
Galaxy cutsets and graph

connectivity:

variations on a theme

by

Nicolas Sonnerat

Department of Mathematics and Statistics

Faculty of Science

McGill University, Montréal, Québec

June 2010

A thesis submitted to McGill University

in partial fulfillment of the requirements

of the degree of Doctor of Philosophy

Copyright c© Nicolas Sonnerat 2010

Abstract

In this thesis we consider cutsets in graphs which can be expressed as unions

of sets each of which is spanned by a tree of diameter at most d−1 for some

integer d ≥ 1; we call these sets galaxy cutsets. These galaxy cutsets gen-

eralise both star-cutsets and vertex-cuts, and serve as simple models for

virus-like attacks on or cascading failures in networks, the crucial property

being that neighbours of affected vertices may also fail and cease to func-

tion. We approach our subject from four different points of view. We begin

by exploring the connection between galaxies and a suitable type of flow,

proving a min-max result for planar graphs. Then, after tackling the funda-

mental issue of recognising whether a given graph is susceptible to virus-like

attacks, i.e. whether it contains a galaxy cutset, we consider a weighted ver-

sion of the flows that are dual to the galaxies, and prove Θ(log n) lower and

upper approximability bounds for the problem of finding a maximum such

flow. We then investigate the problem of network design, that is to say, the

problem of constructing low cost spanning subgraphs of a given graph which

are not vulnerable to cascading failures. Finally, we embark on a detailed

analysis of the structure of star-cutsets in planar graphs and use our results

to derive a polynomial time algorithm for the problem of neutralising every

star-cutset by protecting edges.

iii

Abrégé

Dans cette thèse, nous considerons des séparateurs dans les graphes qui

peuvent être éxprimés sous forme d’une union d’ensembles de sommets

dans laquelle chaque ensemble est couvert par un arbre de diamètre d − 1

pour un nombre entier d ≥ 1; nous appellons ces séparateurs des galaxies

séparatrices. Les galaxies séparatrices genéralisent les étoiles séparatrices et

les séparateurs formés par un ensemble de sommets, et elles servent comme

simple modèle pour des attaques de virus sur ou des cascades de défaillances

dans un réseau, la proprieté distinguante étant que les voisins des sommets

qui sont affectés peuvent eux aussi faillir. Nous approchons le sujet depuis

quatre points de vue différents. Nous commençons par explorer le lien en-

tre les galaxies et un type de flot approprié, et nous prouvons un résultat

de type minmax pour les graphes planaires. Ensuite, après avoir résolu la

question fondamentale de reconnaitre si un graphe donné est sensible aux

attaques de virus, c’est-à-dire s’il contient une galaxie séparatrice, nous in-

troduisons des capacités dans les flots correspondants aux galaxies, et de-

montrons une borne d’approximabilité inférieure et supérieure de Θ(log n)

pour le problème de trouver un flot maximum. Ensuite, nous enquêtons sur

le problème de dessein de réseau, c’est-à-dire le problème de construire des

sous-graphes couvrants peu coûteux qui ne sont pas sensibles aux cascades

de défaillances. Finalement, nous nous lançons dans une analyse détaillée

de la structure des étoiles séparatrices dans les graphes planaires, et nous

utilisons nos résultats pour développer un algorithme polynomial qui résout

le problème de neutraliser toutes les étoiles séparatrices en protégeant des

arêtes.

v

Acknowledgments

First and foremost, I would like to thank my supervisors, Adrian Vetta and

Bruce Reed. To them, I am grateful for many things: their continuous

support, both academic and financial; the many things I learned from them

during courses and research discussions; their patience; the invitations to

various workshops; and the occasional work sessions that took place over a

pint during the half-time break of a football match.

I would also like to acknowledge three professors with a great gift for

teaching whose courses I was fortunate to take at McGill: David Avis, Luc

Devroye, and Bruce Shepherd.

Lastly, I would like to thank all my friends in both the mathematics

and computer science departments at McGill for making graduate school

an enjoyable experience: Simon Gemmrich, Michael Wong, Geva Maimon,

David Cottrell, Neil Olver, Joel Phillips, Andrew and Jamie King, Sean

Kennedy, Nicolas Broutin, Ross Kang, Louigi Addario-Berry, and Conor

Meagher.

vii

Declaration

This thesis does not contain any material which has been accepted, in whole

or in part, for any other degree or diploma. The results of Chapters 3, 4, 5,

6 and 7 constitute an original contribution to knowledge, unless explicitly

stated otherwise.

Chapters 3, 4, 6 and 7 are based on joint work with my supervisor, Adrian

Vetta, and have either appeared in print ([90]), or have been submitted to

appear in print ([89], [88]), or will be submitted in the near future ([87], an

extended abstract of this paper has appeared in [91]).

Chapter 5 is based on joint work with Guyslain Naves and Adrian Vetta,

and has been submitted to appear in print ([78]).

ix

Contents

Abstract iii

Abrégé v

Acknowledgments vii

Declaration ix

List of Figures xiv

1 Introduction 1

1.1 Results . 4

1.2 Related work . 7

2 Preliminaries 13

2.1 Graphs . 13

2.2 Paths and connectivity . 14

2.3 Planarity . 16

2.4 NP-completeness and approximation algorithms 17

xi

3 Galaxy Cutsets and Noninterfering Flows 19

3.1 Proving the minmax theorem 22

3.2 An unbounded flow-cut gap 34

4 Identifying Galaxy Cutsets 37

4.1 Finding star-cutsets of radius r 38

4.2 The hardness of finding galaxy cutsets of radius 1 45

5 Weighted Noninterfering Flows 57

5.1 A lower bound of Ω(log n) 59

5.2 Matching the lower bound 70

6 Constructing Subgraphs without Star-cutsets 73

6.1 The hardness of finding subgraphs without star-cutsets of ra-

dius r . 74

6.2 A bi-criteria approach to finding spanning subgraphs without

star-cutsets . 82

7 Neutralising Galaxy Cutsets 95

7.1 On the structure of star-cutsets in planar graphs 97

7.2 A polynomial time algorithm 110

7.3 Neutralising star-cutsets in general graphs 155

8 Conclusion 163

References 165

xii

List of Figures

3.1 The universal covering space of S2 − {s, t} 30

3.2 Obtaining the curve K . 30

3.3 Decomposing a curve . 31

3.4 Rerouting the jumps and paths 32

3.5 Example of a planar graph with τ2 = ρ2 + 1 33

3.6 An unbounded flow-cut gap 35

4.1 Reduction graph for the Vertex Cover reduction 47

5.1 Grid Graph GN . 61

5.2 Variable gadgets . 66

5.3 Clause gadgets, with the same convention as in Figure 5.2. . 67

6.1 A variable gadget . 75

6.2 Reduction graph for the 3SAT reduction 77

6.3 Non-overlapping and overlapping families 91

7.1 A wheel and a padded wheel 100

7.2 The wheel structure of the crossing star-cutsets 105

7.3 The cyclic ordering . 106

xiii

7.4 Allowed configurations in a padded wheel 109

7.5 d(ve) is 3 or 4 . 117

7.6 Illustration of case I.a . 120

7.7 Illustration of case I.b . 121

7.8 Illustration of case II.a . 121

7.9 Illustration of case II.b(i). 123

7.10 Illustration of case II.b(ii) 123

7.11 Reduction graph for the Set Cover reduction 156

xiv

Chapter 1

Introduction

In this thesis, we investigate a special type of cutsets in graphs, which we call

galaxy cutsets. In its most general form, a galaxy cutset is a union of k sets of

vertices, each of which is spanned by a tree of diameter at most d−1, where

both k and d are positive integers. The parameter k is called the order of

the galaxy. We will study both the case of galaxy cutsets that separate two

fixed designated vertices s and t, and the case where the galaxy disconnects

the graph, i.e. we only require that there exist some pair of vertices that

is separated. Cuts in graphs are often intimately related to flows, and we

shall see that galaxy cutsets are no exception to this pattern. In the case of

galaxies separating two given vertices s and t, the dual flow corresponding to

the galaxies will turn out to have a particularly nice combinatorial structure.

The motivation for studying galaxies is that they serve as models for

virus-like spreading through or cascading failures in networks: The infection

begins at the centres of the trees spanning the sets in the galaxy, and then

propagates a certain distance along the edges of the graph. While this

sort of spreading behaviour can in principle be positive, as in the spread of

information through a network, we shall adopt a pessimistic view and focus

on malicious attacks and failures. Hence, we will assume that the vertices

belonging to a galaxy are destroyed or cease to function.

1

The question then is what sort of properties of the graph that remains

after we remove a galaxy we ought to study. In graphs modelling com-

munication or transportation networks, a property of prime importance is

always connectivity, i.e. after the occurrence of vertex or edge failures, the

unaffected vertices still ought to be able to transfer information or goods be-

tween one another. We therefore choose connectivity as our criterion for the

functionality of a network after disaster has struck in the form of a galaxy.

The degree of connectivity is generally quantified by the number of ver-

tices or edges that may fail simultaneously without disconnecting the graph.

However, these breakdowns are essentially independent of one another. Our

galaxy cutsets, on the other hand, capture the idea that failures might prop-

agate through the graph, in the sense that neighbours of affected vertices

also break down and cease to function. Indeed, the fact that two vertices

of a graph are adjacent usually expresses that there is some kind of special

relationship between them, or that they are close together in some sense.

It therefore stands to reason that a breakdown at a vertex would affect

its neighbours. To make this more concrete, let us consider the following

examples:

In a social network, the vertices represent individuals, while the edges

indicate some kind of relation, e.g. friendship, kinship, or working at the

same office. If a member of the network catches a virus, like the flu, this

virus will spread through the network along the edges, starting at the initially

infected vertex.

For another example with a similar flavour, consider a computer network,

say internet servers and the physical wires connecting them. In this setting,

a computer virus spreads in much the same way as a biological virus would,

which is of course how computer viruses obtained their name.

However, viruses do not provide the only example. In an electricity net-

work, a component failure often results in a cascade of secondary failures,

2

since electrical current cannot simply disappear and will thus begin to over-

load other components.

As a further example, consider a spy network, where the vertices are

covert agents, joined by an edge if they directly communicate with one

another. Here the infection-like spreading behaviour can model the situation

of an agent being subverted by the enemy and turned into a double agent.

This could conceivably affect the reliability of the information obtained not

just from the subverted agent, but also from his or her neighbours in the

network, i.e. the spies that were in direct contact with the double agent.

The central theme of this thesis is how failures or breakdowns which

propagate through a graph affect the connectivity. Each chapter can be

viewed as a variation on this central theme, where we approach the phe-

nomenon from a different angle. In the remainder of this introduction, we

define the core concepts, then outline the different approaches taken in each

chapter and summarise our results. We then conclude the chapter by placing

our results into the context of related work.

Given a graph G = (V,E), a set of vertices X is called a d-galaxy of

order k if it can be written as a union of k sets of vertices Z1 ∪ . . . ∪ Zk,
each of which is spanned by a tree of diameter at most d − 11. A d-galaxy

of order k = 1 will be called a d-star. Sometimes it will be convenient to

use the depth of the trees spanning the stars instead of the diameter, and

we therefore make the following additional definitions: If S is a vertex set

spanned by a tree of depth r, we will refer to it as a star of radius r, and

a set which is the union of k stars of radius r is a galaxy of order k and

radius r. We will limit the confusion that might arise from the two similar

definitions by emphasising in each chapter whether we are using diameters

or radii.

1The reason why we use d− 1 instead of d will become clear when we investigate the

dual flows corresponding to galaxies

3

1.1 Results

In Chapter 2, we prepare the ground by fixing notation and the definitions

that are necessary to state and prove our results. Since many of our results

pertain to computational complexity, we also list the standard NP-complete

problems we will use for reductions.

In Chapter 3 we explore the connection between galaxy cutsets and a type

of flow called a d-noninterfering flow. We can obtain an intuitive idea of

how this flow should be defined as follows: The vertex version of Menger’s

theorem asserts that the minimum number of vertices one has to remove

from a graph to disconnect given non-adjacent vertices s and t equals the

maximum number of vertex-disjoint s−t paths, i.e. the maximum cardinality

of a collection of paths no two of which pass through a common vertex (apart

from s and t of course). Since vertices can be thought of as cutsets of radius

0, one might be tempted to conjecture that the minimum number of stars

(sets of radius 1) that have to be removed in order to disconnect s and

t equals the maximum cardinality of a collection of s − t paths with the

property that no two paths intersect a common star. We will show that this

conjecture almost holds in planar graphs, but that in graphs which are not

planar the gap between the minimum and the maximum can be arbitrarily

large. More precisely, given a graph with non-adjacent vertices s and t and

an integer d ≥ 1, we will say that two s−t paths are d-noninterfering if they

are pairwise at distance at least d in G− {s, t}. A collection of pairwise d-

noninterfering paths will be called a d-noninterfering flow. The main result

of the chapter is:

Theorem 3.1 In a planar graph, the minimum number of d-stars we must

remove in order to separate s and t is at most one more than the maximum

cardinality of a d-noninterfering flow between s and t, for any d ≥ 1.

This packing/covering result can be viewed as an extension of a weak-

4

ened version of Menger’s theorem. For non-planar graphs, we exhibit an

example where the maximum number of 2-noninterfering paths is 1, while

the minimum number of 2-stars we must remove is of order Ω(n). We also

show that for fractional flows and galaxies, the minimum and the maximum

are equal by the linear programming duality theorem, regardless of whether

the graph is planar or not.

In Chapter 4, we tackle the fundamental problem of recognising whether

a given graph is vulnerable to virus-like attacks in the form of galaxy cutsets.

Our main result is:

Theorem 4.5 The problem of deciding whether there is a galaxy cutset of

order k and radius 1 is NP-complete if the parameter k is part of the input.

However, we will show that if the parameter k is constant, then there

is a straightforward recognition algorithm that runs in polynomial time for

any r. For the special case k = 1, we exhibit a more sophisticated algorithm

that runs in time O(rnm), which significantly improves on the running time

of the generic trivial algorithm (O(mn3)).

In Chapter 5, we consider an extension to weighted flows of the d-

noninterfering flows studied in Chapter 3. We begin by showing that for

d = 2, the problem of finding a maximum 2-noninterfering flow is as hard

as Stable Set in non-planar graphs (even in the unweighted case). We then

prove the following inapproximability result:

Theorem 5.1 For undirected planar graphs, the hardness of approximation

for the maximum 1- or 0-noninterfering weighted flow problem is Θ(log n),

unless P = NP .

For the case d = 0, we define a flow to be 0-noninterfering if the paths

in it are pairwise edge-disjoint.

In Chapter 6, we turn to the problem of designing networks that are not

vulnerable to cascading failures in the shape of galaxy cutsets. In graph

5

theoretic terms, designing a network traditionally means finding a span-

ning subgraph having certain desirable properties. The full graph specifies

which edges could possibly be built, and their cost, and the spanning sub-

graph is the network that is eventually realised. The simplest example of

this is to find a minimum weight spanning tree in a graph with weighted

edges, i.e. a minimum weight 1-vertex connected spanning subgraph. This

problem admits several elegant and efficient solutions; in fact, one could ar-

gue (somewhat tongue-in-cheek) that pretty much any reasonable approach

leads to a provably optimal solution. However, even in an unweighted graph

finding a minimum 2-connected spanning subgraph is NP-hard, since such

a subgraph is a Hamiltonian cycle if the graph is Hamiltonian. Hence, an

algorithm that constructs a minimum 2-connected spanning subgraph could

be used to solve the NP-complete decision problem of deciding if a graph is

Hamiltonian. Unfortunately, in our case the situation is even more difficult,

even if we restrict ourselves to considering galaxy cutsets of order k = 1:

Theorem 6.6 It is NP-complete to determine if a given graph has a spanning

subgraph without cutsets spanned by trees of depth at most r when r ≥ 4.

As this effectively rules out approximation algorithms, we turn to bi-

criteria results, and show that if we make the stronger assumption that G

does not contain a cutset of radius 3, we can find a spanning subgraph

without star-cutsets with no more than 11
6

times as many edges as the op-

timal such subgraph. The main difficulty in constructing graphs without

star-cutsets of radius r ≥ 1 is the lack of monotonicity: While adding edges

increases the connectivity, it may also create new star-cutsets. Hence, one

must take great care when adding edges, which is not the case in the design

of k-connected graphs, where every additional edge can only increase the

connectivity.

Chapter 7 consists of two main parts. The first part is of a purely graph

theoretic nature, as we investigate in detail the structure of star-cutsets of

6

radius 1 in planar graphs. In the second part, we use the structural results

obtained in the first part to solve a problem that belongs to the domain of op-

timisation on graphs. More concretely, the problem is to choose a minimum

cardinality set of edges that intersects the set of rays of every star-cutset.

(The rays of a star are the edges from the centre to the other vertices.) The

problem thus belongs to the class of hitting set problems. and it is moti-

vated by the virus-like attacks modelled by star-cutsets. By protecting cer-

tain edges we prevent the virus from propagating along them, so protecting

a collection of edges intersecting every set of rays effectively neutralises all

the star-cutsets in the graph. Our structural result and the algorithm only

hold in planar graphs however; for general graphs, we present an O(log n)

approximation algorithm, together with an approximation-preserving reduc-

tion from Set Cover that show this guarantee to be tight up to a constant

factor. We also show that the similar problem of protecting vertices in order

to neutralise star-cutsets is NP-complete, even in planar graphs.

In Chapter 8 we conclude by listing open problems related to galaxy

cutsets and to weighted d-noninterfering flows.

1.2 Related work

While there exists an extensive body of literature dealing with the spread of

epidemics or cascading failures in graphs, most of the existing results differ

from ours in the following two important aspects. First, the underlying

graphs considered are often random, for example the Erdös-Renyi graphs

Gn,p or Gn,m, or graphs that fit into the preferential attachment framework.

Second, the measure of functionality of the graph after a failure tends to be

either the size of the largest component, or the number of affected vertices.

However, while the literature on the spread of epidemics through graphs

is not very closely related to our work for the most part, there are many

7

results in the areas of network flows, connectivity of graphs, network design,

optimisation on networks, and structural graph theory which are relevant

and which we shall briefly discuss in the remainder of this chapter.

The study of the d-noninterfering flows which are the subject of Chapter 3

was initiated by McDiarmid, Reed, Schrijver and Shepherd in [71] and [72],

and our result builds upon their work. Given the applicability of network

flows there is a vast literature optimising flows given additional constraints.

These side-constraints may arise from the application itself, but they can also

arise due to restrictions induced by available technology or by the choice of

routing protocol; see [86] for a survey illustrating some of these issues. The

work most closely related to the results of Chapter 5 concerns k-splittable

flows introduced by Baier, Köhler and Skutella [5]. A k-splittable flow is a

flow that can be routed along k paths - note that these paths are not required

to be disjoint. Thus, Kleinberg’s unsplittable flows [62] can be viewed as

1-splittable flows. Baier et al. present a 2-approximation algorithm for

the k-splittable single-commodity flow problem. For further examples of

the connection between flows and cuts and of approximate maxflow-mincut

theorems (for multi-commodity flows) the reader may also wish to consult

Garg, Vazirani and Yannakakis [38].

The computational hardness of identifying galaxy cutsets is in stark con-

trast to the problem of deciding whether a graph is k-vertex or k-edge

connected. Many of the algorithms to solve this problem use Ford and

Fulkerson’s maximum flow algorithm ([29]), or a refinement of it, in one

way or another. Currently the fastest run-times for determining the vertex-

connectivity κ or the edge-connectivity λ of an undirected graph are O((n+

min{κ 5
2 , κn

3
4})κn) and O(m + λ2n log(n/λ)); both are due to Gabow ([35]

respectively [33]). We refer the reader to Chapters 9 and 15 of Schrijver [84]

for a more detailed description of methods and algorithms for determining

the vertex- and edge-connectivity of graphs.

8

As far as network design is concerned, we already mentioned that finding

a minimum weight spanning tree in a graph is a tractable problem, and that

finding a minimum weight k-connected spanning subgraph is NP-hard when

k ≥ 2. Consequently, researchers have focused on approximation algorithms,

and there is a wealth of results on the subject. We only list the best-known

approximation ratios for unit costs and general costs in undirected graphs.

Other cases that have been considered in the literature include metric costs

and fixed small values of k for both directed and undirected graphs. The sur-

vey by Kortsarz and Nutov [66] contains results for the cases omitted here.

For general non-negative costs, the algorithm with the currently best approx-

imation guarantee for finding a k-edge connected spanning subgraph is due

to Jain [55] and has an approximation factor of 2. For k-vertex connectiv-

ity, Cheriyan, Vempala and Vetta [14] gave a O(log k) algorithm for graphs

having at least 6k2 vertices. Nutov [79] gave an O(log k · log n
n−k) algorithm,

with no restrictions on the input graph. This guarantee is of order O(log k)

unless k is of order n − o(n). If all the edge costs are equal to 1, the best-

known bounds for undirected graphs are 1+ 2
k

for edge-connectivity (Gabow,

Goemans, Tardos and Williamson [36]) and 1 + 1
k

for vertex-connectivity

(Cheriyan and Thurimella [13]).

Regarding graph theoretic results, the structure of star-cutsets (of ra-

dius 1) has played a major role in the theory of perfect graphs. Chvátal

showed in [18] that no minimal imperfect graph contains a star-cutset, a

result that became known as the Star-cutset Lemma. In the same article,

Chvátal also gave a polynomial time algorithm for finding a star-cutset, the

run-time being O(nm). Kratsch and Spinrad improved on this run-time,

and in [67] gave an O(n2.79) algorithm that uses periodic matrix multipli-

cation. Before Chudnovski, Robertson, Seymour and Thomas ([16]) proved

the Strong Perfect Graph Conjecture, the Star-cutset Lemma was a power-

ful tool for determining whether certain classes of graphs were perfect. For

9

example, Hayward showed in his Ph.D. thesis [53] that every weakly trian-

gulated graph contains a star-cutset, and deduced that weakly triangulated

graphs constituted a class of perfect graphs. Also in [18], Chvátal defined a

generalisation of star-cutsets called skew-partitions, and conjectured that a

generalisation of his Star-Cutset Lemma held for skew-partitions. The va-

lidity of his conjecture is implied by the proof of the Strong Perfect Graph

Conjecture ([16]). For a concise summary of the development from star-

cutset to (balanced) skew-partitions and the part they played in the proof

of the Strong Perfect Graph Conjecture, see Reed [81].

Cutsets which are unions of stars were considered by Gunther in [40],

where he gave a characterisation of graphs that cannot be disconnected by

removing k− 1 stars. However, he made the additional assumption that the

graph be k-regular and contain a k-clique, and his definition of a star slightly

differs from ours. This work was later extended by Gunther, Hartnell and

Nowakowski in [44], and by Gunther and Hartnell in [43]. In [42], Gunther

and Hartnell investigate graphs such that the expected number of affected

vertices after an attack consisting of k randomly chosen stars is minimised.

Finbow and Hartnell ([26]) later generalised this to unions of sets of radius

two. In the same spirit of studying graphs that are resilient to virus-like

attacks, Hartnell and Kocay in [50] characterise graphs G such that G − S
is minimally k-connected for any star S in the graph, where k can take the

values 1, 2 or 3.

From an algorithmic rather than structural point of view, the idea of pro-

tecting vertices to guard against a threat that spreads through a graph is not

new; a case in point is the Firefighter problem, proposed by Hartnell in [49].

Here, a fire rages through the graph, successively spreading to neighbours of

vertices that are burning in discrete time steps. In each round, a fixed num-

ber of vertices may be protected by the firefighter, and the process ends when

the fire can no longer spread to unprotected neighbours of burning vertices.

10

The objective is to minimise the number of vertices that are burning at the

end of the process. Results on the firefighter problem include [27] and [59],

see also the recent survey by Finbow and MacGillivray [28]. The firefighter

problem differs from the problems we consider in two important aspects:

First, we focus exclusively on connectivity, i.e. the number of infected ver-

tices is of no concern to us, as long as the graph induced on the unaffected

vertices remains connected. Second, we do not explicitly consider dynamic

processes, meaning we cannot modify the graph once a virus-like failure has

started spreading. In our model, the dynamic aspect is implicitly given by

the parameter r (or d, as the case may be). Two possible interpretations are

that after time r, a way of stopping the viral spread is found, or that the

strength of the infection is attenuated the farther it travels from the initially

infected vertices. The problem of containing epidemics or cascading failures

in networks has also been considered by Holme [54] and Motter [74], among

others. The former investigates the problem of which vertices to vaccinate

in order to reduce the effect of an epidemic, and the latter approaches the

problem by allowing the intentional removal of vertices or edges after the

initial infection/failure. In either case, the measure of success is the size of

the largest connected component of the graph remaining after the epidemic

or cascading failure.

11

Chapter 2

Preliminaries

Any graph theoretic terms not explicitly defined here can be found in Bol-

lobás [7].

2.1 Graphs

Unless specified otherwise, throughout this thesis a graph G = (V,E) will be

understood to be finite, simple, and undirected. We generally let n := |V (G)|
denote the number of vertices, and m := |E(G)| the number of edges. The

neighbourhood of a vertex u will be denoted by Γ(u) and is defined to be

Γ(u) := {v ∈ V (G) | (u, v) ∈ E(G)}. A subgraph H of G is a graph such that

V (H) ⊆ V (G) and E(H) ⊆ E(G). Note that H is a graph in its own right,

so the endpoints of an edge e ∈ E(H) must both belong to V (H). Given

a set S ⊆ V , we denote by G[S] the graph induced on the vertices S, i.e.

V (G[S]) = S and E(G[S]) = {(u, v) ∈ E(G) |u ∈ S ∧ v ∈ S}. A minor of a

graph G is a graph G∗ obtained from G by a series of vertex deletions and

edge contractions. Contracting an edge e = (u, v) means replacing u and v

by a new vertex u∗ adjacent to all the vertices in (Γ(u) ∪ Γ(v))− {u, v}.

A set of vertices S is called a stable set or independent set if no two

13

vertices of S are adjacent. A set of vertices K is called a clique if any two

vertices of K are adjacent.

If T is a set of vertices containing a vertex v such that v is adjacent to

all x ∈ T, x 6= v, we say that T is a star with centre v. We define the set of

rays of a star T centred at v to be R(T) := {(v, x) |x ∈ T, x 6= v}. We point

out that according to our definition, singleton vertices are considered to be

stars (with no rays), and that a star need not contain all the neighbours of

the centre.

2.2 Paths and connectivity

A path from a vertex u to a vertex v is a sequence of distinct vertices

{u1, u2, . . . , uk} such that u1 = u, uk = v and for each i < k, the pair

(ui, ui+1) is an edge. A closed path, i.e. a path such that (uk, u1) is an edge,

will be referred to as a cycle. The length of a path is the number of edges

it contains. If there exists a path from u to v, we define the distance d(u, v)

between u and v to be the length of a shortest path between u and v. If

H is a subgraph of G and u and v are in V (H), then dH(u, v) denotes the

distance in H, i.e. the length of a shortest path that uses only vertices and

edges belonging to H. The diameter of a subgraph H is defined to be the

maximum distance dH(u, v) over all pairs of vertices u and v in H. Two

paths P and Q are called edge-disjoint if E(P) ∩ E(Q) = ∅, and vertex-

disjoint if V (P) ∩ V (Q) = ∅. Two paths P and Q with common endpoints

u and v are said to be internally vertex-disjoint if V (P) ∩ V (Q) = {u, v}.

Given an integer k ≥ 1, we say that a graph G is k-vertex connected if,

for all non-adjacent pairs of vertices {u, v}, there exist k internally vertex-

disjoint paths from u to v. Similarly, we say that G is k-edge connected if

for all pairs of vertices {u, v}, there exist k edge-disjoint paths from u to

v. If a graph G is 1-vertex connected or, equivalently, 1-edge connected, we

14

simply say that G is connected, and if there exist vertices u and v such that

there is no path from u to v, we say that G is disconnected. Consider the

equivalence relation defined on the vertices of a graph by u ∼ v if and only

if there exists a path from u to v. The equivalence classes of this relation

are precisely the maximally connected subgraphs of G and are called the

connected components of G. A set S ⊆ V (G) is a cutset if G[V − S] is

disconnected. A cutset S is said to separate two vertices u and v if they

belong to distinct components of G[V − S].

A set of vertices X that can be written as a union of k sets, each of

which is spanned by a tree T of diameter at most d− 1 for an integer d ≥ 1,

is called a d-galaxy of order k. A d-galaxy of order 1 will also be called a

d-star. Sometimes it will be more convenient to argue in terms of depth

rather than diameter, and so we define a set X to be a galaxy of order k and

radius r if X can be written as a union of k sets each of which is spanned

by a tree of depth at most r, for some r ≥ 0. A galaxy of order 1 and radius

r will also be called a star of radius r. In order to avoid any confusion that

could arise from the difference between d-galaxies and galaxies of radius r,

we will always recall the definitions further on, when they are used.

Note that in order to be precise, we should really define d-galaxies (or

galaxies of radius r) in terms of the smallest integer d (respectively r) such

that all the stars in the galaxies are spanned by a tree of diameter d − 1

(respectively of depth r). However, we can afford to be a little bit sloppy in

this regard, because we will only ever be interested in galaxies spanned by

trees of diameter at most, but not necessarily exactly d− 1 (respectively of

depth at most r). The reason we use d− 1 instead of d in the definition of

d-galaxies will become clear in Chapter 3.

Observe that stars of radius 0 correspond to vertices, and stars of radius

1 correspond to stars according to the standard definition. Also observe that

for even values of d, a set S is a d-star if and only if it is a star of radius d
2
.

15

We end this section by stating Menger’s theorem, which relates the size

of minimum cutsets to the size of maximum collections of vertex-disjoint

paths.

Theorem 2.1 (Menger). Let G be a graph with non-adjacent vertices s and

t. Then the maximum number of internally vertex-disjoint s− t paths equals

the minimum cardinality of a vertex set separating s and t.

We remark that Menger first formulated his theorem in terms of topology

([73]); however, it is in the form above that it is usually encountered in the

literature on graph theory.

2.3 Planarity

To draw a graph on a surface, for instance the plane R2 or the sphere S2,

one represents a vertex u ∈ V (G) by a point xu in the surface, and an

edge e = (u, v) by a continuous curve γe with endpoints xu and xv. For

convenience, we will not distinguish between vertices and edges and their

representation in the surface. A graph is said to be planar if there exists a

drawing of it in the plane R2 such that if e and f are distinct edges, then

the images of γe and γf do not intersect, except possibly at their endpoints.

Let K5 be the complete graph on five vertices, i.e. the graph on five

vertices whose vertex set is a clique, and let K3,3 be the graph on six vertices

consisting of two stable sets A and B such that |A| = |B| = 3 and every

vertex of A is adjacent to every vertex of B. Then Kuratowski’s theorem

([68]) gives a purely combinatorial characterization of the graphs that can

be drawn in the plane without crossing edges:

Theorem 2.2 (Kuratowski). A graph G is planar if and only if it does not

contain K5 or K3,3 as a minor.

16

Since the plane R2 is homeomorphic to the sphere S2 minus one point,

there is a natural way to move back and forth between drawings of a planar

graph G on either surface.

2.4 NP-completeness and approximation al-

gorithms

In order to prove the NP-hardness of some of the problems we consider

in this thesis, we use reductions from the following standard NP-complete

problems (see e.g. [37]).

3SAT: Given Boolean variables x1, . . . , xn and disjunctive clauses C1, . . . , Cm

containing 3 literals each, is there an assignment of true-false values to the

variables such that the formula C1 ∧ C2 ∧ · · · ∧ Cm is satisfied?

Set Cover: Given a finite set S, a collection U of subsets of S, and an

integer k, is there a set C = {U1, . . . , Uk} ⊆ U of size k such that every x ∈ S
is in some Ui ∈ C?

Vertex Cover: This is a special case of the Set Cover problem. Given a

graph G and an integer k, is there a set of vertices C with |C| = k such that

every edge contains a vertex from C?

Stable Set: Given a graph G and an integer k, does G contain a stable

set of size k?

Dominating Set: Given a graph G and an integer k, does G contain a set

of vertices D with |D| = k such that every v ∈ V (G) either belongs to D or

is adjacent to a vertex of D?

Another important NP-complete problem which we will refer to is

Steiner Tree: Given an undirected graph G = (V,E) with nonnegative

edge costs, whose vertices are partitioned into two sets, the required vertices

17

and the Steiner vertices, find a minimum cost tree in G that contains all the

required vertices (and any subset of the Steiner vertices).

Faced with an NP-complete or NP-hard problem, one often turns to

approximation algorithms. Consider the generic optimisation problem

max{f(x) |x ∈ X},

where f(x) ≥ 0 for all x ∈ X. Further suppose that x∗ ∈ X maximises f .

Then if α > 1, we call an algorithm an α-approximation algorithm if it runs

in polynomial time and returns a solution y satisfying

f(y) ≥ f(x∗)

α
.

Similarly, for a minimisation problem of the form

min{g(x) |x ∈ X},

with g(x) ≥ 0 for all x ∈ X and optimal solution x∗, an α-approximation

algorithm (α > 1) would run in polynomial time and return y such that

g(y) ≤ αg(x∗).

We close the chapter by introducing the asymptotic notation we use to

describe the runtimes of the various algorithms presented in this thesis.

Let f and g be non-negative functions defined on the set of natural

numbers. We say that f ∈ O(g) if there exists a positive constant k such

that f(n) ≤ kg(n) for large enough n. We say that f ∈ Ω(g) if the reversed

inequality holds, i.e. if f(n) ≥ kg(n) for some k and large enough n. If f

is asymptotically bounded by g both from above and from below, we write

f ∈ Θ(g).

18

Chapter 3

Galaxy Cutsets and

Noninterfering Flows

Flows and cuts are often intimately related, either in the form of min-max

results, or in the form of cut-conditions, where the value of the cut provides

an upper bound for the value of the flow. As we show in this chapter,

galaxy cutsets are no exception to this pattern. After defining the flows

corresponding to the galaxy cutsets, we proceed to prove a min-max theorem

that holds for planar graphs, and then provide an example of a graph showing

that the flow-cut gap can be arbitrarily large if the assumption of planarity

is omitted.

Given an integer d, and designated non-adjacent vertices s and t, a pair

of s − t paths P,Q is called d-noninterfering if there is no path of length

d − 1 in G − {s, t} between an internal vertex of P and an internal vertex

of Q. A d-noninterfering flow is a collection P of pairwise d-noninterfering

s − t paths. The value of a d-noninterfering flow is the number of paths in

P . For simplicity, we also refer to a d-noninterfering flow as a d-flow. We

denote by ρd the maximum value of a d-flow. Equivalently, ρd is the size of a

maximum cardinality packing of d-noninterfering s− t paths; consequently

we shall call ρd the packing number.

