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ABSTRACT

Abstract

Binocular stereopsis is a biologically motivated approach that uses two slightly different

views of a scene to extract information about its three-dimensional properties. The two

IInderlying principles of ollr approach to stereo vision are local computation of binocular

disparities and the use of the resulting disparity map for image segmentation.

The cepstrum is used to provide an estimation of binocular disparity between corre­

sponding regions of the stereo image pair. We study the cepstrum and its properties, and

suggest improvements to the initial disparity estimation stage. Next a modified median fil­

tering scheme is employed for the refinement of the initial disparities using neighbourhood

information. The overall disparity map is used for image segmentation based on distance.

Local estimation of initial disparities provides two fundamental advantages for real-time

systems: the possibility of increased computational efficiency through parallel implementa­

tion and a fixed running time that is independent of image properties. Furthermore, using

stereopsis for figure-ground segmentation rather than surface reconstruction eliminates the

nccd for camera calibration whieh is essential for methods based on exact depth calculation.

Therefore, thc approach is well-suited to active vision systems in whieh the cameras are Î1~

constant motion.

Wc provide evidence for the plausibility of the disparity estimation algorithm and the

properties of the overall disparity map in the context of biologieal stereopsis. The algorithm

is implemented on a network of TMS320C40 processors to obtain a processing time of one

second for a 128-pixel X 128-pixel image frame.
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Résumé

La stéréovision binoculaire est une approche biologique qui utilise deux vues légèrement.

différentes d'une scène pour en extraire des propriétés tridimensionnelles. Les deux principes

sous-jaçents de notre approche de la stéréovision sont le calcul local des disparités binocu­

laires et l'utilisation de la carte de disparité résultante pour segmenter l'image.

La technique du "cepstrum" est utilisée pour obtenir une estimation de la disPéLl'ité

binoculaire entre les régions correspondantes des deux images. Nous avons étudié le "ccp­

strum" et ses propriétés, et suggérons des améliorations au processus d'estimation de la dis­

parité initiale. Par la suite, nous utilisons un filtre médian modifié pour affiner l'estimat.ion

initiale de la disparité grâce à une information locale. Le résultat de la carte de disparit.é

est alors utilisé pour réaliser une segmentation d'image basée sur la distance.

L'estimation locale des disparités initiales offre deux avantages majeurs pour ulle est.i­

mation temps réel: la possibilité d'accroître l'efficacité calculatoire grâce à une implémcntéLtion

parallèle, et un calcul à temps constant indépendant de la complexité de l'image. Un aut.re

avantage est que l'utilisation de la stéréovision pour la segmentation "avant-arrière plan"

plutôt que pour la reconstruction de surfaces élimine le besoin d'une calibration de camém.

Ainsi cette approche est adéquate aux systèmes de vision active pour lesquels la caméra est.

en mouvement constant.

Nous montrons ainsi dans un contexte biologique, la plausibilité de notre algorithme

d'estimation de disparité et de ses propriétés pour l'obtention d'une carte globale de dis­

parité. L'algorithme a été implémenté sur un réseaux de processeurs TMS320G10 ct permet

d'obtenir une image par seconde pour une taille d'image de 128x 128 pixels.

Il
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CIIAPTEH l. INTHODUCTION

CHAPTER 1

Introduction

By projecting a three-dimensional scene onto a two-dimensional image pl:tne, an imaging

system forfeits ail direct knowledge about distance or depth. Any information abont, the

third dimension is embedded indirectly in the two-dimensional image(s) of the scene. Delll.h

eues are represented as relationships either among the intensities of a single image or bel.ween

the intensities of multiple images of the scene.

Due 1.0 this lack of direct information about distance, the determination of t.hree­

dimensional structure has been among the most challenging problems in compnter vision.

The wish to obtain knowledge of the third dimension has on one hand led 1.0 active range­

finding techniques. On the other hand, it has initiated efforts 1.0 reconstrnct. depl.h from

the knowledge embedded in the two-dimensional images. Active range-finding nses the re­

flection of a known moving light source projected on different points of the scone, along

with triangulation, to determine the distance of these points [12]. An example of snch a

technique uses laser technology.

Biologieal vision systems seem 1.0 have an outstanding grasp of the three-dimensional

world using the two-dimensional images projected onto the retinae. This has fnrl.her

strengthened the efforts to obtain distance information l'rom two-dimensional images. This

research has produced a dass of surface extraction schemes known as "shape lm", )(" meth­

ods. These algorithms attempt 1.0 exploit the relationships among the intensitk'S of one or

more images caused by the three-dimensional nature of a scene. In other words, the methods

attempt to reverse the process causing such relationships in order 1.0 obtain the underly­

ing three-dimensional structure. Shape l'rom shading algorithms such as those described

in [49], [90], and [22] are examples of methods whieh use the intensities of a single image to

recover the third dimension. Shape l'rom motion and shape l'rom stereo use multiple images



1. STEREO VISION AND 8INOCULAR DISPARITY
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FIGURE 1.1. BinocuJar Disparity. FL and FR represent the images of the fixation point, F,
on the left and right eyes respectively. PL and P R represent the images of point P on the left
and right eyes, respectively. p~ indicates the point with the same coordinates as PLon the right
retina. The difference between P R and p~ is the disparity of point P.

• of the scene to infer its three-dimensional structure. In particular, stereo vision is often also

motivated by the binocular visual system of primates.

1. Stereo Vision and Binocular Disparity

•

The point of intersection of the axes of two imaging devices is known as their point of

fixation. Geometrically, all points Iying on a locus passing through the fixation point are

projected onto identicallocations on the left and right image planes. The image of any point

nearer or farther than this locus, referred to as the horopter, is formed at different locations

on the two retinae. The difference between the projections of a point on the left and right

retinae is known as the binocular disparity of the point. Figure 1.1 is an illustration of the

concept of binocular disparity.

For any given camera set-up, the disparity of a point is dependent on its distance from

the horopter. Therefore, the locus of a point in depth can be obtainl:!d from its disparity

and a knowledge of the camera arrangement. Given such a relationship between disparity

a.nd depth, surface reconstruction using stereo vision can he divided into two separate

problems: first, obtaining the vector displacement or disparity of corresponding sections of

the two images; and second, using the disparity information ta obtain the three-dimensional

2
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2. MOTIVATION FOIl AN ALTlmNATIVE API'HOAC'I\

knowledge of the scene. Such an approach has formed the basis fol' most or t.he tradit.Îona.1

schools of thought on stereopsis.

Obtaining the precise disparity profile of a stereo image pail' has result.ed in algOl'it.hllls

that not only are computationally expensive but also have image dependent. running t.inll's.

The second stage of surface reconstruction using stereopsis poses anot.her set. or problcllls.

Inferring absolute distance from disparities requires accurat.e and det.aited knowledgc of t.he

camera set-up. Grimson shows that small deviations from snch knowledge can resnlt. in

considerable errors in the calculation of the absolnte depth [42]. Despit.e t.he fact, t.hat. t.he'y

can produce relatively accu rate distance profiles under highly st.ruct.ured coudit.ions, t.he

traditional stereo surface reconstruction methods are or lit.t.le use roI' complex robot.ic vision

systems acting in dynamic environments.

2. Motivation for an Alternative Approach

Many applications of visual perception involve dynamic scenes whose at.t.ribut.es change

constantly. Such a change may be due to the motion of the object.s in the scene, t.he observer,

or both. In recent years computer vision has observed the emergence of ~Lct.ive vision as a

response to the problem or enabling autonomous agents to deal wit.h t.he changiug nat.nre

or their environment [3], [5]. An active vision system is one whose physical confignrat.ion

varies in response to the changes in the scene or the required visual inrormat,ion. Alt.hongh

the criteria which guide the particular control mechanism may differ rrom one SYSt.lllll t.o

another, ail active vision systems share the property of being influenced bv and "adapt.ing"

to the evolution of their environment. With such a characteristic, act.ive vision systems

require algorithms whose computational requirements reflect the rate at. which t.he visnal

information changes. Furthermore, such computational requirements should be independent.

of specific image properties.

Another influence on both the fields of biology and computer vision has becn t.he

observation that visual perception is the overall result of multiple visual cues <1., welI <1.'

their interactions [23], [28], [115], [117], [118]. This is in contrast to the view that each

low level feature is required to result in a complete description of the scelle, independently

from other such cues. In a system which uses multiple visual features, the perception or

the scene resulting from each individual visual cue may be incomplete. lnstead, the visnal

system probably obtains the best possible description of the scene using ail available visnal

signaIs in a manner which is appropriate for the functioning or the agent. Figure 1.2 is

a schematic illustration of such a multi-feature visual system coupied with the conœpt. or

3
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2. MOTIVATION FOR AN ALTERNATIVE APPROACH

Low-Level Features

Perception

Oculomotor Control

Scene
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FIGURE 1.2. Multi-Feature Foveated Active Vision System for aDynamie Environment.

active vision. In this thesis, we consider stereopsis as one of the multiple features of sueh

an active vision system. In doing so, we attempt to adhere to the principle that the overall

perception is a result of both the individual eomponents and their inter-relationships.

ln studying vision, first and foremost one must remember that there is a purpose for

every visual perception system. The eharaeteristics of the system should reflect and be in

harmony with its intent. The objective of the system eonsidered in this work is to guide an

autonornous mobile robot in an unstructured environment and enable the robot to perform

specifie tasks. Functioning in sueh an environment demands the ability to perform certain

operations such as obstacle avoidance and object recognition. It also requires that the

actions taken by the robot are decided upon and exeeuted within a reasonable period of

time.

The visual system considered for this purpose uses active vision. This enables the

agent to adapt to the changes in its environment. It also allows for filtering and reducing

the rcceived visual information [19] to a subset which is of interest to the system [110]. This

visual system uses multiple visual cues to obtain a complete description of its environment.

Stereopsis and stereo disparity form one such cue, used to provide information about the

relative depths in the scene. Distinguishing between surfaces that are located at different

distances provides information about the available paths. Similarly, distinguishing an object

from its background forms the first stage of object recognition in a complex scene. Therefore,
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figure-ground separation on the basis of (differencc in) distance is of value 1.0 the visu al

system of a mobile robot. 11. is also important 1.0 ensure that the time re'luired for perfol'luiuf':

the operation is short and independent of specific sceue properties.

3. Our Approach to Stereopsis

Reduced response time l'an be achieved by para!lel processing of visual iufOl'ma.t.iou.

One l'an further l'l'duce the processing time by assigning a single value as the outpnt of a

specific operation, such as stereo disparity estimation, 1.0 small rl'gious of the image ,·a.t.her

than individual image points. We provide evidencc that the abov" strategies in fact. exhihil.

a plausible level of similarity 1.0 those of the early stages of stereo disparity estimatiou in

biological systems.

This thesis takes an approach which is unlike that of many traditional stereo algo­

rithms. These algorithms, motivated by the wish 1.0 construct a precise depth map, involve

a sequential search 1.0 find a match for l'very image feature or point.. The dislocaUon of each

feature determines its disparity. '1'0 ensure the global consistency of the matched c1enlent.s,

most such algorithms also involve an optimization stage al. every Iteration.

We consider initial disparity estimation as a local computation which l'an be implc­

mented in para!lel. This produces increased processing speed as weil as a running Ume

which is independent of image properties. The disparity estimation stagc is bascd on thc

algorithm origina!ly presented by Yeshurun and Schwartz [125]. The method divides the

two images of the stereo pair into small sections and obtains initial estimations for the

disparities of ail such sections. The division of the image pair is motivated by data rcpre­

sentation in the ocular dominance columns of the primary visual cortex. Thcrc information

from the left and right eyes are represented in the form of interlacing image "patchcs".

The algorithm uses the cepstrum, a method traditiona!ly employcd in ccho dctection, and

provides a local estimation of binocular disparity between corresponding patches.

We study the properties of the cepstrum and use them 1.0 suggest improvcmcnts 1.0 thc

disparity estimation algorithm of [125]. Furthermore, by carefu!ly cxamining thc perfor­

mance of the cepstrum on various types of signais, we infer that the algorithm may l'l'suit.

in the detection of false disparities al. sorne ocular dominance columns. '1'0 dcal with this

issue we have developed a method for refining the raw or initial disparity map obtaincd by

estimating disparities using the (improved) cepstral filtering algorithrn. Ncxt wc rcfinc the

initial disparity estimates using neighbouring disparity information. Wc crnploy a rnodilicd

median filtering scheme for this purpose.
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The final depth map contains information about the three-dimensional properties of

the surfaces in the scene. However, its most salient features are the discontinuities in dis­

tance which mark the boundaries between various surfaces and objects in the scene. We

assume that the refined disparity map is used for differentiating between surfaces that are

located at different distances and not for precise surface reconstruction. Using stereopsis for

figure-ground segmentation, rather than surface reconstruction, also eliminates the need for

camera calibration which is essential for exact depth calculations. Therefore, the approach

is well-suited to active vision systems in which the cameras are in constant motion. Psy­

chophysical evidence is provided in support of the fact that sueh a symbolic representation

is in agreement with the properties of human stereopsis.

4. Contributions

The following are the main contributions of this thesis:

• Analyzing the influences of the dimensions of the ocular dominance columns on the

algorithm. This is used for choosing the dimensions of the columns which are taken

from the stereo image pair.

• Examining the properties of the cepstrum - the disparity estimation tool - and for­

malizing the dependence of its performance on the signal properties. This permits

us to suggest modifications that compensate for sorne of its shortcomings.

• Relating the concepts of stereo disparity, the local estimation strategy, and the

properties of the cepstrum to the occurrence of false disparities.

• Presenting a method for the refinement of the initial disparity map to produce a

scene representation appropriate for depth-based image segmentation.

• Relating the technique and the final disparity map to the neurophysiologieal and

psychophysieal properties of biologieal vision systems.

• Parallel implementation of the method to obtain a processing time of one second for

a 128-pixel x 128-pixel image.

5. Overview and Organization

The next two chapters brielly review computational stereo vision and the significant

findings in biologieal stereopsis. Chapter 4 along with Appendices A, B, and C study the

cepstrum and its role as a tool for echo detection. Then Chapters 5 and 6 explain the initial

disparity estimation and disparity map refinement stages of the overall method respectively.

6
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Experimental results are provided in Chapter 7 foBowed by evidencc for biologieal plall"ibil­

ity of the approach in Chapter 8. Next the details of paraBel implementation al''' pr"""lIt"d.

Finally. Chapter 10 serves ta state the canc\nding remarks and directionH fol' fil tlll'" \\'ol'k,

7
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1. THE CORRESPONDENCE PROBLEM

CHAPTER 2

Computational Stereo

From the definition ofbinocular disparity, one can deduce that for agiven cameraset-up, the

knowledge of the disparity of a point in the scene determines its 10Cl,lS in depth. Combining

the depth locus with the coordinates of the point in one image of the stereo pair provides

the precise location of the point in space. The set of ail the disparities of an image pair is

known as its disparity map. Notwithstanding occlusion, it is therefore possible to obtain

the complete three-dimensional structure of a scene without ambiguity from the knowledge

of camera set-up and its complete disparity map - a long-awaited goal in computer vision.

Computing three-dimensional structure from the disparity map and imaging geometry is a

well-delined geometric reconstruction problem. Nevertheless, obtaining the complete and

correct disparity map of the SCene is a challenge when attempting to Use stereopsis for depth

reconstruction.

1. The Correspondence Prohlem

A possible "Iproach to obtaining the disparity map of a stereo image pair is to choose

a set of features or clements in one image, and determine the corresponding elements in the

second. The displacement between the respective positions of a feature in the two images

equals the disparity of the feature. The problem of finding matching elements in one image

for clements of the other image is known as the correspondence problem. In determining

correspondence, stereo algorithms make assumptions about the surfaces in the world and

the imaging process. These assumptions are described by Marr in [71] and [98] as follows:

• Compatibility assumption: Ali objects in the scene result in similar features in the

left alld right images. Therefore the two images of a stereo pair should embody

a certain level of similarity. This similarity forms the underlying principle of the

8
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matching process. If two pixels, regions, or edges have arisen l'rom th" "'Ill" ,'ntit)'

in the scene, they will match; if they have not, they cannat b" mat.ch"d.

• Uniqueness assumption: Almost ahvays, il. fenture in one ima.ge ca.n ma.t.ch 1.0 110 !llore

than one l'l'al, ure in the other. Therefore, only a single dispal'it,y cali \'" a,;sign"d ta

each image feature.

• Smoothness assumption: The disparity of the fcaturcs varies smooth\y almost "v­

crywhere in the image. This is cquivalcnt ta assnming pieccwisc continnons slll'l'al'''s

in the scene.

ln addition ta the above tlHee assumptions, stereo algorithms sometimes l'mp\oy one

or more of the following constraints in solving the correspondcncc problcm:

• Viewing geometry constraint: Corresponding fcatul'cs Iic on a locns dctcl'mincd h)'

the geometry ofthe imaging devices. This locus is r"ferrcd ta as the C]Jil'o/""/irw [56].

This assumption simplifies the search for corresponding fcatnrcs by Iimiting il, 1,0

epipolar Iines.

• General position constraint: Events that occur quite infrequently, in a stati"ti",,1

sense, do not result in corresponding elements [67]. For examplc, corresponding

image features are required ta have the same ordering or arrangement in bath illiages

of the stereo pair [6].

• Disparity gradient constraint: The rate of change of disparil,y across the imagc is

Iimited [74]. This constraint, of course, further enforces the srnoothncss a;;sumpl,ion.

• Maximum detectable disparity : The disparities of a stereo pair lie within a Iimited

range, or equivalently, the range of distances detectablc by thc system is Iimited.

The role of the above assumptions is 1.0 simplify the search fol' the corl'Ccl. solntion 1.0

the correspondence problem by involving constraints about the scene and irn<tgillg proccss

in the search.

2. Solving the Correspondence Problem

The simplest set of image features, for which the correspondence problem is defined,

is the set of individual image samples or pixels. Using pixels for determining correspon­

dence is equivalent 1.0 obtaining the disparity map by determining the projections of every

point in the scene into bath images and measuring the displacement between their resJ"'c­

tive positions. However, images are generally represented using a finite set of grey Icv"'s

whose membership is much smaller than the total number of image samples. COllseqllelltly,
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2. SOLVING THE CORRESPONDENCE PROBLEM

determining correspondence by merely matching single pixels is inherently ambiguous. Ta

avoid such ambiguity, stereo algorithms obtain the disparity map using methods other than

dirccl. rnatching of individual pixel grey levels. Traditional stereo algorithms take two dif­

fcrent approaches 1.0 the correspondence problem resulting in two distinct classes of stereo

algorithrns.

2.1. Region-Based Stereo Aigorithms. The first class of algorithms, known as

region-based algorithms, solves the correspondence problem for individual pixels. However,

il. uses the grcy levels of ail the pixels around the target and candidate, rather than just

their own, as the measure of sirnilarity between the two points. In other words, these

algorithms compare the region surrounding a (target) pixel in one image with the similar

area surrounding each candidate pixel in the other. The set of the candidate pixels is

Iikely 1.0 be determined based on one or more of the constraints mentioned above. The

neighbourhood that most resembles that of the target belongs 1.0 the correct match.

Region-based algorithms define some statistical measure on the neighbourhood whose

value determines the similarity of the two neighbourhoods and whose minimum (or max­

imum) indicates the correspondence of the two pixels. For example, such a measure is

defined as the sum of squares of differences (SSD) between the corresponding gray shades

in windows around the two pixels in the left and right images in [84] and [101]. Similarly,

the normalized mean-squared differences of the grey level values in the two windows is used

in [35]. Correlation based algorithms, such as those in [36), [37), [43), [44], [45], and [65],

use the correlation coefficient between the regions surrounding the candidate points in the

image pair 1.0 determine correspondence. Moravec [79] also uses a similar measure for

similarity but performs the matching only among a set of leature points in each image.

The feature points are selected using an interest operator which, in each neighbourhood of

the image, chooses the point whose neighbouring pixels demonstrate relatively high vari­

ance. High variance ensures that the correlation coefficient is an effective 1.001 in measuring

similarity.

2.2. Feature-Based Stereo Aigorithms. The second group of stereo algorithms,

known as feature-based algorithms, attempts ta solve the correspondence problem for image

features more complex than an individual pixel. Increasing the complexity of the image

feature reduces the ambiguity of the matching process. Feature-based algorithms implicitly

use the similarity constraint. They assume that a complex image feature represents a scene

property which produces similar attributes in both images, even though individual image

10
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intensities may be different. [ncreasing the complexity of the feature inereas,'s the Iikelihoo<!

of its uniquencss and perhaps invariance nnder different viewing conditions.

Edge segments are chosen as image features that are matched in [30], [80], aud [4].

Similarly Marr and Poggio [69], [70], [71J, Grimson [40J, [41], and Mayhew and Frisby [74]

choose the zero crossings of the Laplacian of the Gaussian. Nishihara replac.es t.he ~NO

crossings of the Laplacian by its sign which l'l'duces sensitivit.y to noise [82]. "UcyirJ1/./J".,,·d

Stereo Analysis for Robotic Application" [67], despite it.s title, also offel's a fea'\'nl'e based

algorithm in which the features to be compa1'€C1 are regions of the image that l'eslllt from the

segmentation of the two monocular images. Ba1'llard and Thompson [10] IISC the olltpnt

of a modified version of the Moravec interest operator [79] as thc image fcat.llrc. Filmlly,

sorne algorithms use mult.iple features 1.0 characterize image points with l'ich and highly

specific markings and reduce the matching ambiguity. Examples of sllch appl'oaches are

the algorithms in [59] and [56] which use the response to a set of spatial nltcl's al. variolls

orientations, phases, and scales to provide a vector of features for matching.

2.3. Matching Using Features Versus Matching Using Regions. III common

between both groups of algorithms described above is a seqllential search 1.0 find the best

match for each image point or feature. The basis for matching in region·basccl algodthlns

are the grey levels of regions in the two images, and in feature·based algorit.hms the ex­

tracted features from each image. In other words, region-based stereo algodthms dctel'minc

correspondence from image intensities and use a numeric l'l'presentation of the image. On

the other hand, by increasing the complexity of the matching ke1'llels, fcaturc-based algo­

rithms solve the correspondence problem by employing a more symbolic l'l'presentation of

the image.

An important problem when using feature-based algorithms is choosing an appropriatc

image feature which can provide a balance between uniqueness, reliability, density, ancl

computational efficiency. Since in general the density of any image feature morc complcx

than individual pixels is less than the resolution of the image, feature-based algorithms

result in sparse disparity maps. However, an advantage of the rcduction in the number

of matching kernels is higher processing speed of feature-based algorithms a/ter fcaturc

extraction ls completed.

Region·based algorithms, on the other hand, are in essence capable of finding a match

for every image point and therefore produce a denser disparity mal'. However, matching re·

gions for surfaces that have Iimited texture or in the presence of occlusion can be unreliablc.

Furthermore, image grey levels which are the basis of the matching process in rcgion-based

11
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algorithmH are more sensitive to illumination conditions and viewing angle than complex

image features. Therefore, the same physical surface may be represented by different grey

levelo in the two images duc to perspedive projection or differences in illumination caused

by different viewing directions.

2.4. Imposing the Physical Constraints. '1'0 solve the correspondence problem

more reliably and efficiently, most stereo algorithms attempt to improve upon basic feature­

based or region-based matching schemes. Levine et al. deal with the problem of lack of

text.ure by choosing the size of the correlation window proportional to the inverse of the

variance of the image grey level in the region [65]. Other algorithms use a multiple scales

t.o reduce sensitivity to noise. For example, Grirnson [40] and Marr [70] use a coarse-to-fine

approach in which the disparities obtained at larger scales guide the search for the matching

feat.ure at the finer stages. Mayhew and Frisby [74] use cross-channel correspondence and

require t.hat various spatial frequency channels support the disparity of a feature within a

cert.ain range.

The most corn mon approach to increasing the reliability and performance of matching

algorithms is exploiting one or more of the matching constraints to refine the results of

mat.ching. Almost ail stereo algorithms use the viewing geometry and maximum detectable

disparit.y constraints to limit the search to a specific range on the epipolar lines. Aiso a

considerable majority of stereo algorithms use one or more of the remaining constraints,

part.icularly compatibility, uniqueness, and smoothness assumptions to reject false matches.

Many such algorithms use a measure of the overall quality of matches and perform an

it.erative and sequential search. ln each iteration, the disparities are updated to optimize

t.he measure of quality.

Cooperative stereo algorithms use an approach analogous to the relaxation labeling

process of [52] or [100] to allow the possibility of multiple matches for a single feature at

any point during the optimization process. Each possible match is also assigned a likelihood

which is updated ~u refiect the compatibility of the disparity with those at the neighbouring

points. At the end of the optimization process, the match with the greatest likelihood

indicates the disparity of the feature. Examples of such algorithms are those in [10], [61],

and [68]. An important difference between these implement"tions and classical relaxation

labelling is that in [52] and [100], unlike the above algorithms, the process which provides

the initial estimates of likelihoods is distinct from that used to refine these values. A

similar approach is taken in [9] which uses optimization using simulated annealing to impose

the matching constraints. Regularization is used for imposing the constraints in [96]. A

12
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dynamic programmillg approach 1.0 solving the correspondence problem is t.aken in [6].

Il. uses the Viterbi algorithm 1.0 impose a part.icular iIIust.rat.ion of t.he general posit.ion

constraint, with the assumption that a left-to-right. ordering of edges is preserved aloug

l'pipolar lines.

Sorne stereo algorithms use other considerations besides t.he t.radit.ional physical as­

sumptions 1.0 improve the matchiug process. The methods in [35] and [56] require t.he

disparities, and hence the matches, obtained fol' oue of t.he images of a st.ereo pail' t.o he

consistent with those obtained for the other image. This consist.ency requirmuent. reduces

the possibility of false matches in situations such as occlusion, where no mat.ches for some

image points exist. Also clues such as vergence, focus, apert.ure, and calibmt.ion ''''e used

1.0 improve on surface estimation using disparity in [1].

A region-based algorithm which uses the sum of squares of differences forms t.he first.

stage of a maximum likelihood (ML) algorithm in [73]. Fiually, a maximum Iikelihood

approach 1.0 solving the correspondence problem in [11]. This paper goes heyoud most.

previous approaches in terms of motivation and stat.es that. "the t.ask of a stereo algorit.hui

should be not 1.0 simply construct a depth map, but 1.0 construct a detailed ump of t.he

scene geometry" [11].

