performed on the original distributions. In other words,

the distributions are first converted to moments via

m = M f, (2.28)

where m is the vector of moments and f is the vector of distribution functions. These

moments are then collided. We then recover the original distributions as

f = M−1m. (2.29)

The Chapman-Enskog expansion applied to the MRT scheme yields independent kine-

matic (i.e. ν) and bulk (i.e µB) viscosities [55],

ν = cs
2(

1

s4

− ∆t

2
) = cs

2(
1

s4

− ∆t

2
), (2.30)

and
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µB =
2

D
cs

2 1

s3

− ∆t

2
. (2.31)

It will be shown that this ability to increase the bulk viscosity is what makes the MRT

more stable than the BGK formulation. Indeed, an increase of the bulk viscosity via a

modification of s3 can damp spurious waves.

The derivation of the transformation matrix M in two dimensions (D2Q9) and three

dimensions (D3Q9) is presented in the Appendix.

2.8.2 Regularized LBM

The idea behind the regularized BGK (RBGK) is to enhance stability by removing higher

order, non-hydrodynamic terms from the particle populations. It stems from the observa-

tion that, in the Hermite polynomial expansion of the distribution function, only the first

three terms are needed to recover the macroscopic equations (i.e. Navier-Stokes) and terms

(density, velocity, and stress tensors).

The LBE-BGK equation is given by

fi(~x+ c~ei∆t, t+ ∆t) = fi ∗ (x, t)− 1

τ
[fi ∗ (x, t)− fieq(x, t)]. (2.32)

The distribution fi
∗ is reconstructed from the incoming distributions as

fi
∗ =

wi
2c0

4

(
ξiαξiβ − c0

2δαβ
)∑

j

ξiαξiβ (fi − fieq) . (2.33)

The collision step is then performed using these regularized distributions. This results in

the regularized Lattice Boltzmann equation,

fi(~x+ c~ei∆t, t+ ∆t) = fi
eq(x, t) +

(1− 1
τ
)wi

2c0
4

(ξiαξiβ − c0
2δαβ)

∑
j

ξiαξiβ(fi − fieq). (2.34)

2.8.3 Entropic LBM

The entropic implementation of the LBM is a modification of the LBM-BGK formulation

and reads
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fi(~x+ c~eiδt, t+ ∆t) = fi ∗ (x, t)− αβ[fi ∗ (x, t)− fieq(x, t)]. (2.35)

The main differences lie in the computation of the equilibrium distribution function fi
eq

and a modification of the relaxation time, α and β. The distribution fi
eq is calculated by

considering an entropy function,

H(f) =
8∑
i=0

filn

(
fi
ωi

)
, (2.36)

with ωi the weighting coefficients. The distribution fi
eq can be computed from the min-

imal value of H(f) that is reached at equilibrium. The maximal over-relaxation coefficient

is obtained from the positive root of the entropy condition as

H(f + α (f eq − f)) = H(f). (2.37)
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Chapter 3

Explicit Filtering as a Stabilization

Method

In Ricot et al. [27], it is explained that instabilities occur in regions where the nonequilibrium

distribution parts are too large. Hence, filtering them will lead to enhanced stability. In

this approach, filtering is thus performed on the collision operator non equilibrium part of

distributions (fi–fi
eq = fi

neq),

− 1

τ
fi(x, t)− fieq(x, t) = −1

τ
fi
neq(x, t). (3.1)

The filtered post-collision distributions are

fi(x+ ∆x, t+ ∆t) = fi(x, t)−
1

τ
fi
neq(x, t). (3.2)

These are then used to compute the macroscopic variables. The general expression of the

explicit filtering of a variable Φ is given by [27]

Φ(x) = v (x)− σ
D∑
j=1

N∑
n=−N

dnΦ(x+ nxj). (3.3)

In this equation, σ is the filter strength, comprised between 0 and 1, D the number of

dimensions, N the number of stencil points, and dn the stencil coefficients. The non-local

filtering action dissipates the spurious small scales while keeping the large scale acoustic

waves unaffected. The filter must be symmetrical in order to avoid dispersive errors [45]. To
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this end, the coefficients are defined such that dn = d−n. In order to derive the coefficients,

dn, the Taylor expansion of the previous equation is first obtained, and the terms obtained

then cancelled [56]. An ideal filter should leave oscillations in the low wavenumber range

unaffected and have a sharp cut off at high wavenumbers. To this end, Tam et al. [57]

optimized the coefficients dn in the Fourier space for a 7-point stencil. Some explicit filters

are presented below. Their coefficients are given in the Appendix.

Author Number of Points Designation

Skordos [46] 5 SF-5

Skordos 7 SF-7

Tam et al. [57] 7 Tam-7

Bogey and Bailly [58] 9 Bogey-9

Bogey and Bailly 11 Bogey-11

Bogey and Bailly 13 Bogey-13

Table 3.1: Summary of Explicit Filters.

In the Lattice Boltzmann approach, three strategies exist. The first consists in a filtering

of the distribution functions (or moments for MRT). The second consists in filtering of the

collision operator, which results in the highest cut-off wavenumber as shown by [45] for the

BGK operator. The third approach is to filter the macroscopic variables.

The derivation of the filtered equations and the amplification matrices for the BGK case

is detailed in [45]. Here the same procedure will be followed but for the MRT case. Recall

that the LBM-MRT equation is given as

fi(~x+ c~ei∆t, t+ ∆t)− fi(x, t) = M−1SM [fi(x, t)− fieq(x, t)]. (3.4)

This can be re-expressed as:

fi(~x+ c~ei∆t, t+ ∆t) = fi(x, t) +M−1S[mi(x, t)−mi
eq(x, t)]. (3.5)
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3.1 Filtering of the distribution function

The first idea consists in calculating the updated distribution functions fi(~x+ c~eiδt, t+ ∆t)

using equation (3.5), then calculating their filtered values as

¯fi(x, t) = fi(~x, t)− σ
n∑
j=1

N∑
n=−N

dnfi(~x+ nxj, t). (3.6)

The filtered macroscopic variables can then be calculated using equation (2.13). For the

density and momentum this yields

ρ̄ =
8∑
i=0

fi, (3.7)

and

ρ̄ui =
8∑
i=0

cifi. (3.8)

The expression for the fully filtered lattice Boltzmann equation is then given as

fi(~x+ c~ei∆t, t+ ∆t) = fi(x, t)−M−1SM [fi(x, t)− fieq(x, t)]. (3.9)

The application of the von Neumann analysis on this equation then yields the amplifica-

tion matrix, M f̄i , of the problem as

M f̄i = (1− σf)A−1
[
I −M−1SMNBGK

]
. (3.10)

The filter function, f , (not to be confused with the distribution functions, fi) is itself

defined as [45]

f =
n∑
j=1

N∑
n=−N

dne
ink·xj . (3.11)

3.2 Filtering of the macroscopic variables

In the fully filtered lattice Boltzmann equation, both the distribution function and the

macroscopic variables are filtered. An alternative is to only filter the macroscopic variables,
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which leads to a subsequent decrease in computational costs as the filtered distribution

functions need not be calculated at every iteration. The steps consist in first computing

the updated distribution functions using equation (3.5), then calculating the macroscopic

variables from these functions with equations (2.13). Finally, the macroscopic variables are

filtered using equation (3.3). For instance, the density and momentum are computed as

 ρ(x, t) = ρ(x, t)− σ
∑n

j=1

∑N
n=−N dnρ(x+ nxj, t),

ρui(x, t) = ρui(x, t)− σ
∑n

j=1

∑N
n=−N dnρui(x+ nxj, t).

(3.12)

The filtered macroscopic values are used to calculate the filtered equilibrium distribution

function as

fi
eq(~x, t) = wiρ

[
1 +

1

CS
2

(
~ci • ~u

)
+

1

2CS
4

(
~ci • ~u

)2 − 1

2CS
2

∣∣~u∣∣2] . (3.13)

The filtered velocities ~̄u are calculated as

~u =
ρui(x, t)

ρ(x, t)
. (3.14)

Finally, the amplification matrix can be computed as

Mmi = A−1
[
I −M−1SM(I − (1− σf)F eq)

]
. (3.15)

3.3 Filtering of the collision operator

In both the first and second approaches, the non-equilibrium part of the moments mi
neq =

mi −mi
eq is not directly filtered. In high shear regions of the flow, where the distribution

functions and therefore the moments evolve too far from the equilibrium value, mi
eq, insta-

bilities can occur. It then makes sense to apply the filter on the non-equilibrium part of the

moments in the collision operator. The moments are first filtered as

mi
neq(~x, t) = mi

neq(~x, t)− σ
n∑
j=1

N∑
n=−N

dnmi
neq(~x+ n~xj, t). (3.16)

This yields a filtered collision operator,

31



−M−1SM [mi
neq(~x, t)]. (3.17)

Finally, the new distribution functions are obtained via

fi(~x+ c~ei∆t, t+ ∆t) = fi(x, t)−M−1SM [mi
neq(x, t)]. (3.18)

The macroscopic variables are then calculated using fi(~x + c~ei∆t, t + ∆t) and equation

(2.13). In their work, Ricot et al. [45] applied four filters (SF-5, SF-7, Tam-7 and Bogey-9) on

the fully filtered LBM with the BGK collision operator. Then, they studied the dissipation

of the shear mode and positive acoustic mode in order to compare the cut-off wavenumbers

of the different filters. It was found that the SF-7 filter has a higher cut-off wavenumber than

the SF-5 filter, which uses less stencil points. Overall, the best filter was found to be Bogey-9

which is non-dissipative up until a wavenumber k of approximately π
2.3

. On the other hand,

Tam-7 is the most inefficient filter with a dissipation that is too high at low wavenumbers.

