
1

An Analysis of
Iterative-Deepening-A *

Brian Glen Patrick
School of Computer Science

McGill University
Montreal, Canada

N ovember 1991

A Thesis
Submitted to the Faculty of Graduate Studies and Research

In partial fulfillment of the requirements of the degree of
Doctor of Philosophy

Copyright © 1991 by Brian Glen Patrick

Abstract

Iterative-deepening-A * (IDA *) is an admissible heuristic search algorithm

which is optimal with respect to space complexity and the \.-ost of solution

found over the class of admissible best-first tree search algorithms. However,

the optimality of IDA * with respect. to time complexity is subj(:ct to a number

of conditions. It is the focus of this dissertation to identify the conditions

that give rise to the worst case performance of IDA * and to delineate a time

complexity spectrum between its optimal and worst case performance. In ad­

dition, the expected case performance of IDA * is derived with respect to a

probabilu.,tic model of computation that assumes the differential edge costs

arc independelltly and identically distriûuted as random non-negative inte­

gers. Under this assumption, IDA * exhibits asymptotic optimal performance

for any integer probability distribution that satisfies a couple of weak condi­

tions. Finally, to re.:Jress the worst case phenomenon of expanding only a few

(1ddition~.l nodeb over several iterations, a new admissible se arch algonthm,

called Hinary IDA * (BIDA *), Îs presented and compared against the perfor­

mance of IDA * on the Euclidean traveling salesperson problem. It is shown in

a small empirical study that BIDA * is a significant improvement over IDA *
as both the tour 3ize and the precision of the edge costs increase.

1

1

..

Résumé

Iterative-deepening-A * (IDA *) est un algorit.hme heuristique admis"ihl(' dt'

recherche ql'i, parmi la c1as5c des algorithmps admissibl('H de rf'dH'J'(Il('

d'arborescence meilleur d'abord, est optimal en ce qui a trétit iL la complexité

en taille et au coût de calcul de la soit tion. Cq){'nddnt, l'opLlIlIaht(', d(' la

complexité en temps de IDA * est sll]!'tte à de nOlnbn'u~('s contraintf's LI' l,ut

de la présente thèse est de prc'ciser sous quelles corl(hti()11~ If' pirt' d('1'1 caH t'!'>t

atteint et de spécifier quelle est 1<1. plage de variation de la comp!f'xlt(; ('Il l.elllJ>!'>

de l'algorithme entre le meilleur et le pire des ca.s Df' plus, la (Ompl('xll(', ('Il

moyennE' de IDA * est obtenue dans If' cas où est faite l'bypot IIt'H(' que 1(·:-, «)ût"

différentiels sont donnés par des entiers positif~ indépf'lIdanb ak'at Oirt'lll<'lIt

et identiquement distflbués Sous cette hypotht·~(·, IDA" est a"yrnptotiqlH'o

ment optimal, et ce pour toute distributIOn de probahilitl~ SOIHllihf'S (!fi pll1<; ,i

quelques contraintes supplémentaires relative'nent faibll'H. Fmdl!'llwllt, dan!'>

le but de corriger dans le pire des cas le prohlènw de J'expallsioIl df' !'(,IlI('Jl}(,lll.

un petit nombre de sommets sur p)usieurs itérations, un nouvd algorit.llIll(· d('

recherche. baptisé Binary !DA* (BIDI*), est introdUIt. L'('fficacité d('~ d('ux

algorithmes (IDA * et BIDA *) est comparée en les testant succeSSiVCIlH'llt :>1If

le problème du voyageur de commerce Euclidien. En augmentant 1(' nombre

de villes et la précision de calcul des distances, on trouve ernpiriquern('llt quI'

BIDA * est un algorithme plus efficace que IDA *.

translaied by Dr. Jocelyn Dcsbten ...

Il

r-----------------------------

1

,.

Statement of Originality

Although ail work herein that is not otherwise credited represents an origi­

nal and distinct contribution to the study of heuristic search, the following

individuals nonetheless deserve special recognition:

• The worst ca,>e analysis of Chapter 5 is based in large part on the paper

entitled "An upper bound on the time complexity of iterative-deepening­

A *" [35] which was w-authored with the aid of Mohammed Almulla and

Monroe M. Newhorn .

• The analytical development of Chapter 6 was suggested by Dr. Luc De­

vroyc of McGiIJ UnIversity who demonstrated the use of generating func­

tions in t L,f' derivation of the asymptotic expected case analysis of IDA *.

Notwithstanding t ne contributions of those individuals mentioned above, any

ff'maining oversights and erfors are the sole responsihility of the author.

111

1

"

Acknowledgements

The pursuit of research requires the continued support of many p<,opl(· aud

organizations over a number of years. 1 gratefully a(knowledgl' t.his support

and extend my deep appreciat ion tü:

• The Natural Sciences and Engineering Rest'arch Council of Canada which

granted me the financial means to undertake graduate studil's,

• The Collègt" Militaire Royal de St. Jean which g('O('rvusly provid('d dll'

computing resources for the preparation of rny dls~wrtatIOlI, and

• My supervisor. Dr. Monroe M. NewDorn, who is owed a ~in(,t'rf' t.hallk­

you for his guidance and concern.

Yet, any success that 1 enjoy has always been a t.estam<,nt to a wCHldt'rflll

family who weathered the storms and the doldrum'l of ff'~<,ar('h with pat.it·IH ('

and understanding. lt is to my father and rnother and my two hrotflt'rs, Kt'vill

and Sean, that 1 dedicatc this work with ail my low'.

IV

1

Contents

1 Heuristic Search 1
1.1 Introduction 1
1.2 Optimal Path Problem 2
1.:3 Best- First Search ... 3

1.3.1 Description .. 3
1.3.2 Disadvantages . 4

1.4 Itcrat ivf'- Deepening-A * 6
1..1 Thesis Outline . 7

2 The A'" Aigorithm 9
2.1 DescriptIOn of A· 9

2.1.1 Evaluation Function 9
2.1.2 Adrnissibility 10
2.1.3 Conditions of Expansion 11

2.2 Mcasurcs of Performance . 13
2.2.1 Node Complexity · .. 13
2.2.2 Time Complexity · .. 14
2.2.3 Space Complexity and Inadmissibility . 17

2.3 Concluding Remarks . . · 18

3 Iterative-Deepening-A ... 19
3.1 Description of IDA * 19

3.1.1 Adrnis&i bility · .. 22
3.1.2 Conditions of Expansion 23
3.1.3 Property of Acyclicy 26

3.2 Measures of Performance . 27
3.2.1 Node Complexity 27
3.2.2 Time Complexity 28
3.2.3 Time Optimality 30 , 3.3 Direct Derivation of Time Complexity 31 ...

v

1

1

CONTENTS

3.4 Comparison of IDA * with A *
3.5 Concluding Remarks ...

4 Worst Case Analysis
4.1 Derivation ...
4.2 Worst Case Conditions
4.3 Worst Cast> Examples .

4.3.1 Uniform Branching Factor
4.3.2 Non-Uniform Branching Factor

4.4 Concluding Remarks ..

5 Time Complexity Spectrum of IDA *
5.1 Branching Fadors ...
5.2 Constant Branching Factor
5.3 Decreasing Branching Factor
5.4 UIlIt Branching Factor
5 .. 5 Concludmg Remarb

6 Expected Case Analysis
6.1 Model of Computation
6.2 Basic Formulations ..
6 3 Expected Case Analysis
6.4 Expected Case Examples .

6.5

6.4.1 liniform Probabihty Distribution
6..1.2 Geometrie Probaj,il1ty Distribution
Concludmg Remarks ..

7 Binary Iterative-Deepening-A *
ï.1 Description uf BIDA'* ..

7.1.1 Admissibility ..
7.1.2 Time Complcxity

7.2 Empirical Results ...
7.2.1 Euclidean Traveling Salesperson Problem .
7.2.2 Testing and Analysis

7.3 Comparison of BIDA *' with IDA'" _CR.
7.4 Concluding Remarks

8 Final Rema.'ks

\'1

:u
:~:,

37
:n
:J~

41
·11
·U

47
17
4~

fiO

67
67
71
n
7:)
76
77
80
8:i

85

t CONTENTS

A The ETSP Program
A.1 Introductory Comments
A.2 Pascal Implementation .

VII

92
92
94

List of Figures

1.1 The BF'" Aigorithm . ;)

3.1 The IDA"' Aigorithm '~I

a2 Example of an InA'" Searcb ,). , --
33 Expansion on the FlIlal {tl:'ration of IDA" . 2T)
3.4 Non-AcycllC Solution ~~pace Graph .. 2(i
3.,5 Exampl(' of the FIl1a.1 Iteration of IDA * :1.1

--1 1 Labl"hl Bmary 1 f('C of Ikpt h :l ·1 :!
4.2 SolutlOlI Spacf' of a ct-City ATSP 11

6.1 Differentiai Edg(' Co~h of Flglll(' :l.2 T,(i

ï.l The Binar) IDA'" Aigonthrn (il) ...)
1.- Example of a BIDA'" Sf'arcb ÎO
ï.3 Exarnplc of an IDA'" _CH Search 1'\:2

V 111

1

...----------------------------

List of Tables

7 1 Pcrformanc(' of IDA * and BIDA * on Figurp 7.2 74
7.2 P(>rforman('(' of IDA* and BIDA* on Figure 72 (modified) 75
7.:3 Average Tml<' Complexit)('s of IDA * to A * . . . 78
7 -1 Average Performance Ratios of BIDA* to IDA* 79
7.;) Averag(' Tune Complcxit:es of BIDA* to A* . . 30

IX

1

..

Chapter 1

Heuristic Search

1.1 Introduction

A wide variety of difficult and orten intractable problf'rns in arttfkidl int.el­

ligence, operations research and combinatorics are repr('~ellt.('d ill t.enm of

the solution space model and illvolve a s('arch of t.hat. span' tü find ail op­

timal or near-optimal solution [13, 32]. Consequently, cOllsidt'rabl(' r('s('Mch

has focussed and continues to focus on qu('stions of how 1.0 iJ\('orporatt' (Hld

manipulate knowledge in the s('arching proœss [:33, 38]

Without the availability of an)' knowlcdgf', a search n-duc('s 1.0 a sys!,('JlI;l1,i(

enumeration and comparison of aIl possible &olutions that comprise t1H' 801ulum

spact of a problf'm. for most combinatorial applications of int('rest, Uwexplo­

ration of the entirc solution space is infC'asible in tprm& of cornputational tiIlW.

On the other hand and with the availability of perf('ct knowledge, a S('ardl is

propelled directly toward an optimal solution. Unfortunately, a spar< h in &uch

cases often suggests a polynomial time solution to problems which arc provably

intractable. Rence, the development of so-called "intelligf'nt" search <;trategi(·~

1

l

,

CH APTER 1. HEURISTIC SEARCH 2

rests on a mutual dependency. The presence of in complete knowledge neces­

sitates the implementation of a search strategy to utilize this knowledge in an

efficient and productive way. And conversely, the size of most solution spaces

necessitates the use of knowledge, towever in complete, to limit the search to­

ward thfne are as of the solution space that offer the most promise of success.

The combination of knowledge and search is called heuristic search.

1.2 Optimal Path Problem

The solution space of a problem is abstractly defined as a weighted, directed

graph G = (V, E, C) where:

2. E is set of directed edges ({nI! nj) E V x V}, and

3. C is a cost function, defined on E, that assigns a real positive cost to

each edge.

A single node is distinguished as the start node sand represents the initial COD­

figuration of the problem. A subset of nodes is distinguished as the goal nodes

and represents t hose solutions that satisfy the stated objectives of the problem

definition. Each other node n in V represents a distinct pdrtial solution along

any path rooted at the start node s. A directed edge (nI! n)) repre;,ents the

transformation from one partial solution ni to another n). The cost of this

transformation from nI to n) is represented by the cost of the directed edge

(n"n)) and is therefore equal to C(n.,n)).

Any path from the start node s to a goal node is defined as a solution

path. Bence, many problems are formulated in terms of finding not only a

•
1 GHAPTER 1. HEUR/STIG SEARGH

solution path but also a path that satisfies sorne criteria of optimahty [41].

These problcms are often stated in terms of the opttmal path problrnl.

Definition 1.1 Given a solution space graph G, tht' optImal path 1)T'Oblf11l 18

to find the minimum cost path from a start node to a goal nOllt'

In general, the cost of a path P from the start node oS to aay oUler nodt, tl is

an arbitrary function of the costs assigned to the nodes and edgt·s alonp; t.hat.

path.

1.3 Best-First Search

The representation of the solution space G = (V, E, C) is oftclI too laI g('

to be stated explicitly. Therefore the solution spart' graph is const.ructf'd

algorithmically given an implicit definition of G. Thus,

G = (s, i)

where s is the start node and i is an expanswn opcrator [:l:J]. Th(' applicatlOlJ

of i to a selected node n, called the expanswn of n, generdtes ail SIlC(('SSOI'S

of n and the costs of the associated edges from Tl to cach of its sucn'ssors It.

is assumed that the solution space graph is locally-finite whcreby cach nodf'

has a finite number of successors. The systcmatic application of i to the' slarl.

Dode s, its successors and so on explicates the solution space graph G = (s, i)

and defines in effect the process of search.

1.3.1 Description

One of the most corn mon search algorithms for the optimal path problcm i~

the informed, best-first strategy [33, 38, 51]. Each best-first search algorilhrn

CHAPTER 1. HEURISTIC SEARCH 4

employs an evaluaiion function f [26] that assigns a non-negative cost to each

node n. This cost, called the f-value, is an estimate of the latent merit or

promise of a partial solution. Therefore, the cost assigned to node n is generally

a composite of information that is gathered along the path from the st art node

8 to n and that is inferred about the remaining cost from n to a goal node.

The cstimate of the remaining cost is gleaned from the underlying problem

domain and is formulated in terms of a heunsitc functiofl h. The heuristic

function h is defined on cach node of Gand is incorporated into the definition

of the solution space graph. Thus,

G = (s, T,h).

At t.he bcginning of a best-first search, an OPEN li st of expandable nodes

contains only the start node sand its associated ('ost f(s). On each step

of the search, the node with the minimum f-value is selected from OPEN

and expanded by the applicatioll of T. Once anode has been expanded, it is

removed from OPEN and added to a CLOSED list. Each successor n that is

generated by the expansion operator T is assigned an f-value. If node n has

not been generated before, it is added to OPEN. If node n has been generated

before and its new f-value is greater than its current f-value on OPEN or

CLOSED then node n is discarded: otherwise, node n is added to OPEN and

the previous instance of n is removed from either OPEN or CLOSED. Using

these f-values as a guide, best-first search continues the process of selection

and expansion until either a goal node is selected for expansion or no node is

available for expansion, in which case a failure is proclaimed1. One best-fir~ 1

search algorithm called BF* is outlilled in Figure 1.1 [8].

1 It 15 assumed throughout the dissertatIOn that at least one solution path does exist Crom

the start node s to a goal node

•
CHAPTER 1. HEURISTIC SEARCH

Comments:

OPEN
CLOSED
f(n)
F(n)

is a list of expandable nades.
is a list of expanded nades.
is the f-value of the most recent generation of n.
is the minimum f-value of node n on OPEN or CLOSED.

Step 1: Put the start no de s on OPEN and calculate f(s).
Set F(s) equal to f(s).

Step 2: If OPEN is empty then
EXIt vIth fallure (No solutIon exists).

Step 3: Remove from OPEN ~ node p vhose f-value lB minImum.
(Break tles arbitr~rlly but alvays ln favour of a goal
node.)

Place p on CLOSED.
Step 4: If p lB a goal node then

EXlt successfully vith solutlon obtalned by traclng
back the path along the pOInters from p to s.

(Pointers are asslgned ln Steps 5 and 6) .
Step 5: Expand node p, generatlng aIl successors of p.

Direct pOInters back from each BucceSBor n to p.
Step 6: For each successor n of p

a) Calculate f(n).
b) If n lS ne.ther on O~EN nor on CLOSED then

Add n to OPEN
Set F(n) equal to f(n).

c) Else
{n already resldes on OPEN or CLOSED}
If f(n) < F(n) then

Add n to OPEN
Set F(n) equal to f(n)
Remove previous n from OPEN or CLOSED

Else
Remove current n.

Step 7: Go to Step 2.

Figure 1.1: The BF* Algorithm

5

ClIAPTER 1. HEUR/STIC SEARCH 6

If the se arch is guaranteed to terminate with an optimal solution path

then the se arch is called l1dmlss.ble [33]. Admissibility is easily ensured if the

evaluation function f a.<lsigns to each node n a lower bound on the cost of the

optimal solution path from the start node s, through n, to a goal norl~ [18].

1.3.2 Disadvantageg

Each best-first search algorithm maintains aIl feasible paths that are rooted

at the start node s. For most combinatorial problems, the prioritized list

of eypandable nodes and the number of feasible paths grows exponentially.

A vailable memory is therefore rapidly consumed. In order to limit memory

requirernents é'.nd permit the solution of larger and possibly more complex

problerns, alternate search strategies must be considered.

On(' alternative is called the partially-informed, best-first strategy [38].

Each path is extended from the most recently-generated rather than the en~ire

set of expandable nodes. Such a strategy is based on a backtracking scheme

and consumes only a linear amount of memory with respect to the length of

the current path. The simplicity of this scheme and its economical use of space

suggests the development of hybrid search strategies that combine the storage

economy of backtracking with the efficient utilization of heuristic knowledge

[22]. One such algorithm and the analytical focal point of this dissertation is

iteraitvc-decpenmg-A *.

1.4 Iterative-Deepening-A *
The iterative-deepening-A * algorithm (IDA *) is a hybrid of the best-first

search algorithm called A * and the iterative backtracking algorithm called

..

CHAPTER 1 HEUR/STIC SEARCll Î

depth-first .teratwe-deepenmg [23]. Th(' A· algorithm [18J is by far th(' most

studied version of best-first seareh. It is one of the few heuristie seareh t('('h­

niques that is supported by a substantial theoretical body of knowledgt' A

fuller discussion on the optimality and performance of the A" algorithm Îs

deferred until Chapter 2.

Depth-first iterative-deepening (DFID), on the ot.her hand, is a brute-forn'

method of search. Over t.he class of brute-force search algorithms\ DFlD IS

optimal along the dimensions of path length, node expansions and Il\e!llory

space among exponential tree searr:::hes [23, Theorem 4.2J. The DFID algu­

rithm achieves each objective by performing successive depth-fir~t sean Iws

that probe to decper and deeper levels of the solution spac(' G. Eaeh prollt'

or iterafzon that does not return a goal node is repeated to a deqwr l('ve! of

the solution space. If the explored solution space grows exporlf'ntially from

one iteration to the next, it has been shown that the time wmpl(·xit.y of DFfI)

is asymptatically optimal aver the class of brut.e-fore{· search algorithflls [2:l].

In eS5ence, DFID is a cross between depth-first and breadth-fir~t ~wardl: ft

maintains the space optimality of depth-first search, but bouIld~ pa< Il !'>('ar< h

such that an optimal path length is found.

Depth-first jtera~ive-deepeniIlg ha" been successfully merged wlth otlwr

heuristic seareh techniques. DFID was originally applied to alpha-beta bcar('h

[48] where it became and remains the method of search found at the heart,

of the best chess-playing programs [25J. Its spacc cconomy permits s('arcll to

greater depths of the alpha-beta tree and hence allows a more a.<Jsured estimate

of the best possible move at each stage of play. DFID has also h(~>n applied

to the problem of automated theorem proving [49J When proving a theorem,

aIl possible praofs in one step are attcmpted first, then two step" t'nd so on

until a satisfactory resolution is reached [31] .

CHAPTER 1. HEURISTIC SEARCH 8

The optimality of the IDA * algorithm with respect to space complexity and

the cost of solution found is respectively ensured by the nature of depth-first

se arch and by the admissibility of the evaluation function f [23, 24]. However,

the time optimality of IDA * is contingent upon a number of interrelated factors

which depend on both the structure of the solution space and the behaviour of

the evaluation function f. It is the aim of this dissertation to provide a clearer

understanding of how the performance of IDA * is influenced by these factors

and under what conditions the three parameters of optimality are realized.

1.5 Thesis Outline

The remainder of the dissertation is partitioned as follows:

Chapter 2: A full description on the performance measurements of the A *

algorithm is presented with respect to the class of admissible best-first

search algorithms.

Chapter 3: A full description of the IDA * algorithm is presented and a com­

mon measure of time complexity is established between the A * and IDA *
algorithms.

Chapter 4: A strict upper bound on the time complexity of IDA * is estab­

lished. As weIl, the conditions that give rise to the worst case perfor­

mance of IDA * are identified.

Chapter 5: A time complexity spectrum of IDA * is delineated by its asymp­

totic optimal and worst case performance.

Chapter 6: An expected case analysis of IDA * is derived with respect to

a probabilistic model of computation. The asymptotic expected case

CHAPTER 1. HEUR/STIG SEARGH 9

analysis assumes that the values of the differeutial edg!' costs arc' indt'­

pendently and identically distributed as random non-negative int('g<,rs.

Chapter 7: A variation of IDA *, called Hinary IDA *, is introduc<,d and COI11-

pared against the performance of IDA * on the Eudidf;"'an traveling sal<,s­

person problem.

Chapter 8: Final remarks and future avenues of research arc off('r('d.

t

Chapter 2

The A * Aigorithm

2.1 Description of A *
The A * algorithm is a heuristic, best-first search algorithm which was de­

vclopcd specifically for additive cost measures [18]. These rneasures define

the cost of a path as the sum of its edge costs. Therefore, given a path

P = n}, n2, n3, ... ,np between nodes nI and n", the cost of path P is equal to
p-l

L:C(n.,nl+d
1=1

where each C(n" nJ) is greater than sorne positive constant 6.