Despite many differences, both region-based and feature-based algorithms have oue

common characteristic. They ail attempt 1.0 find the match for a feature, be il. simple 01'

complex, in one image among a set of candidates in the other by performiug a se'luent.ia\

search. This methodology is based on the belief that "matching is a nat.ural way 1.0 approach

disparity analysis. Assigning disparity classifications 1.0 points in a sequeuce of images is

l'quivalent 1.0 finding a matching between sets of points from each image" [10]; 01' that. "au

important task for a stereoscopic mechanism is 1.0 obtain correct matches between the poiuts

in the left and right image, so that the disparity information cau be extract.ed" [46]. Also,

most such algorithms impose the matching constraints by optimizing a mea8ure of goodness

of the overail matching process. This optimization, in turn, results in Iterative algorit.hms ill

which the measure of goodness guides the sequential search for the best match. Because of

their sequential and Iterative nature, most such algorithms arc computationally expellsive

and not suited 1.0 real-time applications. Besides the computational cost, another disadvall­

tage of Iterative algorithms for real-time applications is the image depelldellt runllillg time

of the optimization process.
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3. An Alternative Approach to Disparity Estimation

ln recent years, there has been an emergence of a new class of disparity estimation

algorithms based on the observation that the spatial shift between the right and left im­

ages of a stereo pair results in certain joint spectral and statistical properties. Il. is such

properties, rather than a search, that these algorithms exploit to obtain the disparity map

of the image. Although not undermining the possibility of disparity estimation by direct

correspondence determination, these algorithms iIIustrate that matching is not necessary

for disparity estimation.

Phase-based disparity estimation exploits the Fourier shift theorem and observes that

the phase difference between a signal and its shifted version, al. any frequency, is proportional

to the spatial shift generating the latter. Phase-based algorithms attempt to measure the

difference between the phases of the left and right images. Fourier-based methods simply

subtract the left phase and right phase al. a given frequency to extract disparity. The signal

is multiplied with a rectangularly windowed sinusoid before Fourier transformation in [122].

Sorne phase-based stereo algorithms obtain the disparity from the difference of the phases of

the outputs of local bandpass filters applied 1.0 the image pair. For example, the algorithms

in [33], [34], [63], and [102] measure the phase difference of the responses of bandpass

Gabor filters to the left and right images. Convolution with Gabor filters is equivalent 1.0

replacing the rectangular window of [122] by a Gaussian window. The response of the filter

reveals information about the phase difference between the original left and right images

by providing the variation in the phase relative 1.0 the signal al. the bandpass frequency

of the filter [53]. Fleet and Jepson further iIIustrate that phase information is stable with

respect to typical variations between the left and right image, such as scale perturbations,

smooth shading or Iighting variations [33], [34]. Stability of phase information refers to the

fact that small deformations in the image result in only small deformations in the phase

signal. Therefore, such an approach is more robust to the differences between the two

images of the stereo pair than the traditional region-based matching algorithms. Fleet and

.lepson also mention that feature-based matching using the zero crossings of filter responses

is analogous to disparity measurements by matching the phase signal al. specifie image

points only [33]. These points are, of course, the points where zero crossing information

exists. Using such an analogy, they state that phase-based disparity measurement exploits

ail the phase information, rather than its zero values only, and produces a denser disparity

map [33], [34].
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Finally, the fact that the correlation between a signal and it.s shifted version cont.ains

a peak al. the location of the shift. has given rise t.o another class of algorit.hms. These

algorithms attempt 1.0 obtain the disparity of a st.ereo image pair by measuring the locntion

of the peak in the correlation funct.ion between windows l'rom ident.ienl posit.ions in t.!\(> t.wo

images. The location of the peak of the correlation function, of course, indicat.es t.he shift.

between the two windows. It is import.ant 1.0 note the dist.inct.ion bet.ween t.his class of

algorithms and traditional region-based algorithms. Unlike t.radit.ional st.ereo alp;orit.hms,

correlation-based algorithms do not conduet a search and optimizat.ion t.o find t.he best.

match. They measure the disparity direcUy by determining t.he loention of t.he peak of t.he

whole correlation function. Region-based algorithms, on t.he ot.her hand, pe,'form a searcll

for the match 1.0 an image point among a set of candidate points and choose t.he candida.t.e

point whose neighbouring region is most correlated with the neighbouring region of U",

original point. In other wards, the region-based ,,:gorithms assume that a number of point.s

may be the match to the original and then eliminate all candidates but one. The elimina.t.ion

cl'iterion is the magnitude of the correlation function at a specific point.

Experiments performed in [55] illnstrate that the performance of correlat.ion for signais

with non-white speetra is very 1'001'. Yeshurun and Schwartz [125] replace cOI'l'elation by

cepstrum, a technique traditionally used for echo detection, in disparity est.imation..Jones

and Lamb [55] propose sorne modifications 1.0 the traditional cepstrnm and nse a mnlt.iple

aperture camera 1.0 superimpose the leI'1. and right images of the st.ereo image pair. Mnlt.iple

evidence is used 1.0 increase confidence in the location of the cepstral peak in [7].

The emergence of phase-based and correlation-based stereo algorit.hms has alt.ered the

fundamental belief that stereo disparity estimation inherenUy requires solving the corre­

spondence problem by conducting a search. These algorithms illustrate that the definition

of stereo disparity by itself l'l'ovides other methods for its estimation. It is t.his basic def­

inition of disparity and the resulting properties of a stereo image pair which this thesis

attempts 1.0 exploit. Based on this, we propose a sequence of steps for obtaining the

disparity mal' of a stereo image pair.
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CHAPTER 3

Biological Stereopsis

The invention of the random-dot stereogram permitted the separation of binocular disparity

from other indications of depth such as monocular cues and the presence of known objects

in the scene. Random-dot stereograms are image pairs in whieh one image is a random dot

pattern and the other is composed of shifted copies of different regions of the first image.

Although there are no monocular depth cues in either image, the disparity resulting from

t.he shifts between corresponding regions of the image pair constitutes a depth cue visible

only to binocular viewing of the image pair. The use of stereograms proved Wheatstone's

observation that horizontal disparity is sufficient to provide a sensation of depth [58]. Since

t.hen, it has been shown that other features such as vertical disparity or monocular cues may

also be involved in the perception of depth, partieularly absolute depth [75), [99], [116].

Furthermore, the use of random-dot stereograms illustrated that image contours are not

essential for detecting disparity.

Around t.he same time as the invention of the random-dot stereogram, Hubei and Wiesel

pioneered the study of the "functional architecture" of the primate visual cortex. Their

studies, as weil as later ones, have illustrated the existence of neurons responsive to binocular

disparity in various areas of the visual cortex. Since the discovery of disparity-sensitive

neurons many computational theories for the process(es) underlying the responses of such

neurons have been offered. Aiso psychophysieal experiments have revealed many of the

properties of human stereopsis. This chapter provides a summary of the neurophysiologieal

and psychophysical properties of stereopsis plus an overview of the cortieal regions where

disparity-sensitive neurons are most observed and projections to and from such regions.

One should note that associating disparity-sensitive neurons with certain cortical areas

by no tneans implies a functional specialization for such regions. In addition to disparity

sensitivit.y, the neurons in ail ofthese regions have other properties. In the same manner that
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1. OCULAR DOMINANCE COLUMN STRUCTURE AND CORTICAl, PHO.mCTIONS

their disparity sensitivity constitutes a response to retinal disparity, their other properties

are likely to be responses to other aspects ofvisual stillluli. Furtherlllore, there Illay be ot,lwr

neurons involved in stereopsis whose responses do not resemble those of disparit,y-sensitive

neurons.

1. Ocular Dominance Column Structure and Cortical Projections

Visual data from the Lateral Geniculate Nucleus (LGN) enters the visual cortex al, layer

4C of the Visual Area I (VI) [51]. This data f10w is already divided into Illagnocel\ulal' and

parvocel\ular pathways, the former arriving at layer 4Ca and t.he lat.t.er at. layer '1C/3 [50].

ln layer 4Ca, the entrance of the magnocellular pathway to the cortex, t.he visual dftt.a is

organized into interlacing columns from the left and right eyes. This forlll of represent.at.ion

is known as the ocular dominance column structure of the visual cortex. The colulllns

corresponding to each eye provide a topographical mal' of t.he retina and t.he visual field.

In cortical nnits all columns have equal width. On the other Imnd, in l'Ctin,,1 "nil..ç or in 1./",

nnits of visnal angle, the columns correspond to larger areas of the retina with increasing

eccentricity. In other words, with increasing distance from the fovea a larger port.ion of the

retina, and equivalently of the visual field, is mapped into the same area of the cort.ex.

The receptive fields of the neurons of layer 4Ca are all of the circle-surround form

found in the earlier stages of the visual pathway [50], [51], [64]. Each ocular dominance

column probably receives inputs from the same number of LGN fibres and cont.ains t.he saIlle

number of receptive fields [51]. However, the size of receptive fields of individual neurons

increases with increasing eccentricity. This produces a non-uniforlll mapping of t.he rct.ina

and results in increasing magnification factor. The non-uniform mapping from t.he ret.ina

to the ocular dominance columns is schematieally shown in Figure 3.1. In t.he fovea, one

ocular dominance columns subtends approximately 10' (minutes of arc) of the visual field.

The information from each eye is represented continuously in the columns which cor­

respond to that eye [51]. But the division of the surface of the retina amongst the ocular

dominance columns is not identieal in the two eyes. In other words neighbouring columns,

which correspond to different eyes, do not represent identica\ sections of the two ret.inae.

Specifically, the beginning of the retinal region represented in an ocular dominance col­

umn corresponding to one eye is the half-way point of the retinal region represented in the

adjacent column corresponding to the other eye. With such a represent.at.ion, the ocular

dominance columns corresponding to the two eyes traverse the whole visual field twice by

representing the surfaces of both retinae. This covering of the visual field is donc in a "t.wo
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FIG URE 3.1. Schematic for Non-Unifol'm Mapping fl'om the Retina to the Ocular Dominance
Columns. (a) Each oculal' dominance column probably reccives inputs from the same numbel' oC
LGN libl'cs. (b) But the size of the receptive fields oC individual neurons incl'eases with increasing
eccentricity. (c) Thcl'eCore the ovel'all retÏlIBI al'ea repl'esented in each ocular dominance column
becomcs largel' as cccentdcity increases. (d) No details are given for the mapping from the retina
to the LGN.

•
Ocular domInance column.
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FIGURE 3.2. Schematic Cor the Ovcrlap of the Retinal Areas Repl'esented in Adjacent Oculal'
Dominance Columns. (a) Land R indicate the oculal' dominance columns of the left and right
eyes respectively. (b) Bach arrow is a (1-0) illustration of the region of the retina (and of the
visuallield) which is represcnted in the cOl'responding column. Magnification factor is not consid-

credo

•

step forward, one step baekward" manner [51]. One oeular dominance eolumn represents

a specifie section of the visual field. The next eolumn which corresponds to the other eye

start.s at the mid-point of the first section and covers an area of equal size and 50 on. ln

summary, the retinal areas which are represented in the adjacent ocular dominance columns

- eorrcsponding to the two different eyes - overlap by as much as one half of the represented

arca. This rorm of representation is illustrated in Figure 3.2.
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The parvocellular pathway further projects ta the blob and inter-blob lat tiC<' of Ut<'

layers above and below layer 4 of VI and is believed ta be involved in intensity representation

as well as various stages of curve detection [2], [50], [126]. The magnocellular pathway

extends from layer 4Ca ta layer 4B of VI from where il. mainly projects 1.0 the thick-st.ripes

of Visual Area 2 (V2). The thick-stripes, which are rich iu cytochrome oxidase {'n'ymc,

project 1.0 Visual Area 3 (V3) and MT [28], [50].

2. Binocular Neurons

Although there is no universa! computational theory fol' neural disparity t'Stimation,

there is a relative!y broad agreement on the properties of disparity-sensit,ive nenl'ons [15],

[50], [91]. The investigation of binocular neurons by Poggio and colleagues [91], [92J.

[93], [94], [95] not only includes ail neuron types observed by previous investigators [8],

[13], [14], [17], [32], [50], [57], [72], [81] but also provides a more complete and aCCUl'ate

classification of such neurons. Poggio et al. have studied the response of cOI'l.ical neurons ta

retina! disparity as well as binocu!ar correlation of random dot patterns. The di"tr·ilml.iou

of disparity-sensitive neurons is best described by a combination of the works of Poggio cl.

al. [91], [94] and HubeI and Livingstone [50].

2.1. Ocular Balance or Dominance of Binocular Neurons. Poggio el al. have

used bar stimuli 1.0 examine the response of cortical neurons ta rl'tinal disparit,y, ln theil'

experiments, they have found that sorne disparity-sensitive neurons respond similarly ta

the monocular stimulation of both eyes. Others have different responses ta the individual

stimulation of the two eyes. The former type of neurons illustrate ocular balance iu their

response ta monocular stimulation and the latter type ocular imbalance or dominance t,o

this form of stimulation. The stimulation of both eyes, or binocular summation, can l'l'suit

in facilitation or suppression of the monocular response. When u"ing elongated stimuli, most

cells are orientation selective. However, there is no evidence that orientation selectivity and

disparity selectivity for line patterns are in any way related [92]. Hubei aud Livingstone

have also found disparity neurons sensitive ta the whole range of orientations [50].

2.2. Response of Binocular Neurons 1.0 Retinal Disparity. Poggio et al. clics­

sify those neurons that are not sensitive 1.0 the disparity of the stimuli on the two eyes iLS

Flat neurons and the disparity-sensitive neurons as Tuned Excitatory, Tuned Inhibitory,

and Reciprocal neurons [91], [92], [93], [94], [95].
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2.2.1. Tuned Excitatory Neurons. Tuned Excitatory (TE) neurons are ocularly bal­

anced and do not respond to monocular stimulation of either eye. When stimuiated by

the samc stimulus on the two retinae, their firing rate increases with respect to the resting

firing rate if the stimuli are at proper disparity; the firing rate decreases with respect to the

resting firing rate if the stimuli are at any other disparity. Therefore, the disparity response

cllrve of thc Tuned Excitatory cells has a clear peak at the location of the cell's preferred

disparity and drops to below the resting rate for other disparities. Almost all observed TE

ncurons are complex cells.

In a later work Poggio et al. further divide the Tuned Excitatory neurons based on the

magnitude of their preferred disparity and the shape of their disparity tuning curve [91].

Tllned Zero (TO) neUrons respond to points near the horopter, with disparities less than 3'

of visual arc in the fovea. They have disparity tuning curves symmetric on both sides of

the preferred disparity as shown in Figure 3.3 (a). Tuned Far (TF) and Tuned Near (TN)

neurons have slightly larger preferred disparities than those of TO neurons. In addition, the

disparity tuning curves of TF and TN neurons trail towards zero disparity. Figure 3.3 (b)

shows this behaviour of the disparity tuning curve for a TN cell. Near and Far refer to

disparities of objects nearer and farther than the horopter respectively.

The preferred disparity range of the TE neurons depends on the eccentricity of their

receptive fields. In the central 40 of the retina all observed TO neurons have preferred

disparities within ±3' of the visual angle. Further, most TE neurons within 0.20 eccentricity

have disparities less than 6' of visual angle [94]. The range of preferred disparities of

Tuned Excitatory neurons increases with increasing eccentricity of the corresponding foveal

location [91], [94], [95].

2.2.2. Tuned lnhibitory Neurons. Tuned inhibitory (TI) neurons have properties iden­

tical to those of TE neurons with a reverse disparity tuning curVe. Binocular stimulation

Sllppresses their response at the "preferred" disparity and facilitates the response at other

disparities.

2.2.3. Near and Far (Reciprocal) Neurons. Near (NE) and Far (FA) neurons respond

to the sign of the disparity of the stimulus or equivalently to the relative location of the

stimulus with respect to the horopter. Far neurons have excitatory response for uncrossed

(positive) disparities which are associated with objects farther than the horopter and in­

hibitory response for crossed (negative) disparities associated with objects nearer than the

horopter. The responses of Near neurons to uncrossed and crossed disparities is opposite
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FIGURE 3.4. Response Profile of Rcciprocal Neurons. (a) Near ncuron. (b) Far ncuron.

to that of Far neurons. The range of disparities to which reciprocal neurons respond is

much larger than those of tuned neurons. Further, the drop from excitatory to inhibitol'Y

response, which occurs at zero at zero disparity, is steeper for reciprocal neurons thall for

tuned neurons. NE and FA neurons occur as both complex and simple cells. They also con­

tain both ocularly balanced and unbalanced cells. The role of the reciprocal neurons may

be considered complementary to those units that are unable to distinguish between crossed

and uncrossed disparities [76]. The response profiles of reciprocal neurons are schematically

represented in Figure 3.4.

•
2.3. Correlation Sensitivity. Poggio et al. also classify the binocular neurons

according to their response to "correlation" or "uncorrelation" of randam-dot stereogram

stimuli. Binocularly uncorrelated random-dot stereograms drive the correlation sensitive
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neurons ta a maintained level of activity which shifts, in response ta correlated images,

taward facilitation or suppression as a function of positional disparity [91J. The resting

responses of ail '1'0 neurons are suppressed by uncorrelated randam-dot stereograms. TF,

'l'N, FA, and NE neurons respond ta binocularly uncorrelated images, occupying spatially

matched locations in the two eyes, mostly with activation and never with suppression. For

ail these neurons, the responses ta uncorrelated images are usually smaller, and never larger,

than the response evoked by correlated images at the optimal excitatory disparity [91].

These results may also be stated using a previous study of disparity selectivity with

randam-dot stereogram stimuli. The study shows that sorne complex cells responding ta

disparity of bar stimuli also respond ta disparity of randam-dot stimuli. Further, a number

of cells responding ta randam-dot stereograms show no disparity selectivity for contrast

bars [92]. Ail the cells responding ta randam-dot patterns are complex cells. Finally

response ta randam-dot stereograms reflect little or no selectivity for the orientation of the

binocularly visible, but monocularly hidden, figure.

2.4. Distribution of Disparity-Sensitive Neurons. The studies of disparity­

sensitive neurons have involved tao few neurons ta give a precise indication of the dis­

tribution of these neurons in different areas of the cortex. However, based on the existing

data, the ratio of disparity-sensitive ta Flat neurons is approximated ta be 1:1, 2:1, and 4:1

in VI, V2, and V3 respectively [50], [91]. Further, Poggio et al. state that these neurons

occur in stripes in V2 and in c1usters in V3. In VI, the disparity-sensitive neurons are

found in alllayers above and below layer 4C. In particular, the Tuned Excitatory neurons

are mostly found in layer 4B ofVl. The total number of Tuned Excitatory neurons observed

equals the sum of ail the other types of disparity-sensitive neurons. Equal numbers of Far

and Near neurons and less Tuned Inhibitory neurons have been observed [50].

3. Properties of Human Stereopsis

3.1. Range of Fusible Disparities. The horopter, approximated by the Vieth

Müller circ1e, is the locus of points whose images on the two retinae have zero positional

disparity. The retinal disparity of an image point increases with increasing distance of the

corresponding point in the scene from this locus. At any eccentricity, Panum's fusional area

refers to the range of disparities within which the images on the two eyes can be "fused"

iuto a single image [77J, [83]. Therefore, Panum's fusional area corresponds ta the range

on each side of the horopter, where objects can be seen as a single abject. Disparities larger

the Panum's fusionallimit result in seeing two images of the point rather than a single fused
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image, a condition known as diplopia. Binocular visual systems compensate for diplopia by

vergence or fixation on the point of interest and brings this point iuto sharp focus as wl'll

as zero disparity [115].

The dependence of the size of Pauum 's fusioual area ou the spatial and t.em l'oral 1'1'01'­

erties of the fused stimuli is studied in [104], [105], and [107]. Din'erent. Iimit.s, under

different measurement circumstances, have been reported for Panum 's fusion al area. St.ud­

ies that compare many such values [16], [77], [109] estimate the size of Panum 's fusioual

area in the fovea 1.0 be approximately 5' or 6' of visual angle, on each side of t.he horopt.er,

as obtained by Ogle [83]. Different experiments also iIIustrate t.hat the size of Panum 's

fusional area increases with increasing eccentricity [16], [77], [83]. The size of the Panum 's

fusional in the fovea area as weil as its increase with increasing eccentricity are consistent

with the range of preferred disparities of Tuned neurons.

3.2. Stereo Acuity. Stereo acuity is a measure of sensitivity 1.0 retinal disparit,y and

is inversely proportional 1.0 stereo threshold, the minimum resolvable stereo disparity. The

studies of stereo acuity, and stereopsis in general, are Iimited 1.0 approximately the central

10° of the retina since al. higher eccentl'icitics even the determination of fusion and diplopia

becomes difficult [60], [77] .

The experiments in [31], [97], [106], and [113] show th al. stereo acuity decreases with

increasing distance from the fovea. In other words, as the image moves away from the fovea

along the horopter, the minimum resolvable absolute disparity increases. Stereo threshold

also increases with increasing absolute disparity or distance from the horopter. Equivalent.ly,

al. a given eccentricity, as images move away trom the horopte7' the minimum detectable l'cla­

tive disparity increases [16], [106]. The two variations of stereo threshold are schernatically

iIIustrated in Figure 3.5. Blakemore [16] specifically describes the latter relationship as

exponential. Schor [106] mentions that the fall in stereo acuity with increasing distance

trom the hol'opter is more than the fall with increasing eccentricity along the horopter.

Using the analogy of disparity-sensitive neurons, stereo acuity with respect 1.0 the

horopter can be related 1.0 the function of the Tuned neurons. As explained in Sections 2.2.1

and 2.2.2, al. any eccentricity Tuned neurons respond 1.0 small disparities associated with

points near horopter. Stereo acuity wou Id then be analogous 1.0 the resolution of the re­

sponse curve of such neurons.

It is also important 1.0 mention another concept, referred 1.0 as "stereo positional acuity"

in [125]. Stereo positional or spatial acuity refers 1.0 the ability 1.0 perceive multiple spatial

changes in depth or stereo disparity, as opposed 1.0 discriminating between two surfaces al,
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FIGURE 3.5, Variations in Stereo Acuity and Stereo Threshold (schematics not to scale.)
(IL) The disparity of a point, P, is compared to that of the horopteror zero disparity. Therefore, the
relative disparity between the two equals the absolute disparity of the test point. With increasing
eccentricity of the point, the minimum detectable absotute (or relative to zero) disparity increases.
(b) the disparities of two test points, 1 and 2, arc under consideration. At a given eccentridty,
n.~ the absolutc disparity (ur distance with respect to the horopter) of one point increases, the
minimum detectable disparity difference between the two points also increases.

differcnt depths used in the definition of stereo acuity. The experiments in [121] illustrate

that the maximum detectable disparity and even stereo fusion decrease with increasing

spatial frequency of disparity change. Specifically, for spatial frequencies near or greater

than one cycle per twenty minutes of visual angle, 20', stereo performance deteriorates

significantly [121].

3.3. Stimulus Contrast, Inter-ocular Correlation, and Opposite Contrast

Stimuli. Inter-ocular correlation (IOC) is defined as the cross-correlation function he­

lwcen the left and right images of a stereo image pair [119]. The experiments in [27] show

t,hat there is an inverse square relationship between inter-ocular correlation and stimulus

contrast in stereo perception. This means that ta maintain stereopsis, stimulus contrast

ha.s lo be increased by the square of any given decrease in IOC.

The studies of [26] indicate that for images with complexities, or random-dot stere­

ograms with densities higher than a certain minimum, human subjects are unable ta fuse

opposite contrast stereo image pairs. Also Poggio et al. [91] mention that disparity-sensitive

nCllrons, and particularly those sensitivc to binocular correlation do not respond to anti­

corrclated stimulation of the two eyes.
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4. Human Stereopsis: Absolute Surface Description Versus Relative Depth Per­
ception

As mentioned in Chapter 2, one c<tn obtain the complete depth profile of a. scelll' nsin!,:

horizontal disparity information abont the scene and knowledge of imaging g,'omel,I'Y or

vertical disparities. In biological stereopsis, one may ,ts"nme that the ocnlomotor system

provides the required information about imagiug geometry; ouo can also argue the existen"e

of channels responsive ta vertical disparity although, ta OUI' knowledgl', uo indication of such

channels has been observed. Therefore, in most t.heories of stcreopsis percoption of the thinl

dimension is assumed t.o involve comput.ing stereo disparit.y, dopt.h, and shape in that ordel'.

Stevens and collaborat.ors take a different. approach t.o three-dinlünsional perception,

founded on t.he properties of human stereol'sis cather than geomet,rical plauHihility. l'sy­

chophysical experiments in [116] iIInstrate t.hat hnmau stereopsis is highly insl'nsitive 1.0

const.ant gradients of disparity, or equivalently ta constant. rates of change in dl'pth. 'l'he

experiments in [116] also iIIustrate sensitivity ta t.he non-zero second derivativl' of disparit)',

or equivalcntly ta surface curvature or depth discont.inuiUes. Based on these observations,

Stevens and Brookes conclude that stereopsis is a source of information ahout sllrfaees whosl'

depths change abrupt!y or al. Ieast al. a non-constant. rate, not about absolnte depth or eVI'n

linear depth profiles [115], [117], [116]. Also, experiments with ntndom-dot. stereograms in

[21] show that identical disparity profiles can result in perception of diffcrent shapes when

embedded within different background disparities. Grimson [42] l'l'ovides another example

where two surfaces of equal depth, when placed next ta neighbonrs of different. depth pro­

files, are perceived as having different distances. In other words, il. is the disparity proiiles of

bath the surface and its background, or the relationship between the two, thal. influence the

perceived shape rather than the disparity of the surface alone. The experirnentH of [38] and

[39] l'l'ovide further evidence that disparit.y discont.inuities are used in stereoscopie proccss­

ing. Finally, a quantitative value describing the "salience" of the disparity of each image

feature is defined in [78]. Disparity salience is a function of the diJJc/'cncc", hetween the

disparity of the feature and those of its neighbours. The reason for sllch a definition is that

neighbouring disparities influence the perceived dept.h of the test featnre [78].

