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Abstract 

In recent years, due to growing environmental awareness regarding global warming, 

green cars, such as hybrid electric vehicles, have gained a lot of importance. With the 

decreasing cost of rare earth magnets, brushless permanent magnet motors, such as the 

Interior Permanent Magnet Motor, have found usage as part of the traction drive system 

in these types of vehicles. As a design issue, building a motor with a performance curve 

that suits both city and highway driving has been treated in this thesis as a 

multi-objective problem; matching specific points of the torque-speed curve to the 

desired performance output. Conventionally, this has been treated as separate problems 

or as a combination of several individual problems, but doing so gives little information 

about the trade-offs involved. As a means of identifying the compromising solutions, we 

have developed a stochastic optimizer for tackling electromagnetic device optimization 

and have also demonstrated a new innovative way of studying how different design 

parameters affect performance. 
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Resume 

Dans les annees recentes, les vehicules verts comme les vehicules electriques hybrides 

sont devenus de plus en plus important en raison de la croissance de la conscience 

environnementale du rechauffe me nt de la planete. Avec le cout decroissant des aimants 

permanents de terre rare, les moteurs a aimant permanent sans brosse, tels que le 

moteura aimant permanent interieur, sont utilises dans les systemes d'entraTnement de 

traction dans ces types de vehicules. Comme question de conception, la construction 

d'un moteur avec une courbe d'execution qui convient a la conduite a la ville et sur 

I'autoroute a ete traitee dans cette these comme probleme d'optimisation multi-objectif, 

dans lequel les points specifiques de la courbe couple-vitessesont jumeles a I'execution 

desire. Conventionnellement, ceci a ete traite en tant que problemes separes ou comme 

combinaison de plusieurs problemes differents, mais faire ainsi fournit peu 

d'informations sur les differences impliquees. En tant que des moyens d'identifier les 

solutions compromettantes, nous avons developpe un optimiseur stochastique pour 

I'optimisation de dispositif electromagnetique. Nous avons egalement demontre une 

nouvelle maniere innovatrice d'etudier comment les differents parametres de 

conception affectent I'execution. 
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1 Introduction 

In recent years, growing environmental awareness regarding global warming, high 

emission standards, high fuel price, and other cost factors, have lead to the increase in 

the demand for green cars such as Hybrid Electric Vehicles (HEVs). The first mass 

produced HEV was built by Toyota in 1997 [1] and since then various models of HEVs 

from different automobile manufacturers have flooded the market. Even governmental 

organizations, such as the US Department of Energy have been part of this important 

research area for quite some time now [2] with their Freedom Car Project. In general, 

most of these HEVs, use brushless permanent magnet motors, such as the Interior 

Permanent Magnet motor (IPM), due to various advantages such as high torque-current 

ratio, small size, high efficiency, etc for a variable speed traction drive system. 

As a design issue, building a motor that matches certain performance criteria to suit 

both city and highway driving, i.e. high torque at low speed and over a substantial speed 

range, requires investigation of the underlying trade-offs, such as, a compromise 

between the size of the motor and the performance, the size of the permanent magnets 

and performance, the location of the permanent magnets and performance, etc. This 

physical requirement when represented mathematically means, finding the best suitable 

design, and can be achieved by searching for the maxima or the minima of the objective 

functions subject to certain specifications - a process also known as optimization. 

Optimization problems can be sub-divided into Single objective problems (SOPs) [3] and 

Multi-objective problems (MOPs) [4]. Most real world applications have multiple 

objectives, frequently conflicting in nature, for example, maximizing profit while 
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maximizing quality or minimizing weight while maximizing strength or minimizing fuel 

consumption while maximizing output power. The solution to MOPs having conflicting 

objectives is a set of trade-off points or compromising solutions also known as 

non-inferior solutions [5] or Pareto Optimal solutions [6] (a set of Pareto Optimal points 

is known as the Pareto Optimal set). However, it is to be noted that, if the objectives 

don't conflict then MOPs lead to a single optimum instead of a set of solutions. 

One of the ways to solve a MOP is by using weighting functions [4] thereby converting 

the MOP into a single-objective optimization (SOP) problem. For example, suppose if f\ 

& h are the two objectives of a MOP, then they can be represented as a SOP, 

f = w1f1+w2f2 (1.1) 

where w\ and wi are the desired weights and 

w± + w2= 1 (1.2) 

However, there are times when the human decision maker [7] would not know the 

weights at the start, i.e. a priori, due to the complexity of the device and would like to 

weigh different optimal solutions at the end, i.e. a posteriori, according to his 

requirements and eventually pick the best one. 

In the context of the IPM, since the torque performance [8] of these high efficiency 

motors [9] & [10] has complex relationships with numerous parameters as has been 

researched in [11], [12] & [10], while assuming infinite permeability of iron, zero winding 

resistance, etc. [12], determining the exact weights can be tough or may not be possible 

at all. Therefore, achieving objectives such as maximizing efficiency [10], minimizing 

volume [13], maximizing torque, minimizing ripple torque [11], etc. by treating the 

process as a SOP may not be desirable to some human decision makers. 
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1.1 Aim 

1. To optimize the torque performance of a IPM model over a substantial speed 

range 520-5400 rpm [2] by solving it as a MOP and 

2. To study the effect of the design variables such as the permanent magnet 

dimensions on the torque performance from the information obtained by 

optimizing. 

1.2 Structure 

The thesis has been structured in such a way that it highlights all the key elements of a 

design process such as knowledge acquisition, designing, implementation and testing. 

Chapter 2 and Chapter 3 highlight the knowledge acquisition phase, wherein Chapter 2 

deals with the theoretical aspects of IPM so that the reader can get an initial idea of the 

parameters to be optimized, and Chapter 3 reviews some of the commonly used 

Evolutionary algorithms. Chapter 4 describes the proposed algorithm, the mixed Elitist 

Restricted Resolution Multi-objective Evolutionary Algorithm (mERR-MOEA), and the 

results obtained from tests conducted on various benchmark'analytical functions and a 

real device, the Testing Electromagnetic Analysis Methods (TEAM) Superconducting 

Magnetic Energy Storage (SMES) Problem 22. Chapter 5 deals with the modeling of the 

IPM and the final implementation. The Conclusions along with discussions about future 

work make up Chapter 6. 
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2 Interior Permanent Magnet Motor 

In this chapter, we will present the theoretical aspects of the IPM, for example, we shall 

derive the torque equation from the phasor diagram, and provide equations that 

indentify the critical parameters affecting torque performance. 

Permanent magnet motors are increasingly being used in applications, such as, variable 

speed traction drives, compressors, pumps, etc. Among the family of permanent magnet 

motors, the IPM has more advantages in terms of high efficiency, wide speed operation, 

and flux weakening ability. Further, it has a high torque to inertia ratio due to small size, 

increased mechanical robustness at high speeds as the magnets are embedded inside 

the rotor and a reduced air gap, which are essential requirements of HEVs since fuel 

efficiency comes at the cost of performance. 

Figure 1: Interior Permanent Magnet Motor [2] 

A typical IPM has the stator surrounding the rotor. The stator contains the windings and 

the permanent magnets are embedded in the rotor as shown in Figure 1. Unlike a 

conventional synchronous motor, which requires two sources of current to bring it into 

synchronism, excitation of an IPM is only on the stator side thereby reducing copper 
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loss. The IPM runs at synchronous speeds as the stator current supply is usually 

controlled by an external Pulse Width Modulated (PWM) inverter circuit. Based on the 

speed of the IPM, 

co = 1 2 0 / / P (2.1) 

where a> is the speed in rpm, / is the supply frequency in Hz and P the number of 

poles. The external circuit varies the supply frequency and also controls the direct axis 

current by phase advancing the stator supply current in order to achieve the maximum 

torque to current ratio at all speeds and an effective flux weakening operation 

(explained in detail in the next section) (Eqn.(2.1) shows how frequency and speed are 

related). The torque-speed plot of a typical IPM as shown in Figure 2 has a constant 

torque or increasing power region from zero to the base speed and a constant power or 

decreasing torque, also known as flux-weakening region, from the base to the maximum 

operational speed. 

. 

Constant 
Tortus i 

*\ 
• \ 
9 \ 

i \ 
! x 

Bas^speed 
,. ,,„).„ „, 

k Constant 
pqwer 

_ — _ _ * 
Speed rpm 

Figure 2: Torque-Speed Plot 
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2.1 IPM: Theory 

The principle of operation of an IPM is similar to that of a conventional synchronous 

machine. Due to the polyphase supply to the stator a rotating magnetic field effect is 

produced on the rotor. The rotor magnetic poles are attracted to the field induced on 

the stator due to the windings and its connections, and start rotating along with the 

stator magnetic field. As the rotor starts rotating, while synchronizing to the rotating 

magnetic field, it induces an emf in the stator known as the "back emf" or the "magnetic 

friction" (generally sinusoidal in nature depending on the stator winding layout) that 

opposes the terminal or input voltage, 

Ef = V-IR (2.2) 

where V is the terminal voltage, / is the armature current, R is the armature 

resistance and Er- is the back emf. The back emf is directly proportional to the angular 

velocity of the rotor, 

Ef = ke.<o (2.3) 

where ke is the back emf constant, which is dependent on the air-gap flux density, 

number of turns of the coil, and size of the motor, and a> is the angular velocity of the 

motor in rpm. 

In order to understand the functioning of the IPM, it can be represented by two 

equivalent circuits as shown in Figure 4 & Figure 5; one along each of the two axes as 

shown in, the d axis (passing from the center of the motor cross-section through the 

center of the magnet) and the q axis (axis passing from the center of the motor 

cross-section through the space between two magnets); Figure 3. The angular difference 

between the axes is always 90° elec. The basic idea to represent the motor as a two-axis 
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model is to take care of the variable reluctance path caused by the presence of the 

embedded permanent magnets. 

\ 

Figure 3: d-q axis of IPM 

R 

rVV v 

0L4U 

Figure 4: Equivalent q-axis circuit [14] 

03 L ^ 

Figure 5: Equivalent d-axis circuit [14] 

where R is the stator armature resistance, L is the q-axis inductance, Ld is the d-axis 



inductance, CJ is the speed of rotation of the rotor, id is the d-axis current, iq is the 

q-axis current, Ef is the back emf, Vq is the q-axis terminal voltage and Vd is the 

d-axis terminal voltage. 

Based on the assumptions like, 1) saturation is neglected and 2) back emf is sinusoidal, 

the equations derived from the equivalent d & q axis circuits are, 

V" = i « R + L«lI+ ML^+ Ef {2A) 

Vd= idR + L d ^ - <*>Lqiq (2.5) 

diq did 
During steady state operation —- = — =0i.e. 

dt dt 

Vq= iqR + a>Ldid+ Ef (2.6) 

Vd= idR-a>Lqiq (2.7) 

Solving for id & iq while neglecting R, we get, 

The equivalent phasor diagram is 



q-axis 

where, 

d-axis 

Figure 6: Phasor diagram of IPM during flux weakening operation 

' = ' * + ' , 

V = Ef + (ld + Iq)R-rqLqio+IdLito 

Y = 0-a 

(2.10) 

(2.11) 

(2.12) 

where y is the angle that / makes with respect to d-axis, 9 is the angle that V 

makes with respect to the d-axis and a is the angle by which V leads / . Referring to 

Figure 6, all voltage sources have been considered as negative and potential drops as 

positive. 

A typical IPM is attached to an external inverter circuit, which supplies a Pulse Width 

Modulated wave as input to the motor, to control y for flux weakening purposes and 

the supply frequency for it to run at synchronous speeds. Referring to Figure 6, during 

high speeds (speed above the base speed), if y is increased, while holding Iq constant 
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by allowing / to increase, Id increases resulting in an increase of IdLday. As a result, 

Ef decreases since the IPM is a voltage controlled motor, thereby enabling the IPM to 

achieve high speeds. This phenomenon is known as flux weakening operation. 