2.1.1 Evaluation Function

The A * algorithm employs an evaluation function f that assigns a cost to each

node n that is the sum of two components, g(n) and h(n), where:

1. g(n) is the cost of the current path from the start Dode s to n, and

2. h(n) is a non-negative heuristic estimate of h*(n) where h*(n) is the cost

of the optimal path from n to a goal node. If n is a goal node then h(n)

10

CHAP'TER 2. THE A * ALGORITHM 11

is equal ta O.

For completeness, g-(n) and r(n) are defined as followh'

1. g-(n) is the cost of the optimal path from s to n, and

2. r(n) is the cost of the optimal solution path from .'1 to a goal node that

is constrained to pa.')s through n, that is, r(n) = g-(n) + h·(n). Th('

cost of the optimal solution path from s to any goal node is t'quaI to

r (s) and is denoted C·.

The evaluation function of A * therefore has tll<' form J = 9 + IL which î~ il

compromise of twù earlier search techniques:

1. The uniform cost algorithm [10], and

2. The graph traverser algorithm [11].

Uniform cost search employs an evaluation function J = 9 alld guid('~ t Ilf'

search toward the.se 3.reas of the solution space based strictly 011 p('rff'd kllowl­

edge. The graph traverser algorithm, on the other hand, employs an <,vi\.luat iOIl

function .f == h and hence, guides the search toward tho,>p aff'a..., of solllt JOI)

space based strictly on heuristic knowledge The A * algonthrn plan'h an ('qual

emphasis on perfect and heuristic knowledge, although this ratio can be g('I1-

eralized ta

f(n) = (1 - w)g(n) + wh(n)

where 0 :5 w :5 1 [40, 43]. The values of w = 0, 0.5 and 1 respectively defirw

the evaJuation functions for the uniform cast, the A * anà ~he graph traverser

aJgorithms.

1

T ..

•

ClIAPTER 2, THE A * ALGORITHM 12

2.1.2 Admissibility

Theorem 2.1 ([18]) Given a solution space graph G = (s, T, hlh ~ h*), A';

'8 admIssible,

Proof Outline. Since h ::; h*, the f-value of each node along an optimal

solution path is less than or equal to C·, At any time before A * terminates,

there exists on OPEN anode n that is on an optimal solution path with

J(n) ::; C*, Assume that A* terminates at sorne goal node t without finding an

optimal solution path, that is, J(t) = g(t) > C*, But node ri with J(n) < J(t)

is on OPEN, Thus. A* would have selected node n for expansion rather than

node t whirh contradicts the assumption that A * terminated, 0

Clearly, any heuristic function h that is a lower bound on h* is an admis­

slblt heUrtstlc and any evaluation function J = g + h that uses an admissible

heuristic is an admissIble functron. Unless otherwise stated, it is assumed that

both ft and J are admissible throughout the dissertation,

Nilsson [34J regards the requirement that h $ h* as part of the definition of

A *, However, in accordance with Nilsson 's original definition in [33J and more

reccnt literature [2, 5, 8, 38], the term A * is assigncd to any BF* algorithrn

that uses th(' additive combination f = 9 + h, placing no restriction on h,

Thcrefore, A * is identified by how it processes input information rather than

by the type of information that it may encounter, Two special cases of the

solution space graph Gare henceforth distinguished based on a qualification

of the heuristic function h:

1. Admissible solution space graph where G = (s, T, hlh $ h*).

2. Uninformed solution space graph where G = (s, T, hlh = 0).

•

CHAPTER 2. THE A * ALGORITHM

Definition 2.1 Any search algorzthm that 1." appbfd fo an UfWlf07'f1lfd so/u­

hon spart graph G IS cal/fd a brute-force search.

2.1.3 Conditions of Expansion

Given a solution space grapb G = (s, T, hlh ~ hO), the sufficient and rWCf>ssary

conditions of expansion arc stated for any node n:

Sufficient Condition: There exists a path from the start nodt' ,~ 10 tl alon~

which each node ha.." an f-vall1(, that is st riel Iy l('ss t han ('. [:l~, 'l'Iwo

rem 5, p. 80J

N ecessary Condition: There exists a path from the start nocl(· ., to TL diOIlP;

which each nod/" has an f-value that is les" théln or t'Cjllnl tn ('. [:JH,

Theorcm G, p. 81].

Thert'forc, a certain subsf't of nodes that ma)' oth('rw.<,(' sat .<,fy tlw I\l'(('ssary

condi tion of expansion ma)' or ma)' not he se!('cled for pxpamlOll ~IJ b J('(t. 10 1 Il('

tie-breaking rule tliat is cIIlployed by A". To provide a TJH'a..<'IIr(· of !H'rfOflllalll ('

that is independent of the chOlce of tif>-brf'n.king rul('s, t})(' llotlOll of a bllr,[y­

expanded node is introduced

Definition 2.2 Anode n IS surely-expanded by the A • alg(Jrllhm If and only

if Il satzsfies the sufficlertl conditzon of expanszon.

Any node n may he reached hy more than one path from thf' !>tart nocif' 8

to n. Therefore, anode n that is gencrated more than once i!> rt'-('xpandf'c! for

each assigned J-value that is less than the cost of the optImal solutIOIl path

The possihility that anode n will be re-expanded several times, (kpending

on the succession of f-valu<>" that are a.'>signed to it, potcntially explod('~ Hw

overall execution time of the search [28].

l CHAPTER 2. THE A * ALGORITHM 14

Definition 2,3 ([43]) GlVen a solutIOn space graph G = (V, E, C), a heurts­

he functlOn h sahsfies the property of monotomeity on G .f and only if

h(m) $ h(n) + C(m, n)

for ail n generated by m.

Given the property of monotonicity, three important results hold for an A *
search:

1. Every monotonÏc heuristic function h is admissible [38, Theorem 9, p,

83].

2. No node is re-selected for expansion. Once anode n is initially selected

for expansion, the optimal path from s to fi is found, that is, g(n) = g-(n)

[38, Thf'orem 10, p. 83]

3. The' f-values of the sequence of nodes that are expanded by A * are

non-decreasing [38, Theorem 11, p. 84].

Clcarly, if h is monotonie, the sequence of values assigned by an evaluation

fund ion f along any path rooted at s is also monotonie, that is,

f(m) S f(n)

for aH TI generated by m. Furthermore, the suffieient and necessary conditions

of expansion of node n are simplified for monntonic h [38, Theorem 12, p. 84]:

Sufficient condition: g*(n) + h(n) < C*,

Necessary condition: g-(n) + h(n) S C-,

Again, anode n is surely-expanded by the A* algorithm if it satisfies the

sufficient condition of expansion.

CHAPTER 2. THE A * ALGORITHM

2.2 Measures of Performance

The performance of the A * algorithm is analyzed with respect tü the following

three measures of complexity:

Node complexity: The number of dIstinct Hodes that arc expanded dllrJnp;

an A* search

Time complexity: The tctal number of nodes that are expanded durinl-!; ail

A * search.

Space complexity: The amount of memory space consumed during an A >1-

search.

2.2.1 Node Complexity

The optimaIity of A *, with respect to node complexity, wa..'i f'stablislll'd III

[5, 29, 33] for the additive ru le 9 + h but to the exclusion of alternatt' polici('~

of expansion. It wa.s correctly argued in [8, 9, 16] that OH' optimality of

A * must be judged against a wider class of equally-informed hf'st-firf>t sean Il

algorithms. To that end, the evaluation function wa..'i gC'Tlcralizec! to assign an

f-value to each no de n based on any combmation of the edge costs and th('

heuristic values along the path from the start node s to Tl The following result

is stated in [8).

Theorem 2.2 Gwen a solution space graph G = (s, T, hlh ~ h·), the A *
algorithm IS optimal, in terms of the number of d,stmct nodes Û!ut arc surdy­

expandf'd, over the class of admIssible best-first search a/gonthms.

A subtle variation of Theorem 2.2 stems from Result 2 in Section 2.1.:t

1 CllAPTEH 2. THE A * ALGORITRM 16

Corollary 2.1 Gwen a solution spaee graph G = (s, T, hlh ~ h*) where h is

monotonie, the A· algorithm is optimal, in terms of the number of nodes that

are surely-expanded, over the class of admissible best-first search algorithms.

Interestingly, this result confirms the earlier conjectures of [5, 29, 33]. Fur­

thermore, it suggests that any combination of 9 and h where h :5 h* will

expand every node that is surely-expanded by A *. In other words, the addi­

tive combination 9 + h is an optimal aggregation of 9 and h for additive cost

measures.

2.2.2 Time Complexity

The time complexity of A *, unlike the node complexity, js measured in terms

of the total number of node expansions. Under the property of monotonicity

which states that no node is re-se!ected for expansion, the time complexity of

A * is equal to the number of nodes !hat are surely-expanded plus a subset of

nodes, including the optimal goal node, whose f-values are equal to C*,

When the monotonÏC" assumption is relaxed, the f-values of the sequence of

nodes that are expanded by A * are not neeessarily non-decreasing. In the worst

case, the A * algorithm performs O(2M) expansions where M is the number

of distinct nodes that are expanded by A * on G [28]. The poor performance

of A * for non-monotonie h encouraged the development of several variants of

A*, including Martelli's B algorithm [28], Méro's B' algorithm [29), Bagchi and

Mahanti's C algorithm [2] and most recently, Mahanti and Ray's D algorithm

[27], Each variant attempts to mmimize the effect of non-monotonicity by

either:

1. Ignoring the henristic estimate of an expandable Dode n when it fails to

increase the f-value of n above the eurrent maximal f-value of expanded

,
i

CHAPTER 2. THE A * ALGORITHM lï

nodes (Algorithms Band Cl, or

2. Modifying (increasing) the heuristic estimate(s) of a parent node or its

children upon expansion to reflect information that either the parent or

its children had originally overlooked (Algorithms B' and D).

The worst case time complexity of each new algorithm, except the B' algo­

rithm, is O(M2
) if the monotonie assumption is waived l

. Bowever, if tht'

evaluation function satisfies the property of monotonicity, ca ch variant of A *

above behaves exactly as the A * algorithm itself.

The time complexity analysis thus far has foregone an)' analysis of how U\('

accuracy of the heuristie estimate impacts on the number of distinct lIod('s

that are expanded by A *. It was originally shown in [18] that as tilt' h('uristi<

function h better approximates h-, fewer distinct nodcs arc expanded by A *.

Even when the monotonie assumption is relaxed, if a heuristic hl provid('s a

better estimate of h* than another heuristic h2 over aIl nodes of G, that is,

h2 < hl $ h*, then A * lS guaranteed to expand at least as many di~t.illct

nodes with h2 as with hl [19,30]. Indeed, if A * employs a perfcctly-inforrncd

heuristic (h = h*) then the search is propel1ed directly toward a goal nod('

without expanding any node off an optimal solution path. If tll(' goal llod(· i~

unique and located at depth d from the start node !; tht"n A * p('fforrns exactly

d expansions. At the other extreme, if A * employs no hcuristic information at

all (h = 0) then the scarch is exhaustive and, in most cases, cxponcntial in d.

The results presented within this section assume that the solution spacc

G = (s, T, h) is modeled as an undirected tree with a uniform branching

factor b. The solution space tree i5 rooted at the start. node sand may be

lIt was later demonstrated that, on the weakness of Its tle-breakmg rule, Méra's 8'

algorithm requires in the worst case O(2M) expansions [27]

:

CfIAPTER 2. THE A * ALGORITHM 18

eithcr infinite or finite with a minimum depth of d. Each edge is assigned a

symmetric unary cost and there exists an unique goal node situatecJ at depth

d (rom the start node s. The earliest work that attempted to quantify the

trade-off betweell the complexity of the A * algorithm and the precision of the

heuristic h used to guide the search delineated the spectrum of the rrecision­

complexity trade-off between two points [15,40, 43, 50]. At one end of the

spectrum, if the absolu te heuristic errors, denoted h" - h, are bounded by a

fixed quantity theJl the time complexity of A * is linear in d. At the other end

of the spectrum, if these errors grow linearly with h" then the time complexity

of A * is exponential in d.

A probabilistic extension of these results was presented in [21]. The er­

rors produced by the heuristic estimates were treated as independent random

variables with distribut.ions t.hat could vary over the nodes of the uniform tree

ITlodel. It was shown that if the relative errors are bounded away from zero

with a probability greater than lib then the expected time complexity of A *
is exponential in d. The probabilistic model was generalized in [37J to account

for aIl points alon~ the spectrum, revealing the exponential character of the

prccision-complexity exchange. If the typical heuristic error grows like q,(h")

whrre </> is a sublinear function then the expected time complexity of A * grows

approximately like

8(d· exp(c4>(d»)

where c is a positive constant. Therefore, to ensure a polynomial time com­

plexity, the precision of the heurI:ltic function h employed by A * must be

logarithmic, for example, 4>(d) = (log (d»A:.

The above analyses were extended by [4, Theorems 3.3 and 3.4] in the

presence of multiple goal nodes. Each goal node is located at a distance no

CHAPTER 2. THE A * ALGORITHM 19

greater than d + c4>(d) where c is a constant greater than or t'quaI to O. GiVt'1l

that the probability distribution satisfies sorne very weak conditions, it wa.-;

shown that the expeded time complexity of A * is expont'ntial in d t'XCf'pt

when both 4> is Iogarithmic and the Ilumber of goal nodes is polynomial in

d. Therefore, given a heuristic fundion that exhibits logarithmic prt'cisioll,

the expected time complexity of A * is polynomial jf and only if the nurnh{'r

of solution paths is aiso polynomial in d. However, if the numbt'r of solution

paths is exponential in d then the expected timt' complexity of A * rcmains

exponential regardless of the accuracy of the heuristic fundion ernployt'<l.

2.2.3 Space Complexity and Inadmissibility

The performance of the A * algorithm and its variants has bC(,lI analyzt'd al,

length under the condition of inadmissibility [2, 3, 8, 17, 27, 36, 39, 42J. TI\('

analyses concentrate on two measures of performance:

1. The optimality or sub-optimality of the solution found, and

2. The time and space complexity of the resulting search.

The argumeùts in favour of non-admissible heuristics are motivatpd by three

points:

1. The choice of a heuristic function is no longer constrained to admissible

h.

2. Admissible search strategies often spend a disproportionate amount of

time discriminating among equally meritorious alternate solutions.

3. Although the inherent strength of the A * algorithm, in particular, lies in

its ability to convert heuristic knowledge into appreciable time savings,

much of this ability is diluted in the presence of multiple goal nodes [4].

1

1

-

CI/APTER 2. THE A" ALGORITHM 20

For most combinatorial problems of interest, the above arguments are predi­

cated on a common objective: To reduce the scope of search and thereby to

reduce the vast amounts of memory that are consumed by the A * and other

bcst-first se arch algorithrns.

2.3 Concluding Remarks

The A * algorithm is an important member of the class of best-first search

algorithms, primarily on the strength of the following three results. Given a

solution space graph G = (s, T, hlh $ h*):

1. A * is admissible.

2. A * is optimal, in terms of the number of distinct nodes that are surely­

expanded, over the class of admissible best-first search algorithms.

3. If the heuristic function h is also monotonie then A * is optimal, in terrns

of the number of nodes that are surely expanded, over the class of ad­

missible best-first se arch algorithms.

However, because the optimal path problem is a central problem of many ar­

tificial intelligence applications, the question of memory wnsumption remains

a critical consideration notwithstanding the above results.

1

Chapter 3

Iterative-Deepening-A *

3.1 Description of IDA *

Iterative-deepening-A * (IDA *) is a heuristic search algorithm that comhines

the efficient utilization of heuristic knowledge with an efficient utilizatioll of

memory space [23]. In order to meet these objectives, the IDA* algorithm:

1. Assigns a cost to each node that is determined by the evaluation functioll

1 = 9 + h 1, and

2. Performs successive depth-first searches that are bounded by increasing

values of f.

The cost bound of the initial iteration of IDA * is denoted Cl and is sct

to the cost of the start node s, that is, Cl = 1(8). At the beginning of each

iteration, a STACK of expandable nodes contains only the start node 8 and its

associated cost 1(8). On each step of the search, the most rccently-gcIIcratcd

node (i.e, the top node of STACK) Îs selected and expanded by the partial

ITherefore, 8~ wlth A·, an optimal discriminant for additive cost measures is employed.

21

CHAPTER 3. ITERATIVE-DEEPENING-A * 22

application of T. The partial expansion of anode generates a single successor

at a time. Once aIl successors of a node have been generated, the node is

considered fully-expandedj otherwise, it is considered only partially-expanded

:2. If the selected Dode is fully-expanded then it is removed from the STACK

and discarded. Each successor n that is generated by the expansion operator

T is assigned an f-value equal to g(n) + h(n). If the f-value of node n is less

than or equal to the cost hound of the iteratioD during which it is selected

then n is added to the top of STACK. The depth-first search continues the

process of selection and expansion until either one of two conditions is met:

1. A goal node is selected for expansion, or

2. The f-values of aIl expandable nodes is greater than the cost bound of

iteration i, denoted CI'

On each iteration, except the final iteration, IDA * performs an exhaustive

search of aIl paths along which each node has an f-value that is less than

or equal to the cost bound of the iteration. Once a goal node is selected for

expansion, the IDA * algorithm terminatesj othcrwise, a depth-first search of

the solution space G ïs repeated with a greater cust bound C,+l' The new cost

bound is set to the minimum f-value among aIl nodes that were generated

on iteration 1 and that exceeded the cost bound CI' The IDA * algorithm is

outlined in Figure 3.1.

An example of an IDA * search is presented in Figure 3.2. Each node A

through M is labeled with its f-value. Nodes A and K are designa.ted as the

start and goal nodes respectively. Only those generated nodes whose f-values

2Partlal expansion ~nsures that for any (in)finite hranching factor the linear memory

constraints of depth-first search are satisfied and that each currently explnred path is main­

tatnl'd ln STACK

•

1 CHAPTER 3. ITERATIVE-DEEPENING-A *

Comments:

C is the cost bound of the current iteratlon.
M is the cost bound of the subsequent lteratlon,

that lS, the mlnlmum f-value among generated nodes
that exceeds C.

f(n) is the f-value of the .ost recent generatlon of n.
MAX is an arbitrarlly large number.

Step 0: Set H equal to f(s), the cost of the start node s.
Step 1: Push S onto a STACK of expandable nodes.

Set C equal to M. Reset M equal to MAX.
Step 2: If STACK is empty then

If M remains equal to MAX then
EXlt vlth fallure; no Solutlon eXlsts

Eise

23

Go to Step 1 and proceed vlth the next lteratlon.
Step 3: Assign the top node of STACK to p.
Step 4: If p is a goal no de then

EXlt successfully;
Svlution malntalned by the STACK of nodes.

Step 5: Generate the next sueeessor n of p.
Step 6: If node p has no further sucees sors then

Pop p from STACK
Else

a) Calculate f(n).
b) If f(n) <- C then

Push n onto STACK
Asslgn the nevly-computed f(n) to n.

c) If C < f(n) < H then
Lover M to f(n).

Step 7: Go to Step 2.

Figure 3.1: The IDA* Algorithm

l

i CJIAPTER 3. ITERATIVE-DEEPENING-A * 24

D 2

K

Figure 3.2: Example of an IDA * Search

are less than or equal to the f-value of node K are shown. The cost bound

of the initial iteration is set to the f-value of the start node A. Therefore,

Cl is equal to 1. Nodes A and C are selected for expansion on the initial

iteration. The cost bound of the second iteration is set to the minimum J­
value among expandable nodes that exceeded the cost bound of the initial

iteration. Therefore, C2 is equal to 2. Nodes B, D, F and G in addition to

nodes A and C are selected for expansion on the second iteration. Similarly,

the cost bound of the third iteration C3 is equal to 3. Nodes E, H and 1 are

seleeted for expansion on the third iteration in addition to all nodes that were

selected for expansion on iteration 2. To note, because the f-value of no de H

is non-monotonie, it is initially selected for expansion only on iteration 3. On

the firth and final iteration, IDA * terminates once a goal no de is reached and

CHAPTER 3. ITERATNE-DEEPENING-A *

hence, only nodes A, B, D, E, H and K a.re seleded for expamioll

3.1.1 Admissibility

By extending the search from one iteration to tht' next a!ong contours of

minimum increments, three preliminary results are rtated.

Theorem 3.1 ([24]) Given a solution space graph G = (.'1, T,hlh < hO),

IDA • is admisstble.

Proof Outline: The cost bound of the initial iteration Cl is equal 1,0 thc f-va!ut'

of the start node s. Since f(s) ~ r(s) = Co., the cost bound (\ is It-~~ thall

or equa! to the cost of the optimal solution path. Furthc:>rmore, 511)('C t1H' mst

bound of each succeeding iteration is the minimum f-value arnong f'x(>cindablt'

nodes that exceeded the previous cost bound and sin('(' the f-valu(' of {'ach

node along an optimal solution path does not excecd C·, the CO'it, bonnd of

sorne iteration must eventually equal the cost of an optimal solutlOIl path.

When the cost bound is equal to Co., the optimal goal nodt' i~ 5(,1('(1,(.<1 and

no other goal node with an r value g!'~~ter than Co. is expand('d Th<>rdof{',

the cost of the first goal node selected for expansion is equal to th(' cost of an

optimal solution path.O

Lemma 3.1 Glven a solution space graph G = (s, T, hlh ~ h·), the cost

bound of the final iteration of IDA ~ is equal to the cost of the oplzmall>olution

path C".

