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Abstract

In this thesis, reinforcement learning (RL) for multi-stage decision making problems where

the decision maker or the agent has partial observations of the state are considered.

Many real world systems are partially observable—some examples are autonomous driving,

robotics, smart grids, etc. However, most of the research on RL is centered around fully

observable systems. Partially observable systems are considerably harder than fully observ-

able systems because finding the optimal policy involves considering the entire trajectory

of past actions and observations to decide on the current action. The exponential growth

of history-dependent policies makes it much harder to find an optimal policy, whereas in

fully observable systems the policy search space is much smaller. This further exacerbates

issues related to high dimensionality of the observation, action and/or state spaces. The

belief distribution over states can be used instead of the past actions and observations to

circumvent the exponential growth of policies, but this requires model information about

the system which may not always be available in a reinforcement learning setting.

An alternative to the history or belief distribution over states is the more general notion

of the information state which is a representation that is sufficient for learning optimal agent

behavior. The entire history and the belief state may be viewed as instances of information

state. A desirable information state allows us to compress the history to a smaller size so

that the policy search space is smaller. An approximate information state (AIS) can be

learnt from data using function approximation without requiring any model information.

One of the most important steps in learning an effective AIS is being able to predict

the probability distribution of the next AIS/observation given the current AIS and action.

This is done by optimizing integral probability metrics (IPMs) which try to decrease the

“distance” between the predicted distribution and the actual distribution. We demonstrate

the versatility of AIS using two different choices of IPMs. One is the Wasserstein distance

which is optimized in terms of a surrogate KL-divergence loss (KL IPM). The second is a

distance-based maximum mean discrepancy loss (MMD IPM).

We show the scalability of the proposed methods through numerical experiments in

environments of increasing difficulty. These methods are compared with approximate plan-

ning solutions for low and moderate-dimensional environments for a model-based baseline.

For a model-free RL baseline, a recently proposed method using proximal policy optimiza-

tion (PPO) with recurrent connections (LSTM) is used for all environments. We show that
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the proposed RL methods based on AIS outperform the PPO with LSTM baseline in most

environments. We also show that the performance achieved by our RL algorithms is close

to the near optimal approximate planning solutions in the low and moderate-dimensional

environments.
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Résumé

Dans cette thèse, l’apprentissage par renforcement pour les problèmes de prise de décision à

plusieurs étapes où le décideur ou l’agent a des observations partielles de l’état est considéré.

De nombreux systèmes du monde réel sont partiellement observables—certains exemples

sont la conduite autonome, la robotique, les réseaux intelligents, etc. Cependant, la plu-

part des recherches sur la l’apprentissage par renforcement sont centrées sur des systèmes

entièrement observables. Les systèmes partiellement observables sont considérablement

plus difficiles que les systèmes entièrement observables parce que la recherche de la poli-

tique optimale implique la prise en compte de l’ensemble de la trajectoire des actions et

des observations passées pour décider de l’action en cours. La croissance exponentielle des

politiques dépendantes de l’histoire rend beaucoup plus difficile la recherche d’une politique

optimale, alors que dans les systèmes entièrement observables, l’espace de recherche sur les

politiques est beaucoup plus restreint. Cela exacerbe encore les problèmes liés à la haute

dimensionnalité des espaces d’observation, d’action et/ou d’état. La répartition des croy-

ances sur les états peut être utilisée à la place des actions et des observations passées pour

contourner la croissance exponentielle des politiques, mais cela nécessite des informations

modèles sur le système qui ne sont pas toujours disponibles dans un cadre d’apprentissage

par renforcement.

Une alternative à la distribution de l’histoire ou des croyances sur les états est la notion

plus générale d’état d’information qui est une représentation suffisante pour l’apprentissage

du comportement optimal de l’agent. L’ensemble de l’histoire et l’état de croyance peu-

vent être considérés comme des exemples d’état d’information. Un état d’information

souhaitable nous permet de comprimer l’histoire à une taille plus petite de sorte que

l’espace de recherche des politiques est plus petit. Un état d’information approximatif

peut être appris à partir de données en utilisant l’approximation de fonction sans avoir

besoin d’informations de modèle.

L’une des étapes les plus importantes dans l’apprentissage d’un état d’information ap-

proximatif efficace est de pouvoir prédire la distribution de probabilité du prochain état

d’information approximatif/observation en fonction d’état d’information approximatif et

de l’action en cours. Cela se fait en optimisant les métriques de probabilité intégrales qui

tentent de réduire la “distance” entre la distribution prévue et la distribution réelle. Nous

démontrons la polyvalence de l’état d’information approximatif en utilisant deux choix
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différents de métriques de probabilité intégrales. Le premier est la distance de Wasserstein

qui est optimisée en termes de perte de divergence Kullback-Leibler de substitution. Le

second est une perte de divergence moyenne maximale basée sur la distance.

Nous démontrons l’extensibilité des méthodes proposées par des expériences numériques

dans des environnements de difficulté croissante. Ces méthodes sont comparées à des so-

lutions de planification approximatives pour des environnements de faible et moyenne di-

mension pour une base de référence basée sur un modèle. Pour une ligne de base RL

sans modèle, une méthode récemment proposée utilisant l’optimisation des politiques prox-

imales avec connexions récurrentes (LSTM) est utilisée pour tous les environnements. Nous

montrons que les méthodes d’apprentissage par renforcement proposées basées sur l’état

d’information approximatif sont plus performantes que l’optimisation des politiques prox-

imales avec ligne de base LSTM dans la plupart des environnements. Nous montrons

également que les performances obtenues par nos algorithmes d’apprentissage par renforce-

ment sont proches des solutions de planification approximatives presque optimales dans les

environnements à faible et moyenne dimension.
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Chapter 1

Introduction

1.1 Motivation

Systems in which only a part of the state is observed are called partially observable systems.

Many real world systems are partially observable—some examples are autonomous driving,

robotics, smart grids, etc. The main goal of this thesis is to design learning algorithms that

allow the decision maker or agent to make multi-stage decisions (or actions) in partially

observable systems that lead to favourable outcomes. Reinforcement learning (RL) is one

such approach which is based on the agent learning which actions to take based on rewards

that it receives for performing certain actions in certain states. RL does not require model

information and is referred to as model-free learning. This is in contrast to model-based

planning methods like dynamic programming, which use model information to learn optimal

decision making strategies. RL has a natural fit for settings where the system dynamics

(model information) are unknown, but data can be generated from the system which can

then be used for learning agent behaviour. It is often the case that we do not know the

dynamics for real word systems and so it is desirable to apply RL to partially observable

systems.

However, most of the RL literature assumes that all the necessary information about

the system (the state) is known at every time step and there is a large body of literature

dedicated towards this [1–5]. The literature on systems which are partially observable (only

a part of the state is available) is relatively sparse [6–10]. In contrast to fully observable

systems where the current state information is known at every time step, agents in partially

observable systems need to factor in the entire trajectory of past actions and observations
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to make optimal decisions, and so partially observable systems are much harder to solve.

Developing learning algorithms for agents in partially observable environments would be

helpful for several real world problems. Furthermore, solving partially observable problems

can also help with solving certain types of multi-agent team problems which follow the

partial history sharing paradigm [11].

An information state is a representation that is sufficient for learning optimal decision

making. A desirable information state allows us to compress the history to a smaller size.

An approximate information state (AIS) can be learnt from data using function approxi-

mation without requiring any model information. Integral probability metrics (IPMs) are

used to measure the similarity between two different probability distributions. An AIS

is learnt by optimizing the “distance” between the actual AIS/observation distribution

and the predicted AIS/observation distribution based on the current AIS and action. It

was previously proposed to use the Wasserstein distance to learn the AIS [12]. We show

that general IPMs can be used and also obtain theoretical performance guarantees for a

distance-based maximum mean discrepancy loss (MMD IPM). Our experiments are based

on the Wasserstein distance which is optimized in terms of a surrogate KL-divergence loss

(KL IPM) and the MMD IPM.

We show that one can use RL algorithms in conjunction with the theoretical framework

of AIS towards solving partially observable systems. We demonstrate the extent to which

these ideas can work for simulated environments of varying difficulties from low-dimensional

environments like Tiger [13] and CheeseMaze [14] to high-dimensional MiniGrid environ-

ments [15]. We also develop alternate strategies for high-dimensional observation spaces by

compressing the observations using an autoencoder before applying the learning algorithms.

The rest of this chapter is structured as follows. Sec. 1.3 and 1.4 establish the standard

notation used for MDPs and POMDPs respectively and also describe the relevant funda-

mental dynamic programming equations that can be used to find optimal policies. In Sec.

1.5, some of the recent planning and learning methods for POMDPs are dicussed. We also

describe some of the details of the baseline algorithms used in this work. The planning

baselines are based on recent approaches towards solving partially observable environments

of a tractable size. We conclude this chapter with the details of the exact contributions of

this work, claims of originality and the publication under review.
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1.2 Notation Used

We use uppercase letters to denote random variables (e.g. X, Y ), lowercase letters to denote

their realizations (e.g. x, y). The space of probability distributions of X is given by ∆(X).

P and E denote the probability and expectation of a random variable. Letters in sans serif

font denote sets (e.g. X,Y).

1.3 Markov Decision Processes (MDP)

We start with a review of MDPs, this is standard material from [16–18]. An MDP consists

of the tuple (S,A,P, R, γ) where:

• S is the state space. At each timestep t, the agent is in some state St ∈ S.

• A is the action space. At each timestep t, the agent observes the full state St and

chooses an action based on some policy At = πt(St), where At ∈ ∆(A).

• P is the set of transition kernels for the agent to go from one state to another on

performing a certain action at a certain timestep t, St+1 = P (St, At), where P ∈ P,

St+1 ∈ ∆(S) and At ∈ ∆(A).

• R : S×A 7→ R is the reward function. The reward at timestep t is a random variable

R(St, At), which we denote as Rt.

• γ ∈ [0, 1) is the discount factor used to give more importance to present rewards and

less importance to future rewards. However, for finite horizon problems it can be

omitted.

The performance of a policy π = (π1, π2, . . . , πT) over a time horizon T is given by:

J(π) = Eπ
[

T∑
t=1

Rt

]
. (1.1)

The objective is to find a policy π for the agent that maximizes the expected total reward.

This can be done by dynamic programming as follows.
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Proposition 1 (Policy evaluation for MDPs). For any given (state-dependent) policy π,

define the reward-to-go function for any time t and realization st of state St as

V π
t (st) := Eπ

[ T∑
i=t

Ri

∣∣∣∣ St = st

]
. (1.2)

The reward-to-go functions defined above satisfy the following recursion. Define V π
T+1(ST+1) =

0 and for any t ∈ {T, . . . , 1},

V π
t (st) = Eπ

[
Rt + V π

t+1(St+1)
∣∣ St = st

]
. (1.3)

The reward-to-go function V π
t (st) denotes the expected cumulative rewards obtained

in the future when starting from state st at time t and following policy π. Note that

V π
t (st) depends on the policy π only through the choice of the future policy (πt, . . . , πT)

and therefore can be computed without the knowledge of the past policy (π1, . . . , πt−1).

Proposition 2 (Dynamic programming for MDPs). Recursively define value functions

{Vt : St → R}T+1
t=1 as follows. VT+1(ST+1) := 0 and for t ∈ {T, . . . 1},

Vt(st) := max
at∈A

E
[
Rt + Vt+1(St+1)

∣∣ St = st, At = at
]
. (1.4)

Then, a policy π = (π1, . . . , πT) is optimal if and only if for all t ∈ {1, . . .T} it satisfies

Supp(πt(st)) ⊆ arg max
at∈A

E
[
Rt + Vt+1(St+1)

∣∣ St = st, At = at
]
. (1.5)

Note that the expectation in (1.4) can be computed without the knowledge of the

policy π.

1.4 Partially Observable Markov Decision Processes (POMDP)

We start with a review of POMDPs, this is standard material from [19]. A POMDP

consists of the tuple (S,A,P, R, γ,O,Y) where the initial elements are the same as in the

MDP problem (except for the actions At). The actions are now a function of the history Ht

of all past actions and observations and are represented by At = πt(Ht), where At ∈ ∆(A).

The observational elements are described as follows:
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• Instead of seeing the actual state St+1, we see observation Yt ∈ ∆(Y) after taking

action At in state St. Y is the space of observations.

• O is the conditional observation probability which governs the observational dynamics

of the system as Yt = O(St+1, At), where Yt ∈ ∆(Y)

The objective of the agent remains the same as in the MDP case described in Eq. (1.1).

The only major difference is that the policies defined in this case are not defined over the

states St, but over trajectories of actions and observations, i.e., the history Ht. A standard

approach is to consider the belief over the state space as a “state” (usually called belief

state) instead of the history Ht itself. Given a history Ht with realization ht, the belief

state at time t is defined as,

bt(st) := P(St = st|Ht = ht).

Suppose we are given an initial belief state b0 ∈ ∆(S), which represents the probability

distribution over states. For t ∈ {T− 1, . . . 0}, the updated belief state bt+1 can be written

in terms of the current belief state bt and the POMDP observation and transition dynamics

as follows,

bt+1(st+1) =
P(yt | st+1, at)

P(yt | bt, at)
∑
st∈S

P(st+1 | st, at)bt(st),

P(yt | bt, at) =
∑
st+1∈S

P(yt | st+1, at)
∑
st∈S

P(st+1 | st, at)bt(st).

A dynamic program can be written down to solve for the optimal policy using the belief

state as follows (this can be done because the belief state is a sufficient statistic for optimal

policies in POMDPs).

Proposition 3 (Policy evaluation for POMDPs using belief state). For any given (belief

state-dependent) policy π, define the reward-to-go function for any time t and realization

bt of belief Bt as

V π
t (bt) := Eπ

[ T∑
i=t

Ri

∣∣∣∣ Bt = bt

]
. (1.6)
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The reward-to-go functions defined above satisfy the following recursion. Define V π
T+1(BT+1) =

0 and for any t ∈ {T, . . . , 1},

V π
t (bt) = Eπ

[
Rt + V π

t+1(Bt+1)
∣∣ Bt = bt

]
. (1.7)

The reward-to-go function V π
t (bt) denotes the expected cumulative rewards obtained in

the future when starting from belief bt at time t and following policy π. Note that V π
t (bt)

only depends on the policy π only through the choice of the future policy (πt, . . . , πT) and

therefore can be computed without the knowledge of the past policy (π1, . . . , πt−1).

Proposition 4 (Dynamic programming for POMDPs using belief state). Recursively define

value functions {Vt : Bt → R}T+1
t=1 as follows. VT+1(BT+1) := 0 and for t ∈ {T, . . . 1},

Vt(bt) := max
at∈A

E
[
Rt + Vt+1(Bt+1)

∣∣ Bt = bt, At = at
]
. (1.8)

Then, a stochastic policy π = (π1, . . . , πT) is optimal if and only if for all t ∈ {1, . . .T} it

satisfies

Supp(πt(bt)) ⊆ arg max
at∈A

E
[
Rt + Vt+1(Bt+1)

∣∣ Bt = bt, At = at
]
. (1.9)

Note that the expectation in (1.8) can be computed without the knowledge of the

policy π.

The belief space ∆(S) is the space of probability distributions over the state space.

Although the belief space is continuous, it does not increase in size over time (as history

does) and it has the following useful properties:

1. It is a sufficient statistic for optimal policies (it can be used to determine an optimal

policy just as well as if we were using Ht instead).

2. The value function is piecewise linear and convex (PWLC). This means that it can

be represented by a set of hyperplanes in the belief space which are generally referred

to as α-vectors. For a belief bt at time t, and a finite collection of hyperplanes Γ, this

can be written as

V (bt) = max
α∈Γ

(α.bt). (1.10)

The PWLC property is preserved even after dynamic programming updates are made

to the value function.



1 Introduction 7

1.5 Overview of current techniques for planning and learning in

POMDPs

Most approaches to solve MDP/POMDP problems can be categorized as model-based

(planning) or model-free (learning) methods (although sometimes a hybrid approach is

also followed). Model-based methods use model information such as the observation and

transition probabilities and reward function used in the problem, whereas model-free meth-

ods rely on the agent acting in the environment and learning from the data observed by

the agent. Model-based methods require model information which is not always available

and they work extremely well for smaller problems, but for larger problems they become

computationally intractable and model-free methods tend to be more effective.

