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Abstract 

Background: The prognosis of patients afflicted with high-grade serous ovarian cancer remains 

poor and a deeper molecular understanding of the disease is required to improve treatment 

strategies. Tumor biomarkers, such as mutations in BRCA1 and BRCA2, and aberrant expression 

profiles, have been linked to improved response in patients with high-grade serous ovarian cancers 

(HGSC) undergoing primary debulking surgery (PDS). Recently, the use of chemotherapy prior 

to surgery, neoadjuvant chemotherapy (NACT), has become more widely used.   While large-scale 

genomic studies have detailed the molecular landscape of tumors from patients that underwent 

primary debulking surgery (PDS) and correlated the identified subgroups to survival, none have 

done the same for the group of patients with residual tumor after NACT. Residual HGSC after 

NACT may represent a subset of disease enriched for molecular features of resistance. 

 

Objective: Describe the underlying genomics of NACT-treated HGSC and correlate them to 

patient progression- free survival (PFS) and overall survival (OS). 

 

Methods: Tumor samples were collected from patients with stage III or IV HGSC before and 

following neoadjuvant chemotherapy (NACT cohort, n = 57 and PDS cohort, n = 30). Tumor 

content was validated by histologic examination. Gene expression analysis was performed using a 

tailored NanoString-based assay, while next generation sequencing was performed on the MiSeq 

platform. Semi-supervised clustering, gene set analyses, and the appropriate survival models were 

used to assess the associations between genetic alterations and survival. 

 

Results: Semi-supervised, internally validated consensus clustering of gene expression data 

revealed two patient clusters with prognostic relevance. The association with overall survival 

remained significant after controlling for clinical variables (OS: p=0.0003). Pathway based 

analysis of the differentially expressed genes between the Good and the Bad outcome groups 

revealed high cell cycle and DNA repair gene expression, and actionable targets in the Bad 

outcome group. Mutational analysis revealed relatively low TP53 mutation frequency in both 

NACT-treated group, but TP53 mutation status was not associated with survival. 

 

Conclusions: A partial genomic profiling of the intratumoral molecular characteristics observed 

after NACT in high grade serous ovarian cancers revealed molecular subtypes with prognostic 

significance. 
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Résumé 

Contexte: Le pronostic des patientes atteintes du cancer de l’ovaire épithélial séreux de haut degré 

de malignité (COSHM) demeure obstinément faible et une connaissance moléculaire plus 

profonde de la maladie est nécessaire pour améliorer les stratégies de traitement. Les biomarqueurs 

de survie, tels que les mutations dans les gènes BRCA1 et BRCA2, ainsi que des profils 

d’expressions de gènes aberrants, ont été liés à un meilleur taux de survie chez les patients 

souffrantes de COSHM traitées en première ligne avec une ablation chirurgical (AC) suivit de 

chimiothérapie. Récemment, l’utilisation de chimiothérapie avant la chirurgie, la chimiothérapie 

néoadjuvante (CN), est de plus en plus utilisée afin de réduire la taille des tumeurs avant la 

chirurgie. Tandis que le profil moléculaire de tumeurs dites chimio-naïves, ou provenant de 

femmes qui ont subit une AC en première ligne, est bien connu, très peu d’études ont tenté 

d’étudier les tumeurs résiduelles chez les patients qui ont reçu de la chimiothérapie néoadjuvante. 

Les tumeurs résiduelles après la CN pourraient être enrichies avec des facteurs moléculaires de 

résistance. 

 

Objectif : Décrire la génomique sous-adjacente de tumeurs traités avec la CN et la mettre en 

corrélation avec la survie sans progression (SSP) et la survive totale (ST) des patientes. 

 

Méthodes: Des échantillons de tumeurs furent collectés de patientes avec le COSHM de stage III 

ou IV après la chimiothérapie néoadjuvante (cohorte CN, n = 57). Le pourcentage de cancer dans 

chaque échantillon fût validé par un pathologiste gynécologue d’expérience. L’expression de 800 

gènes fût capturée avec un panneau NanoString personnalisé et la présence de mutations fût 

évaluée avec la plateforme MiSeq. Des regroupements semi-supervisés, une analyse d’ensemble 

des gènes, ainsi que les modèles statistiques de survie appropriés ont été utilisés pour évaluer 

l’association des défauts moléculaires avec la survie des patientes. 

 

Résultats : Des regroupements personnalisés semi-supervisés de l’expression de certains gènes 

ont révélé deux groupes de patientes au pronostic différent. L’association avec le survie totale est 

restée statistiquement importante après avoir contrôlé pour les variables cliniques (ST; p = 0.0003). 

L’analyse d’ensemble des gènes a révélé que le groupe avec le pire pronostic avait une haute 

expression de gènes jouant des rôles important dans le cycle des cellules, ainsi que dans la 

réparation de l’ADN. L’analyse des mutations démontre un bas taux de mutations dans le gène 

TP53 dans les tumeurs traitée avec de la CN. 

 

Conclusions : Une évaluation partielle du génome des tumeurs après le traitement avec de la CN 

a révélé des caractéristiques importantes dans les tumeurs ayant un mauvais pronostic.  
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Introduction 

1. Clinical Features and Standard Treatment Strategies 

 1.1 Epidemiology, anatomy and histology. Ovarian cancer (OC), encompasses cancers 

originating from the peritoneum, fallopian tubes and/or the ovaries and is the most lethal 

gynecologic cancer1. In Canada, only 2.7% of new cancer cases are expected to be of ovarian 

origin in 2017, but the same disease is expected to be responsible for approximately 5% of all 

cancer-related death, which is one of the highest death-to-incidence ratio out of all types of cancer1. 

Once treated as a single, homogeneous disease, clinicians now subdivide ovarian cancer cases into 

various subtypes with distinct clinical presentations, cells of origin, molecular features and 

treatment strategies2,3. Cancers of epithelial origins, which account for approximately 90% of 

ovarian cancers, are the most common and can generally be classified into one of four histological 

subtypes: serous, endometrioid, clear cell and mucinous4–6. In addition to histological subclasses, 

ovarian cancer cells are graded based on their appearance compared to normal cells, also known 

as differentiation. Low grade cancer cells almost appear normal (well differentiated), tend to grow 

slowly and are less likely to spread. High grade cancer cells are poorly differentiated, grow quickly 

and are more likely to spread4,6. Patient survival varies greatly depending on the pathological 

subclassification7. Unfortunately, the high grade serous ovarian cancer (HGSC) subtype is both 

the most commonly diagnosed and the deadliest, accounting for 70-80% of ovarian cancer deaths 

and showing little improvement in long term survival in the past thirty years7,8. 

1.2 Clinical features of HGSC. Early HGSC symptoms are often non-specific and 

attributed to other, non-life threatening causes. As a result, most HGSCs are diagnosed at a late 

stage (III or IV), which means that the disease has already metastasized beyond the pelvis. For 

years, the lack of precursor lesions on women’s ovaries puzzled pathologists, and was attributed 
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to lesion disappearance over the course of carcinogenesis. In recent years, with the advent of risk 

reducing salpingo-oophorectomy in women with germline mutations in high risk genes, such as 

BRCA1 and BRCA29,10, lesions were identified in the fallopian tubes and, more specifically, the 

fimbria11. Serous tubal intraepithelial carcinomas (STIC) have been found in many advanced stage 

HGSCs, including those of non-hereditary origins, and are thought to be the precursor lesions to 

HGSCs11. In addition, disease originating from the peritoneum is thought to arise from tubal 

epithelium as a result of endosalpingiosis, or the ectopic growth of tubal epithelium12. The 

establishment of molecular clonal relationships between STIC lesions and primary HGSCs 

strengthens this hypothesis13,14. However, additional studies are needed, since only about 60% of 

HGSC have identifiable STICs, and a recent phylogenetic analysis associated STICs with 

intraepithelial HGSC metastases to the fallopian tube, contradicting the assumption that STICs are 

always the precursor lesion to HGSC15. In any case, the lack of consensus, easily identifiable 

precursors to HGSC makes early detection improbable, and large scale randomized controlled 

trials failed to implement successful screening procedures for ovarian cancer16,17. Due to the lack 

of efficacious screening procedures and the stagnant long-term survival rates despite an improved 

understanding of the clinical features of HGSC, much of the current research efforts focus on 

molecularly defining the primary disease in order to efficaciously and rationally treat it. 

 1.3 Current standard treatment. Over the last forty years, the introduction of cisplatin18 

in 1978 and paclitaxel19 in 1992 as chemotherapeutic agents is partially responsible for the steady 

increase in five-year survival rates. Surgical advancements have also increased survival in patients 

with ovarian cancer. Residual disease after surgery, even as small as 1 mm in size, is inversely 

correlated with survival even in patients with a high tumor burden20,21. Today, the current standard 

treatment for HGSC is primary surgical cytoreduction to no visible residual disease, paired with 
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adjuvant (i.e. given after surgery) carboplatin and paclitaxel combination chemotherapy. Despite 

these advancements in our understanding of HGSC treatment, twelve-year survival rates, remain 

relatively unchanged22 and new treatment strategies are sought every day. 

 Because of the significant survival disadvantage observed when optimal surgical 

cytoreduction is not reached, neoadjuvant chemotherapy (NACT) has become increasingly popular 

as an alternative in patients for whom a good surgical outcome is unlikely. Neoadjuvant 

chemotherapy is the administration of chemotherapy prior to surgical cytoreduction in order to 

reduce the tumor burden. Since achieving optimal cytoreduction is difficult in patients with 

advanced stage disease and high tumor burden, NACT is designed to lower that burden prior to 

surgery, and by that increase the rate of patients achieving optimal cytoreduction and reduce the 

complication rates. In two large scale, randomized controlled trials comparing primary surgical 

cytoreduction and neoadjuvant chemotherapy, no differences in median survival were observed 

between the two groups23,24. NACT has also been linked to lower rates of surgical complications 

and side effects, making it a viable option for some women with increased tumor burden or women 

that are not stable enough for upfront aggressive surgery at the time of diagnosis25. As a result, the 

use of NACT has doubled from 1990 to 2010 and is now used in 40% of women with HGSC as 

the primary treatment strategy26. 

