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Abstract

In this thesis we address the singularity problem within the formalism of Double Field

Theory (DFT). This problem arises in the context of General Relativity and is also present

in string cosmology. We start by introducing the necessary elements of cosmology, string

theory, string cosmology and DFT which allow the understanding of the research presented

here. The first result encompasses a generalization of the DFT action in order to consider

point particle motion. After deriving the geodesic equations for the point particle, we ar-

gue that the geodesic motion can be extended to both past and future infinities once the

appropriate physical clock is considered. Then, our second paper entails an argument that

upon considering the double geometry of DFT, a singular background cosmology in Einstein

gravity corresponds to a universe expanding to infinite size in the dual dimensions. Our

third work describes how a hydrodynamical fluid can be coupled to the DFT action, which

allows us to recover Friedmann-like equations in the context of DFT when a frame is chosen.

We consider two frames, the supergravity and the winding frames, and study their respec-

tive cosmology for a gas of closed strings considering the dilaton to be stabilized. The last

work included here shows that the solutions found in the supergravity frame have a T-dual

correspondent in the winding frame.
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Abrégé

Dans cette thèse, nous abordons le problème de la singularité à l’intérieur du formalisme

de la théorie double des champs. Ce problème survient dans le contexte de la Relativité

Générale et est aussi présent en cosmologie cordiste. Nous commençons par introduire les

éléments nécessaires de cosmologie, de la théorie des cordes, de cosmologie cordiste et de la

théorie double des champs qui permettent la compréhension de la recherche présentée dans

cette thèse. Le premier résultat englobe une généralisation de l’action de la théorie double

des champs dans l’objectif de considérer le mouvement d’une particule ponctuelle. Après

avoir calculé les équations de géodésique pour la particule ponctuelle, nous argumentons

que le mouvement le long d’une géodésique peut être continué jusqu’aux passé et futur

infinis quand l’horloge appropriée est choisie. Ensuite, notre deuxième article implique un

argument selon lequel, en considérant la géométrie double de la théorie double des champs,

un fond cosmologique singulier en gravité einsteinienne correspond à un univers qui prend

de l’expansion jusqu’à une taille infinie dans les dimensions duelles. Notre troisième article

décrit comment un fluide hydrodynamique peut être couplé à l’action de la théorie double

des champs, ce qui nous permet de retrouver des équations semblables aux équations de

Friedmann dans le contexte de la théorie double des champs quand un cadre est choisi.

Nous considérons deux cadres, le cadre de la supergravité et le cadre de l’enroulement, et

nous étudions leur cosmologie respective pour un gaz de cordes fermées, assumant que le

dilaton est stabilisé. Le dernier article inclus dans cette thèse démontre que les solutions

trouvées dans le cadre de la supergravité ont une correspondance de dualité T dans le cadre

d’enroulement.
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Preface

This manuscript thesis contains four peer-reviewed and published articles that are original

and consist of distinct contributions to knowledge. These are presented in their original form,

due to copyright, in Chapters 6, 7, 8 and 9. It is usual in the field of Cosmology that the

authors are listed in alphabetical order. For that reason, below we state the contribution of

the author to each of the included works.

Contributions of the Author

Robert Brandenberger, Renato Costa, Guilherme Franzmann, Amanda Weltman, Point

particle motion in double field theory and a singularity-free cosmological solution, Phys. Rev.

D 97 (2018) no. 6, 063530 [1].

This article is presented in Chapter 6. It entails the first paper of a two year collaboration

between researchers at McGill University and at University of Cape Town around the main

topic of my PhD. The project resulted in three papers, which are also introduced below. For

this project, all the authors participated in the discussions, the calculations were performed

by Renato and me and the writing was done by Robert, Renato and me.

Robert Brandenberger, Renato Costa, Guilherme Franzmann, Amanda Weltman, Dual

spacetime and nonsingular string cosmology, Phys. Rev. D98 (2018) no. 6, 063521 [2].

This paper is the second of the same collaboration introduced above and is presented in

Chapter 7. It is a continuation of the previous work, introducing complementary tools and

concepts that also led to the third project below. In this work, all the authors participated

in the discussions, the calculations were performed by Renato and me and the writing was

done by Robert, Renato and me.
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Robert Brandenberger, Renato Costa, Guilherme Franzmann, Amanda Weltman, T-dual

cosmological solutions in double field theory , Phys. Rev. D99 (2019) no. 2, 023531 [3].

This work is the third and last paper of the previous collaboration and is presented in

Chapter 8. Similar to the previous ones, all the authors participated in the discussions, the

calculations were performed by Renato and me and the writing was done by Robert, Renato

and me.

Heliudson Bernardo, Robert Brandenberger, Guilherme Franzmann, T-dual cosmological

solutions in double field theory. II., Phys. Rev. D99 (2019) no. 6, 063521 [4].

This project is an extension to the latest work introduced above and was envisioned by

the visiting PhD student Heliudson Bernardo. The article is presented in Chapter 9. For

this paper, my main role was of supervising the work done by Heliudson and participating

in all the discussions done between the authors. Most of the calculations were done by

Heliudson and me, however I have done them mostly in order to verify the results that were

being obtained by Heliudson. The writing was done by Robert and Heliudson, while I have

presented my suggestions throughout the manuscript.

Publications not included in this thesis

1. Robert Brandenberger, Renato Costa, Guilherme Franzmann, Can backreaction pre-

vent eternal inflation?, Phys. Rev. D92 (2015) no. 4, 043517 [5].

2. Robert Brandenberger, Guilherme Franzmann, Qiuyue Liang, Running of the Spectrum

of Cosmological Perturbations in String Gas Cosmology, Phys.Rev. D96 (2017) no. 12,

123513 [6].

3. Renato Costa, Rodrigo R. Cuzinatoo, Elisa M. G. Ferreira, Guilherme Franzmann,

Covariant c-flation: a variational approach, International Journal of Modern Physics

D28 (2019) 1950119 [7].

Preprint Publications
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Chapter 1

Introduction

The Standard Cosmological Model (SCM) is quite successful. Relying solely on six free

parameters, it is able to account for most of the current data, which has become abundant

for the last 30 years starting with the COBE (Cosmic Background Explorer) mission. It

also provides an exquisite description of the evolution of the Universe that extends from a

fraction of a second to its current age, around 13.8 billion years [13].

A recent attachment to the SCM is the inflationary paradigm for the very early universe.

Inflation [14, 15, 16, 17, 18] postulates a phase of accelerated expansion in the early uni-

verse that explains why the Universe we live in seems to be so spatially flat, so large and

nearly homogeneous. It also explains how the small fluctuations in the Cosmic Microwave

Background (CMB) are generated and why they are almost scale-invariant, and therefore

it also explains how structures such as galaxies and galaxy clusters have been formed in

our Universe. Most of the inflationary models rely on a quasi-de Sitter initial phase that

smoothly shifts towards a phase of standard radiation decelerated expansion.

Paradoxically, the success of the SMC is also its Achilles’ heel. Its potential to provide

us with a coherent picture of the Universe relies on mysterious forms of matter and energy,

Dark Matter and Dark Energy, which remain elusive to our understanding, regardless of being

responsible for about 95% of the Universe’s energy budget. Moreover, even after considering

the inflationary paradigm, we still lack a satisfying picture of the very early Universe, since

it cannot avoid singularity theorems [19, 20, 21, 22]. Currently, it is expected that only a

fully-fledged theory of Quantum Gravity (QG) could yield a nonsingular cosmology. This

thesis is concerned with the singularity problem.
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String Theory (ST) is one of the most promising candidates for a QG theory (see [23, 24,

25] for other alternatives). Among its successes, the theory unifies all the known interactions

of nature under the same framework: first (perturbative) [26, 27] and second (nonperturba-

tive) [28, 29, 30] quantization of 1-dimensional strings. All that is observed of low energies

and accounted for by the Standard Model of Particle Physics is a result of different degrees

of freedom of these strings (however see about the string landscape [31]).

One of the main advantages to consider strings as being fundamental instead of point

particles is the fact that the singularity theorems can be avoided. This is easy to understand

intuitively, since as the energy scale gets higher, the energy can flow into the additional

degrees of freedom present due to the extra dimensionality of the string.

Among their degrees of freedom, one can find three different types: momentum, winding

and oscillatory modes. Momentum modes are the same as the ones already encountered

in particle physics, corresponding to the centre of mass motion of the string and typically

decomposed in an infinite set of Fourier modes. The oscillatory modes are due to transverse

oscillations along the string. Finally, winding modes only exist in the presence of closed

strings, since it accounts for the amount of times a string winds around a compact dimension

in a topologically nontrivial way.

Not only the existence of new degrees of freedom is relevant, but also the existence of

new symmetries and dualities [32] which arise in ST. In particular, one can interchange the

winding for the momentum modes, and the theory remains the same as long as the radii of the

compact dimensions are taken to their reciprocal. This is a particular example of T-duality,

which can be roughly understood as the theory being the same for very large and very small

radii of the compact dimensions (this translates into the scale-factor duality in cosmological

models of supergravity (SUGRA) [33]). Given that the momentum modes are the conjugate

of the physical coordinates, it is natural to wonder if there would be coordinates which are

also the conjugate of the winding modes. In fact, this idea was already put forward when

String Gas Cosmology (SGC) was first proposed [34].

SGC relies fundamentally in the existence of the extra degrees of freedom of the string as

well as the symmetries introduced in ST. It considers a thermodynamical gas of closed strings

as the relevant substrate in the very early universe, which leads to a maximal temperature,

the Hagedorn temperature. Thus, SGC could potentially model a nonsingular cosmology,

at least thermodynamically. Unfortunately, the available cosmology provided by SUGRA is

bounded to be singular [33], and therefore SGC cannot be embedded into standard SUGRA.
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One ingredient that has not been taken into account in formulating string cosmology so far

is the potential for the winding modes also to define the physical space.

At the nonperturbative level, string field theory naturally introduces physical coordinates

associated with the winding modes [35]. Effectively, the underlying geometry has its num-

ber of compact dimensions doubled. In the low-energy limit double coordinates have been

introduced in [36, 37, 38, 39], and this led to a new framework called Double Field Theory

(DFT) [35, 40].

DFT lifts T-duality to become an underlying geometrical symmetry. Similar to Einstein

gravity where the action is invariant under generalized coordinate transformations, the DFT

action is invariant under the O(D,D) symmetry group, which accounts for generalized dif-

feomorphims as well as generalized gauge transformations. Moreover, it also recovers the

Buscher rules that are implemented for T-dual transformations in standard SUGRA, now

embedded into one of the symmetry transformations of the O(D,D) group.

In DFT, the fundamental degrees of freedom are encoded in the massless modes of the

bosonic string: a scalar field (dilaton), a symmetric rank 2 field (metric), and an anti-

symmetric rank 2 field (B-field). These fields are responsible for the gravitational sector of

the theory, just like in SUGRA. The main difference is that there is an underlying double

geometry which allows choosing different coordinate frames, where the frame choice corre-

sponds to which degrees of freedom of the string are excited, which potentially can allow us

to avoid the singular behavior as the universe contracts, since this contraction is tied to a

frame of choice. Hence, DFT may be able to yield a nonsingular cosmology, and potentially

allows SGC to be embedded into it.

In its original formulation, DFT corresponds to the theory in vacuum, since no matter

content respecting the underlying symmetries had been considered. Thus, part of the chal-

lenge to consider its cosmology is to add matter to the theory in a consistent way. The first

paper of this thesis considers this challenge from the point of view of point particle motion

[1] (Chapter 6), where we argue that geodesics can be completed arbitrarily to the past and

future if the point particle motion is interpreted in terms of physical clocks.

In the next paper [2] (Chapter 7), we have introduced a phenomenological equation of

state accounting for the gas of closed strings, allowing us to have an effective treatment of

the dynamics of the model in standard SUGRA. In the context of DFT, we argue that a

nonsingular cosmology is indeed possible. Moreover, we also formalize the heuristics behind

a physical clock, since this extends the dual geometry of DFT to also include a temporal
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dual coordinate.

The two remaining papers [3, 4] (Chapters 8 and 9) discuss the full cosmology associated

with the equation of state of a gas of closed strings in the context of DFT. In order to do so,

we first conceive a way to add a hydrodynamical fluid to the DFT action, and thus consider

the resulting dynamics in different coordinate frames: the one associated with the momentum

coordinates (supergravity frame) and the one associated with the winding coordinates (the

winding frame). Each of these frames is kinematically chosen considering the appropriate

regime: large and small radii of the compact dimensions, respectively. The final outcome

is a T-dual solution between those two different frames, where a contracting solution in the

supergravity frame is seen as expanding from the point of view of the winding frame.

Although we still do not have a complete DFT, which would entail a dynamical choice

amongst the frames, we believe that the T-dual solution found here is an important devel-

opment for the DFT cosmology. This solution hints towards two asymptotic regimes of a

nonsingular, smooth solution yet to be found in the context of the full theory.

Y

This thesis is organized as follows: Chapter 2 intends to present a review of the cos-

mological elements necessary for the understanding of the cosmology used in the following

sections. Chapter 3 introduces important elements of String Theory used in the remaining

chapters. Then, Chapter 4 discusses String Cosmology in the context of a gas of closed

strings, and Chapter 5 briefly reviews the Double Field Theory framework, laying down the

necessary tools for the final chapters.

The first paper is presented in Chapter 6, where we consider the study of a point particle

in the context of Double Field Theory. In Chapter 7, we present the second paper, where

we have argued for a dual spacetime and discussed potential generalizations to Double Field

Theory. In Chapter 8, the third paper is reproduced where cosmological solutions in the

context of Double Field Theory that could be used to connect T-dual regimes in the very early

universe are found. Finally, Chapter 9 is the fourth paper, which considers a generalization

of these solutions.
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Chapter 2

Elements of Cosmology

As we have discussed in the Introduction, the main problem in Cosmology that we would

like to make progress on is the initial singularity problem. This challenge emerges in the

context of General Relativity when the dynamics of the cosmological background is consid-

ered in light of the data available to us. Thus, a good place to start is by introducing the

necessary elements to make this issue explicit.

2.1 Theoretical Anchors

Cosmology is concerned with the origin, evolution and structure of the Universe. For

most of our scientific history, that entailed the study of the motions of the objects in the

sky. The first time that such a line of inquiry was possible came after Newton’s theory

of gravity, where the universality of that force allowed us to consider the same law ruling

objects’ motions on Earth to be also defining the mechanics of the Cosmos.

It took us a few centuries to improve on this paradigm. In 1915, Albert Einstein proposed

the Theory of General Relativity (GR) [41, 42], in which gravity was promoted from a force to

become pure inertia due to the geometry of space and time, now dynamical and represented

by their interwoven structure called spacetime. From now on, the study of the Cosmos shifted

from the mere analysis of the motions of bodies to the very dynamics of the spacetime seen

as a whole. It is here that we start.

The spacetime dynamics is described by Einstein’s equations,

Gµν ≡ Rµν −
1

2
gµνR =

8πG

c4
Tµν + Λgµν . (2.1.1)
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where c is the speed of light, taken to be unity unless otherwise mentioned, G is the Newton’s

constant and Λ is the cosmological constant, taken to be zero from now on. The left side

contains information about the geometry, encoded in the Einstein tensor Gµν , which contains

information about the curvature of the spacetime through its elements Rµν , the Ricci tensor,

and R, the Ricci scalar. They are defined as

Rµν ≡ ∂αΓαµν − ∂µΓανα + ΓαβαΓβµν − ΓαβνΓ
β
µα (2.1.2)

R ≡ gµνR
µν , (2.1.3)

where the Christoffel symbols, Γρµν , are defined as,

Γαµν ≡
1

2
gαβ(∂νgµβ + ∂µgνβ − ∂βgµν), (2.1.4)

gµν the metric of the spacetime, the fundamental dynamical field associated to gravitational

phenomena. Finally, the right side of (2.1.1) is related to the matter-energy content, de-

scribed by the energy-momentum tensor, Tµν . Thus, the source of the spacetime’s dynamics

is the energy content within spacetime.

The action associated to Einstein’s equations is the Einstein-Hilbert action coupled to

the matter action, Sm, given by,

S =
c4

16πG

∫
d4x
√
−gR + Sm, (2.1.5)

that recovers (2.1.1) when varied in relation to the metric, given that the energy-momentum

tensor is defined as,

Tµν ≡
−2√
−g

δSm
δgµν

. (2.1.6)

Einstein’s equations are very general and can be applied to any gravitational system. In

particular, the first system ever considered was Mercury’s orbit around the Sun [43]. His

equations described its perihelion motion that could not be properly accounted after using

only Newtonian gravity. If we aim to use Einstein’s equations to study Cosmology, we need

to simplify the problem by making use of its symmetries. In order to do so, we rely on

two principles: the Copernican principle and the Cosmological principle. The former states
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that we do not occupy any particularly special place in the Cosmos, while the latter states

that the distribution of matter in the Universe is homogeneous and isotropic1 given a large

enough scale2. When those principles were first proposed, we did not have observations for

anchoring them. Nowadays, we know that the Universe looks isotropic from our priviledged

point of view, which combined with the Coperninan principle results in a Universe that is

also homogeneous. In some sense, the Cosmological principle has become obsolete.

Hence, combing Einstein’s equations with a universe that is homogeneous and isotropic,

we can investigate an ansatz for the metric that respects such symmetries. This is known as

the Friedmann-Robertson-Walker (FRW) metric3 [44], and its line element is written as,

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
, (2.1.7)

where t is the physical time, (r, θ, ϕ) are comoving spatial polar coordinates, a(t) is the scale

factor which parametrizes the background expansion of the Universe, and k parametrizes the

spatial curvature, assuming the values (−1, 0,+1) which represent an hyperbolic, flat and

spherical spatial geometry, respectively. We will consider k = 0 for the next chapters unless

stated otherwise. By imposing the symmetries above, we have reduced all the dynamics of

the Universe on large scales to a single function of time.

Making use of the Cosmological principle for the matter-energy content of the Universe,

we can also consider its content to be approximately homogeneous and isotropic, and properly

described by a perfect fluid,

Tµν = (ρ+ p)uµuν + pgµν , (2.1.8)

where ρ is the energy density of the fluid, p its pressure and uµ its 4-velocity. Note that ρ

and p are defined in the fluid’s rest frame and they are functions only of time due to the

symmetries we are considering. In comoving coordinates, the 4-velocity is uµ = (−1, 0, 0, 0)

1Homogeneity implies the physical system is invariant under translations while isotropy means it is in-
variant under rotations.

2Usually referred as the cosmological scale, it is currently of the order of hundreds of Megaparsecs, where
one parsec corresponds to 3.26 light-years, roughly 3 × 1013 kilometers. This is a dynamical scale and it
changes according to the Universe’s evolution.

3Note that Alexander Friedmann was the first to develop this model, preceding the others by more than
a decade.
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and the energy-momentum tensor takes the form,

Tµν = diag (ρ, p, p, p). (2.1.9)

Having (2.1.9) and (2.1.7) at hand, it is just a matter of inserting them into the Einstein’s

equations in order to have the equations determining the dynamics of the Universe.

2.2 Friedmann Equations

We start realizing that although (2.1.1) entails ten equations coming from the ten inde-

pendent components (we have two-index symmetric tensors in four dimensions), the symme-

tries in the FRW metric reduces the problem into only two independent equations. In order

to understand how this is so, we can span the spacetime with four normalized 4-vectors, one

of them the timelike 4-velocity, uµ, and the three others being spacelike, sα. In Cartesian

coordinates, they are parametrized as {∂t, ∂i; i = x, y, z}. Imposing isotropy, we have

Gµ
νu

ν ∝ uµ,

otherwise we would have a preferred direction in space. Hence, Gµ
νu

νsµ = 0. As a result, the

time-space components of the Einstein’s equations are identically zero. Besides, the diagonal

space-space components yield the same equation, as can be inferred by (2.1.8). Therefore,

there remains two independent equations,

Gµνs
µsν = 8πTµνs

µsν → G?? = 8πp (2.2.10)

Gµνu
µuν = 8πTµνu

µuν → Gtt = 8πρ. (2.2.11)

The Ricci tensor and scalar can be easily obtained,

R00 = −3
ä

a

Rij = δij

[
2ȧ2 + aä+ 2

k

a2

]
(2.2.12)

R = 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
.
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Finally, inserting (2.2.12) into (2.2.10) and (2.2.11), we can derive the Friedmann equations(
ȧ

a

)2

= H2 =
8πG

3
ρ− k

a2
. (2.2.13)

ä

a
= Ḣ +H2 = −4πG

3
(ρ+ 3p) (2.2.14)

where we introduced an important quantity, the Hubble parameter H,

H ≡ ȧ

a
, (2.2.15)

which is positive for an expanding universe and negative for a collapsing one. It sets the

characteristic time- and length-scales of the universe, t ∼ H−1 and l ∼ H−1.