1.5.1 Planning in POMDPs

Model-based methods are categorized as exact or approximate methods based on whether

they solve the dynamic program for the belief state exactly or approximately. The PWLC

property of the value function of the belief state allows it to be represented by a number

of hyperplanes in the belief space denoted as α-vectors.

Incremental pruning [20] is an exact method that takes advantage of these properties

to find the set of α-vectors that represents the optimal value function without having

any redundant α-vectors that are dominated by others, i.e., referred to as a set having

unique representation of minimum size in [20]. At the initial step there are a certain

number of α-vectors, which become much larger after every backup operation (dynamic

programming update), but many of the α-vectors obtained after performing a backup are

dominated by other α-vectors because of the max operation in Eq. (1.10) and can be

discarded. Dominated α-vectors can be found by solving a linear program and pruned

accordingly. One of the main drawbacks of this method is that it considers the entire belief

space, even though many of these points would never be reached for certain problems.

To reduce the number of belief points considered in the backup operations, point-based

value iteration (PBVI) [8] can be used to only consider the reachable belief space rather

than the entire belief space. This is an approximate method and works by considering the

initial belief point and expanding it based on transition and observation probabilities for

all possible actions. This limits the exponential growth (the growth becomes a polynomial
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function of the factors involved) of α-vectors at every time step and thus the pruning step

takes much lesser time. PBVI also has theoretical guarantees on the error estimates of the

value function. This allows pruning based methods which take advantage of the PWLC

property to be applied to much larger problems.

Another considerable reduction can be achieved by the method of successive approxi-

mations of the reachable space under optimal policies (SARSOP) [21], which further tries

to consider the reachable space of belief points under an optimal policy. This is done by

considering an upper and lower bound to the value function and following some heuristics

to increase the likelihood of selecting belief points that would only be reachable under an

optimal policy. This is also an approximate method and is applicable to larger problems

than PBVI.

In contrast, a method which follows a completely different approach is an approximate

method called QMDP [22]. This method uses the transition dynamics to solve the MDP

problem as if the full state information was available and arrives at a value function based on

state. It then combines the belief state information with these values to arrive at a value

function for the partial observation case. This method is capable of working in certain

problems, but a major disadvantage is that it is unable to find policies which need to take

an action to gain information so that it can make a more informed decision. This method

can be combined with learning approaches to overcome some of the limitations.

The planning methods described above are some of the standard methods to solve

POMDPs that do not have very high dimensionality in their state, observation and action

spaces. There is also standardized code available [23] to compare these algorithms with

each other. This allows us to easily use these algorithms as a planning baseline for com-

parison with our approach. It should be noted that several other approaches to planning

in POMDPs exist, however, we do not present these as we do not use them in the nu-

merical experiments of this work. Some such algorithms are partially observable Monte

Carlo planning (POMCP) [24] which uses a Monte Carlo update of the agent’s belief state

with a Monte Carlo tree search from the current belief state, anytime regularized deter-

minized sparse partially observable tree (ARDESPOT) [25], Monte Carlo value iteration

(MCVI) [26] which presents an algorithm for continuous-state and continuous-observation

POMDPs, anytime error minimization search (AEMS) [27] which aims to make more effi-

cient computations by combining offline and online computations effectively. For a survey

of point-based POMDP solvers see [28].
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An alternative to these approaches is to consider the general idea of information state,

which is a subset of all the information available to us (history of observations and actions)

and is sufficient to find the optimal policy through dynamic programming. This allows

us to reduce the policy search space considerably and allows more flexibility for planning

solutions. Since the PWLC properties no longer necessarily hold, the solution methods

for an information state are based on approximate dynamic programming [29]. But even

in these cases, the planning solutions may become intractable for larger observation, state

and action spaces.

1.5.2 Learning in POMDPs

In RL, the policy can be directly optimized to maximize returns. These methods are called

policy gradient methods. REINFORCE [1] and recurrent policy gradients (RPG) [30] can

be used for fully and partially observed systems respectively. A more recent policy gradient

method is proximal policy optimization (PPO) [31]. These algorithms are described in

detail at the end of this section.

Since there has been more work done on fully observable systems than on partially

observable systems in RL, one direction has been to try to convert partially observable

systems to fully observable systems by adding together past observations like in Atari

games [32], the frames are stacked together in an attempt to incorporate more information

in a decision making step. But it is not always computationally feasible to catch longer

temporal dependencies in this manner and it is desirable for a learnt representation to

develop notions of these dependencies via a learning process rather than setting it as a

design parameter for a network. The closest work that is similar to DQN [3] for the partially

observable case is deep recurrent Q-Networks (DRQN) [33] which involves creating a replay

buffer of the agent’s experiences and sampling truncated trajectories (instead of transition

samples as in DQN) from it in order to train recurrent network policies (up to a maximum

of 10 recent frames in their experiments). The limitation of this work is that the horizons

that are set are not very large, so long temporal dependencies cannot be captured.

More recent state-of-the-art work using recurrent policy networks with replay buffers is

recurrent replay distributed DQN (R2D2) [10] which uses sequences up to a length of 80

frames in some experiments and improves upon several existing baselines in the Atari [32]
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and DMLab-30 [34] environments. R2D2 incorporates some features from Rainbow DQN [4]

and trains with an asynchronous multi-actor decentralized architecture. Some ways of

initializing the internal cell states of the recurrent cells are introduced to facilitate effective

learning.

Another approach is to learn a representation that is capable of predicting the next

observation/next latent state as is done in world models [6], learning causal state repre-

sentations [7] and approximate information state (AIS) [12]. In AIS, using this main idea

makes it possible to apply approximate dynamic programming and RL algorithms with the-

oretical gurantees. More recent work on world models is PlaNet [35] and learning behaviors

by latent imagination [36]. These ideas involve learning a model of the dynamics of the en-

vironment and then acting in the environment based on this environment dynamics model.

PlaNet applies a planning solution to the learnt dynamics, whereas learning behaviors by

latent imagination learns a policy by RL on artificial data that is generated by the learnt

model. The main difference between papers based on world models and AIS is that there

are provable theoretical guarantees on optimal performance with AIS. The world model

based papers are based on several heuristics and empirical results. Another important dif-

ference is the method by which a representation is learnt, the techniques proposed in AIS

could be directly applicable to learning effective environment models. In addition to this,

the work presented in this thesis proposes more general ways to learn such environment

models.

State aggregation techniques based on bisimulation metrics have been proposed in [37,

38] for MDPs and [39] for POMDPs. The key insight of these papers is to define a semi-

metric called bisimulation metric on the state space of an MDP or the belief space of a

POMDP as the unique fixed point of an operator on the space of semi-metrics on the state

space of the MDP or the belief space of the POMDP. It is then shown that the value

function is Lipschitz with respect to this metric. Then, they propose state aggregation

based on the bisimulation metric.

A completely different class of model-based RL algorithms are methods using predictive

state representations (PSRs) [40, 41]. PSRs are constructed only based on observational

data so they can easily be adapted to the RL setup. There have been a number of papers

which use PSRs to propose model based RL algorithms [42–48]. Various methods for

learning low dimensional approximations of PSRs have been proposed in the literature,

including approaches which use spectral learning algorithms [43–48], and stochastic gradient
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descent [48]. Error bounds for using an approximate PSR were derived in [45,49].

Bisimulation metrics and PSRs are conceptually different from the style of arguments

used in this thesis, so we do not make any comparisons with these learning algorithms.

Model-based methods require information about the model that may generally be

unknown. Additionally, although model-based solutions work well for low to moderate-

dimensional problems, they become much harder for high-dimensional problems and the

computations involved become intractable. A more attractive alternative is to consider

model-free solutions which are based on learning from the agent’s past experience with the

environment. In the remainder of this section, we describe the details of the RL background

used in this work.

Policy gradient optimization - REINFORCE/RPG

These methods work on the basis of a parameterized policy, which is updated based on

the policy gradient to improve the performance of the current policy via stochastic gra-

dient ascent methods. From [1], the policy gradient for the full state case based on the

REINFORCE algorithm is given as

∇θJ(θ) = Eπθ [Gt∇θ log πθ(At | St)] . (1.11)

Here Gt is the discounted return obtained from timestep t and is given as
∑T

k=t γ
k−tRk.

The expectation is generally estimated using Monte Carlo samples of trajectories, following

which updates to the parameters θ are made using any stochastic gradient ascent based

method.

For the case of POMDPs, the same algorithm can be followed but using histories Ht

rather than states St and one approach is to use network architectures which have recurrent

connections (like RNNs or LSTMs) like in the recurrent policy gradients (RPG) algorithm

[30]. The gradients in this case must be back-propagated through time (BPTT). One of

the issues with this is that it requires entire trajectories to be fed to the network to get the

output actions for that step. This can be somewhat alleviated by using truncated BPTT

which only requires trajectories up to a certain fixed length to be fed in. However, doing

so results in the loss of sequence information beyond that length in the decision making

process. Based on [30] the policy gradients are given by:
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∇θJ(θ) = Eπθ

[
T∑
t=1

Gt∇θ log πθ(At | Ht)

]
. (1.12)

However, this equation requires episodes to have completed before the returns (and

therefore the gradients) can be calculated. Thus Eq. (1.12) takes a backward view because

it has to look back at past rewards after episode completion. In contrast, a forward view can

also be taken and the same equation can be re-written using the G(PO)MDP gradient [50].

Eq. (1.13) allows us to compute the gradients online instead of computing gradients after

episodes are completed.

∇θJ(θ) = Eπθ

[
T∑
t=1

( t∑
τ=1

∇θ log πθ(At | Ht)

)
γt−1Rt

]
. (1.13)

Proximal policy optimization with LSTMs

A more recent algorithm than RPG which is used in MiniGrid environments [51] as a

baseline (for training from scratch) uses proximal policy optimization (PPO) [31] with a

long short-term memory (LSTM) layer to capture the effect of the history of observations

and actions.

An interesting way to look at the PPO update is by thinking of it as an update which

does not allow the parameters θ to change significantly from the old parameters θold. A

useful term to express this in the objective is the ratio between the policy probabilities

of the new and old policies, i.e., rPPOt (θ) = πθ(at,ht)
πθold (at,ht)

. Another useful concept to define

the PPO loss function is the advantage function which we denote here by APPOt which is

a general term which represents the value function minus an action independent baseline.

The clipped surrogate objective for PPO is given by

LPPO(θ) = Eπθ
[
min(rPPOt (θ)APPOt , clip(rPPOt (θ), 1− εPPO, 1 + εPPO)APPOt )

]
, (1.14)

where εPPO is a hyperparameter which controls how much the ratio rPPOt (θ) is allowed to

deviate from the old policy by restricting it to lie within the [1− εPPO, 1 + εPPO] interval.

The expectation is estimated using Monte Carlo samples of trajectories.

The difference between the original PPO equation in [31] and Eq. (1.14) is that the state

st is replaced by the history ht. This loss can be easily implemented through any Autograd
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library (like TensorFlow or PyTorch). The losses at a time step t can be back-propagated

throughout the entire history ht. Since this might be computationally intensive, something

similar to truncated BPTT can be used by only back-propagating gradients up to a finite

number of time steps (as is done in [51]). Following this, the gradients obtained can be

used in any gradient descent based algorithm (like ADAM).

1.6 Contributions of this work

The focus of this work is to extend the theory of AIS [12] and to evaluate the empirical

performance of the theoretical framework of AIS. The theory of AIS is described in Chapter

2. The details on how reinforcement learning algorithms are designed in conjunction with

AIS are given in Chapter 3. Experimentation on the network architecture and hyper-

parameters are carried out extensively in Chapter 4. The results show improvement in the

performance of the algorithm for the environments considered in [12], as well as positive

results for larger environments like those in the JuliaPOMDP repository [23] and MiniGrid

environments [15]. In addition to improving the experimental results, further improvements

are obtained for the new theory introduced in this work in some cases, although there are

still some limitations to the theory introduced here.

We extend the recently proposed work on AIS [12] to include environments of moderate-

dimensionality and the MiniGrid environments [15] which are of high-dimensionality. The

idea of observation compression is used here to reduce the large observation space to some-

thing more tractable for high-dimensional environments. We introduce the MMD IPM,

develop the corresponding theory and then apply this IPM to the same low, moderate

and high-dimensional environments as the KL IPM (with similar observation compression

for high-dimensional environments). The results based on the KL IPM for environments

considered in [12] are also improved upon.

1.7 Claims of originality and publications

1.7.1 Claims of originality

1. Development of the theory for kernel-based IPM for optimizing AIS.
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2. Improvement in experimental results (low-dimensional environments) of original method-

ology of optimizing AIS using the KL IPM in [12]. Furthermore, produced results for

new environments not considered previously (moderate-dimensional environments).

3. Experimental results (low and moderate-dimensional environments) achieved using

kernel-based MMD IPM.

4. Application of AIS to more difficult (high-dimensional) environments than that origi-

nally proposed in [12]. This includes results for the observation compression paradigm

for both KL and MMD IPMs to environments with a large observation space.

1.7.2 Journal publication under review

J. Subramanian, A. Sinha, R. Seraj, and A. Mahajan, “Approximate information state for

approximate planning and reinforcement learning in partially observed systems,” 2020 [52].

1.7.3 Contributions of co-authors

J. Subramaniam and A. Mahajan contributed equally to the basic ideas involved in AIS.

A. Sinha and A. Mahajan contributed equally to the development of ideas involved in the

kernel based IPMs. A. Sinha was primarily responsible for the numerical results in this

work. R. Seraj was primarily responsible for the low-dimensional results for the planning

baselines, and for the low and moderate-dimensional results for the PPO with LSTM

baseline.
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Chapter 2

Approximate information state

The recently proposed work on approximate information state (AIS) [12] requires that

the predicted AIS/observation distribution be similar to the actual AIS/observation dis-

tribution given the current AIS and the action. To achieve this, they propose using the

Wasserstein distance between the two distributions, but since it is expensive to compute,

a surrogate KL-divergence loss between the two distributions is used which upper-bounds

the Wasserstein distance.

In this work, we develop the notion of similarity between the predicted AIS/observation

distribution and the actual AIS/observation distribution in terms of general integral prob-

ability metrics (IPMs), which can be used to measure the “distance” between the two

distributions. In addition to the already existing approach of using the KL-divergence loss

which upper-bounds the Wasserstein distance (which we denote as KL IPM), we introduce

a distance-based maximum mean discrepancy (MMD IPM) which is based on a reduced

kernel hilbert space (RKHS). We also introduce the idea of learning an AIS with com-

pressed observations to deal with large observation spaces and show how the theoretical

results on AIS naturally to extend to this case.

We begin this chapter by introducing the input-output model considered for POMDPs

in Sec. 2.1. We choose this input-output model because it facilitates our style of arguments

easily. The standard approach for POMDPs is to use the belief state dynamic program

(Prop. 3 and 4). However, this requires model information which is not always available in

the RL setting. Thus, we start by writing down the dynamic program based on history (all

past actions and observations) in Prop. 5 and 6. The history tends to be large because of
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the exponential growth of trajectories and therefore may not be efficient for identifying an

optimal policy. An information state is a compressed representation of the history that is

also a sufficient statistic for finding optimal policies. By using an information state instead

of belief state, we lose the useful PWLC property which makes it easier to find optimal

policies as described in Sec. 1.5.1. Even so, it is sometimes advantageous to do so because

an information state can be significantly smaller than the belief state and so it may be

easier to apply dynamic programming updates. The details are described in Sec. 2.2. Fol-

lowing this, we show how an AIS can be obtained from data in Sec. 2.3 using approximate

dynamic programming. We also show that performance bounds can be obtained for certain

choices of IPMs for the finite horizon case in Sec. 2.3 and for the infinite horizon case in

Sec 2.4.

2.1 Input-output model considered

We view a partially observed system as a black-box input-output system shown in Fig. 2.1

instead of the standard POMDP model described in 1.4. At each time t, the system has

two inputs and generates two outputs. The inputs to the system are a control input (also

called an action) At ∈ A and a disturbance Wt ∈ W. The outputs of the system are an

observation Yt ∈ Y and a reward Rt ∈ R. For the ease of exposition, we assume that A, W,

and Y are finite sets. The analysis extends to general spaces under appropriate technical

conditions. The history is given by past actions and observations, i.e., ht = (a1:t−1, y1:t−1).

Note that this is slightly atypical notation and the order in which the input and output

variables are generated is shown in Fig. 2.2.

System
Stochastic input Wt

Controlled input At

Observation Yt

Reward Rt

Fig. 2.1 A stochastic input-output
system

A1W1

(Y1, R1)

A2W2

(Y2, R2)

At Wt

(Yt, Rt)

Fig. 2.2 The timing diagram of the
input-output system.

