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Abstract 

vVe use a method of analytic continuation introduced by :\1. Flcnsted-Jen~cll 

to study the asymptotic behaviour of the heat kernel on noncompact s\'m

metric spaces, for values of the time parameter which are dTbitranly small 

or arbitrarily large The same method is applied to one case of the in vcrsion 

problem for the Abel transrorm. The results are illustrated with expl1cit 

computations for SL(3, R). 



Résumé 

Nous utilisons une méthode de prolongement analytique introduite par ~L 

Flensted-Jensen. pour étudier le comportement asymptotique de la solution 

fondamentale de l'équation de la chaleur sur les espaces symétriques non

compacts, lorsque le paramètre temps prend des valeurs arbitrairement pe

tites ou arbitrairement grandes. Cette même méthode permet d'étudier un 

cas du problème d'inversion pour la transformation d'Abel. Les résultats 

sont illustrés par des calculs explicites pour SL(3. R). 
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Introduction 

Let G be a connected semisimple matrix group of the noncompact t~ pc' alld 

f{ a maximal compact SUbgrollP of G, The C-im'ariant Laplacian on the 

symmetric space CI l\" plays a fundamental role for harmonic anal~ ~i" 0[\ 

Cil":, In this respect. the study of the heat eqllation is of particlllal Illlel('"t. 

since in addnion to establishillg connectIOns with other alCa'i of all.d~ -::1';;. lt 

proddes inslghts into important questions of spectral analysis on Rtcmanntall 

manifolds in gencral (see [.J:] Hbis] for informatiye suryeys). The sCd!ch for 

precise information concernmg the beha\ iour of the fllndamental 'iOIUT iOIl 

of the heat equation on CI!{ has been the subJect of many in'."t:-,; t~attoll'i 

([IJ [S] [li] [,!terJ [4quaterJ [13bis] [l.jbis] [1Ster] ta name only a fl'\\,) Th(, 

explicitly known solutions of the> heat kcrnel depend almost im MiabI} aIl tIlt' 

knowledge of an inY<C'rsion formula for the Abel transform [1] [:3], As a rcsuIt. 

explicit solutions arc well knowl1 fOI complcx semisunplc gIOUp". for r(,<11, an/.: 

1 groups, for G = 5U(p, q) Jean-Philippe Anke!' [1] [lqudter] ha., plo\'idl'd 

a solution based on Cluistopher ~[eaney's invelsion formula for the ;\1)('1 

transform [16], Ill\'clsion fOlmulas ha\c aIso been d0tnmi,1<'ù for SI.('J./l) 
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[2], sr:*(6) [:3. IObis]. SU*(S) [3], E6(-26) [:3], and for SL(3. R)jSO(3). Patrice 

Saw)cr [20bis] ga\'e an explicit expression for the heat kernel. HO\ye\'er. 

fOI other rcal groups of higher rank. the problem remains elusive, Another 

approach to the heat kernel is pro\ided by ~L Flensted-Jensen's method of 

anal} tic continuation [ï], Let 9 be the Lie algebra of G and Oc = 9 0 C 

the complexlikcttioll of 9. we may vie\\" G as a subgroup of a complex Lie 

group Gc wIth Lie algebra 9c, the method of analytic continuation identifies 

the spaces of functions which depend on the double cosets !{\Gj J{ \VIth a 

naturally defined family of functions on Ge, Via suitable orbital integrals on 

Ge il, is possible to tramlate certain questions of spherical analysis on G into 

equi\'alent ploblems on Ge, In particular, the heat kernel for a non compact 

rccll1ctl\'e matI'ix group G has an integral representation in term of the heat 

kerne1 on the comple'\: group Ge Csing this integral representation, we ha\'e 

sought to est ablish sorne general estimates for the heat kernel when the time 

parameter takcs arbltrarily small or arbitrarily large values A critical step 

in the'ie computations is the use of certain geometric estimates which permit 

contlOl o\'er the beha\'iour of the heat kernel on the complex group Ge, 

Thc'ie computations pro\'e successful in case the time parameter is smal!. 

For Llrge \ al ucs of the time parameter, \Ile pro\'e the existence of an asymp

totie expansion for the heat kernel in case G is a normal real form of Ge, 

\Ve also venture to conjectnre how tbe estimates for the coefficients of the 

expansion could be improved in general. 

\Vc have also undertakcn a discussion of one aspect of the inversion problem 
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for the Abel transform. 

Let G = f{ AN be an Iwasawa dccomposition of G. A the Lie algC'bra 0f 

A, R = R(Ç,A) the restricted root system for the pair (Ç.A). H' = Il'(Al 

the \Veyl group, and m : R.\Iod(H') --+ Nr the multipliCJty functioll which 

assigns to each root orbit H' . 0: the dimension of the eigenspace C;;,) Thl' 

work of Beerends [3], Opdam [19] and others [oeuses on a thcüry ol ,>plH'r

ical functions which depends only on a root system R with an at bltrarily 

assigned multiplicity function m = (ml' m2," .• m r ), The Abel tJ'clllsforrn 

Tm: C~(I\\G/I{) --+ C~(A;W) is an isomorphism bct\vecn the convolu

tion algebra C;-(I\'\G/I{) of compactly supported. bi-I{-iO\ariant. C'" func

tians on G and the Euclidian convolution algebra CcX:'(.4: W) of compactly 

supported. C:c, lV-invariant funetions on.4. \ïa restriction to..1 \\c may 

simply view Tm as a bijecti\'e correspondence of C;'(.4: lq onto itsclf WhlCh 

depends only on the root system R and the multiplieity function m. Then. 

the scarch for ':shif(' operators consist of finding ail admissible Jiffcrential 

operators D on C~(A: Ir) which lower the multiplicity funetion in the seml' 

that 

The elementary "shifts" which have been obtained have even entrics (i.e., 

(k i , k~, ... , kr ) = m - n == (0.0, ... ,0) J[od(2)) and explicit inversion fOIOlU

las for Tm havc bcen obtainecl in cases when m is e\'cn or when m rec!u('cs to 

a combination of a l'an!.: 1 case and a tomplc:-.. ca'ie [:3] [8] [20] [lG] [l:1<[uinto] 

Clearly, a diIfercnt approach is ncedec1 in the casc o[ a normal Ical [onn (ail 
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roots have multiplicity 1), and we have shown that analytic continuation is 

pal'ticularly weIl suited to answel' this question. An explicit computation is 

gircn tOI' G = 5 L(3. P). 

Chapter 1 represents a pertinent collection of basic geometric principles con

cerning Riemannian and pseudo-Riemannian symmctric spaces. in addition 

ta a brief review of M. Flensted-Jcnsen's metllod. In Chapter 2, we apply the 

principles of the previous chapter to obtain estimates for the fundamental so

iution of the heat equatlOn on a Riemannian symmetric sr. 3.ce. In Chapter 3 

, .... (> discuss the problems associated with representmg the Abel transform via 

a measure on the group A and prO\'e a version of Aomoto's theorem which is 

particularly weIl suited as recursive met!10d for treating SL(n. R). \Ve aiso 

state an inrcrsion formula for the Abel transform when G is a normal real 

fonn and illustrate the methods dc\'eloped with explicit computations in the 

case G = SL(3. R). 
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Chapter 1 

Geometrie Preliminarieb 

1.1 Reductive Groups 

By a Euclidian space (E, (,)) we will me an a finite dimensional reùl \'('e

tor spaced endowed with a postive definitiye bilinear symmetric form (.) : 

E x E -> R, ESD(E) will denote the space of aIl R-lincar transformations. 

GL(E) the group of im"ertible ones. and Pos(E) the cone of symmetric P0'ij

tive definite operators, with transposition (with respect ta the inner prodèlct 

(, }) defincd in the usual way: 

(Xu,v) = (u,Xtv), U,V E E and XE E,VD(E) 
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Our ultimate interest is the study of certain question of analysis on real 

scmisimple groups. However, we have adopted Harish-Chandra's point of 

view, by discussing basic principles and associated formulas in the context of 

l'cal rcductive groups.Some tcchnical difficulties are avoided at a latter stage 

by assuming that our groups are linear. Thus, unless otherwise stated. G will 

dcnote a closed connected subgroup of GL(E) which is stable for the action 

of the fixed Cartan involution: 

Let 9 be the Lie algebra of G then the derived involution (dO')e(X) = 

_XI, X E E.VD(E) (also denoted by (j when no risk of confusion ex

ists) gives risc to a Cartan decomposition 9 = k + pinto symmetric and 

skc\\'-symmetric elements of 9 ( p and k respectively). 

The rcal vector space 9 inherits an inner product from EXD(E): 

T(7(X, Y) = - Trace(X O'(Y)) X.}' E g. (1.1 ) 

in addition to a positÏ\'e semidefinite bilinear symmetric form 

B(7(X, Y) = -B(X,O'(Y)) X, Y E 9 (1.2) 

whcrc B(X. Y) = Trace(ad(X), ad(Y)),X, Y, E 9 is the Killing form of g. 

Lemma 1.3: Let G be a connected closed O'-stable subgroup of GL(E) 

thcn G is a reductive Lie group and ifs Lie algebra 9 is the direct sum of 
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two (]' stable ideals Z and Q' \Vith Z = Centre of Q, and Q' the semisimplt' 

commutator ideal [Q. Q]. 

Proof ([13ter]): Clearly G is a Lie group, in fact it is a Lie group \\'Ithollt the 

connectedness aS5umption ([11], Thm 2.3). \\ïth refercnce to the cuclidf'all 

space (Ç.Tu ) we ha\'c ad(X)t = -ad(a(X)).X E Q. Thus. B,,(.'\. X) = 

Trace(ad(X)ad(X)t) ~ 0 with equality holding if and only if ad(X) = O. 

that is. Bu vanishes precisely on Z. Note that Z is a stable sIDce ad( Z) = 0 

iff ad(Zy = O. 

\Yriting Q as a direct SUffi of Tu-orthogonal subspaces we ha\'e ç = :=; -: Q'. 

a is an if,ometry of TI; (.) and 50 Q' is also a stable. It is eas)' to S(,t' t hat 

[ç. Q] ç Q' and in partieular Q' is a subalgebra of Q, \\'e ha \'e al! carly seC!1 

that Bu (hence B) is a nondegenerate form on Q', but the restliction of B to Q' 

is simply the Killing form d Q'. Consequentl)' Q' is a semisirnple sllbalgebra 

of Q, and the conclusion fo11o\\"s by obser\'ing that Q' = [Q'. Q'] c [Q, 9l c Q', 

• 
\Ve refer to Helgason's t\\'o volumes [11.12] for most of the basic concepts and 

notations of harmonie analysis on homogenous sraces. Let G be a Lif' group 

with closcd subgroups A and E. We \vi11 regard COO(A \CI B) interchangcabl) 

as the space of the left-A right-B invaliant eX! functions on C. the space of 

left-A invariant Coo functions on (C / E), or as the :,pacc of right-B Il)\'ariant 

Coa functions on (A \G). Sorne care must be exerciscd in treating [1111 ct 1011:' 

of compact support. C~(G/ E) will be regardcd a:, tlH' right-D iIlvariant {", 
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functions on G which have compact support modulo B. 

Let G be a connected reductive Lie group with Lie algebra g, T an involutive 

automorphism of G (not necessarily a Cartan involution), gT the subalgebra 

consisting of those clements in 9 which are fixed pointwise by T, G[T] the 

analytic subgroup of G corresponding to T (i.e the connectcd component of 

the fixed point group GT), and assume that there exists a trace form Q(.,.) 

on 9 satisfying: 

1. Q( ad(X)V, Z) + Q(Y. ad(X)Z) = 0 X, Y, Z E g. 

2. Q is nondegenerate bilincar symmetric form on g. (1.4) 

3. Q is T invariant. 

(Thcse conditions are automatically satisfied by Q - Killing form of a 

semisimple Lie algebra g.) 