Recall that an ideal filter should leave low wavenumber oscillations unaffected while having

a sharp cut-off at high wavenumbers. Due to the high computational cost of the Bogey-9

scheme, SF-7 was found to be a good compromise between efficiency and computational

costs and was used for the rest of the von Neumann analysis. In accordance with Ricot et

al. [45], the following analysis for the LBM-MRT scheme will be performed with the 7-point

stencil by Skordos [46], SF-7.
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Chapter 4

Large Eddy Simulations with LBM

4.1 Subgrid scale Modeling in LES

Large Eddy Simulations consist of the direct computation of large scales of turbulence, and

the modeling of subgrid scales, which cannot be captured by the spatial resolution of the grid.

The smallest grid size is commonly referred to as “grid cut-off”. This is in part motivated by

the need to reduce computational costs to acceptable levels, and by physical considerations:

the smallest eddies are almost isotropic and display a universal behavior. On the other hand,

the larger eddies have an anisotropic behavior which is greatly influenced by the domain size.

Turbulence models seek to represent the dissipative effect of SGS scales on the flow and can

be divided into two main approaches: functional modeling and structural modeling. In LES,

the unknowns are the unfiltered field variables, φ. The filtered variables to be solved for are

φ̄ and are obtained via the application of a low pass spatial filter. Functional and structural

modeling differ in how φ is recovered. Functional models start by filtering the governing

equations and express the additional term Tij (i.e. defined in the introduction) in terms of

the filtered variables and an eddy viscosity. Structural models on the other hand seek to

reconstruct φ from φ̄ via a deconvolution process,

Φ ≈ Φ∗ = D ∗ Φ, (4.1)

with D the deconvolution operator.
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4.2 Functional Modeling

The effect of subgrid scales on resolved scales can be seen as an additional viscosity which

effectively dissipates the turbulent kinetic energy. This additional viscosity is called the

“eddy viscosity”. The viscosity of the flow can then be extended to yield a turbulent viscosity.

For reliable results, the turbulent kinetic energy must be dissipated at a correct rate by the

model. Functional models are divided into implicit and explicit approaches. As a reminder,

in the implicit LES (ILES), the grid size is implicitly considered as the grid cutoff, such that

any wavenumber smaller than the grid cut-off wavenumber kgco = π∆x is not represented.

By introducing a truncation error, the dissipative effect of SGS can me mimicked, and

no additional terms are needed. While computationally efficient, as no additional terms are

needed, implicit methods are also more prone to aliasing where the energy is transferred from

non-resolved to resolved scales, leading to an energy build-up at the grid cut-off wavenumber.

In the explicit LES approach, the eddy viscosity is directly expressed as a function of the

strain rate tensor. Expressing the SGS terms explicitly as a function of the filtered values,

φ̄ gives more control about the filter definition and parameters.

4.3 Structural Modeling

Structural modeling approaches aim to reconstruct the unfiltered scales via a decomposition

of the scales. These include multi-scale, regularization, and deconvolution based methods

[59]. Structural modeling approaches start by decomposing the unfiltered flow into a resolved

and non-resolved scales,

φ = φ̄+ φ′, (4.2)

with φ̄ the resolved, filtered scales and φ′

the non-resolved scales. Resolved scales correspond to scales bigger than or equal to the grid

size, which acts as the effective spatial filter. These filtered scales are given by the filtered

Navier-Stokes equations presented earlier and which read, for incompressible flow,
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∂ui
∂t

= 0, (4.3)

for the conservation of mass, and

∂ρui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2ui
∂xj∂xj

, (4.4)

for the conservation of momentum. In the introduction, we defined the term Tij as

Tij = uiuj − ūiūj. The term uiuj can then be decomposed as

uiuj = Tij + ūiūj =⇒ uiuj = (ūiūj − ūiūj) +
(
u′iuj + uiu′j

)
+ u′iu

′
j + ūiūj. (4.5)

The term

Lij = (ūiūj − ūiūj) , (4.6)

is known as the Leonard tensor, the term

Cij =
(
uiuj + uiu′j

)
, (4.7)

as the Cross-stress tensor, and the term

Rij = u′iu
′
j, (4.8)

as the Reynolds tensor.

The term can be expressed as:

uiuj = Lij + Cij +Rij + ūiūj (4.9)

The problem now consists in determining how to compute Lij + Cij + Rij. Various ap-

proaches exist. In multiscale modeling, equations for all scales are directly solved. Regular-

ization methods use a deconvolution procedure on the regularized Navier-Stokes equations.

Finally, approximate deconvolution-based models (ADM) consist in the reconstruction of

the smallest scales with a deconvolution approach [59]. A deconvolution operator should be
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chosen for the spatial filtering step. As seen before, scales can be divided into resolved and

non-resolved scales,

φ = φ̄+ φ′. (4.10)

Instead of directly computing φ′

, the deconvolution approach consists in reconstructing φ from φ̄. For a variable φ, filtering

can be seen as a convolution, with

φ̄ = G ∗ φ. (4.11)

The goal is to define D such that

φ ≈ φ∗ = D ∗ φ̄, (4.12)

which is an approximate deconvolution since D ≈ G−1.

4.4 Filters for Approximate Deconvolution Models

Approximate deconvolution models are based on a low-pass filtering approach. Adequate

filters are thus mandatory for the correct reconstruction of the desired scales. For an ideal

filter, the transfer function must have a high grid cut-off wavenumber, removal of all the

energy above the grid cut-off, no amplification of any resolved wavenumbers and a sharp

decrease at the grid cut-off[59].The last requirement is to avoid a discrepancy between the

theoretical and effective cut-off wavenumber.

Filters mainly fall into two categories: discrete filters and differential filters. Filters of

the differential type such as elliptic and parabolic filters were first introduced by Germano

[60, 61]. In these approaches the filtering involves solving either an elliptical or parabolic

differential equation. The main advantage is the possibility to apply the filter on both

structured and unstructured grids. Germano’s [61] differential filter is given by
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φ̄− σ2 ∂2φ̄

∂xj∂xj
= φ, (4.13)

where the parameter σ controls the strength of the filter. The filter’s transfer function is

obtained as

T (k) =
1

1 + σ2k2
. (4.14)

While stable (i.e. |T (k)| ≤ 1 for all wavenumbers k), the filter transfer function does

not go to zero at the grid cutoff, making the filter potentially unstable as energy is not

completely removed from the subgrid scales. This can lead to aliasing where excess energy is

stored at wavenumbers just before the grid cutoff, due to a lack of dissipation. Building up on

Germano’s work, Najafi-Yazdi et al.’s [62] proposed a filter in the form of an elliptic partial

differential equation (PDE). The filter is significantly less dissipative and leads a complete

attenuation of fluctuations at the grid cut-off wavenumber. The filter in differential form is

given by

φ̄+
∂

∂xi

(
α
∂φ̄

∂xi

)
= φ+

∂

∂xi

(
β
∂φ

∂xi

)
, (4.15)

where α and β are two non-dimensional, free parameters, and xi is the local coordinate

system in the reference computational domain [62]. Parameter α controls the filter shape (i.e.

the rate of decrease towards zero of the filter and its cut-off wavenumber), while parameter β

ensures a full attenuation at the grid cut-off and is determined after the differential equation

has been discretized [62]. The filter can be extended to multiple dimensions through mapping

from the computational domain to the physical domain, one element at a time. A weak

formulation with a test function, w, and a Galerkin projection are then applied; the Finite

Element Methods (FEM) discretization is then defined as

Mφ̄ = Nφ. (4.16)

The shape functions of a bilinear quadrilateral element are defined as follows, with (ξ, η)

the reference coordinate system,
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N1 =
1

4
(1− ξ) (1− η) , (4.17)

N2 =
1

4
(1 + ξ) (1− η) , (4.18)

N3 =
1

4
(1 + ξ) (1 + η) , (4.19)

and

N4 =
1

4
(1− ξ) (1 + η) . (4.20)

The filter coefficients are then defined as [59]

mk,l
(e) =

∫
(NkNl) dΩ(e)−

∫ [
∂Nk

∂xi

∂Nl

∂xi

(∑
k

αkNk

)]
dΩ(e), (4.21)

and

nk,l
(e) =

∫
(NkNl) dΩ(e)−

∫ [
∂Nk

∂xi

∂Nl

∂xi

(∑
k

βkNk

)]
dΩ(e), (4.22)

where mk,l
(e) describes the effect of node l on node k in the element e. Let a quadrilateral

element as seen on Figure 4.1 below. Analysis will be performed for node 1, without loss of

generality.

Figure 4.1: Quadrilateral Element.

The left- and right-hand side of the filter for node 1 are respectively given by [59]
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M (e)φ = m1,1
(e)φ1 +m1,2

(e)φ2 +m1,3
(e)φ3 +m1,4

(e)φ4, (4.23)

and

N (e)φ = n1,1
(e)φ1 + n1,2

(e)φ2 + n1,3
(e)φ3 + n1,4

(e)φ4. (4.24)

It can be shown, via analysis, that [62]

m1,1
(e) =

1

36
(16− 9α1 − 6α2 − 3α3 − 6α4) , (4.25)

m1,2
(e) =

1

36
(8 + 3α1 + 3α2) , (4.26)

m1,3
(e) =

1

9
+

1

12
(α1 + α2 + α3 + α4) , (4.27)

and

m1,4
(e) =

1

36
(8 + 3α1 + 3α2) . (4.28)

Similarly,

n1,1
(e) =

1

36
(16− 9β1 − 6β2 − 3β3 − 6β4) , (4.29)

n1,2
(e) =

1

36
(8 + 3β1 + 3β2) , (4.30)

n1,3
(e) =

1

9
+

1

12
(β1 + β2 + β3 + β4) , (4.31)

and

n1,4
(e) =

1

36
(8 + 3β1 + 3β2) . (4.32)

We observe that m1,2
(e) = m1,4

(e) and n1,2
(e) = n1,4

(e) due to symmetry requirements. The

z-transform is first applied to the right-hand side of equation (4.24), followed by conditions
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for full attenuation. This results in a system of equations for the parameters βi. Setting

β1 = 1, one obtains β2 = β4 = −2
3

and β3 = 2 [59]. This yields

n1,1
(e) = n1,2

(e) = n1,3
(e) = n1,4

(e) = 1. (4.33)

The parameters αi are obtained from βi with the stability conditions shown in table 4.1.

