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ABSTRACT (250 words) 

Selective cut-off reporting in primary diagnostic accuracy studies with continuous or ordinal data 

may result in biased estimates when meta-analyzing studies. Collecting individual participant data 

(IPD) and estimating accuracy across all relevant cut-offs for all studies can overcome such bias 

but is labour-intensive. 

We meta-analyzed the diagnostic accuracy of the Patient Health Questionnaire-9 (PHQ-9) 

depression screening tool. We compared results for two statistical methods proposed by 

Steinhauser and by Jones to account for missing cut-offs, with results from a series of bivariate 

random effects models (BRM) estimated separately at each cut-off. We applied the methods to a 

dataset that contained information only on cut-offs that were reported in the primary publications, 

and to the full IPD dataset that contained information for all cut-offs for every study. For each 

method, we estimated pooled sensitivity and specificity and associated 95% confidence intervals 

for each cut-off and area under the curve (AUC).  

The full IPD dataset comprised data from 45 studies, 15,020 subjects and 1,972 cases of major 

depression, and included information on every possible cut-off. 

When using data available in publications, using statistical approaches out-performed the BRM 

applied to the same data.  

AUC was similar for all approaches when using the full IPD dataset, though pooled estimates were 

slightly different. 

Overall, using statistical methods to fill in missing cut-off data recovered the receiver operating 

characteristic (ROC) curve from the full IPD dataset well when using only the published subset. 

All methods performed similarly when applied to the full IPD dataset.  

 

 

KEYWORDS: individual participant data; meta-analysis; diagnostic accuracy; bivariate 

random effects model  
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INTRODUCTION 

In clinical practice, screening tests are used to attempt to distinguish between diseased and 

non-diseased patients. The diagnostic accuracy of screening tests is assessed in research studies by 

comparing screening test results to diagnostic classifications based on a reference standard. 

Typically, sensitivity (the proportion of truly diseased patients who test positive on the screening 

test) and specificity (the proportion of truly non-diseased patients who test negative on the 

screening test) are reported.1 

When the screening test is an ordinal or continuous measure, multiple cut-off thresholds 

may be evaluated, and sensitivity and specificity depend on the cut-off used to define a positive 

versus negative screening result. While some studies present diagnostic accuracy results for all 

possible cut-offs, most studies present estimates for either a single cut-off or for a subset of 

possible cut-offs. Some authors report results for a pre-identified “standard” cut-off or set of cut-

offs. Other authors only report accuracy results for a cut-off or set of cut-offs that perform well in 

their study, (e.g., high combined sensitivity and specificity) and do not report accuracy results for 

other cut-offs, even when the other cut-offs are considered standard.2,3  

Different approaches have been used to meta-analyze diagnostic accuracy studies when 

some studies do not provide data for all possible cut-offs. One approach has considered cut-offs 

separately. In this approach, researchers have restricted their meta-analyses to one or two pre-

selected cut-offs4 or to a range of pre-selected cut-offs. For each cut-off meta-analyzed, only results 

from primary studies that published results for that cut-off have been included.5,6 If cut-offs 

reported in some primary studies were selected to maximize accuracy estimates, however, then the 

pooled accuracy estimates in the meta-analyses will tend to overestimate accuracy compared to 

what would occur in practice.2 A second approach involves estimating accuracy based on a single 

cut-off per primary study, even if different studies used different cut-offs.7 This approach would 

amplify biases from selective cut-off reporting and the resulting pooled estimate or ‘summary 

Receiver Operating Characteristic (ROC) curve’ is not useful clinically.8 A third set of approaches 

has considered correlations across cut-offs and modeled all cut-offs of a measure 

simultaneously,9,10 but these methods cannot estimate accuracy reliably under certain missing cut-

off data patterns within primary studies.  

One way to overcome bias due to selective cut-off reporting in primary diagnostic accuracy 

studies is to collect individual participant data (IPD) from researchers who conducted original 

primary studies.2,11 Collecting IPD however, is labour-intensive, as it requires substantial time to 

identify and obtain original data, clarify data-related issues with data providers, and generate a 

consistent data format across studies.11 These patient-level data can then be used to estimate 

accuracy across all possible cut-off thresholds for all studies, but the best way to do this is still 

controversial. Conventionally, this type of data may be analyzed by a series of bivariate random 

effects models (BRM), fit at each cut-off separately. The BRM model is based on a number of 

two-by-two tables coming from independent studies. The BRM requires no assumptions about the 

association between cut-off and sensitivity or specificity. However, analyzing data at multiple cut-

offs separately via the BRM assumes independence when in fact, these analyses are not 

independent: they are based on the same data and ignore within-study correlation across cut-offs. 

