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PRiEFACE

Maxwell used conjugate functions to solve problems 1in
electrostatics(l). His method depended on a guessing

of the suitable complex transformation for any given problem,
In 1867 Christoffel, and in 1869 Schwarz discussed a general
theorem in lransformations which became finally known as the
Schwarz-“hristoffel Theorem. The use of this theorem
provides a direct method for deducing ths correct transformation
for the electrostatic problems in two dimensions when the
boundaries of the conductors involved, or some of the equi-
potentials and lines of force are straight. The conductors
conslidered are cylinders with parallel generators and of
infinite length; however they and the entire field have the
same cross-section in all perpendicular planes and so the
terms of plane geometry are used and the problem is spoken

of as two dimensional. The plicture is of course an idealized
one but 1t 1s approximated very nearly by long cylinders in
regions remote from their ends. Attempts to extend the
theorem to dea; with cylinderswhich contain curved as well

as straight lines have been made by a number of writers,
notably W.M.Page(2) and w.H.nichmond(S).

In this paper the essential elements of the
function theory and the required electrostatics bsckground
are briefly developed or discussed and it 1s shown why and
how the one may be applied to the other. Proofs of the

invariance of charge, equipotentials, and lines of force



under complex transformation, which are not usually found
in the texts, have been sup-lied. A number of problems
1llustrating the use of the complex potential and the
complex transformation are solved. The Schwarz-Christoffel
Theorem i1s stated and a falrly detalled discussion of its
application made, after which problems 1llustrating its
use are worked out. Lastly methods of extending the
solution to sylinders of curved cross-section as occur

in papers by the authors quoted above are considered,

The whole subject has been well known for many years and
no attempt to add anything new has been undertaken,
However, the solutions and treatment of a number of the

problems are the writers own,
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CHAPTER I

INTHODUCTION

The most general and valid system of equations governing
Electromagnetic phenomena are those of hkaxwell, These
constitute a system of partial differential equations
for the four vectors E, B, D, H, The vectors which are

functions of position and time are assumed to be finite

and continuous and to possess continuous first derivatives

at all regular pointe. Discontinuities in the vectors

or thelr first derivatives may occur at points where there

is an abrupt change in the physical properties of the
medium; for example on the boundary separating different
media. llence we may define an ordinary point as one

in whose neighbourhood the properties of the medium

are continuous. The domain of the vectors E,3,D,H are
known as the electromagnetic field. The source of an
electromagnetic field is a distribution of charge and
current,

In this account we shall not be dealing with the general
electromagnetic field but with the more special electro-
static fleld. The source of an electrostatic field

is a stationary distribution of charge,
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For this particular field Maxwell's equations take the form:

VxE = O = —e----- (1 . 1)
Y .D =4~ P ------ - (1 . 2)

where E 1s the electric intensity at any point, defined
as the force that would be exerted on a unit positive

charge placed at the point if the original distribution
were not disturbed by the presence of the charge. D 1is
the electric displacement defined as the product of the

dielectric constant K by the electric intensity
i.e. D= KE

In free space K= 1; in air it has very nearly the same
value. We shall assume K= 1 in air. 9 is the volume
density at a point, If Aq is the charge contained

within an element of volumel§7’then

Pr A%
When the charge is confined to a surface we conceive

of a surface density O defined as

- = 2%
AS
where AS is an element of area of the surface and Aq

is the charge on that element. All charges are in

electrostetic units, which we shall employ throughout.,
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Equations (1°1l) and (1+*2) are the fundamental equations for the

electrostatic field and we shall consider them more closely.

Equation (1°*1l) is the condition that:

Exdx + Egdg + Ezdz i1s a perfect differential

and that a sealar function V(x, y, z) ,say, exists such that:

E=-grad V - - == == (1°3)
E, E, E are the components of E in a system of rectangular
X y z
Cartesian coordinates,

The minus sign in(1°3)1s chosen from convention to make E be

directed outward from positive charge.

The function V(x, y, z) may be identified with the potential, for
E.dx+ E,dy+ E,dz = - dV

is an expression for the work done by the field in a displacement
of unit oharge from x,y,z to x+dx, y+dy, z+dz. Therefore

-dV 1s a measure of the expenditure of work done by the field
and expresses the loss in potential energy , or the potential
difference between the points. Since Exdx + Eydy + Ezdz is an
exact differential the potential function is single valued and

the work done in taking unit charge from a point A to another B

is 1independent of the path.
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This 1s the principle of the conservation of energy.

Using (1+3), (1°1l) may be written:
V * (-grad V) =0
but also: V x {-qrgd(\/*-\/o)} =0

where Vo, 1s an arbitrary constant. Thus V 1s not unique within an

arbitrary additive constant.

It 1s usual to select the zero of the potential function

at some convenient polnt. Then the potential at x,y,z 1is

we 2

V(x\ \j'z) == A E.dr

when V=0 at A.

This condition fixes the value of V ,

Se The surfaces represented by V(x,y,z,) = const are equi-
potential surfaces. Any displacement along such a surface

leaves AV = 0O

that 1s: oV ax + ﬂc\g + i\idz =0
ox 'ags oz

Qv . ?V . 9V

Ox -b_\j'az

Hence the quantities at any point

are in proportion to the direction cosines of the normal

to the surface through the point.
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Thus at any point the field intensity is normal to the
equipotential surface through the point. A line in the
electrostatic field with the property that at any point

on It the vector E is tangent to it is called a line of
force. Thus lines of force are the orthogonal trajectories
of equipotential surfaces. We may conceive an electrostatic
field as mapped out by a set of equipotential surfaces

and lines of force everywhere orthogonal so that through

every point in the field passes a line of force and an

equipotential surface. If:

av._ 3V _ av

dx oy oz

we have the condition for a double point of V(x,y,z)

= O

and so the equipotentials cross at a null point.

It was remarked earlier that discontinuities in the
field vectors or their first derivatives would occur
on the boundaries separating different media., In
general there were two categories of material media:
dielectric, and conducting. In a dielectric medium
charges do not move freely under the action of

electric forces, but permit a condition of strain,
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In conducting material charges move freely and are incapable
of reslisting any electric force however small. Any closed
domain in which charges move freely 1s considered to be a
conductor. The potential throughout the conductor must be
constant 1f it 1s 1n electrostatlic equilibrium, otherwlse a
flow of current would take place. Thus the surface of a
conductor is an equipotential, and lines of force leave it

normally and at interior points the electric intensity vanishes.

Since E is normal to the surface of the conductor, at a point

Just outslde the conductor the intensity 1is:

_ _ oV
£="%3v
---=- (1.4)
where the differentiation is along the outward normal i.e. away

from the conductor into the medium.

We know from Colourb's law that if O 1s the surface density
of electrification on a conductor, then R the outward intensity

at a polint just outside the conductor 1s given by:

R =4na

Using (1°4) we have:

| oV

¢ =41r'av

The flux across an area 1s defined as the surface integral orf

the normal component of D taken over the surface or <Jﬂ De nds,
Y
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where n represents the unit outward normal vector to the

surface. Using Green's Theorem:

9//~[>.n<$5 =1}(~VLID dV

=anfpav by (12

!
2\
3

-0
I3
\O-:

where ? 1s the total charge inside the region.

