108, 1B ALDAT LANGUAGE

by

Jeff Parkovnick

In Conjunction with

T.H:. Merrétt
Bob Reckhow
Ragui Kamel

Lily Lam

good 1uat of 2pamples

(4247
?n}orégl

The limerick packs laughs anatomical
Into space that is quite economical
But the good ones |'ve seen
So seldom are clean,

And the clean ones so seldom are comical.

s Introduction

This paper is a language manual for ALDAT- An Algebraic
Database lLanguage, proposed by T.H. Merritt and designed
by the class of Compilier Construction at McGill University.
This version is a prototype, to be used as a model for

further work in this field.

o oo N LN -

2 Syntax of ALDAT-1

Backus—-Naur Form (BNF)

Note: the following symbols are meta-symbols belonging to the BNF formalism,

and not symbols of the language ALDAT.

The curly brackets denote possible repetition of the enclosed symbols zero or

more times. In general,

A

::i= { B }

is a short form for the purely recursive rule:

A ::= <EMPTY> | AB
BNF
<PROGRAM> ::= MAIN <PROGRAM HEADING> <BLOCK> EOF _|_
<PROGRAM HEADING> ::= <IDENTIFIER> ;

<RELATION LIST>
<RELATION NAME>
<RELATION TYPE>

<BLOCK> ::

.

| <IDENTIFIER> (<RELATION LIST> { ; <RELATION LIST> }) ;
<RELATION NAME> {, <RELATION NAME> } : <RELATION TYPE>

I

<IDENTIFIER>

INPUT

| oUTPUT

| UPDATE
<MACRO DECLARATION PART> <DOMAIN DECLARATION PART>
<VARIABLE DECLARATION PART> <DOMAIN ALGEBRA PART>
<STATEMENT PART>

o 00 N O WD

<MACRO DECLARATION PART> ::= <EMPTY>
| MACRO <MACRO DEFINITION> {; <MACRO DEFINITION> } ;

<MACRO DEFINITION> ::= <MACRO NAME> = <STRING>
<MACRO NAME> ::= <IDENTIFIER>
<DOMATN DECLARATION PART> ::= <EMPTY>

| DOMAIN <DOMAIN DEFINITION> {; <DOMAIN DEFINITION> } ;
<DOMAIN DEFINITION> ::= <DOMAIN NAME> {, <DOMAIN NAME> } : <COMPONENT TYPE>
<DOMAIN NAME> ::= <IDENTIFIER>
<COMPONENT TYPE> ::= <TYPE IDENTIFIER>

| ARRAY (<SIGN> <UNSIGNED INTEGER> .. <SIGN> <UNSIGNED INTEGER>)
OF <TYPE IDENTIFIER>
<TYPE IDENTIFIER> ::= INTEGER
| CHARACTER
| BOOLEAN
<SIGN> ::= +
I =
| <EMPTY>
<VARIABLE DECLARATION PART> ::= <EMPTY>
| VAR <VARIABLE DEFINITION> {; <VARTABLE DEFINITION> } ;
<VARIABLE DEFINITION> ::= <VARIABLE OR RELATION NAME>
{, <VARIABLE OR RELATION NAME> } : <TYPE>
<VARIABLE OR RELATION NAME> ::= <IDENTIFIER>
<TYPE> ::= <COMPONENT TYPE>
| RELATION ON (<DOMAIN NAME> {, <DOMAIN NAME> }) <RELATION SIZE>

<RELATION SIZE> ::= <EMPTY>
| SIZE = <ARITHMETIC EXPRESSION>

<DOMAIN ALGEBRA PART> ::= <EMPTY>
| LET <DOMAIN ALGEBRA SECTION> {; <DOMAIN ALGEBRA SECTION>} ;

O W M ~N o

ﬁDOMAIN ALGEBRA SECTION> ::= <DOMAIN NAME> BE <DOMAIN ALGEBRA EXPRESSION>
<DOMAIN ALGEBRA EXPRESSION> ::= <BOOLEAN EXPRESSION>
| <ASSOCIATIVE OPERATOR> OF <BOOLEAN EXPRESSION>
| <ASSOCIATIVE OPERATOR> OF <BOOLEAN EXPRESSION> FOR <DOMAIN NAME>
| <BINARY OPERATOR> ON <BOOLEAN EXPRESSION> FOR
<ARITHMETIC EXPRESSION> PREV <DOMAIN NAME>
| <BINARY OPERATOR> ON <BOOLEAN EXPRESSION> FOR
<ARITHMETIC EXPRESSION> NEXT <DOMAIN NAME>
| <BOOLEAN EXPRESSION> FOR <ARITHMETIC EXPRESSION> PREV <DOMAIN NAME>
| <BOOLEAN EXPRESSION> FOR <ARITHMETIC EXPRESSION> NEXT <DOMAIN NAME>

