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Abstract

The mathematical theory of communication has grown considerably since its inception 50

years ago. There are many problems that have been solved from the information theoretic

perspective, yet remain open from the coding point of view. In particular, it is known

what the optimum achievable performance of a certain system is, yet no practical coding

scheme that achieves the optimal performance is known. This thesis is concerned with two

such source coding problems: the Slepian-Wolf problem and the Wyner-Ziv problem. This

thesis also investigates the related source coding problems of data compression and noise

robust data compression.

A unified framework, based on the parallel concatenation of trellis structured codes

(turbo codes) is applied and shown to perform well in all cases. This represents a break

with traditional source coding techniques in that the code is fixed-length to fixed-length.

As such, it is a probabilistic coding technique. An explicit joint design of the parallel

concatenated codes, based on conditions rooted in information theory, is presented. The

codes thus designed are intimately related to Latin squares and are therefore named Latin

Square Based Codes. As opposed to the vast majority of the existing literature on turbo

codes, these codes perform data compression and are designed jointly. Furthermore, they

are non-binary, non-linear, non-systematic and non-symmetric.

In all the above cases, near Shannon limit performance is observed. For data compres­

sion as applied to binary memoryless sources, the scheme achieves reliable communication

at a rate only 7.5% above the entropy of the source. A similar result is shown for the

Slepian-Wolf problem. Noise robust compression is shown to be as close as 1.11 dB from

capacity for AWGN channels while coding for the Wyner-Ziv problem is as close as 1.1 dB

from the rate-distortion function.
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Sommaire

La théorie mathématique des communications s'est développée considérablement depuis

son commencement il y a 50 ans. Il y a beaucoup de problèmes qui ont été résolus de la

perspective théorétique de l'information mais qui demeurent sans solution du point de vue

du codage. En particulier, on connaît la performance optimale qu'un certain système peut

réaliser, pourtant aucun code pratique qui atteint cette performance n'est connu. Cette

thèse aborde deux tels problèmes de codage de source: le problème de Slepian-Wolf et le

problème de Wyner-Ziv. Cette thèse étudie également deux problèmes relatifs au codage

de source: la compression de données ansi que la compression de données robuste au bruit.

Un cadre unifié, basé sur la concaténation parallèle des codes structurés par treillis

(codes turbo), est appliqué et il est demontré que ceci fonctionne bien dans tous les cas.

La technique proposée se dissocie des techniques traditionnelles de code source parce que

le code construit ainsi est de longueur-constante à longueur-constante. Il s'agit d'une

technique probabiliste de codage. Une conception commune et explicite des codes enchaînés

en parallèle, basée sur des conditions issues de la théorie de l'information, est présentée. Les

codes ainsi conçus sont intimement liés aux carrés latins et sont donc appelés des codes basés

sur carrés latins. Par opposition à la grande majorité de la littérature existante à propos des

codes turbo, ces codes exécutent la compression de données et sont conçus conjointement.

En outre, ils sont non binaires, non linéaires, non systématiques et dissymétriques.

Dans tous les cas ci-dessus, une performance près de la limite de Shannon est observée.

Pour la compression de données pour des sources binaires sans mémoire, le système peut

réaliser une communication fiable à un taux seulement de 7,5% au-dessus de l'entropie de la

source. Un résultat semblable est obtenu pour le problème de Slepian-Wolf. La compression

robuste au bruit est à 1,11 dB près de la capacité pour des canaux de bruit blanc gaussien

superposé, tandis que le codage pour le problème de Wyner-Ziv est aussi près que 1,1 dB

de la borne du taux de distorsion.
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Chapter 1

Introduction

Information theory [6,7] has grown considerably since its inception 50 years ago. There

are many problems that have been solved from the information theoretic perspective in the

sense that the optimum achievable performance is known. Nevertheless, many of these re­

main open in the sense that there is no known coding technique with reasonable complexity

that cornes close to this performance.

This chapter first motivates a few such problems that will be dealt with in this thesis.

A more formaI framework to describe these problems is then presented. The chapter is

concluded with a discussion on the original contribution and organization of this thesis. A

more detailed analysis of the problems may be found in Chapter 2.

1.1 Practical Motivation

Modern technology has led to an explosion of information that must be processed, stored

and communicated. Consider, for example, medical images and facsimile which require

large storage capacity [8,9]. GeneraIly, only a few of these images are ever needed at

once. Since most of these images contain large amounts of redundancy, storage costs can

be reduced by cornpressing the data (i.e. eliminating the redundancy). When an image is

needed, it can be decompressed at that time. This process is called source coding and a

source code is said to be optimal if it can eliminate aIl the source redundancy.

In practice, information must often be transmitted over various, usually noisy, channels.

Traditionally, this has been accomplished in a two step approach. First, the data is source

encoded to minimize communication time, storage space and bandwidth. This is followed
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by a channel encoding that introduces a controlled amount of redundancy to protect the

data against channel errors. Without the latter, reliable communication is impossible.

For transmission over noisy channels, it is not uncommon to use source encoders that are

suboptimal. To illustrate, LP speech vocoders produce outputs that still contain residual

redundancy [4,10] while the Huffman code of a two-tone Group 3 facsimile is fixed and

cannot be "fine tuned" to the statistics of the image in question [9]. Since the performance

in terms of error protection against the noisy channel can be improved by this residual

redundancy, methods that achieve the improved performance are desirable.

Although digital communication is more pervasive today than ever, most digital com­

munication systems ignore the fact that existing analog channels are still physically present.

If the analog transmission is included as extra "noisy side-information" available at the dig­

ital decoder, it is intuitively clear that better performance can be expected in terms of the

minimum rate needed by the digital system for reliable communication.

Generally, most real sources of information are analog. With digital communication, it

is impossible to encode such a source with perfect fidelity. It is usually desired to transmit

the information subject to sorne acceptable loss of fidelity. Consider a wireless sensor array

where the density of nodes is high (dozens per square meter) and communication bandwidth

is limited [11]. There, for spatially close sensors , the observations will be nearly identical

and it would be economical to take advantage of this correlation. Furthermore, this must

be accomplished while minimizing sorne given distortion measure.

1.2 Problem Framework

Formally, consider a variation on the traditional communication system as illustrated in

Fig. 1.1. Here, a variety of scenarios may be considered by the various settings of switches

81 and 82' In the case that both 81 and 82 are open (i.e. 81 = 0 and 82 = 0), one obtains

the traditional point-to-point communication system, where a single source (denoted as

X), is first encoded, then transmitted over (a possibly noisy) channel and finally decoded

to produce X, an approximation to X.

If the channel is noiseless, the system reduces to traditional data compression. For a

uniform source and a noisy channel, such as either the Binary Symmetric Channel (BSC) or

the Additive White Gaussian Noise (AWGN) channel, the system involves channel coding.

For a source with redundancy, both the source and channel coding may be combined and
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Fig. 1.1 A variation on the traditional communications mode!.

3

is commonly referred to as joint source-channel coding. In sorne cases, if the source has

sufficient redundancy, it may even be possible to construct a joint source-channel code that

produces fewer output symbols than input symbols (of the same alphabet). To distinguish

such situations from the usual convention of joint source-channel coding where the encoder

introduces additional redundancy, the former is denoted as noise robust compression (this

emphasizes the fact that the encoder compresses the data, yet the output of the encoder is

still robust against channel errors).

Consider a final case where switch 81 is open, switch 82 is closed, the channel is noiseless

and perfect reconstruction of X (with probability of error arbitrarily smaIl) is desired. This

situation is similar to data compression with the exception that additional side information

is available at the decoder (in terms of a correlated random variable Y), that is not available

at the encoder. This scenario is in fact a special case of the Slepian-Wolf problem [12]. If the

side-information was also available at the encoder, clearly the encoder could take advantage

of this since it could reproduce the behaviour of the decoder. It is not immediately clear

how the performance changes if the side-information is only available at the decoder. The

surprising result of Slepian and Wolf shows that even if the side-information is not available

at the encoder, the optimal achievable performance is just as good as if it were.

Suppose now that one can tolerate sorne distortion in the reproduction of X (while

keeping 81 open and 82 closed). This problem, known as the Wyner-Ziv problem [13,14], is

the rate distortion equivalent to the previously outlined side-information problem. Wyner

and Ziv showed analogously that for Gaussian sources the optimal performance achievable

without side-information at the encoder is the same as if the side-information was available

at the encoder.

Although point-to-point source and channel coding are weIl known and solved problems,
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Table 1.1 Summary of problems dealt with in this thesis.

4

Problem SI S2 Channel Coded symbols Distortion in
reconstructed X

data compression 0 0 noiseless known no
noise robust data compression 0 0 noisy noisy no

Slepian-Wolf problem 0 1 noiseless known no
Wyner-Ziv problem 0 1 noiseless known yes

the problems of single step noise robust compression, separate encoding of correlated sources

(the Slepian-Wolf problem) and rate-distortion coding with side-information at the decoder

are still to a large extent open.

Based on encoders with trellis structure, turbo codes are among the most powerful chan­

nel coding techniques known today and have performed close to the optimal performance

theoretically achievable of any code over a wide class of channels. AlI the outlined cases

could be solved by any powerful code that incorporates soft probabilities on the message

and coded symbols. Due to their highly structured form, encoders with trellis structure

(Le. turbo codes) lend themselves naturally to the inclusion of soft information on both

the message and coded symbols in the decoding algorithm. The objective of this thesis

is to demonstrate that turbo codes can be suitably designed for aIl the problems in Table

1.1 by proposing a unified framework in which coding for them is very nearly identical.

Although there are other classes of codes that exhibit excellent performance and may also

incorporate soft information on the message and coded symbols, this thesis will limit its

scope to the issue of designing a particular class of parallel concatenated codes based on

finite fields and Latin squares. As a final note, since the codes considered in this thesis

are fixed-Iength to fixed-length, the coding techniques proposed here are probabilistic in

nature [15] in the sense that reliable communication is only possible if the source statistics

are employed in the decoding process.

1.3 Original Contribution of this Thesis

Chapter 2 extensively reviews published coding techniques for the relevant problems. Much

research is actively pursued on these (especially the Slepian-Wolf and Wyner-Ziv problems)

and many of the existing coding techniques referenced in this thesis have appeared during
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the production of this work.

The original contribution of this thesis is twofold. The first is the unified framework that

allows one to encode for the various source coding problems summarized in table 1.1 with

praetical complexity. The second is the explicit code design of the parallel concatenated

trellises. As opposed to the vast majority of the turbo codes literature, the codes designed in

this thesis are non-systematic, non-linear, non-binary, non-symmetric and jointly designed.

Most of the work presented in this thesis has been published or submitted for publication

in [16-23]:

• Initial code design ideas, with application to the Slepian-Wolf problem, may be found

in [16].

• Most of the code design of Chapter 3 was presented in [17] and the complete design

is in preparation for submission in [18]. Up to date results using the finalized code

design as applied to the Slepian-Wolf problem may be found in [19].

• The application of turbo codes to data compression was first presented in [20] and

was submitted in [21].

• The application of turbo codes to noise robust compression may be found in [22].

• The application of turbo codes to the Wyner-Ziv problem may be found in [23].

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 extensively reviews the relevant notions of

information theory, turbo codes and existing coding techniques for the relevant problems.

Chapter 3 presents a complete construction of the trellises utilized in the parallel concate­

nated (turbo) code. Chapter 4 presents simulation results and Chapter 5 summarizes this

work and discusses future directions. The trellises that were utilized in the simulations

may be found in Appendix A, while sorne aspects of the proofs of Chapter 3 and a re­

view of Latin squares have been placed in Appendix B. A description and an algorithmic

construction of the spread random interleaver utilized in the simulations may be found in

Appendix C.
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Preliminaries on Information Theory

and Coding

Since its inception, information theory has been an invaluable tool for communication

engineers to establish fundamental limits on the transmission, processing and utilization

of information. Before addressing these issues, one must rigourously define the terms:

information, uncertainty, reliable communication, etc.

This chapter seeks to define these terms and provide a suitable background to evaluate

the performance of the systems simulated in Chapter 4 by comparing them to the Optimum

Performance TheoreticaIly Achievable (OPTA). The current chapter also briefiy reviews the

concepts of trellis and turbo codes upon which the code design of Chapter 3 rests. Finally,

a review of relevant published work that has been done in data compression, noise robust

data compression as weIl as Slepian-Wolf and Wyner-Ziv coding is presented.

2.1 Entropy and Typical Sequences

In his revolutionary publication "A Mathematical Theory of Communication", Claude E.

Shannon proposed a new paradigm for communication [6,7]. Prior to this work, commu­

nication engineers had little formaI understanding of what a message was and a vague

understanding of how to transform a message into a waveform for transmission over a

channel. At the time, there was only a rudimentary comprehension of the basic modula­

tion techniques we take for granted today such as amplitude modulation (AM), frequency

modulation (FM) and pulse code modulation (PCM) [24]. There was almost no basis for



comparing them and even less for evaluating how weIl they could perform in principle. In

short, a theory of communication was non-existent and the concept of separating what was

being transmitted from the act of transmitting had yet to be formalized [25]. From a com­

munication engineering point of view, the act of transmitting, sometimes with a radio link

or recording media such a vinyl record, was achieved by modulating the analog message

itself.

Shannon advocated the transmission of a discrete set of signaIs, separating the trans­

mitted waveform from the meaning of the message. He proved that under such a scheme,

one could transmit "information" reliably over noisy channels and in essence ushered in the

digital era [25]. Intuitively, if only a finite number of possible waveforms is transmitted over

sorne channel, there is better hope of recovering which waveform was sent since one could

in principle compare the received signal against each possible transmission and choose the

best. Shannon formalized this idea in his theory of information [6, 7].

At the core of information theory lies the notion of entropy and mutual information.

These notions can be shown to arise naturaIly out of the desire to simply count how

many possible "typical" sequences a random variable may produce when repeated trials

are generated. The fact that not aIl sequences occur with meaningful probability foIlows

from the weak law of large numbers. Consider, for example, the independent flipping of a

biased coin such that the probability of heads is 0.9, Le. P[H] = 0.9. One expects that if

the coin is flipped often enough and a running sum of the number of occurrences of heads

is kept, that roughly 90% of the flips will be found to be heads. The intuition behind this

reasoning is in sorne sense the fundamental theorem in information theory and is known as

the Asymptotic Equipartition Property (AEP).

FormaIly, consider a memoryless random variablel X over a discrete alphabet ;t' =
{al, ... ,aM}' With each output ai of the source, one has a probability mass P[X = ai]

which will be abbreviated as Pi' Construet a series of n independent trials and denote the

result of the jth trial as Xj and the results of the n trials by the vector x E ;t'n.

In the review of the basic information theoretic results and concepts that follows, the

expositions of [26,27] will be followed. Let N(amlx) denote the number of times that the

1In this work, ail random processes are assumed to be stationary and ergodic.
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symbol am appears in the sequence x. It is interesting to evaluate the quantity

M
1 L N(amlx)-log P[X = x] = log(Pm ).N n

m=l

However, due to the weak law of large numbers [28], one has that

N(amlx)
----t pm,

n n->OQ

where convergence is in probability [27]. Applying (2.2) to (2.1) yields

1 M
- N log P[X = x] = - L Pm log (Pm)

m=l

~H(X),

where the following definition has been made:
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(2.1)

(2.2)

(2.3)

(2.4)

Definition 2.1.1 Let a discrete memoryless source X with i.i.d. outputs have an alphabet

al, ... , aM. The entropy of the source X, denoted as H(X), is defined to be

M

H(X) = - L P[X = am] logP[X = am].
m=l

(2.5)

The following result, known as the Asymptotic Equipartition Property (AEP) has now

been proved [26].

Theorem 2.1.1 (AEP): If X is a discrete source whose outputs are i.i.d., then

P[X = x] ----t 2-nH(X).
N->OQ

(2.6)

The significance of the above result is that it is true for almost every realization x that

has been chosen randomly according to the probability mass function (PMF). Intuition

suggests that with high probability, the source produces one of only 2nH(X) different se­

quences instead of choosing its output from aIl the Mn possible sequences. Somehow, the

other sequences do not occur because the empirical distribution is not "close enough" to



the expected statistical distribution. In sorne sense, the other sequences are "not typical".

This idea can be defined rigourously as follows:

Definition 2.1.2 Let x be a sequence of length n produced by a discrete source with i.i.d.

distributed outputs. The sequence x is said to be €-typical, denoted as x E T; (€), if it has

the following property

Tn(H(X)+E) S P[X = x] S 2-n (H(X)-E). (2.7)

The set of aIl €-typical sequences is denoted by T; (€). The following result establishes

the connection between counting the number of typical sequences produced by a source X

and the entropy H(X) of the source [27].

Theorem 2.1.2 For n sufficiently large,

1. Ifx E T;(€), then H(X) - € S -~logP[X = x] S H(X) + €.

2. P[X ET; (€)] > 1 - € for n sufficiently large.

3. IT;(€)j S 2n (H(X)+E).

4. IT;(€)I ~ (1- €)2n(H(X)-E).

Proof: Property 1 follows from definition 2.1.2. Property 2 is a consequence of Theorem

2.1.1 from which one has that for any 5> 0, there exists an no such that when n > no,

P [I-~ log P[X = x] - H(X)I s €] > 1 - 5(no). (2.8)

The desired result is obtained by setting 5 S €which can be done by choosing no sufficiently

large. Property 3 can be obtained through the following chain of equalities:

1 > P[X E T;(€)] (2.9)

- L P[X=x] (2.10)
XETlf (E)

> L Tn(H(X)+E) (2.11)
XETlf(E)

2-n (H(X)+E) IT; (€) 1. (2.12)
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Set of ail
sequences

;t'n

Set of typical
sequences
Tn

x (e)

Fig. 2.1 A graphical representation of the typical set Tt (E). There are
exponentially fewer elements in T!f (E) than in ;t'n.

Property 3 can then be obtained directly from (2.12) while property 4 can be obtained in

a similar fashion starting from the relation 1 - E:::; P[X E T: (E)] for n sufficiently large.

D

The importance of the above result cannot be over-emphasized. It essentially states that

with high-probability all outputs are typical and the probability of each typical output is

very nearly the same. Second, it gives a rather tight bound on the number of typical

sequences; there is essentially an exponential number of them with the exponential growth

factor in the exponent given by H(X). It follows that H(X) can be related intuitively

to the number of typical sequences and it is not uncommon for H(X) to be though of as

measuring the uncertainty of X. Fig. 2.1 illustrates graphically the relationship between

the typical set T:(E) and the set of all sequences x n
. Here, the typical set is intentionally

made small to emphasize the fact that it has exponentially fewer elements than X n .

The results established above generalize in the obvious way to several random variables

[27,29]. For example, the entropy of X and Y, H(X, Y), and the conditional entropy of X

given Y, H(XIY), are defined as follows:

Definition 2.1.3 The joint entropy of a pair of discrete random variables (X, Y) with

distribution Px,y(x, y) is

H(X, Y) = - L LPX,y(x, y) logpx,y(x, y).
xEX yEY

(2.13)

Definition 2.1.4 The conditional entropy H(XIY) for a pair of discrete random variables



(X, Y) with distribution PX,y(x, y) is defined as

H(XIY) = - L LPx,Y(x, y) logpxlY(xly)·
xEX yEY

(2.14)

One can also define joint-typicality for two random variables in the obvious way as follows:

Definition 2.1.5 The two sequences (x,y) are jointly E-typical ifx E T;(E), Y E T:(E)

and
2-n (H(X,Y)+E) < P (x y) < 2-n (H(X,Y)-E)._ X,Y , _ (2.15)

Theorem 2.1.2 can be extended to joint entropies H(X, Y) in the obvious fashion by con­

sidering the pair of random variables (X, Y) as a single random variable Z. A bound on

the conditional probability PYIX can be obtained by dividing term by term Eq. (2.15) and

Eq. (2.7) to obtain:

(2.16)

This subsection is concluded with a brief discussion on differential entropy, the extension

of entropy to continuous sources. Sorne authors, such as Gallager [29], prefer not to define

differential entropy and directly extend the definition of mutual information to continuous

random variables.