 In short, primary debulking surgery (PDS) followed by 6-8 cycles of carboplatin and 

paclitaxel combination chemotherapy remains the preferred treatment strategy for HGSC. In 

selected patients, 3-6 cycles of carboplatin and paclitaxel combination neoadjuvant chemotherapy 

followed by surgery and additional chemotherapy may be beneficial. Due to its aggressive nature 

and its lack of treatment options, HGSC is a prime candidate for new personalized treatment 

options that take the genomic features of the disease into consideration.  
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2. Targeted Treatment Ovarian Cancer 

 2.1 Personalized medicine. The current treatment of ovarian cancer, namely carboplatin 

and paclitaxel combination chemotherapy, is cytotoxic. This means that the drugs are toxic to all 

living cells, not just cancer cells. These agents preferentially kill cancer cells by taking advantage 

of their ability to divide rapidly. In other word, if a cell’s DNA is damaged and tries to divide 

before repairing the damage caused by cytotoxic agents, it will die. On the other hand, healthy 

cells should be able to repair the damage before they divide and live. However, some healthy cells 

that divide rapidly, such as hair or gut cells, are heavily affected by cytotoxic agents, which 

explains side effects such as hair loss and extreme nausea experienced by some cancer patients. 

Targeted treatment, personalized care and precision medicine are synonyms for a single clinical 

aspiration: to target a faulty molecular pathway unique to cancer cells in order to specifically kill 

them while leaving healthy cells unscathed. Such treatments are made possible by the substantial 

biomedical understanding of carcinogenesis gained over the past twenty years, and the 

technological feats that allow scientists to read the genome of cancer cells on a scale and speed 

that is continuously expanding (reviewed in Reuter et al.27). 

 For HGSC, the only successful and currently approved targeted therapy is the inhibition of 

poly(ADP-ribose) polymerase (PARP) in cancers with a known vulnerability in the homologous 

recombination DNA repair pathway (HRD)28–31. 

2.2 The homologous recombination DNA repair pathway1. Faithful genome replication 

and repair is essential for genomic integrity within organisms. DNA breaks can take multiple 

forms. The most deleterious one is arguably the double-strand breaks (DSB), in which both strands 

                                                 
1 For an exhaustive, recent review of the different DNA repair pathways, including DSB repair, please refer to 
Ranjha et al.32 
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of the chromosome are cleaved, making the cell vulnerable to important losses of genetic 

information if left unrepaired, or if repaired inaccurately. They can be caused by ionizing radiation, 

reactive oxygen species and replication fork breakage during DNA replication. Homologous 

recombination-mediated repair is relatively error-free compared to the alternative non-

homologous end joining (NHEJ) DSB repair pathway and is the preferred method of DSB repair 

in the G2 phase after DNA replication33. 

 The HRD procedure can be separated into three different stages (figure 1). The pre-

synapsis step requires the formation of single-stranded DNA at the breakage site to allow for 

homology search on the sister chromatid. For this purpose, DNA ends are resected by 5’ to 3’ 

degradation to form 3’ single-stranded DNA (ssDNA) overhangs. This is accomplished by the 

MRN complex, composed in humans of MRE1134, RAD5035 and NBS136, and the other necessary 

accessory proteins EXO137, DNA238, CtIP39 and BLM38. After processing, binding of RPA is 

necessary to stabilize the ssDNA in order to avoid further degradation or the formation of 

secondary structures40,41. 

 Following pre-synaptic processing, RPA is replaced by RAD51 filaments to initiate the 

homology search42,43. However, this dynamic process is slow and limited by the large amount of 

RPA present on ssDNA that creates a barrier against RAD5143,44. To counter this effect, multiple 

mediators have been identified that facilitate the RPA-Rad51 exchange on the ssDNA overhangs. 

BRCA2,45,46 its molecular partner PALB247, and, to a much lesser extent, RAD5248, are a few of 

the identified facilitators of the RPA-RAD51 exchange.  

The exact mechanism by which RAD51 finds the homologous sequence is poorly 

understood in eukaryotes. Much of the mechanistic insights come from research on its bacterial 

homolog, RecA49,50. In short, following strand invasion and D-loop formation, homology to the 
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ssDNA sequence of interest is suggested to be tested in smaller groups of nucleotide triplets, 

quickly discarding non-homologous sequences until satisfactory homology is found in the sister 

chromatid51.  

 Following a successful homology search, the post-synaptic step involve strand elongation 

and ligation of the broken ends, forming a double Holliday Junction52. The exact mechanism by 

which Holliday Junctions are resolved in human is still debated. While HRD-mediated pathways 

may result in crossovers of genetic information in meiotic cell division53,  HRD DSB repair seems 

to favor a non-crossover product through a crossover suppression mechanism that is still under 

exploration54–57.  

 In short, DSB repair through HRD is an extremely delicate and intricate process that 

involves an ever-increasing number of molecular players (figure 1). In some instances, the proteins 

identified have multiple roles in the process. BRCA1, for example, is a master regulator of HRD 

that both accelerates ssDNA processing through direct interactions with CtIP in the pre-synaptic 

stage58, and facilitates Rad51 loading by regulating BRCA2 through PALB247,59,60. In other 

instances, the signaling processes are multidimensional and require large complexes, such as the 

Fanconi Anemia (FA) complex composed of thirteen proteins, each playing an important role in 

DSB repair (reviewed by Moldovan and D’Andrea61; genes listed in figure 1). Due to its 

complexity, its dependence on its components, and its crucial role in keeping the genome’s 

integrity, the HRD pathway is unsurprisingly faulty in many human cancers, including 

approximately 50% of all HGSC62.  
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2.3 HRD defects in HGSC. Pierre Paul Broca observed in the nineteenth century that some 

women from cancer-afflicted families were more prone to develop breast cancer.63 This eventually 

led to the identification of rare germline mutations in the HRD pathway, or mutations arising in 

the germ cells, that could be transmitted from one generation to the next and predispose carriers to 

an increased risk of certain types of cancer64. It is thought that one-fifth of ovarian cancer cases 

arise from this familial predisposition called Hereditary Breast and Ovarian Cancer (HBOC)65,66. 

Women with HBOC have an estimated 40-59% risk of developing ovarian cancer by age 7067,68, 

which is much higher than the 1.3% lifetime risk observed in non-carriers1.  However, while 

BRCA1 and BRCA2 may be the best-described HBOC susceptibility genes64,69, they are thought to 

account for a mere 25% of all HBOC cases70. While several genes have been found to confer 

Pre-Synapsis 

Synapsis 

Post-Synapsis 

Role Protein 

Pre-Synapsis 
NBS136, RAD5035, MRE1134, CtIP39, 

EXO138, DNA238, WRN63, BLM38, RPA40 

Synapsis RAD5150, BRCA246 

Post-Synapsis 

TOPOIIIα64, RMI165, RMI265, MUS8166, 

EME166, SLX166, SLX466, GEN167, XPF68, 

ERCC168, POLE69, POLD70, LIG171 

Regulation 

PALB259, BRCA159, RAD51B72, 

RAD51C72, RAD51D72, XRCC272, 

XRCC372, DSS173, SWS174, RAD5475, 

RAD5276, RECQ577, FBH178, PARI79, 

RTEL180, RECQ181 

Fanconi Anemia 

Genes (Reviewed 

in Moldovan and 

D’Andrea61) 

FANCA, FANCB, FANCC, FANCE, 

FANCF, FANCG, FANCL, FAAP20, 

FAAP100, FANCI, FANCD2, FANCJ 

(BRIP1), FANCN (PALB2), FANCD1 

(BRCA2) and FANCO (RAD51C) 

 
Figure 1: Homologous recombination DNA double-strand break repair and associated genes. Schematics of 
DNA double-strand break repair. Following damage, the DNA ends are resected by 5’ to 3’ degradation to form 3’ 
ssDNA overhangs. With the help of the appropriate accessory protein, the ssDNA stretch invades the sister chromatid 
in search of homology, forming a D-loop. When the appropriate section is found, the broken DNA strands are 
polymerized and ligated to the free ends, creating a double Holliday Junction. The junctions are preferentially resolved 
in a non-crossover fashion, effectively ending the accurate repair of DNA DSB without the loss of genetic information. 
Next to the figure is a list of the main molecular players in DNA homologous recombination DSB repair. This list is 
not exhaustive. 
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susceptibility to ovarian cancer66,71, a significant proportion of families suffering from HBOC do 

not have an identifiable genetic explanation for the syndrome.  

Most germline mutation occur at a single locus inherited from the mother or father. Thus, 

assuming allelic balance, or the equal transcription of the mutated and wildtype alleles, only half 

of the translated protein originating from that locus should be functional. In some cases, this results 

in an abnormal phenotype and such a gene is deemed haploinsufficient. BRCA1 is thought to be 

haploinsufficient, making carriers of a pathogenic variant more likely to accumulate mutations and 

eventually develop cancer72,73. In other cases, a single functional allele may be enough for proper 

molecular function. In those cases, cancer may arise as a result of the somatic loss of the wild type 

allele, a theory known as the “Two-Hit” hypothesis74 that has since been described in ovarian 

cancer75. However, somatic mutational driver events, which are non–hereditary mutations arising 

from cells in the body that are not germline, may also occur and be deleterious in the absence of 

germline mutations. Given that four fifths of ovarian cancers are sporadic, or arise without 

hereditary causes, much attention has been given to uncovering the somatic drivers of the disease. 