The quotient space G/G[ï] inherits a G invariant pseudo-Riemannian metric 

in the following way: 

Let 0 E G / G[ T] denote the cos et {G[ r]} (henceforth called the origin of 

GjG[r]) and let tg : x I---t g. x designate translation on G/G[r] byelements 

of G. The Lie algebra 9 is the direct sum gT EB q of the ±1 eigenspaces for r. 

Using suitahle neigborhoods U and V of the origin in q and in G/G[r] we have 

a local diffcomorphism Exp: q ~ G/G[r] given by Exp(X) = exp(X) . 0 E 

G/G[rJ which identifies q with the tangent space at the origin 0 E G/G[rJ in 
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accordance with: 

X o/ = lim [/(exp(tX) . 0) - /(0)], / E COO(G/C[rJ), X E If (1..j) 
t-O t 

The T invariance of Q(,) allows us to conclude that the -1 eigen~péH C 1] i:

contained in the orthogonal complement of g-r (with respect to Q(. )) éllld él 

dimension argument shows that q = (~;-r)J.. In particular the rest! i< tion of 

Q(,) to q and g-r are nondegenerate symmetric bi1inear forms. Since Ad( G[Tj) 

maps q onto itself ([g-r,q] ç q) and Q!q is Ad(C[T])-invariant (sec COllditlon 

1.-1(1». The pseudo Riemannian metric can be defined (cons!stenlly) h} 

group translation in accordance with 

(dtg(X), d(;(Y»)g 0 = (Xo, Yü)o = Q(X, l'), X. }' E q. (1.6) 

Returning to Lemma 1.3 we have: 

Lenlma 1. 7: Let C be a connec.ted closed a-stable subgroup of CL! E) of 

the noncompact type (p =/: (0» and let CG' be the subgroup of G consisting 

of elements which are fixed pointwise by 0' then: 

1. themappingpxCG' ~ G given by (x,k) Ho exp(x)k is adiffeomorphism 

onto G 

2. GG' is connected and maximal compact in C 

3, CIGG' is the direct product of a Euclidiall spacc (with EllClidiélll glUlI(l 
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of motions) and a symmetric space of the non compact type with a 

semisimple group of motions. 

Proof ([13ter]): G is connected and hence generated by exponentials of a 

neighborhood of the origin in g. In particular G is contained in the connected 

componcnt GL+( E) of GL(E). 

The Cartan decomposition GL+(E) = Pos(E)· U (U;:::; SO(n) the maximal 

compact subgroup fo GL+(E)) allows us to write every 9 E G uniquely as 

9 = exp(.r )"" \Vith x a symmetric operator and k EU. \Ve may establish 

(1) by showing that .r E Q and k E Gt7. To do so, we consider the analytic 

subgroups Gas and Zo of G which correspond to the ideals 9' =: [g, Q] and Z. 

of ç. The product map Zo x Gss -+ G defines a covering map (ZonGssnGtT =J 

(c) in general) onto the connected subgroup ZoGss of G. 

Clearly G = ZoGss (9 is also the Lie algebra of ZoG&) and it suffices to 

esLablish the decompositions Gss = exp(pn 9')· (G ss n GO') and Zo = exp(pn 

.3) . (Zo n GO'). The first of these is well known (Gss is semisimple with finite 

center) . 

Therefore, let 9 = exp(x)k be an element of the analytic subgroup Zo and let 

us show that x E Zn p. Clearly exp(2x) = ga(g-1) E Zoo \Vriting E as a di

l'cd sum of irrcclucible G-submodules E = EB~l El (G is reductive [13]), 

we havc exp(2.r) = Dwg(e·\lI(kd, ... ,e·\NI(kN )), where À1,À2, ... ,ÀN E 

Rand 1 (k) df'notcs thc k x k iclcntity matrix. The fact that Zo is con-
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nected allows us to conclude that exp(2x) lies in the one paramcter Sil bgroup 

exp(DiagP1tI(kd,· .. ,'\NtI(kN )}) = exp(2tx) of Zoo Renee J.' E zn JI and 

exp(x) E Zoo 

The remaining statements are easily established. 

2) A standard argument shows that Cu is maximal compact (pOII't'l'" nf <'1-

ements of the form exp(x)k with x =1- a.x E p form unbounded s{'(l'lt'IlCt''i). 

and the map G --+ GU given by 9 Jo-' [go-(g-l )J-1/2 . 9 is well-ddirwd and 

continuous so that GU is connected. 

3) A o--invariant bilinear symmetric form Ba may be chosen on Z 50 as to 

satisfy -Bo(x,o-(x)))O for xE Z.x =1- o. If B denotes the Killing form of ç' 

then the direct sum Q = Be Ba defines a trace form on 9 = 9' -=- Z which 

satisfies the conditions in lA and is such that its restriction ta p is posit Î\P 

definite. \Ye then vie\\' C Ica as a Riemannian space with a G-ill\'ilriant 

metric defined by Q. Every point of CICO' has a unique expres"ion of the 

form exp(Z)exp(x)· 0 where Z E Z np and x E g'np. If 9 E G is arbltrar:_ 

then \ve may write 9 = agI E ZoCS $ (in a non-unique way) and a = exp(.-l )1.. 

with A E zn p and k E Zo n Ga. The group acCon on G 1 CfT takes the for111 

tg(exp(Z) exp(x)' 0) = exp(A)kg1 • exp(Z) exp(x) . 0, 

but Ad( G) acts trivially on Z n p. 50 that 

tg(exp(Z)exp(x). 0) = exp(Z + A)· gl cxp(x)' 0, 

as claimed .• 
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1.2 Sorne Integral Formulas 

A decomposition theorem ([18J, Theorem 5) for reductive Lie groups in terms 

of Lie triple subsystems is an essential ingredient in establishing the process 

dcscribed by ~r. Flensted-Jensen as analytic continuation [il [7bis] [7ter]. In 

what follows we deri\'e sorne differential and integral formulas in connection 

,vith particular cases of Mostow's decomposition. 

Let G be a closed connect<:>d a-stable subgroup of GL(E), ç its Lie algebra 

and ç =- 1. + P its Cartan decomposition. As in the proof of Lemma 1.7. 

wc may extend the KllIing form of the semisimple ideal ç' = [Ç~ Ç] to a 

nondegenerate trace form B on ç (see conditions lA) such that B'7(X. }') = 

-B(X.O"(}·)) is an inner product on ç. Clearly. the restriction of B to p 

is an Ad(CO") im'ariant inner product on p which gi\-es G/ca =:: Exp(p) the 

structure of a Riemannian (partIy Euclidian) globally symmetric space. 

The following observations are immediate consequences of the commutation 

relations; [P,p1 ç k. [k.p] ç p, [1..1.] ç 1., and of the positivity of Bu: 

Ob 1) If Z E p then ad(Z)2 is a (B-symmetric) positive semidefinite trans

formation of pinto itself. 

Ob 2) For any Z E p, the absolutely convergent power series 

S( Z) = t, (2k ~ 1 )! ad( Z)"I, (1.8) 
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is a (B-symmetric) positive definite transformation of p onto itself \\'lth «'ig('ll

values bounded below by 1. 

The full staternent of Ob2 requires sorne explanation: 

Reducti\'e Lie algebras represent only a slight generalization of ~elll1"'lll1p'" 

ones, and structure theorems continue to hold \Vith only tnvial modifie,l! j()ll~. 

Thus. if A is a maximal abelian sllbspace of p, wc ma)' continue tu ~pt'i1k l)f 

the fOot space decomposition for the pair (Ç,A). As It turm out. the root:, 

R(Ç, A) are simply the roots (in the ordinary sense) for the pair (9', A n Ç') 

viewed as linear functionals on A which vanish on zn p (by neccssi ty 2 n p c 

A for any maximal abelian subspace A in p). 

\Ye formalize our comrnents in the follO\ving: 

Lemn1a 1.9: Let G be a connected closed O'-stable subgroup of GU E), ç. 

k and p as usuaI. then: 

1. every maximal abelian subspace A of p decomposes uniquely as A = 
A' EB T, where T = P n Z and A' = An [9,9] is maximal abclian In 

pn 9'. 

2. any two maximal abelian subspaces of pare Ad(Gt7) conjugatc. 

3. given a maximal abelian subspace A of p there is a l'oot space cle,Ol1\

position 9 = A EV m EB LQER çCt, wherc R is the set of di:,tinct nO!lZl'1 () 
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l'oots for the pair (g, A) and mis the centralizel' of A in k (necessarily 

containing Z n k). 

Proof ([13ter]): 

1. Clearly, a maximal abelian subspace A of p must contain T = P n Z. 

If H E A then we may write H = Hl + H2 \vith Hl E p' = p n g' 

and H'2 E T, but then Hl = H - H2 E A. hence Hl E A'. If A' is not 

maximal abeliau in p' then we may lineal'ly adjoin an element Xo E p' 

WhlCh commutes with both A' and T contradicting the maximality of 

A. 

2. For any pair Al = A~ ::: T and Az = A~êT of maximal abelian subspaces 

of p. the "semisimple parts" A~ and A~ are Ad(C''' n Gss ) conjugate. 

since T is acted upon trivially by Ad( GII) the conclusion is immediate. 

3. The linear family {ad(H) 1 H E A} is a commuting family of B'7 

symmetric transformations of ç (hence simultaneously diagonalizable) 

and we have a root space decompostion ç = go ê LaER go. If X E ço 

then X = Il +.r2 wi t h Xl E k and X2 E p. The commutation relations for 

k and p show that Xl E ço n k and X2 E ço n p = A. Since Z C A e m, 

it is clear that the root spaces gcr, Q E R, are entirely contained in the 

scmisimple ideal g'. Naturally any root Q E R must vanish on T and 

wc may vicw R as the root system for the pair (Q', A') .• 

Suitahle interpretations imposed by Lemma 1.9 lead to the corresponding 

14 



versions of the polar and Iwasawa decompositions: 

G = ]( A + ]( and G = J( AN respecti vely. 

Xote that the Weyl group lV = NI.;(A)/Cl\(A) acts trivially on T. ThuR. a 

chamber A+ in A must be interpreted as A + = (A')+ ~ T where (A')+ is a 

\Veyl chamber in A'. 

Returning to Ob2. we see that any Z Epis contained in sorne maximal 

abelian subspace A of p and the roots of ad( Z)2/p are 0 (\Vith multiplicity 

dim(A)) or 0:(2)2 (with multiplicity mer = dim9a
). If the "semisimplc" 

part of 2 is not regular. then sorne o( Z) may equal zero. In an)' e\·('nt. 

the foots of 5(Z) are of the form sh~(if)) if 0(2) i= 0 or 1. (Recall that 

Sh L\) ,,",00 1 Vk) 
~ = L..1.=o <"1.+1)" • 

Definition 1.10: Let hl(t)} and h2(t)} be two smooth cun'es in GIC" 

(see Lemma 1.i) defined on an open interval 1 containing t = 0 \\'e will say 

that the two cur\'es are equivalent at t = 0 and write: 

Îl ~ /2 at t = O. 

in case /'1 and /'2 have the same tangent vector at t = 0 (in particular the 

two curves must pass through the same point in CIGu at t = 0). 

