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Abstract

We use a method of analytic continuation introduced by M. Flensted-Jensen
to study the asymptotic behaviour of the heat kernel on noncompact syvm-
metric spaces, for values of the time parameter which are arbitrarily small
or arbitrarily large The same method is applied to one case of the inversion
problem for the Abel transform. The results are illustrated with explicit

computations for SL(3, R).
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Résumé

Nous utilisons une méthode de prolongement analytique introduite par M.
Flensted-Jensen. pour étudier le comportement asymptotique de la solution
fondamentale de I'équation de la chaleur sur les espaces symétriques non-
compacts, lorsque le parametre temps prend des valeurs arbitrairement pe-
tites ou arbitrairement grandes. Cette méme méthode permet d’étudier un
cas du probleme d’inversion pour la transformation d’Abel. Les résultats

sont illustrés par des calculs explicites pour SL(3. R).
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Introduction

Let G be a connected semisimple matrix group of the noncompact ty pe and
K a maximal compact subgroup of . The G-invaiiant Laplacian on the

symmetric space GG/ plays a fundamental role for harmonic analssis on

G/K. In this respect. the study of the heat equation is of particular mnterest.
since in addition to establishing connections with other ateas of analvxis, 1t
provides insights into important questions of spectral analysis on Riemannian
manifolds in general (see [4] [4bis] for informative surveys). The search for
precise information concerning the behaviour of the fundamental solution
of the heat equation on GG/I has been the subject of many investigations
([1] [8] [17] [tter] [iquater] [13bis] {15bis] [15ter] to name only a few) The
explicitly known solutions of the heat kernel depend almost invariably on the
knowledge of an inversion formula for the Abel transform [1] [3]. As a result.
explicit solutions are well known for complex semisimple groups. for real rank

1 groups, for G = SU(p, q) Jean-Philippe Anker 1] [Iquater] has provided

a solution based on Chuistopher Meaney's inversion formula for the Abel

transform [16]. Inversion formulas have also been determined for SL(3. I?)



[2], ST7=(6) [3. 10bis]. SU*(8) [3], Es(-26) [3], and for SL(3. R)/SO(3). Patrice
Sawyer [20bis] gave an explicit expression for the heat kernel. However,
for other real groups of higher rank. the problem remains elusive. Another
approach to the heat kernel is provided by M. Flensted-Jensen’s method of
analytic continuation [7]. Let G be the Lie algebra of G and Gr = G ® C
the complexification of G, we may view G as a subgroup of a complex Lie
group G with Lie algebra G¢. the method of analytic continuation identifies
the spaces of functions which depend on the double cosets N'\G/L with a
naturally defined family of functions on G¢. Via suitable orbital integrals on
(¢ it is possible to translate certain questions of spherical analysis on ¢ into
equivalent problems on G¢. In particular, the heat kernel for a noncompact
reductive matrix group G has an integral representation in term of the heat
kernel on the complex group G¢ Using this integral representation. we have
sought to establish some general estimates for the heat kernel when the time
parameter takes arbitrarily small or arbitrarily large values A critical step
in these computations is the use of certain geometric estimates which permit
contiol over the behaviour of the heat kernel on the complex gronp Gc.

These computations prove successful in case the time parameter is small.

For large values of the time parameter, we prove the existence of an asymp-
totic expansion for the heat kernel in case G is a normal real form of Gg.
We also venture to conjecture how the estimates for the coefficients of the

expansion could be improved in general.

We have also undertaken a discussion of one aspect of the inversion problem
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for the Abel transform.

Let G = KAN be an Iwasawa decomposition of G. A the Lie algebra of
A, R = R(G,A) the restricted root system for the pair (G. A). 11" = 117()
the Weyl group, and m : RMod(W') — N” the multiplicity function which
assigns to each root orbit W - a the dimension of the eigenspace G, The
work of Beerends [3], Opdam [19] and others focuses on a theory of spher-
ical functions which depends only on a root system R with an aibitrarily
assigned multiplicity function m = (m,my,....m;). The Abel transform
Tm : CP(K\G/K) — C*(A; V) is an isomorphism between the convolu-
tion algebra C2°( A'\G/ ') of compactly supported. bi- A'-imariant. €'~ func-
tions on G and the Euclidian convolution algebra C*(4:11") of compactly
supported. (', V-invariant functions on A. Via itestriction to - we may
simply view 7™ as a bijective correspondence of C'°(A:117) onto itself which
depends only on the root system R and the multiplicity function m. Then,
the search for “shift” operators consist of finding all admissible differential
operators D on C°(A: 117} which lower the multiplicity function in the sense
that

T"=T™oD withn, <m,.

The elementary “shifts” which have been obtained have even entries {i.e.,
(ki b2y ooy k) =m—n=(0,0,...,0) Mod(2)) and explicit inversion formu-
las for 7™ have been obtained in cases when m is even or when m reduces to
a combination of a rank 1 case and a complex case [3] [8] [20] [16] [13quinto]

Clearly, a different approach is nceded in the case of a normal real form (all
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roots have multiplicity 1), and we have shown that analytic continuation is

particularly well suited to answer this question. An explicit computation is

given tor G = SL(3. F).

Chapter 1 represents a pertinent collection of basic geometric principles con-
cerning Riemannian and pseudo-Riemannian symmetric spaces. in addition
to a brief review of M. Flensted-Jensen’s method. In Chapter 2, we apply the
principles of the previous chapter to obtain estimates for the fundamental so-
iution of the heat equation on a Riemannian symmetric sgace. In Chapter 3
we discuss the problems associated with representing the Abel transform via
a measure on the group A and prove a version of Aomoto’s theorem which is
particularly well suited as recursive method for treating SL(n. R). We also
state an inversion formula for the Abel transform when G is a normal real
form and illustrate the methods developed with explicit computations in the

case G = SL(3. R).




Chapter 1

Geometric Preliminaries

1.1 Reductive Groups

By a Euclidian space (E,{,)) we will mean a finite dimensional real vec-
tor spaced endowed with a postive definitive bilinear symmetric form (.} :
E x E— R. END(E) will denote the space of all R-linear transformations.
GL(E) the group of invertible ones. and Pos(E) the cone of symmetric posi-
tive definite operators, with transposition (with respect to the inner product

(,)) defined in the usual way:

(Xu,v) = (u,X%), w,v€E and X € END(E)



Our ultimate interest is the study of certain question of analysis on real
semisimple groups. However, we have adopted Harish-Chandra’s point of
view, by discussing basic principles and associated formulas in the context of
real reductive groups.Some technical difficulties are avoided at a latter stage
by assuming that our groups are linear. Thus. unless otherwise stated. G will
denote a closed connected subgroup of GL(E) which is stable for the action

of the fixed Cartan involution:

o(g)=(g7")', g€GL(E).

Let G be the Lie algebra of G then the derived involution (do)e(X) =
-\*, X € END(E) (also denoted by o when no risk of confusion ex-
ists) gives rise to a Cartan decomposition § = k + p into symmetric and

skew-symmetric elements of G ( p and k respectively).

The real vector space G inherits an inner product from END(E):
T,(X.Y)=—Trace(Xo(Y)) X.Y €g. (1.1)
in addition to a positive semidefinite bilinear symmetric form
B,(X,)Y)=-B(X,0(Y)) X, Yeg (1.2)

where B(X.Y) = Trace(ad(X), ad(Y)), X, Y, € G is the Killing form of G.

Lemma 1.3: Let G be a connected closed o-stable subgroup of GL(E)

then G is a reductive Lie group and it's Lie algebra § is the direct sum of




]

two o stable ideals Z and G’ with Z = Centre of G, and G’ the semisimple

commutator ideal [G.G].

Proof ([13ter]): Clearly G is a Lie group, in fact it is a Lie group without the
connectedness assumption ([11], Thm 2.3). With reference to the euclidean
space (G.T,) we have ad(X)! = —ad(c(X)).X € G. Thus. B,(\N.X) =
Trace(ad(X)ad(X)*) > 0 with equality holding if and only if ad(.\') = 0.
that is. B, vanishes precisely on Z. Note that Z is o stable since ad(Z) =0

iff ad(Z)' = 0.

Writing G as a direct sum of T,-orthogonal subspaces we have ¢ = Z = G'".
o is an isometry of T,(.) and so G’ is also o stable. It is easy to sce that
[G.G] € G’ and in particular ¢’ is a subalgebra of G. We have alicady seen
that B, (hence B) is a nondegenerate form on G, but the restiiction of B to ¢’
is simply the Killing form ~f G'. Consequently G’ is a semisimple subalgebra

of G, and the conclusion follows by observing that ¢’ = [¢'.¢'] C [¢.G] C &'
]

\We refer to Helgason's two volumes [11.12] for most of the basic concepts and
notations of harmonic analysis on homogenous spaces. Let G be a Lie group
with closed subgroups 4 and B. We will regard C*(A\G/B) interchangeably
as the space of the left-A right-B invaiiant C'* functions on G. the space of
left- A invariant C*° functions on (G'/B), or as the space of right-I3 mvariant
C® functions on (A\G). Some care must be exercised in treating functions

of compact support. C*(G/B) will be regarded as the right-B invariant C™
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functions on G which have compact support modulo B.

Let G be a connected reductive Lie group with Lie algebra G, 7 an involutive
automorphism of G (not necessarily a Cartan involution), G” the subalgebra
consisting of those elements in G which are fixed pointwise by 7, G[r] the
analytic subgroup of G corresponding to 7 (i.e the connected component of
the fixed point group G7), and assume that there exists a trace form Q(-,)
on G satisfying:

1. Q(ad(X)Y, Z)+ Q(Y.ad(X)Z) =0 X,Y,Z €G.

o

Q is nondegenerate bilincar symmetric form on G. (1.4)

3. Q is T invariant.

(These conditions are automatically satisfied by @ = Killing form of a

semisimple Lie algebra §.)

