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Abstract 

A member of the tumor necrosis factor receptor (TNFRSF) superfamily, the p75 neurotrophin 

receptor (p75NTR) is a major regulator of nervous system development and maintenance. 

Although p75NTR-dependent function across diverse neurological phenotypes—both 

physiological and pathophysiological—has been thoroughly studied, our knowledge of the 

underlying signaling mechanisms engaged by p75NTR remains severely limited. To address this 

problem, I begin by characterizing extracellular vesicles (EVs) as a novel p75NTR signaling 

platform. Using multiple assays, I demonstrate that p75NTR overexpression induces expansion 

in COS7 cells via a non-cell-autonomous signaling pathway. Non-cell-autonomous COS7 

expansion requires p75NTR secretion via large EVs—highly enriched in p75NTR proteolytic 

cleavage products—and downstream engagement of NRAGE in the EV recipient cell.  

Moreover, COS7-derived p75NTR+ EVs induced expansion of growth cones in developing 

DRG sensory neurons in vitro. Next, I resolved the interactome of p75NTR—and its functional 

TNFRSF relatives DR6 and TROY—in a modified HEK293 cell line by proximity-dependent 

biotinylation (BioID). BioID revealed a set of 29 shared interactors between these 3 TNFRSFs, 

which included the extracellular domain (ECD)-truncated TNFRSF, RELT-Like 1 (RELL1). 

After validation of the RELL1-TNFRSF complexes by proximity ligation assay, functional 

assays revealed that RELL1 blocks non-cell-autonomous p75NTR-dependent COS7 expansion 

by inhibiting p75NTR exocytosis to large EVs. RELL1-dependent p75NTR inhibition requires 

formation of the RELL1-p75NTR complex as a novel non-p75NTR-binding mutant 

(RELL1ΔCR4-HA) failed to inhibit p75NTR-dependent cell expansion. Collectively, the data 

establish EVs as a novel p75NTR signaling platform and add to a growing body of evidence that 

ECD-truncated TNFRSFs are endogenous inhibitors of their full-length counterparts. 
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Résumé 

Membre de la superfamille des récepteurs du facteur de nécrose tumorale (TNFRSF), le 

récepteur de neurotrophine p75 (p75NTR) est un régulateur majeur du développement et de 

l’entretien du système nerveux. Bien que la fonction dépendante du p75NTR dans divers 

phénotypes neurologiques, tant physiologiques que physiopathologiques, ait été étudiée à fond, 

nos connaissances des mécanismes de signalisation sous-jacents engagés par le p75NTR restent 

très limitées. Pour résoudre ce problème, je commence par caractériser les vésicules 

extracellulaires (VE) comme une nouvelle plateforme de signalisation p75NTR. À l’aide de tests 

multiples, je démontre que la surexpression du p75NTR induit une expansion dans les cellules 

COS7 via une voie de signalisation non autonome des ventes. L’expansion du COS7 non 

cellulaire autonome requiert la sécrétion du p75NTR par l’intermédiaire de VE de grande taille, 

hautement enrichis en produits de clivage protéolytique du p75NTR, et l’engagement en aval du 

NRAGE dans la cellule réceptrice du VE.  De plus, les VE p75NTR+ dérivés du COS7 ont induit 

l’expansion de cônes de croissance développant des neurones sensoriels DRG in vitro. Ensuite, 

j’ai résolu l’interactome du p75NTR — et de ses TNFRSF relatifs fonctionnels DR6 et TROY — 

dans une lignée cellulaire HEK293 modifiée par biotinylation dépendante de la proximité 

(BioID). BioID a révélé un ensemble de 29 interacteurs partagés entre ces 3 TNFRSF, dont le 

domaine extracellulaire (ECD)-tronqué TNFRSF, RELT-Like 1 (RELL1). Après validation des 

complexes RELL1-TNFRSF par un essai de ligature de proximité, des essais fonctionnels ont 

révélé que le RELL1 bloque l’expansion du COS7 non dépendant du p75NTR en inhibant 

l’exocytose du p75NTR aux VE de grande taille. L’inhibition p75NTR dépendante du RELL1 

nécessite la formation du complexe RELL1-p75NTR en tant que mutant nouveau non lié au 

RELL1 (RELL1ΔCR4-HA) n’a pas inhibé l’expansion cellulaire dépendante du p75NTR. 

Collectivement, les données établissent les VE comme une nouvelle plateforme de signalisation 
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p75NTR et ajoutent à un ensemble croissant de preuves que les TNFRSFs tronquées du ECD 

sont des inhibiteurs endogènes de leurs homologues de pleine longueur. 

 

Contribution to original knowledge 

 This doctoral thesis: (i) describes a novel intercellular p75NTR signaling mechanism 

mediated by extracellular vesicles (EVs) that induces cell expansion events; (ii) resolves a 

protein interactome shared by p75NTR, DR6 and TROY; and (iii) characterizes RELL1 as an 

inhibitor of p75NTR exocytosis and EV-dependent signaling. 
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Chapter 1: Review of the relevant literature 

1.1 Discovery of the TNF system 

 In the late 19th century, Dr. William B. Coley successfully induced stable remission of an 

inoperable sarcoma via injection of a bacterial immunogen directly into the primary tumour (1). 

In addition to sparking the field of immunology, this result founded the hypothesis of an anti-

tumour immune response that went unexplored for the next 70 years [reviewed in (2)]. Coley’s 

hypothesis was substantiated by Dr. W. Edward O’Malley and colleagues (1962) who discovered 

that serum derived from mice infected with Serratia marcescens polysaccharide could induce 

sarcoma regression in vivo, indicating that a “tumor necrotizing factor” must be present in sera 

(3). In 1975, this anti-tumoral serum factor was successfully isolated by Carswell and colleagues 

and became known simply as Tumour Necrosis Factor (TNF).  

 In parallel to the TNF discovery, two independent laboratories published the discovery of 

a cytotoxic factor secreted by lymphocytes—which was termed lymphotoxin (LT)—capable of 

inducing necrosis in the L-929 fibrosarcoma cell line (4,5). Nearly one decade after the TNF/LT 

discoveries, Dr. Bharat Aggarwal’s group successfully purified human LT from conditioned 

medium of the RPMI 1788 lymphoblastoid cell line (6,7) and human TNF from conditioned 

medium of HL-60 promyelomonocytic cells (8) for structural characterization. Interestingly, 

TNF and LT showed very high sequence homology (~50%) (6–8), though both were 

immunologically distinct (9), and were subsequently re-named TNFα and TNFβ (or LT-α), 

respectively. Moreover, their expression profile differs in that TNFα is primarily macrophage-

derived; whereas TNFβ is lymphocyte-derived (10). By the mid-1980s, the cDNAs encoding 

TNFα and TNFβ were successfully resolved (11,12). Beutler and colleagues (1985) revealed that 

a macrophage-derived factor, cachectin—known to drive cachexia—and TNFα were in fact the 
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same protein (13). Both TNFα and TNFβ were shown to engage the same cell surface receptor 

with similar affinity (9,14). 

 By the late 1980s, the focus of research shifted toward the potential for exploiting 

TNFα/β in the clinic. Dr. Anthony Cerami’s group demonstrated that immunization against 

TNFα protects mice from lipopolysaccharide (LPS)-induced lethality (15) and septic shock (16). 

This demonstrated that, although TNFα can stimulate physiological inflammation, over-

production of TNFα can be deleterious and may contribute to immunopathology. At present, 

TNFα has been broadly implicated in several autoimmune pathologies, including: multiple 

sclerosis, lupus erythematosus, uveitis, arthritis, psoriasis, and Crohn’s disease [reviewed in 

(17,18)]. Thus, although TNF is an effective anti-tumoral factor, its utility is limited in the clinic 

due to its potent pro-inflammatory nature (19,20). However, in soft tissue carcinomas localized 

to the extremities, exogenous TNFα can be locally restricted by isolated limb perfusion (21–23). 

In these cases, TNFα has effective antitumoral activity with minimal safety concerns (21–23). 

 It is clear in hindsight that these pioneering studies in the TNF field merely scratched the 

surface of TNF biology. Currently, 19 TNF ligands and 29 TNF receptors (TNFRSFs) have been 

identified and functionally characterized in humans [reviewed in (18)]. Mice express orthologs 

of all 29 human receptors in addition to 3 murine-specific TNFRSFs (24). The field now 

recognizes that physiological and pathophysiological functions of the TNF system extend far 

beyond immunology and immuno-oncology. Aberrant TNF-TNFRSF signaling has been broadly 

implicated in: tumorigenesis (25–27), neuropsychiatric disorders (28–31), neurodegenerative 

disease (32–35), cardiovascular disease (36–41), diabetes (42), obesity (42–44), and pulmonary 

disease (45–49). 
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 In recent decades, TNFRSFs have been firmly established as master regulators of nervous 

system development and maintenance. Three of the best characterized TNFRSFs in this regard 

include: the p75 neurotrophin receptor (p75NTR), death receptor 6 (DR6), and TROY (discussed 

further in Sections 1.4 to 1.6). These 3 TNFRSFs demonstrate functional overlap within the 

contexts of neurodegeneration—both physiological and pathophysiological—and neural 

plasticity (50–64). Despite the rapidly accumulating literature on the role of these 3 TNFRSFs in 

nervous system function, our knowledge of the core signaling mechanisms utilized by these 

receptors remains limited. 

1.2 TNFRSF structure and function 

 TNF ligands are type II multi-pass transmembrane proteins structurally identifiable by a 

TNF homology domain (THD) (65,66). Although all TNFs exist in a transmembrane state, 

several TNF ligands can be proteolytically processed in a soluble extracellular form (67). 

TNFRSFs, on the other hand, are single-pass type I transmembrane proteins possessing one or 

more characteristic cysteine-rich domains (CRDs) within their extracellular domain (ECD). A 

CRD consists of six cysteine residues forming three independent disulfide linkages (65,66). 

Physical association of the THD and CRD mediates TNF-TNFRSF interactions (67). Several 

TNFRSFs—like their TNF counterparts—can be proteolytically cleaved to release the 

intracellular domain (ICD) into the cytosol and an ECD into the extracellular environment, both 

of which can be signaling-competent (67). Lastly, TNF ligands form functional homotrimers 

(67,68)—and TNFRSFs exist in pre-liganded homotrimers (69). Thus, TNF-TNFRSF signaling 

occurs in a conserved 3:3 stoichiometry (67). p75NTR is an exception, as p75NTR transduces 

signals from neurotrophin (NT) and proneurotrophin (proNT) ligands—or in a ligand-
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independent manner—in active dimeric and monomeric states (70,71) [discussed further in 

Section 1.4.1]. 

 TNFRSFs are structurally sub-categorized by the presence or absence of an ~80 amino 

acid (AA) pro-apoptotic domain in their ICD known as the death domain (DD) (72). The DD 

consists of 6 α-helices arranged in a globular conformation (73). TNFRSFs possessing an DD are 

referred to as death receptors (DRs). Canonically, DRs induce death signaling via the extrinsic 

apoptotic pathway, recruiting DD-containing effectors [Fas-associated protein with death domain 

(FADD), TNFRSF1-associated death domain protein (TRADD) or EDAR-associated adapter 

protein (EDARADD)] which in turn drive proteolytic activation of initiator caspase-8 and 

downstream activation of caspase-3 (74–76). p75NTR and DR6, however, are atypical DRs, in 

that they do not recruit FADD, TRADD or EDARADD and, in according, cannot activate the 

extrinsic apoptotic pathway (77,78). p75NTR induces apoptosis via the intrinsic, mitochondrial 

pathway culminating in activation of caspase-3 and the pro-apoptotic c-jun N-terminal kinase 

(JNK) (77). DR6, on the other hand, does not engage an apoptotic pathway, but rather signals 

cell death via the necroptotic pathway (78). 

 TNFRSFs are not enzymatic in nature, but rather initiate signaling events via the 

recruitment of adaptor proteins to the ICDs (65,66). A core group of these adaptors, known as 

TNFR-Associated Factors (TRAFs) associated with the ICD of TNFRSFs via their conserved 

TRAF domain (79). TRAFs function as E3 ubiquitin ligases to target substrates, and the TRAF 

itself, for proteosomal degradation via K48-linked ubiquitination (80–82). In parallel, TRAF E3 

ligase activity can activate signaling cascades—such as the NFκB pathway—via K63-linked 

polyubiquitination; a function that requires physical association with the E2 ubiquitin ligase 

complex Ubc13/Uev1A (83). Although TRAFs represent a common family of TNFRSF 
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adaptors, each TNFRSF possesses its own unique complement of adaptors—and other 

interactors—to mediate TNFRSF-specific signaling events. 

 TNFRSFs are major regulators of survival and death signaling in wide-ranging cellular 

contexts, including in the nervous system. Survival signaling is mediated by downstream 

activation of nuclear factor κB (NFκB) and/or PI3K-Akt cascades (67). Apoptotic signaling, on 

the other hand, involves downstream activation of JNK, p38 MAPK and/or executioner caspases 

(67). These core pathways are common to TNFRSFs, but TNFRSF-specific regulation of 

survival, apoptosis, and a plethora of other cellular functions, relies on a diverse array of 

intracellular adaptors and their associated signaling cascades. 

1.3 Evolutionary origins of the TNFRSF superfamily 

 Mammalian TNFRSFs have been successfully traced to single copy genes in arthropods 

[reviewed in (67). Drosophila melanogaster expresses a simple TNF system with structural and 

functional homology to the mammalian system (84,85). The Drosophila TNF system consists of 

1 TNF ligand (Eiger) and 2 TNFRSFs [Wengen and Grindelwald] (84–86). Wengen is a 

structural and functional homolog of p75NTR—whereas Grnd appears to be Drosophila-

specific, implicating p75NTR as the evolutionary ancestor of the TNFRSF superfamily (87,88). 

 Eiger-Wengen signaling activates a pro-apoptotic cascade via the JNK pathway (85). 

Eiger/Wengen-induced JNK activation requires a Drosophila homolog of TRAF6 (dTRAF2) 

(85,89), thus demonstrating signaling similarity to the mammalian system. Eiger/Wengen-

dependent JNK activation regulates developmental apoptosis in photoreceptors (84)—a process 

dependent on Rac1-mediated endocytosis (88). Thus, p75NTR-dependent developmental 

neurodegeneration [reviewed in Section 1.4.6] represents an evolutionarily conserved TNFRSF 

function in arthropods. This is further exemplified by the simple neurotrophin system expressed 
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in Daphnia pulex consisting of a NT, a Trk, and a p75NTR ortholog (90), where the antagonistic 

Trk/p75NTR survival vs. death axis may regulate neurodevelopment on a large scale. 

 Recent evidence has shown the presence of TNFRSFs in pre-bilaterian Cnidarian species, 

including Nematostella vectensis (sea anemome) and Hydra vulgaris (hydra) (91). Cnidarians are 

the oldest animal phylum to develop a nervous system, possessing a primitive sensorimotor 

“nerve net” (92). Interestingly, back-tracing of mammalian TNFRSF CRD regions identifies a 

p75NTR ortholog expressed in both N. vectensis and H. vulgaris as the sole ancestor of the 

mammalian TNFRSF (Cumming et al., under review). Therefore, p75NTR may represent the 

evolutionary ancestor of all mammalian TNFRSFs. Moreover, p75NTR-dependent 

neurodevelopment may be the original TNFRSF-dependent function in the animal kingdom, 

existing prior to the chordate TNFRSF expansion event that drove development of the adaptive 

immune response (91). 

1.4 The p75 neurotrophin receptor 

 The p75 neurotrophin receptor (p75NTR) is an atypical TNFRSF, insofar as it does not 

transduce signals from any known TNF ligand. Rather, p75NTR is a low-affinity receptor for all 

known mammalian neurotrophins (NTs) [nerve growth factor (NGF), brain-derived neurotrophic 

factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4)] and immature, non-

proteolytically processed proneurotrophins (proNTs) (proNGF, proBDNF, proNT-3 and proNT-

4) abundantly expressed in diverse neuronal and glial cell lineages. In the CNS, p75NTR 

expression is generally most abundant during embryonic and early postnatal development, and 

gradually reduces—but remains biologically active—into adulthood (93). In developmental and 

post-developmental contexts, p75NTR can differentially augment or antagonize NT survival 

signaling via the high-affinity tropomyosin-related kinase (Trk) receptors. Functional antagonism 



17 
 

between NT/Trk survival signaling and proNT/p75NTR death signaling is a major regulatory 

mechanism shaping neurodevelopment and neural plasticity. The functionality of p75NTR as a 

master regulator of nervous system development and maintenance are reviewed in depth in the 

sub-sections to follow. 

1.4.1 Structural biology of p75NTR 

 p75NTR is a 75 kDa, single-pass, type I transmembrane protein primarily localized to the 

plasma membrane. p75NTR possesses: (i) an N-terminal extracellular domain (ECD) of 250 

amino acids (AA) which mediates ligand binding; (ii) a transmembrane domain (TMD) of 22 

AA; and (iii) a C-terminal intracellular domain (ICD) of 155 AA which mediates signaling.  

The p75NTR ECD (p75ECD) includes: 4 CRDs (designated CRD1-4; CRD1 is closest to 

the N-terminus), each CRD is separated by only 1-3 AAs, and a membrane-proximal stalk 

domain is located between CRD4 and the TMD. The 4 CRDs are required for ligand-binding (for 

NTs, proNTs and non-NT ligands) (65–69) though CRD3-4 primarily mediate NGF binding 

(94). p75NTR is a glycoprotein with an N-linked glycosylation site within CRD1, and multiple 

O-glycosylation sites within the stalk domain (95,96). p75NTR glycosylation states can be 

resolved by Western blotting, with non-glycosylated p75NTR observed at ~59 kDa, fully 

glycosylated p75NTR at 75 kDa, and partially glycosylated p75NTR polypeptides between 59 

and 75 kDa (96). 

The p75NTR ICD (p75ICD) includes: an ~80 AA death domain (DD)—separated from 

the TMD by a short, flexible juxtamembrane region known as the ‘chopper domain’—and a C-

terminal PDZ-binding domain. The p75NTR DD consists of 6 α-helices arranged in a globular 

structure, as is the case for all death receptor DDs. However, unlike a canonical DD, the p75NTR 

DD shows weak homodimerization and cannot recruit DD-containing death effectors such as 
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TRADD, FADD or EDARADD. This deficiency in DD homodimerization and death effector 

recruitment is thought to result from the 1st α-helix of the p75NTR DD being positioned 90° off-

axis relative to the 1st α-helix of the Fas DD (97,98), which can recruit FADD (99). 

The stoichiometry of p75NTR is a complex issue. p75NTR can exist as a monomer or 

dimer in neural and non-neural cells (77,100). The existence of p75NTR trimers has been 

reported (101), but p75NTR trimerization has been heavily scrutinized in the field, and it is 

unclear if trimers are a physiologically relevant receptor conformation. The crystal structure of 

NT-3 in complex with glycosylated p75ECD revealed a 2:2 neurotrophin-to-p75NTR 

stoichiometry (102). Previous X-ray crystallography suggested a 2:1 stoichiometry (73), but this 

is argued to be a deglycosylation artifact (102). Thus a NT:p75NTR stoichiometry of 2:2 is 

confirmed, but 2:1 complexes may also exist. Unlike NT-binding, proNT-binding to p75NTR 

requires a co-receptor, specifically the Vps10p family member sortilin (103). ProNGF binding to 

the p75NTR-sortilin complex occurs in a 2:2 stoichiometry, as revealed by X-ray crystallography 

(104). Although oligomeric states of p75NTR are diverse, p75NTR monomers (71), dimers (77), 

and trimers (101) all show biological activity, and receptor oligomerization plays a major role in 

gating p75NTR signaling [discussed in Section 1.4.2]. 

The p75NTR activation mechanism has been studied in depth (70,105–109), but a 

comprehensive model of p75NTR conformation in liganded and unliganded states remains 

elusive. Dr. Carlos Ibanez’s group established a ‘scissor-tong’ model whereby a pre-liganded 

p75NTR dimer will separate its intracellular DDs—via Cys257 in the TMD acting as a 

fulcrum—to allow access of a new complement of adaptors to the ICD (70,106). For instance, 

RIP2 and RhoGDI are p75NTR interactors that bind overlapping epitopes within the p75NTR 

DD (85). At baseline, RhoGDI can access the p75NTR DD to initiate signaling to RhoA (107). 
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Upon NT binding, DD separation allows RIP2 to access its DD epitope, and subsequently 

displace RhoGDI, to activate the nuclear factor κB (NFκB) pathway (107). Although this model 

rectified differential p75NTR signaling in liganded and unliganded states (105), its accuracy 

recently been called into question (109). The scissor-tong model requires conformational 

changes in the p75ECD and TMD (upon ligand binding) be coupled directly to conformational 

changes in the p75ICD. However, a recent report of p75NTR dynamics in lipid nanodiscs 

revealed that TMD motion is entirely uncoupled to ICD motion due to the highly flexible nature 

of the chopper domain (109), which nullifies an assumption of the scissor-tong model. Thus, 

although it is clear that interactions with adaptor proteins mediate p75NTR signaling outcomes 

(77,107,110), our understanding of the structural biology of p75NTR activation is incomplete. 

1.4.2 p75NTR signaling mechanisms 

 p75NTR signaling is complex but falls into three major categories: (i) regulation of Trk 

survival signaling; and (ii) Trk-independent p75NTR survival signaling, and (iii) p75NTR death 

signaling [reviewed in (77)]. These three categories explain core tenets of p75NTR neurobiology 

but this is far from a comprehensive categorization. This section serves to provide the reader 

with a fundamental knowledge of p75NTR signaling. p75NTR signaling is far more complex 

than described here; and the diverse signaling mechanisms engaged by p75NTR in various 

neural contexts will be explored in detail in following sections. 

1.4.2.1 p75NTR modulates Trk-dependent survival signaling 

 Tropomyosin related kinase (Trk) receptors are high-affinity neurotrophin (NT) receptors 

that signal neuronal survival upon NT binding (111). According to the neurotrophic factor 

hypothesis, developing axons compete for limited target-derived NT and axons receiving 

adequate trophic support survive; those that do not, degenerate and die off (111). This system 
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serves to ensure proper physical connectivity of the nervous system during development and 

maintenance of neural connectivity throughout the life span (77,111). Mammals express three 

Trk receptor isoforms (TrkA, TrkB, and TrkC) which demonstrate NT specificity (77,111). NGF 

binds TrkA; BDNF and NT-4/5 bind TrkB; and NT-3 binds TrkC (77,111). 

Trk receptors are tyrosine receptor kinases (RTKs) and activate signaling cascades via 

autophosphorylation at intracellular tyrosine residues. NT-dependent Trk survival signaling 

requires phosphorylation at Y490 and Y785, which serve as docking sites for the major effectors 

Ras, PI3K and phospholipase C γ-isoform (PLCγ) (112–114). The Ras pathway signals survival 

via the MAPK/ERK pathway (115,116). The PI3K survival pathway requires downstream 

activation of Akt (77). In the PLCγ pathway, PLCγ hydrolyzes phosphatidyl inositides to 

produce inositol triphosphate (IP3) and diacylglycerol (DAG), which in turn drives Ca2+ influx 

and PLCδ activity, respectively, to augment downstream ERK activation (117,118). 

p75NTR physically binds Trk receptors to elicit a high-affinity NT binding site with 

~100-fold lower Kd than Trk alone (119,120). In this NT-dependent context, the p75NTR 

augments Trk-dependent survival signaling via physical interaction with the Trk receptor (120–

122). Proteolytic cleavage of p75NTR releases its soluble intracellular domain (p75ICD) into the 

cytosol (123,124) [reviewed in Section 1.4.3]. The soluble p75ICD can augment TrkA survival 

signaling in an NGF-dependent manner via a feedforward mechanism, whereby NGF/TrkA 

activation of MEK stimulates p75ICD production (123), which in turn augments NT-dependent 

Akt activation (124). 

1.4.2.2 Trk-independent p75NTR survival signaling 

 p75NTR can signal neuronal survival independent of Trk receptors. p75NTR drives 

neuronal survival via downstream activation of nuclear factor κB (NFκB) and Akt pathways. 
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NFκB is a cytosolic transcription factor that, upon activation via phosphorylation, translocates to 

the nucleus to drive transcription of a diverse set of pro-survival genes (125). p75NTR-induced 

NFκB activation signals survive in diverse neuronal and non-neuronal populations (126–133). 

p75NTR induction of NFκB is mediated by the intracellular adaptors TRAF6 (134,135), RIP2 

(132) and FAP-1 (136). 

1.4.2.3 p75NTR death signaling 

 In direct contrast, unliganded p75NTR can induce apoptosis via activation of the 

mitochondrial apoptotic cascade—culminating in executioner caspase activation—and c-jun N-

terminal kinase (JNK). Pro-apoptotic p75NTR adaptor proteins include Neurotrophin Receptor 

interacting MAGE Homolog (NRAGE) (137–139), p75NTR-associated cell death executor 

(NADE) (140), and neurotrophin receptor interacting factor (NRIF) (141). NRAGE is required 

for p75NTR activation of the mitochondrial apoptotic cascade—including mitochondrial outer 

membrane permeabilization (MOMP), cytochrome c release, and activation of executioner 

caspase-3—and the JNK cascade (137,138). Moreover, NRAGE can couple the soluble p75ICD 

to downstream Rac1 activation to regulate actin cytoskeletal dynamics (142). NADE is a DD-

binding cytosolic adaptor required for ligand-dependent activation of caspase-3 (140). NRIF is a 

cytosolic zinc finger protein that, upon interaction with p75ICD, translocates to the nucleus to 

co-ordinate a pro-apoptotic transcriptional program (141,143,144). Lastly, p75NTR can form a 

complex with the Vps10 family member sortilin to bind proNTs and transduce a neuronal 

apoptotic signal (103). 

1.4.3 Proteolytic cleavage of p75NTR influences signaling outcomes 

 In the late 1980s, it was discovered that multiple truncated p75NTR peptides could be 

purified from the conditioned medium of the A875 melanoma cell line, which included soluble 
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ECD and ICD fragments (145). Follow-up experiments from Dr. Phil Barker and colleagues 

(1991) determined that the solubilized truncated p75ECD fragment released by Schwann cells 

was not a splice variant, but rather arose from post-translational cleavage of full-length p75NTR 

(146). p75NTR cleavage was later confirmed to be mediated by metalloproteinase, and intrinsic 

functional properties of the soluble p75ICD were proposed (147). Dr. Barker’s group later 

generated transgenic mice expressing p75ICD which showed enhanced developmental apoptosis 

of sympathetic, sensory, and cortical neurons in vivo and augmented motoneuron death post-

axotomy (148). These foundational studies demonstrated that p75NTR is proteolytically cleaved, 

and showed that the soluble p75ICD released into the cytosol possesses intrinsic biological 

activity. 

 Today, we recognize that regulated intracellular proteolysis (RIP) of p75NTR is a two-

step process. First, α-secretase cleavage of the membrane-proximal stalk region within the ECD 

by A Disintegrin And Metalloproteinase 17 (ADAM17) releases the p75ECD into the 

extracellular environment and leaves a C-terminal fragment (p75CTF) tethered to the plasma 

membrane by the TMD (124,149–151). Next, the p75CTF is cleaved within the TMD by the 

presenilin-containing γ-secretase complex to release the p75ICD into the cytosol (149,151) [the 

mechanism of p75NTR cleavage is discussed in greater detail in Section 1.4.4]. 

 The cleaved p75ICD possesses unique signaling capabilities that differ from full-length 

p75NTR (77). First, p75NTR cleavage inhibits formation of the high-affinity NGF-binding 

complex between p75NTR and TrkA (152). Despite this, soluble p75ICD can still augment NT-

dependent Trk survival signaling (123,124).  NGF stimulates p75NTR cleavage in PC12 cells, 

where the p75ICD augmented Trk-dependent activation of Akt and ERK to drive survival 

signaling in PC12 cells (123,124) and cerebellar cerebellar granule neurons (CGNs) (124). 
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Elizabeth Coulson’s group found this mechanism is required for NGF/TrkA-dependent neurite 

outgrowth in sympathetic neurons, and reported that the p75ICD was able to physically bind 

TrkA in this context to possibly form a high-affinity NGF complex, though this was unconfirmed 

(153). Soluble p75ICD can also augment survival signaling independent of Trk receptors via 

direct interaction with TRAF6 and subsequent induction of the NFkB axis (154), but this has not 

yet been investigated in a neuronal context. 

 In direct contrast to mediating NT-dependent survival signaling, soluble p75ICD can also 

act as a pro-apoptotic factor [reviewed in (155)]. In SCG sympathetic neurons, p75NTR RIP to 

produce the p75ICD was shown to be necessary for NRIF nuclear translocation and subsequent 

induction of developmental apoptosis in vivo (144). In DRG sensory neurons, local NGF 

deprivation to axons triggers p75NTR cleavage at the distal axon (156). This axonal p75ICD 

travels to the soma—dependent on p150glued-mediated retrograde microtubule transport 

(157,158)—where it initiates an anterograde axonal degeneration program (156,159). It is 

unclear how p75ICD activates this cascade, but early evidence suggests that p75ICD may 

translocate to the nucleus (160,161) to regulate transcription (162). 

 RIP of p75NTR strongly influences signaling to the actin cytoskeleton. Zeinieh and 

colleagues (2015) found p75NTR overexpression in COS7 cells induced a cell expansion 

phenotype that was dependent on ADAM17- and γ-secretase-mediated cleavage of the receptor 

(142). In this context, p75ICD physically interacted with NRAGE to activate Rac1 via an 

intermediate adaptor protein, NEDD9 (142). Thus, the p75ICD is capable of activating Rac1 to 

drive actin polymerization (142). In vivo, p75ICD-dependent actin reorganization has been 

shown to drive invasion behaviour in several cancers (163–166). For instance, p75NTR drives 

tumour invasion and metastasis of multiple gliomas, including glioblastoma (163) and 
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medulloblastoma (164), which is dependent on γ-secretase-mediated cleavage (163,164). 

Furthermore, soluble p75ICD can drive proliferation and migration in multiple cancer cell 

lines—including glioblastoma—in vitro (108,109). 

1.4.4 Mechanism of p75NTR proteolytic cleavage 

 Shortly after identification of ADAM17 and γ-secretase as executors of p75NTR 

cleavage (149,150,152), it was established that α-secretase (ADAM17-dependent) cleavage was 

the regulatory step, as γ-secretase cleavage constitutively follows (151). With respect to ligand 

requirement, p75NTR cleavage can proceed in a ligand-independent manner (144), but NGF 

stimulates p75NTR cleavage (160). Both neurotrophin-dependent (123,124,160,167,168) and 

neurotrophin-independent (144,154,156) p75NTR cleavage events have been described in vitro 

and in vivo. 

 Both ADAM17- and γ-secretase-mediated cleavage steps require co-endocytosis of 

p75NTR and the sheddases. Dr. Francesca Bronfman’s group showed that p75CTF is almost 

exclusively localized to an endosomal compartment(s) in PC12 cells where γ-secretase-mediated 

cleavage—and release of the p75ICD—occurs (167). With respect to the ADAM17-dependent 

cleavage, published and unpublished laboratory work from Dr. Barker’s group has clearly 

demonstrated a requirement for ADAM17 endocytosis for activation of its α-secretase function. 