The Friedmann equations can be combined, yielding the continuity equation,

ρ̇+ 3H (ρ+ p) = 0, (2.2.16)

which corresponds to the local conservation of energy on cosmological scales. Its covariant

expression is given by the conservation law ∇µT
µ
ν = 0, where ∇µ is the covariant derivative.

In GR, the local conservation law is the corresponding physical statement to the geometrical

property that for any (non-)Riemannian manifold the contracted Bianchi identity is zero,

which is translated to ∇µG
µν = 0.

The Friedmann equations’ set has cardinality two. However, we have three variables: the

geometrical scale factor and the two hydrodynamical properties of matter. Therefore, we

need one more independent equation in order to have a determined system. The remaining

equation to be introduced is the equation of state, which characterizes the fluid that is

present in the Universe by relating its energy density and pressure in the following way,

p = wρ, (2.2.17)

where w is a function of time. Most components of the Universe can be parametrized by

a constant equation of state, which is calculated after thermodynamical considerations in a

static background. In particular, in four dimensions we have w = 0 for matter (baryonic

or dark), w = 1/3 for radiation, w = −1 for a cosmological constant, and w = −1/3 for

winding modes (we will discuss them in the next chapter).
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For a single fluid with a constant equation of state, we can solve the continuity equation

(2.2.16) for the energy density,

ρ = ρ0a(t)−3(1+w), (2.2.18)

where ρ0 is the initial energy density. Plugging this solution into the Friedmann equations,

we can find the evolution of the scale factor as well (assuming a universe spatially flat),

a(t) = a0t
2

3(1+w) , (w 6= −1) (2.2.19)

where a0 is the initial scale factor. For w = −1, the energy density is a constant and so is H,

corresponding to maximally symmetric solutions: anti-de Sitter (H < 0), de Sitter (H > 0)

and Minkowski (H = 0).

The most relevant aspect of the solution (2.2.19) is that for w > −1, the time dependence

of the scale factor is a power-law with a positive exponent, meaning that in the limit t→ 0,

the scale factor vanishes and the spacetime’s curvature diverges. Although this is explicit

here for a constant equation of state, it has been shown to be a much more general feature

of the equations for almost any given matter-energy content of the Universe [19]. This is the

initial singularity problem.

2.3 The initial singularity

We have found a limit of GR in which the theory seems to break down. Should we be

concerned? Is there any evidence that our Universe has gone through such a phase? After

all, our Universe is composed of different kinds of matter-energy contents, and possibly they

could balance each other out in such a way that the evolution of the Universe had never

reached such extreme conditions.

In fact, when Einstein proposed GR and applied it to the Cosmos, there was a wide belief

the Universe was static. He even introduced a cosmological constant to his equations hoping

to counterbalance the effect of gravity [45]. However, that did not last.

In 1929, Edwin Hubble observed that distant galaxies were moving away from the Earth

[46]. That meant the universe was under expansion instead of being static. If the universe

was expanding, it should have been smaller in the past. If that had always been the case

arbitrarily to the past, then it meant there was a moment in which the Universe was effec-

tively shrunk to a point. Having the Universe’s volume shrinking to zero would imply that
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quantities as the energy density, temperature, and others would be infinite. That was the

physical evidence of the initial singularity that was already presented in the FRW ansatz’s

dynamics. Nonetheless, this remained controversial for a few decades, since the evidence was

indirect.

The controversy ended with the discovery of the Cosmic Microwave Background (CMB),

see Fig. 2.1. It had been already theoretically predicted by George Gamow [47], and was

finally detected in 1964 by Arno Penzias and Robert Wilson [48]. They observed the existence

of a radiation in the microwave spectrum (with temperature around 2.7 K) permeating the

Universe, which is understood today as a remnant fossil from a very hot (T ∼ 3×103 K) and

dense epoch of the early universe (∼ 3×105 years). It is mostly because of this discovery that

the Big Bang, how it was later called, became part of the current paradigm of Cosmology in

the context of Einstein’s gravity.

Fig. 2.1 The CMB measured by the Planck Satellite [49]. The average temperature is about 2.7
K and the fluctuations are of order 10−5 K. Red and blue spots represent hotter and colder spots
in the sky, respectively.
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2.4 Can we do better?

As we have already discussed in the Introduction, it is hoped that a fully-fledged theory

of Quantum Gravity (QG) should yield a nonsingular cosmology. Among the candidates for

a QG theory, String Theory (ST) is one of the most promising candidates (see [23, 50, 24, 25]

for other alternatives). Among its successes, the theory unifies all the known interactions of

nature under the same framework: first (perturbative) [26, 27] and second (non-perturbative)

[28, 29, 30] quantization of 1-dimensional strings. All that is observed at low energies and

accounted for in the Standard Model of Particle Physics is a result of different degrees of

freedom of these strings (however see about the string landscape [31]).

One of the main advantages to consider extended objects as being fundamental as opposed

to point particles is the fact that the singularity theorems [19] can be avoided. Note that

these theorems apply either to the Standard Cosmological Model as well to its extensions

considering an inflationary period [20, 21] or bouncing cosmologies. The reason strings can

avoid those theorems can be intuitively understood after picturing that as the energy scale

gets higher, the energy can flow into the additional degrees of freedom provided by the extra

dimensionality of the string. Thus, if the universe is best described by the existence of strings

as the fundamental objects at very high energies, one should expect a very different picture

of the early universe than the one provided by the Standard Cosmological Scenario.

We will take ST as our proxy theory for QG. It is important to say first that ST has

been under development for about 40 years and still has not provided a full description of

the early universe dynamics in which we do not have a singular universe. Hence, the goal

of our research is to develop a description of the early universe which is consistent with the

principles of ST and that enables new insights and models attempting to describe the phase

where GR breaks down.

Thus, we now attend to review some elements of String Theory.
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Chapter 3

Elements of String Theory

We still do not have a full-fledged theory of quantum gravity, but we do have at least

a promising candidate: String Theory. Not only does the theory promote gravity to be

quantum, but it also provides most of the ingredients we believe to be necessary to make up

our Universe: at low-energies it leads naturally to General Relativity, gauge theories, scalar

fields and fermions. Thus, it also plays the role of a unifying theory of nature.

For those reasons, regardless of String Theory really being the final description of the

fundamental interactions of nature, it is certainly worth taking it as a proxy in our attempts

to understand many questions concerning the realm of quantum gravity.

In this chapter, we lay down most of the machinery required to discuss String Cosmology

and Double Field Theory. We will follow closely [26, 51, 52, 53].

3.1 String Action

A point particle sweeps out a worldline in Minkowski space and its action corresponds to

the worldline’s length. Moreover, its action can be made not dependent on the parametriza-

tion used to describe its trajectory, thus being reparametrization invariant. This is equivalent

to say that the worldline is diffeomorphism invariant.

We follow the same prescription for a string. Since the string is one-dimensional, it sweeps

out a worldsheet instead. Its action must correspond to the area spanned by the worldsheet

and it should also be invariant under reparametrization of the coordinates used to describe
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it. Such an action exists and it is called the Polyakov action,

SP [X, γ] = − 1

4πα′

∫
M

dτdσ(−γ)
1
2γab∂aX

µ∂bX
νηµν , (3.1.1)

where M denotes the worldsheet, a two-dimensional surface embedded in the target space1

representing the string trajectory ; τ and σ are time and space parameters describing the

worldsheet, respectively; γ is the two-dimensional dynamical embedded metric; Xµ are the

spacetime coordinates of the string, which are vectors in the spacetime but scalars in the

worldsheet. Note that their indices are contracted with the D-dimensional flat spacetime

metric ηµν . We have also introduced a coupling, α′, that is inversely proportional to the

tension of the string,

T = 1/2πα′, (3.1.2)

where the tension is equal to the mass per unit length and has dimension [T ] = 2. Thus,

[α′] = −2, and we can associate a length scale to it, ls, by

α′ = l2s , (3.1.3)

the string length ls, the natural length that appears in String Theory. Generally, the string

length is larger than the Planck length [54].

The action (3.1.1) has the following symmetries:

1. D-dimensional Poincaré invariance:

X ′µ(σa) = Λµ
νX

ν(σa) + aµ

γ′ab(σa) = γab(σa), (3.1.4)

where Λ is a Lorentz transformation and aµ is a constant translation. Note that σa

represent the worldsheet coordinates.

2. Worldsheet diffeomorphism invariance:

X ′µ(σa′) = Xµ(σa)

∂σ′c

∂σa
∂σ′d

∂σb
γ′cd(σ

a′) = γab(σ
a′), (3.1.5)

1In sub-Section 3.5.1 we discuss more about the relation between target space and spacetime.
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for new coordinates σ′a(σa). This is a gauge symmetry on the worldsheet. The fields

Xµ transform as worldsheet scalars, while γab transforms as a metric.

3. Two-dimensional Weyl invariance:

X ′µ(σa) = Xµ(σa)

γ′ab(σ
a) = exp[2ω(σa)]γab(σ

a),

for arbitrary ω(σa). This is another gauge symmetry of the string and it means that

two metrics related by a Weyl transformation are to be considered as the same physical

state.

Note that the Weyl symmetry implies that the theory is invariant under a local change of

scale preserving the angles between all lines. The fact that the Polyakov action is invariant

under it is particular to two-dimensions, since the scaling factor coming from the determinant
√
−γ cancels the one coming from the inverse metric. Moreover, if we aim to keep this

symmetry, then the interactions we can add to the string action are very limited (for instance,

neither a potential for the worldsheet scalars nor a worldsheet cosmological constant can be

added).

We can define the energy-momentum tensor on the worldsheet by varying the action with

respect to γ, i.e.,

T ab(σa) : = −4π(−γ)−1/2
δ

δγab
Sp

= − 1

α′

(
∂aXµ∂bXµ −

1

2
γab∂cX

µ∂cXµ

)
, (3.1.6)

which is conserved, ∇aT
ab = 0, and traceless, T aa = 0, due to diffeomorphism and Weyl

invariances, respectively.

The equations of motion can be obtained by varying the action with respect to γab and

Xµ,

Tab = 0 (3.1.7)

γab∂a∂bX
µ = 0, (3.1.8)

respectively. Notice we are ignoring surface terms since we will be exclusively interested in
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closed strings, for which we consider the following boundary conditions,

Xµ(τ, 2π) = Xµ(τ, 0), ∂σXµ(τ, 2π) = ∂σXµ(τ, 0) (3.1.9)

γab(τ, 2π) = γab(τ, 0), (3.1.10)

where τ ∈ (−∞,∞) and σ ∈ [0, 2π]. Thus, the fields are periodic and the string has no

ending points, forming closed loops.

3.2 The closed string spectrum

To study the string spectrum we can fix most of the symmetries discussed above and

only work with the conformal properties of the Polyakov action. For that purpose, we can

consider the unitary gauge,

γab = ηab. (3.2.11)

This gauge fixing leaves a group of local symmetries not fixed, the so called conformal

transformations, which is a combination of diffeomorphisms and Weyl transformations.

The equations of motion (3.1.8) can be solved after introducing lightcone coordinates on

the worldsheet,

σ± = τ ± σ,

so that the equation of motion (3.1.8) reads

∂+∂−X
µ = 0. (3.2.12)

The most general solution is,

Xµ(σa) = Xµ
L(σ+) +Xµ

R(σ−)

for arbitrary functions Xµ
L and Xµ

R. These describe left- and right-moving waves, respectively.

The most general solution expanded in Fourier modes considering the boundary conditions
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(3.1.9) is

Xµ
L(σ+) = 1

2
xµ + 1

2
α′pµ σ+ + i

√
α′

2

∑
n6=0

1

n
α̃µn e

−inσ+

,

Xµ
R(σ−) = 1

2
xµ + 1

2
α′pµ σ− + i

√
α′

2

∑
n6=0

1

n
αµn e

−inσ− , (3.2.13)

where the normalization was chosen for later convenience. The variables xµ and pµ are the

position and momentum of the center of mass of the string. Moreover, given that Xµ are

real, we have

αµn = (αµ−n)?, α̃µn = (α̃µ−n)?. (3.2.14)

We still need to impose the constraints coming from (3.1.7), which in the worldsheet

lightcone coordinates become,

(∂+X)2 = (∂−X)2 = 0. (3.2.15)

These equations give constraints on the momenta pµ and the Fourier coefficients αµn and α̃µn,

which can be elegantly written as,

Ln = L̃n = 0, n ∈ Z, (3.2.16)

where we have defined,

αµ0 = α̃µ0 ≡
√
α′

2
pµ, Ln =

1

2

∑
m

αn−m · αm, (3.2.17)

and analogously for L̃n.

In Minkowski space the square of the spacetime momentum is equal to the square of the

rest mass of a particle,

pµp
µ = −M2.

Thus, considering the rest frame of the string and (3.2.17), the mass of the string can be
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expressed as,

M2 =
4

α′

∑
n>0

αn · α−n =
4

α′

∑
n>0

α̃n · α̃−n, (3.2.18)

written in terms of right- or left-moving oscillators. The fact that those two expressions

are the same is known as level matching, which implies that the number of left and right

oscillators must be the same. This has a deeper origin that can be traced to the fact that

the string states should be invariant under σ translations, since the origin of the spatial

coordinate parametrizing the closed string should not matter. This gauge symmetry is

fundamentally what imposes the number of oscillators to be matched in both directions.

3.3 The massless states

Our ultimate goal here is to introduce the necessary elements of string theory so that we

can start discussing its resulting cosmology. For that, we need to investigate the massless

modes of the string, since they are the ones expected to populate the background and to

mediate long-range interactions.

In order to find out the massless modes we need to quantize the string. That can be done

in many different ways: lightcone, canonical covariant, path integral and BRST quantization.

All of those procedures agree amongst themselves and highlight different aspects of the

quantum string. We do not plan to go over any of these though, since the quantization of

the string will not play a role for the remaining chapters. Instead, we will highlight the main

results below from the canonical quantization point of view.

• The modes are promoted to operators with canonical commutation relations,

[xµ, pν ] = iδµν and [αµn, α
ν
m] = [α̃µn, α̃

ν
m] = n ηµνδn+m, 0 , (3.3.19)

where the modes αn can be further normalized to be standard harmonic oscillator

creation and annihilation operators; the same follows for α̃. Thus, each scalar field

is associated to two infinite tower of creation/annihilation operators corresponding to

left- and right-moving modes.

• The vacuum state of a single string, |0〉, is defined as the state annihilated by all the
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annihilation operators,

αµn |0〉 = α̃µn |0〉 = 0, for n > 0, (3.3.20)

while the true vacuum state2 carries yet another quantum number, pµ, the eigenvalue

of the momentum operator. Thus, the true ground state of the string also obeys,

p̂µ |0; p〉 = pµ|0; p〉. (3.3.21)

• A generic state of the string is, therefore, written after acting with any number of

creation operators on the vacuum,

(αµ1−1)
nµ1 (αµ2−2)

nµ2 . . . (α̃ν1−1)
nν1 (α̃ν2−2)

nν2 . . . |0; p〉. (3.3.22)

Each state corresponds to a different excited state of the string, which corresponds

to different particles in spacetime. Note that we have an infinite tower of states, and

therefore an infinite number of particles in string theory.

• Notice that the covariant canonical quantization scheme above introduces states with a

negative norm since the spacetime metric is Lorentzian. These states are called ghosts

and cannot appear in any physical process. It turns out that the gauge symmetries of

the string gets rid of them, fortunately.

• We still need to impose the classical constraints (3.2.16) at the quantum level. At the

end of the day, it suffices to introduce them acting only on states3. Thus,

Ln|phys〉 = L̃n|phys〉 = 0 for n > 0. (3.3.23)

Note that we need to consider the ordering of the mode operators defining L0 and L̃0.

They can be normal ordered and defined to be,

L0 =
∞∑
m=1

α−m · αm +
1

2
α2
0, L̃0 =

∞∑
m=1

α̃−m · α̃m +
1

2
α̃2
0. (3.3.24)

2It accounts not only for the oscillations of the string, but as well as for the existence of any string.
3This implicitly assumes L†n = L−n, since the only requirement is to impose the constraints over matrix

elements defined by physical states.
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However that implies that their constraints on the states are ambiguous,

(L0 − a)|ψ〉 = (L̃0 − a)|ψ〉 = 0 (3.3.25)

where a is a constant and ψ corresponds to any physical state. This implies that the

mass spectrum of the string (3.2.18) is given by,

M2 =
4

α′

(
−a+

∞∑
m=1

α−m · αm

)
=

4

α′

(
−a+

∞∑
m=1

α̃−m · α̃m

)
. (3.3.26)

• Getting rid of the ghosts results in two main requirements: a unique choice of a is

demanded, a = 1, and the number of scalar fields is D = 26. The string theory we are

considering here only makes sense at the quantum level in a 26-dimensional spacetime.

In fact, it also tells us, considering a lightcone quantization of the string, that the

remaining degrees of freedom describe the transverse fluctuations of the string, with

M2 =
4

α′

D−2∑
i=1

∑
n>0

αinα
i
−n =

4

α′

D−2∑
i=1

∑
n>0

α̃inα̃
i
−n . (3.3.27)

for i = 1, . . . , D − 2. Correspondingly, the Hilbert space of states also becomes re-

stricted,

p̂µ|0; p〉 = pµ|0; pµ〉, αin|0; p〉 = α̃in|0; p〉 = 0 for n > 0. (3.3.28)

The mass spectrum is obtained after regularizing the zero point energy, being written

as,

M2 =
4

α′

(
N − D − 2

24

)
=

4

α′

(
Ñ − D − 2

24

)
. (3.3.29)

where we have introduced the level operators,

N =
D−2∑
i=1

∑
n>0

αi−nα
i
n, Ñ =

D−2∑
i=1

∑
n>0

α̃i−nα̃
i
n . (3.3.30)

differing from the number operators of a harmonic oscillator because of the modes’
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normalization. Note that the level matching condition can be now written as N = Ñ .

We are finally in a position to investigate the string’s excitations and their corresponding

field content.

3.3.1 The lightest state

The lightest closed string state is

|0, 0; k〉, M2 =
2−D

6α′
, (3.3.31)

which has negative mass for D = 26. Such particles are called tachyons. It is still not clear

if bosonic string theory can be made sense having this excitation. However, its presence

disappears once one consider superstrings (adding also fermions on the worldsheet).

3.3.2 The first excited states

The first excited states are

αi−1α̃
j
−1|0, 0; k〉, M2 =

26−D
6α′

. (3.3.32)

These should be massless states in order for the quantum theory to preserve Lorentz

symmetry, and hence D = 26. They transform as a 2-tensor under SO(D − 2). We can

decompose any such tensor eij as

eij =
1

2

(
eij + eji − 2

D − 2
δijekk

)
+

1

2
(eij − eji) +

1

D − 2
δijekk, (3.3.33)

that is, a symmetric traceless tensor, an antisymmetric tensor and a scalar, that do not

mix under rotations. These irreducible parts give rise to the following fields: the graviton

(symmetric traceless), 2-form gauge boson (antisymmetric) and a dilaton (scalar). These

three massless fields are common to all string theories, and that is the main reason we will

focus on them quite closely from now on in order to develop string cosmology. To each of

these modes, we associate a massless field in spacetime, represented by

gµν(X), bµν(X), φ(X). (3.3.34)
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3.4 Strings in a general background

We have just discovered that the massless states of the string correspond to three dif-

ferent fields. Those fields are expected to compose the background in which the string is

propagating. The action that accounts for a string moving in such a background is given by

S =
1

4πα′

∫
d2σ
√
γ
(
gµν(X)∂αX

µ∂αXν + ibµν(X)∂αX
µ∂βX

νεαβ + α′φ(X)R(2)
)
,(3.4.35)

where R(2) is the two-dimensional Ricci scalar of the worldsheet and εαβ is the anti-symmetric

2-tensor, normalized such that
√
γε12 = +1. Although this action naturally generalizes the

Polyakov action, it defines an interacting theory for the scalar fields. Note that the dilaton’s

coupling vanishes on a flat worldsheet, R(2) = 0. Moreover, as we discussed above, this

coupling violates Weyl invariance even classically. How can we make sense of that?

It turns out that the dilaton’s coupling is modulated by the presence of α′, which comes

in purely in terms of dimensional grounds. At the end of the day, that means that this

violation of the Weyl invariance can be compensated by a one-loop contribution arising from

the couplings to gµν and bµν when computing the beta functions.

