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Abstract

Let Q be a convex polygon in E%and xbe a point in EZ not contained in Q. The ap-
erture angle B(x) with respect to @ is defined as the angle subtended by the cone that: (1)
contains Q, (2) has apex at x, and (3) has its two rays emanating from x tangent to Q. The
Aperture-Angle Problem in the Euclidean Plane E? is defined as follows: Given two dis-
joint convex sets P and Q in E2, find a point X € P such that §(X) is the maximum value of
the aperture angle function, and a point Z in P such that 8(Z) is the minimum value. We
present an O(n + m) time algorithm for computing the rzinimum aperture angle with respect
to a convex polygon @ when x is allowed to vary in a convex polygon P (n and m are the
number of vertices, respectively). We also present algorithms with complexitics O(n log m)
and O(n + m) for computing the maximum aperture angle with respect to 0. To compute the
minimum aperture angle we modify the latter algorithm obtaining an O(n -+ m) algorithm.
Finally, we prove an Q(n) time lower bound for the maximization and minimization prob-
lems, and an £2(m) time lower bound for the minimization problem.

In three dimensions we find the solution to the following problem: Given a convex
polyhedron K and given a segment ab that does not intersect K, find a point X €K such
that the aperture angle defined as ang(aXb) is the maximum of the aperture angle function.
We present a solution whose time complexity is linear with respect to the number of edges
of K, i. &., it is O(n) if the corresponding convex polyhedron K has n vertices. We prove an
(n) time lower bound for this problem.
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Résumé

Soit ¢ un polygone convexe dans EXetxun point de E2 n'appartenant pasa Q. L’an-
gle d'ouverture ©(x) par rapport & Q est défini comme 1’angle soustendu par le cone qui:
(1) contient @, (2) admet x comme apeXx, et (3) dont les rayons originant & x sont tangents
a Q. Le probléme Angle d’ouverture dans le plan euclidien E2 se définit comme suit: étant
donné deux ensembles convexes P et Q de EZ, trouver un point X € P tel que 6(X) maximise
la fonction "aperture angle”, et un point Z dans P tel que 6(Z) la minimise.

Nous présentons un algorithme fonctionnant en temps O(n + m) pour calculer I'angle
d’ouverture minimum par rapport A un polygone convexe Q lorsque x peut varier dans un
polygone convexe P (n et m sont le nombre de sommets de Q et P, respectivement). Nous
donnons aussi des algorithmes de complexité O(n log m) et O(n + m) pour calculer I’angle
d'ouverture maximum par rapport a3 Q. Pour calculer I'angle d’ouverture minimum nous
modifions I'algorithme précédent pour obtenir une sclution en temps O(n + m). Finalement,
nous prouvons une borne inférieure de Q(n) pour le probléme de maximisation et minimi-
sation, ainsi qu'une borne inférieure de Q(m) pour celui de minimisation.

Dans le cas troidimensionnel nous résolvons le probléme suivant: étant donné un
polyhddre convexe K et un segment ab qui n'intersecte pas K, trouver un point X € K tel
que le "aperture angle" défini comme I’angle ang(aXb) maximise Ia fonction angle d’ou-
verture. Nous presentons une solution exécutable en temps linéaire par rapport au nombre
d’arttes de K, ce qui signifie O(n) quand le polyhedre convexe K posséde n sommets. Nous
prouvons une bonne inférieure de Q(n) pour ce probléme.
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CHAPTER 1

INTRODUCTION

In this thesis we present some results related to field of constrained visibility, a sub-
ject belonging to the field of Computational and Combinatorial Geometry. The basic con-
cepts and methods of computational geometry are related to the_ origins of Geometry in
Greece [To92). The most modern conception is due to Shamos [Sh77]. Since then many
books have appeared. We refer to [PS88] for a good survey of the basic information needed.
Computational Geometry uses many concepts and results from other fields such as Combi-
natorics ([S191] and [Tu84]), Computing Theory, Discrete Geometry, and Geometry in its
most general meaning. In theoretical computer science the main tools needed are Design
and Analysis of Algorithms, Complexity Theory and Data Structures. We suggest as good
references [AHU74], [AHU83], [Kn73] and we refer to[CLR90] for one of the most recent
text books in Analysis of Algorithms and Data Structures.

A polygon P is defined as an ordered sequence of at least three points P = [py, py,...,
Pl in the plane, called vertices, and n (n 2 3) line segments p1p2, PaP3sss Pp-1Pps Pn P1
called edges. A simple polygon is a polygon with the constraint that non-consecutive edges
do not intersect. A simple polygon is a Jordan curve and thus it divides the plane into three
regions: The interior of the polygon, the exterior and the boundary. We consider any poly-
gon as the boundary together with its interior. Then the polygons are compact sets. Recall
that a set (contained in an euclidean space of any dimension) which is closed and bounded
is called compact. The vertices of a simple polygon can be classified as convex and con-
cave. A vertex p; is convex if p;_y, p; and p;,) define a right turn, if the vertices are ordered
in clockwise order. Analogously, vertex p; is concave if p;.1, p; and pj,.1 form a left turn. A
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simple polygon whose vertices are all convex is called a convex polygon. If a convex poly-
gon has n vertices we refer to it as a n-convex polygon. A more implicit way to define a
convex polygon is as a finite intersection of halfplanes.

Visibility plays a singular role in the manufacturing industry in such problems as ac-
cessibility analysis in machining [Wo94], [TWG92), [CW92] and visual inspection [SR90]
as well as computer graphics, robotics, computer vision, operations research and several
other disciplines of computer science and computer engineering [O’R87], [Sh92]. In 1973
Victor Klee proposed the problem of finding the minimum number of points in a simple
polygon to see (or illuminate) all the other points. Imagine the simple polygon as an art gal-
lery, then imagine the set of points for watching (or illuminating) as guards (or lamps). The
answer to this question was found by Chvatal [Ch75], who showed that { EJ guards are al-
ways sufficient and sometimes necessary to illuminate the gallery.

Later Fisk [Fi78] found a shorter proof of the same result. Although L%' guards are
sufficient it is often the case that a smaller number may do the job as well, From the point
of view of Computer Science there exists a natural concern to find and to develop algo-
rithms for finding the minimum number of vertices to see the whole polygon. However, Lee
and Lin [LL86] have shown that this problem is NP-hard, and Aggarwal [Ag84] has proved
that even if the guards are allowed to be any point in the polygon the problem is still NP-
hard. In spite of those results, Avis and Toussaint [AT81] have shown that the required ’3'

guards to see the gallery can be placed in polynomial time. Using the recent algorithm for
triangulating a polygon developed by Chazelle [Ch91] and the last result about a three-col-
oring of the vertices of a simple polygon in linear time, the guarding problem can be solved
in O(n) time. In the special case of orthogonal polygons withn verticesi 7 | guards are suf-

ficient and some times necessary [KKK83}, and they can be placed in O(n) time [EOW84],

We have been using many times the word “see” or  illuminate™, so we say that two
points x and y in a polygon P are visible if the line segment xy is totally contained in the
polygon. The set of points in P which are visible from x is a polygon. Such a polygon is
called the visibility polygon of x and it is denoted by V(x, P).When the setting is an art gal-

lery problem the distinguished set of points are called guards, and lamps if the setting is an
illumination problem.
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A polygon P is said to be covered by a collection of subsets of P if the union of these
subsets is exactly P. A guard set G is said to cover P if the collection of sets {V(g, P): g
€ G} covers P. The Art Gallery Problem for a polygon is to find a minimum cardinality
covering guard set G for P. Tom Shermer [Sh92] presented an excellent survey paper about
art gallery problems.

The traditional model of visibility investigated in computational geometry allows for
a guard or camera to “see in all directions,” i.e., the aperture angle is idealized to be 360
degrees. More recently, more realistic models of visibility have been considered where the
aperture angle (or field-of-view angle as it is called in robotics [CDGP], [Co88)) is restrict-
cd to be some angle @ less than 360 degrees. For example, given a convex polygon and a
camera with aperture angle O situated outside the polygon, Teichman [Te89] computes a
description of all the points in the space where a camera may be placed in such a way that
the polygon lies completely in the field of vision of the camera. A member x of § is said to
be O-visible if a camera with aperture angle O can be placed on x in such a way that no other
member of S lies in the camera’s field of vision, Avis, et al. [Aal93] obtained optimal algo-
rithms for finding all the O-visible points among a set S. Devruye and Toussaint [DT93]
investigated the cardinality of the B-visible points among a set of special points which are
the intersection of a set of random lines,

Jorge Urrutia proposed in 1992 the illumination of a stage problem as follows:

Given n points in the plane where n floodlights are to be placed, and given n angles
representing the aperture of the floodlights, decide how to assign the floodlights to the
points and how to fix their rotational angles, in order to light up some target. Jorge Urrutia
posed the version of this problem for lighting up a stage. An intuitive way to solve this
problem is illuminating by crossing the floodlights using a greedy technique. However,
Bose et. al [Bal93] gave a counterexample where this technique fails. They also proved that
given three angles summing up to 2T, and given n points in the plane and a partition &) +
ks + k3 = n, the plane can be partitioned into three wedges of the given angles in such a way
that the i-th wedge contains &; of the points. Using this result they proved that lights of spec-
ified angles (none of them exceeding TT) can be placed at » fixed points in the plane to illu-
minate the entire plane if and only if the angles add up to at least 27t. Later, Czyzowicz et.
al [CRU93] solved a particular case of the stage light problem. Given a set F = {f}, f5,..../,,}
of n floodlights each with angle 0;, they associate to the set of floodlights an angular cost:
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They solved the following problem: Given a stage represented by a line segment S and a
set of n points P = {py, ps.....p,}, determine a set of floodlights F that illuminates §, such
that the angular cost of F is minimum and each floodlight is tucated at some point of P,
They solved this problem in O(n log n) time allowing more than one lamp to be placed at
a given point, and they proved that their algorithm is optimal. First of all, they solved the
problem when S is extended to be the real line. Then, they constrained the problem to a seg-
ment S. Although the problem has been solved when more than one lamp is allow«d per
point, it is still open when only one lamp is allowed.

The simplest of these problems is often found as an exercise in calculus texts and it is
called the “picture-on-me-wall“ problem (see for example [Sc60], p. 427, problem # 20). In
this problem a picture hangs on the wall in a museum above the level of an observer’s eye.
How far from the wall should the observer stand to maximize the angle subtended at the
observer’s eye by the top and the bottom of the picture? While this problem is easily sotved
with calculus, an elegant solution that does not use calculus has been known for some time
[Ni81]. The same solution holds for the more general problem where the picture may not
be orthogonal to the floor [VG80].

In this thesis we consider a generalization of the "picture-on-the-wall" problem, in
two and three dimensions. We define the aperture angle O(x) from a point x € E2 with re-
spect to a simple polygon @ in E? (x& Q) as the angle subtended by the cone such that: (1)
it contains Q, (2) it has apex at x, and (3) its two rays emanating from x are tangent to Q.
First of all, we are interested in computing the aperture angle from a camera that is allowed
to travel in a convex region in the plane and is required to maintain some other convex re-
gion within its field of view at all times. More specifically, let P and Q be two disjoint con-
vex polygons in the plane with n and m vertices, respectively. Find a point X € P such that
O(X) is the maximum value of the aperture angle function, and find a point Z € P such that
O(2) is the minimum value. We call this problem The Aperture-Angle Optimization Prob-

lem in 2-D. Note that we use the word "optimization" because we solve a maximization and
a minimization problem.

In three dimensions we find the solution to the following problem: Given a convex
polyhedron K and given a segment ab that does not intersect K, find a point X € K such
that the aperture angle ang(aXb) is the maximum value of the aperture angle function. Note



CHAPTER 1. INTRODUCTION 5

that the corresponding aperture angle is defined as in the two dimensional case. We present
a solution whose time complexity is linear with respect to the number of edges of K, i. e.,
it is ©(n), if the corresponding convex polyhedron K has n vertices.

This thesis is organized in two main stages, the first one is covered by Chapter 2,
which contains a description of the required background and techniques. The other part
contains chapters 3 and 4 and concemns the solution of the aperture angle problems de-
scribed in the last two paragraphs.

In Chapter 2 we describe some methods to be used in the remaining chapters. The first
section contains a brief description of the model of computation used by the different meth-
ods described in this thesis. Section 2.3 contains some basic concepts from Euclidean Ge-
ometry which are used along this work. The first method to be described in Section 2.4, is
due to Chazefle and Dobkin [CDD87] for determining whether a given line intersects a given
convex polygon. Section 2.5 shows how to compute the minimum distance between two
convex polygons, this method was found by Edelsbrunner [Ed85]. The last section of Chap-
ter 2 describes two different methods for finding the common external tangents and the crit-
ical separating lines of support between two convex polygons. One was developed by
Rohnert [Ro86] and the other one is due to Toussaint [To83] using "Rotating Calipers".

Chapter 3 describes a solution to the Aperture-Angle Optimization Problem in 2-D.
The following instances of this problem are solved in Sections 3.2 to 3.5: the Segment-Line
Problem, the Segment-Segment Problem, the Segment-Polygon Problem and the Polygon-
Line Problem. Section 3.6 is dedicated to proving some results concerning the geometric
properties for the general case, the Two Convex Polygons Problem, that allow us to char-
acterize the solution of the problem as well as to find it. In Section 3.7 we present the algo-
rithms to determine the solution for the Aperture-Angle Optimization Problem in 2-D and
its complexity analysis. In the last section we prove lower bounds for the maximization and
minimization problems. The Aperture-Angle Optimization Problem in 2-D was studied in-
dependently by Hurtado [Hu93).

In Chapter 4 we solve the Aperture-Angle Optimization Problem in 3-D in the case
where the object to be maintained in the field of view is a segment. This chapter contains
seven sections, the second one provides the basic definitions to be used in the chapter. Sec-
tion 4.3 we solve the Segment-Plane Problem. In Section 4.4 we solve the Segment-Line
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Problem which helps us to solve the segment-polyhedron case. The remaining sections are
devoted to solving each of the following problems: the Segment-Segment Problem, the
Segment-Polygon Problem and the Segment-Polyhedron Problem. )



CHAPTER 2

FUNDAMENTAL GEOMETRIC TOOLS

2.1 Introduction

In the general introduction we have defined the aperture angle from a point x € E¢
with respect to a convex polyhedron in E4 that does not contain x. This definition involves
three points: one of them is x itself, and the other two points, p and g, which are the tangen-
cy points between the convex object and the rays that define the aperture angle ang(p x g).
These three points define a unique plane that contains the circle passing through p, g and x.
Then, we use basic results from euclidean geometry in the plane which relate circles and
angles. In fact, these basic results allow us to compare the aperture angles from points lying
in a convex set contained in E3, Those results are stated in the following section as obser-
vations.

The first goal in any subject related to computation is to find the solution of a prob-
lem. There are some methods of computation that require the solution of other problems as
intermediate steps. In particular, the solution of the problems analyzed in this work use as
intermediate steps the solution of some other problems that have been already solved. We
describe from Section 2.4 until Section 2.6 the algorithms to be used in chapters three and
four. Apart from finding a solution there also exists a great concern to develop efficient
methods of solution. In Section 2.2 we describe the model of computation to be used by the
algorithms developed in this work and which is the Real Random Access Machine (RRAM).
The algorithms described in this chapter are also based on the RRAM mode] of computation
(Refer to [PS88] and [AHU74])).
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2.2 Models of Computation

To evaluate the algorithms in this thesis we need to fix a model of computation. This
describes the idealized computer that we will use to "execute” our algorithms, and we will
interpret the running time and storage requirement on this computer as a measure of the
complexity of the algorithm.

The fundamental model of computation and complexity theory is the Turing Ma-
chine. A model that is more convenient for the description of our algorithms is the Random
Access Machine (RAM). It has been proved to be equivalent to the Turing Machine in com-

putational power and to be approximately equivalent (with a polynomial coefficicnt) in
speed.

For our purposes, however, we will use a variation that is more suitable for Compu-
tational Geometry, the Real RAM (RRAM). Unlike the RAM, this model can handle real
numbers of arbitrary precision. In the following, we give a brief description of this model.
The RRAM contains a memory consisting of an unbounded sequence of registers rg, r1,...,
rj»-.. €ach of which is capable of holding either a single real number or an integer. The mem-
ory is used to hold the input and the output for the algorithm. We allow the following prim-
itive operations all of which are assumed to take unit time.

1. The arithmetic operations (+, -, *,
2. Comparisons between two real numbers (<, £, =, 2, >)
3. Indirect addressing of memory (integer addressing only)

4, The k-th root, trigonometric functions, EXP and LOG (in general analytic
functions)

Algorithms can be evaluated by several criteria. In this work we use the rate of growth
of the time required to solve larger and larger instances of a problem. The time needed by
an algorithm is expressed as a function of the size of a problem and it is called time com-
plexity. The size of a problem is an integer which measures the quantity of input data. In
this specific model the complexity can be taken over all inputs of a specific size, in which
case the complexity is called worst-case complexity. If the complexity is taken as the aver-
age complexity over all inputs of given size, then the complexity is called the expected com-
plexity. In this work we will use the worst-case complexity.
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While the RRAM is an idealized computer it seems reasonably close to existing

real-world computers, provided that:

1) the size of the problem is small enough to fit in the main memory of a

computer,

2) the integers used in the computation are small enough to fit in one com-
puter word, and

3) we ignore problems of precision due to rounding errors.

