V-

An Analysis of
Iterative-Deepening-A*

Brian Glen Patrick

School of Computer Science
McGill University

Montreal, Canada

November 1991

A Thesis
Submitted to the Faculty of Graduate Studies and Research
In partial fulfillment of the requirements of the degree of
Doctor of Philosophy

Copyright © 1991 by Brian Glen Patrick

Abstract

Iterative-deepening-A* (IDA*) is an admissible heuristic search algorithm
which is optimal with respect to space complexity and the cost of solution
found over the class of admissible best-first tree search algorithms. However,
the optimality of IDA* with respect to time complexity is subject to a number
of conditions. It is the focus of this dissertation to identify the conditions
that give rise to the worst case performance of IDA* and to delineate a time
complexity spectrum between its optimal and worst case performance. In ad-
dition, the expected case performance of IDA* is derived with respect to a
probabilistic model of computation that assumes the differential edge costs
are independently and identically distributed as random non-negative inte-
gers. Under this assumption, IDA* exhibits asymptotic optimal performance
for any integer probability distribution that satisfies a couple of weak condi-
tions. Finally, to redress the worst case phenomenon of expanding only a few
additiona! nodes over several iterations, a new admissible search algorithm,
called Binary IDA* (BIDA*), is presented and compared against the perfor-
mance of IDA* on the Euclidean traveling salesperson problem. It is shown in
a small empirical study that BIDA* is a significant improvement over IDA*

as both the tour size and the precision of the edge costs increase.

Résumé

Iterative-deepening-A* (IDA*) est un algorithme heuristique admissible de
recherche qri, parmi la classe des algorithmes admissibles de recherche
d’arborescence meilleur d'abord, est optimal en ce qui a trait 4 la complexité
en taille et au coGt de calcul de la soh tion. Cependant, optimalité de la
complexité en temps de IDA* est sujette a de nombreuses contraintes Le Lut
de la présente theése est de préciser sous quelles conditions le pire des cas est
atteint et de spécifier quelle est la plage de variation de la complexité en temps
de 'algorithme entre le meilleur et le pire des cas De plus, la complexité en
moyenne de IDA* est obtenue dans le cas ou est faite hypothese que les colits
différentiels sont donnés par des entiers positifs indépendants aléatoirement
et identiquement distribués Sous cette hypothese, IDA™ est asymptotique-
ment optimal, et ce pour toute distribution de probabilité soumises en plus a
quelques contraintes supplémentaires relativernent faibles. Finalement, dans
le but de corriger dans le pire des cas le probleme de 'expansion de seulement
un petit nombre de sommets sur plusieurs itérations, un nouvel algorithme de
recherche. baptisé Binary IDA* (BIDA¥), est introduit. L'efficacité des deux
algorithmes (IDA* et BIDA*) est comparée en les testant successivement sur
le probleme du voyageur de commerce Euclidien. En augmentant le nombre
de villes et la précision de calcul des distances, on trouve empiriquement que

BIDA* est un algorithme plus efficace que IDA*.

translated by Dr. Jocelyn Deshiens

i

Statement of Originality

Although all work herein that is not otherwise credited represents an origi-
nal and distinct contribution to the study of heuristic search, the following

individuals nonetheless deserve special recognition:

e The worst case analysis of Chapter 5 is based in large part on the paper
entitled “An upper bound on the time complexity of iterative-deepening-
A*" [35] which was co-authored with the aid of Mohammed Almulla and

Monroe M. Newborn.

e The analytical development of Chapter 6 was suggested by Dr. Luc De-
vroye of McGill University who demonstrated the use of generating func-

tions in the derivation of the asymptotic expected case analysis of IDA™.

Notwithstanding tne contributions of those individuals mentioned above, any

remaining oversighis and errors are the sole responsibility of the author.

ey

i

Acknowledgements

The pursuit of research requires the continued support of many people and
organizations over a number of years. 1 gratefully acknowledge this support

and extend my deep appreciation to:

e The Natural Sciences and Engineering Research Council of ("anada which

granted me the financial means to undertake graduate studies,

o The College Militaire Royal de St. Jean which genervusly provided the

computing resources for the preparation of my dissertation, and

e My supervisor, Dr. Monroe M. Newborn, who is owed a sincere thank-

you for his guidance and concern.

Yet, any success that I enjoy has always been a testament to a wonderful
family who weathered the storms and the doldrums of research with patience
and understanding. 1t is to my father and mother and my two brothers, Kevin

and Sean, that I dedicate this work with all my love.

v

P2

Contents

1 Heuristic Search

1.1 Introduction e
1.2 Optimal Path Problem
1.3 Best-First Search

1.3.1 Description e

1.3.2 Disadvantages
1.4 Iterative-Deepening-A*
1.5 ThesisOutline.

2 The A* Algorithm

2.1 Descriptionof A* oo
2.1.1 Evaluation Function
2.1.2 Admissibility L L o
2.1.3 Conditions of Expansion

2.2 Mecasures of Performance
221 Node Complexity
222 TimeComplexity
2.2.3 Space Complexity and Inadmissibility

2.3 Concluding Remarks

3 Iterative-Deepening-A*

3.1 Descriptionof IDA*.
3.1.1 Admissibility o oo
3.1.2 Conditions of Expansion
3.1.3 Property of Acyclicy

3.2 Measures of Performance
3.2.1 Node Complexity
3.22 Time Complexity
323 TimeOptimality

3.3 Direct Derivation of Time Complexity

-1 Oy O WD

CONTENTS

3.4 Comparison of IDA* with A*
3.5 Concluding Remarks

.................

4 Worst Case Analysis
4.1 Derivation e e e e e e e e e
4.2 Worst Case Conditions

4.3 Worst Case Examples.
4.3.1 Uniform Branching Factor
4.3.2 Non-Uniform Branching Factor
44 Concluding Remarks

..........

................

5 Time Complexity Spectrum of IDA*
5.1 Branching Factors
5.2 Constant Branching Factor
5.3 Decreasing Branching Factor

5.4 Umt Branching Factor

5.5 Concluding Remarks .

..............

6 Expected Case Analysis
6.1 Model of Computation
6.2 Basic Formulations
63 Expected Case Analysis
6.4 Expected Case Examples

6.4.1 Uniform Probability Distributio
6.4.2 Geometric Probability Distribution
6.5 Concluding Remarks

...........

7 Binary Iterative-Deepening-A*
7.1 Description of BIDA*

7.1.1 Admissibility 0 oo

7.1.2 Time Complexity

7.2 Empirical Results

.....................

.........................

7.2.1 Euclidean Traveling Salesperson Problem
722 Testingand Analysis
7.3 Comparison of BIDA*with IDA*CR
74 Concluding Remarks,

8 Final Remarks

Vi

33
35

37
37
B
11
11
43

45

47
47
48
a0

D2

52

3 CONTENTS vii
A The ETSP Program 92
A.l1 Introductory Comments 92

A.2 Pascal Implementation 94

List of Figures

-1

el

Lot —

The BF* Algorithm . . .

......

The IDA* Algorithm .
Example of an IDA* Search

Expansion on the Final {teration of IDA* . . .

Non-Acyche Solution Space Graph
Example of the Final Iteration of IDA*

Labeled Binary Tree of Depth 3 |
Solution Space of a 4-City ATSP

Differential Edge Costs of Figure 3.2

The Binary IDA* Algonthm
Example of a BIDA* Search
Exarple of an IDA*_CR Search . . .

viii

t

T Y e —

[OCI Sl SR S O
=<

o

69
70
K2

List of Tables

-~3

i |

5 BN O O

-3

-3 =3

Performance of IDA* and BIDA* on Figure 7.2
Performance of IDA* and BIDA* on Figure 72 (modified) . .
Average Time Complexities of IDA* to A*
Average Performance Ratios of BIDA* to IDA*
Average Time Complexities of BIDA* to A*

ix

74
75
78
79

Chapter 1

Heuristic Search

1.1 Introduction

A wide variety of difficult and often intractable problems in artificial intel-
ligence, operations research and combinatorics are represented in terms of
the solution space model and involve a scarch of that space to find an op-
timal or near-optimal solution [13, 32]. Consequently, considerable research
has focussed and continues to focus on questions of how to incorporate and
manipulate knowledge in the searching process [33, 3§]

Without the availability of any knowledge, a search reduces to a systematic
enumeration and comparison of all possible solutions that comprise the solution
space of a problem. For most combinatorial applications of interest, the explo-
ration of the entire solution space is infeasible in terms of computational time.
On the other hand and with the availability of perfect knowledge, a search is
propelled directly toward an optimal solution. Unfortunately, a search in such
cases often suggests a polynomial time solution to problems which are provably

intractable. Hence, the development of so-called “intelligent” search strategies

CHAPTER 1. HEURISTIC SEARCH 2

rests on a mutual dependency. The presence of incomplete knowledge neces-
sitates the iimplementation of a search strategy to utilize this knowledge in an
efficient and productive way. And conversely, the size of most solution spaces
necessitates the use of knowledge, Lowever incomplete, to limit the search to-
ward those areas of the solution space that offer the most promise of success.

The combination of knowledge and search is called heuristic search.

1.2 Optimal Path Problem

The solution space of a problem is abstractly defined as a weighted, directed

graph G = (V, E,C) where:
1. Vis a set of nodes {n;,ny,na,...},
2. E is set of directed edges {(n,,n,) € V x V}, and

3. C is a cost function, defined on E, that assigns a real positive cost to

each edge.

A single node is distinguished as the start node s and represents the initial con-
figuration of the problem. A subset of nodes is distinguished as the goal nodes
and represents those solutions that satisfy the stated objectives of the problem
definition. Each other node n in V represents a distinct partial solution along
any path rooted at the start node s. A directed edge (n,,n,) repre-ents the
transformation from one partial solution n, to another n,. The cost of this
transformation from n, to n, is represented by the cost of the directed edge
(n,,n,) and is therefore equal to C(n,,n,).

Any path from the start node s to a goal node is defined as a solution

path. Hence, many problems are formulated in terms of finding not only a

CHAPTER 1. HEURISTIC SEARCH 3

solution path but also a path that satisfies some criteria of optimahty [41].

These problems are often stated in terms of the optimal path problem.

Definition 1.1 Given a solution space graph G, the optimal path problem 1s

to find the minimum cost path from a start node to a goal node

In general, the cost of a path P from the start node s to any other node n is
an arbitrary function of the costs assigned to the nodes and edges along that

path.

1.3 Best-First Search

The representation of the solution space G = (V, E,C) is often too large
to be stated explicitly. Therefore the solution space graph is constructed

algorithmically given an implicit definition of G. Thus,
G={(sT)

where s is the start node and T is an ezpansion operator [33]. The application
of T to a selected node n, called the ezpansion of n, generates all successors
of n and the costs of the associated edges from n to cach of its successors It
is assumed that the solution space graph is locally-finite whereby cach node
has a finite number of successors. The systematic application of T to the start
node s, its successors and so on explicates the solution space graph G = (s, T)

and defines in effect the process of search.

1.3.1 Description

One of the most common search algorithms for the optimal path problem is

the informed, best-first strategy (33, 38, 51). Each best-first search algorithm

CHAPTER 1. HEURISTIC SEARCH 4

employs an evaluation function f [26] that assigns a non-negative cost to each
node n. This cost, called the f-value, is an estimate of the latent merit or
promise of a partial solution. Therefore, the cost assigned to node n is generally
a composite of information that is gathered along the path from the start node
s to n and that is inferred about the remaining cost from n to a goal node.
The estimate of the remaining cost is gleaned from the underlying problem
domain and is formulated in terms of a keuristic function h. The heuristic
function h is defined on each node of G and is incorporated into the definition

of the solution space graph. Thus,
G=(sT,h).

At the beginning of a best-first search, an OPEN list of expandable nodes
contains only the start node s and its associated cost f(s). On each step
of the search, the node with the minimum f-value is selected from OPEN
and ezpanded by the application of T. Once a node has been expanded, it is
removed from OPEN and added to a CLOSED list. Each successor n that is
generated by the expansion operator T is assigned an f-value. If node n has
not been generated before, it is added to OPEN. If node n has been generated
before and its new f-value is greater than its current f-value on OPEN or
CLOSED then node n is discarded: otherwise, node n is added to OPEN and
the previous instance of n is removed from either OPEN or CLOSED. Using
these f-values as a guide, best-first search continues the process of selection
and expansion until either a goal node is selected for expansion or no node is
available for expansion, in which case a failure is proclaimed’. One best-firs(

search algorithm called BF* is outlined in Figure 1.1 [8].

1t 15 assumed throughout the dissertation that at least one solution path does exist from

the start node s to a goal node

CHAPTER 1. HEURISTIC SEARCH

Comments:

OPEN is a list of expandable nodes.
CLOSED is a list of expanded nodes.
f(n) is the f-value of the most recent generation of n.

F(n) is the minimum f-value of node n on OPEN or CLOSED.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Put the start node s on OPEN and calculate f(s).
Set F(s) equal to f(s).
If OPEN is empty then
Exit with failure (No sclution exists).
Remove from OPEN a node p whose f-value 1s minimum.
(Break ties arbitrarily but always in favour of a goal
node.)
Place p on CLOSED.
If p 1s a goal node then
Exit successfully with solution obtained by tracing
back the path along the pointers from p to s.
(Pointers are assigned in Steps § and 6).
Expand node p, generating all successors of p.
Direct pointers back from each successor n to p.
For each successor n of p
a) Calculate f(n).
b) If n 1s ne.ther on OPEN nor on CLOSED then
Add n to OPEN
Set F(n) equal to f(n).
c) Else
{n already resides on OPEN or CLOSED}
If £(n) < F(n) then
Add n to OPEN
Set F(n) equal to f(n)
Remove previous n from OPEN or CLOSED
Else
Remove current n.
Go to Step 2.

Figure 1.1: The BF* Algorithm

#a

CHAPTER 1. HEURISTIC SEARCH 6

If the search is guaranteed to terminate with an optimal solution path
then the search is called admissible [33]. Admissibility is easily ensured if the
evaluation function f assigns to each node n a lower bound on the cost of the

optimal solution path from the start node s, through n, to a goal node [18].

1.3.2 Disadvantages

Each best-first search algorithm maintains all feasible paths that are rooted
at the start node s. For most combinatorial problems, the prioritized list
of erpandable nodes and the number of feasible paths grows exponentially.
Available memory is therefore rapidly consumed. In order to limit memory
requirements and permit the solution of larger and possibly more complex
problems, alternate search strategies must be considered.

One alternative is called the partially-informed, best-first strategy [38].
Each path is extended from the most recently-generated rather than the entire
set of expandable nodes. Such a strategy is based on a backtracking scheme
and consumes only a linear amount of memory with respect to the length of
the current path. The simplicity of this scheme and its economical use of space
suggests the development of hybrid search strategies that combine the storage
economy of backtracking with the efficient utilization of heuristic knowledge
[22]). One such algorithm and the analytical focal point of this dissertation is

iterative-deepening-A *.

1.4 Iterative-Deepening-A*

The iterative-deepening-A* algorithm (IDA*) is a hybrid of the best-first

search algorithm called A* and the iterative backtracking algorithm called

CHAPTER 1 HEURISTIC SEARCH 7

depth-first sterative-deepening [23]. The A* algorithm [18] is by far the most
studied version of best-first search. It is one of the few heuristic search tech-
niques that is supported by a substantial theoretical body of knowledge A
fuller discussion on the optimality and performance of the A* algorithm is
deferred until Chapter 2.

Depth-first iterative-deepening (DFID), on the other hand, is a brute-force
method of search. Over the class of brute-force search algorithms, DIFII) 1s
optimal along the dimensions of path length, node expansions and memory
space among exponential tree searches [23, Theorem 4.2]. The DFID algo-
rithm achieves each objective by performing successive depth-first searches
that probe to deeper and deeper levels of the solution space G. Each probe
or tteration that does not return a goal node is repeated to a deeper level of
the solution space. If the explored solution space grows exponentially from
one iteration to the next, it has been shown that the time complexity of DIFID
is asymptotically optimal over the class of brute-force search algorithms [23].
In essence, DFID is a cross between depth-first and breadth-first search: It
maintains the space optimality of depth-first search, but bounds ecach search
such that an optimal path length is found.

Depth-first iteravive-deepening has been successfully merged with other
heuristic search techniques. DFID was originally applied to alpha-beta scarch
[48] where it became and remains the method of search found at the heart
of the best chess-playing programs [25]. Its space economy permits search to
greater depths of the alpha-beta tree and hence allows a more assured estimate
of the best possible move at each stage of play. DFID has also heen applied
to the problem of automated theorem proving [49] When proving a theorem:,
all possible proofs in one step are attempted first, then two steps and so on

until a satisfactory resolution is reached [31].

CHAPTER 1. HEURISTIC SEARCH 8

The optimality of the IDA* algorithm with respect to space complexity and
the cost of solution found is respectively ensured by the nature of depth-first
search and by the admissibility of the evaluation function f [23, 24]. However,
the time optimality of IDA* is contingent upon a number of interrelated factors
which depend on both the structure of the solution space and the behaviour of
the evaluation function f. It is the aim of this dissertation to provide a clearer
understanding of how the performance of IDA* is influenced by these factors

and under what conditions the three parameters of optimality are realized.

1.5 Thesis Outline

The remainder of the dissertation is partitioned as follows:

Chapter 2: A full description on the performance measurements of the A*
algorithm is presented with respect to the class of admissible best-first

search algorithms.

Chapter 3: A full description of the IDA* algorithm is presented and a com-
mon measure of time complexity is established between the A* and IDA*

algorithms.

Chapter 4: A strict upper bound on the time complexity of IDA* is estab-
lished. As well, the conditions that give rise to the worst case perfor-

mance of IDA* are identified.

Chapter 5: A time complexity spectrum of IDA* is delineated by its asymp-

totic optimal and worst case performance.

Chapter 6: An expected case analysis of IDA* is derived with respect to

a probabilistic model of computation. The asymptotic expected case

CHAPTER 1. HEURISTIC SEARCH 9

analysis assumes that the values of the differential edge costs are inde-

pendently and identically distributed as random non-negative integers.

Chapter 7: A variation of IDA*, called Binary IDA*, is introduced and com-
pared against the performance of IDA* on the Euclidean traveling sales-

person problem.

Chapter 8: Final remarks and future avenues of research are offered.

f

Chapter 2

The A* Algorithm

2.1 Description of A*

The A* algorithm is a heuristic, best-first search algorithm which was de-
veloped specifically for additive cost measures [18]. These measures define
the cost of a path as the sum of its edge costs. Therefore, given a path

P =ny,ng,ns,...,n, between nodes n; and n,, the cost of path P is equal to

p-1

Y C(niynu)

1=l
where each C(n,,n,) is greater than some positive constant §.
2.1.1 Evaluation Function

The A* algorithm employs an evaluation function f that assigns a cost to each

node n that is the sum of two components, g(n) and h(n), where:

1. g(n) is the cost of the current path from the start node s to n, and

2. h(n) is a non-negative heuristic estimate of h*(n) where h*(n) is the cost

of the optimal path from n to a goal node. If n is a goal node then h(n)

10

CHAPTER 2. THE A* ALGORITHM 11

is equal to 0.