Data from The Cancer Genome Atlas (TCGA) project, a large scale, multi-institution effort 

to unveil the somatic landscape of HGSC at the genetic, transcriptomic, epigenetic and proteomic 

levels, revealed that somatic mutations in HGSC are generally confined to very specific genes and 

pathways62,76. HGSC is characterized by a relatively light mutational burden compared to other 

epithelial cancers, and recurrent mutations are rare and limited77. BRCA1, BRCA2, and NF1 are 

the top 3 recurrently somatically mutated genes in HGSC and are mutated in 5%, 3% and 6% of 

cases, respectively. Most other somatic mutations described in large scale analyses are found in 

≤1% of cases when analyzed on a gene-by-gene basis. However, when analyzed as a group of 

genes within specific molecular pathways, it was found that most of the mutations in ovarian 
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cancer, somatic or germline, occur in the homologous recombination DNA repair pathway and 

that such defects affected up to 37% of patients with HGSC.76 Whether all mutations found actually 

affect the phenotype of the cancer, however, remains up for debate. 

Despite a light mutational burden, HGSC is heavily affected by copy-number variations 

(CNV), epigenetic changes and other chromosomal rearrangements. Again, the HRD pathway is 

disproportionally affected by such changes. Promoter hypermethylation was not only found in 

BRCA1 in 11.5% of cases, but also in RAD51C in another 8% of cases62. Other HRD-associated 

genes such as EMSY and PTEN were also found to be aberrantly amplified in 8% of case and 

deleted in 7% of cases, respectively62. When all of the different kinds of HRD deficiencies are 

taken into account, TCGA estimated that around 50% of HGSC cases were HRD-deficient. This 

observation corroborated a previous large-scale gene expression study of HGSC suggesting that 

many BRCA-wildtype tumor displayed a BRCA mutated-like, or an HRD deficient, gene 

expression profile78. 

2.4 PARP inhibitors and targeting HRD defective cancer. PARP is a protein necessary 

for single stranded break (SSB) DNA repair79. It is responsible for the recognition and flagging of 

the breakage site through a process dubbed parylation, which is the formation of poly(ADP-ribose) 

chains at the breakage site. This process recruits the other molecular players necessary for 

successful repair (reviewed by Lord and Ashworth80). If a single-strand break goes unrepaired, 

subsequent chromosome synthesis creates a double strand break (figure 2). If a cell is HRD-

deficient and cannot repair the newly formed DSBs, they accumulate and the cell eventually 

undergoes apoptosis. PARP inhibitors, by disrupting SSB repair, lead to DSB that cannot be 

repaired in HGSC patients with BRCA1 or BRCA2 germline mutations. PARP inhibitors thus lead 

to synthetic lethality (figure 2), meaning they specifically target ovarian cancer cells, while not 
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affecting normal cells that have functional BRCA, and normal DSB repair. This has led to the 

approval of oral PARP inhibitors for the treatment of cancers with BRCA mutations28,29,81,82. 

However, such germline mutations are only present in about 15% of HGSC cases and an additional 

35% of patients with HRD-deficient cancers also benefit from such therapies83. The lack of reliable 

predictors of somatic HRD deficiency beyond mutations remains a challenge, and none of them 

are currently approved for use in the clinic for HGSC. 

 

3. Beyond HRD: The Other Molecular Features of HGSC 

 3. 1 TP53 inactivation. Biallelic loss of the tumor suppressor TP53 are almost ubiquitous 

in HGSC (85 – 100%)62,84–86. TP53 encodes the p53 protein, which is most notably responsible for 

cell cycle arrest and apoptosis in response to stress (reviewed extensively by Bieging et al.87). Its 

transcriptional targets arrest the cell cycle (p21, WAF1, Cip1), promote apoptosis (Bax) and block 

mitogenic growth factors (IGF-BP3). Moreover, due its wide range of targets and potentially 

damaging functions, p53 is regulated by a plethora of post-translational modifications and 

interactions, each with its own upstream trigger in response to unique stressors, and similarly 

unique downstream effects (reviewed by Kruse and Gu88). In normal cells, p53 is transient and 

possesses a very short half-life, because it is also responsible for the transcription of its own 

Figure 2: Synthetic lethal mechanism of PARP inhibition. Under normal circumstances, PARP signals the 
presence of SSBs. If a SSB is left unrepaired due to PARP inhibition, DNA replication creates a DSB. In turn, if the 
HRD machinery is damaged in any sort of way, the DSB are also left unrepaired, leading to their accumulation. 
Accumulation of cellular DSBs triggers apoptosis, and the cell dies. Cells with functional HRD are left relatively 
undamaged by PARP inhibition. 
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negative regulator, the E3-ligase MDM2 that targets it for ubiquitin-mediated proteosomal 

degradation89–91. It’s quartenary structure involves the formation of a tetramer involving four p53 

molecules92,93  

Loss-of-function occurs through a combination of mutations in it DNA binding domain 

and chromosome 17 loss94. Interestingly, while most tumor suppressor associated-mutations are 

frameshifts, TP53 mutations are mostly point mutations in its DNA binding domain. Slight 

changes in p53 confirmation because of a single amino acid shift entirely prevents it from binding 

its highly specific target DNA regions. 

Because of its crucial role in regulating apoptosis and its sensitivity to point mutations, it 

comes as no surprise that p53 inactivation is one of the early events of carcinogenesis in multiple 

types of cancer. In fact, it is widely acknowledged as the most recurrently defective gene in human 

cancers87,95. Mutations in TP53 are an exclusive feature of the serous subtype in ovarian cancer, 

and it’s status is often used by pathologists to derive the final diagnosis of this particular subtype. 

 3.2 Cell cycle pathway perturbations. As previously discussed, HRD deficiency is the 

predominant feature of about half of all HGSC cases. However, much less is known about the 

molecular drivers of the other half of cases, and no targeted therapies have been developed for 

them. What we do know is that they tend to fare worse than patients with HRD deficiencies under 

standard therapeutic conditions62. HRD-deficient tumors are more sensitive to cytotoxic agents 

due to their inability to repair the DSBs caused by the standard chemotherapeutic agent 

carboplatin, a DNA cross-linking agent96.  

 One of the most cited defect in HRD-proficient HGSC cases is CCNE1 focal 

amplification62. Cyclin E1 is one of the main regulator of G1 to S phase transition and is under 

tight regulation to prevent uncontrolled cell division97. While the level of CCNE1 mRNA is not 
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necessarily associated with survival, overexpression is mutually exclusive from HRD deficiency, 

probably due to a synthetic lethal relationship between CCNE1 and members of the HRD 

pathway98. Selective targeting of CCNE1 in cell lines overexpressing this same gene as had some 

recent successes, but further validation in pre-clinical models is needed to exploit this new strategy 

in the clinical setting99. Functionally, CCNE1 is thought to inhibit Rb, which is itself an inhibitor 

of E2F1, one of the main transcription factors driving the cell cycle (reviewed by Polager and 

Ginsberg100). Such defects are thought to drive the cell cycle to bypass G1/S and G2/M checkpoints 

in cancer cells. Other recurrently overexpressed or amplified cell cycle genes are CHEK1, CHEK2, 

ATR, ATM and FOXM162. 

 3.3 Other pathways of interest. Notch signalling was also found to be deregulated in 22% 

of HGSC cases in the TCGA cohort. NOTCH3 and its activators JAG1, JAG2, and MAML1-3 were 

found to be amplified or to bear activating mutations that activated the signaling pathway62. PI3K 

and RAS signaling pathways were deregulated in an additional 45% of cases, notably through 

PTEN deletions and loss-of-function mutations, PIK3CA activating mutations or amplifications, 

NF1 deletion or loss-of-function mutations, and KRAS amplifications62. Empowered by successes 

in melanoma and non-small cell lung cancer, immune signaling pathways and immunotherapy 

have garnered increased interest in oncology over the last few years (reviewed by Khalil et al.101). 

However, in HGSC, immunotherapy has enjoyed limited successes despite its potential in a subset 

of patients. For example, a higher mutational burden, a higher expression of PD1 and PDL1 

proteins, and an increased number of tumor infiltrating lymphocytes have been shown to increase 

response to various immunotherapies101. In HGSC, patients with BRCA mutations and patients 

who received neoadjuvant chemotherapy were shown to possess a number of those characteristics, 

making them possible candidates for such therapies102,103. However, the number of studies showing 
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such correlations are limited, and further investigation would strengthen the rationale behind 

immunotherapy use in a defined subset of patients with HGSC. 

 3.4 Summary. The most common, known defective molecular pathways in HGSC are 

summed up in figure 3A-C. While multiple pathways other than HRD have been described as 

deregulated in HGSC, little is known about how these defects are featured after neoadjuvant 

chemotherapy or at recurrence. A better understanding of how they may be selected in or out 

following chemotherapy may improve outcomes for some patients HGSC by guiding subsequent 

treatment modalities.  
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4. The Neoadjuvant Challenge 

Critics of neoadjuvant chemotherapy use in HGSC suggest that tumor burden reduction 

through chemotherapy leads to microscopic disease sites that elude surgeons at the time of surgery, 

which may cause early recurrence. Others also claim that it may cause early resistance to platinum 

agents. Such claims, however, are largely unsubstantiated or anecdotal. NACT is a viable option 

for many patients, especially those with advanced stage disease, unresectable tumor burden or 

important comorbidities. In this new era of precision medicine, understanding the molecular 

drivers of residual HGSC after neoadjuvant chemotherapy may allow for the optimization of 

neoadjuvant and adjuvant treatment procedures. 

Molecular knowledge of post-NACT HGSC samples, is lacking. Part of the reason is that 

widespread neoadjuvant administration is relatively new in HGSC treatment, and only recently 

has it seen an increase in use104. One study reports that BRCA1 or BRCA2 mutated cells are 

preferentially killed during neoadjuvant chemotherapy105. Instances of BRCA1  germline mutation 

reversions in residual tumors106 have also been reported, while others have observed changing 

levels of tumor-infiltrating lymphocytes102. It was also shown to lower the cellular levels of PARP 

in residual disease107. However, to our knowledge, none have looked deeper into the genomics of 

post-NACT HGSC tumors or associated the post-NACT features to outcome.  

