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ABSTRACT 

This study was aimed at investigating the strength and 

deformational behaviour of a reinforced concrete box girder bridge 

under symmetrical and unsymmetrical loading conditions. The experi-

mental phase consisted of tests on a 1/2.82 scale, direct model of the 

intermediate span of a conti~uous box girder bridge. 

The flexural and torsional stiffnesses of the box girder 

decreased with an increase in the applied load due to the formation 

and propagation of cracks and inelasticity of concrete. The loaded 

web showed a deflection of about twice that for the unloaded web; 

also, the lateral and longitudinal displacements of both webs varied 

from about 5 per cent to 8 per cent of the respective midspan vertical 

deflections. 

For the symmetrical loading case, higher stresses were observed 

at the web-flange junction compared with other regions of the cross-

section on account of the shear lag phenomenon. The warping restraint 

can have a significant influence on some behavioural aspects of the box 
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structures especially for the unsymmetrical loading cases which are 

more frequent in practice. Therefore any restraint of warping must 

be carefully considered in the design of a box section structure. 

Significant transverse stresses result from any unsymmetrical loading 

and these can be of the same order as the longitudinal stresses at the 

same location. 

The conventional simple beam theory seriously underestimated 

all types of stresses in the box section. Inclusion of torsional 

and distortional warping effects improved the predicted stresses 

slightly; however, even these were only about 60 per cent of the 

experimental values. Therefore, there is a need for a_ suitable non-

linear analysis technique to account for the cracking of concrete and 

its inelasticity and other deformations which occur in a box section 

structure. 

An inexpensive, quasi-nonlinear analysis was used to study 

the nonlinear behaviour of the bridge after cracking. The stiffness 

of the girder was varied in stages by incorporating information about 

cracking patterns and crack widths from the experimental data. This 

relatively inexpensive technique was used successfully to study the 

influence of two parameters - the element stiffness perpendicular to 

the cracks and the shearing force transferred across the cracks. 
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Le but de cette etude fut d'examiner la resistance et le 

comportement d'un pont a poutres-caisson en beton arme soumis a des 

charges symetriques et asymetriques. 

La phase experimentale consistait en des tests sur un modele 

reduit a l'echelle 1/2.82 d'une travee intermediaire d'un pont a poutres-

caisson continu. Les rigidites un flexion et en torsion de la poutre-:' 

caisson ont diminue avec une augmentation de la charge appliquee a cause 

de la formation et de la propagation des fissures et de l'inelasticite 

dubeton. Le flechissement de l'ame chargee a ete deux fois sup~rieur 

a celui de !'&me non-chargee; de plus dans les deux cas de chargement, 

les deplacements lateraux et experimentaux ont varie d'environ 5 a 8 pour 

cent des deplacements verticaux de la section mediane de la portee. 

Dans le cas du chargement symetrique, de plus larges contraintes one ete 

observees a la jonction &me-semelle par rapport aux autres regions de la 

section transversale a cause de la deformation dQe au cisaillement. 

La restriction imposee au gauchissement peut avoir une influence 

significative sur certains aspects du comportement des structures a 



section creuse specialement pour les cas de chargement asym~trique 

qui sont les plus fr~quents en pratique. Done, toute restriction du 

gauchissement doit @tre consideree tres soigneusement dans le 

dimensionnement d'une structure A section creuse. 
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Des contraintes transversales significatives resultent de 

n'importe quel chargement asymetrique et elles peuvent @tre du mame ordre 

de grandeur que les contraintes longitudinales produites au m~me endroit. 

La theorie conventionnelle de la poutre simple sous-estime serieusement 

tous les types de contraintes dans la section creuse. La consideration 

des effets de torsion et de gauchissement a ameliore legerement les 

contraintes predites; cependant meme ces contraintes representaient 

seulement 60% des valeurs experimentales. Il est done necessaire 

d'utiliser une technique appropriee d'analyse non-lineaire qui tient 

compte de la fissuration du beton et de son inelasticite ainsi que des 

autres deformations qui se produisent dans les structures a section 

creuse. 

Une analyse quasi non-lineaire, peu coOteuse, a ete utilisee 

pour etudier le comportement non-lineaire du pont fissure. La rigidite 

de la poutre fut variee par echelons en introduisant les donnees exp~ri

mentales obtenues sur le mode de fissuration et l'epaisseur des fissures. 

Cette technique relativement peu coOteuse a ~t~ utilisee avec 

succes pour etudier l'effet des deux parametres: la rigidite d'un. 

element perpendiculaire aux fissures et !'effort tranchant transmis A 

travers les fissures. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Reinforced and prestressed concrete bridges are an important 

part of the modern transportation system, and constitute a major 

proportion of the bridges used in North America. Post-war attempts 

to develop new economical bridge forms and construction techniques 

have led to the development of the box section. Compared with other 

types of concrete bridges, the box girder section is more economical 

and aesthetically attractive •. 

1.2 Objectives and Scope of the Present studx 

The aims of this research program are as follows: 

l. To study the general behaviour of a box girder bridge structure 

through tests on a large-scale direct model of a medium span 

bridge. (The model was 19 ft.long, 5 ft.wide and 14 in. deep, 

consisting of a single rectangular cell with 14 in. slab overhangs 

on either side). The specimen represents the intermediate 

panel of a continuous box girder bridge with the two ends 

simulating the warping restraint condition created by the heavy 

end blocks at the specimen ends. Provision of high tension bolts 

in the end blocks prevented longitudinal and transverse translation 
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and rotation and thus created a fixed ended condition. The 

specimen was suitably instrumented to obtain a complete picture 

of steel and concrete stresses in both longitudinal and 

transverse directions. 

2. To study the effects of concrete cracking on the flexural and 

torsional behaviour of this type of box girder bridge. 

3. To study the effect of warping restraint on the stress configuration 

along the length of the box girder and to assess the accuracy and 

validity of some presently available analytical tools. 

4. To study the effects of crack formation and propagation on the 

shear transfer across the crack and on the element stiffness per-

pendicular to the crack direction. This information is necessary 

in formulating the necessary non-linear constitutive relationships 

to be used in the finite element analysis of the structure. 

1.3 Previous Work 

Over the past six decades, several investigators have attempted 

to analyse the box girder as a slab system, or as a slab on a network 

of beams [1]. For these cases, the slab and beam system is converted 

basically to an equivalent 'gridwo:rk of beams or to an equivalent aniso

tropic slab, and its analysis has depended on the well-known distribution 

and relaxation techniques, plate theory and harmonic analysis. 
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Bretthauer and Kappei .[2] analysed interconnected multicell 

girders by considering them to consist of interconnected, to~sionally 

stiff T-beams. Ghali considered the bridge deck to be equivalent to 

two main girders, connected transversely by the slab and by cross 

girders [3]. He presented tables for the calculation of flexural and 

torsional stiffnesses which can be used in the analysis of simply 

supported straight and skew bridges of uniform cross-section. Homberg 

and Trenks [41 also presented extensive tables for analysis of grids 

with hollow-box·main beams supporting transverse beams. The 1965 

MSHTO Specifications [5] proposed a design method wherein a box girder 

bridge was considered to be composed of a number of identical I-shaped 

interior girders along with two exterior girders each of which had 

half a bottom flange. According to these specifications, each girder 

was designed as a separate member subjected to a certain fraction of a 

single longitudinal line of wheel loads from a standard truck. This 

fraction, known as the distribution factor Nwt , was given by the 

following equations: 

N 
s for interior girders (1.1) 

wt 7 

and N = ~ for exterior girders (.1. 2) wt 7 

where S and s 1 were the flange widths of the interior and exterior, 

girders, respectively, in feet. 
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It should be mentioned herein that, up to 1959, the value of 

Nw~· for box girder bridges was ~which placed the concrete box girder 

bridge in the same structural class as a concrete T-beam bridge. 

After recognizing the structural efficiency of the box girder section, 

the California State Department of Highways (.1967) used a single value 

for the distribution factors, Nw~' for the entire width as follows: 

Deck width in feet 
7 

{ 1. 3) 

for both interior and exterior girders. However,this recognition 

called into question the whole process of bridge design on the basis of 

distribution factors. 

Massonnet and Gandolfi [6] presented an approximate method 

to determine values of flexural and torsional stiffness which were . 

used in the existing Guyon-Massonnet method for the analysis of ortho-

tropic plates to design bridge decks of cellular construction. 

None of the above methods is directly applicable to the 

analysis of box girder bridges. Scordelis [7] commented that these 

analyses do not adequately simulate the interaction of the individual 

plates and,consequently,do not yield answers for the all important 

internal forces and moments in each plate element .. He emphasized 

the need for further study into deformational behaviour of box girder 

bridges and also an examination of the distribution of applied loads 

between the webs in both longitudinal and transverse directions. 
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The effect of shear deformation on the total behaviour of 

box section structures has received consid~rable attention. Chu and 

Longinow {8] developed techniques to locate the shear centre of any 

'open' or 'closed' cross-section. This enabled determination of the 

torsional moments due to external loads and the resulting primary .shear 

stresses due to torsion without warping restraint. Kollbrunner and 

Basler [9] considered St; Venant torsion as distinct from warping torsion, 

and stated that the former dominated the behaviour of hollow closed 

sections. However, Heilig [10] showed that this depended on the 

structural properties. Blaise [111 used the Bredt-Batho method for. 

analysis of multi-cell box sections subjected to torsion, while Benscoter 

[12] developed several methods for the calculation of primary shear flows 

in prismatic, multicellular members in torsion. These procedures in-

eluded successive correction and iteration methods similar to the carry-

over cycles of moment distribution. Only the relative values of the 

aspect ratios of the wall segments need to be known in the preliminary 

stage of design, when the cell areas are known but the thicknesses have 

yet to be determined. Dziewolski [13] used the theory of non-uniform 

torsion of l.ong, thin-walled members to develop a method for computing 

the transverse· load distribution factor for bridges of symmetric or 

unsymmetric, open, closed and compound sect~ons. Valentin [14] suggested 

the use of shape factors to account for shear strain energy in evaluation 

of bridge deformation by the strain energy method. He noted that the 

values of these factors were higher for hollow sections than for solid 

sections. 
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Cziesielski [15] developed tables and graphs to enable 

evaluation of the shear resistance of box, I, and angle sections. 

Pane [16] developed a general theory for elastically-supported prismatic 

beams of open or closed cross-section symmetrical about the vertical 

axis. He noted that the shear strain in the middle surface of webs 

and flanges could not be neglected. Von Karman and Christensen [17] 

described a simple method for the analysis of axially constrained thin

walled structures having. a constant cross-section (open, closed or a 

combination) , and subjected to a varying twisting moment. Benscoter 

[18) pointed out that although the computed values of the basic 

transverse distribution of primary and secondary shear flows were 

relatively correct, the distribution of stresses and rotations cal.culated 

along the span was incorrect because-of lack of sufficient accuracy in 

assessing the effect of shear strains on deflections. In analysing 

a single cell tube in warping torsion, Rudiger [191. neglected the 

influence of warping shear stresses on the deformation of a closed cross-

section. However, Grasse [20] corrected this error and extended the 

work to include the warping torsion of a prismatic tube whose cross-

section was open or closed and of an arbitrary shape. Dubrowski [21] 

investigated the influence of shear deformations on warping torsion of 

box beams with a deformable cross-section and diaphragms. He observed 

that the intermediate diaphragms and the support diaphragms caused the 

influence of shear to increase, while the warping moments due to profile 

deformation decreased. 
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In steel construction, for the commonly used proportions of 

wall thickness to breadth or depth of the box section and commonly 

used wall thicknesses, Heilig [22] observed that the simple Bredt-Batho 

theory gave results sufficiently accurate for practical purposes for 

breadth/depth ratios between ~ and i· However, in concrete construction 

where the wall thickness is greater, tests by Leonhardt and Walther [23] 

showed significant warping stresses for similar breadth/depth ratios • 

. Knittel [24) presented a simplified method to determine the stresses 

and displacements in single- and multi-cell structures with a constant, 

symmetrical cross-section. By suitable resolution of the loading into 

symmetric and antisymmetric components, it was possible to obtain 

mutually independent states of longitudinal bending, transverse bending 

and St. Venant torsion; torsional warping stresses, however, were 

neglected. 

Gibson and Gardner [25] applied shell theory to the case of 

degenerate shells of very shallow curvature used to represent plates. 

Multi-shell structures of this kind can be considered as folded plates. 

Johanston and Mattock [26] tested a 1/4 -scale model of a composite 

box girder bridge without transverse diaphragms.· using a concentrated 

load applied eccentrically over one of the webs and noted a good agree-

ment between the observed values and those calculated from the folded 

plate theory. This demonstrated the applicability of the folded plate 

theory to interconnected spine beams. Schardt (27] developed a 

folded plate analysis such that the elementary bending theory could be 
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used with the introduction of new section properties which were 

tabulated. Meyer and Scordelis [28] presented a matrix formulation· 

for the analysis of folded plate structures, where longitudinal and 

transverse stresses can be treated separately. Goldberg and Leve [29] 

considered both membrane and plate actions in the slabs, and expressed 

the analysis in a matrix formulation: displacements, rotations and 

stresses can be evaluated using this formulation. 

Box section structures can also be analysed using the matrix 

progression method or transfer matrix method [30]. This technique is 

applicable to complex structures, in which the pr.oblem of analysis can be 

reduced to that of finding the variation of internal forces and displace-

ments along one coordinate direction. In the case of multicell box 

girders, this coordinate can be the peripheral one, and the multicell 

section is treated as a branched configuration with a return branch [31]. 

Transverse bending action on the profile is included in the analysis, 

and prestress forces.can be introduced as discontinuities. It is also 

possible to proceed longitudinally, analysing successive short lengths 

of the structure and incorporating at each stage such discontinuities 

of structural and/or loading configuration as may exist, including any 

prestressing forces. This avoids the difficulties encountered w.ith 

sections varying along the span when the matrix progression is carried 

out along the peripheral coordinate. 

These methods are not capable of determining the internal 

membrane and bending stresses within the structure. Maisel [32] con-

ducted an elaborate review of 299 references ·on analysis and design of 
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thin-walled beams to examine the effects of torsion, warping and 

distorsion on the cross-section. He developed the following 

recommendations for design of box beam sections along with some 

suggestions for future research programs. 

1.3.1 Proportioning for Initial Design 

The selection of the cross-section proportioning can be based 

either on the recommendation given by Wittfoht [33] and by Johanston 

and Mattock [26], or on the empirical rules given by the American 

Concrete Institute [34]. 

1.3.2 Analytical Tools 

Maisel [32] examined all available analysis methods and con

cluded that the following analytical works were of particular merit: 

(a) Dabrowski [21] presented the most comprehensive work .on analysis 

of curved, thin-walled steel, composite or reinforced concrete 

beams. Design aids such as tables, influence lines and internal 

force diagrams are presented for straight and curved beams for up 

to a maximum of three spans. 

(b) Heilig [35] assessed the significance of warping, geometry, loading 

and support conditions and presented a general method for analysis 

of straight, multi-cell box beams of arbitrary, und~forroable cross-

sectional shape. He developed extensive tables of formulas for 

the general.loading conditions. 
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(c) Knittel {24] neglected warping but considered the cross-sectional 

deformations. He resolved the applied loading into symmetric and 

anti-symmetric components to obtain three mutually independent 

states: longitudinal bending, transverse bending and St. Venant 

torsion. He developed a simplified method of analysis for 

determining stresse~ and displacements in single- and multi-cell 

box beams of constant symmetrical cross-section. Maisel argued 

that because the warping stresses can be about 50 per cent of 

the.primary bending stresses, a combination of Hei1ig's and 

Knittel's methods is a more useful analysis tool. 

1. 3. 3 Limiting Thickness-depth or Width Ratio 

Maisel [32] and Vlasov [36] pointed out the significance of 

the limiting thickness-depth ratio for webs and thickness-breadth ratios 

for the flanges in applying the various analytical methods to thin-

walled beams. Maisel noted that in tests on models of the Mancunian 

Way {37] and the Western Avenue box girders [38], the thickness-depth 

ratios for the webs were 0.69 and 0.16 respectively. These proportions 

exceeded the range of applicability of the thin-walled beam theory. 

Therefore,Kollbrunner.and Basler [9] pointed out that the thin-walled 

beam theory could still be applied to the concrete structures provided 

that the effective area of cross-section did not exceed the area enclosed 

by the wall centreline. 
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1.3.4 Limit States Design 

Design by limit states requires consideration of the crack 

pattern and modes of failure. Maisel [39] summarized the experimental 

and analytical. work required in this area as follows: 

"The majority of the experimental work reported concerned working 
load conditions in models made of materials other than concrete. 
Observations of deflexions, twists, reactions and strains have 
usually been made and, from these, stresses and·load distribution 
coefficients have been evaluated, good correlation with theory 
usually being obtained. Tests on concrete models and prototypes 
have provided information on crack patterns and moges of failure, 
but the customary theories of failure do not give satisfactory 
results for all stress combinations, nor do they adequately 
explain observed failure conditions. Further information is 
required on the behaviour of cracked sections, the effect of 
cracking on bending and torsional stiffness, patterns of cracking 
corresponding to .various load systems and structural configura
tions, ultimate loads, effective widths of flanges, diffusion of 
prestress, local effects near diaphragms and stresses in reinforce
ment. 

The main requirements for future research appear at present to 
be in the field of experimental work. The necessary theoretical 
development for limit state design is probably an extension of 
elasto-plastic fin~te element analysis, to predict cracking and 
ultimate load behaviour in combined bending, shear and torsion. " 

Rowe and Best [40}, Scordelis [41], Corboda [42], Tschanz [43], 

Soliman and Mirza [44] and Tabba [45] conducted tests on small and l~rge-

scale direct and indirect models to study the elastic and ultimate load 

behaviour of bridge structures which normally cannot be obtained by 

analytical procedures. Little and Rowe [46] tested a plexiglass model 

to determine the value of the torsional parameter a for the Guyon-Massonnet 

load distribution analysis for bridges, as applied to a structure which 

is neither a slab nor a simple grillage. They presented a method to 

evaluate a for a box section bridge, and compared the experimental 
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values of the distribution factor with the theoretically derived 

values. They observed that the distribution properties of the deck 

were underestimated, though not seriously, by calculating a on the 

pasis of one cell only and neglecting the interaction of cells. The 

theoretical results for load distribution did not show good agreement 

with the experimental results when the torsional stiffness of a multi-

cell box was used to calculate a • It was observed that the local 

warping effects significantly influenced the effective torsional stiff-

ness of the member. Nasser [47] developed a simple procedure for 

determining the lateral load distribution in ~ridge decks composed of 

precast hollow-core beam units linked by in situ shear keys and trans-

verse prestressing. The method was based on orthotropic plate 

theory and experimental work on moqel and prototype bridge decks. For 

design purposes, the percentage of the axle load carried by a single 

beam for centre and edge loading conditions on the bridge can be 

determined from the graphs in Reference [ 48] • 

Cordoba [42] and Tschanz [43] tested a 1:3.76 scale model of 

a large-scale two-cell concrete box girder bridge with precast cells 

and cast-in-place deck. The objective of this investigation was to 

examine the behaviour of this type of bridge, with emphasis on load 

distribution. The experimental results were analysed by the Finite 

Element Method using a compatible rectangular shell element with four 

degrees of freedom at each node (49]. However, this analysis was 

limited to the elastic range of behaviour. Recent investigations 
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have shown the potential of the Finite Element Method ih studying 

the nonlinear behaviour of bridge and other concrete structures 

resulting from nonlinearities of materials and geometry. The bridge 

was tested for the H20-44 truck loading at the working load level. 

The ultimate load capacity was obtained using two point loads, placed 

over the outside webs at the midspan of the bridge, which were increased 

in stages until failure. They showed that this type of bridge pro-

vides a competitive alternative to other types of bridges in the 80 to 

120 feet span range. They also observed that diaphragms did not have 

a significant effect on the behaviour of this type of bridge within the 

service load level. Leonhardt and Walther [23] tested two prestressed 

concrete, singlecell, single span, box girders with side cantilevers, 

and transverse diaphragms at midspan and at each support. The first 

specimen was subjected to a concentric midspan loading until flexural 

failure was approached, and then the loading was made eccentric to 

induce torsion. The second girder was loaded with a more eccentric 

midspan load so that torsion dominated. In addition, a 1/10 -scale 

plastic model was tested under the same type of loading to ascertain 

the differences between the uncracked and cracked conditions. The 

design of the shear and torsional reinforcement was based on the 

simplifying assumptions of plane strain distribution and St. Venant•s 

torsion theory. The experimental deformation values in the uncracked 

concrete girders agreed well with the values calculated using the 

elastic theory. It was noticed that the measured deflections and 
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twists were slightly lower than the calculated values and they pointed 

out the need for further research in this area. As expected, they 

observed that cracking caused a decrease in the torsional rigidity. 

The diagonal compressive stresses in the side. of the webs were n9ted 

to be a critical factor in the design of thin-walled structures, pro

viding that the principal tensile stresses are adequately resisted by 

the reinforcement. 

Fam [50] and Tabba [45] studied the behaviour of curved box 

girder bridges using the Finite Element Method for applied static and 

dynamic loads. A three-dimensional finite element program was developed 

for the analysis of curved cellular structures. Solutions of several 

problems involving static and dynamic responses were presented using 

the proposed and other sophi~ticated methods of analysis. An experi-

mental study conducted on two curved box girder plexiglass models con

firmed the reliability of the proposed method of analysis. 

Swamy [51] reported tests on the behaviour of prestressed 

concrete single-cell box beams loaded in bending and torsion. The 

size and shape of the box section were varied and the effect of a 

nominal amount of torsional reinforcement was investigated. Bending 

moments were found to have a beneficial effect on the torsional behaviour. 

He observed that a box beam can be loaded up to 65 per cent of its ultimate 

bending capacity before its torsional strength decreases. Torsional 

stresses however reduce the bending strength slightly. Depending on 

the relative magnitude of bending and twisting moments, failure may 

occur either by crushing or by diagonal tension; interaction curves 

provide a useful tool as an empirical method of assessing failure loads 

.under stress ratios ranging from pure bending to pure torsion. 
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Somerville, Roll and Caldwell [52] constructed and tested 

a 1/12 -scale micro-concrete model of a typical interior span of the 

Mancunian Way. The cross-section was a single-cell box with side 

cantilevers. Information was obtained on the diffusion of prestressing 

forces through the section and on the. behaviour of the structure for 

three different loading conditions, under a concentrated loading on the 

cantilevers, and at ultimate load. The load factor for the ultimate 

condition was approximately 3 for the full live loading on the span. 

A program of prototype tests on interconnected box section 

type bridges was undertaken at Lehigh University in order to develop a 

new design method [53]. The specimens tested were composed of pre-

stressed concrete box units connected by an in situ reinforced concrete 

deck slab with curbs and parapets. Test results showed that, for 

interior girders, the observed distribution factors between webs were 

considerably less than those used in design, while for exterior girders 

the observed values were greater than the corresponding values used in 

design. Distribution factors based on the Guyon-Massonnet orthotropic 

plate theory were found to be 4-15 per cent higher than the observed 

values for interior girders, and 6-15 per cent lower than the observed 

values for exterior girders. Lin and Vanhorn [54] suggested that 

the curbs should be considered in assessing the strength of the exterior 

girders, although the dis·tribution factors for interior girders should 

still be related to their spacing as at present. 
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Scordelis [55) tested a large l/2.82 -scale direct model of 

a two-span box girder bridge with a diaphragm in the middle of one 

span. A slight improvement in load distribution characteristics was 

observed on the span with the diaphragm. He shoWed the need for 

revising the present AASHTO specifications to include important parameters 

in the design of bridges of this kind. Some of these parameters are: 

number of traffic lanes, total width, span and number of cells and 

continuity or fixity at the supports. 

William and Scordelis [56] tested models of folded plates and 

compared the experimental results with the values calculated using the 

folded plate theory and the elementary beam theory. They concluded 

that the folded plate theory could be used to predict the behaviour of 

box section .structures within the working load range and that, for the 

type of reinforced concrete model and loading used, either theory 

yielded satisfactory results for working load deflections. Scordelis [41] 

suggested that further experimental research on reinforced concrete models 

of various configurations and subjected to various types of loading was needed 

to determine the range of applicabiLity of the elementary beam theory and the 

folded plate theory. Also, additional analytical and experimental studies 

were needed to document the behaviour of typical reinforced concrete 

folded plate structures over the entire load range. 

Scordelis, Bouwkamp and Wasti [57,58} developed a general 

method of analysis for simply-supported box girder bridges. The study 

was concerned with the elastic analysis of these structures by methods 
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suitable for electronic computers. A direct stiffness solution 

using the folded plate theory and a harmonic representation of.the 

·loading was used for analyses of these structures with and without 

diaphragms. They presented the details of the analysis and inter-

pretation of the experimental and theoretical results obtained from 

tests on a large-sale, two-span, four-cell, reinforced concrete box 

girder bridge model. 'They used the Finite Element Method to analyse 

the bridge model and noted that the AASHTO empirical formula over

estimated the girder moments for the two-lane HS-20-44 truck loading 

and underestimated it for the three-lane truck loading. 

Godden and Aslam [59] conducted tests on a series of small

scale aluminum models of rectangular and skew box girders to check 

the accuracy of the available analytical solutions for the elastic 

behaviour of bridges of this type. All skew bridges were tested with 

and without transverse diaphragms at midspan, and were subjected to the 

action of a single vertical point load at various locations. Because 

of the scatter between the experimental and the calculated values, a 

need for further study of the behaviour of this type of bridges was 

stressed. 

Comartin and Scordelis [60] investigated the behaviour of a 

simply-supported curved box girder bridge by the Finite Element Method, 

using quadrilateral elements having a total of 5 degrees of freedom 

per node. The theoretical results were compared with the experimental 

results from a previous study on aluminum mOde~ bridges of identical 

dimensions. They concluded that the present AASHTO specifications did 

not differentiate between straight and skew bridges and therefore it 

needed to be reviewed. 
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Scordelis, Bouwkamp and Larsen [61,62,63] investigated the 

structural behaviour of a large 1/2.82 -scale direct model of a curved 

two-span, four-cell, reinforced concrete box girder bridge. They 

presented the details of the design, construction, instrumentation and 

loading of this bridge model along with the experimental results. The 

responses of the bridge-to-point loads, conditioning loads and truck 

loadings all at working stress levels were determined. In addition, 

the_bridge response was determined for conditioning loads at overstress 

levels and for point loads after conditioning overloads. Theoretical 

values were obtained'from both the Finite Element Method using the 

three-dimensional beam element ~n the SAP IV Program [64], and the 

three-dimensional folded plate theory [65]. They concluded that based 

on the assumption that the bridge model was elastic, homogenous, isotropic 

and .uncracked, the three-dimensional folded plate theory accurately pre

dicted the behaviour of this type of bridge within the working load 

levels, while the finite element beam element could predict only the 

reactions and deflections for this type of bridge within the same load 

level. They showed the significance of diaphragms at midspan in 

improving the behaviour of the bridge at very high overload levels and 

during the final loading to failure. They also showed that the AASHTO 

Specifications {66] did not yield accurate girder moments, and accordingly 

it needed to be revised. 

Swan [67] tested a 1/16 -scale continuous segmental micro

concrete model of a typical span of a six-lane viaduct with three cells. 
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The precast cellular segments of the model were prestressed trans

versally and vertically in addition to the longitudinal prestressing. 

Thisreseardh program was aimed at investigating the performance of 

post-tensioned segmental cellular structures subjected to the Ministry 

of Transport 'HA' and 'HB' loadings. They observed an increase in 

the stresses near the diaphragms above those predicted by the ~lementary 

beam theory. They related this phenomenon to the stiff diaphragms 

and the shear lag effects. 

Swan [68] reported the characteristic features of '173 bridges 

built in the previous 15 years with a view to making recommendations 

for the initial proportioning of box girder bridges. Span lengths, 

·total depths,methods of construction, longitudinal and cross-sectional 

configurations, web location and thicknesses, top and bottom flange 

thicknesses, transverse and iongitudinal prestresses, were examined and 

discussed for both straight and skew box girder bridges. This 

information was presented as a guide to the available feasible economic 

options. More research and development work are needed in this area. 

Redwood and Gurevich {69] used a membrane finite element in 

analysing single- and multi-cell skewed box girder bridges with variable 

sections and interior diaphragms. The longitudinal plate bending 

and twisting were ignored in the analysis and transverse bending was 

tre.ated in an approximate manner as follows. A fictitious transverse 

diaphragm was used to carry membrane forces only. By this means and 

by ignoring other bending components, the analysis was treated as a 
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membrane one involving only three translation degrees of freedom per 

node. Particular reference was made to multi-cell boxes with any 

plan form, and arbitrarily located diaphragms. Tinawi [49] analysed 

orthotropic bridge decks using the Finite Element Method; a compatible 

rectanqular shell element which provided for in-plane rotation was 

developed to simulate the deck plate. For closed-type ribs, the same 

element was used, and for open-type ribs, a compatible eccentric beam 

element was used as an alternative. The analysis compared favourably 

with the available experimental data. Tinawi also studied the effect 

of varying the stiffener and cross-beam spacing and suggested an increase 

in the standard rib spacing in order to achieve greater economy in the 

fabrication process. Geometrical nonlinearities of the deck plate 

and the ribs were also studied, using the triangular shell element for 

the case of trapezoidal stiffeners with large openings. 

