
"v~-- -

THE DESIGN CONSIDERATIONS FOR
nISPLAY ORIENTED PROPORTIONAL TEX'!' EDITORS

USING BIT-MAPPED GRAPHIeS DISPLAY SYSTEMS

By:

Ni tu Gangul.i

School of Computer Science
McGill University
Montreal, Quebec

January 1987

A thesis submi. tted to

.. or.

the Facul ty of Graduate Studie's and Research
in partial Fu1fi11ment

of the requirements for the degree of

Mas ter of Science
- ..

Copyright (c) Ni tu Gangu1i, 1987

'.
t.

-"---- ,

)

-

Permission has" been 'granted
to the National Library of
Canada to mic"rofilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
bas reserved other
'p~blication rights, ~~d.
neither the thesis nor
extensive extracts from it
may be printed or othe:rwise
reproduced without his/her
written permission.

L'autorisation a 't6 accord6e
à la Bibliothèque national~
du Canada de microfilmer
cet te "thèse et de prêter' ou
de vendre des exemplaires du
film.

L 1 ~uteur (ti tu laire du dr"oi t
d' a"uteur) se rês,erve l'es
autres droits de publication;
ni la thèse ni de longs
extraits 'de èelle-ci ne
doivent être imprimés ou
autrement rep.roduits sans son
autorisation 6crite.

ISBN 0-3l5~8239-2

• . '"

,
•

- <-

o

/

.'

This thesis describes

Abstract
()

the design considerations

i

for a display

oriented proportional text editor fOr bit-mapped graphies display
1

.. ' hardware. It considers the task, techniques, and constraints for

the implementatf:.on o-f " sU'ch an edi tor on personal computera

equipped wi th high resolut--i-on bi t-mapped graphies display

hardware.

0.\

-

'/

o

",

c'

~.

ii

R'.wa'
Ce mémoire décrit les considérations liéés à la conception d'un

édi teur de texte proportionnel conçu pour l'utilisation sur un

systèmè muni 'd'un écran graphique adressable par point. Sont

cons!'(iéreés les t<fch,es, techniques et constraintes lieés au

fonctionnement d'un tel éditeur sur un micro-ordinateur incluant

du matériel d'affichages graphique à haute résolution.

00+,

..

•

{}'.

-.~

o

o

o

o

111

Acknowledgements

This thesis 1s a culmination of several years of industrial

1 experience in software engineering and word processor-design. l

would like to thank Philips Information Systems----{-Micom) for

expanding my knowledge and providing the experience in word

processor and office system design. l would also like to thank

the School of Computer Science at McGill University for providing

me with resources to complete my research, and particularly

Professor Gerald Rai;er for his supervision and,p~tience.
L

.1,

1

. -

1 ,.
li

\,
Table of Contenta

Abstract ..••
Résumé ... ii
Acknowledgements ~................ iii --
Table of Contents ,................................. i v

l.-ist of Figures v

Chapter

I. Introduct;ion 1

II. Backgrourid ...•. ~ 4

2.1 The Evolution of Text Editing
and Word Processing '~......................... 4

. 2.2 Basic Concepts of 'Pypesetting
and Word Processing .•••...••....•••••••••••.. 8

III. Designing a Proportional Editor •..•..•.•.••..••••• 13

IV.

3.1 The Design Goals • .,.. 13

3.1.).--
3. Ll.2
3.1.:S-

•
Hardware Considerations ••..•• 1 •••• '. • • • 16
Oper.ating System Considerations• 18
Implementation Languages ...•••••....•••• 18

3.2 Design Techniques and Considerations 20

3.2.1
-3.2.2

3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

Summary

User Interface .••••.••••••.••••.....• 21
The Editor Executive
and Command Interpretation ..••••.•.•••.. 25
Memory Management ••...•.•...•••..•..••.. 29
Text and File Structures••••.• ' •.••.. 35
Text Formatt.1ng ...•.................••.. 41
Representing Fonts •...•••••.•••.••..•••• 48
Disp1ay Management ...••••••..••.••.••••• 52

. { 65

References ..• 67 "".

iv

-1
/

o

,
o

--0

Figure

2-1
2-2
2-3
2-4
3-1
3-2 "

..

-

Liat of Figures

Portrait vs Landscape
Page Layout
Font Examp1es
Font Layout
Hardware Abstractions
Windowing

.'
..

V

b

Page

Printing 8
9

Il
D Il

<' 16
55

"

/

c·

/

1

/ Chapter 1

Introduction . .

.
Text edi tors have evol ved from bateh oriented edi tors using ,

punched cards or paper tape to display oriented e1ectronic

pub1ishing. systems using high resolution bit-mapped graphies'"

terminaIs. The eeonomies of mass production has resulted in 10w

cost laser printers capable of printing images and multiple text
~

styles and fonts -- a publishing teehnology not long ago reserved

exclusive1y to mainframe and minicomputer typesetting systems.

The trend in eleetronic word processing or text processing is a

movement towards what is now termed: "desk top pub1ishing sys-

tems". The "state-of-the-art" text processing system is one that

provides a "what you see is what you get" approach to editing

documents. By using high reso1ution bi t-map graphies displays,

these systems are capable of displaying text in a variety of·

fonts and font sizes, as it would appear printed with a laser

printer or photo-typesetter . ,
?

This thesis will examine the important considerations in design­

ing a di~Play oriented proportion al text eéU tor that provides a

"what you see is what you get" editing environment. For elarity,

the term: "proportional editor", will bé used in referenee to a

d1splay oriented proportiona1 text editor.

o

•

2

The design of a proportional editor raises rnany questions. How

should the user interface look? How i9 the text s~red in

(J> memory? How is the memory managed?
,

How are fonts stored and

displayed? How is the graphies display screen update proeess

optimised? AH these issues are discussed and various design

strategies are presented. .

Most of the avai lab1e li terature relating te text edi tors deals

wi th the user interface or are reference manuals. Very. few deal

wi th! the actual design and irnplementation. The avai1able

literature does however provide a framework for the design of a
..

proportional editor. Anderson' s paper, The Design and .,
Implementation of a Displav Oriented Edi tor Wri ting System

[AND79], discusses memory management schemes that ean be adapted .
to a proportional editor. Papers by Barnett [BARN65] and Knuth

[KNUTH81] dea1 wi th the problem of breaking paragraphs into

1ines.

Chapter II of this thesis discusaes the evolution of text editing

and ward processing. It also introduces sorne of the t?asie

co~cepts of typesetting and wbrd processing.

" Chapter. III deals with the design considerations of a

proportional edi tor. It discusses t.he design objectives and

considerati.ons such as hardware, system software, and

)

\

. \

3

implementation languages. It presents alternatives to liser

interface design, command interpretation, me~rY management, text

and file structure design, text formatting, and font
.; t.

representattbn. A radisplay technique for a proportional adi tor

is 8lso presented.

Chapter IV i.s a sumrnary of the ideas presented 1.n this thesis. ,

..

. "

. .

-------_-.._------~- -~. ----~----

o

o
-'

..

-.
" . -,

.. -~' .,
--

4

Chapter/xI

Background

2."1 The Evo).ut.ion of Text Edi ting and Word proce •• ing

The roots of text e~U ting and word processing can be traced back

ta the early days of computing when text form~t~ing ·programa

were used to print documents. Most time-sharing systems were

equipped wi th a line oriented context edi tor that would p~rmi t

1 -insertion and correction of text. The user would have to embéd
q'

,text format commands within the text that would be interpreted by

the text forrnatting program to produce the printed output. This

was a repetitive and time consuming process since the user could

not know what the document would look like until it was printed .

.
Wi th the advent of inexpensive charaqter oriented display

terminals, display oriented edi tors emerged. The advantage of a

display oriented edi tor over a conventional 1ine edi tor is that

changes ta the text are typed on the screen and are updateti in

the text buff,ar. In essence, the display terminal acts as a

window into tne text buffer. Al though a display edi tor eases tn:-

text entry; process, the user still has ta embed format commands

into the text and use a text formatting prqgram to produce the

final printed output.
,

Advances in microprocessor technology created dedicatl3d ward

processing systems. These are simply microcomputers equipped

c

. -

--

(

(.

• 1

5

with software that combines the editing and formatting functions

of time-sh-aring system edi tors and text formatting programs.

These systems have ga.i'ned tremendous populari ty in the office

environment because they address both functional and ergonomie

requiremeQ.ts. The screen can be adj usted to accommodate

individua! operator preferences. The keyboard contains function

keys that are grouped together according to the job they

accomplish. The maj ori ty of the se systems incorporate the

following basic features [MIC83]:

1

Word wrap: The ability to type text past the right
margin without pressing the return key. The text
automatically continues on the next line of the screen.
The operator need only press the return key at the end
of paragraphs.

Insert and De1ete: Inserting is the abi1i ty to add
text between characters on the screen wi thout losing
1;ext or retyping. When text 1s deleted, text is
removed and the gap is rea1igned wi th the remaining
text.

Indent: The ability to set a temporary left margin.

COpy' and Move: The ability to define a section of text
and copy and move i t to another position in the same
doc~ent. This is a1so called "cut', and pastel!.