The quotient space G/G[r] inherits a G invariant pseudo-Riemannian metric

in the following way:

Let 0 € G/G[r] denote the coset {G[r]} (henceforth called the origin of
G/G[r]) and let t; : 2 - g z designate translation on G/G[r] by elements
of GG. The Lie algebra G is the direct sum G" @ q of the +1 eigenspaces for 7.
Using suitable neighorhoods U and V of the origin in ¢ and in G/G[r] we have
a local diffeomorphism Erp : ¢ — G/G[r] given by Erp(X) = exp(X)-o0 €
G/G[r] which identifies g with the tangent space at the origin o € G/G|r] in




accordance with:

Xof = lim |£ (e“p(tx)t' o) —f (")], feC®G/Gl]), Xeq (L3

The 7 invariance of Q(,) allows us to conclude that the —1 eigenspace ¢ is
contained in the orthogonal complement of G™ (with respect to Q(.)) and a
dimension argument shows that ¢ = (G7)*. In particular the restiiction of
Q(,) togand G are nondegenerate symmetric bilinear forms. Since Ad(G[7])
maps q onto itself ([G7,q] C ¢) and Q|q is Ad(G[7])-invariant (see condition
1.4(1)). The pseudo Riemannian metric can be defined (consistently) by

group translation in accordance with

(dt,(X),dt,(Y)),0 = (X0, Yodo= Q(X,Y), X.Yeq (1.6)

Returning to Lemma 1.3 we have:

Lemma 1.7: Let G be a connected closed o-stable subgroup of GL(E) of
the noncompact type (p # (0)) and let G° be the subgroup of GG consisting

of elements which are fixed pointwise by ¢ then:

1. the mapping px G’ — G given by (z,k) — exp(z)k is a diffeomorphism
onto G

2. G° is connected and maximal compact in &G

3. G/G" is the direct product of a Euclidian space (with Enclidian group

9




.o ey

of motions) and a symmetric space of the noncompact type with a

semisimple group of motions.

Proof ([13ter]): G is connected and hence generated by exponentials of a
neighborhood of the origin in §. In particular G is contained in the connected

component GL*(E) of GL(E).

The Cartan decomposition GL*(E) = Pos(E)-U (U ~ §0(n) the maximal
compact subgroup fo GL*(E)) allows us to write every ¢ € G uniquely as
g = exp(r)k. with z a symmetric operator and £ € U. \We may establish
(1) by showing that r € G and & € G°. To do so, we consider the analytic
subgroups G,, and Z; of G which correspond to the ideals G’ = [G.G] and Z.
of G. The product map ZoxG,; — G defines a covering map (ZoNGesNGT #

(¢) in general) onto the connected subgroup Z,G,; of G.

Clearly G = ZyG,, (G is also the Lie algebra of ZyG,) and it suffices to
establish the decompositions G,, = exp(pN§G’)- (G4, N G”) and Z; = exp(pN
Z)(ZoNG7). The first of these is well known (G,, is semisimple with finite

center).

‘Therelore, let g = exp(x)k be an element of the analytic subgroup Zg and let
us show that € ZNp. Clearly exp(2z) = go(g~') € Zp. Writing F as a di-
rect sum of irreducible G-submodules E = @& F, (G is reductive [13]),
we have exp(2r) = Dzag(e'\‘](kl),...,e'\NI(kN)), where A, X,,..., Ay €

R and I(k) denotes the k& x k identity matrix. The fact that Z, is con-
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nected allows us to conclude that exp(2z) lies in the one parameter subgroup
exp(Diag(AtI(k1),...,AxtI(ky))) = exp(2tz) of Z;. Hence z € Z N p and
exp(r) € Zo.

The remaining statements are easily established.

2) A standard argument shows that G is maximal compact (powers of el-
ements of the form exp(z)k with x # 0.2 € p form unbounded sequences),
and the map G — G° given by g ~ [go(g7")]"V* - g is well-defined and

continuous so that G? is connected.

3) A o-invariant bilinear symmetric form By may be chosen on Z so as to
satisfy —By(z,0(z)))0 for z € Z.z # 0. If B denotes the Killing form of ¢’
then the direct sum Q = B = B, defines a trace form on G = ¢' = = which
satisfies the conditions in 1.4 and is such that its restriction to p is positive
definite. We then view G/GY as a Riemannian space with a G-invariant
metric defined by Q. Every point of G/G” has a unique expression of the
form exp(Z)exp(r)-owhere Z€ ZNpand z € G'Np. lf g € G is arbitrary
then we may write g = ag; € Zy(ss (in a non-unique way) and a = exp( Ak

with A€ ZNpand &k € ZyNG°. The group action on G/G” takes the form
ty(exp(Z) exp(z) - 0) = exp(A)kg1 - exp(Z) exp(z) - o,
but Ad(G) acts trivially on Z N p. so that
ty(exp(Z)exp(z)-0) = exp(Z + A)- grexp(z) - o,
as claimed. B

11
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1.2 Some Integral Formulas

A decomposition theorem ([18], Theorem 5) for reductive Lie groups in terms
of Lie triple subsystems is an essential ingredient in establishing the process
described by M. Flensted-Jensen as analytic continuation [7] [7his] [Tter]. In
what follows we derive some differential and integral formulas in connection

with particular cases of Mostow's decomposition.

Let G be a closed connected o-stable subgroup of GL(E), G its Lie algebra
and § = k + p its Cartan decomposition. As in the proof of Lemma 1.7.
we may extend the Killing form of the semisimple ideal §' = [G.G] to a
nondegenerate trace form B on § (see conditions 1.4) such that B, (X. V)=
—B(X.0(Y")) is an inner product on G. Clearly. the restriction of B to p
is an Ad(G?) invariant inner product on p which gives G/G? = Frp(p) the

structure of a Riemannian (partly Euclidian) globally symmetric space.

The following observations are immediate consequences of the commutation

relations; [p, p] C k. [k.p] C p, [k.k] C k, and of the positivity of B,:

Ob 1) If Z € p then ad(Z)? is a (B-symmetric) positive semidefinite trans-

formation of p into itself.

Ob 2) For any Z € p, the absolutely convergent power series

@1 2k
S(Z) = kgmadw) k ,, (1.8)

12
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is a (B-symmetric) positive definite transformation of p onto itself with cigen-

values bounded below by 1.

The full statement of Ob2 requires some explanation:

Reductive Lie algebras represent only a slight generalization of senuample
ones, and structure theorems continue to hold with only trivial modifications.
Thus. if A is a maximal abelian subspace of p, we may continue to speak of
the root space decomposition for the pair (G,.4). As it turns out. the roots
R(G, A) are simply the roots (in the ordinary sense) for the pair (G'. ANG')
viewed as linear functionals on A which vanish on ZNp (by necessity ZNp C

A for any maximal abelian subspace A in p).

We formalize our comments in the following:

Lemma 1.9: Let G be a connected closed o-stable subgroup of GL(E). G.

k and p as usual. then:

1. every maximal abelian subspace A of p decomposes uniquely as A =
A" @7, where r = pN 2 and A" = AN [G.G] is maximal abelian in
pNG'.

2. any two maximal abelian subspaces of p are Ad(G7) conjugate.

3. given a maximal abelian subspace A of p there is a root space decom-

position G = AP m B Y ,ep G, where R is the set of distinct nonzero

13




roots for the pair (G, .A) and m is the centralizer of A in k (necessarily

containing Z N k).

Proof ([13ter]):

1. Clearly, a maximal abelian subspace A of p must contain 7 = pn Z.
If H € A then we may write H = H, + H, with H, € p =png’
and H, € 7, but then H, = H ~ H, € A. hence H, € A'. If A’ is not
maximal abelian in p’ then we may linearly adjoin an element z, € p’

which commutes with both A’ and 7 contradicting the maximality of

A.

2. For any pair A; = A|=7 and A, = A,&7 of maximal abelian subspaces
of p. the “semisimple parts™ A} and A} are Ad(G7 N G) conjugate.

since T is acted upon trivially by Ad{G”) the conclusion is immediate.

3. The linear family {ad(H) | H € A} is a commuting family of B,
symmetric transformations of G (hence simultaneously diagonalizable)
and we have a root space decompostion ¢ = G° 2 ¥ G Ifz € G°
thenr = ry4+r,with r, € k and z; € p. The commutation relations for
k and p show that z; € ¢°Nk and z; € ¢°Np = A. Since Z C A& m,
it is clear that the root spaces G, « € R, are entirely contained in the
semisimple ideal G'. Naturally any root @ € R must vanish on 7 and

we may view R as the root system for the pair (G, A’). B

Suitable interpretations imposed by Lemma 1.9 lead to the corresponding

14




versions of the polar and Iwasawa decompositions:

G=KA*K and G =KAN respectively.

Note that the Weyl group W = Np-(A4)/Cx(A) acts trivially on 7. Thus. a
chamber A% in A must be interpreted as At = (A}t @ 7 where (A" isa

Weyl chamber in A’.

Returning to Ob2. we see that any Z € p is contained in some maximal
abelian subspace A of p and the roots of ad(Z)?, are 0 (with multiplicity
dim(A)) or a(Z)? (with multiplicity m, = dimG?). If the “semisimple”
part of Z is not regular. then some a(Z) may equal zero. In any event.

the Toots of S(Z) are of the form SN if a(Z) # 0 or 1. (Recall that

Sh(\) _ o 1 2k
A - ZL:O (2k+1)v’\ )

Definition 1.10: Let {v(¢)} and {42(t)} be two smooth curves in G/G”
(see Lemma 1.7) defined on an open interval 7 containing ¢t = 0 We will say

that the two curves are equivalent at ¢ = 0 and write:
M x4 at t=0.

in case y; and 742 have the same tangent vector at ¢t = 0 (in particular the

two curves must pass through the same point in G/G” at t = 0).

