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Abstract

Conformal prediction is a valuable framework for uncertainty quantification. This method

produces prediction results with coverage guarantee under minimal assumptions. The

thesis reviews recent developments in conformal prediction. It summarizes different cali-

bration strategies applicable to conformal prediction algorithms, as well as various exten-

sions of conformal prediction framework that are conditional valid or valid under non-

exchangeable conditions. Finally, the thesis attempts to explore the feasibility of logits-

based nonconformity scores. We examined two logits-based methods adapted from ex-

isting conformal prediction algorithms based on estimated probabilities. An empirical

comparison of these methods was conducted through image classification application.
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Abrégé

La prédiction conforme est un cadre précieux pour la quantification de l’incertitude. Cette

méthode produit des résultats de prédiction avec une garantie de couverture sous des

hypothèses minimales. Cette thèse passe en revue les développements récents de la

prédiction conforme. Elle résume différentes stratégies de calibration applicables aux al-

gorithmes de prédiction conforme, ainsi que diverses extensions du cadre de la prédiction

conforme qui sont valides sous conditions ou valides dans des conditions non échangeables.

Enfin, la thèse tente d’explorer la faisabilité des scores de non-conformité basés sur les

logits. Nous avons examiné deux méthodes basées sur les logits, adaptées d’algorithmes

de prédiction conforme existants, basées sur des probabilités estimées. Une comparai-

son empirique de ces méthodes a été réalisée à travers une application de classification

d’images.
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Chapter 1

Introduction

Conformal prediction is a powerful and flexible framework that allows for the quantifi-

cation of uncertainty in predictive modeling. By constructing prediction sets instead of

single-point predictions, conformal prediction provides a measure of confidence that is

valid assuming only exchangeable assumption. This makes it particularly useful in pre-

diction where reliability and robustness are paramount. The primary goal of conformal

prediction is to ensure that the constructed prediction sets contain the true label with a

specified probability. While the framework offers strong guarantees, real-world data do

not always follow the exchangeable assumption. This thesis explores both the theoreti-

cal underpinnings of conformal prediction and its extensions to more complex scenarios

where traditional assumptions do not hold.

The following chapters of this thesis are organized as follows:

Chapter 2 motivates the discussion of conformal prediction methods through two ex-

amples and delves into the challenges faced by basic conformal prediction algorithms in

real-world applications.

Chapter 3 introduces the fundamental concepts of conformal prediction and discusses

its significance in the context of statistical learning. This chapter explores various ex-

tensions of the conformal prediction framework, including various calibration strategies,

conditionally valid conformal predictors, and conformal predictors for covariate shift and
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distributional shift. These variants expand the applicability of conformal prediction to a

wider range of scenarios.

Chapter 4 presents practical application of conformal prediction on image classifi-

cation tasks using convolutional image classifiers. The chapter explores the feasibility of

designing logits-based nonconformity scores for deep learning-based image classification

tasks. It compares existing probability-based methods: Regularized Adaptive Prediction

Sets (RAPS) [3] and Adaptive Prediction Sets (APS) [33] with two logits-based conformal

methods: APS-Logits and RAPS-Logits which are adapted from the previous two meth-

ods.

This thesis aims to contribute to the growing body of research on conformal prediction

by offering both theoretical insights and practical applications. The subsequent chapters

will provide a detailed exploration of these topics.
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Chapter 2

Conformal Prediction Examples

Prediction has always been an important goal of mathematical models. Machine learning

algorithms provide us vast methods to obtain point predictions producing solutions to

various interesting tasks such as the applications of neural network in facial recognition,

random forest algorithm for credit scoring, support vector machine in protein or cancer

classification, and so on. However, it remains a challenge to measure the reliability of

the predictions made by these ”black box” algorithms. Quantifying the uncertainty be-

comes an important aspect for prediction algorithms to produce meaningful results for

real-world applications such as decision-making in the health care field where prediction

errors may lead to serious consequences.

Reliable prediction intervals with guarantee in coverage probability can be obtained in

various ways. For example, one classic method for producing reliable prediction intervals

for regression problems is using the linear regression models [28]. Given response vector

y = (y1, . . . , yn)
T ∈ Rn and predictor variables xj = (1, x1j, . . . , xnj)

T ∈ Rn, j = 1, . . . , p.

Let X = (x1, . . . ,xp) ∈ Rn×(p+1) denote the n× (p+ 1) design matrix, β = (β0, β1, . . . , βp)
T

denote the regression parameters, and ϵ = (ϵ1, . . . , ϵn)
T denote the error term that is in-

dependent of design matrix X with ϵi ∼ N(0, σ2) for some σ2 > 0. A multiple linear

regression model relating response variable y to predictor variables X can be expressed
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as follows:

y = Xβ + ϵ.

By the least squares method the regression coefficient β can be estimated by solving the

following minimization problem

β̂ = arg min
β∈Rp+1

(y −Xβ)T (y −Xβ),

given the inverse matrix (XTX)−1 exists, we obtain the least square estimator β̂ = (XTX)−1XTy.

The unknown parameter σ2 can be estimated as the residual mean square as follows

σ̂2 =
(y −Xβ̂)T (y −Xβ̂)

n− (p+ 1)
.

Then, to predict a future observation y0 corresponding to predictor variables x0 = (1, x01, . . . , x0p)
T

we can use the point prediction ŷ0 = x0
T β̂ based on the statistic

t =
ŷ0 − y0

σ̂
√
1 + xT

0 (X
TX)−1x0

we can construct a 100(1-α) percent prediction interval for y0:

ŷ0 − tα/2,n−(p+1)

√
σ̂2(1 + xT

0 (X
TX)−1x0) ≤ y0 ≤ ŷ0 + tα/2,n−(p+1)

√
σ̂2(1 + xT

0 (X
TX)−1x0),

where t denotes the (1− α/2) quantile of t-distribution with n-(p+1) degrees of freedom.

The prediction interval produced by fitting a linear regression model is one way of quan-

tifying the uncertainty of prediction to satisfy a desired confidence level.

For classification problem, one example which gives reliable prediction is the logistic

regression model. Suppose the response variable y = (y1, . . . , yn)
T ∈ {0, 1}n is binary

with yj ∼ Bin(1, pj) and the corresponding covariate is xj = (1, xj1, . . . , xjk)
T ∈ Rk+1,

j = 1, . . . , n. Let β = (β0, β1, . . . , βk)
T denotes the regression parameters then the logistic
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regression models relates the log odds ratio linearly to the covariates as follows:

log

(
pj

1− pj

)
= xj

Tβ.

By numerically maximizing the log likelihood function of logistic regression

l(β) = log(
n∏

j=1

p(xj)
yj(1− p(xj))

1−yj) =
n∑

j=1

− log(1 + exj
Tβ) +

n∑
j=1

yj(xj
Tβ)

we can obtain the maximum likelihood estimates of coefficients denoted by β̂. For a

new example with explanatory variable x0 = (1, x01, ..., x0k)
T , the estimated conditional

probability is

P (Y = 1|X = x0) =
ex0

T β̂

1 + ex0
T β̂

.

The conditional probability give us information on the probabilities of the new observa-

tion falling into each category. If the estimated conditional probability is greater than the

decision boundary 0.5 (i.e. P (Y = 1|X) > 0.5 ), then the new observation is predicted to

belong to the class Ŷ = 1, otherwise, we predict Ŷ = 0. Note that although both examples

successfully generate prediction (intervals) with informative confidence level, they both

require distributional assumptions on the data, which, in reality, can be easily violated.

Comparing to existing predicting methods mentioned above, a relatively new method

conformal prediction (CP) gives solution to the problem of quantifying the uncertainty

prediction in an innovative way with minimal assumption on the data. The concept

was first introduced by Vladimir Vovk, Alexander Gammerman, Craig Saunders, and

Vladimir Vapnik in the years 1996-1999 [2]. The method is powerful as it is distribution-

free and model-agnostic while still provides guarantee in coverage rate on prediction

intervals. These advantages enable CP to solve multiple tasks including regression, clas-

sification, time-series forecasting, outlier detection and so on. Moreover, CP can be com-

bined with many ”black box” prediction algorithms to convert their point predictions into

prediction intervals or prediction sets with guaranteed coverage rate. Its ability to trans-
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form heuristic uncertainty into rigorous uncertainty made it an increasingly popular area

of research. Over the past few decades, conformal prediction has been through several

major development. Jing Lei and Larry Wasserman [25] created a general framework for

distribution-free predictive inference in regression. Another group of researchers includ-

ing Rina Barber, Emmanuel Candes, Ryan Tibshirani, and so on [6] further contributed to

extend CP to covariate-shift and distribution-shift settings. As more researchers join this

interesting research area and more powerful conformal predictors were invented, increas-

ingly large amount of research have been conducted to extend and refine this method to

be more adaptive and robust in different scenarios.

2.1 Motivating Examples

2.1.1 Application in Regression Problem

In this section, we will compare the classic linear regression model based conformal pre-

diction algorithm: least square confidence machine (LSCM) [43] which is a special case

of the ridge regression confidence machine that will be introduced in 3.1.1, full confor-

mal prediction (FCP) method introduced in [20] and nearest neighbour conformal regres-

sor under three settings. In setting A, we generated independently and identically dis-

tributed (i.i.d.) examples that meet regularity conditions. In setting B, we generated data

from mixture of i.i.d. bivariate normal random vectors so that the examples are exchange-

able but not i.i.d. In setting C, we generated time series data from the AR(1) process and

thus the data is nonexchangeable.

Under three settings, we compare the performances of three different prediction algo-

rithms in terms of their validity and efficiency. The first algorithm RRCM was introduced

in [43] to illustrate how conformal predictor framework apply to regression problems.

This algorithm adopts ridge regression as the underlying point predictor to produce non-

conformity scores. It uses the residuals |yi− ŷi| as a natural choice of nonconformity score

measure in regression setting. The prediction results include all values of y ∈ R such

6



Setting A
RRCM Full Conformal 1-NNR

Coverage 0.94 0.90 0.93
Length 3.29 3.53 4.70
Time 1.44 0.76 1.70

Table 2.1: Comparison of prediction results of three conformal algorithms under setting

A.

that py > ϵ where py is the p-value defined as the fraction of nonconformity scores that

is greater than or equal to the nonconformity score of new example (xnew, y). Detailed

explanation of RRCM can be found in section 3.1.1. We implemented the algorithm by

identifying all the values of y that give a p-value greater than the desired miscoverage

level, which is α = 0.1 in our example. The second method, full conformal prediction

(FCP) [20], is similar to RRCM as it also uses linear regression model as a point predictor

and residuals as nonconformity scores. The slight difference between two algorithms is

that RRCM searches through the entire real line to include all possible values of y satis-

fying the criteria, while full conformal prediction creates a grid of y values to estimate

quantiles of the nonconformity scores and improves computational efficiency. Thirdly,

we showed the performance of k nearest neighbour conformal predictor that uses k near-

est neighbour algorithm as the underlying predictor where we take k=1. More details of

the conformal prediction framework is presented in section 3.1.

The results from the following three tables show that all three methods successfully

guarantee the expected coverage rate of 90%. The RRCM and 1-NNR methods have

higher coverage levels than the full conformal prediction method, but the sizes of their

prediction sets are larger than that of the full conformal method. We will discuss more on

the efficiency and validity tradeoff in the next chapter. Also, RRCM and 1-NNR are sig-

nificantly more computationally inefficient compared to full conformal prediction. Thus,

although basic conformal prediction algorithms produce reliable prediction intervals as

expected, there still exist spaces to modify their design to improve the efficiency and re-

duce computational cost while maintaining the coverage guarantee.