Indeed, because of this specific limitation the BRM cannot be considered the “gold standard” 

approach and this has led to the development of new approaches.9,10,12-15 

These new approaches meta analyze published accuracy results only by Another approach to overcome bias due to selective cut-off reporting is to conduct meta-analyses of published accuracy results only, using recently proposed approaches to modelling the 

available subset of data based on assumptions about the distributional form of the test result, and 
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may overcome bias due to selective cut-off reporting. Several approaches have been proposed. 

Steinhauser et al.13,16 recently proposed a novel approach to pooling estimates of sensitivity and 

specificity based on estimating the parameters of an assumed distribution of an underlying 

continuous marker in diseased and non-diseased subjects using a linear mixed effects model. This 

approach allows for differing numbers of cut-offs in each primary study and accounts for the complex dependencies in the data. The approach assumes that the 

underlying continuous marker arises from a logistic distribution and that there is a linear 

association between cut-off and logit(sensitivity) and logit(specificity). Hoyer [ref], following Putter 
[ref], proposed using time-to-event methods for analyzing and comparing the distribution functions. It is 
a one-step approach, accounting for interval censoring for individuals whose values lie between two 

discrete thresholds. Jones17 suggested a related approach to that of Steinhauser et al. using a 

generalised non-linear mixed model, with multinomial likelihoods. The Jones model allows some 

flexibility in the functional form of the association between the cut-offs and logit(sensitivity) and 

logit(specificity), and thereby in the distribution of the underlying continuous marker, via a Box-

Cox transformation. These two approaches also make different assumptions about the nature of 

between-study variability.17 Indeed, because of this specific limitation the BRM cannot be considered the “gold standard” approach and this has led to the development of new approaches including those proposed by Steinhauser and by Jones.9,10,12,15-17 Finally, these approaches are able to accommodate a varying number 

of thresholds per studyThese appro andaches may also be used when information on all cut-offs is available. In this 

work, we consider both the Steinhauser and Jones approaches. 

The overarching aim of the present study was to compare results from applying these 

The overarching aim of the present study was to compare results from applying these approaches 

The overarching aim of the present study was to compare results from applying these approaches 

The overarching aim of the present study was to compare results from applying these approaches 

The overarching aim of the present study was to compare results from applying these approaches 

The overarching aim of the present study was to compare results from applying these approaches 

The overarching aim of the present study was to compare results from applying these approaches 

The overarching aim of the present study was to compare results from applying these approaches 

The overarching aim of the present study was to compare results from applying these approaches 

The overarching aim of the present study was to compare results from applying these approaches 

The overarching aim of the present study was to compare results from applying these approaches 

The overarching aim of the present study was to compare results from applying these 

approaches for meta-analyzing diagnostic accuracy studies in which reported results may be biased 

due to selective cut-off reporting (i.e., meta-analysis of only the published data) to approaches that 

use the full IPD dataset. To do this, we compared a series of approaches to meta-analyze the 

diagnostic accuracy of the Patient Health Questionnaire-9 (PHQ-9) depression screening tool. 

Specifically, we compared results from the Steinhauser and Jones approaches, which use statistical 

methods to account for missing cut-offs and were applied to data for published cut-offs only (as 

would be the case in a conventional, non-IPD meta-analysis), to results from a series of separate 

bivariate random effects models (BRM) that were estimated using IPD at each possible cut-off 

(i.e., using data for all cut-offs for all studies). In addition, to better understand whether any 

observed differences were due to using full versus published data as opposed to differences in 

models (Steinhauser et al., Jones et al., BRM), we compared results when the Steinhauser and 

Jones approaches were also applied to the full IPD dataset with data for all relevant cut-offs for 

every study. 

METHODS 

This is a secondary analysis that uses data from an IPD meta-analysis of the diagnostic 

accuracy of the PHQ-9 for screening to detect major depression.3,18 Detailed methods of the IPD 

meta-analysis were registered in PROSPERO (CRD42014010673), and a protocol was published.3 

Formatted: Font: Italic
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We summarize the methods below. For the present study, the three approaches were conducted 

independently by three different research teams blind to the results from the other approaches. 

Identification of Eligible Studies 

Datasets from articles in any language were eligible for inclusion if they included 

diagnostic classifications for current Major Depressive Disorder (MDD) or Major Depressive 

Episode (MDE) based on a validated diagnostic interview conducted within two weeks of PHQ-9 

administration among participants ≥18 years not recruited from youth or psychiatric settings. 

Datasets where not all participants were eligible were included if primary data allowed selection 

of eligible participants. For defining major depression, we considered MDD or MDE based on the 

Diagnostic and Statistical Manual of Mental Disorders (DSM), or MDE based on the International 

Classification of Diseases (ICD). If more than one was reported, we prioritized DSM over ICD, 

and DSM MDE over DSM MDD. Across all studies, there were only 23 discordant diagnoses that 

depended on classification prioritization (0.1% of participants). 