In general for a polyphase motor, 

tnT =
 rJ}£j™ (2.13) 

Pout = pin ~ 12R ~ ^re loss (2.14) 

Pin = VTcosa (2.15) 

where m is the number of phases, T is the torque, Pout electrical output power, Pin 

is the electrical input power and I2R is the copper loss. 

Simplifying (2.15) vectorially from the phasor diagram, 

Pm=VqIq + ViIi (2.16) 

Pin = ' , 0 / + ' , * + ULi<») + IdUdR - r„Lqio-) (2.17) 

Pin = IqEf + 01 + *l)R - WLv - L*)*> (218) 

Assuming that there are no core losses and replacing Pin by (2.18), (2.14) can be 

written as, 

Pout=rqEf-IclId(Lq-Ld)ai (2.19) 

Substituting in (2.13), we get 

tnT = tn-±Ef-rnIqTd(Lq-Ld) (2.20) 
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Replacing id & iq by Eqn.(2.8) & Eqn.(2.9) respectively and Ld & Lq by the 

corresponding reactances, i.e. 

X„ = <*Lq (2.21) 

Xd = *>Ld (2.22) 

we obtain, 

, Vd ™Vd(Va - Ef) 
rnT = -rn^-Ef + ^ ^-(X-Xd) (2.23) 

Xqa> f XqXd*> ^ q dJ 

Replacing Vd = Vcosd, Vq = Vsind, S = 6 - - in (2.23) and then simplifying, we get 

V2 / 1 1 
rnT = rn—± + m y ( — - — J ^ m 2 5 (2.24) 

The first term in (2.24) is the magnetic torque and the second is the reluctance torque 

which is produced due to the presence of the embedded magnets causing a variation in 

X L 

the reluctance path having a saliency ratio -SL = -SL> 1. The contribution of reluctance 

torque to the main torque along with the magnetic torque enables IPM to achieve a high 

performance. From the above equation, it can be deduced that the reluctance torque is 

independent of the back emf and thus, if there is no back emf, the only torque 

component that would act on the rotor is the reluctance part. 

2.2 Parameterized Torque Equation 

Having derived the analytical torque equation, let us analyze which geometrical 

parameters affect torque. 
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From (2.3), replacing Ef by ka)ipm in (2.24) where i/'m
 is t n e peak flux linkage due to 

the permanent magnets and k is a constant, we get 

m.Vkuiibmsin8 rnV2 ( 1 l \ 
T= — + ( \sin26 2.25 

From [13], referring to Figure 7, 

/*"' Stator back iron \ 

Figure 7: IPM parameters [13] 

and defining the symbols in Table 1, 

c * 

Br 

f^rec 

Kc 

9 

™m 

d 

K 
h2 

lm 

flux concentration factor as given by (2.32) [15] 

remanence of the magnet 

recoil permeability [15] 

Carter coefficient [15] 

width of the air gap 

width of the magnet 

width of the flux barrier 

inner flux barrier height 

outer flux barrier height 

length of the magnet 
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"m 

A 
"mm 

Bs 

t 

A
S 

»V 
D 

I 

a 

cross-sectional area per pole of the magnet 

cross-sectional area of the thin iron bridge above the flux barriers 

limit of the leakage flux density in the bridge due to saturation 

thickness of the iron bridge 

cross-sectional area per pole of the air gap 

outer radius of the rotor 

inner diameter of the stator 

lamination stack length of the motor 

half of the magnet pole-arc angle or half spread angle 

Table 1: Symbol reference table 

the average airgap flux density Bg is expressed as, 

where, 

'* l + / r ? ( l + 2r, + 4 > l ) B r 

w„ 4> 

»/ = 

k = 

wm(h±+h2) 

i + 1/ /e + 2*/ 

\ nmmIX ' / » . - * 

"m '•mwm 

A = tl 
"mm lL 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

C, = (2.32) 

A - g(.2rr +g)a/ 
(2.33) 
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After expanding and simplifying Eqn.(2.26) by using (2.27) to (2.33), we get 

2lmwm 
g(Zr + g)a (2.34) 

B
S = ~a

 Br 

z,± | 1 (2r + g)a ( w j h t + f c j ) ^ 

tf B s 

Representing ipm in terms of average flux linkage, 

^m = ( i ) B
s s m ( a ) (2.37) 

Substituting (2.37) in (2.25) and expanding, it can be deduced that, in terms of the 

geometric parameters, lm,wm,g,alh1,h2,d,t,D,l and r affect the torque provided 

that the material of the permanent magnet is not changed, and the number of poles and 

the number of turns of the stator coils are held constant. Out of the eleven parameters 

mentioned, hvh2 & d are dependent on lm,wm & a and therefore can be omitted 

from the above list. Hence, the remaining eight independent geometrical parameters 

influence the torque out of which lm,wm & a are related to the permanent magnet. 

Later in this thesis, in Chapter 5, we shall try to investigate these parameters with the 

help of a simulated model using Finite Element Analysis, while in the next two chapters 

we shall develop a multi-objective algorithm required to optimize the performance of 

the IPM, which is one of the goals, as stated in Chapter 1. 
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3 Evolutionary Algorithms 

(terms in italics are explained in Appendix A) 

Evolutionary algorithms (EAs) are stochastic or non-deterministic search processes that 

mimic the natural biological evolution process. They deal with a population of potential 

solutions and are therefore, by default, parallel in nature. Similar to the biological 

process, evolutionary algorithms use Charles Darwin's concept of survival of the fittest 

through a sequence of generations, to gradually produce better individuals suited for the 

environment. Evolutionary algorithms use the concepts of reproduction such as 

crossover or recombination and mutation to produce new individuals. The basic 

evolutionary cycle is shown in Figure 8. Figure 9 focuses on the family tree of 

evolutiona ry algorithms. 

Figure 8: Evolution cycle in Evolutionary Algorithms 
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Figure 9: Family tree 

The following sections provide a brief review of existing evolutionary algorithms. 

3.1 Single Objective Evolutionary Algorithm 

Genetic Algorithms (GAs): They are inspired by the natural evolution process. 

Traditionally, solutions are represented in binary format as an array of bits. Other 

variants treat the individuals as a list of real numbers but reproduction takes place at the 

bit level i.e. real numbers represented as 8-bit, 32-bit, etc. binary numbers depending on 

the problem (not IEEE standard for floating point number). Individuals reproduce based 

on selection of the fittest one. Selection procedures such as rank selection, tournament 

selection, etc. are commonly used. The weakest ranked individuals are replaced by the 

new offspring in order to maintain a constant population, the size of which is problem 

dependent. 

Genetic Programming (GP): Like all EAs, it also follows the natural evolution process. The 
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difference between GAs and GPs is that GPs evolve computer programs and not 

chromosomes. These computer programs are represented by tree type data-structures 

having nodes and terminals which contain information about the individual as shown in 

Figure 10. Fitness assignment is problem dependent, similar to that in GAs. All 

operations of GPs are based on the tree type structure. Crossover happens by swapping 

one of the nodes with a node of another individual. Mutation occurs by either replacing 

the information of a node with another similar node or by replacing a sub-tree with 

another similar sub-tree of the same individual. 

Figure 10: For example, individual represented as 1.5x(2+a) 

Evolutionary Strategy (ES): It is similar to GAs, the differences being that the individuals 

are encoded as real numbers and it mostly relies on mutation for reproducing. Some 

variants also use cross-over for reproducing. An individual is comprised of objective and 

strategy parameters. The objective parameters are vectors of real numbers representing 

the variables to be optimized and the strategy parameters are also vectors of real 

numbers but control the objective parameters during mutation. 

chrom— (op,sp) (3.1) 

where op is an objective parameter, sp is a strategy parameter and 

op = (o1,ov.„.,on) (3.2) 

sp = (svs2,..,,sn) (3.3) 

where ot and st are real numbers. Mutation happens both for the objective 

17 



parameters and the strategy parameters. Common ES schemes are (-,1) or (- + X), 
p p 

where \i is the total number of parents, p is the number parents to mutate, X is the 

number of offspring, 'comma' denotes that selection takes place only among the 

offspring and 'plus' denotes selection involving both offspring and parents. 

Evolutionary Programming (EP): It uses real valued vector represented individuals where 

each position in the vector represents a feature of the individual (Figure 11). For 

reproduction, only the mutation operator is used. 

1.2 3.4 5.0 6.7 

Figure 11: Real-valued vector 

Unlike ESs that calculate fitness based on the evaluated objective functions, EPs give a 

chance to every parent to reproduce. However, after reproduction they assign the 

fitness according to a pre-determined criterion, like evaluating the performance in a 

tournament selection method between a certain number of individuals, and then 

selecting the best individuals required for the next generation. Variants of EPs can have a 

dynamic population. 

3.2 Multi-Objective Evolutionary Algorithm (MOEA): Definitions 

Multi-Objective Evolutionary algorithms have evolved as the preferred choice for solving 

MOPs since MOEAs deal with multiple possible solutions simultaneously, which enables 

it to find the trade-off surface [6]. The basic concepts used in most MOEAs have been 

derived from the Single Objective Evolutionary Algorithms, for example, crossover, 

mutation, fitness, strength, etc. In general, MOEAs can be divided into Aggregating 

functions, Population based and Pareto based approaches. Before getting into the 
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details about the above mentioned types, let us first go through the vocabulary used in 

MOPs. 

Dominated and Non-Dominated solutions: [6] In a multi-objective problem where there 

is more than one objective, say flt f2,-, fn, there can be three possible solutions, 

either solution %(1) dominates solution %(2) or vice versa or neither dominates. 

%(1) is said to dominate %(2) if both the following conditions are satisfied, 

• Solution %(1) is no worse (the operator < to denote worse and > to denote 

better) than x ( 2 ) in all objectives, i.e. fj(x(l)) ~K / } 0 ( 2 ) ) for all ; = 1,2, . . .n. 

• The solution x ( 1 ) is better than %(2) in at least one objective, or / } ( x ( 1 ) ) > 

/ } ( x ( 2 ) ) for at least one j = 1,2, . . . , ,n 

it can then be said that %(2) is dominated and %(1) is non-dominated. However, if %(1) 

is worse than %(2) in one of the objectives but better than * ( 2 ) in others or if x ( 1 ) is 

not worse than %(2) in any of the objectives but is also not better than %(2) in any of 

the objectives then for both the cases neither of the solutions dominates the other i.e. 

both are non-dominated with respect to each other. 

Pareto Optimal Set: The set of non-dominated solutions is called the Pareto optimal set. 

Global Pareto Optimal Set: If there exists no solution in the search space that dominates 

any member of the Pareto optimal set, then the Pareto optimal set is known as the 

Global Pareto Optimal set. 

Pareto Front: Members of the Global Pareto Optimal set when plotted in the objective 

space form the Pareto front having the shape of a curve. It is referred to as a "front" 

since it represents the boundary of the dominated solutions. It is also known as the 
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trade-off front. 

o o o 

- • • • . 

• o 

Figure 12: The Pareto front representing the boundary of all the dominated solutions 

The above diagram, Figure 12, displays a two-dimensional Pareto front having the shape 

of a concave curve. Theoretically speaking, a Pareto front can have an infinite number of 

solutions if the solution is in real space, but is of finite size when represented in binary. 

In other words, by making it finite, i.e. of known resolution, it can be said that the search 

space is not continuous which means that the total search space is limited. In a way, this 

acts as an advantage (explained in Chapter 4) but with it comes the problem of tackling 

duplicate chromosomes. Evaluating a chromosome which is almost similar or identical to 

one from a previous generation can lead to a waste of computational time especially in 

the case of field evaluations of physical entities. Nevertheless, resolution is just a matter 

of accuracy and only depends on the requirements of the decision maker. 

3.2.1 MOEA: Review of some of the common Algorithms 

Having gone through the vocabulary, we shall now review the types of MOEAs in detail 

and get to know the commonly used algorithms. 

Aggregating functions: A MOP is converted into a SOP using weighting functions where 
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the aggregate of the weights is equal to unity (1.1) & (1.2). This is the simplest way of 

solving MOPs. The drawback being that the designer has to know the weights a priori. 