We can say that the outputs (Yt, Rt) at time t are some function of all the inputs
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(A1:t,W1:t) up to time t, i.e.,

Yt = ft(A1:t,W1:t) and Rt = rt(A1:t,W1:t),

where {ft : At ×Wt → Y}Tt=1 are called the system output functions and {rt : At ×Wt →
R}Tt=1 are called the system reward functions.

There is an agent which observes the output Yt and generates a control input or the

action At as a (possibly stochastic) function of the history Ht = (Y1:t−1, A1:t−1) of the past

observations and actions, i.e.,

At ∼ πt(Ht),

where π := (πt)t≥1 is a (history-dependent and possibly stochastic) policy. We use Ht to

denote the space of all histories up to time t. Then the policy πt is a mapping from Ht

to ∆(A) (which denotes the space of probability measures on A). We will use πt(at|ht) to

denote the probability of choosing action at at time t given history ht and use Supp(πt(ht))

to denote the support of πt (i.e., the set of actions chosen with positive probability).

We assume that the disturbance {Wt}t≥1 is a sequence of independent random vari-

ables defined on a common probability space (Ω,F ,P). Thus, if the control input process

{At}t≥1 is specified, then the output processes {Yt, Rt}t≥1 are random variables on (Ω,F ,P).

Specifying a policy π for the agent induces a probability measure on the output processes

{Yt, Rt}t≥1, which we denote by Pπ.

Exact planning solutions are easy to compute in the case of MDPs with a finite number

of states and actions through dynamic programming (provided that the number of states

and actions is not too large). Value iteration and policy iteration use the Bellman Opti-

mality Equation [1] to give exact planning solutions through dynamic programming. For

the case of POMDPs, we can view the history Ht as a “state” of a Markov decision process

(MDP) with transition probability

P(Ht+1 = (h′t, a
′
t, yt) | Ht = ht, At = at) =

P(Yt = yt|Ht = ht, At = at), if h′t = ht & a′t = at

0, otherwise

and per-step reward E[Rt|Ht, At]. The same procedure for MDPs can be followed after

that.

Proposition 5 (Policy evaluation for POMDPs using history as state). For any given
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(history-dependent) policy π, define the reward-to-go function for any time t and realization

ht of history Ht as

V π
t (ht) := Eπ

[ T∑
i=t

Ri

∣∣∣∣ Ht = ht

]
. (2.1)

The reward-to-go functions defined above satisfy the following recursion. Define V π
T+1(HT+1) =

0 and for any t ∈ {T, . . . , 1},

V π
t (ht) = Eπ

[
Rt + V π

t+1(Ht+1)
∣∣ Ht = ht

]
. (2.2)

The reward-to-go function V π
t (ht) denotes the expected cumulative rewards obtained in

the future when starting from history ht at time t and following policy π. Note that V π
t (ht)

only depends on the policy π only through the choice of the future policy (πt, . . . , πT) and

therefore can be computed without the knowledge of the past policy (π1, . . . , πt−1).

Proposition 6 (Dynamic programming for POMDPs using history as state). Recursively

define value functions {Vt : Ht → R}T+1
t=1 as follows. VT+1(HT+1) := 0 and for t ∈ {T, . . . 1},

Vt(ht) := max
at∈A

E
[
Rt + Vt+1(Ht+1)

∣∣ Ht = ht, At = at
]
. (2.3)

Then, a stochastic policy π = (π1, . . . , πT) is optimal if and only if for all t ∈ {1, . . .T} it

satisfies

Supp(πt(ht)) ⊆ arg max
at∈A

E
[
Rt + Vt+1(Ht+1)

∣∣ Ht = ht, At = at
]
. (2.4)

Note that the expectation in (2.3) is with respect to the probability measure P on (Ω,F)

and can be computed without the knowledge of the policy π.

However, for POMDPs with a large horizon there is a large number of possible “states”

because of the exponential growth of trajectories and so this can only be used for small

sized problems with a short horizon. It is shown in [53] that solving POMDPs optimally

is NP-hard. Worst case POMDPs are undecidable. Finite-horizon POMDPs are PSPACE-

complete [54].

2.2 Information state

Definition 1. Let {Zt}Tt=1 be a pre-specified collection of Banach spaces. A collection

{σt : Ht → Zt}Tt=1 of history compression functions is called an information state generator
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if the process {Zt}Tt=1, where Zt = σt(Ht), satisfies the following properties:

(P1) Sufficient for performance evaluation, i.e., for any time t, any realization ht of

Ht and any choice at of At, we have

E[Rt | Ht = ht, At = at] = E[Rt | Zt = σt(ht), At = at].

(P2) Sufficient to predict itself , i.e., for any time t, any realization ht of Ht and any

choice at of At, we have that for any Borel subset B of Zt+1,

P(Zt+1 ∈ B | Ht = ht, At = at) = P(Zt+1 ∈ B | Zt = σt(ht), At = at).

In the sequel, we will sometimes use the phrase “let {Zt}Tt=1 be an information state” to

specify an information state and will implicitly assume that the corresponding information

state spaces are {Zt}Tt=1 and the corresponding compression functions are {σt}Tt=1.

Note that both the probabilities in Property (P2) can be computed without the knowl-

edge of the policy π. Furthermore, there are no restrictions on the spaces {Zt}Tt=1 although

in practice an information state is useful only when these spaces are “small” in an appro-

priate sense.

Condition (P1) is easy to verify but condition (P2) can be a bit abstract. For some

models, instead of (P2), it is easier to verify the following stronger conditions:

(P2a) Evolves in a state-like manner, i.e., there exist measurable functions {ϕt}Tt=1

such that for any time t and any realization ht+1 of Ht+1, we have

σt+1(ht+1) = ϕt(σt(ht), yt, at).

Informally, the above condition may be written as Zt+1 = ϕt(Zt, Yt, At).

(P2b) Is sufficient for predicting future observations, i.e., for any time t, any real-

ization ht of Ht and any choice at of At, we have that for any subset D of Y,

P(Yt ∈ D | Ht = ht, At = at) = P(Yt ∈ D | Zt = σt(ht), At = at).

Proposition 7. (P2a) and (P2b) imply (P2).
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Proof. See Appendix A.

Next, we show that an information state is useful because it is always possible to write

a dynamic program based on the information state. To explain this dynamic programming

decomposition, we first write the history-based dynamic programs of Proposition 5 and 6

in a more compact manner as follows: Let VT+1(hT+1) := 0 and for t ∈ {T, . . . , 1}, define

Qt(ht, at) := E
[
Rt + Vt+1(Ht+1)

∣∣ Ht = ht, At = at
]
, (2.5a)

Vt(ht) := arg max
at∈A

Qt(ht, at). (2.5b)

The function Qt(ht, at) is called the action-value function. Moreover, for a given stochastic

policy π = (π1, . . . , πT ), where πt : Ht → ∆(At), let V π
T+1(hT+1) = 0 and for t ∈ {T, . . . , 1},

define

Qπ
t (ht, at) := E

[
Rt + V π

t+1(Ht+1)
∣∣ Ht = ht, At = at

]
, (2.6a)

V π
t (ht) :=

∑
at∈A

πt(at | ht).Qπ
t (ht, at). (2.6b)

Theorem 1. Let {Zt}Tt=1 be an information state. Recursively define value functions

{V̄t : Zt → R}T+1
t=1 , as follows: V̄T+1(zT+1) := 0 and for t ∈ {T, . . . , 1}:

Q̄t(zt, at) := E[Rt + V̄t+1(Zt+1) | Zt = zt, At = at], (2.7a)

V̄t(zt) := max
at∈A

Q̄t(zt, at). (2.7b)

Then, we have the following:

1. For any time t, history ht, and action at, we have that

Qt(ht, at) = Q̄t(σt(ht), at) and Vt(ht) = V̄t(σt(ht)). (2.8)

2. Let π̄ = (π̄1, . . . π̄T ), where π̄t : Zt → ∆(A), be a stochastic policy. Then, the policy

π = (π1, . . . , πT ) given by πt = π̄t ◦ σt is optimal if and only if for all t and all

realizations zt of information states Zt, Supp(π̄t(zt)) ⊆ arg maxat∈A Q̄t(zt, at).

Proof. See Appendix A.
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2.3 Approximate information state

Given the benefits of a good information state, it is natural to consider a data-driven ap-

proach to identify an information state. An information state identified from data will not

be exact and it is important to understand what is the loss in performance when using an

approximate information state. Theorem 1 shows that a compression of the history which

satisfies properties (P1) and (P2) is sufficient to identify a dynamic programming decom-

position. Would a compression of history that approximately satisfied properties (P1) and

(P2) lead to an approximate dynamic program? In this section, we show that the answer

to this question is yes. First, we need to precisely define what we mean by “approximately

satisfy properties (P1) and (P2)”. For that matter, we need to fix a distance metric on

probability spaces. There are various metrics on probability space and it turns out that the

appropriate distance metric for our purposes is the integral probability metric (IPM) [55].

2.3.1 Integral probability metrics (IPM)

Definition 2. Let (X,G) be a measurable space and F denote a class of uniformly bounded

measurable functions on (X,G). The integral probability metric (IPM) between two prob-

ability distributions µ, ν ∈ ∆(X) with respect to the function class F is defined as

dF(µ, ν) := sup
f∈F

∣∣∣∣∫
X

fdµ−
∫
X

fdν

∣∣∣∣.
In the literature, IPMs are also known as probability metrics with a ζ-structure; see

e.g., [56,57]. They are useful to establish weak convergence of probability measures. Meth-

ods for estimating IPM from samples are discussed in [58].

Examples of integral probability metrics (IPMs)

When (X,G) is a metric space, then various commonly used distance metrics on (X,G) lead

to specific instances of IPM for a particular choice of function space F. We provide some

examples below:

1. Total variation distance: If F is chosen as {f : ‖f‖∞ ≤ 1}, then dF is the total
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variation distance.1

2. Kolmogorov distance: If X = Rm and F is chosen as {1(−∞,t] : t ∈ Rm}, then dF

is the Kolmogorov distance.

3. Kantorovich metric or Wasserstein distance: Let ‖f‖Lip denote the Lip-

schitz semi-norm of a function. If F is chosen as {f : ‖f‖Lip ≤ 1}, then dF is the

Kantorovich metric. When X is separable, the Kantorovich metric is the dual repre-

sentation of the Wasserstein distance via the Kantorovich-Rubinstein duality [59].

4. Bounded-Lipschitz metric: If F is chosen as {f : ‖f‖∞+ ‖f‖Lip ≤ 1}, then dF is

the bounded-Lipschitz (or Dudley) metric.

5. Maximum mean discrepancy (MMD): Let H be a reproducing kernel Hilbert

space (RKHS) of real valued functions on X and let F = {f ∈ H : ‖f‖H ≤ 1}, then dF

is the maximum mean discrepancy2 [61]. The energy distance studied in statistics [62]

is a special case of maximum mean discrepancy; see [63] for a discussion.

We say that F is a closed set if it is closed under the topology of pointwise convergence.

We say that F is a convex set if f1, f2 ∈ F implies that for any λ ∈ (0, 1), λf1+(1−λ)f2 ∈ F.

Note that all the above function classes are convex and all except Kolmogorov distance are

closed.

We now list some useful properties of IPMs, which immediately follow from definition.

1In particular, if µ and ν are absolutely continuous with respect to some measure λ and let p = dµ/dλ
and q = dν/dλ, then∣∣∣∣∫

X

fdµ−
∫
X

fdν

∣∣∣∣ =

∣∣∣∣∫
X

f(x)p(x)λ(dx)−
∫
X

f(x)q(x)λ(dx)

∣∣∣∣ ≤ ‖f‖∞ ∫
X

∣∣p(x)− q(x)
∣∣λ(dx).

In this paper, we are defining total variation distance as
∫
X
|p(x) − q(x)|λ(dx). Typically, it is defined as

half of that quantity. Note that it is possible to get a tighter bound than above where ‖f‖∞ is replaced
by 1

2 span(f) = 1
2 (max(f)−min(f)).

2One of features of MMD is that the optimizing f can be identified in closed form. In particular, if k
is the kernel of the RKHS, then (see [58,60] for details)

dF(µ, ν) =

∥∥∥∥∫
X

k(·, x)dµ(x)−
∫
X

k(·, x)dν(x)

∥∥∥∥
H

=

[∫
X

∫
X

k(x, y)µ(dx)µ(dy) +

∫
X

∫
X

k(x, y)ν(dx)ν(dy)− 2

∫
X

∫
X

k(x, y)µ(dx)ν(dy)

]1/2
.

We use an MMD as a IPM in the PORL algorithms proposed in Sec. 3, where we exploit this property.
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1. Given a function class F and a function f (not necessarily in F),∣∣∣∣∫
X

fdµ−
∫
X

fdν

∣∣∣∣ ≤ ρF(f) · dF(µ, ν), (2.9)

where ρF(f) is the Minkowski functional with respect to F given by

ρF(f) := inf{ρ ∈ R>0 : ρ−1f ∈ F}. (2.10)

For the total variation distance,
∣∣∫

X
fdµ −

∫
X
fdν

∣∣ ≤ 1
2

span(f)dF(µ, ν). Thus, for

total variation, ρF(f) = 1
2

span(f). For the Kantorovich metric,
∣∣∫

X
fdµ−

∫
X
fdν

∣∣ ≤
‖f‖LipdF(µ, ν). Thus, for Kantorovich metric, ρF(f) = ‖f‖Lip. For the maximum

mean discrepancy,
∣∣∫

X
fdµ −

∫
X
fdν

∣∣ ≤ ‖f‖HdF(µ, ν). Thus, for maximum mean

discrepancy, ρF(f) = ‖f‖H.

2. Let X and Y be Banach spaces and let FX and FY denote the function class for dF

with domain X and Y, respectively. Then, for any ` : X→ Y, any real-valued function

f ∈ FY and any measures µ and ν on ∆(X), we have∣∣∣∣∫
X

f(`(x))µ(dx)−
∫
X

f(`(x))ν(dx)

∣∣∣∣ ≤ ρFX
(f ◦ `)dFX

(µ, ν).

We define the contraction factor of the function ` as

κFX,FY
(`) = sup

f∈FY

ρFX
(f ◦ `). (2.11)

Therefore, we can say that for any f ∈ FY,∣∣∣∣∫
X

f(`(x))µ(dx)−
∫
X

f(`(x))ν(dx)

∣∣∣∣ ≤ κFX,FY
(`)dFX

(µ, ν). (2.12)

For the total variation distance, 1
2

span(f◦`) ≤ ‖f◦`‖∞ ≤ ‖f‖∞ ≤ 1. Thus, κF(`) ≤ 1.

For the Kantorovich metric, ‖f ◦ `‖Lip ≤ ‖f‖Lip‖`‖Lip Thus, κF(`) ≤ ‖`‖Lip.
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2.3.2 Approximate information state (AIS) and approximate dynamic

programming

Now we define a notion of approximate information state (AIS) as a compression of the

history of observations and actions which approximately satisfies properties (P1) and (P2).

Definition 3. Let {Ẑt}Tt=1 be a pre-specified collection of Banach spaces, F be a func-

tion class for IPMs, and {(εt, δt)}Tt=1 be pre-specified positive real numbers. A collection

{σ̂t : Ht → Ẑt}Tt=1 of history compression functions, along with approximate update kernels

{P̂t : Ẑt × A → ∆(Ẑt+1)}Tt=1 and reward approximation functions {r̂t : Ẑt × A → R}Tt=1, is

called an {(εt, δt)}Tt=1-AIS generator if the process {Ẑt}Tt=1, where Ẑt = σ̂t(Ht), satisfies the

following properties:

(AP1) Sufficient for approximate performance evaluation, i.e., for any time t, any

realization ht of Ht and any choice at of At, we have

∣∣E[Rt | Ht = ht, At = at]− r̂t(σ̂t(ht), at)
∣∣ ≤ εt.

(AP2) Sufficient to predict itself approximately. i.e., for any time t, any realization

ht of Ht, any choice at of At, and for any Borel subset B of Ẑt+1, define µt(B) :=

P(Ẑt+1 ∈ B | Ht = ht, At = at) and νt(B) := P̂t(B | σ̂t(ht), at); then,

dF(µt, νt) ≤ δt.

We use the phrase “(ε, δ)-AIS” when εt and δt do not depend on time.