Briefly, TrkA survival signaling activates MEK-dependent phosphorylation of ADAM17 at 

intracellular threonine 735 (124). T735-phosphorylated ADAM17 is subsequently endocytosed 

via a dynamin-dependent mechanism into a reactive oxygen species (ROS)-producing recycling 

endosome known as a ‘redoxosome’ (169). Endosomal ROS catalyze thiol-exchange reactions 

targeting the ADAM17 ectodomain that activate its sheddase activity (unpublished). Thus, the 

current model proposes that ADAM17- and p75NTR cleavage occurs in an endosomal 
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compartment—likely a redoxosome—and this process can be stimulated by, but does not require, 

NT activation of a Trk receptor. 

1.4.5 p75NTR regulation of neurodevelopment 

 p75NTR plays a critical role in diverse aspects of neurodevelopment, including: neuronal 

survival (170–178), neurite outgrowth (78,96,124–138), axon guidance (194,195), myelination 

(132,134,182,196–200), neuronal migration (201,202), synaptogenesis (203,204), neurogenesis 

(205,206), and neurodegeneration (31,51,59,137–139,141,143,144,148,156,168,207–226) [the 

latter is reviewed in Section 1.4.6]. 

1.4.5.1 p75NTR regulation of neuronal survival 

 According to the neurotrophic hypothesis, axons receiving adequate neurotrophic support 

from their innervation targets will survive and form functional synapses (227). p75NTR is a 

major survival factor in this context and directly activates survival signaling cascades in response 

to NGF stimulation in the PNS (77,228). TrkA+ DRG sensory axons are highly NGF-sensitive 

from E12 to E15 as their neurites reach their NGF-secreting targets (227). Acute p75NTR 

knockdown during E12-E15 strongly reduces survival of DRG axons in vitro (170). Moreover, 

application of an exogenous NGF mutant deficient in p75NTR—but not TrkA—shows lower 

survival rates in DRG explants relative to wild-type NGF (171). Dr. Chris Deppmann’s group 

investigated the role of p75NTR as a survival factor within specific subpopulations of DRG 

sensory neurons (177). Utilizing p75NTR-/- mice, their investigation determined that p75NTR is 

required for survival of TrkA+ peptidergic nociceptors, TrkB+ mechanoreceptors and TrkC+ 

proprioceptors, but not Trk-negative nonpeptidergic nociceptors, in vivo (177). 

 Within the PNS, the p75NTR requirement for NGF-dependent survival is stronger for 

SCG sympathetic neurons than DRG sensory neurons (171). Nearly all (98%) trigeminal 
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sympathetic axons that successfully form a sympathetic plexus during development are TrkA+ 

and respond to NGF (172). In a p75NTR-/- background, these sympathosensory interactions are 

strongly reduced, and the sparse survivors form aberrant connections (172). Mechanistically, 

target-derived NGF binds a high-affinity TrkA-p75NTR complex at the distal axon, which in 

turn, drives internalization of the NGF-TrkA-p75NTR complex and Arf6-dependent retrograde 

transport to the soma to initiate the survival signal (176). This retrograde survival signaling 

occurs in parallel to local p75NTR translation and cell surface integration in the distal axon to 

drive axonal survival in a feedforward manner upon NGF engagement (176). 

 In the PNS, motoneurons have been less studied that sensory and sympathetic neuronal 

populations with respect to their requirement for p75NTR in developmental survival. The current 

evidence suggests that p75NTR is required for both NGF-dependent and NT-3-dependent 

motoneuron survival, as cultured p75NTR-/- motoneurons show a blunted NT-dependent 

survival response (173). 

 In the CNS, TrkA+ cholinergic neurons of the basal forebrain require p75NTR for 

survival (174,178). In a p75NTR-/- background, cholinergic innervation of the molecular and 

granular layers of the dentate gyrus is strongly reduced (174). This cholinergic hypoinnervation 

of hippocampal substructures mediates the enhanced anxiety-like behaviours observed in 

p75NTR-/- mice (175). A thorough analysis from Dr. Elizabeth Coulson’s group extended upon 

this, demonstrating that survival rates of cortical pyramidal neurons, interneurons, cholinergic 

basal forebrain neurons, and striatal neuron are all reduced in p75NTR-/- mice in vivo, 

coinciding with volume reduction of the respective brain structures (178). Moreover, survival of 

neural progenitors in the CNS is strongly reduced in Nestin-Cre p75NTRflox/flox conditional 

knockout mice (178). 
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1.4.5.2 p75NTR regulation of neurite outgrowth 

 p75NTR regulates axonogenesis in numerous populations of developing peripheral and 

central neurons. p75NTR-mediated growth cone and axonal dynamics are strongly influenced by 

the presence, or absence, of a neurotrophic ligand. In general, NT stimulates growth cone 

expansion and neurite outgrowth via p75NTR; whereas trophic factor withdrawal generally 

induces growth cone collapse and axonal destruction. 

 In 1999, Dr. Yves Barde’s group published a sentinel paper demonstrating that p75NTR 

regulated axonogenesis in retinal ganglion cells (RGCs) via co-ordination of Rho GTPase 

activity. In this study, it was determined that endogenous p75NTR in RGCs associates with 

RhoA. In the absence of neurotrophin, p75NTR activated RhoA to inhibit neurite outgrowth. 

Upon NT stimulation, p75NTR suppressed RhoA to promote neurite extension in vitro and in 

vivo. This study laid the foundational knowledge that p75NTR regulates axonogenesis via 

downstream co-ordination of Rho GTPases and subsequent remodelling of the actin 

cytoskeleton. Since this initial discovery, it has been established that p75NTR is required for: 

NGF-dependent neurite outgrowth in: DRG sensory neurons (182), sympathetic neurons 

(180,189), cerebellar Purkinje neurons (193), and PC12 cells (183,191,192). 

NGF/p75NTR-dependent neurite extension requires coordinated downstream activation 

of Rac1 (179,183,184,187,189) and suppression of RhoA (181). The mechanism by which the 

NGF/p75NTR complex activates Rac1 in this context is unclear, but external evidence suggests a 

role for NRAGE (142); whereas p75NTR suppresses RhoA via activation of the transmembrane 

protein Kidins220, which sequesters RhoA via the RhoGEF adaptor Trio (187). 

Although NTs and proNTs are generally antagonistic in nature, this may not be case 

within the context of neurite extension in SCGs (190). Dr. Alun Davies’ group discovered that 
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proNGF, like mature NGF, signals neurite extension via p75NTR in cultured sympathetic axons 

(190). Perplexingly, proNGF had no effect on neurite dynamics within trigeminal sympathetic 

neurons, although promoted extension in all other sympathetic neuron subpopulations (190). 

More investigation into the role of proNTs in neurite dynamics is required to determine if 

NT/proNT functional antagonism applies within this context. 

Lastly, growth cone dynamics largely determine neurite fate within developing axons: 

growth cone filopodial expansion or collapse precede neurite extension or destruction, 

respectively (229). Growth cone dynamics are regulated by Rho GTPases, with Rac1 and Cdc42 

driving filopodial and lamellipodial extension, and RhoA driving collapse [reviewed in (179)]. 

p75NTR mediates growth cones dynamics in a ligand-dependent manner via downstream 

coordination of Rho GTPase activity (185,186,188,189). In developing RGCs and DRG sensory 

axons, unliganded p75NTR locally activates RhoA in growth cone to drive growth cone collapse 

(185). Similarly, proNGF binding to p75NTR drives growth cone collapse in central neurons via 

inhibition of Rac1 (188). Mechanistically, proNGF binds the p75NTR-SorCS2 complex, which 

triggers dissociation of Trio from the complex and localized suppression of Rac1 (188). 

Interestingly, both monomeric and dimeric p75NTR are capable of mediating proNGF-induced 

growth cone collapse (71), indicating that a SorCS2-independent mechanism must exist. In direct 

contrast to unliganded or proNT-bound p75NTR, NGF-bound p75NTR actively drives filopodial 

extension via downstream activation of Rac1 and subsequent actin nucleation by the Arp2/3 

complex (183). 

1.4.5.3 p75NTR regulation of axon guidance 

 p75NTR is most abundant in long-projection neurons (e.g. peripheral sensory, 

sympathetic and motor neurons; basal forebrain cholinergic neurons; cerebellar Purkinje 
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neurons; and RGCs) (230). It comes as little surprise, then, that p75NTR regulates axonal 

pathfinding during development of these far-reaching neuronal populations (194,195,231–234). 

Target-derived NTs not only drive neuronal survival, but also guide axons as chemoattractant 

factors as axons extend towards their target (231). DRG axons extend toward localized 

physiological doses of NGF in vitro, an effect which is abolished in a TrkA-/- or p75NTR-/- 

background, but engages a pathway distinct from survival signaling (231). In addition to NTs, 

p75NTR transduces chemorepellent signals from several major axon pathfinding ligands, 

including: A-class ephrins (195,233), B-class ephrins (232,234), and semaphorins (194,232). 

 The Ephrin-Eph axon pathfinding system utilizes forward (Ephrin ligand→Eph receptor) 

and reverse (Eph→Ephrin) signaling to guide axons in response to external ligand/receptor 

gradients (235). A-class ephrin ligands are GPI-linked to the plasma membrane and do not 

possess an intracellular domain (235). To transduce reverse Ephrin-A signaling, Ephrin-A 

ligands recruit p75NTR as a co-receptor to initiate axon repulsion in response to EphA binding 

(195). For instance, the developing retinocollicular neural pathway secretes a high-to-low 

gradient of EphA along the anterior-posterior axis (i.e. high [EphA] in the retina, low [EphA] in 

the superior colliculus (SC)] to drive RGC axon pathfinding towards the SC (236). p75NTR-/- 

RGC axons show no chemorepulsion to EphA in vitro or in vivo, resulting in an aberrant anterior 

shift in the retinocollicular topography (195). Interestingly, in vitro pharmacological evidence 

suggests that autocrine proBDNF release from RGC axons may be required for 

ephrinA/p75NTR-mediated EphA repulsion (233). 

 B-class ephrins possess a signaling-competent ICD, but require p75NTR for forward 

signaling (232,234). Ephrin-B2 induces growth cone collapse and axon repulsion in developing 

sympathetic neurons, which is abolished in a p75NTR-/- background (232). Ephrin-B2/p75NTR-
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mediated axon repulsion requires downstream activation of RhoA within the growth cone (232). 

In the CNS, p75NTR-/- RGC axons fail to repel Ephrin-B3 (234). Ephrin-B3/p75NTR-mediated 

axon repulsion also requires localized downstream RhoA activation (234). Interestingly, 

although p75NTR is required for axonal chemorepulsion of B-class ephrins, no physical Ephrin-

B/p75NTR complex has been successfully purified (232,234). Therefore, it remains unclear if 

p75NTR acts as a receptor/co-receptor to B-class ephrins or in parallel to an Ephrin-B/Eph 

complex. 

 Semaphorin3A (Sema3A) is an axonal chemorepellent that binds to a cell surface 

receptor complex of Neuropilin-1 and PlexinA4 to signal axon repulsion (237). Interestingly, 

p75NTR-/- DRG axons are hypersensitive to Sema3A-mediated repulsion cues (194). p75NTR 

physically interacts with—and sequesters—Neuropilin-1 and PlexinA4 in DRG growth cones, 

thereby restricting the availability of Neuropilin-1/PlexinA4 complex at the growth cone surface 

ready to respond to Sema3A (194). Conversely, sympathetic axons require p75NTR to mediate 

Sema3A- and Sema3F-dependent repulsion via downstream activation of RhoA within the 

growth cone (232). Thus, p75NTR mediates Sema3 axonal repulsion cues in a functionally 

distinct manner dependent on neuronal subtype. 

1.4.5.4 p75NTR regulation of myelinating glia 

 Myelinating glia—oligodendrocytes (ODs) in the CNS and Schwann cells (SCs) in the 

PNS—require p75NTR for survival (132,134), migration (182,196,197), and myelination 

(198,199) in the developing nervous system. During embryogenesis, migrating SCs express 

p75NTR, but no Trk receptor. Anton and colleagues (1994) first explored SC responses to NGF 

and determined that exogenous and endogenous NGF stimulated SC migration along the sciatic 

nerve in vivo (196). Consistent with their NT receptor expression profile, NGF-induced SC 
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migration was found to be p75NTR-dependent (196). Dr. Eric Shooter’s group later established 

that NT ligands stimulate SC migration via downstream co-activation of Rac1 and Cdc42 (197). 

BDNF is an exception, as it inhibits SC migration via downstream engagement of RhoA (197). 

More recent genetic evidence has demonstrated that p75NTR-/- SCs are deficient in migration to 

DRG axons at E12.5—a timepoint at which these axons are searching for target-derived NGF—

which resulted in aberrant fasciculation of peripheral sensory nerves (182). 

 Target-derived NTs not only stimulate SC migration, but they provide trophic support to 

SCs themselves (132,134). Dr. Moses Chao’s group firmly established that NGF promotes SC 

survival via activation of the NFκB axis downstream of the NGF/p75NTR complex (134). 

Mechanistically, the NGF/p75NTR complex recruits TRAF6 (134) and RIP2 (132) to the ICD to 

initiate survival signaling, as readout by nuclear accumulation of the p65 NFkB subunit 

(132,134). 

 Once SCs have successfully survived, migrated, and reached their axonal target, p75NTR 

is further required for myelination (198,199). At this stage, the polarity protein Par-3 binds and 

localizes p75NTR to the axon-glial interface (198). Knockdown of Par3 or p75NTR, or 

disruption of Par-3/p75NTR targeting to the axon-glial interface, severely inhibits myelination 

(198). Once localized to the axon-glial interface, p75NTR activates Rac1 in a NT-dependent 

manner to drive myelination in SCs (199). 

1.4.5.5 p75NTR regulation of neuronal proliferation and migration 

 NT signaling through Trk receptors is crucial for correct migration of neurons and neural 

precursors in the developing CNS [reviewed in (238)]. Recent evidence has shown an 

antagonistic function of proNT/p75NTR signaling in the negative regulation of neuronal 

migration, specifically in the cerebellum (201,202). p75NTR is enriched in proliferating 
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cerebellar granule cell precursors (GCPs) as well as differentiated, migrating granule cells (GC) 

(77). During GCP proliferation, p75NTR promotes cell cycle exit via RhoA to restrain GCPs 

from excessive proliferation (202). In a p75NTR-/- background, the GCP cell cycle is 

accelerated, resulting in: delayed cell cycle exit, excessive proliferation, and excessive 

glutamatergic innervation of Purkinje neurons (202). p75NTR-dependent restriction of GCP 

proliferation is required for healthy cerebellar function, as excessive GCP proliferation in 

p75NTR-/- mice is associated with deficient cerebellar-dependent learning in a delayed eyeblink 

conditioning paradigm (202). With respect to ligand requirement, GCP proliferation is abolished 

by infusion of a proBDNF function-blocking antibody, an effect that is absent in p75NTR-/- 

mice (201). Thus, BDNF/TrkB signaling promotes GCP proliferation (239), while 

proBDNF/p75NTR signaling restricts this proliferation (201,202). In this manner, NT/proNT 

antagonism serves to ensure an optimal neurogenic rate and connectivity within the cerebellar 

granule layer. 

1.4.5.6 p75NTR regulation of synaptogenesis 

 Recent evidence has shown a requirement for p75NTR in synaptogenesis within distinct 

neuronal subpopulations in the CNS (203) and the periphery (204). For example, parvalbumin+ 

(PV) inhibitory interneurons form extensive synaptic connections within the developing cortex in 

order refine the electrophysiological properties of mature cortical circuits [reviewed in (240)]. 

Basal p75NTR immunoreactivity is detected in PV interneurons during embryonic development, 

but drops drastically during the 2nd to 4th postnatal week—the adolescent timepoint at which PV 

synaptogenesis accelerates (203). Conditional p75NTR knockout in PV interneurons results in 

perisomatic hyperinnervation and aberrant formation of perineural nets (203). Therefore, it 

postulated that p75NTR coordinates the timing of the adolescent critical period via basal 
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inhibition of PV interneuron synaptogenesis in embryonic and early postnatal development 

(203). 

 In direct contrast to its role in PV interneurons, p75NTR promotes neuromuscular 

synaptogenesis in cholinergic motoneurons (204). p75NTR-/- neuromuscular junctions (NMJs) 

develop major structural and functional abnormalities, including: immature postsynaptic 

organization, reduced structural complexity, weakened nerve stimulation-induced muscle 

contraction, weakened force production, and impaired locomotion (204). NMJ maturation 

specifically requires presynaptic p75NTR (204). p75NTR-/- NMJ presynapses show a major 

depletion in the readily releasable pool of acetylcholine+ vesicles (204). Thus, p75NTR is 

required for neurotransmitter release in motoneurons—and potentially in other neuronal 

populations—though it is entirely unclear how this function is regulated by p75NTR at a 

mechanistic level. 

1.4.6 p75NTR in developmental neurodegeneration 

 Despite the broad functionality of p75NTR in mammalian neurodevelopment [as outlined 

in Section 1.4.5], analyses of the arthropod p75NTR ortholog, Wengen (wgn), in Drosophila 

melanogaster established a conserved evolutionary function for p75NTR as a major executor of 

developmental neurodegeneration (84,85,87,88,241,242). Developmental neurodegeneration 

refers to the systematic removal of aberrant neuronal processes, or entire neurons, in a 

biologically regulated manner. p75NTR is required for developmental neurodegeneration in 

central and peripheral neuronal populations, including: SCG sympathetic neurons 

(51,137,139,143,144,156,168,176,208,213,217,222), cholinergic basal forebrain (cBF) neurons 

(31,207,214,216,218,220,221), hippocampal neurons (174,188,210,215,224), cortical neurons 
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(71,148,223,226), cerebellar granule cells (CGNs) (59,225), Purkinje neurons (193,212), retinal 

ganglion cells (RGCs) (141,209), and, possibly, DRG sensory neurons (170,177,219,243). 

 p75NTR is, at its core, a death receptor. As such, p75NTR-mediated neurodegeneration 

requires death signaling via the mitochondrial apoptotic pathway culminating with the activation 

of executioner caspases [reviewed in (71,200)]. The core p75NTR-mediated neurodegenerative 

mechanism involves downstream mitochondrial accumulation of Bax, which drives 

mitochondrial outer membrane permeabilization (MOMP) and subsequent release of 

mitochondrial apoptotic factors—including cytochrome c (cyt c)—into the cytosol (77). 

Cytochrome c release enables formation of the caspase-9/Apaf1/cytochrome c apoptosome, and 

subsequent procaspase-3 proteolytic cleavage to generate active cleaved caspase-3 (cCasp3) 

(77). cCasp3 cysteine protease activity physically cleaves neuronal substrates to initiate 

neurodegeneration (77,244). cCasp3 can be locally restricted by IAP family members, 

particularly XIAP in neurons, to confine neurodegeneration to a specific neuronal compartment 

(244,245). Unrestricted cCasp3 activation will initiate complete neuronal apoptosis (244). In 

parallel to caspase-3 activation, MOMP activates the pro-apoptotic kinase JNK, which serves as 

a retrograde neurodegenerative signal to drive expression of anterograde pro-apoptotic factors 

(138,159,211). 

This core p75NTR-dependent neurodegenerative program shows minor mechanistic 

variability across neuronal populations, owing to the distinct subsets of p75NTR adaptors 

expressed by a given neuronal population (77). In the sub-sections that follow, the role of 

p75NTR in developmental neurodegeneration in distinct neuronal populations is reviewed, with 

an emphasis on the specific mechanisms engaged by p75NTR at the receptor level. 

1.4.6.1 p75NTR-dependent developmental neurodegeneration in SCG sympathetic neurons 
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 Developing SCG sympathetic compete for target-derived NGF in the periphery (208). 

Endocytosis of the NGF-TrkA complex and subsequent retrograde trafficking of the NGF-TrkA 

signaling endosome to the nucleus are required for SCG neuronal survival (217). In contrast, 

target-derived BDNF acts a pro-apoptotic factor that induces axonal degeneration and neuronal 

death (208). Genetic studies in BDNF-/- and p75NTR-/- mice demonstrated that BDNF-induced 

sympathetic neuron death is mediated exclusively by p75NTR, not TrkB, in vitro and in vivo 

(208). In distinct p75NTR+sortilin+ SCG subpopulations, proBDNF can replace BDNF as the 

target-derived apoptotic ligand (213). As such, local axonal BDNF stimulation, in addition to 

local NGF withdrawal, became complementary tools to investigate p75NTR-dependent 

neurodegenerative signaling in SCGs. 

In both BDNF stimulation and NGF withdrawal models, NRAGE is required to initiate 

p75NTR-dependent death signaling via downstream activation of JNK and caspase-3 

(113,161,167) and physical disruption of the TrkA-p75NTR high-affinity NGF complex (137). 

In addition, NRIF ubiquitination and nuclear translocation is required for p75NTR-induced SCG 

axon degeneration and apoptosis, as NRIF-/- sympathetic neurons are insensitive to NGF 

withdrawal (143) and BDNF stimulation (144). ADAM17- and γ-secretase-mediated p75NTR 

processing—to release the p75ICD—are required for the SCG death signal in NGF withdrawal 

and BDNF stimulation models (144,156,168). p75ICD-induced JNK activation drives further 

p75NTR proteolysis in a feedforward signaling loop in this context (168). Soluble p75ICD is 

required for the nuclear translocation of NRIF (144) and JNK activation (168), but may be 

required in other capacities at the soma (156). Retrograde endosomal trafficking of p75ICD to 

the nucleus—to transduce the apoptotic signal—involves an interaction with axonal histone 
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deacetylase 1 (HDAC1), which deacetylates the dynactin subunit p150glued to enable dynein-

mediated transport (156). 

1.4.6.2 p75NTR-dependent developmental neurodegeneration in cholinergic basal forebrain 

neurons 

 In the CNS, developmental neurodegeneration of cholinergic basal forebrain (cBF) 

neurons is dependent on p75NTR death signaling (31,207,214,216,218,220,221). Deficiencies in 

p75NTR-dependent cBF neurodegeneration results in diffuse cholinergic hyperinnervation in the 

cortex (220,221), hippocampus (207,216), and basolateral amygdala (31), which can lead to 

diverse cognitive (220) and affective (31) behavioural pathologies. 

 In 1997, Dr. William Mobley’s group established that TrkA+ cBF neurons—which 

require NGF for survival—heavily depend on p75NTR to execute developmental 

neurodegeneration in vivo (207). Conditional p75NTR KO in cholinergic neurons (ChAT-

cre;p75NTRfl/fl) results in increased cBF neuron count, cBF neuron size, and cortical cholinergic 

innervation (220); features that are absent in neighbouring cholinergic striatal neurons after full 

p75NTR KO (207). p75NTR-dependent apoptosis in cBF neurons is induced by NGF 

withdrawal or proNGF simulation (214,218). p75NTR-mediated cBF neuronal death relies on (i) 

downstream caspase-3 activation; and (ii) inhibition of Trk survival signaling via PI3K/Akt, 

MEK/ERK, and PTEN (phosphatase and tensin homolog deleted on chromosome 10) (214,218). 

PTEN, in particular, serves as a molecular switch between Trk-dependent survival and p75NTR-

dependent apoptosis in cBF neurons (218). In parallel, the local presence of myelin can induce 

p75NTR-mediated axonal degeneration of cBF neurons in vivo dependent on RhoGDI 

sequestration to the p75NTR ICD and downstream activation of RhoA and caspase-6 (216). 

1.4.6.3 p75NTR-dependent developmental neurodegeneration in the hippocampus 
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 The developing hippocampus relies on p75NTR to eliminate excessive neurons and 

neuronal processes (188,210,215,224). Strikingly, all mature neurotrophins (NGF, BDNF, NT3 

and NT4) are all capable of inducing p75NTR-dependent death in hippocampal neurons via the 

JNK pathway in vitro (210). In vivo, however, p75NTR-dependent developmental apoptosis of 

hippocampal neurons is induced by proNGF and mediated by the p75NTR-Sortilin co-receptor 

complex (224). Endocytosis of the intact proNGF-p75NTR-Sortilin complex is required to 

execute apoptosis (224). Following endocytosis of the ligand-receptor complex, p75NTR 

cleavage and interaction of the soluble p75ICD with NRIF—and subsequent nuclear 

translocation—mediates the apoptotic signal in vitro and in vivo (215). p75NTR-dependent 

hippocampal neuron death is mediated by the mitochondrial apoptotic pathway, and involves: 

MOMP, cytochrome c release from mitochondria, the caspase-9/Apaf-1 apoptosome, and 

activation of executioner caspases-3 and -6 (246). 

1.4.6.4 p75NTR-dependent developmental neurodegeneration in the cortex 

 Dr. Phil Barker’s group first demonstrated that the soluble p75ICD is a pro-apoptotic 

factor in the developing neocortex (148). Transgenic mice expressing p75ICD in a pan-neuronal 

marker exhibit massive cortical neuron loss, where endogenous p75NTR expression is minimal 

during development (148). p75ICD-induced cortical neuron death occurred independent of Trk 

survival signaling, thereby implicating a p75ICD-specific death pathway (148). With respect to 

ligand requirement, proNGF can induce growth cone collapse, axonal degeneration, and 

complete apoptosis in cultured cortical neurons; however, it is unclear if a proNGF-mediated 

mechanism is physiologically relevant in vivo (71). 

 Cajal-Retzius cells (CRCs)—a neuronal subpopulation localized to superficial cortical 

layers I/II—guide cortical circuit formation early in development, then die off within the first 
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postnatal week (P4-P8 in mice) (247). Programmed death of CRCs requires a unique excitotoxic 

mechanism dependent on p75NTR and the chloride transporter NKCC1 (Slc12a2) (223). Once 

integrated into a cortical circuit, CRCs are depolarized by GABA, rather than hyperpolarized—

due to disproportional Cl- influx via NKCC1 with little Cl- efflux via the KCC2 transporter (an 

NKCC1 homolog) (223). This GABA-induced depolarization induces excitotoxic death in a 

p75NTR-dependent manner (223). Though it remains unclear how p75NTR mediates this death, 

an independent study from Riffault and colleagues (2018) showed that proBDNF-bound 

p75NTR inhibits Cl- efflux via KCC2 in GABA-responsive cortical neurons (226). Thus, it is 

possible p75NTR regulates developmental death of CRCs via regulation of NKCC1 or KCC2, 

but no physical interaction between p75NTR and NKCC1/KCC2 has been identified. 

1.4.6.5 p75NTR-dependent developmental neurodegeneration in the cerebellum 

 In the embryonic and early postnatal cerebellar granule layer, p75NTR is abundant in 

CGNs, not only to coordinate their migration [as reviewed in Section 1.4.5.5], but to initiate 

developmental apoptosis (59,225). Mechanistically, p75NTR-dependent death relies on mutual 

exclusivity RIP2 and TRAF6 with respect to p75NTR binding (225). In RIP2-expressing CGNs, 

RIP2 binding to the p75NTR ICD excludes TRAF6 and vice versa (225). In RIP2-negative 

CGNs, however, the p75NTR-TRAF6 interaction is unimpeded, enabling p75NTR/TRAF6-

mediated activation of the JNK pathway and neuronal death (225). Moreover, myelin-derived 

MAG from the cerebellar white matter is capable of inducing CGN death via the p75NTR-JNK 

axis, requiring MAG binding to the p75NTR/NgR1/LINGO-1 complex (59). MAG-induced 

CGN apoptosis in development is required for establishing the boundary between the cerebellar 

granule layer and white matter (59). 
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 In the Purkinje layer of the cerebellum, p75NTR expression is relatively low throughout 

development, but persists into adulthood, unlike in CGNs (93). As in CGNs, p75NTR regulates 

developmental neuron death of Purkinje neurons (193,212). Curiously, p75NTR induces 

Purkinje neuronal death via activation of autophagy (212), in stark contrast to the JNK-mediated 

pathway in CGNs (225). In Purkinje neurons failing to acquire target-derived NGF, unliganded 

p75NTR induces autophagic vacuolation and subsequent neuronal death (212). Conditional 

p75NTR KO in murine Purkinje neurons (Pcp2-Cre:p75NTRfl/fl) results in the development of 

autism-like phenotypes, such as: less allogrooming of conspecifics, less socialization, less play-

fighting, less non-ambulatory environmental exploration, and stereotyped jumping behaviour 

(193). Thus, p75NTR-dependent developmental culling of Purkinje neurons is required for 

cerebellar function and social behaviour in adulthood. Insight into the mechanism underlying 

p75NTR-induced autophagy in this context is still needed. 

1.4.7 p75NTR in pathological neurodegeneration 

 p75NTR drives developmental neurodegenerative programs in diverse neuronal 

populations within the CNS and PNS [reviewed in Section 1.4.6]. It is of little surprise, then, that 

aberrant p75NTR neurodegenerative signaling is implicated in the etiology of various 

neurodegenerative disease states, including: Alzheimer’s Disease (248–259), status epilepticus 

(140,214,215,218,224,226,246,260), traumatic brain injury (261–269), spinal cord injury 

(62,270–272), retinopathy (273–278), Huntington’s Disease (279–282), multiple sclerosis (283–

285), and viral encephalopathy (286–288). 

1.4.7.1 p75NTR in Alzheimer’s Disease 

 Accumulation of amyloidogenic beta-amyloid (Aβ) is a hallmark of Alzheimer’s Disease 

(AD) and drives pathological neurodegeneration of cholinergic basal forebrain (cBF) neurons of 
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the septohippocampal pathway that innervate the hippocampus [for recent review on the Aβ 

hypothesis, see (289–292)]. Progressive loss of cBF neurons results in cognitive impairment, 

particularly in hippocampal-dependent memory systems [reviewed in (293)]. Seminal studies in 

the late 1990s established p75NTR as an Aβ receptor capable of inducing neuronal apoptosis 

upon Aβ binding in vitro and in vivo (294–298). In 2008, Dr. Elizabeth Coulson’s group firmly 

established a pathological Aβ-p75NTR pathway in the septohippocampal pathway, as 

intrahippocampal injection of exogenous Aβ induced massive death of cBF neurons in wild-type 

mice—a phenotype that was absent in p75NTR-/- mice (248). Aβ induces p75NTR cleavage in 

vivo, which initiates the p75NTR degenerative signal in cBF neurons (248). Aβ-p75NTR-

induced neurodegeneration is an early feature of AD, driving local synaptic elimination between 

cBF and hippocampal neurons in early AD, eventually leading to complete neuronal destruction 

as the disease progresses (257). Upstream of Aβ production, p75NTR binds the amyloid 

precursor protein (APP) at the plasma membrane to inhibit APP internalization and promote 

amyloidogenic APP proteolytic cleavage in hippocampal neurons (299). Lastly, ProNT/p75NTR 

signaling has been shown to augment Aβ/p75NTR-induced cBF neuron death, as proBDNF 

drives Aβ accumulation (253) and proNGF drives tau hyperphosphorylation (255) (the other 

major hallmark of AD) and JNK activation (257,258) via p75NTR, resulting in a feedforward 

mechanism of catastrophic cBF neurodegeneration. 