Meyer and Scordelis {70] developed a general computer program 

to analyse any prismatic cellular or open folded plate structure with 

transverse diaphragms or frames and-longitudinal beams. The solution 

is based on the Finite Element Method in conjunction with the Direct 

Stiffness Method. Kabir and Scordelis [71) developed a computer 

program for the analysis of continuous prismatic folded plate structures, 

which are circular in plan and have flexible interior diaphragms or 

supports. 

stiffness. 

The Finite Strip Method was used to determine the strip 

Interior diaphragms were defined by flexible beams, and 

interior supports were idealized as two-dimensional planar frame bents. 
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A direct stiffness harmonic analysis was used to analyze the assembled 

folded plate system. The program can be used to establish rational 

criteria for simplified methods for analysis and design of curved 

bridges, in which important design parameters such as cross-sectional. 

dimensions, radius of curvature, span along the arc length, flexibility 

of the support and the skew angle can be varied to determine their 

effect on the bridge response. 

In conclusion, all research programs on box section structures 

completed so far were aimed at studies of load distribution and behaviour 

and performance of .such structures within the working load level. Once 

the section cracks under increasing load, the assumption of linearity is 

no longer valid and the departure becomes more pronounced under overload 

·conditions. There is very little experimental or analytical research 

data available on the nonlinear deformational behaviour of the box 

section after the section has cracked and under overload conditions. 

Recently, there has been an increasing interest in the design of bridges 

based on limit load analysis; however, there are rather large differences 

in the ultimate load values calculated according to different limit load 

analyses [71]. This is due to the difficulty arising in including the 

influence of membrane forces in the presently available limit load 

theories and therefore the validity of these methods becomes limited. 

In summary, there is a need for further studies of the behaviour 

and analysis of reinforced concrete box section structures which account 

for both membrane and bending actions, along with a consideration of non~ 

linearities due to cracking and to the nonlinear response of concrete 

and steel [72). 
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1.4 Organization of the Thesis 

This chapter is followed by a description of procedures used 

in the experimental phase (Chapter 2). This chapter includes the 

des;ign ,· construction, instrumentation and loading of the box girder 

bridge. The results of the ~xperimental work are detai~ed in Chapter 3 

along with a discussion of the observed strengths and the deformational-

behaviour of the bridge. A summary of the experimental observation 

is presented at the end of Chapter 3. 

The finite element analysis used in this investigation is 

described in Chapter 4. Results of a linear and a quasi-nonlinear 

finite element analysis of the bridge are presented. The linear 

analysis · is conducted to study the effect of warping restraint on the 

total stress distribution and the results are compared for the two 

cases - one with warping restrained and the second with the warping 

not restrained. The quasi-nonlinear analysis is used to perform a 

parametric study to examine the influence of the element stiffness 

perpendicular to the crack and the shear transfer across the crack. 

A summary of the findings and the conclusions are presented 

in Chapter 5. 

this chapter. 

Some proposals for future study are also included in 
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CHAPTER 2 

EXPERIMENTAL PROGRAM· 

2.1 General 

Models are being increasingly used for behaviour studies of 

simple and complex structural systems aimed at verifying the basic 

design assumptions and at modifying the existing design criteria [73]. 

Some of the empirical formulas in the current ACI Code [741 and the 

National Building Code of Canada [75], particularly the shear and torsion 

formulas, were derived from the results of tests on 1/2 - 1/3 scale 

direct models which were considered as small prototypes for all practical 

purposes. Besides, large-scale models have been successfully used in 

behaviour studies of bridges and building structures under applied 

static and dynamic loads [61,62,63]. Compared with the prototypes, 

these model structures are relatively simpler and less expensive to 

construct, instrument and test. Recent studies have also shown that 

1/2 - 1/4 scale direct models of reinforced and prestressed concrete 

structures can predict the prototype behaviour and strength with an 

excellent degree of reliability within ± 15 per cent [76., 77). 

2.2 Details of the Tested Bridge 

It was decided to test a large 0/2 - 1/3) scale model of a 

medium span box girder bridge. For all practical purposes, these 
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small prototypes require construction techniques which are as close 

as possible to those used in the construction of the prototype. 

Also, the model materials used must simulate as closely as possible 

the basis characteristics of the prototype concrete and the reinforcing 

steel. 

The main reinforcement in a typical box girder bridge normally 

consists of suitably spaced #11 deformed steel bars (nominal cross-

sectional area= 1.56 sq. in.). Because of convenience, it was 

decided to simulate the #11 deformed steel bars by #4 deformed steel 

bars (cross-sectional area= 0.2 sq. in.). This resulted in a length 

scale factor given by 

= 
L 
m 

L 
p 

(St linear scale factor = 

1 
2.82 

Model quanti:ty 

Prototype quantity 

(2 .1) 

which was adopted for the box girder model. This model was 19 ft long 

5 ft. wide and 14 in. deep and consisted of a single rectangular cell 

with 14 in. long cantilevered slabs overhanging on both sides. A 

typical cross-section of the box girder bridge is shown in Fig. 2.1 

along with the details of the end blocks providing fixed-ended 

cQndition at the two ends. 

Although it is relatively simple to satisfy the requirements 

for stress and strain similitude for model steel and concrete, it is 
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considerably more difficult to satisfy the bond requirements [76]. 

For structural concrete members or systems with predominance of flexural 

and/or shear, it is normally not necessary to satisfy all the require-

ments of bond similitude. It is enough to ensure that there is 

sufficient bond resistance so that bond failure does not occur. This 

can be achieved by providing sufficient embedment length to develop the 

yield strength of the bar. 

The model concrete mix used consisted of a mixture of High 

Early Strength cement and a blended mixture of five grades of crushed 

quartz sand. The advantage of using such a mix compared with a mortar 

mix lies in its excellent simulation of the compressive and tensile 

(splitting and flexural) strengths, the modul~s of elasticity and the 

ultimate compressive strain at failure. 

For a true model, the density of the model material is given by 

Pm = 5 t PP 

density of the model material 

density of the prototype material 

( 2. 2) 

Therefore, in this case, the model concrete must be 2.82 times as 

heavy as the prototype concrete. This similitude condition can 

obviously not be achieved through the use of model concrete and extr~ 

dead load was used to properly simulate the dead weight of the prototype. 

The extra load required to be added to the model bridge structure was 

450 lb/ft. Studies were made to determine the feasibility of renting 

steel billets and.placing them suitably within the box girders of the 
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bridge during its construction. This idea was abandoned because of 

the stress concentration caused by these steel billets in the lower 

slab. Instead, silica sand bags,concrete blocks measuring 15 in. x 

15 in. x 15 in. and steel billets were distributed uniformly on the 

top and the bottom slabs throughout the span of the bridge. The 

sequence of placing these loads was as follows: 

1. The box girder was filled with silica sand in addition to 

three steel billets uniformly distributed along the bridge 

span. 

2. After casting the top slab, fourteen concrete blocks and 

four steel billets were distributed uniformly over the top 

slab along the bridge span. 

This method eliminated any possible stress concentration ~rom the extra 

dead loads used for dead load compensation. 

The main reinforcing bars used for the bridge were #4 and #3 

deformed steel bars, with nominal yield strengths of 60 ksi and 45 ksi, 

respectively. The main reinforcement in the maximum positive moment 

region·consisted of 11 #4 bars, while that in the negative moment region 

consisted of 17 #4 bars. In addition, 6 #3 bars were provided in the 

top slab running through the span of the bridge, two over each web, and 

one at the end of the cantilever slab. The transverse reinforcement 

in the top and the bottom slabs and in both webs consisted of two layers 
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of D3 and D4 deformed steel wires (cross-section areas 0.03 sq. in.· 

and 0.04 sq. in., respectively) with a nominal yield strength of 38 ksi. 

The details of reinforcement for the top and bottom slabs and a typical 

cross-section are shown in Figs. 2.2, 2.3 and 2.4. The details of 

the end block reinforcing steel are shown in Fig. 2.5. This rein

forcement consisted of closed #5 stirrups in the two orthogonal 

directions, in addition to 28-3/4 in.diameter high strength steel bolts 

at each end to prevent any end block translation and rotation, thus 

creating fixed-ended condition at the two ends. 

Due to diagonal compression in the concrete at higher torsional 

loads, the concrete cover has a tendency to spall off, therefore it is 

important to detail the stirrups such that they will not loose their 

anchorage when. spalling occurs. This is obtained by bending the free 

end anchorage length of the stirrups into the concrete [78]. In 

addition, it is necessary to provide proper end anchorage for the longi

tudinal re.inforcement to enable this reinforcement to fully develop its 

yield strength. The reinforcement details adopted satisfy the funda-

mental requirements of strength, limited cracking, ductility and 

simplicity of construction. 

2.3 Material Properties 

2.3.1 Concrete 

The selection of suitable materials to model concrete depends 

upon several requirements. The constituent materials must satisfy 
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a. Support Section 

b. Midspan Section 

FIG. 2.4 REINFORCEMENT DETAILS AT A TYPICAL CROSS-SECTION 

(See Figs. 2.2 and 2.3, also Table 2.3) 
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the laws of similitude and must be readily available. While it is 

possible to use finer aggregates, it is not possible to use finer 

cements without appreciably increasing the water-cement ratio. There-

fore, normal cements are used for model concrete mixes. As mentioned 

in the previous section, the stress-strain curve of the model concrete 

must be homologous to that of the prototype concrete. Besides the 

Poisson's ratio, the ratio of tensile strength to compressive strength 

and shrinkage of the m6del concrete must be equal to the corresponding 

prototype quantities {79]. 

Materials for structural models of reinforced concrete struc

tures have been studied for several years at McGill University [80,81,82]. 

Mirza, Labonte and McCutcheon [83] investigated different model materials 

to simulate the prototype concrete. As a result of experiments on 

several mixes, they suggested .Preliminary designs for model concrete 

mixes for strengths ranging from 2500 psi to 6000 psi for use in reinforced 

and prestressed concrete model work. The concrete mix used in the 

present program was previously developed by Mirza [84] who experimented 

with several trial mixes using High Early Strength cement and local 

sands passing U.S. Sieve No. 4 and U.S. sieve No. 8 respectively. A 

mixture of five grades of narrowly graded Crushed Silica Sands was 

blended for each batch of concrete as follows: 
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no Crushed Silica Sci.nd 20 lbs. 

#16 " " tl 20 lbs. 

#24 " " " 25 lbs • 

. #40 " " " 25 lbs .• 

#70 " " " 10 lbs. 

Sand lOO lbs. 

High Early Strength Cement 33.3 lbs. 

Water 13.3 lbs. 

The resulting mix had water:cement:aggregate proportions of 0.55:1:3.0 

by weight. These quantities provided a batch of approximately one 

cubic foot of model concrete mix. 

2.3.2 Properties of Concrete Mix in Compression 

Compression tests were performed in accordance with ASTM 

Standards (American Society for Testing and Materials) C 172 and C 31 

(Compressive Strength of Concrete Cylinder). Eight cylinders of size 

3 x 6 in. and eight cylinders of size 4 x 8 in. were cast for each stage 

of concrete. These cylinders were tested for compressive strength 

at ages of 7, 14 and 28 days and on the day of the test. Complete 

stress-strain curves were obtained from tests on cylinders instrumented with 

strain gauges. From the results obtained, evaluations were made of 

• the compressive strength f· , and the modulus of elasticity of the 
c 
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concrete, E . 
c 

The cylinders were moist-cured and dried a day prior 

to testing and were capped. The average.values of the compressive 

strengths are given in Table 2.1; also, a typical stress-strain curve 

'for the model concrete is shown in Fig. 2.6. 

2.3.3 Properties of Concrete Mix in Flexure 

The flexural tests for determining the modulus of rupture 

were performed in accordance with ASTM Standard C 78-59 (Flexural 

Strength of Concrete using Simple Beam wi.th Third-Point Loading). 

Three specimens were tested during the period of the experimental 

program. Each beam was 6 x 6 in. in cross-section and 24 in. long, 

and the two loads were applied at the third points. In all cases, 

fracture occurred in the center section of the specimen. The results 

of the tensile strength tests after 28 days are given in Table 2.2 

along with the values calculated using the ACI equation . 

(2.3) 

2.3.4 Steel Reinforcement 

The principal characteristics of the prototype steel which 

should be simulated in reinforced concrete models are the following: 

1 - yield and ultimate strength for tension and compression, 

2 - shape of the stress-strain curve, 

3 - ductility, 

4 - bond characteristics at the steel-concrete interface. 
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TABLE 2.1 

Compressive Strength of the Model Concrete Mix 

Compressive Strength 

Structural Age 3 X 6" 4 X 8" E =57000/f' E =wl. 53Jifl 
element (days) cylinder. cylinder c c c c 

psi psi psi psi 

7 2886 2878 

14 3530 3300 

Lower 28 4500 4600 4.03 X 10 
6 

4.36 X 10 
6 

slab 
day of 5230 5100 
testing 

7 3112 3010 

14 3680 3600 

Webs 28 4600 4400 4.03 X 10 
6 

4.36 X .10 
6 

day of 5110 5020 
testing 

7 2830 2900 

14 3890 3750 

Upper 28 4600 4780 4.03 X 10 
6 

4.36 X 10 
6 

slab 
day of 5075 5050 
testing 
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TABLE 2. 2 

Tensile Strength of the Model Concrete Mix 

Tensile Tensile 
Beam strength f' strength {_ACI) 

c 
ft = 7.5~ No. f (psi) (psi) 

z 

1 535 5100 535 

2 400 5020' 531 

3 550 5050 534 
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It was decided to use #4 and #3 deformed steel bars as 

main reinforcement, and n3 and n4 deformed steel wires as secondary 

reinforcement. These deformed steel wires' were initially cold drawn, 

and were annealed at a temperature of l200°F for a period of one hour 

to reduce their yield strength from approximately 70 ksi to 38 ksi 

besides increasing their ductility, that is, increasing the percentage 

elongation available at failure. 

The stress-strain curves of the deformed steel bars were 

determined by conducting tension tests on three randomly selected specimens 

for each bar type. Figures 2.7 and 2.8 show the stress-strain curves 

for #4 and #3 deformed steel bars and n
3 

and n
4 

deformed steel wires 

before and after annealing, respe~tively. Details of the reinforci~g 

steel used in the construction of the box girder bridge are given in 

Table 2.3. The concrete cover was kept constant at 3/8 in. for all 

reinforcing steel. The spacing between the stirrups and the secondary 

steel was maintained constant at 3 in. centres over the entire bridge. 

2. 4 Description of ·the Testing Frame 

The loading frame used in the present study was initially 

designed and constructed for a previous research program to study the 

behaviour of precast, prestressed open web bridge girders [42]. The 

frame was modified by adding an extra transverse beam at each e~d of 
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TABLE 2. 3 

Steel Reinforcement Details 

Shape and dimensions No. of Kind 
pieces 

Purpose 

r 

I 

56" 

I 29 90&.:.1 4" 

160" 

260" 

140" 

260" 

110" 

80" 

29 9/16" 

56 tl 

5" 

4" 
r-

5" 
13 rr 

5" 
T6 

~ 5/16" 

56" 
12 .. 

1 

Transverse top reinforcement in top slab 

60 o3 · Transverse lower reinforcement, top slab 

60 o4 Transverse top reinforcement, lower slab 

4 #4 Bottom longitudinal reinforcement 

6 #4 Bottom longitudinal reinforcement 

28 o3 Secondary longitudinal steel, top slab 

6 #3 Longitudinal steel in top slab 

20 #4 Top longitudinal reinforcement 

16 #4 Top longitudinal reinforcement 

60 Stirrups 

10 #5 Stirrups for the end block 

6 #5 Stirrups for the end block 

120 Web reinforcement 

4 #5 Reinforcement of the end block 
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the frame to accommodate the end blocks designed to create a warping 

restraint condition. The testing frames assembled in the laboratory 

consisted of two identical 24 x lOO WF beams, 25 ft. long, placed 

horizontally parallel to each other. Two transverse 12 x 65 WF cross-, 

beams, 6 ft. long, were placed at each end as supports for the end 

blocks. After casting the bridge and the end blocks, another two 

transverse 12 x 65 WF cross-beams were placed on top of the end blocks 

and connected to the transverse girders at the bottom by high strength 

bolts. The high strength bolts were designed to resist the longi-

tudinal and transverse moments thus creating a fixed ended condition. 

They were embedded in the end block and connected the lqwer and the 

upper transverse ·beams. Fig. 2.9 shows this connection. The loading 

frame consisted of two identical, vertical frames attached to the 

horizontal 24 x lOO WF beams at its midspan. Each loading frame con-

sisted of two vertical 12 x 65 WF beams, 6 ft. long, supporting two 

horizontal hollow sections, fabricated using two 15 x 40 channel 

sections welded together. Figure 2.IDshows the loading frame as 

connected to the tested frame. Four concrete blocks 18" x 18" x 24" 

were used to support the horizontal girders of the testing frame which 

were levelled properly. 
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(a) Bridge model (construction just completed) 
and the loading frame 

(b) Bridge model under test (concrete block and 
sand bags were used for prototype dead load 
simulation · 

FIG. 2.9 BRIDGE MODEL 
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2.5 Bridge Construction, Schedule and Casting of Concrete 

The construction of the box girder bridge consisted of the 

following operations: 

1. Construction of the formwork of the entire box girder bridge. 

2. Preparation of the lower slab reinforcement and the web reinforce

ment, and installing and waterproofing the strain gauges on this 

reinforcement. 

3. Casting and ·curing of the lower slab and one-third of the concrete 

end blocks. 

4. Preparation of the formwork for the webs and longitudinal 

reinforcemen.t in webs. 

5. Casting and curing the webs in addition to the second third of 

the enQ. blocks. 

6. Filling the box section with silica sand and three steel billets. 

7. Preparation of the formwork for the top slab, and finishing the 

longitudinal and transverse steel reinforcement for the top slab, 

and installing and waterproofing the strain gauges on this 

reinforcement. 

8. Casting and curing of the top slab together with the last third 

of the end block and finishing the surface of concrete. 

9. Placing the upper transverse beams (12 x 65 WF) on the top side 

of each end block and connecting them to the high strength steel 

bolts. 
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10. Placing the concrete blocks and the four steel billets on the 

top to compensate for the prototype dead load as shown in 

Fig. 2.11. 

The concrete was conveyed from the mixer using a wheel barrow 

and was deposited, starting from one end of the box girder bridge working 

to the other end in short lengths to avoid any air pockets in the concrete. 

A special hopper was used to pour concrete uniformly into the webs to 

avoid any voids or honeycombing in the concrete. Before casting the 

webs and the top slab, the old concrete of the lower slab and the webs 

were cleaned by a steel brush and water to improve the bond between the 

old and new concrete. The concrete was compacted by using a needle 

vibrator. The concrete in each stage was cured for a period of one 

week by covering it with wet burlap and sprinkling it with water. 

2.6 Removal of Formwork 

Two weeks after the casting of the top slab, the formwork of 

the side cantilevers and the webs was removed and the five steel cross

beams which were acting as a temporary support for the formwork were 

removed. The bridge was painted with a white wash for observation of 

crack formation and propagation. 
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2.1 Instrumentation 

2. 7.1 General 

The experimental study of the bridge included the following 

measurements: steel and concrete strains on the top and bottom slabs 

and both webs, displacements of both webs and the tips of both canti-

lever slabs in the x, y and z directions, and rotations at different 

locations along the span of the bridge as well as across the box section. 

2.7.2 Basic Measurements 

The following measurements were made for each load stage: 

2.1.2.1 Load 

The load was applied using hydraulic jacks and measured 

directly from the dial gauges attached to them. 

2.1.2.2 Deflections 

The dial gauges used to measure the deformations were attached 

to an independent frame suspended from the ceiling of the laboratory. 

These gauges were placed at 23 inches on centre throughout the span of 

the tested bridge over both webs as well as at the ends of the cantilever 

slabs (Figs. 2.12, 2.13, 2.141. The dial gauges used had divisions 

-3 -5 of 10 in. and 10 in. for measurement of z and x and y displacements, 

respectively. 

To check and measure the deformation within the box section at 

midspan and quarter span sections, a piano wire was attached to the 
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lower corner of the box section at these locations and connected to 

-5 
a dial guage from the other end (least count = 10 in.). From the 

vertical and horizontal deflection readings at these positions, the 

distorsion within the box section was obtained. Figure 2.15 shows 

the details of .the piano wire-dial guage arrangement. 

2.7.2.3 Strains 

Steel strains were·measured using 155 PL-S-11 electrical 

strain gauges, and the concrete strains were measured by lOO mechanical 

strain gauges of 4 in. gauge length in addition to the 40 PL-S-11 

electrical strain gauge. 

The technique used for preparing the reinforcing bars for 

strain gauge application and for sealing the gauge assemblies followed, 

in general, the recommendations of the manufacturer. The reinforcing 

bars were ground and filed smooth in the regions where the gauges were 

to be located, cleaned with acetone, and dressed with a metal conditioner 

and neutralizer. The gauges were then applied by using an epoxy 

adhesive that cured at room temperature. Terminal tabs were applied 

at the same time, and the gauges were connected to these tabs. 

After the lead cables were attached to the tabs, the gauge 

assemblies were waterproofed with M-Coat D which is a flexible epoxy 

that cures at room·temperature. The assemblies were then covered with 

a thick layer of M-Coat G and after 24 hours were coated with a layer 

of M-Coat B for additional sealing and for physical protection from 
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the wet concrete and the vibration equipment during casting. The 

preparation, the gauge application procedures, and the sealing 

techniques were the same for the concrete as for the reinforcing bars. 

Fiqures 2.16 to 2.20 show the location of the strain gauges on the 

reinforcing steel bars across the width of the box section and the 

length of the bridge. The mechanical strain gauges were used to 

measure the longidutinal and transverse concrete strain over the two 

webs and at the end of the cantilever slabs on the top slab at 23 in. 

intervals-in the longitudinal direction of the bridge. The gauge 

length of the mechanical strain gauges was 4 in. Fiqures 2.21 and 

2.22 show the location of the mechanical and electrical strain gauges 

on the bridge. All strain gauge readings were recorded and printed 

by means of two electronic multi-channel B & F digital strain indicato=s, 

model SY 161 Series, along with two units of switching boxes. 

2.7.2.4 Angle of Twists and Slopes 

The angle of twists of the box section and the web slopes 

relative to the horizontal were measured by means of inclinometers at 

23 in. intervals along the span. These inc~inometers were designed 

to measure these twists and slopes for gauge lengths ranging between 

12 and 24 inches. It consisted of a dial gauge connected to an aluminum 

bar with a precision level bubble and a screw to adjust the level of the 

aluminum bar. The gauge length used in the present study was 12 in. 

The advantage of this device is that it can be used at different 
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locations for measuring both the twist and the slope. Figure 2. 23 

shows the details of this inclinometer and its components. Figures 

2.24 and 2.25 show the locations for measurements of twists and slopes 

on the top slab. 

2.7.2.5 Crack Widths 

Crack widths were measured at the appropriate load stages with 

a crack microscope to an accuracy of 0.05 mm. 

2.8 Test Program 

The experimental program was divided into the following 

three phases: 

1. Dead load alone. 

2. TWo symmetrical point loads placed over the two webs 

at the midspan section (within the elastic range) • 

3. A concentrated load placed at the midspan ·section over 

one of the webs for the·ultimate load test. 

It was decided to accommodate a wide range of loading stages 

for each phase to determine the load-deformation relationship and 

response for each loading type •. The load for each phase was increased 

at a steady rate, and was kept constant by adjusting the control valve 

of the jacks while the readings were being taken. On the average, each 

load stage required about 35 minutes for all observations. 
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The first phase consisted of the effects of the dead load 

alone. The strains and deformations of this phase were taken as the 

differences in the recorded readings before and after the removal of 

the five steel beams which were acting as a temporary support for the 

formwork. 

The second phase consisted of ten loading increments of 

1.3 kips each, up to a total load value of 13 kips, and it was removed 

in four instalments of 3 kips each. 

The third phase consisted of fourteen loading increments of 

4.2 kips each, up to a total load value of 59 kips; it was removed in 

five instalments of 15 kips each. 

In the last stage of this phase, at a load value of 55 kips, . 

a 1/4 in. deep local punching shear failure occurred in the top slab beneath 

the ram. The test was stopped at this stage and the applied load was 

removed in decrements as mentioned before. The damage was not serious, ' . 

and it was therefote decided to repair the hole by filling it with a 

gypsum capping material. After fixing the hole, a 6 x 6 x 1 in. 

steel plate was used to cover the damaged location, and the bridge was 

reloaded again from zero load to failure. The loading increments used 

were 10 kips each, up to a total load value of 69 kips, and the decrements 

were 30 kips each. Again, at a load value of 69 kips a local punching shear 

failure occurred in the top slab beneath the steel plate under the ram. 

The depth of the hole was 1 in. The magnitudes of deflections, strains, 

twists and slopes were taken at this stage and the applied loading was 

removed. 
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2.9 Hydraulic Loading Jacks 

Two kinds of hydraulic jacks were used to load the box girder 

bridge. Two 30 kips capaci~y jacks were used for the symmetrical 

loading phase, while a lOO kips capacity jack was used for the ultimate 

load test. The details of these hydraulic loading jacks are as 

follows: 

30 kips lOO kips 
capacity capacity 

Jack type (RLC-302) (RLC-1002) 

Stroke (in.) 2-7/16 2-1/4 

Effective area of the cylinder (in. 2) 6.49 19.64 

Maximum internal pressure (psi) 9250 10200 

Outside diameter (in.) 4 6-1/2 
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CHAPTER 3 

EXPERIMENTAL RESULTS 

3.1 General 

As mentioned in Chapter 2, the load tests of the bridge under 

investigation consisted of the following three phases: 

1) Dead load 

2) Symmetrical loading test (two point loads symmetrically 

placed over the two webs at the midspan section) 

3) Unsymmetrical loading test (a point load placed over 

one web at the midspan section) • 

Wherever possible, the experimental results were compared 

with the values calculated from the simple beam theory [85], the Knittel 

method (24], the Kollbrtinner and Hajdin method [86], and the method of 

beam-on-elastic-foundation [87] . Details of.these methods and the 

computer program developed, including input data, outpu~ data and 

listing of the program, are presented in Appendix A. 

3.2 Dead Load Stresses 

After removal of the form work the bridge was supported on 

the underside by five cross-beams which were removed just before testing. 

The central deflection of the bridge due to its own weight was observed 
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to be 0.144 in. The self weight of the bridge was 0.7 kips per 

foot, including the extra weights used for dead load compensation. 

It was observed that the longitudinal stresses in the top slab rein

forcement were not uniform across the slab width; the maximum values 

occurred at the web-flange junction (Fig. 3.1). This is due to the 

shear lag resulting from the change in the shear deformations in the 

plane of flanges with respect to the longitudinal forces and therefore 

the resulting stresses at the web-flange junction are higher than those 

between the webs or at the cantilever tips. The steel stresses cal-

culated from the measured strain values in the top slab reinforcement 

over the webs were approximately 20 and 30 per cent larger than the 

stresses at locations between the webs at midspan and at the support 

sections, respectively. The maximum steel stresses in the top slab 

reinforcements at the midspan and support sections were -2.6 ksi and 

2.1 ksi respectively. Here the negative sign indicates that these 

stresses are compression. 

As is evident from the measured strains, the longitudinal 

concrete stresses across the top slab were not uniform. over the webs, 

they were approximately 40 to 50 per cent larger than the stress values 

at points between the webs or at the cantilever tips (Fig. 3.2). 

The steel stresses in the lower slab reinforcement as calculated 

from-the measured strain values showed a similar behaviour of higher 

stresses at the web-flange junption than at locations-between the webs. 

This difference was 10 per cent at the support and 40 per cent at the 

midspan sections. As shown in Figure 3.3, the steel stresses in the 
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lower slab reinforcements had maximum values of 3.6 ksi and -2.1 ksi 

at the midspan and support sections, respectively. The longitudinal 

concrete stresses in the lower slab were also generally small and were 

50 per cent higher than the corresponding stress values at locations 

between the webs for both the support and midspan sections. The 

transverse steel and concrete stresses in both the top and bottom slabs 

throughout the bridge span wer~ approximately 10 per cent of the corres-

ponding longitudinal stresses at the same locations. No significant 

strains, and therefore stresses, were noted in the stirrups for the 

case of dead load alone. 

3.3 Symmetrical Loading Test 

3.3.1 Deflections 

each. 

The load increments used in this loading case were 1.32 kips 

The experimental load-deflection' curve (Fig. 3.4) shows that 

the bridge behaved linearly up to a load value of 4 kips on each web 

when cracks were first observed in the bottom slab near midspan. The 

tensile stresses in the concrete as calculated from the measured strain 

values were approximately 417 psi. Figure. 3.5 shows the variation of 

vertical deflections along the bridge span at load values of 3.9, 7.8 

and 11.7 kips. These curves represent the average deflections for 

the left and right webs (the difference between the two sets of 

deflection readings was less than 4%). As shown in Fig. 3.4, the 
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initial stiffness of the bridge, which is the slope of the load

deflection curve, is 17 per cent less than the value calculated from 

the simple beam theory which does not account for the cracking of the 

concrete. 