Remark: Infinitesimal equivalence is a handy notational convention which
simplifies the computation of Jacobians in G and G/G?. In G. a smooth

curve ¢t — z(t) € G defines a smooth curve y(t) = exp(.r(t)), and for ¢ small

15



we have exp(z(t+€)) = exp(z(t))exp(eV) at € = 0, for a uniquely determined

IV € G. Other computations in G/G? derive from the folowing rules:

Lemma 1.11([11], Ch. II, Theorem 1.7, Lemma 1.8.i): Let A, B € G,

then the following equivalences hold at € = 0:

1. exp(d + eB) =~ exp(A)exp(eL(A)B), where

I—e
L(A)z( CYapd((A) ) Z( L+1)u)

2. exp(eA + eB) =~ exp(eA)exp(eB)

Proof: The C> curve C(t) = exp(—A)exp(A + tB) passes through the
identity of the connected group G at ¢t = 0. Hence. C(t) is equivalent to
exp(tl’) at ¢ = 0 for a uniquely determined V" € G. Thus exp(4d + tB) ~
exp(Ad)exp(¢1’) at ¢ = 0. Differentiating at t = 0 gives

o0

2

n=1

n-1
— 3" AV BAR = exp(A)V

!
n. .0

The left-hand side may be rewritten using the identity:
BA* = Z( 1) ( )A"" d(A)(B)

(sce Jacobson [13(p38)]). After rearranging terms using ;‘;Jl C) = ( n ) we

J+1
obtain:
oo n-1 . iy ,
exp(d)-V = ,?_:1;7;,(-1)](} + I)A -1 ad(AY (B)
= exp(A)L(A)(B),

16



which shows that V' = L(A)(B). The second equivalence follows fiom the

first (ignoring terms of order €* or higher). B

Lemma 1.12: Let G be a connected closed o-stable subgroup of (/L(L). G.

p. G and G/G? as before. Then:

1. for Z, A € p the following equivalence holds at € = 0 in G/G":
exp(Z +ed)- o=~ exp(Z)exp(eS(Z)(A)) 0 G/G”,

where S5(Z) = -—-————Sh(f:(dé)zn )
p

o

. given Y, X € p. let Z(t) be the uniquely defined C'™ curvein p satisfving
exp(Z(t))-o=exp(tY)exp(\)-0€ G/G°.t € R
then Z(t) satisfies the differential equation
S(Z)Z = Ch(ad(2))Y (1.13)

with initial condition

Z(0) = X.

These results are due to Mostow [18]. They are easily obtained by appl:ing
the infinitesimal rules outlined in Lemma 1.11. and by observing that for

g € G the point g -0 € G/G° is uniquely expiessed as [go(g)~']"? o
Remark: Lemma 1.12 (1) expresses the differential of the exponential map
Exp:p— G/G as:

d(Exp)z(A) = d(tepi2))(S(Z)A). A Zep

17
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Using the G invariance of the metric on G//G” (see 1.6) one easily obtains
the classical integration formula
[ 1@ dutg) = c- [ flexp(2) - 0)J(2) dz.
G/G” P
where
feCE(GIG7), J(Z) = det(S(2)},).

dZ is the euclidian measure on p. and c is a positive constant determined
by the convention that normalizes the invariant measure x on G/G° (see

Helgason [12]).

The following “evolution™ equation will be used in conjunction with the dif-
{ ferential equation 1.13 to establish estimates for the heat kernel on a real

semisimple Lie group.

Lemma 1.14: Let G be a closed connected o-stable subgroup of GL(E), G.
k. p. G/G” as before and let t — Z(t) be a smooth curve in p defined for
t€ R Then

J(Z()) = J(Z(to)) esp (/ n(r)dr) ,

0

whete

J(Z) = det(S(Z)|,), and
k(t) = Trace [S(Z(T))"1 : %S(Z(T))}

Proof: More generally, consider a smooth operator valued map ¢ At) e

18
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END(V), where V is a euclidian space. The logarithmic growth of its deter-

minant is easily described as follows:

Choose a nonzero multilinear alternating n-form w € A™(V™) (ie a volume

form on V) and let {ey,eq,...,e,} be some basis for V". then

det(A(t))w(er, ... en) = w(A(t)ey, ..., A(t)e,)

Differentiating both sides with respect to t gives

d n .
Ezdet(A(t))w(el,...,en) = Zw(A(t)el ...... A(t)ego. .., A()en)
k=1
= det(‘l(t))iw(el ...... 17 A{B)ery ... €n)
k=1
= det(A(t) Trace[A7 A(t))e(er, ... )

If A(t) is positive definite for each ¢ € R then the above equation is readily

integrated to give
t
det(A(t)) = det(A(to)) exp ({/ Trace{A(r) "1 A(7)] dr)
0

as claimed. R

Definition 1.15: A Lie triple subsystem of p is a linear subspace £ C p
satisfying the commutation relation [£,[£, L]] C L.

Now consider a second involutive automorphism 7 of G and assume that

commutes with the Cartan involution ¢. Let G" be the fixed point group for

19



7 and note that G7 1s reductive with Lie algebra G™ (Lemma 1.3 applies to
G7 without the connectedness assumption). We have an eigenspace decom-
position G = G” & ¢ for 7. Since 7 commutes with o we also have the direct

sum decomposition:

G=G"NG"+G°Ng+G Np+4qNnp (1.16)

It is clear that both G" N p and ¢ N p are Lie triple subsystems of p. In fact
it is worth noting that G™ N p and ¢ N p have perfectly symmetrical roles in
p- since ¢ N p may be viewed as G¥ N p, where v = o7 = 7o is an involutive

automorphism of G with Lie algebra * = G"NG" +¢np.

Under these conditions we have the following version of Mostow's decompo-

sition theorem ([18]. Theorem 5).

Lemma 1.17: Let G be a connected closed o-stable subgroup of GL(E), r
an involutive automorphism of G which commutes with ¢. and ¢ = ™ = q

the cigenspace decomposition of G relative to 7 then:

1. themap ¢: (G'Np) x(gNp) = G/G°, (Y, X)= exp(Y)exp(X)-o

is a diffeomorphism onto

2. there exists a constant C' > 0 such that for any F € C(G/G") we

have:

| F@au@) =

G/G®




c / Flexp(Y)exp(X) - 0)Jy (Y)K2(X) dY d.

(67 np)x (aNp)

where

L(Y) = det(S(Y)lgrr,), and
E(X) = det(S(X)l,n,) det(Ch(ad(X))lg-n,)

gnp

Proof ([7bis] Theorem 2.6, [15] Theorem 1): ¢ is a map between simply
connected spaces of the same dimension. To show (1) it suffices to show that
@ is regular at every point (Y.X') € (G"N p) x (¢ N p). and that its image is

closed in G/G?. The following equivalences hold at € = 0:

exp(Y + eA)exp(X +€B) -0
~ exp(Y)exp(eL(Y)A)exp(X)exp(eL(X)B) - o
~ exp(Y) exp(X)exp(eQ) - o
~ exp(Y)exp(X)exp(el(}, X)(AS B))-o.

where T(Y, X) (A2 B} = %(Q — Q@) € p. and @ = Ad(exp(—X))LiY )A ~
L(X)B (see Lemma 1.11(1))

Simplifying 3(Q — 0 Q) gives:

TV X Ch(ad(X))S(Y") 0
&)= Shad(X)) Ch(czrfl((}}’)))—f] S(Y)

Hence det(7T(Y, X)) = Ji(Y)AN(X) > 0, which shows that ¢ is regular. As
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will be shown later (see 2.12), there is an estimate for the Riemannian dis-

tance d(0. exp(Y') exp(X) - o) given by

VIX + Y] < lexp(Y) exp(X) - o .

Suppose that exp(Z)-0 € Closure{s(}, X)|Y € G'Np. X € qnp}, then there
exists a sequence (Y7, X,) € (G7Np) x (¢Np) such that exp(Y,) exp(X,) 0=

exp(Zy) - o converges to exp(Z) - o.

Since {Z,}3%, is a Cauchy sequence = {¥;,}%2, and {X,}22,, are also Cauchy
on account of the estimate given above. Hence Y, — Yy and X, — Xo, which
shows that exp(};) exp(Xo)-0 = exp(Z)-o. Thus the image of ¢ is also closed.
|

Remark: Let H denote the connected component of G, then Ad(HN G?%)
(the maximal compact subgroup of H) acts as a group of isometries on gNp
and G"Np. If F € C(G) is a right-G? invariant function. then 1.17(b) can

be expressed as:

/ Flg)dg=C / / F(h exp(X)) K (X)dX dh. (1.18)
G

H gqnp

where dh is a Haar measure on H = G[r] (K(X) is Ad(H N G’ )-invariant!).
Repeating the above argument by induction we obtain:

Lemma 1.19: Let G be a connected closed o-stable subgroup of GL(F)

and G = G; D Gz D -+ D G, a descending sequence of closed connected
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subgroups with corresponding Lie algebras G = G, D G» D -+ D Gy, such

that G,4, is the fixed point set in G, of an involutive automorphisn: 7, of G,

which commutes with o. Then. for F € C®(G/RK) we have:

[F@ydg = ¢ [ [ o [ Flgaesp(3n)--exp(¥i)
G

Gn qn=-10pn—1 q10py

n—1
I K.(Y.) dY; ... dYa, dga,

1=1

where G, = k, @ p, is the Cartan decomposition of G, and G, = G,.1 R ¢, 1s its

+1 eigenspace decomposition with respect to 7,.

Note: When G is a complex group «nd 7 is a C-linear involution of G which
commutes with ¢ then
K(X) = det(S(X)|,) det(Chlad(X))]g-
= det(S(X)Ch(ad(X)|q,)
det(5(2.X)],,)

i

(see Lemma 1.29).

1.3 Analytic Continuation

In this section we review M. Flensted-Jensen’s method outlining its main
constructions. The explanations are deliberately brief ond we refer the reader
to M. F. Jensen’s original paper [7] [Tter] for a full account as well as for most

proofs.




Let L be a closed connected o-stable subgroup of GL(E), £ its Lie algebra,
7 an involution automorphism of L which commutes with o, £L = £° ¢
L~ the Cartan decomposition of £. and £ = L7 @ ¢ the +1 eigenspace
decomposition with respect to r. If L[o] stands for the analytic subgroup
of L which corresponds to £’ (ie. the maximal compact subgroup of L

determined by o) then we can state Lemma 1.17 by saving that there is a

unique decomposition:

L=exp(£L"NL)exp(gN L) - L[o} (1.20)

Let L[r] (respectively L[v],v = or = 70) denote the analytic subgroup
of L corresponding to L™ (resp. LY = L2N L™ S ¢N L), Ay a maximal
abelian subspace of ¢ N L=, 1V the Weyl group associated with the pair
(L£Y,Ao) and AF a Weyl chamber in Ay. The polar decomposition L[y} =
(L[7]NL[a))- AT - (L[r]NL[o]) combined with the unique decomposition 1.20

gives a very precise description of the double coset space LiTI\L/L[o].

Theorem 1.21 ([7], Theorem 4.1):

1. L = L[r]AZ L[o], that is, for every g € L there exists a unique a € A7
such that g € L{r] - a- L[o].

2. the restriction mapping C*(L[7]\L/L[c]) — C*=(A,) onto the space
of C*-1V-invariant functions on Ay is a bijective correspondence (see

(12], Ch. II, Theorem 5.8).




