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ABSTRACT

Abstract

Binocular stereopsis is a biologically motivated approach that uses two slightly different
views of a scene to extract information about its three-dimensional properties. The two
underlying principles of our approach to stereo vision are local computation of binocular
disparities and the use of the resulting disparity map for image segmentation.

The cepstrum is used to provide an estimation of binocular disparity between corre-
sponding regions of the stereo image pair, We study the cepstrum and its properties, and
suggest improvements to the initial disparity estimation stage. Next a modified median fil-
tering scheme is employed for the refinement of the initial disparities using neighbourhood
information. The overall disparity map is used for image segmentation based on distance.

Local estimation of initial disparities provides two fundamental advantages for real-time
systems: the possibility of increased computational efficiency through parallel impiementa-
tion and a fixed running time that is independent of image properties. Furthermore, using
stereopsis for figure-ground segmentation rather than surface reconstruction eliminates the
need for camera calibration which is essential for methods based on exact depth calculation.
Therefore, the approach is well-suited to active vision systems in which the cameras are in
constant motion,

We provide evidence for the plausibility of the disparity estimation algorithm and the
properties of the overall disparity map in the context of biological stereopsis. The algorithm
is implemented on a network of TMS320C40 processors to obtain a processing time of one

second for a 128-pixel X 128-pixel image frame.



RESUME

Résumé

La stéréovision binoculaire est une approche biologique qui utilise deux vues légérement
différentes d’une scéne pour en extraire des propriétés tridimensionnelles. Les deux principes
sous-jagents de notre approche de la stéréovision sont le calcul local des disparités binocu-
laires et l'utilisation de la carte de disparité résultante pour segmenter l'image.

La technique du "cepstrum” est utilisée pour obtenir une estimation de la disparité
binoculaire entre les régions correspondantes des deux images. Nous avons étudié le "cep-
strum” et ses propriétés, et suggérons des améliorations au processus d’estimation de la dis-
parité initiale. Par la suite, nous utilisons un filttre médian modifié pour affiner I'estimation
initiale de la disparité griace i une information locale. Le résultat de la carte de disparité
est alors utilisé pour réaliser une segmentation d'image basée sur la distance.

L’estimation locale des disparités initiales oflre deux avantages majeurs pour une esti-
mation temps réel: la possibilité d’accroitre 'efficacité calculatoire grace a une implémentation
paralléle, et un calcul & temps constant indépendant de la complexité de 'image. Un autre
avantage est que l'utilisation de la stéréovision pour la segmentation "avant-arriere plan”
plutdt que pour la reconstruction de surfaces élimine ie besoin d’une calibration de caméra.
Ainsi cette approche est adéquate aux systémes de vision active pour lesquels la caméra est,
en mouvement constant.

Nous montrons ainsi dans un contexte biologique, la plausibilité de notre algorithme
d’estimation de disparité et de ses propriétés pour I’ obtention d’une carte globale de dis-
parité. L’algorithme a été implémenté sur un réseaux de processeurs TMS320C40 et permet,

d’obtenir une image par seconde pour une taille d’image de 128x128 pixels.
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CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

By projecting a three-dimensional scene onto a two-dimensional image plane, an imaging
system forfeits all direct knowledge about distance or depth. Any information about the
third dimension is embedded indirectly in the two-dimensional image(s) of the scene. Depth
cues are represented as relationships either among the intensities of a single image or between
the intensities of muitiple images of the scene.

Due to this lack of direct information about distance, the determination of thiree-
dimensional structure has been among the most challenging problems in computer vision.
The wish to obtain knowledge of the third dimension has on one hand led to active range-
finding techniques. On the other hand, it has initiated efforts to reconstruct depth from
the knowledge embedded in the two-dimensional images. Active range-finding uses the re-
flection of a known moving light source projected on different points of the scene, along
with triangulation, to determine the distance of these points [12]. An example of such a
technique uses laser technology.

