-

THE DESIGN CONSIDERATIONS FOR
DISPLAY ORIENTED PROPORTIONAL TEXT EDITORS
USING BIT-MAPPED GRAPHICS DISPLAY SYSTEMS

By:
Nitu Ganguli

School of Computer Science
McGill University)
Montreal, Quebec T e,

January 1987

A thesis submitted to
the Faculty of Graduate Studies and Research
in partial Fulfillment .
(of the requirements for the degree Of

Master of Science

Copyright (c) Nitu Ganguli, 1987

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)

reserved other
phbllcatlon rights, ald
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a été accordée
a4 la Bibliothéque nationale
du Canada de microfilmer
cette ‘thése et de préter- ou
de vendre des exemplaires du
f£ilm. :

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;
hi la thése ni de 1longs
extraits 'de celle-ci ne
doivent &tre imprimés ou
autrement reproduits sans son
autorisation écrite.

ISBN 0-315-38239-2

. Abstract

¥ Fo) .
This thesis describes the design considerations for a display
oriented proportional text editor for bit-mapped graphics display
hardw'are. It considers the task, techniques, and constraints for
the implementation of such an editor on persénal cémputers

equipped with high resolution bit-mapped graphics display

hardware. -

[

ii

— Résumé

Ce mémoire décrit les considérations lieés A la conception d'un
éditeur de texte proportionnel congu pour 1l'utilisation sur un
systémé muni d'un écran graphique adressable par point: Sont
consihégéés les'taches, techniques et constraintes 1lieés au

fonctionnement d'un tel éditeur sur un micro-ordinateur incluant

du matériel d'affichages graphique & haute résolution.

{7

Y . -

‘Acknowledgements A

This thesis 18 a culmination of several years of industrial
experience in software engineering and word proceégorrdeaign. I

would 1like to thank ;hilips Information Systems—<{Micom) for
expanding my knowledge and providing the experience in 'word
processor and pffice gystem desgsign. I would also like to thank

- the School of Computer Science at McGill University for providing
me with resources to complate my research, and P_ey_:ticularly

Professor Gerald Ratzer for his supervis”:‘[on and,pa:;j:ience.
4

0

~ \5\\‘ -
n t
Table of Contents ,
Abstract ...‘QOIOCOOQ ® ® & 870 & & & & 0 O.O.‘O..OU...'....... i
" Résumbé e e teerseenesecarann teereenseansesaas. 11
Acknowledgements cece s e nsss e T 5 5. §
Table of Contents;.0ccceitecscsscacscssscsssssncsnes 1V
List of Figures .:....:...... ttecsscesoecsaracn s e v
n
Chapter s

I. Introduc‘tior’l Cu‘.’i"........I‘.O"..CIO...........‘.._‘..“ 1
IXI. Backgrounid e bt et ed s seteesssnanceaaene e .o 4

2.1 The Evolution of Text Editing
and Word Processing ¢........ cecsecccassssens. 4

- 2.2 Basic Concepts of Typesetting
and Word Processingcceeeenee D -
III. Designing a Proportional Editor S K)
3.1 The Design Goalsc..cun.n,2.??:.. 13
3.17} Hardware Considerations A 16
3.1/2 Operating System Considerations 18
3.1.3— Implementation Languages Cescessmos . 18
3.2 Design Techniques and Considerations 20
3.2.1 User Interface®ccovvvcovcescancca . 21

"3.2.2 The Editor Executive -

and Command Interpretation creassses 25
3.2.3 Memory Managementcc0cci0en.n 29
3.2.4 Text and File Structures ceccenaeea. 35
3.2.5 Text Formatting treececcsnanens 41
3.2.6 Repregsenting Fontsc.iiececreccces . 48
3.2.7 Display Managementccceeceeeeeseocces D2
Iv. Sumary ...l.....'..'........‘Ol......'..‘..l.o..‘.. 65
References C.........’.OIOOII‘...‘::.......l‘..'.'......-#‘67

iv

F
i
o
2}
(g

1}

wwl’I\)NNN
B WA

|t

List of Figures

Portrait vs Landscape Printing
Page Layout

Font Examples

Font Layout

Hardware Abstractions
Windowing

12 \
/ Chapter I

®

Introduction
Text editors have evolved from batch oriented editors us\ing
punched cards or paper tape to display oriented electronic
publishing systems using high resolution bit-mapped gi‘aphiCSv
terminals. The economics of mass produc;ion has resulted in'low
cost laser qfinters capable of printing images and multiple text
styles and fonts -- a publishing technology not long ago reserved
exclusively to mainframe and minicomputer typesetting systems.
The frend in electronic word processing or text processing is a
movenment towards what 1s now termed: "desk top publishing sys-
tems". The "gtate-of-the-art" text péocessing system i1s one that
provides a "what you see 1s what you get" approach to editing
documents. By using high resolution bit-map graphics displays,
these systems are capable of displaying text in a variety of-

fonts and font sizes, as it wou}d appear printed with a laser

printer or photo-typesetter . Y

This thesis will examine the important considerations in design-
ing a di%play oriented proportional text editor that provides a
"what you see i1s what you get" editing environment. For clarity,
the term: “propo;tional editor", will be used in reference to a

display oriented proportional text e_ditor.

-——

et

2

o

The design of a proportional editor raises many questions. How
should the user interface look? How 1s the text sthed in’
memory? How is the memory managed? How a;:e fonts stored and
d,isplayed? 'How is the graphics displdy screen update process
optimised? All these issues are discussed aﬁd various design

strategies are presented. , s

Most of the available literature relating to text editors deals
with the user interface or are reference manuals. Verye« few deal
withy the éctual desi\gn and implementation. The avallable
literature does however provide a framework for the design of a

0 i
proportional editor. Anderson's paper, The Design and
v

Implementation of a Display Oriented Editor wfiting System
[AND79], discusses memory management schemes‘ that can be adapted
toc a proportional editor. Paﬁers by Barnett [BARN65] anq Knuth
[KNUTH81] deal with the problem of breaking paragraphs into

lines. : ‘ ‘

Chapter II of this thesis discusses the evolution of text editing
and word processing. It also introduces some of the basic

concepts of typesetting and wbrd processing.

s\

Q@

Chapter III deals with the design considerations of a
proportional editor. It discusses the design objectives and

considerations such as hardware, system software, and

‘

A

¢ 3
implementation 1languages. It presents alternatives to wuser
interface design, command interpretation, menyorff management, text)
and file séructure design, text fox:matting, and font'’
representatfbn. A reéisplay technique for g proportiénal editor
is also presented. ' .

’

Chapter IV is a summary of the ideas presented in this thesis.

chapter/il
Background
2
2.1 The Evolution of Text Editing and Word Processing
The roots of text editing and word processing can be traced back

to the early days of computing when text formatting ‘programs

o

ware used to print documents. Most time-sharing systems were
equipped with a 1line oriented context editor that would permit
insertion and correction of text. The user would have to embed
.text format command; within the text that would be interpreted by
the text formatting program to produce the printed output. This
was a repetitive and time consuming process since the user could
notf know what the document would look like untial it was printed.

With the advent of inexpensive cha*racbter oriented display

terminals, display oriented editors emerged. The advantage of a

display oriented editor over a conventional line editor is that
changes to the text are typed on the screen and are updated in
the text buffer. In essence, the display terxrminal acts as a

window into the text buffer. Although a disgplay editor eases tﬁ’é)/’_‘-’

text entry process, the user still has to embed format commands

into the text and use a text formatting prqdram to produce the

\ final printed output.

v

Advances in miéroprocessor technology created dedicatbd word
‘

processing systems, These are simply microcomputers equipped

47

-

4

5
with software that combines the editing and formatting functions
of time-sharing system editors and text formatting programs.
These systems have gained tremendous popularity in the office
environment because they address both functional and ergonomic
regquirements. The screen can be adjusted to accommodate
individuél operatar preferences. The keyboard contains function
llceys that are gro:xped together according to the job they
accomplish. The majority of these sgsystems incorporate the
following basic features [MIC83]:

Word wrap: The ability to type text past the right
margin without pressing the return key. The text
automatically continues on the next l1ine of the screen.

The operator need only press the return key at the end
of paragraphs.

X Ingert and Delete: Inserting 1is the ability to add
text between characters on the screen without losing
text or retyping. When text 1is deleted, text is
removed and the gap 18 realigned with the remaining
text.

Indent: The ability to set a temporary left margin.

Copy and Move: The ability to define a section of text
and copy and move it to another position in the same
document. This is also called "cut and paste”.

Search and Repiacgi The ability to find all
occurrences of a string and replace it with a different

string. .

Multiple tab 1lines: The ability to change tab stop

column positions within a document. This includes
s automatic realignment of existing text to the new

gsettings.