Lemma 3.2 Given a solution space graph G = (s, T, hlh ~ h"), IDA· expands

at least one additional node on iteration i where the f -value of tltat node is

equal to the cost bound CI'

L-____ _

ClIAPTER 3. ITERATIVE-DEEPENING-A * 26

Proof: The cost bound Cl of the initial iteration is equal to the f-value of

the start node s. Since the start node is selecteà on each iteration, at least

one additional node whose f-value is equal to CI, namely the start node s,

is selected for expansion on the initial iteration. The cost bound of iteration

1 is set to the minimum f-value among aIl expandable nodes that exceeded

the cost bound CI-l, Hence, there are no paths from the start Dode s along

which the maximum f-valuc is greater than CI- 1 and less than CI' Therefore,

at least one additional node whose f-value is equal to CI must be seleded for

expansion on iteratioD i.O

3.1.2 Conditions of Expansion

Given a solution space tree G = (s, T, hlh ::; h·), the sufficient and necessary

conditions of expansion are stated for any node n on iteration z:

Sufficient Condition: There exists a path from the start node .~ to n along

which each node has an f-value that is less than or equal to the cost

hound CI where CI is also strictly less than C·.

Necessary Condition: There exists a pdth from the start node s to n along

which each node has an f-value that is less than or equal to the cost

bound CI where CI is also less than or cqual to C·.

Like the A * algorithm, the sufficient and necessary conditions for t.he expansion

of node n are simplified for monotonie h:

Sufficient Condition: g·(n) + h(n) :5 C, and CI < C·.

Necessary Condition: g·(n) + h(n) :5 C, and CI :5 C·,

------------~----------------------

"

CHAPTER 3. ITERATTVE-DEEPENING-A *

It is important to note that the sufficient and necessary conditions of pxpallSIOIl

are identical on each iteration leading up to and including tilt' pellllitimate

iteration but differ on the the final iteration.

If the evaluation function satisfies the property of monotolllc:ty, tilt' f­

values of the sequence of nodes expanded by IDA'" art' not n('('('~sanly 110"­

decreasing. Monotonicity ensures only that the f-values along aIl)' pat.h root('<1

at the start Dode sare non-decreasing. Therefore, on the final iterrlt.ioll whC'n

an optimal goal node is selected for expansion, a subset of lIodl· ... thdt Wf'lt'

expanded on the penultimate iteration may not be expandf'd 1)('[on' dU optImal

goal node is selected. Each node that is pxpandf'd on Ulf' final 1t,('rdtlOll :-'ilt I"fi(':-.

only the necessary condition of expansion, that is, f(n) ~ C· Thil", ollly tl\l'

start no de s and the optimal goal node may be seleded for ('X P,II\:-'Jl)1l 011 tl)('

final iteration as shown in Figure 3.3 If nodcs A and IJ are dt'~lglI,tt('d d!'. tl)('

start and goal nodes respectively then only nodt's A and /1 an' ~('l('(1.1'<1 for

expansion on the final iteration: The solution space trf'(' rooled at und(' (' i!'.

unexplored.

Although the necessary condition holds over ail iterdtioll:-', t1lf' suffit !t'lit

condition of expansion holds only on each iteration leadmp; tif> 10 alld illcluding

the penultimate iteration.

Definition 3.1 Anode n &s surely-expanded by IDA * on ltf'ralzon l lf and

only if it sattsfies the sufficlent condition of expansIOn.

Definition 3.2 Anode n is said to be C. -surely-expanded If il IS surcly­

expanded on iteration i.

Any node that is surely-expanded on, say, four successive itcrations is said

to be surely-expanded four times. Although the same node is selected for

,-------------- -

1 CIIAPTER 3 ITERATIVE-DEEPENING-A* 28

Figure 3.3: Expansion on the Final Iteration of IDA *

expansion on each of the four iterations, it is said as weIl that four nodes are

surely-expanded. Finally, no nodes are surely-expanded on the final iteration

ofIDA*.

Lemma 3.3 Gwen a solution spa ce graph G = (s. T, hlh ~ h*), the set of

dlstmct nodrs that are surely-expanded by A!ft is equal to the set of dzstinct

nodes thaf are surely-expanded by IDA'" on its penultimate iteration.

Proof: From Lemma 3.1, the minimum f-value that exceeded the cost bound of

the penultimate iteration is equal to the cost of the optimal solution path C*.

Therefore, on the penultimate iteration, IDA * expands aH nodes n for which

there exists a path from the start node s to n and for which each node along

that path has an f-value that is strictl} less than C*. Thus, Definition 2.2 is

satisfied.O

CHAPTER 3. ITERATNE-DEEPENING-A * 29

A E

Figure 3.4: Non-Acyclic Solution Space Graph

3.1.3 Property of Acyclicy

The property of monotonicity cannot guarantec, as it does with A *, that no

no de is re-selected for expansion during each it{'ration of an IDA * ~i('arcll. On

each iteration, IDA * performs a bounded depth-first search which il)' d,.fi­

nition, maintains only the current path from Hw start nod(' ... 1,0 th" Illost

recently-generated node n. Therefore, if anode n il' rf'adwd by mon' thall

one path from the start no de s then node n b re-expand('d for ('.teh a~slgllt'd

f-value that is less than or equal to the cost bound of the ellrrcllt iteratlOIl.

For example, the explicit graph G in Figure 3.4 is considered N()de'~ A and

E are designated as the start and goal nodes respectively. Eaeh ('d!!;!· is directe'c1

away from the start node A and has unit cost. If no hf'urü,tÏc IIIforlllation is

employed (h = 0) then the property of monotonicity is ensuf{·d The colllph'!'f>

expansion of either node A, B, C or D generates two instance,> of nod(~ li,

C, D or E respectively. Each instance is assigned a cost which IS cqual to

its distance from the start node A. According to algorithm BF* (FIgure 1.1),

only the first instance of each generated node is added to OPEN (Step 6b):

The second instance is removed (Step 6c).

The IDA * algorithm, on the other hand, carries out successive depth-first

l CIIAPTER 3. ITERATNE-DEEPENING-A * 30

searches that are each rooted at no de A and that are bounded by depths of 0

to 4 respectively. Each partial expansion of A, B, Cor D (Step 5, Figure 3.1)

generates a single instance of B, C, D or E at a time. Therefore, on the

first iteration, only node A is expanded. On the second iteration, node A

id again expanded but node B is selected twice for expansion, once for each

instance that is generated. Similarly, on the third and fourth iterations, nodes

C and D are expanded 4 and 8 times respectively. Because aIl paths from

A to E are optimal, only 5 nodes are selected for expansion before IDA * is

terminated on the fifth and final iteration. Renee, the perfOlmance of IDA *
ècgrades exponentiaIly over A * as t.he number of distinct paths to each node

grows exponentially with depth (cost).

In order to ensure that no node is re-seleded for expansion, the property

of monotonicity is supplanted by the stronger requirement of acyclicy.

Definition 3.3 T~e property of acyclicy states thaf no node in G is reachable

by mort: than one path from the start node s.

The property of acyclicy is easi1y guaranteed if the solution space graph is a

tree rooted at the start no de s. Hence, there exists at most one path to and

therefore, oue possible expansion of each node in G on any iteration.

3.2 Measures of Performance

3.2.1 Node Complexity

In light of Lemma 3.3, the arguments that support the node optimality of A *
are equally valid in establishing Theorem 3.2.

1

1 CHAPTER 3. ITERATIVE-DEEPENING-A * 31

Theorem 3.2 Given a solution space graph G = (s, T, hlh ::s h-). IDA * as

optimal, in terms of the number of distanct nodes tl.at are sure/y-cxpanded,

over the class of admissible best-jirst search algonthms.

The property of acyclicy is not a prerequisite of node optimality, that is,

the total number of node expansions does not affect the number of distinct

nodes that are seleded for expansion. However, 8.Ssuming that the property of

acyclicy is satisfied on G, the number of distinct nodes and th(~ total nllmh('r

of nodes that are surely-expanded by the A * "jgorithm are equdl The criteria

of A * optimality is restated without tht: condition of mOllotonie ily.

Lemma 3.4 Gwen a solution space tree G = (s, T, !tlh ~ II·), tltt: A * al­

gorithm IS opt!mal, an terms of the total nurnber of nodes that arc .'''H'c/y­

expanded, over the class of admIssIble besf-jirst tree search a/gonlhm . .,.

Unfortunately, the interchange of node and time complcxity is not. so ohviollsly

extended in the case of the IDA * algorithm a.<; shown in the following section.

3.2.2 Time Complexity

Under the property of acyclicy, a subtle variation of Lemma 3.3 is stated.

Lemma 3.5 Given a solution space tree G = (s, T,hlh ~ h-), the numb(;r of

nodes that are surely-expanded by A * IS equal to the number of nodes that arr

surely-expanded by IDA * on its penultimate iteratzon.

Lemma 3.5 establishes a common measure of time complexity betwccn th(~ A *
and IDA * algorithms. Because no nodes are surely-expanded b,)' IDA * on the

final iteration, the time complexity of IDA * is restricted to the total number of

nodes thaL are surely-expanded on each iteration leading up to :t.nd including

the penultimate iteration,

:

•

CllAPTER 3. ITERATIVE-DEEPENING-A * 32

Definition 3.4 The penultimate iteration is sa id to be iteration k, k ~ O. If

k = 0 then the optimal solution path is found on the initial iteration and no

node lS surtly-ezpanded.

Definition 3.5 J'he number of nodes that are CI~s"rely-ezpanded, 0 ::::; i ~ k,

is denoted M(t). From Definition 9.~, M(O) is equal to O.

Definition 3.6 The number of additional nodes that are sure1y-ezpanded on

Iteration l, 1 ::::; t ~ k, is denoted N(i) and is equal to the number of nodes that

arc C,-surely-ezpanded lcss the number of nodes that are C'_I-sure1y-ezpanded.

Hcnce,

N(z) = M(i) - M(i - 1).

From Definition 3.6, it follows that

1

M(i) = L N(j).
1=1

Definition 3.7 The total number of nodes that are surely-ezpanded by IDA *
over k zterations is denoted T(k) and is equal to

ft;

LM(i) (3.1)
1=1

or equivalenl1y
k 1

LLN(j). (3.2)
1=1 1=1

It is also useful to note that each additional node that is surely-expanded on

iteration i is re-expanded on each subsequent iteration j, i + 1 $ j ~ k, for a

total of (k - i + 1) expansions. The ,Ldditional nodes that are surely-expanded

on the first iteration are re-expandi>d on each subsequent iteration for a total

of kN(l) expansions. The additional nodes that are surely-expan.'ed on the

CHAPTER 3. ITERATNE-DEEPENING-A * 33

second iteration are re-expanded on each subsequent iteration for a t.ot.al of

(k - 1)N(2) expansions. In general, the additional nodes that are surt'\y­

expanded on iteration i are re-expanded on each subsequent it.eration for a

total of (k - i + l)N(i) expansions. Hence, the time complexity 'J'(k) of IDA·

is also equal to
Ir

L(k - i + l)N(r). (3.3)
.=1

Equations 3.1, 3.2 and 3.3 above represent equivalent general formulae of the

time complexity of iterative-deepening-A·.

3.2.3 Time Optimality

The number of nodes that are surely-expanded by A * on an admissi bIt· solu­

tion space tree G is defined in terms of the number of node::. that are sUf(·ly­

expanded by IDA * on G during its penultimate iteration. Ther('fon', tll(' time

complexity of A * is equal to M(k). This cquivalence allows a <OIIV(,Ilic'llt and

reciprocal measure of comparison between the A· and IDA * algorit.hms. B(>­

cause the A * algorithm is optimal, in terms of the numher of SUf<'!y-expandNl

nodes, over the class of admissible best-first tree search algont.bllls, tlu' mA *

algorithm is also asymptotically optimal if T(k) is O(M(k».

The time optimality of IDA*, however, depends on what frdction of the

overall computational effort is spent on those iterations l,] ~ t :$ k - l,

leading up to penultimatc iteration k.

Definition 3.8 The overhead of the IDA· algorzthm, denoled R(k), as equal

to the total number of nodes that are surcly-expanded on allateratwns lcadang

up to but not including the penultamate Iteration.

To express T(k) in ter ms of M(k) and R(k), Equations 3.1 and 3.2 arc rcspcc-

CHAPTER 3. ITERATIVE-DEEPENING-A * 34

tively rewritten as

Ir-l

T(k) - M(A:) + LM(i)
.=1

- M(A:) + R(k) (3.4)

and

10-1 1

T(k) - M(A:) + L L N(j)

- M(k) + R(k). (3.5)

Therefore, to ensure the asymptotic time optimality of IDA *, the overhead

R(k) must be O(M(k» as weIl.

3.3 Direct Derivation of Time Complexity

Given a sequence A of p nodes nt, n2, ... ,np that are sUl'ely-expanded by the

A * algorithm on an admissible solution space tree G, the time complexity of

IDA * is derived directly from sequence A. First, an ascending subsequence of

A, dcnotcd A', is constructed as follows:

1. The first element of A' is n J1 where n;1 = nI.

2. The i th element of A', i ;::: 2, is the next element of A from n;'_1 on ward

whose J-value is strictly greater than J(nJ._1
).

The construction continues until the entire sequence of A has been scanned

for ascending J-values. The resulting subsequence A' is n J1 , n J2 , ••• ,nJ" where

Property 3.1 The f -values oJ ail nodes between nJ , and nJ.+
1

in sequence A

are less than or equal to J(nJ,)'

1

l CHAPTER 3. ITERATIVE-DEEPENING-A * 35

Lemma 3.6 Given the sequence A of nodes that are surdy-t'J'pandrd by A *

on a soluhon space tree G = (s, T,hlh ~ h*), the successlt'c cost bound ...

Cl, Ol, ... , Cie of IDA '* on G are respectively equa/ to the f -values of tltt' as­

cending subsequence A', that is, Cl = f(n)!),C2 = f(n)l)"",C Ie = /(n).).

Proof by Induction: The cost bound of the initial iteration Ct is ('quaI t.o the

/-value of the start Dode nI which is eqnal to f(n)]) by definition. ASSUIll<'

that the cost bound C, of iteration 1 is equal to f(n),). Clearly, ail no<!ps nt

through n h+1 -1 are C,-surely-expandcd [Property 3.1]. Th(' cost hound of tll('

subsequent iteration is equai to the minimum J-value that ex«·(·ds CI' SIIlc('

the A * algorithm selects at each step the node with the minimulII f-vahl<'

among aIl expandable nodes then nJot! is anode with the minimulll f-Vdltl('

that exceeds the cost bound of iteration L Therefore, C,+I = f(1/}'+1).0

Lemma 3.7 Given the sequence A of nodes thal are su rely-t'J'pandt li by A *
on a so/utwn space tree G = (s, T, hlh ~ h*), therc CXlsts a par/l/WU of A znlo

mutual/y-exclusive subsequences Al, A2, • .. , Ale such that ('(U,ft df 7TH'nl oJ AilS

C. -surely-expanded but not CI - t -surely-expanded, 1 ~ l ~ k

Proof: Let the sequence A be partitioned into mutually-cxclu~iV(' and nou­

empty subsequences Al, A2, ••• , Ale where the first clement of ea.h ~lJb~('qll('Il(,('

A. is the zth element of A', that is, the f-value of the first c1('lIwnt of A, i~

equal to the cost bound of iteration t. Hcnce, subsequenC(' A, is cqllal to

n", n),+1" .. , n)o+I-1 , 1 ~ i ~ k.

Assume that anode m of subsequence A, is not C,-surely-cxpand(~d. Th('f{'­

fore, there exists a Dode t along the path from s to m such that J(t) > C"

From Property 3.1, the f-values of aIl nodes in subsequence AI arc IC~i> than

or equal to C, = f(n J,) which, in turn, is greater than th(' J-valm'f> of ail

preceding nodes nI through nJ,-1 of sequence A. Bence, nod(· t cannot exj~t.

CHAPTER 3. ITERATNE-DEEPENING-A * 36

Assume now that node m of subsequence A. is also C._1-surely-expanded.

Therefore, f(m) < C. = f(n J.) which implies that node m is distinct from node

nJ ,. If node m is C._1-surely-expanded then the f-value of each node along

the path P from s to m is less than or equal to C.- I . Therefore, A * would

select Ilode m for expansion before node nJ, which has a greater f-value. But

node m was selected for expansion after node n". Therefore, path P cannot

exist.O

Lemma 3.8 Gwen the sequence A of nodes that are surely-expanded by A *
on a solution spa ce tree G = (8, T, hlh < h-), the number of additional nodes

N(i) that are expanded by IDA· on iteration t is equal to the length of the

subsequence A,.

Once the sequence A has been partitioned into mutually exclusive and non­

empty subsequences, it is straightforward to substitute the values of N(t) into

either Equation 3.2 or Equation 3.3 in order to determine the time complexity

of IDA *. A simple example illustrates the above results.

Example: Let A = nI, n2, .. . , ng and let the respective f-values of A he

3,2,2,4,5,5,3,7,6. It follows that A' = nI, n .. , ns, ns and that Al = nll n2, n3,

A2 = n .. , A3 = n5, n6, n7 and A .. = ns, ng. Therefore, IDA * performs 4

iterations where N(I) = 3, N(2) = 1, N(3) = 3 and N(4) = 2 [Lemma 3.8].

The time complexity of IDA * is evaluated hy Equation 3.3 and is equal to

..
T(4) = ~)4 - i + I)N(i) = 12 + 3 + 6 + 2 = 23 nodes.

t=1

3.4 Comparison of IDA * with A *

The A * and IDA * algorithms represent the two ends of the space complexity

spectrum. On one band, the A * algorithm maintains aIl feasihle paths that

1

l CHAPTER 3. ITERATNE-DEEPENING-A * 37

are rooted at the start no de s. Hence, minimal pruning is pcrformN.1. On

the other hand, t.he IDA * algorithm prunes all paths, except the CUfn'nt path,

immediately after a node expansion. Two algorithmic "bridges'" bctwN'n the

IDA * and A * algorithms called MREC and MA * were recently proposcd in

[47] and [6] respectively. In both cases, the heuristic search is admissihle and

per{ormed within a memory constraint that is treated as a paramett'r of tht,

search. Essentially, MREC car ries out a best-first search until tilt' maximum

memory constraint is reached and then regenerates nodcs in a fasllioll similar

to depth-first iterative-deepening until an optimal solution path is foulld. Ou

the other hand, MA * carries out a best-first search until the the maximum

memory constraint is reached and then selectivcly prunes its leaf Ilodes frolll

the OPEN list 3. To help retain the cost information of desCt'IH!ellt nod('s,

MA>I< uses bottom-up cost revision to update the f-values of anc('stral nodes.

Lemma 3.5 provides a common measure of comparison hetwf'l'Il 1,1)(' A>I< and

IDA>I< algorithms subject to one consideration. The implcTneJlt.é1l iOIl:' of tll(, A'­

and IDA>I< algorithms employ different data structures to maintdill tllf' Ii~t of

expandable node~. On one hand, the A * algorithm employ~ a priority qlU'Il(·.

The priority queue, implemented as a heap, requires on average O(log AI) time

to insert and delete each node where M is the number of el(,IlH'IIb 111 tllf' Iwap

[1]. On the other hand, the IDA>I< algorithm employs a stack which fI'qllire~

at most 0(1) or constant time to insert and dei ete each node. 'l'hereforc, a

logarithmic proportionality factor is introduced. If the criteria of comparison

is measured only with respect to the number of node expan<;ions then an

interesting phenomenon can arise. The real execution time of IDA· may b{·

less than the execution time of A>I< although IDA * will surcly-expand al least

3The parent of Il pruned leaf no de may also be removed from CLOSED, put 10 OPEN

and subsequently pruned ltself

CIIAPTER 3. ITERATIVE-DEEPENING-A * 38

G 2

Figure 3.5: Example of the Final Iteration of IDA *

the number of nodes that are surely-expanded by A *. This phenomenon was

first noted in [23] and provides an additional incentive to incorporate the

simpler selection criteria of a backtracking versus a best-first strategy.

If the IDA * algorithm expands M(k) nodes during its penultimate itera­

tion on an admissible solution space tree G then A * surely-expands the same

number of Bodes on G. UnfortunateIy, there exists no corn mon measure of

comparison that considers the number of nodes that are expanded on the final

iteration. The difficulty in establishing a common measure of comparison is

due to the difference between the tie-breaking rules of A * and IDA *. The

IDA * algorithm selects each node according to a depth-first criteria, that is,

the most-recently generated node whose f-value is less than or equal to the

cost bound of the current iteration. Even if the tie-breaking rule of A * favours

a last-in, first-out policy as suggested in [23, Theorem 6.4], it is no guarantee

that the same set of additional nodes will be expanded by IDA * on its final

iteration as shown in Figure 3.5

Each node A through G is labeled with its f-value. Nodes A and Gare

1 CHAPTER 3. ITERATNE-DEEPENING-A * 39

designated as the start and goal nodes respectively. Because the A * algorithlll

selects node C for expansion aIter the selection of node A, nodes E and Fart'

more "recently-generated" than node B. Assuming that A * employs a last-in,

first-out tie-breaking policy, nodes E and F are selected for expansion beforc

node B. However, on the second and final iteration of IDA *, only nodes A, B

and G are selected for expansion, thus avoiding the unnecessary expansions of

nodes E and F.