,
Search and Rep1~c>e: The abi1ity to find aIl
occurrences of a string and replace it with a different
string.

Mul tiple tab lines: The abili ty to change tab stop
column positions wi thin a document. This inc1udes
automatic rea1ignment of existing text 'to the new
settings.

Decimal t,bs: A tab stop which aligns numbers on the
decimal point •

•

-

•

o

o

o

(

Automatic pagination: The system determines page
endings by the number of lines per page.

Multiple format lines per document: The ,ability to
change margins and line spacing as weIl as,tabs several
times within a document.

Screen and print attributes: The abili ty to display
bold, underline, superscript and suhscript on the
display.

Horizontal Scrolling: The ability .to set up text

/

than the standard 80 character display and view
scrolling horizontally.

wider
it by

6

The majori ty of today' s word processing systems display text in

monospaced format. In monospaced format, every character

displayed has the, same width. If ane considers that these

systems use a daisy wheel printer to produce letter quality

output, they are reasonably close to providing a "what you see
•

is what you get" edi ting environment.

wi th today' s laser prin ter technology, there i~ an increasing

demand for text processing systems that offer proportional text

output. The inabili ty of ward processing systems ta exp'lai t the

fUll potential of laser printers are rendering them obsolete. The

new generation of ward processing systems must be capable of

dealing wi th text in-a wide varie.,!:y of fonts and font sizes, and

use a graphiès display" device to display text.

Much of the cre di t for today' s "desk top publ ishing" techno.logy

h~s to be given to the designers of the Xerox Alto experinrental

(-

, --
. 7

workstation [STRE84], upon which Xerox based the Xefox. star text
,

processing system. ,Four principl,es served' as guideU!les for the

Xerox Alto experimental workstation:

1 - The' user should not have to remember and type
commands Instead, he/she should just look, point, and
select with a graphies input device such as a mouse.

2 - ,The user should be presented wi th only tl)e
information which is relevant at the moment. This
minimize~ the amount of looking.

'3 - Consistency across comains --', whether' the user 'is
_ edi ting a document or working on a spreadsheet, the

user interface should he consistent.
~

-4 - "What you see i~ what you get".

The four prir:ciples served as a basis for the design. of other

systems such as the Apple Lisa and later, the Apple Macintosh.

The key to the Macintosh workstation' s success is i ts low cost

and its ability to create textual presentation.s of a quality

normally associated with typesetting.

The text processing' capabilities of the Xerox star or Macintosh

can be adapted to virtually any personal computer equipped wi th
.

, high' resolution bi t-mapped graph~.cs hardware. Laser printers

produce high-quali ty images and can print multiple fonts on the

same page. This capabili ty works hand-in-hand wi th an edi tor

that uses a high resol.ution graphies display, and can mix , .
graphies with numerous text styles in a document.

"

. "

o

o

\

o

.'

8

2.2 Basic Concepts of TJpesetting and Word Proce8.in~

The purpose of a word processing system is to allow one to enter

and modif~T text, and produce an output document dependent on a

particular equipment to be used [HANS84]. In the abstract sense,

text may be considered to be composed ofo~ chapters, sections,

paragraphs, words and characters. Sinc~ the output text is

equipment dependent, . it musl be described by another set of

concepts: page dimensions, pages, lines, fonts etc.

The output page is generally defined by length and width. As

ill ustrated in figure 2-1, there are two orientations for

pri'nting pages: portrait and landscape. Portrait printing is

perpendicular to the longer side of the paper, and landscape

printing is parallel to the longer side of the paper [CAN85].

Portrait
mode

Portrait printing

"'. "

Landacape
mode

Landscape Printing

Figure 2-1
Portrait va Landscape Printing

..

A document consista of several pages containing running text and

running paragraphs. A running text is arlJequence of run.ning

..

9

paragraphe. A running paragraph is a sequence of words [HANS84].

Figure, 2-2 is an illustration of a typical page layout.

!

This is a r~nning paragraphe
Note that the first line may be
indented. This is also an example
of a "justified paragraph".

This section of text is
indented. Temporary laft

, and right margins are
used.

This is anotheF r~nning parag~aph.
Justification is not used here.
Note the,jagged right margins.

FOOTER

Figure 2-2 pagf3 Layout

.Â

- - -,,- 4

5
6

The space between A and Band C and 0 are left and right marg~ns

respecti ve 1 y • Text appearing within the left and right margins

(B and C) is called margin text. Margin text may be right

justified or j agged. Right justificatio9, is accomplished by

distributing excessive blànks at the end of a line in between

" words appearing on that,line. The space between 1 and 3 and 4

and 6 are top and bottom margins respectively: The space betw~en

1 and 2 is called a header offset. A header is one or more:lines "

10 o'" of text appearing at the top of every page of a document. The

header offset is the spacing between the top of the page and the

o

o

..
firse-line of the header. Th~ space between 5 and 6 is called

~
the footer margin. A fonter is one or more 1 ines of text

appearing at the bottom of every page of a document. The footer

margin is the spacing between the last line of the footer and the

bottdm of the page.

The process of transforming a series of running paragraphs into
,

pages while respecting aIl margins, is called pagination. The

space between 3 and 4 is called the paginate window. Pagination

actually involves breaking paragraphs into tines, and lines into

pages.

An edi tor that displays text forrnatted wi th page qFeaks while

editing, must paginate the text in real time. This requirement

raises many concerns. How much- of the text should be

rè-paginated if modifications are made at any point in the text? ,

How i8 the text stored in memory? These problems are discussed

in the following chapter.

Characters in a text can appear in different fonts, sizes, and

styles. The term font refers to the form or design of the

char acter independent of style or size. Examples of various
- -

fonts are illustrated in figure' 2-3.

...

-(,

Thl. il: Opclma RomIn

nliIlI, rrc LubaUn Graph

nu. il. m: Ganmond Uafu

ftU III rra AIDerlcaD 'f'7pewrlter JJoI4

ThIais: ITC A\IOt'It Gorde Gothie '

~ II. ne z.,f ct-ur, M..a- rltl&

Figure 2-3 Font Examples

11 '

• f

The term style refers to the variations in the basic form of the

charact~rs such as italic, or boldo Char acter size is specifi,ed

in terms of points. One point is 1/72 of an inch. Hence, a 36

point character will be at most 1/2 inch high.

Rectangle Width

L
f xx

Ascent

Charac~r Origin --+--"U~
xx
XX
XX

X XX
Descent XXXX

H
Width

Kern

l
Font rectangle

~

• ... Next char acter
origin

..

Figure 2-4 Font Layout

A font rectangle is the frame that delineates the size of the dot

,pattern for the character. Fixed pitch cQaracters (monospaced)

have the same rectangle width for ,aIl charaèters in the font.

" ' :~ .. _4 !

't~..: ~I

, ,

..

o

ô

12

Proportionally spaced character· have variable rectangle widths.

The base Une is the horizontal reference line for printing

characters. The character image is printed relative to a point
~i

on the base line called the charaâ'ter origin. The character' s

ascent and descent measures how far i t extends ab ove and below

the baseline. The char acter width is the measure of one

character origin to the next character origln: A character can

extend to the left or right of. the character origin. This is

called' kerning.

\

Vertical. spacing is the vertical distance in points between

base lines. In typesetting terminology "9 on 11 n refers to a
,

character size of 9 points and vertical spaci.ng of 11 points

[KERN79] •

(
\

- 4.,

\..

-

,

(
13 '

.
Chapter III

Designing a Proportiona! Editor

3.1 The Design Goals

Word processing systems have achieved tremendous sophistication

over the years in terms of their user interface and features.
, ,

Consequently, the complexi ty of their design and Implementation

has alSo increased significantly.

Since personal computers have made ~ignificant inroads in the

modern office, the proportional editor should be tailored to th~S

environment. An extremely important factor is the editer

ab!li ty to-- keep up wi th the typist. An experienced wo

processing eperator can type at a rate of 70 to 90 words per

minute. The system should et least accept input at these rates,

and at best keep the screen .~efreshed at the sarne rate. This

implies that the display update process may be postponed until,_

keyboard input is idle.

Frequently used commands such as insert, delete, copy, and move

should be bound to function,keys on, the keyboard for easy access,

rather than/have the user type a series of escape or control key

sequences.

•
J

o

14

Display orientation with a "what you see is what you get"

approaeh is extremely useful since it provides immediate feedback

to changes made to the text. The notion of "what you see ls what

you get" should be explained. Sinee the resolution of today's

graphies display hardware (72. pixels per inch) la signlflcantly

coarser than a laser prlnter (300 dot,s per inch), text printed

wi th a laser printer will appear much sharper than the aame

displayed on a graphies terminal. Typesetting systems use points

(1/72") as a basic unit of measure. To simplify tbe design, a

proportional edi tor maps a "point" to a pixel on the disp1ay"

The desirable features of a proportional edi tor are i temized

below:

Reasonably fast and easy to use.

Basic edi ting of eharaeters and words wi th
insertion and deletion.

Seareh and repl~ce function.

Text copy and move function (cut and Pfste).
\

Forward, reverse, and horizontal scrolling of text.