Search Strategy and Study Selection 

A medical librarian searched Medline, Medline In-Process & Other Non-Indexed Citations 

via Ovid, PsycINFO, and Web of Science from January 2000 through February 7, 2015, using a 

peer-reviewed search strategy.19 We also reviewed reference lists of relevant reviews and queried 

contributing authors about non-published studies. Search results were uploaded into RefWorks 

(RefWorks-COS, Bethesda, MD, USA). After de-duplication, unique citations were uploaded into 

DistillerSR (Evidence Partners, Ottawa, Canada) for storing and tracking search results. 

Two investigators independently reviewed titles and abstracts for eligibility. If either 

deemed a study potentially eligible, full-text article review was done by two investigators, 

independently, with disagreements resolved by consensus, including a third investigator as 

necessary. Translators were consulted to evaluate titles, abstracts and full-text articles for 

languages other than those for which team members were fluent. 

Data Contribution and Synthesis 

Authors of eligible datasets were invited to contribute de-identified primary data. 

Participant-level data included major depression status and PHQ-9 scores. When datasets included 

appropriate statistical weighting to reflect sampling procedures, we used the provided weights. For 

studies where sampling procedures merited weighting, but the original study did not weight, we 

constructed appropriate weights using inverse selection probabilities. The same sampling 

weighting was used in all analyses presented.  

Data Used in the Present Study  

In addition to the inclusion and exclusion criteria described above, we further required that 

included studies for this analysis published diagnostic accuracy results for at least one cut-off 

threshold, since the purpose of the present study was to compare methods of estimating results 

with published data versus IPD. Therefore, we did not consider any datasets that we had retrieved 

in the IPD project but for which no published data existed. Similarly, we did not consider any data 

from published studies for which the IPD could not be retrieved. For the eligible data, we 

constructed a dataset comprised of 2 x 2 tables (true positives, false positives, true negatives, false 

negatives) for only published cut-offs for each study, and we refer to this as the published dataset. 

We refer to the dataset that included results for all cut-offs for each eligible study, rather than just 

published cut-offs, as the full IPD dataset. 

Ethical Approval  

This study involved secondary analysis of anonymized previously collected data. As such, 

the Research Ethics Committee of the Jewish General Hospital declared that this project did not 
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require research ethics approval. For each included dataset, the authors confirmed that the original 

study received ethics approval and that all participants provided informed consent. 

Differences Between IPD Dataset, Primary Datasets and Published Results 

For some studies, data in the published dataset and full IPD dataset used in the present 

study differ from the data included in the originally published primary study reports. First, we 

applied the inclusion criteria for the main IPD meta-analysis to all subjects consistently. That is, 

in some primary studies, only some participants met the inclusion criteria for the main IPD meta-

analysis. As an example, we required administration of the PHQ-9 index test and reference 

standard within a two-week period and only included participants aged 18 or older recruited from 

non-psychiatric settings. For some primary studies, we included participants who met these 

criteria, and excluded participants who did not. Second, we used one consistent outcome 

definition: major depression. Some primary studies reported accuracy results for depression 

diagnoses broader than major depression, such as “major + minor depression” or “any depressive 

disorder.” We restricted our depression variable to major depression diagnoses as the reference 

standard diagnosis. Third, for studies where sampling procedures merited weighting, but the 

original study did not weight, we constructed appropriate weights using inverse selection 

probabilities. This occurred, for instance, when all patients with positive screens, but only a 

random subset of patients with negative screens, were administered a diagnostic interview. Fourth, 

as part of our data verification process, we compared published participant characteristics and 

diagnostic accuracy results with results obtained using the raw datasets. In cases where primary 

data that we received from investigators and original publications were discrepant, we identified 

and corrected errors in consultation with the original primary study investigators.  

For the published data set, after applying the above exclusions and corrections, we 

estimated sensitivity and specificity for the cut-offs that were reported in the primary studies.  

Statistical Analyses 

First, to provide a baseline for what is often done in conventional meta-analyses, we 

estimated pooled sensitivity and specificity by applying the bivariate binomial-normal random 

effects model (BRM), similar to that of Chu and Cole20, as described in Riley et al.,20-23 to the 

published dataset for cut-offs 5-15 separately. The PHQ total score ranges from 0 to 27. A cut-off 

of 10 is generally used to classify someone as possibly depressed, requiring further investigation. 

While we used data from all cut-offs in the modelling process, we only present results for cut-offs 

from 5-15 as we believe these represent a range of potentially clinically useful cut-offs. For each 

cut-off, pooled sensitivity and specificity were estimated using data from only the studies that 

published diagnostic accuracy results for the cut-off.  

Second, we addressed our main objective, which was to compare three approaches to 

estimating diagnostic accuracy in the context of missing outcomes for some cut-offs in published 

results: (1) the BRM with the full IPD dataset; (2) the Steinhauser model with the published 

dataset; and (3) the Jones model with the published dataset.  