For completeness, g*(n) and f*(n) are defined as follows’
1. g°(n) is the cost of the optimal path from s to n, and

2. f*(n) is the cost of the optimal solution path fromn s to a goal node that
is constrained to pass through n, that is, f*(n) = g*(n) + h*(n). The
cost of the optimal solution path from s to any goal node is equal to

f*(s) and is denoted C*.

The evalvation function of A* therefore has the form f = g + h which is a

compromise of two earlier search techniques:
1. The uniform cost algorithin [10], and
2. The graph traverser algorithm [11].

Uniform cost search employs an evaluation function f = ¢ and guides the
search toward those areas of the solution space based strictly on perfect knowl-
edge. The graph traverser algorithm, on the other hand, employs an evaluation
function f = h and hence, guides the search toward those areas of solution
space based strictly on heuristic knowledge The A* algorithm places an equal
empbhasis on perfect and heuristic knowledge, although this ratio can be gen-

eralized to
f(n) = (1 - w)g(n) + wh(n)

where 0 < w <1 [40, 43]. The values of w = 0, 0.5 and 1 respectively define

the evaluation functions for the uniform cost, the A* ana the graph traverser

algorithms.

L dae |

CHAPTER 2. THE A* ALGORITHM 12

2.1.2 Admissibility

Theorem 2.1 ([18]) Given a solution space graph G = (s, T,h|h < h*), A*

1s admissible.

Proof Outline. Since A < h*, the f-value of each node along an optimal
solution path is less than or equal to C*. At any time before A* terminates,
there exists on OPEN a node n that is on an optimal solution path with
f(n) < C*. Assume that A* terminates at some goal node ¢t without finding an
optimal solution path, that is, f(t) = g(t) > C*. But node n with f(n) < f(¢)
is on OPEN. Thus, A* would have selected node n for expansion rather than
node ¢ which contradicts the assumption that A* terminated. O

Clearly, any heuristic function h that is a lower bound on h* is an admis-
stble heuristic and any evaluation function f = g + h that uses an admissible
heuristic is an admissible function. Unless otherwise stated, it is assumed that
both k and f are admissible throughout the dissertation.

Nilsson [34] regards the requirement that h < h* as part of the definition of
A*. However, in accordance with Nilsson’s original definition in [33] and more
recent literature {2, 5, 8, 38], the term A* is assigned to any BF* algorithm
that uses the additive combination f = g + h, placing no restriction on A.
Therefore, A* is identified by how it processes input information rather than
by the type of information that it may encounter. Two special cases of the
solution space graph G are henceforth distinguished based on a qualification

of the heuristic function h:
1. Admissible solution space graph where G = (s, T, h|h < h*).

2. Uninformed solution space graph where G = (s, T, h|h = 0).

CHAPTER 2. THE A* ALGORITHM 13

Definition 2.1 Any search algorithm that 1s apphed to an uninformed solu-

tron space graph G 1s called a brute-force search.

2.1.3 Conditions of Expansion

Given a solution space graph G = (s, T, h|h < A"), the sufficient and necessary

conditions of expansion are stated for any node n:

Sufficient Condition: There exists a path from the start node s to n along
which each node has an f-value that is strictly less than (" [38, Theo

rem 5, p. 80

Necessary Condition: There exists a path from the start node s to n along
which each node has an f-value that is less than or equal to (" [35,

Theorem G, p. 81}.

Therefore, a certain subset of nodes that may otherwise satisfy the necessary
condition of expansion may or may not be selected for expansion subject to the
tie-breaking rule that is employed by A*. To provide a measure of performance
that is independent of the choice of tie-breaking rules, the notion of a surely-

erpanded node is introduced

Definition 2.2 A node n 1s surely-expanded by the A* algoruthin 1f and only

if it satisfies the sufficrent condition of expansion.

Any node n may be reached by more than one path from the start node s
to n. Therefore, a node n that is generated more than once is re-expanded for
each assigned f-value that is less than the cost of the optimal solution path
The possibility that a node n will be re-expanded several times, depending
on the succession of f-valu- that are assigned to it, potentially explodes the

overall execution time of the search [28].

(£]

CHAPTER 2. THE A* ALGORITHM 14

Definition 2.3 ([43]) Gien a solution space graph G = (V, E,C), a heuris-
tic function h satisfies the property of monotonicity on G tf and only if

h(m) < h(n) + C(m,n)
for all n generated by m.

Given the property of monotonicity, three important results hold for an A*

search:

1. Every monotonic heuristic function h is admissible [38, Theorem 9, p.

83).

2. No node is re-selected for expansion. Once a node n is initially selected
for expansion, the optimal path from s to n is found, that is, g(n) = ¢*(n)

[38, Theorem 10, p. 83]

3. The f-values of the sequence of nodes that are expanded by A* are

non-decreasing [38, Theorem 11, p. 84].

Clearly, if h is monotonic, the sequence of values assigned by an evaluation

function f along any path rooted at s is also monotonic, that is,

f(m) < f(n)

for all n generated by m. Furthermore, the sufficient and necessary conditions

of expansion of node n are simplified for monctonic k [38, Theorem 12, p. 84]):
Sufficient condition: ¢g°(n) + k(n) < C.
Necessary condition: ¢*(n) + k(n) < C".

Again, a node n is surely-expanded by the A* algorithm if it satisfies the

sufficient condition of expansion.

CHAPTER 2. THE A* ALGORITHM 1

jabe §

2.2 Measures of Performance

The performance of the A* algorithm is analyzed with respect to the following

three measures of complexity:

Node complexity: The number of distinct nodes that are expanded during

an A* search

Time complexity: The tctal number of nodes that are expanded during an

A* search.

Space complexity: The amount of memory space consumed during an A*

search.

2.2.1 Node Complexity

The optimality of A*, with respect to node complexity, was established in
(5, 29, 33] for the additive rule g + h but to the exclusion of alternate policies
of expansion. It was correctly argued in [8, 9, 16] that the optimality of
A* must be judged against a wider class of equally-informed best-first search
algorithms. To that end, the evaluation function was generalized to assign an
f-value to each node n based on any combiation of the edge costs and the

heuristic values along the path from the start node s ton The following result

is stated in [8].

Theorem 2.2 Gwen a solution space graph G = (s,T,hlh < h*), the A*
algorithm 1s optimal, in terms of the number of distincl nodes that are surely-

ezpanded, over the class of admissible best-first search algorithms.

A subtle variation of Theorem 2.2 stems from Result 2 in Section 2.1.3.

CHAPTER 2. THE A* ALGORITHM 16

Corollary 2.1 Gwen a solution space graph G = (s, T, h|h < h*) where h is
monotonic, the A* algorithm is optimal, tn terms of the number of nodes that

are surely-ezpanded, over the class of admissible best-first search algorithms.

Interestingly, this result confirms the earlier conjectures of {5, 29, 33]. Fur-
thermore, it suggests that any combination of g and A where k < k* will
expand every node that is surely-expanded by A*. In other words, the addi-
tive combination g + h is an optimal aggregation of g and k for additive cost

measures.

2.2.2 Time Complexity

The time complexity of A*, unlike the node complexity, is measured in terms
of the total number of node expansions. Under the property of monotonicity
which states that no node is re-seiected for expansion, the time complexity of
A* is equal to the number of nodes that are surely-expanded plus a subset of
nodes, including the optimal goal node, whose f-values are equal to C*.
When the monotonic assumption is relaxed, the f-values of the sequence of
nodes that are expanded bv A* are not necessarily non-decreasing. In the worst
case, the A* algorithm performs O(2M) expansions where M is the number
of distinct nodes that are expanded by A* on G [28]. The poor performance
of A* for non-monotonic h encouraged the development of several variants of
A*, including Martelli’s B algorithm [28], Mérd’s B’ algorithm [29], Bagchi and
Mabhanti’s C algorithm [2] and most recently, Mahanti and Ray’s D algorithm
[27]. Each variant attempts to minimize the effect of non-monotonicity by

either;

1. Ignoring the heuristic estimate of an expandable node n when it fails to

increase the f-value of n above the current maximal f-value of expanded

.

CHAPTER 2. THE A* ALGORITHM 17

nodes (Algorithms B and C), or

2. Modifying (increasing) the heuristic estimate(s) of a parent node or its
children upon expansion to reflect information that either the parent or

its children had originally overlooked (Algorithms B’ and D).

The worst case time complexity of each new algorithm, except the B’ algo-
rithm, is O(M?) if the monotonic assumption is waived'. However, if the
evaluation function satisfies the property of monotonicity, each variant of A*
above behaves exactly as the A* algorithm itself.

The time complexity analysis thus far has foregone any analysis of how the
accuracy of the heuristic estimate impacts on the number of distinct nodes
that are expanded by A*. It was originally shown in [18] that as the heuristic
function h better approximates h*, fewer distinct nodes are expanded by A*.
Even when the monotonic assumption is relaxed, if a heuristic h; provides a
better estimate of h* than another heuristic h; over all nodes of GG, that is,
hy < hy < h*, then A* is guaranteed to expand at least as many distinct
nodes with h; as with hy {19, 30]. Indeed, if A* employs a perfectly-informed
heuristic (h = h*) then the search is propel'ed directly toward a goal node
without expanding any node off an optimal solution path. If the goal node is
unique and located at depth d from the start node s then A* performs exactly
d expansions. At the other extreme, if A* employs no heuristic information at
all (h = 0) then the secarch is exhaustive and, in most cases, exponential in d.

The results presented within this section assume that the solution space
G = (s,T,h) is modeled as an undirected tree with a uniform branching

factor b. The solution space tree is rooted at the start node s and may be

It was later demonstrated that, on the weakness of its tie-breaking rule, Mérd’s B’

algorithm requires in the worst case 0(2M) expansions [27]

CHAPTER 2. THE A* ALGORITHM 18

either infinite or finite with a minimum depth of d. Each edge is assigned a
symmetric unary cost and there exists an unique goal node situated at depth
d from the start node s. The earliest work that attempted to quantify the
trade-off between the complexity of the A* algorithm and the precision of the
heuristic h used to guide the search delineated the spectrum of the precision-
complexity trade-off between two points [15, 40, 43, 50]. At one end of the
spectrum, if the absolute heuristic errors, denoted h* — h, are bounded by a
fixed quantity thep the time complexity of A* is linear in d. At the other end
of the spectrum, if these errors grow linearly with h* then the time complexity
of A* is exponential in d.

A probabilistic extension of these results was presented in [21]. The er-
rors produced by the heuristic estimates were treated as independent random
variables with distributions that could vary over the nodes of the uniform tree
model. It was shown that if the relative errors are bounded away from zero
with a probability greater than 1/b then the expected time complexity of A*
is exponential in d. The probabilistic model was generalized in [37] to account
for all points along the spectrum, revealing the exponential character of the
precision-complexity exchange. If the typical heuristic error grows like ¢(h*)
where ¢ is a sublinear function then the expected time complexity of A* grows

approximately like
©(d - exp(cé(d)))

where ¢ is a positive constant. Therefore, to ensure a polynomial time com-
plexity, the precision of the heunatic function A employed by A* must be
logarithmic, for example, ¢(d) = (log(d))*.

The above analyses were extended by [4, Theorems 3.3 and 3.4] in the

presence of multiple goal nodes. Each goal node is located at a distance no

CHAPTER 2. THE A* ALGORITHM 19

greater than d + c¢(d) where ¢ is a constant greater than or equal to 0. Given
that the probability distribution satisfies some very weak conditions, it was
shown that the expected time complexity of A* is exponential in d except
when both ¢ is logarithmic and the number of goal nodes is polynomial in
d. Therefore, given a heuristic function that exhibits logarithiic precision,
the expected time complexity of A* is polynomial if and only if the number
of solution paths is also polynomial in d. However, if the number of solution
paths is exponential in d then the expected time complexity of A* remains

exponential regardless of the accuracy of the heuristic function employed.

2.2.3 Space Complexity and Inadmissibility

The performance of the A* algorithm and its variants has been analyzed at
length under the condition of inadmissibility [2, 3, 8, 17, 27, 36, 39, 42]. The

analyses concentrate on two measures of performance:

1. The optimality or sub-optimality of the solution found, and

2. The time and space complexity of the resulting search.

The argumets in favour of non-admissible heuristics are motivated by three
points:
1. The choice of a heuristic function is no longer constrained to admissible

h.

2. Admissible search strategies often spend a disproportionate amount of

time discriminating among equally meritorious alternate solutions.

3. Although the inherent strength of the A* algorithm, in particular, lies in
its ability to convert heuristic knowledge into appreciable time savings,

much of this ability is diluted in the presence of multiple goal nodes [4].

! CHAPTER 2. THE A* ALGORITHM 20

For most combinatorial problems of interest, the above arguments are predi-
cated on a common objective: To reduce the scope of search and thereby to
reduce the vast amounts of memory that are consumed by the A* and other

| best-first search algorithms.

2.3 Concluding Remarks

The A* algorithm is an important member of the class of best-first search
algorithms, primarily on the strength of the following three results. Given a

solution space graph G = (s, T,h|h < h*):
1. A*is admissible.

2. A* is optimal, in terms of the number of distinct nodes that are surely-

expanded, over the class of admissible best-first search algorithms.

3. Hf the heuristic function k is also monotonic then A* is optimal, in terms
of the number of nodes that are surely expanded, over the class of ad-

missible best-first search algorithms.

However, because the optimal path problem is a central problem of many ar-
tificial intelligence applicaticns, the question of memory consumption remains

a critical consideration notwithstanding the above results.

Chapter 3

Iterative-Deepening-A*

3.1 Description of IDA*

Iterative-deepening-A* (IDA*) is a heuristic search algorithm that combines
the efficient utilization of heuristic knowledge with an eflicient utilization of

memory space [23]. In order to meet these objectives, the IDA* algorithm:

1. Assigns a cost to each node that is determined by the evaluation function

f=g+h ! and

2. Performs successive depth-first searches that are bounded by increasing

values of f.

The cost bound of the initial iteration of IDA* is denoted C, and is set
to the cost of the start node s, that is, C; = f(s). At the beginning of each
iteration, a STACK of expandable nodes contains only the start node s and its
associated cost f(s). On each step of the search, the most recently-generated

node (i.e, the top node of STACK) is selected and expanded by the partial

Therefore, as with A*, an optimal discriminant for additive cost measures is employed.

21

CHAPTER 3. ITERATIVE-DEEPENING-A* 22

application of T. The partial expansion of a node generates a single successor
at a time. Once all successors of a node have been generated, the node is
considered fully-ezpanded; otherwise, it is considered only partially-ezpanded
2. If the selected node is fully-expanded then it is removed from the STACK
and discarded. Each successor n that is generated by the expansion operator
T is assigned an f-value equal to g(n) + h(n). If the f-value of node n is less
than or equal to the cost bound of the iteration during which it is selected
then n is added to the top of STACK. The depth-first search continues the

process of selection and expansion until either one of two conditions is met:
1. A goal node is selected for expansion, or

2. The f-values of all expandable nodes is greater than the cost bound of

iteration i, denoted C,.

On each iteration, except the final iteration, IDA* performs an exhaustive
search of all paths along which each node has an f-value that is less than
or equal to the cost bound of the iteration. Once a goal node is selected for
expansion, the IDA* algorithm terminates; otherwise, a depth-first search of
the solution space G is repeated with a greater cust bound C,4;. The new cost
bound is set to the minimum f-value among all nodes that were generated
on iteration : and that exceeded the cost bound C,. The IDA* algorithm is
outlined in Figure 3.1.

An example of an IDA* search is presented in Figure 3.2. Each node A
through M is labeled with its f-value. Nodes A and K are designated as the

start and goal nodes respectively. Only those generated nodes whose f-values

Partial expansion ensures that for any (in)finite branching factor the linear memory
constraints of depth-first search are satisfied and that each currently explored path is main-

tained 1n STACK

b,

CHAPTER 3. ITERATIVE-DEEPENING-A* 23

Comments:
C is the cost bound of the current iteration.
M is the cost bound of the subsequent 1terataion,

that 1s, the minimum f-value among generated nodes
that exceeds C.
f(n) is the f-value of the most recent generation of n.
MAX 1is an arbitrarily large number.

Step 0: Set M equal to f(s), the cost of the start node s.
Step 1: Push s onto a STACK of expandable nodes.
Set C equal to M. Reset M equal to MAX.
Step 2: If STACK is empty then
If M remains equal to MAX then
Exat with failure; no solution exists
Else
Go to Step 1 and proceed with the next 1iteration.
Step 3: Assign the top node of STACK to p.
Step 4: If p is a goal node then
Exit successfully;
Sclution maintained by the STACK of nodes.
Step 5: Generate the next successor n of p.
Step 6: If node p has no further successors then
Pop p from STACK
Else
a) Calculate f(n).
b) If f(n) <= C then
Push n onto STACK
Assign the newly-computed f(n) to n.
c) If C < £f(n) < M then
Lover M to f(n).
Step 7: Go to Step 2.

Figure 3.1: The IDA* Algorithm

CHAPTER 3. ITERATIVE-DEEPENING-A* 24

C
D2 E 3 % \G2
—_— / AN
H (2 173)4
Ke's \L4 Me's

Figure 3.2: Example of an IDA* Search

are less than or equal to the f-value of node K are shown. The cost bound
of the initial iteration is set to the f-value of the start node A. Therefore,
Cy is equal to 1. Nodes A and C are selected for expansion on the initial
iteration. The cost bound of the second iteration is set to the minimum f-
value among expandable nodes that exceeded the cost bound of the initial
iteration. Therefore, C; is equal to 2. Nodes B, D, F and G in addition to
nodes A and C are selected for expansion on the second iteration. Similarly,
the cost bound of the third iteration C, is equal to 3. Nodes E, H and I are
selected for expansion on the third iteration in addition to all nodes that were
selected for expansion on iteration 2. To note, because the f-value of node H
is non-monotonic, it is initially selected for expansion only on iteration 3. On

the fifth and final iteration, IDA* terminates once a goal node is reached and

CHAPTER 3. ITERATIVE-DEEPENING-A* 25

hence, only nodes A, B, D, E, H and K are selected for expansion

3.1.1 Admissibility

By extending the search from one iteration to the next along contours of

minimum increments, three preliminary results are rtated.

Theorem 3.1 ([24]) Given a solution space graph G = (s,T,h|lh < k),
IDA* is admissible.