Support for multiple fonts, including proportional
fonts throughout the text. The sere en fonts
should match the laser printer fonts.

-

. -

' ..

"

c . ,

--

c

15

Automatic rea1-time justification and pagination of
text. Text can be justified, ragged left or
right, or centred.

Setting of multiple tabs, margins, headers, and
footers.

. Support for variable line spacing and character point
sizes.

Support for underline and reverse (white on black)
print.

•

o

. .,,'

o ,

"
' -" ..

~, ,
-di

o

16

3.1.1 Hardware Considerations

A basic requirement for the implementation of a proportional

editor is a computer system equipped with et least 512K bytes of

. \ main memory, a direct' access secondary storage 'device s,uch as a

floppy or hard disk, and a raster type graphics output device.

The task of designing a portable display oriented proportional

editor for personal computers is clearly non-trivial due to the , . ,

non-standardization of hardware and system software.

The solution is then to il1corporate the- cbncept of deviee

independence [WARN8l] into the design. The edi tor (the

application program) can communicate to the phy'sical graphies

dev,ice through hardware abstrac1;ions (virtuel device). A

hardware abstraction is a collection of device, independent

subroutines that provides a clean and simple interface between

, the application softwa:re and the' device i t is using. A "deviee

manager", a ..set of device _ dependent routines, performs t. the

" mapping between the virtual and physical devices.

\ , - Deviee !---
Application Hardware Dependent Physica~
Software • Abstraction r---- Routines 1--- Deviee

, or Figure 3-1 Hardware Abstractions

,.

17

Di.play Dev1.ce.

Graphics ,devices may be externa1 to the computer (connected by a

digital interface) or memory mapped (internaI to the compùter).

The latter 1s more commoq among personal computers. The primary
!I

advantage of a memory mappéd display is that the entire screen
/

can be read or written at bus speeds.

There are numerous 1mplementation schemes for mem~ry mapped bit

mappe~ displays. In its simplest form (monochrome graphic~), the

graphics

memory.

screen resides in dfamic RAM in the computer' s main

The memory is arranged 'in N lines of M contiguous bytes.

N and M vary' aqpording to the implementation. For example, in

the Corona Personal Computer, the memory is arranged as 325 lines

of BO contiguous bytes [CORB4j. Each line r~presents 640 pixels . , .
(BO bytes x 8 p1xels 'per byte) on the d1splay. A pixel 1s set

when the corresponding bit 1s turned on, and reset when turned

off.

1 Input Devices

The keyboard shoûld be sui taJ~le for touch typing and should

\
contain cursor motion keys and u~r defined functior keys.

Graphical input devices such as a Touch Senai thre Display (TSD),

mouae, or jqystick, may be used as pointing devices for editor .
menu entries. Although the mouse has become' a very po~~~r input

device in the realm of personal computers, i ts use in a

o

o

o ..

, ,

... 18

professional word processing environment is questionable. The

pr.imary disadvantage of a mouse, or any other graphie input
,

dev1ce, 1a that the user' s hands must leave the' keyboard to
, Cl

~,

operate i t. To the novice this .may not appear to be a major

issue, but to an experienced typist i t becomes a severe

bottleneck. The usa of a graphie input qevice should be option~
• in an editor, not a requirement.

3.1.2 Operating System Consideration~

An edi tor operates as a task ';Inder the supervi'sion of the target

hardware's operating system. The operating system should provide

external device input/output interrupt man~gement· and a file

system interface to the edttor. This includGs routines to open,

close, read, wr.ite files, and,read keyboard input.

3.1.3 Implementation Languages

The choice" of the Implementation language can have a significant

impact in the overall efficiency and maintainabi1i ty of the

system. Ideally, the edi tor should be wri tten in a high level
"

language for portabili ty. The hardware abstractions should be

written in a ~ombinatlon of high'level and assembly language for

. efficiency. The choice of a high level language should be

dictated by a ~ombinat1on of the extent of i ts use in the

industry and the efficiency of i ts .tmplementation in the target

system.

19

PL/l, C, and other system ,languages are fairly popular and have

been finplemer;tted on several systems. High level languages of -
this nature are Ideal for text processing applications because

they allow definition and manipulation of complex data structures

and character data. C ls a partlcularly good choice since it Is.

emèrging as a standard for a system-oriented language.

Implementations are available for most personal computers. AlI

data structures and algorithms in this paper will be expressed ih

C.

1

, .

'"

\ <;)

. --

---------------- --~ ~~~ -~~~~~~ --

o

o
/

J

/

o

20

3.~ Design Techniques and Considerations

An edi tor is a sub-system that executes under the supervision ot .

the hardware' s operating system. Commands are passed to the

edi tor from the input device (keyboard) through the command

" interpreter._ A proportional editor comprises the basip elements:

- The user interface

- An editor executive

- A command interpreteF

- A me~ory management function o

char acter routines
insertjdelete routines

• marking routines
copy/move rbutines
searchjreplace routines

• cursor control routines

- A text' and file structure

A text formatting function
• line breaking routines

hyphenation routines
pagination routines

- Pont tables

- A display management function
• font display routine~
• window managemènt routines
• cursor control routines
• redisplay routines

This section examines each of the basi.c::: elements of a

proportional editor.

,

(,' . "

(

21

3.2.1 User Interface

The user interface is the layer of software that interfaces

betw~en the user, through an input device such as. a keyboard and

an output device such as a graphies display, and the internals of

the editor. Th~ purpose is to provide a user friendly edi ting

envirorunent. Two common approaches to user interface design

have been adopted in commerclal word processing syst~ms. The

first is the Xerox "desk top m~taphorfl [XER85]. The second is a

command syntax q~iented interface common to

systems such as 'the Micom and AES.

word' processing

)
The .Xerox fi desk top metaphor fi concept has been ~dopted in

systems such as the Xerox star, the Apple Lisa, and the Apple

Macintosh. A great deal of emphasis i's placed on visual ..
o presentation. The user interface presents the workapace

graphically on the display in terms of famfliar office abjects: a

desk top, paper, folders, and p;-inters. The metaphor is'
o

expressed ta the user through objects displayed on the screen,

called icon,!?, representing the office work environment.

Advocates 01 the desk top metaphor wi th i ts icons' and multiple

windows, claim that it is extremely easy to learn and use. The

1 user points at \ the desired abject and' th~n clicks the mOuse

button, rather th an enter commands from a keYboard. The .four

pr!nciples of the XERQX Alto experimental worksta~ion (Chapter

If ,II), serve as a guidel!ne for th:f,s type of interface.

/

-

, -

..

-, o

\

22

The commanQ, syntax oriented interface on the o\her hand is

tailored to the experienced word proce9sing operator [MIC83]. In

this system, edi tor commands are bou~d to keys on the keyboard.
"

Since the number of commonly uged edi tor functionftî i9 greater

th an the number of function keys available on a typical keyboard,

a command syntax tree scheme 19 used. For example, consider the

following command syntax tree:

"

SET
/ \

./ \

/

/
/

/

PITCH SPACING
1 1

<value> <value>
'\

COMMANI;>
\

PUT-ASIDE
1

<amount>

\'
\

\
CET'

-

"

Using this ... scheme, the edi tor' s prompt 'and the user' s key

!1equence to set spacing ~s outlined beldw. Assume' that the

..

-

-'

- 23

"escape key" (ESC) denotes the beginning of a command tp tl1e
\

editor.

li
The use.r presses the " escape. key fi, and thé edi tor responds wi th:

Command:

Set, Put-aside, Get
c ,

. The user presses the "s" key, and the edi tor responds wi th:

Command: Set

Pitch, Spacing

The user pressea the "a" key again, and the edi tor responds

with:

Command: Set Spacing

Enter a value:

The uaer then entera a value for spacing followed by a carriage

return.

As illustré\t~d in the example, aIl possible alternatives are
-

displayed to the uaer at each level of the co~and tree.

The "desk top metaphor fi concept is ideal for the novice, but a
r

burden for the experienced typiat, since the hand must leaVB the

keyboard to operate a mouse. The use of icons and "pop-up"

windowa adda more complexity to 1;he editor'a display management
~

functions and requires consider~bly more aoftware support and
"

)

-- 24

~à ' system resources such 8S CPU overhead and memory,Jon the other

o

,
. -

" hand, the command syntax oriented interface is more difficult to

learn, but once mastered, the operation is much faster. The

command syntax approach also requires consideraply less software

support and processing overhead. The choice of an interface

depends on the application' s user environment and system

resources. Since the intent is to design a proportional editor

for the office environment using personal computers, the command

syntax oriertted interface is the practical alternative.

,Furthermore, if the edi tor is structured properly, the user

interface software could be changed wi th minimal impact on the

remainder of the edi tor . The term "structure", refers to the

data obj ects the edi tor deals wi th and the layering of

subroutines -- who cal1s who.

The user should be presented with a representation of the output

page at aIl times. While i t may not be possible to disp1ay an

entire page on the display, the user should be capable of

scrolling horizontally and vertically over the page.

