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ABSTRACT

This study was aimed at investigating the strength and
deformationa; behaviour of arreinforced concrete box girder bridge
under symmetrical and unsymmetrical loading conditiohs. The experi-
mental phase consisted of tests on a 1/2.82.scale, direct model of the
intermediate span of a continuous box girder bridge.

The flexural and torsional stiffnesses of the box girder
decreased with an increase in the applied load due to the formation
and propagation of cracks and inelasticity of concrete.  The loaded
web showed a’deflection of about twice that for the unloaded web;
also, the lateral and longitudinal displacements 65 both webs varied
from about 5 per ceﬁt to 8 per céﬁt of‘the respective midspan vertical
deflections.

For tﬁe symmetrical loading case, higher stresses were observed
at the web-flange junction compared with 6ther regions of the cross-
section on account of the shear lag phenomenon. The warping restraint

can have a significant influence on some behavioural aspects of the box
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structures especially for the unsymmetricai loading cases which are
more frequent in pfacﬁice. Therefore any restraint ofkwarping must
be carefully considered in the design of a box section structure.
Significant transverse stresses result from any unsymmetrical loading
and these can be of the same order as the longitudinal stresses at the
same location.

The conventional simple beam theory seriously underestimated
all types of stresses in the box section. Inclusion of torsional
and distortional Warping effects improved the predicted stresses
slightly; however, even these weré only about 60 per cent of the
experimental valués. Therefore, there is a need for a suitable non-
linear analysis technique to account for the cracking of concrete and
its inelasticity and other deformations which occur in a box section
structure.

An inexpensive, quasi—nonlihear analysis was used to study
the nonlinear behaviour of the bridge after cracking. The stiffness
of the girder was varied in stages by incorporating information about
cracking patterns and érack widths from the éxperimental data. This
relatively inexpensive technique was used successfully to study the
influence of two parameters —_the element s;iffness ﬁerpendicular to

the cracks and the shearing force transferred across the cracks.
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COMPORTEMENT ET ANALYSE D'UN PONT A POUTRES-CAISSON
EN BETON ARME

‘ par
© Mohamed I. Soliman

Département de génie civil

et de mécanique appliquée

Université McGill : ' Thése de doctorat
Montréal, Québec, Canada C ' Mars 1979

Résumé

Le but de cette étude fut d'examiner la résistance et le
comportement d'gn pont a4 poutres-caisson en béton armé soumis a des
charges syméﬁriques et asymétriques.

La phase expérimentale consistait en des tests sur un modéle
réduit a i'échelle 1/2.82 d'une travée intermédiaire d'un pont‘a poutres-
caisson continu. Les rigidités un flexion et en torsion de la poutre-
caisson ont diminué avec une augmentation de la charge appliquée 3 cause
de la formation et de la propagation des fissurés et de 1'inélasticité
du béton. Le fléchissement de 1'dme chargée a été deux fois supérieur
3 celui de l'4me non-chargée; de plus dans les deux-cas de chargement,
leé déplacements latéfaux et expérimentaux ont varié d'environ 5 3 8 pour
cent des déplacements verticauk de la section médiane de la portée.

Dans le ¢aé du chargement symétrique, de plus larges contraintes one &été
observées a.la jonction émé-semelle par rapport aux autres régions de la
section transversale a céuse de la déformation dle au cisaillement.

La reétriction imposée au gauchissement peut avoir une influence

significative sur certains aspects du comportement des structures a
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section creuse spécialement pour les cas de chargement asymétrique
qui sont les plus fréquents en pratique. Donc, toute restriction du
gauchissement doit &tre considérée trés soigneusement dans le
dimensionnement 4'une structu;e a section créuse.

bes contraintes traﬁsversales significatives résultent de
n'importe quel chargement asymétrique et elles peuvenﬁ étre du méme ordre
de grandeur que les contraintes longitudinales produités au méme endroit.
La théorié conventionnelle de la poutre simple sous-estime sérieusement
tous les types de contraintes dans la section cfeuse. La coﬁéidération
des effets de torsion et de gauchissement a amélioré iégérement les
contraintes prédites; cependant méme ces contraintes représentaient
seulement 60% des valeurs expérimentales. I1 est donc nécessaire
d'utiliser une technique appropriée d'analyse non-linéaire qui tient
compte de la fissuration du béton et de son inélasticité ainsi que des
autres déformations qui se produisent dans les structures & section
creuse.

Une analyse quasi non-linéaire, peu colteuse, a été utilisée
pour étudier le comportement non-linéaire du pont fissuré. TLa rigidité
de la poutre fut variée par &chelons en introduisant les données expéri-
mentales‘obtenues survle mode de fissuration et l'épaisseur des fissures.

Cette technique relativement peu coliteuse a été utilisée avec
succés éour étudier 1'effe£ des deux paramétres; la figidité d'un .
é1ément perpendiculaire aux fissures et 1l'effort tranchant transmis 2

travers les fissures.
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CHAPTER 1

INTRODUCTION

1.1 General

Reinforced and prestressed concrete bridges are an important

part of the modern transportation system, and constitute a major

proportion of the bridges used in North America. Post-war attempts

to develop new economical bridge forms and construction technigues

have led to the development of the box section. Compared with other

types of concrete bridges, the box girder section is more economical

and aesthetically attractive.

1.2 Objectives and Scope of the Present study

The aims of this research program are as follows:

To study the general behaviour of a box girder bridge structure
through tests on a large-scale direct model of a medium span
bridge. (The model was 19 ft,long, 5 ft.wide and 14 in, deep,
consisting of a single rectangular cell wiﬁh 14 in. slab overhangs
on either side). The specimen represents the intermediate

panel of a continuous box girder bridge with the two ends
simulating the warping restraint condition created by the heavy
end blocks at the specimen ends. Provision of high tension bolts

in the end blocks prevented longitudinal and transverse translation
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and rotation and thus créated a fixed ended condition. The
specimeﬁ was suitably instrumented to obtain a coﬁplete picture
of steel and concrete stresses in both longitudinal and

transverse directions.

To study the effects of concrete cracking on the flexural and

torsional behaviour of this type of box girder bridge.

To study the effect of warping restraint on the stress configuration
along the length of the box girder and to assess the accuracy and

validity of some presently available analytical tools.

Té study the effects of crack formation and propagation on the
sheai trangfer across the crack and on the element stiffness per-
pendicular to the crack direction. This information is necessary
in formulating the necessary non-linear constitutive relationships

to be used in the finite element analysis of the structure.

Previous Work

Over the past six decades, several investigators have attempted

to analyse the box girder as a slab system, or as a slab on a network

of beams [l]. = For these cases, the slab and beam system is converted

basically to an equivalent gridwork of beams or to an equivalent aniso-

- tropic slab, and its analysis has depended on the well-known distribution

and relaxation techniques, plate theory and harmonic analysis.



Bretthauer and Kappei [2] analysed interconneqted multicell
girders by éonsidering them‘to consist of interconnected, torsionaliy
stiff T-beams. Ghali considered the bridge deck to be eéuivalent to
two main girders, connected tfansversely by the slab and b& Ccross
girders [3]. He presented tables for the calculation of flexural and
to;sional stiffnesses which can be used in the analysis of simply
supported straight ané skew bridges of uniform cross-section. Homberg'
and Trenks [4] also presented extensive tables for analysis of grids
with hollow—ﬁox~main beams supporting transverse beams.’ The 1965
AASHTO Specifications [5] proposed a design method wherein a box girder
bridge was considered to be composed of a number of identical I—shaped:
interior girders along with two exterior girders eaéh_of which had
half a bottom flapge. Accordingvto these specifications, each girder
was designed as a separate member subjected to a certain fraction of a
single longitudiQai line of wheel loads from a standard truck. | This

fraction, known as the distribution factor Nw -, was given by the

L
following equations:

N =

.y for interior girders (1.1)

~jn

and Nwl

[}

51 & ior girder:
7 for exterior girders (1.2)

where S and S; were the flange widths of the interior and exterior,

girders, respectively, in feet.



It should be mentioned herein that, up to 1959, the value of

Nwl‘for box girder bridges was %-which placed the concrete box girder

bridge in the same structural class as a concrete T-beam bridge.
After recognizing the structural efficiency of the box girder section,
the California State Department of Highways (1967) used a single value

for the distribution factors, N for the entire width as follows:

whk’

N - Deck width in feet (1.3)
wl 7

for both interior and exterior girders. However, this recognition
called into question thé whole process of‘bridge design on the basis of
distribution factors.

Massonnet and Gandolfi [6] presented an approximate method
to determine values of flexural and torsional stiffness which were
used in the existing Guyon-Massonnet method for the ahalysis of ortho-
tropic plates to design bridge decks of cellular construction.

None of the above methods is directly applicable to thg
analysis of box girder bridges. Scordelis [7] commented that these’
anal&ses do noﬁ adequately simulate the interaction of the individual
plates and, consequently,do not yield answers for the all important
internal forces and moments in each plate element. . He emphasized
the need for further study into deformational behaviouf of box girder
bridges and also an examination of‘the distribution of applied loads

between the webs in both longitudinal and transverse directions.



The‘effect of shear deformation_on the total behaviour of
box section structures has received considerable attention. Chu and
Longinow [8] developed techniques to locate the shear centre of ahy |
'oéen' or 'closed' cross-section. This enabled determination of the
torsional moments due to external loads and the resulting primary shear
stresses due to torsion withoutvwarping restraint. Kollbrunner and
Basler [9] considered St. Venant torsion as distinct from warping torsion,
and stated that thé former dominated the Sehaviour of hollow closed
sections. However, Heilig [10] shéwed that this depended on the
structural properties. Blaise_[ll] used the Bredt-Batho method fori
analysis of multi-cell box sections subjécted to torsion, whilé Benscoter
[12] developed several methods for the calculation of primary shear flows
in prismatic, multicellular members in torsion. ' These procédures in-
cluded successive correction and iteration @ethods similar to the carry-
over cycles of moment distribution. Only the relative values of the
aspect ratios df the wall segments need to be known in the preliminary
stage of design, when the cell areas are kAown but the thicknesses have
yet to be determined. Dziewolski t13] used the theory of pon-uniform
torsion of long, thin-walled members to develop a meﬁhod for computing
the transverse‘loaa distributioh factor for bridges of symmettic or
unsymmetric, open, closed and compound sections. Valentin [14] suggested
the use of shape factors to account for shear strain energy in evaluation
of bridge deforﬁation by the strain energy method. He noted that the
values of these factors were higher for hoilow sections than for solid

sections.



Cziesielski [15] developed tables and graphs to enable

evaluation of the shear resistance of box, I, and angle sections.
Panc [16] developed a general theory for elastically-supported prismatic
beaﬁs of open or closed cross—éection symmetrical about the vertical
axis. He noted that the shear strain in the middlevsurface of webs
and flanges could not be neglected. Von Karman and Christensen [17]
~described a simple method for the analysis of axially constrained thin-
walled structures having a constant cross-section (open, closed or a
combination), andvsubjected to a varying twisting moment. = Benscoter
[18] pointed out that although the computed values of the basic
transverse distribution of primary and gecondary shear flows were
relatively,correct; the distribution of stresses and rotations calculated
along the span was incorrect because of lack of sufficient accuracy in
~assessing the effect of shear strains on deflections. In analysing

a single cell tube in‘warping torsion, Rudiger [19] neglected the
influence of warping shear stresses on the deformation of a closed cross-
section. However, Grasse [20] corrected this error and extended the
work to include the warping torsion of a prismatic tube whose cross-~
section was open or closed and of an arbitrary shape. Dubrowskiv[21]
investigated the influénce of shear deformations on warping torsion of
box beams with a deformable cross-section and diaphragms. He observed
that the intermediate diaphragms and the support diaphragms caused the
influence of shear to increase, while the warping moments due to profile

deformation decreased.



In steel construction, for the commonly used proportions of
wall thickness t§‘breadth or depth of the box section and commonly
uééd wall thicknesses, Heilig [22] observed that the simple Bredt-Batho
theory gave results sufficientiy accurate for practical purposes for
breadth/depth ratios between %-and g; However, in concrete construction
where the wall thiékness is greater, tests by Leonhardt and Walther [23]
showed significant warping stresses for similar breadth/depthvratios.
'Knittel [24] presented a simplified method to determine the stresses
and displacements in single— and multi-cell structures with a constant,
symmetrical cross—sgction. By suitable resolution of the loading into
symmetric and antisymmetric components, it was possible to obtain
mutually independent states of 1ongitudiﬂal bending, transverse bending
and St. Venant torsion{ torsional warping stresses, however, were
neglected.

Gibson and Gardner [25) applied shell theory to the case of
 degenerate shells of very shallow curvature used to represent plates.
Multi-shell structures of this kind can be considered as folded plates.
Johanston apd.Mattock [26] tested a 1/4 -scale model of a composite
box girder bridge without traﬁsverse diaphragmsfusing a concentrated
load applied eccentrically over one of the webs and noted a good agree-
ment between the observed values and those‘calculated from the folded
plate theory. This demonstrated the applicability of the folded plate

theory to interconnected spine beams. Schardt [27] developed a

folded plate analysis such that the elementary bending theory could be



used with the introduction éf new section properties which were
tabulated. Meyer and Scordelis [28] presented a matrix formulation
for the analysié of folded plate structures, where longitudinal and
transverse streéses can be treated separately. Goldberg and Leve [29]
considered both membrané and plate actions in the slabs, and expressed
the analysis in a matrix formulation; displacements, rotations and
stresses can be evaluated using this formulation.

Box section structures can also be analysed using the matrix
progression method or transfer matrix method [30]. This technique is
applicable to complgx structures, in which the problem of analysis can be
reduced to that of finding the variation of internal forces and displace-
ments along one coordinate direction. In the case of multicell box
girders, this coordinate can be the peripheral one, and the multicell
section is treated as a branched configuration with a return branch [31].
Transverse 5ending action on.the,profile is included in the analysis,
and prestreés forces can be introduced as discontinuities. It is glso
possible to proceed longitudinally, analysing successive short lengths
of the structure and incorporating at each stage such discontinuities
of structural and/or loading configuration as may exist, including any
préstressing forces. This avoids the difficqlties encountered with
sections varying aléng the span when the matrix progression is carried
out along the peripheral coordinate.

These methods are not capable of determining the internal
membrane and bending stresses within the structure. Maisel’[32]‘con-

ducted an elaborate review of 299 references on analysis and design of



thin-walled beams to examine the effects of torsion, warping and
distorsion on the cross-section. - He developed the following
recommendations for design of box beam sections along with some

suggestions for future research programs.

1.3.1 Proportioning for Initial Design

The selection of the cross-section proportioning can be based
either on the recommendation given by Wittfoht [33] and by Johanston
and Mattock [26], or on the empirical rules given by the American

Concrete Institute [341.

1.3.2 Analytical Tools

Maisel [32] examined all available analysis methods and con-

cluded that the following analytical works were of pafticular merit:

(a) Dabrowski [21] presented the most comprehensive work on analysis
of curved, thin-walled steel, composite or reinforced concrete
~ beams. Design aids such as tables, influence lines and internal
forcevdiagrams are presented for st?aight and curved beams for up

to a maximum of three spans.

(b) Heilig [35]‘assessed the significance of warping, geometry, loading
and support conditions and presented a general method for analysis
of straight, multi-cell box beams of arbitrary, undeformable cross-
sectional shape. He developed extensive tables of formulas for

the general .loading conditions.
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(c).Knittel {24] neglected Qarping but considered the cross-sectional
deformations. He resolved the applied loading into symmetric and
anti-symmetric 'cémponents to obtain th:ee mutually independent
states: longitudinal bending, transverse bending and St. Venant
torsion. He developed a.simplified method’of analysis for |
detérmining stresses and displacements in single- and multi-cell
box beams of constant symmetrical cross-section. Maisel argued
that because the warping stresses can be about 50 per cent of
the primary bending stressés, a combination of Heilig's and

Knittel's methods is a more useful analysis tool.

1.3.3 Limiting Thickness-depth or Width Ratio

Maisel [32] and Vlaégv~[36] pointed out the significance of
the limiting thickness-depth rétio for webs and thickness-breadth ratios
for the flanges in applying'the various analytical methods to thin-
walled beams.  Maisel noted that in tésts on‘models of the Mancunian
Way [37] and the Western Avenue box girders [38], the thickness-depth
ratiésvfor the webs were O.69Iand 0.16 respectively. These proportions
exceeded the range of applicability of the thin-walled beam theory.
Therefore, Kollbrunner and Basler‘[9] pointed out that the thin-walled
beam theory could still be applied to the concrete structures provided

that the effective area of cross-section did not exceed the area enclosed

by the wall centreline.
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1.3.4 Limit States Design

Design by limit states requires consideration of the crack
pattern and modes of failure. Maisel [39] summarized the experimental

and analytical work required in this area as follows:

"The majority of the experimental work reported concerned working
load conditions in models made of materials other than concrete.
Observations of deflexions, twists, reactions and strains have
usually been made and, from these, stresses and  load distribution
‘coefficients have been evaluated, good correlation with theory
usually being obtained. Tests oh concrete models and prototypes
have provided information on crack patterns and modes of failure,
but the customary theories of failure do not give satisfactory
results for all stress combinations, nor do they adequately
explain observed failure conditions. Further information is
required on the behaviour of cracked sections, the effect of
cracking on bending and torsional stiffness, patterns of cracking
corresponding to various load systems and structural configura-
tions, ultimate loads, effective widths of flanges, diffusion of

. prestress, local effects near diaphragms and stresses in reinforce-
ment., '

The main requirements for future research appear at present to
be in the field of experimental work. The necessary theoretical
development for limit state design is probably an extension of

elasto-plastic finite element analysis, to predict cracking and
ultimate load behaviour in combined bending, shear and torsion. "

Rowe and Best [40], Scordelis [41], Corboda [42], Tschanz.{43],
Soliman and Mirza [44] and Tabba [45] conducted tests on small and large-
scale diregt and indirect models to study the elastié and ultimate load
behaviour of bridge structures which normally cannot be obtained by
analytical procedures. Little and Rowe [46j tested a plexiglass model
to determine the value of the torsional parameter a for the Guyon-Massonnet
load distribution analysis for bridges, as applied to a structure thch
is neither a slab nor a simple grillage. They pfesented a method to

evaluate a for a box section bridge, and compared the experimental
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values of the distribdtion factér with the theoretically derived
values. Thgy obsé:yed that the distribution properties of the deck
were underestimated, though not seriously, by calculating a on the
basis of one cell only and neglecting the intéracfion of cells. The
theoretical results‘fdr load distribution did not show good agreement
with the experimental results wﬂeh the torsional stiffness of a multi-
cell box wés used to calculate a .> ‘It was observed that the local
warping effects significantly influenced the effective torsional stiff-
ness of the member.4 Nasser [47) developed a simple procedure for
determining the lateral load distribution in bridge decks composed of
precast hollow-core beam units linked by in éitu'shear keys and trans-
verse prestressiﬁg. | The method was baséd on orthotropic plate
theory and experimenﬁal work on model and prototype bridge decks. For
design purposes, the percentage of the axle load carried by a single
beam for centre and edge loading conditions on the bridge can be
determined from the graphs in Reference [48].

Cordoba [42] and Tschanz [43] tested a 1:3.76 scale model ofv
a large-scale two-cell con§rete box girder bridge wifh precast cells
and cast-in-place deck. The objective of this investigation’was to-
examine fhe behaviour of this type of’bridge, with emphasis on load
distribution. The experimental results were'analysed by the Finite
Element Method using a compatible ;ectangular shell element with four
degrees of freedom at each node [49]. However, this analysis was

limited to the elastic range of behaviour. Recentkinvestigations
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have shown the potential of the Fiqite Element Method in studying

the nornilinear behaviour of bridge and other concrete structures
resulting from nonlinearities of materials and geometry. The bridge
was tested for the H20-44 truck loading‘at the workingiload level.

The ultimate load capacity was obtained using two point loads, placed
over the outside webs at the midspan of the bridge, whiéh were increased
in stages until failure. They showed. that this type of bridge pro-
vides a competitive alternative to other types of bridges in the 80 to
120 féetbspan range. They also observed that diaphragms did not have
a significant effect on the behaviour of this type of bridge within the
service load level. Leonhardt and Walther [23] tested two prestressed
conc;ete, single'cell, single span, box girders with side cantilevers,
and t;ansverse diaphragms at midspan and at each support. The first
specimen was subiected to a concentric midspan loadiﬁg until flexural
failurebwas approached, and then the loading was made eccentric to
induce torsion. The second girder was loaded with a more eccentric
midspan load so that torsion dominated. In addition, a 1/10 -scale
plastic model was tested under the same type of loading to ascertain
the differences between the uncracked and cracked conditions.  The
design of the shear and torsional reinforcement was based on the
simplifying assumptions of élane strain distribution and st. Venanf's
torsion théory. The experimental deformation values in the uncracked
concrete girders agreed well with the values calculated using the

elastic theory. It was noticed that the measured deflections and
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" twists were slightly lower than the calculated values and they pointed
out the need for further'research in. this area. As expected, they
observed that cracking caused a decrease in the torsional rigidity.
The diagonal coﬁpressive stresses in the side of the webs were noted
to be a critical factor in the design of thin-walled structures, pro-
viding that the principal tensile stresses are adequately resisted by
the reipforcement.

Fam [50] and Tabba [45] studied the behaviour of'curved box
girder bridges using the Finite Element Method for applied static and
dynamic loads. A three-dimensional finite element prdgram was developed
for the analysis of curved cellular structures. Solutions of several
problems involving static and dynamic responses were presented using
the proposed and other sophisticated methods of analysis. An eﬁperi-
mental study conducted on two curved box girder plexiglass models con-
firmed the reliability of the proposed method of analysis.

Swamy [51] reported tests on the behaviour of prestressed
concrete single-cell box beéms loaded in bending and torsion. The.
size and shape of thé box section were varied and the effect of a
nominal amount of torsional reinforcement was investigated. Bending
moments were found to have avbeneficial effect on the torsional behaviour.
He observed that a box beam can be loaded up to 65 per cent of its ultimate
bending capacity before its torsional strength decreases. Torsional
stresseé however reduce the bending strength slightly. Depending on
the relative magnitude of bending and twisting momeﬁts, failure may
occur either by crushing or by diagonal tension; interaction curves
provide a useful tool as an empirical method of assessing failure loads

‘under stress ratios ranging from pure bending to pure torsion.
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Somerville, Roll and Caldwell [52] constructed and tested
a 1/12 -scale micro-concrete model of a typical interior span of the
Mancunian Way. The cross-section was a single-cell béx with side
cantilevers. Information was obtained on the diffusion of prestressing
forces tﬁrough the seétion and;on the,behaviqur of thé structure for
three different loading conditions, under a concentrated loading on the
cantilevers, and at ultimate load. The load factor for the ultimate
condifion waé approximately 3 for the full live loading on the span.

A program of prototype tests on interconnected box section
type bridges was undertaken at Lehigh University in order to develop a
new design method [53]. The specimens tested were composed of pre-
stressed concrete box units connected by an in situ reinforced concrete
deck slab with'curbs and parapets. fest results showed that, for
inﬁerior girders, the obServea distribution factors between webs were
éonsiderably less than those used in design, while for exterior girders
the observed values were greater than:the corresponding values used in
design. Distribution factors based on the Guybn—Massonnet orthotropic
- plate theory were found to be 4-15 per cent higher than the observed
values for interiorbgirders, and 6-15 per cent lower than the observed
values for exterior girders. Lin and Vanhorn [54] suggested that
'the curbs should be considered in assessing the strength of the exterior
girders, although the distribution factbrs for interior girders should

still be related to their spacing as at present.
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Scordelis [55] tested a large 1/2.82 -scale direct model of
a two;span box girder bridge with a diaphragm in the middle of one
span. A slight improvement in load distribution characteristics was
observed én the span with the diaphragm. He showed the need for
revising the present AASHTO specifications to include impértant paramefers
" in the design of bridges of this kind. Some of these parameters are:
number of traffic lanes, total width, span and number of cells and
continuity or fixity at the supports.

William and Scordelis [56] tested models of folded plates and
compared the-experiméntal results witﬁ the values célculated using the
folded plgte theory and the elementary.beam theory. ‘They concluded
that the folded plate theory could be used to predict.the behaviour of
box section structures within the working load range and that( forvthe
type of reinforced concrete model and.loaaing used, either theory
yielded satisfactory results for.working load deflections. | Scordelis [41]
‘suggested that further experimental research on reinforced concrete models
of various configurations and subjected to various types of loading wasineeded
to determine the range of applicability of the elementary beam theory and the
folded plate tﬁeory. Aléo, additional analytical and experimental studies
. were needed to décumént the behaviour of tyﬁical reinforced concrete
folded piate structures over the entire load range.

Scordelis, Bouwkamp and Wasti [57,58] developed a general
method of analygis for simply—supported bdx girder bridges. The study

was concerned with the elastic analysis of these structures by methods

\
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suitable for electronic computers. A direct stiffness solution
using the folded plate theory and a harmonié representation of. the
-loading was used for analyses of these structures with and without
diaphrégms. They presented the details of the analysis and inter-
pretation of fhe experimental and theoretical results obtained from
testé on a large-sale, two-span, four-cell, reiﬁforcéd concrete box
girder bridge model. They used the Finite Element Method to analyse
the bridge model and noted that the AASHTO empi?ical formula over-
estimated the girder moments for the two-lane HS-20-44 truck loading
and underestimated it for the three-lane truck loading.

Godden and Aslam [59] conducted tests on a series of small-
scale aluminum models of rectangular and skew box girders £o check
the accuracy of the available analytical solutions for the elastic
behaviour of bridges of this type. All‘skew bridges were tested with
and without transverse diaphragms at midspan, and were subjected to the
action of a single vertical point load at various locations. Because
of the scatter between the experimental and the'calculated values, a
need for further study of.the behaviour of this type of bridges was
stressed.

Comartin and Scordelis [60] iﬁvestigated the behaviour of a
éimp1y~supported curved box girder bridge by the Finite_Eiement Method,
using quadrilateral elemenﬁs having a total of 5 degrees of freedom
per node.  The theoretical results were éompared‘with the experimental
results from a previous study on aluminum model bridges of identical
dimensions. They concluded that the‘present AASHTO specifications did
not differentiate between straight and skew bridges and therefore it

needed to be reviewed.
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- Scordelis, Bouwkamp and Larsen ([61,62,63] investigated the
structurél behaviour of a large 1/2.82 -scale direct model of a éuived
two-span, four-cell, reinforced concrete box girder’bridge, They
presented the detéils of the design, construction, instrumentation and
loading of ﬁhis bridge mpdel alqng with the experimental results. The
responses of the bridge-to-point loads, conditioning loads and truck
loadings all at working stress le&els were determined. In addition,
the\bridge response was determined for conditioning loads at ovérstress
levels and for point loads afﬁer conditioning overloads. Theoreﬁical
values were obtained from both the Finite Element Method using the
three-dimensional beam element ‘in the SAP IV Program [64], and the
three-dimensional folded plate theory [65]. They concluded ﬁhat based
oﬁ the assumption that the bridge model was elastic, homogenous, isotropic
and uncracked, the three-dimensional folded plate theory accurétely pre—
dicted the behaviour of this type of bridge within the working load
1eveis, while the finite element beam element could predict only the
reactions and deflections for this type of bridge within the same load
level. They showed the significance of diaphragms at midspan in
imﬁroving the behaviour of the bridge at very hiéh overload levels and
during the final loading to failure. They also showed that the AASHTO
Specifications [66] did not yield accurate girder moments, and accordingly
it needed to be revised.

Swan [67] tested a 1/16 -scale continuous segmental micro-

concrete model of a typical span of a six-lane viaduct with three cells.
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The precast cellular segments of the model were prestressed trans-
versally and vertically in addition to the longitudinal prestressing.
This research program was aimed at investigating the performaﬁce of
post-tensioned segmental cellular structures subjected to the Ministry
oberansport 'HA' and 'HB' loadings. They observed éﬁ increase in
the stresses near the diaphragms above those predicted by the elementary
beam theory. They related this phenomenon to the stiff diaphragms
‘and the shear lag effects. |

Swan [68] reported the characteristic features of 173 bridges
built in the previous 15 years with a view to making recommendations
for the ihitial proportioning of bax girder bridges. Span lengths,
‘total depths,methods of construcﬁion, longitudinal and cross-sectional
configurationé, web location and thicknesses, top and bottom flange
thickneéses, traﬁsverse and longitudinal prestresses, were examined and
discussed for both straight and skew box girder bridges. = This
information was presented as a guide to the available feasible economic
options. More research and development work are needed in this area.

Redwood and Gurevich [691 used a membrane finite elemept in
analysing single- and multi-cell skewed box girder bridges with variable
sections and interior diaphragms. The longitudinal plate bending
and twistiﬁg were‘ignored in the énalysis and transverse bending'was
treated in an approximate manner as follows. A fictitious transverse
diaphragﬁ was uséd to carry membranekforces only. By this means and

by ignoring other bending components, the analysis was treated as a
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membrane one involving only three translation degrees of freedom per
node. Pafticular reference was made to multi-cell boxes with any
plan form, and arbitrarily located diaphragms. Tinawi [49] analysed
orthotropic bridge decks using the Finite Element Method; a compatible
rectangular shell element which provided for in-plane rotation was
'developed to simulate the deck plate. For closedFtypg ribs, the same
element was used, and for open-~type ribs, a compatible eccentric beam
element was used as an alternative. The analysis c°mpa;ed favourably
with the available experimental data.  Tinawi also studied the effect
of varying the stiffener and cross-beam spacing and suggested an increase
in the standard rib spacing in 6rder to achieve greater‘economy in the
fabrication process. Geometrical nonlinearities of the deck plate
and the ribs were also studied, using the triangular shell element for
the case of trapezoidal.stiffeners with large openings.

Meyer and Scordelis [70] developed a general computer program
to analyse any prismatic cellular or open folded plate structure with
transverse diaphragms or frames and longitudinal beams. The solution
is based on the Finite Element Method in conjunction with the Direct
Stiffness Method. Kabir and Scoxdelis [71] developed a computer
program for the analysis of continuous prismatic folded plate structures,
which are circular in plan and have flexible interior diaphragms or
supports. The Finite Strip Method was used to determine the strip
stiffness. Interior diaphragms were defined by flexible beams, and

interior supports were idealized as two-dimensional planar frame bents.
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A direct stiffness harmonic analysis was used to analyze the assembled
folded plate system. The program can be gsed to establish rational
criteria for simplified methods for analysis and design of curved
bridges, in which important design parameters such as cross-sectional
dimensions, radius of curvature, span along the arc length, flexibility
of the support and the skew angie can be varied to determine their
effect on the bridge response.

In conclusion, all research proérams on box section structures
completed so far were aimed at studies of load distributidn and behaviour
and performance of such structures within the working load level. " Once
the section.cracks undér increésing load, the assumption éf linearity is
no longer valid and the departure becomes more pronounced under overload.
‘conditions.‘ There is very little experimehtal or analytical research
data évailable on the nonlinear deformational behaviour of the box
segtion after the section has cracked and under overload conditions.
Recently, there has been an increasing interest in the design éf bridges
based on limit load analysis; however, there are rather large diffefences
in the ultimate load values calculated accordiné to différent iimit load
analyses [71]. Th;s is due to the‘difficulty arising in including the
influence of membrane forces in thé presently available limit load
theories and therefore the validity of these methodé becomes limited.