5. 1In all the problems we shall discuss only conductors in

air will be considered. OQuiside the conductors f’: O and D =E.

Then 1*2 becomes:
V'E =0
V‘(9de)=O
viv =0
This 1s Laplaces equation which must be satisfied by the

scalar potential function at all points outside conductors.

Moreover we have seen that on any conductor V must be a constant.

The fundamental problem of electrostatics 1s the determination
of the scalar potential function V. Once this function is

known the field intensity at any point and the distri»ution of
chargemy be obtained from the relations(1°3) to(1°5.) The
magnitude of any polnt charge may be obtained by considering the

flux leaving a reglion surrounding the charge and using equation

(1-6)
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For the determination of V we have the fundamental
differential equation V?%-='O in free space and the
boundary conditions of which we encounter the following
types:

(1) Por each separate conductor we are given its
potential,

(11) The total charge on each conductor is known,
Either of these conditlions enable V to be determined
uniquely, Thls statement may be deduced from Green's
Theorem:

Thus:

‘_/s'¢—g%ds =‘/.:(V¢)zdv (Green's Theorem)

where ¢ 1s the potential function and the integral on the
left is taken over the surfaces of all conductors, The
integral on the right is essentially positive,

Suppose two possible sdlutions ¢1, do exist and let
g=9¢1-@,, then on every surface @ =0, orfgz ds = O

therefore V @ = 0 everywhere, This would mean however

that Qi and ¢é differ at most by a constant and then

only in the case where the charge on each surface was

the same, If the potential @ is prescribed for even one

of the surfaces the value of ¢ is then definite everywhere,
If any point charges or other singular scurces are involved

their magnitude and distribution must also be kxrown,



©
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The fundamental differential equation is then:

o2V d2V dzV
3xE dy? Y ozt ©

In particular if V is independent of one coordinate, say Z, then:

92V . 82V _ o

dx? dy?

This means that the electric field is the same in all planes
parallel to the x,y plane and so the problem is virtually

a two dimensional one, and we may employ the terms of plane
geometry, This case arises when we are dealing with very

long cylinders whose ends are sufficiently remote not to affect
the problem in regions under discussion, As an ideal case we
consider infinite cylinders., In our discussion we shall deal

exclusively with this case,
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l. Holomorphic Functions
Let W = F(Z2) = U(x,y) + 1 V(ix,y)
where Z = x +1 y
and U, V are real functions of x, y.
If f(z) fulfills the following conditions
(1) 41t 1is finite and single valued for all values
of Z in a certain region of the Z plene
(11) 1t possesses a finite single valued derivative

£(2) within this region.

Then 1t 1s said to be holomorphic or analytic within the

region,
Condition ¢ii) leads at once to the well known
results = the Cauchy-Riemarnconditions,

aLl._ oV (2..)

(a) _— = — (b)) — = = —
ox oy oy ox
These conditions are necessary. To be sufficient it is
further required that all the partial derivatives be continuous,

In our discussicns these derivatives represent compcnents of
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force which are in general continuous.

Deriving (a) and (b) we have:

dzu _ 92V .. Qzu _ 3%
2x%  Axdy ’ oy? dydx
Now assuming the derivatives continuous
| ozV _ oV
dx Ay oy Ox
dz2u *u
By addition: _— =
o ox? T oy? ©
e oV o2V
Similarly: Y 4 W = 0

2. The Complex Potential,

From above we see that the real and imaginary
parts of a complex holomorphic function are solutions of
Laplacé@ equation. This we saw was precisely the
important property of a potential function. ‘e may
therefore appropriately adopt either of these as a
possible potential function. The function W is then
called the complex potential.,

Now if we take (U(x,y)=2C; and V(x,y)=C5 we
get two families of curves in the X,y plane. At any point

X,y the slopes of the tangents of the curves are

dy XN
QH_) = ——ax : gy_ = —-—a respectively,
ey () EY e

oy %y
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By virtue of equation (2.1) Q@ and b we see:

@), * (59, = -

dx/, dx/,
Hence the curves are orthogonal,
Thus if U(x,y) = C; represents a family of equipotentials,
then V(x,y)==02 represents a family of lines of force
everywhere orthogonal. V(x,y) is called the stream function
from its application in Hydrodynamics.
3o Suppose W=U(x,y) + 1 V(x,y) is holomorphic and let
U(x,y) = C become f(x,y) = 0
*t is then clear that the general function U(x,y) will be a
solution of Laplace's equation sub ject to the condition of
having U(x,y)=C over the boundary fi(x,y)=o0. It will
therefore be the appropriate potential function in an
electrostatic field in which the curve f(x,y)=0 1s a
conductor at potential C. Hence given any complex holomorphic
function 1t is obviously possible to deduce the solution of a
number of dependent electrostatic problems. We are thus
provided with an indirec? method for the investigation of a great
variety of special problems; 1t iIs merely necessary to try out
& number of holomorphic functions and see to what kinds of problem

they provide a solution. Before indicating some of the possib-

ilities of this approach we proceed to develop a few properties

of the complex potential,
5. Let We U(x,y) 4+ 1 V(x,y) be a holomorouic
function for some region of the complex variable Z.

Then as we have seen:
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U(x,y) = constart

may represent a family of equipotentials,

Now
W | du , v
oz dx Ax
= .ai._ia_u
ox oy

by the C.R. conditions (2.1)

We saw from egquation (1.3) that:

ou Au
%% -E, anpo -S4 .
ox x dq E‘J
where Ex’ Ey are the components of the intensity E.
cs Real part of a_VV = E—x
az ""‘""(292)
and Imaginary part = & g

Also

- BFET - o] e

The resultant intensity 1s necessarily at right angles to the
equipotential, In particular if U(x,y)=C repressnts the
surface of a cénductor the field ‘ntens'ty at a point just

outside the conductor = 41rec” where Q" 1s surface

density of charge at the poilnt,

Thus ¢4TTG‘ ,gﬁy
o0z

q
"

| law
4w |oz



The Complex Potential and Charge,
s T

FLUX:
Vix,y)=C,
2
- 1
V(xH)’Ca
X
O o

Fig, 14-°1

I
|
|
|
|
|
I
|
|
|
|
| Fig. 14.2
} Let dV be an element along the normal
|
|
I
|
I
|
I
|
|
|
|
|

to a curve and ds one glong the curve
Let P,Q be points on any

itself,.
two stream lines V= C o
dX == Cos da — Cos (@ =90 )
and V=Co, respectively, av

8in @ d
(Figo 14,.1) H%

%}1 = Sind = S8Sin ( @ =90)
v
= = (Cos®
Consider the flux across -dx
ds

any line jolining P and Q.
ds is an element along the curve

P
" du
Flux E as=f= B s s o oo S o ey Gl s T S s S
=]

where dS is element of length along QP. If the flux passes to
the right across PQ we consider the positive direction along
QP to be from Q to Pe

du du dx ou dy

Now W e— — +

dv ox dv dy dv

from the C,R. conditions



but : dx _dy : dy _ see Fig. 14.2
dr  ds dv ds
du Ndy | Nde _ dV
dv oy ds dx ds ds

p
f(-d-ﬁ- f dv dS = VQ"Vp
Q

Hence the flux passing across PQ = change in the stream function

in going from Q to P. If PQ is & portion of a conductor then

VQ - VP = 4m x cherge on PQ, --~--- (2.5)

for: dU dv
a-:\-J 4"6“"‘(:—

P P
. fdv ds = 411fq* ds = 4T|’xcharge on PQ.