7



Setting B
RRCM Full Conformal 1-NNR

Coverage 0.95 0.90 0.95
Length 4.85 2.85 4.26
Time 1.32 0.46 1.78

Table 2.2: Comparison of prediction results of three conformal algorithms under setting

B.

Setting C
RRCM Full Conformal 1-NNR

Coverage 0.94 0.89 0.95
Length 4.78 3.21 3.41
Time 1.72 0.47 1.33

Table 2.3: Comparison of prediction results of three conformal algorithms under setting

C.

2.1.2 Application in Classification Problem

When the label space is finite |Y | < ∞, we consider such situation as classification prob-

lem. For conformal classifiers, we no longer have the natural choice of residuals to mea-

sure nonconformity scores in most cases which requires us to define nonconformity mea-

sure A in other ways. [34] introduced three basic choices of nonconformity scores for bi-

nary classification problems, which are introduced in detail in Section 3.1.1. In their paper,

the three conformal algorithms were applied to the Iris flower dataset to predict flower

species using sepal length as feature. In this section, we adopted the same three methods

on the banknote dataset where the entropy of banknote images is treated as feature to clas-

sify fake and authentic banknotes. The three methods use three different designs of the

nonconformity scores based on three distinct underlying classifiers: 1-nearest neighbor,

distance to the mean, and support vector machine (SVM). After obtaining the noncon-

formity score for each example, the p-value is defined in the same way as the fraction of

nonconformity scores that are greater than or equal to that of the new example. In binary

classification, we can obtain two p-values denoted by p0 and p1 for each class respectively.

Then, for a specified significance level α we can obtain three possible prediction sets [34]:

8



• Uncertain Prediction set : {0, 1} when p0 > ϵ and p1 > ϵ.

• Singleton Prediction set : {0} when p0 > ϵ and p1 ≤ ϵ; {1} when p0 > ϵ and p1 ≤ ϵ.

• Empty Prediction set : ∅ when p0 ≤ ϵ and p1 ≤ ϵ.

Note that both the empty set and the uncertain prediction set are equally uninformative.

One way to obtain a point prediction is to choose the class that gives the highest p-value

[4]. For classification problems, in addition to validity, it is also useful to look at credibility

[43] of each prediction which is defined to be the largest p-value for the new example.

For example, in our case of binary classification, credibility would be max(p0, p1). A low

credibility indicates that even the point prediction is unlikely to be observed. This can

happen when the object is unusual for the chosen method and we should be careful with

being overconfident about such prediction results.

The following two tables compare the prediction results of three conformal classifiers

on Iris flower dataset and banknote dataset respectively. Table 2.4 presents the results

from the classification example in [34]. Our example applied the conformal classifiers to

the banknote dataset which consists of 1372 examples. Each example has a label yi ∈

{0, 1} indicating whether the banknote is fake yi = 0 or authentic yi = 0 and an object xi ∈

R that depicts the entropy of image. The training data of 40 examples was sampled from

the banknote dataset without replacement. We tested for one example in each repetition

and summarized the total number of errors and correct predictions among a total of 1000

repetitions.

Comparing the performances of the three conformal classifiers on two different datasets,

we notice that both results highlight conformal prediction’s advantage in marginal cov-

erage guarantee as all the percentages of correctly predicted examples are greater than

or equal to the desired coverage level. However, in both examples, there still exists a

large portion of uninformative prediction results which can be problematic in practice.

Moreover, the SVM-based conformal classifier works significantly slower than the other

two methods which suggests that basic conformal framework could be prevented from

9



Nearest Neighbor Distance to the Average SVM
singleton hits 164 441 195
uncertain 795 477 762
total hits 959 918 957
empty 9 49 1
singleton errors 32 33 42
total errors 41 82 43
total examples 1000 1000 1000
%hits 96% 92% 96%
total singletons 196 474 237
%hits 84% 93% 82%

Table 2.4: Comparison of three conformal classifiers’ performances on Iris flower dataset

with α = 0.08. [34]

Nearest Neighbor Distance to the Average SVM
singleton hits 52 6 23
uncertain 900 949 928
total hits 952 955 951
empty 0 35 27
singleton errors 48 10 22
total errors 48 45 49
total examples 1000 1000 1000
%hits 95.2% 95.5% 95.1%
total singletons 100 16 45
%hits 52% 37.5% 51.1%

Table 2.5: Comparison of three conformal classifiers’ performances on Banknote dataset

with α = 0.05.

collaborating with complex base classifiers due to computational inefficiency. Similar to

the example in regression setting, although basic conformal prediction algorithms are

promising in giving predictions with confidence, there still exist many limitations and

shortcomings to overcome to make conformal prediction more practical and applicable

in real-world scenarios. In the next chapter, we will review the recent developments in

conformal prediction and introduce various improved CP methods that can address the

problems detected from these examples.
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Chapter 3

Selective Review of Conformal

Prediction

In this chapter, we formally introduce the conformal prediction algorithm in section 3.1

and then discuss desirable properties of conformal predictors in section 3.2. The rest of

this chapter provides readers with various advanced and modified conformal methods

designed to enhance the validity, efficiency, and robustness of the basic conformal predic-

tor under different conditions.

3.1 Terminologies and Basic Procedures

Conformal prediction is a general framework that is model-agnostic, distribution-free,

and produces prediction sets or intervals with guaranteed coverage rates for unobserved

examples based on available data. The method is attractive as it can be combined with

many black box algorithms to produce prediction sets with an automatic guarantee of

coverage rate with minimal assumptions. To illustrate terminologies and basic proce-

dures of conformal prediction, we introduce the full conformal prediction (FCP) or equiv-

alently the transductive conformal prediction (TCP) which is the first and most basic
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version of conformal prediction proposed by Vladimir Vovk and his collaborators in

2002 [40].

For each example zi ∈ Z, we denote its object as xi ∈ X , its label as yi ∈ Y , where X

is a non-empty measurable space, Y is a measurable space with at least two essentially

different elements, and the example space Z := X × Y is a Cartesian product of X and

Y. We denote a multi-set or bag of examples by Hz1, ..., znI. With a training set Hz1, ..., znI,

we aim to predict for an unknown example Zn+1 under the assumption that all examples

Zi = (Xi, Yi) for i = 1, ..., n+ 1 are exchangeable.

Definition 1. The variables z1, . . . , zN are exchangeable if, for every permutation τ of the integers

1, . . . , N , the variables w1, . . . , wN , where wi = zτ(i), have the same joint probability distribution

as z1, . . . , zN .

Note that the default randomness assumption for conformal prediction (i.e. exchange-

ability) is weaker than the standard i.i.d. assumption in machine learning which requires

examples to be drawn from a power probability distribution P∞ in Z∞ where P is the

unknown probability distribution of examples on Z. This is obvious because exchange-

able variables are not necessarily independent of each other and, in the finite-sample case,

there are many examples of exchangeable distribution Q on ZN that is not of the form PN .

However, for the case of infinite-sample, the differences between the two assumptions be-

come negligible according to the well-known De Finetti’s theorem [19].

Theorem 1. (De Finetti’s Theorem) Each exchangeable probability distribution on Z∞ is a mix-

ture of power probability distribution P∞, provided Z is a Borel space.

Under the above setting, for any chosen miscoverage level α ∈ (0, 1), FCP gives a

prediction set Ĉn,α(Xn+1) for the unknown label Yn+1 with following steps. Firstly, we

choose a nonconformity measure A : Z∗ × Z → R which is a measurable function that

measures the nonconformity score for each example in the training set as

αi := A(Hz1, ..., znI \ HziI, zi) for i = 1, ..., n.

12



The nonconformity score for the future example with a trial label y is denoted as

αy := A(Hz1, ..., znI, (Xn+1, y)) for each y ∈ Y.

A higher nonconformity score indicates that the corresponding example is less conform-

ing (i.e. ’stranger’) compared to all examples in the bag. As its definition already implies,

the nonconformity measure is assumed to be symmetric with respect to its first entry. In

other words, the permutation of examples in the bag does not influence the nonconfor-

mity score outputs. A standard example of nonconformity measure is of the following

form

A(Hz1, ..., zi−1, zi+1, ..., znI, zi) := ∆(ĥ(Hz1, ..., zi−1, zi+1, ..., znI), yi),

where ĥ is the underlying prediction model trained on Hz1, ..., zi−1, zi+1, ..., znI and ∆ is a

metric. More examples and discussions on nonconformity scores will be shown in section

3.1.1.

Based on the nonconformity scores α1, ..., αn, α
y calculated as above, for each potential

label y ∈ Y , we define the p-value for the unobserved example zn+1 = (xn+1, y) with a

provisional label y as the fraction of examples that conform worse than or the same as

zn+1:

py :=
|{i = 1, ..., n : αi ≥ αy}|+ 1

n+ 1
,

or as the smoothed p-value

py :=
|{i = 1, ..., n : αi > αy}|+ τ(|{i = 1, ..., n : αi = αy}|+ 1)

n+ 1
,

where τ is random variable uniformly distributed on [0, 1]. The difference between the

two definitions is that the smoothed version treats ties more carefully by introducing a

tie-breaking random variable τ to break ties uniformly. The smoothed version guarantees

a coverage rate of exactly 1 − α, while the normal version guarantees that the coverage

rate is at least 1 − α. Finally, all labels y ∈ Y which gives a p-value py greater than the

13



miscoverage level α make up the conformal prediction set

Ĉn,α(Xn+1) := {y|py > α}.

If the conformal prediction was used under an online setting [43], we assume that the true

label of new example Yn+1 becomes known to us after we made the prediction and then

enlarge the training set as {Z1, ..., Zn, Zn+1} for the next prediction. On the other hand,

there is also much literature studying conformal prediction under the batch mode [20]

where the size training sets remain unchanged.

Algorithm 1 Full Conformal Prediction [34]

Input: Examples (xi, yi), i = 1, . . . , n; significance level α ∈ (0, 1); nonconformity mea-
sure A; object of the new example xn+1; trial label y.
Output: Prediction interval Ĉn,α(Xn+1) for label of the new example Yn+1.
For each trial label y, set provisionally zn+1 = (xn+1, y).
For each zi, i = 1, . . . , n calculate its nonconformity score as

αi := A(Hz1, . . . , znI \ HziI, zi).

For new example (xn+1, y), calculate its nonconformity score as

αy := A(Hz1, . . . , znI, (xn+1, y)).

For each provisional new example obtain its p-value as

py :=
|{i = 1, . . . , n|αi ⩾ αy}|+ 1

n+ 1
.

Include y in Ĉn,α(Xn+1) if and only if py > α.

Note that in practice it may be unrealistic for practitioners to calculate p-value for

every possible value of y. For example, in regression setting Y = R, the algorithm can

be implemented by checking test values of y on a fine grid and still preserves coverage

guarantee [10]. Also, it is exactly the same to choose a conformity measure B at the

beginning and then define the p-value as the fraction of conformity scores that is smaller

than or equal to the conformity score of the new example. For example, we can set B

as 1/A or 1 − A which will produce the same prediction set as using the nonconformity
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measure A. In fact, the p-value in conformal prediction is consistent with the widely

accepted concept of p-value in Neyman-pearson theory [34]. The prediction problem can

be expressed as the following hypothesis test:

• Null Hypothesis : the bag of the first n + 1 examples is Hz1, ..., zn, zn+1I where zn+1 =

(xn+1, y).