In summary, there is a need for further ﬁtudies of the behaviour
and analysis of reinforced concrete box section structures which account
for both membrane and bending actions, aiong with a consideration of non-
linearities due to cracking and to the nonlinear response of concrete

and steel [72].
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1.4 Organization of the Thesis

This chapter is followed by a description of procedures used
in the experiméntal phase (Chapter 2). This chapter includes the
design, construction, instrumentation and loading of the box girder
bridge. The results of the experimental work are deiailed in Chaptgi 3
along with a discussion of the observed strengths and the defo:mationalv
behaviour of the bridge. A summary of the experimental cbservation
is presented at the end of Chapter 3.

The finite element analysis used in this investigation is
described‘in Chapter 4. Results of a linear and a quasi-nonlinear
finite element analysis’of the bridge are presented. The linear
analysis is conducted to study the effect of warping restraint on the
total stress distribution and the results are compared for the two
cases - one with warping restrained and the second with the warping
not restrained. VThe guasi-nonlinear analysis is used to perform a
parametric study to examine the influence of the elemént stiffness
’perpendicular to the crack an@ the shear transfer across the crack.

A summary of the findings and the conclusion§ are presented
in Chapter‘S. Some proposals for future study are also included in

this chapter.



CHAPTER 2

EXPERIMENTAL PROGRAM

2.1 Generai

Models are being increasingly used for behaviour studies qf
simple and complex structural systems‘aimed ét vgrifying the basic
de;ign assumptions and at modifying the existing design criteria [73}.
Some of the empirical formulas in the current ACI Code [74] and the
National Building Code of Canada [75], particularly the shear and torsion
forhulas, were derived from the results of tests on 1/2 —_1/3 scale
direct models which were considered asbsmall prototypes for all practical
purposés. Besides, large—scale models have beenvsuccessfully used in
behaviouf studies of bridges and building structures under applied
static and dynamic loads [61,62,63]. Cdmparéd with the prdtotypes,
these model structures are relatively simpler and less expensive to
construct, iﬁstrument aﬁd test.: ~ Recent studies have also showﬁ that
1/2 - 1/4 scale direct models’of reinforced and prestressed concrete
structures can predict the prototype behaviour and strength with an

excellent degree of reliability within * 15 per cent [76,77].

2.2 Details of the Tested Bridge

It was decided to test a large (1/2 -1/3) scale model of a

medium span box girder bridge. For all practical purposes, these
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small prototypes require construction techniques which'are as close

as possible to those used in the’conétruction of the prototype.

Also, the model materials used must simulate as closely as possible

the basis characteristics of the prototype concrete and the reinfércing
steel.

The main reinfprcement in a typical box girder bridgé normally
consists of suitably spaced #l1 deformed steel bars (nominal cross-
sectional area = 1.56 sg. in.). Because of convenience, it was
decided to simulate the #11 deformed steel bars by #4 deformed steel ,
bars (cross-sectional area = 0.2 sgq, in.). This resulted in a leﬁgth

scale factor given by

Lm Am 1
S T . “\Ja T 2782 (2.1)
P P

Model quantity

(S, linear scale factor =

% Prototype quantity

which was adopted for the box girder modelf This model was 19 ft. long
5 ft. wide and 14 in. deep and consisted §f a single rectangular cell
with i4 in. long cantilevered slabs overhanging on both sides. A
. typical cross-section of'the box girder bridge is shown in Fig. 2.1
along with the deﬁails of the end blocks prqviding fixed-ended
éqndition at the two ends.

Although it is relatively simple to satisfy the requirements

for stress and strain similitude for model steel and concrete, it is
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considerably more difficult to sa#isfy the bond requirements [76].
Fpr structural concrete members or systems with predominance of flexural
and/of shear, it is normally not necessary to satisfy all the require-
ments of bond similitude. It is enough to ensute that there is
sufficient bond resistance so that bond failure does not oécur. This
can be achieved by providing sufficient embedment length to develop the
yield strength of the bar.

The model coﬁcrete mix usgd consisted of a mixture of High
Early Strength cement and a blended mixture of fi&e grades of crushed
qguartz sand. The advantage of usiné such a mix compared with a mortar
mix lies in its excellent simulation of the compressive and tensile
(splitting and flexural) strengths, the modulus of elasticity and the
ultimate compressive strain at failure.

For a true model, the density of the model material is given by
p =S o : (2.2)

where P density of the model material

pp density of the prototype material

Therefore, iﬁ this case, the model concrete must»be 2.82 times as

heavy és the prototype concrete. This similitude condition can
obviously not be achieved through the use of model concrefe and extra
dead loéd was used to properly simulate the dead weight of the prototype.
The extra load required to be added to the model bridgé structufé was
450 1b/ft. Studies were made to determine the feasibility of renting

steel billets and placing them suitably within the box girders of the



27

bridge during its construction. This idea was abandoned 5ecause'of
the stress concentration caused by these steel billets in the lower
slab. Instead, siiica sand bags,concrete blocks measuring 15 in. x
15 in. x 15 in. and steel billets were distributed uniformly on the
top and the bottom slabs throughout the span of the b?idge. The

sequence of placing these loads was as follows:

1. The box girder was filled with silica sand in addition to
three steel billets uniformly distributed along the bridge

span.

2. After casting the top slab, fourteen concrete blocks and
four steel billets were distributed uniformly over the top

slab along the bridge span.

This method eliminated any possible stress conceptration from the extra
dead loads used for dead load compensation.

The main reinforcing bars used for the bridge were #4 and #3
deformed steel bars, with nominal yield strengths of 60 ksi and 45 ksi,
respectively. The main reinforcement in the maximuﬁ positivé moment
region consisted of 11 #4 bars, while ﬁhat in the negative moment region
consisted of 17 #4 bars. In addition, 6 #3 bars were provided in the
top slab running through the span of the bridge,.two over eaqh web, and
one at the end of the cantilever slab.’ The transverse reinforcement

in the top and the battom slabs and in both webs consisted of two layers
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of D3 and D4 deformed steel wires (cross—section areas 0.03 sq. ;n.»
and 0.04 sgq. in., respéctively) with a nominal yield strength‘of 38 kéi.
The details 6f reinforcement for the top and bottom slabs and a typical
cross~section are shown in Figs. 2.2, 2.3 and 2.4. The details of

the end block.reiﬁforcing steel are shown in Fig. 2.5. This rein-
forcement consisted of closed #5 stirrups in the two-orthogdnal
directions, in addition to 28-3/4 in.diameter high strength steel bolts
at each end to prevent any end block translation and rotation, thus
creating fixed-ended condition at the two ends.

Due to diagonal compression in the concrete at higher torsional
loads, the concrete cover has a tendency to spall off, therefore it is
important to detail the stirrups such thatvthey will not loose their
anChoragé‘when spalling occurs. This is obtained by bendiné the free
end anchorage length of the stirrups into the concrete [73]. In
addition, it is necessary to provide proper end anchorage for the longi-
tudinal reinforcehent to enable this reinforcement to fully deVelop its
yield strength. The reinforcement details adopted satisfy the funda-
mental requireménts of strength, limited cracking, ductility and

simplicity of construction.

2.3 Material properties

2.3.1 Concrete
The selection of suitable materials to model cohcrete depends

upon several requirements. The constituent materials must satisfy
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the laws of similitude and must be readily available. While it is
possible to use finer aggregates, it is not possible to use finer
cements without appreciably increasing the water-cement ratio. There~-
fore, normal cements are used for model concrete mixes. As mentioned
in the previous section, the stress-strain curve 6f the model concrete
must be homolégous to that of tﬁe prototype copcrete. . Besides the
Poisson's ratio, the ratio of tensile strength to compressive strength
and shrinkage of the model concrete must be equal to the corresponding
prototype quantities {[79}.

Materials for structural models of reinfofced concrete struc-
turés have been studied for several years at McGill University [80,81,82].
Mirza, Labonte and McCutcheon [83] investigated different model materials
to simulate the prototype concrete. ‘As a result of experiments on
several mixes, they suggested preliminary designs for model concrete
mixes for strengths ranging from 2500 psi to 6000 psi for use in reinforced
and prestressed concrete model work. The copcrete mix used in the
present. program was éreviously developed by Mirza [84] who experimented
‘with several trial mixes using High Early Strength cement and local
sands passingFU.S. Sieve No. 4 and U.S. Sieve No. 8 respectively. A
mixtu;e of five grades of narrowlylgraded Crushed Silica'Sands was

blended for each batch of concrete as follows:
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#10 Crushed Silica Sand 20 1lbs.

#6 o W 20 1bs.
b4 v oo © 25 1bs.
440 W 25 1bs.
#70 " " "o 10 1bs.

Sand 100 1bs.
High Early Strength Cement 33.3 1lbs.

Water 13.3 1bs.
The resulting mix had water:cement:aggregate proportions of 0.55:1:3.0
by weight. These Quantities provided a batch of approximately one

cubic foot of model concrete mix.

2.3.2 Properties of Concrete Mix in Compression

Compression tests were performed in accordance with ASTM
Standards (American Society for Testing and Materials) C 172 and C 31
(Compreséive Strength of Concrete Cylinder). Eight cylinders of size
3 x 6 in. and eight cylinders of size 4 x 8 in. were'cast for each stage
of concrete. These cylinders were tested for'compressivg strength
at ages of 7, 14 and 28 days and on the day of the test.. Complete
stfess-strain curves were obtained froﬁ tests on cylinders instrumented with

strain gauges. From the results obtained, evaluations were made of

the compressive strength fé , and the modulus of elasticity of the
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concrete, Ec . The cylinders were moist-cured and dried a day prior
to testing and were capped. The average. values of the éompressiVe
strengths are given in Table 2.1; also, a typical stress-strain curve

for the model concrete is shown in Fig. 2.6.

2.3.3 Properties of Concrete Mix in Flexure

The flexural tests for determining the modulus of rupture
were performed in accordance with ASTM Standard C 78-59 (Flexural
Strength of Concrete using Simple Beam with Third-Point Loading) .

Three specimens were tested during the period of the experimental

program. Each beam was 6 x 6 in. in cross-section and 24 in. long,
and the two loads were applied at the third points. In all cases,
fracture occurred in the center section of the specimen. The results

of the tensile strength tests after 28 days are given in Table 2.2

along with the values calculated using the ACI equation

t

£, = 7.5 7Y fc '. (2.3)

2.3.4 .Steel Reinforcement

The principal characteristics of the prototype steel which

should be simulated in reinforced concrete models are the following:

1l - yield and ultimate strength for tension and compression,

2 ~ shape of the stress-strain curve,

w
t

ductility,

4 - bond characteristics at the steel-concrete interface.
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TABLE 2.1

Concrete Mix

Compressive Strength

Structural Age 3x6" | 4x8" E_=570007f Ecéwl'533Vfé
element (days) cylinder . cylinderx ¢
psi psi psi psi
7 2886 ‘ 2878
14 3530 3300
- 6 6
Lower 28 4500 4600 4.03 x 10 4.36 x 10
slab . '
day of 5230 5100
testing
7 3112 3010
14 3680 3600
' 6 6
Webs 28 4600 4400 4.03 x 10 4.36 x .10
day of 5110 5020
testing
7 2830 2900
14 3890 3750
6 6
Upper 28 4600 4780 4.03 x 10 4.36 x 10
slab )
day of 5075 5050
testing
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TABLE 2.2

Tensile Strength of the Model Concrete Mix

Tensile ' . Tensile
Beam strength fé strength (ACI)
No. . fz (psi) : (psi) ft = 7;5Vfc
1 - 535 5100 535

2 400 _ 5020 - 531

3 550 5050 534




.39

It was decided to use #4 and #3 deformed sﬁeel bars as
main reinforcement, and D3 and D4 deformed.steel wires as secondary
reinforcement.  These deformed steel wires were initially cold drawn,
and were annealed at a temperature of>1200°F for a period of one hour
to reduce their yield strength from approximately 70 ksi to 38 ksi
besides increasing their ductility, that is,'increasing the percentage
elongation évailable at failure.

The stress-strain curves of the deformed steel bars were

determined by conducting tension tests on three randomly selected specimens

for eaéh bar type. Figures 2.7 and 2.8 show the stress-strain curves
for #4 and #3 deformed steel bars and D3 and D4 deformed steel wires
before and after annealing, respectively. Details of the reinforcing

steel used in the construction of the box girder bridge are given in
Table 2.3. The concrete cover was kept constant at 3/8 in. for all
reinforcing steel. The spacing between the stirrups and the secondary

steel was maintained constant at 3 in. centres over the entire bridge.

2.4 Dpescription of the Testing Frame

The loading frame used in the present study was initially
designed and constructed for a previous research program to study the
behaviour of precast, prestresséd open web bridge girders [42], The

frame was modified by adding an extra transverse beam at each end of



STRESS -~ KSI

70

60

50

40

30

20

10

40

#

#3

5 10 15 20 25
STRAIN (1073)

FIG. 2.7 TYPICAL STRESS-STRAIN CURVE FOR REINFORCING STEEL BARS



100

80
70

60

50.

40

30

20

10

41

Dg (annealed)
3 (annealed)

| | } ] | |
4 8 12 16 20° 24
STRAIN (10-3)

FIG. 2.8 TYPICAL STRESS-STRAIN CURVES FOR DEFORMED STEEL WIRES
BEFORE- AND AFTER ANNEALING



42

TABLE 2.3

Steel Reinforcement Details

Shape and dimensions| No. of | Kind Purpose
pieces '
. 56" 150"
1 O 9.8 60 D4 | Transverse top reinforcement in top slab
6" » ’
2 3 - 60 D3 ' | Transverse lower reinforcement, top slab
3 L29 9/18" ) 4" 60 D, |Transverse top reinforcement, lower slab
4 1607 : 4 #4 | Bottom longitudinal reinforcement
5 260" 6 #4 Bottom'longitudinal'reinforcement
6 140 28 Dy 'Secondary longitudinal steel, top slab
260" L _ -
7 6 #3 Longitudinal steel in top slab
110"
8 sq 20 #4 | Top longitudinal reinforcement
80 "
9 64 16 #4 | Top longitudinal reinforcement
l}"
-] —
. §mw
10 29 9716 |1} T8 | 60 Dy |Stirrups
29"
N
11 13 T%;' 10 #5 |stirrups for the end block
56"
N
12 12 6 #5 |Stirrups for the end block
5"
13 12 i
13 5/16" 0 Dy Web reinforcement
" 12" .
14 56 4 #5 | Reinforcement of the end block
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the frame to‘accommodate the end blocks designed to create a warping
restxaint condition. The testing frames assembled in the laboratory
consisted of two identical 24 x 100 WF beams, 25 ft. long, placed‘
horizontally parallel to each other. TWwo transverse 12 x 65 WF cross-—
beams; 6 ft. long,‘were placed at each end as supports for the end
blocks. After casting the bridge and the end blocks, another two
transverse 12 x 65 WF cross-beams were placed‘on top of the end blocks
and conpected to the transverse girders at the bottom.by highvstrehgth
bolts. The high strength bolts were designed to resist the longi-
tudinal and transverse moments thus creating é fixed ended condition.
They were embedded in the end block and connected the lower and the
upper transverse beams. Fig. 2.9 shows this connection. The loading
frame consisted of two identical; vertical frames attached to the
horizontal 24 x 100 WF beams at its midspan. Each loading frame con-
sisted of two vertical 12 x 65 WF beams, 6 ft. long, supporting two
horizontal hollow sections, fabricated uéing two 15 x 40 channel
sections welded together. Figure 2.10 shows the loading frame as
cohnected to the tested frame. Four concrete blocks 18" x 18" x 24"
were used to suéport the horizontal girders of tﬁe testing‘ffame which

were levelled properly.
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(a) Bridge model (construction just completed)
and the loading frame

(b) Bridge model under test (concrete block and
sand bags were used for prototype dead Toad
simulation

FIG. 2.9 BRIDGE MODEL
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Bridge Construction, Schedule and Casting of Concrete

The construction of the box girder bridge consisted of the

following operations:

1.

2.

Construction of the formwork of the eﬁtire box girder bridge.
Preparation of the lower slab reinfqrcement and the web reinforce-
ment, and installing and waterproofing the strain gauges on ﬁhis
reinforcement.

Casting and curing of the lower slab.and one;tﬁifd of the concrete
end blocks.

Preparation of the form&ork for the webs and longitudinal

reinforcement in webs.

. Casting and curing the webs in addition to the second third of

the 'end blocks.

Filling the box section with silica sand and three steel billets.

. Preparation of the formwork for the top slab, and finishing the

longitudinal and transverse steel reinforcement for the top slab,
and installing and waterproofing the strain gauges on this

reinforcement.

. Casting and curing of the top slab together with the last third

of the end block and finishing the surface of concrete.
Placing the upper transverse beams (12 x 65 WF) oh the top side
of each end block and connecting them to the high strength steel

bolts.
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10. Placing the concrete blocks and the four steel billets on the
top to compenséte for the prototype dead load as shown in

Fig. 2.11.

The concrete was conveyed from thé mixer using a wheel barrow
and was deposited,.starting froﬁ one end of the box girder bridge workihg.
to the other end in short lengths to avoid ény air pockets in.the concrete.
A special hoppef was used to pogr concrete uniformly into the webs to
avoid any voids or honeycombing in the concrete. Before casting the
-webs and the‘top slab, the old concrete of the lower slab and the webs
were cleaned by a steel brush and water to improve the bond between the
old and new concrete. The concrete was compacted by using a needle
vibrator. The concréte in each stage was cured for a period of one

week by covering it with wet burlap and sprinkling it with water.

2.6 Removal of Formwork

Two weeks after. the casting of the top slab, the formwork of
the side cantilevers aﬁd the wébs was removed and the five steel cross-
beams which were acting as a temporary support for the formwork were
removéd. ~ The bridge was painted with a white wash for observation of

crack formation and propagation.
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2.7 Instrumentation

2.7.1 General

The experimental study of the bridge included the following
measurements: steel and concrete strains on the top and bottom slabs
and both webs, displacements of both webs and the tips of both canti-
lever slabs in the x, y énd z directions, and rotations at different

locations along the span of the bridge as well as across the box section.

2.7.2 Basic Measurements

The following measurements were made for each load stage:

2.7.2.1 load
The load was applied using hydraulic jacks and measured

directly from the dial gauges attached to them.
2.7.2.2 Deflections

The dial gauges used to measure the deformations were attached
to an independent frame suspended from the ceiling of the laboratory.
These gauges were placed at 23 inches on centre throughout the span of
the tested bridge over both webs as well as at the ends of the cantilever
slabs (Figs. 2.12, 2.13, 2.14). The dial gauges used had divisions
of 10“3 in. and 10-5 in. for measurement of z and x and y displacements,
respectively.

To check and measure the deformation within the box section at

midspan and quarter span sections, a piano wire was attached to the
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lower corner of the box section at these locations and connected to
a dial guage from the other end (least count = 10~ in.). From the
vertical and horizontal deflection readings at these positions, the

distorsion within the box section was obtained. Figure 2.15 shows

the details of the piano wire-dial guage arrangement.

2.7.2.3 Strains

Steel strains were measured using 155 PL-5-11 electrical
strain gauges, and the concrete strains were measured by 100 mechanical
strain gauges of 4 in. gauge length in addition to the 40 PL-5-11
electrical strain gauge.

The techniQue used for preparing the reinforcing bars for
strain gauge.application and for sealing the gaﬁge assemblies followed,l
in general, the recommendations of the manufacturer. The reinforcing
bars were ground and filed smooth in the regions where the gauges were
to be located, cleaned with acetone, and dressed with a metal conditioner
and neutralizer. The gauges were then applied by using‘an epoxy
adhesive that cured at room temﬁerature. Terminal tabs were épplied
at the same time, ahd the gauges Qerg connected to these tabs.

Aftér the lead cables were attached to the tabs, the gauge
assemblies Qere waterprqoféd with M—Cgat D which is a flexible époxy
that cures at room temperature. | Thevassemblies were then covered with

a thick layer of M-Coat G and after 24 hours were coated with a layer

of M-Coat B for additional sealing and for physical protection from
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the wet concrete and the vibration equipment during casting. The
preparation, the gauge application procedures, and the sealing
techniques were the same for the concrete as for fhe reinforcing bars.
Figures 2.16 to 2.20 show the location of the strain gauges on the
reinforcing steel bars across the width of the box section and the
length of the bridge. The mechanical strain gauges were used to
measure the longidutinal and transverse concrete strain over the two
webs and at the end of the cantilever slabs on the top slab at 23 in.
intervals- in the longitudinal direction of the bridge. The gauge
length of the mechanical strain gauges was 4 in. Figures 2.21 and
2722 show the location of the mechanical and electrical strain gauges
on the bridge. All strain gauge readings were recorded and printed
by means of two electronic multi-channel B & F digital strain indicatoxs,

model SY 161 Series, along with two units of switching boxes.

2.7.2.4 BAngle of Twists and Slopes

The angle of twists of the box section and the web slopes
relative to the horizontal were measured by means of inclinometers at
23 in. intervals along the span. These inclinometers were designed
to measure these twists and slopes for gauge lengths ranging between
12 and 24 inches. It consisted of a dial gauge connected to an aluminum
bar with a precision level bubble and a screw to adjust the level of the
aluminum bar. The gauge length used in the present study was 12 in.

The advantage of this device is that it can be used at different
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locations for measuring both the twist and the slope. Figure 2.23
shows the details of this inclinometer and its components. Figures
2.24 and 2.25 show the locations for measurements of twists and slopes

on the top slab.

2.7.2.5 Crack Widths |

Crack widths were measured at the appropriate load stages with

a crack microscope to an accuracy of 0.05 mm.

2.8 Test Program

The experimental program was divided into the following

‘three phases: -

13 Dead load alone,

2. Two symmetrical point loads placed over the two webs
at the midspan section (within the elastic rangg).

3. A concentrated load placed at the midspan ‘section over

one of the webs for the'ultimate load'test.

It Qas decided to accommodate a wide range of loading stages
for each phase to determine the load-deformation felationship and
response for each loading type. The load for each phgse was increased
at a steady rate, and was kept constant by adjusting the control valve
of the jacks while the readings were being taken. On the average, each

load stage required about 35 minutes for all observations.
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The first phase consisted of the effects of the dead load
alone. -The strains and deformations of this phase were taken as the
differences in the recorded readings before aﬁd after the removal of
the five steel beams which were actiné as a tempgrary support for the
formwork.

The second phase consisted of ten loading increments‘of
1.3 kips each; up to a total load value of 13 kips} and it was removed
in four ihstalﬁents of 3 kips each.

The third phase consisted of fourteen loading incremgnts of
4.2 kips each, up to a total load value of 59 kips; it was removed in
five instalments of 15 kips each.

In the 1astystage of this phase, at a load value of 55 kips,
a 1/4 in. deep loéal‘punching shear failufe'occurred in the ﬁop slab beneath
the ram. The test was stopped at this stage and the applied load was
removed in decrements as mentioned before. The damage was not serious,
and it was therefore decided to repair the hole by'fillinglit with a
gypsum capping material. After fixing the hole, a 6 x 6 x 1 in.
steel plate was ﬁsea to‘cover the damaged location, and the bridge was
reloaded again from zero load to failure. The loading increments qsed
were 10 kips each, up to a total load valué of 69 kips, and the decreﬁents
were 30 kips each. Agaiﬂ, at a load value of‘69 kips a local punching shear
failure occurred in the top slab beneath the steel plate under the ram.
The depth of the hole was 1 in. The.magnitudes of deflections; strains,
twists and slopes were taken at this stage and the applied loading was

removed.
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2.9 Hydraulic Loadinngacks

Two kinds of hydraulic jacks were used to load the box girdexr
bridge. Two 30 kips capacity jacks were used for the symmetrical

loading phase, while a 100 kips capacity jack was used for the ultimate

load test. The details of these hydraulic ioadihg jacks are as
follows:
30 kips 100 kips
capacity - . capacity
Jack type (RLC-302) - (RLC-1002)
Stroke (in.) _ 2-7/16 ’ 2-1/4
Effective area of the cylinder (in.z) 6.49 . - 19.64
Maximum internal pressure (psi) 9250 10200

Outside diameter (in.) 4 6-1/2
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CHAPTER 3

EXPERIMENTAL RESULTS

3.1 General

As mentioned in Chapter 2, the load tests of the bridge under

investigation consisted of the following three phases:

1) Dead load
72) Symmetrical ioading‘test (two point loads symmetrically
placed over the two webs at the midspan section)
3) Unsymmetrical loading test (a point load placed over

one web at the midspan section).

Wherever possibie, the experimental results wére compared
with the values calculated from the simple beam theory [85], the Knittel
method [24], the Kollbrunner and Hajdin method [86], and the method of
beam-on-elastic-foundation [87]. Detailé of "these methods and the
computer program developed, including input data, output data and

listing of the program, are presented in Appendix A.

3.2 Dead lLoad Stresses

" After removal of the form work the bridge was supported on
the underside by five cross-beams which were removed just before testing.

The central deflection of the bridge due to its own weight was observed
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to be 0.144 in. The self weight of the bridge was 0.7 kips per
foot, including the extra weights used for dead load compensation.
It was observed that the longitudinal stresses in the top slab réin—
forcement were not uniform across the slab width; the maximum values
occurred at the web-flange junction (Fig. 3.1). This is due to the
shear lag resulting from the ch;nge in the shear deformations in thé
plane of flanges with respect to the longitudinal forces and therefore
the resulting stresses at the web-flange junction are higher than those
between the webs or at the cantilever tips. The steel stresses cal-
culated from the measured strain values in the top slab reinforceﬁent
over the webs were approximately 20 and 30 per cent larger than the .
stresses at locations between the webs at midspan and at the support
sections, respectively.( The maximum steel stresses in the top slab
reinforcements at the midspan and support sections were -2.6 ksi.and
2.1 ksi respectiQely. Here the negative sign indicates that these
stresses are compression.

As is evident from the measured strains, the longitudinal

concrete stresses across the top slab were not uniform. over the webs,

they were approximately 40 to 50 per cent larger than the étress values
at points between the webs or at the éantilever tips (Fig. 3.2).

The steel stresses in the lower slab reinforcement as calculated
from.the measured strain values showed a similar behaviour of higher
stresses at the web-flange junction than at locations between the webs.

This difference was 10 per cent at the sup?ort and 40 per cent at the

midspan sections. As shown in Figure 3.3, the steel stresses in the



71

' C D
e "? [ —
A B ¢ o0b
e Electrical Stress Gauges
'
-'-\
C LOAD P (KIPS) S
Section A ;S Section B - Section C é? Section D
2 1 3 Ao s?f -1
Voo oy o
VAL !
\ v © v
vy > :I
I ©,
VoA 2 ! 0
\\\ \\‘ \\ % l =
£ ;
\ \ \ < |
\ vV
AN |
VooV it
\\ \\\ i1
v\ |‘8
Voo
\

'Numbers_on the curves refer t
to strain gauge numbers
shown on the cross-section

- | ] A i : |
ksi -18 -15 -12 -9

1 | 1 |

6 9 12 15 18

Stresées
FIG. 3.1 LONGITUDINAL STRESSES IN THE TOP SLAB REINFORCEMENT

(SYMMETRICAL LOADING CASE)

,.
A
anbe



QAN
— >
—
— o
o

.

LOAD P (KIPS)

Section A Section B Section C A Section D
2 13 2031231 [ 12 3
- 10
8
-6
, ~4
Nunbers on the curves refer
to strain gauge numbers
shown on the cross-section
FZ
! |

L\ | .

Stresses

|
-640 -480 -320

FIG. 3.2 LONGITUDINAL STRESSES IN THE TOP SLAB CONCRETE
| (SYMMETRICAL LOADING CASE)



73

A B C D
9 [ | | b
| I | | k
| LOAD P (KIPS)

Section D Section C Lq Section B > Section A

S :
2 9 o 2

g

1 2

Numbers on the curves refer to

- strain gauge numbers shown on
the cross-section

| | | { | \ J | | L | | 1
-1 -12 -9 -6 -3 -0 3 6 9 12 15 18 21 24 27 ks
Stresses

FIG. 3.3 LONGITUDINAL STRESSES OF THE BOTTOM SLAB REINFORCEMENT
(SYMMETRICAL LOADING CASE)



74

lower slab reinforcements had maximum values of 3.6 ksi and -2.1 ksi

at the midspan and support sections, respectively. . The longitudinal
concrete stresses in the lower slab were also generally small and were
50 per cent higher than the correspohding stress values at‘locations
between the wéb; for both the support and midspan sections. The
transverse steel and concrete sfresses in bothrthe top and bottom slabs
throughout the bridge span were approximately 10 per cent of the corres-
ponding longitudinal stresses at the samé locations. No significant
strains, and ﬁheréfore stresses, were noted in the stirrups for the

case of‘dead load alone.

3.3 Symmetrical Loading Test

3.3.1 Deflections

The load increments used in this loéding case were 1.32 kips
each. The experimental load-deflection curve (Fig. 3.4) shows ;hat
the bridge behaved linearly up to a load value of 4.kips on each web
when cracks were first observed in the bottom slab near midspan. The
tensile stresses in the concrete as calculated from the measured strain
values were approximately 417 psi. Figure. 3.5 shows the variatidn of
verticél deflections along the bridge span at load values of 3.9, 7.8
and 11.7 kips. These curves represent the average deflections for
the left and right webs (the difference between the two sets of

deflection readings was less than 4%). As shown in Fig. 3.4, the
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initjal stiffness of the bridge, which is the slope of the load-
deflection curve, is 17 per cent less fhan the value calculated from
the simple beam theory which does not account for the éracking of the
céncrete.

Using Branéon's equation which accounts for the crackihg of
concrete [88], the effective momént of inertia of the bridge was cal-
culated. This led to an‘increase of approximately 20 per cent in‘the
calculated deflections and showed an improved agreement with the experi-
mental load-deflection curve (Fig. 3.4). Thus, use of Branson's
equation which accounts for the cracking of concrete, gives better
assessment of the bridge deflections than the simplé beam theory. The
deflection profile along the span of the bridge (Fig. 3.5) shows that
the end regions of the specimen was fixed-ended as stipulated in the

design of the experiment.

3.3.2 ILongitudinal Steel and Concrete Stresses

3.3.2.1 Top Slab

Figure 3.1 shows the variation of the iongitudinal stresses
in thé top slab reinforcemgnt with load at different locations throﬁgh
the span of the bridge. The steel stress values calculated from the
measured strains at both the midspan andvsupport sections were larger
than those calculated using the simple beam theory for the uncracked
and the cracked sections. "At a load value of 4.5 kips, the steel
stresses over the webs were approximately -8 ksi and 6 ksi'at both the

midspan and support sections, respectively. These stresses were
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approximately two to three times larger than those calculated from

the simple beam theory based on the uncracked section at both the mid-
span and support sections. Asbshown in Figure 3.1, the calculated
st;ess values considering the section to be cracked gives bette; agree4
ment with the stress values calculated from measured strains. In

this case, the longitudinal stresses in the steel reinfbrcement over

the webs at a load value of 8 kips were approximately -13 ksi and 11 ksi
at the midspan and‘support sections, respectively. Thesé stresses
were approximately 66 per cent larger than those predicted from the
simple beam theory at boﬁh the midspan'and support sections.