Such observations lead ta a different view of human st.ereo vision ill which stereo dis­

parity is not a mean for measuring absolute depth; stereopsis, along with other depth Clles,

results in information about the three dimensional shape of the scene. The information

l'rom ail del'th cues t.hen, collectively result in more precise knowledge of depth. Different

sources of depth information, such as stereopsis, occlusion, motion parallax, or shading may
1
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of course, provide consistent or rival eues resulting in different perceptions in different ob­

servers. Stevens and colleagues show that in many occasions, other depth eues are dominant

ta stereo disparity [115], [117], [118].

Whatever the integration strotegy, it is evident from these experiments that stereopsis

is /lot the sole or even the dominant mean of depth perception. McKee et al. have studied

the precision of stereopsis and have concluded that distance perception with stereopsis is

Imprecise [76]. With such evidence, the raIe of stereopsis seems ta be detecting those places

where depth changes at a non constant rate, or equivalently distinguishing the boundaries

between regions of constant (including zero) depth gradient. Such a raie for stereopsis,

rather than its more tradi nal raie as a mean for exact surface reconstruction, constitutes

the approach of this thesis ta exploiting stereo disparity information.
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CHAPTER 4

Autocorrelation, Cepstrum, and Binocular Disparity

For ail points in a stereo image pair, except those affected by occlusiou, there is a corre­

sponding point in the second image. Binocular disparity, by definition, is the shift between

the locations of the corresponding points in the image pair. Therefore, the images of a

stereo pair constitute signais of which one is an identical and shifted version of the otller.

In other words, one image of the stereo pair is a spatial Echo of the otller image. The shift

of course achieves different values al. different parts of the image depending on the distance

of the corresponding surface from the imaging device. This chapter st.udies autocorrelation

and the cepstrum as tools for detecting echos and estimating the shift. that generates an

echo from an original signal. In the context of stereo vision, the shift. or delay bet.ween the

two signais is referred 1.0 as the disparity of the image pair. Therefore the terms echo shift,

delay, or disparity are used interchangeably throughout the chapter.

The chapter starts with autocorrelation which is a more familiar concept. Then the

cepstrum is motivated as a response 1.0 a shortcoming of autocorrelat.ion. The cepstrul11 is

first introduced as a modification 1.0 autocorrelation and later stlldied as a distinct. concept..

Throughout the study of the cepstrum, alltocorrelation is used 1.0 aid in visnalizing the

disclIssed properties.

1. AutocorreIation

The autocorrelation function, Rg(T), of a real signal g(x) is defined as

(4.1) 1
+00

Rg(T) = g(x) *g(-x) = -00 g(x)g(x - T)dx

•
where * denotes the convolution of two signais. As shown in Appendix A, the Fourier

transform of the autocorrelation function is the power spectrum of the signal. Equivalently

if the Fourier transform of g(x) is denoted by GU),
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(~.2)

The power spectl'um of a real signal is an even function of fl'equency. Therefore, both

fOl'ward and inverse Fourier transforms of the power spectrum result in the autocorrelation

function, except for a scaling factor.

In Equation 4.1 the time lag r plays the l'ole of a scanning or searching parameter and

the autocorrelation function, Rg(r), provides a measure ofsimilarity between the waveforms

of the fnnctions g(t) and g(t - r) [48]. Equivalently, the autocorrelation fnnction can be

nsed as a similarity indicator or correspondence detector between varions sections of a

signal. The higher the correspondence between the original signal and its shifted version,

the greater the value of autocorrelation is at that shift.

2. Autocorrelation in the Presence of Echo

2.1. Autocorrelation of a Signal Containing Echo. Echo can be defined as a

shifted and possibly scaled version of the original signal. Therefore it can be described using

convolution with a shifted delta function. An original signal s(x) with an added echo of

delay D and scaling factor 1 can be represented as

(4.3) g(x) = s(x) + s(x - D) = s(x) * (8(x) +8(x - D))

Assuming real signais, the autocorrelation function of g(x) is then

Rg(r) = 1:00

g(x)g(x - r)dx

= 1:00

(s(x) + s(x - D))(s(x - r) + s(x - D - r))dx

= 1:00

s(x)s(x - r)dx +1:00

s(x)s(x - D - r)dx

+1:00

s(x - D)s(x - r)dx +1:00

s(x - D)s(x - D - r)dx

(4.'1) = 2Rs(r) + Rs(r + D) +Rs(r - D)

or equivalently

•
(4.5) Rg(r) = Rs(r) * (28(x) +8(x +D) +8(x - D))
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FIGURE 4.1. The Autocorrclation Function of II. Signal Contnining nll Origil\ll] nnd ib Echo
(schematic). The autocorrelation function of the ovcrall signf\l consists of the n1ltocorr«>hLtioll of
the original and its shifted version.

As illustrated in Equations 4.4 and 4.5, the autocorrelation funetion of a signal eOllt:till~

ing an original and an echo equals the sum of twice the autocorrelation of the origina.1 and

two copies of its shifted version. The shift equals that of the eeho. Figure 4.1 schematie:tlly

represents the autocorrelation function of Equation 4.5.

2.2. Obtaining the Echo Shift from the Autocorrelation Function. The all­

tocorrelation function of the overall signal has contributions from two factors: the original

signal and the presence of a shifted version of this signal. Rs('r) is due to and cOlllplctely

determined by the original signal; repetition of Rs(T) is due to the presence of the cella.

The two contributions are interconnected by the fact that it is the llutocorrc1atioTi of the

original that repeats. ln Equation 4.5, Rs (T) and the shifted im pulses reprcsent t.he "orig­

inal signal" and "shift" components of the autocorrelation. The convolution provides the

interconnection between them.

The shift component, represented as shifted impulses in the autocorrclation functioll,

appears as a cosine wave in the frequency domain. In other words, the spcctrum of the

original signal is multiplied by a periodie (cosine) wave whose frequency, in the frequency

domain, equals the shift of the echo. It is important to note that this periodic compollent

does not exist independently from the spectrum of the original signal but as a multiplicative

factor. The magnitude of this multiplicative factor is independent of the spectrurn of the

original signal.
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ln rneasuring the delay generating the echo, one is interested in the shift components

of the ILutocorrelation function or the shifted impulses. Under such circumstances, the

aut.ocormlation of the original signal is an unwanted component acting as "noise". To

facilitate obtaining the shin cornponent, one can treat this convolved noise in two ways:

su ppreRS its relative energy or convert it from non-additive to additive noise.

2.2.1. 8nJlTJressing the Signal ComJlonent. For a given signal energy, if the spectrum

of t.he original signal is approximately constant or white over the frequency band of interest,

t.he sinusoids representing the shift component rtoide over a large range of frequencies. On

t.he other hand, if the spectrum of the original signal has large magnitude components

in a Iimited band of frequencies, the multiplicative sinusoids exist over a smaller range.

Equivalently, for such signaIs there are large original-signal components and small shift

components. Suppressing the original-signal component relative to the shift component

increases the saliency of the latter.

Application of a compression function to the power speel.rum suppresses the larger

original-signal components more than the smaller shift components. In other words, the

compression function 30ts as a "spectrum whitener". Examples of compression functions

include the fourth root, the tan function, and the logarithmic transformation [86]. Applying

the logarithm to power spectrum before it undergoes Fourier transformation, is equivalent

t.o finding the autocorrelation of the liltered version of the original signal [86]. The overall

transformation can be thought of as autocorrelation with an adaptive nonlinear pre-lilter

which has the property of being compressive in the frequency domain. It tends to make

t.he power spectrum more uniform by reducing the contribution of narrow band signaIs

while leaving the broadband signaIs relatively unaltered [85]. Figure 4.2 is an illustration

of the result of suppressing the original-signal component of the autocorrelation [unction of

Figure 4.1.

2.2.2. SeJlamting the Shi/t ComJlonent From the Signal ComJlonent. The intercon­

uectiou between the original-signal and the shift components is via multiplication in the

frequency domain, converted to convolution after the Fourier transformation. If the multi­

plication in the frequency domain is somehow replaced by an addition, the Iinearity of the

Fonrier transformation resu\ts in a sum rather than the convolution of the two components

in the Lime or spatial domain. In this way, there are two added terms after the Fourier

transformation: a term due to the Fourier transform of the spectrum of the original and
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(Comprcssed) Autocorrelation

·D o D Dela

•

FIGURE 4.2. The Autocorrelation Fundion or a Signal Conlainillg l'II Origlnl\ll\nd J';chn wilh
Suppressed Original-Signal Component (schematic).

Autocorrelalion

·D o D Dela

•

FIGURE 4.3. The Autocorrelation Function ora Signal Cont;liningan Origirml and l~ch{J wilh
Separated Original Signal Componenl (schemalic).

another due to the echo. This conversion of non-additive to additive noise Il' shawn ill

Figure 4.3.

Conversion from multiplication to addition is most easily pcrforrned by taking tlll!

logarithm of the power spectrum. ln other words, a. logarithrnic transformation converts

the multiplicative periodic components in the spcctrurn to additive pûriodic cornponents in

the log spectrum.

With such a property, in addition to suppressing the original-signal carnponcnt of auto­

correlation, the logarithmic transformation achieves deconvolution of the two cornponcnts.
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3. THE CEPSTRUM

This effect is sirnilar to the deconvolution by phase correlation suggested in [86]. Logarith­

mic deconvolution is advantageous to phase correlation because of its inherent compressive

effeet, described in the previous section.

3. The Cepstrum

The idea of the logarithrnic transformation of the power spectrum for enhandng the

crfects of echos in autocorrelation is in fact not new in signal processing. In 1963, Bogert et

al. introd uccd the cepstrum and cepstral analysis in [18) as a 1.001 for echo detection. Shortly

aftel'wards, Oppenheim et al. extended the notion of cepstrum 1.0 generaJized nonlinear

filtering of convolved signais [88]. Oppenheim et al. [88] refer 1.0 the definition of the

ccpstrum given in [18] as the power cepstrum of a signal. As defined in [18], the power

cepstrum of a signal is the power spectrum of the logarithm of the power spectrum of the

signal. Since then, various sources have offered other definitions for the power cepstrum. In

particular, considering that signal processing is normally concerned with discrete signaIs, the

definition of the power cepstrum has been extended 1.0 the z-transform of signais. Childers

et al. [25] define the power cepstrum of a signal 1.0 be the square of the inverse z-transform

of the logarithm of the magnitude squared of the z-transform of the signal. Oppenheim and

Schafer [87] evaluate the z-transform on the unit drcle. In this manner, they define the

power or l'cal cepstrum of a signal as the inverse Fourier transform of the logarithm of the

magnitude of the Fourier transform of the signal.

Ali the above definitions of the cepstrum are 1.0 a large extent equivalent. Consider­

ing the logarithmic transformation, the s'luaring involved in sorne definitions (taking the

logarithm of the power spectrum versus the logarithm of the magnitude of the Fourier

Transform) only results in a scaJing of the final value. Throughout this thesis, the defini­

tion of the power cepstrum given in [87] is used and the Fourier transform is approximated

by the discrete Fourier transform. Using the notation of the continuous Fourier transform,

(4.6) gccp(x) =i: log 1 GU) 1 ej~Jxdf

•

Note that taking the Fourier transform maps information back into the same domain as

the that of the original signal. Bogert et al. [18] refer 1.0 the domain of the power cepstrum

as the quefrellcy domain.

If the signal g(x) is formed through the convolution of two signais s(x) and f(x),

transformation to the frequellcy domaill has the property of changillg the convolution 1.0
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multiplication; taking the logarithm results in the addition of the log spectra. of the 1.\\'0

signais. Equivalently, if

(4.7)

then

(4.8)

or

(4.9)

Y(X) = s(x) • f(:,,)

1GU) 1=1 SU) 1. 1FU) 1

log 1GU) 1= log 1SU) 1+log 1FU) 1

Taking the inverse Fourier transform of Equation 4.9 gives the power cepstrlllll of [J(':) 1.0

he

Appendix B shows that if t.he signal g(x) consists of ail original sigllal ._(:,,) and its

shifted version or echo, then the echo appears as ripples in the log spectrullI of [J(x) alld

as impulses in geep(x) as in Equations 4.11 and 4.12. The dclay of the echo deterlllilles

the frequency of the ripple and the location of the impllises. As seen in Appendix 13, the

multiplicity of impulses is due 1.0 multiple convolutions correspondillg 1.0 the power' series

expansion of the logarithmic expression.

•
(4.10)

(4.11)

Yeep(X) = seep(x) + feep(x)

log 1GU) 1= log 1SU) 1+~ (_1),"+1 (ae-
j2

.!/J),"
LJ m
m=l

(4.12)

•

~ ,"+1 8(x - mD)
geep(x) = seep(x) + LJ(-l) m

m=l

Figure 4.4 shows a one-dimensional signal as a function of time and its delayed version.

The resultant signal is the sum of the original and its echo. The ri l'l'les in the log spectrlllll

are seen in Figure 4.4 (d). Figures 4.4 (l') and (g) show the impulses in the power cepstrnlll

of the resultant signal al. the quefrency l'quai 1.0 the delay of the echo.

The concept of cepstral analysis can he easily extended to two-dimensional signais and

the two-dimensional Fourier transform. For two-dimensional signais, the power ccpstrlllll
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FIGUIŒ 4.4. Cepstral Analysis of a One-Dimensional Signal with an Added Echo. (a) Original
signal. (b) Echo (delaycd signal) with a dclay of 10 samples. (c) Resultant signal from addition
of thc original and ceho. (d) Log speetrum of the resultant signal. (e) The power cepstrum of the
original signal. (r) The power cepstrum of the resultant signal. (f) The power cepstrum of the
rcsultant signal with the power cepstrum of the original signal removed.
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of a signal containing an original and an echo contains an impulse al. the location specifieti

by eeho .delays in bath directions.

4. Echo Resulting from an Array of Sensors: An Alternative Data Represellta­
tion

The signal received by each sensor in an array of sensors is a spat.ially or telllporally

shifted version of the signaIs at the other sellsors in the array. 'l'herefol'e, with ail array of

sensors it is possible ta obtain many copies of a signal, each a shifted version of the ot.hers.

The separate availability of multipie copies of the signal suggests t.wo different. ways lill"

obtaining the shift between t.wo of the received signais, nsing a correlat.ion based aigorit.hlll.

First, it ls possible ta add the two signaIs and estimate the echo shi ft in the resultant signal

using the methods described above. Second, one can concatenate the two sigllals and f01"l1l a.

signal chain whose length is twiee the length of each individual signal. The resnlt.ant. signal

still includes an original signal and its shifted version, but the shift is differeut. from t.hat.

of the initial two signais. When the original and l'cha are added, the delay of t.he I·eslllt.ant.

signal simply l'quaIs the delay of the echo. When the two signaIs arc placed next. t.o eadl

other, the total shift of the resultant signal equals the vectorial sum of the shift. in t.he edto

and the shift due ta placing one signal next ta the other. The laUer of conrse e'lnals t.he

length of one of the two signaIs, assuming that bath signaIs have the same lellgt.h.

The effect of concatenating the original signal and the echo can be secn in Figure '1.5

for the same signal as Figure 4.4. Figures 4.5 (d) , (f) , and (g) show the highel' fre'luen<:y of

ripples in the log spectrum and the shifted location of the impulse in t.he power ccpstrulII.

5. Data Dependence of Analysis using Autocorrelation and the Cepstrum

The performance of the cepstrum ill l'cha detection is knowlI ta he ext.remely data

dependent [25]. The data dependence of the cepstrum, as weil as autocorreh,tion, cali he

explained using their definitions and that of an l'cha. This section uses the autocorrel;Llion

function, which is the simpler concept of the two, ta explain the reasons for the dependcllcc

on data. The explanation is then extended from the autocorrelation ta the ccpstruTrl. It is

assumed that the original and l'cha signaIs are obtaincd from distinct sensors. As explaincd

in Section 4, when the original and l'cha signaIs are separately available, the l'cha delay cali

be estimated by adding or concatenating the two signaIs.

5.1. Consequences of Finite Signal Length. In deriving the cOllcept of echo de­

tection using autocorrelation or the cepstrum, it is inhercntly assumed that bath the original

:1:;
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FIGURE 4.6. Number of Corresponding Samples in Finite Length Signais. The signais are
taken from two distinct scnsors, referred to by Land R. XO to X4 iIIustratc the samples that are
taken from the two scnsors. There is a corresponding sampie for Xn from onc sensor if Xn also
appears in the signal from the ether sensor. (a) With zero delay allsamplcs of the signal from cach
sensor have a corrcsponding sample in the signal from the ether sensor. (h) The delay betwecn
the two signais is onc sampie. With a non~zero dclay sorne samplcs from each sensor do not have
a corresponding sample in the signal from the other sensor.

signal and the echo contain identica! information. For delays other than zero, this assump­

tion is equivalent to assuming that signaIs are infinitely long. Of course, in signal processing

applications one uses signais of finite \ength. Therefore, for ail non-zero disparities there is

a segment at the beginning or end of each signal for which no corresponding segment in the

otlter signal exists. This phenomenon is schematically illustrated in Figure 4.6.
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5.1.1. Autocorrelation Peak and Finite Signal Lcngth. As stated in Section l, the

autocorrelation function of a signal l'an be obtained by convolving the signal with its shift,,<!

version. Il. is also known that performing convolution by the multiplication of Fonri"l'

transforms results in circular convolntion [24]. Equivalently, the vaInc of the antocorrc!ation

flll.ction al. any shift l'an be obtained by snmming the prodncts of the samples of the signal

and corresponding samples of its shifted version. Circular convolntion shonld be taken into

consideration while obtaining the products.

Section 4 stated that signais obtained from distinct sensors l'an be represented by

addition or concatenation. Figure 4.7 (a) contains the resnltant signal obtained from $ll1ll]llc­

by-sample adding of the two individual signais of Figure 4.6 (a). Figure 4.7 (b) contains

a similar resultant signal fol' the two signais of Figure 4.6 (b). Figures '1.6 (l') and (d)

contain the shifted versions of the signais in Figures 4.6 (a) and (b) respectively. The

shift generating each of the signaIs in (l') and (d), l'quais the delay that exists betwecn the

generating signais from the two sensors.

Figures 4.8 illustrates the same information as Figure 4.7 for signais that are 1)laccr! Ilcxt

to each other. As explained in Section 4, when an original and an echo arc concatenated,

the resultant signal includes an l'cha whose delay is different from the original. The delay

present in the resultant signal l'quaIs the vectorial sum of the initial disparity and the length

of one of the initial signaIs. This resultant delay is the shift which generates the signais of

Figures 4.8 (l') and (d) from those in (a) and (b) respectively.

In the remainder of this section, the term correct shift is used ta l'l'fer ta the shift which

corresponds ta the disparity between the original signal and l'l'ho while taking the specific

data representation into consideration. Therefore, for data representation using addition of

signaIs, the correct shift l'quais the disparity between the original and the echo. For data

representation using concatenation, il. l'quais the disparity between the original and the

l'cha plus the length of one of the two.

Consider Figures 4.7 and 4.8 showing the addition and concatenation representations

respectively. From these figures one l'an obtain the value of the autocorrelation function of

each resultant signal al. the correct shift. This value simply l'quais the sum of the sam l'le­

by-sample products of each resultant signal with its shifted version. As secn in the figures,

when the delay between the original and l'l'ho signais is zero, al. the correct shift, ail the

samples of the resultant signal are multiplied by identical samples in its shifted version. On

the other hand, with non-zero disparity al. the correct shift, only a fraction of the samples

align with identical samples in the shifted signal. This fraction equals the number ofsamples
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FIGURE 4.7. Autocorrclation of the Signal Resulting from Adding the Original and Echo
Signais. The original signais are shown in Figure 4.6. (a) The resultant signal from adding the two
signaIs in Figure 4.6 (a). (h) The resultant signal from adding the two signais in Figure 4.6 (h).
(c) The shifted version of signal in (a). The shift equals the delay between the two signais in
Figure 4.6 (a) which is zero. (d) The shifted version of signal in (h). The shift equals the delay
between the two signais in Figure 4.6 (a) which is non-zero (one). In generating the shifted signais
wrap-around has been taken into consideration.

that arc in common between the original and echo signais. Assume that each of the original

and echo signais are W samples long. For zero disparity and representation by addition, the

value of the autocorrelation function at the correct shift includes W products of identical

samples; lt includes 2W products of identical samples for representation by concatenation.

For any non-zero disparity d , the value of the autocorrelation function at the correct shift

includes W - d products of identicai samples in both representations.

If the signal is uncorrelated or even has a decreasing autocorrelation function, the de­

crease in the number of contributing samples results in a decrease in the magnitude of the
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FIGURE 4.8. Autocorre!ation of the Signal Resulting from ConcatelU1ting the Originul and
Echo Signais. The original signais are shawn in Figure 4.6. (Il.) The resultant sigrml freml ':nncllt.~­

nating the two signais in Figure 4.6 (a). (b) The resultll.nt signal from concatcllloting the tw" sigullis
in Figure 4.6 (b). (c) The shifted version of signal in (a). The shift eqlHlls the dclllY "r~tw'~'m th.:
two signais in Figure 4.6 (a) (zero) plus the length of each intlividllal siglml (four). (<1) Th.: shiftml
version of signal in (b). The shift eqllals the dclay between the two signaIs in Figure 4.r. (11) (Hm:)
plus the length of each individual signal (four). In generating the shiftetl signais wmp-arollnd hll.~

been taken inta consideration.

•

autocorrelation peak. Therefore, although the autocorrelation funclioll always bas a lTlaxi­

mum at the shift corresponding to the correct disparity, the magnitude of iLs peak dccrea.<;es

with increasing disparity. In particular, the drop in magnitude from ..:cro disparity 1.0 a dis­

parity of one is very large for the concatenated representation. This suddcn dccrcase il> clue

to the artificially introduced shift. For uncorrelated datai the ratio of the autocorrcJa1.ion

peak at any disparity d to that at disparity 0 can be approximated as:
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FIGURE 4.9. Dccrcasc in Autocorrelation Peak Magnitude with Increasing Disparity. The
length of the original signal is 32 samplcs and signais are rcprescntcd by concatenation.

when the original and eeho signais are added, and•
(4.13)

(4.14)

Peakautocorr(d) = { 1 d = 0
Peakautocorr(O) .!!W4 d =1 0

Peakautocorr(d) ={ 1 d = 0
Peakautocorr (0) ~ d 4 02W .,...

when the original and eeho signals are plaeed next to eaeh other.

Figure 4.9 illustrates the theoretical and experimental decrease in the magnitude of the

autocorrelation peak when data representation using concatenation is used. The signal is a

~ero mean random signal.

5.1.2. The Cepstrum and Finite Signal Length. To ensure that the logarithm in Equa­

tion 4.6 is not llndefined when llsing the cepstrum for echo detection, one can add a constant

• 1 for cxample - to the argument of the log function. Using the Taylor Series expansion

41

which is valid for 1z 1:$ 1 and z 1: -1, we obtain

•
(4.15)

00 m
log(l+z);= L:(-l)m+l~

m=l
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(4.16)

Using the definition of autocorrelation and the multiplication-convolntion dnality prop­

erty of Fourier transformation, the cepstrum can be expressed as

(4.17)

where (.)m_ indicates m - 1 convolutions of the argumeut with i1,self. The exact rc1a­

tionship between the peak magnitudes of the cepstrum and autocorrc1ation is dependeut on

the correlation properties of the signal. However, as shown in Appendix C for nncorrelatcd

signaIs the ratio of the cepstral peak magnitude for aoy dispa~'ity rI to that of disparity ~("o

can be expressed as follows:

when the original and echo signaIs arc added, and•
(4.18)

(4.19)

Peakcep,(d) = 11 l"?J(W_d 'HI m'

Peak (0) E co (_1)111+1 Ei-O w) .lm-21 1)!1!(I+Il!cep' .. . ...
m=l m ~lSfJ(.!r...""':'..d)2' m!

L...I=O W (m-21)!I!'!

Peakcep,(d) 11 [m-IJ ,'tl
=~="7.~= '" ,- (W d) 1 m!Peakoep, (0) "00 (-1)mt l "-._0 'W(m-,.-II"tl.tt}'

"'""m=l m ,,[If] (W ./)21 ml
L..i=O 2W (m-21)!I!'!

rI=()

d=O

,1 # 0

•

when the original and echo signaIs are placed next to each other. l.J indicates the integer

part of the argument.

Figure 4.10 illustrates the theoretical ~nd experimental decrease in the magnitude of the

cepstral peak when data representation using concatenation is used. The first ten terms in

Equation 4.19 have been used for obtaining the theoretical value. The signal is a ~ero-rnean

random signal.

5.2. Inher"mt Data Correlation and the False Disparity Problem. For highly

uncorrelated data, the autocorrelation function has a clear peak at the shift corresponding

to the disparity between the original and echo signaIs. The cepstrum eliminates the contri­

bution of the signal itself and represents the disparity by an impulse at the corresponding

shift. Therefore, the autocorrelation peak and cepstral impulse act as "shift or disparity
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FIGURE 4.10. Dccrease in the Cepstral Peak Magnitude with Increasing Disparity. The length
or the original signal is 32 samples and signais are represented by concatenation.

indicators" when estimating the delay between an eeho and an original. The detection of

the above shift indicators for sueh uneorrelated signaIs is a trivial task, although their mag­

nitudes deerease with inereasing disparity. This is beeause the only peak Or impulse present

is due to disparity and easily deteetable.

The salience of the autoeorrelation or the cepstrum of the original signal increases

with increasing self-correlation of this signal. These measures aet as noise and increase the

error in disparity estimation by increasing the difficulty of peak detection. Note that signal

correlation causes the drop in the magnitude of the shift indicator to be less than the values

given in Equations 4.13,4.14,4.18, and 4.19. However, the relative increase in the "noise"

magnitude is greater than the increase in the autocorrelation peak magnitude. Therefore,

the ovcrall detection signal-to-noise ratio, represented by the relative magnitudes of the

shift indicator and detection noise, is lower for correlated signaIs.