3.5 Concluding Remarks

Chapter 3 has established five important properties of an IDA * scarch on a

solution space tree G = (s, T, hlh $ h·):

1. IDA * is admissible.

2. No fewer than one additional node is expanded by IDA * 011 each it('ra­

tion.

3. The property of acyclicy ensures that no node is re-selected for cxpan~ion

during an A * search and that no node is re-selecte<! for expaIlsion on ca< h

iteration of IDA *.

4. The number of nodes that are surely-expanded by A * on G is t'quaI to the

number of nodes that are surely-expanded by IDA * on its pcnultimatc

iteration.

5. IDA * is optimal, in terms of the nurnber of distinct nodes that are 8urcly­

expanded, over the class of admissible best-first tree search algorithms.

•

Chapter 4

Worst Case Analysis

4.1 Derivation

The worst case analysis establishes a strict upper bound on the time complexity

of IDA *. The upper bound is stated in terms of the numbcr of nodes that are

surdy-expanded by A * on an admissible solution space tree. To begin, two

preliminary lemmas are proved.

Lemma 4.1 GlVen a soluilon space tree G = (s, T, hlh ~ h*), IDA * performs

at mosf AfU-) aterations where M(k) is the number of nodes that are surely­

erpanded on the penuUamaie ateratzon.

Proof: Follows directly from Lemma 3.2 if exactly one additional node IS

surely-expanded on each iteration.O

Lemma 4.2 GlVen a solution space tree G = (s, T, hlh S; h*), IDA * surely­

erpands ln the worst case exactly one additional node per iteration.

Proof: On the penultimate iteration k, IDA * sure!y-expands M(k) nodes. On

iteration k - l, IDA * surely-expands at most M(k) -1 nodes since at least one

40

CHAPTER 4. WORST CASE ANALYSIS 41

additional no de is expanded on iteration k. Similarly, on iteration ~. -~, IDA >1-

surely-expands at most M(k)-2 nodes since again at.least. on(" addit.ional nodt'

is expanded on both iteration k - 1 and iteration k. In gt'l1eral, IDA * surdy­

expands at most M(k) - i nodes on iteration k - t where 0 S t ~ M(A') - 1

[Lemma 4.1]. Since the time complexity of IDA II< is maximi7.ed on t'ach iteration

i, 1 ~ i ~ M(k), over a maximum number of iterations, it follows inmw(ilate!y

from the principle of optimality [12} that the overall time compl(,xlt.y of IDA·

is maximized as weB. Bence, in the worst case, exactly 011(' additJonal I!ode

is expanded on each iteration leading up t.o and includint!; the [>cnultimate

iteration.O

Theorem 4.1 Given a solution space tree G = (s, T, hlh ~ IL-), J/):1 • surtly­

expands t11 the worst case (M 2(k)+M(k))/2 nodes whcrr M(k) l.'i t!tr 1I1Imbf'1'

of nodes that arE surely-expanded by A * on G.

Proof: Lemmas 4.1 and 4.2 imply that in the worst case M(l) = l. From

Equation 3.1,

Since k :::: M(k),

le

T(k) :::: LM(i)
1:;;;1

Ir

:::: Li
1=1

k(k + 1)
- 2

T(k) = M2(k) + M(k).o
2

..

ClIAPTER 4. WORST CASE ANALYSIS 42

4.2 Worst Case Conditions

Theorem 4.2 The worst case behaviour of IDA· is realized on a solution

space tree G = (s, T, hlh :$ h*) if and only if the Evaluation function used by

IDA'; (and A·) on G assigns a cost to each node such that the following two

conditions are met:

1. Condition 1 (Uniqueness): The f-values of ail surely-expanded nodes are

u71tque.

2. Condttion 2 (Monotontcity): The f -values along each path from the start

node s to a surely-expanded node are strictly increasing.

Proof: Two prcliminê..ry observations are noted:

1. During any tree search, each no de is generated and expanded at most

once. Therefore, each node is assigned a single distinct value.

2. There exists a unique path from the start node s to each other node in

G.

Let p be the number of nodes that are surely-expanded by A * on G. As

weil, let A = ni, n2, . .. , np be the sequence of nodes that are surely-expanded

by A * where ni is designated as the start node. The f-values are implicitly

defin('d.

In the worst case, exactly one additional node is surely-expanded by IDA *
on each iteration. Therefore, the sequence A is equivalent to its ascending

subsequence A' as constructed in Section 3.3. Because A' is equivalent to A,

it immediately follows that aIl f-values must be unique. Furthermore, the J­
values along each path from the start node to a surely-expanded node must be

strictl)' increasing; otherwise, the f-values of sequence A are non-increasing.

CHAPTER 4. WORST CASE ANALYSIS 43

Given an admissible solution space tree G that satisfief; Condit.ions 1 and

2, the worst case performance of IDA * is realized in the foIlowing manuer.

By definition, the cost bound of the first iteration, dt'notéd C't, is set t.o the

cost of the start node ni, that is, Cl = f(nl)' A dcpt.h-first search is carried

out untîl either a goal node is selected for expansion or the j-valut's of aIl

expandable nodes are greater than Cl. If an optimal goal nod(' IS Ilot st'Iecled

on the first iteration then f(nd is unique and less than aIl j-valuf's along any

path rooted at the start node. Hence, only the start 1I0de 111 is selec t t'd ftlr

expansion on the tirst iteration. The cost hound of the s('wIId 1t.('f,1I IOlI ('2

is set to the minimum f-value, say f(n2), that exct-'('d('d f(lld ou the fin,t

iteration. If an optimal goal node is not selected on the S('(ond Itcrdt 1011 1.11<'11

f(n2) is unique. Hence, under the condition of monotoIlÎClt.y, ollly r\()d('~ ftl

and 11} are selected for expansion on the second iteratlOll. WltholJt los:., of

generality, on any iteration i that dfjes not select. an optimctl goetl I1od{', al,

least. one no de n,+! has an f-valué thé.t is equal to the millÎlllIllll j-VdltH' t.hrlt

exceeded C,. If an optimal goal node is not selected 011 itf'fatÎo/l l + 1 U){'II

f(n,+d is unique and node 11.+1 along with aIl nod('~ Tl), 1 :5. J ~ l, are

selected for expansion on iteration l + 1. Therefore, eXd< tlj (Hl<' add Î t ion al

no de is expanded on each iteration that does not splcd a goctl 110<11'. It abo

follows that p iter' tions are required to encompa..,s and expdnd t.he sel oi ail

nodes that are surely-expanded hy A *.0

Theorem 4.1 is based on the conditions of uniqueness and mOIlotoIlicity.

Theorem 4.3 below establishes the non-vacuity of Conditions 1 and 2 and more

importantly, reveals that the worst case behaviour of IDA * may be f<>alized

on any solution space tree.

CllAPTER 4. WORST CASE ANALYSIS 44

Theorem 4.3 For any solution space tree G = (s, T), there exists an ad­

missible heuristic function h, 0 ~ h ~ h-, such that Conditions 1 and 2 are

satisfied.

Proof: If h = he then no no de is surely-expanded by IDA * and the theorem

is trivially proved. Assume instead that an admissible monotone heuristic

function h' < h· is applied to each non-goal node. The number of additional

nodes that are expanded by IDA * on each iteration i, excluding the final

iteration, is equal to the number of nodes whose f-values are equal to the cost

bound CI' Let N, represent the number of additional nodes that are surely­

expanded by IDA * on îteration i, If node n.) represents the ph a.dditional

node that is expanded on iteration i then define an heuristie funetion h that

assigns a value to ni) sueh that

h() h'() (,) C,+! - C. ni) = n., + J - 1 ._~

where 1 ~ j ~ NI' The evaluatioll function f = 9 + h remains admissible

sinee f(nkJ) where k is the penultimate iteration rcmains less than the cost of

the optimal solution path CHI = C·, Because C, < C,+I, the f-value of each

additional node that was originally expanded on iteration z is now unique and

faIls within the interval [CI' C.+d. As well, the sequence of f-values of those

additional nodes that were originally expanded on iteration i is monotonically

inereasing. TherefoIe, the f-values along any path from the start node to a

surely-expanded node are also monotonically increasing. Hence, the worst case

conditions of uniqueness and monotonicity are satisfied.O

l

...

CHAPTER 4. WORST CASE ANALYSIS 45

4.3 Worst Case Examples

In the following two subsections, worst case ex amples art' shown for solution

space trees with uniform and non-uniform branching factors. In addition to

Conditions 1 and 2 outlined in Theorem 4.2, Condition 3 giVl'1l helow is al80

assumed:

Condition 3: The f-value of the optimal goal node(s) is gn'at.t'r t.han t.he

f-values of all non-goal nodes.

U nder Condition 3, both A * and ID A * must ultimatcly cxpand and tlH'1 dore

surely-expand ail non-goal nodes befùre selecting the optimal goal IlO<!f' for

expansion.

4.3.1 Uniform Branching Factor

Lemma 4.3 There extsts a solution space tree G = ("', T, li lit ~ il") lI'dli all

uniform branchmg factor b ;::: 1 and un~t edge costs suclt that ('ondztwlI," 1, 2

and 3 are saitsfied.

Proof: Let G be a corn pIete, directed binary trec of dt'pt il d, t hat Î1>, Il = 2.

Each edge is directed away from ,~e start no de s and ha.. ... unit. co~t. Evpry

node at depth d is a goal node and cach node is labcled }evel-hy-}evel, t.op-Lo­

bottom as nb n2," ., np where p = 2d+l - 1. Figure 4.1 show1> the solution

space G when d = 3.

Define an heuristic function h as follows:

h(nl) =
{

0

h*(n l) - 1 + E~=l 2-1:

if nI is a goal Bode

otherwise.

Condition 1 (Uniqueness): Let nI and n) be any two distinct non-goal nodel->.

The f-values of n, and n) are respectively equal to d - 1 + L~=l 2-1< aIld

.,
,

CIIAPTER 4. WORST CASE ANALYSIS 46

Figure 4.1: Labeled Binary Tree of Depth 3

d - 1 + E~=l 2- k
• Since l :/; j, it follows that the f-values of aIl non-goal

nodes are unique.

CondzflOn 2 (Monotoniciiy): Assume that node nJ is generated from the ex~

pansion of node n,. Therefore,

/(nJ) = g(nJ) + h(nJ)

= g(n,) + 1 + { 0
h*(nJ) - 1 + E~=12-k

= {g(n,) + h·(n,)

g(n.) + h·(n,) - 1 + E~=l 2-k

> g(n,) + h-(n,) - 1 + E~=l 2-k

- !(n,).

if nJ is a goal node

otherwise

if nJ is a goal node

otherwise

sinee i < J

ConditIOn 3: Since the f-value of each goal Dode is equal to d, ail non-goal

node:) are expanded before an optimal goal node is selected for expansion.D

CHAPTER 4. WORST CASE ANALYSIS

1

3

4

1 1 1 1 1

Figure 4.2: Solution Space of a 4-City ATSP

4.3.2 Non-Uniform Branching Factor

4ï

An example of an exponential se arch with a non-uniform branching fac! or i~

represented by an instance of the asymmetric traveling scll('~r)('rsoll prohl('J11

(ATSP).

Definition 4.1 Given a poslttve adJacency matrlX (CI}) Wltf n ('a rh elemf'nl CI)

represent ... the cost of travelzng fmm cIty 1 to cIty J, the a8y1TtTftf'/nc lm"tlzng

salesperson problem IS to find the manlmum cast tour thai bfgm ... al an arlntmfy

CIty, visits each other' city exactiy once and retUrTt8 ta the .~t(lrtlng nt y

The solution space for a 4-city ATSP is shown in Figure 4 2 Each l'dt il from

the start node to a goal or Ieaf node represents Olle of (4 -))' altprnat(· tour~

l ClfAPTER 4. WORST CASE ANALYSIS 48

thal begin and end at city 1.

Lemma 4.4 There eZlsts an instance Gm of the m-clty ATSP such that 'ri m >

l, CondItIOns 1, 2 and 9 are satasfied on Cm.

Proof: Assume, without loss oi generality, that the tour begins and ends at

city 1. Define an instance of the ATSP by a positive adjacency matrix Ct), 1 :5

i,j ':5 m with the following properties:

1. For z = J, Ctl = 00.

2. For i =1 J, ail CI] are unique and assigned values from the following sets:

() v ..J. 1 {21 23 22(m-l)2-1} a ror J., ,CI) f , , .•• , ,

CondrtlOn 1 (Uniquenfss): Define a binary word b2m(m-l)-1 ... !J2 b1bo of length

2m(m - 1) for each path rooted at thê start node s as follows. If Ct] with cost

21-: is found along a path from s to, say, node n then set bl-: of the binary word

repn'scnting this path to 1; otherwise, set blr to O. Since aIl paths rooted at

the start node s differ by at least one edge (cost), the value of the binary word

representing the path from s to n is unique and equal to g(Tl).

The path from node n to a goal node is stored likewise in the same binary

word that represents the path from the start node s to n. Clearly, if the

heuristic function h = 0 then the J-value of each node remains unique and

equal to g. Assume, instead, that h = !h·. If Ct) with cost 2k is found a)ong

the path from n to a goal node then set bk_lof the binary word representing

this path to 1; otherwise, set blc - 1 to O. Since a right-shift of one bit position

does flot affect the bit positions representing the path from the start node s to

n, the uniqueness of the cost of each path, and hence its f-value, is preserved.

1

•

CHAPTER 4. WORST CASE ANA.LYSIS

Condition 2 (Monotonzclty): In general, if h = k· h- wht'rt, 0 ~ 1.. < 1 thell

the following result ("an be stated When any node n, is expanded, ail newly­

generated nodes nJ satisfy

h(n,) = h(nJ) + k· Ca)

which implies

Therefore, for the cases k = 0 and k = ~ that satisfy COlldition 1 Oll tilt'

problem instance defined above, the f-values along any path roolt·d at tll('

start node sare 4lso strictly increasing.

Condztion 3: Since the return costs from each of the m -- 1 citH'!-I to fit Y 1 art'

assigned the 2(m - 1) high order bits of each binary word, ail Hon-goal lIod(·s

are expanded before an optimal goal node is seleded for ('xpaIl~)()!l [J

When h = 0 the A * algorithm irnplemcnts brute-force ullifurrn ('()~t ~('arch

[33,38]. An important corollary stems from the above (·xiunpl(·.

Corollary 4.1 Gwen a solution space tree G = ($, T, hllt = 0) 'IJ1111t non-un"

edgc cosis, IDA'; lS not asymptoitcally ophmal, wzth n,~p(tf to tlH numlJt l'

of surely-expanded nodcs, over the class of admlSSlbir' brute-f07w Irr(,"((H'ch

algorithms.

This result is contrasted with the daim in [23, Theorem 4.2] that given a solu­

tion space tree G = (s, T, hlh = 0) with unit costs and an uniform branching

factor, IDA * is asymptotically optimal over the class of admlsbiblc brute-force

tree search algorithms .

CllAPTER 4. WORST CASE ANALYSIS 50

4.4 Concluding Remarks

"'or any solution space tree C, it is shown that there exists an admissible

heuristic function such that the worst case conditions of uniqueness and mono­

tonicity are satisfied on C. Under these conditions, IDA * surely-expands

(M2(k) + M(k))/2 nodes over M(k) iterations. Therefore, in the worst case,

the time complp-xity of IDA * is quadratic with respect to the time complexity

of A *. In one interesting instance when h = 0, it is shown that IDA * is not

asymptotically optimal, in terms of the number of surely-expanded nodes, over

the c1ass of admissible brute-force tree search algorithms with non-unit edge

costs.

In [24] and the next chapter, it is argued that the asymptotic time optimal­

ity of IDA * is ensured if the number of additiol .al nodes that are expanded on

each itcration grows exponentially over the number of iterations. A corollary

of Th('orem 4.3 foll)Wf, immediately.

Theorem 4.4 For any solutIon space tree C = (s, T, hllt :::; he), there eXlsts

an admissIble monotone heurtsilc function h, 0 :::; h :::; h*, such that IDA * is
asymptoftcally optimal, an terms of the number of surely-expanded nodes, over

the clas,', of admIssible best-first tree scarch algorithms.

In pract.ice, however, maintaining an exponential growth rate in the num­

ber of additional nodes per iteration is computationally risky. One method,

suggested in [24] and implemented in [46], pushes out each depth-first search

beyond the original, minimum cost bounds of each iteration. In other words,

several iterations are amalgamated into one. Unfortunately, a performance

measurement, based on the number of surely-expanded nodes, Îs inappropri­

ate in light of the potentially large number of inadmissible nodes that may be

expandt'd on the final iteration [38, Chapter 6].

1

1

Chapter 5

Time Complexity Spectrum of

IDA*

5.1 Branching Factors

The time complexity spectrum of IDA * is delinealed by it~ a.~yJllptoti(opt illlal

and worst case performance. 1'0 charaderize the efficiency of IDA * s('arch over

its time complexity spectrum, two branching factors are int rodm ('d

Definition 5.1 The effectwf branchmg factor, deTwted Il, (1). I.~ f1tt mlw of

the total number of nodes that are expanded on liera/IOn l OV(r the totalllumhn'

of nodes that are expanded on aterahon 2 - l, that IS, for 2 :S 1 :S k,

. M(i)
b~ (r) = M (1 _ 1)

Definition 5.2 The heurlstlc branching factor, denotcd bh(z), IS tht· ralio of

the number of addrtional nodes that are expanded on iteratlOn lover the numbCT

of additional nodes that are expanded on iteralaon 1 - l, tltal IS, for 2 :S t ::; k,

51

1 .. CHAPTER 5. TIME COMPLEXITY SPECTRUM OF IDA" 52

In this chapter, the asymptotic time complexity of IDA * is derived when

the effective or heuristic branching is 1:

Consta.nt: b(i) = b> 1, 2 $ i $ k.

Decreasing: b(i) = (ij(i -l)t, 2 $ i $ k and r > 1.

Unit: b(t) = b = l, 2 $ i $ k.

In each case, the time complexity of IDA * is stated as a.n asymptotic function

of the time complexity of A *. It is shown that the constant, decrE'asing and

unit branching factors define a relatively smooth degradation {rom the optimal

to the worst case performance of IDA * over its time complexity spectrum.

5.2 Constant Branching Factor

Theorem 5.1 Gwen a solution spa ce tree G = (s, T, hlh $ h*) with a con­

stant effective or heuristic branchm9 factor greater than one, IDA" is asymp­

totically optimal, in terms of the number of surely-expanded nodes, over the

class of admissible best-first tree search algorithms.

Proof: Case 1: Constant effecttve branching factor: Let M (1) be initialized

to 1. Therefore, the total number of nodes M(i) that are surely-expanded on

iteration i, 2 ~ i $ k, is equal to b:- 1, The time complexity of IDA * follows

immediatcly from Equation 3.4:

k-l

T(k) = M(k) + L M(i)
1=1

k-l

- M(k) + L b;-1
1=1

1 For the unit branching factor, the time complexity of IDA· is evaluated only for bt.

stnce bt must be strictly greater than one for ail iteratioDs leadmg up to and mcluding the

pellultimate Iteration

1 CHAPTER 5. TIME COMPLEXITY' SPECTRUM OF IDA·

Since M(k) = b:-t,

where be > 1.

= A/(k) b:-
1

1 + be - 1 .

T(k) < A/(k) + ~~k~

Case II: Constant heunstic branchmg factor: Let N(1) bt> init iali?A.'d to 1.

Therefore, the number of additional nodes N(l) that are surely-expauthl on

iteration l, 2 S t $ k, is equal to b~-l. Furthermore, the' total I1lllllh('f of I1od{·~

that are surely-expanded by A * (m G is

le

M(k) = LN())
J=1

k

- L bCI

)=1

bt -- 1
- bh - 1 .

The time complexity of IDA * follows immediately from Equation :3.5:

Ie-l ,

T(k) = Af(k) + L: L N(j)
1=1 J=1

Ie-l ,

= A/(k) + L: L br
l

1=1 J=1

k-l

= A/(k) + "" bh - 1
L- bh- 1
1=1

(.'>.1)

= A/(k) + _1_ [(bh - 1) + (b~ - 1) + (b: - 1) + ... + (11:- 1
- 1)]

bh - 1

= AJ(k)+ 1 [b:-I_k].
bh - 1 bh - 1

From Equation 5.1,

T(k) < A/(k) + :~~

(CllAPTER 5. TIME COMPLEXITY SPECTRVM OF IDA * 54

where bh > 1.

In either case, IDA* performs less than M(k)j(b - 1) node expansions

during al! iterations leading up to but not including the penultimate iteration.

Since bis constant and greater than one, R(k) is 9(M(k)). Therefore,

T(k) E 8(M(k)).O

5.3 Decreasing Branching Factor

The analyses of the previous section assume that either the effective or heuristic

branching factor b remains constant over ail itel'ations. If, on the other hand,

the branching factor is monotonically decreasing with i, that is,

b(i) = (_. i)r
t - 1

where r ;? 1 then the asymptotic time complexity of IDA * is no longer optimal

over the c1ass of admissible best-first tree search algorithms.

Theorem 5.2 Given a solutwn spa ce tr-ee G = (s, T, hlh ::; h-) wrth a de­

crcaszng effective branching factor, the asymptotlc trme complcxity of IDA * on

G, Hl terms of the number of surely-expanded nodes, lS e(Af~(k)).

Proof: Let A/(I) be initialized to 1. Given b(i) = (,j(t-l)V, the total number

of nodes .M(l) that are surely-expanded on iteration i, 2 ~ i ::; k, is equal to

i r
• The time complexity of IDA * follows immediately from Equat.ion 3.5:

k-l

T(k) - M(k) + L M(i)
1=1

k-l

- M(k) + L,r,
1=1

---...