Figures 3.6 throughv3.9 show -the léngitudinal steel stresses
across the width of the top slab at different locations through the
bridge span at load vaiuesvof.3.4, 6.5, 9.0 and 11.6 kips. The
stress variation>throughout half of the bridge span at a load value of
11.6 kips is shown in Figure 3.10. These figures show that the steel
stresses across the width of the éop slab of the bridge are not uniform.
At the web-flange junction these stresses were higher than fhoSe at the
cantilever tips or at points bétween the webs. The fluctuation in
these stresses and their higher values at the web-flange junction are
due to the effect of shear lag phenomena as hentioned earlier. The
effect of shear lag was more bronounced in the midspan regioﬁ than
near the supports mainly due to the local effect of the support end

block.
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At a load value of 6 kips on each web, the longitudinal steel
stresses over the webs at the midspan section were approximately.—lo ksi,
while those betwéen the webs were approximately -8 ksi. At the support
section, for the same load level, these longitudinal stresses over the
webs were approximately 8 ksi,while those between the webs were 7 ksi.

The iongitudinal concféte stresses across the top slab varied
in a manner similar to the longitudinal steel stresses. The variation
of the longitudinal concrete stresses on the top slab with load at
different locations through the span of the bridge is shown in Figure 3.2.
Figures .3.11 through 3.14 show the distribution of the concrete longi-
tudinal stresses across the'width of the top slab at different locations
throughout the span of the bridge at load values of 3.9, 6.5, 9.0 and
11.6 kips. Also, the variation of the longitudinal concrete streéses
in half of the bridge span is shown in Figure 3.15. As shown in these
figures, the shear lag phenomenon caused an increase of approximately
30 per cent in the stresses at the web-flange junction above tﬂose at
the cantilever tips or at points between the ers. At a load value
of 10 kips,’the concrete longitudinél stresses over the webs at the
midspan section were approximately 530 ps;, while those between the
webs were approximately 420 psi. The simple‘beam theory is not
capable of predicting the varying stress distribution within the box

section.
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3.3.2.2 Lower Slab

Figure 3.3 shows the variationvof longitudinal steel stresses
in the lower slab aﬁvvgrious cross-sections through the bridge span.
At the midspan section; these longitudinal stresses were higher than
those predicted from the simple beam theory. Just before crackiné,
at a load value of 4 kips, the loqgitudinal steel stresses at the mid-
span éection were 12‘ksi,which is approximately 2.5 times larger than
those caléulated from the simple beam theoiy assuming that the section
was uncracked. However, calculated values based on an assumed cracked
section give better agreement with the experimental results. At a
load value of 10 kips, these stresses were approximately 25 ksi,which
is about 1.5 times larger than the calculated stress based on a crécked
section analysis. The distribution of the longitudinal steel stresses
across- the lower slab at different locations through the bridge span for
different load values is shown in Appendix C. The envelope of these
longitudinal stresses through half of the briaée span is shown in
Figufe 3.16; Again, the effect of the shear lag phenbmenon on the
longitudinal stresses of the'lower slab reinforbemént at béth the midspan
and support sections is quite evident. The longitudinal steel stresses
at the web#flahge junction of the lower slab were higher than those
between the webs at bothbthevmiéspan and support‘sections. At a load
value of 10 kips, the steel stresses beneath the web at the midspan

section were approximately 26 ksi, while between the webs they were
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19 ksi. At the support section, at the same load level, these
stresses .were -9 ksi and ~7.5 ksi beneath and betweén the webs,
respectively. The restraining effect of the end blocks at the
support section caused a decrease in the differences beﬁWeen the stresses’
beneath the webs and those between it. Again, as shown in Figure 3.3,
the simple beam theory is incapable of predicting the stress distri-
butions within the box section. oIt underestimates the stresses for
both the uncracked and the cracked conditions.

Figure 3.17 shows the concrete stress variation with load
at different points across Ehé width of the lower slab. The longi-
tudinal concrete stress distribution across thé width of the‘lower slab
and its variatioh with load is shown in Aépendix C. Again, the shear
" lag considerably influences the longitudinal concrete stresses.
At the support section, at a load value of 10 kips, the longitudinal
concreteAstresses beﬁeath thg webs were approximately 1100 psi, while

those between the webs were 850 psi.

3.3.3 Transverse Stresses in Top and‘Bottom Slab

Reinforcements

Figure 3.18 shows the stress variation in the transverse top
slab reinforcemént as calculated from the measured strains at different
cross—sections through the span of the bridge. The transverse. stresses

in the top and bottom slab reinforcements were approximately constant

between the two webs, and decreased toward the ends of the cantilevers
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on the top slab. The transverse stresses in both the top and bottom
slab reipforcements were appioximately 30 per cent of the longitudinal
stresses at the same 1oca£ion, with a maximum value at the midspan
section. The transverse stresses_across the width of the top slab
at different bridge sections fer differeht load values are detailed in
Appendix C. At'a.load value of 10 kips these steel stresses in the
upper transverse reinforcement layer at the midspan section were
approximaﬁely»z ksi. Initiaily,the transverse steel stresses on the
top slab were compressive and small; however, with a loading increase
these stresses reversed‘in nature and became tensile. As mentioned
in Chapter 2, there were two layers of reinforcement in both the ﬁpper
and lower slabs. The stresses in the transverse steel in the upper
reinforcement layer showed an increase of 50 per cent above those in
the lower layer. Similarly, the stress in the transverse steel ef
the lower layer showed a similar increase of 50 per cent above those
observed in the upper layer at the same location. These increases
can be attributed to the Poisson effect.

The transverse concrete etresses,as calculated from the
measured strain values in the top slab of the bridge,were approximately'
uniform between the webs and decreased toward the cantilever tips. In
the midspan region, at a load valﬁe of 10 kips, the transverse tensile
stresses over the webs were approximately 120 psi which were approxi-
mately 20 per eent of the longitudinal concrete stresses at the same

location. Figure 3.19 shows the load-concrete tranSverse'stresses
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at different cross-sections through the span of the bridge. The
maximum deformations take place at midspan and therefore the maximum
transverse stresses also occur at midspan. These transverseé stresses . .
decrease towardé the cantilever tips as well as towards the end supports.
‘The transverse concrete stresses across the width of the top slab at
different locations through the'bridge span for Aifferent load values
are detailed in Appendix C. The transverse concrete stress envelope
through half the bridge span at a load value of 11.7 kips is shown in
Figure 3.20. It should be mentiohed that the simple beam theory does
not account for the transverse stresses in this type of structure.-

At a load value of 10 kips, the transverse stresses in tﬁe
top slab at the midspan section, calculated using Knittel's method [24],
were approximately 80 psi.: This value is‘approximately 8 per cent of
the longitudinal concrete stresses at the same location. These
calculatgd s;resses are less than those measured at the same location
and approximately half those predicted from_tﬁe Poisson's ratio effect.v

These observatioﬁs show that the transverse stresses within
the box section, in»some cases, can reach values which are larger than
those predictéd from the Poisson's ratio effect or with any available
aﬁalytical method, therefore a better meﬁhod of analysis is needed to

predict these stresses in reinforced concrete box section structures.

3.3.4 Stresses in the Web Reinforcement

The web reinforcement of the box section consisted of vertical
closed stirrups as recommended by the ACI Code and AASHTO Specifications

[89, 66]. As a result of some detailed investigations [90, 91, 92],
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§

it has now been established that the shear capacity of a.reinforced
concrete simply~supported beam with a rectangular cross—sectiony
consists of the resistance provided by (1) the compression zone,

(2) the aggregate interlqck at the cracks, (3) the dowel action of the
longitudinal reihforcement, and (4) the contribution of the web rein-
forcement and its interaction with the other components. However, a
similar qualitatiQe breakdown of the shear and torsional resistance

of the box section has not yet been attempted.

The ACI and the AASHTO shear and torsion desighie&uations
are empirical in nature and consider the strength to consist of two
components - the strength contribution of the concfete section and
the strength contribution of the reinforcement. This simplified
philosbphy was used for the analysis of stirrup stress in the present .

study. The contribution.of concrete is given by

<
Q
1
N
7
a
S
o
£

(3.1)

]
-
™
o
o7

where b is the thickness of the web
d is the depth of the cross-section

£' the compressivé strength of concrete.
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The contribution of the web reinforcement is given by

v = 4V : (3.2)

where fy is the_yield stress of the web reinforcement.

By combining equations (3.1) and (3.2), as in the ACI Code and the

AASHTO Specifications

V = V +V (3.3)
[ S :

v = VvV +v (3.4)

By simplification of equation (3.4), and substituting from equations
(3.1) and (3.2), and by replacing fy by fs , the stirrup steel stress

is given by

f = ) (3.5)

It must be noted that the stress in the stirrup steel is.
almost neqgligible before the section cracks and since according to
the ACI Code 318.77 [74] and the AASHTO Specifications [89], Vc represents

the load at which the concrete section cracks, equation (3.5) was used
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to calculate tﬁe stirrup steel stress after the section cracked.
No calculations were made for the stirrup steel stress for loading
stages before the cracking of the section. |

The experimental load-calculated stirrup stresses at different
locations through the bridge span are shown in Figure 3.21. As
shown, the stirrup stresses at the midspan section before cracking
were small. However, after cracking at a load value of 4.3 kips on
each web, the étirrup stresses increased significantly and were 1.3 ksi
and 0.2 ksi at the midspan and support sections, respéctively. The
stirrup stress envelope for half the bridge span is shown in Figure 3.22

at a load of 11.7 kips on each web.

3.4 Unsymmetrical Loading Test

3.4.1  Deflections

The vertical deflections were measured under both the loaded
and the unloaded webs through the span of the bridge at 23-inch intervals.
The following six curves for the midspan vertical deflection are shown

in Figure 3.23:

1. Deflection of the loaded web
2. Deflection of the unlocaded web
3. Deflection of the longitudinal centreline of the bridge

for the unsymmetrical loading test
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4. Deflection of the longitudinal centreline of the bridge
for the symmetrical loading test |

5. Elastic deflection from the simple beam theory using the
uncracked cross-section

6. Deflection values obtaiﬁed by incorporating Branson's
equation to account fof the craéking of the cross;section,

in simple beam theory.

These curVeé are plotted for the case of the concentrated load oniya
The dead load deflection at the midspan section was 0.144 in. and must
be taken iﬁto consideration in calculatiné the total deflection at any
load 1level. |

Due to the combined effect of torsion,‘shear and bending in
the box girder bridge, thg loaded web showed higher deflection values
than the unloaded web.

The midspan deflection at a load value of 20 kips was 0.24 in.
under the loaded web, 0.15 in. under the unloaded web, and 0.19 in. at
location midway between the webs.

As shown in these curves (Fig. 3.23), the deviation from
linearity is clearly observed at a load value of approximately 20 kips
for the loaded web and 28 kips for the unloaded web. The deflection
values calculated uSiné the simple beam theory were the lowest deflection
values. At the midspan section for a load value of 20 kips, the
calculated deflection value obtained from the simple beam theory was

approximately 0.05 in. which is about 25 per cent of the measured
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deflectién value of the bridge centreline. However, the use of{
ﬁranson's equation in this analysis increased the calculated deflection
value to about 0.1 in. These deflection values are approximately 60
and 40 per cent respectively compared with the measured deflection
values ﬁﬁder the unloadéd and loaded webs respectively.

As shown in Figure 3.23, up to a load value of lé kips for
the unsymmetrical loading case, the measured deflection values of the
bridge centreline were close to those for the symmetrical loading test.
Therefore it can be concluded that at the early stages of loadings below
approximately 0.2 of the ultimate load, the torsional and‘shear
deformations have a negligible effect on the deflection and the
overall béhaviour of the bfidge.' However, these deformations have a
significant influence in the bridge response beyond this load level,
mainly due to the formation of inclined cracks around the box section
and the propagation of these cracks with an increase of load.

Lateral displacement of the top élab at different locations
along the span are shown in figure 3.24 for load values of 9.7, 19.4,
29.0, 38.7 and 55.0 kips. The maximum lateral displacement occurred -
at the midspan section for all 16ad levels. At a lqad value of
55 kips, the meashrea laterél displacement at the midspan section was
'0.0425 in.

Figure 3.25 shows the longitqdinal displacement of the
cantilever tips throuéh the bridge span at different ldad values of

9.7, 19.4, 29.0, 38.7 and 55.0 kips. As can be noted from Figure 3.25,
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the maximum measured longitudinal displacement occurred approximately

at the quarter span section of the bridge. These deformation |

patterns can be attributed to torsional and distortional deformatioﬁs

‘in the box sectionithrdugh the bridge span due to the applied unsymmetrical
loads. The’meaéured longitudinal displacement of the cantilever tips |
at the quarter séan’section was 0.03 in. at a load value of 55 kips

which is approximately 4 and 6 per cent of the measured veftical
deflection at the midspan section for the loaded and the unloaded webs,
respectively.

The 1ongitudinal displacements of both the left and the right
webs for the applied eccentric load through half the bridge span ére
shown in Figure 3.25. It can be noted that the loaded web moves
outwards at the midspan section, while thé unloaded web moves inwards.

It must be observed that the bridge deflection profiles shown in
Figures 3.24 and 3.25 confirm that the end regions of the bridge were

fixed as stipulated in the design of the experiment.
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3.4.2 Angle of Twisgt

The angle of twist "§" of the midspan section, relative to
the fixed end section, ignoring the warping restraint, can be calculated
from the following formula [9]
MT L

J G
eq

8 =

(3.6)

Figure 3.26 shbws the load-measured angle of twist,relatibnship along
with the curves obtained using the above beam formula and the diagonal
compression field theory. This theory has been developed for the
analysis of concrete sections under pure torsion. The longitudinal
and transversevreinforcements are considered to act as tieé or tensile
members, while the concrete between the cracks is assumed to behave

as compression struts. The equatioﬁs from the latter theory used in
the computer program are deﬁailed in Appendix B. Detailed derivation
of these equations’can be found in Refefence [93].

As shown in. Figure 3.26, the load versus measured angle of
twist relationship is linear up to a load value of 16 kips‘and appro*i—
mately the.same as the curve obtained using the diagonal compreséion
field theory. Beyond this limit, due to the formation of cracks,
the torsional stiffness of the box section, as noted f?om the slope of
the measured load-angle of twist, decreased to a value of approximately

one-third of the initial value. Beyond a load value of 30 kips, the
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torsional stiffness of the bfidge decreased to about 20 per cent of‘
its initial value, and it remained approximately constant up to the
ultimate lqad level. This observation shows the serious effect of
the formation and propagation of cracks within the box section in
decreasing its torsional stiffness.

The beam formula yields the stiffest load-twist relationship,
and as shown, a serious deviation between the measured and the calculated
values occurs ét a load value of 10 kips. At a load value of 30 kips,
the measured angle of twist value was 90 x 10-4 radian, while the beam
formula indicated angle of twist of 20 x 10_4. It must be noted thaf
the beam formula is valid only for homogeneous and linearly elastic
elements and can bé used only for the analysis of the box section before
pracking. There is no justification for the use of this equation for
load stages beyond cracking because of the large discrepancy with the
experimental values. | |

The diagonal compression field theory can be used to analyse
the concrete element pf any cross~sectional shape in pure torsion. As
mentioned before, the measured and the calculated values from this method
were approximately the same up to a load value of 16 kips. Beyond this
load value and up to a load value of 40 kips, the measured angle of twist
was larger than the caiculated'value.‘ At a load value of 25 kips, the
measured angle of twist was approgimately 40 x 10_4 radian, and the
calculated value was 35 x 10_4 radian which is reasonably close. At
4

another load value of 35 kips, the measured angle of twist was 90 x 10~

radian, while the calculated value was 70 x 10—4 radian. Thus the
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experimental value starts showing departure from the calculated values.
Beyond a load value of 40 kips, the calculated angie of twists increased
more rapidly (Fig. 3.26) on account of yielding of the reinforcing steel
iﬁ the cross-section.  The distribution of the angle of tWi;ts through
the bridge span for différent load levels isishown in Figure 3.27.

It must be noted that, as mentioned earlier, the compression
field theory was derived for the case of pure torsion only and does not
account for any interactiom with shear and possible stiffening.of the
section on account of bending. This may have caused the deviation
between the theoretical and the experimental curves.

Details of the compression field theory and the computer
program used in this analysis (input data, output data, and listing of
the program)vare presented briefly in Appendix B. The extension of
compression field theoryAto include the inflﬁence of bending and shear

are also presented in Appendix B.

3.4.3 Longitudinal Steel and Concrete Stresses

3.4.3.1 Top Slab

The longitudinal steel stresées in the top slab reinforcement
as obtained from the measured steel strain and the values calculated
using the simple béam theory across the bridge width at different
locations along the bridge span are shown in Figure 3.28. As shown,
the steel stresses across the width of the topﬁslab were not uniform,

with the maximum values occurring over the loaded web. These stresses
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decreased towards the cantilever ends. At the midspan éection, for
a load value of‘40 kips, the longitudinal steél stresses over the
loaded web was approximately -35 ksi, while the minimum value at the
cantilever end was -12 ksi. At the support section, for the same
load level, the longitudinal steel stress over the 1oaded web was
approximately 40 ksi, whilekthat.at the cantilever end was 20 ksi.
Figures 3.29 and 3.30 show the envelope of the longitudinal steel
stresses through half the bridge span at load values éf 19.4 and

‘55.0 kips. As can be seen; thé maximum steel stress values at these
load levels were 24 ksi and 52 ksi, respectively.

For years the American Association of State Highway and
Transportation Officials (AASHTO) [66] and the California State Depart-
ment of Highways [94] have used the simple beam theory as a design tool
for the box section structures. In the present study, the longitudinal
steel sfresses calculated from the simple beam theéry for both the |
uncracked and the cracked section ‘analyses were. lower tﬂan the measured -
stresses. These differences are due to the effect of warping restraint
in increasing these stresses”(Fig. 3.28). The longitudinal torsional_
and the distorsional warping stresses in the. longitudinal steel and the
concrete in the loéded web at both the midspan and support sections
were calculated using the following methods and their combinations for

load levels of 20 and 40 kips, respectively:

1. Simple beam theory based on uncracked section analysis.

2. Simple beam theory based on cracked section analysis.
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3. Simple beam theory + iongitudinal torsional stresses from
the Kollbrunner and Hajdin method. |
4. Simple beam theory + longitudinal distorsional stresses
from the beam-on-elastic-foundation method.
5. Simple beam theory (un;racked section) + longitudinal
torsional stresses.from the Kollbrunner ahd Hajdin method
4+ lqngitudinal distorsional stressesvfrom the beam-on-
elastic-foundation method.
6. Simple beﬁm theory (cracked section) + longitudinal torsional
stresses from the Kollbrunner ané Hajdin method + longitudinal
distorsional stresses. from the beamfon-elastic—foundatipn

method.

The calculated values of the concrete_and steel stresses are shown in
Table 3.1. The experimental longitudinal steel stresses of the top
slab were higher than the values calculated using the simple beam theory
for both uncracked and cracked sections. However, the addition of

the longitudinal torsional and distorsional warping stresses from the
Kollbrunner and Hajdin method and the beam-on-elastic-foundation method
to the simple beam theory (cracked section analysis) caused the
calculated stresses fo increase by 30 per cent (Table 3.1). The
.differences between the ex;erimental and the caléulated longitudinal

stresses (including the torsional and distortional longitudinal warping

stresses) increased with an increase in the applied load.



120

Table 3.1

Unsymmetrical Load Test

Longitudinal Steel and Concrete Stresses for Load at Midspan
of 20 and 40 kips
g 2 Calculated stress values - ksi
0 -~ -

; o ER: O
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As shown in Table 3.1, these differences were approximately 40 péf

cent at a load value of 20 kips, and reached a value of approximately
60 per cent at a load value of 40 kips. It should be mentioned that
at a load of 10 kips, this difference was leés than 20 per cent.

Since these methods were developed for elastic homogeneous béx sections,
it is not sﬁrprising to note a large discrepancy between the experi-
mental and the calculated stresses, especially when the sgction cracks.

The distributions of longitudinal stress in the top slab
reinforcement a£ different bridge sections for different load levels
are detailed in Appendixrc.

The longitudinal concrete stresses in the top slab in the
midspan region behaved in a manner similar.to those of the top slab
reinforcement at ﬁhe same location. lThe non-uniform variation of
longitudinal concrete stresses with load in the top slab at different
bridge sections is shown in Figure 3.31. At a load value of 40 kips,
the maximum longitudinal concrete sfress over the loaded web at the
midspan section was approximately -1000 psi while the minimum stress
at the cantilever tips was approximately —460‘psi. The envelopeé
of the longitudinal ¢oncreté stresses in the top slab through‘half of
the bridge span at load values of 19.4 and 55.0 kips respectively axé
shown in Figurés 3.32 and 3;33. Agéin, as\expected, the simple‘ﬁeam
theory overestimates the resulting longitudinal concrete stresses within
the box sgction. T#ble 3.1 shows a comparison between the experimental

longitudinal concrete stresses and those obtained from the simple beam
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P =19.4 kips

FIG. 3.32 TOP SLAB LONGITUDINAL CONCRETE STRESS ENVELOPE FOR HALF THE BRIDGE SPAN
. [LOAD P = 19.4 KIPS] (UNSYMMETRICAL LOADING CASE)

XA



P = 55 kips

FIG. 3.33 TOP SLAB LONGITUDINAL CONCRETE STRESS ENVELOPE FOR HALF THE BRIDGE SPAN
[LOAD P = 55 KIPS]  (UNSYMMETRICAL LOADING CASE)
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theory for both uncracked and cracked sections. As shown, the

simple beam theory based on tﬁé cracked section analysis gave a

concrete stress value of -=2500 psi over the loaded web at the midspan
section, while the experimental stréss value was approximately -1000 psi.
The incorpofation of the longitudinal torsional and distorsional warping
stresses in these analyses has increased the predicted values from the:
simple beam theory for both uncracked and cracked sections by approxi-
mately’ls to 30 per cent. The addition of the torsionél and dis-
torsional warping étresses in the slab steel to the stress values cal-
culated from the‘simple beam theory using a cracked section, showed
convergence towards the_measured values at both the midspan and support
sections (Table 3.1). The calculated longitudinal concrete stresses
do not show the same convergence to the measured vélues as the steel
stresses. The 1ongitudinai»concrete stresses at different bridge

sections for different load values are detailed in Appendix C.

3.4.3.2 Lower Slab

Variation of the longitudinal stresses in the lower slab
reinforcement at differenﬁ locations through the bridge span is shown
in Figure 3. 34. ' Again, the distribution of the longitudinal stresses
in the lower slab reinforcement was not uniform across the lower slab
width. At the ﬁidspan section, for a load value of 40 kips, the
maﬁimum steel stress occurred under the loaded web and was approximdately

60 ksi, while the minimum stress occurred beneath the unloaded web and
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was approximately 32 ksi. At the support section, for the same load
level, the steel stresses beneath the loaded and unloaded webs were
approximately -21 ksi and -14 ksi, respectively. Here the negétive
sign indicates that these‘stresses are compressive.

The envelopes of the longitudinal steel streéses in the lower
slab through h&lf the bridge span at load values of 19.4 and 55.0 kips
are shown in Figures 3.35 and 3;36 respectively. The longitudinal
steel stresses at different bridge sections for different load va;ues
are detailed in Appendix C.

A coﬁparison between the measured and the calculated steel
stresses in the lower slab at both the midspan and support sections
for load values of 20 aﬂd 40 kips are shown in Table 3'15 As shown
in this table, the measured longitudinal steel stresses in the lower
slab at the midspan section were higher than the calculated values, even
afﬁer aécounting for the contribution of the torsional and distorsional
warping'stresses. However, at the support section, the measﬁred
stresses were higher than those calculated using the uncracked section
analysis and were lower than those based on the crackéd section analysis.
This difference is due to the warping of the section. '

The longitudinal concrete streéses in the lower slab behaved
in a manner similar to the longitudinal stresses in the lower slab
reinforcement at the same location. As shown in Table 3.1, the measured
longitudinal concrete stresses were higher than those predicted from the
simple beam theory based on»ah uncracked section, and lower than those

based on a cracked section. However, the inclusion of the torsional
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and distorsional warping stresses in the calculation (column (5))gave
better agreement with the measured values. Again, the differences
are due to the combined effect of the ldngitudinal flexural and warping
stresses in this region, in addition to the.redistribution of forces

within the box section resulting from the cracking of concrete.

3.4.3.3 Cracks in the Top Slab

Flexural cracks first formed in the top slab near the support
at a load value of 22 kips. These cracks were perpendicular to the
longitudinal axis of the bridge. A few cracks were formed through
the thiqkness of the cantilever slab on the loaded web side. As the
load was increased, these cracks extended horizontally in the canti-
lever slab until they intersected the loaded web before propagating
into the 1owér slab. As expected, these éracks were concentrated in
the loaded web more than those in the unloaded web. Figure 3.37
sths the crack pattern in the top slab.

| At a load value of 48 kips, an inclined crack formed in the
top slab over both webs near the quarter span region of the bridgeﬂ
with the increase in the applied load, these cracks egtended into the
webs and the top slab until they intersected the longitudinal cracks
formed over the unloaded web due to the transverse tensile stresses in

this region. In the vicinity of the applied load at the midspan

section, a curved 1ongitudinal crack formed as shown in Figure 3.37.



31

FIG. 3.37 CRACK PATTERN FOR THE TOP SLAB
(UNSYMMETRICAL LOADING CASE)
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At a load value of 58 kips, a local punching shear féilure
occurred beneath the applied load; the depth of the punched region
was about 3/16 in.

Figure 3.38 shows the average variation of the crack width
with load in the top slab at both support and midspan sections.

As shown in Figure 3.39, the cracks in the cantilever slabs
were perpendicular to the longitudinal axis of the bridge; there were
no inclined cracks in this region. This shows that the side canti-

levers in a box section do not contribute to its torsional behaviour.

3.4.3.4 Cracks in the Lower Slab

At a load value of 10 kips, flexural cracks first formed in
the lower slab at the midspan section under the applied load. The
number of cracks in the lower slab increased as the applied load was
increased. These cracks were concentrated beneath the loaded web,
perpendicular to the longitudinal axis of the bridge, and confined
within a distance of approximately 4 ft. in the midspan region. In
the quarter span region, diagonal cracks formed, inclined at approxi-
mately 40° to 45° to the horizontal axis of the bridge.

At a load value of 48 kips, a set of transverse cracks formed
in the lower slab at the midspan section and were perpendicular to the
longitudinal crécks in this region. These cracks were concentrated
beneath the loaded web and extended over the middle third of the bridge

span. These cracks decreased in number, length and width towards the
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FIG. 3.39 CRACK PATTERN IN THE CANTILEVER SLAB
(UNSYMMETRICAL LOADING CASE)



135

unloaded web and towards the support regions. ~The inclined cracks
in the lower slab were the horizontal extension of the shear cracks
from both the loaded and the unloaded webs. A Figure 3.40 shows the

load-crack width variation in the lower slab beneath the loaded and the

unloaded webs in the vicinity of the midspan section.

3.4.4 Transverse Steel and Concrete Stresses

3.4.4.1 Transverse Stresses in Top and Bottom Slab Reinforcement

For the symmetrical loading case, the transverse‘reinforcement
was subjected to transvérse stresses which were approximately 30 per cent
of the longitudinal steel stresses atvthe same location. In the
unsyﬁmetrical loading_case, the traﬁsverse reinfgrcement played a signi-
ficant part in resisting the appiiea eccentric loads. - These transverse
stresses were approximatelylof the same order as the longitudinal stresses
at the same location. Figure 3.41 shows the experimental load-transverse
stresses for the top slab reinfoxcement over the ioaded and unloaded
webs at different locations through the bridge span.

A study of the experimental data shows that the tensile stresses
in the top slab transverse reinforcement were concentrated over the un-
loaded web in the midspan region of the bridge, while transverse com-
pressive stresses existed over the lba&ed web ét the same section.

The reason for the change in the sign of the transverse gtressés between

the loaded and the unloaded webs is that the concentrated load causes a
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sagging transverse bending at the top of the loaded web and hogging
transverse bending at the top of the unloaded web. Consequently
the stresses due to the concentrated load oppose the stresses due to
dead load at the loaded web and are additive to these stresses at the
unloaded web resulting in this increase.

Figures 3.42 and 3.43 show the envelope of the steel stresses
of the transverse reinforcement in the top slab through half of the
bridge span at load values of 19.4 and 55 kips, respectively. The
-transverse steel stresses in the loaded and unloaded webs at the midspan
section were =11 ksi and 9 ksi respectively at 19.4 kips, and -47 ksi
and 46 ksi respectively at 55 kips. These stresses were approximately
of the same order as the longitudinal stresses in the top slab rein-
forcement at the same location. These observations show that for the
eccentric load test the transverse stresses in the top slab are higher
than those predicted from the Poisson effect. This is due to the
combined effect of shear and torsional stresses in the transverse
direction, along with the contribution of the longitudinal stresses in
that direction through the Poisson effect. The transverse reinforce-
ment over the unlocaded and the loaded webs in the top slab at the mid-
span section yielded at load values of 43 and 46 kips, respectively.

For homogeneous, elastic bodies the following well known
equation [9] was developed to calculate the transverse stresses in thin-

walled open or closed sections:



FIG. 3.42 TRANSVERSE ENVELOPE FOR THE TOP SLAB TRANSVERSE REINFORCEMENT THROUGH HALF
THE BRIDGE SPAN [LOAD P = 19.4 KIPS] (UNSYMMETRICAL LOADING CASE) '
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FIG. 3.43 ENVELOPE FOR THE TOP SLAB TRANSVERSE REINF_ORCEMENT‘ THROUGH HALF THE
BRIDGE SPAN [LOAD P = 55 KIPS] (UNSYMMETRICAL LOADING CASE)
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T = —— ‘ (3.7)

where T shear stress at the centreline of the flange

torsional moment at the cross-section

E

Aenc = area enclosed by centreline of wall of closed
portion of the cross-section
t = flange thickness.

The'experimental results were much higher than the wvalues
predicted from this equation. It is therefore obvious that equations
developed for linear elastic systems cannot be used for analysis of a
box section structure and there is a need for a suitable analysis
method to calculate these transverse stresses in such types of structures,
which will account for nonlinearities of behaviour resulting from
vinelasticity of concreté, yielding of steel and cracking.

The transverse stresses in the lower slab reinforéement at
tﬁe midspan section were also higher than the values predicted from
equétion 3.7 (Fig. 3.44); The measured transverse steel stresseé for
a load value of 20 kips were 12 ksi and 9 ksi under the unloaded and
loaded webs resﬁectively, while.the calculated value was approximately
2 ksi. As shown in Figure 3.44, the transverse stresé under the
unloaded web was higher than that under the loaded web. This is due
to the combined influence of the Poisson effect and the transverse

bending stresses at this section. As the applied load was increased,
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the stresses in the transfer reinforcement under the unloaded web
increased significantly until it yielded‘at a load value of 45 kips.

| The transverse steél'strésses through half of the bridge
span at load values of 15.4 and 55 kips are shown in Figures 3.45 and
3.46. The transvefse stress distribution in the top and bottom slab
reinforcemen;s at different bfidge sections for different load values

is shown in Appendix C.

3.4.4.2 Transverse Concrete Stresses in Top and Bottom Slabs

The experimental transvefse concrete stresses in the top
slab over the loaded and the unloaded webs at different locations through
the bridge span are shown in Figure 3.47.