Definition 2.1.6 A continuous random variable X with probability density function f(x)

and a support set S is said to have a differential entropy h(X) given by

h(X) = -1 f(x) log f(x)dx. (2.17)

A very important result in information theory is that among an continuous distributions

given a fixed finite variance (52, the normal distribution X rv N(m, (52) has the largest

differential entropy and can be shown to be h(X) = ~ log 27fe(52 [27].

An the results obtained for the entropy of discrete sources can be generalized to contin­

uous sources. Notably, the AEP still holds and can be expressed as -~ log f(X) --> h(X)

and a typical set can be suitably defined as T;(E) = {x E sn: 1- ~logf(x) - h(X)1 ::; E}

for which Pr[X E T; (E)] > 1 - E, analogous to Theorem 2.1.2, also holds [27]:
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2.2 Mutual Information and Channel Capacity in AWGN

12

Consider a discrete memoryless source generating a large number of outputs n, with trans­

mission over a discrete-time memoryless channel modelled by the transition probabilities

PYlx(ylx) = IlpYlx(Yilxi), as illustrated in Fig. 2.2.

x .. Channel
PYlx(ylx)

~ y
f---------1..~

Fig. 2.2 Transmission of information over a channel.

Suppose one were to model the uncertainty associated with X by the number of bits

needed to count all the typical sequences [26]

log IT;(E)! ~ log2nH
(X) = nH(X),

while the uncertainty left after observing Y = y can be expressed as

The reduction of the uncertainty associated with X at the channel output is then

(2.18)

(2.19)

(2.20)

(2.21)

The term I(X; Y) is called the mutual information between X and Y and it is easy

to verify that I(X; Y) = H(X) - H(XIY) = H(Y) - H(YIX). Analogously, the mutual

information I(X; Y) of two continuous sources is defined as I(X; Y) = h(X) - h(XIY) =

h(Y) - h(YIX).

Intuitively, if the uncertainty on vector X = (Xl, ... , X n ) were reduced by disallowing

sufficiently many n-length sequences from the source, as illustrated in Fig. 2.3, the un­

certainty H(X) would be below the reduction I(X; Y) = nI(X, Y) otherwise possible at

the decoder. This concept, often called sphere packing, suggests the possibility of reliably
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Fig. 2.3 Sphere packing for discrete memoryless channels.
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communicating one of a possible set of sequences over the unreliable "probabilistic" channel

and motivates the following definition [27].

Definition 2.2.1 The information capacity of the discrete-time memoryless channel is

defined as

C = maxI(X;Y),
p(x)

where the maximization is performed over aU distributions on X.

(2.22)

Example:

Consider, as illustrated in Fig. 2.4, the information capacity of the Gaussian channel where

y = X + Z with Z f'V N (m, (/jy) and a power constraint E[X2] ::; P is imposed. One then

has,

I(X; Y) = h(Y) - h(YIX)

= h(Y) - h(X + ZIX)

= h(Y) - h(ZIX)

= h(Y) - h(Z)
1

= h(Y) - 2log 27reO'Jv

1 1::; 2log 27re(P + O'Jv) - 2log 27reO'Jv.

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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Fig. 2.4 The additive white Gaussian noise channel.

The inequality follows from the fact that VAR[y2] = P + a'Jv and the differential entropy of

a continuous random variable Y is at most ~ log 21rea; with equality when Y is Gaussian.

Therefore, one has that,

I
C= max I(X;Y)=-2log(I+P/a'Jv),

p(x):E[X2J~p

where the maximizing distribution is X '" N(ü, P).

(2.29)

Definition 2.2.2 Consider the Gaussian channel with power constraint P. An (M, n) code

is defined by an index set M = {l, ... , M}, an encoding function f : M ----+ X n such that

I:~=1 fl (j) ::; nP and a decoding function 9 : yn ----+ M.

Definition 2.2.3 A rate Ris achievable ifthere exists a sequence of (2nR , n) codes and the

maximal probability of error, Àn = maxjEM P[g(J(j) + Z) =1- j], tends to zero. The channel

capacity is defined as the supremum of aU achievable rates.

Theorem 2.2.1 The channel capacity of the Gaussian channel is the information capacity

C = ~ log(1 + P/a'Jv)'

Only the proof that the rate is achievable is presented here as it provides insight into the

code design of Chapter 3 with its random coding argument. The converse to the channel

coding theorem for Gaussian channels: that a rate above the information capacity yields

a strictly positive probability of error, generally requires the use of Fano's inequality and

can be found in [27,29].

Proof: (achievability)

• Codebook: Generate a codebook randomly according to a normal distribution. If the

variance of each letter in the codebook is P-f., with high probability each codeword in
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the codebook will satisfy the power constraint for sufficiently large n. More formal1y,

fi(j) '" N(O, P - €).

• Encoding: Once the codebook has been generated, it is revealed to both the encoder

and the decoder. Message j is transmitted with the codeword f(j) = (fI (j), ... , fn(j)).

• Decoding: The decoder searches for a codeword (fI(j), ... , fn(j)) in the codebook

that is jointly typical with the received vector Y. If there is only one such vector,

the receiver declares it as the transmitted message, otherwise an error is declared.

• Probability of error: By the symmetry of the problem, assume that the first codeword

was sent: Y = f(l) + Z.

One may then define the fol1owing events: Eo = {~2:7=1 fi(l) > P} and Ei = {(J(i), Y) E

T;',Y (€))}. The event Eo occurs when the codeword to be transmitted violates the power

constraint. In this case, the encoder may transmit a fictitious codeword that satisfies the

power constraint and an error will be made at the decoder. By the union bound on the

probability of events, the probability of error can be bounded as

Pen:::; P[Eo]+ P[E1]+ L P[EiJ,
i=2

(2.30)

where both P[Eo] --+ 0 and prE!] --+ 0 as n --+ 00 by the law of large numbers and the AEP.

Now, the probability that Y is jointly typical with f(j) when j =j:. 1 is at most 2-n(I(X;Y)-é)

[27] and hence

2nR

P: :::; € + € + L 2-n(I(X;y)-é)
i=2

:::; 2€ + 2nR2-n(I(X;Y)-é)

< 2€ + 2é2-n(I(X;Y)-R)- ,

(2.31)

(2.32)

(2.33)

which goes to zero if R < I(X; Y) - €. It still needs to be shown that the maximal

probability of error goes to zero. Unfortunately, this may not always be the case. However,

no more than half the codewords may have a probability of error above twice the average.

Since the average goes to zero, at least half the codewords have a probability of error
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Fig. 2.5 A comparison of AWGN channel capacity for Gaussian and An­
tipodal signaling.

that also goes to zero. If we limit ourselves to utilizing these codewords, then we have a

(2nR- 1 , n) codebook for which the rate can be made arbitrarily close to the capacity C for

sufficiently large n.

o
Suppose that the transmitter cannot produce a continuous range of amplitudes for

transmission over the AWGN channel, but is instead restricted to sending one of two signal

levels from the set {-1, 1}. This antipodal signaling is often referred to as Binary Phase

Shift Keying (BPSK) sinee it models exactly the output of a demodulator receiving one of

two sine waves phase shifted 180 degrees apart. It is equally interesting to investigate the

capacity of such a system and to compare against the previous result. The capacity for

antipodal signaling is again C = maxp(x) I(X; Y) where the maximizing distribution is the

uniform distribution. Fig. 2.5 compares capacity functions for both signaling methods.

For low channel SNRs, there is little loss in terms of information bits transmitted per

channel use. At high SNRs, there is quite a performance gap. Intuitively, it is clear that

antipodal signaling cannot transmit more than 1 bit/channel use no matter how high the

quality of the channel. Gaussian signaling on the other hand is not limited in this way.

As a figure of comparison, to transmit 0.8 bits/channel use, antipodal signaling requires

roughly 1.0dB more in channel SNR compared to Gaussian signaling. As a final note, if the
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channel SNR is sufficiently high, higher order modulation techniques are often employed

to achieve transmission rates above I bit/channel use.

2.3 Random Binning and Data Compression

The concept of data compression is weIl known and can be found to be implemented in

practice in popular programs such as gzip, WinRar and LZW. The possibility to do data

compression can be explained by information theory.

Consider the set off aIl M-ary sequences of length n. By the pigeonhole principle, it

is clearly impossible to uniquely represent aIl of these with anything less than n log M

bits. However, from the information theory perspective, not aIl of these sequences occur

with meaningful probability. Of the 2nlogM possible sequences, only 2nH(X) are likely to

occur and this suggests that about nH(X) bits should be enough to represent aIl probable

outputs of the source. The remaining sequences occur arbitrarily rarely as the packet size

n is increased.

A (2nR
, n) source code is specified by an encoder ix = f(x) which maps xn to the set

of integers M = {l, ... ,2nR }, and a decoder 9 : M _ x n .

Definition 2.3.1 For a given source, a rate R is said ta be achievable if there exists a

sequence of (2nR ,n) source codes with Pe = P[g(J(X)) =f. X] - 0 as n - 00. The

achievable rate region is the closure of the set of achievable rates.

Theorem 2.3.1 The achievable rate region for a source X is R ~ H(X).

Proof:(achievability) Although the intuitive argument above can be formalized, a proof

of data compression using the random binning argument [27] is provided instead, as it

motivates the code design rules in Chapter 3. Instead of uniquely assigning a codeword

to each typical sequence of the source, one randomly assigns codewords to each sequence

of the source. More formaIly, let f(X) be a mapping selected randomly and uniformly so

that f : x n
- M = {l, ... , 2nR }. Given f(.), the decoder 9 : M _ x n chooses a typical

sequence in x n which maps to the correct bin. It declares and error if either no such

sequence can be found or if there is more than one such sequence. The probability of error,

averaged over the random choice of the mapping f, can be bounded as [27]:

P[g(J(X)) =f. X] ~ P[X ri- T;(€)] + P[:3x' =f. X: f(x') = f(X),x' E T;(€)] (2.34)
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~ E+ L P[:Jx' =1- x : x' E T: (E), f(x') = f(x)]p(x)
x

~ E + L L P[j(x') = f(x)]p(x)
X xIET~(E)

x'"ox

~ E+ L L TnRp(x)
x x'ETt(€)

~ E + 2n(H(X)+€)-nR.
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(2.35)

(2.36)

(2.37)

(2.38)

Provided that R > H(X), then the probability of error can be made arbitrarily small.

The entire region in Theorem 2.3.1 is obtained by the closore of this set.

o
The converse, that the probability of error is strictly greater than 0 when R < H(X)

can be shown with Fano's inequality and may be found in [27,29].

A few important points can be made about the above. First, as opposed to the original

outlined intuition, the encoder does not need to know which sequences are the typical ones,

only the decoder requires this information. It is precisely this property that allows for

distributed source coding. Second, one may ask why is it that the encoder does not need to

know which are the typical sequences? Is not a random binning likely to result in multiple

typical sequences assigned to the same bin? To answer these questions, the ratio of the

number of typical sequences to the number of bins is in fact 2nH(X)-nR and if R > H(X),

then there are exponentially more bins than typical sequences as n increases. In fact, it is

quite unlikely that any bin has even one typical sequence.

2.4 Joint Source-Channel Coding

Consider the situation illustrated in Fig. 2.6a. There, a source X is first source coded to

remove any redundancy. This is followed by a channel encoder that introduces a controlled

amount of redundancy to protect the data against errors during transmission over the

channel. If the rate of the source code is R s > H(X) and that of the channel code Re < C,

then the overall rate is R = Rs/ Re channel uses/source symbol with the minimum rate of

R> H(X)/C required for reliable communication in the concatenated system.

A competing scenario is considered in Fig. 2.6b where a single encoder both source

codes and channel codes the information source. Clearly, if the best method is to use a
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Fig. 2.6 A comparison between (a) seriaI concatenation of source and chan­
nel codes with (b) joint source-channel coding.

concatenation of separate source/channel encoders, the second scenario includes this as a

special case so it may do no worse than the first. An interesting question is if anything can

be gained by designing a joint source-channel code. The surprising answer, known as the

source-channel coding theorem, says no [27,29]. In principle, there is nothing to be gained

or lost with either communication system in terms of the optimum performance that can be

theoretically achieved. In practice, the complexity of a joint source-channel code is usually

prohibitive compared to separate source and channel coding.

An example now follows to evaluate the capacity of a channel in terms of the ratio of

the energy per source bit Eb to the noise density spectrum No of an AWGN channel.

Example:

Consider the tandem scheme in Fig. 2.6. A sequence of n source symbols is encoded

losslessly into a sequence of n(H(X) + é) bits by a source code. The channel code can

then be seen as expanding the n(H(X) + é) bits into an (2n (H(X)+E) , nR) code, effectively

operating at a rate of Re = (H(X) + é)/R.

Reliable communication is possible if H (X) / R < ~ log( 1 + P/ (/fiv ). One also has that

the energy per source symbol is Eb = RP while 0"'J.v = No/2. Together, these yield

H(X) 1 ( 2 Eb )--<-log 1+--
R 2 RNo

Eb R( ~ )No > 2" 2 R -1 .

(2.39)

(2.40)

If X is a binary Li.d. source biased so that P[X = 0] = 0.1 and R = 2/3 (2 channel

uses for 3 binary source symbols), reliable communication can be achieved with Gaussian

signaling provided Eb/No > -2.59 dB.

The required Eb/ No for binary signaling is now obtained by determining the gap in

performance between Gaussian and antipodal signaling. In the tandem scheme, the channel
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X ix E {1,2,oo.,Mx}

51 53

52 54

Y iy E {1,2,..., My}

Fig. 2.7 Schematic block diagram of the 16 cases that Slepian and Wolf
considered.

code transmits H(X)/R = 0.7035 bits/channel use. From Fig. 2.5, binary signaling exhibits

a gap of 0.61 dB against Gaussian signaling and a minimum of Eb/No > -1.98 dB is needed.

2.5 The Slepian-Wolf Problem

Consider two possibly correlated sources of information, (X, Y), each generating a sequence

of outputs ... , X-l, X o, Xl, ... and ... , Y-l, 10, Y1, .... If each source is taken separately and

is encoded/decoded without knowledge of the other, clearly the minimum rate needed to

encode these two sources is H(X) +H(Y). In the case that X and Y are not independent,

joint source coding/decoding can reduce the rate to H(X, Y) :::; H(X) + H(Y).

Of particular interest are the "in-between" cases where there is neither complete joint

nor complete separate encoding/decoding of the sources. This was first investigated by

Slepian and Wolf for the 16 cases that could be described by the setting of switches Sl

through S4 in Fig. 2.7 [12]. By far the most interesting setting is 0011, illustrated in Fig.

2.8a, which has now become synonymous as the Slepian-Wolf problem.

It is not immediately clear what pair of rates (Rx, Ry) are required for reliable com­

munication, though it was shown that the region of Fig. 2.8b is in fact achievable. Before

proceeding to prove this, a few definitions are required.

Let X and Y be discrete memoryless sources whose outputs are from the sets X =

{al, ... , aMx} and y = {al, ... ,aMy} respectively. An X-encoder ix = fx(x) is a single­

valued function from the set xn to the set of integers Mx = {l, 2, ... , 2nRx }. Likewise,

a Y-encoder iy = fy(y) is a single valued function from the set yn to the set of integers

My = {l, 2, ... , 2nRy }. A decoder 9 is a mapping g: Mx x My -+ x n X yn.
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Fig. 2.8 The (a) schematic block diagram of the Slepian-Wolf problem and
(b) the associated achievable region.

The pair of encoders fx and fy are said to form a ((2nRx , 2nRy
), n) distributed source

code. The probability of error for the distributed source code is then

Pe = P[g(fx(X), fy(Y)) of (X, Y)] (2.41)

Definition 2.5.1 A rate pair (Rx , Ry) is said to be achievable if there exists a sequence

of (2nRx , 2nRy ) codes with Pe ~ a as n ~ 00. The achievable rate region is the closure of

the set of achievable rates.

Theorem 2.5.1 The achievable rate region for the problem iliustrated in Fig. 2.8a is given

by R x ~ H(XIY), Ry ~ H(YIX) and Rx + R y ~ H(X, Y).

Proof:2 Each encoder assigns an integer from {1, ... , 2nRx } and {1, ... , 2nRy }, randomly

and uniformly to every sequence in X n and yn. If there is one and only one jointly typical

sequence (x, y) that is mapped to the pair of integers specified by the encoders, then that

sequence is our estimate at the decoder, otherwise an error is declared. There are four error

events:

Eo = {(X, Y) tf. T:'y (cn,
El = {::lx' of X : fx(x') = fx(X), (x', Y) E T;'Y (cn,
E 2 = {::ly' of y : fy(y') = fy(Y), (X, y') E T:'y (cn,

E 3 = {::l(x', y') : x' of X, y' of Y, fx(x') = fx(X), fy(y') = fy(Y), (x', y') E T:'y (cn·

2The original proof in [12] requires analytical methods. The first proof based on random binning was
published in [30] when generalizing to ergodic sources and is summarized here.
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The first error event, Eo, corresponds to the case where the sequences generated by the

sources are not jointly typical. The second error event, El, occurs when there is a sequence

x that is different from the one that was actually generated (i.e. X) and is indistinguishable

from X as far as the decoder is concerned. In other words, x has the same encoding as

X and is jointly typical with Y. The error event E2 is similar to that of El. FinaIly, E3

occurs when there is a pair (x, y) with both sequences different from the actual sequences

(X, Y) that were generated and which again cannot be distinguished at the decoder. In

this last case, both the encodings for x and y are the same as those for X and Y as weIl

as (x, y) is a typical pair.

By the union bound of events, Pe ::; P[Eo] + P[EI ] + P[E2] + P[E3]. That P[Eo] ~ a
as n ~ 00 follows by the AEP. P[EI ] and P[E2] are similar with

P[EI ] ::; L p(x, y)
(x,y)

L P[jx(x') = fx(x)]
x'#x

(x' ,Y)ET;'Y (.)

(2.42)

::; L p(x, y)2-nRx IT;IY (E)I
(x,y)

::; Tn(Rx-H(XIY)-e).

(2.43)

(2.44)

The above bound goes to zero when Rx > H(XIY) and n is taken sufficiently large.

FinaIly, P[E3 ] may be bounded as

P[E3] ::; L p(x,y)
(x,y)

L P[fx(x') = fx(x), fy(y') = fy(y)]
x'#x,y'#y

(x',Y')ET;'Y (.)

(2.45)

::; L p(x, y)2-n(Rx+RY)IT;,Y (E)I
(x,y)

::; 2-n(Rx+Ry -H(X,Y)-e).

(2.46)

(2.47)

It remains to show the converse, i.e. that the points outside the established achievable

region are not themselves achievable. It is quite clear that Rx + Ry < H(X, Y) is not

achievable since this would imply the ability to code a single source Z = (X, Y), below

the entropy H(Z) = H(X, Y). Now suppose that there exists a rate Rx such that with

Ry = H(YIX) - 6, an achievable pair is formed. Then, one can replace the encoder fx

with another encoder f'x such that Rx = H(X) + 6/2 since then the source X may be



encoded error free. Hence, (H(X) + 5/2, H(YIX) - 5) is also achievable, but R'x + Ry =

H(X, Y) - 5/2 < H(X, Y) and a contradiction is reached.

o
Now that it has been established that for the region of Fig. 2.8b, a probability of error

of Ü can be asymptotically reached, the next logical question is for what region can an error

of exactly zero be realized. As shown by Orlitsky [31], the answer is not characterized by

any of the various entropies of the sources but requires knowledge of the joint distribution

p(x, y).