 Consistent with these initial studies, p75ECD accumulation in the CSF and blood was 

initially identified as a reliable biomarker for AD diagnosis, particularly in combination with 

CSF Aβ and CSF phospho-tau181 (249). Targeting p75NTR has recently shown promising 

clinical potential in animal models of AD (54,250–252). In several mouse models, 

intrahippocampal (250) or intramuscular (252) injection of p75ECD-Fc—which binds Aβ 
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without inducing death—significantly attenuates AD-like phenotypes, including: Aβ 

accumulation, tau hyperphosphorylation, dendritic spine loss, neuronal death, 

neuroinflammation, and cognitive impairment (250,252). In parallel, immunological targeting of 

the Aβ-binding region on p75NTR [CRD2 and CRD4 (256)] has shown efficacy in reducing cBF 

neuronal death in olfactory bulbectomized mice (an infrequently used AD mouse model), 

representing another potential therapeutic avenue. 

 Thus, amyloidogenic Aβ drives cBF neuronal death via p75NTR in AD. Pharmacological 

candidates targeting the Aβ/p75NTR complex show potential for ameliorating AD-associated 

neurodegeneration in a field that has endured decades of clinical struggles. 

1.4.7.2 p75NTR in status epilepticus-induced neurodegeneration 

 Temporal lobe epilepsy (TLE) involves periodic seizure activity originating from a 

localized focal point(s) within a subcortical limbic structure, particularly the hippocampus or 

entorhinal cortex [reviewed in (300)]. Repeated excitotoxic events (seizures) in TLE result in 

unilateral, progressive neurodegeneration in the dentate gyrus (DG) and cornu ammonis (CA) 

subregions of the hippocampus (301). These central features of TLE are recapitulated in status 

epilepticus (SE) murine models, including the current ‘gold standard’ pilocarpine model, which 

involves systemic injection of the cholinergic agonist pilocarpine [reviewed in (302)]. 

 p75NTR mediates SE-induced hippocampal neuronal death in vivo. Pilocarpine-induced 

epileptiform activity results in hippocampal p75NTR upregulation (303) and p75NTR-induced 

neuronal apoptosis via the intrinsic mitochondrial pathway and downstream caspase-3 and -6 

activation (246). Post-SE, p75NTR-/- hippocampi show no increase in cCasp3 immunoreactivity 

and a stark reduction in neuronal death (246). At the receptor level, p75NTR signaling via 
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NADE (140) and NRIF (214) is required for downstream caspase-3 activation; and PTEN acts to 

suppress TrkB survival signaling (218). 

In the context of SE, proNT ligands activate the p75NTR death signal 

(214,215,218,224,226,260,304). Antibody-based sequestration of hippocampal proBDNF 

protected hippocampal neurons from pilocarpine treatment in vitro and in vivo (260,304). 

Moreover, proNGF—likely originating from astrocytes during SE (214)—binding to the 

p75NTR-sortilin complex contributes to pilocarpine-induced neuronal death in vitro and in vivo 

(214,224). Interestingly, lithium citrate—a commonly prescribed antipsychotic medication—

effectively disrupts p75NTR-sortilin complex formation and internalization in vivo, and 

attenuates proNGF/p75NTR-mediated neuronal apoptosis post-SE (224). This represents a 

potential therapeutic approach to ameliorating p75NTR-dependent hippocampal neuronal loss in 

TLE patients. 

1.4.7.3 p75NTR in traumatic brain injury 

 Early evidence for a role of p75NTR in traumatic brain injury (TBI)-induced neuronal 

death came from an in vivo study showing peri-infarct hippocampal neurons undergo p75NTR-

dependent apoptosis via NADE and downstream caspase-3 activation (261). In TBI, specifically, 

proNGF is strongly upregulated in the injured cortical tissue, resulting in pathophysiological 

p75NTR death signaling an subsequent neuronal apoptosis (262). Transgenic mice lacking the 

proNGF-binding site, or wild-type mice injected with a p75NTR inhibitor (TAT-Pep5 or 

EVT901), show a stable reduction in lesion volume post-TBI and improved functional outcome 

(263,265,266). Moreover, p75NTR knockdown prior to irradiation-induced CNS injury prevents 

loss of hippocampal dendritic spines and promotes functional recovery of hippocampal-

dependent cognition (267). Outside of injured neurons, mononuclear cell and astrocytic p75NTR 
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contribute to localized inflammation and astrocytosis post-TBI, however it remains unclear if 

this non-neuronal p75NTR directly contributes to neurodegeneration (264,266). 

1.4.7.4 p75NTR in spinal cord injury 

 After a spinal cord injury (SCI), axonal regeneration in the spinal cord is inhibited due to 

plethora of axonal intrinsic and extrinsic factors [reviewed in (305)], and one such inhibitory 

factor is p75NTR (62,270–272). In severed spinal cord (SC) axons, the p75NTR/NgR1/LINGO-

1 complex binds myelin-associated inhibitory factors—MAG, Nogo and OMgp—to inhibit 

neurite regeneration by downstream engagement of RhoA, which locally drives actin 

polymerization (62). Sustained activation of this p75NTR-RhoA axis may also drive neuronal 

apoptosis in injured SC neurons (271). Outside the injured axon, local proNGF binds 

oligodendrocyte-derived p75NTR to induce apoptotic clearance of oligodendrocytes (270). 

Pharmacological blockade of p75NTR-RhoA axis via p75ECD-Fc injection promotes axonal 

regeneration and functional recovery in a rat SCI model (272), indicating that p75NTR may be a 

targetable candidate on the path towards clinical restoration of spinal cord connectivity post-SCI. 

1.4.7.5 p75NTR in retinopathy 

 Diabetic retinopathy is associated localized inflammation, glial activation, vascular 

dysfunction and pathological neurodegeneration of retinal ganglion cells (RGCs) in the retina 

[reviewed in (306)]. The proNGF-p75NTR signaling axis has been implicated in each aspect of 

this degenerative disease (275,278). In a mouse model of diabetic neuropathy—the 

streptozotocin model— proNGF (278) and p75NTR (275) are upregulated in the retina. In 

multiple diabetic neuropathy mouse models, the proNGF-p75NTR complex drives: inflammatory 

cytokine production, blood-retina barrier breakdown, disassembly of the neuro-glia-vascular 

unit, edema, and RGC neuronal death (275). Pharmacological blockade of p75NTR signaling, 
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with the small molecule compound LM11A-31, mitigated proNGF action and reduced retinal 

neuroinflammation and neurodegeneration (278). 

 Excitotoxic RGC neuronal death is also mediated by the proNGF-p75NTR axis, but 

involves a non-cell-autonomous mechanism (273,274). Local application of proNGF induces 

activation of the NFκB axis in Müller glia via the p75NTR-sortilin complex (274). This activated 

NFκB induces expression, and extracellular release, of TNFα, which acts on RGCs to trigger 

neuronal death (273,274). This non-cell-autonomous mechanism can be induced by exogenous 

NMDA (273), and thus represents a major excitotoxic RGC neuronal death pathway. 

 Lastly, aberrant proNGF-p75NTR signaling is implicated in retinitis pigmentosa (RP)—

an inherited neurodegenerative disease characterized by progressive photoreceptor death (276). 

In a mouse model of RP, proNGF is upregulated immediately prior to photoreceptor death. 

proNGF induced p75NTR-dependent photoreceptor death and TNFα secretion; an effect which 

was ameliorated by pharmacological p75NTR antagonists (276). p75NTR-dependent 

neurodegeneration and neuroinflammation in RP not only resembles the excitotoxic RGC death 

mechanism (273,274), but closely mimics Egr/Wgn-induced photoreceptor death in Drosophila 

melanogaster (88). It is possible p75NTR regulation of neuronal apoptosis in the retina 

represents an evolutionarily conserved pathway. 

1.4.7.6 p75NTR in Huntington’s Disease 

 Huntington’s Disease (HD) is an inherited neurodegenerative disorder caused by a 

trinucleotide repeat expansion within the Huntingtin (Htt) gene, resulting in Htt aggregates in the 

CNS and subsequent dysfunction in motor and cognitive processes (307). Widespread 

neurodegeneration in the striatum, hippocampus and cortex is observed in HD pathology (307). 

Recent evidence from Dr. Silvia Gines’ group has established an imbalance in TrkB/p75NTR 
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neurotrophic vs. neurodegenerative signaling as a driver of pathological neurodegeneration in 

HD (308). In early HD, p75NTR drives synaptic elimination in the hippocampus and 

corticostriatal pathway via hyper-activation of the RhoA (309) and PTEN (310) signaling axes, 

respectively. Genetic deletion of p75NTR delays, but does not abolish, striatal neurodegeneration 

and motor dysfunction in a murine HD model (282). Intriguingly, pharmacological targeting of 

p75NTR directly with LM11A-31 (281), or indirectly with fingolimod (279), partially restored 

striatal and hippocampal spine density, and improved motor performance and cognition in the 

BACHD mouse model of HD. Thus, pharmacological p75NTR inhibition may represent a useful 

strategy for symptom management in HD but will likely be insufficient to fully prevent 

neurodegeneration. 

1.4.7.7 p75NTR in multiple sclerosis 

 Multiple sclerosis (MS) is characterized by inflammatory demyelination and axonal 

degeneration in the PNS (311). Though a comprehensive model of MS etiology remains elusive, 

recent evidence from the experimental autoimmune encephalomyelitis (EAE) MS mouse model 

implicates p75NTR as a of driver peripheral demyelination and axonopathy in MS (283–285). 

p75NTR is locally upregulated in axons and oligodendrocytes at inflammatory lesion sites in the 

SC of EAE mice (284,285) and human MS patients (312). At this site, axonal 

p75NTR/NgR1/LINGO-1 complex acts to transduce inhibitory myelin signals via RhoA 

activation to inhibit axonal regeneration (313,314) and oligodendrocyte-derived p75NTR drives  

local oligodendrocyte death (270), a mechanism that has been postulated—but not definitively 

proven—to occur in EAE/MS (284). In support of this hypothesis, pharmacological stimulation 

of p75NTR cyclo-dPAKKR—a mimetic of BDNF-binding to the p75ECD—strongly attenuates 

inflammatory demyelination and axonal degeneration, co-incident to improved motor function, 
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in EAE mice (283). Thus, pharmacological approaches mimicking NT activation of p75NTR 

may be worth investigating in a clinical setting. 

1.4.7.8 p75NTR mediates synapse elimination in HIV 

 The envelope protein (gp120) of human immunodeficiency virus-1 (HIV) triggers 

aberrant elimination of excitatory synapses in cortical and subcortical CNS regions [reviewed in 

(315)]. In gp120-expressing transgenic (gp120tg) mice, p75NTR haploinsufficiency rescued 

hippocampal synaptic density to wild-type levels, implicating p75NTR in gp120-induced 

synapse loss (286). This effect was recapitulated by Dr. Italo Mocchetti’s group, who extended 

upon this finding by showing local proBDNF upregulation in the gp120tg hippocampus 

stimulated this p75NTR-dependent synapse elimination (288). At the behavioural level, p75NTR 

haploinsufficiency rescued cognitive deficits in gp120tg mice (288), revealing potential 

therapeutic merit in targeting p75NTR to stave off cognitive symptoms in HIV patients. 

1.4.8 p75NTR regulation of synaptic plasticity in the CNS 

 In the mature CNS, low—but biologically active—levels of p75NTR persist in the 

hippocampus, cortex, and extrahippocampal subcortical structures (93). In this post-

developmental context, p75NTR actively regulates synaptic plasticity to maintain nervous 

system function. Dysregulation of p75NTR-dependent synaptic plasticity is strongly associated 

with several neuropsychiatric disorders. 

1.4.8.1 p75NTR regulation of hippocampal synaptic plasticity 

 Seminal papers from Dr. Yves Barde and Dr. Barbara Hempstead’s laboratories 

demonstrated that p75NTR is required for induction of synaptic long-term depression (LTD), but 

not long-term potentiation (LTP), in the adult hippocampus (316,317). At Schaffer collaterals, 

proBDNF binds postsynaptic p75NTR to induce LTD via a mechanism that is NMDAR-
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dependent (317) and drives internalization of AMPAR subunits GluR2 and GluR3, but not 

GluR1 or GluR4 (316). Postsynaptic proBDNF/p75NTR-dependent LTD antagonizes a 

postsynaptic BDNF/TrkB-dependent LTP (318,319), establishing NT/proNT functional 

antagonism as a major regulatory mechanism of hippocampal synaptic plasticity. Local co-

ordination of Rho GTPases Rac1, RhoA and Cdc42 at dendritic spines is required for structural 

LTP (sLTP) in the BDNF-TrkB axis (319), and antagonistic Rho GTPase regulation by 

proBDNF/p75NTR is postulated to drive sLTD (320). 

 p75NTR regulates inhibitory tone in the hippocampus via maintenance of chloride 

homeostasis in innervating GABAergic neurons (226). Mechanistically, a proBDNF/p75NTR 

axis augments Cl- influx via KCC2 to maintain a high intracellular Cl- concentration (226). 

p75NTR-dependent Cl- regulation is required to maintain inhibitory GABAergic responses, and 

a failure to do so—such as after CNS injury (321)—can disinhibit glutamatergic hippocampal 

neurons to increase seizure susceptibility (226). BDNF-TrkB antagonizes proBDNF/p75NTR by 

suppressing GABAergic neurotransmission (322), extending NT/proNT functional antagonism 

as a major regulator of hippocampal plasticity in multiple neuronal subpopulations. 

 Hyperactivation of the hippocampal proBDNF/p75NTR LTD axis, and hypoactivation of 

the BDNF-TrkB LTP axis, is observed in age-related cognitive decline (320). Restoration of 

p75NTR/TrkB balance via intrahippocampal injection of TAT-Pep5 significantly improved 

cognitive performance and memory in wild-type mice in late adulthood (320). In addition, 

hyperactivation of p75NTR-dependent LTD is observed following sleep deprivation (323), 

highlighting the balance BDNF/proBDNF axes as a major regulatory checkpoint in 

hippocampal-dependent cognitive function. 

1.4.8.2 p75NTR regulation of extrahippocampal synaptic plasticity 



48 
 

 p75NTR mediates synaptic plasticity in extrahippocampal structures—particularly limbic 

structures—including the: medial entorhinal cortex (mEC) (324,325), medial prefrontal cortex 

(mPFC) (220), amygdala (220), striatum (326), and hypothalamus (327). 

 The mEC provides cholinergic innervation to the dentate gyrus (DG) and generates rapid 

bursts of electrical activity known as persistent firing (PF)—a phenomenon required for spatial 

working memory (328). Dr. Julien Gibon and colleagues (2016) established BDNF/proBDNF 

functional antagonism as a major regulatory mechanism of PF in layer V mEC neurons (325). At 

the presynapse, a BDNF-TrkB axis promotes glutamate release, in parallel to a proBDNF-

p75NTR axis that inhibits glutamate release (324,325). Presynaptic proBDNF/p75NTR inhibits 

glutamate release—and subsequent PF—via local depletion of phosphatidylinositol-4,5-

bisphosphate (PIP2) in a pathway involving Rac1 and PI4K (324). In p75NTR-/- mice, PF 

activity is augmented and coincides with improved working memory and increased seizure 

susceptibility (324). 

 cBF-derived p75NTR is required for physical and functional synaptic plasticity in the 

mPFC (220). cBF-specific p75NTR KO results in impaired consolidation of fear extinction 

relative to wild-type mice (220). Thus, cBF-derived p75NTR is required for homeostatic 

regulation of synaptic plasticity in the mPFC and mPFC-dependent cognitition. 

 p75NTR-/- mice display an anxiety-like phenotype, as revealed in multiple behavioural 

paradigms (31,175). Electrophysiological recording from the basolateral amygdala revealed 

deficient LTP—an effect independent of antagonistic TrkB (31). Though the mechanism of 

p75NTR-dependent LTP inhibition in the basolateral amygdala remains unresolved, these studies 

established that p75NTR-dependent LTP inhibition in the CNS is not specific to the BDNF/TrkB 

LTP axis. 
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 The dorsolateral striatum (DLS) mediates cue-reward associations (329), including 

reward responses to alcohol consumption (330). A recent study from Darcq and colleagues 

(2016) established TrkB/p75NTR antagonism in the DLS as a regulatory mechanism underlying 

alcohol consumption behavior (326). Knockdown or pharmacological p75NTR inhibition in the 

DLS significantly attenuates binge drinking behaviour in rats (326). Thus DLS-derived p75NTR 

functionally antagonizes TrkB to promote alcohol seeking and may be represent a therapeutic 

target in the context of alcoholism. 

 AgRP hypothalamic neurons co-ordinate feeding behaviour to external environmental 

cues (331). AgRP-derived p75NTR negatively regulates food anticipatory behaviour, leading to 

weight loss in p75NTR-/- mice (327). In conjunction to the role of hepatocyte-derived p75NTR 

in regulation of lipid metabolism (332,333), this study firmly establishes p75NTR as a major 

regulator of hypothalamus-dependent food seeking behaviour. 

1.4.9 p75NTR signaling in tumorigenesis and metastasis 

 Although p75NTR is generally a tumour suppressor—via p53 inhibition (334,335)—

several cancers have successfully leveraged p75NTR signaling to drive tumour survival, invasion 

and metastasis, particularly melanoma (336–350) and glioma (163,164,166,351–356) tumours. 

The switch from tumour suppressive to oncogenic p75NTR appears to depend on receptor 

cleavage, as soluble p75ICD acts as a major driver of tumour invasion (154,165). Outside the 

context of melanoma and glioma, p75NTR mediates tumour survival and metastasis in other 

cancers, including: breast (357–360), gastric (361–364), prostate (365,366), renal (367), bladder 

(368), and pancreatic (369) cancers; however, our understanding of p75NTR function in these 

tumour settings is comparatively limited. 

1.4.9.1 p75NTR drives melanoma invasion and metastasis 
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 Early research demonstrated that p75NTR was enriched in malignant melanoma (276) 

and could drive melanoma metastasis in an NGF-dependent manner (336,340). p75NTR itself 

drives the oncogenic transition from melanocyte to melanoma (345,350). Over the years, it has 

been firmly established that p75NTR+ melanoma subtypes—such as spindle cell and 

desmoplastic melanoma—are much more invasive and metastatic than p75NTR- melanomas 

(338,339,341,344,346–348). Moreover, xenografted p75NTR-/- melanoma tumour stem cells fail 

to develop into a melanoma tumour in vivo (345). p75NTR instills a neurotrophic survival 

mechanism in melanoma, actively engaging survival signaling in response to local NGF or 

proNGF in the tumour microenvironment (341,343) independent of TrkA (336). The mechanism 

of p75NTR-dependent melanoma tumour metastasis is incompletely resolved, but likely requires 

receptor cleavage (165) and downstream activation of Rac1 (370) and TRAF6-NFκB (154) 

signaling axes. Pharmacological p75NTR inhibition shows great therapeutic promise in 

melanoma, as small molecule targeting of the p75NTR TMD shifts p75NTR signaling to a 

constitutive JNK-activating pro-apoptotic state in vivo (349). 

1.4.9.2 p75NTR drives glioma invasion 

 Similar to its tumorigenic role in melanoma, p75NTR is a master regulator of NGF-

dependent (351,352) survival and invasion of multiple glioma subtypes, including glioblastoma 

(163,166,355) and medulloblastoma (164,353,354,356). p75NTR-mediated glioma invasion is 

dependent on receptor cleavage (163–165) and likely involves downstream Rac1 (371,372) and 

NFκB (154) activation. p75NTR expression is an accepted diagnostic marker of the SHH 

medulloblastoma subtype and inversely correlates with patient survival (356). Pharmacological 

inhibition of p75NTR proteolytic cleavage via targeting of the γ-secretase complex is effective in 



51 
 

preventing medulloblastoma metastasis to the spinal cord (164). This γ-secretase-targeting 

strategy shows therapeutic promise and recently entered Phase I/II clinical trials. 

1.5 Death Receptor 6 (DR6) 

 Death Receptor 6 (DR6) is an orphan TNFRSF that is a major mediator of 

neurodegeneration—particularly axonal degeneration—in developmental (51,56,58,373) and 

pathological (57,374–380) contexts. Although DR6 does not bind a TNF ligand, accumulating 

evidence suggests DR6 is a receptor to the β-amyloid precursor protein (APP) (381,382)—as 

well as the amyloidogenic Aβ fragment (56,374)—to transduce death signaling in central and 

peripheral neuron populations. 

1.5.1 Structural biology of DR6 

 Like p75NTR, DR6 is a single-pass type I transmembrane protein primarily localized to 

the plasma membrane (383) that is highly conserved in vertebrates (384). Mature, post-

translationally modified DR6 is slightly larger than p75NTR (101 kDa vs. 75 kDa) and 

possesses: (i) an N-terminal ECD 349 AA in length that mediates ligand-binding, (ii) a TMD 20 

AA in length, and (iii) a C-terminal ICD 285 AA in length that mediates signaling (383). 

 Like p75NTR, the DR6 ECD possesses 4 CRDs linked in tandem and a long stalk 

region—approximately 97 AA longer than p75NTR—linking the CRDs to the TMD (383). X-

ray crystallography reveals that the DR6 CRDs arrange in a ‘rod-like’ conformation, which 

exposes DR6-specific motifs that mediate ligand-binding (381), including APP (382). APP-

binding to cell surface DR6 via the extracellular ‘E2’ region—including all 4 CRDs—induces 

DR6 dimerization into an active conformation (382). The DR6 ECD is extensively glycosylated, 

with N-glycosylation at all 6 asparagine residues, and O-glycosylation at the Ser-Thr-Pro cluster 

immediately C-terminal to CRD4 (385). 
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 DR6 is a death receptor and, accordingly, possesses a DD within its ICD (383). Like the 

p75NTR DD, the DR6 DD does not interact with death effectors FADD, TRADD or 

EDARADD, consistent with the inability of DR6 to activate the extrinsic apoptotic pathway 

(386). Conflicting reports suggest a DR6-TRADD may exist in specific non-neuronal biological 

contexts, but this complex has never been demonstrated under physiological conditions 

(383,387). Although DR6 does not engage the mitochondrial apoptotic pathway, a physical 

interaction between Bax and the DR6ICD has been reported (386), but the biological implication 

of this interaction remains elusive. Further, the DR6ICD physically interacts with the necroptosis 

mediators Receptor-Interacting Serine/Threonine-Protein Kinase 1 and 3 (RIPK1 and RIPK3) to 

mediate death signaling (78). Lastly, the DR6ICD is S-palmitoylated at a juxtamembrane 

cysteine residue (Cys368) (385). DR6 palmitoylation at this site does not regulate lipid raft 

localization and is postulated to mediate signaling (385). 

1.5.2 DR6 signaling mechanisms 

 APP-binding to DR6 in trans signals cell death in the DR6-expressing cell via 

downstream activation of necroptosis (78). APP-bound DR6 recruits RIPK1/3 to its ICD, which 

in turn recruits caspase-8 to form the ‘necrosome’ that induces MLKL phosphorylation and 

downstream execution of the necroptosis (78,388). Parallel activation of caspase-8 cleavage—via 

independent pathways—inhibits APP/DR6-dependent necroptosis (78), indicating caspase-8 

serves as the limiting factor in necrosome formation. In vivo, tumour-derived APP binds 

endothelial-derived DR6 in trans to induce necroptotic endothelial cell death, thereby promoting 

tumour metastasis and extravasation (78). 

Unlike canonical death receptors, DR6 cannot initiate the extrinsic or intrinsic apoptotic 

pathway, showing no capacity to induce caspase-8 cleavage or MOMP, respectively (386). 
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However, DR6 overexpression can induce caspase-3 activation and apoptosis when 

overexpressed in multiple cell lines (383,386). This DR6 death pathway involves a physical 

interaction with Bax (386). Therefore, DR6 may be able to induce executioner caspase activation 

via an unknown Bax-dependent pathway (386). In light of recent evidence (78), it is possible this 

Bax interaction serves to positively regulate necroptotic signaling (389). Another possibility 

comes from immune cell lineages, where DR6 can engage a Bax-dependent, mitochondria-

dependent apoptosis pathway via direct interaction with presenilin-associated protein (PSAP) 

(390). Interestingly, DR6-Bax exists exclusively at the cell surface, whereas PSAP-Bax localizes 

to mitochondria (390). DR6 may regulate mitochondrial permeabilization, and downstream 

executioner caspase activity, via competitive PSAP/Bax interactions within the DR6ICD. 

DR6, like most TNFRSFs, appears to be able to activate NFκB (383,391,392). In vitro, 

ligand-dependent DR6 activation of an NFκB cascade is required for differentiation of THP-1 

monocytes to differentiate into macrophages. In vivo, DR6-dependent NFκB activity promote 

tumour angiogenesis (392), consistent with the established role of DR6 as a pro-angiogenic 

factor in the developing CNS vasculature (393). Moreover, micro-RNA 210 (miR-210) was 

recently shown to inhibit NFκB by inhibiting translation of DR6 mRNA in immune cells; this 

miR-210-DR6-NFκB axis was shown to be dysregulated in osteoarthritis (394). Dysregulation of 

DR6 signaling in B cells was further shown to confer autoimmunity in a mouse model of 

systemic lupus erythematosus (395). Thus, the DR6-NFκB axis is important for 

immunoregulation, but its potential role in neural development or maintenance remains 

unexplored. 

With respect to TRAF interactions, DR6 was recently shown to interact with TRAF4 in 

ovarian cancer cells in vitro and in vivo (396). Interestingly, the DR6-TRAF4 interaction 
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mediates ovarian cancer cell migration via a mechanism that requires the kinesin family member 

KIF11, possibly in a context of tripartite DR6-TRAF4-KIF11 complex (396). This initial study 

confirms that TRAFs—or at least TRAF4—mediate DR6 signaling in some unknown capacity. 

1.5.3 DR6 in developmental neurodegeneration 

 DR6 is a major regulator of developmental axon degeneration in central and peripheral 

neurons (51,56,58). In 2009, a seminal paper from Dr. Marc Tessier-Lavigne’s group showed 

that a soluble N-terminal fragment of APP—produced by β-secretase (BACE)-mediated 

cleavage—binds DR6 to induce axonal degeneration and apoptosis via distinct executioner 

caspases—caspase-6 and -3, respectively—following trophic factor deprivation in sympathetic 

neurons (56). After failed attempts to reproduce these results, a more recent publication revisited 

the model of APP-DR6 signaling in developmental axon degeneration. The current model, also 

proposed by Dr. Tessier-Lavigne’s group, was resolved in the developing retinocollicular 

pathway, where RGCs extend past their superior colliculus (SC) destination, then prune back 

their axons to their final SC target. In this model, full-length APP binds DR6 in cis—thus, 

independent of BACE—to activate caspase-3, which drives developmental axon pruning in 

RGCs. The latter model is the currently accepted model of APP/DR6-induced axon degeneration. 

 Returning to SCG sympathetic neurons, Dr. Christopher Deppmann’s group recently 

reveal that p75NTR and DR6 co-regulate developmental axon degeneration at distinct temporal 

stages. Following NT withdrawal, SCG axons remain intact for ~18 hours (latent phase) 

followed by period of catastrophic spheroid formation and axonal destruction (catastrophic 

phase; ~3 hours). DR6 is required for the transition from latent phase to catastrophic phase. 

p75NTR, on the other hand, drives spheroid formation and rupture during the catastrophic phase 
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via local RhoA activation. Thus, p75NTR and DR6 co-ordinate developmental axonal 

degeneration programs in parallel. 

1.5.4 DR6 in pathological neurodegeneration 

 DR6 drives axonal degeneration and neuronal apoptosis in the context of multiple 

neurodegenerative diseases, including: AD (374,377), axotomy (57,380), prion disease (378), 

ALS (376), hypoxia-induced neurodegeneration (379) and, possibly, Down Syndrome (DS) 

(375). 

 DR6, like p75NTR, is a receptor for amyloidogenic Aβ capable of transducing the 

neurodegenerative signal (374,377,382). In vitro, DR6-/- cortical neurons are resistance to Aβ-

induced apoptosis, an effect phenocopied in wild-type neurons exposed to a DR6 function 

blocking antibody (374,377). The Aβ/DR6 neurodegenerative signal requires the intracellular 

DD of DR6 and activates an apoptotic cascade culminating in caspase-3 activation (374). In vivo, 

DR6 upregulation is observed in the AD cortex, and its expression is enriched in subregions with 

elevated neuronal death (374). Thus, Aβ overproduction in AD kills cortical neurons, at least in 

part, via direct binding to DR6 and initiation of apoptotic cascade. 

 In the PNS, DR6 is a mediator of Wallerian degeneration of axons post-axotomy. In 

vitro, DR6 KO protects both sympathetic and sensory distal axons from Wallerian degeneration 

(57). In vivo, distal sensory axons are protected after a crush injury to the sciatic nerve (57). This 

axotomy-induced DR6 death pathway is axon-intrinsic and involves downstream activation of 

dual leucine zipper kinase (DLK) and JNK (57). The DLK/JNK axis is thought to act as a 

retrograde degenerative signal to the soma (380). In axotomized RGCs, the DR6-DLK-JNK 

degenerative signal is independent of the major Wallerian degeneration executor SARM1 (380). 
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These studies place DR6 as the only cell surface receptor known to mediate axotomy-induced 

neurodegeneration. 

 Aβ is not the only amyloidogenic peptide capable of binding DR6. Prion peptide PrP106-

126 physically interacts with the DR6 ECD to transduce a pathological neuron death signal 

(378). In cultured rat spinal neurons, PrP106-126 binds DR6 to activate a pro-apoptotic cascade 

culminating in activation of executioner caspase-3 and -6, and subsequent neuronal death (378). 

Acute DR6 knockdown protects cultured spinal neurons from PrP106-126-induced 

neurodegeneration (378). Thus, DR6 can act as a receptor to induce neuronal death in prion 

disease. 

 After a bilateral common artery occlusion (2VO), hypoxic conditions trigger dendritic 

spine loss, followed by complete neuronal death, in the cortex and hippocampus. In vivo, 

downregulation of miR-195 in hypoxic neurons removes translational inhibition on DR6 mRNA, 

resulting in DR6 upregulation—in parallel to local Aβ production (379). Aβ/DR6-mediated 

activation of caspases-3 and -6 drives spine elimination and neuronal death post-2VO in vivo 

(379). Thus, DR6 neurodegenerative signaling is hyperactivated in hypoxia to drive pathological 

neuronal death in the CNS. 

 ALS neurodegeneration is characterized by motor axon degeneration, motoneuron death, 

and NMJ denervation (376). In cultured motoneurons derived from the SOD1(G93A) ALS 

model mice, DR6 functional blocking antibody is neuroprotective (376). DR6-dependent 

motoneuron neurodegeneration in the SOD1(G93A) model involves downstream caspase-3 

activation, in parallel to Akt inhibition (376). Thus, in ALS, DR6 acts as a driver of motoneuron 

death by engaging pro-death, and suppressing pro-survival, pathways. 

1.5.5 DR6 is required for post-developmental CNS maintenance 
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 Paradoxically, DR6—an initiator of neurodegenerative signaling—is highly expressed in 

the adult CNS with a near-ubiquitous expression pattern (93). This implies that DR6 must play a 

central role in CNS maintenance independent from its death signaling. Consistent with this, DR6 

was recently shown to drive physiological dendritic spine elimination an axonal pruning in the 

cortex and hippocampus (373) in an experience-dependent manner (397). DR6 mediates 

physiological spine elimination and axon pruning in both excitatory and inhibitory hippocampal 

population (397). Thus, DR6 may play a major role regulating neuronal remodeling in the mature 

CNS, particularly in localized degeneration of specific neuronal processes as required. 