Significant transversé tensile and compréssive concrete stresses
were observed over the unloaded and the loaded webs respectively. Ovér
the unloaded web, these transverse stresses are due to the Poisson effect
from the longitudinal direction, in addition to the stresses resulﬁing'
from the load distribution across the width of the box gection. Over
the loaded web;these compressive transverse stresses result from the
transversé distribution of loads across the width of the box section,
as well as the streés concentration in the vicinity of the applied load.
Atva load value of 38.8 kips, the tensile stresses in the concrete over
the unloaded web at the midspan section exceeded the tensile strength
of concrete (fé = 450 psi), causing a longitudinal crack in the top slab

at the unloaded web parallel to the bridge longitudinal axis. These



FIG. 3.45 STRESS ENVELOPE FOR THE LOWER SLAB TRANSVERSE REINFORCEMENT THROUGH
HALF THE BRIDGE SPAN [LOAD P = 19.4 KIPS]
' (UNSYMMETRICAL LOADING CASE)
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‘créqks were concentrated over the unlo#ded web and increased rapidly
in length and number as the aéplied ioad was increased. The
digtribution of the traﬁsverse concrete stresses in the top slab
through half of the bridge span is shown in Figures 3.48 and 3.49 for
load values of 19.4 and 55 kips. The maximum transverse concrete
stresses over the loaded and the unloaded webs at the midspan section
were -150 psi and 150 psi respectively for a load value of 19.4 kips.
For a load value of 55 kips, the transvgrse concrete stresses were
-450 psi ovér the loaded web while the unloadedeeb showed avsignificant‘
crack parallel to the longitudinal axis of the bridge. These trans-
Vefse stresses were approximately 30 and 40 per cent from the longitudinal
concrete stresses at the same location for the 19.4 and 55 kips load
values respectively. The distribution of the transverse concrete
stresses across the width of the top slab at different—locations through
the bridge span for different léad values is shown in Appendix C.
The transverse .concrete stress values calculated from the Knittel method,
the beam-on—elastic.foundation method, and the Kollbrunner and Basler
method along with the transverse stresses calculated from the measured
strain values are shpwn in Table 3.2. =~ It cﬁn be‘seen that the experi-~
menﬁél stress values were approximatelyb25 to 40 per cent higher than
the calcuiated values at the working load level (20 kips). However,
near the ultimate load level, the experimental transverse stresses
were appro#imatelylso to 60 per cent higher than the calculated values.
It must be noted that these methods are valid only for‘homogeneous and

linearly elastic bodies and can be used only for analysis of the box



P = 19.4 kips

FIG. 3.48 ENVELOPE FOR TRANSVERSE CONCRETE STRESS IN THE TOP SLAB THROUGH
 HALF THE BRIDGE SPAN [LOAB P = 19.4 KIPS]
(UNSYMMETRICAL LOADING CASE)
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FIG. 3.49 ENVELOPE FOR TRANSVERSE CONCRETE STRESS IN THE TOP SLAB THROUGH HALF THE BRIDGE SPAN
[LOAD P = 55 KIPS] (UNSYMMETRICAL LOADING CASE)
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Table 3.2
Unsymmetrical Load Test

Transverse Concrete Stresses in Top Slab at Midspan Section

1

-g igiiiiéZZéues Calculated stresses (psi)

) from measured Kollbrunner & Knittel ' Beam-on-elastic -

o strains (psi) Basler method method foundation method

§ Loaded Unloaded |Loaded | Unloaded | Loaded | Unloaded | Loaded | Unloaded
web web web web web web web web

-125 | 140 | -100 100 | =92 92 -118 118

-400 - -200 - 200 -184 184 -236 236
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section within the working load level. This is the reason for the
discrepancy between the calcﬁlated and the experimental transverse
stresses near the ultimate load levels. Therefore, fhere is need for
a suitable énalysis method to account for nonlinearities of behaviour

at higher load levels.

3.4.5. Stresses in Web Reinforcement .

3.4.5.1 Stirrup Steel Stresses

For a beam loaded with a pure torsional moment, diagonal tensile
stresses result on all four beamvfaces; however, they are in opposing
direction on the parallel faces. For a beam subjected to a transverse
shear force V, diagonal tensile stresses result on both vertical faces
and these'are in the same direction. Consequently, for a beam loaded
in combined torsion and shear, the diagonal tensile stresses are
additive on one of the vertical faces and subtractive on the other.

On the beam horizontal faces, the'diagonal tenéile stress exists due to
torsion alone. |

Upon removal of the loads for the symmetrical loading casé,’
the residual stresses in the vertical stirrups were very small and
therefore they have been neglected. As observed by several investigators
.in tests for shear strength of reinforced concrete beams, the stirrup
stresses increased significantly oﬁly after the formation of cracks.
Figure 3.50 shows the experimental load-stirrup stresses for both the
loaded and unloaded webs at different bridge sections. |

As explained hefore in Section 3.3.4, the theoretical stirrup

steel stresses in one web can be calculated by the following equation:
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£ = —Y (3.8)

where v is the algebraic sum of the shear stresses due to the shearing
force vV and the torsional moment MT' " After reducing the contribution
of concrete cross-section in resisting the shear stress as follows:

v = v_+v -v
C

Therefore for the loaded web this equation gives:

v MT
= + - . R ’
M 2b_d 2 b~ Ve (3.9)
w enc w
and for the unloaded web
M
3 v T -
v = 5D 4 W 5 v, ‘ (3.10)
enc w

As shown in Figure 3.50, up to a load value of approximately 20 kips
the stirrups were not significantly stressed.

At a load value of 20 kips, at the midspan section, the
stirrup stresses of both loaded and unloaded webs were épproximately
5 ksi and 2 ksi respectively. The calculated stirrup stresses for

this load level were 12 ksi and 7.5 ksi respectively. At a load
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value of approximately 26 kips, the cracks formed at the midspan of

the loaded web. Beyond this load level, the stirrups of the loaded

web started to show significant stresses, especially in the vicinity of
the point of application of the load. These stirrups yielded at a
load value of 52 kips. The stress in the stirrups of the unloaded
web at the midspan section for the same load level wasvapproximaﬁely

18 ksi.

As mentioned earlier, the stirrup stresses for both the
loaded and the unloaded webs through the bridge span Qere lower than
those calculated from equatidns 3.8 and 3.9bup to a load value of
approximately 24 kips. Beyond this load level, and after the
formation of web cracks, this trend changed and £hé experimental stress
values for the loaded web stirrups were higher than the calculated
values.

However, at a load value of'45 kips, the stirrup stresses of
the loaded and the unloaded webs were 33 ksi and 12.5 ksi respectively,
and the corresponding calculated stresses were approximately 25 ksi
and 15 ksi respectively. ~ As shown in Figure 3.50,‘tﬁe stresses in
the unloaded web stirrups at higher load levels were approximately
20 per cent iower than the caiculated values.

The difference bin the stirrup stresses between the loaded
and the unloaded webs is due to the earlier formatién of cracks in the
loaded web. At a load value of 38.8 kips, the stirrup stresses in

the loaded web were approximately three times larger than those in the
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unloaded web. However, at a load value of 50 kips, the stirrup
stresses of the lo;dedeeb were approximately double'those of the
unloaded web, sharing commencement of inelastic behaviour in the
unloaded web. However, it is not possible to make a direct comparison
between the experimental and the calculated values of stresses in the
stirrups bedause there is no such analysis, which aécounts for the combined
effect of bending, shear and torsion after the formation of cracks, at
presenf available. »Thg stirrup steel stress envelopes for the loaded and the
unloaded webs through half of the bridge span for load values of 19.4
and 55.0 kips are shown‘in Figures 3.51 and 3.52.

The unsymmetrical load test of the bridge was stopped at a load
value of 55 kips due to a shear punching failu;e under the hydraulic
jack over the loaded web. The resulting damage was repaired and the
bridge was prepared again for the final loading test. Results of the

final load test are presented in Section 3.5.

3.4.5.2 Web Cracks

Cracks first appeared in tﬁe loadéd web at a load value of
20 kips after formation of flexural cracks at‘ﬁhe midspan section 6f
the lower slab. With further increase in load, these cracks increased
in number and extended vertical;y to the point of application of the
applied load. At a ioad value of 38 kips, inclined cracks formed in
the quarter span region of the.loaded web and in the loaded web at
the support region. These cracks were inclined at approximately 40°

- to 45° with the longitudinal axis. Near the midspan region, the shear



156

[SdIX b6l =

(3SY9 ONIQYOT TvIIYLIWWASNA)
d o<¢4u NVdS 39QI¥9 3HL 4IVH HONOYHL IdOTIANT SSILS 13ILS dNUNILS

1s'¢ "9ld




o

FIG. 3.52 STIRRUP STEEL STRESS ENVELOPE THROUGH HALF THE BRIDGE SPAN [LOAD P = 55 KIPS]
(UNSYMMETRICAL LOADING CASE) ’
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cracks intersected the flexural cracks, and secondary cracks formed as
the applied load was increased. Near the support region, the flexural
- cracks were observed at a load value of 22 kips, followed by shear and
torsion qracks near the mid depth of the loaded web. These cracks
extended toward the top and bottom slabs as the applied load was
increased. The crack spacing was approximately of 4 inches with an
average crack width of 0.5 mm and 0.11 mm for the loaded and unloaded
webslfespectiyely, at a load value of 55 kips.

The cracks appeared in the unloaded‘web at a load value of
28 kips. These cracks started as flexural cracks from the lower
slab and as tﬁe load. was increased the cracks extendéd-vertically
toward the upper slab.

"In the quarter sbén region of the bridge, vertical cracksl
were observed in the unloaded web at a load value of 42 kips. No
inclined cracks due to the combined effect 6f shear and torsion were
observed in this region as thése were in oﬁposite directions on this
web. The loaded web showed more diagonal cracks as the shear and
torsional effects were additive in that web.

The crack patterns in both the loaded and unloaded webs of
the bridge are shown in Figures 3.53 and 3.54. Figure 3.55 showé
the average variation of the crack width with loéd in the loaded and

unloaded webs at the support and midspan sections.
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FIG. 3.53 CRACK PATTERN FOR THE LOADED WEB
(UNSYMMETRICAL LOADING CASE)

FIG. 3.54 CRACK PATTERN FOR THE UNLOADED WEB
(UNSYMMETRICAL LOADING CASE)
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3.5 Ultimate Loading Case

After repairing the partial shear punching failure which
occurred at the end of the previous unsymmgtrical loadin§ case, the
bridge was loaded iﬁ an identical manner to the last test, in loading
' increments of 10 kips each until failure. The instrumentation used

was similar to that used for the last test.

3.5.1 Deflections

The experimental load-deflection curves of the loaded and
unloaded webs are shown in Figure 3.56. The deflection due to the
dead load (0.144 in.) should be added to these values to obfain the
total defléction at any load level. The residual deflection resulting
from the previous loading test is also shown in Figure 3.56.

The nonlinear response for both the loaded and the unloaded
webs through the entire loading test is shown in Figure 3.56. This
nonlinearity in the behaviour is due to the cracks which‘had already
formed in the bridge from the previous loading test. At a load
value of 15 kips, the cracks in the loaded web opened and é significant -
~ decrease was observed in the stiffness.of'the‘loaded web. At a load
value of 23 kips, thé unloéded web also showed a decrease in stiffness
due to the opening of the cracks. The measured'deflection values of
the loaded and the unloaded webs at a load value of 20 kips were
approximately 0.5 in. and 0.3 in., iespectively. These values are
approximately 35 per cent lérger than those obtained in the previous

load test at.a similar load level.
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The initial stiffneéses of both the loaded and the unloaded
webs wefé approximately 20 per cent and 50 per cent,respectively,less
than those observed~in the previous loading test.

The lateral displacements of the cantilever tips through the
bridge span are shown in -Figure 3.57 for different load values of -
'19.6, 39.2, 58.8 and 68.6 kips.v The maximum iaterai displacements
occurred at the midspan section and were 0.056 in; and 0.062 in. fof
load values of 58.8 and 68.6 kips, respectively. These displacement
values weré approximately 25 per cent hiéher than those obtained at
the samg load level from the previous loading test.

Figure 3.58 shows the longitudinal displacement of the canti-
lever slab tips through the bridge span at load values of 19.2, 39.2,
58.8 and 68.6 kips. The,locationbof the maximum longitudinal dis-
placement was coincident with that of the brevious loading test.

The measured longitudinal displacements of thé cantilever tips at the
quarter span section were 0.042 in. and 0.051 in. for load values of
58.8 and 68.6 kips, respectively. " These longitudinal disélacement
values were approximately 30 per cent higher than those obtained f;om
the previous loading test. This is due to the openiﬁg of the_cracks

which had previously formed in the bridge.

3.5.2 Angle of Twist

As explained in Section 3.2, the angle of twist of the box
e

section relative to the fixed end, ignoring the warping restraint, can

be calculated using the formula:
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(3.6)

The load versus angle-of-twist relationship at the midspan
section of the bridge is‘sﬁown in Figure 3.59.“ It can be noted
that the measﬁred load-angle of twist relationship wag linear up to a
load value of 15 kips after which it started to deviate from linearity -
this is due to the opening of the cracks formedxin the previous loading
test which decreased the térsional stiffnesses at the zero and ultimate
load levels to approximatley 20 per cent and 25 per cent, respectively,
lower than those observed in the previous loading test. The measﬁred
angle ofvtwist at load value of 20 kips was 85 x 10—4. This value
was three times larger than that obtained at the same load level for
“the previous loading test. At a load value of 50 kips, the measured
angle of twist was 200 x 10"4 radian which was 25 per cent larger than
that obtained in the previous loading test.

At a ldad value of 60 kips, the torsional stiffness as
observed from the slope of the load-angle of twist relationship was
approximately 500 kips in2; ‘ this vélue remained constant beyond this
load level until the ultimate 16ad stage. The angle of twist at the

60 kips load level was 300 x ];O-4 radian.

3.5.3 Longitudinal Steel and Concrete Stresses

3.5.3.1 Top Slab

The distribution of the stresses in the top slab reinforcement

of the present loading test was similar to that in the previous loading
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test. Figure 3.60 shows the load-longitudinal steel stresses of

the top slabkreinforcément ét different locations through the Span

of the bridge. Tﬁe non-uniformity of the steel stresses across the
width of the top slab can be noted from this figure. = At the support
section, for a load value of 65 kips, theimaximum longitudinal steel
stress over the loaded web was approximately 52 ksi, while that over

the unloaded web was approximately 38 ksi. Thé.minimum stress in

this case occurred at the cantilever tips and was approximately 31.5 ksi.
At the midspgn séction, for the 65 kips load level, the longitudinal
steel reinforcement over the loaded web yielded, while the‘longitudinal
steel stresses over‘the.unloaded web were approximately -22.5 ksi. The
minimum stress in this case occurred at the cantile?ef tips with a value
of approximately -15 ksi. It should be noted that the resulting
stresses in the present load test weie‘approximately 50 per cent higher
than those obtained from the previous load .test. Again, this is due |
to the cracks which had been»formed previously and caused a redistri-
bution of stresses within thé structure.

Figure 3.61 shows the load-longitudinal concrete stresées on
the top slab at different locations through the span of the bridge.
These stresses were non-uniform across the width of the top slab. It
shows also that the 1ongitudiﬁal stresses over the loaded web are much
higher than those over the unloaded web. At a load value of 65 kips,
the maximum longitudinal concrete stresses over the loaAed web at the
midspan section were approximately -2400 psi while those over the

unloaded web were approximately -680 psi. However, the longitudinal
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concrete stresses in this load test were approximately 10 per cent
larger than those obtained from the previoué load test. This increase
is due to the redistribution of stresses within the box section and
through the bridge span due to the further propagation of previously
formed cracks and the new Crééks thch were formed in the present load

test.

3.5.3.2 Lower Slab

The distribution of the longitudinal stresses in the lower
slab reinforcement was‘not uniform across the slab width (Figure 3.62).
At a load value of 60 kips, the maximum stress under the loaded web
at the midspan section was approximately 38 ksi while that under the
unloaded web was approximately 30 ksi. At the support section these
stresses were -35 ksi and -19 ksi for the loaded and the unloaded webs
respectively. At ﬁhe same load 1ével, the calculated longitudinal
stresses from the simple beam theory based on a cracked section analysis
were 40 ber cent and 25 per cent larger than thé values calculated from
the measured strains at the support and midspan sections respectively.
The ability of the box section to diétribute the loads in the transverse
direction in addition to the combined effect of both the flexural and
the warping stresses are the cause of these differences.

Figure 3.63 shows the load-longitudinal concrete sfresseé in
the lower slab at different ldcations throughout the span of the bridge.
As shown, the longitudinal strésses at the loaded er are higher than

those for the unloaded web. At a load of 60 kips, the longitudinal
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stresses of the loaded web were 55 per cent higher than those for the
unloaded web.  Also, the non-uniformity of these stresses across

the slab width was more prondunced.

3.5.4 Transverse Stresses in Top and Bottom Slab Reinforcement

kFigure 3.64 shows‘the variation of transverse stresses with
load for the top slab reinforcement at different locations through the
span of the bridge. As shown, the transverse tensile stressés were
concentrated over the unloaded web with maximum values at the midspan
section in the vicinity of the applied load. At a load value of
40 kips, thé transverse tensile steel stresses at the midspan section over
the uﬁloadéd web were approximately 36 ksi, thle the transverse com-
pressive steel stresses over the loéded web were 18 ksi.v These
transverse tensile stresses were approximately 10 per cent higher than
those obtained in the previous load test, while the transverse com-
pressive stresses were approximately 50 per cent less than those obtained
.in the previous test. At a load value of 55 kips, the transverse
tensile steel stresses over the»unloéded web were approximately twice
the transverse compressive steel stresses over the loaded web. The
transverse steel over the unloaded er at the midspan section yielded
at a load value of 46 kips. | However, the transverse steel stress
over the loaded web at this load level was -20 ksi,which is approximately‘
50 per cent less than that obtained at the same load in the previous
loading test. The local punching shear failure which occurred beneath

the applied load over the loaded web in the previous loading test caused
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a release in the compressive stresseé in the vicinity of the applied
load causing this reduction.

Figure 3.65 shows the load-transverse concrete stresses in
the top slab of the bridge at different locations through the bridge
span. The distiibution of thése transverse stresses across the width
‘of the top slab is similar to tﬁose obtained from the steel reinforcement
of the top slab.

As shown in Figure 3.65, the transverse compressive concrete .
stresses over the loaded web were approximately 50 per cent less than
those obtained from the previous load tesfl Again, the cracks and the
punching shear at ﬁhe midspan section led to a redistribution of the
stresses in this region.

Figure 3.66 shows the variation of transverse stresses with
load for the lower élab reinfdrcement, As shown in this figure, the
transverse stresses at section "A" under the unloaded web at a load
value of 40 kips were 50 per cent higher than those at the loaded web.
This is due to the combined effect of the longitudinal and the resulfing
‘transverse stresses,in addition to the torsional and distortional
transverse warping stresses in this region. The steel bars under the
unloaded web at section A yielded at a load value of 66 kips. Unfor-
tunately, the strain gauges at the midspan section had ceased functioning
at the end of the previous loading test, therefore no comparisoﬁ can be
made between the steel stresses of section A with those at the midspan

section.
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3.5.5 Stresses in the Web Reinforcement

The experimehtal load-stirrup stresses at different locations
through the span of the bridge for both the loaded and the ﬁnloaded
webs are shown  in Figure 3.67. Initjally, there were some residual
stresses from the previous test, witﬁ values of 15 ksi and 5 ksi for
both the loaded and the unloaded webs, respectively. These valﬁes
form approximately 28 per cent of the maximum stirrup stresses obtained

-in the previous load test. However, the behaviour of the stirrup
stresses in the preéent test was similar to that in the preVious load
test. The loaded web stirrups showed higher stresses than those of
the unloaded web. At a load value of 40 kips the’stirrup stress in
the loaded web at the midspan section was 33 ksi, while those in the
unloaded web had a stress of 12 ksi. The experimental stirrup steel
stresses in the present load test were 10 pef‘cent and 20 per cent
higher'than those obtained in the previous test for the unlocaded and
loaded webs, respectively. This can be attributed to the residpal
stresses from fhe previous test.

As shoWn in Figure 3.67, beyond a load value of 47 kips, most of the
stirrups in the loaded web had yielded. . At this load level, the
stress in the stirrups of the unloadea web at the midspan section was
only 15 ksi. |

Again, although the shear force was maximum at the'support
section, the maximum stirrup gtresses occurred in the vicinity of the

applied load at the midspan section.
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Because of~£he existence of cracks which had formed during
the previous'loading test, the sudden chaﬁges in the load—étirrup
stresses which‘occurred in the previous test did not occur in the
present test (see Figure 3.67).

The cause of failure, however, can be considered to be due
to the failure of the loaded web.beﬁeath the appliedlload at the mid-
span section at a load of approximately 70 kips. The principal
compressive stresses in the webs at the midspan section exceeded the
allowable 1imits of 5000 psi causing the crushing of the concrete.strut
betﬁeen the diagonal cracks at this 1qcation, followed by yielding ana

buckling of the web reinforcement.

3.6 Summary of Experimental Observations

3.6.1 Deflections

The measured deflection values were generally higher than those
calculated from the simple beam theory. Also, for the unsymmetrical
loading'test, the loaded wéb showed higher deflections than the unloaded
web. Tables 3.3 and 3.4 show the measured flexural and torsional |
riqidities as percentages of the rigidities EIg and GJg based on the
gross croés—section, and also as percentages of the experimental initial
rigidities EI.l;‘t and GJint at different load levels. Aé shown in these
tables, the flexﬁral rigidity EI of the bridge was iess than the rigidity

based on the gross cross-section mainly due to the cracking of the

concrete. The flexural and torsional rigidities decreased significantly
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Table 3.3

Flexural Rigidities at the Midspan Section
for Different Load Levels

Torsional Rigidities at the Midspan Section

for Different Load Levels

ot | S|
(kips) g int
0 0.5 1.0
10
10 0.4 0.8
20 0.2 0.4
35 0.11 0.22
55 0.11 0.22

Ioaded Web Unloaded Web
(i‘i);csi) EI EI EI EI EI EI
EI g EI, . EI_, EIg EL, BI_
0 0.45 1.0 1.45 0.6 1.0 2.32
10 0.35 0.9 1.3 0.6 1.0 2.11
20 0.28 0.7 1.0 0.46 0.9 1.19
35 0.2 0.5 0.71 0.3 0.6 0.83
55 0.17 0.45 0.64 0.22 0.57 0.80
\
Table 3.4
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and gradually after the occurrence of cracks and with further increase
in applied load. The load deflection curves of the loaded and' the
unloaded webs were linear up to load values of 15 kips and 22 kips
respectively, while the load—éngle of twist curve was linear up to a
load value of approximately 12 kips. At the working load level, the
torsional rigidity decreased £o about 0.4 of the iﬁitial torsional
rigidity value; however, the flexural rigidities of the loaded and
unloaded webs were about 0.7 and 0.9, respectively, of the initial
flexurai rigidity values. |

Due fo the unsymmetrical formation of cracks in both webs andi
flanges, the shear centre ofnthe box section moved away from the axis
of symmetry of,the section. This forced the bridge to move'horizontaily
in the lateral direction. Therefore the reduction in the stiffness
of ﬁhe box section should be considered in the calculation of deforma-
tions in this type of structure.

The maximum lateral displacement occurred at the midspan of
the top side of the loaded web.

Regarding the longitudinal displacément,ithe lower side of
the loaded web showed larger displacements than the top side. This is
because the neutral éxiS»is situated nearer the upper slab which is also
stronger and stiffer than the lower slab. The maximum longitudinai
displacement occurred approximately in the quarter span region of the

bridge.
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3.6.2 longitudinal Stresses

For both the symmetrical and the unsymmetrical loading cases,
the longitudinal stresses in both the upper and the lower slabs were
not uniform across the slab width. The differences in these stresses
were about 30 per cent for the symmetrical loading case and 70 per cent
for the unsymmetrical loading case.

For the symmetrical loading case the shear lag phenomenon caused
a 30 per cent increase in the stresses at the web-flange junction above
the stresses in the region between the webs. The measured longitudinal
stresses at the midspan and support sections were 50 per cent and 60 per cent
higher than the values calculated from the simple beam theory for the
symmetrical loading case, respectively, and were approximately twice the
~calculated values for the unsymmetrical loading case. This is due to
the effect of warping restraint in increasing these longitudinal stresses.
However, the calculated longitudinal stresses increased by approximately
30 per cent above those obtained from the simple beam theory for both the
uncracked and the cracked section analyses by consideration of the
torsional and distortional longitudinal warping stresses using the
Kollbrunner and Hajdin method and the method of the beam-on-elastic
foundation.

In the unsymmetrical loading cases, the longitudinal stresses
of the loaded web were approximately twice those of the unloaded web at
the midspan section, while at the support section this increase was
approximately S0 per cetn.

Bending moments at midspan and support sections evaluated integrating
the measured longitudinal stresses for the symmetrical and the unsymmetrical
loading cases were within 5 and 10 respectively of the total statical bending

moment, thus establishing the reliability of the measured values.



185

3.6.3 Transverse Stresses

Although the transverse stresses were small in the symmetrical
loading case, it plays a significant part in resisting the applied
eccentric loads. In the symmetrical loading case, these transverse
stresses were about 20 per cent to 40 per cent from the longitudinal
stresses at the same location. In the unsymmetrical leoading case, these
transverse stresses were approximately of the same order as the longi-~
tudinal stresses. Theée were significant transverse tensile stresses over
the unloaded web, and this caused a longitudinal crack on the top and
bottom slabs. Therefore special consideration should be given to the
details of the longitudinal and transverse reinforcements of box girder
bridges at the web-flange junctions.

The stirrup stresses increased significantly after the
formation and propagation of cracks. Before the formation of cracks,
in the unsymmetrical loading cases,these stresses were 30 per cent less
than the calculated values (Section 3.4.5), taking both the shear force
and the torsional moment into consideration. However, after the for-
mation of cracks, these stresses were about 35 per cent higher than the
calculated values. The stirrup stresses in the loaded web showed

higher values than those in the unloaded web.

3.6.4 Cracking

In addition to the flexural cracks from the symmetrical load

case, shear and torsional cracks formed in the unsymmetrical loading case.
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The loaded web showed more severe cracks than the unloaded web due to
the combined effects of shear force, bending moment and torsional
moment.  In the top and bottom slabs,‘in addition to the flexurél
cracks, the torsional cracks were observed in the vicinity of the webs.
These cracks can be considered to be the horizontal extension of the
shear cracks from the webs.

Thé cracks in the cantilever slabs were mainly flexural cracks
all through the bridge span. Therefore, the contribution of the
cantilever slabs in the torsional stiffness of the box girder can be
neglected. A vertical crack was observed through the thickness of
the cantilever slabs especialiy in the quarter span region andlat the
support region. These cracks were due to the torsional and the

distortional warping stresses.
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CHAPTER 4

FINITE ELEMENT ANALYSIS

4.1 1Introduction

The behaviour of reinforced concrete box girder bridges has
received considerable attention particularly with respect to the
distribution of internal forcesvwithin the linear elastic range.

Even at these lower load lévels the response of tﬁe structure is rather
~difficult to predict analytically because of the complications arising
from shear lag, warping and distortion phenomena. These difficﬁlties
are compéunded at load levels beyond the cracking load as sudden
localized changes in stiffness cause changes in the deformation and
stress distributions. With the propagation and widening of these
cracks with increases in the applied load, these deformations and
stress distributions getbmodified further until failure is reached.
The performance of the structure in these latter staées is of parti-
~cular importance to. designers working within a 'limit states' framework.
Of the analytical methods available to the designer, the
classical approaches of simple bending theory and torsional theory of
closed sections are generally used to yield a prediction of the stresses
in qoncrete box girder bridges [87,94]. Although these methods are
reliable within the working stress range, their use beyond the cracking

load is questionable, especially in a research program where the main
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objective is to achieve a better understanding of the structural

behaviour at all load levels. Limit load theories are‘also under .

a severe handicap in the present context becausg éf the inherent

difficulty to include the effects of membrane forces. It would seem

that the only reliable method which is also general enough to deal with

the complexities of the present problem is the Finite Elemen£ Metﬁod.

Although the cost of applying such a techﬁique may be prohibitive in

the design process, the results of the present study based on linear

and nonlinear finite element analyses should be valuable to the.désigner

and researchers. The quasi nonlineér finite element analysis pre-

sented in this chapter provides a good inexpensive tool for studying

the effect of key variables which influencé the response of structure.
The Finite Element Method.has beén used quite extensively in

.the analysis of reinfqrced concrete structures and the literature is

tod voluminous to be reviewed comprehensively in this chapter. Howevér,

contributioﬁs that relate directly to the present work can be found

in References [95, 96].

4.2 Finite Element Modeling

In the development of the finite element'model of a reinforced

concrete element, the following factors are of primary concern:
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(a) the treatment of steel reinforcement
(b) cracking of the concrete
(c) shear transfer across cracks

(d) element refinement.

4.2.1 Steel Reinforcement

TwO main approaches are at present available to the analyst
in treating the idealization of reinforcing steel in the concrete.
Firstly, one-dimensional members possessing only axial stiffness can
be used t§ represent each bar. This approach is appropriate in
treating beams, but for plates and shells the large number of bars wiil
lead to an'exgremely fine element mesh making a solution of the problem‘
virtually impossible because of the high computer cost. The second
approach, which is much more feasible in the present study, is fhe
treatment of steel as a membrane located at the level of the bars, with
orthotropic material properties chosen to match the stiffness in the

direction of the reinforcement.

4.2.2 Concrete Cracking

The cracking of any reinforced concrete element can be classified
as flexural or membrane. The former occurs when extreme fiber stresses
exceed the modulus of rupture of concrete, and the latter when the

average stress through the plate thickness exceeds the tensile strength
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of the‘conérete. The technigue used for introducing‘the cracks in
the finite element model dependsg on the type of the structure. For
example, for beams and shear walls, the cracks have been introduced
by assigning a separate node on each side of the crack. | As a crack
is introduced at a given load level based on the experiméntal crack
configuration, its width is zero to start Qith and the crack width
increases as the load is increased [97]. This approach is not
feasible for the type'of structure involved in the present study because
of the very large number of cracks at higher ioad levels, especially
near the ultimate load. Theréfore ih the finite element analysis of
such structures, it is easier to deal simultaneously with cracked and
uncracked e€lements by modifying the material compliance matrix to
account for the varying element properties parallel and perpendicular
to the cracks rather than introducing cracks between discrete elements.
This teéhnique has provided considerable versatility in studying the
effects of the coupling terms in-the elasticity matrix on the total
behaviour of the box girder bridge undef inveétigation;

The elasticity matrix [D] of an isotropic homogeneOUS; linearly

elastic material (uncracked element) is given by

(D] = E, VE, 0 , (4.1)
VE 'E 0
C C
0 0 G

where v is the Poisson's ratio and Eé is the modulus of elasticity of

the concrete given by the equation:
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E, = 33 wl'5 ch' v (4.2)

where W is the weight of 6ne cubic foot of concrete and fé is the
compressive strength of concrete.

In an element, when the principal tensile stress exceeds
the flexural tensile strength of'concrete (7.5/?:3, cracks are intro-
duced along these principal planes. Once the element cracks, the
pPoisson effect is neglected, and the modulus of elastiéity of the
concrete perpendicular to the direction of the crack and the shear
force transferred across the crack are altered depending on the load
level, the crack width and spacing, the concrete cover and the cross-
sectional areas of concrete and steel [‘90: 911]. These two factors
are important in formulating the constitutive relationship to account
for the material nonlinearity of concrete in any futuré‘finite element

analysis. These two phenomena have been handled differently by

many researchers as follows.