Using Branson's equation which accounts for the cracking of 

concrete [88], the effective moment of inertia of the bridge was cal-

culated. This led to an increase of approximately 20 per cent in the 

calculated deflections and showed an improved agreement with the experi-

mental load-deflection curve (Fig. 3.4). Thus, use of Branson's 

equation which accounts for the cracking of concrete, gives better 

assessment of the bridge deflections than the simple beam theory. The 

deflection profile along the span of the bridge (Fig. 3.5) shows that 

the end regions of the specimen was fixed-ended as stipulated in the 

design of the experiment. 

3.3.2 Longitudinal Steel and Concrete Stresses 

3.3.2.1 Top Slab 

Figure 3.1 shows the variation of the longitudinal stresses 

in the top slab reinforcement with load at different locations through 

the span of the bridge. The steel stress values calculated from the 

measured strains at both the midspan and support sections were larger 

than those calculated using the simple beam theory for the uncracked 

and the cracked sections. At a load value of 4.5 kips, the steel 

stresses over the webs were approximately -8 ksi and 6 ksi at both the 

midspan and support sections, respectively. These stresses were 
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approximately two to three times larger than those calculated from 

the simple beam theory based on the uncracked section at both the mid-

span and support sections. As shown in Figure 3.1, the calculated 

stress values considering the section to be cracked gives better agree-

ment with the stress values calculated from measured strains. In 

this case, the longitudinal stresses in the steel reinforcement over 

the webs at a load value of 8 kips were approximately -13 ksi and 11 ksi 

at the midspan and support sections, respectively. These stresses 

were approximately 66 per cent larger than those predicted from the 

simple beam theory at both the midspan and support sections. 

Figures 3.6 through 3.9 show ·the longitudinal steel stresses 

across the width of the top slab at different locations through the 

bridge span at load values of 3.4, 6.5, 9.0 and 11.6 kips. The 

stress variation throughout half of the bridge span at a load value of 

11.6 kips is shown in Figure 3.10. These figures show that the steel 

stresses across the width of the top slab of the bridge are not uniform. 

At the web-flange junction these stresses were higher than those at the 

cantilever tips or at points between the webs. The fluctuation in 

these stresses and their higher values at the web~flange junction are 

due to the effect of shear lag phenomena as mentioned earlier. The 

effect of shear lag was more pronounced in the midspan region than 

near the supports mainly due to the local effect of the support end 

block. 
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At a load value of 6 kips on each web, the longitudinal steel 

stresses over the webs at the midspan section were approximately -10 ksi, 

while those between the webs were approximately -a ksi. At the support 

section, for the same load level, these longitudinal stresses over the 

webs were approximately 8 ksi,while those between the webs were 7 ksi. 

The longitudinal concrete stresses across the top slab varied 

in a manner similar to the longitudinal steel stresses. The variation 

of the longitudinal concrete stresses on the top slab with load at 

different locations through the span of the bridge is shown in Figure 3.2. 

Figures 3.11 through 3.14 show the distribution of the concrete longi

tudinal stresses across the width of the top slab at different locations 

throughout the span of the bridge at load values of 3.9, 6.5, 9.0 and 

11.6 kips. Also, the variation of the longitudinal concrete stresses 

in half of the bridge span is shown in Figure 3.15. As shown in these 

figures, the shear lag phenomenon caused an increase of approximately 

30 per cent in the stresses at the web-flange junction above those at 

the cantilever tips or at points between the webs. At a load value 

of 10 kips, the concrete longitudinal stresses over the webs at the 

midspan section were approximately 530 psi, while those between the 

webs were approximately 420 psi. The simple beam theory is not 

capable of predicting the varying stress distribution within the box 

sectioN. 
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3.3.2.2 Lower Slab 

Figure 3.3 shows the variation of longitudinal steel stresses 

in the lower slab at various cross-sections through the bridge span. 

At the midspan section, these longitudinal stresses were higher than 

those predicted from the simple beam theory. Just before cracking, 

at a load value of 4 kips, the longitudinal steel stresses at the mid

span section were 12 ksi,which is approximately 2.5 times larger than 

those calculated from the simple beam theory assuming that the section 

was uncracked. However, calculated values based on an assumed cracked 

section give better agreement with the exi>erimental results. At a 

load value of 10 kips, these stresses were approximately 25 ks~which 

is about LS times larger than the calculated stress based on a cracked 

section analysis. The distribution of the longitudinal steel stresses 

across the lower slab at different locations through the bridge span for 

different load values is shown in Appendix C. The envelope of these 

longitudinal stresses through half of the bridge span is shown in 

Figure 3 .16. Again, the effect of tpe shear lag phenomenon on the 

longitudinal stresses of the·lower slab reinforcement at both the midspan 

and support sections is ~uite evident. The longitudinal steel stresses 

at the web-flange junction .of the lower slab were higher than those 

between the webs at both the midspan and support sections. At a load 

value of 10 kips, the steel stresses beneath the web at the midspan 

section were approximately 26 ksi, while between the webs they were 



p 

p = 11.6 / t/~· 

Lower Slab 
+ve 

/ 

-ve 

I 
I 

I ; 
I,..,.. 

.......... , ., ',, 

ksi . 