Similar to Proposition 7, we can provide an alternative characterization of an AIS where

we replace (AP2) with the following approximations of (P2a) and (P2b).

(AP2a) Evolves in a state-like manner, i.e., there exist measurable update functions

{ϕ̂t : Ẑt × Y × A}Tt=1 such that for any realization ht+1 of Ht+1, we have

σ̂t+1(ht+1) = ϕ̂(σ̂t(ht), yt, at).

(AP2b) Is sufficient for predicting future observations approximately, i.e., there

exist measurable observation prediction kernels {P̂ y
t : Ẑt × A → ∆(Y)}Tt=1 such that
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for any time t, any realization ht of Ht, any choice at of At, and for any Borel subset

B of Y define, µyt (B) := P(Yt ∈ B | Ht = ht, At = at) and νyt (B) = P̂ y
t (B|σ̂t(ht), at);

then,

dF(µyt , ν
y
t ) ≤ δ/κF(ϕ̂t),

where κF(ϕ̂t) is defined as supht∈Ht,at∈At κF(ϕ̂t(σ̂t(ht), ·, at)). Note that for the total

variation distance κF(ϕ̂t) = 1; for the Kantorovich distance κF(ϕ̂t) is equal to the

Lipschitz uniform bound on the Lipschitz constant of ϕ̂t with respect to yt.

Proposition 8. (AP2a) and (AP2b) imply (AP2) holds with transition kernels {P̂ y
t }Tt=1

defined as follows: for any Borel subset B of Ẑ,

P̂t(B | σ̂t(ht), at) =

∫
Y

1B(ϕ̂t(σ̂t(ht), yt, at))P̂
y
t (dyt|σ̂t(ht), at).

Therefore, we can alternatively define an {(εt, δt)}Tt=1-AIS generator as a tuple {(σ̂t, r̂t, ϕ̂t, P̂ y
t )}Tt=1

which satisfies (AP1), (AP2a), and (AP2b).

Proof. See Appendix A.

Our main result is to establish that any AIS gives rise to an approximate dynamic

program.

Theorem 2. Suppose {σ̂t, P̂t, r̂t}Tt=1 is an {(εt, δt)}Tt=1-AIS generator. Recursively define

approximate action-value functions {Q̂t : Ẑt × A → R}Tt=1 and value functions {V̂t : Ẑt →
R}Tt=1 as follows: V̂T+1(ẑT+1) := 0 and for t ∈ {T, . . . , 1}:

Q̂t(ẑt, at) := r̂t(ẑt, at) +

∫
Ẑt

V̂t+1(ẑt+1)P̂t(dẑt+1 | ẑt, at), (2.13a)

V̂t(ẑt) := max
at∈A

Q̂t(ẑt, at). (2.13b)

Then, we have the following:

1. Value function approximation: For any time t, realization ht of Ht, and choice

at of At, we have

|Qt(ht, at)− Q̂t(σ̂t(ht), at)| ≤ αt and |Vt(ht)− V̂t(σ̂t(ht))| ≤ αt, (2.14)
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where αt satisfies the following recursion: αT+1 = 0 and for t ∈ {T, . . . , 1},

αt = εt + ρF(V̂t+1)δt + αt+1.

Therefore,

αt = εt +
T∑

τ=t+1

[
ρF(V̂τ )δτ−1 + ετ

]
.

2. Approximately optimal policy: Let π̂ = (π̂1, . . . , π̂T ), where π̂t : Ẑt → ∆(A), be a

stochastic policy that satisfies

Supp(π̂(ẑt)) ⊆ arg max
at∈A

Q̂t(ẑt, at). (2.15)

Define policy π = (π1, . . . , πT ), where πt : Ht → ∆(A) by πt := π̂t ◦ σ̂t. Then, for any

time t, realization ht of Ht, and choice at of At, we have

|Qt(ht, at)−Qπ
t (ht, at)| ≤ 2αt and |Vt(ht)− V π

t (ht)| ≤ 2αt. (2.16)

Proof. See Appendix A.

An immediate implication of Theorems 1 and 2 is the following.

Corollary 1. Let {σt}Tt=1 be an information state generator and {(σ̂t, P̂t, r̂t)}Tt=1 be an AIS

generator. Then, for any time t, realization ht of history Ht, and choice at of action At, we

have

∣∣Q̄t(σt(ht), at)− Q̂t(σ̂t(ht), at)
∣∣ ≤ αt and

∣∣V̄t(σt(ht))− V̂t(σ̂t(ht))∣∣ ≤ αt.

2.3.3 AIS with observation compression

In applications with high-dimensional observations such as video input, it is desirable to

pre-process the video frames into a low-dimensional representation before passing them on

to a planning or learning algorithm. In this section, we generalize the notion of AIS to

account for such observation compression. Observation compression is used in the form of

an autoencoder for our experiments involving high-dimensional environments.
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Definition 4. As in the definition of AIS, suppose {Ẑt}Tt=1 are a pre-specified collection of

Banach spaces, F be a function class for IPMs, and {(εt, δt)}Tt=1 be pre-specified positive real

numbers. In addition, suppose we have a set Ŷ of compressed observations and a compres-

sion function q : Y → Ŷ. Let Ĥt denote the history (Ŷ1:t−1, A1:t−1) of compressed observa-

tions and actions and Ĥt denote the space of realizations of such compressed histories. Then,

a collection {σ̂t : Ĥt → Ẑt}Tt=1 of history compression functions, along with observation com-

pression function q : Y → Ŷ, approximate update kernels {P̂t : Ẑt × A → ∆(Ẑt+1)}Tt=1 and

reward approximation functions {r̂t : Ẑt×A→ R}Tt=1, is called an {(εt, δt)}Tt=1-observation-

compressed AIS generator if the process {Ẑt}Tt=1, where Ẑt = σ̂t(Ĥt), satisfies properties

(AP1) and (AP2).

System
Stochastic input Wt

Controlled input At

Obs.
Comp.

Modified input-output system

Compressed Obs. Yt

Reward Rt

Fig. 2.3 A stochastic input-output system with observation compression

In essence, we can view observation compression as a new input-output system whose

outputs are (Ŷt, Rt) instead of (Yt, Rt) as shown in Fig. 2.3. A construction similar to

observation-compressed AIS is proposed in [6], where it is shown that such a construction

performs well empirically, but there was no analysis of the approximation guarantees of

such a construction.

An immediate implication of the above definition is the following:

Corollary 2. Let {σ̂t, q, P̂t, r̂t}t≥1 be an {(εt, δt)}Tt=1-observation-compression AIS. Then,

the bounds of Theorem 2 hold.

2.4 Infinite-horizon discounted reward setup

So far, we have restricted attention to the finite horizon setup. In this section, we show

how to generalize the notions of information state and approximate information state to

the infinite horizon discounted reward setup.
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2.4.1 System model and problem formulation

We consider the same model as described in Sec. 2.1 but assume that the system runs for

an infinite horizon. The performance of any (history dependent and possibly stochastic)

policy π := (π1, π2, . . . ), where πt : Ht → ∆(A), is given by

J(π) := lim inf
T→∞

Eπ
[ T∑
t=1

γt−1Rt

]
,

where γ ∈ (0, 1) is the discount factor. As before, we assume that the agent knows the

system dynamics {ft}t≥1, the reward functions {rt}t≥1, and the probability measure P on

the primitive random variables {Wt}t≥1. The objective of the agent is to choose a policy π

that maximizes the expected discounted total reward J(π).

Note that we use lim inf rather than lim in the above definition because in general the

limit might not exist. We later assume that the rewards are uniformly bounded (see As-

sumption 1) which, together with the finiteness of the action space, implies that the limit

is well defined. When the action space is uncountable, we need to impose appropriate tech-

nical conditions on the model to ensure that an appropriate measurable section condition

holds [5].

2.4.2 A dynamic programming decomposition

In the finite-horizon setup, we started with a dynamic program to evaluate the performance

{V π
t }Tt=1 for any history dependent policy π. We then identified an upper-bound {Vt}Tt=1

on {V π
t }Tt=1 and showed that this upper bound is tight and achieved by any optimal policy.

The subsequent analysis of the information state and the approximate information state

based dynamic programs was based on comparison with {Vt}Tt=1.

One conceptual difficulty with the infinite horizon setup is that we cannot write a general

dynamic program to evaluate the performance {V π
t }t≥1 of an arbitrary history dependent

policy π and therefore identify a tight upper-bound {Vt}t≥1. In traditional MDP models,

this conceptual difficulty is resolved by restricting attention to Markov strategies and then

establishing that the performance of a Markov strategy can be evaluated by solving a fixed

point equation. For partially observed MDPs, a similar resolution works because one can

view the belief state as an information state. However, for general partially observed models
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as considered in this paper, there is no general methodology to identify a time-homogeneous

information state. So, we follow a different approach and identify a dynamic program which

bounds the performance of a general history dependent policy. We impose the following

mild assumption on the model.

Assumption 1. The reward process {Rt}t≥1 is uniformly bounded and takes values inside

a finite interval [Rmin, Rmax].

Given any (history dependent) policy π, we define the reward-to-go function for any

time t and any realization ht of Ht as

V π
t (ht) := Eπ

[ ∞∑
s=t

γs−tRs

∣∣∣∣ Ht = ht

]
. (2.17)

Define the corresponding action value function as:

Qπ
t (ht, at) := Eπ[Rt + γV π

t+1(Ht+1) | Ht = ht, At = at]. (2.18)

As stated above, we cannot identify a dynamic program to recursively compute {V π
t }t≥1.

Nonetheless, we show that under Assumption 1 we can identify arbitrarily precise upper

and lower bounds for {V π
t }t≥1 which can be recursively computed.

Proposition 9. Arbitrarily pick a horizon T and define {Jπt,T : Ht → R}Tt=1 as follows:

JπT,T (hT ) = 0 and for t ∈ {T − 2, . . . , 1},

Jπt,T (ht) := Eπ[Rt + γJπt+1,T (Ht+1) | Ht = ht]. (2.19)

Then, for any time t ∈ {1, . . . , T} and realization ht of Ht, we have

Jπt,T (ht) +
γT−t

1− γ
Rmin ≤ V π

t (ht) ≤ Jπt,T (ht) +
γT−t

1− γ
Rmax. (2.20)

Proof. See Appendix A.

Note that Proposition 9 gives a recursive method to approximately evaluate the perfor-

mance of any history dependent policy π. We can modify the recursion in (2.19) to obtain

policy independent upper bound on performance of an arbitrary policy. For that matter,
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define value functions {Vt : Ht → R}t≥1as follows:

Vt(ht) = sup
π
V π
t (ht), (2.21)

where the supremum is over all history dependent policies. Furthermore, define action-value

functions {Qt : Ht × A→ R}t≥1 as follows:

Qt(ht, at) = E[Rt + γVt+1(Ht+1) | Ht = ht, At = at]. (2.22)

Then, we have the following.

Proposition 10. Arbitrarily pick a horizon T and define {Jt,T : Ht → R} as follows:

JT,T (hT ) = 0 and for t ∈ {T − 2, . . . , 1},

Jt,T (ht) := max
at∈A

E[Rt + γJt+1(Ht+1) | Ht = ht, At = at]. (2.23)

Then, for any time t ∈ {1, . . . , T} and realization ht of Ht,

V π
t (ht) ≤ Jt,T (ht) +

γT−t

1− γ
Rmax. (2.24)

Therefore,

Jt,T (ht) +
γT−t

1− γ
Rmin ≤ Vt(ht) ≤ Jt,T (ht) +

γT−t

1− γ
Rmax. (2.25)

Note that Jt,T (ht) is the optimal value function for a finite horizon system with the dis-

counted reward criterion that runs for horizon T − 1.

Proof. See Appendix A.

2.4.3 Time-homogeneous information state and simplified dynamic program

Definition 5. Given a Banach space Z, an information state generator {σt : Ht → Z} is

said to be time-homogeneous if, in addition to (P1) and (P2), it satisfies the following:

(S) The expectation E[Rt|Zt = σt(Ht), At = at] and the transition kernel P(Zt+1 ∈ B|Zt =

σt(Ht), At = at) are time-homogeneous.
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In general, a time-homogeneous information state may not exist for all partially observed

models and it is important to understand conditions under which such an information state

exists. However, we do not pursue that direction in this work.

For any time-homogeneous information state, define the Bellman operator B : [Z →
R]→ [Z→ R] as follows: for any uniformly bounded function V̄ : Z→ R

[BV̄ ](z) = max
a∈A

E[Rt + γV̄ (Zt+1) | Zt = z, At = a], (2.26)

where γ ∈ (0, 1) is the discount factor. Because of (S), the expectation on the right hand

side does not depend on time. Due to discounting, the operator B is a contraction and

therefore, under Assumption 1, the fixed point equation

V̄ = BV̄ (2.27)

has a unique bounded solution (due to the Banach fixed point theorem). Let V̄ ∗ be the

fixed point and π∗ be any policy such that π∗(z) achieves the arg max in the right hand side

of (2.26) for [BV̄ ∗](z). It is easy to see that V̄ ∗ is the performance of the time homogeneous

policy (π∗, π∗, . . . ). However, it is not obvious that V̄ ∗ equals to the optimal performance

V1 defined in (2.21), because the proof of Theorem 1 relies on backward induction and is

not applicable to infinite horizon models. So, we present an alternative proof below which

uses the performance bounds of Proposition 10.

Theorem 3. Let {Zt}t≥1 be a time-homogeneous information state process with generator

{σt : Ht → Z}t≥1. Suppose Assumption 1 holds and let V̄ ∗ be the unique bounded fixed point

of (2.26). Then, for any time t and realization ht of Ht, we have

Vt(ht) = V̄ ∗(σt(ht)).

Furthermore, let π∗ : Z→ ∆(A) be a time-homogeneous (stochastic) policy such that Supp(π∗(z))

is a subset of the arg max of the right hand side of (2.26). Then, the time-homogeneous

policy π∗ := (π∗, π∗, . . . ) is optimal.

Proof. See Appendix A.
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2.4.4 Time-homogeneous AIS and approximate dynamic programming

Definition 6. Given a Banach space Ẑ, a function class F for IPMs, and positive real

numbers (ε, δ), we say that a collection {σ̂t : Ht → Ẑ}t≥1 along with a time-homogeneous

update kernel P̂ : Ẑ× A→ ∆(Ẑ) and a time-homogeneous reward approximation function

r̂ : Ẑ × A → R is a (ε, δ) time homogeneous AIS generator if the process {Ẑt}t≥1, where

Ẑt = σ̂t(Ht), satisfies (AP1) and (AP2) where r̂t, P̂t, εt and δt in the definition of (AP1)

and (AP2) are replaced by their time-homogeneous counterparts.

For any time-homogeneous AIS, define the approximate Bellman operator B̂ : [Ẑ →
R]→ [Ẑ→ R] as follows: for any uniformly bounded function V̂ : Ẑ→ R,

[B̂V̂ ](ẑ) = max
a∈A

{
r̂(ẑ, a) + γ

∫
Ẑ

V̂ (ẑ′)P̂ (dẑ′|ẑ, a)

}
. (2.28)

Note that the expectation on the right hand side does not depend on time. Due to dis-

counting, the operator B̂ is a contraction, and therefore, under Assumption 1, the fixed

point equation

V̂ = B̂V̂ (2.29)

has a unique bounded solution (due to the Banach fixed point theorem). Let V̂ ∗ be the

fixed point and π̂∗ be any policy such that π̂∗(ẑ) achieves the arg max in the right hand

side of (2.28) for [B̂V̂ ∗](ẑ). It is not immediately clear if V̂ ∗ is close to the performance of

policy π = (π1, π2, . . . ), where πt = π∗ ◦ σ̂t, or if V̂ ∗ is close to the optimal performance.

The proof of Theorem 2 relies on backward induction and is not immediately applicable

to the infinite horizon setup. Nonetheless, we establish results similar to Theorem 2 by

following the proof idea of Theorem 3.