The process of analytic continuation depends on two crucial identifications

and the use of theorem 1.21. The first of these consists in identifving a
connected reductive linear group G with the pseudo-Riemannian symmetric
space G X G/A(G), where A(G) is the diagonal subgroup. The bijective map
k:GxGJA(G) — G given by & : (z.y)A(G) — zy~! is a diffcomorphism
which allows us to identify the corresponding function spaces () and

C>(G x G/A(GQ)) via f— f* with f5(z,y) = f(zy™!).

Assume that G satisfies the hypothesis of Lemma 1.3 and let A" denote its
maximal compact subgroup (ie. N’ = G[o]). In the context of 1.21 we have
L = Gx@G. the Cartan involution is o(z.y) = (¢(z),o{y)). and the involutive

automorphism r is 7(z.y) = (y.z). z.y € G. Note that ¢ and 7 commute.

and that L{r] = A(G), L{ec] = K x K.

Lemma 1.22 (Helgason [12] Theorem 5.7 and Ch. II, Flensted-
Jensen [7] p. 122): The diffeomorphism & : G x G/A(G) — G determines:

—

. a bijection f — f* between C*(KN\G/K) (or CX(N\G/HK)) and
C®(K x N\G x G/A(G)) (resp. C*(K x K\G x G/A(G)). where
_]m((t,y) = f(]:y"l), I,y € G)

o

a bijection D — D* between the bi-invariant differential operators on &G
(ie. Z(@G)) and the left-invariant differential operators on G' x G/ A((7)
(ie. D(G x G/A(G))).

3. a bijection D — D* from D(WN\G)® D(G/K') onto D(K x KN\(7 x (7)
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The sccond identification is considerably more subtle. Let us return to the
connected reductive linear group L and assume that £ = L7 L~, £ = LT&q
as described earlier. Since L is a linear group. it may be viewed as a subgroup
of a connected complex linear group Lo with Lie algebra Lo = £ 95 C =
L % )L (here j stands for the complex structure on L¢, j? = —1). Within
Lc, the triple (£.0,7) is closely associated with a dual triple (£.4,#) as

follows:

Let v be the conjugation of L with respect to £. We may extend the Cartan
involution ¢ of £ to a Cartan involution (also denoted by o) of L, and the

involution 7 of £ extends to a C-linear involution r of Lc.

Note that 4 = o7 = 70 (in L¢) is a conjugate linear involution of £~ whose
fixed point set is a certain real form £ of Lo. In view of the vector space

decomposition 1.16, we have:
L=(LTNL+qN L)+ (LTNL +9N L) (1.23)

and

a

L=(LTNL+LTNL)+ (jgN L7 +qN L) (1.24)

Let & be the restriction of vo = o to £ and # the restriction of 7 to £ then

(£,6,7) is the dual triple in question.

We designate the analytic subgroups of Ly which correspond to [f, éé, [Z*,

and £° (v = 67 = #&) by L, L[5], L[#], and L[?] respectively. Since £¥ =
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LTNL +qNL™ =L =LNL, it is clear that the “middle” groups L[v] of
L and L[p] of L are identical, in fact:

(LN L) = L[v) = L[?}, (123)

where (L N L), is the connected component of the identity in L N [ By
selecting Aq, a maximal abelian subspace of ¢N£~, and A a Wey! chamber
in Ap, we may write the polar decompositions for L and L as in Theorem
1.21. L = L{r|A{L[o] and L = L[#|AZ L[5]. leading to obvious identifica-
tions between the corresponding function spaces and algebras of differential

operators (see [7] Theorems 4.2 and 4.3).

The second identification is then completed by considering the case when £
is itself a complex Lie algebra (ie. £ is a real Lie algebra with a complex

structure denoted by ).

Specifically. we consider a connected o-stable linear group GG with Lie algebra
G and set £L =G = G+1G (ie. G is areal formof £). The Cartan involution
on G may be extended to a C-linear involution 7 of £ and to a conjugate
linear involution ¢ of L. Let us write the Cartan decomposition of G as

G =k + p and note that L7 =k +ip, L7 =k + ik = ke.

The vector space decompositions in 1.23 and 1.24 are:

L = (k+ip)+ (tk+p) (126)
(k + jik) + (3ip + p) (1.27)

o
I

o
-3




s -

The Lie algebras £ x £ and £ @ C are isomorphic (over R) via the map
O(X.Y) = X - pnX) + 2a(Y) + jio(Y)), X,Y € L. Under this isomor-
phism, the triple (K" x K.G x G, A(G)) corresponds to (f,[r],L,L[&]) as
determined by 1.27. Note that (L[o], L, L{7]) corresponding to 1.26 is simply

(GZ,Ge. Ke), where G% is the maximal compact subgroup of G¢. and K¢ is
the analytic subgroup of G¢ which corresponds to the involutive (complex)
subalgebra k¢ of Go. Combining the above remarks with theorems 1.21 and
1.22 results in the following procedure for lifting functions on G to functions

on Ge:

Theorem 1.28 (Flensted-Jensen [7], theorem 5.2)

1. Let F stand for C, C,, C¥ or LP,1 € p < oc. There is an iso-
morphism f = f7 of F(K\G/K) onto F(Nc\G¢/G%) such that
f"(g) = f(go(g)~") whenever g € G

o

There is an isomorphism D — D7 of D(K\G)&D(G/K ) onto D(RKNc\G¢)
and of Z(G) onto D(G¢/G%) such that (Df)" = D"f" for all f €
C®(KN\G/K).

Note that the middle group G% (v = or = 7o) which corresponds to the

triple (K¢, G, GE) is just G (see 1.25, 1.26 and 1.27).

Let us momentarily digress from our discussion in order to make some gen-

eral observations concerning the reduced root systems which are associated
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with a triple (£, 0, 1), where £ is a linear reductive Lie algebra. o a Cartan
involution and 7 an involutive automorphism which commutes with o. The

meanings of L%, L7, L~ and g will be those of 1.23.

Consider a maximal abelian subspace Ap of L7 N ¢ and let A = A, + A,
be an extension to a maximal abelian subspace of L~ (A; C LN L™). For
convenience we will view the real dual Aj (resp. Aj) as the subspace of A"
consisting of all those linear functionals on .4 which vanish on A, (resp on
Ap). The same inclusions will be assumed for the corresponding spaces of

complex linear functionals.

Lemma 1.29: Let R and Ry denote the restricted root systems associated
with the pairs (£, .A) and (LY, Ay) respectively. and fora € Rlet 7-0. 0 - a.

and v - a denote the compositions a o 7. a 0 0. and & o v respectively. then:

1. R is the disjoint union of the following three subsets:

o R, consists of all roots a such that v-a = —a.ie. a|q, =0
e S; consists of all roots @ such that v -a = a. i.e, ajs, =0
e Syr consists of all roots a such that v .- a # +fa. ie. el #

Oa al/il ‘_f",. 0

Furthermore, Ry is composed of all restrictions to Ay of elements of Sy,
in addition to the restrictions to Ag of all those roots a € Sy for which
Lo N LY #(0) (here £, denotes the root space of L corresponding to
a € Sy).



CTT RS TR

2 Given compatible orderings on Aj and A" then

1
p—(2p0 +py) = 3 Y d,-a. where

aES’,"
1 . 1
p=352 mara (ma=dim(La)). =352 Mea
a€Rt QER;

(Mo =dim(La)); po =3 Xacry o @ (na = dim(L}))

and for o € Sf, d, = dim(L, N (L£¥)*) — dim(L, N L).

Proof: Note that A is stable for each of the involutions o.7,v hence R
is stable for all three involutions. For a given a € P exactly one of the
conditions v - @ = —a. v+ a # a.—a. or va = « holds. Applying o to the
first of these shows that R decomposes as stated in (1) (ca = —a Va € R). If
a € Sy then v maps L, into £,., and since the two spaces are distinct there
is a nontrivial projection r — 3(z +vz) onto £*. Each pair (a.va). a € Sy
contributes dim(L,) linearly independent eigenvectors in £” corresponding to
the 1estricted root al4, € Ry. If @ € S then v maps £, onto itself. in which
case £, may or may not have v-fixed vectors. If it does then a restricted to
Ay lies in Ry and £, N L # (0). Assuming compatible orderings on Aj and

A" we write the half sum of the positive roots in R as:

1 1
p = p,+§ > ma(a+ua)+522na-a
aES:t,,Vod(u) aGS}'
+ % Y dy- o, with n, = dim(L, N LY).
aES’}
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Taking into account the fact that a + va = 2a|4,. we obtain the required

results as stated in (2). N

To return to our discussion. let us assume that A is a maximal abelian
subspace of p and A = A; + Ay C ik + p is an extension as in Lemma
1.29. Because v is a conjugate linear involution it is easy to see that d, =0
whenever a € S}, thus in this case, p = 2pg + p1, where py is the half sum
of the roots corresponding to the subroot system R, = {a € R | a{fl) =

0VH € Ay} (R, is the root system of mc the centralizer of A, in k).

The N-spherical functions ([9]) ¢ € C®(N\G/K'), \ € A may be lifted to
corresponding left- K¢, right-GZ invariant functions ¢\ € C*(Kc\Ge/G7 ).
If the measure on Kc\Gc is suitably normalized so that

[sad= [ faeyden= [ flad.

G GxG/A(G) Kco\Ge
for f € C®(K\G/RK), then we may express Harish-Chandra's spherical
Fourier transform as:

= [1oa@d= [ Foeled. (1.30)
G Ifc\Gc

whenever f € C*(K\G/K).

The real advantage of the method of lifting functions on G to functions

on Gi¢ is derived from the relations that exist between the function spaces

CP(GZ\Gc/GZ) and CX(Ac\Gc/GE). These relations are mediated by
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the two (dual) integral transforms:

My : F(Ke\Ge/Ge) — F(Ge\Ge/Ge).  where

Mof(g) = [ f(ug)du (131)

Gz

and its dual
M : CP(GZ\Gc/GE) — CP(Kc\Ge/GZ), where

MF(g) = / F(hg)dh (1.32)

Ke

Suppose that ¢, is an elementary X -spherical function on G then its left-G%
average & = My¢7 defines a bi-GZ invariant function on G¢. Since every
invariant differential operator on G¢/G% is of the form D7 for some D €
Z((G) (see theorem 1.28 (2)) it follows that D"® = Ms(D¢n)" = \(D.A)d.
hence @ is an elementary spherical function on G¢/GZ. A clever argument

([7] Theorem 3.5) shows that we actually have:

By = Mod? with A=2\—ip, € AL (1.33)

N € Ajc and p; is the half sum of the positive roots corresponding to

(mc, A1) (see Lemma 1.29 and subsequent remarks).