Remark: Infinitesimal equivalence is a handy notational convention \\ hich 

simplifies the computation of Jacobians in Gand G IG". In C. a smooth 

curye t 1-+ x( t) E 9 defines a smooth cur\'c ,( t) = cxp( .r( t)), and fOl (. sll1élll 
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wc have exp(x(t+t::)) ~ exp(x(t))exp(tV') at f = 0, for a uniquely determined 

V E Q. Other computations in GjGt7 derive from the folowing ruIes: 

Lemma 1.11([11], Ch. II, Theorem 1.7, Lemma 1.8.i): Let A, B E Q, 

thcn the following equivaiences hold at t = 0: 

1. exp(A. + fB) ~ exp(A)exp(fL(A)B), where 

L(A) = (1 - eXp(-ad(A))) = f: (-l)kad(A)k 
ad(A) k=O (k + 1)! 

2. exp( (.4 + fE) ~ exp( u1) exp( tE) 

Proof: The Cê>O curye C(t) = exp( -A)exp(A + tB) passes through the 

identity of the connected group G at t = O. Rence. C(t) is equivalent to 

exp(t\·) at 1 = 0 for a uniquely determined V· E Q. Thus exp(A + tB) ~ 

exp(A)exp(t\") at t = O. Differentiating at t = 0 gives 

00 1 n-l 

L r L An
-

l
-1. BA k = exp(A.)V 

n=l n. k=O 

The left-hand side may be rewritten using the identity: 

EA k = f) -1)1 (~) Ak-J ad(A)1(E) 
j=O J 

(sec Jacobson [13(p3S)J). After rearranging terms using L~,:]l (;) = C:l) we 

obtain: 

exp(A) . V _ f: ~ I:( -l)i ( . n ) An-1-J ad(A)1(B) 
n=l n. J=O J + 1 

- exp(A)L(A)(B), 
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which shows that V = L(A)(B). The second equi\'alence follo\\'s fWIIl t 1\1' 

first (ignoring terms of arder t? or higher) .• 

Lemma 1.12: Let G be a connected c10sed (J'-stable subgrollP of (,'{.( E). ç. 

p, g" and GIG" as before. Then: 

1. for Z, A E P the following equi\'alence holds at t = 0 in G/G": 

exp(Z + c4.)· 0::::: exp(Z)exp(tS(Z)(A))· 0 E GieT. 

h S( Z) Sh(4drZlll w ere = ad(Z} p' 

2. gh'en y,X E p.letZ(t) he theuniquelydefincd ('-;c Ctll\'c1I1psatisfyillr; 

exp(Z(t))· 0 = exp(t}-)exp(.\")· 0 E GjGr7.t E R 

then Z(t) satisfies the differential equation 

S(Z)Z = Ch(ad(Z))l-

\Vith initial condition 

Z(O) = X. 

These results are due to ~Iostow [18]. They are easily obtained by appl:. in? 

the infinitesimal rules outlincd in Lcmma l.1l. and by obscl'\ mg that fOl 

9 E G the point g. 0 E GlG" is uniquely explessed as [90'(9)-1]1/2. 0 

Remark: Lemma 1.12 (1) expresses the differcntial of the expont'lltl.d map 

Exp: p -t GIG" as: 

d(Exp)z(A) = d(te:.p(Z»)(S(Z)A). A.Z E P 

lï 



r , 

{Tsing the G invariance of the metric on C/GfT (see 1.6) one easily obtains 

the classical integration formula 

J fU)) dp(g) = c' J f(exp(Z), o)J(Z) dZ. 
G/G~ p 

\\ lwre 

dZ is the euclidian measure on p. and c is a positive constant determined 

by the com'cntion that normalizes the invariant measure Il on C/CfT (see 

Helgason [12]), 

Th(' following "e\'olution" equation will be used in conjunction with the dif

[('renlial equation 1.13 to establish estimates for the heat kernel on a real 

::.cmisimple Lie group, 

Lemma 1.14: Let G be a closed connected u·stable subgroup of CL(E), g. 

~', ]1, G 1 GCJ as before and let t ........ Z (t) be a smooth curve in p defined for 

tER Then 

J(z(t)) = J(z(to)) exp U .(T)dT) , 

wherc 

J(Z) - det(S(Z)lp )' and 

~(T) - Tmee [S(Z(TW 1 .1rS(Z(T))] 

Pro of: l\lore gcnerally, consider a smooth operator valucd map t ~ A( t) E 
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END(V), where V is a euclidian space. Th~ logarithmic growth of its deter

minant is easily described as follows: 

Choose a nonzero multilinear alternating n-form !.N' E A n( V") (ie a volume 

form on 'V) and let {eb e2, ... , en} be sorne basis for V. then 

Differentiating both sides with respect to t givcs 

d n 

dt det(A(t»v:( el, .. ' ,en) - 2: .... ,(.4(t)el . ..... 4.( t )e" .... , A(t)t n ) 

k=l 

If A( t) is positive definite for each tER then the above equation is readily 

integrated to give 

as claimed .• 

Definition 1.15: A Lie triple subsystem of p is a linear subspace .c c p 

satisfying the commutation relation [,c, [.c, ,c]] c .c. 

Now considel' a second involutive automorphism T of G and assume that T 

commutes with th..; Cartan im'olution a. Let GT be the fixcd point group for 
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T and note that GT IS reductive \Vith Lie algebra ç;r (Lernma 1.3 appHes to 

GT without the connectedness assumption). vVe have an eigenspace decom

position 9 = gT E& q for r. Since T commutes \Vith a we also have the direct 

sum dccomposition: 

(1.16) 

It is clear that both gr n p and q n p are Lie triple subsysterns of p. In fact 

it is worth noting that çr n p and q n p have perfectly symmetrical roles in 

p, sincc q n p may be viewed as gll n p, \vhere li = aT = Ta is an involutive 

alltomorphism of G with Lie algebra gll = gr n gl7 + q n p. 

ruder these conditions we haœ the following version of l\fostow's decompo

sition thcorem dIS], Theorem 5). 

Lemma 1.17: Let G be a connected closed a-stable subgroup of GL(E), T 

an iI1\'oluti,'e autornorphism of G which commutes with a, and g = g~ S q 

the eÎgenspace decomposition of 9 relative to T then: 

1. the rnap 9 : (g~ n p) x (q n p) -; G/GI7, 4>(Y, X) = exp(Y) exp(X) . 0 

is a diffeornorphism onto 

2. thcre exists a constant C > 0 such that for any F E C':(GIGI7) we 

have: 

J F(iJ) dJl(iJ) = 
G/G<1 
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c J F(exp(Y)exp(X)· O).J1(Y)J\2(X) d}" dX. 
(grnp)x(qnp) 

where 

J1(Y) - det(S(Y)lçrnpL and 

l\(X) - det(S(X)lqnp) det( Ch( ad(X) )Iç~np) 

Proof ([7bis] Theorem 2.6, [15] Theorem 1): r? is a map betwecn simply 

connected spaces of the same dimension. To show (1) it suffices to show that 

cp is regular at every point (LX) E (QT n p) x (q n p). and that its image is 

closed in G/G(1. The following equivalences hold at t: ::: 0: 

eyp(Y + u1) exp(X + t:E) . 0 

~ exp(Y) exp(él(Y)A) exp(X) exp( éL(X)B) . 0 

~ exp(}")exp(X)exp(éQ)· 0 

~ exp(Y) exp(X) exp(t:T(}", X)(A SE))· o. 

where T(i'·,X)(A. e B) = ~(Q - O'Q) E p. and Q = Ad(exp( -X))LI)')A '7" 

L(X)B (see Lemma 1.11(1)) 

Simplifying !(Q - uQ) gives: 

Renee det(T(Y,X)) ::: J1(Y)I\'(X) > 0, which shows that 9 is rC'gular. t\.., 
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, 

will be shown later (see 2.12), there is an estimate for the Riemannian dis

tance d(O. exp(V) exp(X) . 0) given by 

JIXI 2 + IYl2 ~ lexp(Y) exp(X) . 01. 

Suppose that exp( Z)·o E Closure{ 6(}-, X)IY E cr np. X E qnp}, then there 

exists a sequence (}'~, Xn ) E (çr np) x (q np) such that exp(Yn ) exp(Xn )· 0 = 
cxp( Zn) . 0 converges to exp( Z) . o. 

Since {Zn};::'=l is a Cauchy sequence => {Y~};:O=l and {Xn}~=l are also Cauchy 

on account of the estimate given ab ove. Henee }.~ -+ Va and Xn -+ Xo, which 

sho\\'s that exp(}u) exp(Xo)'o = exp(Z) '0. Thus the image of 6 is also closed . 

• 
Remark: Let H denote the connected component of CT, then Ad (H n C(1) 

(t.he maximal compact subgroup of H) acts as a group of isometries on q n p 

and ç" np. If F E C~(G) is a right-G(1 invariant function. then 1.1ï(b) can 

be expressed as: 

J F(g) dg = C J J F(h exp(X»K(X) dX dh. (1.18) 
G H qnp 

\ .... here dh is a Haar measure on H = G[r] (K(X) is Ad(H n G(1)-invariant!). 

Rcpcating the above argument by induction we obtain: 

Lemma 1.19: Let G be a connected closed u-stable subgroup of GL(E) 

and C = CI :J C2 :J ... :J Gn a descending sequence of closed connected 
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subgroups with corresponding Lie algebras 9 = 91 ::> 92 ::> ' " ::::> 9n, snch 

that 9'H is the fixed point set in 9\ of an involuth'e automorphisl1l T, of 9, 

which commutes with (J, Then. for F E C';'(GjK) we have: 

J F(g) dg = c J J ... J F(gn exp(l~)", exp(Yd) 
G Gn qn-l('\Pn-l qlnpl 

n-l 

TI I{,(}~) dYi , .. d}~-1 dgn , 

where 91 = kl œ PI is the Cartan decomposition of 9, and 9, = 91+1 tt' 'II l~ ib 

±1 eigenspace decomposition \vith respect to T,. 

Note: \Vhen Gis a complex group [,nd T is a C-linear involution of 9 which 

commutes \Vith (J then 

I{(X) - det(S(X)l qnp ) det( Ch( ad(X))!ç

- det(S(X)Ch( ad(X)!qnp) 

- det( S(2X)!qnp) 

(see Lemma 1.29). 

1.3 Analytic Continuation 

In this section we review 11. Flensted-Jensei1'c; method outliniog its main 

constructiùns. The explanations are de!iberately brief <'oci wc l'der the l'cader 

to M. F. Jenscn's original paper [7] [7tt'r] for a full accourlt as wcll as for most 

proofs. 
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Let L be a closed connected O"-stable subgroup of GL(E), C its Lie algebra, 

T an involution automorphism of L which commutes with 0", [ = C~ Et 

C- the Cartan decomposition of .c. and C = CT EB q the ±l eigenspace 

decomposition \Vith respect to 1". If L[O"] stands for the analytic subgroup 

of L which corresponds to C~ (ie. the maximal compact subgroup of L 

detcrmincd by 0") thcn we can state Lemma 1.1 ï by saying that there is a 

unique decomposition: 

(1.20) 

Let L[i] (respectively L[v], v = O"T = TO") denote the analytic subgroup 

of L corresponding to CT (resp. Cil = C~ n [T S q n C-), Ao a maximal 

abclian subspace of q n C-, lV the Weyl group associated \Vith the pair 

(Cil, Ao) and ....tri a We) 1 chamber in Ao. The polar decomposition L [vJ = 
(L [il n L [0"])' At· (L[i] n L[O"]) combined \Vith the unique decomposition 1.20 

gives a \'cry precise description of the double coset space L[T]\LjL[O"J. 