2.3 Geometric Preliminaries

Let A, B and X be points on a circle C and let P be the open halfplane defined by
the line through A and B that contains X. Let ¥ be a point in P.

Observaticn 2.3.1: If ¥ €ext(C) then ang(A Y B) < ang(A X B) (refer to Fig.
2.3.1.a).

Observation 2.3.2: If Y € Cthen ang(A Y B) = ang(A X B) (refer to Fig. 2.3.1.b).

Observation 2.3.3: If ¥ €int(C) then ang(A Y B) > ang(A X B) (refer to Fig.
2.3.1.c).B

A
C
B
Y P
X
Fig.2.3.1.a Fig. 2.3.1.b Fig. 2.3.1.c

Before we continue with the corresponding description of the algorithms to be
used in chapter three let us define some concepts from convex geometry related to com-
putational geometry.
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Let P and Q be two disjoint polygons in the plane. We assume that P = [y, pa,.... Py)
is represented by an array in clockwise order and Q = [q), g3.--., g is represented by an
array in counterclockwise order. Then all the chains defined are represented in clockwise
order for P and in counterclockwise order for Q.

Definition 2.2.1: A line L is a critical separating line of support of P and Q if (1) it sepa-
rates P from Q, and (2) it is tangent to both P and Q.

Let the critical separating lines of support of P and Q be tangent at {p;, 4} and {p;,
g;.} respectively. These lines partition the boundaries of P and Q into four chains, They also
divide the plane into four regions (cones), two of which are empty, one containing P and
the other Q. Denote the region containing P by Rp. Now, the line segment p;p; partitions
Rp into a triangle and an unbounded region, If the interior of the triangle does not contain
avertex of P, in fact the vertex p;,1 = p;, then the edge p; p;, defines the interior separating
boundary of P with respect to Q, denoted simply by CSS(P). Otherwise, the chain (p;,
Pi+1» Pj) contained in the interior of the triangle in Rp defines the interior separating
boundary of P with respect to Q (refer to Fig. 2.3.2). The complement chain, bd(P) -

CSS(P), is denoted by CSS(P)°. The other two chains CSS(Q) and CSS(Q)° are similarly de-
fined.

Definition 2.2.2: A line L is an external common tangent of P and @ if (1) it is tangent to
P and @, and (2) it leaves P and Q in one of the closed halfplanes defined by L.

Let the external common tangents to P and  be tangents at {p, ¢;) and [py, g;} re-
spectively. These four points define the convex quadrilateral [pp, g;, gj» Pl if p, # ps and g;
# g;; or they define a triangle if p,=p; or ¢; = gj. Without loss of generality suppose that
pr#psand g; # g;. If [p,, g;, g, ps] contains pp,; in its interior then the chain (Pp Ppyoeees
Pi» Dis1sw Pjs P15 Ps), denoted by ECT(P), is contained in the interior of [pp, 4;, gj» ps]
(refer to Fig. 2.3.2). If [p,, g;. gj, ps] does not contain py in its interior then p,| = ps and
ECT(P) is defined by the edge p, pp41. If p = p; or g; = gj then the chain ECT(P} is defined
analogously and is contained in a triangle or is an edge of such a triangle. Let ECT(P) be
the complement chain of ECT(P). Similarly the chains ECT{Q) = (g}, Gi+1r++ Dios Tkt 1>+ Gpr
41415 gj) and ECT(Q)° are defined.
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Fig. 2.3.2

We refer as common tangents of two convex polygons to the two pairs of lines of sup-
port, one pair is defined by the two external common tangents and the other pair is defined
by the two critical separating lines of support.

Note that these definitions can be used for particular cases, for example one of the
polygons is a segment AB. With out loss of generality suppose @ is such a segment. Then,
the support points defined by the critical lines of support are {p;, A} and {p;, B) (see Fig.
2.3.3). If L(A, B) intersects int(P) then the chain CSS(P) is contained in the triangle @ G
py). The point C is the endpoint of AB that is closer to P (using the definition of distance
from a point a to a polygon P as min {d{a, p): p € P}, where d denotes the euclidean dis-
tance). Analogously the external common tangents define two pair of tangency points {p,
A} and {p,, B} (see Fig. 2.3.3). If L(A, B) intersects in{(P) then the chain ECT(P) is con-
tained in the triangle (p;, C, p;). The point C'is the endpoint of AB that is further to P (using
the definition of distance from a point a to a polygon P as max {d(a, p): p € P} and d de-
noting the euclidean distance).

Recall that there exists a useful searching technique for a value v on a sorted sequence
A of k aumbers. It consists in comparing the value in the midpoint of the sequence A against
v and eliminating half of the sequence each time. This well known process is called Binary
Search, and it can be done in an iterative or recursive way in O(log k) time. In particular, if
the vertices of a polygon P are stored in a linear arvay, this is already sorted in a radial order.
Then, binary search can be performed over the array for finding some vertices of P with
specific properties. This technique will be used in the following sections,
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2.4 Intersecting a Convex Polygon with a Line,

In this section we describe an algorithm to determine if a given line L intersects a giv-
en convex polygon P with m vertices. This problem and more general problems in two and
three dimensions were solved by Chazelle and Dobkin in [CD87]. They assumed that the
polygon is stored in a linear array.

To solve this decision problem they define a unimodal function as follows: A real
function f defined on the integer subset { 1, 2,..., m} is said to be unimodal if there exists an
integer r (1 < r<m) such that fis strictly increasing (respectively, decreasing) on [, r] and

decreasing (increasing) on {r+1, m], with f(r) £f(r+1) (f (r) 2 f(r+1)). The point r is re-
ferred to as the turning point.

For finding the turning point r of a unimodal function O(log m) time is required using

Fibonacci search. Chazelle and Dobkin have extended this search to find the turning point
r of a bimodal function, defining such a function as follows.

Definition 2.4.1: A real function on [1, m] is said to be bimodal if there exists a point r €[1,
m] such that £(r), f (r+1},e.., f(m) f (1o, f (r-1) is unimodal,
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They show that the oriented distance & (p;, L, v) from p; € P to L with respect to a
point v is bimodal. Then, & (p;, L, v} =- d (p;, L) if p; and v lie on opposite sides of L, and
k (p;y, L, v)=d (p;, L) if they lie on the same side. To find the respective turning point r they
define an auxiliary unimodal function f (x) as follows:

g(x) = min{f(x), (x-1) (fF(m) =f(1)))/(m=1) +f(1) }

Such a function can be evaluated in constant time. Then the minimum of g(x), which is also
the minimum of £ (x), can be evaluated in O(log m) time using Fibonacci search. Therefore
it follows Lemma 2.4.1.

Lemma 2.4.1: The extrema of a bimodal function f(1),..., £ (r-1), f (), f (r+1),..., f () can
be computed in O(log m) time.

Using the fact that h(p;, L, v) is a bimodal function and by Lemma 2.4.1 the following
theorem is stated.

Theorem 2.4.1: The intersection of an infinite line with a m-convex polygon P can be
found in O(log m) time.

2.5 Computing The Minimum Distance between Two Convex Poly-
gons.

The problem of finding the minimum distance d*(P, Q) between two disjoint convex
polygons P and Q, with m and n vertices respectively, has been solved in O(log m + log n)
time by Edelsbrunner [Ed85). He also determines a pair of points p,, and g, that realize such
minimum distance. He assumes that P and Q are stored in one-dimensional arrays. He
proves the following lemmas on which his algorithm is based.

Lemma 2.5.1: If d*(P, Q) > 0, then there exist points p, € P and g, € ( that realize d*(P,
Q) such that p, and g, are vertices or either of them is a veriex and the other lies on an edge

Lemma 2.52: Let d%(P, @) > 0 and p € P such that there exists ¢ € @ such that d(p, ¢) =
d*(P, Q). Then p is the only common point of P and the segment pg’ forevery ¢’ € Q.
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Edelsbrunner establishes a criterion of binary search over two chains P’ and @° simul-
taneously. These chains are contained in P and Q respectively. They are chosen in such a
way that the following two conditions are satisfied:

i) If p. =p €Pand g. =g € Q define d*(P, Q) thenp €P' and ¢ € Q" and
ii) the edges of P’ and " do not belong to the convex hull of P U Q.

To build P’ and @’ let v € P and w € Q be any points in P and Q respectively. Let 6(v)
= ang(w;vw)) be the aperture angle defined from v with respect to Q. Thus, w and w, de-
fine the chain @’ = (W) = g, gjy1s--» gj = W) in counterclockwise order. Analogously by
using B(w) the chain P’ = (v| = p,, Pr410--» Ps = Vo) is defined in clockwise order. The al-
gorithm by Chazelle and Dobkin [CD87] can be used to find the tangents to a polygon from

a specific point. As we mentioned in Section 2.4, it can be performed in O(log m + log n)
time,

Once P’ and @’ are determined, Edelsbrunner establishes a binary elimination as cri-
terion for computing a pair of vertices, a vertex and an edge, or a pair of edges that contain
all pairs {p, ¢} realizing d*(P, Q) in O(log m + log n). Finally he determines between all
pairs {p, ¢} such that d(p, q) = d*(P, Q) a specific pair for which p = p, and q = q,.. There-
fore, the algorithm and the theorem that states its complexity can be summarized as follows.

Input: Two disjoint convex polygons P and Q, with m and n vertices respectively.

Output: The minimum distance d*(P, Q) between P and Q. The pair of points p, = p
€ P and g, = g € Q such that d(p,, q.) = d*(P, Q).

Begin
Step 1.- Build the chains P’ and Q’.

Step 2.- Perform a binary elimination over P’ and Q’ to find a pair of vertices,
a vertex and an edge, or a pair of edges that contain all pairs {p, q} de-
fining d*(P, Q).

Step 3.- Exit with p, =p € P and g, = q € Q such that d(p,, g.) = d*(P, 0).
End
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Theorem 2.5.1: Let P and Q be two disjoints convex polygons on the plane with m and n
vertices respectively. Then, the minimum distance 4*(P, Q) between them and the points
pPe =p €Pand g, = g € Q that realize it can be computed in O(log m + log n).

2.6 Finding the Common Tangents Between Two Convex Polygons.

2.6.1 Algorithm used by Rohnert to find Useful Supporting Segments: Shortest
Path in the Plane with Convex Polygons.

Hans Rohnert [Ro86] solved the following problem: Given a family of f disjoint con-
vex polygons (called obstacles) Py, Py,..., waith T s Msenss nfvertices respectively and such
that ﬁu,. = n, compute the shortest path between two arbitrary query points s and ¢ such
that i',zr"ez int(P;), for all 1 i < f. To solve this problem he uses ihe fact that the shortest
path between s and ¢ is determined by edges of the convex polygons and common tangents
between pairs of them. He defines useful supporting segments between pairs of obstacles
P;and P;as those common tangents that do not intersect the interior of any polygon placed
between the corresponding pair P; and P;. He defines a total order for the set of common
tangents in order to distinguish those that are useful from those that are not. Finally he rep-
resents the problem as a graph G = (V, E) in order to use Dijkstra’s algorithm. The set of
vertices V is defined by the n vertices plus the two points s and ¢. The corresponding set of
edges E is defined by the union of the set of n boundary edges, of the f polygons, and the
set of useful supporting segments. We show a general description of his algorithm, as well
as a detailed description of the algorithm for finding the useful supporting segments be-

tween pairs of obstacles.
Algorithn Ro86

Input: A family of fdisjoint convex polygons Py, P;,..., Prand two points s and ¢, such
that s,¢ & int(Pp).

Output: The shortest path between s and #.

Begin
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Step 1.- Construct for cach pair of obstacles £; and P; the four common tan-
gents.

Step 2.- Identify the useful supporting segments from the not useful ones.

Step 3.- Build a graph G = (V, E) where the set of vertices V is defined by the n
vertices plus the two points s and ¢, The corresponding set of edges E is
defined by the union of the sct of n boundary edges, of the f polygons,
and the set of useful supporting segments. Use Dijkstra’s algorithm.

End

Step one can be done in O(log »; + log n;) time complexity for each pair P; and Pj; for
all pairs it is done in O(fz log nif) time and O(n + jg) space. Finally Step 3 is done in O(/""
+ n log n) time. Therefore the shortest path between s and ¢ can be found in O(n + jg) space
and O(}‘2 + n log n) time after O(n + j2 log n) preprocessing time. The preprocessing time
corresponds to the computation of that part of the visibility graph which is used to compute
the shortest path.

r Finding t) ommon_ Tanger

Input: Two disjoint polygons P and @ in the plane with m and n vertices respectively.

Output: The pair of external common tangents and the pair of critical separating lines
of support.

Begin

Step 1.- Determine the two points p € P and g € @ that determine the minimum
distance between P and Q.

Step 2.- Find the bisector L, of pg.

Step 3.- Using binary search, determine for each polygon the pair of vertices
that determine the minimum and maximum distances to L,,. Denote
them by {p, p*) and {g,, g*}. Let U, and U, be the upper chains deter-
mined by these two pair of vertices in clockwise order. Analogously, let
Ly, and L, be the lower chains.
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Step 4.- Using binary search over U, and U, determine the upper external com-
mon tangent. Analogously, determine the lower external common tan-
gent by using binary search over L, and L,. The two external common
tangents determine ECT(F), and ECT(Q). Using binary search over
those chains simultaneously determine the critical separating lines of

support.
End

Lemma 2.6.1: The four common tangents between P and Q can be computed in O(log n +
log m) time.

Proof; Step 1 and Step 2 are found using Edelsbrunner [Ed85] algorithm in O(log n +
log m) time. Using binary search the two pairs {p., p*} and {q,, g*} and the four com-
mon tangents can be found in O(log n + log m).

2.6.2 Finding The Common Tangents with ''Rotating Calipers"

"Rotating calipers” is the name that Toussaint [To83] used to refer to the process of
rotating parallel lines of support around a convex polygon P. The pair of vertices that ad-
mits parallel lines of support is called an antipodal pair. As it is known Shamos, in his Fh.
D. thesis [Sh77], developed an algorithm to generate the n pairs of antipodal vertices in
O(n) time. Using parallel lines of support the algorithm of Shamos finds in O(n) time a pair
{Pp» pj} of antipodal vertices in a direction fixed previously and in such a way that the poly-
gon lies always to the right, or to the left, of both lines. The principle behind the generation
of all parallel lines of support is described as follows: Let ©; be the angle that the supporting
line at p; defines with the edge (p;, p;,1) in clockwise order. Define Bj analogously and sup-
pose ; < 6;. Then consider the new lines of support making the angles 8;=6; - 6;and 8;
=0 at p; and p; respectively. Thus, the pair {p;,, p;} becomes the next antipodal pair. This
process is continued until the new pair of lines of support are in the mmal position at p; and
pj, respectively. When 6; = ; there are three antipodals pairs.

Toussaint extends this idea showing that several sets of lines of support can be used
in one polygon or one pair of lines of support can be used on several polygons. In the latter
case, one pair is used to merge two convex polygons as well as to find the critical separating
lines of support. Toussaint observes that the problem of merging two convex polygons P
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and Q with m and n vertices respectively consists of finding two pairs of vertices {p;, p;)
€P and {gy, g} € Q such that (pigz) U ECT(P)* U {g;p;} LU ECT(Q)° form the convex
hull of P U Q. He calls bridges the segments p;q, and qpj- In order to establish his result
about merging two convex polygons he defines a co-podal pair of points {p;, gj}with re-
spect to a support line L(p;, g;) if it supports both points simultaneously. To determine each
one of the co-podal pairs that define the union of P and @ he stated the following theorem.

Theorem 2.6.1: Two vertices p; € P and g; € Q are bridge points if, and only if they form
a co-podal pair, and the vertices p;.1, pi41» gj-1 and gj, all lie on the same side of L(p;, g;).

Therefore, using support lines through co-podal pairs of points it is possible to merge
two convex polygons in O(n) time. To determine if a co-podal pair is a bridge is done in
O(1) time and thus the algorithm runs in O(n) time.

For finding critical separating lines of support Toussaint uses antipodal pairs and the
following result.

Theorem 2.6.2: Two vertices p; and ¢; determine the critical separating lines of support if

and only if they form an antipodal pair and {p;.y, p;,1} lies on one side of L(p;, ¢;) while
(gj-1- gj+1] lies on the other side of L(p;, g;).

Since determining whether an antipodal pair defines a critical separating line of sup-
port is done in constant time and because there are O(n) antipodal pairs, the time complex-
ity to determine the two critical separating lines of support is O(n).



CHAPTER 3

SOME APERTURE ANGLE OPTIMIZATION PROBLEMSIN2-D

3.1 Introduction

We have mentioned, in the introduction, that this work is related to visibility prob-
lems where the angle of vision is constrained in order to see an object with an angle as large
as possible. In this chapter we consider The Aperture-Angle Problem in the Euclidean Plane
E2. Let Q be a convex polygon in EZandxbea pointin E2 not contained in Q. The aperture
angle O(x) with respect to Q is defined as the angle subtended by the cone that: (1) contains
@, (2) has apex at x, and (3) has its two rays emanating from x tangent to Q.