Commands shou1d,be typed on a reserved _line on the display called

the control 1ine. Messages from the edi ting syatem to the

operator should be displayed on the control line. The editor

should display a format line that marks aIl margina, and tabs.

...

. -

/)'

(

(

25
l

• 1

In addition, the editor should display aIl active settings such

as page size, point size, active font, and 'page number.

3.2.2 The Editer Executive and Cemmand Interpretation

The heart of..-the editor is called the editor executive. It is

responsible for reading input, evaluating it, executing it, and

invoking the, pagination and redisplay routines.

algorithrn is:

while (TRUE) {

}

c = get input () ; ,
return code = input decode(c);
if (return code = EXIT)

exit procedure()i
if input buffer empty()) {

paginate(fi
redisplay();

)

The basic

A simplified loop as the one described above places minimal

restrictions on the user interface. The procedure "input_decode"

evaluates the input and invokes the necessary procedures ta

process the input. It returns a code indicating whether the

edi tor should be exi ted. The routine "exit_procedure" performs

the necessary housekeeping prior to exi ting. The paginate' and
-J

redisplay proc:esses are invoked only if there is no more input

to process. The paginate process repaginates the text as a

result of any modifications. The redisplay process updates the

display to reflect the current modifications.

--- \

o

o

26

The user interface ia isolated in the get_input() and

input_decode() processea. Therefore", virtually any type of user

interface can be implemented wi th minimal impact on other

portions of the editor.

Command Interpretation

A proportional edit~r haa four basic categories of commands:
'f

1 - Commanda that modi fy the text buffer

2 - Commanda that deal with files
;

3 Commanda that move the cursor on the screen

4 - Commanda that manipulate the page output format and
character fonts.

The input_decode() proceas is the editor'a command paraer.

primary task is to validate and process edi tor commands.

Its

The

command interpreter (input_decode()) can be implemented as a
Q

table driven procedure. By mapping keyboard input sequences to

procedures that evaluate it, virtually any command syntax can be

implemented.

,

, .>

(

. -
Consider the following syntax tree:

SET
1

/
/

POINT SIZE
1 >

<value>

\
\

\
Il

/
/ -

1

\
FONT

1

COMMAND
\

CUT

1
<amount>

<value>

\
\

\
SEARCH

1
<string>

\ The tree can be represented using the following data structure:

struct command element {
ëllar prompt [20] ,

input code,
element type;

int next level, J

next - element;
} command tree[];

- fi

27

The "prompt" field contains a string that is displayed on the

control line. ~he control line i9 a reserved line on the display

used primarily for command prompts and error reporting. ~he

"input_code" field is compared ta the keyboard input to progress
.-

down the tree. The. "next level" field contains the index of the

successor element in the command tree. Successor element prompts

are gisplayed while traversing down the tree.

\he "next_element" field links a11 successor elements. This

field is set to -1 for the last successor element. The link

~~ -

o

28

establishes aIl possible input alternatives at a level in the

cornmand tree.

The " element _type" field indicates what action to take at each

element. There are five alternatives:

When

pops

1) Display prompt string and go to the naxt level

2) Input a string argument and push it onto a string
argument stack

/

3) Input a numeric argument and push it onto a numeric
argument stack

4) Gat a positional argument and push it onto a positional
argument stack

5) Execute the command by indexing a procedure entry table
with the "next level" field.

the command ia executed, the procedure mapped to the command

the argument atack for its input parameters (if i t has any).

Numeric arguments are used in commands for setting the page

length or vertical spacing. String arguments are used in

commands such as "search and replace", or to specify file names.

Positional arguments mark points in the text buffer. Positional

arguments are uBed by commands such as "copy and move".

A table driven command interpreter using argument stacks has

several advantages. Any arbi trary command syntax can be

' 1

(

29

implemented. The generalized argument input philosophy allows

for modification of commands, ~ithout severe moàifications to the

software. This structure does have one drawback. The input

arguments are only evaluated at the end of a commando The

implication is that if the first of many argument~ is erroneous

(i.e. string argument too long), the user is notified only after , ,

typing the entire commando J A solution is to pal1>ameterize the

argument input procedures so that they perforrn the validation on

input. This implies that additional variables must be carri~d

in each element of the command tree structure, that specify the

type of argument validation required.

-

Canceling or aborting commands just involves p~pping the argument

stacks and setting the command'tree index pointer t~ the root of

the tre~.

3.2.3 ~emory Management

Memory management in the realm of' text edi ting deals wi th how
1

text i s managed in buffers. This section presents two

techniques for commonly used memory management. The first, is

the buffer gap scheme, whereby the text is stored as an array of

---ch~racters [ANDER79] [MINCESl]. The buffer gap scheme is used in
...

the edi tors EMACS and MINCE. In the second scheme, text is .
stored as a linked list of lines [MINCESl]. This app~oach is

used in many line oriented editors.

~----~_.- --

(0

o

30

The Bùffer Gap Scheme

In a buffer gap sche~e, text is stored contiguously in the teit
, ..

buffer wi th a floating gap. Modifications are made to the

buffer by moving the gap to the pos! tion where the change is to

take place. 'Characters, are inserted or deleted by simply-

changing pointers. The follow!ng variables are required for each

buffer (in a multibuffer system) with the buffer gap scheme:

long int buffer cursor,
gap start,
gap=end;

The "buffer_cursor" points to the locat;J.on where the modification

takes place. The "gap_start" and "gap_end" pOint to the start

and end of the buffer gap respectivelY. Consider the 'following

example:

The text buffer contains the word "software".

'l(\ • '

0 1 4 .. 3 4 5. 6 ~7 8
1 s 10 1 f 1 t 1 w 1 1 1 1 1°(91 ,0

0 l 2 a 4, 5 6 7 8 9 1 11 12
,

buffer cursor = 1
gap start = 5
gap=end = 9

The' 'contents of the IJ buffer are ~ referenced by two coordinate

systems. The numbers aQove the buffer are part of rthe user
J\

coordinate system. The buffer gap- ia "invisible" in thia

','

•

o

31

system. The numtiers below the buffer are part of the gap

coordinate system. In both systems, the coordinates label the

posi tion between the characters rathex: than the charactèrs

themsel ves .
...

Referencing characters in a gap system involves conversion from

the user coordinate system to the gap coordinate system as

follows:

If the location of user coordinate is less 1:han "gap_start"
then

gap coordinate =
otherwise

user coordinate
,

gap c~dinate = user coordinate + gap_enp - gap_start

The" conversion makes the gap invisible without any motion in the

buffer. Insertion and deletion of characters may involve motion

of the gap. Consider the following cases:

1) buffer_cursor = gap_start -- motion is not required.

2) ~uffer_cursor > ~ap_end -- Characters after gap_end and
before buffer cursor have to" be moved
(buffer_cursor --gap_end characters)&

3) buffer cursor < gap start -- Character after
buffer cursor and before- gap s'tart must be "
moved (gap_start - butfer cursor characters).

Once the gap 1s in position (buffer_cursor = gap_start),

delet.fbns simply inVO!v\xpansion of the gap to include the

deleted characters (the gap_start pointer is decremented).

o

32

Insertions involve copying the new text into the gap and
't
incrementing the gap_start pointer. Mul tiple insertions or

deletions et the buffer cursor are extremely efficient with this

scheme, since the gap need not be moved sfter the ,first insertion

or delètion operation. Movement of the buffer cursor involves

gap motion only when an insertion or deletion atternpt is made.

The penalty associated with the gap scheme ia that large amounts

of memory may potent,iallY have to be shuffled. If an insertion

or deletion ia made at the beginning of a buffer followed by an

insertion or deletion at the end of a buffer, the entire buffer

must be moved. The size of the gap has no impact on the amoun,

of memory that can be potentially shuffled. Therefore, the gap

size can be set to the amount of available memory. \o/hen the gap

aize, is zero, the text buffer ia full. Multiple text buffer
'1 ~ 1

,

management can be easily implemented by dividing the addreas

space into separate sections for each buffer. "

The Linked Line Scheme

The linkef line appro~c,h to memory managèment stores the buffer

as doubly/linked list of lines. Each l~ne includes a hèader with

the folIo ing fields:

, . char *next, *previous;
int charac~_count, allocated_length;
char *text _pointer;

..

,

. '
" .'

(

(

1

33 '
'\

The next and previous ,fields implement the doubly linked liste

The character-count field ~pecifies the number of characters in
l

the line. By allocating memory ln 16 byte chunks, fragmentation

ia redu,eed. The allocated_length field indicates how much memq.ry

ia actually allocated to the line. ''. It will be amuI tiple of 16,

if memory is allocated in 16 byte chunks. The text pointer field
)-

points to the memory location where the text is stored.

Line insertion is simply a matter of splicing the new line into

the list at the appropriate place. The line itself is stored as .
an arra,y of characters. Insertions and deletions of text

involves movement of characters after the point of modification.

This scheme is extrernely inefficient for large line lengths.

Multiple text buffer management can be implemented by

intertwining buffers. AlI allocation is done out of a common

pOOl so that lines from one buffer are mixed with other buffers

in physical memory. This approach maximizes the densi ty of text

and thus makes more efficient use of memory.