!

Q Q



Chapter III

APPLICATIONS

Example I

Consider the transformation:

Z = a snW (3.1)
where W= ¢ + lYf is the complex potential,
Let ¢ represent the stream function and ')U

the real potential function,
Now Z = a Sin (¢ + I\I’) = a(Sin¢ Cosh#’+icos¢81nh\(f)
‘. x=a 8in® cosnV¥

and y = a Cos ¢ Sinhyf

Then x2 v

= 1 ---(1)

2 2
and X _ y - 1 (11)

a“sin® @ a<Cos® P

From (1) we see thet the surfaces along which

\0 = const. are elliptic cylinders, for
y=0 , y=o and x = asnde

We then have tle limiting case of an infinite strip
with edges at x = + @ . Equation(3.1)then gives the
field about such a strip at zero potenticl.
Suppose now we require the capacitance between a flat
earthed strip and an elliptic cylinder with focl at tle
ends of the strip and with semi major axis A,

on the strip Y = 0

Xx = aS3in g : atx= -8 Q’,‘g

and "x = a #_ T

.. change in stream func ¢ =
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. | mw \
e« charge on = — 2
g upper portion anr X 2

« « Total charge =

-

Also A = a CoshV’ where% is the potential on tke
elliptic cylinder
. - -1
. 1/{- Cosh é_

-1
Hence required capacitance Char -1
= ge - C
Potential ~ ¢ Cosh

LYPS

Example TI

The above by .10 means exhausts the possibilities
of the transformation Z = a Sin W,
Thus: as before x = a Sin ¢ Cosh’?; Yy = a Cos & Sinh 1"
If we take — %s ¢_<_ g and 0 < y/ € oo we cover the
z plane, Now let¢= ¥ g and Y range from 0 —= oo
Then y = 0, and x goes from + a —= +oce | Por ¢= + %

andx.gaescl’bm-a —= — oo, for $= - %l’

So if & is the potential function equation (3.1) provides

the solution for two semli-infinite co-planar planes at

potentials -'-g % —-g with a gep 2a wide between them,

Applying equation (2.4) the density per unit area at any

point x is given by

| anL - / __/_sz_az
=0

r=41T' dx|. 4T a sinh Y T 4n

This expression shows that the density becomes infinite

at the edges and we may also deduce that the total charge

on the planes per unit depth is infinite,
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Example ITI1

Transformations involving Jacobian elliptic
functions lead to a number of interesting results, rfor a
list of the properties of these functions used here, see
the table in the #ppendix.

Consider z = bsn(g + 1Y) ------ (3.2)
where # 1s the potential and Y the stream function.
Let k be the modulus and 2K, 21K1 the real and
imaginary periods,

Consider the equipotential ¢

K

Then:
bChiW_ b ,C"@’-k“)(see table)
dni¥  G(¥K) dn(Yk!)

= o . where kl shows we are dealing
dn (¥ k')

with an elliptic function modulus k1:= Vi- k?

x+1y = Sn(K+ 1i¥) =

Equating real and imsginary parts we have:

b
dn (Vi)

Now dn is always positive and its max. value = 1 when

y=o and X =

VWV = 0, 0or2m KL (m = 1,2,3) and its minimum value = k

1
when Y = K or (2m + 1)kt

S, = o | represents the portion of the
‘jn(wk;kf)

x axls lying between X = b and X = x

Similarly when ¢ = -K we have:

L b
© T dn (V. K)

In this case we get that portion of the x axls lylng between

x:—.bi and x:-b

R



Thus the transformation solves the problem of two infinite

strips AB, CD and of equal width(—b: - b) lying in the same

k

plane with a gap 2 b between them and at potentials K and =K,

See figure. -pf

0 e et - - —

A B C D x

Meking use of the result (2.5) we see that the quantity

of electricity on top of CD

e . «k-0 _ &
4 4 4dr

\

K
2m
charge and since their potential difference = 2K

L
4o K

In a practical problem k may be calculated from the widths

. -total charge on CD AB has an equal negative

The capacity =

and positions of the strips, in fact k = BC and the
AD
ratio K1 for any k may be obtalned from tables,
K—

We may obtain the surface density at any point from the

A A

relationship Q= in the same manner
4 0x y
=0

as in rExample TI.

The above may be adapted to provicde the

solution of a number of different problems,



Thus: if k—=0 we have the breadth of the planes
becoming infinite: also from the properties of
elliptic functions:

K— % and Sn W = Sin W,

Hence we have two semi-infinite planes at potentials
+

—

- 7 &and with a gap 2b between and with Z= b Sin W
as the appropriate transformation, as in Exsmple II,
If an infinite conducting plane at zero potential
1s placed along the y axis it 1s clear that the field
will be undisturbed, If AB 18 then removed and the
infinite plane still kept at zero potential, the
field to the right, on the side of CD still remains
unchanged, Thus Z = b Sn W also provides the
solution for a charged infinite strip of finite
width placed perpendicularly before an infinlte
plane at zero potentlal,

Let k—=1. For this limiting value of the modulus
the elliptic function has the property that:

Sn W—— tanh W; Ki——t— l;
Equation (3.2) then takes the form:

Z = b tanh W

-1
W = tanh é

e o

- X z+b |
W=z log 3 - - =(3.3)
But as k —> 1, the stripes shrink to two line
K _ 1
charges 2b apart with cnarges of = T - Q% per

unit length respectively. Therefore equation (3.3) gilves

the appropriate complex potential for such a case,

The argument of case B clearly remains valld hers so
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that this equation also provides the solution for a
line charge placed parallel before an infinite conducting

plane.

In a simidar way other simple relationships with elliptic
functions provide solutions for problems with strips

arranged in different ways.

Thus: z™ = b" dn (¢ +1 yl)

with § taken as the potential function provide a

solution for the case illustrated in the following diagram.

\ /

K
/\

= O on outer plates; these extend to <o

C}S = K on inner plates.