19

Recall that a vertex set Z is a d-star if it is spanned by a tree TZ of

diameter at most d − 1. A 1-star, for example, is just a single vertex; a

2-star is a pair of vertices {u, v} that induce an edge; a 3-star corresponds

to the standard definition of a star. Observe that in particular any path

of length d − 1 is a d-star. Also note that a star of radius r is a d-star for

d = 2r + 1. This is the reason we use diameters of spanning trees rather

than depth in this chapter; otherwise we would only obtain d-stars with odd

value of d, and as we shall see, this would restrict us to d-flows with odd

values of d in the dual packing problem.

Next, recall that a vertex set G is a d-galaxy of order k if it can be

written as a union of k d-stars. Given designated non-adjacent vertices s

and t, a d-galaxy G is a d-galaxy cutset if s and t lie in different components

of G[V −G]. We let τd denote the minimum order of a d-galaxy cutset, and

call this the covering number. The main result of this chapter now is:

Theorem 3.1. In a planar graph we have ρd ≤ τd ≤ ρd + 1, for any d ≥ 1.

To see how this relates to Menger’s theorem, consider the case d = 1. A

1-galaxy of order k is just a set of at most k vertices, and a 1-flow between

s and t is simply a collection of internally vertex-disjoint s− t paths. Hence

Menger’s theorem asserts that ρ1 = τ1, whether the underlying graph is

planar or not. At the end of Section 3.1.3, we will exhibit a simple planar

graph showing that the inequality τd ≤ ρd + 1 is best possible when d ≥ 2.

3.0.1 Packing, covering, and linear programming

Theorem 3.1 is a packing-covering result. So before proving the theorem,

we explore this underlying duality in terms of linear programming. First,

let us formulate the d-flow problem as an integer linear program. Letting

P be the set of s − t paths in G and Sd be the set of d-stars in G − {s, t},

20

consider the following integer linear program:

max
∑
P∈P

yP

s. t.
∑

P :P∩Z 6=∅
yP ≤ 1 ∀Z ∈ Sd

yP ∈ {0, 1} ∀P ∈ P

The constraints imply that at most one path can intersect any d-star; thus,

we do indeed obtain the desired integer program. Relaxing the integrality

constraints produces the following linear program and its dual.

(P) max
∑
P∈P

yP

s. t.
∑

P :P∩Z 6=∅
yP ≤ 1 ∀Z ∈ Sd

yP ≥ 0 ∀P ∈ P

(D) min
∑
Z∈Sd

xZ

s. t.
∑

Z:Z∩P 6=∅
xZ ≥ 1 ∀P ∈ P

xZ ≥ 0 ∀Z ∈ Sd

An integral solution to the dual corresponds to a collection of d-stars. Fur-

thermore, the dual constraints then state that every s − t path P must be

hit by at least one of the selected d-stars. Thus, every feasible integral dual

solution gives a d-galaxy cutset.

Strong duality implies that the maximum value of a fractional d-flow

equals the minimum cardinality of a fractional d-galaxy cutset. This equality

holds in any graph. Theorem 3.1 then asserts that, for planar graphs, the

optimal integral solution to the primal and the optimal integral solution to

the dual differ by at most 1.

We remark that we only need a polynomial number of constraints in the

primal (and, thus, a polynomial number of dual variables). The reason is

that we can restrict our attention to d-stars that are spanned by maximal

trees of diameter d− 1. By a maximal tree T ⊂ G−{s, t} of diameter d− 1

we mean a tree with the property that we increase the diameter to d if we

add a neighbour u ∈ G − (T ∪ {s, t}) of some vertex w ∈ T to the tree T .

21

These maximal trees either have a vertex as their centre1, if d is odd, or

have an edge as their centre, if d is even.

Clearly there can be at most one maximal tree with a given vertex or

edge as its centre, so the number of constraints in the primal is bounded

above by n = |V (G)| if d is odd and by m = |E(G)| if d is even.

However, even though the number of constraints in the primal is poly-

nomial, the number of variables is exponential, and it is an open problem

whether or not the LP can be solved in polynomial time for a non-planar

input graph G and d ≥ 2.

3.1 Proving the minmax theorem

We now prove Theorem 3.1. To do this, we first discuss, in Section 3.1.1, a

class of curves in planar graphs called d-alternate closed curves. As we will

see, these curves relate closely to both galaxy cutsets and non-interfering

flows.

3.1.1 d-alternate curves

In a planar graph G with designated non-adjacent vertices s and t, a d-

alternate closed curve C = {Q1, C1, Q2, C2, . . . , Ql, Cl} is a sequence where

each Qi is a simple path of length at most d − 1 in G − {s, t} and Cj is a

curve in the plane which connects the last vertex of Qj to the first vertex

of Qj+1 (mod l) and which does not intersect G in any edges or vertices other

than its endvertices. Equivalently, for any j the last vertex of Qj and the

first vertex of Qj+1 (mod l) lie on a common face.

1To obtain the centre of a tree T , one removes all the leaves of T to obtain a tree T ′.

Iterating this procedure results in either a single vertex or a single edge, called the centre.

22

Two properties of a d-alternate closed curve C are of particular interest

here: its length and its winding number. The length l(C) is simply the

number of path segments C contains. Note that we can embed G on the

sphere S2 and think of C as a continuous closed curve in the geometric

sense, that is, as a continuous map γ : [0, 1] =⇒ S2−{s, t}. Interpreted like

this, C has a winding number w(C) - loosely speaking, this is the number of

times C “separates” s from t. To define the winding number precisely, take

any continuous curve K from s to t on S2 and choose an orientation for C.
Now let λ(C) be the number of times C crosses K from left to right, and let

µ(C) be the number of times C crosses K from right to left. The winding

number w(C) is defined to be µ(C)− λ(C). (It is not hard to see that w(C)
is well-defined; specifically, it is independent of the choice of path K.) It is

a well-known fact of topology (proven for example in [76]) that the curve C
separates s from t (that is, s and t are in different components of the plane

after the removal of C) if and only if |w(C)| ≥ 1.

In Section 3.1.2, we establish a relationship between the minimum order

of a d-galaxy cutset and the minimum length of a d-alternate closed curve

that separates s from t. This relationship will form the base case for an

inductive proof, given in Section 3.1.3, that bounds the minimum order

of a galaxy cutset from above by the minimum possible ratio of length to

winding number of a d-alternate closed curve. Finally, we invoke a theorem

by McDiarmid et al. that relates the maximum number of d-noninterfering

paths to this same ratio. Theorem 3.1 then follows.

3.1.2 Minimum length curves and galaxy cutsets

Here we show that the minimum length of a d-alternate closed curve that

separates s from t equals the minimum order of a d-galaxy cutset.

23

Theorem 3.2. The minimum length l of a d-alternate closed curve C with

|w(C)| ≥ 1 equals the minimum order τd of a d-galaxy cutset.

Proof. First, let C be a d-alternate closed curve of length l. Recall that each

path segment in C has length at most d − 1. Thus each has diameter at

most d − 1 and so, by definition, is a d-star. Thus the union of these path

segments is a d-galaxy G of order l. Furthermore, as |w(C)| ≥ 1, the removal

of G separates s from t. Thus, G is a d-galaxy cutset and τd ≤ l.

Now let G be a d-galaxy cutset of order τd. To complete the theorem we

need to construct a d-alternate closed curve C of length τd that has non-zero

winding number. We do this by first considering the special case d = 1, and

then reducing the general case to it.

If d = 1, a d-galaxy cutset is simply an s − t separator, i.e. G =

{v1, v2, . . . , vτd}. Since τd is the minimum order of a d-galaxy cutset, it

follows that G − vi is not an s − t separator for any i between 1 and τd.

Hence, there exists a collection of internally vertex disjoint s − t paths

{P1, P2, . . . , Pτd} such that, for each i, the path Pi contains vi but none

of the vertices vj, j 6= i. Since the paths Pi share the same endpoints and

are internally vertex-disjoint, we may assume, by planarity, that they do not

cross. So we can order them anti-clockwise around s as P1, P2, . . . , Pτd . This

induces a corresponding ordering of the vertices v1, v2, . . . , vτd of G.

Claim 3.3. For each i, vi lies on a common face with vi+1 (mod τd).

Proof. Let S and T denote the components of G−G containing s respectively

t. It is clear that each vi must have an edge into both S and T , for otherwise

G − vi would be a smaller s− t separator.

Consider the graph G′ obtained by contracting S and T into super-

vertices s′ and t′, respectively. This contraction transforms each path Pi,

1 ≤ i ≤ τd, into an an s′ − t′ path P ′i of length 2 via vi in G′. Moreover,

24

since G was an s− t separator, any such path P ′i must intersect vi for some

i. Clearly the ordering of the paths Pi in G induces the same ordering of

the paths P ′i .

Now suppose that vi and vi+1 were not on a common face in G. This

implies that there is a cycle W separating them. Since G is planar and both

vi and vi+1 have edges into S and T , W must contain vertices from both S

and T . Then contracting S and T turns W into a 4-cycle W ′ separating vi

and vi+1 in G′ (note that we do not contract any of the edges incident to the

vertices of G). But this is impossible, since there can be no path P ′j between

P ′i and P ′i+1.

Claim 3.3 allows us to construct a 1-alternate closed curve C = {Q1, C1,

Q2, C2, . . . , Qτd , Cτd} from G as follows: Each path segment Qi is given by

vi. Since vi and vi+1 share a face, it is clear that this is a valid 1-alternate

curve. As the removal of C separates s and t, it follows that we must have

|w(C)| ≥ 1.

Hence in the special case d = 1 the length l of a minimum d-alternate

closed curve with non-zero winding number is at most τd, as claimed.

It remains to extend this to the general case. Suppose we have a d-

galaxy cutset G = {Z1, Z2, . . . , Zτd} of minimum order, where now d ≥ 2.

Our strategy will be to contract the d-stars into vertices, and then apply

the result for the case d = 1. For this strategy to be successful, we need the

d-stars to be disjoint. The following two claims show that we may assume

this to be the case.

Claim 3.4. The d-stars Zi may be assumed to be paths.

Proof. We shall assume that, among all d-galaxy cutsets of order τd, our

galaxy G is minimum with respect to the number of vertices it contains.

For each i, let Ti be a tree of diameter at most d−1 spanning Zi. Denote

by S respectively U the component of G− G containing s respectively t.

25

For i 6= j, if some u is a leaf of Ti and of Tj, or a leaf of Ti and a non-leaf

of Tj, we replace Ti by T ′i := Ti − {u}. This does not change the vertex set

of the galaxy G, and T ′i is clearly still a d-star. We may therefore assume

that if u is a leaf of some Ti, then it does not belong to any other tree Tj

with j 6= i.

We shall call a vertex u ∈ G essential if it has an edge into S and an

edge into U . Suppose that some leaf u ∈ Ti is not essential. Then, since u

is not in any other tree, G ′ := G − {u} is still a d-galaxy of order at most τd

separating s and t, contradicting the minimality (with respect to the number

of vertices) of G. Hence, every leaf of every tree Ti must be essential.

If, for an index i, the tree Ti has two leaves, then Ti is a path, and there

is nothing more to show. So assume that Ti has at least three leaves, say

u, v and w. By the above argument, u, v and w must be essential. But

then G contains a K3,3 minor, which is obtained by contracting S, U and

Ti − {u, v, w} into vertices and deleting V − (S ∪ U ∪ Ti). Hence, each Ti

can have at most two leaves, i.e. it must be a path.

Claim 3.5. The d-stars Zi may be assumed to be disjoint.

Proof. By Claim 3.4, we may assume the trees Ti spanning the d-stars to be

paths. Suppose that for i 6= j, there is a vertex u ∈ Ti ∩ Tj. If u is a leaf of

Ti, we can simply replace Ti by T ′i := Ti − {u}. This does not change the

set of vertices of G, and T ′i is still a d-star. Similarly if u is a leaf of Tj.

However, if u is an internal vertex of both paths Ti and Tj, we again

obtain a K3,3 minor: One stable set of the K3,3 minor consists of {vi, wi, wj}
where vi, wi are leaves of Ti and wj is a leaf of Tj, and the other stable set

is obtained by contracting (Ti ∪ Tj)− {vi, wi, wj}, S and U (recall that the

leaves of Ti and Tj must be essential).

Now, consider the graph G∗ obtained by contracting each Zi into a vertex

v∗i . Since we can assume the Zi to be disjoint, the vertices v∗i are distinct.

26

Clearly G∗ is again a planar graph, and now G∗ = {v∗1, v∗2, . . . , v∗τd} is an s− t
separator of order τd in G∗. Moreover, τd must be the minimum order of an

s− t separator in G∗, for if G ′ were a smaller s− t separator in G∗, we could

obtain a d-galaxy cutset of order less than τd in G. To see this, take each

vertex u of G ′ which did not arise from a contracted d-star (so it is also a

vertex in G), and for every vertex v∗i in G ′ which did come from a contracted

d-star Zi, we take Zi.

Now we know that in G∗ we can find a 1-alternate curve of length at

most τd separating s and t. But since in G∗ the vertex v∗i shares a face with

v∗i+1, it follows that some vertex bi ∈ Zi must share a face with some vertex

ai+1 ∈ Zi+1. As each Zi has diameter at most d − 1, we can construct a

d-alternate curve {C1, Q1, . . . , Cτd , Qτd} in G by taking the path segment Ci

to be the subpath of Zi between the vertices ai and bi.

3.1.3 Galaxy cutsets and curves with winding number

at least two

We now use Theorem 3.2 to relate the minimum order of a d-galaxy cutset to

the minimum ratio between the length and winding number of a d-alternate

closed curve. The reason we do this is because this ratio also bounds the

packing number, thus allowing us to derive the minmax result. For the

remainder of this section, we shall without loss of generality assume winding

numbers to be non-negative - indeed, if a curve C has winding number w,

then the curve C∗ obtained by traversing C in the opposite direction has

winding number −w.

Theorem 3.6. Let C be a d-alternate closed curve with strictly positive

winding number. Then there is a d-galaxy cutset of order at most d l(C)
w(C)e.

27

Proof. We apply induction on w. If w(C) = 1, the assertion follows imme-

diately from Theorem 3.2. So suppose that w(C) > 1. The following lemma

allows us to complete the inductive step.

Lemma 3.7. Given a closed d-alternate curve C of length l = l(C) and

winding number w = w(C) ≥ 2, we can find two d-alternate closed curves C1,

with l1 = l(C1), w1 = w(C1) = 1 and C2 with l2 = l(C2), w2 = w(C2) = w − 1,

such that l1 + l2 ≤ l + 1.

With Lemma 3.7 in hand, we can complete the proof of Theorem 3.6. If

the length of C1 satisfies l1 ≤ d l(C)w(C)e then, as w1 = 1, by Theorem 3.2 there

is a d-galaxy cutset of order at most d l(C)
w(C)e and we are done. So suppose

that l1 ≥ d l(C)w(C)e+ 1. This implies that

l2 ≤ l + 1− l1 ≤ l − d l(C)
w(C)e ≤ l − l

w
=
w − 1

w
l.

By induction, there is a d-galaxy cutset of order at most

d l2
w2

e ≤ dw − 1

w
l · 1

w − 1
e = d l

w
e,

as required.

It remains to prove Lemma 3.7. Before doing so, we remark that we

cannot prove it directly by splitting C into curves C1 and C2 (at an arbitrary

point of self-intersection) and then applying induction on the winding num-

ber. This is because it is quite possible for w(C1) and w(C2) to be larger

than w(C) in absolute value.

Proof of Lemma 3.7. Consider an embedding of G on the sphere S2, and

let U be the universal covering space of S := S2 − {s, t}, with projection

map π : U → S. A covering space of S is a space U together with a map

π : U → S having the following property: S has an open cover {Wα} such

that for each α, the preimage π−1(Wα) is a disjoint union of open sets,

28

each of which is homeomorphically mapped to Wα by π. The universal

covering space of a space is the unique (up to isomorphism) covering space

that is simply connected, meaning that every continuous closed path on it

is homotopic to a point. Roughly speaking, it has no holes. We refer the

interested reader to [52] and [76] for more details on covering spaces. For our

purposes, it will be enough to think about U in the following simple terms:

since the sphere minus two points is homeomorphic to the cylinder, U can be

pictured as an infinite strip which is “wrapped around” the cylinder by the

projection map π. Then one of the boundaries, say the “upper” boundary,

of the strip corresponds to s, and the “lower” boundary corresponds to t.

For a point x ∈ U , we denote by x′ ∈ U the element of the preimage of

π(x) “to the right” of x. Formally, x′ can be defined as follows: Let L be

a closed curve starting and ending at π(x) such that w(L) = 1 and L is

oriented anti-clockwise around s. Then, letting L be the unique curve on U

that starts at x and is mapped to L by π, the point x′ is defined to be the

endpoint of L. The curve L is called a lifting2 of L, and the uniqueness of

a lifting starting at a given point of U (in this case x) is a fundamental fact

of topology (see [76] for a proof). Figure 3.1 illustrates these concepts.

Given an integer k ≥ 1, define x(k) := x′ if k = 1 and x(k) := (x(k−1))′ if

k ≥ 2. For an integer k < 0, we define x(k) to be the point y ∈ U such that

y(−k) = x, and for notational convenience define x(0) := x. Similarly, for a

curve K on U and an integer k, define K(k) := {x(k) |x ∈ K}.

Now, let K be a lifting of C, and consider the curve

K :=
⋃
k∈Z

K(k·w(C)).

Informally speaking, K is obtained by taking infinitely many liftings of C
one after the other, as shown in Figure 3.2.

2More formally, given a continuous map γ : [0, 1] → S, a lifting of γ is a continuous

map γ̃ : [0, 1]→ U such that π ◦ γ̃ = γ.

29

s

t

π

S2 − {s, t}
π(y)

U

t

s

y

U

t

s

y

U

t

s

y y(2)y′
L

L

Figure 3.1: The universal covering space of S2 − {s, t}
U

K K(2)
K(−2)

· · ·· · ·

Figure 3.2: Obtaining the curve K

Claim 3.8. The curves K and K′ intersect.

Proof. Consider the points of maximal latitude of K, i.e. the points mini-

mizing the Euclidean distance to the upper boundary of U . If K and K′ did

not intersect, then without loss of generality K would always lie above K′.
But K′ is just K shifted to the right, so the maximal latitudes of K and K′

are the same. Hence, at a point of maximum latitude of K′, K cannot lie

above K′, contradiction. [Note that since C is a continuous curve, any lifting

of C is also continuous, i.e. a continuous map from [0, 1] to U , as shown in

[76]. It is then easy to see that the distance of K to the upper boundary of

U is a continuous function with domain [0, 1], which implies that points of

maximal latitude do indeed exist.]

30

Now, by Claim 3.8, K and K′ must intersect, and since both K and K′

project to C, this gives a crossing of C with itself. Let x be a point on U

where K and K′ intersect.

Since w(C) > 0 we chose the orientation for C that yields a positive

winding number. This orientation of C induces orientations of K and K′.
Because K goes through x, K′ must go through x′. But as K′ also goes

through x, we get a curve C1 of winding number 1 by projecting down onto

S2 the piece of K′ from x to x′. On the other hand, we can also switch from

K′ to K at x (preserving the orientations) and project the resulting curve

onto S2, which gives a curve C2 of winding number w − 1. Since w(C2) ≥ 1,

this curve still separates s and t. This is illustrated in Figure 3.3.

x x′

K K′

y y(w)y′
π−1(C2)

π−1(C1)

Figure 3.3: Decomposing a curve

The next step is to analyse the nature of the crossing of C with itself.

This will prove that C1 and C2 are indeed valid d-alternate curves with the

properties described in Lemma 3.7. Suppose first that π(x) is not a vertex

of G. Since C only intersects G in vertices, this implies that π(x) lies in the

interior of a face of G. Thus, it indicates a crossing of two jumps Ci and Cj

of C. If Ci connects vertices ui and wi, and Cj connects uj to wj, then we

can simply reroute by jumping from ui to wj and uj to wi. Thus we obtain

two d-alternate curves whose lengths satisfy l1 + l2 = l.

Next, suppose that π(x) = v ∈ V (G). So v lies in the intersection of

two path segments Qi and Qj of C. Let Q′i and Q′j be the paths obtained

31

ui

wi

uj

wj

Ci
Cj

C ′
i C ′

j

Ci Cj

Qi

Qj

Q′
i Q′

j

Qi

Qj

v

Figure 3.4: Rerouting the jumps and paths

by switching from Qi to Qj respectively from Qj to Qi at v. Since both Qi

and Qj contain at most d vertices, we get that |V (Q′i)| + |V (Q′j)| ≤ 2d. If

|V (Q′i)| ≤ d and |V (Q′j)| ≤ d, then C1 and C2 are d-alternate curves with

l1 + l2 = l.

Next, note at most one of Q′i and Q′j can contain more than d vertices.

Suppose Q′i does. Then we can separate Q′i into two path segments of length

at most d by adding a jump from an interior vertex of Q′i to itself. In this

case, we obtain d-alternate curves whose lengths satisfy l1 + l2 = l+1. Again

note that when we reroute, we must do so in an orientation-preserving way,

as argued above. This concludes the proof of Lemma 3.7.

We are now ready to prove our main result, Theorem 3.1. Theorem 3.6

gives an upper bound on the covering number. Furthermore, we have a lower

bound on the packing number due to the following theorem of McDiarmid

et al. (Theorem B in [71]).

Theorem 3.9 (McDiarmid, Reed, Schrijver, Shepherd). The maximum

number of pairwise d-noninterfering s−t paths equals the minimum of b l(C)
w(C)c,

over all closed d-alternate curves C.

We remark that the minimum of l(C)
w(C) must be finite. This follows as

it is always possible to find a d-galaxy cutset of finite order, and Theorem

3.2 implies that there must exist an associated d-alternate closed curve with

32

winding number 1. Theorem 3.1 then follows immediately from the next

result.

Theorem 3.10. Let C be a d-alternate closed curve minimizing b l(C)
w(C)c. Then

ρd = b l(C)
w(C)c ≤ τd ≤ d

l(C)
w(C)e ≤ ρd + 1

Proof. The equality is Theorem 3.9. The inequality τd ≤ d l(C)w(C)e is Theorem

3.6. The other two inequalities are trivial.

The planar graph G given in Figure 3.5 shows that the inequality τd ≤
ρd + 1 is best possible: Any two s− t paths are at distance at most 1 from

one another, so the maximum value of a 2-flow between s and t is 1. On

the other hand, we cannot disconnect s and t by removing a single 2-star in

G− {s, t}, and thus we have that τ2 ≥ ρ2 + 1.

s

t

Figure 3.5: Example of a planar graph with τ2 = ρ2 + 1

Finally, we remark that τd must actually equal d l(C)
w(C)e, where C is a

curve minimising the ratio l(C)
w(C) . This is because it follows from the work of

McDiarmid et al. ([72]) that l(C)
w(C) is the optimal fractional solution of the

33

linear program we introduced at the beginning of the chapter. Hence, if l(C)
w(C)

is not integral, it must be the case that

τd = d l(C)
w(C)e = b l(C)

w(C)c+ 1,

for otherwise the optimal integral dual solution would be strictly smaller

than the optimal fractional primal solution, which is impossible.

3.1.4 Algorithmic considerations

The proof of Theorem 3.1 is algorithmic. In fact, for any d, given k nonin-

terfering s− t paths, the algorithm of [71] either finds a collection of k + 1

noninterfering paths, or finds a curve C with b l(C)
w(C)c = k. Such a curve acts

as a certificate for the optimality of k. Moreover, it is sufficient to consider

curves of winding number at most n = |V (G)|. This implies that the number

of possible crossings of path segments Qi or jumps Cj is polynomial in n.

Thus, our inductive proof of Theorem 3.6 can be turned into a polynomial

time algorithm that extracts a simple curve C∗ of length d l(C)
w(C)e. From the

curve C∗ an optimal d-galaxy is easily obtained.

3.2 An unbounded flow-cut gap

Recall that the value of an optimal fractional d-flow equals the order of an

optimal fractional d-galaxy cutset in general graphs. For d = 1, the corre-

sponding integral solutions are also equal, by Menger’s theorem. However,

for larger d, the gap between the integral solutions is easily shown to be

unbounded. This is true even for the case d = 2.

Theorem 3.11. There are graphs for which ρ2 ≤ 2
n−2
· τ2.

Proof. Consider the graph G shown in Figure 3.6. It contains a complete

bipartite subgraph formed by stable sets A and B of size N . In addition,

34

there is a vertex s that is adjacent to every vertex in A, and a vertex t that

is adjacent to every vertex in B.

KN,N

s t

A B

Figure 3.6: An unbounded flow-cut gap

Let d = 2. Observe that there cannot be a pair of 2-noninterfering s− t
paths, say P1 and P2. This follows because each path would then contain

internal vertices in both A and B. Consequently, there would be a path of

length 1 = d − 1 between an internal vertex of P1 and an internal vertex

of P2. Hence, the maximum number of 2-noninterfering paths that can be

packed is exactly one.

On the other hand, the order of a minimum 2-galaxy cutset is N . To see

this, recall that a 2-star is just a pair of vertices that induce an edge. Now,

if we remove at most N − 1 pairs of adjacent vertices of G− {s, t} then we

would be left with at least one vertex a ∈ A and one vertex b ∈ B. As a

and b are adjacent there would remain one s − t path that was not hit by

the galaxy. Since G has n = 2N + 2 vertices, the result follows.

35

Chapter 4

Identifying Galaxy Cutsets

In this chapter, we tackle the fundamental problem of deciding whether a

given input graph is vulnerable to virus-like attacks or cascading network

failures in the form of galaxy cutsets. For this problem, it will be more

convenient to argue in terms of depth rather than diameter of the trees

spanning the galaxies. Recall that we defined a set X to be a galaxy of

order k and radius r if X can be written as X =
⋃k
i=1 Zi, where each Zi is

spanned by a tree of depth at most r. The question we are concerned with

is whether a given graph G has a cutset which is a galaxy of order k and

radius r.

Intuitively, we are trying to model a scenario where k simultaneous virus

attacks occur at the centres of the stars Zi, and from there spread to vertices

at distance at most r from the centres. Since our criterion for functionality

of the network after such an attack is whether the unaffected vertices can

still communicate with one another, we are naturally led to the question

of finding galaxy cutsets. We emphasise that in this chapter, we are not

considering the particular case of galaxies separating two given designated

vertices s and t.

Not surprisingly, whether or not the galaxy cutsets can be identified in

37

polynomial time depends on the parameters k and r. We begin by showing

in Section 4.1 that if k is assumed to be a fixed constant, we can solve

the problem in polynomial time for any r. As the algorithm achieving this

is straightforward, the main result of Section 4.1 is a more sophisticated

algorithm for the special case k = 1 with a run-time of O(rnm), which is

significantly faster than the run-time of the trivial algorithm (O(mn3)).

However, as we show in Section 4.2, if k is part of the input the problem

of deciding whether there is a galaxy cutset is NP-complete, even if r is fixed

to be 1.

4.1 Finding star-cutsets of radius r

We begin by showing that if k is a fixed constant, testing whether a graph

G has a galaxy cutset of order k and radius r can easily be done in time

O(nk+2m) as follows. Suppose that v and w are vertices of G, and that there

exists a galaxy X of order k and radius r such that v and w are in different

components of G −X. Let {u1, . . . , uk} be the centres of the k stars in X.

Then if X ′ is the galaxy consisting of all vertices at distance at most r from

one of u1, . . . , uk in G− {v, w}, it is clear that X ′ must also separate v and

w. Thus, for every (k + 2)-tuple {v, w, u1, u2, . . . , uk} we let X be the set

of vertices at distance at most r from one of the centres ui in G − {v, w}.
This set X can be found in time O(m), e.g. by growing BFS-trees of depth

r rooted at each of the centres ui. Then we check whether v and w are in

the same component of G−X. As there are O(nk+2) possible (k+ 2)-tuples

and both the BFS algorithm and checking connectivity require O(m) time,

the total run-time of this algorithm is O(nk+2m), as claimed.

We will now show that we can significantly improve on this trivial algo-

rithm in the special case where k = 1. In other words, we are now concerned

with finding a single star-cutset of radius r. The idea of the algorithm is to

38

decide, for each vertex v, whether v centres a star-cutset of radius r. We

will be able to achieve this in time O(rm) using a modified BFS-algorithm,

thus obtaining a total run-time of O(rnm).

So, let the graph G and the integer r ≥ 1 be given. For a vertex v ∈ G,

let Di(v) denote the vertices at distance i from v, and D̃(v) the vertices at

distance at least r + 1. We will just write Di and D̃ if the vertex v is fixed

and there is no risk of confusion. Note that
⋃r
i=0Di is spanned by a tree of

depth r rooted at v, e.g. a BFS-tree.

The algorithm relies on the following structural results: First, if G itself

is a star of radius r, i.e. if D̃(v) = ∅ for some v, then G has no star-cutset of

radius r if and only if it is a cycle or a clique. Second, if the set of vertices

D̃(v) is non-empty for all vertices v, we will show that G has a star-cutset

of radius r centred at v unless the set D̃(v) is a connected subgraph and

every vertex w in Di(v) can “escape” to D̃(v) via a safe path consisting of

vertices that are at distance strictly greater than r from v in G− {w}.

We begin with the case where G itself is spanned by a tree of depth at

most r.

Lemma 4.1. Let G be a graph such that D̃(v) is empty for some v ∈ G,

and let r ≥ 1 be an integer. Then G has no star-cutset of radius r if and

only if G is a cycle or a clique.

Proof. Suppose G has no star-cutset of radius r, and let v be such that

D̃(v) = ∅. Let t ≤ r be the largest integer such that Dt 6= ∅. The case t = 0

is trivial, since then G = {v} is obviously a clique. If t = 1, G must be a

clique as well, because if D1 contained two non-adjacent vertices x and y,

then V (G) − {x, y} would be a star-cutset of radius 1. So suppose t ≥ 2.

It is easy to see that for 1 ≤ i ≤ t − 1 every vertex w ∈ Di must have a

neighbour in Di+1, otherwise we get a star-cutset of radius i. It is also easy

to see that no Di for 1 ≤ i ≤ t− 1 can be a clique, since otherwise Di would

39

be a star-cutset of radius 1 separating v from the vertices in Dt. Moreover,

Dt must be a clique, because G−{x, y} is a star of radius t for any x, y ∈ Dt.

We claim that Di must consist of two non-adjacent vertices for each

1 ≤ i ≤ t − 1. To see this, suppose that some Di, 1 ≤ i ≤ t − 1, contains

three vertices {x, y, z}. Since Di is not a clique, we may without loss of

generality assume that x and y are not adjacent. If i > t − i, let w be a

vertex in Dt−i that lies on a shortest path from v to z. If i < t − i, pick

w ∈ Dt−i such that z lies on a shortest path from v to w. Such a w must

exist, since z has a neighbour in Di+1, which in turn has a neighbour in

Di+2, and so on up to Dt−i. If i = t− i, i.e. if i = t
2
, pick w = z. Note that

in all three cases, we have w ∈ Dt−i.

In order to derive a contradiction, we will show that in G−{x, y}, every

vertex is at distance at most t from w. To see this, observe that since

(t− i) + i = t, every vertex of {v}∪D1 ∪ · · · ∪Di lies within distance t of w,

via a path through v. Moreover, such a path can be chosen to go through z

if i < t− i and thus contains neither x nor y. Also, since Dt is a clique, every

vertex of Di+1 ∪ · · ·Dt lies within distance at most i+ 1 + (t− (i+ 1)) = t

from w, via a path through Dt. Again, such a path can be chosen to go

through z if i > t− i and thus contains neither x nor y. It follows that the

non-adjacent vertices x and y could be separated by removing G−{x, y}, a

star-cutset of radius t ≤ r centred at w.

Let u and w be the two vertices of Dt−1. To complete the proof, we

must show that either Dt = {x} for some x adjacent to both u and w, or

Dt = {x, y} for some x and y such that x is adjacent to u but not to w,

and y is adjacent to w but not to u (this completes the cycle). Observe that

if, for some vertex x ∈ Dt, each neighbour of x in Dt−1 is also adjacent to

some other vertex y ∈ Dt, then the set Dt − {x} ∪ Dt−1 is a star-cutset of

radius 2 separating x from v. It follows immediately that |Dt| ≤ 2, since we

know that |Dt−1| = 2. If Dt = {x}, it is clear that x must be adjacent to

40

both vertices of Dt−1, and if Dt = {x, y}, then x and y cannot have common

neighbours in Dt−1, i.e. either x is adjacent to u and y to w, or vice-versa.

Recall that we argued earlier that Dt had to be a clique, so (x, y) must be

an edge, which completes the cycle.

For the converse, simply observe that cliques and cycles have no star-cutsets

of radius r, for any r.

So now assume that for every v ∈ G, there is at least one vertex at

distance at least r + 1 from v, i.e. D̃(v) 6= ∅. Given v, denote by E(Di) the

set of edges between vertices in Di, by Wi the set of vertices Di ∪ . . . ∪Dr,

and by Gi the induced subgraph on Wi. Let G′i be the graph obtained from

Gi by removing the edges E(Di). We say that w ∈ Di has an exclusive

neighbour u ∈ Di+1 if (w, u) ∈ E(G) and dG′i(u,w
′) > r − i for all vertices

w′ ∈ Di, w
′ 6= w. Another way of saying this is that u is at distance strictly

greater than r from v in G − {w}. The intuition behind this definition is

that these exclusive neighbours provide a safe path to the set D̃ of vertices

at distance greater than r from v, if they exist. We formalise this in the

following lemma:

Lemma 4.2. G has no star-cutset of radius r centred at v if and only if D̃ is

connected, every vertex in Dr has a neighbour in D̃, and for every t ≤ r−1,

every vertex in Dt has an exclusive neighbour in Dt+1.

Proof. Suppose G has no star-cutset of radius at most r centred at v. It

is clear that D̃ must be connected. If there were a vertex w ∈ Dr without

a neighbour in D̃, then v ∪ ⋃
iDi − {w} would be a star-cutset of radius

r, contradiction. If some w ∈ Dt did not have an exclusive neighbour in

Dt+1, we could find a star-cutset of radius r as follows: The set of vertices⋃t
i=1Di − {w} is spanned by a tree of depth t rooted at v. Since all of w’s

neighbours in Dt+1 are at distance at most r − t from some other vertex of

41

Dt, there is a tree rooted at v containing
⋃t+1
i=1 Di−{w}, and this tree spans

a star-cutset of radius r.