Decimal tabs: A tab stop which aligns numbers on the
decimal point. -

3

Automatic pagination: The system determines page
endings by the number of lines per page.

Multiple format 1lines per document: The @bility to
change margins and line spacing as well as.tabs several
times within a document.

Screen and print attributes: The ability to display
bold, underline, superscript and subscript on the
display.

Horizontal Scrolling: The ability .to set up text wider
/than the standard 80 character display and view it by

scrolling horizontally.

The majority of today's word processing systems display text in
monospaced format. In monogpaced format, every character
displayed has the. same width. If one considers that these
systems use a daisy wheel printer to produce letter quality
output, they are reasonably close to providing a "what you see

*

is what you get" editing environment.

With today's laser printer technology, there i§ an increasing
demand for text processing systems that offer proportional tex{:
output. The inability of word processing systems to exploit the
full potential of laser printers are rendering them obsolete. The
new generation of word processing systems must be capable of
dealing with text in"a wide variety of fonts and font si-.zes, and

use a graphics display*device to display text.

Much of the credit for today's "desk top publishing” technology

has to be given to the designers of the Xerox Alto experimental

™

.
~ . -
N “ N

workstation [STRE84], upon which Xerox based the Xerox Star text

processing system. .Four principles served as guiéelipes for the

Xerox Alto experimental workstation:

1 - The: user sho;.\ld not have to remember and type
commands Instead, he/she should just 1look, point, and
select with a graphics input device such as a mouse.

2 - The user should be presented with only the
information which 18 relevant at the moment. This
minimizes the amount of looking. ‘
- 3 - Consistency across domains ~--.whether the user is
- . editing a document or working on a spreadsheet, the
user interface should be consistent.
\ - e

.4 - "What you see ié\ what you get".
i L~

The four principles served as a basis for the design of other

gsystems such as the Apple Lisa and later, the Apple Macintosh.

. —

The key to the Macintosh workstation's sﬁccegs is 1its low cost
and its ability to create textual presentations of a quality
N t

normally associated with typesetting.

. !
The text processing capabiiities of the Xerox Star or Macintosh
can be adapted to virtually any personal computer equipped with
 high’ resolutiorn bit-mapped graphics hardware. Laser printers
produce high-quality images and can print multiple fonts on the
same page. This capability works hand-in-hand with an editor
that; uses a high resolution grappics display, and can mix

gréphics with numerous text stylés in a document.

-

e

&

2.2 Basic Concepts of Typesetting and wOrﬂ Processing
The purpose of a word processing system 1is to allow one to enter
and modify text, and produce an output document dependent on a
particular equipment to'be used [HANS84]. In the abstract sense,
text may be considered to be composed of:r chapters, sections,
paragraphs, words and chara?ters. Since the output text ié
equipment‘dependent, .1t musti be dgascribed by another set of
concepts: page dimensions, pages, lir;es, fonts etc.

The output page is generally defined by length and width. As
i1llustrated in figure 2-1, ‘there are two orientations for
printing pages: portrait and landscape. Portrait printing is

perpendicular to the 1longer side of the paper, and landscapse

printing is parallel to the longer side of the paper [CAN8B5].

v e
Portrait
mode
Landscape T
od
mode N
N

Portrait printing Landscape Printing

N Figure 2-1
. Portrait vs Landscape Printing

’

A document consists of several pages containing running text and

%

running paragraphs. A runfxing text is a-Bequence of running

e

9
. paragraphs. A running paragraph is a sequence of words [HANS84].

Figure 2-2 is an illustration of a typical page layout.

-)

A B ' Cc D

——1'|
_______ o __2
i . HEADER .
s e o __3
. This is a running paragraph.
, Note that the first 1line may be
indented. This is also an example
of a "justified paragraph". o
) This section of text 1is
indented. Temporary left B
‘and right margins are
‘ used.
This is anothex running paragraph.
Justification is not used here.
Note the/jagged right margins. R PR
\
FOOTER__________; _____ ___5

Figure 2-2 Page Layout

The space between A and B and C and D are left and rigﬁt margins

respectively. Text appearing Qithin the left and right margins

(B and C) is called margin text.‘ Margin text may be right
Justified or jagged. Right justification is accomplished by
. distributing excessive blanks at the end of a line in between

words appearing on that line. The space between 1 and 3 and 4

and 6 are top and bottom margins Fespectivelyi The space between

1 and 2 is called a header offset. A header is one or more, lines

10
GEi ’ \\\ of text appearing at the top of every page of a document. The
header offset is the spacing between the top of the page and the
first*lane of the header. The space between 5 and 6 is called
the footer xnargin. A footer is one or more lines of text
appearing at the bottom of evefz_page of a document. The footer
margin is the spacing between the last line of the footer and the
bottdm of the paée. |

.

The process of transforming a series of running paragraphs into

[3

ﬁages while respecting all margins, is called pagination. The

>

épace between 3 and 4 is called the paginate window. Pagination

actually involves breaking paragraphs into lines,'and lines into

pages.

. An éditbr that displays text formatted with page bhreaks while
. editing, must paginate the text in real time. This requirement
ralses many concerns. How much- of the text should be
ré-pag}néted if modifications are made at any point in the text?
How is the textistored in memory? These problems are discussed

in the foilowing chapter. ‘
Characters in a text can appear in different fonts, sizes, and
styles. The term font refers to the form or design of the
character independent of style or size. Examples of various

fonts are illustrated in figufe’2-3.

: / Thisis: Optima Roman
Thists. [TC Lubdiin Graph
) Thisis. ITC Garamond Light

This is: ITC American Typewritar Bold

Thisis: ITC Avont Garde Gothic '

Thu u. T Zapf Chencoy Madiscm Ttalkc -

Figure 2-3 Font Examples .

} The term style refers to the variations in the basic form of the

charact%rs such as italic, or bold.

Character size is sgpecified

in texrms of pointgs. One point is 1/72 of an inch. Hence, a 36

point character will be at most 1/2 inch high.

Rectangle Width

: !

}

(' T XX

Ascent
XX
Character |Origin ——y XX
* XX

| X XX
Descent XXXX

Font rectangle

|

. Q:Next character
origin

@

Width

Kern

Figure 2-4 Font Layout

A font rectangle is the frame that delineates the size of the dot

pattern for the character. Fixed pitch characters (monospaced)

have the same rectangle width for -all characters in the font.

-

i

12
Proportionally spaced character - have variable rectangle widths.
The base 1line is the horizontal reference 1line for printing
characters. The character image is /printed relative to a point

on the base line called the charaéf/ter origin. The character's

ascent and descent measures how far it extends abo;/e and below
the baseline. The character width is the measure of one
character origin to the next character origin. A character can
extend to the left or right of. the character origin. This is

called kerning.

g

)

v

Vertical spacing is the vertical distance in points between

base lines. In typesetting terminology "9 on 11" refers to a

character size of 9 points and vertical spacing of 11 points

[KERN797] . : "

s ~ .
0

c) Chapter IIX
Designing a Proportional Editor
(.
3.1 The Design Goals —
Word processing systems have achieved tremendous sophigtication

over the years in terms of theilr user interface and features.

Cdnsequently, the complexity of their design and imblementation .

has also increased significantly.

Since personal computers have made significant ihroads in the
modern office, the proportional editor should be Itailoreci to this
environment. An extremely important factor isgs the editor
ability to—keep up with fhe typist.l An experienced wo

C , processing operator can type at a rate of 70 to 90 words per

minute. The system should at least accept input at these rates,

and at best keep the screen refreshed at the same rate. This

implies that the display update process may be postponed until,

keyboard input is idle.

.

Frequently used commands such as insert, delete, copy, and move
should be bound to function keys on the keyboard for easy access,
rather than, have the user type a series of escape or control key

seqguences.

¢

14
Display orientation with a "what you see is what you get"
approach is extremely useful since it provides immediate feedback
to changes made to the text. The notion of "what you see is what
you get" should be explained. Since the resolution of today's
graphics display hardware (72-pixels’par inch) 18 significantly
coarser than a laser printer (300 dots per inch), text printed
with a laser printer will appear much sharper than the same
displayed on a graphics terminal. Typesetting systems use points

(1/72") as a basic unit of measure. To simplify the design, a

proportional editor maps a "point" to a pixel on the display.,

The desirable featureg of a proportional editor are itemized

below:
. Reasonably fast and easy to use.)
. Basic editing of characters and words with
insert}on and deletion.
. Search and replace function. .
) Text copy and move function (cut and peste)l
. Forward, reverse, and horizontal scroliing of text.

. Support for multiple fonts, including proportional
fonts throughout the text. The screen fonts
should match the laser printer fonts.