4.2.2.1 Modulus of Elasticity of Concrete in the Direction

vPerpendicular to Crack’"Ep"

For, simplicity, many researchers have recommended the use of
a zero value for Ep [72 1, but Berg {98 ] has suggested that a non-zero
value can yield results that are closer to experimental response.

He proposed the following equation to evaluate Ep:

(4.3)
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where € is the concrete strain at the cracking level. However,
vsince the mechanism of the force transfer between cracks is deperndent
on the steel reinforcement and to some extent on the concrete between
the cracks and the concrete éover, the value selected for Ep must
account for these factors.

A value for Ep is recommended based on‘the properties of the
uncracked and the cracked sections and the elastic modulus of concrete

és follows [99]

E I
c “cr
Ep = — : (4.4)
g
where E is the modulus of elasticity of the uncracked concrete,

I is the moment of inertia of a strip of unit width
after cracking,
and I is thé moment of inertia of a strip of unit width

before cracking.

Both zero and non-zero values for EP, calculated using
Equation (4.4), have been investigated in the present study to determine

the sensitivity of the finite element analysis results to this factor.
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4.2.2.2 Shear Transfer Across Cracks

‘The presence of cracks through the concrete plate causes an
immediate reduction in the shear stiffness. The fact that the plate
has any stiffness at all in this mode is due to the ability of the
concrete to transmit shear forces across the cracks by means of
aggregate interlock. This phenomenon has been stﬁdied by Houde énd
‘Mirza [90]}, Fenwick [91], and by Taylor [92]. ’ Houde and Mirza
observed that the infiuence of the maximum aggregate size was negligible
compared with the effect of the crack width and the concrete strength.
They observed that the shear transfer aéross the cfack is basically a
function of the crack width and continues to diminish as the créck
widens. ‘They showed the shear modulus of the cracked concrete,

BG, with the inverse‘of the crack width C, in Figure 4.1.

it must be noted that G is the shear modulus of elasticity or the
modulus of rigidity of the uncracked concrete, and B is a reduction
factor which decreases the effective shear modulus to account for the
-crack width. The term G in the elasticity matrix is therefore
replaced by BG to account for the reduced shear'transfer across the
cracks. For simplicity, most of the investigators have neglected
this factor in finite element analyses of reinforced concrete.
However, Agrawal [100] has arbitrarily used a value of 0.5 for

the reduction factor B to account for the shear transfer across the .

crack.
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The implications of the findings of Houde and Mirza on the
behaviour of box girder bridges have been considered in the presént
study. Based on their findings, a parametric study has been con-
ducted for'difference values of ﬁhe reduction factor, "g", namely,

0, 25%, 50% and 75% which correspond to crack widths of 0.0, 0.015 mm,
0.03 mm and 0.05 mm respectively. Again, it must be noted that the
effects of this factor 'R’ andvthat of the modulus of elasticity perpen-
dicular to the crack Ep’ are important in developing a nonlineaf finite
elemenﬁ analysis of reinforced concrete.

The modified elasticity matrix [D] of a cracked element in

its u-v local axis will then be as follows:

(D] w E_ 0 .0 (4.5)
0 EP 0
0 0 BG

This matrix caﬁ»be transferred to the global x-y axis by the following

equation

o T
[ny] = [C] [Duv] [c] (4.6)

where . [C] is the transformation matrix as follows:
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cos?q; sinZq sing cosa |
[c] = ~ sin?gy cos?q, -sing cosa (4.7)
-2sinqg cosa 2sing cosa cos2g-sinZq,

where o is the angle between the direction of the crack and the
x-axis as shown in Figure 4.2.
For the case of two orthogonal cracks appearing in an element,

the elasticity matrix [D] is set equal to zero.

4.2.3 Element Mesh

The finite element analysis in the present study has been
cohducted using the thin-shell element of the SAP IV Computer Program
[64]. This element was developed by Clough and Fellipa and it is a
quadrilateral of arbitrary geometry formed from foﬁr compatible
triangleé [101]. As shown in Figure 4.3, the central node‘iS'located
at the average of the coordinatesbof the four cornef nodes. The
élementyhas six interior degrees of freedom which are eliminated at
the element levei prior to assembly, therefore the resulting qﬁadri—
lateral élement has twenty-four degrees of freedom, i.e., six éegrees
of freedém per node in the global coordinate system. In the analysis
of flat plétes, the stiffness'associated with the rotation normal to
the element surface is not defined, théreforé it is not included in the
analysis. .one disadvantage of the element, however, is its significant

‘element-form' times which results mainly because of the use of four
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FIG. 4.2 CRACKED ELEMENT

FIG. 4.3 THIN SHELL ELEMENT
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subdomain triangular elements and the associated static condensation.
Despite this drawback there does not seem to be a reliable alternative
to this element except to use thése elements utilizing higher order
degrees of freedom. _‘The severe continuity requirements of these
latter elements rehder them all but impossible to use for the type of
structure analysed herein where discontinuities in Strain ére-expected.

Figure 4.4 shows the layqut;of the finite element idealization
along with the associated degrees of freedom at each node. In-depth
checks on the equilibrium of the stresses were obtained using this model
and the.associated computer costs confirmed the adequacy and economy
of the grid refinement used. once the joint rotation and displacements
are evaluated, the element stresses are calculated. Thé results of
this finite element computer program include rotations and displacements
at each nodal point in addition to the membrane and bending stresses
at the element centroid.

In all the analyses conducted in the present study, the nodal
points at midspan of the bridge are subjected to symmeﬁric constraints.
The restraints at the support dépend on whether warping is to be |
eliminated there. When warping is restrained, all degrees of freedom
are eiiminated at these nodal points. The restraint applies to all»
analyses with‘the exception of one analysis cited in the next section
for which warping was unrestrained. Details of the restrain;s are

discussed therein.
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4.3 Finite Element Analysis

4.3.1 General

Finite element analysis was conducted for the self weight of
the bridge model and the extra dead load used to simulate the dead
weight of the prototype, in addition to the following loading

conditions:

4.3.1.1 Linear Analysis

i) Two symmetrical 10 kips concentrated loads placed over the
two webs at the midspan section (these were the design

working loads)

ii) A 20 kips concentrated load applied at the midspan section
over one web for two different analyses, one with unrestrained

warping and the second one with restrained warping.

4.3.1.2 Quasi-nonlinear Analysis

Quasi—nonlinear analysis was.performed for four values (20, 31, 42
and 55 kipé) of concentrated load placed_on one web at the midspan
section for the restrained warping condition. A parametric study was
conducted for this loading case to evaluate the infiuence of different
values for the element stiffness perpendicular to the cracks,and to
study the effect of the variation of the shear force transferred across
the cracks for different crack widths on the deformational behaviour

and strength of the box girder bridge.
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4.3.2 Linear Analysis

Most box girder bridges are designed on the basis of linear
analyses. It is expected that without a good understanding of the
. behaviour of the structure at the lower load levels, an understanding
of the behaviour close to failure will not be possible. Furthermore,
the performance of the structure at working loads will not_depart
markedly from the linear state. The element stiffnesses were calculated
based on the uncracked section and the steel reinforcement was ignored.

The first part of this section deals with the results, in the
form of displacements and stresses, for the box girder model bridge
linear analysis. These results are then used as the basis of comparison
for the results from the nonlinear analysis in the next section. The
question of the effect of warping is also addressed in this section.
Nonlinearities may have a quantitative influence on this effect, but

probably not in any significant gualitative way.

4.3.2.1 Symmetrical Loading Case

The gravity loads of the model box girder structures have
been distributed over the entire lerngth of the bridge. Two point
loads of 10 kips each are also located at midspan over the webs. The
nodes at the support are completely restrained to simulate the interior
support of a multispan configuration. For the boundary conditions to
be exact each span would be loaded identically and diaphragms would be

used at the supports.
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Figure 4.5 shows the vertical displacement at midspan of
the bridge. The results of the present analysis_are, of course,
represented by a straight line. On the same plot, also shown as a
straight line; is the result of the elastic analysis based on thé
simple bending theory. This theory ié.modified'by ﬁse of Branson's
~equation [88] to allow for the change in inertia affer cracking, and
the corresponding results are shown on the séme plot; the experimental
results are also shown. The.dead load deflection of the bridge as
calculated from the finite element analysis was 0.132 in. This
deflection value should be added to.the calculated deflection at each
load level to obtain the total deflection. The experimental deflection
value for the self weight of the bridge was 0.144 in. Thus good agreement
was obtained between the computed and the experimgntal values.

As shown in Figure 4.5, all three sets of theoretical results
are close ' to the experimental data at low loads,with the finité element
results showing the best agreement. Significant reduction in stiffness
is apparent at P = 8 kips. At a total load value of 20 kips, the
measured deflection at the midpsan section was approximately 0.2 in.,
while the finite element results showed a deflection value of 0.125 in.
At this load level, the measured deflection value was 0.2 in. which
is approximately 74% higher than the value calculated using‘the simple
beam theory and 48% higher than the finite element analysis value.

The use of a cracked section by incorporating Branson's equation in the
simple beam theory decreases thé difference from 74% to 66%. Theréfore
it is obvious that the available elastic methods of analysis are valid
only before the formation of cracks at which stage the difference between
the measured and the calculated deflections increases significantly as

expected.
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The distribution of longitudinal and transverse membrane
stresses écross the girder width at midspan and support sections is
shown in Figure 4.6. Similarly, the variation of longitudinal and
transverse bending stresses at midspan and support sections is shown
in Pigure 4.7. It must be noted that the longitudinal membrane and
bending stresses at the web-flaﬁge junction are approximately 30%
, higher than those predicted from thé simple beam theory. It can'be
seen that the membrane stresses are approximately 3 - 5 times the
bending stresses.
vThese figures show that the largest longitudinai membrane gndb
bending stresses within the box éectidn occur at the web~flange junction.
The differences between.the largest and the smallest ﬁembranes or
. bending stresées across the top and the bottom slabs range between
20% and 50%. @ These differences result from the effect of the shear
lag phenomenon in redistributing these stresses within the box section
as explained in chapter 3. The observed and the calculated transverse
membrane and bending stresses within the box section are approximately
constant between the webs and decrease towards the ends of the cantelever
tips. These transverse stresses_éttain maximum values at the midspan
section. At this section thé transverse membrane and bending stresses
are approximately of the same qrder. | .
Thelexperimental and the calculated values of the total
transverse stresses are'approximateiy 40% of that of the total longitudinal

stresses, therefore due care must be exercised in designing box section

structures for transverse stresses.
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4.3.2.2 Unsymmetrical Loading Case

- e S .t o S T ot e B S e W S o G S it S T o 40 St 1 O

An elastic analysis was conducted for a total working load
" of 20 kips applied on one web (termed the loaded web) . The unrestrained
warping condition was achieved in the computer program by superposing

the following two loading conditions as shown in Figure 4.8:
(i) two symmetrical loads of 10 kips on each web at midspan,

(ii) a torsional loading consisting of a downward load of 10 kips
on the loaded web and an upward load of 10 kips on the

other web..

lExperimentgl and calculated values of the midspan deflection
along thercenterline of the bridge and thé loaded and unloaded webs,
calculated using the finitg element analysis and the simple beam theory,
are shown in Figure 4.9. As expected.and verified experimentally,
the deflections of the loaded web are approximately 40 - 80% higher
than those of the unloaded web. As shown in Figure 4.9, the simple
beam theory gives the lowest deflection value. At the load value
of 20 kips, the calculated values of the centerline deflection_by the
simple beam theory are-0.046 aﬁd,0.088 in. for thé uncrackedvand.the
cracked sections, respectively. The finite element elastic anélysis
resulted in - deflection values of 0.1 and 0.15 in. for the unloaded
and loaded webs, respectively, while thé measured defleétion values
for the unloaded and loaded webs at the same load level aré 0.134 and

0.215 in. respectively. The measured deflection values are
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approximately 34% aﬁd 43% higher than those predicted from the elastic
finite element analysis for the unloaded and the léaded wébs, respecﬁively.
The measured centerline deflection value is 0.175 in. which is approxi-
mately twice that predicted‘frOm the simple beam theory using a cracked
section.

Figure 4.10 shows the.prbfile of the vertical éeflection'
through half of the bridge span for both loaded and unloaded webs as
obtained from the finite element analysis.

The load eccentricity causes the girder to twist and translate
laterally. The variation of the lateral displacements of the top and
the bottom of both loaded and‘unloaded webs along the bridge span is
shown in Figure 4.11. As shown in this figure, the maximum lateral.
displacement.ofvthe top slab‘has occurred at the midspan section as
expected. However, the maximum lateral displacement in tﬁe lower
slab occurs near the quarter span regibn of the bridge. This is due
to the large torsional and distorsional effects in this region as
explained by the beam-on-elastic-foundation method in the previous
chapter. |

The longitudinal displaqements of the nodes given by the

finite element analysis showed larger di5p1acemehts in the lower flange

than in the upper flangev(Figure 4.12). This was expected because the
neutral axis is located near the uppervflange. These displacements
attain a maximum value near the quarter span of the girder. It can

also be noted from Figure 4.12 that the loaded and the unloaded webs

translate longitudinally in opposite directions.
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Analysis results showed that the longitudinal membrane
stresses were maximum at the support section while the trans?erse
membrane and bending stresses were maximum at the midspan section.
This is due to the maximum deformations which occur within the box
section in the midspan region.

The variation of iongitudinal membrane and bending stresses
within the box section is shown in Figures 4.13 and 4.14 respectively
for both midspan and support sections. As shown in thesé figures,
the largest stresses within the box section are concentrated in the
vicinity of the loaded web and decreased towards the unloaded web.
Thé maximum deformations along the loaded and the unloaded webs are
maximum at the miaspan,and the maximum deflection of the loaded web
is about 80% larger than the maximum deflection of the unloaded web.
Therefore, the largest transverse membrane and bending sfresses occur at thé‘
midspan section with different signs over the ioaded and the unloaded
webs due to the applied torsional 1oéd as shown in Figures 4.15 and 4.16.
These tr%nSverse stresses result in significant tension over the
unloaded web; this was confirmed by the tension cracks which appeared
over the unloaded web during thevuhsymmetrical test on the bridge quel,

as mentioned in Chapter 3.
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(b) Behaviour With Warping Restrained

Analysis results for a total load value of 20 kips show a
decreaée‘of about 5 - 10% in the vertical and horizontal displacements
when compared with the unrestrained warping case.

Figures 4.13 through 4.16 éhow thé distribution of the
v léngitudinal and transverse membrane and bending stresses within the
box section at different bridge sections for both unrestrained and
restrained warping conditions at the ends. Considerable difference
was‘observed,between these two qases,especiélly at the support_section.
The warping restraint for the unsymmetrical loading case causes the
membrane stresses in the webs at the midspan section to increase by
approximately 20%. However, there is no significant increase in the
membrane and bending stresses in the top and bottom slabs. Moreover,
there is a significant decrease in the midspan web Sending stresses aue
to the warping restraint. The longitudinal bendiné stresses here
have decreased by approximbtely 50% for both the unloaded and the loaded
webs as a result of the warping restraint, while the transverse bending
stresses of the webs undergo a similar dec;ease of 50%. HoweQer, these
bending stresses are very small in comparison to the membrane stresses.
No significant changes were observed in the shear stfesses at the
midspan section due to the warping restraint.

At the support section, for the loaded web, the warping
restraint causes an increase of 255 in the longitudinal membrane stresses,

and a decrease of 20% in the longitudinal and transverse bending stresses
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in both the top and the bottom slabs. The transverse membrane

stresses at the support section showed an increase of approximately 30%
due to the effect of warping restraints. Similarly, the warping
restraint causes a decrease of approximately 40% in the longitudinal and
transverse bending stresses in both webs at the support section; however,
these stresses at this section are also very small in comparison with

the membrane stresses.

In summary, the warping restraint can have a significant
influence on some behavioural aspects of a box section structure. These
effects become more pronounced for unsymmetrical loading cases which are
more frequent and therefore restraint of warping must be carefully con-

sidered in the design of box girder bridges [102].

4.3.3 Quasi-Nonlinear Finite Element Analysis

4.3.3.1 General.

A general nonlinear finite element analysis of a reinforced
concrete structure which accounts for cracking and material nonlinearities
with monotonically increasing loads is very expensive and time-consuming.
Therefore it was not used to study the sensitivity of structural response
to the various parameters examined in this study. This guasi-nonlinear
analysis was conducted by incorporating the experimental data on the
number, length and orientation of cracks in developing the'stiffness matrix
for each element. Also, the steel reinfofcement in each élement was
idealized as an orthotropic membrane element. Eight separate computer
runs were made for different combinations of values of gb (gp = 0 and
gp # 0) and four values of B to account for the crack widths (B = 0.25,

0.5, 0.75 and 1.0).
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The stresses resulting from this analysis which was performed
for various load levels cannot be considered "exact" or close to it
because of the gross linearization utilized in this process. A con-
ventional incremental analysis utilizing reasoﬁably small load steps
could possibly have been used to achieve this objective. However,
this quasi-nonlinear approach yields semiquantitative conclusions with
respect to the parameters under consideration.

| A parametric study was performedvfor the unsymmetrical
loading case to evaluate the effect of cracking in reducing the shear
force transfer across the crack, and to study the effect of variatiop
of the stiffness perpendicular to the crack direction on the stress
distributions for the various loading stages. It was felt that four
loading stages were sufficient to cover the entire loading history of
the bridge from the cracked state tﬁrough yieldiﬁg of the steel
reinforcing and the ultimate load. The applied eccentric load
values for these loading stages were 20, 31, 42 and 55 kips, réspectively.
For each load stage fhe modulus of elasticity of concrete perpendicular

to the crack was examined for the following two conditions:

i
o

(i) modulus of elasticity perpendicular to the crack E,

i

(ii) modulus of elasticity perpendicular to the.crack Ep

For these cases, depending on the measured width of cracks, the shear

force transferred across the crack was decreased by 0, 25%, 50% and 75s.
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These values correspond to a coefficient B value of 1, 0.75, 0.5 and
0.25 reséectively, with B = 1 representing the uncracked stat;. This
was implemented in the finite element analysis by changing the elasticity
matrix of the cracked element according to the size and the orientation
of ﬁhe crack as mentioned before.

The finite element meéhes used for the top and bottom slabs
and the webs for each load staée are shown in Figure‘4.l7 along with

the elements which have cracked.

4.3.3.2 Analysis Results

The results of this quasi-nonlinear analysis are presented

for the following:

- vertical deflection (Fig. 4.9 and 4.10)

lateral deflection (Fig. 4.11)

longitudinal deflection (Fig. 4.12)

lohgitudinal membrane and bending stresses (Fig. 4.18 through 4.21)

transverse membrane and bending stresses (Fig. 4.22 through 4.25).

The effect of the element stiffness perpendicular to the cracks and
the effectiveness of shear transfer across the cracks are shown in
all the above figures.

The experimental observation showed that most of the cracks

were formed in the midspan region. These cracks formed in the lower
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FIG. 4.18 ' LONGITUDINAL MEMBRANE STRESSES AT MIDSPAN SECTION
(UNSYMMETRICAL LOADING CASE - PARAMETRIC STUDY)
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FIG. 4.19 LONGITUDINAL MEMBRANE STRESSES AT THE SUPPORT SECTION -
(UNSYMMETRICAL LOADING CASE - PARAMETRIC STUDY)
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FIG. 4.20 LONGITUDINAL BENDING STRESSES AT MIDSPAN SECTION
(UNSYMMETRICAL LOADING CASE - PARAMETRIC STUDY)
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FIG. 4.23 TRANSVERSE MEMBRANE STRESSES AT SUPPORT SECTION
(UNSYMMETRICAL LOADING CASE - PARAMETRIC STUDY)
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slab in an orthogonal pattern parallel and perpendicular to the bridge
centerline, while those in the top slab were formed in the longitudinal
direction in the vicinity of the unloaded web. There were fewer
cracks in the'support region,while the least number of cracks was
observed in the quarter-span region which showed the least distress
compared with ﬁhe suﬁport and ﬁhe midspan regions. At the support
section, crécks formed in the top slab in a direction perpendicular

to the longitudinal axis of the bridge and they were concentrated

over both webs.

The analysis results can be summarized as follows.

(a) For tbe second load stage (P =>32 kips), the calculaﬁed vertical
deflections of the box girder bridge increased after the intro-
duction of the cracks in the finite element model.’ The cal-
culated values of these deflections showed sensitivity to the -
value of Ep. The computed vertical deflections for the case.
Ep = (0 were app;okimately~20% higher than those for Ep # 0.

This is due to the under-estimation of the element stiffness

resulting from assuming_Ep = 0.

As shown iﬁ Figure 4.9, the guasi-nonlinear finite element

analysis improved the deflection values obtained from the elastic

analysis significantly.’ At the last loading stage (55 kips),

the calculated deflections of the loaded and unloaded webs from

the quasi-nonlinear analysis were approximately 0.6 in. and 0.3 in.
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respectively, thle those obtained from ﬁhe elastic finite

element analysis were 0.45 in. and 0.275 in. respectively.

The measured deflection values at the same load lével were

0.95 in. and 0.6 in. for the loaded and the unloaded webs,
respectively. Thus quasi-nonlinear analysis predictions were
better than those from the elastic analysis although the difference

is still large.

The top slab lateral deflections for the case Ep # 0 are generally
15% higher than those of Eé = 0, while those for.fhe lower slab
are approximately 20% smaller. These differences are due to
the crack patterns invboth the top and the bottom slabs. In the
top siab these cracks are formed in the longitudinal direction
over the.unloaded web. Therefore by assigning a non-zero value

for Ep, the top slab behaves as an orthotropic plate with a

~different stiffness in the directions parallel and perpendicular

to the cracks, which causes an increase in the lateral deflections.
In the lower slab these cracks are formed Qrthogoﬁally, therefore
the case 'Ep = 9 yieids higher deflection values than the case

Ep # 0.

The calculated longitudinal deflections of both the loaded and the
unloaded webé showed an increase of approximately 15% for the case
Ep # Orhigher than those for the case Ep = 0. This is again due
to the different crack patterns in both webs and the corresponding

increase resulting from a non-zero value of Ep as explained earlier.
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For the second and the third load stages (31 and 42 kips),

the longitudinal membrane stresses in the top and the bottom
slabs for the casg EP # 0 were respectivély about 35% and 15%
higher than those for the case Ep‘= 0. As mentioned before,
both the top and the bottom slabs act as orthotropic plates for
different values of the modulué of elasticity parallel aﬁd per-
pendicular to the Eracks. This biaxial behaviour causes an
increase in the stresses for the case Ep f 0 above those for the
case Ep = 0.

Experimental observation showed that the bottom slab.was more
severely cracked than the top slab and therefore the value of Ep
was close to zero and hence the smaller diffefencelbetween the
two cases Ep # 0 and Ep = 0. At the support section,this.
increase is approximately 20% for both the top and the bottom

slabs.

There is no significant difference in the transverse‘membrane
stresses in the supPort region for both cases, Ep = 0 and Ep # 0.
This is due to the small values of these stresses in this region.
Howevef, in the midspan region, the transverse membrane stresses
for the case Ep = 0 are approximately 10% higher than those for

the case Ep # 0. This is again due to the orthogonal cracks

formed in this region as explained earlier.
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The calculated membrane shear stresses at both the midspan and
the support sections showed an increase of 10% for the case

Ep # 0 when compared with the values for the case Ep = 0.

The longitudinal bending stresses in the top slab and the loaded
web at the support section showed an increase of about 20% for

the case Ep # 0 over those obtaingd for the case Ep = 0. This.
is:due to the redistribution of the forces occurring in the ortho-
tropic plate after cracking. At the midspan section;the longi-
tudinal bending stresses of the loaded web also showed an increase
of 15% for the case Ep # 0 compared with the case Ep = Q. The
transverse bending stresses in the top slab at the support sectioh
were 12% larger for the case Ep.= 0.

At the midspan séction, the transverse bending stresses ip the top
slab were 20% larger for ﬁhe case Ep #0 than for the case.Ep = 0.‘
The crack patterns within the box section throughout the bridge

span, along with the orthotropic behaviour of the individual plates,

>show that the bending stresses, both longitudinal and transverse,

are'significantly influenced by the value of the modulus of

elasticity perpendicular to the cracks.

As the ultimate load is approached, the calculated membrane and
bending stresses become insensitive to the value of stiffness
perpendicular to the cracks because, on account of the severity
of cracking, the concrete between any two adjacént cracks does
not remain as effective ih transferring forces perpendicular to

the cracks.
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Variation in the shear transfer coefficient 8 does not have a
significant effect on membrane and bending stresses in earlier
loading stages (20, 31 and 42 kips); however, in the later stages
(42 and 55‘kips) a decrease in the shear transfer coefficient B
from 0.75 to 0.25 causes an increase of about 10 - 18% in thg
membrane and bending stresses. It is not possible to explain
these trends however, with the present state of knowledge it was
not possible to include the effect of dowel actioﬁ in the finite
element model. In conventionél beam~-type specimens, the.dowel
forces increase significantly as the ultimate load is approached,
théreby increasing the contribution of the dowel action at higher
load levels. More research work is needed in this area to
incorporate the effect of dowel action in non-linear finite

element analysis of reinforced concrete.
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CHAPTER 5

CONCLUSIONS

The results of this experimental-analytical investigation of
structural behaviour of box girder'bridges can be summarized and

conclusions drawn as follows:

1. For the unsymmetrical loading case, the flexural and torsional
rigidities Qf the box girder decreased with an increase in the
applied 1oad.due tovthe formétion and propagation of cracks and
inelasticity of concrete. At the working load level the flexural
rigidities of the loaded and unloaded webs were approximately
0.7 and 0.9, respectively,of thebinitial flexural rigidity values.
The torsional rigidity at the working load level was approximately‘

0.4 of the initial flexural rigidity before cracking.

2. For the unsymmetrical loading case, the vertical deflection of the
loaded web was approximately twice that éf the unloaded web. The
lateral and longitudinal displacéments of the webs in the horizontal
plane varied froﬁ about 5 per cent to 8 per ceﬁt of the respective
midspan vertical deflections. The present tendency to use
smaller wall thicknesses in concrete box section structures results
in increasing these displacements, therefore torsional and distortional
deformétions should be considered in the analysis and design of this

type of structure.
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3. The resulting 1ongitudinai stress distributions across the width
of the top and the bottom slabs of the box section’were not uniform
for both the symmetrical and the unsymmetrical loading cases. The
differences between the maximum and the minimum stresses in these
cases were approximately 30 per cent and 70 per cent for the
symmetrical and unsymmet?ical loading cases, respectively. The
simplé beam theory is obviocusly not capable in predicting these

distributions.

4. For the symmetrical loading case, the shear lag effect in the box
section caused an %increase of 30 per cent in the étresses at the
web-flange junction above those at the cantilever tips or between
the webs; these stresses were approximately 40 per cent higher

than those calculated from the Simple beam theory.

5. For the unsymmetrical loading case, the longitudinal stresses
calculated from the measured strains were approximately twice
those prédicted from the simple beam theory. This is due to the
effect of warping restraint for this loading case, and the cracking
of the section; alSo, the‘simple beam theory does not account for
the torsional and distortional 1ongitudinal warpingbstresses.
These torsional and distortional longiﬁudinal warping stresses can
be calculated usinq the Kollbrunner and Hajdin-method and the beam-
on-elastic foundation method, respectivelf. These can then be. added
to the stress values calculated from the simple beam theory assuming a
cracked section to obtain the total stresses. The designer should

- therefore be cautious about the increase in the longitudinal stresses

on account of the reasons stated above.
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The values of the transverse stresses for the symmetrical loading
case varied from approximately 20 per cent to 40 per cent of the
longitudinal'stresses at the same location. - For the unsymmetrical
10adin§ case, these transverse stresses were approximately of the
same order as the longitudinél stresses at the same location.
Significant transverse tensile stresses occurred over the unloaded
web and caused a serious longitudinal crack to form parallel to

the longitudinal axis of the bridge. The experimental transverse
stresses as calculated from the measured. strain values were higher
than those predicted from the availablevmethods. Tﬁérefore |
more research is ﬁéeded»to develop suitable methods to predict
these .stresses. Again, suitable care should be exercised in
designing and detailing the transverse reinforcement at the

web-flange juncfion.

. All cracks which occurred in the cantilever slabs were mainly

flexural cracks. Therefore the contribution of the cantilever

slabs in the torsional stiffness of the box girder éan be neglected.

A general non-linear finite element analysis of a ;einforced
concrete structure to account for cracking,vand material non-
linearities can be very expensive and time consuming. Therefore
it was not used to study the sensitivity of structural response to
the various parameters. Instead, a quasi-nonlinear finite element

analysis was used in the present study for which the stiffness of
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the box girder bridge was modified in stages by incorporating
informéﬁion about the cracking patterns and Crack widths from

the eXpérimental data. This quasi-nonlinear analysis was used

to conduct a parametric study to investigate the effect of the>
probagation and widening of the cracks in the analysis by modifying
the stiffness of the element perpéndicular to the crack and the
shearing force transferred acrdSs the cracks depending on the

observed crack widths.

9. A non-zero concrete modulus value perpendicular to the cracks has
a significant influence on bridge behaviour as compared with a
zero value for this modulus. However, at the ultimate load stage,

the computed stresses are insensitive to this value. -

10. A reduction in the shearing force transferred across the cracks
with widening of the cracks does not have a significant influence
on stress distribution in the bridge except at the ultimate load

level.

Suggested Areas for Further Research

The following are some suggested topics for further research

in the area of box girder bridges.

1. The present design methods for designing box girder bridges are
generally based on an elastic analysis, although the behaviour of

concrete is not elastic even at the early stages of loading.

s
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Obviously, these methods do not predict the structural response
through all the loading stages, therefore more research is needed

in this area to provide a consistent design philosophy based on

actual behaviour.

The ACI Code (318-77) suggests that thé total quantity of longitudinal
and transverse reinforcement required should be the sum of that
required for bending and torsion separately. This method over-
estimates the true resisting capacity of the structure. Therefére
more work is needed to develop a rational theory for designing
reinforced concrete elements subjected to combined torsion, bending
and sheaf. Also, such work should include study of the behavibur
of hoob steel, longitudinal steel and the concrete under such

combined stresses through the length of the bridge.

Existing - shear lag theory must be extended to include the case of
singly syﬁmetric box sections with wide cantilevers. Also, the
effect of the width of the cantilever on the behaviour and analysis
of distértional warping stresses is not completely understood;

more work is needed in this area.

In the torsional and distortional analyses of box girder bridges,
all known methods divide the eccentric load as follows: 1/2 for.
longitudinal symmetricél bending, 1/4 for torsion and 1/4 for

distortion. Such load division should be derived on the basis-
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of the flexural, torsional and shear stiffnesses of the uncracked
‘and the cracked box section subject fo combined bending, torsion
and shear. Experimental and analytical studies on a reinforced ‘
concrete box girder bridge model cén be helpfulyin determining
these stiffnesses. This information would also be usefui in

the area of limit analysis of such structures.

With the current tendency to reduce .the dimensions of the concrete
elements by using the ultimate strength design method, the short
and long time deflections have become a problem. This
phenomenon of long time deflection and its effects in box girder
bridges are still not completély understood, the;efore more work

is needed in this area.