Proof Outline: The cost bound of the initial iteration ("; is equal to the f-value
of the start node s. Since f(s) < f*(s) = C*, the cost bound ('} is less than
or equal to the cost of the optimal solution path. Furthermore, since the cost
bound of each succeeding iteration is the minimum f-value among expandable
nodes that exceeded the previous cost bound and since the f-value of each
node along an optimal solution path does not exceed C*, the cost bound of
some iteration must eventually equal the cost of an optimal solution path.
When the cost bound is equal to C*, the optimal goal node is selected and
no other goal node with an f-value greater than C* is expanded Therefore,
the cost of the first goal node selected for expansion is equal to the cost of an

optimal solution path.O

Lemma 3.1 Ghwen a solution space graph G = (s,Y,h|lh < h*), the cost
bound of the final iteration of IDA* is equal to the cost of the optimal solution
path C*.

Lemma 3.2 Given a solution space graph G = (s, T,h|h < h*), IDA* ezpands
at least one additional node on tteration ¢ where the f-value of that node ts

equal to the cost bound C,.

CHAPTER 3. ITERATIVE-DEEPENING-A* 26

Proof: The cost bound C; of the initial iteration is equal to the f-value of
the start node s. Since the start node is selected on each iteration, at least
one additional node whose f-value is equal to C;, namely the start node s,
is selected for expansion on the initial iteration. The cost bound of iteration
t is set to the minimum f-value among all expandable nodes that exceeded
the cost bound C,.;. Hence, there are no paths from the start node s along
which the maximum f-value is greater than C,_, and less than C,. Therefore,
at least onc additional node whose f-value is equal to C, must be selected for

expansion on iteration .0

3.1.2 Conditions of Expansion

Given a solution space tree G = (s, T, h|h < h*), the sufficient and necessary

conditions of expansion are stated for any node n on iteration 1:

Sufficient Condition: There exists a path from the start node s to n along
which each node has an f-value that is less than or equal to the cost

bound C, where C, is also strictly less than C*.

Necessary Condition: There exists a path from the start node s to n along
which each node has an f-value that is less than or equal to the cost

bound C, where C, is also less than or equal to C*.

Like the A* algorithm, the sufficient and necessary conditions for the expansion

of node n are simplified for monotonic h:
Sufficient Condition: g*(n) + h(n) < C, and C, < C*.

Necessary Condition: g*(n) + h(n) < C, and C, < C*.

CHAPTER 3. ITERATIVE-DEEPENING-A* 2

-1

It is important to note that the sufficient and necessary conditions of expansion
are identical on each iteration leading up to and including the penultimate
iteration but differ on the the final iteration.

If the evaluation function satisfies the property of monotomcity, the f-
values of the sequence of nodes expanded by IDA* are not necessarily non-
decreasing. Monotonicity ensures only that the f-values along any path rooted
at the start node s are non-decreasing. Therefore, on the final iteration when
an optimal goal node is selected for expansion, a subset of nodes that were
expanded on the penultimate iteration may not be expanded before an optimal
goal node is selected. Each node that is expanded on the final iteration satisfies
only the necessary condition of expansion, that is, f(r) < (" Thus, only the
start node s and the optimal goal node may be selected for expansion on the
final iteration as shown in Figure 3.3 If nodes A and B are designated as the
start and goal nodes respectively then only nodes A and B are selected for
expansion on the final iteration: The solution space tree rooted at node (7 is
unexplored.

Although the necessary condition holds over all iterations, the suflicient
condition of expansion holds only on each iteration leading up to and including

the penultimate iteration.

Definition 3.1 A node n s surely-ezpanded by IDA* on ueration 1 1f and

only if it satisfies the sufficient condition of expansion.

Definition 3.2 A node n is said to be C,-surely-expanded if it 1s surcly-

ezpanded on iteration t.

Any node that is surely-expanded on, say, four successive iterations is said

to be surely-expanded four times. Although the same node is selected for

CHAPTER 3 ITERATIVE-DEEPENING-A* 28

T,

Figure 3.3: Expansion on the Final Iteration of IDA*

expansion on each of the four iterations, it is said as well that four nodes are

surely-expanded. Finally, no nodes are surely-expanded on the final iteration

of IDA*.

Lemma 3.3 Giwven a solution space graph G = (s, T,h|lh < h*), the set of
distinct nodes that are surely-ezpanded by A* is equal to the set of distinct

nodes that are surely-ezpanded by IDA* on its penultimate iteration.

Proof: From Lemma 3.1, the minimum f-value that exceeded the cost bound of
the penultimate iteration is equal to the cost of the optimal solution path C*.
Therefore, on the penultimate iteration, IDA* expands all nodes n for which
there exists a path from the start node s to n and for which each node along
that path has an f-value that is strictly less than C*. Thus, Definition 2.2 is
satisfied.O

CHAPTER 3. ITERATIVE-DEEPENING-A* 29

MK A

Figure 3.4: Non-Acyclic Solution Space Graph

3.1.3 Property of Acyclicy

The property of monotonicity cannot guarantee, as it does with A*, that no
node is re-selected for expansion during each iteration of an IDA* search. On
each iteration, IDA* performs a bounded depth-first search which by defi-
nition, maintains only the current path from the start node s to the most
recently-generated node n. Therefore, if a node n is reached by more than
one path from the start node s then node n is re-expanded for cach assigned
f-value that is less than or equal to the cost bound of the current iteration.

For example, the explicit graph G in Figure 3.4 is considered Nodes A and
E are designated as the start and goal nodes respectively. Each edge is directed
away from the start node A and has unit cost. If no heuristic mformation is
employed (h = 0) then the property of monotonicity is ensured The complete
expansion of either node A, B, C or D generates two instances of node B,
C, D or E respectively. Each instance is assigned a cost which 1s equal to
its distance from the start node A. According to algorithm BF* (Figure 1.1),
only the first instance of each generated node is added to OPEN (Step 6b):
The second instance is removed (Step 6c).

The IDA* algorithm, on the other hand, carries out successive depth-first

CHAPTER 3. ITERATIVE-DEEPENING-A* 30

searches that are each rooted at node A and that are bounded by depths of 0
to 4 respectively. Each partial expansion of A, B, C or D (Step 5, Figure 3.1)
generates a single instance of B, C, D or E at a time. Therefore, on the
first iteration, only node A is expanded. On the second iteration, node A
is again expanded but node B is selected twice for expansion, once for each
instance that is generated. Similarly, on the third and fourth iterations, nodes
C and D are expanded 4 and 8 times respectively. Because all paths from
A to F are optimal, only 5 nodes are selected for expansion before IDA* is
terminated on the fifth and final iteration. Hence, the perfoimance of IDA*
degrades exponentially over A* as the number of distinct paths to each node
grows exponentially with depth (cost).

In order to ensure that no node is re-selected for expansion, the property

of monotonicity is supplanted by the stronger requirement of acyclicy.

Definition 3.3 The property of acyclicy states that no node in G is reachable

by more than one path from the start node s.

The property of acyclicy is easily guaranteed if the solution space graph is a
tree rooted at the start node s. Hence, there exists at most one path to and

therefore, one possible expansion of each node in G on any iteration.

3.2 Measures of Performance

3.2.1 Node Complexity

In light of Lemma 3.3, the arguments that support the node optimality of A*

are equally valid in establishing Theorem 3.2.

CHAPTER 3. ITERATIVE-DEEPENING-A* 31

Theorem 3.2 Given a solution space graph G = (s, T,h|h < h*), IDA* s
optimal, in terms of the number of distinct nodes that are surely-erpanded,

over the class of admissible best-first search algorithms.

The property of acyclicy is not a prerequisite of node optimality, that is,
the total number of node expansions does not affect the number of distinct
nodes that are selected for expansion. However, assuming that the property of
acyclicy is satisfied on G, the number of distinct nodes and the total number
of nodes that are surely-expanded by the A* aigorithm are equal The criteria

of A* optimality is restated without the condition of monotonicity.

Lemma 3.4 Guwen a solution space tree G = (s, T,h|h < k*), the A* al-
gorithm 1s optimal, n terms of the total number of nodes that arc surely-

expanded, over the class of admissible best-first tree search algorithms.

Unfortunately, the interchange of node and time complexity is not so obviously

extended in the case of the IDA* algorithm as shown in the following scction.

3.2.2 Time Complexity
Under the property of acyclicy, a subtle variation of Lemma 3.3 is stated.

Lemma 3.5 Given a solution space tree G = (s, T,hlh < h*), the number of
nodes that are surely-ezpanded by A* 15 equal to the number of nodes that are

surely-ezpanded by IDA* on its penultimate steration.

Lemma 3.5 establishes a common measure of time complexity between the A*
and IDA* algorithms. Because no nodes are surely-expanded by IDA* on the
final iteration, the time complexity of IDA* is restricted to the total number of
nodes thai are surely-expanded on each iteration leading up to and including

the penultimate iteration.

CHAPTER 3. ITERATIVE-DEEPENING-A* 32

Definition 3.4 The penultimate iteration is said to be iteration k, k > 0. If
k = 0 then the optimal solution path is found on the initial iteration and no

node 1s surely-ezpanded.

Definition 3.5 The number of nodes that are C,-surely-ezpanded, 0 < i < k,
is denoted M(1). From Definition 3.4, M(0) is equal to 0.

Definition 3.6 The number of additional nodes that are surely-ezpanded on
iteration 1, 1 <1 < k, is denoted N(i) and is equal to the number of nodes that
are C,-surely-expanded less the number of nodes that are C,_,-surely-ezpanded.

Hence,

N(z) = M(@i) -~ M@ - 1).

From Definition 3.6, it follows that
M(i)=)_ N(j).
=1
Definition 3.7 The total number of nodes that are surely-expanded by IDA*

over k iterations ts denoted T(k) and is equal to

or equivalently
ks

22 NG (3.2)

=1 y=1
It is also useful to note that each additional node that is surely-expanded on
iteration 7 is re-expanded on each subsequent iteration j, 1+ 1 < j <k, for a
total of (k —i+1) expansions. The additional nodes that are surely-expanded
on the first iteration are re-expanded on each subsequent iteration for a total

of kN(1) expansions. The additional nodes that are surely-expan.'ed on the

CHAPTER 3. ITERATIVE-DEEPENING-A* 33

second iteration are re-expanded on each subsequent iteration for a total of
(k — 1)N(2) expansions. In general, the additional nodes that are surely-
expanded on iteration ¢ are re-expanded on each subsequent iteration for a
total of (k — ¢ + 1)N(f) expansions. Hence, the time complexity T'(k) of IDA*
is also equal to

k
Y (k—i+1)N(). (3.3)

=1

Equations 3.1, 3.2 and 3.3 above represent equivalent general formulae of the

time complexity of iterative-deepening-A*.

3.2.3 Time Optimality

The number of nodes that are surely-expanded by A* on an admissible solu-
tion space tree G is defined in terms of the number of nodes that are surely-
expanded by IDA* on G during its penultimate iteration. Thercfore, the time
complexity of A* is equal to M(k). This cquivalence allows a convenient and
reciprocal measure of comparison between the A* and IDA* algorithms. Be-
cause the A* algorithm is optimal, in terms of the number of surely-expanded
nodes, over the class of admissible best-first tree search algorithms, the [DA*
algorithm is also asymptotically optimal if T'(k) is O(M(k)).

The time optimality of IDA*, however, depends on what fraction of the
overall computational effort is spent on those iterations ¢, 1 <1 < k-1,

leading up to penultimate iteration k.

Definition 3.8 The overhead of the IDA* algorithm, denoied R(k), 1s equal
to the total number of nodes that are surely-ezpanded on all iterations leading

up to but not including the penultimate iteration.

To express T'(k) in terms of M(k) and R(k), Equations 3.1 and 3.2 are respec-

!)

CHAPTER 3. ITERATIVE-DEEPENING-A* 34

tively rewritten as

T(k) = M(k)+2M(i)

=1

= M(k) + R(k) (3.4)
and
k-1 3
T(k) = M(k)+d_ Y N()
=1 =1
= M(k)+ R(k). (3.9)

Therefore, to ensure the asymptotic time optimality of IDA*, the overhead
R(k) must be O(M(k)) as well.

3.3 Direct Derivation of Time Complexity

Given a sequence A of p nodes ny,n,,...,n, that are surely-expanded by the
A* algorithm on an admissible solution space tree G, the time complexity of
IDA* is derived directly from sequence A. First, an ascending subsequence of

A, denoted A’, is constructed as follows:
1. The first element of A’ is n,, where n,, = n;,.

2. The i** element of A’, i > 2, is the next element of A from n,,_, onward

whose f-value is strictly greater than f(n,,_,).

The construction continues until the entire sequence of A has been scanned
for ascending f-values. The resulting subsequence A’ is n, ,n,,,...,n, where

n, =n;.

Property 3.1 The f-values of all nodes between n,, and n,,,, in sequence A

are less than or equal to f(n,,).

o

CHAPTER 3. ITERATIVE-DEEPENING-A* 35

Lemma 3.6 Given the sequence A of nodes that are surely-expanded by A*
on a solution space tree G = (s, T,hlh < h*), the successive cost bounds
C1,C2...,Ck of IDA* on G are respectively equal to the f-values of the as-
cending subsequence A', that is, Cy = f(n,,),C2 = f(n,;),...,Ce = f(n,,).

Proof by Induction: The cost bound of the initial iteration C, is equal to the
f-value of the start node n, which is equal to f(n,,) by definition. Assume
that the cost bound C, of iteration 1 is equal to f(n,). Clearly, all nodes n,
through n, ., are C,-surely-expanded [Property 3.1]. The cost bound of the
subsequent iteration is equal to the minimum f-value that exceeds €. Since
the A* algorithm selects at each step the node with the minimum f-value
among all expandable nodes then n,,,, is a node with the minimum f-value

that exceeds the cost bound of iteration :. Therefore, Cy4y = f(n,,,,).0

Lemma 3.7 Given the sequence A of nodes that are surely-crpanded by A*
on a solution space tree G = (3, Y, h|lh < h*), there exists a partition of A wnto
mutually-ezclusive subsequences A,, A;,. .., Ag such that each elcment of A, s

C,-surely-expanded but not C,_,-surely-expanded, 1 <1 < k

Proof: Let the sequence A be partitioned into mutually-exclusive and non-
empty subsequences A;, A, ..., Ax where the first element of each subsequence
A, is the :*" element of A’, that is, the f-value of the first element of A, is
equal to the cost bound of iteration :. Hence, subsequence A, is equal to
NysMgglye oy Ty -1, 1 <1<k

Assume that a node m of subsequence A, is not C,-surely-expanded. There-
fore, there exists a node t along the path from s to m such that f(t) > C..
From Property 3.1, the f-values of all nodes in subsequence A, are less than
or equal to €, = f(n, } which, in turn, is greater than the f-values of all

preceding nodes n; through n, _; of sequence A. Hence, node t cannot exist.

ok

CHAPTER 3. ITERATIVE-DEEPENING-A* 36

Assume now that node m of subsequence A, is also C,.;-surely-expanded.
Therefore, f(m) < C, = f(n,,) which implies that node m is distinct from node
n,,. If node m is C,_,-surely-expanded then the f-value of each node along
the path P from s to m is less than or equal to C,.,. Therefore, A* would
select node m for expansion before node n, which has a greater f-value. But
node m was selected for expansion after node n, . Therefore, path P cannot

exist.0d

Lemma 3.8 Gwen the sequence A of nodes that are surely-expanded by A*
on a solution space tree G = (s,T,h|h < h*), the number of additional nodes
N(2) that are expanded by IDA* on iteration 1 is equal to the length of the

subsequence A,.

Once the sequence A has been partitioned into mutually exclusive and non-
empty subsequences, it is straightforward to substitute the values of N(2) into
either Equation 3.2 or Equation 3.3 in order to determine the time complexity
of IDA*. A simple example illustrates the above results.

Example: Let A = n;,n;,...,ng and let the respective f-values of A be
3,2,2,4,5,5,3,7.6. It follows that A’ = ny,n4,ns,ns and that A; = n,,n,,n3,
A, = ny4, A3 = ng,ng,ny and Ay = ng,ng. Therefore, IDA* performs 4
iterations where N(1) = 3, N(2) =1, N(3) = 3 and N(4) = 2 [Lemma 3.8)].
The time complexity of IDA* is evaluated by Equation 3.3 and is equal to

4
T(4) =) (4—i+1)N() =12+3+ 6 +2 = 23 nodes.

=1

3.4 Comparison of IDA* with A¥*

The A* and IDA* algorithms represent the two ends of the space complexity

spectrum. On one hand, the A* algorithm maintains all feasible paths that

CHAPTER 3. ITERATIVE-DEEPENING-A* 37

are rooted at the start node s. Hence, minimal pruning is performed. On
the other hand, the IDA* algorithm prunes all paths, except the current path,
immediately after a node expansion. Two algorithmic “bridges™ between the
IDA* and A* algorithms called MREC and MA* were recently proposed in
[47] and [6] respectively. In both cases, the heuristic search is admissible and
performed within a memory constraint that is treated as a parameter of the
search. Essentially, MREC carries out a best-first search until the maximum
memeory constraint is reached and then regenerates nodes in a fashion similar
to depth-first iterative-deepening until an optimal solution path is found. On
the other hand, MA* carries out a best-first search until the the maximum
memory constraint is reached and then selectively prunes its leaf nodes from
the OPEN list . To help retain the cost information of descendent nodes,
MA* uses bottom-up cost revision to update the f-values of ancestral nodes.

Lemma 3.5 provides a common measure of comparison between the A* and
IDA* algorithms subject to one consideration. The implementations of the A*
and IDA* algorithms employ different data structures to maintain the list of
expandable nodes. On one hand, the A* algorithm employs a priority queue,
The priority queue, implemented as a heap, requires on average O(log M) time
to insert and delete each node where M is the number of elements in the heap
(1]. On the other hand, the IDA* algorithm employs a stack which requires
at most O(1) or constant time to insert and delete each node. Therefore, a
logarithmic proportionality factor is introduced. If the criteria of comparison
is measured only with respect to the number of node expansions then an
interesting phenomenon can arise. The real execution time of IDA* may be

less than the execution time of A* although IDA* will surely-expand at least

3The parent of a pruned leaf node may also be removed from CLOSED, put 1in OPEN

and subsequently pruned 1tself

)

CHAPTER 3. ITERATIVE-DEEPENING-A* 38

Figure 3.5: Example of the Final Iteration of IDA*

the number of nodes that are surely-expanded by A*. This phenomenon was
first noted in [23] and provides an additional incentive to incorporate the
simpler selection criteria of a backtracking versus a best-first strategy.