Chapter 1V

l, Notes on Mapping, Transformations

Consider & complex function which is holomorphic

inside and upon a simple closed curve C in the 2 plane,

Z plane

i 5 .
" " (K*DLANE

—p X %
Further consider another complex variable (3==§* ip

and form & second #rgand diagram in the & plane,
Now consider the relation:
d= =
Since f(2) is holomorphic (single valued), to each
point on the Z plane corresponds only one point on the €§
plene, Thus the points on C and its interior are mapped
upon certain pcints in the EK plane,
If we make the following assumptlons
(a) f£(3) # f(zp) Z, ,2g on C,
(b) £(z) # o for any Z on C,
it 1s easy to prove the following results (See Milne-‘homson (VI)
etec,) which we state without proof.
(1) When Z describes C once:(} describes a
closed curve ' in theé} plane and the
curve has no double points

(11) Given Z inside C the corresponding
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point Q.18 inside I

(111) If Z describes C in a positive sense 1i.e,
the circult taken to have the inside on
the left always, adescribes T in the
positive sense

(iv) Given{i}nside]? there is exactly one

point Z_ inside C such that ZS.= £(Z,)

(v) fl(Z) # 0 inside or upon C,

(vi) when & moves inside I' , Z is a holo-

morphic function of S .

We see that C}=ﬁf(z) is a transformation which takes points
In the Z plane into corresponding points in the plane,
Subject to the conditions stated it maps the region within
C uniquely and reversibly point by point on the region
within Iﬂ o If condition (b) holds the boundary is included,
In practical cases of mapping, it will in general be
possible to select contours in such a way as to omit singular points
and ensure conditions (a) and (b). We shall frequently be
engaged in mapping infinite regions where the question of
interiors becomes more involved, From result (1ii1) 1t is
apparent that if we know the sense of description along
corresponding boundaries the corresponding reg;ions may be

inferred. Also the question may in general be decided

from the limiting form of the flnite case,

2. Invariants under Analytic lransformation,

A. Suppose é* i7 = f(2) 1s a holomorphic functlon,
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Then _a_é;:_a_g . _szgﬁ_

dx dy '’ dx .dy
V-0 ; V27=o ----- (4-1)

We show that if V satisfies:

d? \/("'j) Q2VExy)_ d

9 x*° 9y
then
A? V(Ev) O
()& c') 9

or any solution of Laplaces Equation in thefs,O plane

i1s a solution in the > plane under sn analytic trans-

formation.

Nk, N
QX Q€ Jdx dn  Ix

Proof:

RV _ RV (aa)?- > NV % I OZV(OQ)Z
AN ST 32 \ox) T T3Edp ax ox | on:lox

AV (0% oV (9%
MY: (ax2)+ ap\aﬁ) -

and we have a similar expression for C)HZ

Adding we obtain after using condit ons PQ‘I)

R [ M e L e e el

L;vz +a_z'7\£2j {(%32 (-%JZ()Z} ----- (4.2)
Now the 2n

bracket on the ri-ht cannot vanish for an

analytic transformation g-*lo ’}(z)



Hence 1if:

o + ayz = Q0O
then:
oV + c)Vz: O also.

a&* dp

B. A conformal transformation leaves every equipotential

family, equipotentials,

Proof

The condition that Z(x-) = C represent a
(i
family of equipotentials is

A’ 2P

4+ =
O x? oy = ‘f(C) On&/
(_@é)"‘+ (22)°
See Smythe OX C)g
Let @(x,y) = C be a family of equipotentials.

Under the transformation let this become

¢ {*(f,o) , 9(&0)} = ¢(Ep)-cC

Now as in previous case

L

dx? dy? | oE*  op?

and:

¢ M O ¢ on

APE—— -— e CEE— 4~ . CS——

Ax & Ox on 0x
2 C
B)- G G s S
Similarly:

(Go)- () () 2% 55
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G e gr iy

using the CR conditions

SRS - 3 () @)

Qié az 3¢

ox? z)_y% - -(Ez + on? f(z) only
T B

Ax Ay o
Thus ¢(€9) = C is a family of equipotentials.,

Co Charge is preserved,

Under chaenge of variable from x,y to (é,r))
through the relation é + I.Q = f(C)

dE dn - %_)a( ),
S Sy dac dy
where 9_@2 represents the Jacobian % _C_).Q i _r)

which by the C.R. condltlons becomes {(a )/
X

df dn - {(gfz)z +(%%)2} ccdy = Kdxdy-



ll\)
3
.

Now we know from equation (4.2) that:

azv M _ K [azv afv’]
T oy %> " 9y

x? Ay
//ZV azgv //‘(g?/z C)V)Ko&o’g
ff("g . )o’fo’?

but oW |, o

+

Ox? oy - ﬂﬁﬂf

using the fundamental equation (1.2)

’./:/fdxo/y - //o'o’fo’y

i.,e, total charge = totel charge in corresponaing regilon,

We $1llustrate the arplicetion of the foregoing

with the discussion of a specific problem,
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Chapter V

1, We have an earthed conducting wedge bounded by
f-0, O= in the presence of a line charge at
P - F Fig.29.1. To find an expression for the

potential anywhere between the planes

Z plene 5 PLANE

Fig 29|

Gonsider the transformation (S= * .0

RIy

=r‘d. e

-

S aw LEQ

sz

when -0 5 =r
and the plane 8 = O of the Z plane becomes the real
positive axis of theS plane, Fig. 29.2

Similarly for 6=« S-.:-r% end so B= o
becomes the negative real axis of the Splane. Also 1if
the figure in the Z plene is described in the manner

indicated by the arrow then that in the S plane is

described as shown, Then from our notes on mapping the

interior of the wedge is mapped on the upper half of the

S plane,
Let the point Z_  correspond to So. Now a charge of q

at Zo corresponds to one of q at S . Hence by virtue of this
o
transformation we have transformed our problem into that

of a line charge placed before and mrallel to an infinite

-

plene. The appropriate complex potential for this case
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29.

1s: W = —2.7 /Ongffé— 8s was Indiceted on Pace 20

(here real part represents the potential function.

S W=-2q [/oq(f-fo) - /og([' T)]
=-2q [log (z%- 2,k ) - log (z%-7Z, ] where k=2

ol 00 e 0 RS
L LA
- +2q Zr,v ';"k;in

Let 2 = re'f then 7 ae'f

o = ote_zfs
O

=2 kn L‘(n[ﬂ _ kn —L‘(nﬁ
+Zq E 2. epi(n e{nkc: <
= kn
= +20| Eﬂﬂ (_;1) . [Zé sin knﬂJ {cos knB- 1 sin kn@:]

3

thus:
oo

W= +2q Y (2] ’f"{z (s knﬁ} { cos knb - i kot

h=1

Now bﬂ/-— (¢ 4 i}ﬁ'

where @ the real part, rehresentq the potential function

: REAL pARTOF,prZ __) . [21 sin kn/%] Lcos kn8 -1 sin kn@jl
da Y4(2)7 - on (20830 (F00)
|

n-=
This is potential function required wien

1Z| > |z.) ie for P Yo
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Similerly it may be shown that for r< o

4, 40,2 I(z)® s.n(ﬂ’nﬁ)(smfna).

The power of the method of analytic trans-
formation lies in the fact that with it a given electro=-
static problem may be transformed into another which
may be more easlily solved, By a reverse transformation
the solution of the original problem may be obtained,
For example the solution of the problem of a charged
line parallel to an infinite thin strip with an equal
cpposite charge and symmetrically placed with respect
to 1t 1s fairly readily obtained, The figure in a Z

plane would be as shown:

z plane i z' plane o
gen o & ’
-P "
|
~ T B'
B B
fig 32! fiy 32 .2 fig 32-3-

P is the trace of the line charge, AB that of the strip
both going perpendicularly into the plane of the paper,
If we transform this figure by a complex inversion with
P as centre, AB becomes the arc of & clrcle and the
charged point recedes to infinity. ihen we have the

solution of the problem of free distribution of charge

on a cylindrical sheet with parallel edges (fige 32.2).