The above relation is the tool which permits the transfer of the spectral
distribution for a certain class of functions on G to a corresponding spectral

distribution on Gc.



For instance, if F € LYG%\G¢/G%) and ¢7 € C®( N \G/G%) isa bounded
elementary K-sperical function on G then fo) € L'(G¢). Integrating over

Ge gives:

[Fo&@ds= [ MF@R)dz= [ Fip)oolls) dy.
Ge

Kc\Ge Ge

which shows that
MEA) = F~(A), A=2\—1p. (130

where F~ is the spherical Fourier transform of F in Ge.

The partial limitations of the method are apparent from 1.34. In general. .M/
(see 1.32) is not onto, which means that certain types of spectral distributions
on G may not be lifted to G¢. If G is a normal real from of G¢ then M is
a bijection and in that case the method is a complete success as has been
eloquently demonstrated by Jean-Philippe Anker and Noél Lohoué [13] in

their study of the multiplier problem for the L? spaces.
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Chapter 2

The Heat Equation

This chapter is devoted to the study of an integral expression for the heat
kernel on a connected semisimple Lie group G. We will adhere to the as-

sumptions and notation made in section 1.3.

2.1 The Heat Kernel

The invariant metric on G/K gives rise to the Laplacian A, which is a G-

invariant second order elliptic differential operator. Given an initial datum




f € C®(G/K) there is a solution ¥(x,t) to the initial value problem:
L Ov f pe
Ap(z,t) = W(z,t), z€G/K. te(0.0)
lim, o ¥(z,t) = f(z)
expressed by a convolution transform:

W(g:8) = £+ Hilg) = [ oy Huly) dy.

G

where H; € C*°(K\G/K) is a fundamental solution of the heat equation [1]
[13bis] [6] [8], satisfving:
1. for fixed t > 0 H, is bounded on G/ K

2. J¢ Hig)dg =1

—_
|8}
tS

—_—

3. Hi#* Hy= Hyy, for s.t €(0.x)

4. for f € LN(G/K), limyo || f = Hy~ f []2=0

For an arbitrary noncompact symmetric pair (L. L?) the Laplacian A has

the well-known spectral distribution:
Ady = —(JAP + [plP)or. A € A, (2.3)

where the @,’s are the elementary spherical functions on L/L?, A is a max-
imal abelian subspace of £~ (the Lie algebra £ of L is assumed to have a
Cartan decomposition £ = £ @ £7), and p is the hall sum of the posi-
tive restricted roots (with multiplicity). This fact leads via spherical Fourier

analysis to the construction of the following general expression for the heat
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kernel on L/L° [1] [8]:

Hig) = [exp[-UDP+ 1o GICOIE @)

A"

where C'()) is Harish-Chandra’s C-function and ¢ is a constant.

In general, difficulties in dealing with 2.4 result from insufficient information
concerning the behaviour of the spherical functions @\. Luckily for complex
groups (Gc¢, G%) an explicit expression for the heat kernel Gy is known in
terms of elementary functions on G¢/G% [8]:

Z|?

Gilexp(Z)) = ct™?exp [—lp[2t] exp [_L-It—] Po(exp(2)) (2.5)

where n = dim(Gc/G%), Z € 1GZ. do(exp(Z)) = det[S(Z)]7Y/? is the el-
ementary sperical function of index zero on G¢/G%, and ¢ is a constant

determined by 2.2 (b).

Let By and B denote the Killing forms of the real Lie algebras ¢ and G¢
respectively. If X € p we let |[X|p = \/gm denote its norm as an
element of G and |.X| = \/B(X..X) the corresponding norm when viewed as
an element of Go. Comparing root systems in G and in G¢ gives (see Lemma
1.29):

|X]? =2|X]3 (2.6)

Let A = A, + Ay be a maximal abelian subspace of ik + p such that Ay
is maximal abelian in p. For A € A~ we define Hy € A in the usual way

according to < Hy, H >= MH), VH € A. and |A\|? = |H,\|%. Similarly, if
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A € A5, then HY € A and [A2 = |HY2 are defined relative to By(.) on
Ao. Since A € A3 may also be viewed as a liner functional on A. we have a

correspondence between the two norms on Aj

1
MG = SI2H\P=2]A], Ae A; (0,

o
-1
—

Lemma 2.8([7], Example, p. 131-132, [1], §2.4, Remark (ii)): Let
H, and G, be the heat kernels on G/K and G¢/GZ respectively then. for a

suitably normalized Haar measure on K¢ we have:

#(9) = [ Gplhg)dh. g€ Go (29)
K¢

Proof: Notice that the right-hand side of 2.9 defines a right GZ-invariant

function on G¢ which is integrable over K¢ \Ge.

Indeed. from 2.2(b) we see that:

] = /Gt/g(:z)d1:= / (,f Gt/g(hg)dh) di.
Gc

Ke\Ge W

where dg stands for the invariant measure on Kc\Gc, normalized in such a

way that

["@)dg= [ fla)dz whenever e C¥(K\G/K)
G

Kc\Ge
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By theorem 1.28(1), we may identify the right-hand side of 2.9 with a function

i, € LN K\G/K) in the following way:

dilexp(z)) = 7 (exp (g)) = [ G (h exp G)) dh, ifzep.
K¢

Our objective is to show that H; = v,. If we can show that ¢ is bounded
and continuous for each # > 0 then the equality H, = ¥, follows from the

Plancherel pointwise inversion formula ([9], Theorem 1.6.5) since:
v, € LNK\G/K)N L} (K\G/K)Nn C(G)
and

. 1
dilg) = = [F0ule) dh == [ Gl = ip)ax(o)CN)I )
A

‘AO

0

(see 1.31). But Gyp(2A —ip1) = exp [-—-;- (12X —ipq |2 + |p{2)] Expanding

|2\ — ip; | and using the fact that p = 2pg + p; (see Lemma 1.29) we obtain:

120 = ipy |+ [pf? = 4IA = [psf? + 4lpol? + los]? = 4 (N2 + [of?)

Since the norms on p™ and (ik + p)* are releated as in 2.7, we finally have:
t .
5 (122 =ip? + 1of?) =t (|0 + lno) ,

and hence

Blo) = = [ exp [t (1A + 1mofE)] 8(0)|CNI2 d) = Hi(g).
A;
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To show that 1, is bounded and continuous. let £ € p and let us rewiite

Yi(exp(a)) using 2.5:

bilexp(z)) = Ct-re—ble2 { ex :
®o (exp(Y)exp(z/2)) J(Y)dY (2 10)

o [_IeXP(Y)eXP(x/?)I”

where | exp(Y’) exp(x/2)| is the Riemannian distance d(0,exp(} ) exp(.s/2)-0)
in Go/G%, J(Y) = det(S(Y) |.x) is the Jacobian of the exponential map on

K\ K¢, and the constant C is determined by the condition 2.2(b).

Later (in Section 2.2) it will be shown that for \" € pand Y € ik we have.

lexp(Y) exp(X)[| 2 /|Y 2+ [ X2 2 Y.

Since J(Y) < e?°(1) < 2C2aax(Y) < €Vl where p(}') is the half sum of the
positive roots of ad(Y), and ®q(exp(z)) < 1 for all = € ik + p. it follows that

the integrand in 2.10 is bounded uniformly in z by

exp (—- IYIQ) exp(elY]).

2t

for a suitable constant ¢ € R*. Thus. ¥, is bounded for each t. and
Lebesque’s dominated convergence theorem may be applied to show that

¥y() is continuous.ll
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2.2 The Behaviour of H, for small ¢

Before taking up the question of the estimates for Hj, let us digress for a
moment to discuss some elementary estimates of geometric origin, valid for

any reductive symmetric pair (L. L%).

The Riemannian metric in the exponential coordinate chart, Exp : L0 =
L/L? takes the form:

92 (9(A)z.9(B)z) = (S(Z)A, S(Z)B), where A,B,Z € L, (2.11)
and 9(A) is the (euclidian) parallel vector field on £~ determined by A € £~

(see 1.6. Lemma 1.12(1) and a subsequent remark).

Consider then a smooth curve Z, € £, 0 < s < 1. such that Z, =
Y e L7, Z1 =X €L, and exp(Z,) - 0 is a geodesic in L/L?. Clearly.

lexp(Y) exp(X)| = distance(exp(=Y) - 0,exp(X) - 0) = B158(2)Z,|ds >
R 1Z,ds 2|X + Y.
On the other hand, the 'riangle inequality gives:

|exp(}') exp(X)] < d(0, exp()-0)+d(exp(Y)-0,exp(Y jexp(X)-0) = | X|+]Y |

In particular, if .\ and Y are orthogonal, one obtains the well-known inequal-
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ities

JIXPP+ [Y]? < lexp(Y)exp(X) - of  [X|+ V], X.¥ €L, (NV.¥)=0

(2.12)

The left-hand estimate in 2.12 may be refined using a Taylor expansion with
integral remainder. Consider the smooth curve Z, = Exp~™'(exp(sY) exp(Y)

0) € L7, —00 < s < 00 then 1.13 gives:

%(IZsl"’ X3 = /(Z,,Z',.)d,-=/(z,,e(z,)}') dr
0 0
= /(Z,,Y) ds
where
ad
O(Z) = S(Z)"*Ch(ad(2)) = EZEC%(‘)ZT)
.