Theorem 4. Suppose ({σ̂t}t≥1, P̂ , r̂) is a time-homogeneous (ε, δ)-AIS generator. Consider

the fixed point equation (2.29), which we rewrite as follows:

Q̂(ẑ, a) := r̂(ẑ, a) +

∫
Ẑ

V̂t+1(ẑt+1)P̂ (dẑt+1 | ẑ, a), (2.30a)

V̂ (ẑ) := max
a∈A

Q̂(ẑ, a). (2.30b)

Let V̂ ∗ denote the fixed point of (2.30) and Q̂∗ denote the corresponding action-value func-

tion. Then, we have the following:
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1. Value function approximation: For any time t, realization ht of Ht, and choice

at of At, we have

|Qt(ht, at)− Q̂∗(σ̂t(ht), at)| ≤ α and |Vt(ht)− V̂ ∗(σ̂t(ht))| ≤ α, (2.31)

where

α =
ε+ γρF(V̂ ∗)δ

1− γ

2. Approximately optimal policy: Let π̂∗ : Ẑ → ∆(A) be a stochastic policy that

satisfies

Supp(π̂∗(ẑ)) ⊆ arg max
a∈A

Q̂∗(ẑ, a). (2.32)

Define policy π = (π1, π2, . . . ), where πt : Ht → ∆(A) is defined by πt := π̂∗◦ σ̂t. Then,

for any time t, realization ht of Ht, and choice at of At, we have

|Qt(ht, at)−Qπ
t (ht, at)| ≤ 2α and |Vt(ht)− V π

t (ht)| ≤ 2α. (2.33)

Proof. See Appendix A.
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Chapter 3

Reinforcement learning for partially

observed systems using AIS

Previous work in RL on AIS [12] proposed using a two-time scale algorithm for learning the

policy alongside the AIS using just the KL-divergence as a surrogate for the Wasserstein

distance. In this work, we present a policy gradient based reinforcement learning (RL)

algorithm for infinite horizon partially observed systems for a general IPM. Particularly,

we derive AIS loss equations for the KL IPM in Eq. (3.7) for (AP2) and Eq. (3.9) for (AP2a),

(AP2b) and for the MMD IPM in Eq. (3.8) for (AP2) and Eq. (3.10) for (AP2a), (AP2b).

The derivations can be extended to other IPMs in a straightforward manner. The algorithm

learns a time-homogeneous AIS generator (σ̂t, r̂, P̂ ) which satisfies (AP1) and (AP2) or a

time-homogeneous AIS generator (σ̂t, r̂, ϕ̂, P̂
y) which satisfies (AP1), (AP2a), and (AP2b).

In our approach, the key idea is to represent each component of the AIS generator using a

parametric family of functions/distributions and use a multi-time scale stochastic gradient

descent algorithm [64] which learns the AIS generator at a faster time-scale than the policy

and/or the action-value function.

For the ease of exposition, we first assume that the policy is fixed and describe how to

learn the AIS generator using stochastic gradient descent. To specify an AIS, we must pick

an IPM F as well. Although, in principle, we can choose any IPM, in practice, we want

to choose an IPM such that the distance dF(µt, νt) in (AP2) or (AP2b) can be computed

efficiently. We discuss the choice of IPMs in Sec. 3.1 and then discuss the stochastic gra-

dient descent algorithm to learn the AIS-generator for a fixed policy in Sec. 3.2. Then we
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describe how to simultaneously learn the AIS generator and the policy using a multi-time

scale algorithm, first for an actor only framework and then for an actor-critic framework

in Sec. 3.3 under the setting of partially observed reinforcement learning (PORL).

3.1 The choice of an IPM

As we will explain in the next section in detail, our general modus operandi is to assume

that the stochastic kernel P̂ or P̂ y that we are trying to learn belongs to a parametric family

and then update the parameters of the distribution to either minimize dF(µ, ν) defined in

(AP2) or minimize dF(µy, νy) defined in (AP2b). Just to keep the discussion concrete,

we focus on (AP2). Similar arguments apply to (AP2b) as well. First note that for a

particular choice of parameters, we know the distribution ν in closed form, but we do not

know the distribution µ in closed form and only have samples from that distribution. One

way to estimate the IPM between a distribution and samples from another distribution

is to use duality and minimize
∣∣∫

Ẑ
fdµ −

∫
Ẑ
fdν

∣∣ over the choice of function f such that

f ∈ F. When dF is equal to the total variation distance or the Wasserstein distance,

this optimization problem may be solved using a linear program [58]. However, solving

a linear program at each step of the stochastic gradient descent algorithm can become a

computational bottleneck. We propose two alternatives here. The first is to use the total

variation distance or the Wasserstein distance but instead of directly working with them,

we use a KL divergence based upper bound as a surrogate loss. The other alternative is

to work with RKHS-based MMD (maximum mean discrepancy) distance, which can be

computed from samples without solving an optimization problem [58]. It turns out that

for the AIS-setup, a specific form of MMD known as distance-based MMD is particularly

convenient as we explain below.

KL-divergence based upper bound for total variation or Wasserstein distance.

The surrogate loss considered here is very similar to what was derived in [12]. Recall that

the KL-divergence between two densities µ and ν on ∆(X) is defined as

DKL(µ‖ν) =

∫
X

log µ(x)µ(dx)−
∫
X

log ν(x)µ(dx).
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The total variation distance can be upper bounded by the KL-divergence using Pinsker’s in-

equality [65] (see footnote 1 for the difference in constant factor from the standard Pinsker’s

inequality):

dTV(µ, ν) ≤
√

2DKL(µ‖ν). (3.1)

As we will explain in the next section, we consider the setup where we know the distri-

bution ν but only obtain samples from the distribution µ. Since there are two losses—the

reward prediction loss ε and the AIS/observation prediction loss δ, we work with minimiz-

ing the weighted square average λε2 + (1 − λ)δ2, where λ ∈ [0, 1] is a hyper-parameter.

Pinsker’s inequality (3.1) suggests that instead of dTV(µ, ν)2, we can use the surrogate loss

function ∫
X

log ν(x)µ(dx)

where we have dropped the term that does not depend on ν. Note that the above expression

is the same as the cross-entropy between µ and ν which can be efficiently computed from

samples. In particular, if we get T i.i.d. samples X1, . . . , XT from µ, then

1

T

T∑
t=1

log ν(Xt) (3.2)

is an unbiased estimator of
∫
X

log ν(x)µ(dx).

Finally, if X is a bounded space with diameter D, then

dWass(µ, ν) ≤ DdTV(µ, ν).

So, using cross-entropy as a surrogate loss also works for Wasserstein distance.

Distance-based MMD. The key idea behind using a distance-based MMD is the fol-

lowing result.

Proposition 11 (Theorem 22 of [63]). Let X ⊆ Rm and dX,p : X × X → R≥0 be a metric

given by dX,p(x, x
′) = ‖x− x′‖p2, for p ∈ (0, 2]. Let kp : X× X→ R be any kernel given

kp(x, x
′) = 1

2

[
dX,p(x, x0) + dX,p(x

′, x0)− dX,p(x, x′)
]
,

where x0 ∈ X is arbitrary, and let Hp be a RKHS with kernel kp and Fp = {f ∈ Hp :
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‖f‖Hp ≤ 1}. Then, for any distributions µ, ν ∈ ∆(X), the IPM dFp(µ, ν) can be expressed

as follows:

dFp(µ, ν) =
√

E[dX,p(X,W )]− 1
2
E[dX,p(X,X ′)]− 1

2
E[dX,p(W,W ′)], (3.3)

where X,X ′ ∼ µ, W,W ′ ∼ ν and (X,X ′,W,W ′) are all independent.

We call dp defined above as a distance-based MMD. For p = 1 (for which dX corresponds

to the L2 distance), the expression inside the square root in (3.3) is called the Energy

distance in the statistics literature [62]. In [63], the above result is stated for a general

semimetric of a negative type. Our statement of the above result is specialized to the

semimetric dX,p. See Proposition 3 and Example 15 of [63] for details.

As explained in the previous section, we work with minimizing the weighted square

average λε2 + (1 − λ)δ2, where λ is a hyper-parameter. Proposition 11 suggests that

instead of dFp(µ, ν)2, we can use a surrogate loss function∫
X

∫
X

‖x− w‖p2 µ(dx)ν(dw)− 1

2

∫
X

∫
X

‖w − w′‖p2 ν(dw)ν(dw′) (3.4)

for p ∈ (0, 2], where we have dropped the term that does not depend on ν. It is possible

to compute the surrogate loss efficiently from samples as described in [58]. In particular, if

we get T i.i.d. samples X1, . . . , XT from µ, then

1

T

T∑
t=1

∫
X

‖Xt − w‖p2 ν(dw)− 1

2

∫
X

∫
X

‖w − w′‖p2 ν(dw)ν(dw′) (3.5)

is an unbiased estimator of (3.4).

In our numerical experiments, we use the surrogate loss (3.5) for p = 2, which simplifies

as follows.

Proposition 12. Consider the setup of Proposition 11 for p = 2. Suppose νξ is a known

parameterized distribution with mean Mξ and X is a sample from µ. Then, the gradient

of

(Mξ − 2X)ᵀMξ (3.6)

with respect to ξ in an unbiased estimator of ∇ξdF2(µ, νξ)
2.
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Proof. See Appendix A.

The implication of Proposition 12 is if we use MMD with the RKHS H2 defined in

Proposition 11, then we can can use the expression in (3.6) as a surrogate loss function for

dF2(µ, νξ)
2.

Now we show how to compute the surrogate loss (3.6) for two types of parameterized

distributions νξ.

1. Surrogate loss for predicting discrete variables: When predicting a

discrete-valued random variable, say a discrete-valued AIS Ẑt+1 in (AP2) or a discrete-

valued observation Yt in (AP2b), we view the discrete random variable as a continuous-

valued random vector by representing it as a one-hot encoded vector. In particular, if

the discrete random variable, which we denote by V , takes m values, then its one-hot

encoded representation, which we denote by X, takes values in the corner points of

the simplex on Rm. Now, suppose νξ is any parameterized distribution on the dis-

crete set {1, . . . ,m} (e.g., the softmax distribution). Then, in the one-hot encoded

representation, the mean Mξ is given by

Mξ =
m∑
i=1

νξ(i)ei =


νξ(1)

...

νξ(m)

 ,
where ei denotes the m-dimensional unit vector with 1 in the i-th location. Thus,

when we one-hot encode discrete AIS or discrete observations, the “mean” Mξ is same

as the probability mass function (PMF) νξ. Thus, effectively, dF2(µ, ν)2 is equivalent

to ‖µ−ν‖2
2 and (3.6) is an unbiased estimator where we have removed the terms that

do not depend on ν.

2. Surrogate loss for predicting continuous variables: When predicting a

continuous-valued random variable, say a continuous-valued AIS Ẑt+1 in (AP2) or a

continuous-valued observation Yt in (AP2b), we can immediately use the surrogate

loss (3.6) as long as the parameterized distribution νξ is such that its mean Mξ is

given in closed form. Note that the surrogate loss (3.6) only depends on the mean

of the distribution and not one any other moment. So, any two distributions ν and

ν ′ that have the same mean, the surrogate loss between any distribution µ and ν is
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same as the surrogate loss between µ and ν ′. Thus, using the surrogate loss (3.6) for

predicting continuous variables only makes sense when we expect the true distribution

to be close to a deterministic function.

3.2 Learning an AIS for a fixed policy

The definition of AIS suggests that there are two ways to construct an information state

from data: we either learn a time-homogeneous AIS-generator (σ̂, r̂, P̂ ) that satisfies (AP1)

and (AP2) or we learn a time-homogeneous AIS-generator (σ̂, r̂, ϕ̂, P̂ y) that satisfies (AP1),

(AP2a), and (AP2b). In either case, there are three types of components of AIS-generators:

(i) regular functions such as r̂ and ϕ̂; (ii) history compression functions {σ̂t}t≥1; and

(iii) stochastic kernels P̂ and P̂ y. To learn these components from data, we must choose

parametric class of functions for all of these. In this section, we do not make any assump-

tion about how these components are chosen. In particular, r̂ and ϕ̂ could be represented

by any class of function approximators (such as a multi-layer preceptron); σ̂ could be rep-

resented by any class of time-series approximators (such as a RNN or its refinements such

as LSTM or GRU); and P̂ and P̂ y could be represented by any class of stochastic kernel

approximators (such as softmax distribution or mixture of Gaussians). We use ξt to denote

the corresponding parameters.

There are two losses in the definition of an AIS: the reward loss |Rt − r̂(ẑt, at)| and

the prediction loss dF(µt, νt) or dF(µyt , ν
y
t ). We combine these into a single criterion and

minimize the combined loss function

1

T

T∑
t=1

[
λ|Rt − r̂(ẑt, at)|2 + (1− λ)dF(µt, νt)

2
]

where T is the length of the episode or the rollout horizon and λ ∈ [0, 1] may be viewed as

a hyper-parameter.

As described in Section 3.1, there are two possibilities to efficiently compute dF(µt, νt)
2:

use total-variation distance or Wasserstein distance as the IPM and use surrogate loss (3.2);

or use distance-based MMD as the IPM and use the surrogate loss (3.6).

In particular, to choose an AIS that satisfies (AP1) and (AP2), we either minimize the
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surrogate loss

1

T

T∑
t=1

[
λ|Rt − r̂(ẑt, at)|2 + (1− λ) log(νt(ẑt+1))

]
(3.7)

or we minimize the surrogate loss (specialized for p = 2)

1

T

T∑
t=1

[
λ|Rt − r̂(ẑt, at)|2 + (1− λ)(Mt − 2ẑt+1)ᵀMt

]
(3.8)

where Mt is the mean of the distribution νt.

Similarly, in order to choose an AIS that satisfies (AP1), (AP2a) and (AP2b), we

minimize the surrogate loss

1

T

T∑
t=1

[
λ|Rt − r̂(ẑt, at)|2 + (1− λ) log(νyt (yt))

]
(3.9)

or we minimize the surrogate loss (specialized for p = 2)

1

T

T∑
t=1

[
λ|Rt − r̂(ẑt, at)|2 + (1− λ)(My

t − 2yt)
ᵀMy

t

]
(3.10)

where My
t is the mean of the distribution νyt .

We use ξ̄ to denote the parameters of the AIS-generator, i.e., the parameters of (σ̂, P̂ , r̂)

when using (AP1) and (AP2) or the parameters of (σ̂, ϕ̂, P̂ y, r̂) when using (AP1), (AP2a),

(AP2b). We then use L(ξ̄) to the denote the corresponding loss (3.7), (3.8), (3.9), or (3.10).

Then, we can learn the parameters ξ̄ using stochastic gradient descent:

ξ̄k+1 = ξ̄k − ak∇ξ̄L(ξ̄k), (3.11)

where the learning rates {ak}k≥0 satisfy the standard conditions
∑
ak =∞ and

∑
a2
k <∞.

3.3 AIS-based partially observed reinforcement learning (PORL)

Given the stochastic gradient descent algorithm to learn an AIS-generator for a fixed policy,

we can simultaneously learn a policy and AIS-generator by following a multi-time scale

stochastic gradient descent [64], where we learn the AIS-generator at a faster learning rate
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than the policy.

In particular, let πθ : Ẑ→ ∆(A) be a parameterized stochastic policy with parameters θ.

Let J(ξ̄, θ) denote the performance of policy πθ. From the policy gradient theorem [2, 50],

we know that

∇θJ(ξ̄, θ) = E
[ ∞∑
t=1

( t∑
τ=1

∇θ log πθ(At | Ẑt)
)
γt−1Rt

]
(3.12)

which can be estimated from a sampled trajectory with a rollout horizon of T using the

G(PO)MDP gradient [50]

∇̂θJ(ξ̄, θ) =
T∑
t=1

( t∑
τ=1

∇θ log πθ(at | ẑt)
)
γt−1Rt. (3.13)

We can iteratively update the parameters {(ξ̄k, θk)}k≥1 of both the AIS-generator and

policy as follows. We start with an initial choice (ξ̄1, θ1), update both parameters after a

rollout of T as follows

ξ̄k+1 = ξ̄k − ak∇ξ̄L(ξ̄k) and θk+1 = θk + bk∇̂θJ(ξ̄k, θk) (3.14)

where the learning rates {ak}k≥1 and {bk}k≥1 satisfy the standard conditions on multi-time

scale learning:
∑

k ak = ∞,
∑

k bk = ∞,
∑

k a
2
k < ∞,

∑
k b

2
k < ∞, and limk→∞ bk/ak = 0,

which ensures that AIS-generator learns at a faster rate than the policy.

