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Abstract 

 

As the impending limits in the development of semiconductor devices – Moore’s law – are 

going to be hit eventually, many computational problems gaining importance in modern societies 

are yet to be solved. The context of two of such problems, one independent from the other, is as 

follows: (i) Today, given the ever-increasing computing power, cryptographic systems rely on true 

random numbers to encrypt large amount of private data and protect secrecy from malicious 

attacks. To generate true randomness, computers, being strictly deterministic machines, must 

obtain entropy from external physical processes, hardly compatible with digital systems. (ii) Due 

to the enormous implications of solving NP complete problems efficiently, e.g., replicating human 

intelligence, such problems have attracted considerable attention and yet, a brute force polynomial 

time algorithm was never discovered in favour of the P = NP statement.  

The research presented here discusses the mathematical principles and state of the art in the 

field of network computing with biological agents, which provides a novel computing model to 

tackle NP-complete problems. Network computing with biological agents, which for convenience 

will be referred to as ‘network computing’ throughout this work, harnesses millions of autonomous 

bacteria (biological agents) to explore a microfluidic network in parallel, where the network 

encodes a problem of choice. Here, the scaling related key technological challenges of a network 

computing device are identified in terms of chip fabrication, readout reliability and energy 

efficiency. The estimated computing time of massively parallel or combinatorially operating 

biological agents is then compared to that of electronic computers when solving instances of an 

NP-complete problem. Finally, the same network-based technology is demonstrated to also 

function as an entropy source generating random numbers out of the stochastic motion of bacteria 

in the network, which proved suitable for the development of a true random number generator. 

Possible weaknesses, solutions and ‘auxiliary’ technologies that, if adopted, would enable the 

device to scale successfully are identified. The novel results obtained provide a road-map to future 

developments and applications in the field of network computing. 
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Chapter 1 

Introduction 
2 

Given the current limitations of silicon-based computing, alternative technologies have 

recently emerged to tackle key computational problems in modern societies. Among them, 

network computing proposes an alternative parallel-computation system in which a given problem 

is encoded into a graph, or network, that is embedded in a nano- or micro-fabricated planar device. 

The network is explored by a large number of independent biological agents to solve the problem 

in a parallel fashion. The research presented here aims to assess the suitability of a network 

computing device to solve two model problems and to effectively scale with the size of the problem 

to be solved. This section is going to (i) discuss current limitations of silicon-based computing, (ii) 

develop understanding of alternative technologies and (iii) layout the architecture and operation of 

the network computing device. 

 

1.1    Limitations of Silicon Based Computing 

This section discusses limitations of modern silicon-based computers from the perspective of 

chip design, size, energy consumption and computing time, which depends on the inherent mode 

of operation of the chip. 

 

1.1.1 The Decode Bottleneck  

Since its conception, the ‘von Neumann’ architecture [1] provided foundation to all future 

generations of modern computers. Its core components are a Central Processing Unit (CPU) 

consisting in a Control Unit (CU) and an Arithmetic and Logic Unit (ALU), a memory segment 

and I/O subsystems. The CU interprets data and instructions fetched from memory and coordinates 

system operations while the ALU aggregates data and performs logical and arithmetical 

operations, such as AND, OR, addition and subtraction. The sequence of instructions decoded and 

executed by the CPU is referred to as instructions stream [1]. The CPU executes every instruction 

stream sequentially. As a distinguishing feature, the von Neumann architecture uses a single 
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memory unit for both data and instructions, as opposed to the Harvard Architecture [2] which 

separates the two in different physical spaces. In general, today we use the term ‘von Neumann 

computers’ referring to computers operating sequentially, hence executing a single sequence of 

instructions; that is the typical computers available today [1]. The performance of von Neumann 

based computers suffers of profound limitations in the ‘one instruction at a time’ execution 

paradigm, also named decode bottleneck. In fact, in a sequential mode scenario, even if two 

operations are recognised as independent, they are still executed in sequence [3]. Improving the 

CPU performance is a complex task. One may start from increasing the clock frequency - measured 

in cycles per seconds (Hz) – and consequently the processor speed. However, technological 

limitations prevent unlimited clock rate increase and instructions are still executed one at a time. 

Moreover, some instructions are more complex than others and take longer execution time: as a 

result, all instructions are limited by the slowest instruction. Today one key feature introducing 

some level of instruction parallelism is pipelining in modern CPUs. A pipelined implementation 

takes advantage of the independent actions needed to execute a single instruction and breaks each 

instruction into subunits to be executed by a different set of circuitries within the CPU [3]. In this 

way, if an instruction takes considerable time, a shorter instruction may start getting executed on 

a different CPU subunit. In theory, a k stage pipelining would provide approximately a speed up a 

factor of k over a non-pipelined system but in practise this is only possible to the extent that one 

instruction does not depend of any ‘nearby’ executed instruction [4]. In real world situations, the 

next instruction may not always be executed in the next clock cycle resulting in various types of 

hazards. Among them, most common are data hazards, when a planned instruction cannot execute 

due to its dependence on data not yet available and branch hazards where, due to a branch in the 

execution path, it is not known which instruction shall be the next one to execute. The existence 

of such hazards makes actual real-world pipeline performance far less than ideal and generates 

even more complications when longer pipelines are used [3].  

 

1.1.2 Multiprocessing 

Other than instruction parallelism, a speed up on computing performance can be achieved with 

data and task parallelism. Such methods involve distributing data and code to execute across 

multiple processor cores. High-performance computing today mainly relies on multi-core scaling 
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as a principal strategy for performance growth, thriving to meet increasingly demanding industry 

standards [5]. It is expected that, given N parallel units and a sequential system running the same 

algorithm with sufficiently large inputs, one can simulate the parallel system on the sequential 

system by dividing its computing time by N. Nevertheless, this assumption does not consider the 

overhead involved to start and orchestrate multiple processors simultaneously. Amdahl's law [6], 

a fundamental tool to analyse performance as a function of parallelism (it provides a theoretical 

speedup of the latency of the execution of a program as a function of the number of processors 

executing it), highlights this constrain. Consequently, a high degree of parallelism may not provide 

any substantial improvement compared to modest parallelization, due to much larger overhead; 

the inherent sequential nature of computer internal operations puts a bound to massively parallel 

computation.  

 

1.1.3 The “Utilization Wall” 

Additional obstacles to improving modern electronics arise from the perspective of energy 

limits.  In 2013, the International Technology Roadmap for Semiconductors (ITRS) [7] highlighted 

the management of system power and energy as the main challenge of current integrated circuits. 

In 1974, Dennard’s scaling theory [8] showed how to proportionally reduce dimensions of 

transistors characteristics to enable subsequent size shrinks and improvements in density, speed, 

and energy efficiency. Since then, every year transistor count has doubled, and frequency has 

increased by 40% on a constant chip area. Since Dennard’s law started losing practical relevance 

due to size limitations, sustaining doubling transistors every generation came at an increasingly 

high cost of poor transistors switching speed and energy efficiency [5]. Under this dramatically 

slowing trend, the question of whether multicore scaling will be able to effectively provide 

doubling transistors and sustain performance improvements remains open. According to a detailed 

analysis [5] projecting upper bounds achievable with multicore scaling, regardless of chip 

organization and technology, multicore scaling is power limited and it is only possible if cores are 

slower, simpler and less utilized with each additional generation. According to this view, modern 

CPUs seem to be approaching a ‘utilization wall’ where the power consumption of transistors 

available reduces more slowly than their size, which is subjected to Moore’s law [9]. 

Consequently, both transistors energy and size concerns are putting a strict limit to the future 
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manufacturing of modern integrated circuits. Such alarming perspective encourages research in 

alternative hardware and technologies.  

 

1.1.4 New Boundaries: Information and Complexity 

In addition to aforementioned limitations concerning energy, time, space and design, current 

electronics have proven unsuitable to tackle increasingly central problems in modern societies, 

hence highlighting new boundaries. The computation of non-polynomial (NP) time problems in 

polynomial time and the generation of truly random numbers are among them. Within the space 

of existing limits to computation, solving NP problems and generating true random number extend 

across dimensions of time, space, information and complexity [9].  

 

1.2.   NP-complete Problems  

This section introduces NP-complete problems and their importance. It discusses existing 

attempts of alternative technologies, i.e. DNA, quantum and microfluidic computing, to develop 

polynomial bound algorithms of an NP-complete model problem. 

 

1.2.1 Definition and Importance 

To appreciate the principles of complexity theory, one must understand how to measure 

execution time of a computer algorithm. Such evaluation of running time, or time complexity, is 

computed with respect to the input length. In asymptotic analysis [10], which analyses the limiting 

behaviour of algorithms, the worst-case analysis is made with respect to the longest input length 

among all possible inputs, while the average case analysis with respect to the average input length. 

An estimation of asymptotic bound is given by the big-O notation which only considers dominant 

terms and disregards constant factors. For instance, given that an algorithm takes time 𝑓(𝑛) =

𝑂(𝑛2) + 𝑂(𝑛) which is indeed a function of the input size 𝑛, 𝑂(𝑛2) being the dominant term on 

𝑂(𝑛), the expression is equivalent to 𝑓(𝑛) = 𝑂(𝑛2). Bounds of the form 𝑛𝑐 for 𝑐 greater than 0 

are called polynomial bounds and those of the form 2(𝑛𝑑) for 𝑑 greater than 0 are called exponential 

bounds [10]. As the big-O notation shows, some problems are computationally harder than others, 
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and among them, some may never be computable by an efficient algorithm. The Turing machine, 

theorized by Alan Turing in 1948 [11], provides a useful model of computation to evaluate 

algorithmic complexity. Informally, the complexity class P (polynomial time) is the set of all 

decision problems that can be solved by an efficient algorithm, meaning they scale with worst-

case polynomial time-complexity on a sequential and deterministic Turing machine. Instead, the 

complexity class NP (non-polynomial time) is the set of all decision problems that can only be 

verified in polynomial time-complexity by a sequential and deterministic Turing machine, and that 

are not practically solvable by any efficient algorithm, meaning they scale, in the worst-case, 

exponentially or worse. In particular, NP-complete problems [12] represent the hardest problems 

in NP, such that, if a polynomial time algorithm is found for any one of the NP-complete problems, 

all problems in NP will also be solvable by a polynomial time algorithm. Theoretically, only a 

nondeterministic Turning machine (NTM) whose execution is defined by an infinite number of 

branching parallel computations, may hope to efficiently compute a problem in NP; such a 

machine does not exist yet.   

  
Figure 1: Turing machine. A deterministic Turing machine performs 𝑓(𝑛) steps in sequence. A 

non-deterministic Turing machine performs 𝑓(𝑛) steps in parallel branches corresponding to 

different possible computing paths. An end state over a given decision problem may be accepted 

or rejected. 

 

A decision problem is assigned a complexity class based on the fastest known algorithm which 

can solve it.  Therefore, one may hope to discover faster algorithms to assign problems in NP to 
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P. Certainly the P class is contained in NP, but the possibility of whether every problem in NP is 

also in P has never been proven. The two possible alternatives are illustrated in Figure 2. If ever it 

would be found that P = NP holds true, implications on our society would be enormous: suddenly, 

we would solve NP complete problems such as the Subset sum, the Travelling salesman and the 

Satisfiability problem [13], we would be able to compute an explosive number of combinations in 

a considerable forward time e.g., accurately forecast weather, we would be able to understand 

creativity and truly replicate human intelligence [14].  

 
Figure 2: P vs NP problem. Simplified diagrams of the two possible scenarios, naming where 

P≠NP and where P=NP, are shown with the respective implications of each case.  

 

1.2.2 DNA Computing and NP-complete problems 

With existing evidence of the limitations of sequential computers, novel paradigms of 

computation have emerged. In 1994, Leonard Adleman [15] proved the possibility of computing 

with individual molecules [16]. Inspired by Richard Feynman’s visionary description of a ‘sub-

microscopic’ computer [17], Adleman solved the NP-complete Hamiltonian path problem [18] 

which asks whether, given a directed graph G with designated vertices 𝑣0 up to 𝑣𝑁, there exists a 

"one-way" path of edges 𝑒0,  𝑒1,…, 𝑒𝑁 such that every vertex is visited exactly once. To generate 

random paths, Adleman assigned a different 20 base long DNA oligonucleotide 𝑂𝑖 to each vertex, 

𝑖. For each edge 𝑖 → 𝑗 in the graph, an oligonucleotide 𝑂𝑖→𝑗  was created that was the 3' 10-mer of 
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𝑂𝑖 followed by the 5' 10-mer of 𝑂𝑗. Oligonucleotides were mixed in a test tube to generate all 

possible paths. Therefore, a series of polymerase chain reactions (PCR) were carried out to 

eliminate paths not beginning with 𝑣0 and ending with 𝑣𝑁 and not having exactly 𝑁 vertices. A 

series of sequential affinity purification steps were performed to eliminate all paths having one or 

more edges appearing more than once; only if a path would remain after pruning, then there would 

exists a Hamiltonian path for the given graph G. Adleman exploited the organization and 

complexity of living molecules and the nature-refined mechanisms of data storage and processing 

in DNA. The first accomplishment of using single molecules to encode independent descriptions 

of a Turing machine and lab protocols and enzymes to induce successive sequences of 

modifications which the machine would ‘execute’, generated excitement. Nevertheless, the benefit 

of massively parallel computation involving 3×1013 copies of oligonucleotides for each edge was 

compensated by practical time-consuming processing and readout operations. The problem was 

solved in 7 days and involved a series of lab steps and considerable human intervention. According 

to Adleman [15], the quantity of DNA used during the in-tube ligation step should be sufficient to 

ensure that a molecule encoding a Hamiltonian path will be formed with high probability if such 

a path exists in the graph. This quantity would grow exponentially with the number of vertices in 

the graph and would soon become larger than the available DNA on earth (3×1013 copies of 

oligonucleotides for each edge correspond to around six hundred million molecules for a 7 edges 

graph already). In fact, using randomly generated paths to discover the existence of a unique 

solution inevitably generates combinations outside the domain of possible paths e.g. 𝑣1 → 𝑣1 →

𝑣1 → 𝑣1 → 𝑣1, considerably increasing the required quantity of DNA molecules. In addition, 

problems concerning accuracy may occur. The synthesis of DNA strands is liable to errors, such 

as mismatching pairs, and is highly dependent on the accuracy of the enzymes involved. Given 

Adleman's small network involving less than 100 possibilities, errors were not a high concern. 

Nevertheless, a fully operational molecular computer performing thousands upon thousands of 

calculations would see the chance of errors increasing exponentially [19].  

DNA has a unique ability to carry out multitasking and perform large number of operations 

simultaneously. Differently from von Neumann computers, DNA computers are stochastic 

machines with high-density storage capacity and parallel processing suitable to run exhaustive 

parallel searches through the solution space of combinatorial problems. Nevertheless, despite the 

progress achieved in DNA computing [20, 21], obstacles concerning expensive and time-
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consuming processing and readout operations, versatility of DNA to solve a wide variety of 

computational problems, difficulty in scaling to large systems, management of errors and 

unwanted hybridization and the requirement of an exponentially large concentration of reactance 

with respect of the size of the problem [20], all prevent DNA-based solutions from outrunning 

silicon-based computers. 

 

1.2.3 Quantum Computing and NP-complete Problems 

As for classical computers, whether quantum computers are able to solve NP-complete 

problems in polynomial time is still an open question [14]. The closest attempt was in 1994 [22], 

when Peter Shor theoretically investigated the quantum computing model by solving the problems 

of finding the discrete logarithms and factorising integers [23, 24]. Generally, such problems are 

considered NP-intermediate on a classical computer, meaning they are in the complexity class NP 

but are neither in the class P nor NP-complete [25]. Nonetheless, the factoring problem has very 

important applications in cryptography, since a polynomial-time algorithm for factoring would 

crack the Rivest–Shamir–Adleman (RSA) public-key system [26]. By demonstrating a quantum 

algorithm taking polynomial-time on log(𝑁) where 𝑁 is the input size [27], Shor unveiled the 

potential of a quantum speed-up over classical algorithms. However, a practical implementation 

of the algorithm relies on a large and scalable number of quantum bits (qubits) and currently 

remains a challenges given the errors introduced by decoherence when a (relatively) large number 

of qubits and gates are used [28]. A recent study [28] proposed a first proof-of-principle 

demonstrating Shor’s factoring algorithm on numbers N = 15, 21 and 35 using five, six, and seven 

superconducting qubits respectively. The least possible number of physical qubits were used and 

the circuits were designed to reduce the number of gates to the minimum. The experimental results 

showed to be in agreement with the theory for N = 15 and 21. However, the experiment succeeded 

for N = 35 only about 14% of the time, due to the cumulative errors coming from the number of 

two-qubit gates becoming too large [28]. The deleterious decoherence, which results from 

interaction between quantum computer and its environment introducing errors, is currently the 

major physical bound to scaling quantum systems [14]. At least theoretically, quantum algorithm 

demonstrated considerable speed up on solving a restricted class of problems of intermediate 

hardness [25], but they may not provide more than a 𝑂(√𝑁), where 𝑁 is the size of the input 
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domain, improvement when solving NP-complete problems, which is still an exponential bound 

[29]. 

 

1.2.4. Microfluidic Computing and NP-complete Problems 

As an alternative to DNA and quantum computing, microfluidic-based computing has 

emerged providing the basis for new types of parallel computation [30]. With the increasing 

complexity of microfluidic systems, it became possible to perform complex processes - logic 

operations and fluid control – directly on the chip. This new hardware-embedded approach exploits 

the simultaneous searching through parallel branches of a microfluidic network lithographically 

defined on the chip, where the network encodes a mathematical problem of choice [13]. A recent 

contribution [30] proposed a 3D network to solve the NP-complete Maximal Clique problem [31] 

for a simple graph with six vertices using fluid flow containing fluorescent beads and a parallel 

optical readout of solutions. Informally, the clique problem asks, for a network G of n vertices and 

p edges, if there are subsets of nodes with k vertices within G that have the property of all their 

members being completely connected to one another (‘cliques’) [13]. The network is composed of 

three layers: each layer contains a reservoir representing one edge p, the wells for all of the 

subgraphs of G that contain the edge, and the channels that connect these wells to the reservoir. 

Quantification of the connectivity of each subgraph was accomplished by measuring the flow from 

reservoirs into wells which contained a uniform suspension of fluorescent beads [30]. The 

microfluidic system proposed is an analog computation device with two potential sources of errors: 

(i) the possible deviation of fluorescence intensities from the expected values due to bias splitting 

of fluorescent beads at each channel branching and (ii) the misalignment between layers that results 

in error in the integrated fluorescence intensities. Even if the aforementioned drawbacks limit this 

approach from scaling, the success achieved suggests broader application for microfluidics in 

computation [30].  
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1.3    The Challenge of Generating True Random Numbers 

This section describes the nature of randomness, the challenge of generating truly random 

numbers and their importance in cryptographic applications. An outline of existing attempts to 

generate randomness using DNA and quantum technologies is provided.  

 

1.3.1 Deterministic vs Non-deterministic Processes   

A von-Neumann digital computer is constructed from a set of switches as logic gates 

(performing AND, OR, Exclusive OR and NEGATION operations) and flips-flops as memory 

devices [3]. Complexity arises from the interconnections of many of these components creating 

complex circuits. The computational process is strictly deterministic [32]. As the signal travels 

through the circuits, it resolves into a digital conversion at the input and output stages. The 

introduction of errors is generally limited and the addition of errors is neither admitted not 

amplified by the computation steps unless “bugs” are present in the program or hardware [3]. On 

one side, strict determinism provides the reliability associated with digital computers but on the 

other, it deliberately suppresses internal dynamics. In a digital computer, all components are 

designed to recognise either the ‘0’ or ‘1’ state, making the concurrent use of digital and analog 

processing impossible [32]. Contrary, the DNA, quantum and microfluidic based models of 

computation do not abide by this kind of determinism, but rather by a weaker form, which is neither 

fully deterministic nor completely random. To better understand this point, consider a general 

model of computation which is deterministic, precisely like the Turing machine model. Control 

laws are defined by a set of rules transforming (mapping via a mathematical operation) a set of 

input variables to output variables. In a deterministic model, given an input signal, a sharply 

defined single output value is returned. Consider the same input being evaluated multiple times 

and the resulted output values being mapped to a distribution where the frequency versus output 

relationship is a Gaussian curve. The distribution will be centred around the most occurred output 

value and in fact it may even resolve to a delta-function if the dispersion is zero i.e., the control 

law is strictly deterministic. Generally, a non-zero dispersion may be attributed to a) errors at the 

inputs and outputs, or b) control laws. In a deterministic system, the latter is not possible. One 

simplified example of deterministic control laws is the Newton’s equation of motion [33], 

according to which, given knowledge of the position and momentum of a particle at a given time, 
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the position and momentum of that same particle at a subsequent time step can be strictly 

determined. Repeated experimental measurements of a particle position yield possible variations 

in the output depending on the chosen boundary conditions or on the level of precision of the 

measurement itself (uncertainty). On the other hand, in non-deterministic models of computation, 

the spread of measured values from the mean of the output distribution is attributed to control laws 

themselves (mathematical operators mapping inputs to outputs) [32]. Examples of non-

deterministic control laws can be observed within the rich repertoire of biochemical reactions 

where inherently random processes are, at some levels, restrained by the free energy minimization 

scheme. It is when the deterministic set of rules dies out that true randomness emerges. To visualize 

it, one can imagine the opposite representation of the aforementioned delta-function strictly 

defined over a single value and having infinite height and infinitesimal width. A truly random 

distribution has in fact equal frequency of occurrences at any given point (it can be approximated 

to a horizontal straight line), since, given a single input value and repeated measurements, the 

resulted output values are completely unpredictable and can take any of the possible values with 

equal probability. 

 

1.3.2 Randomness in Cryptography 

The strict determinism inherent in modern electronic computers is a fundamental limit for the 

purpose of generating random numbers. As discussed, true randomness is not computable by a 

deterministic algorithm and can only emerge out of stochastic processes. Random values have 

wide range of applications in network security, digital communication, computer simulations, 

statistical sampling [34] and, in particular, they are a key requirement for building secure 

cryptosystems. Cryptographic protocols rely on the generation and use of secret encryption and 

decryption keys that must be unpredictable to potential attackers and, for this purpose, true 

randomness is a unique and essential feature [35]. To be considered truly random, a secret key 

must have the following properties: a) each number must be statistically independent from the 

previous and, given each number in the sequence, a particular value is not more likely to follow 

than all other possible ones, b) numbers in the sequence must follow a uniform distribution and 

must have the same frequency of occurrence and finally c) numbers in the sequence must be 

unpredictable, both in terms of backtracking and predicting future values [36].  
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1.3.3 DNA-based True Random Number Generators  

Given their digital nature, electronic computers are hardly compatible with external, entropy-

providing physical processes. Such incompatibility is making random numbers expensive and less 

available. True random number generators (TRNG) are inevitably non-deterministic systems 

requiring a hardware component to sense entropy in the environment and turn it into non-

deterministic numbers [36]. The DNA computation model is endowed with such property of non-

determinism and its control laws generate stochastic biological processes and dynamics. The 

random construction of DNA oligonucleotides sequences [37] and the DNA molecular motion 

behaviour [34] have been proposed as sources of noise, or entropy. At present, DNA-based RNG 

approaches were able to successfully generate random sequences, but on the down side, current 

limitations of DNA technologies including the considerable human intervention, the expensive 

production of large amounts of DNA and the time constraints required to process and read 

oligonucleotide sequences [37], prevent such methodology from scaling and providing large 

amount of data in a fast and automated fashion.  