Further if in Fig, 32,2 we make a second complex inversion

about a point O on the unoccupied arc, A' B! will be
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transformed into a straight line segment and we shall
have the solution for the problem of a strip and

parallel line charge in a general position, Fig. 32.3
In his pape;’"Some electrostatic distributions in two

dimensions" A.B.H. Love deals with these cases,



Cthter VI

1, The Schwarz-‘hristoffel Llheorem

" + e .
a, a, O
Fig 33.1 F:ma 33 -2
Let a;, a5 --= a_ be n points on the real axis of
a S = §"’i'7 plane, fig., 33.2
such that: - * "-'-’}" O < Oy

Further let |, yXz .- &n be the interior angles of

the n“vertices of a closed polygon in the Z plane.

g K = (n-2)T
/

The transformation defined by:

gl (1 (e

transforms the real axis into the boundary of a closed

Then

polygon in the Z plane in such a way that the vertices of
the polygon correspond to the points a  and the interior
angles of the polygon are ®x , Moreover when the polygon
1s simple the interior is mapped upon the upper half of
the r plane. K is a constant real or complex,

By a simple closed polygon we mean any configuration

of straight lines in & plane possessing the following

properties.

a) They form a connected boundary i.e, it
is possible tec go from one assigned point on the boundary

to another, alsc on the boundary, without leaving the



b) The boundary divides the points of the
plane into two reglons such that the points of either
region form a connected system, *“t is possible to join

the polnts of the same region without crossing the

boundary, but impossible to go from a point in one region

to any other in the other without doing so,

The result stated above is the Schwarz-Christoffel

Theorem, A rigorous proof of this theorem would require

a good deal of space and we are chiefly concerned with
1ts application so we shall confine ourselves to this
statement of the theorem and to & number of needed
comments:

(1) The simple polygons can and usually do
extend to infinity. For example a palr of parallel
stralght lines may be regarded as & polygon with two
vertices at infinity. The magnitude of the interior
angle may be obtained by noting the chanze in direction
after a vertex 1s passed in a positive description of
the contour and substracting this value from T , A
good example 1is the‘following: consider the polv:icn

formed by an infinite 1line parasllel to two semi-

infinite ones in the same plane, The boundaries here
are: the upper side of the infinite line and the upper

and under sides of the two semi-infinite onse,

-—_— e = e e em m =P - ae - - e -® - -

- - e e e e W= W = = - -




The vertices of this polygon are shown in continuous
order. They may be listed thus: /q,oB C,,D_,E F
A, , f, may be considered to coincide at the

point at infinity. The interior of this polygon will
be the space between the lines and the region abcve
A BEF, Conslder the interior angle at B. Going
from A to B, after B is passed our direction has been
rotated clockwise through 77 radius. hence the exterior
angle = -1

the intertor angle at B= T -(-7) = 27
Pagsing through the vertex C_our direction 1s rotated
counter clockwise through T

the interior angle at C= -7 = O
(11) In transforming a given polygon three of
the numbers a;, may be chosen arbitrarily to correspond
to three of the vertices of the polygon. The others will
then be fixed by the shape of the polygon. The proper
choice of K will then fix the scale and orientation,
(111) When a vertex of the polygon corresponds to
a point at infinity on the f axis, the factor corresponding

to 8, = o is omitted from the equation of the transformation

and O(y does not appear either.

We may see this thus:

dz = K(f-a, wl (f-dz)%’-' """ (sfa.,)¥°'

2
= K (7“&)'% . (f-a,)% (§-0n)7 " .(f_a")%"-'



o \7 VT .
i (P (e
and when o —— oo

Hence this factor disappears from the expression,
(iv) When the transformation leads to a simple
polygon it is holomorphic as the conditions noted in

—

Section I p /O hold, if we avoid the points a,
in the description of our contour. This may always be

done by small indentations which may be made infinitismal,

2. The Schwarz~thristoffel Theorem provides a
general direct method for finding the proper complex
transformations for electrostatic and hydrodynamic
problems in two dimensions when the lines over which the
potential is given are straight. <+t can also be adapted
in various ways to the solution of other special problems
involving curved boundaries, <+t is our aim to zlve some
account of these methods,

It may be noted that in general the application
of the Schwarz-“hristoffel Theorem leads to elliptic

integrals,
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Chapter VIT

l. Consider the Following Problem:

A horizontal plene at potential zero has its
edge parallel to and at a distance "C" from an infinite
vertical plane at potential %; . Hequired an expression
for the charge density at any point of each plane,
As the planes are infinite it is clear we are dealing
with a two dimensional problem, e take a transverse
plane at right angles to both planes as the plane of the
complex veriable Z, In this plane let the trace of the
vertical and horizontal planes 1lie along the v and x axis, res-

pectively, of the Z plans.

S PLANE
Z PLANE

e

|
|
|
|
|
|
|
A X o Ak

From symmetry it is clear that the fields on either side
of 0X are identical and we need only deal with the field
within YOX.,.

First, let us apply the <chwarz-Chri stoffel
Theorem to obtain a transformation which will take the
polygon YOX in the Z plane, into a straizht boundary =-
the real axis is an auxliliary plane, the t plane so that
O coincides with 0', the point Z = C im the X plane

with the point t =1 in the t plane.



Then d )
iz _ ~d
JdE = KL*®
! ! .
zZ = 2Ktz + const = ZKEz S to when z-0
Now C = 2K)for Z = C, when t=1

L
.2 = Ct®

Next let us draw the potential diagram on

a third auxilia?y plane, the W plane., Regarding the

real part as representing the potential, suppose the

stream function V = 0 at O,

> W - PLANE
w:. U+lv
(o,
=1 ~ t-o Y
X Y

l
As we proceed from Y, along YO, u is constant

and V increases to zero at U, Along OA we are on a stream-
line V=0, From A to X u = 0 and V decreases,
Our choice of the origin of V 1s arbitrary: the manner
of 1its increase along YOAX we infer from the fact that
along YO the flux must be positive and along AX negative,
The sense of description ocrresponds to t increasing so
that the area on the left of the contour YOAX as described
1s to be mapped on the upper half of the t plane,

For the W plane the interior angles at O
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Along X = 0, Z is pure imaginary

Sz = clt?
1y =ct?  or t=--‘<’f—:
JdW /

Az | oo 1y + c?
-~/ !
= g 2) 2
ond G5, = (4m) (y?+c?)
These are the expressions required by the problenm as

(i

stated by Smythe P 102 No I4

2. Infinite Charged Grating

Consider an infinite number of similar charged
strips lying uniformly spaced and parallel to each other
in the same plane. We suppose the strips to be equally
wide, of infinite length and no thickness.