βi αi

β1
α1

β1
= 1

β2
α2

β2
> 1

β3
α3

β3
< α2

β2

β4
α4

β4
> 1

Table 4.1: Stability conditions for βi and αi parameters.

For the von Neumann Analysis of the LBM scheme with the ADM filter, the tested sets

of values are given in table 4.2.

βi αi

α1

β1
1

α2

β2
1.1

α3

β3
1.05

α4

β4
1.1

Table 4.2: BGK ADM von Neumann Analysis filter parameters - Set 1.
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Chapter 5

Linear Stability Analysis

Linear stability consists in analyzing the response of a linear system subjected to a distur-

bance. In particular, the temporal growth rate of the disturbance and its wavenumber need

to be computed in time. The von Neumann analysis studies the dispersion and dissipation

errors of an initial solution propagated by a numerical scheme. The method was first used

for the LBM by Sterling and Chen [63] who linearized the BGK collision operator around

a mean flow. More recently, Wissock et al. conducted a spectral analysis of the LBM [64].

An ideal numerical scheme possesses two main characteristics: 1) it should not amplify the

solution and; 2) should conserve the wavenumbers of each wave. This chapter is divided in

three parts. In the first part, the von Neumann analysis methodology is presented in the

context of the LBM. In the second part, four collision operators are compared: 1) the BGK;

2) the MRT-RM; 3) the MRT-RM with the SF-7 explicit filter and finally; 4) MRT-RM with

the ADM explicit filter.

5.1 von Neumann Stability Analysis

In the Lattice Boltzmann formulation, the procedure consists in decomposing the particle

distribution function, fi, into the sum of an equilibrium state,
(
fi
)
, and a perturbation, (fi

′),

fi = fi + fi
′. (5.1)

The first term, fi, only depends on the average density and velocity and is time and
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space invariant. The second term, fi
′, represents fluctuations from the equilibrium state.

The main goal is to obtain a linear equation for the fluctuations, fi
′, from which we can

analyze if the fluctuations are amplified or not. Equation (5.1) is substituted into equation

(2.4) and fi
eq expanded by the means of a Taylor series centered on f , yielding

Ωj ≈ Kji

[(
fi +

∂fi
eq

∂fj
|
fi

fi
′ (x, t) +O

(
fi
′2 (x, t)

))
−
(
fi (x, t) + fi

′ (x, t)
)]
. (5.2)

Substituting equations (5.1) and (5.2) into equation (2.3) gives

fi(~x+ c~ei∆t, t+ ∆t) + f ′i(x+ c~ei∆t, t+ ∆t)− fi + f ′i = Kji[(fi +
∂fi

eq

∂fj
|fi

+O(fi
2(x, t)))− (fi(x, t) + fi

′(x, t))], (5.3)

and

fi(~x+ c~ei∆t, t+ ∆t)− fi(x, t) = Ωi(x, t). (5.4)

This is simplified as (ignoring the higher order terms)

fi
′(~x+ c~ei∆t, t+ ∆t)− f ′i(x, t) = Kji(

∂fi
eq

∂fj
|fif ′i(x, t)− f ′i(x, t)). (5.5)

This is a linear equation, and we assume plane wave solutions of the form

fi
′ (x, t) = Aie

i(kx−ωt), (5.6)

where Ai is the amplitude of the sinusoidal wave, k = kx, ky, kz its wavenumber and ω the

frequency in time. Substituting equation (5.6) in equation (5.5) gives a linearized LBE-BGK

equation in form of an eigenvalue problem:

e−iωA = MA, (5.7)

where is M the amplification matrix defined as M = A−1
[
I − 1

τ
N
]

in the BGK case,

with I the identity matrix and A and N defined as [45]
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Aij = eik·ciδij, (5.8)

and

Nij = δij − Fijeq, (5.9)

with

Fij
eq =

∂fi
∂fj

∣∣∣∣
fi=fi

eq

. (5.10)

An eigenvalue analysis of the matrix using a mathematical software such as Mathematica

[65] yields information about the growth rate and dispersive properties of the modes that

correspond to perturbations around the equilibrium solution fi. In previous work, Lallemand

and Luo [66] used successive approximations of the matrix Aij in terms of the wavenumber,

k, and solved the problem analytically. The wavenumber vector k is equal to the number of

grid points per wavelength.

Additionally, the eigenvalues are defined as:

λ = e−iω. (5.11)

The transport coefficients of the modes ω correspond to their angular frequency and can

be obtained as

ω = i ln(λ). (5.12)

These coefficients are complex, and therefore, can be written in the form

ω = ωR + i ωI . (5.13)

We can now rewrite the eigenvalues λ as

λ = e−i(ωR+i ωI) = e−iωReωI . (5.14)
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As |e−iωR = 1|, we conclude that the real part of ω, ωR, is linked to dispersion while

the imaginary part, ωI , is related to dissipation. Finally, the stability condition states that

perturbations should not be amplified by the scheme, i.e.: |λ| ≤ 1. Therefore, analyzing |λ|

for different wavenumbers helps determinate the scheme’s stability.

In summary, the amplification matrix for the BGK case is [45]

MBGK = A−1

[
I − 1

τ
NBGK

]
. (5.15)

For the MRT case, it is derived similarly with the relaxation time 1
τ

being replaced by a

diagonal matrix S. Therefore, for the MRT case we have [45]

MMRT = A−1
[
I −M−1SMNBGK

]
. (5.16)

5.2 Theoretical Modes

The linear stability analysis of the Navier-Stokes equations is largely detailed in [67]. We will

here give the main steps behind the procedure. Stability analysis is mainly concerned with

analyzing how a wave solution is propagated by the scheme. The Navier-Stokes equations

describe the behavior of a fluid and are derived from the principles of mass, momentum, and

energy conservation. In two-dimensions, they are expressed as

∂ρ

∂t
+
∂ρui
∂xj

= 0, (5.17)

∂ρui
∂t

+ uj
∂ρui
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

, (5.18)

and

∂ρe

∂t
+
∂ρeui
∂xi

= − ∂qi
∂xi
− p∂ui

∂xi
+ τij

∂ui
∂xj

. (5.19)

The stability analysis starts by linearizing the Navier-Stokes equations. Variables as the

sum of a mean value and a small perturbation as
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u = ū+ u′, (5.20)

ρ = ρ̄+ ρ′, (5.21)

and

p = p̄+ p′. (5.22)

Substituting these expressions into the equations and simplifying, we arrive at the linear

Navier-Stokes equations:

∂U ′

∂t
+M1

∂U ′

∂x1

+M2
∂U ′

∂x2

+M3
∂U ′

∂x3

= 0, (5.23)

where M1,M2 and M3 are matrices defined in [67]. Once linearized, the Navier Stokes

equations admit a plane wave solution,

U ′ =



p̂′

ρ̄û′

ρ̄v̂′

ρ̄ŵ′

p̂′


ei(kx−ωt). (5.24)

In this equation, the perturbations amplitudes p̂′,ρ̄û′, ρ̄v̂′, ρ̄ŵ′, and p̂′ are complex and

should not be amplified for stability. Replacing U ′ by this value in equation (5.22) yields an

eigenvalue problem [67]:

ωU ′ = MNSU ′, (5.25)

where MNS = k1M1 + k2M2 + k3M3. The eigenvalues can be calculated analytically as:
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

ω1 = k · u0 − i |k|2 λ+ |k| c0

√
1−

(
|k|N
c0

)2

ω2 = k · u0 − i |k|2 λ− |k| c0

√
1−

(
|k|N
c0

)2

ω3 = k · u0 − i |k|2 ν

ω3 = ω4

ω5 = k · u0

. (5.26)

These eigenvalues correspond to the theoretical hydrodynamic modes and are given as

dispersion relations. Any propagating in the flow can be expressed as a linear combination of

these modes, and the previous expressions link the frequency of the waves to their wavenum-

bers. These modes can be divided into two acoustic modes, one shear mode, and one entropy

mode. The modes ω1 and ω2 are known as “acoustic modes” due to the presence of the speed

of sound c0 in their expression. Their propagation speed is c± = k · u0 ± |k| c0

√
1−

(
|k|N
c0

)2

and these are dissipated as − |k|2 λ. The modes ω3 and ω4 are known as the shear mode due

to the occurring of the shear stress ν in their expression. They are dissipated as −i |k|2 ν

and propagated with a speed of cs = k · u0. Finally, the mode ω5 is the entropy mode [67].

The previous equations become, ignoring the entropy mode that is considered as a passive

scalar due to the isothermal assumption:

ω± = |k| (|u0| cos (φ)± c0)− i |k|2
(
D−1
D
ν + µB

2

)
ωs = |k| |u0| cos (φ)− i |k|2 ν

, (5.27)

With ω± the acoustic modes and ωs the shear mode. Also, ν is the shear viscosity and

µB the bulk viscosity. These modes also correspond to those of the LBE-BGK scheme. We

also introduce a new parameter, φ, to express the angle between the direction of the flow

velocity u0 and the perturbation vector expressed through its wavenumber k in spherical

coordinates as follows [68]:

Geometrically, it can be deducted that the spherical coordinates are related to cartesian

coordinates via

φ = tan−1 y

x
, (5.28)
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Figure 5.1: Spherical coordinates for the perturbation vector k.

and

θ = cos−1 z

|k|
. (5.29)

In the following analysis, φ is set as 0◦ while θ is set to π
2

= 90◦. In other words, we

investigate the propagation behavior of waves moving along the x-axis (i.e k = kx).