Comparison of the two techniques

The 1 inked scheme imposes significantly more star age overhead

th an the buffer gap scheme. A header is required for every line ,

pl us an average of 8 bytes is lost due to, fragmentation (if
• J

allocating in 16 byte blacks). However, large amounts of text

need not be moved •

o

o

o

-
34

In a virtual memory environment, the buffeJ;' gap scheme will

generally perforrn weIl. The,sequential organization implies a

high degree of locality of reference. Hence, nearby pages when

referenced Will probably be in memory. The major problem i5
,

still that a move of the enUre buffer implies that the entire

buffer must be swapped in and out.

The l!nked line scheme suffers from the problem of poor local! ty. ,

Linked lines can be allocated anywhere in memory so the dens.:l..ty ..
of nearbx lines can be very low. If an intertwining multiple

buffer scheme is used, severai buffers can potentially ahare a

page, thus effectively reducing the s~ze of a page. Hence, the

Iinked scheme does not perform as wèll as the gap scheme overall.

Memory Management Scheme fcn: a Proportional Edi tor

The size of a document that the editor can edit should be limited ,-

only by the amount of disk memory availabie. A virtual memory

scheme ia an implementation requirement for a proportional editor

té deal wi th long documents. Considering the overa11 efficiency
" .

and storage requirements, a buffer gap scheme ia mçre

appropriate for a proportional edi tor.

In a virtual memory environment, the memory management

abstraction ~sea a page swap file on a secondary storage device

(such as disk).
• E

The size - of the page swap file ls the size of

\,

•

(

\

c,

~"

35

virtual memory. At ini tialization, the memory management

abstraction divides aIl available memory into fixed siz'e pages

(IK or 2K). The pages are used to store the contents of the text

buffer and are swapped between physical memory and the page swap

file on a LRU (Least Recently Used) basis. An LRU scheme is one

where the page that was least recently accessed ls swapped out.
~

Swapping out a modified page requires the page to be physically

wri tten onte disk. Swapping out an unmodified page does net

require any ~ctivity.

, .
A modified LRU scheme, implemented in _the Mince text edi tor

.
[MIN8l], can be used in a proportional editor. In this scheme,

unmodified pages are swapped out first aince i t requires less
,

time. When the edi tor is idle (i. e. no keyboard input), the

memory management abstraction swaps out modified 'pages making
-

them, uomodi.f;led. When the user resumes edi ting, i t has less tlOrk"

to do.

3.2.4 Text ana File Structurea-
,

A text structure descri.bes the document in terms of lines,

paragraphs, and pages (hew' the document should look when printed.

Text formatt;ing languages such as' TEX, [KNUTH79] and troff .
[KERN79] use format commands embedded in the text to describe the

"

-li
•

/

o

36
~

output. For example, consider the following text with embedded
p

troff language commands:
-,

,.ft R

In \fIXanadu\fR did Kubhla Khan •..

The troff text formatting program would itaricize the name
. ,

"Xanadu", while the other words would "be printed in Roman.

'Al though TEX and troff are extremely powerful text formatting

languages, one still must print the document to realize the,

effects of the format commands.

The user of a proportion al editor need not be concerned with text
"

format commands, but rather shbuld be presented with the text as

it will be printed. One could conce1vably use a, language such as
. .

TEX or troff as the ed.itor' s internaI text structure, and hide

'the format commands from the user. However, i t would be

inefficient to scan mul ti-character TEX or troff format
~

commands, when they could ~e replaced by single byte command

codes.

c

If a text structure is defined for a proportional editor, a file .
conversion utili ty program should be implemented to enable

conversion between the editor's internaI text structure and other

text formatting languages such as TEX and troff.

..

- -.

c

37

There are two approaches to representing the text internally. Irr

both schemes, the text is stored as a contiguous array of

characters with codes indicating margins, line spacing, end of

paragraphs, and font changes.

The first approach is to store the text paginated with line and ..
p~ge breaks codes embedded in the texte The other approach is to

make pagination and line bre?king decisions dynamically as the

text is displayed or printed.

The former approach is more efficient since the text does n~t

require repagination if it has,not been modified. However, the

proportional editor must perform more housekeeping to keep track
\

of modifications to determine which portions df the text require

repagination. An alternative ~; save the text on disk without

end of line' and -end of page' codes. At ini tializatien the edi tor

can paginate the text and insert these codes as the text is read

into virtu~l memory.

pagination dynamically.

,

During text entry, the editer performs

Word processors aiffer from conventional text editors in that the"

user need not be concerned with end of lines or page breaks. A

word processor wraps a wor~ that doea not fit on a line cnte the

next line. The user need only type a carriage return at the end

of a paragraph. Page breaks may be specified by the user or

" "

r

.\

1

1

o

38

determined automatically by the word processor' s ,pagination

li • softwar'e. Word processing software stores page format

information such as margin and tab setting,' page size, and

character pi tch, within the texte Similarly a proportional

edi tor must store codes indicating font changes and interword
?
spaces (spaces can vary in width wi th proportional text) in

addition to the regular page format information.

The text is stored as' an array of ch':lracters in a file wi th

embedded codes (invisib~e to the user) that describes i ta output"

format. Given that ASCII codes 33 to 127 are used for display

characters, the remainder (0-32 and 128-255) can be uaed for

format codes. A proportional editor uses the character code (33

to 127) ta index a font table that containe information such as

(

c

the character width, ascent, and descente

d1vided 1nto three basic categori~

l - Page format codes
.

2 - Paragraph format codes

3 - Character font and attribute codes

39

Format codes can be

Page format 'codes define page length and width; top, bottom,

left, and right margins; tab. positions; and headera and footera.

These codes appear at the beginning of a document and at a

change.

Paragraph format codes define temporary margina (indents), tabs,
r

vertical spacing, and whether automatic justification. or

centering of text ia te be used.

Character font attribute codes define the. font, its size, and

a7tributea such as underline or reverse print. In a monospaced

wo~ processing system, spaces are fixed in width. In a

proport~ editing system, they can vary in width. Theréfore,

an interword space code is required te define the width (in

points) of a space.
Il

•

•

o

40

File Structures

Two cômmon approaches to structuring text files are adopted by
-. -

word processing systems: page oriented and document èriented file

structures.

/

A document oriented file structure is simply a sequential file

where page breaks are rnerely markers (format codes) wi thin the

file. A document oriented text processing system allows the user

to input text in a fluid scrolling environment, where pages do

not act as barriers.

.
A page-oriented file structure is composed of pages stored in

individual sequential files which collectively rnake up the text.

The user is limited ~o a fixed number of lines of text that can

be entered in a page. When this limit is reached, the user must

close the p~ge (close the file) and reopen a new one.

or iented system is rationalized by the notion that word

processing operators th;ink of material in terms of pages, and lt

is convenient to aceess a given page by a number, or to flip

through a document page by page.

A memory management scheme for a page or iented system ls

@ relatively easy ta implement since an entire page can be retained

in main memory. However,' 'there ,are significant penal tiea

assaciated with this approach. Any global file operation auch aa

' .

(

(

"', ,r"

41

pagination or' se arch and replace requires significantl;y more

input/output, since every page has to be opened and closed.

Insertion of text in a full page poses a problem and the

operator ilS forced to repaginate the entire text.' The fluid

ed! ting environment is lost if a paragraph crosses page

boundaries.

Since "ease of use" is one of the design --goals, a document

oriented file structure is môre sui table for a proportional

editor designed for editing long documents.

3.2.5
\

Text Formatting
-

A text formatting program accepts as input, a file created with a

text editor containing text and fo~at commande, and produces a

formatted output document. A true "what you see is what you get"

proport~onal editor, must perform the text formatting functions

in real time, and treat the display as an output page. This

section will examine many of the' key features of text formatting

such as word wrap, pagination, justification, and hyphenation,

and diseuse the implementation of real-time text formatting

--within a text editor.

The primary task of a text formatting program is to divide

paragraphs into 1ines, respecting. 1eft and right margins, and to

paginate the lines into pages,.respscting top and bottom margins.

o

'" .

42
•

The general approach taken to dlvide paragraphe into 11nee ls to

make breaking decisions one 1ine at a time. This approach to

line breaking is described by Barnett [BARN65] as follows.

1

1. Assign a minimum and maximum width to interword spaces,
and the normal width.

2. Append words to the current 1 ine, aesuming normal
spacing, until reaching a word that does not
fit.

3. Break the line after this word if it is possible to do
sa wi thout compressing the spaces ta less
than the given minimum. ~.

4. Break the line before this word if it is possible to do
sa without expanding the spaces greater than
the given maximum.

5... Otherwise hyphena:te the word,- placing as much of the "
ward as possi b 1 e .6n ; -the current 1 ine • .

If a suitable hyphenation point cannat he found,.the penalty will

he a line whose interword spaces e~ceeds the given maximum. The
.

process of distrihuting spaces ln between to produce an even

right margin is called justification. The process indicated in
e

step 4 of the a1gorithm ia called word wrapping. This method

of line breaking is often referred t~ a~ the first-fit m~thod.