The goal of the current study is to partially characterize the genome of residual tumor after 

neoadjuvant chemotherapy and correlate those characteristics to patient outcome (Figure 4). 
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Figure 4: Graphical Abstract 
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Methods 

 
 1. Patient cohort and clinical data. For patients who were diagnosed and treated for 

HGSC at our institution between 2003 and 2015, tissue and blood samples were collected at the 

time of surgery and stored in the gynecologic oncology tumor bank (protocol #03-041). All 

patients participating in biobanking and research activities gave informed written consent. During 

the post-surgical surveillance period, follow-up examinations were performed at four-month 

intervals during the first two years from diagnosis, at six-month intervals during the fourth and 

fifth year, and yearly thereafter. For each patient, information such as age, body mass index (BMI), 

histologic type, tumor grade, FIGO stage, extent of cytoreduction, and chemotherapy treatment 

history, was collected in a prospectively maintained clinical database Patient identifications were 

anonymized to prevent identification. This study was approved by the Jewish General Hospital 

Research Ethics Board (#15-070). Progression-free survival was defined as the time from 

diagnosis to evidence of recurrence by imaging, to the time of death or to the latest follow-up. 

Overall survival was defined as the time from diagnosis to the time of death or latest follow-up. 

 2. DNA and RNA Analysis. Approximately five hundred, fresh-frozen high-grade ovarian 

cancer samples were available in our biobank. Priority was given to those with matched complete 

clinical history, and approximately two hundred samples were selected for further processing. For 

each of them, 12µm sections were cut and subsequently stained with hematoxylin and eosin 

(H&E). Each slide was reviewed by a gynecological pathologist in order to verify histology and 

estimate the cancer content. Non-high grade ovarian cancer samples, and samples with low cancer 

content were removed from subsequent procedures. RNA and DNA were then serially extracted 

from the selected samples using the Bio Basic All-in-One DNA/RNA/Protein Mini-Prep Kit (Bio 

Basic Inc., Markham, ON, Canada). RNA and DNA concentrations were measured using the 
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NanoDrop ND-100 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). 132 

samples had the appropriate mRNA and DNA quality and quantity. 

 Gene expression was measured using the NanoString PanCancer Pathway Panel 

(NanoString Technologies, Seattle, WA, USA). The panel contains probes against 770 genes 

implicated in carcinogenic pathways, curated from data by The Cancer Genome Atlas (TCGA). 

The nCounter SPRINT Profiler (NanoString Technologies, Seattle, WA, USA) was used to run 

the reactions. In addition to the 770 genes present on the default panel, 30 additional genes of 

interest were added for their potential involvement in ovarian cancer biology. Normalization of 

the raw NanoString data was performed using the nSolver Analysis Software v4.1 (NanoString 

Technologies, Seattle, WA, USA). The optimal normalization method was determined by testing 

each of them using technical replicates, and measuring the correlation between the replicates for 

each normalization method. In short, no background subtraction was performed and raw counts 

were normalized to the geometric mean of an optimal number of reference genes by the NSolver 

Software. The normalized counts were log2 transformed for subsequent analyses (See sections 1 

and 2 of the appendix for more details on the normalization procedure and the genes included in 

the analysis). 

 For DNA analysis, hotspot next generation sequencing was performed on the Illumina 

MiSeq (Illumina Inc., San Diego, CA, USA). The Roche Nimblegene TruSeqLT (Roche, Basel, 

SWI) preparation kit was used to create a library of 400 targeted regions in 168 genes of interest 

involved mostly in homologous recombination or DNA repair. Results were aligned against the 

hg38 UCSC Genome Browser assembly (NCBI Assembly ID: GRCh38, GCA_000001405.15).  If 

multiple variants were identified at a single locus of the same sample, the variant with the 

maximum frequency value was used. The Ensembl Variant Effect Predictor was used to annotate 
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the resulting VCF files. In short, each gene was compared to its canonical transcript in the Ensembl 

database, and each variant was matched to existing cases in mutation repositories (e.g. COSMIC, 

ClinVar). Since drivers of carcinogenesis are thought to be sporadic in the population, only 

missense alleles with a population allele frequency below 1.5% in the gnomAD database108 were 

kept for further downstream analysis. The raw BAM files were visualized using the Integrated 

Genome Viewer109, if needed. Synonymous and intronic mutations were removed, unless the later 

occurred within three base-pairs of a coding exon to account for splice-region mutations. The 

pathogenicity of missense mutations was assessed in silico using the following tools: PolyPhen-

2110, Sift111, M-CAP112, MutationAssessor113, and REVEL114. Mutations were kept if predicted to 

be pathogenic by at least three of the five predictor algorithms.  

 In TP53, next-generation sequencing was designed to capture exons 5 through 9, which 

captures approximately 80% of mutations occurring in the gene. Sanger sequencing was also 

performed on exons 4 and 10. The sequences of the primers used were generously provided by Dr. 

Patricia Tonin, and their sequence can be found in section 3 of the appendix. The DNA regions of 

interest were amplified using the Qiagen Hotstar Taq Plus DNA polymerase kit according to the 

manufacturers instructions (QIAGEN Inc., Toronto, ON). The reactions were run on an Eppendorf 

Mastercycler ep Gradient S (Eppendorf, Hamburg, GE) at 95°C for 5 minutes, 35 cycles of 94°C 

for 45 seconds, 60°C for 45 seconds and 72°C for 1 minute, and, finally, 72°C for 10 minutes. The 

sequencing reactions were performed by Genome Quebec. 

3. Semi-supervised class prediction and consensus clustering. The semisupervised 

method of Bair et al.115 was used to identify biologically relevant survival sub-groups. First, the 

entire NACT cohort was randomly separated into either a training or testing cohort. Second, a cox 

proportional hazard analysis was performed using the Significance Analysis of Microarrays 
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(SAM) tool116. In short, SAM measured the strength of the relationship between each gene of our 

dataset and the overall survival of each patient in the training set. A thousand permutations of the 

survival times were performed by SAM to identify the significant genes at each permutation in 

order to estimate the False Discovery Rate (FDR). Genes with a q-value < 0.25 were kept for 

further analysis. SAM has the advantage of being designed specifically for biological experiments 

and controlling for multiple testing. Third, with the genes identified, consensus clustering117 was 

performed. In short, k-means clustering of the Euclidian distances between each sample was 

repeatedly performed using 80% of the data at random for each step. The proportion of times two 

samples occupy the same cluster was calculated for a set number of clusters (k = 1 to 4), creating 

a consensus score for each patient pair. A value of one represents two samples clustering together 

all the time and a value of zero represents two samples never clustering together. The optimal 

number of clusters was determined by evaluating the relative change in consensus between k and 

k-1 clusters, and the proportion of ambiguously clustered pairs (PAC) method118. Survival between 

the two identified groups was assessed by the Kaplan-Meier method, and the differences calculated 

using the Log Rank test. The same clustering method was then applied to the testing set to validate 

the robustness of the gene expression signature. 

4. Statistical analyses.  Each gene was assigned to one or more molecular pathways by 

the NanoString bioinformatics team based on curated data from the literature. The canonical 

pathways represented were: homologous recombination DNA repair (HRD), mismatch DNA 

repair (MMR), DNA repair – Other (i.e. not HRD or MMR), Wnt signaling, Cell Cycle, Hedgehog 

signaling, Jak-STAT signaling, epithelial to mesenchymal transition, Notch signaling, TGF beta 

signaling, PI3K pathway, Ras signaling, transcription regulation, mitotic maintenance, and 

chromatin modification. A pathway score was derived for each pathway in each patient using 
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singular value decomposition of their expression data, as previously described by Tomfohr, Lu & 

Kepler119. Differential expression was measured using the negative binomial generalized linear 

model. To further control for the possible variable tumor content between each sample, a principal 

component analysis was performed on the somatic variant allele frequencies for all variants and 

extracted the eigenvector of the first principal component, as previously described120. This was 

used as a control variable weighing the tumor content of each sample in order to model gene 

expression differences holding the tumor content even. The Pearson correlation coefficient 

between each pathway was measured and the difference in pathway scores assessed using an 

unpaired t-test. The pathway scores and the differential expression analyses were computed using 

the built-in functionalities of the NSolver software, while the heatmaps, correlation, boxplots and 

t-tests were generated in the R statistical environment. The p-values for the differential expression 

analysis and the t-statistics of the pathway scores were adjusted by the Benjamin-Hochberg FDR 

method. 
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Results 

 1. Patient cohort selection One hundred and thirty-two samples had previously been 

analysed using the NanoString gene expression assay and next-generation sequencing as part of a 

larger effort by our group to molecularly characterize the ovarian cancer samples from our tumor 

bank. For this study, 57 samples were included based on the following criteria: complete mRNA 

expression and DNA mutation data, stage III or IV cancer, and high-grade serous on final 

pathology. For the mutational analysis, 30 chemotherapy-naïve, primarily debulked, stage III/IV 

HGSC samples were included for mutational frequency comaprisons. 

2.  Identification of two biologically defined survival subgroups in the NACT cohort. 

The mRNA expression of 800 genes was measured in 57 stage III/IV high-grade serous ovarian 

cancers previously exposed to neoadjuvant chemotherapy. 

The data was normalized and randomly separated into a 

training (n = 28) and validation set (n = 29). After univariate 

ranking of the genes according to the strength of their 

relationship with overall survival in the training set, the genes 

most strongly associated with overall survival were prioritized 

(Table 1). Using those genes, consensus clustering separated 

the set into two groups (Figure 5A). The two groups did not 

have a significant difference in progression free survival  

(Figure 5B; log rank p = 0.69), but did show a significant 

difference in overall survival (Figure 5C; log rank p = 0.0061). 

Using the same genes identified in the univariate gene 

ranking in the training set (Table 1), consensus clustering was then performed on the samples from 

Table 1: SAM Analysis Results. 