To make this explicit, we can look for the breakdown of the Weyl symmetry in terms of

the trace of the energy-momentum tensor, 〈Tαα〉. Each field can contribute in a different way

to the trace of the energy-momentum tensor, and thus we can define three different beta

functions,

〈Tαα〉 = − 1

2α′
βµν(g) γαβ∂αX

µ ∂βX
ν − i

2α′
βµν(b) ε

αβ∂αX
µ ∂βX

ν − 1

2
β(φ)R(2). (3.4.36)

The one-loop calculation for the beta functions results in [52],

βµν(g) = α′Rµν + 2α′∇µ∇νφ−
α′

4
HµλκH

λκ
ν (3.4.37)

βµν(b) = −α
′

2
∇λHλµν + α′∇λφHλµν (3.4.38)

β(φ) = −α
′

2
∇2φ+ α′∇µφ∇µφ− α′

24
HµνλH

µνλ, (3.4.39)
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where

Hµνρ = ∂µbνρ + ∂νbρµ + ∂ρbµν . (3.4.40)

A consistent background of string theory must preserve Weyl invariance, and therefore the

energy-momentum tensor should be traceless, which requires βµν(g) = βµν(b) = β(φ) = 0.

3.4.1 The Low-Energy Effective Action

The equations βµν(g) = βµν(b) = β(φ) = 0 can be viewed as the equations of motion for

the background in which the string propagates. We now change our perspective: we look for

a D = 26 dimensional spacetime action which reproduces these beta-function equations as

its equations of motion. This is the low-energy effective action of the bosonic string,

S =
1

2κ20

∫
d26X

√
−g e−2φ

(
R− 1

12
HµνλH

µνλ + 4∂µφ ∂
µφ

)
. (3.4.41)

On dimensional grounds alone, the coupling scales as κ20 ∼ l24s where α′ = l2s . This action will

be called supergravity action from now on. The caveat “low-energy” refers to the fact that

we only worked with the one-loop beta functions which requires small spacetime curvature.

We can easily see that this action is invariant under spacetime diffeomorphisms,

Φ→ Φ′ = Φ + Lλφ, (3.4.42)

where Φ is any of the fields above and Lλ is the Lie Derivative parametrized by infinitesimal

vectors λi. The action is also invariant under gauge transformations of the two form,

bµν → bµν + ∂µλ̃ν − ∂νλ̃µ. (3.4.43)

The equations of motion associated to this action are exactly the same as demanding that
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the β-functions vanish,

Rµν −
1

4
H ρσ
µ Hνρσ + 2∇µ∇νφ = 0 (3.4.44)

1

2
∇rhoHρµν −Hρµν∇ρφ = 0 (3.4.45)

1

2
∇2φ−∇µφ∇µφ+

1

24
HµνλH

µνλ = 0. (3.4.46)

We will refer to these equations as the vacuum supergravity equations.

3.5 Compactification and T-Duality

We have already studied the closed string spectrum and how its excited modes are re-

sponsible for the background dynamics through its massless excitations. In doing so, we

have seen that the number of spacetime dimensions required for the theory to be consistent

is higher than the macroscopically observed number of dimensions. Therefore, it is expected

that some of the dimensions in string theory are small and compact. Let us see how that can

change the spectrum of the closed strings in the simplest case, when one of the dimensions

is a circle.

The first effect is that the spatial momentum in the compact direction becomes quan-

tized4,

p =
n

R
, n ∈ Z. (3.5.47)

This is known from having a free particle in a box, where its wavefunction includes the factor

eip·X , which must be single valued. The same happens with a string.

The second effect is that the boundary conditions for the scalar field in that direction

becomes more general,

X(σ + 2π) = X(σ) + 2πmR, m ∈ Z, (3.5.48)

in comparison to (3.1.9). The integer m corresponds to how many times the string winds

around the circle, and it is called the winding number.

4All the spacetime quantities that are index-free refer to the circle.
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Those two effects result in a different mass spectrum for an observer living in the non-

compact directions. The short story is that the mass spectrum becomes,

M2 =
n2

R2
+
m2R2

α′ 2
+

2

α′
(N + Ñ − 2) (3.5.49)

and the level matching no longer tells us that N = Ñ , but instead5

N − Ñ = nm (3.5.50)

Therefore, we see that a string with n > 0 momentum units gives a contribution to its mass

but a similar contribution can be obtained by a string which winds around the compact

dimension. What is astonishing about this formula is that those contributions are reciprocal

in nature if we consider their dependence on the size of the compact direction. This is the

tip of the iceberg of a fundamental duality in string theory: T-duality.

3.5.1 T-duality

The surprising aspect of the presence of the winding modes is that their energy contribu-

tion is proportional to the radius of the compact dimension, in contrast to the momentum

modes, which is inversely proportional to the radius. Thus, it is reasonable to expect that

as the box expands or shrinks, different modes are excited, which can be easily understood

by the simple assumption that nature tends to privilege energetically cheap configurations.

More precisely, as R/α′ → ∞, the winding modes become very heavy and are irrele-

vant for the low-energy dynamics while the momentum modes become very light and form

a continuum in this limit. In the converse limit, as R/α′ → 0, the momentum modes be-

come heavy and can be ignored while the winding modes become light and start to form a

continuum.

This dual behavior can be made explicit when we look to the mass spectrum (3.5.49) and

5Note that now there are more possibilities for having massless states that do not require N = Ñ = 1,
since we can have N = Ñ = 0 while having either m or n being different than zero, as long as we find the
particular radius for which the mass becomes zero.
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realize that it remains invariant under this following transformation,

n←→ m (3.5.51)

R←→ α′/R, (3.5.52)

which exchanges the number of momentum and winding modes as well as consider the

reciprocal of the radius scaled by α′. Although we show this duality here for a very simple

example, it is actually a duality of the full theory, including any physical process under

consideration. Effectively, the duality exchanges what is meant by winding and what is

meant by moving as the strings are not able to distinguish the difference between very large

and very small circles.

The most important consequence of such mode-availability is that the notion of position

becomes a derived concept. An easy way to understand that is to imagine that in order

to measure distances, for instance, we need to build a photon wave-package, which depends

on the Fourier modes available. However, as we have just seen, those are dependent on the

size of the box in which the observer finds herself. This has been already pointed out in the

seminal work on String Gas Cosmology [34], where the notion of two position operators was

introduced,

|x〉 =
∑
p

eix·p|p〉

|x̃〉 =
∑
w

eix̃·w|w〉,

where p = n/R and w = mR/α′, while the physical position operator, |xp〉, would correspond

to a linear combination of them depending on the size of the box. In fact, nowadays this

dual coordinate notion has also been explored in cosmological backgrounds for the time

coordinate [3, 4]. Thus, string states in general could be seen as point particles propagating

in a doubled space,

XM =
(
xi, x̃i

)
,

where i runs over the compact dimensions.

The progress we make relying on T-duality is in our account of what spacetime really

is and how it can be reconstructed. As it turns out, the Fourier transform of momentum

space, historically referred to as target space, to which we usually attribute the notion of the
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physical spacetime is shaken, for now there is an analogous transformation we can consider

for the winding modes, defining a winding space.

Thus, there are two notions of space: winding space and target space. The duality between

them given the above transformation makes the definition of the physical spacetime subtler

[55]. The reason for that is that when an observer probes the World, she will do it using

the modes which are available to her: when momentum modes are available, target space

will match physical space; while when she uses winding modes for the reconstruction, then

winding space will match the physical space.

The key point is to realize that winding and target space are dual to each other by

(3.5.51). Hence, even though for small radius, R < ls, momentum modes are not available

and the reconstruction is made using winding modes, which results in an effective radius of

α′/R, that does correspond to what would be the dynamics of having momentum modes in

a space with radius R. Thus, the seemly inaccessible region ls > R > lP in target space can

be reconstructed by using winding space with an effective radius ls < R̃ < α′/lP .

One of the physical consequences of this mechanics is that in string theory there is a

minimum length scale. As the circle shrinks to smaller and smaller sizes, when it reaches

R =
√
α′, the theory acts as if the circle is growing again, with winding modes playing the

role of momentum modes. If we can make use of this to tackle the initial singularity, then

we can avoid the problem altogether. In order to do so, we need to have a theory that make

this duality explicit. The closest we have to it so far is the framework introduced by Double

Field Theory, that we review in Chapter 5. Before we consider it, we can study how the

tools introduced in this chapter so far can improve our early universe picture over the one

coming from general relativity.



31

Chapter 4

Elements of String Cosmology

Having derived the supergravity action, we now turn to consider its resulting cosmology.

We follow similar steps as the ones in Chapter 2 and consider a cosmological background

defined by the massless excitations of the string: the metric, the 2-form and the dilaton.

As we have discussed, to compute their low energy action it was assumed that the space-

time curvature is small compared to the string scale. We will have to keep this approximation

in mind when considering the viable regimes to which our dynamics is applicable.

Moreover, so far we have ignored the presence of all the other massive modes. In fact,

the supergravity action is the analog of the Einstein-Hilbert action, corresponding to the

gravitational sector in the absence of matter, i.e., vacuum. One of the ways to consider

the other massive modes is to consider them all being the matter to which we couple the

gravitational sector. We will show how that can be implemented using a hydrodynamical

fluid, and then we will focus on a gas of closed strings.

4.1 Equations of motion

We start considering the supergravity action,

S0 =
1

2κ20

∫
dDX

√
−g e−2φ

(
R− 1

12
HµνλH

µνλ + 4∂µφ ∂
µφ

)
, (4.1.1)

where from now on we consider an arbitrary number of dimensions D and we will be ignoring

the 2-form. Therefore, we will be mostly concerned with the dynamics given by the metric

and the dilaton field. Note that we are calling this action S0 since it corresponds to the
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action defined by gravitational sector, e.g., the massless fields, in the absence of any matter.

Later on we will also couple matter to the gravitational sector similarly as it is done in GR.

In order to study the background cosmological solutions, let us start by considering a

homogeneous Bianchi-I-type universe,

ds2 = −dt2 +
d∑
i=1

a2i (t)dx
2
i , a = eλi(t) (4.1.2)

φ = φ (t) . (4.1.3)

It is useful to introduce the shifted dilaton field d defined to be,

2d ≡ 2φ−
D−1∑
i=1

ln ai,
√
−ge−2φ = e−2d. (4.1.4)

Thus, for such an ansatz, the action becomes,

S0 =
1

2κ20

∫
dte−2d

√
−g00

[
−g00

D−1∑
i=1

H2
i + 4g00ḋ2

]
, (4.1.5)

where we introduced the Hubble parameter defined as,

Hi(t) ≡
ȧi
ai
, (4.1.6)

which measures the expansion rate in the i-th direction. This action is symmetric under

λi → −λi (4.1.7)

d → d, (4.1.8)

for any i among 1, ..., (D − 1). This is called scale-factor duality and it is related to the

T-duality we have introduced in the last chapter.

In order to introduce matter, we consider the effective string coupling to be small so

that we can consider matter to be a gas of (free) strings modes in a thermal equilibrium at
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temperature β−1 [56]. Its action is given by,

Sm =

∫
dt
√
−g00F

(
λi, β
√
−g00

)
, (4.1.9)

where F is the (one loop) free energy and can be represented in terms of the one loop

string partition function, Z, on a torus of radius a and periodic Euclidean time of perimeter

β
√
−g00, such that Z = −βF .

Considering the full action and varying it in respect to λi, φ and g00 (and then setting

g00 = −1), we find the following equations of motion

4ḋ2 −
D−1∑
i

H2
i = e2dE (4.1.10)

Ḣi − 2Hiḋ =
1

2
e2dPi (4.1.11)

4d̈− 4ḋ2 −
D−1∑
i

H2
i = 0, (4.1.12)

where

E = −2
δSm
δg00

= F + β
∂F

∂β
(4.1.13)

P = − ∂F

∂ ln a
, (4.1.14)

E being the total energy of the matter and Pi the pressure in the i-th direction times the

volume. These equations can be also combined in a continuity equation (which is equivalent

to considering the system to be adiabatic, i.e., having constant entropy),

Ė +
D−1∑
i=1

HiPi = 0, (4.1.15)

which is equivalent to the conservation of entropy (S = β2∂F/∂β), showing that our matter

is indeed evolving adiabatically. The adiabaticity assumption implies that we can replace

constant radii and β by functions of time.
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Further imposing isotropy, the equations of motion become,

4ḋ2 − (D − 1)H2 = e2dadρ (4.1.16)

Ḣ − 2Hḋ =
1

2
e2dadp (4.1.17)

4d̈− 4ḋ2 − (D − 1)H2 = 0, (4.1.18)

where ρ is the energy density and p is the pressure, so that the continuity equation now

reads,

ρ̇+ (D − 1)H (ρ+ p) = 0. (4.1.19)

These are our starting point equations for considering the background cosmology given by

the supergravity action in the absence of the anti-symmetric field coupled to hydrodynamical

perfect fluid.

4.2 String Gas Matter (SGm)

We have just introduced matter to the supergravity equations in the form of a hydro-

dynamical fluid. The simplest fluid we can consider is a linear barotropic fluid, where the

pressure is linearly proportional to the energy density,

p = wρ, (4.2.20)

which is the same kind of fluid we have discussed in Chapter 2. When we have this sort of

matter sector, all the complexity of the matter interactions is reduced to a single parameter,

w, the equation of state parameter. If we aim to characterize the strings’ excitations as a

linear barotropic fluid, we need to compute w for such a thermodynamical gas.

Our interest here lies in a gas of closed strings given our initial motivation coming from

String Gas Cosmology [34]. Since we know the mass spectrum of the string in a compact

space is given by (3.5.49), we can write down its energy density as [51],

ρ =
1

aD−1

∑
s

NsEs (4.2.21)

l2sE
2
s = 2

(
N + Ñ − 2

)
+
n2

a2
+m2a2, (4.2.22)
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where s =
{
n,m,N, Ñ

}
correspond to all possible different states of the string and Ns

corresponds to the density of states. Note that, in principle, when we compute the energy

spectrum for the strings, it is computed in terms of the radius R, which is the constant

size of the compact dimensions. However, this can be lifted to be a time-dependent variable

using the adiabatic approximation, where the radius is written as the scale factor times the

string length, R = a(t)ls [51]. The pressure is given by,

p = −∂ (ρV )

∂V
= − 1

D − 1
a1−D

∑
s

Ns

l2s

(
−n

2

a2
+ a2m2

)
. (4.2.23)

Both the pressure and energy density rely on the density of states Ns. Unfortunately, describ-

ing the above dynamics quantitatively coming from the string spectrum is quite complicated.

In particular, the main problem is computing the density of states as a function of the radius

of the compact dimensions (though there are results for large radius [57]). What we can do

instead is to consider some specific regimes.

As we have discussed in Section 3.5.1, it is clear that when the radius of the box is large,

only momentum modes will be existing; while when the radius is small, only winding modes

should exist. Finally, for radius around the self-dual radius, R = ls, we expect all the modes

to be excitable: momentum, winding and oscillatory modes. These three defining regimes

can be characterized by,

small box (R� ls) self-dual (R ∼ ls) large box (R� ls)

ω = −1/ (D − 1) ω = 0 ω = 1/ (D − 1)

Note that, heuristically, the effective equation of state close enough to the dual radius should

vanish, given that the momentum and winding modes contribute equally to the overall

pressure but with opposite signs, while the oscillatory modes contribution does not depend

on the radius.

Now, given we expect a smooth transition between the energy budget distribution amongst

the different modes as the compact dimensions expand, we can use these regimes to model

an effective equation of state,

ω (a) =
2

π(D − 1)
arctan

(
β ln

(
a

a0

))
, (4.2.24)

where β tells us the transition rate between the regimes and a0 is an arbitrary pivot scale
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in general, here to be taken as unity given the pivot scale for the energy spectrum defined

above is the string length. This parameter β has to be related to the cross-section of winding

modes annihilating into momentum modes and should depend on the number of dimensions

[34]. This function was chosen due to the fact it is symmetric for small/large radius, as is

expected from a T-dual perspective. Figure 4.1 shows its behavior, where we can observe

the transition between two main regimes: when the dynamics is dominated by the winding

modes, small radius, and when the momentum modes dominate, large radius.

log
a

a0

w(a)

Fig. 4.1 We parametrize the equation of state as ω (a) = 2
π(D−1) arctan

(
β ln

(
a
a0

))
, where β

parametrizes how fast winding modes annihilate themselves as the scale factor evolves towards the
self-dual scale factor, a0 = 1. Note that the equation of state transforms as ω(a−1) = −ω (a) under
the scale factor duality, as is expected.

Before we attempt solving the background equations for this effective equation of state,

we can look at its thermodynamical properties and to the phase space dynamics so that we

can develop further heuristics, which tells us the expected behavior of the energy density

and pressure.

4.2.1 Thermodynamics of the string excitations

Let us start looking at a linear barotropic equation of state as a function of the temper-

ature,

p (T ) = w (T ) ρ (T ) , (4.2.25)

where T is the temperature. Then, we can use Euler’s relation,

U = TS − PV, (4.2.26)
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where U is the internal energy, S is the entropy, P is the pressure and V is the volume, so

that we can rewrite the entropy as,

S =
U + PV

T
=
V

T
ρ (T ) [1 + ω (T )] . (4.2.27)

Using the free energy potential, F = F (T, V ), we can write down its differential form as,

dF = −SdT − PdV, (4.2.28)

which allows us to derive the following Maxwell relation,(
∂P

∂T

)
V

=

(
∂S

∂V

)
T

. (4.2.29)

Then, for the equation of state (4.2.25), this relation implies

∂

∂T
[ω (T ) ρ (T )]V =

ρ (T )

T
[1 + ω (T )] . (4.2.30)

We have seen above that the regime of the excited modes of the string can be defined by a

constant equation of state. Considering w = const. we end up having,

ω
∂ρ

∂T
=
ρ

T
(1 + ω) , (4.2.31)

which implies ρ (T ) = ρ0T
1+1/ω. Hence,

S = (1 + ω) ρV T 1/ω. (4.2.32)

Since we are considering adiabatic expansion, dS = 0, we finally have,

adT 1/ω = const., (4.2.33)

where V = V0a
d, such that, ω = 1/d → T ∝ a−1

ω = −1/d → T ∝ a
. (4.2.34)

This shows how the temperature evolves as function of the scale factor for momentum and
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winding modes, respectively. If w = 0, we can show that the temperature is a constant. This

result tells us that the singularity present in GR, and observed here with the temperature

becoming singular for the momentum modes as the scale factor vanishes, may be resolved if

we have winding modes instead when the scale factor becomes much smaller than unity. In

fact, if we consider an evolving equation of state, such as the equation of state (7.3.15), we

can show that the temperature as a function of the scale factor is given by the one presented

in Figure 6.1.

This temperature plot is very compelling: the temperature does not diverge, instead it

finds a plateau and then decays as the scale factor becomes smaller and smaller. The peak of

this plateau is given by the Hagedorn temperature [58], which is the temperature for which

the partition sum diverges in a system with exponential growth in the density of states.

4.2.2 Phase space

We can have a look at the phase space dynamics to see what is expected for the evolution

of the energy density and pressure given (7.3.15). The first step is to rewritte the continuity

equation in the phase space as,

dρ

ρ
+ (D − 1) (1 + ω (a)) d ln a = 0, (4.2.35)

where the time dependence is gone. Given we know the functional form of ω (a) , we can

just integrate the equation, obtaining:

ln
ρ

ρ0
= − (D − 1) ln

a

a0
− 2

π

{
ln

(
a

a0

)
arctan

[
β ln

(
a

a0

)]
− 1

2β
ln

[
1 + β2

(
ln

a

a0

)2
]}

,

(4.2.36)

which does reproduce what is expect for large radius, ρ (a large) → ρ0 (a/a0)
−D , and small

radius, ρ (a small) → ρ0 (a/a0)
−D+2 in supergravity for pure momentum or pure winding

modes, respectively. Also, note that ρ0 is fixed by the energy density at the self-dual radius,

parametrized by a0. Its generic behavior can be seen through the following plot,
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a

a0

ρ(a)

Fig. 4.2 Energy density as a function of the scale factor for SGm in D = 4 and β = 1.

Knowing ρ(a) and ω (a) , we also know p (a) , which can be seen generically represented by,

a

a0

p(a)

Fig. 4.3 Pressure as a function of the scale factor for D = 4 and β = 1. It vanishes for a = a0.

where we can see a very important feature of SGm: the pressure grows in the early phases

before decaying as it naturally happens in standard cosmology. This particular signature

will result in interesting effects in our analysis below. Also note that the pressure is negative

for radius smaller than the self-dual one, that is due to the abundance of winding modes in

relation to the momentum ones.
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4.3 Dynamics

We can finally attempt to solve the equations of motion for the scale factor and dilaton.

In order to do so, we can consider a piece-wise solution, meaning we solve the equations for

each regime (small/self-dual/large radius) and glue the solutions together. The numerical

solution after considering the full equation of state can be considered in the future.

We look for a solution that accounts approximately for a constant equation of state for

each regime,

Ln
a

a0

w(a)

Fig. 4.4 We consider the equation of state to be constant in each regime, represented schemetically
in the figure: w = 1/(D − 1) for a� 1, w = 0 for a a0, and w = −1/(D − 1) for a� 1.