Third, to elucidate whether differences in results may have reflected differences in 

modelling approaches, rather than in use of the published dataset versus the full IPD dataset, we 

compared results obtained when the BRM, Steinhauser and Jones approaches were all applied to 

the full IPD dataset. 

Each approach was applied separately by the 3 different teams blind to the results from the 

other teams. The team applying the BRM to the full IPD dataset (AB, BL, BDT) used the same 

modelling approach that they applied to the published dataset. The teams that applied the 

Steinhauser (GR, MS) and Jones (HEJ) models were initially only provided access to the published 
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dataset and conducted their analyses blind to the full IPD dataset. They were only given the full 

IPD dataset once results from the published dataset had been delivered. 

The BRM is a two-stage random effects meta-analytic approach that models sensitivity and 

specificity at the same time, accounting for the inherent correlation between them and for the 

precision of estimates within studies. As the model is fitted separately at each cut-off, this approach 

does not account for the correlation across cut-offs within the same study, nor does it make any 

assumptions about the shape of the association between cut-off and sensitivity or specificity and 

in fact does not explicitly use cut-off information. The area under the full curve (AUC) was 

obtained by numerical integration based on the trapezoidal rule, and a 95% confidence interval for 

the AUC was estimated via bootstrap, resampling at the study and individual level. 

The Steinhauser approach is a two-stage random effects model.13 At the study level, for 

each observed cut-off, the observed values of specificity and 1 - sensitivity (corresponding to the 

proportion of negative test results for each group of participants) are logit-transformed. For the 

meta-analysis, the resulting values are fitted across studies using a linear mixed effects model. 

For the analyses in this paper we used model DIDS* (“Different random Intercepts and Different 

random Slopes”).13 It is given by 

logit(𝑠�̂�𝑘𝑡) =  𝛼0 +  𝑎0𝑘 + (𝛽0 +  𝑏0𝑘) log (𝑐𝑘𝑡) +  𝜖𝑘𝑡 

logit(1 − 𝑠�̂�𝑘𝑡) =  𝛼1 +  𝑎1𝑘 + (𝛽1 +  𝑏1𝑘) log (𝑐𝑘𝑡) +  𝛿𝑘𝑡 

where 𝑠�̂�𝑘𝑡 and 𝑠�̂�𝑘𝑡 denote the observed values of specificity and sensitivity at threshold 

𝑐𝑘𝑡 in study 𝑘, 𝛼0 and 𝛼1 are fixed intercepts, and 𝛽0 and 𝛽1 are fixed slopes for the disease-free 

and the diseased individuals, respectively. The terms 𝑎0𝑘, 𝑎1𝑘, 𝑏0𝑘, 𝑏1𝑘 denote random intercepts 

and slopes that are assumed to follow a common multivariate normal distribution, reflecting the 

correlation across studies, and 𝜖𝑘𝑡 and 𝛿𝑘𝑡 represent within-study random errors. Each data point 

(i.e., 𝑠�̂�𝑘𝑡 or 𝑠�̂�𝑘𝑡 for all studies 𝑘 and all thresholds 𝑐𝑘𝑡) is weighted with the inverse variance of 

the respective logit-transformed proportion. In contrast to the original implementation13, the 

published R package diagmeta24 explicitly accounts for estimation uncertainty in the first stage. 

This model was selected as it showed the smallest AIC under all models that allowed the 

variance to differ between the groups.13 The model-based distribution functions for non-diseased 

and diseased individuals are obtained by back-transformation of the fixed effects part of the model. 

This also provides a model-based ROC curve and 95% confidence interval. The area under the full 

curve (AUC) is obtained by numerical integration based on the trapezoidal rule.  

The Jones et al.17 approach models the numbers of diseased and non-diseased individuals 

with test results above each reported threshold using (conditional) binomial likelihoods. This is 

equivalent to multinomial likelihoods for the full categorisation of test results in each study 

(number with result < cut-off 1, number with result between cut-off 1 and cut-off 2, etc.). No 

normal approximations are therefore required. A one stage approach is used. The model assumes 

that test results or some monotonic transformation of test results, g(.), (e.g., the natural logarithm) 

has a logistic distribution, in each of the diseased and non-diseased populations: 
g(𝑦𝑖𝑗𝑘)~𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜇𝑗𝑘 , 𝜎𝑗𝑘) 

where 𝑦𝑖𝑗𝑘 is the test result, with i denoting the individual, j=0,1 denoting the disease group, and k 

denoting the study. Here, jk and jk are the mean and scale parameters for disease group j and 

study k. Since g(.) is monotonic, it follows then that: 
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logit(1 − 𝑠𝑝𝑘𝑡) =  
𝜇0𝑘 − 𝑔( 𝑐𝑘𝑡)

𝜎0𝑘
 

logit(𝑠𝑝𝑘𝑡) =  
𝜇1𝑘 − 𝑔( 𝑐𝑘𝑡)

𝜎1𝑘
 

where ckt is the cut-off for t=1, …. Tk.  