Further increase in self-correlation results in a signal which contains a nearly identical

copy of itself. Equivalently, for such a correlated signal, the original signai itself contains an

ccho. The autoeorrelation or the cepstrum of the combination of such a signal and its shifted

version, contains multiple peaks or impulses representing the shifts within each individuai

signal and between the two signais. Using a11 the indicators requires a priori knowledge

of their presence and number, which is impossible for arbitrary signaIs. Using the largest

illdicator may correspond to either the shift within each original signal or that between

the two. The specifie outcome depends on the rela.tive magnitudes of the shifts and the

43



•
6. DISPARITY ESTIMATION BY ADDITION VIlHSUS CONCATENATION

degree of inherent correlation and cannot be determined a priori. Using t.he rl'pl'l'sent.ation

of Equation 4.3, a signal with internai correlation can be represent.ed as

(4.20)

g(x) = s(x) +s(x - D,,,«) + s(a, - DI"I,,)

= s(x). (J(x) +J(x - D,rue) +J(x - DI"I.,,))

•

•

This gives rise to multiple disparity indicators in the ant.ocorrelation or cepst.rnm, sin""

multiple delayed versions exist. In the extreme, a periodic signal con tains mnltiple copies

of the same information with a const.ant. shift between snbseqnent copies. 'l'his makcs t.he

distinction between "internai" and "external" echoes impossible. From a spcdral point. of

view, periodic signais have narrow-band spectra. As explained in sect.ion 2.2.1, ant.Dl"'I'l'C­

lation performs best for signais with a white spectrnm. The perfornmnce of the œpst.rnm,

despite its spectral whitening effect, also deteriorates with decreasing bandwidt.h.

Assume an arbitrary signal with an unknown degree of Inherent. correlation. For sn<:ll

a signal, autocorrelation or the cepstrum may in essence detect a disparit.y wit.hin t.he

original signal, instead of one between this signal and its shift.ed version. E'Inivalent.ly,

autocorrelation and the cepstrum are susceptible to detecting fllise disimrities when t.he

signal is inherently correlated. Nonetheless, this "Iack of performance" is not 'L short.coming

of the tool, but a direct consequence of the definition of disparity. By defi nition, disparit.y is

a result of the existence of an original signal and its shifted copy. A resultant signal which

contains multiple copies of an original pl'Oduces multiple disparities. A disparit.y estimat.ion

method must choose one of the existing ones. The distinction between correct. and l'aise

disparities becomes ambiguous for ail choices based on local information. The inflnence of

such l'aIse echo detection in both a small section and larger regions of the image is discnssed

later in the thesis.

6. Disparity Estimation by Addition Versus Concatenation

As discussed in Sections 2.1 and 3, the presence of an echo is indicated by t.he repet.ition

of the autocorrelation function of the original signal or the presence of impulses iu t.he

cepstrum. Also recall that in addition to these "shift indicators", autocorrelat.iou and the

cepstrum contain the autocorrelation and the cepstrum of the original signal, respectively.

These act as unwanted components or noise when analyzing the data. The ease with which

the shift indicator is distinguished l'rom the noise is influenced by the scheme used for

combining the original and echo signais. The possible methods for combining the original
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and echo signais obtained from different sensors, are addition and concatenation as explained

in Section 4.

When the two signaIs are added, the disparity indicator - the second autocorrelation

peak or the ccpstral impulse - is located at a shift equal to that of the echo. For small

disparities, the shift generating the echo is smaller than the width of the autocorrelation or

the cepstrum of the original signal unless the signal is completely uncorrelated. Therefore,

in signal combination using addition, the shift indicator for smail disparities falls within

the same region occupied by the autocorrelation or the cepstrum of the original signal.

The latter acts as noise, making the detection of the disparity indicator difficult. AIso,

any signal is always correlated with itself at a shift of zero. Thus detection of non-zero

disparities becomes inherently ambiguous when the original and echo signais are combined

by addition.

When the two signais are placed next to each other, their disparity is increased by

an amount equal to the length of each signal. If the original and echo signais are each

W samples long, for disparities between - ~ and ~, the resultant disparity is within the

range of ~ and 3~, when the original and echo signais are concatenated . In this range, the

unwanted and decreasing autocorrelation or cepstrum of the original signal is smaller than

the - ~ to ~ range. Therefore, for disparities smaller than one half of the signal length,

concatenation causes the shift indicator to be buried in less noise than representation by

addition. The disadvantage of signal representation by concatenation is the larger decrease

in the peak magnitude compared to combination by addition.

We note that separate availability of the original and echo signais provides a second

option for avoiding the difliculties caused by the autocorrelation or the cepstrum of the

original signal in detecting the echo shift. As discussed above, it is the autocorrelation or

the cepstrum of the original signalwhich acts as noise when searching for the shift indicator.

One can eliminate this noise by computing the autocorrelation or the cepstrum of the

original signal and subtracting the value from the resultant signal. However, due to the

non-corresponding parts of the original and echo signais, the noise is slightly different from

the autocorrelation or the cepstrum of each individual signal. This is seen in Figures 4.4 (g)

and 4.5 (g). As seen in these figures, even after subtracting the cepstrum of the original

signal, the cepstrum of the resultant contains impulses as weil as unwanted components.

Using the autocorrelation or the cepstrum of the original signal may provide a solution

to the problem of noise detection. However, the ambiguity in estimating non-zero disparities

remains a prohlem for signal combination using addition. This ambiguity becomes even
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more serious if smail disparities are Iikely to occur regularly, leaving concatenation the more

appropriate scheme for combining the two signais. As mentioned earlier, concatenation nlso

eliminates the problem of noise detection for disparities less than one Imlf of the signal

length .
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CHAPTER 5. THE DISPARITY ESTIMATION ALGORITHM

CHAPTER 5

The Disparity Estimation Algorithm

Chapter 4 introduced autocorrelation and the cepstrum as tools for estimating the shift

generating one signal from another. Regions of a stereo image pair which contain a single

disparity constitute such signais. Therefore, the stereo pair can be processed using corre­

lation or the cepstrum to obtain its disparity profile. "'he cepstrum is more advantageous

than correlation because it contains a distinct component which represents the shift that

generates the echo. This approach is used as a cepstral filtering algorithm in [125]. The

algorithm concatenates "patches" or "ocular dominance columns" from identical locations

in the image pair. Then it computes the cepstrum of the resulting "window" and searches

for its maximum value. The location of the cepstral peak indicates the shift which generates

one patch from the other. Throughout this chapter the terms patch, ocular dominance col­

umn, and column refer to the region taken from each image of the stereo pair for disparity

estimation. The terms window and resultant window denote the combined image region

obtained by concatenating the patches from both images.

This chapter first considers the Inherent assumptions and constraints of such an ap­

proach to disparity estimation. It then uses the latter, along with the properties of the

cepstrum, to suggest improvements to the algorithm. The chapter is founded on the fact

that disparity estimation within a single ocular dominance column is a local computation.

Therefore, it only depends on the processing tool and local image properties. Later in the

thesis, sorne of the assumptions stated in this chapter, as weIl as the influence of the dis­

parities of neighbouring columns, are used to construct and interpret a disparity profile or

I/iSpal'ity rnap of the stereo pair,
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1. Underlying Assumptions of the Algorithm

As mentioned in Chapter 2, most stereo algorithms make assumptions about. the com­

patibility of features, the uniqueness of matches, and the smoothness of surfaces in comput.­

ing disparities. They also impose constraiuts on both the maximum detect.able disparit.y

and the viewing geometry.

Il. mal' seem that by assigning a siugle disparity 1.0 each image pat.ch, the ecpst.ral

disparity estimation algorithm assumes that surfaces consist of small planes, ail parallcl t.o

the viewer - not a very realistic description of the world. However, the assignment. of a

single disparity 1.0 a region is similar 1.0 the smoothness assumption of other algorit.hms. Hl'

definition of smoothness, one can always find regions small enough such that. the disparit.y

change within them remains below a specified upper bound. This gives rise t.o t.he issue

of choosing the dimensions of the ocular dominance columns, a subject 1.0 be discussed

later in this chapter. The fact that the disparities of neighbouring patches nccd not. be

similar is equivalent 1.0 piecewise smoothness. Such independence permits the occurrence of

discontinuities al. patch boundaries.

The cepstral disparity estimation algorithm also includes an inherent assumption about.

the range of existing disparities. The algorithm presupposes that the maximum disparit.y is

a fraction (hall' in [125]) of the width of the image patch. This assumption is equivalent t.o

that made by other stereo algorithms which define a restricted search region. Uniqneness of

correspondence is also assumed in cepstral analysis by comparing every patch in one image

with onIl' one patch in the other image. If the disparities of two neighbouring columns me

different, at the boundary between them, two points in one image mal' correspond 1.0 the

same point in the other. This multiple match phenomenon is a consequence of occlusion dne

1.0 depth change and occurs if one assigns a single disparity 1.0 ail image points. Uniqueness

exists except al. those patch boundaries where a change in disparity occurs.

Disparity estimation using the cepstrum does not require perfect cornpatibili 1.y between

the corresponding features of the images of the stereo pair. Since the cepstrum l'l'ovides an

overall indication of the degree of correspondence, the compatibility assumption is relaxed

and the correlated regions can be slightly dilferent. On the otller hand, the usual direct

correspondence determination, regardless of the process, produces a binary result. At the

termination of the process, two features either correspond 1.0 one another or do not. Con­

sequently, non-robust features that are corrupted by noise or by the dilferencc in viewing

direction, are likely not be chosen as corresponding. Conversely, the cepstrum l'l'ovides an

indication of similarity and is more robust 1.0 degradation or noise [66] .
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The algorithm, Iike most other stereo algorithms, requires opaque surfaces since specu­

lar or transparent surfaces significantly increase the complexity of the problem [54]. FinaUy,

,imilar to aU stereo algorithms, cepstral filtering requires and assumes a certain amount of

,urface markings. An image without any intensity variation is a constant (DC) signal whose

ccpstrllm is also constant. For such a signal, of course, the concept of identical and shifted

copy is ambiguolIs, and an Infinite number of possible matches exist.

2. The Dimensions of the Ocular Dominance CoJumns

This section considers the factors which influence the dimensions of the ocular domi­

nance columns, and provides a possible strategy for choosing appropriate dimensions.

2.1. Choosing the Appropriate Column Size.

2.1.1. Approximation of the Cepstrum. The Fourier transform and the cepstrum of

the window consist.ing of patches from the left and right images must be approximated from

image samples. Each ocular dominance column has to be large enough and contain enough

samples 50 that the approximated cepstrum is a valid representation of the true value.

2.1.2. Maximum Detectable Disparity. Binocular disparity is estimated by measuring

the location of the peak of the cepstrum of the window consisting of patches from the image

pair. The size of the region in which the cepstral peak is located is of course determined by

the dimensions of this composite window. Therefore, the largest disparity detectable by the

algorithm is proportional to the size of the columns taken from the left and right images.

The patch dimensions should be large enough to accommodate the desirable maximum

detectable disparity. Note that the latter determines the column size in the units of visual

angle. This is different from the cepstral approximation requirement of Section 2.1.1 which

deals with column size in units of image samples (pixels).

2.1.3. Avoiding False Disparities. An underlying assumption behind cepstral analysis

of stereo images is that an image patch and its shifted version have maximum correlation

at a delay equal to the echo shift. As mentioned in Chapter 4, the image patch may contain

internai correlation. Consequently, the concatenated image window may be correlated at

the truc disparity as weU as at another shift. In the presence of such a situation, another

delay, rather than the actual shift, may be chosen as the echo shift and a false disparity

may be detected. For non-periodic patterns, the larger the columns, the less likely it is that

ail of their pixels are correlated at a shift other than the actual disparity. Therefore, the
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columns need 1.0 be large enough and contain enough inrormatiou 1.0 avoid detection or rais"

disparities.

2.1.4. Resolution of the Dispal'ity Map. The resolution or the disparit,y lIlap is det,er­

mined by the size or the ocular dominance colnmns. The resuJting disparity nmp is conrser

for larger columns. Therefore image columns have 1.0 be l'hosen small enough 1.0 provide a

fine depth mal'.

2.1.5. Avoiding Multiple Disparities. Sinl'e a single disparity value is associated wit.h

each column, il. is important 1.0 select columns that contain one disparity only. lu othel'

words, each column should subtend a visual angle within which surrace depth uudergoes

only small variations.

2.2. Appropriate Column Size - The Contradictory Criteria. Sections 2.1.1

1.02.1.5 indicated that the choice of ocular dominance column size involves satisfyiug <:Dutra­

dictory criteria. The approximation of the cepstrum, the detection of maximum desimhle

disparity, and the avoidance false disparity detection ail require large column dimensions.

ln contrast, a high resolution disparity mal' and the avoidance or multiple disparities r,wour

small column dimensions. A major challenge roI' the algorithm is 1.0 l'l'ovide a hahluce

among these contradictory constraints.

The above criteria can be divided into two categories: those depeuding on local image

properties and those independent of them. The former includes ralse disparity detectiou aud

multiple disparity criteria, both ofwhich depend on the nature of the proccssed iurormatiou.

The latter encompasses the remaining three criteria of ccpstrum approximation, disparit,y

map resolution and maximum detectable disparity.

A possible approach 1.0 choosing the dimensions of image columns is 1.0 use the thrce

scene-independent criteria and set the column size a priori. The performance of the al­

gorithm is then strongly dependent on the properties of the proccssed image pair. Usiug

the features of the cepstrum, the processing 1.001, one can improve the performance aud

disassoclate il. from image properties as much as possible. For example, one cau choose

a column size based on the maximum detectable disparity and disparity map resolution

criteria. With this starting point, the column size is chosen in the units of visual angle. To

l'l'ovide a proper approximation of the cepstrum, given the size of the column in visual augle

units, the image resolution should be high so that each (now fixed-size) column contains

enough pixels.
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Therefore, a high resolution image with pre-determined maximum detectable disparity

satisnes the thrcc data-independent criteria determining the column size. However, high

image resolution increases the computational cost of the algorithm. The balance between

r"solutiou and computational cost may lie in foveated images [19]. In foveated vision

systmns, the imaging device foc uses on a centre of attention, referred to as the fovea, where

"important" information is located. High accuracy is important in this region and not as

important in the surrounding periphery. The foveated image has high resolution in the

fovea and lower resolution in the periphery [19]. One can choose the dimensions of the

ocular dominance columns so that the columns in the fovea correspond to a smaller region

in visual angle units than those in the periphery. As mentioned in Chapter 3, this is in

fact the same organizational strategy as the one in the ocular dominance structure of the

visual cortex. Therefore, higher disparity accuracy and resolution is obtained in the fovea

which is the underlying motivation for foveated vision systems. The overall visual system

then ensures that the fovea is focused on those parts of the scene which are of interest. We

also remember that human stereopsis in general, is Iimited to approximately the central 10°

of the retina [60], [77]. Similarly, the active vision system under study is concerned with

stereopsis in the central part of the retina.

The remainder of this chapter attempts to provide improvements to the disparity esti­

mation tool and reduce its dependence on image properties. Then a numerical example for

choosing the dimensions of ocular dominance columns is presented.

3. Improvements to the Estimation Algorithm

3.1. Re-Scaling the Cepstrum. As mentioned in Section 5.1, for finite length sig­

nais, the magnitude of the cepstral peak indicating the correct disparity decreases with

increasing disparity. Equation 4.19 provided the relationship describing the ratio of the

peak magnitude at any nonzero disparity d to that of zero disparity for .uncorrelated sig­

nais.

3.1.1. Re-Scaling the Cepstrum for Uncorrelated Signais. It is possible to approximate

the ratios appearing in Equation 4.19 and re-scale the value of the cepstrum at any shift by

its inverse to compensate for the drop in peak magnitude. This would generate a cepstrum

approximately unbiased with respect to shift, which does not favour any specific disparity

range. Disparity estimation using such an unbiased cepstrum is as likely to choose a large

false disparity instead of a small true one as it is to choose a small false disparity instead

of a large true one.
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The active vision system under study uses vergence control ta fixa.t.e on t.he point'

of interest in the scene, bringing such points within the mnge of c1ose-to-zero di,parit.ie"

Fol' such a system, il. is preferred 1.0 avoid false disparities when estimating dORe-t.o-zero

disparities al. the cost of the additional likelihood of incurring el'l'or when det.ect.ing !;u'gel'

disparities. Denoting the event of an error in peak detection bye, and the occurrence of

small and large disparities by S and L, respectively, we obtain:

If P{S} » P{L}, making P{eIS} smaller al. the cast of making P{eID} larger decr"a"e,

the overall probability of error, In other words, il. is appropriate 1.0 compensat.e for t.he

drop in the magnitude of the cepstral peak but preserve sorne of t.he bias t.owards zero

disparity. In Equation 4.17, if one approximates the multiple self-convolution opel'at,ion of

(.)m. by a self-multiplication operation (.)m, the ratio of the ccpstral peak magnit.ude l'al'

any disparity d 1.0 that of disparity zero can be expressed as follows:

•

(5.1)

(5.2)

P{e} = P{enS}+P{enL}

= P{S}P{eIS} + P{L}P{eIL}

Peakcep,(d) {1 d=O
Peakcep,(O) = ",,00 (_l)m+1 (T.v!)m = log (W-d +1) d..J. 0

L-m=l m lm 2W Î

•

when the original and echo signais are placed next 1.0 each other. Figure 5.1 iIlust,mtes t.his

approximated value obtained from Equation 5.2, along with those of Figure 4.10.

To acknowledge the importance of surfaces near the point. of fixation and zero dispal'ity,

the algorithm only partially compensates for the decrease in the magnitude of t.he cepst,ml

peak. This is achieved by using the (inverse of) the ratios given by Equation 5.2 1.0 re-seale

the cepstrum of each window.

3.1.2. Re-Sealing the Cepstrum and Data Correlation. The relationships of Equa­

tions 4.19 and 5.2 are based on the assumption that the processed signais arc uncorrclated.

This assumption, although true for randam-dot stereograms, rarely holds for l'cal scenes.

As a matter of fact, decreasing peak magnitude becomes an actual problem only when t.he

signal contains inherent correlation which causes multiple cepstral peaks. As explained in

Section 5.2, for such signais, a small false disparity may have a larger peak than a large truc

disparity. Therefore, re-scaling the cepstrum needs ta be considered within the context of

signaIs with internai correlation.
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FIGURE 5.1. Approximation ta the Decrease in the Cepstrum Peak Magnitude with lncreasing
Dlsparity. The length of the original signal is 32 samples and the signaIs are represented by con­
catenation. The curvcs lllustrate the decrease in the peak magnitude as ilJustrated in Figure 4.10
and as described by Equation 5.2.

Using (non-negative) intensities to represent visual data results in a DC value which

has a significant contribution to signal correlation. The presence of a DC value in a signal is

indicated by a non-zero value at zero frequency in the power spectrum of the signal. This is

re-converted to a constant value after taking the Fourier transform of the power spectrum to

obtain the autocorrelation or the cepstrum. This constant value is of course, smaller in the

cepstrum due to the compression property of the logarithmic transformation. Therefore, the

DC component shifts the autocorrelation function and the cepstrum of a signal vertically,

generating a constant level of internaI correlation. Removing the DC component of every

image window eliminates this contribution of signal correlation and is hence performed

before computing the cepstrum.

The influence of non-DC signal correlation is dependent on the signal properties. There­

fore, considering the non-De correlation requires the introduction of the autocorrelation of

the original signal as a factor into Equations 4.18 and 4.19. Attempting to estimate the

image correlation properties and using them to obtain the cepstral re-scaling factor merely

provides a coarse approximation to the actual values. In addition, such an approximation

is computationally expensive and involves determining spparate re-scaling factors for every

image patch depending on the its autocorrelation function.

For signaIs with a decreasing autocorrelation function, the DC component is the more

significant contribution to signal correlation. Furthermore, data independence of the initial
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estimation stage is a primary concern of this work. Therefore, compensation for signal

correlation is limited 1.0 removing the De component of eaeh image window.

3.2. Dimensions of Image Columns. The dimensions of the ocular dominance

columns and related parameters are ehosen to improve upon the algorithm cited in [125].

The choice of dimensions is made in units of visual angle. It is assumed that image resolution

is high and each image patch contains enough samples for approximating the cepstrum.

3.2.1. Maximum Detectable Disparity. It is known in signal processing applicat.ions

that the usefulness of correlation-type funetions is limited 1.0 only a fraction of the lengt.h

of the signal. This is because for larger shifts, the amount of information cont.ributing

1.0 the value of the correlation function is so small that il. is unreliable. rnrthermorc, as

mentioned in Section 5.1, with increasing disparity the magnitude of the cepsl.ral pcak

decreases 1.0 the extent that il. may be buried in noise. For these reasons, the region in

which the peak search is performed, or the range of detectable disparities, is rednced to t of

the image patch dimensions. With this decrease, maintaining the same range of detectable

disparities requires doubling the dimensions of the ocular dominance columns. The width

of the columns is actually doubled but the initial height is maintained. This is beeause. for

a typical stereo vision system, the vertical disparity between the image pair is much smaller

than the horizontal. Henee, halving the vertical search region does not affect the det.ect.ion

of the correct peak.

3.2 2. Maintaining Disparity Map Resolution - Overlapping Ocular Dominance Columns.

Increasing the dimensions of the image columns is in contradiction to the high diR~arity

map resolution and single disparity region requirements of Sections 2.1.4 and 2.1.5. To com­

pensate for the loss in the resolution of the disparity map, overlapping oeular dominancc

columns are used.

With increasing dimensions, image patches are also more prone 1.0 including multiple

or changing disparity. This shortcoming may be manifested in two ways. rirst, mnltiple

disparities cause the echo power to he spread among many disparities in such a way that

all peaks may be buried in noise. Second, a single disparity value is assigned 1.0 the whole

oeular dominance column, which actually includes ail the existing disparities. We note

that the smoothness assumption makes the occurrence of either problem very unlikely. For

smooth surfaces, the change in disparity within a window is small, and ail of echo power

is concentrated in a small section of the cepstrum. The estimated disparity is chosen in

this region and reflects the true range. The second problem is further (partially) solved
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by using overlapping ocular dominance columns. In practice, the same disparity is not

assigned to the whole patch in the disparity map. The estimated disparity is reserved only

for the central part of the ocular dominance column. The beginning and end portions ùf the

column arc, in fact, the central parts of the previous and next (overlapping) columns and

receive their disparities l'rom them. With the assumption of smooth surfaces, the "overail"

or "average" disparity of the ocular dominance column is equivalent to the disparity of its

central part. With such a strategy, the assigned disparity changes in harmony with the.

actual disparity.

Overlapping image patches, of course, increase the computational effort involved in

processing each frame. In the Iimit, one can have image patches of width W and height II

with overlaps of W -1 and II -1 in the two directions, and assign the disparity of the patch

to its central pixel. In this manner, every image pixel has its own disparity value based on

t.he shift generating its surrounding pixels in the other image of the stereo pair. However,

such an approach does not exploit the surface smoothness assumption. It also results in

an unnecessary increase in computational cost and no discernible benefit. The amount of

overlap is chosen to provide a balance between the computational effort and the required

disparity map resolution.

Avoiding the dilemma of providing such balance provides additional motivation to shy

away l'rom the unnecessary increase of the height of image columns al'ter reducing the search

region, as mentioned in Section 3.2.1. The horizontal overlap, on the other hand, is chosen

as one hall' of the (now doubled) patch width. Such a choÏce maintains the initial disparity

map resolution.

3.3. Removing the Cepstrum of the Original Signal. As mentioned in Sec­

t.ion 5.2 of Chapter 4, the cepstrum of the original signal acts as "noise" when searching for

the impulse which indicates the echo. Theoretically, the separate availability of the original

and echo signais makes it possible to eliminate this noise. This can be achieved by comput­

ing the cepstrum of the original signal and subtracting it l'rom the resultant signal. However,

duc to the non-corresponding parts of the original and echo signais, the actual detection

noise is different l'rom the cepstrum of each individual signal. Furthermore, the length of

the original signal is hall' of that of the concatenated window. This creates a requirement

for zero padding to obtain the same sampling rate in the frequency domain, as weil as equal

cepst.rallengths. Zero padding also causes additional differences between the detection noise

and the cepstrum of the original. Ail in ail, the latter provides a mere approximation to the

unwauted part of the overall cepstrum. Computing the additional cepstrum also increases
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the computational cost of the algorithm significantly. Therefore, removing the l'ep"tl'lllll of

the original signal is not performed as an improvement to disparity estimation.

3.4. Disparity Estimation with Sub-Pixel Precision. l'erforming a "earch for

the largest peak in the cepstrum of the image window J>rovides an estimation of di"paril.y, bul.

only to the nearest pixel. The authors in [85] ontline a nlèthod for e"tinml.ing the di"paril.l'

to sub-pixel precision. They assume that the pixel-precision cepstrum is a sampled vel'sion

of the sub-pixel-precision cepstrum. As a consenuence, they model the sub-pixel-pl'ecision

cepstrum at any point as a rectangular pulse of width one, centred aronnd the point..

The discrete cepstrum is a (sub-)sampled version of this continnons cepstrum, obt.aiued hl'

convolving il. with a sampling function. This function is a unit rectangular pulse of width

one pixel centred around the sampling point. The output of the convolution at. t.he pixel­

precision sampling point determines the value of the pixel-precision cepstl'nm at t1mt point..

This is schematically shown in Figure 5.2.

With such an assumption, the impulse at. a truc disparity, d, makes contribnt.ions 1.0

both neighbouring pixels LdJ and [dl. leJ and [el denote the immediat.e smaller and largel'

integer numbers of the real argument. This sampling scheme simply implements linear

interpolation. One can use (reverse) interpolation between the vaines at. I.he two pixel­

precision sampling points 1.0 obtain the location of the actual impulse. Using t.his met.hod,

the value of true disparity d is given by:

d = ldJ + cepstrum ([dl)
cepstrUT/! (ldJ) +cepstrum ([dl)

An inherent assumption of the above approach is that t.he sub-pixel-precision cepstrum

contains a single impulse which is the only source of contribution to the value of t.he cepst.rnm

at the two pixel-precision sampling points. Equivalently, the approach assnmes t.hat. the

value of the cepstrum al. each of the two pixel-precision sampling points, ldJ and [dl, 111"' a

contribution only from a sub-pixel-precision cepstral impulse at. disparity d. With such an

assumpticn, reverse interpolation 1.0 a single peak is justified.