Theorem 1.21 ([7], Theorem 4.1): 

1. L = L[T]A; L[O"], that is, for every gEL there exists a unique a E Ari 

such that 9 E L[i] . a . L[a]. 

2. the 1"<'striction mapping COO(L[T]\Lj L[O"]) --+ COO(Ao) onto the space 

of Coo-lV-invariant functions on Ao is a bijective correspondence (see 

[12J, Ch. II, Thcorem 5.8). 
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The process of analytic continuation depends on two crucial idcntificatioll~ 

and the use of theorem 1.21. The first of thcse consists in iocntifying il 

connected reductive linear group G \Vith the pseudo-Riemannian symmetric 

space Gx Gjf:.:.(G) , where ~(G) is the diagonal subgroup. The bijecti\c map 

/'i, : G X Gjt:.(G) --" G given by li. : (x,y)~(C) f-+ xy-I is a diffeomorplm;m 

which allows us to identify the corresponding function spaccs C xc (C) and 

COO(G x Gj~(G)) via f f-+ fK with fK(x,y) =: f(J:y-l). 

Assume that G satisfies the hypothesis of Lemma 1.3 and let l\: denot cil:'> 

maximal compact subgroup (ie. A' = G(O']). In the context of 1.21 "'C' ha\C' 

L = Gx G. the Cartan involution is a(x,y) = (O'(x),O'(y)). and the involutivC' 

automorphism T is T(X.y) = (y. x). x.y E G. Xote that 0' and ï commute. 

and that L(T] = ~(G), L[a] = I\ x I{. 

Lemma 1.22 (Helgason [12] Theorem 5.7 and Ch. n, Flensted

Jensen [7] p. 122): The diffeomorphism /'i,: G x Gjl:::.(G) --t G deterrnincs: 

1. a bijection f f- r between CCG(I\\GjI\) (or C~-C(A'\GIJ\'),I and 

cco(l{ x 1\\G x Gj~(G)) (resp. C~(J{ x K\G x Gj~{C)), whl'!'t' 

r(x,y) = f(xy-l), x,y E C). 

2. a bijection D I-t DK between the bi-invariant differential operator:, on G 

(ie, Z(G)) and the left-invariant differential operators on G x C/~((;) 

(ie. D(G x Gj!:J.(G))), 

3. a bijection D I-t DK from D(I\'\G)®D(GjK) onto D(J': x K\(,' x (,') 
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The second iJentification is considerably more subtle. Let us return to the 

connected reciuctive lincar group L and assume that L = L rT è2;C-, C = LT Ef:q 

as Jcscribed ear/ier. Since L is a lincar group. it may be viewed as a subgroup 

of a connectecl complex linear group Le with Lie algebra Le = C @R C = 
L :;: ) C (here j stands for the complex structure on Le, P = -1). Within 

Le. the triple (L. G', ï) is closely a~sociated with a dual triple (ê. Ô", f) as 

follows: 

Let 1 be the conjugation of Le \Vith respect to C. \Ve ma}' extend the Cartan 

lI1volution G' of L to a Cartan involution (also denoted by G') of Cc, and the 

involution T of L extends to a C-linear involution ï of Cc. 

N'ote that ~f = aT = TG' (in Le) is a conjugate linear involution of Le whose 

fixed point set is a certain real form .ê of Le. In view of the vector space 

decomposition 1.16. we have: 

(1.23) 

and 

(1.24) 

Let êr be the restriction of ,a = G', to .ê and f the restriction of T ta ê then 

(C, êr, f) is the dual triple in qucstion. 

\\'c designate the analytic subgroups of Le which correspond ta .ê, f,ü, f/, 
and .ê Îl (zi = êrf = fêr) by L, L[êr], L[f], and L[zi] respectively. Since [,l' = 
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cr n .cu + q n C- ;::: .cf' ;::: C n .ê, it is clear that the "middlc" grol1p~ L[v] of 

Land L[IÎJ of Lare identical, in fact: 

(L n L)o = L[1I] ;::: L[v], (1 2,)) 

where (L n L)o is the connected component of the idcntity in L n L B~ 

selecting Ao, a maximal abelian subspace of qnC-, and At a \Yeyl chambC'r 

in Ao, we may write the polar decompositions for L élnJ L as in Theorcm 

1.21. L ;::: L[T]A;t L[o-] and l ;::: L[f]A.;t 1[17], leading to obvious identifica-

tions between the correspond mg function spaces and algebras of diffcrentlal 

operators (see [il Theorems 4-.2 and -1.3). 

The second idcntification is then completed by considering the case ",bcn 12 

is itself a complex Lie algebra (ie. C is a real Lie algebra with a complex 

structure denoted by L). 

Specifically. we consider a connected a-stable linear group G wlth Lie algebra 

9 and set C ;::: 9c ;::: ç + iQ (ie. 9 is a real form of CL The Cartan involution 

on 9 may be extended ta a C-linear involution T of land to a conjugate 

linear involution 0' of c... Let us write the Cartan decomposition of ç as 

9 = k + p and note that lU = k + ip, CT = k + ik ;::: h'C' 

The vector space decompositions in 1.23 and 1.2,1 are: 

C ;::: (k + ip) + (ik + p) 

.ê - (k + jik) + (jip + p) 

? .... _1 

(1 2(j) 

(1.2i) 



'( 

The Lie algcbras C x C and C 0R C are isomorphic (over R) via the map 

8(X.Y) = !(X -Jl.\") + !(a(Y) + jia(Y)),X, Y E C. Under this isomor

phism. the triple (1\ x K. G X G, ~(G)) corresponds to (L[T], L, L[Ô"]) as 

dcterrnincd by 1.:27. Note that (L[a], L, L[T]) corresponding to 1.26 is simply 

(Ge', Ge. Kc), where Gc is the maximal compact subgroup of Gc . and Kc is 

the analytic subgroup of Gc which corresponds to the involutive (complex) 

subalgcbra kc of Qc. Combining t11e abo\'e remarks with theorerns 1.21 a!1d 

1.22 results in the following procedure for lifting functions on G to functions 

on Gc : 

Theorem 1.28 (Flensted-J ensen [7], theorem 5.2) 

1. Let :F stand for C, Cc, C~ or P,l < p ~ ~. There is an 1S0-

rnol'phism f ~ r of :F(]{\G/J{) onto :F(l\c\Gc/G'é) su ch that 

r(g) = f(ga(g)-1) whenever 9 E G 

2. There is an isomorphism D f-+ D'7 of D(K\ G)8D( G / K) onto D(l\c \Gc ) 

and of Z(G) onto D(Gc/Gc) such that (Df)T) = DT)fT) for aIl f E 

COO(K\G/ I{). 

Note that. the middle group Gc (v = aT = TG') which corresponds to the 

triple (J\C, Gc , Gc) is just G (see 1.25, 1.26 and 1.27). 

Let us momentarily digress from our discussion in arder ta make sorne gen

('raI ObSCl vations concerning the reduced foot systems which are associated 
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with a triple (.c, a, T), where .c is a linear rcductiyc Lw algebra. (J il Cal tan 

involution and T an involutive automorphism which commutes with a. l'Il!' 

meanings of C(j, .c-r, .c- and q will be those of 1.2:3. 

Consider a maximal abelian subspace Ao of C- n q and let A = Al) +- Al 

he an extension to a maximal abelian subspace of C- (".{l C cr n [.-). For 

convenience we will view the real dual Aô (resp . .Ai) a~ the sub5pace of A

consisting of aIl those linear functionals on A which \,<1ni"h on Al (resp on 

Ao). The same inclusions will be assumed for the corresponding spaces of 

complex linea1' functionals. 

Lemma 1.29: Let R and Ra denote the restricted root systems associated 

with the pairs (.c, A) and (.c-', Ao) respectively. and for 0. ER let T' o. a· o. 

and v· Q denote the compositions 007, 00 a, and 00 v respective!y, then: 

1. R is the disjoint union of the following three subsets: 

• RI consists of aIl 1'Oots a such that v . 0. = -0, i.e .. 0. lAI) = 0 

• SI consists of aIl 1'Oots 0 such that V· 0 = 0, i.e., olAI = 0 

• SM consists of aIl roots a such that v 'Q =J. ±o, i.e .. olAo i
D, alAI =f 0 

Furthermore, Ro is composed of aU restrictions to Ao of elements of 8.\f 

in addition ta the restrictions ta Ao of aIl th05e 1'Oots 0 E SI for which 

Co n Cv =f (0) (here .ca dcnotes the root ~pacc of [, corrcsponding to 

a E SI). 
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2 Gi\'cn compatible orderings on A~ and A- then 

1 
p - (2po + pd = 2 L do . a:. where 

OtEst 

1 
p = ? L mOt' a: (mOt = dim(Lc.)). 

- OtER+ 

and for a E st, dOt = dim(Lc. n (LII).L) - dim(LOt n L II ). 

Pro of: l'ote that A is stable for each of the involutions G'. T, V hence R 

is stable for aIl three involutions. For a given a: E R exactly one of the 

conditions v . et = -et. V· Ct :f:. a:. -Ct. or vo: = et holds. Applying G' to the 

first ofthese shows that R decomposes as stated in (1) (G'a: = -a: VCt ER). If 

Ct E 5\1 then 1/ maps Lo into LII.C>. and since the two spaces are distinct tLere 

i5 a nontrivial projection x t--O !(x + IIX) onto L II . Each pair (o:.IICt). Ct E 5\1 

con trihutes dim( LOt) linearly independent eigenvectors in L II corresponding to 

the lcstricted root Ct/Ao E Ra. If Ct E SI then Il maps Lo onto itself. in \\"hich 

case Lo may or may not ha\'e II-fixed vectors. If it does then 0: restricted to 

Ao lie,> in Ro and Lo n [,11 :f:. (0). Assuming compatible orderings on A~ and 

A* wc write the half sum of the positive roots in Ras: 

1 1 
P Pl + ? L mo ( a: + lia:) +? L 2nOt • a: 

- OtES!r.\fod(I/) - OtEst 

1 + 2 L da • a:, with nOt = dim(La n [,v). 
aEst 
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,-. 

Taking into account the fact that a + lia: = 2olAo. wc obtain the rcquil'ed 

results as stated in (2) .• 

To return to our discussion. let us assume that Ao is a maximal a}wlian 

subspace of p and A = Al + Ao C i k + p is an extension as in Lemma 

1.29. Because li is a conjugate linear involution it is easy to see that clet = 0 

whenever a: E st, thus in this case, p = 2po + pl, where Pl is the half sum 

of the roots corresponding to the subroot system Rl = {a E R 1 n( TI) 

o VH E Ao} (RI is the root system of me the ceRtralizer of Ao in h'C)' 

The J{-spherical functions ([9]) 0,\ E coo(J\"\GI J{), \ E Aü may be lifkd tü 

corresponding left-A"c. right-Ge invariant functions 0\ E ccc(l\c\Gc/Gê). 

If the measure on f{c\Ge is suitably normalized 50 that 

J f{g)dg= J f"(x.y)d(x.y) = J r(.r) dI. 
G GxG/~(G) Kç\Gç 

for f E C-::'(K\Gj J{), then we may express Harish-Chandra's spbcrical 

Fourier transfoi'm as: 

j(,\) = J f(g)6,\(g)dg = J r(x)o~(x)dx. (1.:30 ) 
G Kc\Gc 

whenever f E C::'(J{\G/ J{). 