 DR6 is a major regulator of myelinating glia function in the developing and mature CNS. 

In oligodendrocytes (ODs) and Schwann cells (SCs), DR6 acts as a negative regulator of OD/SC 

survival, maturation and myelination (398,399) via basal death signaling to caspase-3 (398). 

DR6-/- mice show deficient remyelination and demyelination in the CNS (398). A failure of 

constitutive DR6 apoptotic signaling in ODs is associated with an autoimmunity phenotype 

(398). Interestingly, EAE (MS model) mice are protected from autoimmunity (pathological 

CD4+ T cell expansion) in a DR6-/- background (400); an effect that has been reproduced 

independently (398). Thus, glial-derived DR6 maintains homeostatic myelination in the adult 

CNS and PNS. 

1.6 TROY 

 TROY is a non-DD-containing TNFRSF binds myelin-associated inhibitory factors 

(MAIFs) in a co-receptor complex with the Nogo-66 receptor (NgR1) and LINGO-1 to regulate 

neurodevelopment, neural plasticity, and restrict neurite outgrowth after CNS injury (61,401–

411). Independent of NgR1, TROY functions in parallel with DR6 to sculpt the CNS vasculature 

during development (393). NgR1-independent functions of TROY have been described in the 
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context of glioma, where TROY is leveraged as a survival- and invasion-promoting factor (412–

418). TROY function in the context of glioma provides insight into how this orphan TNFRSF 

may regulate neural development and plasticity via NgR1-independent signaling mechanisms. 

1.6.1 A TROY/NgR1/LINGO-1 complex restricts neurite outgrowth  

 TROY is capable of physically and functionally replacing p75NTR in the NgR1/LINGO-

1 to transduce myelin inhibitory signals in p75NTR-negative neuronal populations (61,401). In 

vitro, the TROY/NgR1/LINGO-1 complex is capable of inhibiting neurite outgrowth in neuronal 

cultures treated with MAIFs, including MAG, OMgP, and Nogo-66 (61,401). Cultured TROY-/- 

neurons are resistant to the MAIF-mediated suppression of neurite outgrowth (61). Similar to the 

p75NTR/NgR1/LINGO-1 complex, the TROY/NgR1/LINGO-1 complex activates RhoA 

downstream of MAIF-binding to drive local actin depolymerization, thereby restricting neurite 

outgrowth (61). TROY-mediated RhoA activation in this context is mediated by a physical 

interaction with RhoGDI (419). Interestingly, TROY cannot functionally replace p75NTR in 

p75NTR-/- RGCs cultured in exogenous MAG (404), suggesting that cell-type specific 

preferences exist for utilizing p75NTR or TROY as a co-receptor in the NgR1 complex. Similar 

to p75NTR, TROY is locally upregulated at inflammatory lesions in EAE mice (model of MS), 

in both axons and inflammatory glia (403), suggesting that TROY/NgR1/LINGO-1-mediated 

inhibitory signaling directly contributes to MS neuropathology. 

1.6.2 TROY is a major regulator of CNS development and maintenance 

 The TROY/NgR1/LINGO-1 complex is required to mediate CNS maintenance in a post-

developmental context. In the adult hippocampus, the TROY/NgR1/LINGO-1 complex is 

required for structural fine-tuning of synapses to enable memory consolidation (406). In adult 

mice, acute TROY knockdown in the hippocampus in vivo results in poor performance at passive 
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avoidance and Morris water maze tasks (406). TROY/NgR1/LINGO-1-dependent synapse 

restriction in the hippocampus requires downstream signaling to RhoA (407). TROY-dependent 

synaptic remodeling in the hippocampus and cortex is mediated by interaction with Leucine-Rich 

Glioma-Inactivated Protein 1 (LGI1) (60). LGI1 binds TROY to physically—and functionally—

disrupt the TROY/NgR1/LINGO-1 complex, thereby inhibiting downstream RhoA activation. 

LGI1-/- hippocampal and cortical neurons possesses fewer, smaller, and weaker synapses; an 

effect mediated by elevated basal RhoA activation (60).  

 Similar to DR6, TROY negatively regulates oligodendrocyte (OD) maturation and 

myelination (398,408). Acute TROY knockdown in OD precursor cells (OPCs) promotes OPC 

differentiation and myelination when grafted to an injured spinal cord. Mechanistically, TROY 

suppresses OPC differentiation via downstream activation of protein kinase C (PKC). Thus, DR6 

and TROY are collaborative inhibitors of OD maturation and myelination (398,408) and serve to 

prevent excessive myelination in the developing nervous system. 

 TROY, like DR6, is required for co-ordinating vascularization of the developing CNS; a 

function that is conserved in mice and zebrafish (393). Although the signaling mechanism 

through which DR6/TROY co-ordinate vascularization is unknown, it is established that both 

receptors act as downstream transcriptional targets of Wnt signaling in this context (393). 

Dysregulation of TROY vascularization signaling may contribute to vascular dementia, as 

genetic variants of TROY have been identified as susceptibility risk factors (420). 

1.6.3 TROY drives tumour invasion in glioma 

 Invasive gliomas upregulate TROY to mediate tumour survival and invasion (412,414), 

similar to p75NTR. TROY survival signaling in glioblastoma involves downstream activation of 

parallel Akt and NFκB cascades (414). TROY promotes perineural glioblastoma invasion via 
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downstream co-ordination of Rho GTPase activate. TROY activates Rac1 via direct association 

with the scaffolding protein Pyk2 (389). TROY concomitantly activates both Rac1 and RhoA via 

PDZ-RhoGEF; TROY-mediated dual activation of these antagonistic Rho GTPases promotes 

glioblastoma invasion in vitro and in vivo (416). TROY-mediated glioblastoma invasion 

signaling also requires the Raf Kinase Inhibitor Protein (RKIP), and pharmacological disruption 

of the TROY-RKIP interaction attenuates glioma development in vivo (418). 

 Recently, it was established that the chemotherapeutic agent propentofylline—commonly 

used in glioblastoma treatment—acts by targeted downregulation of TROY (413,415). 

Propentofylline successfully suppresses TROY survival signaling to Akt and NFκB (415); as 

well as TROY invasion signaling via Rac1 (413). These results indicating that TROY represents 

a promising therapeutic target in glioma treatment. Moreover, these studies dissecting TROY 

signaling in a neoplastic context indicate that TROY may regulate diverse aspects of 

neurodevelopment via regulation of canonical TNFRSF signaling axes, including Akt and NFκB. 

1.7 Extracellular vesicles (EVs) mediate intercellular p75NTR trafficking 

 ‘Extracellular vesicles’ (EVs) is a blanket term defining all membranous vesicles released 

from a cell into the extracellular milieu. EVs are highly heterogeneous—both between and 

within EV classes—and are secreted from many cell types. Though many subclasses have been 

described, EVs generally fall within two major classes: exosomes and microvesicles (MVs). 

Exosomes are small EVs (~30-100nm diameter) generated from membrane invaginations of 

early endosomes to generate intraluminal vesicles (ILVs) within the endosomal lumen to form 

multivesicular bodies (MVBs). If an MVB avoids the lysosomal route and fuses with the plasma 

membrane, ILVs are released from the cell and are then referred to as exosomes. MVs, on the 
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other hand, are large EVs (~100nm-1µm diameter) derived from outward budding of the plasma 

membrane (421). 

EV cargo consists of diverse biomolecules, including protein, RNA and DNA. Though no 

‘EV targeting motif’ has been discovered, EV cargo loading is a regulated process as EV content 

does not reflect the overall membrane/cytosol content of the cell (422). The cell secreting EVs is 

commonly referred as the ‘donor cell’ and the cell upon which EVs act is the ‘recipient cell.’ At 

the recipient cell, EVs can be internalized via receptor-mediated endocytosis, macropinocytosis, 

phagocytosis or lipid raft internalization (423); alternatively, EVs may fuse directly with the 

plasma membrane (PM) to ‘spill’ their contents into the cytosol (421). EVs have been shown to 

target recipient cells via autocrine, paracrine, or endocrine action (421). With respect to 

endocrine action, EVs are capable of bilateral crossing of both the blood-brain (BBB) and blood-

CSF (BCB) barriers to mediate intercellular communication between the CNS and peripheral 

tissues [reviewed in depth by (424)]. Though early reports described the role for EVs in cargo 

trafficking and metabolic support, it has since become evident that EVs are important subcellular 

compartment mediating intercellular signaling events (421,425). 

EVs regulate major neurodevelopmental processes, including: embryonic neurogenesis, 

gliogenesis, synaptic pruning, myelination, and adult neurogenesis [reviewed in (426)]. Neuron- 

and glia-derived exosomes are important for nervous system maintenance under physiological 

conditions, as has been emphasized by their role in coordinating synaptic plasticity [reviewed in 

(427)] In neuropathologies, locally-secreted EVs generally confer neuroprotection, as has been 

demonstrated within the contexts of stroke, traumatic brain injury, spinal cord injury, and 

peripheral nerve injury [reviewed in (428)]. It remains unclear whether EVs actively drive 

neurodegeneration in physiological or pathophysiological conditions. 



62 
 

1.7.1 Molecular mechanisms controlling EV biogenesis 

 Exosome biogenesis can occur via two canonical pathways: (i) the endosome sorting 

complexes require for transport (ESCRT)-dependent pathway, or (ii) the ceramide-dependent 

pathway (429). These pathways reflect independent mechanisms of MVB formation (i.e., early 

endosome membrane invagination to produce ILVs) but converge upon a common mechanism of 

MVB fusion to the plasma membrane (i.e., to release ILVs as exosomes). 

 ESCRT-dependent MVB biogenesis requires the formation of a large, multimeric 

structure on the inner membrane of an early endosome that consists of 4 ESCRT complexes 

(known as ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III) and an accessory Vps4 complex 

(429). ESCRT and Vps4 complexes are comprised of multiple subunits with vacuolar protein 

sorting (VPS) family members primarily mediating intracomplex interactions; and clathrin (and 

other scaffolding proteins) mediating intercomplex interactions (429). In humans, the ESCRT-0 

complex consists of STAM1/2 and HRS subunits. ESCRT-I consists of: 

VPS23/28/37A/37B/37C/37D, MVB12A/B, and UBAP1. ESCRT-II consists of VPS22/25/36. 

ESCRT-III consists of: VPS2A/B, VPS24, SNF7A/B/C, VPS20, DID2, VPS60, and CHMP7. 

The Vps4 complex is comprised of: VPS4A/B, LIP5, and the accessory protein ALIX (430–434). 

ESCRT machinery assembles via a defined temporal order: (i) ESCRT-0 associates with 

phosphatidylinositol-3-phosphate (PtdIns3P) at the endosomal membrane (435,436) via HRS 

(437) which subsequently recruits clathrin (438); (ii) PtdIns3P-bound ESCRT-0 recruits ESCRT-

I via direct interaction of HRS with VPS23 (439–441); (iii) ESRCT-II recruitment via VPS20-

VPS25 physical interaction (442,443); and (iv) ESCRT-III recruitment (444–446). ESCRT-II 

recruitment (step 3) initiates endosomal membrane invagination (447), while ESCRT-III 

recruitment (step 4) is required for ILV scission into the endosomal lumen (448–450). 
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 Ceramide-dependent MVB biogenesis proceeds independent of ESCRT machinery. At 

the endosomal membrane, neutral sphingomyelinase (nSMase) synthesizes ceramide using 

sphingomyelin as a precursor (451). When enriched in a phospholipid membrane, ceramide 

spontaneously forms a negative membrane curvature—in this case driving ILV formation (451). 

The mechanism of ILV-to-MVB conversion in this pathway remains unclear but is thought to 

require ceramide-generated lipid rafts at the ILV surface (451). 

 After their biogenesis, MVBs are trafficked to the PM via microtubule transport 

(452,453) and direct interaction with the actin cytoskeleton (454) via the actin-binding protein 

cortactin (455). Multiple Rab GTPases mediate MVB transport to along the microtubule 

network, including: Rab27A/B, Rab7, Rab11, and Rab35 [reviewed in (429)]. Once at the inner 

surface of the PM, MVBs fuse to the PM via interactions of MVB docking proteins with a 

SNARE complex comprising of: SNAP23, Ykt6, VAMP7, and syntaxin 1A (456–465). Upon 

MVB fusion to the PM, its ILVs are secreted from the cell as exosomes. 

 MV biogenesis and release is not well-characterized but appears to proceed via separate 

ESCRT-dependent and -independent pathways [reviewed in (421)]. ESCRT-dependent MV 

biogenesis requires the subunits ALIX, VPS22, TSG101, CHMP1/3, and the VPS4 complex 

(466,467). Reminiscent of exosome biogenesis, a ceramide-dependent pathway mediated by the 

PM-localized acidic sphingomyelinase (aSMase) can drive MV formation and release (468,469). 

Lastly, a third MV biogenesis pathway has recently been described, involving the small GTPases 

ARF1/6 and RhoA (470–472). The ceramide- and GTPase-dependent MV biogenic pathways do 

not require ESCRT machinery (468–472). 

1.7.2 Neuron- and glia-derived p75NTR is targeted to exosomes 
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 Dr. Francisca Bronfman’s group demonstrated that primary sympathetic neurons and 

PC12 cells secrete p75NTR+ exosomes into the conditioned medium in vitro (473). p75NTR+ 

MVBs are preferentially targeted for exosome release versus lysosomal degradation, and 

exosomal p75NTR release from SCGs is augmented by neuronal depolarization (473). Exosomal 

p75NTR release has also been detected from dedifferentiated Schwann cells (SCs) in response to 

axotomy in cultured DRG explants (474). Within the content of SCs, p75NTR was shown to 

influence exosomal RNA content (474), but the extent to which p75NTR regulates exosomal 

cargo loading is unclear. All detection of exosomal p75NTR to-date has come from EV 

purification methods that omit large structures. Thus, although it is clear p75NTR is secreted in 

exosomes, it is not known if p75NTR is released via MVs. 

 The only investigation into the biological function of exosomal p75NTR comes from the 

melanoma field (475). Garcia-Silva and colleagues found that metastatic melanoma cells secrete 

p75NTR+ exosomes that target lymphatic endothelial cells, promote lymphangiogenesis, and 

establish a tumour microenvironment that facilitates the infiltration of melanoma metastases; 

effects that were blunted by exosome-specific p75NTR knockdown (475). Thus, exosomal 

p75NTR promotes tumour metastasis and metastatic niche formation, but the function of 

extracellular p75NTR in neurology—or any physiological context—remains unknown. 

1.8 The RELT Family of TNF receptors 

 Of the 29 human TNFRSFs, Receptor Expressed in Lymphoid Tissues (RELT; 

TNFRSFSF19L) is among the poorest characterized in the literature. This is due, in part, to the 

recency of RELT discovery. In 2001, Dr. Lieping Chen’s group first cloned RELT and reported 

its abundant expression in hematologic tissues including the lymph node, spleen, and blood-

derived leukocytes (476). Structurally, RELT possesses 3 CRDs in tandem within its ECD and 
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no known functional domain within its ICD. Despite its canonical TNFRSF CRD cluster, neither 

human nor murine RELT binds any known TNF ligand (477). RELT remains classified as an 

orphan receptor as no ligand has been discovered to-date. With respect to TRAF engagement, 

contradictory reports suggest RELT binds TRAF1 (478) or no TRAF family member (479). 

Physiological function of RELT in vivo is limited to a small number reports within the 

contexts of immunology (480) and odontogenesis (481–483). A recently developed RELT 

knockout mouse is deficient in tooth enamel development (481), a function ascribed to 

ADAM10-dependent proteolytic cleavage of the receptor (482). Consistent with this murine 

data, missense mutations in the TNFRSFSF19L (RELT gene) locus are associated amelogenesis 

imperfecta— enamel malformation—in humans (483). With respect to pathophysiology, RELT 

upregulation is associated with multiple cancers, including squamous cell (484), lung (485), 

gastric (486), and B-cell lymphoma (487). 

Recently, two RELT homologs were identified: RELT-Like 1 (RELL1) and RELT-Like 2 

(RELL2) (488). Compared to RELT, RELL1 and RELL2 are truncated in the ECD and lack the 

extracellular CRD cluster (488). RELL1 and RELL2 are encoded at independent genomic loci 

and do not represent alternative TNFRSFSF19L gene products (488). Not only are RELL1 and 

RELL2 sequences highly similar to each other but they share strong sequence identity to RELT 

(488). RELL1, RELL2 and RELT each possess a 35-residue ‘RELT homology domain’ (RHD) 

consisting of the TMD and N-terminal ICD amino acids that >90% sequence identity between 

the family members (488), though the function of this domain is unknown. All 3 RELT family 

members possess a 4-residue ‘RFRV’ motif capable of binding the sterile-20 kinases SPAK and 

OSR1 (488,489). The 3 RELT family members primarily localize to the plasma membrane and 
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have been shown to physically associate within one another in independent RELT-RELL1, 

RELT-RELL2, and RELL1-RELL2 complexes (488). 

 A central goal of this doctoral thesis is to identify p75NTR signaling mechanisms 

pertinent to nervous system development and maintenance. As part of this effort, an unbiased 

interactome screen identified RELL1, but not RELT or RELL2, as a p75NTR interactor (see 

Chapter 3). Considering this result, the remainder of this literature review section will focus 

exclusively on RELL1 biological function. 

1.8.1 RELL1 expression profile in the nervous system 

 RELL1 expression in the nervous system is abundant, showing a progressive increase in 

CNS expression across development (490). At an overarching level, neural RELL1 expression is 

lowest during embryogenesis, increases sharply in early postnatal mice (P7), then progressively 

increases through adolescence (P15-30), eventually peaking in adulthood (P90) (490). Though 

developmental RELL1 expression profiles in the nervous system lack a comprehensive cell-type-

specific profile, in situ expression within the adult CNS has been characterized (491,492). In 

adult C57BL/6 mice, RELL1 mRNA is highly enriched in layer 5 neocortex (absent in cortical 

layers 1-4, 6) and thalamus (491). RELL1 mRNA is detectable at lower levels in the 

hippocampus and spinal cord, but absent in the cerebellum and all other major brain regions not 

listed above (491). Consistent with the mRNA data, our in-house detection of RELL1 protein by 

immunoblot in the adult CNS showed highest expression in the cortex; low detection in the 

hippocampus and spinal cord; and no detectable expression in the cerebellum (Appendix 1). 

Single cell transcriptomics data in the adult brain shows RELL1 mRNA is highly expressed in 

oligodendrocytes and pyramidal neurons; low in other neuronal subtypes; and undetectable in 

non-myelinating glia (492). 
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1.8.2 Functional characterization of RELL1 in vitro 

 With respect to signaling capability, gain-of-function experiments in mammalian cell 

lines suggest RELL1 is capable of autonomous signaling. Cusick and colleagues found that 

overexpressed RELL1 induces apoptosis in HEK293 (488) and COS7 cell lines (479) via 

downstream activation of JNK and p38 (489). RELL1-induced cell death depends on its physical 

association with a sterile-20 kinase family member SPAK or osmotic stress-responsive 1 (OSR1) 

(479,488). SPAK/OSR1 phosphorylate RELL1 at an unknown residue (488), but it is unclear if 

this phosphorylation event pertains to this apoptotic cascade. 

 RELL1 may be a negative regulator of inflammation. In endothelial cells, an endogenous 

circular RNA (circ-RELL1)—which targets the RELL1 transcript for degradation—promotes 

downstream activation of MyD88/NFκB-dependent inflammatory cascade in response to 

oxidized low-density lipoprotein (493). 

 RELL1 may regulate viral entry into cells. In cultured MCR5 cells, and primary 

hematopoietic progenitor cells, RELL1 loss-of-function protects against cytomegalovirus (CMV) 

infection (494). Moreover, in macrophages, RELL1 knockdown reduces intracellular survival 

duration of the tuberculosis virion (M. tuberculosis) (495). Within a heterologous cell 

population, RELL1-high macrophages are particularly vulnerable to tuberculosis infection as 

they are deficient in autophagic clearance of the virion, suggesting RELL1 may be an 

endogenous inhibitor of autophagy (495). 

The disparate and diverse nature of the in vitro literature reflect the reality that very little 

is known of the cellular function of this ECD-truncated TNFRSF. 

1.8.3 Functional characterization of RELL1 in vivo 
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 Recent reports have identified RELL1 as an oncogene in the context of tumour 

progression in glioma (496,497) gastric cancer (GC) (498). In glioma, high RELL1 expression is 

associated with poor prognostic outcomes (496) and an uncharacterized RELL1 mutant has been 

identified as the most common mutation within the cell surface proteome of glioblastoma (497). 

Though no mechanistic details of RELL1 function in glioma have been described, Sang and 

colleagues (2021) provide indirect evidence that RELL1-dependent regulation of autophagy 

contributes to GC tumour progression in gastric cancer (498). circRELL1 is downregulated in 

GC tumours, and this downregulation correlates with lymph node metastasis and poor prognosis 

(498). Interestingly, exogenous circRELL1—delivered via exosomes— inhibits tumour 

proliferation, invasion, and apoptotic resistance in human GC patients (498). Assuming 

circRELL1 confers protection in vivo by targeting RELL1 mRNA for degradation—and not 

another mechanism—then RELL1 may represent a viable therapeutic target in GC. 

 The International Mouse Phenotyping Consortium (IMPC) recently generated a RELL1 

KO mouse and performed a phenotypic screen across developmental stages (499). Adult RELL1 

KO mice exhibit neurobehavioural phenotypes, including auditory hypersensitivity (acoustic 

startle response at low-decibel sounds; and decreased pre-pulse inhibition in the auditory 

brainstem) and hyperactivity (499). Behavioural phenotypes were only tested in adults, thus 

neurodevelopmental data is still lacking. No non-behavioural phenotypes were observed in 

RELL1 KO mice by IMPC’s test battery (499). These behavioural data—in conjunction with 

RELL1 CNS expression data—establish RELL1 as a mediator of nervous system development 

and/or function. 

1.10 A critical review of interactomics approaches 
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 The investigation into signaling mechanisms of any protein in any cellular context 

requires a thorough knowledge of the complement of proteins that act as interactors (the 

‘interactome’) to the protein-of-interest. Despite our expanding knowledge of neurological and 

non-neurological functions associated with p75NTR, DR6 and TROY, our understanding of the 

core signaling mechanisms engaged by these TNFRSFs remains limited. To address this 

problem, I sought to reveal the complete interactome of p75NTR, DR6 and TROY (henceforth 

the ‘p75NTR-DR6-TROY interactome’) in live human cells (see Chapter 2). There are multiple 

interactomics tools available to accomplish this task, each with their own merits and caveats. 

This critical review of interactomics technologies – both biological and computational – 

identified proximity-dependent biotin identification (BioID) (500) as an optimal strategy to 

reveal the p75NTR-DR6-TROY interactome in an unbiased, high-throughput, high-confidence 

manner. 

1.9.1 Traditional affinity purification-based techniques 

 The standard approach to resolve the interactome of a protein-of-interest (‘bait’) is to run 

an affinity purification of the bait – typically via antibody-based pulldown – followed by 

identification of all interacting partners (‘prey’) that co-purify with the bait by mass spectrometry 

(MS). This approach is referred to as affinity purification-mass spectrometry (AP-MS) [reviewed 

in (501,502)]. The core issue with the approach is that bait-prey interactions must be preserved 

during the affinity purification procedure. For this reason, AP-MS can only resolve stable protein 

complexes, and fails to detect transient protein-protein interactions (PPIs), or low-affinity PPIs, 

which are biologically relevant. Moreover, cell lysis buffers disrupt co-purified complexes, and 

even lysis buffer-resistant prey can be lost if they possess low solubility (503,504). Thus, AP-MS 
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is suited for detecting high-confidence, stable protein complexes, but fails to resolve a complete 

interactome dataset. 

 To address this core issue with AP-MS, chemical cross-linkers can be added to the cell 

culture or lysate to better preserve bait-prey interactions (505,506). However, this strategy 

increases the risk of false positive interactions, and only partially improves the ability of AP-MS 

to detect low-abundance PPIs (507). 

 In Chapter 2, I sought to resolve the p75NTR-DR6-TROY interactome in living human 

cells. To do so, it was necessary to utilize a more sensitive interactomics approach than 

traditional AP-MS strategies. 

1.9.2 Novel proximity-dependent labeling techniques 

 In the past decade, novel techniques have been developed that allow permanent covalent 

labeling of prey proteins in situ [reviewed in (507)]. These techniques allow for detection of a 

prey protein after its interaction with the bait, thereby removing the necessity to preserve bait-

prey interactions throughout the entire procedure. These novel techniques rely on labeling prey 

with a covalent modifier (typically biotin) when they enter the proximity of the bait – most 

commonly due to an interaction (507). This increased sensitivity comes at the cost of increased 

background, since a prey can be aberrantly labeled by entering into close vicinity of the bait 

without interaction (these prey are henceforth referred to as ‘contaminants’). However, this issue 

can be circumvented with computational tools, including: rigorous statistical analyses (508), 

cross-referencing to a contaminant repository (509), and the co-analysis of a diverse set of 

negative control baits. These novel proximity labeling approaches introduced drastic 

improvements in interactome sensitivity and, with application of stringent post-hoc analytical 

measures, can produce a high-confidence interactome largely free of false positive PPIs 
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(508,509). Currently, the most successful proximity-based interactomics technique—and the 

technique utilized in Chapter 2—is proximity-dependent biotin identification (BioID). 

1.9.2.1 Proximity-Dependent Biotin Identification (BioID) 

 BioID was first described in 2012 (500) [reviewed in (507,510–513)] and exploits a 

naturally-occuring mutant of the Escherichia coli (E. coli) biotin ligase known as Bifunctional 

ligase/repressor (BirA). BioID has successfully resolved complete interactome datasets for 

multiple bait proteins, including: nucleoporins (514), E-cadherin (515), the ZEB1/NuRD 

complex (516), E3 ubiquitin ligases (517), and Hippo (518). BioID has also successfully 

revealed the proteome composition of several organelles, including: focal adhesions (519), cell 

junctions (515,520–522), stress granules (523), and the nuclear envelope (500). This robust tool 

has demonstrated the capability to generate interactome and proteome datasets with far greater 

scope than those generated by traditional AP-MS.  

 BirA, like all biotin ligases, enzymatically catalyzes substrate biotinylation in a 2-step 

process: (i) BirA uses a single ATP molecule to generate the reactive biotin intermediate 

biotinyl-5’-AMP; then (ii) biotinyl-5’-AMP reacts with the epsilon amine on the side chain of a 

lysine residue on the substrate (524,525). Substrate biotinylation can only occur at exposed 

lysine residues (524,525). In human cells, biotinylation is an extremely rare post-translational 

modification limited to several families of metabolic decarboxylase enzymes, including: PC, 

PCCA/PCCB, MCCC1/MCCC2, and ACACA/ACACB family members (526). Biotin cannot be 

synthesized in human cells, and requires dietary consumption and cellular uptake via the cell 

surface sodium multivitamin transporter (SMVT; gene SLC5A6) (527). 

BirA is a type II biotin ligase (524) possessing: (i) a central catalytic domain for substrate 

biotinylation, (ii) a highly conserved C-terminal domain of unknown function (528), and (iii) an 
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N-terminal DNA-binding domain that acts as a biotin-dependent inhibitor of the biotin 

biosynthesis operon (529). When bound to biotin, the biotin-binding loop of BirA undergoes a 

structural rearrangement that enables ATP binding, which in turn rearranges the adenylate-

binding loop, which stabilizes the bound ATP (524). Next, BirA lysine 183 (K183) undergoes a 

nucleophilic substitution reaction that catalyzes the fusion of biotin carboxylate to the α-

phosphate of ATP, thereby producing the biotinyl-5’-AMP intermediate (524,530,531). Biotinyl-

5’-AMP remains stably bound to R118 until the approach of a substrate lysine residue 

(524,530,531). Stabilization of biotinyl-5’-AMP binding to R118 is further mediated by a salt 

bridge that forms between R118 and D176 (530). Upon substrate interaction, biotinyl-5’-AMP 

undergoes a nucleophilic attack on the epsilon amine on the exposed lysine residue, resulting in 

covalent biotinylation of the substrate (532–534). 

As mentioned above, BioID exploits a rare BirA mutant encoded by the BirA91 allele 

(535) that involves substitution of R118 for glutamate (BirAR118G) (536). BirAR118G possesses 

~100-fold increased affinity for biotin, and ~400-fold decreased affinity for biotinyl-5’-AMP 

compared to wild-type BirA (48-50). As a result, BirAR118G efficiently activates biotin, but 

dissociates from biotinyl-5’-AMP, thereby producing a reactive ‘cloud’ of biotinyl-5’-AMP 

around the enzyme (537–539). This free biotinyl-5’-AMP attacks amines on exposed lysines in 

proximal proteins (537–539). The ‘cloud’ of reactive biotinyl-5’-AMP generated by BirAR118G 

was determined to be ~100Å in radius, based on the fusion of BirAR118G with nucleoporin (Nup) 

subunits of the nuclear pore complex and detection of biotinylated subunits at a known distance 

from this Nup-BirAR118G bait (514). 

In the BioID procedure, BirAR118G is fused to the bait protein (the ‘BioID bait’) to 

generate a 100Å-radius reactive cloud of biotinyl-5’AMP (500,514). This results in lysine-
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mediated biotinylation of interacting partners and proximal proteins to the BioID bait in situ in 

the presence of exogenous biotin (500). Importantly, since lysine biotinylation is a covalent 

modification, all interacting partners are permanently labeled with biotin after interaction with 

the bait. After prey biotinylation, cells are lysed, and biotinylated prey are captured on 

streptavidin resin – leveraging the extremely strong avidin-biotin interaction (Kd ~ 10-14M). The 

avidin-biotin interaction is resistant to harsh cell lysis conditions (ionizing detergents, high salt 

concentrations, denaturing compounds, etc.) enabling efficient purification of prey proteins from 

lysates that is not achievable using antibody-based pulldowns, as in AP-MS. Once purified, prey 

can be identified, and their abundance quantified, by mass spectrometry. 

The BioID proximity-dependent labeling strategy is far more robust than AP-MS and can 

purify the complete interactome of a bait protein. Due to this increased sensitivity, however, 

BioID pulls out far more contaminants than AP-MS. If the experimenter applies rigorous 

statistical analysis to the preliminary BioID interactome, a final interactome dataset with a false 

discovery rate (FDR) ≤ 5% can be achieved, comparable to the low false-positive rates generated 

by AP-MS (508). Several freely available computational tools exist to accomplish this, 

including: (i) the Significance Analysis of Interactome (SAINT) algorithm capable of assigning 

probability scores to each interactor as a function of spectral count enrichment over negative 

controls and consistency of spectral count enrichment across replicates (508); and (ii) cross-

referencing to the CRAPome (Contaminant Repository for Affinity Purification) database, which 

includes spectral count data for all common contaminants found in BioID experiments (and AP-

MS) when run according to standardized protocols (509). 

BioID can resolve the interactome of a bait protein in situ with far greater robustness than 

traditional AP-MS without sacrificing statistical confidence (500,507,508). Note, however, that 
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recent publications have attempted to improve upon the original BioID framework to generate an 

even more robust interactome dataset. These novel proximity-labeling techniques, however, do 

so at the expense of host cell health (i.e. BioID2, TurboID and miniTurbo) and/or are currently 

incompatible with the CRAPome database (discussed further in Section 1.7.2.2) (513,540,541). 