We can search for general solutions considering the following power-law ansatz [33],

a ∼ tα, 2d ∼ −γ ln t, w ∼ p

ρ
, (4.3.37)

such that for w =const. the equations of motion imply two constraints,

(D − 1)wα + γ = 2 (4.3.38)

γ2 + (D − 1)α2 = 2γ. (4.3.39)

Thus, we see that the set of parameters {α, γ} for different regimes are given by,

ww = −1/ (D − 1) wosc = 0 wm = 1/ (D − 1)

{0, 2} ,
{
− 2
D
, 2
D

(D − 1)
}

{0, 2} {0, 2} ,
{

2
D
, 2
D

(D − 1)
}
.
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Those solutions are reasonably good away from the singularity [33]. Given the parameters

obtained above, a piece-wise solution can be written as,

a (t) ∼


a0

(
t
t0

)−2/D
, t ≤ t0

a0, t = t0

a0

(
t
t0

)2/D
, t ≥ t0

(4.3.40)

φ̄ (t) ∼

− 2
D

(D − 1) ln t, t 6= t0

2, t = t0,
(4.3.41)

where the discontinuity in the shifted dilaton solution is a symptom of the singular behavior

of the full solution, and t0 represents the time for which the system is at the self-dual radius.

The scale factor solution is not surprising due to the scale-factor duality, and it corresponds

to an early contraction until it reaches the dual radius, for then starting to expand as a

radiation-dominated universe.

This heuristic solution tells us that the typical scale-factor dynamics expected in String

Gas Cosmology cannot be simply recovered even considering the equation of state of SGm

here studied, since it requires having an almost static scale factor during the Hagedorn phase

before entering the typical radiation-dominated expansion. It is easy to see from above that

the static solution is generally quite short if the equation of state is evolving. It is worth

mentioning that if w = 0, then the scale-factor goes asymptotically to a constant [56],

however there would be no way out of this solution.

We have seen above that even considering the equation of state given by a gas of closed

strings where there are momentum, oscillatory and winding modes, the energy density still

diverges as the scale factor goes to zero. Then, we considered a piece-wise solution to the

background equations in order to investigate if that would happen, and we have seen that

even if the scale factor is well-behaved, the dilaton will be singular. Unfortunately, there

is a much more general result that tells us that string cosmology is unavoidably singular1

[33]. Hence, our departure from GR towards ST has not been stringy enough to provide us

with the heuristic picture expected in ST: a non-singular cosmology. We may wonder if we

1By string cosmology we mean supergravity coupled to stringy matter.
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can do better with the available tools introduced in Chapter 3. The answer is yes, since we

have not yet exhausted our tool kit. We have discussed T-duality in the last chapter and

how this duality redefines the notion of position. Unfortunately, supergravity despite being

T-dual, it does not have this duality manifest. In fact, all the equations we have written

here have taken the target space to be defined by the momentum modes. Recently, a new

framework has been proposed in which T-duality is made a manifest symmetry, where double

coordinates are introduced in order to have momentum and winding modes on same grounds,

very much like (3.5.1). In the next chapter, we review the foundations of such framework,

finally introducing the last piece of technology necessary to understand the gist of our work

presented in the final chapters of this thesis.



43

Chapter 5

A short introduction to Double Field

Theory

As we have seen in the last chapter, standard string cosmology is not enough to provide

us with a nonsingular cosmology. However, we have also seen that the introduction of double

coordinates conjugated to the winding modes may be able to improve our situation.

Double Field Theory is the current framework in which one can consistently consider

double coordinates. This is implemented by promoting T-duality from a duality in string

theory to be the geometrical group underlying a field theory, in the same spirit that GL(D)

is the geometrical group in GR. In other words, T-duality becomes a manifest symmetry in

DFT. Hence, we intend to explore background cosmological solutions in it.

There are a couple of reviews on DFT [40, 59, 60, 35]. In order to briefly review the

formalism, we follow closely [40] that presents a pedagogical introduction to DFT, while we

also consider the metric formulation introduced in [61].

5.1 Introduction

Double Field Theory is a proposal to incorporate T-duality as a symmetry of a field

theory, reformulating supergravity and going beyond it [62]. The main difference regarding

standard Quantum Field Theory is that this theory is also based on winding modes, which

are degrees of freedom only present when there are compact dimensions and multidimensional

objects, as strings, that can wind around those dimensions. Thus, one can think that Fourier

space is naturally doubled for compact dimensions, that is, the Fourier decomposition is
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made in terms of momenta and winding modes. Therefore, one is tempted to also double the

reciprocal space, the configuration space for the compact dimensions, as we have discussed

in Section 3.5.1.

The DFT proposal considers that for a D−dimensional space with d non-compact space-

time dimensions and n compact dimensions, i.e., D = n+d, the fields depend on coordinates

XM = (x̃µ, ỹm, x
µ, ym), where xµ are the noncompact space-time coordinates, x̃µ are there

simply for decoration (we can double the number of coordinates associated with noncompact

dimensions as well just to have a simpler notation, even though these coordinates will be ster-

ile), and YA = (ỹm, y
m) are 2n compact coordinates associate with winding and momentum

modes, respectively.

As we have discussed, winding modes correspond to strings winding in one or more of

the compact dimensions. When these compact dimensions increase in size (R, the radius

of compactification, gets bigger in a toroidal compactification) beyond the string scale, the

string tension prevents these modes to be excited, so that they become absent in the large

radius limit. From a scattering point of view, as the radius grows larger, we expect that

winding and anti-winding modes self-annihilate to produce momentum modes [34]. From

this, one can conclude that in the limit of noncompactification all the double coordinates

should be dynamically suppressed. Considering now T-duality, in the opposite limit of small

radii, all the momentum coordinates should be the ones suppressed in the compact space

(the reason for this is that the momentum modes are quantized in compact spaces and their

energies go as the inverse of the compactification radius (assuming toroidal compactification

from now on), and therefore being absent for small radius. In particular, in the limit of

noncompactification we find correspondence with supergravity (SUGRA).

It is important to remember that SUGRA has field content given by the metric, gij,

the two-form field, bij, and a scalar dilaton, φ1. Let us assume from now on that all the

dimensions are compact, and therefore the framework will be 2D−dimensional, since we

consider the number of compact dimensions to be doubled. The duality group for n-compact

dimensions is O(n, n) for string toroidal compactification. We will be seeking representations

of the O(D,D) group.

A quick analysis of the degrees of freedom of our field content tells us we have

1In this chapter, we will be considering latin indices for all the fields as a reminder that those are the
coordinates corresponding to the compact dimensions.
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D(D + 1)

2
+
D(D − 1)

2
= D2,

for the metric and 2-form degrees of freedom. In DFT these two objects are considered

on the same ground in the gravitational sector and should be responsible for the doubled

geometry. This is accomplished considering a generalized O(D,D) symmetric metric, HMN ,

with M,N = 1, ..., 2D, defined in the double space. The dilaton becomes an O(D,D) scalar

when combined with the determinant of the metric.

In order to understand the symmetries we will be working with, let us remind ourselves

of the SUGRA action already introduced in Section 3.4.1,

S =

∫
dDx
√
−ge−2φ

(
R + 4(∂φ)2 − 1

12
HijkH

ijk

)
, (5.1.1)

This is the action that should be recovered in DFT when the dual coordinates are projected

out in the large radii limit. This action has two symmetries: diffeomorphisms and gauge

symmetry. In DFT, those symmetries are unified and become a “subgroup” of the group of

generalized diffeomorphisms of a generalized metric.

Evidently, we cannot simply double the geometry and expect to recover the same theory,

since the symmetricO(D,D) metric hasD(2D+1) degrees of freedom, and therefore it should

be further constrained so that it retains only the original number of degrees of freedom. One

particular solution to this problem is given by implementing the so called strong constraint

(SC), also called section condition.

The SC implies that the fields of the theory and the gauge parameters as well as any

product among them only depend on a slice of the double space parametrized by half of the

coordinates, such that there always exists a frame in which, locally, the configurations do

not depend on the dual coordinates. As we will see, it is not clear if we can consider the

theory without implementing the SC. This is still a topic of research and we will discuss it

further below.

It is important to mention that, at the nonperturbative level, string field theory naturally

introduces physical coordinates associated with the winding modes [35]. Therefore, one could

argue that the full closed string theory is a theory for which the physical space is effectively a

double geometry. DFT is a consistent way of exploring this double geometry without having

to consider second quantization of strings, even though it is still not clear how much beyond
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SUGRA the resulting formalism goes.

5.2 T-duality group and fields

The T-duality group is O(D,D;Z). The elements of this group are defined as 2D × 2D

matrices hMN that preserve the O(D,D;Z) metric ηMN ,

h P
M ηPQh

Q
N = ηMN . (5.2.2)

The definition of the η matrix is

ηMN =

(
0 δij

δ j
i 0

)
, ηMN =

(
0 δji
δ i
j 0

)
, ηMPηPN = δMN . (5.2.3)

Had we compactified more than one dimension, the mass spectrum gets more complicated

than the one written in formula (3.5.49). To see that, we can go back at string action (3.4.35)

without the dilaton term,

S =
1

4πα′

∫
d2σ
√
γ(γabgmn∂aX

m∂bX
n + iεabbmn∂aX

m∂bX
n), (5.2.4)

where here the metric and the 2-form are constant background fields. Using the ansatz

Xm(σ1, σ2) = xm(σ2) + wmRσ1, (5.2.5)

which obeys the periodic condition Xm(σ1 + 2π, σ2) = Xm(σ1, σ2) + 2πRwm, the action

becomes

S =
1

2α′

∫
d2σ
√
γ

[
gmn(ẋmẋn + wmwnR2) + 2ibmnẋ

mwnR

]
. (5.2.6)

The conjugate momenta are,

pm =
∂L
∂vm

=
1

α′
(gmnv

n − bmnwmR), (5.2.7)

where vm = iẋm and ẋm = ∂2x
m. Periodicity of the wave-functions implies that the momenta
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are quantized, i.e., pm = nm/R, so

vm = α′
nm
R

+ gmnw
nR.

The Hamiltonian is

H = pmv
m + L =

1

2α′
gmn

[
vmvn + wmwnR2

]
.

Looking at the Hamiltonian, we can define the generalized metric, HMN , as

HMN ≡

(
gij −gikbkj
bikg

kj gij − bikgklblj

)
, (5.2.8)

which encodes in a unified way the degrees of freedom of the spacetime metric and the

2-form. Then, the mass formula for multiple compact dimensions becomes,

α′M2 = 2(N + Ñ − 2) + PPHPQPQ

where

PM =

[
p̃i

pi

]
(5.2.9)

is the generalized momentum, and p̃i is defined in terms of wi, while pi is defined in terms

of ni. The LMC becomes (3.5.50),

N − Ñ =
1

2
PMPM .

Considering the group O(D,D), we can retrieve the known symmetries that the SUGRA

action has through the following transformations:

• Diffeomorphisms, represented by

h N
M =

(
Ei

j 0

0 E j
i

)
, E ∈ GL(D).
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• Shifts of the antisymmetric b field, given by

h N
M =

(
δij 0

bij δ j
i

)
, bij = −bji.

• Factorized T-dualities:

h
(k) N
M =

(
δij − ti j tij

tij δ j
i − t

j
i

)
, t = diag(0...010...0).

We see that if we apply successively the above matrix for k going from 1 to D, it

becomes the ηMN matrices, since the diagonal matrices will be filled with zeros and the

off-diagonal matrices will transform into identity matrices. We also see that if we apply

the h
(k)N
M matrix on the PM vector, we will change the k-ith pk momentum to p̃k; and

analogous for XM .

We can now see how the η-metric and the generalized metric must be elements of the

group O(D,D) by considering the transformation,

Z ′ = hZ. (5.2.10)

For the LMC to be invariant, we need

hηht = η, (5.2.11)

such that h preserves the η metric, and therefore h ∈ O(D,D). Demanding the same for the

mass spectrum, we derive that also H ∈ O(D,D). Note that here the generalized metric is

a constant background, but in DFT it is promoted to be dynamical.
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5.3 Double space and generalized fields

After reviewing the string action above, we have learned how to consider the SUGRA

degrees of freedom arranged in a T-dual way through the following definitions,

HMN =

(
gij −gikbkj
bikg

kj gij − bikgklblj

)
(5.3.12)

e−2d =
√
ge−2φ, (5.3.13)

where now the components of this generalized metric are not constants. The dilaton φ is

combined with the determinant of the metric g in an O(D,D) scalar d, while the generalized

metric is an O(D,D) element. Thus, we have

H ∈ O(D,D) HMN = ηMPHPQη
QN HMPHPN = δNM . (5.3.14)

Note that the dilaton alone is not a T-dual invariant, which is why it was combined with

the determinant of the spacetime metric to form a scalar. The reason for this can be found

by considering the low-energy effective action of a string in a R25×S1 background, which in

the Einstein frame is written as [53],

2πR

2lD−2s g2s

∫
dD−1X

√
−g̃ eσR+ . . .

Since a scientist cannot tell the difference between R and R̃ = α′/R, we know that the

coupling R/g2s must remain constant under a T-dual transformation, which is only possible

if

gs → g̃s =

√
α′gs
R

, (5.3.15)

and we know that the string coupling is the expectation value of the dilaton field. Therefore,

the dilaton transforms under T-duality.

Now, since the lowest representation of O(D,D) is the fundamental, which has 2D di-

mensions, we need to introduce a new set of D-coordinates, x̃i, in order to complete the
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fundamental representation. Hence, the generalized notion of coordinates is given by

XM =

(
x̃i

xi

)
, (5.3.16)

and the generalized fields will depend on this double set of coordinates: HMN(X) and d(X).

Note that the generalized coordinates in a toroidal compactified background will be dual

to PM , and this can be extended to more general backgrounds. Naturally, the generalized

coordinates transform under O(D,D) as vectors,

XM → hM NX
N , h ∈ O(D,D), (5.3.17)

while the generalized metric, for instance, transform as a rank 2 tensor,

HMN (X) → h P
M h Q

N HPQ (hX) , (5.3.18)

which can account for the Buscher rules in SUGRA.

Finally, an important observation about the generalized metric is that it is always well

defined in the sense that,

detH = 1. (5.3.19)

Thus, it is possible that by considering the generalized metric as the fundamental field

defining the true geometrical aspects of spacetime we may avoid singularities by construction.

5.4 The Section Condition

As we have briefly mentioned in the Introduction of the chapter, we cannot simply add a

new set of coordinates since that changes the number of degrees of freedom of the theory. In

order to recover the initial field content with which we introduced DFT, we need to impose

a constraint on all the fields and gauge parameters called the section condition (SC), which

is generally written as,

ηMN∂M∂N (...) = 0, (5.4.20)
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where the ellipsis represent any local operator, which can also be made up of products of

fields. A less strict constraint can also be considered, which represents the imposition of the

LMC. That is typically called “weak constraint” and can be represented by the same relation

above where the ellipsis only represents the fundamental fields of the theory, but not their

products.

Note that a solution to the strong constraint can be simply given by considering all the

double coordinate dependence to be dropped, such that,

∂̃(...) = 0. (5.4.21)

Each solution to the section condition is said to determine a frame, or polarization,

where all the frames are connected by O(D,D) rotations. The frame defined above is called

supergravity frame. If we had imposed that the usual coordinates dependence is dropped

instead, then we would define what we call the winding frame. We will be considering these

two frames in the final chapters of this thesis.

5.5 Generalized Lie derivative

In DFT it is possible to define a generalized Lie derivative. This derivative is built such

that when acting on the fields it recovers the symmetry transformations that we had in

SUGRA as long as we also impose the supergravity frame.

In order to do so, we introduce a generalized gauge parameter

ξM = (λ̃i, λ
i), (5.5.22)

where λ̃ is the 1-form associated with the gauge symmetry of the 2-form, while the λ-vector

is associated to spacetime diffeomorphisms, as we have seen in Section (3.4.1). It is possible

to show that the diffeomorphisms and the gauge transformations for the antisymmetric field

are then written in a generalized form as

Lξe−2d = ∂M(ξMe−2d), (5.5.23)

LξHMN = LξHMN + Y R P
M Q∂

QξPHRN + Y R P
N Q∂

QξPHMR, (5.5.24)

where L is the generalized Lie derivative. Here the Lie derivative Lξ acts on a general vector
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field V i as,

LξV
i = ξj∂jV

i − V j∂jξ
i, (5.5.25)

as we typically have in differential geometry.

A generalized Lie derivative with respect to a vector ξ acts on a tensorial density V M

with weight ω(V ) as

LξV M = ξP∂PV
M + (∂MξP − ∂P ξM)V P + ω(V )∂P ξ

PV M . (5.5.26)

If ω(e−2d) = 1, then

Lξe−2d = ∂P (ξP e−2d), (5.5.27)

which recovers the transformation (5.5.24) of the dilaton. For the generalized metric, if

ω(H) = 0, then

LξHMN = LξHMN + Y R P
M Q∂

QξPHRN + Y R P
N Q∂

QξPHMR, (5.5.28)

where we considered LξHMN = ξP∂PHMN − ∂P ξMHPN − ∂P ξNHMP and Y R P
M Q = ηRPηMQ.

Naturally, the O(D,D) metric η is invariant under these generalized diffeomorphisms,

LξηMN = 0. (5.5.29)

5.5.1 Consistency constraints

We have defined generalized Lie derivatives. One thing this definition must satisfy is

that the action of two successive derivatives is still another Lie derivative, defining a closed

group. Under this demand, one can show that we need to impose that,

([L1,L2]− Lξ12)ξM3 = 0. (5.5.30)

where ξM3 is an arbitrary vector and the indices 1, 2 represent different generalized diffeo-

morphism parameters.
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5.6 DFT action

After considering all the tools introduced so far, we can write down the DFT action. The

requisites to find it are: i) all the terms should be up to second order in derivatives, ii) it

must recover the SUGRA action (4.1.1) in the supergravity frame, iii) it must respect the

gauge symmetries. Imposing these, the action is

SDFT =

∫
dXe−2dR, (5.6.31)

where

R =
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL

+4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd. (5.6.32)

This is the generalized Ricci scalar. Note that this action is similar to the Einstein-Hilbert

action of GR, having equation of motion given by

R = 0, (5.6.33)

which is a vacuum-like equation of motion. The above action recovers, after imposition of

the SC, the SUGRA action, as expected.

5.7 Generalizing the DFT action

We start with the following action,

S = SDFT +

∫
dSe−2df (d,H, χ) , (5.7.34)

where f is a general function of the dilaton field, generalized metric H and a spectator field

χ.

Now, we would like to derive the generalized equation of motion for HMN given the

inclusion of the second term in (5.7.34). The variation of SDFT with respect to the generalized

metric has been considered in [61] and we reproduce it below. In doing so, we will learn

how to deal with the variation of the generalized metric, since this is a constrained object
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by (5.3.14).

We start off considering,

δS1 =

∫
dXe−2dδHMNKMN , (5.7.35)

where

KMN =
1

8
∂MHKL∂NHKL −

1

4
(∂L − 2∂Ld)

(
HLK∂KHMN

)
+ 2∂M∂Nd−

1

2
∂(MHKL∂LHN)K

+
1

2
(∂L − 2∂Ld)

(
HKL∂(MHN)K +HK

(M∂KHL
N

)
. (5.7.36)

As H is constrained to satisfy HηH = η−1, the equations of motion are found by considering

variations that preserve this constraint. The varied field H′ = H + δH will also satisfy

H′ηH′ = η−1 provided that

δHηH +HηδH = 0. (5.7.37)

Using SM N = HM
N = ηMPHPN = HMPηPN , with S2 = 1 and StηS = η, we have

δH = −SδHSt. (5.7.38)

Since 1
2

(1± S) , acting on vectors V = V M with upper indices can be viewed as projectors

onto subspaces with S eigenvalues ±1, and any matrix M = MMN can be viewed as a

bivector and thus written as the sum of four projections onto independent subspaces:

M =
1

4
(1 + S)M

(
1 + St

)
+

1

4
(1 + S)M

(
1− St

)
+

1

4
(1− S)M

(
1 + St

)
+

1

4
(1− S)M

(
1− St

)
. (5.7.39)

It then follows that the general solution to (5.7.38) is given by

δH =
1

4
(1 + S)M

(
1− St

)
+

1

4
(1− S)M

(
1 + St

)
, (5.7.40)

since these are the terms that flip sign after the action of S on the left and St on the right;
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M is an arbitrary symmetric matrix since δH is symmetric. Thus, we have

δS1 =
1

4

∫
dXe−2dTr

{[
(1 + S)M

(
1− St

)
+ (1− S)M

(
1 + St

)]
K
}

=

∫
dXe−2dTr (MR) , (5.7.41)

where

RMN =
1

4

(
δPM − SP M

)
KPQ

(
δQN + SQ N

)
+

1

4

(
δPM + SP M

)
KPQ

(
δQN − S

Q
N

)
, (5.7.42)

and SM N = HMPηPN . Therefore, the equation of motion is

RMN = 0. (5.7.43)

Since the second term in the action (5.7.34) is also a function of the generalized metric, we

have

δS2 =

∫
dxdx̃e−2d

∂f

∂HMN
δHMN ≡

∫
dxdx̃e−2dFMNδHMN . (5.7.44)

Everything follows the same way as above for computing this constrained variation. In the

end, we have the general equation of motion given by

RMN (K) +RMN (F) = 0, (5.7.45)

where the second term just means taking the same form ofR but changingKMN → δf/δHMN

everywhere.