The real advantage of the method of lifting functions on G ta funcllOn'1 

on Ge is derived from the relations that exist between the funclion spaCl''1 

cr: ( Gé \Ge /Gê) and c~(I\e\Ge IGe)' These relations are mcdiated by 
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the' two (dual) integral transfol'ms: 

Mo : F(f{c\GeIGê) -. :F(Gé\GcIGê;:}. where 

l\10/(g) = J f(ug) du (1.31) 
Gê 

and its dual 

AI : C~(Gé\GeIGê) -+ C':(Ke\Gc/Gé), where 

l\1F(g) = J F(hg) dh (1.32) 
I<c 

Suppose that ,p.\ is an elementary K -sphel'Ïcal function on G then its left-Ge 
a\'crage <I> = Mor?i, defines a bi-Ge invariant function on Ge. Since e\'ery 

Im'ariant differential operator on Ge IGe is of the form DT] for sorne D E 

Z(G) (see theorem 1.28 (2)) it follows that DT]<p = .\I0 (D6.\)T/ = \(D. ,\)~. 

henre <I> is an elementary spherical function on Ge 1 Ge. A clever argument 

([il Theorem .5.5) shows that we actually have: 

<I>.\ = .\/0 61 with A = 2,\ - iPI E Ac (1.33) 

,\ E .A~,c and Pl is the half SUffi of the positive roots correspanding ta 

(me, Ad (see Lemma 1.29 and subsequent remarks). 

The above relation Îs the tool which permits the transfer of the spectral 

distribution for a certain class of functions on G to a corresponding spectral 

distribution on Ge. 
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Forinstance, if FE L1(Gé\Gc /Gé) and c!>~ E coo(l\'c\Gc/Gc) Îsa bOllnded 

elementary J{ -sperical function on G then f o:~ E V (Gc ). Integrat iIlg on'r 

Gc gives: 

J F(g)<f>~(g) dg = J MF(x)9Z(x)dx = J F(g).\[lJo~(g)d!J. 
Ge [(e\Gc Ge 

which shows that 

(J :31) 

where F"" is the spherical Fourier transform of F in Gc. 

The partial limitations of the method are apparent from 1.3-L In general. .\1 

(see 1.32) is not onto, which means that certain types of spectral èistributions 

on G may not be lifted to Gc . If Q is a normal real from of gc then JI i" 

a bijection and in that case the rnethod is a complete success as has been 

eloquently demonstrated by Jf'an-Philippe Anker and Xoël Lohoué [1.1] in 

their study of the multiplier problem for the LP spaces. 
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Chapter 2 

The Heat Equation 

This chapter is devoted ta the study of an integral expression for the heat 

kernel on a connected semisimple Lie group G. We will adhere ta the as

sumptions and notation made in section 1.3. 

2.1 The Heat Kernel 

The invariant metric on G / J( gives rise ta the Laplacian .6.., which is a G

im·ariant second arder elliptic differential operator. Given an initial datum 
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f E C,:,(GjK) there is a solution 1jJ(x, t) ta the initial value problem: 

lllj.J(x,t)=f1J.(X,t), xEG/I{. tE(O.OO)} 

limtl01b(x,t) = f(x) 
(2.1 ) 

expressed by a convolution transform: 

?jJ(g, t) = f * Ht(g) = J f(gy-I )Ht(y) dy. 
G 

where Ht E COO(K\G/J{) is a fundarnental solution of the hcat equatioll [1] 

[13bis] [6] [8], satisfying: 

1. for fixed t > 0 Ht is bounded on G / J( 

(2.:.n 
3. Ht * Hs = Ht+s for s. t E (O. x) 

For an arbitrary non compact symmetric pair (L. LU) the Laplaciall ~ ha:, 

the well-known spectral distribution: 

where the 4>,,'8 are the elementary spherical functions on LI L", A is a max

imal abelian 8ubspace of C- (the Lie algebra C of L is assumed to have a 

Cartan decomposition C = CG EV C-), and p is the half sum of the pm.i

tive restricted roots (with multiplicity). This fact lcads via spherical FOlllwr 

analysis to the construction of the following general expression for tI\(· hO'lt 
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kcrnel on L/ LO [1] [8]: 

Ht(g) = ~ J exp [-t(IÀI2 + IpI2)] 6,\(g)IC(,\)1-2 dÀ, (2.4) 
A" 

wherc CP) is Harish-Chandl'a's C-function and c is a constant. 

In general, difficulties in dealing with 2.4 result from insufficient information 

concerning the behaviour of the spherical functions <p\. Luckily fol' complex 

groups (Gc , Ge) an explicit expression for the heat kernel Gt is known in 

tcrms of elementary functions on Gc /Gê [8]: 

Gt(exp(Z)) = ct-n
/

2 exp [-lpI2t ] exp [-I!tl <I>o(exp(Z)) (2.5) 

whcre n = dim(Gc/Gc), Z E ~Qc' <I>o(exp(Z)) = det[S(Z)t 1
/
2 is the el-

emcntary spcrical function of index zero on Gc/Ge, and c is a constant 

dctermined by 2.2 (b). 

Lct Ba and B denote the Killing forms of the real Lie algebras ç and Qc 

rcspccti\"ely. If X E P we let IXIa = / Ba pc, X) denote its norm as an 

clement of Q and IXI = JB(X.X) the corresponding norm when viewed as 

an clement of Qc. Comparing root systems in Q and in Qc gives (see Lemma 

1.20): 

(2.6) 

Let. A = .Al + Ao be a maximal abeljan subspace of ik + p such that Ao 

is maximal aoclian in p. For'\ E A* we define H,\ E A in the usual \Vay 

accolding to < Il,\, H >= À(JJ), VH E A. and IÀI2 = IIl,\j2. Similarly, if 
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À E A(j, then H,~ E Ao and IÀI6 = IH,~16 are defined relative to Bu{.) 011 

Ao. Since À E Aô may also he \'Îewed as a liner functional on A. wc l1a\(' <1 

correspondence hetween the two norms on Ao : 

(:!. ï) 

Lemma 2.8([7], Example, p. 131-132, [1], §2.4, Remark (ii)): LI'! 

Ht and Ct he the heat kernels on G/f{ and Gc/Gc respectivcly thf'!\. l\ll il 

suitably normalized Haar measure on Kc we ha\'e: 

H?(g) = J Gt/ 2(hg) dh. 9 E Ge (:! ~)) 
Kc 

Proof: Notice that the right-hand side of 2.9 defines a right Gê-inva.riant 

function on Ge which is integrahle over Kc\Gc , 

lndeed. from 2.2(b) we see that: 

1 = J Gt/ 2(x) dx = J (\I
c 

Gt j2(hiJ) dh) diJ. 
Ge l\c\Gc 

where di; stands for the invariant measure on Kc \Gc , normalizcd in such ft 

way that 

J ru}) dg = J f(:r)dx whenever JE C';'(l\'\G/J{) 
I\c\Gc G 
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By theorem 1.2S( 1), we may identify the right-hancl sicle of 2.9 with a function 

rj't E Ll(K\G/ K) in the following way: 

lL't(exp(x)) = ~'i (exp (~)) = J Gt / 2 (hexp (~)) dh, if x E p. 
Ke 

Our objecti\'e is to show that H t = 'l/Jt. If we can shmv that 1/-'t is bounded 

and continuous for each t > 0 then the equality Ht = Wt follows from the 

Plancherel pointwise inversion formula ([9], Theorem 1.6.5) since: 

and 

V't(g) = ~ J ~t(>\)~,\(g) d,\ =; J G;f2(2 .. \ - ipd6,\(g)IC(À)I-2 dÀ 
A; Ao 

(sce 1.34). But G~2(2,\ - ipd = exp [-~ (12,\ - ipl12 + IpI 2
)]. Expanding 

12,\ - iPll2 and using the fact that p = 2po + Pl (see Lemma 1.29) we obtain: 

Since the norms on p. and (ik + p)* are releated as in 2.7, we finally have: 

alld hcnce 
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To show that 1/Jt is bounded and continuous. let x Epand let us rewlite 

1/Jt( exp( x)) using 2.5: 

1Pt(exp(x)) = Ct- n/ 2 -IPI2t/2/ ' [_lexP(}'")eXP(x j 2)1
2

] e exp ') _t 
\k 

<1>0 (exp(Y)exp(xj2)) J(}') cl}' (:! 10) 

where 1 exp(Y) exp(x /2)1 is the Riemannian distance d(O. expO') exp(.t/,~), 0) 

in Ge IGe, J(Y) = det(S(Y) Ilk) is the Jacobian of the exponential Illap on 

K\Ke, and the constant C is determined by the condition 2.2(b). 

Later (in Section 2.2) it will be shown that for X Epand Y E II,: wc hil\t'. 

1 exp(Y) exp(X)1 ~ Vl Yl2 + 1.\"1 2 ~ IYI· 

Since J(Y) ~ e2p(l') ~ e2CQ .\fA.dYJ ~ eCW1 • where pP') is the half sum of the 

positive foots of ad(Y), and <I>o(exp(:)) ::; 1 for aIl :: E ik + p. it follo\\'" that 

the integrand in 2.10 is bounded uniformly in x by 

( 
l}ï2) . 

exp - 2t exp( cl} 1)· 

for a suitable constant c E R+. Thus. U't is bounded for cach t. ann 

Lebesque's dominated convergence theorem may be applied to show t h(lI 

'I/'tO is continuous .• 
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2.2 The Behaviour of Ht for small t 

Before taking up the question of the estimates for Ht, let us digress for a 

moment to discuss some elementary estimates of geometric origin, valid for 

any reductive syrnmetric pair (L. LO"). 

The Riemannian metric in the exponential coordinate chart, Exp : .c- -+ 

LI L 0" takes the form: 

gz (ô(A)z, ô(B)z) = (S(Z)A, S(Z)B) , where A, B, Z E .c-, (2.11) 

and 8(..1) is the (euclidian) parallel vector field on .c- determined by A E .c
(see 1.6. Lemma 1.12(1) and a subsequent remark). 

Consider then a smooth curve Zs E c.-, 0 :::; s ::::; 1. such that Zo = 

. -y E .c-, ZI = X E .c-, and exp(Zs) . 0 is a geodesic in LI LO". Clearly. 

1 exp(Y) exp(X)1 = disfance(exp( -Y) . 0, exp(X) . 0) = I~ IS(Zs)Zsl ds > 

Id lisl ds ~ IX + YI. 

On the other hand, the '.riangle inequality gives: 

1 exp(}') exp(X)1 < d(O, exp(Y)·o)+d(exp(Y).o, exp(Y) exp(X)·o) = IXI+IYI 

In particular, if X and Y are orthogonal, one obtains the well-known inequal-
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ities 

)IXI2 + IYI2 ::; 1 exp(Y) exp(X) . 01 ::; IXI + IYI, X. \' E (-. (X.}') = 0 

(2,l~) 

The left-hand estimate in 2.12 may be refined using a Taylor expans ion \\'tt h 

integral remainder. Consider the smooth curve Z, = E.rp-l(exp(s}') exp(X) 

0) E (-, -00 < 8 < 00 then 1.13 gives: 

S $ 

- J(Zni,)dï= j(Z"G(Z,)}-)(h 
a a 

s 

- j (Zn Y) dï. 
a 

\vhere 
-1 ad(Z) 1 

0(Z) = S(Z) Ch(ad(Z)) = tanh(ad(Z)) t.-

Integrating by parts and assuming that X. y E (- are orthogonal gjve~: 

, 
~ (IZ,1 2 -IXI2) = J (e(Z~ )Y. }') (8 - r) di. (::U:3) 

o 

Therefore, the n th order Taylor expansion (n ~ 2) about s = 0 takc'i the 

form: 

(2,1 1) 
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If Z E ik + p is a generic element. we let a.u(Z) be the largest positive 

eigcnvalue of ad(Z), p(Z) the half sum of the positive eigenvalues (each 

having multiplicity 2), lad(Z)1 the operator norm of ad(Z) on 9c. IZI 2 = 
..J. L.:»o Q(Z)2 the squared norm defined by the inner product B<7(,) on ge, 

and l'Il the number of positi\'e eigenvalues. The following relations are easily 

verified: 

~ :::; 2a,\I(Z) = 2Iad(Z)1 :::; IZI, 

and 

lad(Z)1 = aAl(Z) ~ p(Z) 

Elementary considerations also show that the spherical function <Po of Ge 

satisfies the inequality: 

FinaIly, let us note that if Y E ik and X E P then <Po( exp(Y) exp(X)) is 

dominated by cJ>o(exp(X)) exp(~IYI). To see this, we let i(Z) = det[S(Z) lçe 
J and use the resuIts of Lemma 1.14 to write: 

42 



where the a's run through the eigenvalues of ad(Zs) and Sa E gc.,c are 

corresponding normed eigenvectors. The above evaluates to 

~ • _ 0(Zs) - l < 0(23 ) - 1 - . 
( 

") 1/:!' 