Integrating by parts and assuming that XY € L™ are orthogonal gives:

3

% (IZSIZ - IXP) = /(@(Z’)Y-Y) (s — 7)dr. (2.13)

- 0

Therefore, the nt* order Taylor expansion (n > 2) about s = 0 takes the

form:
% (1z] - 1xP) = é%(e(z,)“""” L hy)st
+ % / (0(Z,) VY, Y ) (s —7)*dr,  (211)
0




where 0(Z,)* = ‘js—k;,{@(zs)}

If Z € ik + p is a generic element., we let ay;(Z) be the largest positive
eigenvalue of ad(Z), p(Z) the half sum of the positive eigenvalues (each
having multiplicity 2), |ad(Z)| the operator norm of ad(Z) on Ge. |1Z|?* =
13 av0a(Z)? the squared norm defined by the inner product B,(,) on Gc,
and N the number of positive eigenvalues. The following relations are easily
verified:

|Z

—A', < 2ay/(Z) = 2/ad(2)] < |Z],

and
lad(Z)| = aar(Z) < p(2)

Elementary considerations also show that the spherical function ®, of Ge

satisfies the inequality:

Po(exp(Z)) < (14 2a31(2))Ve"?) < (1+2])Nel2d2il

Finally, let us note that if Y € ik and X € p then ®o(exp(Y) exp(.X)) is
dominated by ®o(exp(.X)) exp(2]¥]). To see this, welet J(Z) = det[S(Z) |g.

] and use the results of Lemma 1.14 to write:

—aaglnj(Z,) = Traceg, [S(Zs)_IS(Zs)] = Trace [%)Zilad(zs)J

aCoth(ajy —1 S
————(ad(Z,)Xa, Xa),

- ¥

[> 4




where the a’s run through the eigenvalues of ad(Z,) and X, € G, are

corresponding normed eigenvectors. The above evaluates to

-5 aCoth(a) = 1

o (8

Since Z, = O(Z,)Y, and [Xa,0(X,)] is fixed by ©(Z,). we see that

{20, [Xar (X5)]) -

2\ 1/2
., s 0(Z,) -1 o(Z,)~11" )
é-gan(Z,) = Trace [————ad(zs) ad(Y)] < (Trace [-—————————ad(zs) } ) 1¥7].

2
The eigenvalues of [%:)—I} are bounded above by 1. so that:

d. - .
i J(z)| < 2y

where 2n = dimgp(0c), i.e.,, n = dim(G¢c/GZ).
The result follows from the fact that ®g(exp(Z)) = [J(Z)]" /.

Having completed these preliminaries, we may now state the following esti-

mate for H;:

Theorem 2.15: Let H, be the heat kernel associated with the symmetric

space G/, and set
Hi(exp(X)) = Ct2 el 2=IXB/4 0, (XY for X € p.

with d = dim(G/L) and p as in 2.9 then:

1. Us(X) = limy—o Us(X) = o(exp(X/2)) /‘k exp [-1(0 (£)vi17)] @y
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2. for any L > 0 there exists a constant A(L) depending only on L
| (A(L) > 0) such that:
| - - 1/2 X 4Y
| [Ue(X) = Uo(X)| S A(L)E* Qg {exp (o) |- {1+ |5])
whenever 0 <t < L2,
Proof:

1) We use the integral expression 2.10 for H; and the fact that [X|? = 2|X|2
to write:
N e exp(Y)exp(.X/2)|? - |.X/2/?

1k

g (exp(Y) exp (;)) J(Y)dY

with k = dim(ik), X € p.

Changing the variable of integration from Y for v/t¥" results in the expression

)= fesn

I

Vi
—% /(@(Z,)Y, Y)(VE-s) a’s} 0o (exp (Z5)) J(VIY) Y,
0

where
Z, = Erp~! (exp(sY) exp (-};;-) - O) .

(sce 2.13).

Note that the eigenvalues of ©(Z,) are bounded below by 1, ®(exp(2)) <1,
and J(VtY) < exp(cv/t|Y']) for a suitably chosen ¢ > 0. Thus, the integrand
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above is dominated by:

V2
exp (-I‘T,L) eXp(C\/TIYI) whenever 0 < t < T.

The stated value for the limit lim;_q+ {7,(.X') follows immediately {rom 2 1t

(n = 2) and dominated convergence.
2) The error estimate |U,(.X) — Us(X)| requires a few manipulations.

Recall that:

D (exp (Zy)) J(AY) = ®g (exp (%:)) exp(—u(A)).

for an explicitly determined () (see Lemma 1.14).

Now. the error term may be written as:

U(X) = 1o(X) =
/[exp(—o(\/i))—exp(—¢(0))] @ (exp (Z,5)) J(VEY) dY

1k

+ /exp(—o'(O))(I)o (exp (-;—)) [exp(—-z,"(\/Z)) - 1} dY.
ok

where
A

1 ,
S(\) =X.O/ (O(Z,)Y,Y) () — ) ds

and

u-l)—‘
l\Dl’—‘

A
/ [ J15(s¥ )} ds
J ,

Yo

A
/ [S(Z) 15(2, )}

Ge
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Applying the mean value property to the integrands which express U; — Uy

gives:
: v - ~[Y2/2 X\ anvily)
UX) = ()] S [ e PPRIG(VE) - 9(0)10alexp (5 )™V ay

13
+ [ PP @oexp (5 )T aY
tk -

In our preliminary discussion we showed that t(}) satisfies the inequality:

()] < [—E(Qn)[)"l + é(?n)l}’l} A< Y|\, for A>0.

Using 2.14 (n = 2) we have:

where @(.Z,) = adg [6(Z2,)].

A lengthy computation allows us to establish an upper bound for the (pos-

sibly indefinite) quadratic form:

<e(z,>u, U>, U e Ge.

An expression for (23, Y') obtained from 1.13 in conjunction with the estimate

J:Cotl;(.r)—-ll < 1for z € R\{0} results in:

O(Z,)Y, )] < 2n(1 + |Z)IY]?
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A small modification of the argument used in establishing 2.13 shows that
for s3 > 51 > 0 we have |Z,,|? — |Z,,|* > (s2—59)|Y| > 0. hence the functjon

s = |Z,| increases, and

[6(A) = 6(0)} < = (1 +]Z\) Y3\ for A > 0

wil 3

Combining the estimates for [ (v?)| and |8(\/7) ~ 3(0)| results in:

[UL(X) = Up(X)] < 2nt/?g, (exf’ (%‘))

Sl (1 [3]) e+ ] g gy

1k

whenever 0 <t < L2 R

2.3 An Asymptotic Expansion for H, for a

Particular Class of Groups

If G is a normal real nf of G¢ (i.e. p contains a maximal abelian subspace
of ik + p), then it can be shown a case by case basis that the elementary
spherical function ® € C*(G¢/G%) is integrable over K (see [7], Theorem

7.1). In fact, there exists ¢ > 0 such that

/ e™lo(h) dh < +o0

K¢
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For any compact subset ( of p one may find a constant C(2) > 0 such that
X
&, (h exp (-;)) < C(Q)®o(h)

forall he Kc and X € QC p.

Thus,

»

dolexp(X)) = /@0 (hexp (%-)) dh, X Ep

‘e

is well-defined and coincides with the elementary spherical function of index
zero on G/K (sce [7], Corollary 7.4). These facts are exploited to obtain the

following asymptotic expansion:

Theorem 2.16: Let G be a normal real form of Go, H; the heat kernel

associated with the symmetric space G/I. and for X € p set

. X2 .., o
Hifexp()) = €V exp [l x|~ 58] vix)

where n = dim(G¢/GE%), then:

1 T5(X) < olexp(X)) and limi—e Vi(X) = do(exp(X))

2. There is an symptotic expansion

m~1

Vi(X) = dolexp(X)) + 3 t7¥V(X) + En(X, 1),
k=1
where
_k , Oy k
=0 f {'Z(Y"V?’Q'? "‘/2'2} Dol Z(Y, X/2))J(Y) dY

1k
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and for each compact subset Q of p there exists a constant .4(Q) > 0
such that

0
IR (X )] < -/%(;-)-, whenever X € Q

Proof: Using the integral expression for H,(exp(.X')) we have:

,

Vi(X) = / (50X g (exp(Y) exp (-})) J(Y)dY,

13

where 8(v,%) = }{|2 (v, )| - |4['}

As previously indicated. §(Y,X) > 0 for all X € p. ¥" € ik. In particular

»

X . -
VX) < [ 00 (exp(¥)exp () 707 aY = so(expl¥)
1k -
for all ¢ > 0. Therefore. by dominated convergence.
Jim Vi(X) = do(exp(.X)).

The stated asymptotic expansion follows immediately from the Taylor ex-

pansion for e about £ = 0. The error term has the form:

|Ea(X.8)] = /é(%zfpg(exp(}')fxp (g)).}()')d)

1k

, so that

But |z (v, %) <Iv|+|4

§(Y, X)™ <27 (X |+ Y)Y S 27+ XD+ YD




;o

We may choose € > 0 such that ef*l®y(R) is integrable over K¢. Given a
compact subset © of p there is a constant C(2) > 0 such that ®q(Z(Y, %—)) <
C()Pglexp(Y)), X € Q.Y € ik. Hence

c(( +1X1)

- 2mmlitm

En(X.0)] = [ p e e 0 exp(1)I(Y) dY
tk

, whenever X €

CaC()(1 +|XP7
< -

as claimed. B

Remark: It is interesting to compare the bounds on the coefficients of the
asymptotic expansion given above with similar results obtained from known
solutions of the heat kernel. For instance, if G = SL(2. R) (we could also

considet SL(3.R) in view of 3.13) the heat kernel is:

h* hdh
Hi(exp(X)) = ct=3/2¢ /8 /exp (—-5—) .
2t) \[Ch(h) — Ch(z)

x

=

where X = diag(z/2. -z/2).

Using the notation of Proposition 2.16 we may write

o

V(x) = [ e vy
d \/Sh ("*’Vf“:) Sh (\/_:‘7‘)

2

The ertor term E,,(X, ) in the asymptotic expansion for V, would then take

the form
o 2m+4-1 d
En(X,0) < 22 L ,
O o () (L)
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where C,, is a constant which does not depend on X or i.

k]

Changing the variable of integration y w Y211 e § finally gives
|En(X, )]

! m+1 m m+1

< C(1+1: /6 (1 + &)™+ dé
V/Sh(z + 6)Sh(8)

' m m+1 FIS\1/2 -8/

< gﬂ(1+z)"‘+1e"/2f6 (L4 6™ (1 + i/8)1/2e=%12 4§
tm g Sh(6)

so that there exists a constant B,, which does not depend on X or f for which

holds.

In viewing the nature of the general estimates made in Proposition 2 16. it

is reasonable to expect that
. n(l+]XP™ X
En(x.0) < Z2LEE D (o (£))

will be satisfied if G is a normal real form Go-.