If the IDA* algorithm expands M(k) nodes during its penultimate itera-
tion on an admissible solution space tree G then A* surely-expands the same
number of nodes on G. Unfortunately, there exists no common measure of
comparison that considers the number of nodes that are expanded on the final
iteration. The difficulty in establishing a common measure of comparison is
due to the difference between the tie-breaking rules of A* and IDA*. The
IDA* algorithm selects each node according to a depth-first criteria, that is,
the most-recently generated node whose f-value is less than or equal to the
cost bound of the current iteration. Even if the tie-breaking rule of A* favours
a last-in, first-out policy as suggested in [23, Theorem 6.4], it is no guarantee
that the same set of additional nodes will be expanded by IDA* on its final
iteration as shown in Figure 3.5

Each node A through G is labeled with its f-value. Nodes A and G are

-~

CHAPTER 3. ITERATIVE-DEEPENING-A* 39

designated as the start and goal nodes respectively. Because the A* algorithm
selects node C for expansion after the selection of node A, nodes F and F are
more “recently-generated” than node B. Assuming that A* employs a last-in,
first-out tie-breaking policy, nodes E and F are selected for expansion before
node B. However, on the second and final iteration of IDA*, only nodes A, B

and G are selected for expansion, thus avoiding the unnecessary expansions of

nodes F and F.

3.5 Concluding Remarks

Chapter 3 has established five important properties of an IDA* search on a

solution space tree G = (s, T, h|h < h*):
1. IDA* is admissible.

2. No fewer than one additional node is expanded by IDA* on each itera-

tion.

3. The property of acyclicy ensures that no node is re-selected for expansion

during an A* search and that nc node is re-selected for expansion on each

iteration of IDA*.

4. The number of nodes that are surely-expanded by A* on G is equal tc the
number of nodes that are surely-expanded by IDA* on its penultimate

iteration.

5. IDA* is optimal, in terms of the number of distinct nodes that are surely-

expanded, over the class of admissible best-first tree search algorithms.

Chapter 4

Worst Case Analysis

‘ 4.1 Derivation

The worst case analysis establishes a strict upper bound on the time complexity
of IDA*. The upper bound is stated in terms of the number of nodes that are
surely-expanded by A* on an admissible solution space tree. To begin, two

preliminary lemmas are proved.

Lemma 4.1 Gwen a solution space tree G = (s, T, hlh < h*), IDA* performs
at most M(k) iterations where M (k) is the number of nodes that are surely-

erpanded on the penultimate iteration.

Proof: Follows directly from Lemma 3.2 if exactly one additional node is

- surely-expanded on each iteration.O

Lemma 4.2 Guwen a solution space tree G = (s,T,h|h < h*), IDA* surely-

erpands in the worst case exactly one additional node per iteration.

Proof: On the penultimate iteration k, IDA* surely-expands M (k) nodes. On

iteration k — 1, IDA* surely-expands at most M(k)—1 nodes since at least one

40

CHAPTER 4. WORST CASE ANALYSIS 4]

additional node is expanded on iteration k. Similarly, on iteration k —2, IDA*
surely-expands at most M (k)—2 nodes since again at least one additional node
is expanded on both iteration k — 1 and iteration k. In general, IDA* surely-
expands at most M(k) — i nodes on iteration k — ¢ where 0 <1 < M(k) -1
[Lemma 4.1]. Since the time complexity of IDA* is maximized on each iteration
1,1 <1 < M(k), over a maximum number of iterations, it follows ilmmediately
from the principle of optimality [12] that the overall time complexity of IDA*
is maximized as well. Hence, in the worst case, exactly one additional node

is expanded on each iteration leading up to and including the penultimate

iteration.O

Theorem 4.1 Given a solution space tree G = (s, T,hlh < h*), IDA* surcly-
expands in the worst case (M?(k)+ M (k))/2 nodes where M (k) 1s the number
of nodes that are surely-expanded by A* on G.

Proof: Lemmas 4.1 and 4.2 imply that in the worst case M(:) = 1. From

Equation 3.1,

k
T(k) = \2 M(i)

Since k = M(k),

CHAPTER 4. WORST CASE ANALYSIS 42

4.2 Worst Case Conditions

Theorem 4.2 The worst case behaviour of IDA* is realized on @ solution
space tree G = (s, T, hlh < h*) if and only if the evaluation function used by
IDA* (and A*) on G assigns a cost to each node such that the following two

condilions are met:

1. Condition I (Uniqueness): The f-values of all surely-ezpanded nodes are

unique.

2. Condition 2 (Monotonicity): The f-values along each path from the start

node s to a surely-ezpanded node are strictly increasing.

Proof: Two preliminary observations are noted:

1. During any tree search, each node is generated and expanded at most

once. Therefore, each node is assigned a single distinct value.

2. There exists a unique path from the start node s to each other node in

G.

Let p be the number of nodes that are surely-expanded by A* on G. As
well, let A = ny,n,,...,n, be the sequence of nodes that are surely-expanded
by A* where n; is designated as the start node. The f-values are implicitly
defined.

In the worst case, exactly one additional node is surely-expanded by IDA*
on each iteration. Therefore, the sequence A is equivalent to its ascending
subsequence A’ as constructed in Section 3.3. Because A’ is equivalent to A,
it immediately follows that all f-values must be unique. Furthermore, the f-
values along each path from the start node to a surely-expanded node must be

strictly increasing; otherwise, the f-values of sequence A are non-increasing.

CHAPTER 4. WORST CASE ANALYSIS 43

Given an admissible solution space tree G that satisfies Conditions 1 and
2, the worst case performance of IDA* is realized in the following manner.

By definition, the cost bound of the first iteration, denoted (7y, is set to the
cost of the start node ny, that is, C; = f(n;). A depth-first search is carried
out until either a goal node is selected for expansion or the f-values of all
expandable nodes are greater than Cy. If an optimal goal node 1s not selected
on the first iteration then f(n;) is unique and less than ali f-values along any
path rooted at the start node. Hence, only the start node nj is selected for
expansion on the first iteration. The cost bound of the second iteration (%
is set to the minimum f-value, say f(n;), that excceded f(n,) on the first
iteration. If an optimal goal node is not selected on the second iteration then
f(n2) is unique. Hence, under the condition of monotonicity, only nodes n,
and n, are selected for expansion on the second iteration. Without loss of
generality, on any iteration i that does not select. an optimal goal node; at
least one node n,;; has an f-value that is equal to the minimum f-value that
exceeded C,. If an optimal goal node is not selected on iteration 2 + 1 then
f(ni41) is unique and node n,;; along with all nodes n,, 1 < 3 < 1, are
selected for expansion on iteration 1 + 1. Therefore, exactly one additional
node is expanded on each iteration that does not select a goal node. It also
follows that p iter- tions are required to encompass and expand the set of all
nodes that are surely-expanded by A*.0

Theorem 4.1 is based on the conditions of uniqueness and monotonicity.
Theorem 4.3 below establishes the non-vacuity of Conditions 1 and 2 and more
importantly, reveals that the worst case behaviour of IDA* may be realized

on any solution space tree.

CHAPTER 4. WORST CASE ANALYSIS 44

Theorem 4.3 For any solution space tree G = (s,Y), there ezists an ad-
massible heuristic function h, 0 < h < h*, such that Conditions 1 and 2 are
satisfied.

Proof: If h = h* then no node is surely-expanded by IDA* and the theorem
is trivially proved. Assume instead that an admissible monotone heuristic
function A’ < h* is applied to each non-goal node. The number of additional
nodes that are expanded by IDA* on each iteration 1, excluding the final
iteration, is equal to the number of nodes whose f-values are equal to the cost
bound C,. Let N, represent the number of additional nodes that are surely-
expanded by IDA* on iteration i. If node n,, represents the j** additional
node that is expanded on iteration i then define an heuristic function h that

assigns a value to n,, such that
h(n,,) = h'(n.,) +(—-1)- e

where 1 < j < N,. The evaluation function f = g + h remains admissible
since f(ny,) where k is the penultimate iteration remains less than the cost of
the optimal solution path Ci;; = C*. Because C, < C,4, the f-value of each
additional node that was originally expanded on iteration 1 is now unique and
falls within the interval [C,.C,4+1). As well, the sequence of f-values of those
additional nodes that were originally expanded on iteration ¢ is monotonically
increasing. Therefore, the f-values along any path from the start node to a
surely-expanded node are also monotonically increasing. Hence, the worst case

conditions of uniqueness and monotonicity are satisfied.O

Pemess

CHAPTER 4. WORST CASE ANALYSIS 45

4.3 Worst Case Examples

In the following two subsections, worst case examples are shown for solution
space trees with uniform and non-uniform branching factors. In addition to
Conditions 1 and 2 outlined in Theorem 4.2, Condition 3 given below is also

assumed:

Condition 3: The f-value of the optimal goal node(s) is greater than the

f-values of all non-goal nodes.

Under Condition 3, both A* and IDA* must ultimately expand and therefore
surely-expand all non-goal nodes before selecting the optimal goal node for

expansion.

4.3.1 Uniform Branching Factor

Lemma 4.3 There exists a solution space tree G = (s, T, h|h < h*) with an
uniform branching factor b > 1 and unit edge costs such that Conditions 1, 2

and 3 are satisfied.

Proof: Let G be a complete, directed binary tree of depth d, that is, b = 2.
Each edge is directed away from .bhe start node s and has unit cost. bvery
node at depth d is a goal node and each node is labeled level-by-level, top-to-
bottom as ny,n3,...,n, where p = 29t 1. Figure 4.1 shows the solution
space G when d = 3.

Define an heuristic function h as follows:

0 if n, is a goal node

hr) = e
h*(n,) =143 ,_,27% otherwise.

Condition 1 (Unigqueness): Let n, and n, be any two distinct non-goal nodes.

The f-values of n, and n, are respectively equal to d — 1 + 3 ;_, 27 and

O

CHAPTER 4. WORST CASE ANALYSIS 46
n
na na
ny ns ne ny
ng Ng N0 ni ni2 ni3 N4 Nis

Figure 4.1: Labeled Binary Tree of Depth 3

d-1+4+37.,27% Sincet # j, it follows that the f-values of all non-goal
nodes are unique.
Condition 2 (Monotonicity): Assume that node n, is generated from the ex-

pansion of node n,. Therefore,

f(n;) = g(n,) + h(n,)

0 if n, is a goal node
= g(n)+1+ \ _
h*(n,) =14+ 33,2 otherwise
) 9(n) +h%(ny) if n, is a goal node
gn)+h(n)-1+3%.,2°*F otherwise
> g(n)+h"(n) -1+, ,27* since 1 <
= f(n).

Condition 3: Since the f-value of each goal node is equal to d, all non-goal

nodes are expanded before an optimal goal node is selected for expansion.O

CHAPTER 4. WORST CASE ANALYSIS 47

1
2 3 4
3 4 2 4 2 3
49 83 44 82 34 42
a é Y [¢ s
1 1 1 1 1 1

Figure 4.2: Solution Space of a 4-City ATSP
4.3.2 Non-Uniform Branching Factor

An example of an exponential search with a non-uniform branching factor is

represented by an instance of the asymmetric traveling salesperson problem

(ATSP).

Definition 4.1 Given a positive adjacency matriz (¢,,) where each element c,,
represents the cost of traveling from city v to city j, the asymrmetric traveling
salesperson problem 1s to find the minimum cost tour that begins at an arbitrary

city, visits each other city ezactly once and returns to the starting city

The solution space for a 4-city ATSP is shown in Figure 42 Each path from

the start node to a goal or leaf node represents one of (4 - 1)' alternate tours

|

CHAPTER 4. WORST CASE ANALYSIS 48

that begin and end at city 1.

Lemma 4.4 There exists an instance Gy, of the m-city ATSP such thatV m >
1, Conditions 1, 2 and 3 are satisfied on G,,.

Proof: Assume, without loss of generality, that the tour begins and ends at
city 1. Define an instance of the ATSP by a positive adjacency matrix ¢,;, 1 <

t,7 < m with the following properties:
1. For1=3, ¢, = 00.
2. Fori # 3, all ¢,, are unique and assigned values from the following sets:

(a) For 3 # 1, c,€e{2",23,...,2xm-1)?=1}

(b) For 3 =1, c,,c{?z("“”z“,22(""1)2+3,. .. ,22"‘(’"'1)"1},

Condition | (Uniqueness): Define a binary word bypm(m-1)-1 . . - 9201 bg of length
2m(m — 1) for each path rooted at the start node s as follows. If ¢,; with cost
2* is found along a path from s to, say, node n then set by of the binary word
representing this path to 1; otherwise, set by to 0. Since all paths rooted at
the start node s differ by at least one edge (cost), the value of the binary word
representing the path from s to n is unique and equal to g(n).

The path from node n to a goal node is stored likewise in the same binary
word that represents the path from the start node s to n. Clearly, if the
heuristic function A = 0 then the f-value of each node remains unique and
equal to g. Assume, instead, that h = %h'. If ¢,, with cost 2* is found along
the path from n to a goal node then set b;_, of the binary word representing
this path to 1; otherwise, set b;_y to 0. Since a right-shift of one bit position
does not affect the bit positions representing the path from the start node s to

n, the uniqueness of the cost of each path, and hence its f-value, is preserved.

CHAPTER 4. WORST CASE ANALYSIS 49

Condition 2 (Monotonicity): In general, if A = k- h* where 0 < &k < | then
the following result can be stated When any node n, is expanded, all newly-

generated nodes n, satisfy

h(n.) = h(n,) + k- <,

which implies

f() = g9(n) + h(n,) < g(n,) + h(n)) + &, = f(n,).

Therefore, for the cases k = 0 and k = -;- that satisfy Condition 1 on the
problem instance defined above, the f-values along any path rooted at the
start node s are also strictly increasing.
Condition 3: Since the return costs from each of the m -1 cities to aity 1 are
assigned the 2(m — 1) high order bits of each binary word, all non-goal nodes
are expanded before an optimal goal node is selected for expansion D

When A = 0 the A* algorithm implements brute-force uniform cost search

(33, 38]. An important corollary stems from the above example.

Corollary 4.1 Given a solution space tree G = (s, T, hlh = 0) with non-unat
edge costs, IDA* 1s not asymptotically optimal, with respect to the number
of surely-ezpanded nodes, over the class of admissibie brute-force tree scarch

algorithms.

This result is contrasted with the claim in [23, Theorem 4.2] that given a solu-
tion space tree G = (s, T, h|h = 0) with unit costs and an uniform branching
factor, IDA* is asymptotically optimal over the class of admissible brute-force

tree search algorithms.

CHAPTER 4. WORST CASE ANALYSIS 50

4.4 Concluding Remarks

For any solution space tree G, it is shown that there exists an admissible
heuristic function such that the worst case conditions of uniqueness and mono-
tonicity are satisfied on G. Under these conditions, IDA* surely-expands
(M?(k) + M(k))/2 nodes over M(k) iterations. Therefore, in the worst case,
the time complexity of IDA* is quadratic with respect to the time complexity
of A*. In one interesting instance when h = 0, it is shown that IDA* is not
asymptotically optimal, in terms of the number of surely-expanded nodes, over
the class of admissible brute-force tree search algorithms with non-unit edge
costs.

In [24] and the next chapter, it is argued that the asymptotic time optimal-
ity of IDA* is ensured if the number of additio:.al nodes that are expanded on
each iteration grows exponentially over the number of iterations. A corollary

of Theorem 4.3 foll>ws immediately.

Theorem 4.4 For any solution space tree G = (s, T,h|h < h*), there ensts
an admissible monotone heurstic function h, 0 < h < h*, such that IDA* is
asymplotically oplimal, 1n terms of the number of surely-expanded nodes, over

the class of admussible best-first tree search algorithms.

In practice, however, maintaining an exponential growth rate in the num-
ber of additional nodes per iteration is computationally risky. One method,
suggested in [24] and implemented in [46], pushes out each depth-first search
beyond the original, minimum cost bounds of each iteration. In other words,
several iterations are amalgamated into one. Unfortunately, a performance
measurement, based on the number of surely-expanded nodes, is inappropri-
ate in light of the potentially large number of inadmissible nodes that may be

expanded on the final iteration 38, Chapter 6].

e

Chapter 5

Time Complexity Spectrum of

IDA¥*

5.1 Branching Factors

The time complexity spectrum of IDA* is delineated by its asymptotic optimal
and worst case performance. To characterize the efficiency of IDA* search over

its time complexity spectrum, two branching factors are introduced

Definition 5.1 The effective branching factor, denoted b, (1), 1s the ratwo of
the total number of nodes that are ezpanded on steration 1 over the total number

of nodes that are ezpanded on iteration 1 — 1, that 1s, for 2 <1 < k

L M)
be(l) == m

Definition 5.2 The heuristic branching factor, denoted by(2), 1s the ratio of

)

the number of additional nodes that are ezpanded on iteration 1 over the number
of additional nodes that are ezpanded on iteration 1 — 1, that 1s, for 2 < 1 < k,
: N(z)
bu(1) = ———.
(i) N(:-1)

51

“y

CHAPTER 5. TIME COMPLEXITY SPECTRUM OF IDA* 52

In this chapter, the asymptotic time complexity of IDA* is derived when

the effective or heuristic branching is!:

Constant: b(i) = b>1, 2<i <k
Decreasing: b(1) = (i/(i—1))", 2<i<kandr >1.
Unit: b(r) =b=1, 2<i1 <k

In each case, the time complexity of IDA* is stated as an asymptotic function
of the time complexity of A*. It is shown that the constant, decreasing and
unit branching factors define a relatively smooth degradation from the optimal

to the worst case performance of IDA* over its time complexity spectrum.

5.2 Constant Branching Factor

Theorem 5.1 Given a solution space tree G = (s, Y,h|h < h*) with a con-
stant effective or heuristic branching factor greater than one, IDA* is asymp-
totically optimal, in terms of the number of surely-ezpanded nodes, over the

class of admissible best-first tree search algorithms.

Proof: Case I: Constant effective branching factor: Let M(1) be initialized
to 1. Therefore, the total number of nodes M(t) that are surely-expanded on
iteration 7, 2 < ¢ < k, is equal to b!~'. The time complexity of IDA* follows
immediately from Equation 3.4:

k-1
T(k) = M(k)+ Y M()

=1

k-1
= M(k)+) b

=]

For the unit branching factor, the time complexity of IDA* is evaluated only for b,
since b, must be strictly greater than one for all iterations leading up to and including the

penultimate iteration

CHAPTER 5. TIME COMPLEXITY SPECTRUM OF IDA*

= M)+

Since M (k) = bk-?,
T(k) < M(k)+ ;"(_ki

where b, > 1.

bk—l_
b.—1 ~

a3

Case II: Constant heuristic branching factor: Let N(1) be initialized to 1.

Therefore, the number of additional nodes N (1) that are surely-expanded on

iteration 2, 2 < 1 < k, is equal to b;~". Furthermore, the total number of nodes

that are surely-expanded by A* ¢n G is

k

Y NG

=1
k

= Yy

=1
bf —1
by — 1"

M(k)

The time complexity of IDA* follows immediately from Equation 3.5:

k-1
T(k) = M(k)+Y Y NG)

k-1
= Mk)+))y

=1 =1

= M(k)+ﬁ[(bh—l)+(b:—1)+(b:_1)+_,.+(b'l:-! _])]

1 [bf—1
= M(k)+ 5 [bh_l -k].