A similar idea can be used for an actor-critic algorithm. Suppose we have a parameter-

ized policy πθ : Ẑ→ ∆(A) and a parameterized critic Q̂ζ : Ẑ× A→ R, where θ denotes the

parameters of the policy and ζ denotes the parameters of the critic. Let J(ξ̄, θ, ζ) denote

the performance of the policy. From the policy gradient theorem [2,66], we know that

∇θJ(ξ̄, θ, ζ) =
1

1− γ
E
[
∇θ log πθ(At | Ẑt)Qζ(Ẑt, At)

]
(3.15)

which can be estimated from a sampled trajectory with a rollout horizon of T by

∇̂θJ(ξ̄, θ, ζ) =
1

(1− γ)T

T∑
t=1

∇θ log πθ(at | ẑt)Q̂ζ(ẑt, at). (3.16)
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For the critic, we use the temporal difference loss

LTD(ξ̄, θ, ζ) =
1

T

T∑
t=1

smoothL1
(
Q̂ζ(ẑt, at)−Rt − γQ̂ζ(ẑt+1, at+1)

)
(3.17)

where the smoothL1 loss (a specific form of the Huber loss) is given by the smooth L1

distance:

smoothL1(x) =

1
2
x2 if |x| < 1

|x| − 1
2

otherwise.

We can iteratively update the parameters {(ξ̄k, θk, ζk)}k≥1 of the AIS-generator, pol-

icy, and critic as follows. We start with an initial choice (ξ̄1, θ1, ζ1), and update all the

parameters after a rollout of T as follows

ξ̄k+1 = ξ̄k−ak∇ξ̄L(ξ̄k), θk+1 = θk+bk∇̂θJ(ξ̄k, θk, ζk) and ζk+1 = ζk−ck∇ζLTD(ξ̄k, θk, ζk)

(3.18)

where the learning rates {ak}k≥1, {bk}k≥1, {ck}k≥1 satisfy the standard conditions on multi-

time scale learning:
∑

k ak = ∞,
∑

k bk = ∞,
∑

k ck = ∞,
∑

k a
2
k < ∞,

∑
k b

2
k < ∞,∑

k c
2
k < ∞, limk→∞ ck/ak = 0, and limk→∞ bk/ck = 0, which ensures that AIS-generator

learns at a faster rate than the critic, and the critic learns at a faster rate than the policy.

Under standard technical conditions (see Theorem 23 of [64] or Page 35 of [67]), we

can show that iterations (3.14) and (3.18) will converge to a stationary point of the cor-

responding ODE limits. At convergence, depending on ε and δ for the quality of AIS

approximation, we can obtain approximation guarantees corresponding to Theorem 4.

We conclude this discussion by mentioning that algorithms similar to the AIS-based

PORL have been proposed in the literature including [6,7,9,35,36,68–74]. However, these

papers only discuss the empirical performance of the proposed algorithms but do not derive

performance bounds.
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Chapter 4

Experimental Results

We perform numerical experiments to check the effectiveness of AIS-based PORL algo-

rithms proposed in the previous section. The code for all AIS experiments is available

in [75]. We consider three classes of POMDP environments, which have increasing diffi-

culty in terms of the dimension of their state and observation spaces:

1. Low-dimensional environments (Tiger, Voicemail, and Cheese Maze)

2. Moderate-dimensional environments (Rock Sampling and Drone Surveillance)

3. High-dimensional environments (different variations of MiniGrid)

Previous experimental work on AIS in [12] was based on (AP1) and (AP2) and the

KL-divergence loss as a surrogate using an actor-critic framework and only a few low-

dimensional environments mentioned here were used. In this work, we use the actor only

framework and learn an AIS based on (AP1), (AP2a) and (AP2b) and the KL IPM and

MMD IPM. Apart from the newer and harder environments considered in this work, we also

present results on learning an AIS which has compressed observations. Also, experimental

results for the corresponding environments in [12] were improved upon in this work.

There are four components of the corresponding AIS-generator: the history compression

function σ̂, the AIS update function ϕ̂, the reward prediction function r̂, and the observation

prediction kernel P̂ y. We model σ̂ as an LSTM, where the memory update unit of LSTM

acts as ϕ̂. We model r̂, P̂ y, and the policy π̂ as feed-forward neural networks. A block

diagram of the network architecture is shown in Fig. 4.1 and the details of the networks

and the hyperparameters are presented in Appendix B.1. To avoid over-fitting, we use the
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RNN: �̂�
NN: 𝜋𝜃

NN: (𝑟, �̂�𝑦)

State: �̂�𝑡−1

𝑌𝑡−1

𝐴𝑡−1

�̂�𝑡

𝐴𝑡

To environment

�̂�𝑡

𝜈𝑡+1

History compressor Policy network Reward and
observation predictor

Fig. 4.1 Network architecture for PORL using AIS.

same network architecture and hyperparameters for all environments in the same difficulty

class.

We repeat each experiment for multiple random seeds and plot the median value along

with the uncertainty band from the first to the third quartile. For all environments, we

compare our performance with a baseline which uses an actor-critic algorithm where both

the actor and critic are modeled using LSTM and the policy parameters are updated using

PPO. This architecture was proposed as a baseline for the MiniGrid environments in [51].

The details of the baseline architecture are presented in Appendix B.1.

To evaluate the performance of the policy while training for AIS-based PORL, a separate

set of rollouts is carried out at fixed intervals of time steps and the mean of these rollouts

is considered. For the PPO baseline a number of parallel actors are used during training,

and once the episodes are completed, their returns are stored in a list. A fixed number

(based on the number of parallel actors) of past episodes are considered to evaluate the

mean performance of the current policy during training. See Appendix B.1 for details.

For the low and moderate-dimensional environments, we compare the performance with

the best performing planning solution obtained from the JuliaPOMDP repository [23]. For

the high-dimensional environments, finding a planning solution is intractable, so we only

compare with the PPO baseline mentioned previously.

4.1 Low-dimensional environments

In these POMDP environments, the size of the unobserved state space is less than about

10 and the planning solution can be easily obtained using standard POMDP solvers.

1. Tiger: The Tiger environment is a sequential hypothesis testing task proposed in
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[13]. The environment consists of two doors, with a tiger behind one door and a

treasure behind the other. The agent can either perform a listen action, which has

a small negative reward of −1 and gives a noisy observation about the location of the

tiger, or the agent can open one of the doors. Opening the door with the treasure

gives a reward of +10 while opening the door with a tiger gives a large negative

reward of −100. After opening a door, the environment is reset.

2. Voicemail: The Voicemail enviroment is also a sequential hypothesis testing task

propsed in [76]. This environment models a dialog system for managing voicemails.

The agent can either perform an ask action, wich has a small negative reward of −1

and gives a noisy observation about the intent of the user, or the agent can execute

save or delete. Choosing a save/delete action which matches the intent of the

user gives a reward of +5. The agent receives a negative reward of −20 for action

delete when the user intent is save, while choosing action save when the user

intent is delete gives a smaller but still significant negative reward of −10. Since

the user prefers save more than delete, the initial belief is given by [0.65, 0.35] for

save and delete respectively. After taking a save/delete action, the agent moves

on to the next voicemail message.

3. 1 2 3 2 4

5 5 5

6 7 6

CheeseMaze: The CheeseMaze environment is a POMDP

with masked states proposed in [14]. The environment con-

sists of 11 states and 7 observations as shown on the right.

The objective is to reach the goal state, which is indicated

by observation 7. The agent only receives a reward of +1,

when the goal state is reached.

For all three environments, we compare the performance of AIS-based PORL with the

LSTM+PPO baseline, described earlier. We also compare with the best performing plan-

ning solution from the JuliaPOMDP repository [23]. The results are presented in Fig. 4.2,

which shows both AIS-based PORL and LSTM+PPO converge close to the planning solu-

tions relatively quickly.1

1The performance of all learning algorithms for CheeseMaze are better than the best planning solution.
We solved the CheeseMaze model with other solvers available in the JuliaPOMDP [23], and all these
solution performed worse than the solution obtained by incremental pruning presented here.
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4.2 Moderate-dimensional environments

In these environments, the size of the unobserved state is moderately large (of the order of

102 to 103 unobserved states) and the optimal planning solution cannot be easily obtained

using standard POMDP solvers. However, an approximate planning solution can be easily

obtained using standard approximation algorithms for POMDPs.

1. RockSample: RockSample is a scalable POMDP environ-

ment introduced in [77] which models the rover science ex-

ploration. The RockSample(n, k) environment consists of a

n × n grid with k rocks. The rocks are at known positions.

Some of the rocks which are labeled as good rocks have sci-

entific values; other rocks which are labeled as bad rocks do

not. Sampling a rock is expensive and the agent has a noisy

long-range sensor to help determine if a rock is good before

choosing to approach and sample it. At each stage, the agent

can choose from k + 5 actions: north, south, east, west, sample, check1, . . . ,

checkk. The first four are deterministic single-step motion actions. The sample

action samples the rock at the current location; if the rock is good, there is a reward

of +20 and the rock becomes bad (so that no further reward can be gained from

sampling it); if the rock is bad, there is a negative reward of −10. The right edge of

the map is a terminal state and reaching it gives a reward of +10. In our experiments,

we use a RockSample(5, 3) environment.
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2. DroneSurveillance: DroneSurveillance is a POMDP

model of deploying an autonomous aerial vehicle in a par-

tially observed, dynamic, indoor environment introduced in

[78]. The environment is a 5 × 5 grid with two agents: a

ground agent which moves randomly and an aerial agent,

whose motion has to be controlled. The aerial agent starts

at the bottom-left cell and has to reach the upper-right cell

(the goal state) without being in the same location as the

ground agent. The ground agent cannot enter the start or

goal states. The aerial agent has a downward facing camera which can view a 3× 3

grid centered at its current location and it can perfectly see the location of the ground

agent if it is in this view. At each stage, the aerial agent may choose from 5 actions:

north, south, east, west, hover. The first four are deterministic single-step

motion actions and the hover action keeps the aerial vehicle at its current position.

Reaching the goal gives a reward of +1 and ends the episode. If both agents are in

the same cell, there is a negative reward of −1 and the episode ends.

The visualizations above are taken from the JuliaPOMDP environments [23]. For both

environments, we compare the performance of AIS-based PORL with the LSTM+PPO

baseline described earlier. We also compare with the best performing planning solution

from the JuliaPOMDP repository [23]. The results are shown in Fig. 4.3 which shows that

both AIS-based PORL algorithms converge close to the best planning solution in both

environments. The performance of LSTM+PPO is similar in DroneSurveillance but

LSTM+PPO gets stuck in a local minima in RockSample.

4.3 High-dimensional environments

We use the MiniGrid environments from the BabyAI platform [15], which are partially

observable 2D grid environments which has tasks of increasing complexity level. The en-

vironment has multiple entities (agent, walls, lava, boxes, doors, and keys); objects can be

picked up, dropped, and moved around by the agent; doors can be unlocked via keys of the

same color (which might be hidden inside boxes). The agents can see a 7× 7 view in front

of it but it cannot see past walls and closed doors. At each time, it can choose from the

following actions: {Move Forward, Turn Left, Turn Right, Open Door/Box,
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Pick up item, Drop Item, Done}. The agent can only hold one item at a time. The

objective is to reach a goal state in the quickest amount of time (which is captured by

assigning to the goal state a reward which decays over time).

Most of the environments have a certain theme, and we cluster the environments ac-

cordingly. The visualizations below are taken from the Gym MiniGrid environments [15].

1. Simple Crossing: A simple crossing environment is a 2D grid

with columns of walls with an opening (or a crossing). The agent

can traverse the wall only through the openings and needs to

find a path from the start to the goal state. There are four

such environments (MGSCS9N1, MGSCS9N2, MGSCS9N3, and

MGSCS11N5) where the label SnNm means that the size of the

environment is n× n and there are m columns of walls.

2. Lava Crossing: The lava crossing environments are similar to

the simple crossing environments, but the walls are replaced by

lava. If the agent steps on to the lava block then it dies and

the episode ends. Therefore, exploration is more difficult in lava

crossing as compared to simple crossing. There are two such envi-

ronments (MGLCS9N1 and MGLCS9N2) where the label SnNm

has the same interpretation as simple crossing.

3. Key Corridor: The key corridor environments consist of a

central corridor which has rooms on the left and right sides which

can be accessed through doors. When the door is locked it can

be opened using a key of the same color. The agent has to move

to the location of the key, pick it up, move to the location of

the correct door, open the door, drop the key, and pick up the

colored ball. There are three such environments (MGKCS3R1,

MGKCS3R2, and MGKCS3R3), where the label SnRm means that the size of the

grid is proportional to n and the number of rooms present is 2m.
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4. Obstructed Maze: The obstructed maze environ-

ments are similar to key corridor environments but the

key is inside a box and the box has to be opened

to find the key. We consider two such environments

(MGOM1Dl and MGOM1Dlh). In MGOM1Dl box is

already open while in MGOM1Dlh the box is closed.

There is an additional such environment in the BabyAI platform (MGOM1Dlhb),

which is more suitable for continual learning algorithms so we exclude it here.

The number of observations in a given MiniGrid environment is discrete but is too large

to model it as a one-hot encoded discrete observation as done in the previous environments.

Instead we compress the observations as described in Section 2.3.3 by using an autoencoder

to convert a large discrete space to a continuous space with a tractable size. A separate

autoencoder is trained for each environment using a dataset that is created by performing

random rollouts. Once the autoencoder is trained over the fixed dataset for several epochs,

it is fixed and used to generate the observations for learning the AIS. This is very similar

to [6], where they learn the autoencoder in a similar fashion and then fix it, following which

their training procedure for the next observation distribution prediction and policy takes

place. Alternatively, the autoencoder can also be trained parallel to the AIS and policy so

that it can represent the entire observation space sufficiently (at least the parts that are

important) by using (AP2) instead of (AP2a) and (AP2b). This is more similar to the

recent work based on world models [35, 36].

Note that the output of the autoencoder is a continuous variable and we are using

MMD with p = 2 as an IPM. As explained in Section 3.1, dF2(µ, ν)2 only depends on the

mean of µ and ν. So, to simplify the computations, we assume that ν is a Dirac delta

distribution centered at its mean. Thus, effectively, we are predicting the mean of the next

observation. In general, simply predicting the mean of the observations may not lead to a

good representation, but in the MiniGrid environments, the transitions are deterministic

and the only source of stochasticity in the observations is due to the initial configuration

of the environment. So, in practice, simply predicting the mean of the next observation

works reasonably well. We emphasize that for other more general environments with truly

stochastic observations, such a choice of IPM may not work well and it may be better to

choose the MMD dFp defined in Proposition 11 for a different value of p, say p = 1 (which

corresponds to the energy distance [62]).
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For all MiniGrid environments, we compare the performance of AIS-based PORL with

the LSTM+PPO baseline proposed in [51]. The results are shown in Fig. 4.4 which shows

that for most environments AIS-based PORL converges to better performance values. Note

that AIS-based PORL fails to learn in the Lava Crossing environments (MGLCS9N1 and

MGLCS9N2) while LSTM+PPO fails to learn in the larger Key Crossing environments

(MGKCS3R2 and MGKCS3R3) and in the Obstructed Maze environments (MGOM1Dl

and MGOM1Dlh).
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(a) Tiger

(b) Voicemail

Fig. 4.2 Comparison of AIS-based actor only PORL algorithm with
LSTM+PPO baseline for low-dimensional environments (for 10 random seeds).
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(c) Cheese Maze

Fig. 4.2 Comparison of AIS-based actor only PORL algorithm with
LSTM+PPO baseline for low-dimensional environments (for 10 random seeds)
(contd.).
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(a) Rock Sampling

(b) Drone Surveillance

Fig. 4.3 Comparison of AIS-based actor only PORL algorithm with
LSTM+PPO baseline for moderate-dimensional environments (for 10 random
seeds).
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(a) MGSCS9N1

(b) MGSCS9N2

Fig. 4.4 Comparison of AIS-based actor only PORL algorithm with
LSTM+PPO baseline for high-dimensional environments (for 5 random seeds).
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(c) MGSCS9N3

(d) MGSCS11N5

Fig. 4.4 Comparison of AIS-based actor only PORL algorithm with
LSTM+PPO baseline for high-dimensional environments (for 5 random seeds)
(contd.).
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(e) MGLCS9N1

(f) MGLCS9N2

Fig. 4.4 Comparison of AIS-based actor only PORL algorithm with
LSTM+PPO baseline for high-dimensional environments (for 5 random seeds)
(contd.).
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(g) MGKCS3R1

(h) MGKCS3R2

Fig. 4.4 Comparison of AIS-based actor only PORL algorithm with
LSTM+PPO baseline for high-dimensional environments (for 5 random seeds)
(contd.).
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(i) MGKCS3R3

(j) MGOM1Dl

Fig. 4.4 Comparison of AIS-based actor only PORL algorithm with
LSTM+PPO baseline for high-dimensional environments (for 5 random seeds)
(contd.).
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(k) MGOM1Dlh

Fig. 4.4 Comparison of AIS-based actor only PORL algorithm with
LSTM+PPO baseline for high-dimensional environments (for 5 random seeds)
(contd.).
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Chapter 5

Conclusions and Future Directions

In this work, we build upon the recently proposed idea of AIS [12] for learning in par-

tially observable environments. We extend the theoretical results on performance bounds

for approximate planning and learning for a general IPM similar to the bounds in [12]

for the KL-divergence loss as a surrogate for the Wasserstein distance. In particular, we

present results on the KL IPM and the MMD IPM accompanied with PORL algorithms

and we show that other general IPMs can also be considered. We also explore the idea

of observation compression to deal with environments having high-dimensional observation

spaces. We mainly look at two different paradigms to learn such a representation from

observational data. Either we can try to learn an AIS that predicts the distribution of the

next AIS or the next observation, given the current AIS and action. Predicting the next

AIS was generally found to be harder in experiments, so the results presented in this work

rely on predicting the distribution of the next observation instead. This makes sense since

an AIS is non-stationary and keeps changing as it is being learnt and so it is more difficult

to learn.