5.3 Linear Stability Analysis: MRT with SF-7 Filter

Dispersive and dissipative errors are respectively related to the propagation speed of each

wave in the solution and the damping of the amplitudes of the waves. Ideally, waves should

be convected in the domain by the numerical scheme without dispersion or loss of amplitude.

This is particularly critical in aeroacoustics simulations, where the solution is dependent on

the correct modelling of the acoustic waves. In some cases, though, dissipation is desirable

and artificial dissipation can be added as an extra term in the governing equations in or-

der to stabilize the solution. In the following section, the von Neumann Analysis will be

applied on the MRT formulation with an applied SF-7 scheme, and results plotted along

with the BGK values. The main objective of the analysis is to determine the dissipative and

dispersive properties of the scheme and its stability. Analysis was performed for the D2Q9

two-dimensional stencil. The von Neumann Analysis conducted on the MRT scheme with

the SF-7 explicit filter yields the following amplification matrices,

M f̄i = (1− σf)A−1
[
I −M−1SMNBGK

]
, (5.30)
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M m̄i = A−1
[
I −M−1SM(I − (1− σf)F eq)

]
, (5.31)

and

M
¯coll = A−1

[
I −M−1SM(1− σf)NBGK

]
, (5.32)

with M f̄i ,M m̄i and M
¯coll respectively the amplification matrices of the MRT scheme with

filtered distribution functions, filtered macroscopic variables, and filtered collision operator.

The calculation of these matrices’ eigenvalues was performed with the solver Mathematica

(i.e. version 12). Nine eigenvalues were obtained for the D2Q9. Only three are hydrodynam-

ics modes with a physical meaning: the two acoustic modes and the shear modes. The other

eigenvalues are kinetic modes that are unphysical. The von Neumann analysis was performed

for the three filtering strategies of the MRT, i.e. fully filtered LBM, filtered macroscopic

variables and filtered collision operator. The analysis is based on the work of Ricot et al.

[45] and M. Chavez-Modena et al. [55, 68]. These strategies will be compared in terms of

the kinematic and bulk viscosities, streaming angle φ, and Mach number.

To study the effect of the kinematic and bulk viscosities, these were first fixed to the

same value. Subsequently, the bulk viscosity is modified via a change of the relaxation times

and its effect on the acoustic mode propagation analyzed. The Mach number is defined as

Ma =
|u0|
cs
. (5.33)

In this expression, u0 is the streaming velocity defined as u0=[0.2,0,0], while cs is the

speed of sound. Two Mach Numbers were studied: Ma = 0 and Ma = 0.2.

In the case of equal shear and bulk viscosities, the relaxation times of Lallemand and

Luo [66] were used.

5.3.1 Case with ν=µB =10−3 kg
ms

The bulk and shear viscosities were first fixed to 10−3 kg
ms

, which corresponds to values of

s3 = s4 = s5 = 1.988 in the relaxation time matrix of the MRT collision operators. Lallemand

and Luo [66] proposed some values for s6, s7 and s8. In a first step, these were fixed to the
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proposed values. Therefore, the diagonal matrix of relaxation time for the MRT operator

was

S1 = diag(0, 0, 0, 1.988, 1.988, 1.988, 1.9, 1.9, 1.54). (5.34)

The following figure shows the dispersion of the MRT for the three filtering strategies at

two different Mach numbers (0 and 0.2) using the relaxation times of matrix S1. Theoretical

values are also plotted.

(a) (b)

Figure 5.2: Dispersive properties of MRT with different filtering strategies for the same

bulk and kinematic viscosities at two different Mach numbers; (a): 0 and (b): 0.2. �: BGK,

N: fully filtered LBE, N: filtered macroscopic quantities, N: filtered collision operator.

The dispersion relation is not affected by the choice of the filter. The dispersive curves

for the different filters are almost perfectly superimposed. This is expected, as the filters

are constructed symmetrically in order to avoid the introduction of any dispersive errors.

At low wavenumbers, the curves of the numerical dispersion and the theoretical one match

well. Starting from wavenumbers of k = 1.7 approximately, the dispersion error increases,

and the numerical results start to depart from their theoretical counterparts. In figure 5.2b,

the asymmetry of the curves with respect to the x-axis is in fact due to velocity u0 = 0.2.

This asymmetry is not present in figure 5.2a. The dissipation of the shear and acoustic

modes is shown in figure 5.3. The shear and the negative and positive modes are identified.

We notice that the theoretical shear and acoustic mode overlap. This is expected as the

49



bulk and kinematic viscosities are the same. We also notice that the shear and acoustic

mode behave independently in the MRT case. This is consistent with the fact that, for

the MRT, the Chapman-Enskog expansion procedure yields independent shear and bulk

viscosities. Compared to the BGK approach, the MRT approach causes a higher dissipation

of kinetic modes at higher wavenumbers, which tends to stabilize the solution. Indeed,

the MRT approach enables one to relax all the different modes at different rates, hence

the kinetic modes that don’t have any physical meaning can be more efficiently damped.

The BGK solution is plotted in purple. In comparison with the BGK, the filtered MRT

approaches yield higher dissipation rates, with the fully filtered LBE approach having the

highest dissipation rates. The three filtering approaches lead to different behaviors of the

shear and the acoustic modes for both Mach numbers. For a Mach number of 0, the acoustic

modes overlap which is not the case at Mach of 0.2. At a Mach of 0.2, the wave propagation

velocity is the vector sum of the speed of sound and the flow velocity. This may be observed

at wavenumbers greater than k = 2.0 when the two curves are differentiated.

(a) (b)

Figure 5.3: Dissipative properties of MRT with different filtering strategies for the same

bulk and kinematic viscosities at two different Mach numbers; (a): 0 and (b): 0.2. �: BGK,

N: fully filtered LBE, N: filtered macroscopic quantities, N: filtered collision operator.

Figure 5.4 shows the stability of the three MRT filtering approaches for a Mach number

of 0 and a Mach number of 0.2. Recall that the stability condition is given by: |λ| ≤ 1. In

other words, perturbations should not be amplified from one time step to another. Observing
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the curves, we see that the stability condition is satisfied for all three filtering approaches.

(a) (b)

Figure 5.4: Stability properties of MRT with different filtering strategies for the same bulk

and kinematic viscosities at two different Mach numbers ((a): 0 and (b): 0.2) (�: BGK, N:

fully filtered LBE, N: filtered macroscopic quantities, N: filtered collision operator).

In conclusion the dispersive behavior is not affected by the choice of the scheme. The

mean stream velocity, when the Mach number is increased to 0.2, leads to an asymmetry of

the dispersion curves and a separation of the acoustic and shear modes in the dissipation

plots. This is particularly visible when the MRT is used with the filtered macroscopic

quantities approach.

5.3.2 Effect of the Propagation angle θ

We will know keep the same relaxation times S1 and set a Mach number of 0.2. The von

Neumann analysis will be conducted for two angles, θ = 0◦ and θ = 38◦. The dispersion

figures are given in figure 5.5.
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(a) (b)

Figure 5.5: Dispersive properties of MRT with different filtering strategies for the same

bulk and kinematic viscosities at two different propagation angles θ; (a): 0◦ and (b): 38◦. �:

BGK, N: fully filtered LBE, N: filtered macroscopic quantities, N: filtered collision operator.

As before, the streaming Mach number of 0.2 causes an asymmetry in the figures. As

the streaming angle is increased, the numerical curves drift away sooner from the theoretical

ones, with a more obvious change. The propagation angle thus yields a greater dispersion

error at higher wavenumbers (i.e. k ≥ 1.5)

The dissipation curves are shown in figure 5.6 below. As the streaming angle is increased,

some instabilities occur, with positive dissipation around k = 0.8 for some modes. For

the other modes, the fully filtered LBE approach yields higher dissipation rates at higher

wavenumbers, with a cutoff around k = 2.
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(a) (b)

Figure 5.6: Dissipative properties of MRT with different filtering strategies for the same

bulk and kinematic viscosities at two different propagation angles θ; (a): 0◦ and (b): 38◦. �:

BGK, N: fully filtered LBE, N: filtered macroscopic quantities, N: filtered collision operator.

Regarding stability (figure 5.7), the Von Neumann stability condition is satisfied for all

filtering approaches for θ = 0◦. As the streaming angle is increased to θ = 38◦, the Von

Neumann stability condition |λ| ≤ 1 is violated for all filtering strategies starting from a

wavenumber of about k = 1. For the fully filtered and filtered collision operator approaches

become stable again around a wavenumber of k = 1.8. The filtered macroscopic variables

approach is unstable for most wavenumbers above k = 1 and so should be avoided.

(a) (b)

Figure 5.7: Stability properties of MRT with different filtering strategies for the same

bulk and kinematic viscosities at two different propagation angles θ; (a): 0◦ and (b): 38◦. �:

BGK, N: fully filtered LBE, N: filtered macroscopic quantities, N: filtered collision operator.
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In conclusion, an increase of the propagation to 38◦ results in a greater dispersion error

at higher wavenumbers, k ≥ 1.5, and the appearance of some instable modes starting from

k = 0.8, with some positive dissipation.