The above sub-pixel estimation strategy has been adapted without any change for snh­

pb:el disparity estimation. The reason for choosing this simple algorithm is that the initial

step in sub-pixel disparity estimation is choosing the correct range for the location of the

peak, not the exact location. Any complex approach to sub-pixel estimation which is based

on local information alter choosing a peak is prone 1.0 the problems associated with peak

detection. Likewise, any method based on the assumption that the v'tlue of the cepst.rum
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FIGURE 5.2. Disparity Estimation with Sub-Pixel Precision. (a) Assumed original sub-pixel­
neeuraeyeepstrum. (b) Sampling Cunetion at pixel-aecuracy disparity oC dl. (e) Convolution oC
the cepstrum with the sampling functions at dl and d2. (d) Pixel-aecuracy cepstrum used in initial
peak detection.

at any point is due to a single impulse is prone to the problems which arise from the

distribution of power among multiple impulses. Therefore, with peak detection as the first

step, increasing the complexity of sub-pixel disparity estimation offers no improvements

to the uncertainty about the correct range. It may only offer little improvement to the

accuracy of sub-pixel estimation.

4. An example for Choosing Ocular Dominance Column Dimensions

•

Ocular dominance columns with a width of 16 pixels and a height of 8 pixels provide a

proper approximation of cepstrum. Assuming that a pixel spans a visual angle of 1.5', the

width of snch an ocular dominance column corresponds te a region of the retina subtending

24' of visual arc. Then the maximum cletectable disparity of the system equals four pixels

or 6' of the visual arc. This value is based on defining the maximum detectable disparity as
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~ of the image patch dimensions. With a half-eolumn overlap bet.wren oeulal' dominalll'c

eolumns, in the disparity map, eaeh eolumn corresponds 1.0 a visual angle of 12'. FinaHy in

sueh a system a 128-pixel x 128-pixel image covers a visual angle which is grcat.er t.han :1°.

Sueh an image size is weil within the range which is suitablc for real-t.imc proccssing. Aiso

the visual angle subtended by the fovea is similar t.o that, of many biologieal syst.ems. Il, is

interesting to note that the image rcsolution of this examplc is appl'Oximately l'quai t.o one

half of the resolution of human fovea [64] .
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1. PERFORMANCE OF THE ALGORITfiM AT DEPTH DISCONTINUITIES

CHAPTER 6

From Estimated Disparities to Disparity Maps

The disparity estimation scheme of Chapter 5 provides a disparity value for each ocular

dominancc column. This chapter is concerned with the overall disparity map of the scene.

The chapter starts by analyzing the performance of the algorithm on ocular dominance

columns which contain depth discontinuities. It then studies the relationship between the

disparities of neighbouring ocular dominance columns. This relationship is used for grouping

many such columns into disparity regions and the construction of an overall disparity profile

or map. Finally, we provide an interpretation of the overall disparity map.

1. Performance of the Algorithm at Depth Discontinuities

The smoothness assumption states that, in general, the change in disparity within small

regions of an object's surface, such as those contained within an ocular dominance column,

is small. Real world three-dimensional scenes are, of course, piecewise smooth and likely

to include discontinuities in distance. Depth discontinuities can be divided into the two

broad classes of (approximately) horizontal and non-horizontal. Once the dimensions of

ocular dominance columns have been set, one can study the performance of the algorithm

on image columns which contain discontinuities.

1.1. Horizontal Depth Discontinuities. At horizontal depth discontinuities, both

images contain the same information about the scene. Due to occlusion, there are points

in the scene that are invisible to the system. However, ail such points are invisible to bath

eyes. Thns every visible point on either side of the discontinuity is visible to both eyes, or

binocnlariy visible. The regions on the two sides of the depth discontinuity are, of course,

marked by dilferent disparities causing the image patch to contain more than one echo.

The sum of two dilferent originals and corresponding echoes with shifts Dl and D2 is

represented by impulses at quefrencies Dl and D2 in the cepstrum. Therefore, a window
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consisting of columns from a stereo image pair with two or more disparities has a cepstrum

with multiple peaks representing the disparities. The relative magnitudes of t.he peaks are

determined by three factors: the relative intensities of the two sectious corresponding 1,0 t.he

two disparities, the size of the section corresponding to each disparity, and t.he magnit.ndes

of the disparitics themselves. As explained in Chapter 4, t.he magnitude of t.he dÏ8parit,y alld

the size of the corresponding region together determine the number ofsamples cont.ribut.ing

to the cepstral peak. The expected intensity of the pixels in this region, or equivalent.ly t.he

surface reffectance properties, determine what the contribntion of each sam pie is.

The cepstral filtering algorithm chooses only one of the two disparities. This is eqni\'­

aient to shifting the boundary vertically towards the other. Attempting t.o det.ect, t.he t.wo

largest peaks, of course, requires a priori knowledge of the presence of a discont.inuit,y. Fur­

thermore, l'ven detecting both peaks does not giye an indication of the loca/.ioll of a disconti­

nuity. Estimating the location requires an iterative process which eit.her reduces the Iwight,

of the image column or shifts it in a vertical direction to prccisely localize the discont.inu­

ity. Such an approach, although possible, is not appropriate for real-time implement.at.ion.

Rather than dealing with different situations on an ad hoc basis, this thesis acknowledges

their presence and addresses their consequences when interpreting the disparity mal' of the

whole image.

1.2. Non-Horizontal Depth Discontinuities. For non-horizontal, and especially

vertical discontinuities, there is a region of the scene that is visible to one eye ouly. Occlusion

causes a region on one side of the boundary to be unmatched in one image. In a t.wo­

dimensional representation of a three-dimensional scene, the occluded region l'an be thought.

of as a stripe inserted between two regions of different disparity to compensate for the change

in the shift between the two. The concept of occlusion is illustrated in Fignre 6.1.

As with horizontal discontinuities, the algorithm performs normally before and aft.er

the occlusion region. For small depth changes, the width of the unmatched occlusion region

is small. Therefore, there are enough points associated with one or both disparities in one

image patch with matching poiats in the other. For such a small change the situation is

analogous to the presence of a hm'izontal disparity and the algorithm chooses t.he one of the

two present disparities. As a result, in the disparity mal', the boundary between the t.wo

regions is shifted towards the region whose disparity is not select.ed.

When the change in depth is large there is a definite lack of correspondence between the

ocular dominance columns from the two images. With such a lack of correspondence, t.he

cepstrum is not comparing an image column to its identical and shifted version. Inst.ead,
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FIGURE 6.1. Occlusion. A,B, and C ilIustrate a eut through three surf;lces at different
distances. L illustrates the region of surface A visible only to the left eye. R iIlustratcs the region
of surface C visible only to the right eye. These two regions are occ1uded from the other eye by
surface B.

the image column is being compared ta a different signal. The correlation between the

information in the two image columns can achieve a maximum at sorne unknown shift which

has no physical meaning in terms of stereo correspondence. The output of the algorithm

is merely a function of the statistical properties of the two image patches rather than the

disparity between them. This problem, of course, can occur with any algorithm that tries

to find a match for an occluded region. Once again, the influence of this issue on the overall

disparity map will be discussed in the section which deals with the formation of the disparity

map.

2. Thresholding the Cepstrum

If the disparity of an image patch is larger than the maximum detectable disparity,

the cepstral peak falls outside of the region where peak detection is performed. With

snch ct larger-than~detectable disparity, the value of the cepstrum within the whole peak

detectioll range is Iikely to be very small. Aiso the distribution of the cepstrum power

al110ng multiple peaks may result in a cepstrum whose maximum magnitude is relatively

8111a11 , even in the order of the detection noise. As explained above, another phenomenon

which tnay produce such a "shallow" cepstrum and the detection of a meaningless disparity

is the lack of corrcspondencc occurring in the presence of occlusion. In aIl such situations,

peak detection will still choose the shift with the largest cepstrum value. This is despite

the fact th.tt this largest relative value contains too little power to indicate the presence

of an cella. Therefore, peak detection in a shallow cepstrum may result in estimating a

disparity which has no physical meaning. The detected disparity is merely a function of the
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joint spectral properties of the two image patches. '1'0 avoid sllch sitllatiolls, the rompllted

cepstrum is thresholded before peak detectioll. If the magllitllde of the re-scaled repstrllm

is less than the threshold, no disparity information is available fol' that image pat.ch.

The magnitude of the cepstrum is a function of the size of the image patch as weil as

the intensities of the image samples contained in the p,üch. Image intensities determine

the power content of each saml'le while patch size determines the nnmber of siun pk" that

contribute to the total cepstrum power. Il. is possible to approxinmte the expee\,ed powel'

content of the pixels of each image patch. However, to avoid image dependent parameters,

only patch dimensions are used to determine the threshold.

Figures 6.2 (a) and (b) illustrate the values of the ccpstral peak of a zero-mean white

Gaussian signal as disparity changes. The values are normalized with respect, tn W x

H x 10g(W x H) before and after rescaling. W denotes the width of the concatenal.ed

processing window and H is its height. The normalization factor acconnts fol' the length

of each Fourier-transformed sequence as weil as the logarithmic operation involved bel.ween

the two sets of transforms. This curve l'l'presents a lower bonnd on the cepstl'nm of ail

signais whose values have the same distribution as the signal in the figul'C and whose meall

is non-negative. This is assuming that ail of the ccpstrum power is accumulated al. the shin.

representing the disparity. Increasing the DC value shifts the whole cmve upwards; any

other form of internai correlation flattens the curve. In other words, assuming a Gaussiau

distribution, the cepstrum of any signal with the same variance as the one in Figure li.2lies

above the curve in the figure.

The cepstral threshold is chosen as 1% to 2% of the value W x Il x 10g(W x I/). FOI'

the signal of Figure 6.2, this is less than the smallest peak magnitude of the (re-scaled)

cepstrum. Since the signal in this figure is a random signal, ail of the cepsl.ral power is

concentrated al. one peak. For other classes of signais or images, image properties such a.'

internai correlation may result in the distribution of the cepstral power in a larger region.

Choosing a threshold which is smaller than the minimum peak magnitude of the random

signal accounts for the distribution of the cepstrum power. Such a distribution may result

in a peak which is smaller than those in the figure but still represents a disparity. Therefore

the threshold has to be small enough to accept ail such peaks. A threshold less thall

the minimum value allows for slight decreases in peak magnitude without rejecting ail the

meaningful disparities (albeit al. the l'ost of accepting sorne meaningless disparities).

As mentioned above, the average power content of each image sam l'le influences the

curve. However, one l'an assume that for any general class of applications there would rnost.
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FIGURE 6.2. Thresholding the cepstrum. The two graphs illustrate the values of the cepstral
peak a..'i disparity changes. The values are normalized with respect ta the dimensions of the image
window. (a) The unscaled cepstrum. (b) The re·scaled cepstrum.

Iikcly be a specifie range of image brightnesses. One could modify the cepstral threshold

for difrcrent applications to account for the new scene properties.

•

3. Forming Disparity Regions Using Neighbouring Disparity Information

Ideally, the disparity map of a smooth surface consists of ocular dominance columns

whose disparities vary slowly across the surface. Equivalently, the disparity of neighbouring

ocular dominance columns of a smooth region are expected to he within a specified range

of one anothcr.

63



•

•

•

3. FORMING DlSPARITY REGIONS USING NEIGHBOURING DISPAHITY INFonMATloN

As mentioned in Chapter 4, colnmns which contain internai correlation may fl'snlt.

in the detection of false disparities. Also, Sect.ion 1.2 explained thal, in t.1", presenee of

vertical discontinnities and the associated occlnsion, peak det.ect.ion may resnlt. in a disparit,y

with no physical meaning. As explained in Section 2, larger-than-maxil1l\lm-det.ect.ahle

disparities may also resnlt in a shallow cepstrnm and a nonsense disparit.y. The sect.ion

fnrther illnstrated that by thresholding the ccpstrnm before peak det.ect,ion, one may be ahle

to avoid sorne of these meaningless disparit.ies. Instead they arc replaccd by an indicat.ion

of no information. Finally, althongh not. as significant. as the l'l'CVions issnes, t.he disparit.y

estimation noise may canse the snb-pixel accnracy disparity ta be slight.ly dilferent. from t.he

actnal vaIne.

Therefore, regions in the raw disparity mal' whose disparity is within t.he det.ect.ahle

range are corrupted by the presence of image patchcs containing false disparil.ies or no

information. On the other hand, regions whose disparity is ont.side of the detect,able range

- and shonld ideally be marked with no information - arc Iikely ta contain some pat.ches t.o

which a disparity is assigned.

Before nsing the disparity mal' for the symbolic representation of the scene, il, is desir­

able to eliminate these meaningless disparities. It would also be beneficial ta compcnsate

for the etrects of estimation noise on sub-pixel disparity. Patches for which no information

is present require a slightly ditrerent treatment. On one hand, it is desimble to assign dis­

parities to individual patches with no information that are embedded wit.hin pat.ches with

disparity values. On the other hand, it is appropriate to preserve large clusters of patches

which contain no disparity information. The whole region can be marked as an area where

disparity is larger than detectable and causes a small ccpstral peak. The corresponding

surfaces in the scene, are then considered to be farther or nearer than the desired mnge.

With the above description, we can summarize the formation of the disparit.y mal' frolll

the output of cepstral filtering as a refining stage. The l'l'finement. involves confirming the

initial estimated disparity (including no disparity), adjusting this initial value slight.ly, or

assigning a completely new disparity value at any ocular dominance column. Furt.hermore,

the l'l'finement is based on the disparities ofneighbouring columns. In otller words, the refin­

ing stage is an "operation" in which disparity information propagates through the disparit.y

mal' and the disparity of each ocular dominance column is inftuenccd by it.s neighbourhood

values. A possible approach to such an operation is to solve an optimization problem, in

which the extremum of a cost function determines the refined disparit.y values. However, for
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real-tirne applications it is desirable to avoid the high computational cost associated with

optimization.

Detection of a true disparity is a result of the event in which the peak representing the

true disparity is larger than that representing the false one. False disparities are of course

an outcome of the inverse of the above event. It is reasonable to assume that the internai

correlation which causes the detection of false disparities merely illustrates a limited degree

of similarity to the original signal. Thus, one can infer that the Iikelihood of the occurrence

of event that a true disparity is detected is greater than that of detection of a false disparity.

Sincc the estimation of a false disparity is less Iikely than a true one, the "defects" of the

disparity map occur as outliers. With such an assumption, it is possible to take a more

efficient approach to the retining process. Eliminating noise which appears as outliers in the

original data is suited ta processing with a median tilter. Besides eliminating the disperse

noise, median tiltering also serves to adjust those values that are slightly different from the

"collective" disparity of their neighbours.

3.1. Modified Median Filtering. To account for the presence of columns with no

disparity information, the traditional median tiltering is slightly moditied. In the moditied

scheme, a contribution to the output of the tilter is made either by those points which

contain a disparity value or those which have no disparity information, but not both. In

other words, the value of any tiltered point equals the median of only those neighbouring

points to which a disparity is assigned unless more than one half of the neighbouring points

contain no-disparity information. Under the latter condition, the filtered point is marked

as a point with no disparity. This is an illustration of the (above-mentioned) notion of

considering large regions with no disparity information as areas where the cepstral peak is

too small to indicate a detectable disparity. "Large region" is detined to consist of more

than one half of the area covered by the median tilter.

3.2. Two Different Approaches to Median Filtering. The cepstral filtering

algorithm assigns a single disparity value to each ocular dominance column. This value

is then mapped to ail the pixels which fall within the boundaries of the column, while

taking overlapping columns into consideration. The mapping operation projects the single

disparity of the ocular dominance column into multiple copies of this value as the disparities

of the pixels in the column. With such a mapping operation, one can consider two different

sets representing the disparities of the whole image: one before the mapping and the other

after. The former set is that of the disparities of ocular dominance columns and the latter
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set is that of disparities of individual image samples. The first set associates a siugle

disparity with each ocular dominance columu. The second set assigus as many (ident.ical)

disparities 1.0 the column as the number of pixels in it. Therefore the former set, hereafter

referred 1.0 as the data domain, represents the disparities before ma]Jpillg to the ]Jixels of

illdividual oeular dominance columns. Il. has a membership equal to the total nUlllber of

ocular dominance columns in the image. The latter set, referred to as the image domain,

is that of disparities after having been mapped to the pixels of individual oct/lm' d07lli1ll171ee

colt/mns. !ts membership equals the number of pixels in the image.

Il. is poSl.<ible 1.0 perform the refinemeut of the estimated disparity values in either the

data domain or the image domain. The two schemes respectively correspond to applying

the median filter before and after mapping the disparity of each ocular dominance columns

1.0 its pixels. Refinement in the data domain, considers the influence of the disparities of

neighbouring ocular dominance columns and not pixels. Therefore, il. assumes that ail the

pixels in a column are equally influenced by ail the pixels in the neighbouring columns

regardless of the relative positions of individual pixels in each column. Assume t.hat the

size of the median filter in units of visual angle is the same in both schemes. Then the dat.a

domain refinement is equivalent 1.0 performing the image domain refinement on the centml

pixel of each column and using this value for ail the pixels within that. column. The t;wo

methods are schematically ilIustrated in Figure 6.3.

Disparity refinement in the image domain has the added advantage of considcring the

relative position of each pixel within the OCt/laI' dominance eolt/mn when using the neigh­

bouring information. The neighbourhood of each sampie comprises those pixels t.hat. are

within a specified distance from that pixel. Considering the disparity and neighbonrhood

information for each individual pixel causes any disparity change 1.0 occur at the individ­

ual pixel level. On the other hand, filtering ail the pixels of an ocular dominance column

simultaneously causes the disparity change 1.0 occur al. the column boundaries only. There­

fore, the image-domain refinement of the disparity map imposes a smoothness constraint.

on the boundaries between disparity regions. This is a result of "spreading" any change in

disparity over the whole ocular dominance column.

3.3. Dimensions of the Median Filter. The dimensions of the median filter de­

termine the extent of the neighbourhood region which is used in refining each disparity

value. Increasing the size of the neighbourhood region corresponds 1.0 the assumption that

disparity information remains within a specified range in a larger area. In other words,

larger filter dimensions impose the surface smoothness assumption more strongly.
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(a) (b)

FIGURE 6.3. DiBparity Refinement in the Image and Data Domains. (a) Image domain
filtering. A disparity is assigned to each pixel in the ocular dominance column. Every pixel
in every ocular dominance column is filtcred separately. Filter boundaries nced not coincide with
ocular dominance boundaries. (b) Data Domain filtering. Onlya single disparity is associated with
each ocular dominance column. The whole column is filtered as a single entity. Filter boundaries
always coincide with ocular dominance column boundaries.

• The choice of filter size has to provide a balance between using neighbourhood informa­

tion for disparity refinement and al10wing graduaI changes in surface disparities. For this

reason, the chosen neighbourhood region consists of 1.5 to 2 ocular dominance columns in

cach direction for both image and data domain filtering. In the image domain filtering, the

neighbourhood of each pixel is determined by the filter size and its relative position within

t.he ocular dominance column. In the data domain filtering, the neighbourhood of each

ocular dominance column always includes the column itself as well all the columns that are

in contact with the filtered one.

4. The Refined Disparity Map and Figure-Ground Separation

•

The principle assumptions of the refinement stage are that the surfaces in the scene are

piecewise smooth and false disparities occur as outliers. With such assumptions, the refined

disparity map consists of disparity regions each ofwhich represents a smooth surface in the

scene. Since the algorithm assigns a single disparity to each column in the estimation stage,

the surface boundaries may have been shifted by no more than the dimension of an ocular

dominance column. Sub-pixel estimation and median filtering also illustrate the changes

within a single surface. Therefore, in the overall map one can distinguish the locations of

different surfaces and an approximation of their individual properties.
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A symbolic representation of the scene with such characteristics, fonlls the basis for

figure-ground separation using stereopsis. Such a description distingllishes betweell neigh­

bouring surfaces based on difference in depth between then! (and not the absolu te distance

of each surface). II. further provides a coarse estimation of the surfaces themselves. Snch

output is in harmony with the figure-ground separation role defined in [42]. II. also agrccs

with the view of [116] that complete surface reconstruction occurs only after an initial

description, based on non-constant depth changes, is obtained.
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CHAPTER 7

Experimental Results

This chapter is devoted to studying the method developed for obtaining the disparity map

of a stereo pair within an experimental context. The chapter first examines the disparity

estimation and disparity map construction stages separately. For each stage the infiuences

of the different aspects of the algorithm are studied. Examples include the effects of the

re-scaling of the cepstrum or the domain in which median filtering is performed. After

studying ail aspects of the method individually, the overall disparity maps obtained by

applying the complete method to various image types are presented and explained.

One of the images used for obtaining the overall disparity map is a random-dot stere­

ogram in which regions of each image are identical and shifted versions of ones in the

other image. Experiments are also performed on synthetic images of three-dimensional

scenes. Synthetic images are those which have not been obtained with actual cameras

from real thrce-dimensional scenes. Nevertheless, such images are based on descriptions

of tbree-dimensional objects. Also the imaging process is mimicked in their generation.

Consequently, these images share ail of the properties of real stereo pairs, especially the

differences which exist between left and right images due to different viewing angles. Such

dissimilarities include variations in lighting as weil as foreshortenin@:. Finally the output of

the algorithm on real stereo images of three-dimensional scenes is studied.

Historically, various stereo algorithms have been developed based on different assump­

t.ions about the role of stereopsis and the type of images they deal with. Such assumptions

oftell represent the specifie application for which stereopsis is used. As a result, many of

t.hese algorithms have evolved to provide a particular type of result on a specifie class of

images. Many feature-based algorithms, for example, may perform poorly on images with a

great deal of texture but outperform region-based algorithms on surfaces with little texture.

Therefore the performance and the computational cast of each algorithm is dependent on
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the specific context for which it has been developed. For this reason this chapter does not

compare the experimental resnlts obtained to the performance of other classes of stereo al­

gorithms. The algorithm and its performance are studied while considering the assnmpl,ions

that this thesis makes about the role of stereopsis and surfaces in the world.

1. From Stereo Image Pairs to Disparity Maps

Figure 7.1 contains three stereo image pairs used in the experiments designed to iIlus­

trate the role of each aspect of the algorithm. The depth profiles for these image pairs are

schematically shown in Figure 7.2.

The image pair in Figure 7.1 (a) contains two objects: a cu be and a sphere. The baseline

between the two cameras is parallel to the surface of the cnbe aud the point of fixation lies

on this surface. Therefore, the surface of the cube has a d:sparity of approximately wro.

The sphere is located farther from the cameras than the cube and its disparil.y is grea,ter

than zero. Due to the change in depth along the surface of the sphere there is a dispal'Îty

change of approximately one pixel between the central point and the boundary of its surface.

The background is the farthest surface and has the largest disparity of the th ,·ee.

The stereo pair of Figure 7.1 (b) contains a stair-case depth profile consisting of surfaces

at five different distances, including the background. The leftmost surface contains the point

of vergence and has a disparity of zero. Disparity increases incrementally from lefl. t.o right..

The background consists of the whole upper half of the image as weil as the far right section

of the lower half.

Finally, the image pair in Figure 7.1 (c) contains a cone whose vertex points outwards,

against a background of constant depth profile. Because of the linear depth profile of the

cone there is a constant change in disparity along its surface. There is a sudden change in

disparity between the base of the cone and the background.

1.1. Disparity Estimation Algorithm.

1.1.1. Re-Scaling of the Cepstrum. Figure 7.3 (a) shows the output of the algorithrn

described in [125] on the first two test images of Figure 7.1. In both pairs, the maximum

disparity belongs to the background and has a value of four pixels. The width of each

ocular dominance column is eight pixels, with the search region defined as one half of this

value as in [125]. Figure 7.3 (b) illustrates the effect of re-scaling the cepstrum before peak

detection.

As seen in this figure, disparity estimation without re-scaling results in detecting false

disparities in ocular dominance columns with large disparities. In l'articulaI', for disparities
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1. FROM STEREO IMAGE PAIRS TO DISPARITY MAPS

•

•

FIGURE 7.1. Stereo Image Pairs. (a) Objects. (b) Staircase. (c) Cene.
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(a) (b) (c)

•

•

FIGURE 7.2. Dcpth Profiles ror Stereo Image Pairs. 'The depth nmps arc Ilot to !lcl,lc. (a) Ob·
jects. (h) Staircase. (c) Cone.

ofthree and four pixels - that are greater than one quarter of the patch width - distinguishing

between the actual disparity of the region and estimation noise becomes impossible. Re­

scaling the cepstrum partially reduces the extent by which small disparities are favoured.

This in turn reduces the level of noise in large disparity regions at the cost of i11t1'0ducing

a few false disparities in regions where the disparity is small.

1.1.2. Accounting for Signal Correlation Due to the DC Componen/. As explained in

Section 3.1.2 of Chapter 5, the mean value of each image window is removed to eliminate

the contribution of the DC value to signal correlation. The elfect of removing the De
valu~ of the composite window before computing the cepstrum is shown in Figure 7.4.

Subtracting the signal mean remOVes the DC component of signal correlation. This makes

the use of re-sca.\ing factors of Equation 5.2 which are developed for uncorrelaLed signais

more appropriate.

1.1.3. Maximum Detectable Disparity. As mentioned in Chapter 5, for a given im­

age resolution, the dimensions of the ocular dominance columns can be chosen based on

the desired maximum detectable disparity. Therefore, the dimensions of the ocular domi­

nance columns are not considered as independent variable factors, but a function of image

resolution and maximum detectable disparity.

Figure 7.5 contains the initial or unfiltered disparity mal' ;;Jter 'educing the size of the

region in which the search for the cepstral peak is performed from one half to one quarter

of the width of the ocular dorr.inance columns.
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(al

•

•
FIGURE 7.3. Rc-scaling the Cepstrum and Disparity Estimation. The left hand side ilIustrates
the disparity maps for Figure 7.1 (a) and the right hand side for Figure 7.1 (h). Peak dctection
is performed in a region whose width is one half of the width of the ocular dominance column.
(a) Initial disparity map without J"e<oscaling the cepstrum using tbe algorithm described in [125].
(.!:-) Initial disparity map aCter re-scaling the cepstrum.

After halving the per.k search region, maintaining the same maximum detectable dis­

parity requires doubling the width of the ocular dominance columns. The width of the

ocular dominance columns used to obtain the disparity maps of Figure 7.5 is sixteen pixels

compared to eight pixels in Figure 7.4. As seen by the result, decreasing the peak detection

region considerably reduces the estimation error at the cost cf decreasing the resolution of

the disparity map.

•
1.1.4. Overlc.:, of the Ocular Dominance Columns and the Disparity Map Resolution.