We study several instances of the following general problem:

Given two disjoint convex sets P and Q in E2, find a point X € P such that O(X) is the
maximum value of the aperture angle function, and a point Z in P such that 8(2) is the min-
imum value.

3.2. The Segment-Line Problem

The first simplification will be referred to as the Segment-Line Problem, where the
convex polygon @ is replaced by a segment AB, and P is replaced by a line L. Note that this
is precisely the "picture-on-the-wall" problem for which a solution is known [Ni81],
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[VG80]. These authors however only obtain a characterization of the solution. We will, be-

ing motivated by the desire to obtain efficient algorithms, also characterize the aperture an-
gle function itself.

Problem Statement: Given a segment AB and a line L that does not meet AB, find a point
X € L such that the angle AXB is the maximum value for 6(x) = ang(AxB), and find a point
Z € L such that the angle AZB is the minimum value.

Maximization Probl

We assume that the given segment AB is not parallel to the given line L. For this sim-
ple case the reader can easily verify that the solution point X must lie at the perpendicular

projection of the midpoint of AB on L. Without loss of generality L can be assumed to be
the real line.

Let D be the intersection point between the line L(A, B) containing the segment AB
and L. Since A, B and D lie on a line, the aperture angle ang(ADB) = 0(D) is zero. If x moves
in the direction of +oo or -eo then 8(x) asymptotically goes to zero. Thus, the solution for
the minimization problem becomes trivial. However, we may conclude that the maximum
aperture angle is attained at some point X which lies in either (-eo, D) or (D, ©°). Let 6(x) =
ang(AxB) denote the aperture-angle function, i.e., the aperture angle from a point x on L
(the real line) with respect to a given line segment AB, as x varies from -eo to +o0, Let X be
a point in L where 0(x) reaches its maximum value 6(X) = ang(AXB). We characterize, in
Lemma 3.2.1, the maximum over one of the unbounded intervals. Suppose the unbounded
interval is (-e0, D]. In order to obtain efficient algorithms (through binary search for exam-
ple) we would like to give an appropriate characterization of O(x). For that purpose we also
establish in Lemma 3.2.1 that O(x) is an upwards unimodal function in the interval (oo, D],
i.e., O(x) has no more than one local maximum in (-eo, D].

Lemma 3.2.1: If x is constrained to move in (-eo, D], then the function O(x) reaches its max-

imumn value at the point ¥ € (-o0, D], where the circle through A, B and Y is tangent to L.
Furthermore, 9(x) is upwards unimodal in (-eo, D].

Proof:  Let C be the circle through A and B that is tangent to L at a point ¥ € (-0, D).
Any point z € (-o0, D] \ Y lies outside of C, then by Observation 2.2.1 it follws that
B(Y) 2 () for all z € (-00, D]. Let 21, 25 € (00, D] be such that z; <23 < Y and refer
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to Fig. 3.2.1. Since the circle C is tangent to L at Y, when C is enlarged continuously
with the constraint that it passes through A and B, it must intersect L at a pointz < Y.
In this way the growing circle first intersects z; and subsequently z;. Therefore the
circle through A, B and z, is smaller than the circle through A, B and z;. But, since the
chord AB is the same length in both circles, the angle it subtends is smaller in the larg-
er circle. Therefore O(z)) < 6(zy). It follows that O(x) is strictly increasing in (-oo, Y].
A similar argument shows that 8(x) is strictly decreasing in [Y, D). Therefore 6(x) is
upwards gnimodal in (-oo, D). Q.E.D.

Fig. 3.2.1

Clearly Lemma 3.2.1 can also be established for x € [D, +°9)} in a similar way. Then,
O(x) = ang(AxB) is a bimodal function over L. Let ¥; & (-eo, D] and Y; € [D, +°) be the
two points where the two circles C; and C; through A and B are tangent to L. Thus, these
two points define a maximum over the corresponding interval where they belong, i.e., they
are local maxima over L. Therefore, the solution is determined by the point X such that
ang(AXB) = max{ang(AY}B), ang(AY,B)}. Note that the point X defining O(X) is deter-
mined by the tangent circle with minimum radius. When AB is parallel to L there exists a
unique tangent circle. In the particular case when AB is perpendicular to L the points ¥, and
Y, are equidistant from D and the two circles that determine them have the same size.

To establish the corresponding algorithm observe that the centers of the tangent cir-
cles C and C; are determined by the locus of the points (4, k) € EZ which are equidistant
from the two points A and B, as well as from the line L. Then, such a locus describes a pa-
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rabola for each end point of AB, i.e., two parabolas Py(x) and Py(x). The intersection of

these parabolas is represented by a quadratic equation in /. The algebraic expression to the
corresponding equation is given by:

(by - ap) h* -2 (ay by-az by} h+ (by A% - ay B2 =0

Leta=(by-az),b=2(a; by-a;by) and c = (by AZ- a; B?) be the coefficients on
the last equation, then the solution set is defined by:

(=b) + Jb° — dac

2a

(-b) — .\/bz -4ac

2a

hl =

hz =

The solution set {4, ;] of this equation determines the x-coordinate of the center of
C| and C». Since L is tangent to these circles the orthogonal projections of their centers on
the x-axis are the tangency points Y| = ity and Y5 = k.

Algorithm LABMAX: Line-Segment Problem (maximization)

Input: The endpoints A = (ay, a;) and B = (b, b)) of a segment AB and a line L that
does not intersect AB.

Output: A point X € L for which 0(X), with respect to AB, is maximum over L.
Begin
Compute Y| = h) and Y, = ks, which are the intersection points between P)(x)
and P,(x). Exit with X = ¥ if 6(Y}) 2 B(Y5), otherwise exit with X = Y,.
End

Theorem 3.2.1: Algorithm LABMAX finds in O(1) time a point X € L such that 6(X) is
maximum with respect to the segment AB.

Note that this problem could be solved using optimization tools from Caiculus when
the analytic expression for O(x) is obtained. Thus, if the given line L is the x-axis, the aper-

ture angle function is defined as 6 (x) = acos where uy = (x - ay, -a7) and

1" 2
[y [ usf|”
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uy = (x - by, - by). To obtain the maximum value of such a function it is necessary to find
the corresponding critical points, Such points are obtained by setting the derivative of the
aperture angle function 8(x) equal to zero. The corresponding derivative is defined by the

equation:

_d.e = i(acosLuz.)
dxdx{ [luyfffuy

By developing this derivative we obtain the following equation:

i[acos u; U )= [l ]| w2 d W
I o g - oy - @

However, the derivative function is non-differentiable at the intersection point xy be-
tween L and the line L(4, B). Since the function O(x) is defined at x; and because the ex-
pression ||y ||2|| u2||2 - (u;-u,) 2 defined in the square root of the denominator of d-ixe is

not defined at xy, it follows that the derivative function is non-differentiable at this point.

b,-a a
Letm = 3 az denote the slope of L(A, B), then xg is defined as x5 = a, — 52 To
179
show that the derivative function -4-9 of O(x) is not defined at xp observe that:

dx

luPluag? - (u,-u)? = [4a,b, +IAIZ+1BI3 - (a,+b,)-2(A-B) 14
-2 [alllBII§+b,I|AII§- (a‘1+b,) (A-B) ]x+ [IlAllgllBilg— (A-B)] .

This expression can be reduced to [ (b, —a,) x— (a,b, —a,b)) 12, which is equal

to zero for x = xp. Thus, we have proved the following resut.

a

Lemn;’a 3.2.2: The aperture angle function is non-differentiable at x4 = a, - Hz’ where
2~ %

m =

by -a,
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3.3 The Segment-Segment Problem

Note that x may be constrained to move on a segment. Suppose the segment is repre-

sented by a closed interval 1. Note that the endpoints of this interval define a line L contain-
ingit.

Maximization Problem

By Lemma 3.2.1, 6(x) is an upwards unimodal function over (-es, D] and also over
[D, +e0).

Observation 3.3.1: For any interval / that does not contain D, ¥ and ¥, the function O(x)
is strictly increasing or decreasing over L

Thus we state the following proposition as a consequence of Observation 3.3.1.

Proposition 3.3.1: The maximum aperture angle over 7 with respect to AB is reached at ei-
ther ¥y, ¥, or at an endpoint of 1.

rithm IABMAX: Segment-Se Pr

Input: The endpoints A = (ay, @) and B = (b;, by) of a segment AB and a closed in-
terval I = [¢, d] that does not intersect AB.

Output: A point X € I for which 0(X) = ang(AXB) is maximum over /.
Begin
Step 1.- Determine the points Y and Y, by using algorithm LABMAX.
Step 2.- If ¥; €1 then exit with X = Y;, or if ¥, €1 then exit with X = Y.
else

exit with X = c if 0(c) = 0(d), otherwise exit with X = d.

End

Theorem 3.3.1: Algorithm JABMAX finds in O(1) time the point X &/ for which 8(X) =
ang(AXB) is maximum over /.
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Proof: Step 1 is correct by Theorem 3.2.1 and it is performed in O(1) time. The test to
determine whether J contains one of the local maxima Y; or Y5 is done in constant
time. Finally, the evaluation and comparison in Step 2 are done in O(1) time. Then,
Step 2 is done in O(1) time.

Minimization Probl

If the interval J does not contain the point D then O(x) = ang(AxB) # 0 forall x €1,
and the minimization problem becomes interesting. Let Zbe a point in L where 0(x) reaches
its minimum value 6(Z) = ang(AZB).

As a consequence of Observation 3.3.1 we can establish the following proposition
which allows us to develop an algorithm for this case.

Proposition 3.3.2: If the point x is constrained to be in a closed interval I'= [a, b} contained
in (-00, D) U (D, +o0)\ { ¥}, Y5} the point which is the solution for the minimization prob-
lem lies at one of the endpoints of such an interval. If one of the maxima, Y or Y, belongs
to 7 the solution can be reached at either of the endpoints.

\leorithm JABMIN S S Problem (minimization)
Input: The endpoints of a segment AB and a closed interval I = {c, d].
Output: A point Z € [ for which 6(Z), with respect to AB, is minimum over /.
Begin
If 8(c) 2 O(d) then exit with Z = d, otherwise exit with Z=¢.

End

Theorem 3.3.2: Algorithm JABMIN finds in O(1) time a point Z € I such that 8(Z) is min-
imum with respect to the segment AB.
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3.4 The Segment-Polygon Problem

Problem Statement: Given an m-convex polygon P and a segment AB that does not
intersect P, find a point X in P such that ang(AXB) = 6(X) is the maximum value of the ap-

erture angle function 6(x) = ang(AxB), and a point Z in P such that ang(AZB) = 6(Z) is the
minimum value.

Assume that the m vertices of P are stored in an array in counterclockwise order.
Maximization Probl

For our purpose we will suppose that the line L(A, R) passing through AB does not
intersect inf(P). Because, if L(A, B) intersects int(P), this line divides P into two convex
polygons Py and P; such that L(A, B) does not intersect in#(P)) or int(P3). Then, this case
is solved by solving two problems for which L(A, B) does not intersect the interior of a con-
vex polygon. Let X; € Py be the point that determines the maximum aperture angle ang
(AX1B) = 6(X;) in Py. Let X, € P, be the point such that ang(AX,B) = 0(X;) defines the
maximum aperture angle in Py, Thus, the solution when L(A, B) intersects in#(P) is deter-

mined by a point X such that 0(X) = max {68(X;), 0(X)}. We characterize in the following
lemma the subset of P which contains X.

Lemma 3.4.1: A point X € P where the aperture angle function reaches the maximum value
lies on the chain CSS(P).

Proof: (by contradiction) Let X be the point that maximizes the aperture angle and sup-
pose that it is not contained in CSS(P). Let 6(X) denote this maximum angle. Let the
supporting rays from X be denoted by ray(X, A) and ray(X, B), referring to Figure
3.4.1. First we observe that CSS(P) must intersect the cone(X) that defines 6(X). If it
does not, then the rays must both intersect the same line of support in the unbounded
portion Ry,. But then one ray cannot be a line of support of AB, a contradiction. In par-
ticular, CSS(P) must intersect triangle(AXB) C cone(X). Let y be a point in the inter-
section of triangle(AXB) and CSS(P). Then the circle C(A, X, B) contains in its interior
the point y € CSS(P). By Observation 2.3.3, 8(y) > 0(X), a contradiction. Q.E.D.
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Fig. 3.4.1

The following result shows that the function 6(x) has a unique point where the max-
imum is reached.

Lemma 3.4.2: The maximum aperture angle is realized at a unique point X € CSS(P).

Proof: Suppose that the maximum is reached at two different points X; and X5, which
are determined by the circle € which contains A and B and is tangent to P. Because P
is a convex polygon, the segment XX, € P and it is a chord of C. Therefore there ex-
ists a point ¥ in the interior of the segment X, X, such that 8(Y) > 6(X) (by Observa-
tion 2,3.3), a contradiction. Q.E.D.

Lemmas 3.4.1 and 3.4.2 establish the existence of a global maximum over CSS(P).
However, this does not preclude the existence of other possible local maxima. Fortunately,
we are able to show that B(x) is an upwards unimodal function over CSS(P) by using Ob-
servation 3.3.1 in each edge (or interval determined by an edge) of this chain,
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Lemma 3,4.3: The function O(x) = ang(AxB) is an upwards unimodal function over
CSS(P).

Proof: Let C be the circle through A and B that is tangent to P and let X be the point of
tangency. By Lemma 3.4.2, X is on the chain CSS(P). Clearly X can be a vertex p, or
an interior point of an edge p;_ p, of CSS(P). For each edge p; p;;1 € CSS(P)that does
not contain X in its interior let L(p;, p;,.) be the line passing through p; p;,.|. Then, the
aperture angle O(x) defined over the edge p; p;,1 with respect to AB is equal to ang
(AxB) over the interval I = [p;, piy1] € L(®;, piy1). Without loss of generality suppose
that the intersection point D between L(A, B) and L(p;, p;,y) is to the left of the interval -
I and that A lies between B and D. If D is to the right of I the analysis is analogous,

Note that for each edge p; p;, that does not contain X the corresponding line L(p;,
Di+1) intersects the circle C at two different points z; and z5 lying in the exterior of
I=[p;, p;41]. When traversing the circle C in a counterclockwise direction from the

point A, we define the order (A- z;- 23- B). Thus, there are two possible arrangements
of points over L(p;, p;s1)-

1) (D- Pix1-Pi-21- 22) which occursif I = [p". pl"i'l] isahead of X € CSS(P) (refer
to Fig. 3.4.2.9).

2) (D- 2)- 23~ p;y1- pi) holds if I = [p;, p;q] is behind X € CSS(P) (vefer to Fig.
3.4.2.b).

By Corollary 3.3.1 the maximum over the interval [z, 23] is obtained by a point ¥

€ [2), 2. Since (p;, pie1) N (21, 2 = @ then Y & I. By Observation 3.3.1 it follows
that;

The function B¢(x) is strictly increasing over I = [p;, pi11 if (D- Pis1- Pr 21- 22) holds.
If (D- ;- 22~ Pi1- p;) is satisfied then O(x) is strictly decreasing over /.

Thus, X is a vertex py in the chain CSS(P) = (py, P2vees P} U Phs Pia 1 P i O(2)
is strictly decreasing in all the edges contained in the chain (py, p...., py), and 0(x) is
strictly increasing in all the edges contained in the corresponding chain (o, Pigyqsen
Pr). The respective orders must be satisfied in all edges of each subchain of CSS(P).
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In particular, (D- z;- 29 = py. - Px.1) is satisfied in the edge p.q pr < (P1, P2s..., Pi) and
(D- Pry1- P = 21 - 22) is valid for py prit C (Pha Pryo--- Pr)- Then, the function 6(x)
is unimodal.

The tangency point X is in the interior of an edge py_; py if ©(x) is strictly increasing
in each edge contained in (P, pgy4ys--.» P,) and it is strictly decreasing in all the edges
contained in the chain (py, pa,..., Py.1). Then, the function 6(x) is unimodal. Q.E.D.

L pis1)

L(A, B) . L(A, B)

Fig.34.2.a Fig.3.4.2b

Algorithm PABMAX

Input: An m-convex polygon P and a segment AB such that L(A, B) does not meet P.

Output: A point X € P for which 8(X) = ang(AXB) is the maximum value of B(x) over
P.

Begin
Step 1.- Determine the chain CSS(P).

Step 2.- Determine the point X where a circle C through A and B is tangent to P,
using binary search over CSS(P).

Let {e], es,..., €4} be the sequence of edges that defines CSS(P) in
counterclockwise order.
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Solve the segment line problem for AB and the line L(e1). Denote by
X the solution to this problem.

Ile €éeyn then exit with X =X1

else

(Test whether O(x) is increasing or decreasing over the interval de-
fined by ey

If O(x) is increasing then search X in the chain {eyy .1,..., 1 } using bi-
nary search

else

search X in the chain {egy 41,..., €} using binary search.

End

Theorem 3.4.1: Algorithm PABMAX finds in O(log m) time a point X € P, such that 0(X)
is the maximum value of 6(x) with respect to the segment AB.

Proof: Since the angle function from a point outside of a convex polygon to a point that
travels along the boundary of the polygon is a bimodal function [CD87], the support
vertices of CSS(P) are determined using binary search on bd(P) from each of the end-
points of AB in O(log m) time. Therefore Step 1 is done in O(log m) time. By Lemma
3.4.1 we may use binary search on CSS(P) to find the point X where the aperture angle
is maximum. Therefore the complexity of Step 2 is bounded by O(log m) time. Q.E.D.