Another approach to the line breaking problem is to consider the
~

paragraph aE a whole in making 1ine breaking. decisions. / Knuth

devised a technique foZ; line breaking, b.Bsed on t,hree simple
1(' 0

pd.mitive concepts called boxes f glue, and, penalties, that

.. .

c

(

43

determines optimum breakpoints while considering the paragraph as

a whole [KNUTH8l]. Knuth.' s algori thm minimizes the use of

hyphens and tries to keep interword spaees to their normal width,

thus improving the overall aesthetics of the printed page.

Knuth's 1ine breaking algorithm, the optimum fit method, is

extreme1y complex sinee it is designed to handle a wide variety
1

of/situations that can arise in typesetting. Knuth does present
-'-1 , "

a eonsiderably simpler procedure, the sub-optimum fit method,
,

suitable for word proeessors. However, the sub~optimum fit method,

still relie~ on a paragraph look-ahead. It is not suitable for a

word proeessor 'cs text input operation, sinee lines must be

broken as text is enteFed. Furthermore, the processing involved
,,-

in :fïnding sui table line breaks, after the user has entered a

paragraph, will, introduce noticeable delays (lf tpe paragraph is

long) that May distract the user.

,The rules for determining a sui table hyphen point in a word

(hyphenation) is ,too lengthy to mention in this paper. A
!

hyphena,tion algorithm is given by Knuth in Appendix H of TEX and

" Metafont, New Directions in Typesetting [KNUTH79].

:>
As jus~ifieation deals with the problem of breaking paragraphs

into 11neé, ~agination deals w~th the prob1em of breaking 1ines

,

o

44

into pages. The simple rule for pagination is as followa:

1
1)

... 2)

~ 3)

'4)

Append a line to the page

If an "end_of_page", code is encountered break the, page .

If the line will not fit in the paginate window, break
the page before the line.

Go to step 1

An "end_of_page" marker indicates a forced page break specified

by the user. The paginate window, as defined earlier, is the

area betweén the top and bottont margina. The above rule however,

does not deal with widow or orphan lines. More specificallY,' the

rule ,does not prevent a page ending with the first line of a

paragraph, or starting a new page with a the last line of a

paragraph. It also does not guarantee even length'pages. Since

vertical spacing is the amount of gap between lines, the problem

amounts to shrinking or ,expanaing the gap to produce even length

pages. For example, the term "9 on Il'' refeFs to 9 point text

having baselines Il pOints apart. Typesetting systems often use

maximum stretch and minimum shrink units to adjust the normal

vertical spacing between lines to produce-even length pages.

\, "

. -

\

•

"

,,, 45

4(: The following is a pagination algor1t~ with widow control:

Let Vmin, Vrnax, Vnorm be minimum, maximum, and normal vertical \
spacing in points.

Le,t Vtotal be a ru'nning count of the vertical spacing for aIl
appended lines in the page in points. ,-

Let W be the paginate window size in points.

1 Set Vtotal to zero.

2 - Append a line to the page using Vnorm spa~ing and
let Vtotal = Vtotal + Vnorm.

3 - If an end of page cOde,ia encountered, break the
page and go to step 1.

4 - If Vtotal ia less than W go to step 2.

5 - Mark the beginning of the current paragraph and append
linea tO,the page until the end of the paragraphe

6 - Let Wgap be the vertical spacing in points between the
the beginning of the marked paragraph and the end of
the paginate window.

7 - Let pn be the number of lines in the paragraph and
'Pg the number of lines in Wgap.

}

8 - If pn or Pg is equal to l, break before the mark and increase
the vertical spacing without exceeding Vmax and go to
step 1.

9 -'If Pn is equal to Pg, then break after the paragraph
,and go to step 1.

10- If Pn ia equal to 2 or 3, then break after the end of
paragraph if it ia possible to do so by adjuating the

~ vertical spacing without exceeding Vmin. Otherwiae,
break before the paragraph and adjust the vertical
spacing wi thout exceeding Vrnax. Go ~o step 1."

11- If (pn - Pg) ls greater than 1, then .. break after Pg
lines of text from the mark. Otherwise, break after

,Pn - 2 lines of texte Adjust th'ë vertical spacing
without exceedin~ Vmax and go to step 1.

o

o

46

In steps 1 through 4, 1ines are appended to the page until a page

break is encountered or the paginate window is full. In the

latter case, the algori thm looks ahead to the end of the last

paragraph in the page. Step 8 ensures that a single line

paragraph is moved to the top of the next page. Step 9 dea-ls

wi th the case where the last paragraph fi ts perfectly in the

paginate window.

Step Hf\ensures that a 2 or 3 line paragraph is never split

between pages. If Vmax = Vmin = Vnorm (i. e • no expanding or

shrinking), the page bot~om margin will increase by 3 * Vnorm - 1

points in the worst case.

\

Step 11 ensures that at least two lines of the paragraph will he

on the bottom of the current page or at the top of the next page.

The implementation of justification and pagination in a

proportional editor requires the fOllowing considerations:

~ - The line breaking rule is in effect when the editor la
in "input mode", and the user is entering ,
text.

2 - The edi tor must wrap 111nes as text' ia entered.

3 - MdfUfication of a line in a paragraph, requir,s
reformatting of the paragraph from the
previous line to the end of paragraph.

. -

',Ci
~

" .
1

v.-
o

o .. '

:< .. '

.. '\~

: .,1'

"

~.; .
Il~' ' , ."

C ..
. "

4

o

47

- The formatting process must be carried (out wi thout
introducing noticeable delays that wo~
interfere with the operator's typing. <

Line breaking deeisions are made on a line by line basis during

text input using an adaptation of Barnett' s algorithme Since

hyphenation is a fairly complex proeess, i t ia omi tted in the

real time 1 ine breaking procedures to avoid introdueing

Intolerable delays at the end of eaeh line. When a paragraph has

been modified (i. e. a word has been deleted), the reformatting of i

. the paragraph is initiate'd manually 1 by the operator or

automa~ieally by the proportional edi tor when the buffer eursor

ia no longer in the modified paragraphe With this approach, thé

edi tor will not reformat a paragraph every time a eharacter ia

inserted, deleted, or overtyped in' a paragraphe

The pagination algorithm presented is suitable 'for a proportional

edi tor sinee a delay is introduced only at the end of a pag~, ~

when it searches for a suitable break point. This is pcceptable

in a word processing environment, since operators have a natural

tendency to pause after typing an entire page of text .

. Hyphenation must be implemented as an edi tor eCtmmand ini tiated

manual.ly by the user on a paragraph basis, sinee it involves a

considerable amount of processing. The proportional editor will

breakl lines wi thout hyphenation, and user the can reformat

paragraphs with hyphenation to reduce excessive interword spaces.

o

o
, ,

f

,>

0

, '
(

48

,The line breaking and pagination procedures of a pr~portional /

adi ~.or, will continuously modify the text buffer; by inserting end
_ co • \

of line codes, interword spaces, end of page, codes, and vertical , "

space codes. In essence, the text i8 piped through t~ese

proçedures into the text buffer as text is input or modified. ln

~ buffer' gap memory maI}agement scheme,
~

the insertion and

deletion of format codes will not involve movement" of large

amounts of memory, since these operations will generally be

loc:alized wi thin a page of text. When a text f i l~ ls opened for

editing, the text formatter paginates the text, while reading it
1 "

into '{irtual memory. At the same time, an" end' 'of page". mark
'f'

. table is created to keep track of p~ge boundaries, in the text

buffer.

3.2.6 Represepting Fonts •

A mul ti-font display priented" proportional text editor' can
l "

theoretically dis~lay text in a seemingly endless variety of

,fonts and .font sizes. This gect:f.pn discusses the internaI

represent'ation of fonts.

Since the resolution of a graphics dispiay screen is much coarsef

than a laser print,er (72 versus. 300 0 dots per inch), a
,

proportional e<;li tor 'must use two fonts: a screen font and a

printer font. Sqaling screeri and printer fonts from a single

,master font isn' t practical due, to the, s~gnificant difference -in

" 1

.' "

.
. '

..

(
<!.

--. ---...,- ~-4'/ ..

49

resolution. With two sets of fonts for each 9haracter style: a

proportional editor must ensure that when a font is selected, the

printer counterpart 1s ava1labl~ for printing.

There are two approaches to representing fonts. The first is to

store each character in particular size and type face r as a set of

bit maps. The font designer must .draw each character, dot by

dot, wi th a unique drawing made for each character in each point

size. Moreover, separate bitmaps are required for printing in
'-'

landscape and portrait' orienta,tions. "The display of' a bitmap

character involves transferring e~ch scan line of, character from

a character bi t map table, to the display screen' s memory.

",!,he other approach is to store each character as a mathematically

expressed outline, that can be scaled to create a range of type

SiZe\. Postscript is emerging as a standard page description
-

language [ADOB84] • Using postscr;ipt, a mas ter Ifont describing

the outline of each character, can be rotated or scaled to any

size. The outline is filled to create the character. The

description of each character may be parameterized so that the

character style may be al tered, simply by changing a' few

variables. Postscript is clearly a more powerful and flexible

approach to represent1ng fonts. However, i t doea suffer a severe

drawback: processing time is required to construct the bi t maps

for each char acter . Hence, i t is impractical for screen font 1 .

o

50

applications. Furthermore, scalfng to smaller and smaller point

sizes would resul t in the char~~r becoming more and more

illeg:Lble, due to the coa'rse, resolution of graphie display

screens. Postscript is implemented primarily in laser printers

and typesetting equipment.