The solution of thils problem will constitute
the approximate one for a flat plane grating in the

regions far removed from its ends,

Y t=‘°° C =+ 00

tz=0 t=m t=/

Let AB be the trace of any one of these strips In a

Plane at right angles to the grating.



It is clear from symuatry that Y0, BC, CD will be lines
of force and that the field within the rectangle YOBCD will
be typical.

Let 2a be the width of each strip and 2b
be the distance apart of the centres of any two ad iacent
strips.

Take O as the origin of the Z plane.

Now we make a Schwarz transformation which
will take this rectangle into the real axis of an auxiliary
t plane so that thevpoints correspond as indicated,

t- §+ i

|
‘e |
i
|
t
t
[}
|

—p— + oo
| |
From the Schwar, theorem the desired relation 1s

oz K

dt  YEED

z =2KcoshVE + C
Now z. = b, when F-1

z = 2K cosh”’ VE + b

Also when t = 0 2 =0



zZ-b= 27?" cosh™ VE

£ (z-b)w Mz
’ COSh g L___ = SN — = ﬂ-—
' aib Zb
Now when tem: Z = &a: ‘/5 = Sln"ZL%

Let us teke the potential on the strip to be zero.

Y0 is a line of force and as we approach Y along 1%,

the value of the stream function remains constant but

the potential increases steadily to the value _.ero at O,
From O to B the potertial remains constant but the stream
function increases, Lf we suppose each strip to carry

a charge q, then from symmetry the portion 0B has sa

charge 7/2. and the flux out of this region = Z7Q

This is equal to the change in the stream function from

0 to Be BCD 1s again a line of force and the stream
function is now constant as we describe it. The potentisl
function then decreases steadily. et the stream functlon
= 0 along YO, then it = 279 along BCD. Hence the potential
diagram on the W plane is as shown in the figure below,
where W=U + 1 V and U represents the stream function

and V the potential,
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2
] Elane
- = C o Bl t-m
an
I/ t=o
Q u

e now map this on the real axis of t so that the
points correspond, as shown,

The geometrical lines of the problem
are now matched with thelr aporopriate stream and
potential values and tied together in the real t axis,

The proper transformation is:

ok
Jdt / E(E-m)

R = chosh"/-,,{t*c

when W = Zﬂ’:q, L=m
W =
b4 [

when 2= P owig
| -0z
i1q = ZKT ‘%
e =~ Lqg
TR, S
nz

Zb
-SIn _I'W = 54
49
an IE
: -3 Z o
= z‘f Sin
IA/ (7 mo
SIN —

zb



where the real part of this expression gives the

potential function,

| ( Iz
'urther dW~ Zqur ‘ ﬁ Cos Zlb
dz b \/(sz o 2 712
— e SN T ——
\ Zb Zb)

Now if Z 1s real a we are on the strip between OB;

the expression above is pure imaginary and we thus

have : ( Cos Tx \
dVV {gu ; 3u _ ZTZQD 2b :
X Yy ZJEL_ nz1TZ

. au _ \/ SN SN Zb) i

0X
COS ——

anp Y =Z_gﬁ _EL._

9y \/(smzﬂ — sin? iTx)

2b 2 b

flence the intensity is at right angles to the strip,
as we should expect,

The surface density at any point is:

[ cos X
G 2b f\\/(stnz _7ZT_c_)'b_ _ Sma_TT_-ZC_)

ab

Thus at x = a, the edge, the density becomes infinite

and at the centre

o
G %) - cosec ——

3 If the grating discussed, in the last example,

consists of similar rectangular bars equally spaced and

of finite dimensi-ns, the solution is not more difficult,

at any rate in principle,
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c t-0 D t-"‘m
=305 t:K
™
o) E=a N
A X

In the figure we show the section of such a grating

by a plane at right angles to the length of the bars,
Teke this as the plane of a complex variable Z and let
the origin O be at the centre of one of the bars, Adopt

the axis as shown, where 0X and 0OY are normal to the

faces,

It is clear that the grating is symmetrical
about the lines 0X, OY and CD, where C i1s mlidway between
the centres of the two adjacent bars,

By Schwarz's theorem we may obtain a relation
which will map the contour DCBMAX on the real axis of an
auxiliary t plane (t = § + ip') We may arbitrarily assign
cdrresponding values of t for three angular points,

We choose t = 0,0, ) to correspond as shown.

uppose the points A, M correspond to t = a; t = k respectively.
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Then the transformation 1s:

oz _K(k-k)2
dt {tEIE-a) s

in whichm whch adh>! --

as the interior /> at C, B, M, A are I 37 I

Z ' 2 resp

qu

)

respectively,
This may be integrated and the values of K and the
constant of Integration as well as values of a, k,
deduced from the dimensions of the figure,
This mapping of the DCBMAX contour upon
a real t axis can lead to the solution of three
electrostatic problems concerning the grating.
Consider a complex variable W = U +1 V, where U = constant,
and V = constant are the potential and stream functions

as before., The three problems are as follows:

I. The bars carry equal charges,

Then BMA, is an equipotential (U=0
suppose) and DCB, Ax are lines of force (V= %“ , V=10).
This choice of the sream values determines the charge
on the bar which cannot therefore be arbitrary. However
this does not entail a loss of generality in the problem
because the field intensity at any point will simply be

proportional to the charge.

I



The diagram on the W plane is as shown,
with the corresponding values of t indicated on the

figure,

NIy

L, 8 \V4

]

t=a N=O
A

This rectangle is mapped upon the real t axis by the

equation dW o /(,
ot {i{Ent-o)>
e K,
{(t- %) ~(%)?§
Hence W= 2K, cosh™ Gtoo ! + const
Q-
Now when t=o W-=0 ;‘_.const =0
= e kst g
A = _{ Bl ab-o+1
= 2 a-/
cosh ZW = g o
o~/
. afl+cosh 2W]+ [1- cosh 2w ] = 2¢
a cosh?W *+ sinh?W =t pei=ri I on

This equation taken with No. I provides the solution

by giving the relation between W and Z.
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II. The grating is uncharged and in a

uniform field parsllel to Y,

In this case CBMA is an equipotential

(u=0) and CD, AX lines of force (v=g » V = 0). This

choice of the stream function again determines the

strenshthof the field.

The potential diagram is seen below

= \/t.lj: =2 — O
c t-0 2 E
B
M
A V=0 t =

The transformation is:

oW Ka
dt [E(t-f =

. _ ¢
W o= 2K, th"lé— +C Now w-0 t-«

. . C=0
¢
when t = 0, W=%
- /-'"
™ =2K 7
2
|
Ky = 2z
&

W = cosh”' VYa - - IA

In conjunction with (I), IIb gilves the relation between

W and Z for this case,



ITT The uniform field is parallel to OY.