<BOOLEAN EXPRESSION> ::= <LOGICAL TERM>
| <BOOLEAN EXPRESSION> | <LOGICAL TERM>
<LOGICAL TERM> ::= <LOGICAL FACTOR>
| <LOGICAL TERM> & <LOGICAL FACTOR>
<LOGICAL FACTOR> ::= <LOGICAL PRIMARY>
| ™ <LOGICAL FACTOR>
<LOGICAL PRIMARY> ::= <ARITHMETIC EXPRESSION>

| <ARITHMETIC EXPRESSION> = <ARITHMETIC EXPRESSION>
| <ARITHMETIC EXPRESSION> < <ARITHMETIC EXPRESSION>
<ARITHMETIC EXPRESSION> ::= <TERM>
| <ARITHMETIC EXPRESSION> + <TERM>
| <ARITHMETIC EXPRESSION> — <TERM>
<TERM> ::= <FACTOR>
| <TERM> * <FACTOR>
| <TERM> DIV <FACTOR>
| <TERM> MOD <FACTOR>
<BASE>
| <BASE> EXP <FACTOR>

<FACTOR>

<BASE> ::= <PRIMARY>
| (<DOMAIN ALGEBRA EXPRESSION>)
| + <BASE>
| - <BASE>

<PRIMARY> ::= <DOMAIN OR VARIABLE NAME>
| <DOMAIN OR VARIABLE NAME> (<ARITHMETIC EXPRESSION>)
| <UNSIGNED INTEGER>

| <STRING>

<DOMATN OR VARIABLE NAME> ::
<ASSOCIATIVE OPERATOR> ::=

|
&

o
%

MAX
MIN
| <FU

<IDENTIFIER>

NCTION NAME>

<FUNCTION NAME> ::= <IDENTIFIER>
<BINARY OPERATOR> ::= <ASSOCIATIVE OPERATOR>

|

| DIV
| MoD
| ExP

<STATEMENT PART> ::
<STATEMENT LIST>

BEGIN <STATEMENT LIST> END
<STATEMENT> {; <STATEMENT> }

<STATEMENT> ::= <STATEMENT PART>
| <VARIABLE NAME> := <BOOLEAN EXPRESSION>
| <VARIABLE NAME> (<ARITHMETIC EXPRESSION>) := <BOOLEAN EXPRESSION>
| <RELATION NAME> :+ <RELATIONAL EXPRESSION>
| IF <BOOLEAN EXPRESSION> THEN <STATEMENT> ELSE <STATEMENT>
| WHILE <BOOLEAN EXPRESSION> DO <STATEMENT>

<RELATIONAL EXPRESSION>

<RELATIONAL OPERATION>

b
o

<BOOLEAN EXPRESSION> {, <BOOLEAN EXPRESSION> } "

| <RELATIONAL OPERATION>

::= <RELATION>

| <RELATION> <| <DOMAIN NAME> {, <DOMAIN NAME> }

<RELATIONAL OPERATOR> <DOMAIN NAME> {, <DOMAIN NAME> }
|> <RELATION>

N /s

i7 <RELATION> ::= <RELATION NAME> A #4945 e 42
8 | <RELATIONAL OPERATION> ol :
)9 | <RELATION> <| <DOMAIN NAME> {, <DOMAIN NAME> } |>
00 | <RELATION> <* <BOOLEAN EXPRESSION> *>
.01 <RELATIONAL OPERATOR> ::= <
102 =
103 | 1JOIN
L04 | UJOIN
L05 | DJOIN
106 | sJoIN
107 | LJOIN
108 | LORAN
109 | HIRAN
110 | LTJOIN
111 | LEJOIN

| DIVREL

112

2 Constants

Numeric constants are restricted to integers at this time. Real numbers

will be implemented in a latter version of the language.

<UNSIGNED INTEGER> ::= <DIGIT> { <DIGIT> }
<DIGIT> ::= 0|1|2|3|4|5|6|7|8|9
sequence EBCDIC
String constants are any of valid EPE€E¥PEE-—characters enclosed in

quotes. If the string is to contain a quote mark, then this quote mark is to be

written twice.