12.0 

9.0 

6.0 

3.0 

0 

FIG. 3.16 LONGITUDINAL STRESS ENVELOPE FOR THE LOWER SLAB REINFORCEMENT [LOAD P = 11.6 KIPS] 
(SYMMETRICAL LOADING CASE) 

~~~ 
~ 

1.0 
I-



92 

19 ksi. At the support section, at the same load level, these 

stresses were -9 ksi and -7.5 ksi beneath and between the webs, 

respectively. The restraining effect of the end blocks at the 

support section caused a decrease in the differences between the stresses· 

beneath the webs and those between it. Again, as shown in Figure 3.3, 

the simple beam theory is incapable of predicting the stress distri-

butions within the box section. It underestimates the stresses for 

both the uncracked and the cracked conditions. 

Figure 3.17 shows the concrete stress variation with load 

at different points across the width of the lower slab. The longi-

tudinal concrete stress distribution across the width of the lower slab 

and its variation with load is shown in Appendix c. Again, the shear 

· lag considerably influences the longitudinal concrete stresses. 

At the support section, at a load value of 10 kips, the longitudinal 

concrete stresses beneath the webs were approximately 1100 psi,while 

those between the webs were 850 psi. 

3.3.3 Transverse Stresses in Top and Bottom Slab 

Reinforcements 

Figure 3.18 shows the stress variation in the transverse top 

slab reinforcement as calculated from the measured strains at different 

cross-sections through the span of the bridge. The transverse stresses 

in the top and bottom slab reinforcements were approximately constant 

between the two webs, and decreased toward the ends of the cantilevers 
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on the top slab. The transverse stresses in both the top and bottom 

slab reinforcements were approximately 30 per cent of the longitudinal 

stresses at the same location, with a maximum value at the midspan 

section. The transverse stresses across the width of the top slab 

at different bridge sections for different load values are detailed in 

Appendix c. At a load value of 10 kips these steel stresses in the 

upper transverse reinforcement layer at the midspan section were 

approximately 2 ksi. Initially,the transverse steel stresses on the 

top slab were compressive and small; however, with a loading increase 

these stresses reversed in nature and became tensile. As mentioned 

in Chapter 2, there were two layers of reinforcement in both the upper 

and lower slabs. The stresses in the transverse steel in the upper 

reinforcement layer showed an increase of 50 per cent above those in 

the lower layer. Similarly, the stress in the transverse steel of 

the lower layer showed a similar increase of 50 per cent above those 

observed in the upper layer at the same location. 

can be attributed to the Poisson effect. 

These increases 

The transverse concrete stresses,as calculated from the 

measured strain values in the top slab of the bridge 1 were approximately 

uniform between the webs and decreased toward the cantilever tips. In 

the midspan region, at a load value of 10 kips, the transverse tensile 

stresses over the webs were approximately 120 psi which were approxi

mately 20 per cent of the longitudinal concrete stresses at the same 

location. Figure 3.19 shows the load-concrete transverse stresses 
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at different cross-sections through the span of the bridge. The 

maximum deformations take place at midspan and therefore the maximum 

transverse stresses also occur at midspan. These transverse stresses 

decrease towards the cantilever tips as well as towards the end supports. 

The transverse concrete stresses across the width of the top slab at 

different locations through the bridge span for different load values 

are detailed in Appendix c. The transverse concrete stress envelope 

through half the bridge span at a load value of 11.7 kips is shown in 

Figure 3.20. It should be mentioned that the simple beam theory does 

not account for the transverse stresses in this type of structure.· 

At a load value of 10 kips, the transverse stresses in the 

top slab at the midspan section, calculated using Knittel's method [24], 

were approximately 80 psi. This value is approximately 8 per cent of 

the longitudinal concrete stresses at the same location. These 

calculated stresses are less than those measured at the same location 

and approximately half those predicted from the Poisson's ratio effect. 

These observations show that the transverse stresses within 

the box section, in some cases, can reach values which are larger than 

those predicted from the Poisson's ratio effect or with any available 

analytical method, therefore a better method of analysis is needed to 

predict these stresses in reinforced concrete box section structures. 

3.3.4 Stresses in the Web Reinforcement 

The web reinforcement of the box section consisted of vertical 

closed stirrups as recommended by the ACI Code and AASHTO Specifications 

[89, 66). As a result of some detailed investigations (90, 91, 92], 



... / l ~ ,11 • 6 k 1 ps 

/ 

-ve 

'J 
./ ...... sfl't> 

~ 
' 

"" psi 00 

20 

10 
+ve V I ~,,_/)/ I 

0 

FIG. 3.20 TRANSVERSE CONCRETE STRESS ENVELOPE FOR THE TOP SLAB THROUGH HALF THE BRIDGE SPAN [LOAD P = 11.6 KIPS] 
{SYMMETRICAL LOADING CASE) 



99 

it has now been established that the shear capacity of a reinforced 

concrete simply-supported beam with a rectangular cross-section 

consists of the .resistance provided by (1) the compression zone, 

(2) the aggregate interlock at the cracks, (3) the dowel action of the 

longitudinal reinforcement, and (4) the contribution of the web rein-

forcement and its interaction with the other 'components. However, a 

similar qualitative breakdown of the shear and torsional resistance 

of the box section has not yet been attempted. 

T~e ACI and the AASHTO shear and torsion design e~uations 

are empirical in nature and consider the strength to consist of two 

components - the strength contribution of the concrete section and 

the strength contribution of the reinforcement. This simplified 

philosophy was used for the analysis of stirrup stress in the present 

study. 

where 

The contribution,of concrete is given by 

b is the thickness of the web 
w 

d is the depth of the cross-section 

f' the compressive strength of concrete. 
c 

(3.1) 

, 
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The contribution of the web reinforcement is given by 

V = s 

f A d 
y V 

s 

where f is the yield stress of the web reinforcement. 
y 

(3.2) 

By combining equations (3.1) and (3.2) 1 as in the ACI Code and the 

AASHTO Specifications 

= V +V 
c s 

and dividing by the web area ( 2 bw d) 

V = V +V 
u c s 

(3. 3) 

( 3. 4) 

By simplification of equation (3.4) 1 and substituting from equations 

(3.1) and (3.2), and by replacing f by f , the stirrup steel stress 
y s 

is given by 

f = s 

2 (v - v ) b s 
u c w 

A 
V 

( 3. 5) 

It must be noted that the stress in the stirrup steel is 

almost negligible before the section cracks and since according to 

the ACI Code 318.77 [74] and the AASHTO Specifications [89], V represents 
c 

the load at which the concrete section cracks, equation (3.5) was used 
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to calculate the stirrup steel stress after the section cracked. 

No calculations were made for the stirrup steel stress for loading 

stages before the cracking of the section. 

The experimental load-calculated stirrup stresses at different 

locations through the bridge span are shown in Figure 3.21. As 

shown, the stirrup stresses at the midspan section before cracking 

were small. However, after cracking at a load value of 4.3 kips on 

each web, the stirrup stresses increased significan~ly and were 1.3 ksi 

and 0.2 ksi at the midspan and support sections, respectively. The 

stirrup stress envelope for half the bridge span is shown in Figure 3.22 

at a load of 11.7 kips on each web. 

3.4 Unsymmetrical Loading Test 

3.4.1. Deflections 

The vertical deflections were measured under both the loaded 

and the unloaded webs through the span of the bridge at 23-inch intervals. 

The following six curves for the midspan vertical deflection are shown 

in Figure 3.23: 

1. Deflection of the loaded web 

2. Deflection of the unloaded web 

3. Deflection of the longitudinal centreline of the bridge 

for the unsymmetrical loading test 
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4. Deflection of the longitudinal centreline of the bridge 

for the symmetrical loading test 

5. Elastic deflection from the simple beam theory using the 

uncracked cross-section 

6. Deflection values obtained by incorporating Branson's 

equation to account for the cracking of the cross-section 

in simple beam theory. 

These curves are plotted for the case of the concentrated load only .. 

The dead load deflection at the midspan section was 0.144 in. and must 

be taken into consideration in calculating the total deflection at any 

load level. 

Due to the combined effect of torsion, shear and bending in 

the box girder bridge, the loaded web showed higher deflection values 

than the unloaded web. 

The midspan deflection at a load value of 20 kips was 0.24 in. 

under the loaded web, 0.15 in. under the unloaded web, and 0.19 in. at 

location midway between the webs. 

As.shown in these curves (Fig. 3.23), the deviation from 

linearity is clearly observed at a load value of approximately 20 kips 

for the loaded web and 28 kips for the unloaded web. The deflection 

values calculated using the simple beam theory were the lowest deflection 

values. At the midspan section for a load value of 20 kips, the 

calculated deflection value obtained from the simple beam theory was 

approximately 0.05 in. which is about 25 per cent of the measured 
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deflection value of the bridge centreline. However, the use of 

Branson's equation in this analysis increased the calculated deflection 

value to about 0.1 in. These deflection values are approximately 60 

and 40 per cent respectively compared with the measured deflection 

values under the unloaded and loaded webs respectively. 

As shown in Figure 3.23, up to a load value of 16 kips for 

the unsymmetrical loading case, the measured deflection values of the 

bridge centreline were close to those for the symmetrical loading test. 

Therefore it can be concluded that at the early stages of loadings below 

approximately 0.2 of the ultimate load, the torsional and shear 

deformations have a negligible effect on the deflection and the 

overall behaviour of the bridge. However, these deformations have a 

significant influence in the bridge response beyond this load level, 

mainly due to the formation of inclined cracks around the box section 

and the propagation of these cracks with an increase of load. 

Lateral displacement of the top slab at different locations 

along the span are shown in Figure 3.24 for load values of 9.7, 19.4, 

29.0, 38.7 arid 55.0 kips. The maximum lateral displacement occurred 

at the midspan section for all load levels. At a load value of 

55 kips, the measured lateral displacement at the midspan section was 

0.0425 in. 

Figure 3.25 shows the longitudinal displacement of the 

cantilever tips through the bridge span at different load values of 

9.7, 19.4, 29.0, 38.7 and 55.0 kips. As can be noted from Figure 3.25, 
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the maximum measured longitudinal displacement occurred approximately 

at the quarter span section of the bridge. The.se deformation 

patterns can be attributed to torsional and distortional deformations 

in the box section through the bridge span due to the applied unsymmetrical 

loads. The'measured longitudinal displacement of the cantilever tips 
' 

at the quarter span section was 0.03 in. at a load value of 55 kips 

which is approximately 4 and 6 per cent of the measured vertical 

deflection at the midspan section for the loaded and the unloaded webs, 

respectively. 

The longitudinal displacements of both·the left and the right 

webs for the applied eccentric load through half the bridge span are 

shown in Figure 3.25. It can be noted that the loaded web moves 

outwards at the midspan section, while the unloaded web moves inwards. 

It must be.observed that the.bridge deflection profiles shown in 

Figures 3.24 and 3.25 confirm that the end regions of the bridge were 

fixed as stipulated in the design of the experiment. 
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3.4.2 Angle of Twist 

The angle of twist "6" of the midspan section, relative to 

the fixed end section, ignoring the warping restraint, can be calculated 

from the following formula [9] 

e = 
M.rl 

J G eq 
(3.6) 

Figure 3.26 shows the load-measured angle of twist relationship along 

with the curves obtained using the .above beam formula and the diagonal 

compression field theory. This theory has been developed for the 

analysis of concrete sections under pure torsion. The longitudinal 

and transverse reinforcements are considered to act as ties or tensile 

members, while the concrete between the cracks is assumed to behave 

as compression struts. The equations from the latter theory used in 

the computer program are detailed in Appendix B. Detailed derivation 

of these equations can be found in Reference [93]. 

As shown in,Figure 3.26, the load versus measured angle of 

twist relationship is linear up to a load value of 16 kips and approxi-

mately the same as the curve obtained using the diagonal compression 

field theory. Beyond this limit, due to the formation of cracks, 

the torsional stiffness of the box section, as noted from the slope of 

the measured load-angle of twist, decreased to a value of approximately 

one-third of the initial value. Beyond a load value of 30 kips, the 
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torsional stiffness of the bridge decreased to about 20 per cent of 

its initial value, and it remained approximately constant up to the 

ultimate load level. This observation shows the serious effect of 

the formation and propagation of cracks within the box section in 

decreasing its torsional stiffness. 

The beam formula yields the stiffest load-twist relationship, 

and as shown, a serious deviation between the measured and the calculated 

values occurs at a load value of 10 kips. At a load value of 30 kips, 

the measured angle of twist value was 90 x 10-4 radian, while the beam 

formula indicated angle of twist of 20 x 10-4 • It must be noted that 

the beam formula is valid only for homogeneous and linearly elastic 

elements and can be used only for the analysis of the box section before 

cracking. There is no justification for the use of this equation for 

load stages beyond cracking because of the large discrepancy with the 

experimental values. 

The diagonal compression field theory can be used to analyse 

the concrete element of any cross-sectional shape in ptire torsion. As 

mentioned before, the measured and the calculated values from this method 

were approximately the same up to a load value of 16 kips. Beyond this 

load value and up to a load value of 40 kips, the measured angie of twist 

was larger than the calculated value. At a load value of 25 kips, the 

measured angle of twist was approximately 40 x 10-4 radian, and the 

calculated value was 35 x 10-4 radian which is reasonably close. At 

another load value of 35 kips, the measured angle of twist was 90 x 10-4 

-4 
radian, while the calculated value was 70 x 10 radian. Thus the 
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experimental value starts showing departure from the calculated values. 

Beyond a load value of 40 kips, the calculated angle of twists increased 

more rapidly (Fig. 3.26) on account of yielding of the reinforcing steel 

in the cross-section. The distribution of the angle of twists through 

the bridge span for different load levels is shown in Figure 3.27. 

It must be noted that, as mentioned earlier, the compression 

field theory was derived .for the case of pure torsion only and does not 

account for any interaction with shear and possible stiffening of the 

section on account of bending. This may have caused the deviation 

between the theoretical and the experimental curves. 

Details of the compression field theory and the computer 

program used in this analysis (input data, output data, and listing of 

the program) are presented briefly in Appendix B. The extension of 

compression field theory to include the influence of bending and shear 

are also presented in Appendix B. 

3.4.3 Longitudinal Steel and Concrete Stresses 

3.4.3.1 Top Slab 

The longitudinal steel stresses in the top slab reinforcement 

as obtained from the measured steel strain and the values calculated 

using the simple beam theory across the bridge width at different 

locations along the bridge span are shown in Figure 3.28. As shown, 

the steel stresses across the width of the top slab were not uniform, 

with the maximum values occurring over the loaded web. These stresses 
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decreased towards the cantilever ends. At the midspan section, for 

a load value of 40 kips, the longitudinal steel stresses over the 

loaded web was approximately -35 ksi, while the minimum value at the 

cantilever end was -12 ksi. At the support section, for the same 

load level, the longitudinal steel stress over the loaded web was 

approximately 40 ksi, while that at the cantilever end was 20 ksi. 

Figures 3.29 and 3.30 show the envelope of the longitudinal steel 

stresses through half the bridge span at load values of 19.4 and 

55.0 kips. As can be seen, the maximum steel stress values at these 

load levels were 24 ksi and 52 ksi, respectively. 

For years the American Association of State Highway and 

Transportation Officials (AASHTO) [66] and the California State Depart

ment of Highways [94] have used the simple beam theory as a design tool 

for the box section structures. In the present study, the longitudinal 

steel stresses calculated from the simple beam theory for both the 

uncracked and the cracked section analyses were lower than the measured 

stresses. These differences are due to the effect of warping restraint 

in increasing these stresses (Fig. 3.28). The longitudinal torsional 

and the distorsional warping stresses in the. longitudinal steel and the 

concrete in the loaded web at both the midspan and support sections 

were calculated using the following methods and their combinations for 

load levels of 20 and 40 kips, respectively: 

1. Simple beam theory based on uncracked section analysis. 

2. Simple beam theory based on cracked section analysis. 
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3. Simple beam theory + longitudinal torsional stresses from 

the Kollbrunner and Hajdin method. 

4. Simple beam theory + longitudinal distorsional stresses 

from the beam-on-elastic-foundation method. 

5. Simple beam theory (uncracked section) + longitudinal 

torsional stresses from the Kollbrunner and Hajdin method 

+ longitudinal distorsional stresses from the beam-on-

elastic~foundation method. 

6. Simple beam theory (cracked section) + longitudinal torsional 

stresses from the Kollbrunner and Hajdin method + longitudinal 

distorsional stresses. from the beam~on-elastic-foundation 

method. 

The calculated values of the concrete and steel stresses are shown in 

Table 3.1. The experimental longitudinal steel stresses of the top 

slab were higher than the values calculated using the simple beam theory 

for both uncracked and cracked sections. However, the addition of 

the longitudinal torsional and distorsional warping stresses from the 

Kollbrunner and Hajdin method and the beam-on-elastic-foundation method 

to the simple beam theory (cracked section analysis) caused the 

calculated stresses to increase by 30 per cent (Table 3.1). The 
\ . 

differences between the experimental and the calculated longitudinal 

stresses (including the torsional and distortional longitudinal warping 

stresses) increased with an increase in the applied load. 
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Table 3.1 

Unsymrnetrical Load Test 

Longitudinal Steel and Concrete Stresses for Load at Midspan 
of 20 and 40 kips 

(JI Calculated stress values - ksi a s:: 
0 ..... 
"" nj 

...... 
..-.. (1)14-l 

"" 
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"" 0 ;::! +I.-.. "-" 
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As shown in Table 3.1, these differences were approximately 40 per 

cent at a load value of 20 kips, and reached a value of approximately 

60 per cent at a load value of 40 kips. It should be mentioned that 

at a load of 10 kips, this difference was less than 20 per cent. 

Since these methods were developed for elastic homogeneous box sections, 

it is not surprising to note a large discrepancy between the experi

mental and the calculated stresses, especially when the section cracks. 

The distributions of longitudinal stress in the top slab 

reinforcement at different bridge sections for different load levels 

are detailed in Appendix c. 

The longitudinal concrete stresses in the top slab in the 

midspan reqion behaved in a manner similar to those of the top slab 

reinforcement at the same location. The non-uniform variation of 

longitudinal concrete stresses with load in the top slab at different 

bridge sections is shown in Figure 3.31. At a load value of 40 kips, 

the maximum longitudinal concrete stress over the loaded web at the 

midspan section was approximately -1000 psi while the minimum stress 

at the cantilever tips was approximately -460 psi. The envelopes 

of the longitudinal concrete stresses in the top slab through half of 

the bridge span at load values of 19.4 and 55.0 kips respectively are 

shown in Figures 3.32 and 3.33. Again, as expected, the simple beam 

theory overestimates the resulting longitudinal concrete stresses within 

the box section. Table 3.1 shows a comparison between the experimental 

longitudinal concrete stresses and those obtained from the simple beam 
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theory for both uncracked and cracked sections. As shown, the 

simple beam theory based on the cracked section analysis gave a 

concrete stress value of •2500 psi over the loaded web at the midspan 

section, while the experimental stress value was approximately -1000 psi. 

The incorporation of the longitudinal torsional and distorsional warping 

stresses in these analyses has increased the predicted values from the 

simple beam theory for both uncracked and cracked sections by approxi-

mately 15 to 30 per cent. The addition of the torsional and die-

torsional warping stresses in the slab steel to the stress values cal

culated from the simple beam theory using a cracked section, showed 

convergence towards the measured values at both the midspan and support 

sections (Table 3.1). The calculated longitudinal concrete stresses 

do not show the same convergence to the measured values as the steel 

stresses. The longitudinal concrete stresses at different bridge 

sections for different load values are detailed in Appendix c. 

3.4.3.2 Lower Slab 

Variation of the longitudinal stresses in the lower slab 

reinforcement at different locations through the bridge span is shown 

in Figure 3.34. Again, the distribution of the longitudinal stresses 

in the lower slab reinforcement was not uniform across the lower slab 

width. At the midspan section, for a load value of 40 kips, the 

maximum steel stress occurred under the loaded web and was approximately 

60 ksi, while the minimum stress occurred beneath the unloaded web and 
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was approximately 32 ksi. At the support section, for the same load 

level, the steel stresses beneath the loaded and unloaded webs were 

approximately -21 ksi and -14 ksi, respectively. Here the negative 

sign indicates that these stresses are compressive. 

The envelopes of the longitudinal steel stresses in the lower 

slab through half the bridge span at load values of 19.4 and 55.0 kips 

are shown in Figures 3.35 and 3.36 respectively. The longitudinal 

steel stresses at different bridge sections for different load values 

are detailed in Appendix C. 

A comparison between the measured and the calculated steel 

stresses in the lower slab at both the midspan and support sections 

for load values of 20 and 40 kips are shown in Table 3.1. As shown 

in this table, the measured longitudinal steel stresses in the lower 

slab at the midspan section were higher than the calculated values, even 

after accounting for the contribution of the torsional and distorsional 

warping.stresses. However, at the support section, the measured 

stresses were higher than those calculated using the uncracked section 

analysis and were lower than those based on the cracked section analysis. 

This difference is due to the warping of the section. 

The longitudinal concrete stresses in the lower slab behaved 

in a manner similar to the longitudinal stresses in the lower slab 

reinforcement at the same location. As shown in Table 3.1, the measured 

longitudinal concrete stresses were higher than those predicted from the 

simple beam theory based on an uncracked section, and lower than those 

based on a cracked section. However, the inclusion of the torsional 
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and distorsional warping stresses in t.he calculation (colUmn (S))gave. 

better agreement with the measured values. Again, the differences 

are due to the combined effect of the longitudinal flexural and warping 

stresses in this region,in addition to the redistribution of forces 

within the box section resulting from the cracking of concrete. 

3.4.3.3 Cracks in the Top Slab 

Flexural cracks first formed in the top slab near the support 

at a load value of 22 kips. These cracks were perpendicular to the 

longitudinal axis of the bridge. A few cracks were formed through 

the thickness of the cantilever slab on the loaded web side. As the 

load was increased, these cracks extended horizontally in the canti

lever slab until they intersected the loaded web before propagauing 

into the lower slab. As expected, these cracks were concentrated ~n 

the loaded web more than those in the unloaded web. 

shows the crack pattern in the top slab. 

Figure 3.37 

At a load value of 48 kips, an inclined crack formed in the. 

top slab over both webs near the quarter span region of the bridge. 

With the increase in the applied load, these cracks extended into the 

webs and the top slab until they intersected the longitudinal cracks 

formed over the unloaded web due to the transverse tensile stresses in 

this region. In the vicinity of the applied load at the midspan 

section, a curved longitudinal crack formed as shown in Figure 3.37. 
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At a load value of 58 kips, a local punching shear failure 

occurred beneath the applied load; the depth of the punched region 

was about 3/16 in. 

Figure 3.38 shows the average variation of the crack width 

with load in the top slab at both support and midspan sections. 

As shown in Figure 3.39, the cracks in the cantilever slabs 

were perpendicular to the longitudinal axis of the bridge; there were 

no inclined cracks in this region. This shows that the side canti-

levers in a box section do not contribute to its torsional behaviour. 

3.4.3.4 Cracks in the Lower Slab 

At a load value of 10 kips, flexural cracks first formed in 

the lower slab at the midspan section under the applied load. The 

number of cracks in the lower slab increased as the applied load was 

increased. These cracks were concentrated beneath the loaded web, 

perpendicular to the longitudinal axis of the bridge, and confined 

within a distance of approximately 4 ft. in the midspan region. In 

the quarter span region, diagonal cracks formed, inclined at approxi

mately 40° to 45° to the horizontal axis of the bridge. 

At a load value of 48 kips, a set of transverse cracks formed 

in the lower slab at the midspan section and were perpendicular to the 

longitudinal cracks in this region. These cracks were concentrated 

beneath the loaded web and extended over the middle third of the bridge 

span. These cracks decreased in number, length and width towards the 
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unloaded web and towards the support regions. . The inclined cracks 

in the lower slab were the horizontal extension of the shear cracks 

from both the loaded and the unloaded webs. Figure 3.40 shows the 

load-crack width variation in the lower slab beneath the loaded and the 

unloaded webs in the vicinity of the midspan section. 

3.4.4 Transverse Steel and Concrete Stresses 

3. 4. 4.1 Transverse Stresses in 'l'op and Bottom Slab Reinforcement 

For the symmetrical loading case, the transverse reinforcement 

was subjected to transverse stresses which were approximately 30 per cent 

of the longitudinal steel stresses at the same location. In the 

unsymmetrical loading case, the tra.&sverse reinforcement played a signi-

ficant part in resisting the applied eccentric loads. These transverse 

stresses were approximately of the same order as the longitudinal stresses 

at the same location. Figure 3.41 shows the e~erimental load-transverse 

stresses for the top slab reinforcement over the loaded and unloaded 

webs at different iocations through the bridge span. 

A study of the experimental data shows that the tensile stresses 

in the top slab transverse reinforcement were concentrated over the un

loaded web in the midspan region of the bridge, while transverse com

pre.ssive stresses existed over the loaded web at the same section. 

The reason for the change in the sign of the transverse stresses between 

the loaded ru1d the unloaded webs is that the concentrated load causes a 
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sagging transverse bending at the top of the loaded web and hogging 

transverse bending at the top of the \Ulloaded web. Consequently 

the stresses due to the concentrated load oppose the stresses due to 

dead load at the loaded web and are additive to these stresses at the 

unloaded web resulting in this increase. 

Figures 3.42 and 3.43 show the envelope of the steel stresses 

of the transverse reinforcement in the top slab through half of the 

bridge span at load values of 19.4 and 55 kips, respectively. The 

transverse steel stresses in the loaded and \Ulloaded webs at the midsp~ 

section were -11 ksi and 9 ksi respectively at 19.4 kips, and -47 ksi 

and 46 ksi respectively at 55 kips. These stresses were approximately 

of the same order as the longitudinal stresses in the top slab rein-

forcement at the same location. These observations show that for the 

eccentric load test the transverse stresses in the top slab are higher 

than those predicted from the Poisson effect. This is due to the 

combined effect of shear and torsional stresses in the transverse 

direction,along with the contribution of the longitudinal stresses in 

thatdirection through the Poisson effect. The transverse reinforce-

ment over the unloaded and the loaded webs in the top slab at the mid

span section yielded at load values of 43 and 46 kips, respectively. 

For homogeneous, elastic bodies the following well known 

equation [9] was developed to calculate the transverse stresses in thin

walled open or closed sections: 
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( 3. 7) 

shear stress at the centreline of the flange 

torsional moment at the cross-section 

area enclosed by centre~ine of wall of closed 

portion of the cross-section 

flange thickness. 

The experimental results were much higher than the values 

predicted from this equation. It is therefore obvious that equations 

developed for linear elastic systems cannot be used for analysis of a 

box section structure and there is a need for a suitable analysis 

method to calculate these transverse stresses in such types of structures, 

which will account for nonlinearities of behaviour resulting from 

inelasticity of concrete, yielding of steel and cracking. 

The transverse stresses in the lower slab reinforcement at 

the midspan section were also higher than the values predicted from 

equation 3.7 (Fig. 3.44). The measured transverse steel stresses for 

a load value of 20 kips were 12 ksi and 9 ksi under the unloaded and 

loaded webs respectively, while the calculated value was approximately 

2 ksi. As shown in Figure 3.44, the transverse stress under the 

unloaded web was higher than that under the loaded web. This is due 

to the combined influence of the Poisson effect and the transverse 

bending stresses at this section. As.the applied load was increased, 
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the stresses in the transfer reinforcement under the unloaded web 

increased significantly until it yielded at a load value of 45 kips. 

The transverse steel stresses through half of the bridge 

span at load values of 19.4 and 55 kips are shown in Figures 3.45 and 

3.46. The transverse stress distribution in the top and bottom. slab 

reinforcements at different bridge sections for different load values 

is shown in Appendix c. 

3.4.4.2 Transverse Concrete Stresses in Top and Bottom Slabs 

The experimental transverse concrete stresses in the top 

slab over the loaded and the unloaded webs at different locations through 

the bridge span are shown in Figure 3.47. 

Significant transverse tensile and compressive concrete stresses 

were observed over the unloaded and the loaded webs respectively. over 

the unloaded web, these transverse stresses are due to the Poisson effect 

from the longitudinal direction,in addition to the stresses resulting 

from the load distribution across the width of the box section. Over 

the loaded web,these compressive transverse stresses result from the 

transverse distribution of loads across the width of the box section, 

as well as the stress concentration in the vicinity of the applied load. 

At a load value of 38.8 kips, the tensile stresses in the concrete over 

the unloaded web at the midspan section exceeded the tensile strength 

of concrete (f~ = 450 psi),causing a longitudinal crack in the top slab 

at the unloaded web parallel to the bridge longitudinal axis. These 
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.cracks were concentrated over the unloaded web and increased rapidly 

in length and number as the applied load was increased. The 

distribution of the transverse concrete stresses in the top slab· 

through half of the bridge span is shown in Figures 3.48 and 3.49 for 

load values of 19.4 and 55 kips. The maximum transverse concrete 

stresses over the loaded and the unloaded webs at the midspan section 

were -150 psi and 150 psi respectively for a load value of 19.4 kips. 

For a load value of 55 kips, the transverse concrete stresses were 