The means and log-scale parameters of these distributions are assumed to be normally 

distributed random effects across studies. The ‘summary’ sensitivity and specificity at each 

threshold is estimated by evaluating the equations above at the means of these four sets of random 

effects. Rather than pre-specifying the transformation, g(.), of test results that has an approximate 

logistic distribution, the Jones approach can estimate a Box-Cox transformation parameter λ from 

the data, simultaneously to performing the meta-analysis. For example, a value of λ = 1 

corresponds to the identity function (such that underlying test results have a symmetric, logistic 

distribution) while λ = 0 corresponds to the natural logarithm (such that test results have a log-

logistic distribution). We estimated a separate Box-Cox transformation parameter for the 

depressed and non-depressed populations. The Jones approach was fitted in a Bayesian framework.  

At each step and for each approach, we estimated pooled sensitivity and specificity and 

associated 95% confidence intervals (credible intervals for the Jones approach) for each cut-off, 

as well as the AUC across the full range of possible cut-offs (0 to 27). We compared point 

estimates, confidence interval widths, and AUC between methods and datasets. 

All BRM analyses were run in R (R Version 3.4.1 and R Studio Version 1.0.143) using the 

lme4 package.25-27 The Steinhauser model was implemented in the R package diagmeta (Version 

0.3-124) in the software environment R, Version 3.6.1.26 The Jones model was fitted using Bayesian 

statistical software, WinBUGS.28 Example code for each approach is provided in the Supplemental 

Materials.  

RESULTS 

Search Results and Inclusion of Primary Datasets 

Of 5,248 unique titles and abstracts identified from the database search, 5,039 were excluded 

after title and abstract review and 113 after full-text review, leaving 96 eligible articles with data 

from 69 unique participant samples, of which 55 (80%) contributed datasets (Figure 1). Authors 

of included studies contributed data from three unpublished studies. We excluded 13 datasets for 

the present study that did not publish diagnostic accuracy results for any PHQ-9 cut-offs, leaving 

a total of 45 studies. (See Figure 1). 

Among the 45 studies, 20 (44%) used the Structured Clinical Interview for DSM Disorders 

(SCID), 11 (24%) used the Mini International Neuropsychiatric Interview (MINI), 8 (18%) used 

the Composite International Diagnostic Interview (CIDI) and 6 (13%) used other types of 

diagnostic interviews. 

Description of Included Studies 

Table 1 shows the numbers of studies, subjects and true cases of major depression for the 

full IPD dataset and for the published dataset, for clinically relevant cut-offs 5 to 15. The full IPD 

dataset comprised data from 45 studies, 15,020 subjects and 1,972 cases of major depression, and 

included information on every possible cut-off. When applying the BRM to the published dataset, 

the size of the published dataset varied by cut-off with as few as 8 studies (2,007 participants and 

397 major depression cases) when the cut-off was 14. At the most common cut-off of 10, the 

published dataset included data from 37 studies with 13,375 participants and 1,738 major 

depression cases. The total number of studies in the published dataset was 45. Note that the 
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published data set is a subset of the full IPD data set in that the full IPD has information on every 

cut-off for all eligible studies, whereas the published data includes information only on cut-offs 

which were investigated in the primary studies. (See Table 1). Figure 2 displays observed 

sensitivity and specificity for each cut-off, by primary study, and indicates which cut-offs were 

published for each study, providing an impression of the mixture of study-level distributions of 

PHQ-9 values over all studies. In the Supplemental Materials we present the overall distribution 

of PHQ9 scores in depressed and non-depressed subjects (Figure S1) and fitted distributions for 

each approach when using the published or full IPD datasets (Figure S2). 

Sensitivity and Specificity 

 All sensitivity and specificity results with 95% confidence intervals (BRM and Steinhauser 

approaches) or credible intervals (Jones approach) for clinically relevant cut-offs 5-15 for the 

published dataset and full IPD dataset are shown in the Supplemental Materials for each approach 

(Tables S1-S3). 

Figure 3 compares the BRM, Jones and Steinhauser approaches applied to the published 

dataset with the BRM approach applied to the full IPD dataset. The left-hand panel shows that 

applying the BRM to the published dataset underestimates sensitivity for lower cut-offs and 

overestimates it for higher cut-offs (average absolute difference: 0.06) compared to the BRM with 

the full IPD dataset. Moreover, sensitivity appears to increase with increasing cut-offs for some 

sections of the curve, which is logically impossible. Compared to the BRM applied to the full IPD 

dataset, both the Steinhauser and Jones approaches applied to the published dataset estimate 

slightly lower sensitivity for all cut-offs (average absolute difference: 0.02, range: 0.01-0.03 for 

both approaches).  