Theorem 2.5.2 If p(x, y) > ü and an error probability of exactly 0 is desired, the achiev­

able rate points in the Slepian- Wolf problem satisfy Rx :2: H(X) and Ry :2: H(Y).

Further results on the Slepian-Wolf problem can be found in the works of Csiszar [32]

and Oohama et al [33]. Csiszar investigated exponential bounds on the probability of error

as a function of n using the method of types [34] while Oohama et al. considered the issue

of universal coding where neither the encoder nor the decoder has explicit knowledge of

the statistics of the source.

2.6 Rate Distortion Theory and the Wyner-Ziv Problem

A natural extension of reliable communication is the transmission of information subject

to sorne fidelity criterion. For example, the transmission of a real number typically requires

an infinite number of bits. If a fidelity criterion that does not require perfect reconstruction

of the number at the receiver is assumed, then it may yet be possible to achieve this with

a finite number of bits.

Rate distortion theory involves the problem of quantization. Consider a scalar random

variable X rv N(Ü, 1) representing a voltage. It is desired to represent this voltage as

accurately as possible subject to the criterion that only 1 of two levels is actually stored.

If these levels are called X = {al, a2}, then the quantizer is represented by the mapping

Q : R -+ X. As is, there is no reason to prefer one pair of quantization levels over

another. However, suppose one seeks to minimize the mean squared error E[d(X, Q(X)] =
E[X - Q(X)j2. The choice of quantization levels is no longer arbitrary and depends on the

distribution of X.

Motivated by the above example, one has the following definitions.
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Definition 2.6.1 A distortion measure is a mapping d: X x X -7 [0,00).
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Intuitively, the distortion measure is the cost of representing x by x. Examples of

cornmon distortion measures are the Hamming distortion, sometimes referred to as the

probability of error measure. There,

d(x, x) = {Dl x = x,
x =1= x.

Alternatively, another common distortion measure is the squared error distortion

d(x, x) = (x - X)2.

(2.48)

(2.49)

Often, it is convenient to measure the distortion between the sequence x and its

approximation x. This is usually done with the additive distortion measure d(x, x)
~ L::=1 d(xm , x~). The following definitions are from [27]:

Definition 2.6.2 A (2nR ,n) rate distortion code is an encoding fn : xn -7 {l, 2, ... , 2nR }

and decoding gn: {1,2, ... ,2nR } -7 xn with associated distortion D = E[d(X,gnUn(X)))],

Definition 2.6.3 A rate distortion pair (R, D) is said to be achievable if there exists a

sequence of (2nR ,n) rate distortion codes with limn-->oo E[d(X, gnUn(X)))] :::; D.

It is interesting to characterize the locus of aIl achievable rate distortion pairs (R, D).

This if often done with the rate distortion function R(D), defined as follows [27]:

Definition 2.6.4 The rate distortion region is the closure of the set of achievable pairs

(R,D).

Definition 2.6.5 The rate distortion function R(D) is the infimum of rates R such that

(R, D) is in the rate distortion region for a given D.

Theorem 2.6.1 The rate distortion function is given as

R(D) = min I(X; X).
PRlx(x1x)

E[d(x,x)]<D

(2.50)
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Fig. 2.9 The Wyner-Ziv problem of rate-distortion with side information at
the decoder.

Example:

Consider a binary source with i.i.d. outputs. If an application can tolerate a maximum

distortion D as specified by the bit error rate (BER), one may ask what minimum rate is

required. In this case, the Hamming distortion measure is appropriate as it is equivalent to

a BER measure. Shannon originally considered this problem [35] and the rate-distortion

curve is given by

R(D) = { H(p) - H(D), O:S; D :s; min{p, 1 - p},
0, D > min{p, 1 - p}.

(2.51)

Example:

Wyner and Ziv originally considered the problem of rate-distortion coding with side­

information at the decoder [13,14]. The particular situation relevant here is illustrated

in Fig. 2.9. In sorne sense, this problem can almost be considered as the rate-distortion

equivalent to the Slepian-Wolf problem. If the source X is discrete , perfect reconstruction

is equivalent to the Slepian-Wolf problem. Suppose that X '" N(mx, al) and Y = X +U

where U '" N (mu, ab) and independent of X. With a squared error distortion metric,

Wyner and Ziv showed that

R(D) = { (2.52)

Fig. 2.10 shows the normalized distortion, as measured by 10 lOglO(D/ 01) versus the
2

correlation 8NR measured in dB as 10 loglû ~ with and without side-information at the
Uu

decoder. From the figure, it is clear that the side-information provides significant gains in

terms of achievable distortion over a large range of correlation.
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Fig. 2.10 Distortion curve for rate R = 2 as the correlation SNR is varied.

2.7 Encoders with Trellis Structure and the BCJR Aigorithm

Trellis codes have been of interest for several decades due to their relatively good per­

formance compared with existing alternatives, elegant structure and existence of efficient

decoding algorithms. As a case in point, consider space systems where communication

must be done over truly vast distances. The Mariner Mars and Viking missions, utilizing

a rate 6/32 biorthogonal (Reed-Muller) code [36] required Eb/No = 6.4 dB while Galileo

utilizing a (4,1,14) convolutional code with maximum likelihood decoding necessitated only

Eb/No = 1.75 dB for the same BER of 10-5 (2.5 dB from capacity) [37].

Convolutional codes (CC) [1, 38] are perhaps the most pervasive form of trellis based

codes. A typical recursive CC with two memory elements is illustrated in Fig. 2.11a. A

finite memory shift register is gradually loaded with an input that depends not only on

the input bit, but linearly with the state of every memory element. The output is again a

linear combination of the input and memory. One may immediately observe that binary

convolutional encoders are linear under modulo 2 addition. In particular, if inputs Xl and

X 2 generate outputs VI and V 2 respectively, then input ŒIXI + Œ2X2 generates output

ŒIVI + Œ2V2' What makes this code attractive is that it can be completely characterized

by a state transition diagram "unwrapped in time" (Fig. 2.11b) which is often called a

trellis.
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Fig. 2.11 A recursive convolutional code (a) and one stage of its associated
trellis (b) with input/output edge labels denoted by Xi/Ui.

Definition 2.7.1 A trellis section is afive-tuple X = (G, S, G', S', B), where Gand G' are

the input and output alphabets respectively, S and S'are the left and right states respectively,

and the branches B are a subset of S x S' x G x G'.

In Chapter 3, it will be necessary to manipulate trellises directly and a more general

framework than the shift register structure is required to represent a (possibly non-linear)

trellis. These trellis based encoders are called Finite 8tate Machine (F8M) encoders. In the

framework employed there an F8M encoder is described by two matrices: an input state

transition matrix whose (i, j)th entry corresponds to the input sequence when the encoder

makes a transition from state i to state j, and an output state transition matrix whose

(i, j)th entry corresponds to the output sequence for the described transition. For example,

the convolutional encoder in Fig. 2.11a is specified by the following pair of matrices

o <p 1 <p

1 <p 0 <p

<p 0 <p 1

<p 1 <p 0

M out =

o <p 1 <p

o <p 1 <p

<p 1 <p 0

<p 1 <p 0

(2.53)

where <p represents a dummy symbol that is never input into the F8M.

Due to their graph structure, there are numerous efficient algorithms that allow for

efficient probabilistic decoding [15] of trellis based encoders. The two most popular are the
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Fig. 2.12 A 5 stage trellis with associated transition metrics and transitions
in the third stage that result from X 3 = 0 highlighted.
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Viterbi Algorithm (VA) [5] and the BCJR algorithm (named after its authors Bahl, Cocke,

Jelinek and Raviv) [2]. The VA algorithm computes the most likely transmitted packet

x = arg maxx P[xiall observations], while the BCJR algorithm computes the a posteriori

probability of each message bit Aj,i = P[Xi = jiall observations].

In this work, only the BCJR algorithm is of relevance and it is best illustrated through

the following example. Let r denote a vector of independent probabilities on the parity

sequence bits available at the decoder, where ri,j = P[Uj = ilall observations]. Consider a

binary source with P[Xi = 0] = 0.8 and the receiver has that

r = [0.1 0.2 0.3 004 0.5].
0.9 0.8 0.7 0.6 0.5

(2.54)

Fig. 2.12 illustrates the complete trellis with N = 5 stages and associated edge transition

metrics. Anode Si,j is indexed by its stage i and state j while the edge metric between

Si,31 and si+l,h will be denoted as '"'(i(jl,j2). In the event that no transition is possible, the

metric is O. A transition metric is a weight associated with each edge that is proportional

to the probability of the transition.

The conditional probability P[xlr] can be computed as

P[X = x'lr] = P[rIX = x']P[X = x']
Lx P[rIX = x]P[X = x]

_ Ilf=l P[rlXk = X~]P[Xk = x~]
- Lx P[rIX = x]P[X = x]

(2.55)

(2.56)
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where the product P[rlXk = X~]P[Xk = x~] is defined as the edge metric and these are

shown in Fig. 2.12. The edge metric is simply the product of the probability of the re­

ceived signal (conditioned on the expected signal given the transition in question) and the

probability of the input symbol that produced the transition. It is convenient to denote by

K the normalization constant present in the denominator of Eq. (2.56). Each message x

corresponds to a path through the trellis for which there is an associated probability. The

probability that the input bit was 0 in the third stage can then be expressed as

P[X3 = 0lr] = L P[llr].
ail paths 1
s.t. X3=O

(2.57)

This may appear to be a hard problem at first, but in fact, due to the trellis structure, the

BCJR algorithm provides an efficient means of calculation [2].

With each node Si,j in stage j, we associate a forward metric 0:i (j) which corresponds

to the sum along aIl paths between the initial node Sl,l and node Si,j of the the product of

the associated edge metrics along each path. Similarly, one can define a backward metric

f3i(j) between node Si,j and the last node SN,l'

These metrics can easily be computed with the initial conditions 0:1(1) = 1, f3N(I) = 1

and the pair of recursive formulas

0:i+1(j) = L 0:i(k)'yi(k,j),
k

f3i-1(j) = Lf3i(k)'yi-1(j,k).
k

The probability that Xi = a can then be expressed in the compact form

P[Xi = air] = ~ 2:2: 0:i(k) . 'Yi(k, k') . f3i+1(k') . Ii(a, k, k'),
k k'

(2.58)

(2.59)

(2.60)

where Ii(a, k, k') is the indicator function that is 1 if input symbol a causes a transition

from state k in stage i to state k' in stage i + 1 and is zero otherwise. For X 3 = 0 in the

above example, one has that P[X3 = 0lr] = 0.7852. As a final note, Eqs. (2.58), (2.59) and

(2.60) may be implemented efficiently as matrix multiplications.
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Fig. 2.13 The schematic block diagram of the turbo (a) encoder structure
and (b) decoder structure.

2.8 Iterative Decoding and Turbo Codes

The most powerful channel coding techniques known today are based on concatenation

and iterative decoding. Turbo codes and their extensions have reached performance close

to the Shannon limit for the AWGN channel [39-41] and have been successfully applied

to systems in wireless communication [42], digital recording [43], space communications

[44,45], etc. The objective of this section is to provide a sufficiently general framework for

performing non-binary turbo-decoding as is done in Chapter 4.

A turbo code uses two or more constituent finite state machine encoders with trellis

structure where the data to be encoded are interleaved prior to encoding. Fig. 2.13a shows

a typical configuration of a turbo encoder.

Exact maximum likelihood decoding of a turbo code is difficult due to the interleaver.

However, exact decoding of the constituent trellis codes is possible with the BCJR algorithm

and a traditional turbo decoder consists of a seriaI concatenation of constituent decoders

which exchange soft information (see Fig. 2.13b).

Each constituent decoder evaluates a logarithmic array of a posteriori probabilities. For

example [46], at iteration i, the first constituent decoder may evaluate

[

log P[XI =:.a11r1' Zi-l]
A1(xlrl, Zi-l) =

log P[XI = aMlrl, Zi-l]

log P[XN =; allrl, Zi-l] ]

log P[XN = aMlrl, Zi-l]

(2.61)

with the BCJR algorithm where the extrinsic information in Z and w is treated as an
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independent coordinate-wise measurement of the message x such that

P[xlr, z] = KIP[xlr] II exp(zXi,i)

P[xlr, w] = K 2P[xlr] II exp(wXi,i),

31

(2.62)

(2.63)

where KI and K 2 are normalization constants. In practice, if an edge transition metric

'Yi(jl,j2) produces output symbol ak, the extrinsic information is included in the BCJR

algorithm by multiplying the corresponding edge transition metric by either exp(Zak,i) or

exp(Wak,i)' The extrinsic information may be evaluated according to the following pair of

recursion equations

(2.64)

(2.65)

where lprior is a logarithmic array of a priori probabilities l~,:ior = P[Xi = aj]. Intuitively,

the extrinsic information that is generated by a constituent decoder is a measure of the

relative change between the input and output probability estimates on the message symbols.

In practice, the BCJR algorithm is sometimes too difficult to utilize in iterative decoders

and is numerically unstable. This is because it involves a mix of non-linear functions and

the numerical representation of probabilities [47]. Log domain implementations of the

BCJR algorithm have been proposed to resolve these numerical instabilities. Once the soft

probabilities on the coded and message symbols have been determined, the BCJR algorithm

only requires the operations of addition, multiplication and division. The latter two are

trivial to perform in the log domain but the first requires sorne though. The Max-Log-MAP

algorithm [48] approximates this operation by performing a simple maximization operation

as shown in Eq. (2.66).

(2.66)

Due to the approximation, the Max-Log-MAP algorithm is suboptimal. This issue is

addressed by the Log-MAP algorithm [47] which includes a correction term to Eq. (2.66):

(2.67)
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The correction term only depends on the absolute value of the difference between (h and <52 :

the correction term may be implemented as a one-dimensional look up table. It is reported

in [47] that by quantizing the correction term to 8 stored values with 1<52 - <51 1 ranging from

oto 5, no noticeable difference is observed between exact iterative decoding with the BCJR

algorithm and the Log-MAP algorithm.

2.9 Published Work

A review of existing coding techniques for the various information theoretic problems out­

lined above is presented in this section. For the case of data compression, the techniques

presented here have been established for several decades. For noise robust data compression,

the Slepian-Wolf problem and the Wyner-Ziv problem, many of the techniques presented

here have only appeared recently during the production of this thesis.

2.9.1 Data Compression

Historically, data compression has been of great interest and many of the coding results

were obtained within 30 years of publication of Shannon's mathematical theory of com­

munication. This section investigates Huffman codes, Lempel-Ziv coding and sorne results

on data compression in the presence of noise. Note that both Huffman and Lempel-Ziv

codes are variable length coding coding techniques in the sense that the number of output

symbols is not fixed beforehand.

Huffman Coding

A traditional approach to source coding has been the mapping of a fixed length of source

symbols to a variable length of coded symbols.

More formally, a source code C for a random variable X is a mapping from X to a set

D consisting of finite length strings from a D-ary alphabet [27]. In this work, only binary

alphabets (D = 2) will be considered though all the results are known to generalize to

alphabets of arbitrary size. It is convenient to denote the codeword in D corresponding to

x E X as C(x) E D and the length of the codeword as l(x). One then has the obvious

definition [27],
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Definition 2.9.1 The expected length L(C) of a source code C for a random variable X

is L(C) = E[l(X)] = LXEXPX(x)l(x).

TypicaIly, a source with outputs Xl, X2, ... , Xn is compressed by concatenating the corre­

sponding codewords to obtain C(XI, X2, ... ,x n ) = C(XI)C(X2)'''C(Xn ). Of particular inter­

est is the ability to decode the concatenated code "on the fly" when the decoder has only

received a partial string. One has the following definition [27],

Definition 2.9.2 A code is called a prefix code if no codeword is a prefix of any other

codeword.

As the end of a codeword can be recognized immediately, it can be shown that prefix

codes can be decoded without requiring knowledge of future codewords. Huffman codes,

originally discovered in 1952, are optimal prefix codes for a given distribution [49]. Here,

optimal is meant in the sense that the expected length of the codewords is minimal.

The construction of a Huffman code is best illustrated graphically with a tree. Consider

a quaternary source with alphabet X = {l, 2, 3, 4} with probabilities 0.1,0.2,0.3,0.4. The

algorithm is illustrated in Fig. 2.14. First, aIl the symbols are listed in a column with their

respective probabilities. The two least likely probabilities are merged and the resulting

probabilities are listed in the next column. Since a merger has been performed, the edges

leading to the merger are labelled with different binary symbols. The merging operation

is repeated until there is only one node with probability 1 remaining. The codeword

corresponding to each quaternary symbols can be obtaining be reading the edge labels

through the tree from its root to the respective leaf.

Here, the average codeword length is 1.9 bits/symbol as compared to the theoretical

limit H(X) = 1.8464. One can further improve performance by designing codes for pairs

or n-tuples of input symbols. It can be shown [27] that such a method approaches the

entropy H(X) asymptotically. As a final note, the encoder requires explicit knowledge of

the source statistics.

Lempel-Ziv Coding

The Lempel-Ziv algorithm [50,51], so named after its authors, was discovered in 1977. As

opposed to Huffman codes, a variable length of input symbols is encoded into a variable

length of coded symbols. Furthermore, the algorithm is universal: it does not require



Symbol Probability Code Design Coded Symbol

1 0.1 ==? 000

03:?2 0.2 1 0.6 0 001

3 0.3 0.3 1 => 1.0 01

14 0.4 0.4 0.4 1

Fig. 2.14 The design of a Huffman code.

explicit knowledge of the source statistics. This is possible because the algorithm observes

the outputs sequences of the source and assigns small indices to them. As the observed

source sequences get longer, they tend to resemble typical sequences. The algorithm is as

follows:

Parsing Parse the sequential outputs of the source into the shortest possible strings that

have not yet appeared.

Encoding Since each string is the shortest possible that has not yet appeared, it must

differ in only the last symbol from a previous string. Encode the new parsed string

as a pair consisting of the index to the largest matching prefix and the additional

symbol at the end.

The following example illustrates the algorithm. Consider the following binary output

(generated by an i.i.d source with P[X = 0] = 0.8): 0101010010001000. The string is then

parsed as 0,1,01,010,0100,01000. It is then encoded as the following sequence pairs: (0,0),

(0,1), (1,1), (3,0), (4,0), (5,0). In practice, the index is usually allotted a fixed number of

bits in the encoded stream. As the encoder operates on longer sequences of inputs, very

long strings are recorded by short, fixed length indices.

It has been proved [27] that for stationary ergodic sources, the Lempel-Ziv algorithm

performs arbitrarily close to the optimal rate achievable by any source code.

Noise Robustness

So far, it has always been assumed that the decoder had perfect knowledge of the encoder

output. In practice, this information must always be transmitted over or stored on imperfect
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physical media. Although powerful forward error correcting codes are often employed,

recent research has been involved in the investigation of the noise robustness of source

coding [52-57].

That this is possible at aU is due to the fact that the source code does not achieve

perfect compression and there exists a residual redundancy. The above works aU seek to

exploit the residual redundancy in variable length codes (VLCs).