Ovcrlapping oLular dominance columns solve the problem of reduced resolution at the cost
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(a)

1. FROM STEREO IMAGE PAIRS '1'0 D\SpAI1ITY MA!'S

(b)

FIGURE 7.4. Removing the Signal Menn bcfore Disparity Estimation. PCIlk detccliull i!l
perCormed in a rcgion whose width is one Imlr of the width of t.he ocular dmnilmllce COlUll1ll and
the ccpstrum is re-scalcd. (a) Disparity mapror Figure 7.1 (a). (h) Dispnrity map for Figure 7.1 (b).

•
(a) (b)

•

FIGURE 7.5. The EfTect of Reducing the Maximum Detectable Disparity. The sCl,rch rcgion iH
recluced from one haU to one quarter of the (doublcd) ocular iominancc colunm width. 'l'he flignul
mean is removed and the cepstrum is re-scalcd. (a) Disp<:I.f1ty map for Figure 7.1 (a). (b) DiHparity
map for Figure 7.1 (h).

of increased computational effort. The influence of increasing the (horizontal) ovcrlap on

disparity map resolution is illustrated in Figure 7.6.

Section 3.2.2 of Chapter 5 also explained that overlapping columns compensatc for the

presence of changing disparities in ocular dominance columns. This is donc by cnsu rinll

that the estimated disparity is assigned oni} the central part of each patch. The erfcct of

overlapping columns on surfaces with changing disparity is illustrated in Figure '(.7 for the

image of a cone whose depth and disparity undergo a constant change.



•
1. FROM STEREO IMAGE PAIRS TO DISPARITY MAPS

One can see that increasing the overlap of ocular dominance columns localizes the tran­

sition between different disparities more precisely. This is of course because the estimated

disparity is assigned only to the central part of the patch. Witb the assumption of smooth

surfaces, the disparity of this central region is equivalent to the "overail" or "average"

disparity of the patch.

1.1.5. Remouing the Cepstrum of the Original Signal. The most significant cause of

error in disparity estimation is the problem of false disparities due to internaI correlation

of the original signal. Internai correlation is manifested by extrema in the cepstrum of the

•
(a)

•

(b)

FlOURE 7.6. OcuJar Dominance Column Overlap and the Resolution of the Disparity Map.
The left hand sicle ilIustrates the disparity maps for Figure 7.1 (a) and the right hand side for
Figure 7.1 (h). Peak detection is performed in a region whose width is one quarter of the width
of the ocular dominance column. The signal mesn is removed and the cepstrum is re-scaled.
(a) Overlap equals 50% of the column width. (h) Overlap equals 80% of the column width.
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(c)(b)(a)

•

FIGURE 7.7. The Effcd of Ocular Dominance Column Ovcrlap on Prcscrving Di!lplLrit.y Gm­
dient. Ali disparity maps correspond ta Figure 7.1 (cl. Peak detcction is perCormcd in a. regioll
whose width is one quarter of the width of the ocular dominance column. The flignal menll if!
removed and the cepstrum is re-scaled. (a) No overlap. (h) Overlap cquals 50% of the column
width. (c) Overlap equals 80% of the column width.

original signal which act as "noise" in detecting the cepstral peak. Figure 7.8 ilIustrates the

influence of removing the cepstrum of the original signal before peak detection .

•

(a) (b)

FIGURE 7.8. Removing the Cepstrum of the Original Signal. Peak detection is performcd in
a region whose width is one quarter of the width of the ocular dominance column. The siguul
mean is removed and the cepstrum is re-scaled. The overlap bet.ween neighbouring columns iH
50%. (a) Disparit.y map for Figure 1.1 (a). (h) Disparit.y map for Figure 7.1 (b).

•
The result illustrates that this operation does not offer·any improvement to the per·

formance of the algorithm. As explained in Chapters 4 and 5 this is due to the difference
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1. FROM STEREO IMAGE PAIRS TO DISPARITY MAPS

(d)

•

FIGURE 7.9. Disparity Estimation with Sub-Pixel Accuracy. Peak detection is performed in
El region whose width is one quarter of the width of the ocular dominance column. The signal
mesn is removed and the cepstrum is re~scaled. (a) (b), and (c) The overlap between ncighbouring
columns is 50%. (d) The overlap between neighbouring columns is 80%. (a) Disparity map for
Figure 7.1 (a). (h) Disparity map for Figure 7.1 (h). (c) and (d) Disparity maps for Figure 7.1 (c).

between the cepstrum of each of the two images and the detection noise. The difference is

due to the non-corresponding parts of the two ocular dominance columns.

1.1.6. Disparity Estimation with Sub-Pixel Accuracy. Sub-pixel disparity estimation

" performed by interpolating between the largest cepstral peak and the larger of its adjacent

peaks. The results of estimating disparity with sub-pixel accuracy is illustrated in Figure 7.9.

ln particular, Figure 7.9 (d) shows the graduai change in the disparity of the surface of a

cone and illustrates the effect of this approach in estimating sub-pixel disparities.
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1.2. Disparity Map Construction.

1.2.1. Thresholding the Cepstrum. The result of thresholdiug the cepstrum bellwc

peak detection is illustrated in Figure 7.10 (a). Comparing these disparity nmps with those

in Figures 7.9 (a) and (b) demonstrates that thresholdiug the cepstrum result.s in replaciug

sorne of the false disparities by an indication of no disparity information. This is pltrtic.ulltrly

true for those false disparities that occur at depth discontinuities.

The effect of varying the threshold level is shown in Figures 7.10 (b) and (c). 11

comparison between the disparity maps of Figure 7.10 (a) and those of Figures 7.10 (b)

and (c) shows that a threshold of 0.02 X W X H X 10g(W X H) flags the majorit.y of t.he false

disparities as unknown locations without affecting many of the truc ones. IV and li al'e

the dimensions of the window resulting from concatenating the ocular dominance columns

taken from the two images.

1.2.2. Refining the Initial Disparity Map. Median filtering is used to refine t.he init.ial

disparity estimations, including the presence of no disparity informatiou, using the <lispar­

ities of the neighbours. Section 3.2 of Chapter 6 explained that filteriug can be performed

using either individual pixels or individual ocular dominance columns as filt.ering ken",ls.

Figures 7.11 and 7.12 illustrate the results offiltering the thresholded disparity maps of t.he

test figures in both image and data domains.

The results illustrate that false disparities occur as isolated noise for these image pairs.

Median filtering serves to eliminate these false disparities in the disparity mal'. Furt.her­

more, Figure 7.11 illustrates that performing the filteriug operation at every pixel results in

smoother transition between regions of different disparity. Finally, Figure 7.12 illustrat.es

the smooth transition property for a surface with a changing disparity profile.

1.2.3. The Bize of the Median Filter. Section 3.3 explained that the dimensious of the

median filter correspond to the degree of the assumed surface smoothness. The influence of

the filter size is illustrated in Figure 7.13.

As seen in the figure, increasing the size of the median filter increases the neighbourhood

support as weil as the smoothness of the boundaries between the disparity regions.

2. Performance of the Overall Method

The previous two sections studied the influences of the various aspect.s of the rnet.hod

experimentally. The results of the experiments illustrate the effectiveness of the irnprove­

ments to the algorithm proposed in Chapter 5, as weil as the performance of median fillering
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(b)

2. PERFORMANCE OF THE OVERALL METHOD

•

•

(c)

•

FIGURE 7.10. Thresholding the Cepstrum BcCore Peak Detection. The left hand side iIlus­
tratcs the disparity maps for Figure 7.1 (a) and the right hand side for Figure 1.1 (h). Black
representa the presence of no disparity information. Peak detection is performed in a region whose
width is one quarter of the width of the ocular dominance column. The signal is removed and
the ccpstrum Îs re-scaled. The overJap betwecn neighbouring columns is 50%. The cepstrum of
the original sig"",1 is removed. (a) Threshold is 0.02 x W X H X log(W X H). (b) Threshold is
0.04 X IV X H X log(IV X H). (c) Threshold is 0.08 X IV X H X Jog(1V X H).
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(b)

(a)

•

•

FIGURE 7.11. Refinement of the Disparity Map Using Median Filtcring. The (dt hand side
ilIustratcs the disparity maps for Figure 7.1 (a) and the right hand side for Figure 7.1 (h). Black
represents the presence of no disparity information. Peak dctection is performed in ft regioll whollc
width is one quarter of the width of the ocular dominance column. The signal mes" is removcd
and the cepstrum is re-scaled and thresholded. (a) Filtering in the image damain. The dimensions
of the filter are three timcs those of the ocular dominance columns (aCter overlap). (b) Filtcring
in the data damain. The width of the filter is threc.

in refining the initial disparity map. This section examines the attainment of the complete

scheme on different stereo image pairs. The results ofthese experiments, along with those in

Figures 7.11 and 7.12, provide an insight into the method which can be used as a guideline

for its application as a part of a vision system.

•
2.1. Performance on Random-Dot Stereogram. Figures 7.14 (a) and (b) show

the left and right images of the random-dot stereogram used in the experiment. The stereo

signal contained in the image pair is shown in Figure 7.14 (c). The stereo signal representS
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(a)
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(b)

•

•

FIGURE 7.12. Median Filtering and Changing Disparity. Disparity maps correspond te
Figure 7.1 (c). Black reprcscnts the presence of no dispadty information. Peak dctcction is
pcrformed in a rcgion whose width is one quarter of the width of the ocular dominance column.
The signal menn is rcmoved and the cepstrum is rc-scaled and thrcsholded. (8) The ovcrlap
bctween ncighbouring columns 15 50%. (b) The ovcrlap betwcen neighbouring columns is 80%.

a disparity of 10 in the central region of the image pair. Figure 7.15 contains the computed

disparity map for the random-dot stereogram of Figure 7.14.

Comparing the result with the actual disparity map of Figure 7.14 (c) illustrates that

the algorithm has correctly obtained the disparity map of the pair. In the initial disparity

map sorne of the ocular dominance columns located on vertical depth discontinuities contain

false disparities. This is due to the lack of corresponding information in the columns from the

left and right images caused byocclusion. The boundaries between the two disparity regions

are slightly shifted due to the fact that a single disparity is assigned to the whole region

covered by an ocular dominance column. The overall disparity map clearly represents the

boundaries between surfaces of different depths and is suitable for figure-ground separation

based on depth.

2.2. Performance on Real Stereo Image Pairs. Sorne of the stereo image pairs

for the experiments have been obtained from an available stereo image bank compiled by

SRI International. Many such images have been taken for use with specifie algorithms.

For example, most traditional stereo algorithms search for corresponding features in the

two images of the stereo pair. To simplify the search, such algorithms use aligned cameras

which result in horizontal disparities and therefore horizontal epipolar lines only. Two

imaging devices are aligned if they have identical vertical elevation and orientation. Another

consequence of camera alignment is the rare occurrence of zero and small disparities. By
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(b)

(a)

•

•

FIGURE 7.13. Median Filter Dimensions. The Icft hand side iIIustratrs the diNpllrity nmps for
Figure 7.1 (a) and the right hand side for Figure 7.1 (h). (a) The dimensions of the filLer lue four
Limes those of the oeular dominance columns (aCter overlap). (h) The dimensions of the filLer Ilre
five times thosc of the Deular dorninancecolumns (afterovcrlap). Th" scarch rcgion is one qUllrtm'
of the ceular dominance column width. The signal mcsn is removcd. The cepstrurn is rc-scaled
and thrcsholded. The overlap betwecn neigllbouring columns is 50%. The ccpstruin of t.he origitml
signal is removed.

•

using the two-dimensional cepstrum, the algorithm described in this thesis can easily handle

verticeJ disparities and hence is not restricted to parallel-axis imaging devices. By removin[!;

the alignment restriction and the use of vergence, the imaging system can fixate on the

regions of interest and reduce their disparities to the range detectable by the system. This

is similar to the saccading and fixation movements of the human visual system. However, in

the described experiments the range of detectable disparities has been based on the availabl"

aligned stereo image pairs.

Figures 7.16 to 7.18 contain stereo image pairs anà the initial and refined disparity

maps obtaineà by segmenting the pair using the cepstral disparity estimation algorith fil
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(a)
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(b)

(c)

FIGURE 7.14. Random-Dot Stcrcogram. (a) LeCt image. (bl Right image. (c) Di!lpllrity nmp.

(a) (b)

•
FIGURE 7.15. Performance of the Method on Random-Dot Stcrcogram. (a) Initial diKparity
map. (b) Refincd disparity map.
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and rnedian filt.ering. The first. t.wo image pairs have been taken using aligned cameras anrl

t.hernfore do not. cont.ain a point. or surface of fixat.ion. As a result, surfaces that are closest

t.o t.he camera have large disparities. Since disparity decreases with increasing distance,

t.heoret.ically zero disparity corresponds 1.0 surfaces of infinite depth. However, in practice

due 1.0 sarnpling considerations, surfaces that ",re 10cMed "far" from the imaging device

have zero disparities.

•

(c) (d)

•

FIGURE 7.16. Performance of the Method on Real Stereo Images (Parking Meter).
(a) and (bl LeCt and right images. (c) Initial disparity map. (d) Refined disparity map.
and 2 indicate the top of the parking meter and the opening in the shrubs respectively.

Consider t.he image pair in Figure 7.16. Despite the low level of texture in the original

image pair, the algorithm has obtained the correct disparity map. The disparities of the

shrubs and parking meters decrease with increasing distance from left 1.0 right. The disparity

map even illustrates the presence of geometric features such as the top part of the meters
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or the opening in the shrubs in the iower left part of the scelle. A complete lack of t.ext.urt'

on sorne parts of the building has caused areas of false disparity in this l'egion in t.he illitmi

disparity map. Refinement using median filtering has eliminated most of thesc l'l'gi01l8.

•
(c) (d)

•

FIGURE 7.17. Performance of the Method on Real Stereo Images (Shrub). (a) and (h) Left
and right images. (c) Initial disparity map. (d) Ref1ncd disparity map. 1 and 2 indicatll the
opening in the shrubs and the traffic sign respectively.

Now consider Figure 7.17. Once more the algorithm has correctly segmented The image

into distinct regions based on the distance of surfaces in the scene. The false disparity in

the white stripe below the shrubs corresponds ta the low~texturedsurface of the curb. The

disparity map is clearly appropriate for distinguishing abjects - the tramc sign, for cxamplc

- from the background. It al50 identifies landmarks such as the opening between the shru bs

which can he used for path planning.

This example also illustrates the robustness of the cepstrum and the algorithm 1.0

differences between the two images of the stereo pair. There is a considerable differencc of
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(d)

•

FIGURE 7.18. Performance of the Method on Real Stereo Images (Rock). (a) and (b) LeCt
and right images. (c) Initial disparity rnap. (d) Refined disparity map.

5% between the brightnesses of the two images. Despite this, the segmentation provides

the correct disparity map of the scene.

The final stereo pair used for experimentation with the algorithm is the image of a

rock taken with the cameras verging on its surface. Thus there is an area of the surface

where the disparity is very small. This image pair has been taken without camera calibra­

tion. Therefore, misalignment takes place not only because of vergence but also from the

fact that the two cameras do not have the same vertical elevation. In addition, there is

different lighting in each image and one of the two cameras is slightly out of focus. These

factors typically exist in autonomous mobile robotic systems operating in an unstructured

environll1ent.
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This examp!e not on!y iIIustrates the robustness of the algorithm ta th" illt(,I'-(l(,lIlal'

differences mentioned above but also providcs an indication of the perrOl'llli\.lICl~ 011 ~\Il'fac('H

\Vith changing disparity, The final disparity map contains an illdicat.ion of the llOlIndal'Y

bet\Veen surfaces at different distances, Further, it iIIustralcs the val'Î,üions in 1.1", sUl'fa('('

of the rock itself.
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GIIAI'TER B. BIOLOGIGAL l'LAUSIBILITY OF A CORRELATION-BASED MODEL

CHAPTER 8

Biological Plausibility of a Correlation-Based Model

This chapter considers the plausibility of a correlation-based mechanism as a computa­

t.ional modcl for neural disparity estimation. The correlation is performed on the visual

information in the ocular dominance columns of the primary visual cortex. It is important

t.o distinguish between the two phrases "computational model of binocular disparity esti­

mation" and t.he more commonly used "computational model of stereopsis". The former

process results in a neuronal response to binocular disparity. This constitutes only a single

stage in the latter, which is defined as encompassing the whole process of depth perception

\Ising vision through two eyes. This thesis not only makes no attempt to explain biologieal

stcreopsis but also points out that any such attempt, based on present knowledge of the

visual cortex, is on shaky grounds. What the thesis does do is to associate the properties of

neural disparity sensitivity in the early stages of the visual pathway with a computational

mode\. Even then, We need to emphasize that we make no daims that this is the actual

process which produces the response of these neurons. Rather, we simply state that the

range of connections and properties of such neurons support such a mode\. Furthermore,

as explained later, the term correlation does not refer to a specifie operation. Instead, it

is used to denote an "equivalent dass" of operations which compare or correlate their two

in pu ts.

There are a few occasions in this chapter where the analogies between the properties of

neural disparity sensitivity - a single stage - and those of stereopsis - the overall process - are

indicated. These similarities are also related to the computational model under study. After

considering disparity estimation from a computational point of view, the chapter studies

the plausibility of the overall disparity map.
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1. N8UHAl. t\tECIIANISt\l OF TllNED NEl:HONS

1. Neural Mechanism of Tuned Neurons

1.1. The Connections Required for a Correlation-Based Mechanislll of Nen­

rai Disparity Estimation. Assume that. t.he dendrit.es of a rompl"x 'l'un,,d l·;xrit.alory

(TE) neuron have synaptic connections with the axons of th!' neurons in hall' of an OI'\liar

dominance colum n as weil as the adjacent hall' of t.he adjacent coIn mn. Th,· Iwo ocnlar dom­

inance columns of course correspond ta diITerent eyes. Due ta the half-colunll\ ov!'dap of Ih"

retinal area represented in neighbouring ocular dominance colnmns, Ihe t.wo half-columns

contain information l'rom identicallorations in the two retinae. The disparity s!'nHitive ,,,,n­

l'on receives its inputs l'rom bath of these half-rolumns. Such connect.ions a.l'!' sd"'\IIat.icaHy

iIIustrated in Figure 8.l.

ln this way, the two sets of monocular information are "combined" wit.h earh ot.l",r.

With snch connections, the disparity sensitive neuron ean <tet as a. Ilntt.Cl'll t.hat. l'l'ovides a.

measure of the "correlation" between the iuforrnation on the t.wo retinae. In addition, 1.1",

disparity selective neuron l'l'ovides a medium 1.0 represent su rh cOl'I'elat.ion propert.ies. The

activation of a l'articulaI' neuron by the correlation properties is dependent. ail t.he lora.tion

of the peak of the correlation function and l'l'ovides a mechanism fol' peak det.ect.ion.

Such a modelaI' a complex cell is diITerent l'rom the hierarchical model orfured hy lIuhel

and Wiesel in which a complex ccli receives its input. l'rom a series of si\ll!,le cclls [51]. Ily

contrast, the complex cells of layer 4B, such as that in Figure 8.1, receive t.heir inputs

l'l'am the neurons of layer 4Ca. In this layer, visual information is still in a rirc1e-surround

receptive field format and no simple cell structure is present. The disparit.y seluct.ive rO\llplex

cell is activated when the "non-simple-cell" subfields in one eye are shifted versions of I.hose

in the other eye. Such a modelaI' course requires a binocular or "dual" input. and Wou Id

not respond 1.0 a monocular input. With monocular stimulat.ion, t.he subfields of one eye

have zero input and spectrum. This is in agreement with the observat.ions of Poggio ct. al,

stated in Section 2.2.101' Chapter 3.

1.2. Estimation of Correlation in Neurons. Assoriat.ing a specialized compu­

tation such as the cepstrum 1.0 cortical neurons is a far-reaching c1aim. Nevertheless, wc

observe that cortical neurons are belleved 1.0 behave llke spatial frequency filters and he

involved in spatial frequency discrimination [108], [120], [124]. Such "fruquency-hased

processing" would constitute the first step in estimat.ing the correlation function. It. is also

important 1.0 note that spatial and frequency domain representations of signaIs are rneruly
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Ocular dominance columns of layer 4Ca
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Disparily sensilive neuron of layer 48

o
FIGURE 8.1. Neural Connections from the Ocular Dominance Columns ta the Disparity
Sensitive Ncurons (schcmatic). Land R represcnt the ocular dominance columns corrcsponding
ta Icft and right cyes, respectively. The second half (marked by 2) of each column, corresponding
ta the left cye, has connections te the same neuron as the first halC (marked by 1) of the adjacent
cohunn corrcsponding ta the right cye, and vice versa. The two halC-columns a1so represcnt
the same retinsl aren (sec Figure 3.2). The dctails of the mapping from the cyes te the ocular
dominance columns arc shown in Figure 3.1. The disparity sensitive neuron indicatcs the disparity
bctwecn the two half-columns as its response. Disparity is rncasured by and rcpresented in this

ncuron.

I.wo re]Jresentations of the same information. A processing unit such as a neuron is ob­

viously not aware of the distinction between the different representations. As long as the

response of the neuron to an "equivalence class" of inputs resembles the output of a process

t.o the same class of inputs, the neuronal activity can be modelled by that process. Thus

il. seems that cortical neurons are involved in sorne form of frequency domain processing of

visual data.

Even the above reasoning gives no indication of the particular "sub-class" of correlation

operat.ion performed between the information from the two eyes. From a computational

point. of vi~w, il. is only possible ta state that a "correlation-like" operation may be the

underlying factor for the response of Tuned Excitatory neurons. However, correlation is as

specifie a mechanism as the present neural knowledge can justify. Associating these cortical

neurons with the cepstrum, a precise type of correlation algorithm, is too strong a claim

considering the generality of the cortical computations.

90



•

•

•

1. :'ŒUHAI, ~mCIIANIS~1 OF 'l'IINEIl NEI1!lONS

1.3. Properties of Tuned Cells. This section explains same of the obsl'rved pl'Op­

el'ties of the tuned cells using the ocnlal' dominance colnmn cOI'I'e!ation-I""ed 1II0de\. 'l'hl'

properlies are fully explained in Chapter 3.

1.3.1. Runge of Delectable DispaT·il,ics. At any ecccntricity, cortical l'omplex l'l'll8 ImVl'

receptive field sizes approximat~ly l'quai to the overall receptive field of (ail the neUl'On8 in)

one half of an ocular dominance column [29], [51]. With increasing eCl'entl'icity, the sizl'

of the receplive fields of these complex cells increases in the same mannel' as t.h" l'etinal

area rcpresented in the ocular dominance colnmns. In t.he nenl'olml correlation dispa,l'it.y

estimation mechanisffi, disparity sensitive neurons reccive information from a. regioll a~ large

as one half of an ocular dominance column. With such an input., at any eccentl'icit.y t.he

width of the ocular dominance columns determines the range of disparities detectable by

the neuron. This can be compared with the maximum detectable disparit.y of the algol'it.hlll

in Chapter 5.

The range of preferred disparities observed in the t.uned neurons of layer 'lB in fact.

falls within the visual angle subtended in one half of an ocular dominance column at all ec­

centricities. Furthermore, the range of preferred disparities of tuned neurons inere••,es \Vith

increasing eccentricity in the same manner as the increase of the visual angle l'epresent.ed

in ocular dominance columns.

1.3.2. Width of Disparity Tuning Gurue. With a correlation model for disparit.y es­

timation, the "precision" of disparity estimation depends on the size of the subfields of

the disparity selective neuron. Larger subfields result in coarser "sampling "f t.he disparit.y

space". As mentioned in Chapter 3, the receptive field size of individual neurons in layer

4Ca of the primary visual cortex increases with increasing distance from the fovea. At.

the same time, the number of receptive fields mapped into an ocular dominance colullln

is believed to stay constant. Given such a structure, the correlation mechanism predicts a

decrease in the precision of stereo tuning. This decrease is represented by increasing widt.h

of the response profile of the disparity selective neuron at larger eccentricities. Furthermore,

if disparity estimation in such neurons is indeed the initial stage of stereopsis, the inCrellR"d

"coarseness" of disparity estimation may in turn result in decreasillg stereo acuity \Vith

increasing eccentricity. This is indeed truc for humall stereopsis.

1.3.3. Global Slereopsis. Before experiments with random-dot stereograms, the mech­

anisms of disparity sensitive neurons were explained as "matching" the stimuli 011 two r'-~

ceptive fields located at different retinal locations in the two eyes. However, 110 mechallism
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l'Jr porforming this matching operation was offered. The need for explanation became more

apparent when il. WHS discovered that some disparity neurons were actually responsive 1.0

mndom dot patterns. The disparity sensitive neurons soom to signal the correct disparity

withollt ambiguit.y despite the numerous identical dots and their random placement in such

patl,{!rns.

The neurons of the primary visual cortex receive inputs from a limited neighbourhood

and, especially at the initial processing level, global interactions do not exist. Therefore, a

global solution t.o the problem of false matches of dots in a random pat.tern, at a level as

early as layer 'lB, does not seem likely. A correlation-based model, by eliminating the need

for matching individual subfields, eliminates the problem of false matches in a random dot

pattern.

1.3.4. Distinction between Tuned Zero and Tuned Far or Tuned Near Neurons. Tuned

Far (TF), Tuned Near (TN), and Tuned Zero (Ta) neurons were introduced in Chapter 3

11nd illustrated in Figure 3.3. Using a correlation model, the Tuned Far and Tuned Near

cells can be described as those neurons detecting the correlation peaks located at larger

disparities (within the detectable range). Such disparities are near the "end" of the range

spanned by the neuron where the correlation function extends towards zero from its peak

location, but not in the opposite direction. Larger disparities lie outside the range of shifts

represented in the given ocular dominance column. The correlation function, which in

essence looks like that of a Tuned Zero curve, then "Ioses" its trailing edge towards larger

shifts. The latter are not represented in the range and only the trailing edge towards zero

remains.

1.3.5. Opposite Contrast Stimuli. A correlation-based algorithm involves the power

spectral properties of the visual data which causes the sign of the stimulus contrast to

he neglected. However, disparity sensitive neurons, and particularly those sensitive to

binocular correlation, do not respond to stimuli having opposite contrast on the two eyes.

This can be related to the existence of the two ON and OFF pathways in the visual system,

each responsive to data of a given contras!. sign [64], [103], [111], [112], [127]. Separate

processing of the informl1tion in the two pathways guarantees that activation is in response

to stereo stimuli with the same contrast sign.