 

1.3.4 Noise-based True Random Number Generators 

A stochastic source worth considering is noise, obtained out of physical systems. Noise-based 

TRNGs are built to periodically sample analogue voltage and compare it to a certain pre-defined 

threshold: if higher, then “1” is generated, otherwise “0” [38]. Noise-based TRNGs face a variety 

of problems that make them difficult to prove effective [39]. They often produce very small voltage 

that requires the use of strong amplifiers which in turn introduce further deviations and non-

linearity and can be interfered for cryptographic attacks. The sampling and digitizing procedure 

are also disturbed by the time-consuming process of fine tuning the threshold, which is one of the 

major challenges to ultimately maintain probabilities of 0s and 1s to be roughly the same for 

maximal entropy [39]. In addition, most types of noise sources are exposed to some long range, 

motion-induced correlations of quantized electric charge in conductors [40]. 
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1.3.5 Quantum Random Number Generators 

Control laws orchestrating many physical processes of quantized matter are probabilistic from 

a classical perspective. Random numbers can be generated through the fact that observing the state 

of a particle (measuring which leads to a state collapse of the particle wave function) while in 

superposition gives a true 50/50 outcome (qubit value 0, 1) [41]. This concretely random output 

for the value of the single bit can be used to build integers comprised of larger numbers of bits. 

This process is known as a Quantum Random Number Generator (QRNG) [42]. QRNGs use 

photon counting [43], vacuum fluctuation [44], phase noise of laser [45, 46], Raman scattering 

[47], particle arrival times [48, 49], branching path superposition [50] and generally exploit optical 

and non-optical quantum phenomena as sources of randomness [51]. Among the cited approaches, 

common challenges include unstable bias being sensitive to temperature variations and only 

mechanically adjustable [39], correlations in the final sampling period as discussed with noise-

based TRNGs, unbalanced detectors and limited single-photon resolving capability [51]. In 

addition, the fundamental problem of measuring time intervals, e.g., photon arrival time, incurs in 

the risk of reducing quantum information into a clocked, correlated classical form [39]. 

 

1.4    Introduction to Network Computing 

Combinatorial computational problems i.e., NP-complete problems, which cannot be solved 

efficiently by sequential electronic computers, ask for the development of alternative, massively 

parallel computing technologies. While a number of such technologies have been proposed, 

including quantum and DNA computation, none have scaled so far, due to noise, errors and various 

technological challenges. In a recently introduced approach [52], the autonomous motions of 

molecular-motor driven cytoskeletal filaments inside microfluidic networks designed to encode a 

small instance of an NP-complete problem, were harnessed to search a large candidate solution 

space in parallel. The proposed proof-of-concept was demonstrated solving an instance of the 

subset sum problem (SSP) which asks whether, given a set 𝑆 = {𝑠1, 𝑠2, . . , 𝑠𝑁} of N integers, there 

exists a subset of S whose elements sum to a target integer, T [13]. Exploring all possible subsets 

to find all subsets sums requires testing 2N different combinations. Figure 3 demonstrates the 

operational functionalities of the device and the network geometry encoding the SSP. Biological 

agents enter the network from the top and swim downwards towards the bottom exits. The network 
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is comprised of ‘split junctions’, designed to let agents take any of the two possible directions with 

50/50 chance and ‘pass junctions’ designed for agents to continue on their straight path. The size 

of the SSP network is determined by (i) its unit cell size, (ii) the number of elements in the set S 

and (iii) the compactness of the series, i.e., the relative distance between the numbers in the set 

[13], which here was chosen to be the prime numbers series. Each agent represents an independent 

unit of computation having its internal state updated when moving between junctions; turning left 

at a junction corresponds to adding a 1 to its internal state, while turning right corresponds to 

adding a 0. Each exit is numbered with the corresponding number of diagonal steps required to 

reach it. Each network path maps to one of the 2N possible solutions. By not visiting ‘incorrect’ 

exits (Figure 3 - magenta), agents automatically exclude erroneous paths, i.e., incorrect solutions 

of the problem. The final result is extracted based on the visited exits.  

 
Figure 3: The chip layout and operation. The agents enter the network from the top-left corner. 

Filled circles represent split junctions where it is equally probable that agents continue straight 

ahead or turn. Empty circles represent pass junctions where agents continue straight ahead. Moving 

diagonally down a number of split junctions corresponds to adding that integer (numbers 2 and 9 

in the yellow path example). The exit numbers correspond to the target sums T (potential solutions) 

represented by each exit; correct results for this particular set {2, 5, 9} are labelled in green, and 

incorrect results (where no agents will arrive) are labelled in magenta.  

The development of the stochastic computational device just described laid down the 

fundamental research case addressed in this work. This research aims to assess whether such 
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device will be able to scale, solve other problems and potentially compete with electronic 

computers. Compared to other approaches [30], the device benefits of the self-propelled motion of 

myosin II and kinesin-1 molecular motors which eliminates the need of external forces to drive 

computation. This need inherently prevents other microfluidic approaches from scaling up, 

because the pressures needed to pump fluid through the network become prohibitively large for 

large N [52]. Molecular motors operate in a highly energy-efficient manner. As a result, the 

approach demonstrated consumes orders of magnitude less energy per operation compared with 

both electronic and microfluidic computer. Finally, the networks are planar, which solves potential 

engineering challenges associated with building large-scale 3D microfluidics devices [30, 52], and 

comprise of standardized modules, which makes them fully scalable. Among the challenges 

encountered, the single-entry point of the network represented a bottleneck resulting in channel 

clogging and high booting time - cumulative time that all agents take to enter the network given 

their velocity and the channel dimension [52].  

In the next sections, the principle, design, implementation, operation, scaling, challenges and 

future maturation of the aforementioned device are analysed from an engineering perspective. The 

impact that self-replication of agents in the network would have on the booting and total computing 

time of the device, the scaling capability of the device and the possibility of errors arising from 

agents taking prohibited paths at pass junctions (which played a key role in the recognition of 

correct and incorrect results [52]) are projected and discussed. Moreover, this contribution brings 

the concept of a network-based computing device a step forward by proposing an alternative 

network suitable to generate random numbers. Here the device functions as an entropy-providing 

component of a TRNG by exploiting the stochastic motion of E. coli bacteria inside the network.  

The next chapters are organized as follows: Chapter 2 discusses scaling-related engineering 

challenges in terms of fabrication, readout reliability and energy efficiency of the device. The 

proposed guidelines aim to define challenges, but also best practices and methodologies, 

associated with the success of the network computing field. Chapter 3 puts in perspective the 

computing time performance of the device with those of classical and quantum computers solving 

the same instances of an NP-complete problem. Chapter 4 treats the device from the application 

perspective of generating cryptography-secure random numbers. A full model producing random 
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binary sequences with high throughput and reliability is demonstrated. It follows Chapter 5 with a 

general discussion and finally, Chapter 6 with a conclusion.  
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Chapter 2  

Engineering Challenges and Future Road-map of 

Network Computing 
      

     Like other alternatives to sequential computing, network-based computing faces scalability 

issues. It is in fact crucial to identify both engineering bottlenecks blocking its progress and 

possible technological advancements for its success in real-world applications. Consequently, the 

following contribution, published in Interface Focus – The Royal Society Publishing, discusses 

such fundamental issues with respect of the present state-of-the-art in the field. 
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Abstract 

 

 

On-chip network-based computation, using biological agents, is a new hardware-embedded 

approach which attempts to find solutions to combinatorial problems, in principle, in a shorter time 

than the fast, but sequential electronic computers. This analytical review starts by describing the 

underlying mathematical principles, presents several types of combinatorial (including NP-

complete) problems, and shows current implementations of proof of principle developments. 

Taking the Subset Sum Problem (SSP) as example for in-depth analysis, the review presents 

various options of computing agents, and compares several possible operation 'run modes' of 

network-based computer systems. Given the brute force approach of network-based systems for 

solving a problem of input size C, 2C solutions must be visited. As this exponentially increasing 

workload needs to be distributed in space, time, and per computing agent, this review identifies 

the scaling-related key technological challenges in terms of chip fabrication, readout reliability 

and energy efficiency. The estimated computing time of massively parallel or combinatorially 

operating biological agents is then compared to that of electronic computers. Among future 

developments which could considerably improve network-based computing, labelling agents ‘on 

the fly’ and the readout of their travel history at network exits, could offer promising avenues for 

finding hardware-embedded solutions to combinatorial problems.  

 

 

Keywords: Network-based computation, Bio-computation, Combinatorial problems,  

NP-complete problems, Hardware-embedded solutions, Subset Sum Problem 
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2.1.  Introduction  

 

Many combinatorial problems of practical importance, including NP-complete problems, 

appear to require that an extremely large number of possible candidate solutions is explored in a 

brute-force manner in order to discover the actual solutions. Examples of such problems are the 

design and verification of circuits [1], the folding [2] and design [3] of proteins, optimal network 

routing [4], formal reasoning [5] and data clustering in complex networks [6]. When the size of 

these problems grows, the time required to find solutions on sequential computers grows 

exponentially. Consequently, solving these problems by any computer that performs computations 

sequentially, including electronic computers, requires unreasonable computing times, even for 

medium-sized problems, as implied by the NP-Hardness Assumption [7]. Therefore, to solve these 

problems in practice will require efficient parallel computation approaches [8], but those presently 

proposed raise various critical technical difficulties. For instance, DNA computing generates 

mathematical solutions by recombining DNA strands [9, 10], or DNA-static [11] or -dynamic [12] 

nanostructures, but this approach requires impractically large amounts of DNA [13-16]. Quantum 

computing appears to be limited in scale by decoherence and by the small number of qubits that 

can be integrated [17]. Finally, microfluidics-based parallel computation [18] is difficult to scale-

up with the size of the problem due to the rapidly diverging physical size and complexity of the 

devices.  

 

A recently proposed alternative, network-based computation [19], may be capable of 

overcoming some of these scalability problems. A network-based computing device comprises a 

network which is a physical embodiment of a graph representing an instance of a mathematical 

problem. The network-based computation consists in the directed movement of motile physical 

objects – computation agents, through the entries, conduits, nodes, and exits, of the computer 

network. The history of the positions of the exploring agents through the encoded network, if 

decoded, represents the solution to the mathematical problem. Consequently, DNA computing 

does not represent a subset of network-based computation, although it does attempt to solve an NP 

complete problem which does have a classical graph-based representation. The core concept of 

network-based computing is to map the set of all possible solutions of mathematical problems into 

physical structured pathways to encode the ‘content’ of the problems, and then to find the 
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solution(s) by exploring these pathways using a large population of autonomous, self-propelled 

‘agents’, such as molecular motors-driven cytoskeletal filaments [20], or microorganisms [19]. 

This approach was used to demonstrate the principle of solving in a combinatorial manner a small 

instance of an NP-complete problem, the Subset Sum Problem (SSP) [20]. The estimated energetic 

efficiency in this computation approach also was orders of magnitude higher than that of electronic 

computers, suggesting that such a technology might circumvent the heat dissipation which is one 

of the limiting factors in developing ever-larger classical supercomputers [21]. 

 

Like other alternatives to sequential computing, network-based computation, in particular 

using biological agents, faces scalability issues of its own. Consequently, it is imperative to 

identify the engineering bottlenecks blocking the progress and explore possible avenues for 

alternative solutions. This methodological approach is expected to lead to the aggregation of a 

“road map”, similar to the one formally developed by the community of the semiconductor 

industry. To this end, this contribution maps the current state-of-the-art in network-based 

computation, with an emphasis on the use of biological agents, starting with the mathematical 

principles, comparing various types of computing agents, technological challenges related to 

fabrication and readout, and opportunities regarding energy efficiency. Drawing this all together, 

we attempt to identify the advancements in several ‘service technologies’ that are likely to be 

necessary for network computing with biological agents to become useful for real-world 

applications. 
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2.2.   Network-based computing with agents  
 

2.2.1.    Network-based computing: concepts and tentative implementations 

Supposing that specific NP-complete problems can be formulated as graphs [19], it is possible 

to translate these into designs of physical networks, i.e., graphs with dimensions, e.g., distances 

between vertices, widths of the lines connecting these vertices, etc. These designs then can be the 

basis of the fabrication of physical networks, such as microfluidic structures comprising channels, 

nodes, entries and exits. These devices are essentially computer networks that encode the NP-

complete problem of interest, which then “waits” to be solved through the stochastic exploration, 

in parallel, by a large number of independent agents which act as ‘processors’ (pseudo-central 

processing units (CPUs)), each searching independently for a solution, through the process of 

moving from one junction to another ‘downstream’ from the entry towards (one of) the exit(s). 

Essentially, the physical network is not the computer per se, but it is the physical input to 

calculations. Therefore, network-based computing combines the ‘hardware’ design of networks, 

encoding mathematical problems of interest (see electronic supplementary material, SI-1, for the 

mathematical formulation), with the ‘software’ or information-processing capacity of a population 

of agents freely and stochastically exploring this network in a combinatorial fashion.  

 

This staged process, i.e., graph encoding a mathematical problem → design of a physical 

network → fabrication of a microfluidic device → massively parallel exploration of the network 

by a large number of agents, has been recently proposed [20] as a proof of principle for solving 

the SSP. However, this strategy is amenable to other graph-based formulations of NP-complete 

problems.  

 

Various implementations of network computing schemes encoding NP-complete problems, 

using various computational agents, have been attempted. Importantly, all reported 

implementations used solely the combinatorial run mode (see section 2.2.2), i.e., a large number 

of agents exploring simultaneously a physical network encoding the mathematical problem. Some 

of these problems, and their implementation in proofs of principle devices, are reviewed (and 

presented in Figure 4). 
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2.2.1.1.   Subset Sum Problem 

The subset sum problem, a benchmark combinatorial problem [22], asks whether, given a set 

S = {s1, s2, ..., sn} of n integers, there exists a subset of S whose elements sum to a target integer, 

T (Figure 4a(i)). SSP has applications in various fields, especially when optimising resource usage 

under constraints, and the “hardness” of the problem is harnessed in certain cryptographic systems 

to generate encoded messages [23], due to its simple construction and resistance to quantum 

attacks [24]. Also, SSP, or its variant, the knapsack problem [25], finds applications in resource 

allocation for specialised producers, in efficient throughput and congestion allocations despite 

selfish users’ behaviour, in the allocation of bandwidth in communication networks based on user 

requests, and in auctions. A recent review [26] provides an insightful discussion on existing and 

possible applications. 

 

A methodology to solve the SSP that uses biological agents has been proposed [19] and 

recently demonstrated [20], using cytoskeletal filaments, i.e., actin filaments, or microtubules, 

propelled by protein molecular motors, i.e., myosin, or kinesin, respectively (Figure 4a(ii, iii)). 

Interestingly, there have also been proposals for solving SSP by optical computing [27, 28], but it 

was found that the energy required for large problems is prohibitive. 
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Figure 4: (a) Subset sum problem (SSP). (a(i)) Representation of a computation network for the 

subset sum of {1,3,5}. The agents start in the top left-hand corner. The junctions of the paths are: 

filled circles: SPLIT junctions where the agents have a 50% probability of continuing their straight 

path or to turn, or empty circles: PASS junctions where the agents always continue their straight 

path. Moving straight down at a split junction corresponds to not adding an integer to a running 

sum (purple example path). Moving diagonally down at a split junction corresponds to adding that 

integer (numbers 1 and 5 for the blue example path). The actual value of the integer potentially 

added at a SPLIT junction is determined by the number of rows of PASS junctions following that 

particular SPLIT junction (numbers indicated on the left of the paths). Green exit numbers 

represent sums for which a matching subset exists, and red numbers represent sums for which no 

matching subsets exist. (a(ii)) SEM graphs and schematic of pass (left) and split (right) junctions 

[20], where entrance and exit channels are labelled a and 2 respectively for agents travelling on 

diagonal paths, while entrance and exit channels for agents moving in a vertical path are labelled 

b and 1. The yellow dotted lines indicate diagonal paths and blue dotted lines indicate straight 

paths. (a(iii)) Fluorescence micrographs highlighting paths of moving microtubules across a pass 
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(left) and a split (right) junction. Images in the third row show the maximum projection of agents 

in motion. Figures (a(ii)) and (a(iii)) are adapted from Nicolau et al. [20] (Copyright 2016) which 

also presents an animation detailing the function of the SSP computing principle. (b) Clique 

problem (CP). (b(i)) Maximum clique problem (MCP) computed on a given undirected graph G 

comprising nodes n = {A, B, C, D, E, F}. The maximum clique (highlighted in red) results to be 

of size k = 4 with vertices subset {A, B, C, D}. (b(ii)) Schematic of a four-layer microfluidic device 

used in solving an MCP for a graph having three vertices [18]. This three-dimensional microfluidic 

system has reservoirs—where a plug of fluorescent beads is injected—to represent all of the 

possible edges of a graph with three vertices, and wells—where the fluorescent beads are collected 

by a size filter sandwiched between the bottom and the top three layers—to represent all possible 

subgraphs of a three-vertex graph. The arrows in the schematic indicate directions of fluid flow; 

suction (house vacuum) is applied at the waste reservoir to drive fluid flow from the reservoirs 

representing edges to the waste reservoir. (b(iii)) Fluorescence photograph of the actual device for 

solving a three-vertex graph, viewed from the side. Figures (b(ii)) and (b(iii)) are adapted from 

Chiu et al. [18] (Copyright 2001 National Academy of Sciences, USA). (c) Steiner tree problem 

(STP). Out of the possible connection paths between three nodes on an undirected graph, n = {A, 

B, C} a single Steiner point, S joins the vertices with minimum distance. (d) Travelling salesman 

problem (TSP). A representation of the TSP by an undirected graph with designated vertices vin = 

M and vout = S, for which the minimum cost Hamiltonian path is M → N, N → L, L→ C, C → E, 

E → T, T → S with as total cost, C = 11. 

 

2.2.1.2.   Clique Problem 

The clique problem (CP) asks, for a network G of n vertices and p edges, if there are subsets 

of nodes with k vertices within G that have the property of all their members being completely 

connected to one another (‘cliques’). Several formulations of the problem exist, of which the 

maximum clique problem (MCP) is the best-known. The MCP consists in listing all maximal 

cliques that cannot be enlarged by solving the decision problem on whether G contains a larger 

clique than the current size k. MCP asks to determine a complete subgraph of maximum 

cardinality, or maximum vertices [29]. Figure 4b(i) represents the MCP problem for a given graph 

G = (n, p) with n = {A, B, C, D, E, F}. A brute force algorithm exploring all possible solutions, 
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finds out that the set of vertices {A, B, C, D} is a maximum clique of G, and therefore, that the 

maximum k = 4. MCP is notable for its relevance to a large number of applications, e.g., bio- and 

chemo-informatics, coding theory, economics, examination planning, financial networks, 

scheduling, signal transmission analysis, social network analysis, and wireless networks and 

telecommunications. A recent review [29] provides a comprehensive bibliography. 

 

CP has been solved [18] by means of network computing using a multi-layered, 3D 

microfluidics structure (Figure 4b(ii),(iii)), which encodes the MCP for a simple graph with six 

vertices, explored by beads carried by fluid flow. While the calculation and the readout are done 

in parallel, the computing process is biased, as the beads will follow the lowest pressure lines in 

the flow, rather than independently explore the solution space. Also, the power required for 

pumping the fluid in microfluidic channels grows exponentially with the size of the problem, 

resulting in an unreasonable pressure build up [20]. The MCP has also been solved by DNA 

computing [15].  

 

 

2.2.1.3.   Steiner Tree Problem 

The Steiner tree problem (STP), and one of its special cases, the Minimal Steiner Tree Problem 

(MSTP), asks, given a network G comprising n nodes and p edges, and a special subset of those 

edges (usually called terminals), for a tree that contains all these terminals (but which may include 

additional vertices) [30]. As with most NP-complete problems, there are a number of variants, but 

all ask, ultimately, for an optimal interconnect for a given set of objects, subject to a predefined 

objective function. Figure 4c represents the STP problem computed on an undirected graph G = 

(n, p) with n = {A, B, C}. An algorithm searching for the minimum cost connected set that joins 

all the given nodes, eventually decides that the solution lies at a single Steiner points, S.  STP is 

relevant to many applications, e.g., VLSI physical design, FPGA routing placement, 

telecommunication network design, keyword-based selection of relational databases, data-centric 

routing in wireless sensor networks, multicast packing, network topology control, and access 

strategies design for ISP networks. A recent report [31] provides a detailed bibliography regarding 

these applications. 
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STP, in particular the MSTP, has been solved [31, 32] using a slime mould-, i.e., Physarum 

polycephalum-inspired algorithm. It should be noted, however, that solving optimisation problems, 

such as the STP and the traveling salesman problem (see below) using slime moulds does not 

perfectly fit the definition of network computing with agents, because the edges of the graph are 

not pre-determined, and because the slime mould represents a collection of agents, i.e., tubular 

elements, which do not operate independently. 

 

 

2.2.1.4.   Travelling Salesman Problem 

The traveling salesman problem (TSP) is one of the best known NP-complete problems. Given 

a graph such that cities are vertices and the distances between them correspond to the graph’s 

weighted edges, the problem asks for the shortest route (or another performance criterion, e.g. 

lowest travelling cost) between ‘cities’ under the condition that each valid route visits each ‘city’ 

only once. In other words, the problem asks to find the Hamiltonian cycle, being the path that visits 

every node once, at minimum cost. Figure 4d shows an undirected graph G = (n, p) with n nodes 

being the set of cities and p edges being the possible paths. For each new node visited, the total 

cost, C is incremented by the weight, equivalent to the distance travelled to visit the new node. 

The algorithm computes by brute force all possible tours under the initial conditions of start, vin = 

M and finish point, vout = S. Thus, the Hamiltonian cycle of minimum cost is M → N, N → L, L 

→ C, C → E, E → T, T → S with C = 11. A generalisation of the TSP, very relevant for network 

computing with agents, is the multiple TSP [33], which consists of determining a set of routes for 

m salesmen who all start from and turn back to a home ‘city’ (depot). Aside of the obvious 

relevance to traffic and scheduling, TSP is being used in applications as diverse as drilling of 

printed circuit boards, overhauling gas turbine engines, X-ray crystallography, computer wiring 

and order-picking in warehouses. A recent review [34] provides a comprehensive compendium of 

TSP applications. 

 

Despite being the first NP-complete problem to be solved by brute force non-electronic 

computers, i.e., by DNA computing [9], and despite the Hamiltonian graph being, arguably, 

conceptually the closest to a physical network in its native problem form, TSP has not been solved 

by physical network computing using multiple agents, although a multicellular organism, i.e., 
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Physarum polycephalum, has been used [35] to generate an approximate solution of TSP. This 

under-representation of solving TSP by network computing using multiple agents is even more 

surprising as an elaborate mathematical framework exists for the exploration of TSP networks 

using ant colony algorithms [36]. Instead, TSP appeared as an operational problem in running 

digital microfluidics, which needed to be solved by efficient algorithms [37]. The TSP has also 

been solved by optical networks [38], where the agents are essentially photons. 