Though very efficient in terms of compression (see Section 2.9.1), variable length codes

are very sensitive to channel errors [52]. In fact, the more efficient the compression, the

more sensitive the scheme is to noise. A single bit error in the compressed stream typicaUy

propagates errors at the decoder. IdeaUy, the decoder would evaluate the Maximum A

Posteriori (MAP) packet x = arg maxx P[xlr] where r is the (soft)-information available

at the decoder. MAP decoding of variable length codes is computationaUy complex, so

simpler, approximate techniques have been developed [52-54,57]. EquaUy interesting is the

result that sorne techniques assume knowledge of the number of source symbols compressed

[53,57] while others do not [55,56]. In [56], using soft information resulted in a decrease by

a factor of 10 in the frame error rate (FER) while in [52], efficient sub-optimal soft decoding

performs very near optimal soft decoding and gains about 0.5 dB over hard decoding.

2.9.2 The Slepian-Wolf Problem

Recently published results on coding for the Slepian-Wolf problem may be found in the

works of [58-69] These works may be classified into two categories: those that aim for

zero-error coding (in [58-62,65-67] ), where compression is only possible in special cases

(see Theorem 2.5.2 and Orlitsky [31]) and those that aim for near-Iossless compression (in

[63-65,67-69] as well as the work presented in this thesis).

On the zero-error side, Pradhan and Ramchandran focus on a special case when the

correlation between X and Y is specified as a prescribed maximal Hamming distance and

explore the use of linear block codes in this setting [58]. For example, consider sources X

and Y each producing 3-bit words whose correlation is specified by the fact that they differ

in no more than 1 position. If the problem is treated so that Y is available at the decoder,

then it would be wasteful for the X -encoder to differentiate between 000 and 111. The

same can be said of the pairs {001, 11a}, {a10, 101} and {100, 011 }. It is sufficient for the

X -encoder to specify in which of these sets the source output is.



Additional work on zero-error coding where the problem is treated as source coding

with side-information at the decoder may be found in [60], [61] and [66]. In particular, [61]

studies necessary and sufficient conditions for the existence of a lossless instantaneous code

for binary sources and gives sufficient conditions for non-binary ones. They also show that

the design in Kh et al. [60] is not optimal. In [66], Zhao and Effros propose a tree structured

algorithm to construct a class of multiple access source codes. It has recently been shown

by Koulgi et al. [62] that optimal design of zero-error codes with side information at the

decoder is an NP-hard problem.

Near lossless coding techniques have been based on two different approaches: tree based

variable length codes and turbo codes. Zhao and Effros extend their variable length codes to

near-lossless coding and remove the restriction of treating the problem as a side-information

scenario [65,67]. That this is difficult for variable length codes follows from the fact that if

the decoder decodes an incorrect symbol, it may loose synchronization with the compressed

stream resulting in error propagation similar to that for traditional data compression. In

the above works, the error propagation effect is carefully minimized by guaranteeing that

the decoder will be able to re-synchronize after a number of symbols, regardless of any

errors.

Independently and concurrently to the work presented in this thesis are the results

by Garcia-Frias et al. in [63,64]. There, each source is compressed separately by a pair

of heavily punctured recursive systematic convolutional encoders operating in parallel as

shown in Fig. 2.15. Since each source is encoded at the same rate Rx = Ry, most of

the achievable region for the Slepian-Wolf problem cannot be realized with this approach.

Decoding is done iteratively in a similar fashion as outlined in Section 2.8 for turbo codes

with the exception that once decoding of one source is finished, it is used to assist the

decoding of the second source. This process is also repeated iteratively as illustrated in

Fig. 2.16. This work has recently been extended to non-binary sources by converting the

non-binary symbols into fixed length binary equivalents [69]. Also, a similar approach to

the Slepian-Wolf problem may be found in [68] where the problem is treated as a side­

information problem. Source Y is encoded with rate Ry = H(Y) and the encoder for X

attempts to compress the source as closely as possible to H(XIY).
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Fig. 2.16 Decoder structures utilized by Garcia-Frias et al.

2.9.3 The Wyner-Ziv Problem

Published coding results for the Wyner-Ziv problem may be found in [11,58,70-74].

In [70, 71], a "constructive" approach is taken to the Wyner-Ziv problem for the cases

of binary symmetric and correlated Gaussian sources. In the case of correlated binary

symmetric sources, it is shown how to partition parity check matrices to construct a code

that can achieve the Wyner-Ziv rate distortion function. A critical assumption of the

argument is the ability to perform typical decoding of parity check matrices. As an example

of the latter, consider a binary source with bias P[X = 0] = p. It is assumed that one

can find an m x n binary matrix H and decoding function f such that f(HXT ) = X for

most realizations of X provided min> h(p) and n is taken sufficiently large. Although

theoretically feasible, such codes have high (exponential) complexity in general and are not

practical.
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For the correlated Gaussian sources X and Y, the construction involves lattice codes

[37] (a lattice A is given by the set of elements A = {ilbl + ... + iNbN} with il, ... , iN E N

and b l , ... , bN E IRn). A pair of lattices Al, A2 are "nested" so that Al C A2 . To quantize

X, the nearest >'1 E Al and >'2 E A2 to X are first determined. With the associated >'1,
there is a finite list of nearest neighbors in A2. The encoder simply transmits the index of >'2
from this list. At the decoder side, >'1 must first be determined in order to recover >'2 from

the index. This is accomplished with the side-information Y. If the minimum distance

between lattice points of Al is sufficiently large, this can be achieved with low-probability

of error. It was shown that for high correlation SNR, the distortion can be made close to

the Wyner-Ziv rate-distortion function, though no actual construction of nested codes was

proposed. The work has been extended in [74] where the restriction on high correlation

has been removed, though no explicit design of lattices was proposed.

Servetto [ll]later answered this challenge by providing a class of lattice codes for which

it was shown that as n is made large and a high-degree of correlation between X and Y is

assumed, they arbitrarily approach the Wyner-Ziv function irrespective of the code rate.

Simulation results for specifie lattices with n = 2,8,24 show good performance over a wide

range of code rates and the Es lattice performs as close as 1.5dB from the rate-distortion

curve. These results however, are for a strong correlation SNR (see Section 2.6) with

(/1/ (J~ = 100.

A different approach to the problem may be found in [58], where the proposed method

has been based on quantizing X and coding for the related Slepian-Wolf problem with a

trellis structured encoder. The design of embedded trellis encoders for source coding with

side information was investigated in [73] where a coding gain of 1 dB over the results of

[58] was observed.

It is interesting to note that a slightly different network problem is investigated in

[59,75], where bath X and Y must be encoded with lattice codes for transmission to a

common decoder with fidelity criterion.
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Chapter 3

Code Design

This chapter presents the design of the FSM encoders used in the parallel concatenated

codes. As opposed to the vast majority of the existing literature on turbo codes, both trel­

lises are designed jointly and are non-binary, non-linear, non-systematic and non-symmetric.

3.1 Initial Considerations

The constituent encoders used in the concatenated framework perform data compression

and produce only n output p-ary symbols for every k input p-ary symbols where n <
k. Since we perform fixed-Iength to fixed-Iength data compression, several encoder input

sequences must map into a single output sequence by the pigeonhole principle. Instead of

achieving this by heavily puncturing the output of a (recursive) convolutional encoder, e.g.,

to achieve k = 3 and n = 1, it was preferred to custom-design time-invariant non-linear

Finite State Machine (FSM) encoders that naturally produce fewer outputs than inputs.

Moderate puncturing can then be used to achieve a wider range of rates. A couple of design

rules, described in the following paragraphs, were chosen to guarantee good performance

of the constructed FSM encoders. Fig 3.1 graphically illustrates the rules.

First, by choosing trellis structures with at least pk states, one eliminates the need for

parallel edges (see Fig. 3.la). Hence, no two different k-symbol input sequences drive the

encoder from the same current state to the same destination state. The construction in

Theorem 3.2.1 will be concerned with the case of exactly pk states while that of Theorem

3.3.2 will deal with the case of more states.

Second, to introduce sufficient memory, we avoid trellises where two or more branches
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a) O/a b)

0
1/a

c) O/a d) O/a

3/b 3/b

Fig. 3.1 A graphical illustration of the initial code design rules: (a) a for­
bidden trellis with parallel edges, (b) a forbidden trellis where two transitions
with the same input edge label merge, (c) a good trellis with uniform spread
of output edge labels leaving a state and (d) a good trellis with uniform spread
of output edge labels merging into astate.

with the same k-symbol input edge label merge to the same state (see Fig. 3.1b). This

effect would partially remove memory of the previous states and impede code performance.

Traditional convolutional (non-recursive) codes are a good example of memory limited

encoders and this is known to limit their performance in concatenated encoding schemes.

Finally, in order to maximize output symbol usage, it is also desirable that the set of all

branches leaving from/merging into a particular state produces all output symbols equally

often (see Figs. 3.1c and 3.1d).

Trellises that satisfy "equal spread" properties are often encountered in group codes

[76]. In section 3.5, it will be shown that of the two trellis constructions presented here,

the second always results in trellises with the group trellis section property. However, the

first construction does not necessarily always have this property.

Recall that an FSM encoder is described by two matrices: an input state transition

matrix whose (i, j)th entry corresponds to the k-symbol input sequence when the encoder

makes a transition from state i to state j, and an output state transition matrix whose

(i, j)th entry corresponds to the n-symbol output sequence for the described transition.
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Limiting the discussion to the pk states case for now, the particular requirements trans­

late into the fact that these matrices have dimensions pk by pk with every entry unique in

its column for the input state transition matrix. Since the input state transition matrix

must also have every entry unique in its row (otherwise the same input sequence would lead

to two different states), this matrix must be a Latin square. These have been extensively

studied in combinatorial mathematics and can easily be constructed with the help of finite

fields [77,78]. Appendix B.1 reviews the properties of Latin squares that are relevant in

this work and these are summarized below, without proof:

Two matrices A,j = ai + j and Bi,j = bi + j such that a, b, i, j E GF(pk) and a =1= b

have many interesting properties, summarized in [L1] and [L2].

[L1] Each entry is unique in its row and column.

[L2] The ordered pair (A,j, Bi,j) runs exactly once through aIl the elements of GF(pk) x

GF(pk).

Matrices that satisfy condition [L1] are known as Latin squares. Pairs of matrices that

satisfy both conditions [L1] and [L2] are known as Mutually Orthogonal Latin Squares

(MOLS) and the properties outlined above will play an important role in the proofs to

follow.

Since the output state transition matrix has only pn different elements, pn < pk, it was

impossible to require that each entry be unique in its row and column. The guidelines

listed above imply that each output symbol occurs exactly pk-n times per row and pk-n

times per column (such objects are called frequency squares [78]).

Based on the guidelines, the state transition matrices are constructed according to the

following equations

Minl(il,jl) = ç(ail + jl)

Mout1 (i l ,jl) = X(bi l + jl)

M in2 (i2,j2) = Ç(Ci2 + j2)

Mout2 (i2,j2) = 7'J(di2+ j2),

(3.1)

(3.2)

(3.3)

(3.4)

where a, b, c, d, il, i2, jl, j2 E GF(pk). These are illustrated graphically in Fig. 3.2. The

mapping ç : GF(pk) -+ {a, ... ,pk - 1} is a bijection and uniquely assigns a given k-symbol
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Latin Squares
State Transition

Matrices

Fig. 3.2 Outline of the joint design of bath FSM encoders. Mappings X and
1J will be designed jointly.

input sequence with a particular element of GF(pk). The many-to-one mappings X, {)

GF(pk) -> {D, ... ,pn - I} assign output symbols for given state transitions.

Definition 3.1.1 A single finite state machine encoder constructed according to Eqs. (3.1)

and (3.2) is said to be a Latin square based encoder. A pair of finite state machine encoders

constructed according to Eqs. (3.1) - (3.4) is said to form a pair of Latin square based

encoders.

If the mappings X and {) are chosen so that

Ix-1(v)1 = pk-n

1{)-l(V)1 = pk-n,

(3.5)

(3.6)

for aU v E {D, ... ,pn_I}, then the state transition matrices for a Latin square based encoder

will satisfy the outlined constraints, depicted in Fig. 3.1.

Theorem 3.1.1 For a pair of Latin square based encoders obtained from a bijective ç
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GF(pk) ---t {ü, ... ,pk -1} and whose construction satisfies the constraints in Eqs. (3.5) and

(3.6), the following hold:

a) The input state transition matrices are Latin squares.

b) The output state transition matrices have each entry appear pk-n times per row and

pk-n times per column.

c) For any a =1 b, C =1 d, output symbol v and input symbol u, each encoder has exactly

pk-n states from which input symbol U generates output symbol v.

Proof:

Part a) follows from property [LI] of Latin squares and the fact that ç is a bijection.

Part b) follows from property [LI] and Eqs. (3.5) and (3.6).

Part c) follows from property [L2] and Eqs. (3.5) and (3.6).
o

Since both mappings X and f} essentially transform a Latin square so that each entry

occurs multiple times per row and column, this action is denoted as collapsing a Latin

square. Given the conditions depicted in Fig. 3.1, there is still considerable freedom in the

design of the three mappings X, f} and f,. It is desirable to narrow down the selection of

these mappings by imposing additional constraints. For this, information theory can be

used as a guide:

1. The entropy of the output of the FSM encoders must be maximized or else residual

redundancy could be exploited to further compress the data. This translates into

the requirement that the output of each encoder should be equally likely for a given

distribution of the source.

2. There is no mutual information between the output streams of the FSM encoders,

i.e. I(rl; r2) = 0, otherwise the shared information could be eliminated from one of

the streams, thus improving the achieved compression.

Since these two requirements are difficult to satisfy at the message level, they are nar­

rowed down to symbollevel conditions which are used for the joint design of two good FSM

encoders:
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[Cl] For a given i.i.d. source, the marginal distribution of the output of each FSM encoder

is asymptotically uniform as the number of trellis stages is increased.

[C2] Given that it is known into which states encoders 1 and 2 were sent, there are exactly

pk-2n different inputs that may produce the observed output symbols.

The statement of condition [C2] requires sorne clarification. With each destination

state JI of the first encoder and observed output VI, there is a set R1(j1, VI) of inputs that

may have occurred in the first encoder. Similarly, one has a set of R2(j2 ,V2) inputs that

may drive the second encoder into state J2 and produce output V2. One requires that

IR1(j1,V1)1 = pk-n

IR2(j2, v2)1 = l-n

IR1(j1, VI) n R2(j2 ,V2)1 = pk-2n,

(3.7)

(3.8)

(3.9)

for aIl JI, J2' VI and V2. The core of each proof will be to show that it is possible to construct

the requisite mappings X, {} and ç that guarantee properties [Cl] and [C2].

3.2 Design with pk States

Theorem 3.2.1 For any prime p and positive integers k ~ 2n, there exists a pair of Latin

square based encoders with pk states satisfying conditions [Cl] and [C2].

Proof: The proof will be done by constructing suitable mappings for Eqs. (3.1) - (3.4)

and Eqs. (3.5) and (3.6). In this case, we have a pn-ary output symbol generated for each

pk-ary input symbol. The trellises have pk states, i.e. the minimum needed to avoid parallel

edges. The Min and Mout matrices are of size pk x pk and a, b, C, d, il, i2,JI, J2 E GF(pk)

while ç : GF(pk) -t {ü, ... ,pk - 1} is one-to-one and onto. Furthermore, choose a f: band

cf: d.

First, the {} mapping shaH be constructed. Galois fields GF(pk) are often denoted as

(k - 1) order polynomials over a prime field of order p (commonly denoted Fp ). More

conveniently, one can simply think of this polynomial as a vector in F;. Define the map­

ping {} by an arbitrary projection onto n coordinates of the vector space. Consequently,

1{}-l(V)1 = pk-n and Eq. (3.5) is satisfied.
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To determine the mapping X, for each v E {D, ... ,pn - 1} partition 'l9- I (v) into sets

Cv,o, Cv,l, ... , Cv,pLI of size pk-2n. Construct a family of sets according to Cm = Uv Cv,m'

The mapping X is then defined by the rule x(a) = m if ab- I ac I d E Cm' It is clear that

Ix-I (v)1 = pk-n and therefore Eq. (3.6) is satisfied.

Part 1: Condition [Cl]

A given input symbol can only produce one output symbol from a given state. One can

then express the probability of the encoder generating an output symbol v in terms of the

joint probability of the input symbol u and encoder state i pair as follows:

P(v) = L P(i, u) (3.10)
(u,i) that
produce v

L P(ilu)P(u) (3.11)
(u,i) that
produce v

L P(i)P(u). (3.12)
(u,i) that
produce v

If the probability distribution of the states is uniform, i.e. P(i) = p-k, then one obtains

P(v) = L p-kP(u)
(u,i) that
produce v

L p(u)pk-np-k
ail inputs u

(3.13)

(3.14)

(3.15)

where Eq. (3.14) follows from Theorem 3.1.1c. Rence, to show that the marginal distribu­

tion of the coded symbols asymptotically approaches a uniform distribution, it will suffice

to show that the probability distribution of the states tends to a uniform distribution. A

proof of this may be found in Appendix B.2.

Part 2: Condition [C2]

It still needs to be shown that condition [C2] is satisfied. Each output symbol occurs

pk-n times per row and pk-n times per column in the output state transition matrix. For

encoder 1, the set of rows in which output symbol VI E {D, ... ,pn - 1} occurs in column
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j1 E GF(pk) is given by

. b-1 -1( ) b-1 .
~1 E X V1 - )1·
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(3.16)

The input symbol that generated this output is in row il of column j1 of the Min1 matrix

as given by Eq. (3.1). One needs a method of determining in which row the input symbol

occurs in column jz of MinZ ' This can be found by equating Eq. (3.1) with Eq. (3.3) and

since ç is bijective:

ç(ai1+ j1) = ç(ciz+ jz)

ail + j1 = ciz + jz

iz = c-1ai1+ C-1(j1 - jz).

(3.17)

(3.18)

(3.19)

If this is combined with Eq. (3.16), one obtains a set of rows iz corresponding to the

locations of the inputs in column jz of the second encoder which result in output V1 in

column j1 of the first encoder:

(3.20)

Eqs. (3.20) and (3.4) may be used to define a list Y2(V1,j1,jZ) according to

(3.21)

which can be interpreted as a List of aU output symbols of the second encoder when entering

state jz when the first encoder is entering state j1 and genemtes output symbol V1. The

requirement for good F8M design is that this list contains pk-Zn copies of each of the pn

output alphabet symbols for aU combinations of V1 E {O, ... ,pn - 1} and j1,jz E GF(pk).

However, the effect of the j1 and jz terms can be combined into a single term, j, which

leads to the simplification,

(3.22)

It will suffice to show that the list 112 (V1, j) contains pk-2n copies of each of the pn output

alphabet symbols for aU combinations of V1 E {O, ... ,pn - 1} and j E GF(pk). Now,
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Fig. 3.3 A graphical representation of how the sets Cm and '19- 1(.) partition
the input symbols when j = O.
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V2(V1,j) = f) [dc- 1ab-1x-1(V1) + j] = {) [CV! + j] which by construction of the mapping {)

contains each output symbol pk-2n times for any value of j. Fig. 3.3 illustrates the symbol

resolution for the case j = o.
o

The completion of the proof presented a constructive solution for the mappings X and

{) but did not state any condition on ç. In particular, this means one is free to assign any

k length p-ary sequence to any element of GF(pk) provided the mapping is bijective. In

praetice, the mapping is not so arbitrary. From condition [C2], one has pairs of k-Iength

symbols that can only be resolved indirectly by the memory of the code. Intuitively, it is

desirable to maximize the Hamming distance of these k length symbols to aid the memory

of the code. Usually this worked weIl (e.g., the rate 4/5 code in Appendix A) although in

sorne cases, such as the rate 2/3 code in Appendix A, maximizing the Hamming distance

did not result in the best observed performance.