-

I

P’

i5

) Automatic real-time Jjustification and pagination of
text. Text can be justified, ragged left or
right, or centred. -

Setting of multiple tabs, margins, headers, and
footers.

- Support for variable 1line spacing and character point

sizes.

»

Support for underline and reverse (white on black)
print.

o

16

3.1.1 Hardware Considerations .
A basic reguirement for the implementation of a proportional
editor is a computer system equipped with at least 512K bytes of
main memory, a direct access secondary storage device s,':xch as a
floppy or hard disk, and a ras@er type graphics'output device.
The task of designing a portable display oriented proportional

editor for personal computers 1is clearly non~trivial due to the

non-standardization of hardware and system software.

The solution is then to incorporate the cobncept of_device
independence [WARN81] into the design. - The editor (the
application program) can communicate to the physical graphics
device through hardware abstractions (virtual device). A
hardwa're abstraction 1is a collection of device. independent
subroutines that provides a clean and simple intej:face between
the application software and the'devi:ce it 1is wusing. A '\'device

manager"”, a set of device_.dependent routines, performs¢ the

mappirg between the virtual and physical devices.

Ay

. Device
Application Hardware Dependent Physical
Software H Abstraction Routines Device

v Figure 3-1 Hardware Abstractions

“

17
Display Devices S : "
Graphics .devices may be external to the computer (connected by a
digital interface) or memory mabped (internal to the computer).
The latter is more common among personal computers. ﬁpe primaé&
advantage of a memory mapped display i1s that the entire screen
can be read!pr written at bus speeds.
There are numerous implementation schemes for memary mapped bit
mapped displays. In its simplest form (monochrome graphics), the
graphics screen resides in dxnamic RAM in the computer's main
memory. The memory is arranged‘in N lines of M contiguous bytes.
N and M vary according to the implementation. For example, in
the Corona Personal Computer, the memory 1s arranged as 325 iines
of BO‘contiguous bytes [CORQ4J“ Each line represents 640 pixels
(80 bytes x 8 pixels per byte) on the display. A pixel is set
when the corresponding bit is turned on, and reset when turned

off. - !

i ‘t—\

)

Input~Deviées
The keyboard should be suita_bie for touch typing”and should
contain cursor motion keyé and uge} defined function keys.

Graphical input devices such as a Touch Sensitlive Display (TSD),
@ouse, or qusﬁick, may be used as polnting devices for editor

menu entries. Although the mouse haé become a very popular input

device in the realm of personal computers, its use in a

!

= S

« S o * 18
professional word processing environment 1is questionable. The
primary disadvantage of a mouse, or any other graéhic input
device, 1s that the user's hands n;uzét leave the keyboard to

operate it. To the novice this may not appea} to be a major

isgsue, but to an experienced typist it becomes a gevere

bottleneck. The use of a graphic input device should be optiong}l

in an éditor, not a requirement.

3.1.2 Operating System Considerations
An editor operates ?s a task gnder the supervi:sion of the tafget
hardware's operating system. The operating system should provide
external device input/output interrupt management' and a file
gystem interface to the editor. This includes routines to open,

——--4\

close, read, write files, and.read keyboard input.

3.1.3 Implementation Languages

The choice’ of the implementation language can have a significant
impact in ‘the overall efficiency and maintainability of the
system. Icieally, the editor should be written in a high level
language for portability. The hardware abstractions should be

%

!
written in a 'tombination of i’xigh'level and agssembly language for

~efficiency. The choice of a high 1level language should be

dictated by a “combination of the extent of its use in the
industry and the efficiency of its implementation in the target

system.

~

19

PL/1, C, and other system.languag;s are fairly popular and have
bee;l?ﬁnplemented on .several systems. High level languages of
this nature are i1deal for text processing applications because
they allow definition and manipulation of complex data structures
and character data. C is a particularly good choice since it is.

a

emerging as a standard for a system-oriented language.
Implementations are available for most personal computers. All
data structures and algorithms in this paper will be expressed in

C.

o

o

3.? Design Techniques and Considerations

‘

An editor is a sub-system that executes under the supervision of .
the hardware's operating system. Commands are passed to the
editor from the input device (keyboard) through the command

interpreter.. A proportional editor comprises the basig elem;nts:

)

- The user interface

V]

- An editor executive
- A command interpreter

-~ A memory management function,
. character routines
insert/delete routines

marking routines
copy/move rbutines
search/replace routines
cursor control routines

. L] * [L]

- A text and file structune

- A text formatting function
. line breaking routines
. hyphenation routines

. . pagination routines

- Pont tables
A display management function . -
. font display routinesg
o . window management routines
. cursor control routines
- redisplay routines

Q

4

\

This sectior-x examines each of the basic elements of a

proportional editor.

21

c; 3.2.1 User Interface
The user interface is the layer of software that interfaces
between the user, through an input device such as a keyboard'and
an output device such as a graphics display, and thé internalé o\f
the editor. The purpose 1s to provide a user frienﬁly ’editing'
environment. Two common approaches to user interface design

have been adopted in commercial word processing systems. The
firgst is the Xerox "desk top metaphor" [XER85]. The second is a
command syntax qriented interface common to word’' processing

systems such aé\tﬁe Micom and AES.

i (

- ')
g J
rd
The .Xerox "desk top metaphor™ concept has been adopted 4in
systems such as the Xerox Star, the Apple Lisa, and the Apple

L]
-presentation. The user interface presents the workspace

(Macintosh. A great deal of emphasis is placed on viéual
graphically on the display in terms of famfliar office objects: a
desk top,‘ paper, folders, and printers. ’ The metaphor is
exprgssed to the user through objects displayed on the screen,
called icong, representing the office work environment.
Advocates of the desk top metaphor with its iconS‘a;xd multiple
windows, claim that it i1s extremely easy to learn and use. The

 user polnts at'the desired object and then clicks the mouse
button, rather than enter cémmands from a keYboard’. The four

principles of the XEROX Alto experimental workstation (Chapter

w +II), serve as a guideline for this type of interface.

/

, . ¥ | 22
. The command, syntax oriented interface on the other hand is
tailored to the en_(f)erienced word processing operator [MIC83]. 1In
this syst-em, editor commands are bound to’l;eys on the keyboard.
Since the number of commonly used editor functiongy is greater
than the number of function keys avallable on a typical keyboard,

a command syntax tree scheme 1is used. For example, consider the

following command syntax tree:

. COMMAND _
' / \
\ / \
) / \
/ \ ,
SET PUT-ASIDE GET .
/\
./ \ . <amount>
PITCH SPACING

<value> {value>
A

Using this scheme, the editor's prompt rand the user's key

sequence to set spacing is outlined beldw. Assume that the

- 23
(z "egcape key" (ESC) denotes the beginning of a command to the
\

editor.

U
The user presses the "escape key", and thé editor responds with:
v Command:
Set, Put-aside, Get

I3 f
‘The user presses the "s" key, and the editor responds with:
!

Command: Set
Pitch, Spacing\
The user presses the "s" key again, and ‘the editor responds
! with:
Command: Set Spacing

Enter a value:

c The user then enters a value for spacing followed by a carriage
return.

!

As 111ustrqt§ad in the example, all possible alternatives are

displayed to the user at each level of the command tree.

\
The "desk top metaphor” concept is 1deal for the novice, but a

burden for the experienced typist, since the hand must leave the
keyboard tc; operate a mouse. The use of icons and "pop-up"

windows adds more complexity to the editor's display management‘

) 1
functions and requires considerably more software support and

i

e
%ﬂwg

@

24

. system regsources such as CPU overhead and memorf‘iv/()n the other

hand, the comma;xd syntax oriented interface 1is more difficult to
learn, but once mastered, {:he operation is much faster. The
command syntax approach also requires considerably less software
support and processing overhe'ad. The choice of an interface
depends on the ap;;lication'é user environment and system
resources. Since the intent is to design a proportional editor—
for the office 9nvironment using personal computers, the command

syntax orilented interface is the practical alternative.

-Furthermore, 1f the editor is structured properly, the user
interface software could be changed with minimal impact on the
remainder of the editor. The term "structure", refers to the
data objects the editor deals with and the layering of

subroutines -~- who calls who.

The user should be presented with a representation of the output
page at all times. While it may not be possible to display an
entire Ipage on the display, the user should be capable of

scrolling horizontally arid vertically over the page.

Commands should/be typed on a reserved line on the display éalled

the control 1line. Messages from the editing system to the
operator should be displayed on the control 1line. The editor

should display a format line that marks all margins, and tabs.

A
’

Ud

v

25

t

In addition, ”the editor should display all active settings'shch
as page size, point size, active font, and ‘page number.