The theoretical development. necessary for limit state design would
probably result from an extension of nonlingar fiﬁite element
analysis to predict cracking and ultimate load behaviour of box beams
under combined bending, shear and torsion. ,This can be valuable
in understanding the behaviour of box section struétures.at the
sérviceability and collapse limit states -and in developing suitable

tools for the limit states design of box section structures.
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APPENDIX A

AVAILABLE METHODS FOR ANALYSIS OF A BOX GIRDER BRIDGE

A summary of the available methods is listed in Tabie A.l.
The types of structurél actions considered in each method are detailed
in this table [39,85,86]. A brief summary of these methods is pre-
sented in this Appendix for completeness. Thé computer program
developed for these methods (input data, output data and listing of

the program) is also given.

A.1. The Conventional Simple Beam Theory and St. Venant Torsion

Using the engineering theory of bending, which assumes plane
cross~sections to remain plane, the following expression is obtained
for the normal stresses in longitudinal bending of a thin-walled beam

with a symmetrical section:

Mxy Myx L
£, = —— + —— .
g T T I (A.1)
X y
where fz = normal longitudinal stress in longitudinal bending
X, Y = co-ordinates of a point on the centre-line of the walls
of the cross-section
Mx' My = bending moments about the x- and y-axes
I, I = second moments of area of the entire concrete

cross~-section about the centroidal x- and y-axes.



Type of structural action considered

Torsional

Analytical method Longitudinal | St. Venant Distortion Distortional Shear Local
bending torsion (Transverse warping warping lag effects
bending) : '
Simple beam theory x X
Knittel b 4
Equivalent beam X X
Kupfer X X
Kolbrunner and x
Hajdin
Heilig
Beam on elastic
foundation analogy X
Reissner b4

Table A.l Available methods for analysis of box girder bridges.

LST
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Because of s?mmetry of the cross-section, the longitudinal
shear stress is zero at the vertical axis, hence the complementary
shear stress vy in the plane of cross-section is also zero at x = 0
as shown in Fig. A.1l. Since the boundary conditions for open sections
are now satisfied, i.e., zero longitudinal shear stress at the ends of
the cross-section (A, C and E), half of the section (ABCDE)'in Fig. A.l

can be analysed as an open section. Kollbrunner and Basler ([9]-

developed an equation which is applicable in this case:

V_(Ay)
(Vz'h) = I (A.2)
X
where fvl'h) = shear flow in longitudinal bending
vy = shear stress in longitudinal bending
Vy = shear force parallel to the y-axis
Ay = first moment of area of the partial half cross-section

abbut the centroidal x~axis (see Fig. A.2 (Ay) at
j, k or L is the first moment of the shaded area

about the x-axis).

The St. Venant torsional shear stress in thin-walled beams of
open-closed section is given by [9]:
T

stv

stvh)

(A.3)

i

(v
enc
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where (vsvth) = shear flow in a thih—walled section in

St. Venant to?sion

Veve = shear stress in St. Venant torsion at the center-
line of the wall

h = wall thickness of closed portion of the cross—sectioh

TSVt = torsional moment at the cross-section in St.‘Venant
torsion

>Aenc = area enclosed by the centreline of the wall of the

closed portion of the cross-section

-

A.2 Analysis of Simple Bending, Torsion and Distortion by

Knittel's Method [24]

A.2.1 Loading

Knittel's method is formulated in terms of line loads along

the webs of the box beam. The representation of practical loading
cases by equivalent sinusoidally distributed loadings is discussed in

the following section.

A.2.2 Fourier Series Representation of Practical Loadings

Concentrated and uniformly distributed loads may each be
represented by a sum of sinusoidal load distributions, as shown in

Fig. A.3.  The applied concentrated load is equivalent to a distributed
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load of intensity nn(ptl g}ven by
‘ R nnz
= I Sin —— ‘A.4
y,pth - rly,n L (a.4)
n=1
_ _ . 2F nma :
and ny,n = —EX'Sln = (A.5)

where % is the span of the bridge.

Using only the first term of the Fourier series

_ 2Fy ra
ny = T Sin - | (A.6)
C - L .
and =n Sin — A.7)
ny,ptl?. y 2 (

For the uniformly distributed load shown in Fig. A.3, qonsidering

only the first term of the Fourier series

no= o (A.8)

J .
i

and I, sin == (A.9)

where the additional subscripts ptf and ud stand for point load and

uniform load, respectively.
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A.2.3 Resolution of Loading

A given line loading is replaced by a statically equivalent

combination of symmgtric and antisymmetric line loadings at the webs.
The resolution fbr a line load ny at a web is shown in Fig. A.4.

- A concentrated load on the structure is resolved uging
symmetric and antisymmetric point loading at the webs,which in éurn
are replaced by the Fourier components of the equivglenp line.loading,

v

as indicated in Fig. A.4.

A.2.4 Summary of Analysis by Knittel's Method

1. For symmetric loads, analyse the structure using the engineering
bending theory (Egs. A.l and A.2). Include consideration of

transverse and normal forces as discussed below.

2. For antisymmetric loads, analyse the following two effects
separately:
a) pure (St. Venant) torsion,giving rise to shear stresses in

the cross-section (BEg. A.3),

b) distortion, giving rise to transverse bending on the flanges

and webs and transverse normal forces.

Knittel's method neglects the effects due to loads not acting at the
webs (i.e., transverse bending under symmetric loading) -as shown in
Fig. A.4(a). However, for the case of an antisymmetric loading, the
transVerse.bending action 1is approximated by statically equivalent

loads at the webs as shown in Fig. A.5(a).
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Fig. A.4 Resolution of Loading




265

(a)

— (b)
B /E:-\\ , \ \
) N\J| T .
D E Stresses in flanges " Stresses in
C webs
Fig. A.5 Distribution of Transverse Normal Stresses ftrn at

Cross-section Under Symmetric Loading

(C: compression, T: tension)
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(1) symmetric Loading Case

Putting ny equal to the intensity at section z (Fig. A.3),
it follows from the Fourier Series representation of loading on each

web in the symmetric load case and the simple beam theory that

zZ z .
Mx = - 2 J J ny (z) dz dz | (A.lp)
o o
z
and . Vy = - 2 J ny (z)dz + (Vy)z=o | (A.11)
° .
| b2 |
whgre (V’y)z=o = 2 j ny,(z)dz (A.12)
’ o)

Normal stresses f2 and shear stresées v, can now be obtained
from Egs. A.l and A.2.
| Knittel [24]’ presented the followihg expressions for obtéining
the maximum ordinates for the transverse normal forces under symmetric
downward loading as shown in Fig. A.5, The transverse stresses ftrn
are found by dividing the force‘per unit length by the thickness of the
flange or web. |
At point A (upper flange at axis of symmeﬁry)

Transverse (horizontal) compressive force per unit length

of the beam

n

y(2z)
= —— A - b A.13
41x ( top b 4 Acant cant),dcg ( )
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h = ]
where Atop b htop

Acant _bcant htop

dcg = depth of the centroid of the cross-section below the
centreline of the top slab

b - = breadth between centreline of webs'(Fig. A.7)

d = depth between centrelines of top and bottom slabs (Fig. A.7)

béant = breadth of the cantilever slab (Fig. A.7)

htop =‘ thlckness of top slap (Fig. A.7)

hbot = thickness of lower slab (Fig. A.7)

hweb = thickness of web (Fig. A.7)

At point B (upper flange at web)

Transverse (horizontal) tensile force per unit length of

the beam

y(z) ‘
I Aca'nt bcant dcg - (A.14)

At point B (top of web)
Transverse'(vertical) compressive force per unit length of
the beam

= n (z) | (A.15)
y
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At point E (lower flange at axis of symmetry)

Transverse horizontal tensile force pér unit length of the

beam

- A‘bot b(d_dcg) (A.16)
X A

(2) Antisymmetric Loading Case

(a) Pure (St. Venant) torsion

The torsional moment TS is calculated using the Fourier

vt

representation of antisymmetric loading and hence the torsional shear

stresses Vepy CaN be obtained using Eg. A.3.

(b) Distortion
It is assumed that the transverse bending action of the closed
frame takes piace independently of the adjacent portions of the structure,
i.e., no distortional warping st?esses are set up. However, a distri-
buted differential resistive shear‘floy é% (vsvth) is assumed to be
applied to the frame by the adjacent portions of the structure, as shown

in Fig. A.4.
n. (z)

d
dz svth 2d (A.17)

#

|
Pt
<
L

]

Differential resistive shear flow
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, The differential resistive shear forces acting on each

flange or web (Fig. A.6) are given by the following:

n. (z)

v, = gd *+ 1 +«b in the top flange/unit length of structure
n(2)

vy = 2a +1+Db in the bottom flange/unit length of structure
n_(z) :

V2 = gd +1+4d in the web unit length of structure .

A moment. distribution analysis is performed for the closed
frame under the action of the antisymmetric lbading ny(z) and the
forces Vl’ V2, and V3. This gives the transverse bending moments:ahd

the transverse normal forces.

A.3 Analysis of Distortion and Distortional Warping by

the Equivalent Beam Method [103]

Loading

As in the Knittel method, the applied loadingiis resolved
into statically equivalent distributed loading along the webs as shown
in Fig. A.4. Only the antisymmetric load case is considered in the
.equivalent beam method, and the action under symmetric load, i.e.,
bending without torsion, is treated separately usiﬁg the simple

beam theory.

(A.18)

(A.19)

(A.20)
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Fig. A.6 Force Systems in Distortion Under Antisymmetric Loading
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A.3.1 Summary Analysis Procedure

A.3.1.1 Pure (St. Venant) Torsion

Using the Fourier representation of antisymmetric loading
as in the Knittel method, the torsional moment Tsvt is calculated.

The torsional shear stresses v can then be obtained using Eq. A.3

svt

A.3.1.2 Distortion and Distortional Warping

It is assumed that rigid diaphragms at the.supports prevent
distortion but do not provide any warping restraint. The flanges of
a single-span, simply supported box beam are replaced by équivalent
-flanges as shown in Fig. A.7. Note that this is not applicable.to
the symmetric load case.’ The two equivalent beams thus formed.are.
considered to be latticed in the planes of the flanges, and their

section properties are obtained using the following expressions:

21
_ top _ .
Atop off —-Ez- = area of top flange of one equivalent beam
2Ebot
Abot off ~ 57 = area of bottom flange of one equlvalegt.beam
Aweb of = theb = area of web of one equivalent beam
= area of one web of actual beam
3
= hto (b + Zbcant) ‘
where I = B (A.21)

top 12
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= second moment of the cross-sectional area
of the top flange about its vertical axis
of symmetry
3
hbot‘b

ot T T 12 -2

= second moment of the cross~sectional area
of the bottom flange about its vertical axis

of symmetry.

The depth d of onebequivalent beam, measured between the

.centroids of A

top eff ' Abot eff is equal to the depth d measured

between the centreline of the top and bottom flanges.
If an equivalent beam is subjected to a sinusoidal loading

such that ny = 1 at midspan, then

’ = ain TZ
ny(z) Sin 2

Then using the simple beam theory, the vertical deflection

is given by

n (z)
a = J J J E%——— dz dz dz 4z
Y eff
1 b TZ
Th : = in —
us, ay EL j"—[; Sin )

eff

where Ie is the second moment of area of the equivalent beam about

£ff

its horizontal centroidal axis.
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At midspan (z = %-), the deflection under a unit.sinusoidal

" load is

IR
s (A.23)

The resistance of a box beam‘to torsional loading may be
visualized as arising partly from pure (St. Venant) torsion (no:
distortion), and partly from the differentiai bending of the egquivalent
beams, which is associated Qith the distortion of the cross-section of
the box beam. The proportioq of the applied torsional moment

resisted by the box section in pure torsion, k. , is given by:

2

k27= EE:____ (A.24)

— + 1
8k

. where Bl is the diaphragm shear flexibility, which is the value of
shear strain due to a unit shear force applied to the vertical faces
of the diaphragm. The diaphragm shear flexibility coefficient, By ,

is defined in Fig. A.8.

Thus the distributed load on each equivalent beam = (ny - zny,dmd)
where
ny = the intensity of the antisymmetric distributed loading
on each web of the box_beam |
ny,dmd = the intgnsity of the distributed loading applied to

each web by the diaphragm medium.
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The resistance to distortion provided by the transverse
bending strength of the wall is also termed the "diaphragm medium".

"Richmond [103] developed the following expression for n

Y .dmd
I I (a.25)
N, dmd 2 "y T T pg ‘ .
’ 2{——5 + 1]
8k
1
Hence (n_ - 2n ) =n. L (A.26)
Y Y ,dmd y| 8k,
| =+ k
bB1
- Thus the load carried by differential bending is (ny - 2ny,dmd)

along the span on each web, and the load carried by torsional shear flow

/d) around the perimeter of cross-section. If k., equals

is (ny 5

,dmd
zero, the entire load is resisted by differential bending and if k2

equals unity, the entire load is resisted in pure torsion.

A.3.2 Stress Analysis.

The bending flexibility coefficient, k, , for an equivalent

1

beam can be calculated for a given cross-section geometry and span.

However, to evaluate the value of the diaphragm shear flexibility, Bl '

a moment distribution analysis must be performed on a unit length of

the closed frame. Then, knowing the value of k the St. Venant or

2 ’

the pure torsional moment TSvt and the resulting shear stresses Vvt
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_can be.calculated; Also, since ny and n are known, the transverse

Y ,dmd
bending stress, £ , and the transverse normal stress, £ , in the
_ trb trn

closed frame can now be determined along with the value of the dis-

tortional warping stress, fdwr' in the equivalent beam.

A.3.3 Warping Moment due to Cross-section Distortion

The longitudinal distortional warping stresses, fdwr’ at the
top and the bottom of each web are obtained using the following
expression for the distortional warping moment, der' on one web of

the equivalent beam

92

der = (ny - zny,dmd) 7z (A.27)

A.4 Analysis of Distortion and Distortional Warping

by Kupfer's Method [104]

A.4.1 Loading
The vertical loading is assumed to be applied over a web,
and is resolved into three systems as shown in Fig. A.9. These systems
generate the following structural actions in the box'beam: (a) longitudinal
bending, (b) torsion and (c) distortion. Kupfer recommended that the

first two be treated using Knittel's method and St. Venant's torsion



b ¢ o : (a)

F -+ O ———

a) System (1) (Hinged folded plate) b) Systém (2) (Rigid jointed closed frame)

Fig.A,10 Subdivision of Distortional System

LLe
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theory, respectively, and he developed an analysis dealing mainly
with distortion and distortional warping. The method is formulated

in terms of a distributed loading using a Fourier Series representation.

A.4.2 Summary of Analysis Procedure

In analysing the box beam for distortion (Fig. A.9c), the
applied load is divided between two mutually independent and deformationally
compatible structural systems 1 and 2, as shown in Fig. A.7. In
system 1, the box beam is treated as a hinged folded plate structure
- subjected to a sinusoidal load in the plane of each wall. ‘ Here only
longitudinal structural action of the walls is considered, with each
wall behaving as a longitudinal beam bending in its own plane. The
influence of shear deformation is neglected. System 2 consists of a
rigid jointed closéd—frame structure as shown in Fig. A.10(b) which is
also subjectéd to é sihusoidal load in the plane of each wall. In thisA
case, only the transverse structural action is considered, and each wall
develops transverse bending stresses.

The distribution of the distortional load system in Fig.'A.9(§)
between systems 1 and 2 of Fig. A.10 is determined by ensuring the

compatibility, of deflections at the corners of all cross-sections.
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A.4.3 Analysis of Structure Under a Distortional load System

Kupfer developéd the following expressions to determine the

components of distortional load ng and n

respectively:

and

where k., =

1

n
Yy

n
Y,

distortional load taken by system 1

distortional load taken by system 2

3+ 2(k6 + k7) + k6k7

+ +
6 k6 k7

3+ 2(kB + kg)'+ k8k9

6 + k8 + k9

. 3
bh.top [b * 2bcant]

dhweb b

h
b bot

web

3
bh web

top

web

bot

acting on systems 1 and 2,

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)
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To evaluate the longitudinal stresses due tovthe distortional load
system, the actual box beam is replaced by two equivalent beams similar

to those illustrated in Fig. A. 7, but with the value of I

off equal to
half of the second moment of area of one equivalent -beam, since the
n
loading on each beam is now [—%—]. For system 1, the equivalent

beams are taken as simply supported over the actual span £ and subjected

n .
to a sinusoidally distributed vertical load —%l- which can be calculated

using Eq. A.37

n (z) n_(2) kg
Y1 D 4

4 4 l+k3

(A.37)

For system 2, the transverse bending strength of the upper and the
lower slabs of the box beam provides a continuous elastic support for
the equivalent beams, which must therefore be analysed as beams on an

elastic foundation. The vertical loading can be taken either as the

n

sinusoidal Fourier representation —22} or as the actual loading

4

resolved into system 2. This loading can be used for evaluating the
longitudinal (distortional warping) stresses and the transverse bending

stresses in system 2. The foundation modulus, k for the equivalent

10 '/

beam on elastic foundation is given by

4Eh®
Klo = B2k - (38
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A.4.3.1 Longitudinal Stresses in System 1

The longitudinal stress at the junction of the centreline

of the upper slab and the web is given by

d
—4— (A. 39)

The longitudinal stress at the junction of the centreline of the lower

slab and the web is given by

1 L 22 cg . ,
fdwr,l = Zn 5‘;2'27——"‘ (A. 40)
2

A.4.3.2 Longitudinal Stresses in System 2

Ty

Under a uniformly distributed loading of intensity —29 p

a simply. supportéd beam (span %) on an elastic foundation with a

modulus klo»’ develops a midspan bending moment given by

k & k 2
"y sinh 11— sin 11—
M= -2 2 2 (A.41)
where k = (A.42)
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F
When subjected to a concentrated load, Zly at midspan the beam develops

a midspan bending momemtn Mz'given by

" ] Fy sinh kllz +‘51n k112' | (A 23
2 | 16 k;; cosh k;;8 + cos ky;% : :

Kupfer [104] argued that in an infihitely long beam on an elastic
foundation, subjected to a single concentrated load within the span,

the bending moment M., will have become negligible at a distance QC

2 h

(characteristic léngth).from the concentrated load, given by
L, = = . (Aa.44)

Therefore, it follows that under the action of a concentrated load,
the distortional warping effects in system 2 are confined within a
length (2£ch) of the equivalent beam, treated as an infinitely long beam,

provided the concentrated load is at a minimum distance of lc from the

h
end of the beam. Kupfer used the following approximate expression
to calculate M2
F %
.Y ch
M, = —7¢ ‘ (A.45)

The same expression results from letting £ tend to infinity in Eq. A.43.

F
The distortional warping stresses due to a concentrated load [Zx ]

can be calculated as follows:
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‘The distortional warping stress at the junction of the centreline

of the upper slab and the web is given by

= M, —d (A.46)

The distortional warping stress at the junction of the centreline

of the lower slab and the web is given by

(d - dcg) .
lfdwr,2‘ = M, T (A.47)
’ 2 “eff

A.4.4 . Transverse Bending Stresses

The transverse bending moments at thé corners of the closed
frame for a unit length of the actual structure are firsf evaluated.
In system 1, thére are no transverse bending moments, as the folded
plate structure is hinged, and the loads act at the web-plate junction.
In system 2, the transverse bending moments under a distri-

buted loading are given by (see Fig. A.10)

n b 3+ k
M =M, =+ ak: 3 (A.48)
M G ~ 8 6 +k,+k :
8 9
n b
y2 3 + k8

(A.49)
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Under a concentrated midspan load, the transverse bending moments are

given by

M=M=t Yy s _ | (A.50)

p- M T PTe T 6% ké + kg (A.51)

The transverse bending moments for the system resisting pure torsion

(Fig. A.9b) are given by

nyb 3+ k9
- = 4
Mg =My = ¢ 8 k12 6 +k, +k (A.52)
8 9
b +
Ny 3+ kg (A.53)
M M, =z k
D F 8 12 6 + k, + k
! 9
2 2 bh bh
E n- d web we 1
where k == -—=-7k + - 2 (A.54)
N
12 G 48 ¢ dhtop dhbot 1+ k3 N
The transverse bending stress .ftrb at B is given by
’ GMB .
= + .‘ 5
ferp T P RT_ (A:55)
top

where E and G are Young's and shear modulus of elasticity.
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A.5 Analysis of Torsional Warping by the Method of

Kollbrunner, Hajdin and Heilig [86]

A.5.1 Loading -

The analysis considers only the torsional component of the

actual loading and not its Fourier representation.

A.5.2 Bimoment B , Sectional Coordinate W and
twr twr

Torsional Warping Second Moment of Area thr

The bimoment is the force system associated with warping.

A quantitative definition of the torsional warping bimoment Btwr is

Btwr = J ftwr wtwr da (A.56)
, a _
where A = total area of cross-section including the side
cantilevers
ftwr = torslonal warping stress
wtwr = gectional coordinate in torsional warping (referrrd
to the shear centre)
The sectional coordinate wtwr is defined as
qper
C
- svt
W = J a-—-————|ds (A.57)
wr i 2 h y
t o Aenc per
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where C.yt = torsional constant of cross-section
4A
- enc
dsper
6 h
ds
6 —Per _ b + b + h2d
h htop hbot : web
Aenc = area enclosed by centreline of wall of closed portion

of the cross-section
s = peripheral coordinate along centreline of wall (Fig. A.1l1)

h = wall thickness

‘'where a is the perpendicular distance from the shear centre to the
tangent to the wall centreline at the point considered, sper is the
peripheral coordinate along the centreline of the wall (Fig. A.1ll).

Note that the term (CSV

t/2Aench) is included in the integrand only for

integration around the wall of the closed portion of the cross-

section. It is not included for integration along the side canti-
levers. The torsional warping second moment of area of the cross-
section, C , is defined as
twr .
= 2 a A.58
thr J wtwr A ( )
A

The following expression gives the torsional warping stress, ftwr:

£ = Wl WD o (A.59)
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~Fig.A.12 Torsional Warping Stress Distribution
at Cross-section »

&

Fig.A.13 Torsional Warping Stress Distribution Along Beam
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The form of this expression is the same as Equation A.l, since

Mx’ My and Btwr are all stresé—resultants at the section z; x,y and
wtwr afe coordinateé of the point considered on the cross-section; and
Ix' Iy and thr are geometricél properties of the entire cross-section.
Under an eccentricvloading, the longitudinal stresses fl calculated
using Eq.A.l1 and ftwr evaluated using Eq. A.59 are added algebraically.

Figure A.l12 shows the variation of ftwr around the perimeter of cross-

section, and Fig. A.13 shows its distribution along the beam.

A.5.3 Torsional Warping Shear Stresses

Torsional warping shear stress v at any point is given by
: 1

twr

dwtwr
dsper
Vewr © Ttwr (C - C ) (A.60)
cen svt
daw C -
where - . .
he twre a - — SVt for a single-cell cross-section (A.61)
ds 2A h
per enc
Ccen = central torsional moment of inertia of the cross-section

1]

f a2 aa : (A.62)
A
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A.6 Analysis of Distortion and Distortional Warping by the

Analogy of Beam on Elastic Foundation [105]

A.6.1 Loading

The analysis considers only the distortional system. The
distortional component of the actual loading is used in this analysis,

and not a Fourier representation of the loading.

A.6.2 Basic Analysis Procedure

A mathematical analogy exists betwéen the distortionél behaviour
of a rectanqular single-cell section box beam and the flexural behaviour
of a beam on elastic foundation. The physical basis for the analogy
stems from the fact that the transverse bending strength of the upper
and lower slabs of a box beam provides a continuous elastic support

for the webs which therefore behave like beams on elastic foundation.

A.6.3 Bimoment, B , Warping Coordinate W

Distortional
dwr

dwr’

Warping Second Moment of Area, C . and Frame Stiffness, EI

dwr _ fra

The keam-on-elastic-foundation analogy shows that the bimoment,
Bdwr' is analogous to the bending moment in a beam on an elastic
foundation. Also, the angle‘of distortion of the cross-section of

the box beam is analogous to the deflection of the beam on an elastic

foundation.
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Diaphragms in the box beam, which‘prevent distortion but not
warping, cérrespond to unyielding simple supports, while an end support
condition, where warping is prevented, is anaiogous to a built-in end
support for the beam on elastic foundation. A diaphragm which pro-
vides elastic restraint to distortion is analogous to an elastically
yieldiﬁg support. Distribution of the distortional warping coordinate,
W , is shown in Fig. A.14. W varies linearly along the wall

dwr dwr

centreline and the coefficients shown in Fig. A.14 are given by

3+ k6

k25 = 5—‘*‘—;—7— . ) (A.63)

3
] +
bhtop [b 2bcant]

where k6 = ah b (A.64)
web
. b :
and k, = "bot (A.65)
7 dh
: web

The distortional warping second moment of area of the cross-section,

der' is given by

243
b<d hweb

Cawe T a8 (a.66)

3+ 2(k6 + k7) + k6k7

where k“' = P kg " k7 (A.67)
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Fig.A.15 Concentrated Distortional Load System
Applied to Beam at Mid-span
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The frame stiffness, EI is obtained from

fra’

24 Iweb
Tra® K@ (3. 68)

= + . '
where k26 1 I T I (A.69)

Itop = 12(1-v9) _ (3.70)

ot = 120199 (a.71)

h3
Tweb ~ 12(1-v2) ' (A.72)

"

Here v Poisson's ratio.

Under a concentrated load, Fy, at midspan over one web, resolved as

shown in Fig. A.15, the stresses are given by thevfollowing:

A.6.3.1 Distortional Warping Stresses

The distortional warping stress, fdwr' is given by

B W
£ - dwr dwr (A.73)
dwr C
. dwr

W is obtained from Fig. A.14
dwr
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5 F bt = sin E% sin E%E
where Bdwr(z) = Bdwr,o(z) - 212 L n*C . . (A.74)
n=l 5 y { dwr ]
n“({l + n T
I L
fra
Fyb 2
Bdwr,o(Z) = ki for o<z < 5
Fb
B (z2) = Y= (8-2) for ~ sz <2
dwr,o 8 2 =

The distortional warping coordinate, der,'is calculated using Fig. A.15

and Equations A.63, A.64 and A.65. The value of B at midspan for

dwr
the load case in Fig. A.1l5 is given by

Fyb sinh k272 + sin k272

B = .7‘
dwr 16k27 cosh k27l + sin k27£ » (A.75)

; fra .
where k27 = ac . (A.76)
dwrx ‘
Also, note that Eq. A.73 is the same as Eg. A.l. Under eccentric

loading, the longitudinal stresses, fg(calculated using Eq. A.l), ftwr
(from Eq. A. 59) and fdwr (from Eq. A.73) are added algebraically to
obtain the final longitudinal stresses. Figure A.16 shows the

variation of fdwr around the perimeter of the cross-section and Fig. A.17

shows its distribution along the length of the beam.
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Fig.A.16 Distortional Warping Stress Distribution
at Cross-section

¢

Fig.A,17 Distortional Warping Stress Distribution
Along Beam
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A.6.3.2 Distortional Warping Shear Stresses

The distortional warping shear stress, , at any point

v
dwr

on -the cross-section is given by

..__.d_B
' dz “dwr bd .
v = k (A.77)
8
dwr h der 28 4(1 + k25)
where, for the load éase considered:
3 Fb o sin Eﬂ-cos E%E
dz Bdwr(Z) = dz Bdwr,o(z) T L mtC (A'78)
n=1 y dwr
n| 1+ n*|———
I L
fra .
Fb
4 - Y <2
where dz Bdwr,o(z) T8 for osz >3
—Fyb 3
] = X X< <
az Pawr,o0(? 8 for 5 sz3=4

The values of k,, at the various points on the cross-section can be

obtained from Reference [105}].

A.6.3.3 Transverse Bending Stresses

The transverse bending stress, f , at any point is given by:

trb

6Mtrb

fere T THRZ (2.79)
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=
|

where = transverse bending moment due to the distortional

txb

load system

[

ftrb transverse bending stress at the wall face.
Using the beam—on—electric foundation analogy for the load case under

consideration, one obtains the following two equations:

At the top of the web:

EI B
_ fra “trb ‘
Merb,B = 201 + Ky o) (A.80)

At the bottom of the web:

-k30EI B

fra "trb )
Merb,o = T2(L # ko) (n.81)
30
, , b lweb
a1
where Kyg = P (A.82)
I
3 g web
d Ibot
sin D'Tl sin M'E
Fyb23 m 2 ) (A.83)
= - T ‘
Birp(?) Berb,0'? ~ g C L 4 y [T Cawr
dwr n=1 n'|1l + n E———In—
fra
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trb,o0 24E C

F b
, 2 3
8 (z) = S L3 z 3% _ 27 + |z - L3 for LI )
-2 4 3 2

dwr .

The value of Btrb at midspan for the load case in Fig. A.8 is given by

Fbk sinh k,,%2 - sin k,,%
27 27
8 = X _27 (A.84)

trb 8E Ifra cosh k27£ ~ cos k271

The distortional angle, 8 is a measure of the distortion of the

“trb’

cross-section due to the distortional load systeéem.

A.7 Analysis of Shear Lag  [87]

The distribution of the léngitudinal bending stress taking
into consideration the effect of shear lag is shown in Figs.A.lS'and A.19.
The distribufion is parabolic across the width of the top and bottom
slabs, and linear along the webs, as shown.

The stresses at the top and bottom of thé web can be calcu-

lated using the following equations.
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Fig.A.18 Shear Lag Effects
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Fig.A.19 Load Cases for Shear Lag Analysis

Case 1

Case 2
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A.7.1 CASE 1. No Warping Restraint and No Bending Restraint

at Supports

A.7.1.1 Uniformly Distributed Vertical Loadihg#ny Over Entire Span

At midspan
2
n % 4(k - 1) k., 2 .
~ d 33 34 2 2
f =+ X . = + ——— |t - + .
vig 81 2 | Kyok anh ——— - 3 k. g|| (A-8%
34 k4, 2cosh ‘
where fvlg = longitudinal bending stress at the top and the
bottom of the web, considering shear lag effect
ny = intensity of vertical distributed loading
1
Kyg = bd%h
1 - = top
12 I
X
. . 2 ] 5k33 G
3+ " b~ 2E
G = shear modulus of elasticity.

A.7.2 CASE 2. Full Warping Restraint and Bending Restraint

at_Supports

A.7.2.1 Uniformly Distributed Vertical Loading__nY Over Entire Span

At supports

’-',

i

1+
[N15e

b
w

1 k
= - L ' A.86
6 + ( )
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At midspan

(A.87)

H

1]
I+

s
.
N

+

t

In Equations A.85, A.86 and A.87, the second term in the square bracket
gives the increase in longitudinal bending stress at the web due to

shear lag.

A.8 Computer Program for the Analysis of Box Girder Bridges

The listing of the computer program developed for the avail-
able methods for.the analysis of box girder bridges summarized in
Sections A.1 through A.7 is given below, along with the requirement
for the input data. |

The program calculates the stresses in the top slab over both
webs and at the tips bf the cantilever slabs, and in the lower slab
beneath the webs.

The program has the following features:

1) The complete longitudinal and transverse stresses within the box
section at different locations through the bridge span are

calculated.
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2) The program can handle a box section with and without side
cantilever.
3) The program can handle both simply-supported and fixed-ended

conditions for any bridge span.