3.3 Design with More than pk States

The second case to consider is the situation when the F8M encoders have more than

pk states. The code is still constructed according to Eqs. (3.1)-(3.4) with the slight

modifications that a, b, c, d, il, i2, j1, j2 E GF(pl) (with l 2:: k) and the mapping ç has

a dummy output to denote impossible state transitions. In particular, we have that

ç: GF(pl) -t {</>,O,oo.,pk -l} with l 2:: k where ç is onto and each U E {O, ... ,pk -l}

is the image of a unique element w E GF(pl) . In essence, one is only concerned with those



3 Code Design

----- 0

----- 1----- :

Fig. 3.4 A graphical illustration of the ç mapping. The restriction of ç to
W is a bijection between W and {ü, ... ,pk - I} while aIl the other elements
GF(pl)\W are mapped to the dummy symbol cP.
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elements w E W C GF(pl) such that ~(w) E {O, ... ,pk -1}, i.e. W = ~-l({O, ... ,pk -1})

(see Fig. 3.4).

Definition 3.3.1 A mapping ~ : GF(pl) -t {<p, 0, ... ,pk - 1} with pk 2: 2 is said to be

W-bijective if there is a set WC GF(pl) so that IWI = pk and ~w, the restriction of ç to

W, is a bijection between W and {a, ... ,pk - 1}.

Under the constraints

119-1(v)1 = pl-n

Ix-1(v)1 = pl-n

119-1(v) n WI = pk-n

Ix-1(v) n WI = pk-n,

it is easy to verify that results analogous to Theorern 3.1.1 still apply:

(3.23)

(3.24)

(3.25)

(3.26)

Theorem 3.3.1 For a pair of Latin square based encoders obtained with a W-bijective

ç : GF(pl) -t {(,D, 0, ... ,pk - I} and whose construction satisfies the constraints in Eqs.

(3.23) - (3.26), the following hold:

a) Each symbol in {a, ... ,pk - I} appears once per row and once per column in the input

state transition matrices.
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b) In the transitions that are valid, the output state transition matrices have each entry

appear pk-n times per row and pk-n times per column.

c) For any a =1 b, c =1 d, output symbol v and input symbol u, each encoder has exactly

pl-n states from which input symbol U generates output symbol v.

Proof:

Part a) follows directly from property [LI] of Latin squares and the fact that each U E

{a, ... ,pk - I} is the image of a unique element in GF(pl).

Part b) is a consequence of Eqs. (3.25) and (3.26) and property [LI] .

Part c) is a consequence of Eqs. (3.23) and (3.24) and property [L2] .

o
The constructive proof of the existence of Latin square based FSM encoders that meet

conditions [Cl] and [C2] with more than pk states will proceed in a similar fashion as the

proof for encoders with pk states. In particular, condition [Cl] will be proved by showing

that the probability distribution of the output symbols tends to a uniform distribution and

[C2] will be shown by constructing the requisite mappings. Key to the proof of condition

[Cl] was that none of the transition probabilities Pi,j were zero. With more than pk states,

this need not be true anymore. It will be necessary to investigate under what conditions

are the states of the FSMs connected in the sense that one can get from any state to any

other state given a suitable input sequence. The following lemma is a sufficient condition:

Lemma 3.3.1 If -a and -c are both primitive elements of GF(pl), then the trellises of

the Latin square based encoders are connected for any f, that is W-bijective.

Proof: Consider an input state transition matrix derived from a Latin square with pa­

rameter a E GF(pl). Consequently, given an input symbol u = f,(w) E {a, ... ,pk - 1} and

current state X n = i, the next state X n+1 = j satisfies by Eq. (3.1):

(3.27)

(3.28)

It will be shown that for each given input u, there is astate X o such that if the input

is kept fixed, the encoder will cycle through pl - 1 states (i.e. aIl but one). By Eq. (3.28),
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State w(l+a)-l

te[]

Fig.3.5 An illustration of the state cycle generated when the input u = ç(w)
is kept fixed.

the state at time n is

X n = w(1 - (-at)(1 + a)-l + (-atX o. (3.29)

The cycle repeats the first time Xo = X n . First, consider w =1- °and choose Xo = O.

Then, it is clear that with -a a primitive element, Xo = X n for the first time when

n = pl - 1. Second, consider w = °and choose Xo = 1. Since the sequence of states is

then a geometric series in (-a), Xo = X n for the first time when n = pl - 1.

Now, the state that is not present in the maximum length cycle is the one that gets

sent to itself by the input symbol (i.e. it is stationary with respect to the input u = ç(w))

and from Eq. (3.28) is given as w(1 + a)-l (see Fig. 3.5). However, for a different input

(and there must exist at least 2 different possible inputs into the FSM), a second cycle is

formed that includes the original stationary w(1 +a)-l state. By the pigeonhole principle,

both cycles must overlap, hence aU states can be reached.

o

Theorem 3.3.2 For any positive integers l 2: k 2: 2n, there exists a pair of Latin square

based encoders with pl states for which conditions [Cl] and [C2] hold.

Proof: For the case 12: k, choose any ç : GF(pl) -+ {<p,O, ... ,pk - 1} that is W-bijective.

Choose -a and -c to be primitive elements and any b =f a and d =f c.

Construct three projections p{}, Px and Pu that map elements in GF(pk) in vector

form onto n, n and l - k different coordinates respectively. Construct 'l9(a) = P{}(a),

x(a) = Px(cd-lba-la), U = Pi1l (O) and W = Cd-lU. Since we deal with projections, it is

clear that Eqs. (3.23)-(3.26) are satisfied.
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Part 1: Condition [Cl]

Similar to the proof of Theorem 3.2.1, part 1, it is sufficient to show that the probability

density of the states approaches the uniform distribution due to Theorem 3.3.1c. A proof

of this may be found in Appendix B.3.

Part 2: Condition [C2]

Similarly to part 2 of Theorem 3.2.1, one obtains that the output VI in column jl occurs

in the rows il such that

(3.30)

AIso, both input state transition matrices may be related by equating Eq. (3.1) with

Eq. (3.3). Furthermore, if one is only interested in the relation for valid input symbols (i.e.

not 1», then

(3.31)

By combining Eq. (3.31) with Eq. (3.30) and the fact that çw is a bijection, one obtains

A list of outputs "Y2(VI,jl,j2) of the second encoder is then:

"Y2(VI,jl,j2) = {) [{dc-IW n dc-l(ab-Ix-I(VI) + (1- ab-l)jl)} + (1- dC-I )j2]

= {) [{U n (dc-Iab-Ix-I(VI) + dc- I (1- ab-l)jl)} + (1 - dC-I )j2] .

(3.32)

(3.33)

(3.34)

Similarly to Theorem 3.2.1, one is seeking to demonstrate that mappings {) and X result

in lists "Y2(VI,jl,j2) containaining pk-2n copies of each of the pn output alphabet symbols

for aU values of VI E {a, ... ,pn -1} and jl,j2 E GF(pl). Due to the projective nature of the

mappings X, {) and Pu, it is easy to verify that this is so with the proposed construction.

D

A few points can be made about Theorem 3.3.2. First, the requirement that the input

state transition matrix is based on the negative of a primitive element in part 1 can be

relaxed. AU that is reaUy required is that the states of the FSM are connected. This is

always true if the above construction is utilized with l = k and almost always true with
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Theorem 3.2.1 Theorem 3.3.2

Fig. 3.6 The relationship between the constructions in Theorems 3.2.1 and
3.3.2.

l > k.

The second comment is about the relation between the constructions in theorems 3.2.1

and 3.3.2. If we constrain ourselves to the case l = k in Theorem 3.3.2, then the construction

presented there is a special case of that in Theorem 3.2.1 (see Fig. 3.6). In particular,

while the mapping X is a projection in Theorem 3.3.2, it was of a much more general

form in Theorem 3.2.1. One advantage of the projection mapping is that aH the input

symbols are resolved the same way, regardless of the destination states of the encoders.

In particular, if u E R1(jl, VI) n R2(j2, V2) and u E Rl(j~, vD n R2(j~, v~), then in fact

R1(jl,vd n R2(j2,V2) = Rl(j~,vD n R2(j~,V~). The next section gives a design example

where this is illustrated.

3.4 Design Example

Table 3.1 illustrates the construction of a code that generates 2 output bits for every 4

that are input. The code designed here was simulated in Chapter 4 and may be found

in Appendix A.2. This code was generated with parameters {a, b, c, d} = {g3, gl, glO, g14}

where 9 is a primitive element of GF(24).

The first two columns list the elements of the finite field in vector notation (left) and

exponential notation (right). The third and fifth columns are the rightmost and leftmost

coordinates of the vector representation. The fourth and sixth columns are obtained by

multiplying the field elements by cd-1ba-1 and cd-1 respectively. The pairs shawn in

columns 2 and 3 give the '13 mapping while columns 4 and 5 specify the X mapping.

There remains the issue of deciding which k-bit symbols to assign to each element of

the field. As stated earlier, we choose to maximize the Hamming distance between those

inputs that cannot be resolved directly from the outputs they create. These can be found
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Table 3.1 Code design ofrate 2/4 trellises. This table constructs the {J and
X mappings.

Field Element W equivalent
Vector gX x {JO gXcd-1ba-1 xO gXcd-1

0000 -00 0 -00 0 -00

0001 3 1 12 0 14
0010 2 0 11 0 13
0011 6 1 0 0 2
0100 1 0 10 0 12
o1 0 1 9 1 3 0 5
011 0 5 0 14 0 1
o1 1 1 11 1 5 0 7

1 000 0 0 9 1 11
100 1 14 1 8 1 10
1 0 1 0 8 0 2 1 4
101 1 13 1 7 1 9

1 100 4 0 13 1 0
110 1 7 1 1 1 3
1 1 1 0 10 0 4 1 6

1 1 1 1 12 1 5 1 8

by taking the entries in the last column (the W equivalent column) that occur where both

{) and X agree. Then, one obtains the following four sets {g-OO, g13, g12, gl }, {gll, g4, gO, g6},

{g14, g2, g5, g7}, and {glO, g9, g3, g8}. These are assigned bit patterns according to a (4,2,2)

block code. Table 3.2 provides the final mapping ç.
With the three mappings ç, {) and X as weIl as {a, b, c, d} = {g3, gl, glO, g14} where 9 is

a primitive element of GF(24
), one may now proceed to construct the trellises according to

Eqs. (3.1)-(3.4). The trellises may be found in Appendix A.2 for the rate 2/4 code designed

here and in Appendix A for the other designed trellises.

3.5 Group Structure

The group structure of the designed trellis sections will be briefly investigated. It will

be shown that the trellis construction presented in Theorem 3.3.2 produces a group trellis

section. Before proceeding to demonstrate this, a few definitions are required. The notation

of [79] is followed with the sole difference that here, the input and output edge labels are
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Table 3.2 Design of the ~ mapping for the rate 2/4 code.

W equivalent Bit Pattern

DO ~O,xO ~O {

DO = O,xO = 1 {

DO ~ 1,XO ~ 0 {

DO = 1,XO ~ 1 {

-00

13
12
1

11
4

o
6

14

2
5

7

10
9

3
8

0000
1 100
011 0
101 0

1 1 1 1
0011
100 1
o1 0 1

0001
110 1
011 1
101 1

1 1 1 0
0010
1000
0100

separated for clarity. The group trellis property will be proved for the first trellis in the

construction of Theorem 3.3.2. The result follows analogously for the second one. Since aIl

groups in this section are abelian, the + operator is employed.

Recall that a trellis section is a five-tuple X = (C, S, C', S', B), where C and C' are the

input and output alphabets respectively, S and S'are the left and right states respectively,

and B is the set of branches (see section 2.7). It is said that X is a group trellis section if

S, S', C and C' are groups and B is a subgroup of the direct product S x S' x G X C' [79].

Theorem 3.5.1 The trellis sections constructed in the proof of Theorem 3.3.2 are group

trellis sections.

Proof: First, it will be shown that S, S', C and C' each have group structure. Clearly,

since i E S = CF(pl) and j E S' = CF(pl), both S and S' have group structure.

Recall that the mapping X may be described as x(a) = PX(cd-1ba-1a) , where Px is

a projection mapping. Since the obvious relation X( a) + X((3) = X( a + (3) holds, X is a

homomorphism and the range S' = {a, .. ,pn - 1} of X has group structure.



Finally, to demonstrate that Gis a group, consider when ç(a) #- <jJ:

ç(a) #- <jJ {:} a E W

{:} a E Cd-lU

{:} :lu E U s.t. a = Cd-lU

{:} :lu s.t. Pe(u) = a and a = cd-lu

{:} Pe(c-lda) = a.

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

Eqs. (3.35) and (3.39) imply that W is the kernel of a homomorphism and hence W is a

group in its own right. Since the mapping ç is a bijection between W and G = {a, ... ,pk -1},

a group structure is induced onto G. We then have that if a, (3 E W, then ç(a) + ç((3) =
ç(a + (3).

It now follows that each of S, S', Gand G' are groups and it remains to be shown that

Bis a subgroup under the direct product S x S' x G x G'. In the construction of Theorem

3.3.2, the branches of the first trellis are given according to the formula,

B = {(i,j,ç(ai + j),X(bi + j)) : ç(ai + j) #- <jJ}. (3.40)

Since B ç S x S' x G x G' and the latter is a group, it will be sufficient to show that

a, (3 E B implies a + (3 E B [80]. Let a, (3 E B such that,

Then,

a = (ia, ja, ç(aia + ja), X(bio + Jo))

(3 = (i(3,j(3,ç(ai(3 + j(3),X(bi(3 + j(3))'

(3.41)

(3.42)

a + (3 = (ia + i(3, ja + j(3, ç(aio + jo) + ç(ai(3 + j(3), X(bia + ja)) + X(bi(3 + j(3)) (3.43)

= (ia + i(3,)a + )(3, f,(a(ia + i(3) + (ja + )(3)), x(b(ia + i(3) + (ja + )(3))) (3.44)

E B. (3.45)

o
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A few interesting points can be made about the group trellis structure of the codes

presented here. The first is that aIl the codes employed in the simulations of Chapter 4 were

constructed as described in Theorem 3.3.2 and therefore have group trellis structure. The

actual trellises presented in Appendix A were optimized by constructing several hundred

trellises according to Theorem 3.3.2 and choosing those which exhibited the best simulated

performance for the Slepian-Wolf problem. It is important to note that sorne trellises

exhibited poor performance and group trellis structure is not a sufficient condition for

good performance.

Secondly, this section has so far remained silent as to the trellis structure of the con­

struction in Theorem 3.2.1. In that construction, the mapping X was of a much more

general form than that in Theorem 3.3.2. Not aIl such mappings in Theorem 3.2.1 result

in a homomorphism between GF(pk) and G'. Therefore, a group trellis structure is not a

necessary condition for the equal spread properties of the output symbols in the trellis.

3.6 Extension to Rates Greater than 1

The Latin square based code design can easily be extended to rates greater than 1. Of

course, in such a case, each k length input sequence would generate an n length output

sequence with k ::; n. In other words, an input sequence is mapped to a unique output

sequence and the symbol resolution criterion of [C2] is no longer relevant.

However, the concept of a uniform distribution on the output symbols can be applied

to a trellis design [81]. Since condition [C2] was the key for a joint encoder design, this

section will only be concerned with the design of a single trellis subject to the following

conditions:

[Cl] The marginal distribution of the output of each FSM encoder is asymptotically uni­

form as the number of trellis stages is increased.

[C2'] Each FSM encoder is a one-to-one mapping.

In the case of a trellis with rate greater than 1, the single trellis is described by a pair of

input and output state transitions matrices constructed according to the familiar equations:

Min(i,j) = ç(ai + j) (3.46)
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Mout(i,j) = X(bi + j), (3.47)

where ç : GF(pn) ~ {<p, 0, ... ,pk -1} with k :::; n and X: GF(pn) ~ {a, ,pn_1}. Now, let

W be the pre-image under ç of the non-dummy symbols, W = ç-l({O, ,pk -l}). Then,

it is also required that the restriction of ç to W, denoted çw, and X are both bijections.

Theorem 3.6.1 For a Latin square based encoder with constraints on ç and X as outlined

above, the following hold:

a) Each symbol in {a, ... ,pk - 1} appears once per row and once per column in the input

state transition matrix.

b) Each output symbol appears once per row and once per column in the output state

transition matrix.

c) For any a =1= b, output symbol v and input symbol u, there is one and only one state

from which input symbol u generates output symbol v.

Proof:

Part a) follows directly from property [L1] of Latin squares, Eq. (3.46) and the fact that

çw is a bijection.

Part b) follows from property [L1] , Eq. (3.47) and the fact that X is a bijection.

Part c) follows from property [L2] , Eqs. (3.5) and (3.6) and the fact that both çw and X

are bijections.

D

Theorem 3.6.2 For any integer n ;:::: k, there exists a finite state machine that satisfies

conditions [C1] and [C2'] .

Proof:

Choose a to be the negative of a primitive element, any b =1= a, any bijection X and any

mapping ç : GF(pn) ~ {ü, ... ,pk - 1} such that ç is bijective.

Part 1: Condition [Cl]

By Lemma 3.3.1, the trellis is connected. The result of Theorem B.3.1 (with n substi­

tuted for l) shows that the probability density of the states approaches a uniform distribu­

tion. The result may then be shown similar to Theorem 3.2.1 part 1.
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Part 2: Condition [C2']

By theorem 3.6.1b, if the current state of the encoder is known, then knowledge of the

output of the encoder will uniquely determine the next state of the encoder as weIl as the

input that caused the transition. By induction, one may determine the unique input since

it is assumed that the encoder was initialized to a known state.

o

3.7 Chapter Summary

This chapter has presented two constructions for pairs of finite state machine encoders.

Trellis design rules in terms of an equal spread of input and output symbols were presented

(see Fig. 3.1). Constructing trellises with these properties was shown to be equivalent to

designing pairs of square matrices with each entry appearing equally often per row and per

column.

Mutually Orthogonal Latin Squares (MOLS) were shown to provide an efficient alge­

braic method of systematically constructing the desired matrices and hence the trellises.

Since many constructions were possible from the same initial Latin squares, two conditions

based in information theory were imposed to narrow down the design. One of these condi­

tions involved both of the trellises and provided a joint design condition. Two constructive

approaches to systematically generate trellises that met these conditions were then pre­

sented. The first dealt with trellises in which the number of required states is tight. The

second construction dealt with trellises that may have more states than are strictly needed.

Interestingly, when the second construction is applied to trellises that have the minimum

number of required states, the construction is a special case of the first one. In either case,

the trellises were non-linear, non-symmetric, non-systematic and non-binary.

It was then shown that the second construction always results in trellis sections that

have the group trellis section property. It was also observed that the first construction may

not always yield such trellis sections. The section was closed by concluding that the group

trel1is section property did not guarantee good performance.

FinaIly, a simple extension of the Latin square based design to rates greater than 1 was

considered. Since the joint trellis design condition no longer applied at these rates, each

trellis was designed individuaIly.
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Chapter 4

Applications

In this chapter, four applications of the designed codes are considered: data compression,

noise robust data compression, coding for the Slepian-Wolf problem and coding for the

Wyner-Ziv problem. In all cases the performance is measured through simulations and

the proposed methods are observed to be close to the Optimum Performance Theoretically

Achievable (OPTA).

4.1 Data Compression

We first consider the problem of fixed-length to fixed-length source coding to illustrate the

effectiveness of the parallel concatenated source codes. Fig. 4.1 illustrates the encoder and

decoder design. A binary source with i.i.d. outputs and bias P[X = 1] = q is encoded by

a pair of constituent FSM encoders as given in Appendix A to form encoded sequences

VI and V 2 . The output of the encoders is transmitted error free to an iterative turbo

decoder. There, the soft receiver assigns probabilities on the encoded data and stores these

in matrices ri and r2. Since the channel is noiseless, the matrices are almost aU zero except

for a single 1 per column. Iterative decoding is performed with the a priori probabilities

Px included in the decoding process as outlined in Section 2.8.