Minimization Probl

We now turn our attention to the minimization problem. We also assume that L(A, B)
does not intersect P, If it does the solution is reached at the segment contained in P obtained
by intersecting L(A, B) and P.

We immediately conclude from Lemma 3.4.1 that the point Z, where O(x) attains its
minimum value 8(Z), must be on P - CSS(P). However, Z can be constrained to move in
the chain ECT(P)°.
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. Lemma 3.4.4: Any point Zin P where the aperture angle reaches the minimum value lies
on the chain ECT(P)C.

Proof: (by contradiction) By Lemma 3.4.1 the point Z where the minimum value of 6(x)
is attained has to belong to the set P-CSS(P). Let Z be a point in the interior of P that
defines the minimum aperture angle ang(A Z B), refer to Fig. 3.4.3. Let cone(Z) be the
cone that defines the aperture angle ang(A Z B). Then, by an argument similar to the
one used in the proof of Lemma 3.4.1, the cone(Z)¢ with apex at Z determined by the
rays (Z, A) and (Z, B) in opposite direction intersects the chain ECT(P). Let y be a
point in the intersection of cone(Z)¢ and ECT(P)F. To define cone(y) translate ray(Z,
A) and ray(Z, B) in the direction of ECT{P)° until they intersect at y. By construction,
cone(y) defines an angle whose value is equal to ang(A Z B) and it contains AB. How-
cver, since the rays defining cone(y) are not tangents to AB then the cone does not de-
fine the aperture angle for y. In order to define O(y) the rays that define cone(y) must
be rotated in the direction of the endpoints of AB. Therefore O(y) <ang(A Z B), a con-
tradiction. Q.E.D.

(LT ELT G ELTRT LT LT LT LT L LT LR LTLT T T

Fig.343

For finding the minimum aperture angle ang(A Z B) we have to evaluate 0(x) at the
endpoints of each vertex in ECT(P)C. Thus, we obtain one candidate as the minimum for
each vertex and we select the minimum over all those local minima.
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Algorithm PABMIN

Input: A segment AB and a convex polygon P that does not intersect AB.

Output: A point Z € P for which 8(Z) = ang(A Z B) is minimum over P,

Begin
Step 1.- Determine the chain ECT(P)°.
Step 2.- For each vertex Z; of ECT(P) determine 6(Z)).
Step 3.- Exit with Z = Z; such that 8(Z) < B(Zj) forall j #i.

End

Theorem 3.4.2: Algorithm PABMIN finds in O(m) time a point Z € P such that 6(2) is the
minimum value of 8(x) with respect to the segment AB.

Proof: The support vartices of P that determine ECT(P)® are determined in O(log m) time
by performing binary search on bd(P), as was pointed out in Theorem 3.4.1 [CD87],
from each endpoint of AB. Then, Step 1 is done in O(log m) time. The evaluation of
B(x) at each point Z; is done in: constant time. Hence, the evaluation of 6(x) for all the
vertices in the chain ECT(P)* is done in O(m) time. Finding the maximum over m val-
ues is done in O(m) time. Therefore to find Z € P for which 0(Z), with respect to AB,
is the minimum value of O(x) over P is done in O(m) time. Q.E.D.

3.5 The Polygon-Line Problem

We now take a final step towards the general problem and study a simplification re-
ferred to as the Polygon-Line Problem, where the segment AB is replaced by a convex poly-
gon Q, and the convex polygon P is replaced by a line L. It is assumed that the line does not
intersect the polygon.

Problem Statement: Given an n-convex polygon Q and a line L, find a point X € L such
that the aperture angle 0(X) is the maximum value of 6(x) with respect to Q.
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We assume that Q = [4y, 3,-.., §,] is represented by an array with the vertices in coun-
terclockwise order and that the vertices of Q are in general position, i.e., no three vertices
lie on a line and no four vertices lie on a circle, To simplify the notation, we also assume
that no edge of Q is parallel to the line L. Without loss of generality we assume L is the real
axis x; let g, be the vertex with the highest y coordinate and let g; be vertex with the lowest
y coordinate of Q. Then the polygon Q is the union of a left chain @, ={qy. gp41.-.-» 47} and
aright chain Qp={q}, g141,-.» q4}. A partition of L is obtained as follows: extend each edge
g; 9;+1 of Qg until it intersects L at a point g; and extend each edge g; g;,1 of G, until it
intersects L at a point b;. Merge the ordered sets A = {a, @y,..., @1y} and B = {by, bp,.... by
1] (subindex addition is done modulo n) to obtain an ordered set R={ry, ry,..., r;}. The par-
tition of L consists of the intervals I = [ry, 11 k=1, 2,..., n-1 together with two unbound-
ed intervals Iy = (-eo, r] and I, = [r,,, +°°).

The following lemma is the link between the segment-line problem and the polygon-
line problem.

Lemma 3.5.1: For each interval [ = [y, rp41] in the partition, there are two vertices OL(k)
€ Q,and B(k) € Qp such that for each point x € I, the aperture angle 8(x) with respect to
Q is given by ang(ou(k) x B(k)).

Proof: Since g and g; are the highest and lowest points of Q respectively, then for all x
€Ig = (-0, ry], O(x) is given by ang(gy, x ;) and therefore 00) = g, and B(0) = g;
(see Fig. 3.5.1.a).

Fig.3.5.1a
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Once 0i(f) and B(¢) have been determined for r= 0, 1,..., &, then if riyq = @; (i.€. iy
is the intersection point of L with the extension of the edge g; g;4; of Q) then Ol(k+1)
= g;41 where 0l(k) = g;, and B(K) = B(k+1) (sce Fig. 3.5.1.b).

Tee] = @ x L

Fig.3.5.1.b

If rys1 = bj (i.e. 1y is the intersection point of L with the extension of the edge g; g;,
of Q), then OL(k) = CL(k+1) and P(k+1) = gj+) where B(k) = g; (see Fig. 3.5.1.c).
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By induction 0((k) and B(k) can be determined for k=0, 1,..., n. QE.D.

As a consequence of Lemma 3.5.1 the aperture angle function 6(x) with respect to O
is piece-wise defined over L and for each interval J;, ©(x) coincides with the aperture angle
function with respect to the corresponding segment (x(k)ﬂ(k). Fork =1, 2,..., n we say that
o(k)P(k) is the diagonal of Q associated with the interval J; and it is denoted by d;.

Mazimization Probl

Using Proposition 3.3.1 we can determine the points Xg, X1, X3,.... X, where 0(x)
reaches their set of local maxima over Iy, 1y, I,..., I,, respectively, and then the maximum
aperture angle with respect to Q is reached at a point X such that 8(X) = max {8(Xp), 6(X;),
0(Xy),..., 0(X,)}.

\lgorithm LOMAX: Polvgon-Line Probl
Input: An n-convex polygon @ and a line L that does not intersect Q.

Output: A point X in L for which the aperture angle 6(X), with respect to Q, is maxi-
mum,

Begin
Step 1.- Find the partititon of L into intervals Iy, Iy,..., I,

Step 2.- For each interval I find the diagonal dj = Ot(k)ﬂ(k) such that the aper-
ture angle functions with respect to Q and d coincide over /.

Step 3.- For each interval J; find X}, € I; such that the aperture angle, with re-
spect to dj, is maximum over /.

Step 4.- Exit with X;, where X; is such that 9(X;) 2 0(X;) forall j =0, 1,..., n.
End
Theorem 3.5.1: Algorithm LQMAX finds in O(n) time a point X € L such that 0(X) is the
maximum value of 6(x) with respect to Q.

Proof: Step 1 and Step 2 require O(n) time by Lemma 3.5.1. To compute each point X;
in step three requires O(1) time using algorithm LABMAX and Proposition 3.3.1.
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Finding Xy, X),..., X, is done in O(n) time. Clearly Step 4 is also done in O(n) time.
Thus the entire algorithm requires O(n) time to find a point X in L for which the ap-
erture angle O(X), with respect to Q, is maximum. Q.E.D.

Note that the minimization problem is not of interest for this case, since 8(x) asymp-
totically approaches to zero when x moves along L towards (- o) or (4 o0).

3.6 The Case of Two Convex Polygons: Geometric Considerations

Problem Statement: Given two disjoint convex polygons P and Q in the plane with m and
n vertices respectively, find a point X € P such that 8(X) is the maximum value of the ap-

erture angle function with respect to the polygon @, and a point Z € P such that 8(Z) is the
minimum value.

In order to simplify the analysis, we assume that P = [py, p,..., p,,} i$ represented by
an array in clockwise order and Q = {qy, ¢2,..., g,,] is represented by an array in counter-
clockwise order. In this section we extend Lemma 3.4.1 and Lemma 3.4.4 to the problem
of maximizing and minimizing the aperture angle with respect to Q when x € P. We also
give an analysis for computing the maximum aperture angle that allows us to develop, in
the next section, an algorithm with two different complexities.

Maximization Problem

Lemma 3.6.1: The points in P for which the aperture angle is a maximum lie on the bound-
ary of P.

Proof: (by contradiction) Let ¥ be a point in the interior of P, and let g; and g; be the two
vertices of Q such that 8(Y) = ang(g; Y g;). By the Jordan curve theorem (sce for in-
stance [CR41]) the rays ray(Y, g;) and ray(Y, g;) intersect the boundary of P, and by
convexity they intersect it only once. Let x be the point where the segment Yg; inter-
sects bd(P) (refer to Fig. 3.6.1). Since the interior angles of triangle yxq; sum 180 de-
grees and ang(y x q;) + ang(q; x g;) = 180, it follows that ang(q; x ¢;) = ang(q; ¥ g;) +
ang(y g;x) > B(Y). Since ang(g; x g;) is smaller than ang(qy x g;) = 6(x), then B(x) >
O(Y). Thus there exists a point x in bd(P) for which the aperture angle is larger than
O(Y), a contradiction. Q.E.D.
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Fig 3.6.1

By Lemma 3.6.1 we constrain the space of possible solutions to the bd(P). We can
actually strengthen this result by showing that the solution lies in a specific section of the
bd(P).

Let the critical separating lines of support to P and Q be tangent at {p;, ¢;} and (p;,
q;) respectively. These lines separate the boundaries of P and Q into four chains (refer to
Sec. 2.2). The chains for P are CSS(P) and CSS(P)°. The respective chains CSS(Q) and
CSS(Q)* for Q are defined in the same way.

Lemma 3.6.2: Any point x € bd(P) where the aperture angle reaches the maximum value
lies on the chain CSS(P).

Proof: It is analogous to the proof of Lemma 3.4.1.

Let the common tangents to P and Q) be tangents at {p,, g;} and {p;, g;} respectively.
Then, the chain ECT(P) is defined as (p,, Prytss Pip Pisloew Pjs Pjalson Ps). The chains
ECT(Q)= (q,-, Qixlvor Dl Qa1 p a0 q_,) and ECT(Q)" are similarly defined.

RHaving characterized the chain of P that contains the peints where the maximum val-
ue can be reached we can define the partition over bd(P), as we did in the polygon-line
problem. Let CSS(P), CSS(Q), ECT(P) and ECT(Q) be defined as above. For each edge ¢
contained in the chain ECT{Q), extend e until it intersects P or extends indefinitely. These
intersection points determine a partition of bd(P). For the maximization problem, we focus
our attention on the partition defined on CSS(P).
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Observe that the external common tangents of P and Q define two tangent vertices g;
and qj in Q which are the extreme points of ECT{Q) = (g;..., g;). Analogously, the critical
separating lines of support of P and Q define two support vertices in Q denoted by ¢; and
q, (refer to Fig. 3.6.2). These points are the endpoints of CSS(Q) = (g, gx41+-+ G)- Then
the chains ECT(Q) and CSS(Q) are equal, or CSS(Q) is contained in ECT(Q). If CSS(Q) =
ECT(Q), there is not a partition on the boundary of P and the problem is reduced to the seg-
ment-polygon case, where the segment is determined by A = g; and B = g;. If CSS(Q) <
ECT(Q) then the chain ECT(Q) can be expressed as the union of the chains (g; §j414.. G
CSS(Q), and (g G141+--» qj)- Let Oy and Oy, be defined as (g gy 1v G1) A (g1 Gry 1eeer
g respectively. The chain Q,, is referred to as the left chain of Q and (), as the correspond-
ing right chain of Q. Thus, the chain ECT(Q) has been divided into three chains Q,, Q, and
CS§S5(Q). For Q, and @, the corresponding extended edges intersect P. The comesponding
extended edges of ECT(Q) do not intersect P.

Fig. 3.6.2

Since the extended edges of Qa or @, can intersect the boundary of P in some points
that are on ECT(P) but not on CSS(P) we need to use ECT(P) and discard all those inter-
section points that do not belong to CSS(P). We denote by a; the intersection of the k-th
edge in Q, with CSS(P) and by A the ordered set of intersection points a;’s. Analogously,
B is the ordered set of intersection points between the extended edges in @y, and CSS(P).
The partition R is determined by merging the two ordered sets A and B. It is formed by po-
lygonal chains R, which are determined by two consecutive intersection points ry.; and
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in R. Note that the polygonal chains are convex chains with respect to Q. For each of them
the aperture angle is defined by the same diagonal. Thus, Lemma 3.5.1 can be extended for
the polygonal regions R;.

Lemma 3.6.3: For‘ each convex chain R; € CSS(P) in the partition of CSS(P), there are two
vertices Ol(k) € Q, and [3(k) € @y, such that for each point x € Ry, the aperture angle 0(x)
with respect to Q is given by ang(0uk) x (k).

As a consequence of Lerama 3.6.3 the aperture angla function 8(x) with respect to Q
is piece-wise defined over the chain CSS(P). For each convex chain R;, the function O(x)
is determined by ang(0t(k) x B(k)). Then the segment dj, = Cl(k)B(k) is the diagonal of Q
that defines B(x) for x € R;. For each k (0 < k < n) we say that dj, = C((k)B(k) is the diagonal
of @ associated with the convex chain R;. Thus, the problem is reduced to finding the max-
imum aperture angle for each k with respect to a given segment dj, when x is allowed to
move on a convex chain R;. By Lemma 3.4.2, for each chain there exists a unique point
where the maximum aperture angle is reached with respect to the segrnent dy.. Let X € Ry
denote this point, Lemma 3.4.3 implies that (x} is upwards unimodl for each chain R;.
Then O(x) is a K-modal function over CSS(P).

Proposition 3.6.1: The number K of convex chains contained in CSS(P) is O(n).
Minimization Problem

We characterize the subset of points of the boundary of P where the minimum value
O(x) can be attained.

Lemma 3.6.4: Any point x in P where the aperture angle reaches its minimum value lies
on the chain ECT(P)°,

Proof: Itis analogous to the proof of Lemma 3.4.4.

Employing the same method used for the maximization problem, we determine a par-
tition of the chain that contains the points where the minimum can be attained, i.e., the chain
ECT(P)". This partition is obtained by extending the edges of Q, and Qj, until they intersect
ECT(P)°. In this way, the partition obtained contains chains Ry, which are concave with re-

spect to @. In order to use the results and algorithms developed previously we state the fol-
lowing lemma.
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Lemma 3.6.5: For each polygonal R, € ECT(P)° in the pastition of ECT(P)", there are two
vertices Oi(k) € Q, and (k) € Q, such that for each point x € R, the aperture angle 0(x)

with respect to Q is given by ang(0(k) x (k).

Proof: It is analogous to the proof of Lemma 3.5.1.

Having stated this lemma we are in a position to take advantage of the results devel-
oped in Section 3.4 for the minimization problem. To solve the problem we use Algorithm
PABMIN for each concave chain R;. Observe that when Algorithm PABMIN is used for
each concave chain Ry, the endpoints that define it become vertices. Then, the solution con-
sists in the evaluation of G(x) at the vertices of ECT{P)® and at the intersection points that
define the partition. Therefore the solution is given by a point Z & P such that (Z) = min
{0(Zx)} (0 K < n+m), where Zg is a vertex of ex € ECT(P)® or an endpoint of a chain R,.

3.7 The Case of Two Convex Polygons: Algorithms

In this section we describe the algorithms for solving the general problems of finding
the maximum and minimum aperture angles. The object that must be kept in the field of
view is an n-convex polygon @, and the region where the camera is allowed to roam is an

m-convex polygon P, The first algorithm to be described corresponds to the maximization
problem.

lporithm QPMAX: Polygon-polypon imizati

Input: A convex polygon @ with n vertices and a convex polygon P with m vertices
that does not intersect Q.

Output: A point X in P for which the aperture angle 6(X), with respect to Q, is maxi-
mum.

Begin
Step 1.- Find the partititon of CSS(P) into chains Ry, Ry,..., R,.

Step 2.- For each convex chain Ry find the diagonal d = 0t(k)B(k) such that the
aperture angle function with respect to @ and d;, coincide over Ry,
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Step 3.- For each chain Ry, find X}, € R, such that the aperture angle with respect
to dy is maximum over R;, using Algorithm PABMAX.

Step 4.- Exit with X = X;, where X is such that 8(X) 2 G(Xj) forallj(0<j<
n+m).