The latter poses a major barrier to achieving high statistical confidence in obtained interactome 

dataset, which is unacceptable, as such a dataset would initiate major research setbacks within 

the field. Therefore, BioID was selected as best available tool to resolve the p75NTR-DR6-

TROY interactome (see Chapter 2).  

1.9.2.2 Alternative approaches to BioID 

 Although BioID was established as the gold standard method for proximity-dependent 

biotinylation (PDB-MS), newer iterations of the technique have attempted to improve upon the 

existing framework. In 2015, Dr. Kyle Roux (who co-developed BioID) and colleagues 

discovered that a biotin ligase expressed by the gram-negative bacterium Aquifex aeolicus—

referred to as BioID2—possessed higher affinity for biotin than BirAR118G and could generate a 

reactive biotinyl-5’-AMP cloud after an R40G mutation (542). Unlike BirAR118G, BioID2 lacks 

an N-terminal DNA-binding domain resulting in less background labeling of chromatin-

associated proteins (542,543). Although BirAR118G possesses an N-terminal DNA-binding 

domain that can lead to mislabeling of chromatin-associated proteins, this is only an issue if the 

BioID bait mislocalizes to the nucleus. Moreover, the advent of the CRAPome database of BioID 

contaminants allows for removal of these background proteins – thus this structural characteristic 

of BioID2 is not advantageous relative to BirAR118G. 

The enhanced biotin affinity enabled BioID2 to efficiently biotinylate interactors at lower 

concentrations of exogenous biotin resulting in an increased number of prey purified on 



75 
 

streptavidin resin compared to BirAR118G-mediated proximity biotinylation. Although the 

enhanced biotin affinity of BioID2 relative to BirAR118G appears advantageous, this property in 

fact deleterious in nature for two reasons. First, BioID2—unlike BirAR118G—can scavenge 

endogenous biotin from media serum resulting in reduced decarboxylase function and a 

subsequent metabolic crisis within the cell (507,542). Thus, an interactome generated by BioID2 

reflects the interactome of that bait protein in an unhealthy cell and calls into questions the 

reliability of the dataset (507,542). Second, any deviation in biotin ligase activity from the 

standard established by BirAR118G renders the dataset incompatible with the CRAPome 

database (508). Thus, the potential for accurate contaminant removal with BioID2 is reduced 

relative to the standard BioID procedure. Due to these concerns, BioID2 was not chosen for 

p75NTR-DR6-TROY interactome analysis in Chapter 2. 

 A similar approach was described by Branon and colleagues (540) who leveraged error-

prone PCR, in tandem with a yeast display assay, to develop novel BirA mutants termed 

TurboID and miniTurbo. TurboID possesses 14 mutations to the BirA sequence; whereas 

miniTurbo possesses 12 mutations (identical to TurboID except for S263P and M241T) and an 

N-terminal truncation of the DNA-binding domain (540). PDB-MS analysis with TurboID and 

miniTurbo resulted in a 15- to 23-fold increase in prey labeling; however, it was not firmly 

established if these additional preys represent bona fide interactors or increased background 

(540). As is the case with BioID2, neither TurboID or miniTurbo are compatible with the 

CRAPome database, which reduces the rigour of statistical analysis (509). TurboID and 

miniTurbo both demonstrate increased biotin affinity relative to BirAR118G and can syphon 

serum-derived biotin, resulting in decarboxylase dysfunction and metabolic crisis (507). For 
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these reasons, TurboID and miniTurbo were discarded as candidate techniques to reveal the 

p75NTR-DR6-TROY interactome (see Chapter 2). 

 PDB-MS techniques involving fusion of a biotin ligase to the Cas9 endonuclease have 

been described (544–546). These techniques are optimally suited to elucidating interactomes of 

DNA- and/or RNA-binding proteins (544–546). In Chapter 2, we sought to reveal the 

interactomes of transmembrane baits with no known affinity for nucleic acids; thus, these PDB-

MS techniques were disregarded as candidates. 

 ‘Split BioID’ protocols have been described using the concept of a protein fragment 

complementation to identify protein complexes (547,548). These approaches involve fusion of 

the bait to an N-terminal fragment of BirAR118G and the prey to the C-terminal fragment 

(547,548). Upon bait-prey interaction, BirAR118G reconstitutes into its biologically active 

conformation to biotinylate the bait, prey and other associated interactors (547,548). Split BioID 

is optimally suited for studying context-dependency of a known PPI and identifying any 

unknown interactors that may be involved in the process (547,548). Split BioID is not useful for 

resolution of a complete interactome and was discarded as a candidate method on this basis. 

  One caveat to standard BioID is the requirement of fusing the bait to a large enzyme 

(BirAR118G is ~35kDa in size). Chojnowski and colleagues (549) addressed this issue with the 

development of the 2C-BioID technique. The technique selectively recruits the biotin ligase to 

bait protein via inducible dimerization (549). The bait protein is fused to the small FK506-

binding protein (FKBP) and the biotin ligase is fused to an FKBP-rapamycin binding (FRB) 

domain (549). Upon addition of an exogenous chemical dimerizer, the biotin ligase is recruited 

to the bait via the high-affinity FKBP-FRB interaction (549,550). This approach ensures the bait 

can traffic to these correct subcellular compartments and function appropriately without any 
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potential influence from the biotin ligase (549). There are, however, unique caveats to this 

approach. First, 2C-BioID can only investigate prey interactions when the bait is locked in an 

induced dimeric state. p75NTR, DR6 and TROY can exist in multiple oligomeric states—and 

only p75NTR is known to signal as a dimer—therefore this technique would not be able to 

resolve the complete interactome for these TNFRSFs. Moreover, 2C-BioID would not be 

compatible with the CRAPome database (509). Lastly, 2-component systems are generally more 

challenging to optimize and introduce issues of bait:biotin ligase stoichiometry that can introduce 

uncertainty into the statistical analysis of the interactome dataset (507,549). Though 2C-BioID 

shows promise to become a robust technique, it is not a suitable candidate in its current state to 

resolve the p75NTR-DR6-TROY interactome (see Chapter 2). 

 A novel approach to PDB-MS involves the use of peroxidases to label prey with redox-

reactive biotin moieties (551–566). Peroxidases catalyze the reduction of hydrogen peroxide 

(H2O2) to produce water (H2O) and an active free radical (•AH) (567). Horseradish peroxidase C 

(HRP) can oxidize phenolic substrates (i.e. biotin-phenol) to produce a short-lived radical that 

will react with a nearby electron-dense amino acids (preferably tyrosine) (551). This property of 

HRP has been leveraged to generate HRP-fused baits that label prey in a proximity-dependent 

manner with redox-reactive biotin (552–554,556,557). Parallel development of two techniques 

have utilized HRP for interactome labeling: Enzyme-Mediated Activation of Radical Sources 

(EMARS), which uses arylazide-biotin as the HRP substrate (552,553); and Selective Proteomic 

Proximity Labeling using Tyramide (SPPLAT) uses biotinyl-tyramide as the substrate (554). The 

latter approach has been successfully coupled to MS to resolve the interactome of the DT40 B-

cell receptor (554). As with BioID, HRP-catalyzed proximity labelling has also been exploited 

for proteomic profiling of cellular subdomains, including lipid rafts (556) and neuronal synaptic 
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clefts (557). The major limitation of HRP is its inactivation in reducing subcellular 

environments, such as the cytosol (558,568). This renders HRP incapable of labeling any 

TNFRSF interactome, since most interactors are cytosolic or possess a cytosolic domain. Thus, 

HRP-mediated proximity labeling was not selected as a suitable strategy to resolve the p75NTR-

DR6-TROY interactome (see Chapter 2). Newer iterations of peroxidase-mediated proximity 

labeling have addressed this issue (541,560,561). 

 Ascorbate peroxidase (APX) regulates intracellular H2O2 concentrations in diverse plant 

species via oxidation of L-ascorbate (558,559,569,570). Martell and colleagues (2012) subjected 

APX to directed evolution to generate a mutant, named APEX, that could drive localized 

deposition of diaminobenzidine in mammalian cells for electron microscopy (558). APEX shows 

reduced dimerization (due to K14D and E112K mutations) and equal catalytic activity (due to a 

compensatory W41F mutation) relative to APX (559). Similar to HRP, APEX can oxidize 

phenol derivatives (560,561). Dr. Alice Ting’s group successfully harnessed APEX for proximity 

labeling, using biotin-phenol as a substrate, to resolve the proteomic profile of whole 

mitochondria (560) and the mitochondrial intermembrane space (561) in live human cells. 

APEX-mediated proximity labeling has since been applied for proteomic profiling of: 

mitochondria (in Drosophila melanogaster) (562), a stress granule marker (563), and the lipid 

droplet (564). With respect to interactome labeling, APEX has successfully resolved the ligand-

dependent interactomes of several G-protein coupled receptors (565,566). APEX can resolve 

interactomes with a similar signal-to-noise ratio as BioID within a shorter labeling timeframe (1 

minute for APEX vs. 24 hours for BioID). A novel APEX mutant (APEXA134P; termed APEX2) 

was recently described to demonstrate increased sensitivity for proteomics due to decreased 

H2O2-mediated inactivation and/or enhanced oxidation of biotin-phenol (541,571), although the 
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catalytic oxidation of phenolic substrates by APEX2 remains weaker than HRP (541). ‘Split 

APEX/APEX2’ techniques have been described but are better suited to investigating context 

dependencies of specific bait-prey interactions rather than full interactome resolution (572–574). 

 APEX2 and BioID were recently tested on the same baits within the ribosomal quality 

control pathway (575). This analysis revealed little overlap between the interactomes resolved by 

the two approaches (575). BioID demonstrated significantly better purification of known 

interactors from the literature than APEX2 (575). This study from Dr. Eric Bennett’s group cast 

major doubt onto the reliability of interactome data generated by APEX/APEX2 (575). Another 

caveat of peroxidase-based approaches (i.e. APEX/APEX2) is low-level catalytic cross-linking 

of tyrosine residues in the presence of H2O2 without biotin labeling (560,576–578). It is unclear 

at present if this side reaction interferes with proximity labeling to a significant degree – this 

issue must be resolved to restore confidence in APEX/APEX2-derived interactomes. Lastly, 

CRAPome data on APEX/APEX2-derived contaminants, and relative abundances, is lacking—

this results in further reduced statistical confidence in APEX/APEX2-derived interactome data 

relative to BioID. Although peroxidase-based approaches show promise for efficient interactome 

resolution, the confidence in peroxidase-derived datasets is severely lacking at present for the 

reasons outlined above. 

 As a result of this critical review of available interactomics approaches, BioID was 

selected as the optimal tool to resolve the p75NTR-DR6-TROY interactome in live human cells 

(see Chapter 3) and this rich dataset revealed novel signaling insights (see Chapter 4). 
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1.10 Figures and Figure Legends 

 

Figure 1. Protein structures of relevant TNFRSFs. Structures of human p75NTR, DR6, 

TROY, RELT and RELL1 (left-to-right). Primary sequence positions are denoted and all 

TNFRSFs are drawn to scale. Phospholipid bilayer (grey circles + lines) represents the plasma 

membrane to illustrate the positions of transmembrane domains.  
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Chapter 2: Extracellular vesicles mediate p75NTR signaling 

2.1 Abstract 

  The p75 neurotrophin receptor (p75NTR) is trafficked in extracellular vesicles (EVs) in 

vitro and in vivo but the physiological relevance of p75NTRn in EVs remains unknown. To 

address this, we leveraged the p75NTR-dependent COS7 cell expansion phenotype assay. We 

observed that p75NTR+ COS7 cells seeded on a porous filter induce expansion of naïve COS7 

cells on a coverslip below—revealing that p75NTR acts via a non-cell-autonomous mechanism. 

Size exclusion chromatography (SEC)-based fractionation of condition media (CM) components 

revealed that large, p75NTR+ EVs mediate the expansion phenotype. Strikingly, EV-derived 

p75NTR species are highly enriched in p75NTR proteolytic cleavage species (p75CTF and 

p75ICD). EV-derived p75ICD is sufficient to drive COS7 cell expansion and requires NRAGE 

in the recipient cell, as NRAGE KO COS7 cells fail to respond to p75NTR+ COS7 donor cells 

or purified p75NTR+ EVs. We extended this paradigm to a neuronal context, where we 

demonstrate that COS7-derived p75NTR+ EVs induce growth cone (GC) expansion in 

developing dorsal root ganglion (DRG) sensory neurons. These data establish EVs as a p75NTR 

signaling platform. 

 

2.2 Introduction 

 p75NTR is a major regulator of nervous system development and maintenance. A 

member of the TNFRSF superfamily, p75NTR acts as a receptor to a diverse set of ligands, not 

limited to: neurotrophins (579), proneurotrophins (580,581), myelin-associated inhibitory factors 

(582), and neurotoxic Aβ (583). Structurally, p75NTR is a single-pass transmembrane protein: 

the p75 extracellular domain (p75ECD) possesses cysteine-rich domains (CRDs) in tandem that 
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mediate ligand binding, and the p75 intracellular domain (p75ICD) possesses a death domain 

(DD) and a C-terminal PDZ-binding motif that mediate receptor signaling and trafficking. 

p75NTR signals in ligand-dependent and -independent states to mediate distinct biological 

outcomes (579). p75NTR signaling is further regulated by proteolytic cleavage of the receptor 

via a 2-step mechanism. First, A Disintegrin And Metalloprotease (ADAM17) catalyzes α-

secretase cleavage in the p75NTR stalk region to shed the p75ECD and produce the membrane-

tethered p75 C-terminal fragment (p75CTF) (584–586). Second, the γ-secretase complex cleaves 

p75CTF within the transmembrane domain to release soluble p75ICD into the cytosol (585,586). 

Despite an extensive literature on p75NTR neurobiology, our knowledge of p75NTR 

signaling is limited. Indeed, few assays exist to measure p75NTR signaling directly. To address 

this issue, Zeinieh and colleagues developed a robust p75NTR-dependent COS7 cell expansion 

assay (587). In this assay, overexpressed p75NTR in immortalized COS7 kidney-derived cell 

line induces a dramatic cell expansion phenotype. p75NTR-dependent COS7 cell expansion is 

ligand-independent and occurs via a signaling pathway involving: (i) ADAM17- and γ-secretase-

dependent generation of p75ICD; (ii) physical interaction of p75ICD with NRAGE 

(neurotrophin receptor-associated MAGE homolog); and (iii) downstream activation of the small 

Rho GTPase Rac1, which drives F-actin polymerization and cell expansion (587).  It remains 

unknown, however, if p75NTR-dependent COS7 expansion occurs via a cell autonomous or non-

cell-autonomous mechanism. 

Extracellular vesicles (EVs) consist of a highly heterogeneous group of cell-derived 

membranous structures possessing protein, RNA and DNA cargo (421). Though many subtypes 

of EVs have been described, most EVs fall into two main classes: exosomes and microvesicles 

(MVs). Exosomes are small EVs (30-100nm in diameter) generated via the endolysosomal 
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system. As an early endosome matures to a multivesicular body (MVB), the endosomal 

membrane invaginates and pinches off to form intraluminal vesicles (ILVs) within the MVB 

lumen (421,588). If an MVB subsequently avoids the lysosomal route and fuses with the plasma 

membrane, it releases its ILVs into the extracellular milieu, where they are then referred to as 

exosomes (421,588). MVs are large EVs (50-1000nm in diameter) derived from the outward 

budding of the plasma membrane (421,588). p75NTR has been shown to be present in exosomes 

from several neural cell types in vitro (473,589) and from melanoma xenografts in vivo (475) but 

functional characterization of EV-derived p75NTR is lacking.  Whether EVs mediate p75NTR 

signaling events remains unknown. 

In this chapter, we explored the nature of the p75NTR-dependent COS7 cell expansion 

signal. We discovered that p75NTR-dependent COS7 expansion occurs via a non-cell-

autonomous mechanism. whereby p75NTR accumulates in an EV compartment. Within this 

compartment, p75NTR cleavage products are highly enriched. Downstream, p75NTR-containing 

EVs act on recipient cells in an NRAGE-dependent manner to induce cell expansion. In a 

neuronal setting, p75NTR-containing  EVs induced GC expansion in developing DRG sensory 

neurons. These data establish EVs as a major p75NTR signaling platform and provide novel 

evidence that p75ICD can`` mediate non-cell autonomous signaling.  

 

2.3 Materials and Methods 

2.3.1 Plasmids, antibodies and reagents 

Plasmids used encoded: pcDNA3 vector, GFP (pEGFP-N1 vector; Clontech; GenBank 

accession # U55762), full-length human p75NTR (subcloned into pCMX vector), and untagged 

human p75ICD (AA: 273-427; subcloned into pcDNA3 vector). Primary antibodies included: 
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anti-p75NTR (rabbit polyclonal targeting human p75ICD; produced in-house), anti-NRAGE 

(rabbit polyclonal targeting human NRAGE; produced in-house), anti-βIII-tubulin (mouse 

monoclonal; clone TUJ1; Covance), and anti-actin (mouse monoclonal; clone C4; ThermoFisher 

Scientific). Secondary antibodies included: horseradish peroxidase (HRP)-conjugated donkey 

anti-rabbit (Jackson ImmunoResearch Laboratories), HRP-conjugated donkey anti-mouse 

(Jackson ImmunoResearch Laboratories), and Alexa Fluor 647-conjugated goat anti-mouse 

(ThermoFisher Scientific). GM6001, compound XXI and epoxomicin were purchased from 

Calbiochem (San Diego, CA, USA). BB94 was purchased from Tocris Bioscience (Ellisville, 

MO, USA). Laminin was supplied by BD Biosciences (Mississauga, ON, Canada). Poly-D-

lysine (PDL) was supplied by Sigma-Aldrich (Oakville, ON, Canada). Laminin-entactin complex 

was provided by Corning (Tewksbury, MA, USA). Bovine collagen was supplied by Advanced 

Biomatrix (Carlsbad, CA, USA). NGF was purchased from Alomone Laboratories (Jerusalem, 

Israel). B27 serum-free supplement (B27), 5-fluoro-2’-deoxyuridine (FDU) were purchased from 

Invitrogen (Waltham, MA, USA). Dulbecco’s Modified Eagle Medium (DMEM), penicillin-

streptomycin (P/S), L-glutamine, and fetal bovine serum (FBS) were purchased from Wisent Bio 

Products (Burlington, ON, Canada). Exosome-deprived FBS and Pierce silver stain kits were 

supplied by ThermoFisher Scientific. 

2.3.2 Cell culturing and transfection 

COS7 cells were cultured in conditioned medium (CM) containing DMEM supplemented 

with 100mg/mL P/S, 2mM L-glutamine and 10% FBS. COS7 cell cultures were incubated at 

37°C, 5% CO2. COS7 transfection was performed using the JetPrime lipid nanoparticle-based 

system (PolyPlus, New York, NY, USA). Briefly, COS7 cells were seeded in a 6-well dish pre-

coated with 50ng/mL PDL and a density of 100K cells per well. After 24h, CM was exchanged 
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for CM lacking P/S. To prepare the transfection mix: 0.5µg of plasmid (per construct) was added 

to 200µL JetPrime Buffer, vortexed, then 1µL of JetPrime Reagent (scaled up if multiple 

plasmids) was added, vortexed again, then left at room temperature (RT) for 10 minutes 

undisturbed. After the 10-minute period, 200µL of transfection mix was applied to COS7 cells 

for 24h. After the 24h transfection, the transfection medium was washed off 2x in fresh CM, then 

the transfected COS7 cells were incubated a further 24h in CM. 

IMS32 cells were grown in CM consisting of Prigrow III medium (ABM, Richmond, BC, 

Canada) supplemented with 100mg/mL P/S and 10% FBS. Plastic cell culture dishes were 

precoated 24h in a proprietary extracellular matrix solution (G422, ABM, Richmond, BC, 

Canada) and airdried for at least 2h prior to seeding IMS32 cells. 

DRG explants were collected from E13.5 mouse embryos using a previously described 

method (590). Glass-bottom cell culture dishes were precoated in three 24h steps: 1mg/mL PDL, 

10µg/mL laminin-entactin complex, and 0.1mg/mL bovine collagen. DRGs were cultured in 

neurobasal medium supplemented with 2% B27 and 10µM FDU. 

2.3.3 EV purification 

 Cells were seeded on precoated 150mm plates at a density of 1.5x107 (COS7) or 5x107 

(IMS32) cells per plate. After transfection (if applicable), cells were incubated in 12 mL CM 

containing exosome-free FBS (exosome-free CM). After a 24h incubation, 10 mL CM was 

collected and precleared via 3 sequential centrifugation steps at 4°C (collecting supernatant after 

each): (i) 10 minutes at 300g, (ii) 20 minutes, and (iii) 30 minutes at 10,000g. Precleared CM 

was then loaded onto an Amicon Ultra-15 centrifugal filter unit and concentrated to 150µL by 

centrifugation (25 minutes at 4000g, 4°C). 150µL concentrated, clarified CM overlayed onto a 
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70nm qEV column (Izon). An initial void volume of 1mL was discarded, followed by collection 

of 12 x 200 µL eluate fractions. 

2.3.4 Generation of NRAGE KO COS7 cell lines 

 Pre-designed gRNA were selected to exons 2 and 3 of the Maged1 (NRAGE) genomic 

locus in Chlorocebus sabaeus (NW_023666086.1) (IDT, USA). Independent preformed 

crRNA:tracrRNA duplexes bound to Cas9 (IDT, USA) were used to bind gRNAs targeting exons 

2 and 3 (CD.Cas9.LBJJ3096.AC and CD.Cas9.LBJJ3096.AB, respectively). 4x104 COS7 cells 

were seeded per well of a 96-well dish and transfected with 10nM of purified ribonucleoprotein 

(RNP) complex in antibiotic-free media for 48h using Lipofectamine RNAiMAX (Invitrogen, 

USA). Single-cell NRAGE KO clones were grown to confluency and NRAGE gene knockout 

was validated by immunoblot. 

2.3.5 COS7 cell expansion assay 

 The COS7 cell expansion assay is a modification of the protocol described by Zeinieh 

and colleagues (587). In all iterations of the assay, ‘donor’ COS7 cells secrete factor(s) that act 

on ‘recipient’ COS7 cells. 

 Donor and recipient COS7 cells are seeded in independent wells of a 6-well plate at a 

density of 100K cells/well. Recipient COS7 cells are transfected 24 h with GFP plasmid; donor 

cells are transfected 24 h with plasmid constructs unique to each experiment. Post-transfection, 

recipient GFP+ cells are seeded on PDL-coated coverslips at a density of 4K cells/coverslip. For 

each experimental condition, 3 coverslips of GFP+ recipient cells are seeded and imaged. 

 In the ‘filter assay’, donor cells are seeded onto PDL-coated 8µm porous 24-well filters 

(8K cells/filter), and GFP+ recipient cells onto PDL-coated coverslips (4K cells/well) in a 24-

well dish. After a 24h incubation, filters containing donor cells are suspended above the 
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coverslips containing recipient cells within the same well of a 24-well dish for 24h. After this 

period, donor cells are discarded and recipient cells are fixed in 4% paraformaldehyde (PFA) for 

15 minutes at RT. Fixed recipient cells are then washed 3x in PBS and mounted on glass slides 

with Fluoroshield mounting medium (ThermoFisher). Whole coverslips of GFP+ recipient cells 

are then imaged by widefield microscopy at 10x magnification. Images are then subjected to 

pixel intensity-based thresholding in ImageJ, converted to a binary image, and exported to a 

machine learning algorithm we developed in ilastik (Figure 2.1) (591). In this algorithm, objects 

are sorted into: (i) individual cells, (ii) cell clusters (which can include mitotic cells), and (iii) 

cell debris (Figure 2.1). The ilastik output file separates these 3 objects by thresholding in 

ImageJ (e.g., upper bound = 1, lower bound = 1 will only show individual cells identified by the 

ilastik algorithm) (Figure 2.1). Only individual GFP+ recipient cells were measured – this was 

achieved by particle analysis in ImageJ. For each condition, all cells across all 3 coverslips of 

GFP+ recipient cells were imaged 

 In the ‘co-culture’ assay (Figure 2.3A-B), donor cells are co-seeded with recipient cells 

on the same coverslip (4K donor + 4K recipient cells per coverslip). Cells are then fixed, 

mounted, imaged and analyzed for GFP+ recipient cell size using the workflow described for the 

filter assay above. 

2.3.6 DRG growth cone assay 

 DRG explants dissected from E13.5 CD1 mice were seeded on 35mm glass-bottom 

dishes at a density of 4 DRGs/dish. DRGs were grown 24 h in the presence of NGF. 200 µL of 

purified COS7-derived EVs (pooled CM fractions #1-3) were co-applied during this 24 h period. 

After the 24 h growth period, DRGs were fixed in 4% PFA and stained for βIII-tubulin (Alexa 

Fluor 546-conjugated anti-mouse secondary) and F-actin (Alexa Fluor 488-conjugated 
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phalloidin). DRG growth cone (GC) fields were imaged by confocal microscopy and 63x 

magnification. To avoid experimenter sampling bias, 4 exact regions-of-interest (ROIs) within 

DRG GC fields were pre-selected ahead of imaging. Per each experimental condition, 16 ROIs 

across 4 DRGs were imaged, and all GCs within those ROIs were measured. 

 To measure GC area, we developed a machine-learning algorithm in ilastik (Figure 2.2). 

Prior to machine learning, βIII-tubulin+ axon signal was masked out in ImageJ and the 

remaining phalloidin+ structures were sent to the ilastik protocol. The ilastik-based algorithm 

was trained to identify GCs from the masked phalloidin+ signal, and remove non-GC 

phalloidin+ structures (e.g., small actin filaments along the axon) and debris (Figure 2.2). GCs 

identified by the ilastik protocol were then measured by particle analysis in ImageJ. 

2.3.7 Immunocytochemistry (ICC) 

 Cells were fixed in 4% PFA (15 minutes at RT), permeabilized (2.5% BSA + 0.2% 

Triton-X in PBS; 20 minutes at RT) and blocked (2.5% BSA + 0.02% Triton-X; 60 minutes at 

RT) prior to overnight 4°C incubation in blocking solution containing primary antibody. The 

following day, the primary antibody was washed off 3x with PBS, then secondary antibody 

solution (2.5% BSA + 1% serum + secondary antibody) was applied for 1h at RT. The secondary 

antibody was then washed off with PBS. If phalloidin-488 was required, it was applied for 1h at 

RT at this time, then washed off 3x with PBS. 

2.3.8 Immunoblot (IB) 

 Harvested cells were lysed in RIPA buffer containing protease inhibitor cocktail and 

1µM epoxomicin. 2x Laemmli Sample Buffer (2x SB) was added 1:1 to protein samples, boiled 

for 5 minutes, then loaded into polyacrylamide gel for subsequent electrophoresis by SDS-

PAGE. After SDS-PAGE, proteins were transferred to a nitrocellulose membrane and blocked 
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for 1 hour, at room temperature, in 5% (w/v) skim milk powder in TBS-T (10mM Tris pH 8.0, 

150mM NaCl, 2% Tween-20). Primary antibody incubation was performed in blocking solution 

at 4°C overnight. Membranes were then washed in TBS-T (6x 10-minute washes) and incubated 

in HRP-conjugated secondary antibody (diluted in blocking solution) for 1 hour at room 

temperature. Membranes were then washed in TBS-T (6x 10-minute washes) and 

immunoreactive bands were detected by chemiluminescence (Clarity Western ECL substrate, 

BioRad) using the ChemiDoc MP imaging system (BioRad). 

2.3.9 Statistics 

 Gaussian distribution of all datasets was assessed by the Shapiro-Wilk test prior to 

statistical hypothesis testing. Statistical tests were selected based on the design of each 

experiment—and distribution of data points—and are described in figure legends. Conservative 

posthoc tests were selected for one- and two-ANOVA analyses. All statistical tests are two-

tailed. Statistical significance is defined as p ≤ α ≤ .05. Lastly, N is defined as a single technical 

replicate in all experiments. 

2.4 Results 

2.4.1 p75NTR induces COS7 cell expansion via a non-cell-autonomous mechanism 

 p75NTR regulates neurodevelopment, in part, via non-cell-autonomous signaling events 

in vivo (579,580,592). To investigate if the p75NTR-dependent COS7 cell expansion phenotype 

depends on cell-autonomous or non-cell-autonomous signaling, we performed a COS7 co-culture 

assay. In this experimental paradigm, naïve GFP+ COS7 cells were co-cultured with GFP- cells 

expressing p75NTR, p75ICD or empty vector and GFP+ cell size was measured 24h after co-

culture (Figure 2.3A). Interestingly, GFP+ COS7 cell size was significantly larger when co-

cultured with COS7 cells expressing p75NTR or p75ICD (~50%; p < .001) compared to empty 
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vector (Figure 2.3B-C). Thus, p75NTR induces COS7 expansion can occur a non-cell-

autonomous mechanism. 

 COS7 cells readily form cell-cell contacts.  These structures remain intact in the co-

culture assay (Figure 2.3B) so to investigate if p75NTR cell expansion phenotype depends on 

cell contacts, we developed a ‘filter assay’ to spatially segregate naïve GFP+ COS7 cells from 

p75NTR-expressing cells. Cells expressing p75NTR, p75ICD or empty vector were seeded on a 

porous filter (‘donor’ cells) and then suspended above GFP+ cells that had been pre-plated on a 

coverslip (‘recipient’ cells) (Figure 2.3D).  After 24h co-culture, GFP+ recipient cells cultured 

below p75NTR+ or p75ICD+ donor cells were ~50% larger in size than those cultured with 

vector+ donor cells (p < .01; Figure 2.3E-F), demonstrating that cell contacts are not required for 

p75NTR-dependent expansion. These data demonstrate that p75NTR-dependent COS7 cell 

expansion occurs via non-cell-autonomous signaling mechanism that does not require cell-cell 

contacts. 

2.4.2 EVs mediate p75NTR-dependent COS7 cell expansion 

We next sought to investigate the nature of the non-cell-autonomous expansion signal 

induced by p75NTR. Specifically, we investigated if p75NTR-dependent cell expansion relied 

on the secretion of a large, membranous structure (e.g., EVs) or a small soluble factor (e.g., 

cytokines, growth factors, etc.). 

To ensure that membranous structures purified from conditioned medium (CM) are cell-

derived—as opposed to serum-derived—we repeated the filter assay in CM lacking serum-

derived exosomes (‘exosome-free CM’). Figure 2.4A shows that p75NTR-dependent non-cell-

autonomous COS7 expansion occurred in exosome-free CM (p < .0001; Figure 2.4A). Next, we 

applied size exclusion chromatography (SEC) to CM collected from vector+ or p75NTR+ COS7 
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cells. 12 CM fractions were collected after elution from 70nm qEV columns and total protein 

content was measured by silver stain to assess EV purification quality. As expected, protein 

content was lowest in early fractions eluting large EVs (#1-3), slightly higher for small EV 

fractions (#4-5), then very high for soluble factor fractions (#6-12) (Figure 2.4B). These protein 

content data are consistent with the literature on EV purification by 70nm qEV-based SEC. 