• Test Statistic T : the random value of nonconformity score of zn+1.

Under the null hypothesis, T is equally likely to take any value of αi. Thus, we obtain the

p-value as

pH = P (T ≥ αy|Hz1, ..., zn, zn+1I) = py.

For each label y in the conformal prediction set Ĉn,α(Xn+1), we have p-value pH = py > α.

In other words, we do not reject the null hypothesis that y is the label of the new example

at significance level α.

3.1.1 Nonconformity Measure

The design of nonconformity measures is the core of a successful conformal prediction

algorithm. A conformal prediction algorithm can be viewed as a wrapper that combines

with nearly all machine learning algorithms. Although the validity of CP is automati-

cally guaranteed regardless of what underlying model we adopt, a poor nonconformity

measure will result in large prediction sets that convey no information to us. To obtain

meaningful prediction result, we expect αi ∝ P (zi /∈ Z∗) and αy follows the same dis-

tribution as α1, ..., αn. In this section, we provide readers with some common choices

of nonconformity score functions for conformal predictors based on different underlying

prediction rules under either regression or classification settings.

In general, nonconformity measures can be categorized into two groups: model-agnostic

ones and model-dependent ones [1]. For regression problems, a basic choice of model-

agnostic nonconformity score follows the scheme we introduced above with ∆ chosen to

15



be the L1 norm

αi := ∆(ĥ(Hz1, ..., znI), yi) = |ŷi − yi|,

which can be interpreted as the absolute residual, or in some cases as the absolute value

of the deleted residual

αi := ∆(ĥ(Hz1, ..., zi−1, zi+1, ..., znI), yi) = |ŷ(−i) − yi|,

where ŷ(−i) indicates that the label is predicted by the prediction algorithm trained on the

training dataset with zi deleted.

Ridge Regression

One example in this category is the ridge regression confidence machine (RRCM) [43]

which uses the following nonconformity scores:

αi = |ei| = |x′
i(X

′
nXn + aIp)−1X′

ny − yi|,

where Xn denotes the n × p design matrix, y denotes the vector of observed labels, a

denotes the ridge parameter, and Ip denotes the identity matrix. Residual is a natural

choice of nonconformity measure in a regression setting since labels of unusual examples

will deviate more from their predicted labels (i.e. larger nonconformity scores). However,

the drawback of this method is also apparent. All prediction intervals will have the same

length in this way. To improve adaptivity, another choice of nonconformity measure of

RRCM is based on studentized residuals:

αi =
|ei|√
1− hii

,

where hii is the ith diagonal element of the hat matrix H = Xn(X′
nXn + aIp)−1X′

n. Such

modification allows instance-wise treatment and equalizes the variances of residuals to
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produce more efficient predictions in certain cases [43]. More variants of locally weighted

nonconformity measures can be found in [20] [29].

Nearest Neighbour Regression

For conformal predictors based on the k-nearest neighbors (kNN) algorithm, we can also

construct nonconformity measures from the idea of absolute error. For regression, the

simplest implementation would be predicting the label of each example as the mean or

median of all the labels of its k-nearest neighbors [43]. In other words, given example

(xi, yi) we find its k nearest neighbors (xi1 , yi1), ..., (xik , yik) whose objects have the shortest

distance from xi among other training examples based on the chosen metric. Then, the

predicted label denoted by ŷ(−i) can be either the mean or median of yi1 , ..., yik based on

the user’s choice. Similar to the above, the nonconformity score can be expressed as

αi := |yi − ŷ(−i)|.

Moreover, [31] proposed several ways to normalize this nonconformity measure by as-

sessing the expected accuracy of the nearest neighbor-based conformal prediction algo-

rithm.

Conformalized Quantile Regression

As the last example for regression, we introduce the nonconformity measure adopted by

conformalized quantile regression (CQR) which is model-dependent and quantile-based

and differs completely from the previous examples [13]. CQR combines quantile regres-

sion method with inductive conformal prediction which divides the training data into

proper training and calibration sets and will be introduced in details in Section 3.3.1.

First, two point predictors f̂α/2and f̂ 1−α/2 which estimate the α/2 and 1− α/2 quantile of

Y |X = x respectively are trained on the proper training set. Then, nonconformity scores
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are calculated for each example in the calibration set as follows:

Ri = max{f̂α/2(Xi)− Yi, Yi − f̂ 1−α/2(Xi)}.

Finally, the CQR prediction set becomes

Ĉn,α(x) = [f̂α/2(x)− q̂, f̂ 1−α/2(x) + q̂],

where q̂ = the ⌈(1− α)(n+ 1)⌉ smallest value of Ri.

For conformal classification algorithms, [23] proposed several choices of model-agnostic

nonconformity measures that can be used by neural network-based conformal classifiers

such as the inverse probability or hinge loss

∆(ĥ(xi), yi) := 1− P̂h(yi|xi),

where P̂h(yi|xi) represents the amount of probability that underlying classifier h assigns

to label yi given that object is xi and the margin nonconformity function

∆(ĥ(xi), yi) := max
y ̸=yi

P̂h(y|xi)− P̂h(yi|xi).

Empirical comparison of the performance of different model-agnostic nonconformity mea-

sures can be found in [1].

For model-dependent nonconformity measures, we provide the following two exam-

ples.

Nearest Neighbour Classification

While using 1-nearest neighbour algorithm, we define

αi :=
minj=1,...,n:j ̸=i&yj=yi∆(xi, xj)

minj=1,...,n:yj ̸=yi∆(xi, xj)
,
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where ∆ is a metric on X . In this way, we assign smaller nonconformity scores to more

conforming examples whose object is closer to objects of training examples with the same

label and further from examples with different labels.

Support Vector Machine

Another example of a model-dependent nonconformity measure in the case of classifica-

tion is constructed for conformal predictors based on support vector machine. Suppose

we are dealing with a binary classification problem with Y = {−1, 1} and we adopt sup-

port vector machine method to find the optimal hyperplane on training data z1, z2, ..., zn

to separate the two classes where objects are assumed to be vectors in a dot product space

H. Then, this problem can be expressed as follows [13]:

min
w,b

1

2
∥w∥2 + C(

n∑
i=1

ξi), (3.1)

subject to the constraints

yi(w · xi + b) ≥ 1− ξi, i = 1, ..., n (3.2)

ξi ≥ 0, i = 1, ..., n, (3.3)

where C is fixed positive constant, w ∈ H , and ξi ∈ R handles margin violations. To

solve this optimization problem using Lagrange multipliers we consider its dual problem

and adopt a kernel trick. It suffices to find Lagrange multipliers αi’s for the following

optimization problem:

max
αi

n∑
i=1

αi −
1

2

n∑
j=1

n∑
j=1

yiyjαiαjK(xi, xj), (3.4)

n∑
i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, ..., n (3.5)
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where K(xi, xj) := F (xi) with F (xj), F : X → H mapping objects xi into a dot product

space H with F (xi) ∈ H . In this way, the Lagrange multipliers αi become natural choices

for the nonconformity score of each example as they depict the property of each example

with αi = 0 indicating example zi is among the most conforming examples while αi = C

identifying example zi to be one of the most nonconforming ones.

3.2 Evaluation Criteria

With the knowledge of the procedures of conformal prediction and some strategies for

constructing nonconformity measures, we have enough ingredients to build different

conformal predictors. However, it remains a problem for one to compare and choose

among various conformal predictors. In this section, we will discuss the two most impor-

tant evaluation criteria: validity and efficiency.

Validity

The most powerful characteristic of conformal prediction that distinguishes it from other

prediction methods is its ability to guarantee a confidence level we specified initially.

The confidence mentioned here is consistent with the concept of confidence interval as

conformal prediction intervals guarantee to cover the true value of label y with the desired

coverage rate on average. However, it is also important to note that basic conformal

prediction algorithm lacks the ability to ensure within-category coverage, which is an

important property in some applications. We formally presented the two types of validity

in this section and discussed the limitations and ability of CP algorithms to achieve these

goals.

To discuss the validity of conformal prediction sets, we use the same terminologies,

notations, and definitions that were used in [43] in this section. For a given miscoverage

rate ϵ, we would like the prediction intervals to be correct 100(1− ϵ)% of the time. Under

the online setting, we will look at a sequence of successive predictions and we would
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expect that on average 100(1−ϵ)% of these prediction intervals cover the true value. More

formally, for a data set ω = ((x1, y1), (x2, y2), ...), we record the error of the nth prediction

trial made by the conformal predictor Γ at significance level ϵ as follow:

errϵn(Γ, ω) :=


1 if yn /∈ Γϵ(x1, y1, .., xn−1, yn−1, xn)

0 otherwise,

and denote the total number of errors made in the first n predictions by Errϵn(Γ, ω) :=∑n
i=1 err

ϵ
i(Γ, ω).

Definition 2. If ω is generated from an exchangeable probability P on Z∞, then the numbers

errϵi(Γ, ω) for i=1,2,... are realized values of random variables errϵi(Γ, P ). A confidence predictor

Γ is exactly valid if for each ϵ ∈ (0, 1), errϵ1(Γ, P ),errϵ2(Γ, P ),... is a sequence of independent

Bernoulli random variables with parameter equals ϵ.

A confidence predictor is conservatively valid if errϵn(Γ, P ) is dominated in distribution

by a sequence of independent Bernoulli random variables with parameter ϵ.

Definition 3. The confidence predictor is asymptotically exact if for any exchangeable probability

P on Z∞ and any given significance level ϵ, lim
n→∞

Errϵn(Γ,P )
n

= ϵ with probability 1.

Similarly, a confidence predictor is asymptotically conservative if for any exchangeable

probability distribution P on Z∞ and any significance level ϵ,

lim sup
n→∞

Errϵn(Γ, P )

n
≤ ϵ,

with probability 1. However, it is impossible to have an exact conformal predictor [43,

Theorem 2.1]. Thus, the author introduces the definition of conservative validity which

requires the sequence of errϵi(Γ, ω) to be dominated in distribution by a sequence of inde-

pendent Bernoulli random variables with parameter ϵ. To obtain an exactly valid confor-

mal predictor, the author introduces randomized values τ1, τ2, ... that are independently
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and randomly drawn from uniform [0,1] distribution to modify the conformal predictor.

This new predictor is called a smoothed confidence predictor which is different from the

conformal predictor by treating borderline cases (i.e. αi = αn) more carefully. The p-value

of a smoothed conformal predictor is defined as

py :=
|i = 1, ..., n : α1 > αn|+ τn|i = 1, .., n : αi = αn|

n
. (3.6)

The prediction set includes all values of y ∈ Y such that py > ϵ. In this way, we obtained

an exactly valid predictor.