A multi-time scale PORL algorithm is introduced which learns the policy and AIS

compression functions side-by-side, but at different time scales (the AIS should be learnt

at a faster time scale than the policy). These methods are end-to-end and do not require

any intervention so they are easy to deploy.

We show that the ideas involved in AIS work on several environments of low, moderate

and high-dimensionality and we obtain a deeper understanding on how to set the practical

parameters of the networks involved. The two IPMs explored in numerical experiments are
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the KL IPM and the MMD IPM, which exhibit similar performance in most environments.

Both these variations also generally outperform the PPO with LSTM connections baseline

in our experiments. Their performance is also close to the planning solutions (whenever

such a planning solution is available).

5.1 Future Directions

The results presented here were mainly achieved just by incorporating the simple REIN-

FORCE algorithm without much of the existing RL machinery in the current state-of-the-

art, like actor-critic methods, TD(λ) returns, experience replay, DQN [3] or a version of

DQN like Rainbow DQN [4] are interesting directions to explore. It would also be inter-

esting to see these ideas applied to larger partially observable problems such as robotics

problems in the Mujoco [79] platform.
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Appendix A

Proofs

Proposition 7. (P2a) and (P2b) imply (P2).

Proof. For any Borel subset D of Zt+1, we have

P(Zt+1 ∈ D | Ht = ht, At = at)

(a)
=
∑
yt∈Y

P(Yt = yt, Zt+1 ∈ D | Ht = ht, At = at)

(b)
=
∑
yt∈Y

1{ϕt(σt(ht), yt, at) ∈ D}P(Yt = yt | Ht = ht, At = at)

(c)
=
∑
yt∈Y

1{ϕt(σt(ht), yt, at) ∈ D}P(Yt = yt | Zt = σt(ht), At = at)

(d)
= P(Zt+1 ∈ D | Zt = σt(ht), At = at)

where (a) follows from the law of total probability, (b) follows from (P2a), (c) follows from

(P2b) and (d) from the law of total probability.

Theorem 1. Let {Zt}Tt=1 be an information state. Recursively define value functions

{V̄t : Zt → R}T+1
t=1 , as follows: V̄T+1(zT+1) := 0 and for t ∈ {T, . . . , 1}:

Q̄t(zt, at) := E[Rt + V̄t+1(Zt+1) | Zt = zt, At = at], (2.7a)

V̄t(zt) := max
at∈A

Q̄t(zt, at). (2.7b)

Then, we have the following:
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1. For any time t, history ht, and action at, we have that

Qt(ht, at) = Q̄t(σt(ht), at) and Vt(ht) = V̄t(σt(ht)). (2.8)

2. Let π̄ = (π̄1, . . . π̄T ), where π̄t : Zt → ∆(A), be a stochastic policy. Then, the policy

π = (π1, . . . , πT ) given by πt = π̄t ◦ σt is optimal if and only if for all t and all

realizations zt of information states Zt, Supp(π̄t(zt)) ⊆ arg maxat∈A Q̄t(zt, at).

Proof. We prove the result by backward induction. By construction, (2.8) is true at time

T + 1. This forms the basis of induction. Assume that (2.8) is true at time t + 1 and

consider the system at time t. Then,

Qt(ht, at) = E[Rt + Vt+1(Ht+1) | Ht = ht, At = at]

(a)
= E[Rt + V̄t+1(σt+1(Ht+1)) | Ht = ht, At = at]

(b)
= E[Rt + V̄t+1(Zt+1) | Zt = σt(ht), At = at]

(c)
= Q̄t(σt(ht), at),

where (a) follows from the induction hypothesis, (b) follows from the properties (P1) and

(P2) of information state, and (c) follows from the definition of Q̄. This shows that the

action-value functions are equal. By maximizing over the actions, we get that the value

functions are also equal. The optimality of the policy follows immediately from (2.8).

Proposition 8. (AP2a) and (AP2b) imply (AP2) holds with transition kernels {P̂ y
t }Tt=1

defined as follows: for any Borel subset B of Ẑ,

P̂t(B | σ̂t(ht), at) =

∫
Y

1B(ϕ̂t(σ̂t(ht), yt, at))P̂
y
t (dyt|σ̂t(ht), at).

Therefore, we can alternatively define an {(εt, δt)}Tt=1-AIS generator as a tuple {(σ̂t, r̂t, ϕ̂t, P̂ y
t )}Tt=1

which satisfies (AP1), (AP2a), and (AP2b).
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Proof. Note that by the law of total probability, µt and νt defined in (AP2) are

µt(B) =

∫
Y

1B(ϕ̂t(σ̂t(ht), yt, at))µ
y
t (dyt),

νt(B) =

∫
Y

1B(ϕ̂t(σ̂t(ht), yt, at))ν
y
t (dyt).

Thus, for any function f : Ẑt+1 → R,∫
Ẑt+1

fdµt =

∫
Yt

f(ϕ̂t(σ̂t(ht), yt, at))µ
y
t (dyt),∫

Ẑt+1

fdνt =

∫
Yt

f(ϕ̂t(σ̂t(ht), yt, at))ν
y
t (dyt).

The result then follows from (2.12).

Theorem 2. Suppose {σ̂t, P̂t, r̂t}Tt=1 is an {(εt, δt)}Tt=1-AIS generator. Recursively define

approximate action-value functions {Q̂t : Ẑt × A → R}Tt=1 and value functions {V̂t : Ẑt →
R}Tt=1 as follows: V̂T+1(ẑT+1) := 0 and for t ∈ {T, . . . , 1}:

Q̂t(ẑt, at) := r̂t(ẑt, at) +

∫
Ẑt

V̂t+1(ẑt+1)P̂t(dẑt+1 | ẑt, at), (2.13a)

V̂t(ẑt) := max
at∈A

Q̂t(ẑt, at). (2.13b)

Then, we have the following:

1. Value function approximation: For any time t, realization ht of Ht, and choice

at of At, we have

|Qt(ht, at)− Q̂t(σ̂t(ht), at)| ≤ αt and |Vt(ht)− V̂t(σ̂t(ht))| ≤ αt, (2.14)

where αt satisfies the following recursion: αT+1 = 0 and for t ∈ {T, . . . , 1},

αt = εt + ρF(V̂t+1)δt + αt+1.

Therefore,

αt = εt +
T∑

τ=t+1

[
ρF(V̂τ )δτ−1 + ετ

]
.
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2. Approximately optimal policy: Let π̂ = (π̂1, . . . , π̂T ), where π̂t : Ẑt → ∆(A), be a

stochastic policy that satisfies

Supp(π̂(ẑt)) ⊆ arg max
at∈A

Q̂t(ẑt, at). (2.15)

Define policy π = (π1, . . . , πT ), where πt : Ht → ∆(A) by πt := π̂t ◦ σ̂t. Then, for any

time t, realization ht of Ht, and choice at of At, we have

|Qt(ht, at)−Qπ
t (ht, at)| ≤ 2αt and |Vt(ht)− V π

t (ht)| ≤ 2αt. (2.16)

Proof. We prove both parts by backward induction. We start with value function approxi-

mation. Eq. (2.14) holds at T + 1 by definition. This forms the basis of induction. Assume

that (2.14) holds at time t+ 1 and consider the system at time t. We have that

∣∣Qt(ht, at)− Q̂t(σ̂t(ht), at)
∣∣

(a)

≤
∣∣E[Rt | Ht = ht, At = at]− r̂t(σ̂t(ht), at)

∣∣
+ E

[∣∣Vt+1(Ht+1)− V̂t+1(σ̂t+1(Ht+1))
∣∣ ∣∣ Ht = ht, At = at

]
+

∣∣∣∣E[V̂t+1(σ̂t+1(Ht+1)) | Ht = ht, At = at]−
∫
Ẑt

V̂t+1(ẑt+1)P̂t(dẑt+1 | σ̂t(ht), at)
∣∣∣∣

(b)

≤ εt + αt+1 + ρF(V̂t+1)δt = αt

where (a) follows from triangle inequality and (b) follows from (AP1), the induction hy-

pothesis, (AP2) and (2.9). This proves the first part of (2.14). The second part follows

from ∣∣Vt(ht)− V̂t(σ̂t(ht))∣∣ (a)

≤ max
at∈A

∣∣Qt(ht, at)− Q̂t(σ̂t(ht), at)
∣∣ ≤ αt,

where (a) follows from the inequality max f(x) ≤ max |f(x)− g(x)|+ max g(x).

To prove the policy approximation, we first prove an intermediate result. For policy π̂

recursively define {Q̂π̂
t : Ẑ × A → R}Tt=1 and {V̂ π̂

t : Ẑ → R}T+1
t=1 as follows: V̂ π̂

T+1(ẑT+1) := 0
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and for t ∈ {T, . . . , 1}:

Q̂π̂
t (ẑt, at) := r̂t(ẑt, at) +

∫
Ẑt

V̂ π̂
t (ẑt+1)P̂t(dẑt+1 | ẑt, at) (A.1a)

V̂ π̂
t (ẑt) :=

∑
at∈A

π̂t(at | ẑt).Q̂π̂
t (ẑt, at). (A.1b)

Note that (2.15) implies that

Q̂π̂
t (ẑt, at) = Q̂t(ẑt, at) and V̂ π̂

t (ẑt) = V̂ (ẑt). (A.2)

Now, we prove that

|Qπ
t (ht, at)− Q̂π̂

t (σ̂t(ht), at)| ≤ αt and |V π
t (ht)− V̂ π̂

t (σ̂t(ht))| ≤ αt. (A.3)

We prove the result by backward induction. By construction, Eq. (A.3) holds at time T+1.

This forms the basis of induction. Assume that (A.3) holds at time t+ 1 and consider the

system at time t. We have

∣∣Qπ
t (ht, at)− Q̂π̂

t (σ̂t(ht), at)
∣∣

(a)

≤
∣∣E[Rt | Ht = ht, At = at]− r̂t(σ̂t(ht), at)

∣∣
+ E

[∣∣V π
t+1(Ht+1)− V̂ π̂

t+1(σ̂t+1(Ht+1))
∣∣ ∣∣ Ht = ht, At = at

]
+

∣∣∣∣E[V̂ π̂
t+1(σ̂t+1(Ht+1)) | Ht = ht, At = at]−

∫
Ẑt

V̂ π̂
t+1(ẑt+1)P̂t(dẑt+1 | σ̂t(ht), at)

∣∣∣∣
(b)

≤ εt + αt+1 + ρF(V̂t+1)δt = αt

where (a) follows from triangle inequality and (b) follows from (AP1), the induction hy-

pothesis, (AP2) and (2.9). This proves the first part of (A.3). The second part follows

from the triangle inequality:

∣∣V π
t (ht)− V̂ π̂

t (σ̂t(ht))
∣∣ ≤∑

at∈A

π̂t(at|σ̂t(ht))
∣∣Qπ(ht, at)− Q̂π̂

t (σ̂t(ht), at)
∣∣ ≤ αt.



A Proofs 67

Now, to prove the policy approximation, we note that

∣∣Qt(ht, at)−Qπ
t (ht, at)

∣∣ ≤ ∣∣Qt(ht, at)−Q̂π̂
t (σ̂t(ht), at)

∣∣+∣∣Qπ
t (ht, at)−Q̂π̂

t (σ̂t(ht), at)
∣∣ ≤ αt+αt,

where the first inequality follows from the triangle inequality, the first part of the second

inequality follows from (2.14) and (A.2) and the second part follows from (A.3). This proves

the first part of (2.16). The second part of (2.16) follows from the same argument.

Proposition 9. Arbitrarily pick a horizon T and define {Jπt,T : Ht → R}Tt=1 as follows:

JπT,T (hT ) = 0 and for t ∈ {T − 2, . . . , 1},

Jπt,T (ht) := Eπ[Rt + γJπt+1,T (Ht+1) | Ht = ht]. (2.19)

Then, for any time t ∈ {1, . . . , T} and realization ht of Ht, we have

Jπt,T (ht) +
γT−t

1− γ
Rmin ≤ V π

t (ht) ≤ Jπt,T (ht) +
γT−t

1− γ
Rmax. (2.20)

Proof. The proof follows from backward induction. Note that for t = T , Rt ∈ [Rmin, Rmax]

implies that
Rmin

1− γ
≤ V π

T (hT ) ≤ Rmax

1− γ
.

This forms the basis of induction. Now asusme that (2.20) holds for time t+1 and consider

the model for time t:

V π
t (ht) = Eπ

[ ∞∑
s=t

γs−tRs

∣∣∣∣ Ht = ht

]
(a)
= Eπ

[
Rt + γEπ

[ ∞∑
s=t+1

γs−(t+1)Rs

∣∣∣∣ Ht+1

] ∣∣∣∣ Ht = ht

]
(b)

≤ Eπ
[
Rt + γEπ

[
Jπt+1,T (Ht+1) +

γT−(t+1)

1− γ
Rmax

∣∣∣∣ Ht+1

] ∣∣∣∣ Ht = ht

]
(c)
= Jπt,T (ht) +

γT−t

1− γ
Rmax,

where (a) follows from the smoothing property of conditional expectation, (b) follows from

the induction hypothesis, and (c) follows from the definition of Jπt,T (·). This establishes one
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side of (2.20). The other side can be established in a similar manner. Therefore, the result

holds by the principle of induction.

Proposition 10. Arbitrarily pick a horizon T and define {Jt,T : Ht → R} as follows:

JT,T (hT ) = 0 and for t ∈ {T − 2, . . . , 1},

Jt,T (ht) := max
at∈A

E[Rt + γJt+1(Ht+1) | Ht = ht, At = at]. (2.23)

Then, for any time t ∈ {1, . . . , T} and realization ht of Ht,

V π
t (ht) ≤ Jt,T (ht) +

γT−t

1− γ
Rmax. (2.24)

Therefore,

Jt,T (ht) +
γT−t

1− γ
Rmin ≤ Vt(ht) ≤ Jt,T (ht) +

γT−t

1− γ
Rmax. (2.25)

Note that Jt,T (ht) is the optimal value function for a finite horizon system with the dis-

counted reward criterion that runs for horizon T − 1.

Proof. By following almost the same argument as Proposition 6, we can establish that for

any history dependent policy π, Jπt,T (ht) ≤ Jt,T (ht), which immediately implies (2.24).

Maximizing the left hand side of (2.24) gives us the upper bound in (2.25). For the

lower bound in (2.25), observe that

Vt(ht) = sup
π

Eπ
[ ∞∑
s=t

γs−tRs

∣∣∣∣ Ht = ht

]
(a)

≥ sup
π

Eπ
[T−1∑
s=t

γs−tRs +
∞∑
s=T

γs−tRmin

∣∣∣∣ Ht = ht

]

= sup
π

Eπ
[T−1∑
s=t

γs−tRs

∣∣∣∣ Ht = ht

]
+
γT−t

1− γ
Rmin

(b)
= Jt,T (ht) +

γT−t

1− γ
Rmin.

where (a) follows from the fact that Rs ≥ Rmin and (b) follows from the definition of

Jt,T (ht). This complete the proof of (2.25).
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Theorem 3. Let {Zt}t≥1 be a time-homogeneous information state process with generator

{σt : Ht → Z}t≥1. Suppose Assumption 1 holds and let V̄ ∗ be the unique bounded fixed point

of (2.26). Then, for any time t and realization ht of Ht, we have

Vt(ht) = V̄ ∗(σt(ht)).