Figure 13 shows decision making as a posteriori method. 

y* Pareto optimally: 
' '% defines set of optimal trade-offs 

? (all objectives equally important) 

°o o a ""9'*'V Decisionmaking: 
a o a Q

r.
 g |§ i choose best compromise 

°J» a » 9 a b (based on preference information) 
-_j» . a* y , 

Figure 13: Decision making as a posteriori process in a maximization problem [16] 

Population based approach: 

The Vector Evaluated Genetic Algorithm (VEGA) [17] is a classical example of this type of 

approach. A VEGA, for mating purposes, divides the original population into 

sub-populations of equal size at each generation on the basis of proportional selection 

[4] according to each objective function in turn. For example, if there are n objectives 

and the population size is N then each sub-population is of size N/n. [4]. These 

sub-populations are shuffled among each other to obtain new sub-populations of size 

equal to that of the original sub-populations. Afterwards, individuals crossover and 

mutate within their respective sub-populations formed from shuffling, in effect, 

achieving mating between different sub-populations. VEGA's weakness is that it works 

against the concept of Pareto dominance since it discards all those compromise 

solutions which may not be the best solution for at least one of the objectives. It also 

has a bias towards certain solutions and fails to find good compromise solutions in the 

case of concave surfaces [7]. The solution to this is obtained by either of the two 

methods known as the "non-dominated selection heuristic" and the "mate selection 

heuristic". In the non-dominated selection heuristic, the dominated individuals are 
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penalized by a fixed penalty and the total penalty for the dominated chromosomes is 

divided among the non-dominated individuals. However, the non-dominated selection 

heuristic fails when there are few non-dominated individuals, resulting in a large fitness 

value for those non-dominated chromosomes, leading to a high selection pressure [18]. 

In the mate selection heuristic, an individual is selected as a mate to a randomly chosen 

individual based on the maximum distance in the solution space from its mate. However, 

it fails due to the inability to prevent participation of poorer individuals [18]. 

Pareto based approaches: 

The Multi-Objective Genetic Algorithm (MOGA) [5] is based on the concept that all 

individuals are ranked on the basis of how many chromosomes in the current population 

dominate them. All the non-dominated individuals get the same rank while all the 

dominated ones get penalized on the basis of the area of the corresponding region of 

the Pareto front. Figure 14 shows the ranking scheme. 

f2l 

3 o 4 

1 o2 

f l 

Figure 14: Ranking 

The number of points sampling a certain area of the Pareto front is calculated based on 

the choice of the sharing factor. Sharing is done on the objective functions instead of the 

variables on the assumption that it leads to a uniform distribution of the global Pareto 

front. Fitness assignment is done in the following way [5], 

1. Sort the population according to rank 

2. Assign fitnesses to individuals by interpolating from the best to the worst 

according to some function; usually linear, but not necessarily. 
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3. Average the fitnesses of the individuals with the same rank so that all of them 

are sampled at the same rate. 

MOGAalso involves the decision maker during the selection operation, in order to guide 

the Pareto front towards the compromise solution, in case the decision maker has 

certain knowledge about the kind of region in the Pareto front he wants to zoom-in and 

hence save time. The main disadvantage of MOGA is its dependency on the choice of 

sharing factor (explained in Chapter 4) and the fitness assignment scheme that can lead 

to a large selection pressure and therefore to a premature convergence. 

The Non-Dominated Sorting Genetic Algorithm (NSGA) [18] ranks the whole population 

on the basis of non-domination unlike MOGA, which ranks according to domination. It 

classifies the entire population into several fronts. The non-dominated chromosomes 

form the first front. NSGA assigns a large dummy fitness value proportional to the 

population size to all the non-dominated individuals. Diversity of the population is 

achieved by fitness sharing between two individuals of the same front in the variable or 

parameter space. Fitness sharing is achieved by performing selection on the basis of 

degraded fitness which is calculated by dividing the original fitness of an individual by a 

quantity proportional to the number of neighbors. After sharing between the 

non-dominated individuals, NSGA processes the rest of the population in order to 

identify the next front and continues until the entire population is classified into fronts. 

While processing the next fronts NSGA assigns an individual a dummy fitness value less 

than the minimum shared dummy fitness of the previous front so that the better 

individuals get more copies during reproduction thereby achieving elitism. NSGA is 

slightly better than MOGA in the context that it can find more non-dominated solutions 

[19] and is faster than MOGA [7]. The main drawback of NSGA is its inability to get out of 

local optimum points [6] and its sensitivity to the sharing factor is similar to that of the 
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MOGA. 

The Niched Pareto Genetic Algorithm (NPGA) [20] uses a tournament selection scheme 

known as a "Pareto dominance tournament" in which two individuals are selected at 

random. A comparison set of individuals is also chosen randomly. Each of the two 

individuals is compared with each in the comparison set and the one which remains 

non-dominated is chosen for reproduction unlike in a binary tournament scheme where 

the best individual is that which dominates the other and therefore effectively ends up 

with a single solution after a certain number of generations. However, in the case of a tie 

during a Pareto dominance tournament i.e. both individuals remaining non-dominated, 

fitness sharing in the objective space is used to determine the winner. Unlike fitness 

sharing as done in NSGA on the basis of degraded fitness within the same niche or area, 

in NPGA the best non-dominated individual in a particular generation is that which has 

the least number of individuals in its niche i.e. the least number of neighbors. It must 

also be noted that the radius of a niche is pre-determined by the user depending on the 

density of the solutions desired. NPGA is fast and produces good Pareto fronts. Its main 

drawback is the optimal choice of the comparison set that determines the pressure of 

selection and therefore its performance. 

The Strength Pareto Evolutionary Algorithm (SPEA) [21] is different from the other 

algorithms discussed so far. It maintains an external set of non-dominated solutions 

evolved through the previous generations. Selection is based on the binary tournament 

scheme. The fitness of an individual is calculated only from the external non-dominated 

set and is a two stage process. Each non-dominated individual in the external set is 

assigned a value called "strength", proportional to the number of current population 

members it dominates. The fitness is the same as the strength for the non-dominated 

individuals. In case of individuals of the current population, the fitness is the total 
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strength of all the non-dominated individuals of the external set that dominate this 

individual plus one. Adding one to the total fitness is a way to ensure that the 

non-dominated ones have a better fitness (an individual is said to be fitter if its fitness 

value is less than the one it is compared with). In other words, the more the number of 

neighbors of a particular individual the less fit it is due to the large strength value of the 

associated non-dominated individual. Thus, SPEA uses Pareto based niching and 

therefore doesn't require any knowledge of the niche radius. The size of the external 

non-dominated set influences the behavior of SPEA. However, maintaining a large 

non-dominated set means a slower and a biased search. Therefore, SPEA uses a finite 

sized external set i.e. whenever the set reaches a certain size limit, the algorithm prunes 

it down by clustering. The idea of incorporating a fixed sized external set helps in 

maintaining selection pressure [22]. The main drawback of SPEA is its time complexity 

[22] due to the external set, however, the quality of the Pareto front is in general better 

than NSGA, MOGA, etc. [23]. 

The Micro-Genetic Algorithm for Multi-Objective Optimization (micro-GA) [24] uses two 

memories: the "external memory" for storing non-dominated solutions similar to that in 

the SPEA and "population memory" which has a replaceable and a non-replaceable part. 

The non-replaceable part remains unchanged throughout the run and provides diversity. 

The population size of both the parts can be regulated by the designer. The initial 

population is formed by including individuals from both the parts. During each 

generation, two non-dominated individuals are selected and compared with the external 

set. If either remains non-dominated then it is included in the external set and the 

dominated member is eliminated from the external set. These two individuals are also 

compared with two members belonging to the replaceable memory. If either remains 

non-dominated then it replaces the dominated member of the memory so that 
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gradually the replaceable memory is filled up with a greater number of non-dominated 

individuals. In order to tackle the problem of the increasing size of the external set, 

micro-GA uses the concept of an adaptive grid. Once the external set reaches a certain 

size limit, then any newly generated non-dominated solution is included in the external 

set only if that individual, which is assigned a certain coordinate according to the grid, 

belongs to a less populated location, while the less important chromosomes are 

discarded. The algorithm utilizes a very small population size and has a low 

computational cost. 

In this chapter we have reviewed the basic concepts of MOEA & EA perse, the advantages 

and drawbacks of some of the algorithms we discussed and had an opportunity to 

familiarize ourselves to the common linguistics dealt in MOP. In the next chapter we 

shall discuss a new algorithm and why is it suitable for the kind of application we intend 

to optimize. 
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4 Multi-Objective Optimization 

In the previous chapter, when we reviewed some of the commonly used algorithms we 

came across concepts such as fitness sharing, archiving, elitism, selection for 

reproduction, etc. After going through these ideas, the obvious question that arises is 

"what is their use ?". In the following sections we shall examine their effect on the 

problem of interest i.e. the Interior Permanent Magnet Motor (IPM). 

The aim of a MOEA algorithm is to find a well-distributed and accurate Pareto front as 

shown in Figure 15, so that, the decision maker or the designer has the information to 

understand the trade-offs. Algorithms which are purely deterministic in nature converge 

very quickly and accurately if started from a carefully chosen design. However, in cases 

where there can be possibilities of multiple local minima or non-convexity of the front or 

where an initial idea of the global minima isn't possible, stochastic search mechanisms 

might be efficient, robust and easy to use. 

Any stochastic optimizer embeds two distinct phases in its operation: exploration and 

exploitation. In exploration, the goal is to search the objective function space in order to 

find possible areas for the optimal solution; in exploitation, local knowledge is used to 

determine the exact location of the optimal solution as shown in Figure 15. All 

algorithms provide some form of balance between these two phases and how it is 

applied depends on the shape of the objective space. In a MOP, this has to be applied for 

each objective. This brings us to the critical issues that MOEAs face, which are, 

1. How to guide the search towards the Global Pareto front, and 

2. How to achieve a well distributed trade-off front 

Some other aspects but not as critical as the ones mentioned above are, 
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3. What is the correct population size to start with, and 

4. When to termi nate the search process 

C o n v e r g e n c e 

Figure 15: A well distributed Pareto front in a maximization problem [16] 

1. How to guide the search towards the Global Pareto front: Any search algorithm 

might get stuck in a local Pareto optimal front due to deceptive fronts [6] also referred to 

as multimodality (if there are more than two local optima). There can be cases where 

the search space is flat and the true front is isolated. In order to tackle these criticalities, 

ranking and selection strategies are generally used. The basic idea is to enhance the 

exploration capability. For example, as mentioned in Chapter 3, in NSGA [18] the whole 

population is classified into several fronts on the basis of non-domination. The 

non-dominated solutions are grouped into a single category so that they have equal 

chances of reproducing and have more offspring than the rest of the population. When 

visualized with respect to the parameter space, the non-dominated individuals might be 

scattered all over the search space. During reproduction since the fitter ones have more 

copies, effective exploration of the surrounding space is carried out in the context of the 

parameter space. However, it doesn't stop the weaker individuals from being used in the 

reproduction process, assuming that the weaker ones can also produce good individuals 

but with a lower probability. In other words, by enforcing elitism i.e. giving more chance 
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to the fitter individuals since they have higher probability of finding good individuals in 

the parameter space, the population evolves to find the true Pareto front. 