For a data sequence ω drawn from an exchangeable distribution, we denote the confor-

mal predictor by Γ and the corresponding smoothed conformal predictor which uses the

same significance level ϵ and the same nonconformity score by Γ′. Then for each y ∈ Y , we

will have p′y < py and thus Γϵ′(ω) ⊆ Γϵ(ω) and errn ≤ err′n. If the smoothed conformal pre-

dictor is exactly valid then the corresponding conformal predictor which uses the same

nonconformity score and significance level is conservatively valid by definition. Thus, it

suffices to show that smoothed conformal predictors are exactly valid. Intuitively, since

the examples are drawn from an exchangeable distribution, their nonconformity scores

are also exchangeable. Note that p-value py for the new example z = (xn, y) is determined

by the rank of αn among all values of α1, ..., αn which would be equally likely to take any

value in {1,...,n}. Thus, py of a smooth conformal predictor is uniformly distributed in

[0,1] and errϵn are Bernoulli random variables that equal 1 with probability ϵ. Also, ran-

dom variables errϵn are independent [43, Prop 1]. Finally, we can conclude that at least

(1-ϵ) of the predictions given by a conformal predictor covers the true value. [43, Theo-

rem 8.2] presents a fully rigorous proof of the validity of smooth conformal predictors.

Moreover, it is obvious that an exact or conservative confidence predictor is also asymp-

totically exact or conservative respectively by the law of large numbers [43].
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Efficiency

Once the validity of prediction interval is guaranteed, efficiency becomes the most impor-

tant property we would like conformal predictors to optimize. In other words, we want

the smallest prediction interval for a given significance level. Although in the previous

subsection, we observed that conformal predictor is powerful as it always produces valid

prediction intervals only requiring exchangeable assumption and continuity on the non-

conformity measure, we should note that a poor underlying prediction algorithm will

greatly reduce the efficiency of conformal prediction. Some articles are devoted to for-

mally defining the efficiency of conformal prediction algorithms. For example, in [21] the

authors proposed one natural notion to assess the efficiency of prediction set by defining

it as the prediction result’s closedness to the oracle prediction set Cor := argminCΛ(C)

where C ranges over the measurable subsets of Z such that Q(C) ≥ 1 − ϵ where Q rep-

resents the data generating distribution on Z and Λ represents the Lebesgue measure on

Rd. The closedness of a prediction set Γϵ and Cor is defined as Λ(Γϵ△Cor).

3.3 Calibration Methods

From the previous section, we see that full conformal prediction utilizes all information

from the whole dataset to make future predictions. Although such design is the most

statistically efficient one and enables elegant theoretical proofs for its properties, it suf-

fers from remarkably high computational cost which forbids its usage in many situa-

tions. Thus, it is of great motivation to improve FCP by sampling the training dataset into

proper training sets and calibration sets. In other words, how to split the limited data

available to us and create prediction sets to achieve a good balance among validity, effi-

ciency, and computation cost become an interesting research topic. In this section, several

strategies for data splitting will be discussed.
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3.3.1 Split Conformal Prediction

While being very straightforward from a mathematical point of view, full conformal pre-

dictors are very computationally intensive, and, a lot of literature was aiming to address

this issue. In particular, inductive conformal predictors (ICP), also referred to as split

conformal predictors are the first and most popular ones to be proposed as an impor-

tant computationally efficient alternative method. As implied by the names of these two

methods, the ideas behind ICP and TCP are rooted in two important concepts in machine

learning: transductive learning and inductive learning [38]. The two concepts delineate

the pathways through which algorithms learn and generalize from data. Inductive learn-

ing operates on the principle of generalization from specific instances to broader rules,

applicable to unseen data. In contrast, transductive learning focuses on making predic-

tions for a specific set of unseen data, emphasizing direct inference for these instances

rather than a generalized rule applicable across all potential data points. Consistent with

these fundamental concepts, full conformal prediction creates confidence measures with

the most statistical efficiency while suffering great computation costs when the training

dataset is large [43]. Conversely, inductive conformal prediction algorithms embrace the

ethos of inductive learning by utilizing a two-phase process—initial calibration on a sub-

set of data to establish prediction confidence levels, followed by the application of these

calibrated models to generalize across unseen data, thus providing a faster algorithm [34].

Inductive conformal prediction was first proposed in 2002 [30] for regression prob-

lems. To be consistent with the previous section, we introduce the general split conformal

prediction algorithm under the online setting. Given the set (z1, ..., zn−1) of n-1 observed

examples, where zi = (xi, yi) with xi being the object and yi being the label. To implement

an ICP for prediction of new example zn with knowledge of its object xn, first, we need to

define a finite or infinite sequence of update trial m1,m2, ... which are positive integers in

ascending order. Define strangeness measure {An}∞n=1 for ICP as follows:

(α1, ..., αn) = An((x1, y1), ..., (xn, yn)),
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where the nonconformity scores are defined by

αi := ∆(yi, DH(x1,y1),...,(xn,yn)I(xi))

or

αi := ∆(yi, DH(x1,y1),...,(xi−1,yi−1),(xi+1,yi+1),...(xn,yn)I(xi)),

where DH(x1,y1),...,(xn,yn)I : X → Ŷ is an inductive algorithm that maps a bag of examples

H(x1, y1), ..., (xn, yn)I to a function which is the decision rule, ∆ : Y×Ŷ → R is the discrep-

ancy measure that measures the discrepancy between the predicted label ŷi and true label

yi. Note that Ŷ may not equal Y as for some rare cases the predicted label contains ad-

ditional information. The inductive conformal prediction sets determined by the update

trial (m1,m2, ...) and nonconformity measure {An}∞n=1 can be obtained as follows:

• For n ≤ m1, Γϵ(x1, y1, ..., xn−1, yn−1, xn) is found using a fixed transductive conformal

predictor.

• For n > m1, , find k such that mk < n ≤ mk+1 and set

Γϵ(x1, y1, ..., xn−1, yn−1, xn) := {y ∈ Y :
|{j = mk + 1, ..., n : αj ≥ αn}|

n−mk

},

where the nonconformity scores αj are defined by

αj := Amk+1(H(x1, y1), . . . , (xmk
, ymk

)I, (xj, yj)), for j = mk + 1, . . . , n− 1,

αn := Amk+1(H(x1, y1), . . . , (xmk
, ymk

)I, (xn, y)).

Note that the most important type of ICP which randomly splits the data once and uses

(z1, ..., zm1) as a training set, (zm1+1, ..., zn−1) as calibration set can be expressed by setting

the update trial as (m1,∞,∞, ...). We can also define a randomized or smoothed induc-

tive conformal predictor similarly as the randomized transductive conformal predictor
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by introducing a random component into the definition of p-values which handles the

borderline cases in a more refined way. The prediction set of smoothed ICPs is defined as

follows:

Γε((x1, τ1, y1), . . . , (xn, τn)) :=

{
y ∈ Y :

|{j : αj > αn}|+ τn|{j : αj = αn}|
n−mk

> ε

}
,

where j = mk + 1, ..., n and τn ∈ [0, 1] are the random numbers. One example of ICP with

one update trial member (one even split) applicable to the regression problem is provided

below.

Algorithm 2 Split Conformal Prediction [25]

Input: Data (Xi, Yi), i = 1, . . . , n, miscoverage level α ∈ (0, 1), regression algorithm A,
object x.
Output: Prediction interval Csplit(x).
Randomly split {1, . . . , n} into two equal-sized subsets I1, I2.
µ̂ = A({(Xi, Yi) : i ∈ I1}).
Ri = |Yi − µ̂(Xi)|, i ∈ I2.
d = the kth smallest value in {Ri : i ∈ I2},where k = ⌈(n/2 + 1)(1− α)⌉.
Csplit(x) = [µ̂(x)− d, µ̂(x) + d], for all x ∈ Rd.

Validity of ICPs

The biggest advantage that makes ICP an extremely popular choice among all conformal

predictors is that ICP also has an automatic guaranteed coverage rate. Actually, the induc-

tive conformal predictor can be viewed as a special case of the full conformal predictor.

For example, for regression problem, consider a trivial algorithm A that returns the same

fixed pre-fitted function µ̂ regardless of the input data. Thus, the validity guarantee of

ICPs is just a special case from the general theorem 8.2 in [43].

Theorem 2. All ICPs are conservatively valid. All smoothed ICPs are exactly valid.

If we further assume residuals obtained from the calibration set have a continuous

joint distribution, then [20, Theorem 2] shows that the unconditional coverage of ICPs is
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also bounded above similar to the TCPs.

P (Yn+1 ∈ Csplit(Xn+1)) ≤ 1− α +
2

n+ 2

Asymptotic validity is automatically guaranteed [43].

While unconditional coverage guarantee is automatically achieved under the exchange-

able assumption, the realization of conditional coverage in most cases requires modifica-

tions to the basic algorithm. We will examine several conditional validity criteria on ICP

with only one data split in this section. Firstly, we examine if ICP holds predictive cov-

erage after conditioning on the training data set Dn = (z1, .., zn). For training conditional

coverage, [41] establishes a PAC-type 2 parameter definition to formalize this property.

Define the miscoverage rate as a function of Dn

αP (Dn) = PP{Yn+1 /∈ Ĉn(Xn+1)|Dn}.

Theorem 1 only ensures the unconditional coverage rate:

PPn+1{Yn+1 ∈ Csplit(Xn+1)} ≥ 1− α ↔ EPn [αP (Dn)] ≤ α.

For the guarantee of training conditional coverage rate we need to show

PPn{αp(Dn) > α+ o(1)} ≤ o(1).

Vovk provided proof of the training-conditional coverage through Hoeffding inequality

[41, prop 2a].

Theorem 3. Consider the split conformal method defined with sample size n = n0 + n1, where

n0 ≥ 1 many data points are used for training the fitted model µ̂n0 (with an arbitrary algorithm)

while the remaining n1 ≥ 1 data points are used as the holdout (calibration) set. Then, for any
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distribution P and any δ ∈ (0, 0.5],

PPn

αP (Dn) ≤ α +

√
log(1/δ)

2n1

 > 1− δ.

The probability that a training set results in a significantly higher training-conditional

miscoverage rate than the nominal rate is vanishing small for split conformal prediction.

Note that this result holds for both ICP and smoothed ICP. By choosing α′ := α−
√

log(1/δ)
2n1

while performing ICP, we would obtain a slightly more conservative prediction interval

that satisfies

PPn{αP (Dn) ≤ α} ≥ 1− δ.

This process is called a probably approximately correct (PAC) guarantee.

For label conditional validity, [34] proposed conditional ICP which modifies the split

conformal prediction to guarantee label conditional validity for classification problems.

Suppose Hz1, ..., zmI is the proper training set and Hzm+1, ..., zlI is the calibration set. De-

fine an inductive m-taxonomy as a measurable function K : Zm × Z → K, where K is a

measurable space. Usually the category K((z1, . . . , zm), z) of an example z is a kind of clas-

sification of z, which may depend on the proper training set (z1, . . . , zm). The conditional

inductive conformal predictor (conditional ICP) corresponding to K and an inductive

conformity measure A is defined as the set predictor

Γϵ(Hz1, . . . , zlI, x) := {y : py > ϵ},

where the p-values py are now defined by

py :=
|{i = m+ 1, . . . , l | κi = κy&αi ≤ αy}|+ 1

|{i = m+ 1, . . . , l | κi = κy}|+ 1
, (3.7)
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the categories κ are defined by

κi := K((z1, . . . , zm), zi), i = m+ 1, . . . , l, κy := K((z1, . . . , zm), (x, y)), (3.8)

and the conformity scores α are defined as

αi := A((z1, ..., zm), zi), i = m+ 1, ..., l , and αy := ((z1, ..., zm), (x, y)).