From Equation 5.1,
M(k)

T(k) < M(k) + 3—

5.1)

CHAPTER 5. TIME COMPLEXITY SPECTRUM OF IDA* 54

where b, > 1.
In either case, IDA* performs less than M(k)/(b ~ 1) node expansions
during all iterations leading up to but not including the penultimate iteration.

Since b is constant and greater than one, R(k) is ©(M(k)). Therefore,

T(k) € ©(M(k)).0

5.3 Decreasing Branching Factor

The analyses of the previous section assume that either the effective or heuristic
branching factor b remains constant over all iterations. If, on the other hand,

the branching factor is monotonically decreasing with 1, that is,

b(z) = (111)

where r > 1 then the asymptotic time complexity of IDA* is no longer optimal

over the class of admissible best-first tree search algorithms.

Theorem 5.2 Given a solution space tree G = (s, T,hlh < h*) with a de-
creasing effective branching factor, the asymptotic ime complezity of IDA* on

G, 1 terms of the number of surely-erpanded nodes, 1s G(AI#(k)).

Proof: Let M(1) be initialized to 1. Given b(i) = (+/(: ~1))", the total number
of nodes M(z2) that are surely-expanded on iteration i, 2 < i < k, is equal to
t". The time complexity of IDA* follows immediately from Equation 3.5:

k—1

M(k)+ Y M(i)

=1

k-1

M(k)+) v

=1

T(k)

CHAPTER 5. TIME COMPLEXITY SPECTRUM OF IDA* 55

Since
k-1 k-1 k-1
"di < i'S/ 1+ 1) di, 52)
/ Sis [ety (

the summation falls within the interval

(k__l)r-H kr+1
r+1 r41f°

Therefore, the overhead R(k) is ©(k"*!). Because M(k) is equal to k",
T(k) € O(M"F (k)).0

Theorem 5.3 Given a solution space tree G = (s, Y,h|lh < b*) wnth a de-
creasing heuristic branching factor, the asymptotic time complerity of IDA*

on G, 1n terms of the number of surely-ezpanded nodes, 1 (-)(M%(k)).

Proof: Let N(1) be initialized to 1. Given b(z) = (2/(x — 1))", the number of
additional nodes N(7) that are surely-expanded on iteration 1, 2 < 1 < k, 1s

equal to :". Furthermore, the total number of nodes that are surely-expanded
by A*on G is

k
M(k) = Y N()
P
>

€ O(k™). (5.3)

The time complexity of IDA* follows immediately from Equation 3.5:

k-1 1
T(k) = M(k)+> > N()

k-1
= MB+ Y3

=1 =1

Y

CHAPTER 5. TIME COMPLEXITY SPECTRUM OF IDA* 56

Using the bounds established in Equation 5.2, the inner summation falls within

the interval

[it (4 1)r+l]
r+1’ r+41
and, likewise, the outer summation falls within the interval
(k—l)'+2 (k+l)'+2
[(r +1)(r+2) (r+1)(r+ 2)] '
Therefore, the overhead R(k) is ©(k"*?). Because M(k) is ©(k"*!) from Equa-

tion 5.3,

T(k) € O(M(k)).0

5.4 Unit Branching Factor

Theorem 5.4 Given a solution space tree G = (s, T, hlh < h*) wnth a heuris-
tic branching factor equal to one, the asymptotic time complezity of IDA* on

(7, in terms of the number of surely-ezpanded nodes, is O(M?(k)).

Proof: If b, = 1 then a fixed number of additional nodes are expanded on each
iteration. Let N(1) be initialized to ¢, ¢ > 1. Therefore, the total number of
nodes M (i) that are surely-expanded on iteration ¢, 1 < i < k, is equal to c-1.

The time complexity of IDA* follows immediately from Equation 3.5:

k-1
M(k)+) D N()

T(k) =
e
= M(k)+ CX;?;:I
= M(k)+c-k(k2"1).
Since M(k) = c- k,
T(k) = M(k) 4 MEUME) - o

2¢

CHAPTER 5. TIME COMPLEXITY SPECTRUM OF IDA* 57

Therefore, the overhead R(k) is ©(M?(k)) and
T(k) € O(M?*(k)).0

The worst case analysis of Chapter 4 is a special case of Theorem 5.4 when

c=1.

5.5 Concluding Remarks

The idea of a heuristic branching factor was originally defined in [24] as follows.

Definition 5.3 The heuristic branching factor b, s the average ratio of the
number of nodes at a given cost to the number of nodes at the nert smaller

cost, that 1s,

by = Ef:z N(@)/N(~ 1)
h PR .

Using this definition of by, the following conjecture is stated in [24]

Given a non-overestimating (admissible) heuristic function with
heuristic branching factor greater than one then IDA* 15 asymptot-
ically optirnal in time over the class of best-first search algorithms

that find optimal solutions on a tree.

Although the above conjecture is nearly identical to Theorem 5.1, it fails to

exclude the non-optimal case of a decreasing branching factor where

k r
by = Z'ﬂ(,:/_(’l" D" o1 vk > 2.

The three cases of a constant, decreasing and unit branching factors re-

spectively correspond to the exponential, polynomial and constant growth of

CHAPTER 5. TIME COMFLEXITY SPECTRUM OF IDA* 58

the explored solution space from one iteration to the next. The optimal time

complexity of IDA* is ensured, that is,
T(k) € B(M(k))

if the effective or heuristic branching factor is constant and greater than one.
On the other hand, the worst case time complexity of IDA* is achieved, that
is,

T(k) € ©(M*(k))
if the heuristic branching factor is exactly egual to one. Finally, if the branch-
ing factor is decreasing then the time complexity of IDA* falls between the
two extremes above. For a decreasing effective branching factor where b(1) =
(x/(=1)),

T(k) € O(M™ (k)

and for a decreasing heuristic branching factor where b,(7) = (:/(¢ — 1))7,
T(k) € O(M™ (k).

The three cases together define a time complexity spectrum of IDA* fiom its

optimal to its worst case performance.

Chapter 6

Expected Case Analysis

6.1 Mndel of Computation

The expected case analysis of IDA* 2ssumes a probabilistic model of compu
tation. Rooted at the start node s, the solution space graph 7 = (V, 1/, (")
modeled as an infinite tree with a constant branching factor b > 1 Each edge
is directed away from the start node s and 1s assigned an mdependent and
identically distributed (i.i.d.) random integer. The integer value assigned to
each edge (n,,n,) € E represents not the cost of (n,.n,) as defined in Chapter |

but the differential cost of (n,.n,) as defined below.

Definition 6.1 Guwen a solution space graph G = (V,E, (), the dufferentual
cost of (n,,n,) € E, denoted A f(n,,n,), 1s equal to the difference between the

f-values assigned to each of its end nodes, that 1s,

Af(n,n,) = f(n,) = f(n,)

Lemma 6.1 Gven a solution space graph G = (V,E,C), f Af(n,,n,) >0
Jor all (n,,n,) € E then the evaluation function f satisfies the property of

monotonicity.

59

[N

CHAPTER 6. EXPECTED CASE ANALYSIS 60

Proof: Since Af > 0, it follows that f(n,) > f(n,) for all (n,,n,) € E.O

Definition 6.2 Given a solution space graph G = (V,E,C), the differential
cost of a path ny,n,,...,n, where s = ny is equal to the sum of the differential

edge costs from the start node s to node ny.

Therefore, the differential cost of a path ny,n;,...,n, is equal to

p-1
Z Af(n,nir)
1=1

= Y [f(nr) = f(n,)]
= f(ny) = f(9).

Unlike the expected case analyses of [4, 37], the heuristic value defined at
each node n is coalesced into the differential edge costs along the path from
s to n. If no heuristic information is available (h = 0) then Af(n,.n,;) is
equal to C'(n,.n,) for each edge (n,,n,) € E. On the other hand. if heunstic
information is perfect (h = h*) then Af{n,,n,) is equal to 0 for each edge
(n,.n,) along an optimal solution path. Figure 6.1 shows Figure 3.2 as labeled

with its differential edge costs.

6.2 Basic Formulations

Without loss of generality, the cost of the start node s is initialized to 0. Hence,
the f-value of each node n is equal to the differential‘cost of the path from s
to n Assuming the property of monotonicity, *he number of additional nodes
N{(1) that are surely-expanded by IDA* on iteration : is defined as the number

of paths with an differential cost of : '. Thus, the cost bound C, of iteration 2

't 15 important to note that the number of paths with a differential cost of 1+ may not be

greater than zero which violates the requisite that at least one additional node 1s expanded

CHAPTER 6. EXPECTED CASE ANALYSIS 61

Figure 6 1: Differential Edge Costs of Figure 3.2

is also equal to i. The total number of nodes that are expanded on iteration

k > 0 and the overall time complexity of IDA* are respectively

M(k) = Y N()
and
k
T(k) = Y M()
=0

The expected values of N(k), M(k) and T(k), denoted EN(k), EM(k)

on each iteration However, 1n light of the exponential growth of T'(k) denived 1n Section 6 3,

this flaw 1s factored out in the asymptotic analysis

1 CHAPTER 6. EXPECTED CASE ANALYSIS 62

and ET(k), are defined in terms of the generating functions v, u and 7. Thus,
v(z) = Y EN(k):F,
k=0

u(z) = Y EM(k):*
k=0
and

7(z) = 5_0_: ET(k)z*.

k=0

By convention,

EN(k) = [z*|v(2),
EM(k) = [zMu(2)

and
ET(k) = [2Mr(2)

are the coefficients of z* in the expansions of v, g and T respectively.
The differential edge costs are treated as random non-negative integers and
are characterized by an integer probability distribution defined in terms of the

generating function ¢ where

o0

d(2) =) _P(X =j)2’

=0

In addition, the definition of ¢ satisfies the following two properties.
Property 6.1 ¢(0) = P(X =0) < 1.
Property 6.2 gcd{7|P(X =3) >0} =1.

T Properties 6.1 and 6.2 are motivated by the following two lemmas.

CHAPTER 6. EXPECTED CASE ANALYSIS 63

Lemma 6.2 If ¢(0) < 1 then ¢ s monotonically increasing in the wmterval
[0, 1].

Lemma 6.3 If gcd{7|P(X =)) > 0} =1 then there exists a constant ky > 0
such that Zf__OP(X; +--+X,=k)>0,Vk > k.

Lemma 6.3 ensures that asymptotically, the expected number of additional
nodes that are surely-expanded on iteration 1 is greater than zero.

Given a probability distribution ¢ that satisfies Properties 6 1 and 6 2, the
expected number of paths in the solution space tree that have an differential

cost of k is stated directly Thus,
EN(k) = [*]v(z) Zw’ (Xi+- 4+ X, =k)

where b > 1. Therefore, given that all X,’s are independent and identically

distributed,

i "f:b’l’ X+ X, = k)
k_.

0 1=0
- ZbJZJ‘P (Xy +--4+ X, =k)
=0 k=0

_ ZbJE(:XH- +X,)
=0

)

TE(%y

2
3 (bg(=)Y

=0

_fa—een ifbe(z) <1
R if bg(z) > 1

e

The functions g and 7 are also expressible in terms of v as shown in Lemma 6.4

-

i CHAPTER 6. EXPECTED CASE ANALYSIS 64

Lemma 6.4 Given z < 1 and b¢(z) < 1,

1 () = 22
2 T(z)=(1u—(-zz):)2

Proof: Since EM(k) = Ef=o EN(j),

(1= 2)u(z) = (1-2)) EM(k)e*

k=0

oo k
= (1-2)) (Z EN(J)) 2*

-5 (;;N::) 5 (Sevn)
)

= =0
3 k-1
= EN(O)+Z Y EN(Z(ZEN(])):

1=

ibs
(,

k

0o k k-1

= EN(0)+)Y EN(; EN()
k=1 0 =0

= EN(0)+)_EN
k=1

= v(z).

Therefore, u(z) = v(z)/(1 - 2).
Similarly, since ET (k) = 2;‘_:0 EM(j), it follows that 7(z) = u(2)/(1 - z).
Given u(z) = v(z)/(1 - 2) from above, r(2) = v(2)/(1 — 2)%.0

6.3 Expected Case Analysis

For completeness, the following definitions of complex analysis are included.

Definition 6.3 A complex function ¥(z) of a compler variable z 1s said to be

k4 analytic at the point = = 0 1f 1t 15 differentiable at 6.

CHAPTER 6. EXPECTED CASE ANALYSIS 65

Definition 6.4 If a compler function)(z) is analytic in an open disk centred
at 8 but is not analytic at 8 itself then y» 1s sard to have an 1solated singularsty
at .

M. “nition 6.5 A function ¥(z) 1s sard to be analytic in the open requon R 1f

and only 1f it is analylic at every point in R.

Definition 6.8 If there exists an isolated singularity at the pownt 6 but there
also exists an integer m > 0 such that (z —)™ (z) 1s analytrc at 0 then y(2)
ts said to have a pole at 8. The smallest m that makes (z — 0)™ analytic at 0
ts called the order of the pole.

Definition 6.7 ([20]) A function ¥(z) 1s called meromorphic of it 15 analytre

tn a bounded reqron R except for a finite number of poles

The function v and by extension, the functions p and 7 have isolated

singularities at the points which satisfy

bo(z) =1 (6.1)

It is within the proximity of these points that the asymptotic behaviour of the

coefficients of v, u and 7 {ollows directly from the lemmas below

Lemma 6.5 There exists a unique real solution, denoted zg where 0 < 2y < 1,

of Equation 6.1 1f and only of 1 < b < 1/¢(0).

Proof. Follows immediately from Lemma 6.2.0
A solution of Equation 6.1 at 2o = 0 implies that there exists an infinite

number of paths with a differential cost of 0. Since b¢(0) = 1,
EN(0) =)" b7¢(0) = oo.
=0

Therefore, Property 6.1 is .uperseded by Property 6.3 below.

CHAPTER 6. EXPECTED CASE ANALYSIS 66

Property 6.3 ¢(0) = P(X =0) < 1/b.

Lemma 6.8 If 1 < b < 1/¢(0) then any solution of Equation 6.1 where

z # 20 has |z| > 2.

Proof: It is shown first that |z| > 2¢. Indeed, for any solution z of Equation 6.1

where z # zo,

bd(z0) = lbg(2)]
= |bZP(X=J)ZJ|

bZP = 7)I2’|

_1-.0

= bZP IEE

=0

= be(|z]).

IN

Because ¢ is monotonically increasing, |z| > zo. To show that |z| > 2o, assume

now that z = zpeY. Then in order that

> P(X =j)zge”
=0

o0

Y P(X =j)2

1=0

Y P(X =)z,
1=0

i

equality must be established for the real parts. Since b > 1 and P(X = j) > 0,
760 must be a multiple of 2 for all 3 with P(X = j) > 0. Thus, 4 is a multiple
of 2x /) for all j with P(X = j) > 0. Hence, 8 is a multiple of 2r/gcd(;) where
ged(y) is taken over all j with P(X = j)} > 0. Therefore, 6 is a multiple of

2r.0

CHAPTER 6. EXPECTED CASE ANALYSIS 67

Lemma 6.7 If 1 < b < 1/¢(0) then v has a pole of order one at = = =,

Proof: It is sufficient to show that

lim (2 - 29)v(z) < oo.

229

By L’Hoépital’s Rule,

lim 20 o

=0 1=bp(2) ~ b¢'(z0)
Since ¢'(20) > 0 from Lemma 6.2, the limit is bounded.O

Lemmas 6.5, 6.6 and 6 7 establish that the function v is meromorphic for

|z} < R and analytic on |z| = R where z5 < R < inf{|z| bo(z) = 1.2 # 2}

In the region bounded by R, v has a single pole of order one at z = z,
[Lemma 6.7]. Therefore from [20, p. 81], the asymptotic behaviour of the

coefficients of v is given by

Res(v; z4)

k+1
2y

EN(k) = [2*]v(z) = - + O(R™*) (6.2)

where

Res(v;zg) = lim(z — zo)v(2)
1

~b'(z)’
Substituting Equation 6.3 into Equation 6.2 yields

(6.3)

EN(k) = + O(R™%)

be!(z0)zg+!

Because 0 < 29 < 1 and z < R,
EN(k) € ©(ctt)

where c is a constant greater than one. Similarly, it also follows that

1
b (20)26t (1 — 2)

EM(k) + O(R™*)

¥ -2

CHAPTER 6. EXPECTED CASE ANALYSIS 68

and
1

b#'(z0)zg*' (1 — z0)
The ratio of the expected number of nodes that are surely-expanded by A* to

ET(k) = -+ O(R™),

the expected number of nodes that are surely-expanded by IDA*, that is,

EM(k)
ET(k)

is approximately 1 — zo. Therefore, a constant fraction of the overall time
complexity of IDA* is spent on all iterations leading up to the penultimate
iteration. Assuming an integer probability distribution ¢ that satisfies Prop-

erties 6.2 and 6.3, Theorem 6.1 is stated directly.

Theorem 6.1 Given a solution space tree with an uniform branching factor
b > 1 and non-negative differential edge costs that are 1.1.d. from an integer
probability distribution where b < 1/P(X = 0) then the ezpected number of
nodes that are surely-ezpanded by IDA*, denoted ET(k), 1s O(ck+') where c 1s

a constant greater than one

Corollary 6.1 Given a solution space tree with an uniform branching factor
b > 1 and non-negative differential edge costs that are 1.1.d from an integer
probability distribution where b < 1/P(X = 0) then IDA* 1s asymptotically
optimal on average, in terms of the number of surely-expanded nodes, over the

class of admissible best-first tree search algorithms.

6.4 Expected Case Examples

In the following two subsections, average case examples are shown for the
uniform probability distribution U(1,2) and the geometric probability distri-

bution with parameter p, 0 < p < 1.

[en—

CHAPTER 6. EXPECTED CASE ANALYSIS

6.4.1 Uniform Probability Distribution

The generating function ¢(z) for the uniform probability distribution U(1,2)

is

=1 2
which expands to
z 422
2
Therefore,
, 1
¢(z) = 5 + z.

The real solution zp of d¢(z) = 1 is equal to

~1+ \/T+ (8/b)
. .

Therefore,
, 1
¢'(z0) = 3 + 20
Ignoring the lower order terms,
EN(k) = 1
- b(% + zo)zktV
k
Emiky = =20
1 — 29
EN(k)
kY =
ET(k) TPAE

where 1 < b < o0.

V.2

CHAPTER 6 EXPECTED CASE ANALYSIS 70

6.4.2 Geometric Probability Distribution

The generating function ¢(z) for the geometric probability distribution with

parameter p where 0 < p< 1is
Y p((1 - p)2)’.
=0

Because (1 - p)z < 1, ¢(z) reduces to

Y
I -(1-p):
Therefore,
p(l - p)
¢'(z) = -
(1= (1-p)2)?
The real solution zg of bg(z) = 1 is equal to

1—pb
1—p’
Therefore,
' (1 — P)
¢'(z0) = pb?