1.4. Other Disparity Sensitive Neurons. Tuned Inhibitory neurons can be mod­

elled in an identical manner to the TE neurons. The neuronal response is merely suppressed,

rather than facilitated in the presence of the preferred disp11rity. On the other hand, Far and
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Near Neurons respond to a much larger range of disparities than the Tuned nenrons at allY

disparity. The application of the correlation model to Reciprocal Nenl'ons reqnin's a IIllld.

larger "spreading out" of the dendritic connections of the Far (FA) or Near (NE) nelll'On,

which is not a characteristic of many visual cortical cells. Howevel', Reciprocal Neul'ons al'''

observed more in layers beyond layer 4B of VI and their response is like1l' 1,0 1)(' dll" tn

a diITerent mechanism. Simple disparity selective cells which are ral'e in layer ,1 Il al'e also

likell' to share a similar situation, FA and NE neurons mal' be involved in detel'Illininl': the

relative position of objects even when the images on the two l'l'es are not Fused and diplopia

occurs. Finally, the tuned neurons of other corticallayers and areas mal' l'l'l'l'ive their inpnt

from the tuned neurons of layer 4B.

2. Properties of Stereo Perception

2.1. Inter-Ocular CorreIa~ion. Chapter 3 stated that, for a given decl'ease in intel'­

ocular correlation, the stimulus contrast must be increased by squaring to maintain stel'e­

opsis. This property is supported by the correlation model. In this model, nenral activity

is a representation of the magnitude ùf the correlation fllnction al. the preFerred disparit,l'.

Maintaining the same level of activity requires an increase in power content if the corl'elation

is reduced.

2.2. Figure-Ground Separation Versus Absolute Depth Perception. The

overall disparity map, obtained after cepstral disparitl' estimation ;wd the snbseqnent l'l'­

finement stage, contains basic information about the properties of each surface in the scene.

However, its most salient features are the boundaries between surfaces. This is similar to

the properties of human stereopsis explained in Section 4 of Chapter 3.

2.3. Imprecision of Stereopsis. In our disparity estimation algorithrn, the pr"s­

ence of estimation noise limits the accuracy of the sub-pixel disparity by no more than on"

half of a pixel. Also, assigning a single disparity to tI", whol" ocular dominance colllllln

mal' cause a shift in the boundary between surfaces. As mention"d in Section 4 of Chap­

ter 3, imprecision a1so exists in human stereopsis. Besides lack of accuracy ill I",rcepl.ioll

of absolute depth, the perceived depth difference between surfaœs is also imprecis" [76].

This property, along with the importance of surface boundaries, motivates the 1I0tioll thal,

the method presented in this thesis, as weil as human stereopsis, are tools for figur,,-ground

separation .
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CHAPTER 9

Implementation

Computational efficiency is the underlying principle for implementing the method we have

developed for obtaining the disparity map of a stereo image pair. Local estimation of

disparities permits the parallel implementation of the algorithm. This, in turn, increases

the processing speed. With local estimation, a fraction of the image as small as a single

ocular dominance column may be processed independently l'rom the remainder of the image.

Therefore, the complete implementation scheme may comprise as many parallel streams as

the number of ocular dominance columns. Indeed this ·.'!ould resemble the organization of

the stereo disparity "computation" in the primary visual cortex.

Parallel irnplementation is also favoured by the fixed running time of ail levels of the

algorithm. Fixed running time eliminates the need for taking into account the fact that

different processors may receive different fractions of the task depending on the properties

of the processed image. It permits the division of the overaI: processing task or data among

multiple processors.

In addition to parallel implementation, two other strategies have been utilized which

contribute to increasing the procesGing speed of of the algorithm. First, the method devcl­

oped in the previous chapters is slightly modified to provide a considerable increase in the

processing speed without compromising the performance of the algorithm or its usefulness

for recognition purposes. Second, sorne of the characteristics of the algorithm which can

reducc the processing time arc exploited. These strategies are explained in the next two

sections followed by the details of the parallel implementation.

1. Modifications to the Method

The discussions and experiments of Chapters 4 to 7 provide insight into the role of the

factors which influence the performance of the algorithm. We exploit this knowledge and

provide simplifications to the algorithm which reduce its computational complexity without
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significant effects on its performance or uge. The following sl'dions pl'ol'id,' il d",cripliou of

each of these modificat.ions and compare any new output 1.0 th"g,' of Chaptl'I' i.

1.1. Compensating for DC Signal Correlation While Re-Scnling the Ccp­

strum. AlItocorrelation can be expressed as th0 sllm of the producls of th" ,am pl," of il

signal and its shifted version. For an uncorrclated signal, as shawn in Figul'l" ·I.i and ·I.H,

only the corresponding samples of the signal and il., shifted version which occupy id"ntkal

locations contribute to the alltocorrelation sllm. The 8Ulll of the pl'oduet' of th,' l'enHlinin!,:

samples is zero. For a correlatcd signal, on the ather hand, there a.rc also cont.l'Ïhat.ioIlH

l'rom the non-corresponding values. By definition of signal correlation, alt,hough th",,· l'ai­

lles do not correspond, the sum of their produets is non-zero. This additional contl'Ïbntion

to autocorrelation is of course reOeeted as a smaller dccl'ease in the magnÏ\.nde of the anto­

correlation peak as disparity increases when compared 1.0 those given bl' Eqnations ,1.1:1 and

4.14. The slower decrease in the magnitude of the autocorrelation peak in turn iulll"·'"·l'.'

the magnitude of the cepstral impulse by making the decrease of the laUel' Illore IIllldemt,·.

For the specific case of DC correlation, the slower rate of decrease in the Ittagnitude

of the autocorrelation or cepstral peak can also be explained iu the following UHU"lel'. 'l'he

presence of the DC component causes a vertical shift in the autocorreiation function 01' the

cepstrum of the signal. This addition of a constant 1.0 the antocorrclation 01' the cep8tl'nnl

increases the smaller values by a greater factor relative 1.0 the larger ones. Eqnivalently, fol'

positive a, b, and c, if

(9.1)

then

(9.2)

a
->1
b

a+c a1<--<-
b+c b

•

Of course, the rate of change of the peak magnitude with (increasillg) disparitl' iH

indicated bl' the slope of the peak magnitude-versus-disparitl' curve. Therefore, rnoderating

the decrease in the magnitude corresponds to Oattening the peak magnitude-versus-disparitl'

curve. In other words, signal correlation results in a slower decrease of the cepstral peak with

increasing disparitl' and a flatter scaling curve. The exact degree to which the magnitude­

versus-disparitl' curve is flattened depends on the value of the DC component of the signal.
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I/owever, regardless of the specific value and in corn mon with ail signais having non-zero

rnean, the decroase is more moderate than for uncorrelated signaIs.

I~emoving the signal mean eliminates the factor which moderates the decrease and

rnakos the use of the re-scaling factors of Equation 5.2 appropriate. Data independence of

the initial estimation stage is a primary conccrn in increasing the computational speed of the

algorithm. Therefore, instead of computing and removing the mean of every image window,

il. is desirable to use a strategy which is independent of the processed signal. For example,

one can choose a re-scaling factor that inherently represents the reduced rate of decrease

in the cepstral peak magnitude for disparities greater than zero. This can be achieved by

usjng the (inverse of) the ratio described by Equation 9.3 instead of that in Equation 5.2.

(9.3)
Peakccp, (<1) {1= m 1 W_d m
Peakccp, (0) ",,00 (-1) + (;w=;;) = log (W-d + 1)

.t.....m=l m lm 2W-d

•

•

Replacing the factor 2W by 2W - <1 in the (autocorrelation) ratio corresponds to in­

fluencing both the numerator and denominator of this relationship with the increasing

disparity factor, rather than just the former. Note that because the term <1 is subtracted

from W in the numerator and from 2W in the denominator, there is still a decrease in

the magnitude with increasing disparity. However, this decrease is at a slower rate be­

canse of the new term in the denominator. This, in turn, corresponds to making the peak

magnitnde-versus-disparity curve flatter, as illustrated in Figure 9.1 (a).

The presence of the signal mean shifts the cepstrum vertically. Therefore, the eepstrum

of the window is in general larger than that of the original method. 1'0 account for this

increase in the magnitude, the cepstral threshold of Chapter 6 is also increased. Specifically,

the threshold is doubled from its originallevel of 1% - 2% of the value W x H x 10g(W x H)

to 2% - 4% of this value.

Figure 9.2 illustrates the output of the algorithm when using the new scaling factors

and corresponding thresholds for sorne of the test images used in Chapter 7. The results

arc nearly identical 1,0 those of Figures 7.10 and 7.17 where the original method of removing

the mean and scaling the cepstrum was used.

1.2. Disparity Estimation with Pixel Accuracy. Disparity estimation with pixel

acctlracy is tlsed for the Implementation of the fast version of the algorithm. Abandoning

the tise of stlb-pixel accuracy for disparity estimation in favour of pixel accuracy incrcases

the proccssing speed in two ways. First, it red uees the time required for disparity estimation
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FIGURE 9.1. Accounting Cor Signal Correl..tion in the Cepstral Re-Scaling Fador. (a) Thr~

dccrease in the cepstral peak Cor uncorrclated and correlatcd signais. The curve for the llllcol'rdatcd
signal is Crom Figure 5.1. The curve labelled "signal correlation accountcd Cor" collKid'~11l ~ignlll

correlation and is therefore fJat.tened. (b) The corresponding re-scaling ffldorK. 'l'I.e n:-Hc:aling
factors arc the inverse of the decrease in the ccpstral peak givcn in part (a). The length of tllll
original signal is 32 samples and signais arc represcntcd by concatenation.

by eliminating the search for the largest neighbour of the cepstral peak and and also the

ensuing interpolation between the two. Second, pixel accuracy disparity estimation reduces

the computations required for refining the disparity map. Maintaining 8ub-pixel a.ccuracy

in the refinement stage requires computing the median using a sortillg Bclleme. Discrnl.ll
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1. MODIFICATIONS TO THE METHOD

(h)

•

FIGURE 9.2. Experimental Resultswith Compensation for Signal Correlation While Re-Scaling
the Cepstrum. (a) Initial disparity maps. (h) Refined disparity maps.
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disparities permit the use of a fast median filtering method of [47] which offers a considt'rabie

increase in the speed of the filtering process.

Pixel accuracy disparity estimation reduces the ability of the method to represe"t 5\\l'­

faces whose disparities changR. However, it does not affect its ability to detect thase placl'S

where a sudden change in disparity occurs. Therefore, the shift from sub-pixel 1.0 pixel accu­

racy does not undermine the method's ability to discriminate between surfaces of different

depth. In a system that uses stereopsis for figure-ground separation, implementation of

disparity estimation to the nearest pixel provides considerable computational savings. The

experiments of Sections 1.1.4 and 1.1.6 of Chapter 7 illustrate the outcome of the algorit.hm

with both approaches to the disparity estimation process.

1.3. Data Domain Fiitering. As mentioned in Sectiou 3.2 of Chapter 6, and shown

by the experiments of Section 1.2.2 of Chapter 7, median filtering in the image domain

results in smoother boundaries between regions of dilferent disparity. This added advantage

is provided at the cost of a considerable amount of extra computation. The number of points

filtered using image domain filtering is two orders of magnitude greater than the number

of filtered disparities in the data domain for typical ocular dominance column dimensions.

This is because the former equals the total number of pixels in the image compared 1.0 the

number of ocular dominance columns, which defines the latter.

Furthermore, in the data domain, each ocular dominance column is represented by a

single disparity whereas in the image domain as many values as the number of pixels in the

column are used in its representation. Therefore, if the size of the median filter in units of

visual angle is the same in both schemes, the image-domain filter contains a larger number

of samples. This is the second factor which causes an increase in computation for liftering

in the image domain.

For the above reasons, filtering in the data domain olfers an added advantage of consid­

erable computational savings and is adapted for parallel implementation. Once again, the

slight roughness of disparity region boundaries associated with data domain filtering does

not undermine the usefulness of the result for figure-ground separation. Figure 7.11 (b)

illustrates the elfect of data-domain refinement.

2. Implementation Considerations

The computation of the two-dimensional cepstrum can be divided into the following

steps:

• computing the two-dimensional Fourier-transform of the signal.
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• obtaining the magnitude of the Fourier transform or its square.

• performing a logarithmic transformation on the amplitude or power spectrum of the

signal.

• taking the forward or inverse Fourier transform of the log spectrum.

• obtaining the magnitude of the second Fourier transform.

Using the definition of the Fourier transformation, a two-dimensional discrete Fourier

transform can be divided into two interchangeable sets of one-dimensional Fourier trans­

forrris. Tht' onc-dimensional transforms are performed along the rows and columns of the

transformed matrix. Therefore, the implementation of the algorithm involves a set of row

and column Fourier transforms. This is then followed by taking the logarithm of the com­

plex magnitude, another set of row and column Fourier transforms, and finally a complex

magnitude. The following sections explain specifie considerations which reduce the total

computational effort required for the implementation.

2.1. Reduction in the Number of the Fourier Transforms. Overiapping ocular

dominance columns permit a reduction in the number of one-dimensional Fourier transforms

performed for obtaining the first two-dimensional Fourier transform of the concatenated

image window. Adjacent image patches share as many columns as the the extent of overlap

betwccn them. If Fourier transformation along columns precedes transformation along rows,

the shared columns need to be transformed only once. This provides considerable savings

in computing the Fourier transformation. For example, with an overlap of 50% the number

of the first set of transformations along the columns is nearly halved.

It is also possible to reduce the number of transformations performed to obtain the

second two-dimensional Fourier transform. Since peak detection is performed in a fraction

of the cepstrum of the concatenated window, the values of the remaining parts are of no

lise. Assuming that in the second two-dimensional Fourier transform the transformation of

columns follows that of rows, only those columns that are involved in peak detection need

be transformed [85].

Including the strategy for reducing the number of the second set of column transforms

into the implementation is a trivial task. However, that of the first set requires special

implementation considerations. For the first set, after transformation along columns each

image window undergoes row transformation. To re-use the values of the shared columns,

the implementation should ensure that these columns are stored and available for use with

the next window.
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2.2. Reduction in the Computational Effort Required for the Complex Mng­

nitude Calculation. As explained in Chapter 4, the cepstrnm can be defined using both

the amplitude and power spectra of the signal. The two definitions correspond 1,0 perform­

ing the logarithmic transformation on the complex magnitude of the Fonrier tmnsform or

the square of this value. The logarithms of the two vaines ditrer only by a factor of two.

The magnitude of any complex number z is defined as V(RC(Z))2 + (l1ll(Z))2. In

practice, calculating the amplitude spectrum is computationally more expeusive thau the

power spectrum because of the square-root operation involved in obtaining the complex

magnitude. '1'0 avoid the additional computation, the Implementation of the method uses

the power spectrum of the signal. '1'0 account for the doubling of cepstml values, the cepstral

threshold is a1so doubled.

The Fourier transform of a real signal is an l'ven function of frequency. As a result,

the power spectrum of such a signal is an l'Ven and real function whose Fourier tmnsfol'lll

is in turn real. Therefore, the power cepstrum of a real signal is also real, making the

computation of the second complex magnitude unnecessary. The implementation of the

algorithm employs this property. It uses the value of the cepstrum directly in peak detect.ion

and avoids the unnecessary computation of obtaining the complex magnitude.

2.3. Substituting the Hartley Transform for the Fourier Transform. The

Hartley transform of a real sequence f (m) , m = 0, 1, ... , M - 1 is defi ned as:

(9.4) M-l (( ) ( ))
21rum . 21rum

H(u) = 2: f(m) cos !VI +Slll !VI
m=O

The Fourier transform of the same sequence is given hy:

(9.5) M-l (( ) ( ))
21rum .. 21rum

F(u) = ,E f(m) cos !VI + J Slll !VI

•

In computing the cepstrum of a real signal, the Fourier transform can he replaced by

the Hartley transform [114]. Using the Hartley transform instead of the Fourier transforrn

for ohtaining the cepstrum offers a reduction in computational effort as weil as memory

requirernents. This increased efficiency is mainly due to the fact that the Hartley transform

does not involve an imaginary component. The authors in [114] claim that the use of the

Hartley transform for computing the cepstrum reduces the computational time and mernory

requirements hy approximately 40% and 50%, respectively. It should he noted that the exact
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reduction in the computational effort is strongly dependent on the specific algorithm used

for obt.aining the Fourier and Hartley transforms of a sequence. The computational savings

also depend on the time involved in computing the sine and cOBine values used in the two

transformations.

Despit.e this, any implementation of the Hartley transform does offer computational

savings for computing the cepstrum compared 1.0 a similar implementation of the Fourier

transform. In addition 1.0 the direct computational savings, the reduced memory require­

ment resul!.s in additional reduction in the processing time within the specific implementa­

tion circumstances of this work. A smaller memory requirement allows the use of on-chip

memory for the processing buffers which reduces the memory access and the total processing

time. This aspect is fully discussed in Section 3.3.

The reduced memory requirements of the Hartley transform as compared ta the Fourier

transform is an illustration of the manner in which the two schemes store information. In

the Fourier transform, the even and odd parts of the transformed sequence - represented by

cosine and sine components, respectively - are stored separatelyas the real and imaginary

part of this sequence. In the Hartley transform, this same information is stored as the even

and odd components of the same lunction. Therefore, the latter method conserves half of

the memory required for information storage. The cast of such conservation is that the even

and odd parts of the elements of the sequence are not directly accessible. In general, ta

retrieve the even or odd part of each element, the element itself, as weil as others, need ta

be used. Consequently, despite the iact that no imaginary parts are computed, the saving

that results from the Hartley transform is [ess than 50% of the total computation required

for obtaining the cepstrum from the Fourier transform. Retrieving the even and parts of

each element from the whole sequence can easily be achieved if we note that any function

of one variable, I(u), can be described in terms of an even and an odd component. These

are obtained from the following two relationships [62]:

(9.6)

leven(u) = I(u) +I(-u)
2

I(u) - /(-u)
2

•
For a finite length discrete-time signal I(m), m =0, 1"" ,M - 1, the Hartley transform is

periodic with a period of M. In other words, for such a signal, H(-u) = H(M - u). Using

this relationship and Equation 9.6 ta obtain the even and odd components of a sequence,

one can obtain the power spectrum as
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1 F(u) 1
2 = (Re[F(U)])2 + (Im[F(u)])2 u = 0, 1"" , M - 1

(9.7)

= F,2v,n(u) + F;dd(u)

= H;v,n(u) + H;dd(u)

u = 0, 1, ... , AI - 1

u=O,l,···,M-1

u=O

or equivalently

2 { H
2
(0)

1 F(u) 1 = t ((H(u) + H(M _ u))2 + (H(u) _ H(M _ U))2) u = l"" , M - 1

(9.8) { H
2
(0) u = 0

- HH2(u) +H2(M - u)) u = 1,," ,M - 1

Appendix D illustrates that, for a two-dimensional signal and a two-dimellsiollal Hart­

ley transform, the even and odd parts of the signal are each stored with two-dilllensiollai

symmetry. There is also a one-dimensional symmetry between them. With such a rela­

tionship, the power spectrum of the signal is obtained from its two-dimellsiollal Hart.ley

transform, H(u ,v) as shown in Equation 9.9 as follows:

• (9.9)

1 F(O, 0) 12 = (H(O, 0))2

1 F(u, 0) 1
2 =! (H2(u, 0) + H2(M - u, 0))

1 F(O, v) 1
2 =! (H2(0, v) +H 2(0, N - v))

1 F(u,v) 1
2 = t ((H(M -u,v)+H(u,N - V))2

+ (H(u, v) - H(M - u, N _ v))2)

u =1,···,M - 1

v = 1,"',N - 1

u = 1",', M - 1; v = 1,"" N - 1

•

Once again, the extra computation required for obtaining the power spect.rum of the

signal from its Hartley transform reduces the savings which actually result from substituting

the Fourier transform by the Hartley transform. Nonetheless, the substitution still provides

a decrease in the total computational effort. Aiso the reduetion in the required mernory

helps to decrease the processing time. The Hartley transform is performed using the Fast.

Hartley Transform (FHT) algorithm of [20].

3. Parallel Implementation of the Algorithm

The algorithm was implemented on a network of TM8320C40 processors as a part of

a more elaborate vision system. A thorough description of the features of the processors is
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provided in [19J. The processor features most attractive 1.0 the parallel implementation of

t.he rnet.hod developed in t.his t.hesis are t.he int.er-processor communication capabilities and

t.he direct-memory-access (OMA) co-processor. The extensive communication capabilities

of TMS320C40 processors permit data t.ransfers between distinct processors without any

need for intermediate hardware. The OMA co-processor complements the communication

capabilities by undertaking the transfer of information between memory and communication

port.s and freeing the cent.ral processing unit (CPU) from this task. The OMA co-processor

can .1lso perform memory-to-memory transfer and prepare data for processing without any

computationalload on t.he CPU. This allows implementation schemes which process data

al. specific memory locations without the computational cost associated with transferring

information 1.0 such locations.

3.1. Data Distribution Versus Task Distribution Implementation. Multi­

processor implementation can lie on a spectrum whose extreme points are marked by the

t.wo schemes of data distribution and task distribution. ln a task distribution or pipeline

im plementation all processors operate on ail of the proeessed data but perform disjoint op­

erations on the information. ln a data distribution implementation, on the other hand,

different proeessors perform the same operation on different segments of the overall data. 11.

is possible 1.0 combine the two schemes and use multiple processors in a variety of manners

depending on the format of the overall task and data.

Given a fixed number of processors, the throughput and latency of the system are the

oUter factors which determine the Implementation strategy. System throughput is defined

as the rate al. which information is processed by the system and is measured in units of

data per unit time. Latency is the time elapsed between the arrivai of one unit of data

al. the system and the exit of the result. 11. is measured in units of time. Although higher

t.hroughput and lower latency are always favoured, specific requirements, and especially the

balance between the two, is dependent on the underlying task.

The throughput of a system with sequential components equals the throughput of its

slowest one. The latency of such a system equals the sum of latencies of all its components.

For a parallel combination of processors, preceded by a distribution stage and followed by

a recombination stage, the throughput and latency are both determined by the slowest

component. Although throughput and latency are often related, the exact relationship is

dependent on the specific configuration of system. Changing a component of the system

may influence both, one, or none of these parameters.
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FIGURE 9.3. Parallel Implemelltation for Obtainillg the Disparity Map of Il Sterl!O lU\l\I';" Pair.
(a) The firsL processor of both paLhs computes a two-dimensionnillartlcy tmllHfol'lllllllcl obtllinH
the power spectrum from it. (b) The sel.ond proccssor obtnins the log Kpectrlll1l IllUI pCI'forlllK
the second two-dirnensional HarUey transform to compute the cepslrum. (c) l'hl! rccombitllItioli
processor performs peak detection on the cepstrum, combines the disparitillK of both pathH. nlul
reflnes the overail disparity map. More processors would rcduce the proccssing Limc in a Iilll!llr

ml>nner.

3.2. Implementation Scheme. The disparity map computation in thi8 thesi8 iH

implemented on five TMS320C4ü processors. It involves a eornbinatioll of dat.a and t.ask

distribution schemes, as shown in Figure 9.3. In addition to specifie implemcnt.at.ion Cüll­

sîderations explained next, the împlementation scheme of Figurc 9.3 makes the extr!n8ion ta

more parallel pipelines of processors a trivial task. Since disparity estimation is pcrforllled

independently for each ocular dominance column, the image pair ean be dividcd int.o morc

parallel pathways using more processors. Furthermore, using more processor8, t.he process­

ing requirements of each stage can also be divided more finely. The proccssing speed will

then increase in as a linear function of the number of processors.

The overall task of computing the cepstrum can easily be divided int.o two approxi­

mately equal "sub-tasks". Because of the redurtion in the number of colllmn t.ransforms

for optimization purposes, the division of the task into more than two di.'itinct and cfJua[

tasks for a complete pipeline implementation is not possible. Furtherrnore, fewer scqllclltial

processors, along with the presence of parallel pipelines, reducc the latency of system. This

is the motivation for implementing pipelines that each contain two processors.

The recombination processor uses sorne of its available DMA channels for internai

memory-to-memory communication. This leaves a Iimited number of channels for reCùiv~

ing input data from external processors. Therefore, parallel pipelines of two processors
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h ~
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Path 0 or 1

FIGURE 9.4. Division of the Stereo Image Pair for Parallel Processing. h is the height of an
oculnr dominance column. Both images of the stereo pair are divided according to this scheme.
The two parallel pipelines process alternating stripes of the image pair. The first path may process
an extra stripe depending on whether the total number is odd or evcn.

each are preferred to a completely parallel configuration for computing the cepstrum. The

latter demands additional communication channels from the recombination processor. In

addition, data transfer links with rnany parallel processors would use sorne of the internaI

processing resources of the recombination node. This is despite the fact that the DMA

co-processor bears the responsibility of data transfers required for inter-processor commu­

nication. Therefore, the current architecture is more efficient than performing the task of

computing the cepstrum by a completely parallel configuration.

The reduction in the number of column tran::;forms, motivated by the presence of over­

Japping patches, requirE".111 adjacent columns to be processed by a single pipeline. There­

fore, each image of the image pair is divided into ''stripes11 whose height equals that of the

ocular dominance columns. Alternating stripes are passed through and processed by the

two paths. This division scheme is shown in Figure 9.4.

The first processor in each path performs the first set of column and row Hartley

transforms. It also obtains the power spectrum of the signal by computing the complex

magnitude from the Hartley-transformed signal, as explained in Section 2.2. The subsequent

processor converts the power spectrum to the log spectrum by performing a logarithmic

transformation. It then performs the the second set of row and column Hartley transforms.
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Finalll', this processor obtains the magnitude of the cepstrum from the Hartlel'-tmnsformed

window. The recombination processor alternativell' receives windows from the two p,ühs.

This processor performs peak detection on the cepstrum, projects the estiuHtted dispadties

into the appropriate location of the disparitl' map. and refines the overaH disparit,l' map hl'

a median filtering operation.

3.3. Multiple Processing Buffers. Each component of the ueLwork performs data

processing in multiple processing buffers. The motivation for such au approach is 1.0 nHtxi­

mize the use of the Central Processing Unit (CPU) bl' preparing data for processing nsing

the DMA co-processor. The processing buffers are organized 1.0 reduce the work of the

CPU 1.0 mere computations without the need for considerations about data orgaui~ation.