We applied all CM fractions (#1-12) derived from p75NTR+ or vector + COS7 cells 

directly to GFP+ COS7 cells for 24h and measured cell size. Strikingly, CM fractions #1-5 

derived from p75NTR+ COS7 cells induced expansion in GFP+_COS7 cells (p < .0001; Figure 

2.4C) whereas fraction 6-12 did not. Thus, p75NTR-dependent COS7 cell expansion via the non-

cell-autonomous pathway is mediated by EVs. 

2.4.3 p75NTR is targeted to EVs 

 Several reports have demonstrated that p75NTR is readily secreted in small EVs—such 

as exosomes—in vivo (473,475,589). This prompted us to ask if p75NTR itself is targeted to the 

EV compartment(s). To address this, CM was collected from vector+ and p75NTR+ COS7 cells, 

fractionated, and analyzed by immunoblot. We found that COS7-derived p75NTR is abundant in 

large EV fractions (#1-3), but undetectable in small EV fractions (#4-5) and soluble protein 

fractions (#6-12) (Figure 2.5A). Therefore, p75NTR is targeted to the EV compartment(s) that 

mediate COS7 cell expansion, suggesting that p75NTR is the non-cell-autonomous factor that 

mediates this expansion. When analyzed in COS7 cells, p75NTR is preferentially targeted to 

large EVs. 

 Given that the COS7 model relies on p75NTR overexpression, we next investigated if 

cell types that normally express p75NTR generate EVs that are p75NTR positive. To do this, we 

used an immortalized Schwann cell-like cell line, IMS32, which expresses high levels of 
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p75NTR. CM was collected from IMS32 cells after 24h incubation. Immunoblot revealed that 

p75NTR is present in IMS32 CM fractions #1-5, demonstrating that endogenous p75NTR is 

readily secreted in EVs. Consistent with the p75NTR overexpression data, endogenous p75NTR 

from IMS32 cells is preferentially targeted to large EVs (fractions #1-3) rather than small EVs 

(fractions #4-5). 

2.4.4 p75NTR cleavage products are enriched in EVs 

 In Figure 2.5, immunoblots of purified EVs show low MW bands at 22kDa and 18kDa at 

a greater signal intensity than FL p75NTR (75kDa). Given that the p75NTR antibody used 

targets the ICD, it is possible these bands reflect p75NTR cleavage products. To test this, 

p75NTR+ COS7 cells were incubated 48h in the presence or absence of GM6001 + BB94 (α-

secretase inhibitors) or compound XXI (γ-secretase inhibitor), which are known to inhibit the 

generation of p75CTF and soluble p75ICD, respectively (585–587). Purified large EVs fractions 

#1-3 were pooled together for subsequent p75NTR immunoblot. GM6001 + BB94 reduced the 

22kDa band in EVs and whole cell lysate, indicating that p75CTF is present in EVs (Figure 2.6). 

Unexpectedly, an unknown 55kDa p75NTR species unique to EVs was strongly downregulated 

in the presence of GM6001 + BB94, suggesting that an alternative α-secretase-dependent 

p75NTR cleavage may be present in EVs (Figure 2.6). Compound XXI strongly reduced the 

18kDa band in EVs and whole cell lysate—together with an increase in p75CTF—indicating that 

this species is soluble p75ICD (Figure 2.6). In conclusion, p75NTR cleavage products are highly 

enriched in EVs. In a complete reversal compared to cell lysates, p75NTR α- and γ-secretase 

cleavage products are more abundant than FL p75NTR in the EV compartment. 

2.4.5 NRAGE acts downstream of p75NTR+ EVs to mediate COS7 cell expansion 
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 Zeinieh and colleagues (2015) demonstrated that p75ICD is the functional p75 species 

mediating the COS7 cell expansion phenotype and that it requires NRAGE as a downstream 

binding partner. To investigate if NRAGE mediates p75NTR-dependent COS7 expansion via the 

non-cell-autonomous pathway, we applied CRISPR gene editing to the NRAGE genomic locus 

MAGED1 to generate two independent NRAGE knockout COS7 cell lines (NRAGE KO #1 and 

#2; Figure 2.7A). 

 To assess if NRAGE is required in donor and/or recipient COS7 cells to mediate 

p75NTR-dependent expansion, we used the filter assay approach. We observed that NRAGE KO 

in donor cells had no effect on p75NTR-dependent expansion of GFP+ recipient cells (Figure 

2.7B-C). In contrast, p75NTR+ donor cells failed to induce expansion in NRAGE KO recipient 

cells (Figure 2.7D-E). To test if NRAGE acted downstream of p75NTR+ EVs, we directly 

applied EVs derived from vector+ or p75NTR+ donor cells onto WT and NRAGE KO recipient 

cells. WT recipient cells expanded in response to p75NTR+ EVs, whereas NRAGE KO recipient 

cells did not (Figure 2.7F). These data establish recipient cell-derived NRAGE as a necessary 

mediator of p75NTR-dependent, non-cell-autonomous COS7 cell expansion. 

2.4.6 p75NTR+ EVs induce growth cone expansion in developing DRG sensory neurons 

 We next asked whether p75NTR+ EVs induce expansion events in a neuronal setting. 

Given that p75NTR is a major regulator of growth cone (GC) dynamics in the developing 

nervous system (593–597), we investigated if COS7-derived p75NTR EVs exert an effect on 

growth cone size in DRG sensory neurons. Briefly, E13.5 murine DRG explants were cultured 

for 24 h in vitro in media containing NGF and EVs derived from either vector+ or p75NTR+ 

COS7 cells. After 24h, DRGs were fixed and co-stained with the axonal marker βIII-tubulin and 

phalloidin to label GCs. Figure 2.8 shows that p75NTR+ EVs induced a ~20% increase in GC 
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area relative to vector+ EVs (p < .0001; Figure 2.8). Thus, p75NTR+ EVs can induce cytoskeletal 

expansion in a neuronal context. 

 

2.5 Discussion 

 These data collectively establish EVs as a p75NTR signaling platform. We demonstrate 

that p75NTR-dependent COS7 cell expansion occurs via a non-cell-autonomous mechanism as 

p75NTR+ donor cells induce expansion in spatially segregated GFP+ recipient cells. Using CM 

fractionation, we identified large, p75NTR+ EVs as the structural entity mediating the non-cell-

autonomous expansion events. Strikingly, p75NTR α- and γ-secretase cleavage products 

(p75CTF and p75ICD, respectively) were found to be highly enriched in EVs. Downstream of 

p75NTR+ EVs, recipient cell-derived NRAGE is required to execute the expansion signal. 

Lastly, p75NTR+ EVs induce expansion in a neuronal setting. Specifically, we demonstrate that 

p75NTR+ EVs induce expansion of GCs in developing DRG sensory neurons in vitro. 

 Although p75NTR has been previously detected in exosomes (473,475,589), we provide 

novel evidence that p75NTR is targeted to large EVs with an elution profile most akin to plasma 

membrane-derived MVs. The endogenous p75NTR exocytosis assay in IMS32 Schwann-like 

cells (Figure 2.6) indicated that a small amount of p75NTR is targeted to small EVs (such as 

exosomes), but most is found in large EVs. We provide the first evidence that EV-derived 

p75NTR is biologically active—specifically, we demonstrate that p75NTR+ EVs can mediate 

cell expansion through an NRAGE-dependent signaling pathway. Previous literature has shown 

that melanoma-derived p75NTR+ exosomes can facilitate metastatic niche formation in lymph 

nodes (475), but the nature of p75NTR signaling in this setting was not explored.  Given our 
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findings, it would be interesting to know if melanoma-derived EVs require p75NTR to drive 

metastasis and niche formation—and, if so—is this reliant on recipient cell-derived NRAGE. 

 The subcellular compartment(s) mediating p75NTR proteolytic cleavage is unknown. An 

interesting discovery in this project was the abundance of p75NTR cleavage products (p75CTF 

and p75ICD) in EVs. We also observed a novel 55kDa p75NTR species unique to EVs that we 

suspect to be an alternative α-secretase cleavage product, as its abundance is reduced by 

pharmacological alpha-secretase inhibition (Figure 2.6). These data establish that EVs traffic 

p75NTR cleavage products and may be a site for p75NTR cleavage events. However, we cannot 

rule out the possibility of intracellular generation of p75NTR cleavage products that are then 

targeted to EVs via an unknown mechanism. Given that p75ICD undergoes rapid turnover in the 

cytosol (585,586), it is possible that EVs serve to protect p75ICD from the proteasome, thus 

allowing large quantities to accumulate and act locally in the recipient cell prior to turnover.  

 An outstanding question that emerges from this project is how exocytosis of p75NTR+ 

vesicles occurs.   Exosomes and MVs can be generated via local accumulation of ceramide in a 

membranous compartment (451,468). Although multiple ceramide biosynthesis pathways exist, 

exosome and MV biogenesis relies largely on sphingomyelinase (SMase)-dependent ceramide 

synthesis. Interestingly, p75NTR has been to induce SMase-dependent ceramide production in 

central neurons and some cell lines (598,599). This raises the intriguing possibility that p75NTR-

dependent ceramide generation may promote the generation of p75NTR-containing EVs.  

 The discovery of EVs as a p75NTR signaling platform has implications for the field of 

p75NTR biology. EVs can act in an autocrine, paracrine, or endocrine manner to coordinate 

intercellular communication. Thus, p75NTR expression patterns alone may not necessarily 

reflect sites of p75NTR action in vivo since EVs can act locally or distally. Our data raise the 



96 
 

possibility that p75NTR can act systemically to exert biological effects on distal tissues. Further 

work will be required to test this possibility in the context of nervous system development and 

maintenance.  
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2.6 Figures and Figure Legends 

 

Figure 2.1. Isolation of individual GFP+ COS7 cells for cell size analysis. Whole coverslips 

of GFP+ COS7 cells were imaged by widefield microscopy (10x magnification; tiled image). 

Pixel thresholding was performed in ImageJ to isolate the GFP signal. Object training was 

performed in Ilastik using machine learning algorithms to identify individual GFP+ cells for 

analysis.  
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Figure 2.2. Isolation of DRG growth cones for size analysis. E13.5 DRG explants were 

cultured in the presence of NGF for 24h, fixed and stained for βIII-tubulin and F-actin 

(phalloidin). βIII-tubulin+ axon signal was masked out to isolate phalloidin+ filamentous 

structures. Machine learning algorithms were applied to isolate GCs and remove non-GC 

phalloidin+ structures and nonspecific signal.  
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Figure 2.3. p75NTR induces COS7 cell expansion via a non-cell-autonomous mechanism. 

(A) Co-culture assay to measure non-cell-autonomous effects on COS7 cell size. (B) 

Representative confocal images of naïve GFP+ COS7 co-cultured with COS7 cells 

overexpressing the indicated constructs. (C) Quantification of GFP+ COS7 cell area from the co-

culture assay. (D) Filter-based assay to spatially segregate donor COS7 cells from naïve GFP+ 

recipient COS7 cells. (E) Representative confocal images of GFP+ recipient cells cultured below 

donor cells overexpressing: vector, p75ICD or p75NTR. (F) Quantification of GFP+ recipient 
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cell area from the filter assay. N=3 independent experiments. ≥ 200 cells measured per condition 

per technical repeat. One-way ANOVA with Tukey post-hoc test. **p < 0.01; ***p < 0.001; ns – 

not significant. Error bars represent +/- SEM. Scale bar = 20µm. 
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Figure 2.4. Extracellular vesicles mediate p75NTR-dependent COS7 cell expansion. (A) 

Filter-based COS7 expansion assay in exosome-free CM. Donor cell transfection conditions are 

shown on the x-axis. GFP+ recipient cell area is quantified. N = 3 independent experiments. ≥ 

200 cells measured per condition per technical repeat. One-way ANOVA with Tukey post-hoc 

test. ****p < 0.0001; ns – not significant. (B) Silver protein stain for SEC fractions collected 
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from COS7 conditioned medium. (C) Cell area of GFP+ COS7 cells after 24h exposure to 

purified EVs (pooled SEC fractions #1-3) derived from donor COS7 cells. N = 3 independent 

experiments. ≥ 200 cells measured per condition per technical repeat. Two-way ANOVA with 

Sidak post-hoc test. ****p < 0.0001; ns – not significant. Error bars represent +/- SEM. 
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Figure 2.5. p75NTR is secreted in extracellular vesicles. (A) p75NTR immunoblot of purified 

EVs derived from the conditioned medium of COS7 cells overexpressing vector or p75NTR. (B) 

Detection of endogenous p75NTR in purified EVs derived from the conditioned medium of 

IMS32 cells by immunoblot. 
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Figure 2.6. p75NTR cleavage products are enriched in extracellular vesicles. p75NTR 

immunoblot of purified EVs and lysates derived COS7 cells overexpressing p75NTR. Cells were 

treated 48h with: (i) nothing, (ii) DMSO, (iii) GM6001+BB94, or (iv) compound XXI. Bands 

corresponding to full-length (FL) p75NTR and proteolytic cleavage products (CTF, ICD) are 

labeled. N = 3 independent experiments. 
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Figure 2.7. Recipient cell-derived NRAGE is required for p75NTR EV-induced COS7 

expansion. (A) Generation of two independent NRAGE KO COS7 cell lines by CRISPR. 

NRAGE immunoblot is shown. (B-C) Filter assay design (B) and recipient cell areas (C). WT vs. 

NRAGE KO donor cells were transfected with vector or p75NTR. GFP+ recipient cell area is 

quantified. (D-E) Filter assay design (D) and recipient cell areas (E). WT donor cells were 

transfected with vector or p75NTR. Recipient cells are WT or NRAGE KO. GFP+ recipient cells 

area is quantified. (F) Purified EVs—derived from vector- or p75NTR-expressing donor COS7 

cells—were applied to GFP+ recipient COS7 cells from WT and NRAGE KO backgrounds. 

GFP+ cell area is quantified. N = 3 independent experiments. ≥ 200 cells measured per condition 

per technical repeat. Two-way ANOVA with Sidak post-hoc test. ****p < 0.0001; ns – not 

significant. Error bars represent +/- SEM. 
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Figure 2.8. Exogenous p75NTR+ EVs induce DRG growth cone expansion in vitro. (A) 

E13.5 DRG explants were grown for 24h in the presence of NGF. COS7-derived EVs (vector vs. 

p75NTR) were co-applied for the full 24h incubation. DRGs were co-stained with anti-βIII-

tubulin and phalloidin. Phalloidin+ GCs were identified by machine learning and GC area was 

quantified in (B). N = 6 independent experiments. 16 GC fields were measured across 4 DRGs 

per technical repeat (4 ROIs per DRG x 4 DRGs; ~100 GCs total). Independent samples t-test. 

****p < 0.0001. Scale bar = 20µm. Error bars represent +/- SEM. 
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Chapter 3: Resolution of the p75NTR-DR6-TROY interactome 

3.1 Abstract 

 The p75 neurotrophin receptor (p75NTR), death receptor 6 (DR6) and TROY are tumour 

necrosis factor receptors (TNFRSFs) with functionally redundant roles nervous system 

development and maintenance, including: axonal degeneration, pathological neurodegeneration, 

synaptic plasticity, and neuronal remodeling (80-88). Despite this extensive phenotypic 

characterization, our understanding of the core signaling mechanisms engaged by these receptors 

remains elusive. To address this problem, we leverage a novel proximity labeling interactomics 

approach (BioID) (500) to resolve the interactome of p75NTR, DR6 and TROY in live human 

cells. BioID revealed that full-length (FL) p75NTR, DR6 and TROY show substantial overlap in 

the interactors they engage with and identified a core network of 29 proteins that interact with all 

3 receptors. The core network that was identified implicated several major signaling pathways, 

including: ephrin-mediated axon guidance (EFNB1 and EFNB2), PI4K signaling (EFR3A and 

EFR3B), and cellular ion homeostasis [e.g. multiple members of the solute carrier (SLC) family]. 

BioID also revealed a conserved TNFRSF, RELL1, that interacts with each of the bait 

TNFRSFs. Lastly, proteolytic cleavage of these receptors to release their intracellular domain 

(ICD) into the cytosol initiates divergent signaling outcomes (399). Strikingly, the ICD-specific 

interactome of these 3 TNFRSFs showed nearly no overlap, in direct contrast to their full-length 

counterparts. In conclusion, we successfully resolved the p75NTR-DR6-TROY interactome in 

living human cells, which will serve as a critical foundation to explore the signaling mechanisms 

underlying TNFRSF-dependent nervous system function, and may identify novel therapeutic 

strategies for targeting neurodegenerative and neuropsychiatric disorders. 

3.2 Introduction 
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 The p75 neurotrophin receptor (p75NTR), death receptor 6 (DR6) and TROY are TNF 

receptors (TNFRSFs) with redundant functionality in nervous system development 

(51,52,56,57,61,77,373,375,600), nervous system maintenance 

(193,202,316,317,374,380,399,411,601), and tumorigenesis (78,360,412,414,416,417,602–604). 

p75NTR and DR6 initiate axonal degeneration in developmental (51,52,64,156,176,216,605) and 

pathological  contexts. p75NTR and TROY can each serve as a co-receptor in complex with the 

Nogo receptor (NgR1) and LINGO-1 to bind myelin-associated inhibitory factors (MAIFs) and 

restrict neurite outgrowth in the CNS (59,61,411,600,606). DR6 and TROY are critical 

regulators of axonal remodeling (51,56–58,61,380,398) and angiogenesis (393) within the CNS.  

 With respect to signaling properties, p75NTR, DR6 and TROY are atypical TNFRSFs 

insofar as none of these receptors bind a known TNF ligand (607). Rather, p75NTR acts as a 

receptor to all mammalian neurotrophins (NGF, BDNF, NT3 and NT4) and immature, non-

proteolytically processed proneurotrophins (proNGF, proBDNF, proNT3 and proNT4) [reviewed 

in (608)]. DR6 is a receptor for the β-amyloid precursor protein (APP) (58,78,373,381) and 

pathogenic β-amyloid-mediated neurodegeneration is initiated via both p75NTR and DR6 

(250,256,374,382,609,610). The TROY ligand remains to be identified—if it exists at all—but 

both p75NTR and TROY can bind MAIFs in complex with NgR1 and LINGO-1 as described 

above (59,61,411,600,606). p75NTR possesses ligand-dependent and ligand-independent 

signaling properties [reviewed in (77)], though it remains unclear if the same is true of DR6 and 

TROY. To add to this complexity, p75NTR (90, 125-128), DR6 (399), and TROY (unpublished) 

can be proteolytically cleaved to release their soluble intracellular domain (ICD) into the cytosol. 

In the case of p75NTR and DR6, and likely TROY, the soluble ICD mediates signaling 

outcomes distinct from the full-length (FL) receptor (90, 125-128). 
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 Despite the extensive phenotypic characterization of p75NTR, DR6 and TROY in the 

nervous system—and the emerging trend of functional redundancy amongst these TNFRSFs—

our knowledge of the core signaling mechanisms engaged by these receptors is limited. To 

address this issue, we sought to resolve the p75NTR-DR6-TROY interactome in a live, human 

cell line. To accomplish this daunting task, we employed the next-generation interactomics tool 

BioID (1) (see Section 1.11.1). 

 BioID successfully resolved the p75NTR-DR6-TROY interactome and revealed 

extensive interactor overlap between these TNFRSFs, consistent with their overlapping 

functionality in nervous system development and maintenance. BioID revealed a core group of 

29 prey finding all 3 receptors, which may be of particular interest to explore in the context of 

the nervous system. GO analysis identified multiple signaling pathways enriched within the 

p75NTR-DR6-TROY interactome, not limited to: ephrin signaling, ion transport, immune 

regulation, and receptor trafficking. Interestingly, all 3 TNFRSFs interacted with the TNFRSF 

superfamily member Receptor Expressed in Lymphoid Tissues-Like 1 (RELL1)—suggesting an 

entire novel heterotypic TNFRSF complex, which may provide insight into a major new 

regulatory mechanism of TNF signaling (see Chapter 3). Successful resolution of the p75NTR-

DR6-TROY interactome will accelerate research into TNFRSF regulation of the nervous system 

and may identify novel therapeutic targets for pathological neurodegeneration and 

neuropsychiatric disorders. 

3.3 Materials and Methods 

3.3.1 Cell maintenance and transfection 

 Flp-In T-TREx 293 cells were maintained in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 5% bovine calf serum, 5% fetal bovine serum, 2mM L-glutamine, 
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and 100mg/mL penicillin/streptomycin at 37°C in 5% CO2. Lipid-based transfection of Flp-In T-

REx 293 cells was performed with JetPrime (PolyPlus) according to a modified protocol from 

manufacturer instructions. Briefly, 1x106 Flp-In T-REx 293 cells were seeded onto a single well 

of an uncoated 6-well plate. The Flp-In T-REx 293 were transfected in antibody-free complete 

medium with 200uL of a mastermix containing 0.5µg of plasmid and 1µL of JetPrime reagent. If 

co-transfection was necessary, the JetPrime reagent volume was held equal across conditions 

(using the quantity required by the condition with most co-transfected plasmids) to prevent 

inequalities in transfection efficiency between conditions. Flp-In T-REx 293 cells were 

transfected for 24 hours, followed by 24-hour incubation in fresh complete medium, prior to 

experimentation. 

3.3.2 Plasmids and reagents 

 Full-length (FL) TNFRSF BioID constructs p75NTR-BirAR118G-FLAG, DR6-BirAR118G-

FLAG and TROY-BirAR118G-FLAG were subcloned into pcDNA5 FRT/TO vector. To generate 

cleavage-resistant (CR) BioID constructs, the TMD of p75NTR, DR6 and TROY was exchanged 

with Fas TMD prior to subcloning in pcDNA5 FRT/TO vector. All FL and CR TNFRSF-

BirAR118G-FLAG plasmids were generated in-house. Stable integration of BioID constructs into 

the Flp-In T-REx 293 cell line (ThermoFisher, USA) was mediate by co-transfection of pOG44 

Flp recombinase expression vector (ThermoFisher, USA). During the BioID procedute, 1µM 

tetracycline (Tet) (ThermoFisher, USA, catalog # A39246) was applied for 24h to induce 

expression of TNFRSF-BirAR118G-FLAG expression in Flp-In T-REx 293 cells. 

3.3.3 BioID: Protocol 

 Flp-In T-REx 293 cells were co-transfected with pcDNA5 FRT/TO (TNFRSF-

BirAR118G-FLAG bait expression vector) and pOG44 (Flp recombinase expression vector) 
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plasmids. Successful genomic integration of the TNFRSF-BirA*-FLAG construct (p75NTR, 

DR6 or TROY; full-length (FL) or cleavage-resistant (CR) conferred hygromycin-resistance and 

individual TNFRSF-BirA-FLAG+ cell colonies were selected in complete media containing 200 

µg/mL hygromycin B. TNFRSF-BirA*-FLAG+ Flp-In T-REx 293 cells were passaged to 5x 

150mm plastic dishes and grown to 70% confluency. Expression of the TNFRSF-BirA*-FLAG 

bait and stimulation of proximity-dependent biotinylation in TNFRSF-BirA*-FLAG+ Flp-In T-

REx 293 cells was induced by incubation in 10mL of conditioned media containing 1 µg/mL 

tetracycline and 50µM biotin for 24 hours (at 37°C, 5% CO2). After the 24-hour period, a pooled 

cell pellet was collected from all 5x 150mm plates of TNFRSF-BirA*-FLAG+ Flp-In T-REx 

cells and centrifuged at 1500rpm (5 min, RT). Cell pellets were washed 3x in ice-cold PBS, 

dried, and stored at -80°C. Cell pellets were subsequently lysed and biotinylated prey were 

captured on streptavidin-coated resin. Streptavidin-purified prey were then trypin digested and 

subjected to mass spectrometric analysis for peptide identification and abundance quantification. 

3.3.4 BioID: Statistical Analysis and Contaminant Removal 

 All BioID runs (for each TNFRSF) were performed in biological and technical duplicate. 

Pooled mean spectral counts for each prey were calculated and subject to a battery of controls. 

First, after application of standardized BioID protocols, all prey spectral counts were cross-

referenced to the associated mean spectral count for that specific prey in the CRAPome 

contaminant repository (611). All prey with ≤ 2-fold spectral count enrichment relative to 

CRAPome abundances were categorized as background and removed from subsequent analyses. 

Next, all remaining prey spectral counts were input into the Significance Analysis of Interactome 

(SAINT) algorithm (612) to assign probabilistic scores to each prey with 1% false-discovery rate 

(FDR) parameters input into the Bayesian matrix. Prey with a SAINT score ≤ 0.74 (analogous to 
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p ≤ 0.05) were labelled as contaminants and removed. Lastly, mean prey spectral counts were 

compared to their spectral counts from 22 internal control BioID baits (8 unrelated 

transmembrane protein BirAR118G-FLAG fusion baits, 6 E-cadherin-BirAR118G-FLAG cell 

junction control baits, 4 ‘BirAR118G-FLAG-only’ controls, and 4 ‘no transfection’ controls). All 

prey with ≥ 2-fold spectral count enrichment relative to all control baits were identified as bona 

fide high-confidence interactors. 

3.3.5 Gene Ontology (GO) Analysis 

 GO functional analysis was performed using the Database for Annotation, Visualization 

and Integrated Discovery (DAVID) platform (613,614). All gene IDs from the p75NTR-DR6-

TROY interactome were input into the DAVID platform, and enriched functional GO terms were 

identified via cross-referencing to the Reactome cell pathway database (615). Raw p-values 

associated with specific GO terms were corrected post hoc according to the Benjamini-Hochberg 

procedure (616) to maintain an overall false discovery rate (FDR) at 5%. An obtained 

Benjamini-Hochberg-corrected p-value (BHp) < 0.05 was deemed a significantly enriched GO 

term. 

 

3.3.6 Cell Surface Biotinylation 

 Cells were washed 3x in cold PBS, then incubated in 0.1mg/mL EZ-Link™ NHS-LC-

Biotin (ThermoFisher) dissolved in PBS on ice for 45 minutes. Free NHS-LC-Biotin was 

quenched by 3x washes in TBS/Glycine buffer (20mM Tris, 150mM NaCl, 10mM glycine, pH 

7.5) on ice. Cells lysates were collected in 1mL RIPA lysis buffer (supplemented with protease 

inhibitor cocktail) and centrifuged at 12,000 rpm for 10 minutes at 4°C. For input control, 50µL 

lysate supernatant was mixed with 50µL 2x SB, boiled for 5 minutes, and stored at -20°C. For 
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purification of cell surface biotinylated proteins, 850µL lysate was incubated with 50µL 

streptavidin-agarose on a rotator for 2 hours at 4°C. Streptavidin pulldowns were subsequently 

centrifuged at 4000rpm for 1 minute at 4°C, then washed 3x in RIPA buffer (centrifugation at: 

4,000 rpm, 1 minute, 4°C between each wash). After careful removal of excess RIPA buffer via 

aspiration, 50µL 2x SB was added to the streptavidin pulldown, and samples were subsequently 

boiled for 5 minutes and stored at -20°C until immunoblot analysis. 

3.4 Results 

3.4.1 Inducible expression of BioID constructs in Flp-In T-REx 293 cells 

 To enable inducible expression of BioID baits we utilized the Flp-In T-REx 293 cell line 

which constitutively expresses the Tet repressor (TetR) and possesses a Flp-recognition target 

(FRT) at a distinct locus to enable Flp-mediated recombination for stable genomic integration of 

the BioID baits. BioID baits consisted of FL or cleavage-resistant (CR) TNFRSF (i.e. p75NTR, 

DR6 or TROY) fused to BirA* and a FLAG epitope tag at the C-terminus (the ‘TNFRSF-BirA*-

FLAG’ bait). CR baits were generated via exchange of the transmembrane domain (TMD) for 

the TMD of the non-proteolytically cleaved TNFRSF, Fas. Flp-In T-REx 293 cells were co-

transfected with Flp and TNFRSF-BirA*-FLAG expression vectors to enable Flp-mediated 

recombination and stable integration of the TNFRSF-BirA*-FLAG bait into the genome. 2x 

TetO2 sequences were inserted immediately upstream of the TNFRSF-BirA*-FLAG locus to 

bind constitutively-expressed TetR and suppress transcription of the TNFRSF-BirA*-FLAG bait 

in unstimulated cells. In the presence of exogenous tetracycline (Tet), Tet complexes to TetR to 

facilitate its dissociation from the 2x TetO2 sequence to activate transcription of the TNFRSF-

BirA*-FLAG bait (Figure 3.1). 

3.4.2 BioID resolved the p75NTR-DR6-TROY interactome 
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 To resolve the p75NTR-DR6-TROY interactome, full-length (FL) TNFRSF-BirA*-

FLAG+ Flp-In T-REx 293 cells were co-stimulated for 24 hours with 1µg/mL Tet + 50mM 

biotin to induce expression of the FL TNFRSF-BirA*-FLAG bait and activate proximity-

dependent biotinylation. Biotinylated prey were then captured from cell lysates on streptavidin 

resin, trypsin digested, and subjected to mass spectrometry for identification and abundance 

quantification. 

 BioID analysis revealed the p75NTR-DR6-TROY interactome in Flp-In T-REx 293 cells 

consisting of 446 high-confidence prey (SAINT > 0.74) in total (Figure 3.3A). TROYFL was the 

most promiscuous TNFRSF finding 340 interactors, followed by p75NTRFL (136 interactors) and 

DR6FL (112 interactors) (Figure 3.3A). The p75NTR-DR6-TROY interactome revealed 

substantial overlap between the 3 TNFRSFs with 89.3% of DR6FL interactors finding at least one 

other FL TNFRSF bait compared to 42.65% of p75NTRFL interactors and 28.5% of TROYFL 

interactors (Figure 3.3A). The p75NTR-DR6-TROY interactome breaks down as follows: 29 

interactors were common to p75NTRFL, DR6FL and TROYFL baits; 16 interactors were specific 

to p75NTRFL and DR6FL; 55 interactors were specific to DR6FL and TROYFL; 13 interactors 

were specific to p75NTRFL and TROYFL; 78 interactors are p75NTRFL-specific; 12 interactors 

are DR6FL-specific; and 243 interactors are TROYFL-specific (Figure 3.3A). 

3.4.3 BioID revealed a core network of interactors shared by p75NTR, DR6 and TROY 

 BioID identified a core network of 29 interactors common to p75NTR, DR6 and TROY 

(Figure 3.3A-B). This core network included: B-class ephrin ligands (EFNB1 and EFNB2), 

EFR3 homologs of the PI4K complex (EFR3A and EFR3B), a palmitoyl-acyltransferase 

(DHHC5) and, unexpectedly, a TNFRSF superfamily member (RELL1). Strikingly, the core 

network also included multiple plasma membrane-localized ion transporters of the Solute Carrier 
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(SLC) gene family, including: SLC12A2 (Na+/K+ co-transporter) , SLC30A1 (Zn2+ 

transporter), SLC38A1 (amino acid transporter), SLC38A2 (amino acid transporter), SLC3A2 

(amino acid transporter heavy chain), SLC4A7 (Na+/HCO3- co-transporter), SLC6A15 

(neurotransmitter transporter), and SLC6A8 (neurotransmitter transporter) (Figure 3B). Thus, 

BioID successfully identified a core signaling network common to p75NTR, DR6 and TROY 

that consists almost entirely of novel interactors, with the exception of the known complexes 

between p75NTR and ephrin ligands (195,232–234,324,617). 