A label-conditional ICP with the inductive taxonomy K produces prediction sets with

guaranteed label conditional coverage rate [34, prop 3]

P{Yl+1 ∈ Γϵ(Hz1, . . . , zlI, Xl+1)|K((z1, . . . , zm), zl+1)} ≥ 1− ϵ.

The method is suitable for cases where it is important to achieve coverage within each

category of labels.

Finally, for object-conditional coverage, unfortunately, it is impossible to achieve a

distribution-free object-conditional coverage guarantee as follows

P{Yl+1 ∈ Γϵ(Hz1, . . . , zlI, Xl+1)|Xl+1 = x} ≥ 1− ϵ

as there may be a discontinuity at X=x for the distribution P. However, [25] shows that

ICPs satisfy local validity which is an original concept invented as a measure of coverage

that lies between marginal and conditional validity. Also, the authors proposed that it

is possible to construct asymptotic efficient and asymptotic conditional valid inductive

conformal predictors. [15] explores more possibilities on the gap between conditional and

unconditional validity for ICPs as well as for FCPs. To obtain exact conditional coverage,

one needs to add some kind of smoothness assumption on the distribution P such as the

smoothness condition proposed in [12].
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Computation Cost and Prediction efficiency

Compared to TCP which requires re-training of the underlying prediction algorithm at

each prediction with full observed data, ICP achieves a great reduction in computation

cost as it only requires re-training of the prediction algorithm at each update trial. The

computation cost of ICP is always cheaper than the computation cost of a corresponding

TCP. Thus, one advantage of ICP is that we can combine it with computationally heavy

estimators [14]. Exceptions exist in some special cases where computation tricks can be

applied to TCPs to reduce computation cost such as [24] which chooses Lasso to construct

nonconformity measures.

While validity is taken for granted in conformal framework, efficiency is related to the

accuracy of the underlying algorithm. Achieving computational efficiency does not come

for free. A drawback of inductive conformal predictors is their lack of prediction effi-

ciency. We waste the calibration set when developing the prediction rule, and we sacrifice

the proper training set when computing the p-values. One way to solve this disadvantage

is Cross-conformal prediction [42], a hybrid of the methods of inductive conformal pre-

diction and cross-validation. Other CP methods providing tradeoff between computation

efficiency and prediction efficiency such as the Jackknife method [41] will be introduced

in the following sections.

3.3.2 Aggregated Conformal Predictors

While a single split enables better computation efficiency and preserves validity property

with minimal assumptions, the method suffers from information loss. The problem can

become more serious when the dataset is small because small proper training set would

result in an inaccurate underlying prediction algorithm. To overcome such issues, ex-

tensions of ICPs have been developed among which an important group of conformal

predictors are named aggregated conformal predictors. These conformal predictors were

invented based on the concept of ensemble learning in machine learning by dividing
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the training data into multiple proper training sets and calibration sets. Formally, de-

note the training set by ζ = (z1, ..., zn) ∈ Zn and suppose we sample K subsets (folds)

ζtk for k = 1, ..., K as proper training sets and ζck as the corresponding calibration sets by

using any sampling strategy that satisfying ζck is exchangeable with ζ for all k ∈ {1, ..., K}.

Nonconformity scores for each example can be calculated from each (ζtk, ζ
c
k) pair and for

each fold we obtain a p-value for test example zn+1 = (xx+1, y). Apparently, there are

two fundamental problems for this group of methods: which sampling strategy to choose

and how to combine the multiple fitted algorithms or p-values obtained from each pair of

proper training and calibration sets to get one prediction result in the end. In this section,

we will first introduce some typical conformal predictors in this category and discuss the

overall behavior with generalized aggregated conformal predictors.

Cross-Conformal Predictor (CCP)

One of the most prevalent conformal predictors under this category is the cross-conformal

predictor introduced by Vovk [42]. It merges inductive conformal prediction with the idea

of cross-validation to provide valid and efficient predictions for each individual model as

well as for their combinations. Similar to the widely accepted cross-validation method,

CCP first partitions the training set ζ into K non-empty subsets (folds) ζck, k = 1, ..., K,

where K ∈ {2, 3, ...} is a parameter of this algorithm and ζ = UK
k=1ζ

c
k. Denote the corre-

sponding proper training sets as ζtk := ζ \ ζck. For every pair (ζtk, ζ
c
k) where k ∈ {1, ..., K}

and each potential label y ∈ Y of xn+1 calculate the nonconformity scores in the same

way as an inductive conformal predictor. For each example zi ∈ ζck and each provisional

example (xn+1, y), nonconformity scores are defined as follows

αi,k := A(ζtk, zi), zi ∈ ζck;α
y
k := A(ζtk, zi), (xn+1, y)).
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The p-value for y ∈ Y is defined by

py :=

∑K
k=1 |{zi ∈ ζck|αi,k ≥ αy

k}|+ 1

|ζ|+ 1
,

which is essentially the average of the p-value for each fold pkk defined as follows

pyk :=
|{zi ∈ ζck : αi,k ≥ αy

K}|+ 1

|ζck|+ 1
.

Note that when the K folds have equivalent sizes we have

py = p̄y +
K − 1

|ζ|+ 1
(p̄y − 1),

where p̄y := 1
K

∑K
k=1 p

y
k and py = p̄y for K < |ζ|. Usually, for a cross-validation method,

one is suggested to take K ∈ {5, 10} however CCP is not exactly a cross-validation and it

remains an open problem for researchers to decide what value of K to take in practice [42].

The biggest difference between CCP and ICP is the former uses the entire training set ζ for

calibration by adopting a cross-validation sampling strategy. In this way, CCP achieves

better statistical efficiency while sacrificing theoretical guarantee on the automatic valid-

ity and some computation efficiency as we need to train the underlying model K times

using CCP. Moreover, CCP obviously has better p-value stability compared to ICP as ICP

only uses one random split of the whole training set ζ which could lead to very different

p-values when applied to the same ζ multiple times.

Jackknife Method

One extreme case of the cross-conformal predictor is the Jackknife method or leave-one-

out conformal predictor (LOOCP). LOOCP is equivalent to a cross-conformal predictor

taking K equals the size of the training set n ( i.e. split the training data into n subsets

each containing one unique example from the training set). The nonconformity measure

for LOOCP can be interpreted as leave-one-out residuals under regression setting and the
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Algorithm 3 Cross-Conformal Predictors

Input: Training set Z = {(Xi, Yi) : i = 1, . . . , n}, significance level ϵ ∈ (0, 1), inductive
nonconformity measure A, number of folds K.
Output:Prediction set Cn,ϵ(x) for a new object x.
Partition the training set into K non-empty subsets Zc

k, k = 1, . . . , K and denote corre-
sponding proper training set by Zt

−k.
for each k ∈ {1, . . . , K} do

for each potential label y ∈ Y of x do
Compute nonconformity scores for examples in each calibration set Zc

k and (x, y)
by

αk
i := A(Zt

−k, zi), zi ∈ Zc
k,

αk
y := A(Zt

−k, (x, y)).
end for

end for
Combine the conformity scores to compute p-values:
py :=

1
n+1

∑K
k=1

(
|{zi ∈ Zc

k : α
k
i ≤ αk

y}|+ 1
)
.

return Cn,ϵ(x) := {y|py > ε}.

conformal prediction set in this case can be expressed as below

Ĉ Jackknife
n,α = [q̂−n,α{µ̂(Xn+1)−RLOO

i }, q̂+n,α{µ̂(Xn+1) +RLOO
i }],

where µ̂ is the underlying regression algorithm trained on the training set ζ , RLOO
i :=

|µ̂−i(Xi) − Yi|are the leave-one-out residuals for each zi ∈ ζ , q̂+n,α and q̂−n,α denote respec-

tively the 1− α and α quantile defined as below

q̂+n,α{vi} = the ⌈(1− α)(n+ 1)⌉-th smallest value of v1, ..., vn,

q̂−n,α{vi} = the ⌊α(n+ 1)⌋-th smallest value of v1, ..., vn.

Jackknife method is more efficient than ICP as it provides smaller prediction sets [20].

However, LOOCP has only finite sample in-sample coverage property [20] and no au-

tomatic out-of-sample validity guarantee. Also, it requires K times training of the un-

derlying algorithm which can be computationally costly. The predictive accuracy of the

jackknife under assumptions of algorithm stability is explored by [35] for the linear regres-
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sion setting. Hence, while the full and split conformal intervals are valid under minimal

assumptions, the same is not true for the Jackknife ones.

Jackknife+ and CV+

It is noteworthy that a modification to the Jackknife method as well as to CCP with a rig-

orous theoretical guarantee on out-of-sample coverage guarantee was proposed recently

in [5]. Using the same notations as above Jackknife+ prediction interval is defined as

Ĉ Jackknife+
n,α = [q̂−n,α{µ̂−i(Xn+1)−RLOO

i }, q̂+n,α{µ̂−i(Xn+1) +RLOO
i }].

Jackknife+ is able to achieve a better coverage rate than the standard Jackknife method

when the underlying regression algorithm is not stable. Moreover, [5] proved that this

modified version achieves a theoretical guarantee of 1 − 2α coverage rate with minimal

assumption.

Algorithm 4 Jackknife+ Method [5]

Input: Training data {(Xi, Yi)}ni=1, regression algorithm A, test point Xn+1, miscover-
age rate α.
Output: Predictive confidence interval Ĉn,α(Xn+1) for Yn+1.
for i = 1 to n do

Fit regression algorithmµ̂−i = A ({(Xj, Yj)}j ̸=i).
Calculate leave-one-out residuals RLOO

i = |Yi − µ̂−i(Xi)|.
end for
Return: Prediction interval

Ĉn,α(Xn+1) =
[
q̂−n,α

{
µ̂−i(Xn+1)−RLOO

i

}
, q̂+n,α

{
µ̂−i(Xn+1) +RLOO

i

}]
.

The author also proposed another variant of CP named the Jackknife-minmax method

which produces prediction interval

Ĉ jackknife-mm
n,α = [ min

i=1,..,n
µ̂−i(Xn+1 − q̂+n,α{RLOO

i }), max
i=1,..,n

µ̂−i(Xn+1 + q̂+n,α{RLOO
i })].
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Although this predictor is proven to have automatic validity, it behaves overly conser-

vatively in practice. Similarly, CV+ is adapted from CCP with the conformal prediction

interval defined as

ĈCV+
n,α,K = [q̂−n,α{µ̂ζ−k

(Xn+1)−RCV
i }, q̂+n,α{µ̂ζ−k

(Xn+1) +RCV
i }],

where µ̂ζ−k
denotes the underlying regression function estimator fitted onto the data ζ \ζk

and RCV+
i = |Yi − µ̂ζ−k(i)

(Xi)| with k(i) represents which fold among the total K folds

include example i. Again, Jackknife+ can be viewed as a special case of CV+. [5] proved

a lower bound for CV+ coverage as

P{Yn+1 ∈ ĈCV+
n,α,K ≥ 1− 2α− 1−K/n

K + 1
},

which provides a meaningful bound for the case when K is large. Together with the result

from [45], it was shown that the coverage is essentially 1 − 2α for any K and the excess

noncoverage is at most
√

2/n uniformly over any choice of K.