5.3.3 Case with µB =3.66 ∗ 10−2 kg/ms

Both Dellar [69] and Lallemand and Luo [66] have suggested that increasing the value of the

bulk viscosity leads to enhanced LBM stability. In their work, Lallemand and Luo [66] set

the bulk viscosity to 3.66 ∗ 10−2 kg
ms

which corresponds to setting s3 as 1.64 instead of 1.988

previously. The new relaxation time matrix is then given as

S2 = diag(0, 0, 0, 1.64, 1.988, 1.988, 1.9, 1.9, 1.54). (5.35)

We will know compare results with S1 and S2 at a Mach number of Ma=0.2.

(a) (b)

Figure 5.8: Dispersive properties of MRT with different filtering strategies for different

bulk and kinematic viscosities; (a): S1 and (b): S2. �: BGK, N: fully filtered LBE, N:

filtered macroscopic quantities, N: filtered collision operator.

The streaming velocity is responsible for asymmetry of the two graphs (figure 5.8) with

respect to the x-axis. Also, an increase in bulk viscosity (5.8b) does not seem to affect the

dispersive properties. This was also reported by [55]. The effects of the bulk viscosity on

dissipation can be seen in figure 5.9.
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(a) (b)

Figure 5.9: Dissipative properties of MRT with different filtering strategies for different

bulk and kinematic viscosities; (a): S1 and (b): S2. �: BGK, N: fully filtered LBE, N:

filtered macroscopic quantities, N: filtered collision operator.

As expected, an increase in bulk viscosity leads to enhanced dissipation of the modes.

This is particularly visible for the BGK. On the left, the curves for all the MRT filtering

strategies can be seen superimposed on the theoretical curve. Regarding stability, an increase

in bulk viscosity does not seem to affect the Von Neumann stability condition which is

satisfied in both cases for the BGK and all the filtering strategies.

(a) (b)

Figure 5.10: Stability properties of MRT with different filtering strategies for different bulk

and kinematic viscosities; (a): S1 and (b): S2. �: BGK, N: fully filtered LBE, N: filtered

macroscopic quantities, N: filtered collision operator.
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To sum up, an increase of the bulk viscosity does not affect the dispersive properties,

but leads to greater mode dissipation, as also reported in [55]. It also does not lead to a

violation of the Von Neumann stability condition which is still ensured.

5.4 Linear Stability Analysis: BGK with ADM-based

Filter

The Von Neumann analysis of the LBM-BGK formulation with the ADM-based filter intro-

duced in Chapter 4 will now be conducted. The chosen filter coefficients are summarized in

table 5.1. As a reminder, parameters βi are obtained by solving a system of equations, and

setting β1 = 1 (i.e. this is described in section 4.4).

βi αi/βi αi

1 1 1

−2/3 1.1 −22
30

2 1.05 21
10

−2/3 1.1 −22
30

Table 5.1: BGK ADM Von Neumann Analysis filter parameters - Set 1.

Building up from section 5.4, the neighboring points coefficients for each point i are

obtained by summing the ni,j and mi,j values over each neighboring cell in a clockwise

fashion, starting from node 1 (i.e. the top right cell is shown in figure 4.1). The coefficients

obtained for the M and N matrices are shown in table 5.2.

Matrix Central Point Side Points Diagonal Points

M 1.05555556 0.48888889 0.24722222

N 1 0.5 0.25

Table 5.2: Filter Coefficients for the M and N matrices - Set 1.
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The central point is (i, j). The side points are defined as (i + 1, j), (i, j + 1), (i − 1, j),

and (i, j-1). The diagonal points are given as (i + 1, j + 1), (i− 1, j + 1), (i− 1, j − 1), and

(i+ 1, j − 1).

The amplification matrix of the LBM-BGK with the SF-7 explicit filter is given as [45]

M
¯coll = A−1

[
I − (1− σf)

τ
NBGK

]
, (5.36)

with f the filter function. In what follows, the function 1− σf is replaced by a function

of the form Num
Den

, with the numerator Num holding the neighboring coefficients of the M

matrix and the denominator Den the neighbors coefficients of the N matrix.

5.4.1 Effect of the Mach number

In what follows the propagation angle θ will be kept to a constant value of θ = 0◦. The

bulk viscosity is set to ν = 10−3 kg
ms

, which corresponds to a relaxation time of τ = 0.503. As

the bulk and kinematic viscosities are similar in the BGK case, we have µν = 10−3 kg
ms

. The

following figure shows the dispersive properties of the BGK scheme with the ADM-based

filter at a propagation angle of 0◦ for two different Mach numbers. Also plotted on the figures

are the dispersive properties of the BGK and MRT formulations without filtering.

(a) (b)

Figure 5.11: Dispersive properties of the LBM-BGK with an ADM-based filter at two

different Mach numbers; (a): Ma = 0 and (b): Ma = 0.2. �: BGK, N: MRT, N: filtered

BGK.
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As before, the dispersion curves are symmetrical with respect to the y-axis and are not

affected by the scheme at a Mach number of 0 (5.11a). At low wavenumbers the dispersion

error is negligible. Starting from k = 2, it becomes more visible. When the Mach number is

increased to 0.2 (i.e. figure 5.11b), the streaming velocity leads to an assymetry of the plots

with respect to the y-axis, seen at wavenumbers higher than k = 2. The dissipation plots

are shown in figure 5.12. The modes of interest are the shear, and the two acoustic modes,

which are superimposed for the MRT case at a Mach number of 0 (5.12a). The LBM-BGK

scheme is more dissipative than the BGK and MRT for some modes as seen immediately

above k = 1.5, while some higher wavenumber modes are less dissipated, as seen above

k = 2.5 for both Mach numbers.

(a) (b)

Figure 5.12: Dissipative properties of the LBM-BGK with an ADM-based filter at two

different Mach numbers; (a): Ma = 0 and (b): Ma = 0.2. �: BGK, N: MRT, N: filtered

BGK.

Stability properties are shown in figure 5.13.
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(a) (b)

Figure 5.13: Dissipative properties of the LBM-BGK with an ADM-based filter at two

different Mach numbers; (a): Ma = 0 and (b): Ma = 0.2. �: BGK, N: MRT, N: filtered

BGK.

5.4.2 Effect of the Propagation angle θ

The effect of the propagation angle θ will now be investigated at a streaming Mach number of

0.2. Two angles will be studied: θ = 0◦ and θ = 38◦. As seen on figure 5.14a, the streaming

Mach number leads once again to an assymetry of the dispersion curves with respect to the

x-axis. When the propagation angle is increased, as shown in figure 5.14b, the dispersion

curves start to deviate sooner from the theoretical values, for an increased dispersive error

at higher wavenumbers which can be clearly seen starting from k = 1.5. Now regarding

dissipation, as shown in figure 5.15, some positive dissipation can be seen for the LBM-MRT

as the propagation angle is increased. The dissipative properties of the LBM-BGK with the

ADM filter on the other hand are not significantly affected (i.e. figure 5.15b).
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(a) (b)

Figure 5.14: Dispersive properties of the LBM-BGK with an ADM-based filter at two

different propagation angles; (a): θ = 0◦ and (b): θ = 38◦. �: BGK, N: MRT, N: filtered

BGK.

(a) (b)

Figure 5.15: Dissipative properties of the LBM-BGK with an ADM-based filter at two

different propagation angles; (a): θ = 0◦ and (b): θ = 38◦. �: BGK, N: MRT, N: filtered

BGK.

Finally, regarding stability, as the propagation angle is increased, the Von Neumann sta-

bility condition (|λ| < 1) is violated for the MRT and filtered BGK formulations starting

from k = 1.0 to k = 2.2, and starting from k = 2.3 again, implying amplification of most

wavenumbers. For the filtered BGK, instabilities start from k = 2.5, with higher wavenum-

bers being amplified.
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(a) (b)

Figure 5.16: Dissipative properties of the LBM-BGK with an ADM-based filter at two

different propagation angles; (a): θ = 0◦ and (b): θ = 38◦. �: BGK, N: MRT, N: filtered

BGK.

In summary, the dispersive properties are not affected by the choice of scheme but depend

on the streaming velocity and angle. The schemes are all stable for a propagation angle of

0◦ but, at a propagation angle of 38◦, instabilities occur for most of the wavenumbers range

for the MRT, and at high wavenumbers for the ADM filtered BGK; with a violation of the

stability condition.

61



Chapter 6

Numerical Simulations

In this section, the newly developed schemes (MRT-SF-7 filter and MRT-ADM filter) are

compared with other existing schemes. Stability among the different schemes is then com-

pared. In particular, the following schemes are compared: BGK, BGK with SF7 filter,

MRT-RM, MRT-RM with filter and BGK with ADM explicit filter.

6.1 Dual Shear Layer

The double shear layer test case consists of two initial shear layers which roll-up due to a

Kelvin-Helmholtz instability excited by an O(δ) perturbation in uy. At poor resolutions,

spurious vortices appear in the solution. Minion and Brown [70] showed that these spurious

vortices are in fact caused by spurious high wavenumber modes in the solution, linked to grid

scale oscillations. The goal is then to analyze how efficient the schemes are at dissipating

these high wavenumber oscillations. The second chosen test case, the Taylor Green Vortex,

is an often used 3D benchmark test to investigate the effects of turbulence models. The

solution starts as a laminar state, with vortex stretching, before these break down, leading

to a fully turbulent state. Tracking the evolution of the kinetic energy dissipation rate gives

important information about the behavior of the flow and the numerical scheme.
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6.1.1 Set Up

The double periodic shear layer case is run on a square domain of dimensions (NxN), with

N being the resolution of the domain along the x and y directions. Four grid sizes were used:

(32x32), (64x64), (128x128) and finally (256x256). The boundary conditions are periodic

and the initial conditions are given by

ρ = ρ0, (6.1)

ux = U0tanh[w(y/N − 1/4)], y ≤ N/2, (6.2)

uy = U0δsin[2π(x/N + 1/4)], (6.3)

and

uz = U0tanh[w(3/4− y/N)], y ≥ N/2, (6.4)

where ρ0 is the reference density which is fixed to 1. The constants w and δ are re-

lated respectively to the initial width of the shear layer and the magnitude of the initial

perturbation. These are set to

w = 80, (6.5)

and

δ = 0.05. (6.6)

The simulated Reynolds number is Re = 30, 000 while the Mach number is set to Ma =

0.2. The characteristic lattice velocity U0 can then be computed from the Mach number Ma

and the lattice speeds of sound
(
cs = 1√

3

)
as

U0 = Ma ∗ cs. (6.7)
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The initial horizontal (ux) and vertical (uy) component of the velocity field are shown in

figure 6.1.