We have now finished introducing all the necessary tools for the understanding of the

papers presented in the following chapters of this thesis. It is important to mention that

although a recent framework, DFT’s literature encompasses many important results and

mathematical developments that we are not making explicit here. For those, we recommend

any of the reviews cited in the introduction of this chapter.
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Chapter 6

Point Particle in DFT and a

Singularity-Free Cosmological

Solution

6.1 Introduction

If the fundamental building blocks of matter are elementary superstrings instead of point

particles, the evolution of the very early universe will likely be very different than in Stan-

dard Big Bang cosmology. “String Gas Cosmology” is a scenario for the very early stringy

universe which was proposed some time ago [34] (see e.g. [63, 64, 51] for some more recent

reviews). String Gas Cosmology is based on making use of the key new degrees of freedom

and symmetries which distinguish string theories from point particle theories. The existence

of string oscillatory modes leads to a maximal temperature for a gas of strings in thermal

equilibrium, the “Hagedorn temperature” TH [58]. Assuming that all spatial dimensions are

toroidal with radius R, the presence of string winding modes leads to a duality,

R → 1

R
, (6.1.1)

(in string units) in the spectrum of string states. This comes about since the energy of wind-

ing modes is quantized in units of R, whereas the energy of momentum modes is quantized

in units of 1/R. The symmetry (7.2.7) is realized by interchanging momentum and winding
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quantum numbers1.

As was argued in [34], in String Gas Cosmology the temperature singularity of the Big

Bang is automatically resolved. If we imagine the radius R(t) decreasing from some initially

very large value (large compared to the string length), and matter is taken to be a gas of

superstrings, then the temperature T will initially increase, since for large values of R most

of the energy of the system is in the light modes, which are the momentum modes, and the

energy of these modes increases as R decreases. Before T reaches the maximal temperature

TH , the increase in T levels off since the energy can now go into producing oscillatory modes.

For R < 1 (in string units) the energy will flow into the winding modes which are now the

light modes. Hence,

T (R) = T

(
1

R

)
. (6.1.2)

A sketch of the temperature evolution as a function of R is shown in Figure 1. As a function

of lnR the curve is symmetric as a reflection of the symmetry (7.2.7). The region of R when

the temperature is close to TH and the curve in Fig. 1 is approximately horizontal is called

the “Hagedorn phase”. Its extent is determined by the total entropy of the system [34].

In [34] it was furthermore argued that at the quantum level there must be two position

operators for every topological direction, one operatorX dual to the momentum number (this

is the usual position operator for point particle theories) and a dual operator X̃ which is

dual to the winding number. The physically measured length l(R) will always be determined

by the light modes of the system. Hence, for large R it is determined by X, but for small R

it is determined by X̃. Thus,

l(R) = R for R� 1 , (6.1.3)

l(R) =
1

R
for R� 1 .

More recently, a study of cosmological fluctuations in String Gas Cosmology [66] showed

that thermal fluctuations in the Hagedorn phase of an expanding stringy universe will evolve

into a scale-invariant spectrum of cosmological perturbations on large scales today (see [67]

for a review). If the string scale is comparable to the scale of particle physics Grand Unifica-

tion the predicted amplitude of the fluctuations matches the observations well (see [68] for

recent observational results). The scenario also predicts a slight red tilt to the scalar power

1See also [65] for an extended discussion of T-duality when branes are added.
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T H

ln R

T

0
0

Fig. 6.1 T versus logR for type II superstrings. Different curves are obtained for different entropy
values, which is fixed. The larger the entropy the larger the plateau, given by the Hagedorn
temperature. For R = 1 we have the self-dual point.

spectrum. Hence, String Gas Cosmology provides an alternative to cosmological inflation as

a theory for the origin of structure in the Universe. String Gas Cosmology predicts [69, 70]

a slight blue tilt in the spectrum of gravitational waves, a prediction by means of which the

scenario can be distinguished from standard inflation (meaning inflation in Einstein gravity

driven by a matter field obeying the usual energy conditions). A simple modelling of the

transition between the Hagedorn phase and the radiation phase leads to a running of the

spectrum which is parametrically larger than what is obtained in simple inflationary models

[6].

What is missing to date in String Gas Cosmology is an action for the dynamics of space-

time during the Hagedorn phase. Einstein gravity is clearly inapplicable since is does not have

the key duality symmetry (7.2.7). In “Pre-Big-Bang Cosmology” [71, 33] it was suggested

to use dilaton gravity as a dynamical principle since the T-duality symmetry yields a scale

factor duality symmetry. However, dilaton gravity does not take into account enough of the

stringy nature of the Hagedorn phase.

“Double Field Theory” [72, 39, 73, 35] (see e.g. [40] for a review) has recently been

introduced as a field theory which is consistent with the T-duality symmetry of string theory.
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Given a topological space, in Double Field Theory (DFT) there are two position variables

associated with every direction of the topological space which is compact. Since DFT is

based on the same stringy symmetries as String Gas Cosmology, it is reasonable to expect

DFT to yield a reasonable prescription for the dynamics of String Gas Cosmology.

On the other hand, even DFT will not yield an ideal dynamical principle for String Gas

Cosmology since DFT only contains the massless modes of the bosonic string theory: the

metric, the dilaton and the antisymmetric tensor field. We can try to include the other stringy

degrees of freedom through a matter action in the same way as done in [34]. Hence, ultimately

we would like to study the cosmological equations of motion of DFT in the presence of string

gas matter. As a first step towards this goal we will in this paper study point particle

motion in DFT. Through this study we can explore time-like and light-like geodesics. We

will argue that (taking into account the appropriate definition of time) these geodesics are

complete. This yields further evidence that string theory can lead to a nonsingular early

universe cosmology. In particular, we also show that vacuum DFT background equations of

motion produce a singularity-free cosmological solution when this new definition of time is

considered.

6.2 Essentials of Double Field Theory

DFT is a field theory which lives in a “doubled” space in which the number of all dimen-

sions with stable string windings is doubled. From the point of view of string theory this

means having one spatial dimension dual to the momentum, and another one dual to the

windings. We will here consider a setup in which all spatial dimensions have windings. Thus,

our DFT will live in (2D−1)-dimensions, where (D−1) is the number of spatial dimensions

of the underlying manifold. Note that under toroidal compactifications, the corresponding T-

dualily group is O(n, n), where n corresponds to the number of spatial compact dimensions.

In DFT, the theory is covariantly formulated in the double space, so that the underlying

symmetry group is O(n, n) [40]. Thus, any scalar object should be invariant under this group

transformations. This will be relevant for when we build the point particle action in DFT

below. We will denote the usual spatial coordinates by xi and the dual coordinates by x̃i.

We consider a cosmological space-time in standard General Relativity given by:

ds2 = −dt2 + gijdx
idxj , (6.2.4)
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where t is physical time and gij is the (D − 1)-dimensional spatial metric. The coordinates

i and j run over these original spatial indices. In DFT the metric in doubled space-time (all

spatial dimensions doubled, but not time) is written in terms of a generalized metric HMN ,

where M and N run over all (2D − 1) space-time indices:

dS2 = HMNdX
MdXN . (6.2.5)

The generalized metric depends both on the original metric and on the antisymmetric tensor

field bij. In the case of a cosmological background we will usually separate out the time

component and write the line element as:

dS2 = −dt2 +HMNdX
MdXN , (6.2.6)

where now M and N run only over spatial indices. In DFT all massless string states are

considered. Hence, in addition to the metric there is a dilaton φ and an antisymmetric tensor

field bij. The generalized metric is then given by:

HMN =

[
gij −gikbkj
bikg

kj gij − bikgklblj

]
, (6.2.7)

where the indices are raised with the usual Riemannian metric.

The DFT action is chosen to treat gij and bij in a unified way, and to reduce to the

supergravity action if there is no dependence on the dual coordinates. It is given by:

S =

∫
dxdx̃e−2dR, (6.2.8)

where d contains both the dilaton φ and the determinant of the metric,

e−2d =
√
−ge−2φ , (6.2.9)
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and where [74],

R =
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL

+ 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd

+ 4∂MHMN∂Nd, (6.2.10)

with the matrix ηMN being given by:

ηMN =

[
0 δ j

i

δi j 0

]
, (6.2.11)

and we are writing the doubled space coordinates as:

XM = (x̃i, x
i). (6.2.12)

Finally, note that since all the fields now depend on double coordinates, in principle we have

doubled the number of degrees of freedom we had started with. In order to eliminate these

extra degrees of freedom, one usually considers the section condition [40], which eliminates

the dual-coordinate dependence of all the fields.

6.3 Point Particle Motion in Double Field Theory

The action for the massive relativistic point particle with world line coordinates xi(t) is

given by:

S = −mc
∫
ds , (6.3.13)

where the line element ds is given by (6.2.4). The natural generalization of it which corre-

sponds to the action of a point particle with world line in doubled space given by XM(t) in

a DFT background is written in the following way:

S = −mc
∫
dS, (6.3.14)
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where the generalized line element dS is given by (6.2.5). This action has also been introduced

in [75], although the geodesic equations have not been worked out. Note this action is

covariant under O(n, n) transformations, as expected. Moreover, if the section condition is

imposed, it recovers (6.3.13).

Before deriving the geodesic equations, a few comments are in order. The generalized

metric is a constrained object, which satisfies:

HηH = η−1, (6.3.15)

therefore its variation is constrained as well, as showed in [61], and it is given by:

∂H(c)
MN

∂XP
=

1

4

[
(ηMQ +HMQ)

∂HQR

∂XP
(ηRN −HRN) +

+ (ηMQ −HMQ)
∂HQR

∂XP
(ηRN +HRN)

]
, (6.3.16)

where the index (c) specifies when we consider constrained objects.

Varying the action with respect to the world sheet coordinates XM(t) yields the following

equations of motion:

HMN
d2XN

dS2
+
∂H(c)

MN

∂XP

dXP

dS

dXN

dS
− 1

2

∂H(c)
PN

∂XM

dXP

dS

dXN

dS
= 0. (6.3.17)

Then, the equation of motion for the dual coordinates (M = 1) is:

gij
d2x̃j
dS2

− gikbkj
d2xj

dS2
+ (∂̃mgin)

dx̃n
dS

dx̃m
dS

+ (∂mg
in)
dxm

dS

dx̃n
dS

+ ∂̃m(gikbkn)
dx̃m
dS

dxn

dS

+∂m(gikbkn)
dxm

dS

dxn

dS
− 1

2

[
(∂̃igmn)

dx̃m
dS

dx̃n
dS
− ∂̃i(gmkbkn)

dx̃m
dS

dxn

dS
+

∂̃i(bmkg
kn)

dxm

dS

dx̃n
dS

+ ∂̃i(gmn − bmkgkjbjn)
dxm

dS

dxn

dS

]
= 0 ,(6.3.18)
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whereas the equation of motion for the regular coordinates (M = 2) is:

(
gij − bikgklblj

) d2xj
dS2

+ ∂l(gin − bikgkjbjn)
dxn

dS

dxl

dS
− 1

2
∂i(gmn − bmkgkjbjn)

dxm

dS

dxn

dS

+bikg
kj d

2x̃j
dS2

+ ∂̃l(bikg
kn)

dx̃l
dS

dx̃n
dS

+ ∂j(bikg
kn)

dx̃n
dS

dxj

dS
+ ∂̃l(gin − bikgkjbjn)

dx̃l
dS

dxn

dS

−1

2

[
∂ig

mndx̃m
dS

dx̃n
dS
− ∂i(gmkbkn)

dx̃m
dS

dxn

dS
+ ∂i(bmkg

kn)
dx̃n
dS

dxm

dS

]
= 0.(6.3.19)

These are the most general equations for a point particle in a DFT background with a

metric and a 2-form field. From the first line of equation (6.3.19) it is easy to see that after

imposing the section condition and setting the two-form to be zero, we are left with the

geodesic equation of a relativistic point particle.

6.4 Point Particle Motion in a Cosmological Background

Now we want to specialize the discussion to a homogeneous and isotropic cosmological

background with vanishing bij. We thus consider the cosmological metric:

ds2 = −dt2 + a2(t)δijdx
idxj + a−2(t)δijdx̃idx̃j , (6.4.20)

where a(t) is the scale factor. Setting the antisymmetric tensor field to zero, the general

equations of motion of the previous section simplify to:

d

dS

(
dx̃a
dS

1

a2

)
= 0 (6.4.21)

d

dS

(
dxa

dS
a2
)

= 0. (6.4.22)

These are the geodesic equations of point particle motion of DFT in a cosmological back-

ground.

We will now argue that geodesics are complete in the sense that they can be extended

to arbitrarily large times both in the future and in the past. This is true for all particle

geodesics except for the set of measure zero where either all coordinates xi or all coordinates

x̃i vanish. We will consider a given monotonically increasing scale factor a(t), like the scale

factor of Standard Big Bang cosmology. Note that in this parametrization, the coordinate t
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lies in the interval between t = 0 and t =∞.

Consider a trajectory at some initial time t0 with the property that some xi and some

x̃j are non-vanishing. Due to Hubble friction, then the velocity dxi/dt will decrease. On

the other hand, the dual velocity dx̃j/dt will approach the speed of light. Hence, the proper

distance ∆S in double space between time t0 and some later time t2 will be:

∆S =

∫ t2

t0

γ(t)−1(1 + T2)
1/2dt , (6.4.23)

where T2 is the contribution from the dual which ceases to increase at late times since the

dual velocity goes at the speed of light, and γ(t) is the relativistic γ factor of the motion in

the xi direction (for simplicity we consider motion only in one original direction and in one

dual direction). Hence, the geodesic can be extended to infinite time in the future.

Now consider evolving this geodesic backwards in time from t0 to some earlier time t1.

Then it is the motion of the dual coordinates which comes to rest. The proper distance in

double space is now:

∆S =

∫ t0

t1

γ̃(t)(1 + T1)
1/2dt , (6.4.24)

where γ̃ is the relativistic gamma factor for motion in the dual space directions, and T1 is the

contribution to the proper distance which comes from the regular spatial dimensions which

is negligible at very early times since the velocity in the regular directions approaches the

speed of light.

The expansion of the scale factor in the dual spatial directions as time decreases is

analogous to the expansion in the regular directions as time increases. In line with T-duality

we propose to view the dynamics of the dual spatial dimensions as t decreases as expansion

when the dual time,

td =
1

t
, (6.4.25)

increases. In fact, in analogy to the definition of physical length l(R) in (7.2.6) [34], we can

define a physical time tp(t) as:

tp(t) = t for t� 1 , (6.4.26)

tp(t) =
1

t
for t� 1 .
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With this definition, the geodesics studied in this paper are geodesically complete in the

sense that they can be extended in both directions to infinite time.

We can also justify the above argument by dualizing both space and time, i.e., by also

introducing a dual time t̃ which is dual to “temporal winding modes” of the string [76]. This

concept can be made rigorous in Euclidean space-time where time is taken to be compact.

When the regular Euclidean time domain shrinks in size, the dual time domain increases.

This is analogous to the dual space domain increasing as 1/R when the regular space domain

R is decreasing. From this point of view, the definition (6.4.26) is simply the time component

of (7.2.6). We can also write (6.4.26) as:

tp(t) = t for t� 1 , (6.4.27)

tp(t) = t̃ = td for t� 1 .

At finite temperatures T , the string partition function Z(T ) is periodic in Euclidean time

β = 1/T , and - at least for certain string theory setups - satisfies the temperature duality:

Z(β) = Z

(
1

β

)
, (6.4.28)

which is a consequence of the T-duality symmetry. Based on this symmetry it was argued

[77, 78] that these string theory models correspond to bouncing cosmologies in which the

physical temperature is taken to be (always in string units):

Tp(T ) = T for T � 1 , (6.4.29)

Tp(T ) =
1

T
for T � 1 .

Note that two time formalism based on ideas from string theory were also discussed in [79]

and [80].

6.5 Singularity-free cosmological background

In this section, we study a geometrical approach to formalize the idea of the physical

clock introduced in the last section and conclude that upon considering this definition of

time, the vacuum solutions of the DFT background equations are singularity-free. The DFT
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cosmological background equations of motion in the presence of a hydrodynamical fluid will

be discussed in [2].

We start off considering the following ansatz:

dS2 = − dt2 − dt̃2 + a2(t, t̃)
D−1∑
i=1

dxidxi

+ a−2(t, t̃)
D−1∑
j=1

dx̃jdx̃j, (6.5.30)

in the DFT equations of motion, resulting in [81]:[
4∂t̃∂t̃d− 4(∂t̃d)2 − (D − 1)H̃2

]
+
[
4∂t∂td− 4(∂td)2 − (D − 1)H2

]
= 0 (6.5.31)[

−(D − 1)H2 + 2∂t∂td
]
−
[
−(D − 1)H̃2 + 2∂t̃∂t̃d

]
= 0 (6.5.32)[

˙̃H − 2H̃∂t̃d
]

+
[
Ḣ − 2H∂td

]
= 0, (6.5.33)

where H = a−1da/dt and H̃ = a−1da/dt̃.

The solution to these equations are given by

a±(t̃, t) =

∣∣∣∣tt̃
∣∣∣∣±1/

√
D−1

, d(t, t̃) = −1

2
ln |tt̃| (6.5.34)

a±(t̃, t) =
∣∣tt̃∣∣±1/√D−1 , d(t, t̃) = −1

2
ln |tt̃|. (6.5.35)

However, so far there was no clear interpretation of these equations and solutions given the

presence of the extra time coordinate, t̃.

Within the prescription we have introduced in the last section, we can interpret this extra

time coordinate as the geometrical clock associated to the winding modes2. In particular,

we have provided arguments that this clock, when seen from the momentum perspective,

should correspond to:

t̃ =
1

t
. (6.5.36)

Thus, the above ansatz can be seen as a way to implement the ideas we have introduced at

2We will discuss further about this prescription in [2].
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a geometrical level. By doing so, the effective line element becomes:

dS2 = −
(

1 +
1

t4

)
dt2 + a2(t)

D−1∑
i=1

dxidxi

+ a−2(t)
D−1∑
j=1

dx̃jdx̃j. (6.5.37)

The solutions of the DFT equations of motion become:

a±(t) = |t|±2
√
D−1, d(t) = const. (6.5.38)

a±(t) = const., d(t) = const. (6.5.39)

Now, using instead the physical clock, we can rewrite the line element by considering the

following

dtp =

√
1 +

1

t4
dt, (6.5.40)

so that we recover a FRW-like metric in the standard form, meaning g00 = −1. It is clear

that the physical clock reduces to the momentum one for large t. In fact, its functional form

in terms of t is very complicated, but its plot is easy to understand:

2 4 6 8

10

t

- 5

5

tP

t
t

Fig. 6.2 Physical clock as a function of the time coordinate. The physical clock goes from −∞
to ∞ for t ∈ (0,∞).

The non-trivial solution for the scale factor (6.5.39) can also be plotted in terms of the
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physical clock (we consider D = 4 for simplicity),

- 10 - 5 5 10
tP

5

10

15

Fig. 6.3 The scale factor goes to zero only at tp → −∞. Similarly its inverse goes to zero when
tp →∞.

Finally, the metric looks like

ds2 = −dt2p + a2 (tp)
D−1∑
i=1

dxidxi + a−2 (tp)
D−1∑
j=1

dx̃jdx̃j, (6.5.41)

as expected. It is important to realize that this effective (2D − 1)-dimensional geometry

reduces effectively to a D-dimensional one for large tp, the momentum sector, and analo-

gously for large negative tp, the winding sector. We also observe that there should be a

D-dimensional slice that has its volume bounded from below for all tp. This slice is the

physical geometry where we live and which is accessible by physical rulers and clocks (which

are always given by the corresponding light modes).

6.6 Conclusions and Discussion

We have studied the geodesics corresponding to point particle motion in Double Field

Theory. We derived the general equations of motion, and then considered the special case of

a cosmological background with vanishing antisymmetric tensor field. We argued that in this

context the geodesics of point particle motion are complete, provided we measure the motion

in terms of a physical time which reflects the T-duality symmetry of the setup. Our result
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provides further support for the expectation that cosmological singularities are resolved in

superstring cosmology. Then, we also considered a geometrization of this prescription within

the framework of DFT, resulting in a cosmological solution which is singularity-free.
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Chapter 7

Dual Space-Time and Nonsingular

String Cosmology

7.1 Introduction

The singularities which arise at the beginning of time in both standard and inflationary

cosmology indicate that the theories which are being used in cosmology break down as the

singularity is approached. If space-time is described by Einstein gravity and matter obeys

energy conditions which are natural from the point of view of point particle theories, then

singularities in homogeneous and isotropic cosmology are unavoidable [19]. These theorems

in fact extend to inflationary cosmology [20, 21, 22].