NOTE: there are no string functions implemented in this version. Functions to be

implemented later include:
1) Concatenation
2) Substring
3) Byte

as dn BPL:

The length of a string is limited to 256 characters. dn 15&514”6“4*57L,7ﬁ£””ﬁ“€ o
Ahe ,t%za CHARACT ER mand

A L2l it foch A

EXAMPLE : mzarlal Ahing Ao aungd weallow «a
"HELP' 'BUGGER OFF' 'poN' 'T' ¥ avray #M Thua m,y

dondlons Kawe mo pua Wﬂ@y
ajuﬁ&béﬂgﬂéf Raraclona,

Boolean constants are the predefined variables 'TRUE' and 'FALSE'.

They are assigned using production 66 in the grammar.

EXAMPLE:

A := TRUE;

Constant RELATIONS are formed by assigning a constant tuple to a RELATION

declared in the program.

g) luins eakt e skl domaion namid,
/ﬁw’*%ﬂo/yww o e

VAR: A RELATION ON (INTEGER,INTEGER,CHARACTER);

BEGIN

At @888284,6915134, 'JEFF'@;
0l e 1
END M‘?‘W phoiks

4 Identifiers

Identifiers serve to denote constants,variables,domains and relationms.

<IDENTIFIER> ::= <LETTER> { <CONTINUATION CHARACTER> }
<CONTINUATION CHARACTER> ::= <LETTER>

| <DIGIT>

| <BREAK CHARACTER>
<LETTER> ::= A|B|c|D|E|F|c|H|I|J|k|L|M|N|o|P|Q|R|S|T|U|V|W|X|Y|Z

<BREAK CHARACTER> ::= _|#

RESERVED WORDS

BE LET THEN SJOIN
DO MAX TRUE UJOIN
IF MOD ARRAY WHILE
OF MIN BEGIN MACRO
ON VAR DJOIN DIVREL
DIV ELSE FALSE DOMATN
END MAIN HIRAN LEJOIN
EOF NEXT IJOIN LTJOIN
EXP PREV INPUT OUTPUT
FOR SIZE LJOIN UPDATE
LORAN RELATTON
5 Comments

Comments, defined by:

0

10

<< ANY SEQUENCE OF SYMBOLS NOT CONTAINING '"'>>" >>

may be inserted anywhere in a program, and may be removed without altering

the meaning of the program.

6 Declarations

6.1 Domain Declarations

Domain declarations, productions 14-22, allow the definition of six

types of domains; scalar or array domains in INTEGER,BOOLEAN,OR CHARACTER.

EXAMPLE:

DOMAIN
K,L,N.P,X.,¥ ;: INEEGER;
Q,R,S,M : CHARACTER;
T,0 : BOOLEAN;

Z0O : ARRAY (-1 .. 5) OF INTEGER;

In the future, the ability to define user types (as in PASCAL) will be added,

4’7 e4 O‘F
allowing the user to define his ownjdomains.

6.2 Variable Declarations

11

Scalar variables are standard.

EXAMPLE:
VAR
A,B,C : INTEGER;

D,E,F : BOOLEAN;

- ~
ARRAYS are restricted to one-dimensional vectors. Indexes are an(i;;;;;;; \

" }

subset of the Integers.

EXAMPLE:

VAR
A,B,C : ARRAY (-50 .. 50) OF INTEGER;

D : ARRAY (0 .. 100) OF BOOLEAN ;
RELATIONS are divided into three classes:

1) Relations external to the program (ig, on a database).
NOTE: these relations must be declared with the same domain
names as used on the data base.

2) Relations declared in the program and output to the database
at program's end.

3) Relations declared in the program and deleted at program's end.

Classes 1 and 2 must be declared in the parameter list of the program

12

as either INPUT , OUTPUT, or UPDATE (productions 1-8).

Relations are declared using previously declared domains. The size (
ie number of tuples), or the expected size of the relation must be given.
This size can be a constant, or an expression based on the size of a relation

on the database.

EXAMPLE:

Let 1) A and B be relations on the database, A with 20 tuples,
B with 40 tuples.
2) C is a relation declared in the program and is to be deleted
at the end of execution
3) D is a relation declared in the program and is to be output to
the database
4) The domains are as follows:

A(X,Y) B(R,T,S) c(P,Q) D(K,L,M,N,0,P)

The declarations are as follows:

MAIN
FRODO (A,B : INPUT ; D : OUTPUT);
DOMAIN
X,Y,P,K,L,N : INTEGER;

Q,R,S,M : CHARACTER ;

VAR

NOTE: the domain

ie A : RELATION

and C : RELATION

D : RELATION

are illegal.