3.2.2 The Editor Executive and Command Interpretation

The heart of-the editor is called the editor executive. It 1is
responsible for reading input, evaluating it, executing it, and
invoking the. pagination and redisgplay routines. The basic

algorithm is:

while (TRUE) {

c = get_input(); ,

return_code = input_decode(c);

if (return_code = EXIT)
exit procedure();

if (input_buffer empty()) {
paginate():
redisplay()’

) ’ “ R

A simplified loop as the one described at;ove places minimal
restrictions on the user interface. The procedure "input_ decode"
evaluate§ tge input and invokes the necessary procedures to
process the input. It returns a code indicating whether the
editor should be exited. The routine "exit_procedure" performs
the necessary housekeeping prior to exiting. The paginate‘gnd
redisplay processes are invoked only if there is no more input
to process. The paginate process repaginates the text as a
result of any modifications. The redisplay process updates the

display to reflect the current modifications.

.- 26
The user interface is 1isolated in the get_input() and
input_decode() processes. Therefore, virtually any type of user
interface can be implemented with gninimal impact on other

portions of the editor.

Command Interpretafion

Afproportional editor has four basic categories of commands:

1 - Commands that modify the text buffer

2 - Commands that deal with files

3 - Commands that move the cursor on the screen

4 - Commanés that manipulate the page output format and
character fonts.

The input_ decode() process is the editor's command parser. Its

primary task i1s to validate and process editor commands. The

command interpr?ter (input_decode()) can be implemented as a

table driven procedure. By mapping keyboard input sequences to

procedures that evaluate it, virtually any command syntax can be

implemented.

C

"!A! -
. g

27

J -

Consider the following syntax tree:

\
\

\ COMMAND
‘ /i N
g / \
: /- \ \
/ \ .
SET cur SEARCH ‘
/ \ I
/ \ <amount> <gtring>
/ \
POINT S;ZE FOTT
- <value> <value>

The tree can be represented using the following data structure:

struct command_element {
char prompt([20],
input_code,
element_type;
int next_level,
next_element:
} command_treel]n H

e

The "prompt" field contains a string that is displayed on the
control line. The control 1line is a reserved 1line on the display
used primarily for command prompts and error reporting. The
"input_code" field is compared to the keyboard input to progress
down the tree. The: "next_lé;el" field contains the index of the
gsuccessor element in the command tree. Successor element prompts

are displayed while traversing down the tree.

he "next element” field 1links all successor elements. This

field is set to -1 for the last successor element. The 1link

\ 28
establishes all possible input alternatives at a level in the
command tree.
The "element type" field indicates what action to take at each
element. There are five alternatives:

4
1) Display prompt string and go to the next level

2) Input a string argument and push 1t onto a string

argument stack
7

3) Input a numeric argument and push it onto a numeric
argument stack

4) Get a positional argument and push it onto a positional
argument stack

5) Execute the command by indexing a procedure entry table
with the "next_level" field.

When the command is executed, the procedure mapped to the command
pops the argument stack for its input parameters (if it hés any).
Numeric arguments are used in commands for settingl the page
length or vertical gpacing. String arguments are used in
commands such as "search and replace",.or to specifx file names.
Positional arguments mark points in the text buffer. Positional

arguments are usged by commands such as "copy and move".

A table driven command interpreter using argument stacks has

several advantages. Any arbitrary command syntax can be

™

; ' ' 29
implemented. The generalized argumentpinput philosophy allows
for modification of commands, qithout severelmodifications to the
software. This structure does have one drawback. The input
arguments are only evaluated at the end of a command. The
implication is that if the first of many arguments 1s erroneous
(i.e. string argument too long), the wuser is notified only after
typing the entire command.j A solution is to pamaméterize the
argument input procedures so that they perform the validation Qn
input. Thisrimplies that additional variables must be carried
in each element of the command tree structure, that specify the
type of argument wvalidation required.

Canceling or aborting commands Jjust involves popping tﬁe argument
stacks and setting the command ’°tree index pointer to the root of

the treg.

3.2.3 Memory Management

Memory management in the realm of - text editing deals with how
text i1s managed in buffers. This sectién presents two
techniques for commonly used memory management. The first, 1is
the buffer gap sqheme, whereby the text is stored as an array of
c@aracters [AND§§79] [MINCES1]. The)buffer gap scheme is used in
the editors EMACS and MINCE. In fﬁg second scheme, text is
stored hs a linked l1list of lines [MINCEBi]. This app;oach is

used in many line oriented editors.

30
@ _ The Buffer Gap Scheme

In a buffer gap scherfe, tgxti 1is stored contiguously in the teit
buffer with a float-:ing gap. Modifications are made to the
buffer by moving the gap to the position where the change is to
take place. ' Characters are inserted or deleted by simply-
changing pointers. ‘The following variables are required for each
buffe;' (in a multibuffer system) with the buffer gap scheme:

[l

long int buffer cursor,
gap_start,
gap_end;

1

The "buffer cursor" points to the location where the modification
takes place. The "gap_start" and "gap_end" point to the start

and end of the buffer gap respectively. Consider the following

g :
q ke example: ‘

The t%text buffer contains the word "software".

o

buffer cursor = 1
gap_staxrt =5
gap_end = 9

The contents of the”buffer are referenced by two coordinate
systems. The numbers above the buffer are part of 'the user

»

coordinate sy‘st'em. The buffer gap is "invisible” in this

\)) 31

system. The numbers below the buffer are part of the gap

coordinate system. In both systems, the coordinates label the

position between the characters rather than the characters

themselves.

Ny

Referencing characters in a gap system involves conversion from
the user coordinate system to the gap coordinate system as

follows:

If the locafion of user coordinate is less than "gap_start"”
then .
. gap coordinate user coordinate -
' otherwise
gap ccs;cdinate

]

i

user céordinate + gap_end - gap_start

The conversion makes the gap invisible without any motion in the

I

buffer. Insertion and deletion of characters may involve motion

of the gap. Consider the following cases:

1) buffer cursor = gap_start -- motion is not required.

2) buffer cursor > gap_end -- Characters after gap_end and
before buffer cursor have to be moved
(buffer cursor -~ gap _end characters).

3) buffer cursor < gap_start -- Character after
buffer cursor and before gap_ start must be :
moved (gap_start - buffer cursor characters).

Once the gap 1s in position (buffer_cursor = gap start),

deletions simply involve/(axpansion of the gap to include the

deleted characters {(the gap_start pointer is decremented).

~

32
Ingertions involve copying the new text into the gap and
iyncrementing the gap_start pointer. Multiple insertions or'
deletions at the buffer cursor are extremely efficient\ with this
scheme, since the gap need not be moved after the :first insertion
or deletion operation. Movement of the buffe;:_cursor involves
gap motion only when an insertion or deletion attempt is made.

’ i
The penalty associated with the gap scheme is‘ that large amounts
of memory may potentftally have to be shuffled. If an insertion
or deletion is made at the beginning of a buffer followed by an
ingertion or deletion at the end of a buffer, the entire buffer
must be moved. The size of {:he'gap has no impact on the amouny
of memory that can be potentially shuffled. Therefore, the gap
size can be set to the amount of available memor;vg. When the gap
size i1s zero, the text buffer is full Multiple text buffer
management can be easily implemented by dividing the address
space into separate gsections for each buffer. °
The Linked Line Schene .
The 1inke<? line approach to memory managbment stores the buffer
as doubly llinked list of lines. Each 1line 1nc1udes a header with
the following fields:
char *next, *previous; n

int charac;gt count, allocated length,
char *text pointer:;

33
.
The next and previous fields implement the doubly linked 1list.
The character~count field specifies the number of characters in
{ .

the line. By allocating memory in 16 byte chunks, fragmentation
is reduced. The allocated_length field indicates how much memqry
is actuaily allocated to the 1line.” It will be a multiple of 16,
if memory is allocated in 16 byte chunks. The text_pointer field

points to the memory location where the text i1s stored.

Line insertion is simply a matter of splicing the new line into
the list at the appropriate place. The line itself 15 stored as
an array of characters. Insertions and deietions of text
involves movement of characters after the point of modification.
This scheme 13 extremely i1inefficient for large line lengths.
Multiple text buffer management can be implemented by
intertwining bu‘ffera. All allocation is done out of a common
pool so that lines from one buffer are mixed with other buffers
in physical memory. This approach maximizes the density of text

and thus makes more efficient use of memory.

Comparison of the two techniques

The 1linked scheme imposes significantly moré storage overhead
than the b?ffer gap scheme. A header is required for every line
pllfs an e}average of 8 bytes 1is lost due to. fragmentation (if
allocating in 16 byte blocks). However, large amounts of text

need not be moved.