Biological vision systems seem to have an outstanding grasp of the three-dimensional
world using the two-dimensional images projected onto the retinae. This has further
strengthened the efforts to obtain distance information from two-dimensional images. This
research has produced a class of surface extraction schemes known as “shape from X" meth-
ods. These algorithms attempt to exploit the relationships among the intensitics of one or
more images caused by the three-dimensional nature of a scene, In other words, the methods
attempt to reverse the process causing such relationships in order to obtain the underly-
ing three-dimensional structure. Shape from shading algorithms such as those described
in {49], [90], and [22] are examples of methods which use the intensities of a single image to

recover the third dimension. Shape from motion and shape from stereo use multiple images



1. STEREQ VISION AND BINOCULAR DISPARITY

Fixation Point F

FIGURE 1.1. Binocular Disparity. F; and Fg represent the images of the fixation point, F,
on the left and right eycs respectively. Py and P g represent the images of point P on the left
and right eyes, respectively. P}, indicates the point with the same coordinates as P, on the right
retina. The difference between P and P/ is the disparity of point P.

of the scene to infer its three-dimensional structure. In particular, stereo vision is often also

motivated by the binocular visual system of primates.

1. Stereo Vision and Binocular Disparity

The point of intersection of the axes of two imaging devices is known as their point of
fixation. Geometrically, all points lying on a locus passing through the fixation point are
projected onto identical locations on the left and right image planes. The image of any point
nearer or farther than this locus, referred to as the horopter, is formed at different locations
on the two retinae. The difference between the projections of a point on the left and right
retinae is known as the binocular disparity of the point. Figure 1.1 is an illustration of the
concept of binocular disparity.

For any given camera set-up, the disparity of a point is dependent on its distance from
the horopter. Therefore, the locus of a point in depth can be obtained from its disparity
and a knowledge of the camera arrangement. Given such a relationship between disparity
and depth, surface reconstruction using stereo vision can be divided into two separate
problems: first, obtaining the vector displacement or disparity of corresponding sections of
the two images; and second, using the disparity information to obtain the three-dimensional

2



2. MOTIVATION FOR AN ALTERNATIVE APPROACH

knowledge of the scene. Such an approach has formed the basis for most of the traditional
schools of thought on stereopsts.

Obtaining the precise disparity profile of a stereo image pair has resulted in algorithms
that not only are computationally expensive but also have image dependent. running times.
The second stage of surface reconstruction using stereopsis poses another set of problems.
Inferring absolute distance from disparities requires accurate and detailed knowledge of the
camera set-up. Grimson shows that small deviations from such knowledge can result in
considerable errors in the calculation of the absolute depth [42]. Despite the fact that they
can produce relatively accurate distance profiles under highly structured conditions, the
traditional stereo surface reconstruction methods are of little use for complex robotic vision

systems acting in dynamic environments.

2. Motivation for an Alternative Approach

Many applications of visual perception involve dynamic scenes whose attributes change
constantly. Such a change may be due to the motion of the objects in the scene, the observer,
or both. In recent years computer vision has observed the emergence of aclive vision as a
response to the problem of enabling autonomous agents to deal with the changing nature
of their environment [3}, [5]. An active vision system is one whose physical conflignration
varies in response to the changes in the scene or the required visual information. Although
the criteria which guide the particular control mechanism may differ from one system to
another, all active vision systems share the property of being influenced bv and “adapting”
to the evolution o.f their environment. With such a characteristic, active vision systems
require algorithms whose computational requirements reflect the rate at which the visual
information changes. Furthermore, such computational requirements should be independent
of specific image properties.

Another influence on both the fields of biclogy and computer vision has been the
observation that visual perception is the overall result of multiple visual cues as well as
their interactions [23], {28], [115], [117], [118]. This is in contrast to the view that cach
low level feature is required to result in a complete description of the scene, independently
from other such cues. In a system which uses multiple visual features, the perception of
the scene resulting from each individual visual cue may be incomplete. Instead, the visual
system probably obtains the best possible description of the scene using all available visual
signals in a manner which is appropriate for the functioning of the agent. Figure 1.2 is

a schematic illustration of such a multi-feature visual system coupled with the concept of

3



2. MOTIVATION FOR AN ALTERNATIVE APPROACH

Low-Level Features

; Perception

Oculomotor Control

Scene Desceription

Pomits of interest

t
i| Scene ©oand w Gaze Control
)

FIGURE 1.2. Multi-Feature Foveated Active Vision System for a Dynamic Environment.

active vision. In this thesis, we consider stereopsis as one of the multiple features of such
an active vision system. In doing so, we attempt to adhere to the principle that the overall
perception is a result of both the individual components and their inter-relationships.