Again, ignoring the lower order terms,

(b 1--p\
v = (2%5) (775)
EM(k) = ’fN(f)
— 2
\ 1-p
= EN(K) (p(b—l))’
EN(k
ET(k) “—_(50-)23

- o ()

where 1 < b« ;;.

CHAPTER 6. EXPECTED CASE ANALYSIS 71

6.5 Concluding Remarks

Since the number of iterations k performed by IDA* and the differential cost

of the optimal solution path are equivalent, Theorem 6.2 is stated.

Theorem 6.2 Gien a solution space tree with an uniform branching factor
b > 1 and non-negative differential edge costs that are 11.d from an tnleger
probability distribution where b < 1/P(X = 0) then the erpected number of
nodes that are surely-ezpanded by A*, denoted EM(k), 1s O(c*') where ¢ 18 a
constant greater than one and k 1s the differential cost of the optimal solution

path.

The expected case analysis of IDA* rests on the assumption that the dif-
ferential edge costs are modeled as independent and 1dcntically distnibuted

random integers. This assumption is supported by the following observations.

1. If the differential edge costs are real numbers with a maximum predi-
sion of 107*, ¢t > 1, then each differential edge cost A f(n,,n,) 15 casily

converted to the integral value
Af(n,n,)10

without loss of information Therefore, the model of computation is only

limiting in the case of infinite precision.

2. Heuristic search is most often applied to problems for which there exists
an exponential and, in some cases, an infinite nurnber of possible solution
paths. For instance, the traveling salesperson and other combinatorial
optimization problems select an optimal solution among an exponential
number of possibilities. Given an exponential number of goal nodes lo-

cated at a distance d + clogd, ¢ > 0, from the start node s, 1t was

CHAPTER 6. EXPECTED CASE ANALYSIS 72

shown in [4] that the expected time complexity of A* is exponential in
d regardless of the accuracy of the heuristic function employed. In the
analyses presented here, an analogous result is derived. If a probabil-
ity distribution satisfies Properties 6.2 and 6.3 then both A* and IDA*
surely-expand on average an exponential number of nodes regardless of

the probability distribution that models the differential edge costs.

3. The differential cost of an optimal solution path is equal to the difference
between the cost of the optimal solution path and the cost of the start
node s, that 1s, f*(s) — f(s). As the accuracy of heuristic function
improves, the differential cost of the optimal solution path decreases.
Hence as in [4], the expected number of nodes that are surely-expanded

by A* and IDA* decreases exponentially.

Chapter 7

Binary Iterative-Deepening-A¥*

7.1 Description of BIDA¥*

Binary iterative-deepening-A* (BIDA*) is an admissible generahization of the
IDA* algonithm. Designed specifically to redress the worst case phenomenon

of expanding a few additional nodes over several iterations, the objectives of

BIDA* are twofold.

1. To increase the number of additional but admissible nodes that are ex

panded on each iteration, and
2 To reduce the total number of iterations

In order to meet these objectives, the cost bound of each iteration of BIDA*

is chosen as a point between:

1. A lower bound which is non-decreasing from one iteration to the next
but remains less than or equal to the cost of the optimal solution path

C*, and

73

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A* 74

2. An upper bound which is non-increasing from one iteration to the next
but remains greater than or equal to the cost of the optimal solution

path C*.

On cach iteration, BIDA* performs a bounded depth-first search of the
solution space G = (s, T, k). The lower bound of the initial iteration, denoted
Ly, is set to the cost of the start node s, that is, L, = f(s). The upper bound
of the mitial iteration, denoted U}, is set to the cost of any solution path P
from the start node s to a goal node ¢, that is, Uy = f(q) I the lower bound
Ly is equal the upper bound U, then the BIDA* algorithm terminates with
the solution path P. Otherwise, the cost bound of the initial iteration is equal

to

(1 -w)L, +wl)

where 0 < w < 1. For the initial iteration and each successive iteration 2 > 1,

a depth-first search is performed until either one of two conditions is met:
1. A goal node is selected for expansion, or

2. The f-values of all expandable nodes is greater than the cost bound of

iteration 1, denoted C,

If a goal node ¢ is selected for expansion then the upper bound of iteration
1+ 1, denoted U, 4, is set to cost of the solution path P from the start node s
to ¢; otherwise, U, remains equal to U,. If,; on the other hand, a goal node
is not selected for expansion then the lower bound of iteration : + 1, denoted
Ly41. is set to the minimum f-value among all nodes that were generated on
iteration 1 and that exceeded the cost bound C,; otherwise, L,;; remains equal
to L,. If the upper bound {/,4; is equal to the lower bound L,,;, the BIDA*

algorithm terminates with the most recent solution path P. If the lower bound

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A*

-1
5,

remains less than the upper bound then a depth-first search of the solution

space is repeated with a cost bound C,,, equal to
(1 —w)lipy + wligy

where 0 < w < 1. The BIDA* algorithm is outlined in Figure 7.1.

An example of a BIDA* search is presented in Figure 7.2. The solution
space is a complete, directed binary tree of depth 3. Each node A through P
is labeled with its f-value and the nodes H, I and P are designated as the
goal nodes. It 1s assumed that w is 0.5 and therefore, the cost bound (', of
each iteration 1 is equal to

[0.5(L, + U,)]

The lower bound of the initial iteration set to the cost of the start node
s, that is, Ly, = 1. Without loss of generality. the upper bound of the mitial
iteration is arbitrarily set to the cost of the leftmost solution path Therefore,
U, is equal to 5 and the solution path (ABDH) 15 assigned to P The cost

bound C}y of the initial iteration is equal to
05(Ly + Uh)| = [05(1+5)) =3

Nodes A through G are expanded on the initial iteration Smce a goal node s
not selected for expansion, the lower bound of the second iteration is raised to
the cost of the minimum f-value among expandable nodes that exceeded the
cost bound of the initial iteration. Therefore, Ls is equal to 4 Because the
upper bound remains unchanged, the cost bound C; of the second iteration is

equal to
[0.5(L, + Uz)] = [0.5(4 + 5)] = 4.

Only nodes A, B and D are expanded on the second iteration before the goal

node I is selected for expansion. Since a goal node is selected for expansion,

o

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A* 76

Comments:

L

u
c
M
Step O:
Step 1:

Step 2:

Step 3:
Step 4:

Step 5:
Step 6:

Step 7:

is the lover bound of the current iteration.

18 the upper bound of the current iteration.

is the cost bound of the current iteration.

18 the minimum f-value amoug generated nodes that
exceeds C.

Set L equal to f(s), the cost of the start node s.
Set U equal to the cost of any solution path P.
If L = U then
Exit successfully with the solution path P
Else
Push s onto an empty STACK of expandable nodes.
Set C equal to (1-w)L + wU vhere 0<w<1.
Set M equal to MAX.
If STACK 1s empty then
If M remains equal to MAX then
Exit with failure; no solution exists
Else
Set L equal to M.
Go to Step 1 and proceed with the next iteration.
Assign the top node of STACK to p.
If p is a goal node then
Set U equal to f(p).
Set P equal to the solution path that 1s found.
Go to Step 1 and proceed with the next i1teration.
Generate the next successor n of p.
If node p has no further successors then
Pop p from the STACK
Else
a) Calculate f(n).
b) If f(n) <= C then
Push n onto STACK
Assign the newly-computed f(n) to n.
c) If C < £(n) < M then
Lower M to f(n).
Go to Step 2.

Figure 7.1: The Binary IDA* Algorithm

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A*

-3
-1

Figure 7.2: Example of a BIDA* Search

the upper bound of the third iteration is lowered to 4 and the solution path
(ABDI) 15 assigned to P Because the lower bound remains unchanged, the
lower and upper bounds of the third iteration are equal'. Therefore, the BIDA*

algorithm terminates with solution path P.

7.1.1 Admissibility

Theorem 7.1 Given a solution space tree G = (s, T, hlh < h*), BIDA* 1s

admissible.

Proof: It is sufficient to show that the lower bound of BIDA* will eventually
equal but never exceed the cost of the optimal solution path ('* and that
the upper bound will eventually equal but never fall below C*. Therefore, the

lower bound can only equal the upper bound at C* which implies adimssibility.

10n the third iteration, no depth-first search 1s actually performed

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A* 78

The lower bound of the initial iteration is equal to the cost of the start
node 3. Since f(s) < f*(s) = C*, the lower bound is less than or equal
to C*. The upper bound of the initial iteration is equal to the cost of any
solution path. Since the cost of any solution path is greater than or equal
to the cost of the optimal solution path, the upper bound is greater than or
equal to C*. If the initial lower and upper bounds are equal then an optimal
solution path is immediately found; otherwise, the cost bound of the initial
iteration, denoted C,, is chosen between the initial lower and upper bounds
I an optimal solution path is not found on iteration : > 1 then a bounded
depth-first search is performed until either a goal node i. selected for expansion
or the f-values of all expandable nodes is greater than C,. If a goal node is
selected for expansion then the upper bound is set to the cost of the solution
path that is found Clearly, the upper bound remains greater than or equal
to ("*. Since the cost bound of the subsequent iteration is less than the new
upper bound, each solution path is found at most once Hence, the cost of each
solution path is less than the cost of the previous solution path that is found
and the upper bound 1s less than the previous upper bound If a goal node is
not selected for expansion then the lower bound of the subsequent iteration is
set to the minimum f-value among expandable nodes that exceeded the cost
bound of iteration 1. Hence, the lower bound remains less than or equal to C*
but greater than the previous lower bound. In either case, the interval between
the lower and upper bound is reduced from one iteration to the next Since
the cost of each directed edge in G is by definition greater than some positive
constant 6, there exists a finite number of nodes whose f-values fall within the
interval between the initial lower and upper bounds. Because each new lower
or upper bound is equal to the cost of a node whose f-value falls within the

initial interval and because the interval between the lower and upper bound

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A* 79

strictly decreases from one iteration to the next, the number of iterations
required for either the lower bound or upper bound to reach ('* is finite

If the lower bound equals C* before the upper bound then the cost bound
of each subsequent iteration remains greater than C'* until an optimal solution
path is found. At this point, the upper bound is set to the ccst of the optimal
solution path and the search terminates. If the upper bound equals (** before
the lower bound then the cost bound of each subsequent iteration remains
less than C* until the lower bound is equal to ("*. At this pont, the search
terminates and returns the most recent solution path that 1< found Since the
cost of the most recent solution path 1s equal to the current upper bound, that

is C'*, then an optimal solution path is found O

7.1.2 Time Complexity

Lemma 7.1 Given a solution space tree G = (s, T, hlh < h*) and 0 < w < 1,
BIDA* performs at most [logl___;_((l/’l ~L1)10°+1)] dterations where @ 1s equal

to min{w.l ~w) and 10~ 1s equal to the mazvmum precision of the edge costs

Proof: By multiplying the edge costs by 10%, the lower, upper and cost bounds
of each iteration are treated as integral values without loss of im. mation By

definition, the cost bound C, of iteration 1 is equal to
(1 —w)L, + WU,

Since either L,y > C, o1 U,4; < C,, the interval between L, and {/, is reduced
by at least a factor of @ = min(w,1 — w). By reducing the interval from one
iteration tc the next by at least a factor of @ until L, 15 equal to 1/,, the

maximum number of iterations performed by BIDA* given an initial interva'

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A* 80

[L1, U] is equal to
I'log]__L;((Ul —~ Ly)10* +1)].0

Corollary 7.1 Gwen a solution space tree G = (3, T,h|h < h*), the man-

mum number of iterations performed by BIDA* 1s minimized at w = 0.5.

Corollary 7.2 Gien a solution space tree G = (s, T,h|h < h*), IDA* per-
forms at most (C° — Cy +1)10" iterations where Cy and C* are the cost bounds
of the initial and final iterations, and 107" 1s equal to the mazmum precision

of the edge costs

Corollary 7.3 If the initial upper bound of an admissible solution space tree
s at most a polynomual function of the cost of the optimal solution path then

BIDA* performs asymptotically fewer iterations than IDA* in the worst case.

The lure of fewer iterations, however, does not immediately imply that
the time complexity of BIDA* is also less than the time complexity of IDA*.
Because the cost bound of each iteration of BIDA* is selected as an arbitrary
point between the lower and upper bounds of that iteration, the cost bound is
not constrained to be less than or equal to the cost of the optimal solution path.
With the potential of expanding several inadmissible nodes on those iterations
whose cost bounds are greater than C*, BIDA* may expand a far greater
number of nodes than IDA* notwithstanding the reduction in the number of
iterations. However, this computational risk is mitigated in part by one factor:
If the cost bound of an iteration is greater than C* then BIDA* performns a
bounded depth-first search only until a solution path is found. Therefore,
BIDA* does not necessarily perform an exhaustive search of all paths along
which each node has an f-value that is less than or equal to the cost bound of

the iteration.

i CHAPTER 7. BINARY ITERATIVE-DEEPENING-A* 81

Cost Number of
Iteration | Bound | Nodes Expanded
1 1 2
2 2 6
3 3 7
4 4 4*
* Includes the goal node 1

(a) IDA* Algorithm

Lower | Upper | Cost Number of
Iteration | Bound { Bound | Bound | Nodes Expanded
1 1 5 3 7 |
2 4 3 4 4*
3 4 4
* Includes the goal node |

(b) BIDA™* Algorithm

Table 7.1: Performance of IDA* and BIDA* on Figure 7.2

Given the solution space tree in Figure 7.2, the total number of nodes

that are expanded by IDA* and BIDA* on each iteration 1s summarnized

Tables 7.1 (a) and (b) respectively. The IDA* algorithim expands a total of

19 nodes over 4 iterations and BIDA* expands a total of only 11 nodes over 2

iterations. However, if the cost of the leftmost path 1s increased to 9 and node

I is no longer designated as a goal node then the total number of nodes that

- are expanded by IDA* and BIDA* is summarnzed in Tables 7.2 (a) and (b)
respectively. In this case, IDA* expands a total of 24 nodes over 1 iterations

but BIDA* expands a total of 28 nodes over 3 iterations It 1s therefore difficult

to state conclusively that on average IDA* is superior to BIDA” (or vice versa)

without drawing on empirical evidence.

o
[I ———S—E———————

CHAPTER 7 BINARY ITERATIVE-DEEPENING-A*

Cost Number of
Iteration | Bound | Nodes Expanded
1 1 2
2 2 6
3 3 7
4 4 9*
* Includes the goal node P

82

(a) IDA* Algorithm

Lower | Upper | Cost Number of
Iteration { Bound | Bound | Bound | Nodes Expanded
1 1 9) 15*
2 1 4 2 6
3 3 4 3 7
4 4 4 -
* Includes the goal node P

(b) BIDA* Algorithm

Table 7.2: Performance of IDA* and BIDA* on Figure 7.2 (modified)
7.2 Empirical Results

Empirical tests that compare the average case performance between the IDA*
and BIDA* algorithms are carried out with respect to the traveling salesperson

problem (TSP) on the basis of the following observations:

1. In Chapter 5, a worst case example of IDA* has been shown on an in-
stance of the asymmetric traveling salesperson problem (ATSP). Similar
results noted in [24] also cite the non-optimal performance of IDA* on

instances of the TSP.

2. Unlike other common applications such as the 15-Puzzle and the vertex

cover problems, the edge costs of the TSP are not necessarily equal to

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A* 83

one. Hence, the edge costs may be modeled with arbitrary precision and

magnitude.

3. The solution space GG, of an m-city TSP satishes the following two prop

erties.

Property 7.1 Every terminal node in G, 1s located at depth m from

the start node s.

Property 7.2 Every terminal node 1s a goal node Therefore, cvery

path i G, leads to a goal node.

Properties 7.1 and 7.2 ensure that the depth of search 1v bounded and
that a goal node 1s returned whenever the maxnmum depth s reached If
the cost bound of an iteration is greater than (' then BIDA® explores a
single path at a time until a solution path P is found Hence, only those
nodes on or before the solution path P are selected for expansion Since
the length of each path 1s at most m and every path in (i, leads to a goal
node, the above properties above help to mitigate the computational risk

of potentially expanding several inadmisstble nodes

7.2.1 Euclidean Traveling Salesperson Problemn

In light of the above observations, the Euclidean traveling salesperson problem
(ETSP) defined below is chosen as a representative problem from the dlass of

traveling salesperson problems.

Definition 7.1 Given a positive adjacency matrir (c,,) where each clement
c,; represents the Fuclidean distance from city 1 to city 3, the Fuchdean trav-

eling salesperson problem (ETSP) is to find the shortest tour that beqins at an

CHAPTER 7 BINARY ITERATIVE-DEEPENING-A* 84

arbitrary city, nisits each other city ezactly once and returns to the starting

cily.

Each instance of an m-city ETSP is generated by randomly selecting m points
in the unit square [0,1]2. Each point (z,,y,) € [0,1)? represents the position
of city 1 The Euclidean distance c,, between city 1 and city ; is calculated

straightforwardly as

\/(-Tn - IJ)Z + (yl - y1)2
for each pair (2,3) Therefore, an instance of the ETSP is characterized by

two parameters (m,t) where.

I m represents the number of cities in the tour, and

2. t represents the maximum precision, evaluated as 10~ of the Euclidean

distances between cities

For example, the parameters (9,5) define a 9-city ETSP where 107° is the

maximum precision of the edge costs.

7.2.2 Testing and Analysis

Forty random instances of the m-city ETSP are generated for cach m, 5 < m <
10. Fach instance is solved for a maximum precision of [67%, 1 <t < 6, using
the A*, IDA™ and BIDA* (w = 0.5) algorithms The time complexities of both
IDA™ and BIDAY are measured in terms of the total number of nodes that
are selected for expansion on each iteration leading up to and including the
penultimate iteration Since the time complexity of A* 1s equal to the number
of nodes that are surely-expanded by IDA* on its penultimate iteration and

since IDA* is nearly-equivalent? to BIDA* for w = 0, the three algorithms are

2The differences are reconciled 1n Section A 1

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A*

x
by |

Tour Size Maximum Precision, t

m 1 2 3 4 5 6

5 1.89 371 4.06 4.06 4 06 1.06
6 220 7.44 9.20 9.48 9.50 9.50
7 206 9.66 1685 18.69 18.88 18.90
8 201 12.84 3790 46.51 47.17 47.92
9 2,02 1442 69.53 109.18 11449 11529
10 1.98 15.12 116 13 607.52 1126.52 1209.80

Table 7.3: Average Time Complexities of IDA* to A*

implemented as a single standard Pascal program (Appendix A) The average
time complexities of A*, IDA* and BIDA* are calculated based on the forty

random instances and the following ratios are recorded for cach parameter

(m,1):

Table 7.3: The ratio of the average time complexity of IDA* to the average

time complexity of A*.