T,0 : BOOLEAN

¢t RELATION

: RELATION

¢ RELATION

¢ RELATION

ON

ON

ON

ON

)
; ﬂjd¢#1 ﬁu::ﬁ;i}ymdfgl

:
(R,T,S) SIZE = B

(P,0) SIZE = A*2 3

(X,L,M,N,0,P) SIZE = A*4+2%B+10 ;

names in a program must be unique.

OGN €E, k)

ON €Z,00s)

ON (z,...)}',wma%w&mmﬁvmm.

14

7 Domain Algebra

"Domain algebra allows the programmer to define a domain to be
the result of any operation on other domains or domain-occurrences
independently of any relation. The resulting domain is (and the
operand domains may be) virtual domains: they exist only as the
defined result of some expression in the domain algebra. These
virtual domains become actual domains (with explicitly stored
values) only when actualized by the programmer and then only if the
operand domains are actual or can be actualized for the relation
concerned. Most commonly, actualization takes place in a relational
operation which generalizes projection, although explicit use of
a virtual domain in a join or other operation may actualize the domain.

The operators of domain algebra fall into two categories, which
may be termed horizontal and vertical. The horizontal operators
work entirely within a given tuple, and produce a virtual domain
which can be regarded as an extension of the tuple. Virtual
operators combine values of the same domain-occurrence for many
tuples.”

T.H.Merrett
MRDS=An Algebraic Relational

Data Base System

15

The form of the domain algebra expression choosen would depend

on the usage (productions 34-43).

Domains to be used in examples are as follows:

DOMATIN

QUES1,QUES2,QUES3

¢t INTEGER;

TESTi1,TEST2,TEST3,GRADE,STUD_NO : INTEGER;

: BOOLEAN;

Values of these domains are:
TEST1 TEST2 TEST3 QUES1 QUES2Z QUES3 CLASS
90 85 87 TRUE FALSE TRUE 1
65 70 73 FALSE TRUE TRUE 0
80 75 AT fe TRUE TRUE FALSE 0
D 7 80 TRUE TRUE FALSE 1
80 77 83 FALSE FALSE TRUE 1
GRADE: 9 8 9 10 9 9 9 10 8 8 10 7

STUD_NO:

B ary 1203 1 Fndedt 2l

16
Form 1
LET <DOMAIN NAME> BE <BOOLEAN EXPRESSION>

<BOOLEANl EXPRESSION> reduces to a new domain which is then

assigned to <DOMAIN NAME>.
EXAMPLE:

1) domains testl,test2,test3 contain the marks for the class

for three mid terms. Find the average mark of each student.
LET AVERAGE BE (TESTI1+TEST2+TEST3) DIV 3 ;

2) a questonare was given the class, with the answers stored

in quesl,ques2,ques3. Find all students who answered question
1 and 2 TRUE 5%% question 3 FALSE.
LET ANS BE QUES1 & QUES2 | - QUES3 ;

AVERAGE: (87 69 77 77 80)

ANS: (FALSE FALSE TRUE TRUI FALSE)

11574
For the next two forms, the operator is associative, since the
tuples in a relation are in no particular order, and any other

operation will have order-depentent results.

Form 2

LET <DOMAIN NAME> BE <ASSOCIATIVE OPERATOR> OF

<BOOLEAN EXPRESSION> :{ FOR <DOMAIN NAME> }

A domain is produced, which is then acted upon by the operator

with or without the use of a control domain.

EXAMPLE:

1) find the maximum mark from the previos example

LET MAXMARK BE MAX OF AVERAGE ;

2) assume the class was divided into two sections, as given

by class. Find the maximum mark in each section.

LET SECMAX BE MAX OF (TEST1+4+TEST2+TEST3) DIV 3 FOR CLASS

18

3) in the questionare, did all students answer the

questions in the desired manner
LET ALLANS BE & OF ANS ;
4) by section

LET SECANS BE & OF ANS FOR CLASS ;

MAXMARK: (87 87 87 87 87)
SECMAX:n €87,77 17,87.81)
ALLANS: (FALSE FALSE FALSE FALSE FALSE)

SECANS: (FALSE FALSE FALSE FALSE FALSE)

Form 3

LET <DOMAIN NAME> BE <BINARY OPERATOR> ON <BOOLEAN EXBRESSION>
i - >
FO%APREV <DOMAIN NAME>
-

NEXT

19

In the next two forms, the operator class has been expanded

since in historical reduction, the tuples are assumed to have an

order.