End

Theorem 3.7.1: Algorithm QPMAX finds a point X € P, such that 8(X) is maximum with
respect to @ in O(n+m) time using Rotating Calipers [To83] in Step 1 or in O(n log m) time
using Chazelle and Dobkin's Algorithm [CD87], also in Step 1.

Because the complexity depends on the time complexity used when partitioning the
chain CSS(P) into chains Rg, Rj,..., R,;, we begin by analyzing Step 1. This step can be per-
formed by using two different methods (as is pointed out in Theorem 3.7.1). We first de-
scribe the method based on Rotating Calipers, whose complexity is O(n+m) time.

\[gorithm P to Find the Partition of P in On-+m)
Input: Two disjoint convex polygons Q and P, with n and m vertices respectively.
Output: A partition of the chain CSS(P) into convex chains Ry, Ry,..., Ry.

Begin
Step 1.- Find the chains CSS(P), CSS(Q), ECT(P), ECT(Q), Q. and Q.

Step 2.- For the first edge in Q,,, find the intersection point a; and detect which
edge in ECT(P) contains a;.

Step 3.- While @, # & advance one edge on the chain 0O, and extend it.

Step 4.- If the extended edge intersects the current edge in ECT(P) then go to
Step §.

else

While ECT{P) # & advance one edge in ECT(P).
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Step 5.- Define A as the set of intersection points g such that a; belongs to
CSS(P).

Step 6.- Repeat steps from 3 to 5 for the chain Qy. Define B as the set of inter-
section points by such that by belongs to CSS(P).

Step 7.- Merge A and B to obtain the pastition R of CSS(P). It is defined as [R),
R,..., Rg} (K < n). Exit with R.

End

Lemma 3.7.1: Algorithm P1 finds in O(n+m) time a partition of CSS(P) in convex chains
which are convex with respect to Q.

Proof: Using rotating calipers [To83] we find the tangent points and the support points
that define the chains required in Step 1 in O(n+m) time. Alternately, we may use the
algorithm of Rohnert [Ro86) and accomplish the same task in O(log n + log m) time.
Step 2 is done in O(log m) time using Chazelle and Dobkin {CD87]. For finding each
intersection point a; in Step 3, O(1) time is used. Then, all of the intersection points
can be determined in O(n) time. Advancing over all the chain ECT(P) takes O(m)
time. Clearly the definition of the set A is done in O(n) time, Then, steps 3, 4 and 5
are done in O(n+m) time, Analogously Step 6 is done in O(n+m) time. The merging
of two sets to obtain one that has at most n elements is done in O(n) time, then Step
7 is done in O(n) time. Therefore, Algorithm P1 finds the partition of CSS(P) in
O(n+m) time. Q.E.D.

To obtain the partition of CSS(P) with time complexity O(n log m) observe that for
each edge g; g1 & ECT(Q)° the line L{g;, q1,1) does not intersect &d(P), and det(g;, gj.1,
p) has positive sign for each point p € P. For each edge g; gj,1 € CSS(Q) the line L(g;, g;,.1)
does not intersects bd(P), and det(g;, 4,1, p) has negative sign for each point p € P. If an
edge g; gj,1 € Qg is extended, the semiline from g; in the direction of g, intersects bd(P)
at two points a &€ ECT(P) and z; € ECT(Q)", These two points together with g; and g;,,)
are ordered as (gj-g;,1-a-z). Similarly, if an edge g; g;5) € @y is extended, the semiline
from gjy; in the direction of g; intersects bd(P) at two points b, € ECT(P) and z;
€ ECT(Q)", that together with g; and g;,are ordered as (z;-b;-gj,.1-q;)- These properties,



CHAPTER 3.  APERTURE ANGLE OPTIMIZATION PROBLEMS IN 2-D 43

which are satisfied by the edges of Q define other characterizations of the chains Q,,
CSS(Q) and @, Thus we do not need to know a priori the tangent vertices and support ver-
tices of Q for decompose bd(Q) into ECTQ)®, Q,, CSS(Q) and @},

i PY: to Fi it
Input: Two convex polygons Q and P, with n and m vertices respectively.
Output: A partition of the chain CSS(P) into convex chains Ry, Ry,.... Ry.
Begin
Step 1.- Extend each edge of Q to obtain:
1.1 The sets A and B of intersection points ay, and by, respectively.
1.2 The chains @, Qp, CSS(Q) and ECT(Q)°.

Step 2.- While advancing over the edges of Q find the transition points from Q,
to CSS(Q) and from CSS(Q) to @y, and use them to determine the end
points of CSS(P). Then discard from A and B all those intersection
points that do not belong to CSS(P).

Step 3.- Merge A and B to obtain the partition R = {Ry, Ry,..., Rx} (K < n). Exit
with R. '

End

Lemma 3.7.2; Algorithm P2 finds in O(n log m) time a partition of CSS(P) into chains
which are convex with respect to Q.

Proof: In contrast with Algorithm P1, this method uses Chazelle and Dobkin [CD87] to
determine all the intersection points (the a;'s and b;'s) that form the sets A and B, re-
spectively. Since there are at most -1 intersections and each one is found in O(log
m) time, the sets A and B are found in O(n log m) time. Using the alternate character-
ization discussed above, we classify the edges of Q into four groups which are the re-
quired chains in Step 1.2. Hence Step 1 is done in O(n log m) time. To obtain the chain
CSS(P) we use the support vertices of Q that are the transition points from one chain
to another. To determine the support vertices of P in O(log n) time we use binary
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search. Finally, the merging of A and B is done in O(n) time. Therefore, Algorithm
P2 finds the partition in O(n log m) time. Q.E.D.

Lemma 3.7.3: Let f{n,m) denote the function that counts the number of operations that are
done for fiading the set of local maxima over CSS(P) with respect to Q. Then

1) fin,m) < n+m
and
2) fin,m) < n log m/n.

Proof: For each convex chain Ry of CS5(P) with length n;, computing the point X where
the maximum is reached over CSS(P) with respect to dy, is done in O(log n;) time by
Theorem 3.4.1. Thus,

f(n,m) = Zc,-logni

i=1

s
1) Let ¢ = max {¢;}, then f(n, m) S¢ Y logn;<c(n+m).
i=1
2) We have n; < m since P has m vertices, therefore

5 3
(c 2 Iogn,-] Sc(z logm )Scnlogm.
i=1 i=1

From 1) and 2) Lemma 4.3 holds. Q.E.D.

Proof of Theorem 3.7.1. Using Lemma 3.6.3, Step 2 is done in O(n) time. Step 4 is
also done in O(n) time because to find the maximum of n elements O(n) time is used.

If we use Algorithm P1 for Step 1, by Lemma 3.7.1 the time complexity is O(n+m).
By Lemma 3.7.3, Step 3 is done in O(n-+m) time. Therefore Algorithm QPMAX finds
a point X € P, such that 6(X) is the maximum value of 6(x) with respect to Q in
O(n+m) time.
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If we use Algorithm P2, by Lemma 3.7.2, Step 1 is performed in O(n logm) time. By
Lemma 3.7.3, Step 3 is done in O(n log m) time. Therefore Algorithm QPMAX finds
a point X € P, such that 8(X) is the maximum value of O(x) with respect to Q in O(n
log m) time. Q.E.D.

\loorithm OPMIN: Polygon-Polygon Problem (minimization

Input: A convex polygon Q with n vertices and a convex polygon P that does not in-
tersect Q.

Output: A point Z in P for which the aperture angle 6(2), with respect to @, is mini-
mum.

Begin
Step 1.- Find the partititon of ECT(P)° into chains Ry Ry,..., R,

Step 2.- For each region R, find the diagonal d). = OL(k)B(k) such that the aper-
ture angle function with respect to @ and d, coincides over R;.

Step 3.- For each chain Ry, find X, € Ry such that the aperture angle, with respect
to di, is minimum over Ry,

Step 4.- Exit with X = X;;, where X is such that 8(X) 2 6(X;) for all 1<j < n+m.

End

Theorem 3.7.2: Algorithm QPMIN finds a point Z € P, such that ©(Z) is minimum with
respect to Q in O(n+m) time.

Using Algorithm P1 we may determine the chain ECT(P)¢ and the partition over it in
~ O(n+m) time. Using Lemma 3.6.5 Step 2 is done in O(n) time. Using Algorithm PABMIN
for each chain Ry, of length n;, Step 3 is done in O(n) time. Since there are at most (n+m1)
local minima, Step 4 is done in O(n+m) time. Therefore, Algorithm QPMIN finds a point
Z € P, such that ©(2) is minimum with respect to @ in O(n+m) time. Q.E.D.
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3.8 Lower Bounds

In the previous section we described algorithms for computing the maximum aperture
angle O(X) and the minimum aperture angle ©(Z) with respect to a polygon Q. We present-
ed two algorithms for computing 6(X). One has O(n + m) time complexity and the other has
O(n log m) time complexity. We also determined an algorithm for computing 6(2) in O(n
+ m) time. In this section we show that the complexity of computing 8(2) is Q(max {m,
n}), thus establishing the optimality of our corresponding algorithm. We also show a time
complexity of £2(n) for computing 6(X). We begin by describing a construction that proves
an L2(n) time lower bound for computing 8(X). Then we describe the corresponding con-
struction that shows that Q(n) is a lower bound for computing ©(2). Finally, we describe a
construction proving that Q(m) is a lower bound for computing 8(Z). The lower bounds are
found by considering a linear array representation of P and Q.

For the first construction we have a polygon P whose chain CSS(P) is a segment P1Pa
on the x-axis. The edge pp, of P will contain all the points that determine the partition of
CSS(P). The corresponding polygon Q will be lying on the first quadrant of the x-y plane.
Before building Q consider the family 3 of lines such that its intersection point with the
perpendicular lines through (0, 1) is on the x-axis. Then this family is defined by S = {(x,
y):y=0x- o oo e R} and its envelope is given by a parabola Egq = {(x, y). ¥ =x2/ 4}
(refer to Fig. 3.8.1).

s

y-axis

(0,1);

(c,0) x-ax’;.
Fig 3.8.1
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Using the family $ and its envelope Eg, we present the construction of Q simulta-
neously with the construction of the points that define the possible local maxima for O(x)
over the edge pp, of P in an inductive way. Let gg = (0, 1) be the first vertex of Q. To de-
fine q; we suppose T; = (1, 0) is the point where the aperture angle 6(x) attains its maxi-
mum value over an interval I} = [ry, r5] with respect to the diagonal d; = g ¢1. Then, con-
sider the line L(T)) €3 passing through T} and perpendicular to the line L(gq, T}) which
contains gq and 7. By construction, L(T)) is tangent to the parabola Eqg at the point ¢; =
(2, 1). In this way g is a tangency point between the parabola Eq and the line Z(7}) in g,
and d is defined as gg g;. Since d is parallel to the edge p;p,, defined on the x-axis, the
maximum over pp,, with respect to d; is reached at the orthogonal projection T of the mid-
point of dy on pyp,. This projection of the midpoint of d; corresponds to T;. By Proposition
3.3.1 the maximum over [y is reached at T or an end point of /). Assume that Ty € Iy =[ry,
ry). Then, O(Ty) is the maximum value of ©(x) when x €1}, by construction its value is
/2. Let T, = (2, 0) be the orthogonal projection of g, on the x-axis (see Fig. 3.8.2).

L4
T,  CSS(P)

Fig 3.8.2

Let gy.; be the k-th vertex of Q and let T}, = (2"'1, 0) be the orthogonal projection of
qx-1 on the x-axis. For finding g;, suppose that T} is the point where the aperture angle will
reach its maximum for x € I = [r, r¢ . 1] with respect to the diagonal dj. = gg ¢;. By con-
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struction, there exists a line L(Ty) € 3 that is perpendicular to the line L(gg, 7)) and that is
tangent to Eg at g = (2%, 222, Let Ty, = (2%, 0) be the orthogonal projection of g; on
the x-axis.

Thus, by induction we have determined Q as [gg. g1, 42+ n-1), Where g = (0, 1)
and g; = @, 2% fori=1,..,n-1. Using the above construction we obtain a set of points
which define: 1) a polygon @ = [gg, 41, 42,--» §5.1] Where gg=(0, 1) and ¢; = (2i, 22i'2) for
i =1,.., n-1, and 2) a st of points T}, Ty, Ta,..., T such that T; = (27}, 0) fori =1,..., n-1.

Using this information we will prove the following claims:

1) Qis convex, 2) T; € I; = [r;, r; . 1] where the endpoints r; and r; . | are determined
by vsing the process described in Section 3.5, and 3) T is a point where 8(x) attains its max-
imum value over /;.

Proof of 1) Since [gq, g}, 42,.... 95-1] lie On a parabola, for any pair of consecutive points
g; and g; ,. | their coordinates satisfy

xX= 2 2= Xqandy; = 242 92 = Yisl:

Thus, the vertices g3, ¢3,..., .1 define a dominance relation that yields an order be-
tween the slopes of the corresponding edges of @. Such an order is given by: slope (gg q1)

= 0 < slope (g1 92) < slope (¢ ¢3) <...< slope (qp.2 qn.1)- Therefore, (g0, 910 G2ves Gn-1]
define a convex polygon.

Proof of 2) The next step is to find the partition of pyp,, into intervals Iy, [;,..., I,.;. By using
Lemma 3.5.1 it follows that the diagonal d; = gq g; defines the aperture angle O(x) for

eachx € [;, i = 1,..., n-1. The aperture angle function for the interval I is defined with
respect to the diagonal d, = g1 ¢,.;.

Let O, =(q0, gp-1) and Qp = (41, 42+, gp.1) be the right and left chains of Q respec-
tively. To define the partition over pipp, into intervals Iy, Iy,..., I;, we have to extend
the edges in Q, and Q. First consider the extension of the edge gg ¢,.; to obtain the
set A = {a}. For each edge g;.; q; € Q) consider the line L(g;.;, g;) (fori =2,..., n-1)
to be passing through it. Then such a line is given by {(xy): y- 222 = 3 4283 (x . 21)
and the corresponding intersection point with the x-axis is given by 4;. Thus B = {b,,
by,..., by.2}. Merge A and B to determine R = {ry, rp,..., ryy.1} where r; = (2¢/3, 0) for
i=2,.,n-1and r = (2" /(1-22"%, 0). Therefore, the intervals are defined by:
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_ 2ﬂ—l _ 2""] 22 _ [zi 2£+l] . )
]0 = (-—-OO, W ] 'Il = [l——w,? N I' = 3, —g— f0r1—2....,n 2,

n—1
al’ld Iﬂ—'] = [23

o0 ).

Finally, we show that each point T; previously constructed belongs to the interval J;
fori = 1,..., n-1. Since 2 + 271 €3 ¢+ 271 <22 ¢ 21 then 21 /3 S 271 2R3,
Therefore, T; € I;. By Lemma 3.5.1 for each /; the diagonal d; = gy g; defines the ap-
erture angle for each x € I, in particular forx = T;.y €[; (for i = 1,..., n-1).

Proof of 3) To show that X; = T; is the maximum value O(X;) for x € I; consider an arbitrary
point M between T; and T;yp, ie., M €[27], 2], Such interval is decomposed as
(21, 2i+17 31U [2+1 3, 2%), suppose then M & [211, 21/ 3], By construction, there
exists a line L(M) €3 through M that is tangent to E3 at Xps = (xps, yp) that is also
perpendicular to L(gg, M), i.e., ang(go M Xp) = /2. Let Eg"' ={(xy):y=2 21/ 4} be
the parabola Eq and its interior. Because Eg* is a convex set, the edge g;.,4; is con-
tained in Eq*. Thus X is in the exterior of Q. Then, ang(go M q;) < ang(qg M Xpy).
Since ang(gg M q;) = O(M) and ang(gg M Xjy) = W2 = ang(qq T; g;) = O(T;), then (M)
<O(T)).

The arguments to prove that 8(M) < 6(T;) when M € [27+17 3, 2] are similar. There-
fore O(T;) is maximum over ;. For i = 1,..., n-1 denote by X; = T; the point where the
maximum value 8(X;) is reached in I,

Finally, we show that this example can be modified in order to obtain a unique point

X where the global maximum of 0(x) is attained and that such a point can be located in any
element [; of the partition,

Let g; be any vertex of Q. Since O(T;) = ang(gq T; g;) = T/2, there exists a circle C(gg,
T}, g that is tangent to p p,, for which d; = g ¢; is a diameter. Let ray(T;) be the ray defined
from T; in direction of g;. Rotate this ray in a clockwise direction, with T; as the center of
rotation, by an €-positive angle. Define g;* as ray(T;) M C(qq, T}, q;) (refer to Fig. 3.8.3,
pag. 51). Because C(gy, X;, ¢;) = C(qg, T;, g;*) remains tangent to pyp,, it still defines a
point X; = T’; where the maximum 6(X;) is reached for the interval I; with respect to the new
diagonal d;* = g5 ¢;*. However, d;* = g; ¢;* is not a diameter of C(qg, T}, ¢;*). It is a chord
of C(qq, Tj» ¢;*) that leaves ang(gq T; ¢;*) = O(X;) in the arc(gq, T}, g;*) whose length is less
than 71/2, being 8(X;) > 7/2. Since the vertex has been chosen arbitrarily then 8(X;) can be
reached at any interval.
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Theorem 3.8.1: Given two disjoint convex polygons P and Q, with m and n vertices re-

spectively, computing the maximum aperture angle from P with respect to Q has time com-
plexity £(n).