2. How to achieve a well distributed trade-off front: To determine a useful Pareto front, 

it is necessary to find solutions which are as diverse as possible. If all the solutions are 

clustered together on the front, the purpose of Multi-Objective Optimization (MOO) is 

not served. However, in trying to maintain diversity, Multi Objective Optimization (MOO) 

faces difficulties such as convexity or non-convexity. If the fitness is proportional to the 

number of solutions dominated as implemented in MOGA, then the sampling of convex 

shaped functions is more biased than in the case of non-convex functions [6]. There can 

also be situations where the true Pareto front is not continuous [6], instead, it is 

discretely spaced and non-uniform, i.e. some regions having higher density of solutions 

[6]. Such difficulties are generally tackled by fitness sharing and elitism. The goal of 

fitness sharing is to distribute the population over a number of peaks or optimum points 

or niches in the search space proportional to the height of the peak or the fitness. For 

example, in NSGA, fitness sharing between two individuals having identical rank is done 

by performing a selection procedure using degraded fitness values which are obtained 

by dividing the original fitness value of the chromosome by a quantity proportional to 

the number of chromosomes around it. In other words by doing fitness sharing, multiple 

optimal points are able to co-exist and therefore when they take part in reproduction, it 

leads to a more diverse search, [18]. The goal of elitism in terms of diversity is to give 

more chance to the fitter individuals since they have a higher probability of finding more 

non-dominated points along the front. For example, in SPEA, by maintaining an external 

archive of non-dominated solutions, which interact with the main population during the 

binary tournament selection procedure, elitism is achieved [21]. In a way, the basic 

approach to attaining diversity in the Pareto front is by exercising effective exploitation 

29 



of the front. 

3. What is the correct population size to start with: In general, most MOEAs tend to 

guess the initial population. However, if the population is too small there can be a 

possibility of premature convergence i.e. the algorithm might terminate before finding 

the true Pareto front or, if it is too large, then it might require excessive computational 

time. Instead of guessing the optimal population, algorithms such as the Incrementing 

Multi-objective Evolutionary Algorithm (IMOEA) [25] employ the concept of a dynamic 

population with an adaptive mechanism helping it to adapt the population size based on 

the discovered trade-off surface and the desired population density along the trade-off 

surface. As the number of non-dominated solutions increases with generations, the 

algorithm also adapts itself to an increased population size. 

4. When to terminate the search process: In multi-objective problems, the greater the 

number of points along the trade-off front, the better it is for the designer. Halting a 

Multi-Objective Algorithm (MOA) means a choice between having enough solutions and 

the desire to have more solutions. Most algorithms either halt the process after a fixed 

number of generations or monitor the population at certain intervals and interpret it 

visually, if the decision maker is human, to determine whether or not to halt the search. 

Other variants calculate the relative distance from the actual trade-off front, which 

require an idea of the final Pareto front a-priori, to determine when to halt. Algorithms 

such as the IMOEA, propose a convergence assessment based on population domination. 

IMOEA calculates the progress ratio based on the relative fractional change in the 

number of non-dominated chromosomes dominated in generation n-1 by that in 

generation n. 
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4.1 Proposed Algorithm 

Over the last two decades there have been an overwhelming number of optimization 

algorithms that do the same job but in different ways. Most of them differ in selection 

and fitness strategies, for example some have fitness sharing, some implement elitism, 

some have an external population, some use ranking, etc. As mentioned earlier, all of 

these are variations of exploration of the search space and exploitation of the explored 

space. However, they may not perform the same way for all problems. In fact, according 

to the "No free lunch theorem" [26] there can be algorithms which outperform some of 

the conventional ones for a particular type of problem but might underperform in others. 

The intention here is to propose an algorithm which will perform better than existing 

algorithms for our type of problem. The question that comes to mind is what makes our 

problem so special. 

A major issue in optimizing devices that operate subject to the laws of physics is that 

accurate evaluations of the performance require computationally expensive solutions. 

For an electromagnetic device, the cost of the full solution of the field may be orders of 

magnitude greater than the overhead of the optimization process. Thus, any algorithm 

in this area must attempt to minimize the number of accurate function evaluations. For 

example, it takes nearly 2.5 min to run a single static 2D analysis of an IPM machine in 

MagNet (version 6.22.1) - Finite Element Software from Infolytica Corp., in a machine 

configured with a single core 1.6GHz Intel Pentium M processor and having 1.5GB of 

RAM. Hence, by preserving information so that in a future generation an extremely 

similar or even the same individual is not evaluated again can lead to an efficient 

algorithm. Algorithms like the SPEA or the NSGA fail to do that although SPEA preserves 

a part of the population. 
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A second issue is that, in a manufacturing environment there is a statistical spread of 

values for the input parameters i.e. the input data has a level of uncertainty or a 

tolerance associated with it. Algorithms such as the Real Coded Clonal Selection 

Algorithm (RCSA) [27], by working with parameters which are expressed as real numbers 

assume that the limiting factor in candidate device representation is the finite word 

length of the computer. This is, of course, correct in solving the physics problem - a low 

number of bits to represent the floating point numbers leads to numerical inaccuracies 

due to round-off. However, finding an optimal point having an unprecedented accuracy 

which is undesired by the decision maker is a waste of computational resource. For 

example, if a device has a length dimension of 3.81 cm but a known tolerance of +/- 0.04 

cm, a representation as 3.8 cm would be appropriate - any more accuracy is 

unnecessary. In other words, by having a finite resolution based objective space, which 

can be done by encoding the floating point number into a finite length binary string can 

lead to a more efficient optimization algorithm. However, limiting the parameters to a 

predetermined resolution can lead to the problem of duplicates that may arise during 

reproduction. 

A third issue is the simplicity aspect that most algorithms tend to overlook. Tweaking 

fitness sharing in orderto ensure an optimal selection strategy, determining the optimal 

crossover and mutation rate for a particular application, etc. can be considered as 

added burden on the user who intends to use the algorithm as a tool and is not 

interested in the second order performance details. 

The basic ideas in our algorithm are a combination of various concepts discussed so far. 

It can be described as an elitist, Pareto archived, progress measured, dynamic 

population and restricted resolution based multi-objective evolutionary algorithm or to 

32 



give it a name we can call it a mixed Elitist Restricted Resolution Multi-objective 

Evolutionary Algorithm (mERR-MOEA). 

4.1.1 The Algorithm: Details 

Representations used in the following algorithm: 

Pm denotes the main population 

Pnd denotes the external non-dominated set (this set is empty initially) 

Pd denotes the external dominated set (this set is empty initially) 

Nm - Number of chromosomes in Pm 

Nnd - Number of chromosomes in Pnd 

Nd - Number of chromosomes in Pd 

x,y,z - Genes according to GA language or known as variables mathematically 

A typical multi-objective problem without any constraints, when represented 

mathematically (suppose having two objectives and three parameters), is 

Minimize f±{.x,y,z) & f2(x,y,z) 

given a<x<b,c<y<d,e<z<f 
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Figure 16: Simplif ied Flow Chart 
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Referring to Figure 16, following are the steps used to solve this problem. 

1. Create a population of Nm chromosomes by randomly creating x,y&.z genes 

within the predetermined ranges of each variable such that none of the chromosomes 

have any duplicate copies in Pnd and Pd which are empty during the first generation. 

For example, Chrom 1 might have three genes, namely [x1,y1, zx]. 

2. Evaluate the objective functions for each of the chromosomes in Pm. For example if 

there are two objectives, then their values are f1(x1,y1,z1), f2(.xvy1,z1). 

3. Add the external set of non-dominated chromosomes to Pm resulting in a size of 

Nm+Nnd. Suppose Pm has chromosomes C1,C2,C3,C4,C5 and Pnd has C6, CVfrom 

the last generation then, after this step Pm has C1,C2,C3, C4,CS,C6,C7. Figure 17 

depicts this step. 
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Figure 17: Step 3 is depicted here 

4. Perform non-dominated sorting on Pm based on the values of the objective functions 

obtained in Step 2, which means that the population in Pm can be divided into two 
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parts after non-dominated sorting, i.e. the dominated and the non-dominated sections. 

Let the number of non-dominated chromosomes be N'nd and dominated chromosomes 

be N'd such that Nm + Nnd = Nnd + N'd. Suppose after this step, C1,C2,C3 are 

non-dominated and the remaining are dominated as shown in Figure 18. 
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Figure 18: Non-dominated individuals represented in function space as filled circles, remaining are dominated 

5. Calculate the strength V of each chromosome in Pm. The strength of a chromosome 

is calculated based on s = —H—-, 0 < 5 < 1 , where nrf is the number of 
Nnd+Nd d 

chromosomes in Pm dominated by that chromosome and nnd is the number of 

chromosomes in Pm it neither dominates nor is dominated by. 

6. Store a copy of each of the A^d non-dominated chromosomes obtained from Step 5 

in Pnd by replacing the current set. The new population size of Pnd is N'nd. For 

example, since CI, C2, Ci are non-dominated, Pnd will contain CI, C2, C3. 

7. Store a copy of each of the N'd dominated solutions in Pd. The new population size 

of Pd is Nd + N'd. Suppose Pd had CS, C9 from last generation, after this step it 

contains C4, CS, C6, C7, CQ, C9 as shown in Figure 19. 
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Figure 19: Members of the external and main population sets after Step 6 

8. Randomly create as many possible pairs of genes of a particular type from the 

non-dominated chromosomes of Pm for single-point binary crossover. 

9. Convert the two randomly chosen x genes from the non-dominated chromosomes 

of Pm into a k-bit binary representation depending on a pre-determined precision. 

Suppose, the two chosen genes are x± from CI and x3 from C3. The process is 

shown in Figure 20. 

10. Convert the new genes obtained from cross-over back to real numbers. Say, the new 

genes are x1Q and xlv 
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Figure 20: Crossover process in the gene level 

11. Repeat Steps 8 & 9 for all the other pairs of %-genes. 

12. Repeat Steps 8 to 10 for the y gene. Suppose the two chosen genes are y2 from 

C2 and y3 from C3. After cross-over they form, say, y10 and ylx. 

13. Repeat Steps 8 to 10 for the z gene. The two chosen genes are zx from CI and 

z2 from C2. After cross-over they form, say, z10 and z1:L. 

14. Combine the new x, y&z genes to form new unique chromosomes. The 

population of the new chromosomes after cross-over is same as N^d. After combining 

we get, CIO =[xia,y1,z1Q]; Cll = [x2,y1Q,z±1]; C12 = [ % , y u , z 3 ] . 

15. If any copy of an existing individual in Pnd or Pd is found in Pm after cross-over, it 

38 



is deleted. During the mutation process the vacant spaces created due to deletion are 

filled up. 

16. Based on a randomly generated number 0 < s' < 1, chromosomes whose strength 

is less than s', starting from the best strength to the worst are selected for mutation, 

until the mating pool of size Nm — N'nd is filled. If the mating pool doesn't get filled up, 

which is possible if the selection starts too far down in the ranked list, then a new s' is 

generated and the process continues until the mating pool is filled. As far as the example 

is concerned, Nm — N'nd = 2 provided there are no duplicates. Let us assume that after 

this step C3 & C4 get selected. 

17. Convert the x,y&z genes of the chromosomes selected in the mating pool into 

the k-bit binary representation. 

18. Mutate the genes in order to get unique chromosomes. Suppose, after mutation x3 

becomes x13, y3 becomes y13 and, z3 remains unchanged. Similarly, in case of C4. 

19. Convert the new chromosomes obtained from mutation into real numbers. The 

population of the new chromosomes after mutation is same as Nm —N'nd. We then get 

£13 =[x13,y13,z3]; C14 = [x1 4 ,y1 4 ,z4 ] . Figure 21 depicts this process. 
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20. Combine the population from Step 14 with that in Step 19 to form the new Pm for 

the next generation. Repeat from Step 2 until the exit condition is triggered. On 

combining we get CIO, £11, C12, C13, C14 as the new members of Pm. 
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Figure 22: Members of the main population for next generation 
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21. If the relative change in the size of Pnd over six consecutive generations compared 

to the current size of Pnd remains below a cutoff for a couple of successive generations, 

then the program terminates. 

22. If the current size of Pnd is greater than or equal to a certain percentage of Pm 

then the capacity or size of Pm is incremented by an amount equal to the initial 

population of Pm, i.e. by Nm, and the program continues from Step 1. 

23. If the time taken in Step 1 or in Step 18 for producing new unique chromosomes is 

more than a certain predetermined amount of time, and if this occurs more than once 

throughout the life time of the progra m, then the program terminates. 

4.1.2 The Algorithm: Salient Points 

1. It maintains two external population sets (external means not part of the main 

population but part of the memory of the algorithm), one for the non-dominated 

chromosomes and another for the dominated chromosomes, and a main population. 