Equivalently this may be stated by saying that

1
m 1 0(Z,) -1 J o -
L+ Y™ Y |"exp |—= | T ——=—-ad Y| | J(Y)dY < o
?22!( Y™ Y| e\p[ 46/ race[ d(Z)) ac j{ (Y)

51




Chapter 3

The Abel Transform

In this chapter we indicate how analytic continuation provides a partial so-

lution to the inversion problem for the Abel transform.

3.1 Elementary Subgroups

Let G be a connected semisimple linear Lie group of the noncompact type.
We will assign the usual meanings to o, i, G, k, and p. Let A be a maximal
abelian subspace of p, R the restricted root system associated with the pair
(G.A) and 11" the corresponding Weyl group. Let us choose a system R* of

positive restricted roots so that the Iwasawa decompositions ¢ = K AN and
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G=k+ A+ N hold with V = T _.p+ Go. The Abel transform of a function
feCP(K\G/K) is defined by

Tf(a) = /f(an)exp[p(log(a))] dn, (3.1)
N

where ¢ € A and p = %Zaem dim(G,) - a.

This integral transform establishes an isomorphism between the convolution
algebra CZ°(A'\G/K') and the (Euclidian) convolution algebra C'>{A4:117) of
compactly supported C*. W -invariant functions on A. Its significance lies
in the fact that it factors Harish-Chandra's spherical Fourier transform in

accordance with the following diagram:

C=(K\G/K) Abel Transform O AT

Haris-Chandra's

spherical transform transform

\
HOA T

where H(.A™; 117) stands for the space of W -invariant functions on A~ which
are of exponential type (see Helgason (12]). Thus. certain problems of Fourie
analysis on GG/ may be translated to equivalent questions of classical Fontier
analysis on A. The establishment on an inversion formula for the Abel trans-
form which is “sufficiently explicit” and preserves the support of functions 1s

of central importance in the use of this dictionary.
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By a representing measure for the Abel transform we mean an assignment

which to each a € A associates a measure v, on A such that

Ti@ = [ f@)dn(z), a€A
A

Its existence and properties may be easily established by first considering the

well-known representing measure for the dual of the Abel transform.

Definition 3.2: The dual Abel transform is the map 7= : C*(A: W) —
C*(N\G/K) defined by:

T*Flg) = [ Flexp(H(gk))) exp[-p(H(gk))] dk. (3.3)
/

where the map g — H{g) is the Iwasawa projection of G onto A. Using
the expression d(kan) = exp(2p(log(a)})) - dk da dn for the Haar measure on
G 1n the Iwasawa decomposition. one easily establishes the following duality

relation:

[TH@F@da= [ f(5)TFig)ds. (3.4)
A G

where f € CE¥(N\G/K) and F € C>®(A:1V).

Il a € A we let C — Hull(a) = exp[Convex hull of W - log(a)]. It is well

known (see Helgason [12], Ch. IV, Theorem 10.5 and Corollary 10.12) that

for each regular a € A there exists a positive function K(a,-) € L'(A) such
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that:

1. TF(a) = [ F(z)K(a,z)dz, FeC™(A:W). a € A )
A

2. The support of the measure du,{r) = KN{a.z)dx coincides (3.3)
with the set C' — Hull(a) whenever a is a regular element

Of A J

Lemma 3.6: Let f € C*(K\G/K), then its Abel transform 7 f may be

expressed as:

1
—-‘——f[ )N (z.a)|8(z)| dz. Va € A.

where §(exp(H)) = [Taen+ (e2F) — “"‘(H))d"('}f"' and A'(.)isasin 33

Proof: The polar decomposition G = K A™HK leads to the integration for-

mula:
G/é(g)dg =A[ 8(a)6(a) da = 7 ,/o ) I8(a)] da

where §(¢) = [T,ep+ (X —€- >N (o) The stated result follows immed-

ately from the duality relation 3.4. B

Consider an involutive automorphism 7 of G which commutes with ¢ As
usual we let G[r] stand for the analytic subgroup of G' which corresponds to

the subalgebra G™ of G and we write
G=knNG +kNqg+pNG +pnyg

as in 1.16.




Definition 3.7: An involutive subgroup G[r] will be called elementary in

case the following conditions are satisfied:

f—

. pNGT contains a maximal abelian subspace A4 of p.

()

. for each root a € R(G.A), either G, CG" or G, C q.

e

if 3 € R(G, A) issuch that Gg C ¢ then 3 does not vanish on Centre(G7)N
A.

Remark: Under the above conditions. the root system R associated with
the pair (G, .A) decomposes into two disjoint subsets. R = R(,US. where
R(;) is the root system of (G7,.A) and S is the set of all those roots in R
which fail to vanish on Centre(G7) N A. If we choose compatible orderings

on R and R(;) we then write:

Lemma 3.8: Let G[r] be an elementary subgroup of G. Given compatible

orderings on R(G, A) and R(GT,.A) then:

1 .\"is a commutative ideal of .V and G[] normalizes A,

2. if N is the analytic subgroup of G corresponding to A" then the map

é: N\ x\' = N, A(X,Y) = exp(X)exp(Y) is a diffecomorphism onto.
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1. Recall that A,y € ¢ and .V C q. so that Vi V] C 0 Aol if

a, € §* then for X,, X5 € .\ we must have (No. N3] € Ay howenver,
the linear functional a 4+ J fails to vanish on Centre(G7) N A. which
means that a 4+ 3 is not a root in R(;;. Therefore [\,.X;] =« and
consequently V' is abelian. Clearly [\V.A7] C [A(,), V] + V.0 ¢ 4
We can see from the eigenspace decomposition for 7. G" = mnNa" +
A+ Y cr, Ga. with m = centralizer of A in k. that .\ is normalized by
G[] if and only if [G_,,.\] C A" whenever o € R7,,. But. for any root
8 € S*, —a+ 3iseither not aroot or ~a+ 3 € St, since its restiiction

to Centre(G™) N A* coincides with 3 and hence must be positive

. If M., N and .V are the analytic subgroups which correspond to .\{;).
A and .\ respectively. then it is clear that N,, A", .V are all simply

connected and N = N - .V with Ny n N o= (). The rest of the

argument is standard (see Helgason {12]. Ch. IV, Lemma 6.3) B

One often needs to express a subdeterminant of a given matrix For conve-

nience we introduce the following notation:

Let (E£,(,)) be a Euclidian space, F' a subspace with basis {fi. f:..... fi1}
and g € Aut(E). Let

det((gf.,g-fj))}”2 (39
det((f 1)) |
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j(g; F) is a numerical invariant for the pair (g, F') which does not depend on

the particular choice of basis {f},..., fi} for F. In addition. it satisfles the

following properties:

1. 3(kg; F) = j(g; F) if k is an isometry of E.

2. 5(gx; F) = j(g; 2 F)j(z: F) if z € Aut(E).

On the Euclidian space (G. B,) we see that
7(Ad(g): V)% = exp(p(H(9))) Vg € G,

where A" = T g+ Ga.

For technical reasons. we prefer to express the Abel transform as a map

T :C*(N\G/K) — CP(A\G/M.N) according to:
TF(g)= [ flgn)i(Ad(ghi-\)/* dn. (3.10)
N

where f € C*(N\G/N), g € G.

In connection with Lemma 3.6, we may now state the following version of

Aomoto's theorem (see Aomoto [2], Theorem 1).

Proposition 3.11([3bis] [10ter]): Let G[r] be an elementary subgroup of

G satislying the assumptions of Lemma 3.8, and for every f € C°(KN\G/K)

58



TH(9) = [ fgi(Ad(gr ) di g €G
N

for a suitably normalized Haar measure dit on .V, then:

1. Tfe C*(K\G/KNGT)

2. via restriction to G[r], the Abel transform T on G factors as T =

T(ro T, where T(») is the Abel transform associated with the subgroup

Glr}.

Proof: We normalize the measures dn and dn(;) on .V and N{;y respectively

in accordance with standard convention, then we fix dit so that dn = dn,dn.

1. Now. let g € G and k € K N G[r] be arbitrary then
TH(gh) = [ flgkn)j(Ad(g)Ad(r);. )2 di
N
K N G{7] normalizes N and acts as a group of isometries on its Lie
algebra A", thus preserving the measure. Using the properties of 3.9

we easily obtain

TFgk) = [ Som)i(Ad(g) A2 di = T J(g)
N

™o

Since Tf € C(K(»\G[rl/Kc), where K(;y = K N G[7]. it follows
that Try 0 T f is well-defined for elements g € G[r]. the result is an

immediate consequence of Lemma 3.8(2) and the properties of 3.9 W
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An Example G = SL(3, R)

As an example, let us find an explicit expression for the Abel transform on
the group of 3 x 3 unimodular real matrices. Here, K is the subgroup of
orthogonal matrices, A the diagonal matrices of determinant 1 and N the

subgroup of upper triangular matrices with 1’s in the diagonal.
S p Pt S S

Let 7 be the involutive automorphism of G, 7(g) = ugu. Vg € G, where

-1 00
k=1 0 10
0 01

It is clear that 7 commutes with ¢ and G[r] = GL(2.R) is an elementary

subgroup. It can be easily verified that:

(100 ]
N = 0 1 u|lueR,, and
0 01 J
(1 Ty
N = 010 z,y € R
\0 0 1/

The Lic algebra A of A consists of those diagonal matrices with entries

Ao Ay, A3 for which Y A, = 0, and we have:
4/\f(T) = g,\z-—,\; and /\Af = gl\1 —,\2 + g,\]—.\s
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For convenience, we will use the K-spherical functions Z;(g) = Trace(g'y)
and Z,(g) = Trace((g'g)™!), Vg € G, as W-invariant coordinates on A. The
jacobian of the map a > (Z;(a), Z2(a)) is given by

(dZy A dZ3), = c|6(a)| da, Va € A¥

with ¢ a positive constant.