OS InJ(Zs) - Trace [ ad(Zs) ad(Y)]_ Trace [ ad(Zs)] Ill· 

The eigenvalues of [e:~~~Ir are bounded abo\'e by 1. 50 that: 

I:s ln }(Z$))I ::; 2n1YI, 

where 2n = dirnR(Qc), i.e" n = dim(Gc/Gê). 

The result fo11o\\"s from the fact that <Po(exp(Z» = [}(Z)J-l/-l. 

Ha\ing completed these preliminaries, we may now state the following csti

mate for Ht : 

Theorem 2.15: Let H t be the heat kernel associated with tlle symmetri, 

space G / I\, and set 

with d = dim( G / J':) and p as in 2.9 then: 
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2. for any L > 0 there exists a constant A( L) depending only on L 

(A(L) > 0) such that: 

IUt(X) - Uo(X)! :5 A(L)t1
/
2

4>0 (exp (~)) . (1 + l'~ 1) , 

whenevcr 0 :5 t S L2
• 

Proof: 

1) \Ve use the integral expression 2.10 for Ht and the fact that IXl2 = 21XI6 
to write: 

-k/2! [lexP(Y)exP(X/2)1 2 -IX/212] - t exp - -'--~--'----'--'--')-'--'-'---'-'---'-
_t 

.k 

4>0 (exp(Y) exp (.~) ) J(Y) dl" 

with k = dim(ik), X E p. 

Changing the variable of integration from Y for VtY results in the expression 

C,(X) = .! exp [-T ~0(Z,)Y, Y)( v'Ï - s) ds 1 <lio (exp (z",)) J( v'ÏI") dl", 

\vhere 

Zif = E;Xp-l (exp(sY) exp (~) .0) . 
(sce 2.13). 

Note thai the cigenvalues of 0(ZIf) are bounded below by 1, <Po(exp(Z)) S 1, 

and J( Vil") S exp(cVtI}ï) for a suitably choscn c > O. Thus, the integrand 
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above is dominated by: 

exp ( - P/;1
2

) exp( cYTfYI) whenew::r 0 < t < T. 

The stated value for the limit limt_o+ UtC\") follo\\'s immediately [rutll ~ Il 

(n = 2) and dominated convergence. 

2) The error estimate IUt(X) - Uo(X) 1 requires a few manipulations. 

Recall that: 

for an explicitly determined 0(-\) (see Lemma 1.14). 

Now. the error term ma}' be written as: 

UtCX) - Fo(.\") = 

J [exp( -oC Vi)) - exp( -9(0))] <Po (exp (Zv't)) J( Vi} ') cl}' 

Ik 

+ J exp( -6(0) )èpo (exp C~)) [exp( -~.( 0)) - 1] dL 
Ik 

where 
1 ,\ 

r/>(,,\) = -\2 J (8(Zs)Y, Y) (,\ - s) ds 
o 

and 
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Applying the mean value property ta the integrands which express Ut - Uo 

IUt(X) - Uo(.\") 1 < J e- 11'1
2
/214>( 0) - çi>(O)IcI>o(exp C'~) )e2nvtlYI dY 

Ik 

+ J e-WI2 / 2 1!f( v't)I<I?o(exp C~) )e2nVt"1Y1 dY 
Ik 

In our preliminary discussion we showed that 1jJ(À) satisfies the inequaIity: 

11/t(,\)1 ::; [l(2n)IYI + ~(2n)IYï] À <2nIYIÀ~ for À > a. 

Using 2.14 (n = 2) we have: 

~(À) - ç;(O) = 2~' J ( eà,)y, y) (À - 5)' d5, 
o 

\vhere 8(Z,,) = fs (0(Zs)}' 

.-\ lengthy computation allows us to establish an upper bound for the (pos

sibly indefinite) quadratic ferm: 

An expression for (2s , Y) obtained from 1.13 in conjunctien \Vith the estimate 

Ixcoll~X)-ll < 1 for x E R\ {a} results in: 
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A small modification of the argument used in establishing 2.1:3 shows that 

for 82 > 81 > 0 we have /Z32/
2 -/Z31/2 :2:: (8~ - 8DIY I > O. hence the flllllLion 

S H /Zsl increases, and 

Comhining the estimates for Iv'( 0)1 and 19( 0) - 9(0)1 results in: 

IUt(X) - Uo(X)1 S 2nt l
/

2<po (exp C~)) 

J [LIYI 4 + (1 + [.~]) l}ï3 + /YI] e-Pï2/2e2nLWI d}" 
Ik 

\vhenever 0 < t =:; 1'1 .• 

2.3 An Asymptotic Expansion for H t for a 

Particular Class of Groups 

If G is a normal real nf of Ge (i.e. p contains a mclximal abelian subspacc 

of ik + p), then it can he shown a case by case basis that the elcmcntary 

spherical function <1>0 E CCO(Ge/Gé) i" integrable over Ke (see [7J, Thcorem 

7.1). In fact, there exists t> 0 such that 

J ef1h1tI>o(h)dh < +00 
Kc 
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For any compact subset n of p one may find a constant C(O) > 0 stlch that 

<1>0 (h exp (.~)) :Ç C(O)<I>o(h) 

for aIl h E f{ c and X E n c p. 

Thus, 

<po(exp(X)) = J <Po (hexp (~)) dh, XE p 
J\c 

is well-defined and coïncides with the elementary spherical function of index 

zero on CI f{ (sce [7], Corollary 7.4). These facts are exploited to obtain the 

following asymptotic expansion: 

Theorem 2.16: Let G be a normal real form of Ge, H t the heat kernel 

associated with the symmetric space G 1 K. and for X E P set 

Ht(exp(X) = Ct-n
/

2 exp [-lpol&t] exp [_l'~tI6l V;(X) 

\\here n = dim(GcIGë), then: 

1. 1~(X) < oo(exp(X)) and limt--x 1/~(X) = 90(exp(X)) 

2. There is an symptotic expansion 

m-l 

~~(X) = çOo(exp(X)) + L rkVdX) + Em(X, t), 
k=l 

whcrc 

1 i (X) = (-:t j {IZ (Y, X /2)t - IX/2IT <!io( Z (Y, X /2) )J(Y) dY 

tk 
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and for each compact subset 0 of p there exists a constant ..1(0) > 0 

such that 

lE (X t)1 < A(O) whenever X E n 
1 M , - t m ' 

Proof: Using the integral expression for Ht(exp(X)) we have: 

Vt(X) = J e-SO',Xljt<po (exp(Y) exp (.~)) J(Y) d}', 
.k 

,. l {I ( X)1 2 IXI 2
} where 8(Y,)0 = 2' Z y'"2 -"2 . 

As previously indicated. SCY, X) ~ 0 for aIl X E p, Y E il.:, In particular 

Yt(X) ~ J <Po (exp(Y) exp C~)) J(Y) dY = oo(exp(X)) 
lk 

for aIl t > O. Therefore. by dominated convergence. 

lim V;(X) = <Do(exp(X)). 
t-oo 

The stateè asyrnptotic expansion fo110\\"5 immediately fwm the Ta~ lor t'X' 

pansion for e-X about x = O. The error term has the form: 

But IZ (y, f) 1 ~ IY! + IJ~ 1, sa that 

8(Y,x)m ~ 2-m (!X! + IYl)mlYlm ~ Tnl(l + Ix\)m(l + liï)2m 
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\Ve may choose € > 0 such that e'lhl<Po{h) is integrable over Kc. Given a 

rornpact sub"et D of p there is a constant C(D) > 0 such that <Po(Z(Y, :)) ~ 

C(n)<I>o(exp(Y))l X E ft }' E il.:. Renee 

IEm(X. t)1 < C(D~~l~t~\l)m /(1 + IYI)2me-(IYle'IYI<Po(exp(}'))J(Y) dY 
Ik 

w henever X E n 

as claimed .• 

Remark: It is interesting to compare the bounds on the coefficients of the 

asymptotic expansion given above with similar results obtained from known 

solutions of the heat kernel. For instance, if G = 5L(2. R) (we could al 50 

consider 5 L(3. R) in view of 3.l.5) the heat kernel is: 

Ht(exp(X)) = ct-3/ 2e- t/ 8 jexp (_ h'2) hdh . 
x 2t JCh(h) - Ch(x) 

where X = diag(xj2. -xj2). 

r sing the notation of Proposition 2.16 v·:e may write 
00 

~';(X) = J e-
y2

/
2l --.=======Y,=d::y===== 

o Sh (x+vp7) Sh (#y-x) 

The erIor term Em(X, t) in the asymptotic expansion for l~ \vould then take 

tlw form 
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where Cm 15 a constant which does not depend on X or l. 

Changing the variable of integration y f-+ VX2 +./;'. - .r = <5 finall~ gl\'(h., 

IEm{X, t)1 

< C;"(l + x)m+l Joo 8m(l + 8)m+1 do 
t

m 
0 /Sh(x + 5)Sh(5) 

C' foo c5m(l + 6)m+l(1 + lIl5)1/2e- S/ 2 do < -..!!!.{1 +x)m+le-.t'/2 1 

tm 
0 /511(8) 

50 that there exists a constant Bm which does not depcnd on X or 1 for wlwh 

holds. 

In viewing the nature of the general estimates made in Proposition 2 16. iL 

is reasonable to expect that 

will be satisfied if Gis a normal real form Gc . 

Equivalently this may be stated by saying that 
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Chapter 3 

The Abel Transform 

In this chapter we indicate how analytic continuation provides a partial so

lution to the inversion problem for the Abel transform. 

3.1 Elementary Subgroups 

LeL G he a connect!'d semisimple linear Lie group of the noncompact type. 

\\"e will assign the usual meallings to (7, K, 9, k, and p. Let A hc a maximal 

abclian subspace of p, R the re'itricted root system associated with the pair 

(Ç.A) and IV the corresponding \Veyl giOUp. Let us choose a system R+ of 

p\)!-JilÎYC rcstrictcd roots so that the Iwasawa decompositions G = I{ AN and 
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ç = k + A+.N hold with JV = LOER+ ça. The Abel transform of a fllnction 

f E C';'(I<\G/J() is defined by 

T f(a) = J f(an) exp[p(log(a))] dn. 
S 

where a E A and p = t LaER+ dim(Ça) . a. 