The genes are represented in terms of real numbers but reproduction happens at the bit 

level in the binary system i.e. a floating point number having a precision of up to 6 

decimal places can be represented as a 20 bit binary number. 

2. The external set of non-dominated chromosomes, also known as the Local Pareto 

front, along with the remaining chromosomes of the main population of the current 

generation take part in non-dominated sorting. The external set of non-dominated 

chromosomes is updated with the new set of non-dominated chromosomes in every 
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generation, in order to gradually lead to the Global Pareto Optimal set. 

3. The other external set of dominated chromosomes serves the purpose of keeping 

track of the number of chromosomes already evaluated. There is no restriction on the 

size of the external sets. 

4. The size of the external non-dominated set can decrease in a particular generation. 

5. Only the non-dominated chromosomes take part in cross-over. Cross-over is done at 

the gene level, shown in Figure 20 i.e. instead of choosing a pair of non-dominated 

chromosomes randomly, a pair of genes, belonging to the same type, say the x gene, 

is chosen randomly. Any gene can take part in crossover only once in each generation. 

It is possible to have chromosomes born out of cross-over which have an existing copy in 

the external sets. 

6. For the purpose of mutation, all the chromosomes of the main population, which 

includes the non-dominated chromosomes of the current generation, are sorted based 

on their strengths. The strength formula used here is different from the SPEA. 

7. All the chromosomes formed from mutation are unique (none of the x, y & z genes 

of a chromosome match the respective genes of any other chromosome), with respect 

to both the other newly created individuals and to the external sets of non-dominated 

and dominated chromosomes. 

8. The population is dynamic in nature. However, it never decreases even if there is a 

momenta ry decrease in the size of the external non-dominated set. 

9. The algorithm implements multi-level stopping criteria. The progress measurement 
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followed here is different to that in IMOEA. 

10. It implements elitism in two ways and therefore is called mixed i.e. preserves the 

non-dominated individuals to make them available during non-dominated sorting and 

implements rank based selection for mutation. 

11. It can work for both maximization and minimization problems by just changing the 

non-dominated sorting. 

12. It can work for any number of objectives and any number of variables. 

4.1.3 The Algorithm: Discussions 

The purpose of maintaining the external non-dominated set is to include them during 

each generation, so that elitism is maintained. The other external set is used to preserve 

information instead of discarding the dominated individuals, so that none of those 

points in the variable space, which have been already evaluated, get re-evaluated in 

future generations thereby saving computational time. The increase in the 

non-dominated set serves a major requirement of placing more emphasis on exploration 

and less on exploitation during the initial stages and is inherent in the formulation of this 

algorithm, and therefore pruning the external set by cluster analysis as done in the SPEA 

may not be desirable here. Moreover, the cost of ranking of the individuals for mutation 

is negligible compared to that of field evaluations. 

The purpose of cross-over is to exploit the space in the nearby vicinity of the parent 
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chromosomes in the context of the parameter space. Since the non-dominated 

chromosomes are the ones which make up the Global Pareto front, by using the 

cross-over operator only on them, the nearby optimal points in the function space, can 

be searched for, leading to a faster convergence due to elitism. The notion of not 

classifying the non-dominated chromosomes, similar to that done in the NSGA, is related 

to the need to achieve diversity. The cross-over strategy of selecting any pair of the same 

type of genes from the non-dominated ones and not just selecting any pair of 

chromosomes, leads to a more uniform and diverse search for new non-dominated 

chromosomes along the front. Also, cross-over between different gene types for 

example xtky, is restricted since they have different ranges. During cross-over, 

duplicates are not avoided as there can be a possibility of the algorithm getting trapped 

in an infinite loop as some of the non-dominated chromosomes, belonging to the Global 

Pareto set, may turn out to be members of the mating pool in every generation. 

The purpose of mutation is to provide an ability to move away from local optimum 

points and explore possibilities that lie beyond the neighborhood of the parents in the 

parameter space so that diversity can be achieved in terms of the objective space. In the 

proposed algorithm, for the purpose of mutation, the non-dominated chromosomes are 

classified, similar to the SPEA, so that elitism can be maintained. The selection scheme 

for mutation allows the dominated individuals to also take part based on the strength 

calculated considering both domination and non-domination, so that the search process 

doesn't bias towards certain regions of the front. Similar to the SPEA, the strategy 

ensures that the non-dominated individuals will always have greater strength than the 

dominated ones although a different strength formula is used here. It is based on a 

scheme like the rank based selection, but is also dependent on a chance factor brought 

in by a randomly generated number, as mentioned in Step 16 of Section 4.1.1, which is 
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independent of the problem. In other words, the selection scheme is partly random 

unlike the rank selection method. However, the randomness is partly guided due to the 

fact that chances of a non-dominated individual getting selected increases as the 

percentage of non-dominated ones in the main population increases with generations, 

which is desirable here. Moreover, the starting point of the selection procedure might be 

random but the act of selecting an individual for mutation is based on elitism. The 

reason for making the selection mechanism partly random in nature is due to the fact, 

that the algorithm might get trapped in an infinite loop if some of the non-dominated 

chromosomes, belonging to the Global Pareto set, turn out to be members of the 

mutation pool in every generation. 

We know, that as the number of non-dominated chromosomes increases, the chances of 

having a greater number of non-dominated individuals in the mating pool for mutation 

also increases, leading to a faster convergence. However, since the dominated 

individuals form the major share of the mating pool initially, exploration of new fronts is 

given priority at the beginning. With the increase of the non-dominated chromosomes, 

the importance of cross-over gradually increases which means better exploitation of the 

explored region, which is desired, but having mutation fill up the vacancies created due 

to deletion of duplicate individuals, leads to a balancing act between exploration and 

exploitation, thereby not letting the algorithm be fooled by deceptive fronts but 

gradually increasing the speed of convergence towards the true front. However, since 

the population is dynamic, the gradual increase in the importance of exploitation is 

restricted to the current population size. Once the population size increases, the 

importance of exploration increases again, but momentarily, and the cycle continues. 

The strategy of a dynamic population adds weight to the exploration capabilities 
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because through this approach a biased search can be taken care of and new 

chromosomes from uncharted territory in the parameter space can be probed. In our 

algorithm a small initial population is desired. The idea of intelligent adaptation of the 

population as mentioned in [25] has its drawback, such as filtering out of certain 

chromosomes. In other words throwing away information is an unwanted strategy here. 

The idea of implementing multi-level stopping criteria is to make sure that the search 

process doesn't terminate prematurely but stops when there are enough options along 

the Pareto front for the DM. Tracking the change in the overall value of the objective 

functions in the non-dominated set is not suitable in the case of multiple objectives 

having different tolerance levels or due to the nature of the physical device. The 

proposed scheme of tracking the percentage change in the size of the non-dominated 

set, with respect to the current size of that set, over a couple of generations, is a way of 

measuring progress towards the Pareto front. Also, enforcing a time limitation is a way 

to decide whether to continue searching more points or to terminate the search. 

4.2 Optimization Framework 

Having discussed the algorithm in detail in the previous few sections, we shall now 

present the automation framework designed for the optimizer. 
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Figure 23: Optimization framework diagram 

Visual Basic (VB) is being used here for memory management related operations like 

maintaining the external non-dominated and dominated sets, non-dominated sorting, 

etc. and C++ for data manipulation operations such as selection and reproduction. The 

advantage of VB is that it can be used as a connection mechanism between most low 

level languages and other high level application software tools. It provides a seamless 

connectivity with MagNet, used for FEA calculations of the electromagnetic devices. The 

purpose of including Excel as part of the automation framework is to display the 

dynamically changing Pareto front as the program runs so that the human decision 

maker can have a better understanding of the performance of the algorithm. 

4.3 Analytical Test Functions 

At the beginning of this chapter, we had stated that the major critical issues of MOEAs 

are that of maintaining diversity and guiding the search towards the true Pareto front. In 

via ActiveX objects 

• tunct ianvatos^^ 

MagNet 
{Finite Element Analyses) 
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this section we shall use some standard functions to test whether the algorithm can 

identify the true Pareto front from a deceptive front, whether it can perform in a convex 

and a non-convex front, whether it can find diverse solutions and whether it can find 

solutions uniformly spread along the front. All the tests were carried out in a 1.6GHz 

Pentium M processor with 1.5GB RAM machine. 

Test function 1: 

The first test function is intended to determine whether the proposed algorithm can 

effectively find the true Pareto front. The function is designed to create a deceptive or 

local Pareto front where many existing algorithms will get trapped. The test function, as 

defined in [6] is, 

Minimize f1(xvx2) = x± and f2(x1,x2') = 3 x" 

where g(x2) = 2 - expj- ( ^ ) } - 0.8 exp{- ( ^ ) ^ 

and 0.1 < xvx2 < 1.0 
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Figure 24: Deceptive Pareto front at iteration 1 and true front at iteration 22 
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Figure 26: More points of the true Pareto front discovered at iteration 11 
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Figure 27: Shifting towards the true Pareto front discovered at iteration 12 
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Figure 28: True Pareto front at iteration 22 

From the above plots we can observe that in spite of getting trapped in the deceptive 

Pareto front initially, the algorithm soon managed to come out of the trap, which 

highlights the effectiveness of the exploration strategy. In terms of statistics, the 

algorithm got trapped in the deceptive front in 15 out of 20 runs, however, on all 

occasions i.e. all the 15 cases, it managed to come out of the deceptive Pareto front at 

around the 18th iteration covering 5094 points out of a total search space of 81 x 1010 

points in the variable space and having 257 non-dominated solutions. The initial 

50 



population considered was 60 and it grew to a size of 360. The final size of the external 

non-dominated set is same as the number of non-dominated solutions and the final size 

of the external dominated set is the total number of points covered minus the 

non-dominated solutions. A precision of up to 6 decimal places (20 bit binary string) as 

done in NSGA was considered. From [6] it appears that when NSGA, using a similar 

starting population and precision, was performed on the same function, it got trapped 

51 out of 100 times but remained trapped even at the 100th generation during one of its 

trial runs, thereby reflecting the fact that mERR-MOEA is highly effective for searching 

global optimums. 

Test function 2: 

The second test function determines the performance of the algorithm for convex 

Pareto fronts. The test function, as defined in [23] is, 

Minimize f1(x1,x2) = xx and f2(x.vx2) = g(.x2)h(fvg) 

where g(x2) = 1 + 9x2 

Kfvg) = l- V^lg 

and 0 < xvx2 < 1.0 
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Figure 29: Pareto front 

Similar to Test 1, a precision of 6 decimal places or a 20 bit binary number was 

considered here. The initial population was set at 100 and grew to a size of 300. The 

Pareto front having 201 non-dominated solutions was achieved after covering 2024 

points out of a total search space of 1012 points in the variable space. For comparison, 

Figure 29 can be matched with Figure 30, although they are of different scales, however, 

Figure 30 reflects that SPEA is better than others. 
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Figure 30: Pareto front of Test function 2 from [23] 

Test Function 3: 

Having successfully tested a convex Pareto front, we shall now test whether the 

algorithm works if the Pareto front is non-convex. The test function, as defined in [23] is, 

Minimize f1(x1,x2) — x± and f2(x1,x2) = g(x2)h(fv g) 

where g(x2) = 1 + 9x2 

and 0 < xvx2 < 1.0 
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Figure 31: Pareto front 

The Pareto front having 369 non-dominated solutions was achieved after covering 1927 

points out of a total search space of 1012 points in the variable space with an initial 

population of 100 and a precision of 6 decimal places. The population grew to a size of 

500. For comparison, Figure 31 can be matched with Figure 32, although they are of 

different scales, however, Figure 32 reflects that SPEA is better than others. 
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Figure 32: Pareto front of Test function 3 in [23] 
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Test Function 4: 

The Pareto front of the following test function is discontinuous. Testing discontinuity is a 

way of measuring the algorithm's diversity implementation capability. The test function, 

as defined in [6] & [23] is, 

Minimize f1(x1,x2) = xt and f2{x1,x2) = g(.x2)h(fvg) 

where g(x2) = 1 + 9x2 

KfvS) = 1 - \fl/g ~ (fl/g\ sin (IOTT/J 

and 0 < xvx2 < 1.0 
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Figure 33: Pareto front of test function 4 
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The Pareto front having 105 non-dominated solutions was achieved after covering 2705 

points out of a total search space of 1012 points in the variable space with an initial 

population of 100 and a precision of 6 decimal places. The population grew to a size of 

200. For comparison, Figure 33 can be matched with Figure 34, although they are of 

different scales, however, Figure 34 reflects that SPEA is better than others. 