(a) (b)

Figure 6.1: Initial horizontal and vertical velocity fields for the dual shear layer case; (a):ux

and (b):uy.

6.1.2 Grid Sensitivity Study

For all simulations, the physical simulated time is t = 2tc, with the characteristic time tc

being defined as: tc = N/U0. The isocontours of the vorticity are taken at time t=1 and

appear on figure 6.2 at t/tc = 1 on figure 6.2. Note that simulations performed with the

LBM-BGK ADM-based filtering approach, at a resolution of N = 16, showed significant

instabilities. Thus simulations at higher resolutions are not included in what follows for the

LBM-BGK ADM-based filter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.2: Vorticity isocontours at t/tc = 1 ((a): BGK, N=64, (b): BGK, N=128, (b):

BGK, N=256, (d): BGK SF-7, N=64, (e): BGK SF-7, N=128, (f): BGK SF-7, N=256, (g):

MRT, N=64, (H): MRT, N=128, (i): MRT, N=256, (j): MRT SF-7, N=64, (k): MRT SF-7,

N=128, (l): MRT SF-7, N=256).
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It is worth nothing that, for grid sizes N = 32, 64, and 128, the BGK shows some

instabilities. At the highest grid size, N = 256, spurious vortices appear. These correspond

to extra unphysical modes which appear in the solution. These are thus considered as

numerical artefacts. The application of the SF-7 filter in conjunction with the BGK scheme

removes these spurious vortices; the simulations are stable for all wavenumbers. At under-

resolved simulations, the MRT scheme also exhibits these spurious vortices. Increasing the

resolution removes these artefacts, and the correct behavior is recovered at N = 128 and

N = 256. Finally, the application of the SF-7 explicit filter in conjunction with the MRT

removes the spurious vortices even as under-resolved grid sizes (i.e. N = 64). For N = 128

and N = 256, both the filtered and unfiltered MRT scheme yield similar results.

The dimensionless mean kinetic energy and mean enstrophy are given on figures 6.3 and

6.4.
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(a) (b)

(c)

Figure 6.3: Dimensionless Mean Kinetic Energy; (a):N = 64, (b):N = 128, (c):N = 256.

For the under-resolved simulation (N = 64), the BGK results deviate early on from

the other schemes with amplitudes growing unbounded. For the three other schemes, some

wavepacket-like oscillations with a decreasing amplitude and a fixed frequency can be seen

until t/tc = 1.3. These oscillations gradually disappear as the grid size is increased; for

a fine grid size of N = 256, they have disappeared. At a grid size N = 128, the BGK

scheme still yields unstable results. The three other schemes follow a similar pattern. At

the finest grid size (i.e. N = 256), all schemes yield similar results, with curves that are

almost perfectly superimposed. Some negligible deviation can be seen between t/tc = 1 and

t/tc = 2 for the BGK case, but the scheme still perfectly follows the trend. For all grid
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sizes, starting from t/tc = 0.5, regular oscillations are noticeable in the kinetic energy. As

the LBM captures some compressibility, this can be explained by a periodic energy transfer

between potential energy and kinetic energy due to compressibility. The enstrophy results

are shown in figure 6.4. For the enstrophy, similar observations can be made for the BGK

case at the under-resolved simulation (N = 64). Results deviate away from the correct trend

and quickly reach extremely high values. At N = 64, all the approached exhibit wavepacket

like oscillations with a decreasing amplitude up until t/tc = 0.5 approximately for the BGK

and SF-7 and MRT and SF-7 approaches. The enstrophy level are then overpredicted by

the MRT without filter while the BGK and SF-7 and MRT and SF-7 approaches yield

similar trends. For N = 128, the MRT and MRT and SF-7 curves are overlapped and yield

very satisfactory results. The BGK and SF-7 approach follows the trend very closely with

relatively negligible difference. As before, the BGK yields results which drift away from the

correct solution early on. Also, the wavepacket-like oscillations visible in the under-resolved

simulation (i.e. N = 64) have decreased in amplitude. As for the resolution of N = 256,

all approaches yield satisfactory and very close results. Until t/tc = 0.6, all curves overlap.

Some differences can be noticed afterwards, with the BGK overpredicting the enstrophy

levels. This is expected as, due to the fact that the BGK used a single relaxation time for

all distributions, some discrepancies can occur with the exact results.
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(a) (b)

(c)

Figure 6.4: Dimensionless Mean Enstrophy; (a):N = 64, (b):N = 128, (c):N = 256.

6.2 Taylor Green Vortex

The second benchmark test chosen is the decaying Taylor Green Vortex (TGV) case. This

three-dimensional case is relevant in the analysis of flow transition to turbulence and there-

fore, is often used to analyze the effect of various schemes and turbulence models in the

LBM context. Parameters of interest include vortex stretching as well as small-eddies pro-

duction and evolution that can be tracked. In this section, the TGV case is conducted with

a D3Q19 lattice scheme. Three grid resolutions have been selected for the analysis; two
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under-resolved grids (N = 32 and N = 64) as well as N = 128 and N = 256. Results are

plotted and compared with a TGV DNS case with N = 512.

6.2.1 Setup

The initial conditions were chosen based on those specified by the organizers of the AIAA

First International Workshop on High Order Methods in Computational Fluid Dynamics

[71]. The domain is a 3D cube with length defined as

− πL ≤ x, y, z ≤ πL. (6.8)

Periodic boundary conditions are applied. The initial conditions are set as



ux = U0sin(x/L)cos(y/L)cos(z/L)

uy = −U0cos(x/L)sin(y/L)

uz = 0

p0 = ρ0U0
2

16
[cos(2x/L) + cos(2y/L))] [cos (2z/L) + 2]

(6.9)

The reference density, ρ0, and the reference length, L, are set to one. The reference

velocity U0 can be obtained from the Mach number which is set to Ma = U0

cs
= 0.1. Finally,

the kinematic shear viscosity is linked to the Reynolds number: Re = U0L/ν.

6.2.2 Grid Sensitivity Study

As previously stated, four collision operators are compared: BGK, BGK with SF-7 filter,

MRT, and MRT with SF-7 filter. Three grid sizes are selected: N = 32 and N = 64 for the

under-resolved simulations, and N = 128. Each simulation is computed for a physical time

of t = 20tc, with tc the characteristic time defined as tc = L/U0. The evolution of the kinetic

energy and the kinetic energy dissipation rate will be analyzed and compared. The TGV

case is characterized by three main steps. The flow is initially laminar with vortex tubes that

stretch until they break down around t/tc = 5. The dissipation rate then increases until the

peak is reached around t/tc = 9, which corresponds to a fully turbulent state. Kolmogorov’s

theory [1] explains the energy spectrum as follows: energy is transferred from large to small
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scales via an energy cascade, and is dissipated by the smallest eddies in the form of heat.

The decay after the peak corresponds to a state of isentropic and homogeneous turbulence

[68]. The following figure shows the variations of the vorticity contours throughout time for

the BGK collision operator at a grid size N = 256 and a reference DNS solution at N = 512,

shown in black [?]. Slices of the vorticity contours (taken at z=0) are presented at a time

t/tc = 4, 8, 10 and 16.

Figure 6.5: Vorticity contours at t/tc = 4,8,10 and 16 (the DNS results are presented in

black while the BGK results are in blue).

The time evolution of the kinetic energy for three grid sizes is plotted for the four schemes

(BGK, BGK and SF-7 filter, MRT, and MRT and SF-7 filter) in figures 6.6 and 6.7. As

previously stated, four grid sizes are simulated: N = 32 and N = 64 for the under-resolved

simulations, N = 128 and N = 256. Due to large oscillations in the original results, kinetic

energy results were filtered five times with the function “smooth” in Matlab in order to

extract only relevant trends and enable a clearer analysis. The kinetic energy is given by the

following formula:
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Ek =
1

ρ0V

∫
ρ
u2

2
dV , (6.10)

where ρ0 is the characteristic density (i.e. ρ0 = ρ) and V is the volume of the domain.

We notice that for under-resolved simulations, the BGK scheme drifts away too much

from the rest of the results and is deemed unreliable and unstable. Also, for all schemes at

N = 32 and N = 64, we notice some oscillations up until t/tc = 5 before the curves start

to smooth. Now, we previously stated that the vortices stretch up until t/tc = 5 before

breaking down. The observed oscillations are, therefore, directly linked to this phenomenon.

An increase in grid resolution decreases the sensitivity of results, though, and oscillations

are barely visible for N = 128 and N = 256. Finally, at N = 256, results are independent

of the choice of collision operator or filtering method, and the curves are superimposed.

Overall, the filtered MRT and filtered BGK approaches follow similar trends, while the

BGK with the Smagorinsky model seems to underestimate kinetic energy levels at under-

resolved simulations. On the opposite the MRT scheme overestimates the kinetic energy

levels at under-resolved simulations. This is particularly visible at a resolution N = 32.
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(a) (b)

(c) (d)

Figure 6.6: Dimensionless Mean Enstrophy; (a):N = 32, (b):N = 64, (c):N = 128, (d):N =

256.