To prove the converse, it suffices to show that if we remove a tree T of

depth at most r rooted at v, there exists a path from every w 6∈ T to D̃ using

only vertices of V (G) − T . Clearly this is true if w ∈ D̃. If w ∈ Dr, then

w has a neighbour in D̃ by assumption. If w ∈ Dt for some t ≤ r − 1, note

that its exclusive neighbour w′ cannot be contained in any tree of depth r

rooted at v that does not also contain w. But then w’s exclusive neighbour

has an exclusive neighbour w′′ in Dt+2 which cannot be reached by a tree

rooted at v not containing w′, and so on. This gives a path from w all the

way to D̃.

We remark that for the special case r = 1, Lemma 4.2 was stated and

proved by Chvátal in [18].

Lemmas 4.1 and 4.2 lead to a fast algorithm for checking whether a graph

has a star-cutset of radius r. We proceed to show that the conditions on the

graph stated in the lemmas can be tested for in polynomial time.

We write Dt and D̃ instead of Dt(v) and D̃(v) as there is no risk of

confusion, and begin by observing that we can check in time O(m) if G is a

clique or a cycle. If that is the case, we know that G is has no star-cutset

of radius r and we are done.

If G is neither a clique nor a cycle, we do the following for every vertex

v: First we grow a BFS-tree rooted at v. This gives us the sets D1, . . . , Dr

and D̃. If D̃ is empty, we know G has a star-cutset of radius r by Lemma

4.1, and we are done. If D̃ 6= ∅, we check if D̃ is connected, and if every

vertex in Dr has a neighbour in D̃, which we can do in time O(m).

The most complex step is to check that for each i such that 1 ≤ i ≤ r−1,

every vertex in Di has an exclusive neighbour in Di+1. Doing this requires

r− 1 phases, each of which is a modified BFS-algorithm. In phase i, we will

42

process the level Di. Phase i in turn will consist of r − i steps. Let i be

such that 1 ≤ i ≤ r − 1, and suppose that Di = {w1, . . . wp}. For a vertex

u, denote by Li(u) the set of labels of u in phase i. At the start of phase

i, all vertices in Wi+1 are unlabelled, i.e. Li(u) = ∅ for all u ∈ Wi+1. We

use the superscript i to emphasise that the labels in the r − 1 phases are

independent of one another.

We shall label all the vertices of Wi+1 = Di+1∪ . . .∪Dr using the indices

of the vertices in Di in such a way that at the end of the process, we can

simply read off the exclusive neighbours (in Di+1) of the vertices in Di from

the labels. Labelling all the vertices in Wi+1 will require r − i steps.

The first of those r − i steps is to scan the neighbours of the vertices

wj ∈ Di in Di+1, proceeding in a breadth-first-search fashion. When we

scan a vertex u ∈ Di+1 adjacent to wj ∈ Di, either u has at most one label,

or u already has two distinct labels. We update Li(u) according to the

following rules:

1. If Li(u) = ∅ or Li(u) = {j′} with j′ 6= j, set Li(u) := Li(u) ∪ {j}.

2. If Li = {j} or |Li(u)| ≥ 2, we do not modify Li(u).

We observe that after this first step, all the vertices in Di+1 will have one

label if they are adjacent to only one vertex of Di, and two distinct labels if

they are adjacent to at least two vertices of Di. Note that if i = r− 1, there

is only one step to be performed, so the algorithm terminates here.

In steps 2 to r − i, we only work in the graph Gi+1, the subgraph of

G induced on the vertex set Wi+1 =
⋃r
l=i+1 Dl. At each step, we scan

the neighbours of vertices in Wi+1 whose set of labels was modified in the

previous step. Suppose we scan a neighbour u of a vertex x. We add labels

to u according to the following rules:

1. If Li(u) = ∅ we set Li(u) := Li(x).

43

2. If Li(u) = {j} and Li(x) contains some j′ 6= j, set Li(u) := Li(u)∪{j′}.

3. If Li(u) = Li(x) = {j} or |Li(u)| ≥ 2 we do not modify Li(u).

The following claim establishes the connection between our labelling

scheme and exclusive neighbours of the vertices wj ∈ Di.

Claim 4.3. After t steps, the unlabelled vertices are the vertices at distance

greater than t from Di, the vertices with one label, say j, are the vertices at

distance at most t from some wj ∈ Di, but at distance greater than t from all

the other vertices in Di, and the vertices with two labels j, l are the vertices

at distance at most t from at least two vertices in Di, namely wj and wl.

Proof. We use induction on t. We have already observed that the base case

is true just after the description of step 1 of the algorithm. So now suppose

we just completed step t, and let u be any vertex in Wi+1.

If u is unlabelled, it must be at distance greater than t from Di. Oth-

erwise it would be adjacent to a vertex x at distance at most t − 1 from

Di, which by induction hypothesis would have a least one label. But then u

would have been labelled in step t.

Suppose u has two labels, say j and j′. If u already had label j after

step t−1, then it is at distance at most t−1 < t from wj ∈ Di. If it did not

have label j, it inherited it from some vertex x that is at distance at most

t− 1 from wj, by the induction hypothesis. The same is true for label j′. So

after step t, u must be at distance at most t from wj and wj′ .

Suppose u only has label j. So it is at distance at most t from wj, either

because it already had label j the step before, or because it inherited it from

a vertex at distance at most t − 1 during step t. If u were at distance at

most t from a second vertex wj′ , then it would also have inherited the label

j′ by step t.

44

For each i with 1 ≤ i ≤ r−1, we run the labelling process described above

for t := r − i steps. Claim 4.3 then implies that if u ∈ Di+1 is a neighbour

of wj ∈ Di, then u is an exclusive neighbour if and only if Li(u) = {j} after

r − i steps.

To summarise, each iteration of the labelling process identifies the ex-

clusive neighbours of all the vertices in Di for some i. Hence, we need r− 1

iterations of the labelling process to handle all the vertices in D1∪· · ·∪Dr−1.

It remains to determine the run-time of each iteration of the labelling algo-

rithm.

Claim 4.4. Each edge of Gi is considered at most four times during the

labelling process.

Proof. Let e = (u, ū) be an edge in Gi. We only consider e when either u’s

or ū’s label changes. The label of any vertex can change at most twice, so

we consider e at most four times.

It follows that we can process each level Di in time O(m). Since there

are r levels, we can determine if all the vertices in W1 = D1 ∪D2 ∪ · · · ∪Dr

have an exclusive neighbour in time O(rm). Each vertex v ∈ V could be

the centre of a star-cutset of radius r, so the total running time is O(rnm).

4.2 The hardness of finding galaxy cutsets of

radius 1

In this section, we show that if the order k of a galaxy is not fixed, but part

of the input, then the decision problem of determining whether there is a

galaxy cutset of order k is NP-complete, even if all the stars in the galaxy

have radius 1.

45

We remark that every set of verticesX can trivially be written as a galaxy

of order |X|, and that the problem of finding the minimum k for which X

is a galaxy of order k is NP-hard, since the Dominating Set problem can be

reduced to it. However, this is not the problem that we are concerned with;

we are not a priori given a cutset X as a candidate for the galaxy, but rather

have to decide whether the graph can be disconnected by removing up to k

stars or not.

Theorem 4.5. Given a graph G and an integer k, it is NP-complete to

decide whether G contains a cutset which is a galaxy of order k.

We begin by remarking that if we are given a collection of k stars, it

is easy to check in polynomial time whether removing those stars discon-

nects the graph. Hence, the decision problem is in NP. We now prove the

hardness by a reduction from Vertex Cover. Let H be a graph with vertices

{v1, . . . , vn} and edges {e1, . . . , em}, and let k ≥ 1 be an integer. We will

construct an auxiliary graph G such that H has a vertex cover of size k if

and only if G has a cutset X which is a galaxy of order k. Note that we may

assume that m > k, as otherwise picking one endpoint of each edge yields a

vertex cover of size at most k. If k ≤ 2 or k ≥ n− 2, we can decide if there

is a vertex cover of size k in polynomial time using brute force, so we shall

also assume that 2 < k < n− 2.

In order to understand the construction of the reduction graph G better,

it is helpful to observe two things about graphs without cutsets that are

galaxies of order k. Firstly, every vertex must have degree at least k +

1, for otherwise we can disconnect that vertex by taking X to consist of

all its neighbours. Secondly, if for some vertex v there are vertices whose

neighbourhoods have large intersections with the neighbourhood of v, then

it is intuitively more likely that there will be a galaxy cutset of order k

disconnecting v from the rest of the graph. Our reduction graph consists,

roughly speaking, of two trees whose leaves we shall connect by edges in a

46

specific way. The reason why trees are helpful is that in a tree there is a

unique path between any two vertices u and v, and it suffices to remove a

single vertex on that path to disconnect u and v. Thus, in a certain sense

removing a star in a tree does little more damage than removing a single

vertex. The tree-like structure and the way the leaves of the trees are joined

by edges will allow us to control how the neighbourhoods of different vertices

intersect and as a consequence to place restrictions on which sets of k vertices

can possibly form galaxy cutsets.

v∗

e∗

v1 vn

e1 em

depth 1

depth 2

depth 3

depth 3

depth 2

depth 1

Figure 4.1: Reduction graph for the Vertex Cover reduction

Figure 4.1 shows the high-level structure of G. There are two vertices v∗

and e∗. These will be the roots of two trees of depth 3, which we will connect

to one another at the leaves. The vertex e∗ has m children {e1, . . . , em}, cor-

responding to the edges of H, and the vertex v∗ has n children {v1, . . . , vn},

47

corresponding to the vertices of H. If n ≤ 2k, we add 2k − n + 1 dummy

vertices {vn+1, . . . , v2k+1} as additional children of v∗ and set n′ := 2k + 1,

otherwise we add no dummy vertices and set n′ = n. We call these vertices

of depth 1. Next, each vertex vi has ai children, and each vertex ej has bj

children, where the ai and bj are chosen as follows. Pick a prime p such that

p ≥ max(n′ + 1,m+ 1, 2k + 4) (4.1)

Such a prime can be found in time polynomial in n, since there is always

a prime between N := max(n′ + 1,m + 1, 2k + 4) and 2N . Now let each ai

equal either bp2
n′
c or dp2

n′
e and let each bj equal either bp2

m
c or dp2

m
e, so that they

satisfy
∑

i ai =
∑

j bj = p2. Note that we will have ai ≥ n′ ≥ 2k+ 1 ≥ k+ 1

for all i and bj ≥ m ≥ k + 1 for all j. We call the children of the vi the

grandchildren of v∗, and the children of the ej the grandchildren of e∗.

Since
∑

i ai = p2 by construction, there are p2 grandchildren of v∗, and we

label them using the elements of the Abelian group Zp×Zp in lexicographic

order, i.e.

(0, 0)v∗ , (0, 1)v∗ , . . . , (0, p− 1)v∗ , (1, 0)v∗ , . . . , (p− 1, p− 1)v∗ .

The p2 grandchildren of e∗ are labeled in the same way, except that the

subscript is e∗.

Finally, for all i each child of vi has k + 1 children. These children are

numbered and said to have type 1, 2, . . . , k + 1 according to their number.

Similarly, for all j, each child of ej has k + 1 children numbered 1 to k + 1.

The grandchildren of v∗ and e∗ are said to have depth 2, and the greatgrand-

children are said to have depth 3.

The greatgrandchildren inherit the label of their parent, to which we add

a superscript to indicate the type, so the children of (i, j)v∗ are labeled

(i, j)1
v∗ , (i, j)

2
v∗ , (i, j)

3
v∗ , . . . , (i, j)

k+1
v∗ ,

48

and the children of the grandchild labeled (i, j)e∗ are

(i, j)1
e∗ , (i, j)

2
e∗ , (i, j)

3
e∗ , . . . , (i, j)

k+1
e∗ .

To complete G, we add a few more edges. If vi is an endpoint of ej in

H, we add the edge (vi, ej) to G. (We do not add edges from the dummy

vertices to children of e∗.) The greatgrandchildren of v∗ are connected to the

greatgrandchildren of e∗ as follows: For a greatgrandchild (i, j)lv∗ , we add

edges to the greatgrandchildren of e∗ which are labeled (i + x, j + x2)le∗ for

x = 0, . . . , p− 1. Note that a greatgrandchild of v∗ of type l only has edges

to greatgrandchildren of e∗ which are of the same type. This concludes our

description of the graph G.

The hardness of our decision problem is established by the following

theorem.

Theorem 4.6. The graph H has a vertex cover of size k if and only if G

has a cutset X which is a galaxy of order k.

Proof. One direction is straightforward. Suppose H has a vertex cover C of

size k. Without loss of generality, assume C = {v1, v2, . . . , vk}. Let X be

the set consisting of {v1, . . . , vl} together with their neighbours among the

children of e∗. Then X is the union of k stars. Since C is a vertex cover, X

contains all the children of e∗, and so e∗ and v∗ are in different components

of G−X, i.e. X is a galaxy cutset of order k in G.

For the other direction, we will show that if H does not have a vertex

cover of size k, then G does not have a galaxy cutset. We prove this in two

steps. First we establish in Lemma 4.7 that if H has no vertex cover of size

k, then any vertex of depth 0, 1 or 2 in G −X has a child which is also in

G − X. In other words, for any choice of galaxy X, any vertex in G − X
will have a path to a vertex of depth 3 in G−X. Then we show in Lemma

4.8 that all the vertices of depth 3 are in the same component of G−X.

49

Lemma 4.7. Let X be a galaxy of order k in G. Then all of the following

hold:

(1) If v∗ 6∈ X, then v∗ has a neighbour of depth 1 in G−X.

(2) Any vertex of depth 1 in G−X has a neighbour of depth 2 in G−X.

(3) If e∗ 6∈ X, then e∗ has a neighbour of depth 1 in G−X unless H has

a vertex cover of size k.

(4) Any vertex of depth 2 in G−X has a neighbour of depth 3 in G−X.

Proof. (1) Suppose v∗ 6∈ X. A star centred at a grandchild of v∗ contains

at most one of the vertices vi, namely its parent, and a star centred

at a vertex ej contains at most two vertices vi, vl, corresponding to its

endpoints. A star centred at a vertex vi contains only one child of v∗,

namely itself. If a star is centred at a vertex that is neither v∗, a child

of v∗, a grandchild of v∗, nor a child of e∗, it cannot contain any of the

vertices vi. So X contains at most 2k of the children of v∗. Since we

added dummy vertices {vn+1, . . . , v2k+1} in the case n ≤ 2k, it follows

that v∗ will have a neighbour of depth 1 in G−X.

(2) Let w be a vertex of depth 1 in G−X. By construction, any star that

is not centred at w contains at most one of w’s children. But w has at

least k + 1 children, so there must be at least one left in G−X.

(3) A star centred at a grandchild of e∗ can contain at most one child of e∗,

namely its parent. A star centred at a vertex vi can contain at most

d(vi) children of e∗, where d(vi) is the degree of vi in H. A star centred

at a vertex ej contains only one child of e∗, namely itself. If a star is

centred at a vertex which is neither e∗, a child of e∗, a grandchild of

e∗ nor a child of v∗, then it cannot contain any of the vertices ej. So

X contains at most M of the vertices ej, where M is the maximum

50

number of edges covered by a vertex cover of size k in H. It follows

that if M < m, i.e. if H has no vertex cover of cardinality k, then e∗

will have a neighbour of depth 1 in G−X.

(4) For the last case, take a vertex w ∈ G−X of depth 2, and suppose w

is a grandchild of v∗. By construction, w has k + 1 children of depth

3. We claim that at most k of them can be contained in X. To see

this, observe that a star that contains any of the children of w has to

be centred at a vertex u of depth 3 (or at w, but we are assuming that

w 6∈ X). If u is a greatgrandchild of v∗, it has to be a child of w, and

then the star contains no other children of w other than u itself. If u is

a greatgrandchild of e∗, say of type i, then the star can only contain a

child of w that is also of type i, and there is only one such child. Hence

X contains at most k of the children of w, so w will have a neighbour

of depth 3. A similar argument shows that a vertex of depth 2 which

is a grandchild of e∗ will have a neighbour of depth 3 in G−X.

Next, we show that the middle layer of depth 3 vertices remains con-

nected after the removal of any galaxy.

Lemma 4.8. Let X be a galaxy of order k in G. Then the following hold:

(1) There exists an i0 such that every vertex of depth 3 and type i0 in

G−X is connected to every other vertex of type i0 in G−X.

(2) For every i and j with i 6= j, every vertex of depth 3 and type i in

G−X is connected to some vertex of depth 3 and type j in G−X.

Note that these two lemmas together imply the theorem. If H has no

vertex cover of size k, any vertex not in X is connected to some vertex of

depth 3 by Lemma 4.7. But then Lemma 4.8 implies that all the vertices of

51

depth 3 not in X are in the same component of G−X. So G−X must be

connected. The proof of Lemma 4.8 relies on the following claim.

Claim 4.9. For each l, let Fl be the bipartite subgraph of G induced by the

vertices of depth 3 and type l. Then Fl has the following properties:

(a) Fl is p-regular.

(b) If u,w are distinct vertices belonging to the same stable set of Fl, then

|Γ(u) ∩ Γ(w)| ≤ 1.

(c) Fl is (k + 1)-vertex connected.

Proof. We will fix l and omit the superscript in the vertex labels. We also

let A be the stable set of Fl whose vertices are the greatgrandchildren of v∗,

and B the stable set of Fl whose vertices are the greatgrandchildren of e∗.

(a) A vertex (i, j)v∗ is adjacent to (i+x, j+x2)e∗ for x = 0, 1, . . . , p−1, and

a vertex (i′, j′)e∗ has an edge to (i′ − x, j′ − x2)v∗ for x = 0, 1 . . . , p− 1. So

Fl is a p-regular bipartite graph. (Addition and subtraction are taken mod

p.)

(b) Suppose u = (i, j)v∗ and w = (i′, j′)v∗ 6= (i, j)v∗ have two distinct com-

mon neighbours. So there exist x, y, x̃, and ỹ such that

i+ x = i′ + x̃ (4.2)

j + x2 = j′ + x̃2 (4.3)

i+ y = i′ + ỹ (4.4)

j + y2 = j′ + ỹ2 (4.5)

Subtracting (4.4) from (4.2) and (4.5) from (4.3), we see that

x− y = x̃− ỹ (4.6)

x2 − y2 = x̃2 − ỹ2 (4.7)

52

Now if x = y, the two neighbours of (i, j)v∗ are not distinct, which contra-

dicts our assumption. However, if x 6= y, we may divide (4.7) by x − y to

obtain x+y = x̃+ ỹ, which together with (4.6) implies that x = x̃ and y = ỹ.

In this case, we get that i = i′ and j = j′, which is also a contradiction. A

similar proof shows that (b) holds for two vertices u,w in B.

(c) The (k + 1)-vertex connectivity follows from the first two properties.

Again, suppose first that u,w are two vertices in A. Let

U :=

 ⋃
u′∈Γ(u)

Γ(u′)

− {u}, W :=

 ⋃
w′∈Γ(w)

Γ(w′)

− {w},
i.e. U ⊂ A is the set of neighbours of neighbours of u, excluding u itself, and

W ⊂ A is the set of neighbours of neighbours of w, excluding w itself. Let

Z1 := U ∩W . Since the neighbourhoods of two neighbours of u only have

u in their intersection by (b), we have that |U | = (p − 1)p. By the same

argument, |W | = (p−1)p. But |A| = p2, so we must have |Z1| ≥ p2−2p ≥ 0.

Now we claim that we can find k+1 internally vertex disjoint paths of length

4 between u and w. Pick a vertex u1 in Z1. So u1 is adjacent to a neighbour

z1 of u and to a neighbour z′1 of w, by definition of U and W . This gives the

first path P1 = {u, z1, u1, z
′
1, w} of length 4 between u and w. The degenerate

case where z = z′ can only happen once because |Γ(u) ∩ Γ(w)| ≤ 1; in that

case we get a path of length 2. Now remove z1, z
′
1 and all their neighbours

except u and w from the graph. So we remove at most 2(p−1) vertices from

Z1. Call the resulting set Z2. Pick a vertex u2 ∈ Z2 ⊂ U ∩W . Then u2 is

adjacent to a neighbour z2 of u and a neighbour z′2 of w. This gives a path

P2 of length 4 between u and w, and P2 is internally vertex disjoint from P1.

Doing this k+ 1 times yields k+ 1 vertex disjoint paths P1, . . . , Pk+1. Since

|U ∩W | ≥ p(p − 2) ≥ 2(p − 1)(k + 1) because p ≥ N ≥ 2k + 4 (Equation

4.1), all of the sets Z1, Z2, . . . , Zk will be non-empty. A similar argument

shows that we can find k+ 1 vertex disjoint paths between any two vertices

u′ and w′ of B. Finally, any vertex u ∈ A has p > k + 1 neighbours in B,

53

so no cutset of size k in Fl can contain all of the neighbours of u. Similarly

for u′ ∈ B. Hence Fl is (k + 1)-vertex connected.

We now proceed to prove part (1) of Lemma 4.8. The proof is based on

two simple observations. Firstly, if a star T is centred at a vertex u of depth

3, then T can contain at most p+ 1 vertices of depth 3, namely u itself and

all its neighbours. But the crucial point is that T will only contain depth

3 vertices of one type, the same type as the centre u. Secondly, if a star T

is centred at a vertex w of depth 2, it can contain at most k + 1 vertices

of depth 3, namely the children of w. The crucial point here is that among

the children of w, for each i = 1, . . . , k + 1 there will be at most one vertex

of type i. A star centred at a vertex which is not of depth 2 or 3 cannot

contain any vertices of depth 3.

So now let X be a galaxy of order k, say X =
⋃k
j=1 Tj, where each Tj

is a star centred at wj. We need to show that there exists an i0 such that

all the vertices of type i0 which are not in X are in the same component of

G − X. Now if a centre wj is of depth 3 and type i, ignore all vertices of

that type completely. Since there are k + 1 types, there is an i0 such that

no centre wj is of type i0. By Claim 4.9, the subgraph Fio spanned by the

vertices of type i0 is (k+1)-connected. Since there are no stars with a centre

of type i0, each star contains at most one vertex of type i0 by the second

observation above. So X contains at most k vertices of type i0, and thus

Fi0 −X is connected, so all vertices of type i0 are in the same component of

G−X, as claimed.

For the proof of (2), let u ∈ G−X be a vertex of type i and depth 3, and

assume u is a greatgrandchild of v∗. The vertex u has p neighbours among

the greatgrandchildren of e∗. Any two of these only have u as a common

neighbour, so u is joined to p(p−1) greatgrandchildren of v∗ through vertex

disjoint paths of length 2. It follows that u is joined to p(p−1) grandchildren

of v∗ through vertex disjoint paths of length 3. We think of the grandchildren

54

of v∗ as hubs that let us reach vertices of type j 6= i. We claim that G−X
contains at least one hub and all its children.

Call a hub z useless if z or one of its children is contained in X, or if

a vertex on one of the u − z paths described above is contained in X. We

shall bound the maximum number of useless hubs. To this end, let x1 be the

number of stars in X centred at vertices of depth 1, let x2 be the number of

stars centred at vertices of depth 2, let x3 be the number of stars centred at

vertices of depth 3 and type i, and let x′3 be the number of vertices centred

at vertices of depth 3 and type j 6= i.

Now note that a star centred at a vertex of depth 1 can render at most

dp2
n′
e hubs useless. A vertex of depth 2 can render at most one hub useless.

A vertex of depth 3 and type i can render at most p hubs useless, and a

vertex of type 3 and type j 6= i can render at most p hubs useless. Thus the

total number of useless hubs is bounded above by

x1d
p2

n′
e+ x2 + x3p+ x′3p.

Note that x1 +x2 +x3 +x′3 ≤ k. Clearly the worst case occurs when x1 = k,

and then there are kdp2
n′
e useless hubs. Since n′ − k > 2, we have that

n′−k
n′

> 2
n′
≥ 1

p
+ k

p2
(as p ≥ n′ and k ≤ n′), and so p2(1 − k

n′
) > p + k and

thus

p(p− 1) > kdp
2

n′
e.

So u will be connected to a vertex of depth 2 and all of its children in G−X,

as required.

A analogous argument works when u is a greatgrandchild of e∗, and we

have thus proved Lemma 4.8

This completes the proof of Theorem 4.6, and thus establishes Theorem

4.5.

We close this chapter by remarking that the proof of Theorem 4.5 does

55

not yield any information about the hardness of approximation of the prob-

lem of finding a minimum galaxy cutset. This is because there is no one-to-

one correspondence between vertex covers in the Vertex Cover instance and

galaxy cutsets in the reduction graph we have used. Indeed, for any Vertex

Cover instance with input parameter k, our reduction graph will have galaxy

cutsets of order k+ 2, since any vertex of depth 2 can be disconnected from

v∗ by removing its k + 2 neighbours.

56

Chapter 5

Weighted Noninterfering Flows

In this chapter, we prove a Θ(log n) approximability bound for a weighted

extension of the d-flows that we defined in Chapter 3. In order to introduce

this weighted version of d-noninterfering flows recall the LP formulation of

the unweighted flow problem:

max
∑
P∈P

yP

s. t.
∑

P :P∩Z 6=∅
yP ≤ 1 ∀Z ∈ Sd

yP ∈ {0, 1} ∀P ∈ P

where Sd is the set of all d-stars in G−{s, t}, and P is the set of all s− t
paths.

Now, to define the weighted problem, suppose that we have non-negative

weights or capacities on the edges of the graph, and consider the integer

linear program

57

max
∑
P∈P

wPyP

s. t.
∑

P :P∩Z 6=∅
yP ≤ 1 ∀Z ∈ Sd

yP ∈ {0, 1} ∀P ∈ P

where the weight of an s−t path P is defined to be wP := min{w(e) | e ∈
P}.

This method of determining weights for paths arises naturally if we as-

sume that we first have to decide on a collection of d-noninterfering paths,

and that once the paths have been fixed, we send as much flow as possible

along each path. Thus, the maximum amount of flow that a path can carry

is the minimum capacity of an edge on the path. The total value of the

flow is then the sum of the flows along each path,
∑

P∈P wP . Our goal is

to obtain a flow P consisting of d-noninterfering paths that has maximum

value.

As pointed out in Chapter 3, the special case d = 1 corresponds to

vertex-disjoint paths from s to t. For d = 0, we define a d-noninterfering

flow to be a flow consisting of pairwise edge-disjoint paths. Recall that our

minmax result, Theorem 3.1, only holds in planar graphs, and moreover a

simple argument shows that the problem of finding an unweighted d-flow

in a general graph is hopeless even for d = 2. To see this, observe that

if we take any given graph G and add vertices s and t adjacent to every

v ∈ V (G), then finding a maximum 2-flow from s to t is equivalent to

finding a maximum cardinality stable set in G, and the Stable Set problem

cannot be approximated to better than O(n1−ε) unless NP=ZPP (see [51]).

We remark that McDiarmid et al. in [71] pointed out that the NP-hardness

of finding a maximum 2-flow follows readily from the NP-completeness of

the problem of finding a chordless circuit passing through two given vertices

58

s and t. The NP-completeness of this latter problem was proven by Fellows

([25]). However, the reduction from the Stable Set problem we have given

above shows in addition that, if P 6= NP, there is no hope of obtaining a

non-trivial approximation algorithm.

Consequently, in studying the disjoint weighted d-flow problem we re-

strict ourselves to the cases d = 1 and d = 0, i.e. to paths that are either

vertex- or edge-disjoint. We study in detail the case d = 0 in undirected

graphs, since the results carry over to d = 1 and directed graphs using

standard reductions, and call the problem of finding a maximum weight col-

lection of edge-disjoint paths between s and t the Disjoint Weighted Flow

Problem.

We present Θ(log n) lower and upper approximation bounds for the Dis-

joint Weighted Flow problem, where n is the number of vertices. Our lower

bound applies even for the special case of planar graphs.

5.1 A lower bound of Ω(log n)

In this section we present our main result:

Theorem 5.1. For undirected planar graphs, the hardness of approximation

for the maximum disjoint weighted flow problem is Ω(log n), unless P = NP .

Before proving Theorem 5.1 we outline the structure of the proof. First,

we introduce a graph GN that has a maximum disjoint weighted flow of

value equal to the harmonic number HN ≈ logN . But if we use a slightly

modified weight function for the paths then GN has a maximum disjoint

weighted flow of value one.

We then build a new network G by replacing each node of GN by an

instance of an NP-hard routing problem. The routing problem will be chosen

to have the following properties. If it is a YES-instance then path weightings

59

for the disjoint weighted flow problem on G will correspond to the original

weighting scheme on GN . In contrast, if it is a NO-instance, then path

weightings for the disjoint weighted flow problem on G will correspond to

the modified weighting scheme on GN .

It follows that an approximation algorithm with guarantee better than

logarithmic would allow us to distinguish between YES- and NO-instances

of our routing problem, giving a lower bound of Ω(logN). We will see that

this bound is equal to Θ(log n).

Furthermore, the graphs GN and G will be undirected planar graphs.

Theorem 5.1 will follow.

5.1.1 A half-grid graph

Let us begin by defining the graph GN . There are N rows (numbered from

top to bottom) and N columns (numbered from left to right). All the edges

in the ith row and all the edges in the ith column have weight 1
i
. The ith

row extends as far as the ith column and vice versa; thus, we obtain a “half-

grid” that is a weighted version of the network considered by Guruswami et

al [45]. Finally we add a source s and a sink t. There are edges of weight 1
i

from s to the first vertex in row i and from t to the last vertex in column i,

for 1 ≤ i ≤ N . The complete construction is shown in Figure 5.1.

Note that there is a unique s − t path Pi consisting only of edges of

weight 1
i
, that is, the hook-shaped path that goes from s along the ith

row and then down the ith column to t. Moreover, for i 6= j, the path Pi

intersects Pj precisely once. Clearly each path Pi has weight w(Pi) = 1
i
, so

the collection of edge-disjoint paths P∗ = {P1, P2, . . . , PN} gives a flow of

total value HN = 1 + 1
2

+ . . . 1
N

. Since every edge incident to s is used in

P∗ with its maximum weight, this solution is optimal. Similarly, if we are

constrained to use flows that decompose into at most k disjoint paths then

60

s

t

1

11
N

1
N

1
N

1
2

1
2

1
2

1
N−1

1
N−1

· · ·· · ·

· · ·

1
N−1

1
N−1

1 1
2

1
3

1
3

1
3

1

1
N

1

1
2

1
3

1

· · ·· · ·

1
3

· · ·

Figure 5.1: Grid Graph GN .

the optimal flow has weight Hk.

Now consider what happens when we modify the weight function for the

paths. Given a collection P of edge-disjoint paths, let the modified weight,

ŵP(P), of a path P ∈ P be the minimum weight amongst its edges and

those edges incident to a vertex at which P crosses another path Q ∈ P .

Formally,

ŵP(P) = min{wuv | v ∈ P, uv ∈ Q for some Q ∈ P}

where we will omit the subscript if P is clear.

The maximum value of a flow is significantly reduced if we use these

modified weights.

Lemma 5.2. The maximum value of a weighted flow in GN under the mod-

ified weights is 1.

61

Proof. Define the rank of a path P to be the index j for which this path uses

the weight 1
j

edge incident to t. Suppose 1
i

is the maximum modified weight

of any path in a flow P . Let j be the rank of some path Q ∈ P of modified

weight 1
i
. Then set P+ to be the collection of paths in P with ranks greater

than j, and P− to be the paths with ranks less than j.

Observe that Q must contain as a sub-path all the edges in column j that

lie below row i. Otherwise, Q would contain an edge in a row of lower weight

than 1
i
, contradicting the fact that Q has modified weight 1

i
. Similarly, no

other other path in P crosses Q on this sub-path, as this would reduce Q’s

modified weight. This implies that any path in P+ must use one edge of the

columns j+ 1 to i between row i and row i+ 1. Consequently, |P+| ≤ i− j.
Obviously |P−| ≤ j − 1 and so |P| ≤ 1 + (i − j) + (j − 1) = i. Since each

path has modified weight at most 1
i
, this gives an upper bound of 1 on the

modified value of the flow.

For P∗ = {P1, P2, . . . , PN}, we see that ŵ(Pi) = 1
N

, for all i. Thus, this

collection of paths obtains the maximum modified value of one.

5.1.2 The 2-edge-disjoint weighted paths problem

The next step is to replace, in GN , each vertex at the crossing of two paths

Pi and Pj with an instance of an NP-hard routing problem. To define this

routing problem, let H be an undirected graph whose edges have weight

either a or b, where b > a. Given two pairs of vertices (s1, t1) and (s2, t2),

we wish to find a path P1 from s1 to t1 and a path P2 from s2 to t2 with the

properties that

(i) P1 and P2 are edge-disjoint.

(ii) P2 may only use edges of weight b (P1 may use either weight a or weight

b edges).

We call this the Two Edge-Disjoint Weighted Paths Problem, or 2-EDWP.

62

Evidently, we will be most interested in the case where the graph H is

planar. Then we have:

Theorem 5.3. Planar-2-EDWP is NP-hard, even if the pairs of termi-

nals lie on the outer face of H in the order s1, s2, t1, t2.

We remark that Theorem 5.3 immediately tells us that the maximum

disjoint weighted flow problem is hard in planar graphs. Simply take an

instance of Planar-2-EDWP and add a super-source s and a super-sink

t. Then connect s to s1 and s2 with edges of weights a and b, respectively.

Similarly, connect t to t1 and t2 with edges of weights a and b, respectively.

Then there is a disjoint weighted s− t flow of value a+ b if and only if there

are paths P1 and P2 satisfying properties (i) and (ii). Of course, we desire a

much stronger hardness result than this, but this observation will be useful

in motivating the subsequent construction.

Theorem 5.3 is closely related to a result on unsplittable flows by Gu-

ruswami, Khanna, Rajamaran, Shepherd, and Yannakakis. In [45], Gu-

ruswami et al. denote by Undir-Node-USF the unsplittable flow problem in

an undirected, node-capacitated graph, and prove the following theorem:

Theorem 5.4 (Guruswami et. al [45]). Given an instance of Undir-Node-

USF with two source-sink pairs, it is NP-hard to decide if both pairs can be

feasibly routed, even if all node capacities are 1 or 2, and the two demands

are 1 and 2.

Theorem 5.3 is essentially the edge-version of Theorem 5.4, and moreover

we prove that the problem is hard even in planar graphs.

We will need a geometric result to prove Theorem 5.3. An edge uv ∈
E(G) is a separating edge ifG−{u, v} is disconnected. A triangle uv, vw,wu ∈
E(G) is a separating triangle if G−{u, v, w} is disconnected. Our geometric

result relies on the following theorem:

63

Theorem 5.5 (Whitney [95], 1931). Every maximal planar graph with no

separating triangle is Hamiltonian.

It was shown in [4] that such a Hamiltonian cycle can be computed in

linear-time.

Lemma 5.6. Let G = (V,E) be an embedded planar graph, such that G

has girth 4 and has no separating edge. Let φe ⊆ R2 be the open curve

corresponding to the embedding of e, for each edge e ∈ E. Then there is a

simple closed curve in R = R2 \⋃e∈E φe that intersects the image of every

vertex.