L4

Y

34
In a wvirtual memory environment, the buffer gap scheme will
generally perform well. The sequential organization implies a
high degree of locality of reference. Hence, nearby pages when
referenced will probably be in memory. The major problem is
still that a move of the entire buffer implies that the entire

buffer must be swapped in and out.

The link?d line scheme suffers from the problem of poor locality.
Linked lines can be allocated anywhere in memory so the density
of néarbg lines can be very low. If an intertwining multiple
buffer scheme 1s used, several buffers can potentially share a
page, thus effectively reducing the size of a page. Hence, the

linked scheme does not perform as weéll as the gap scheme overall.

Memory Managément Scheme for a Proportional Editor

The size of a document that the e;iitor can edit /should be 1im£ted
only by the amount of disk memory available. A virtual memory
scheme is an implementation requirement for a proportional editor
to deal with long documents. Considegq_ng the overall efficienci{
and storage requirements, a buffer gap scheme i3 mpre

approp-_riate for a proportional editor.

In a virtual memory environment, the memory management

abstraction uses a page swap file on a secondafy storage device

(such as disk). The size‘off the page swap file is the size of

: - ' . ;35
virtual memory. At 4initialization, the memory managemextmt
abstz,'action divides all available memory into fixed size pages
(1K or 2K). Thg pages are used to'store the contents of the‘ text
buffer and are swaptped between physical memory and 1;he page swap
file on a LRU (Least Recently Used) basis. An LRU scheme is one
where bthe page that was least recently accessed is swapped out.
Swapping gut a modified page requires tlhe page to be physically
writtt;n onto disk. Swapping out an unmodified page does not
hrequire aﬁy activity.

\

L}
' ¢

A modified LRU scheme, implemented in the Mince text editor

[MIN81], can be used in a prbportional editor. In this scheme,
unmodified pages are swapped out first since 1t requires less

time. When the editor is idle (i.e. no keyboard input), the

~

memory management abstraction swapé out modified ‘'pages making

them, unmodified. When the user resumes editing, it has lesstork

N

to do.

3.2.4 Text and File Structures "

-A"text‘ gtructure describes the doc.umentl in terms of 1lines,
paragraphs, and pages ~(how‘ the document should look when printed.
Text formatting languages such as "PEX . [KNUTH79] and troff

[KERN79] use format commands embedded in the text to describe the

+

:

J

36

3

output. For example, consider the féllowing text with embedded
£ ’ :

-

troff language commands:

.ft R

In \fIXanadu\fR did Kubhla Khan ... ‘ ‘ —

The troff text formatting program would italicize the name

"Xanadu", while the other words would "be printed in Roman.

‘Although TEX and troff are extremely powerful text formatting

languages, one still must print the document to realize the.

effects of the format commands.
The user of a proportional editor need not be concerned with text
format commands, but rather should be presented with the text as
it will be printed. One could conceivably use a language such as

TEX or troff as the editor's internal text structure, and hidé

"the format commands from the user.‘ However, it would be
inefficient to scan multi-character TEX or troff format
. a .

commands, when they could be replaced by single byte command

&

codes.

If a text structure is definedpfor a proportional editor, a file
conversion utility progr&n should be implemented to enable
conversion between the editor's internal text structure and other

text formatting languages such as TEX and troff.

&

37
There are two approaches to representing the text internally. Imr
both schemes, the text is stored as a contiguous array of
characters with codes indicating marging, line spacing, end of

paragraphs, and font changes.

The first approach is to store the text paginated with line and
page breaks codes embedded in the text. The other approach is to
make pagination and line breasking decisions dynamically as the

4

text is displayed or printed.

The former approach is more efficient since the text does not
require fepagination i1if 1t has not been modified. However, the
proportional editor must perform more housekeeping to keep track
of modifications to determine which portions of the text require
repagination. An alternative +t#"P5 save the text on Qisk without
end of line and end of page codes. At initialization the editor
can pgginate khe text and insert these codes as the text is read

into virtual memory. During text entry, the editor performs

pagination dynamically.

Word processors‘aiffer from conventional text editors in that the’
user need not be concerned with end of 1lines or page breaks. A
word processor wraps a word that does not fit on a line onto the
next line. The user need only type a carriage return at the end

of a paragraph. Page breaks may be specified by the user or

38
determined automatically by the word processor's :pagination

*

softwarﬂ'e. Word processing software stores page format
information such as margin and tab setting,- page size, and
character pitch, within the text. Similarly a proportional
editor must store codes indicating font changes and interword

ﬂ
spaces (spaces can vary in width with proportional text) in

addition to the regular page format information.

The text is stored as: an array of characters in a file with
em‘bedded codes (invisible to the user) that describes Its output
format. Given that ASCII codes 33 to 127 are used for display
charactérs, the remainder (0-32 and 128-255) can be used for

format codes. A proportional editor uses the character code (33

to 127) to index a font table that contains information such as

fy’

le

M 39
c the character width, ascent, and descent. Format_ codes can be

divided into three basic categoriéit

1 - Page format codes !
2 - I;aragraph format codes

3 - Character font and attribute codes

Page format codes define page length and width; top, bottom,
left, and right margins; tab. positions; and headers and footers.
These codes appear at the beginning of a document and at a
change. . .

Paragraph! format codes define temporary margins ‘(indents), tabs,
vertical spacing, and whether automatic justification. or
(cente'ring of text is to be used. ’

’

Character font attribute codes define the. font, 1ts size, and
. agtributes such as underline’ or reverse print. In a monospaced
woz\d processing system, spaces are fixed in width. In a
proport(o;x—:a’l editing system, they can vary in width. Theréfore,
an interword space code is required to define the width (in

points) of a space.

40

(&) File Structures
Two cdémmon approaches to structuring text files are adopted by
word processing sy;{:gms: page oriented and document\ oriented file

structures.

.o s
" A document oriented file structure is sim;laly a sequential file
where page breaks are merely markers (format codes) within the
file. A document oriented text processing system allows the user

to input text in a fluid scrolling environment, where pages do

not act as barriers.

A pagé-oriented file structure 1s composed of pages stored in
individual sequential files which collectively make up the text.
The user is limited to a fixed number of lines of text that can
:ﬁ, be entered in a page. When thig limit is reached, the user must
close the page (close the file) and reopen a new one. A- page
oriented system 1is rationalized by the notion that word
processing operators think of material in terms of pages, and it
is convenient to access a given page by a number, or to f£flip

through a document page by page.

A memory management scheme for a page oriented system is
@ relatively easy to implement since an entire page can be retained

in main memory.ﬂ However,” there are significant penalties

associated with this approach. Any global file operation such as

C

C

~ 41

pagination or '‘search and replace requires significantly more
input/output, since every page has to be opened and closed.
Ingsertion of text in a full page poses a problem and the
op;erator i3 forced to repaginate the entire text. The fluid

! _editing environment is lost 1f a paragraph crosses page

boundaries.

Since "ease of use" 1s one of the design goals, a document
oriented file struc:ture igs mdére suitable for a proportional
editor designed for editing long documents.
/

3.2.5 Text Formaf\:ting

A text formatting program accepts as input, a file created with a
text editor containing text and forpat commands, and produces a
formatted output document. A true "what you see is what you get"
proporti’onal editor, must perform the text formatting functions
in real time, and treat the display as an output page. This
gsection will examine many of the key features of text 'formatting
such as word wrap, pagination, Jjustification, and hyphenation,
and discuss the implementation of real-time text formatting

—within a text editor.

The primary task of a text formatting program is to divide
paragraphs into lines, respecting. left and right margins, and to

paginate the lines into pages,. respscting top and bottom margins.

b

42

The general approach taken to divide paragraphs into lines is to
make breaking decisions one line at a time. This approach to
line breaking 1is described by Barnett [BARN65] as follows.

[

1. Assign a minimum and maximum width to interword spaces,
and the normal width.

2. Append words to the current 1ine,‘assuming normal
spacing, until reaching a word that does not
fit.

3. Break the line after this word if it is possible to do
so without compressing the spaces to less
than the given minimum. Lo

4. Break the line before this word if it is possible to do
so without expanding the spaces greater than
the given maximum.

5. Otherwise hyphenate the word, placing as much of the
word as possible.on-the current line. -

- by ©

If a suitable hyphenation point cannot be found, .the penalty will
be a line whose interword spaces exceeds the given maximum. The
process of distributing spaces 1in between to produce aﬁ even

right margin 1is called justification. The process indicated in

step 4 of the algorithm is called word wrapping. This method

of line breaking is often referred to aa\the firgst-fit method.