To analyze the evolution of the flow in time, the kinetic energy dissipation is computed

as

ε = −dEk
dt

. (6.11)

As before, results are plotted for four schemes and four grid sizes. Also plotted on the

figures is the reference solution, obtained via a DNS with N = 512 [?]. We first notice that

the unfiltered BGK scheme yields results completely different from the reference solution for

under-resolved simulations (i.e. N = 32 and N = 64). Also, for under-resolved simulations,
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the BGK scheme with the SF-7 filter shows many oscillations in the solution, which is also

the case the BGK scheme with the Smagorinsky turbulence model. At N = 32, the BGK

and filter and MRT and filter schemes yield similar trends. However, the MRT scheme with

SF-7 filter removes the oscillations present in the solution. The MRT solution has a lower

amplitude than the MRT and SF-7 solution. This makes sense, as the explicit filter works by

enhancing dissipation in the solution to stabilize it. An interesting observation is that, while

the BGK and SF-7, MRT, MRT and SF-7, and BGK-Smagorinsky schemes have a similar

evolution of ε compared to the reference solution, the increase in the dissipation rate, the

peak and the decrease occur earlier than the reference solution. Therefore, the transition

occurs earlier and is also faster than the spectral DNS. Concerning the BGK-Smagorinsky

scheme, a slight overprediction of the enstrophy can be seen before the peak compared to

the filtered BGK and MRT schemes. At a resolution N = 64, higher amplitude oscillations

can be seen for the BGK and SF-7, MRT and SF-7, and BGK-Smagorinsky cases, but the

trends are correctly predicted. Indeed, the transition, peak, and decaying phase occur at the

same time as the spectral DNS solution. Some overprediction can however be seen for the

BGK-Smagorinsky scheme before the peak. The presence of a turbulence model thus seems

to impact how the transition region is predicted. In the laminar region and up until t/tc,

some oscillations can be seen for the MRT case. Here again, the peak is correctly predicted

as well as the transition. The decay phase is correctly predicted by the MRT case until

t/tc = 15, where excessive dissipation is produced. At N = 128, all approaches yield results

with oscillations, but the laminar (t/tc from 0 to 5) and transition phase are accurately

captured by all approaches. The peak is correctly captured by both the BGK and MRT

approaches, while it is underpredicted by the BGK and SF-7, MRT and SF-7, and BGK-

Smagorinsky approaches. Just after the peak, the BGK and MRT approaches overpredict

the reference solution while it is the opposite for their filtered counterparts (i.e. BGK and

SF-7 and MRT and SF-7). Then, starting from t/tc = 15 until the end, all approaches

match well with the reference solution. Finally, at N = 256, there is a sharp decrease in

the oscillations which are almost negligible. All approaches yield overlapping solutions. The

transition part is accurately predicted by all schemes which match the reference solution

perfectly. However, the peak is overpredicted by all schemes. This overprediction lasts up
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until t/tc = 15. Compared to the spectral DNS, the schemes add excessive dissipation. The

trends are then swapped after t/tc = 15 until t/tc = 20, with all approaches underpredicting

the reference solution.

(a) (b)

(c) (d)

Figure 6.7: Dimensionless Mean Enstrophy; (a):N = 32, (b):N = 64, (c):N = 128, (d):N =

256.
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Chapter 7

Conclusion

Due to its linearity, ability to deal with complex boundaries due to simple boundary con-

dition, and local behavior which enables parallelisation, the Lattice Boltzmann Method has

gathered large and growing interest this past decade in the CFD community, in particu-

lar for jet noise simulations. Its most simple formulation, the LBM-SRT, is known for its

instabilities at low viscosities and high Reynolds number flows. A Von Neumann analysis

conducted in [45] showed how this is caused by the interaction of the acoustic mode with

other modes. Alternative formulations can be used, such as the LBM-MRT which introduces

multi-relaxation times. During the collision process, each moment can be relaxed towards

equilibirum at a different rate, which enhances the stability of the method, but still yields

some instabilities for under-resolved simulations. As shown by [45], explicit filtering of the

BGK leads to improved stability.

In this work, alternative explicit filtering strategies for stabilization the Lattice Boltzmann

method were investigated. A seven-point stencil explicit filter (i.e SF-7 [46]) was imple-

mented with the MRT method. A Von Neumann analysis was conducted on the explicit

filter with the LBM-MRT formulation, for three different filtering strategies. The disper-

sive, dissipative, and stability properties were characterized and analyzed. It was shown

that while viscosity does not affect the dispersive error, modifying the Mach number affects

the disersion error of the shear and acoustic modes. For consistance with [45], filtering was

applied on the collision operator.
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The filtered MRT operator was then validated with a two-dimensional Dual Shear Layer

and a three-dimensional Taylor-Green Vortex test cases. The enhanced performance of the

explicitely filtered MRT collision operator in comparison with the unfiltered BGK and MRT

schemes was demonstrated for the Dual Shear Layer, with the filtered MRT successfully

removing spurious vortices in under-resolved simulations. In three-dimensions, the filtered

MRT was compared with the unfiltered BGK and MRT, explicitely filtered BGK, BGK

with a Smagorinsky turbulence model, and a reference DNS solution (i.e at a resolution of

N = 512). The scheme was successful in capturing the energy decay trends of the isotropic

turbulence, yielding results close to the reference solution. It was also shown to significantly

decrease the oscillations present in the solution.

Concerning the implications of this research, these findings are of particular interest in

aeroacoustic simulations of jet engines for instance, where a good compromise must be made

between computational efficiency and accuracy of the collision operator. In applications

involving the MRT, the application of an appropriate filter, as the SF-7 in this case, can

thus lead to more accurate results. The Von Neumann analyses are of particular interest to

link observed instabilities with the used bulk and kinematic viscosities, propagation angles,

and the Mach number. The results from the Von Neumann analyses were able to show for

instance that some zones of instabilities are expected as the propagation vector is not aligned

anymore with the x-axis. It was also shown that higher wavenumbers are particularly sub-

jected to these instabilities which can result in spurious waves in the solution.

These findings are particularly relevant for aeroacoustics applications, where the accurate

resolution of acoustic pressure waves is essential. In such applications, any instabilities in

pressure waves oscillations can affect the computed noise levels. Another relevant applica-

tion, as mentioned in the introduction, is the study of multiphase flows, where interfaces

must be handled accurately. Multiphase flows usually include fluids with different viscosities

and/or velocities. The use of a stable scheme is then mandatory to avoid instabilities at

low resolutions as seen previously in the shear layer case. The use of the LBM-MRT scheme
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with an explicit filtering strategy can be more suitable in such cases.

An explicit filter based on ADM methods for LES was also introduced and its stability

analysis performed and compared with the unfiltered BGK and MRT schemes. Applying

the filter on the collision operator, it was shown that some modes were further dissipated,

some higher wavenumber modes were not. The benchmarking of the ADM-based filter in

two- and three-dimensions is currently dependant on the optimization of the filter parameters

βi and αi so that they ensure stability while efficiently filtering the solution. Additionally,

the conduction of simulations at resolutions higher than N = 16 is currently hampered by

computational costs due to the matrix inversion needed at each time step, as seen from

equation 4.16.

The first contribution of this thesis was the implementation of an explicit filter on the

MRT collision operator (chapter 6). The second and third contributions were the condition

of a Von Neumann analysis the LBM-MRT with the SF-7 explicit filter and the LBM-BGK

with an ADM-based filter. In both instances the dispersive, dissipative, and stability prop-

erties of the operators were analyzed. Finally, the fourth contribution is the benchmarking

of the MRT explicit filtering approach with a two-dimensional dual shear layer and a three-

dimensional Taylor Green Vortex test cases.

This work has opened many doors for further exploration of certain topics in the future.

The first possible study is the optimization of the ADM-based filter coefficients for the BGK

collision operator in two-dimensions (D2Q9) and three-dimensions (D3Q19). The second

possible study is the optimization the matrix inversion process in the Palabos implementa-

tion, in order to reduce computational costs for higher resolutions. The third possible study is

the benchmarking of the BGK with the ADM-based filter in two dimensions (i.e Dual Shear

Layer) and three-dimensions (i.e Taylor-Green Vortex). The fifth possible future study con-

sists in a linear stability analysis of the ADM-based filter for the D1Q3, D3Q15 and D3Q27

stencils. Finally, the SF-7 explicit filter can be implemented on the BGK and MRT collision

operators with non periodic boundary conditions, in both two- and three-dimensions.
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Appendix A

Appendix

A.1 Chapman – Enskog Analysis

The goal of the Chapman-Enskog analysis is to relate the distribution functions (fi) to the

Navier-Stokes equations and the macroscopic variables. It is valid for incompressible fluids

at a small Mach number. The objective is to derive the Navier-Stokes equations and be able

to correlate parameters such as viscosity and relaxation time to the kinematic viscosity of

the Navier-Stokes equations. As previously stated, it emerges from the need to separate the

various physical phenomena happening at various scales. These scales actually correspond

to various orders of the Knudsen number ε.Thus, a multiscale expansion is introduced.