List of genes used in the consensus 
clustering analysis. The score reflects 
the coefficient of the Cox Proportional 
Hazard regression analysis. The Q-
value represents the FDR.  
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the testing set (Figure 5D). Similarly, the two identified groups had a non-significant difference in 

progression-free survival (Figure 5E; log rank p = 0.083), but a significant difference in overall 

survival (Figure 5F; log rank p = 0.0084). 

 By means of a semi-supervised, internally validated consensus clustering method, our 

cohort of patients treated with NACT was separated into a Good and a Bad outcome group (Table 

2). Together, in a univariate analysis, the Good outcome group had better OS and PFS, and the 

rate of complete surgical cytoreduction was higher in the Good outcome group (Table 2). 
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Figure 5: Semi-supervised, internally validated consensus clustering. A) Consensus clustering of samples in 
the training set revealed two molecularly distinct clusters. The survival of patients in the clusters uncovered in 
the training set were compared through a Kaplan-Meier analysis for B) progression-free survival and C) overall 
survival. D) The same analysis in a testing set divided the testing cohort in two. The patient clusters in the testing 
set did not have a significantly different E) progression-free survival, but did have significantly different F) 
overall survival. 
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 Good Outcome  Bad Outcome   

 n = 28  n = 29  p-value  

Age  

< 50  8  4  

0.4200  50 - 70  13  16  

>70  7  9  

Stage  

3C  26  25  
0.6700  

4  2  4  

No. NACT Cycles  

3  6  8  

0.9300  4  17  16  

5+  5  5  

Progression Free Survival  

Median [IQR]  47 [37 - 61]  35 [23 - 41]  0.0160  

Overall Survival  

Median [IQR]  117 [82 - 143]  63 [48 - 86]  0.0001  

CA125 Reduction by NACT  

>95%  13  8  

0.2000  
75 - 95%  9  16  

50 - 75%  3  4  

<50%  3  1  

BRCA1/2 Germline Mutation  

Mutated  8  5  

0.5900  Wild Type  16  20  

Not Tested  4  4  

Surgical Outcome  

Optimal  27  21  
0.0250  

Suboptimal  1  8  

NACT Treatment Type  

Carbo-Taxol  28  27  
0.4900  

Carbo Only  0  2  

Percent Cancer Tissue  

100%  18  22  

0.6200  50 - 100%  7  5  

<50%  3  2  

Table 2: Patient characteristics by outcome group.  

Characteristics of patients included in the comparative analysis of the NACT cohort, separated by predicted outcome group  
* P-values were computed using the Fischer’s exact test for categorical variables, the Wilcoxon rank-sum test for continuous 
variables, and the Log-Rank test for survival variables  
† An optimal surgical outcome was defined as residual residual disease <1mm  
‡ Progression Free Survival was defined as the time of diagnosis to evidence of recurrence by imaging or death  
§ Overall survival was defined as the time from diagnosis to death or the latest date of follow-up  
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3. Multivariate survival analysis. Complete surgical reduction is a major clinical 

determinant of outcome in the treatment of HGSC. Other factors, such as germline BRCA1/2 

mutations may also affect survival. To control for their potential effects, a multivariate Cox 

Proportional Hazard survival analysis was performed, and the results are reported in Table 3. After 

controlling for external clinical variables, molecular cluster membership remained significantly 

associated with overall survival (HR = 6.4; 95% CI = [2.6, 15.5]; p = 0.0004). In addition to cluster 

membership, age was also found to be significantly associated with overall survival. However, the 

hazard ratio is very small, suggesting that although age might have a statistically significant effect 

on survival, that same effect may be small (HR = 1.03, 95% CI = [1.00, 1.1], p = 0.047). Molecular 

cluster membership was significantly associated with progression-free survival in a univariate 

analysis (Median: 47 months vs 35 months; p = 0.016; Table 2), but the association did not remain 

significant in the multivariate analysis. Nonetheless, the results suggest that molecular 

characteristics may explain the differences in overall survival better than clinical characteristics in 

our patient cohort.  
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 Progression-Free Survival Overall Survival 

Variable HR [95% CI] p-value HR [95% CI] p-value 

Group Membership 

(Bad vs Good) 

1.7 [0.9,3.2] 0.08 4.8 [2,11.2] 0.0003 

BRCA Mutated 1.4 [0.7,3] 0.32 0.89 [0.37,2.2] 0.8000 

CA125 Reduction 1 [0.99,1] 0.97 0.99 [0.98,1.01] 0.4000 

Stage (4 vs 3C) 1.8 [0.7,4.7] 0.20 1.5 [0.5,4.8] 0.5000 

Surgical Outcomes 

(Suboptimal vs Optimal) 

2.2 [0.9,5.2] 0.07 1.4 [0.5,3.7] 0.5000 

Age 1.01 [1,1.04] 0.09 1.03 [1,1.1] 0.0470 

Cycles of NACT 0.9 [0.7,1.3] 0.80 1.1 [0.7,1.7] 0.6000 

Table 3: Multivariate survival analysis.  

Evaluating the association of molecular cluster membership with overall survival and progression free survival 
using a Cox Proportional Hazard analysis in order to control for the effect of various clinical variables on survival.  
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4. Differential gene expression analysis. To gain a wider perspective of the molecular 

differences between each group, a differential expressions (DE) analysis was performed to 

compare the previously identified Good and Bad outcome groups. Seventy-two genes were found 

to be differentially expressed between our two survival groups. The top 50 most statistically 

significantly differentially expressed genes are shown in figure 7. Most of them were 

overexpressed in the Bad outcome group, whereas only 3 genes were found to be overexpressed 

in the Good outcome group (PTEN, PPP2CB, RASGRF1). The complete list of differentially 

expressed genes can be found in section 4 of the appendix. 

 

 5. Gene set analysis. To better understand the main biological processes that differ 

between our two patient groups and interpret the data in a biologically meaningful context, a gene 

set analysis (GSA) was performed. Pathway scores were computed for each patient, and the scores 

compared across the Good and Bad outcome group (Figure 8A). Expression of genes in the cell 

cycle (CC), homologous recombination (HRD) and mismatch repair pathway (MMR) were the 

most statistically significant differentially expressed pathways (p < 0.0005). The chromatin 

remodeling (CR) pathway was also found to be differentially expressed between the Good and 

Bad outcome groups (p < 0.05). In all cases, the pathways were overexpressed in the Bad outcome 

group. No significant differences in expression were observed in the other pathways tested. For 

method validation purposes, GSA was also carried out using the PANTHER Gene Ontology 

Biological Process sorting tool (Figure 8B). After corrections for multiple testing, the differentially 

expressed genes between our two groups mostly participate in cell proliferation (p < 0.0005), DNA 

recombination (p < 0.005), Meiosis (p < 0.05), DNA repair (p < 0.0005), mitosis (p < 0.0005), 

tyrosine kinase signaling (p < 0.05) and response to stress (0.005). Those pathways are closely 
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related to our manually defined gene sets, confirming the results we obtained using our pathway 

scoring algorithm. 

 Gene expression from the HRD and CC pathways play a large role in differentiating the 

Good and Bad outcome groups in our cohort of patient that received NACT. We posited that some 

upstream, intersecting genes common to both pathways may account for most of the difference 

between the two groups. Manual inspection of the differential expression results in both pathways 

using volcano plots revealed that FOXM1 belongs to both pathways and is strongly differentially 

expressed between the two groups (Figure 8C). With FOXM1 as a central point, pathway 

reconstruction using information curated from the literature, GeneMania121 and PathwayNet122 

revealed that FOXM1 is a transcription factor responsible for the expression of most genes 

differentially expressed between our two groups (Figure 9). Together, our data suggests that 

FOXM1 may play an important role in regulating subsequent response to chemotherapy following 

NACT and surgical debulking. 
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= Samples in Good outcome group = Samples in Bad outcome group Column Annotation Key: 

Figure 7: Heatmap of the 50 most differentially expressed genes. The 50 most differentially expressed genes 
are depicted above. Columns represent patient samples, and the names were anonymized in the figure. Gene 
expression levels were normalized across all samples, and the representative Z-scores are represented by rows 
where dark blue represents a low expression, and red a high expression of a given gene. The column annotation 
represent the Good outcome group (black) and the Bad outcome group (grey). 
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More Expressed in Bad Outcome Group More Expressed in Good Outcome Group More Expressed in Bad Outcome Group More Expressed in Good Outcome Group 

A B 

C 

Figure 8: Gene set analysis of the differentially expressed genes. A) Results of the GSA using pathway scoring based 
on the singular value decomposition of the expression of each gene belonging to a given pathway. A higher score 
represents a higher expression of the genes in the represented pathway. Some genes may belong to more than just one 
pathway. B) Results of the GSA using the Protein Analysis Through Evolutionary Relationships (PANTHER). P-values 
are calculated using Fisher’s exact test and adjusted via the Benjamin-Hochberg FDR method. C) Volcano plots of the 
differentially expressed genes in the Cell Cycle pathway (left) and the HRD pathway (right). Genes from the respective 
pathways are highlighted in yellow, and genes that do not belong to the pathway are in grey. Horizontal lines reference 
particular p-value thresholds.  
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Figure 9: Representation of the FOXM1-mediated transcriptional network. The figure depicts a 
reconstruction of the relationship between some of the genes differentially expressed between our two groups. 
Each gene depicted was present on the expression panel. Colors represent the log2 fold-change between the Good 
and Bad outcome groups, ranging from dark blue (overexpressed in the Good outcome group) to red 
(overexpressed in the Bad outcome group). A black box outline represents a FDR lower than 5%, and grey box 
outlines represent a FDR lower than 20%). Transcriptional relationships between genes or groups of genes are 
shown by dashes, while plain lines represent any other type of interactions (i.e. physical, phosphorylation, etc…). 
Transcriptional relationships may be indirect (i.e. through the transcription of a different transcription factor). 
FOXM1 is a sequence-specific transcription factor, and studies have investigated its different targets. Grey boxes 
groups genes according to the molecular pathway to which they belong. 
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6. Mutation analysis. In order to determine whether our NACT cohorts were enriched for 

specific mutations, next-generation sequencing was performed on approximately four-hundred 

mutational hotspots of one hundred and sixty-eight genes involved mainly in homologous 

recombination DNA repair. As a mutation frequency reference, a control group of thirty samples 

from chemotherapy-naïve, primarily debulked patients was also included. As expected, the most 

recurrently mutated genes were TP53 (72%), BRCA1 (16%), and BRCA2 (12%) (Figure 10A). 