3.4.4 BioID identified ICD-specific interactomes unique to p75NTR, DR6 and TROY 

 p75NTR, DR6 and TROY can be proteolytically cleaved to release their soluble ICD into 

cytosol to mediate distinct signaling outcomes (123,124,142,165,399). To resolve the unique 

interactomes of the cleaved ICDs of p75NTR, DR6 and TROY (the ‘p75NTR-DR6-TROY ICD 

interactome’) we performed BioID using cleavage-resistant (CR) baits (Figure 3.2). CR baits 

were generated by exchanging the receptor’s transmembrane domain (TMD) for the TMD of the 

Fas receptor – a TNFRSF that does not undergo proteolytic cleavage (618). Prey that found a FL 

receptor, but not the corresponding CR receptor (i.e. interacted with p75NTRFL but not 

p75NTRCR), were designated as ICD-specific interactors. BioID revealed a robust interactome 

for CR baits of a similar scale to FL baits (Figure 3.4A). This approach resolved a p75NTR-

DR6-TROY ICD interactome, consisting of 43 p75ICD interactors, 53 DR6ICD interactors, and 

69 TROYICD interactors (Figure 3.4B). Strikingly, ICD-specific prey exhibited very little 

overlap between the TNFRSFs (163 of 165 ICD-specific prey showed no overlap), which was 

not the case for the FL p75NTR-DR6-TROY interactome (Figure 3.4B). Thus, BioID 

successfully resolved the ICD-specific interactomes of p75NTR, DR6 and TROY; and 
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established that ICD-specific signaling properties of each receptor are highly dissimilar, unlike 

their full-length counterparts. 

3.4.5 GO analysis identified core cellular functions common to p75NTR, DR6 and TROY 

 To identify biological functions implicated within the FL p75NTR-DR6-TROY 

interactome —that may underlie their redundant function in the nervous system—we performed 

Gene Ontology (GO) analysis using the DAVID (613,614) platform with cross-refencing to the 

Reactome (615) cell pathway database (Figure 3.5A). GO analysis revealed several significantly 

enriched signaling pathways within the FL p75NTR-DR6-TROY interactome, including: “Eph-

ephrin mediated repulsion of cells” (9 prey; BHp = 1.4x10-3), “synthesis of PIPs at the plasma 

membrane” (6 prey; BHp = 4.2x10-2) and “EGFR downregulation” (5 prey; BHp = 4.6x10-2) 

(Figure 3.5B; Appendix 2). Multiple protein trafficking-associated GO terms were significantly 

enriched within the p75NTR-DR6-TROY interactome, including: “COPII-mediated vesicle 

transport” (24 prey; BHp = 7.9x10-18), “COPI-mediated anterograde transport” (15 prey; BHp = 

9.9x10-6) “Golgi-associated vesicle biogenesis” (17 prey; BHp = 3.2x10-11), “lysosome vesicle 

biogenesis” (11 prey; BHp = 1.2x10-6), “cargo concentration in the ER” (7 prey; BHp = 5.8x10-

3), and “transferrin endocytosis and recycling” (6 prey; BHp = 2.0x10-2). Consistent with the 

established role of TNFRSF signaling in immune system function, several immunity-associated 

GO terms were significantly enriched, including: “antigen presentation: folding, assembly and 

peptide loading of class I MHC” (8 prey; BHp = 1.4x10-3), “MHC class II antigen presentation” 

(14 prey; BHp = 5.9x10-4), “Nef mediated CD8 down-regulation” (4 prey; BHp = 1.6x10-2), and 

“Nef mediated CD4 down-regulation” (4 prey; BHp = 3.1x10-2).  

 The core network of p75NTR/DR6/TROY shared interactors included multiple members 

of the SLC family of ion transporters (Figure 3.3A,C). Consistent with this, the GO terms 
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“amino acid transport across the plasma membrane” (10 prey; 4.40x10-6) and “cation-coupled 

chloride cotransporters” (4 prey; 1.60x10-2) were significantly enriched. This further suggests 

that p75NTR, DR6 and TROY may act as major co-regulators of intracellular ion homeostasis. 

3.5 Discussion 

 BioID successfully resolved the p75NTR-DR6-TROY interactome in a live, human cell 

line. This interactome reveals robust overlap in interactors between the FL receptors providing 

robust insight into the signaling and trafficking mechanisms common to these receptors. 

Interactors finding some combination of TNFRSF baits should be prioritized as candidates for 

research into the core signaling pathways engaged by p75NTR, DR6 and/or TROY during neural 

development and maintenance. Interestingly, although the FL receptors showed substantial prey 

overlap, the ICD-specific prey showed almost no overlap. This suggests that cleavage-dependent 

signaling pathways initiated by p75NTR, DR6 and TROY fundamentally differ. 

 The FL p75NTR-DR6-TROY interactome revealed a small core network of interactors 

common to all three receptors. Unexpectedly, this core network included the TNFRSF 

superfamily member RELL1. RELL1 is a homolog of the TNFRSF Receptor Expressed in 

Lymphoid Tissues (RELT) and possesses high sequence similarity to RELT, but lacks most of 

the extracellular domain (ECD) including the ligand-binding cysteine-rich domains (CRDs). This 

heterotypic TNFRSF complexes between RELL1 and p75NTR/DR6/TROY represent a 

significant new insight into TNFRSF structural biology, as TNFRSFs almost exclusively homo-

oligomerize to initiate signaling cascades [reviewed in (619)]. Because of this, it is difficult to 

interpret the biological significance of a heterotypic complex with RELL1 – does RELL1 act as 

an adaptor protein to p75NTR/DR6/TROY? Does it act as an inhibitor? Or does it have some 

other modulatory role? The heterotypic TNFRSF complex will be explored in depth in Chapter 
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3, where we establish that RELL1 acts as a negative regulator of p75NTR signaling to the actin 

cytoskeleton by directly antagonizing binding to the p75NTR adaptor Neurotrophin Receptor-

Interacting MAGE Homolog (NRAGE) (137–139,142). 

 The core network of p75NTR-DR6-TROY interactors also included the palmitoyl-

acyltransferase (PAT) DHHC5. PAT enzymes catalyze S-palmitoylation of a substate cysteine 

residue via formation of a thioester linkage. DHHC5, specifically, is highly expressed in the 

adult nervous system—primarily in neurons—and shows near ubiquitous expression throughout 

the CNS. p75NTR (620) and DR6 (385) are known substrates for S-palmitoylation, with their 

palmitoylated cysteine located in the juxtamembrane region within their ICD (Cys279 in rat 

p75NTR sequence; C368 in human DR6 sequence). TROY palmitoylation status is unconfirmed, 

but mathematical modelling (621) predicts a juxtamembrane cysteine (Cys600) is a 

palmitoylation substrate. Although it is known that two of these TNFRSFs— p75NTR and 

TROY—are palmitoylation substrates, the enzyme(s) catalyzing these palmitoylation events has 

remained elusive. 

 The p75NTR-DR6-TROY interactome identified two B-class ephrin ligands, ephrin-B1 

(EFNB1) and ephrin-B2 (EFNB2), as interactors common to these three receptors. Multiple 

reports have suggested that p75NTR can collaborate with ephrin receptors to mediate axonal 

guidance during development (195,233,234,617). These reports, in combinations with our novel 

finding that EFNB1 and EFNB2 are shared p75NTR/DR6/TROY interacting partners, suggest 

that these TNFRSFs may play a central role in the transduction of ephrin-dependent axonal 

guidance cues. 

 Lastly, 8 of the 29 prey that make up the core network of shared p75NTR-DR6-TROY 

interactors are cell surface ion transporters of the SLC gene family. The SLC transporters 
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regulate cellular ion homeostasis, and dysregulation of SLC genes has been implicated in a range 

of neuropsychiatric and neurodegenerative disorders [reviewed in (622)]. Interestingly, SLC6 

subfamily members identified in the BioID screen—SLC6A8 and SLC6A15—are 

neurotransmitter transporters [reviewed in (623,624)] and p75NTR knockout mice were recently 

shown to exhibit severe deficits in presynaptic acetylcholine quantal content and cholinergic 

neurotransmission at the neuromuscular junction (NMJ) (204,625). It will be interesting to 

explore if DR6 and TROY are also required for synaptic neurotransmission and, if so, if this is 

dependent on an interaction with SLC6A8 and SLC6A15. Beyond neurotransmission, however, 

the abundance of SLC family members within the p75NTR-DR6-TROY interactome—and their 

re-appearance in GO analysis—suggests these receptors may play a significant role in cellular 

ion homeostasis. 

 In agreement with the literature, the p75NTR-DR6-TROY interactome revealed a 

physical interaction with NKCC1. Previous research has demonstrated that p75NTR functionally 

interacts with NKCC1—and the neuron-specific homolog KCC2—to regulate intracellular 

chloride homeostasis and subsequently establish depolarizing or hyperpolarizing postsynaptic 

responses to GABA (223,226). This finding demonstrates that p75NTR likely regulates 

GABAergic responses by directly influencing NKCC1/KCC2 Cl- transporter activity in response 

to neuron intrinsic and extrinsic signals. 

 This BioID analysis successfully resolved the p75NTR-DR6-TROY interactome in a 

non-neuronal cell line. Future research should focus on introducing perturbations to this 

interactome (e.g. ligands) and investigate how it changes over time, preferably within a neuronal 

context. Such an endeavour would best be achieved using an interactomics strategy with minimal 

time required for proximity labeling, such as APEX2 (541).  
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3.6 Figures and Figure Legends 

 

Figure 3.1. Generation of Flp-In T-REx 293 cell lines with stable genomic integration, and 

inducible expression, of BioID constructs. Schematic illustrating the generation Flp-In T-REx 

293 cell lines with inducible expression of TNFRSF-BirA*-FLAG (BioID) constructs. TNFRSF-

BirA*-FLAG is stably integrated into the host cell genome by Flp-mediated recombination at 

FRT sites on the host cell genome and BioID expression vector. Upon Flp-mediated 

recombination, hygromycin resistance is conferred to enable selection of TNFRSF-BirA*-

FLAG+ clones. TNFRSF-BirA*-FLAG expression is controlled at 2 upstream TetO2 elements. 

At baseline, Flp-In T-REx 293 cells stably express TetR, which occupies TetO2 elements to 

inhibit transcription of TNFRSF-BirA*-FLAG. Exogenous Tet binds TetR, abolishing its affinity 

for TetO2, thereby disinhibiting transcription of TNFRSF-BirA*-FLAG. 
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Figure 3.2. Schematic of the BioID pipeline. BioID was performed FL and CR constructs for 

p75NTR, DR6 and TROY with C-terminal BirA*-FLAG fusion. Flp-In T-REx 293 BioID clones 

were co-stimulated with Tet and biotin for 24 hours to induce TNFRSF-BirA*-FLAG expression 

and enable BirA* to produce a ~100Å radius cloud of reactive biotinyl-5’-AMP. Activated 

biotinyl-5’-AMP biotinylates interactors (prey) and proximal proteins to at exposed lysine 

residues while leaving distal non-interactors unmodified. After 24 hours, the cells were lysed and 

biotinylated prey were captured on streptavidin agarose. Samples were then trypsin digested then 

analyzed by mass spectrometry to identify, and quantify the abundance of, biotinylated prey. 

This preliminary interactome was subject to rigorous statistical analysis to remove contaminants 
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(i.e. background prey and proximal non-interactors). Prey with a mean spectral count < a 2-fold 

increase over their background spectral count listed in the CRAPome repository were eliminated. 

Next, probabilistic scoring of individual prey was carried out by SAINT analysis, and prey with 

a SAINT score less than 0.74 were eliminated. Lastly, prey spectral counts were compared to a 

list of 22 internal control baits, including the following: no bait (x4), BirA* only baits (x4), 

unrelated transmembrane BirA* fusion baits (x4) and E-cadherin-BirA* baits (x12) (to remove 

contaminants that were biotinylated as a result of co-localization at a cell junction). Any prey 

that did not display > 2-fold increase in spectral count over these internal controls was 

eliminated. Prey that met the requirements of these stringent statistical analyses were concluded 

as bona fide interactors to the bait protein. All BioID analyses were run in biological and 

technical duplicate.  
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Figure 3.3. BioID revealed the interactome of p75NTR, DR6 and TROY and identified a 

core network of 29 signaling partners shared by these TNFRSFs. (A) Venn diagram 

depicting the number of bona fide interactors for full-length p75NTR, DR6 and TROY—or 

combination thereof—in the Flp-In T-Rex 293 cell line. (B) A core group of 29 interactors 

common to p75NTR, DR6 and TROY and their associated SAINT scores for each full-length 

TNFRSF bait.  
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Figure 3.4. Cleavage-resistant BioID baits elucidated the ICD-specific interactome of 

p75NTR, DR6 and TROY. (A) Venn diagram depicting the number of bona fide interactors for 

each CR TNFRSF bait or combination of CR TNFRSF baits. (B) Venn diagram breakdown of 

ICD-specific prey for each TNFRSF, or combination thereof, which found the FL bait but not the 

CR bait of the same receptor.  
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Figure 3.5. GO analysis of the p75NTR-DR6-TROY interactome revealed enriched cell 

signaling and trafficking pathways. (A) Schematic of the GO analysis pipeline. Gene 

identifiers for the complete FL interactome of p75NTR, DR6 and TROY were input into the 

DAVID database. DAVID cross-referenced the Reactome database of cell signaling pathways to 

identify enriched GO terms. The Bonferroni-Hochberg correction was applied to raw p-values 

for each GO term to maintain an overall false discovery rate (FDR) at 5%. Bonferroni-Hochberg-

corrected p-values (BHp) ≤ 0.05 were deemed statistically significant. (B) Visualization of 

significantly enriched GO terms for the p75NTR-DR6-TROY interactome. 1-BHp value is 

plotted on the x-axis (bar length is proportional to statistical confidence for the corresponding 

GO term). 
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Chapter 4: RELL1 is an inhibitor on non-cell-autonomous p75NTR signaling 

4.1 Abstract 

 Proteomic evidence has revealed the existence of a heterotypic TNF receptor (TNFRSF) 

complex between Receptor Expressed in Lymphoid Tissues-Like 1 (RELL1) and the p75 

neurotrophin receptor (p75NTR). RELL1 is a truncated RELT homolog lacking the extracellular 

cysteine-rich domains (CRDs) that mediate ligand-binding in TNFRSFs. Given that TNFRSF-

TNFRSF interactions are almost exclusively homotypic, we sought to functionally characterize 

this unexpected RELL1-p75NTR complex. Leveraging the COS7 cell expansion assay, we 

demonstrate that RELL1 is an inhibitor of non-cell-autonomous p75NTR-dependent cell 

expansion. Mechanistically, RELL1 inhibits p75NTR exocytosis into large extracellular vesicles 

(EVs) known to mediate p75NTR-dependent COS7 expansion. Consistent with this, RELL1 

attenuates the interaction of p75NTR with the requisite signaling partner NRAGE in recipient 

COS7 cells, effectively inhibiting p75NTR-dependent expansion. Proximity ligation assay (PLA) 

revealed that the RELL1-p75NTR complex formation is dependent on C-terminal interactions 

and is localized exclusively to an intracellular compartment. These findings add to a growing 

body of evidence that CRD-lacking TNFRSF homologs act as endogenous inhibitors of TNFRSF 

signaling. 

 

4.2 Introduction 

 The Receptor Expressed in Lymphoid Tissues (RELT) family of TNFRSFs consists of 

three members: RELT, RELL1 and RELL2. Structurally, RELT is a canonical TNFRSF 

possessing 3 extracellular CRDs yet no RELT ligand has been discovered to date. RELL1 and 

RELL2 are truncated RELT homologs lacking most of the extracellular domain (ECD)—
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including the CRD cluster—and possessing very high sequence homology to RELT in their 

respective transmembrane (TMD) and intracellular domain (ICD) (488). RELL1 possesses no 

known functional motifs aside from an RSRV motif within the ICD that mediates binding to 

sterile-20 (Ste20) kinases (488). RELL1 is expressed in central and peripheral neurons with the 

highest expression levels observed in adulthood (490,491). No neuronal function has been 

ascribed to RELL1; however, a recently generated RELL1 knockout mouse shows behavioural 

phenotypes including hyperactivity and acoustic hypersensitivity (499) suggesting neural 

functionality. 

 It remains unclear if RELL1 possesses intrinsic signaling properties and/or acts as a 

signaling modulator—whether as an adaptor, effector, or inhibitor. Evidence from 

overexpression models suggests RELL1 is capable of autonomous signaling in vitro 

(488,489,626). RELL1 has been shown to physically interact with multiple TNFRSFs, including 

RELT (626), p75NTR, DR6 and TROY (see Chapter 3), suggesting that RELL1 may act as an 

adaptor or inhibitor to TNF-TNFRSF signaling. 

To address this question, we investigated RELL1 modulation of p75NTR signaling, 

leveraging the p75NTR-dependent COS7 cell expansion model as a functional readout. We 

demonstrate that RELL1 acts as an inhibitor of p75NTR-dependent cell expansion. 

Mechanistically, RELL1 inhibits p75NTR targeting to large EVs known to mediate cell 

expansion (Chapter 3). Moreover, RELL1-dependent p75NTR inhibition requires the formation 

of the RELL1-p75NTR complex via C-terminal interactions. Our data collectively establish 

RELL1 as an inhibitor of exocytosis-dependent p75NTR signaling and add to a growing body of 

evidence that ECD-truncated TNFRSFs function as endogenous inhibitors of their full-length 

counterparts. 
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4.3 Materials and Methods 

4.3.1 Plasmids, antibodies and reagents 

Plasmids used encoded: pcDNA3 vector, GFP (pEGFP-N1 vector; Clontech; GenBank 

accession # U55762), untagged human p75NTR (subcloned into pCMX vector), p75NTR-FLAG 

(subcloned into pcDNA3), untagged human p75ICD (AA: 273-427; subcloned into pcDNA3 

vector), RELL1-HA (courtesy of Dr. John Cusick), RELL1ΔCR4-HA, and RELL1ΔCR3,4-HA. 

Primary antibodies included: anti-p75NTR (rabbit monoclonal targeting human p75ICD; 

produced in-house; also known as ‘Buster’), anti-NRAGE (rabbit monoclonal targeting human 

NRAGE; produced in-house), anti-HA (mouse monoclonal; ThermoFisher) and anti-actin 

(mouse monoclonal; clone C4; ThermoFisher Scientific). Secondary antibodies included: 

horseradish peroxidase (HRP)-conjugated donkey anti-rabbit (Jackson ImmunoResearch 

Laboratories), HRP-conjugated donkey anti-mouse (Jackson ImmunoResearch Laboratories), 

and Alexa Fluor 647-conjugated goat anti-mouse (ThermoFisher Scientific). PDL was supplied 

by Sigma-Aldrich (Oakville, ON, Canada). Dulbecco’s Modified Eagle Medium (DMEM), 

penicillin-streptomycin (P/S), L-glutamine, and fetal bovine serum (FBS) were purchased from 

Wisent Bio Products (Burlington, ON, Canada). Exosome-deprived FBS was supplied by 

ThermoFisher Scientific. 

4.3.2 Cell culturing and transfection 

COS7 cells were cultured in conditioned medium (CM) containing DMEM supplemented 

with 100mg/mL P/S, 2mM L-glutamine and 10% FBS. COS7 cell cultures were incubated at 

37°C, 5% CO2. COS7 transfection was performed using the JetPrime lipid nanoparticle-based 

system (PolyPlus, New York, NY, USA). Briefly, COS7 cells were seeded in a 6-well dish pre-
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coated with 50ng/mL PDL and a density of 100K cells per well. After 24h, CM was exchanged 

for CM lacking P/S. To prepare the transfection mix: 0.5µg of plasmid (per construct) was added 

to 200µL JetPrime Buffer, vortexed, then 1µL of JetPrime Reagent (scaled up if multiple 

plasmids) was added, vortexed again, then left at room temperature (RT) for 10 minutes 

undisturbed. After the 10-minute period, 200µL of transfection mix was applied to COS7 cells 

for 24h. After the 24h transfection, the transfection medium was washed off 2x in fresh CM, then 

the transfected COS7 cells were incubated a further 24h in CM. Re-seeding of transfected COS7 

cells onto coverslips or 8µm porous filters was preceded by 24h precoating in 50ng/mL PDL. 

4.3.3 EV purification 

 Cells were seeded on precoated 150mm plates at a density of 1.5x107 (COS7) or 5x107 

(IMS32) cells per plate. After transfection (if applicable), cells were incubated in 12mL CM 

containing exosome-free FBS (exosome-free CM). After 24h incubation, 10mL CM was 

collected and precleared via a 3 sequential centrifugation steps at 4°C (collecting supernatant 

after each): (i) 10 minutes at 300g, (ii) 20 minutes, and (iii) 30 minutes at 10,000g. Precleared 

CM was then loaded onto an Amicon Ultra-15 centrifugal filter unit and concentrated to 150µL 

by centrifugation (25 minutes at 4000g, 4°C). 150µL concentrated, clarified CM overlayed onto 

a 70nm qEV column (Izon). An initial void volume of 1mL was discarded, followed by 

collection of 12 200µL eluate fractions. 

4.3.4 COS7 cell expansion assay 

 The COS7 cell expansion assay is a modification of the protocol described by Zeinieh 

and colleagues (587), and was designed to test non-cell-autonomous mechanism(s) mediating 

p75NTR-dependent COS7 cell expansion. In all iterations of the assay, ‘donor’ COS7 cells 

secrete factor(s) that act on ‘recipient’ COS7 cells. 
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 Donor and recipient COS7 cells are seeded in independent wells of a 6-well plate at a 

density of 100K cells/well. Recipient COS7 cells are transfected 24h with GFP plasmid; donor 

cells are transfected 24h with plasmid constructs unique to each experiment. Post-transfection, 

recipient GFP+ cells are seeded on PDL-coated coverslips at a density of 4K cells/coverslip. For 

each experimental condition, 3 coverslips of GFP+ recipient cells are seeded and imaged. 

 In the ‘filter assay’, donor cells are seeded onto PDL-coated 8µm porous 24-well filters 

(8K cells/filter), and GFP+ recipient cells onto PDL-coated coverslips (4K cells/well) in a 24-

well dish. After a 24h incubation, filters containing donor cells are suspended above the 

coverslips containing recipient cells within the same well of a 24-well dish for 24h. After this 

period, donor cells are discarded and recipient cells are fixed in 4% paraformaldehyde (PFA) for 

15 minutes at RT. Fixed recipient cells are then washed 3x in PBS and mounted on glass slides 

with Fluoroshield mounting medium (ThermoFisher). Whole coverslips of GFP+ recipient cells 

are then imaged by widefield microscopy at 10x magnification. Images are then subjected to 

pixel intensity-based thresholding in ImageJ, converted to a binary image, and exported to a 

machine learning algorithm we developed in ilastik (Figure 2.1) (591). In this algorithm, objects 

are sorted into: (i) individual cells, (ii) cell clusters (which can include mitotic cells), and (iii) 

cell debris (Figure 2.1). The ilastik output file separates these 3 objects by thresholding in 

ImageJ (e.g., upper bound = 1, lower bound = 1 will only show individual cells identified by the 

ilastik algorithm) (Figure 2.1). Only individual GFP+ recipient cells were measured – this was 

achieved by particle analysis in ImageJ. For each condition, all cells across all 3 coverslips of 

GFP+ recipient cells were imaged 

 In the ‘co-culture’ assay (Figure 2.3A-B), donor cells are co-seeded with recipient cells 

on the same coverslip (4K donor + 4K recipient cells per coverslip). Cells are then fixed, 
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mounted, imaged and analyzed for GFP+ recipient cell size using the workflow described for the 

filter assay above. 

4.3.5 Immunocytochemistry (ICC) 

 Cells were fixed in 4% PFA (15 minutes at RT), permeabilized (2.5% BSA + 0.2% 

Triton-X in PBS; 20 minutes at RT) and blocked (2.5% BSA + 0.02% Triton-X; 60 minutes at 

RT) prior to overnight 4°C incubation in blocking solution containing primary antibody. The 

following day, primary antibody was washed off 3x with PBS, then secondary antibody solution 

(2.5% BSA + 1% serum + secondary antibody) was applied for 1h at RT. Secondary antibody 

was then washed off with PBS. If phalloidin-488 was required, it was applied for 1h at RT at this 

time, then washed off 3x with PBS. 

4.3.6 Immunoblot (IB) 

 Harvested cells were lysed in RIPA buffer containing protease inhibitor cocktail ( and 

1µM epoxomicin. 2x Laemmli Sample Buffer (2x SB) was added 1:1 to protein samples, boiled 

for 5 minutes, then loaded into polyacrylamide gel for subsequent electrophoresis by SDS-

PAGE. After SDS-PAGE, proteins were transferred to a nitrocellulose membrane and blocked 

for 1 hour, at room temperature, in 5% (w/v) skim milk powder in TBS-T (10mM Tris pH 8.0, 

150mM NaCl, 2% Tween-20). Primary antibody incubation was performed in blocking solution 

at 4°C overnight. Membranes were then washed in TBS-T (6x 10-minute washes) and incubated 

in HRP-conjugated secondary antibody (diluted in blocking solution) for 1 hour at room 

temperature. Membranes were then washed in TBS-T (6x 10-minute washes) and 

immunoreactive bands were detected by chemiluminescence (Clarity Western ECL substrate, 

BioRad) using the ChemiDoc MP imaging system (BioRad). 

4.3.7 Statistics 
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 Gaussian distribution of all datasets was assessed by Shapiro-Wilk test prior to statistical 

hypothesis testing. Statistical tests were selected based on the design of each experiment—and 

distribution of data points—and are described in figure legends. Conservative post-hoc tests were 

selected for one- and two-ANOVA analyses. All statistical tests are two-tailed. Statistical 

significance is defined as p ≤ α ≤ .05. Lastly, N is defined as a single technical replicate in all 

experiments. 

 

4.4 Results 

4.4.1 RELL1 possesses evolutionarily conserved motifs within its intracellular domain 

 To gain functional insight into the RELL1-p75NTR complex, we investigated the 

evolutionary conservation of the RELL1 primary sequence to identify conserved motifs. To 

accomplish this, we queried the complete human RELL1 sequence within Class Vertebrata using 

ConSurf (627) and ran a sequence alignment of the top 150 hits. Sequence identity of individual 

residues across all 150 homologs revealed 4 regions of strong evolutionary conservation (80-

100% identity) within the RELL1 intracellular domain (ICD) that we designated conserved 

region 1-4 (CR1-4) (Figure 4.1B). CR1 is located at the most N-terminal position within the ICD 

and CR4 most C-terminal (Figure 4.1B). Moreover, we observed that the transmembrane domain 

(TMD) is highly conserved in vertebrates, whereas the ECD is poorly conserved. Based on CR1-

4 positions, we generated hemagglutinin (HA)-tagged C-terminal RELL1 mutants lacking CR4 

(RELL1ΔCR4-HA) and CR3+4 (RELL1ΔCR3,4-HA) plus all amino acids C-terminal to these motifs 

(Figure 4.1C). We confirmed the expression of the RELL1ΔCR4-HA and RELL1ΔCR3,4-HA in 

COS7 cells by immunoblot (Figure 4.1D) and verified that these RELL1-HA deletion mutants 

show a similar subcellular distribution as WT RELL1-HA by immunocytochemistry (Figure 
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4.3). These data constitute the first evolutionary analysis of the RELL1 sequence and identify 4 

highly conserved regions (CR1-4) within the RELL1 ICD of unknown structure and function. 

4.4.2 RELL1 complexes with p75NTR, DR6 and TROY in an intracellular compartment 

 BioID interactome analysis identified RELL1 as a common interacting partner to 

p75NTR, DR6 and TROY (Figure 3.3). To validate and explore RELL1-TNFRSF complexes in 

situ, we performed proximity ligation assays (PLA) in COS7 cells. First, immunocytochemistry 

revealed that RELL1-HA strongly colocalizes with p75NTR at the cell surface and intracellular 

compartments (Figure 4.2A). Strikingly, despite RELL1-p75NTR colocalization throughout the 

cell, RELL1-HA:p75NTR PLA signal is exclusively intracellular (Figure 4.2B). Importantly, 

RELL1-HA:p75NTR PLA signal is lost when p75NTR or RELL1-HA is absent, confirming the 

signal originates from a RELL1-HA:p75NTR protein complex (Figure 4.2B). GFP co-

transfection confirmed the RELL1-HA:p75NTR PLA signal is unique to successfully transfected 

COS7 cells (Figure 4.2B). Next, we investigated RELL1 binding to DR6 and TROY. Like the 

RELL1-p75NTR complex, we observed that RELL1-HA strongly colocalizes with DR6-FLAG 

and TROY-FLAG at the cell surface and intracellular compartments (Figures 4.2C and E, 

respectively). In situ, RELL1-HA:DR6-FLAG (Figure 4.2D) and RELL1-HA:TROY-FLAG 

(Figure 4.2F) PLA signals are exclusively observed in an intracellular context. RELL1-HA:DR6-

FLAG and RELL1-HA:TROY-FLAG PLA signals were exclusive to transfected GFP+ COS7 

cells and are absent in cells lacking overexpression of RELL1-HA, DR6-FLAG (Figure 4.2D) or 

TROY-FLAG (Figure 4.2F) constructs. 

Based on these data, we conclude that RELL1 interacts with p75NTR, DR6, TROY in an 

intracellular compartment but not at the plasma membrane. 

4.4.3 C-terminal interactions mediate the RELL1-p75NTR complex 
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 To decipher the structural basis of the RELL1-p75NTR complex, we transfected COS7 

cells with p75NTR and WT or C-terminal truncated RELL1-HA (ΔCR4; ΔCR3,4). The RELL1-

p75NTR PLA signal is nearly abolished in cells expressing RELL1ΔCR4-HA or RELL1ΔCR3,4-HA 

(Figure 4.3A), demonstrating that the RELL1 C-terminus is required for p75NTR binding. ICC 

revealed that RELL1ΔCR4-HA and RELL1ΔCR3,4-HA show similar subcellular distribution as WT 

RELL1-HA thereby ruling out RELL1 mislocalization as a possible explanation for the loss of 

p75NTR PLA signal (Figure 4.3A). 

 Given that the RELL1 ICD mediates p75NTR binding, we next asked if RELL1 can 

physically associate with soluble p75ICD. Figure 4.3B shows that WT RELL1-HA—but not 

RELL1ΔCR4-HA or RELL1ΔCR3,4-HA—elicits a PLA signal when co-transfected with p75ICD 

(Figure 4.3B). Thus, RELL1 physically associates with full-length p75NTR and soluble p75ICD 

and these interactions require the RELL1 C-terminus. 

4.4.4 RELL1 inhibits p75NTR-dependent COS7 cell expansion via its physical association 

with p75NTR 

 We next sought to functionally characterize the RELL1-p75NTR complex. We began by 

exploring the morphological effects associated with siRNA-mediated knockdown of endogenous 

RELL1 in COS7 cells (Figure 4.4A). Unexpectedly, we observed that RELL1 siRNA induced a 

COS7 cell expansion phenotype (Figure 4.4B-C). In contrast, RELL1-HA overexpression had no 

effect on cell size (Figure 4.4B-C). Given that endogenous RELL1 regulates COS7 cell size, we 

next asked if RELL1 is a modulator of p75NTR-dependent cell expansion. Strikingly, when co-

expressed, RELL1-HA completely blocked p75NTR-dependent COS7 expansion (Figure 4.4D-

E).  Given that RELL1 physically interacts with the p75ICD, we next asked if RELL1 inhibits 

p75ICD-dependent cell expansion, as well. Indeed, RELL1-HA co-transfection abolished the 
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p75ICD-dependent COS7 expansion phenotype (Figure 4.4F-G). 