The DMA co-processor transfers information into and out of the idle bnffers white the CPt!

processes the data in the active one. These roles of "active" and "idle" rol.ate among ail

the processing buffers in a predetermined manner.

The first processor in the cepstrum computation pipeline uses four processiug bnffers:

one 1.0 perform the Hartlel' transform along columns and three 1.0 perform the (Iartlel'

transform along rows and obtain the complex magnitude. The column trausform bulfer is

used not only 1.0 perform transformations along columns but also 1.0 store those columns

that are shared by neighbouring ocular dominance columns. The second processor in the

pipeline uses three buffers for performing the logarithmic transformation, as weil as column

and row Hartley transforms on the data received from the first processor. rinally, the

recombination processor uses two buffers for performing peak detection ou the computed

cepstrum. The result of peak detection is the value of disparity for the corresponding image

patch. After peak detection, the values of the cepstrum need not be transferred 1.0 another

stage and can be discarded. Therefore onIl' two peak detection buffers arc nsed. White

peak detection is being performed on one buffer, the DMA co-processor transfers a neW

cepstrum into the other. There is also a processing buffer dedicated 1.0 median filtering in

this processor 1.0 which the estimated disparities are written.

For the range of image and ocular dominance column sizes in our system, il. is possible

1.0 use the on-chip memory of the TMS320C40 processors for processing buffers. Since the

access time of on-chip memory is less than that of the off-chip memorl', its nse reduces

the total processing time of the system. The use of on-chip memorl' requires satisfl'ing the

following two conditions:
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{
W X Il < 256

(9.10)
OPRx(FIl+1)+MDD+2 ::;1024

where W and Il, respectively denote the width and height of each ocular dominance column

in units of pixels. 0 PR, FIf, and M DD represent the number of ocuJar dominance columns

per image row, the height of the median filter, and the maximum detectable disparity,

respectively. The ocular dominance dimensions provided in Chapter 5 are within this range.

3.4. Performance of the Parallel Implementation. With the above implemen­

tation, the system achieves a processing time of four seconds for a 256-pixel X 256-pixel

image frame with S-pixel X 16-pixel o'ular dominance columns. Since the processing time

of each ocular dominance column is fixed, the processing time of the overall frame is simply

a linear function of the image size. For example, the processing time of a 64 X 64 frame

would be 0.25 seconds. This is faster than the 2 second time obtained by the implemen­

tation of the algorithm in [73]. The latency of the system approximately equals the time

required for processing one frame.
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CHAPTER 10

Conclusions

In this thesis We have considered stereopsis as a component of a more complet.e visioll HYH­

tem. The l'ole of stereopsis within the overall framework of sllch a syst.em is t.o dist.ingllish

between various objects and the background based on differences in dept.h. From a l:Om­

putational point of view, such a l'ole for stereopsis eliminat.es t.he lIeed for precise dispal'it.y

estimation at every image point. Figure-gronnd separatioll, rather t.han precise dist.ance

profile determination, also translates into a stereo vision system which does ilOt. l'e'lllire

camera calibration.

In a system which uses multiple visual eues, the final description of a scelle is facilit.a..t.ed

by ail of the individual eues as weil as the interaction among t.hem. Therefore, ill such a

system il. is important to ensure that each component, especially at t.he early st.ages, is

designed 1.0 contribute to the goodness of the overall result rather thall merely t.o t.he out.­

come of that particular stage. One of the factors determining the qualit.y of t.he int.eract.iou

between early stages of such a complex system is the processing time of each individnal

component. The low-level components can interact most efficient.ly if the comput.at.ional

tirne required for each of them is fixed and known a priori.

Therefore, the use of stereopsis within the context of a more elaborat.e vision syst.em

creates an additional computational requirement for the stereo component. '1'0 int.erface

with the remainder of the system in a useful manner, the time required for stel'eo-related

computations should be independent of the properties of the processed image. This I.hesis

responds 1.0 the need for fixed processing time by posing the initial stereo disparity est.ima­

tion as a local computation. This is in contrast to most traditional algorit.hms which use

an Iterative search and optimization approach.

We have employed the cepstral filtering of small patches in the stereo image pair for local

estimation of disparity. The patches are referred 1.0 as ocular dominancc colulllns and arise
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in biological vision systems. We observe that choosing the dimensions of ocular dominance

columns requires satisfying certain contradictory criteria. The accu rate approximation of

the cepstrulTl, the detection of the maximum disparity, and the avoidance false disparities

ail require large column dimensions. In contrast, a high resolution disparity map and the

avoidancc of multiple disparities favour small column dimensions. Assuming high image

resolution, we suggest a strategy for choosing the dimensions of the ocular dominance

columns based on the maximum detectable disparity.

We also indicate that inherent data correlation creates an effect similar to that caused

by disparity. Based on this and a careful study of the cepstrum and its properties, we

infer that local estimation can result in the detection of false disparities at some locations.

ln doing so, we also mention the advantages of cepstrum to autocorrelation and its data

dependence. We then provide improvements to the initial disparity estimation stage based

on the properties of the cepstrum. We also offer a method for refining the original disparity

estimates using neighbourhood information. The overall disparity map, besides containing

information about the three-dimensional structure of the scene, clearly marks the location

of depth discontinuities. In this manner, it constitutes a means for figure-ground separation

based on depth.

Local estimation of disparities also permits the parallel implementation of the algo­

rithm. We use a network of TMS320C40 processors for this purpose. The implementation

results in a processing speed of approximately one second for a 128-pixel x 128-pixel image.

The method and the particular implementation strategy are especially appropriate for use

in an active vision system. With fast and fixed running time, the stereo component can

readily interface with the remaining parts of the system.

There is another important reason for coupling our approach to an active vision system.

The latter facilitates the use of foveated images which have high resolution in the area of

interest, the so-called fovea. This property satisfies the high resolution assumption made

for choosing the dimensions of the ocular dominance columns. Also, by Iimiting the high

resolution to the fovea ralher than the whole image, foveated images reduce the computa­

tional requirements of the system. Finally, active vision systems with a focus of attention

can fixate on the important regions of the scene. In such a manner the system can bring

the disparities of these sections into the close-to-zero range which is most suitable for the

cepstral filtering of ocular dominance columns.
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1. Directions for Future Work

This thesis attempted to provide a picture of stereopsis which is consÎHtent. l'rom se"eral

different viewpoints. In doing so, we considered the concepts of local estimat.ion of hinocular

disparity and the resulting prohlem of l'aise disparities, the refinement. of t.he disparil.y map,

and the properties of the overail depth profile. These concepts were also rehüed t.(l t.1",

issues of parallel computation, the use of stereopsis ln a multi-cne visual system, and t.he

functioning of active vision systems in dynamic environments. Despite the ahilit.y (lI' t.he local

correlation mechanism to explain neural properties, one should he careful when ch(losing

a model for such neurons. The neurophysiological evidence examined in t.his t.1",sis does

imply correlation as a hiologically plausible mechanism of disparit.y est.inmt.ion. 1I0we"er,

the model requires further neurophysiological evidence. This includes evidence l'or t.he

connections required for such models and for the consistency of t.he input-output. properUes

of single disparity sensitive cells within the model. Also, there are other disparil,y sensit.ive

neurons, the reciprocal cells, whose properties require a more elahorat.e model.

Studying the mechanisms underlying disparity sensitive neurons also has pot.ent.ial for

high computational pay-back. A mechanism such as a "nIter" whose inpnt-out.put. propert.ies

resemhle sorne kind of correlation measure - cepstrum for example - provides the hasis for a

more efficient irnplementation of the algorithm. Rather than compnt,ing the cepst,,"n using

the Fourier transformation, one can then physically implement t.he equivaleut. filt.er and

obtain much higher processing speed. Another approach to increasing the cOlllpnt.ational

speed is by the use of special purpese hardware for computing the Fast Fonrier Transform

(FFT). Research is currently under way to obtain an approximation to the syst.em fnLlue

rate using such an implementation.

Further support for the correlation-based disparity estimation model shonld also come

l'rom psychophysics. Many properties of the correlation model arc known l'rom signal pro­

cessing. For example, the performance and Iimits of correlat.ion in sit.nat.iolls where t.he

correspondence between the two images is corrupted by noise, blurring, image rotation, or

other image degradation can be measured using distorted stereo pairs. Such properties can

be qualitatively compared with the performance of human subject.s on images which h;,ve

undergone similar degradations.

Median filtering has provided a simple and effective method ior refining the initial

disparity map. One can develop a more elaborate strategy for the refinement staga, but

perhaps at the cost of more computational time. An important characteristic of such a

strategy should be its suitability for parallel implementation. Examples include strategies
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similar to those which have previously been developed for the refinement of orientation of

edges in an image[89]. A discrete relaxation algorithm [100] using an appropriate surface

description may serve this purpose. Guidelines for such a strategy can also be sought in the

interactions between the disparity sensitive neurons of biological stereo systems. Of course

such an endeavour, besides needing knowledge of neuronal properties, requires accu rate

knowledge of the organization of the disparity sensitive neurons at higher levels of the

visu al cortex.

Chapter 4 pointed out that the performance of correlation and the cepstrum are depen­

dent. on the spectral properties of the processed signal. lmprovements to the performance of

the algorithm and its consistency may also result from image pre-processing operations. Ex­

amples of such operations are contrast enhancement or those which contribute to increasing

t.he high frequency components of the signal. Once more, guidelines for such preprocessing

operations may be obtained an examination of the early stages of the visual pathway after

the retina.

Finally, it should to be noted that the use of visual memory can result in great im­

provements both in the quality of the scene description obtained from the visual system

and in the processing speed. ln a dynamic scene with an active vision system, the visual

sensation at any moment may be a result of the present retinal response as weil as the

previous perception of the scene. For stereopsis, for example, as time passes the eyes can

verge on parts of the scene, bring them into the range of small disparities, and obtain more

accu rate descriptions of the surface properties.

2. Concluding Remarks

Traditional stereo algorithms serve many purposes weil. They can be very useful for any

task which requires high accuracy but has no requirement for processing speed. An example

of such an application is the construction of geographical contour maps from aerial stereo

images. However, once stereopsis becomes a part of a more elaborate vision system and

interacts with other visual cues to sense a dynamic environment, the requirements change.

Under such circumstances, the stereo system can weil afford to forfeit some accuracy in

favour of properties useful to the whole system.

We indl1ce the elegance and usefulness of the proposed system using one that already

exists: the biological one. The ocular dominance columns of layer 4Ca provide a suitable

structure and data representation for combining the visual information from the two eyes.
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The neural connections may in turn provide the circuitry required for a correlation nll'eh­

anism. A correlation disparity estimation model, such as the eepstrum, is ahll· to explain

most of the observed properties of tuned disparity selective neurons.

In discussing the biologieal plausibility of the method, wc also provide evidenee that

depth perception is a result of using multiple visual cues. Little is known about the mech­

anisms behind the integration of such cues. However, cue integmtion seems ;, logical as­

sumption about a visual system which pl'Ovides a single perception of depl.h at, any time.

Finally, we use psychophysical findings to illustrate that the properties of the final disparity

map resemble the characteristies of human stereo perception. The imprecision associat.ed

with human stereo vision, along with the importance of surface boundaries, motivates the

notion that the method presented in this thesis, similar to human stereopsis, is a tool fol'

figure-ground separation.
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APPENDIX A

Autocorrelation and Power Spectrulll

Equation 4.1 defines the autocorrelation function of a signal gU) as the convolut.ion of t.he

signal with its reflected version:

Using the convolution property of the Fourier transform

where .1' denotes Fourier transformation. Using the definition of Fourier tmnsform•

(A.l)

(A.2)

(A.3)

Substituting t by -t gives

Rg(r) = g(t) *g(-t)

.1'[Rg(r)] = .1'[g(t)]· .1'[g(-t)]

j
+oo

.1'{g(-t)] = -00 g(-t)e-j27rftdt

(A.4) 1-00 1+00.1'[g(-t)] = - g(t)ei27rftdt = g(t)cj27rfttlt
+00 -00

Since g(t) is a real signal, its complex conjugate, g"(t), equals g(t). Therefore

(A.5)

But the right hand sicle of Equation A.5 is simply the complex conjugate of the Fourier

transform of g(t). Hence

•
(A.6) .1'[g( -t)] = (GU))"'
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APPENDIX A. AUTOCORRELATION AND POWER SPECTRUM

Substituting into Equation A.2 gives

(A.7) F[Rg(T)] =GU)' (GU))" =1 GU) 1
2

•

•

which proves Equation 4.2.
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APPENDIX B. THE CEPSTRUM OF A SIGNAL CONTAINING AN ECIlO

APPENDIX B

The Cepstrum of a Signal Containing an Echo

An echo is defined as a shifted and possibly scaled version of the originai signal. Therefol'e,

it can be described using convolution with a shifted delta function. Also \Ising Equation '1.7,

one can represent an original signal s(x) with an echo added to it as

(B.1) g(x) =s(x) *(&(x) + a&(x - D))

•
or equivalently, in Equation 4.7

(B.2) f{x) =6(x) +a6(x - D)

where D is the shift which generates the echo and a is a scaling factor. Taking t.he FO\ll'Ïer

transform of both sides and using the convolution and time domain shift properties of t.he

Fourier transform gives

(B.3) 1GU) 1=1 SU) 1. 1(1 + ae-j27rJD) 1

Taking the logarithm yields

which is valid for 1z 1:5 1 and z f:. -l, in Equation B.4 gives

BI•

(B.4)

Using the expansion

(B.5)

log 1GU) 1== log 1S(J) 1+ log (1 + ae-j27rJD)

00 m

log(l + z) = 'l)-l)m+l:n
m=l
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(B.6)

APPENDIX B. THE CEPSTRUM OF A SICNAL CONTAINING AN ECHO

00 (ae-j2~!D)m

log 1GU) 1= log 1SU) 1+ L: (_l)m+J m
m=l

•

The last term in Equation B.6 2.ppears as a set of ripples in the log-spectrum. The

frequency of these ripples in the frequency domain, or their quefrency, is proportional to

the shift in the echo D.

Evaluating the inverse Fourier transform of Equation B.6 gives

From the linearity of integration we have

(B.8) 1
00 100 00 (ae-j2~!D)m

gcep(x) = log 1 SU) 1 ei~!xdf + eMx L:(-1)m+1 df
-00 -00 m=l m

which by definition of the power cepstrum and the properties of the inverse Fourier transform

is equivalent to

(B.9) ~ +1 o(x - mD)gcep(X) =Scep(X) + L.,,(-l)m am-,-__-,-
m=l m

•
which contains impulses at multiples of echo delay.
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APPENDIX C. CEPSTRAL l'l,AI' MAGNITUDI'; HATIO~

APPENDIX C

Cepstral Peak Magnitude Ratios

Assume that a resultant signal contains an uncorrelated original and an echo wit,h diHpa.l'it,y

d. Further assume that the ratio of the maxima of the alltocorrelat.ion of t,he l'eHlllt,a.llt,

signal when d -; 0 and d = 0 is equal to a, 0 < a < 1. The alltocorrelat,ion fllllet.ioll of t,he

resultant signal can then be represented by

Of course, the unshifted unit impulse in Equation C.l is due to the fact t,ha.t, every si~II<t1,

whether it contains and echo or not, is correlated with itself at a shift of zero. The shift,ed

and scaled impulses are generated by the presence of the echo.

As described by Equation C.2, the cepstrum of a signal can be obtained Ilsing t,he

analogy to a power series. Each term of the series contains multiple cOllvolutions, rather

than multiplications, of the autocorrelation of the original signal. The ratio of the cepstral

peak magnitude at shift d to that of shift zero then provides the drop in the ccpstral peak

magnitude from disparity zero to d.

•
(C.l)

(C.2)

R(r) = 8(r) +a8(r +d) +a8(r - d)

9cep(X) = f: (_1)m+l (Rg~)m.
m=l

•
Convolving the autocorrelation function of Equation C.I with itself resllits in a recursive

equation. Denoting the (m - l)th convolution of R(r) with itself by lm., this relat.ionship

can be described as

Cl
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The magnitudes of the cejJstral peaks at shifts d and zero are fm"(d) and fm"(o) respectively.

Due to the "diffusing nature" of the above equation, its solution is rather tedious. Looking

at the original problem, we notice that obtaining the result of multiple self-colovolutions

rel,dily lends itself to frequency domain analysis.

One can consider the autocorreh 1n function of Equation C.I as the distribution of a

random variable (the function can easily be normalized so that its Integral equals unity).

Then, m - 1 convolutions of this function with itself represents the distribution of a new

raudom variable. This new random variable is obtained by adding m random variables

of the former distribution together. The characteristic function of the resultant random

variable is the product of those of the initial ones. Noting that the characteristic function

of a random variable equals the Fourier transform of its distribution [123], we can write

•

•

(c.a) /"'" (kd) =

(CA)

o
aj"'-I ((k - I)d)

"j"'-I ((k - I)d) + j"'-I(kd)

a/",-1 ((k - I)d) +j"'-I (kd) + a/",-1 ((k + I)d)

F[J"'" (x)) = (F[R(r)]r

1 kl> m

k=±m

k =±(m - 1)

1k 1< (m - 1)

Equation CA is of course a statement of the convolution-multiplication duality of the Fourier

transformation. Defining the 8-function as a distribution ensures that it receives the extra

care required in frequency domain operations.

Using the shift property of the Fourier transform, the transform of the autocorre!ation

function of Equation C.l can be written as

(C.5) F[R(r)] = 1+ae-j~/d + aej~/d = 1+2acos(rrjd)

•

Substituting this value into Equation CA gives

F[/","(x)] = (1 + 2acos(rrfd))m

(C.6) = 1+ ( ~n ) 2acos(rrfd) +...+ ( : ) (2a)kcosk(rrfd) +...+ (2a)mcosm(rrfd)

Inverse Fourier transforming the expression of Equation C.6 results in a series of 8­

functions at multiples of shift d. The magnitude of the 8-functions at any shift contributes
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to the value of cepstrum at that shift through the relationship of Equation C.:!. Thcrefon',

the values of cepstrum at shifts zero and d, depend on the constant and cos(rr Id) t.erms of

Equation C.6 respectively. [n obtaining the coefficients of these two from Equation c.n, il, is

important to note that any term cosk(rrId) contains eithcr the zero'h or the first harmonir

of cos(rr Id) depending on whether k is odd or l'Ven. The coeflicienl.s of the l.hese harmonÎCs

can be obtained in the following manner.

• (C.7)

= 2\ (ei~fd + e-j~fd) k

= 21k (eihfd+ ( ~) ei(k-l)~fde-i~fd+ ... + ( ~ ) ei(k-")~fd,,-i"~fd+

... + ( : _ 1 ) ej~fde-j(k-I)~fd + e-ihfd)

= 2\ (eihfd + ( ~ ) ei(k-2)~fd +... + ( ~ ) ej(k-2")~fd+

... + ( k ) e-j(k-2)~fd +e-ihfd)
k-l

•

Equation C.7 contains the first harmonie of cos(rr Id) if k is odd and the zero'h if it is even.

For odd k, the middle two terms of Equation C.7 arc

But for odd k

(C.9)

R.eplacing this value in Equation C.8 gives
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APPENDIX C. CEPSTRAL PEAK MAGNITUDE RATIOS

k( d) 1 ( k! ( j~!d -j~!d) )cos rr f = 2k ... + (k;')! (~)! e +e ,+ ...

= 2lk (-.+ (y)~~~)!2COS(rrfd)+ )

= 2LI (-.+ (y)~~~)!cOS(rrfd)+ )

For even k, with similar steps one can illustrate that cosk(rr fd) contains the zeroth

(OC) harmonie of cos(rr fd) in the following form

•
(C.ll)

Replacing the value of Equation C,lO into Equation C.6 gives

(C.12)

=

=

=

(
m ) 2*l!!!±lJ (m) (20\' (k )1 2acos(rrfd) +2:k=3.f odd k 2J;'=ï k;1 cos(rrfd)

((
m ) lm-IJ ' )-,- 2i+l m! 2t+l !

2 cos(rr fd) 1 a +2:i=1 a (2i+l)!(m 2i I)! i! 2i+1 il!

((
m ) ",l1!!=.lJ 2'+1 1 )

2 cos(rr fd) 1 a +L..-i=l a' (m 2i-7i!i!(i+I)!

( e!~!d + e-j~Jd) ",lm;' Ja2i+1 m!
L..-i=O (m 2i 1)!i!(i+I)!

•
as the magnitude of the first harmonie of cosk(rr fd) in F[fm*(x)]. Replacing Equation C.ll

into Equation C.6 gives

C4



as the magnitude of the DC value in F[fm·(x)).

Taking the inverse Fourier Transform of F[jm·(x)) gives the magnitudes of the impulses

at shifts zero and d in fm. (x) as

•

•

(C.13)

(C.14)

(C.15)

APPENDIX C, CEPSTRAL PEAK MAGNI'I'UD~; IlATIOS

2~J (m) (2a)k ( k )
1+ L..t 2k k

k=O,k cvcn k 2'

lTJ, , (2')1
""'" 2. m. 1- •

= 1+ iSt a (2i)!(m - 2i)! i!(2i - il!

lTJ 1

= 1+L: a
2i

( _ ~'")"I"
i=1 m t .u.

lTJ 1

= '" a2i m.
L..t (m - 2i)!i!i!
1=0

l m;' J ,
_ "'" 2i+l m.

Peakccps(d) - ~ a (m _ 2i _ l)!i!(i+ 1)!

lTJ 1

Peakceps(O) =L: a
2i

( _~")I '1"1
i=O m t .'l.Z.

Normalizing the peak at shift d by that at zero and placing the normalized peak in

Equation 4.17 gives

(C.16) 1
1

Peakceps(d) = LE:T!J 2i+l m!
Peakceps(O) ,",00 (_1)m+1 I:i=O (a) (m-21-1)!l1(_+0!

L-m=1 m ... tIfJ()" ....
"'--i=o a (m-2')!I!I!

d=O

•
Replacing a by the appropriate autocorreiation ratio proves Equations 4.18 and 4.19.
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•

•

APPENDIX D. HARTLEY TRANSFORM AND MAGNITUDE SPECTRUM

APPENDIX D

Hartley Transform and Magnitude Spectrum

The power spectrum of a two-dimensional signal, f(m, n) is obtained from its Fourier trans­

form as follows:

1 F(u, v) 1
2 = (Re[F(u, v)])2 + (Im[F(u, V)])2

(0.1) u =0, 1,'" ,M -1; v =0,1,'" ,N - 1

Equivalently,

1 F(u, v) 1
2 = (L:~~~L:~;,1 f(m,n) cos (211" (M' + 'N))r

+ (L:~~~L:~;ol f(m,n) sin (211" (M' +W))r
(0.2) u =0, 1" " ,M - 1; v = 0,1, ... ,N - 1

From the definition of the Hartley transform, one can obtain the following four rela­

tionships for u = 0,1,,,, ,M - 1; v = 0, 1,'" ,N - 1:

•
H(u, v)

(0.3)

=L:~~~ L:~;ol f(m, n) (cos (2~Mm) + sin (2A~t)) (cos (2'tt) + sin (2'Nn ))

= L:~';;~L:~;ol f(m,n) (cos (211' (M' - 'N)) +sin (211"(M' + 'N)))
Dl



•
APPENDIX D. HARTLEY TRANSrORM AND MAGNITUDE SPECTIlUM

M-l N-l

H(M - u, V) = 2: 2: /(m, n)
m=O n:::O

(COS C1r (M~ U)m) + sin C1r(M~ u)m)) (cos C:~n) + sin e~n) )
~l~l ((21rUm). (21rUm)) ( (21rVn) . (21r1ln))= ~~[(m,n) cos ~ -Slll ~ cos --rv- +SIll --rv-
M-I N-I

= 2: 2: [(m, n) (cos (21r (U;; - ";)) + sin (21r ("; _I~,n))
m=O n=O

(DA)

•

H(u,N - v)

(D.5)

M-I N-I

= 2: 2: [(m, n)
m=O n=O

(cos C1r;m) +sin C1rA~m)) (cos C1r(NN- v)n) +sin C1r(NN- 11)11))

~I~ ((21rUm). (21rUm)) ( (21rVn) . (21r1ln))= ~~[(m,n) cos ~ +Slll ~ cos --rv- -SIII --rv-
M-I N-I

= 2: 2: [(m,n) (cos (21r (U;; - ";)) + sin (21r C~7 _'~)))
m=O n=O

•

M-IN-I

H(M - u,N - v) = 2: 2: [(m,n)
m=O n=O

(cos C1r(M~ u)m) + sin C1r(M~ u)m) )
(cos C1r(NN- v)n) + sin C1r(NN- v)n))

= 1:12:N- l[(m, n) (cos C1r;m) -sin C1r;m) )
m=On=O

(cos C;n) -sin C;n) )

(D.6)

1)2



•
APPENDIX D. HARTLEY TRANSFORM AND MAGNITUDE SPECTRUM

The values of cos (211' ('M + 'N)) and sin (211' CM' + 'N)) can be obtained from Equa­

tion D.3 to D.a aB follows:

(D.7)

(D.8)

f(m,n) cos (211' C"; + V;))
. ( (um vn))f(m, n) SlU 211' M + N

1= 2(H(M-u,v)+H(u,N-v))

1
= 2 (H(u, v) - H(M - u, N - v))

•
Note that H(M, v) = H(O, v) and H(u, N) = H(u,O). Substituting these values in Equa­

tion D.2 gives

(D.9)

1 F(O,o) 1
2 =

1 F(u, 0) 1
2 =

=

1 F(O, v) 1
2 =

-
1 F(u, v) 1

2 =

(H(O,O))2

~ ((H(u, 0) +H(M - u, 0))2 + (H(u, 0) - H(M - u, 0))2)

~ (H2(u,0)+H2(M -u,O)) u =l,"·,M-l

~ ((H(O, v) +H(O, N - v))2 + (H(O, v) - H(O, N - v))2)

~ (H2(O,v)+H2(0,N - v)) v =l,,,' ,N-l

~ ((H(M - u, v) + H(u, N - v))2 + (H(u, v) - H(M - u, N _ V))2)

U = 1,,,, , M - 1; v = 1,'" , N - 1

•
which proves Equation 9.9.
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