-450 psi over the loaded web while the unloaded web showed a significant 

crack parallel to the longitudinal axis of the bridge. These trans-

verse stresses were approximately 30 and 40 per cent from the longitudinal 

concrete stresses at the same location for the 19.4 and 55 kips load 

values respectively. The distribution of the transverse concrete 

stresses across the width of the top slab at different locations through 

the bridge span for different load values is shown in Appendix c. 

The transverse concrete stress values calculated from the Knittel method, 

the beam-on-elastic foundation method, and the Kollbrunner and Basler 

method along with the transverse stresses calculated from the measured 

strain values are shown in Table 3.2. It can be seen that the experi-

mental stress values were approximately 25 to 40 per cent higher than 

the calculated values at the working load level (20 kips). However, 

near the ultimate load level, the experimental transverse stresses 

were approximately 50 to 60 per cent higher than the calculated values. 

It must be noted that these methods are valid only for homogeneous and 

linearly elastic bodies and can be used only for analysis of the box 
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Table 3.2 

Unsymmetrical Load Test 

Transverse Concrete Stresses in Top Slab at Midspan Section 

....... Stress values fJl Calculated stresses (psi) 04 calculated •.-I 

..!4 from measured Kollbrunner & Knittel Beam-on-elastic -~ 

'0 strains ·(psi) Basler method method foundation method 
Id Loaded Unloaded Loaded Unloaded Loaded Unloaded Loaded Unloaded .9 web web web web web web web web 

20 -125 140 -lOO lOO -92 92 -118 118 

40 -400 - -200 200 -184 184 -236 236 
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section within the working load level. This is the reason for the 

discrepancy between the calculated and the experimental transverse 

stresses near the ultimate load levels. Therefore, there is need for 

a suitable analysis method to account for nonlinearities of behaviour 

at higher load levels. 

3.4.5. Stresses in Web Reinforcement 

3.4.5.1 Stirrup Steel Stresses 

For a beam loaded with a pure torsional moment, diagonal tensile 

stresses result on all four beam faces; however, they are in opposing 

direction on the parallel faces. For a beam subjected to a transverse 

shear force V, diagonal tensile stresses result on both vertical faces 

and these are in the same direction. Consequently, for a beam loaded 

in combined torsion and shear, the diagonal tensile stresses are 

additive on one of the vertical faces and subtractive on the other. 

On the beam horizontal faces, the diagonal tensile stress exists due to 

torsion alone. 

Upon removal of the loads for the symmetrical loading case, 

the residual stresses in the vertical stirrups were very small and 

therefore they have been neglected. As observed by several investigators 

.in tests for shear strength of reinforced concrete beams, the stirrup 

stresses increased significantly only after the formation of cracks. 

Figure 3.50 shows the experimental load-stirrup stresses for both the 

loaded and unloaded webs at different bridge sections. 

As explained before in Section 3.3.4, the theoretical stirrup 

steel stresses in one web can be calculated by the following equation: 
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(3. 8) 

where v is the algebraic sum of the shear stresses due to the shearing 

force V and the torsional moment MT. After reducing the contribution 

of concrete cross-section in resisting the shear stress as follows: 

V = V + V - V 
V T c 

Therefore for the loaded web this equation gives: 

V = 
V MT + __ ;;;;.__ 

2 b d 2 A b - VC 
w enc w 

and for the unloaded web 

V = V 
2 b d 

w 
--=----V 
2 A bw c enc 

(3. 9) 

(3.10) 

As shown in Figure 3.50, up to a load value of approximately 20 kips 

the stirrups were not significantly stressed. 

At a load value of 20 kips, at the midspan section, the 

stirrup stresses of both loaded and unloaded webs were approximately 

S ksi and 2 ksi respectively. The calculated stirrup stresses for 

this load level were 12 ksi and 7.5 ksi respectively. At a load 
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value of approximately 26 kips, the cracks formed at the midspan of 

the loaded web. Beyond this load level,the stirrups of the loaded 

web started to show significant stresses, especially in the vicinity of 

the point of application of the load. These stirrups yielded at a 

load value of 52 kips. The stress in the stirrups of the unloaded 

web at the midspan section for the same load level was approximately 

18 ksi. 

As mentioned earlier, the stirrup stresses for both the 

loaded and the unloaded webs through the bridge span were lower than 

those calculated from equations 3.8 and 3.9 up to a load value of 

approximately 24 kips. Beyond this load leve~ and after the 

formation of web cracks, this trend changed and the experimental stress 

values for the loaded web stirrups were higher than the calculated 

values. 

However, at a load value of 45 kips, the stirrup stresses of 

the loaded and the unloaded webs were 33 ksi and 12.5 ksi respectively, 

and the corresponding calculated stresses were approximately 25 ksi 

and 15 ksi respectively. As shown in Figure 3.50, the stresses in 

the unloaded web stirrups at higher load levels were approximately 

20 per cent lower than the calculated values. 

The difference in the stirrup stresse~ between the loaded 

and the unloaded webs is due to the earlier formation of cracks in the 

loaded web. At a load value of 38.8 kips, the stirrup stresses in 

the loaded web were approximately three times larger than those in the 
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unloaded web. However, at a load value of 50 kips, the stirrup 

stresses of the loaded web were approximately double those of the 

unloaded web, sharing commencement of inelastic behaviour in the 

unloaded web. However, it is not possible to make a direct comparison 

between the experimental· and the calculated values of stresses in the 

stirrups because there is no such analysis, which accounts for the combined 

effect of bending, shear and torsion after. the formation of cracks, at 

present available. The stirrup steel stress envelopes for the loaded and the 

unloaded webs through half of the bridge span for load values of 19.4 

and 55.0 kips are shown in Figures 3.51 and 3.52. 

The unsymmetrical load test of the bridge was stopped at a load 

value of 55. kips due to a shear punching failure under the hydraulic 

jack over the loaded web. The resulting damage was repaired and the 

bridge was prepared again for the final loading test. 

final load test are presented in Section 3.5. 

3.4.5.2 Web Cracks 

Results of the 

Cracks first appeared in the loaded web at a. load value of 

20 kips after formation of flexural cracks at the midspan section of 

the lower slab. With further increase in load, these cracks increased 

in number and extended vertically to the point of application of the 

applied load. At a load value of 38 kips, inclined cracks formed in 

the quarter span region of the loaded web and in the loaded web at 

the support region. These cracks were inclined at approximately 40° 

to 45° with the longitudinal axis. Near the midspan region, the shear 
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cracks intersected the flexural cracks; and secondary cracks formed as 

the applied load was increased. Near the support region, the flexural 

cracks were observed at a load value of 22 kips, followed by shear and 

torsion cracks near the mid depth of the loaded web. These cracks 

extended toward the top and bottom slabs as the applied load was 

increased. The crack spacing was approximately of 4 inches with an 

average crack width of 0.5 mm and 0.11 mm for the loaded and unloaded 

webs respectively, at a load value of 55 kips. 

The cracks appeared in the unloaded web at a load value of 

28 kips. These cracks started as flexural cracks from ~he lower 

slab and as the load was increased the cracks extended vertically 

toward the upper slab. 

In the quarter span region of the bridge, vertical cracks 

were observed in the unloaded web at a load value of 42 kips. No 

inclined cracks due to the combined effect 6f shear and torsion were 

observed in this region as these were in opposite directions on this 

web. The loaded web showed more diagonal cracks as the shear and 

torsional effects were additive in that web. 

The crack patterns in both the loaded and unloaded webs of 

the bridge are shown in Figures 3.53 and 3.54. Figure 3.55 shows 

the average variation of the crack width with load in the loaded and 

unloaded webs at the support and midspan sections. 
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FIG. 3.53 CRACK PATTERN FOR THE LOADED WEB 
(UNSYMMETRICAL LOADING CASE) 

• 

FIG. 3.54 CRACK PATTERN FOR THE UNLOADED WEB 
(UNSYMMETRICAL LOADING CASE) 
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3.5 Ultimate Loading Case 

After repairing the partial shear punching failure which 

occurred at the end of the previous unsymmetrical loading case, the 

bridge was loaded in an identical manner to the last test, in loading 

increments of 10 kips each unti~ failure. The instrumentation used 

was similar to that used for the last test. 

3.5.1 Deflections 

The experimental load-deflection curves of the loaded and 

unloaded webs are shown in Figure 3.56. The deflection due to the 

dead load (0.144 in.) should be added to these values to obtain the 

total deflection at any load level. The residual deflectionresulting 

from the previous loading test is also shown in Figure 3.56. 

The nonlinear response for both the loaded and the unloaded 

webs through the entire loading test is shown in Figure 3.56. This 

nonlinearity in the behaviour is due to the cracks which had already 

formed in the bridge from the previous loading test. At a load 

value of 15 kips, the cracks in the loaded web opened and a significant 

decrease was observed in the stiffness.of the loaded web. At a load 

value of 23 kips, the unloaded web also showed a decrease in stiffness 

due to the opening of the cracks. The measured deflection values of 

the loaded and the unloaded webs at a load value of 20 kips were 

approximately 0.5 in. and 0.3 in., respectively. These values are 

approximately 35 per cent larger than those obtained in the previous 

load test at a similar load level. 
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The initial stiffnesses of both the loaded and the unloaded 

webs were approximately 20 per cent and 50 per cent,respectively
1
less 

than those observed in the previous loading test. 

The lateral displacements of the cantilever tips through the 

bridge span are shown in Figure 3.57 for different load values of 

19.6, 39.2, 58.8 and 68.6 kips. The maximum lateral displacements 

occurred at the midspan section and were 0.056 in. and 0.062 in. for 

load values of 58.8 and 68.6 kips, respectively. These displacement 

values were approximately 25 per cent higher than those obtained at 

the same load level from the previous loading test. 

Figure 3.58 shows the longitudinal displacement of the canti-

lever slab tips through the bridge span at load values of 19.2, 39.2, 

58.8 and 68.6 kips. The location of the maximum longitudinal dis-

placement was coincident with that of the previous loading test. 

The measured longitudinal displacements of the cantilever tips at the 

quarter span section were 0.042 in. and 0.051 in. for load values of 

58.8 and 68.6 kips, respectively. These longitudinal displacement 

values were approximately 30 per cent higher than those obtained from 

the previous .loading test. This is due to the opening of the cracks 

which had previously formed in the bridge. 

3.5.2 Angle of Twist 

As explained in Section 3.2, the angle of twist of the·box 
,;+ 

section relative to the fixed end, ignoring the warping restraint, can 

be calculated using the formula: 
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e ( 3. 6) 

The load versus angle-of-twist relationship at the midspan 

secti9n of the bridge is shown in Figure 3.59. It can be noted 

that the measured load-angle of twist relationship was linear up to a 

load value of 15 kips after which it started to deviate from lin~arity -

this is due to the opening of the cracks formed in the previous loading 

test which decreased the torsional stiffnesses at the zero and ultimate 

load levels to approximatley 20 per cent and 25 per cent, respectively, 

lower than those observed in the previous loading test. 

-4 angle of twist at load value of 20 kips was 85 x.lO • 

The measured 

This value 

was three times larger than that obtained at the same load level for 

the previous loading test. At a load value of 50 kips, the measured 

-4 
angle of twist was 200 x 10 radian which was 25 per cent larger than 

that obtained in the previous loading test. 

At a load value of 60 kips, the torsional stiffness as 

observed from the slope of the load-angle of twist relationship was 

approximately 500 kips in2; this value remained constant beyond this 

load level until the ultimate load stage. 

60 kips load level was 300 x 10-4 radian. 

The angle of twist at the 

3.5.3 Longitudinal Steel and Concrete Stresses 

. 3.5.3.1 'fOR Slab 

The distribution of the stresses in the top slab reinforcement 

of the present loading test was similar to that in the previous loading 
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test. Figure 3.60 shows the load-longitudinal steel stresses of 

the top slab reinforcement at different locations through the span 

of the bridge. The non-uniformity of the steel stresses across the 

width of the top slab can be noted from this figure. At the support 

section, for a load value of 65 kips, the maximum longitudinal steel 

stress over the loaded web was approximately 52 ksi, while that over 

the unloaded web was approximately 38 ksi. The minimum stress in 

this case occurred at the cantilever tips and was approximately 31.5 ksi. 

At the midspan section, for the 65 kips load level, the longitudinal 

steel reinforcement over the loaded web yielded, while the longitudinal. 

steel stresses over the unloaded web were approximately -22.5 ksi. The 

minimum stress in this case occurred at the cantilever tips with a value 

of approximately -15 ksi. It should be noted that the ~esulting 

stresses i~ the present load test were approximately 50 per cent higher 

than those obtained from the previous load .test. Again, this is due 

to the cracks which had been formed previously and caused a redistri

bution of stresses within the structure. 

Figure 3'.61 shows the load-longitudinal concrete stresses on 

the top slab at different locations through the span of the bridge. 

These stresses were non-uniform across the width of the top slab. It 

shows also that the longitudinal stresses over the loaded web are much 

higher than those over the unloaded web. At a load value of 65 kips, 

the maximum longitudinal concrete stresses over the loaded web at the 

midspan sect;ion were approximately -2400 psi while those.over the 

unloaded web were approximately -680 psi. However, the longitudinal 
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concrete stresses in this load test were approximately 10 per cent 

larger than those obtained from the previous load test. This increase 

is due to the redistribution of stresses within the box section and 

through the bridge span due to the further propagation of previously 

formed cracks and the new cracks which were formed in the present load 

test. 

3.5.3.2 Lower Slab 

The distribution of the longitudinal stresses in the lower 

slab reinforcement was not uniform across the slab width (Figure 3.62). 

At a load value of 60 kips, the maximum stress under the loaded web 

at the midspan section was approximately 38 ksi while that under the 

unloaded web was approximately 30 ksi. At the support section these 

stresses were -35 ksi and -19 ksi for the loaded and the unloaded webs 

respectively. At the same load level, the calculated longitudinal 

stresses from the simple beam theory based on a cracked section analysis 

were 40 per cent and 25 per cent larger than the values calculated from 

the measured strains at the support and· midspan sections respectively. 

The ability of the box section to distribute the loads in the transverse 

direction ih addition to the combined effect of both the flexural and 

the warping stresses are the cause of these differences. 

Figure 3.63 shows the load-longitudinal concrete stresses in 

the lower slab at different locations throughout the span of the bridge. 

As shown, the longitudinal stresses at the loaded web are higher than 

those for the unloaded web. At a load of 60 kips, the longitudinal 
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stresses of the loaded web were 55 per cent higher than those for the 

unloaded web. Also, the non-uniformity of these stresses across 

the slab width was more pronounced. 

3.5.4 Transverse Stresses in Top and Bottom Slab Reinforcement 

Figure 3.64 shows the variation of transvers~ stresses with 

load for the top slab reinforcement at different locations through the 

span of the bridge. As shown, the transverse tensile stresses were 

concentrated over the unloaded web with maximum values at the midspan 

section in the vicinity of the applied load. At a load value of 

40 kips, the transverse tensile steel stresses at the midspan section over 

the unloaded web were approximately 36 ksi, while the transverse corn-

pressive steel stresses over the loaded web were 18 ksi. These 

transverse tensile stresses were approximately 10 per cent higher than 

those obtained in the previous load test, while the transverse com

pressive stresses were approximately 50 per cent less than those obtained 

in the previous test. At a load value of 55 kips, the transverse 

tensile steel stresses over ~e unloaded web were approximately twice 

the transverse compressive steel stresses over the loaded web. The 

transverse steel over the unloaded web at the midspan section yielded 

at a load value of 46 kips. However, the transverse steel stress 

over the loaded web at this load level was -20 ksi,which is approximately 

50 per cent less than that obtained at the same load in the previous 

loading test. The local punching shear failure which occurred beneath 

the applied load over the loaded web in the previous loading test caused 
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a release in the compressive stresses in the vicinity of the applied 

load causing this reduction. 

Figure 3.65 shows the load-transverse concrete stresses in 

the top slab of the bridge at different locations through the bridge 

span. The distribution of these transverse stresses across the width 

of the top slab is similar to those obtained from the steel reinforcement 

of the top slab. 

As shown in Figure 3'.65, the transverse compressive concrete 

stresses over the loaded web we.re approximately 50 per cent less than 

those obtained from the previous load tesL Again, the cracks and the 

punching shear at the midspan section led to a redistribution of the 

stresses in this. region. 

Figure 3.66 shows the variation of transverse stresses with 

load for the lower slab reinforcement. As shown in this figure, the 

transverse stresses at .section "A" under the unloaded web at·a load 

value of 40 kips were 50 per cent higher than those at the loaded web. 

This is due to the combined effect of the longitudinal and the resulting 

transverse stresses,in addition to the torsional and distortional 

transverse warping stresses in this region. The steel bars under the 

unloaded web .at section A yielded at a load value of 66 kips. Unfor-

tunately, the strain gauges at the midspan section had ceased functioning 

at the end of the previous loading test, therefore no comparison can be 

made between the steel stresses of section A with those at the midspan 

section. 
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3.5.5 Stresses in the Web Reinforcement 

The experimental load-stirrup stresses at different locations 

through the span of the bridge for both the loaded and the unloaded 

webs are shown in Figure 3.67. Initially, there were some residual 

stresses from the previous test, with values of 15 ksi and 5 ksi for 

both the loaded and the unloaded webs, respectively. These values· 

form approximately 28 per cent of the maximum stirrup stresses obtained 

. in the previous load test. However, the behaviour of the stirrup 

stresses in the present test was similar to that in the previous load 

test. The loaded web stirrups showed higher stresses than those of 

the unloaded web. At a load value of 40 kips the stirrup stress in 

the loaded.web at the midspan section was 33 ksi, while those in the 

unloaded web had a stress of 12 ksi. The experimental stirrup steel 

stresses in the present load test were 10 per cent and 20 per cent 

higher than those obtained in the previous test for the unloaded and 

loaded webs, respectively. This can be attributed to the residual 

stresses from the previous test. 

As shown in Figure 3.67, beyond a load value of 47 kips, most of the 

stirrups in the ioaded web had yielded. At this load level, the 

stress in the stirrups of the unloaded web at the midspan section was 

only 15 ksi. 

Again, although the shear force was maximum at the support 

section, the maximum stirrup stresses occurred in the vicinity of the 

applied load at the midspan section. 
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Because of the existence of cracks which had formed during 

the previous loading test, the sudden changes in the load-stirrup 

stresses which occurred in the previous test did not occur in the 

present test (see Figure 3.67). 

The cause of failure, however, can be considered to be due 

to the failure of the loaded web beneath the applied load at the mid-

span section at a load of approximately 70 kips. Th,e principal 

compressive stresses in the webs at the midspan section exceeded the 

allowable limits of 5000 psi causing the crushing of the concrete strut 

between the diagonal cracks at this location, followed by yielding and 

buckling of the web reinforcement. 

3.6 Summary of Experimental Observations 

3.6.1 Deflections 

The measured deflection values were generally higher than those 

calculated from the simple beam theory. Also, for the unsymmetrical 

loading test, the loaded web showed higher deflections than the unloaded 

web. Tables 3.3 and 3.4 show the measured flexural and torsional 

rigidities as percentages of the rigidities EI and GJ based on the g g 

gross cross-section, and also as percentages of the experimental initial 

rigidities EI. t and GJ, t at different load levels. 1n 1n 
As shown in these 

tables, the flexural rigidity El of the bridge was less than the rigidity 

based on the gross cross-section mainly due to the cracking of the 
t 

concrete. The flexural and torsional rigidities decreased significantly 
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Table 3.3 

Flexural Rigidities at the Midspan Section 

for Different Load Levels 

Loaded Web Unloaded Web 
El El El EI El 
Elg Elint El er Elg El. t J.n 

0.45 1.0 1.45 0.6 1.0 

0.35 0.9 1.3 0.6 l.O 

0.28 0.7 l.O 0.46 0.9 

0.2 0.5 0.71 0.3 0.6 

0.17 0.45 0.64 0.22 0.57 

Table 3.4 

Torsional Rigidities at the Midspan Section 

for Different Load Levels 

Load GJ GJ -
(kips) GJ GJint g 

0 0.5 1.0 
10 
10 0.4 o.8 

20 0.2 0.4 

35 o:11 0.22 

55 0.11 0.22 

El --El er 

2.32 

2.11 

1.19 

0.83 

0.80 
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and gradually after the occurrence of cracks and with further increase 

in applied load. The load deflection curves of the loaded and the 

unloaded webs were linear up to load values of 15 kips and 22 kips 

respectively, while the load-angle of twist curve was linear up to a 

load value of approximately 12 kips. At the working load level, the 

torsional rigidity decreased to about 0.4 of the initial torsional 

rigidity value; however, the flexural rigidities of the loaded and 

unloaded webs were about 0.7 and 0.9,respectively,of the initial 

flexural rigidity values. 

Due to the unsymmetrical formation of cracks in both webs and · 

flanges, the shear centre of the box section moved away from the axis 

of symmetry of .the section. This forced the bridge to move horizontally 

in the lateral direction. Therefore the reduction in the stiffness 

of the box section should be considered in the calculation of deforma

tions in this type of structure. 

The maximum lateral displacement occurred at the midspan of 

the top side of the loaded web. 

Regarding the longitudinal displacement, the lower side of 

the loaded web showed larger displacements than the top side. This is 

because the neutral axis is situated nearer the upper slab which is also 

stronger and stiffer than the lower slab. The maximum longitudinal 

displacement occurred approximately in the quarter span region of the 

bridge. 
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3.6.2 Longitudinal Stresses 

Por both the symmetrical and the unsymmetrical loading cases, 

the longitudinal stresses in both the upper and the lower slabs were 

not unifor.m across the slab width. The differences in these stresses 

wereabout 30 per cent for the symmetrical loading case and 70 per cent 

for the unsymmetrical loading case. 

Por the symmetrical loading case the shear lag phenomenon caused 

a 30 per cent increase in the stresses at the web-flange junction above 

the stresses in the region between the webs. The measured longitudinal 

stresses at the midspan and support sections were SO per cent and 60 per cent 

higher than the values calculated from the simple beam theory for the 

symmetrical loading case, respectively, and were approximately twice the 

calculated values for the unsymmetrical loading case. This is due to 

the effect of warping restraint in increasing these longitudinal stresses. 

However, the calculated longitudinal stresses increased by approximately 

30 per cent above those obtained from the simple beam theory for both the 

uncracked and the cracked section analyses by consideration of the 

torsional and distortional longitudinal warping stresses using the 

Kollbrunner and Hajdin method and the method of the beam-on-elastic 

foundation. 

In the unsymmetrical loading cases, the longitudinal stresses 

of the loaded web were approximately twice those of the unloaded web at 

the midspan section, while at the support section this increase was 

approximately 50 per cetn. 

Bending moments at midspan and support sections evaluated integrating 

the measured longitudinal stresses for the symmetrical and the unsymmetrical 

loading cases were within 5 and 10 respectively of the total statical bending 

moment, thus establishing the reliability of the measured values. 
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3.6.3 Transverse Stresses 

Although the transverse stresses were small in the symmetrical 

loading case, it plays a significant part in resisting the applied 

eccentric loads. In the symmetrical loading case,these transverse 

stresses were about 20 per cent to 40 per cent from the longitudinal 

stresses at the same location. In the unsymmetrical loading case, these 

transverse stresses were approximately of the same order as the longi-

tudinal stresses. There were significant transverse tensile stresses over 

the unloaded web, and this caused a longitudinal crack on the top and 

bottom slabs. Therefore special consideration should be given to the 

details of the longitudinal and transverse reinforcements of box girder 

bridges at the web-flange junctions. 

The stirrup stresses increased significantly after the 

formation and propagation of cracks. Before the formation of cracks, 

in the unsymmetrical loading cases,these stresses were 30 per cent· less 

than the calculated values (Section 3.4.5}, taking both the shear force 

and the torsional moment into consideration. However, after the for-

mation of cracks, these stresses were about 35 per cent higher than the 

calculated values. The stirrup stresses in the loaded web showed 

higher values than those in the unloaded web. 

3.6.4 Cracking 

In addition to the flexural cracks from the symmetrical load 

case, shear and torsional cracks formed in the unsymmetrical loading case. 
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The loaded web showed more severe cracks than the unloaded web due to 

the combined effects of shear force, bending moment and torsional 

moment. In the top and bottom slabs, in addition to the flexural 

cracks, the torsional cracks were qbserved in the vicinity of the webs. 

These cracks can be considered to be the horizontal extension of the 

shear cracks from the webs. 

The cracks in the cantilever slabs were mainly flexural cracks 

all through the bridge span. Therefore, the contribution of the 

cantilever slabs in the torsional stiffness of the box girder can be 

neglected. A vertical crack was observed through the thickness of 

the cantilever slabs especially in the quarter span region and at the 

support region. These cracks were due to the torsional and the 

distortional warping stresses. 
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FINITE ELEMENT ANALYSIS 

4.1 Introduction 

The behaviour of reinforced concrete box girder bridges has 

received considerable attention particularly with respect to the 

distribution of internal forces within the linear elastic range. 

Even at these lower load levels the response of the structure is rather 

difficult to predict analytically because of the complications arising 

from shear lag, warping and distortion phenomena. These difficulties 

are compounded at load levels beyond the cracking load as sudden 

localized changes in stiffness cause changes in the deformation and 

stress distributions. With the propagation and widening of these 

cracks with increases in the applied load, these deformations and 

stress distributions get modified further until failure is reached. 

The performance of the structure in these latter stages is of parti

cular importance to designers working within a 1 limit states• framework. 

Of the analytical methods available to the designer, the 

classical approaches of simple bending theory and torsional theory of 

closed sections are generally used to yield a prediction of the stresses 

in concrete box girder bridges 187,94]. Although these methods are 

reliable within the working stress range, their use beyond the cracking 

load is questionable, especially in a research program where the main 
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objective is to achieve a better understanding of the structural 

b~haviour at all load levels. Limit load theories are also under 

a severe handicap in the present context because of the inherent 

difficulty .to include the effects of membrane forces. It would seem 

that the only reliable method wbich is also general enough to deal with 

the comPlexities of the present problem is the Finite Element Method. 

Although the cost of applying such a technique may be prohibitive in 

the design process, the results of the present study based on linear 

and nonlinear finite element analyses should be valuable to the designer 

and researchers. The quasi nonlinear finite element analysis pre-

sented in this chapter provides a good inexpensive tool for studying 

the effect of key variables which influence the response of structure. 

The Finite Elemen.t Method has been used quite extensively in 

the analysis of reinforced concrete structures and the literature is 

too voluminous to be reviewed comprehensively in this chapter. However, 

contributions that relate directly to the present work can be found 

in References [95, 96]. 

4.2 Finite Element Modeling 

In the development of the finite element model of a reinforced 

concrete element, the following factors are of primary concern: 
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(a) the treatment of steel reinforcement 

(b) cracking of the concrete 

(c) shear transfer across cracks 

(d) element refinement. 

4.2.1 steel Reinforcement 

TWO main approaches are at present available to the analyst 

in treating the idealization of reinforcing steel in the concrete. 

Firstly, one-dimensional members possessing only axial stiffness can 

be ~sed to represent each bar. This approach is appropriate in 

treating beams, but for plates and shells the large number of bars will 

lead to an extremely fine element mesh making a solution of the problem 

virtually impossible because of the high computer cost. The second 

approach, which is much more feasible in the present study, is the 

treatment of steel as a membrane located at the level of the bars, with 

orthotropic material properties chosen to match the stiffness in the 

direction of the reinforcement. 

4.2.2 concrete crackin2 

The cracking of any reinforced concrete element can be classified 

as flexural or membrane. The former occurs when extreme fiber stresses 

exceed the modulus of rupture of concrete, and the latter when the 

average stress through the plate thickness exceeds the tensile strength 
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of the concrete. The technique used for introducing the c~acks in 

the finite element model depends on the type of the structure. For 

example, for beams and shear walls, the cracks have been introduced 

by assigning a separate node on each side of the crack. As a crack 

is introduced at a given load level based on the experimental crack 

configuration, its width is zero to start with and the crack width 

increases as the load is increased [ 97 1 • This approach is not 

feasible for the type of structure involved in the present study because 

of the very large number of cracks at higher load 'levels, especially 

near the ultimate load. Therefore in the finite element analysis of 

such structures, it is.easier to deal simultaneously with cracked and 

uncracked E:!lements by modifying the material compliance matrix to 

account for the varying element properties parallel and perpendicular 

to the cracks rather than introducing cracks between discrete elements. 

This technique has provided considerable versatility in studying the 

effects of the coupling terms in. the elasticity matrix on the total 

behaviour of the box girder bridge under investigation~ 

The elasticity matrix [D] cf an isotropic homogeneous, linearly 

elastic material (uncracked element) is given by 

[D] 

VE c 

0 

E c 

0 

0 

0 

G 

{4.1) 

where v is the Poisson's ratio and E is the modulus of elasticity of c 

the concrete given by the equation: 
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( 4. 2) 

where W is the weight of one cubic foot of concrete and f 1 is the 
c 

COll\Pressive strength of concrete. 