Proof. We define the graph G′ obtained form G by adding a new vertex in

each face. Each of these new vertices is adjacent to every vertex on the

boundary of its face. G′ is then obviously a maximal planar graph. In

order to apply Theorem 5.5 to G′, we must prove that G′ does not contain

a separating triangle. First assume it. Then we get a Hamiltonian cycle on

G′. By slightly shifting this Hamiltonian cycle, we get a curve intersecting

G′ exactly once on each vertex, and only there. Then, the lemma is proved

by simply ignoring the new vertices.

To conclude the proof, we show that G′ has no separating triangle. We

denote by E ′ the set of new edges. First, every triangle T has exactly two

edges in E ′, because G has girth 4 (so |T ∩ E ′| 6= 0), the graph induced

by E ′ is bipartite (so |T ∩ E ′| 6= 3), and there is no edge in E ′ with both

extremities on V (G) (so |T ∩ E ′| 6= 1). Suppose that T were a separating

triangle, and let e be its edge in G. Then each component of G′ − T would

contain a vertex of G, since each new vertex is still adjacent to a vertex of

G. So e would be a separating edge of G, contradicting the assumption.

In the following, we identify vertices, edges and graphs with their re-

spective images on the plane. For γ ∈ {a, b}, we call an edge of weight γ a

γ-edge.

64

Proof of Theorem 5.3. We give a reduction from Planar-3-Sat to Planar-

2-EDWP. Let C be a set of clauses over the variables X , such that the bi-

partite graph G = (X ∪ C, {xC : x ∈ X , C ∈ C, x ∈ C ∨ x ∈ C}) is planar.

Without loss of generality, we can suppose that each variable appears at

most three times. To see this, observe that if x appears in k ≥ 4 clauses we

may introduce k new variables, x1, . . . , xk, and new clauses x1 ∨ x2, x2 ∨ x3,

. . . , xk ∨ x1, and replace each occurrence of x by an occurrence of one of

the xi. Without loss of generality, we can also suppose that each variable

appears exactly once negatively. These transformations can clearly be im-

plemented whilst preserving the planarity of G. Thus, we obtain a formula

whose corresponding bipartite graph G has maximum degree 3.

Now take a planar embedding for G. By Lemma 5.6, we may find a

closed curve D intersecting the embedding of G exactly on its vertices.

We will transform (G,D) into an instance of Planar-2-EDWP in

polynomial-time. To do this, we need to build an auxiliary edge-weighted

planar graph G′ for the routing problem. Towards this goal, we first take G

and use D to induce an additional set of embedded a-edges whose endpoints

are in V (G).

Then we replace each edge e = uv ∈ E(G) by a 4-cycle consisting of

b-edges use, ute, vse, vte, where se and te are new vertices.

Next we replace each variable vertex x ∈ X by a variable gadget and

each clause vertex by a clause gadget. Each variable vertex x of degree

three is replaced by one of four possible variable gadgets; the actual choice is

dependent upon the relative position of D with respect to the edges incident

to x and upon the sign of x in the adjacent clauses. These four gadgets are

illustrated in Figure 5.2, where the edges corresponding to D and the other

a-edges are dashed, the edges corresponding to E(G) and the other b-edges

are bold (recall there must be two edges out of the gadget for each edge in G

as we initially replaced such edges by a 4-cycle). The + and − signs indicate

65

whether the variable appears positively or negatively in the adjacent clause.

+ +

−

++

−

− +

+

+−

+

−
+

+
+

+

−
+

−
+

+

−

+

Figure 5.2: Variable gadgets

Each clause vertex C of degree three is replaced by one of two possi-

ble clause gadgets; again, the actual choice is dependent upon the relative

position of D with respect to the edges incident to C. These two gadgets

are shown in Figure 5.3. The gadgets for clauses with two literals and for

variables occurring only twice are similar to those presented, but simpler.

To complete the construction we need to specify the sources and the

sinks. To do so, we first specify a multi-commodity flow formulation with

many source-sink pairs. Later we will show how to implement it as a flow

with just two source-sink pairs. Towards the former goal, we will have a

source-sink pair (se, te) for each edge e ∈ G. Furthermore, we will have one

additional source-sink pair (sa, ta). To define this pair, arbitrarily choose

one of the edges uv of D. Then replace uv by two edges usa and vta each

with weight a. Observe that sa and ta are on the boundary of a common

face of the resultant planar graph G′.

This multi-commodity flow problem relates to the planar 3-SAT instance

in the following manner.

Claim 5.7. The formula is satisfiable if and only if there are edge-disjoint

paths {Pe}e∈E(G) and Q in G′, with the following properties.

66

x y

z

x y

z

x

y

z x

y

z

Figure 5.3: Clause gadgets, with the same convention as in Figure 5.2.

(i) Pe has endpoints se and te and uses only b-edges.

(ii) Q has endpoints sa and ta.

Proof. First, note the 4-cycles of b-edges that initially replaced each edge

have become larger under the construction but are still b-cycles. Moreover,

these b-cycles (call them He, for each e ∈ G) are edge disjoint and their

union covers all of the b-edges in G′.

Now suppose that all the paths exist. There are only two possible routes

in He between se and te that Pe can take; if e = xC then one route passes

through the variable gadget x and the other passes through the clause gadget

C. Since se and te have degree two, it follows immediately that Q cannot use

any of the edges incident to them. Consequently, Q must follow the curve

D. We will show how to obtain from Q a satisfying truth-assignment.

For any edge e = xC, we say that the cycle He is positive if x appears

positively in C, negative otherwise. Then, for a variable gadget x, it is easy

to see that if Q does not intersect the unique negative cycle going through

the gadget then it must use at least one edge of each of the positive cycles

He going through that gadget. If it intersects the negative cycle, set variable

x to true, otherwise set it to false.

To see that this does produce a satisfying assignment, take any clause

C, say over the variables x, y and z. Since Q follows D it must pass through

67

each clause gadget. Consequently, Q intersects at least one of HxC , HyC ,

and HzC . Without loss of generality, let it intersect HxC . This means that

PxC cannot go through the clause gadget C and, hence, must go through

the variable gadget x. But, again, as Q follows D it must pass through the

variable gadget x too. Therefore, Q cannot intersect HxC in the variable

gadget x. This precisely means that x is true if x appears positively in C,

and x is false if it appears negatively. So C is satisfied by x.

On the other hand, given a satisfying assignment, it is easy to find a

collection of feasible paths. This is because, for each variable gadget, there

is a sub-path that intersects only the positive cycles in that gadget and

there is a sub-path that intersects only the negative cycle. Therefore, Q can

always follow the appropriate sub-path.

To complete the proof of Theorem 5.3 we need to reduce the number

of commodities in the flow to two. For this, we will keep the source-sink

pair (sa, ta) but group into one all of the pairs (se, te) via the use of a new

source sink pair (sb, tb). To accomplish this, we first need to position the

new vertices sb and tb in G′. Let B be a closed curve that intersects G′ on

sa and ta only. Then add sb arbitrarily on the “upper” path between sa and

ta induced by B. Similarly add tb on the “lower” path between sa and ta

induced by B.

Our goal now is to force any path of b-edges between sb and tb to follow

b-paths between se and te for every e ∈ G. To do this, let e1, e2, . . . , em

be any ordering of the edges of G. For a cycle He, we define its inside as

the connected component of R2 \He that does not contain any vertex of G′.

Then setR to be the union of the inside of every cycle He plus V (G′) and the

inside of B. Observe that R is a union of disjoint balls, so its complement is

connected. Let P be a path between sb and se1 in this complement. Build a

path of b-edges along P and add them to G′, inserting new vertices whenever

P crosses an a-edge (note that these are the only edges P can cross). Next

68

add P to R; this does not change the connectedness of its complementary

set. In this manner, we may iteratively add paths of b-edges between ti

and si+1, for 1 ≤ i ≤ m − 1, and finally between between tm and tb. By

construction, these paths are disjoint and cross only a-edges. We thus obtain

a new planar graph G′′ with four terminals on the same face, as desired.

Clearly this new instance of Planar-2-EDWP is equivalent to the pre-

vious multi-commodity flow problem. To see this, simply note that the new

b-edges are isthmi in the subgraph consisting of the b-edges. Consequently,

the (sb, tb)-path must use each of these new b-edges and then, as before,

in each He route through either the variable gadget or through the clause

gadget. This completes the reduction.

5.1.3 The hardness result

We can now complete the proof of the approximation hardness. Observe

that any vertex of degree four in GN is incident to two edges of weight 1
i

and to two edges of weight 1
j
, for some i 6= j. We construct a graph G by

replacing each vertex of degree four with the routing graph H. We do this

in such a way that the weight 1
i

edges of GN are incident to s1 and t1, and

the weight 1
j

edges are incident to s2 and t2. Moreover, for that copy of H

placed at the intersection of Pi and Pj, we then let a = 1
i

and b = 1
j
, where

we may assume that j < i.

The hardness result will follow once we see how this construction relates

to the original and modified weight functions.

Lemma 5.8. If H is a YES-instance then the optimal disjoint weighted flow

in G has value HN . If H is a NO-instance then the optimal disjoint weighted

flow in G has value at most 1.

Proof. It is clear that if H is a YES-instance, then paths in G induce paths

in GN which are free to cross at any vertex without restrictions on their

69

values. This means we obtain a flow of value HN by using the canonical

paths Pi, 1 ≤ i ≤ N .

However, if H is a NO-instance, then it contains only an s1 − t1 path,

or only an s2 − t2 path, or the s2 − t2 path is forced to use a lower weight

a-edge. This implies that the induced paths P in GN either do not cross at

all, or if they cross then the weight of the path using the 1
j
-edge is forced

down to a weight of 1
i

(recall j < i). But this means that the weight of a

path is upper bounded by the modified weight function ŵ. This allows us

to apply Lemma 5.2, and hence the value of an optimal flow in this case is

at most 1.

Proof. Proof of Theorem 5.1. It follows that if we could approximate the

maximum disjoint weighted flow problem in G to a factor better than HN ,

we could determine whether the optimal solution is 1 or HN . This in turn

would allow us to determine whether H is a YES- or a NO-instance.

Note that G has n = Θ(pN2) edges, where p = |V (H)|. If we take N =

Θ(p
1
2

(1
ε
−1)), where ε > 0 is a small constant, then log n = Θ(HN) = Θ(log p).

This gives our lower bound of Ω(log n).

Similarly, if we are restricted to consider only flows that decompose into

k disjoint paths then it is not hard to see that:

Theorem 5.9. For undirected, planar networks, there is a Ω(log k) hardness

of approximation, unless P = NP , for the problem of finding a maximum

flow that decomposes into at most k edge-disjoint paths.

5.2 Matching the lower bound

Our lower bound is tight to within a constant factor - there is a simple

approximation algorithm that gives an almost matching upper bound.

70

Theorem 5.10. For any network, there is an O(log n) approximation algo-

rithm for the maximum disjoint weighted flow problem.

Proof. To begin, round each edge weight down to the nearest power of 2.

This can only cost us a factor 2 in our approximation guarantee. Next,

we claim that we may assume that every edge weight lies between 1 = 20

and 2t where t = 1 + dlog ne. To see this, first note that there can be at

most n edge-disjoint s− t paths in any flow. Therefore, for any j, the total

contribution from all paths that contain an edge of weight 2j or less is upper

bounded by n2j. Now, let 2j0 be the highest edge weight such that there

exists a path of weight 2j0 . Deleting the edges of weight 2j for all indices

j where 2j < 1
n
2j0−1 loses us at most 2j0−1 in weight, that is, half of the

optimal flow value. The lowest remaining edge weight, 2j1 , then satisfies

j1 ≥ j0 − 1 − dlog ne. Scaling down the edge weights by a factor 2j1 gives

the claim.

The approximation algorithm now proceeds as follows. For each i such

that 0 ≤ i ≤ t = 1+ dlog ne, let Ei be the edges of weight at least 2i, and let

Gi = (V,Ei). Let φi be the maximum number of edge-disjoint s− t paths in

Gi. Clearly, these paths induce a weighted disjoint flow of value at least 2iφi

in G. Furthermore the optimal weighted disjoint flow must have value at

most
∑t

i=0 2iφi. To see this, note that the paths of weight 2i in the optimal

solution together form a feasible solution for the disjoint paths problem inGi.

Then, since t = 1 + dlog ne, one of the Gi produces a weighted disjoint flow

whose value is at least a logarithmic fraction of the optimal flow value. As

we can easily solve the maximum disjoint paths problem in Gi in polynomial

time, this gives the claimed O(log n) approximation algorithm.

Corollary 5.11. There is an O(log k) approximation algorithm for the prob-

lem of finding a maximum flow that decomposes into at most k edge-disjoint

paths.

71

Proof. This previous argument applies. The approximation guarantee, how-

ever, improves to O(log k) because now the paths of weight at most 2j can

only contribute a total value of at most k2j.

72

Chapter 6

Constructing Subgraphs

without Star-cutsets

Given the interpretation of galaxy cutsets as malicious virus-like attacks on

a network, a natural question that arises is whether it is possible to design

networks that are not vulnerable to such attacks. We therefore turn our

attention to the problem of finding a spanning subgraph without galaxy

cutsets in a given graph. The full input graph G represents the potential

network, i.e. it specifies the feasible edges, and the spanning subgraph H

represents the actual network that is eventually built.

Recall from Chapter 4 that the problem of determining if a given graph

has a galaxy cutset of order k is NP-complete, even if all the stars have radius

1. This implies that there is little hope of being able to find a spanning

subgraph without galaxy cutsets efficiently. Indeed, if P 6= NP, then the

problem is not even in NP, as we cannot determine in polynomial time if a

given candidate solution is a YES- or a NO-instance. We therefore restrict

ourselves to the more tractable special case where the order of the galaxy

cutsets is fixed to be k = 1, i.e. we wish to find a spanning subgraph that

does not contain any star-cutsets of radius r.

73

As in Chapter 4, we have a negative hardness result and a positive algo-

rithmic result. The hardness result asserts that if r ≥ 4 it is NP-complete

to decide if a given graph has any spanning subgraph without star-cutsets

of radius r.

In light of such a strong negative result, we turn to bi-criteria approaches.

In Section 6.2 we exhibit a polynomial time approximation algorithm that

finds a spanning subgraph without star-cutsets in a graph that has no star-

cutsets of radius 3. The number of edges of the spanning subgraph found is

at most 11
6

times the number of edges of an optimal spanning subgraph.

6.1 The hardness of finding subgraphs with-

out star-cutsets of radius r

By the results of Chapter 4, we can test in polynomial time whether a given

candidate subgraph of G has a star-cutset of radius r or not, and hence

the decision problem is in NP. We will show that the problem of deciding

whether G contains a spanning subgraph H without star-cutsets of radius r

is NP-hard by reducing 3SAT to it. Given a 3SAT instance with n Boolean

variables x1, . . . , xn and m clauses C1, . . . , Cm, we assume without loss of

generality that for each xi, both xi and x̄i occur in at least 2 clauses.

The graph G we use for the reduction has the following properties. G

itself has star-cutsets of radius r, as do spanning subgraphs that do not

correspond to valid true-false assignments of the Boolean variables. More-

over, any spanning subgraph that does correspond to a valid assignment

will have a star-cutset of radius r if and only if the formula has no satisfying

assignment.

The basic idea behind the construction of G is as follows. For each

variable xi, there is a vertex xi, a vertex vi, and a variable gadget gi. Also,

74

for each clause Cj there is a vertex Cj and a vertex sj. The vertices vi will

ensure consistency: If a spanning subgraph H of G does not correspond to

a valid true-false assignment, some vi will be the centre of a star-cutset of

radius r. Moreover, given a subgraph H that does correspond to a true-false

assignment, the vertex sj will be the centre of a star-cutset of radius r if

and only if clause Cj is not satisfied under this assignment. Consequently,

the vertices sj will verify satisfiability.

We now describe the construction in detail, beginning with the the gad-

gets and how they fit together. For each xi, the corresponding variable

gadget gi resembles a complete bipartite graph, where vertices on opposite

sides of the partition are connected via paths. We have a vertex labelled

aij if xi appears in clause Cj; these vertices make up the left side of the

bipartition of gi. Similarly, there is a vertex bik if x̄i appears in Ck; these

vertices make up the right side of the bipartition of gi. We connect every

vertex aij to every vertex bik via disjoint paths of length 4r and label the

middle vertex of such a path zj,ki .

to xi to xi

ai,j3

ai,j1

ai,j2

bi,k3

bi,k1

bi,k2

zj1,k1

i

zj3,k3

i

to Cj3

to Ck3

to sj3 to sk3

Figure 6.1: A variable gadget

75

We now describe how the vertices and gadgets are connected to one

another. By a long path we mean a path of length 4r all of whose internal

vertices have degree 2. There is a special vertex X which is connected to all

the vi via disjoint long paths. Next, for every i, vi is connected to xi via a

path of length r − 1. Each vertex xi is in turn connected to all the vertices

aij and bik in the corresponding gadget gi by a single edge.

There is another special vertex C which is connected to X via a long

path. The vertex C is also connected to all the sk via disjoint long paths.

Each vertex sk is joined to Ck by a long path. In turn, a vertex Ck is

connected through long paths to three more vertices, determined as follows:

If the clause Ck contains the literal xi then the vertex Ck is connected to the

vertex aik; if the clause Ck contains the literal x̄i then vertex Ck is connected

to the vertex bik.

The intuition behind these long paths is that, for most choices of vertex

v ∈ G, any star of radius r centred at v will contain only one vertex of

degree at least 3. This will make the task of checking whether v centres a

star-cutset of radius r straightforward.

To complete the construction, recall that inside every variable gadget

we have paths of length 4r from every aij to every bik. The middle vertex

zj,ki on such a path is now connected to sj and sk via paths of length r.

The vertices in the middle of these two paths will be labelled [zj,ki , sj] and

[zj,ki , sk], respectively; we connect these two vertices to vi using paths of

length r. Observe that these additional paths are incident to verifier vertices.

They are needed to ensure that the verifiers do their jobs with respect to

consistency and satisfiability. This concludes our description of the graph

G, which is illustrated in Figure 6.2. In the figure, solid lines represent

long paths, dashed lines represent paths of length r − 1, dash-dotted lines

represent paths of length r, and single edges are drawn with fat lines.

We now proceed to show that finding a spanning subgraph H of G with-

76

X

C

s1

C1

sm

Cm

x1

v1 vn

xn

C3

[z1,31 , s1]

s3

gng1

[z1,31 , s3]

z1,31

· · ·

· · ·

Figure 6.2: Reduction graph for the 3SAT reduction

77

out star-cutsets of radius r is equivalent to finding an assignment of true-false

values to x1, . . . , xn that satisfies C1 ∧ · · · ∧ Cm. Observe that G itself has

star-cutsets of radius r, for instance the tree of depth r centred at v1, which

separates the vertices on the long internal paths of g1 from X .

For each gadget gi, we call the vertices aij left vertices and the vertices bik

right vertices. We also call the edges joining xi to left vertices left edges, and

the edges joining xi to right vertices right edges. We now prove a few techni-

cal lemmas that will allow us to set up a one-to-one correspondence between

true-false assignments to the variables xi and certain spanning subgraphs of

G.

Lemma 6.1. Let H be a spanning subgraph of G, and let e = (x, y) be an

edge of G which is not labelled left or right. If e is not in H, then H has a

star-cutset of radius r.

Proof. First note that at most one of x and y can be a vertex of degree

greater than 2. This follows because all the vertices of degree 3 or more are

joined by paths of length at least r/2 ≥ 2, unless they are connected by a

left or right edge. Assume, without loss of generality, that x has degree 2,

i.e. x is an internal vertex on some path joining two vertices of degree at

least 3. Denote by w the neighbour of x which is not y. Then, if (x, y) is

not in H, we can separate x from X simply by removing its other neighbour

w, so we have a star-cutset of radius 0.

Note that this proof relied on the assumption that r ≥ 4, without which

we could not have deduced that one of the endpoints of e = (x, y) had to

have degree 2.

Hence any candidate for a suitable spanning subgraph must contain all

of the edges of G, except possibly the edges labelled left and right. Next,

we show that any candidate for a spanning subgraph without radius r star-

78

cutsets will contain either only left edges or only right edges for each xi. As

we shall see, this will correspond to setting xi to be true or false.

Lemma 6.2. Let H be a spanning subgraph of G. If there exists an xi such

that H contains both a left edge from xi and a right edge from xi, then H

has a star-cutset of radius r.

Proof. Suppose H contains a left edge from xi to aij and a right edge to

bik, and let T be the tree of depth r rooted at vi. Any path from zj,ki (the

middle vertex of the path from aij to bik) to X has to go through one of the

vertices [zj,ki , sj], [zj,ki , sk], aij, or bik. But all of these vertices are in T , so

zj,ki and X are in different components in G− T .

The next lemma shows that if H contains a left edge (respectively, right

edge) from some xi to its gadget, then we can include in H all the left edges

(respectively, right edges).

Lemma 6.3. Let H be a spanning subgraph of G that has no star-cutsets of

radius r. If, for some i, H contains a left edge (respectively, right edge) from

xi to its gadget gi, then the graph H ′ obtained by adding all the remaining

left edges (respectively, right edges) from xi to gi does not have a radius r

star-cutset either.

Proof. It is sufficient to show that if H is a spanning subgraph without

radius r star-cutsets containing a left edge from some xi to some aij, then

adding another left edge from xi does not create a star-cutset of radius 3.

So suppose that xi is contained in clauses Cj and Ck, and that H contains

the left edge (xi, aij) but not (xi, aik). Adding the edge e = (xi, aik) can only

turn vertices at distance at most r− 1 from either endpoint of e into centres

of star-cutsets of radius r. So, in order to prove the lemma, it will suffice

to verify that none of the vertices at distance at most r from the vertex aik

can become the centre of a star-cutset when we add the edge e = (xi, aik).

79

Let v be a vertex at distance at most r from aik, and T a star of radius

r centred at v. Observe that we cannot disrupt the paths from the right

vertices bil of the gadget to their corresponding clause vertex Cl, because H

cannot contain any right edges. We cannot disrupt the path from X to C
either, nor the paths from Cj or Ck to C via sj or sk, respectively. Hence,

any vertex that could possibly be separated from C by removing T , that

is, any vertex at distance at most 2r from aik, will still be able to reach C
through either X , sj, sk, or some right vertex of the gadget corresponding

to xi.

Observe that it must also be the case that for each xi, there is at least

one left edge or one right edge from xi to its gadget. Otherwise we can

disconnect xi from the rest of the graph by removing its neighbour on the

path to vi.

Now we can set up the correspondence between true-false assignments to

the variables xi and potential spanning subgraphs H. Given an assignment,

let H be the subgraph of G consisting of all the unlabelled edges of G, plus,

for each i, all the left edges from xi to its gadget if xi is true and all the

right edges if xi is false. Conversely, given a spanning subgraph H that

contains either all the left edges or all the right edges for each xi, we obtain

a true-false assignment by setting xi = true if the left edges are present, and

false otherwise.

Before stating and proving our main theorem, we record the following

useful fact as a lemma.

Lemma 6.4. If H is a spanning subgraph corresponding to an assignment,

i.e. with either all left edges or all right edges present for each xi, then no

vertices other than the vi and sk can be centres of star-cutsets of radius r.

Proof. It is certainly true that neither X , C, nor any of the Ck can be centres

of star-cutsets of radius r, because these vertices only have long paths ema-

80

nating from them. Also observe that only the vertices vi are within distance

r of both left or right vertices of a gadget and a middle vertex [zj,ki , sk], and

only the vertices sk are within distance r of more than one gadget. Showing

that all internal vertices, and also the vertices xi, aij, or bik cannot be centres

of star-cutsets of radius at most r is straightforward. The only non-trivial

cases are the vertices zj,ki and [zj,ki , sj]. Removing a star-cutset of radius at

most r centred at zj,ki does not affect aij or bik, but it does affect sj and

sk. However, both Cj and Ck are still connected to X and hence C through

other gadgets. Similarly, removing a star-cutset of radius at most r centred

at [zj,ki , sj] may take out zj,ki , vi and sj, but everything is still connected

to C either through the right side of the gadget or Cj and one of the other

gadgets gi′ with i′ 6= i it is connected to.

The NP-hardness of finding a spanning subgraph H without star-cutsets

of radius r is now established by the following theorem.

Theorem 6.5. There exists a satisfying true-false assignment if and only if

G contains a spanning subgraph H without star-cutsets of radius r.

Proof. Suppose that the formula is not satisfiable. So given any true-false

assignment, there is at least one clause that is not satisfied. Without loss

of generality, let this clause be Ck = (xk1 ∨ xk2 ∨ xk3). We claim that the

tree of depth r centred at sk is a cutset in the graph H corresponding to the

assignment. Since Ck is not satisfied, we have that xk1 = xk2 = xk3 = false

and so none of the left edges to the gadgets gk1 , gk2 and gk3 are present. So

any path from Ck to X must go through either sk or through the middle

vertices on the paths from aki,Ck
to the other side of the gadget gki for

i = 1, 2, 3. But all of those vertices are contained in T , and hence Ck is

disconnected from X in H − T .

Conversely, if there exists a satisfying assignment, then we claim that the

corresponding graph H has no star-cutsets of radius r. None of the vertices

81

vi can be the centre of such a cutset, because for each xi, the graph H either

contains all left or all right edges from xi to its gadget. This means that if

all the left edges are chosen for some xi, then the long paths from the right

vertices bi,k to Ck cannot be interrupted, and similarly if the right edges are

chosen. Moreover, none of the vertices sk can be the centre of a star-cutset

of radius r. This follows from the fact that we have a satisfying assignment.

Again without loss of generality, let Ck = (xk1 ∨ xk2 ∨ xk3) be a clause,

and suppose we remove the tree of depth r centred at sk. This will disrupt

the long paths from ak1,k, ak2,k, and ak3,k to all the vertices on the other

side of the corresponding gadget. However, we must have at least one of

the three edges (xk1 , ak1,k), (xk2 , ak2,k) and (xk3 , ak3,k) and thus we maintain

connectivity. By Lemma 6.4, none of the other vertices can be centres of

star-cutsets of radius r, so the result follows.

Thus, we obtain our hardness result.

Theorem 6.6. The problem of deciding whether a graph G contains a span-

ning subgraph H with no star-cutsets of radius r is NP-complete for r ≥ 4.

6.2 A bi-criteria approach to finding span-

ning subgraphs without star-cutsets

As we have seen, it is unlikely that we can obtain approximation algorithms

for the problem of finding a minimum spanning subgraph without star-

cutsets of radius r when r ≥ 4. This suggests that some form of bi-criteria

approximation algorithm may be the best we can hope for. In this section,

we show that such bi-criteria results are possible. Specifically, assuming that

G contains no star-cutset of radius at most three, we give a polynomial time

algorithm to find an approximately minimum spanning subgraph containing

no star-cutsets.

82

Theorem 6.7. Let G be a graph that does not contain a star-cutset of radius

3. Then there is a factor 11
6

-approximation algorithm for the minimum star-

cutset free spanning subgraph problem in G.

Our approach to proving Theorem 6.7 is to iteratively add vertices and

edges to a subgraph H of G, maintaining the property that H has no star-

cutsets. The main difficulty is that this property is non-monotonic, as can

be seen immediately by considering the example of a cycle to which a chord

is added. This difficulty does not arise in the design of k-vertex or k-edge

connected spanning subgraph, where adding edges can only increase the

connectivity.

The assumption that G does not contain star-cutsets of radius 3 implies

that G is 2-vertex connected. We will use this fact repeatedly. We start

constructing our subgraph with a cycle H = E0 which is locally maximum in

the sense defined below. The first step in the algorithm is to add ears to H.

We grow the ears carefully to maintain the property of being star-cutset free.

We remark that ear decompositions have been used in designing efficient

algorithms for network design problems with low connectivity requirements,

for example see [12] and [34]. The first phase will terminate when V −V (H)

is a stable set S. In the second phase we will iteratively add the vertices

of S along with carefully chosen edges to H, again avoiding the creation of

new star-cutsets.

6.2.1 Phase I: Ear growing

First we define formally what is meant by an ear. Given a graph G and a

subgraph H, an ear E is a path whose endpoints are in H and whose internal

vertices are in V −H. By a long ear we mean an ear with at least 3 edges.

We call an ear E locally maximum if no edge of the ear can be replaced by a

path of length at least 2 all of whose internal vertices lie in V − (H ∪E), and

83

if no pair of adjacent edges of the ear can be replaced by a path of length

at least 3 with internal vertices in V − (H ∪ E). The definition of locally

maximum extends in an obvious way to the initial cycle E0.

In iteration i, an ear Ei is added to the current subgraph Hi to obtain

the subgraph Hi+1. The actual choice of ear Ei is made according to the

following rules.

(1) Ei contains at least 3 edges, i.e. it is a long ear, and its endpoints ui

and vi satisfy dHi
(ui, vi) ≥ 3.

(2) Given Rule (1), the ear Ei is chosen to be locally maximum.

We now show that the procedure described above is well-defined and

terminates when V −Hi is a stable set.

Claim 6.8. While V −Hi is not a stable set, there is a long ear Ei satisfying

dHi
(ui, vi) ≥ 3.

Proof. Let x and y be vertices of V − Hi such that e = (x, y) is an edge.

Since G is 2-connected, there must be 2 vertex-disjoint paths from {x, y}
to Hi. It follows that there exists a long ear. Let Ei be a long ear with

endpoints ui, vi, and suppose that dHi
(ui, vi) ≤ 2.

If dHi
(ui, vi) = 1, then e = (ui, vi) was chosen in some ear Ej where j < i.

But then Ej−e+Ei could have been chosen instead of Ej, contradicting Rule

(2).

Next, if dHi
(ui, vi) = 2, there is a vertex v ∈ Hi that is adjacent to both

ui and vi. Let e1 = (v, ui) and e2 = (v, vi). If both e1 and e2 are in the

same ear Ej where j < i then Ej − e1 − e2 + Ei could have been chosen as a

larger ear instead of Ej, contradicting Rule (2). Thus, e1 ∈ Ek and e2 ∈ Ej
where k < j < i. It follows that v = vj is an endpoint of the ear Ej. Thus,

84

vi is an internal vertex of Ej and so vi 6∈ Hj. Consequently, vi 6∈ Hk and

Ek − (ui, v) + (v, vi) + Ei contradicts the choice of Ek.

Hence the endpoints of every long ear must satisfy either dHi
(ui, vi) ≥ 3

or dHi
(ui, vi) = 0. But if dHi

(ui, vi) = 0 for every long ear, then clearly G

contains a cut-vertex, leading again to a contradiction.

Our goal now is to show that Hi remains free of star-cutsets throughout

the course of this first phase. To show this we will need the following claims.

Claim 6.9. If Hi has no star-cutset and dHi
(ui, vi) ≥ 3, then Hi+1 has no

star-cutset.

Proof. Let v be an internal vertex in Ei. First, it is not possible for v to be

the centre of a star-cutset in Hi+1. To see this, observe that v is at least

distance two from one of ui or vi, since we showed that there is always an

ear with at least three edges in Phase I.

There are no cut-vertices in Hi. Consequently, a star Sv centred at v

(and, thus, containing at most two edges) cannot be a cutset in Hi+1 as it

removes at most one vertex from Hi, and Ei − Sv remains connected to the

rest of Hi+1.

So let v be a vertex in Hi. As v is not the centre of a star-cutset in Hi, it

can only become the centre of a star-cutset in Hi+1 if it separates an internal

vertex of Ei from the rest of Hi+1. To do this Sv must contain both ui and

vi. But then dHi
(ui, vi) ≤ 2, a contradiction.

Since the algorithm starts with a cycle E0 and cycles do not contain star-

cutsets, it follows that the subgraph H we have when Phase I terminates

cannot contain a star-cutset either.

We remark that in Phase I we use only the fact that G contains no cut-

vertices, which follows from the assumption that G has no star-cutsets of

radius at most 3.

85

6.2.2 Phase II: Incorporating the stable set

Let H be the subgraph obtained after Phase I, and let S = V −V (H) be the

stable set of remaining vertices. In the second phase we iteratively add the

vertices of S to H, again taking care not to create any star-cutsets. In fact,

we can add always a vertex to H that has two neighbours whose distance in

H from one another is at least 4.

Lemma 6.10. Let G be a graph without star-cutsets of radius 3, let H be

a connected subgraph of G, and let v ∈ V − V (H) be a vertex all of whose

neighbours are in H. Then either v has two neighbours a and b such that

dH(a, b) ≥ 4, or G is Hamiltonian.

Proof. As G has no cut-vertices we know that v has at least two neighbours

in H. Let u be a neighbour of v and suppose dH(u,w) ≤ 3 for all w ∈ Γ(v).

So there is a tree Z of depth 3 in H, centred at u, containing every vertex

of Γ(v). We have two possibilities:

(i) There is a vertex x 6= v that is not in Z, in which case we have a tree of

depth 3 whose removal from G separates x and v, a contradiction.

(ii) Γ(v) (and thus Z) contains every vertex in V − {v}. Let Di = {w :

dH(u,w) = i}, for i = 1, 2, 3. We will show that Di must be a clique for

i = 1, 2, 3.

If D3 is not a clique, let x, y be non-adjacent vertices in D3. Since v is a

neighbour of u there is a tree of depth 3 centred at u containing every vertex

except x and y, that is, a star-cutset of radius at most 3.

Next note that every vertex in D2 has distance at most 3 from v. Since

every vertex in D3 has distance one to v, we could separate two non-adjacent

vertices x and y of D2 by removing V − {x, y}, a tree of depth at most 3.

But if D2 is a clique, there is a path of length at most three from v to

any vertex in D2 that just uses vertices in D2 ∪D3. Consequently D1 must

also be a clique. It is then easy to find a Hamiltonian cycle in G.

86

The graph H obtained after Phase I is connected, and S = V − H is

a stable set, so we have Γ(v) ⊆ H for every v ∈ S. Hence, Lemma 6.10

applies, and so when we consider v ∈ S we either output a Hamiltonian

cycle in polynomial time or we simply connect v to two neighbours a and

b whose distance is at least four in H. This yields a subgraph H ′ which

is again connected, and clearly S ′ := S − {v} is still a stable set, so the

conditions of Lemma 6.10 will be satisfied in all subsequent iterations as

well.

If we don’t find G to be Hamiltonian and we add edges (v, a) and (v, b),

there are two possibilities: Either the set {a, b} forms a cutset in H, or it

does not.