The analysis consists of the following operations:

1) Inpuf bridge data

é) Calculation of the longidutinal bending and St. Venant torsional
shear stresses

3) Calculation of the distortion transverse Sending stresses using
the Knittel Method

4) Calculation of the distortional ﬁransverse bending stresses and
the distortional longitudinal warping stresses using the
equivalent beam theory

5) Calculation of the distortional transverse‘bending stresses and
the distortional longitudinal warping stresses using the
Kupfer Method

6} Calculation of the longitudinal toréional warping‘stresses using
the Kollbrunner and Hajdin Me£hod

7) Calculation of the distortional transverse bending stresses and
the longitudinal distortion warping stresses using the beam-on-

elastic foundation method.



Restrictions

Units

program handles

List of Symbols

B
BCAN
HT
HB

HW

WDL

BC

width

width
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must be consistent throughout the program. The

only box sections with constant wall thickness.

of the

of the

thickness of

thickness of

thickness of

depth

of the

box section between the webs
cantilever slab

the top slab

the lower slab

the web

cross-section (distance between the centrelines

of the top and bottom flanges)

load

. bridge span

shear modulus of concrete

elastic modulus of concrete

self weight of bridge per unit length

boundary condition: 1 fixed end

0 simply supported
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Input Data

First Card
READ B, BCAN, HT, HB, HW, O

FORMAT 6 F10.5

Second Card
READ L, P, G, E

FORMAT 4 E15.5

Third Card
READ WDL, BC

FORMAT Fl10.5, IS5

Output Data

.(See the listing of the Computer Program)
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TWATF IV SOLIMANGPAGFS=40) T IMF =60

AN 0NN

ANGO O N

1-

METHOD OF ANALYSIS AMD DFSIGN OF BOX GIPDER BRPIDGES

TESL IX;IY.L MITWD G TFFT y K1 gK? oK™ KR 4K .Ka.xs.KL.kJ.Klo.Kll.kla
PeK1ITsKIAGK]IS K7 0K170K110K180Ll QK?OQK210K66'K77.KZSQ KAd JKPF
LK?’.K}O.K?K'NVI.NY’.IT”P.IHOToIWFP'LCF.MTRRT.MTPHi.I FRA

("{' tr)(?'!())‘v[" «";’1]‘ .H'%.HN.I‘

F'T';'AAT(FF]O.F‘)

COEAN(S 18 )L o Py’

FUAAT (L 15 ,5)

READ (741 7)) WL &S

FOARMAT (Y Q.5 , 1)

ttt&««#t«#t&t&&ttk&tt(&f&ttt&&t&tt&t*tttttttttkttttttt*##i*tt#*t##
ANALYSIS oF epmpg:s SMOIMG OAND ST OVENANT TORION
*#»**t*#k**#*********et%*****#**t****t*t***#*********#*##ttttttttt

PT-3.1415

NMX =PRI /2,0

TED YYD,

V=N/440

XCG= (PAHUADED A HWAD A0 /2 o)/ ( (042 JkRCAN) AHT $RAHE 42 L3 HW D )

IX=(((F ¢2 tﬂcAN)*(Hr**3.))/12.i+(n+? KRACAN) ¥ HT({(XCG&%2 4 )+ ([ B[ HB %%
$3e))71°2 -)+H&HU*((DMXCG)&‘“.)*“ C((HWE(D*XT) /12, )+ (HWEDE((D/ 2. ) - XIS
B)¥%k2) )

IY=(HT (B2, 2R AN %% T) /12 )+ (HRX(DR%k%k3) /124 )42k {(DEHWX(({B%:45)%%2)
FINE(HWEEZ)/12.0)

AYC—AC MEpPTEXCH
AYIYI= o TEHEHE R (D= %CG)

ANYITz g MM T EX TG

AYU = (R ERCAN ) RHT kXL GHHWE ((XCO-HTE,5)%%2,0)/2.0

VLC={V-AYC)Y/ (IX 4 HT)

VIF = VELYF)Z(IXx341T)

VI Rtz (v AyRR) /0D n%xiirr)

VE Mz (VEAYM)/ITX&HW)

ALTIC =D

VSYT =37/ (2 ¥ AELNCEHT)
VSVII=T/Z (7 ot AUMC 2HIY)
VEVW=T/ (2 4 ¥AFMTA M)
WRITE(f 21 FA)IXCG,TIXWTY
FORMATI(3IF20,4,10)

MY C=WHL R (L X2 2)/74,0

ML S=WDL* (L ¥%2)/ 1260
FOTO=MDL CE(XTGEN T KHT )/ TX
FOLBC=MNL CRx(DN=XCGH) oS *¥H )/ T X
FOl TR=MOL S (XOCORO o8- T )/ T X
FOLeS=MDLC4(D-XTGHI) ")/ T X
FLTO=MMX & (XCGED % TY/T X
PLABC-DMX & (L =XCGHD) T &V} /LY
FE T2 3 (XCO QS ¥HTYIZT X
FLOT=0MY L (D=-XTGHE) e %) /T X
WOTT (=4 7))
FOPAT( ] ¢, /7 ,19%e £53T27 29876 Mgy T N A .NANT)
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W T TE(O I BYFDLTC oFDLAC FDLTSFDLAS
1@ FORMAT(/,4F290,10)

WRTTSE(F ,20). s
R0 FORMATAY 1 9,//7 31 OXet ANALYSIS OF SIMPLE AINDING AND ST VENANT TCRTIOD

Hr) i

WRTTE( 4 25) ‘ :

P FTORMAT (/79X e "FLTY 3 LIXe'FLBY o1 2Xse "VLC Y5 LIXe *VLF',10X,s*VI. B8, LOXs *VL

TME L TOX, P VSVT Y 41 OXe* VOV 10X, VSVW?)

CTITF(f «20)FLT " ofLNCeF |l TSeFLBS ey VLCsVLFsVLBy VLM, VSVYVT ,VSVR,VaVW

30 FORPMAT (/4 11F10.5)

ook ofeokh ok ook ok ok ok ok bk kkok kkkkokokkdek ok ko kokkkkk kkkok ok kkkkd kk ok k kkkk kK&K
ANALYSTIS NF S IMDp . RO ING F TOERION AND DISTORION B8y KNITTIL
bbbk ok kb bk kd h bk bk ko kh kb ok h ko kb ek ko ko kk k kb ke kk kk khk kkkkkkk

TUANSVYEDSE NAORMAL STEURSER PEFR UNIT LENGTH (SYMMETRIC LOADING)

"Y1 000 1=l .2
xx-I-! g

—(L*xx)/a n
nr—( .*D/l)*91r(Pl*X/L)*QxM(PI*Z/L)*o.
AT P=mepT
ACAN=RCAMEHT
ARNYT = HN
TT-QXR(ATOPRP -4 g ¥ ACAHEICANYIEXT G/ (C o ¥ T X))
TT=QOX*ACAMSBCANEXCGZ] X
TA=QXEADBOTREX(D-XC3) /(151 X)

TWoNX

WRITE(F 410)

a0 TAONMAT (019 ,// 310X 'STHMPLE BENDING,TORTION AND DISTORION RY KINTYTE
Bl MITTHNNG ) . .
WOTT (5 ,0€) ‘

15 FORMAT(//7 510X 'SYMMTTRIT L OADIMGY)
WR[TU (g8 T)

47 FTOEMAT(//7 412X ' TT 4 15 x"TT'vl7Xo'TU'916X0'CW')
WRATTF (£ 37 0) T TY TR, 7

TNOFCPRMAT(/,4520,10)

AMAL YSTS F 1 UNTISYMMOTRI”S (L CANDING

ST=0QX:B/{2e%N)
VAR=QXEB/ (2 4 D)
VIW=OXAL /(2o %)
CWRTITT(6,5%)
ST RN AT/ /75 1K VUNT I Sy MM TRIE (AN )
WOLT (1, 50)
EOCFEORMAT(// 312X e 'VETE G 15X " VERT G 1 TX,'WT W)
WRITE(/ o O)VE Ty, VAR, YTy
60 FOPMAT(/,2r720.10)

A MOMEMT NIGTLURNT TN ANALYSIS 15 RLRFNORMED TO CALTUYLAT INT=ERNAL
FOGAES FOr THE CLNSH | A
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Tkl dohdokok ok otk ok ok R kR Rk kR R Rk R R Rk kR ok kR koK R ok K Rk kK
ANALYSIS COF DISTORTION AND DISTORIONAL WAPPING BY THE EQUIVELANT

FEAM MITHAD :
ok Aok # ko odROR ok b ook R ok ok ok Rk ok dok ol ok ok ok ok otk ok kR ok ok ok ok kok R okokok Kk K

ITOP= (T ((PE2ANTENYRET) )/ 12,
IH"T‘(‘!B*(N*#S))/I?.
ATE=Z(2,.,«1TORP) /(A&7
ARE=(2%IBNT )/ (NR%42)

AWD=DEMHW
NCGE=(URARCE(IN/2 V¥ ANT )Y/ (ATE #ABT +AWE)
[EFF=ATEY (DCGP% % 2) #AHT £ ((D-DCGE) 4 %2) ¢ (HW*{D«%3) ) /1 2. tAWF X (((D/? 4 ) -
$OTGE )¥ED) '
KI=( (1o Z/(FEXTEFF ))& (L %24 ) /{PTRX4))ESIN(PI*Z/L )%0.25
K1 RBFEMDING FLEXTISILT Ty MY ONF FQUIVEL ANT DFE AM
K2:TH™ PROPORTTON OF ADPOLIED TUORTIOMAL MOMENT TAKEN IN PUFS TRTION
FIITHE DI APHRAGY SHEAR FLEXIARILITY (MOMENT DISTRUBUTINN)
QXSILDAD CARFED Dy TORTIDMAL SHEAF FLCW ARDUND THE PERIMETER
NXX:y LODAN CARFEDN PY DIFFERENTIOL BENDING

R1=0eN21

K2=0,¢

OxXX=QX* (1 e 0/(((£e0¥K1)/(R%I1)) +1.0))
AXT=QX/ (2, ¥ ((R&F L)/ (Va1 )t1a))
MW= O‘(X#((L**r’)/(“l*ﬂ?))
FOWT=MDWR*DCGU/ I EFF
FOWR=MDWRE(D-NCGE )Y/ IFFF

THT STRESSES AT THID FND NF CANTELEVFV’ IS ORTAIND BY INTERPOLAINN
VERTICAL DIFLTCTTION DUE T SYMMETRIZ ULNADING 'DLS!?

DLS={2¢ (L AXA) )/ (SR IX KD TREA)) %X
VEOTICA, DIFLSCTIVE D0 T TORSIANNAL LNaAaD 'DTU

T73 TOTAL TNTEONAL TORSTOMAL MOMENT AT SECTION *Z°
T7eT 0. :
SP-C=(1e/GYK((R/HT) #(B/HR) ¢ (24 D) /HW)

TSVT="724K?

DTHE = ((TSVTX DU C) /(AN X (ACNCRk%x2)) )%l /240

DITV=NTHE #0177 .0 :

VERTICAL OIFLFCTINN DU T DISTORTINNAL DD IS?

DOTT=0XXK((1 %4 ) /(5 kTHFIR(DIkEG)))

WRTIT T 0 ")

FROOMAT (0] /710X tANBMLYSIS OF DISLAND DIS aWARPING BY CQUIVEL ANTY

COCAM THEARY )

WOTTR (€ g 1)K

FORApT (/740F 2 0610)

WRTTE(r o0 ) : '
CUMATL /70 X o' T WT? Q10X G PFOWR® 20X, 'DLS L IRAX DTV 1PX'DDISY)



IO YNND

a0

O YOOSON0 DY

IO

70

K =(

K (

K (8
CKE-((PREHNT )/ (DMWY

K (3.

K (3.

307

CWRITE( 2 70)FOWTyFDW34DLS DTV ,DDIS
FORMAT(/ +5F20.10)

Rk ok kB bR kkod hk Rk Rk bk kb ke ok kb kR kkok ko ko bk R kR k kK
DISTORIUN £ DISTORINNAL WARPING RY KUPFERS METHOD _
khdk Ak kb R Ak e kAN bk Rk ke k& ok kdeh ok ko dofkok kkk ok & ok dkokok ok ok kak ko

Pa(HiWwet2) )/ (D E(HBE%Y)

B (HWX%3) ) /(D R(HT X&)

<HB)/Z (DkeHw)

YE(((B+2 % RCAN) /R ) %% T)
+2 *(KH&KJ)fK%*<”)/(6.+KR&K9)
205 (KEHKT)I MK EHEKT Y /(6o KOG HKT)

K3IIPERCINTAGE (F LDAD BETWEFEN SYSTEv | £ 2

MY SLOAD TAKFN PY SYST'T ‘4 !

NY?: LOAD TAKEM By SYST- 2

EOWT LyFDWRL ART T lﬁN()ITUDI\JAI STRFSSSES IN SYST=EwM |
FDAT2,FOWBR2 ARE TYD LONGITUDINAL STESSES IN SYSTEM 2

K3=KasrGa((PIkka)/s .)*(((B*(D**?))/(Hw*(l##2)))**2)
NY1=2,%QX %K 3/( 1, K 3)

NY2=24%QX% 140/ (1edtK3)

K10= (4 o &« % (HWHA3)) /7 (e KTH(NXED ) )

FOWRI=( 02T %NY1 XL ¥ ¥2) % (D-DCGE ) I/ (0 «SRIEFFX{PI%*%2))%0.5
TrRWTI=(025%MNY 1 & (L **P)kDCGF)/(ICFF*W.S*(pI**Z))*O.R
Keanz ((REHT )/ (OFHW) )0 ((R4D (*BCAN) /R ) %%3)

K77=(BxHB Y/ (DxHY)

KAA= (g 7 4k (KEOEKTT Y EKABEKT 7))/ (He tKABEKTT)
COWT=((BX%2 )&{DO %3 ) XI{WkKQGs ) /48,0
ITOP=(HTX%*3)/ 11 )

TR T o (Hik &3 1.

ITwt B (HwW* %3 1.

)71

3) /1
KZI‘»:[.O"(((?:Q*”/D,&
L A

(3. % ((ITHPHIRNT)I/ZIWER)II/Z(((ITNP+IANT) /IWER)
BH(O 4 0FD/T) WHETOATI/(TWER%%2)) )
1RAZ( NG IXIWEDR) /(K 2F%D)

K.”'7=(I~"D.A/(’ cOECODWRI ) X&) 428

MO (=TTXT/{Rad%K27) 1k (1 eI/ (GTMHIK2 L ) 3 IN(K27HL) ) IR ( (ST (K27%x (2~
172 D)) 5 (STMHIK?2?H (Z=L /2D )Y FSINH(K27%((3.0%1 /72:0)-2))) )1+ (SINH(K 27
FE(7-L/240)) ) 2 (SIN(KI2TE(Z2-1L/2 NV IESIN(K2TX( (3.0%L/2.0)-2)))-C0OS(K27
BE(Z-L /2D IVRC SHIK274(( 3,0%1./200)=2) )+ COSHIK27%(Z~L /2e0) ) *COS(K27%
R (3eNXL/2e0D)-2)))

LOH=1.0/%11

FDWT 2z (M2AEDCGFY/Z( 0« 3%TEFE )

FOWP2=MP & (D-NCGT )/ (NaB & LEFF)

TRANSVERSE PENDING GTTESSES DUE DISTNRTION

NPz (TR (1 €00 *L7H)
BMAD= (P*B/ (16 .0%( CiH)
EOTS=(f o #RMTD) /(HT & ¥

) QAV/ (S eI HKBEKDY) )
)
-
FOTWo (A edDOMTD) /(HARED
2
)

((3.,08KQ)V/(
[(3.0¢KB)/(FD+EKBEKTF))

FORS = (7 o« +8MB0) /7 (M %%

*
*
)
)
)
FOYW=(F oMY 20V R ¥D )
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TRANSEVEPSE RFENDING STREGSSES DURE THRTION

K12=(“$Ka¥x(P1x22)) /(G4 ,0%(L.%%2) )% (D*%2/( 1« #K3) IR (BRHW/ (DXHT))
SH(REHW/ (DEHR ) ) -2 ,0)
VT T=(QXkN&kK 12/, )%
MR- (OXXBEK 12/, ) %
FTTS= (€6 «¥RMTT ) /(T &
FTTW={(6H s %PUTT) /(14w
FTITRS =5 o #BMTR) /7 ( HM kY
TT“W?(‘.#V”TW)/(HNQ

WRTITE (F,475)
TH OFEORMAT( VL "o/ /7 W 1OXM ' DISTORINDNADISTCRIONAL WARRPING BY Kuocrp ME THD
0

s HKS )/ (H L +KAREKS ) )% 2,0
+KQ)/(6.+KR+K?))*9 0

J!‘JN\ — -

WO ITE(F,7Q)

T OFORMAT(// o Xa'" DWT 1Y 14X "FDWB1 412X 'FDWT2 1 416X ,*TDWB2")
WETTFLr gROIFDWT L o NDWRT 3 FOWT2,,FDWA2

TN FOSMAT(/,46F20410)
WOTTE (A7)

B2 FORMAT(///77 03X " FDOTS 4 14Xe "FDRTWE, 14X, *FOBS Y 414X, 'FDRAW®)

WRITE(OZRTIFDTS,FDTW,. FDRSFDRW:

85 FOMMAT(/,4F20.10) ‘
WRITE(#4RF)

3n TORMAT( S/ /7 “Y.'"*T".[4X.'FTTW'olﬂXo'FTB$'olQXo'cTBV')
WRTTF(E,RF)FTTS ,FTTW,FTRAS,,FTRwW

AR b Rk okt ko kAR ARk ke ok ke kA ko kR kR kK Kk kR KRk
ANAL vSTS5 CF TOQT IINAL AY THE MeTHIN OF KCLL B3RUNER
Rkl ke ek N kR R Rk Rk Akt Rk AR Ak ko ARk ok Rk Rk kR okt Rk ok kA kk Kk

e P HNEHDIAMWE (D o337 EBXHAET 4D &NEHW )
BOAHTE(Qe1EF K(HERE2 )= (0 25k (HNX®2) ) )
T EMTEHOUHN R (D 4 1AFH X (D Rkk2) +(DkE2))
CANSHTAXHD A WY ( YCAMET)

AU (HT 440 ) 2 4 O AH T RkHA KD

-0

JJ"J“-*D.
-

Hoit it ooy

"'XKNK

-
&
L1

NAntC ey DERPTH OF SHEAR CFNTEFR F7aN TMp -4

~SVT TORTIANAL MIMINT 0OF INFRTIA

CCEMN CENTRAL TORTIMMAL MOMENT OF INFRTIA

TTWERITORT JONAL WARPING MOMENT OF IMERTIA

RTWT IRTMOMEMNT (F TNRYTOMAL WARDING

TSVT I TORTIONAL MOMEMT AT CRJISS SFCTION IN ST VENANT TORTION
TTWF STORTIAMAL MOMT™NT AT TRNOSS SECTION IN TORTOINAL WARPING

46 40 08 55 a0

NTHT=(((KL3#K14A K ISR IO )/ 1 7)IRDR(RYE2) Y/ 1Y
COSVT= {1 a®x (AENCAk:2 )Y /((RA/HT)I+(R/HI)I+(2e xD/HW) )
ART =NaHr

Adw-nso,

AR =D-DSHC

LU 27SVT /(2 & AETNC)

WIWT— (AT =L L /HT &7 /24D

WTWC=WTWT AT 207 AN

WTIWE =WTaT (A%~ (L1 /7HW)) %D »

CTuR =D,y [BCANFED )+ (HT /34 )k (WTWC Rk P2 4IWTWTRR2-WwTWOCAWTAT )42 %(N%%2)
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FE(HW/ 340 ) A(WTWTH%2+WTwr
SYIH(HB/ 34 ) 2( %2, ) x( 12 (WTWHR%2))

CCENZ(HTR (B340, ¢BCAN) (AT k&2 ) )+ (2 ,DEPFWE((R/2.) %&2) ) +(BxHBX((D-A8BT
$)x%2))

K1:=CCFN/{CCEN=-CSVT)

CTWRD=K1N&C TWS

K!“zSONT((_*CSVT)/(’*W*WQU))

TEXT=PxU/ 2,0

A2z -7 ' ' .
K2) ={(KIR¥K I"$A2=SINH{KIR¥A2) ) X (1,0-COSH(K18%L))=-(1,0-COSH(KIB%A2
)Y R(KAAKLIAIHL-SINH(KERE )))/(KIREK [I%( 2e0~2s0%COSH(K1I 8% ) +K 184K ]1O%
SLLASINI(KIREL)))

KP21=((1eD=COSH{K12% ) )%k {1e0-CTISH{KIB&A?)) +SINH(KIRA_ ) (KIBXkKIGxA2-
sﬁxNH(K!utAz)))/(e D=2 0 ¢COSH(K 19%L ) rEK1B&w 15 &L %S4 (K1I8%L))
RTWR=TEXTA2 (K204 70SH{KIB%kZ)+ (K21 /(KIRXK19))I*SINH(KLIB%Z))
T%VT:TFKY*(—KZ)*KlH#QINH(KlR*Z)*KZI*(l.0~(l.O/Kl9)*COSH(KlB*Z)))
TTWO =T XTH( K2V %K1 3¢SINH(KIR%2) +(K21/K19 )*COSH(KIB®Z))
ANGL=(TEXT/Z(GHCSVT)I I #(K20% (1 o0-CISH(KI18%Z)) +K21*%(Z-(1,0/(K18%K]19))}
TRSTNH(IR%Z)))

FTWRITOANTINNAL wARPIMNG STRESSFS

FTWE T=RTWE &WTWT /7 TWD
FTWRCTRTWRE AWTWC /C TWe
FTWRB=OTWRAWTWH/CTWR

VTWIE 3 TORTINNAL WARPING SHEAR STRF§SE§

RA=TTIWR/(COEM=-CSVT)
VIWRT=ANAWTWT /(R/2,)
VTWRC=RE* (WTWC-WTWT ) /BCAN
VIWP W=R34 (WTWR=-WTWT) /D
VIWRB=RI% (<WTWB/(B/2¢7))

VGVT: ST VENANT SHF AR STRESSES

VSV TTaTSVI/Z (20 6 ATNCEHT)

VSYTW=TSVT/ (2 #AEHC #HW)

VSVTR=TSVT/ (2. xAENCHHT)

DIF=AMGL &P/ 7,0

WRITE(F 45 0)
A0 FORMAT(P1Y,/// 510Xy PANALTRTS OF TORTIONAL WARPING 3Y KOLLBRANNER

BMTTHOD )

TATAL=TTWP+TSVT

WRTTE(f 4EG)TTWE y TSV T TOTAL » TEXT
90 FITMAT(AFR2),10)

WRITE (22 1)
QU TOSMAT(// 06X 3 ? TSVT Y 18X g *CUENY 12X, 'CTWRY)
WRITE (R e ITICSYT o COT My I TWR
At FORMAT(/ 4 3F20.10)
WOTTE (£ ,100)
100 FORMAT( /319X *TOTTTIVIAL WARPING 3TRESS5UGe)
WORITE(t.o101) )
101 FOVUMAT(// o Xe ' FTWORT 0 3 IXs ' FTWRO L 12X, *FTWRR! )
WORTTE(f « Y ) TWE T P TWO O, F T
WRITT(Fa103)- _
CH0E FORMAT (/41 IX e TOADTIMAL WARPTIMNG SHEAR STREGSER 1)
: WRTTE(Fa106)
YA T MAAT( /Y 2 IX G TVTWT T DY g IV TRIC T I X, *VITWEW? 12X, 'VTWRA )
AT T (ca 1IDIVTNDI T VTR T (YTWI W, VTW! F

AR ~WTWTHWTWE ) # (HT/ 3, )4 (BAX2 )4 (1 4k (WTWT % %2)
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EAPMAT(/ +2FE20.10)

WRITE(6,115)

FAOPMAT(//+10Xs" ST VENANT SHFAR STRESSFS!)
WRITE(G,115)

FAORMAT( /77Xy 'VS VTT'|18X.'V9VTW'.llKo'VCVﬂ')
WRTTE(E ZI5)VSY TIT ,VSVTW.VSVH

WRITE(6,120)

FOFMAT(//7/7420X% s * DEFLECTION')
WRITZ(%e125)D 11

FOARMAT(/4AXsT20.10)

Rk kR bbbkt Atk ok ok Xk ok akkkh ko kkk kA bk ko h ke k kR R Kk
NISTORTTONAED ISTORT [ONAL WARPING BY RBEAM NN FLASTIC FOUNDYATIOM
Mkhk kA ok ok bk kb kb ko k kot Ak ok h ok kb kb ko Rk ke ok ek kR kR kA Ak KRk K k&

ES ((NANT)I/ZIDRINY) IR (T2 ANTAN) /B )A%T)
7/7=(B3%4) /(DA HW)

V"-(}.O*Kﬁ“)/(T.O*K7’)
WDRTFCom((R+2 I3 PCAM) /AR RMED (4, 0% (1e0+K25))
WOWNFW=HaD/ (4% {1 4D4K25))
WNWER=Z(K23&«PED )/ (2 0% (] ,0K25))

CRWRIDISTORTIONAL wWARPDING MOMEMT NP INRTIA
FLOWR T DISTORTIOMAL WAFPING STRESSES
EIfCAT FrAME STIFOHMESS

KAz (Ba 4D ok (KFEAFKTTIHKASEKT7T7Y/(He tKEHEKT 7))

COWR =((R%xXx2 )% (N %k J)kHWEWA4) /48,0

ITIP=(HTRA3)/ 115

[RIT=(HINE%3)Y /11 .,

ITWiH=(HWk%31) /11,5

W26 =1 e O H(({20%¥R/D) (70 ((TTOPHIBOT)I/ZIWES)))/Z(C((ITOPHIRAT) /ZIWFR)
FH(E L0/ )X (TTHNR[ANT Y/ (TN Dk%X2)))

IFea-( 24660k IWERR)Y /(K 2FAED)
K27=(T1TT7RBA/(£ 4O0CDWR) V&N, 0O
BOWE =z (=TT XT/(ReAK27 11X ( 14O/ (STMHIK272L )Y +SIN(K2THFL)Y) ) I X((SIMN(K2TH (2~
DL /2 0))HE(SINH(K 2T (A (2L /7260 )+ ITNH(K27 %((3e0%1 /240)-Z))) )+ (SINH(K2?
TERE(Z-L /200X E(STHIK?2TE( 7L /20 )V ESTIN(K27X((3,J%L /2.0)-2)))-CNS (K2~

BEL7-L /2 e0) )R K27TH(( 3,0% /240)-2))+COSH{K27*(Z2~1L/?20) ) %COS(K27%
(3. 0‘L/?.0)-7)))

FNWRC=bDWwEtwne C /7 Ny '

FOWRW=ADWRWNWEW/CD AN

FOWRR=NNWREWDWRFRZ0PWR

FTOB: TRANSEVERTE BENMRINMG STRESSES

KIN= (3204 (DBX1erR) /(DRI TIP)I)I/Z (3,04 (REIWEB)/(DRIRUT))
“TW”=((TFXT#KzT)/(h.O*T*IFﬂA#(SINH(V2’*l)tSlN(k?7*L))))*(’IN(K?7*(
F7-L/7260)) X TMHIKZ274((340% /2 40)~Z))=-SINH(KZ7%(Z2-L/7e0))%2SIN(K27%((
&3.O*L/?¢0)—Z))-CU“(K97*1Z—L/2-O))*(CGGH(K27#(2—L/2.O’)-CJCH(K97*(3
Fe QXL /740) =72))-CNSH(K T4 (27 L/?.O))t(TnQ(k?7t(Z-L/?.O))-CU“(R27*(7.0

BRI_/260)=7)))
MTEAT=CLITUARNTROARZ (D% (174X 30))
MTERARz K 70%F X TFRASBTEN/ (2, 0%(1 4N¢K 10))
FTEnT=r oM TENT/Z(HT &% D)
FTRREB=( 4D EMTRPANY/ (H3 &k 2)

T O W T 2 JAMTENT (Wt # 2 )
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fF TURWR=A,0xMTRBB/Z(HWk%2)
WRITF(6,130)
137 FORMAT(* 10, // 410X, 'DISTroYINNAL AND DISTGQTICNAL WARPING BY BEAM
FON TLASTIC FOUNDATTOMNMETHOD?®)
WRITE(6H.] 15) ,
135S FORMAT(//7 210X "DISTNIRTANAL WAFPING STREGGES )
CWRTTF(6.1726) ;
135 FEOMATL/ /97 Xe "FOIWIC T G 12X, FVNEWY g 12X, 'TDWPRY )
WRTITEC(H 140 )FNWRC F NWIRW FPWHR
140G FTURMAT (/4,277 0,12)
WRITE( e 1253) ;
1aS “NEMAT( /777, 10X THAMSEOVFRSE RENDING STRESSESY)
WRITR(hHelGA) : .
1an TOPMAT (/7 ¢ " Xy ' FTRAT I OX,VETRNA L [ 2X e 'FTRRWT ! (12X, 'FTRYE V)
WHTTE (6 1 SO)ETNOT (F TR JFTRAWT (FTRAWR o
170 FNUMAT(/,4520410)

VOR? D DIRTORTIONAL WATDINH SHEAD STOESSES

KPC=(NE2 4 0&NCAH) /G

ANETI =D HW '

QL= (K23 (ATOPE2,0«ATAN) /4D ) #{ (5 «0-4 s (4K 25)%AWTP/12.,0)
P-(K28&ANNIT/12,0)

NP2 ((K2TR¥2) =101 (ATNOE2 HLCANI/ (6. ¥K25)) +((2.0-4, #K?“)*
'FMA"" 120)-(VO2R3% AT/ 240)

O3 ((K2G%%2) =1 4 O) X (AT 2 (IKLC AN )/ (4 4O *K2D)

N1z (KPP =1 20) % (3,0%K 2% 41 0 )R (AT ID 2,0 *%ACANY/ (16 .0%K 29)
08=02-913 -

NEZ((1 +0=-82)%K2S) %AW P /72N o)) ~(K2EXABNT/12.0)

Q7=(=(LeT=-2e0XK 25 )ICAWFR/ [ 240)~-(K25%RB0OT/12.0)

Q8= N7? .