CHAPTER 5. TIME COMPLEXITY SPECTRUM OF IDA"

Since

(52)

the summation falls within the interval

Therefore, the overhead R(k) is 9(Ptl). Because M(k) is cqual to kr ,

T(k) E e(M~(k)).D

Theorem 5.3 Given a solutwn spacc tree G = (s,T,hlh ~ },-) tl'Ith a dt,­

creasing heurisitc branchmg factor, the asymptotlc Inne compif nfy of InA ..
!il. on G, ln terms of the numbcr of surely-e:rpanded nodt,:;, lb A(At r+ 1 (~')),

Proof: Let N(l) be initialized to 1. Given b(l) = (1/(1 - 1)V, the nllllll"'r of

additional nodes N(i) that are surely-expanded on iter.ttioll 1, 2 S 1 S k, I~

equal to zr. Furthermore, the total numhel of nodes that an' sun.lY-('xpandp<!

by A* on Gis

k

Al(k) = L N(j)
)=1

le

= LJ r

J=1

The time complexity of IDA * follows immediately from Equation 3.5:

k-l 1

T(k) = M(k) + L L N(j)

Ir-l 1

- M(k)+LLr.
1=] J=)

(5.:1)

l ClIAPTER 5. TIME COMPLEXITY SPECTRUM OF IDA * 56

Using the bounds established in Equation 5.2, the inner summation falls within

the interval

[
ir+l (. + 1)r+I]
r+l' r+l

and, likewise, the outer summation faUs within the interval

[
(k - 1 y+2 (k + l y+2]

(r + l)(r + 2)' (r + l)(r + 2) .

Therefore, the overhead R(k) is 9(kr+2). Because M(k) is E>(kr+l) from Equa­

tion 5.3,
!il T(k) E E>(M r·+J (k)).D

5.4 Unit Branching Factor

Theorem 5.4 Gwen a solutIOn space tree G = (s, T, hlh ~ h*) wlth a heurzs­

tle branchmg factor equal to one, the asymptotic tlTne complexlly of IDA * on

r" in terms of the number of surely-expanded nodes, is 8(Af2(k)).

Proof: If bh = l tht>n a fixed number of additional nodes are expanded on each

iteration. Let N(1) be initialized to c, c ~ 1. Therefore, the total number of

nodt>s M(i) that are surely-expanded on iteration i, 1 ~ i ~ k, is equal to c· i.

The time complexity of IDA * follows immediateiy from Equation 3.5:

k-l 1

T(k) = M(k) + L L N())

Since M(!.·) = c· k,

T(k) = M(k) + M(k)[~dk) - cl.

1

...

CHAPTER 5. TIME COMPLEXITY SPECTRUM OF IDA '* 57

Therefore, the overhead R(k) is S(M2(k)) and

T(k) E 8(Af2 (k)).o

The worst case analysis of Chapter 4 is a special case of Theorem 5.4 whcn

c = 1.

5.5 Concluding Remarks

The idea of a heuristic branching factor was originally definc'd in [24J a,'i follows.

Definition 5.3 The heu1'tsttc branchmg factor bh lS thf Ul'tTagt' ralw of lht'

number of node8 at a given cost to the numbcr of nodt:s al lItt' nt'rf 8mal/fT

cost, that 18,

b
h
= L~=2N(t}/N(i--1).

k-l

Using this definition of bh , the following conjecture is stat('d in [24]

Given a non-overestimating (admissible) heuristlc fUllctioll wit.h

heuristic branching factor greater than one then IDA * Il> a, ... ympt.ot­

ically optimal in time over the class of bcst-first sc<tfcb algoflt.lllm

that find optimal solutions on a tree.

Although the above conjecture is nearly identical to Th('orem 5.1, it rails to

exclude the non-optimal case of a decreasing branching factor WhPfC

b - E~=2(t/(1 - l)t 1 'V k >_ 2.
h- k-l >

The three cases of a constant, decreasing and unit branching factors rc­

spectively correspond to the exponential, polynomial and constant growth of

Cl/APTER 5. TIME COMI-LEXITY SPECTRUM OF IDA * 58

the explored solution space from one iteration to the next. The optimal time

complexity of IDA * is ensured, that is,

T(k) E 8(M(k»

if the effective or heuristic branching factor is constant and greater than one.

On the other hand, the worst case time complexity of IDA * is achieved, that

lS,

if the heuristic branching factor is exactly E".J·.Jal to one. Finally, if the branch­

ing factor is decreasing then the time complexity of IDA:OC falls between the

two extremes above. For a deaeasing effective branching factor where be (z) =

(Z/(l-l)Y,

and for a df>creasing heuristic branching factor where bh(i) = (z/(i - l)r,

!il T(k) E 8(Mr+l (k)).

The three cases together define a time complexity spectrum of IDA * fJOm its

optimal to ils wfJrsl case performance.

1

Ac

Chapter 6

Expected Case Analysis

6.1 Mndel of Computation

The expected case analysis of IDA· ?ssum('s a prohabdl..,t lC motl('1 of COlllpll

tation. Rooted at the start nodf' 8, the' solution ~pac(' grrlph (,' = (\', I:,{') 1"

modeled as an infinite tree \\ith a comtant branchillg fcll tor " > 1 Eit(II (·d~,'

Îs directed away from the start node $ and I~ a,.,>slglled <lll IIldqwlldcllt eilld

identically distributed (i.i.d.) randoIn integer. 'l'tH' Illt('ger \ci.hH' ct..,lglwd tu

each edg(' (11" Tl)) E E represen t~ not the' CO!lt of (n •. 71)) ft" ddllll'd III Chel pt ('f 1

but the dzfferentwl cost of (n •• n J) as d('fillf'd below.

Definition 6.1 Gwen a solutton spact graph G = (F, l,.:, ('), OH dlill 1'f lItwl

cost of(n"n)) E E, denoied l1f(n"n)), IS equal io tht dlfftrOln bfltJ1(fT/ IIH

f -values assigned to each of lis end nodes, thal 1.'.,

Lemma 6.1 Gwen a solutIOn space graph G = (V, E, C), If b.f(n" Tl)) 2 0

for ail (n" n)) E E then the evaluafto71 fllnctwn f saitsjiu, th, propfT ty of

monotOntClty.

59

CllAPTER 6. EXPECTED CASE ANALYSIS 60

Proof: Since ~f ~ 0, it follows that f(n J) ~ f(n ,) for aH (n.,n)) E E.O

Definition 6.2 Given a solutwn space graph G = (V, E, C), the dlfferential

cost of a path nI, n2,' .. , np where s = ni is equal to the sum of the dlfferential

edge costs j'rom the start node 8 to node n".

Therefore, the differential cost of a path ni, n2, ... ,n" is equal to

,,-1
L ~f(n" n l +l)
1=1

p-l

= 2:[I(n,+I) - f(n,)]

= f(n p) - f(8).

Unlike the expccted case analyses of [4, 37], the heuristic value dcfincd at

each node n is coalesccd into the differential edge costs a)ong the path from

s tü n. If no hcuristic information is available (h = 0) tlJCll ~f(Tl,. 7/)) is

equal to C(n,.tl)) for each edge (n"n)) E E. On the othel hand. if h('uflstic

information is perfect (h = ft-) then tl.f(n"nJ) is eqmJ to 0 for carh edge

(n,. n)) along an optimal solution path. Figure 6.1 shrJWS Figure 3.2 as labeled

with it~ differential edge costs.

6.2 Basic Formulations

Without loss of generality, the cost of the start Dode oS is initialized to O. Bence,

the f-value of each node n is equal ta the differential cost of the path from s

to n Assuming the property of monotonicity, *1e number of additional nodes

N (l) that are surely-expanded by IDA" on iteration l is defined as the number

of paths with an differential cost of t 1. Thus, the cost bound C. of Iteration l

1 It l!t Important to note that the numher of paths wlth a dlfferentlal cost of 1 may not be

greater than zero w}llch vlolates the requislte that at least one addltlOn~1 node IS expanded

CHAPTER 6. EXPECTED CA.SE ANA.LYSIS

D

A

-1

F

2

J

1/
M~

Figure 6 1: Differentiai Edgp Costs of Flgul<' :l.~

t; 1

is also equal to i. The total number of nodes that an' cxpalldf'd ou ilf'f.tf Hill

k ~ 0 and the ove raIl time complexity of IDA * arp n'~W'(t i V("-~

k

M(k) = 2: N(z)
\::0

and

k

T(k) = 2: M(z)
\::0

The expected values of N(k), M(k) and T(k), dcnotpd EN(k), fj'M(k)

on each IteratIOn However, 10 hght of the exponentlal growth of 1'(k) df'rJved 10 Sf'f'IIOII fi a,
thlS flaw 18 factored out ln the asyrnptotlc analysls

l CIIAPTER 6. EXPECTED CASE ANALYSIS 62

and ET(k), are defined in terms of the generating functions V, Il and T. Thus,

00

II(Z) = 2: EN(k)z",
k=O
00

Il(z) - 2: EM(k)i'
k=O

and

00

T(Z) - 2: ET(k)z".
k=O

Uy cnnvention,

EN(k) = [Z"]II(Z),

EA1(k) = [z"]Il(z)

and

ET(k) = [Z"]T(z)

are IIH' coefficient5 of zk in the expansions of v, Il and T re5pectively.

The differential f'dge costs are treated as random non-negative integers and

are rharaderized by an integer probability distribution dcfined in tcrms of the

gellerating function <p where

00

4>(z) = L P(X = j)z).
)=0

In addition, the definition of 4> satisfies the following two properties.

Property 6.1 4>(0) = P(X = 0) < 1.

Property 6.2 gcd{JIP(X = J) > O} = 1.

Properties 6.1 and 6.2 are motivated by the following two lemmas.

CHAPTER 6. EXPECTED CASE ANAJ.. YSIS

Lemma 6.2 If 4>(0) < 1 then 4> IS monoionacally tncrrasmg Hl thf 11ltrrt'lL1

[0, 1].

Lemma 6.3 If gcd{;IP(X = J) > O} = 1 then therr eXlsts a constant ko ~ 0

such that ~;:o P(X1 + ... + Xl = k) > 0, 'V k ~ ko.

Lemma 6.3 ensures that asymptotically, the expected numbt'r of addttional

nodes that are surely-expanded on ite.-ation 1 is greatef than zt'ro.

Given a probability distribution 4> that satisfit'!> PrOpt'rt\t':- fi 1 and fi :!, tl\('

expected Humber of path& in the &olution spa('(' trCt' that han' an dtfft'n'lIt ietl

cost of k is stated directly Thus,

EN(k) = [/'Jv(z) == L bl P(XI + ... + X) == J,)
1=0

where b > 1. Therefore, gi\'en that ail X.'s are indept'rH!f'llt and iclt'Iltl< ail}

distributed,

00 CG

v(z) = LzkLb1P(X, + ... + X) = k')
k=O }=o
00 CG

L hl L z"P(X) + ... + X) == q
1=0 k=O
oc

L bl E(ZX1+ tXJ)

J=O
00

- L bl E(zX1)1
1:0

00

L(bt/>(z))l
}=o

{ ~ - b,p(z)t' if b4>(z) < 1
=

if b4>(z) ~ 1.

The functions l'and Tare also expressible in terms of v as shown in L('unna GA

1 CllAPTER 6. EXPECTED CASE ANALYSIS

Lemma 6.4 GlVen z < 1 and bt/>(z) < l,

1. #-,(z) = v(z)
1-z

v(z)
2. T(Z) = (l-z)2

Proof: Sinre EA1(k) = E~=o EN(j),

00

(I .- z)ll(z) = (1 - z) L EM(k)zle
1e=0

= (1 - z) t, (t. EN(J)) z·

- t, (t,EN(j)) z· - t, (t.EN(j)) zHI

- EN(D) + ~ (t,EN(j)) z· -~ (~EN(})) z·

- EN(D) + ~ (t, EN(j) - ~EN{J)) z'
00

- EN(O) + L EN{kJ::k
1e=1

v(::).

Tht'refore, 11(::) = 11(::)/(1 - z).

64

Sirnilarly, since ET(k) = l:~=o EMU), it follows that r(z) = Jl(z)/(I- z).

Given Jl(;:) = lI(z)/(l - z) from above, 1'(Z) = v(z)/(1 - Z)2.0

6.3 Expected Case Analysis

For completcncss, the following definitions of complex analysis are included.

Definition 6.3 A comp/ex functlOn t,&(z) of a comp/ex varzab/e Z IS sazd to be

a1w/ytlc at the pomt :: = () If If IS differt:ntiable at (}.

l CHAPTER 6. EXPECTED CASE ANALYSIS 65

Definition 6.4 If a comp/ex functlon tP(z) is ana/ylIe an au opcn dt"k Ct nf,'nl

at 9 but is not analylte al () Itself then 1/.' IS sa Id to haN' an .so/a/cd slflgularafy

at O.

r'~"hlition 6.5 A funcilOn 1/.'(Z) 18 saad to be ana/ylie ln tht' opt'n reqtoll Il.f

and only If it is analyttc at every poant an R.

Definition 6.6 If there eXlsts an lSolatcd smgularaty at the pomf 0 bul IIIt'1't

a/so e:tlsts an mteger m > 0 sueh that (z - o)m'N z) .8 ana/ylre al 0 tilt TI 1",(;:)

IS sard to hal'e a pole at O. The smalles/ m thal makc,'i (;: - 0)'" mW/Y/Ir at 0

IS calltd th t order of the pole.

Definition 6.7 ([20» A funcllOn ~I(Z) .s calhd rnerOrn017JhlC If Il,., (wa/Y/le

tn a boundtod regran R cxapt for a jinzte number of polt ...

The function v and by extension, the functionfo Il and T hdV(' i~oJat.(·d

singularities at the points which satisfy

bcjJ(z) = 1 (fi.))

It is within the proximity of these points that the a,symptot J(bf'ha\'iour of UI('

coefficients of v, JI. and T follows directly from the l('mll\a~ Iwlll\\'

Lemma 6.5 There eXlsts a umque real solutton, drnoft'd Zo WIH n 0 < Zo < l,

of EquatIOn 6.1 If and only .f 1 < b < l/<p(O).

Proof. Follows irnmediately from Lemma 6.2.0

A solution of Equation 6.1 at Zo = 0 implies that therc eXIsts an infinitc

number of paths with a differential cast of O. Sin ce b<p(O) = l,

00

EN(O) = L bJ<p(O)J = 00.

)=0

Therefore, Property 6.1 is uaperseded by Property 6.a below.

1 CHAPTEll 6. EXPECTED CASE ANALYSIS 66

Property 6.3 4>(0) = P(X = 0) < lib.

Lemma 6.6 If 1 < b < 1/4>(0) then any solution of Equation 6.1 where

z :1 Zo has Izl > zoo

Proof: It is shown first that Izl ~ ZOo Indeed, for any solution z of Equation 6.1

where z :1 Zo,

b4>(zo} = Ib4>(z)1
00

= lb L P(X = J)zJI

00

< b L P(X = j)lzJI

00

= b L P(X = j)lzlJ
J=O

= b4><lzl).

Bccause 4> is monotonieally increasing, Izl ~ ZOo To show that Izl > Zo, assume

now that z = zoe lll
• Then in order that

00

L P(X = j)z~eIJlI

00

= LP(X =j)zJ

00

= L P(X = j)z~,
J=O

equality must he estahlished for the real parts. Since b > 1 and P(X = j) ~ 0,

jO must he a multiple of 211' fOf all J with P(X = j) > O. Thus, () is a multiple

of 211' /) for aH j with P(X = j) > O. Henee, () is a multiple of 211' / gcd(j) wherp

gcd(J) is taken OWf ail j with P(X = j) > O. Therefore, () is a multiple of

211'.0

.. CHAPTER 6. EXPECTED CASE ANALYSIS 6ï

Lemma 6.7 If 1 < b < 1/</>(0) then Il has a pole of OrdtT O1le al: = :u

Proof: It is sufficient to show that

lim (: - ZO)II(:) < 00.
%"'%0

By L'Hôpital's Rule,

1
. Z - Zo
lm =

z-zo 1 - b</>(z)
1

b</>'(zo) .

Since </>'(:o} > 0 from Lemma 6.2, the li mit is bounded.O

Lemma..'l IL5, 6.6 and 6 ï establtsh that UIt' funetioll l' i~ IlIt'rolllorphH for

Iz 1 < Rand analyt ie on 1= 1 = R where =0 < R < inf{ 1: 1 IlI:>(:) = 1..: f. :o}

In the region bounded by R. Il has a single polt' of ord('r Ol\(' rll :: = ::0

[Lemma 6.7]. Therefore from [20, p. 81], tht' dSymptotl< lH'hrl\'io\ll' of tlll'

coeflkients of Il is gl Ven by

(fi.:!)

where

ReS(IIi Zo) = lim(z-zo)II(=)
,2-"Zo

=
b</>'(zo) .

Substituting Equation 6.3 into Eqllation 6.2 yif'lds

Because 0 < Zo < 1 and Zo < R,

where c is a constant greater than one. Similarly, it also follow.., that

1 -k
EM(k) = bA..'() k+l(l) + O(R)

'1' Zo Zo - Zo

•

.---------------------~-----

l CIIAPTER 6. EXPECTED CASE ANALYSIS 68

and

ET(k) - 1 + O(R- k
)

- b<p'(zo)z~+l(l - ZO)2 •

The ratio of the expected number of nodes that are surely-expanded by A * to

the expected number of nodes that are surely-expanded by IDA *, that is,

EM(k)
ET(k)

is approximately 1 - zoo Therefore, a constant fraction of the overall time

complexity of IDA * is spent on ail iterations leading up to the penultimate

iteration. Assuming an integer probability distribution <p that satisfies Prop­

ertics 6.2 and 6.3, Theorem 6.1 is stated directly.

Theorem 6.1 GlVcn a solutIOn "'pace tree wlth an umform branching factor

b > 1 and non-negaflve dIfferentiai edge cosis that are u.d. from an rnteger

probablltty d,strzbutlOn where b < 1/ P(X = 0) then the expeded number of

nodr ... Ihal are surcly-expanded by IDA·, denoted ET(k), tS 8(Ck+l) whrre C IS

a COllstaTlt gnater than one

Corollary 6.1 Gwen a solution space tree wlth an uniform branchmg factor

b > 1 and non-negatlUt. dlfferenital edge costs thal are l.t.d from an lntrger

probab!llty d,st1'lbutlOn whe1'e b < 1/ P(X = 0) then IDA· IS asymptoilcally

optImal on atJerage, Hl terms of the number of surely-expanded nodes, over the

class of admissible best-first tree search algonthms.

6.4 Expected Case Examples

In the following two subsections, average case examples are shown for the

uniform probability distribution U(I, 2) and the geometric probability distri­

bution with parameter p, 0 < p < 1.

1 CHAPTER 6. EXPECTED CASE AN,o\U'SIS 69

6.4.1 Uniform Probability Distribution

The generating function 4>(z) for the uniform probability distribution lI(1, 2)

IS

which expands to

Thereforc,

z + z2

2

4>'(z) = ~ + z.
2

The real solution Zo of b(j)(z) = 1 is equal to

Therefore,

-1 + ';1 + (8jb)
2

,) 1
4> (zo = 2" + ZO·

Ignoring the lower order terms,

EN(k) -

EM(k) -

ET(k) -

where 1 < b < 00.

1

EN(J.-)
1 ,
.l - Zo

EN(k)
(1 - zoF

1

,
.'"

CIIAPTER 6 EXPECTED CASE ANALYSIS 70

6.4.2 Geouletric Probability Distribution

The g(>ncrating function q,(::) for the geometric probability distribution with

parameter p wherc 0 < p < 1 is

00

LP((1 - p)z)J.
)=0

Hecause (1 -- p)z < 1, q,(z) reduces to

p
1 - (1 - p);: .

Thcrcforc,

4>' (z) = _ p(1 - p)
(1 - (1 - p)z)2

Th{· real solution Zo of bg(z) = 1 is equal to

Thereforc,

1- pb
1- p'

A.'() = (I - p)
Cf' Zo pb 2 .

Again, ignoring the lower order terms,

EN(k) =
() ()

k pb I--p

1 - pb 1 - pb '

EM(k)
EN(k)

-
1 - Zo

- (1- p)
EN(k) p(b-l)/'

ET(k)
EN(k)

- (1 - zo)2

()2 I-p
- EN(k) p(b _ 1)

wh('rc 1 < b < 1.
p

CHAPTER 6. EXPECTED CASE ANALYSIS ïl

6.5 Concluding Remarks

Since the number of iterations k performed by IDA * dnd th<, dtfI'(·f('lItia.1 cost

of the optimal solution path are equivalent, Theorem 6.2 is statt'd.

Theorem 6.2 Gtven a so/utton spact' tree wlth an tJ.11tfo1'1n b7YlIlChl1lQ far!()7'

b > 1 and non-negative differenttal edgc costs thai are 1 t d f1'011I an wtt'y, f'

probablitfy dtstributwn where b < 1/ P(X = 0) thrn the ('J'JI' etuI mL1llbtT of

nodes that are surely-expandt'd by A , denoted EM (k), li> H(l'kt 1) wllat (' 7.' (l

constant greater than one and k IS the differenttal C08t of th" oplzmal .'w/lllwTI

pa/ho

The expected case analysis of IDA* rests on the' assulIlptlOlI that titI' dlf­

ferential edge costs are modeled as indepcndcnt and ld(lit ILtlly d Ist.n hut pd

random integers. This assumption is supported hy HI(' followillg ol, (·! \,d IOIIS.