But we know that Einstein gravity coupled to point particle matter cannot be the correct

description of nature. The quantum structure of matter is not consistent with a classical

description of space-time. The early universe needs to be described by a theory which can

unify space-time and matter at a quantum level. Superstring theory (see e.g. [26, 27], for a

detailed overview) is a promising candidate for a quantum theory of all four forces of nature.

At least at the string perturbative level, the building blocks of string theory are fundamental

strings. Strings have degrees of freedom and new symmetries which point particle theories

do not have, and these features may lead to a radically different picture of the very early

universe, as discussed many years ago in [34] (see also [82]).

As discussed in [34], string thermodynamic considerations indicate that the the cosmo-

logical evolution in the context of string theory should be nonsingular. A key realization
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is that the temperature of a gas of closed string in thermal equilibrium cannot exceed a

limiting value, the Hagedorn temperature [58]. In fact, as reviewed in the following section,

the temperature of a gas of closed strings in a box of radius R decreases as R becomes much

smaller than the string length. If the entropy of the string gas is large, then the range of

values of R for which the temperature is close to the Hagedorn temperature TH is large.

This is called the Hagedorn phase of string cosmology. The exit from the Hagedorn phase is

smooth and is a consequence of the decay of string winding modes into string loops1. The

transition leads directly to the radiation phase of Strandard Big Bang cosmology (see [63,

64, 51, 86] for reviews of the String Gas Cosmology scenario).

If strings in the Hagedorn phase are in thermal equilibrium, then the thermal fluctuations

of the energy-momentum tensor can be computed using the methods of [87]. In particular, it

can be shown that in a compact space with stable winding modes the specific heat capacity

has holographic scaling as a function of the radius of the volume being considered. As a

consequence [66, 67], thermal fluctuations of strings in the Hagedorn phase lead to a scale-

invariant spectrum of cosmological perturbations at late times, with a slight red tilt like what

is predicted [88] in inflationary cosmology. If the string scale is comparable to the scale of

particle physics Grand Unification the predicted amplitude of the fluctuations matches the

observations well (see [68] for recent observational results). Hence, String Gas Cosmology

provides an alternative to cosmological inflation as a theory for the origin of structure in the

Universe. The predicted spectrum of gravitational waves [69, 70] is also scale-invariant, but a

slight blue tilt is predicted, in contrast to the prediction in standard inflationary cosmology.

This is a prediction by means of which the scenario can be distinguished from standard

inflation (meaning inflation in Einstein gravity driven by a matter field obeying the usual

energy conditions). A simple modelling of the transition between the Hagedorn phase and

the radiation phase leads to a running of the spectrum which is parametrically larger than

what is obtained in simple inflationary models [6].

In this paper, we will study the cosmological background dynamics which follow from

string theory if the target space has stable winding modes. An example where this is the case

is a spatial torus. We will argue that from the point of view of string theory the dynamics

is non-singular.

1This mechanism suggests that exactly three spatial dimensions can become large [34], the others being
confined to the string length by the interaction of the string winding and momentum modes [83, 84, 85].
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7.2 Dual Space from T-duality

For simplicity let us assume that space is toroidal with d = 9 spatial dimensions, all of

radius R. Closed strings then have momentum modes whose energies are quantized in units

of 1/R

En =
n

R
, (7.2.1)

where n is an integer. They also have winding modes whose energies are quantized in units

of R, i.e.

Em = mR , (7.2.2)

where m is an integer and we are working in units where the string length is one. Strings

also have a tower of oscillatory modes whose energies are independent of R. The number of

oscillatory modes increases exponentially with energy.

It follows from (7.2.1) and (7.2.2) that the spectrum of string states is invariant under

the T-duality transformation

R → 1

R
(7.2.3)

if the momentum and winding numbers are interchanged. The transformation (7.2.3) is also

a symmetry of the string interactions, and is assumed to be a symmetry of string theory

beyond perturbation theory (see e.g. [27])2.

As is well known, the position eigenstates |x〉 are dual to momentum eigenstates |p〉. In

a compact space, the momenta are discrete, labelled by integers n, and hence

|x〉 =
∑
n

einx|n〉 . (7.2.4)

where |n〉 is the momentum eigenstate with momentum quantum number n. As already

discussed in [34], in our string theory setting, windings are T-dual to momenta, and we can

2See also [65] for an extended discussion of T-duality when branes are added.
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define a T-dual position operator

|x̃〉 =
∑
m

eimx̃|m〉 , (7.2.5)

where |m〉 are the eigenstates of winding, labelled by an integer m.

As again argued in [34], experimentalists will measure physical length in terms of the

position operators which are the lightest. Thus, for R > 1 (in string units), it is the regular

position operators |x〉 which determine physical length, whereas for R < 1 it is the dual

variables |x̃〉. Hence, the physical length lp(R) is given by

l(R) = R for R� 1 , (7.2.6)

l(R) =
1

R
for R� 1 .

As was argued in [34], in String Gas Cosmology the temperature singularity of the Big

Bang is automatically resolved. If we imagine the radius R(t) decreasing from some initially

very large value (large compared to the string length), and matter is taken to be a gas of

superstrings, then the temperature T will initially increase, since for large values of R most

of the energy of the system is in the light modes, which are the momentum modes, and the

energy of these modes increases as R decreases. Before T reaches the maximal temperature

TH , the increase in T levels off since the energy can now go into producing oscillatory modes.

For R < 1 (in string units) the energy will flow into the winding modes which are now the

light modes. Hence,

T (R) = T

(
1

R

)
. (7.2.7)

A sketch of the temperature evolution as a function of R is shown in Figure 1. As a function

of lnR the curve is symmetric as a reflection of the symmetry (7.2.7). The region of R when

the temperature is close to TH and the curve in Fig. 1 is approximately horizontal is called

the “Hagedorn phase”. Its extent is determined by the total entropy of the system [34].

7.3 Cosmological Dynamics and Dual Space-Time

In the following we will couple a gas of strings to a background appropriate to string

theory. Since the massless modes of string theory include, in addition to the graviton, the
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T H

ln R

T

0
0

Fig. 7.1 T versus logR for type II superstrings. Different curves are obtained for different entropy
values, which is fixed. The larger the entropy the larger the plateau, given by the Hagedorn
temperature. For R = 1 we have the self-dual point.

dilaton and an antisymmetric tensor field, a cosmological background will contain the metric,

the dilaton and the antisymmetric tensor field. For a homogeneous and isotropic cosmology

the metric can be written as

ds2 = −dt2 + a(t)2dx2 , (7.3.8)

where t is physical time, a(t) is the cosmological scale factor and x are comoving spatial

coordinates. We have assumed vanishing spatial curvature for simplicity. We denote the

dilaton by φ(t).

The T-duality symmetry of string theory leads to an important symmetry of the massless

background fields, the scale factor duality [71, 33]. In the absence of an antisymmetric tensor

field these take the form

a(t) → 1

a
(7.3.9)

φ̄(t) → φ̄(t)
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where the T-duality invariant combination of the scale factor and the dilaton is

φ̄ ≡ φ− dlna , (7.3.10)

where d = D − 1 is the number of spatial dimensions and D the number of space-time

dimensions.

The background equations of motion are those of dilaton gravity (we will neglect the

antisymmetric tensor field). In the absence of matter, these equations were studied in detailed

in the context of Pre-Big-Bang cosmology [71, 33]. In the presence of string matter, they

have been analyzed in [56]. The equations in the presence of a gas of matter described by

energy density ρ and pressure p are (
φ̇− dH

)2
− dH2 = eφρ (7.3.11)

Ḣ −H
(
φ̇− dH

)
=

1

2
eφp (7.3.12)

2
(
φ̈− dḢ

)
−
(
φ̇− dH

)2
− dH2 = 0 , (7.3.13)

where H ≡ ȧ/a. These are the equations in the string frame. In particular, we can combine

these equations to write a continuity equation,

ρ̇+ (D − 1)H(ρ+ p) = 0. (7.3.14)

We consider matter to be a gas of strings. For R � 1 most of the energy is in the

momentum modes which act as radiation and hence have an equation of state parameter

w ≡ p/ρ given by w = 1/d. For R� 1, however, most of the energy density is in the winding

modes whose equation of state parameter is w = −1/d. Finally, for R = 1 the equation of

state is w = 0. An interpolating form of the matter equation of state is

w (a) =
2

πd
arctan

(
βln

(
a

a0

))
, (7.3.15)

where a0 is the value of the scale factor when R = 1, and β is a constant which depends on

the total entropy of the gas. The larger the entropy is, the wider the Hagedorn phase as a

function of a, and hence the smaller the value of β. For this equation of state, the continuity
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equation for string gas matter can be integrated and yields

ln
ρ

ρ0
= − d ln

a

a0
− 2

π

{
ln

(
a

a0

)
arctan

[
β ln

(
a

a0

)]}
− 2

π

{
1

2β
ln

[
1 + β2

(
ln

a

a0

)2
]}

, (7.3.16)

where ρ0 is the energy density at the string length. This result reproduces what is expected

for large and small radii,

ρ (a large) → ρ0 (a/a0)
−(d+1) (7.3.17)

ρ (a small) → ρ0 (a/a0)
−(d−1) . (7.3.18)

for pure momentum or pure winding modes, respectively.

At this point we have a system of background and matter in which both components

have the same symmetries. We now turn to an exploration of solutions. Following closely

[33], we make the ansatz

a(t) ∼
(
t

t0

)α
(7.3.19)

φ̄(t) ∼ −β ln

(
t

t0

)
,

where α and β are constants, and t0 is a reference time. Inserting into the dilaton gravity

equations gives the following constraints on the constants

(D − 1)wα + β = 2 (7.3.20)

β2 + (D − 1)α2 = 2β .

Deep in the Hagedorn phase when w = 0 we get

(α, β) = (0, 2) . (7.3.21)

This corresponds to a static scale factor in the string frame. Converting to the Einstein
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frame in which the scale factor ã(t) is given by

ã(t) = a(t)e−φ/(d−1) (7.3.22)

we find

ã(t) ∼
(
t

t0

)2/(d−1)

. (7.3.23)

In the large a phase when w = 1/d we get

(α, β) =

(
2

D
,

2

D
(D − 1)

)
. (7.3.24)

In this case, the dilaton is constant and hence the string frame and Einstein frame scale

factors are the same. As expected, the scale factor evolves as in a standard radiation dom-

inated universe. There is a second solution of (7.3.20), but that solution is consistent only

for p = 0.

When w = −1/d we have

(α, β) =

(
− 2

D
,

2

D
(D − 1)

)
. (7.3.25)

The string frame scale factor is expanding as we go backwards in time. Translating to the

Einstein frame we get

ã(t) ∼
(
t

t0

)2/(d−1)

. (7.3.26)

In the Einstein frame, the scale factor vanishes at t = 0 while in the string frame it blows

up in this limit.

Let us track the dynamics backwards in time, beginning with a large torus (R� 1). The

energy will hence be in the momentum modes and the equation of state is that of radiation.

As we go back in time, the scale factor decreases (it is the same in the two frames), the energy

density increases, and eventually the temperature approaches the Hagedorn value at which

point oscillatory and winding modes of the string gas get excited, leading to a transition

to an equation of state with p = 0. We enter a Hagedorn phase during which the string
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Fig. 7.2 The schematic solution for the scale factor in the String and Einstein frames for D = 4.
Note that the transition between the winding and momenta equation of state has been smoothed
out, as it is expected if (7.3.15) is considered.

frame scale factor is constant while the Einstein frame scale factor is decreasing. This means

that the radius of the torus R is decreasing, and it soon becomes energetically preferable for

the energy of the string gas to drift to the winding modes, leading to an equation of state

w = −1/d. In the winding phase the Einstein frame scale factor is still decreasing, which is

a self-consistency check on the assumption that the energy of the string gas is mostly in the

winding modes3.

We see that in the string frame, there is no curvature singularity. As the coordinate time

t runs from t = 0 to t =∞, the scale factor is initially contracting, bounces in the Hagedorn

phase and expands afterwards in the radiation phase, as showed schematically in Fig. 2.

Following [1], we argue that in the phase dominated by winding modes we should measure

3If we do not allow momentum and winding modes to decay, then, as studied in [56], we obtain solutions
where the string frame scale factor oscillates about a0.
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time in terms of the dual time variable

td ≡ −
t2c
t

(7.3.27)

where tc corresponds to the coordinate time at the center of the Hagedorn phase. In terms

of td, the solution looks like a contracting universe.

From the point of view of the Einstein frame, the scale factor vanishes at t = 0. But

from the point of view of a detector made up of winding modes, the measured scale factor

is proportional to a(t)−1. Hence, the time interval 0 < t < tc corresponds to a contracting

universe in terms of the dual position basis.

Heuristically, there are two simple reasons for introducing a dual time coordinate. Let

us consider for simplicity a fixed dilaton, so that we have a radiation solution. It is clear

that there is an asymmetry between large and small scale factor, since the proper time for

the scale factor to go to infinity diverges, while it is finite when the scale factor decreases

to zero from some finite value. However, from the point of view of T-duality we should not

be able to distinguish between a large and a small universe. This is the first hint towards a

more general definition of the physical clock, tp.

Another qualitative argument follows from special relativity considerations brought to-

gether with T-duality. For a large radius, rods are made out of momentum modes, and time

measurements for a given physical length, ∆x, are given by

|∆t| = |∆x| , (7.3.28)

where the speed of light has been set to unit. If the universe is composed of closed strings,

in principle we could have considered measuring physical length in terms of winding modes

as well, and the natural rods built out of these modes are related to the physical length by

∆x̃→ α
′2

∆x
, (7.3.29)

where α
′

is the string tension. Thus, we can rewrite (7.3.28) as,

|∆x̃| →
∣∣∣∣α′2∆t

∣∣∣∣ . (7.3.30)
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Now, if we cannot distinguish large from small, we could have started the argument using

winding modes instead, so that we would write the following relation4,

|∆x̃| =
∣∣∆t̃∣∣ . (7.3.31)

Thus, it is also natural to propose a winding-clock that is dual to the momentum-clock by

combining the above formulae, ∣∣∆t̃∣∣→ ∣∣∣∣α′2∆t

∣∣∣∣ . (7.3.32)

Evidently, physically speaking there is only a single clock. When only winding or mo-

mentum modes are light, the existence of a unique time coordinate is already clear. Around

the self-dual point, when both modes are energetically favorable, that should also be the

case. Therefore, we need a prescription to reduce both time coordinates to a single physical

time. We call this prescription physical clock constraint and it is given by the identification

(7.3.27).

These ideas likely have a very natural interpretation in terms of Double Field Theory [39,

35, 40] (see also [36, 37, 38] for some early work). Double Field Theory is a generalization of

supergravity which lives in 2d spatial dimensions, with the first d dimensions corresponding

to the usual x variables, and the second d dimensions to the dual spatial variables x̃. In

Double Field Theory there is a generalized metric which for homogeneous and isotropic

cosmology and in the absence of an antisymmetric tensor field is given by

ds2 = −dt2 + a2(t)δijdx
idxj + a−2(t)δijdx̃idx̃j . (7.3.33)

The determinant of the generalized metric is one. As space shrinks in the x directions, it

opens up in the x̃ directions. This is sketched in Fig. 3. In work in progress [3, 4] we

are exploring this connection in more detail, in particular using the O(D,D)-formalism for

formalizing the introduction of a dual time, and discussing how the physical clock constraint

can be seen analogously to the imposition of the section condition in DFT for the dual

coordinates [40] 5.

4By T-duality one can argue that the dual speed of light is also equal to unit.
5See [81] for a study of cosmological vacuum solutions of double field theory including a dilaton potential.
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Fig. 7.3 The scale factor goes to zero only at tp → −∞. Similarly its inverse goes to zero when
tp →∞.

7.4 Discussion

We have studied the equations of motion of a cosmological background containing the

scale factor a(t) and the dilaton in the presence of string gas matter sources. Both the

background action and the matter action are consistent with the T-duality symmetry of

string theory. While we do not expect our description to be adequate in the high density

phase when truly stringy effects must be considered, our analysis is an improvement over the

usual effective field theory of string cosmology where the underlying background geometry

is not covariant with the T-duality symmetry.

We find that the solutions are nonsingular, at least when interpreted in the context of

double space-time. We conjecture that an improved description could be obtained using the

tools of Double Field Theory6.

6For a recent paper exploring the required formalism see [62].
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Chapter 8

T-dual cosmological solutions in

double field theory

8.1 Introduction

The T-duality symmetry [89] plays an important role in string theory. For example, for

strings on a torus of radius R, the symmetry implies that the spectrum of string states is

unchanged if R→ 1/R (in string units) and string momentum modes are interchanged with

string winding modes. This symmetry is obeyed by string interactions, and it is assumed to

be a symmetry of non-perturbative string theory (see e.g. [27, 65]).

T-duality is a key ingredient of the String Gas Cosmology (SGC) proposal [34] for early

universe cosmology. SGC in the present form (see e.g. [64, 51, 63] for reviews) is based

on ideas coming from string thermodynamics. As is well known [58], there is a maximal

temperature for a gas of closed strings in thermal equilibrium, the Hagedorn temperature TH .

If we consider a box of strings of radius R, then the temperature T (R) of a gas of strings in

this box remains close to TH for a range of values of R about R = 1 (in string units), the

range increasing as the entropy of the string gas increases. Hence, it was postulated in [34]

that the early phase of the universe might be a quasi-static hot string gas phase (see also

[82] for similar ideas). As was realized in [66], thermal fluctuations in the quasi-static phase

evolve into an approximately scale-invariant spectrum of cosmological fluctuations with a

slight red tilt, and [69] a scale-invariant spectrum of gravitational waves with a slight blue

tilt. In this framework, the key size and shape moduli of extra dimensions can be stabilized in
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a natural way [85, 84, 90]. What is missing in string gas cosmology, however, is a dynamical

understanding of how the space-time background evolves. Our work is motivated by the aim

to make progress on this issue.

As already pointed out in [34], in string theory on a compact space there are two co-

ordinates for each dimension of the topological space, firstly the coordinate x associated

with the momentum modes, and secondly the dual coordinate x̃ associated with the winding

modes (note that for point particle theories there is only the coordinate x associated with

the momentum modes). It is hence to be expected that the dynamics of the background

geometry of SGC should live in a doubled space including both x and x̃ coordinates.

Double Field Theory (DFT) [72, 39, 35] is an interesting proposal for a field theory living

in doubled space. DFT is given (see e.g. [40] for a review) by an action for a generalized met-

ric in 2D space-time dimensions which is constructed from the metric, antisymmetric tensor

field and dilaton (the “background”) of the massless sector of a D space-time dimensional

string theory. In particular, after imposing a section condition the dynamical equations for

the background reduce to those of supergravity (we will here focusing on bosonic supergrav-

ity).

In this paper we will couple a cosmological (i.e. homogeneous and isotropic) background

of DFT to matter described by some energy density ρ and some pressure p. We will study

various ways of imposing a section condition, assuming that the dilaton is fixed. If we impose

the section condition with respect to the regular coordinate (i.e. we assume that the variables

do not depend on the dual coordinates), then we find that the equation of state of matter

has to be that of regular radiation. On the other hand, if we impose the section condition

with respect to the dual coordinates (i.e. we assume that the variables do not depend on the

regular coordinates), then we find that the equation of state of matter has to be an equation

of state dominated by winding modes. However, even though the equations of state differ,

the background dynamics is the same, corresponding to a radiation-like expansion.

We then speculate about a dynamical transition between the two branches of solutions, a

correct description of which would have to go beyond the strict framework of DFT and would

have to involve more stringy considerations. We argue that this transition might involve a

complexification of the scale factor (see also [91] where complexifications of the scale factor

have been recently proposed to resolve the cosmological singularity).

The supergravity (SUGRA) equations of motion have been studied extensively for homo-

geneous and isotropic space-times (see e.g. [56, 33]). If the antisymmetric tensor vanishes
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they reduce to the ones of dilaton gravity. Recently, we [2] have considered the coupling of

dilaton gravity to a perfect fluid matter source whose equation of state is that expected from

a gas of fundamental closed strings. This equation of state has the property that it is domi-

nated by momentum modes at large values of the cosmological scale factor (equation of state

w = 1/d, where d is the dimension of space), by winding modes for small values (equation

of state w = −1/d), and has zero presssure for intermediate values. The resulting solutions

were shown to be nonsingular in both the string and Einstein frames, when interpreted in

terms of a dual time variable in the winding mode regime 1. In this paper we go one step

further and consider the cosmological equations in the context of double field theory.