In studying vision, first and foremost one must remember that there is a purpose for
every visual perception system. The characteristics of the system should reflect and be in
harmony with its intent. The objective of the system considered in this work is to guide an
autonomous mobile robot in an unstructured environment and enable the robot to perform
specific tasks. Functioning in such an environment demands the ability to perform certain
operations such as obstacle avoidance and object recognition. It also requires that the
actions taken by the robot are decided upon and executed within a reasonable period of
time.

The visual system considered for this purpose uses active vision. This enables the
agent to adapt to the changes in its environment. It also allows for filtering and reducing
the received visual information [19] to a subset which is of interest to the system [110]. This
visual system uses multiple visual cues to obtain a complete description of its environment.
Stercopsis and stereo disparity form one such cue, used to provide information about the
relative depths in the scene. Distinguishing between surfaces that are located at different
distances provides information about the available paths. Similarly, distinguishing an object
from its background forms the first stage of object recognition in a complex scene. Therefore,

4



3. OUR APPROACIH TO STEREQOPSIS

figure-ground separation on the basis of (difference in) distance is of value to the visual
system of a maobile robot. It is also important to ensure that the time required for performing

the operation is short and independent of specific scene propertics.

3. Our Approach to Stereopsis

Reduced response time can be achieved by parallel processing of visual information.
One can further reduce the processing time by assigning a single value as the output of a
specific operation, such as stereo disparity estimation, to smail regions of the image rather
than individual image points. We provide evidence that the above strategies in fact exhibit
a plausible level of similarity to those of the early stages of stereo disparity estimation in
biological systems.

This thesis takes an approach which is unlike that of many traditional sterco algo-
rithms. These algorithms, motivated by the wish to construct a precise depth map, involve
a sequential search to find a match for every image feature or point. The dislocation of cach
feature determines its disparity. To ensure the global consistency of the matched clements,
most such algorithms also involve an optimization stage at every iteration.

We consider initial dispatity estimation as a local computation which can be imple-
mented in parallel. This produces increased processing speed as well as a running Lime
which is independent of image properties. The disparity estimation stage is based on the
algorithm originally presented by Yeshurun and Schwartz [125]. The method divides the
two images of the stereo pair into small sections and obtains initial estimations for the
disparities of all such sections. The division of the image pair is motivated by data repre-
sentation in the ocular dominance columns of the primary visual cortex. There information
from the left and right eyes are represented in the form of interlacing image “patches”.
The algorithm uses the cepstrum, a method traditionally employed in echo detection, and
provides a local estimation of binocular disparity between corresponding patches.

We study the properties of the cepstrum and use them to suggest improvements to the
disparity estimation algorithm of {125]. Furthermore, by carelully examining the perfor-
mance of the cepstrum on various types of signals, we infer that the algorithm may result
in the detection of false disparities at some ocular dominance columns. To deal with this
issue we have developed a method for refining the raw or initial disparilty map obtained by
estimating disparities using the (improved) cepstral filtering algorithm. Next we refine the
initial disparity estimates using neighbouring disparity information. We employ a modified
median filtering scheme for this purpose.
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5. OVERVIEW AND ORGANIZATION

The final depth map contains information about the three-dimensional properties of
the surfaces in the scene. However, its most salient features are the discontinuities in dis-
tance which mark the boundaries between various surfaces and objects in the scene. We
assume that the refined disparity map is used for differentiating between surfaces that are
located at different distances and not for precise surface reconstruction. Using stereopsis for
figure-ground segmentation, rather than surface reconstruction, also eliminates the need for
camera calibration which is essential for exact depth calculations. Therefore, the approach
is well-suvited to active vision systems in which the cameras are in constant motion. Psy-
chophysical evidence is provided in s