In the latter case things are simple. We just set H ′ to be the graph with

vertex set V (H ′) = V (H)∪{v} and edge set E(H ′) = E(H)∪{(v, a), (v, b)}.
Since {a, b} is not a cut in H, we have that {v, a, b} is not a star-cutset in

H ′. Moreover, if H ′ contained a star-cutset S 6= {v, a, b}, this would show

that H contained a star-cutset, too, which is a contradiction.

has no star-cutsets so we may then iterate on H ′ and S ′ := S − {v}.

If {a, b} is a cutset, adding the edges (v, a) and (v, b) creates a star-cutset,

which we must neutralise by adding additional edges. Let the components

of H − {a, b} be C1, C2, . . . Ck. Let Gi denote the subgraph of H ′ = H +

(a, v) + (v, b) restricted to Ci ∪ {a, v, b}. Label by Cr
i the vertices of Ci

whose distance to {a, b} is exactly r, and label by Cr+
i the vertices of Ci

whose distance to {a, b} is at least r.

It is clear that each Gi is again 2-vertex connected, for a cutvertex in Gi

would still also be a cutvertex in G.

Claim 6.11. C2+
i is non-empty for all 1 ≤ i ≤ k.

Proof. Suppose C2+
i is empty for some 1 ≤ i ≤ k, then every vertex in Ci is

87

adjacent to either a or b. Consequently, as Ci is connected, there is a path

of length 3 from a to b through Ci. This contradicts Lemma 6.10.

In order to neutralise the star-cutset {v, a, b}, we will consider the fol-

lowing Steiner tree problem. Consider the auxiliary graph G obtained by

creating a terminal node ti for each set of vertices C2+
i , and a Steiner node

su for each vertex u ∈ S − {v}. Two nodes in G are adjacent if there is at

least one edge between their corresponding vertex sets in G.

Claim 6.12. There is a Steiner tree T in G.

Proof. The set of vertices {v, a, b} ∪⋃k
i=1C

1
i is spanned by a tree of depth

2 centred at v. As G has no star-cutsets of radius 3, this tree of depth 2 is

not a cutset, which implies the claim.

Let H ′′ be the graph obtained from H ′ by adding the Steiner tree T , i.e.

we add the Steiner nodes used by T , and, for each edge between nodes of

T , we add an edge between the corresponding vertex sets in G.

Lemma 6.13. If T is a Steiner tree in G then H ′′ has no star-cutsets.

Proof. Clearly v is not the centre of a star-cutset in H ′′. Observe then that

a star-cutset in H ′′ must be centred at a vertex incident to an edge in T . To

show that such a cutset cannot exist we will need the fact that Gi is 2-vertex

connected. Let s be a Steiner node in T . Note that s is incident to at most

one vertex in any Gi. Moreover, such a vertex is in C2+
i and thus is not a

or b. So the removal of a star centred at s cannot disconnect Gi and all the

Gis remain connected to one another via {v, a, b}.

Similarly, let t be a vertex in a set C2+
j corresponding to a terminal node

. Observe that t does not centre a star-cutset in Gj, otherwise it gave a star-

cutset in H. Now t is adjacent to at most one vertex in Gi, i 6= j. Hence, as

before the removal of the neighbours of t cannot disconnect any of the other

88

graphs Gi, and moreover all these graphs remain connected to one another

via {v, a, b}.

After adding the Steiner tree to H ′, we update H and S and iterate.

Clearly both Phase I and Phase II can be implemented in polynomial time

so it remains to analyse the performance guarantee of the algorithm. This

will require a fairly intricate charging argument, which we detail in the

remainder of this section.

Proof of Theorem 6.7. In the ear decomposition phase, we add at most two

edges for each vertex we add to H. In the stable set phase we charge the

edges (v, a) and (v, b) to v ∈ S. We charge two edges of T to each Steiner

node in T (recall that the Steiner nodes also belong to the current stable set

S). So in the worst case we have no Steiner nodes in T and then we have

k−1 edges left to charge for the k terminal nodes in T . We will charge these

edges to the initial cycle and the ears from Phase I as follows:

First, label the indices of C1, C2, . . . , Ck (the components of H − {a, b})
according to the order in which the algorithm first incorporated a vertex of

Ci into H.

Claim 6.14. For i ≥ 3, the vertices a and b are the endpoints of an ear Ei,
added in Phase I through Ci. Moreover, a and b either both lie on the initial

cycle, or on an ear E2 through C2.

Proof. Let C∗ be the cycle found at the beginning of Phase I. If some vertex

w ∈ C2 lies on C∗, then both a and b must lie on C∗ as well, otherwise {a, b}
cannot separate C1 from C2. If no vertex of C2 lies on C∗, let w2 be the first

vertex of C2 added to H. Thus w2 must be an internal vertex of some ear

E2, and E2 must contain a and b (not necessarily as endpoints), otherwise

{a, b} cannot separate C1 from C2. It follows that when the algorithm adds

the first vertex wi of Ci, for i ≥ 3, the current subgraph Hki already contains

89

the vertices a and b. This implies that a and b must be the endvertices of

the ear containing wi, because otherwise removing {a, b} would not separate

Ci from all the other components.

Note that it cannot be the case that Ci, i ≥ 1, only contains vertices that

were in S at the end of Phase I, because since S is a stable set, we would

get the contradiction dH(a, b) = 2.

Now we charge one edge of T to each such ear Ei, i ≥ 3. Depending on

whether the first vertex of C2 lies on the initial cycle C∗ or an ear E2, we

charge the remaining edge of T to C∗ or E2.

Claim 6.15. The initial cycle C∗ is charged at most |C
∗|−6
2

edges, and each

ear E is charged at most nE−1
2

edges, where nE is the number of internal

vertices of E.

The idea of the proof is simple: We shall bound from above, for each ear

and for the initial cycle, the number of times that a pair {a, b} which induces

a cut in Phase II (and thus requires augmenting the current subgraph) can

occur on the cycle or the ear.

Given a cycle C, we say that a pair of vertices (u, v) overlaps a pair

(x, y) if either x ∈ P1, y ∈ P2 or x ∈ P2, y ∈ P1, where P1, P2 are the two

components of C − {u, v}. Observe that (u, v) overlaps (x, y) if and only if

(x, y) overlaps (u, v). Given a path P , we say that a pair of vertices (u, v)

overlaps a pair (x, y) if either x ∈ P1, y ∈ P2 ∪ P3 or y ∈ P1, x ∈ P2 ∪ P3,

where P1 is the interior of the subpath from u to v and P2, P3 are the two

components of P − (P1 ∪ {u, v}). (Again, (u, v) overlaps (x, y) if and only

if (x, y) overlaps (u, v).) We say that a family F of pairs of vertices is

non-overlapping if

(i) No two pairs in F overlap each other.

(ii) d(u, v) ≥ 4 ∀(u, v) ∈ F .

90

(iii) min{d(u, x) + d(v, y), d(u, y) + d(v, x)} ≥ 2 ∀(u, v), (x, y) ∈ F .

In conditions (ii) and (iii), the distance is taken to be the distance on

the cycle or path. Figure 6.3(a) shows a path with a non-overlapping family

(the vertices constituting a pair are joined by a dotted line), and in Figure

6.3(b), the pairs (u, v) and (u,w) fail to satisfy condition (iii) and (s, t)

overlaps (i, j).

v w
j t

u s
i

(a)
(b)

Figure 6.3: Non-overlapping and overlapping families

Lemma 6.16. The number of edges we charge to a given ear or the initial

cycle in Phase II is at most the size of a maximal non-overlapping family

for that ear or the cycle.

Proof. We only charge an edge to the initial cycle C∗ if C∗ runs through

components C1 and C2 with respect to the cutset {a, b} we picked. Suppose

that at a later iteration of Phase II, we pick vertices a′ and b′ on C∗. If

the pair (a′, b′) overlaps the pair (a, b), the cycle does not run through two

components with respect to the cutset {a′, b′}, because when we considered

the cutset {a, b}, we added a vertex v ∈ S and edges (v, a) and (v, b). So C∗

is not charged an edge for {a′, b′}. Since the distance between a′ and b′ in

the current subgraph H is at least 4, but a and b are now at distance 2 from

each other, we see that the two conditions on distances in the definition of a

non-overlapping family are satisfied. So the pairs of vertices we pick during

91

Phase II that result in C∗ being charged an edge form a non-overlapping

family.

The argument for an ear E is similar. We charge an edge to E if a and b

are the endpoints of E and E runs through some component Ci with i ≥ 3.

This can only occur once, since after the iteration where we consider {a, b},
a and b are joined by a path of length 2 via some vertex v from the stable

set S. We also charge an edge to E if E runs through components C1 and

C2 with respect to {a, b}. Suppose that in a later iteration we pick a cutset

{a′, b′}. If (a′, b′) overlaps (a, b), then E does not run through components

C1 and C2 with respect to {a′, b′} and therefore is not charged anything. We

also know that a′ and b′ are at distance at least 4 from each other in the

subgraph we have in the later iteration. These two facts imply that the pairs

of vertices that result in E being charged form a non-overlapping family for

E .

Having established the correspondence between non-overlapping families

and the number of edges charged to an ear or cycle, it remains to bound

from above the size of a non-overlapping family.

Lemma 6.17. The size of a non-overlapping family F is at most max{nP−1
2
, 0}

for a path P and max{ |C|−6
2
, 0} for a cycle C, where nP is the number of

internal vertices of P .

Proof. We begin by proving the assertion of the lemma for paths, and then

deduce it for cycles. We use induction on the number of internal vertices.

Let P be a path with endvertices s and t, and let F be a non-overlapping

family of maximum size for this path. If nP ≤ 2, the statement of the lemma

is true, because no two vertices of P are at distance at least 4. So suppose

nP > 2. If neither s nor t belongs to a pair other than possibly (s, t) in

F , we are done by considering P − {s, t} and applying induction to find

that the size of F is at most nP−2−1
2

+ 1 = nP−1
2

. So assume without loss of

92

generality that (s, u) ∈ F for some u 6= t. Choose u 6= t so as to maximise

d(s, u), and consider the s− u path P1 and the u− t path P2. If (s, t) ∈ F ,

it is the only pair not contained in either P1 or P2. If (s, t) 6∈ F , every pair

in F is contained in either P1 or P2, since F is a non-overlapping family.

Now (s, t) ∈ F implies nP2 ≥ 1, so by induction we have that the size of F
is at most

nP1
−1+nP2

−1

2
+ 1 = nP−3

2
as required. If (s, t) 6∈ F and nP2 ≥ 1,

the same argument works. Finally, if (s, t) 6∈ F and nP2 = 0, then P2 cannot

contain a pair of F and P1 = P − {t}, so we can apply induction to P1.

Now let C be a cycle, and F a non-overlapping family of maximum size

for C. If F is empty, the assertion of the lemma is true. Otherwise, let (u, v)

be a pair in F that minimises d(u, v). This splits C into two u− v paths P1

and P2. By minimality of d(u, v) and the fact that F is a non-overlapping

family, either none of the internal vertices of P1 occur in pairs belonging to F ,

or none of the internal vertices of P2 occur in pairs belonging to F . Suppose

without loss of generality that this is true for P1. Since d(u, v) ≥ 4, there

must be at least 3 such internal vertices. Using the assertion of the lemma

for paths proved above, we get that the size of F is at most
nP2
−1

2
≤ |C|−6

2
,

as required.

This concludes the proof of Claim 6.15. The remaining analysis that

shows the approximation guarantee to be 11
6

is straightforward. Let nE

denote the number of internal vertices of an ear E , so E consists of nE + 1

edges. By Claim 6.15, the ear E is charged at most nE−1
2

edges during Phase

II. So for an ear E with at least 3 internal vertices, the sum of the edges

belonging to E and the edges charged to E is at most nE+1+ nE−1
2

= 3
2
nE+ 1

2
.

If E has only 2 internal vertices it is not charged anything in Phase II, and

has nE + 1 = 3 = 3
2
nE edges. The initial cycle C∗ contains |C∗| edges and

is charged at most |C
∗|−6
2

edges in Phase II. Hence, together with the edges

93

charged to the vertices of the stable set S, we have a total of

|C∗|+ |C
∗| − 6

2
+
∑

1

3

2
nE +

∑
2

1

2
+ 2|S|

edges, where the first sum
∑

1 is taken over all ears added in Phase I, and

the second sum
∑

2 is taken over all ears with at least 3 internal vertices.

This is at most
3

2
(n− |S|) +

1

6
(n− |S|) + 2|S|,

since the number of ears with at least 3 internal vertices is at most 1
3
(n−|S|).

Thus the total number of edges is at most 5
3
(n− |S|) + 2|S|.

Next, observe that max{n, 2|S|} is a lower bound on the optimal solution

as each vertex must be adjacent to at least two edges. Since

5
3
(n− |S|) + 2|S|
max{n, 2|S|} ≤ 11

6
,

this gives an approximation guarantee of 11
6

as required.

94

Chapter 7

Neutralising Galaxy Cutsets

In this chapter, we will consider the problem of neutralising galaxy cutsets

in graphs. This problem is similar in spirit to the issue of designing resilient

graphs as discussed in Chapter 6, but the approach is different in that instead

of constructing a graph, we assume that it is given and that we have to fix

existing vulnerabilities. Hence, it falls into the domain of optimisation on

networks rather than network design. We will restrict ourselves to the case

where both the order of the galaxy and the radius of the stars in it are equal

to 1. In other words, we are concerned with star-cutsets according to the

standard definition.

We begin by formally defining our task as a hitting set problem, after

which we provide a more intuitive explanation justifying why this is a sensi-

ble approach. Recall that if S is a star of radius 1 with centre v, we call the

set of edges R(S) := {(v, x) |x ∈ S, x 6= v} emanating from the centre the

rays of the star. The hitting set problem we wish to solve is the following:

The Network Protection Augmentation Problem. Given a graph

G = (V,E) and a set of edges F ⊆ E, find the smallest set of

edges A ⊆ E such that A∪F intersects R(S) for every star-cutset

S.

95

We say that a star-cutset S is vulnerable with respect to F if R(S)∩F =

∅. An alternative formulation of the Network Protection Augmentation

Problem then is: Given G and F ⊂ E(G), find the smallest set A such that

G has no star-cutsets which are vulnerable with respect to A ∪ F .

As briefly touched upon in the introduction, our motivation for consid-

ering this problem is the following. Suppose we can prevent a hypothetical

virus from propagating along an edge e = (u, v) by protecting that edge in

some way, incurring a (unit) cost for each edge we choose to protect. Under

this assumption, finding a set A such that A ∪ F intersects R(S) for every

star-cutset S neutralises every star-cutset, in that there will be no more

star-cutsets containing only unprotected edges (i.e. edges along which the

virus can travel) as rays.

The set F is a set of initially protected edges, which we can think of as

already having been paid for, and A corresponds to additional edges we need

to protect to make the network secure. This formulation of the problem is

useful given the recursive nature of the algorithm we propose for solving

it. Typically, at the time of the first call we will have F = ∅, i.e. no

initially protected edges, but later calls will pass on partial solutions and

find extensions to them.

In some practical applications, it might be more natural to protect ver-

tices instead of edges, and we will give this variant some consideration. Un-

fortunately, it turns out to be NP-hard even in planar graphs. On the other

hand, while the edge variant is NP-hard in non-planar graphs, we will see

that in planar graphs minimal star-cutsets have a very interesting structure

which allows us to solve the Network Protection Augmentation Problem in

polynomial time using a recursive algorithm. We give a detailed analysis of

this structure in Section 7.1, and present our algorithm in Section 7.2. Then,

in Section 7.3, we give Θ(log n) lower and upper approximation bounds for

the Network Protection Augmentation Problem in general graphs; here n is

96

the number of vertices. The hardness proof for the vertex case can be found

in Section 7.2.6.

Before launching into the investigation of the structure of minimal star-

cutsets in planar graphs, we give a brief high-level description of the algo-

rithm. We attempt to find a star-cutset that allows us to define subproblems

on certain minors of the input graph. We then call the algorithm recursively

on those minors, and combine the solutions to the subproblems to obtain a

solution for the original problem. The main structural theorem asserts that

if no suitable star-cutset can be found, then the input graph must have a

very special form which allows us to solve the problem directly in polynomial

time.

7.1 On the structure of star-cutsets in planar

graphs

The goal of this section is a structural result on planar graphs that will be

exploited by our polynomial time algorithm in Section 7.2. Before presenting

this structural result, though, we examine how large minimal1 star-cutsets

can be in a planar graph. We may restrict our attention to minimal star-

cutsets for the simple reason that a set of edges contains a ray from every

star-cutset if and only if it contains a ray from every minimal star-cutset.

7.1.1 The cardinality of minimal star-cutsets

Here we will show that we may focus our attention on the case in which

every minimal star-cutset contains either two or three vertices. We begin

with some simple observations. Suppose that G contains a cut-vertex v.

1A star-cutset S = {v, x1, . . . , xk} centred at v is minimal if v ∪X is not a star-cutset

for any proper subset X ⊂ {x1, . . . , xk}.

97

Thus, there is a star-cutset centred at v containing no rays; consequently,

protecting edges cannot neutralise this star-cutset. In other words, a cut-

vertex in the graph will always remain a cut-vertex no matter how many

edges we protect. Thus, we may make the following assumption.

Assumption 7.1. G is 2-connected.

Next, we use the planarity of G to bound the size of a minimal star-cutset

from above.

Lemma 7.2. Every minimal star-cutset contains at most 3 vertices.

Proof. Suppose S = {v, x1, . . . , xk} is a minimal star-cutset centred at v.

So G − S has at least two components, say C and D. Since S is minimal,

there is an edge from C to each of x1, . . . , xk, and an edge from D to each of

x1, . . . , xk. Since there is also an edge from v to each of x1, . . . , xk, contract-

ing C and D shows G to contain a K3,k minor. By planarity, this implies

that k ≤ 2 for any minimal star-cutset.

We call a star-cutset S = {u, v} consisting of exactly two vertices that

induce an edge a separating-edge. Either u or v may be thought of as the

centre, and there is a single ray (u, v). For the purposes of our algorithm,

separating-edges will be particularly easy to deal with. This is because

separating-edges let us divide the network protection problem into subprob-

lems in a natural way, and proving that optimal solutions to those subprob-

lems can be combined to give an optimal global solution is straightforward,

as we shall show in Section 7.2.3.

A minimal star-cutset S = {v, x, y} such that (v, x), (v, y) and (x, y) are

edges of G will be called a triangle cutset. Note that at least two of the

three edges of a triangle cutset must be protected, as any one of the three

vertices may serve as the centre.

98

We remark that Lemma 7.2 implies that there are only a polynomial

number of minimal star-cutsets. Moreover, from an algorithmic perspective,

we can find also find them all efficiently by exhaustive search.

Henceforth, we will assume that all star-cutsets we encounter are min-

imal, without mentioning it explicitly in every theorem, lemma or claim,

except when we wish to emphasise the minimality.

7.1.2 The Structural Theorem

To state the structural theorem we need several definitions. Let S and S ′

be distinct minimal star-cutsets. Then S ′ crosses S if S ′ is centred at a

vertex of S and contains vertices from two distinct components of G − S;

we say that S is uncrossed if no such S ′ exists. A wheel graph consists of

an induced cycle (i.e. there are no chords), together with an additional hub

vertex adjacent to all the vertices in the cycle. The edges from the hub

vertex to vertices in the cycle are called spokes. A padded wheel is obtained

from a wheel graph by performing one of the following two operations on

some of the cycle edges:

(O1) Adding one path of length 2 between adjacent vertices of the cycle. In

this case, the internal vertex on the new path must be adjacent to the

hub of the wheel.

(O2) Deleting an edge (u, v) of the cycle and adding internally vertex-

disjoint paths of length 2 between u and v. There must be at least one

such path, and at most one of the internal vertices on the new paths

may have an edge to the hub.

Operations (O1) and (O2) may both be applied in the same graph, but

not on the same edge. Observe that a wheel graph is clearly planar, and

that the conditions on the length 2 paths we add in operations (O1) and

99

(O2) preserve the planarity. Hence, a padded wheel is also a planar graph.

Figure 7.1 shows both a wheel and a padded wheel.

Figure 7.1: A wheel and a padded wheel

We can now state our structural theorem, which is the main result of

this section.

Theorem 7.3. Let G = (V,E) be a 2-vertex connected planar graph, and

let F ⊆ E. Then one of the following must be true:

(P1) G has no vulnerable star-cutsets.

(P2) G contains a separating-edge {u, v} (not necessarily vulnerable).

(P3) For every vulnerable star-cutset S, at most one of the components of

G− S is non-trivial 2.

(P4) G contains an uncrossed vulnerable star-cutset S such that at least two

components of G− S are non-trivial.

(P5) G is a padded wheel.

In Case (P1), there is nothing to do. We simply return ∅ as an optimal

extension of F . Case (P2) will also turn out to be rather simple from an

algorithmic point of view, so for the remainder of the section we will make

the following assumption:

2A trivial component consists of a single vertex.

100

Assumption 7.4. Every minimal star-cutset contains at least 3 vertices.

Thus, by Lemma 7.2, we may actually assume that every star-cutset

contains exactly three vertices. Now to prove Theorem 7.3 we need to delve

deeper into how minimal star-cutsets can relate to each other. We begin

with a straightforward observation.

Observation 7.5. Let S = {v, x, y} be a star-cutset centred at v, and let C

be a component of G − S. Then there must be an edge from x into C, and

an edge from y into C.

Proof. If there were no edge from x (respectively y) into C, then (v, y) (re-

spectively (v, x)) would be a separating-edge, contradicting both the mini-

mality of S and the assumption that there are no separating-edges.

Next we show that star-cutsets can cross only in restricted circumstances.

Theorem 7.6. Let S = {v, x, y} be a vulnerable star-cutset centred at v,

and suppose T is a vulnerable star-cutset that crosses S. Then all of the

following hold:

(i) T is centred at v.

(ii) S crosses T .

(iii) G− S has exactly 2 components.

Proof. There are two non-symmetric cases to deal with. Either T is centred

at v or it is not.

In the latter case we may assume that T = {x, a, b} where a and b lie

in distinct components C respectively D of G − S. Let u ∈ G − T . We

claim that there must be a path from u to y in G − T . If u is v or y, this

is trivially true. If u lies in some component of G − S other than C or

101

D, then clearly there is still a path from u to y in G − T by Observation

7.5. So, without loss of generality, assume that u lies in C. If T = {x, a, b}
intersects every path from u to y, then the set {x, a} must also intersect

every u− y path, as there is no path from u to {v, y} in G−T . But there is

an edge between x and a and so, since T is a vulnerable star-cutset, (x, a)

is a vulnerable separating-edge, contradicting both Assumption 7.4 and the

assumption that T is minimal. Hence, every vertex u ∈ G− T is connected

to y. But this contradicts the assumption that T is a cutset, and thus T

must also be centred at v, i.e. (i) holds.

For the former case, let T = {v, a, b} with a ∈ C, b ∈ D, and again let

u ∈ G−T . We claim that there is either a path from u to x or a path from u

to y in G− T . If u equals x or y, there is nothing to prove. If u lies in some

component of G− S other than C or D, then clearly there is a path from u

to x and a path from u to y in G−T . So assume, without loss of generality,

that u ∈ C. If T = {v, a, b} intersects every path from u to x and every

path from u to y, then the set {v, a} must also intersect every u − x path

and every u−y path, since S separates u from b. But then {v, a} would be a

separating-edge. Hence, every vertex is connected to either x or y in G−T .

It follows that x and y must be in distinct components of G− T , otherwise

G− T would be connected. However, if x and y are in distinct components

of G− T , then S crosses T . Thus, (ii) is true. Finally, (iii) follows from the

fact that if G − S had at least 3 components, then there would still be a

path from x to y in G− T .

Observe that (ii) implies that a star-cutset S = {v, x, y} centred at v

cannot be crossed if (x, y) ∈ E(G), since x and y would remain in the same

component of G− T for any star-cutset T crossing S.

It will be useful to partition the components of a star-cutset S = {v, x, y}
into two types. We say that an component C of G− S is strongly attached

to S if each of v, x, y has an edge to some vertex of C. If C has no edge to

102

the centre v, we say that it is weakly attached to S.

A star-cutset cannot induce many strongly attached components:

Lemma 7.7. Let S = {v, x, y} be a star-cutset in G. Then G − S has at

most 2 components that are strongly attached to S.

Proof. Suppose there were three strongly attached components C1, C2, C3 of

G− S. Then contracting these three components into single vertices would

give a K3,3-minor in G, contradicting planarity.

Lemma 7.8. If S = {v, x, y} is a vulnerable star-cutset centred at v such

that e = (x, y) ∈ E(G), then G − S has no components that are weakly

attached to S.

Proof. By definition, a weakly attached component W has edges only to x

and y. But if e = (x, y) ∈ E, then e is a separating-edge, contradicting

Assumption 7.4.

The following corollary of Theorem 7.6 will be applied repeatedly in the

proof of our main structural result, Theorem 7.3.

Corollary 7.9. Suppose S = {v, x, y} is a vulnerable star-cutset and T =

{v, a, b} is a vulnerable star-cutset crossing S, with a and b in distinct com-

ponents C respectively D of G− S. Then a must intersect every x− y path

whose internal vertices lie in C, and b must intersect every x−y path whose

internal vertices lie in D.

Proof. Suppose there were a path P from x to y all of whose internal vertices

lay in C and that P did not contain a. Then x and y would be in the same

component of G− T , that is, S would not cross T .

Let us now return to Theorem 7.3. It must be the case that there exists a

vulnerable star-cutset S such that there are at least two non-trivial compo-

nents in G− S, otherwise Case (P3) of 7.3 holds. If S is not crossed by any

103

other vulnerable star-cutset, (P4) holds. So suppose that every vulnerable

S such that G − S has at least two non-trivial components is crossed by

at least one other vulnerable star-cutset. Our goal for the remainder of the

section is to show that, in this case, G must be a padded wheel.

7.1.3 Discovering the Wheel

Let S = {v, x, y} be a crossed, non-trivial vulnerable star-cutset with centre

v, and consider the collection S of all the vulnerable star-cutsets that cross

S. Observe that if S is crossed, then Theorem 7.6 implies that G − S has

exactly two components, say C and D. Let A := {a1, . . . , ar} be the vertices

of C that occur in some star-cutset belonging to S, and let B := {b1, . . . , bt}
be the vertices of D that occur in some star-cutset belonging to S. Note

that we must have r ≥ 1 and t ≥ 1, since by assumption S is crossed by

at least one other star-cutset. A path P from x to y all of whose internal

vertices belong to C (respectively D) shall be more succinctly referred to as

an x− y path through C (respectively D).

Given an embedding of G in the plane, label the vertices a1, a2, . . . , ar

and b1, b2, . . . , bt in clockwise order around v as shown in Figure 7.2. Claim

7.10 establishes formally that this ordering is justified. For notational con-

venience, we also define a0 = bt+1 := x and ar+1 = b0 := y.

We briefly sketch an outline of the argument before getting started on

the details. The vertices S∪A∪B will provide the framework for the wheel.

The difficulty then lies in proving that there cannot be much “between”

those vertices. More precisely, we will show that for any i, ai and ai+1

(respectively bi and bi+1) are joined either by an edge, or by paths of length

2, in a manner consistent with the definition of a padded wheel.

Claim 7.10. There are no indices i, k, j with i < k such that bj lies between

ai and ak in the clockwise ordering of the vertices a0, . . . , ar+1, b0, . . . , bt+1

104

x y

a1

a2

a3

b1

b2

b3

Figure 7.2: The wheel structure of the crossing star-cutsets

around v.

Proof. Suppose there are indices i, k and j as in the statement of the claim.

Let P and Q be paths from x to y through C and D, respectively. From

Corollary 7.9, we know that P must intersect both ai and ak, so let P ′ be

the subpath of P between ai and ak. But now the cycle Z consisting of P ′

together with the edges vai and vak separates bj from x and y; see Figure

7.3 (a). Since bj must be contained in Q, it follows that Q must intersect

Z. By planarity Q must then cross Z at a vertex, but this contradicts the

assumption that the internal vertices of P and Q lie in different components

of G− S.

Note that for this proof it does not matter whether P visits ai or ak first,

although we will show in a moment that it must actually visit ai first.

Lemma 7.11. For each pair a, b with a ∈ A and b ∈ B, the set S ′ = {v, a, b}
is a star-cutset.

Proof. This follows immediately from Corollary 7.9. There are only two

components in G− S, namely C and D, and every a ∈ A intersects all the

x−y paths through C, and every b ∈ B intersects all the x−y paths through

D. Therefore there cannot be an x− y path in G− {v, a, b}.

105

(a)

x v y

aj
ai

P1

Z

(b)

x v y

ak
bj

ai

P2

Figure 7.3: The cyclic ordering

Claim 7.12. Any x− y path P all of whose internal vertices lie in C visits

the ai in the order induced by the embedding of G in the plane, i.e. if i < j

then P visits ai before aj. Similarly, any y − x path Q all of whose internal

vertices lie in D visits the bi in the order induced by the embedding of G in

the plane.

Proof. Suppose that P is a path from x to y with all internal vertices in C,

and suppose that it visits aj before ai for some pair i < j. Note that we are

assuming that P is a path, not a walk, so any vertex on P is only visited

once. Let P1 be the subpath of P from x to aj, and let P2 be the subpath

from ai to y. Consider the cycle Z consisting of P1 together with the edges

ajv and (v, x). This cycle separates ai and y and so, by planarity, P2 must

cross Z at some vertex. It cannot cross Z at x or v, since all of P ’s interior

vertices lie in C. Furthermore, P2 cannot cross Z at a vertex belonging

to P1, otherwise P would visit a vertex twice. This gives us the desired

contradiction. Figure 7.3(b) illustrates the proof. An analogous proof works

for the bi.

Claim 7.13. Let u ∈ C − A. Then there exists a unique index i with

0 ≤ i ≤ r such that there is a path in C − A from u to ai and to ai+1, but

not to any other vertex of A ∪ {x, y}. Similarly, for every w ∈ D −B there

exists a unique index j with 0 ≤ j ≤ t such that there is a path in D − B
from w to bj and to bj+1, but not to any other vertex of B ∪ {x, y}.

106

Proof. If there were no path from u to any vertex of A ∪ {x, y}, then either

G would be disconnected or the hub v would be a cut-vertex, in either case

contradicting the assumption of 2-vertex connectivity. If there were a path

from u to precisely one vertex ai ∈ A∪{x, y}, then either ai would be a cut-

vertex or (v, ai) would be a separating-edge, again leading to a contradiction.

Hence there must be paths in C − A from u to at least 2 vertices ai and aj

of A∪ {x, y}. Without loss of generality, we may assume that i < j. Now if

j 6= i+1, then the existence of the paths from u to ai and aj imply that ai+1

misses an x − y path, contradicting Corollary 7.9. Finally, if u had a third

path to ak with k 6∈ {i, i + 1}, then either |k − i| ≥ 2 or |k − (i + 1)| ≥ 2,

and we could find a vertex aj which did not intersect all the x− y paths.

The proof for w ∈ D −B is analogous.

In the light of Claim 7.13, it makes sense to define Ui := {u ∈ C −
A |u has a path to ai and ai+1} for 0 ≤ i ≤ r and Wj := {w ∈ D −
B |w has a path to bj and bj+1} for 0 ≤ j ≤ t. Then V (G) is the disjoint

union of S ∪ A ∪B ∪⋃
i Ui

⋃
jWj.

Lemma 7.14. For every i and k with 0 ≤ i < k ≤ r + 1, {v, ai, ak}
is a star-cutset unless (ai, ak) is an edge which is used in every path from

x to y through C. Similarly, {v, bi, bk} is a star-cutset for every i, k with

0 ≤ i < k ≤ t+ 1 unless (bi, bk) is an edge which is used in every path from

y to x through D.

Proof. If i = 0 and k = r+1, there is nothing to prove since then {v, ai, ak} =

S. Consider a path P from x to y all of whose internal vertices are in C.

By Claim 7.12, P intersects ai before it intersects ak. Let P i,k be the set of

vertices of P between ai and ak. If P i,k is non-empty, then {v, ai, ak} is a

star-cutset separating P i,k from the vertices in D. Otherwise, either ai or ak

would miss some x− y path through C. If P i,k is empty, then e = (ai, ak) is

an edge, and this edge is used in P . It follows that {v, ai, ak} is a star-cutset

107

unless P i,k is empty for every path P , in which case (ai, ak) is an edge on

every x− y path through C. An analogous proof works for the bi.

Corollary 7.15. If Ui is not empty, then Si := {v, ai, ai+1} is an uncrossed

star-cutset, and if Wj is not empty, then Sj := {v, bj, bj+1} is an uncrossed

star-cutset.

Proof. The fact that Si disconnects Ui immediately follows from Claim 7.13,

since the vertices of Ui can have no paths to vertices other than ai, ai+1 and

v in C −A. If there were a star-cutset T crossing Si, then T would have to

contain a vertex u ∈ Ui intersecting every path from ai to ai+1 in C. But

then u would also intersect every x − y path through C, implying that it

should be in A, which it is not. The proof for Sj is analogous.

With these results in hand, we can now prove Theorem 7.3.

Proof of Theorem 7.3. Recall that we may assume that G contains at least

one non-trivial vulnerable star-cutset and that every non-trivial vulnerable

star-cutset is crossed. Again we take such a star-cutset S along with the

collection S of star-cutsets crossing S, and define A, B, the Ui and the Wj

as before. We will now show that G must be a padded wheel.

For each i from 0 to r, consider the star Si = {v, ai, ai+1} centred at v.

If Ui = ∅, then (ai, ai+1) must be an edge of G. If Ui is not empty, then Si

is an uncrossed star-cutset by Corollary 7.15. This implies that there can

be no edges between vertices of Ui, for otherwise Si would be an uncrossed

star-cutset yielding at least two non-trivial components. Hence Ui must

consist of vertices that are adjacent to ai and ai+1, and possibly to v, but

to no other vertices. An analogous statement holds for Wj, 0 ≤ j ≤ t by

considering the stars Sj = {v, bj, bj+1}.

Claim 7.16. At most one vertex of each Ui and Wj can be adjacent to v.

108

Proof. Suppose we had two such vertices u1 and u2, and let Q be a path

from ai to ai+1 going first to x, then to y through D, and then from y to

ai+1. Let C1 and C2 be the two cycles obtained by adding u1, respectively

u2, to Q. Then either C1 separates v and u2, or C2 separates v and u1. In

either case we obtain a contradiction.

The proof for the Wj is analogous.

This leaves three possibilities in the case where Ui is not empty. If Ui 6= ∅
and (ai, ai+1) is an edge of G, then every u ∈ Ui must be adjacent to v, for

otherwise (ai, ai+1) would be a separating-edge. Then Claim 7.16 implies

that Ui must consist of a single vertex ui.