Test Function 5: 

In this test, on optimizing the functions, most solutions tend to bias towards fx = 1, 

which means that algorithms which are not good at maintaining diversity produce a 

biased Pareto front. The test function, as defined in [6] is, 

Minimize f1{_xvx2) - xt + x2 and f2(x1,x2) = g(x2)h(fvg) 

where g(x2) = 1 + 9xf2S 

KUg) = l-yi/g\ 
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1.2 

The Pareto front having 50 non-dominated solutions was achieved after covering 602 

points out of a total search space of 104 points in the variable space with an initial 

population of 50 and a precision of 2 decimal places. The population grew to a size of 

150. As a test of bias, from Figure 35 we can determine that the front is more-or-less 

uniformly distributed thereby achieving diversity in the function space. The nature of the 

function is such that the value of x2 from the non-dominated solutions is zero so that 

the minimum value of g(x2) = 1. Hence, as a result, the objective function f± is only 

dependent on xx. For better understanding, Figure 36 shows how the proposed 

algorithm achieves diversity in the parameter space i.e. the values of xx are spread 

throughout the function curve. In other words, the algorithm achieves diversity in both 

function space and parameter space without using any fitness sharing strategy as would 

have been in the case for the NSGA given in [6]. 

57 



1.2 

. * «» "X. 

0.8 

Z 0-6 

0.4 

0.2 

0.2 0.4 0.6 0.8 1.2 

Figure 36: Plot showing diversity in parameter space 

4.4 Benchmark Problem 

Section 4.3 described tests to examine the performance of the algorithm in determining 

the Pareto front under specific, semi-artificial conditions by using a set of analytical 

functions. The next test involves a real device and is intended to verify the performance 

of the algorithm when compared to published results. 

The TEAM benchmark problem 22 [28] deals with the optimization of a superconducting 

magnetic energy storage system (SMES). SMES devices store magnetic energy and 

therefore are mainly used in power grid networks for peak load supply. A typical SMES 

device is made up of a solenoid with superconducting coils. Since these devices generate 

stray fields across a wide area that can interfere with the operation of other nearby 

devices and also cause human safety related issues, a second solenoid is used as a shield 

for the main coil. 
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Figure 37: SMES device configuration 

This optimization problem requires finding the correct geometrical parameters of the 

second device based on two objectives as described in [29] & [19], which are 1) to 

minimize the stray field and 2) to minimize the deviation from a predetermined stored 

energy value, while keeping the current density of both the coils below certain critical 

levels. Mathematically, this can be defined as: 

Minimize fx = *— anaj2 — — 

where B^tray = 3tary' ,i= 1,2, ...,22 are 22 equidistant points along lines a & b 

given Eref = 180MJ,Bnorm = 2 X 10~*T [29] 

Rx = 2m, 1/2 = 0.8m, dx = 0.27m 

The parameters are: R2,
 2 /2 , d2 

given 2.6 < R2 < 3.4 

0.204 < h2L < 1.1 
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Figure 38: Pareto front of SMES 

The number of points in the parameter space evaluated was 14564 out of a total search 

space of 108xl09 points with a precision of 4 decimal places (16 bit binary string). It took 

95 iterations to converge to the Global Pareto Optimal set. The Pareto optimal set has 

195 optimal solutions. The initial population was 100 and it grew to a size of 300. 
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RJm 

In order to find the optimal solution, we followed the procedure given in [28], which is, 

1. Eliminate the solutions that have Bstray > 3mT and energy beyond the range 

of ±18MJ, i.e. having an error greater than 10%. 

2. After the 1s t step, from the remaining solutions, the one that has the least 

volume (V = 2nR2H2D2) is selected as the final optimal solution. 

Using the a 

R m 

3.1361 

bove procec 

H m 

0.5200 

ure, the fina 

D m 

0.3336 

1 solution is, 

Energy MJ 

180.30 

1 Bstray | T 

0.00237 

Volume m3 

3.4182 

Table 2: Final optimal solution of SMES device optimization 

The result can be compared with the solution from [28] which was achieved by using 

Multi-objective Clone Selection Algorithm (MOCSA), 

R m 

3.4000 

H m 

0.4397 

D m 

0.2945 

Energy MJ 

. 184.53 

1 Bstray | T 

0.00256 

Volume m3 

2.7665 

Table 3: SMES solution when using MOSCA 
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The result 

R m 

3.0800 

can also be 

H m 

0.4780 

compared with the best solution mentioned in 

D m 

0.3940 

Energy MJ 

179.80 

[28], 

1 Bstray| T 

0.00089 

Volume m3 

3.6446 

Table 4: SMES solution from [28] 

The following diagram, Figure 40, shows the convergence progress of mERR-MOEA 

implemented in the SMES problem. It measures the relative change in the 

non-dominated population set over a block of six consecutive iterations as a percentage 

of the current non-dominated population. 
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Figure 40: Progress measurement 
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4.5 Advantages of mERR-MOEA 

Having tested the optimizer on all critical issues such as diversity, convex and non-convex 

functions and deceptive fronts as well as on a real physical device, we can summarize 

the advantages of mERR-MOEA as: 

1. An ability to come out of deceptive Pareto front very quickly unlike NSGA. 

2. An ability to save time during FEA by having a mechanism for keeping track 
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of all evaluated chromosomes unlike in SPEA or NSGA. 

3. A mechanism to not to discard information, unlike in IMOEA. 

4. A restricted resolution based search operation unlike the RCSA. 

5. An ability to implement effective diversity without a fitness sharing method. 

6. An effective mechanism to tackle both convex and non-convex functions 

without bias unlike the MOGA. 
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5 Optimizing the Motor 

In Chapter 2 we discussed the concepts and general theoretical aspects of an IPM and 

also derived the torque equation and the parameters that affect it. In Chapters 3 & 4 we 

formulated the mERR-MOEA and tested it successfully on several analytical functions 

and on a benchmark device. 

In this chapter, we shall fit the torque performance of an IPM to a given performance 

profile and find the optimal design. In addition, it is intended to investigate how the 

parameters affect the torque performance by analyzing the Pareto front. However, 

before that, we will first review the methods used for the calculation of torque from 

finite element analysis (FEA), and how the IPM has been modeled in MagNet. 

5.1 Calculating Torque from Finite Element Analysis 

In Chapter 2 while deriving the analytical torque equation we made certain assumptions 

such as no saturation, negligible iron losses, etc. However, by using 2D FEA, a more 

realistic model of the IPM can be simulated. The electromagnetic force on a body can be 

calculated by several procedures such as the Lorentz, Maxwell Stress Tensor and Virtual 

Work methods. 

Lorentz Method: The Lorentz method can be used to predict the electromagnetic forces 

acting on current carrying structures only. Although it is easy to use with FEA, it cannot 

be applied to determine the forces acting on ferromagnetic structures. It is given by 

F = BiL (5.1) 

where B is the magnetic flux density influencing the current carrying conductor, i is 
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the current through the conductor and L is the length of the conductor. 

Virtual Work: It is based on the variation of the total magnetic energy of the system 

when its moving part is physically displaced in the direction of the component of the 

force being determined. At least two FEA field solutions are required, one before and 

the other after the displacement, which is also its drawback. If two or even three 

components of the force are required then the number of solutions needed at each 

point increases accordingly. The force is given by, 

where W2, W± are the stored energy of the body at points 2 & 1 respectively and x12 

is the displacement between points 1 & 2. 

Maxwell Stress Tensor: Most FEA application software packages, use this method to 

calculate torque. It requires only a single field solution and can be used to evaluate force 

on any part of the moving body. The accuracy of field calculations, which is critical near 

the interface regions of the air and the rotor, is enhanced by fine meshing. By integrating 

a simple force density expression over any closed surface surrounding the structure 

(ferromagnetic, winding, or both), the required force can be calculated. Choosing the 

correct path for integration determines the accuracy of the force calculations. 

The force on a body is calculated from the following equation, 

F=-JVTdv = ̂ !Tds (53) 
V S 

where 
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(B2
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BXBZ 

ByBz 

B„B„ B^B„ {B2
2--\Bf) 

(5.4) 

Bx, B , Bz are the flux densities albng the x,y & z axes respectively. In the case of 2D 

analysis, Bz = 0. The torque exerted on a body is calculated by multiplying the force 

with the distance vector from the axis of rotation. 

5.2 Modeling the IPM 

As has been mentioned earlier, one of the objectives of this thesis is to fit the torque 

performance to a given torque-speed profile. We know that for flux weakening purposes 

and to run the IPM at synchronous speeds, the stator current and the supply frequency 

are controlled by an external electronic inverter circuit keeping the voltage supply a 

constant. The external circuit phase advances the stator current in order to achieve a 

maximum torque to current ratio. In our static 2D Finite Element Analysis of the 

simulated model in MagNet version 6.22.1 in a 1.6GHz Intel M processor with 1.5GB 

RAM, we bypassed the electronic circuit component, and instead, used a current that 

would have been supplied by the external circuit at that speed. We noted down the 

maximum torque and the corresponding phase angle and matched it with that in [2]. 

From Figure 2 we know that during constant power operation i.e. during flux weakening, 

torque is inversely proportional to speed. From Eqn.(2.2) & (2.3) we understand that for 

a given terminal voltage, back-emf is inversely proportional to the current and directly 

proportional to the speed, which means that current is inversely proportional to the 
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speed during flux weakening or constant power operation. Hence, it can be said that 

current and torque both change with speeds. Since the torque is what we are supposed 

to find, choosing different values of current is the same as choosing different speeds. 

Hence, the toque-speed profile can be represented by the torque-current profile. 

A standard IPM has been selected as our reference model profile. The closest detailed 

set of specifications is given in [2]. The specifications cover major geometrical 

dimensions but have no mention of certain critical aspects, such as, the type of winding, 

spread angle of the embedded magnets, air gap length, magnet material, stator and 

rotor core material, etc. After several variations in the parameter sets in order to try to 

match the given torque-current profile given in [2], the best that was achieved is shown 

in Figure 41. 
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Figure 41: Torque-Current plot 

The torque at a current of 200A came out to be 269.462Nm at an advance angle of 2° 

mech. against 268Nm at an advance angle of 8° mech. as given in [2]. 

calculated 
given 
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Figure 42: Torque plot at 200A at different positions of the rotor 

SO 

The set of parameters that helped to achieve such a close match are, including the 

parameters that were deduced after several trials, 

Figure 43: Detailed parametric diagram of the IPM 
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Parameter 

Stator outer radius 

Radial distance to end of slot 

Rotor outer radius 

Shaft radius 

Lamination stack length 

Half magnet length 

Magnet width 

Bridge width 

Airgap 

Half spread angle or half pole-arc angle 

Stator tooth width 

Slot depth 

Slot opening 

Radial depth of stator tooth tip 

Undercut angle of stator tooth tip 

IPM web 

Radial depth of pole cap 

Abbrev. in above diag. 