Then, by Theorem 3.8.1, we state the following corollary.

Corollary 3.8.1: If m = 6(n log m) the algorithm for computing the maximum aperture an-
gle in O(n + m) time is faster that the corresponding algorithm which has time complexity
O(n Yog m). In contrast, when m = Q(n log""e m), for any € > 0, the algorithm whose com-

plexity is O(n log m) becomes faster than the comresponding algorithm with complexity
O(n+ m).

ray(T;)

CSS(P)
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The next part is to show that the minimization problem also has complexity C(n).
The construction of the corresponding example is similar to the construction done to show
Theorem 3.8.1, and is also developed by induction. We now show that for this example
C(n) is a lower bound for the minimization problem. Consider a polygon P lying in the
strip defined by {(x, ¥): 0 €y < 1/2}, whose external chain ECT} (P)° is the segment line p;
P on the x-axis containing all the elements rg, ry,..., r,.1 of the partition R of py p,,.

Consider the family 3 as defined earlier, as well as the construction of gg and g;. De-
note by | the orthogonal projection of the midpoint of gg 41. Let L(r) be the line in S that
defines ;. Then this line passes through | and it is orthogonal to L{gg, r1). The subsequent
vertex of Q, called g, will lie on L(r;) in order to make r; an element of the partition of the
x-axis. Let T be the orthogonal projection of ¢; on the x-axis (refer to Fig. 3.8.4). To locate
gy on L(ry) select an arbitrary point on the x-axis a small distance to the right of 7' and call
it ro. Then, there exists a line L(r)) €3 passing through ry that is perpendicular to L(gg,
ro). Then, qq = L(r1) M L{ry). Consider the circle C(qq, ra, 42). Because 6(r;) = 7/2 then
the diagonal d; = g g, is a diameter of C(gg, 72, 7). By construction ry, ) and g, are colin-
ear and because ang(gg ry q2) = T2 = ang(qg ra q;) then the four points lie on the circle
C(qo. 2, g7)- Note that 8(r|) = /2 is defined by ang(qq ry 41)- Thus, py p,, is intersected
by Clgq, 72, q) at ry and rp which define the interval I; = [ry, ro] in the partition of p; p,,.
Then, 8(r)) = 72 = O(ry) is the value of (Z,) in Iy, Therefore, O(x) is unimodal over /.

To define the k+1-th vertex of Q let g1 be the k-th vertex and let Ty be its orthog-
onal projection on the x-axis. Let r; be any point on the x-axis to the right of T}_;. Consider
the line L(r) €3 passing through ry, and perpendicular to the line L(gq, r). Then, g = L(ry)
M L(ry.1). Because O(ry) = ang(qp ri qp) = T2, then the diagonal dj, = gq ry is a diameter
of the circle C(gg, ry, 7). By construction r4.q, gx.; and g lie on L(ry.;). Since ang(qq 7.1
qy) = T2 it implies that ry| € C(gg, i, gx). Then, the circle C(gy, ry, g;) intersects pyp, =
ECT{P)° at r;.; and ry, which are the endpoints of the interval J. Then ry.; and r; define
the minimum value 6(Z}) in /;.Thus, O(x) is unimodal over I;. Observe that the element rg
in the partition of py p, = ECT(P)° is determinea by the intersection of L(gg, §,..;) With the
x-axis. By the arguments used in the previous example the polygon Q obtained is convex.
By construction the function 8(x) has n local minima whose value is 7/2. Let us show that
this example can be modified to obtain a lower bound £2(n) for the minimization problem,
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C
=r Tl:Tl.-l rp=r; ECT(P)

Fig. 3.8.4

Let ¢; be any vertex of Q to be displaced in order to obtain a vertex ¢;* that defines a
new angle ang(qo r; g;i*) = 6(r;). Such angle 8(Z) = O(r;) will define the global minimum
over the interval I;. Consider the ray(g;.,) from gq;.; towards g;. Rotate this ray by an €-pos-
itive angle counterclockwise by using g;.; as center of rotation (see Fig. 3.8.5). Define ¢;*
as ray(g;.1) N Clgp. iy g;). Then, the new diagonal 4;* = gq ¢;* is no longer a diameter of
Clgo, i g7) = Clag, ri» gi*). In fact, d;* is a chord lying in arc(qg, ry, ;%) of C(gq. 1y ¢*)
whose length is greater than 7/2, Therefore, ang(qq, r;, ;*) is an acute angle. By construc-
tion the value of the other angles remains as 7t/2. Thus, 8(Z) = ang(gq, r;, ;*) is the global
minimum over ECT(P)". Since g; can be any vertex of @, the minimum value of 6(Z) can
be attained in any interval /; in the partition of ECT(P)°. Therefore, with any algorithm for
solving the minimization problem we have to test each interval in order to find the point Z
that defines the global minimum, Then we have proved the following result.
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Theorem 3.8.2: The complexity of computing 6(2) is £ (n).

The following results show that the complexity of computing the minimum value is
€2 (im), thus establishing the optimality of the corresponding algorithm for finding the min-
imum value of O(x).

Theorem 3.8.3: The complexity of computing 8(Z) is Q (m).

Proof: Let Cbe the unitary circle and let g,q, # diameter(C) be a chord of Cin the upper
semiplane defined by the x-axis (refer to Fig, 3.8.5). Place the remaining vertices of
Q on C above the chord g,,q,. Let p,,p, # diameter(C) be another chord of that circle.
Place the corresponding (m -2) vertices of P on C and below p,,p;. Then, the mini-
mum value of 8(x) is attained at each vertex of P. Let T(p;) be the tangent line of C at
p;- Then we can reduce the value of 8(Z) by moving p; in an orthogonal direction of
T(p;) by an €-distance. To maintain the convexity of the polygon it is necessary to
bound € in such a way that the point p; remains in the cone defined by the semiplanes
H(p;.3, pi.1) and H*(p;, |, pi42), Which are also used to define P as an intersection of
semiplanes. Thus, p; defines a smaller angle since it lies in the exterior of C. Because
p; can be any of the vertices of P, we must test each vertex in order to find the vertex
pi that determines 6(Z).

Corollary 3.8.2: The complexity of computing 6(Z) is Q(max{m, n}).
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CHAPTER 4

SOME APERTURE ANGLE OPTIMIZATION PROBLEMS IN3-D

4.1 Introduction

In Chapter 3 we solved the problem of computing the maximum and minimum aper-
ture angles of a camera that is allowed to roam in a convex polygon in the euclidean plane
E2, In this chapter we compute the maximum aperture angle of a camera that is allowed to
move in a convex polyhedron in space.

In the previous chapter we solved some basic problems of aperture angle in two di-
mensions. Following the same procedure in this chapter we solve the following cases: 1)
the camera is allowed to move on a plane, 2) it is constrained to move along a line, 3) the
camera is allowed to move in a convex polygon and 4) it may lie in a convex polyhedron.

4.2 Preliminaries

Definition 4.2.1: A subset K of E is called a polyhedral set if K is the intersection
of a finite number of closed half-spaces, or K = B,

Note that a polyhedral set is a convex set because it is the intersection of convex sets.

As examples of convex polyhedral sets we have the convex polygons in EZ, and the convex
polyhedra in 3.
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A subset F of a polyhedral set K is called a face of K if for any two distinct points x,y
€ K int(xy) M F is non-empty. Actually we have int(xy) C F, since F is convex. A face F
of K is called a k-face if the dimension of F is k. Thus, the O-faces of a convex polyhedron
are the vertices, the 1-faces are the edges, and the 2-faces are the convex polygons that to-
gether form the convex polyhedron.

A setin E3 is a convex body if it is compact, convex, and has a non-empty interior. A
set is a closed convex surface if it is the boundary of a convex body.

Definition 4.4.1: A hyperplane H in El@=2)isa supporting hyperplane to a closed set
$ if H intersects the boundary of S and one of the closed half-spaces defined by H contains

S. Points in the set H M bd(S) are said to be contact or support points of H (with bd(S)),
and H is said to support S at each contact point,

In the particular case when § is a polyhedral set, H is a hyperplane that supports S at
any d -1 face of S. If § is a line any plane containing the line is a support plane. There exists
another concept which involves support planes, a hyperplane separates weakly two sets, K,
and K, if it leaves K in one closed half-space and the other closed side contains Kj. Two
sets are separated by a hyperplane if they are contained in opposite sides.

Let O be a function from E? to E defining the surface determined by the set {(x, , )

€E3:2=0(x,y)and (x,y) &€ E2}. When the domain of 8 is constrained to be a subset S C
E2, we denote it by 0 | 5, and we call it B-constrained.

The circle passing through xy, x5, and x4 is denoted by C(x;, X, x3). If the circle is
determined by the center and the radius we denote it by C(c, R). Normally the interior is not
included when referring to a circle. In cases when the interior is of interest it will be referred
to as a disk Disk(x;, x,, X3). ‘

Consider a given segment ab in the E3anda given angle © ¢ {0, t}. To find the locus
of the points in the euclidean space that define a given angle 0 consider any plane contain-
ing the segment ab and determine the locus of the points in this plane that define 0. Since
the curve defined by such a locus does not change for any of the planes containing ab, the

surface obtained in E that determines the desired locus is obtained by rotating this curve
around L(a, b).
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The locus of the points on a plane containing ab is the union of two arcs of two sym-
metric circles C and C’ passing trough a and b, with L(a, b) as symmetric axis. Observe
that ab is a chord of C and it partitions C into two arcs. Let Cy, and Cg denote these two
arcs, where C; denotes the large arc and Cg denotes the small one. Analogously, ab divides
C' into two arcs C'y and C"g. The locus of points in the plane with a given constant angle
less than 7t/2 is the union of two arcs C; and C’; (see Fig. 4.2.1.a). Analogously, the union
of the arcs Cg and C'g define the locus of points in the plane with a given constant obtuse
angle (see Fig. 4.2.1.b). We will call such loci for different values of O the iso-aperture-
angle contours (IAA contours), Using the observations 2.3.1, 2.3.2 and 2.3.3, any point in
the interior defines an angle larger that the given angle ©, and for any point in the exterior
it defines an angle smaller than 0, Thus, the angle defined by each IAA contour decreases
as the size of the circles defining the corresponding IAA contour increases,

a
a
Cs' Cs
1 b
Fig.4.2.1a Fig. 4.2.1b

As we have mentioned, we obtain the surface in E> that defines the locus of points x
in E3 with an aperture angle O by rotating an IAA contour (contained in a plane containing
ab) around L(a, b). Because such a surface is similar to a torus we call it toroidal lunoid.
Finally, we establish the following proposition to characterize the loci defined by a toroidal
lunoid.

Proposition 4.2.1: The locus of points in E3 of constant aperture angle © consists of an
open line segment ab when 0 = 7. The union of points at infinity and the line through ab
excluding segment ab defines the locus when 0 equals zero. The locus of points in B3 of
constant aperture angle 8 ¢ (0, Tt} consists of a toroidal lunoid defined for the segment ab.
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As a generalization and a consequence of observations 2.3.1, 2.3.2 and 2.3.3, we state
the following proposition.

Proposition 4.2.2: Let T(a, b) be a toroidal lunoid defined for ab, and let X be a point on
bd(T(a, b)). Let Y be any point in E3\ {a, b}. Then:

If Y € ext(T(a, b)) then ang(aYb) < ang(aXb)
If Y € bd(T(a, b)) then ang(aYb) = ang(aXb)

If Y €int(T(a, b)) then ang(a¥b) > ang(aXb)

4.3 The Segment-Plane Problem

The segment-plane aperture angle problem is defined as follows: let ab be a line seg-
ment in E3 lying in one of the open half-spaces defined by a given plane H. Determine a
point X on the plane A such that the aperture angle ang(aXb) = 8(X) is maximum. Without
loss of generality suppose that the given plane H is determined by {(x, y, 2): z=0}.

Using the definition of the locus of the points in the space that have a fixed aperture
angle we are able to solve this problem. The set of points which define the maximum aper-
ture angle ang(aXb) = B(X) has to lie on some toroidal lunoid T{(a, b), with respect to ab,
and simultaneously it lies on the given plane H. Thus, we have to consider the family of
toroidal lunoids T(a, b) such that T{a, b) M H #{J. For the particular case in which in/(T(a,
b)) N H # &, there exists a point Y € int(T(a, b)) M H such that 6(Y) is larger than O(x)
for any point on bd(7(a, b)), by Proposition 4.2.2. Then, these kinds of toroidal lunoids 7(a,
b) which are intersected in their interior by H do not define the set of points X € H for which
the aperture angle ang(aXb) is maximum. Therefore, the only way to define those points is
using toroidat lunoids which are tangent to the given plane H. We say that a toroidal lunoid
T(a, b) is tangent to a plane H (or tangent to a polyhedral set S) if bd(Ta, b)) "NH # &
(bd(T(a, b)) N S # D) and int(T(a, b)) N int{H) = D (inf(T(=, b)) N int(S) = D) using the
topology defined for E3. Observe that under this topology int(H) = . We denote by T*(a,
b) a toroidal which is tangent to H.

!

Lemma 4.3.1: If a toroidal lunoid T*(a, b) is tangent to a plane H at a set of points My C
H, then, My = {X € H: O(X) is the maximum value of O(x) for x € H}.
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Proof: Let T*(a, b) be a toroidal lunoid that is tangent to H at M. Let y € H be any other
point such that y # X for each X € My;. By Proposition 4.2.2 the angle 8(y) is smaller
than O(X) for each X e My. Q. E. D.

The following lemma characterizes the circle whose arc defines the toroidal lunoid

‘which is tangent to H.

Lemma 4.3.2: A toroidal lunoid T*(a, b) determines the set of points My = {X € H: 8(X)
is the maximum value of O(x) for x € H} if and only if it is generated by an arc defined by
a circle C(a, b, X) where X is the point where the maximum is attained for 8(x), when x is
allowed to move on a line L(H, H‘L) for some plane F* which is orthogonal to H and that
contains ab.

Proof: =>) Foreach X € My there exists a unique plane H(a, b, X) that intersects T*(a,
b) in an JAA contour. Such contour is defined by a circle C(a, b, X) which is con-
tained in H(a, b, X) and is tangent to A at X. In particular, it is tangent to the line L
defined by intersecting A and H(a, b, X). Because this line and the circle C(a, b, X)
lie on the same plane, H(a, b, X), its vector radius ry is perpendicular to L, Then ry is
a normal vector for the plane H. Thus H and H{(a, b, X) are orthogonal planes, i.e., H+
= H(a, b, X) and L is the intersection set between the planes H and HJ‘. We denote in
this case L by L(H, H'L). Then it follows that there exists a circle C(a, b, X) that is
tangent to L = L(H, H'L) and contained in a plane H'L = H(a, b, X) orthogonal to H.
Since X €L(H, H‘L) is a point where O(x) is maximum for all x € H it follows that
O(X) is maximum when x € L(H, HJ'). Therefore, O(X) is the maximum for the Line-
Segment problem in H-.

<=) Let X be the point where 0(x) attains its maximum value 6(X), when x is allowed
to move on L(H, Hl). This point is determined by the circle C(a, b, X) g1 that
contains a, b and that is tangent to L(H, H‘L) at X, Let 7*(a, b) be the toroidal lunoid
obtained when the corresponding tangent arc of C(a, b, X) is rotated around L(s, b).
Note that the path followed by each point x € C(a, b, X) during the rotation around
L(a, b} is a circle (see Fig. 4.3.1). This circle has center at the orthogonal projection
d(x) of x on L(a, b) and has radius r = llx - d(x)ll;, where Il Il denotes the euclidean
norm. Denote that circle by C(d(x), r). We claim that T*(a, b) is tangent to H at X.
To prove this claim suppose H intersects the interior of T*(a, b). Then there exists a
point x € C(a, b, X) such that C(d(x), 7) is intersected by H in a segment XX, C H
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Mint(T(a, b)) which defines a chord of C(d(x), 7). Such a chord intersects L at a point
Xy € XX, C int(T(a, b)) such that 8(Xg) > O(x), by Proposition 4.2.2. Because 6(x)
= 0(X) it follows that G(XO) > 08(X), which is a contradiction. Q. E. D.

Fig. 4.3.1

The most important consequence of this lemma is that it provides a characterization
of a circle that defines T*(a, b).