Most other genes were mutated at very low frequencies (<3%). The mutation frequency of TP53 

was lower than expected based on previous findings from the literature. However, when the 

mutation frequencies are inspected by group, the TP53 mutation frequency is as expected in the 

PDS group (90%), but significantly lower in the NACT Good outcome group (62%) and the NACT 

Bad outcome group (61%) (Figure 10B). The frequency of BRCA2 germline mutations seemingly 

spikes in the NACT Good outcome group (20%), but the difference was not statistically 

significant. When looking at the percentage of patients mutated in at least one homologous 

recombination gene in each group, 33% of patients in the PDS cohort, 24% of patients in the NACT 

Bad outcome group, and 29% of patients in the NACT Good outcome group were mutated in at 

least one HRD genes (Figure 10C).   
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Figure 10: Mutation analysis results. A) Plot of the mutations in each patient (column) that are part of the NACT good 
outcome cohort, NACT bad outcome cohort or the PDS cohort, by gene (row). Also plotted is the total mutation burden for 
all samples, together, and the number of mutations found in each sample. Red squares indicate a frameshift mutation, green 
a splice site mutation, yellow a missense mutation, purple an inframe indel and darkblue a nonsense mutation. If two 
mutations were found in the same gene, the most deleterious was depicted. The graph was created using the GenVisR 
package. B) Plot of the mutation frequency of select genes, by patient cohort (NACT Good vs NACT Bad vs PDS). C) Pie 
charts representing the percentage of patients with at least one mutation in the homologous recombination pathway, 
separated by group.  
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Discussion 

1. Summary 

 1.1 Identification of novel molecularly defined outcome groups. Previous studies on the 

association of gene expression levels with survival identified clinically relevant molecular 

subgroups in chemotherapy-naïve, primary-derived OC tumors123. However, none have done the 

same for patients with residual diseases after chemotherapy. Patients who respond incompletely to 

NACT represent a minority of patients who may harbor chemotherapy-resistant clonal 

populations. Therefore, studying the underlying genomics of these tumors in the context of 

survival may provide insight into the mechanism of resistance to subsequent therapy and early 

recurrence. In breast cancer, for example, NACT has been shown to change the molecular 

classification of the disease with a direct impact on the treatment strategies124. Moreover, many 

post-neoadjuvant biomarkers have been associated with survival125126,127. From tumor infiltrating 

lymphocytes128 or mutations post-NACT129, much data supports the idea of treatment adjustment 

post-NACT based on the “new” molecular features of the disease130. To our knowledge, we are 

the first to report the molecular features of post-NACT HGSC in the context of survival. 

 First, candidate patients were identified in our prospectively maintained clinical database. 

Ovarian cancer is a clinically heterogeneous disease, and outcomes differ based on the clinical and 

histopathological characteristics of the primary disease. For the purpose of this study, only patients 

with stage III or IV high-grade serous ovarian cancer were considered. Since cancer content can 

have a high impact on expression results, DNA and RNA were only extracted from fresh-frozen 

tumor tissue with a validated high cancer content upon pathology review by an experienced 

gynecological pathologist. We also statistically controlled for tumor content using our mutation 
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data. RNA expression was assessed for 800 genes using a NanoString panel, and mutations were 

assessed in approximately 400 mutational hotspots of 168 genes using next-generation sequencing. 

 Using an internally validated, semi-supervised method we identified two different outcome 

groups in the neoadjuvant-treated population. Unsupervised methods have previously been used 

with some success in identifying patient groups with distinct survival outcomes. However, the 

studies captured a much larger molecular snapshot than we did through whole genome and whole 

exome analyses. Moreover, there is no guarantee that identified subgroups in unsupervised 

analyses will have optimal clinical relevance, which was one of our group’s priority. On the other 

hand, supervised group identification that only uses clinical data (i.e. survival cutoffs) to identify 

groups may hide subtle molecular differences. Since patient survival is most likely due to a mix of 

clinical and molecular characteristics, a semi-supervised method similar to that used in previous 

studies was the favored approach62,123,131. 

 Independent survival model evaluation is important to assess the strength of discovery 

methods. By randomly splitting our data in a training and testing set, we were able to not only 

discover new survival groups, but also make sure that our method was reproducible in an 

independent dataset. Nowadays, thousands of molecular profiles are available online for ovarian 

cancer to cross-validate gene expression findings. Unfortunately, none are available for patients 

that underwent NACT. In other words, all data available comes from chemotherapy-naïve tumors, 

which represent a different patient population to ours. Moreover, even though those molecular 

profiles are available, there is a growing concern about the lack of reliable clinical data, sample 

processing standards and batch effects, which may explain why no single, validated and 

reproducible gene expression signature has emerged from this wealth of data. 
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 1.2 Differential expression and gene set analysis. A differential expression analysis 

between the Good and Bad outcome groups allowed us to uncover genes whose level generally 

changed depending on the outcome. Our results suggest that the cell cycle and homologous 

recombination pathway gene expression may be an important factor driving worse survival.  

Cell cycle genes overexpression in cancer is common. Aberrant cell cycle is necessary for 

escaping the cell’s checkpoints, evading apoptosis, and thus driving tumorigenesis. CCNE1 

amplification is a hallmark of cell cycle deregulation in HGSC62. It is synthetic lethal to HRD 

deficiency98, and is thus a characteristic of worse-outcome cases, although it is not directly related 

to survival by itself132. As expected, it is overexpressed in our worse outcome group. FOXM1, 

CHEK1 and CHEK2 are also important genes overexpressed in the worse outcome group, and are 

interesting due to their roles affecting both the cell cycle and HRD pathways. CHEK1 and CHEK2 

relay the stress responses due to double strand breaks from ATR and ATM, respectively, arresting 

the cell cycle and allowing HRD-mediated repairs in the G2 phase. FOXM1, similarly to CCNE1, 

drives the cell cycle by transcribing genes necessary for G2/M phase transition. Together, FOXM1 

and CHEK1/2 may seem to possess antagonistic functions, but cell cycle regulation is complex 

and the interplay between the different proteins remains poorly understood. For example, FOXM1 

was shown to induce CHEK1 transcription133, and CHEK2 may help stabilize the FOXM1 

protein134. Interestingly, targeting FOXM1, CHEK1 or CHEK2 in HRD-proficient HGSC is an 

increasingly studied possibility. In HGSC cell lines, FOXM1 downregulation was shown to confer 

increased susceptibility to cytotoxic agents135. In a recent Phase II study, CHEK1 and CHEK2 

inhibition in HRD-proficient, heavily pre-treated HGSC cases showed promising clinical 

activity136. Based on our results, such agents may represent early alternatives to traditional 
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cytotoxic agents in patients with high expression of those genes, such as those identified in our 

worse outcome group. 

 Expression of the HRD pathway genes has been related to survival in HGSC before, 

principally with BRCA1, where lower expression due to epigenetic silencing conferred a survival 

advantage62. Interestingly, in our cohort, BRIP1, was the most differentially expressed HRD gene 

between the Good and the Bad outcome group, suggesting that survival-related changes in gene 

expression may not be limited to BRCA1 and BRCA2. Germline mutations in BRIP1 have been 

shown to predispose women to ovarian cancer137, but its expression has not been described in the 

context of survival before.  

1.3 Mutational Analysis. Interestingly, BRCA1 and BRCA2 germline mutations were not 

associated with better survival in our neoadjuvant patient cohort, which was unexpected since each 

of those mutations have been thoroughly validated as risk-inducing, pathogenic mutations. 

However, this may be explained by the nature of our cohort. Patients who respond very well to 

neoadjuvant chemotherapy are not represented in our cohort, because there is no tumor left at the 

time of surgery. Fallopian tube tissue removed as part of the standard of care total hysterectomy 

and bilateral salpingo-oophorectomy at the time of debulking surgery harbors small, microscopic 

sites of residual disease in most patients who underwent NACT, but those are usually found by the 

pathologist after setting in FFPE. The DNA and mRNA of FFPE-embedded tissue is often 

degraded and not useable for high-throughput gene expression or sequencing assays. Therefore, 

our tumor bank only contains samples that are visible to the naked eye of the surgeon at the time 

of surgery and removed for biobanking purposes. Although a link between a good response to 

neoadjuvant chemotherapy and survival has not been established in HGSC, it has been shown that 

BRCA1/2-mutated cells are selectively killed during neoadjuvant chemotherapy, especially if the 
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mutation is accompanied with somatic LOH of the WT allele105. It has also been shown that 

BRCA1/2 mutation-driven loss of HRD functionality may be overcome by alternative molecular 

mechanism and clinical mechanisms, such as desmoplastic reactions86,138. Therefore, our cohort 

may be enriched for patients whose germline mutations in BRCA1 or BRCA2 may not participate 

in HRD deficiency in the remaining cell population. Our samples were not found to be enriched 

for any other particular kind of mutations. 

The lower rate of TP53 mutations in the NACT cohort is intriguing given the very high 

prevalence of such mutations in HGSC. Our first concern was the possibility that the analyzed 

tissue only contained stromal cells and no cancer cells, which would explain the absence of 

mutations. However, we were extremely rigorous in our filtering criteria, and the control group of 

chemotherapy-naïve tumors harbored the appropriate number of mutations. All tissue samples, 

NACT-treated or chemotherapy-naïve, were analyzed by the same gynecologic pathologist who 

was blinded to the patients’ treatments. Moreover, the mutations were analyzed together and 

subjected to the same filtering criteria. As further controls, three cell lines with known mutation 

profiles were included to ensure that all of their validated mutations were found at the end of the 

filtering steps (data not shown). For these reasons, we are confident that the difference in mutation 

frequencies is due to the nature of the patient cohorts. If the difference was due to technical errors, 

we would have seen unexpected mutational profiles in the PDS and cell lines as well. 