If |Ui| 6= ∅ and (ai, ai+1) is not an edge, either no vertex of Ui is adjacent

to v, or exactly one vertex of Ui is adjacent to v. In conclusion, for each i

one of the cases depicted in Figure 7.4 must hold true, which implies that

G is a padded wheel.

ai ai+1 ai ai+1

ai ai+1 ai ai+1
· · · · · ·

Figure 7.4: Allowed configurations in a padded wheel

This concludes the proof of Theorem 7.3, which is at the core of the

recursive algorithm presented in Section 7.2.

109

7.2 A polynomial time algorithm

In this section we present our polynomial time algorithm for the Network

Protection Augmentation Problem in planar graphs. The algorithm is in-

spired by our structural result, Theorem 7.3. A detailed description of the

algorithm and the quantitative performance bound is provided in Sections

7.2.1 to 7.2.4. The algorithm is recursive and so, to complete the result, we

show in Section 7.2.5 that the recursion can indeed be applied in polynomial

time.

To begin, recall that we are given a planar graph G = (V,E) and a set

of edges F ⊆ E, and we wish to obtain a minimum cardinality set A ⊆ E

such that A ∪ F is a solution to the network protection problem. We call

any feasible solution to this problem an extension of F . So on input (G,F),

our goal is to output an extension A of F (if one exists) such that |A| has

minimum cardinality.

Again, all the star-cutsets will be assumed to be minimal. Also, un-

less otherwise specified a star-cutset will always mean a star-cutset that is

vulnerable with respect to some set of edges F ⊆ E.

The first step of the algorithm is to test whether G is 2-vertex connected.

If it is not, then it returns that there is no extension of F and stops. So we

may assume that G is 2-vertex connected. If G has no star-cutsets that are

vulnerable with respect to F , then obviously A = ∅ is an optimal extension

of F . So we may assume that there exists at least one vulnerable star-cutset.

Next, we determine the set B consisting of all the separating-edges (vul-

nerable or not). If B 6= ∅, we choose one separating-edge and recurse on

subgraphs of G.

If B is empty, then by Theorem 7.3 we have three remaining cases to

deal with. If 7.3(P4) holds, the algorithm will find an extension by making

recursive calls on certain minors of G. If either 7.3(P3) or 7.3(P5) holds,

110

the algorithm finds an extension directly, without recursing. We begin by

discussing the cases where no recursion is required, followed by the case

where G has a separating edge, and finally the most complex case where G

has a non-trivial uncrossed vulnerable star-cutset.

7.2.1 Exploiting the wheel

In this section, we consider the simplest remaining case in the structural

theorem; namely, Case 7.3(P5) holds and so G is a padded wheel graph.

Recall that a wheel consists of an induced cycle together with a hub vertex

adjacent to the vertices in the cycle, and that a padded wheel graph is

obtained from a wheel by replacing some of the cycle edges by paths of

length 2; the allowed configurations are shown in Figure 7.1.

We adopt the notation used in Section 7.1.3, i.e. S = {v, x, y} is a

non-trivial star-cutset which is crossed, C and D are the two components

of G − S, S is the collection of star-cutsets crossing S, A = {a1, . . . , ar}
and B = {b1, . . . , bt} consist of the vertices of C respectively D occurring in

some star-cutset of S. Set a0 = bt+1 := x and ar+1 = b0 := y. For each i

such that 1 ≤ i ≤ r and j such that 1 ≤ j ≤ t, let Ui and Wj denote the

vertices “between” ai and ai+1 respectively bj and bj+1.

Theorem 7.17. Let T be a star-cutset in G. Then T must take one of the

following three shapes:

(1) T = {v, a, b} with a and b in A ∪B ∪ {x, y}.

(2) T = {ai, v, ai+1} (or T = {bj, v, bj+1}) for some i ≤ r (j ≤ t) and T

is a triangle cutset.

(3) T = {ui, ai, ai+1} for some i ≤ r and ui ∈ Ui or T = {wj, bj, bj+1} for

some j ≤ t and wj ∈ Wj.

111

To prove the theorem, observe that we can partition the vertices into

three types: The hub v, the set A ∪ B ∪ {x, y}, and the set
⋃
i Ui ∪

⋃
jWj.

We shall analyse how edges incident to vertices in these three categories can

occur in star-cutsets.

Lemma 7.18. If a star-cutset T is centred at v, then T cannot contain a

vertex u ∈ Ui or w ∈ Wj.

Proof. Suppose T contains an edge (v, u) with u ∈ Ui for some i. Then u

cannot intersect all x − y paths through C, so any two vertices of G − T

will still be connected by a path going through either C or D, depending on

where the third vertex of T lies.

The proof for an edge (v, w) with w ∈ Wj is analogous.

Lemma 7.18 implies that no optimal solution will contain edges of the

form (v, u) and (v, w) with u and w in some Ui respectively Wj. Hence our

algorithm will never take these edges into consideration for protection.

Star-cutsets that are centred at some vertex ai or bi are equally easy to

deal with.

Lemma 7.19. If T is a star-cutset centred at a vertex a ∈ A ∪ {x, y}, then

T must be a triangle cutset of the form T = {ai, v, ai+1} for some i with

0 ≤ i ≤ r. Moreover, the set Ui must consist of a single vertex. An analogous

statement holds for star-cutsets T centred at a vertex b ∈ B ∪ {x, y}.

Proof. Suppose that T is centred at ai, where 0 ≤ i ≤ r+ 1. It is clear that

none of the following can be a star-cutset:

(1) {ai, u, u′} with u ∈ Ui−1 and u′ ∈ Ui (where i ≥ 1);

(2) {ai, ai−1, u} with u ∈ Ui or u ∈ Ui−1 (where i ≥ 1);

112

(3) {ai, ai+1, u} with u ∈ Ui−1 (where 1 ≤ i ≤ r) or u ∈ Ui (where

0 ≤ i ≤ r);

(4) {ai, ai−1, ai+1} (where 1 ≤ i ≤ r);

(5) {ai, u, u′} with u, u′ ∈ Ui or u, u′ ∈ Ui−1 (where i ≥ 1);

(6) {ai, v, u} with u ∈ Ui or u ∈ Ui−1 (where i ≥ 1).

This leaves the possibility that T = {ai, v, ai+1} or T = {ai, v, ai−1},
where (ai, ai+1) or (ai, ai−1) is an edge. In the former case, since (ai, ai+1)

cannot be a separating-edge, it follows that every vertex of Ui must be

adjacent to v, which implies that Ui contains a single vertex by Claim 7.16.

Note that Ui cannot be empty, for then T would not be a cutset. The

proof for the latter case (T = {ai, v, ai−1}) is analogous, as is the proof for

star-cutsets centred at b ∈ B ∪ {x, y}.

Lemma 7.19 implies that the only star-cutset centred at some ai or bi

is in fact a triangle cutset, and that the edge (ai, ai+1) is contained only

in the two cutsets arising from the triangle by regarding either ai or ai+1

to be the centre. Since in a triangle cutset two of the three edges must

be protected, we may therefore assume that any optimal solution protects

(v, ai) and (v, ai+1), which is what the algorithm will do when it encounters

this particular configuration.

Lemma 7.20. T = {u, ai, ai+1} is a star-cutset centred at u ∈ Ui for some

i if and only if Ui contains a vertex w 6= u which is not adjacent to v.

Moreover, there can be no other star-cutsets centred at u.

An analogous statement holds for w ∈ Wj for some j.

Proof. If Ui contains a vertex w 6= u which is not adjacent to v, then T =

{u, ai, ai+1} disconnects w from v. Conversely, if Ui−{u} is empty or every

vertex w 6= u in Ui is adjacent to v, then T = {u, ai, ai+1} is not a cutset.

113

Finally, it is clear that neither {u, v, ai} nor {u, v, ai+1} can be a star-cutset,

so if u centres a star-cutset, it has to be {u, ai, ai+1}.

Combining Lemmas 7.19 and 7.20, we can see that the edges (u, ai) and

(u, ai+1) with u ∈ Ui can be in at most one star-cutset, namely (u, ai, ai+1).

It follows that an optimal solution will protect precisely one of those two

edges, and switching to the other one does not change the cardinality of the

solution. Hence our algorithm will arbitrarily pick one of (u, ai) and (u, ai+1)

in the case where u centres a star-cutset.

Finally, the algorithm needs to decide which of the edges incident to v

and to a vertex ai or bi to protect.

Lemma 7.21. Let a, b be distinct vertices from the set A∪B∪{x, y} such that

the edges from v to a, b are unprotected. Then T = {v, a, b} is a vulnerable

star-cutset centred at v unless, for some i, a = ai and b = ai+1 and Ui = ∅.

Proof. If a = x and b = y, then T = S so T is a star-cutset. If a ∈ A and

b ∈ B, then T is a star-cutset, because a intersects every x−y path through

C and b intersects every x−y path through D. So suppose a and b are both

in A ∪ {x, y}, i.e. a = ai and b = aj with 0 ≤ i < j ≤ r + 1 (the case where

a and b are in B ∪ {x, y} is analogous). If j > i + 1, we already showed in

Section 7.1.3 that T must be a star-cutset. The same is true if j = i+ 1 and

Ui 6= ∅. The only remaining case is that j = i+ 1 and Ui = ∅, in which case

it is clear that T is not a star-cutset.

Lemmas 7.18, 7.19, and 7.20 imply Theorem 7.17, and together with 7.21

establish the correctness of the following algorithm for solving the Network

Protection Problem, given a padded wheel G and a set of already protected

edges F :

(1) For every i such that {v, ai, ai+1} ({v, bi, bi+1}) is a vulnerable triangle

114

cutset, add the two edges (v, ai) and (v, ai+1) ((v, bi) and (v, bi+1)) to

F .

(2) For every i and u ∈ Ui (w ∈ Wi) such that {u, ai, ai+1} ({w, bi, bi+1}) is

a star-cutset, choose one of the two edges (u, ai) and (u, ai+1) ((w, bi)

and (w, bi+1)) and add it to F .

(3) If there exists an index i such that Ui = ∅ and both (v, ai) and (v, ai+1)

are unprotected, add all edges (v, aj) with j 6∈ {i, i+ 1} and all edges

(v, bk) to F . If Ui 6= ∅ for all i, but Wj = ∅ for some j, add all edges

(v, bi) with i 6∈ {j, j+1} and all edges (v, ak) to F . If there is no index

i such that either Ui or Wi is empty and ai, ai+1 are unprotected, pick

an unprotected edge from v to A ∪ B ∪ {x, y} and add all the other

edges from v to A ∪B ∪ {x, y} to F .

The correctness of the algorithm can be seen as follows: In any triangle

cutset of the shape {v, ai, ai+1} or {v, bi, bi+1}, at least two edges must be

protected in any feasible solution. Our algorithm chooses the two edges

incident to v, since those edges can occur in other star-cutsets, whereas the

edge (ai, ai+1) respectively (bi, bi+1) cannot. Next, in any cutset of the form

{ui, ai, ai+1} or {wi, bi, bi+1}, an optimal algorithm will protect precisely one

of the two edges incident to ui respectively wi. As both edges cannot occur

in other star-cutsets, we are free to pick one of them arbitrarily. For the

final case of a star-cutset T centred at v, observe that T cannot contain a

vertex from some Ui or Wj by Lemma 7.18. Lemma 7.21 then implies that

any feasible algorithm must protect all but at most two of the edges from v

to the vertices in A ∪ B ∪ {x, y}. If there is an index i such that Ui or Wi

is empty, we can leave (v, ai) and (v, ai+) (respectively (v, bi) and (v, bi+1)

unprotected. If there is no such i, the best we can do is to leave exactly one

edge from v to the set A ∪B ∪ {x, y} unprotected.

We remark that it is easy to implement the above to run in linear time.

115

Clearly the triangle cutsets of the form {v, ai, ai+1} and the star-cutsets

{u, ai, ai+1} can be found and protected in time O(m). The same holds true

for finding two vulnerable adjacent spokes (v, ai) and (v, ai+1) such that

{v, ai, ai+1} is not a cutset.

7.2.2 Dealing with trivial components

Next, suppose that Case 7.3(P3) holds, i.e. for every vulnerable star-cutset

S, at most one of the components of G−S is non-trivial. We will now show

how the network protection augmentation problem can be solved optimally

via a reduction to the Minimum Vertex Cover problem in a line graph.

Consider the graph L∗ defined as follows:

V (L∗) := {ve | e ∈ E(G) is in a star-cutset of G}.

and

E(L∗) := {(ve, vf) | e and f share a vertex and form a star-cutset in G}

Observe that there is an obvious one-to-one correspondence between so-

lutions to the network protection problem in G and vertex covers in L∗: If

C∗ is a vertex cover in L∗, let F := {e ∈ E(G) | ve ∈ C∗}. Then, by the

definition of L∗ and because C∗ is a vertex cover, F must contain at least

one ray of every star-cutset. Conversely, given a solution F to the network

protection problem, we can define C∗ := {ve ∈ V (L∗) | e ∈ F}. Since F

intersects the set of rays of every star-cutset, we must have that C∗ is a

vertex cover.

Now, the vertex cover problem is solvable in polynomial time in line

graphs, and L∗ is evidently a subgraph of the line graph L of G. At first

glance, this does not seem to help us, as subgraphs of line graphs are gen-

erally not line graphs themselves. We can, however, prove that L∗ is a line

116

graph and thus can also solve the network protection problem in polynomial

time when Case 7.3(P3) holds.

Theorem 7.22. Let G be a planar graph such that any star-cutset S yields

at most one non-trivial component. Then L∗ is a line graph.

Lemma 7.23. We have d(ve) ≤ 4 for all ve ∈ L∗. Moreover, if d(ve) = 3,

it must be the case that ve is contained in an edge and a triangle, and if

d(ve) = 4, then ve is contained in two triangles (see Figure 7.5).

ve ve

Figure 7.5: d(ve) is 3 or 4

Proof of Theorem 7.22. Lemma 7.23 immediately implies Theorem 7.22. This

follows as the lemma means that the edges of L∗ can be covered by cliques

(more specifically, by edges and triangles) such that each vertex is contained

in at most 2 cliques. This, in turn, is equivalent to saying that L∗ is a line

graph (see, for example, [47]).

Thus, it remains to prove Lemma 7.23. Before doing so, we present three

claims that will be useful.

Claim 7.24. Let S1 = {v, x, y1}, S2 = {v, x, y2} and S3 = {v, x, y3} be

distinct star-cutsets in G each containing the edge (x, v). Then for each

i = 1, 2, 3 there exists a singleton component {wi} of G − Si such that

w1, w2, w3, y1, y2, y3 are all distinct.

Proof. It is clear that the wi exist, because G−Si has at most one non-trivial

component for each i, by our assumption on G. Also, by definition y1, y2, y3

are distinct, and w1 6= y1, w2 6= y2 and w3 6= y3.

117

Next, {v, x, w1} cannot be a star-cutset. To see this, note that w1 is a

singleton component in G−S1 and all the other components of G−S1 must

have an edge to y1, as y1 is not the centre of S1. Therefore every vertex of

G−{x, v, w1} is in the same component as y1, and G−{v, x, y1} is connected.

It follows that w1 6= y2 and w1 6= y3. Analogously, we have that w2 6= y1

and w2 6= y3, and that w3 6= y1 and w3 6= y2. Thus it remains to show that

w1, w2, w3 are distinct. To see this, note that w1 and y1 are adjacent vertices

in G − S2, and therefore w1 cannot form the singleton component {w2} of

G − S2. Similarly, we obtain that w1 6= w3, and that w2 6= w3, completing

the proof.

We remark that this claim does not require the centres of each Si (which

is either v of x) to be specified. In particular, the claim allows any Si to be

a triangle cutset, i.e. a set of vertices {x, v, yi} that induces a 3-cycle in the

graph and whose removal leaves a disconnected graph3.

Claim 7.25. Let S1 = {v, x, y1}, S2 = {v, x, y2} and S3 = {v, x, y3} be

distinct star-cutsets in G each containing the edge (x, v). For each i 6= j,

the edge (wi, yi) is in the non-trivial component of G− Sj.

Proof. As above, (wi, yi) is an edge as yi is not the centre of Si. Then,

by Claim 7.24, as neither wi nor yi equals yj, both vertices must be in the

same component of G − Sj. Thus this component must be the non-trivial

component.

Claim 7.26. Let S = {v, x, y} be a triangle-cutset, and let w be a singleton

component of G− S. Then the 3-cycle v − x− y is a face of G− {w}.

Proof. As (x, y) is an edge, it must be the case that {w} is strongly attached

to S, otherwise there would be a separating-edge. So w is adjacent to v, x

3Recall that a triangle cutset {v, x, y} gives rise to 3 star-cutsets, as each of the 3

vertices can be regarded as the centre.

118

and y, but not to any other vertices. Consider any planar drawing of G.

There can be no vertices of G inside the 3-cycle x− y − w, since otherwise

(x, y) would be a separating-edge. By symmetry, there can be no vertices

inside the 3-cycles x− v−w and y− v−w either. Hence x− y− v must be

a face of G− {w}.

Proof of Lemma 7.23. Let e = (x, v) ∈ E(G) be in a minimal star-cutset

S1 = {v, x, y1}. We split our analysis into two parts, depending upon

whether or not e is in a triangle cutset.

Case I. The edge e is not in a triangle cutset.

Now, if e is in at most two star-cutsets then ve has degree at most two

in L∗, and there is nothing more to show. We may therefore assume that

e lies in at least two other cutset S2 = {x, v, y2} and S3 = {x, v, y3}. By

assumption, neither of these are triangle cutsets and so y1, y2 and y3 are

distinct.

Since v is the centre of S1, observe that (x, y1) is not an edge.

We now attempt to derive a contradiction. To this end, let wi be a

singleton component of G−Si for i = 1, 2, 3. By Claim 7.24, the six vertices

y1, y2, y3, w1, w2, w3 are distinct. Thus, by Claim 7.25, w1, y1, w2 and y2 all

lie in the unique non-trivial component of G− S3. So there must be a path

from w1 to w2 in G−S3. Moreover, w1’s neighbour on this path must be y1,

and w2’s neighbour must be y2, since w1 and w2 have no other neighbours

in G− S3.

We now need to distinguish two further non-symmetric subcases depend-

ing upon the centres of S1, S2 and S3. As they are not triangle cutsets, none

of them are centred at a yi as xv is an edge. So, without loss of generality

either two or three of them are centred at v.

(1) S1, S2 and S3 are centred at v.

This means that w1 and w2 must both be adjacent to x, and therefore

119

we can extend the w1−w2 path exists in G−S3 to a cycle C by adding

x. The situation is depicted in Figure 7.6. By planarity, without loss

of generality, both v and y3 lie inside of C. Firstly, if y3 lies inside the

cycle C ′ obtained by the subpath of C from y2 to y1 together with v,

then w3 cannot have edges to both x and y3, a contradiction. Secondly,

if y3 lies inside the cycle x− v− y1−w1, then G− S1 has at least two

non-trivial components (one containing {y3, w3} and one containing

{y2, w2}), a contradiction. Finally, if y3 lies inside the cycle x, v, y2, w2

then G− S2 has at least two non-trivial components, (one containing

{y3, w3} and one containing {y1, w1}), a contradiction.

y3

C

w1

y2

v
y1x

w2

C

w1

y2

v
y1x

w2

y3

y3

C

w1

y2

v
y1x

w2

C ′

Figure 7.6: Illustration of case I.a

(2) S1 and S2 are all centred at v, but S3 is centred at x.

This is depicted in Figure 7.7. The vertex y3 cannot lie outside of

C, because then w3 could not have edges to both y3 and v. But it

cannot lie inside one of the cycles x− v − y1 − w1 or x− v − y2 − w2

either, because then either G− S1 or G− S2 would have at least two

non-trivial components.

Consequently, for Case I, we have d(ve) ≤ 2 in L∗. We now turn our

attention to the case where e is in a triangle cutset.

Case II. The edge e is in a triangle cutset.

Let the triangle cutset be S1 = {x, v, y1}. Therefore, by Lemma 7.8 ,all the

components of G− S1 must be strongly attached; consequently, by Lemma

120

C

w1

y2

v y1x

w2

C

w1

y2

v
y1x

w2

y3

C

w1

y2

v
y1x

w2

y3

y3

Figure 7.7: Illustration of case I.b

7.7, it contains exactly two components. If e is in no other star-cutsets, then

d(ve) = 2 and there is nothing to show. So suppose that e is in at least one

other star-cutset S2 = {x, v, y2} with y2 6= y1.

(1) S2 is a triangle cutset.

Thus xv is in two triangle cutsets and, hence, in four distinct star-

cutsets, as shown in Figure 7.8. Suppose e is in a further (fifth) star-

cutset S3 = {x, v, y3} with y3 6= y1, y3 6= y2. Without loss of generality,

assume that S3 is centred at x.

y3
w1

w2
x v

y1

y2

C

Figure 7.8: Illustration of case II.a

Let wi be a singleton component of G − Si. Again, the vertices

w1, w2, w3, y1, y2, y3 are distinct by Claim 7.24.

By applying Claim 7.26 twice, we may assume that the vertices w1

and w2 are inside the triangles {x, v, y1} and {x, v, y2}, respectively.

121

This follows as both are faces of G−{w1, w2} and we may choose some

other face to be the infinite one.

By Claim 7.25, w1 and w2 must be in the same component of G− S3.

Therefore, there is an w1−w2 path in G− S3, which can be extended

to a cycle C by adding x. By Claim 7.26, y3 must lie outside the two

triangles. Hence, there cannot be both an edge from w3 to y3 and an

edge from w3 to v.

Thus e cannot lie in a fifth star-cutset, and so d(ve) = 4. Moreover, ve

is in two triangles, as desired, since e is in two triangle cutsets.

(2) S2 is not a triangle cutset.

We may assume that S2 is centred at x. Thus (x, y2) is an edge but

(v, y1) is not. If e s in no other cutsets then we are done. So, suppose

e is in a fourth cutset S3 = {x, v, y3}. As before, let wi be a singleton

component of G − Si. Invoking Claim 7.24, w1, w2, w3, y1, y2, y3 must

be distinct.

Note that we lose no generality by drawing w1 inside the triangle

{x, v, y1}, since by Claim 7.26 {x, v, y1} is a face of G − {w1}. This

also implies that neither y2 nor y3 can lie inside this triangle. We then

have two cases left to deal with.

(i) S3 is centred at x.

This situation is as shown in Figure 7.9. By Claim 7.25, we can

find a path from y2 to y1 in G− S3, which together with x gives

a cycle C. If y3 lies outside of C, then w3 cannot have edges

to both b and v. If y3 lies inside of C, it must lie within the

cycle x−v−w2−y1, and then G−S2 has at least two non-trivial

components, one containing {y3, w3} and one containing {y1, w1}.

(ii) S3 is centred at v.

This is depicted in Figure 7.10. By Claim 7.25, we can find a path

122

y3
w1

w2
x v

y1

y2

C

y3

w1

w2

x v

y1

y2

C

Figure 7.9: Illustration of case II.b(i).

from w2 to y1 in G−S3, which together with v gives a cycle C. If

y3 lies inside of C, then w3 cannot have edges to both y3 and v.

If y3 lies outside C, it must lie within the cycle x− v − w2 − y2,

and then G − S2 produces at least two non-trivial components,

one containing {y3, w3} and one containing {y1, w1}.

w1

w2

x v

y1

y2

C

y3

y3

w1

w2
x v

y1

y2

C

Figure 7.10: Illustration of case II.b(ii)

These contradictions imply that ve has degree 3. Moreover, it is in one

triangle and one edge, as desired.

We conclude this section with two remarks. First, the vertex cover prob-

lem in a line graph L(G) of a graph G is solved by observing that the set

of edges F ⊆ E(G) is a matching in G if and only if V (L)−XF is a vertex

cover in L, where XF is the set of vertices of L corresponding to the edges

123

in F . Hence a minimum vertex cover C in L can be obtained by first find-

ing a maximum matching M in G and then letting C = V (L) − X, where

X = {ve ∈ V (L) | e ∈ M}. The maximum matching can be found in poly-

nomial time; furthermore, the graph H of which our graph L∗ is the line

graph can be constructed in linear time, as shown in [82].

Second, the above can easily be extended to the situation where a set of

vertices of L∗ is given and must be extended to a valid vertex cover, as is

the case in our algorithm. To see this, just observe that the vertices of L∗

in a vertex cover correspond to edges of G that are not in the corresponding

matching. So given a partial vertex cover in L∗, we simply remove the

corresponding edges from G and then find a maximum matching in the

remaining graph.

7.2.3 Splitting along a separating-edge

As we shall see in this section, a separating-edge offers a very natural way

of splitting the Network Protection Problem into two subproblems on sub-

graphs of G. An alternative approach would be to add all the separating-

edges to F ; however, being able to assume that a given graph has no

separating-edges at all, whether vulnerable or not, leads to a simplified state-

ment and proof of the structural result and the analysis of the algorithm for

the last three cases of Theorem 7.3.

So, let G be given, and let S = {u, v} be a separating-edge. Let

C1, . . . , Cr be the components of G− S, and define Gi := G[Ci ∪ {u, v}].

Theorem 7.27. Every minimal star-cutset T 6= S in G is a star-cutset in

Gi for a unique i. Conversely, for any i, a star-cutset T in Gi is a star-cutset

in G.

The first step towards proving the theorem is to show that any star-cutset

T 6= S is contained (as a set of vertices) in V (Gi) for some i.

124

Lemma 7.28. S is not crossed by a minimal star-cutset.

Proof. Suppose there were a minimal star-cutset T crossing S. Without loss

of generality, we may assume that T is centred at u, so T = {u, x, y} where

x and y are in distinct components C respectively D of G − S. Let w be

any vertex of G− T . Our goal is to show that there must be a path from w

to v in G− T , contradicting the assumption that T is a cutset.

If w = v or w is in a component of G − S other than C or D, this is

trivial. So assume w is in C − x. If x intersects every w− v path contained

in D, then either {u, x} is a separating-edge, contradicting the minimality of

T , or x is a cut-vertex, contradicting the 2-vertex connectivity of G. Hence

there must be a path from w to v in G− T . An analogous argument works

if w ∈ D.

Lemma 7.29. Every minimal star-cutset T 6= S of G is a star-cutset in Gi

for some i.

Proof. Let i be the unique index such that V (Gi) contains T , which must

exist by Lemma 7.28. Since T is minimal, S cannot be contained in T , so

without loss of generality suppose that v 6∈ T . As T is a cutset, there must

be some w disconnected from v in G− T . Every vertex of Gj with j 6= i is

clearly still connected to v, hence this w must lie in Gi. But then it follows

that T is a star-cutset in Gi, as claimed.

Lemma 7.30. For any i, a cutset T of Gi is a cutset in G.

Proof. Let x, y be two vertices of Gi such that there is no x − y path in

Gi − T . If there were an x − y path P in G − T , then P would have to go

through u and v, in which case we could shortcut it using the edge (u, v) to

obtain an x− y path in Gi.

125

Lemma 7.30 implies that any star-cutset in Gi is also a star-cutset in G.

It also implies that each subgraph Gi must be 2-vertex connected, since a

cut-vertex in Gi would be a cut-vertex in G.

For each i let Fi := F ∩ E(Gi). Then we can solve the Network Protec-

tion Problem by calling the algorithm recursively on each Gi to obtain an

extension Ai of Fi, and get an extension A of F by setting A := ∪iAi∪(u, v).

Since any star-cutset in G is a star-cutset in some Gi, we have that A

intersects R(S) for every star-cutset S of G, i.e. A is a feasible solution.

Claim 7.31. The extension A obtained from the partial solutions is optimal.

Proof. Let Z be an optimal extension of F in G. By Lemma 7.30, Zi := Z∩
E(Gi) is an extension of Fi in Gi. Note that Z must contain the separating-

edge e = (u, v), but e cannot be a separating-edge in Gi. So assuming that

the recursive calls return optimal partial extensions, we have that |Ai| ≤
|Zi| − 1 for all i, which implies

|A| = 1 +
∑
i

|Ai| ≤ 1 +
∑
i

(|Zi| − 1) = |Z|.

7.2.4 The recursion

Finally, suppose that Case 7.3(P4) holds; that is, we have an uncrossed star-

cutset S such that G − S has at least two non-trivial components. This is

the most complex case, and in this situation the algorithm will call itself

recursively on specific minors of G. We already know how to solve the

subproblems occurring at the leaves of the recursion; they are the cases

dealt with in Section 7.2.1 and Section 7.2.2. The main technical issue

with our recursion is that, computationally, its natural implementation takes

exponential time. Consequently, we cannot try all combinations when we

126

attempt to piece together solutions from the subproblems. Rather, to obtain

a polynomial time algorithm we may only choose to consider a selection of

the possible combinations. The key will be in making the choice carefully to

ensure that we do consider at least one combination that leads to a provably

optimal solution.

Let us now describe the recursion. Number the components of G − S

as C1, C2, . . . , Cr, where the labelling is such that the strongly attached

components appear before all the weakly attached components. Recall that

there are either zero, one or two strongly attached components. This gives

three cases to deal with in the recursion. However, Lemma 7.8 implies that

if there exists a weakly attached component, then (x, y) 6∈ E(G). This will

actually lead us to consider four distinct cases. For the case of two strongly

attached components, we will treat separately the case in which there is also

a weakly attached component and the case in which there are no weakly

attached components.

Although the four cases all require to be handled slightly differently, the

basic procedure is always the same, and we outline it now in order to make

the following detailed case analysis appear less daunting. As a first step, we

will always show that the minors defining the subproblems are again 2-vertex

connected planar graphs, so that making recursive calls of the algorithm is

well defined. The second step is to show that each star-cutset of G (other

than the cutset S that defines the subproblems) appears as a star-cutset

in one of the subproblems, thus ensuring that the algorithm does not miss

any star-cutsets and returns a feasible solution. To prove the performance

guarantee, we will need the fact that a star-cutset in one of the subproblems

is also a star-cutset in G. This means that the partial solutions will not

choose edges to protect that are not really needed in the original graph.

Lastly, we will show that the size of the combined solution returned by the

algorithm will always be at most the size of an optimal solution.

127

In all the cases, the star-cutset giving rise to the subproblems will be

denoted by S = {v, x, y}, with v being the centre in the cases where (x, y) 6∈
E(G)−F . The edges of S will be denoted by e := xv, f := yv and g := (x, y)

(when (x, y) ∈ E(G)− F).

No strongly attached components

Case I. In the first case we consider, G− S has no strongly attached com-

ponents. For each i let Gi = G[S∪Ci], the subgraph of G induced by S∪Ci,
and let Fi = F ∩ E(Gi). For each i such that |Ci| > 1, call the algorithm

recursively on (Gi, Fi) to obtain an extension Ai of Fi. For each i such that

Ci = {ci}, let Ai = {cix}. Return A = ∪iAi ∪ {xv}.

We remark that E(Gi) ∩ E(Gj) = {e, f} whenever i 6= j. This fact will

be used repeatedly in the analysis.

Theorem 7.32. Assuming that each recursive call returns an optimal ex-

tension Ai of Fi in Gi, we have that A is an optimal extension of F in

G.

Proof. We begin by proving that the algorithm is well defined. To this end,

we must first show that each Gi is a 2-vertex connected planar graph. The

planarity is obvious, so it remains to show the 2-connectivity.

Claim 7.33. For all i, the graph Gi is 2-connected.

Proof. Let u ∈ V (Gi). If u is x, y or v, then clearly u is not a cut-vertex in

Gi. If u 6∈ S is a cut-vertex in Gi, then u separates some w ∈ Ci from S and

is, therefore, a cut-vertex in G, contradiction.

Next, we must show that the set of edges A returned by the algorithm

is a feasible extension of F .

128

Claim 7.34. Every star-cutset S ′ of G is a star-cutset in Gi for some i,

unless S ′ = S or S ′ = {w, x, y} where {w} is a trivial component of G− S.

Proof. Let S ′ 6= S. First observe that since S is uncrossed, S ′ must be

contained in V (Gi) for some i.

By Lemma 7.8, (x, y) 6∈ E(G) − F . Thus, if S ′ contains x and y then

it must be the case that S ′ = {w, x, y} for some w ∈ Ci, since S ′ 6= S.

So unless Ci is trivial (and equals {w}), S ′ separates v from the vertices in

Ci − w.

So now suppose that S ′ contains at most one of x and y. Without loss

of generality, assume that S ′ doesn’t contain x. Then clearly all vertices in

Cj for all j 6= i are in the same component as x in G − S ′. But since S ′ is

assumed to be a cutset, there exists u which is not in the same component

as x, and this u must be in V (Gi). But if u is separated from x in G− S ′,
then clearly u is also separated from x in Gi − S ′, since Gi is a subgraph of

G.

Claim 7.34 implies that the set A returned by the algorithm is a feasible

solution. The star-cutset S and any star-cutsets S ′ of the form S ′ = {w, x, y}
where {w} is a trivial component of G− S are taken care of by adding the

edges (v, x) and wx to A. All other star-cutsets are star-cutsets in one of

the graphs Gi we recurse on; consequently, they will be intersected by the

respective partial extension Ai of Fi.

To show that the algorithm returns an optimal solution, we need the

following converse to Claim 7.34.

Claim 7.35. For any i, a star-cutset S ′ in Gi is also a star-cutset in G.

Proof. Let S ′ be a star-cutset in Gi. We have two possibilities.

(i) Assume S ′ contains both x and y. Then S ′ cannot be centered at v,

otherwise S ′ = S and S is not a star-cutset in Gi. By Lemma 7.8, (x, y) 6∈

129

E(G)− F and so S ′ cannot be centered at x or y either. Thus, S ′ must be

centered at some vertex w ∈ Ci, and so S ′ = {w, x, y}. Then S ′ is still a

star-cutset in G, as it separates v from the vertices in Cj, where j 6= i.

(ii) Assume, without loss of generality, that S ′ does not contain x. Then

some vertex u is separated from x in Gi − S ′. Our goal is to show that u is

also separated from x in G− S ′. For a contradiction, suppose not. So there

is a path P from u to x in G− S. Since P is not in Gi, it must use vertices

from some component Cj with j 6= i, and must therefore contain y.

Since P is a path in G − S ′ containing y, it follows that S ′ contains

neither x nor y. Consequently, it cannot contain v either because v has no

edges into Ci. Therefore, we can shortcut P to a path in Gi − S ′ by using

the edges yv and (v, x). This contradicts the assumption that S ′ separates

x and u.

Claim 7.36. If Ci = {ci} is a trivial component, then S ′ = {ci, x, y} is a

star-cutset in G.

Proof. We’re assuming that there exist at least 2 non-trivial components,

but no strongly attached components of G − S. So, let Cj and Ck be two

non-trivial weakly attached components, and let Ci = {ci} be trivial. Then

clearly S ′ = {ci, x, y} separates Cj from Ck in G.