Rad3 

Rad2 

Radl 

RadSH 

Lm/2 

Wm 

Bridge 

Gap 

a 

TWS 

SD 

SO 

TGD 

SOAng 

Web 

hq 

Value mm 

134.6 

116.2 

79.0 

50.5 

83.5 

38.5 

5.3 

1.4 

1.2 

130° 

8.6 

35.2 

0.7 

0.4 

45° 

16.0 

12.3 

Table 5: IPM dimensions 

Additional key design parameters: 

Magnetic Poles 

Slots per pole 

Layers in stator slots 

Coils per phase 

8 

6 

1 

8 
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Phases 

Turns per coil 

Coil connection 

Winding type 

Strands per coil 

Wire type and Gauge 

Magnet 

Magnet Strength 

Lamination thickness 

Stator& Rotor Material 

Maximum Speed 

Base speed 

Peak Power Output 

3 

9 

Series 

Distributed 

13 

AWG 19 

Neodymium Iron Boron 

1.13T 

0.36mm 

M-19 

5400rpm 

1040rpm 

55kW 

Table 6: Other information about the IPM to be optimized 

5.2.1 Modeling the IPM: Key Aspects 

It is a general procedure to enclose the computational domain within an air box having a 

larger size than the motor in order to simulate stray fields, accordingly. The air box was 

divided into stator and rotor regions so that the rotor air box rotates along with the rotor. 

Once the air box was drawn, the components of the motor were just embedded in it. 

Force calculations by the Maxwell Stress Tensor method in and around sharp corners, in 

general, are erroneous [30]. In order to reduce the error, a virtual air gap was added. It 

has the same properties as that of air but is not used as a separation layer between 

bodies by MagNet [30]. For construction of the IPM, 2 layers of air and 2 layers of virtual 
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air were used. Multiple layers of air were implemented in order to divide the air gap into 

a stator and a rotor side, one facing the rotor and the other the stator. The arrangement 

is shown in Figure 44. 

Figure 44: 4 layers of air-gap (outer two grey ones are virtual air and the inner two are air) in IPM 

The stator coil was selected as a distributed, fully pitched winding connected in series. 

The three phase winding structure of the complete motor is shown in Figure 45 and 

Figure 46. 

C17 

Figure 45: Coil connections of the IPM 
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Figure 46: Detailed 3-phase distributed winding structure of the IPM 

Due to the symmetrical structure, instead of simulating whole motor, ^/gth of it was 

used. In order to model the symmetry condition, the edges of the air box, should overlap 

the axes of symmetry as shown in Figure 47. In our case since we are simulating a single 

pole, we specified odd symmetry which means that the same coil connection and the 

magnetic polarity gets repeated alternately. 

Axis of symmetry 

Rotor Air 

V 
I 

trbox -v. 

\ 
IPM 

' Stater air box 

Axis of symmetry 

Figure 47: Symmetry axes of the IPM 
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We had mentioned in the previous section that there were some critical pieces of 

information that were missing in [2]. One of them is the slot width, which is important 

since it determines the resistance of the coil. However, the coil gauge, strands, turns and 

materials are known to us, from which we can calculate the area or volume occupied by 

the coils. The slot width was calculated assuming that the slots are nearly 100% filled 

(space is be left out due to round conductors and insulation). The final model is, 

— - ~ - i 

tf<>^:^-
//I 

I 
t 

-----

Figure 48: l/8 ,h part of the IPM for FEA 

The direction of magnetization of the permanent magnets was set to be towards the air 

gap parallel to the width of the magnet in order to increase the density of flux in and 

around the air gap. The field distribution shown in Figure 49 shows how symmetry 

conditions affect the field lines. 
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Figure 49: d-axis Field distribution of the IPM at 200A 

The solution mesh in Figure 50 shows the crowding of tiny elements in and around the 

air gap and the flux barriers. 

-- -HS' ' •'* " ' vi yy - vZ \ 

• t i - * 

Figure 50: Solution mesh of the IPM 
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5.3 Optimizing the IPM 

In Chapter 2, it was determined that about 8 geometrical parameters affect torque 

generation. Considering all eight parameters isn't feasible computationally, although the 

algorithm can do it, as that would mea nan increased parameter search space and hence 

more time to achieve the Pareto front. Based on this and also since magnets are costly 

[2], it was decided to concentrate the optimization process on the magnet geometry and 

its location. In fact, we also investigated the effect of the air gap on torque. 
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Figure 51: Effect of different parameters on torque 

Figure 51 was obtained by assuming that the parameters are independent of each other. 

The steepness of the curve determines how sensitive the "% change in torque" is with 

respect to the "% change in parameters". In other words, a small change in the magnet 

length produces a huge change in the torque of the motor. From the above plot, it is 

evident that the air gap, although a critical parameter, may not be that important when 

compared to the location of the magnet and its size. 
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Having established a working model of the IPM and determined the parameters to be 

optimized, we will now consider optimizing the IPM. Three objectives were chosen so 

that the Pareto front can be represented by a 3D plot. As pointed out in section 5.2, 

torque at different current values can be considered equivalent to the torque at different 

speeds and thus we chose three different current values representing three different 

speeds i.e. a speed less than the base speed, the base speed and a higher speed. 

According to [2], 250A, 200A and lOOAare approx. equivalent to 520rpm, 1040rpm and 

3000rpm respectively. 

Minimize f± = ,f2 — and /3 = 
•^200 ^ S O M.00 

Parameters 17.5 < ^ < 21.S 
2 

4.0 < Wm < 6.S 

SS <a < 7 S 

where T20Q, T2S0, T10Q are the reference torques at 200A, 250A and 100A 

respectively; Lm is the length of the magnet, Wm is the width of the magnet and a is 

half of the pole-arc angle or half of the spread angle of the magnets (the following 

experiments were performed on a 1.6GHz Pentium M processor with 1.5GB RAM 

machine). 
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Figure 52: IPM optimization: Pareto plot 

0.06 

The Pareto front, having 44 non-dominated solutions, was achieved after covering 1403 

points out of a total search space of 20000 points with an initial population of 20 and a 

precision of 1 decimal place. It took 33 iterations to converge. The population grew to a 

size of 60. 

On careful observation of Figure 52, we may say that the Pareto front looks like a straight 

line, and, since the experiment was conducted considering the objectives to be absolute 

torque error, we cannot infer anything conclusive in terms of the actual torque values. 

For example, one of the objectives was to minimize, 

1̂ 1 ~ ^200 I 
/ l = 

'200 
(5.5) 

IT, -7V 
W h 6 r e Vso"0 'S t h e a b s o l u t e er ror- However, if we know the actual error we can 

derive the actual torque values. In order to do so, we recorded the actual error during 

the optimization process. Let the actual error be f[, 
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Therefore, 

/ i ' = 
Tx-T, 200 

•200 

^ 1 — A ^200 T ^ : '200 

(5.6) 

(5.7) 

20.5 s 

20-

I 195 s 

19u 

T2fftii 

35,5 

Figure 53: Actual Torque plot of the global non-dominated solutions 

From Figure 53, we may say that current is proportional to the torque and therefore the 

front is slanted and unidirectional. 

As mentioned earlier, the Pareto front allows the designer to make trade-off choices for 

the final "best" design according to his requirements. In order to do this, we chose the 

following steps, which are, 

1. Filter out those absolute torque errors that are greater than 5%. 

2. After filtering out, the best design is the one having the least cogging torque. 

By following the above procedure, the best design achieved is, 
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wm 

5.6 mm 

Lm/2 

20.9 mm 

a 

55° 

Ti 

274.43 Nm 

T2 

313.78 Nm 

T3 

157.36 Nm 

Tcogging 

6.5% 

Table 7: Optimal design specifications 

Now, we shall analyze the effect of the three parameters on the torque performance and 

thus make a decision on the 'optimal' machine design. 

Figure 53 indicates that the torque, being a straight line, is not dependent on all 3 

parameters as was assumed previously. It can also be observed from the plot that the 

parameters affect the torque in the same way at all currents, i.e. at all speeds which 

means that the torque is dependent on the ratios between the parameters. However, 

this observation is not totally conclusive from Figure 53, and therefore we need to study 

each parameter separately. 

In Figure 54 consider the portion for one of the torques where the increase of 'a' from 

approx. 72° to 74° (circled region) is directly proportional to the increase in the torque. 

Fixing 'a' at 72-74° and looking at Figure 55, it can be said that when 'a' is between 

72°-74°, Wm is approx 4.4mm (circled region). Now, by fixing 'a' at 72-74° and Wm at 

4.4mm, by looking at Figure 56, it can be said that when 'a' is between 72-74° and Wm is 

4.4mm, Lm/2 is approx 21.4mm (circled region). In order to get a better understanding of 

Wm and Lm/2, we now refer to Figure 57 and Figure 58. From Figure 57, it can be 

observed that when Wm is 4.4mm (circled region), the change in the torque is 

independent of Wm and this is the minimum value of Wm for a Pareto optimal solution. 

From Figure 58, it can be said that when Lm/2 is 21.4mm (circled region) given that Wm is 

held at 4.4mm, the change in the torque is not due to Lm/2 and this is the minimum 

value of Lm/2 for a Pareto optimal solution. In other words, change in the torque is 

dependent on the spread angle. 
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Figure 54: Half of the pole-arc angle from non-dominated solutions against the respective torques independent of 

'Wm' and 'Lm/2' 
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Figure 55: 3D plot of the non-dominated solutions in parameter space-view 1 
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Figure 56: 3D p.ot of the non-dominated solutions in 
parameter space-view 2 
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Figure 57: Width of the magnets from non-dominated solutions against the respective torques independent of 'a' 

and *Lm/2' 
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Figure 58: Half of the length of the magnet from non-dominated solutions against the respective torques 

independent of 'a' and 'Wm' 

22 

Next we shall investigate what happens if 'a' is fixed. In Figure 54 consider the portion 

where 'a' is approx 55° (region highlighted by a rectangle) and the change in the torque 

is independent of 'a'. Fixing 'a' at 55° and looking at Figure 55, it can be said that when 'a' 

is 55°, Wm is approx. between 5.3-6.3mm (region highlighted by a rectangle). This 

implies that a reduction in 'a' to 55° results in an increase in Wm for a Pareto optimal 

design. Now, by fixing 'a' at 55° and Wm at 5.3-6.3mm, by looking at Figure 56, it can be 

said that when 'a' is 55° and Wm is between 5.3-6.3mm, Lm/2 is approx. between 

18.7-21mm (region highlighted by a rectangle). In order to get a better understanding of 

Wm and Lm/2, we now refer to Figure 57 and Figure 58. Referring to Figure 57, when Wm 

is between 5.3-6.3mm (region highlighted by a rectangle), the torque is essentially 

independent of Wm with about 6% variations. However, from Figure 58, when Lm/2 is 
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between 18.7-21mm (region highlighted by a rectangle), the torque is not necessarily a 

constant. 

Having studied the above diagrams, it might seem that there is a relationship involving 

Wm and Lm/2 which affects torque, i.e. the torque is dependent on the area of the 

magnet. 

Let us now investigate how the area affects the torque (in effect, Lm and Wm both 

contribute to the volume of the magnet or area in 2D as the stack is of unit length). 

From Figure 59 and Figure 60, we may observe that when 'a' is constant, the torque is 

directly proportional to the 'area' and when 'area' is constant, the torque is directly 

proportional to 'a', i.e. the torque is affected by two independent parameters instead of 

three. However, as 'a' is increased holding the area constant, the magnet moves towards 

the surface of the rotor, because the bridge width was considered to have a fixed value 

during the analysis, provided the aspect ratio remains unchanged. Similarly, as the 'area' 

is increased holding 'a' constant, which means a greater volume of the magnet, torque 

increases. 
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Figure 59: The circled region showing a constant 'a' and a varying 'area' 
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Figure 60: The circled region showing a constant 'area' and a varying 'a' 

Further, on comparing the magnitude of the slope of the plot in Figure 61 when 'area' 

ranges from 113-122mm2 (which is same as the circled region in Figure 59 having a 

constant 'a'), with the slope of the plot in Figure 62 when 'a' ranges from 72-74° (which 
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is same as the circled region in Figure 60 having a constant 'area ), we may conclude that 

the area of the magnet has greater effect than the spread angle, which vindicates our 

initial analysis shown in Figure 51. On trying to compare our observations with the initial 

analysis in Chapter 2, we may say that, analytically these facts cannot be verified. 
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Figure 61: Effect of the area of the magnet on the torque at 200A 
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Figure 62: Effect of 'a' on the torque at 200A 
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In this chapter, first we discussed how to model the IPM in a Finite Element Software, 

and then designed a simulated prototype matching the given IPM in order to figure out 

all the required dimensions and other essential information. Next, we conducted an 

initial analysis to determine which parameters affect torque. Finally, we implemented 

the optimizer on the built IPM with our tested algorithm mERR-MOEA to achieve the 

best design and then examined the effect of each parameter, summarized in Table 8 and 

Table 9, on the final choice of a single Pareto optimal design to be built. 