Now XAMB and CD are equipotentials
(V=0; V= g) BC 1s a line of force, U= 0, Ve
Interchange the use of U and V as this simplifies
the constants of integration. Choice of the potential
differences once more determines the strength of

the uniform field,

The diagram in the W plane: W-PLANE .
=0 ;/'I
o V- 2 e - oo
B8 - ! V-0 E= + 0
i oW K3
ere -_— = - !
ot [EU-0)f?

and as in the other cases TIc with I provides an expression

‘for the complex potential,

4o I'he developments outlined above are straight-
forward., W, H, liichmond, who notes these cases in his
paper ( 4 ) proceeds to indicate how the method may be
modified so that the rectangles may be rounded off into
ovals of various shapes without invalldating the results,
In brief his method is as follows: In Equation 1 replace

A 1
K (f*k)zby P(é‘d)iL*Q(L"/)Z where P, Q are

positive constants,



en: | ZZ - P(t-a)* +a(t-1)*
e T el (-0 EfF
P

_ B
ft(t-1)fz JE(E-a) 2
where a8 > 1.
Now when t increases from -eoto + ©° as long as t does
not 1lie between 1 and a, this expression yeldls the same

outline DCB, AX, on the Z plane, as the following shows:

V4

ex. when a < t<Q0: %%_ = a real number
- aly
.. az_ =0 Yy-= COOSL' (m for ounr [()qure)

also x decreases with diminishing ¢t,

when 0 <t < 1;

oz . .

¢ = 1s pure imaginary

dx et — e A Lxd

072. (8] Ond X = Consé' [ “ )
Now dy =_ cdy . &

5 o real number as I 3£~ 7§ ]

Yy 1ncreases with diminishing t,.

Now wh P P - S
ow when a >t > 1 {f(l"')}% is rea ;t([‘—a)f'zl is imaginary

%}‘ s jolus : C%‘ZL IS MINUS

x decreases and y increases with diminishing t.

{
also dq: - Q (.é:—: 2 and diminishes in absolute value
ol P\a-t¢t
from o to 0. .°. the point Z describes some sort of ovel

cutting 0X, 0Y at right angles,



It is clear from symmetry thet the rectangular
bars have been replaced by rounded oval bars of unknown

shape but defined by the values of P, Q and a. &esults

II(a), (b), (c) are still valid snd so these with:

gz Pl-o)i ¢ Q(t-)s
Jdt {E(-1)(t-a)}>

provide solutions for the three cases with oval cylinders

For the psrticular case where P=Q= 1:

zZ = Z{Cosh]‘/l‘ + Cosh_'f%—} + C
en integration, et us consider such a czse further,
Let us require the dimensions JVA, OB (using figure as for
rectangular bars Page 4) of the oval to be such that C =0,
a=2 in equation above,
Now the points t = 1, t= a correspond to B, A respectively
on the Z plane.
For t = 1 Z=2 cosh™t /& - %f

Y = +g

when t=a = 1, 2=2 Cosh™ /2 = a real number
x=2 Cosh-%é§
Hence for the special case under conslideration the
dimensions of the ovel are as follows:
05:’;’; oA = Zeoosh ' VY2
Now for 2 >t > 1, Cosh T YE is real
and Cosh'lﬁcgis imaginary.

for this range of t,
x = 2 Cosh™t VE
2 Cosh'l f‘%;

iy =



3

or finally:

for/Kt € 2,

These are the parametric equations of this oval in the
first quadrant,

Let us now consider an infinite grating formed

of these special ovals in uniform a field of force., Let the

field be parallel to 0Y. Then we saw from Case III (Equation

IIc) t = Cosh W, and we have as before:

2 ({cosh"/f- + cosh™ Vfé}
aw _ (e-2)2 .
az (E-1)z+(t-2)2

Real values of t give the value of Z; on the contour

Z=

DCBMAX, where BMA is now & portion of an oval, For 1< t< 2

we are on the surface BMA of the oval conductor,
When t= 2: gzk—y—fo and hence the intensity vanishes at

the polint A,

=114
For t > 2 oz is real plus
oy
’ g:_x_ + 1'3__\; " " "
/’
én{+i v " " from the C,h, conditions
Qy Ox
thus : QQV e\
— =0 = = o + real no.
dx 7 Ay

i1.e. the intensity is

in the Y direction,
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This 1s natural as we are now on Ax which is an equipctential,

The strength of the field is determined by:

(_53_[ _ (I—z/t)é -

(
Y /oo (1-%)3 +(1- %)% Z
pa——y o -
At t=1 i.e. at B on the oval:
dJW oV . AV !
—_— = ——+ 1l — = —— = |
oz oy Ax 2
ov_ [ a O
y Ax
(_.. ;gg) = "/ and the line of force enters
the conductor at right angles at B,

Hence we see the uniform field turns out to be in the
direction Y0., This 1s because of our initial choice of CD

as being at higher potential (V==%§ ) than BMAX (V= 0) in

Case III.
At t = 1 W=U+ 1V= 0 from --- IIc,
U=0
At t = 2 W=U+iv.~.00sh"1f§

U = Cosh-1 Yz

- a_ / W,
the charge on the surface BMA —4—1—-’_ [U], _4-._7;: cos/; a



p
S W, M, Page has discussed e similar method for

dealing with cylinders whose cross-sections contain curved
as well as straight lines (2). We will discuss his

method briefly,

A curved surface may be regarded as the limit
of an equiangular polygon. Hence in a problem involving
curved contours we may attempt to form a Schwarzian
transformation for a polygonal contour of straight edges
and proceed to a limit. For example consider the case of
an Infinite plane having a curved cylindrical boss. The

cross-section by a plane at right angles is shown

Z-PLANE

n sioles

D

-In the boss consider a portion of an equiangular polygon
as in figure. We attempt to transform this contour into
the real axis of an auxiliary t plane in the usual manner,
Assign the values t* | to the points C, B, respectively,
and let the angular points correspond to t, ¢, t,----- En.
where these values are not at our disposal but are fixed

after our choice of the points B, C, AD if the size of the

polygon is fixed.
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Alternatively we may ive values to t, to--- £,
then the polygon in the Z plane has the length of 1its
sides determined and may, in theory be calculated. "e
shall adopt this procedure., et us take CF and B tp
as 1 to A D. We require the field above this figure
hence for the Interior of our polygzon we must have the

region above A, B, tp D. The interior angles at 3, C

are % each, Consider the pulygon B C T, ¢, ---tha

it has n+2 sides and .. 2n rt. angles .. angles t] +¢, +¢5+ -

=(2n - 2)rt. angles.
Now Lt =L =LEs = -+ =Lk,
Lt = 20-2 Lt /s = (2-%)*%6

Lence an angle t, in the re:ion outside,

interior for the region we consider:

2w-(2-%3)«F" - T*%

tn

a_ a, an
" Phe transformation: g?z = K(é-é,)?' ’ (t'éz) -/ (("bn)?“'

dz  KL(E-L)(Et) - L)
oft (tz~/)%

Suppose the following values are assigned:

becomes

£, = cosd t, = cos 3x tn = cos (2n-1)a.

and require that 2na = m

with this cholce, because tn= -ty, ete. ve might expect
to get a semi-circle in the Z plane on proceeding to the

limit.
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Using these values:
(BE)EL) - (E-£a) = 2* [l VT )™ (- vFr )]

as mey easily be proved,

Hence we have tc determine:
I

Li (t't‘)(t’tzl)n" -- (E-LA) } =

n —w o=

or ’

| 1

L‘z‘{(t+ﬁ‘-:)+(t—f“t*~: )}

N —e oo

If t >1 by putting = Cosh U,we see
] l
L n - n I ' ~2nu|n
lemeen]te Lteefiva™]