Now, recall that we assume that a recursive call on (Gi, Fi) returns an

optimal extension Ai of Fi. Suppose Z is an optimal extension of F , and

define Zi = Z ∩ E(Gi). Note that Zi ∩ Zj ⊆ {e, f} for i 6= j, since E(Gi) ∩
E(Gj) = {e, f}.

Our goal is to show that the extension A returned by the algorithm in

Case I satisfies |A| ≤ |Z|.

We begin with a lemma which will also be used in Cases II and III.

130

Lemma 7.37. If Gi = G[S ∪Ci], where Ci is a weakly attached component,

then neither e nor f is a ray in a vulnerable star-cutset in Gi.

Proof. Suppose e = xv is a ray of a star-cutset S ′. Again, by Lemma 7.8,

(x, y) 6∈ E(G)− F . This implies that S ′ = {x, v, w} for some w ∈ Ci. As S ′

is assumed to be a cutset, there is a vertex u separated from y in Gi − S ′.
Because v has no edges into the weakly attached component Ci, it follows

that {x,w} separates y and u in G. This contradicts Assumption 7.4.

Claim 7.38. Z contains exactly one of e and f , and

|Z| = 1 +
∑
i

(|Zi| − 1).

Proof. Observe that Z must contain at least one of e and f , since S is

vulnerable. In addition, S is not a star-cutset in Gi, for any i. Moreover,

by Lemma 7.37, neither e nor f can appear in a star-cutset in Gi, for any i.

It follows that Z must contain exactly one of e and f : if it contained both

then we would get a strictly smaller extension by discarding one of them.

Without loss of generality, assume that Z contains e but not f . Then

Zi ∩ Zj = {e} for i 6= j. Thus, Z is the disjoint union of the sets Zi − {e}
together with {e}. So we obtain that |Z| = 1+

∑
i(|Zi|−1), as claimed.

We may now complete the proof of Theorem 7.32. Again, without loss

of generality, assume that Z contains e but not f . Claim 7.35 implies that

Zi is also an extension of Fi. Now e does not occur in any star-cutset in

Gi, by Lemma 7.37, so Zi − e is an extension of Fi. So if we recurse on Gi

then, by induction |Ai| ≤ |Zi| − 1. If we did not recurse on Gi because Ci

was trivial, then |Ai| = 1 and so |Ai| ≤ |Zi| − 1, since by Claim 7.36, Z has

to contain one of the edges from the trivial component to the set {x, y} in

addition to e. Hence, the size of the extension returned by the algorithm is

1 +
∑
i

|Ai| ≤ 1 +
∑
i

(|Zi| − 1) = |Z|.

131

This concludes the proof of Theorem 7.32

One strongly attached component

Case II. Now consider the case where G − S has exactly one strongly

attached component, C1. As G−S has at least two non-trivial components,

we may assume that the (weakly attached) component C2 is non-trivial.

We then define our recursive problems as follows. Set G1 to be the graph

obtained from G[S ∪C1∪C2] by contracting the component C2 into a single

vertex v∗1; set Gi = G[S ∪ Ci] for each i ≥ 2. Then set F1 = F ∩ E(G1) ∪
{v∗1x, v∗1y} and set Fi = F ∩ E(Gi), for each i ≥ 2.

Apply the algorithm recursively on (G1, F1) to obtain an extension A1;

call the algorithm recursively on (Gi, Fi) to obtain an extension Ai of Fi,

for each i ≥ 2 with |Ci| > 1; finally, for each i ≥ 2 where Ci = {ci} is a

singleton, set Ai = {cix}. Return the output A = ∪iAi.

Again, by Lemma 7.8, the existence of a weakly attached component

implies that (x, y) 6∈ E(G).

Lemma 7.39. Assuming that each recursive call returns an optimal exten-

sion Ai of Fi we have that A is an optimal extension of F in G.

Proof. Again, we begin by showing that the recursion is well defined by

proving each Gi to be a 2-connected planar graph. The planarity is clear,

so it remains to show the 2-connectivity.

Claim 7.40. For all i, the graph Gi is 2-connected.

Proof. The proof is virtually the same as in Claim 7.33. We make the

additional remark that the vertex v∗1 in G1 obtained from contracting the

weakly attached component C2 cannot be a cut-vertex in G1.

Next, we must show that the set of edges A returned by the algorithm

is a feasible extension of F .

132

Claim 7.41. Every star-cutset S ′ of G is a star-cutset in Gi for some i,

unless S ′ = {w, x, y} where {w} is a weakly attached trivial component of

G− S.

Proof. If S ′ = S, then clearly S ′ is a cutset in G1, since it separates v∗1 from

the vertices of C1.

So, take S ′ 6= S. Since S is uncrossed, S ′ is contained in V (Gi) for some

i. We then have two cases:

(i) S ′ contains both x and y. Hence, S ′ = {w, x, y} for some w ∈ Ci because

S ′ 6= S. If Ci is weakly attached to S then S ′ separates v from the vertices

in Ci − w, unless Ci is trivial and equals {w}. If Ci is strongly attached to

S, then S ′ separates v∗ from v in Gi.

(ii) S ′ does not contain x. All the vertices in Cj, for each j 6= i, are in

the same component as x in G − S. But S ′ separates some vertex w in Ci

from x. However, if w is separated from x in G − S ′ then clearly they are

also separated in Gi − S ′.

Claim 7.41 implies that the set A returned by the algorithm is a feasible

solution. Any star-cutset of the form S ′ = {w, x, y} where {w} is a trivial

component of G − S is taken care of by adding the edge wx to A, and all

other star-cutsets are star-cutsets in one of the graphs Gi we recurse on, so

they will be intersected by the respective partial extension Ai of Fi.

Again, we need the following converse to Claim 7.41.

Claim 7.42. A star-cutset S ′ in Gi is also a star-cutset in G.

Proof. Let S ′ be a star-cutset in Gi. If S ′ = S, then there is nothing to

show. Take S ′ 6= S. If S ′ contains both x and y, then S ′ cannot be centered

at v. In addition, S ′ cannot be centered at x or y as (x, y) 6∈ E(G)− F , by

133

Lemma 7.8. Thus, S ′ is centered at some vertex w ∈ Ci. Because there is at

least one non-trivial weakly attached component, S ′ is a star-cutset in G.

Next, suppose that S ′ does not contain, without loss of generality, x. Let

u be a vertex separated from x in Gi − S ′. We treat the cases i = 1 and

i ≥ 2 separately.

Case (a): i = 1. We may assume that u 6= v∗1 because v∗1x is an edge,

so S ′ cannot separate x from v∗1. Note also that each edge incident to v∗1 is

protected, so S ′ cannot contain v∗1. Suppose, for a contradiction, that there

is a path P from u to x in G − S ′. Then P would have to contain vertices

from a component Cj with j 6= 1. This implies that P contains y, since v

has no edges into any component Cj with j 6= 1. But then we obtain a path

P1 from u to x in G1 by shortcutting P using the protected edges yv∗1 and

v∗1x. This gives the desired contradiction.

Case (b): i ≥ 2. Here, S ′ cannot contain v without containing y as well,

since v has no edges into Ci. Any path P from u to x in G − S ′ must go

through y. Consequently, we can shortcut P using the edges yv and (v, x),

contradicting the fact that u and x are separated in Gi − S ′.

Claim 7.43. If Ci = {ci} is a trivial weakly attached component then S ′ =

{ci, x, y} is a star-cutset in G.

Proof. We have one strongly attached component, but at least two non-

trivial components. Since C2 is non-trivial, S ′ = {ci, x, y} separates v from

C2 in G.

To finish the proof of Lemma 7.39, suppose Z is an optimal extension of

F , and define Zi = Z ∩ E(Gi). Our goal is to show that the extension A

returned by the algorithm in this Case II satisfies |A| ≤ |Z|.

Claim 7.44. If Z contains exactly one of e and f , then

|Z| = 1 +
∑
i

(|Zi| − 1).

134

If Z contains both e and f , then

|Z| = 2 +
∑
i

(|Zi| − 2).

Proof. Observe that Z must contain at least one of e and f as S is vulnerable.

Also, note that E(Gi)∩E(Gj) = {e, f} for any i, j with i 6= j; thus, Zi∩Zj ⊆
{e, f}.

Now suppose that Z contains exactly one of e and f , without loss of

generality e. Then Z is the disjoint union of the sets Zi−{e} together with

{e}, and |Z| = 1 +
∑

i(|Zi| − 1), as claimed.

If Z contains both e and f , then Z is the disjoint union of the sets

Zi−{e, f} together with {e, f}, and |Z| = 2 +
∑

i(|Zi| − 2), as claimed.

So now assume that a recursive call on a pair (Gi, Fi) returns an optimal

extension Ai of Fi. Suppose first that Z contains e but not f . Claim 7.42

implies that for all i ≥ 1, Zi is also an extension of Fi. In particular, this

gives |A1| ≤ |Z1|.

Using arguments similar to those in Case I, the edge e cannot appear in

any star-cutsets of Gi for i ≥ 2, so Zi − e is still a feasible extension. Thus,

|Ai| ≤ |Zi| − 1 for i ≥ 2.

Finally, if Ci = {ci} is a trivial weakly attached component then, by

Claim 7.43, {ci, x, y} is a star-cutset in G. So, when Ai = {cix}, we also

have |Ai| ≤ |Zi| − 1.

Hence the solution returned by the algorithm has size∑
i≥1

|Ai| = |A1|+
∑
i≥2

|Ai| ≤ |Z1|+
∑
i≥2

(|Zi| − 1) ≤ 1 +
∑
i≥1

(|Zi| − 1) = |Z|.

If Z contains e and f , similar arguments imply that |Ai| ≤ |Zi| − 2, for

all i ≥ 2, and that |A1| ≤ |Z1|. Hence, the size of the solution A returned

135

by the algorithm satisfies

|A| = |A1|+
∑
i≥2

|Ai| ≤ |Z1|+
∑
i≥2

(|Zi| − 2) ≤ 2 +
∑
i≥1

(|Zi| − 2) = |Z|.

This concludes the proof of Lemma 7.39

Two strongly attached components but no weakly attached com-

ponents

Case III. For our third case, assume that G − S contains exactly two

strongly attached components, namely C1 and C2, but contains no weakly

attached components. That is, V (G) = S ∪ C1 ∪ C2.

Recall that we are in Case 7.3(P4), i.e. G− S has at least 2 non-trivial

components, and thus C1 and C2 are both non-trivial. To define our sub-

problems, set G1 to be the graph obtained from G by contracting C2 into a

vertex v∗1, and set G2 to be the graph obtained from G by contracting C1

into a vertex v∗2. Set Fi = F ∩ E(Gi) ∪ {v∗i x, v∗i y, v∗i v}.

Algorithmically, dealing with two strongly attached components is more

complex than the previous two cases. Essentially, this is because both com-

ponents may prefer different solutions on their intersection S. We could

deal with this by trying all possibilities on E(S) in each subproblem, but

this would lead to an exponential time recursion. Hence we will need to

be careful in what subproblems we choose to solve. Towards this goal, let

mi = |E(Gi)|. Without loss of generality, we may assume that m1 ≤ m2.

Our basic idea will be to find solutions to a variety of problems on G1, and

use this information to decide on a single problem to solve on G2. This will

produce a polynomial time algorithm, but we need to ensure that optimal

solutions to the subproblems are combined to give a global optimal solution.

A second issue that we need to deal with here is that there may be an

edge g = (x, y) ∈ E(G) − F . (Recall that in the previous cases, this could

136

not occur as there were weakly attached components.) Such an edge implies

that vxy is a triangle that gives rise to three vulnerable star-cutsets. We

will deal with the existence/non-existence of edge (x, y) separately.

Condition 1: If (x, y) 6∈ E(G) − F then recursively call the algorithm on

(G1, e ∪ F1), (G1, f ∪ F1), and (G1, {e, f} ∪ F1) to obtain extensions Ae, Af ,

and Aef , respectively.

(1) If |Aef | = |Ae| − 1 = |Af | − 1, call the algorithm on (G2, {e, f} ∪ F2)

to obtain an extension Bef , and return Aef ∪Bef ∪ {e, f}.

(2) Exactly one of Ae and Af is equal to Aef in cardinality. Without loss

of generality, suppose that |Ae| = |Aef | = |Af | − 1. Call the algorithm

on (G2, e ∪ F2) to obtain an extension Be, and return Ae ∪Be ∪ e.

(3) If |Ae| = |Af | = |Aef |, call the algorithm on (G2, F2) to obtain an ex-

tension B∅. If B∅ contains e return Ae ∪B∅, otherwise return Af ∪B∅.

Condition 2: If g = (x, y) ∈ E(G)−F then Recursively call the algorithm

on (G1, {e, f}∪F1), (G1, {f, g}∪F1), (G1, {e, g}∪F1) and (G1, {e, f, g}∪F1)

to obtain extensions Aef , Afg, Aeg and Aefg, respectively.

(1) If |Aefg| = |Aef | − 1 = |Afg| − 1 = |Aeg| − 1, call the algorithm on

(G2, {e, f, g}∪F2) to obtain an extension Befg, and return Aefg∪Befg∪
{e, f, g}.

(2) Exactly one of Aef , Aeg, Afg is equal to Aefg in cardinality. Without

loss of generality, suppose that |Aef | = |Aefg| = |Afg| − 1 = |Aeg| − 1.

Call the algorithm on (G2, {e, f}∪F2) to obtain an extension Bef , and

return Aef ∪Bef ∪ {e, f}.

137

(3) Exactly two of Aef , Aeg, Afg are equal to Aefg in cardinality. Suppose

without loss of generality that |Aef | = |Afg| = |Aefg| = |Aeg| − 1. Call

the algorithm on (G2, f∪F2) to obtain an extension Bf . If Bf contains

e return Aef ∪Bf ∪ f , otherwise return Afg ∪Bf ∪ f .

(4) If |Aef | = |Afg| = |Aeg| = |Aefg|, call the algorithm on (G2, F2) to

obtain an extension B∅. If B∅ contains e and f return Aef ∪B∅, if B∅

contains e and g return Aeg ∪B∅, otherwise return Afg ∪B∅.

We omit the easy proof that the graphs G1 and G2 are again 2-connected

planar graphs, and instead begin by showing that optimal solutions to the

subproblems cannot differ by much. This will be used shortly to prove that

the partial extensions returned by the recursive calls can be combined to

give an optimal global solution.

Claim 7.45. Let A� be an optimal extension of �∪F1 in G1. If g = (x, y) 6∈
E(G)− F then the following hold:

(1) |Ae| − 1 ≤ |Aef | ≤ |Ae| and |Af | − 1 ≤ |Aef | ≤ |Af |.

(2) |A∅| ≤ |Ae|+ 1 and |A∅| ≤ |Af |+ 1.

Analogous inequalities hold for optimal extensions B� of � ∪ F1 in G2.

Proof. If |Ae| ≥ |Aef |+2, set A′e := Aef ∪f . Then clearly A′e is an extension

of e∪ F1, and |A′e| − 1 ≤ |Aef |. If |Aef | ≥ |Ae|+ 1, set A′ef := Ae − f . Then

clearly A′ef is an extension of ef ∪ F1, and |A′ef | ≤ |Ae|. The proofs for Af

and for extensions B� in G2 are analogous.

Note that the first assertion of Claim 7.45 implies that the cases (a) to

(c) of Condition 1 above exhaust all the possibilities, i.e. that the algorithm

is well defined.

Using analogous arguments, we can prove:

138

Claim 7.46. Let A� be an optimal extension of �∪F1 in G1. If g = (x, y) ∈
E(G)− F , then the following hold:

(1) |Aef | − 1 ≤ |Aefg| ≤ |Aef |.

(2) |Ae| ≤ min(|Aef |, |Aeg|) + 1 ≤ |Aefg|+ 2.

(3) |A∅| ≤ min(|Aef |, |Afg|, |Aeg|) + 2 ≤ |Aefg|+ 3.

(These inequalities extend to the other symmetric cases and to optimal ex-

tensions in G2 in the obvious manner.)

Again observe that the first assertion implies that the cases (a) to (d) of

Condition 2 above exhaust all the possibilities.

We now establish that in the situations where a recursive call is made,

the algorithm returns a feasible solution.

Claim 7.47. Any star-cutset S ′ in G is a star-cutset in G1 or G2.

Proof. S is a cutset in G1 and G2, so if S ′ = S we are done. No star-cutset

crosses S, so S ′ is contained in either V (G1) or V (G2). Without loss of

generality, assume the former. Because S ′ 6= S, we know that at least one

of {v, x, y}, say x, is not contained in S ′. Clearly every vertex in C2 has

path to x in G − S ′. Since S ′ is a cutset in G, there must be some vertex

w separated from x in G− S ′. As w cannot be in C2, it must be in S ∪ C1.

But clearly there can be no path from w to x in G1 − S ′ if there is no path

in G− S ′, so S ′ is a star-cutset in G1.

Claim 7.47 implies that if there still is a cutset in G none of whose edges

are protected, this cutset is also present in either G1 or G2, contradicting the

fact that the recursive calls return feasible solutions. Also note that when

combining an extension in G1 with an extension in G2, we also add at least

one of e and f (respectively two of e, f, and g if (x, y) ∈ E(G)− F).

139

The difficult part of the analysis of the performance guarantee is to

show that two optimal extensions in G1 and G2 combine to give an optimal

extension of F in G. This is achieved by the following claim and its corollary.

Claim 7.48. Every star-cutset in G1 or G2 is also a star-cutset in G.

Proof. Let S ′ be a star-cutset in G1. The edges from v∗1 to the vertices

of S are protected edges in F1, so v∗1 does not occur in any star-cutset in

G1. Thus, S ′ is also a star in G. Take two vertices u and w in different

components of G1 − S ′. If S ′ is not a star-cutset in G, then there is a path

P from u to w in G; this path must use vertices from C2 in G−S. Now any

subpath of P through C2 has both its endpoints in S. Then we can shortcut

this subpath, since all three vertices of S are pairwise connected via the

protected edges incident to v∗1. So we obtain a path from u to w in G1, a

contradiction. By symmetry, every star-cutset in G2 is also a star-cutset in

G.

In essence, this implies that optimal extensions in G1 and G2 combine to

form an optimal extension of F in G. This is made precise by the following

corollary.

Corollary 7.49. Let Z be an optimal extension of F in G, and let Z1 =

Z ∩ E(G1) and Z2 = Z ∩ E(G2). Denote by A� an optimal extension of

� ∪ F1 in G1, and by B� an optimal extension of � ∪ F2 in G2.

If g = (x, y) 6∈ E(G)− F , then the following hold:

• If Z contains e but not f , then |Ae|+ |Be|+ 1 ≤ |Z|.

• If Z contains e and f , then |Aef |+ |Bef |+ 2 ≤ |Z|.

(The first assertion extends to the symmetric case in the obvious manner.)

140

Proof. By Claim 7.48, Z1 is an extension of F1 in G1. Suppose that Z

contains exactly one of e and f , without loss of generality e. Then Z1−e is an

extension of e∪F1 in G1. Since Ae is an optimal extension of e∪F1, we have

that |Ae| ≤ |Z1|−1. By an analogous argument, we also have |Be| ≤ |Z2|−1.

Moreover, if e ∈ Z but f 6∈ Z, we have that |Z| = |Z1|+ |Z2| − 1. It follows

that

|Ae ∪Be ∪ e| ≤ |Ae|+ |Be|+ 1 ≤ |Z1| − 1 + |Z2| − 1 + 1 = |Z|

as claimed. The other case is similar.

Similarly we may prove that:

Corollary 7.50. Let Z be an optimal extension of F in G, and let Z1 =

Z ∩ E(G1) and Z2 = Z ∩ E(G2). Denote by A� an optimal extension of

� ∪ F1 in G1, and by B� an optimal extension of � ∪ F2 in G2.

If g = (x, y) ∈ E(G)− F , then the following hold:

• If Z contains e and f but not g, then |Aef |+ |Bef |+ 2 ≤ |Z|.

• If Z contains e, f and g, then |Aefg|+ |Befg|+ 3 ≤ |Z|.

(The first assertion extends to the other symmetric cases in the obvious

manner.)

We move on to show that the algorithm does indeed combine optimal

partial extensions to form an optimal global extension. We split the analysis

into several cases, according to which solution the algorithm returns. In all

cases, we assume that a recursive call on G1 returns an optimal extension

A� of �∪F1, and that each recursive call on G2 returns an optimal extension

B� of � ∪ F2.

As always, we need to distinguish between the cases g = (x, y) 6∈ E(G)−
F and g = (x, y) ∈ E(G) − F . In what follows, we will only discuss asym-

metric cases, i.e. we will omit for example the case where the algorithm

141

returns Af ∪ Bf ∪ f , as it is analogous to the case where the algorithm re-

turns Ae ∪Be ∪ e.

Condition 1: g = (x, y) 6∈ E(G)− F .

(1) The algorithm returns Aef∪Bef∪ef , a solution of size |Aef |+|Bef |+2.

This only happens if |Aef | = |Ae| − 1 = |Af | − 1.

(i) If there exists an optimal solution Z containing e and f , the size

of our solution satisfies

|Aef |+ |Bef |+ 2 ≤ |Z|

by Corollary 7.49.

(ii) If there is an optimal solution Z containing e but not f , then

|Aef |+ |Bef |+ 2 = |Ae| − 1 + |Bef |+ 2 = |Ae|+ |Bef |+ 1 ≤ |Z|

since |Bef | ≤ |Be|.

Similarly if there is an optimal solution Z containing f but not

e.

(2) The algorithm returns Ae∪Be∪e, which only happens if |Ae| = |Aef | =
|Af | − 1. The size of this solution is |Ae ∪Be ∪ e| ≤ |Ae|+ |Be|+ 1.

(i) If there is an optimal solution Z containing e and f , we have that

|Ae|+ |Be|+ 1 = |Aef |+ |Be|+ 1 ≤ |Aef |+ |Bef |+ 2 ≤ |Z|

since |Be| ≤ |Bef |+ 1.

(ii) If there is an optimal solution Z containing e but not f , we have

that

|Ae|+ |Be|+ 1 ≤ |Z|.

142

(iii) If there is an optimal solution Z containing f but not e, then

|Ae|+ |Be|+ 1 = |Af |+ |Be| ≤ |Af |+ |Be| ≤ |Z|

since |Be| ≤ |Bf |+ 1.

(3) The algorithm returns Ae ∪ B∅, which only happens if |Ae| = |Af | =

|Aef | and e ∈ B∅. The size of this solution is |Ae ∪B∅| ≤ |Ae|+ |B∅|.

(i) If there is an optimal solution Z containing e and f , we have that

|Ae|+ |B∅| = |Aef |+ |B∅| ≤ |Aef |+ |Bef |+ 2 ≤ |Z|

since |B∅| ≤ |Bef |+ 2.

(ii) If there is an optimal solution Z containing e but not f , we have

that

|Ae|+ |B∅| ≤ |Ae|+ |Be|+ 1 ≤ |Z|

since |B∅| ≤ |Be|+ 1.

(iii) If there is an optimal solution Z containing f but not e, then

|Ae|+ |B∅| = |Af |+ |B∅| ≤ |Af |+ |Bf |+ 1 ≤ |Z|

since |B∅| ≤ |Bf |+ 1.

Condition 2: g = (x, y) ∈ E(G)− F .

(1) The algorithm returns Aefg∪Befg∪efg, which only happens if |Aefg| =
|Aef | − 1 = |Afg| − 1 = |Aeg| − 1.

(i) If there is an optimal solution Z containing e, f, g, then

|Aefg|+ |Befg|+ 3 ≤ |Z|.

143

(ii) If there is an optimal solution Z containing e and f , but not g

then

|Aefg|+ |Befg|+3 = |Aef |−1+ |Befg|+3 ≤ |Aef |+ |Bef |+2 ≤ |Z|

since |Befg| ≤ |Bef |. Similarly for optimal solutions containing

e, g but not f or f, g but not e.

(2) The algorithm returns Aef∪Bef∪ef , which happens if |Aef | = |Aefg| =
|Afg| − 1 = |Aeg| − 1. This solution has size |Aef ∪ Bef ∪ ef | ≤
|Aef |+ |Bef |+ 2.

(i) If there is an optimal solution Z containing e, f, g, then

|Aef |+ |Bef |+ 2 = |Aefg + |Befg|+ 3 ≤ |Z|

since |Bef | ≤ |Befg|+ 1.

(ii) If there is an optimal solution Z containing e and f , but not g

then

|Aef |+ |Bef |+ 2 ≤ |Z|.

(iii) If there is an optimal solution Z containing f and g, but not e

then

|Aef |+ |Bef |+ 2 = |Afg| − 1 + |Bef |+ 2 ≤ |Afg|+ |Bfg|+ 2 ≤ |Z|

since |Bef | ≤ |Bfg| + 1. Similarly if Z contains e and g, but not

f .

(3) The algorithm returns Aef ∪Bf ∪ f , which happens if |Aef | = |Afg| =
|Aefg| = |Aeg| − 1 and Bf contains e. This solution has size |Aef ∪
Bf ∪ f | ≤ |Aef |+ |Bf |+ 1.

(i) If there is an optimal solution Z containing e, f, g, then

|Aef |+ |Bf |+ 1 = |Aefg|+ |Bf |+ 1 ≤ |Aefg|+ |Befg|+ 3 ≤ |Z|

since |Bf | ≤ |Befg|+ 2.

144

(ii) If there is an optimal solution Z containing e and f , but not g

then

|Aef |+ |Bf |+ 1 ≤ |Aef |+ |Bef |+ 2 ≤ |Z|

since |Bf | ≤ |Bef |+ 1.

(iii) If there is an optimal solution Z containing f and g, but not e

then

|Aef |+ |Bf |+ 1 = |Afg|+ |Bf |+ 1 ≤ |Afg|+ |Bfg|+ 2 ≤ |Z|

since |Bf | ≤ |Bfg|+ 1.

(iv) If there is an optimal solution Z containing e and g, but not f

then

|Aef |+ |Bf |+ 1 = |Aeg| − 1 + |Bf |+ 1 ≤ |Aeg|+ |Beg|+ 2 ≤ |Z|

since |Bf | ≤ |Be|+ 1 ≤ |Beg|+ 2.

(4) The algorithm returns Aef ∪ B∅, which happens if |Aef | = |Afg| =

|Aeg| = |Aefg| and B∅ contains e and f . This solution has size |Aef ∪
B∅| ≤ |Aef |+ |B∅|.

(i) If there is an optimal solution Z containing e, f, g then

|Aef |+ |B∅| = |Aefg|+ |B∅| ≤ |Aefg|+ |Befg|+ 3 ≤ |Z|

since |B∅| ≤ |Befg|+ 3.

(ii) If there is an optimal solution Z containing e and f but not g,

then

|Aef |+ |B∅| ≤ |Aef |+ |Bef |+ 2 ≤ |Z|

since |B∅| ≤ |Bef |+ 2.

(iii) If there is an optimal solution Z containing f and g but not e,

then

|Aef |+ |B∅| = |Afg|+ |B∅| ≤ |Afg|+ |Bfg|+ 2 ≤ |Z|

145

since |B∅| ≤ |Bfg|+ 2. Similarly if there is an optimal solution Z

containing e and g but not f .

This concludes the proof of the fact that the recursive step combines two

optimal extensions in G1 respectively G2 to form an optimal extension of F

in G.

Two strongly attached components and a weakly attached compo-

nent

Case IV. For the fourth case, we have two strongly attached components

and at least one weakly attached component.

In this case, the graphs G1 and G2 we recurse on are slightly different

than in Case III(a), but the analysis is virtually identical. Consider the

graph H = G[S ∪ C1 ∪ C2 ∪ C3]. Let G1 be the graph obtained from H

by contracting C2 into a vertex v∗1, and by contracting C3 into a vertex w∗1.

Similarly, let G2 be the graph obtained from H by contracting C1 into a

vertex v∗2 and C3 into a vertex w∗2. So G1 and G2 are as in Case III(a),

except that both have an additional vertex which has edges to x and y only.

Define mi = |E(Gi)|.

Let F1 be the set of edges obtained from F ∩E(G1) by adding the three

edges from v∗1 to x, y, v and the two edges from w∗1 to x, y. Define F2 similarly.

For i ≥ 3, define Gi = G[S ∪ Ci], and let Fi = F ∩ E(Gi).

On G1 and G2, call the algorithm recursively as described in Case III,

where we may assume that m1 ≤ m2. Call the algorithm on (G1, e ∪ F1),

(G1, f ∪ F1) and (G1, {e, f} ∪ F1), and then call the algorithm on G2 ac-

cordingly. Observe that since there exists a weakly attached component, we

need not consider the case (x, y) ∈ E(G)− F . Suppose this returns a set of

edges A′ that intersects all star-cutsets that are either in G1 or G2.

146

For i ≥ 3 such that Ci is non-trivial, call the algorithm recursively on

(Gi, Fi) to obtain extensions Ai. For i ≥ 3 such that Ci = {ci}, set Ai =

{cix}. If there is only one weakly attached component C3 and it is trivial,

set A3 = ∅. Return A := ∪i≥3Ai ∪ A′.

It is easy to prove that the graphsGi are again 2-connected planar graphs.

The proof of the fact that the extensions in the smaller graph G1 differ by

at most 1 and that the recursive step, therefore, does not miss any cases is

exactly as in Case III.

Claim 7.51. Any star-cutset S ′ in G is a star-cutset in some Gi, unless

S ′ = {w, x, y} where Ci = {w} is a trivial weakly attached component of

G− S.

Proof. Note that S is a star-cutset in G1 and G2; so, if S ′ = S we are done.

Take S ′ 6= S. Since S is uncrossed, we must have S ′ ⊂ V (Gi) for some i.

There are two cases:

(i) If S ′ contains both x and y, then we must have S ′ = {w, x, y}, since

(x, y) is not an edge. Here w ∈ Ci for some i; if Ci is weakly attached and

non-trivial, then S ′ separates v from Ci − S ′ in Gi, and we are done. If Ci

is strongly attached, then S ′ separates w∗i from v∗1, regardless of whether Ci

is trivial and equals {w} or not.

(ii) S ′ contains at most one of x and y. Without loss of generality, suppose

S ′ does not contain x. Clearly every vertex in Cj with j 6= i is in the same

component as x in G− S ′. But S ′ separates some w from x in G− S ′, so w

must lie in Ci ∪ S. Moreover, there can be no path from w to x in Gi − S ′,
since there is none in G−S ′. Hence S ′ is a star-cutset in Gi, as desired.

Claim 7.51 ensures that if we assume that all the recursive calls on the

subgraphs return feasible extensions Ai and A′, then A = ∪iAi ∪ A′ is an

extension of F in G. If not, there is a star-cutset in G none of whose edges

belong to A, and this cutset would also be present in one of the subgraphs.

147

The converse of this is also true, and we shall need it for the analysis of

the approximation guarantee.

Claim 7.52. If S ′ is a star-cutset in some Gi, then it is also a star-cutset

in G.

Proof. Just as in the previous versions of this claim, the proof is implied by

the following two facts. Namely, that S ′ must be contained in S ∪ Ci for

some i, because the edges from v∗i and w∗i to S are protected, and that any

path in G− S ′ using vertices from some Cj with j 6= i must pass through S

and can therefore be short-cut to a path in Gi − S ′ using either v or one of

the contracted vertices v∗i or w∗i .

Let Z be an optimal extension of F in G. Let Zi = Z∩E(Gi), and define

Z ′ = Z1∪Z2. The analysis presented in Case III shows that the set of edges

A′ returned by the recursion on G1 and G2 satisfies |A′| ≤ |Z ′|. We assume

that a recursive call on (Gi, Fi) for i ≥ 3 returns an extension Ai of Fi such

that |Ai| ≤ |Ji|, where Ji is an optimal extension.

If Z contains exactly one of e and f , we have that |Ji| ≤ |Zi| − 1, as

argued in Case I. When we set Ai = ∅, clearly |Ai| ≤ |Zi| − 1, and if we

set Ai = {cix}, we also have |Ai| ≤ |Zi| − 1. Hence the size of our solution

satisfies

|A′ ∪ ∪i≥3Ai| ≤ |A′|+
∑
i≥3

|Ai| ≤ |Z ′|+
∑
i≥3

(|Zi| − 1) ≤ |Z|.

If Z contains e and f , we have that |Ji| ≤ |Zi| − 2, as argued in Case II.

When we set Ai = ∅, clearly |Ai| ≤ |Zi| − 2, and if we set Ai = {cix}, we

also have |Ai| ≤ |Zi| − 2. Hence the size of our solution satisfies

|A′ ∪ ∪i≥3Ai| ≤ |A′|+
∑
i≥3

|Ai| ≤ |Z ′|+
∑
i≥3

(|Zi| − 2) ≤ |Z|.

148

7.2.5 Running time analysis

Before analysing the run-time of the algorithm, we give a brief summary.

Given G and a set of edges F , we can list in polynomial time all the

vulnerable minimal star-cutsets. If there are none, we return A = ∅ as an

optimal extension of F . Otherwise, let B be the set of separating edges. If

B 6= ∅, we recurse as described in Section 7.2.3. If B = ∅, we may assume

that all minimal star-cutsets of G consist of 3 vertices. If G is a padded

wheel, we find an extension as described in Section 7.2.1. If all star-cutsets

S are such that at most one component of G − S is non-trivial, we find an

extension A of F as described in Section 7.2.2. If neither of these two cases

holds, we know by Theorem 7.3 that there must be an uncrossed star-cutset

S such that G − S has at least 2 non-trivial components. We find such an

S and recurse as described in Section 7.2.4.

Now, if G is a padded wheel, the run-time of the algorithm is bounded

above by O(m), as argued at the end of Section 7.2.1. If every star-cutset

S is such that at most one component of G − S is non-trivial, it is also

straightforward to verify that the algorithm runs in polynomial time: Given

a list of vulnerable star-cutsets in G, the graph L∗ can be constructed in time

O(m). Next, the graph H for which L∗ is the line graph can be constructed

in linear time, and then a maximum matching in H can be found in time

O(m
√
n). Thus, the running time in this case is dominated by the time

it takes to obtain the list of vulnerable star-cutsets; for our purposes, a

brute-force O(m3) algorithm that tests, for every pair (v, x), (v, y) of incident

edges, whether G−{v, x, y} is connected will suffice. (Note that given a pair

(v, x), (v, y), we can check in constant time whether (x, y) is an unprotected

edge.)

Having shown that the algorithm performs in time at most O(m3) on

the leaves of the recursion tree, it remains to prove that the recursive steps

149

can also be implemented efficiently.

Claim 7.53. The algorithm terminates.

Proof. As noted above, we have a well-defined algorithm that runs in poly-

nomial time on the leaves of the recursion tree. To complete the proof,

observe that regardless of whether we recurse on minors obtained from the

components of an uncrossed star-cutset or the subgraphs obtained from the

components of a separating-edge, all the graphs Gi we recurse on satisfy

|V (Gi)| < |V (G)|. Hence, there is no possibility of looping, and the algo-

rithm must eventually terminate.