DFT equations of motion for cosmology have been studied in [81], but in the absence of

matter sources. Matter sources have been explicitly included in the general DFT equations

recently derived in [62], where care was taken to have both background and matter terms

considered in the DFT-invariant way. However, in that paper no cosmological solutions were

considered. It is such solutions which we consider here.

A word on notation: small Latin letters i, j, ... indicate indices which run over the regular

D = d + 1 space-time dimensions, capital letters M,N, ... stand for indices which run over

both the regular and the dual space-time dimensions. The cosmological scale factor is de-

noted by a(t), where t is the physical time. The dual time is denoted by t̃. The equation of

state parameter w is w = p/ρ, where ρ and p are energy density and pressure, respectively.

8.2 Short review of Double Field Theory

The DFT action unifies the metric gij, the two-form bij and the dilaton φ by rewriting

these fields in an O(D,D,R) covariant way, where D is the number of spacetime dimensions,

and it reduces to the supergravity action if there is no dependence on the dual coordinates2.

It is given by,

S =

∫
dxdx̃e−2dR, (8.2.1)

1In a related paper [1] we showed that from this point of view point particle geodesics in DFT can be
extended arbitrarily far into the past and future, indicating that DFT cosmology is geodesically complete.

2This is usually done by imposing the section condition. See [62] for a derivation of the section condition
from a special class of translation invariance allowed by the O(D,D) symmetry group.
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where d contains both the dilaton φ and the determinant of the metric,

e−2d =
√
−ge−2φ , (8.2.2)

and where [74],

R =
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL

+ 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd

+ 4∂MHMN∂Nd, (8.2.3)

where the generalized metric, HMN , is defined as,

HMN =

[
gij −gikbkj
bikg

kj gij − bikgklblj

]
, (8.2.4)

having its O(D,D) index structure being lifted or lowered by the matrix ηMN , defined as,

ηMN =

[
0 δ j

i

δi j 0

]
. (8.2.5)

Throughout the rest of this paper we will be working with double spacetime coordinates.

8.3 Dual Cosmology

The cosmological background equations of motion coming from DFT are the same as the

ones coming from SUGRA for the dynamical fields in terms of the momentum coordinates.

Thus, all the solutions found in that context can be automatically brought into the DFT

framework. What differs in the latter is that the underlying geometry is (2d+1)-dimensional

and given by the following line element,

dS2 = −dt2 +HMNdX
MdXN

= −dt2 + a2 (t) d~x2 + a−2 (t) dx̃2. (8.3.6)
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We already considered some physical aspects of this metric in previous work. In [2] we

showed that the cosmological solutions of supergravity in the presence of a perfect fluid

matter gas with the equation of state appropriate to SGC 3 are nonsingular in the string

frame, and can be given a nonsingular interpretation in the Einstein frame making use of

a dual time t̃ which replaces the regular time t for small values of the scale factor. Making

use of this dual time, it was shown earlier [1] that point particle geodesics can be extended

infinitely far both into the future and towards the past.

If we start with two time coordinates, the cosmological ansatz for the line element is

dS2 = HMNdX
MdXN

= −dt2 − dt̃2 + a2(t, t̃)d~x2 + a−2(t, t̃)dx̃2, (8.3.7)

where now the generalized metric is also defined in terms of the temporal component of the

space-time metric.

The vacuum equations of motion for DFT in the presence of a dual-time associated to

the winding sector are given by [81],

4d
′′ − 4d

′2 − (D − 1)H̃2 + 4d̈− 4ḋ2 − (D − 1)H2 = 0

(D − 1) H̃2 − 2d
′′ − (D − 1)H2 + 2d̈ = 0

H̃
′ − 2H̃d

′
+ Ḣ − 2Hḋ = 0, (8.3.8)

where a prime denotes a derivative with respect to t̃, and a dot a derivative with respect to

t. Also, note that H̃ ≡ a′/a and 2d ≡ 2φ− (D−1) ln a is the shifted dilaton. To derive these

equations, we need to vary the DFT action (8.2.1) with respect to d, gtt and gii, respectively,

assuming a cosmological background while taking into account the constraint,

HMNHNP = δPM , (8.3.9)

which in our case simply implies gµνg
νρ = δρµ

4.

Comparing (8.3.8) to standard string cosmology equations [56] in the presence of matter,

3This equation of state corresponds to radiation with w = 1/d for large values of a(t) and to a gas of
winding modes with w = −1/d in the small a limit.

4Note that associated to dt̃ is gt̃t̃ ≡ g
−1
tt .
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we propose coupling the above equations to matter by the following prescription,

4d
′′ − 4d

′2 − (D − 1)H̃2 + 4d̈− 4ḋ2 − (D − 1)H2 = 0

(D − 1) H̃2 − 2d
′′ − (D − 1)H2 + 2d̈ =

1

2
e2dE(t, t̃)

H̃
′ − 2H̃d

′
+ Ḣ − 2Hḋ =

1

2
e2dP (t, t̃), (8.3.10)

where P and E are the pressure and energy associated to the matter sector, respectively5.

Note that they are also function of t̃. One might wonder if these quantities would have their

dual counterparts. That is not the case, since we know that gtt = g−1
t̃t̃

and gii = g−1
ĩ̃i

due to

(8.3.9). Therefore, it is easy to see that,

δ

δgt̃t̃
= −g2tt

δ

δgtt
, (8.3.11)

so that varying (8.2.1) with respect to gt̃t̃ would result in the same equation of motion derived

by varying it with respect to gtt. The same follows for the other components67.

Having the equations of motion in double space-time, we need now to consider the impo-

sition of the section condition. Typically it is imposed in the so called supergravity frame,

which means assuming that the dynamical fields do not depend on the dual coordinates.

However, one could equally well consider the imposition of any O (D,D) rotation of the

section condition, in particular assuming that there is no dependence on the regular coor-

dinates rather than no dependence on the dual coordinates. We will consider the resulting

dynamics in each frame and draw an interpretation in terms of the overall existence of either

5In [56] matter was introduced via the matter action S =
∫
dt
√
−gttF (log a, β

√
−gtt) , where F is the

one loop free energy. In principle, this prescription can be extended in the presence of double time (see note
8.6). It is left for a future work [92] to consider its full covariant formulation.

6Regardless, we can still think of the dual counterparts as a matter of definition, even though they are
not independent of the normal ones. In particular, it is easy to see that ρ̃ = −ρ, after assuming gtt = −1,
and p̃ = −a4

(
t, t̃
)
p, given gii = a2

(
t, t̃
)
.

7Note that fully covariant equations coupling matter to DFT background were proposed in [62]. They
arise from varying a generalized action consisting of geometrical action plus matter action with respect to
the generalized metric. It reduces to a generalization of supergravity when the section condition is imposed
in the supergravity frame, where the gravitational charge can also be acquired through couplings with the
dilaton and the antisymmetric tensor field. The cosmology of such framework will be discussed at [92]. In
comparison, our equations, derived for homogeneous and isotropic space-times, are not fully covariant, as it
is further discussed and explored in [4]. In order to define the energy density and pressure we need to make
explicit use of the frame which was being considered. Hence, the equations of [62] have a larger scope of
application.
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momentum or winding modes in the next section.

Before we proceed, a few comments are in order here. There are two different takes

we can consider regarding DFT: as a fundamental theory or as a mathematical framework

that connects T-dual solutions of string theory. If one assumes DFT is fundamental, then

changing between frames is the same as considering different gauge choices, and even though

the solutions look different, this is just due to a gauge choice [93]. On the other hand, one

can consider DFT as a theory that connects distinct physical solutions, which in the context

of DFT would be accounted for in different frames. For instance, it is known that there are

string backgrounds which are non-geometric and do not have a good supergravity description,

yet they are captured by alternative frame choices [94, 95, 96]. In fact, an explicit example

of such interpretation was considered in [97], where there is a natural choice of frame picked

by the string/wave solution as one approaches its core, being the dual frame the natural one.

We will consider the latter approach throughout the rest of this paper.

In order to simplify our reasoning, we will be considering the dilaton to be already

stabilized. Thus, we have 2ḋ = − (D − 1)H and 2d
′
= − (D − 1) H̃, and (8.3.10) become,

2
(
H̃
′
+ Ḣ

)
+D

(
H̃2 +H2

)
= 0(

H̃2 −H2
)

+
(
H̃
′ − Ḣ

)
=

1

2 (D − 1)
Gρ
(
t, t̃
)

(
H̃
′
+ Ḣ

)
+ (D − 1)

(
H̃2 +H2

)
=
G

2
p
(
t, t̃
)
, (8.3.12)

where G depends on φ = φ0, the fixed value of the dilaton. The most important feature to

be noticed in these equations is the asymmetry between the regular and dual coordinates

dependence in the second equation. Now we consider each particular frame.

8.3.1 Supergravity frame: large radius limit

The mass spectrum of a closed string in a one-dimensional space, compactified on a circle,

is

M2 = (N + Ñ − 2) + p2
l2s
R2

+ w2 l
2
s

R̃2
, (8.3.13)

where N, Ñ correspond to oscillatory modes of the string, p corresponds to its momentum

modes, associated to the center of mass motion, and w corresponds to winding modes,

accounting for the number of times the string has wrap itself around the compact dimension
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in a topologically non-trivial way.

We expect that as the scale factor becomes larger8 only momentum modes will be ener-

getically favorable (considering that the radius of the compact dimensions would also become

larger), as it can be easily seen from (8.3.13). In this case, we hope that only the t-dependence

should be relevant, given the t̃ was introduced exactly to tackle the winding modes dynam-

ics from a T-dual perspective. This is typically called supergravity frame, but here we are

putting forward an interpretation associated with this frame. We will do similarly in the

next sub-section when considering the winding-frame.

After imposing the section condition on the t̃-coordinates, the equations of motion (8.3.12)

reduce to the standard string cosmology equations for a stabilized dilaton [56],

2Ḣ +DH2 = 0

−H2 − Ḣ =
G

2 (D − 1)
ρ(t)

Ḣ + (D − 1)H2 =
G

2
p(t), (8.3.14)

which imply the following equation of state,

w =
1

D − 1
, (8.3.15)

corresponding to a radiation-like universe. This leads to the scale factor evolving as

a (t) ∝ t2/D. (8.3.16)

Evidently, the continuity equation is,

ρ̇+DHρ = 0, (8.3.17)

and the energy density redshifts as radiation,

ρ (a) ∝ a−D(t). (8.3.18)

The above result is not surprising since it is well known from studies of dilaton-gravity

8Small and large here are always in relation to the string length ls.
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that an expanding universe the dilaton can only be constant if the equation of state of matter

is that of radiation.

8.3.2 Winding-frame: small radius limit

Now we consider what we call the winding-frame, in which we impose the section con-

dition on the regular coordinates. We expect this frame to be a good description for the

regime in which winding modes dominate, corresponding to the limit of small radius as seen

in (8.3.13). In this case the equations of motion become,

2H̃
′
+DH̃2 = 0

H̃2 + H̃
′
=

1

2 (D − 1)
Gρ(t̃)

H̃
′
+ (D − 1) H̃2 =

1

2
Gp(t̃), (8.3.19)

implying the following equation of state,

w = − 1

D − 1
, (8.3.20)

which corresponds to a fluid composed only of winding modes. We thus see that constant

dilaton in the winding frame is only consistent if the equation of state of matter is that of a

gas of winding modes. This is quite surprising, since this resulted from assuming a regime

in which the t-dependence is gone, not an a priori assumption about the matter content,

reinforcing the interpretation of this frame being associated to a dynamics ruled by only

winding modes.

Due to the asymmetry between the frames seen in (8.3.12), and having an equation of

state given by winding modes, which is the negative of what we have for radiation, the

continuity equation reads,

ρ′ +DH̃ρ = 0, (8.3.21)

which implies that the energy density will also redshifts as radiation,

ρ(a) ∝ a−D(t̃), (8.3.22)

despite corresponding to winding modes. This differs from what we find in usual cosmology,
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where (8.3.20) implies ρ ∝ a2−D instead.

Note that our result explicitly shows that the universe is T-dual, i.e., a universe char-

acterized by a winding equation of state in the dual coordinates behaves exactly the same

as a universe dominated by momentum modes in the regular coordinates. However, it is

important to realize that as we take the limit of small scale factor in the momentum frame,

which approaches a singularity, the winding frame expands due to the scale factor duality

a(t)→ a−1(t̃) [98, 99]. Imposing the section condition separates both solutions, but if matter

in the universe is made of both winding and momentum modes, a smooth transition, not

possible in standard DFT, is needed. We investigate this further in a future work [100].

In order to solve for the scale factor, first we notice that unlike the momentum case, the

corresponding Friedmann-like equation has a minus sign,

H̃2 = − G

(D − 2) (D − 1)
ρ. (8.3.23)

Thus, we see that either H̃ is complex and ρ > 0 (which implies p < 0, as usual for winding

modes) or H̃ is real but ρ < 0 (and p > 0).

Considering H̃ to be complex, then we can work with the following ansatz,

a
(
t̃
)

= Ã
(
t̃
)
eiθ(t̃), (8.3.24)

so that the Friedmann-like equation becomes,

H̃2
Ã
− θ′2 = −gρ0Ã−D cos (Dθ)

2H̃Ãθ
′
= gρ0Ã

−D sin (Dθ) , (8.3.25)

where g ≡ G/ (D − 2) (D − 1) . Note that for θ = π/D, the second equation vanishes iden-

tically and the first equation becomes,

H̃2
Ã

= gρ0Ã
−D, (8.3.26)

so that,

a
(
t̃
)

= ã0t̃
2/Deiπ/D, (8.3.27)

where ã0 is a constant in this regime.
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Let us take a moment to analyze what we have just derived. Before, for the momentum

case, we obtained the solution,

am (t) = a0t
2/Deiθm , (8.3.28)

where θm = 0, since the solution was real. Writing both solutions together, we have,am (t) = a0t
2/D

aw
(
t̃
)

= ã0t̃
2/Deiπ/D.

(8.3.29)

Now, remembering that the scale factor solution associated to the winding modes is the re-

ciprocal of the one associated to the momentum ones (and ignoring those arbitrary constants

for the moment),

am → a−1w ,

and we conclude that the solutions are dual given,

t→ t̃−1e−iπ/2. (8.3.30)

Therefore, quite surprisingly, we can also interpret that the winding scale factor solution

corresponds to a Wick rotation of the reciprocal of the momentum time-coordinate. Since θ

is actually a dynamical variable for us, this rotation happens dynamically as it will be shown

below.

For the general case, we still need to solve (8.3.25). Combining the equations, we see

that

H̃2
A =

gρ0Ã
−D

2
[1− cos (Dθ)] . (8.3.31)

The solution for θ is given by,

θ
(
t̃
)

= ± 2

D
arccos

( Ã

Ã0

)−D/2 , (8.3.32)
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where Ã0 is a constant. Therefore,

H̃2
A = gρ0Ã

−D

1−

(
Ã

Ã0

)−D , (8.3.33)

which implies that,

Ã
(
t̃
)

=

[
ÃD0 −

1

4
D2C2

1 +
D2

4
gρ0t̃

2 ± iD
2C1

2

√
gρ0t̃

]1/D
, (8.3.34)

for some arbitrary constant C1. In particular, given that we have chosen Ã
(
t̃
)

to be real,

this constant should be set to 0 since it would not be there in the first place if we had

complied with the assumption that H̃A was real. We see that for large t̃ we recover the

typical radiation solution as expected with a complex phase.

Having this general solution is quite helpful also to understand the particular case we

considered above, the one θ = π/D. In principle, we would like to have this happenning

dynamically as opposed to just fixing θ by hand. To see that, let us take the large t̃ limit,

then

Ã
(
t̃
)
→ t̃2/D, (8.3.35)

which implies that

θ
(
t̃
)
→ ± 2

D
arccos

(
1

t̃

)
−−−→
t̃→∞

± π
D
. (8.3.36)

Therefore, this shows that it is the case, indeed, that deep in the winding regime this phase

is singled out and the oscillations in the scale factor cease to exist. Also, this shows that our

temporal duality defined above appears due to the dynamics of our solutions.

Finally, as an illustration, we could have considered ρ < 0 in (8.3.25), ending up with,

a
(
t̃
)

= ã0t̃
2/D. (8.3.37)

For this case, the winding and radiation solutions would be dual under the following identi-

fication,

t̃→ 1

t
. (8.3.38)

This further motivates the heuristic arguments considered in [1, 2]. We see that for positive
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energy density, the temporal parameter space is complex, while for negative energy density

it is R2.

8.4 Comments

Considering the results from the last section, we can speculate about a different inter-

pretation of these findings. It has been argued before in the context of quantum cosmology

and quantum gravity that the ground state of the wave function of the universe should cor-

respond to Euclidean geometry [101], which would have a non-zero probability of tunneling

to a de Sitter state of continual expansion.

In fact, such proposals motivated studies about classical change of the metric’s signature

[102]. In particular, it has been observed that the equation of state for a perfect fluid gets

a minus sign when the underlying geometry is Euclidean. Therefore, the radiation equation

of state in Euclidean space would mimic the equation of state of winding modes.

If we run this reasoning backwards, we could speculate that winding modes should be

understood as radiation when time is Euclidean. The transition we observe from winding

frame to momentum frame would correspond simply to a change of the signature of the

metric. This is further developed in [100].

8.5 Conclusion

Double Field Theory can be interpreted as a natural generator of T-dual solutions once

the section condition is imposed in one or another set of coordinates. We investigated these

different solutions after considering a cosmological ansatz for the metric. We have shown that

in both frames we have a radiation-like dynamics, but with different equations of state. On

one side, the universe is dominated by winding modes while in the other one, by momentum

modes. This is exactly what one would expect. The small scale factor limit in one frame

approaches a singularity while in the dual frame it expands to an infinite volume. The T-dual

mapping between the two frames provides further evidence for the connection between the

two time coordinates pointed out previously in [1, 2].
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8.6 A note about T-dualizing matter

Typically, matter is introduced in SUGRA by the following action [56],

S =

∫
dDx
√
−ge−2φf =

∫
dt
√
−gttF

(
log a, β

√
−gtt, φ

)
, (8.6.39)

where F is the free energy,

F =

∫
dD−1xaD−1e−2φf.

Formally, we can think of a T-dual covariant generalization of it by defining the following

action,

S =

∫
dDxdDx̃e−2dF , (8.6.40)

with F depending on both sets of coordinates. Then, we can write

S =

∫
dxdx̃dtdt̃

√
ge−2φF

=

∫
dt
√
−gtt

(∫
dD−1x̃dt̃F

)
(8.6.41)

or

S =

∫
dt̃

√
− 1

gtt

(∫
dD−1x̃dtF

)
. (8.6.42)

where F is also function of both sets of coordinates.

Finally, the standard definitions of the energy and pressure of the system follow as usual,

E(t, t̃) = −2
δF

δg00
(8.6.43)

Pi(t, t̃) = − δS

δ ln ai
. (8.6.44)
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Chapter 9

T-dual cosmological solutions in

double field theory II

9.1 Introduction

Target space duality [103, 89, 104, 105, 65] is a key symmetry of superstring theory. Qual-

itatively speaking, it states that physics on small compact spaces of radius R is equivalent to

physics on large compact spaces of radius 1/R (in string units). This duality is a symmetry

of the mass spectrum of free strings: to each momentum mode of energy n/R (where n is an

integer) there is a winding mode of energy mR, where m is an integer. Hence, the spectrum

is unchanged under the symmetry transformation R → 1/R if the winding and momentum

quantum numbers m and n are interchanged. The energy of the string oscillatory modes is

independent of R. This symmetry is obeyed by string interactions, and it is also supposed

to hold at the non-perturbative level (see e.g. [26, 27]).

The exponential tower of string oscillatory modes leads to a maximal temperature for

a gas of strings in thermal equilibrium, the Hagedorn temperature [58]. Combining these

thermodynamic considerations with the T-duality symmetry lead to the proposal of String

Gas Comology [34] (see also [82]), a nonsingular cosmological model in which the Universe

loiters for a long time in a thermal state of strings just below the Hagedorn temperature,

a state in which both momentum and winding modes are excited. This is the ‘Hagedorn

phase’. After a phase transition in which the winding modes interact to decay into loops, the

T-duality symmetry of the state is spontaneously broken, the equation of state of the matter
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gas changes to that of radiation, and the radiation phase of Standard Big Bang expansion

can begin.