 

 

2.2.1.5.   Maze solving  

Maze-solving, asks, given a maze (a grid of n x n regularly arranged nodes in which only 

connections between adjacent nodes are permitted), for a path from an entrance point to an exit 

point. Although the classical version is computationally tractable, i.e. requires polynomial time on 

a sequential computer, some versions of maze-solving, such as the simultaneous maze-solving 

problem [39] are NP-complete. Importantly, a great deal of experimental work has been done using 

many different kinds of agents to solve mazes [40-44]. 

 

Maze-solving has been classically used to experimentally assess the optimality of behavioural 

response, or intelligence of many organisms including ants, bees, mice, rats, octopi, and 

humans[45], and more recently by fungi [8, 46, 47], bacteria [48], Caenorhabditis elegans [44] 

and by an amoeboid [41], as well as artificial intelligence-enabled robots. Despite this very large 

body of experimental methodology, and very diverse use of biological agents, and despite the 

demonstration of the efficiency of the space searching algorithms developed by microorganisms, 

e.g. fungi [49], the exploration of mazes by multiple agents has not been used as a means to solve 

any NP-complete problem, e.g., the simultaneous maze-solving problem. 

 

 

2.2.1.6.    Satisfiability problem 

The satisfiability problem (SAT) asks, given an input Boolean formula built from variables 

and constraints using the NOT, AND, and OR operations, if TRUE or FALSE can consistently 

replace the elements of the input formula in such a way that the overall formula evaluates to TRUE. 

Satisfiability is an important NP-complete problem, with extremely varied applications, from 
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ordinary ones, e.g., schedule events depending on the availability of actors and venues, and seating 

assignment consistent with various imposed rules, to critical decisions, e.g., design and verification 

of digital circuits, planning in artificial intelligence with practical use in space exploration and 

industrial microprocessor verification [50]. Despite this importance, and despite often using graphs 

to articulate relevant algorithms, SAT was not yet translated in a design of a physical network 

amenable to the exploration by biological agents.  

 

Sum-up. There is a rather larger body of experimental work attempting to implement various 

solving approaches of NP-complete problems using the framework of network computing, and the 

majority of these efforts use a large variety of biological agents. Despite this interest, there are NP-

complete problems intrinsically encoded as a network, e.g., the TSP, which have not been solved 

by multiple biological agents, whereas others, such as the SAT, e.g., 3-SAT, are waiting to be 

theoretically encoded in designs of networks amenable to the exploration by biological agents. 

 

 

 2.2.2.   Agent run modes for network computing 
 

The exploration of networks encoding combinatorial problems, such as NP-complete 

problems, by motile agents, can be conducted in various run modes. Figure 5 schematically 

presents these operational modes, taking the SSP-encoded network [19, 20] as a benchmarking 

example. The SSP network has a triangular structure with a single starting point (top left corner in 

the panels in Figure 5). The network features split junctions (where traffic can change direction) 

and pass junctions (where traffic crosses without interaction). The exits at the bottom, representing 

the solutions, are connected by a feedback line to the starting point (if agents are to be recycled). 

An agent can, therefore, be considered to be a ‘moving processor’ (a pseudo-CPU).  

 

The sequential run mode. The exploration of the network by only one agent at a time is 

equivalent to a purely sequential processing, even if that individual agent is recycled at the end of 

the computation. The green and purple flippers in Figure 5 represent logical switches at the split 

junctions, which are systematically set before every exploration run by the computing agent, in 
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order to explore the complete parameter space. This run mode is operationally equivalent to the 

computing process in a typical single-core electronic computer system.  

 

The combinatorial run mode. This run mode, demonstrated recently using cytoskeletal 

filaments [20], is essentially a concatenation of two serial processes, i.e., the feeding of the network 

by agents waiting in a queue, which is equivalent to the booting of the computer, and the actual 

computation. If the agents are fed to the computer at a frequency higher than that equivalent to the 

full exploration of the networks by an individual agent, as in the purely sequential run mode, the 

computation progresses in a ‘super massively parallel’ manner, or more appropriately, in a 

combinatorial manner. Indeed, parallel computation processes, including “massively parallel” 

ones, involve the processing of information by a constant, even if large, number of processors 

during the calculation, whereas for the run mode described here, the number of ‘processors’ 

(initially) increases as the computation progresses. Furthermore, the larger the network and the 

feeding frequency, the larger the number of agents (as before, the agents can also be recycled).  

 

As an agent in the queue, before entering the network, does not need to wait for the previous 

one to exit the network (but just to leave the entering point), the computational network 

accumulates agents exploring the network in parallel. As a consequence, however, in this run 

mode, no switches can be operated at the split junctions, and the right- or left-direction of an agent 

in the split junctions is a purely stochastic process, preferably with a 50%-50% distribution, 

induced by a local mirror-symmetric design of the split junction. Consequently, some 

combinations of SSP parameters, i.e., a specific subset sum, may appear multiple times before all 

various combinations have been visited. In order to have a very high probability that all 

combinations are being explored, the number of agent runs has to be enlarged by a factor that can 

be estimated using the formalism of the ‘coupon collector’s problem’ [51]. A major drawback of 

the purely combinatorial mode is that the inefficient, serial ‘upstream’ booting process will limit 

the overall computing time.  
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Figure 5: Possible operation modes in network computing. The top row shows the agents (blue 

squares) running in white rectangles (network tracks). The top three plots in the run mode panels 

show the start time delays for the various run modes. In run mode 1, the second calculation can 

only start after the agent finished its exploration (and, possibly, it has been recycled to the starting 

point). In run mode 2, the second calculation can start as soon as the first agent has left the starting 

point, i.e. there is physical space available for the next agent. In run mode 3, only one agent starts, 

and its ‘off-spring’ agents reach all the endpoints simultaneously, i.e., if all tracks would have had 

the same length. As the SSP network is an asymmetric triangle, the track to exit 0 is the shortest, 

and the track to the full sum exit is the longest. For calculating the expected computation time (see 

further), the latter track length (the longest arch) has been used for run time estimations. 

+0 

+si 

) 
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The total booting time can be calculated as 2C divided by the booting frequency, where the 

power C stands for the cardinality of the set, i.e. how many members the set has (as shown in 

Figure 5). The booting frequency is derived from the agent speed divided by the (average) distance 

between two agents (effective body length). This distance can be chosen as the agent body length 

(assuming head to tail queueing), or, e.g. twice the body length of the agent (assuming a 50% duty 

cycle at the entering point of the network).  

 

The multiplication run mode. Given the inefficient, seriality-based booting of the network 

computing running in combinatorial mode, a fundamentally more efficient strategy would be based 

on multiplication of the agents inside the computing network, i.e., downstream from the feeding 

point. Intuitively, the maximum benefit in computing time will occur if the agents multiply at every 

split junction. For example, bacteria could undergo cell division while exploring the network. If 

this would be possible, at the starting point only one computing agent would be needed, 

multiplying ‘on the fly’, and all the routes and exits are visited by the off-spring of the original, 

‘mother’ agent. However, while the multiplication after each split junction is an ideal option, 

multiplication itself, at a reasonable frequency, would counter the exponential increase in the 

number of possible solutions vs. problem size with the exponential increase in the number of 

computing agents. The consequences on the traffic density in the network depend on the 

compactness of the specific series encoded in the SSP, as will be discussed in section 2.4.1. 
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2.3.   Biological agents  
 

In order to efficiently explore the networks encoding combinatorial mathematical problems, in 

particular NP-complete ones, the computing agents must possess several performance parameters: 

(i) they need to be available in large numbers, to be able to explore the whole ‘solution space’, 

which for problems challenging sequential computers could run in the range of millions to billions; 

(ii) they need to have similar dimensions, to allow standardised designs of the networks, e.g., 

channel widths; (iii) these dimensions are preferably small, in the nanometre or micrometre range, 

to allow a high density of calculations per unit area; (iv) importantly, the agents must be 

autonomously motile, i.e., each agent needs to possess its own propulsion, with higher speeds 

translating into shorter computing times; (v) the agents must not interact with each other, to enable 

an independent search of the ‘solution space’; (vi) while small, the agents must be independently 

distinguishable by a readout system; moreover, preferably the agents should be independently 

identifiable, i.e., each having its own ‘ID’; and (vii) they need to exhibit additional physical 

properties as required by the respective implementation of the computing networks, e.g., non-

adherent to the walls of the microfluidic channels and non-clogging. 

 

The computing agents asked to explore mathematically encoded networks could have an 

abiotic, or biological nature. In the class of abiotic agents, laminar fluids have been used [52] to 

‘solve’ mazes and more recently micrometre-sized abiotic beads have been used as computing 

agents [18] to solve the NP-complete clique problem. However, although the beads would bring 

some stochasticity into the computation, they do not have independent propulsion systems, as they 

are carried by (and follow) the minimum pressure paths of the fluids passing through the 

microfluidic network, thus not exploring comprehensively (and independently) the solution space. 

In principle, the Janus particle technology [53], in particular self-propelling anisotropic beads [54], 

could fulfil many of the desiderata outlined above, but presently their application appears to be 

limited by their size (mm range), generation of micro-bubbles (making them ineligible for 

movement in microfluidic networks) and possibly shorter lifetime of movement. 

 

In contrast to the early development of potential abiotic computing agents, biological agents 

exhibit an extremely large variety – the result of evolution in motile biological systems, from 
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biomolecules to cells and multicellular organisms. Table 1 presents a synthetic comparison of the 

estimated performance of various biological systems attempting to solve SSPs. 

 

Cytoskeletal filaments, which are aggregates of proteins, i.e., actin filaments, or microtubules, 

propelled by protein molecular motors, i.e., myosin, or kinesin, respectively, have the potential of 

fulfilling most of the technical requirements for motile computing agents. Indeed, both systems 

have been used to solve a small instance of the SSP [20]. The small size, reasonable velocity (in 

particular for actin filaments), distributed energy consumption (they require ATP (adenosine 

triphosphate) from the surrounding environment), and availability of elaborate biomolecular 

engineering techniques for tagging, functionalisation and splitting, are among the many advantages 

of cytoskeletal filaments. Presently, their further use as computing agents may be hampered by the 

‘open’ architecture of the microfluidic devices required for easy access and renewal of ATP, 

leading to computational errors due to accidental loss or addition of filaments. Finally, the 

technology for multiplication of filaments, required by specific designs of NP-problem-encoded 

networks, such as SSP, is difficult. 

 

Because network-based computing using biological agents is a relatively new development, 

presently only cytoskeletal filaments have been used in proof of principle bio-computation devices. 

However, unlike cytoskeletal filaments with only two types of agents, prokaryotes, comprising the 

large classes of bacteria and archaea, are vastly more diverse. While usually larger than 

cytoskeletal filaments, some of the bacteria [55] and archaea [56] can move at very high velocities, 

with body lengths per second one or two orders of magnitude higher than that of cytoskeletal 

filaments. Although the optimum in vitro growth conditions are not fully known for many of these 

rapid swimmers, for some, e.g., Escherichia coli, a large body of knowledge exists, including 

regarding a multitude of fully described, genetically engineered mutants. Additionally, 

prokaryotes can live in aerobic, or anaerobic conditions, making them amenable to various growth 

conditions in confined spaces. 
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Table I: Comparison of motility parameters for various biological agents (upgraded from [55], and [19]) 

Biological agents 

Size 
Velocity 

(µm s-1) 

B/s 

(s-1) 

Arch 

(mm) 
SSP259 

One-agent 

run time (s) 

SSP (2,5,9) 

Booting 

frequency 

2BL (Hz) 

Computing 

time (hrs) 

SSPpr C30 

Ref length 

(µm) 

width 

(µm) 

Cytoskeletal filaments 

Actin filaments (myosin) 

Microtubules (kinesin) 

 

2 

2 

 

0.02 

0.06 

 

5 

0.5 

 

2.5 

0.25 

 

0.08 

0.16 

 

16 

320 

 

1.25 

0.125 

 

5.1*106 

5.1*107 

 

[20] 

[20] 

Prokaryotes 

Bacteria 

Pseudomonas aeruginosa 

Chromatium okenii 

Escherichia coli 

Bacillus licheniformis 

Sarcina ureae 

Vibrio comma 

Vibrio natriegens 

Thiovolum majus 

Archaea 

Methanocaldococcus jannaschii 

Methanocaldococcus villosus 

 

 

1.5 

9 

2  

3 

4 

4 

2.5 

15 

 

1.5 

1 

 

 

0.5 

4.5-6 

0.5-1.5 

0.8-1.3 

2 

0.45 

0.4-0.6 

10 

 

0.5 

0.5 

 

 

55 

45 

16 

21 

28 

200 

14 

600 

 

380 

287 

 

 

37 

5 

8 

7 

7 

50 

5.6 

40 

 

253 

287 

 

 

1.6 

15 

1.6 

2.6 

6.4 

1.4 

1.3 

32 

 

1.6 

1.6 

 

 

29 

333 

100 

124 

229 

7 

93 

53 

 

4.2 

5.6 

 

 

18.3 

2.5 

4 

3.5 

3.5 

25 

2.8 

20 

 

127 

144 

 

 

3.5*105 

2.5*106 

1.6*106 

1.8*106 

1.8*106 

2.5*105 

2.2*106 

3.2*105 

 

4.9*104 

4.3*104 

 

 

[57] 

[57] 

[57] 

[57] 

[58] 

[55]   

[59] 

[55] 

 

[56] 

[56] 

Eukaryotes 

Flagellated 

Cerratium fusus 

Euglena viridis 

Monas stigmata 

Gyrodinium dorsum 

Cilliated 

Tetrahymena sp. 

Paramecium sp. 

Fungi 

Neurospora crassa 

Pycnoporus cinnabarinus 

Nematodes 

Caenorhabditis elegans 

 

 

420 

53.3 

6 

32.8 

 

70.4 

213 

 

40 

67 

 

1000 

 

 

15-30 

10-17 

6 

24.5 

 

20 

48 

 

7 

5 

 

80 

 

 

235 

80 

270 

328 

 

500 

1000 

 

0.03 

0.033 

 

350 

 

 

0.56 

1.5 

45 

10 

 

7.1 

4.7 

 

7x10-4 

4x10-4 

 

0.35 

 

 

48 

32 

19 

78 

 

64 

154 

 

22 

16 

 

256 

 

 

204 

400 

70 

238 

 

128 

154 

 

733000 

485000 

 

731 

 

 

0.28 

0.75 

22.5 

5 

 

3.55 

2.35 

 

(7.5 x10-4) 

(4.9 x10-4) 

 

0.175 

 

 

2.3*107 

8.5*106 

2.8*105 

1.3*106 

  

1.8*106 

2.7*106 

  

8.5*109 

1.3*1010 

  

3.6*107 

 

 

[60] 

[60] 

[60] 

[60] 

 

[61] 

[61] 

 

[47] 

 

 

[62] 
Notes: B/s = cell body length/s. Arch = device diagonal (mm). One agent run time (s) for SSP {2,5,9} problem in [20]. Booting frequency for double body length.  

Computing time (hrs) for SSP with cardinality 30 (first 30 prime numbers, SSP without cell division, Coupon Collectors correction). Underlined: High performance. 
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Finally, eukaryotes appear to have an even larger diversity than prokaryotes. However, their 

larger sizes, leading to larger areas required for computation, and their lower velocities relative to 

their body dimensions, translating into excessively long computing times, suggest that eukaryotes 

are unlikely to be serious contenders for efficient biological agents solving combinatorial 

problems. Instead, capitalising on their more complex space searching and space partitioning 

strategies [8, 47], eukaryotes are likely to offer insights into efficient natural algorithms, which 

can be subsequently reverse-engineered [49]. 

 

Sum-up. Network computing can benefit from an extremely large variety in biological agents 

of different nature, i.e., biomolecular, mono-cellular, or multicellular organisms, exhibiting 

various properties relevant to bio-computation, i.e., sizes, velocities, and motility mechanisms. In 

fact, this large variability of parameters makes the choice of biological agents for network 

computing difficult, as many other, less studied parameters, e.g., behaviour in confined spaces, 

could downgrade their expected performance in bio-computation. 
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2.4.   Scaling of networks  
 

2.4.1.    Scaling the computing area and number of agents 

The size of an SSP network is determined by (i) its unit cell size, designed for a specific 

computing agent; (ii) the cardinality of the problem, i.e., the number of elements in the set; and 

(iii) the compactness of the series, i.e., the relative distance between the numbers in the set.  

 

The SSP unit cell size is determined by the geometrical parameters of the computing agents, 

e.g., width, length, and secure distance between two agents. The SSP cardinality determines the 

number of computing agents required to solve the problem, including some additional number to 

offset  possible errors. Consequently, for a given compactness of the series, the size and the number 

of computing agents needed determine the area of the SSP computing system. In principle, a larger 

combinatorial problem requires, by necessity, a larger number of computing agents. However, 

network-based computing, as described before for SSP [19, 63] presents specific advantages, and 

disadvantages, regarding its scalability when compared to other massively parallel biocomputing 

approaches, e.g., DNA computing [9]. Indeed, DNA computing [9] requires an impractically large 

mass of DNA [13], as all the DNA mass needed for the calculation (approx. 2C) must be 

simultaneously present in the reaction step, leaving the ‘pruning’ of all combinations to a sequence 

of post-computation biochemical selection processes. In contrast, in networks-based computation 

of SSP, the exploration of the 2C computations paths is distributed in time and space, by recycling 

of agents. Consequently, network-based SSP calculation will use considerably less mass of agents, 

but at the expense of a much larger computation time. 

 

Presently, network-based computing of SSP assumes [20] that the agents do not perform any 

function other than visiting junctions, and thus calculating various paths in the SSP-encoding 

network. In principle, as discussed further, the agents could perform additional functions, e.g., 

recording the history of their trajectories, and report on this at their exit, or in real time. However, 

this higher technological complexity of the agents, while valuable in accelerating the overall 

calculation, will not decrease the number of agents required to solve the problem, which is 

determined by the SSP cardinality. Moreover, it is possible that additional ‘hardware’ associated 
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with each computing agent will increase their size, thus increasing the overall area of the 

computing system. 

 

 

2.4.2.   Complexity classes 

The SSP specifications (ii) and (iii) mentioned above determine together the total sum of the 

set. The compactness of the series also determines the type of complexity of the SSP network. 

Figure 6 presents the two complexity classes of the SSP, explained using three small example sets. 

 

In Complexity Class I there is only one possible route to every legal exit, and consequently, 

there are only split- and pass junctions active. The series in the set is strongly expanding with the 

cardinality. For this case, the exponential series is shown, displayed in two forms: (i) with 

descending numbers (binary tree); and (ii) with ascending numbers and crossing traffic lines at 

pass junctions, but still with the same number of routes and exits (in compliance with the 

commutative property of addition). 
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Figure 6: Sub-set sum complexity classes I and II explained in terms of split- and join junctions. 

The complexity class I networks {4,2,1} and {1,2,4}, are shown, as well as the complexity class 

II network {1,1,1,1,1,1,1}. (See main text in section 2.4.2 for a detailed description.) 

 

Conversely, in Complexity Class II there are exits that can be reached through multiple routes 

and, hence, there are also join junctions active. The series in the Complexity Class II sets can be 

very compact. For instance, the most compact series possible is Pascal’s Triangle. Tellingly, the 

set for Pascal’s Triangle has cardinality 7, compared to cardinality 3 for the Binary Tree, but 

occupies the same area. The fundamental difference between the two complexity classes, i.e., 

single or multiple routes towards the legal exits, reveals the combinatorial (NP-complete) nature 

of the SSP problem: the solution to the problem goes beyond the discovery of the set of legal exits, 

also discriminating all possible routes towards these exits. 

(a) 

(b) 
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Figure 7: Relative average traffic densities 1/(+1) and 2c/(+1) versus cardinality C in sub-set 

sum networks with total sum , for respectively (a) the combinatorial and (b) the multiplication 

run modes, shown for the most compact series {1,1,1,…, 1} (cf. Pascal’s Triangle) to the airy 

exponential series {1,2,4,8, …., 2c}, and beyond. Note that only the exponential series would show 

constant traffic density in case of the multiplication run mode. 

 

The advantage of the compactness of Complexity II class comes, however, at yet another price; 

Figure 7 presents the relative average traffic density as a function of the cardinality in series with 

various degrees of compactness, for the combinatorial and multiplication run modes. In the 

combinatorial run mode, the traffic density is falling (orders of magnitude) for all series, and the 

bottleneck (risk of traffic jam) is located at the starting point of the network. Conversely, in the 

multiplication run mode, beyond a threshold cardinality value, the traffic density is rising (again, 

orders of magnitude) for most series, resulting in a traffic jam further down the network. Only the 

exponential series would show (with multiplication at the split junctions) a constant traffic density, 

but at the price of an exponentially expanding network size (and consequently also an 

exponentially rising computation time, as will be shown in section 2.5).  

 

 

2.4.3.   Scaling the readout 

Solving SSP by means of network computing requires that the sequence of coordinates each 

and every agent passes through, or, at the very least, the sequence of the junctions it passes by, is 

fully recorded. This means that, until there is a reliable implementation that enables each agent to 

report this sequence, either ‘on the fly’, or at the end of the computation (to be addressed in section 

2.7), the overall movement of all agents needs to be tested and optically recorded, at a precision in 

space and time, which will not permit errors regarding the history of the positions of each agent. 

Consequently, the tracks of all the agents should be captured, preferably, in one optical Field-of-

View (FoV), and at a resolution allowing the identification of individual agents. Alternatively, if 

the overall computing area is too large to be visualised in one FoV, the optical recording needs to 

visit several sectors covering the overall movement, but at a frequency high enough to avoid 

confusion regarding the positioning or identity of the agents.  
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Three traffic scenarios should be considered, discussed in order of decreasing tracking 

complexity: 

i. agents can crawl over- and cover each other in the channels (out-of-plane; z-direction); 

ii. agents can overtake each other only laterally in the channels (in the x-y plane); and 

iii. all agents move through the network channels in singular queues (no overtaking at all). 

Note that channel widths and heights of <2 times the agent widths would prevent overtaking, but 

the risk of clogging is too large, therefore larger channel widths and heights (e.g., four times the 

agent widths) should be allowed in practice. 

 

Obviously, the first scenario cannot be tracked error free, as optical tracking is performed in 

the x-y plane only; if one agent crawls over others, temporarily obscuring them, the tracking 

information becomes unreliable afterwards. Here, agents reporting their own travel history (as 

briefly mentioned above, and as will be elaborated in section 2.7) would be the only way to obtain 

reliable traffic information; this is how –in the end- a debugged large computing system should 

run. The second scenario would need a pixel size smaller than the agent width (and the agent 

length) in order to preserve reliable traffic information when agents pass each other (e.g. on the 

bottom of the channel). 

 

In Figure 8, the expected chip size is shown as a function of the agent width for the prime 

numbers SSP devices for various cardinalities. The horizontal black dashed lines delimit the sizes 

of 4-, 6- and 8-inch silicon wafers – the standards in semiconductor industry. The vertical blue 

bars indicate the agent width for molecular motors-driven cytoskeletal filaments, i.e., actin 

filaments and microtubules, as well as for small (E. coli) and large (E. viridis) microorganisms.  