In an element, when the principal tensile stress exceeds 

the flexural tensile strength of concrete (7.5/:f'), cracks are intro
c 

duced along these principal planes. once the element cracks, the 

Poisson effect is neglected, and the modulus of elasticity of the 

concrete perpendicular to the direction of the crac~ and the shear 

force transferred across the crack are altered depending on the load 

level, the crack width and spacing, the.concrete cover and the cross-

sectional a.reas of concrete and steel [ 90 , 91 1 • These two factors 

are important in formulating the constitutive relationship to account 

for the material nonlinearity of concrete in any future finite element 

analysis. These two phenomena have been handled differently by 

many researchers as follows. 

4. 2. 2.1 Modulus o.f Elasticity of c·oncrete in the Direction 

Perpendicular to crack '"E " 

For .. simplicity, many researchers have recommended the use of 

a zero value for E [ 72 1, but Berg [ 98 1 has suggested that a non-zero 
p 

value can yield results that are closer to experimental response. 

He proposed the following equation to evaluate E : 
p 

E 
p 

= 0.4 (0.0001)2 
£ Ec ( 4. 3) 
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where E is the concrete strain at the cracking level. However, 

since the mechanism of the force transfer between cracks is depe~ent 

on the steel reinforcement and to some extent on the concrete between 

the cracks and the concrete cover, the value selected for E must 
p 

account for these factors. 

A value for E is recommended based on the properties of the p 

uncracked and the cracked sections and the elastic modulus of concrete 

as follows [ 99 1 

'where 

and 

( 4. 4) 

Ec is the modulus of elasticity of the uncracked concrete, 

Icr is the moment of inertia of a strip of unit width 

after cracking, 

Ig is the moment of inertia of a strip of unit width 

before cracking. 

Both zero and non-zero values for E , calculated using 
p 

Equation (4.4), have been investigated in the present study to determine 

the sensitivity of the finite element analysis results to this factor. 
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4.2.2.2 Shear Transfer Across cracks 

The presence of cracks through the concrete plate causes an 

immediate reduction in the shear stiffness. The fact that the plate 

has any stiffness at all in this mode is due to the ability of the 

concrete to transmit shear force~ across the cracks by means of 

aggregate interlock. This phenomenon has been studied by Houde and 

Mirza [90], Fenwick [91], and by Taylor [92]. Houde and Mirza 

observed that the influence of the maximum aggregate size was negligible 

compared with the effect of the crack width and the concrete strength. 

They observed that the shear transfer across the crack is basically a 

function of .the crack width and continues to diminish as the crack 

widens. They showed the shear modulus of the cracked concrete, 

BG, with the inverse of the crack width C, in Figure 4.1. 

It must be noted that G is the shear modulus of elasticity or the 

modulus of rigidity of the uncracked concrete, and 8 is a reduction 

factor which decreases the effective shear modulus to account for the 

·crack width. The term G in the elasticity matrix is therefore 

replaced by BG to account for the reduced shear transfer across the 

cracks. For simplicity, most of the investigators have neglected 

this factor in finite element analyses of reinforced concrete. 

However, Agrawal [lOO] has arbitrarily used a value of 0.5 for 

the reduction factor a to account for the shear transfer across the 

crack. 
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The implications of the findings of Houde and Mirzaon the 

behaviour of box girder bridges have been considered in the present 

study. Based on their findings, a parametric study has been con-

ducted for difference values of the reduction factor, "13", namely, 

O, 25%, 50% and 75% which correspond to crack widths of 0.0, 0.015 mm, 

0.03 mm and 0.05 mm respectively. Again, it must b~ noted that the 

effects of this factor '13' and that of the modulus of elasticity perpen-

dicular to the crack E , are important in developing a nonlinear finite p 

element analysis of reinforced concrete. 

The modified elasticity matrix [D) of a cracked element in 

its u-v local axis will then be as follows: 

[D]uv = 0 0 ( 4. 5) 

0 0 

0 !3G 

This matrix can be transferred to the global x-y axis by the following 

equation 

[D ] = [ C] T [D ] [C] 
xy uv 

·( 4. 6) 

where [C) is the transformation matrix as follows: 
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sina cosa 

[C) -sina cosa 

-2sina cosa 2sina cosa 

where a is the angle between the direction of the crack and the 

x-axis as shown in Figure 4.2. 

( 4. 7) 

For the case of two orthogonal cracks appearing in an element, 

the elasticity matrix [D] is set equal to zero. 

4.2.3 Element Mesh 

The finite element analysis in the present study has been 

conducted using the thin-shell element of the SAP IV computer Program 

[64] • This element was developed by Clough and Fellipa and it is a 

quadrilateral of arbitrary geometry formed from four compatible 

triangles [101]. As shown in Figure 4.3, the central node is located 

at the average of the coordinates of the four corner nodes. The 

element has six interior degrees of freedom which are eliminated at 

the element level prior to assembly, therefore the resulting quadri

lateral element has twenty-four degrees of freedom, i.e., six degrees 

of freedom per node in the global coordinate system. In the analysis 

of flat plates, the stiffness associated with the rotation normal to 

the element surface is not defined, therefore it is not included in the 

analysis. one disadvantage of the element, however, is its significant 

'element-form' times which results mainly because of the use of four 
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subdomain triangular elements and the associated static condensation. 

Despite this drawback there does not seem to be a reliable alternative 

to this element except to use those elements utilizing higher order 

degrees of freedom. The severe continuity requirements of these 

latter elements render then all but impossible to use for the type of 

structure analysed herein where discontinuities in strain are expected. 

Figure 4.4 shows the layout of the finite element idealization 

along with the associated degrees of freedom at each node. In-depth 

checks on the equilibrium of the stresses were obtained using this model 

and the associated computer costs confirmed the adequacy and economy 

of the grid refinement used. once the joint rotation and displacements 

are evaluated, the element stresses are calculated. The results of 

this finite element comPuter program include rotations and displacements 

at each nodal point in addition to the membrane and bending stresses 

at the element centroid. 

In all the analyses conducted in the present study, the nodal 

points at midspan of the bridge are subjected to symmetric constraints. 

The restraints at the support depend on whether warping is to be 

eliminated there. When warping is restrained, all degrees of freedom 

are eliminated at these nodal points. The restraint applies to all 

analyses with the exception of one analysis cited in the next section 

for which warping was unrestrained. 

discussed therein. 

Details of the restraints are 
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4.3 Finite Element Analysis 

4.3.1 General 

Finite element analysis was conducted for the self weight of 

the bridge model and the extra dead load used to simulate the dead 

weight of the prototype, in addition to the following loading 

conditions: 

4.3.1.1 Linear Analysis 

i) Two symmetrical 10 kips concentrated loads placed over the 

two webs at the midspan section (these were the design 

working loads) 

ii) A·20 kips concentrated load applied at the midspan section 

over one web for two different analyses, one with unrestrained 

warping and the second one with restrained warping. 

4.3.1.2 Quasi-npnlinear Analysis 

Quasi-nonlinear analysis was performed for four values (20, 31, 42 

and 55 kips} of concentrated load placed on one web at the midspan 

section for the restrained warping condition. A parametric study was 

conducted for this loading case to evaluate the influence of different 

values for the element stiffness perpendicular to the cracks,and to 

study the effect of the variation of the shear force transferred across 

. the cracks for different crack widths on the deformational behaviour 

and strength of the box girder bridge. 
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4.3.2 Linear Analysis 

Most box girder bridges are designed on the basis of linear 

analyses. It is expected that without a good understanding of the 

behaviour of the structure at the lower load levels, an understanding 

of the behaviour close to failure will not be possible. Furthermore, 

the performance of the structure at working loads will not depart 

markedly from the linear state. The element stiffnesses were calculated 

based on the uncracked section and the steel reinforcement was ignored. 

The first part of this section deals with the results, in the 

form of displacements and stresses, for the box girder model bridge 

linear analysis. These results are then used as the basis of comparison 

for the results from the nonlinear analysis in the next section. The 

question of the effect of warping is also addressed in this section. 

Nonlinearities may have a quantitative influence on this effect, but 

probably not in any significant qualitative way. 

4.3.2.1 Symmetrical Loading Case 

The gravity loads of the model box girder structures have 

been distributed over the entire le~gth of the bridge. Two point 

loads of 10 kips each are also located at midspan over the webs. The 

nodes at the support are completely restrained to simulate the interior 

support of a multispan configuration. For the boundary conditions to 

be exact each span would be loaded identically and diaphragms would be 

used at the supports. 
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Figure 4.5 shows the vertical displacement at midspan of 

the bridge. The results of the present analysis are, of course, 

represented by a straight line. on the same plot, also shown as a 

straight line, is the result of the elastic analysis based on the 

simple bending theory. This theory is modified by use of Branson's 

equation [88] to allow for the change in inertia after cracking, and 

the corresponding results are shown on the same plot; the experimental 

results are also shown. The dead load deflection of the bridge as 

calculated from the finite element analysis was 0.132 in. This 

deflection value should be added to the calculated deflection at each 

load level to obtain the total deflection. The experimental deflection 

value for the self weight of the bridge was 0~144 in. Thus good agreement 

was obtained between the computed and the experimental values. 

As shown in Figure 4.5, all three sets of theoretical results 

are clos~ ·to the experimental data at low loads,with the finite element 

results showing the best agreement. Significant reduction in stiffness 

is apparent at P = 8 kips. At a total load value of 20 kips, the 

measured deflection at. the midpsan section was approximately 0.2 in., 

while the finite element results showed a deflection value of 0.125 in. 

At this load level, the measured deflection value was 0.2 in. which 

is a~proximately 74% higher than the value calculated using the simple 

beam theory and 48% higher than the finite element analysis value. 

The use of a cracked section by incorporating Branson's equation in the 

simp~e beam theory decreases the difference from 74% to 66\. Therefore 

it is obvious that the available elastic methods of analysis are valid 

only before the formation of cracks at which stage the difference between 

the measured and the calculated deflections increases significantly as 

expected. 
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The distribution of longitudinal and transverse membrane 

stresses across the girder width at midspan and support sections is 

shown in Figure 4.6. Similarly, the variation of longitudinal and 

transverse bending stresses at midspan and support sections is shown 

in Figure 4. 7. It must be noted that the longitudinal membrane and 

bending stresses at the web-flange junction are approximately 30% 

higher than those predicted from the simple beam theory. It can be 

seen that the membrane stresses are approximately 3 - 5 times the 

bending stresses. 

These figures show that the largest longitudinal membrane and 

bending stresses within the box section occur at the web-flange junction. 

The differences between the largest and the smallest membranes or 

bending stresses across the top and the bottom slabs range between 

20% and 50%. These differences result from the effect of the shear 

lag phenomenon in redistributing these stresses within the box section 

as explained in chapter 3. The observed and the calculated transvers.e 

membrane and bending stresses within the box section are approximately 

constant between the webs and decrease towards the ends of the cantelever 

tips. These transverse stresses. attain maximum values at the midspan 

section. At this section the transverse membrane and bending stresses 

are approximately of the same order. 

The experimental and the calculated.values of the total 

transverse stresses are approximately 40\ of that of the total longitudinal 

stresses, theref.or.e due care must be exercised in designing box section 

structures for transverse stresses. 
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4.3.2.2 unsymmetrical Loading case 

(a) ~~~~~!~~~_"!!~~-!:!~~~:!~~~!~~~-!~~1!!~2 

An elastic analysis was conducted for a total working load 

·of 20 kips applied on one web (termed the loaded web). The unrestrained 

warping condition was achieved in the computer program by superposing 

the following two loading conditions as shown in Figure 4.8: 

(i) two symmetrical loads of 10 kips on each. web at midspan, 

(ii) a torsional loading c~nsisting of a downward load of 10 kips 

on the loaded web and an upward load of 10 kips on the 

other web •. 

Experimental and calculated values of the midspan deflection 

along the centerline of the bridge and the loaded and unloaded webs, 

calculated using the finite element analysis and the simple beam theory, 

are shown in Figure 4.9. As expected and verified experimentally, 

the deflections of the loaded web are approximately 40 - 80% higher 

than those of the unloaded web. As shown in Figure 4.9, the simple 

beam theory gives the lowest deflection value. At the load value 

of 20 kips, the calculated values of the centerline deflection by the 

simple beam .theory are 0.046 and 0.088 in. for the uncracked and. the 

cracked sections, respectively. The finite element elastic analysis 

resulted in deflection values of 0.1 and 0.15 in. for the unloaded 

and loaded webs, respectively, while the measured deflection values 

for the unloaded and loaded webs at the same load level are 0.134 and 

0.215 in. respective!~. The measured deflection values are 
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approximately 34% and 43% higher than those predicted from the elastic 

finite element analysis for the unloaded and the loaded webs, respectively. 

The measured centerline deflection value is 0.175 in. which is approxi

mately twice that predicted from the simple beam theory using a cracked 

section. 

Figure 4.10 shows the profile of the vertical deflection 

through half of the bridge span for both loaded and unloaded webs as 

obtained from the finite element analysis. 

The load eccentricity causes the girder to twist and translate 

laterally. The variation of the lateral displacements of tpe top· and 

the bottom of both loaded and unloaded webs along the bridge span is 

shown in Figure 4.11. As shown in this figure, the maximum lateral 

displacement .of the top slab has occurred at the midspan section as 

expected. However, the maximum lateral displacement in the lower 

slab occurs near the quarter span region of the bridge. This is due 

to the large torsional and distorsional effects in this region as 

explained by the beam-on-elastic-foundation method in the previous 

chapter. 

The longitudinal displacements of the nodes given by the 

finite element analysis showed larg~r displacements in the lower flange 

than in the upper flange (Figure 4.12). This was expected because the 

neutral axis is located near the upper flange. These displacements 

attain a maximum value near the quarter span of the girder. It can 

also be noted from Figure 4.12 that the loaded and the unloaded webs 

translate longitudinally in opposite directions. 
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Analysis results showed that the longitudinal membrane 

stresses were maximum at the support section while the transverse 

membrane and bending stresses were maximum at the midspan section. 

This is due to the maximum deformations which occur within the box 

section in the midspan region. 

The variation of longitudinal membrane and bending stresses 

within the box section is shown in Figures 4.13 and 4.14 respectively 

for both midspan and support sections. As shown in these figures, 

the largest stresses within the box section are concentrated in the 

vicinity of the loaded web and decreased towards the unloaded web. 

The maximum deformations along the loaded and the unloaded webs are 

maximum at the midspan,and the maximum deflection of the loaded web 

is about 80% larger than the maximum deflection of the unloaded web. 

Therefore, the largest transverse membrane and bending stresses occur at the 

midspan section with different signs over the loaded and the unloaded 

webs due to the applied torsional load as shown in Figures 4.15 and 4.16. 

These transverse stresses result in significant tension over the 

unloaded web; this was confirmed by the tension cracks which appeared 

over the unloaded web during the uhsymmetrical test on the bridge model, 

as mentioned in chapter 3. 
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(b) ~=~~~~~~:-~~~~-~~:~!~~-~=~~:~!~=~ 

Analysis results for a total load value of 20 kips show a 

decrease of about 5 - 10\ in the vertical and horizontal displacements 

when compared with the unrestrained warping case. 

Figures 4.13 through 4.16 show the distribution of .the 

longitudinal and transverse membrane and bending stresses within the 

box section at different bridge sections for both unrestrained and 

restrained warping conditions at the ends. considerable difference 

was observed between these two cases,especially at the support section. 

The warping restraint for the unsymmetrical loading case causes the 

membrane stresses in the webs at the midspan section to increase by 

approximately 20\. However, there is no significant increase in the 

membrane and bending s·tresses in the top and bottom slabs. Moreover, 

there is a significant decrease in the midspan web bending stresses due 

to the warping restraint. The longitudinal bending stresses here 

have decreased by approximfitely 50% for both the unloaded and the loaded 

webs as a result of the warping restraint, while the transverse bending 

stresses of the webs undergo a similar decrease of 50%. However, these 

bending stresses are very small in comparison to the membrane stresses. 

No significant changes were observed in the shear stresses at the 

midspan section due to the warping restraint. 

At the support section, for the loaded web, the warping 

restraint causes an increase of 25\ in the longitudinal membrane stresses, 

and a decrease of 20% in the longitudinal and transverse bending stresses 
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in both the top and the bottom slabs. The transverse membrane 

stresses at the support section showed an increase of approximately 30\ 

due to the effect of warping restraints. Similarly, the warping 

restraint causes a decrease of approximately 40\ in the longitudinal and 

transverse bending stresses in both webs at the support section; however, 

these stresses at this section are also very small in comparison with 

the membrane stresses. 

In summary, the warping restraint can have a significant 

influence on some behavioural aspects of a box section structure. These 

effects become more pronounced for unsymmetrical loading cases which are 

more frequent and therefore restraint of warping must be carefully con-

sidered in the design of box girder bridges [102]. 

4.3.3 Quasi-Nonlinear Finite Element Analysis 

4.3.3.1 General 

A general nonlinear finite element analysis of a reinforced 

concrete structure which accounts for cracking and material nonlinearities 

with monotonically increasing loads is very expensive and time-consuming. 

Therefore it was not used to study the sensitivity of structural response 

to the various parameters examined in this study. This quasi-nonlinear 

analysis was conducted by incorporating the experimental data on the 

number, length and orientation of cracks in developing the stiffness matrix 

for each element. Also, the steel reinforcement in each element was 

idealized as an orthotropic membrane element. Eight separate computer 

runs were made for different combinations of values of ~ (Ep = 0 and 

~ # 0) and four values of ~ to account for the crack widths (B = 0.25, 

0.5, 0.75 and 1.0). 
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The stresses resulting from this analysis which was performed 

for various load levels cannot be considered "exact" or close to it 

because of the gross linearization utilized in this process. A con-

ventional incremental analysis utilizing reasonably small load steps 

could possibly have been used to achieve this objective. However, 

this quasi-nonlinear approach yields semiquantitative conclusions with 

respect to the parameters under consideration. 

A parametric study was performed for the unsymmetrical 

loading case to evaluate the.effect of cracking in reducing the shear 

force transfer across the crack, and to study the effect of variation 

of the stiffness perpendicular to the crack direction on the stress 

distributions for the various loading stages. It was felt that four 

loading stages were sufficient to cover the entire loading history of 

the bridge from the cracked state through yielding of the steel 

reinforcing and the ultimate load. The applied eccentric load 

values for these loading stages were 20, 31, 42 and 55 kips, respectively. 

For each load stage the modulus of elasticity of concrete perpendicular 

to the crack was examined for the following two conditions: 

(i) modulus' of elasticity perpendicular to the crack E = 0 
p 

{ii) modulus of elasticity perpendicular to the.crack E = 
p 

For these cases, depending on the measured width of cracks, the shear 

force transferred across the crack was decreased by 0, 25\, 50% and 75\. 
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These values correspond to a coefficientS value of 1, 0.75, 0.5 and 

0.25 respectively, with B = 1 representing the uncracked state. This 

was implemented in the finite element analysis by changing the elasticity 

matrix of the cracked element according to the size and the orientation 

of the crack as mentioned before. 

The finite element meshes used for the top and bottom slabs 

and the webs for each load stage are shown in Figure 4.17 along with 

the elements which have cracked. 

4.3.3.2 Analysis Results 

The results of this quasi-nonlinear analysis are presented 

for the following: 

- vertical deflection (Fig. 4. 9 and 4 .10) 

- lateral deflection (Fig. 4.11) 

- longitudinal deflection (Fig. 4.12) 

- longitudinal membrane and bending stresses. (Fig. 4.18 through 4.21) 

- transverse membrane and bending stresses (Fig. 4.22 through 4.25). 

The effect of the element stiffness perpendicular to the cracks and 

the effectiveness of shear transfer across the cracks are shown in 

all the above figures. 

The experimental observation showed that most of the cracks 

were formed in the midspan region. Thest~ cracks formed in the lower 
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slab in an orthogonal pattern parallel and perpendicular to the bridge 

centerline,. while those in the to.(> slab were formed in the longitudinal 

direction in the vicinity of the unloaded web. There were fewer 

cracks in the support region,while the least number of cracks was 

observed in the quarter-span region which showed the least distress 

compared with the support and the midspan regions. At the support 

section, cracks formed in the top slab in a direction perpendicular 

to the longitudinal axis of the bridge and they were concentrated 

over both webs. 

The analysis results can be summarized as follows. 

(a) For the second load stage (P = 32 kips) , the calculated vertical 

deflections of the box girder bridge increased after the intro-

duction of the cracks in the finite element model. The cal-

culated values of these deflections showed sensitivity to the 

value of E • 
p 

The computed vertical deflections for the case 

0 were approximately 20% higher than those for E f 0. . p . 

This is due to the under-estimation of the element stiffness 

resulting from assuming E = 0. 
p 

As sho~n in Figure 4.9, the quasi-nonlinear finite element 

analysis improved the deflection values obtained from the elastic 

analysis significantly.· At the last loading stage (55 kips), 

the calculated deflections of the loaded and unloaded webs from 

the quasi-nonlinear analysis were approximately 0.6 in. and 0.3 in. 
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respectively, while those obtained from the elastic finite 

element analysis were 0.45 in. and 0.275 in. respectively. 

The measured deflection values at the same load level were 

0.95 in~ and 0.6 in. for the loaded and the unloaded webs, 

respectively. Thus quasi-nonlinear analysis predictions were 

better than those from the elastic analysis although the difference 

is still large. 

(b) The top slab lateral deflections for the case E 1 0 are generally 
p . 

15% higher· than those of E = 0, while those. for .the lower slab 
p 

are approximately 20% smaller. These differe~ces are due to 

the crack patterns in both the top and the bottom slabs. In the 

top slab these cracks are formed in the longitudinal direction 

over the unloaded web. Therefore by assigning a non-zero value 

for Ep, the top slab behaves as an orthotropic plate with a 

different stiffness in the directions parallel and perpendicular 

to the cracks, which causes an increase in the lateral deflections. 

In the lower slab these cracks are formed orthogonally, therefore 

the case E = 0 yields higher deflection values than the case 
p 

The calculated longitudinal deflections of both the loaded and the 

unloaded webs showed an increase of approximately 15% for the case 

E 1 0 higher than those for the case E = 0. 
p p 

This is again due 

to the different crack patterns in both webs and the corresponding 

increase resulting from a non-zero value of E as explained earlier. . p 
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(c) For the second and the third load stages (31 and 42 kips}, 

the longitudinal membrane stresses in the top and the bottom 

slabs for the case E ~ 0 were respectively about 35\ and 15\ 
. p 

higher than those for the case E = 0. 
p 

As mentioned before, 

both the top and the bottom slabs act as orthotropic plates for 

different values of the modulus of elasticity parallel and per-

pendicular to the cracks. This biaxial behaviour causes an 

increase in the stresses for the case E # 0 above those for the 
p 

case E = 0. 
p 

Experimental observation showed that the bottom slab was more 

severely cracked than the top slab and therefore the value of E 
p 

was close to zero and hence the. smaller difference between the 

two cases E # 0 and E = 0. 
p p 

At the support section, this . 

increase is approximately 20% for both the top and the bottom 

slabs. 

(d) There is no significant difference in the transverse membrane 

stresses in the support region for both cases, E = 0 and E ~ 0. 
p p 

This is due to the small values of these stresses in this region. 

However, in the midspan region, the transverse membrane stresses 

for the case E = 0 are approximately 10\ higher than those for p 

the case E ~ 0. This is again due to the orthogonal cracks 
p 

formed in this region as explained earlier. 
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(e) The calculated membrane shear stresses at both the midspan and 

the support sections showed an increase of 10% for the case 

EP i 0 when compared with the values for the case EP = 0. 

(f) The longitudinal bending stresses in the top slab and the loaded 

web at the support section showed an increase of about 20% for 

the case E i 0 over those obtained for the case E = 0. This 
p p 

is due to the redistribution of the forces occurring in the ortho-

tropic plate after cracking. At the midspan sectio~ the longi-

tudinal bending stresses of the loaded web also showed an increase 

of 15% for the case E i 0 compared with the case E = 0. The p p 

transverse bending stresses in the top slab at the support section 

were i2% larger for the case E .= 0. 
p 

At the midspan section, the transverse bending stresses in the top 

slab were 20% larger for the case E i 0 than for the case E = 0. 
p . p 

The crack patterns within the box section throughout the bridge 

span, along with the orthotropic behaviour of the, individual plates, 

show that the bending stresses, both longitudinal and transverse, 

are significantly influenced by the value of the mOdulus of 

elasticity perpendicular to the cracks. 

(g) As the ultimate load is approached, the calculated membrane and 

bending stresses become insensitive to the value of stiffness 

perpendicular to the cracks because, on account of the severity 

of cracking, the concrete between any two adjacent cracks does 

not remain as effective in transferring forces perpendicular to 

the cracks. 
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(i) Variation in the shear transfer coefficient 8 does not have a 

significant effect on membrane and bending stresses in.earlier 

loading stages (20, 31 and 42 kips); however, in the later stages 

(42 and 55 kips) a decrease in the shear transfer coefficient 8 

from 0.75 to 0.25 causes an increase of about 10- 18% in the 

membrane and bending stresses. It is not possible to explain 

these trends however, with the present state of knowledge it was 

not possible 'to include the effect of dowel action in the finite 

element model. In conventional beam-type specimens, the dowel 

forces increase significantly as the ultimate load is approached,. 

thereby increasing the c:ontribution of the dowel action at higher 

load levels. More research work is needed in this area to 

incorporate the effect of dowel action in non-linear finite 

element analysis of reinforced concrete. 
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CHAPTER 5 

CONCLUSIONS 

The results of this experimental-analytical investigation of 

structural behaviour of box girder bridges can be summarized and 

conclusions drawn as follows: 

1. For the unsymmetrical loading case, the flexural and torsional 

rigidities of the box girder decreased with an increase in the 

applied load due to the formation and propagation of cracks and 

inelasticity of concrete. At the working load level the flexural 

rigidities of the loaded and unloaded webs were approximately 

0.7 and 0.9,respectively,of the initial flexural rigidity values. 

The torsional rigidity at the working load level was approximately 

0.4 of the initial flexural rigidity before cracking. 

2. For the unsymmetrical loading case, the vertical deflection of the 

loaded web was approximately twice that of the unloaded web. The 

lateral and longitudinal displacements of the webs in the horizontal 

plane varied from about 5 per cent to 8 per cent of the respective 

midspan vertical deflections. The present tendency to use 

smaller wall thicknesses in concrete box section structures results 

in increasing these displacements, therefore torsional and distortional 

deformations should be considered in the analysis and design of this 

type of structure. 
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3. The resulting longitudinal stress distributions across the width 

of the top and the bottom slabs of the box section were not uniform 

fbr both the symmetrical 'and the unsymmetrical loading cases. The 

differences between the maximum and the minimum stresses in these 

cases were approximately 30 per cent and 70 per cent for the 

symmetrical and unsymmetrical loading cases, respectively. The 

simple beam theory is obviously not capable in predicting these 

distributions. 

4. For the symmetrical loading case, the shear lag effect in the box 

section caused an \ncrease of 30 per cent in the stresses at the 

web-flange junction above those at the cantilever tips or between 

the webs; these stresses were approximately 40 per cent higher 

than those calculated from the simple beam theory. 

5. For the unsymmetrical loading case, the longitudinal stresses 

calculated from the measured strains were approximately twice 

those predicted from the simple beam theory. This is due to the 

effect of warping restraint for this loading case, and the cracking 

of the section; also, the simple beam theory does not account for 

the torsional and distortional longitudinal warping stresses. 

These torsional and distortional longitudinal warping stresses can 

be calculated using the Kollbrunner and Hajdin method and the beam-

on-elastic foundation method, respectively. These can then be. added 

to the stress values calculated from the simple beam theory assuming a 

cracked section to obtain the total stresses. The designer should 

therefore be cautious about the increase in the longitudinal .stresses 

on account of the reasons stated above. 
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6. The values of the transverse stresses for the symmetrical loading 

case va~ied from approximately 20 per cent to 40 per cent of the 

longitudinal stresses at the same location. For the unsymmetrical 

loading case, these transverse stresses were approximately of the 

same order as the longitudinal stresses at the same location. 

Significant transverse tensile stresses occurred over the unloaded 

web and caused a serious longitudinal crack to form parallel to 

the longitudinal axis of the bridge. The experimental transverse 

stresses as calculated from the measured strain values were higher 

than those predicted from the available methods. Therefore 

more research is needed to develop suitable methods to predict 

these.stresses. Again, suitable care should be exercised in 