In addition to providing a nonsingular cosmology, String Gas Cosmology leads to an al-

ternative to cosmological inflation for the origin of structure [66]: According to this picture,

thermal fluctuations of strings in the Hagedorn phase lead to the observed inhomogeneities

in the distribution of matter at late times. Making use of the holographic scaling of mat-

ter correlation functions in the Hagedorn phase, one obtains a scale-invariant spectrum of

cosmological perturbations with a slight red tilt, like the spectrum which simple models of

inflation predict [66]. If the string scale corresponds to that of Grand Unification, then the

observed amplitude of the spectrum emerges naturally. String gas cosmology also predicts a

roughly scale-invariant spectrum of gravitational waves, but this time with a slight blue tilt

[69, 70], a prediction with which the scenario can be distinguished from simple inflationary

models (see also [106] and [6] for other distinctive predictions).

The phase transition at the end of the Hagedorn phase allows exactly three spatial di-

mensions to expand, the others being confined forever at the string scale by the winding and

momentum modes about the extra dimension (see [83, 84, 85, 86] for detailed discussions

of this point). The dilaton can be stabilized by the addition of a gaugino condensation

mechanism [107], without disrupting the stabilization of the radii of the extra dimensions.

Gaugino condensation also leads to supersymmetry breaking at a high scale [108]. The reader

is referred to [63, 64, 51] for detailed reviews of the String Gas Cosmology scenario.

However, an oustanding issue in String Gas Cosmology is to obtain a consistent descrip-

tion of the background space-time. Einstein gravity is clearly not applicable since it is not

consistent with the basic T-duality symmetry of string theory. Dilaton gravity, as studied

in Pre-Big Bang Cosmology [71, 33] is a promising starting point, but it also does not take

into account the fact, discussed in detail in [34], that to each spatial dimension there are two

position operators, the first one (x) dual to momentum, the second one (x̃) dual to winding.

Double Field Theory (DFT) (see [39, 35] for original works and [40] for a detailed review) is

a field theory model which is consistent both with the T-duality symmetry of string theory

and the resulting doubling of the number of spatial coordinates (see also [36, 37, 38] for some

early works). Hence, as a stepping stone towards understanding the dynamics of String Gas

Cosmology it is of interest to study cosmological solutions of DFT.

In an initial paper [1], point particle motion in doubled space was studied, and it was

argued that, when interpreted in terms of physical clocks, geodesics can be completed arbi-
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trarily far into the past and future. In a next paper [2], the cosmological equations of dilaton

gravity were studied with a matter source which has the equation of state of a gas of closed

strings. Again, it was shown that the cosmological dynamics is non-singular. The full DFT

equations of motion in the case of homogeneous and isotropic cosmology were then studied in

[3]. The consistency of DFT with the underlying string theory leads to a constraint. In DFT,

in general a stronger version of this constraint is used, namely the assumption that the fields

only depend on one subset of the doubled coordinates. There are various possible frames

which realize this (see the discussion in the following section). In the supergravity frame it is

assumed that the fields do not depend on the “doubled” coordinates x̃, while in the winding

frame it is assumed that the fields only depend on x̃ and not on the x coordinates. It was

shown that for solutions with constant dilaton in the supergravity frame, the consistency of

the equations demands that the equation of state of matter is that of relativistic radiation,

while constant dilaton in the winding frame demands that the equation of state of matter is

that of a gas of winding modes. These two solutions, however, are not T-dual. In this paper

we will look for solutions which are T-dual. We expand on the analysis of [3] and present

improvements in the solutions.

In the following section we discuss different frames which can be used. They can be

obtained from each other by T-duality transformations. We also discuss the T-duality trans-

formation of fields. In Section 3 we present the equations of DFT for a homogeneous and

isotropic cosmology. In Section 4 we introduce a T-duality preserving ansatz for the solu-

tions, before finding solutions of these equations in Section 5. We conclude with a discussion

of our results.

9.2 T-Dual Frames vs. T-Dual Variables

We consider an underlying D-dimensional space-time. The fields of DFT then live in a

2D dimensional space with coordinates (t, x) and dual coordinates (t̃, x̃), where t is time and

x denote the D − 1 spatial coordinates. In general, the generalized metric of DFT is made

up of the D−dimensional space-time metric, the dilaton and an antisymmetric tensor field,

all being functions of the 2D coordinates.

In this section (like in the rest of this paper) we consider only homogeneous and isotropic

space-times and transformations which preserve the symmetries. In this case, the basic fields

reduce to the cosmological scale factor a(t, t̃) and the dilaton φ(t, t̃). It is self-consistent to



9 T-dual cosmological solutions in double field theory II 99

neglect the antisymmetric tensor field. These are the same fields which also appear in dilaton

gravity.

In supergravity, the T-duality transformation of the fields can be defined as

a(t) → 1

a(t)
(9.2.1)

d(t) → d(t) , (9.2.2)

where d(t) is the rescaled dilaton

d(t) = φ(t)− D − 1

2
ln a(t) (9.2.3)

which is invariant under a T-duality transformation. In DFT this definition can be general-

ized to be

a(t, t̃) → 1

a(t̃, t)
(9.2.4)

d(t, t̃) → d(t̃, t) . (9.2.5)

This implies that dilaton transforms as

φ(t, t̃) → φ(t̃, t)− (D − 1) ln a(t̃, t) . (9.2.6)

An important assumption of DFT is the need to impose a section condition, a condition

which states that the fields only depend on a D-dimensional subset of the space-time vari-

ables. The different choices of this section condition are called frames, and different frames

are related via T-duality transformations. The supergravity frame is the frame in which the

fields only depend on the (t, x). The second frame which we will consider is the winding

frame in which the fields only depend on the (t̃, x̃) coordinates.

In this paper we are interested in finding supergravity frame solutions

(φ(t), a(t), d(t)) (9.2.7)

and winding frame solutions

(φ(t̃), a(t̃), d(t̃)) (9.2.8)
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which are T-dual to each other, i.e.

d(t̃) = d(t(t̃)) (9.2.9)

a(t̃) =
1

a(t(t̃))
, (9.2.10)

where t(t̃) = t̃.

9.3 Equations

Our starting point is the equations for DFT under a cosmological ansatz [81] (Eqs. (8)

in [3]):

4d′′ − 4(d′)2 − (D − 1)H̃2 + 4d̈− 4ḋ2 − (D − 1)H2 = 0

(D − 1)H̃2 − 2d′′ − (D − 1)H2 + 2d̈ = 0

H̃ ′ − 2H̃d′ + Ḣ − 2Hḋ = 0 , (9.3.11)

where the prime denotes the derivative with respect to t̃, and the overdot the derivative with

respect to t. In addition,

H =
ȧ

a
, H̃ =

a′

a
. (9.3.12)

These equations are invariant under T-duality, since d(t, t̃) is a scalar and H ↔ −H̃ under

this transformation. Then, we couple these equations with matter in the following way [3]

4d′′ − 4(d′)2 − (D − 1)H̃2 + 4d̈− 4ḋ2 − (D − 1)H2 = 0

(D − 1)H̃2 − 2d′′ − (D − 1)H2 + 2d̈ =
1

2
e2dE

H̃ ′ − 2H̃d′ + Ḣ − 2Hḋ =
1

2
e2dP. (9.3.13)

Now, these new equations are invariant under T-duality provided E → −E and P → −P .

But this is exactly the case since, as explained in [3], the energy and pressure in the winding
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frame are given by

E(t, t̃) = −2
δF

δgtt(t, t̃)
→ −2

(
−g2tt(t̃, t)

δF

δgtt(t̃, t)

)
= −E(t̃, t),

P (t, t̃) = − 2

D − 1

δF

δgij(t, t̃)
gij(t, t̃) = − δF

δ ln a(t, t̃)
→ − δF

δ ln(1/a(t̃, t))
= −P (t̃, t), (9.3.14)

where we used gtt = 1 for our case and assumed that the matter action in double space F is

O(D,D) invariant. The invariance of Eqs. (9.3.13) under T-duality is a strong support for

the correctness of the coupling with matter.

Solutions to Eqs. (9.3.13) may be found after imposing the strong condition of DFT.

One may impose that all functions are t̃-independent or t-independent, corresponding to the

supergravity (SuGra) or winding frames, respectively. In [3], solutions based on either the

SuGra or winding frames were found for the case of constant dilaton φ(t, t̃) = φ0. But notice

that by (9.2.6) the dilaton transforms non-trivially under T-duality. Hence, the solutions

found in [3] in the SuGra and winding frames, respectively, are not T-dual to each other. The

fact that two solutions both with constant dilaton in the respective frames are not related by

T-duality (or O(D,D, ) more generally) can be confirmed by noting that equations (12) in

[3] obtained from (9.3.13) after assuming constant dilaton are not T-dual invariant. These

equations were obtained by imposing

2d(t, t̃) = 2φ0 − (D − 1) ln a(t, t̃) (9.3.15)

=⇒ 2ḋ = −(D − 1)H, 2d′ = −(D − 1)H̃ ,

which is not compatible with T-duality, since 2d′ does not transform to 2ḋ as it should.

From the point of view of a field theory with doubled coordinates, there is no problem in

considering constant dilaton in the way it was considered in [3]. However, since the SuGra

and winding frame solutions are not T-dual to each other, the comparison of these solutions

used to motivate the correspondence t̃→ t−1 is tenuous.

In this work, we look for equations and solutions that respect T-duality, and specifically

with constant dilaton only in the SuGra frame or in the winding frame. We also solve an

apparent inconsistency with positive energy density in the winding frame, found in [3].
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9.4 T-duality preserving ansatz and equations for each frame

Starting from the supergravity frame, let us look for solutions with constant dilaton. In

this case

2d(t) = 2φ0 − (D − 1) ln a(t)

=⇒ 2ḋ = −(D − 1)H . (9.4.16)

We now seek solutions in the winding frame which are T-dual. By the invariance of d,

d(t) = d(t̃(t)), we have

φ0 −
D − 1

2
ln a = φ(t̃)− D − 1

2
ln a(t̃) (9.4.17)

=⇒ φ(t̃) = φ0 −
D − 1

2
ln

(
a(t(t̃))

a(t̃)

)
.

Now by the scale-factor duality which comes from the transformation of the generalized

metric, a(t(t̃)) = 1/a(t̃), and so

φ(t̃) = φ0 + (D − 1) ln a(t̃) , (9.4.18)

and hence

d(t̃) = φ0 +
D − 1

2
ln a(t̃)

=⇒ 2d′(t̃) = (D − 1)H̃ . (9.4.19)

Thus, the ansatz for the rescaled dilaton d(t, t̃) in the winding frame will be such that

2ḋ(t) = −(D − 1)H, 2d′(t̃) = (D − 1)H̃, (9.4.20)

which is related to the supergravity frame dilaton by T-duality. Similarly, for a constant

dilaton in the winding frame we have

2ḋ(t) = (D − 1)H, 2d′(t̃) = −(D − 1)H̃ . (9.4.21)
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Equations (9.4.20) and (9.4.21) are ansaetze compatible with T-duality between the SuGra

and winding frames.

To find the equations in each frame under these assumptions, let us consider

2ḋ(t) = α(D − 1)H, 2d′(t̃) = α̃(D − 1)H̃ , (9.4.22)

which takes both cases into account: for (α, α̃) = (−1, 1) we have a constant dilaton in the

SuGra frame and non-constant dilaton in the winding frame; for (α, α̃) = (1,−1), we have

constant dilaton in the winding frame and non-constant dilaton in the SuGra frame. The

case (α, α̃) = (−1,−1) corresponds to having the dilaton constant in both frames and was

considered in [3]. But, as already argued, this breaks the T-duality between the frames.

Here,we are looking for solutions in each frame that are T-dual to each other, so we will not

consider the case (α, α̃) = (1, 1).

Applying the section conditions, we get equations for SuGra and winding frame,

4d̈− 4ḋ2 − (D − 1)H2 = 0

−(D − 1)H2 + 2d̈ =
1

2
e2dE(t)

Ḣ − 2Hḋ =
1

2
e2dP (t)

4d′′ − 4(d′)2 − (D − 1)H̃2 = 0

(D − 1)H̃2 − 2d′′ =
1

2
e2dE(t̃)

H̃ ′ − 2H̃d′ =
1

2
e2dP (t̃)

(9.4.23)

Before solving them, notice that the energy and pressure in the winding frame are given by

Ẽ(t̃) = −2
δF

δgt̃t̃(t̃)
= −2

(
−g2tt(t̃)

δF

δgtt(t̃)

)
= −E(t̃), (9.4.24)

P̃ (t̃) = − 2

D − 1

δF

δgĩj̃(t̃)
gĩj̃(t̃) = −2

δF

δ(a−2(t̃))
a−2(t̃)

=
δF

δ ln a(t̃)
= −P (t̃). (9.4.25)

Thus, under T-duality, E(t)→ Ẽ(t̃) and P (t)→ P̃ (t̃). This observation allows to reinterpret

the minus sign appearing in the equation for H̃2 in [3]. In contrast to what happens in the

SuGra frame, the energy measured in the winding frame is not simply the function E(t, t̃)

projected to E(t̃) upon applying the section condition, but actually the negative of it. The

difference appears because the definition of E(t, t̃) selects the SuGra frame as a preferred

frame, since gt̃t̃ does not enter in this definition. As explained in [3], to work only with



9 T-dual cosmological solutions in double field theory II 104

E(t, t̃) was a choice since the variations with respect to gtt can be written as gt̃t̃ variations.

But this choice selects t as a preferred variable and so it is natural that the energy in the

winding frame is different from E(t̃).

Using (9.4.22) in SuGra frame, we have

2αḢ −H2(α2(D − 1) + 1) = 0,

αḢ −H2 =
1

2(D − 1)
e2dE,

Ḣ − α(D − 1)H2 =
1

2
e2dP, (9.4.26)

which implies

H2 =
e2φ0a(α+1)(D−1)

(D − 1)(α2(D − 1)− 1)
ρ,

w = − 1

α

1

D − 1
, (9.4.27)

ρ̇+ (D − 1)H(ρ+ p) = 0 .

Notice that φ0 is the value of the dilaton in the frame where it is constant.

In winding frame we obtain

2α̃H̃ ′ − H̃2(α̃2(D − 1) + 1) = 0, (9.4.28)

−H̃2 + α̃H̃ ′ =
1

2(D − 1)
e2dẼ,

−H̃ ′ + α̃(D − 1)H̃2 =
1

2
e2dP̃ ,

which are equivalent to

H̃2 =
e2φ0a(α̃+1)(D−1)

(D − 1)(α̃2(D − 1)− 1)
ρ̃,

w =
1

α̃

1

D − 1
, (9.4.29)

ρ̃′ + (D − 1)

[
(D − 1)− 1/α̃

(D − 1) + 1/α̃

]
H̃(ρ̃+ p̃) = 0 ,
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where w is the equation of state parameter

w =
p

ρ
, (9.4.30)

p and ρ being pressure and energy density, respectively.

From these equations, we conclude that the equation of state is the same in both frames

regardless in which frame the dilaton is taken to be constant. For constant dilaton in the

SuGra frame we obtain the equation of state of radiation, for constant dilaton in the winding

frame, on the other hand, the equation of state is that of a gas of winding modes.

9.5 Solutions

Solving the equations of the previous section in the SuGra frame, we obtain

ρ(t) ∝ a−(D−1)+1/α(t), (9.5.31)

a(t) ∝
(
α

2
(D − 1)− 1

2α

) 2
−α(D−1)−1/α

t
2

−α(D−1)−1/α , (9.5.32)

while in the winding frame we get

ρ̃(t̃) ∝ a−(D−1)+1/α̃(t̃), (9.5.33)

a(t̃) ∝
(
−α̃
2

(D − 1)− 1

2α̃

) 2
−α̃(D−1)−1/α̃

t̃
2

−α̃(D−1)−1/α̃ . (9.5.34)

In particular, for constant dilaton in the SuGra frame, we have

ρ(t) ∝ a−D(t), ρ̃(t̃) ∝ a−(D−2)(t̃), (9.5.35)

a(t) ∝ t2/D, a(t̃) ∝ t̃−2/D. (9.5.36)

We see that given a radiation equation of state in both frames, the energy density in the

winding frame has the same a dependence as a fluid with winding equation of state. The

reason for this is that in the winding frame the dilaton is not constant, and hence the

relationship between equation of state and scale factor dependence of the energy density

which we are used to from Einstein gravity changes.
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For constant dilaton in the winding frame, we find

ρ(t) ∝ a−(D−2)(t), ρ̃(t̃) ∝ a−D(t̃), (9.5.37)

a(t) ∝ t−2/D, a(t̃) ∝ t̃2/D, (9.5.38)

which shows that a fluid with winding equation of state has time dependence of the scale

factor like radiation in the winding frame.

As we can check from the above results, we found solutions in the SuGra and winding

frame which are T-dual to each other. Also, the solutions exhibit a symmetry connected

with T-duality: if we change t to t̃ in the SuGra frame solution with constant dilaton in that

frame, we get the winding frame solution with constant dilaton in the winding frame, and

vice-versa.

9.6 Discussion

In this paper we have constructed supergravity and winding frame solutions of the cos-

mological equations of Double Field Theory which are T-dual to each other. When the

correct transformation of the energy and pressure is taken into account, there is no need for

complexification of the scale factor.

Since Double Field Theory is based on the same T-duality symmetry which is key to

superstring theory, one could hope that Double Field Theory could provide a consistent

background for superstring cosmology, and provide a good background for String Gas Cos-

mology. Let us consider the background space to be toroidal. In this case, as argued in [34],

for large values of the radius R of the torus (in string units), the light degrees of freedom

correspond to the momenta, and the supergravity frame is hence the one in which observers

made up of light degrees of freedom measure physical quantities. In contrast, for small values

of R, it is the winding modes which are light, and hence the winding frame is the frame in

which observers describe the physics. In the transition region (the Hagedorn phase) the full

nature of double space will be important. It is possible that the section condition becomes

dynamical 1. It would be interesting in this context to explore the connection with the recent

ideas in [109, 110, 111, 112].

1We thank Laurent Freidel for discussions on this point.
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Chapter 10

Conclusions

Despite the many successes of the Standard Cosmological Model, it still relies on General

Relativity, which has been shown to present singularities for cosmological scenarios ubiqui-

tously. That is also the case for the inflationary paradigm introduced to account the physics

of the very early universe, since in generality also relies on Einstein’s equations. Therefore,

one needs to consider alternative scenarios where this problem can be properly solved.

As we have argued, it is expected that Quantum Gravity may provide a framework in

which nonsingular cosmologies can be described. So far, the most prominent Quantum

Gravity theory is String Theory, and we have seen that at least thermodynamically it is

expected that a gas of closed string in a box should not be singular, in the sense that it

reaches a maximum temperature even for ever contracting boxes. This happens because

strings have other degrees of freedom which are absent in point particle theories, which

include the oscillatory modes of the string and the winding modes.

In order to account for the symmetries introduced by these new degrees of freedom, we

introduced Double Field Theory as a framework in which T-duality is made into a mani-

fest symmetry. As a result, dual coordinates are introduced defining an underlying double

geometry on which the field content is considered.

This thesis presented works developed with the aim of addressing the singularity prob-

lem in the framework of Double Field Theory. We approached this problem gradually by

introducing novel extensions to DFT, and then considering the resulting cosmology.

In our first work, we considered the point particle geodesics in DFT. After we derived the

equations of motion for a particle in a cosmological background defined in double geometry,
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we were able to argue that the geodesics can be completed towards the past and future

infinities given an extension of DFT in which a physical clock is introduced, reflecting the

T-duality symmetry of the setup.

The natural extension of our first paper was to consider the background cosmology in

which these particles could propagate in the context of DFT. We have studied the solutions to

the standard supergravity equations of motion for a cosmological background in the context

of the new dual dimensions. The solutions are found to be nonsingular when interpreted in

this context. It remained to consider how those solutions would differ once DFT is coupled

to matter sources similarly to General Relavitity.

The third work discussed here attempted to improve the formalism such that a hydrody-

namical fluid could be considered as the source of the dual geometry. We have shown that

the solutions obtained for a gas of closed strings corresponded to a radiation-like dynamics,

even though each frame considered had a different equation of state, namely the momentum

and winding ones. Then, it is shown that the scale factor in one of these frames evolves as

the reciprocal of the scale factor for the other frame.

In our last paper, it is shown that the solutions obtained in the previous paper for each

frame were not T-dual, since we had considered the dilaton to be stabilized for both frames,

and it is not possible to consider that in both frames simultaneously while still preserving T-

duality. Thus, we considered an ansatz for the dilaton that did not break T-duality symmetry

and studied the cosmological solutions for each frame. We found again that the scale factor

for one frame was the inverse of the solution for the other frame, and that these solutions

were connected by a T-dual transformation between the time coordinates.

DFT remains an area of extensive research. One expected result is the possibility to turn

the section condition into a dynamical outcome of the theory, so that each frame is picked

out depending on the evolution of the fields being considered, which is driven by the matter

content. We expect that this extension of the formalism may provide a smooth transition

between the frames we have studied here and could provide a nonsingular cosmology in the

context of a gas of closed strings.
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