The performance of the scheme is measured by the achieved BER at the output of the

decoder against the source entropy H(X) = h(q) = -q log2 q- (1- q) lOg2(1- q). The BER

is evaluated by simulation of at least 2000 packets of size N = 65536 or until 150 packet

errors are received at the decoder. As a figure of reference, for an overall code rate of 2n/k

with few packet errors, at least 131072000k bits were simulated and a BER of 10-5 would
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Source
X

Fig.4.1 Proposed encoder/decoder structure for fixed-length to fixed-length
data compression.
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Fig. 4.2 The effect of decoding iterations on the performance of data com­
pression with a fixed rate 2/3 code in a noiseless environment.

generate a minimum of 1310k bit errors. In aU simulations, a spread random interleaver

(see Appendix C) with spread 100 is employed unless otherwise specified.

Fig. 4.2 shows the performance achieved at the decoder for various decoding iterations

for the rate 2/3 code. From the figure, it is clear that a large coding gain is achieved by using

multiple iterations at the decoder: one iteration produces no noticeable difference in BER
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over the illustrated range of entropies H(X) while 8 iterations reduces the BER by an order

of magnitude at H(X) = 0.592. Furthermore, 12 iterations result in a BER below 10-6 at

the same H(X) = 0.592, while 16 and 30 iterations then provide a coding gain of 0.009 and

0.016 bits respectively over the performance of 12 iterations at a BER of 10-5. The best

result for a BER of 10-5 is achieved after 30 iterations at an entropy of H(X) = 0.609 bits.

Further iterations resulted in a negligible coding gain. For a rate 2/3 code, the theoretical

limit (neglecting the residual errors) is 0.6667 bits and a performance gap of 0.058 bits is

observed. As a fraction of the theoretically achievable source entropy, this corresponds to

a gap of 9.5%. Similar results may be observed for the rate 2/5, 2/4 and 4/5 codes from

Appendix A and their performance after 10, 20 and 10 iterations respectively is illustrated

in Fig. 4.3. The performance gaps vary from 0.044 bits to 0.057 bits and are listed in

Table 4.1. Garcia-Frias has independently investigated the use of heavily punctured turbo

codes (parallel-concatenated recursive systematic convolutional codes) [64] and the best

rate reported there is 23% above the entropy of the binary memoryless source.

It is also interesting to observe how puncturing, a well known rate adjustment technique

for channel codes, affects the performance of the designed codes. This is shown in Fig. 4.4

and listed in Table 4.1 for rates 0.4750 and 0.6333. These rates were obtained by puncturing

(removing) 1/20 of the outputs of the rate 2/4 and 2/3 codes respectively. A few puncturing

guidelines can help obtain good performance. First, it is undesirable to puncture both

outputs of the same input symbol. Second, it is desirable that the punctured outputs are

spread equally and are separated as far apart as possible. One can also require that the

corresponding inputs of the punctured outputs are separated as far apart as possible. If

too many punctured outputs are clustered together, there is little "memory" to utilize at

the decoder to determine the inputs.

A simple method to achieve these guidelines is by suitably designing the interleaver.

Suppose the interleaver 7r satisfies the fol1owing property: n mod k = 7r(n) mod k. This

guarantees that puncturing an output in position 10 corresponds to an input in position

li such that 10 mod k = li mod k (regardless of which constituent encoder produced the

output).

Now, if all the outputs with positions l~ mod k = k1 are punctured from the output

of the first constituent encoder and those in positions l~ mod k = k2 from the second

constituent encoder with k1 ::J k2 , then no input sees its output in both streams punc­

tured. Furthermore, the spread (or distance) between consecutive punctured outputs in
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Table 4.1 Performance summary of data compression codes.

Rate

2/5
0.4750

2/4
0.6333

2/3
4/5

Performance
(Pe = 10-5)

[bits]

0.343
0.424
0.456
0.571
0.609
0.744

OPTA Gap R/H(X)-1
[bits] [%]

0.057 16.6
0.051 12.0
0.044 9.6
0.062 10.9
0.058 9.5
0.056 7.5

each stream is k and the spread between the corresponding inputs is also k in each stream.

However, if k2 = k1 + 1, then there are pairs of consecutive input symbols such that each

one has its output punctured in a different stream. This can be resolved by requiring that

k2 = k1 + lk/2J.
The interleaver utilized for the rate 0.4750 and 0.6333 code was designed with the s-rand

algorithm outlined in Appendix C and with the parameter k = 20 (the constraint that n

mod 20 = 7l"(n) mod 20 was added in step 5 of Appendix C). Puncturing was performed

as outlined above with k1 = 5 and k2 = 15. From Table 4.1, one sees that the punctured

codes show a slight increase in performance gap over the non-punctured equivalents, but

the results are still quite close to the theoreticallimit.

It is also interesting to note that the data compression scheme proposed here can achieve

zero-error rate with only a minor modification. In such a situation, the encoder iteratively

decodes its own output before passing the compressed data onto the decoders. This is

done in order to determine the positions of the decoding errors by comparing the decoding

results against the actual source message. If the positions in error are appended to the

compressed data stream, the decoder can then recover the message error free. The rate

increase is proportional to the BER and for a source that results in a small probability

of error (i.e. when using the unmodified turbo scheme), the code rate is only marginally

increased by this modification.
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Fig. 4.3 Performance results for data compression in noiseless environment
with fixed rate non-punctured codes. Performed decoding iterations are 10,
20,30, 10 (left ta right).
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Fig. 4.4 Performance results for data compression in noiseless environment
with fixed rate punctured codes after 20 decoding iterations.
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Fig. 4.5 Proposed encoder/ decoder structure for noise robust data compres­
sion.

4.2 Noise Robust Data Compression

The power of turbo codes for protecting data against noise is weIl known. It is equaIly

interesting to investigate how the proposed turbo source codes perform if decompression

must be done from an error or noise-corrupted observation of the compressed data. This

is illustrated in Fig. 4.5 and it is assumed that binary antipodal signalling is employed to

transmit the compressed bit stream. In Figs. 4.6 and 4.7, the error rate is plotted as a

function of Eb/No in an AWGN environment where Eb is the energy per source bit and the

variance of the noise is No/2. (The rate 0.58333 code was obtained by puncturing 1/8 of

the outputs of the rate 2/3 code.)

In Fig. 4.6, as the entrapy of the source is decreased by varying q from 0.11 to 0.05, it

is seen that Eb / No can be decreased by as much as 3.4dB and a similar result is observed

for Fig. 4.7. It is clear that the a priori source statistics contribute a significant gain in

performance. It is informative to evaluate how close to the optimal performance this noise

rabust compression scheme is. This can be found by numerically evaluating the capacity

of an AWGN channel subject to the constraint of BPSK signalling as illustrated in Section

2.4. Tables 4.2 and 4.3 summarize the results. From these results, the difference is made

as close as 1.11 dB and 1.36 dB from the OPTA respectively.

As the entropy of the source is increased to the limit that can be achieved for noiseless

environments, one expects that the performance will eventually degrade somewhat. Tt is

worthwhile noting that for the simulation of the noise robust compression scheme, an error

floor occurs between the error rate of 10-8 and 10-7 with a progressive rise as the entropy

of the source was increased. The fact that the probability of error cannot be made exactly

zero is not surprising, as even turbo channel codes have an errar floor.



4 Applications-_.._---_..__._----------_._------------.._--_.._---.--------------- 65-----_ _.._ __.._-

10° "'"'"'~..,.,-,.,..,..,..,.,..,.,,..,.,..,.,.,.,.,..,..,.,..,.,..,~..,..,,.,.,..,..,..,.,..,.,.,,,.,.,..,.,.,.,.,..,,.,.,..,.,~""T,.,..,.,.,.,.,..,....,..,.,..,..,..,..,.,,~..,.,.,.,.,.,
..... "'::::::::::::::::::.:;::::::; .':::::: :::::::=: :'.

::::::::::::::::
. . . . .. ..... ....

-e-- q = 0.05
-><- q = 0.06

10-5 -+- q = 0.07 ,
-lIE- q = 0.08 ....
-i3- q = 0.09
-+- q=0.10

l'=-v--=q==:i:::0=.1=1=----.L-_~L-D.--L~-.rl-~i---L..L--:l~J..J10-"~
-5 -4.5 -4 -2.5 -1 -0.5 0

Eb/NoldB]
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Fig. 4.7 Performance results for noise robust compression in AWGN envi­
ronment with fixed rate 0.58333 code. This code was obtained by puncturing
the rate 2/3 code. The source has a bias P[X = 1] = q.



Table 4.2 Performance summary of noise robust compression with rate 2/3
code.

q OPTA Performance OPTA Gap
[dB] (Pe = 10-5) [dB]

[dB]

0.05 -5.55 -3.63 1.92
0.06 -4.70 -3.06 1.64
0.07 -3.95 -2.54 1.41
0.08 -3.26 -2.02 1.24
0.09 -2.61 -1.46 1.15
0.10 -1.99 -0.88 1.11
0.11 -1.38 -0.22 1.16

Table 4.3 Performance summary of noise robust compression with rate
0.58333 code.

q OPTA Performance OPTA Gap
[dB] (Pe = 10-5) [dB]

[dB]

0.05 -5.28 -3.40 1.88
0.06 -4.37 -2.74 1.63
0.07 -3.54 -2.08 1.46
0.08 -2.75 -1.39 1.36
0.09 -1.99 -0.63 1.36

66

It is interesting to interpret the results in Tables 4.2 and 4.3. It appears that as the

source bias is increased (by decreasing q), that the OPTA gap increases. One plausible

explanation is that for heavily biased sources, the input is essentially always the same

symbol. For long runs of inputs, the encoder cycles through the same few states, with an

occasional rare change of which few states it cycles in. Since the encoder performs data

compression, the output of the encoder may not allow direct observation of when there is a

change of cycle states (Le., the input that was not the most likely one produced an output

identical to that of the most likely one). The performance of the code is thus degraded for

heavily biased sources.

A similar observation can be made for weakly biased sources (when q is large). In those

cases, the entropy of the source is such that it it is impossible to compress the source at

a rate of 2n/k and the scheme clearly fails. Intuitively, it is clear that this failure must
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Fig. 4.8 Performance results for noise robust compression in BSC with cross­
over probability € and fixed rate 2/3 code.

exhibit itself by an ever increasing OPTA gap as q is increased beyond some threshold.

Combining this observation with the explanation of the previous paragraph, one concludes

that there is a range of q for which the scheme will perform weIl.

It is equaIly interesting to investigate the performance over binary symmetric channels

(B8Cs) with cross-over probability E. This is illustrated in Fig. 4.8 where the BER is

plotted against the entropy H(X) = h(q) of the source. It is seen in Table 4.4 that the

scheme performs weIl over a large range of cross-over probabilities, from E = 0 (pure data

compression) to E = 3.2 X 10-2 , with performance gaps ranging from 0.048 bits to 0.058

bits.

4.3 The Slepian-Wolf Problem

The proposed coding scheme may also be extended to the 8lepian-Wolf problem, as illus­

trated in Fig. 4.9, where the problem is treated as a side-information coding problem [12].
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Table 4.4 Performance summary of noise robust compression over BSC
channel with cross-over probability E for rate 2/3 code.

E OPTA GAP
[bits] [bits]

0 0.6667 0.058
1.0 x 10-4 0.6657 0.058
1.0 x 10-3 0.6591 0.056
3.2 x 10-2 0.6459 0.052
1.0 x 10-2 0.6128 0.048
3.2 x 10-1 0.5305 0.055

x
Joint

Source
(XIY)

y
~----'---------'---~y

Fig. 4.9 Proposed encoder/decoder structure for Slepian-Wolf data com­
pression.

Source X is encoded by a pair of contituent FSM encoders and source Y zero-error encoded

(e.g., with the Lempel-Ziv algorithm). The receiver may then decode Y error-free. Based

on the recovered Y, one may determine conditional a posteriori probabilities PXIY which

are utilized in the decoding of X in the same way as the a priori probabilities Px were

utilized in Section 4.1. Note that with the above coding scheme, the encoders for both X

and Y have no knowledge of the source statistics as these are only employed in the decoding

of X.

Ta test the proposed coding scheme for the Slepian-Wolf problem, it is applied, operating

at a fixed rate, to different pairs of correlated binary memoryless sources (X, Y). The

amount of correlation between the sources depends on their joint probability mass function



4 Applications
__••_. W~ •• H • _ ----_._----- 69

Table 4.5 Performance summary of Slepian-Wolf data compression codes.

Rate

2/5
2/4
2/3
4/5

Performance OPTA Gap R/H(XIY) -1
(Pe = 10-5) [bits] [%]

[bits]

0.343 0.057 16.6
0.455 0.045 9.8
0.612 0.055 8.9
0.744 0.056 7.5

(PMF), given by the following matrix

p = [ 1/2
q
- q q ]

1/2 - q ,
(4.1)

where q E (0,1/2) is a constant that determines the correlation between X and Y. Note,

that the entropy of each separate source is 1 bit and that

H(XIY) = H(YIX) = h(2q),

H(X, Y) = 1+ h(2q),

(4.2)

(4.3)

where h(.) is the binary entropy function. Since H(X) = 1, performance evaluation for this

joint source (X, Y) will determine how weIl the scheme can utilize the side-information. For

cases where H(X) < 1, the scheme would be a hybrid of single-source data compression

and side-information at the decoder. The former was shown to perform weIl in Section 4.1

while the latter will now be seen to also perform weIl.

Fig. 4.10 shows the performance in terms of BER against the conditional entropy

H(XIY) obtained by varying the parameter q for code rates of 2/5, 2/4, 2/3 and 4/5

(see Appendix A). Table 4.5 summarizes the results and a comparison with Table 4.1

shows almost identical results as for data compression. The only significant difference is for

the rate 2/3 code which shows a decrease in the performance gap from 0.058 bits to 0.055

bits. In aIl cases, the scheme is shown to take advantage of the side-information close to

the theoretical limit since without the side-information, no compression would have been

possible.

A different view of what has been achieved is illustrated in Fig. 4.11, where the dotted
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Fig. 4.10 Performance results for Slepian-Wolf compression.

line represents the reliable encoder rates that can be achieved for H(YIX) = H(XIY) =

0.612, according to the Slepian-Wolf theorem. The corners of the dashed line are the rates

that have been directly achieved with BER less than 10-5 . The dashed line in between the

corner points can be achieved by time-sharing arguments [12]. In contrast, the solid line

represents the achievable region for zero-error encoding of both sources X and Y. Hence,

by introducing a slight probability of error, the gain in rate is substantia1.

As a figure of comparison, the rate 4/5 code presented here requires a rate in excess

of H(XIY) by only 7.5%. The best result in [68] is 35.1% above H(XIY). In [63], for

the same class of correlated sources, the total rate of both encoders is compared against

H(X, Y). There, the best result reported requires a total rate 9.8% above H(X, Y) and

the best result here is 3.2% above H(X, Y).

Note that one could in principle make the scheme universal in the sense that neither the

encoder nor the decoder requires explicit knowledge of the source statistics. If the encoders

initially send a large amount of uncoded data to the decoder, the decoder may then get an

accurate estimate of the statistics based on its joint observations of both X and Y. After

an agreed upon amount of uncoded data has been transmitted, the encoders would then
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Fig. 4.11 Comparison of the Slepian-Wolf achievable region and the achieved
region for the rate 2/3 code,

proceed as outlined in Fig. 4.9 and the effect of the uncoded data on the average rate would

be negligible.

4.4 The Wyner-Ziv Problem

Consider a pair of independent and memoryless Gaussian sources X and U which have

variances O"~ and O"'f; respectively. Now let Y = X + U and consider the coding scheme

shown in Fig. 4.12, where the the continuous source X is first quantized to M levels,

generating a discrete source correlated with Y. The resulting discrete source is encoded

by two finite-state machine (F8M) encoders, concatenated in parallel and separated by

an interleaver, and codewords VI and V 2 are transmitted over a noise-free channel. The

turbo decoding principle is then used at the receiver to recover the discrete source using the

coded data and side-information sequence. During the iterative decoding process, extrinsic

information vectors are exchanged between decoders 1 and 2.

Let the set of M disjoint intervals {Iih=I, ... ,M partition the real line lR. The scalar

quantizer fq is a mapping fq : lR -+ {1, ... , M} where fq(x) = i if x E h With each
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Fig.4.12 Proposed encoder/decoder structure for Wyner-Ziv rate distortion
coding with side information at the decoder.

realization of side-information y, one may evaluate the a posteriori conditional probability

P[x E IilY = y] which is employed in the iterative decoding in exactly the same way as the

a posteriori probabilities PXIY were in the Slepian-Wolf problem (see Section 4.3) and the a

priori probabilities Px were in data compression (see Section 4.1). Once the quantization

regions have been recovered at the decoder, an estimator is utilized to determine the X

which minimizes the conditional expected distortion E[d(X,X)IX Eh Y]. For a squared

error distortion measure, this reduces to the conditional mean x= E[XIX E Ii, Y = y].
Before proceeding to evaluate the performance of the scheme through simulation, it is

interesting to determine bounds on the best performance that can be expected. Consider,

for example, the rate 2/3, 2/4 and 2/5 codes which aU generate 2 bits per quantized input

X. As the correlation between X and Y decreases, the conditional entropy H(Jq(X)IY)

increases and the scheme will clearly fail for H(Jq(X)IY) > 2. Fig. 4.13 shows the condi­

tional entropy against the correlation SNR when 8, 16 and 32level Lloyd-Max quantization

is utilized [1]. One readily observes that the conditional entropy surpasses 2 bits/sample

when the correlation SNR is below 3.78 dB, 10.68 dB and 16.80 dB. By the Slepian-Wolf

problem, it is impossible for the scheme to succeed at lower correlation SNRs. This implies

that at best, the 8, 16 and 32 levels schemes are 3.5 dB, 2.2 dB and 2.0 dB short of the

rate-distortion curve (along the correlation axis).

Vnder the assumption that the quantization region, fq(X), is always determined cor­

rectly from the compressed data, one can plot the rate distortion curve of this scheme with
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Fig. 4.13 The conditional entropy H(Jq(X)IY) for the chosen Lloyd-Max
quantization levels given the side information Y as a function of the correlation
SNR.

respect to that of the Wyner-Ziv bound (see Eq. (2.52)). Fig. 4.14 shows this for correla­

tions SNRs that yield H(fq(X)IY) < 2. One may note that the decrease in distortion as

the correlation SNR increases is due to the estimator. In practice, one does not expect the

iterative decoder to succeed for all sources with correlation that yield H(fq(X)IY) < 2. For

sources with little correlation, the side information at the decoder is insufficient to allow

the iterative decoders to resolve the levels that could not be distinguished based on the

encoder outputs alone (see Appendix A for the trellis).

Fig. 4.15 shows the improvement in performance as the number of decoding iterations

is increased from 1 to 20 for the 8 level scheme. Increasing the number of iterations from 15

to 20 provides a coding gain of only O.ldB in terms of correlation SNR. Most of the coding

gain was obtained by the 20th iteration. Fig. 4.16 shows the simulation results after the

first and last decoding iteration against the Wyner-Ziv bound for a rate R = 2 bits/sample.

From the figure, there is a clear gain in performing multiple decoding iterations. The 8, 16

and 32 level codes achieve optimal performance at correlation SNRs of 5.2 dB, 11.8 dB and

20.1 dB. These are 1.4 dB, 1.1 dB and 3.3 dB from the scheme's best possible performance.
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Fig. 4.14 Ideal performance achievable when the Lloyd-Max quantization
levels are correctly determined for a fixed rate R = 2 bitsjsample code.