Case 

Circled 

regions in 

Figure 55 & 

Figure 56 

Regions in 

Figure 55 & 

Figure 56 

highlighted 

by rectangles 

a (deg) 

Varies from 72 

to 74 (torque is 

dependent on 

'a', circled 

region in Figure 

54 

Constant at 55 

(torque is 

independent of 

'a', region 

highlighted by a 

rectangle in 

Figure 54 

Wm (mm) 

Constant at 4.4 

(torque is 

independent of 

Wm, circled 

region in Figure 

57) 

Varies from 5.3 

to 6.3 (torque is 

nearly 

independent of 

Wm/ region 

highlighted by a 

rectangle in 

Figure 57) 

Lm/2 (mm) 

Constant at 21.4 

(torque is 

independent of 

Lm/2, circled 

region in Figure 

58 

Varies from 18.7 

to 21(no 

particular 

relationship can 

be deduced, 

region 

highlighted by a 

rectangle in 

Figure 58 

Conclusion 

Torque is 

dependent on 

'a' 

Further 

investigation 

needed (refer 

to Table 9) 

Table 8: (Summary-1) Analysis of parameters v/s torque 

Case 

Circled region in 

Figure 59 

Circled region in 

Figure 60 

a (deg) 

Constant at 55 

Varies from 72-74 

area (mm*mm) 

Varies from 113-122 

Constant at 90 

Conclusion 

Torque depends on 

area 

Torque depends on 

'a' 
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Gradient 

comparisons 

Observe the 

gradient of the plot 

in Figure 61 when 

area varies from 

113-122 

Observe the 

gradient of the plot 

in Figure 62 when 

'a' varies from 72-74 

Area has greater 

effect than 'a' 

Table 9: (Summary-2) Analysis of parameters v/s torque 
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6 Conclusion 

This thesis demonstrates a novel approach to optimizing the torque performance of an 

IPM and an innovative way to study the relation between the design input parameters 

and the output. It first performed a theoretical foundation of the parameterized torque 

equation thereby providing an initial idea of the various parameters that affect the 

torque. It then justified a case for the requirement of a specialized algorithm that can 

tackle optimization of electromagnetic devices by first reviewing some common MOEA 

algorithms and based on the ideas gathered from the various drawbacks of these 

algorithms, like inability to store all information, impractical level of accuracy, inability to 

be unbiased, inability to come out of deceptive front, not simplistic enough, dependency 

on fitness sharing, etc., formulated a novel algorithm, the mERR-MOEA, based on elitism, 

restricted resolution, archiving, dynamic population and progress measured. The thesis 

was tested on various aspects, such as diversity, deceptive front, convex and non-convex 

front, uniformity and a real physical device such as the SMES. The results allow us to 

conclude that mERR-MOEA is a robust and efficient algorithm when compared to others 

such as the NSGA, the SPEA, etc. for the kind of problem we intended to optimize. 

The thesis also provided an insight into the modeling aspects of the IPM in a commercial 

Finite Element Software, MagNet. It demonstrated the process of optimization by first 

building a matching prototype IPM in order to deduce the missing information about the 

reference IPM, and then running the optimizer in order to derive from the Pareto 

solutions the best design based on an acceptable error range and least cogging torque. 

Finally it presented the curious reader a comprehensive analysis of the relationship 

between the input parameters and the output, highlighted at the start in Chapter 2 but 

could not be comprehended, with the help of the information obtained from 
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optimization and concluded that the torque is affected by the area and the spread angle 

of the magnet with the volume having higher effect. It has also been shown that the 

development of the Pareto front allows a designer to examine the effects of the various 

design parameters on the final 'optimal' design to be built (which was the original goal 

of this work). 

6.1 Future Research 

1. In Chapter 5 we had discussed the importance of preserving information in order 

to avoid unnecessary computation of duplicate individuals due to the time 

consuming nature of field computations in standard single processor machines. 

Algorithms that can save such time are considered efficient; however, they still 

have to conduct field computations for every desired individual. Innovative 

approximation techniques such as the response surface method can cut down 

the computational time enormously. By representing the computational domain 

in the functional space as an approximate analytical function by schemes like the 

Method of Least Squares, with the help of the available information about the 

constraints and the variables, the response surface method is applied. In other 

words, the optimization process starts with FEA but soon transits into the 

analytical form of the front thereby saving an enormous amount of 

computational time. However, response surface methods are not always accurate 

and therefore require further research. 

2. While optimizing, we had simulated an artificial condition of running the IPM 

based on torque-current analysis instead of letting the supply be controlled by 

the external inverter circuit. Having said that, the obvious next step would be to 

build an inverter controlled IPM coupled with the optimizer as that would lead to 

the testing of the optimizer on a complete variable speed drive system. 
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Appendix A - Basic Definitions 

Chromosome: An entire vector of input parameters can be called a chromosome. For 

example, any optimization problem, single or multi-objective, will have certain 

parameters or variables that are to be optimized. The function f(x,y) has parameters 

x & y , therefore a chromosome is that individual which is made up of x&y. The 

parameters x &.y are known as genes. Therefore a particular chromosome is made up 

of genes. For example, chromosome=[x,y]. Also, any chromosome is different from 

another chromosome if at least one of its genes is different. 

Cluster Analysis: Each chromosome is treated as a subset or a cluster of the dataset. 

Subsets having common characteristics such as proximity according to some distance 

measure are merged with nearby subsets to form a large subset or cluster which can be 

represented by some trait, for example the centroid of that cluster. 

Cogging torque: Owing to the interaction of the permanent magnet harmonics with the 

air-gap permeance variations due to the stator slots [31], a torque called the "cogging 

torque" is created. It acts even when the motor is not running. During motor operation it 

causes ripple and vibration especially at light load and low speeds. It is also known by 

the name of "ripple torque" when the motor is running. It is desirable to reduce the 

cogging torque in order to achieve a good design quality. A cogging torque of about 5-6% 

of the peak operational torque is considered to be a low value [2]. 

Crossover or Recombination: It is a way of reproducing by swapping parts of a gene 

with another. The new genes formed have the signature characteristics of both the 

parents. The type of crossover we have used in our algorithm is the single-point binary 

crossover, and is illustrated below, • 
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i 0 0 0 1 1 0 1 

i i i 0 0 0 1 0 

t 0 0 0 1 0 1 0 

i l 1 0 0 1 0 1 

Figure 63: Crossover in GA 

The position for swapping is chosen randomly. 

Elitism: It is a phenomenon followed by nature that defines the strategy that the good 

individuals will produce good children more frequently than others which means that 

the greater the number of good individuals in the mating pool the better the chances of 

converging fast. Also, by preserving the non-dominated solutions of a particular 

generation and making them available to take part in future generations, elitism is 

achieved. 

Finite Element Analysis (FEA) [32] is a numerical procedure for obtaining solutions to 

boundary-value problems which are represented by differential equations together with 

the conditions (such as Neumann or Dirichlet condition [32]) applied on the boundary 

that encloses the computational domain. In general, the procedure is to replace a 

complex continuous surface or domain by small sub-domains or elements which can be 

represented by simple functions called basis functions. Thus, the original 

boundary-value problem with an infinite number of degrees of freedom is replaced by a 

problem having a finite number of degrees of freedom, or in other words, the solution 

of the entire surface or domain is approximated by a finite pre-determined number of 
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unknown coefficients. Then, a system of algebraic equations is obtained by applying the 

Ritz or Galerkin procedure[32] and, finally, a solution of the boundary-value problem is 

achieved by solving the system of equations. The general steps in FEA can be 

summarized as, 

1. Discretization or subdivision of the domain into elements (elements can be of 

any shape such as trianglar, quadrilateral or tetrahedral depending on the order 

of the basis-functions and type of analysis i.e 2D or 3D. 

2. Selection of the basis-function formulation of the system of equations (S & T 

matrix assembly based on the method such as Galerkin or Ritz). 

3. Solving the system of equations. 

Fitness: It is a measure of the quality of an individual expressed in terms of a real 

number. It is a tool to classify or rank a population. In SPEA, fitness assignment for the 

non-dominated individuals is different from that of the main population. While 

classifying the non-dominated individuals, the chromosomes are assigned a value called 

the "strength" which is calculated on the basis of how many chromosomes of the 

dominated set are being dominated, say n, by a chromosome of the non-dominated set, 

divided by the total number of chromosomes, say N, in the main population plus one i.e. 

Sj = fi = -^—. In the case of non-dominated individuals the fitness and the strength are 
l J l N + 1 to 

same. Fitness for the dominated ones in SPEA is calculated by summing the strengths of 

all the external non-dominated individuals plus one i.e. ft = 1 + £s4. 

Function or Objective space: A set of all possible values of the objectives of a problem 

achieved by evaluating the objectives as a function of the parameter space. In the 

multi-objective context the Pareto front is defined in the function space. 
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Pareto set o Pareto front 
Pareto set approximation • Pareto front approximation 
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Figure 64: Relationship between decision space and function space [16] 

Gene: The encoded version of the variables or parameters of a problem. For example, 

Gene-x = 10101101. 

Individual: A chromosome can also be known as an individual. 

Method of Least Squares: It is a mathematical procedure used to fit a given set of points 

along a curve by minimizing the sum of the squares of the distances between the points 

and the model curve function. 

Mutation: It is one of the operators used in genetic algorithms for creating a new 

individual from an existing one. Changing only one of the bits of the existing individual 

represented in a binary format leads to a new individual. The one illustrated below has 

been applied in our algorithm and is known as binary mutation. 

Parsnt 

ZhM 

1 0 0 1 

1 0 0 

i i 0 1 

! 

0 i t 0 1 

Figure 65: Mutation in GA 

Through mutation a particular search operation can get out of local maxima or minima. 
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The bit that gets changed is randomly chosen, as a result of which, the new individual, 

can be anywhere in the search space i.e. it can be far-off from the parent or can be 

nearby. 

Parameter or decision space: A set of all possible values of the parameters in a problem. 

Population: A collection of one or more chromosomes make a population. 

Rank Selection: The individuals are assigned selection probabilities based on their ranks 

determined by their strength or fitness. 

Search Space: A set of all possible solutions to a problem is known as a search space. 

Selection: It is a term that defines the different strategies involved in choosing the 

chromosomes for reproduction. Selection is performed after the population has been 

ranked or in other words, after the population has been classified. It is one of the main 

aspects of a multi-objective evolutiona ry search algorithm since, based on how selection 

is done, the quality of the Pareto front is determined. Selection procedures such as 

tournament selection, rank selection, etc. are commonly used. 

Stochastic or Non-deterministic: It is a random process that deals with more than one 

possibility of how the process might evolve with time. The future evolution cannot be 

determined beforehand although the initial or starting condition might be known. 

Tournament Selection: A set of individuals are chosen randomly and the best individual 

decided by its fitness orstrength gets the opportunity to reproduce. 
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Appendix B - Parameterization of the IPM for automation 

0,0 Rmnt 
Rotor outer radius 

Figure 66: Parameterization of the permanent magnet for automation 
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Gy = (Lm + w)sin 

H
X = B

X + lmcosa 

Hy = Lmsina 

where t is the bridge width which is constant in our optimization case. The above 

figure is one half of the magnet, the other half being a mirror image about the x-axis. 

Since we were concerned with the dimensions and the position of the magnet for our 

optimization purpose, the stator and other remaining parts of the frame such as the air 

gap, coil slot width, etc. were held to be of constant dimensions as given in Table 5. 
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