Table 7.4 (a): The ratio of the average number of 1terations performed by

BIDA* to the average number of iterations performed by 1DA*

Table 7.4 (b): The ratio of the average time complexity of BIDA* to the

average time complexity of IDA*.

Table 7.5: The ratio of the average time complexity of BIDA* to the average

time complexity of A*.

Each entry in the above tables represents a ratio of an average performance
measure between, say, Algorithm A and Algorithm B. As the tour size and the

precision of the edge costs increase, three scenarios are noted

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A* 86

Tour Size Maximum Precision, t

m 1 2 3 4 5 6

5 0.827 0.595 0.576 0.580 0.580 0.580
6 0.810 0.424 0.364 0.357 0.357 0.357
7 0.840 0.353 0.273 0.261 0.260 0.261
8 0.841 0.240 0.151 0.137 0.134 0.134
9 0.888 0.217 0.106 0084 0.082 0.082
10 0.861 0.199 0.075 0.046 0.037 0035

(a) Average Number of Iterations of BIDA* to IDA*

Tour Size Maximum Precision, t
m 1 2 3 4 5 6

1.079 0.673 0.652 0.658 0658 0.6538
1.022 0.454 0.369 0358 0.357 0.357
1.063 0.359 0.226 0.203 0.201 0.201
1988 0.275 0.131 0.115 0.110 0.109
1.162 0.234 0.080 0.050 0019 0.019
0.959 0.218 0.049 0.013 0.008 0007

HoRo JEE B e RN]

e
(=

{b) Average Time Complexities of BIDA* to IDA”

Table 7.4: Average Performance Ratios of BIDA* to IDA*

1. If the ratio remains constant then the performance of A is optimal with

respect to the performance of B.

2. If the ratio increases then the performance of A is non-optimal with

respect to the performance of B.

3. If the ratio decreases then the performance of B is non-optimal with

respect Lo the performance of A.

In Table 7.3, the non-optimal performance of IDA* on the ETSP is clear.

As both the tour size and the precision of the edge costs increase, the ratio

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A* 87

Tour Size Maximum Precision, t

m 1 2 3 4 5 6
5 2.04 250 2.65 267 2.67 2.67
6 225 3.38 3.39 340 3.40 3.40
7 2.18 347 3.81 379 3.7) 3.80
8
9

2.19 3.53 498 533 524 5.24
234 337 553 545 5.61 5.61
0 1.90 3.29 5.72 816 8.84 8.77

Pt

Table 7.5: Average Time Complexities of BIDA* to A*

of the average time complexity of IDA* to the average time complexity of A*
departs quite dramatically from an optimal constant ratio. As expected and as
shown in Table 7.4 (a), BIDA* performs on average fewer iterations than IDA*
in every instance. Furthermore, the ratio of the average number of iterations
performed by BIDA* to those performed by IDA* is decreasing as both the
tour size and the precision of the edge costs increase. Hence, the perforinance
of IDA* is non-optimal with respect to BIDA* in terms of the average number
of iterations. The reduction in the number of iterations also yields an almost
proportional decrease in the average time complexity of BIDA* as shown in
Table 7.4 (b). This suggests that the number of inadmissible nodes that are
expanded by BIDA* does not significantly impede its performance. Therefore,
the average time complexity of IDA* is again non-optimal with respect to the
average time complexity of BIDA*. Although the average time complexity
ratio between BIDA* and A* continues to increase as both the tour size and
the precision of the edge costs increase, the ratio increase in Table 7.5 is
comparatively slight. It is therefore encouraging that the reduction in both
the number of iterations and the time complexity of BIDA* over IDA* yields

a near-optimal performance by BIDA* with respect to A*.

-

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A*

e 4
b A

7.3 Comparison of BIDA* with IDA*_CR

Recently, Sarkar et al. developed an admissible version of IDA*, called

IDA*_CR, that also redresses the worst case phenomenon of an IDA* scarch

[46]. The IDA*_.CR algorithm differs from BIDA* in “wo key respects:

1. IDA*_CR performs a depth-first branch and bound search on each iter-

ation as opposed to a strictly depth-first search.

2. The cost bound of each iteration of IDA*.CR is chosen such that the
number of additional nodes grows exponentially from one iteration to the
next, that is, the heuristic branching factor b, is constant and greater

than one.

To guarantee that at least b, additional nodes are expanded between the 2 and
(7 +1)* iterations, IDA*_CR uses a set of buckets indexed 1,2, .., pto group
the f-values which exceeded the cost bound C, of the curient iteration Each
bucket, denoted B,, 1s associated with a mutually-exclusive range of values
{r),7,41]) where r, < 7,4y for all 3, 1 < j < p— 1. For cach node n whose

f-value exceeds C,, the index of bucket B, is increased by one where

r, < f(n) <7y

Therefore, the cost bound of iteration ¢ + 1 is set to the minimum r,,, where
the sum of the indices of buckets B; through B, exceeds bi. At this point, two
important observations are made.

1. An appropriate balance among a) the heuristic branching factor b,
b) the number of buckets and c) the range of values associated with each
bucket must be established. For an inappropriate choice, only the f-values a

few generated nodes may fall within the range of values associated with the

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A* 89

Dg7 E®G Fé5 G4

Figure 7.3: Example of an IDA*_CR Search

buckets. In this case, IDA*_CR may not be able to sustain the exponential
growth rate from one iteration to the next. Even the choice of an inappropriate
b, alone may lead to a poor performance as shown in Figure 7.3.

Each node A through G is labeled with its f-value. Nodes A and G are
designated as the start and goal nodes respectively. If a heuristic branching
factor by is chosen as 2 then at least 2°, 2!, 22, ... additional nodes must be
expanded on iterations 1, 2, 3, Therefore, the cost bounds of iterations 1,
2, and 3 must equal 1, 3 and 7 respectively. On the third and final iteration,
IDA*_CR performs a depth-first branch and bound search until the optimal
solution path from node A to node G is fourd. However, because the cost
bouud of the third iteration is equal to 7, IDA” _CR may expand an arbitrarily

large number of inadmissible nodes in the subtree T} rooted at node D.

CHAPTER 7. BINARY ITERATIVF-DEEPENING-A* 96

2. The cost bound of the firal iteration of IDA*_CR may exceed the cost
of the optimal solution path. Therefore, like the BIDA* algorithm, IDA*_CR
potentially expands several inadmissible nodes before an optimal solution path
is found. Since both A* and IDA* do not expand any inadmissible nodes for
h < h*, there 1s again no common measure of time complexity among A*,
IDA* and IDA*_CR tbat includes the number of nodes that are expanded on
the final iteration. Hence, the following claim in {46, p 213} 1s somewhat

misleading:

IDA*_CR expands O(N) nodes where N is the number of nodes
that are expanded by A*.

However, because [DA*_CR does not expand any inadmissible nodes on each
iteration leading up to and including the penultimate iteration, Theorem 7.2

is stated directly.

Theorem 7.2 Gien a solution space tree G = (s, Y,hlh < h*) with a con-
stant heuristic branching factor greater than one, IDA*_CR 15 asyinptolically
optimal, in terms of the number of nodes that are surely-exrpanded by A*, over

the class of adnussible best-first tree search algorithms.

Unfortunately, a similar claim cannot be made for BIDA*.

7.4 Concluding Remarks

Throughout the development and testing of BIDA*, the initial upper bound
was arbitrarily set to the cost of any solution path. However, the initial up-
per bound is often better established using an approximation algorithm [14]

rather than a random solution path. This approach was incorporated into the

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A* 91

MSBB algorithm of [45]. For example, Christofides’ TSP algorithm [7] finds
an approximate solution that is at most 1.5 times the cost of the optimal so-
lution. Setting U; equal to the cost of the approximate solution, the initial

lower bound L; may also be set to

max (U /1.5, f(s))

where f(s) is the cost oi the start node s.
Chapter 7 has established two important properties of a BIDA* search on

a solution space tree G = (s, T, h|h < h*):
1 BIDA* is admissible.

2. If the initial upper bound of an admissible solution spac- tree is at most a
polynomial function of the cost of the optimal solution g.th then BIDA*

performs asymptotically fewer iterations than IDA* in tlie worst case.

Unfortunately, the reduction in the number of iterations comes at the expense
of potentially expanding a large number of inadmissible nodes. Because, in
part, the TSP satisfies Properties 7.1 and 7.2 stated earlier, BIDA* is shown to
be a significant improvement over IDA* as both the tour size and the precision

of the edge costs increase for the ETSP. However, it remains:

1. To expand the empirical scope to other combinatorial problems and to

larger instances of the traveling silesperson problem.

2. To support the empirical work with theoretical justification. For in-
stance, the expected case behaviour of BIDA* may be derived with re-
spect to a probabilistic model of computation that distributes the costs
(depths) of the goal nodes over a solution spuce tree. Such an analysis

would help answer an important question: What conditions must the

CHAPTER 7. BINARY ITERATIVE-DEEPENING-A* 92

distribution function satisfy in order to ensure the optimal performance

of BIDA* with respect to IDA* and better still to A*?

3. To generalize the above analyses for all w, 0 < w < 1.

Chapter 8

Final Remarks

Iterative-deepening-A™ is an admissible heuristic search algorithm which is op-
timal with respect to space complexity and the cost of solutinn found over the
class of admissible best-first tree search algorithms. However, the optimality of
IDA*, as measured against the optimal time complexity of the A* algorithm,
is subject to a number of conditions. These basic results and conditions are
summarized below. Given a solution space tree G = (s, T,hlh < k*) where

A* surely-expands M (k) nodes on G:

1. IDA* is asymptotically optimal over the class of admissible best-first tree
search algorithms, that is, T(k) € O(M(k)) if the eflective or heuristic

branching factor is constant and greater than one.

2. In the worst case, IDA* surely-expands (M?(k) + M(k))/2 nodes over
M(k) iterations. The worst case performance of IDA* is a special case
of the unit heuristic branching factor when IDA* expands exactly one

additional node per iteration.

3. The worst case performance of IDA* is realized if and only if the eval-

uation function assigns an f-value to each non-goal node such that the

93

CHAPTER 8. FINAL REMARKS 91

conditions of uniqueness and monotonicity are satisfied

4. In the expected case, IDA* is asymptotically optimal over the class of ad-
missible best first tree search algorithms if the differential edge costs are
independently and 1dentically distributed from any integer probability

distribution that satisfies Properties 6 2 and 6 3

The time complexity spectrum of IDA* 1s defined between its asymptotie
optimal and worst case performance Because IDA*, hike the A¥ algonthm, is
apphed to a wide variety of problems, the computational efligency of TDAY
on a given problem may fall anywhere within this time complexity spectium
However, the efficiency of search depends on a number of interrelated factors,

most notably.

1. The structure of the solution space graph,

2. The behaviour of the evaluation function with respect to the conditions

of uniqueness and monotonicity, and

3. The precision of the f-values assigned to each node

If the solution space graph satisfies the property of acyclicy, no node is re-
selected for expansion by cither the IDA* or A* algorithm In Chapter 3,1t was
shown by example that the time complexity of IDA* grows exponentially over
A* when the number of paths from the start node s to any other node grows
exponentially with depth. Although the property of acychcy supplants the
weaker requirement of monotonicity, this result is analogous to the exponential
growth in the time complexity of A* whenever the property of monotonicity
is relaxed.

As the precision of the evaluation function increases, the number of pos-

sible f-values that are assignable to each node increases as well. Therefore,

CHAPTER 8 FINAL REMARKS 95

the likelihood that two or more nodes will share the same f-value decreases

Consequently.

1. The number of additional nodes that are expanded on each iteration is

reduced, and

2. The performance of IDA* is skewed toward the worst case end of the

time complexity spectrum.

This pheniomenon was reflected by empirical results on the Fuclidean traveling
salesperson problern (ETSP) in Chapter 7. By randomly generating points in
the unit square and modeling the precision of the edge costs, the performance
of IDA* degraded significantly as the precision of the edge costs increased for
a given number of cities. To redress the problem of expanding only a few
additional nodes over several iterations, the BIDA™ algorithin was developed
and tested with respect to the ETSP. It was shown on a small test bed that
BIDA* was much less sensitive to an increase in both the tour size and the
precision of the edge costs.

The IDA* algorithm is an important search technique. It offers the attrac-
tive possibility of asymptotic optimality along the dimensions of time complex-
ity, space complexity and the cost of solution found. Unfortunately, the sheer
size of the solution spaces of most combinatorial problems often overwhelms
even the best heuristic knowledge. It therefore remains to understand how
the performance of IDA* is improved (or degraded) with respect to time com
plexity and the cost of solution found for inadmissible heuristics. Secondly,
empirical and theoretical work must continue into the development and testing
of parallel versions of IDA* such as [44]. The design and analysis of parallel
search algorithms introduces many difficult problems concerned with task di-

vision and interprocessor communication. However, a better understanding of

CHAPTER 8. FINAL REMARKS a6

the performance of the IDA* algorithm itself is a vital prerequisite toward a

better understanding of its inadmissible and parallel derivatives

A

Bibliography

[1] Aho, A.V., Hopcroft, J.E. and Ullman, J.D. (1974) The Design and Anal-
ysis of Computer Algorithms, Addison-Wesley, Reading, MA

[2] Bagchi, A. and Mahanti, A. (1983) Search algorithms under different
kinds of heuristics - A comparative study, Journal of the ACM 30(1), pp.
1-21.

[3] Bagchi, A. and Mahanti, A {1985) Three approaches to heuristic search
in networks, Journal of the ACM 32(1), pp. 1-27.

[4] Bagchi, A and Sen, A.Kk. (1988) Average-case analysis of heuristic search
in tree-like networks, in Search in Artifictal Intelligence (I Kanal and V.
Kumar, editors), Springer Verlag, New York, N Y., pp. 131-165.

[5) Barr, A. and Feigenbaum, E.A., editors (1981) Handbook of Artificial
Intelligence, Morgan Kaufmann, Los Altos, CA.

[6] Chakrabarti, P.P., Ghose, S., Acharya, A. and DeSarkar, S.C. (1989)
Heuristic search in restricted memory, Artifictal Intelligence {1(2), pp.
197-221.

[7] Christofides, N. (1976) Worst case analysis of a new heuristic for the trav-
eling salesman problem, Technical Report, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pittsburgh, PA.

(8] Dechter, R. and Pearl, J. (1985) Generalized best-first search strategies
and the optimality of A*, Journal of the ACM 82(3), pp. 505-536.

[9] Dechter, R. and Pearl, J. (1988) The optimality of A*, in Search in Ar-
tificral Intelligence (L. Kanal and V. Kumar, editors), Springer Verlag,
New York, N.Y.. pp 166-199.

97

BIBLIOGRAPHY 938

[10] Dijkstra, E.W. (1959) A note on two problems in connection with graphs,
Numerische Mathematik 1, pp. 269-271.

11] Doran, J. and Michie, D. (1966) Experiments with the graph traverser
graj
program, Proceedings of the Royal Society of London 294(A), pp. 235
259.

[12] Dreyfus, S.E. and Law, A M. (1977) The Art and Theory of Dynamic
Programming, Academic Press, New York, N.Y

[13] Ernst, G.W. and Neweli, A (1969) GPS A Case Study m Gencrahty and
Problem Solving, Academic Press. New York, N Y.

[14] Garey, M.R and Johnson, D.S (1979) Computers and Intractability: A
Guide to the Theory of NP-Completencss, W.H Freeman and Company,
New York, N.Y

(15] Gaschnig, J. (1979) Performance measurement and analysis of cerfain
search algorithms, Ph.D. Dissertation, Technical Report CM*1-CS-79-124,

Computer Science Department, Carnegie-Mellon University, Pittshurgh,
PA.

[16] Gelperin, D (1977) On the optimality of A*, Artificral Intelligence &(1),
pp. 69-76.

(17] Harris, L.R. (1974) The heuristic search under conditions of error, Arfafi-
cual Intelligence 5(3), pp. 217-234.

[18) Hart, P E., Nilsson, N.J. and Raphael, B. (1968) A formal basis for the
heuristic determination of minimum cost paths, IEEL Trans on Systems
Seience and Cybernetics {, pp. 100-107.

[19] Hart, P.E., Nilsson, N.J. and Raphael, B. (1972) Correction to “A formal
basis for the heuristic determination of minimum cost paths”, SIGART
Newsletter 37, pp. 28-29.

[20] Hofri, M. (1987) Probabilistic Analysis of Algorithms, Springer Verlag,
New York, N.Y.

(21] Huyn, N., Dechter, R. and Pearl, J. (1980) Probabilistic analysis of the
complexity of A*, Artsficral Intelligence 15(3), pp. 241-254.

[22] Ibaraki, T. (1978) m-depth search in brauch-and-bound algenthms, In-
ternational Journal of Computer Information Sciences 7(4), pp. 315-343.

BIBLIOGRAPHY 99

[23] Korf, R.E. (1985) Depth-first iterative-deepening: An optimal admissible
tree search, Arlificial Intelhgence 27(1), pp. 97-109.

[24] Korf, R.E. (1988) Optimal path-finding algorithms, in Search in Artificial
Intelhgence (L. Kanal and V. Kumar, editors), Springer Verlag, New York,
N.Y., pp. 223-267.

[25] Levy, D. and Newborn M. (1991) How Computers Play Chess, Computer
Science Press, New York, N.Y.

126] Lin, S. (1965) Computer solutions of the traveling salesman problem, Bell
Systems Tech. Journal §4(10), pp. 2245-2269.

(27} Mahanti, A. and Ray, K. (1988) Network search algorithms with mod-
ifiable heuristics, in Search in Artificial Inielligence (L. Kanal and V.
Kumar, editors), Springer Verlag, New York, N.Y., pp. 200-222.

[28] Martelli, A. (1977) On the complexity of admissible search algorithms,
Artificral Intelligence 8(1), pp. 1-13.

[29] Méro, L. (1984) A heuristic search algorithm with modifiable estimate,
Artificial Intelligence 23(1), pp. 13-27.

[30] Newborn, M.M. (1976) Reconsideration of a theorem on admissible or-
dered search algorithms, Proceedings of the Annual Conference of the
ACM, pp. 535-538.

[31]) Newborn, M. (i989) The Great Theorem Prover, Newborn Software,
Westmount, Québec, Canada.

[32] Newell, A. and Simon, H.A. (1972) Human Problem Solnng, Prentice
Hall, Englewood, N.J.

[33] Nilsson, N.J. (1971) Problem Solving Methods in Artificial Intelligence,
McGraw Hill, New York, N.Y.

[34] Nilsson, N.J. (1980) Principles of Artificial Intelligence, Tioga, Palo Alto,
CA.

[35] Patrick, B.G., Almulla, M. and Newborn, M.M. (1992) An upper bound
on the time complexity of iterative-deepening-A*, Annals of Mathematics
and Artificial Intelligence 5, J.C. Baltzer, Basel, Switzerland (to appear)

BIBLIOGRAPHY 100

[36] Pearl, J. and Kim, J.H. (1982) Studies in semi-admissible heuristics, IEEE

Trans. on Pattern Analysis and Machine Intelhgence PAMI-{({), pp.
392-399.