We note that for each X € M there exists a plane defined by a, b, and X. This plane
intersects T*(a, b) in a IIA contour. Such a contour is generated by a circle C(a, b, X) that
is tangent to H at X and contained on a plane which is orthogonal to H. Then, the vector
that defines the radius r¢ = ¢ - X of C(a, b, X) is perpendicular to H, and the center ¢ of that
circle together with the set of points a, b, and X lie on the same plane. Thus, the center of
C(a, b, X) satisfies the following properties:

d%(e, a) = d(c, b) (1)

d¥(c, ) = d¥(c, ) or d¥(c, x) = d¥(c, b) forx€H  ..(2)
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<c-x,v>=0forall vectorve H .{3)
det(a,b,c,x,1)=0
xEH w(4)

For some particular cases it is not needed to solve the system determined by these
conditions. When the segment ab is parallel to H the maximum value of 0(x) is reached at
a unique point which is the projection X of the midpoint of ab on the line L = L(H, H™).
This line is obtained by intersecting the given plane H and a plane H‘Lcontaining the given
scgment ab and orthogonal to H. If the segment ab is parallel to z-axis, we can suppose ab
is on the z-axis. Leta=(0, 0, a3) and b = (0, 0, b3) be the end points of the segment ab. The
line L(H, HJ‘) is defined by the y-axis. By Lemma 3.2.1 there are two points ¥} and Y,
where the maximum aperture angle reaches its maximom value with respect to ab (see Fig.
4.3.2, pag. 62). In fact these two points are symmetric with respect to the z-axis. Let C(a,
b, ¥;) and C(a, b, Y5) be the two tangent circles to the y-axis that define the points ¥} and
Y,. Without loss of generality suppose the large arc of C(a, b, Y)) is rotated around the z-
axis in order to obtain T*(a, b). Then the path followed by Y is the circle C(0, R), and T*(a,
b) is tangent to H at C(0, R). By Lemma 4.3.1, My = {X € H: X € C(0, R)} = {X € H: 6(X)
is the maximum value of 8(x) for x € H}.

From the last analysis follows the following proposition.

Proposition 4.3.1: The set of tahgency noints My between T*a, b) and H is determined
by:

a) a unique point X if ab is parallel to H, ot

b) a circle C(c, R), if ab is perpendicular to H, with center c at the orthogonal projec-
tion of ab on H and radius R = lic - Xll, or

c) a unique point X when ab is neither parallel nor orthogonal to H.
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N

C(a, b, Yz)
C(a,b, 1))

VETITIP PP aas,

Fig. 4.3.2

Lemma 4.3.2 allows us to characterize the global maximum of 6(x), but it does not
provide information about the number of possible local maxima. For the segment-line prob-
lem in two dimensions this information was found by using the fact that O(x) is a bimodal
function. However, there is not a concept of a function k-modal when the function is de-
fined from E° to E. Nevertheless, we can develope a geometric analysis using the toroidal
lunoids. By Lemma 4.3.2 the toroidal lunoid that defines the set of points My, is gererated
by a circle C(a,b) C H' that defines a pointin X € L(H, HJ‘), which is also the solution to
the segment-line problem on the plane HE If ab is nor-perpendicular to H, by Lemma
3.2.1 there exists other ciccle C*(a, b) C H‘L (containing a and b) which is tangent to L(H,
H'L) at some point X', Then, the IAA contour generated by C'(a, b) intersects L(H, H"‘) at
two different points. Furthermore, the path followed by X' after the rotation is a circle that
is totally separated from C’(a, b) by [ Then, the toroidal lunoid 7’(a, b} generated by the
circle C'(a, b) is intersected by the plane H in its interior, Hence C’(a, b) is a circle satis-
fying conditions (1) to (4), however it does not define a local maxima for the aperture angle
function O(x) for x € H.
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4.4 The Segment-Line Problem

Let ab be a line segment in E3 and given a line L in E? that does not intersect ab. The
segment line aperture angle problem is to find a point X on the line L such that the aperture
angle ang(aXb) = 6(X) is the maximum value of 8(x) = ang(axb) for x € L. In this case we
denote the aperture angle function by 6 | L. Without lose of generality suppose L is the x-
axis.

Using the same idea as in Section 4.3, the set M; = {X € L: 8(X) is the maximum
value of 01 L} is dcfined by the tangency points between a toroidal luncid T*(a, b), defined
for ab, and L. The following result characterizes the set of circles which can define the to-
roidal lunoid that is tangent to the given line L.

Lemma 4.4.1: The set of tangency points M; between 7*(a, b) and L are determined by
rotating a circle C(a, b) (containing a and b) which satisfies: a) C(a, b) is tangent to L at X
and b) its vector radius ry = ¢ - X is orthogonal to the director vector of L.

Proof: Let a=(a,, as, a3)and b= (b}, by, b3) be the coordinates of a and b respectively.
Let ¢ = (h(x), k(x), I(x)) be the center of a circle C(g, b, x) that contains a,band x =
(x, ¥, 2). To find the point X where the maximum value is attained cunsider the family
of circles C(a, b, x) which are tangent to L = {(x, ¥, 2): z=0 and y =0} at x, then these
circles satisfy:

d*(a, ¢) = d*(b, ¢)
d¥(a, ¢) = d¥(x, ¢) or d(b, ¢) = d(x, ¢)
XeEL

The first equation denotes the set of points which are equidistant from a and b, i.e., it
represents the equation of a plane whose normal is defined by ab. This plane contains
the midpoint of ab, Then it can be rewritten as:

<a-b,e>=(lal,2- bl /2 (1)
Analogously the second condition is a plane represented by the equation:

<a-x,c>=(lal?-lxl,%)/2 w(2)



CHAPTER 4 APERTURE ANGLE OPTIMIZATION PROBLEMS IN 3-D 64

The meaning of the last condition is that x = (x, 0, 0). By Lemma 4.4.1 we must rep-
resent a condition of orthogonality between the vector radius ry = ¢ - x of C(a, b, x)
and the vector (1, 0, 0), which is the direction of L. This condition is:

h=x «(3)

Finally, since C(a, b, x) is determined by a, b and x, its center ¢ belongs to the plane

defined by these three points, i.e., the four points (8, b, x and ¢) are coplanar, This
condition is stated as follows:

det(al,bl,el,x1)=0 w(4)

We first solve the system of the two lincar equations for k and /, defined by the equa-
tions (1) and (2). The sofution of that system yields to an expression of the two vari-
ables as a function of x, i.e., k = k(x), and ! = /(x). The corresponding solution is:

(@ —b) (Ib12a, —lalby )
k(x) = —%{__3_2.3_x2+ (a,by ~azb) X+ —2 5 23 )

and

1, (a-b,)
1) = g {—5—¥"+ (a;b,~a b)) x +

(Ibl2a, - lall3b, ) )
2

where A = a,(a,—-b,) —a,(a;~b3) #0,ifand onlyif ab and L are non-copla-
nars, in which case the solution is found by using the LABMAX algorithm. This algo-
rithm is described in Sec. 3.2.

Condition (4) is represented as:

@ 4, a3 1 a, a; 1 a, a, a,

det|P1 02831} = _ yger b, by 1 +derblb2b3 =¥ =0
k k11
£ 001 k11 h k1

By evaluating each of these determinants we obtain an expression for ‘¥ in terms of
kandl.

¥Y = [(az—bz)l— (03"'b3)k ]x+ (albz"azbl)l"' (alb3-asbl)k
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This expression yields a polynomial equation of degree three for ‘¥ = W(x) in the
varicble x, because k(x) and /(x) are polynomial equations of degree two in x.

¥(x) = 2iA(((a3—b3)2+ (a,-b)H e +
3[(a3~b;) (a,by—b,a3) + (a3 —b, ) (a;b,—b,a,) 15% +
(2(ayby - baz)? + (Ibl2a; —lial2by) (a3-b3) +
2 (ayb, - b,a,)*+ (Ibl2a, - llali2b,) (ay—by) )x +

(a,b5—b,ay) (Ibli2a;~llal3b,) + (a,by - byay) (IbliZa, — lal3b,) )
Let A, B and C be defined as follows:
A = (ay-by) 2+ (a—b,)?,
B = (a3-by) (a\b;—-b,a3) + (25~ by) (a;b,-b,a;) ,
C = (2(ayby-byay)* + (Ibl2a;~lallb,) (a;-by)) +
(2 (ayby~ba) 2 + (Ibl13ay ~ llali3b,) (a,—b,))
and D = (a,bs~b,a3) (Ibl3ay - lall3b;) + (@b, —byay) (I1bl3a, —llal3by) .
Thus, the cubic equation for W(x) is expressed as:
o5 (AX +3B2% 4+ Cx+D) = 0

Let uy = (x - a) and uy = (x - b) be the vectors which are used to define the aperture
angle as:
u-u

8(x) = acos ——r—"—
[ ]lfvell,
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The critical points of a real functior, in particular for the aperture angle function, are

obtained by solving the equation defined by setting its derivative equal to zero, i.c.,

de—d(acos-——ul'uz )-0 The corresponding derivative is gi
dg-4a = 0. ponding derivative is given by the
dx - dx{ " fuyl,]uy,

following equation:

i(acos U, )=_ VLS d %1t

dx o]l [l v, J"“l”i”“z”g‘ (u,- uz)zdx"u, ALY

1
P22 )2~ Gy )

~3(a, +b) &+ (lal3+1Ibl3+4a,b) x - (lal3b, +Ibl2a,) )

{(#~ (a,+b) +a-b) (2x°

—[x* -2 (a, +b) x> + (lal} +IbU3 +4a,b,) x* ~2 (lall b, + I bl2a,) x
+ (lal3Ibi3) 1 (2x— (@, +b;)) }
Thus, the following factor must be equal zero:
{ (X~ (a;+b)) +a-b) (28°-3(a, +b)+ (lal?+ b3 +4a,b,) x
~(lal3b, +Ibl2ay) ) = [x*-2(a,+b,) 2’ + (lal3+Ibll; +4a,b)) 5
~2(llal2b, +Ibl2a,) x+ (laldibl3) 1 (2x- (a;+b)) } =0
This expression is reduced to a cubic equation in the x variable,

[2(a-b) + (a,+b)? - (lald+1bI2+4a,b) 18 +

3[(lall3b, +Ibli3a,) - (a;+b)) (a-b) 15+

[(lal?+(b1%+4a,b,) (a-b)
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— (lali2b, + Ibli2a,) (a, +b)) =2 (lal3IbI3) 1x+
[halZibh2 (a, +b,) - (1ali3b, +iiblZa,) (a-b)]
Let o = [2(a-b) + (a;+b;)* — (lal3+[bl3+4a;by) 1,
B = (lal3b, +Ibii3a,) - (a,+b)) (a-b),
y= (lal?+1bl2+4a,b,) (a-b)— (lal3b, +IbliZay) (a,+b) -2 (lal3ibl)

and A = llal2Ibl2 (a, +b,) — (Ial3b, +}Ibl3a,) (a-b) be the coefficients of
the cubic equation (ouc3 + 3Bx2 +1vx+A) = 0. Then, after some algebraic manipu-
lations in the coefficients of (Ax3 +3Bx®+Cx+ D) = 0 it follows that 0t = A, B =
B,Y=Cand A=D.Q.E.D.

Note that the aperture angle function may be non-differentiable in the set of points

where the denominator of d%e is zero, i.e., where (||ul||§||u2]|§ - (u;:u,) 2) is zero. In

fact it is non-differentiable at the intersection point between the given line L and the line

L(a, b), as a consequence of Lemma 3.2.2.

The most important conclusion of Lemma 4.4.1 is that using our formulation we solve
a problem, which can be solved with optimization tools, by using geometric arguments.
This allows us to use the model of computation that we have defined in Section 2.2 to obtain
an exact solution.

The solutions of an equation of degree three are given by Cardan’s formulas [Us48).
We describe these formulas in the Appendix. Since Lemma 4.4.1 states the equivalence of
the two cubic equations, (ax3 + 3]3):2 +yx+A) = 0 and (Ax3 +3Bx*+Cx+D) = 0
which represent the solution of the segment-line problem in three dimensions, the solution
of one or the other is the same. Then we refer to the solution set for both equations as x;,
X2 and X3,
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If the solution set has three real roots (x1, x5 and x3) then define X = (x), 0, 0), X; =
{x3, 0, 0), and X3 = (x3, 0, 0) as the critical points, or the points on the line L which are
candidates to define the maximum value 6(x). To find which point yields a maximum value
can be done by evaluating 0(x) at each of these points and considering the largest value as
the maximum value of OiL. In this case, one of those points is the global maximum X of
1L, the other two points can correspond to local maxima or to saddle points of OLL, or min-

ima. If there exists a unique real root X, it determines the point where the maximum value
is reached.

rith . ST

Input: A given line L = {(x, y, 2): z =0 and y = 0} that lies on the plane H = {(x, y, 2):
z = 0}, and the coordinates of the endpoints of ab. The segment ab is non-or-
thogonal to H and it lies in one of the open half-spaces defined by H.

Output: A point X where 6(X) is maximum,
Begin

Step 1.- Determine the point Y where the aperture angle is maximum when x is al-
lowed to move on the plane H.

Step 2.- Test whether L contains Y:
IfY eLthenexit withX=Y.
else
Find A, if A =0 then call LABMAX algorithm,
eise
Let {X), X5, X3} be the corresponding critical points.
Exit with X such that 8(X) = max{0(X,), 6(X,), 6(X;3)}

end

Theorem 4.4.1: Algorithm SLNO finds in constant time a point X € L where 0(X) is the
maximum value of 0(x).
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o Proof: The solution of the segment-plane problem is done in constant time using the LA-
BMAX algorithm (Sec. 3.2) on L(H, H'L). Therefore Step 1 may be done in O(1) time.
To test if Y € L can be done in constant time. Since the algebraic expression for A is
deterrnined by sums, differences, products and divisions, to find it is done in O(1)
time, as well as the call to LABMAX algorithm. Evaluating 0(X;) is done in constant
time. The comparison between the possible values of O(X;) is done in O(l) time.
Therefore, MLNO algorithm finds in constant time a point X € L where 6(X) is the
maximum value of 01 L. Q. E. D.

4.5 The Segment-Segment Problem

Let ab be a segment in E3 and let ed be a segment such that ed M ab = . Find a
point X in the interval I (defined by ed) where the maximum value is reached for O(x) when
X € 1. We denote in this case the corresponding function by 0117,

Since the segment is contained on the line L(e, d) defined by the two end points of ed,
we can express it as a closed interval [ = [e, d] < L{e, d). Without loss of generality we
assume that L(e, d) M ab = @, If L{e, d) M ab #* J, the four points a, b, d, and e lic on a
plane and we solve the corresponding problem (Segment-Segment, Sec. 3.3) on a plane.

As in the previous cases, the set of points where the maximum value is attained for
Ol ed is determined by the tangency points between the segment ed and a toroidal lunoid
T*(a, b). The tangency set between ed and the toroidal lunoid T*(a, b) can be realized at
one of the endpoints of ed. Then, the maximum value can be defined by e or d, or by one
of the critical points for 0 { L(e, d). Let X, X5, and X, be the critical points for 8 | L(e, d).

Lemma 4.5.1: The function 0 | I reaches its maximum value at one of the endpoints of / or
at one of the points {X;, X5, X3} which define the critical points for O | L(e, d).

Proof: Let Y =X be the point that defines the solution for the corresponding Segment-
Line problem. If Y €/, then X =Y is the solution. Otherwise X lies at one of the points
in the set {X,, X3, ¢, d}.
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Algorithm SSNO: Segment-Segment Problem

Input: A segment ab in E? and a closed interval I=[e,d] C H, suchthatabn /=&
and ab N H= .

Output: A point X such that 8(X) = ang(aXb) is maximum when x is allowed 10 move
onl.

Let Y = X, be the point where 81 L{e, d) reaches its maximum value.
IfY elthenexitwithX =Y,
else
Exit with X such that 8(X) = max {6(X»), 8(X5), 6(d), 6(e)}.

Theorem 4.5.1: Algorithm SSO finds in constant time a point X €/ where 0 | / attains its
maximum value.

Proof: Find the point Y where 0| L(e, d) attains its maximum value in constant time us-
ing SLNO algorithm. The test to find out if Y belongs to the interval is determined in
O(1) time. Finding the corresponding values of 0(X,), 8(X3), 6(d) and O(e) is done
in constant time. The comparison between these four values is also done in O(1) time.
Therefore, algorithm SSNO finds in constant time a point where 0 |/ attains its max-
imum value. Q. E. D.

4.6 The Segment-Convex Polygon Problem

Let ab be a segment in E? and let P be an n-convex polygon in E? not intersccting ab.
Suppose the polygon is stored in an array. Determine a point X € P such that 8(X) = ang
(aXb) is the maximum value of O(x) when x € P, in this case we denote the aperture angle
function by O | P.

We develop this section by cases, when ab is orthogonal to H O P and when it is not.
Assume that P lies on the plane H = {(x, y, z): =0} and that the segment lies in the open-
upper-half-space defined by H. If H M ab # & then the solution set lies on the boundary
of P. Thus, we also analyze the particular situation in which x is constrained to roam on the
boundary of P.
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First we prove a basic lemma that will be used frequently, which concerns the deter-
mination of whether a given point lies in the interior of a given n-convex polygon in O(log
n) time. It is well known that given an n-convex polygon stored in an array, it is possible to
construct from it a data structure, in O(n) time and space, such that subsequently point in-
clusion queries can be determined in O(log n) time. Two such data structures are star-
descomposition {PS88] and the balanced hierarchical decomposition [Me84], We strength-
en these results for a polygon stored in a simple array.

Lemma 4.6.1: Given an n-convex polygon P in E3 stored in an array and given a point g,
finding whether g lies in P can be determined in O(log n) time.