OO ANT T/ g0)~( (1 e0~2s0%kK2S5) %AW B5/1240)=(K2F2ABT/}12.0)
DEODWR = (=0 ¢29%TIXT/(SINA(K27AL Y ¢STH(K27%L ) ) ) R (ZOSH(K27%(2-0.5%))
‘L*(‘I‘l(k”7*(’-o.)#L))f"»!N(K2"*(1.‘“»*L-Z)))*C’)S(K97*(l-—l_*0 5))
FH(TINH(K27%(Z=0,54%1 ) ) 43 INH(K27%(] «3%1 =2} )))
VVT-DPPWREEBAD/(CDWR ¢ s 0% (1 s O K 25 ) )

VI=VVEDODWRAND T /NT
VD=V DRDWR&Q2/HT
V3IizVVkDBpweeQI/HT
VASVVEDIDDWC A0 /1T
SVVEDREDWE £ QG /v

VE=VVEDND RO O /W
V7zVVEDPDWE 20T /H'w
V3zVVEDHIWDR &N L /710
VI=VVIDARDWE £ Q0 /HA
WETTE(*r «157)

155 FOEMAT(/7/7/77:10X%X, DISTORTIONAL WARPING SHEAR STRESSES?Y)
WETTE (A, ] 5¢)

156 fO”MAT(//.'_Yg'Vl'v[\XQ'V?' .lf)x.'V3'.lox.'V4'.l')X.'V‘5‘.lOX.'V6'olOX
Fo'V71 410X VAL 410X,V
WRITE(F 3 16D)IVI V2V I3 VALVSWWVEWVT7sVR, V2

A0 FOPMAT (/%1 3.F)

1000 TONTIMUF
STNP
[ Nia
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APPENDIX B

ANALYSIS FOR PURE TORSION

B.1l General

Combined torsion, bending and she;r is a frequent loading combination
encountered in many structures and perhaps it is the most complex loading
combination to analyse. - Current design procedure is based on the indi-
vidual analysis and design procedure for each type of loading. The
torsional stiffness of the section is generally determined ﬁsing Bredt's
formula for elastic analysis of the uncracked section. Once the section
cracks, this method cannot be used because the section is no longer a homo-
geneous continuum. Test results show that the torsional stiffness of a
concrete member is influenced by cracking and interaction with other types
of loadings {[78,106]. The ultimate capacity of the structure after
cracking in this case is a function of the strengths of the reinforcement
and the concrete and also of the ratio between width and depth of the
secfion and the ratio between the cross-sectional areas of the longitudinal
and the transverse reinforcements. In 1929 Wagner developed a tensile
stress field theory to study the post-buckling resistance of thin walled
metal beams. However, in discussing Wagner's work, Elfgren [106]
suggested that a better name for the model used by Wagner would be "the
compressive field theory" or the more commonly used name the "truss analogy".
Mitchell [93] used a similar compression fieid<theory to analyse reinférced
concrete beams subjected to pure torsion. The longitudinal and trans-
verse reinforcements are considered as tension members of the truss
while the concrete regions between cracks are regarded as compression
struts. It is assumed that all compressive stresses are concentrated

within the diagonals between the cracks.
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B.2 Computer Program

ihe computer program developed for the diagonal compression
field theory was adopted from Reference [93]. For completeness, the
input data and output data, and the listing of the program are given
below. The program analyses the complete behaviour of strﬁctgral
concrete sections subjected to pure torsion and has the following

features:

1) The complete torque-twist relationship, hoop stresses and strains,
longitudinal stresses and strains, concrete surface strain and the

inclination of the diagonal strut.

2) A wide variety of cross-sectional shapes can be handled (e.g.,

circular, triangular, rectangular and T-shaped sections).

3) The program handles both reinforced and prestressed concrete

beams.

4) Different shapes of stress-strain curves can be used for both

i

steel and concrete.

Restrictions

Units must be consistent throughout the program.

Only St. Venant torsional response is predicted.

List of Symbols

BMNO beam number
NJ total number of joints

SOURCE name of investigator



JUNTR
X(1)
Y(I)
XH(I)

YH(I)

AC

FPC

EO
BETA
AH

S

ES(1)
FY (1)
FULT(1)
AL
ES(2)
FY(2)
FULT(2)
AP

FPI
ES(3)
FY(3)

FULT(3)
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number of joints

X~ coordinate

Y- coordinate

hoop X- coordinate

hoop Y- coordinate

least wall thickness in the cross-section
cross—sectional area of concrete

strength of concrete

strain of concrete when £ = fé
inclination of concrete struts (in degrees)
area of one hodp leg

hoop spacing

modulus of elasticity of hoop steel

yield strength of hoop steel

ultimate strength of hoop steel

area of longitudinal steel

modulus of elastiéity of longitudinal steel
yield strength of longitudinal steel
ultimate strength of longitudinal steel
area of presﬁreSsing steel

initial stress in prestressing steel

“modulus of elasticity of prestressing steel

yield strength of prestressing steel

ultimate strength of prestressing steel



Input Data

1) Read
Format

.2)‘ Read
Format

3) Read
Format

4} Read
Format

5) Read
Format

6) Read
Format

7) Read
Format

315

BMNO, NJ, SOURCE

AS, 12, 6A4

(For each joint) One card for each X and Y outside coordinate -

2F10.0

{For each joint) One card for each XH and YH loop centreline
coordinate

2F10.0

T, AC, FPC, EO, BETA

5r10.0

AH, S, ES(1l), FY(1l), FULT(1)

5F10.0

AL, ES(2), FY(2), FULT(2)

4F10.0

AP, FPI, ES(3), FY(3), FULT(3)

5F10.0

Computer Program Listing
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FLEAGE 2.6 MA IN CATYE = 78111 17717744

FRCGRAM NAMF -~ DTACONAL CUOMPERFSSION FIELD ANALYESL S
PURPOSE -~ TN ANALYSE THE COVPLETE FERAVIOUR OF STRUCTURAL
CANCRETE BEAMS IN FURE TNORSICN :

VARTABLE LISTY

A ARECA ENCLMNSEND BY SHEAR FLOW

AC  CRNSS5 SFCYINNAL ARFA CF CCANCRETE

A CR(5S SFCTIOCNAL AKFA COF CNE HCCF LEG

AL TOTAL AREA COF SYMMETRICALLY PLACED LONG REINFCRCING

AP TOTAL AREA CF SYMNETRICALLY PLACEC PRESTRESSINCG

A DEPTH OF FEQUIVALENY RFEFCTAANGLLAR STKRESS DISTRIBLTICH

BMANC  BFAVM NUMPRER

ECHLES MODULUS3 OF ELASTICITY CF CCAMNCRETE AND STEEL

FEC COMPRESSIVE STRENGTE OF CCONCFRETE

FHFILFP STRESS IN HCOPS, ILONG STEFL o AND PRESTRESSING STYFEL

ry YIFELD STRESS

FrT INITIAL, STRFSS IN PRESTRESSINC STEEL

NJ NUMBER OF SIDES €CF CROSS SECTICAN

HOOP CENTERLINE PEFINETEFR

o PERIMETER CF SHEAR FLNW PATH

Q SHEAR FLCW

S HOOP SPACING :

T LEAST WALL THICKNESS CF CFNSS SECTION

TD THICKANESS CF. CCMERESSION CILAGCNALS

Tosf0 TYPE NF STREES STRPAIN CUVE

Xe¥ COCRDINATES OF CROSS SECTICN

XHy YH HOCP CENTFRUINF CCORDINATES

ALPHA, ANGLE ANCLE OF DIAGONAL COMFRFEGSICN

K1 4 K2 RECTANGULAR STRESS BLCOCK FACTCRS

BEZTA - ANGLE OF COrCNCRETE STRAIN TARCETS )

Fa STRAIN IN CONCRETE CORRESFONDING TOCOMPRESSIVE STRENGTH

D CONCRETE CIAG STRAIN AT PCSITICN CF RESULTANT SHEAFR FLCw
FCS  CONCRETE CIAGONAL SURFACE STRAIN (COME PCS)

FHWELWFF STRAINS IN FONPS o LCNG STEEL « AND PRESTRESSING
(TENSIUON £nS5) ’ '

NDEF STRAIN CIFFERENCE

Fal1 TWIST PCER UNIT LENGTH

AN AANNANONNANIANDAANANANNAAOYANANANADND

NINVENSITCN ES
NDINMENSICN X (3D
INTEGFR TSSC(3
INTEGER BMAC, F
REAL. K1KZ,K2,K1

CNOMMCON /CALCAA/ EL+EP JEHFL FFFH,ALJAP,AH,
1 LA GAY SN G FDS ¢ KIK2eK 1 4K2 4FPCyDEPs Sy FHyTUNTW
CCMMON /CFFS/ TCSSCESFYLFULT

CATA ENC/SHEND /

%

3

(3),FY(3)+FLLTEZ),TITSL(2) +30URCE(S)
3N) s Y (3D ) o XFHCAG ) s YH(3D) o XF (32 ), YP(30)
3

+ FAD

[7231 ST Z5 WRN,
TUNTE=4
TUNTwW=6
1P=5



ON

aANnD

O

PELEASF

109

t™1

172

104

106

—n

——
—
N -

120
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0 MAIN » CATE = 78111

MM= 139
FF=0,
WRITF(IUNTW,:5AGG)

INPUT E£SAM CATA
PEAD(TUNTR, SN 1IBMANCNJ, SCURCE

TF(EMNDLEGENCIGNTOONN _
DATA X/ 30%Vs / JY/3C%No /sy XH/ 3% /4y YE/30XNS/

TFANJ-1)131,102,10232
READ(IUNTR,,SY2 )X (1)
READCTUNTR,,SN2) xH( 1)
Y(r)=0,

YH(1 )=,

GaTNINa
READ(TUNT
RFACITUNT
Y(<)=Y(3)
x{a)=x(7)
YH{2) =YH(.
XH(4)=XH{(
NJ=4
GRTCL1INA
REAC(TUNTR, S02)
FEAD(IUNTR,,5L2)
READ(TUNTR 41 3)
PFAD(IUNTN,S? )
FEAC({IUNTR,505)
PEAD(TUNTR,SL 4)
1
?
2

RyBNZ)X( 2
ReBM2 )X

-

2
2
3
4 1)
C)

“+C -

X'ﬂﬂr‘

(3)

—-Vf_'ﬁ Z~
~e N

T -~

-

WRITE(CIUNTW 60
WHITE(TUNTW A0
WRITE(TUNTW,., A"
sARGEPRPT &S (3),
NMETA-BFTA/S 762
Eel=fPL/
oeo112 1
IF(FULT(

——de AN DT

Tie « @« NDCTe il
A e =g ile
Dy Ce

€ D2Z Nwwr (M e

WIle Ta e =T~
we DZTAMUHA~=
*NODTUNG ¢ m—
MNe o * ™M TN e
CTNne VINTe «
CiADOMe~n <~
A~ ACiNe ma Tm
~—mo T T e T~
W T O We e
w e SM s Tl

-~

{
(
T
A
A
A
)R
)
)
Y
&

D~ 4T TIM Te Xx

O

£sS(3)
:,3
T(I)afQs{a)GCTCLILL
TS5SC(1)=2
GFTCII?
TSSC(T1)=1
CONT [NUE

CALCULATION OF INITIAL CONDITICONS

[C=2s"FEC/EN
ACPAL=ACHAL *(FS(2)/EC)
ELI=-(AFXFE1)/ (ACFAL*FC)

(ALCULATE STRAIN CIFFERENCE

DER = F“['EL‘
PDENS= (1 75} ) /33

CALL SHAPT(XHsYH NN, l\JoﬁA Pe)
NOPG=P

eFLLT(1)sALKES

17717744

aYUTI )l o XPOEYoYH(T) o I=1,4NJ)

(2) +FY(2)FULT(2)
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ELTASE 2,5¢ MA IN CATE = 78B111 17717744

NN 239 ISPAL=1,?
DATA TITSL/2H v 2HUN/

WRTTE(TUNTW, 721 TITSL(I SPAL) sEMNOWSCURCE y2VNC+NCPC
WREITF(IUNTW,76D)

fFRR=N
C ‘
C INITIALIZF A VALUFE NF ERS
o
ENS=].7¢7EN
FL=FY(?2)
FH=FY(1)
FE=FY(3)
PO=N,a%FH
nr 26 1=1,32
C
C (ALCULATE CSTRFESS PLOCK FACTCP%
KIK2=FKIK2(FDS.,EY)
C .
K2=FK2(EDS,EN)
KI=KIK2/K2 . -
C
C FSTIMATE A
C
A=(AL: FL4APRFP )/ (K1EFPC *PA) 4 (AFM H) /(K 1 "FPCARS)
A=-AMIN]1 (A,AA/FH)
CALL CALCA(XH«YHy XFy YF4MINJy [ERR)
IF(IERRFGCale ENCe ISPAL.FNL1)GOTN337
211 IF(IERP.EGCe1)GLCTL3SS
C
C CALCULATF TCRGUE AND TwIST
c
Q=SOLTC((ALFL4AP*EP ) /PCY A (ARTYFH/ZS)Y)
TCRQUE =2« "ANY (
PSI={ENS/ 26 )X (KIKP2®RFEC/C)
TTC=A/K D2 .
FU-EDS* (] o~KP /7 ‘)
TANAA=(FD+EL) Z{ED4+FHE(PH/PO) )
TANA=ZSQRY (TANAA)
AL.PHA=ATAN{(TANA)
CRETA=(FDS/2 V(1 +COC( (2, “{EETA-ALFFA)))
ANGIF'#LPHA*57 29358 .
C
C OUTFPUT RESULTS
¢ )
WRITEUTUNTW 7 V2 ) TORQUE PSS T o FH G ERGFLWFLWFPyFPsFDSsANGLELTD,,AOQ,,PCLEB
1£7A .
IF((I/ IF)PIPJFQeIIWRITEL IUNTW, 703}
C N
C CHENOSE A N4 VALULUE OF €CS
C .
299 FDCS=FDS-DENS
C OQUTPUT INITTAL CORNDITICANS

FL=FLT
FL=LI*FS(2)
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AOND

’FLFASF 240 MAIN

327

3158
139

PRI
59

oty

505
54
313
532
570
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CATE = 78111 17717744

EP=FPL1/CS(3)

FF=FPL
FOETA=(FDS/2e )% (1 ¢ +CNS (2., *(EETA-ALFFA)))
WRITECIUNTW, 704 )FLEL JFPEP JECSWWFEETA
D 398 [=14NJ

CXHUT ) =XT1)

YH(LY=Y( 1)

NCPG=NCFG +1

GCTC1ION

WRITC (TUNTW.GGC)

sTCP

FORMAT(1H1)

INFUT FORMAT

FOPMAT

(F Ne=2PF 104N NF2F 1
FOFMAT (2
(3
Z

[ ] CQ
Oo')c '!T‘Fl?.f)olp?':l')t
Nal y 3TF10,0, PDFI“OO’
NeN)

[2.€604)

2)
)
fFCRENAT
FORMAT (

1)
1
1
F1
FORVAT (AS,

TACNCUTEYT FORMAY

91

A 3

650

FOENMATOIHI/1BX, 11HEEAM Ke = +85,10F SCURCE = ,EA4/
118Xy THiz==zm=== 3 1NXy EH===zx==// )

18X, 16HSECTICN GECMETRY/

18Xy 16HH==r==x= =Zz=z=====//

15X 4 16HNN s CF JOINTS = 41277

19X IGHOUTSINE CCCRUINATES ¢ 7X 4+ 27HHCCF CENTFREL INE CCUFRDINATES/

19Xy 1H s mmmm cemcmmemmee yTXg2THo e mm mmmmemcmes mmcese—eee o /
XoeSHUNINT 94X 3 IHX s 6X e 1FEY s 1 IXsSHININT, JXOPHXHnﬁxo?PYH/(

V17X el 242XeF a2l XeF €a2ol3Xe 122X sF6aZelXsFEEp2))

FFMAT(]H"/‘:Xo?(‘H((NCRE TE INFCRMATICNY/ '

s % - . ‘ S

> Xy ‘(1HLFAST wALL ARE A CCANCPRETE ) PL aK CCNC STKAIN

ARG T/ ’ )

;X.F&HTHICKNFQ (T) (AC) STRENGTFH(FFC) STFAINL(E?D) INCL INAT ION(D
TA)Y/

X ¢ F‘(u‘!.oX.F? 2.2)(.‘-7.3.7)(,?@.4_ IneFAalsrrz77)

r‘!F‘MAT(lH 'aXc PEHEFINFORCENMENT INFCRMATIONY/

Xy =
Xy 1 PHHCORE STEEL/
x.1~u-—-- ----- /
Xy
X

F

f:

F

5

%

a PHAH, A Xe 1HSe 7X s THE SHe6X 9 1 2HF YH FUl TH/Z

3} .Fh.J.IX.F 20291 Xe=3FF7al 1 XsiPFBace 1XyFR2//
r X 18HLUENGI TUDINAL STEELL/
5
9
e
5
5
Q
‘

X
Xe2HAL oA X o IHESL s £ X3 1 2HF YL FULTLY/
XeFT7e301Xe—=3PF 702l X4t iPFRaZs I1XFE2//
X+ 1BHPRESTRESSING STEHEFL/

X

X

COHAP 3 A Xy THIP T o4 Xe ISP e 5X e 1.2HF Y FULTRY/
Xob Ta30F Ral2 = U0F 7 o2 o342 4 A42)
FOEMATOIHL/Z2I X 3OV (TN )/
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RELEASE Dot MAIN CATE = 78111 17717744
S B2 Xe 3NHN STRUCTULRAL CAONCRRETE i/

12TX 430 H* BEAM IN PURE TCRSION >/
121X 37 COVPRESSICN FIELD ANALYSIS #/
121X IYHAVERSION 2,0 JAN 1G676%/ 21Xe30C(1H"))

70 FORMAT(IH) 106 TCFCUF TWIST FCCP STEEL LCNGs STEEL PKRE
15 STEFEL MAX CMNNC ALPHA TD AD Py ERETA /1AX.2(15¢
1STRESS STRA M Yo eH-STRAIN/Y/)

71 FORMAT(IHI/3X A2 427HSFALLED SECTICN FCR - PFAM LAZ, 3+ - ,6A4, 35X,

JIAS, 1H=412) .
7TN2 FLEMAY(IH +FH o1 s 3PFB 423 3(NPF7 o1 43PFB,Z2)sFRBe2:LPF7 414F A e2:FGeaDsF7,1
1, 3PF 75 2)
793 FCRMAT (14 )
704 FDRMAT (IH .4)('??"‘»."‘)(¢4f‘3 N0 4AXs U eMNebXs ‘&H"o"‘)'?("p‘:'loloJPFBoc)'
-]~3PF802',‘X'3H‘0” 'U(.&Hﬂ.(‘“) 7XQ2H... 'QX|3Ht} ~”‘jf.7.2)
FND

FRCT# NCTERM,ID, FHCCIL.;FURCF NﬂLIsToNnCFCKoLCﬁDvhnNAFohCTEaT
FECT NAME = WMAIN o LINFCNT = s€

SOUKCE STATENENTS = 116,PROCR AV SIZF = zanyg
01 DIAGNOSTICS GENERATED, HIGHEST SEVERITY CNODE IS 4



FLEASE 2.0

C R
C ANSTRACT - ITERATICN TC FINC A o STEEL STRAINS AND STRESSES

C

[a¥ala! DN D

[a¥alaXa]

aRaYe!

AN

27N

210N

300

310

49D

% N ]
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CALCA CATE = 78111
SURROUTINE CALCA(XsYsXFoYPyNM NI,y TERR)

DIMENSTION X(MM) s Y (MM) 4 XP{MM),,YP (MNM)
REAL KIK2 4K2,K]}
COAMMNON JCALCAA/ L oFPsbEHFL oFF sFHLALJAPJAH,

TALAD o) 400G e KIK2 3 K14 K24 FFCyCEFs Sy PHLIUNTW

DATA I TALITEWATOLGETEL Z15MN 1004401 4005/
ITﬁQATE ON A

DN 4ann [=1,1TA

CALCULATE Ad,FD

CALL COCACIXs Yo XD yYE MM ,NJsA/Z4)
CALL. SHAPE(XP sYP NN N ) AN PG )

ITERATE ON STFEL STRAINS
TTERATE ON STEEL STRAINS -~ LONGITUCINAL

DT 277 K=1,1TE
CUNZFL4FP

EL=(ENS/2 )M KIK2HFPCRAG) /(ALTFL+APHFP)=FEDS( 1 e=KZ/20)

FR=DEP+EL

FLTREST=FF3(2.FL)
FPTFEST=FFS(3,FP)
SUNT=FLTEST4FETEST
IF(ABS(SUNT=-SUNM).LEL.ETCL)GOTO21D
FL= 5% (FL#FLLTFST)

Fh= 5% (FP+FFTCST)

GRTNANN

FL=FLTEST

FP=FPTEST

ITERATE ON STEEL STRAINS - +NOPR

DO TCH K=1,1TC

FE=(FDS/2¢ ) {KIK2PFPCAAJRS )/ (AFAFHIPE)=ENSH(1e~K2/72,)
FHTLCST=FFS{1,EH)

IFCANS{FHTEST-FH)LEETCL)GCTC 21D

FH= /3" (FHEFHTEST)

GNTCenNn

FH=FHTFST

FETURN T3 A CALCULATICNS

ATEST=(ALXFLEAPAFR )/ (KIAFPCHPY Y4 AFPFR) /(K 1 *F PC*S)
ITF(ARS(ATEST-A)LELATOL)GOTCA 1D

A=ZATFEST

GCTCeR]

A=ATEAOT

RETULN

17717744
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CASE CALCA

17717744

STRESS/Z1HL)

ALENT STKESS BLCCK

240N CATE = 78111
C FRRCR ON ITERPATICNS
ane® wWRITE(ITUNTwW ,,358)1.TE
GCTOGWN2
Q01 WRITE(IUNTW,951)ITA
N2 1FERNR=1
FETURN )
5N FOFRNVMAT(IHD .24 HND CF ITERATICNS EXCFEDS 15, 11H FOR
%1 FNRMAT(IHD 28HANC COF T'TERATIUONS EXCEEDS IS5, 6H FCK A/1H1)
ENC
FUNCT ION FFS(K.L)
C .
C ARSTRACT — THIS FUNCYION CALCULATYES THE STRESS FCR 2 CGIVEN . STEEL
C STRAIN USING FITHFR A CONTINUCUS CF RILINEAF FUNCTICN
C .
DINMERSICN ES{3)sFY(3)sFULT(2),TSSC(2)
INTEGE R TBSC
CONNON JCFFS/ TSSCWFSeFYLWFULT
PEAL N
C . :
IF(TSSCIK) e EQN1)CCTYC NG )
@ COMNTINYCUS STRESS STRAIN CUFRVE
C INVERSEY PANPERC-NSCUNC PCLYANCWMIAL
X=FULT(K)s7F ¥Y(K)
Nz 2T 1IN3/ZALOGIN(X)
FFSZESIKIREY ({1 +(FESIK)IRE/FLLT(K) ) #IN) & (~14/N))
EFTURN ’
C BI-LINEAR STHRFES STRAIN CURVE
13C FFS=ZES(IK) *E
IF(FFCeGTsFY(K))FFS=FY(K)
C RI-LUINFAR CURVE IN COMFRESSICN
FYC=-499XFY(K)
IF(FFSaLTSFYCIFFS=FYC |
RETURN
CND
FUNCTIION FKIK2(FC,ENV)
C
C ABSTRACT - THIS FUNCTICN CALCULATES K1K2 (ECUIV
g MULTIPLIFERS) FDP A PARASMOLIC STPE SE STRAIN CURVE
X=bC/ED
FRIKZ2=X®(1a=X/Ts)
KETURN
FND

FUNCTINN FK2(EC,FD)

ARSTRACTY = SFE FUNCTINN FKIKD
XZEC/ED '
FKE:(&.—X)/(?"(R.-X)‘
FFTUEN '

FAND
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CCaRrD ’ ' DATE = 78111

 SUBRCUTINE COCRNIXW Y o XF o YP MM gNY, T )

C
C ARSTRACT ~ CALCULATES INTERINR CACKNINATFS GIVEN T
- .

DIMEMSTION X(MM), Y{MM) XBE(MM) ,YE(MNV)

SIDE(DX sDY)=SCRT(CX®CX4CY*0Y )
IF(NJ-EQCaMIGOTOLN
X(NI+1)=X (1)
Y{NJ+]1)=Y (1)
X{NJ+2)=Xx(2)
Y(NJI+2)=Y ({?)
M=NJ4+1
DO 1DY [=2,M
DX=X{I}-x{(I~-1)
Dy=y(l1)-Y(1-1)
A=SICF{CXeDY)
DX=X(T+1)~-X{T~-1)
DY=Y{I+1)~-Y(I~-1)
R=SINE (CXsCY)
DX=X{(IT+1)=-x{(T)
DY=Y(I+1)-Y(1)
C=SIDF(DX«CY)
Sz ,5%(A++C) :
XT=THSQRT((S=A) " (S=-C)/7(EX(S-B)V))/C
XP(I)=X(L )4 XTIOXATADRY/C

120¢ YP(I)=Y(1)+XT#DRY~-TEDX/C
XP{1)=XP{(NJ+1)
YP(1)=YE(NSsY) .

: RFTURN

101 XF{1)=X(1)-2¢7*T
EETURN
TND

FECTH MNCTFRM,ID JERCTIC, SCURCE JNOUL IST ¢ NOCECKSLTCAND« NOMARPJNCTEST
FOCT + NAMF = COAKD 4 LINFCNT = 54
SCUPCE STATEMENTS = 29 PRNGRAM SIJZE = 1278

MC DIAGNGSTICS GERERATEDR

17717744



F LEASE

C
C
s

IN"

2aN0

b3

240

SURFOUT INF SHAPE

SHAPFE

(Xe Yy NNyN
ARBSTACT - THIS SUBRCUTINE CALC

OF AN NJ SIDED. PCLYGCON

MENSTON X (MV),
JeEQsNMIGQOTC?

[

Y

(
¢
ﬁ
]
N

€< X P T - D

—~ oy}

)
)
x+[)
Ges

P=P1 (1)
AzP+*X(1) /4,
RETURN
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B.3 Analysis for Combined Torsion, Bending and Shear

Space Truss Analogy

The extension of the truss analogy to include combined bending
and shear in addition to torsional loads has been conducted by Elfgren [106].
The basic formulation and details of this method can be found in the
Reference. This method can be used to analyse’a box section structure.
to determine its ultimate load-carrying capacity under combined torsion,
bending and shear. Table B.l compares the calculated ultimate loads of ﬁhe
box section under the cases of pure torsion, combined torsion and
bending, and combined torsion, bending and shear for the two cases of
tension and compression failure modes at both the midspan and the support
sections. |

The experimental data showed that failure at both the midspan
and the support sections was characterized by yielding of the reinforcing
steel on the tension side of the section (tension méde).

The experiﬁental ultimate load was higher than that predicted
from pure torsion consideration,‘and'approximately equal to that obtained
from combined bending and torsion considerations. The following is a
summary of the equations used in Reference [106] for calculating the
strength of a reinforced concrete box section structure under combined
torsional and bending moments and shearing force. The symbols used in

these equations are described in Figure B.l.
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Table B.1l

Calculated Ultimated Load Values (Compression Field Theory for

Pure Torsion and Combined Torsion, Shear and Bending

Support Section

‘\\\\\\Hltimate load
\\\32? iiips) MT M v
Case \\\\\
Pure Torsion (MT ) 64.25
Tension Mode(MT+M) - 128.3 88. 38
Tension Mode (M +M+V) 128.3 88.38 46.06

Midspan Section

Ultimate load
due to M. M v

(kips)
Case
Pure Torsion (MT) 52.85
Tension Mode (MT+M) 87.34 59.7

Tension Mode (MT+M+V) 87.34 59.7 46.006
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fr /=2 k.,
[

4L ’_\4/*‘(0 | | b »‘ 4\

b Agb
S Stirrup Spacing '
fylt Yield Strength of Tongitudinal top reinforcement
fymb Yield Strength of longitudinal bottom reinforcement
fv Yield Strength of the web reinforcement

FIG. B.1 [IDEALIZATION OF THE STEEL REINFORCEMENT
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B.3.1 Pure Torsion (MT)

The ultimate torsional capacity of a concrete section under

pure torsion MT is given by the following equation:

| A £ 2 A f

= vt yw L vy, _S

Mpo = 207 40 3 b' +da' A f (B.1)
w yv

A condition for the validity of this equation is that the section is
under-reinforced for torsion. Both the longitudinal and transverse
reinforcemerits reach their yield stresses before failure and therefore
the compressive strength of the concrete is not a grimary factor in

the load-carrying capacity.

B.3.2 Combined Torsion and Bending iﬂT + M)

B.3.2.1 Tension Failure Mode

In this failure mode the compressive zone is formed on the top
of the section while yielding of the reinforcement starts at the bottom
on account of bendihg. The calculated ultimate torsional and bending
moments capacities of the concrete box section under combined torsion

and bending are given by the following equations:

t -— 1 ]
Mo = 2 Alb fyzb d (B.2)
A f I2A £
Mt = 2p' g v yv b “yfb S (B. 3)
To S b' + 4 A £ -
v yv
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where Mz is the pure ultimate flexural capacity of the section for
tension failure mode (without any torsion present) and.M,;o is the pure
ultimate torsional strength of the section for tension failure mode
(without any flexure present).

In a non-dimensional form the interaction between torsion Mf

and bending moment M can be expressed as follows:

+

2
T
t
MTO

= 1 (B.4)

|
O =

B.3.2.2 Compression Failure Mode

This failure mode is characterized by yielding of the top
reinforcement and a compression zone formed at the bottom of the section.

The ultimatertorsional and bending moments capacities of the
concrete box section under combined torsion and bending are given by

the following equations:

c’ - - . 5
M 2 By £y d (B.5)
‘ £
S L L, g Ay Fov 2 Pee Ty s (B.6)
MTO S b' + 4°' AV f -6)

yv

. c . . .
where Mo is the pure ultimate flexural capacity of the section for

. ) , ' c .
compression failure mode (without any torsion present) and MTO is
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the pure ultimate torsional strength of'the section for compression
failure mode (without any flexure present). |

In a non—dimeﬁsional form, the relationship between twisting
moment MTand bending moment M under combined loading is similar to

that equation given for the tension failure mode as follows:

=
)

igv + —%—- =1 ' (B.7)

o 7o

There is another mode of failure called the shear failure mode which

is characterized by the formation Qf the compression zone on. one of
the vertical sides of the section and the yielding of the reinforcement
on the other side. :However, since this mode of failure Qas not

encountered in the present study, it will not be discussed.

B.3.3 Combined Torsion, Bending and Shear (MT + M+ V)

B.3.3.1 Tension Failure Mode

This failure is characterized by the compression zone in the
top of the section and yielding of the reinforcement in the bottom.
However, the effect of shear causes different inclinations of the
compression étruts on the remaining three sides of the beam due to
different shear flows occurriné on these faces. The ultimate torsional

L. t t
and bending moments and shearing force capacities (M;o’ M~ and VO) of

o]

the concrete box section under this loading combination are given by

the following equations:
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t — L]
Mpo = 2R, £ @ (B.8)
£
Wt oo e g Ay fv i [? P fym s (B.9)
To S “b' + 4 A £
v yv
f £
vt =92 q Av yv 2 AZb y2b S (B.10)
o S a' A £ :
v yv

where MZ and M;o have been defined before and Vz is the pure ultimate
shear strength of the section.
In a non-dimensional form, the relationship betwéen torsional

and bending moments and shearing force is as follows:

M.t_ v = s lt =1 : (B.11)
M \Y
(o] (o]

B.3.3.2 Compression Failure Mode

r

'Again, this case is characterized by the compression zone in
the bottom of the section while yielding of the reinforcement starts at
the top. The ultimate torsional and bending moments and shearing

' - t t t : .
force capacities (MTo' MO and VO) of a concrete box section under

tHis loading combination are given by the following equations:
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= [}

M 2 By e @ (B.12)

S e g A fyv oy [P fyae s (5.13)
Mo = s b' + 4 A f .

. v Tyv

vC = 5 q Av ?yv 2 AQt fth ] S (B.14)

o s a' A f )
v yv

(]

where Mc and M
(o] T

o have been defined before and Vg is the pure ultimate
shear strength of the section.

The non-dimensional interaction equation for the ultimate
strength of the section under combined torsion} bending and shear is a
as follows:
2 2

MT‘ v
+ — + — | = 1 (B.15)
MC‘ (o] )

c
v
[o} To o

M
M
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APPENDIX C

STEEL AND CONCRETE STRESS VARIATION ACROSS THE TOP AND BOTTOM SLAB WIDTHS

(EXPERIMENTAL DATA)
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