This integral transform establishes an isomorplllSm between the convolution 

algebra C':'(K\G 1 !{) and the (Euclidian) convolution algebra C; (.4: W) al 

compactly supported Ccc. lV·invaria.nt functions on A. Its significancc li('~ 

in the [aet that it factors Harish·Chandra·s spherical Fourier transfol'm in 

accordance \Vith the follo\\'ing diagram: 

C ( T.'\CI T.') Abel Transform C ~ 1\. 1 1\ -------"'----....,.p :' (.4.; n') 

Haris·Chandra '5 
spherzcal transform 

Euclzd/fl1l FOlll'lf,. 

transfor'm 

where 'H(A-; ll') stands for the space of n'·im'ariant fUIlctions on ....t- wllirh 

are of exponential type (see Helgason [1:2]). Thus. certain problems of FOllliC'! 

analysis on G I!{ may be translated to equivalent questions of classical FOI!! ie! 

analysis on A, The establIshment on an inversion formula for the :\ 1)1'] tl all~

[orm which is "sufficiently explicit" and preserves the <;upport of rUIle! iou" J:" 

of central importance in the use of this dictionary, 
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I3y a t'cprcsenting meaSUl'e for the Abel transform we mean an assignment 

which to each a E A associates a measure Va on A such that 

Tf(a) = J f(x)dva(x), a E A 
A 

Its existence and properties may be easily established by first considering the 

wcll-known representing measure for the dual of the Abel transform. 

Definition 3.2: The dual Abel transform is the map T"' : COO(A: lV) -,. 

C= ( X\ G / JO:) defined by: 

T- F(g) = J F(exp(H(gl.·))) exp[-p(H(gk))] dk, (3.3) 
1\ 

whcrc the map 9 I--t H(g) is the Iwasawa projection of G onto A. Using 

the expression d( kan) = exp(2p(log( a))) . dk da dn for the Haar measure on 

G In the Iwasa\'.ra decomposition. one easily establishes the following duality 

relation: 

J Tf(a)F(a)da = J f(g)T-F(g) dg. (3.4) 
A G 

wherc f E C:(K\G/ l\) and FE COO(A: IV). 

If a E ri wc let C - Hull(a) = exp[Convex hull of ~V . log(a)]. It is weIl 

known (see Hclgason (12J, Ch. IV, Theorem 10.5 and Corollary 10.12) that 

for each rcgular a E A there exists a positive function J(a,·) E V(A) such 
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that: 

1. T-F(a) = f F(x)J{(a,x)d-r, FE COO(A: H'). a E A 
A 

2. The support of the measure dll a (x) = JO; (a. x) dJ.· coincides 

with the set C - Hull(a) whenever a is a rcgular element 

of A. 1 

Lemma 3,6: Let f E C':(]{\G/ J(), then its Abel transform Tf mel) \W 

expressed as: 

Tf(a) = 11~/l J f(x)I\"(x.a) 18(x)! d-r. Va E A. 
A 

Pro of: The polar decomposition G = J{ A. T JO; leads ta the intcgration for

mula: 

J 6(g) dg = J 6(a)E(a) da = II~ï J 6(a) IE(a)i da 
G A+ .4 

where 8(a) = ILeR+ (e~(H) - e-Or(H))~g(a)' The stated result follo\\'.;; Irnme(lI-

ately from the duality relation 3.4 .• 

Consider an involutive automorphism r of G which commutes with (J" ;\:, 

usual we let G[r] stand for the analytic subgroup of G which corresponds tü 

the subalgebra gr of Q and we write 

9 = k n gr + k n q + p n gr + p n q 

as in 1.16. 

5.) 



Definition 3.7: An involutive subgroup G[i] will be called elementary in 

Cél'3C the following conditions are satisfied: 

1. p n gT contains a maximal abelian subspace A of p. 

2. for each root Q E R(9. A), either 9c. ç gT or 9c. ç q. 

3. if;3 E R(9, A) is such that g;3 ç q then a do es not vanish on Centre (97")n 

A. 

Remark: Under the above conditions. the root system R associated with 

the pair (9, A) decomposes into two disjoint subsets. R = R(T)US, where 

R(T) is the root system of (gT, A) and S is the set of aIl those roots in R 

which rail to vanish on Centre(ÇT) nA. If we choose compatible orderings 

on Rand R(T) we then \\Tite: 

50 that ,\' = '\(T) :: ,('. 

Lemma 3.8: Let G[i] be an elementary subgroup of G. Given compatible 

Oldcring'3 on R(9,A) and R(ÇT,A) then: 

,\r is a commutative ideal of.V and G[r] normalizcs il. 

2. if A is the analytic subgroup of G corresponding to Al then the map 

6 : '\(T) x, \" -+ N, 9(.\", Y) = exp(X) exp(Y) is a diffcomorphism onto. 
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Proo{: 

1. Recall that N(7") ç 97" and ,,(r ç q, 50 that [.\'(r) .• (:] ç .(, \1'1), if 

a, f3 E S+ then for Xc., X/3 E .~. we must have [Xo • X J] E .\·(r): JIU\\('\ l'l, 

the linear functional a + fi fails ta vanish on CeTlt,.e(9~) n A, \\ Illth 

means that a + J~ is not a root in R(,), Therefore [X",. X3 ] ::: II ,lItd 

consequently il is abelian, Clearly [.V .• \l ç [.\'(r),.\l + [.\',.\'] c- .\', 
\\Te can see from the eigenspace decomposition for gr. ~7 = III n ç' + 
A+ LOER .. go, with m = centralizer of A in k. that .\' is nOlmalw'd Il} 

G[r] if and only if [9-0,.\l C • .\. whcne\'er 0: E Rtr)' But. for any IOO! 

f3 E S+, -0: + ,3 is either not a root or -a+ 3 E 5+, since its rest 1 iet Ion 

ta Centre(Ç-) n A+ coincides \Vith 3 and hence must be positi\'t' 

2. If l\'n l't'and .Y are the analytic subgroups which correspond to . \( r)' 

.-\,' and .\" respectivel}'. then it Is cIear that l\'r. k, .V are ail simpl) 

connected and S = S(r) .• \' with NI n .1.\; = (e). The rest of th/' 

argument is standard (see Helgason [12]. Ch, 1\'. Lemma 6,8) 1 

One often needs to express a subdeterminant of a given matrix For (Oll\/'

nience we introduce the following notation: 

Let (E,(,)) be a Euclidian space, Fa subspace \Vith basis {fl.f2 ..... fd 

and 9 E Aut(E). Let 

5i 



j(g; F) is a nume::-ical invariant for the pair (g, F) which does not depend on 

the particular choice of basis {fIl"" fi} for F. In addition. it satisfies the 

following properties: 

1. J(k!]; F) = je!]; F) if k is an isometry of E. 

2. J(gx; F) = je!]; xF)j(x: F) if x E Aut(E). 

On the Euclidian space (g. Ba) we see that 

j(,4d(g):.V)1/2 = exp(p(H(!]))) Vg E G. 

whcrc.V = LOER+ g.:;,. 

For technical reasons. we prefer to express the Abel transforrn as a map 

T ; C~(A'\C/l\') - C':(I\\GjJI.Y) according to: 

T F(!]) = J f(gn))(Ad(g);.\,)ll'2 dn. (3.10) 
N 

In connection with Lemma 3.6, we may now state the following version of 

Aomoto's theorcm (sec Aomoto [2], Theorem 1). 

Proposition 3.l1([3bis] [lOter]): Let C[r] be an elementary subgroup of 

G satisfying the assumptiùns of Lemma 3.8, and for every f E C';'(I\\Gj 1':) 
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let 

7;(g) = J f(git)j(Ad(g);.V)1/2 dît. 9 E C 

fi 

for a sui tably normalized Haar measure dii on :\,T, then: 

1. Tf E C'{' (1\ \ G / f{ n G7') 

2. via restriction to G[r], the Abel transform T on G factors as T = 

1(7') 0 T, where 1(7') is the Abel tl'ansform associateù \Vith the subgroup 

G[r]. 

Proof: \Ve normalize the measures dn and dn(7') on X and ~V(T) respectl\ely 

in accordance \Vith standard convention. then we fix dti 50 that dn = dn(r)dÎL 

1. Ko\\". let 9 E Gand k E f{ n G[T] be arbitrary then 

7](gk) = J ](gkn)j(Ad(g)Ad(l:);.\')l/'2dh 

,v 

J{ n C[T] normalizes J.V and acts as a group of isometries on its Li(, 

algebra • .(', thus presen;ing the measure. l"sing the properties of :3.!) 

we easily obtain 

T f(gk) = J ](gn)j(Ad(g);i!)1/2 dn = t ](0) 

fi 

2. Since t] E C~(f{(T) \C[T]/ He), where K(T) = J{ n CfT]. it fo110\\'5 

that 1(;) 0 Tf is well-defined for elements 9 E G[ T). the rcsult is an 

immediate consequence of Lemma 3.8(2) and the propertics of :L!J • 

59 



An Example G = SL(3, R) 

As an example. let us find an explicit expression for the Abel transform on 

the group of 3 x 3 unimodular real matrices. Here, J( is the subgroup of 

orthogonal matrices, A the diagonal matrices of determinant 1 and N the 

subgroup of UP1)er triangular matrices \Vith l 's in the diagonal. 

Let T be the involutiœ automorphism of C, T(g) = JlgJl. Vg E C, where 

-1 0 0 

Jl= 0 1 0 

o 0 1 

IL is clear tha.t T commutes with (j and G(i] ~ GL(2. R) is an elementary 

subgroup. It can be easily verified that: 

iV -

100 

o 1 u 

o 0 1 

1 x y 

010 

001 

and 

x,y E R 

The Lie algebra A of A consists of those diagonal matrices with entries 

'\1' '\:,!, '\3 for which L '\1 = 0, and we have: 
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For convenience, we will use the J( -spherical functions Zl (g) = Trrzce (gl!1) 

and Z2(g) = Trace((gtgt 1 ), \/g E C, as HI-invariant coordinates on A. TIll' 

jacobian of the map a Ho (Zl(a), Z2(a)) is given by 

with c a positive constant. 

Froposition 3.12: If G = SL(3, R), the Abel transform may bl' e\:pli'~~t'd 

as 

T f(a) = J f(b)K(b, a) 18(b)1 db, a E A 
A 

where K(b,a) is a positive multiple of the real period associated \\"lth the 

elliptic curve 

Proof: \Ve first consider writing Tf(d) == !'vf(dti)j(Ad(J);.")I/2dil as 

fA w(b,d)f(b) 16(b)1 db, where d E A. To do so. wc compute for a gf'ncl'ic 

ft E il the values of Zl (dn) and Z2( dn): 

_ Zl (d) + e2dl x 2 + e2dl y2 

_ Z2(d)+e-2d2x2+e-2d3y2, x,yER 
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whcre d = diag(dl ,d2 ,d3 ) E A. Let b E A+ be the unique replesentative of 

dil for which dit E ]{ . b· [{. and let bl , b2, b3 be its diagonal entries. The 

jacobian of the map h ~ (Zl(dii), Z2(dil)) gives 

Tf(d) = J f(dn)j(Ad(d);.'/)1/2dn =c J W(b,d)f(b)18(b)1 db, 
~ A 

with 

W( b. d) [-e- d1 (ZI(b) - ZI(d))2 - ed1 (Z2(b) - Zl(d))2 

+ (e d2
-

dJ + edJ
- d2 ) (Zl(b) - ZI(d))(Z2(b) _ Z2(d))]-t/2, 

~,0\V let us fix an element a E dwg(al' a2, a3) E A. and for each nt E N(T) 

wc \\rite d(nnd = diag(dt ,d2 .d3 ) the diagonal matrix which corresponds to 

(/111 \'ia the polar decomposition 1\.4:1' K = G. Then by Proposition 3,11(2) 

\\ C may write: 

K(b.a) = J W(b,d(and)j(Ad(a):.VT)t/2dnt 
s(r) 

ChaIlging the \'ariable of integration from nI to 

yiclds. after a fc\\! manipulations, the required expression for [{(b, a), • 
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3.2 An Inversion Formula 

For a complex semisimple group Gc , it is known that the Ab<>! tran~rorm i~ 

inverted by the differential operator f r-t OJ, where JE C-':;(.-l: 11') dlld 

1 
Of(exp(H)) = 8' H)) . II à(JJù)J(exp(H)) 

\expl 0>0 

(see [3] [8]). Analytic continuation ma)' then be us<>J tü invert the ·\lwl 

transform for normal real forms. 