The loss of TP53 mutations has previously been observed in a study looking at matched 

pre- and post-NACT breast cancer tissue125. Unlike our results, loss of TP53 mutations in post-

NACT tissue was associated with improved survival. However, given the wide range of p53 

molecular targets and its lack of clear association with survival in other studies, this may an indirect 

correlation explained by other molecular factors that the authors did not investigate. In one of the 
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only studies of pre- and post-NACT HGSC, loss of TP53 mutations was observed in 5 out of 11 

initially TP53-mutated samples105. Interestingly, gain of TP53 mutations was also observed in 3 

out of 11 TP53-wild type samples. This may be explained by the clonal heterogeneity of HGSC, 

and the Sanger sequencing methods used by the authors, which may be too insensitive to capture 

small mutant allele frequencies. Nonetheless, TP53 mutation status, which is a defining feature of 

HGSC to many, may play a role in the chemotherapy induced selection during NACT and should 

be further investigated. 

2. Future Directions 

 2.1 Tissue-Microarrays. A tissue microarray (TMA) contains tissue samples from 

multiple sources, allowing for simultaneous histologic analysis of markers on a single slide. 

Differences in mRNA expression levels are only relevant insofar as the related protein levels are 

similarly affected. In some instances, mRNA levels correlate poorly with associated protein 

levels139. Alternative splicing, post-transcriptional mRNA regulation and post-translational 

modifications may all play a role in how much of the mRNA is actually translated. Analysis of the 

protein levels of genes of interests, such as FOXM1, CHEK1, CHEK2 and CCNE1, would allow 

us to validate our findings and determine whether they warrant further investigation. In other 

words, if no protein levels are detected, there is little incentive to try to inhibit a particular target 

with small molecules or antibodies. 

 Beyond validation, it would be interesting to see whether the levels of tumor infiltrating 

lymphocytes (TIL) and immune checkpoint proteins differ between the Good and Bad outcome 

groups in the NACT cohort, and between the PDS and NACT cohorts as wholes. Ovarian cancer 

lags behind other types of cancer in the field of immunotherapy. However, it has been shown that 

NACT increases TIL infiltration and PD1/PDL1 expression in epithelial ovarian, and that, in turn, 
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increased TIL count and PD1/PDL1 expression correlates with improved response to checkpoint 

inhibitors140,141. In addition, CD8+ TILs are associated with long-term survival in ovarian cancer 

and may help explain why a subgroup of patients undergoing NACT respond very well to 

treatment142. Results from this investigation may help provide a rationale for the use of immune 

checkpoint inhibitors in a subset of patients with HGSC.   

 2.2 Matched pre-NACT, post-NACT and time of recurrence samples. Like many solid 

tumors, HGSC is molecularly heterogeneous143. One weakness of high-throughput genomic 

analyses is the inability to capture the entire molecular landscape of a particular cancer. In fact, it 

has been shown that even on the same primary tumor, different areas show different molecular 

profiles, and may potentially respond differently to chemotherapy144. Nevertheless, personalized 

treatment based on somatic biomarkers, even if they may change from one area of the disease to 

the next, have been successful in clinical trials145,146 although none have been successful in ovarian 

cancer, yet. A better understanding of the resistant sub-clonal populations may further increase 

outcomes for cancer patients. Logically, neoadjuvant administration should select for 

chemotherapy-resistant sub-clones. Therefore, sampling the post-NACT tissue may be more 

informative because it would allow for better molecular identification of the agents of resistance 

for which alternatives treatments exist. Since systematic interval cytoreductive surgery or tumor 

biopsy is uncommon, very little is known about the evolution of HGSC from the time of diagnosis, 

to the time of surgery post-NACT, and to the time of recurrence. In the context of our findings, it 

would be interesting to see whether recurrent disease is more molecularly similar to the post-

NACT sample than the pre-NACT sample, which would indicate that NACT selected the chemo-

resistant disease that is most likely to recur later. Since HGSC is heavily afflicted by chromosomal 
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rearrangements62,86,147, future studies should look deeper into chromosomal abnormalities instead 

of mutations and gene expression.  

 2.3 Pre-clinical modeling. Much of the failure to recapitulate pre-clinical findings in the 

clinical settings may be attributable to the aforementioned molecular heterogeneity. Immortalized 

HGSC cell lines are the workhorses of pre-clinical studies for personalized medicine, but their use 

is limited to the background genomics characterizing a particular cell line. Recently, there has been 

a large effort in improving patient-derived xenograft (PDX) techniques in mice and, most 

importantly, making sure that the models recapitulate the histological and genomic characteristics 

of the tumour. A number of PDX models have been described for high-grade serous ovarian cancer 

that succeeded in recapitulating the intra-tumour molecular heterogeneity and the clinical response 

to cytotoxic agents of the donor148,149. Modeling the pre-NACT, post-NACT and recurrence 

samples in mice may be a favorable alternative to doing so in patients, since it would allow to 

control for outside factors, repeat experiments and avoid unnecessary potential harm to patients. 

Of course, this technique would only account for the contribution of intra-tumour heterogeneity to 

chemotherapy response, and would not model the effect of the tumour microenvironment. 

Nevertheless, it would provide some much-needed answers on the molecular features of post-

NACT samples 
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Appendix 

 
Section 1. Information on the NanoString pathways 

 

 

 

 

 

 

 

 

 

 

 

 

 
Genes added to the panel: ZEB1, XRCC5, ASF1B, EMSY, CLK2, EXO1, FAM134B, 
FOXM1, HIST1H1C, INSIG1, KIF14, KIF2C, MME, MSH4, MTBP, NUP205, CDK12, 
PARP1, PINX1, PMS1, RAD23A, RAD51C, RAD54B, RAD54L, RECQL, RECQL4, TERC, 
TERT, TNKS, SPO11 

  

Supplementary Table 1: List of molecular pathways included on the NanoString panel and the number of genes 
associated with each pathway. Each gene was assigned one or more pathway membership by the NanoString 
bioinformatics team. For our purposes, I subdivided the DNA repair pathway genes into their subcategories, namely: 
homologous recombination, mismatch repair, and other (i.e. all other DNA repair processes). Each of the 30 custom genes 
added by our group was assigned to one of the pathways as well. The complete list of genes can be found online at 
www.nanostring.com/products/gene-expression-panels 
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Section 2. Detailed normalization procedure 

 

 Each NanoString panel contains a number of pre-assigned genes, positive control probes 

and negative control probes for normalization purposes. First, negative control probes are used to 

eliminate background signals. Second, positive control probes are used to adjust for technical 

variability. Finally, a number of probes against genes that are not supposed to vary across 

conditions are included to control for mRNA input (housekeeping genes). To optimize our 

normalization procedure, eight technical replicates were included. Six different normalization 

procedures are suggested by the NanoString bioinformatics team (Supplementary Table 2), and 

each was tested on the eight pairs of technical replicates2. The Pearson correlation between the 

gene expression of each pair was computed and can be found in Supplementary Table 3. The low 

correlation between the replicates for sample 5 were attributed to mislabeling an removed from 

further evaluation. The mean concordance coefficient for the seven remaining samples was 

computed across all six normalization procedures. Method 3 was determined to be the optimal 

procedure.  

First, no background subtraction was performed. Our data had very little noise and most 

negative control probes had a final count of zero. Second, no positive control noralization was 

performed. Positive controls are a set number of artificial probes spikes at defined levels within 

each sample to adjust for variations across lanes, samples, cartridges, and date. Since the positive 

controls and the endogeneous controls serve similar purpose, this step is often optional. Finally, 

the geometric mean of the housekeeping genes was used to control for sample input variability. 

                                                 
2 The method optimization work was done by Dr. Kathleen Klein. Subsequent normalization steps were performed 
by myself. 
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Samples with a normalization outisde the 0.3-3 range were removed from further analyses. An 

example workflow can be found in Supplementary Table 4. 

 

 

 

  codeCount background sampleContent 

method_1 sum none housekeeping.geo.mean 

method_2 geo.mean none none 

method_3 none none housekeeping.geo.mean 

method_4 sum mean.2sd housekeeping.geo.mean 

method_5 none mean.2sd housekeeping.geo.mean 

method_6 geo.mean mean housekeeping.geo.mean 

 

Supplementary table 2. Parameters for normalization methods for 
NanoString 

  method_1 method_2 method_3 method_4 method_5 method_6 

rep_1 PT05 0.15694 0.63047 0.17245 0.14264 0.18577 0.15021 

rep_2 PT102 0.99514 0.95371 0.99514 0.99232 0.99455 0.99393 

rep_3 PT26N 0.96392 0.89922 0.96307 0.96622 0.96572 0.96633 

rep_4 PT57 0.8054 0.80098 0.8054 0.75848 0.75961 0.79167 

rep_5 PT64 0.98222 0.99827 0.98222 0.9945 0.99657 0.99059 

rep_6 PT66 0.97315 0.99727 0.96963 0.91407 0.89103 0.93186 

rep_7 PT74 0.99192 0.98497 0.99169 0.98971 0.99095 0.99173 

rep_8 PT75 0.99014 0.97616 0.99014 0.99335 0.99214 0.99405 

MEAN 0.95741 0.94437 0.95676 0.94409 0.94151 0.95145 

 

Supplementary Table 3. Concordance Correlation Coefficients of six 
recommendation methods for NanoString data 
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Supplementary Table 4: Example of a normalization workflow using the NanoString housekeeping 
genes. First, the geometric mean of the housekeeping genes is computed for all samples. Second, the mean 
of the geometric means is computed, and, finally, this mean is divided by each individual geometric mean 
value. The end result is a normalization factor that is different for each sample, and each gene expression 
value is multiplied by that value for a given sample. 
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Section 3: TP53 primers for Sanger sequencing 

 

TP53 
exon 

Forward Reverse 
Annealing 

Temperature 
Size 
(BP) 

2 and 3 TGGAAGAGAGAATGTGAAGC AGAGCAGTCAGAGGACCAG 60°C 496 

4 CTGGTAAGGACAAGGGTTG CAGGAGTCAGAGATCACACAT 55°C 551 

5 and 6 GGTGTAGACGCCAACTCTC ACCCATTTACTTTGCACATC 55°C 662 

10 
TAGGTACTTGAAGTGCAGTT

TCT 
CTGGGACCCAATGAGATG 55°C 368 

11 TTGATTTGAATTCCCGTTG AACCCTTAACTGCAAGAACA 55°C 486 

Supplementary Table 5: List of TP53 primers used in the study.  