Another approach to the line breaking problem 1s to consider the
paragraph as a whole in making 1line breaking decisions. Knuth

devised a technique for line‘breaking, based on three simple

o . .
primitive concepts called boxes, glue, and penalties, that

-~

o

43
determines optimum breakpoints while considering the paragraph as
a w‘hole [KNUTHS81]. Knuth's algorithm minimizes the use of
hyphens andl tries to keep interword spaces to theilr normal width,
thus improving the overall aesthetics of the printed page.

'

Knuth's 1line breaking algorithm, the optimum fit method, 1is

extrem/ely complex since it is designed to handle a wide variety
of /situations that can arise in typesetting. Knuth goes present
e]

a considerably simpler procedure, the sub-optimum fit method,

suitable for word processors. Howe;zer, the sub-~optimum fit method‘
still relies on a paragraph look-ahead. It is not sui}:able for a
word processor's text input operation, since lines must be
broken as‘ text is 5ente_red. Fur"charmore, the processing involved -
in finding suitable 1line breaks, "after t?)e ugser has entered a
paragraph, will, ir{troduce noticeable dq'lays (1f the paragraph is

long) that may distract the user.

The rules for determining a suitable hyphen point in a word
(hyphenation) is too 1lengthy to mention in this paper. A
g

hyphenation algorithm is given by Knuth in Appendix H of TEX and

Metafont, New Dii;ections in Typesetting [KNUTH79].‘

2
As justification deals with the problem of breaking paragraphs

into lines, pagination deals w%th the problem of breaking lines

P

D

J

i

J

44
into pages. The simple rule for pagination is as follows:
. , ~J

1) Append a line to the page
»2) If an "end of page" code is encountered break the. page.

/
- 3) If the line will not fit in the paginate window, break

the page before the line.

‘4) Go to step 1

An "end_of page" marker indicates a forced page break specified
by the user. The paginate window, as defined earlief: is the -
area betweén the top and bottom margins. The above rule however,

Al

does not deal with widow or orphan lines. More specifically, the

rule does not prevent a page ending with the first 1ine of a
paragraph, or starting a new page with a the last line of a
paragraph. It also does not guérantee even length- pages. Since
vertical spacing is8 the amount of gap between lines, the pfoblem
amounts tb sﬁrinking or expanding the gap to produce even length
pages. For example, the term "9 on 11" refers to 9 point text
héving baselines 11 points apart. Typesetting systems often use
maximum stretch and minimum shrink units to adjust the normal

vertical spacing between lines to produce even length pages.

C

45

The following is a pagination algorithm with widow control:

»

Let Vmin, Vhax, Vnorm be minimum, maximum, and normal vertical*
spacing in points.

Let Vtotal be a running count of the vertical spacing for all
appended lines in the page in points. ~

Let W be the paginate window size in points.

1l - Set Vtotal to zero.

2 - Append a line to the page using Vnorm spacing and

let Vtotal = Vtotal + Vnorm.

3 - If an end of page code is encountered, break the
page and go to step 1. \ /)

4 - If Vtotal is less than W go to step 2.

5 - Mark the beginning of the current paragraph and append
lines to the page until the end of the paragraph.

6 - Let Wgap be the vertical spacing in points between the
the beginning of the marked paragraph and the end of
the paginate window.

7 - Let Pn be the number of lines in the paragraph and

"Pg the number of lines in Wgap.

8 - If Pn or Pg i3 equal to 1, break before the mark and increase
the vertical spacing without exceeding Vmax and go to
step 1.

9 --If Pn 1is equal to Pg, then break after the paragraph
~and go to step 1. ’ '

10- If Pn is equal to 2 or 3, then break after the end of
paragraph 1f it is possible to do so by adjusting the
» vertical spacing without exceeding Vmin. Otherwise,
break before the paragraph and adjust the vertical
spacing without exceeding Vmax. Go to step 1.,

11- If (Pn - Pg) is greater than 1, then.break after Pg

lines of text from the mark. Otherwise, break after
.Pn - 2 1lines of text. Adjust the vertical spacing
without exceeding Vmax and go to step 1.

&

46
In steps 1 through 4, lines are appended to the page until a page
break 1s encountered or the paginate window 1s full. I; the
latter case, the algorithm looks ahead to the end of the 1last
paragraph 1in the page. Step 8 ensures that a single 1line
paragraph is moved to the top of the next page. Step 9 deals
with the case where the last paragraph fits perfectly in the

paginate window. ,) ‘

¢

Step 10\ensures that a 2 or 3 1line paragraph is never split

between pages. If Vmax = Vmin = Vnorm (i.e. no expanding or

shrinking), the page bottom margin will increase by 3 * Vnorm - 1

i

points in the worst case.

. §
\

Step 11 ensures that at least two lines of the paragraph will be

on the bottom of the current page or at the top of the next page.

N 3

The implementation of Jjustification and pagination in a
propo‘rtionai editor requires the following considerations:

i
q [

1 - The line breaking rule is in effect when the editor is
in "input mode", and the user is entering
text. .

2 - The editor must wrap lines as text 1s entered.

3 - Mdification of a line in a paragraph, requires
reformatting of +the paragraph from the
previous line to the end of paragraph.

-

T AT
y

47

4 - The formatting process must be carriedg?;t without
introducing noticeable delays that wou

e

interfere with the operator's typing.

o

Line breaking decisions are made on a line by line basis during
_text 1npu_t u;ing an adapta{:ion of Barnett's algorithm. Since
hyphenation is a fairly complex process, it is omitted in the
'real time line breaking procedures to avoid introducing

intolerable delays at the end of each line. When a paragraph has

been modified (i.e. a word has been deleted), the reformatting of

‘ the paragraph is initiated manually by the operator or

automatically by the proportional editor when the buffer_ cursor
is no longer in the modified paragraph. With this approach, the
editor will not reformat a paragraph every time a character is
inserted, deleted, or overtyped in a paragraph.

The pagination algorithm presented is suitable ‘for a proportional
'editor since a delay is introduced only at the end of a page,-
when i1t searches for a suitable break point. This is acceptable
in a word processing environment, since operators have a natural

tendency to pause after typing an entire page of text.

"Hyphenation must be implemented as an editor command initiated

manually by the user on a paragraph basis, since it involves a
considerable amount of processing. The proportional editor will

breakl lines without hyphenation, and user the can reformat

paragraphs with hyphenation to reduce excessive interword spaces.

¢

NN

48

.The 1line breaking and g':agination procedures of a proportional

editor will continuously modify the text buffer by inserting end

of 1line cocles, interword spaces, end of page.codes, and verticél
‘space codes. In essence, the text is piped through these
proqedufes into the text buffer as texi: is iriput or modified. 1In
a buffer' gap memory managemeht —sciheme, the insertion and
- deletion of format codes will not involve movement of large
amounts of memory, since these operations will ger;erally be
looalized within a page of text. When a text file is opened for
_editing, the text formatter paginates the text, while reading it
| into virtLial memory.” At the same time, an "end of page". mark

Wt

“table is created to keep track of page boundaries. in the text

buffer.

, Representing Fonts - 't

!

3.2.6

~

A multi-font display oriented proportional text editor ‘can’

theoretically display text in a seemingly endless variety of
rfonts and font sizes. ' This section discusses the i1internal
represent‘ai:ion of fonts.

Since the resolution of a graphics display soreen is‘ much coarser
than a laser printer (72 versus. 300 ,;iots per inch), a
proportional editor must use two fonts. ‘a screen font and a

printer font. Scaling screen and printer fonts from a single

., master font isn’'t practical due, to the‘significant difference -in

/

.

y

-

49

resolution. With two sets of fonts for each character style, a

— T—

proportional editor must ensuré_ that when a font is selected, the

prinf:er counte;'part is availablc_;‘ for printing.

There are tl;»lO approaches to representing fonts. The first is to
gstore each character in particular size and typeface, as a set of
bit maps. The font -designe‘r must :draw each chéracter, dot by
dot, with a unique drawing made i;or each character in each point
size. B Moreover, separate bit maps are requirec}) for printing in
landscape and por‘trait‘orienta\tions. "The displéy of 'a bit map
character involves transferring each scani line of -character from

‘

a4 character bit map table, to the display screen's memory.

©

,The other approach is to store each character as a mathematically

‘ expressedloutline, that can be scaled to create a range of type

sizeg\. Postscript 1is emerging as a standard page description
language [}\b0884]. Using Postscqipt, a master !font describing

«

the outline of eqch character, can be rotated or scaled to any
size. The outline 1is filled to create the character. The
description of each character may be parameterized so that the
character style may be altered, si‘mi;fy_by changing a- few
variables. Postscript 1s clearly a more powerful and flexible
approach to representing fonts. However, it doeg suffer a severe

drawback: processing time i1s required to construct the bit maps

for each character. Hence, it is impractical for screen font

H X, i

50
applications. Furthermore, scal?.ng to smaller and smaller point
sizés would result in the chafaic};er becoming more and more
illegible, due to the coarse.resolution of graphic display
screeng. Postscript is implemented primarily in laser printers

and typesetting equipment.