The right-hand panel demonstrates that specificity estimated from the BRM applied to the 

published dataset is higher, but much closer to that estimated with the BRM applied to the full IPD 

dataset than sensitivity (average absolute difference: 0.02, range: 0.00-0.07). The Steinhauser and 

Jones approaches applied to the published dataset estimated specificity very similarly to that 

estimated from the BRM applied to the full IPD dataset. 

Figure 4 compares the Jones and Steinhauser approaches applied to the full IPD dataset 

with the BRM approach applied to the full IPD dataset. The Steinhauser approach (blue) estimates 

of sensitivity (left side) and specificity (right side) at lower cut-offs are lower than the BRM with 

the degree of difference decreasing as the cut-off increases. For both sensitivity and specificity, 

the magnitude by which estimates are lower goes from 4% at the lowest cut-off to 0% at the 

highest. The Jones approach (green) generates estimates of sensitivity that are similar to the BRM 

at lower cut-offs but become lower as the cut-off increases. The magnitude by which estimates are 

lower goes from 0% at the lowest cut-off to 4% at the highest. The Jones approach had quite similar 

specificity across the range of cut-offs, with a maximal difference of 3%. 

The Steinhauser approach and the Jones approach produced similar estimates of sensitivity 

when applied to the published vs. full IPD dataset, differing (0.01 to -0.03 for the Steinhauser 

approach; and -0.01 to 0.01 for the Jones approach). For both approaches, the differences were 

larger for specificity. Estimates of specificity were higher applying the Steinhauser approach to 

the published dataset, than for the full IPD dataset, and this difference decreased as the cut-off 

increased (0.05 to 0). For the Jones approach, estimates of specificity were lower when applied to 

the published dataset, than to the full IPD dataset, and this difference decreased as the cut-off 

increased (-0.04 to 0.01). (See Supplemental Tables S3 and S4).  
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Confidence/Credible Interval Width 

Supplemental Figures S3 and S4 present estimated sensitivity and specificity and 95% 

confidence or credible intervals by cut-off, for the BRM, Jones and Steinhauser methods applied 

to the full IPD dataset and published dataset, respectively.  

For the BRM and Steinhauser approaches, for sensitivity, confidence intervals estimated 

using the full IPD dataset were narrower than those estimated using the published data, as expected 

(5.5% and 4.7% narrower, respectively), whereas the credible intervals estimated via the Jones 

approach were of similar width for both datasets (1% average difference across all cut-offs), 

indicating that the inclusion of the additional data increased precision minimally. For specificity, 

confidence or credible interval widths were more similar when using the full IPD dataset or 

published dataset (within 2%, 1% and 1% for the BRM, Steinhauser and Jones approaches, 

respectively).  

When using the full IPD dataset, sensitivity confidence interval widths were largely similar 

between the three approaches and the interval widths increased as the cut-off increased (and 

number of cases decreased) for all approaches.  

ROC Curves and AUC 

Figure 5 compares the ROC curves for the BRM, Steinhauser and Jones methods using the 

published dataset as compared to the BRM on the full IPD dataset. For the published dataset, the 

AUC was 0.90 (95% confidence interval (CI): 0.84, 0.92) for the BRM; 0.89 (95% CI: 0.86, 0.92) 

for the Steinhauser approach, and 0.89 (95% credible interval not available) for the Jones approach. 

The BRM approach applied to the published dataset produced an empirical ROC curve that 

deviated substantially from that obtained when using the full IPD dataset. The Jones and 

Steinhauser methods produced generally similar ROCs as compared to that using the BRM on the 

full IPD dataset, with slight levelling off observed at lower cut-offs, and slightly lower AUCs. 

Figure 6 compares the ROC curves for the three approaches applied to the full IPD dataset. 

With the full IPD dataset, the ROC for the Steinhauser approach was slightly lower at lower cut-

offs as compared to that for the BRM approach. The ROC for the Jones approach on the other 

hand, was a bit lower at upper cut-offs. The AUC for the full IPD dataset was very similar for all 

three approaches: 0.91 (95% CI: 0.89, 0.94) for the BRM, 0.89 (95% credible interval not 

available) for the Jones approach and 0.88 (95% CI: 0.85, 0.90) for the Steinhauser approach. 

Agreeing with what we observed in the IPD, the Jones model fitted to the published data 

only estimated the Box-Cox transformation parameter (λ) to be 0.57, 95% Credible Interval 0.45 

to 0.69 in the non-depressed population, indicating right-skew and 0.82, 95% CI ( 0.50-1.10) in 

the depressed population. Constraining λ to equal 1 (i.e., assumed symmetrical underlying 

distributions) gave very similar results across the cut-offs of clinical interest (not shown). 