Proof: Let L; and Lg denote the vertical lines through the left-most and right-most
points of P. These points partition P in two convex chains Py, and Py, respectively. If
q lies to the left of L; or to the right of Ly, then g does not lie in P. Suppose c lies in between
Ly and Lg. Perform binary search among the x coordinate of the vertices of P,, to locate ¢
within aslab determined by an edge of P,. Find the intersection points of the vertical pro-
jections of p; and p;,, onto Py, and call these points z; and z5. Perform again binary
search on the section of Py,,,, that lies between 2) and 2, to locate g inside a slab deter-
mined by an edge of P,,,,,. If ¢ lies between two edges then it lies in P, otherwise it lies
outside P. The correctness is immediate. By using Chazelle and Dobkin [CD87}, the lines
Ly and Ly, as well as the intersection points z; and z; can be found in O(log n). Q. E. D,

We turn now to the problem of finding a point in the set Mp = {X € P: O(X) is the
maximum value of 0 | P}.

The segment ab is orthogonal to P

Let C(c, R) be the solution for the segment-plane case and let M* = P M C(c, R).

Lemma 4.6.2: Let ab be a segment which is orthogonal to the plane H and let x be a point
on the plane constrained to lie in a polygon P. Then computing a point X € P such that
O(X) is maximum has time complexity ©(r).

Proof: First of all we have to verify whether M* is empty or not. In order to obtain an
answer, we test if bd(P) M C(e, R) is empty or not by verifying if each edge of P in-
tersects C(e, R). If bd(P) N C(c, R) # D then the intersection points on C(c, R) de-
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scribe all the arcs of C(c, R) that form Mp = M*. Thus, any point in the intersection

set M* defines the maximum value. Hence, assume C(e, R) does not intersect bd(P).
Three cases arise:

Case 1) If C(c, R) is contained in the interior of P. Then, M* = C(¢, R) is the solution
set M.,

Case 2) If P is totally contained in the interior of C(c, R), then M* = &. The solution
is a vertex and it is determined by the furthest point of bd(P) from c.

Case 3) If P and the disk defined by C(e, R) are disjoint sets, the solution is deter-
mined by computing the nearest point of the boundary of P from c.

Consider the complexity of this construction, To verify the intersection of each edge
of P with C(c, R) is done in O(n) time for all edges. To distinguish between the three
cases, i.e., to determine whether C{c, R) lies completely inside or outside of P, it suf-
fices to take any point on C(c, R) and test it for inclusion in P (by Lemma 4.6.1) this
can be done in O(log n) time. Finally to test whether P lies completely inside or out-
side of C(c, R), it suffices to take any vertex of P and test it by inclusion in C(c, R),
which can be done in constant time, In case 2) the furthest point of bd(P) from ¢ may
be computed in O(n) time by using Algorithm SSO in the n edges. In the latest case
the nearest point of the boundary of P from ¢ can be computed in O(log n) time with
the algorithm of Edelsbrunner [Ed85]. Therefore, O(n) suffices for the entire algo-
rithm. Since the problem of computing X € P such that (X) is maximum is equiva-
lent to computing the maximum distance from a point to a convex polygon in the

plane, and the latter problem has complexity {2(n) [Ed85], the lemma follows. Q. E.
D.

The following algorithm finds a point X € P such that 6(X) is the maximum value of
O | P, its time complexity and the correctness of the algorithm follows from Lemma 4.6.2.

Algorithm SPQO: Segment-Polygon Problem Orthaogonal Case

Input; A convex polygon P on a plane H that is stored as an array. A segment ab that
neither intersects P nor H, and is orthogonal to H.

Output: A point X such that 8(X) is the maximum value of 6 | P,

Begin
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’ Step 1.- Solve the problem when x is allowed to move en H. Let C(c, R) be the solu-
tion set.

Step 2.- Test whether C(c, R) intersects P.
If C(e, R) M bd(P) # & then exit with X = Y € C(c, R) N bd(P) # .
else
Test whether C(c, R) C P, C(¢c, R) D P, or Disk(C(c, R)) NP # .
If C(¢, R) < P then exit with a point X € C(c, R).

If C(c, R) D P then exit with a vertex p* in P such that ll p*- cll; =
max {llp;- clly: p; is a vertex of P},

If Disk(C(c, R)) M P # 0 then exit with a vertex p* in P such that
p*- clly = max {lip;- clly: py is a vertex of P}.

End

Lemma 4.6.3: Let ab be an orthogonal segment to the xy-plane (and above it). Then com-
puting a point X € bd(P) such that 9(X) is the maximum value of 9 | P has time complexity
O(n).

Proof: If P is totally contained in C(c, R), or if Disk(C(c, R)) N P # &, or if bd(P)
intersects C(c, R) we proceed as in Lemma 4.6.2. Suppose C(c, R) is totally contained
in P. The solution point may be found by computing the nearest point of the boundary
of P from ¢. Then, we can test every edge of P to find the point that minimizes the
distance. Therefore, O(n) suffices to find a point X € bd(P) such that 8(X) is the max-
imum value of © | P. To show that the lower bound on the time complexity is £(n) it
suffices to build a convex polygon obtained by pulling an arbitrary vertex of a regular
convex polygon contained in P. Then, every edge must be visited to ensure that any

point in {X € bd(P): O(X) is the maximum value of 8 P} is not missed in the search.
Q.E.D.
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The segment ab is non-orthogonal to P

We turn now to the problem of computing a point X € P such that the aperture angle
function evaluated at this point brings the maximum value of 0 | P when the given segment
ab is not orthogonal to H. In order to characterize the solution and to find the method of
solution, we use the results found for the segment-segment case.

Lemma 4,6.4: Let ab be a non-orthogonal segment to the xy-plane (and above it). Then
computing X € P such that 6(X) is the maximum value has time complexity ©(n).

Proof: By Corollary 4.3.1 the solntion for the segment-plane problem is determined by a
unique point X. Testing whether P contains X is done in O(logn) time by using Lem-
ma 4.6.1. If P contains X the solution for 0 | P is X itself. Otherwise, the solution can
be found by determining the maximum value for each edge in P and defining X as the
maximum over all these local maxima. Finding the maximum value in a set of n val-
ues is performed in O(n) time. Then, computing a point X € P such that 8(X) is the
maximum value has time complexity O(n). Since we are considering as evaluation of
the algorithm the time complexity in the worst case, the lower bound used when ab
is perpendicular to P is also valid in this case. Q. E. D.

By Lemma 4.6.4 we may obtain the following algorithm whose time complexity is
O(n).

In the instance where x is constrained to be in the boundary of P, if H M ab # &, the
interesting case is when the maximum is attained in the interior of P. However, this prob-
lem can be solved by finding the points where the maximum value is reached for each edge.

Then, the the global maximum is attained in the point that defines the maximum value over
the set of local maxima.

PNO: nt- -

Input: A convex polygon P on a plane A stored as an array, A segment ab that neither
intersects P nor H and that is non-orthogonal to H.

Output: A point X in P such 6(X) that is the maximum value of 6 | P.

Begin
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Step 1.- Solve the problem when x is allowzd to move on H. Let Y be a point where
the maximum is reached.

Step 2.- Test whether Y is in P.
IfY€ePthenexitwithX=Y.
else

Find a point Y; for each edge ¢; in P such that 6(Y;) is maximum and
exit with X = Y*, where 6(Y*) = max{6(Y)].

End

4.7 The Segment-Convex Polyhedron Problem

Let ab be a segment and let K be a convex polyhedron in E2 not intersecting ab. De-
termine a point X € K such that 8(X) = ang(aXb) is the maximum value of 6(x) forx e K.
In this case the aperture angle function is denoted by 6 | K. We assume that the polyhedron
is represented in the form of a double-connected-edge-list (DCEL). This is a data structure
used to represent planar graphs, and since a convex polyhedron is isomorphic to a 3-con-
nected and planar graph (Steinitz's Theorem, refer to [BL91]), the corresponding structure
may be used to represent a convex polyhedron. There is a brief description of such a struc-
ture in {PS88). This structure is implemented by using six linear arrays. Thus, it corre-
sponds to the data structure used to represent convex polygons in the previous section.

First of all we state that the maximum value must be attained at some point in the
boundary of K. For each point y in the interior of K the rays that define the aperture angle
ang(ayb) intersect the boundary of K. Then, it is possible to determine a point x in bd(K)
such that ang(axb) is bigger than ang(ayb).

Lemma 4.7.1: The maximum aperture angle ang(aXDb) is reached at a point X in bd(K).

It turns out that we can restrict the set of points in bd(K) to a subset. This subset is
characterized as the set of points x in bd(K) such that int(xc) does not intersect the interior
of K for each ¢ in ab. In fact, it is the set of points from which ab is visible.
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Lemma 4.7.2: The maximum aperture angle ang(aXb) is reached at a point X in bd(K)
such that ab is visible from X.

Proof: Lety be a point that does not see ab. Then, there exists a point ¢ in ab such that
the segment yc intersects the interior of K. Thus, this segment not only intersects the
interior but also the boundary of K. Therefore, there exists a point x in bd(K) such
that the segment xb does not intersects the interior of K. Then, ang(axb) is bigger
than ang(ayb). Thus, for each point y that does not see ab there exists a point x which
sees ab and whose aperture angle ang(axb) is bigger than ang{ayb). Q. E. D.

Let Vi(ab) be the set of points in K which can see the complete segment ab, To char-
acterize this set consider for each 2-face Fo(i) (i = 1,..., fz where f, denotes the number of
2-faces) in K the support plane H(F5(i)). If H(F5(i)) separates ab from K, or if ab and K
are weakly separated by H(F,(i)) then H(F5(i)) separates K\ F(i) from ab, or from ab\{c},
where ¢ denotes one endpoint of ab. Thus, in either case the interior of K is separated from
ab for each one of those planes, and for each point x in each face F5(i) it sees ab. Therefore,
if H(F(i)) separates ab from K, or if ab and K are weakly separated by H(F5(i)), F4(i) is
a subset of V(ab). In this way, Vk(ab) is the union of 2-faces Fo(i) in K which are sepa-
rated or weakly separated by a support plane of K at Fo(i).

Consider now the complexity of computing for a given line segment and a convex
polyhedron, which is disjoint to ab, the set Vi (ab). If we concider a more general problem
where the segment ab is replaced by another convex polyhedron, Vg (ab) may be obtained
by computing all the separating planes between the two convex polyhedra. Davis [Da85)
used a projective transformation to convert this problem to a convex hull problem of two
disjoint convex polyhedra. Then by using this transformation our problem is solved in O(n)
time, since finding the convex hull of two disjoint convex polyhedra is performed in O(n)
time. However, because we consider a segment ab instead of a convex polyhedron, the pro-

Jjective transformation is dispensed. For this special case the corresponding algorithm is a
simpler one and has time complexity O(n).

Lemmia 4.7.3: Given a line segment ab and a disjoint n-convex polyhedron K stored in a
DCEL, the region Vi(ab) may be computed in O(n) time.

Finding the point where the maximum value is reached for © | Vk(ab) is done in
linear time with respect to the number of edges for each face in Vk(ab). Then, the maxi-
mum value over V(ab) is computed in O(n) time.
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Lemma 4.7.4: Given a line segment ab and a disjoint n-convex polyhedron K stored in a
DCEL, € | K may have {2(n) local maxima.

Proof: Let the line segment ab be positioned vertically over the origin of the xy-plane.
Let C(0, R) be the circle centered at the origin which is the solution for the segment-
plane problem (see Fig. 4.7.1). Such a circle will contain a convex polygon P in its
interior which is constructed as follows. Consider the concentric circle C(0, €) to C(0,
R) which radius is €, for an €-small positive value. Let C(0, R - €) be the concentric
circle to C(0, R) which radius is smaller than R (by an €-small positive value). Let
P1P, be a line segment parallel to the y-axis such that p; lies on the circle C(0, R - €)
and in the first quadrant. The other point, p,, also lies on C(0, R - €) but it is in the
fourth quadrant. Place the set of points ps,..., p,.1 in clockwise order on the portion
of C(0, R - €) which lies to the right of the line y = € on the xy-plane. Then the polygon
P mentioned earlier lies in the interior of C(0, R) and is defined by [p1. P2+ Py-1s Pr)-
Because each edge p;p;,.; (subindex addition is done modulo n) lies on the Disk(C(0,
R)) defined by C(0, R), the line L(p;, p;, 1) leaves the remaining vertices in one of the
semiplanes defined by L(p;, p;,.1), being P a convex polygon. The value of € has been
chosen in such a way that for the vertex p; the cone defined by the semiplanes H+
( Pi-2s pi1) and HY(p;,1 Pi42), Which are used to define P as a finite intersection of
semiplanes, minus the Disk(C(0, R)), is non-empty. Let s be a point in the lower open
half-plane defined by the xy-plane and whose orthogonal projection on the xy-plane
is in the interior of the polygon defined by P. This point is placed in an £-distance
from the xy-plane. Then, the convex polyhedron is built by joining s to each vertex in
[P1: P2+ Py-1+ Py). Since s lies in the exterior of a convex polygon (which is a poly-
hedral set) when s is connected to P, the new polyhedral set is a convex polyhedron.
Observe that P is the set V(ab). By Lemma 4.7.2 the maximum value is attained at
some point lying in P, i.e., finding the maximum value of 6(x) when x is allowed to
move on K is reduced to computing the maximum value of O | P. This is equivalent
to finding the maximum distance on the xy-plane from the origin to P. In this partic-
ular case such a distance is determined by each vertex of P, and any vertex of this
polygon can be moved in the orthogonal direction by an €-distance in order to obtain
one global maximum. Because the vertex to be moved has been chosen arbitrary the
algorithm to determine the maximum distance from a point to a convex polygon has
to visit each vertex of P. Therefore, 0 | K may have {(n) local maxima. Q.E.D.
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Ay

Fig. 4.7.1
As a consequence of lemunas 4.7.3 and 4.7.4 we state the fbllowing theorem.

Theorem 4.7.1: Given a line segment ab and a disjoint n-convex polyhedron K stored in a
DCEL, 9(X) = ang(aXb) may be computed in optimal ©(n) time.
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CHAPTER 5

CONCLUSIONS

In this thesis we considered the problem of computing the aperture angle of a camera
that is allowed to travel in a convex region in the plane and is required to maintain some
other convex region within its field of view at all times. We present an O(n + m) time algo-
rithm for computing the minimum aperture angle with respect to a convex polygon Q when
x is allowed to vary in a convex polygon P (n and m are the number of vertices, respective-
ly). We also present algorithms whose comgiexities are O(n + m) and O(n log m) for com-
puting the maximum aperture angle with respect to @. Thus, when m = o(n log n) the first
algorithm is faster than the second one. However, if m = Q(n log’ *+€n), for any £>0, the sec-
ond one is faster. Finally, we prove an Q(n) time lower bound for the maximization and
minimization -problems, and an Q(m) time lower bound for the minimization problem.

Thus, the corresponding algorithm for the minimization problem is optimum.

In three dimensions we find the solution to the following problem: Given a convex
polyhedron K and given a segment ab that does not intersect K, find a point X € K such
that the aperture angle defined as ang(aXb) is maximum. Note that the corresponding ap-
erture angle is defined as in the two dimensional case. We present a solution whose time
complexity is linear with respect to the number of edges of K, i. e., it is O(n) if the corre-
sponding convex polyhedron K has n vertices. We prove an £2(n) time lower bound in order
to prove the optimality of our algorithm,
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To solve the problems defined in this thesis there exist many optimization techniques,
then the reader may be interested to know why we use geomelric properties to solve these
problems instead of using one of these techniques.

First of all, the methods developed in this thesis do not need a specialized knowledge
in the optimization field to understand them, they use basic tools from geometry.

Some optimization methods, such as Descendent methods or Lagrangian methods
[GM74], [Po82] and [Be82], require an objective function which is twice ditferentiable.
However, we proved that the function is non-differentiable at some point xg (Sec. 4.4).

Thus, alternative optimization methods of solution are those called heuristic methods
[GMSW]. These methods provide an approximation to the solution and some times they do
not find the global maximum (or minimum). Because we used an idealized mode! of com-
putation the solution obtained in this thesis is exact.

Finally, since the heuristic methods are iterative methods and they use an approxima-
tion to the Hessian matrix at each iteration then the methods are unstable. Because the al-
gebraic expression for our solution uses the basic operations (defined for our model of com-
putation) which are well understood, our method of solution is stable.

The efficiency of our algorithm versus the corresponding efficiency of the heuristic
methods is an open problem if we use clock-time to measure such efficiency.



APPENDIX

A cubic equation (Ax +3Bx’ + Cx+ D) = 0 can be reduced to y +py+q=0

211 , where p and g are defined by:

4AC —3B? 4A%D +24ABC-B®
= ———adg = 3 .
4A 44

The solutions of an equation of degree three are given by Cardan’s formulas [Us48].

by replacing x = y+

Since the solution of the reduced equation, whose variable is y, involves a square root of a
function O(p, q). it is important to test whether it is positive, negative or zero. Let

7
__ p 4p +27q
3pg) = 4+ 5 = o8 be such a function.
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If & > 0 there is a pair of conjugate complex roots.
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3
If & < 0 the solution is expressed by extracting cubic roots of %‘r +i % - g_'i trig-
onometrically.
. . =pdp . .
The corresponding modulus is p = 57 and the corresponding argument is de-

termined by ¢ = acos ( 27q ) . Thus, having found p and ¢ the soluticn in ihis case is

2pd-p
given by:
Y -2@003%,3@-2J7cos(3+120°)andy2—2rcos( +240° ).
B B
Thus, x, = y, + 31 %2 = N2t 2Aandx-_“ Y3t 57-
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