The font +table structure described is an adaptation of the
Berkley font library font table structure [UNIX79]. It consists

of a dispatch table of 128.entries describing the character, and

.a bit map for the actual font.

struct font dispatch {

unsigned bit_ table_offset;
char byte_count:

char ascent;

char descent;

char left;

char right;

char width;

} ,
The "'bit_table_offset" is an offsot into the bit map table where
the data for the character begins. The "byte count" 1is the
number of bytes in the bit map table for the character. This
field 1s set to zero if the character does not exist Ain the
table. The character contains "ascent" + "descent"” rows of data
with' "left" + "right" bits, rounded up to the next byte, in the
bit map table. The "left" and ‘"right" fields also indicated the
character's kern. The "width" field indicates the position of

the next character, origin on the base line.

51
‘:& -~ This structure can also be used to store icons. 1Icons are simply
bit iﬁéges of objects. Since, icons are normally used 'by editors
in the user interface and not printed with fhé text, only screen
icon bit map tables are required.
The structure "font_tables" is an array indexed by "font number",

that points to the font tables.

. struct font tables (

char font_name[12]: s
char active;

N) char file _name[30]:
char *bit _map:

struct font_dispatch *font _info;

} —
The "font_name" field contains the name assigned to the font.
The’ "active" field when non-zero, indicates that the font ‘is
currently in memory. Otherwise it is on a direct access storage
‘: device accessible by the name contained in the field "file name".
For Eemory resident fonts, "bit _map" is' a pointer to the font bit
map and "font_info" points to the descriptor table.
For normal operation, the proportional editor should keep
resident in memory, font tables for Roman, italics, and bold
character styles, in 8, 10 or 12, and 14 point sizes. Other
character styles and point sizes’ can be loaded as required. This

scheme suffers only.if a variety of character styles in variety

of points sizes (other than the ones mentioned above) is used in

1

52
a sfngle page.‘ In the realm of word processing, this is highly
unli?ely to occur.

J # ‘

Character attributes such as underline, and reverse print are
implemented without the use of separate tables. Underlining is
implement‘:ed by setting a row of pixels three or four scan 1lines
belew the base line of the character to be underlined. The
"width" fleld also indicates the width of the underline. IWith
proportional text, underline widths vary on a character basis.

T
Reverse characters are simply the ones complements of the

character's bit maps.

3.2.7 Display Management

The display management function of a proportional editor is
resgponsible for displaying text as it will appear on output. It
must perforn{ this function as efficiently aAs possible so that it
does not interfere with text entry and editing operations.

During basic editing, the contents of the buffer will change only

slightly. Hence, only a portion of the screen needs to be

updated to reflect the changes. This process 18 called

incremental redisplay [MIN81].

Oour discussion of the incremental redisplay process. assumes a

!
system where the central processor addresses: a memory mapped

bit-mapped graphicé display. Each byte of graphics memory maps

53

to.8 pixels on the display. A pixel is turned on by setting a

bit in a byte of graphics memory, and turned off by resetting it.

The display of proportional text on a graphics display railses.
numerous design concerns. Since characters of a' proportional
font vary in width, a basic editing operation such as over-typing
a charac}:er in a word, may involve movement of ‘rectangular arrays
of pixels to accommodate the overtyped character. Horizontal and
vertfcal scrolling operations will also involve movément of large
amounts of memory. The 1low 1level display routines of a
proportional editor requires that the processor be capable of
transferring small rectangular pixel arrays quickly to give
reasonable response time. However, general purpose processors
are not particularly adept at performing operations on
rectangular arrays of pixels. Since graphics memory 1s normally
addressed on byte (8 pixels) or word (8, 16, or 32 pixels)
boundaries, substantial overhead 1s often incurred shifting bits
between registerf when pixel arrays cross these boundaries. An
incremental redisplay process is a desirable feature in a
proportional editor, since st can potentially reduce the amount

of movement of pixel arrays.

The Graphics Display Absgtraction

Graphics display hardware will vary from various manufacturers of

personal computers. A set of routines must therefore be defined

h S s

w that iscolate the differences. The proporWeditor's

-
redisplay software will interface to the display through these

routines.

The resolution of most personal computer's ad¥anced graphics
hardware is typiéally 640 x 400 pixels. This is clearly
inadequate for displaying an entire pag_é of .text,. A
proportional editor must deal with up to legal size pages (8.5 x
14 inches)- in both portrait and landscape orientations. The
display of a legal size pagé in portrajt orientation requires a
display resolution of 612 columns by 1008 rows, since 1 pixel
maps to 1 point (1,/72"). In landscape orientation, the

requirement is a resolution of 1008 columns by 612 rows.

-

The solution 1s to interface the editor's redisplay software tqg a

/ ’ 55
virtual bit maplécreen. The physical display then acts as a

window into the virtual display, as 1llustrated below.

T

VIRTUAL PAGE

This is an examplé of text print-
ed on an output page in landscape
orientation.

PHYSICAL DISPLAY

This is an example
ed on an output pa
orientation. '

Figure 3-2 Windowing

The remainder of the page is viewed by the user by panning the
physical display horizontally or ver%ically. Conceptually, the
physical display can be divided into several windows enabling the
editor to display multiple text buffer or different sections of

the same text buffer simultaneously.

From an‘implementation standpoint, cases where the output page is
wider than the display window, the graphics display abstraction

must allocated a separate block of memory as a virtual bit-mapped

:O

56
display memory. Pixel arrays are cogied from the wvirtual
bit-mapped display memory to the physical display memory as the
user pans horizontally over the page. '

14

When displaying proportional text, it 1s possible for characters

to .cross window boundaries. It would be impractical to

implement routines to display vertically clipped characters.
Horizontal clipping is easily implemented since character bit
ol

maps are coplied to the display memory on a scan line basdis. The

size of the virtual bit map display, in bytes, is calculated as
9 -

-

follows:
Window_height * (paper_width * 9)

The variable Window_height is the number of scan lines in the
physical ~display, and paper _width is the width of the paper in
inches.
P‘tk

Horizontal scrolling is accomplished by%&‘z@ng a rectangular
pixel array, the l{eight of the display window, from the wvirtual
scréen buffer to the physical display window. Vertical scrolling
(upward) is accomplished by moving pixel arrays from the second
to last scan line of the display window to the first and second
to last scan line of the display window. For’ e?ficiency

considerations, horizontal scrolling is performed in multiples of

8 pixel units (byte boundary).

- 57

Vertical scrolling is performed

in vertical spacing units (the distance between two baselines).

structure:

struct window {

— . . int
char
int
char
}

The
are
For

byte boundary).

called the character origin.

the character origin. It is also called a window cursor.

»

,

top_x,
top_v,
bot_x,
bot_vy,
pen_x,
pen_y:
*ySbitmap:;
VS_cols,
VS_rows,

VS _pen_x,
VS_pen_y:
font_num,
font ps,
hspace_val,
vspace_val,
fg col,
rv_flag,
rv_col,

ul flag;

absolute top left and bottom

The implementation .of display windows

/*

/*
/*

requires the following data

screen origin */

w

pen (cursor) position */

virtual screen bit map */

font number */

font point size */

space width */

vertical spacing */
foreground colour */
reverse flag */

shading level */

underline fiag */ &

right coordinates of the window
specified by top_x, top y, and bot_x, bot_y.reépectively.
efficiency; top_x and’' bot_x are multiples of 8 (i.e. on a
Characters are displayed relative to a point

A pen is a pointer in the window to

Its

relative position in the window is speQified by pen _x and pen_y.

The pointer to the virtual screen buffer and its size 1is

- '2&1

Q

58
specified by VSbitmap, VS_cols, and VS_rows respeci:ively. The
virtual screen aléo has a pen‘: VS_pen_x and VS _pen_y. The
variable fg col indicates whe’cher‘characters are to be printed in
awblack or white foreground colour. The reverse flag indicates
whether characters are to be displayed in reverse video,.

Automatic underlining is specified by setting ul_ flag.

The redisplay software interfaces to the display abstraction

through a set of displa& output procedures.

int open_window(top_x, top_y,bot x,
bot_y,bitmap,columns, rows, fg _col); -
close_window (‘window_num)
set_font(window_num, font__vnum, font _ps): (_/ | ~
set_spacing(window_num, hspace,vspace):
set_attributes(window_num,rv_flag,rv_col,ul_flag);

set_pen(window num,x,y);

move_pen(window _num, xrelative,yrelative);

The procedure open window returns a positive window number if it
is able to open a window. The first four parameters to tl;is
procedure specify the windows origin on the physical display.
The next parameter is a pointer to the virtual bit map screen.
The remaining parameters specify the resolution of the virtual

screen and the foreground colour. The procedure close window

59

" eragses the window on the display. - For simplicity, we will assume

that windows cannot overlap on the display.