Because of the competition between resolution and the FoV [64], the whole imaging of the 

computing area requires the employment of the maximum useable pixel size (MUPS) that can still 

resolve individual agents, i.e. the MUPS value should be smaller than the agent width (and the 

agent length). The black crossed arrows indicate the intersection of the largest attainable FoV (as 

a square root) with the minimum attainable pixel size for various optical imaging technologies, i.e. 

their resolution limits. The useable optical range is obtained by the intersection of sqrt(FoV)-

MUPS range with the diagonal black line indicated as ‘unity’. At the point where the top horizontal 
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border meets the ‘Unity’ line, the MUPS value is equal to the total FoV, meaning that only one 

pixel fits in the frame, obviously far from any reasonable application. To fully exploit the frame 

size available, the MUPS value should be as close as possible to the resolution limit. If the spot 

where the blue bars meet a specific diagonal cardinality line, is inside a ‘technologically 

achievable’ sqrt(FoV)-MUPS triangular area, then the corresponding optical technique is, in 

principle, useable for monitoring the computation process using a single FoV. 

Figure 8: Chip size versus agent width and Field of View (FoV) versus Maximum Useable Pixel 

Size (MUPS). The triangular work windows are shown for various microscopy techniques. (See 

main text in section 2.4.3 for a detailed description). Also shown is an example of an enlarged 

work window by image stitching (red cross); the limits of this method are discussed briefly further 

below in section 2.4.3, and in detail in SI-3. 

 

It follows from Figure 8 that actin and microtubule filaments are out of reach for optical 

monitoring, if the agent width should be resolved. The E. coli cell width can be resolved by a high 

resolution optical microscope, but the field of view would not allow more than one unit cell in one 



  
 

42 
 

FoV. For E. viridis, the FoV and resolution of a flatbed scanner would allow the capture of 3x3 

unit cells in one frame. 

 

The third scenario is described in detail in SI-2 and the nomogram in Figure SI-1. It follows 

that a network with cardinality 5 for E. viridis can be monitored by a macro-lens equipped camera, 

and that the cardinality 5 network for E. coli and the cardinality 15 network for microtubules can 

be monitored by a lens-less microscope, all in one FoV, but under the naïve assumption that no 

agents are overtaking each other in the channels. 

 

When the area to be imaged (and monitored in time) exceeds the FoV of the imaging system, 

a powerful option to enlarge the effective FoV is image stitching of cyclic sampled frames. The 

loss of information can be minimised through faster switching speeds, which in turn are limited 

by the mechanical capabilities of the microscope stage. In the SI-3, the possibilities and limits of 

image stitching for our SSP calculation networks are modelled. In the case of high density traffic, 

agent speed and body length determine the sample frequency, and in the case of low density traffic, 

agent speed and junction distance are decisive. In Table SI-I it is shown that in a typical setting 

used to monitor E. coli in the SSP prime numbers network, stitching could indeed be employed to 

image and monitor larger SSP networks. For traffic scenario (iii), at a resolution of 2 µm with a 

10x objective, instead of a cardinality 4 network in one FoV, a cardinality 15 network can be 

monitored in time by (cyclic) stitching of 14x11 frames (shown by a red cross in Figure SI-1). For 

traffic scenario (ii), at a resolution of 0.5 µm with a 100x objective, a cardinality 5 network can be 

monitored in time by (cyclic) stitching of 39x30 frames (shown by a red cross in Figure 8). 

 

One corollary of the above analysis is that, for E. coli, or an agent with similar motility and 

size parameters, the area of a device solving a prime numbers SSP with a cardinality of 30 is 

slightly larger than a 6 inch wafer. As this area cannot be captured in one FoV by any known 

optical monitoring system with the proper resolution needed, the readout would need an array of 

60x60 frames of a lens-less microscope being continuously switched in order to keep track of all 

agents simultaneously. Even if that were technically feasible, the data storage needed would be 

very large. Moreover, from a fabrication point of view, such large chips are very vulnerable to 

fatal errors by dust particles in the lithographic steps. Indeed, one dust particle on a wafer with 100 
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chips lowers the yield from 100 to 99%, but on a one-chip wafer it leads to 0% yield (i.e. 100% 

failure). Alternatively, a purposefully designed and fabricated optical chip, built in the ‘floor’ of 

the computing chip, with pixels smaller than half the channel width (or even better, half the agent 

width), and covering only the actual computing area, is a technologically achievable, albeit non-

trivial solution. 

 

Sum-up. It appears that the scaling of networks, in particular for solving SSP, is the most 

problematic, albeit technological and not fundamental, aspect of network computing with 

biological agents. Indeed, the chip area, which grows with the size of the problem, requires FoVs 

which are not presently available. Alternatively, to limit the explosion of the chip area with the 

size of the problem would require smaller agents, which in turn would require a higher resolution, 

but this would further raise problems for the achievable FoV. Ultimately, a technology that allows 

the agents to report their own travel history (at the exits), would not need optical recording of the 

total network. 
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2.5.   Computing time 
 

2.5.1.   Computing time versus run modes 

In the first instance, the time to solve an SSP depends on the mode of operation of the 

computing agents, the extent of the series, i.e., its cardinality, and the structure of the series of 

numbers. More compact series will result in a smaller computing area and consequently a shorter 

computing time. Figure 9 presents the relationship between the estimated computing times for E. 

coli (Table I) in the three run modes (detailed in section 2.2.2) versus the longest track in the SSP 

chips for four number series (four compactness types: Pascal series, prime numbers, Fibonacci 

series, and exponential numbers) and cardinality (shown as a label in steps of 5 next to the 

calculated points). For a given series and given cardinality, the track length is the same for all run 

modes.  

Figure 9: Run time versus track length as a function of cardinality for sub-set sum networks with 

2 µm track width, 16µm/s agent speed and 2 µm body length (E. coli). A correction factor derived 
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from the ‘Coupon Collectors Problem’ [51] (section 2.2.2) was included to deal with the stochastic 

nature of the parameter exploration in the combinatorial run mode. 

 

As expected, the highest computing times are observed for the sequential run mode, and the 

lowest are observed for the multiplication run mode. The difference in run time between the 

sequential and the combinatorial run modes is small for compact series, but quite large for 

expanding series. Importantly, in the combinatorial run mode, the estimated run times at higher 

cardinality become independent of the compactness of the series, due to the fact that the total 

booting time needed to accommodate large numbers of agents in the network is orders of 

magnitude larger than the time needed to run a single track (compare also the booting frequency 

data in Table I, explained in Figure 5, section 2.2.2). The multiplication run modes for the various 

series are all following the same straight line because, effectively, only one agent starts and the 

off-spring that takes the longest track is monitored, but all are assumed to run with the same average 

speed. 

 

In Figure 9 the sizes of 4, 6 and 8 inch wafers are indicated (by blue arrows) for the possible 

fabrication limits. A network with cardinality 30 would only fit on a standard wafer for the prime 

number (and the Pascal) series. Also indicated, by blue arrows, are time frames. Only the 

multiplication run mode would allow a cardinality 30 network to be run in a reasonable time. 

 

 

2.5.2.   Benchmarking biological agents based network computing with electronic     

computing 

While electronic computers perform computations in a serial manner, they are many orders of 

magnitude faster per operation than it is reasonable to expect from network computing with 

biological agents. Consequently, the immediate scaling question is to what extent an ideal set of 

agent parameters, i.e., size, speed, multiplication rate, which inform the design of the computing 

network, would make network computing using biological agents possibly competitive with the 

electronic computers. In order to have a comparison between the ideal performance of network 
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computing with biological agents, and electronic computers, two sets of simulations have been 

performed. 

 

 At this junction an important distinction must be made when comparing the performance of 

electronic computers with any other alternative computing devices, including the one recently 

proposed for solving SSP [20]. It was argued [65] that SSP has a known solution that runs in O(NT) 

time, and that there are algorithms, e.g., Pisinger’s [66], which can solve SSP very quickly if run 

by electronic computers. However, the alternative computation approaches, including DNA, 

quantum, and networks-based computing, to name a few, propose in the first instance computing 

devices with associated operational procedures, rather new algorithms, which indeed might be 

required to be developed to capitalise on the potential benefits offered by the new computing 

hardware. Consequently, and taking into consideration the tentative or early stage of development 

of the new computing devices, any meaningful comparison of the computing power of electronic 

computers and any new paradigmatic computing device must use comparative algorithmic 

procedures, rather than the most advanced ones, which by virtue of decades long history of 

microelectronics have been solely and specifically created and optimised for sequential electronic 

computers. 

 

On this background, a computer program was designed to solve the SSP by brute force (i.e. no 

efficient ’heuristic’ algorithms have been used) for electronic computers, using emulators of 

various generations of computer chips. To ensure a more conservative approach, the program has 

been coded in C++ to allow the maximum use of computer chip RAM, low-level memory access, 

efficient mapping to machine instructions and flexibility. The program is described in detail in SI-

4. Separately, the operation of a network computer using biological agents, both used before and 

hypothetical, has been simulated for selected agents from Table I, for cardinalities considerably 

larger than presently possible in experiments. The program is described in detail in SI-5.  

 

Figure 10 presents the estimated run times for solving an SSP problem by means of network 

computing [20], with various cardinalities, using (i) biological agents, either cytoskeletal 

filaments, i.e., actin filaments propelled by myosin and microtubules propelled by kinesin, or 

hypothetically, several bacterial agents (exhibiting superior parameters): M. janaschii, which has 
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a high speed, M. villosus, which, due to its small size, calculates faster, V. natriegens, which 

multiplies frequently and -as a reference- E. coli (see Table I), and (ii) various generations of 

computer chips i.e., Intel’s 286, 386, 486 and single core Pentium and a present-day MacBook 

chip. As opposed to all electronic chips, which perform computation in a sequential run mode, the 

simulated computation by biological agents is performed in the combinatorial run mode, for 

cytoskeletal filaments and the chosen bacterial agents, and in the multiplication run mode for the 

latter, assuming multiplication rates reported in the literature; the following doubling times have 

been used: M. janaschii: 74 min., M. villosus: 45 min., E. coli: 30 min., and V. natriegens: 15 min. 

 

Figure 10: Comparison of the computing performance of the electronic computers (bottom-right 

half) and biological computers (top-left half) solving the prime numbers Subset Problem. 

Correction factors for the ‘Coupon Collectors Problem’ and for a 45-55% instead of 50-50% split 

junction distribution were included.  

 

Even a cursory inspection of the computing performance comparison of the electronic and 

network-based computers reveals several evident trends.  
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• As a group, the electronic chips, operating in the sequential run mode, outperform — by a few 

orders of magnitude — the biological ones operating in a combinatorial run mode. Moreover, 

this performance gap remains constant, or increases slightly, throughout the range of 

cardinalities tested. Indeed, even if electronic computers operate in the sequential run mode 

(Figure 5), they also operate at clock frequencies in the order of GHz, whereas the 

biocomputers will operate at typically 0.1 to 10 Hz (Table I).  

• The difference in performance of electronic computers computing SSP, i.e., in [20] which used 

RAM-intensive software (MATLAB), vs. the present study, which inheres from a more 

efficient use of RAM, also reveals the importance of the allocation of chip memory, a perennial 

problem for electronic devices. It is important to observe that eventually any electronic chip 

solving SSP (or any NP-complete problem) will hit an intrinsic “memory wall”[67] when all 

chip memory is used for ever larger problems. Note that for the cardinality at which this 

happens, it will result in a truncation of the black lines in Figure 10 at the right hand side. In 

contrast, and aside from other physical limitations (assessed in the previous sections, e.g. chip 

area, readout), network computing using biological agents should not experience any similar 

“memory wall”. 

• The motility speed of the biological agents appears to have only a secondary, albeit positive, 

effect on the performance of network computing, but by itself it will not be able to make the 

bio-computer outperform the electronic one. Indeed, the speed of the faster biological agent, 

i.e., M. villosus, would need to be raised from its already high value of 287 µm/s three orders 

of magnitude, i.e., approximately 30cm/s, only to catch up with the slowest electronic chip 

tested, i.e., Intel’s 286. On the other hand — and crucially —it is estimated that biocomputers 

operating in the multiplication mode quickly outperform electronic chips, almost independent 

of the clock speed of the latter, as shown in Figure 10.  

 

Sum-up. While some improvement can be achieved, in principle, using faster biological agents 

operating in the pure combinatorial run mode, the computing performance of electronic computers 

will remain unmatched for the foreseeable future. While more analysis would be required to 

explore the possible collapse of performance of (single core) electronic computers for larger SSP 

problems (“memory wall”), a more advantageous avenue will likely be based on the use of 

biological agents running in a multiplication run mode. 
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2.6.   Scaling the energy required for computation 
 

With alternatives to ‘classical’ electronic computers not being fully demonstrated, or most 

likely being in early stages of development, presently only high performance computation (HPC) 

is the closest to tackling large scale combinatorial problems. However, in itself, the scale of 

combinatorial or complex problems of practical importance translates into large amounts of energy 

used, if the computation is performed by sequential electronic computers. For instance, solving 

large complex problems, even if not necessarily combinatorial in nature, would require scaling-up 

HPC to exascale computing, i.e., 1018 floating-point operations/s (Flops) [68]. However, as the 

most powerful supercomputer, Sunway TaihuLight, requires 42 MW of power (an average 

hydroelectric facility generates 57 MW), scaling it to exascale regime would require 450 MW, 

with running costs of US$270 mil./year [69]. Arguably, a similar result regarding energy 

consumption would be obtained for a technical solution involving myriads of smaller scale PCs 

interconnected in a very large computer network, such as a very large ‘computer farm’. 

Consequently, and aside from the difficulty of solving large combinatorial problems, it appears 

that electronic computers are also unsustainable energy-wise. 

 

The computational systems able to solve, in principle, combinatorial problems, can be 

aggregated into three classes (Table II). The most energy-efficient systems are, expectedly, 

molecular computers, of which the most well-known is DNA computing [9], followed by 

numerous variations [70]. Indeed, since in molecular computers, the mathematical operations are, 

actually, chemical reactions, the energy/operation required by DNA computing is the closest to the 

thermodynamic limit calculated elsewhere [71]. At the opposite end of the spectrum considered, 

silicon-based computers, including ‘classical’ HPC and quantum computing, are seven to eleven 

orders of magnitude more energy consuming, per operation, compared to molecular computing 

(and there are two orders of magnitude between the most performant HPC system and an advanced 

quantum computing system). 
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Table II: Energy efficiency of various computing systems 
System Implementation Measure-ment Energy 

J/operation 

Explanations, (sources) 
M

o
le

cu
la

r 

co
m

p
u
te

rs
 Thermo-dynamic 

limit 
Theory 2.90 x 10-22 Thermodynamics [71] 

DNA Estimated 5.00 x 10-20 Thermodynamics [9] 

S
i-

b
as

ed
 

co
m

p
u
ti

n
g
 

Electronic 
Actual 1.65 x 10-10 Sunway TaihuLight [72], [1] 

Actual 5.88 x 10-11 Shoubu system B [72], [2] 

Quantum Estimated 2.00 x 10-13 DWave system [69] 

C
o

m
p

u
ti

n
g
 w

it
h
 n

et
w

o
rk

s 

Microfluidics Estimated 1.29 x 10-12 Beads in microfluidics [18], [3] 

Cytoskeletal 

filaments/mole-

cular motors 

Estimated 4.95 x 10-14 Kinesin/microtubules [20] 

Estimated 2.00 x 10-14 Myosin/actin filaments [20] 

Micro-organisms 

Estimated 1.43 x 10-13 Escherichia coli [4] 

Estimated 2.76 x 10-13 Vibrio natriegens [4] 

Estimated 8.67 x 10-14 Methanocaldococcus jannaschii [4] 

Estimated 1.16 x 10-13 Methanocaldococcus villosus [4] 

Estimated 2.01 x 10-9 Euglena viridis [4] 

 

Notes. [1] Top computing speed for top 500 supercomputers in 2017. [2] Top energy efficiency for top 500 supercomputers in 2017. [3] Pumping 

energy for a chip with d=200nm x L=1000nm, cf. [20]; using capillarity principles will result in considerable lower energy consumption. [4] Energy 

consumption estimated using the general formula for energy consumption in motility of prokaryotes [73, 74] 
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Importantly, the energy consumption for silicon-based computers reported in Table II includes 

only the energy required ‘core phase’, that is, for the section of the workload that undergoes 

parallel execution. It typically does not include the parallel job launch and teardown, which is 

required to run for at least one minute. Consequently, no energy consumption is reported for 

environmental, e.g., cooling, and auxiliary, e.g., lighting, needs. Finally, systems performing 

computing with agents exploring networks present an estimated energy consumption/operation in 

between molecular and Si-based computing, but over a very large range, i.e., between thirteen to 

six order of magnitude higher than molecular computers. As with silicon-based computers no 

energy consumption is estimated other than that for computation proper. Within this class is 

microfluidics-based computation, which relies on beads being pushed, with some level of 

randomness, through networks encoding an NP-complete problem [18] (although it is possible that 

the energy required by microfluidics-based computation could be decreased substantially by using 

capillary-driven flows). The exploration of a network by larger microorganisms, e.g., Euglena, has 

an energy consumption/operation similar to the Si-based computers. However, the use of nano- or 

small micron-sized biological agents, i.e., cytoskeletal filaments [20], or bacteria [73, 74], 

respectively, is estimated to bring the energy consumption/operation one order of magnitude down, 

or similar to that of an advanced, and energy consumption-competitive quantum computing 

system.  

 

Sum-up. The estimated energy consumption per operation for network-based computing using 

micro- or nanometre sized biological agents is in the range of 10-14-10-13 J/operation (and much 

larger for tens of micrometre-sized agents), which is similar to the reported energy performance 

of quantum computation, and three to four orders of magnitude better than present supercomputers. 

Additionally, biological computers would have the advantage of distributed energy consumption, 

in contrast with Si-based computers, including quantum computers. 
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2.7.   Perspectives and future work 
 

The scaling analysis presented above identifies several challenges ahead for the further 

development of network computing using biological agents, taking the solving of SSP as a 

benchmark case. These challenges are either fundamental or related to the underdevelopment of 

the presently available service technologies required. To this end, further areas of research and 

development, as well as under-utilised opportunities, are as follows: 

 

Recording the traffic history on each individual agent 

Unlike SSPs of Complexity Class I (Figure 6), Complexity Class II problems constitute “true” 

combinatorial problems. The consequence is that agents that have taken different routes towards 

the same exit have to be clearly discriminated in order to be able to solve the combinatorial 

problem. To demonstrate, by counter-example, the SSP presented in Figure 5 can be replaced by 

a very fast electronic device, consisting of parallel arrays of switching transistors (Supplementary 

Information, SI-6). This device, which has all the architectural characteristics of a network-based 

computer, but which lacks the capability to differentiate between computing agents, shows the 

correct exits essentially instantaneously, but as the ‘agents’, i.e., the electrons, are ‘anonymous’, 

the routes of the individual agents cannot be discriminated. Consequently, this very fast device is 

not truly able to solve combinatorial problems. The area and the energy needs of this device scale 

quadratically with the total sum in unary coded form, which in turn scales exponentially with the 

regular binary coded representation of numbers used in sequential electronic computers. 

 

Individual bacterial agents in a network can be monitored by video tracking techniques, but 

for higher cardinality problems, the amount of (image) data to be stored and interpreted will rise 

exponentially. For instance, for a cardinality 30 problem, more than 1 billion agents will have to 

be tracked simultaneously. Instead of the troublesome high resolution tracking (in time) of 

identical agents simultaneously, as described in section 2.4.3, one could discriminate each 

individual agent by adding a unique static label (i.e. a label that is not changed during the run time 

of the experiment) and lower down the image capturing frequency. However, still full (video) 

tracking of all the agents would be necessary to retrieve all the routes taken by individual agents. 

For instance, for a cardinality 30 problem more than 1 billion agents with unique labels would be 
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needed – a clear technological impossibility. As there are most probably not enough unique labels 

available, one could try to employ a limited selection of labels to compose binary coded ‘words’ 

(230 words by using 30 labels). For very large networks, however, the process of coding and 

decoding of the labels may constitute in itself an operation rising exponentially in time. 

 

A dynamic labelling system “Tag & Trace”, however, could store the necessary information 

about the route followed by the individual agent, on the agent itself, as shown in Figure 11. At 

every split junction the agent proceeding in the direction associated with the addition of that 

particular number will get a label (a ‘stamp’, or a tag). At the exits, the agents will be interrogated 

which labels have been collected on the route towards that particular exit. In this way, the routes 

of individual agents arriving at joined exits can be discriminated, and combinatorial problems can 

be solved. Although for a cardinality 30 problem still more than 1 billion agents with 1 billion 

label ‘words’ composed of 30 unique labels collected ‘on the fly’ would be needed, the video 

tracking (with the image data explosion and image stitching, described in section 2.4.2) would no 

longer be necessary. 

 

Figure 11: Dynamic tags for solving combinatorial problems in the very small complexity class 

II networks {1,2,3} and {3,2,1}, are shown. (See main text in section 2.7 for a detailed description.) 
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Importantly, when multiplication of agents in the network can be employed to address all 

possible combinations (in linear time), as e.g., in the proposed multiplication run mode, it is 

essential that all labels collected ‘on the fly’ are precisely copied at every multiplication event, or 

otherwise the information about the route -taken so far- is lost. 

Figure 12: Static tags for parallel computation in: (a) a parallel device and (b) a hybrid bio-

electronic device. Additionally, dynamic tags are needed for solving combinatorial problems. (See 

main text in section 2.7 for a detailed description.) 

(a) 

 

(b) 
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If the traffic density rises in compact networks, as shown in Figure 7, and therefore clogging 

may occur, other methods for obtaining massively parallel operations need to be considered. When 

the multiplication of the agents cannot be employed to address all possible combinations, the total 

calculation time can be lowered by parallel processing. 

 

In the combinatorial run mode, the choice of the combinations explored by the agents is a 

stochastic process. Therefore, the total calculation can be performed in a shorter time using 

distribution over multiple identical networks (parallel processing). This can be done on separate 

chips, or by applying parallel traffic in one network. In Figure 12a a parallel subset sum 

computation device is shown, where the agents are applied to various shifted starting points. At 

every starting point, a unique static label is attached to the agents. After running through the 

network, at every exit the labels are checked, and in this way the starting point can be retrieved, 

and the effective exit number obtained. Apart from the static labelling method for enabling parallel 

processing, dynamic labelling is needed simultaneously for solving combinatorial problems. After 

running through the network, at every exit the static and dynamic labels present on each and every 

agent have to be checked ‘on the fly’. 

 

Additionally, when multiplication of the agents cannot be employed to address all possible 

combinations, another option to speed up solving combinatorial problems consists of employing 

the best of two worlds [63]: in Figure 12b a Subset Sum network is displayed with descending 

numbers. A hybrid device could be created by replacing the first part of the network by an 

electronic computer (serial, but high speed) while leaving the rest of the device for the bio-

computer (low speed, but parallel). The agents are applied with shifted entry points calculated from 

the intermediate computation results of the electronic computer, and static labels are applied to the 

agents, in which labels code for the virtual ‘route’ taken so far, as calculated by the electronic 

computer. Apart from this static labelling, the dynamic labelling is again needed in the bio-

computer part of the network for solving combinatorial problems. Likewise, after running the 

biological part of the network, at every exit the static and dynamic labels present on each and every 

agent must be checked ‘on the fly’. 
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Development of new designs of computing networks: 

• While the proposed network computing approach for solving SSP [20] uses a brute force 

method implemented through a physical device, it has been argued [65] that SSP can be 

efficiently solved by efficient software algorithms without the need for alternative elaborate 

hardware. Consequently, SSP is likely to remain a benchmark method testing the prowess of 

various combinatorial computation methods [63], rather than finding other, more tangible 

applications. This limitation demonstrates the need for further approaches for encoding of other 

NP-complete problems in graphs, and subsequently into networks and computation devices, 

with immediate, but not exclusive, examples being the TSP and 3-SAT.  