Proposition 3.13: Let G be a normal real form of Gc , F E C~(A.: 11"). 

and t E C~(A.: IF) the uniquely defined function satisfying F(c'\.p( Il)) = 

F( exp(2H)) V H E A. Then the inverse Abel transfol m for G m(\~ be ex

pre~sed as: 

(T-1F)(exp(X)):::: c J (OF) (hexp C~)) dl! . . r E p. 0,11) 
Kc 

where Oexp(H) = 8\e,,~(1i)) [TIo>oô(Ho)1e"p(ll)' and c is a positive con:'lilnt. 

Proof: Recall that the .\bel transform may be \'ie\\ed as the spherical t rar:~

farm followed by the imerse (Euclidian) Fourier transform. Let 1.'(t \:111 ri' 

denote the right-hand si de of 3.14 and let us apply 1.3l to both side.,. ,jlt'll 

Consequent!y, 

TljJ(exp(II)) - j J,p)el,\(Jl) d,\ = c· j(OF)"'(I\)c'I\(II/:!) cl /\ 
Ao Ao 
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- t (exp (~) j = F(exp(H)) 

as requircd .• 

As ail example, we gi"e an explkit expression for the inverse Abel transform 

in the case G' = 5L(3. R). 

Let us consider a regular element x E p of the form 

o 
x = 0 -2Xl 0 

o 

and fix and Iwasawa decomposition for Kc such that evcry element h E A'c 

has a unique expression 

h = ~" exp [c (~) 1 exp[A(t)]. 

with " E ]\'. 'W E C. tER. 

0 :: 

in 
0 0 it 

CC::) = :: 0 and A(t) = 0 0 0 

0 -1:: -it 0 0 

011t' cdsily verifies that the unitary transformation 

1 0 l 

1 
J2 u=- 0 0 J2 
0 1 

6·1 



commutes with x and transforms by conjugation A(t) into the diagonal ma

trix H(t) = dlUg(t.O.-t). resp. U(wjyf.i) into the upper triangulaI' m.tllix 

a U' a 
V(w) = 0 0 IlL' 

o 0 a 

\Vriting w = Re-lB and applying the unitary transformation 90 = d/II!J\ ( HÎ. 1. ( - ,j 1 

finally gi\'es: 

+::c = 2,,-

7-
1 
F(exp(x)) = c· J J J OF (exP[V(R)]exp[Htlexp [.-ld!.1u)I]) dO l?t!f?'/I 

--:><> 0 0 

Again. we may use Gc spherical coordinate" on Ge in Glder tu t'''PI (' ... " 

7-
1
F(exp(x))intheformatofProposition312. If\\clet Zdg) = TrU('I'V-'!1 

and 2.2(g) = Trace((g-g)-l) then for 9 = exp~\"(R)jexp~Ht]t:'xp[ .. ld(!J,;lr/:.!: 

we haye: 

ZI (g) - e" Ch(x,) [e" + (1 + ~'r e-"] oC (1 -'- R' l' -l" 

+ t- x1 Sht.r2)R 2 sin(20) 

Z,(g) - e-" Ch(x,) [e" + (1 + ~' r e-"] -;- (1 -;- R' l' '" 

- eX1 Sh(x2)R2 sin(20) 

By performing computations similar ta tho~e that apP<'éll in PI'OpO'5lt 1011 '~ 1:2 

we finally obtain: 



Theorem 3.15: Let G = SL(3. R) and F E C.;"'(A; Hl) then the im'erse 

:\b('1 tran:,form 7-1 F of F may be expressed as: 

Y-1F(exp(x)) = J OF(b)!{(b.exp(x))lo(b)1 db 
A 

\\ IH'l'C [\' ( b. exp( x)) is a posi tiw (constant) multiple of the real period which 

(ollcsponds to the elliptic cun'e 

\\" hcrc 

y2 = (BZ _ DZ)(l _ w2) (w _ A - C) (u, __ A_+_C_,) 
B-D B+D ' 

A - e2XIZdb)-e-z.rIZ2(b) 

B - Sh(xz) [e-x1ZI(b) + eX1Z2(b) - 2Ch(3xd] 
C - Ch(Xl) [-e-X1Zl(b) + eX1Z2(b) + 2Sh(3x I)] 

D - -1 Ch( X2 )SIz( X2). 

x - diag(xi + X2. -2XI, Xl - X2). and 

1 
Of(exp(H)) = Mexp(H)) oIJ.o a(H.,)f(exp(H)). 

Remark: The A bel transform Cc = y Ht of the heat kernel on a s\'mmetric 

space G / !\' IS the fundamental solution of the following Eudidian diffusion 

ploblem: 

L T' 1 12 " aUt 
AV't - Po Vt = al 

("t'(' IIt'lgason [11], Corollary 5.20), 

Ld lIt bl' the heat kernel for 5 L(3, R) then we have the simple expression 

1 1 1
2

t [llII5] 7 lIt(cxp(H)) = cC e- Po 0 exp -41 for II E A. 

66 



\Ye may then apply Theorem 3.1.5 to solve for Hl: 

Ht(exp(X)) = ct-4e-l.5oI5t J exp [-I~}5l A"(exp(Hl. exp(X)) 1 rI 0(11)1 ri If. 
V+(X) 0>0 

(:~ J(;) 

where X = diag(xl + X2, -2Xl, Xl - I2)' J\(.,.) Îs the k('rnel de:-,clIbt'd III 

Theorem 3.1.5, and the integration is to be o.rried out O\'Cr the domalll 

V+(X) = {H E A 1 exp(X) E C - Hull(exp(H))} 
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Notes 

Chapter 1 

1 he elementary discussion in the first t\\'o parts of Chapter 1 constitutes what 

cotlld be described as standard kno\\'lecige in Lie Group Theory. "-hene\-er 

po,>slble. a specifie reference is given (sources are mainly [I1J. [12]. [2:2]. and 

[nter]). In sorne cases. no direct reference coulci be found. Thus. Lemma 

1.~9 gC'neralizes a discussIOn on root systems in [ï]§:2 and Lemma 1.1-1: is 

c0ll1p1etcl2' clcrnentary and probabl} well-known. 

Chapter 2 

TIl(' proof of Proposition 2.8 differs slightly from the argument glven by 

Fkn:-.tcd-J(,llscll ([i]. Examplc. p 131-132). It refiects my own unclerstanding 
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at the time of writing. Howe\·cr. as has been pointed out by Carl IIt'll. t!t(' 

relation between the Casimir operators for G and Ge ([7]. ·1 12 ,lll.! 1 11) 

leads to a much shorter proof. 

Proposition 2.1.5 represents one of my contributions to tht' subjPI 1 .11'.\11 

Philippe Anker had obtained. in [l]§2.-1. the upper bound 

Ht(exp(H)) ~ C(T)t-d/ 2 TI (1 + Q(H)dJnIÇae-Po(ll)-Ij{I~/lt. 
oER; 

\vith 0 < t ::; T. H E At. and he con je ct ureel that dim(Çù) cOlllJ be Il'pl,\c,·d 

by 1/2 dim ço. Our estimate is qualitatively different. since Il Îs expre..,'('<! (1:

a first order expansion in t1/ 2 • Our estimaie docs not pro\'c the C()!lj('( t 1Jr('. 

but appears to support it. since 

Co(H) ~ il (1 + o.(li))J/Zd:m(Çale-,'otH) 

ClEIq 

As far as the error term is concerned (see Proposition 2.15t ~ 1 \. It ha" hl"'lJ 

pointed out by both Carl Herz and Jea.n-Philip?e Anker that an l;l~PIC)\I·d 

version is possible on account of the parity of the functlOn ~ ~ !Z/ [nd'·l·d 

this leads to an asymptotlc expansion for Ht (t sman) in powel s of t [,\llw[ 

than t 1/ 2. Howc\·er. an estimate for 

must thcn he provicled. and this appears to givc SOtT1C' clifficulti('~ 
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:\" Professor Anker has indicatcd. there is a completely different approach to 

tlH' -;tudy of the small timce asymptotic behaviour of the Heat I\ernel based 

Ol! gencral Plinciples (see ~Iinahshisllndaram-Pleijel asymptotics [.Je] Ch III 

~:1--1). It is not clear if such an approach may pro\'ide an existence proof for 

the ... maIl time asymptotic expansion. s a convergent power series. 

Ploposition 2.16 represents our second partial contribution to the subject. 

Ho\\·c\er. it must be noted that the cases SL(2.R) and SL(3.R) had already 

been established by Patrice Sawyer [20bis] USll1g different methods An upper 

bOllnd in the case of normal l'cal forms has also been giwn by Jean-Philippe 

Anker in [1]§~..!. namely 

Ht(exp(II)) ::; C(T)t-n/ 2 II (1 + Q(H))e-lpol~-po(H)-IHoI5/.jt. 
a>O 

with t> O. JI E A-. 

Chapter 3 

The slight ly WOI e claborate version of Aomoto's theorem (Proposition 3.11) 

has bcen known in perhaps slightly different form by Hba A. [lOter]. Further

mon'. the gC[lf'ralization of Aomoto's theorem was also stlldiecl by Bcerends 

H . .J. in [:lbis]. 

FOI 8L(:3. H). Propo~ition 3.12 expresses the Abel transform in a slightly 
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more elegant form than in (3]§6 (also [3bis] Chap. III). Ho\\'c\'('r, tlw r(,~\llt 

itse1f was kno\\'n to Patrice Saw:cl' [20bis]. 

The inversion formula (Propo~ition :3.1:3) appears to hase lwen kn~)\\n Il) tilt' 

experts but was apparently ne\er uscd in explicit form. It mu--I lit' Iwted 

that in the case 5 L( 3. R) (Proposition 3.15) the result is implicd III 1 ht' work 

of Patrice Sawyer [20bis], who obtained an explicit expressIOn fOI th(· Beat 

Kernel using different methods. 

\\"e \Vish to acknowledge the assistance of Professor Cati IIelz in r('mo\ ln!! 

sorne obscurities and inadequacies in the original version of the t('\:t. :\'i 

a result. Lemma l.lï now has a complete proof. and vanous mi'3pllllt ... 01 

awkward notational incon\eniences ha\'e becn lJfteJ. \\'c are also indcbt('d to 

Professor Jean-Philippe Anker for IllS thorough re\'ie\\' of the original te'\t 

His various comments WCle incorporateJ alongside those of Carl Herz to 

form the greater part of thcse notes. The extended bibliography (appearing 

\\ith additional entnes [ ... bis1. [ ... ter]. etc .. ) also l'cHens Professor \d.c!·" 

contribution and bas allo\\'ed us to focus on the rele\'ance of the rl'~11lt,:: in 

relation to prc\'ious \York in the area. 
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