A power law series in terms of ε, the Knudsen number, for fi, is first introduced as

fi = fi
(0) + εfi

(1) + ε2fi
(2) + ... (A.1)

Power law series for ∂x and ∂t are also introduced as follows,

∂

∂x
= ε

∂

∂x1

, (A.2)

and

∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
. (A.3)

Now, conservation laws state that fi
eq must satisfy
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
∑

i fi =
∑

i fi
eq = ρ∑

i cifi =
∑

i fi
eq = ρu

, (A.4)

for respectively the conservation of mass and momentum. It follows that


∑

i fi
neq = 0∑

i fi
neq = 0

, (A.5)

with fi
neq = εfi

1 + ε2fi
2. We recall that the Lattice Boltzmann Equation is given by, for

the BGK scheme,

fi(x+ ∆x, t+ ∆t)− fi(x, t) = −1

τ
fi(x, t)− fieq(x, t). (A.6)

A Taylor series expansion is then performed on the left-hand side, yielding

fi(x+ ∆x, t+ ∆t) = fi(x, t) +
∞∑
n=0

εn

n!
(∂t + ei∂x)

nfi(x, t). (A.7)

Indeed, the parameter ε can be taken as ∆t and, expanding on time,

=⇒ f ix+ ∆x, t+ ∆t = fix, t+ ∆t(∂t + cix∂x)fi +
(∆t)2

2
(∂t + cix∂x)

2fi +O[(∆t)3] + ... (A.8)

The next step is to replace fi by its expansion (fi = f 0 + εf 1 + ε2f 2 + ...) as

[∆t(ε1∂t1 + ε2∂t2 + eiε∂x)(f
0 + εf 1 + ε2f 2)

+
(∆t)2

2
(ε1∂t1 + ε2∂t2 + eiε∂x)

2(f 0 + εf 1 + ε2f 2)]

−1

τ
[f 0 + εf 1 + ε2f 2 − f eq]. (A.9)

Terms depending on ε0, ε1 and ε2 are then separated. Let LHS designate the left-hand

side and RHS the right-hand side.

Then, for ε0, LHS = 0 (no ε0 order terms for ∂t and ∂x) and RHS = 0 = 1
τ

[f 0 − f eq].

Hence,
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=⇒ f 0 = f eq. (A.10)

For ε1, LHS =
(
∂t

0 + ei∂x
)
f 0 and RHS = − 1

τ
f 1. Thus,

=⇒ ∆t∂t1 + ei∂xf0 = −1

τ
f 1. (A.11)

For ε2, LHS = (∂t1 + ei∂x) f
1 + ∂t2f

0 and RHS = − 1
τ
f 2. Therefore,

=⇒ ∆t∂t1 + ei∂xf1 + ∆t∂t
2f0 +

∆t
2

2
∂t1 + ei∂xf0 = −1

τ
f 2. (A.12)

Now, as the terms of the order of ε2 are sufficient to recover the Navier-Stokes equation,

the Lattice Boltzmann Method is considered to be of second order.

A.1.1 Conservation of Mass

Taking the zeroth-order moment of equation (A.11):

∑
i

(∂t1 + ei∂x) fi
eq =

∑
i

−1

τ
fi

1 = 0, (A.13)

according to (A.5).

⇒ ∂ρ

∂t1
+ uj

∂ρ

∂xj
= 0, (A.14)

using (A.4).

A.1.2 Conservation of Momentum

A similar approach can be followed for the conservation of momentum. The following equa-

tion is obtained,

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂

∂xi
(
c2ρ

3
)

∂

∂xj
[(τ − 0.5)∆t(

c2

3
ρ(
∂uj
∂xi

+
∂ui
∂xj

)− ∂

∂xk
(ρuiujuk))]. (A.15)
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A.2 D2Q9 MRT Matrix construction

To construct the MRT matrix a Gramm-Schmidt orthogonalization procedure can be used.

It will be decribed in what follows.

We recall that LBM-MRT equation is given by:

fi(~x+ c~ei∆t, t+ ∆t)− fi(x, t) = M−1SM [fi(x, t)− fieq(x, t)], (A.16)

with the moments are obtained as: mi = Mfi(~x, t) and M = M(u), u being the reference

velocity. The first step is to specify the order of the moments. Let X = (eix − u)m and

Y = (eiy − u)n represent the difference between the microscopic and the reference velocities

[68]. Following Geier et al. [72], the nine non-orthogonal moment basis vectors using the

monomials X and Y are

M(u) =



X0Y 0

X

Y

X2 + Y 2

X2 − Y 2

XY

X2Y

XY 2

X2Y 2



(A.17)

Applying the Gramm-Schmidt orthogonalization procedure, the matrix M(u) is obtained

[68],
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M(u) =



X0Y 0

X

Y

3(X2 + Y 2)− 4

X2 − Y 2

XY

3X(X2 + Y 2)− 5

3Y (X2 + Y 2)− 5

(9/2)(X2 + Y 2)
2 − (21/2)(X2 + Y 2) + 4



(A.18)

This is re-expressed as

M(u) =



ρ

jx

jy

e

pxx

pxy

qx

qy

ε



. (A.19)

Moments can be ordered as follows,
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Moment Order Description

ρ 0th Density

jx 1st x-momentum

jy 1st y-momentum

e 2nd Kinetic energy

pxx 2nd x-symmetric traceless viscous stress tensor

pxy 2nd y-symmetric traceless viscous stress tensor

qx 3rd x-energy flux

qy 3rd y-energy flux

ε 4th Related to the kinetic energy square

Table A.1: Moments and their description for the D2Q9 case.

M(u) =



m0

m1

m2

m3

m4

m5

m6

m7

m8



=



ρ

jx

jy

e

pxx

pxy

qx

qy

ε



. (A.20)

These moments and their description are summarized in table A.1.

In the two-dimensional case, the resulting matrix for raw moments M(u = 0) is given by

equation A.21 [68].
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M =



1 1 1

0 1 0

0 0 1

1 1 1

−1 0 1

0 −1 1

1 1 1

−1 −1 1

1 −1 −1

−4 −1 −1

0 1 −1

0 0 0

−1 −1 2

1 −1 0

0 0 1

2 2 2

0 0 0

−1 1 −1

0 −2 0

0 0 −2

4 −2 −2

2 0 1

0 2 1

−2 −2 1

−1 −1 1

1 −1 −1

1 1 1



(A.21)
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A.3 D3Q19 MRT Matrix construction

A new term is introduced in three dimensions, Z = (eiz − u)l [68]. As proposed by Geier et.

al [72], the moment sets are given in equation A.22.

M(u) =



X0Y 0Z0

X

Y

Z

XY

XZ

Y Z

X2 + Y 2 + Z2

XY 2 +XZ2

X2Y + Y Z2

X2Z + Y 2Z

XY 2 −XZ2

X2Y − Y Z2

X2Z − Y 2Z

X2Y 2 +X2Z2 + Y 2Z2

X2Y 2 +X2Z2 − Y 2Z2

X2Y 2 −X2Z2



. (A.22)

As for the two-dimensional case, applying the Gram-Schmidt orthogonalization procedure

to the matrix yields [68]:
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M(u) =



X0Y 0Z0

X

Y

Z

XY

XZ

Y Z

X2 − Y 2

(X2 + Y 2 + Z2)− 3Z2

(X2 + Y 2 + Z2)− 2

3(XY 2 +XZ2)− 4X

3(Y X2 + Y Z2)− 4Y

3(ZX2 + ZY 2)− 4Z

(XY 2 −XZ2)

(Y X2 − Y Z2)

(ZX2 − ZY 2)

3(X2Y 2 +X2Z2 − 2Y 2Z2)− 2(2X2 − Y 2 − Z2)

3(X2Y 2 −X2Z2)− 2(Y 2 − Z2)

3(X2Y 2 +X2Z2 + Y 2Z2)− 4(X2 + Y 2 + Z2) + 4



. (A.23)

The corresponding moments are
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M(u) =



ρ

jx

jy

jz

pxy

pxz

pyz

pww

3pxx

e

qx

qy

qz

mx

my

mz

3πxx

πww

ε



. (A.24)

In the above moments, mx, my and mz are the asymmetric third-order moments, and π

is related to the kinetic energy.

In three-dimensions, the resulting transformation matrix of raw moments is [68]
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M(u = 0) =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 −1 0 0 −1 −1 −1 −1 0 0 1 0 0 1 1 1 1 0 0
0 0 −1 0 −1 1 0 0 −1 −1 0 1 0 1 −1 0 0 1 1
0 0 0 −1 0 0 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1
0 0 0 −1 0 0 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1
0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1
0 1 −1 0 0 0 1 1 −1 −1 1 −1 0 0 0 1 1 −1 −1
0 1 1 −2 2 −1 −1 −1 −1 1 1 −2 2 2 −1 −1 −1 −1 −1
−2 −1 −1 −1 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0
0 4 0 0 1 1 1 1 0 0 −4 0 0 −1 −1 −1 −1 0 0
0 0 4 0 1 −1 0 0 1 1 0 −4 0 −1 1 0 0 −1 −1
0 0 0 4 0 0 1 −1 1 −1 0 0 −4 0 0 −1 1 −1 1
0 0 0 0 −1 −1 1 1 0 0 0 0 0 1 1 −1 −1 0 0
0 0 0 0 −1 1 0 0 1 1 0 0 0 1 −1 0 0 −1 −1
0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 0 1 −1 −1 1
0 −4 2 2 1 1 1 1 −2 −2 −4 2 2 1 1 1 1 −2 −2
0 0 −2 2 1 1 −1 −1 0 0 0 −2 2 1 1 −1 −1 0 0
4 0 0 0 −1 −1 −1 −1 −1 −1 0 0 0 −1 −1 −1 −1 −1 −1


. (A.25)
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A.4 Selective Filter Coefficients

SF-5 SF-7 Tam-5 Bogey-9

d0 6/16 5/16 0.287392842460 0.243527493120

d1 -4/16 -15/64 -0.226146951809 -0.204788880640

d2 1/16 3/32 0.106303578770 0.120007591680

d3 -1/64 -0.023853048191 -0.045211119360

d4 0.008228661760

Table A.2: Selective filters coefficients
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