• The fundamentally new designs will also benefit from further, second order improvements, 

e.g., better area compactness using a 3D architecture of the chip, as proposed for cytoskeletal 

filaments [75], dynamic logical gates, as opposed to the present static pass- and split junctions 

[20], and hybrid electronic/network-based devices [20]. 

 

Biological agents and operation modes: 

• The immediate realisation when contemplating the parameters of biological agents and their 

possible run modes is that, at least for solving SSP via the proposed approach [20], the only 

pathway to achieve a better computing speed than electronic computers is to enable biological 

agents run in the multiplication mode. Indeed, as the chips encoding NP-complete problems 

grow exponentially in some parameter, e.g., area or number of agents, the only option to 

counterbalance this trend is to use another exponential, i.e., multiplication. The multiplication 

of biological agents occurs naturally for microorganisms, but could be achieved, in principle, 

with cytoskeletal filaments too, by hijacking the biomolecular treadmilling.  

 

• Separately, it should be noted that solving SSP by network computing using biological agents 

in the  combinatorial run mode, does not suffer from the scaling limitations regarding the mass 

of agents, which is the major bottleneck in DNA computing [13], where all the DNA mass 

needed for the calculation must be simultaneously present in the reaction step (section 2.4.1). 

In networks-based computation of SSP, the exploration of the computations paths is distributed 

in time and space, by recycling of agents. Consequently, network-based SSP calculation will 

use considerably less mass of agents, but at the expense of a much larger computation time. 



  
 

57 
 

• The strategy of hard-wiring of computing tasks into a physical device should be extended to 

the computing agents. Indeed, presently the agents are passively exploring the allowable paths, 

translating into difficult to achieve tasks for the readout system, but in principle biological 

agents, if appropriately tagged, e.g., using fluorophores responsive to the local environment, 

can perform computing tasks ‘on the fly’, e.g. by recording autonomously the history of the 

visited gates (Figure 11), or by ‘beaming up’ events, as previously proposed for cytoskeletal 

filaments [76, 77]. 

 

Tug of war between area and read-out: 

• The only option for solving large SSPs is to design and fabricate wafer-large optical chips, 

which is in principle achievable with present technology, but at a high cost and with high 

fabrication failure risk. A possible improvement would be to provide the readout, at the 

appropriate resolution, in the network paths only. 

• An alternative would be to switch from an area-based, to an agent-based readout, if as 

suggested above, the biological agents might record their travelling history. This readout 

option is indeed used by DNA computing, with the difference that in the network computing 

case only a smaller number of agents would be interrogated at a time. Also, it is very likely 

that the optical readout, which is fast, would remain the technology of choice. 

 

Energy: 

• The estimated energy consumption per operation is already competitive with electronic 

computers, but there are various opportunities to increase this energetic efficiency. For 

instance, actual measurements of energy consumption, instead of the estimations (Table II) can 

reveal better energetic efficiency, in particular for biological agents belonging to the Archaea. 

• Another energy-related area is the sustainability of computation, rather than its energetic 

efficiency. Indeed, while E. viridis appears to use orders of magnitude more energy than other 

biological agents (Table II), it can use light as a source of energy [78].  
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2.8.   Conclusions  

In brute force computing, for a problem of input size C, 2C solutions have to be addressed, and 

this workload needs to be distributed in space and time: something has to give. The technological 

challenges related to scaling up the size of the problems have been identified in terms of chip 

fabrication, readout reliability and energy efficiency. The necessary computing time of parallel 

operating biological agents has been compared to the electronic single CPU computers. Labelling 

of biological agents ‘on the fly’ with accompanying readout of their travel history at the exit, seems 

a promising new development avenue for tackling combinatorial problems. 
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Chapter 3 

Scaling Network Computing 

    Given the need to evaluate the scaling of network computing with biological agents, the 

computing times for solving SSP networks of increasing sizes were benchmarked against those of 

classical and quantum computers solving the same SSP instances. The program execution times of 

various electronic chips were plotted against experimental data (with cardinality 3 to 7) extended 

by stochastic simulations using both E. coli and V. natriegens exploring virtual SSP networks of 

larger sizes (Figure 13). Because of the long computing times required to solve large SSP 

networks, only dividing bacteria were considered for scaling analysis. The QC counterparts were 

obtained according to Grover’s algorithm [29], which specifies a square root improvement over 

exponential time of classical computers. In-lab experimental proof of agent multiplication in the 

network made it possible to project via simulations the advantage of a multiplication run mode 

over a combinatorial run mode, where multiplication conditions in the network are not achieved. 

The simulation written in Scala (running on the JVM on a Lenovo laptop with Microsoft Windows 

10 OS and with Intel(R) Processor Core i5-7200U CPU @ 2.50GHz (2 Cores, 4 Logical 

Processors)) used experimental data and parameters i.e., velocity, division rate, directionality 

statistics in the junctions, and their statistical spread, to (i) reproduce the (experimental) behaviour 

of the physical device solving the SSP with cardinality 3 to 7 and to (ii) scale its theoretical 

performance up to cardinality 16 (which has a network size of 328 exits). Given the inherently 

sequential nature of computers running simulations with exponentially increasing number of 

dividing bacteria, scaling via simulations could not progress beyond cardinality 16. From there, 

data were extrapolated via regression analysis up to cardinality 100 with a high degree of accuracy 

(R2 > 0.99). The simulations were run using E. coli moving at an average speed of 4 um/s and 

stochastically multiplying with a period of 30 minutes at a multiplication rate of 40%, and V. 

natriegens moving at an average speed of 8 um/s and multiplying every 20 minutes at a 

multiplication rate of 35%. The pass junction error was set to 0.1% according to experimental 

results. The condition for halting the computation was set by Euler’s formula (coupon collectors 

problem) [53] comprising a statistical minimum number of agents required to run the network in 

order to make sure that, with >95% probability, all 2N combinations are consistently explored, 
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given the problem input size N (cardinality). Double (2x) the size set by this condition was adopted 

to obtain a reliable result, discernible with human eyes, so as to clearly mark the distinction 

between erroneous paths and correct ones. Similarly, experiments were run with the minimum 

number of agents required for a human discernible solution. 

    Separately, a recursive SSP “brute force” algorithm was developed in C, a low-level language 

with fast operational capabilities, which sequentially evaluates 2N combinations of a given SSP 

instance with input size N. To assess the computing time of electronic computers, the algorithm 

was run on various generations of Intel chips (Intel 382DX, Intel486 DX, Intel DX2, Intel Pentium 

and Intel Core Quad 2 Processor and a Macbook 2011). The “brute force” approach was chosen to 

guarantee execution of the equivalent number of operations carried out by agents on the SSP device 

(2N). In addition, various generations of chips were used in order to maintain a direct relation 

between the history of electronic chips and the infancy of the novel device. To overcome the 

challenge of having physical Intel chips available, initial results were compiled by running a virtual 

machine with Virtual Box and ISO images. As virtualization mimics the software of the intended 

target but not the hardware, emulation was introduced to gain a deeper understanding of the 

capacity of computing resources of old Intel Chips. PCem emulator [54], an IBM certified product, 

was employed to reproduce both hardware and software and test current results. To analyse results 

obtained with precision and spot potential unexpected behaviour, Valgrind [55], a tool for profiling 

and memory management detection, was used to break down and analyse RAM memory segments 

and usage over program execution with increasing cardinality. The program execution times of 

desired CPU and RAM configurations as a function of 2N operations were obtained for any given 

SSP size up to cardinality 30. Knowledge of the operational parameters of the respective emulated 

computer chips allowed for an advanced regression analysis, which revealed that the computing 

time follows an exponential relationship with respect to SSP cardinality and Million Instructions 

Per Second (MIPS, a key performance parameter of computer chips, reported at peak performance 

by the respective developer). The highly accurate (R2 > 0.999) correlation between computing time 

as output, SSP cardinality as input, and MIPS as parameter, allowed the estimation of the 

computing time needed to solve SSP for other high-performance electronic chips, e.g., AMD 

Ryzen Threadripper 3990X. Data were extrapolated up to cardinality 100 via regression analysis. 

Importantly, this correlation allowed the extrapolation of the performance of classical electronic 

computers if they would work in ‘quantum computing mode’, that is, if their performance would 
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follow Grover’s theorem with computing time being proportional with 2N/2, where N represents 

SSP input size (or cardinality), as opposed to classical electronic computers, whose computing 

time is proportional with 2N. For the sake of drawing a comparison between different computing 

models, errors in QC due to decoherence and other scaling challenges, i.e. simultaneous control 

over large number of qubits [14, 56], were assumed not be obstacles for QC scaling laws. 

The program execution times (in hours) of electronic, (hypothetical) quantum and network 

computers running SSP, the latter using E. coli and V. natriegens in a multiplication rum mode, 

were plotted versus cardinality on a logarithmic scale in Figure 13. If the fastest electronic 

computer (AMD’s Rayzen Threadripper) and a network computer run with V. natriegens would 

both require more than 5 weeks to solve an SSP of cardinality ~45, an intersection between a 

quantum and network computer would only happen towards cardinality 100, computed in 

approximately 2 years and 3 months (at cardinality 100, the fastest classical electronic computer 

will require ~1013 centuries!) 

Figure 13: Comparison of electronic, quantum and network computing models. Scaling analysis 

of the computation time for bacteria-operated network computing (circle markers, e.g., ○), and 



  
 

69 
 

electronic computers, both classical (square signs, e.g., □), and operating in ‘quantum mode’ 

(diamond markers, e.g., ◊). The experimental data are indicated by filled markers (●, and ■, for 

bacterial and classical electronic computers, respectively). The scaled data based on regressions 

(equations and R2 indicated close to the respective trends) are indicated by empty markers (○, □, 

and ◊, for bacterial, classical, and quantum computers), and the stochastic simulated data are 

indicated by light-filled markers (●). The experimental data for E. coli operated computers are 

obscured by those obtained for V. natriegens operated computers.  
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Chapter 4 

A Network Computing -Based True Random Number 

Generator 
 

     As an alternative application to solving the SSP, two network computing devices (with 45 and 

190 exits respectively) were used to generate high entropy data for a novel True Random Number 

Generator (TRNG) by exploiting the stochastic motions of E. coli HCB437 bacteria in the 

networks. The following contribution, currently under final revision for publication, discusses (i) 

the role of a network computing device as an entropy-providing source, (ii) its integration with 

other software-based components and (iii) a full proposal of a TRNG, including internals, 

operation and performance. 
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Abstract 

 

 

In a world envisioning global Internet service, smart cities and super-computing power, the 

need of cryptographic systems granting secure exchange of sensitive data is urgent. Random 

numbers are essential to cryptography as they provide the strongest method of data encryption, no 

matter how powerful a computer an adversary has. Given the non-computable nature of 

randomness, producing truly random data is a major challenge. This work demonstrates a hybrid 

software and hardware true random number generator which for the first time uses the stochastic 

direction of motion of bacteria autonomously swimming in a microfluidic network as a non-

deterministic data source. The true random number generator offers low-cost and accessible 

biological resources, software compatibility, competitive high throughput and low energy 

consumption which makes it suitable for energy-expensive applications such as blockchain 

technologies. Importantly, data generated pass all 15 NIST Special Publication 800-22 randomness 

tests. 
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4.1.   Introduction 
 

While the secure cryptography-based transmission of information is of centuries-, if not 

millennia-old [1], the present highly interconnected world greatly increases its importance and 

criticality. Today, given the ever-increasing computing power, the success of technological 

advances, e.g. online banking [2], mobile communication [3, 4], Internet of Things [5-7] and smart 

cities [8], highly depends on trusted cryptographic systems granting secure exchange of sensitive 

data.  

Cryptographic protocols rely on the generation and use of secret keys that must be 

unpredictable to potential attackers [3]. These secret keys are used by encryption and decryption 

to respectively transform plaintext into unreadable format, and vice versa, to decode and convert 

unreadable text to readable information.  

The most secure cryptographic algorithms in use today, such as Advanced Encryption 

Standard (AES) [9], the Rivest-Shamir-Adleman (RSA) [10] and Blowfish [11], use random 

numbers to build reliable encryption and decryption keys. To be truly random, a secret key must 

present the following properties: (i) each number must be statistically independent from the 

previous therefore, given each number in the sequence, a particular value is not more likely to 

follow than all other possible ones; (ii) given a sequence, the numbers must follow a uniform 

distribution and must have the same frequency of occurrence; and finally (iii) the sequence values 

must be unpredictable, both in terms of backtracking and predicting future values [12]. The lack 

of frequency differential among values of the keys and consequently, the lack of potential clues, 

makes it impossible for an attacker to break the encryption: this is the strongest possible method 

of encryption, known as the One-Time Pad [13-15].  

Producing truly random sequences for computational purposes is a major technical challenge. 

Because neither human minds, nor Turing deterministic machines, are able to generate true 

randomness [16], one must rely on the chaotic nature of physical processes as an entropy source. 

Given the non-computable nature of randomness [16], presently the most used random number 

generators (RNGs) are pseudo-random number generators (PRNGs), which use a deterministic 

mathematical formula to generate ‘random looking’ sequences of numbers completely determined 

by an initial state called a seed. However, given the same seed as a starting condition, a PRNG 

will always generate the same sequence [12]. Regardless their CPU-available environment and 



  
 

73 
 

low cost, none of the PRNGs is truly random and their use in cryptography represents a major 

security threat [17]. In contrast, true random numbers generators (TRNGs) are non-deterministic 

systems that work by measuring intrinsically random physical processes, such as thermal noise 

[18], photon arrival times [19, 20] and radioactive decay [21, 22]. The lack of compatibility 

between physical and human-made electronic systems makes TRNGs more expensive and less 

available [21]. 

In recent years, few examples of biological TRNG, relying on biochemical and biological 

systems to generate randomness, have been proposed as a potential alternative to common 

electronic-based TRNG. In fact, the stochastic nature of many biological processes makes them 

unpredictable by existing algorithms and consequently, a promising avenue for novel research. 

One stream proposes DNA computation techniques to construct DNA-based RNGs [23, 24], which 

use oligonucleotide synthesis to generate random sequences. However, current limitations of DNA 

technologies [25] including the considerable human intervention, the unreasonably large amounts 

of DNA and the time constraints required to process and read oligonucleotide sequences, prevent 

such methodology from scaling and providing large amount of data in a fast and automated fashion. 

Other examples include the use of bioelectrical (electromyography, electroencephalogram) or 

physical signals (blood volume pulse, galvanic skin response) [26] which all have the drawbacks 

of expensive set-up, discontinuous data availability, and low-quality statistical properties of 

generated bits. On the other hand, random digits fluctuations obtained from biometric readings 

[27] demonstrated adequate statistical properties for RNG, although finding appropriate biological 

phenomena with easy accessibility, fast sampling rate, high accuracy of measurement and 

variability of sampling rate is currently a challenge. 

The flagella-driven motility attribute of bacteria is a phenotypic property that is difficult to 

predict, despite being an extensively researched problem. The source of randomness in bacterial 

motility is multifactorial, namely turn angle preferences, velocity deviations, interactions with the 

surrounding boundary layers, chemo signaling, quorum sensing, and crowdedness [28]. In this 

contribution, the inherent stochastic behavior of E. coli HCB437, having 50%-50% turn direction 

preference when confined in a microfluidic network and presented with perfectly symmetrical 

bifurcating junction, is used, for the first time, as an entropy-providing process of a TRNG. 
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In the following sections, a proof-of-concept of a bacterial-run TRNG is presented and 

demonstrated using fluorescently-labelled E. coli bacteria. A full working model is also discussed 

which places the TRNG to function as an entropy source for a PRNG.  
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4.2.   Concept and Design 
 

 This contribution proposes and demonstrates a proof of concept of a TRNG hardware and 

software hybrid device which uses the stochastic direction of motion of bacteria autonomously 

swimming in a microfluidic network, as a non-deterministic, entropy-providing process.  

The TRNG entropy source and its components, consisting in a stochastic data source, a 

digitization component, a conditioning component, and a ‘health testing’ component, are presented 

in Figure 14. The stochastic data source (hardware component) comprises of bacteria physically 

moving across microfluidic channels, designed and microfabricated on the microchip. Trajectories 

of their tracks are recorded, translated to images, and sent as inputs to the digitization component 

(software component). The digitizer is an object recognition and processing algorithm designed to 

recognise and translate the bacterial directions of motion to bits and release the raw digital output. 

A conditioning algorithm is used to remove eventual bias from the raw data and finally release the 

true random number sequences. Finally, health tests validate the behaviour of the entropy source. 

Figure 14: TRNG components layout. The digital stochastic data source comprises of a hardware 

component producing stochastic data other than binaries and a digitization software component 

responsible for translating data in binary format. The output, referred to as raw data, is then sent 

to a conditioning algorithm – a deterministic and cryptography-safe function -which works by 
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reducing bias present in raw data. Health tests check the validity of the entropy source behaviour. 

Truly random bits are released as output. Adapted from NIST Special Publication 900-80B [29] 

(Copyright 2018). 

 

4.2.1.   The Stochastic Data Source 

In order to exploit the stochastic movement of bacteria in the most efficient and robust way, 

such that it can be directly employed for a TRNG in a digital computer, hardware units, i.e. network 

junctions, are needed that yield a clear binary output (i.e. ‘0’ or ‘1’) with 50% probability each. 

Moreover, to speed up the translation of bacterial movements to bits by parallel processing, an as 

high as possible density of such units is desired without compromising on the quality and 

independence of these stochastic events.  

In fact, such units have already been employed in bio-computation networks [30]; the so-

called Split Junctions (SJ’s) are designed to allow agents to proceed in either the original direction 

of motion with a 50% probability, or to change lane to an alternative direction of motion with a 

50% probability. Here we apply this concept to random number generation (instead of calculation) 

by stacking SJ’s only; the equivalent calculation network would basically be a Subset Sum 

Problem network with unit steps only, i.e. it would generate Pascal’s triangle with a 50%-50% 

binomial distribution [31].  

Note, that the occurrence of a 50%-50% split depends on both the junction design and the 

inherent bacterial agent characteristics. The best possible junction design for a 50%-50% split is 

obtained by using a local mirror symmetry at the split (Y-split). Next, the bacterial species 

employed should not show any natural preference for turning left or right. This is indeed the case 

for E. coli HCB-437 [32, 33]. Hence, this is the agent that was used in this study. 

 

4.2.2.   Conditions for Unpredictability in a Stochastic Data Source 

4.2.2.1.   Perfectly symmetrical junctions.  

An optical image of microfluidic network used for this demonstration is illustrated in Figure 

15. Two network sizes - comprising of 45 and 190 junctions respectively - were used to generate 

raw data. The choices of network designs and dimensions were based on the size of the biological 
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agents (length – width: 2.5 ± 0.6 - 1.0 ± 0.2 µm), which required enough space to move smoothly, 

but at the same time, enough constraint to avoid U turns [31]. Accordingly, the channel width was 

set to 4 µm. Agents enter the RNG network from a unique entry (at the top in Figure 15) and move 

towards the exits (bottom in Figure 15). When crossing a SJ (enforcing a binary path), agents can 

turn either left or the right with equal probability, as evidenced by experimental data. Figure 15 

illustrates details of a SJ with two inlets and their respective binary pathways (resolving to L – left 

and R-right) marked with blue and green arrows. To enable equal turning probability, junctions 

were designed to be perfectly symmetrical, as shown in Figure 15. The pattern of repeating 

symmetrical junctions guarantees that a fair probability condition is maintained throughout the 

whole network paths, such that each path is equally probable to be crossed, or in other words, such 

that the maximum entropy is preserved: this is a sine-qua-non condition for the non-deterministic 

behaviour of the system.  

   

Figure 15: Microfluidic network with junctions, and 4 μm-wide channels. I. A part of the split 

junction only network, showing with repetitive split junctions (SJ) (ii) and several other network 
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components like entry funnel (i), ghost or dirt lanes (iv), traps for forbidden bacterial traffic(iii). 

All the component marked in transparent red shapes. II. Directionality preference of E. coli HCB 

437, showing a 50:50 preference for turning left or right. The inset image zooms into a single 

junction. The junction has two symmetrical inlets labelled A and B, and two outlets labelled R for 

‘right’ – which maps to 0 - and L for ‘left’ – which maps to 1. Biological agents move through the 

junction resolving to a ‘left’ or ‘right’ direction. II. The directionality preference of E. coli HCB 

437 obtained from experimental data is shown for paths AR + BR and AL + BL (as %). 

 

4.2.2.2.   Bacterial stochastic behaviour  

Previous work in microfluidics suggested that bacteria offer a broad spectrum of benefits 

with respect to computing applications, compared to other alternatives [31]. Among bacterial 

species, E. coli HCB437 was found to be the most suited candidate to provide stochastic behaviour 

in the network [33]. E. coli HCB437 presents smooth swimming phenotype with reduced tumble 

frequencies and longer run lengths [34]. It presents velocities approaching 20 μm/s [35] using 

multiple flagella oriented axially along the cell body [34]. Importantly, E. coli HCB437 present an 

equal preference (50:50) for turning angles at SJ [35]. Such stochastic behaviour is an essential 

condition to generate maximum-entropy data. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

79 
 

4.3.   Operation 

 

4.3.1.   The Entropy Source 

The digital stochastic data source. Figure 16 illustrates the architecture of the digital stochastic 

data source comprising a hardware component (microchip with running bacteria and microscope), 

and a digitization software for image processing and digital raw data extraction. The microfluidics 

hardware comprises of a PDMS-on-silicon chip coated with agar gel to facilitate the movement of 

self-propelled bacteria. The left panel in Figure 16 illustrates the stochastic bacterial movements 

in the network being captured by a 10X objective microscope taking snapshots with a 0.5 s 

resolution (data generation). Produced snapshots record the full history of bacterial flow and 

therefore they encode the necessary information to be digitized. The right panel in Figure 16 

illustrates the operating components of the digitization software taking snapshots as input, 

processing each frame and extracting binary data (data interpretation and digitization). Digitized 

raw data are then released as output. The maximum output obtained over a single experimental run 

was 6000 frames using a network of 45 junctions. 

 

Figure 16: Digital stochastic data source. The steps involved within the digital data source. Shown 

on the left, the hardware component consists in a microfluidic network with moving bacteria. The 

hardware is responsible for raw data generation. The network snapshots are then sent to the 
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digitization software (data sharing) and bits, mapped to the stochastic motion of bacteria, are 

extracted by the Bits Generator Algorithm (data interpretation and digitization).  

 

Bits generator algorithm: The Bits Generator Algorithm produces stochastic data in a 

digitized format by processing the incoming snapshots. The core object recognition algorithm was 

designed to compare two subsequent snapshots, find the displacements of the agents between 

snapshots (difference between positions), record these displacements corresponding to ‘decision’ 

events inside junctions and assign 0 when agents turn ‘right’ or and a 1 when they turn ‘left’. The 

grey panel in Figure 17 shows the displacement of agents over a time step Δt by comparing each 

pair of snapshots from the light-green panel. Bacterial positions in the first frame (earlier in time) 

are marked in light yellow, and their subsequent appearances in the next frame in darker yellow. 