Furthermore, let π∗ : Z→ ∆(A) be a time-homogeneous (stochastic) policy such that Supp(π∗(z))

is a subset of the arg max of the right hand side of (2.26). Then, the time-homogeneous

policy π∗ := (π∗, π∗, . . . ) is optimal.

Proof. Consider the following sequence of value functions: V̄ (0)(z) = 0 and for n ≥ 0, define

V̄ (n+1) = BV̄ (n). Now fix a horizon T and consider the finite-horizon discounted reward

problem of horizon T − 1. As argued earlier, Jt,T (ht) is the optimal value-function for this

finite horizon discounted problem. Moreover, note that {Zt}Tt=1 is an information state for

this finite horizon discounted problem. Therefore, from using the result of Theorem 1, we

get that for any time t ∈ {1, . . . , T}, and realization ht of Ht,

Jt,T (ht) = V̄ (T−t)(σt(ht)).

Substituting (2.25) from Proposition 10 in the above, we get

V̄ (T−t)(σt(ht)) +
γT−t

1− γ
Rmin ≤ Vt(ht) ≤ V̄ (T−t)(σt(ht)) +

γT−t

1− γ
Rmax.

The result follows from taking limit T → ∞ and observing that V̄ (T−t)(z) converges to

V̄ ∗(z).

Theorem 4. Suppose ({σ̂t}t≥1, P̂ , r̂) is a time-homogeneous (ε, δ)-AIS generator. Consider

the fixed point equation (2.29), which we rewrite as follows:

Q̂(ẑ, a) := r̂(ẑ, a) +

∫
Ẑ

V̂t+1(ẑt+1)P̂ (dẑt+1 | ẑ, a), (2.30a)

V̂ (ẑ) := max
a∈A

Q̂(ẑ, a). (2.30b)

Let V̂ ∗ denote the fixed point of (2.30) and Q̂∗ denote the corresponding action-value func-

tion. Then, we have the following:



A Proofs 70

1. Value function approximation: For any time t, realization ht of Ht, and choice

at of At, we have

|Qt(ht, at)− Q̂∗(σ̂t(ht), at)| ≤ α and |Vt(ht)− V̂ ∗(σ̂t(ht))| ≤ α, (2.31)

where

α =
ε+ γρF(V̂ ∗)δ

1− γ

2. Approximately optimal policy: Let π̂∗ : Ẑ → ∆(A) be a stochastic policy that

satisfies

Supp(π̂∗(ẑ)) ⊆ arg max
a∈A

Q̂∗(ẑ, a). (2.32)

Define policy π = (π1, π2, . . . ), where πt : Ht → ∆(A) is defined by πt := π̂∗◦ σ̂t. Then,

for any time t, realization ht of Ht, and choice at of At, we have

|Qt(ht, at)−Qπ
t (ht, at)| ≤ 2α and |Vt(ht)− V π

t (ht)| ≤ 2α. (2.33)

Proof. The proof follows by combining ideas from Theorem 2 and 3. We provide a detailed

proof of the value approximation. The proof argument for policy approximation is similar.

Consider the following sequence of value functions: V̂ (0)(ẑ) = 0 and for n ≥ 0, define

V̂ (n+1) = B̂V̂ (n). Now fix a horizon T and consider the finite-horizon discounted reward

problem of horizon T − 1. As argued earlier, Jt,T (ht) is the optimal value-function for this

finite horizon discounted problem. Moreover, note that {Ẑt}Tt=1 is an (ε, δ)-AIS for this

finite horizon discounted problem. Therefore, from using the result of Theorem 2, we get

that for any time t ∈ {1, . . . , T}, and realization ht of Ht,

|Jt,T (ht)− V̂ (T−t)(σ̂t(ht))| ≤ αt,

where

αt = ε+
T−1∑
τ=t+1

γτ−t
[
ρF(V̂ (T−τ))δ + ε

]
.
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Substituting (2.25) from Proposition 10 in the above, we get that

V̂ (T−t)(σ̂t(ht))− αt +
γT−t

1− γ
Rmin ≤ Vt(ht) ≤ V̂ (T−t)(σ̂t(ht)) + αt +

γT−t

1− γ
Rmax.

Since B̂ is a contraction, from the Banach fixed point theorem we know that limT→∞ V̂
(T−t) =

V̂ ∗. Therefore, by continuity of ρF(·), we have limT→∞ ρF(V̂ T−t) = ρF(V̂ ∗). Consequently,

limT→∞ αt = α. Therefore, taking the limit T →∞ in the above equation, we get

V̂ ∗(σ̂t(ht))− α ≤ Vt(ht) ≤ V̂ ∗(σ̂t(ht)) + α,

which establishes the bound on the value function in (2.31). The bound on the action-value

function in (2.31) follows from a similar argument.

Proposition 12. Consider the setup of Proposition 11 for p = 2. Suppose νξ is a known

parameterized distribution with mean Mξ and X is a sample from µ. Then, the gradient

of

(Mξ − 2X)ᵀMξ (3.6)

with respect to ξ in an unbiased estimator of ∇ξdF2(µ, νξ)
2.

Proof. For p = 2, we have that

dF2(µ, νξ)
2 = E[‖X −W‖2

2]− 1
2
E[‖X −X ′‖2

2]− 1
2
E[‖W −W ′‖2

2],

where X,X ′ ∼ µ and W,W ′ ∼ νξ. Simplifying the right hand side, we get that

dF2(µ, νξ)
2 = ‖E[X]‖2

2 − 2E[X]ᵀE[W ] + ‖E[W ]‖2
2.

Note that the term ‖E[X]‖2
2 does not depend on the distribution νξ. Thus, the expres-

sion (3.6) captures all the terms which depend on ξ.
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Appendix B

Implementation Details

B.1 Details about the network architecture, traning, and

hyperparameters

As explained in Sec. 4, the AIS-generator consists of four components: the history com-

pression function σ̂, the AIS update function ϕ̂, the reward prediction function r̂, and

theobservation prediction kernel P̂ y. We model the first as an LSTM, where the memory

update unit of LSTM acts as ϕ̂. We model r̂, P̂ y, and the policy π̂ as feed-forward neural

networks. We describe the details for each difficulty class of environment separately. In

the description below, we use Linear(n,m) to denote a linear layer Tanh(n,m) to denote

a tanh layer, ReLU(n,m) to denote a ReLU layer, and LSTM(n,m) to denote an LSTM

layer, where n denotes the number of inputs and m denotes the number of outputs of each

layer. The size of the input of the outputs depend on the size of the observation and action

spaces, which we denote by nO and nA, respectively as well as on the dimension of AIS and

for the case of minigrid environments, the dimension of the latent space for observations,

we denote by dẐ and dO. We also use Conv2d(IC,OC, (FSx, FSy)) to denote a 2D con-

volutional layer with IC, OC, (FSx, FSy) represent the number of input channels, output

channels and kernel size (along x and y) respectively. Note that the strides are the same as

the kernel size in this case. ELU represents Exponential Linear Unit and is used to model

the prediction of variance. Finally, GMM(ncomp) represents a Gaussian Mixture Model

with ncomp Gaussian components. Most of the details are common for both the AIS+KL

and the AIS+MMD cases, we make a distinction whenever they are different.
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B.1.1 Details for low dimensional environments:

• Environment Details:

Environment Discount No. of actions No. of obs.

γ nA nO

Voicemail 0.95 3 2

Tiger 0.95 3 2

CheeseMaze 0.7 4 7

The discount factor for CheeseMaze is chosen to match with standard value used

in that environment [14].

• AIS and Network details:

• Dimensions of AIS (dẐ) : 40

• Weight in AIS loss (λ) (KL) : 0.0001

Weight in AIS loss (λ) (MMD) : 0.001

σ̂ r̂ P̂ y π̂

Linear(nO + nA + 1, dẐ) Linear(nA + dẐ ,
1
2
dẐ) Linear(nA + dẐ ,

1
2
dẐ) Linear(dẐ , dẐ)

⇒ ⇒ ⇒ ⇒

Tanh(dẐ , dẐ) Tanh(1
2
dẐ ,

1
2
dẐ) Tanh(1

2
dẐ ,

1
2
dẐ) Tanh(dẐ , dẐ)

⇒ ⇒ ⇒ ⇒

LSTM(dẐ , dẐ) Linear(1
2
dẐ , 1) Linear(1

2
dẐ , nO) Linear(dẐ , nA)

⇒ ⇒

Softmax Softmax

• Training details: As explained in Section 3.3, we update the parameters after a

rollout of T , which we call a training batch. The choice of parameters for the training

batch are as follows:

• Samples per training batch : 200

• Number of training batches : 105
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In addition, we use the following learning rates:

• AIS learning rate : ADAM(0.003)

• Policy learning rate (KL) : ADAM(0.0006)

Policy learning rate (MMD) : ADAM(0.0008)

In the above description, we use ADAM(α) to denote the choice of α parameter of

ADAM. All other parameters have their default value.

• Evaluation details:

• No. of batches after which evaluation is done : 500

• Number of rollouts per evaluation : 50

B.1.2 Details for moderate dimensional environments:

• Environment Details:

Environment Discount No. of actions No. of obs.

γ nA nO

Drone Surveillance 0.99 5 10

Rock Sampling 0.99 8 3

• AIS and Network details:

• Dimensions of AIS (dẐ) : 128

• Weight in AIS loss (λ) (KL) : 0.0001

Weight in AIS loss (λ) (MMD) : 0.001

σ̂ r̂ P̂ y π̂

LSTM(nO + nA + 1, dẐ) Linear(nA + dẐ ,
1
2
dẐ) Linear(nA + dẐ ,

1
2
dẐ) Linear(dẐ , nA)

⇒ ⇒ ⇒

ReLU(1
2
dẐ ,

1
2
dẐ) ReLU(1

2
dẐ ,

1
2
dẐ) Softmax

⇒ ⇒

Linear(1
2
dẐ , 1) Linear(1

2
dẐ , nO)

⇒

Softmax
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• Training details: As explained in Section 3.3, we update the parameters after a

rollout of T , which we call a training batch. The choice of parameters for the training

batch are as follows:

• Samples per training batch : 200

• Number of training batches : 105

In addition, we use the following learning rates:

• AIS learning rate : ADAM(0.003)

• Policy learning rate : ADAM(0.0007)

In the above description, we use ADAM(α) to denote the choice of α parameter of

ADAM. All other parameters have their default value.

• Evaluation details:

• No. of batches after which evaluation is done : 500

• Number of rollouts per evaluation : 100

B.1.3 Details for high dimensional environments:

• Environment Details:

Note that here nO represents the number of possible observations that a general

minigrid environment can have. With the actual rules of the environment plugged

in, this number is smaller since some combinations of the encoded observation are

not possible. The actual input that we get from the environment is a vector of size

147 (dO) which is basically an observation grid of 7 × 7 with 3 channels containing

characteristic information about the observation.

Environment Discount No. of actions No. of obs. Obs. dimen.

γ nA nO dO

Minigrid Envs 0.99 7 (6× 11× 3)7×7 7× 7× 3

• Autoencoder (q) details:

• Latent space dimensions (dL) : 64

• Type of autoencoder used : Basic autoencoder

• Reconstruction Loss Criterion Used : Mean Square Error
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q

Linear(dO,
3
2
dL)

⇒

ReLU(3
2
dL,

3
2
dL)

⇒

Linear(3
2
dL, dL)

• AIS and Network details:

• Dimensions of AIS (dẐ) : 128

• Weight in AIS loss (λ) : 0.1

• Number of GMM components used (ncomp) (only for KL) : 5

σ̂ r̂ P̂ y π̂

LSTM(dL + nA + 1, dẐ) Linear(nA + dẐ ,
1
2
dẐ) Linear(nA + dẐ ,

1
2
dẐ) Linear(dẐ , dẐ)

⇒ ⇒ ⇒

ReLU(1
2
dẐ ,

1
2
dẐ) ReLU(1

2
dẐ ,

1
2
dẐ) ReLU(dẐ , dẐ)

⇒ ⇒ ⇒

Linear(1
2
dẐ , 1) Linear(1

2
dẐ , dL) Linear(dẐ , nA)

⇒

Softmax

For KL, P̂ y is replaced by the following while other networks remain the same:

P̂ y

Linear(nA + dẐ ,
1
2
dẐ)

⇒

ReLU(1
2
dẐ ,

1
2
dẐ)

⇒ ⇒ ⇒

Linear(1
2
dẐ , dLncomp) ELU(Linear(1

2
dẐ , dLncomp)) + 1 + 10−6 Softmax(Linear(1

2
dẐ , ncomp))

⇒ ⇒ ⇒

GMM(ncomp)

Note that the third layer here is for the mean vector of each component, the diagonal

vector for variance of each component and the mixture weights of each component of

the GMM respectively. This goes into the GMM probability model.
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• Training details: As explained in Section 3.3, we update the parameters after a

rollout of T , which we call a training batch. The choice of parameters for the training

batch are as follows:

• Samples per training batch : 200

• Number of training batches : 2× 105 (MGKCS3R3, MGOM1Dl, MGOM1Dlh)

105 (others)

In addition, we use the following learning rates:

• AIS learning rate : ADAM(0.001)

• Policy learning rate : ADAM(0.0007)

In the above description, we use ADAM(α) to denote the choice of α parameter of

ADAM. All other parameters have their default value.

• Evaluation details:

• No. of batches after which evaluation : 5000 (MGKCS3R3, MGOM1Dl, MGOM1Dlh)

is done 1000 (others)

• Number of rollouts per evaluation : 20

B.1.4 Details for PPO with LSTM and Critic:

• Environment Details:

The environment details are the same as mentioned previously.

• Network details:

– Low and moderate dimensionality environments:

Feature Extractor Actor Head Critic Head

LSTM(nO, nO) Linear(nO, 64) Linear(nO, 64)

⇒ ⇒

Tanh(64, 64) Tanh(64, 64)

⇒ ⇒

Linear(64, nA) Linear(64, 1)

⇒

Softmax
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– High dimensionality environments:

• Observation tensor : 7× 7× 3

• Embedding size (dE) : 64

Conv. Feature Extractor Actor Head Critic Head

Conv2d(3, 1
4
dE, (2, 2)) Linear(dE, dE) Linear(dE, dE)

⇒ ⇒ ⇒

ReLU Tanh(dE, dE) Tanh(dE, dE)

⇒ ⇒ ⇒

MaxPool2d Linear(dE, nA) Linear(dE, 1)

⇒ ⇒

Conv2d(1
4
dE,

1
2
dE, (2, 2)) Softmax

⇒

ReLU

⇒
Conv2d(1

2
dE, dE, (2, 2))

⇒

ReLU

⇒

LSTM(dE, dE)

• Training details:

• Number of parallel actors : 64

• Number of training batches : 4× 107 (MGKCS3R3, MGOM1Dl, MGOM1Dlh)

2× 107 (others)

• Epochs per training batch : 4

• Samples per training batch : 1280

• Frames per parallel actor : 40

• GAE (λGAE) : 0.99

• Trajectory recurrence length : 20

In addition, we use ADAM with the following details:

• Learning rate α : 0.0001

• ADAM parameter ε : 0.00001
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• Evaluation details:

• No. of batches after which evaluation

is done : 200

• Rollouts used for evaluation : All recent episodes completed by all actors

B.1.5 Details about hyperparameter tuning

Hyperparameter tuning was carried out by searching a grid of values, but exhaustive grid

search was not carried out due to the prohibitive computational cost. Instead, coarse values

were used initially as starting points and finer tuning was done around promising values,

which was essentially an iterative process of performing experiments, observing results and

trying similar parameters to the ones generating good results. Hyperparameters observed

in each previous environment class (low, moderate, high dimensionality) were used as a

starting point for the search in the new environment class.

Performance was quite sensitive to different learning rates used for the AIS and policy

in most environments. Performance generally improved or remained the same when a

larger AIS State Size was used (values considered were 128, 256, 512 for moderate/high-

dimensional environments and 5, 10, 20, 40 for low-dimensional environments), although in

some cases, it was more unstable during training. λ values considered were between 0 and

1 and generally only made a difference (in terms of performance results) when the rewards

were very large. The choice of activation function between ReLU and Tanh did not seem

to make a significant difference for the considered environments.
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