This form allows operations on n tuples forwards for backwards

in the domain.
EXAMPLE:

1) a class has weekly tests, with marks put in a relation
with domains grade and stud_no. Find the average for two

consectutive test thru the term

LET PROG BE (+ ON GRADE FOR 2 PREV STUD _NO) DIV 2 ;

dmizn0%i01?

%MW

PROG: (9°-8°'9. 9 8 99 9 8 8 10 .7)

Form 4

LET <DOMAIN NAME> BE <BOOLEAN EXPRESSION> FOR
<ARITHMETIC EXPRESSION> PREV <DOMAIN NAME>

NEXT

20

The domain formed is shifted up or down n tuples after

being sorted by the control domain.
EXAMPLE:

|t dpod

1) sort the domain grade so that the first n tuples are the /ﬂdq%u%q

first students marks,etc .ﬂwa4ﬁ4L
MARKS =
GRADE,

Ahe

f’f ,ﬁ,fﬂumn 3

MARKS: (9 10 9 8 = 8 9 10 10 - 9 9 8 7) /,/hm"

T

p——

LET MARKS BE GRADE FOR O PREV STUD_NO ;

MW@MW (STUD_NO m Mhose 2ramgles) an

Riitornical podudton muet Leo Ry . Ihal 42 nraluts

O_ﬁﬂu@ W?W,&?W Mwwﬁ‘/’&d
WWW%W Jo»ﬂwwwé

wﬁw&/
W G rmain TESTORTE et be i
and e $TUD-ND et wordl M@L@M’“Nﬁ”’(

aomihow Ao Mamwﬁ%'fﬁ Cach wati- GRADE,

Expressions

(o]

There are two levels of expressions implemented in ALDAT.
The first level is standard arithmetic expressions, similar
to those in PASCAL or BPL. The second level is that of

relational expressions, the "raison d'etre" for ALDAT.

8.1 Arithmetic Expressions

As mentioned before, string functions have not be included
in this version of the language. In addition, only integer
values are valid.The priority of existing operators Is

as follows:

Unary + and -

EXP (exponentiation)

AND DIV (integer division)
+ and -

{ and =

-

&

EXAMPLES

*

A+ B =* (ADIV 3)
A&B&-¢

(A EXP 2) + (B EXP 2) - 20

s

O

o2 Relational Expressions

Relational expressions are used to preform bulk operations

on files in a database. Possible operations are:

A) Projection

Projection is the act of assigning domains from one relation
to another relation. In this transfer, duplicate tuples are eleminated.

(production 399)

EXAMPLE:

A KL XEY LD
if X = (2 2 3 4)
and Y = (2 2 L4 6)

then the resulting relation will have two domains with values

(2 3 4) and (2 4 6)

B RESTRICTION

In restriction a boolean virtual domain is used to eliminate
unwanted tuples from the relation. If element (i) is true, the

corresponding tuple is kept, otherwise it is ignored.

EXAMPLE:

Using testl and test?2 defined on page 15, and Q, a virtual domain

defined as:
LET Q BE (TEST1+TEST2)<80;
|f MARKS is the relation containing testl and test2 then

MARKS <* Q =*>

will result in a relation containing students whose marks are

less than 80 (ie tuples 2 3 L 5

C) CONSTANT TUPLE

Used to add a tuple to the end of a relation. See example on

page 8.

24

D) Joins
A list of possible joins is given on page 6. The syntax of
such an expression is given on page 5, production 96.

Further joins will be implemented in future versions of ALDAT™

NOTE: in a relational expression, a relation can appear only

once. Also domain names in the program must be unique.

3J Statements

9.1 Assignment statements

Assignment statements serve to replace the current value of a
variable by a new value specified by an expression. Relational
assignment statements use a dlfferent syntax (:+ instead of ")

EXAMPLE:

A :=B;
Al 5)z:= X EXP 2 ;

H :# G <] DE |> ;

9,2 |F - Statemebt

25

The if statement specifies that a statement be executed only

if @ certain condition is true.

EXAMPLE:

IF A=1 then B:=2

EESE B:= 1

9.3 While statement

The while statement specifies that 1 statement be executed until

a certain condition is found to be false.

EXAMPLE:

WHILE A<10 do A:=A+1

There was a young lady called Gloria
ltlho was had by a Major Pretoria.

She was had by more men

And then had again

By the Band of the Waldorf Astoria