The red arrow indicates the displacement.  
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Figure 17: Raw data transformation process. Bits Generator Algorithm digitizes the bacterial 

displacement data comparing pairs of snapshots at two subsequent time steps. The light-green 

panel shows how snapshots look once produced every 0.5 s. The grey panel presents the 

comparison operation performed by the generator to extract bits. For each time step Δt, each 

bacterium appearance in an earlier frame (light yellow) is comparted to a later frame (dark yellow) 

as shown by t’ – t and t’’ – t’. The displacement of the agent (red arrow), resulting in a turn event 

at a junction, is mapped to a bit.  

 

4.3.2.   Performance and Statistics 

4.3.2.1.   Raw Data 

The 45 junctions network provided 6000 frames per single experiment, which coded, on 

average, for 120K bits. On the other hand, the 190 junctions network provided 2500-3000 frames 

per experiment, thus coding for 60-80K bits. It was found that the total bits produced is dependent 

on the density of the agents present in the network, which can be modulated, by e.g., growth 

conditions, temperature, to achieve an optimum bacterial density (if the network is overpopulated, 

clogging may occur). 

Using both networks, it was possible to generate 1M bits of digital raw data from 10 different 

experiments taking about 4.5 hours of total experimental time (experiments were carried out in 

series, not in parallel).  

 

The minimum entropy [36] and Shannon Entropy [37] were calculated for the proposed RNG 

system, followed by the validation of the entropy source statistics. The minimum entropy provides 

a measure of how easy it is for an attacker to guess the most likely output of the entropy source 

[12]. For given a set 𝐴 = {𝑥1, 𝑥1, … 𝑥𝑘} with probability Pr(𝑋 = 𝑥𝑖) = 𝑝𝑖 for 𝑖 = 1, … , 𝑘, it is 

defined as [29]: 

𝐻 = min
1≤𝑖≤𝑘

(− log2 𝑝𝑖) 

 

The Shannon Entropy measures the average information in the data resulting from the 

frequency distribution of the symbols that comprise the data [12]. It is defined as follows: 
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𝐻 = − ∑ 𝑝𝑖 log2 𝑝𝑖

𝑘

𝑖=1

 

Table III presents raw data statistics (evaluated over a binary file). 

 

Table III: Statistics of raw data obtained from the digital stochastic data source.  

Digitized raw data (1M bits)  

Shannon Entropy (bits per byte) 7.997 

Minimum Entropy (bits per byte) 7.791 

Serial Correlation (0.0 totally uncorrelated) 0.01 

Throughput (bits per second) 256 * 

*Seed size – see section 4.4 

 

4.3.2.2.   Conditioned data  

Raw data were processed by the AES based Cipher Block Chaining-Message Authentication 

Code (AES_CBC_MAC) [38] conditioning algorithm, the last entropy source component (Figure 

14). Table IV presents the final results of the TRNG.  

 

Table IV: Statistics of processed data obtained from the entropy source.  

*Seed size – see section 4.4 

 

4.3.2.3.   NIST randomness tests of entropy source 

The NIST randomness tests were used to examine the stream of TRNG bits and compute 

statistical confidence of their randomness against a theoretical 100% entropic stream of bits [12]. 

Results are presented in Table V.  

 

TRNG output (1M bits)  

Shannon Entropy (bits per byte) 7.998 

Minimum Entropy (bits per byte) 7.833 

Serial Correlation (0.0 totally uncorrelated) 0.01 

Throughput (bits per second) 256 * 
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Table V: NIST tests results for 1M bits produced by the entropy source  

Test P-value Result 

monobit_test 0.18242 PASS 

frequency_within_block_test 0.04348  PASS 

runs_test 0.93023 PASS 

longest_run_ones_in_a_block_test 0.43447  PASS 

binary_matrix_rank_test 0.58931 PASS 

dft_test 0.07317 PASS 

non_overlapping_template_matching_test 0.99999 PASS 

overlapping_template_matching_test 0.57004 PASS 

maurers_universal_test 0.68542 PASS 

linear_complexity_test 0.30754 PASS 

serial_test 0.09000  PASS 

approximate_entropy_test 0.09046  PASS 

cumulative_sums_test 0.15215  PASS 

random_excursion_test 0.02886  PASS 

random_excursion_variant_test 0.25082  PASS 
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4.4.   The Full Model 
 

4.4.1.   CTR PRNG Integration  

The entropy source throughput (Table IV) positions the TRNG to work best in conjunction 

with a cryptography secure (CS) PRNG, by providing it with random input blocks called seeds. 

Figure 18 proposes an integrated architecture where the entropy source periodically provides seeds 

(reseeding) to the NIST approved Counter Mode Deterministic Random Bytes Generator (CTR 

DRBG) [39, 40]. The initial seed instantiates the DRBG and determines its initial internal state 

used to generate the first set of output bits. Reseeding allows restoring the secrecy of the DRBG 

output in case a seed, or its internal state, becomes known. By enabling periodic reseeding, various 

threats can be addressed potentially concerning the DRBG seed, entropy input or working state 

being compromised over time [39]. 

 

Figure 18: TRNG and CTR DRBG integration. A) The TRNG functions as an entropy source to 

the CTR DRBG by periodically providing a seed. B) Random numbers are made available to a 

custom API. C) Online Health Tests monitor the entropy source behaviour and validate each seed. 

D) The Online Health Test provides up-to-date feedback on the system’s status. 

 

An implementation of the CTR DRBG with AES block cipher [9] was adopted due to its 

security strength advantage compared to other block cipher algorithms [41]. By functioning as a 

randomness source, the TRNG provides CTR DRGB with random input blocks of 256 bits, 

(seedlen = blocklen + keylen in Table VI). The secrecy of the input seed provides the basis for the 

security of the DRBG [39]. Ideally, the entropy provided in each seed should be close to ideal, 

hence a seed length seedlen should provide seedlen bits of entropy. However, the actual seed length 
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(in bits) may be increased within some limits as far as the total entropy meets the minimum 

requirements of the final application [39]. 

 

Table VI lists the NIST approved parameters adopted in this proposal using AES-128. The 

violation to these limits would make the CTR DRGB vulnerable to attackers [39]. 

 

Table VI: Parameters provided by the NIST [39] on required bit lengths 

Parameters AES-128 

Input and Output Block Length (blocklen) 128 bits 

Security Strength (security_strength) 128 bits*1 

Key Length (keylen)  128 bits 

Seed Length (seedlen = blocklen + keylen) 256 bits 

Entropy Input Length seedlen 

Max Number of Bits per Request 211bits*2 

Maximum Requests Between Reseeds 

(reseed_interval) 

248requests 

*1 [41] 

*2 The security of CTR_DRBG can be improved by limiting the number of requests and bits 

provided per requests [39]. This value was derived considering the minimum counter field length, 

ctr_len = 4 where the Max Number of Bits per Request, B = (2ctr_len - 4) × blocklen ≈ 211 

 

The CTR DRBG implementation was run with 7.998 bits/byte of entropy input seeds 

generated by the entropy source. Given such full entropy condition, the parameter nonce – a time-

varying value, which has at most a negligible chance of repeating [39], was not required in the 

DRGB instantiation process, and the use of a derivation function was not needed. A derivation 

function provides additional internal code to derive the DRBG internal state value or to distribute 

entropy evenly across the length of a low-entropy bit string [39]. Using a derivation function is 

optional during instantiation and reseeding and required only if the input seedlen does not provide 

full entropy. In addition, the optional parameter personalization string - a string of bits that is 

combined with the secret entropy input and (possibly) the nonce to produce a seed [39] - was not 

specified. 
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4.4.2.  NIST randomness tests  

A 2.2MB of data (17.6M bits) were generated with 24 reseeding cycles and 256 bits constant 

seedlen. The Shannon entropy of the PRNG output was 7.998 bits/byte. The NIST tests results are 

presented in the Table VII. 

 

Table VII: NIST test suite results for 2.2M bits produced with CTR DRGB 

Test P-value Result 

monobit_test 0.87785  PASS 

frequency_within_block_test 0.40268  PASS 

runs_test 0.01880  PASS 

longest_run_ones_in_a_block_test 0.07506  PASS 

binary_matrix_rank_test 0.59679  PASS 

dft_test 0.41124  PASS 

non_overlapping_template_matching_test 1.00570 PASS 

overlapping_template_matching_test 0.35517  PASS 

maurers_universal_test 0.06825  PASS 

linear_complexity_test 0.48039  PASS 

serial_test 0.03121  PASS 

approximate_entropy_test 0.03130  PASS 

cumulative_sums_test 0.90362  PASS 

random_excursion_test 0.02460  PASS 

random_excursion_variant_test 0.01801  PASS 

 

Finally, Figure 19 summarizes the proposed model by displaying fundamental data 

transformations throughout the RNG chain. 

Figure 19: Data transformation model. The raw data generated by the digital stochastic data source 

exhibits high entropy, but poor statistical properties. The conditioning algorithm adjusts these 
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statistical properties and returns truly random data as the final TRNG output. At this stage, the 

cryptography secure PRNG receives true random data as periodic input seeds (256 bits) and returns 

a high throughput output enabling 248 requests per seed with 211 bits per request (Table VI). By 

providing a truly random seed, the TRNG-PRNG model behaves as a TRNG. 
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4.5.   Perspectives 
 

This work harnesses the stochastic motion of bacteria in constrained microfluidic channels to 

generate random numbers. It demonstrates a model which involves generating of raw data by the 

physical source, subsequently conditioning data with a CS conditioning algorithm and feeding the 

conditioned output (as a periodic seed) to a CS PRNG. Ultimately, the adoption of the proposed 

model for cryptographic applications depends on the validity of the entropy source to produce high 

entropy data with high reliability. Accordingly, statistics, e.g. min-entropy, and randomness tests 

were run to validate the binary output produced by the entropy source. 

In order to develop a bacterial-run entropy source, observing the same frequency of right and 

left turns at split junctions was essential and possible thanks to the unbiased motility of the E. coli 

HCB437 strain and the symmetrically designed and fabricated junctions. Experimental data 

demonstrated a slight right turn preference (50.10 versus 49.90%), possibly due to the chip 

fabrication (lithography and/or etching) errors, which resulted in a corresponding slight prevalence 

of 0s (coded from right turns). The CBC_MAC conditioning algorithm was purposely included in 

the design to reduce eventual bias.   

 

Previous approaches [23, 24, 26] using biological processes for TRNGs require considerable 

human intervention to extract raw data. For example, electroencephalogram signal which proved 

suitable to produce random numbers with adequate postprocessing, requires presence of humans 

to evaluate electrical activity in living brains [26]. Similarly, using DNA technology for RNG 

purposes requires a long juxtaposition of human-performed laboratory steps to achieve the target 

objectives [25]. Far from being automated and reliable as efficient data-providing solutions, such 

methodologies showed limitations in the context of modern technologies that must provide fast 

and ready-available competitive amount of data in an automated fashion. The proposed TRNG 

currently requires minimum human manipulation (adding and removing bacterial cells to the chip) 

and ideally, some level of laboratory supervision; all remaining steps can be performed 

independently from human input. On this respect, for the purpose of this demonstration, the image 

processing of recorded snapshots was performed using the ImageJ GUI (Materials and Method – 

Image Processing). In future work, the ImageJ Java API will be used to automate image processing 

and integrate it within the digitization software (Figure 16).  
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There have been previous attempts [42, 43] to generate random numbers from the chaotic 

movements of mice in free space, which showed successful results but some limitations. Firstly, a 

free-space scenario requires adequate measures to categorise movement patterns, ultimately, into 

an equal number of 0s and 1s. A frequency imbalance would in fact break the RNG security. 

Moreover, mice are relatively large agents, and such system will be difficult to scale up its final 

throughput. In contrast, a very large number of bacteria running in parallel in constrained channels, 

and symmetrical junctions enforcing a binary output, provide a number of benefits. First, each 

binary output is inherent in the hardware itself (an agent physically takes a definite direction out 

of two possible choices) and the system does not rely on an algorithmic interpretation of movement 

patterns based on a human-instructed model, potentially weaker in security strength. Second, 

bacteria offer a broad spectrum of benefits being low-cost, easy to work with and stable in the long 

run [35]; they facilitate long lasting experimental results as they are capable of handling large 

network sizes for scaling purposes. A thorough analysis [44] on bacterial dispersal in microfluidic 

channels demonstrated that E. coli bacteria show faster dispersal time in confined channels spaces 

than if left in unrestricted environment, hence proving the suitability of E. coli motility 

characteristic for the purpose of quickly spanning the whole network area. In addition, bacterial 

self-propelled motion enables low energy consumption while still providing a high parallelism [30, 

31].  

 

Currently, the entropy source producing 2 frames/s is a limiting factor in throughput terms. 

However, the network ability to scale given its pattern of identical junctions, and possibly to double 

(become a square rather than a triangle), brings forward possible alternative designs.  

Our results showed that the larger the network the lesser manageable it becomes for experimental 

purposes. In fact, the 45 junctions network provided 6000 frames and 120K bits per single 

experiment compared to the 190 junctions network which provided 3000 frames and 80K bits. 

Therefore, we believe the most convenient scaling approach would not be increasing the network 

size under the given FOV, but rather juxtapose smaller networks over a large area, with each 

network doubled into a square shape (rather than triangle) and possibly, under rotating microscope 

lenses to capture different network views in a fixed cycle. The Bits Generator Algorithm task of 

processing snapshots can be parallelized on multiple processors, or even multiple servers, given 
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that each snapshot is only evaluated with respect of its previous one (at a previous time step) and 

does not have dependency to others. Finally, the adoption of a TRNG-PRNG architecture (Figure 

18), substantially scales up the final throughput to a competitive level providing 248 requests and 

211 bits per request for each reseeding (Table VI). Importantly, by producing a random seed, the 

TRNG-PRNG model actually behaves as a TRNG. To provide a measure of the capability of this 

approach, Table VIII compares our TRNG, which benefits of the AES-based CTR DRGB, with 

the fastest TRNGs on market, which happen to exploit the quantum mechanical uncertainty 

principle to produce random bits. 

Table VIII: Comparison of fastest TRNGs  

Company Model Performance, Mbits/s Dimensions, mm 

ID Quantum PCIe 16  160 x 100  

Quintessence Labs qStream 8000  80 x 440 x 680 (2U) 

ComScire PQ128MS 128  80 x 54 x 23  

Quantum Numbers Corp QNG2 1000  0.02 x 0.02  

Proposed TRNG Bacterial 

TRNG-PRNG 

58104 * 1.6 x 1.174 

*Evaluated on an Intel i7-8700K CPU model 

 

The TRNG performance was evaluated by testing the speed of AES-128 in CTR mode 

(Materials and Methods – Comparing fastest TRNG). Given a single seed of 256 bits, the number 

of available bits produced within a CTR_DRGB period corresponds to 5.7646075e17 bits (248 x 

211). Therefore, exhausting all available bits of a single period would take 115 consecutive days. 

Each experiment (25-30 mins) provides a set of frames coding for, on average, ~100K bits, from 

which almost 400 seeds can be extracted. Therefore, as shown in Table VIII, the final throughput 

of the TRNG is reduced to the dominant factor, the one provided by the CTR_DRGB, which in 

turns depends on the speed of AES-128 [45].  

 

Differently from previous approaches [23, 24, 26, 46], an interface between hardware, hosting 

stochastic biological processes, and digital electronic computers was demonstrated for the purpose 

of generating true random numbers with competitive high throughput. In addition, the bacterial 
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run stochastic data source provides considerable improvement in energy consumption compared 

to electron-based solutions [31] given the autonomous motion of bacteria in the network. This 

property is potentially advantageous for energy expensive applications such as blockchain 

technologies. The demonstrated TRNG model envisages potential for future commercial 

applications, e.g. software as a service (SaaS). For the first time, the feasibility of using random 

bacterial motion as an entropy-providing process was demonstrated, opening the door to a novel 

stream of research, i.e. the generation of bacterial-run TRNG microchips. 



  
 

92 
 

4.6.   Materials and Methods 
 

Microchip Fabrication. Microfluidic networks were manufactured using PDMS-replicas 

casted from a silicon master. The master was fabricated using electron -beam lithography and 

Reactive Ion Etching. The casted PDMS parts were treated with air-plasma and sealed on to plasma 

treated coverslips, followed by wetting with LB-media containing 0.5% BSA (bovine serum 

albumin). Wetting of the surface was performed in vacuum to remove any air bubbles struck in 

the channels of the PDMS replicas. The detailed fabrication procedures are described elsewhere 

[30]. 

Bacterial culture and experimental set-up. Escherichia coli HCB 437 (E. coli HCB437) was 

used in this study. The competent E. coli HCB437 cells were transformed to constitutively express 

the plasmid pMF440 mChe. Bacteria were maintained in positive selection pressure of ampicillin 

(final concentration of 100 µg/ml) to maintain the plasmid and express constitutively the mChe 

during sub-culturing and experimentation. All video frames were acquired using 10X (NA - 1.7, 

WD - 13mm) UPLANO objectives with experimental run time ranging 30 minutes to up to 1 hour 

in Olympus IX 83 microscopes, equipped with mChe filters (excitation/emission). The exposure 

times were kept a constant 500 ms so that the best acquisition in fluorescence mode was possible. 

Image acquisition from the microscope was carried-out using the Metamorph Advanced Olympus 

software [47]. The acquired frames were post-processed using ImageJ FIJI [48] open source image 

processing tool. The bacterial trajectories were monitored and analysed using ImageJ tracking 

software with track mate & MtrackJ plugins. 

Image Processing. The microscope acquired frames (also referred to as snapshots) were 16-

bit, 1024x1024 sized, subsequently converted to 8-bit. The background subtraction was performed 

using ImageJ tools. The step includes duplicating a stack for n=100 frames as 1-99 frames as Stack 

1 and 2-100 frames as stack 2. When stack 1 is subtracted from stack 2, the resulting 99 frames 

represent the background subtracted frame which only consists of moving pixels in the frame. 

With this method, unnecessary signals were removed to avoid interference with the object 

recognition process performed by the Bits Generator Algorithm. The background subtracted stacks 

were then binarized, with pixels representing either 0s or 1s. The post processed images were fed 

to the Bits Generator Algorithm. For the present proof of concept, the aforementioned steps were 

performed using the ImageJ GUI.  
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Bits Generator Algorithm. The Bits Generator Algorithm digitizes the displacements of 

bacteria (agents) captured by snapshots of the microfluidic network every 0.5 s.  

To achieve its tasks, the algorithm performs the following steps: 

i. Takes a video file (tif) and extracts individual frames; 

ii. Applies frames filtering if required, finds and extracts the position of agents from each 

frame; 

iii. Assembles the positions of the agents in a common data structure as a list of elements, each 

one referring to a single agent throughout the frames sequence. Each element records the 

frame of appearance of the agent, the agent index with respect to the total agents appearing 

in the same frame, the centroid location of the agent, as x, y pixel values, and finally the 

size of the agent area; 

iv. Finds pixel coordinates in the network corresponding to junctions; 

v. Tracks the motion of the agents by continuously comparing frame pairs at two subsequent 

time steps; 

vi. Evaluates the displacement of the same agent between two frames using a search radius; 

vii. Based on knowledge of the coordinates of the junctions, it decides if an agent took a ‘left’ 

or ‘right’ path (turning event) at the point of crossing a junction. Otherwise, it continues 

searching; 

viii. Maps ‘right’ directions with 0s and ‘left’ directions with 1s; 

ix. Writes the output in a binary file. 

The output bits stream plays the role of raw data within the proposed TRNG architecture, as 

presented in Figure 14. The algorithm is written in Python 3.6.8 and runs on a Linux Ubuntu 18.4. 

The AES_CBC_MAC Conditioning Algorithm. The NIST SP800-90B standards [29] approved 

cryptographic seeded CBC_MAC [38] was used as a conditioning algorithm, also referred to as 

conditioning algorithm, to reduce the bias of digitized raw data. The algorithm uses AES for 

encrypting data and guaranties true statistical randomness. The algorithm takes in entropic raw 

data as a first input, and a uniformly random seed as a second input, the latter comprising of an 

encryption key and an initialization vector [12]. We generate the key and initialization vector 

extracting random entropic values form /dev/urandom with urandom function available with the 

python os library. We use an implementation of the AES_CBC_MAC proposed by the Python 

cryptographic library blowfish with Python 3.6.8. The code is run on a Linux Ubuntu 18.4. 
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NIST randomness tests. A Python implementation of the NIST Statistical Test Suite [49], 

implemented by the author of the book ‘Random Number Generator: Principles and Practises’ 

[12], was used to test randomness of generated bits. All 15 subsets tests were run on 1M bits on an 

Ubuntu Linux 18.4. An important parameter within the tests is the value 𝛼 known as the level of 

significance, which is selected from the [0.001, 0.01] range [26]. The NIST test releases p values 

as a measure of randomness for each subtest. If a p is equal to 1, numbers are said to have perfect 

randomness for that particular test. If p value becomes 0, numbers are not random. All tests must 

be successful (p > 𝛼) for a sequence of bits to be considered truly random.  

Entropy and Statistical Prerequisite Measurements: The Shannon and min-entropy were 

tested using a Python script developed for the purpose. The Linux command head -c file_bytes 

file_name | ent validated Shannon entropy estimation and provided measurement on base statistics, 

such as correlation, mean and kai-squared. 

The CTR DRGB Integration. The TRNG functions as an entropy source periodically providing 

bits in chunks to the CTR DRBG defined by the NIST [39] for cryptographic applications. The set 

of input bits fed to CTR is called seed, a value used to initialize or refresh the internal state of a 

PRNG. The word Deterministic Random Bytes Generator, DRBG is essentially the NIST’s 

specific term for PRNG. The CTR DRGB is built around the CTR (counter) mode algorithm [39] 

using an underlying block cipher algorithm. In this implementation, AES with a key size of 128 

bits was adopted. The key is used to compose part of the seed material, which comprises of a total 

seed length of 256 bits (see Table VI for seedlen = blocklen + keylen). The optional parameters 

accounting for ‘additional input’, or ‘provided data’ were not provided. 

The CTR DRBG available with OpenSSL, was implemented in Python 3.6.8 by building a custom 

wrapper around the AES block cipher algorithm available with the PyCryptodome library [50] 

which uses AES in CTR mode. Following the NIST recommendations [51], the data provided for 

encryption purposes was an array of all zero bytes (plaintext).  

Comparison of fastest TRNG: According to the SP 800-90A [39], for large generate requests, 

CTR-DRGB produces outputs at the same speed as the underlying block cipher algorithm encrypts 

data [45]. Therefore, the DRGB speed corresponds to the AES underlying speed. The CPU tested 

was an Intel i7-8700K model. To run the test, the LibreSSL (OpenSSL) library [52] was installed. 

The performance of the AES encryption algorithm was evaluated per single CPU core. The 
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following command was run to evaluate the speed of AES-128 (Table VI) in CTR mode: 

openssl speed -elapsed -evp aes-128-ctr.  