The font table structure described ia an adaptation of the

Berkley font library font. table structure [UNIX79]. It consists

o,f a dispatch table of 128.entries describing the char acter , and

. a bitmap for the actual font.

struct font dispatch
unsigned
char
char
char
char
char
char

}

(
bit table offset;
byte count;
ascent;
descent;
left;
right;
width;

The "bit table offset" is an offsot into the bitmap table where
,

the data for the character begins. The "byte_count" i8 the

number of bytes in the bitmap table for the character. This

field is set to zero if the character does not exist in the

table. The char acter contains "ascent" + "descent" rows of data

with' "1eft" + "right" bits, rounded up to the next byte, in the

bit map table. T,he "left" ahd "right" fields also indicated the

char acter 's kern. The "width" field indièates the position of

the next character, origin on the base line.

..

(

(

(

51

~ This structure can also be used to store icons. Icons are simply

bit images of objects. Since, icons are normally used1by editors

in the user interface and not printed with the text, only screen

icon bit map tables are required.

The structure "font tables" is an array indexed by "font number",

that points to the font tables.

struct font tables
char
char
char
char

struct font_dispatch
)

{
font name[12];
activè;
file name[30];
*bit -map;
*font_info;

The "font name" field contains the name assigned to the font.

The "active" field when non-zero, indicates that the font is

currently in memory. Otherwise it is on a direct access stqrage

device accessible by the name contained in the field "file name".

For memory resident fonts, "bit_map" is' a pointer to the font bit

map and "font info" points to the descriptor table.

,
For normal operation, the proportional' edi tor should keep

resident in memory, font tables for Roman, i talics, and bold

character styles, in 8, 10 or 12, and 14 point sizes. Other

character styles and point sizes'can be 10aded as required. This

scheme suffers only,if a variety of character styles in,variety

of points'sizes (other than the ones mentioned above) is used in

'f

Cl

o

52

a slngle page. in the r~9lm of word proeesslng, this ls highly

unlijelY to occur.
J .,4'

Charac:ter attributes such as underline, and reverse print are

implemented without th~ use of separate tables. Underlinlng ls

implemented by setting a row of pixels three or four scan lines
,

bel.Gw the base line of the character to be underllned. The

"width" field also indicates the width of the underline. With

proportional text, underline widths vary on a eharacter basis.
'{

Reverse characters are simply the ones complements of the

character's bit maps.

3.2.7 Display Management

The display management function of a proportional edi tor ls

responsible for displaying text as it. will appear on output. It

must perfor~ this function as efficiently as possible so that it

does not interfere wi th text entry and edi ting operations.

During basic editing, the contents of the buffer will change only

slightly. Hence, only a portion of the screen needs to be

updated to reflect the changes. This process ls called

incremental redisplay [MIN81].

J

Our discussion of the incremental redisplay process, assumes a
1

system where the central proeessor addresses· a memory mapped
~

bit-mapped graphlcs display. Each byte of graphies memory maps

a _

(

(

53

to, B pixels on the display. A pixel is turned on by setting a

bit ln a byte of graphics memory, and turned off by resetting it.

The display of proportional text on a graphics display l="aises,

numerous design concerns. Since characters of a proportional

font vary in width, a basic editing operation such as over-typing

a character in a word: may involve movement of'rectangular arrays

of pixels to accommodate the overtyped character. Horizontal and
o

vertical scrolling operations will also involve movement of large

amounts of memory. The low level display routines of a

proportional e'di tor requires that the processor be capable of

transferring small rectangular pixel arrays quickly to give

reasonable 'response time. Howeyer, general purpose processors

are not particularly adept at performing operations on

rectangular arrays of pixels. Since graphies memory is normally

addressed on byte (8 pixels) or word (8, 16, or 32 pixels)

boundaries, substantial overhead is often incurred shifting bits

between registers when pixel arrays cross these boundaries. An
~

incremental redisplay process is a desirable feature in a

proportional editer, since ~t can petentially reduce the amount

of movement of pixel arrays.

The Graphies Display Abstraction

Graphics display hardware will vary from various manufacturers of

personal computers. A set of routines must therefore be defined

J

-

o

that isolate the differenees.

(
/ 54

The propor~ adi te; , s
J

redisplay software will interface te the display through these

routines.

The resolution of most personal computer' s adVanced graphies
, ,

hardware is typic.ally 640 x 400 pixels. This is c1ear1y

inadequate for displaying an entire pag~ of, ~ext. A

proportional edi tor must dea1 wi th up to lega1 siz.e pages (8.5 x

14 inehes) in both portrait and landscape or'ientations. The

display of a 1ega1 size page in pertra~t orientation requires a

display resolution of 612 columns by 1008 rows, sinee 1 pixel

maps to 1 point (1/72"). In landscape orientation, the

requirement is a resolution of 1008 co1umns by 612 rows.

The solution is te interface the editer's redisp1ay software tq a

(

/,
55

virtual bitmap sere en . The physieal display then aets as a
'"

window into the virtual display, as illustrated below •-

VIRTUAL PAGE

This is an example of text print­
ed on an output page in landseape
orientation.

P.HYSICAL DISPLAY

This is an example
ed on an output pa
orientation. .

Figure 3-2 Windowing

The remainder of the page is viewed by the user by panning the

physical display horizontally or vertically. Coneeptually, the

physical display ean be divided into several windows enabling the

editor to display multiple text buffer or different sections of

the same text buffer simultaneously.

From an,implementation standpoint, cases where the output page is

wider than the display- -window, the graphies display abstraction

must allocated a separa te block of memory as a virtual bit-mapped

---_ ---------------~----~~- -

o

o

o

56

display memory. Pixel arrays are copied from the virtual

bi t-mapped display memory to the physical display memory as the

user pans horizontally over the page.

When displaying proportional text, it is possible for characters

. to ,cross window boundaries. It would be impractical to

implement routines to display vertically clipped characiAers.
-

Horizontal clipping is .easily implemented sinee character bit
cr

maps are copied to the display memory on a scan line bas~s. The ~

size of the virtual bit map display, in bytes, is calculated as
~

follows:

Window_height * (paper_width * 9)

The variable Window_height is the number of sean lines in the

physical display, and paper_width is the width of the paper in

inches.

0't'..,
Horizontal scrolling is accomplished by~)ng a rectangular

-
pixel array, the height of the display window, from the virtual

screen buffer to the physical display window. Vertical scrolling

(upward) is accomplished by moving pixel arrays from the second

to last scan line of the display window to the first and second
\ ,

to last scan line of the displ ay window. For efficiency

considerations, horizontal scrolling is perfo~ed in multiples of

1

57

8 pixel units (byte boundary). Vertical scrolling is performed

in vertical spacing units (the distance between two baselines).

The implementati9n.of display windows requires the following data

structure:

s1;ruct window {
int top x,

top-y,
bot-x,
bot=y,
pen_x,
pen y;

char *VSbitmap;
int VS cols,

VS-rows,
VS-pen x,
VS-pen-y;

char font num,
font - ps,
hspace_val,
vspace val,
fg col-;
rv=flag,
rv col,
u(::flag;

}

/* screen origin */

/* pen (cursor) position */

/* virtual screen bit map */

/* font number */
/* font point size */
/* space width */
/* vertical spacing */
/* foreground colour */
/* reverse flag */
/* shading level */

. /* underline flag */ ~

The absolute top left and bottom right coordinates of the window

are specified by top_x, top_y, and bot_x, bot_y respectively.

For efficiency; top_x and' bot_x are multiples of 8 (i.e. on a

byte boundary). Characters are displayed relative to a point

called the character origin. A pen is a pointer in the window to

the character origin. It is also called a window cursor. Its
~

relative position in the window is spe9ified by pen_x and pen_y.

The pointer to the virtual screen buffer and i ts size is
\'

o

o

58

specified by VSbitmap, VS_cols, and VS rows respectively. The

~, variable fg_col indicates whether characters are to be printed in
r

a black or white foreground colour. The reverse fla~ indicates

whether characte:çs are :to be displayed in reverse video.

Automatic underlining is specified by setting ul_flag.

The redisplay software interfaces ta the display abstraction'

through a set of display output procedures.

bot_y,bitmap,columns,rows,fg_cOI);

close_window(window_num);

set_font(window_num,font~num,font_ps);

set_spacing(window_n~m,hspace,vspace);

set_attributes(window_num, rv_flag, ry_cOl, ul_flag).;

move_pen(window_num,xrelative,yrelative);

The procedure open_window returns a positive window number if it

ls able to open a window. The first four parameters to thls

procedure specify the windows origin on the physical display.

The next parameter ls a pointer to the virtual bit map screen.