designing and detailing the transverse reinforcement at the 

web-flange junction. 

7. All cracks which occurred in the cantilever slabs were mainly 

flexural cracks. Therefore the contribution of the cantilever 

slabs in the torsional stiffness of the box girder can be neglected. 

8. A general non-linear finite element analysis of a reinforced 

concrete structure to account for cracking, and material non-

linearities can be very expensive and time consuming. Therefore 

it was not used to study the sensitivity of structural response to 

the various parameters. Instead, a quasi-nonlinear finite element 

analysis was used in the present study for which the stiffness of 
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the box girder bridge was modified in stages by incorporating 

information about the cracking patterns and crack widths from 

the experimental data. This quasi-nonlinear analysis was used 

to conduct a parametric study to in~estigate the effect of the 

propagation and widening of the cracks in the analysis by modifying 

the stiffness of the element perpendicular to the crack and the 

shearing force transferred across the cracks depending on the 

observed crack widths. 

9. A non-zero concrete modulus value perpendicular to the cracks has 

a significant influence on bridge behaviour as compared with a 

zero value for this modulus. However, at the ultimate load stage, 

the computed stresses are insensitive to this value. · 

10. A reduction in the shearing force transferred across the cracks 

with widening of the cracks does not have a significant influence 

on stress distribution in the bridge except at the ultimate load 

level. 

Suggested Areas for Further Research 

The following are some suggested topics for further research 

in the area of box girder bridges. 

1. The present design methods for designing box girder bridges are 

generally based on an elastic analysis, although the behaviour of 

concrete is not elastic even at the early stages of loading. 
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Obviously, these methods do not predict the structural response 

through all the loading stages, therefore more research is needed 

in this area to provide a consistent design philosophy based on 

actual behaviour. 

2. The ACI Code (318-77) suggests that the total quantity of longitudinal 

and transverse reinforcement required should be the sum of that 

required for bending and torsion separately. This method over-

estimates the true resisting capacity of the structure. Therefore 

more work is needed to develop a rational theory for designing 

reinforced concrete elements subjected to combined torsion, bending 

and shear. Also, such work should include study of the behaviour 

of hoop steel, longitudinal steel and the concrete under such 

combined stresses through the length of the bridge. 

3. Existing shear lag theory must be extended to include the case of 

singly symmetric box sections with wide cantilevers. Also, the 

effect of the width of the cantilever on the behaviour and analysis 

of distortional warping stresses is not completely understood; 

more work is needed in this area. 

4. In the torsional and distortional analyses of box girder bridges, 

all known methods divide the eccentric load as follows: 1/2 for 

longitudinal symmetrical bending, 1/4 for torsion and l/4 for 

distortion. Such load division should be derived on the basis 
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of the flexural, torsional and shear stiffnesses of the uncracked 

and the cracked box section subject to combined bending, torsion 

and shear. Experimental and analytical studies on a reinforced 

concrete box girder bridge model can be helpful in determining 

these·stiffnesses. This information would also be useful in 

the area of limit analysis of such structures. 

5. With the current tendency to reduce the dimensions of the concrete 

elements by using the ultimate strength design method, the short 

and long time deflections have become a problem. This 

phenomenon of long time deflection and its effects in box girder 

bridges are still not completely understood, therefore more work 

is needed in this area. 

6. The theoretical development.necessary for limit state design would 

probably result from an extension of nonlinear finite element 

analys~s to predict cracking and ultimate load behaviour of box beams 

under combined bending, shear and torsion. .This can be valuable 

in understanding the behaviour of box section structures at the 

serviceability and collapse limit states and in developing suitable 

tools for the limit states design of box section structures. 
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APPENDIX A 

AVAILABLE METHODS FOR ANALYSIS OF A BOX GIRDER BRIDGE 

A summary of the available methods is listed in Table A.l. 

The types of struGtural actions considered in each method are detailed 

in this table [39,85,86]. A brief summary of these methods is pre-

sented in this Appendix for completeness. The computer program 

developed for these methods (input data, output data and listing of 

the progrqm) is also given. 

A.l The Conventional Simple Beam Theory and St. Venant Torsion 

Using the engineering theory of bending, which assumes plane 

cross-se.ctions to remain plane, the following expression is obtained 

for the normal stresses in longitudinal bending of a thin-walled beam 

with a symmetrical section: 

where 

x, y 

H , 1'-! 
X y 

I , I 
X y 

= 

f9, 

My 
X = ·-- + 

I 
X 

M X 
J_ 
I 

(A.l) 
y 

normal longitudinal stress in longitudinal bending 

co-ordinates of a point on the centre-line of the walls 

of the cross-section 

= bending moments about the x- and y-axes 

= second moments of area of the entire concrete 

cross-section about the centroidal x- and y-axes. 



Type of structural action considered 

Analytical method Longitudinal St. Venant Distortion Torsional Distortional 
bending torsion (Transverse warping warping 

bending} ·I 

Simple beam theory X X 

Knittel X 

Equivalent beam ~ X 

Kupfer X X 

Kolbrunner and X 
Hajdin 

Heilig .. 
Beam on elastic 
foundation analogy X 

Reissner 

--

Table A.l Available methods for analysis of box girder bridges. 

Shear 
lag 
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Local 
effects 
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Vl 
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Fig. A.l Zero Shear Stress v1 
on Axis of Symmetry 

for Vertical Loading 
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Fig. A.2 Evaluation of (Ay) the First Moment of Area 

of the Partial Half Cross-section About the 
Centroid.al x-Axis 
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Because of symmetry of the cross-section, the longitudinal 

shear stress is zero at the vertical axis, hence the complementary 

shear stress v1 in the plane of cross-section is also zero at x = 0 

as shown in Fig. A.l. since the boundary conditions for open sections 

are now satisfied, Le., zero longitudinal shear stress at the ends of 

the cross-section (A, C and E), half of the section (ABCDE) ·in Fig. A.l 

can be analysed as an open section. Kollbrunner and Basler [9} 

developed an equation which is applicable in this case: 

where (v~ ·h) = 

vt = 

V = y 

Ay = 

shear 

shear 

shear 

flow in 

stress 

V (Ay) 
y 

I 
X 

longitudinal bending 

in longitudinal bending 

force parallel to the y-axis 

(A. 2) 

first moment of area of the partial half cross-section 

about the centroidal x-axis (see Fig. A. 2 (Ay) at 

j, k or Lis the first moment of the shaded area 

about the x-axis). 

The St. Venant torsional shear stress in thin-walled beams of 

open-closed section is given by [9] : 

T 
stv 

2A enc 
(A. 3) 
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(v h) = shear flow in a thin-walled section in svt 

St. Venant torsion 

vsvt = shear stress in St. Venant torsion at the center-

line of the wall 

h = wall thickness of closed portion of the cross-section 

T = torsional moment at the cross-section in St. Venant svt 

torsion 

A = area enclosed by the centreline of the wall of the enc 

closed portion of the cross-section 

= bd. 

A.2 Ahalysis of Simple Bending, Torsion and Distortion by 

Knittel's Method [24] 

A.2.1 Loading 

Knittel's method is formulated in terms of line loads along 

the webs of the box beam. The representation of practical loading 

cases by equivalent sinusoidally distributed loadings is discussed in 

the following sec.tion. 

A.2.2 Fourier Series Representation of Practical Loadings 

Concentrated and uniformly distributed loads may each be 

represented by a sum of sinusoidal load distributions, as shown in 

Fig. A.J. The applied concentrated load is equivalent to a distributed 
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load of intensity 11n,ptt 
given by 

<» 

E Sin lly ,pd = '\,n n=l 

2F 
and 

v nna 
--L- Sin 

.t t 

where t is the span of the bridge. 

Using only the first term of the Fourier series 

and 

= 
2F 

y . na -- s~n-t 9, 

'ITZ 
11 = 11y Sin n 

y ,ptt "' 

nnz 
(A. 4) 

t 

(A. 5) 

(A. 6) 

(A. 7) 

For the uniformly distributed load shown in Fig. A.3, considering 

only the first term of the Fourier series 

411 

= 
Yo 

11y 1T 
(A. 8) 

and E Sin 
1TZ 

n = n y,ud y 9, 
(A. 9) 

where the additional subscripts pt9. and ud stand for point load and 

uniform load, respectively. 
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A.2.3 Resolution of Loading 

A given line loading is replaced by a statically equivalent 

combination of symmetric and antisymrnetric line loadings at the webs. 

The resolution for a line load n at a web is shown in Fig. A.4. 
y 

..• 
A concentrated load on the structure is resolved u~ing 

symmetric and antisymmetric point loading at the webs,which in turn 

are repiaced by the Fourier components of the equivalen.t line .loading, 

as indicated in Fig. A.4. 

A.2.4 Summary of Analysis by Knittel's Method 

1. For symmetric loads, analyse the structure using the engineering 

bending theory (Eqs. A.l and A.2). Include consideration of 

transverse and normal forces as discussed below. 

2. For antisyrnmetric loads, analyse the following two effects 

separately: 

a) pure (St. Venant) torsion,giving rise to shear stresses in 

the cross-section (Eq. A.3), 

b) distortion, giving rise to transverse bending on the flanges 

and webs and transverse normal forces. 

Knittel's method neglects the effects due to loads not acting at the 

webs (i.e., transverse bending under symmetric loading) as shown in 

Fig. A. 4 (a). However, for the case of an antisymmetric loading, the 

transverse bending action is approximated by statically equivalent 

loads at the webs as shown in Fig. A.S(a). 
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First Fourier Component of Symmetric Loading 

A111l I III=D--. 

~F y 

First Fourier Component of Antisymmetric Loading 

Fig. A.4 Resolution of Loading 
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(a) 

• 

• 

in flanges 

Fig. A.5 Distribution of Transverse Normal Stresses ft at rn Cross-section Under Symmetric Loading 

(C: compression,· T: tension) 

(b) 

Stresses in 
webs 
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(1) symmetric Loading Case 

Putting n equal to the intensity at section z (Fig. A.3), 
y 

it follows from the Fourier Series representation of loading on each 

web in the symmetric load case and the simple beam theory that 

z z 

M = - 2 I J n (z) dz dz 
X y 

(A.lO) 

0 0 

z 

and V = - 2 y I T)y (z)dz + (V ) y z=o 
(A.ll) 

0 

where (Vy) z=o = 2 r/2 T)y (z)dz (A.l2) 

0 

Normal stresses f~ and shear stresses v
1 

can now be obtained 

from Eqs. A.l and A.2. 

Knittel [24] presented the following expressions for obtaining 

the maximum ordinates for the transverse normal forces under symmetric 

downward loading as shown in Fig~ A.5. The transverse stresses f 
trn 

are found by dividing the force per unit length by the thickness of the 

flange or web. 

At point A (upper flange at axis of symmetry) 

Transverse (horizontal) compressive force per unit length 

of the beam 

ny ( z) 
41 

X 

(A b - 4 A b ) d 
top cant cant cg 

(A.l3) 
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where A = b h 
top top 

A = b h cant cant top 

d = depth of the centroid of the cross-section below the cg 

centreline of the top slab 

b = breadth between centreline of webs (Fig. A. 7) 

d = depth between centrelines of top and bottom slabs 

b = breadth of the cantilever slab (Fig. A.7) 
cant 

h = thickness of top slap (Fig. A. 7) top 

~ot thickness of lower slab (Fig. A. 7} 

h = thickness of web (Fig. A.7) web 

At point B (upper flange at web) 

the beam 

Transverse (horizontal) tensile force per unit length of 

fly ( z) 
-"--=-'- A b d 

I cant cant cg 
X 

(A.14) 

At point B (top of web) 

the beam 

Transverse (vertical) compressive force per unit length of 

= 11 (z) 
y 

(A.l5.) 

(Fig. A. 7) 
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At point E (lower flange at axis of symmetry) 

Transverse horizontal tensile force per unit length of the 

beam 

n (z) 

= ~I k t b(d-d ) 
x bo cg . 

(A.l6) 

where ~ot = b ~ot 

(2) Antisynunetric Loading Case 

(a) Pure (St. Venant) torsion 

The torsional moment T t is calculated using the Fourier sv 

representation of antisynunetric loading and hence the torsional shear 

stresses v t can be obtained using Eq. A.3. 
S V 

(b) Distortion 

It is assumed that the transverse bending action of the closed 

frame takes place independently of the adjacent portions of the structure, 

i.e., no distortional warping stresses are set up. However, a distri-

buted differential resistive shear flow dd (v th) is assumed to be 
. z sv 

applied to the frame by the adjacent portions of the structure, as shown 

in Fig. A.4. 

Differential resistive shear flow 
n (z) 
y 
2d 

(A.l7) 
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, The differential resistive shear forces acting on each 

flange or web (Fig. A.6) are given by the following: 

n ( z) 

vl = y_ . 1 • b in the top flange/unit length of structure 2d 

n (z) 

v3 = 'i . 1 • ,b in the bottom flange/unit length of structure 
2d 

n (z) 

v2 = 
y . 1 • d in the web unit length of structure . 2d 

A moment distribution analysis is performed for the closed 

frame under the action of the antisymmetric loading n (z) and the 
y 

This gives the transverse bending moments and 

the transverse normal forces. 

A.3 Analysis of Distortion and Distortional Warping by 

the Equivalent Beam Method [103] 

Loading 

As in the Knittel method, the applied loading is resolved 

into statically equivalent distributed loading along the webs as shown 

in Fig. A.4. Only the antisymmetric load case is considered in the 

equivalent beam method, and the action under symmetric load, i.e., 

bending without torsion, is treated separately using the simple 

beam theory. 

(A.l8) 

(A.l9) 

(A.20) 
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Fig. A.6 Force Systems in Distortion Under Antisymmetric Loading 



271 

A.3.1 Summary Analysis Procedure 

A.3.1.1 Pure (St. Venant) Torsion 

Using the Fourier representation of antisymmetric loading 

as in the Knittel method, the torsional moment T is calculated. · · svt 

The torsional shear stresses v t can then be obtained using Eq. A.3 
SV 

A.3.1.2 Distortion and Distortional Warping 

It is assumed that rigid diaphragms at the supports prevent 

distortion but do not provide any warping restraint. The flanges of 

a single-span, simply supported box beam are replaced by equivalent 

flanges as shown in Fig. A.7. Note that this is not applicable to 

the symmetric load case. The two equivalent beams thus formed are 

considered to be latticed in the planes of the flanges, and their 

section properties are obtained using the following expressions: 

Atop eff 
2Itop 

b2 = area of top flange of one equivalent beam 

-

~ot eff 

21bot area of bottom flange of one equivalent beam = b2 = 

A = dh b = area of web of one equivalent beam web eff we 

= area of one web of actual beam 

ht (b + 2b ) 3 
- op cant where I = (A.21) 

top 12 
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second moment of the cross~sectional .area 

of the top flange about its vertical axis 

-
I 
bot = 

of symmetry 

12 
(A. 22) 

= second moment of the cross-sectional area 

of the bottom flange about its vertical axis 

of symmetry. 

The depth d of one equivalent beam, measured between the 

.centroids of At , A eff is equal to the .depth d measured op eff bot 

between the centreline of the top and bottom flanges. 

If an equivalent beam is subjected to a sinusoidal loading 

such that ny = 1 at midspan, then 

n (z) = Sin iTZ 
y i 

Then using the simple beam theory, the vertical deflection 

is given by 

Thus, 

a 
y 

a 
y 

= 

= 

I J I 

1 

Eleff 

n (z) 
Y dz dz dz dz 

Eieff 

1TZ 
Sin 

t 

where Ieff is the second moment of area of the equivalent beam about 

its horizontal centroidal axis. 
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At midspan ( z = 

274 

!l, 
) , the deflection under a unit sinusoidal 

2 

load is 

1 9,4 
k.l= ::q 

Eieff 11' 

(A. 23) 

The resistance of a box beam to torsional loading may be 

visualized as arising partly from pure (St. Venant) torsion (no 

distortion) , and partly from the differential bending of the equivalent 

beams, which is associated with the distortion of the cross-section of 

the box beam. The proportion of the applied torsional moment 

resisted by the box section in pure tors~on, k
2 

, is given .by: 

(A.24) 

where 81 is the diaphragm shear flexibility, which is the value of 

shear strain due to a unit shear force applied to the vertical faces 

of the diaphragm. The diaphragm shear flexibility coefficient, ~1 , 

is defined in Fig. A.B. 

where 

Thus the distributed load on each equivalent beam = <n - 2n dmd) y y, 

ny = the intensity of the antisymmetric distributed loading 

on each web of the box beam 

ny,dmd = the intensity of the distributed loading applied to 

each web by the diaphragm medium. 
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The resistance to distortion provided by the transverse. 

bending strength of the wall is also termed the "diaphragm medium". 

Richmond [103] developed the following expression for n dmd . y, 

k2 11 
11y,dmd = 2·11y = 

(bt\ 1) 2-- + 
8kl 

(A. 25) 

Hence 11 - 211 ) = 11Y 

k l y y,dmd 8kl 
--+ 
b81 

(A. 26) 

Thus the load carried by differential bending is (11 - 211 dmd) y y, 

along the span on each web, and the load carried by torsional shear flow 

is (n d d/d) around the perimeter of cross-section. y, m If k2 equals 

zero, the entire load is resisted by differential bending and if k2 

equals unity, the entire load is resisted in pure. torsion. 

A.3.2 Stress Analysis 

The bending flexibility coefficient, k
1 

, for an equivalent 

beam can be calculated for a given cross-section geometry and span. 

However, to evaluate the value of the diaphragm.shear flexibility, 8
1 

, 

a moment distribution analysis must be performed on a unit length of 

the closed frame. Then, knowing the value of k2 , the St. Venant or 

the pure torsional moment T t and the resulting shear stresses v t sv sv 
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. can be calculated~ Also, since ny and ny,dmd are known, the transverse 

bending stress, ftrb' and the transverse normal stress, ftrn' in the 

closed frame can now be determined along with the value of the dis-

tortional warping stress, fd , in the equivalent beam. wr 

A.3.3 Warping Moment due to Cross-section Distortion 

The longitudinal distortional warping stresses, fd I at the wr 

top and the bottom of each web are obtained using the following 

expression for the distortional warping moment, Md I on one web of wr 

the equivalent beam 

M dwr 

A .. 4 Analysis of Distortion and Distortional Warping 

by Kupfer's Method [104] 

A.4.l Loading 

(A.27) 

The vertical loading is assumed to be applied over a web, 

and is resolved into three systems as shown in Fig. A.9. These systems 

generate the following structural actions in the box beam: (a) longitudinal 

bending, (b) torsion and (c) distortion. Kupfer recommended that the 

first two be treated using Knittel's method and St. Venant's torsion 
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theory, respectively, and he developed an analysis dealing mainly 

with distortion and distortional warping. The method is formulated 

in terms of a distributed loading using a Fourier Series representation. 

A.4.2 Summary of Analysis Procedure 

In analysing the box beam for distortion (Fig. A.9c), the 

applied load is divided between two mutually independent and deformationally 

compatible structural systems 1 and 2, as shown in Fig. A.7. In 

system 1, the box beam is treated as a hinged folded plate structure 

subjected to a sinusoidal load in the plane of each wall. Here only 

longitudinal structural action of the walls is considered, with each 

wall behaving as a longitudinal beam bending in its own plane. The 

influence of shear deformation is neglected. System 2 consists of a 

rigid jointed closed-frame structure as shown in Fig. A.lO(b) which is 

also subjected to a sinusoidal load in the plane of each wall. In this 

case, only the transverse structural action is considered, and each wall 

develops transverse b~nding stresses. 

The distribl,ltion of the distortional load system in Fig. A.9(c) 

between systems 1 and 2 of Fig. A.lO is determined by ensuring the 

compatibility,of deflections at the corners of all cross-sections. 



279 

A.4.3 Analysis of Structure Under a Distortional Load System 

Kupfer developed the following expressions to determine the 

components of distortional load ny and ny acting on systems 1 and 2, 
1 2 

respectively: 

k3 
n = ny 1 yl + k3 

(A. 28) 

and 1 
n = ny 1 y2 + k3 

(A.29) 

where k3 
'IT4 [ bd2 ) k4k5 = h R,2 48 web 

(A.30) 

ny 
1 

= 
ny 

2 

distortional load taken b;t system 1 
distortional load taken by system 2 

3 + 2(k6 + k7) + k6k7 
kit = 

6 + k + k 
6 7 

{A. 31) 

3 + 2(k8 + k 9)· + k8k9 
ks 6 + k8 + k'3 

(A.32) 

bh [b + 2b r 
k6 

top cant = 
dh b b 

WC 

(A~ 33) 

k7 
b~ot 
dh b we 

(A. 34) 

bh 1 
web 

ka :::: 
dh3 

top 
(A. 35) 

bh 3 
web 

k9 = 
dh3 

bot 
(A.36) 
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To evaluate the longitudinal stresses due to the distortional load 

system, the actual box beam is replaced by two equivalent beams similar 

to those illustrated in Fig. A. 7, but with the value of Ieff equal to 

half of the second moment of area of one equivalent beam, since the 

loading on each beam is now (nr ]. For system 1, the equivalent 

beams are taken as simply supported over the actual span ~ and subjected 

to a sinusoidally distributed vertical load ["~il which can be calculated 

using Eq. A.37 

n (z) 
~Y~l-- = 

4 

n (z) 
Y1 

4 
(A.37) 

For system 2, the transverse bending strength of the upper and the 

lower slabs of the box beam provides a continuous elastic support for 

the equivalent beams, which must therefore be analysed as beams on an 

elastic foundation. The vertical loading can be taken either as the 

sinusoidal Fourier representation ["~,] or as the actual loading 

resolved into system 2. This loading can_be used for evaluating the 

longitudinal (distortional warping) stresses and the transverse bending 

stresses in system 2. The foundation modulus, k
10 

, for the equivalent 

beam on elastic foundation is given by 

4Eh 3 
web 

(A.38) 
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A.4.3.1 Longitudinal Stresses in System 1 

The longitudinal stress at the junction of the centreline 

of the upper slab and the web is given by 

(A. 39) 

The longitudinal stress at the junction of the centreline of the lower 

slab and the web is given by 

I fdwr ,11 = 
R, t2 d - dcg , 27fT _1 __ _ 

2 1eff 

(A. 40) 

A.4.3.2 Longitudinal Stresses in system 2 

Under a uniformly distributed loading of intensity 
4 

a simply supported beam (span t) on an elastic foundation with a 

modulus k
10 

, develops a midspan bending moment given by 

(A. 41). 

where (A. 42) 
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F 
When subjected to a concentrated load, 4Y, at midspan the beam develops 

a midspan bending momemtn M2 given by 

= (A. 43) 

Kupfer [104] argued that in an infinitely long beam on an elastic 

foundation, subjected to a single concentrated load within the span, 

the bending moment M2 will have become negligible at a dlstance ~eh 

(characteristic length) from the concentrated load, given by 

9.,ch = (A. 44) 

Therefore, it follows that under the action of a concentrated load, 

the distortional warping effects in system 2 are confined within a 

length (2~ch) of the equivalent beam, treated as an infinitely long beam, 

provided the concentrated load is at a minimum distance of ~eh from the 

end of the beam. Kupfer used the following approximate expression 

to calculate M2 

F ~ 
y eh 

16 
(A. 45) 

The same expression results from letting ~ tend to infinity in Eq; A.43. 

The distortional warping stresses due to a concentrated load (:y ) 

can be calculated as follows: 
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The distortional warping stress at the junction of the centreline 

of the upper slab and the web is given by 

d 
cg 

(A. 46) 

The distortional warping stress at the junction of the centreline 

of the lower slab and the web is given by 

(d - d ) 
cg 

A.4.4 Transverse Bending Stresses 

(A. 47) 

The transverse bending moments at the corners of the closed 

frame for a unit length of the actual structure are first evaluated. 

In system 1, there are no transverse bending moments, as the folded 

plate structure is hinged, and the loads act at the web-plate junction. 

In system 2, the transverse bending moments under a distri-

buted loading are given by (see Fig. A.lO) 

n b 3 + k y2 9 
MM = MG = ± --

8 6 + ka + k9 
(A. 48) 

n b 
y2 3 + k8 

MD = MF = ± --
8 6 + k8 + kg 

(A.49) 
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Under a concentrated midspan load, the transverse bending moments are 

given by 

Fb 3 + ka 

~ = MG = ± 
y 

16 R,ch 6 + k8 + kg 
(A. 50) 

Fb 3 + ka 
MD = MF ± 

y 
16 tch 6 + ka + k9 

(A. 51) 

The transverse bending moments for the system resisting pure torsion 

(Fig. A.9b) are given by 

~ = MG = ± 

MD MF = ± 

where 

I) b 3 + k 
_y_ 9 

8 kl2 6 + ks + k9 

I) b 3 + ks y 
8 kl2 6 + ks + k9 

( 

bhweb bhweb ] 
+--- 2 

dhtop d~ot 
1 

The transverse bending stress . ftrb at B is given by 

f 
trb 

G~ 
= .!: h2 

top 

where E and G arc Young's and shear modulus of elasticity. 

(A. 52) 

(A. 53) 

(A. 54) 

(A~ 55) 
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A.S Analysis of Torsional Warping by the Method of 

Kollbrunner, Hajdin and Heilig [86] 

A.S.l Loading 

The analysis considers only the torsional component of the 

actual loading and not its Fourier representation. 

A.5.2 Bimoment Bt , Sectional Coordinate Wt and wr wr 

Torsional Warping Second Moment of Area Ct wr 

The bimoment is the force system associated with warping. 

A quantitative definition of the torsional warping bimoment Bt is wr 

B =If w dA twr twr twr {A. 56) 

A 

where A = total area of cross-section including the side 

cantilevers 

f = torsional warping stress twr 

W = sectional coordinate in torsional warping (referrrd twr 

to the shear centre) 

The sectional coordinate W is defined as twr 

w 
twr 

csvt ] 
2A h 

enc 
ds 

per 
(A. 57) 



where c svt 

ds 
per 
h 
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torsional constant of cross-section 

4A 
= __ e_n..:..c_ 

ds per 
h 

_b_+ _b_+ ~ 
htop ~ot hweb 

A = area enclosed by centreline of wall of closed portion enc 

of the cross-section 

s = peripheral coordinate along centreline of wall (Fig. A.ll) per 

h wall thickness 

where a is the perpendicular distance from the shear centre to the 

tangent to the wall centreline at the point considered, s is the 
per 

peripheral coordinate along the centreline of the wall (Fig. A.ll). 

Note that the term (C t/2A h) is included in the integrand only for sv enc 

integrati.on around the wall of the closed portion of the cross-

section. It is not included for integration along the side canti-

levers. The torsional warping second moment of area of the cross-

section, C is defined as twr' 

c = J w2 dA twr twr 
(A. 58) 

A 

The following expression gives the.torsional warping stress, ft : wr 

f = 
twr 

B W twr twr 

ctwr 
(A. 59) 
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The form of this expression is the same as Equation A.l, since 

M , M and Bt are all stress-resultants at the section z; x,y and x y wr 

Wt are coordinates of the point considered on the cross-section; and wr 

I , I and et are geometrical properties of the entire cross-section. x y wr 

Under an eccentric loading, the longitudinal stresses f~ calculated 

using Eq.A.l and f evaluated using Eq. A. 59 are added algebraically. twr 

Figure A.l2 shows the variation of ft around the perimeter of crosswr 

section, and Fig. A.l3 shows its distribution along the beam. 

where 

A.5.3 Torsional Warping Shear Stresses 

Torsional warping shear stress vt at any point is given by wr 

dWtwr 
ds 

per 

c cen 

dWtwr 
ds 

vtwr 
= T per 

twr (Ccen - csvt) 

= a -
c svt 

2A h 
enc 

for a single-cell cross-section 

(A. 60) 

(A.61) 

central torsional moment of inertia of the cross-section 

= I i2 dA 

A 

(A. 62). 
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A.6 Analysis of Distortion and Distortional Warping by the 

Analogy of Beam on Elastic Foundation [105] 

A.6.1 Loading 

The analysis considers only the distortional system. The 

distortional component of the actual loading is used in this analysis, 

and not a Fourier representation of the loading. 

A.6.2 Basic .Analysis Procedure 

A mathematical analogy exists between the distortional behaviour 

of a rectangular single-cell section box beam and the flexural behaviour 

of a beam on elastic foundation. The physical basis for the analogy 

stems from the fact that the transvetse bending strength of the upper 

and lower slabs of a box beam provides a continuous elastic support 

for the webs which therefore behave like beams on elastic foundation. 

A.6.3 Bimoment, Bd , Warping Coordinate Wd , Distortional wr wr 

Warping Second Moment of Area, cdwr' and Frame Stiffness, Eifra 

The rea~-on-elastic-foundation analogy shows that the bimornent, 

Bd , is analogous to the bending moment in a beam on an elastic wr 

foundation. Also, the angle of distortion of the cross-section of 

the box beam is analogous to the deflection of the beam on an elastic 

foundation. 
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Diaphragms in the box beam, which prevent distortion but not 

warping, correspond to unyielding simple supports, while an end support 

condition, where warping is prevented, is analogous to a built-in end 

support for the beam on elastic foundation. A diaphragm which pro-

vides elastic restraint to distortion is analogous to an elastically 

yielding support. Distribution of the distortional warping coordinate, 

Wd , is shown in Fig. A.l4. wr 
W varies linearly along the wall 

dwr 

centreline and the coefficients shown in Fig. A.l4 are given by 

3 + k6 
k25 = (A. 63) 

3 + k7 

bh [b + 2b r where k6 
top b cant (A. 64) 

dh 
web 

and k7 
b~ot 

(A. 65) 
dh b we 

The distortional warping second moment of area of the cross-section, 

cdwr' is given by 

b 2d 3h 
web 

c = k4 dwr 48 
(A.66) 

3 + 2(k6 + k7) + k6k7 
whore k4 6 + k6 + k7 

(A.67) 
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The frame stiffness, Elf , is obtained from 
ra 

where k 
26 

I top 

I = bot 

I web 

Here V 

1 + 

24 I b we 

b 
2- + 3 d 

I + I top bot 
I web 

h3 
top 

12(1-vZ) 

~ot 
12 (1-vZ) 

h3 
web 

12(1-vZ) 

I 

+ 

Poisson's ratio. 

top + 1bot 
I web 

I I 
6 

d top bot 
b" rz 

web 

(A. 68) 

(A.69) 

{A. 70) 

(A. 71) 

(A. 72) 

Under a concentrated load, F , at midspan over one web; resolved as 
y 

shown in Fig. A.l5, the stresses are given by the following: 

A.6.3.1 Distortional warping Stresses 

The distortional warping stress, 

f 
dwr 

::: 

B W 
dwr dwr 
c 

dwr 

w is obtained from Fig. A.l4 dwr 

f is given by dwr' 

(A. 73) 
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F b.Q. sin n1T sin n1rz 
00 

where Bd (z) Bd (z) -
y 

E 
2 Q, 

(A. 74) = 27fT wr wr,o 
n=l "t [ 

1T cd 

l] n"+ wr 
+ R.4 I fra 

F b 
Q, 

8dwr,o(z) = _x_ 
z for 0 ~ z s: 

8 2 

F b 
R. 

B d (z) 
_x_ (Q.-2) for -s: z ~ Q, 

wr,o 8 2 

The distortional warping coordinate, Wd , is calculated using Fig. A.l5 wr 

and Equations A.63, A.64 and A.65. The value of Bd at miospan for wr · 

the load case in Fig. A.l5 is given by 

where 

B 
dwr 

4~fra 
4Cd wr 

Also, note that Eq. A.73 is the same as Eq. A.l. 

(A. 75) 

(A. 76) 

Under eccentric 

loading, the longitudinal stresses, fn (calculated using Eq. A.l), f ](, twr 

(from Eq. A. 59) and fd (from Eq. A.73) are added algebraically to 
wr 

obtain the final longitudinal stresses. Figure A.l6 shows the 

variation of fd around the perimeter of the cross-section and Fig. A.l7 
wr 

shows its distribution along the length of the beam. 
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Fig.A.16 Distortional Warping Stress Distribution 
at Cross-section 

Flg.A.17 Distortional Warping Stress Distribution 
Along Beam 
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A.6.3.2 Distortional Warping Shear Stresses 

The distortional warping shear stress, vd , at any point wr 

on the cross-section is. given by 

d 
- dz 8dwr bd 

c k2.8 4 (1 + k2.5) vdwr = 
dwr 

where, for the load case considered: 

F b "" d 
-d Bd (z) z wr 

d _J_ 
dz 8dwr,o(z) 2n E 

n=l 

d 
F b 

where - B (z) = J_ for dz dwr,o 8 

d -F b 
- B (z) = J_ for dz dwr,o 8 

nn nnz 
sin 2 cos 

1 

R. 
0 ~ z < - 2 

~s 
2 z s t 

(A.77) 

(A. 78) 

The values of k~ 8 at the various points 9n the cross-section can be 

obtained from Reference [105]. 

A.6.3.3 Transverse Bending Stresses 

The transverse bending stress, f b' at any point is give.n by: 
tr 

f 
trb = (A. 79) 
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where transverse bending moment due to the distortional 

load system 

ftrb = transverse bending stress at the wall face. 

Using the beam-on-electric foundation analogy for the load case under 

consideration, one obtains the following two equations: 

At the top of the web: 

M = trb,B 

At the bottom of the web: 

M = trb,o 

where k30 = 

Eifra 8trb 

2 1 + k30) 

-k3oEifra f\rb 

2(1 + k30) 

I 

3 + b web ---d I 
top 

I 
3 + 

b web ---
d 1bot 

mr mrz 
F b.t 3 sin- sin--

2 t 00 

13trb ( z) = at b (z) -
y 

E nt + n• [:fr:~~r]] r ,o 21r 4E cd n=l wr 

F b 

~ z [3! -11] 1 
B t b ( z) = 

_____y_ __ 
for 0 < z < 

r ,o 24E cd 2 wr 

(A. SO) 

(A. 81) 

(A. 82) 

(A.83) 
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F b 

y 
24E cd wr 
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+ [• W] for 
Jl, < < 2- z .t 

The value of Btrb at midspan for the load case in Fig. A.8 is given by 