 

DISCUSSION 

When attempting to meta-analyze diagnostic accuracy scores, relying only on information 

from cut-offs presented in the original primary studies results in biased estimates of sensitivity and 

specificity at some cut-offs and ROC curves that display logically impossible shapes.2 One option 

to estimate pooled sensitivity and specificity across all cut-offs not biased by selective cut-off 

reporting is to collect IPD, and thus have and analyse information from every study at every cut-

off. A less costly and labour-intensive solution is to account for information from missing cut-offs 

statistically. In this work, we have empirically compared these methods using IPD from 45 studies 

on the diagnostic accuracy of the PHQ-9 depression screening tool. 
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One advantage of the Steinhauser and Jones methods is that IPD are not required. These 

models estimate the sensitivity and specificity across all cut-offs in all studies, regardless of which 

data were reported in the primary studies. As such, our primary comparison was between these 

methods applied to data that would have been collected via conventional aggregate data meta-

analysis to a bivariate random effects model applied to IPD that included information on all 

relevant cut-offs. To clarify which differences were due to data availability versus differences in 

the specifications of the models, we further compared these approaches when applied to the IPD. 

We found that when using data available in publications, using statistical methods to 

estimate accuracy of the PHQ-9 out-performed the BRM applied to the same data. 

The Steinhauser and Jones methods resulted in sensible ROC curves, close to those obtained via 

The 

Steinhauser and Jones methods resulted in sensible ROC curves, close to those obtained via 

the same approaches or the BRM on the full IPD dataset, with only small diversions at low cut-

offs. Confidence (or credible) intervals were on average slightly narrower using the Steinhauser 

and Jones methods than those estimated via the BRM applied to the published dataset: this is to be 

expected, since these modelling approaches ‘borrow strength’ from data relating to other cut-offs. 

When we applied the different methods to the full IPD dataset, we found that the 

Steinhauser method estimated slightly lower sensitivity and specificity at low cut-offs than the 

BRM and that the difference decreased as the cut-off increased (4% at the most for sensitivity and 

5% at the most for specificity). On the other hand, the Jones method estimated slightly lower 

sensitivity at higher cut-offs (4% at the most), and the degree of difference decreased as the cut-

off decreased; the Jones approach estimated slightly higher specificity at lower cut-offs (3% at the 

most), and the difference decreased as the cut-off increased. Overall, the ROC curve estimated via 

the Jones method was quite similar to the ROC curve estimated via the BRM, with only small 

diversions at high cut-offs, while the Steinhauser estimated ROC curve had larger diversions at 

lower cut-offs. As compared to the BRM, confidence interval widths were narrower at most cut-

offs when the Steinhauser method was used, and much narrower when the Jones method was used. 

This seems intuitive, since these approaches simultaneously model all of the data, whereas the 

BRM approach involves performing meta-analysis separately at each cut-off. 

Steinhauser et al. 13 evaluated their method via a simulation study and found that large 

values of sensitivity and specificity were underestimated, and vice versa. Consistent with their 

findings, we observed lower estimates at low cut-offs for sensitivity when using the Steinhauser 

approach as compared to the BRM on the full IPD dataset, and also that that difference decreased 

as the sensitivity increased. However, for specificity, it was less clear.  

The Steinhauser, Jones and BRM approaches make a number of different assumptions that 

could have resulted in differences in the ROC curves estimated from the full IPD dataset: 

First, the Steinhauser approach starts by assuming that the distribution of the underlying 

continuous marker (here, the ordinal PHQ-9 score) is normally or logistically distributed in both 

diseased and non-diseased persons. While the validity of this assumption in our data is 

questionable, given that non-diseased subjects have a very skewed PHQ-9 score distribution, 

relaxing this assumption (assuming instead underlying log-logistic distributions in both 

populations) did not change results appreciably (not shown). The Jones model assumes that some 

unspecified Box-Cox transformation of test results has a logistic distribution. 

Second, the Steinhauser model’s distributional assumptions correspond to assuming the 

cut-off has a linear association with logit(sensitivity) and logit(specificity). The Jones approach is 

more flexible, assuming only that logit(sensitivity) and logit(specificity) have a linear relationship 
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with some unspecified Box-Cox transformation of the cut-off. In contrast, the BRM does not 

assume any parametric form for these relationships.  

Third, the BRM is based on the binomial distribution, whereas the Steinhauser method first 

transforms estimates of sensitivity and specificity, and then uses a linear mixed model. The Jones 

method is based on the multinomial distribution, the generalisation of the binomial distribution to 

model test result data across more than one threshold. Where individual studies report data at only 

one threshold, the model reduces to binomial distributions. Fourth, the Steinhauser approach 

makes a continuity correction to deal with sensitivities and specificities at 0 or 1. This is not 

required for the Jones or BRM approaches. Fifth, the Steinhauser approach weights studies by the 

inverse variance. The BRM, and Jones approaches do not need explicit weighting. Finally, the 

Jones and Steinhauser approaches account for the correlation between sensitivities and specificities 

across cut-offs within studies, while the BRM does not.  