The next three procedures set text attributes in the window for

' the character output procedures. The procedure set pen sets the

absolute position of the pen in the window. Relative pen motion

is specified by move pen. .

Window clearing, scrolling, and character output operations are

performed by the following routines:

Wclear(window num); ‘ /* clear window */
Weleol(window num); /* clear to)
. end of line */
Wcleow(window num); \ : /* clear to end
d ‘ of window */

Wscroll_up(window_num, scan_lines):
Wscroll _dn(window_num’, scan_lines);
Wscroll rt(window_num,columns)?
Wscroll 1£(window_nt;m, columns);
disp char(window_num,char_code):;

disp_text(window_num, textptr, textlen):;

The routine disp char displays the specified“character by
indexing the window's current font table with char_code. The pen
is aytomatically moved to the next character origin. The next

routine displays a text string. The inter-woxrd space for the

text is specified by the set_spacing’ procedure.

[60
A Rédisplay Scheme For A broportional Editor

As discussed earlier, the proportional editor stores text in a
buffer as a contigugus array of characters with embedded contro_l
codes indicating end of 1lines, end of paragraphs, end of page,
page formats, and font changes. The text formatter is
responsible for storing text in ‘t}\e buffer in a reprfsentation of
the final output page. When changes are made to a line, the text
formét,ter reformats the paragraph containing the 1line q'sing
pagination and line breaking rules. The memory management
software must communicate with the redisplay software so that the-
display window accurately represents the output "page. . R
In general, it will not be possible to fit the .entire output pa,ge
in the display window. However, the redisplay ‘sof*tware‘c.ax,'x(
assume that virtual screen buffer can accomodate the width of
the output page. The pen (display cursar) in the display wiquw
corresponds to the buffer cursor in the text buffer. It visually

indicates the point where modifications to the texf: buffer may

take place. - \

7’
- b

The framer [MIN81] i1is the portion of redisplay software that
decides what will appear on the display window. The framer keeps

a top_of window and bottom of window marks (pointers into the

. text buffer). While the buffer cursor stays within these ‘marks

the pen will remain on the screen.

f}t‘ ' N 0 a

Yy

M

61
As‘ discussed earlier, the text formatting software maintains
end of page marks indicating the location of page breaks. We
will assume that the display window cannot cross page boundaries.
More specifically, the display window cannot display the 1last

line(s) of one page and the first line(s) of the next page.

[
-
P

When the buffer cursor is positioned outside the framer's window

-

marks, the framer must recentre the buffer cursor (pen) on the

scraen. If the buffer cursor 1s in the current page, the framer

moves the window

//

buffer_ cursor is before the top_of window or below the

marks up or down, - depending on whether the

bc;ttom__c;f_window mark, in increments of the window h}eight until
the buffer cursor is inside the window marks. If the
buffer, cursor 1is positioned outside the current page, the
top_of page marks are used to locate the ‘page. ‘ The framer then
starts at the top of the new page, moving the windeow marks éown
in increments of the window height, until the buffer cursor 1is

inside the window marks.

A

r—

- , “ . T .62
j% . The memory management software communicates with the',redisplay
software through some key wvariables and a screen data structure

‘described below.

-) struct screen_ line { " ° . ‘

char *start_of_line,
*start_of mod, Ve
. . modified, -
C o ' ~empty flag,
- . vertical_spacing; :
} *
char force redisplay, page modified, cursor_motion; .

R [N

Every line in the display window 1is assigned a gcreen_line

record. The start of line field is a pointer to the beginning of

modified field i‘s set and the start ‘of mod field indicates the
point in the line wherxre the modif‘icati‘on occurred. If, the line
5:} is blank (i.e. the line contains only an end of line code), the
qulgty flag is‘ set. The vertiéal_spacj_.ng field 'in;iicates the

H

vertical height of the line.
C
¢ The framer 1is called first during. the redispléy process: If the
buffer cursor is omit;side the top and bottom display wir{dow marks,
. it will set thae force_redispléy flag, and re-initialize the
screen_ line rec‘:ords. The- redisplay process examines the

force_redisplay . flag. If it is set, a complete window redisplay

is performed using the top_of window and bottom__of_windox;v marks.

-

Ly

the line in the text buffer. If the line hag been modified, the

=

63
The page _modified flag indicates whether the buffer has been
modified within the top of window and bottom_of-window marks.
The cursor_motion flag indicates whether the buffer cursor has
moved or nof:. The redisplay process is thus summarized below:
!
Framer(); /* call framer */ =
if (force. redisplay TRUE) {
redisplay(top_of_ window,bottom_of_ window):;

return();

}
if (page _modified = TRUE) {

check screen_line();

-

} ,
if (cursor_motion = TRUE) (
. move_pen_proc(); ,

}

return();

If the page modified flag is set, the screen__line‘ records are’
checked to determine which 1lines have been modified. When a
modified line 1s encountered, the line is redisplayed from the

point of modification to the end of the 1line. When editing

"proportional text, any change will affect at least the remainder

of the line. If the cursor_motion flag is set, the pen is moved

to the new location in the display window.

The incremental redisplay process runs as a background task in

“the proportional editing system. System locks are ‘used during

critical sections (i.e. when the sgcreen 1line records are

)

64
gj _ modified) of the redisplay process to prevent the process fzom

being pre-empted prematurely.

65
Chapter IV

- Summary

Display oriented proportional text editors will have a tremendous
impact in the office word processing environment. This thesis
has examined some of the basic design considerations for a

proportional text editor.

The basic proportionhal editor can be expanded to include features
common to many word processing systems. The features include,
automatic paragraph numbering, tablé of contents generation,
footnotes, spelling verification, and merging of records with a
standard form. Text and graphics can algso be intermixed in a
document and displayed. The graphics image is stored as a bit
map in an external file. The editoi‘ can treat the bit image as
an external font and read it into the display memory when it is

referenced.

The table driven command interpreter can be adapted to an icon
bagsed user interface. Instead of displaying text prompts and
chécking for key irput, the system can display icons and reéd
input from a graphics input device such as a mouse. However,
transition to this type of interface would introduce

significantly more processing overhead.

66
Although today's fpersonal computers are equipped with relatively

fast central processors and ample main memory, they are not
efficient at bit string manipulation. The advent of graphics

co-processors designed to deal with rectangular pixel arrays and

.the display of proportional text, will have a significant/\i/mpact

in text processing applications.

‘ ,,’>’.
v

67

REFERENCES

[ADOB84] Adobe Systems Postscript User's Manual, Adobe Systems
Inc., (1984).

[AND79] Owen Theodore Anderson, The design and Implementation
of a Display Oriented Editor Writing System. S.B. Thesis M.I.T.,
(January 1979).

[BARN65] Michael P. Barnett, Computer Typesetting: Experiments
and Prospects, M.I.T. Press, Cambridge Mass., (1965).

[CANBS] Canon LBP-8 series Laser Printer Sub-system Manual,
Revision 0, Canon RY8-8303-000, (Dec 1985).

[CORB4] Corona Personal Computer Technical Reference Manual,
Corona Data System, 700 186, (1984).

[HANSB1] Hasse Hansson and Jorgen Steensgaard-Madsen, Document
Preparation Systems, Software Practice and Experience, Vol. II,
983-997, (1981).

[KERN79] Brian W. Kernighan, A Troff Tutorial, Bell
Laboratories, Prentice-Hall Inc., (1979). '

[KNUTH81] Donald E. Knuth and Michael F. Plass, Breaking
Paragraphs into Lines, Software Practice and Experience, Vol II,
1119-1184, (1981).

[{KNUTH79] Donald E. Knuth, TEX and METAFONT New Directions in
Typesetting, Digital Press ISBN 0-932376-02-9, (1979).

[MIC83] Micom 3000 Series Word Processing Systems Reference
Manual, Philips Information systems, 5107 992 06711, (1983).
[MINS81] Mince Internal Documentation, Mark of the Unicorn,
(1981).

[STREB4] Kevin Strehlo, Environmental Software: Opening New
Windows On Your Work, Personal Computing (Feb 84).

[(UNIX79] Unix Programmer's Manual, VFONT(5), (Feb 26, 1979)

[WARNS81] James R. Warner, Principles of Device Independent
Computer Graphics Software, IEEE Computer Graphics and
Applications, (1981).

[XERB5] Xerox Viewpoint and VP Series Product Descriptions,
Xerox Coxporation, Version 1.0, (July 1985).