At these points, the distortion is 3.1 dB, 2.9 dB and 4.5 dB from the optimal possible

distortion of any code. Interestingly, at these operating points, the estimator is given an

incorrect quantization region with probability of about 10-4 .

As a comparison, in the work by 8ervetto in [11], a distortion 1.5dB above the rate­

distortion curve is reported. However, it was assumed that X and Y are strongly correlated

and the results are for al/a}; = 100, corresponding to a correlation 8NR of 20 dB. No

results have been published for lower correlation 8NRs so far.
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Chapter 5

Conclusion

This thesis has focused on the design and applications of parallel concatenated codes for

source coding, i.e. turbo source codes. As opposed to traditional source coding techniques,

this method is a fixed-length to fixed-length source coding technique. The encoder does

not require explicit knowledge of the source statistics and the decoder may incorporate soft

information in the decoding process on the message symbols (e.g. coding for the Slepian­

Wolf problem, the Wyner-Ziv problem, traditional data compression) and the coded bits

(e.g. noise robust data compression). The following paragraphs will provide a summary of

the work presented in this thesis and also consider future research directions.

5.1 Summary of Work

The principal contribution of this thesis has been the explicit design of parallel concatenated

codes that perform data compression (i.e. codes that produce less output symbols than

input symbols of the same alphabet) and their application, with a unified framework, to

various coding problems in information theory. The open problems in coding theory that

this thesis has treated are those of coding for the Slepian-Wolf and Wyner-Ziv problems

for i.i.d. sources.

In this thesis, a design of codes that achieves near optimal Shannon limit performance

for separate encoding of correlated i.i.d. binary sources has been presented. By treating the

problem as a side information problem and aiming for the "corner" points of the achievable

region, an array of rates is obtained through time sharing arguments. Although achieving

the corner points is difficult, in this thesis, a rate in excess of H(XIY) by only 7.5% (for the
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rate 4/5 code) was required for an encoder to encode X without side-information Y. The

author is unaware of any published work that has achieved this performance. For example,

the recently published work in [68] has a best result that is 35.1% above H(XIY).

The codes were also applied to the Wyner-Ziv problem: rate distortion of a source X

when a correlated source Y not available at the encoder is available at the decoder. This

was achieved by scalar quantizing X and encoding for the related Slepian-Wolf problem

that ensued. The results showed excellent performance over a wide range of correlation

SNRs for Gaussian sources. Results as close as 2.9 dB from the optimal possible distortion

are observed. Although lattice codes have been shown to perform somewhat better than

the proposed scheme for large correlation SNRs (say 20 dB [11]), the results presented here

are equally good for lower correlation SNRs in the range of 5 to 12 dB for which no good

performance has been published with lattice codes.

In both of the above scenarios, a discrete source is "blindly" encoded below its entropy,

a rate normally required to reliably decompress the data. The reason why the decoder

couId recover the original message was due to the fact that additional side information,

in terms of soft probabilities on the message symbols, was available at the decoder. In

general, the incorporation of such statistics in a decoder is difficult. Since turbo codes are

essentially a concatenation of trellis codes, they lend themselves easily to the incorporation

of additional side-information of this form: each constituent decoder "biases" itself by

properly incorporating the a priori and a posteriori probabilities on the message symbols.

In addition to the soft probabilities on the message symbols, it should be clear that

trellis codes may also incorporate soft probabilities on the encoded symbols, e.g. as if using

traditional turbo codes applied to channel coding. It follows that an interesting scenario

one could consider is when both types of information are available at the decoder. This

was also investigated and shown to perform weIl (as close as 1.1 dB from the Shannon

limit). Since the scenario here is to compress the message (i.e. generate fewer outputs than

inputs) yet still protect the message against channel errors, this scheme was called noise

robust data compression.

5.2 Future Directions

This section will discuss future directions in which the work presented in this thesis may

be extended. These include the extension to arbitrary alphabet sources, Markov sources,
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improved methods for rate-distortion coding, more general network coding problems and

the application of Low Density Parity Check Codes (LDPCs).

5.2.1 Arbitrary Alphabet Sources

In this work, it has always been assumed that the source alphabet had size pk where p is

a prime number. Each input symbol then produced one of p2n possible outputs for a rate

2n/k code. Although puncturing may be used to achieve a greater flexibility in rates, it

would be equally interesting if these could be achieved explicitly.

First, many interesting rates cannot be achieved with both the input and output alpha­

bets derived from the same base p. Second, the restriction on prime powers could itself be

removed. FinaIly, the need to puncture may eventually be eliminated.

5.2.2 Markov Sources

Throughout this thesis (and in aIl the published coding schemes for the Slepian-Wolf prob­

lem), it is assumed that the sources are independent and identically distributed. Although

the identically distributed assumption is not very restrictive, a generalization to Markov

sources (i.e. sources with memory) may be less than trivial. In principle, one could readily

add the transition probabilities on the trellis in the constituent BCJR decoders. In practice,

the interleaver will break up any memory and could adversely affect performance. Other

methods to code for the Slepian-Wolf problem for Markov sources may be necessary.

5.2.3 Improved Methods for Rate Distortion Coding

In this thesis, rate-distortion coding was based on a two step approach. First the source

was scalar quantized and then the resulting discrete output was compressed as much as

possible.

One extension of this method would utilize non-contiguous quantization regions and

let the side information first determine which connected subset of the quantization region

is the correct one. One may observe improvements over the scheme presented in this

thesis, since essentially, one could have 16 quantization levels but only 8 non-contiguous

quantization regions say. However, it should first be pointed out that scalar quantization

of a continuous source, followed by compression of the discrete levels cannot, in principle,

achieve the rate-distortion function (as attested by figure 4.14).
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The avid reader may point out that lattice codes utilize non-contiguous quantization

regions and perform close to the rate-distortion function. The difference here is that lattice

codes do not perform scalar quantization. The quantization regions are in Rm where m is

typically 8 or more. Improved methods for rate distortion that approach the rate-distortion

function will invariably be good vector quantizers.

5.2.4 General Network Coding Problems

Of aIl the open network coding problems, the work presented in this thesis has only been

concerned with one topology. Many more encoder/ decoder configurations may be investi­

gated and most remain open even with respect to information theory (Shannon theory).

Consider, for example, the problem illustrated in Fig. 5.1, where two helper functions

(which are chosen by the system designer) aid in recovering Y in two separate decoders.

Note that both X and Z do not need to be recovered. In [82], it was shown that the

achievable region is the closure of the set of triples (Rx ,Ry ,Rz ) which satisfy,

Rx ~ !..H(Un)
n

Ry ~ !..H(ynlun)
n

Ry ~ !..H(ynlVn)
n

Rz ~ !..H(Vn),
n

(5.1)

(5.2)

(5.3)

(5.4)

for aIl positive integers n and mappings f and h.

Since, X and Z are not to be recovered at either decoder, an array of possible rates

appears that was not present when treating the Slepian-Wolf problem as a side-information

problem. In particular, it is not clear that time-sharing arguments can be utilized and sorne

rates may only be achieved by (non-trivially) encoding aIl sources. As a simple exercise to

see this, the reader is invited to fix Ry < H (Y) and investigate the achievable rates Rx
and R z as well as the requisite functions f and 9 that achieve these rates.

5.2.5 Low Density Parity Check Codes

Turbo codes are no longer the only codes that have shown excellent performance with

moderate complexity for channel coding. There exists a competing class of codes, known
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as Low Density Parity Check Codes (LPDCs), that have also shown near Shannon limit

performance [3].

One extension to the idea of using turbo codes for data compression would be the

application of LDPCs to source coding [83]. In its simplest form, this could be accomplished

by choosing parity check matrices of size m x n with m < n. The iterative decoder would

then incorporate any soft information available at that time. Interestingly, this would

almost provide a way to perform the optimal decoding of the parity check codes in the

construction of [70, 71].

A more interesting problem is the application of LDPCs to rate-distortion coding. Here,

the "generator matrix" C, similar to traditional LDPCs would be sparse. However, the non­

zero entries would not be filled with ones but real numbers according to the distribution of

the source. The encoder would iteratively search for the vector x E {-1, 1}n that minimizes

the distortion d(y, Cx).
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Appendix A

Trellis

A.l Trellises for the Designed Rate 2/3 Code

The concatenated rate 2/3 trellises are shown in Fig. A.I and were constructed from

(a,b,c,d) = (93 ,9°,92 ,96), where 9 E GF(pk) is a primitive element of the field. The

best performance was obtained by constraining the k = 3 length input symbols that could

not be resolved directly to a Hamming distance of 2. The pairs of symbols that cannot be

resolved directly are {ü, 5}, {l, 2}, {3, 6} and {4, 7}.

INPUT OUTPUT INPUT OUTPUT

70126453 01001011 70126453 00010111
61057324 10110100 23475160 11101000
45213706 01001011 61057324 00010111
54362071 01001011 45213706 00010111
32504617 10110100 54362071 11101000
07631542 01001011 32504617 00010111
16740235 10110100 07631542 11101000
23475160 10110100 16740235 11101000

Fig. A.1 The constituent trellises for the rate 2/3 (g3, gO, g2, g6) encoder.
The input edge labels are in octal notation.
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A.2 Trellises for the Designed Rate 2/4 Code
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The concatenated rate 2/4 trellises are shown in Fig. A.2 and were constructed from

(a, b, c, d) = (g3, g\ glO, gl4). The best performance was obtained by constraining the k = 4

length input symbols that could not be resolved directly to a Hamming distance of 2. The

groups of input symbols that cannot be resolved directly are (in hexidecimal notation)

{a,6,a,c},{1,7,b,d},{2,4,8,e} and {3,5,9,j}.

A.3 Trellises for the Designed Rate 2/5 Code

The concatenated rate 2/5 trellises are shown in Fig. A.3 and were constructed from

(a, b, c, d) = (g29, g8, g4, g17). Here, it is not possible that among a group of 8 symbols,

an pairs have an identical Hamming distance. A minimum distance of 2 was sought.

The 4 groups of input symbols that cannot be resolved directly are (in base-32 notation)

{a,6,a,c,i,k,o,u}, {2,4,8,e,g,m,q,s}, {1,7,b,d,j,l,p,v} and {3,5,9,j,h,n,r,t}.

A.4 Trellises for the Designed Rate 4/5 Code

The concatenated rate 4/5 trellises are shown in Fig. A.4 and were constructed from

(a,b,c,d) = (gO,gl,g21,gl8). Here, sinee direct observation of the outputs may narrow

down the input to pairs, a minimum Hamming distance of 5 was selected. The 16 pairs

of input symbols that cannot be resolved direetly are (in base-32 notation) {a, v}, {l, u},
{2,t}, {3,s}, {4,r}, {5,q}, {6,p}, {7,o}, {8,n}, {9,m}, {a,l}, {b,k}, {c,j}, {d,il, {e,h}
and {j,g}.
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INPUT

o 9 a d 8 3 7 5 b 4 2 e f 6 c 1
8 1 250 b f d 3 c a 6 7 e 4 9
3 a 9 e b 0 4 6 8 7 1 d c 5 f 2
7 e d a f 402 c 3 5 981 b 6
5 c f 8 d 6 2 0 e 1 7 b a 394
b 2 1 638 c e 0 f 954 d 7 a
4 d e 9 c 7 3 1 f 0 6 a b 2 8 5
2 b 8 f a 1 5 7 9 6 0 c d 4 e 3
e 7 4 3 6 d 9 b 5 a c 0 1 8 2 f
f 652 7 c 8 a 4 b d 1 0 9 3 e
6 f c b e 5 1 3 d 2 4 8 9 0 a 7
c 561 4 f b 9 7 8 e 2 3 a 0 d
1 8 b c 9 2 6 4 a 5 3 f e 7 d 0
9 0 341 a e c 2 d b 7 6 f 5 8
a 3 0 7 2 9 d f 1 e 845 c 6 b
d 4 7 0 5 e a 8 6 9 f 3 2 b 1 c

INPUT

o 9 a d 8 3 7 5 b 4 2 e f 6 c 1
e 7 4 3 6 d 9 b 5 a c 0 1 8 2 f
f 6 5 2 7 c 8 a 4 b d 1 0 9 3 e
6 f c b e 5 1 3 d 2 4 8 9 0 a 7
c 561 4 f b 9 7 8 e 2 3 a 0 d
1 8 b c 9 2 6 4 a 5 3 f e 7 d 0
9 0 341 a e c 2 d b 7 6 f 5 8
a 3 072 9 d f 1 e 845 c 6 b
d 4 7 0 5 e a 869 f 3 2 b 1 c
8 1 250 b f d 3 c a 6 7 e 4 9
3 a 9 e b 046 871 d c 5 f 2
7 e d a f 402 c 3 5 9 8 1 b 6
5 c f 8 d 6 2 0 e 1 7 b a 394
b 2 1 638 c e 0 f 954 d 7 a
4 d e 9 c 7 3 1 f 0 6 a b 2 8 5
2 b 8 f a 1 5 7 960 c d 4 e 3
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OUTPUT

001 101 0 1 1 1 1 000 1 0
1 100 1 0 1 000 0 1 1 101
1 100 1 0 1 0 000 1 1 101
001 101 0 1 1 1 1 000 1 0
1 100 1 0 1 000 0 1 1 101
001 101 011 1 1 000 1 0
1 100 1 0 1 0 0 0 0 1 1 101
1 100 1 0 1 0 0 0 0 1 1 101
1 100 1 0 1 0 000 1 1 101
1 100 1 0 1 0 0 0 0 1 1 101
001 101 0 1 1 1 1 000 1 0
001 101 011 1 1 000 1 0
001 101 0 1 1 1 1 000 1 0
1 100 1 0 1 0 0 001 1 101
001 101 0 1 1 1 1 000 1 0
001 101 0 1 1 1 1 000 1 0

OUTPUT

0000100 1 101 0 1 111
1 1 1 101 100 1 0 1 0 000
o 0 0 0 1 001 101 0 1 1 1 1
0000100 1 101 0 1 1 1 1
o 0 001 001 101 011 1 1
111 101 100 1 0 1 000 0
o 0 0 0 1 001 101 0 1 111
o 0 0 0 1 001 101 0 1 1 1 1
1 1 1 101 100 1 0 1 000 0
1 1 1 101 100 1 0 1 0 0 0 0
o 0 0 0 1 001 101 0 1 1 1 1
111 101 100 1 0 1 000 0
0000100 1 101 0 1 1 1 1
111 101 100 1 0 1 0 000
111 101 100 1 0 1 000 0
1 1 1 101 100 1 0 1 0 0 0 0

Fig. A.2 The constituent trellises for the rate 2/4 (g3,gl,g10,g14) encoder.
The input edge labels are in hexadecimal notation.
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INPUT
o d h 3 nIa 6 c p 9 2 vS, m7 4] 01 k 0 18 al 9 b 1 q u
qnbpd 1 kom3] 05vlcl u968a2, 1 glah704
u] 119 h 9 0 i 7 n 0 1,58 P q d 2 c a 6 vmk bal 340
dOoaq23b1k41 18m,a9uhvpl c57016gn]
hoO i 6 u v ni 80 J a k a 7m 12 d 3 5 9 9 p' 4 1 q c b 1
3 al 0 k cdS 1 q al 060147 9 v h n, 2 b 9mj 8 u pl
n q 6 k 0 0 ph, au 1 8 1 cl g] 4 b 5 3 1 mv 1 270 a d 9
12uco0193m6dgakp8boJ l ,na75qv4i 1 h
a3vdpl082n7chbl 09al 1 oqml64,u5j kg
6 b n 5 h 980 a v 14 P 31 9 1 2 1 q k 1 u 7 a c] md, 0 0
cl t l, 32aO 15a] 9nqb8vguokd46p07hml
pk 8 q a mn vi 0 g' 6021 u taS b dl 0 h je 91437
940 a u 6715 9 0 bmc i va d q l, 1 h 8130 P 2 k J n
21]1ldc4a,bOl7pk56hugmq3a8nl9voo
v 1 a 0 8 9 h p j 6m t 0 q 490' c 3 d b 7 uni al k 251
58 k 6 i ab 3 9 0 c 7 q 0 u] 21 mp n hl 4 dl 9 1 a 0 v,
,maock Il n21 p4uOdov8791 3qj habg615
m'711pogqlvk9]dOhi5a42anu036lbc8
7 a m4 9 891 bu a 5020 h 0 3 k , 1 ] v 6 1 d 1 ne q 1 P
4917] b a 2 a 1 d 6,1 v 1 30 n omg oSe a h k 1 pu q
j u2g40 II vaqhcm85knOl 17b l, p630a9d
oh d v b j i q 9 51 u 3 P 7 a, 0 10 a 841 k m9 c n 1 62
i v 3 h 510 k u b, 9 d n 941 ml a 0 6 a] q 0 7 2 pl 8 c
k P 5 n 3' q 1 0 dl mb hl 2] 9 7860 cio u 1 4 v 9 a a
019,1 nmu k 1 h q 713 a v 0 b 4 a c 0 p 9 1 da J 526
1 cg 2 ma 17 d 0 8 3 u 4 q n 6511 j 1 pO 9 b k ha 0' v
a5pbv76a4hland] ulc,kqog90210311m
a 7,9154 c 6] 3 ail ho d a pme u 1 b 2 0 v q 1 n 9 k
104m2 q, j pc 0 n a 9 a 3 i h 6 9 71 d k 1 v 0 5 u 81 b
gllj7vum09pi 1 1 b6nk3c248hoq50'daa
b 6 q 8 0 4 5 d 7129 k agI cIo n p v] a 31 u, Omh 1
1 9 c u ai j, h 4 k v 2 0 6 b q pal 19501 nad mO 7 3

INPUT
o d h 3 nIa 6 c p 9 2 vS, m7 4] 01 k 0 1 a al 9 b 1 q u
12uco0193m6dgakp8bo] l ,na75qv411 h
a3vdpl082n7chbl 09al 1 oqml64,u5] kg
6 b n 5 h 9 a 0 a v 1 4 P 31 9 1 2 1 q k i u 7 a c j md, 0 0

cl 1 l, 32 a 015 a j 9 n q b 8 v 9 u 0 k d 4 6 P 0 7 hm 1
pk 8 q amn vi 0 g' 6 0 2 1 u 1 aS b dl 0 h je 91437
940 a u 6715 9 0 bmc 1 va d q l, 1 h 8130 p 2 k] n
21 J 1 1 de 4 a' bOl 7 P k 56 h u 9 mq 3 a a ni 9 v 0 0
via08ghpj6mlOq490'c3db7unlalk251
5 a k 61 ab 3 9 0 c 7 q 0 u j 21 mp n hl 4 dl 9 1 a 0 v,
,ma 0 c kil n 2 i P 4 u 0 d 0 v 8 7913 q j hab 9 615
m'711pogqlvk9j dOhi 5a42anu0361bc8
7 a m4 9 a 9 1 bu a 5020 h 0 3 k , 1 j v 61 d in c q 1 P
4917 j b a 2 a 1 d 6' 1 v 1 30 n omg 0 5 c a h k 1 pu q
] u 2 9 4 011 va q h cma 5 k n 0 117 b l, P 6 3 0 a 9 d
oh d v b j 1 q 9 51 u 3 P 7 a, 0 1 0 a a 41 km9 c n 1 62
Iv3h510kub'gdn94lmla06a]q072pl8c
k p 5 n 3, q 1 0 dl mb hl 2 j 9 7 a 6 0 cio u 1 4 v 9 a a
019,1 nmu k 1 h q 713 a v 0 b 4 a c 0 p 9 1 d 8] 526
1 cg 2 ma 1 7 d 0 a 3 u 4 q n 6 511 J 1 pO 9 b k h a 0' v
85pbv76a4hlandj ulc,kqog90210311m
a 7,9154 c 6] 3 ail ho d a p mo u 1 b 2 0 v q 1 n 9 k
104m2 q,] pc 0 na 9 a 31 h 6 9 71 d k 1 vOS u 8 1 b
gl 1 j 7vums9pi 1 1 b6nk3c24ahoq50,daa
b 6 q 8 0 4 5 d 7 i 29 k agi cIo n p v j a 31 u, Omh 1
1 gcua 1] ,h4kv206bqpal 1950 1 n8dm073
q n b p dl k 0 m3] 05 v 1 c 1 u 9 6 a a 2' 1 9 1 ah 704
u] 119 h 9 017 no 1,58 P q d 2 c a 6 vmk bal 340
dOseq23b1k4fi8mra9uhvplc57ot6gnj
hsOi6uvnl80jaka7ml2d359gp'41qcbl
3 ai 0 k cdS 1 q a 1 060147 9 v h n, 2 b 9m] 8 u p 1
n q 6 k 0 0 ph' au 1 8 1 cl g] 4 b 5 3 1 mv 1270 a d 9