F b k 
7 y 2 

BE If ra 

sinh k27 t - sin k27 t 

cosh k27 t - cos k271 
(A.84) 

The distortional angle, Strb' is a measure of the distortion of the 

cross-section due to the distortional load system. 

A. 7 Analysis of Shear Lag · [87] 

The distribution of the longitudinal bending stress taking 

into consideration the effect of shear lag is shown in Figs.A.l8 and A.l9. 

The distribution is parabolic across the width of the top and bottom 

slabs, and linear along the webs, as shown. 

The stresses at the top and bottom of the web can be calcu-

lated using the following equations. 



298 

c 

T 

Fig.A.l8 Shear Lag Effects 

t I I-

Case 1 
---------- t ---·--··-----

I 

Case 2 

--··-- ···-- --------·-··-··--+ 

Fig.A.19 Load Cases for Shear Lag Analysis 



299 

A.7.1 CASE 1. No Warping Restraint and No Bending Restraint 

at Supports 

A.7.1.1 Uniformly Distributed vertical Loading ny Over Entire Span 

At midspan 

f 
vlg 

where 

T)y g,2 
=± .~ 

8 IX 2 [ 

k3'+R. 
tanh --

2
--

2 
ki+ 

34 

f 
vlg longitudinal bending stress at the top and the 

bottom of the web, considering shear lag effect 

n = intensity of vertical distributed loading 
y 

G 

1 = 

=~\~ 
b V2E 
shear modulus of elasticity. 

A. 7. 2 CASE 2. Full Warping Restraint and Bending Restraint 

at Supports 

(A.85} 

A.7.2.1 Uniformly Distributed vertical Loading ny Over Entire SEan 

At supports 

n l2 
s!.!.+ 

k - 1 
f . ± _L_. 33 l 
v~g 21 2 6 k3'+t k34t X 

tanh --
2 

(A.86) 



At midspan 

f 
vlg 

n t 2 
=±-Y_.d 

21 2 
X 
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[
...!... + 
12 

[
k3:R. - ; 

1 

k34t l ] 
sJ.nh -. -2-

(A. 87) 

In Equations A.85, A.86 and A.87, the second term in the square bracket 

gives the increase in longitudinal bending stress at the web due to 

shear lag. 

A.8 Computer Program for the Analysis of Box Girder Bridges 

The listing of the computer program developed for the avail-

able methods for the analysis of box girder bridges summarized in 

Sections A.l through A.7 is given below, along with the requirement 

for the input data. 

The program calculates the stresses in the top slab over both 

webs and at the tips of the cantilever slabs, and in the lower slab 

beneath the webs. 

The program has the following features: 

1} The complete longitudinal and transverse stresses within the box 

section at different locations through the bridge span are 

calculated . 
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2) The program can handle a box section with and without side 

cantilever. 

3) The program can handle both simply-supported and fixed-ended 

conditions for any bridge span. 

The analysis consists of the following operations: 

1) Input bridge data 

2) Calculation of the longidutinal bending and St. Venant torsional 

shear stresses 

3) Calculation of the distortion transverse bending stresses using 

the Knittel Method 

4) Calculation of the distortional transverse bending stresses and 

the distortional longitudinal warping stresses using the 

equivalent beam theory 

5) Calculation of the distortional transverse bending stresses and 

the distortional longitudinal warping stresses using the 

Kupfer Method 

6) Calculation of the longitudinal torsional warping stresses using 

the Kollbrunner and Hajdin Metnod 

7) Calculation of the distortional transverse bending stresses and 

.the longitudinal distortion warping stresses using the beam-on

elastic foundation method. 
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Restrictions 

Units must be consistent throughout the program. The 

program handles only box sections with constant wall thickness. 

List of Symbols 

B 

BCAN 

HT 

HB 

HW 

D 

width of the box section between the webs 

width of the cantilever slab 

thickness of the top slab 

thickness of the lower slab 

thickness of the web 

depth of the cross-section (distance between the centrelines 

of the top and bottom flanges) 

L bridge span 

P load 

G shear modulus of concrete 

E elastic modulus of concrete 

WDL self weight of bridge per unit length 

BC boundary condition: l fixed end 

0 simply supported 



Input Data 

First Card 

READ 

FORMAT 

B, BCAN, HT, HB, HW, 0 

6 Fl0.5 

Second Card 

READ 

FORMAT 

L, P, G, E 

4 El5.5 

Third Card 

READ 

FORMAT 

WDL, BC 

FlO. 5, IS 

Output Data 

303 

(See the listing of the Computer Program) 
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~W~TFJV SOLJMAN,PAGF~ 40J,~IMF:~O 
r: 

c 
C METHOD OF ANALYSIS AND CF<;IGN OF fiOX GfPOER BOJOG:::c; 

c 
(" 

t" 
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of- • n r : , 1 o > n , r' ,- "' ~., , Hr • ff • ~ • H w • o 
1 0 r r>r; ·~AT ( f F 1 0 • ~ ) 

r. r- ,, n ( c::; • l 5 , l • r • (, • re 

t :; ;· r · ,., ·.u\': ( 4 r 1 c; • c:- > 
R [ AD ( ,. , l q ) "' l~L , K C: 

19 rnPMl\T(r.'O•<.;,J<) 

r ••••~•••••••t•••t******t****************************************** 
C 6.".1.\LYS {<; .-:'~' t: T ' 1Pl.'- ·~·- ~li·, P.Jr> .\ND ST V1·NANT T(lq ION 

~ ··~~····&•*************t****************************************** 
r: 
r: 
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f. MX-::r'*L/P aO 
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v,.-r>tfl. o 
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"'YC qc.-.~'*~-' .. •xcr, 
A (;l:: o"' * H * HH 1< ( 11- ~ C r; ) 
·'- y r: • r * q t H T ~ X ~ r; 
AY":: f H HI C \'4 ) t~P' t X ( r; tH \~ t ( I XC G -HT~ o 5) * f< 2 o 0) / 2 • 0 
V L ( ::: ( V · 1\ Y C ) I ( I Y (. HT ) 
V I r = ( V >V t. Y f ) / ( l X ~ 11 T l 
VI 'I"'("*'· Yl~) 1(.1 Y.l(tll'~) 
V I ~1 ::: ( V * f\ Y M ) I ( I X ~ ! I .~ ) 
1\l.''i'"::"~D 
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r nt. 11 ("::: •.• nt C * er~- ><I r; H) • c ~ H'') / I X 
r r 11 T S -:: Mf H. ~, 'I• ( Y ( C H) • '· ~liT ) I 1 X 
r t•t r· c; '"' ~ 1 I) l r :+ f P - X !- G J J • ,. * I I'' ) I I X 
F LT(. :: r ·~ X + ( X r (; J 0 • "· * H ; ) / I l( 

'. L H C -; ' M X * ( f - X C (, H) • r f< ~VI t I l Y 
r: I • r· :::'I 'l )I_,. ( X ( r·, .. 0 • c; ·H~ T ) / T )( 
r·Ln•:-,f;'1Yi (D-X~~~>+-•J•'•-:<1~''111'< 
w · > 1 r~· ( ~ .• • .,. > 

t- r flf".' .\- ( • 1 • • // •l'l l(. • -;T•c- r::-;:- <:; r'II_Jf' T'l rH (\r) Lf1Ar'l • • 
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W 1·' f TE ( 6 , t A ) ~='OL r C , F () Ul r: , F" OL T S, F Dl R c; 
1 q 1:- ,.., rp• 1\ ... ( I , 4 F 2:) • t 0 ) 

W17TT':((t20) 
20 :::nr.~111,.( 1 l'tl/olvX•'A.N~LYSI5 rr SIMPLE AINDING ~NO ST VFNANT T('RTI'J 

$~!. , 
WtJITr(t ,;:>t:;) 

~, "'· r U R M. AT ( / / , n l( , ' r I. ..,. ' , L I X: , t F L !J t t l 2 X t 'Vl C ' , l 1 X , 'V L F ' , l O.X , 'V t. 13 1 , l 0 X, ' Vl 
or. ll.l ' , l 0 X , ' VS VT '., 1 J X , ' vr:. V n 1 , 1 J X , • VS V W • l 

w;)TTF(f .?o)rLr·,rLPC,rr .... s.rLns.vLc.vLF.VL'3,VL~.vsvr.vsvR,vc:vw 
3 n r f\ D M ll T ( I , I H"' I 0 • ';) 

******$***********************************************~*********** 
A~ALY<;I~ n~ ~~~DI. ~r~lTN~ & Tr~IUN AN() DISTOQION BY KNITT~L ............... , ................................................. . 

C:: T'"At!SV'~;c:;r "-JG>·U·1•'L STI'•-~t::F~ PFR UNl"~" LENGTH ($YII-'t-1ETRIC LOIIDING) 
c 

c 

'"' .., I 0 00 I = 1 , ., 
XX-I-! 
Z-::(LtXX)/?.'1 
l(""LI:?,') 
n 'K.::: ( ? • * P /l ·) * <; I~. C P 1 * X I L ) 1< <;I t-1 ( r> J * Z / L ) * 0 • 5 
~. r··p::;n~tp· 

AC~I'I=flCAI'I*HT 
l\ !:·!" I T -:: [1 * HP 
- T- (~ X* ( A T f' P * P -l• , t '\ C .1, t J ~ 11 C 11 '·J ) * X,- G / ( t. • * T X ) 
JT=QX.ACAN*HCAN•XCG/JX 
.,.~ u~•~onT*B*(D-XCG)/(~.*IX) 
- \<!,... il X 
~oJiliTF(f ,:. 0) 

i.JQ r·qn~·A~('l'o//elOX•'-=>I'·IPIE f'll:l\lf1JI'H;,TOPTIO~ Al\lf1 Dt<;TOQION RV K!NtYTt:: 
J;l ~w r11rn • I 

Wf)TT-(ty,(\C"·) 

'l'l r-rtQMA~{ 1/, tt1X, 1 SY~1\1,-Tl-'I,.. I OADII'!G') 
'N Q [ T '. ( r· t ~ '' ) 

11 I ,~ 0!.: '·1 (1..,. ( /I , I 2 X , ' r· T ' , t r; X, ' TT ' , l 7 X , 1 T 1_1' , l 6 X , 1 r: W t 
W · ~ T T r ( t ·· , r: 0 ) ,. T , T r , T n , ' W 

c.') ,- r· r'" A l ( / , ll. r ? 0 • I ~11 

r 1\'·L'.I YSI S f 'f' IJ~ 1 TI SY'4'v·r«y~ l(;l\f1fNG 
c 

c 

v 'l r "'ox'" lcJ/ c ~ • * n 1 
V r.. ! I "' 11 X~ ! ! / ( '> • * n ) 
v 1 w-=nxH/C?.•r·• 
Vi L: J T r· { ( , S "· ) 

r.:;~c •·r'f''·' t_T( ////, l '1 )(, 'liNTT '~'f'·l'~' Tt; 1 < lJll\1") 
VJDlT"(r- 9 <)0) 

" '' F fl ':J ·~ f . .,. ( /I , 1 ~X , 1 V:, T t • 1 'j X , ' V f~ P ' , I 7 X , 1 V 7 W 1 ) 

.,. R I 1 F ( ' , f n ) V" ~ , v~<. n , V 7 ·..r 
60 rnDMAT(/,7r~0.!0) 

c A MPM[~JT flJ:;.TC,(Iflii.,.Tl~l A•·l~l.YSJ<; t•; PL~'-r1PW .. D T!l CAL:"'Ut.AT INT=PNAL 
,- r- 1•·sr S r ,. r Htf Cln'",rrl I f.?l'''t. 

c 
\. 



306 

r 
c ·······~·········••••t******************************************** 
C ANALYSIS CF OISTQRTTON ANn DISTORinNAL WAOPJNG RY THE EOUIVELANT 
( '-H:: 1\ M '-1: T H (")() 

c ****************************************************************** 

r ,.. 

I r 'r ..,. c 1 1..,. t ( ( fl +-? • +. q -:: r ~J ) * * -. ) ) 1 1 2. 
r wn = PH:'* 1 n * *" n > 1 1 2 • 
AT ;:: ::': ( ? • e: t T Cl p ) / (Fl * ~ ~ ) 
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$D·~r;r· '**" l K 1 = ( (I ,I ( F* I [FI ) ) * ( L * ~,4) / (PI** 4) ) * S T N ( r I* l/l ) * 0, 2S 

( Kt: fl~''ID}tH', Fl' Y.l'HLTT\" nr nNF r·aliiVeii\NT [l[~'A 

r K·~:""H'""' PRflP!JPTTliN (JF li_PPLJI::D TURTIONAL WJMr-.NT TAKF-N IN PUJ:;c Tr:>TJO"' 
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( 
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'· ·) r. n.)., 1\ T ( 11 • '- :'( •• r ! w T ' ' 1 r. 'I( ' ' F r, w R •• -" 0 I( ' • PL '7, I • I q X • '()TV •• l p X •• 0 f' I c:; • , 
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W P r ..,. [ ( ' t 7 0 ) F !) W T , F n W fl , DL S t D TV t D 0 I S 
7 0 r· nPM AT ( /, ~F 20 • 1 0 I 

········~···~·······················~····························· D[STORIUN & DI~;TQPI'1"1AL Wl\f.'PI"'G ~'r' I<IJPFF"RS Mr::THQD 

······························································~··· 
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1<':2f•=l.OH ( ( ?.')l.d1/f') t-(3o '*( { JTf)Pt-JBilT)/lWER)) )/( ( ( tTnPt-t"1nT)/IWF8) 
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F r),. W :- ( f;, • i- D' IT f) ) / ( ~1 .'/ 11< 1< :> ) 
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C TRANSEVFPSF A~NDING ~TA~S~ES DU~ TnqrtnN ,.. 

c 
( 
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r 
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c 
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,.. 
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7q 
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'<2 

85 
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wntTf("•-:'1'") 
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r Cl'-' M AT ( // , X , or ~11~1 T l 1 , 1 IJ X , ' F D 1</B 1 1 , 1? X , • FD WT 2 • , 1 6 X , n:·l) W !3 2 ' ) 
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APPENDIX B 

ANALYSIS FOR PURE TORSION 

B.l General 

Combined torsion, bending and shear is a frequent loading combination 

encountered in many structures and perhaps it is the most complex loading 

combination to analyse. CUrrent design procedure is based on the indi-

vidual analysis and design procedure for each type of loading. The 

torsional stiffness of the section is generally determined using Bredt's 

formula for elastic analysis of the uncracked section. Once the section 

cracks, this method cannot be used because the section is no longer a homo-

geneous continuum. Test results show that the torsional stiffness of a 

concrete member is influenced by cracking and interaction with other types 

of loadings [78,106}. The ultimate capacity of the structure after 

cracking in this case is a function of the strengths of the reinforcement 

and the concrete and also of the ratio between width and depth of the 

section and the ratio between the cross-sectional areas of the longitudinal 

and the transverse reinforcements. In 1929 Wagner developed a tensile 

stress field theory to study the post-buckling resistance of thin walled 

metal beams. However, in discussing Wagner's work, Elfgren [106] 

suggested that a better name for the model used by Wagner would be "the 

compressive field theory" or the more conunonly used name the "truss analogy". 

Mitchell [93] used a similar compression field theory to analyse reinforced 

concrete beams subjected to pure torsion. The longitudinal and trans-

verse reinforcements are considered as tension members of the truss 

while the concrete regions between cracks are regarded as compression 

struts. It is assumed that all compressive stresses are concentrated 

within the diagonals between the cracks. 
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B.2 Computer Program 

The computer program developed for the diagonal compression 

field theory was adopted from Reference [93]. For completeness, the 

input data and output data, and the listing of the. program are given 

below. The program analyses the complete behaviour of structural 

concrete sections subjected to pure torsion and has the following 

features: 

1) The complete torque-twist relationship, hoop stresses and strains, 

longitudinal stresses and strains, concrete surface strain.and the 

inclination of the diagonal strut. 

2) A wide variety of cross-sectional shapes can be handled (e.g., 

circular, triangular, rectangular and T-shaped sections). 

3) The program handles both reinforced and prestressed concrete 

beams. 

4) Different shapes of stress-strain curves can be used for both 

steel and concrete. 

Restrictions 

Units must be consistent throughout the program. 

Only St. Venant torsional response is predicted. 

List of symbols 

BMNO 

NJ 

SOURCE 

beam number 

total number of joints 

name of investigator 



JUNTR 

X(I) 

Y(I) 

XH(I) 

YH(I) 

T 

AC 

FPC 

EO 

BETA 

AH 

s 

ES(l) 

FY(l) 

FULT ( 1) 

AL 

ES(2) 

FY(2) 

FULT(2) 

AP 

FPI 

ES (3) 

FY (3) 

FULT(J) 
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number of joints 

X- coordinate 

Y- coordinate 

hoop X- coordinate 

hoop Y- coordinate 

least wall thickness in the cross-section 

cross-sectional area of concrete 

strength of concrete 

strain of concrete when f = f' 
c c 

inclination of concrete struts (in degrees) 

area of one hoop leg 

hoop spacing 

modulus of elasticity of hoop steel 

yield strength of hoop steel 

ultimate strength of hoop steel 

area of longitudinal steel 

modulus of elasticity of longitudinal steel 

yield strength of longitudinal steel 

ultimate strength of longitudinal steel 

area of prestressing steel 

initial stress in prestressing steel 

modulus of elasticity of prestressing steel 

yield strength of prestressing steel 

ultimate strength of prestressing steel 



Input Data 

1) Read 

Format 

2) Read 

Format 

3) Read 

Format 

4) Read 

Format 

5) Read 

Format 

6) Read 

Format 

7) Read 

Format 

315 

BMNO, NJ, SOURCE 

AS, 12, 6A4 

(For each joint) One card for each X and Y outside coordinate · 

2Fl0.0 

(For each joint) One card for each XH and YH loop centreline 

coordinate 

2Fl0.0 

T, AC, FPC, EO, BETA 

5Fl0.0 

AH, S, ES(l), FY(l), FULT(l) 

5Fl0.0 

AL, ES (2) , FY(2), FULT(2) 

4Fl0.0 

AP, FPI, ES(3), FY(3), FULT(3) 

5Fl0.0 

Computer Program Listing 
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MAW CATE = 78111 17/17/44 

c 
C FP[GRA~ NAMF - QIAGQNAL COMFR~SSION FIELO ANALV51~ 
C PURPOSE - Tr'! AI\ALVSE Tt-<E CONPLETF.: EEI-'AVIOUR OF ST~UCTURAL 
C CONCRETE AEAMS IN PURE TOR510N 
c 
C VAPIARL~ LI~T 

·c 
r Af'l A~f:A ENC"Lr.SF:D AV St-'F.AR FLOW 
C AC CR0~3 SFCTIONAL ARF~ OF CCI\CRETE 
C Ar UWSS SFCTIUI\Al A~FA OF f'NE HC(I::: LE:G 
r AL TOTAL AQEA CF SVWVETRICALLV PLACEO LONG REI"FCRCI"G 
C AP TOTAL AREA CF SYW~ETRJCALLY PLACED PRESTPESSII\G 
C A Df:PTH OF f::()UIVALENl PFCTAI\Gl,LAw 5TJ.<ESS DISTRIAlliCI\ 
C 0~1\C ~FAW NUM8fR 
C EC.ES MODULUS Of ELASTICITY CF CCI'I.(f";FTE Al\0 STE:tl 
C f'PC COMPRESSIVF STFH::NGTf- f1F CCNCPETE 
C rH,>L,FP STRESS ll\ t-COPS, LONG STEFL, AND PRF.STRE:C:SH-JG ~TFEL 
C f''Y VIF:LO STRES"; 
C: Fr::J INITIAL ST~FSS IN PI<ESTPESSING ~TEEL 
C 1\J NtJMDLJ:< OF SICE<; fF CROSS <;ECT 1(1\ 
C HOOP CEt\JTERL I 1\( P.f F I WE TE r; 
C PO PERIMETEn GF St-'EAR FLOW PAT~ 
C 0 SHEAR FLC'o'i 
C c; HOO~ SP AC IN(, 
C T LFAST wALL THICKNESS C>' CFr1SS SECT ION 
r: Tf) THICKI'.ESS C~='. CO·-I!=~E~SIOI\ CIAGCI\.ALS 
C rr.sr. TYPE OF 5TPESS ~TPAIN CU~E 
C X,Y COORDINATES 0~=' CROSS SECTJCN 
r: XH,VH HIJCP CCNTn<tli\F: Cf::'JRDII\AT[~ 
r. /ILPJ1J\, 1\NGLE. At.JCL E OF DIAGONAL O:JI·H:-J.<r=SSION 
C Kl,K? RECTANGULA~ ST~ES5 BLCCK FACTCRS 
( R(TA ANGLE OF CCNCRETF STRAIN TA~(ETS 
C F•' 5TqAt N IN Ct:NCH.TF. Crr<RESf:OND ING TOCOMPRF:SS IVE sn:;F."GTH 
C f.:T) CONCRE'fE DlA(J STr:.AII\ AT PCSITICI\ Ct RF:StJLTANT St-<tAr: FLCw 
C ~CS CONCRETE DIAGONAL SURFACE STRAII\ (CCMP PCS» 
C rH.EL,FP STRAIN'; IN 1-0rJPS , LCNG STFlL , AND PRE'!TPES<;ING 
C (TENSION Pn<::;» 
C DEP STQAIN CIFFERENCE 
C P'Sl TWIST P[r: UtdT LE:NGTH 
c 

r) t WE"'> l CN t '3 ( 3) , F 'Y ( 3) • F l,L TC 3), TIT SL (?) , 'JfJUf< Cc (I)) 
I> I ~r NS J CN X { ~ '"' ) o V ( 30 ) t X 1-- ( 30 ) • V H ( 3 i) ) , X r ( Y' ) • YP ( ](' ) 
[ N T C GF R T 5 S C ( 3 ) 
tl\~fGEA B~~C,F~D 

REAL K1K2.,K2,1<1 
COMMCN /CALCAA/ EloEP,EHotLoF~,FH,,L,A~oAH, 

l A,A,,P1,EUS,KlK2oKioK?oFPCoDEPo5o~H,IUNTW 
CCMMGN /CFFS/ T:-sC.ESoFYoFULT 
CATA ~NC/5HFNC I 

'f; 
11~~~ stzr:: wRN-. 

I Ut\ T 1;.:::: C::: 

IUI\TW=:f> 
I P::: c; 



c 

NI M= 31 
r:~=f). 
'11 RI TF ( I UNT '11 , '> ~9) 

,_.AIN 

317 

CATE = 78111 i7/17/4.4 

C. INPUT e~AM CATA 
c 

c 

101) PEAO( IUNTQ.c:nt HWI\(,1\J,SCURCE 
T~C~~I\~,EC.FNGJGrTOQ~1 
IJATA X/~~~,~/,Y/3C~Oo/,~H/3~~~.J.V~/30*~~/ 
IF ( NJ- I ) I lt , If 2, 1 t1 .3 

1'"' 1 IH' AD (I UNT Q, r.:;n 2 ~X ( 1 ) 
~EAD(IUNTR,512)~H(ll 
V{l)"'O• 
VH (1 ) =·~, 
G0Tf11''4 

1 ') 2 F< E AD ( I Wn q , '50 (:: ) X ( 1 ) , V ( 3 ) 
R FA C ( 1 UN T ~ • 5 '1 ~ ) XH ( ,~) , V H (3 t 
V( 2)=V( 3) 
X ( 4 ) =X ( "!) 
YH(2)=VH(]J 
Xt-'(4)-::XH(J) 
1\ j =4 
(;QT\.1''4 

f"\3 PfAf)( IUNTR,':: 1l2)(~(l)o'I'(I),I=t',I\J) 
P [A 0 ( t UNT Q, 5 {.• 2 )(X H ( I ) • V~ ( I J • I :: 1 , N J ) 

tn4 PEMHTUNTP,t;n:HT,A(,FPC,El,fElA 
I-<FAI){JUtHR,504)AHtStfS( l)oFY( lloFULT( lJ 
f; [A C ( 1 UN T R, 5('1 "i ) AL • E S ( 2 ) , r-Y ( 2) • FUL T ( 2 ) 
r~FAD( fUNTR,S\:4)AP,FPI ,F..S(J) ,F'r( ~) ,FLLT(]) 

1 If\ f., ~ 11 IT f. ( I UN TW , o ~ 1 ) f1 ,_. 1\0, S 0 un C E , N J , ( I , X ( I ) , Y ( I ) • I , X t-' ( I ) , Y H ( ·J ) , I :: 1 • N J) 
~~ITECIUNT.,~O?)T,AC,FPC,E~,eETA 
W R IT t:: ( I UN T W, ':> "': ~) AH , 5 , E S ( I ) • F 'V ( 1 ) • F lll ( 1 ) • A L , c S (?.) , F V ( 2 ) , F lJ LT ( 2 ) 

I , A P , f PI , ~ <; ( J ) , Fy ( 3 ) , r: UL T ( 3 ) 
f l F. T A"'" f.~ F T A I '::. 7 • ? <; !' ~ 
El= l=F PliES( 3) 
nr t!? I=l.J 
I r ( r UL T ( I ) ~ [ 0 ., C • ) <; C T C 1 1 t 
TSSC(l)=-2 
\,CTr.tl? 

111 TSSC(Il.,l 
1 12 (CNT INUE 

C CALCULATJOI\ OF I~ITIAL CCNDlTICNS 
c 

c 

12~' [C=;>, 1'FI=C/F'l 
A C PAL= A C + AL ,.. ( F 5 ( 2 ) I E C ) 
[LI=-CAJ':tkFPI }/(~(PJlL.,FC) 

C CALCULATE STR~IN CIFFffHNCE ,.. 
n Er-' "'FP I - E L l 
f) F n <;"' ( I • 1 5 '• r U ) I " 1 • 
( A I I ') H 1\ f' C ( X f i , Y t-i , ~ ~ , 1\ J o f, A , P t· ) 
NCJP<,::? 



( 

31H 

MAIN CATE:: 78111 

n~ 3;q I~PAL=J,? 
DATA TIT~L/2H t2~UN/ 
WRI TF( tUNT~,7)1 )TI TSL(I SPAL) ,eMNO,SCURCE,I3W"C,I\CP( 
WI=ITI==( IUNTW,7''~) 
IFPR=~ 

C (NIT I 1\l I lF A. VALUE nF" r;:r,s 

c 

f f) S : I • 7 C: ''T 1'\ 
Ft_::I"'Y(;:>) 
FH::FY( 1) 
f'P=FV(J) 
P'l::l'l.CI*PH 
or: ?oo t=t,."i? 

C CALCULATE STRFSS ELOCK FACTCPS 
KIK?~FKlK~(FDS,E~) 

( 

c 

K?::VK2([D<:;,Pl) 
t<t~KtK2/K2 

C ~STIMATF A 
c 

( 

A~ ( AL FL +hP liF P .) / ( K t •FPC 'P"' ) HAt"' '!of H)/( K 1 .,.F PC 1l S) 
A-=-AMINt (A,AA/FH) 
CALL CALCA(XH,YH.~F,YF.M~tNJolfRR) 
I F C I E k R • F Q • I • t 1\ D • I S P A L • F 0 • 1 ) GO T 0 3 q 7 

211 IF( I["QR.,£.C.t )GCHJ3<;q 

C CALCIJLATF TCRGU( Jll\0 TYdST 

c 

0 '='SO~; T( ( ( A.l ~ F L + IH'""' FP ) /P (J) -~-,. ( A I'< !" F H/ S ) ) 
T C n QU E :: ? • " A~* G 
P~{::([DS/2•)~(KtK2~FFC/Ct 
TC:::A/1':?.. 
F:C=-ED5'"'(1 .-K?/?e) 
TANAA CFD+EL)/(ED+fH•CPH/P")) 
TAf\A:::SQRT (TAt'-1/IA) 
ALPHA::ATA"(TAt\A) 
[HFTA=-(EDS/2o)*(t.+CrS(2.~{EETA-Alf~A))) 
~~GIE=~LPHA~57.?q5R 

C OUTPUT ~ESULTS 
c 

17/17/44 

'N r. IT 1: ( J U f\. T W, 7 'I? ) T r F<OU E, PS I , r ._, , E ~ • F L , F L , r- P, FP, F. 0 S, A 1\ r.L F. , TO , A fl, PC oE l3 
lET A 

I F ( ( I/ I P ) f! I P • F 0 • I ) W R J T F ( I UN T 'A , 7 !') 3 ) 
c 
C C~nOSE b. 1\F W VAL L;E OF (CS 
( 

2 Q 9 f:' 0 C:: = f D S -0 En ~ 
C OUTflUT INITIAl. COf\DITIC"-S 

F"L=Ftt 
FL=[Lf lrFS(?) 



FP=FPI/[5(:31 
rr::=rPI 

MAIN 

319 

C~TF: := 78111 

r:OETA:::([DS/2. )Jto(l,+COS(2.*(EF..T~-ALFI-A))) 
~PTTF..((UNTw,7r4)FLtfl,FP,EPtEOS,FE£TA 

3~7 ne 39R I=J,NJ 
,)(H{():::XflJ 

3qA YH(f);;:Y(() 
'~l9 1\r:f'G-=NCPG+l 

G C T C 1."" r"' 
') :l U W ~ f TC ( I UN T W , q <;. c. J 

STOP 
q-;q FCF~AT( IHl) 

c 
C ~-~~N~UT FOOMAT 
c 

c 

'if)':J FnPMAT(Fll.'),-3PF p;,f','!f'2F1C,Q) 
'il4 FrFMAT(2rto.~,-JPF(.l.~,tP2Fl0•1) 
S "\ :J r C F f.l A T ( J F 1 , • 1, • 3 r· F 1 n ., I") • C P F 1 n • i) ) 
5~2 FC~MftT(2Fll'l.OJ 
")"'I FTRf.IAT (A') tl ?tf;J\4) 

C ~"<·'"CIITHJT FORMAT 
c 

F"\1 rr.Ft.JAT( lHl}/lAX.t I I-PEA~ 1\11. - tA5tliH- SCUf..CE - ,F,A4/ 
It AX,7H::::::;;::::::.::::::, tnx, fH======/1 
t=X.tt-HSC::CTICN GF:CMF:TRY/ 
lC::XtltiH==,.==== :::;::::::::=:::::::// 
t5X • l6t-1Nn. CF JO JNTS : , 12// 

17/17/44 

l':lX.l91HJUTSIDE CCCJ:(UJI\AT[S,7x,27HHCC~ CENTRH INE C.CUFDI~ATFS/ 
l~X,tQH------- -----------,7Xt27H-~-- ---------- -----------1 
1 <;X , ~ H J r TNT , 4 X , 1 ti X , 6 )( • 1 r Y, I J X , 51-' J fl IN T , 3 X •? H X H , <;X • 21- YH I ( 
t 7 X • J 2, ? X, F 6 • 2 • l X or f: • 2 ol 31< ,. I 2, 2 X, f6 • 2 • I X • F ':::, 2 J ) 

f"')? FI"'J::MAT(lH'l/"iX,?CHCCNCH[Tf: I"FCPtl.t>TICI\/. 
l~X,2UH=======~ ===-========// 
t•:)(,~'·f•HLFAST wALL .toRE~ CCI\CJ..>EH· P[.AK CCNC <;Tf'AIN 
~ T Ar.Gr·T/ 
1~,X.f411THJCKI\F·c;s(T) fAC) STQFI\GTI-(FPC) ST~AIN(E·J) INCLII\ATI.OI\(13 
H TA)/ 
J~X,Fh,J,oXoF7,2o2X,~7.J,7X 1 FG.~,q)(,F4,J///) 

r,tl) FOf:MAT( IH ,4X,2'':HH"INFD~CE~EI\T INFCf.MATit;N/ 
I!:Xt 2!':11=====-::=,====:::: ============// 
l'SX.tOHHCfJF STEEL/ 
1'3X,11H---- -----/ 
tAXo?HI\H,4Xolt-'So7X,,HESH,6Xtl2~+YH rUI TH/. 
1 c, X ,I" 6 • J , I )( t F5 , ?. , 1 X , -1 F F 7, 2 , 1 X or,; OF e • 2 o 1 X, F R,? // 
IC::X, lBHLCNGI TUr:>JNAl STEE.L/ 
l~X.tAH------------ -----/ 
19Xo2HAL,f-.Xo1HF~L.r-:'X'ol?HFVl. FULTL/ 
1 5 x • F 1 • :1 , 1 x • - J rr 7. 2 • t , • '; P F 11 • t: • t x • "" e • 21 , 
l5Xt1FJHP~F:STPF-SSINC: STF~"L/ . 
15X,tAH------------ -----/ 
IQ X, ;:> H hP • A X, H·• r r> I , 4 X, 1 H: S P , 5 X , 1 2 HF Y r: f UL T P / 
I") X , F 7 • l • f '\ • ;>, - 11.'1- 7 .;! , •,1 P f •l.,? , r 11 ";:>) 

f· '1 ') F 0 ~ M A. T ( t H l/ ·" 1 X , . i •) ( t H ": ) I 
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MAIN CATE = 7€\111 17/17/44 

~21X~JOH~ STQUCTLRAL CONCR~TE •/ 
1 ?TX .31.'H* Rf i'~ I~ PlJf.E TORS tnN * / 
l?lX,J~H~ CG~P~f~SICN FIELD ~~ALYSI5 •1 
121Xt3~H~VEPSIGN 2.0 JA~ 1~74•/ 21Xo3~(1H~)) 

7~" Fn~~AT(lH1,tn~~ TC~CUf TWIST ~CCP STEEL LCNG.STEEL P~E 
J5, STEFL MAX CGNC ALPHA TO A~ P~ tAETA /lAX,J(l5~ 
lSTPES~ STRAIN ),6~ST~AINI/) 

7 1)1 r·Of<MAT(HH/1X,A?,27Ht;~AllfD SECTICI\ FCR - PFAM ,A';,3~ - ,6A.4o35X, 
JA"',IH-,12) 

7 fl2 F C J; M AT ( t H , r 6 • f , .~ P FA • 2 , J ( t') PF 7 • l , 3 P Fe • 2 ) , F 1=3 • 2 , LP I= 7 o I, F P. • 2, F <; • ') , F 7 • 1 
t, 3~='>F 7., 2) 

7 1) 3 Ff: f: M A T ( I H 
7~4 FORMAT(IH ,AX,?H~.,4X 9 4~j,n~,4X,3~0."•4Xo4H~.~0.2(~P~7.t,JPF~o2), 

I JPF 8.., 2 t 4 X t 3 H l),. n •-'~ X , 4 H 0 • t' 'l , 7 )( , 2 H 1 • , 4 X , 3 H1:' • '' , .1 f'F 1 • 2 } 
FND 

FFCT~ ~CT~RM,JO,ERCCIC,SCURCf,NOLIST,NnCECK,LC~O.~nWAF,hCTEST 
FECT1 ~AMF = Wlll"' , LINtCNT = 'S€ 

~nL~CE STATEWE~TS = lt6,PWOCQAW ~IZE = 54~0 
nt OIAGNnSTJCS GENERATEQ. HIGHEST SEV[Q(TY cnoE IS ft 
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fl~ASF 2.n CALCA CATE = 78111 

c 
C ADSTRACT - tTERATtC~ TC FI~C A , STEEL STRAINS ANO STRESSES 
r: 

<: 

OI~FNSION X(~M),V(MM),XP(MM),YP(M~} 

REAL K 1 I<~ t K?, K I 
(~M~ON /CALCAA/ [L,fPtE~oFltFP,FH,AltAPtAHt 

1 A , A') , Pf1 , C DS , K I K? , K I , K ;::», fC J."' C t C E J:: , <;, P t- , I UN T W 
Dt\TA ITA,ITF,ATrL,ETCL IJ5 1.'tlf.!'l,~(;t,,.,~5/ 

( ITtRATE 0~ A 
c 

c 
C CALCULAT~ An,p~ 

c 

c 

c r. L t. c o c -~ o ( x , v , . x o , v r; • ,. M • N J , A 1 2 • ) 
CALl 5HAP~(XP 1 YP,~N,~J,A~,P() 

C IT(P/ITF. ON SP'EL STPA INS 
C JTEPATE ON STEEl STPAINS - LONGITUCINAL 
c 

c 

DC ?~"'' K=t,tTE 
t::t...~=~='L+FP 
[L=(Ef)S/2• )'ll( KIK?IZ'tPC"1.1H7) /( AL ~FL+AP~FP)-tOS~,( le-1<212.) 
FP=DEP+EL 
Fl Tr;ST=f"FS(?,FL) 
F flTFST::-:FFS( 3, J:P) 
Su~T=~LT[ST+t~TEST 
I r ( AAS( SUft'T-SU~) • u:: • ETCU GOT02l J 
FL=•~*(FLtFLTFST} 

?'" ~P=,~~(FP+FPT[STl 
G0Tr)!1!):"1 

?11! FL-=ILT[ST 
FP=FPT~='ST 

C I Tf;'rlhTF ON STFF-L STPA JI\,S - H10P 
( 

301' 

.110 
c 
c 
r:: 

4 'H\ 

~~ Ill 

DO -..(:1\ K=lolTC 
It-= ( r OS/2 • ) '' ( K I K? "r r" ( • A IJ * '3 ) / ( At" :4<F t1 H' t" ) - Li) S _. ( l • -I< 2 I c , ) 
rtfit S T:: FF S { 1 • E-._,) 
IF ( A11 S( tH T f S T -F If ) • u;: • ET CL J GC T C :: t;) 
~H=.~*(~='H+FHTFST) . 
GDTOO<'~O 

FH::FHTFST 

r;ETURN TO A CALCIJLATICNS 

A T [ S T = ( A L -lC F L t- fJ P • ~=' P ) / ( K 1 "' F fl C .. P .) l + ( A t- :t F t- ) / ( K l * F PC ,. S ) 
tF(ARS(ATEST-Al.LE.ATrL)GOTC4J~ 
fJ:ATFST 
GC: TC<?I) 1 
A=ATrr.T 
J;;[ TlJI'N 

17/17/44 



PfLEASf= 2.'1 CALCA 

C FRWrR ON ITEPATICNS 
Cll")('l ~q 1 Tr: (I UNT• o9'SO) ITE 

GGTQQf) 2 
Q(H Y.f:;ITt:( IUNTW,9'51) ITA 
'1fl2 JFI<R::l 

r: E TURt.J 

322 

CAll "= 7A111 17/17/44 

95~' r·or.~AT( P11"\o241-1MJ Cl ITE.r;ATICI\S f)((F.E:DS 15. JIH FOR SH<ESS/11-'1) 
q '1 1 Pl P M A T ( l H ) , 2 4 H 1\ C C F I lE J:; A Tl C N ~ E X ( E E () !; I 5 , 6 H F C R A I 1 H 1 • 

[1\0 

~UNCTION ~~S(Kol) 

c 
C ARSTPACT- T~iiS FUNCTION CALCULATES T!-1[ STPFSS FCR A GI~LN STFEL 
C STRAIN USING FITI-'FP A CONTI~UCLS er: PlLINEAP FU~CTICN 
c 

c 

DI~FI\SICN ES(~),FY(3),FULT(J),T55((~) 
I t\ lE GL r~ T SS C 
CO~~ON /CFFS/ TSS(oFSoFVoFULT 
1?0:./IL 1\ 

I r ( T SS C ( K) • E 0 • '11 H! C T C 1 <I fi 
C CO~TINUOUS ~Tr:ESS STRAIN CUPVE 
( JI\Vfr;~c PAWe[f.(-CSvOOC PCLY"C~IAL 

X o: F UL TC I< ) /f' V ( K ) 
l\::1~3rt~3/AL0Gtn(x) 
F F 5:: E S ( K ) ·1r F: '41 ( ( 1 • + ( r; S ( I< ) k F: IF L L T ( K } ) • <t N ) ~ .,, ( - 1 • / N ) ) 
~:;r=runN 

C UI-LINEA~ STPF~S STRAIN CUR~E 
H• F FS=ES (K) •E 

JF(FF~oGTsFY(KJ)FFS=FY(K) 
C Pt~LtNFAq CU4V[ IN CO~~RESSICN 

c 

rvc=-.q9'~~~Y(K) 
lF(FFS~LT~FYC)FfS::FYC 
RETUJ:<N 
Cl\0 

•= UN C T l rJ N F K I K ? ( F C , F n ) 

r: An5TPACT- Tll[S FUI\CTICN (ALCUL.ATES 1<11<2 (LCUIVALENT ~ThlSS 8LCCK 
C MULTIPLif:R'5) FOP A PARA 1.l0LIC SlPLSS STJ.lAIN CURVE 
c 

X:clC/F'I 
F~1K2=X~(t.-X11.) 
~< E TURN 
~'""D 

FIJNCTtnl\ FI<;:>(F.t..f~) 

Af15TPACT- sn: flli\CTJr.l\ FI<IK?. 

'I!=£ c 11 n 
FK2=(4.-X)/(?.~(1.-X}) 
r.FTIH'N . 
F 1\0 
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com~o DATf = 7Hlll 

( 

C A 'l S T P 1\ C T - C 4 L C Ul A TF. S IN T E P lf1R C 11 r: I' n I N A T F ~ G I V [ N T 

DJMF~SION X(MM),V(~~).xP(MM},YP(M~) 
SIDE(DXtDY)=SGni(CX~CXtCY~OY) 
lf(~J?fQ~1)GOTOt11 
X(t\Jt1 )=X( I} 
Y(I\Jti)=Y(l) 
X(N.J+2)=X(2) 
Y(I\J+?)=Y(?) 
~ =" Jt 1 
D n 1 ;) " I = 2 , M 
DX=X ( J )-X (I-t) 
DY=Y( I) -Y( I-1) 
A = S I CF- ( C X • D Y ) 
DX:::X(I+t )-X(J-t) 
DY=Y(ltl)-Y(I-1) 
n=str.r. cr.x.cv} 
n.x=xc 1 +t) -x lt l 
OY=Y(I+-1)-Y(I) 
C=5IO!"'"(()X,CY) 
c=."•':)t(A+f3+C) 
X T = T" <;Qt;>T ( ( 5- A)~~ ( S -C) I ( S"'r ( S- f.:))) I C 
Xf"'( I ):::X( I )+XTtDXtT-'tDYIC 

1 ) t• Y P ( I ) = Y ( I ) t X llf' D Y - H• D X I C 
XP ( 1 ):::XP( 1\J+l) 
vr<tl=YJ::(I\J+I J 
Rr"TURN 

ti'l XP(l)=XCIJ-2olol 
~f:.TUPN 

':NO 

F F C T-* f', C T FP f-' , I D • E P-C C 1 C t S C U n C F , NllL 1 <; T • NO C E C K , L CAD • r,o M A P, to. CH: S T 
r[(T • NA~F ~ COORD , LINFCNT = 3~ 

SCU~(E STAT~Q[NTS = 2Q,PROGRAM 517E = 127E 
f'JC OTAGf\ICSTTCS GEI\f:PATFC 

17/17/44 



324 

SI-APF D.6TE:: 78111 

SUP~OUTIN~ SHAPf (X 9 Y,N~,NJ,A,P) 
C AASTACT- THIS ~UeQCUTlNE CALCULftTES APEA AND PERI~ETE~ 
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B.3 Analysis for Combined Torsion, Bending and Shear 

Space Truss Analogy 

The extension of the truss analogy to include combined bending 

and shear iri addition to torsional loads has been conducted by Elfgren [106·]. 

The basic formulation and details of this method can be found in the 

Reference. This method can be used to analyse a box section structure 

to determine its ultimate load-carrying capacity under combined torsion, 

bending and shear. Table B.l compares the calculated ultimate loads of the 

box section under the cases of pure torsion, combined torsion and 

bending, and combined torsion, bending and shear for the two cases of 

tension and compression failure modes at both the midspan and the support 

sections. 

The experimental data showed that failure at both the midspan 

and the support sections was characterized by yielding of the reinforcing 

steel on the tension side of the section (tension mode). 

The experimental ultimate load was higher than that predicted 

from pure torsion consideration, and approximately equal to that obtained 

from combined bending and torsion considerations. The following is a 

summary of the equations used in Reference [106] for calculating the 

strength of a reinforced concrete box section structure under combined 

torsional and bending moments and shearing force. 

these equations are described in Figure B.l. 

The symbols used in 
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Table B.l 

Calculated Ultimated Load Values (Compression Field Theory for 

Pure Torsion and Combined Torsion, Shear and Bending 

Support Section 

~:timate load 
~eto M M V 

,,s) T 
Case 

Pure Torsion (MT ) 64.25 

Tension Mode(MT+M) 128.3 88.38 

Tension Mode(MT+M+V) 128.3 88.38 46.06 

Midspan Section 

~te load 
ue to MT M V 

(kips) 
. 

Pure Torsion <M.rl 52.85 

Tension Mode (MT +M) 87.34 59.7 

Tension Mode (M.r+M+V) 87.34 59.7 46.06 
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11111 
b 
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~ 
b' ..., 

AH 

d d' 

Atb 

S Stirrup Spacing 

fytt Yield Strength of longitudinal top reinforcement 

fytb Yield Strength of longitudinal bottom reinforcement 

fv Yield Strength of the web reinforcement 

FIG. B.l IDEALIZATION OF THE STEEL REINFORCEMENT 
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B.3.1 Pure Torsion (~) 

The ultimate torsional capacity of a concrete section under 

pure torsion MT is given by the following equation: 

A f 

MTo = 2 b' d' 
v yw 
s 

s 
(B .1) 

A f 
w yv 

A condition for the validity of this equation is that the section is 

under-reinforced for torsion. Both the longitudinal and transverse 

reinforcements reach their yield stresses before failure and therefore 

the compressive strength of the concrete is not a primary factor in 

the load-carrying capacity. 

B. J. 2 Combined Torsion and Bending (t1r ~ 

B.J.2.1 Tension Failure Mode 

In this failure mode the compressive zone is formed on the top 

of the section while yielding of the reinforcement starts at the bottom 

on account of bending. The calculated ultimate torsional and bending 

moments capacities of the concrete box section under combined torsion 

and bending are given by the following equations: 

Mt = 2 Af..b fyf..b d' 
0 

(B. 2) 

pb fyfb Mt 
A f 

2 b' d' 
V 'jV s = To s + d' A f 

V yv 
(B. 3) 



329 

t 
where M is the pure ultimate flexural capacity of the section tor 

0 

tension failure mode (without any torsion present) and ~0 is the pure 

ultimate torsional strength of the section tor tension failure mode 

(without any flexure present). 

In a non-dimensional form the interaction between torsion M 
T 

and bending moment M can be expressed as follows: 

M~ + [M~ r • l (B.-4) 

8.3.2 •. 2 Compression Failure Mode 

This failure mode is characterized by yielding of the top 

reinforcement and a compression zone formed at the bottom of the section. 

The ultimate torsional and bending moments capacities of the 

concrete box section under combined torsion and bending are given by 

the following equations: 

MC = - 2 AQ,t fytt d' (B .5) 
0 

A f 2 A,tt fyQ.t 
~0 2 b' d' V yv 

= s b' + d' A f 
V yv 

where Mc is the pure ultimate flexural capacity of the section for 
0 

compression failure mode (without any torsion present) and ~0 is 

(B.6) 
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the pure ultimate torsional strength of the section for compression 

failure mode (without any flexure present). 

In a non-dimensional form, the relationship between twisting 

moment MTand bending moment M under combined loading is similar to 

that equation given for the tension failure mode as follows: 

+ {B. 7) 

There is another mode of failure called the shear failure mode which 

is characterized by the formation of the compression zone on one of 

the vertical sides of the section and the yielding of the reinforcement 

on the other side. However, since this mode of failure was not 

encountered in the present study, it will not be discussed. 

8.3.3 Combined Torsion, Bending and Shear (MT +M + V) 

8.3.3.1 Tension Failure Mode 

This failure is characterized by the compression zone in the 

top of the section and yielding of the reinforcement in the bottom. 

However, the effect of shear causes different inclinations of the 

compression struts on the remaining three sides of the beam due to 

different shear flows occurring on these faces. The ultimate torsional 

and bending moments and shearing force capacities (~0 , M~ and V~) of 

' 
the concrete box section under this loading combination are given by 

the following equations: 



t 

~0 2 AOb f d' 
"' yJI,b 

A f 
= 2 b' d' 

v yv 
s 

A f 
= 2 d' 

v yv 
s 
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(B.8) 

s (B.9) 
A f 

v yv 

A f 
(B.lO) 

v yv 

where Mt and Mt 
o To 

have been defined before and Vt is the pure ultimate 
0 

shear strength of the section. 

In a non-dimensional form, the relationship between torsional 

and bending moments and shearing force is as follows: 

2 

+ = 1 (B.ll) 

B.3.3.2 Compression Failure Mode 

· Again, this case is characterized by the compression zone in 

the bottom of the section while yielding of the reinforcement starts at 

the top. The ultimate torsional and bending moments and shearing 

f . . ( t t d t) orce capac1t1es MT , M an V 
0 0 0 

of a concrete box section under 

this loading combination are given by the following equations: 



... 

M 
0 

~0 

VC 
0 

= 

= 
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2 A f d ' .H ytt 

A f 
2 b' d' 

V yv 
s 

A f 
2 d' 

V yv 
s 

(B.l2) 

2 Att fytt s 
b' + d' A f (B.l3) 

V yv 

2 AJI.t fytt s 
d' A f 

(B.l4) 

V yv 

where Mc and MeT have been defined before and Vc is the pure ultimate 
0 0 0 

shear strength of the section. 

The non-dimensional interaction equation for the ultimate 

strength of the section under combined torsion, bending and shear is a 

as follows: 

1 (B. 15) 
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APPENDIX C 

STEEL AND CONCRETE STRESS VARIATION ACROSS THE TOP AND BOTTOM SLAB WIDTHS 

(EXPERIMENTAL DATA) 
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FIG. C.17 TRANSVERSE CONCRETE STRESS VARIATION ACROSS THE TOP SLAB WIDTH (AT MIDSPAN SECTION) 
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