The resulted output provided the amount of data the CPU can process using the cipher specified 

(AES-128) in thousands of bytes per second, i.e. 7263717.65k. Table VIII shows the 

corresponding value in millions of bits per second. 
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Chapter 5 

Discussion 

    The field of network-based computing has recently emerged [30, 52] with the purpose of 

harnessing self-propelled computing agents to explore solutions of NP-complete problems in a 

massively parallel fashion, where the problem is encoded in a graph, or network. Other 

technologies, i.e. quantum and DNA computing, have thrived to demonstrate new computing 

models for solving combinatorial problems efficiently, but none have scaled so far due to errors, 

noise and engineering challenges. Such complications in scaling are tied to the challenge of 

distributing an exponential number of computing resources, e.g. DNA, biological agents, or qubits, 

in time and space, which is pivotal to solve combinatorial problems; the success of one technology 

to provide efficient algorithms, i.e., in polynomial time or better, highly depends on its ability to 

use available computing resources efficiently. The work in Chapter 1 demonstrates that, whether 

time, space or matter, at least one resource must grow exponentially if an exponential number of 

operations - at best 2N - is to be computed to solve an NP-complete problem of increasing input 

size N. In network computing, this fact is expressed by the difference between combinatorial and 

multiplication run-modes. While a combinatorial mode proceeds in a ‘massively parallel manner’ 

taking advantage of the parallel bacterial motion and the increasing available area as agents move 

from single entry to multiple exits, i.e. the processing of information grows as the computation 

progresses, its intrinsic parallelism would not be sufficient to provide an exponential speedup over 

classical computing. Instead, an exponentially growing number of agents is required to efficiently 

solve the given instances of an SSP with increasing input size N and such scenario is only possible 

in a multiplication run mode, i.e. agents actively divide inside the network as the computation 

progresses. In other words, in a multiplication run mode, exponential time is traded with 

exponential matter. Figure 10 (via numerical calculation) and Figure 13 (via computer simulation) 

demonstrate the impact of division on the device scaling law. The implications of such result bring 

back to the question of P vs NP, which, as discussed, has not been practically proved yet. 

Therefore, a question arises on whether the exponential speedup provided by division (shown in 

Figure 13) proves the existence of polynomial time algorithm for solving an NP-complete problem. 

The answer is negative. What Figure 13 shows is rather a demonstration of the opposite, hence 
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that P ≠ NP: an exponential number of physical computing resources is required to actually provide 

a polynomial time algorithm for SSP. Differently from problems in P, solving NP-complete 

problems necessitates at least one exponentially growing available resource. 

Scaling matter: Similarly, DNA technologies require an exponential quantity of DNA to 

generate all possible combinations of oligonucleotide sequences [15]. By enabling random mixing 

of molecules in a test tube, the computing time is very fast, i.e. oligonucleotides bind almost 

instantaneously in the ligation reaction, but on the down side, sequences encoding physically 

impossible solutions are generated, e.g. in the case of an Hamiltonian path problem, the sequence 

𝑣1 → 𝑣1 → 𝑣1 → 𝑣1 → 𝑣1 is an impossible path. Producing all combinations, including impossible 

ones, requires a much larger quantity of DNA than if only possible solutions were explored. In this 

scenario, scaling matter, i.e. DNA, to compute an NP-complete problem of increasing input size 

N would become quickly unfeasible. Consider the Hamiltonian path problem which scales with 𝑁! 

[18] assuming solutions terms are not repeated such that any possible solution is a sequence of the 

form 𝑣𝑖 → 𝑣𝑗 → 𝑣𝑘 → 𝑣𝑧 → 𝑣𝑞 where all subscripts are different from each other, 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑧 ≠

𝑞. Generating paths of the form e.g. 𝑣1 → 𝑣1 → 𝑣2 → 𝑣2 → 𝑣1 where 1 = 1 ≠ 2 = 2 ≠ 1, would 

require 𝑁2! oligonucleotides in the mixture to exhaust the complete solution space (and make sure 

a single Hamiltonian path is formed, if it exists). Adleman [15] used approximately 3 × 1013 copies 

of associated oligonucleotides for each of the six edges in the graph, possibly to account for 

potential errors; accounting for errors would require even higher quantity of DNA. In addition, it 

is worth considering that producing oligonucleotides is highly expensive, which makes DNA 

difficult to commercialize [20].  

Network computing shows a number of benefits with respect of scaling matter, i.e. bacteria: 

i) biological agents can be recycled (an external channel connects network exits to entry), ii) 

bacteria are easily available and accessible [57] and considerably cheaper than DNA, which makes 

bacterial-based technologies easier to commercialize, iii) agents divide under appropriate 

environmental conditions, hence they exponentially increase in number and vi) bacteria are 

channelled into available network paths of which there are as many as the number of possible 

solutions to the given problem (𝑁! for the Hamiltonian path problem). Constraining bacteria from 

randomly and freely moving reduces the solution space of the problem to the space of physically 

possible solutions. 
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The polynomial lines marked in green and orange (for E. coli and V. natriegens bacteria 

respectively) shown in the logarithmic graph in Figure 13, demonstrate the competitiveness of 

multiplication mode-based network computing over other solutions. Quantum-based computation 

is projected in the form of an exponential, even if one growing with half the speed of those of 

classical counterparts. The power of quantum computers comes from the ability to generate and 

manipulate subatomic particles e.g. photons or electrons, known as quantum bits or qubits. 

Generating, manipulating and ultimately scaling qubits (matter of QC), is an engineering and 

scientific challenge. One common approach it to build superconducting circuits cooled to 

temperatures colder than deep space. Alternatively, individual atoms can be trapped in 

electromagnetic fields on a silicon chip in ultra-high-vacuum chambers [58]. In both cases, the 

goal is to isolate the qubits in a controlled quantum state; by controlling N qubits, we can create 

2N linear combinations of their spin states simultaneously (a superposition of quantum states). On 

the contrary, a conventional computer with N bits at any given moment must be in only one of its 

2N possible states [56]. The fact that particles can be in multiple states at once, which is in contrast 

to classical bits, finds profound explanations in the nature of wave-particle duality of matter [59]. 

It suffices to say that a particular problem, e.g. an NP-complete, can be encoded by the linear 

superpositions of quantum states of the controlled particles and consequently, an increasing 

number of qubits would bring an exponential increase in quantum computing power. How is 

information processed in such a machine? By applying “quantum gates”—the respective of 

classical logic gates—that change particles spins in a precise and controlled manner [56]. It was 

estimated that, to compete with a common laptop, a quantum computer would require between 

1,000 to 100,000 qubits, meaning that such a machine would sustain being in 21,000 states at once 

(10300 which is more than the number of subatomic particles in the universe) [56]. Clearly, scaling 

qubits is a physical challenge. In addition, one must consider the effects of errors. As discussed in 

previous sections, errors in classical computers only exist at the input and output level. Any 

potential misalignment happening at the level of transistors (a transistor is switched off when 

supposed to be on and vice versa) is accounted by error-correction methods, which make use of 

some level of redundancy built into the hardware [56]. Error correction has not yet been proven to 

scale for quantum computing [60], therefore the possibility of maintaining controllably low error 

rates for 10300 simultaneous parameters is not foreseeable in any near future.  
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Scaling time: The projected performance of QC when solving instances of SSP is rather 

optimistic (Figure 13). It assumes that the aforementioned scaling-related problems were not an 

obstacle to quantum computing and tries to calculate how QC would scale if 1,000 or more qubits 

were working effectively with negligible error rates. A quantum polynomial-time algorithm for an 

NP-complete problem has not been demonstrated yet [61], and currently Grover’s algorithm [29, 

62] provides the only projection on quantum speed up over NP-complete problems. Grover 

demonstrated that, rather than an exponential, QC can only provide a quadratic improvement over 

classical algorithm. Such improvement is considerable (exponential grows at half the speed of that 

of classical computers) but, as shown in Figure 13, the quantum computing time still grows 

exponentially fast.  

Figure 13 does not draw a comparison with DNA computing which, for a complete picture, 

should be addressed in future work. From the perspective of scaling DNA computing times, it can 

be observed that the computation stage, denoted as tcomp (actual build-up of the problem solution), 

coincides with molecular reaction times. Multiple factors can influence the success of ligation 

phases, including temperature, time, DNA concentration, amount of Ligase enzymes and length of 

legated fragments, where the longest the fragments the more challenging the ligation [63, 64].  The 

booting time, tboot which corresponds to the time to initialize the computation, coincides with the 

molecular incubation time required for a successful ligation. Depending on the temperature, 

incubation and consequently ligation, may take between 10 mins to 16 hours. At 16°C incubation 

happens overnight (~12 hours) while at room temperature it may take even 2 hours. High 

concentration of DNA Ligase can be used in a 10 minutes ligation [64].  DNA ligation is normally 

carried out at 12–16°C (~12 hours) to ensure maximal ligation efficiency [65]. Low temperatures 

generally reduce ligase activity, whereas too high temperatures may reduce cloning efficiencies 

by melting annealed DNA overhangs and increase overall molecular motion in the ligation reaction 

[63]. Finally, the readout time, treadout which refers to the time taken to decode and read the 

computation output, e.g. filtering and sequencing DNA strings, is the most time-consuming 

process. The series of laboratory operations performed to read DNA solutions require considerable 

human manipulations, carried out sequentially and with low levels of automation [20] at the cost 

of exponential time.  
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The DNA computing time, tcomp may be described as relatively efficient from a computational 

standpoint. The ligase reaction time does not scale exponentially with the concentration of DNA, 

but rather, in a high concentration solution, DNA strands have better chance to pair relatively fast. 

Possibly though, multiple ligation phases may be required to handle a large amount of DNA [65]. 

As previously discussed, random mixing of simultaneously present DNA strands come at the cost 

of generating a larger solution space than actually needed (including physically impossible 

solutions) and, consequently, of requiring an impractical amount of DNA (it was estimated that 

solving a TSP with 200 vertices would exceed 3*1025 kg! [66]). Contrary, in network computing 

where, as previously mentioned, bacteria are recycled, they never coexist all simultaneously inside 

the network: they move in and out, coming back to the entry using external channels. 

Consequently, network-based calculation uses considerably less mass of agents, but at the expense 

of a much larger computation time, tcomp.  

Overcoming traffic density in a network device: One engineering bottleneck in a network 

device lies at the entry point of the network, or relatively close to it. The restricted available area 

surrounding the single entry, compared to a much larger area towards the bottom of the network, 

represents a zone of blocking, or high traffic, which delays bacterial flow and consequently the 

entire computation. Such bottleneck results from saturation of confined space and typically 

happens in a combinatorial run mode: as agents are expected to distribute in time and space, they 

remain blocked if not enough space is available. On the other hand, enlarging the network channels 

(usually between 2-4 um) would enable bacteria to perform U-turns in low traffic conditions. 

Given the device does not support subtraction when solving the SSP, U-turns are highly 

undesirable as they create two-ways traffic without bacteria reaching the bottom exits to fully 

explore solutions. Under traffic conditions, the booting time, tboot of the device, which coincides 

with the total time bacteria take to enter the network at the start of the computation, is considerably 

large and, when summed to tcomp, time becomes impractical (Figure 7). Consequently, traffic 

density must be avoided for a successful computation, a reason why the combinatorial run mode 

was demonstrated not to be an optimal solution [13]. It is worth noticing that tcomp is itself 

exponential in a combinatorial run mode (Figure 7a), signifying that a higher number of agents to 

simultaneously coexist in the network and explore the solution in parallel would be needed to 

provide a more efficient solution. As expected, such possibility is hindered by the existence of 

traffic density. Figure 7a demonstrates the average relative traffic density versus cardinality when 
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instances of SSP are solved by the computing device with input numbers belonging to different 

problem series. Both Figure 10 and 13 demonstrate how computing time scales when instances of 

SSP with numbers of the prime number series are used. This observation has relevance since the 

size of an SSP network depends on the compactness of the series i.e. the relative distance between 

numbers in the set, and the more compact the series, the smaller the network. The smallest SSP 

network solves a binomial expansion series, e.g. Pascal’s triangle, while the largest network solves 

a factorial series. In Figure 7a expected traffic density when networks solve the prime number 

series (green line) are compared with other network sizes. The larger the network, the lesser the 

expected traffic density (as shown by the exponential (violet line) and the factorial (brown line) 

number series).  Figure 7b demonstrates the substantial improvement that a multiplication run 

mode brings to traffic density. Under multiplication conditions, agents are able to divide inside the 

network, therefore, increasingly populating the bottom and benefiting of enough space at the top. 

This is because, in practise, by enabling a restricted number of agents to enter the network, the 

device is able to solve the problem efficiently by experiencing bacterial division as the 

computation proceeds. As a result of the exponential number of agents exploring the bottom exits 

simultaneously, the device is able to solve the SSP in polynomial time (Figure 13, green and orange 

line). One consideration must be made with respect of the division phenomenon, such that, for the 

first time, a machine is conceived to have its computing resources increasing as the computation 

progresses. Theoretically, if an exponential number of agents could grow fast enough to map the 

SSP solution space, computing times could be reduced ever further. The physical constraint of a 

limited available network area inhibits such growth since, in those conditions, even the bottom of 

the network could experience traffic density. 

The halting condition: The multiplication run mode brings noticeable improvements on both 

the booting time tboot and the computing time tcomp of the device. Previous considerations provided 

clues that the total time to compute a problem instance is not only a function of the input size, but 

also a function of the number of computing agents exploring the network. Nevertheless, some 

agents may be able to make ‘errors’, thus not providing defined solutions. The ability of bacteria 

to make errors underlines the stochastic nature of the computing device. Errors arise at pass 

junctions (PJ), designed to force a given bacterium to maintain its current direction. In other words, 

if an agent comes from a straight path, it should continue going straight after crossing the junction. 

Potentially, agents can succeed in taking a ‘difficult to reach’ route, thus entering a forbidden path 



  
 

106 
 

and exploring an exit which is not a solution (in Figure 3, exits marked with magenta index are not 

solutions). One must remember that, when solving an SSP, knowledge of correct and incorrect 

solutions is only derived from the ability to distinguish between explored exists (correct) and not 

explored ones (incorrect). Therefore, if the pass junction error rate is high, results cannot be 

discerned. In addition to errors performed by bacteria, chip fabrication errors may be a cause of 

erroneous computation. Due to the occurrence of errors, one question arises. When are we going 

to be confident enough of computed solutions, or in other words, when do we to stop the 

computation? Such question partially resembles Turing’s Halting Problem [67], but with some 

qualifications. Certainly, the minimum number of bacteria required to explore all exists depends 

on the PJ error; with high error rates, all exits will be explored with some magnitude and it would 

be impossible to recognize correct and incorrect solutions. Ideally, if errors were not an option, it 

would become very clear and very fast which solutions are correct based on which exists are 

visited. Given the sophisticated level of precision in the fabrication of the chip, experimental PJ 

error was observed to be at 0.01%. With such error rate, the formula of the coupons’ collector 

problem [53] provides a suitable measure for scaling the minimum number of agents to solve 

instances of SSP. In this context, the coupons’ collector problem asks, given a problem of input 

size N, what is the minimum number of agents required to consistently explore all 2N combinations 

with >95% probability. In the attempt to minimize the number of agents (which reduces computing 

time) while still enabling agents to provide a reliable solution, a factor of two (x2) was added to 

the coupons’ collector formula (CCF). The formula shown below was adopted as a halting 

condition (with results presented in Figure 10 and 13). 

Halting Condition = 2 × 𝐶𝐶𝐹  

𝐶𝐶𝐹 = ((2𝑁 × ln(2𝑁) + 0.5572) + 0.5 − 1) ×
0.5

0.45

𝑁

 

where N is the input size (cardinality) of the problem instance and 2N are the possible solutions.  

Reducing error rates: It is important to note that, once the computation gets to a halt, 

identifying errors for discerning the true solution (readout) is not a trivial task. Some exits are 

naturally more explored than others, depending on the problem instance to be solved and the 

motility characteristics of the running bacteria e.g. V. natriegens has a preference with turning left. 

This uncertainty has consequences on the interpretation of results. Some exiting regions of the 
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network may show a much higher concentration of agents compared to others e.g. in the case of 

prime number series, the output distribution resembles a bell shape, with tails being less heavily 

explored. Consequently, it is possible that incorrect exists positioned in highly visited regions e.g. 

centre of the distribution, will be explored by a higher number of agents than correct ones 

positioned in poorly visited regions e.g. tails of the distribution. Clearly, from a scaling 

perspective, reducing if not removing PJ errors would be ideal. Performed simulations showed that 

an error rate of >2% would be detrimental for computation efficiency. To address this issue, a 

proof of principle of 3D-SSP junction networks composed of bridges and tunnels was 

demonstrated in recent (not yet published) work. The 3D crossings physically separate the bacterial 

traffic at the pass junctions, inhibiting them from taking forbidden turns and errors. This approach, 

aimed at an error-free computation, was tested using an SSP network with 16 exits and cardinality 

equal to 3, i.e. SSP (2,5,9) using E. coli agents. Results successfully demonstrated a zero-error 

output in the 3D network compared to the 2D network. Analysis of 3D networks will be further 

perused in future work. 

Defining solutions: The combinatorial nature of SSP is expressed by the distinction between 

Complexity Class I and II (CC-I and CC-II) problems, described in Figure 3. In CC-II, some exits 

may be reachable through multiple routes, while in CC-I each exit has only one path to it. The 

importance of the Complexity Class distinction comes apparent when different facets of the 

original SSP definition are considered. Informally, the simplest one, here called Q1, asks, if there 

exist any subset sums of a target value T given the set of input elements E. In principle, 

experimental and simulated demonstrations of bacteria exploring an SSP network suggest that the 

counts of bacteria at each exit contain enough information to solve a CC-II problem even without 

any representation of the network (density maps), any prior knowledge of the set employed and 

any knowledge of the individual routes taken by bacteria. Therefore, in order to answer Q1, the 

readout time treadout is instantaneous (observing the counts of agents at the exits). To give a concrete 

example, consider a CC-II network with T = 42 and input elements E such that E = (2, 5, 9, 11, 

15). Judging from counts of agents, it can be discovered that valid subsets S are as follows, S = (0, 

2, 5, 7, 9, 11, 13, 14, …, 39, 41), where S provides all subset sums of T for the given problem 

instance. On the other hand, Q2 asks what are the precise components of each solution in S. 

Consider the same example network above where T = 42. Let us pick 11 as one of the solutions in 

S which is a CC-II solution, hence it has multiple routes taking to the same exit 11: Q2 wants to 
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know what are the subsets of 11 (and other CC-II exits), not only 42! This problem, which aims to 

know what are the exact CC-I subsets of CC-II exits, can only be solved by tracing back the 

possible routes to every CC-II exit. The given example is a trivial case and, with few calculations 

one may quickly realize that, among the solutions in S, S’ = (0, 2, 9, 11) are subsets of 11, where 

in fact 11 = 11+0 = 9+2, while 5 and 7 are not. Nevertheless, when complexity increases, 

discerning the exact subsets of all CC-II solutions becomes increasingly (computationally) hard. 

Clearly, Q2 adds another layer of information but with the resulting answer (what are the subset 

sums of 42) being essentially the same as Q1. The variation between Q1 and Q2 may have 

relevance depending on the practical application of the SSP. 

Integrating the readout. To answer Q2 correctly, a considerable number of operations must 

be carried out and, at the same time, the readout time treadout should also be minimized as much as 

possible. One simple method for reading out the computation output is the use of density maps of 

the whole network area (cumulative sum of network images) showing the most visited routes and 

exits. Density maps were produced to compile experimental results shown in Figure 13 (green and 

orange lines). This method provides visual clues rather than a numerical solution for the different 

routes and requires multiple microscopes and stitching images to visualize very large networks. 

One technology discussed in Chapter 2 which could potentially allow to discriminate between 

agents taking different routes in CC-II problems is dynamic fluorescence tagging (Figure 11). In 

such scenario, agents are given a fluorescent colour label when taking a route. When agents exit 

the network, their colours represent the particular routes taken by each of them. A counter would 

increment values by counting agents out of each route, rather than each exit. In practice, bacteria 

must be genetically modified to express fluorescent proteins which get excited and emitted with 

selected wavelengths [68, 69]. Therefore, the engineering challenge of this approach is non-trivial, 

in particular in the context of scaling the computing device and consequently its number of paths, 

meaning that an exponential number of colours must be provided, one for each path. An alternative 

solution would be to monitor bacterial motion with a tracking software assigning IDs to individual 

agents. As for tagging, a counter would increment values per each route as the computation 

proceeds. The feasibility of this approach is higher compared to tagging, and possibly doable at 

relatively modest cardinalities, C (up to ~30C). Multiple microscopes covering the full chip area 

would be required to record the history of bacterial flow. Nevertheless, it must be noted that, at 

higher cardinalities, the number of bacteria to be tracked in parallel would become impractically 
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large (possibly an even harder engineering challenge than tagging) and it would also become 

impossible to include the whole chip area under the available field of views with a resolution still 

allowing identification of individual agents. As shown in Figure 8 in Chapter 2, the E. coli cell 

widths can only be resolved by a high-resolution optical microscope, while the benefit of a larger 

bacteria, e.g. E viridis, would come at the cost of a proportionally larger network size.  

Scaling area: Figure 13 demonstrates the ability of the computing device to solve instances of 

SSP in polynomial time given the combinatorial and independent nature of bacterial division. Until 

now, some concerns have been expressed with respect to scaling the network areas. As shown in 

Figure 13, V. natrigens, which multiplies at a rate almost three times faster than E. coli, would be 

able to undertake an AMD Rayzen past cardinality ~45, and in theory, a Pentium Pro operating as 

a QC past cardinality 90. Nevertheless, such high cardinality networks cannot be fabricated 

without an innumerable amount of errors using e-beam lithography and chemically assisted HF-

cold etching. As a result, scaling the area, and effectively the network, is a fundamental challenge 

that requires additional future research. One point must be made with respect of the different 

network sizes based on the structure of the number series. Solving increasingly hard instances of 

SSP using numbers of the factorial and exponential series requires the network area to scale 

exponentially fast while using elements of the prime number series (a more compact series) only 

requires it to scale polynomially. From Figure 9, it can be deducted that by using E. coli, or an 

agent with similar size, the area of a device solving SSP with primes numbers and a cardinality of 

30 is slightly larger than a 6 inches wafer while, for the same wafer size, only a problem of 

cardinality 15 can be attempted with numbers of the exponential series. One potential solution of 

scaling the network area would be to run multiple networks in parallel. If a prime numbers network 

with cardinality 25 is used (close to the maximum that could be physically attempted), which has 

1060 exits, one would need 1061 networks running in parallel, 1 running a 25-cardinality network 

and the other 1060 functioning each one as a continuation of an exit of network 1. Such operation 

would require some computational redundancy as it is not known a-priori what are the valid exits 

of network 1. Therefore, among the 1060 networks, some will be excluded only at the end of the 

computing time. 