OUTPUT
00010010110011111000110111010100
11101101001100000111001000101011
00010010110011111000110111010100
00010010110011111000110111010100
11101101001100000111001000101011
11101101001100000111001000101011
11101101001100000111001000101011
11101101001100000111001000101011
11101101001100000111001000101011
00010010110011111000110111010100
00010010110011111000110111010100
00010010110011111000110111010100
11101101001100000111001000101011
11101101001100000111001000101011
00010010110011111000110111010100
11101101001100000111001000101011
11101101001100000111001000101011
11101101001100000111001000101011
00010010110011111000110111010100
11101101001100000111001000101011
00010010110011111000110111010100
11101101001100000111001000101011
00010010110011111000110111010100
00010010110011111000110111010100
00010010110011111000110111010100
00010010110011111000110111010100
11101101001100000111001000101011
00010010110011111000110111010100
00010010110011111000110111010100
11101101001100000111001000101011
00010010110011111000110111010100
11101101001100000111001000101011

OUTPUT
00000100101100111110001101110101
11111011010011000001110010001010
00000100101100111110001101110101
00000100101100111110001101110101
00000100101100111110001101110101
11111011010011000001110010001010
11111011010011000001110010001010
00000100101100111110001101110101
11111011010011000001110010001010
11111011010011000001110010001010
11111011010011000001110010001010
00000100101100111110001101110101
11111011010011000001110010001010
00000100101100111110001101110101
11111011010011000001110010001010
00000100101100111110001101110101
00000100101100111110001101110101
00000100101100111110001101110101
00000100101100111110001101110101
11111011010011000001110010001010
00000100101100111110001101110101
00000100101100111110001101110101
11111011010011000001110010001010
00000100101100111110001101110101
11111011010011000001110010001010
11111011010011000001110010001010
00000100101100111110001101110101
00000100101100111110001101110101
11111011010011000001110010001010
11111011010011000001110010001010
11111011010011000001110010001010
11111011010011000001110010001010

Fig. A.3 The constituent trellises for the rate 2/5 (g29,g8,g4,g17) encoder.
The input edge labels are in base-32 notation.
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I~IPUT

o q a 5 21 v 8 419 ri d 6 smj hg f 73 u n c p k i e 0 b
qOgvor5iu7j1fns6cgballp4dm3e8k2h
agOf8bl2en3hv7cmsprq5d9kl6j u041 1
5 v f 074 q d 1 0 c u 9 8 3 P j mk 1 a 2 6 ri 9 s h n b 1 e
2087031a6vbpnf4ukhj 1 d51s1 ermgcq9
1 r b 4 3 0 u 9 5 s 8 q k c 71 n i 9 h e 6 2 vmd 01 j f pa
v 51 q 1 u 0 n r 2 m4 al p 3 9 c e f go s 1 8 j 6 b d h 7 k
812da9nOcl1j 15ekurp07fbmv4hsq6g3
4 u e 165 r c 0 p d v h 9201 ni k b 3 7 q j 81 gma s f
17novs21 pOk68gr 1 becd 1 qu3ah49f j 5m
9j 3cb8m1dkOI s4f 1 vqop6eanu5g1 r7h2
r 1 h u P q 4 j v 610 em 17 d 8 a b k s 0 5 c n 2 f 9 13 9
1 fvgnkalh8seOoj 93645qlmb2pc17rdu
d n 7 8 f c 159 9 4mo 0 b h rus 1 2 a e j q 1 k P v 316
6sc347pe2 r f 1 j bOqg 1 nm9150hav 1 k8ud
s6mpul3k01179hqOafdcj rv2bg58el 4n
mcsj kn9ul bvd3rga0576phl81qf240el
j 9pmhl crneq86ul f5023skgd4va711bo
hbrkj gepl coa4snd7201uml f61853v9q
gaql i hfokdpb51mc6310vnj e7s942u8r
fi 5 a d e 9 7 b i 6 k q 2 9 j psu v 08 c h 0 3m rI 1 n 4
71 d 2 560 f 3 q e si a 1 rh kmn 8 0 4 P 9 b u j 19 v c
3 P 9 612 s b 7 u a ome 5 vi 9 1 j c 4 0 1 k f q n h d r 8
u4krsv1mq3n5bj028dfehpl09i7acg61
ndll Im8vj auc2qhb14670gk90re35pfs
cm6 9 e d j 48 h 5 n p 1 a 9 q vIs 3 b fi rOI 0 u 2 k 7
p3j s r06h 14g2ckv5fa89muq7e 1 Odbn1 1
k e u hm 1 b s 9 9 1 f 1 p 182754 r j na 3 0 d 0 6 q c v
1 80ngj dqmf r97vke413211 hc5ub60sap
ek4bcfh6aj 71 r38i 0lvu19dgp2nqsOm5
021 Iqp7gs5h3d 1 u4eb98nvr6fk1camOj
b h 1 e 9 a k 3 f m2 9 u 6 d nI 0 q r 4 c 81 s 71 v p 5 j 0

INPUT
Oqa521v8419rld6smjhgf73uncpkleob
3p9612sb7uaome5vl gl j c40lkfqnhdr8
u 4 k r sv 1 mq 3 n 5 b j 028 d f eh plO 917 a c 9 61
ndll Im8vj auc2qhb14670gk90re35pfs
cm69 e d j 48 h 5 n p 1 a 9 q vIs 3 b fi rOI 0 u 2 k 7
p3j sr06hl4g2ckv5fa89muq7e 1 Odbn1 i
keuhmlbsg91f1pi82754rjna30d06qcv
1 80ngj dqmf r97vke413211 hc5ub60sap
ek4bcfh6aj 71 r381 0lvu19dgp2nqsOm5
0211 q P 7 9 s 5 h 3 dl u 4 e b 9 8 n v r 6 f k 1 camO j
b h 1 e 9 a k 3 f m2 9 u 6 d nI 0 q r 4 c 81 s 71 v P 5 j 0
qOgvor51u7j1fns6c9ballp4dm3e8k2h
a 9 0 f 8 b i 2 e n 3 h v 7 cms p r q 5 d 9 k 1 6 j u 0 411
5 v f 074 q d 1 0 c u 9 8 3 P j mk 1 a 26 ri 9 s h n b 1 e
2087031 a 6 v b p n f 4 u k h j id 5 1 sie r mg c q 9
1 rb430u95s8qkc71nl ghe62vmdol j fpa
v 51 q 1 u 0 n r 2 m4 ai p 3 9 c e f go s 1 8 j 6 b d h 7 k
8i2da9nOcl1j 15ekurp07fbmv4hsq6g3
4 u e 1 65 r cO p d v h 9201 ni k b 3 7 q j 81 gma s f
17 nov s 21 pO k 68 9 r 1 bec dl q u 3 a h 4 9 f j 5m
9 j 3 c b 8m1 d k Ols 4 fi v q 0 p 6 e a n u 5 9 1 r 7 h 2
r 1 h u p q 4 j v 610 em 17 d 8 a b k s 0 5 c n 2 f 9 13 9
1 fvgnkalh8seOoj 93645qimb2pc17rdu
dn78fcl59g4moObhrusl2aejq1kpv316
6sc347pe2 r f 1 j bOqg 1 nm9150hav 1 k8ud
s 6mp u 1 3 k 0 1179 h q 0 a f d c j r v 2 b 9 5 8 el 4 n
mc S j k n 9 u 1 b v d 3 r 9 a 0 576 phi 81 q f 240 el
j 9 pmh 1 cr ne q 8 6 u 1 f 5023 s k 9 d 4 v a 711 b 0
hbrkj gepl coa4snd7201umi f61853v9q
gaql 1 hfokdpb51mc6310vnj e7s942u8r
f 15adeg7b 1 6kq29j psuv08ch03mr 11 n4
71d2560f3qesla1rhkmn804pgbuj 19vc
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OUTPUT
03121210002102123102333310023123
12030301113013032013222201132032
21303032220320301320111132201301
12030301113013032013222201132032
21303032220320301320111132201301
12030301113013032013222201132032
03121210002102123102333310023123
03121210002102123102333310023123
03121210002102123102333310023123
21303032220320301320111132201301
12030301113013032013222201132032
03121210002102123102333310023123
21303032220320301320111132201301
12030301113013032013222201132032
21303032220320301320111132201301
30212123331231210231000023310210
12030301113013032013222201132032
03121210002102123102333310023123
21303032220320301320111132201301
30212123331231210231000023310210
30212123331231210231000023310210
30212123331231210231000023310210
30212123331231210231000023310210
12030301113013032013222201132032
03121210002102123102333310023123
03121210002102123102333310023123
21303032220320301320111132201301
30212123331231210231000023310210
12030301113013032013222201132032
21303032220320301320111132201301
30212123331231210231000023310210
30212123331231210231000023310210

OUTPUT
00002102123102333310023123312121
00002102123102333310023123312121
00002102123102333310023123312121
22220320301320111132201301130303
33331231210231000023310210021212
11113013032013222201132032203030
22220320301320111132201301130303
33331231210231000023310210021212
33331231210231000023310210021212
11113013032013222201132032203030
22220320301320111132201301130303
11113013032013222201132032203030
22220320301320111132201301130303
11113013032013222201132032203030
00002102123102333310023123312121
00002102123102333310023123312121
00002102123102333310023123312121
22220320301320111132201301130303
11113013032013222201132032203030
00002102123102333310023123312121
22220320301320111132201301130303
11113013032013222201132032203030
22220320301320111132201301130303
33331231210231000023310210021212
11113013032013222201132032203030
00002102123102333310023123312121
22220320301320111132201301130303
33331231210231000023310210021212
33331231210231000023310210021212
33331231210231000023310210021212
33331231210231000023310210021212
11113013032013222201132032203030

Fig. A.4 The constituent trellises for the rate 4/5 (gO, gl, g21, g18) encoder.
The input edge labels are in base-32 notation and the output edge labels are
in quaternary.
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Appendi:x: B

ImportaIlt Results for Code Design

B.I Latin Squares

Latin squares have been of mathematical interest for centuries. Perhaps the most famous

problem involving Latin squares was posed by Euler in 1781: given 36 officers of six different

ranks from six different regiments, can one arrange them in a square such that each row

and column contain an officer of each rank and regiment? Although Euler was unable to

solve the problem (though today it is known that one cannot find such an arrangement),

the problem is intimately tied to Mutually Orthogonal Latin Squares (MOLS) [78,84].

Definition B.l.l A Latin square of order n is an n by n matrix in which one of n symbols

occurs once in each 1'OW and once in each column.

As an example, the following are two Latin squares of order 3:

abc

LI = cab,

b c a

abc

L2 = b ca.

cab

(B.1)

Latin squares have found applications in many areas of science including algebra, finite

geometries, coding theory, combinatorial coding design and statistics [78].
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Of particular interest are a special class of pairs of Latin squares. Consider the term

by term superposition of L 1 and L2:

aa bb cc

L = cb ac ba.

bc ca ab

(B.2)

A quick inspection reveals that aU ordered pairs aa, ab, ... , cc of symbols appear once.

A pair of Latin squares that satisfies this property is said to be mutually orthogonal. An

important theorem is discrete mathematics provides a systematic method of constructing

pairs of MOLS whose order is a prime power.

Theorem B.l.! For q = pk a prime power, the matrices of the form Aï,j = ai + j with

a i= °E GF(pk) represent a set of q - 1 MOLS of order q.

Proof: First, it is shown that if a i= 0, the matrix Ai,j represents a Latin square of order

q. Suppose that there is a symbol that occurs twice in column j, i.e. at (i1,j) and (i2,j).

Then one must have that ail + j = ai2 + j and ail = ai2 . Since a i= 0, then il = i2. A

similar argument shows that each symbol appears once per column.

Now, it is shown that Ai,j = ai + j and Bi,j = bi + j represent mutuaUy orthogonal

Latin squares when a i= b. Suppose that both A and B are superimposed and that the

same ordered pair is observed in coordinates (i1,j1) and (i2,j2)' Then, one must have that,

ail + j1 = ai2+ j2

bi1+ j2 = bi2+ j2-

(B.3)

(BA)

Substraction of these equations yields (a - b)i1 = (a - b)i2 from which one concludes that

il = i2 since a i= b. If this result is combined with the above equations, one obtains that

j1 = j2 and in fact, each ordered pair appears only once.

o
With the notion of MOLS at hand, it is not difficult to see that Euler's officer placement

problem was to construct a pair of MOLS of order 6. Unfortunately for him, no such object

exists. As a sidenote, it is easy to verify that no MOLS of order 2 exist, and Euler was

also unable to construct a pair of MOLS of order 10. He conjectured that for n an odd
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multiple of 2, there are no MOLS of order n. This famous conjecture was disproved in 1959

by Parker, Shrikande and Bose [78] (see page i).

A common extension of Latin squares is the notion of frequency squares. Suppose one

has only m distinct symbols with 1 ::; m ::; n. A F(n; À1 , ... , Àm ) frequency square is an

n x n array in which symbol i occurs Ài times. Obviously, À1 +... + Àm = n. The following

are examples of F(4; 2, 2) and F(4; 1, 1,2) frequency squares,

a b a b

b a b a
F1 =

b b a a

a a b b

abc c

c cab
F2 =

bec a

cab c

(B.5)

B.2 A Proof of the Uniformity of States in Latin Square Based

Codes with pk States

To show that the marginal distribution of the coded symbols asymptotically approaches a

uniform distribution, it was assumed that the marginal distribution of the states approached

a uniform distribution as the number of stages was increased. This section will prove the

latter result. Before this is accomplished, an important lemma is necessary.

Let the probability of state i in stage n be denoted by Pn(i). Since aIl transitions are

possible (since ç is a bijection),

Pn+lU) = L Pi,jPn(i),
iEGF(pk)

(B.6)

where Pi,j is the probability of transition from state i to state j. This probability depends

on the actual input symbol assigned by the mapping ç with Pi,j > 0 if no input symbol has

probability O.

Let M(n) = max} Pn(j) and L(n) = minj Pn(j). By Eq. (B.6), it is clear that one may

produce the recursive bounds 0 ::; M(n + 1) ::; M(n) and L(n) ::; L(n + 1) ::; 1 from which

it follows that both of the following limits exist:

lim M(n) = M
n-+oo

lim L(n) = L.
n-+oo

(B.7)

(B.8)
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Lemma B.2.1 Let E > Ü be given and choose N such that when n > N, IM(n) - MI < E.

Then, there exists a:i such that the relation Pn(i) > M + E - 2E/Pi,j holds for all i.

Proof: If IM(n) - AIl < E when n > N, then M - E < M(n) < M + E for n > N. By the

definition of M(n) as the maximization of Pn(j) over j, there must exist a j for which

M - E < M(n+ 1) = Pn+l(j)

= L Pi,jPn(i)
iEGF

= L Pi,jPn(i) + Pi',jPn(i')
iEGF,ifi'

< L Pi,j(M + E) + Pi',jPn(i')
iEGF,ifi'

(B.9)

(B.1Ü)

(B.ll)

(B.12)

(B.13)

where (B.13) follows since all input symbols may transit ta any state (see Theorem 3.1.1a).

One may then readily derive the desired result M + E - 2E/Pi',j < Pn(i') which must hold

for any i'.

o

Theorem B.2.1 The finite state machine with pk states given by Eqs. (3.1)-(3.4) asymp­

totically approaches a uniform distribution in its states.

Proof: It will suffice ta show that L = M. Let E > Ü and N be given such that IM(n) ­

MI < E when n > N. By Lemma B.2.1, there exists j such that Pn(i) > M + E - 2E/Pi,j

for all i. One also has that L(n) = mini Pn(i) ~ mini M + E - 2E/Pi,j for at least one j. As

n -+ 00, one can make E -+ Ü and hence L(n) -+ M.

o

B.3 A Proof of the U niformity of States in Latin Square Based

Codes with More Than pk States

The proof that the probability distribution of the states asymptotically approaches a uni­

form distribution is similar ta that presented in Section B.2. In particular, if one defines
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i(j, q), q = 0, ... ,pk - :l to list aH the pk states that can reach state j in one transition, then

the foHowing relation is evident:

pk_l

Pn+1(j) = L Pi(j,q),jPn(i(j, q))
q=û

(B.14)

Similarly, the foHowing lemma can be shown analogously to that of Lemma B.2.1,

Lemma B.3.! Let € > 0 be given and choose N such that when n > N, IM(n) - MI < €.

Then, there exists a j such that the relation Pn(i) > M + E - 2EjPi(j,q),j holds for aU q.

Proof: Identical to that of Lemma B.2.1.

o
The desired result may now be proven:

Theorem B.3.! The finite state machine with pl states given by Eqs. (3.1)-(3.4) asymp­

toticaUy approaches a uniform distribution in its states.

Proof: Again, it is claimed that L = M. Let E > 0 be given and N such that when

n > N, IM(n) - AIl < €. For this to be so, by Lemma B.3.1, there must exist a j

such that Pn(i(j, q)) > M + E - 2EjPi(j,q),j for aH q. This implies that minq Pn(i(j, q)) >
M +€-2EjPi(j,q),j or that limn - Hx1 minq Pn(i(j, q)) = M. One can repeat the above argument

to expand the number of states to which it applies: limn-.oo minq1m Pn(i(i(j, ql), q2) = M.

If the Latin square is derived from a primitive element in GF(21), since aH the states of

the trellis are connected, the argument can be repeated to include the probability of aH the

states.

o
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Appendix C

Spread IJnterleavers

Good interleaver spreading properties are desirable for fast convergence and low-error fioor

performance of turbo codes [39,85]. One interleaver design that has gained popularity is

the so called "S-random" or spread interleaver [45]. It is generated with a heuristic and

random algorithm, and there is no guarantee that the algorithm will be successful; several

tries may be necessary.

The S-random interleaver is based on the random selection, without replacement, of

integers from 0 to N - 1. To guarantee a minimum spread S, each randomly selected

integer is compared to the S - 1 previously selected integers. If it is within S - 1 of even

one of these, it is returned to the list and a new integer is randomly chosen until the

condition is satisfied [85].

The following steps produce an algorithm with complexity of O(N) which, when suc­

cessful, typically requires about 1 second to generate an interleaver of size N = 65536.

1. Construct an ordered list of numbers from 0 to N - 1.

2. For each i from 0 to N - 1, repeat steps 3 to 5.

3. Randomly choose a number j between i and N - 1.

4. Exchange the numbers in positions i and j in the list.

5. Let m = min(i, S -1). Verify that the number in position i differs from the numbers

in the i - 1 to i - m positions by at least S. If not, return to step 3.
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