Bootstrap Conformal Predictor (BCP)

A modification of CCP based on a bootstrap sampling strategy is called the bootstrap

conformal predictor (BCP) proposed by Vovk in 2015 [42]. In other words, this method

generates the proper training sets by taking K bootstrapped samples Z1, ..., Zk and the

complements of these set Zc
1, ..., Z

c
k where Zc

i = Z \ Zi for i ∈ {1, 2, ..., k}become the cor-

responding calibration sets with Z denoting the whole training set. The nonconformity

measure within each sample is defined the same way as before

αi,k := A(Zk, zi);α
y
k := A(Zk, (xn+1, y)).
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The aggregated p-value is defined as

py :=

∑K
k=1 |{zi /∈ Zk : αi,k ≤ αy

k}|+ T/|Z|
T + T/|Z|

,

where T :=
∑K

k=1(n − |Zk|) is the total size of the calibration sets. The randomized BCP

can be obtained in a similar way as before. Empirical result [42] shows that BCP is well-

calibrated as CCP, however, it does not outperform ICP in informational efficiency while

K is relatively small. Informational efficiency can be improved by increasing K while this

action also increases computational cost.

Generalized Aggregated Conformal Predictor

The several examples of aggregated conformal predictors introduced above can be gen-

eralized as follows. Firstly, we can use any sampling strategy to create k pairs of proper

training and calibration sets. Then, for each sample, we obtain a p-value pyk,min the same

way as a full conformal predictor. Finally, the aggregated p-value with respect to the

provisional label y is the mean of these p-values. The validity of aggregated conformal

predictors is not automatic, and it has been shown that they can not be proved to be

exactly valid.

3.3.3 Out-of-bag Conformal Predictor

Out-of-bag conformal predictor (OOBCP) was initially studied by [22] which adopts ran-

dom forest as the base prediction algorithm under regression setting and can be a po-

tential competitor for ICPs. Unlike ICPs, this new method does not need to sacrifice

any available data for training the underlying model through calibrating on out-of-bag

instances. Multiple early empirical studies show the advantages of using out-of-bag ex-

amples as calibration sets over existing techniques. [27] generalizes out-of-bag (OOB) cal-

ibration strategy names this type of predictor out-of-bag conformal predictors and further

compares its properties versus different types of ACPs that we have introduced before.
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Similar to BCP, the first step of OOBCP is taking K bootstrap samples ζtk of size n from

the original training sets and it requires each bootstrap sample to include approximately

two-thirds of the unique patterns in the total training set ζ . Denote the classifier induced

from each proper training set ζtk as hk and the OOB property indicator as

Oi
k = 1 if zi ∈ ζtk and 0 , otherwise.

Nonconformity score of each zi ∈ ζ is defined as the average score of all bags that zi is an

out-of-bag example

αi :=
1∑K

k=1O
i
k

K∑
k=1

Oi
kA(ζ

t
k, (xi, yi))

For a test example (xn+1, y), the nonconformity score is obtained as follows

αy :=
1∑K

k=1 O
r
k

K∑
k=1

Or
kA(ζ

t
k, (xn+1, y))

, where r is randomly chosen from {1, ..., K}. Finally, the p-value for this potential label y

is defined similarly to before

pyn+1 :=
|{zi ∈ ζ \ {zr} : αi ≥ αy}|+ 1

|ζ \ {zr}|+ 1

or in a smoothed manner defined in the same way as before. The procedure can be inter-

preted as deleting a random example from the training set and letting the test example

take its place. So far, there is a gap in theoretical evaluations of OOBCPs on their prop-

erties. Although the coverage guarantee is not automatic for OOBCPs, they perform well

in practice. Their p-value stability is similar to that of an ICP, and they have shown better

efficiency than BCP.
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3.4 Conditional Valid Conformal Predictor

Although most conformal predictors automatically guarantee the marginal coverage rate

for future prediction, satisfying the average coverage rate alone can be insufficient and

even misleading in certain cases. For example, suppose we are dealing with a binary

classification problem, we may get a super high coverage rate for one class and an ex-

tremely low coverage rate for the other class while still getting the marginal miscoverage

rate below the specified significance level. In this case, the marginal coverage rate will

be meaningless for interpretation. Thus, in reality, guarantee of within-category coverage

and conditional validity is important for prediction algorithms to consider. In this section,

we will introduce several variants of conformal predictors that are constructed to possess

this nice property.

3.4.1 Training-conditional Validity

In this section, we discuss the training-conditional validity of different conformal predic-

tors. This property ensures that most draws of training data produce reliable predictions

for future test examples. Following [41], current literature studies the coverage proba-

bility conditioning on the training set by using a PAC (Probably Approximately Correct)

form definition. Let Dn = (Z1, ..., Zn) denote the training data set, the miscoverage rate of

a conformal predictor conditioning on its training data can be expressed as follows

αP (Dn) = P{Yn+1 /∈ Ĉn(Xn+1)|Dn},

where the probability is only with respect to the test point (Xn+1, Yn+1) drawn from the

distribution of examples P. A conformal predictor is (approximate) training-conditional

valid if it satisfies the following equation

P{αP (Dn) > α+ o(1)} ≤ o(1).
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In other words, the probability that a training set results in a significantly higher training-

conditional miscoverage rate than the nominal rate is vanishingly small. ICP [41] is one

training-conditional valid example satisfying the following inequality

P{αP (Dn) ≤ α +

√
log(1/δ)

2n1

} ≥ 1− δ,

where n1 is the size of the holdout or calibration set, and δ ∈ (0, 0.5] is arbitrary. Also, [8]

shows that the CV+ method also achieves this property with the target nominal rate set

to 2α which is also the proven marginal miscoverage rate

P{αP (Dn) ≤ 2α +

√
2log(K/δ)

m
} ≥ 1− δ.

Whereas FCP and Jackknife+ method do not hold such properties without addressing

further assumptions on the distribution of training data or on the nonconformity score

function.

3.4.2 Label-conditional Validity

Another important property that is often desirable in practice is the guarantee of cover-

age while conditioning on important groups of examples. For example, in classification,

we may want to achieve more control of coverage rate within each category. Thus, there

is a strong motivation for developing conformal predictors with label-conditional valid-

ity which allows learners to control the set-prediction analogs of false positive and false

negative rates.

Mondrian Conformal Predictor

Mondrian conformal predictor is a typical example of a label-conditional valid conformal

predictor and it was first proposed by Vovk in 2003 [44]. The method obtains its name

from the inspiration of Mondrian paintings. This method is commonly used for achieving

39



conditional validity within an important category of examples. For regression problem,

[9] proposes mondrian conformal regressors which quantify uncertainty at the instance-

level and overcome the problems with existing normalized conformal methods.

Other examples under this category include conditional ICPs [41] which applies to

both regression and classification settings. Adaptive prediction sets (APS) and regular-

ized adaptive prediction sets (RAPS) are developed to achieve class-conditional validity

specific to classification problems which will be introduced in the next chapter.

3.4.3 Object-conditional Validity

In most cases, while talking about conditional coverage, we mainly concerned with the

probability of covering true label conditioning on the object. Unfortunately, precise object-

conditional validity was shown impossible to achieve for distribution-free predictors in a

nontrivial way [41] [26]. This result was originally discovered and proved in section A.2.

of [26]. Here, we presented the proof in the case of classification in proposition 4 of [41]

and the proof of the regression case follows similar idea.

Theorem 4. [41]Suppose X is a separable metric space equipped with the Borel σ-algebra. Let

ϵ ∈ (0, 1). Suppose that a set predictor C has 1 − ϵ object conditional validity. In the case of

regression, we have, for all P and PX-almost all PX-non-atoms x,

P n(Ĉn(x) = ∞) ≥ 1− ϵ.

In the case of classification, we have, for all P, all y ∈ Y , and PX-almost all PX-non-atoms x,

P n(y ∈ Ĉn(x)) ≥ 1− ϵ.

Proof. For classification case, suppose there exists a measurable subset E of PX-non-atoms

x ∈ X such that PX(E) > 0 and P n(y ∈ Ĉn(x)) < 1− ϵ. Shrink E such that PX(E) > 0 still

holds and there exists δ > 0 such that, for all x ∈ E, we have P n(y ∈ Ĉn(x)) ≤ 1 − ϵ − δ.
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Denote the total variation distance between P and Q by V (P,Q) := supA|P (A) − Q(A)|.

Then, follows the idea in section 2.4 of [37], we have

V (P n, Qn) ≤
√
2
√

1− (1− V (P,Q))n.

Then, shrink E again such that PX(E) > 0 and

√
2
√

1− (1− PX(E))n ≤ δ/2.

Define probability distribution Q on Z in the way that Q(A × B) = P (A × B) for all

measurable A ⊆ (X \ E) and all B ⊆ Y and that Q(A × {y}) = PX(A) for all measurable

A ⊆ E. But then for each x ∈ E we have

Qn(y ∈ Ĉ(Z1, ..., Zn, x)) ≤ 1− ϵ− δ/2

⇒ Qn(y ∈ Ĉ(Z1, ..., Zn, Xn+1) and Xn+1 ∈ E) ≤ (1− ϵ− δ/2)QX(E),

which contradicts the assumption that predictor C is object conditionally valid.

Acknowledging the impossibility of exact object conditional validity, researchers have

been devoted to exploring the gap between unconditional and label-conditional cover-

age. One branch of studies such as [20] and [11] focuses on studying the asymptotic

label-conditional coverage. Another line of research was devoted to developing approxi-

mations or relaxations of exact label-conditional validity such as [15].

3.5 Relaxing Assumptions

From previous sections, although CP is a powerful method with no restriction on the

distribution of training examples, we must guarantee that the test and training data are
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exchangeable since proofs of their properties were built on this assumption. However,

exchangeable data is not always achievable in practice. In recent years, researchers have

shown increasing interest in developing extensions of conformal prediction framework

[6] to conditions breaking the exchangeable assumption such as working in a time series

scenario. In this section, several important variants will be introduced.

3.5.1 Covariate Shift

One of the first successful attempts in this research direction is the work by Tibashirani

and his collaborators in 2019 [36]. They investigate the feasibility of conformal inference

in the case when the distribution of test data differs from that of the training data with

the conditional distribution of Y |X remaining the same across both training and test data.

Formally, the distributions of training and test data can be expressed as follows

(Xi, Yi) ∼ P = PX × PY |X , i = 1, ..., n,

(Xn+1, Yn+1) ∼ P̃ = P̃X × PY |X , independently.

Under such a setting, the change in distribution comes from covariate. This assumption

was referred to as covariate shift in literature. [36] suggested to use a weighted methodol-

ogy. By introducing weights defined from the likelihood ratio w(x) = dP̃ (x)
dP (x)

for x ∈ X as

follows

pwi (x) =
w(Xi)∑n

j=1w(Xj) + w(x)
, i = 1, ..., n and pwn+1(x) =

w(x)∑n
j=1 w(Xj) + w(x)

.

In this way, more weights were put on calibration points which are more likely under the

distribution of test points. The weighted conformal prediction gives the result

Ĉn,α(x) = {y ∈ R : α
(x,y)
n+1 ≤ Quantile(1− α;

n∑
i=1

pwi (x)δαi
+ pwn+1(x)δ∞),
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where αi are residual-based nonconformity scores and Quantile(1 − α; 1
n

∑n
i=1 δαi

) is the

level 1−α quantile of the empirical distribution of values αi’s with δαi
denoting the point

mass at αi. Also, this method covers the original conformal prediction as a special case

because when all data are exchangeable, the weights will all equal 1
n+1

which gives an

original conformal prediction.