1. If the differential edge costs arc rcal number~ wlth a 1Il,lxiIllU!1l P(('(i­

sion of 1O-t, t ~ 1, then each differential f>dge' (,Ol!t !).{(71\,'fI J) \h (·,tl!ily

converted to the integral value

without loss of information Thercfore, the mode! of COlllpllt al iOIl Il! o!dy

limiting in the ca.."e of infinite plecision.

2. Heuristic search is mos!' orten applied to problems for whi(h tlH'f(' f'xist.s

an exponential and, in sorne cases, an infinite number of po""ibl(' solution

paths. For instance, the traveling sal('~person and otlwr wrnbiJJatorial

optimization problems select an optimal solution among ail cXI'OIH'ntial

numbcr of possibilities. Given an exponential numher of go <lI lI()d(·~)0-

cated at a distance d + c log d, c ~ 0, from the ~tart nod(' ,c" It was

.1 CHAPTER 6. EXPECTED CASE ANALYSIS 72

shown in [4J that the expected time complexity of A * is exponential in

d regardless of the accuracy of the heuristic function employed. In the

analyse~ prescnted here, an analùgous result is derived. If a probabil­

ity distribution satisfies Properties 6.2 and 6.3 then both A * and IDA *

surely-expand on average an exponential number of nodes regardless of

the probability distribution that models the differential edge costs.

3. Th€' differential cost of an optimal solution path is equal to the diffprence

between the cost of the optimal solution path and the cost of the start

node s, that IS, r(.~) - f(s). As the accuracy of heuristic function

improves, the differential cost of the optimal solution path de('fcascs.

IIcnc{' as in [4], the expected number of nodes that are &urely-expanded

by A * and IDA * decrt.ases exponentially.

Chapter 7

Binary Iterative-Deepening-A *

1.1 Description of BIDA *

Binary iteratlve-deepening-A" (BIDA *) is an adml'ii'llblt· pplll'rclllzcit 1011 of t III'

IDA * algonthm. Designed ,>pf'rifically to redress tlJ(' w()r~t (d'''' pll('llolI\f'1l01l

of expanding a few additional nodes ovc'r s('verdl iterdtioll". III<' OIIJf'r!IV"" of

BIDA" are twofold.

1. Ta increase the number of additional but adml%iblc Ilod(·~ th"t al<' l'X

panded on each lteral ion, and

2 Ta reduce the total I1umbcr of itcrations

In arder ta meet these objectives. the cast bound of caeh it{'ratioll of BIDA"

is chosen as a point between:

1. A lower bound whieh is non-decreasing from one itpratioll 1,0 tll<' next

but remains less than or equai to the cost of the optunal solutioll path

C*, and

73

1 CllAPTEH 7. BINARY ITERATIVE-DEEPENING-A * 74

2. An upper bound which is non-increasing from one iteration to the next

but remains greater than or equa.l to the cost of the optimal solution

pa.th C*.

On each iteration, BIDA * performs a bounded depth-first search of the

solution space G = (s, T, h). The lower bound of the initial iteration, denoted

L., is set to the cost of tht> start node s, that is, L. = f(s). The upper bound

of tht' 11lItiai iteration, denoted U}, is set to the cost of an)' solution path P

from the start nodf' s to a goal node q. that is, UI = f(q) If thf' lower bound

LI is ('quai tht' upper bound [JI then the BIDA * algorithm terminates with

the solution path P. Otherwise, the cost bound of the initial iteration is equal

to

(1 - W)Ll + wUI

wher(' 0 < w < 1. For the initial iteration and each successive iteration z 2 l,

a depth-first search is performed until either one of two condItions is met:

1. A goal node is selt>ded for expansion, or

2. TIIf' f-value~ of ail expandoble nodes is greater than the cost bound of

itt'ration 1, denotf'd CI

If a goal nodt> q is selected for expansion then the upper bound of iteration

t + l, denoted l T,+ 1, is set to cost of the solution path P from the start node s

to q; otherwis<,. [T,+I remains equal to Ut. If, on the other hand, a goal node

is not s<,lt>cted for expansion then the lower bound of iteration z + l, denoted

1.,,+1, is set ta the minimum f-value among aIl nodes that were generated on

iteration • and that exceeded the cost bound CI; otherwlse, L'+1 rcmains equal

tu LI. If the Upp<'f bound lTI+1 is equal to the lower bound L'+I' the BIDA *
algorithm terminates with the most recent solution path P. If the lower hound

1

..

CllAPTER 7. BIN.4RY ITERATI\'E-DEEPENISG-A·

remains less than the upper bound then a d('pth-fir~t st'ar('h of tl\l' 1>oluttoll

space is repeated with a cost bound Clt) equal to

where 0 < ",",' < 1. The BIDA * algorithm is outlined in Figure 7.1.

An example of a BIDA * search is prescnted in Figure 7.'2. 'l'lU' sulut 1011

space is a complete, directed binary tree of depth 3. Bach 1l0df' A throllp:h J)

is labeled with ils f-valut" and the nodes /l,land l'an' dt'''lglldlt·d d" tilt'

goal nodps. It 1S assumed that w is 0.5 and tlH'rdort', tilt' < o~1 hO\llld ('. of

each iteration 1 is t'quai to

lO.5(L. + lf.)J

The lower bound of the initial iteratioll set to the cost of the st,ifl 1I0d,'

s, that is, LI = 1. Wlthout los~ of gt"!Ieraltty. tht' uppf'r bOIlIle! of t 1)(' 11111 l,Li

iteratioll is arbitrarily ~ct to the cost of the leftmost 501\11 iUIl pdl h '] IWII.foH·,

U1 is equal to 5 and the solution path (ABD/I) Ih assiglH'd 10 /) 'l'III' (0,,1

bound CI of the initial IteratIOn is equal to

lO 5(L 1 + UdJ = lO .5(1 + 5)J = a

Nodes A through Gare expanded on the initial iterat iOll SIII((' a go,d lIod,· Ih

not selected for expansion, th" lower bound of the secolld itpral iOll ih rai..,pd to

the cast of the minimum f-value among expandahl(· n{)d,·~ thdt ('X((·(·clt·cI HU'

cost bound of the initial iteration. Thercforc, L2 is ('quai to 4 Ike all~(' tll{'

upper bound remains unchanged, the eost bound C2 of tlll' ~c'(,(H1d tt"ratlOll if-)

equal to

Only nodes A, Band D are expanded on the :~('('ond itt>ratioll bcfoH' Hl(' goal

node 1 is selccted for expansion. Sinee a goal node is select!'.] for ,'xpaTlf>i<m,

'.

CHAPTEll 7. BINARY ITERATNE-DEEPENING·A '"

COllUlents:

L is the lover bound of the curr@nt iteratlon.
U IS the upper bound of th. current IteratIon.
C ia the cost bound of the current iteratlon.
M lS the .inlaum f-value aaoug generated nodes that

exceeda C.

Step 0: Set L equal to f(s), the coat of the start node s.
Set U equal to the co st of any solutlon path P.

Step 1: If LaU then
EXlt successfully vIth the solutlon path P

Else
Push S onto an empty STACK of expandable nodes.
Set C equal to (1-v)L + vU vhere O<v<1.
Set M equal to MAX.

Step 2: If STACK lS empty then
If M remalns equal to MAX then

EXlt vlth fallure; no solutIon eXlsts
Else

Set L equal to M.

76

Go to Step 1 and proceed vith the next iteratlon.
Step 3: ASSlgn the top node of STACK to p.
Step 4: If p is a goal node then

Set U equal to f(p).
Set P equal to the Solutlon path that 18 found.
Go to Step 1 and proceed vlth the next Iteratlon.

Step 5: Generate the next 8ucceS8or n of p.
Step 6: If node p has no further sucees sors then

Pop p from the STACK
Else

a) Calculate f(n).
b) If f(n) <- C then

Push n onto STACK
Asslgn the nevly-computed f(n) to n.

c) If C < f(n) < M then
Lover M to f (n) .

Step 7: Go to Step 2.

Figure 7.1: The Binary IDA* Algorithm

l CllAPTER Î. BINAR)' ITERATIVE-DEEPENING-A.

B

4 5
K

5
M N

Figure 7.2: Example of a BIDA * SI'arch

-1
P

.. ..
Il

the upper bound of the third iterat ion is lowf'red to ·1 and 1 lit' 1'01111 iOIl paIl.

(ABD/) IS assigned lo P Because tllf' 10w(,1 bound r<'lIIrtlll:-' ullch'lllp'"d, III('

lower and upper bouIlds of the thin! iteratioll art' ('qllaJl. Tllt'fI·fofl" t)1f' BIJ)A *

algorithm terminatf's Will. <;olutlOn pat h P.

7.1.1 Admissibility

Theorem 7.1 Gwen a soluizon spa ce tree G = (s,l,1I11I < hO), JJlJ)A· t.~

admtssible.

Proof: It is sufficient to show that the lower bound of BIDA * will ('wntllally

equal but never exceed the cost of the optimal solution patb C· and tbat

the upper bound will eventually equal but nevcr fall below C·. TIlI'rt.[orl', tlw

lower bound can only '~Qual the upper bound at C· which implil'c.; adrrlls:-.ibility.

IOn the thIrd Iteration, no depth-first 8('arch 18 actually l)f'rfoTllwd

CllAPTER 7. BINARY ITERATIVE·DEEPENING-A * 78

The lower bound of the initial iteration is equal to the cost of the start

node s. Since f(s) ~ r(s) = C·, the lower bound is less than or equal

to C·, Th(· upper bound of the initial iteration is equal to the cost of any

solution path. Since the cost of any solution path is greater than or equal

to the cost of the optimal solution path, the upper bound is greater than or

equal to C·, If the initial lower and upper bounds are equal then an optimal

sollltioll path is immediately found; otherwise, the cost bOllnd of the initial

it,eratiûn, denoted Ch is chof:>cn between the initial lower and upper bounds

If an optimal solutIOn path is not found on iteration t 2': l then a bounded

dt'pth-first search is performed until eithel' a goal node i,· se1eded for expansion

or the f-valu('s of ail expandable nodes is ~,reater than C. If a goal node is

selected for expansion then the upper bound is set to the cost of the solution

path that is found Clearly, the upper bound remalllf:> greater than or equal

to C·, Silice the cost bound of the subst'quent iteration i~ I('~s thaJl the ne\\'

uppe!" bOUlld, ('ach solution path is found al. most on(e Hence, tlw rost of each

solutIOn path Îs less than the co~t of the prevJOlls solution path that 15 found

and th!' upper bound 15 less than the previous upper bound If a goal nocle is

not :-,('Iec'u'd for expansion then the lower bound of the sub'3equcllt lteration is

s<,! to tilt' minimum f-value arnong expandable nodes that exc('('ded the cost

bound of iteration t. Hence, the lower bound remain., less than or equal to C·

but gn'ater than the previous lower bound. In (·ither case, the interval between

the lowcr and upper bound is reduced from one iteration to the next Since

the cost of each directed edge in G is by definition greater than some positive

constant fJ, there exists a finite number of nodes whose f-values faU within the

interval between the initiallower and upper bounds. Because each new lower

or upper bound is equal to the cost of anode whose f-value faIls within the

initial in!erval and because the interval between the lower and upper bound

•

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A· i9

strictly decreases from one iteration to the next, the numlWf of itt'rations

required for either the lower bound or upper bound to reach C· is finitt'

If the lower bound equals C· before the upper bound tlwu tilt' cost bOllnd

of each subsequent iteration remains greatt>r than C· until an optimal solutioll

path is found. At this point, the upper bound is set to tilt' ('w,t of tht' optllnal

solution path and the search terminates. If the upper bound f'qllah. c· twfon'

the lower bound then the cost bound of each su bSf'q\l t'I1 1 itt>ratloll rt'IlId.III~

less tban C· until the low('r bound is cqual to r·, At tlll:-' pOllll, the ~('af(h

terminates and returns the mO!lt recent solutioll path thdt 1'" fOUl1d Sil\((' t Ill'

cost of the most recent solution path i ... ('qual to the (urrf'llt upp('r hOlllld, th,ll

is C·, then an optimal solutIOn patl! is found 0

7.1.2 Time Complexity

Lemma 7.1 (in'fn a 80/utwn spacf Iree G = (s, T,hlh :S h·) and (J < u.) < l,

BIDA * pcrforms al most POg_l_(([11 - LdiO t + 1)1 ItfratH)1/,~ U'!1f7'f c;; l,~ t'quai
1-",

10 min(...J.I - w} and 10- 1 18 equa/ 10 the maxnnum p1'tClSlOll of tht ((1 iJ 1 ('(),~tb

Proof: Dy multiplying the edgf' cost .. hy 10', the low('[, upper alld (O.,t h{)Ullds

of each iteration are treated as integl"al values without l()~~ of ill), lIIat iOIl By

definition, the cost bound C. of iteration l is equal to

(1 - w)L. + wU.

Since either L'+1 > C. 01 U.+1 ~ CIl the interval bctwccn L. and l '. i~ rcdu((·d

by at least a factor of tv = min(""" 1 - w). By reducing Hw int('[val from orl('

iteration to the ncxt by at lea..,t a factor of tv l1ntil L. J'l ('qual to fi" Hu'

maximum number of iterations performed by BIDA * gj'/('n an lIlitial illt('rva'

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A * 80

[L., Vd is equal to

Corollary 7.1 Gwen a solutIOn space tree G = (s,T,hlh ~ h*), the maxI­

mum number of IteratIOns performed by BIDA· &s mlmmlud at w = 0.5.

Corollary 7.2 Gwen a solutIOn space tree G = (s, T, hlh ~ h*), IDA * per­

forms at most (C· - Cl + 1)10' IteratIOns where Cl and C· are the cost bounds

of tlu Inzttal and final IteratIOns, and 10-1 IS equal to the maxImum prCClSlOn

of th((dg" c()sl,~

Corollary 7.3 If the Imitai upper bound of an admIssIble solutwn space tree

1.'. ai 11I0 ... t a polynomtal functlOn of the cost of the opitmal solutwn paih then

RIIJA * ptTform ... m,ympfoltcally fewer IteraflOns than IDA * l1l thf U'or~t case.

The lllff' of fewer iteration!>, however, does not immediately imply that

the tinIP complf'xity of BIDA'" Îs also less than tht> tlme complexity of IDA"'.

B('call~(, the cost bound of ('ach iterati.)n or BIDA'" is seleded as an arbltrary

point ht'. W('('11 th{· lower and upper bounds of that iteration, the cost bouno is

Ilot COllst rai!led to he less than or equal to the cost of the optimal solut ion path.

\\'it h the potential of expandmg several inadmissible nodes Oll those iterations

w hos(' cast bounds are greater than C., BIDA * may expand a far greater

number of nod{'s than IDA'" notwithstanding the redurtion in the number of

iterations. However, this computational risk is mitigated in part by c)ne factor:

If the cost bound of an iteration is greater than C· then BIDA * performs a

bounded depth-first search only until a solution path is found. Therefore,

BI DA * does not necessarily perform an exhaustive search of aIl paths along

.... hich each Bode has an f-value that is less than or equal to the cost bound of

the iteration.

1

l

J

CllAPTER 7. BINARY ITERATI\'E-DEEPENING-A *

Cost Number of
Iteration Bound Nodes Expalldt>d

1 1 2
2 2 6
3 3

1

7
4 4 4*

* lncludes the goal Dode 1 _.
(a) IDA * Algorithm

Lower Upper Cos\' N urnl)('
Iteration Bound Bound Round Nodt·!\ EXI

1
--1--

1 5 3 1

2 4 5 4 4*
3 4 4 - -

* Includt's the goal nodt> 1

(b) BIDA * Algorithm

r of
)andt'd

Table 7.1: Performance of IDA * and BIDA" 011 FIgure 7.:!

~l

Given the solution spare tree in Figurf> 7.2, the total nutlllwf of lIodt'~

that are expanded by IDA * and BIDA" on each itl'rat 1011 1., ~llfIlIllaflZ('d III

Tables 7.1 (a) and (b) rcspectivt'Iy. The IDA* algOlitlllll ('xl""ld ... il tot,t1 of

19 nodes over 4 iterations and BIDA * expallds a total of (JIll) Il lIocl(,., OV('! 2

iteratiomi. However, if the cost of the leftmost path I!\ Irlcwa.,(·d to !) arlel lIod('

1 is no longer designated a.'l a goal node then the total nu IIII)('f of 1I0c!f'S that

are expanded by IDA* and BIDA* is summanzed in Tab)('s 7.'2 (a) alld (b)

respectively. In this case, IDA" expands a total of 24 nod(·~ over 1 itf'rdt iOIl,)

but BIDA * expands a total of 28 norles over 3 iteratIOns It If> tlwrf'fof(' dlfJirult

to state conclusively that on average IDA* is superior to BInA· (or vice verf>a)

without drawing on empirical evidence.

ClIA PTER 7 BINARY ITERATNE-DEEPENING-A * 82

Cost Number of
Iteration Bound Nodes Expanded

1 1 2
2 2 6
3 3 7
4 4 9*

* Includes the goal node P

(a) IDA* Algorithm

Lower Upper Cost Number of
Iteration Sound Bound Sound Nodes Expanded

1 1 9 5 15*
2 1 4 2 6
3 3 4 3 ï
4 4 4 - -

* Includes t.he goal node P

(b) BIDA * Algorithm

Table 7.2: Performance of IDA * and BI DA * on Figure 7.2 (modified)

7.2 Empirical Results

Empirical tests that compare the average case performance between the IDA *

and BIDA * algorithms are carried out with respect to t~e traveling salesperson

prohlem (TSP) on the basis of the following observations:

1. In Chapter 5, a worst case example of IDA * has been shown on an in­

stance of the asymmetric traveling salesperson problem (ATSP). Similar

results noted in [24] also cite the non-optimal performance of IDA * on

instances of the TSP.

2. Unlike oUler common applications s11ch as the 15-Puzzle and the vertex

cover problems, the edge costs of the TSP are Dot necessarily equal to

1

"

CHAPTER ï. BINARY ITERATI\'E-DEEPENING-A·

one. Hence, the edge costs may be modeled with arll\lrdr~' prt'(iSlllll and

magnitude.

3. The solution space Gm of an rn-city TSP satishes the following two prop

erties.

Property 7.1 Every terminai node ln Cm IS loca/rd al dt'l)/h 11/ /1'0111

the start node s.

Property 7.2 Every lermlnal nodr '''' a goal nod('J'htf't/ort, tl'tl'Y

palh ln Cm IEads 10 a goal nodf.

Propertit>s 7.1 and Î.2 ensure that the depth of M'tIf(Il 1" bOllllell'c1 alld

that a goal node IS returnf'd whplIever th(' rnaXlJIlIlI1l cI"!)1 h I~ n'.H Iwel If

the cost bound of an llerat IOn i~ grf'ater t han CO t heu Il 1 J) A· l'''' pl(J!I'''' cl

single path at a tlme until a ~ollltlon path P 1" fOllllei 111'111 ,,, UII!\ 1 ho",'

nodes on or before tlw solut IOn path J> an' <;,'h,(It'd fOI (· ... 'MII"IOII SIIII"

the Icngth of each path IS at most TrI and {'wry pdt h III (,'m l''nd,, III cl /!:().II

node, the abo\'f' propertie~ above hel p lo II1ltJ~at (' t III' (O!ll pli 1 ctl JU/I.tI rI~k

of potf'ntially f'xpanding <;!'\'('rallnadrni~"'Jbh· !lodt'..,

7.2.1 Euclidean Traveling Salespcrson Problclll

In light of the abDve observations, the Euclidean travpling "dl('~p"r~oll prohlerrI

(ETSP) defined below is chosen as a representatlvc probl('1lI from tlH' (Id. ... ~ of

traveling salespcrson problems.

Definition 7.1 Gwen a posltrue adJacency rnatnI (Cl)) whfrf nuit d(1/tf'1t!

Cl) represents the Euclldean dIstance /rom cIty t to Clty J, tlu Fur/uft 01/ fnLl'­

elmg sa/esperson probltm (ETSP) Îs to find the shorte.~t tour litai b(ql7t.~ at (LU

,
t.

CIIAPTER 7 BINARY ITERATIVE-DEEPENING-A * 84

arbztrary CIty, VISlts each other city exactly once and returns to the startmg

cIty.

Each instance of an rn-city ETSP is generated by randomly sclccting rn points

in the unit square [0,1]2. Each point (x"y,) E [0,1]2 represents the position

of city 1 The Euclidean distance c,J between city 1 and city J is calculated

straightforwardJy as

for cadi pair (l, J) Th{"refore, an instance of the ETSP is characterizt'd by

two parallletcrs (TIl, t) wh('f('.

Hl repre"(,I1b the number of clties in the tour, and

2. t represents the maximum precision, evaluated a,<; lO- t
, of the Euclidean

dÎstan,('!- betwf't'n citÎ('~

For exalllph·, tht, param('{ers (9,.5) define a 9-city ETSP where 10-5 is the

maximum pn'(Îsioll of the edg(' costs.