The remaining parameters specify the resolution of the virtual

screen and the foreground colour. The procedure close window ,

& -

\
\

59

- erases- the window on the display. - For simpliei ty, we will assume

that windows cannot overlap on the display.

The next three pr0cedures set text attributes in the ,window for

the charaeter output procedures. The procedure set_pen sets the

absolute position of the pen in the window. Relative pen' motion

is specif.i:ed by move_pen',

Window clearing; scrolling, and character output operations are

performed by the following routines:

WClear(window_nurn) ;

Wcleol (wi,ndow _ num) ;

Wcleow (window _ num) ;

Wscroll up(window num,sean_lines):

Wscro11_dn(window_num, scan_1ines);

Wscroll_rt(window_num, columnfS);

Wscroll_lf(window_num,cOlumns);

disp_char(windew_num, char_code);

d1sp _ text (window _ num, textptr, textlen) ;

•

/* elear window * /

/* elear to

/*
end of 11ne *1
clear to end
of window */

-The routine disp_char disp1ays the specified'-character by

indexing the w1ndow's current font table with char_code~ The pen

ls a~tomatically meved te the next character orlg1n. The next

routine displays a text string. The inter-word space for the

text ls specified by the set_spacing' procedure.

,
\----

..

.
m

o

o ..

l

o

60
!

A Redisplay Scheme For A Proportional Editor

As discussed earlier, the proportional edi tor stores text in a

buffer as a contiguous array of characters with embedded control

codes indicating end of, lines, end of paragraphs, end of page,

page formats, and font changes. The text formatter i9

responsible for storing text in the buffet in a representation bf
~

the final output page. When changes are made to a line, the text

format:ter reformats the paragraph containing the line using

pagination and line breaking rules. The memory Jl\anagement:

software must communicate with the redisplay software so that the-
'/

display window accurateIy, represents the output page. , .

In general, it will not be possible to fit the .ent!re output page

in the displ ay window. However, the redisplay software' can .

assume that virtual screen buffer can accommodate the wi"dth, of
-

the output page. The pen (display cursor) in the dieplay wi~dow

corresponds ta the buffer curso~ in the text buffer. It visually

indicates the point where modifications to the text buffer may

take place.

The framer [MIN81] is the portion of red.isplay software that

decides what will appear on the display wiijdow. The framer keeps

a top_of_window and bottom_of_windQw marks (pointera into the

text buffer).' While the buffer cursor stay~ within these 'marks

the pen will remaln on the screen.

\
\

• f ,

(

C·

. \ " ,
, n

,

1

r-
~

':'
I-

i
\
(';'

~,

. Ci, t, ,
~

)

\

c'

61

As discussed earlier, the text formatting software rnaintains
\

end_of_page marks indicating the location of page breaks. We

will assume that the display window cannot cross page boundaries.

More specifica11y, the display window cannot display the 1ast

1ine(s) of one page and the fir9t 1ine(9) of the next page.,

J

t'1hen t_he buffer cursor is posi,t:ioned outside the framer' s window

marks, the framer must recentre the buffer_cursor (pen) on the

screen. If the buffer cursor is in the current page, the framer

moves the window rpaI:ks up or down,' depending on whether the
/

buffer cursor is beforE> the top_of_window or be10w the

bottom_of_window mark, in increments of the window height uqtil
,

the buffer cUFsor i9 inside the window marks. If :the

buffer. cursor- i8 posi tioned outslde the current page, the
, ,

top_of_page marks are used ta locate the page. The framer then

starts at the top of the new page, moving the wind~w marks down

in increments of the window height, until the buffer cursor is

inside the window marks .

\
"

. "

,1

,"

~~f

" .

o

. 62

The rtlemory management software~ communicates with the ',redisplsy,

software through sorne key variables and a scre~n data structure

'described below.

struct screen line {
char *start of line,

*start -of-mod,
modifIed:- 0

}

r.empty fI ag ,
vertical spacing;

~ ,

o •

char force_redisplay, page_modifieq, cursor_motioni

Eve,ry line in the dj splay window is assigned a screen line

record. The start_of_line field is a pointer to the beginning of
r

the line in the text buffer. If the' line ha~ been modified, the

modified field is set and the start Jof mod field indicates the

,point in the 1ine where the modification occurred. If the line

is blank (Le. the ,line contains only an end_ùf_line code), the
- ,

:rhe vertical_spac~ng field ·indicates the

vertical height of the line.

J

The framer is called' first during, the redisplay process. If the

buffer cursor is ou~side the top and bottom display window marks,

it will set the force_redisplay flag,
"(J

and re-ini tialize the

screen 1 ine records. The- redisplay process examines the

If i t is set, a complete w1ndow redisplay
(

, ,

-

(

63

The page_modified f1ag indicates whether the buffer has been

modified within the top_of_window and bottom_of-window marks.

The cursor motion f1ag indicates whether the buffer_cursor _~as

moved or not. The redisplay process is thus summarized belOw:

Framer(); /* call'framer */ ~

if (force. redisplay = TRUE) {
redIsplay(top of window,bottom of window);
return(); - - - -

}
if (page modified = TRUE) {

check screen line(); . - -
})

if (cursor motion = TRUE) {
move:=pen_proc();

}

retUl;n();
"

If the page_modified flag is set, the screen 1ine records are"

checked to determine which l1nes have been modified. When a

modified line is encountered, the line is redisplayed from the

point of modification to the end of the line. When edi ting

'proportional text, any change will affect at 1east" the remainder

of the 1ine. If the cursor motion flag is set, the pen is moved

to the new location in the display window.

The incremental redisplay process runs as a background task in

the proportional edi ting systElm. System locks are 'used during

cri tics1 sections (i. e. when the ~creen 1ine rf;'cords are

----------------------------------~------~~-----

'.

'.
,

64

o mOdified) of the red1sp~ay process to prevent the process ~om

being pre-empted prematurely.

\
"

"

. 1

O· < 1

•

. 0

c

(

Chapter IV

, SUIIIIII8ry

65

DiBplay orianted proportional text aditors will, have a tremendous

impact in the office ward processing environment. This thesis

haB examined sorne of the basic design considerations f~r a

proportional text editor.

The basic proportional edi tor can he expanded ta include features

common to many word processing systems. The features incl':lde,

automatic paragraph numbering, table of contents gener~tian,

footnotes, spelling verification, and merging of records with a

standard forro. Text and graphies can also be intermixed in a

document and displayed. The graphics image is stored as a bit

map in an external file. The edi tor can treat the bit image as

an external font and read it into the display memory when it i6

referenced.

The table driven command Interpreter can be adapted to an icon

basad user interface. Instead of diaplaying text prompts and 1

1 checking for key input, the system can display icons and read

input from a graphics input device such as a mouae. However,

transition ta this type of interface would :lntroduce

---sign:lficantly more processing overhead.

, .

)

o

66

"
Although today's 'personal computers are equipped with relatively

fast central processors and ample main memory, they are not

efficient at bit string ~anipulation. The advent of graphies

co-processors designed to deal with rectangular pixel arrays and

~
,the display of proportional text, will have a significant impact

in text processing applications.

1
·f

r

r

-

(;

(

67

REFERENCES

(ADOB84] Adobe Systems Postscri.pt User's Manual, Adobe Systems
Inc., (1984).

[AND79] Owen Theodore Anderson, The design and Implementation
of a bisplay Oriented Edi tor Wri ting System. S .B. Thesis M. I. T.,
(January 1979).

[BARN65] Michael P. Barnett, Computer Typesetting: Experiments
and Prospects, M.I.T. Press, Cambridge Mass., (1965).

[CAN85] Canon LBP-8 series Laser Printer Sub-system Manual,
Revision 0, Canon RY8-8303-000, (Dec 1985).

[COR84] Corona Personal Computer Technlcal Reference Manual,
Corona Data System, 700 186, (1984).

[HAN81] Hasse Hansson and Jorgen Steensgaard-Madsen, Document
Prepara tion Systems, Software Practice and Experience, Vol. II,
983-997, (1981).

[KERN79] Brian W. Kernighan, A Troff Tutorial, Bell
Laboratories, Prentice-Hall Inc., (1979).

[KNUTH81] Don-ald E. Knuth and Michael F. Plass, Breaking
Paragraphs into Lines, Software Practice and Experience, Vol II,
1119-1184, (1981).

[KNUTH79] Donald E. Knuth, TEX and METAFONT New Directions in
Typesetting, Digital Press ISBN 0-932376-02-9, (1979).

[MIC83]
Manual,

Micom 3000 Series Word Processing Systems Reference
Philips Information systems, 5107 992 06711, (1983).

[MIN81]
(1981) .

Mince InternaI Documentation, Mark of the Unicorn,

[STRE84] Kevin Strehlo, Environmental Software: Opening New
Windows On Your Work, Personal Computing (Feb 84).

[UNIX79] Unix Programmer's Manual, VFONT(5), (Feb 26, 1979)

[WARN81] James R.
Cqmputer Graphies
Applications, (1981).

Warner, Principles of Deviee Independent
Software, IEEE Computer Graphies and

[XER85] Xerox Viewpoint and VP Series Product Descriptions,
Xerox Corporation, Version 1.0, (July 1985).