 Lastly, we sought to determine if RELL1-dependent p75NTR inhibition relied on its 

physical association with p75NTR. To answer this, we utilized the non-p75NTR-binding RELL1 

mutant (RELL1ΔCR4-HA) characterized above (Figure 4.3). Interestingly, RELL1ΔCR4-HA failed 

to inhibit p75NTR-dependent COS7 expansion (Figure 4.4H-I), suggesting that RELL1 inhibits 

p75NTR cell expansion signaling via a physical association with p75NTR. These combined data 

establish RELL1 as inhibitor of p75NTR-dependent cell expansion. 

4.4.5 RELL1 acts upstream of NRAGE to inhibit p75NTR-dependent cell expansion 

p75NTR-dependent COS7 cell expansion requires p75NTR proteolytic cleavage and 

downstream formation of a p75ICD-NRAGE complex to initiate the signaling cascade (587). 

Given that RELL1-mediated inhibition of p75NTR-dependent cell expansion requires its 

physical interaction with p75NTR, we tested the hypothesis that RELL1 inhibits p75NTR-

induced expansion via a mechanism upstream of NRAGE. NRAGE is a cytosolic protein 

enriched near the nucleus in COS7 cells (Figure 4.5A). Consistent with this subcellular 

distribution, PLA analysis revealed that exogenous p75NTR-FLAG interacts with endogenous 

NRAGE in an intracellular context with high PLA signal density near the nucleus (Figure 4.5B). 

To test if RELL1 affects formation of the p75NTR-NRAGE complex, we measured p75NTR-

FLAG:NRAGE PLA puncta in COS7 cells co-transfected with RELL1-HA or empty vector 

(Figure 4.5C). Strikingly, RELL1-HA attenuated the p75NTR-FLAG:NRAGE signal (Figure 

4.5C) indicating that RELL1 acts upstream of NRAGE to inhibit the signaling cascade. Thus, the 

mechanism of RELL1-dependent p75NTR inhibition may occur at the level of the RELL1-

p75NTR complex itself. 

4.4.6 RELL1 inhibits p75NTR targeting to extracellular vesicles 
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 p75NTR exocytosis in large extracellular vesicles (EVs) is a requisite event in the 

p75NTR-dependent cell expansion cascade (Figures 2.3-2.7). Given that RELL1 acts upstream 

of NRAGE to inhibit this signaling event (Figure 4.5) we tested the hypothesis that RELL1 

affects p75NTR exocytosis. First, we investigated if RELL1 influences p75NTR-dependent 

expansion via the non-cell-autonomous pathway by leveraging the filter assay (described in 

Chapter 2). Vector+ and p75NTR+ donor COS7 cells were co-transfected with or without 

RELL1-HA (Figure 4.6A). RELL1-HA expression in the donor cell blocked p75NTR-dependent 

COS7 expansion (Figure 4.6B-C) consistent with a possible role in p75NTR exocytosis. Next, 

we purified large EVs from vector+ and p75NTR+ COS7 cells co-transfected +/- RELL1-HA. 

Strikingly, RELL1-HA abolished p75NTR targeting to large EVs (Figure 4.6D). These data 

establish RELL1 as an inhibitor of p75NTR exocytosis and exocytosis-dependent signaling. 

4.5 Discussion 

 Our study establishes RELL1 as an inhibitor of exocytosis-dependent p75NTR signaling. 

Mechanistically, RELL1 disrupts p75NTR targeting to large EVs, thereby preventing 

downstream formation of the p75ICD-NRAGE complex. Consistent with this, the p75NTR-

NRAGE physical association is strongly attenuated by RELL1 overexpression, as demonstrated 

by proximity ligation assay. RELL1-dependent p75NTR inhibition requires physical association 

of RELL1 with p75NTR, an interaction mediated by the RELL1 C-terminus. We identified 4 

highly conserved motifs within the RELL1 ICD—with no homology to known motifs/domains—

which we designate conserved regions (CRs) 1-4, adding to the structural knowledge of this 

ECD-truncated TNFRSF. 

 Exocytosis via large EVs mediates p75NTR signaling (Chapters 2 and 4). Within EVs, 

p75NTR cleavage products—both CTF and ICD—are highly enriched (Chapter 2). Thus, 
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exocytosis may act as a subcellular switch for p75NTR functions, specifically gating ICD-

dependent and full-length p75NTR-dependent events. As we demonstrated in this study, RELL1 

acts as an inhibitor of p75NTR exocytosis, thereby describing the first regulatory mechanism 

controlling exocytosis-dependent p75NTR signaling. Although this effect is clear in a ‘whole 

cell’ context like the COS7 cell expansion assay, it will be critical to characterize RELL1-

dependent inhibition of p75NTR exocytosis on the subcellular level. Is there an overarching 

paradigm at play, whereby RELL1 exerts spatiotemporal control of p75NTR exocytosis, thereby 

restricting where and when p75NTR+ EVs act on a cell? Further investigation into the 

biogenesis, trafficking and function of p75NTR+ EVs in vivo will be required to better 

understand the contextual relevance of RELL1-dependent inhibition of non-cell-autonomous 

p75NTR signaling. 

 Our study characterizes RELL1 as an upstream regulator of p75NTR signaling but does 

not explore the possibility of an inverse relationship whereby p75NTR acts upstream of RELL1. 

Given that RELL1 has been reported to autonomously engage apoptotic signaling via the Ste20 

kinases OSR1 and SPAK (488), it is possible that p75NTR binding may affect the signaling 

properties of RELL1. Although more research is needed to characterize RELL1 signaling across 

cell types, it will be important to investigate if p75NTR—and/or DR6, TROY, RELT, other 

TNFRSFs—modulate the biological function of RELL1. 

 Most current knowledge of ECD-truncated TNFRSF function comes from studies on the 

p75NTR homolog neurotrophin receptor homolog-2 (NRH2). Interestingly, like RELL1, NRH2 

can act as a p75NTR inhibitor (628). Formation of a heterotypic NRH2-p75NTR complex 

inhibits p75NTR-dependent neurite collapse via reduced downstream activation of RhoA in 

response to myelin-associated inhibitory factors (628). In addition to its p75NTR inhibitory role, 
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NRH2 possesses intrinsic signaling capability as shown in diverse neurodevelopmental contexts 

(629–633). Thus, NRH2 function appears analogous to RELL1. Both act as p75NTR inhibitors 

and both possess intrinsic signaling properties independent of their p75NTR association. Given 

that RELL1 binds multiple TNFRSFs (Chapter 3), future research could expand upon existing 

NRH2/RELL1/RELL2 relationships to determine if ECD-truncated TNFRSFs are endogenous 

inhibitors of TNFRSF signaling in vivo. If true, targeting ECD-truncated TNFRSFs may 

represent a novel therapeutic strategy in disease states associated with aberrant TNFRSF 

function.  
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4.6 Figures and Figure Legends 

 

Figure 4.1. Identification of evolutionarily conserved regions in the RELL1 intracellular 

domain. (A) Structural schematic of human RELT and RELL1. (B) Conservation of human 

RELL1 primary sequence across 150 vertebrate species. Conservation of each residue is 

represented along a blue-red gradient scale (blue ≤ 10% identity; red ≥ 90% identity). 4 

conserved regions (CR1-4) within the ICD and the transmembrane domain (TMD) are labeled. 

(C) Schematic representation of HA-tagged RELL1 C-terminal deletion mutants. (D) 

Immunoblot detection of RELL1-HA C-terminal deletion mutants overexpressed in COS7 cells. 
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Figure 4.2. RELL1 interacts with p75NTR, DR6 and TROY in an intracellular 

compartment. (A-B) ICC (A) and PLA (B) of RELL1-HA and p75NTR in COS7 cells. (C-D) 

ICC (C) and PLA (D) of RELL1-HA and DR6-FLAG in COS7 cells. (E-F) ICC (E) and PLA (F) 

of RELL1-HA with TROY-FLAG. Transfected constructs and primary antibodies used in ICC 

(A,C,E) and PLA (B,D,F) analyses are indicated. For PLA analyses, GFP was co-transfected to 
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visualize transfected COS7 cells. ICC images were acquired by confocal microscopy at 63x 

magnification; and PLA images were acquired by widefield microscopy at 40x magnification. 

Scale bar = 20µm. N = 3 independent experiments for all panels with representative images 

shown. 
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Figure 4.3. RELL1 C-terminus is required for its interaction with p75NTR. (A) 

Representative PLA and ICC of COS7 cells overexpressing p75NTR and WT RELL1-HA or a 

RELL1-HA C-terminal deletion mutant (ΔCR4; ΔCR3,4). (B) Representative PLA and ICC of 

COS7 cells overexpressing p75ICD and WT RELL1-HA or a RELL1-HA C-terminal deletion 
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mutant (ΔCR4; ΔCR3,4). In all panels (A-B), rabbit anti-p75ICD and mouse anti-HA 

monoclonal primary antibodies were used for both PLA and ICC. N = 3 independent 

experiments for all panels. Scale bar = 20µm. 
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Figure 4.4. RELL1 inhibits p75NTR-dependent COS7 cell expansion via its physical 

interaction with p75NTR. (A) Validation of siRNA-mediated knockdown of endogenous 

RELL1 in COS7 cells. (B-C) Representative images (B) and cell area quantification (C) of GFP+ 

COS7 cells transfected with: empty vector (negative control), p75ICD (positive control), 

RELL1-HA, or RELL1 siRNA. N = 6 independent experiments. One-way ANOVA with Dunnett 

post hoc test. Scale bar = 10µm. (D-E) Representative images (D) and cell area quantification (E) 

of GFP+ COS7 cells overexpressing: empty vector, p75NTR, RELL1-HA, or p75NTR + RELL1-

HA. N = 6 independent experiments. Two-way ANOVA with Tukey post hoc test. Scale bar = 

10µm. (F-G) Representative images (F) and cell area quantification (G) of GFP+ COS7 cells 

overexpressing: empty vector, p75ICD, RELL1-HA, or p75ICD + RELL1-HA. N = 6 

independent experiments. Two-way ANOVA with Tukey post hoc test. Scale bar = 20µm. (H-I) 

Representative images (H) and cell area quantification (I) of GFP+ COS7 cells co-transfected 

with empty vector or p75NTR and a RELL1-HA construct (WT, ΔCR4 or no RELL1-HA). N = 

4 independent experiments. Two-way ANOVA with Sidak post hoc test. Scale bar = 20µm. All 

representative images (B,D,F,H) were acquired by confocal microscopy at 63x magnification. 

For all quantifications (C,E,G,I), ns denotes not significant; *** denotes p ≤ .001; **** denotes p 

≤ .0001. 
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Figure 4.5. RELL1 disrupts formation of the p75NTR-NRAGE complex. (A) Endogenous 

NRAGE ICC in COS7 cells. (B) PLA of overexpressed p75NTR-FLAG with endogenous 

NRAGE in COS7 cells. GFP was co-expressed to identify transfected cells. Monoclonal mouse 

anti-FLAG and polyclonal rabbit anti-NRAGE primary antibodies were used. Widefield 

microscopy images were acquired at 40x magnification. Scale bar = 10µm. (C) p75NTR-

FLAG:NRAGE PLA in COS7 cells co-expressing p75NTR-FLAG and empty vector (‘no 

RELL1-HA’) or RELL1-HA. Widefield microscopy images were acquired at 10x magnification. 

Scale bar = 50µm. 
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Figure 4.6. RELL1 is an inhibitor of p75NTR exocytosis. (A) Schematic representation of the 

filter-based non-cell-autonomous COS7 expansion assay with indicated transfection conditions. 

(B-C) Representative confocal images (B) and cell area quantification (C) of GFP+ recipient 

COS7 cells seeded below donor COS7 cells expressing vector or p75NTR +/- RELL1-HA. N = 3 

independent experiments. Two-way ANOVA with Sidak post hoc test. ns – not significant; ** 

denotes p ≤ .01. Scale bar = 20µm. (D) p75NTR immunoblot analysis of EVs isolated from the 

conditioned medium of COS7 cells overexpressing: empty vector, RELL1-HA, p75NTR, or 
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p75NTR + RELL1-HA. For each condition, media SEC fractions #1-3 and whole cell lysates 

were subjected to immunoblot. Representative immunoblots are shown from N = 3 technical 

replicates. 
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Chapter 5: Overarching Discussion 

 In this doctoral thesis, I sought to characterize novel signaling mechanisms engaged by 

p75NTR to better understand the functional properties of this enigmatic receptor with diverse 

roles in nervous system development and maintenance. To this end, I demonstrated that 

p75NTR-dependent COS7 cell expansion (587) occurs via a non-cell-autonomous pathway—as 

p75NTR+ cells induce expansion of spatially-segregated GFP+ cells across a porous filter 

(Chapter 2). Subsequent media fractionation experiments revealed that a large, membranous 

extracellular structure mediates this non-cell-autonomous signaling event. Immunoblot analysis 

revealed that p75NTR is targeted to large extracellular vesicles (EVs) which induce expansion in 

naïve GFP+ COS7 cells. Strikingly, p75NTR proteolytic cleavage products (p75CTF and 

p75ICD) are highly enriched in this EV compartment. p75NTR+ EVs induce expansion events in 

both COS7 cells and developing DRG sensory neurons. p75NTR+ EV-dependent expansion 

requires downstream engagement of recipient cell-derived NRAGE as the expansion phenotype 

is abolished by CRISPR-mediated NRAGE knockout in distinct COS7 lines. 

To study p75NTR signaling from a broader perspective, we leveraged proximity-

dependent biotinylation (BioID) to resolve the common interactome of p75NTR and two 

functionally-related TNFRSFs, DR6 and TROY—in a modified HEK293 cell line (Flp-In 293 

TREx) (Chapter 3). This strategy identified 29 interactors that are shared by p75NTR, DR6 and 

TROY, including a truncated TNFRSF, RELT-Like 1 (RELL1). 

In Chapter 4, I validated the RELL1-p75NTR complex by proximity ligation assay (PLA) 

and sought to functionally characterize this novel heterotypic TNFRSF complex. Interestingly, 

exogenous RELL1 completely blocked p75NTR-dependent COS7 cell expansion via the 

exocytosis-dependent pathway.  A physical association of RELL1with p75NTR via C-terminal 
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interactions mediates RELL1-dependent p75NTR inhibition as a non-p75NTR-binding RELL1 

mutant (RELL1ΔCRD4-HA) fails to block p75NTR-dependent cell expansion. RELL1 inhibits 

p75NTR targeting to EVs, thereby blocking any downstream p75NTR action in recipient cells. 

Thus, we establish RELL1 as a negative regulator of exocytosis-dependent p75NTR signaling 

and provide new evidence that ECD-truncated TNFRSFs can act as endogenous TNFRSF 

inhibitors. 

5.1 Extracellular vesicles are a novel p75NTR signaling platform 

 p75NTR exocytosis via exosomes has been described in cultured SCG neurons (473) and 

de-differentiated Schwann cells (589). The biological function of extracellular p75NTR, 

however, has not been investigated in the nervous system. One report on melanoma suggests that 

exosome-derived p75NTR promotes tumour metastasis (475)— this provides some evidence 

consistent with our finding that extracellular p75NTR can influence cell morphology, but the 

mechanism of EV-dependent p75NTR signaling has not been explored. Partly to blame is the 

lack of adequate tools to investigate p75NTR-specific function in an EV context. EVs are highly 

complex and heterogenous structures that exert effects locally on recipient cells, making 

phenotypes difficult to detect. To this end, we described a non-cell-autonomous COS7 cell 

expansion assay as a robust assay system for investigating EV-specific p75NTR functions. Our 

future research will leverage the COS7 cell expansion platform as a reliable in vitro assay to 

investigate this novel intercellular p75NTR signaling mechanism. 

All studies of p75NTR exocytosis performed to date have applied ultracentrifugation-

based EV purification protocols which remove large membranous structures such as 

microvesicles (MVs) (473,475). The size exclusion chromatography approach we applied to 

conditioned medium (Figure 2.5) shows that most extracellular p75NTR elutes in large EVs 
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(fractions 1-3), though small EV-derived p75NTR (fractions 4-5) is detected at low levels. COS7 

and IMS32 cell lines target overexpressed (COS7) and endogenous (IMS32) p75NTR to large 

EVs.  These data suggest that p75NTR may be primarily exocytosed via MVs rather than 

exosomes. In-depth structural and biochemical characterization of the large p75NTR+ EV 

compartment (SEC fractions 1-3) will be required to definitively identify this structure. Our 

studies suggest that SEC-based EV purification captures the full range of p75NTR+ EVs and 

prevents inadvertent discard of the large p75NTR+ structures. 

Exocytosis of exogenous p75NTR in COS7 (Figure 2.5A) and endogenous p75NTR in 

IMS32 cells (Figure 2.5B) occurs constitutively in the absence of an applied ligand. However, 

even in the absence of applied ligand, one cannot rule the possibility of an unknown endogenous 

ligand driving p75NTR EV targeting in COS7 and IMS32 lines. As reviewed in Chapter 1, 

p75NTR is known to signal in ligand-bound and -unbound states; and associates with a diverse 

set of ligands, including NTs, proNTs, myelin-associated inhibitory factors and Aβ. Future work 

is needed into the influence of ligands on p75NTR exocytosis to assess the possibility of ligand 

modulation of EV targeting. Understanding ligand dependency, or lack thereof, will inform new 

hypotheses into exocytosis-dependent p75NTR signaling in vivo. 

Immunoblot detection of EV-derived p75NTR using a p75ICD-targeting antibody 

revealed that most p75 species in EVs are cleavage products (p75CTF and p75ICD), as verified 

by pharmacological inhibition of α- and γ-secretases (Figure 2.6). This was an unexpected 

finding, as lysate-derived p75NTR:p75CTF or p75NTR:p75ICD ratios are typically 99:1 or 

greater in neural and non-neural cell types.  The magnitude of p75CTF/ICD enrichment in EVs is 

particularly striking, as p75 cleavage products are more abundant than FL p75 in this 

compartment—representing an inversion of the p75NTR:p75ICD ratio observed in whole cell 
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lysates. A next logical step is to investigate if p75NTR cleavage occurs within the EV context. 

Interestingly, ADAM17—the metalloprotease that mediates the α-secretase p75NTR cleavage 

step—has been shown to be catalytically active in EVs (634). The subcellular compartment 

mediating p75NTR cleavage is unknown to-date. Given the massive abundance of p75CTF and 

ICD in EVs, it is possible that cleavage event(s) occur within an EV context. Lastly, it is known 

that p75ICD is rapidly turned over in the cytosol, providing tight spatiotemporal control of 

p75ICD-dependent signaling events. EVs are protected from proteasomal turnover by trafficking 

outside cell boundaries. EVs, therefore, may confer protection for soluble p75ICD to accumulate 

to act in large quantities at target recipient cells and thereby prolong ICD-dependent signaling 

events. Such a model could reconcile the seemingly contradictory observations that p75ICD 

targets intracellular compartments distal to the plasma membrane—such as the nucleus (635)—

despite its rapid turnover kinetics. Future investigation into the turnover rate of EV-derived 

p75ICD in vitro and in vivo would further our understanding of intercellular p75NTR signaling. 

5.2 ECD-truncated TNFRSFs are a distinct TNFRSF family that may function as TNFRSF 

inhibitors 

 In Chapter 4, we discovered that RELL1 is an inhibitor of intercellular p75NTR signaling 

that blocks p75NTR targeting to EVs. This novel discovery shows functional parallels to the 

NRH2-p75NTR interaction. NRH2 (ECD-truncated p75NTR paralog) binds p75NTR to inhibit 

complex formation with NgR and downstream RhoA activation and inhibition of neurite 

outgrowth (628). Though the experimental contexts of the RELL1-p75NTR (Chapter 4) and 

NRH2-p75NTR (628) differ, the concept that ECD-truncated TNFRSFs disrupt downstream 

signaling events of their FL counterparts is consistent. The hypothesis that ECD-truncated 

TNFRSFs as endogenous TNFRSF inhibitors is not new and warrants further investigation. 
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Given that ECD-truncated TNFRSFs may not be constrained to homotypic interactions with their 

homologous CRD-possessing TNFRSF—as is the case for TNFRSF-TNFRSF interactions—

their potential inhibitory influence on TNFRSF signaling could be far-reaching in vivo. Future 

characterization of ECD-truncated TNFRSF as TNFRSF inhibitors could yield novel therapeutic 

strategies to combat aberrant TNF/TNFRSF function associated with neurological and 

immunological disease states. 

In humans and mice, the only known ECD-truncated TNFRSF genes are RELL1, RELL2 

and NRH2. However, it is possible other ECD-truncated TNFRSFs are expressed via alternative 

gene transcription sites or mRNA splice variation, for example. To address this possibility, I 

screened the NCBI Protein database for human CRD-lacking proteins with strong sequence 

homology (E ≤ 10-15) to a TNFRSF by BLAST queries of full-length TNFRSF sequences 

(Appendix 3). As expected, this screen found RELL1/2 and NRH2 as ECD-truncated RELT and 

p75NTR homologs, respectively. Interestingly, this BLAST screen identified two novel ECD-

truncated TNFRSFs lacking the CRD cluster within human proteome investigations (NP_ prefix 

in NCBI Protein; Appendix 3). These included an ECD-truncated homolog of CD27 

(NP_001036029.1) (636–645) and Fn14 (NP_001155218.1) (646–655) (Appendix 3). Therefore, 

humans may express a diverse set of ECD-truncated TNFRSFs that consists of a minimum of 5 

curated proteins (NP_ prefix) with other computationally predicted (XP_ prefix) family members 

possible (Appendix 3). Given that ECD-truncated TNFRSFs do not necessarily form homotypic 

complexes with their full-length TNFRSF homolog—as demonstrated by RELL1 interaction 

with p75NTR, DR6 and TROY (Chapter 3) in addition to RELT (488)—we propose that ECD-

truncated TNFRSFs represent a distinct TNFRSF family that may possess broad TNFRSF 
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inhibitor function. We highly encourage the field to explore the physical and functional 

relationships between TNFRSFs and the ECD-truncated TNFRSF family. 

5.3 Analysis of the 29-protein interactome common to p75NTR, DR6 and TROY 

 Given the functional redundancy of p75NTR, DR6 and TROY in nervous system 

development and maintenance, and tumour metastasis (reviewed in sections 1.4-1.6), it was not 

surprising to discover that these TNFRSF brethren share a common set of interactors (Chapter 

3). Irreversible labeling of interactors with biotin (BioID)—coupled to stringent contaminant 

removal controls and statistical analyses—identified a set of 29 interactors shared by p75NTR, 

DR6 and TROY (the ‘p75NTR-DR6-TROY’ interactome). Though this doctoral thesis focused 

on the RELL1-p75NTR complex, other interactors included: solute carriers (SLCs), soluble N-

ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs), B-class ephrin 

ligands, EFR3 homologs (EFR3A/B), and the pan-neuronal palmitoyl-acyltransferase ZDHHC5. 

The BioID was performed in Flp-In 293 T-REx cell line yet nearly all of the p75NTR-DR6-

TROY interactome members are expressed in the nervous system. The proof-of-concept 

provided by the RELL1-p75NTR data in Chapter 4 indicates that this interactome will stimulate 

new research avenues into TNFRSF-mediated control of nervous system 

development/maintenance. 

 SLCs are diverse family of transmembrane ion transporters that regulate cellular ion 

homeostasis across development (656). Within the p75NTR-DR6-TROY interactome, SLCs 

identified include: SLC12A2 (sodium/potassium/chloride transporter), SLC30A1 (zinc 

transporter), SLC38A1/2 (glutamine transporters), SLC3A2 (amino acid transporter), SLC4A7 

(sodium bicarbonate cotransporter), SLC6A15 (neutral amino acid transporter), and SLC6A8 

(neurotransmitter transporter). These SLCs are all expressed in neural tissues with known 
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functions in neuronal settings. Several of these SLCs have are directly involved in 

neurotransmitter release. Interestingly, p75NTR-/- are deficient in ACh release at neuromuscular 

junctions where the readily releasable pool of presynaptic ACh+ vesicles is strongly reduced 

(657). The coupling of p75NTR to neurotransmitter release via these SLCs—particularly within 

cholinergic neurons—warrants further investigation. 

The chloride channel SLC12A2 regulates the developmental switch of postsynaptic 

GABAergic gradient potentials from depolarizing to hyperpolarizing (658). Postsynaptic GABA-

induced chloride currents are gated by intracellular chloride (Cl-) concentrations, which are 

regulated by SLC12A2 and SLC12A1 functional antagonism (658). SLC12A1 is a Cl- importer, 

whereas SLC12A2 is a Cl- exporter. In the neonate and early postnatal CNS, SLC12A1 

expression is elevated to drive high intracellular [Cl-] causing Cl- efflux (depolarization) when 

GABA receptors are activated (658,659). Later in development, high neuronal SLC12A2 

expression—and SLC12A1 downregulation—lowers intracellular [Cl-] to cause GABA-induced 

Cl- influx (hyperpolarization) (660). Interestingly, proBDNF-bound p75NTR has been shown to 

maintain high intracellular [Cl-] in juvenile neurons via a downstream functional association 

with SLC12A2 (661). Given our finding that SLC12A2 is part of the p75NTR-DR6-TROY 

interactome, we suspect this physical interaction may be relevant within the context of 

developmental chloride homeostasis in central neurons. 

SNARE complexes catalyze the fusion of endosomes to the PM and are critical mediators 

of exosome and neurotransmitter release. Several SNARE complex subunits in the p75NTR-

DR6-TROY are known mediators of MVB-PM fusion including Ykt6 (464) and SNAP23 

(457,465). Given that p75NTR is secreted in exosomes, these interactors may regulate p75NTR-

DR6-TROY exocytosis, which could influence receptor signaling behaviours as is the case for 
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p75NTR (Chapter 2). In parallel, when considered alongside the SLC interactors, there may be a 

larger story in which p75NTR-DR6-TROY regulates neurotransmitter release at a broad level 

that includes SNARE interactions. The Ykt6 and SNAP23 common interactions warrant further 

investigation in the contexts of neurodevelopment and neuronal function. 

Ephrins mediate axon guidance via their cognate Eph receptors. Ephrins are classified as 

A- or B-class on a structural basis. Ephrin-A ligands are anchored to the PM via a 

glycosylphosphatidylinositol (GPI) linkage and lack transmembrane or intracellular domains 

(662). Ephrin-Bs are single-pass transmembrane ligands possessing an intracellular domain 

(662). Ephrin-A and ephrin-B ligands bind EphA and EphB receptors, respectively (662). 

p75NTR has been shown to mediate ephrin-A-dependent axon repulsion via a tripartite complex 

ephrinA-p75NTR-NogoR complex that transduces the repulsion signal (663–665). Moreover, 

p75NTR is required for ephrin-B2-dependent growth cone collapse in sympathetic neurons (595) 

and ephrin-B3-dependent axon growth inhibition in cortical neurons (666). Thus, p75NTR is 

already a known mediator of ephrin signaling in axonogenesis and axon pathfinding. Given that 

two B-class ephrins (ephrin-B1 and B2) were found in the p75NTR-DR6-TROY interactome, we 

suspect that death receptors may play a major role in ephrin signaling in neurodevelopment and 

encourage the field to explore this hypothesis. 

Work of Gibon and colleagues established p75NTR as a negative regulator of excitability 

and persistent firing (PF) in cortical neurons of the entorhinal cortex (581,667)—a neuronal 

electrophysiological property with critical roles in learning and memory (668). Mechanistically, 

proBDNF-bound p75NTR activates PI4K to produce PIP2 downstream which ultimately acts on 

PIP2-sensitive TRPC channels to inhibit excitability and PF (581). However, the mechanism of 

p75NTR-induced PI4K activation remains unknown. Insight into this process may come from 
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the discovery of EFR3 homologs (EFR3A and EFR3B) in the p75NTR-DR6-TROY interactome. 

Palmitoylated EFR3 associates with the PM and recruits the subunits PI4KIIIα and TTC7 to 

assemble the active PI4K complex (669). Given this literature, we propose a hypothesis for 

future investigation that p75NTR may activate PI4K via EFR3A/B recruitment and this activity 

may extend to DR6 and TROY. 

ZDHHC5—a ubiquitous, PM-localized palmitoyl-acyltransferase (PAT) in the nervous 

system—tightly coordinates postsynaptic structure and electrophysiology (670,671). p75NTR 

and DR6 are palmitoylation substrates (672–674) but the PAT(s) catalyzing their palmitoylation 

remains to be identified. Asking if ZDHHC5 mediates p75NTR/DR6 (TROY?) palmitoylation 

will be an interesting topic for future studies.  

 

Conclusions 

 This doctoral thesis investigated signaling mechanisms of the p75 neurotrophin receptor 

(p75NTR): a TNFRSF that functions a major regulator of nervous system development and 

maintenance. In chapter 2, we discovered and characterized extracellular vesicles (EVs) as a 

p75NTR signaling platform. p75NTR+ EVs are highly enriched in p75NTR proteolytic cleavage 

products (p75CTF and p75ICD) and induce expansion events in COS7 cells and DRG growth 

cones; the former requiring downstream engagement of NRAGE in the recipient cell. In chapter 

3, we provide evidence for a shared set of interactors between p75NTR, DR6 and TROY—

TNFRSFs with overlapping function in the nervous system. In chapter 4, we characterized one of 

these shared interactors—the ECD-truncated TNFRSF RELL1—and demonstrated physical 

RELL1 binding to p75NTR inhibits p75NTR targeting to EVs and downstream intercellular 

signaling events. Collectively, these data represent an advancement of our knowledge of 
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p75NTR signaling mechanisms and facilitate new research into how this enigmatic receptor 

regulates neural function in physiological and pathophysiological contexts.  
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Appendices 

All appendices are accessible online at: 

https://drive.google.com/open?id=1Dxp9AdRHNttKCJNHQCREdyryU5fPFKwZ 

 

Appendix 1. RELL1 expression in the P0 mouse brain. Immunoblot detection of RELL1 

protein from P0 CNS lysates, including the: neocortex, hippocampus, cerebellum, whole brain, 

and spinal cord. 

Appendix 2. Excel file of enriched GO terms (cell pathways). Prey list & statistics associated 

with each significant GO term for the p75NTR-DR6-TROY FL interactome. 

Appendix 3. Identification of novel ECD-truncated TNFRSF gene products. Full-length 

human TNFRSF primary sequences were queried against the human proteome using Basic Local 

Alignment Search Tool (BLAST). TNFRSF homologs were identified using a strict E-value 

cutoff of ≤ 10-10. Using the NCBI Protein database, each homolog was characterized according 

to: number of CRDs; ECD length; ICD length; genomic locus; exon count; splice variation 

relative to homologous FL receptor (if applicable); and sequence identity relative to homologous 

FL receptor. ECD-truncated TNFRSFs with successful curation in the literature (NP_ prefix) are 

highlight in green. Computationally predicted proteins lacking experimental validation (XP_ 

prefix) are not highlighted. 

https://drive.google.com/open?id=1Dxp9AdRHNttKCJNHQCREdyryU5fPFKwZ
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