Dynamic programming: It was argued [70] that the computing device as described by Nicolau 

et al. [52], if surely a remarkable piece of engineering, does not circumvent the problem of 
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exponential time bound solutions when solving the SSP. It was also pointed at dynamic 

programming (DP) algorithms which solves the problem for subsets of increasing size using the 

known result from previous steps, thus avoiding to compute operations multiple times; from a 

network computing perspective, essentially, they skip all pass junctions to only compute 

operations at split junctions. In particular remarkable is the DP algorithm proposed by Pisinger et 

al. [71] which proposes the use of a technique called balancing aimed at discovering a problem 

solution by mean of ‘some reasoning’ e.g. if a possible solution found is excessively small to hit a 

target value, than smaller numbers composing even smaller solutions would certainly not be valid 

either and would not need to be computed. Essentially Pisinger [71] formalises such reasonable 

assumptions and successfully delivers an algorithm for SSP which scales in O(NW), where N is 

the input size (cardinality) and W is the largest (in magnitude) integer in the set. Certainly, solving 

SSP with a DP algorithm would yield a much faster result. In previous work [52] a brute force 

algorithm was demonstrated, which by definition, explores all possible combinations, even if 

repeating operations must be performed. Therefore, as it was observed [70], the biological 

computer would scale exponentially fast following a similar trend to electronic computers. What 

was not observed, as in fact a recent result, is the ability of the device to run in polynomial time 

with bacterial division while still solving a brute force algorithm. These results, shown in Figure 

10 and 13, demonstrate the advantage of a the proposed novel computing model: here the 

biological device, still a its infancy, is directly compared with various models of electronic chips, 

some still at their infancy (Intel i286, i385, i486) from an operation and computing time 

perspective. Introducing clever algorithms at the level of DP techniques shall be addressed in 

future research. 

Justifying the choice of bacteria as computing agents: Chapter 3 provides a glimpse of 

additional work performed on SSP networks in the last year, which includes proof of concept of 

3D networks and an experimental demonstration of division in the networks. Differently from 

previous work [52] which used self-propelled motion of Myosin II and kinesin-1 molecular 

motors, bacteria were employed for the latest demonstrations due to (i) the existing large variety 

of candidate agents with detailed information on velocity, flagellar arrangements, sizes, 

morphology, and dividing rates; (ii) bacteria require low-cost and uncomplicated experimental 

procedures, for which well-known protocols exist; (iii) a wide range of fluorescent tagging and 

gene editing tools and programmable traits are readily available; (iv) bacterial cell width are large 
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enough to be clearly distinguishable by different imaging techniques and importantly (v) bacteria 

divide, thus providing self-replicating computing power. 

Algorithms is network computing: A computing device must be able to solve different 

algorithms. In network computing, an algorithm is essentially the network provided as input, with 

its geometry encoding a particular problem. As a first alternative to the SSP, the computing device 

was used as an entropy-providing resource of a TRNG, discussed in Chapter 4. Differently from 

the SSP network having both split and pass junctions, for this application, the network has only 

split junctions (designed to let agents take either path with 50-50% chance). Clearly, the presence 

of pass junctions would deny the possibility of generating bits of maximum entropy (which is 

based on a fair probability split of ½ between two possible choices) and would therefore reduce 

the overall entropy per byte provided by the entropy source. Increasing the density of split 

junctions on a given network area represents a possible solution to maximize the rate of output bits 

and it would be worth attempting it in future work. This solution is expected to be successful as it 

would not have impact on the computing time of the Bits Generator Algorithm, which in fact, only 

depends on the number of frames (images), f and the number of agents in each frame squared, n2 

and not on the number of split junctions. Given the large number of bacteria to iterate through in 

each frame, the initial performance of the Bits Generator Algorithm O(fn2) was substantially 

improved using parallelisation of matrix operations (enabled by the Python NumPy library [72]) 

and multiprocessing computational techniques.  

Reliability of an entropy source: The proposed TRNG generator aims to produce truly random 

numbers for cryptographic applications. In cryptography, the unpredictability of secret keys is 

essential. Therefore, the TRNG must comply with the strict requirements given by the National 

Institute of Standards and Technology (NIST). According to the NIST Recommendation for 

Entropy Sources, [73], the minimum entropy, rather than the commonly used Shannon’s entropy, 

represent the most accurate description of the reliability of a given key and its security to potential 

attackers. The minimum entropy produced by the entropy source is shown in Table IV, Chapter 4. 

The security of the TRNG relies on this value, which in this case, is sufficiently high (the digitized 

raw data have 7.791 out of 8 bits/byte and the entropy source data have 7.833 out of 8 bits/byte). 

Therefore, the non-deterministic random laws inherent in the bacterial-run computing device 

demonstrated evidence of validity in the generation of high entropy data. In order to further assess 
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the entropy source reliability and optimality, the entropy source must be validated by accredited 

laboratories [73]. Working to meet additional validation requirements, which include providing a 

command line interface to extract entropy and integrating health tests, shall be the next steps in 

future work.  
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Chapter 6 

Conclusion 

     This contribution defines the mathematical principle and current state of the art in the network 

computing field and estimates its potential to solve computationally hard problems efficiently. In 

addition, a novel application of a network computing device is proposed and demonstrated in the 

context of generating true random numbers.  

     Solving NP-complete problems efficiently and generating truly random numbers are both 

fundamental problems in the modern society which ‘von Neumann’ based computers fail to 

address given their strictly deterministic and sequential computing model. New technologies have 

emerged to solve such problems and among them, network computing provides innovative and 

promising approaches to handle combinatorial operations in a massively parallel fashion and with 

high energy efficiency. The question of whether a network-based device would be able to scale is 

pivotal for the success of this novel approach, hence a research question addressed in Chapter 2 

and 3. This contribution identifies the scaling related key technological challenges in terms of chip 

fabrication, readout, reliability and energy efficiency in the field, thus providing a road-map to 

future developments. The research clearly illustrates that, among available resources such as time, 

space and matter (computing agents), a trade-off always exists in the attempt to scale the 

computing device: to achieve an exponential reduction in computing time, an exponential number 

of computing agents and an equally growing space variable must be managed. On this respect, this 

contribution identifies potential ‘auxiliary’ technologies and solutions that, if adopted, would 

enable the device to scale successfully. In particular, while the presence of bacterial error and 

fabrication error (increasing with larger wafer sizes) may limit scaling to very large cardinality, 

the use of 3D junctions and parallel computation of multiple independent networks (max 6 inches 

wafer) would be potential solutions worth exploring in future work. The competitiveness of the 

novel approach is demonstrated using computer-aided simulations and experimental data which, 

for the first time, demonstrated the impact of bacterial division, actually proved by 

experimentalists. A comparison with DNA technologies shall be integrated in future work to 

provide a complete picture of different computing models and their scaling laws.  
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Network computing does not harness the ‘intelligence’ of bacteria, but rather their random 

exploration of the network and, importantly, their ability to divide. Consequently, an innovative 

design of a high throughput TRNG for cryptographic applications was conceptualized and 

demonstrated, for the first time exploiting random bacterial motion inside a microfluidic network. 

The random processes inherent in the biological nature of E. coli HCB437 provide the 

unpredictability required to generate high entropy data demonstrating the i) suitability of network-

based computing in applications other than NP-complete solvers, ii) the possibility to generate 

non-deterministic data using the E. coli HCB437 strain in confined spaces. If further research is 

needed to fully assess the entropy source validity for cryptographic uses, this demonstration opens 

the future possibility to design bacterial run biological chips for novel cryptographic tools.  

    Based on these conclusions, network-based computing with self-propelled and dividing agents 

represent a promising avenue for solving computational problems of modern societies. The novel 

results discussed provide a reference for new developments and applications in the field. 
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Appendix A 

 

The following Appendix with the Supplementary Information of the paper Something has to 

give: Scaling combinatorial computing by biological agents exploring physical networks encoding 

NP-complete problems published in Interface Focus.  

 

- Supplementary Information – 

Interface Focus 

Something has to give: Scaling combinatorial 

computing by biological agents exploring 

physical networks encoding NP-complete 

problems 

 
 

Falco C.M.J.M. van Delft, Giulia Ippoliti, Dan V. Nicolau Jr., Ayyappasamy Sudalaiyadum 

Perumal, Ondrej Kaspar, Sara Kheireddine, Sebastian Wachsmann-Hogiu, Dan V. Nicolau 
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SI-1 Mathematical formulation of network encoding 

The ‘hardware’ component of the computational network-based devices, i.e., networks whose 

design reflects a particular problem of interest, could be mathematically formulated as follows. An 

arbitrary decision, i.e., yes/no, problem (D) whose instances, i.e., specific cases of the problem, 

are denoted as D1, D2, … can be represented by a class of networks of nodes and connections, E, 

that captures the structure of the decision problem. This representation is made in such a way that, 

for every instance Di of D, one can find a directed graph, Ei, in which a path from any of a 

predefined set of input nodes to any of a predefined set of output nodes exists if — and only if — 

the decision problem on Di (as defined above) has an answer in the affirmative. Conversely, we 

need to guarantee that such a path cannot be found if the decision problem on Di has a negative 

answer. If the NP-Hardness Assumption is true, then the number of unique paths through the 

networks encoding the instances will, in the worst case, grow exponentially with instance size, 

thus necessitating the use of a number of agents larger than this number of paths, in order to 

comprehensively explore the solution space. Consequently, the engineering future of computing 

with networks rests on finding a physical implementation strategy that is able to marshal 

potentially very large numbers of agents. 
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SI-2 Nomogram for Field-of-View and Cardinality in case all 

agents move through the network channels in singular queues 

(no overtaking). 
 

The expected chip size is shown in the nomogram in Figure SI-1 (left hand side) as a function 

of the channel widths (dependent on the agent sizes) for the “prime number” SSP devices for 

various cardinalities. The horizontal black dashed lines delimit the sizes of 4, 6 and 8 inch silicon 

wafers – the standards in the semiconductor industry. The vertical yellow bars indicate the line 

widths for devices running molecular motors-driven cytoskeletal filaments, i.e., actin filaments, 

microtubules, as well as small (E. coli) and large (E. viridis) microorganisms. As examples, the 

green, red and black arrows indicate the chip sizes of, respectively, the cardinality 15 network for 

microtubules, the cardinality 5 network for E. coli, and the cardinality 5 network for E. viridis. 

Because of the competition between resolution and the FoV, the whole imaging of the 

computing area requires the employment of the maximum useable pixel size (MUPS) that can still 

discriminate the individual agents, as well as the legal (and illegal) turns they take. Regarding the 

latter, the middle panel in Figure SI-1 presents the SSP chip split junction design with a given 

channel width (top). Also, the split junction design is shown with an overlay of pixels 5 times 

larger than the channel width, which is the limit that would still allow the system to follow vertical 

traffic (in blue), diagonal traffic (in yellow), and whether the splits are being used for changing 

traffic direction (in purple), or if the central pass crossing (in green) is used. The legal pass and 

split traffic is indicated by the groups of three squares underneath the overlaid design. A typical 

example of an illegal turn that would be detectable is yellow-green-blue. Apart from being 5 times 

the channel width, the MUPS value should also allow discernment of the individual agents. Hence, 

the MUPS value should also be smaller than the agent length.  

The right-hand side of Figure SI-1 represents the square root of FoV versus the MUPS value. 

The black crosses indicate the intersection of the largest attainable FoV (as a square root) with the 

minimum attainable MUPS for various optical imaging technologies, i.e. their resolution limit. 

The useable optical range is obtained by the intersection of sqrt(FoV)-MUPS range with the 

diagonal black line indicated as ‘Unity’. At the point where the top horizontal border meets the 

‘Unity’ line, the MUPS value is equal to the total FoV, meaning that only one pixel fits in the 

frame, obviously far from any reasonable application. To fully exploit the frame size available, the 
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MUPS value should be as close as possible to the resolution limit. The vertical blue bars indicate 

the MUPS for devices running molecular motors-driven filaments, and small-and large 

microorganisms. Similarly to the left panel in Figure SI-1, the horizontal green, red and black 

arrows copy the chip sizes of respectively the cardinality 15 network for microtubules, the 

cardinality 5 network for E. coli, and the cardinality 5 network for E. viridis. If the spot where the 

vertical green, red, or black arrows, respectively, meet their equivalent horizontal arrows is inside 

a ‘technologically-achievable’ sqrt(FoV)-MUPS triangular area, the corresponding optical 

technique is, in principle, useable for monitoring the computation process using a single FoV. It 

follows that a cardinality 5 network for E. viridis can be monitored by a macro-lens equipped 

camera, whereas the cardinality 5 network for E. coli and the cardinality 15 network for 

microtubules can be monitored by a lens-less microscope.  

Note that this scenario assumes that there are no agents overtaking each other in the channels 

either laterally or by crawling over each other.  

 

Figure SI- 1: Nomogram for network size versus line width and cardinality, and Field-of-View 

versus Maximum Useable Pixel Size and resolution. Also shown is an example of an enlarged 

work window by image stitching (red cross); the limits of this method are discussed briefly in the 

main text and in detail in SI-3. 
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SI-3 Stitching FoV’s while keeping track of all agents  

When the area to be imaged exceeds the Field-of-View (FoV) of the imaging system, image 

stitching can be performed to ‘bridge the gap’, although not without some loss of information. Of 

course, this loss can be minimised through faster switching speeds, which in turn are limited by 

the mechanical capabilities of the microscope stage. To perform these calculations, the following 

factors should be taken into account: 

• Speed of biological agent used 

• Exposure time of each partition of the image 

 

For the sake of simplifying our sample calculations, we are assuming no horizontal or vertical 

image overlap, negligible exposure times (which in reality can go as low as 1-10 ms for bright 

field imaging and as high as 500 ms for fluorescence imaging), perfect functioning of pass and 

split junctions in our subset sum networks (SSN), and unidirectional movement of our biological 

agents with no U-turns. Factoring in the density of the agents necessitates choosing the optimal 

switching speed based on dependency on body length in case of high agent density, and based on 

distance between adjacent junctions in case of low agent density. 

For the scenarios described below, numerical examples are shown for E. coli K-12, where 

body width (BW) = 0.5 m, body length (BL) = 2.5 m, and speed v = 10 m/s. Vertical and 

Diagonal Junction Distances (i.e. between two adjacent junctions) for the subset sum problem 

network (SSP) fabricated with 2 um-width channels for E. coli, are 60 m (VJD) and 100 m 

(DJD), respectively. 

• In the case of high agent density (scenario where more accurate tracking is required) 

1. Speed of agent v = 10 m/s 

2. Speed vb of agent in body lenghts/s:   vb = v / BL =  4 bl/s 

3. Time period to return to original image partition (in case we wish the agent to have 

moved only ½ a body length)   tr = 0.5*BL/v  =  0.5bl / vb  = 125 ms 

4. The average switching time between partitions ts  is determined by ts  =  tr / n*m , where 

n and m are the number of partitions in x and y respectively (e.g. 2x2, 3x4). Hence, for 

a 2x2 stitching mode, ts = 125ms / 4 = 31.25ms 
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• In case of low agent density (scenario where less accurate tracking is acceptable) 

1. Speed of agent v = 10 m/s  

2. Speed of agent (vv or vd) in vertical- or diagonal junction steps per second  

vv =  v  / VJD =  0.17 vjs/s   and  vd =  v  / DJD =0.1 djs/s 

3. Time period to return to original image partition (in case we want the agent to have 

moved by 1 vjs or 1 djs) tv = VJD / v  = 1vjs/ vv   =   6s and   td = DJD / v = 1djs/ vd  = 

10s 

4. The average vertical switching time between partitions tsv is given by tsv  =  tv / n*m , 

where n and m are the number of partitions in x and y respectively (e.g. 2x2, 3x4); the 

average diagonal switching time between partitions tsd is given by tsd  =  td / n*m 

Hence, for a 2x2 stitching mode tsv = 6s/4 = 1.5s  and tsd = 10s/4 = 2.5s. 

 

The calculations shown above describe two extreme cases in terms of agent density, and as a 

result the necessary corresponding tracking accuracy. However, in real-life situations, we will 

mostly have intermediate scenarios that fall between both, and it would be up to our discretion to 

choose the appropriate values to use.  

As such, the overall parametric equation to calculate switching time (ts) can be described as: 

𝑡𝑠  = 
𝑡𝑟

𝑛𝑚
  = 

d

𝑣∗ 𝑛𝑚
  

where ts is the switching time between image partitions, tr is the time period to return to original 

image partition, n is the number of image partitions in the form ‘n x m’, d is the displacement we 

would like our agent to have moved by the time we return to the original image partition expressed 

in terms of BL/VJD/DJD etc., and v* is the agent speed expressed in terms of BL/VJD/DJD etc. 

rather than in unit length per second. 

The switching time (ts) encompasses two values, namely translation time (tt) and exposure 

time (te), where tt can be expressed as: 
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𝑡𝑡  = 
FoV

𝑣𝑠𝑠

 

where FoV is the diagonal field-of-view of the system, and vss is the speed of the scanning 

microscope stage. Moreover, te is dependent on illumination technique (e.g. bright field), system 

magnification (inversely proportional), and when using fluorescence, the fluorophore used. It 

follows from this that ts ≥ tt + te in order to achieve the required agent tracking accuracy.  

In terms of what the current technology can offer, the fastest motorised translational stage, to 

the best of our knowledge, offers a maximum speed of 250 mm/s, with an accuracy < 3 um. This 

stage utilises a servo motor as its actuator, and is available from Thorlabs Inc. 

Once again, using two extreme scenarios for the FoV can help shed light on what this system 

could help us achieve. If we use a 100x objective (NA=1.4), which gives us a FoV ~ 60 um, we 

get tt = 240 us. When pairing this with a reasonably low te, one can achieve high accuracy with a 

large number of partitions, and a high resolution (~ 0.5-1 um), but the overall FoV covered would 

be quite small. On the other hand, if we use a 2x objective (NA=0.3), with FoV ~ 1.5 cm, we get 

tt = 60 ms. Based on our previous calculations, regardless of the te used, we will not be able to use 

this system to scan even the smallest (2x2) partition matrix for the most accurate tracking scenario 

(ts <= 31.25 ms). However, we can still use this for a slightly less accurate tracking scenario while 

covering a larger overall FoV with a fairly good resolution (~ 3-5 um). 

Typically, for observing E. coli in the SSN, we use a 4x objective (NA=0.16) under 

fluorescence, with te = 500 ms. In order to observe the largest chip we have with cardinality 30 

(C30), which has an area of ~ 13x10 cm, and using the same 4x objective with FoV ~ 1 cm, we 

would need 13x10 partitions. For this set-up, and using the more accurate tracking approach, we 

would need a ts = [125 ms / (13*10)] = 0.962 us = ~ 1 ms, which is unattainable given the large te 

requirement. Moreover, using the less accurate tracking approach, we would need a ts = [10 s / 

(13*10)] = ~ 0.077 s = 77 ms, which once again is unfeasible. If, however, we disregard te, we 

would need a 𝑣𝑠𝑠 = 10 m/s, and 𝑣𝑠𝑠 = ~ 13 cm/s respectively. Since the SSN has a triangular profile, 

and only half of the rectangular partition grid will be traversed by the moving stage, the calculated 

ts should be multiplied by 2, which would result in half the speed requirement. This, even with the 

improved requirements, is nowhere near feasible given the current available technology. While 
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ignoring te is unrealistic for tracking E. coli, it could potentially work for bacterial species that 

provide good contrast, such as cocci. 

Table SI-I shows which chips can be observed with image stitching using the specific 

objectives available on  an Olympus IX83 microscope. This comparison was made using 

appropriate exposure times for each magnification, in addition to the translation time using the 

stage speed available (13 mm/s).  

It shows that -with stitching- up to C15 can be observed with a 10x objective and up to C20 

with a 4x objective, compared to C4 and C11 respectively without stitching (i.e. one FoV). 

However, just to relax to speed requirements and other elements that were not taken into account 

(such as areas of image overlap, precision issues, etc.), the limit will be more likely at C15 when 

using the 4x objective. 

Table SI- 1 

      _____________________________________ 
 
Objective NA Resolution FoV  Cardinality   Stitching  Cardinality  

        (m) (m)    1 FoV   limits              Stitched FoV 

           

    2x  0.3       5  15000         11      4 x 3   21 

    4x  0.16       3  10000           9      6 x 4   20 

  10x  0.4       2    2000           4    14 x 11  15 

  20x  0.75       2    1000           3    24 x 18  14 

  40x  0.96       2      500     27 x 20  11 

  60x  1.35       1      200     32 x 24    8  

100x  1.4       0.5        60     39 x 30    5  

 

            _ 
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SI-4 Method 1: Sub-set Sum Problem calculation by various 

electronic chips 

A computer program to solve the Subset Sum Problem was developed in the C programming 

language to enable low-level memory access, efficient mapping to machine instructions and 

flexibility. Out of several algorithms to solve the SSP, a naïve approach was adopted to emulate 

the Biological Chip logic and operations. Therefore, it was possible to establish a comparison 

between electronic and biological devices in terms of performance times with increasing size of 

the problem (Cardinality). 

The SSP algorithm was designed to recursively explore all 𝑁-elements in the set and to log 

the 𝑘 winning combinations according to the 𝑁 chooses 𝑘 subsets ∑ (𝑁
𝑘

) = 2𝑁
0≤𝑘≤𝑁 . Its running 

time falls in the order 𝑂(2𝑁𝑁) due to the SSP combinatorial nature and the highest computed sum 

of 𝑁-elements to identify subsets. Similarly, the bio-device was designed to find all possible 𝑘 

subsets sums by exploring 2𝑁possible combinations, times the 𝑁-elements considered for solution 

identification. 

The algorithmic naïve approach, combined to its lack of any pre-existing knowledge and bias 

of problem clauses, enabled us to benchmark the Biological chip performance analysis with 

performances of historical Intel processors. Being RAM Memory and Clock Speed the major 

factors affecting CPU speed, we replicated computing resources of Intel382 SX and DX, Intel486 

DX, Intel DX2, Intel Pentium and Intel Core Quad 2Processor versions by simulating part of their 

computer hardware with Virtual Machines. Thus, we were able to scale down RAM and clock 

speed and record performance times on SSP.  
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SI-5 Method 2: Simulation of Sub-set Sum Problem 

calculation by a hypothetical biological chip         

The performance of electronic computers was compared to hypothetical bio-computer 

performance simulated for the following agents: E. coli, V. natriegens, M. janaschii, and M. 

villosus,  as well as Microtubules and Actin filaments. For including cell division in the simulation 

of the bacterial species used, the following doubling times have been used: M. janaschii: 74 min., 

M. villosus: 45 min., E. coli: 30 min., and V. natriegens: 15 min.  

 

The independent and parallel behaviour of a large number of self-propelled biological agents 

was reproduced and scaled taking into consideration various factors: network and channels 

geometry varying with increasing SSP size, agents’ random walk behaviour over network 

exploration and physical rules of motion and logic given by network structures and agents sizes, 

speed and characteristic behaviour. 

 

SI-6 Electronic reference device  

By ‘reverse engineering’ starting from the pass- and split junctions for the sub-set sum bio-

computation device described in this paper, an electronic equivalent device was designed. 

Originally, an analog circuit was conceived, but simulations showed that already with a limited 

number of nodes, leakage currents would render the readout of such a device unreliable. Hence, a 

digital electronic demo device (shown in Figure SI-2) with LED readout and IC HEF4019BP 

containing AND and OR gates (shown in Figure SI-3)  was constructed; this particular  DEMO 

device has a total sum of 6 only, but it has flexible nodes, which can be switched from pass- to 

split junctions by activating  bus lines.    
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Figure SI- 2: Electronic demo device  -  Operation Upgraded CHicken wire (OUCH!) 
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Figure SI- 3:    IC HEF4019BP, 

Note that this IC can accommodate  

two pass- or two split junctions simultaneously 

 Adapted from [1] 
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