(37] Pearl, J. (1983) Knowledge versus search: A quantitative analysis using
A*, Artificial Intelligence 20(1), pp. 1-13.

[38) Pearl, J. (1984a) Intelligent Search Strategies for Computer Problem Solv-
ing, Addison Wesley, Menlo Park, CA.

[39] Pearl, J. (1984b) Some recent results in heuristic search theory, IEFE
Trans. on Pattern Analysis and Machine Intelligence PAMI-6(1), pp. 1-
12.

[40] Pohl, 1. (1970a) First results on the effect of error in heuristic search,
in Machine Intelligence 5 (B. Meltzer and D. Michie, editors), American
Elsevier, New York, N.Y., pp. 219-236.

[41] Pohl, I. (1970b) Heuristic search viewed as path finding in a graph, Arti-
ficial Intelhgence 1(3), pp. 193-204.

[42] Pohl, 1. (1973) The avoidance of (relative) catastrophe, heuristic compe-
tence, genuine dynamic weighting and computational issues in heuristic
problem solving, Proceedings of the IJCAI 3, Stanford, CA, pp 20- 23.

[43] Pohl, I. (1977) Practical and theoretical considerations in heuristic scarch
algorithms, in Machine Intelligence 8 (E.W. Elcock and D Michie, edi-
tors), Wiley, New York, N.Y., pp. 55-72.

(44] Rao, V.N, Kumar, V. and Ramesh, K. (1987) A parallel implementation
of iterative-deepening-A*, Proceedings of the National Conference on Ar-
tificial Intelligence (AAAI 1987), Seattle, Washington, pp. 178-182.

[43] Sarkar, U.K., Chakrabarti, P.P., Ghose, S. and De Sarkar, S.C. (1991)
Multiple stack branch and bound, Information Processing Letters 37(1),
pp. 43-48.

[46] Sarkar, UK., Chakrabarti, P.P., Ghose, S. and De Sarkar, S.C. (1991)
Reducing reexpansions in iterative-deepening search by controlling cutoff
bounds, Artificial Intelligence 50(2), pp. 207-221.

[47) Sen, A.K. and Bagchi, A. (1989) Fast recursive formulations for hest-first
search that allow controlled use of memory, Proceedings of the IJCAI 11,
Detroit, Michigan, pp. 297-302

BIBLIOGRAPHY 101

[48] Slate, D.J. and Atkin, L.R. (1977) CHESS 4.5 - The Northwestern Univer-
sity Chess Program, in Chess Skill in Man and Machine (P. Frey, editor),
Springer Verlag, New York, N.Y., pp. 82-118.

[49] Stickel, M.E. and Tyson, W.M. (1985) An analysis of consecutively
bounded depth-first search with applications in automated deduction,
Proceedings of the 9th International Joint Conference on Artifictal In-
telligence, Los Angeles, CA, pp. 1073-1075.

[50] Vanderbrug, G. (1976) Problem representations and formal properties of
heuristic search, Information Sciences 11(4), pp. 279-307.

[51] Winston, P.H. (1984) Artificial Intelliyence, Addison Wesley, Reading,
MA.

Appendix A

The ETSP Program

A.1 Introductory Comments

The ETSP program uses a similar but not identical version of the BIDA*

algorithm given in Figure 7.1. It differs in two key regards:
1. At least one iteration is performed by the ETSP program, and

2. The lower bound is updated after the test for equality with the upper
bound.

Therefore, the ETSP program performs an additional iteration when the lower
bound is raised and made equal to the upper bound, that is, when the lower
bound is equal to the cost of the optimal solution. Since the cost bound of
the subsequent iteration is also equal to the cost of the optimal solution, the
same set of nodes are expanded on the final iteration for all w, 0 < w < 1.
Importantly, the number of nodes that are surely-expanded by IDA* on the
ETSP is equal t» the number of nodes that are selected for expansion by the

ETSP program when w = 0.

102

APPENDIX A. THE ETSP PROGRAM 103

On the other hand, the ETSP program terminates immediately when the
upper bound is lowered and made equal to the lower bound, that is, when the
upper bound is equal to the cost of the optimal solution. Therefore, the cost
bound of the final iteration is not equal to C*. In this case, a different set
of nodes may be expanded on the final iteration for each w,0<w<l It
therefore remains as difficult to provide a common measure of comparison on
the final iteration between BIDA* and IDA* as to provide a common measure

of comparison between A* and the final iteration of IDA*.

APPENDIX A. THE ETSP PROGRAM

A.2 Pascal Implementation

104

(0 o o K O R o R o ok R Rk ok ok K

using the BIDA* algorithm where 0 <= w < 1.
For w = 0, BIDA* reduces to the IDA* algorithm.

*®

* Title: Euclidean Traveling Salesperson Problem

*®

* Author : Briam G. Patrack

*

* Purpose : To solve a random instance of the m-city ETSP
»

x

*

#* B B B % = & » #

***************#*#***#*#***#**#**t****#****#****#*##**########)

program EuclideanTSP (input,output);

const
maxcity = 25;

type
index = 1..maxcity;

(* Node parameters for any node n *)
nodetype = record

visited : array[index] of boolean;

(* Cities visited on current tour (TRUE)
(* Cities to be visited (FALSE)
city, (* Current city
tourlength, (* Number of cities on path from s ton
fvalue, (* Current f_value of neda n
tourcost (* Cost of current path from s ton
: integer
end;
nodes = array[index] of nodetype;
stack = record
path : nodes;

top : 0..maxcity;
end;

*)
*)
*)
*)
*)
*)

&

I

APPENDIX A. THE ETSP PROGRAM 105
coordinate = record
xcoord,ycoord : real
end;
coordinates = array[index] of coordinate;
list = array[index] of 0..maxcity;
matrix = array[index,index] of integer;
var
S : stack;
P : coordinates;
C : matrix; (* Adjacency matrix *)
next : last;

(* Global Statistics %)

nodesexpanded,
totalexpanded,

(* Parameters of problem instance *)

toursize,
sigdags,

seed
found
lastcity
divfactor

(* Number of cities in the tour, m *)
(* Maximum precision of edge costs, t *)

! integer;

: boolean;

: 0..maxcaity;
! real;

APPENDIX A. THE ETSP PROGRAM

106

(oo o oo o o o oo oo o o o A o A o o oS K O K

STACK OPERATORS

Purpose : To control the depth-first search.

* * ¥ %

* % % % »

*********#*********#t*******t***#t*t#‘##****#*#‘*#*t#####tii‘#)

procedure initializestack (var S:stack);
begin

S.top := 0
end; {initializestack}

function stackempty (S:stack): boolean;
begin

stackempty := S.top = 0
end; {stackempty}

procedure popstack (var S:stack);
begin

S.top := S.top - 1
end; {popstack}

procedure pushstack (node:nodetvpe; var S:stack);
begin

S.top := S.top + 1;

S.path[S.top] := node
end; {pushstack}

procedure topstack (var node:nodetype; S:stack);
begin

node := S.path[S.top]
end; {topstack}

APPENDIX A. THE ETSP PROGRAM 107

(*#&*##t#***#t*#t##t#*i#####**‘*‘*##t##‘*t*****##*#*#*#*#******

function UNIFORM

Purpose : Returns a uniformly distributed random variable
u wvhere 0 <= u < 1.

* ¥ # # % »
%* £ % # X *

ﬁ#*##**#i##**###‘#***##‘***#t*‘7*###‘###****#‘*‘*#*##*‘t#***#*)

function uniform (var seed:integer): real;
var
r : integer;
begin
r := seed div 53668;
seed := 40014*(seed mod 53668) - (r»12211);
1f seed < 0 thea
seed := seed + 2147483563;
uniform := seed*4.656613E-10
end; { uniform }

C s T L LT L R L e e L L
procedure INITIALIZECOORDINATES

Purpose : Generates m random points in the unit square
and stores them in vector P.

Uses : function UNIFORM

* B 2 ¥ # B B »
* % # 4 X B * w

‘t*t*#*##*t##t**#*t**#*#**tt##*#v#t*“t##*******i*************)

procedure i1nitializecoordinates(var P:coordinates);
var
1:1ndex;
begin
for i:=1 to toursize do
vith P[i] do begin
xcoord := uniform(seed);
ycoord := uniform(seed);
writeln(xcoord,ycoord);

APPENDIX A. THE ETSP PROGRAM 108

end
end; <{initializecoordinates}

R T e T T T T LTI I T
procedure INITIALIZEMATRIX
Purpose : Calculates the Euclidean distances between m

»
*
*
L g
points that are randomly distributed in the *
unit square. *

*

)

* R OB R B B »

3 ok ook ok o e o Ao ok ol ok ok o ok o ok ok o e 3 o ook o o ik o oo oo e e ook o ok ook e o ok ko ok ok ok ok

procedure initializematraix (P : coordinates;
var C : matrax;
sigdigs : integer);
var
i,) : index;
deltax,deltay,distance : real;
factor : integer;
begin

for i:=1 to toursize do
C[1,i] := maxint;

(* The edge costs are converted to integral values that
preserve t significant digits after the decimal. *)

factor := round(exp(sigdigs*1n(10)));
for i:=1 to toursize-1 do
for j:=i+l to toursize do begin
deltax := P[i].xcoord - P[3].xcoord;
deltay := P[i].ycoord - P[j].ycoord;
distance := sqrt(sqr(deltax) + sqr(deltay));
cl1,j] := round(factorsdistance);
¢lj,i] := cla,j]
end
end; {initializematrix}

APPENDIX A. THE ETSP PROGRAM 109

(‘#*t##t##*t*####*t######*t####*#t#*“##*###*#***#t***tt**#****

* *
* function SELECTTOUR *
* *
* Purpose : Returns the cost of the leftmost sclution path, =*
* that 18, returns the cost of the tour from *
* city 1 to caty 2, city 2 to city 3, ..., citym *
* to caity 1. *
* *

tt*#**#‘t*t*#**ttt#*#t‘t*t#‘*t‘#‘t*###t*#*******####‘###****##)

function selecttour (C:matrix): integer;

var
1 : index;
total : integer;
begin

total := 0;
for 1:=1 to toursize-1 do
total := total + C[i,i+1];
selecttour := total + C[toursize,1]
end; { selecttour }

APPENDIX A. THE ETSP PROGRAM 110

(3 ok o oo oo oo o o o o oo o o o o Rk Rk ok
function BOUND
Purpose : Returns the f~value of node n where:

1) g(n) 1s the cost of the current path from
the start node s to n.

2) h(n) 1s equal to (r(n) + t(n))/2 where:

a) r(n) 1s equal to the sum of the two
minimum ccst edges out of each node NOT on
the current path from s to n. Each edge
may not be connected to a node in the
middle of the current path from s to n.

As well, only one edge may connect to
elther node s or node n.

b) t(n) 1s equal to the sum of the minimum
cost edges out of the start node s and
node n to a node NOT on the current path
from s to n.

PO T T R T IR T T T I I I R B S A A
N N R R EE R R R E R EE R ERE KA RN

0 o o o o o o o o R oo o o o R oo o Ok ok o R kKKK o ok K R)

function bound (node : nodetype;
c : matrix) : 1integer,
var
h,mini,min2 : integer;
1,) : index;
begin

with node do
1f tourlength = toursize-i then begin

(* Only one city remains to be visited *)
lastcity = 1;

while visited[lastcity] = true do
lastcaity := lastcity + 1;

APPENDIX A. THE ETSP PROGRAM

bound :* tourcost +
Clcity,lastcity] + C[lastcaty,1];
end
else
begain
h := 0;

(* Evaluate r(n) *)

for 1:=1{ to toursize do
1f visited[1] = false then begin
1f C[1,1] < C[1,city] then
mini := C[1,1]
else
mini := C[1,caty];
min2 := maxint;
for j:=1 to toursize do
1f visited[3] = false then
if C[1,j] < minl then begin
min2 := mini;
minl := C{1,)]
end
else
1f C[1,j] < min2 then
mn2 := C[1,3];
h :=h + mini + min2
end;

(* Evaluate t(n) *)

minl := maxint;
for 1:=1 to toursize do
if (visited[1] = false) and
(C[1,i] < min1) then
minl := C[1,1];
h := h + mini;
min2 := maxint;
for 1:=1 to toursize do
1f (visited[1] = false) and
(Clcity,1] < min2) then

111

APPENDIX A. THE ETSP PROGRAM 112

wihe

min2 := Clcity,1];
h := h + min2;

(» Evaluate f(n) *)
bound := tourcost + round(h/2)

end
end; { bound }

#

]

APPENDIX A. THE ETSP PROGRAM 113

(#*#t**###*#tt###t‘#*#t#**t##########‘#*tt#####t*******#*******

procedure CREATEROOT

Purpose : Initializes the parameters of the start node s.

@ % # B =
% % % % »

#‘*###***t#*t****#‘#***t***#**#***#“####t*##****#***‘##‘t#**#)

procedure createroot (var root :nodetype; C:matrix);

var
1 : index;
begin
with root do begin
city := {;

tourlength := 1;

tourcost := 0;

for i:=1 to toursize do
visited[i] := false;

visited[1] := true;

fvalue := bound(root,C)

end
end; { createroot }

(t#***##*##**tt******#**#**tt#*#***#t‘**#****#*#***####tt****##

* *
* procedure CREATECHILD *
* *
* Purpose : Initializes the parameters of mnode n. *
* *

##*#*#**tt##t‘t##*t***t*#*##‘##****#*##‘#t#**tt#*##**t**###***)

procedure createchild (var child : nodetype;
parent : nodetype;
c : matrix);
var)
i : index;
begin
vith child do begin
city := next[parent.city];
tourlength := parent.tourlength + 1;

APPENDIX A. THE ETSP PROGRAM 114

tourcost := parent.tourcost +
Clparent.city,child.cityl;
for i:=1 to toursize do
visited[i] := parent.visited[1];
visited[city] := true;
fvalue := bound(child,C);
nextlcity] := 0
end
end; { createchild }

(o AR AR AR R Ao M R oK ok o o K
*
function NEXTCITY *
*®
Purpose : Determines the next city, if any, to be expanded.*
*
A A KK R K AR R R Rk)

* ¥ X * *

function nextcity (node:nodetype; var mext:list): integer;
var

city : 1integer;
begin

city := next[node.city];

repeat

city := city + 1
until (city>toursize) or (node.visited[city] = false);

(* Note: If city > toursize then node is fully-expanded *)
next[node.city] := city;

nextcity := city
end; { nextcity }

APPENDIX A. THE ETSP PROGRAM 115

(#####t#***t****#*##*#*##t*#‘####**t##*#tt##t*t****#*t*#**#****

* *
* procedure DEPTHFIRSTSEARCH *
* *
* Purpose : Performs a bounded, depth-first search of the *
* solution space of the ETSP until either: *
» *
* 1) A solution path is found or *
* *
* 2) The f-values of all expandable nodes is *
* greater than the iteration bound. *
* *
* Uses : STACK OPERATORS, CREATECHILD, NEXTCITY *
* *

t*#**‘**##*#**tt##‘#*t#*#‘***##*##“###*‘*##*********#**‘#****)

procedure depthfirstsearch (C ! matrix;
iterationbound : integer;
var nextbound,
solutionvalue : integer);

var
parent,child : nodetype;
expanded : array[index] of boolean;
i : index;

begin

for i:=1 to toursize do
expanded[i] := false;
wvhile not (stackempty(S) or found) do begin
topstack(parent,S);
if (parent.tourlength <= toursize-2) and
(nextcity(parent,next) <= toursize) then begin

(* Generate next successsor of parent node *)

createchild(child,parent,C);

if not expanded[parent.city] then begin
nodesexpanded := nodesexpanded + 1;
expanded [parent.city] := true

end;

if child.fvalue <= iterationbound then

APPENDIX A. THE ETSP PROGRAM 116

pushstack(child,S)
else
if (child.fvalue < nextbound) then
naxtbound := child.fvalue
end
else
if parent.tourlength = toursize-1 then begin
solutionvalue := parent.fvalue;
found := true
end
else (* Node fully expanded *)
begin
expanded [parent.city] := false;
popstack(S)
end ;
end;
end; { depthfirstsearch }

APPENDIX A. THE ETSP PROGRAM 117

(**#‘#####*t*#‘**###**##***#**#**#**#*##*#*##***#*#************

procedure ITERATIVEDEEPENING

Purpose : Performs successive depth-first searches until
the lower bound is equal to the upper bound.
The cost bound of each iteration is equal to:

(1-w)L + wU vhere 0 <= w < 1.

Uses : STACK OPERATORS, DFPTHFIRSTSEARCH

* % B % X K R ® X B »
® % ¥ % % ¥ H ¥ % B %

*#**##**‘##t‘*##**#‘#***##*#tt‘##***#‘**##*#***********#**#***)

procedure iterativedeepening(C ¢ matrix;
divfactor : real);
var
node,rootnode : nodetype;
lowerbound,
upperbound,
nextbound,
solutionvalue,
iterationbound : integer;
begin
createroot(rootnode,C);
nextbound := rootnode.fvalue;
upperbound := gelecttour(C);
found := false;
totalexpanded := 0;
repeat

initializestack(S);
pushstack(rou.node,S);

- next[rootnode.city] := 0;
nodesexpanded = 0;

(» Update lower bound *)

if not found then begin
lowerbound := nextbtound;
nextbound := maxint;

APPENDIX A. THE ETSP PROGRAM

end;

end;
found = false;

(* Evaluate cost bound *)

iterationbound := lowerbound +
trunc((upperbound - lowerbound)
* divfactor);
depthfirstsearch(C,iterationbound,
nextbound,solutionvalue);

(* Update upper bound *)

1f found then
upperbound := golutionvalue;
if lowerbound <> upperbound then
totalexpanded := totalexpanded + nodesexpanded;

until lowerbound = upperbound;

(* Output optimal tour cost and path *)

writeln(’Tour Cost : ’,upperbound:0);
wvriteln(’Nodes Expanded : ’,totalexpanded:0);
write(’Uptimal Tour: 1 ’,lastcity:0);

vhile not stackempty(S) do begin

topstack(node,S);
write(’ ’,node.city:0);
popstack(S);

end;

vriteln;

{ iterativedeepening }

APPENDIX A. THE ETSP PROGRAM 119

(*#####*##t#t*#t#‘i‘t#‘#t*‘l##*t*#t####*#*****#*****#***#*******

» *
* MAIN PROGRAM *
» *

bl d il bt dda b A Al A Al bl e e e T T e e T T T 1))

begin { main program }
seed := 20000;

(* Enter parameters *)

writeln(’Enter m, t and w:’);

readln(toursize,sigdigs,divfactor);

initializecoordinates(P);

initializematrix(P,C,s1gdigs);

1terativedeepening(C,divfactor);
end.