7.2.2 Testing and Analysis

F()rt~ random ill~tan(t·s of tllt' rn-city ETSP are g('nerdted for each TIl, 5 S; ni ~

10. Ea(h install(,(, Îs sohed for a maximum precision of 10-1,] ~ t ::; 6, using

th(' A", IDA" and BIDA" (,.: = 0 .. 1)) algorithms The time ('omplexiti('s of both

IDA" and BIOA" ar(' measurf'd in terms of the total Humber of Bodes that

are sclected for f'XpanSlOfl on cach iterat IOn leading up to and including the

penultimate itf'rdtion Smce tht· time complexity of A * IS equal to the llumber

of Ilodes that are surely-exPdnded by IDA * on its penultimate iteratÎon and

sinct' IDA * is nearly-equivalent 2 ta BIDA * for w = 0, the threc algorit hms are

2Tht' dIffercllces are reconctled III SectIOn A 1

l CHAPTER 7. BINARY ITERATIVE-DEEPENING-.4 *

Tour Sizf' Maximum Precision, t

m 1 2 3 4 5
5 1.89 3 71 4.06 4.06 406
6 2.20 7.44 9.20 9.48 9.50
7 2.06 9.66 16.85 18.69 18.8S
8 2.01 12.84 37.90 46.51 47.77
9 2.02 14.42 69.53 109.18 114 49
10 1.98 15.12 116 1:1 607.5~ 1126.52

1

6
1.06
9.,10

~.90

.. 7.n
129
!).so

11.
120

Table 7.3: Average Tinw Cornp!exities of IDA * ln A'"

irnplemented as a single 'it andard Pascal progralll (A ppl'IHI! x A) 'l'Ill' ,1\,('1 ,tP;('

time complexities of A"', IDA"" and BIDA* ar!' ca\culated hah('c1 011 t,}w fort.)

random instances and the following ratio,> ,U{' f('('orded for f','(il P,ll'<llI)('t('1'

(m, t):

Table 7.3: The ratio of the average timf' cornplexity of IDA * 1.0 tlJ(' aVI'I',lg('

time complexity of A

Table 7.4 (a): The ratio of the average T1umbpr of ltf'ratiort<, lH'rforrJwd Ily

BIDA * to the average numher of itcration.., pNforIlwd \'y 1 DA"

Table 7..1 (b): The ratIO of the average' tnne compl('xity of HIDA· 1.0 Ut('

average time complexity of IDA *.

Table 7.5: The ratio of the average time complexity of BIDA'" to the aV/'rag('

time complexity of A *.

Each entry in the above tables represenU, a ratio of an av('rag(' performallu'

measure bctween, say, Algorithm A and Algorithm B. As the tour hiz(' alld dU'

precision of the edge costs increase, Huee scenariOh an' noter!

l CHAPTER 7. BINARY ITERATIVE-DEEPENING-A * 86

Tour Size Maximum Precision, t
m 1 2 3 4 5 fi --
5 0.827 0.595 0.576 0.580 0.580 0.580

6 0.810 0.424 0.364 0.357 0.357 0.3~}ï

7 0.840 0.353 0.273 0.261 0.260 0.261

8 0.841 0.240 0.151 0.137 0.134 0.1 :\-1

9 0.888 0.217 0.106 0084 0.082 0.082

10 0.861 0.199 0.Oi5 0.046 o.o:n o O:J.l

(a) Average Number of Iterat.ions of BlDA* to IDA*

T01.:r Sizc Maximum PrecisIOn, t
m 1 2 3 4 5 6

1--
5 1.079 0.673 0.652 0.6f)8 0658 0.6;',8

6 1.022 0.454 0.369 0358 O.:l57 0.357

7 1.063 0.359 0.226 0.203 0.201 0.201

8 1088 0.275 0.131 0.115 0.110 0.109

9 1.162 0.234 0.080 0.050 00 t!) 0.019
10 0.959 0.218 0.049 0.013 O.OOK 0007

-

(b) Average Time Complexities of BIDA* t.o IDA"

Table 7.4: Average Performance Ratios of RIDA" to IDA *

1. If the ratio remains constant then the performance of A is optimal with

respect to the performance of B.

2. If the ratio increases then the performance of A is lion-optimal with

respect to the performance of B.

3. If the ratio decreases then the performance of B is non-optimal with

respect 1,0 the performance of A.

In Table 7.3, the non-optimal performance of IDA" on th€' ETSP is clear.

As both the tour size and the precision of the edge costs incrcasc, the ratio

ClIAPTER 7. BINARY ITERATNE-DEEPENING-A * 87

Tour Size Maximum Precision, t
m 1 2 3 4 5 6
5 2.04 2.50 2.65 2.67 2.67 2.67
6 2.25 3.38 3.39 3.40 3.40 3.40
7 2.18 3.47 3.81 3.79 3.7) 3.80
8 2.19 3.53 4.98 5.33 5.24 5.24
9 2.34 3.37 5.53 5.45 5.61 5.61
10 1.90 3.29 5.72 8.16 8.84 8.77

Table 7.5: Average Time Complexities of BIDA* to A*

of the average time complexity of IDA * to the average time complexity of A *

departs quite dramatically from an optimal constant ratio. As expected and as

shown in Table 7.4 (a), BIDA * performs on average fewer iterations than IDA *

in every instance. Furthermore, the ratio of the average number of iterations

performed by BIDA * to those performed by IDA * is decreasing as hot h the

tour size and the precision of the edge costs increase. Hence, the performance

of IDA * is non-optimal with respect to BIDA * in terms of the average number

of iterations. The reduction ;n the number of iterations also yields an almost

proportion al decrease in the average time complexity of BIDA * as shown in

Table 7.4 (b). This suggests that the number of inadmissible nodes that are

expanded by BIDA * does not significantly impede its performance. Therefore,

the average time complexity of IDA * is again non-optimal with respect to the

average time complexity of BIDA *. Although the average time corn pl exit y

ratio between BIDA * and A * continues to increa..'le as both the tour size and

thE' precision of the edge costs increase, the ratio increase in Table '7.5 is

comparatively slight. It is therefore encouraging that the reduction in both

the number of iterations and the time c.omplexity of BIDA * over IDA * yields

a near-optimal performance by BIDA * with respect to A *.

1

,

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A." 88

7.3 Comparison of BIDA * with IDA * _CR

Recent Iy, Sarkar et al. developed an admissible version of IDA"', call<,d

IDA * _CR, that also redresses the worst case phcnomenon of an IDA" sedrch

[46]. The IDA * _CR algorithm differs from BIDA * in 'Jwo key rt>spt·(·'.s·

1. IDA * _CR performs a dCi>th-first brd.nch and bound M'tireh on caeh it('r­

ation as opposed to a strictly depth-first search.

2. The cost bonnd of each iteration of IDA * .CR is ch()~('11 SII("h t.hal t.}H'

number of additional nodes grows exponentially from O!lt· iterat iOIl t.o j Il('

next, that i'l, the heuristie hranching factor b" is const.ant and)!;f(';\Jt'f

than one.

To guarantee that at least bh additional nodes are cxpand('d b<'l.w(,(·11 ttl<' land

(i + 1)3t iterations, IDA * _CR uses a set of bucket.s indcxpd 1,2, .. , P to !!:roup

the f-values which exceeded the cost bound C, of the CUrI('nt ikrct.t.ioll Eitc Il

bucket, denoted En 18 associated with a mutually-cxcluslvc rct.nge of vct.hws

[r;,rJ+1] where T) < r J +l for aB J, 1 $ j ~ p - 1. For ('Mh nodt· ft wÎloS('

f-value exceeds CI' the index of buàet E) is incrcasf>d hy ont· wltt'rf'

Therefore, the cost bound of iteration i + 1 is set to the minimum r)+ 1 where

the sum of the indices of bucketu B. through BJ excecds bh. At this point, two

important ohservations are made.

1. An appropriate balance among a) the heuristic hranehing fador bill

b) the number of buckets and c) the range of values associated with each

bucket must be established. For an inappropriate choice, only the f-values a

few generated nodes may faU within the range of values associated with the

l CHAPTER 7. BINARY ITERATNE-DEEPENING~A * 89

4

Figure 7.3: Example of an IDA * _CR Search

buckets. In this case, IDA * _CR may not be able to sustain the exponential

growth rate from one iteration to the next. Even the choice of an inappropriate

bh alone may lcad to a poor performance as shown in Figure 7.3.

Each node A through G is labeled with its f-va!ue. Nodes A and Gare

designated as the start and goal nodes respedively. If a heuristic branching

fa.ctor bh is chosen as 2 th en at least 2°, 21 , 22 , ••• additional nodes must be

expanded on iterations 1, 2, 3, Therefore, the cost bounds of iterations 1,

2, and 3 must equal 1, 3 and 7 respectively. On the third and final iteration,

IDA * _CR performs a depth-fiAst bran ch and bound search until the optimal

solution path from node A to node G is fou.ld. However, because the cost

bouud of the third iteration is equal to 7, IDA" _CR may expand an arbitrarily

large number of inadmissible nodcs in the subtree Tl rooted at node D.

1

1

CHAPTER 7. BINARY ITERATIVF-DEEPENING-A" 90

2. The cost bound of the finai iteration of IDA * _CH may ('xc('('(! t.he cost

of the optimal solution path. Therefore, likt' the BIDA * algl1rit hm, InA'" _CH

potentially expands several inadmissible nodes bcfore an optimal sololtion pat h

is found. Since both A * and IDA * do not expand any lIladmi~!'Iihle !\()(k5 fOI

h ~ h'", there lS again no cornrnon rneasure of tinl(' complt'xlty alllOIl~ A *,

IDA * and IDA * _CR tbat includes the number of nod{'1'> that aH' cxpandt'd on

the final iteration. Renee, the following daim in [46, p 21:~] 15301lH'what

rnisleading:

IDA * _CR expands O(N) nodes wherc N is the numher of Ilod('s

that are eXPdnded by A *.

However, bt'cause IDA * _CR does not expand any inadmissdll(' nodt's OB ('é\ch

iteration leading up to =lnd including the penultirnatc itcration, Theorern 7.2

is stated directly.

Theorem 7.2 Gwen a solution .'ipace tree G = ($, ï, hlh ~ ".) wllh il ('011-

stant heurishc branching factor grtater than one, 'DA "_Cil 1." a"!IÎ,tplollcal/y

optimal, in terms of the number of nodes that are surely-c.rpandf'd by A·, OllfT

the class of admtssible best-first tT'ce search algonthms.

Unfortunately, a sirnilar daim cannot be made for BIDA *.

7.4 Concluding Remarks

Throughout the development and testing of BIDA *, the initial Uppf'f bound

was arbitrarily set to the eost of any solution path. Howevcr, the initial up­

per bound is often better established using an approximation algorithm [14J

rather than a randorn solution path. This approaeh was ineorporat(!d into th('

CHAPTER 7. BINARY ITERATNE-DEEPENING-A * 91

MSBB algorithm of [45]. For example, Christofides' TSP algorithm [ï] finds

an approximate solution that is at most 1.5 times the cost of the optimal so­

lution. Setting VI equal to the cost of the approximate solution, the initial

lower bound LI may also be set to

max(Ut/1.5, 1(8))

where f(s) is the cost 01 the start node s.

Chapter 7 h<1.'> established two import.ant properties (llf a BI DA ... search on

a solution space tree G = (8, T, hlh ~ hO):

BIDA * is admissible.

2. If the initial upper bound of an admissible solution spac" tree is at most a

polynomial f\lndion of the cost of the optimal solution f\~th then BIDA *

pcrforms ac;ymptotically fewer iterations thall IDA * in t~l~ worst case.

Unfortunately, the reduction in the number of iterations cornes oit the expense

of potcntially expanding a large number of inadmiEsible nodes. Becau!>e, in

part, the TSP satisfies Properties 7.1 and 7.2 stated earlier, BIDA* is shown to

be a significant improvemp.nt over IDA * as both the tour size and the precision

{'f the edge costs increase for the ETSP. However, it remains:

1. To expand the empirical scope to other cornbinatorial problerns and to

larger instances of the traveling salesperson problem.

2. To support the empirical work with theoretical justification. For in­

stance, the expeded case behaviour of BIDA * may be derived with re­

spect to a probabilistic mode} of computation that distributes the costs

(depths) of the goal nodes over a solution sp ... ce tree. Such an analysis

would help answer an important question: What conditions must the

1 CHAPTER 7. BINARY ITERATJ\'E-DEEPENING-A *

distribution function satisfy in arder to ('nSUf(' the opt imal pcrfOfllléUl('

of BIDA'" with respect ta IDA * and better still to A *?

3. Ta generalize the ab ove analyses for all w, 0 < u) < 1.

Chapter 8

Final Rernarks

Itcrative-deepcning-A * is an admissible heuristic scarch algorithm which is op­

timal with respect to space complexity and the cost of solution found ovcr the

class of admissible best-first tree search algorithms. Howcvcr, the optimality of

IDA *, as measured agp-Ïnst the optimal time complexity of the A. * algorithm,

is subjf'ct to a number of cOl1ditions. These basic results and conditions are

summarized below. Given a solution space tree G = (8, i,hlh :::; 11.-) where

A * surclj-expallds AI (k) nodes on G:

1. IDA * is asympt.otically optimal over the class of admissihle best-first tree

scarch algorithms, that is, T(k) E O(M(k)) if the effective or heuristic

branching factor is constant and greater than one.

2. In the worst case, IDA* surely-expands (~f2(k) + ~f(k))/2 nodes over

M(k) iterations. The worst ca.~e performance of IDA* is a special case

of the unit heuristic bran ching factor when IDA * expands exactly one

additional node per iteration.

3. The worst case performance of IDA'" is realized if and only jf the eval­

uation function assigns an J-value to each non-goal node sllch that the

93

CHAPTER 8. FINAL REMARKS 91

conditions of uniqut'nt'ss and monotonieity aTt' sat lsfit'd

4. In the expected rase, IDA * is asymptotleally optimal ()WT the c1a.<;!> of (uI·

missible best first trf'e search algorithrns if tllt' dlffeTent ia) c'd~(' co!>t sart'

independently and Identically dlstrihuted from an)' Illlq~"r prohahlltty

distributioll that satisfi<>~ Properti<>s 6 2 and () :l

The time complexity spectrum of IDA'" 1S d('fin{'d bpt WPt'1\ It~ '\,."ylllpt otlt

optimal and worst ca..<;e perforrnane{' B('cause IDA"', hkt, t l.c' A *' a)~()nl hlll, is

apph{'d to a wide variet) of problem , tIlt' romputatlOll<l1 l'fli(\l'Il (Y of IDA ~

on a given problem may faH anywherc wlthm this tinw complt'\lIy SP(,(tlllm

Howevcr, tbe efficÎcncy of s<>arrh d('p<>nds on a nurnÎH'r of 1I1It'rf('),t!"c! r,H tors,

most notably.

1. The structure of the solut.lOn spacc graph,

2. The behaviour of the l'valuation function with l't'Spt'ci to t Iw ('owllt iOll!.

of uniqucness and monotonÎcity, and

3. The precision of the f-vah~es assigned to caeh nodf'

If the solution space graph sati!>fics the propcrty of ae)'(h< y, 110 nocif' i.., f('.

selected for expansion by l'ither the IDA * or A'" algorithm III (,h'lpl,('r :~, It Wit!>

shawn by example that the time complexity of IDA * grow~ (,xpOlwlltially oV('r

A * when the number of paths from the start node s to an)' otlwr nocif' r,row!'>

exponentially with depth. Although the property of a<.ycll< y !'>lIpplant!'> tl)('

weaker requil'e:nent of monotonicity, this result is anaJogou~ to 0)(' ('xporH'nliaJ

growth in the time complexity of A * whenever the propnty of mOrJolonicity

is relaxed.

As the precision of the evaluation function incrcas('[;, ttJ(' n1JJJlber of po..,·

sible f-values that are assignable to each node incrcaM'!> a..., w('11. Thercfor(',

CIIAPTER 8 FIN 4L REMARKS 95

the likelihood that two or more nodes will sha;e the same (-value decreases

Consequently.

1. The number of additional nodes that are expanded on each iteration is

reduced, and

2. The performance of IDA * is skewed toward the worst case end of the

time complexjty spectrum.

This phenomenon was reftected by empirical results on the Euclidean traveling

salesperson problefi'l (ETSP) in Chapter 7. By randomly generating points in

the unit square and modeling the precision of the edge cost 'i, the performance

of IDA * dcgraded significantly as the precision of tbe edge costs increa.sed for

a given number of cities. To redress the problcm of expanding onl) a few

additional nodes ov('r several iterations, the BIDA * algorithm was de\clopcd

and tested with respect to the ETSP. It was shown on a small test bed that

SIDA * was much less sensitive lo an increase in both the tour size and the

precision of the edge costs.

The IDA* algorithm is an important se arch technique. It offers the attrac­

tive possibility of asymptotic optimality along the dimensions of time complex­

ity, spac(' complexity and the cost of solution round. Unfortunately, the sheer

size of the solution spaces of most combinatorial problems often overwhelms

even the best heuristic knowledge. It therefore remains to t:nderstand how

the performance of IDA * is improved (or degraded) with respect to t.ime corn

plexity and the cost of solution found for inadmissible heuristics. Secondly,

empirical and theoretical work must continue into the development and testing

of parallel versions of IDA * sllch as [44]. The design and analysis of parallel

search algorithms introduces man)" difficult problems concerned with task di­

vision and interprocessor communication. However, a better understanding of

CHAPTER 8. FINAL REMARKS 9ti

the performance of the IDA * algorithm ilsdf is a vItal prt'requi:-itt> towrln! d

better undprstanding of its inadmissible and parallel dt'rivdt i\'t'~

J

Bibliography

[I] Allo, A.V., Hopcroft, .I.E. and UlIrnan, J.D. (1974) The Deslgn and Anal­
ySlS of GompltffT Algorzthms, Addison-Wesley, Readmg, MA

!2] Hagchi, A. and Mahantl, A. (1983) Search algorithms un der different
kinds of heuristics - A comparative study, Journal of the A CM 30(1 J, pp.
1--21.

!:l] Hagchi, A. and Mahanti, A (1985) Three approaches to heuristic search
in networks, Journal of the AGM 32(1), pp. 1-27.

!4] Bagchi, A and Sen, A.J'. (1988) Average-case analysis of heuristic search
in tree-like networks, III Search zn ArlrficiaJ fnte/hgrT/cc (L Kanal and V.
KUlTlar, editors), Sprmger Verlag, New York, N Y., pp. 131- HiS.

1.5] Barr, A. and Feigenbaum, E.A., editors (1981) llandbook of Arltficral
Intdl!gcnrc, Morgan Kaufmann, Los Altos, CA.

[6] Chakrabarti, P.P., Chose, S., Acharya, A. and DcSarkar, s.e. (1989)
Hcuristic search in rcstrictcd rnemory, Artifictal [nic/hgence 41 (9), pp.
197- 221.

17] Christofides, N. (1976) Worst case analysis of a new heuristic for the trav­
eling salesrnan problem, Technica.l Report, Graduate School of Industrial
Administration, Carnl:'gie-Mellon University, Pittsburgh, PA.

[8] Dechter, R. and Pearl, J. (1985) Ceneralized best-first search strategies
and the optimality of A *, Journal of the ACM 32(3), pp. 505-536.

19] Dechter, R. and Pearl, J. (1988) The optimality of A*, in Search in Ar­
hficral Intellrgence (L. Kanal and V. Kumar, editors), Springer Verlag,
New York, N.Y., pp 166-199.

97

.i

J

BIBLIOGRAPHY

[10] Dijkstra, E.W. (1959) A nok on two prohl{,IIls in COnIH'(ti<l/l Wlt" graphs,
NumcMschc Mathematik 1, pp. 269-27l.

[11] Doran, J. anù Michie, D. (1966) Exp<'fÎmt'nu, with tItt, graph t.raVt'rs('r
prograrn, Proceedmgs of the Royal SocIety of London ~.Q4(A), pp. 2:l[)
259.

[I2J Dreyfus, S.E. and Law, A M. (1977) The Art and Thfory of IJyU1111/lC

Programmmg, Academie Press, New York, N.Y

[13] Ernst, G.W. and Neweli, A (1969) CPS A CaM Study t1I GfTHmlzty anl!
Problem Solvmg, Academie Press. New York, N Y.

[14J Garey, M.R and John'3on, n.s (197~J) COmpltlfrS and 171tradabdtly: A
Guide 10 the Theory of NP-CompIFlc'lCss, W.H Fn'('lJltlll alld Company,
New York, N.Y

[15] Gaschnig, ,!. (l 979) Performancc m('asurenwnl and ct lIaly~l" of ('('rI ai Il

search algorithm~, Ph.D. DIss{'rtation, TechIlieal {{<'port Ci\1'l-CS·7!1-12·1,
Computer S(ience Departmf'nt, Carnegi('-Mt'llon {Jni\'('r~lty, Pitt.~Il\lrgh,

PA.

[l6] Gelpcnn, D (19i7) On th(' optima!ity of A*, Art1finul 11Ittllt.tJ(1/(·(1\(1),
pp. 69-i6.

[1 il Harris, L. R. (1974) Thf' heuristic search undf'r conditloIlS of ('[ror, A l'ftJi­
('lUI Intelhgence .5(3), pp. 217 -234.

[18] Hart, P E., Nil5son, N.J. and Raphael, B. (1968) A forlllai na!-.,,> for U)('
heuristie determination of minimum cost paths, IF:EH 'limls 011 Sy.~I(7I1 . .,
SCIencE and Cybe l'nct!C'8 4, pp. lOO-lOi.

[19] Hart, P.E., Nilsson, N.J. and Raphael, B. (1972) Corn'(t.ioI1 t,n "A formaI
basis for the heuflstic deiermination of mmimIHIl (O~t pat".,", S/(,'A l{'l'

Ncwslftler 37, pp. 28-29.