Froposition 3.12: If G = SL(3, R), the Abel transform may be expressed

as

/f C(b,a)|6(b) db, a€ A

where K(b,a) is a positive multiple of the real period associated with the

elliptic curve

= (w—e1)(w — &) (w — e3)(w — ey). where

e = %279 e‘“"*‘“’, e, = 8113203 + e—1—253

e3 = 6“1+2b2 + e—ax—?.bz, ey = 6a1+'261 + e-—’:y-—251 .

a = diag(a,, a,, aj), b= diag(by.bs.bs)

Proof: We first consider writing 7 f(d) = Ty fdn)j(Ad(d): A2 dR as
L4 U(b,d) f(b)16(b)| db, where d € A. To do so. we compute for a generic
# € N the values of Z,(dn) and Z,(dn):

Zl(dfl) = Zl(d)+e2d1$2+62d‘y2
Zy(dR) = Zo(d)+e a4 e ™2 2y e R
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where d = diag(dy,dy,d3) € A. Let b € A¥ be the unique repiesentative of
dn for which di € K - b+ K. and let b;, b, b3 be its diagonal entries. The
jacobian of the map # — (Z,(di), Zy(dR)) gives

TSd) = [ JamilAd(s ) di = e [ w(s,0)f() 608 b,
N A

with

U(bod) = [-e(Zi(b) = Zy(d))? — % (Zy(b) — Zy(d))?
+ (575 4+ e578) (20(5) - Zi(A)Ze(b) - Zo(d))]

Now let us fix an element ¢ € diag(a;. a;, a3) € A. and for each n, € Ny
we write d(an;) = diag(dy,d».d3) the diagonal matrix which corresponds to
any via the polar decomposition A’ AT = G. Then by Proposition 3.11(2)

we may write:

K(b.a) = /\I/(b,d(anQ)j(Ad(a):.V,)mdnl

Ny

Changing the variable of integration from n; to
w(an,) = e92=% 4 edo=dz w(a) +u"e®® yeR

vields. after a few manipulations, the required expression for K(b,a). B




3.2 An Inversion Formula

For a complex semisimple group G¢, it is known that the Abel transform is

inverted by the differential operator f — (O f, where f € C™=(A:11") and

Ofl(exp(H)) = - TT otH.) flexp(H))

a>0

6\e\p H)
(see [3] [8]). Analytic continuation may then be used tc invert the Abel

transform for normal real forms.

Proposition 3.13: Let G be a normal real form of Ge, F € CF(4: 1),
and F' € C2(A:11) the uniquely defined function satisfying F(exp(/l)) =
F(exp(2H)) VH € A. Then the inverse Abel transfoim for G mas be ex-

pressed as:
-1 X .
(T~ F)(exp(X / OF) (he\p< >> dh. 1 € p. (314
K¢

. — 1 : G o
where Qevpin) = sz aso 0 Ha)lewry- and ¢ is a positive constant.

Proof: Recall that the Abel transform may be viewed as the sphericai trau--
form followed by the inverse (Euclidian) Fourier transform. Let wexpiri

denote the right-hand side of 3.14 and let us apply 1.3t to both sides. then
P(A) = (OF)~(2\) Vie A
Consequently,

To(exp(H)) = /zz,v(,\)e*M”)d,\:c-/(oﬁr(/\)cm("/’-’nz/\
A A
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= F (e.\'p (?)\)‘ = F(exp(H))

as requirced. W

As an example, we give an explicit expression for the inverse Abel transform

in the case G = SL(3. R).

Let us consider a regular element = € p of the form

I 0 I
T = 0 —21’1 0

)] 0 Iy

and fix and Iwasawa decomposition for K¢ such that every element h € K¢

has a unique expression

h=k-exp [[' < . )] exp[A(t)].

withkbe hN.welC.teR.

|&
~d

0 z 0 0 0 ¢t
((z)={ -z 0 iz and A(t) = 0 00
0 —iz O —it 0 0

1 0

1
u=—ﬁ0\/§o
: 0 1



commutes with z and transforms by conjugation A(t) into the diagonal ma-

trix H(t) = diag(t,0.—t). resp. U(w/+?) into the upper triangular matiix

0 w 0
Viw)=10 0 iw
00 0

Writing w = Re™" and applying the unitary transformation g; = dragi¥. 1. e
finally gives:

-

2
/ OF (exp[V(R)] expl H,] exp [.-m( g)§]> 00 RAR 01

0

+x
f

T~ Flexp(z)) = ¢ /

Again. we may use GZ spherical coordinates on Ge in aider to NS
T-'F(exp(z)) in the format of Proposition 3 12. If we let Zy(g) = Traccig=y)
and Z:(g) = Trace((gg)~") then for ¢ = explV ()] explHexpl{Adigar /2
we have:
r 2 R: ? =2t . 2, =2Ir
Zi(g) = €Ch(ry) |+ 1-.*—7)— € L]+ R0
+ €71 Sh{x) R* sin(26)
Zy(g) = e Ch(r,) [62’ + (1 + g) e""} + {1 + R*ye

— €™ Sh(zq) R? sin(20)

By performing computations similar to those that appeat in Proposition 3 12

we finally obtain:




Theorem 8.15: Let G = SL(3. R) and F € C(A; W) then the inverse

Abel transform 7-!'F of F may be expressed as:

T=! Flexp(z /QF )K (b.exp(z)) |8(b)] db

where A'(b.exp(x)) is a positive (constant) multiple of the real period which

cortesponds to the elliptic curve

=000 (v 425) (- 425

" B+D
where

A = eZ,(b) — e 21 7,(b)
B = Sh(zra) [e‘“Zl(b)-%-e’lZg(b)—‘2Ch(3xl)]
C = Ch(z:) [~ Zy(b) + €51 Zy(b) + 2Sh(3zy)]
D = 4Ch(z3)Sh(z).
X = diag(zl-i-:r;.—?xl,xl—.ro) and
O (exp(H)) = H [T O(H.)f (exp(H)).

a>0

Remark: The Abel transform (", = T H, of the heat kernel on a svmrmetric
space G/ 1s the fundamental solution of the following Euclidian diffusion
problem:

aL/'g

LU, - lﬂol Uy = Ir

(see Helgason [11], Corollary 5.20).

Let 11, be the heat kernel for SL(3, R) then we have the simple expression

2
TH(exp(H)) = ct"le"“’O'g‘exp [—,—g-IQJ for H € A.
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We may then apply Theorem 3.15 to solve for H,:

|H1

21

-

H,(exp(X)) = ct=4e 1%l /e.\'p {-—

} KN(exp(H).exp(X))
DH(X)

I a(ll){ dH,

a>0

{3163
where X' = diag(z, + 73, —23),2; — T3). K (-.-) is the kernel desctibed m

Theorem 3.13. and the integration is to be carried out over the domain

DHX)={H € A |exp(X) € C — Hull(exp(H))}
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Notes

Chapter 1

The elementary discussion in the first two parts of Chapter 1 constitutes what
could be described as standard knowledge in Lie Group Theory. Whenever
possible. a specific reference is given (sources are mainly [11]. {12]. [22]. and
[13ter]). In some cases. no direct reference could be found. Thus. Lemma
1.29 generalizes a discussion on root systems in [7]§2 and Lemma 1.14 is

completely elementary and probably well-known.

Chapter 2

The proof of Proposition 2.8 differs slightly from the argument given by

Flensted-Jensen ([7]. Example. p 131-132). It reflects my own understanding

6S




at the time of writing. However. as has been pointed out by Carl Hers. the

relation between the Casimir operators for G and G ([7]. 412 and 11D

L

leads to a much shorter proof.

Proposition 2.15 represents one of my contributions to the subject  Jean

Philippe Anker had obtained. in [1]§2.4. the upper bound
Hexp(H)) < C(T)™4* T] (1 + a(H)dmGagmrotN-lilk/1,
a€RY
with0<t<T.He EDI and he conjectured that dim(G,, ) could be 1eplaced
by 1/2dimG,. Our estimate is qualitatively different. since 1t is expressed as

a first order expansion in t'/2, Our estimate does not prove the conjecture.

but appears to support it. since

ColH) = T (1 + a(H))V?dmiGalemrnt)
aeRg'

As far as the error term is concerned (see Proposition 2.13t121), 1t has been
pointed out by both Carl Herz and Jean-Philippe Anker that an impioved
version is possible on account of the parity of the function o — 1Za" Indeed
this leads to an asymptotic expansion for H, (¢ small) in powers of ¢ tather

than ¢1/2. However. an estimate for

2 2 Vi
AL o g) ) =g fozm) o

Z < 2

must then be provided. and this appears to give some difficulties
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As Professor Anker has indicated. there is a completely different approach to
the study of the small timee asymptotic behaviour of the Heat Kernel based
on general principles (see Minahshisundaram-Pleijel asymptotics [4] Ch III
§3-4). Tt is not clear if such an approach may provide an existence proof for

the small time asymptotic expansion . s a convergent power series.

Pioposition 2.16 represents our second partial contribution to the subject.
However. it must be noted that the cases SL(2. R) and SL(3. R) had already
been established by Patrice Sawyer [20bis] using different methods An upper
bound in the case of normal real forms has also been given by Jean-Philippe
Anker in [1]§2.4. namely

Hi(exp(H)) < C(T)t™* H(l + Q(H))e—lpoig-po(H)-lHolg/“‘
a>0

witht> 0. He A-.

Chapter 3

The slightly more elaborate version of Aomoto’s theorem (Proposition 3.11)
has been known in perhaps slightly different form by Hba A. [10ter]. Further-
more, the generalization of Aomoto’s theorem was also studied by Beerends

R. J. in [3bis].
For SL(3. R). Proposition 3.12 expresses the Abel transform in a slightly
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more elegant form than in [3]§6 (also [3bis] Chap. III}. However. the result

itself was known to Patrice Sawyer [20bis].

The inversion formula (Proposition 3.13) appears to have been known to the
experts but was apparently nesver used in explicit form. [t must be noted
that in the case SL(3. R) (Proposition 3.13) the result is implied 1n the work
of Patrice Sawyer [20bis], who obtained an explicit expression for the Heat

Kernel using different methods.

We wish to acknowledge the assistance of Professor Catl Hetz in removing
some obscurities and inadequacies in the original version of the text. As
a result, Lemma 1.17 now has a complete proof. and various misprints ot
awkward notational inconveniences have been hifted. We are also indebted to
Professor Jean-Philippe Anker for hus thorough review of the original text
His various comments were incorporated alongside those of Carl Herz to
form the greater part of these notes. The extended bibliography (appearing
with additional entries [...bis]. [...ter]. etc..) also reflects Professor Anke:’s
contribution and has allowed us to focus on the relevance of the results in

relation to previous work in the area.
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