More generally, the weighted method is applicable in the setting that data is under-

weighted exchangeable distribution [36, Theorem 2]. However, in practice, most appli-

cations of the weighted conformal method require extensive computation costs. Only in

special cases of covariate shift such that the likelihood ratio is known or can be estimated

from unlabeled data, does the weighted method become feasible in reality [36].

3.5.2 Distributional Shift

Distributional shift depicts another type of change in the distribution of training examples

and test examples. This setting is more complex than the covariate shift case because it

allows for changes in distribution for both label and object such as in the case of time

series where data distribution can change gradually over time. Suppose the calibration

data and test data are drawn independently from different distributions denoted by Pi

and Ptest respectively.

Weighted Approach

Following the work introduced in the previous section, [6] further improved the weighted

method to be applicable to the distributional shift setting in the following way. For co-

variate shift settings, quantiles are likelihood-weighted in order to address the change in

covariate distribution. In this case, they introduced a custom-weighted conformal pre-

diction method that uses arbitrary fixed weights. Their method upweights points in the

training set that are more representative of test distribution and downweights the rest

to get closer to the desired coverage guarantee. For example, if each data Zi occurs at

time i, we may choose w1 ≤, ...,≤ wn to emphasize the importance of more recent data
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points. If all weights equal one, then this method becomes identical to the normal version

of conformal prediction.

Let wi ∈ [0, 1], i = 1, ..., n be fixed and arbitrary weights, and define

w̃i =
wi

w1 + w2 + ...+ wn + 1
, i = 1, ..., n, and w̃n+1 =

1

w1 + w2 + ...+ wn + 1
.

The prediction result following a full conformal prediction design would be

Ĉn,α(Xn+1) = {y ∈ Y : α
(Xn+1,y)
n+1 ≤ Quantile(1− α;

n+1∑
i=1

w̃i · δαi
)}.

This weighted method also can address the issue of adopting nonsymmetric underlying

prediction algorithms [6]. While this method is more robust to violation of the regular

assumptions of conformal prediction by giving users the freedom to customize weights,

the design of a proper weight strategy can be a hard problem in practice.

Adaptive Approach

Another promising approach that makes conformal prediction framework more robust

was proposed in 2021 [16]. The core of this method, adaptive confidence inference (ACI),

is not only the idea of conformal prediction. It follows the construction of conformal

quantile regression proposed in [32] which combines conformal prediction with quantile

regression. Also, we should be aware that ACI was proposed under an online setting.

While it makes predictions sequentially, ACI adjusted the nominal miscoverage rate αt at

each step to maintain the realized miscoverage rate denoted by Mt(α) at the desired level

α.

Formally, unlike CQR which uses only one score function and quantile function, ACI

defines score functions St(·) and quantile function Q̂(·) that are changing over time to

adjust for shift in distribution. For each prediction Ĉt(α) := {y : St(Xt, Yt) ≤ Q̂t(1 − α)},
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define the realized miscoverage rate as

Mt(α) := P (St(Xt, Yt) > Q̂t(1− α)),

where the probability is over the test point (Xt, Yt) and the data used to fit St(·) and Q̂(·).

Then, we can define the adaptive miscoverage rate as

α∗
t := sup{β ∈ [0, 1] : Mt(β) ≤ α}.

In practice, such calibration is obtained by online updating that is intuitively straightfor-

ward as follows

αt+1 := αt + γ(α− errt),

where γ > 0 is a fixed step size. If the previous prediction covers the true value, then

we slightly increase the miscoverage rate and vice versa. Alternatively, we can also make

adjustments according to a sequence of past predictions

αt+1 := αt + γ(α−
t∑

s=1

wserrs),

where {ws}1≤s≤t ⊆ [0, 1] is a sequence of increasing weights with
∑t

s=1 ws = 1. ACI

succeeds in improving the robustness of conformal inference. In practice, the choice of

step-size γ can be a problem in application. Recently, several alternative works have been

proposed independently to avoid this obstacle such as in [17], [46] and [7].

3.6 Summary

Chapter 3 provides an overview of various conformal prediction algorithms. The chap-

ter is structured to guide the reader from fundamental concepts of conformal prediction

framework to improvements and enhancements on the basic CP framework. Extensions
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of CP are designed to improve the conformal predictor’s validity, efficiency, and robust-

ness under different conditions. Following the introduction of the basic terminologies

and procedures of conformal prediction based on Full Conformal Prediction (FCP), we

discussed two important evaluation criteria: validity and efficiency for conformal predic-

tors with a focus on the trade-offs between validity and efficiency.

The rest of this chapter introduces multiple variants of conformal predictors that ad-

dress the limitations of the original framework. First, it discusses how different cali-

bration strategies improve the computation efficiency of original conformal prediction

framework. It also points out the limitation faced by some of these conformal predictors’

on achieving a theoretical guarantee on coverage rate. Furthermore, conditional valid

conformal predictors were brought to attention as they are important in application to

guarantee useful coverage guarantee across different categories. Lastly, we present sev-

eral inspiring improvements on the conformal framework proposed in recent years that

allow the method to work for nonexchangeable data. We presented how the researchers

achieved this goal by adopting either weighted nonconformity scores or an adaptive mis-

coverage level.
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Chapter 4

Logits-based Nonconformity Score

Applicable to Image Classification

Problems

This chapter focuses specifically on conformal classifiers designed to quantify the uncer-

tainty of neural network algorithms that address image classification problems. Within

this specific scope, we mainly introduce two of the most popular methods Adaptive Pre-

diction Set (APS) [33] and Regularized Adaptive Prediction Set (RAPS) [3] under this

category. Then modifies them to use logits-based nonconformity scores and refer to the

two new methods as APS-Logits and RAPS-Logits. Finally, we conducted empirical com-

parison of the four algorithms’ performance on image classification applications.

4.1 Motivation

Neural networks have revolutionized the field of image classification, a critical task in

computer vision with applications ranging from medical diagnostics to autonomous driv-

ing. Neural networks, particularly deep learning models such as Convolutional Neural

Networks (CNNs), have performed exceptionally in identifying and categorizing images
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into predefined classes. This success is largely attributed to their ability to automatically

learn and extract hierarchical features from raw image data, significantly outperform-

ing traditional machine learning methods. Despite their success, neural networks often

provide point estimates without quantifying the uncertainty of their predictions. This

limitation can be critical in high-stakes applications where understanding the confidence

of a model’s prediction is as important as the prediction itself. To address this challenge,

conformal prediction has emerged as a promising technique that complements neural

network models by providing a measure of confidence alongside each prediction.

While the design of nonconformity score of conformal classifiers mainly relies on the

’probability’ output of deep learning algorithms, there exist empirical results [18] [39] [47]

suggest that using logits instead of ’probabilities’ such as the softmax output is better in

practice. Thus, it become an interesting topic to explore how substituting softmax out-

put with logits in the application of conformal classifiers influences the prediction re-

sults. In the following subsections, we examines the performances of changing existing

probability-based conformal algorithms to logits-based methods by first introducing the

design of APS and RAPS algorithms and then presented an application of image classifi-

cation.

4.1.1 Adaptive Prediction Sets

The Adaptive Prediction Set algorithm is designed to construct prediction sets with valid

and adaptive coverage for multi-class classification problems [33]. Given a dataset {(Xi, Yi)}ni=1

with features Xi ∈ Rp and discrete labels Yi ∈ {1, 2, . . . , C}, the APS algorithm seeks to

form a prediction set Ĉn,α(Xn+1) ⊆ {1, 2, . . . , C} for a new data point (Xn+1, Yn+1) such

that the coverage probability P [Yn+1 ∈ Ĉn,α(Xn+1)] ≥ 1 − α holds marginally regardless

of the accuracy of the underlying black-box algorithm.

Let πy(x) = P [Y = y|X = x] denote the conditional probability for each y ∈ Y , and

denote the order statistics for πy(x) as π(1)(x) ≥ π(1)(x) ≥ ... ≥ π(C)(x). Define L(x; π, τ) as
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the generalized conditional quantile function:

L(x; π, τ) = min{c ∈ {1, ..., C} : π(1)(x) + π(2)(x) + ...+ π(c)(x) ≥ τ}.

The APS algorithm defines a generalized inverse quantile function to calculate a confor-

mity score as follows

E(x, y, u; π̂) = min{τ ∈ [0, 1] : y ∈ S(x, u; π̂, τ)},

where

S(x, u; π, τ) =


‘y’ indices of the L(x; π, τ)− 1 largest πy(x), if u ≤ V (x; π, τ),

‘y’ indices of the L(x; π, τ) largest πy(x), otherwise

is a prediction set formed based on estimated class probabilities π̂y(x) obtained from the

underlying black-box algorithm with

V (x; π, τ) =
1

πL(x;π,τ)(x)

L(x;π,τ)∑
c=1

πc(x)− τ

 .

The algorithm can be carried out with not only the split conformal calibration scheme

but also the Jackknife+ or CV+ calibration which have been introduced in the previous

chapter. Using the split-conformal calibration as an example, the APS algorithm trains a

black-box classifier on a subset of data I1 to generate estimated probabilities π̂, and then

using hold-out data I2 to calibrate the conformity scores. This results in prediction sets

that adapt to the underlying data distribution, providing strong empirical performance in

terms of both marginal and approximate conditional coverage. Formally, the prediction

set for a new observation Xn+1 is given by

Ĉn,α(Xn+1) =
{
y ∈ {1, 2, . . . , C} : E(Xn+1, y, Un+1; π̂) ≤ Q̂1−α

}
,
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where Q̂1−α is the estimated 1− α quantile of the nonconformity scores computed on the

hold-out set I1.

4.1.2 Regularized Adaptive Prediction Sets

The Regularized Adaptive Prediction Sets algorithm builds on the APS method and can

provide reliable prediction sets with better prediction efficiency [3]. While APS aims to

construct prediction sets that achieve a specified marginal coverage level by using hold-

out samples to determine a conformity score threshold, it often results in large prediction

sets due to noisy probability estimates, especially for classes with low predicted proba-

bilities. In contrast, RAPS incorporates a regularization term that penalizes the inclusion

of unlikely classes based on their rank, leading to smaller and more stable prediction sets

without sacrificing coverage. This regularization addresses inefficiency of APS method,

where the order of classes with low probabilities can significantly impact the size of the

prediction set.

Formally, the RAPS algorithm defines a nonconformity score for each class y ∈ {1, 2, . . . , C}

using the formula

E(x, y, u; π̂) =
C∑

y′=1

π̂y′(x)I{π̂y′ (x)>π̂y(x)} + π̂y(x) · u+ λ · (rank(y)− kreg)
+,

where π̂y(x) is the estimated probability of class y, u ∼ Uniform(0, 1) is a random variable

to break ties, λ is a regularization parameter, and kreg is a parameter determining which

labels should be penalized, and rank(y) represents the ranking of probability of label y

among all the labels based on the estimated probabilities.