  48 
 

Section 4. List of Differentially expressed genes 

 

  
Log2 
fold 

change 

std 
error 
(log2) 

Lower 
confidence 
limit (log2) 

Upper 
confidence 
limit (log2) 

Linear 
fold 

change 

Lower 
confidence 

limit 
(linear) 

Upper 
confidence 

limit 
(linear) 

P-value 
BH.p.val

ue 

KIF2C -2.04 0.231 -2.49 -1.59 0.243 0.178 0.333 4.53E-12 3.42E-09 

PTTG2 -1.83 0.227 -2.27 -1.38 0.281 0.207 0.383 8.17E-11 2.12E-08 

PKMYT1 -2.31 0.287 -2.87 -1.74 0.202 0.137 0.298 8.43E-11 2.12E-08 

CCNA2 -2.05 0.263 -2.56 -1.53 0.242 0.169 0.346 2.31E-10 4.36E-08 

HIST1H3B -2.01 0.264 -2.53 -1.49 0.249 0.174 0.356 4.48E-10 6.77E-08 

RAD54L -2.42 0.322 -3.05 -1.79 0.187 0.121 0.289 5.99E-10 7.54E-08 

CDC25C -2.59 0.354 -3.28 -1.89 0.166 0.103 0.269 1.28E-09 1.38E-07 

FOXM1 -1.87 0.261 -2.38 -1.35 0.274 0.193 0.391 2.26E-09 2.13E-07 

KIF14 -1.92 0.279 -2.47 -1.37 0.264 0.181 0.386 6.52E-09 5.47E-07 

UBE2T -1.51 0.228 -1.95 -1.06 0.352 0.258 0.48 1.82E-08 1.37E-06 

CHEK1 -1.55 0.243 -2.03 -1.08 0.341 0.245 0.474 4.06E-08 2.79E-06 

BRIP1 -1.55 0.245 -2.02 -1.07 0.343 0.246 0.478 5.28E-08 3.24E-06 

CCNE1 -1.91 0.302 -2.5 -1.31 0.267 0.177 0.403 5.59E-08 3.24E-06 

EZH2 -1.06 0.17 -1.39 -0.726 0.48 0.381 0.604 7.25E-08 3.47E-06 

MCM7 -0.934 0.15 -1.23 -0.64 0.523 0.427 0.642 7.47E-08 3.47E-06 

ASF1B -1.55 0.249 -2.04 -1.06 0.342 0.244 0.479 7.60E-08 3.47E-06 

HIST1H3G -2.06 0.331 -2.71 -1.41 0.24 0.153 0.377 7.82E-08 3.47E-06 

TTK -1.66 0.27 -2.19 -1.13 0.316 0.219 0.456 9.92E-08 4.16E-06 

CCNB1 -1.28 0.211 -1.69 -0.861 0.413 0.31 0.551 1.52E-07 6.05E-06 

CDC25A -1.8 0.302 -2.4 -1.21 0.286 0.19 0.432 1.92E-07 7.26E-06 

CDC6 -1.31 0.22 -1.74 -0.876 0.404 0.3 0.545 2.14E-07 7.70E-06 

CCNE2 -1.86 0.315 -2.48 -1.24 0.275 0.179 0.422 2.43E-07 8.34E-06 

HIST1H3H -1.23 0.224 -1.67 -0.795 0.425 0.313 0.576 1.03E-06 3.37E-05 

RFC3 -0.746 0.14 -1.02 -0.471 0.596 0.493 0.722 2.08E-06 6.53E-05 
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Log2 
fold 

change 

std 
error 
(log2

) 

Lower 
confidenc

e limit 
(log2) 

Upper 
confidenc

e limit 
(log2) 

Linear 
fold 

change 

Lower 
confidenc

e limit 
(linear) 

Upper 
confidenc

e limit 
(linear) 

P-value BH.p.value 

CDC7 -1.22 0.243 -1.7 -0.748 0.428 0.308 0.595 5.55E-06 0.000162 

BRCA1 -1.27 0.251 -1.76 -0.773 0.416 0.296 0.585 5.58E-06 0.000162 

BRCA2 -1.21 0.243 -1.68 -0.734 0.432 0.311 0.601 6.81E-06 0.000189 

RECQL4 -1.2 0.242 -1.68 -0.73 0.434 0.312 0.603 7.01E-06 0.000189 

VEGFA -1.46 0.3 -2.05 -0.87 0.364 0.242 0.547 1.05E-05 0.000274 

E2F1 -1.25 0.269 -1.78 -0.726 0.42 0.291 0.604 2.08E-05 0.000508 

PPP2CB 0.745 0.16 0.432 1.06 1.68 1.35 2.08 2.09E-05 0.000508 

MCM2 -1 0.216 -1.43 -0.579 0.499 0.372 0.669 2.24E-05 0.000529 

SMC1B -2.06 0.444 -2.93 -1.19 0.24 0.131 0.439 2.33E-05 0.000533 

EXO1 -1.72 0.372 -2.45 -0.989 0.304 0.183 0.504 2.42E-05 0.000537 

PLA2G3 -2.27 0.507 -3.26 -1.27 0.208 0.104 0.414 4.01E-05 0.000865 

HOXA11 -2.46 0.554 -3.54 -1.37 0.182 0.0859 0.387 4.63E-05 0.000971 

HELLS -0.931 0.212 -1.35 -0.515 0.525 0.393 0.7 5.27E-05 0.00107 

FGF23 -2.07 0.476 -3 -1.14 0.238 0.125 0.454 5.93E-05 0.00118 

RASGRF1 2 0.46 1.09 2.9 3.99 2.13 7.45 6.34E-05 0.00123 

IL11 -2.35 0.561 -3.45 -1.25 0.196 0.0914 0.42 0.000103 0.00195 

PCNA -0.855 0.206 -1.26 -0.451 0.553 0.418 0.732 0.00012 0.00221 

FGF21 -1.6 0.389 -2.36 -0.841 0.329 0.194 0.558 0.00013 0.00233 

HIST1H1C -0.705 0.172 -1.04 -0.367 0.613 0.485 0.775 0.000146 0.00255 

EPOR -1.3 0.319 -1.93 -0.676 0.406 0.263 0.626 0.00015 0.00257 

SKP2 -0.698 0.172 -1.04 -0.36 0.617 0.488 0.779 0.000165 0.00276 

PRL -1.93 0.48 -2.87 -0.993 0.262 0.137 0.503 0.000176 0.00284 

SPO11 -1.9 0.471 -2.82 -0.974 0.268 0.142 0.509 0.000177 0.00284 

IFNA17 -1.98 0.498 -2.96 -1.01 0.253 0.129 0.497 0.000204 0.00321 

MTBP -0.645 0.164 -0.967 -0.323 0.64 0.512 0.799 0.000246 0.0038 

IFNA2 -2.18 0.557 -3.27 -1.09 0.221 0.104 0.471 0.00026 0.00392 

FZD9 -1.84 0.477 -2.78 -0.909 0.279 0.146 0.533 0.000299 0.00443 

NODAL -1.69 0.44 -2.56 -0.831 0.309 0.17 0.562 0.000318 0.00462 

MCM4 -0.953 0.248 -1.44 -0.466 0.517 0.369 0.724 0.000329 0.00468 

WHSC1 -0.643 0.168 -0.973 -0.312 0.641 0.51 0.805 0.000352 0.00492 

TLX1 -1.84 0.493 -2.81 -0.875 0.279 0.143 0.545 0.000453 0.00613 

CHEK2 -0.708 0.19 -1.08 -0.336 0.612 0.473 0.792 0.000455 0.00613 

PTEN 0.599 0.162 0.281 0.917 1.51 1.22 1.89 0.000516 0.00683 

STMN1 -0.822 0.223 -1.26 -0.384 0.566 0.418 0.766 0.000539 0.00698 

SRSF2 -0.619 0.169 -0.95 -0.289 0.651 0.518 0.818 0.000546 0.00698 

FANCB -0.832 0.228 -1.28 -0.385 0.562 0.412 0.766 0.000599 0.00754 

SMARCB
1 -0.704 0.194 -1.08 -0.325 0.614 0.472 0.798 0.000613 0.00759 
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Log2 
fold 

change 

std 
error 
(log2

) 

Lower 
confidenc

e limit 
(log2) 

Upper 
confidenc

e limit 
(log2) 

Linear 
fold 

change 

Lower 
confidenc

e limit 
(linear) 

Upper 
confidenc

e limit 
(linear) 

P-value BH.p.value 

RAD51 -1.3 0.358 -2 -0.594 0.407 0.25 0.663 0.000653 0.00795 

ZIC2 -2.01 0.561 -3.11 -0.912 0.248 0.116 0.531 0.000723 0.00867 

EFNA3 -0.792 0.224 -1.23 -0.352 0.578 0.426 0.783 0.00085 0.01 

 

Supplementary Table 5: List of significantly differentially expressed genes between the good and bad 
outcome groups.    The generalized linear model was used to determine differential expression. The p-values were 
corrected for multiple testing by the Benjamin-Hochberg method. Significant genes were selected if the corrected p-
value was below 0.01. 
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