In order to analyze the run-time, it will turn out to be more convenient

to argue in terms of edges. So, let m = |E(G)|, let S and the components

Ci be as in the description of the algorithm presented in Sections 7.2.3 and

7.2.4. For each i, let mi = |E(Gi)|.

Theorem 7.54. Let T (m) be the running time of the algorithm. If the

algorithm recurses, then we have

T (m) ≤ 4T (m1) +
r∑
i=2

T (mi) +O(m),

where r is the number of components of G− S. Moreover, the mi satisfy∑
i≥1

mi ≤ m+ 2r + 8 and m1 ≤
m

2
+ 5.

Proof. The assertions are easily seen to be true if we recurse on the subgraphs

obtained from a separating-edge: The algorithm is called only once on each

Gi, so

T (m) ≤
r∑
i=1

T (mi) +O(m) ≤ 4T (m1) +
r∑
i=2

T (mi) +O(m)

and ∑
i≥1

mi = m+ r − 1 < m+ 2r + 8,

150

since the separating-edge is counted r times. After renumbering, we can

assume that m1 is the smallest of the mi and so clearly m1 ≤ m
2

+ 5.

So now suppose we recurse on an uncrossed star-cutset.

Case I. All components are weakly attached. By definition of the graphs

Gi, we have that∑
i≥1

mi = m+ 2(r − 1) = m+ 2r − 2 ≤ m+ 2r + 8,

where the first equality holds because e and f are counted r times. Moreover,

we lose no generality in assuming that m1 = mini(mi), which implies that

m1 ≤
1

r

∑
i

mi =
m+ 2r − 2

r
≤ m

r
+ 2 ≤ m

2
+ 5

since r ≥ 2.

Given the partial extensions Ai, we can combine them in time O(m). So

T (m) satisfies

T (m) =
∑
i

T (mi) +O(m) ≤ 4T (m1) +
∑
i≥2

T (mi) +O(m),

as claimed.

Case II. There is exactly one strongly attached component. Then we

get ∑
i≥1

mi = m+ 2(r − 1) + 2 = m+ 2r ≤ m+ 2r + 8,

where the first equality holds because e and f are counted r times, and we

have to take into account the edges from S∪C1 to the contracted component

C2. As above, combining the partial extensions can be done in time O(m),

so the total running time is

T (m) =
∑
i

T (mi) +O(m).

Now it is not necessarily true that m1 = mini(mi). However, setting i0 =

argmin(mi), we have that

mi0 ≤
m+ 2r

r
=
m

r
+ 2 ≤ m

2
+ 5,

151

and so

T (m) =
∑
i

T (mi) +O(m) ≤ 4T (mi0) +
∑
i 6=i0

T (mi) +O(m).

Swapping the indices 1 and i0 now yields the assertions of the theorem.

Case III. There are two strongly attached components, and no weakly

attached components. If g = (x, y) ∈ E(G)− F then

m1 +m2 = m+ 9,

since we are counting e, f and g twice, and there are three edges from v∗1 to

S in G1 and three edges from v∗2 to S in G2. If (x, y) 6∈ E(G)− F , then

m1 +m2 = m+ 8.

In either case, we obtain that

m1 +m2 ≤ m+ 2r + 8,

as claimed.

Next, we had labelled G1 and G2 so that m1 ≤ m2, which implies that

m1 ≤
m+ 9

2
≤ m

2
+ 5,

as required.

Now the algorithm makes one recursive call on G2, and either 3 or 4 calls

on G1, so

T (m) ≤ 4T (m1) + T (m2) +O(m).

Case IV. There are two strongly attached components and at least one

weakly attached component. Now∑
i

mi = m+ 2(r − 1) + 10 = m+ 2r + 8

since e and f are counted r times, and we use an extra 5 edges for G1 and

5 edges for G2 (namely the edges from v∗i and w∗i to S).

152

We labelled G1 and G2 so that m1 ≤ m2; thus, m1 ≤ m1+m2

2
. Now

observe that m1 +m2 = m+ 2r+ 8−∑r
i≥3mi, and that mi ≥ 4 for all i. So

m1 +m2 ≤ m+ 2r + 8− 4(r − 2) = m− 2r + 16 ≤ m+ 10

since r ≥ 3. Hence m1 ≤ m
2

+ 5 as claimed.

The algorithm makes 3 recursive calls on G1, and at most 1 on Gi for

i ≥ 2, so

T (m) ≤ 4T (m1) +
∑
i≥2

T (mi) +O(m)

as claimed.

So we obtain the bound

T (m) ≤ 4T (m1) +
∑
i≥2

T (mi) +O(m)

where m1 ≤ m
2

+ 5 and
∑

i≥1mi ≤ m + 2r + 8. Observe further that by

construction of the graphs Gi, we have mi ≤ m− 1 for all i and mi ≥ 4 for

all i.

Given the bounds on the mi and assuming inductively that the run-time

of each subproblem is at most O(m3
i), we can use the recursive bound on

T (m) above to show that T (m) is also bounded by O(m3). The proof pro-

ceeds by analyzing the maxima of the convex function f((m1,m2, . . . ,mr)) =

C[4m3
1 +

∑
i≥2m

3
i +m] over the convex domain given by the bounds on the

mi; we omit the details.

Corollary 7.55. The run-time of the algorithm is bounded above by O(m3).

7.2.6 Hardness of the vertex variant

In this section we show that the vertex variant of network protection problem

in planar graphs is indeed NP-hard. In the vertex version we protect vertices

153

rather than edges; consequently, our goal is to find the smallest cardinality

set of vertices P such that P intersects the vertex set of every star-cutset in

the planar graph G.

Theorem 7.56. The vertex variant of the network protection problem is

NP-hard in planar graphs.

Proof. To prove the result, we use a straightforward reduction from the

vertex cover problem. Let G = (V,E) be a 2-vertex connected planar graph

for which we wish to find an optimal vertex cover. We show how to do

this by finding an optimal edge protection set in an auxiliary graph G′. We

construct G′ by replacing each edge e = (u, v) of G with a 4-cycle u, e1, v, e2

plus the chord (e1, e2). We will call u and v original vertices and the e1

and e2 dummy vertices. It is clear that any planar embedding of G yields a

planar embedding of G′; so G′ is planar.

We will show that an optimal solution to the vertex network protection

problem in G′ would give an optimal vertex cover in G.

Claim 7.57. A star-cutsets in G′ is minimal if and only if it is of the form

{ei, u, v}, where i ∈ {1, 2} and e = (u, v) is an edge of G.

Proof. For any edge e = (u, v), the star {ei, u, v} separates e3−i from the

rest of G′. So this star it is a cutset. It is minimal for the following reason.

G′ is 2-connected (because G is) and so a smaller star-cutset must contain

both u and v, but (u, v) is not an edge in G′ so cannot be a separating edge.

So it remains to show that any minimal star-cutset has this form. As G

is 2-connected, the structure of the reduction implies that no original vertex

v can centre a star-cutset in G′. So each star-cutset in G′ must be centred at

a vertex e1 or e2 corresponding to an edge e = (u, v) of G. If {ei, e3−i, u, v}
is a star cutset, then it cannot be minimal as we have seen that {ei, u, v} is

a star-cutset.

154

So the minimal star-cutsets in G′ are those stars {ei, u, v} corresponding

to edges (u, v) in G. This implies that a vertex cover in G is a feasible solu-

tion to the vertex protection problem in G′. The following claim establishes

the converse.

Claim 7.58. There is an optimal solution to the vertex network protection

problem in G′ that contains only vertices of G.

Proof. From Claim 7.57, each ei is in exactly one minimal star-cutset, {ei, u, v}.
This implies that if ei is in some optimal solution P then we can replace ei by

either u or v to obtain an optimal solution with one less dummy vertex.

Claim 7.58 implies that a solution P ∗ to the vertex protection problem

in G′ yields a vertex cover of the same cardinality in G.

Hence, if we could solve the vertex protection problem optimally in an

arbitrary planar graph G, we could find a minimum vertex cover in an

arbitrary 2-connected planar graph. Given a candidate solution A ⊆ V (G),

it is easy to verify in polynomial time whether the vertices in A hit all the

minimal star-cutsets of G. It follows that the vertex protection problem is

NP-hard, since finding a minimum vertex cover is NP-complete even in a

3-connected cubic planar graph ([92]).

7.3 Neutralising star-cutsets in general graphs

Here we settle the complexity of the network protection problem for non-

planar graphs by providing logarithmic lower and upper approximability

bounds4. Here we show how to obtain an 2(c + 1) log n approximation al-

gorithm, where n = |V (G)| and c is an absolute constant (c ≈ 1.6). We

4We remark that both these results generalise to the weighted case where we desire a

minimum weight protection set rather than just a minimum cardinality protection set.

155

complement this by providing a lower bound of log n, showing that, up to a

constant factor, our result is essentially best possible.

7.3.1 An O(log n) inapproximability result

Our hardness result is obtained by showing that the inapproximability re-

sults for the set cover problem apply for the network protection problem.

Theorem 7.59. For any ε > 0, there is no (1−ε) log n-approximation algo-

rithm for the network protection problem unless NP ⊂ TIME(nO(log logn)).

Proof. Take an instance of Set Cover with ground set V = {v1, . . . , vn} and

a collection of subsets S = {S1, . . . , Sm} of V .

A

B

v1 vn

S1

Sm

Figure 7.11: Reduction graph for the Set Cover reduction

Figure 7.3.1 shows the corresponding reduction graph H. It has a vertex

for each set Sj, a vertex for each element of the ground set vi, and two

additional vertices A and B. For each set Sj there is a path of length one

(that is, an edge) to B and a path of length two to A. Furthermore, there

is an edge (vi, Sj) if and only if element vi is in the set Sj.

We may make a couple of simple assumptions. Firstly, each element vi

is in at least two sets; if it is in only one set then that set must be chosen

in any feasible solution. Secondly, for no pair of elements, vi and vj, may

156

it be the case that each set containing vi also contains vj; otherwise we can

instead consider the set cover instance (V − vj,S). Observe that these two

assumptions imply that neither the vi vertices nor the Sj vertices Sj, nor

the vertices on the paths from the Sj to A can centre a star-cutset. It is

easy to see that A cannot centre a star-cutset. Thus, the only vertex that

can possibly centre a star-cutset is B.

Now suppose we have a feasible set cover C = {S1, . . . , Sr}. Let F =

{(B, S1), (B, S2), . . . , (B, Sr)), that is, the set of edges from B to the vertices

corresponding to the sets in the cover. We claim that F is a solution to the

network protection problem. To see this, let T be a star centered at B

that does not intersect F . Now, for any vi, we know that vi ∈ Sj for some

j ≤ r, because C is a set cover. Thus, there is still a path from vi to A in

H − T . Clearly, for any Sk 6∈ T , there is still a path from Sk to A in H − T .

Hence, H − T is connected. Observe, also, that the solution to the network

protection problem obtained in this fashion has the same cardinality as the

set cover.

Conversely, a solution F to the network protection problem yields a

set cover as follows. We have seen that only edges incident to B can be

contained in a minimal solution. Consequently, without loss of generality,

let F = {(B, S1), (B, S2), . . . , (B, Sr)). Then C = {Sj | 1 ≤ j ≤ r} must be

a set cover. If not, there is some vertex vi that is in none of the sets Sj ∈ C.
So consider the star T centred at B containing each Sk with k > r; it is

vulnerable with respect to F , and contains all the vertices corresponding to

sets that contain vi. Thus, vi is separated from A in G−T , a contradiction.

Again, note that the cardinality of the set cover obtained is precisely the

cardinality of the solution to the network protection problem.

Hence, the cost of an optimal solution to the network protection problem

equals the cost of an optimal set cover. Feige [24] showed that unless NP ⊂
TIME(nO(log logn)), there is no polynomial time algorithm to approximate

157

Set Cover to within (1− ε′) log n′ for any ε′ > 0, where n′ is the number of

elements of the ground set of the Set Cover instance.

Suppose for a contradiction that there were a polynomial time approxi-

mation algorithm for the network protection problem with an approximation

guarantee of (1 − ε) log n, where ε > 0 and n is the number of vertices in

the given graph. In his hardness proof, Feige only uses instances of set cover

such that the number of sets s is less than the number n′ of elements in the

ground set. Thus, we may assume that the reduction graph from Theorem

7.59 has at most n = 3n′ + 2 vertices; one for each element of the ground

set, and two for each set, plus the vertices A and B. Then, since log n and

log n′ only differ by a constant additive term, it follows that a (1 − ε) log n

approximation algorithm for the network protection problem would yield a

(1− ε′) log n′ approximation algorithm for Set Cover for some ε′ > 0.

7.3.2 An O(log n) approximation algorithm

In this section, we present a polynomial time algorithm for the network

protection problem whose approximation guarantee is O(log n), where n is

the number of vertices of the graph.

The approach is simple. We break the problem up into n subproblems -

one for each vertex v ∈ V . For each such local problem, our goal is to protect

a set of edges Fv ⊆ δ(v) so that there are no vulnerable star-cutsets centered

at v. The set δ(v) denotes the edges incident to v. Clearly, the union of the

solutions to each local problem gives a feasible global solution F =
⋃
v Fv.

The only difficulty, therefore, is to show how to apply this approach to

produce a good approximate global solution. Towards this goal, we will use

the following notation. Recall that Γ(v) denotes the set of neighbours of v;

we then set N(v) = Γ(v) ∪ {v}. Further, we denote by opt the cardinality

of the optimal global solution and by opt(v) the cardinality of the optimal

solution for the local problem at vertex v.

158

Theorem 7.60. We can find local solutions Fv such that the global solution

F =
⋃
v∈B Fv satisfies |F | ≤ O(log n)opt.

Proof. We begin with a straightforward observation.

Observation 7.61. If F ∗ is an optimal global solution, then for any v, the

set F ∗ ∩ δ(v) is a local solution.

Observation 7.61 implies that |F ∗ ∩ δ(v)| ≥ opt(v).

Claim 7.62. For each v, we can find a local solution Fv of size |Fv| ≤
(c + 1) log(n)opt(v), where n is the number of vertices of G and c is an

absolute constant.

Claim 7.62 establishes the approximation guarantee. The size of our

solution is

|F | ≤
∑
v∈B
|Fv|

≤ (c+ 1) log n
∑
v

opt(v)

≤ (c+ 1) log n
∑
v

|F ∗ ∩ δ(v)|

≤ 2(c+ 1) log n · |F ∗|

= 2(c+ 1) log n · opt

where the last inequality follows from the fact that every edge of F ∗ is

counted at most twice.

Thus, it remains to prove Claim 7.62. We will achieve this by giving a

one-to-one correspondence between local solutions and connected dominating

sets in an auxiliary graph Hv. The result will then follow by applying an

approximation algorithm for the connected dominating set problem.

So fix a vertex v, and let C1, . . . , Ck be the components of G−N(v). The

auxiliary graph Hv is just the the minor of G − v obtained by contracting

each component Ci into a vertex ti. We assign the vertices ti weight 0, and

159

each vertex u ∈ Γ(v) weight 1. With these weights, we run an algorithm

to find a minimum weight connected dominating set D in Hv. Let Fv =

{(v, w) |w ∈ D ∩ Γ(v)}. We claim that Fv is a local solution. If not, take a

star Sv in G centred at v that is vulnerable with respect to Fv.

Clearly Sv ∩D = ∅ by definition. Thus, D remains connected in G−Sv.
Furthermore, any vertex u ∈ Hv − Sv that is not in D must be adjacent to

a vertex of D, since D is a dominating set in Hv. So Hv − Sv is connected,

a contradiction.

The weight of each ti is 0, so the cardinality of the local solution obtained

is exactly the weight of D.

Conversely, given a local solution Fv we construct a connected domi-

nating set D in Hv as follows: Let D contain all the vertices ti and each

w ∈ Γ(v) such that vw ∈ Fv. Consequently, D has weight |Fv|, since each ti

has zero weight.

Now we need to show that D is connected and that it is a dominating

set. To begin, let us show that D is a dominating set, let u ∈ Hv−D. Since

D contains all the vertices ti, u must be in Γ(v)−D. To show that u must be

adjacent to a vertex of D, we have two possibilities. Firstly, if u is adjacent

to some vertex ti the clearly u is dominated. So we may assume that u is

not adjacent to any vertex ti. This implies that N(u) ⊆ N(v). Again, we

have two cases to deal with.

(1) N(u) − v = N(v). Since Fv must contain at least one edge (v, w), it

follows that u is dominated by w.

(2) N(u) − v 6= N(v). Suppose, for a contradiction, that (v, w) is not in

Fv for any vertex w ∈ N(u). Then Γ(u) is a star centred at v whose

removal disconnects u from the non-empty set N(v) − N(u). This

contradicts the assumption that Fv is a local solution.

160

To conclude, we next show that D is connected. Because Fv is a local

solution, Sv = {v} ∪ {w | (v, w) 6∈ Fv} is not a star-cutset in G. But then

G− Sv = G[D] is a a single component; thus D is connected.

This gives us the desired bijection. Hence, if opt(CDS) is the weight

of an optimal connected dominating set in Gv, we have optCDS = optv.

Guha and Khuller [39] gave a (c + 1) log(n)-approximation algorithm for

the connected dominating set problem, were c is an absolute constant (c ≈
1.6). So the local solution we get from the dominating set has cost at most

(c + 1) log(n) · opt(v). This concludes the proof of the claim and, hence, of

Theorem 7.60.

161

Chapter 8

Conclusion

We studied galaxy cutsets as simple models for virus-like attacks and cas-

cading failures in graphs, giving attention to the problems of identifying

vulnerabilities in a given graph, designing resilient graphs, fixing existing

vulnerabilities by protecting edges, and relating the cutsets to a suitable

type of flow. The numerous hardness results we obtained indicate that re-

searchers concerned with practical applications on real-world networks might

do well to consider approximation algorithms, bi-criteria approaches, or even

just heuristics without provable performance guarantees.

We close by listing open problems related to cutsets of radius r and galaxy

cutsets, and also indicate possible avenues for future work concerning the

weighted d-noninterfering flows that were the subject of Chapter 5. We

begin with the list of open problems:

Open Problem 8.1. What is the computational complexity of determining

whether a given graph has a spanning subgraph without star-cutsets of radius

r for 1 ≤ r ≤ 3?

Open Problem 8.2. Find an approximately minimum spanning subgraph

without star-cutsets of radius 1 in a graph that has no star-cutsets of radius

1.

163

Open Problem 8.3. Give a non-trivial approximation algorithm for the

vertex variant of the Network Protection Problem. Also, what is the hardness

of approximation for this variant, in planar or general graphs?

Open Problem 8.4. Can the run-time of the algorithm for finding star-

cutsets of radius r be improved? In particular, can the dependence on r in

the run-time be removed?

Open Problem 8.5. Investigate bi-criteria results for galaxy cutsets. For

example, assuming that a graph has a galaxy cutset of order k, can we find

a galaxy cutset of order ck, where c > 1 is a constant?

An interesting direction for future work concerning the weighted d-flows

would be to investigate the multi-commodity case, where we wish to find

weighted flows between si and ti, for i = 1, . . . , k, that are d-noninterfering

and maximise total weight. By the techniques of Section 5.2, we can easily

obtain an upper bound of O(α log n), where α is the approximation achiev-

able in the unweighted case. Unfortunately, the unweighted version is ex-

tremely hard to approximate since it is the edge-disjoint paths problem

studied by Guruswami et al. [45]. They show this problem is inapprox-

imable to within α = m
1
2
−ε, for any ε > 0, in directed graphs and give an

approximation algorithm that essentially matches this lower bound.

Another promising avenue would be to introduce congestion into the

picture, i.e. rather than require the paths in a flow to be d-noninterfering,

we would allow a constant (or logarithmic) number of them to intersect

any one d-star. Routing with congestion has been a very fruitful area of

research, particularly with regards to multi-commodity flows; picking just a

few examples from the vast literature, we point the interested reader to the

work of Andrews et al. ([3]), Chekuri et al. ([9]), and Chuzhoy et al. ([17]).

164

References

[1] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics,

160(2):781–793, 2004.

[2] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms,

and Applications. Prentice-Hall, 1993.

[3] M. Andrews, J. Chuzhoy, V. Guruswami, S. Khanna, K. Talwar, and

L. Zhang. Inapproximability of edge-disjoint paths and low congestion rout-

ing on undirected graphs. Technical Report TR14-113, Electronic Colloquium

on Computational Complexity, 2007.

[4] T. Asano, S. Kikuchi, and N. Saito. An efficient algorithm to find a hamil-

tonian circuit in a 4-connected maximal planar graph. Graph Theory and

Algorithms, pages 182–195, 1981.

[5] G. Baier, E. Kohler, and M. Skutella. The k-splittable flow problem. Algo-

rithmica, 42:231–248, 2005.

[6] D. Bienstock and S. Mattia. Using mixed-integer programming to solve power

grid blackout problems. Discrete Optimization, 4:115–141, 2007.

[7] B. Bollobás. Modern Graph Theory. Springer, New York, 1998.

[8] J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert spaces.

Israeli Journal of Mathematics, 52:46–52, 1985.

[9] C. Chekuri, S. Khanna, and B. Shepherd. Edge-disjoint paths in planar

graphs with constant congestion. SIAM Journal on Computing, 39:281–301,

2009.

165

[10] J. Chen, R. Kleinberg, L. Lovasz, R. Rajaraman, R. Sundaram, and A. Vetta.

(almost) tight bounds and existence theorems for confluent flows. In Proceed-

ings of the 36th ACM Symposium on Theory of Computing (STOC), pages

529–538, 2004.

[11] J. Chen, R. Rajaraman, and R. Sundaram. Meet and merge: approximation

algorithms for confluent flow. In Proceedings of the 35th ACM Symposium

on Theory of Computing (STOC), pages 373–382, 2003.

[12] J. Cheriyan, A. Sebo, and Z. Szigeti. Improving on the 1.5-approximation of

a smallest 2-edge connected spanning subgraph. SIAM Journal on Discrete

Mathematics, 14:170–180, 2001.

[13] J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected

spanning subgraphs via matching. SIAM Journal on Computing, 30:528–560,

2000.

[14] J. Cheriyan, S. Vempala, and A. Vetta. Approximation algorithms for

minimum-cost k-vertex connected subgraphs. SIAM Journal on Computing,

32(4):1050–1055, 2003.

[15] J. Cheriyan and A. Vetta. Approximation algorithms for network design

with metric costs. In Proceedings of the 37th ACM Symposium on Theory of

Computing, pages 167–175, 2005.

[16] M. Chudnovski, N. Robertson, P. Seymour, and R. Thomas. The strong

perfect graph theorem. Annals of Mathematics, 164:51–229, 2006.

[17] J. Chuzhoy, V. Guruswami, S. Khanna, and K. Talwar. Hardness of rout-

ing with congestion in directed graphs. In Proceedings of the 39th ACM

Symposium on Theory of Computing (STOC), pages 165–178, 2007.

[18] V. Chvátal. Star-cutsets and perfect graphs. Journal of Combinatorial The-

ory B, 39:189–199, 1985.

[19] A. Clementi, P. Penna, and R. Silvestri. Hardness results for the power

range assignment problem in packet radio networks. In Proceedings of the

166

3rd International Workshop on Approximation Algorithms for Combinatorial

Optimization, pages 197–208, 1999.

[20] G. Cornuéjols. The strong perfect graph theorem. Optima, 70:2–6, 2003.

[21] P. Crucitti, V. Latora, and M. Marchiori. Model for cascading failures in

complex networks. Physical Review E, 69(4):045104, 2004.

[22] R. Diestel. Graph Theory. Springer, 2005.

[23] Y. Dinitz, N. Garg, and M. Goemans. On the single-source unsplittable flow

problem. Combinatorica, 19:17–41, 1999.

[24] U. Feige. A threshold of lnn for approximating set cover. Journal of the

ACM, 45:634–652, 1998.

[25] M. Fellows. The robertson-seymour theorems: a survey. Contemporary Math-

ematics, 89, 1989.

[26] S. Finbow and B. Hartnell. On designing a network to defend against random

attacks of radius two. Networks, 19:771–792, 1989.

[27] S. Finbow, A. King, G. MacGillivray, and R. Rizzi. The firefighter problem

for graphs of maximum degree three. Discrete Mathematics, 307(16):2094–

2105, 2007.

[28] S. Finbow and G. MacGillivray. The firefighter problem: a survey of results,

directions and questions. The Australasian Journal of Combinatorics, 43,

2009.

[29] L. Ford and D. Fulkerson. A simple algorithm for finding maximal network

flows and an application to the Hitchcock problem. Canadian Journal of

Mathematics, 9:210–218, 1957.

[30] S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomor-

phism problem. Theoretical Computer Science, 10:111–121, 1980.

167

[31] A. Frank. Connectivity augmentation problems in network design. In J. Birge

and K. Murty, editors, Mathematical Programming: State of the Art, pages

34–63. University of Michigan Press, 1994.

[32] A. Frank and T. Jordan. Minimal edge-coverings of pairs of sets. Journal of

Combinatorial Theory B, 65:73–110, 1995.

[33] H. Gabow. A matroid approach to finding edge connectivity and packing

arborescences. Journal of Computer and System Sciences, 50:259–273, 1995.

[34] H. Gabow. An ear decomposition approach to approximating the smallest

3-edge connected spanning subgraph of a multigraph. SIAM Journal on

Discrete Mathematics, 18(1):41–70, 2004.

[35] H. Gabow. Using expander graphs to find vertex-connectivity. Journal of

the ACM, 53(5):800–844, 2006.

[36] H. Gabow, M. Goemans, E. Tardos, and D. Williamson. Approximating the

smallest k-edge connected spanning subgraph by LP-rounding. In Proceedings

of the 16th Symposium on Discrete Algorithms, pages 562–571, 2005.

[37] M. Garey and D. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,

1990.

[38] N. Garg, V. Vazirani, and M. Yannakakis. Approximate max-flow min-

(multi)cut theorems and their applications. SIAM Journal on Computing,

25:235–251, 1996.

[39] S. Guha and S. Khuller. Approximation algorithms for connected dominating

sets. Algorithmica, 20:374–387, 1998.

[40] G. Gunther. Neighbour-connectivity in regular graphs. Discrete Applied

Mathematics, 11(3):233–243, 1985.

[41] G. Gunther and B. Hartnell. On minimizing the effects of betrayals in a

resistance movement. Congressus Numerantium, 22:285–306, 1978.

168

[42] G. Gunther and B. Hartnell. Optimal k-secure graphs. Discrete Applied

Mathematics, 2:225–231, 1980.

[43] G. Gunther and B. Hartnell. Security of underground resistance movements.

In N. Memon, J. Farley, D. Hicks, and T. Rosenorn, editors, Mathematical

Methods in Counterterrorism, pages 185–204. Springer, 2009.

[44] G. Gunther, B. Hartnell, and R. Nowakowski. Neighbour-connected graphs

and projective planes. Networks, 17(2):241–247, 2006.

[45] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis.

Near-optimal hardness results and approximation algorithms for edge-disjoint

paths and related problems. Journal of Computer and System Sciences,

67:473–496, 2003.

[46] M. Hajiaghayi, G. Kortsarz, V. Mirrokni, and Z. Nutov. Power optimization

for connectivity problems. In Proceedings of the 11th Conference on Integer

Programming and Combinatorial Optimization, pages 349–361, 2005.

[47] F. Harary. Graph Theory. Perseus Books, 1963.

[48] B. Hartnell. The optimum defense against random subversions in a network.

In Proceedings of the 10th Southeast conference on Combinatorics, Graph

Theory and Computing, pages 494–499, 1979.

[49] B. Hartnell. Firefighter! an application of domination. Presentation. 24th

Manitoba Conference on Combinatorial Mathematics and Computing, 1995.

[50] B. Hartnell and W. Kocay. On minimal neighbourhood-connected graphs.

Discrete Mathematics, 92:95–105, 1991.

[51] J. Hastad. Clique is hard to approximate within n1−ε. In Proceedings of

the 37th IEEE annual symposium on foundations of computer science, pages

627–636, 1996.

[52] A. Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[53] R. Hayward. Two classes of perfect graphs. PhD thesis, McGill University,

1986.

169

[54] P. Holme. Efficient local strategies for vaccination and network attack. Eu-

rophysics Letters, 68:908–914, 2004.

[55] K. Jain. A factor 2 approximation algorithm for the generalized Steiner

network problem. Combinatorica, 21(1):39–60, 2001.

[56] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence

through a social network. In KDD ’03: Proceedings of the 9th ACM SIGKDD

international conference on knowledge discovery and data mining, pages 137–

146, New York, NY, USA, 2003. ACM.

[57] S. Khuller. Approximation algorithms for finding highly connected sub-

graphs. In D. Hochbaum, editor, Approximation Algorithms for NP-hard

Problems, pages 236–265. PWS Pub. Co., Boston, 1995.

[58] S. Khuller and U. Vishkin. Biconnectivity approximations and graph carv-

ings. Journal of the ACM, 41(2):214–235, 1994.

[59] A. King and G. MacGillivray. The firefighter problem for cubic graphs.

Discrete Mathematics, 310(3):614–621, 2010.

[60] L. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc. Power consumption in

packet radio networks. Theoretical Computer Science, 243:289–305, 2000.

[61] P. Klein, S. Plotkin, and S. Rao. Excluded minors, network decomposition

and multicommodity flow. In Proceedings of the 25th Symposium on the

Theory of Computing (STOC), pages 682–690, 1993.

[62] J. Kleinberg. Single-source unsplittable flow. In Proceedings of the 37th on

Foundations of Computer Science (FOCS), pages 68–77, 1996.

[63] R. Koch and I. Spenke. Complexity and approximability of k-splittable flows.

Theoretical Computer Science, 369:338–347, 2006.

[64] G. Kortsarz, R. Krauthgamer, and J. Lee. Hardness of approximation al-

gorithm for vertex-connectivity network design problems. SIAM Journal on

Computing, 33(3):704–720, 2004.

170

[65] G. Kortsarz and Z. Nutov. Approximation algorithm for k-node connected

subgraphs via critical graphs. In Proceedings of the 36th ACM Symposium

on Theory of Computing, pages 138–145, 2004.

[66] G. Kortsarz and Z. Nutov. Approximating minimum cost connectivity prob-

lems. In T. Gonzalez, editor, Handbook on Approximation Algorithms and

Metaheuristics, chapter 58. Chapman & Hall / CRC, 2007.

[67] D. Kratsch and J. Spinrad. Between O(nm) and O(nα). In Proceedings of the

14th annual ACM-SIAM symposium on discrete algorithms, pages 709–716,

2003.

[68] C. Kuratowski. Sur le problème des courbes gauches en topologie. Fund.

Math., 15:271–283, 1930.

[69] T. Leighton and S. Rao. Multi-commodity max-flow min-cut theorems and

their use in approximation algorithms. Journal of the ACM, 46:787–832,

1999.

[70] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some

of its algorithmic applications. Combinatorica, 15:215–245, 1995.

[71] C. McDiarmid, B. Reed, A. Schrijver, and B. Shepherd. Non-interfering

dipaths in planar digraphs. Technical report, Centrum voor Wiskunde en

Informatica, 1991.

[72] C. McDiarmid, B. Reed, A. Schrijver, and B. Shepherd. Non-interfering net-

work flows. In Proceedings of the 3rd Scandinavian Workshop on Algorithm

Theory (SWAT), pages 245–257. Springer-Verlag, 1992.

[73] K. Menger. Zur allgemeinen Kurventheorie. Fund. Math., 10:96–115, 1927.

[74] A. Motter. Cascade control and defense in complex networks. Physical Review

Letters, 93(9):098701, 2004.

[75] A. Motter and Y. Lai. Cascade-based attacks on complex networks. Physical

Revue E, 66(6):065102, 2002.

171

[76] J. Munkres. Topology. Prentice Hall, 2000.

[77] H. Nagamochi and T. Ibaraki. Algorithmic aspects of graph connectivity.

Cambridge University Press, 2008.

[78] G. Naves, N. Sonnerat, and A. Vetta. Flows on disjoint paths. Submitted.

[79] Z. Nutov. An almost O(log k)-approximation for k-connected subgraphs.

In SODA ’09: Proceedings of the 20th Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 912–921, 2009.

[80] H. Okamura and P. Seymour. Multicommodity flows in planar graphs. Jour-

nal of Combinatorial Theory B, 31:75–81, 1981.

[81] B. Reed. Skew partitions in perfect graphs. Discrete Applied Mathematics,

156:1150–1156, 2008.

[82] N. Roussopoulos. A max{m,n} algorithm for determining the graph H from

its line graph G. Information Processing Letters, 2:108–112, 1973.

[83] F. Salazar and M. Skutella. Single-source k-splittable min-cost flows. Oper-

ations Research Letters, 37:71–74, 2009.

[84] A. Schrijver. Combinatorial Optimization. Springer, 2003.

[85] P. Seymour. On odd cuts and plane multicommodity flows. Proceedings of

the London Mathematical Society, 42(3):178–192, 1991.

[86] B. Shepherd. Single-sink multicommodity flow with side constraints. In

W. Cook, L. Lovasz, and J. Vygen, editors, Research Trends in Combinatorial

Optimization, pages 429–450. Springer, 2009.

[87] N. Sonnerat and A. Vetta. Edge immunization in planar graphs. In prepa-

ration.

[88] N. Sonnerat and A. Vetta. A minmax theorem for non-interfering flows and

galaxy cutsets in planar graphs. Submitted.

[89] N. Sonnerat and A. Vetta. Network connectivity and malicious attacks. Sub-

mitted.

172

[90] N. Sonnerat and A. Vetta. Galaxy cutsets in graphs. Journal of Combinato-

rial Optimization, 19(3):415–427, 2010.

[91] Nicolas Sonnerat and Adrian Vetta. Defending planar graphs against star-

cutsets. Electronic Notes in Discrete Mathematics, 34:107 – 111, 2009. Eu-

ropean Conference on Combinatorics, Graph Theory and Applications (Eu-

roComb 2009).

[92] R. Uehara. NP-complete problems on a 3-connected cubic planar graph

and their applications. Technical Report TWCU-M-0004, Tokyo Woman’s

Christian University, 1996.

[93] V. Vazirani. Approximation Algorithms. Springer, 2001.

[94] S. Vempala and A. Vetta. Factor 4/3 approximations for minimum two-

connected subgraphs. In Proceedings of the 3rd International Workshop on

Approximation Algorithms for Combinatorial Optimization, pages 262–273,

2000.

[95] H. Whitney. A theorem on graphs. Annals of Mathematics, 32(2):378–390,

1931.

173