To obtain the threshold τ , we start with a set-valued function C(X, u, τ), which maps

a feature vector X and a uniform random variable u ∈ [0, 1] to a subset of the possible

labels. The function C(X, u, τ) is indexed by the parameter τ , where larger τ corresponds

to a larger prediction set size. The goal is to find the smallest value of τ that ensures

the prediction set covers the true label Y with a probability of at least 1 − α. Thus, we
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calibrate τ on a calibration set I1. τ is chosen such that the proportion of calibration

examples (Xi, Yi) where Yi ∈ C(Xi, Ui, τ) is at least 1− α. We estimate τ by the following

formula

τ̂ = inf

{
τ :

1

n

n∑
i=1

I{E(Xi,Yi,u;π̂)≤τ)} ≥
⌈(1− α)(1 + n)⌉

n

}
Choosing τ = τ̂ ensures that the prediction sets produced on new data will have the

desired coverage probability 1− α.

The prediction set Ĉ(Xn+1) for a new observation Xn+1 is constructed by including

classes in increasing order of their scores until the threshold τ , determined from a hold-

out set, is reached:

Ĉ(Xn+1) = {y ∈ {1, 2, . . . , C} : E(Xn+1, y, Un+1; π̂) ≤ τ̂} .

The algorithm ensures that the coverage probability P (Yn+1 ∈ Ĉ(Xn+1)) ≥ 1 − α holds

marginally, and the regularization helps reduce the impact of noisy probability estimates,

resulting in more efficient and reliable prediction sets.

With a similar aim of quantifying uncertainty, another emerging stream of research

named out of distribution detection which is popular in recent years shares many sim-

ilarities with the topic of this thesis: conformal prediction. Inspired by the trend of de-

signing out-of-distribution scores with raw logits, we propose two potential designs of

logit-based nonconformity scores in the following section.

4.2 Method

In both APS and RAPS, the estimated probabilities of neural network classifiers are typi-

cally obtained using the softmax function applied to the raw logits. However, our method

introduces a novel approach by directly using the raw logits to construct the conformity

scores aiming to avoid potential distortions introduced by the softmax transformation.
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This approach leverages the raw logits to construct prediction sets that maintain the same

desired coverage properties while potentially providing better performance in terms of

prediction set size and stability.

Formally, let zy(x) denote the raw logit output of a neural network for class y ∈

{1, 2, . . . , C} given input x ∈ Rp. Instead of using the softmax-transformed probabilities

π̂y(x), we directly utilize the raw logits to define our conformity score. The nonconformity

score for class y is given by

E(x, y, u; z) =
C∑

y′=1

zy′(x)I{zy′ (x)>zy(x)} + zy(x) · u+ λ · (rank(y)− kreg)
+,

where u ∼ Uniform(0, 1) is a random variable to break ties, λ is a regularization param-

eter, and kreg serves the same purpose as before, and rank(y) represents the ranking of

zy(x).

The prediction set Ĉ(Xn+1) for a new observation Xn+1 is then constructed by first

estimating the threshold τ based on the calibration data set in the same way as in RAPS

method and then including all classes giving a nonconformity score not greater than the

estimated threshold τ̂ :

Ĉ(Xn+1) = {y ∈ {1, 2, . . . , C} : E(Xn+1, y, Un+1; z) ≤ τ̂} .

By avoiding the softmax transformation, our method directly utilizes the model’s raw

outputs, potentially capturing more precise information about the classifier’s confidence

and relationships among classes. In the following section, we examine the empirical per-

formance of our methods against APS and RAPS on handling image classification tasks.

4.3 Experiment

Our experiment was carried out following the design of experiment 2 of [3]. The perfor-

mance of the RAPS, APS and our methods was evaluated on the ImageNet validation
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Model Top-1 Top-5 APS APS-Logits RAPS RAPS-Logits

ResNet152 0.782 0.940 0.935 0.965 0.906 0.899
ResNet101 0.773 0.935 0.935 0.965 0.900 0.898
ResNet50 0.716 0.928 0.930 0.961 0.904 0.896
ResNet18 0.697 0.891 0.922 0.952 0.901 0.899
DenseNet161 0.770 0.935 0.931 0.964 0.908 0.896
ResNeXt101 0.792 0.945 0.937 0.969 0.906 0.899
VGG16 0.716 0.904 0.927 0.957 0.904 0.897
Inception-v3 0.695 0.886 0.924 0.968 0.901 0.899
ShuffleNet-v2 0.693 0.884 0.927 0.957 0.900 0.902

Table 4.1: Comparison of four algorithms’ empirical coverage rate on ImageNet data set

with 9 different pre-trained base classifiers.

data set. The objective was to compare the coverage and efficiency of the prediction

sets generated by four conformal prediction methods. We utilized nine standard, pre-

trained ImageNet classifiers from the torchvision repository, including models such as

ResNet152, ResNet50, and DenseNet161, among others. The ImageNet data set contains

50000 images in total. For each trial, we randomly sampled 10000 images where 3000 of

them were used to select parameter λ and the reset 7000 of them were used to calibrate

the threshold τ . The rest 40000 images in the dataset were used as testing examples. This

sampling procedure was repeated 100 times to generate the results shown in the table

below.

For the two methods building on estimated probabilities, all classifiers were calibrated

using temperature scaling, a form of Platt scaling, to adjust the predicted probabilities and

improve the accuracy of the prediction sets. Following calibration, we applied the APS

and RAPS methods to the evaluation set, recording both the coverage and the size of the

prediction sets. The median-of-means over the 100 trials was used to report the results for

both coverage and prediction set size. The objective of the experiment was to determine

the ability of each method to achieve the desired coverage while minimizing the size of

the prediction sets.
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Model Top-1 Top-5 APS APS-Logits RAPS RAPS-Logits

ResNet152 0.782 0.940 9.895 9.681 2.103 2.539
ResNet101 0.773 0.935 10.376 10.326 2.250 2.714
ResNet50 0.716 0.928 11.067 10.516 2.496 2.933
ResNet18 0.697 0.891 15.101 15.652 4.261 5.309
DenseNet161 0.770 0.935 10.801 10.498 2.362 2.697
ResNeXt101 0.792 0.945 19.218 10.830 1.983 2.415
VGG16 0.716 0.904 13.289 13.144 3.493 4.088
Inception-v3 0.695 0.886 85.900 44.540 5.115 6.430
ShuffleNet-v2 0.693 0.884 30.054 93.158 4.837 6.184

Table 4.2: Comparison of the four algorithms’ prediction sets sizes on ImageNet data set

with 9 different pre-trained base classifiers.

4.4 Discussion

From the results in Tables 1 and 2, we know that all methods in this experiment suc-

cessfully achieved the desired coverage rate across various pre-trained models on the

ImageNet validation dataset. This consistency in coverage indicates that each method is

capable of generating prediction sets that reliably include the true label, which is one of

the most important properties of conformal prediction algorithms. Among the four meth-

ods, RAPS consistently produced the smallest prediction sets, as shown in Table 2. For

example, with the ResNet152 model, RAPS generated a median set size of 2.103, which

is significantly smaller than the median set size produced by APS (9.895). For the effi-

ciency of the two methods proposed in this section, our logits-based variant of APS (i.e.

APS-Logits) generates smaller prediction sets compared to the standard APS method. For

instance, with the DenseNet161 model, APS-Logits produced a median set size of 10.498,

whereas APS produced a slightly larger median set size of 10.801. This suggests that in-

corporating logits into the design of nonconformity scores could enhance the efficiency

of the prediction sets for conformal algorithms. However, when examining the RAPS

versus RAPS-Logits, the results indicate that the introduction of logits did not lead to a

similar efficiency gain. In some cases, RAPS-Logits even produced slightly larger predic-

tion sets compared to RAPS. For example, with the ResNet50 model, the median set size
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for RAPS-Logits was 2.933, whereas for RAPS, it was slightly smaller at 2.496. The reason

that RAPS-Logits seem to be less competitive versus RAPS potentially comes from the dif-

ficulty of choosing regularization parameter λ. Since raw logits are numerically unstable

in general, it is harder to find suitable regularization parameters when our logits-based

method tries to adopt the same regularization technique as a probability-based method.

Overall, the experiment demonstrates that under certain circumstances, logit-based

methods can improve the efficiency of prediction sets while maintaining the desired cov-

erage. However, further theoretical explorations on logits-based methods’ properties

are needed such as evaluation of the conditional coverage guarantee of APS-Logits and

RAPS-Logits. Moreover, it is also an interesting topic to explore how to design suitable

regularization terms for nonconformity scores based directly on raw logits, which may

offer a more competitive conformal prediction algorithm compared to RAPS. It is impor-

tant to note that our methods represent relatively naive attempts to incorporate logits

into the design of nonconformity scores. We modified existing methods to create logits-

based variants rather than developing entirely new nonconformity scores grounded in

the original properties of logits. These initial attempts show the potential of logits-based

nonconformity scores. There exists considerable room for further innovation. More cre-

ative and powerful methods that were originally designed around the use of logits could

potentially offer even greater improvements in efficiency while maintaining the desired

coverage.
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Chapter 5

Conclusion

This thesis has explored the conformal prediction framework, emphasizing its ability to

provide robust uncertainty quantification in predictive modeling. Through a combina-

tion of theoretical analysis and practical experimentation, we have highlighted both the

strengths and limitations of this approach.

In Chapter three, we introduced the foundational concepts of conformal prediction,

exploring how to design nonconformity scores for different conformal predictors. Multi-

ple calibration strategies applicable to conformal prediction algorithms were presented

with comparison of their validity and efficiency. We also presented the challenge of

achieving object-conditional validity in a distribution-free setting for most conformal pre-

dictors. Lastly, this chapter discussed how to extend the conformal framework beyond

the exchangeable setting. We introduced various modifications to conformal framework

that were designed to relax exchangeable assumptions, enabling the application of confor-

mal prediction to more complex data scenarios, such as covariate shift and distributional

shift.

In Chapter four, we attempted to evaluate the possibility of using logits to design non-

conformity scores. We adapted two promising conformal approaches: APS and RAPS,

which are designed to quantify the uncertainty for classification problems. We exam-

ined on the performance the logits-based version of these two methods: APS-Logits and
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RAPS-Logits by conducting experiments on ImageNet dataset. By comparing the predic-

tion sets’ coverage and sizes, we found that APS-Logits had better efficiency than APS

while maintaining the desired coverage rate. However, RAPS-Logits did not outperform

RAPS. While the results suggest using raw logits versus estimated probability can be

promising in improvement of conformal algorithm’s efficiency in some cases, it remains

a challenge to design logits-based nonconformity with suitable regularization term.

In conclusion, conformal prediction represents a valuable tool in statistical learning.

It offers a flexible and reliable means of uncertainty quantification. While challenges re-

main, such as in adapting the framework to non-exchangeable data, ongoing research

continues to push the boundaries of what is possible. Future work may focus on exploring

its integration with other uncertainty quantification methods such as out-of-distribution

detection.
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[5] BARBER, R. F., CANDÈS, E. J., RAMDAS, A., AND TIBSHIRANI, R. J. Predictive

inference with the jackknife+. The Annals of Statistics (2019).

[6] BARBER, R. F., CANDES, E. J., RAMDAS, A., AND TIBSHIRANI, R. J. Conformal

prediction beyond exchangeability. The Annals of Statistics 51, 2 (2023), 816–845.

[7] BASTANI, O., GUPTA, V., JUNG, C., NOAROV, G., RAMALINGAM, R., AND ROTH, A.

Practical adversarial multivalid conformal prediction. Advances in Neural Information

Processing Systems 35 (2022), 29362–29373.

58



[8] BIAN, M., AND BARBER, R. F. Training-conditional coverage for distribution-free

predictive inference. Electronic Journal of Statistics (2022).
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