We do not believe that the different assumptions made by the approaches with respect to 

the complicated dependencies in the data are the source of the differences in the estimated ROC 

curve. Simoneau et al. compared the BRM method to an approach proposed by Putter et al. that 

takes into account the complicated dependence structure empirically in a subset of this data and 

via a limited simulation study.10,29 In that work, they found little impact of within-study correlation 

across cut-offs on bias in the estimated sensitivity and specificity. However, coverage of 

confidence intervals in the BRM was affected. 29 Indeed, the differences in confidence interval 

widths that we observed are likely due to this difference. 

We hypothesize that the most likely explanation for the small differences between 

estimates derived from the BRM vs. those derived from the Steinhauser and Jones methods applied 

to the full IPD is that while the fit of the BRM assumes no parametric association between cut-off 

and sensitivity or specificity, the Steinhauser and Jones methods both maximize a global fit, and 

assume a parametric form between the cut-off and logit(sensitivity) and logit(specificity). In this 

case, the Steinhauser approach results in a curve for sensitivity that may fit better at higher cut-

offs (where most of the data is for those with major depression) but perhaps fits less well at lower 

cut-offs. The Jones approach may do a better job at recovering the true curve because of the ability 

to tailor the transformation to the data.  

Although the BRM model is recommended in the Cochrane Handbook for Diagnostic Test 

Accuracy Systematic Reviews,30 it should not be regarded as the gold standard for analyzing data 

of this type. The BRM model ignores within-study correlation across cut-offs, leading to the 

development of new approaches.9,10,12-14 These novel approaches may be preferable when 

analyzing diagnostic test accuracy data from the full range of cut-offs (sometimes called "full ROC 

curves"). This is because these methods analyze all of the data at once, make explicit use of the 

cut-offs and account for the complex dependencies that exist, although these also come with 

additional assumptions that may or may not be met.  

One limitation of this work is that we compared only three possible approaches. While 

Ssome approaches were not useable given the patterns of missing data in our data set.,9,10,15 the 

approach proposed by Hoyer et al.12 could have been used. HoweverNevertheless, the three data 

analysis teams operated independently, and results for the published dataset were produced before 

access to the full IPD dataset was provided to the Jones et al. and Steinhauser et al. groups. Also, 

we have focussed here on the case of ordinal measurements. In the case of a continuous biomarker, 

the BRM could be used by considering several given cut-offs. For the Steinhauser approach, the 

R package diagmeta24 allows entering ordinal or continuous data at the participant level. The data 

is transformed to study-level data (number of true positives, false positives, false negatives, and 
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true negatives) for each cut-off of interest, or even all observed values. Similarly, the Jones 

approach is easily applicable to continuous measures, by fitting the same model using the 

continuous likelihoods directly. 

This work was based on an empirical comparison of several methods. As such, an 

important limitation is that we do not know the truth. Only a simulation study could address this 

limitation. However, we have applied three different methods to a large, IPD dataset and compared 

the results when the full IPD dataset was used, or when only the subset that included cut-offs that 

could have been collected via conventional aggregate data meta-analysis was used. 

Overall, we have shown that the Steinhauser and Jones methods using statistical methods 

to fill in missing cut-off data recovered the ROC curve from the full IPD dataset well when using 

only the published subset. How best to analyze IPD that include data from every cut-off remains 

unknown: different approaches make different assumptions that may or may not be met in any 

given data set.  

In this work we considered as the full IPD dataset data that included information on every 

relevant cut-off from every study. While this is valuable information that removes bias due to 

selective cut-off reporting, the IPD collected also includes individual patient information such as 

age, sex, and comorbidities, that can be used in important ways. For example, IPD permit the 

evaluation of diagnostic accuracy in key subgroups. Moreover, collecting IPD permitted us to 

standardize eligibility criteria for study participants, restrict our study populations to subjects who 

received the screening questionnaire and diagnostic interview within two weeks of each other and 

to use a consistent outcome definition. All of these may reduce heterogeneity across studies and 

ensure that the most accurate estimates of diagnostic accuracy are obtained. 
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Highlights 

What is already known? 

There are several approaches that might be appropriate to meta-analyze data that consists of 

diagnostic accuracy at several cut-offs per study, when these data may suffer from selective cut-

off reporting. 

What is new? 

We compared the usual approach (fitting separate bivariate random effects models at each cut-

off) to methods that used statistical models to account for information from missing cut-offs. 

Findings 

Using statistical methods to fill in missing cut-off data recovered the receiver operating 

characteristic (ROC) curve from the full IPD dataset well when using only the published subset. 

All methods performed similarly when applied to IPD that included data from every cut-off.  
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