Nn—% oo n—>-oo

- S et - L (¢ +ET)

When t € 1 the expression has no definite 1limit,
Now for a boss whose crosc-section is a circular cylinder
of radius I, the transformation is known to be

o R(E+ V)

ot (£*-1)2

which is exactly the value obtained above &s a limiting

value from the polygon when t ~>1,

1
Following a suggestion of W, H. hkichmond, ir,

Pagezsimply replaces the indeterminate limiting value when

t £ 1 by the expression ({+¥{*, ) and then adopts
the transformation oz ﬁ((f.,y%i/)
oF 2(6-1)7%

and proceeds to irvestigate the conseguences tiat follow

from this transformation,



6. Application t= +oo

A C?—-——"'ﬂ'

1y

(i) o C (i) f=—oo
Uonsider an infinite wedge formed by two semi-infinite

planes at right angles and with the edge rounded off. (fig.ii)
The flgure shows a cross-section by a plane at right angles,
Choose the axis as indicated. We suppose the system carries

a charge and " wlll determire the field outside (i.e. to the
left of X C A Y,) As usual we seek to map this contour X C A Y
on a real t axis, The values of t chosen to correspond to the
points C, A are shown. The values for 3 points may always

be assigned aribtrarily. X, Y is regarded as one point.~ the
point at eb

Suppose the curve AC is taken as the limit of

n sides of a equiangular polygon of 4n sides., (fig. i7).

The points t; ==== tp (see figure (1)) will clearly have

s e

angles 5 82,, ol %
= ol
L z")

each,



Now the area on the left of XCAY is to map into the
upper half of the t nlane and the interior angles at

t]---t, measured on this side = ZTT—(TT- %n)

Ji4
T+ Zn

]

The corners A, B have angles T each, as shown.,

By Schwarz's +‘heorem the transformation is:

oz L
at - K[U"é/)(é-tz_)- - - - (C"-L‘n)]z

According to the method outlined previously we now

replace [@’l’,)(f'f;) -- - '([“é,,‘)/;l bq [L"+ /Z;':J?
oz - Y f +y4= ég. VEsi 4 /7377
JE /<[z( W—/)] K[ —

2 K[@F et e

when Z =0A, 0C, . t=%1l respectively.

Choo:e OA, 0OC so that C = 0.

otz = K [(te¥ e (0]

when t= -1 we require Z=X; Y= 0; when t=+1: we require

72=1Y ; X=o0 (see fig. ii)

: [ . ‘
x, - B‘g*’ - ip% ¢ zq’§2

%

| - — Al - = /
Take K Z%’ then Xe =1 ;l Y4

In our problem then the rounding beginc at

unit distance from the edge and

z- iz () w(t-)E] @)



For real values t we are on the contour XCAY.
Values -1 < t < 1 correspond to points on AC.

3
Then (t-#l)/‘,a is real and (t - 1 ;é== Z(I é);é

:z:+zg = 7 Z’%(f*’)% F27%(1-6%  from ()

x = 2% (1-t)%
y = 2°% (1+£)%
L xPBry%B =

and thus the rounding curve is a four cusped hynocyclcid,
Let W=U+1 V be the complex potential function, 'le
adopt V as the potential and suppose V= 0 alon: the
conductor, Then the potential diagram is a stralght line
V=0, and we may have:

W =2 - . - - -.. [ic)

This will map the straight line polygon on the real t axis,

By virtue of (1) and (11 we have: -+ *: - - - - - ()
3
z=i2% [(WH)% + (W-1)*%]

which completely determines the flelcd in the region

considered, From (i) and (ii)

g‘;; - . 3.27% (k)% 44 (/~t)5']

dW:-./
at
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aw _ 2% /
az 30 [(+E)%+ i (1-4)%]

oW (. 2> |
oz 3 (1+£)5 + i (1-t)%
for —I<EL I onol real £ we are on AC
oW 2% | 4
oo |2X| . 2% L _ 4
oz 3 VZ 3
. Surface density on AC = 8“:2!1_7-' x-:;l" = §:—r

and is therefore constant on the curve,

Also the charge on Ac==2ﬁﬁ» (difference in stream value

at A and C), now W=U+ 1 v=¢

U=2%1 at A4 and C recsgectively.

SN -_l_, 2_—__-’—-
. . Charge on AC —:4n.x 2

So far we have only constdered the case when the limit
of[(l-(‘“t:)(‘!~~ é) T (é't”)}/, 1s replaced by é(é* ;4?,)

Ve deciced on this substituticn out of anclogy to the
known case of the circular cylinder.

Let us return to the case of the infinite plane with a

cylindrical boss., As before the transformation is

oz K{tIEt) - t-t)]”
at - (é.z__/)’/z

If the boss is ellipticel ‘n shape the solution 1s known

to b
o] e O/Z ) At’ +B’/[_21../

7 = pA
olt (t*-1)2
,', for some way of assigning values of ty, to----t,

L +
[(t—t,)(t-tz) - (t-tn)]” must take the

'
form At +B (t2-1)2



o))
|3

By using this substitution we may obtain
curves of a different shane to round off the ends of
conductors.

When the substitution % (E+/F=r)
1s used the resulting curve will usually have 1its surface
density constant when freely charged. This is =so bcceouse
for the proper range of t, \t*’ = l is independent
of»t and hence \%%g\may be constant., In the substitution

At + B (t2 ~ l)yz‘this is not the case,



APPENDIX

Jacobian Elliptic Functions.

Suppose: \'q
dx

A (1-x2) (1-k2x°)

u

This expression defines u as a function of x.
The lnverse, expressing x as a functlon of u, is defined as
the Jacobian sn function, modulus k.

1.« x <« 8n u.
cn and AR may be deflined via the relations:

en®u = 1-sn2u

dn2u & 1-k%sn?u.
sn, cn, dn are doubly periodic functions having the following
periods:

sn u s 4K, 21K’

cn u s 4K, 2K 2iK'

dn u 2K, 4iK'

, /
) dx . - dx
h K = kKW=
where ‘4{:1-x2) (1-k2;27 : ‘%ZZI-xZ) (1-¥ex<)

k's 1-k2 : k' is termed the co-modulus,

?




apoendix

We make use of the followlng properties of these Jacoblan

functions:

cn u
sn (K+u) = - - - (1)
dn u
1l
cn (iu) = - = - (11)
cn (u,k')
dn (u,k')
dn (iu) = - - = (111)
cn (u,k')

where the k' in (11) and (111) denote that these resulting
ellliptlc functlions have for their modulus k', the co-modulus of
the original ones.
For the limiting case where k = o

snu S sln u

cn u = cos u

When k = 1
sn u = tanh u

cn u - sech u

dn u sech u

K — ~

K' = 522



(1)

(11)
(111)

(iv)

(v)

(vi)

(2)

(3)
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