[20] Borri, M. (1987) Probabtllsltc Analysls of Aigonlhmb, Springer Verlag,
New York, N.Y.

[21J Huyn, N., Dechter, R. and Pearl, J. (1980) Probahili1>llC an(Lly1>i~ of tl\('
complexity of A*, Aritfictai Intelligence 15(3), pp. 241-254.

[22] Ibaraki, T. (1978) m-depth search in hraIJch-dnd-bol!lId alg(>f1thlll~, In­
ternational Journal of Computer Informalwn 8cnnc(.~ 7(4), pp. 3],) -:J4:t

BIBLIOGRAPHY 99

[23} Korf, R.E. (1985) Depth-first iterative-deepening: An optimal admissible
tree search, Arhficial Intelhgence 27{1), pp. 97 -109.

[24] Korf, R.E. (1988) Optimal path-finding algorithms, in Search in Artificial
Inielllgence (L. Kanal and V. Kumar, editors), Springer Verlag, New York,
N.Y., pp. 223-267.

[25} Levy, D. and ~ewborn M. (1991) Row Computers Play Chess, Computer
Science Press, New York, N.Y.

[26] Lin, S. (1965) Computer solutions of the traveling salesman problem, Bell
Systems Tech. Journal 44(10), pp. 2245-2269.

[27} Mahanti, A. and Ray, K. (1988) Network se arch algorithms with mod­
ifiable heuristics, in Search in Arhficial Inielligencr: (L. Kanal and V.
Kumar, editors), Springer Verlag, New York, N.Y., pp. 200-222.

[28] Martelli, A. (1977) On the complexity of admissible search algorithms,
Artrficlal IntellIgence 8(1), pp. 1-13.

[29] Mérô, L. (1984) A heuristic search algorithm with modifiable estimate,
AritficlalIntelltgt'nce 23(1), pp. 13-27.

[30J Newborn, M.M. (1976) Reconsideration of a theorem on admissible Of­

dered search algorithms, Proceedmgs of the Annual Conference of the
A CM, pp. 535-538.

[311 Newborn, M. (1989) The Great Theorem Prover, Newborn Software,
Westmount, Québec, Canada.

[32] Newcll, A. and Simon, H.A. (1972) Ruman Problem Solvmg, Prentice
Hall, Englewood, N.J.

[33] Nilsson, N.J. (1971) Problem Solving Methods in Arttficwl Intelligence,
McGraw Hill, New York, N.Y.

[34] Nilsson, N.J. (1980) Prlnciples of Artificiallntelligence, Tioga, Palo Alto,
CA.

[35] Patrick, B.G., Almulla, M. and Newborn, M.M. (1992) An upper bound
on the time complexity of iterative-deepening-A *, Annals of Mathematics
and Artificial Intelligence 5, J.C. Baitzer, BaseI, Switzerland (to appear)

BIBLIOGRAPHY 100

[36] Pearl, J. and Kim, J.H. (1982) Studies in semi-admissible hellrJstic~, IEEE
Trans. on Pattern Analysis and Machine IntellIgence PA MI-4 (4), pp.
392-399.

[37] Pearl, J. (1983) Knowledge versus search: A quantitat.ive analysis using
A*, Artificial Intclllgence 20(1), pp. 1-13.

[38] Pearl, J. (1984a) Intelligcnt Search StrategIes for Computt?r Problf7n 8,)/t,­
ing, Addison Wesley, MeDlo Park, CA.

[39] Pearl, J. (1984b) Sorne recent results in hellTist.ic st'an'h tlwory, Il;;T~'E
Trans. on Pattern Analysls and Machrne IntellIgence PA MI-6(1 J, pp. 1--
12.

[40] Pohl, 1. (1970a) First results on the effect of error in heuristic search,
in Machine Intelligence 5 (B. Meltzer and D. Michil', editors), AnH'rican
Elsevier, New York, N.Y., pp. 219-236.

[41] Pohl, 1. (1970b) Heuristic search viewed as path finding in a graph, A1'lI­
ficial IntellIgence 1 (3), pp. 193-204.

[42} Pohl, 1. (1973) The avoidance of (relative) cata..,trophe, heuristic cornp('­
tence, genuine dynamic weighting and computational issue!. in h{'uristic
problem solving, Proceedings of the /JCA 1 3, Stanford, CA, pp 20- 2;'.

[43] Pohl, J. (1977) Practical and theoretical considerations in heuristÎ< s('arLh
algorithms, in Machine IntellIgence 8 (E.W. Elcock and D M,(hie, edi­
tors), Wiley, New York, N.Y., pp. 55-72.

[44} Rao, V.N, Kumar, V. and Ramesh, K. (1987) A parallel implernenttttion
of iterative-deepening-A *, Proceedrngs of the NatlOnal ConffTCTH'f on Ar­
tificial Intellzgence. (AAAI 1987), Seattle, Washington, pp. 178-182.

[45] Sarkar, U.K., Chakrabarti, P.P., Ghose, S. and De Sarkar, s.e. (1991)
Multiple stack branch and bound, Informataon Proces8tng Lelters 37(1),
pp. 43-48.

[46] Sarkar, U.K., Chakrabarti, P.P., Ghose, S. and De Sarkar, s.e. (1991)
Reducing reexpansions in iterative-deepcning se arch by controlling cu~off
bounds, Artificiallntelllgence 50(2), pp. 207-221.

[47] Sen, A.K. and Bagchi, A. (1989) Fast recursive formulations for ht'st-first
search that allow controlled use of memory, Proceedmgs of tlte IJCAI J 1,
Detroit, Michigan, pp. 297-302

i
!

1

J

BIBLIOGRAPHY 101

(48] 31ate, D.J. and Atkin, L.R. (1977) CHESS 4.5 - The Northwestern Univer­
sity Chess Program, in Chess Skill in Man and Machine (P. Frey, editor),
Springer Verlag, New York, N.Y., pp. 82-118.

[49] Stickel, M.E. and Tyson, W.M. (1985) An analysis of consecutively
bounded depth-first se arch with applications in automated deduction,
Proceedings of the 9th International Joint Conference on Artificral In­
telligence, Los Angeles, CA, pp. 1073-1075.

[501 Vanderbrug, G. (1976) Problem representations and formaI properties of
heuristic search, InformatIOn Sciences 11 (4), pp. 279-307.

[51] Winston, P.H. (1984) Artificia/ Intelligence, Addison Wesley, Reading,
MA.

l

Appendix A

The ETSP Program

A.1 Introductory Comments

The ETSP program uses a similar but not identical version of th<, BI DA *
algorithm givcn in Figure 7.1. It differs in two key regards:

1. At least one iteration is performed by the ETSP program, and

2. The lower bound is updated after the test for equality witll Hw uppc>r

bound.

Therefore, the ETSP program performs an additional iteration whcn the low('r

bound is raised and made equal to the upper bound, that is, when the low('r

bound is equal to the cost of the optimal solution. Since tilt" cost bound of

the subsequent iteration is a180 equal to the cost of the optimal solution, tll<'

same set of nodes are expanded on the final iteration for ail w, 0 ~ w < 1.

Importantly, the number of nodes that are surely-expanded by IDA * on the

ETSP is equal t,) the number of nodes that are selected for expallsion by the

ETSP program whl?n w = o.

102

1 APPENDIX A. THE ETSP PROGRAM 103

On the other hand, the ETSP program terminates immediately when the

upper bound is lowered and made equal to the lower bound, that is? when the

upper bound is equal to the cost of the optimal solution. Therefore, the cost

bound of the final iteration is not equal to C·. In this case, a different set

of nodes may be expanded on the final iteration for each w, 0 $ w < 1. It

therefore rernains as difficult to provide a common measure of comparison on

the final iteration between BIDA * and IDA * a..'l to provide a common measure

of comparison between A* and the final iterativn of IDA*.

T:

APPENDIX A. THE ETSP PROGRAM lOt

A.2 Pascal Implementation
(.* •••••••••••••••••• * •••••••••• * ••••••••••• * ••••••••••••••••••
... Title:
...
• Author
...
... Purpose
...
...

:

Euclldean Traveling Salesperson Problem

Brian G. Patrlck

•
* •
•

To solve a random instance of the m-clty ETSP •
using tbe BIDA. algorlthm vbere 0 <= w < 1. •
For v • 0, BIDA* reduces to the IDA* algorlthm. •

* ...

••••••• *************.**.* •• **.********.***.*.*******.*.**.** ••)

program EuclideanTSP (lnput,output)i

con st
maxclty = 25;

type
index .. 1 .. muci t y;

(. Node parameters for any node n *)

nodetype .. record

vlslted : array[index] of boolean;
(. Cities visited on current tour (TRUE) .)
(* Cltles to he vlsited (FALSE) *)

city, (. Current Clty .)
tourlengtb,(. Number of citles on path from s to n .)
fvalue, (. Current f_value of nN;a n *)
tourcost (. Cost of current path trom s to n .)

end;
nodes
stack

integer

= arraY[lndex) of nodetype;
.. record

path nodes;
top O •• muci ty;

end;

"~

APPENDIX A. THE ETSP PROGRAM 105

var

coordlnate

coordinates
list
matriz

5
P
C
next

., record
zcoord,ycoord : real

end;
., array[indez] of coordinate;
• arraY[lndez] of O .. aazcity;
• arraY[lndez,indez] of integer;

stackj
coordinates;
matriz;
hst;

(. Adjacency matrlx .)

(. Global Statistics .)

nodesexpanded.
totalexpanded,

(. Parameters of problem instance .)

tourslze,
sigdlgs,

seed
found
lastcity
dlvfactor

(. Humber of clties ln the tour, m .)
(. Maximum precislon of edge costs, t .)

Integerj
boolean;
O .. maxclty;
real;

APPENDIX A. THE ETSP PROGRAM 10(;

(••••••• * •••••• ** •••••• * ••••••••••• ** •••• **********************
~ *
* STACK OPERATORS

* * Purpose: To control the depth-flrst search.

*

*
*
*
*

*********************.******.**********.****.**.********* •••••)

procedure inltializestack (var S:stack);
begin

S.top :- 0
end; {initiallzestack}

functlon stackempty (S:stack): boolean;
begin

stackempty :z S.top = 0
end; {stackempty}

procedure popstack (var S:stack);
begin

S.top :- S.top - 1
end; {popstack}

procedure pushstack (node:nodetype; var S:stack);
begin

S.top := S.top + 1;
S.path[S.topJ := no de

end; {pushstack}

procedure topstack (var node:nodetype; S:stack);
begln

node :- S.path[S.top]
end; {topstack}

l

i APPENDIX A. THE ETSP PROGRAM 107

(... .
• •
• function UNIFORH
•

•
•

• Purpo~e: Returns a uniforaly dlstrlbuted random varlable •
• u vhere 0 <- u < 1. •
•))

function unlform (var seed:lnteger): real;
var

r
begln

Integer;

r :- seed dlV 53668;
seed :- 40014.(seed mod 53668) - (r.12211);
If seed < 0 the4

seed :- seed + 2147483563;
uniform :- seed.4.656613E-IO

end; {unlform}

(... .
• •
• procedure INITIALIZECOORDINATES •
• •
• Purpose : Generates m random points in the unit square •
• and stores them in vector P. ..
• •
• Uses functlon UNIFORM •
• • •••••••••••••••••••••••••••••••• ~ •••••••••••••••••• * ••••••••••)

procedure Inltializecoordinates(var P:coordlnates);
var

l:lndex;
begin

for i:-l to toursize do
vith P[i] do begin

xcoord :- uniform(seed);
ycoord :- uniform(seed);
vriteln(xcoord,ycoord);

APPENDIX A. THE ETSP PROGRAM 10x

end
end; {lnltlalizecoordlnates}

(••••••••••••••••• *.* ••
* •
• procedure INITIALIZEMA TRIX •
• •
• Purpose : Calculates the Euclidean distances between m •
• points that are randomly dlstrlbuted ln the •
• unit square. •
• • •...)

procedure initializematrlx (p coordlnates;
matrlx;
integer

var
i,j
deltax,deltay,distance
factor

var C
sigdlgs

index;
real;
integer;

) ;

begin
for i:-1 to toursize do

C[l,i] := maxint;

(. The edge costa are converted to lntegral values that
preserve t signlflcant dlglts after the declmal. .)

factor :- round(exp(sigdigs.ln(10»);
for i:~l to tourslze-l do

for j:-i+1 to tourSlze do begln

end

deltax :- P[i].xcoord - P[J] .xcoord;
deltay :- P[i].ycoord - p[j] .ycoord;
distance :- sqrt(sqr(deltax) + sqr(deltay»;
C[l,j] :- round(factor.dlstance);
C[j,i] :- C[l.jJ

endj {initializematrix}

APPENDIX A. THE ETSP PROGRAM 109

(••• *.******** ••• * ••• * ••••••••••• * ••••••••••• * •••••••••••••••• *
•
• function SELECTTOUR

•
*
*
*

* Purl'0se: Returns the cost of the laftmost solution path, *
• that lS, returns the cost of the tour from *
• city 1 to Clty 2; city 2 to city 3, ... , city m *
• to Cl ty 1. •
• •
••• * •••••• * •••)

function selecttour (C:matrix): integer;
var

l

total
begln

lndex;
integer;

total :- 0;
for 1:-1 to toursize-l do

total :- total + C[i,i+l]j
select tour :- total + C[toursize,l]

end; {selecttour}

-~ ----------------------- - - -

APPENDIX A. THE ETSP PROGRAM 110

(.*.* ••••• *.*** •••• * •••

•
• functlon BOUND

•
• Purpose: Returns the f-value of node n where:
...

1) g(n) lS the co st of the current path from
the start node s to n.

2) h(n) 18 equal to (r(n) + t(n))/2 where·

a) r(n) 15 equal ta the sum of the two

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
*
•

mlnlmum cost edges out of each no de NOT on •
the current path from s ta n. Each edge •

•
•
•
•
•
•
•
•
•

May not be connected to a node ln the
mlddle of the current path from s to n.
As weIl, only one edge May connect to
elther node 5 or node n.

b) t(n) 15 equal to the sum of the minimum
co st edges out of the start node 5 and
node n to a node NOT on the current path
from 5 to n.

•
•
•
•
•
•
•
•
•
•

•••••••• * •••••••••••••••••••••••••••••••••••••• * ••••••••••••••)

functlon bound (no de
C

var
h,mlnl,mln2
1.]

begln
Wlth node do

lnteger;
lndex;

nodetype;
Matra) lnteger,

lf tourlength - tourslze-l then begln

(. Only one C1ty rema1n8 to be vlslted .)

lastcity :- 1;
vhile vislted[lastcltyJ • true do

lastclty :- lastclty + 1;

i

,

APPENDIX A. THE ETSP PROGRAM

bound :- tourcost +
C[city,lastcity] + C[lastclty,l];

end
else

begln
h :- 0;

(. Eva!uate r(n) .)

for 1:-1 to tourSlze do
If vlslted[l] :0: false then begIn

If C[l,l] < C[l,Clty] then
mIn1 ::0: C[l,l]

else
mIn1 :a C[l,CIty];

mln2 :- maxlnt;
for j:=1 to tourSlze do

If Vlslted[J] :0: false then
if C[l,j] < mIn! then begln

min2 ::0: mIn1;
min1 := Cb,JJ

end
else

If C[l,j] < mIn2 then
mln2 := C[l,J];

h :- h + mini + mln2
end;

(. Evaluate t(n) .)

mini :- maxint;
for 1:-1 to toursize do

if (vlsited[l] - faIse) and
(C[l,i] < mIni) then
mini :- C[l,l];

h :- h + mini;
mln2 :- maxint;
for 1:-1 to toursize do

If (vlsited[l] • false) and
(C[CIty,l] < min2) then

111

APPENDIX A. THE ETSP PROGRAM

end
end; {bound}

m1n2 :- C[C1ty,1];
h :- h + m1n2;

(* Evaluate f(n) *)

bound := tourcost + round(h!2)

112

APPENDIX A. THE ETSP PROGRAM 113

(••• * ••
• •
• procedure CREATEROOT
• •

•
• Purpose : Initlallzes the parameters of the start node s. •
• • ..)

procedure createroot (var root:nodetype; C:matrix);
var

l ; index;
begln

vlth root do begin
city :- 1:
tourlength :- 1;
tourcost ;- 0;

end

for i:-l to toursize do
visited[i] :- false;

vlsited[l] :- true;
fvalue :- bound(root.C)

end; {createroot}

(..................................•................•..........
•
• procedure CREATECHILD
•
• Purpose: Inltializes the parameters of node n.

•
•
•
•

• • ..)

procedure createchild (var child
parent

va.r
i : index;

begin

C

vith child do begin

nodetype;
nodetype;
aatrix);

city :- next[parent.city];
tourlength :- parent.tourlength + 1;

1

1 APPENDIX A. THE ETSP PROGRAM

end

tourcoat :- parent.tourcost +
C[parent.city,child.city];

for i:-1 to tourSlze do
vislted[i] :- parent.vllited[l);

visited[cityJ :- true;
fvalue :- bound(child.C);
nextlcity] :"" 0

end; {createchlld}

114

(.* ••

•
• function NEXTCITY

•
•

• •
• Purpose: Determlnes the next Clty. if any. to be expanded .•
• • ••••••••••••••••••••••••••• ** •••••••••••••••••••••••••••••••••)

functlon nextclty (node:nodetype; var next:llst): integer;
var

city: lnteger;
begln

city :- next[node.clty];
repeat

city :- city + 1
until (city>toursize) or (node.vlsited[clty] = taIse);

(. Note: If city> toursize then node i8 fully-expanded .)

next[node.city] :- city;
nextcity :- city

end; {nextcity}

l APPENDIX A. THE ETSP PROGRAM 115

(... .
• •
• procedure DEPTHF1 RSTSEARCH •
• •
• Purpose : Performs a bounded. depth-first search of the •
• solutIon space of the ETSP until either: •
• •
• 1) A solution path is found or •
• •
• 2) The f-values ot aIl expandable nodes is •
• greater than the iteratlon bound. •
• •
• Uses STACK OPERATORS. CREATECHILD. NEXTCITY •
• •
••••••••••••••••••••••• ~* •••••••••••••••••••••••••••••••••••••)

procedure depthfirstsearch (C matrix;

var
parent J child
expanded

iter~tionbound integer;
var nextbound J

solutionvalue integer);

nodetype;
array[index] of boolean;

i index;
begin

for i:-l to toursize do
expanded[i] :- false;

vhile not (stackempty(S) or found) do begin
topstack(parent.S);
if (parent.tourlength <- toursize-2) and

(nextcity(parent.next) <- toursize) then begin

(. Generate next .uccesssor of p~rent node .)

createchild(child.parent.C);
if not expanded[parent.city] then begin

nodesexpanded :- Dodesexpanded + 1;
expanded[parent.city] :- true

end;
if child.fvalue <- iterationbound then

APPENDIX A. THE ETSP PROGRAM

end;

pushstack(child,S)
e18e

end
else

if (child.fvalue < nextbound) then
naxtbound :- child.fvalue

if parent.tourlength • toursize-l then begin
solutionvalue :- parent.fvalue;
found :. true

end
el se (. Node fully expanded *)

begin

end;

expanded[parent.c1tyJ :z false;
popstack(S)

end; {depthfirstsearch}

116

,

APPENDIX A. THE ETSP PROGRAM 117

(...•..............
• •
• procedure ITERATlVEDEEPEHING • • • • Purpose : Perforas successive depth-first searches until • • the lover bound is equal to the upper bound. • • The co st bound of each iteration is equal to: • • • • (l-v)L + vU vhere o <- v < 1. • • • • Uses STACK OPERATORS, DF.PTHFIRSTSEARCH • • • ..)

procedure iterativedeepening(C
divfactor

var
node,rootnode
loverbound,
upperbound,

nodetype;

nextbound,
solutionvalue,
iterationbound : lnteger;

begin
createroot(rootnode,C)j
nextbound :- rootnode.fvaluej
upperbound :- selecttour(C)j
found :- falsej
totalexpanded :- 0;
repeat

initializestack(S)j
push8tack(ro~~node,S);

next [rootnode. cit y] :- Oj
nodes~xpanded :- 0;

(. Update lover bound .)

if not found then begin
loverbound :- next~ocndj

nextbound :- aaxintj

matrix;
real);

APPENDIX A. THE ETSP PROGRAM

end;
found :- false;

(. Evaluate cost bound .)

iterationbound :- Ioverbound +
trunc«upperbound - Iowerbound)

• divfactor);
depthfirstsearch(C,iterationbound,

nextbound,solutionvalue);

(. Update upper bound .)

lf found then
upperbound :- solutlonvalue;

if Ioverbound <> upperbound then
totalexpanded :- totalexpanded + nodesexpanded;

until lowerbound - upperbound;

(* Output optlmal tour cost and path *)

vri teln (, Tour Cost : ' ,upperbound: 0) ;
writeln('Nodes Expanded : ',totalexpanded:O);
vrite('Optimal Tour: 1 ' ,lastcity:O);
vhlle not stackempty(S) do begin

topstack(node,S);
vrite(' '.node.clty:O);
popstack(S) ;

end;
vriteIn;

end; {iterativedeepening}

118

APPENDIX A. THE ETSP PROGRAM 119

(... .
• •
•
•

MAIN PROGRAM •
• ..)

begin {main program }
seed :- 20000;

end.

(. Enter parameters .)

wrlteln('Enter m, t and w:');
readln(toursize,sigdigs,dlvfactor);
initiallzecoordinates(P);
inltiallzematrix(P,C,slgdigs);
Iterativedeepening(C,dlvfactor);

