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Abstract

Heavy ion collisions conducted at the Relativistic Heavy Ion Collider (RHIC) and the Large

Hadron Collider (LHC) are sufficiently energetic to create a deconfined state of quarks and

and gluons known as Quark Gluon Plasma (QGP). In the infinite momentum limit, there

is a longitudinal symmetry, known as boost invariance, that reduces the dynamics to 2+1-

dimensions, simplifying simulations and allowing for detailed study of the transverse dy-

namics of heavy ion collisions. Boost invariance is only an approximation, however, and a

complete understanding must come from the full 3+1D dynamics of heavy ion collisions. In

this thesis, the phenomenologically successful IP-Glasma model [1, 2] for the initial state of

heavy ion collisions is generalized to 3+1D using JIMWLK rapidity evolution [3, 4] of the

pre-collision Wilson lines. The initial gauge fields for the individual nuclei are modified to be

pure gauge outside of the source terms in all three spatial directions in order to avoid energy

deposition outside of the interaction region between the two nuclei. Additionally, Gauss’

law is no longer trivially satisfied in 3+1D, and must be satisfied locally. An ansatz and

iterative solution to Gauss’ law is introduced. The effect of these modifications is explored

on the evolution of the chromo-electric and chromo-magnetic fields, as well as the pressure

in the IP-Glasma phase. Most importantly, these modifications allow for self-consistent tem-

poral evolution of the Classical Yang Mills equation of motion on a 3D lattice and thus

for phenomenological application. The 3+1D IP-Glasma initial state is coupled to 3+1D

relativistic viscous hydrodynamics using the MUSIC numerical software [5], which is in turn

matched to the hadronic cascade model UrQMD [6]. This hybrid model is used to study the

initialization and evolution of Pb-Pb collisions at
√
s = 2.76 TeV in 3+1D, providing the

first opportunity to study the phenomenological consequences of the JIMWLK renormaliza-

tion group equation on the longitudinal dynamics of heavy ion collisions and the resulting

particle spectra.

ix



Résumé

Les collisions d’ions lourds menées au collisionneur d’ions lourds relativistes (RHIC) et au

grand collisionneur de hadrons (LHC) sont suffisamment énergétiques pour créer un état de

quarks et de gluons déconfinés, soit le Plasma Quarks-Gluons (QGP). Si l’on fait tendre la

quantité de mouvement (momentum) vers l’infini, une symétrie longitudinale se manifeste,

communément appelée “boost invariance”, qui réduit le problème de 3+1 à 2+1 dimensions,

simplifiant ainsi les simulations et offrant la possibilité d’étudier propriétés et la dynamique

transversales de collisions d’ions lourds à moindre coût numerique. La “boost invariance”

n’est toutefois qu’une approximation; une étude complète des collisions d’ions lourds doit

inclure les 3 dimensions spatiales. Cette thèse doctorale a pour but d’éntendre le modèle

IP-Glasma [1, 2], qui décrit l’état initial de collisions d’ions lourds, à 3+1 dimensions en

appliquant aux lignes de Wilson initiales l’évolution de rapidité JIMWLK [3, 4]. Pour éviter

la déposition d’énergie à l’extérieur de la région d’interaction, les champs de jauges initi-

aux des deux noyaux sont modifiés individuellement. Ainsi, la configuration en est une de

jauge pure, à l’exception des sources, et ce, dans les 3 dimensions spatiales. De plus, en

3+1 dimensions, le théorème de Gauss ne peut être satisfait de façon triviale, créant donc

un ensemble de nouvelles conditions qui doivent être respectées localement. Pour répondre

à ces conditions, nous proposons une solution itérative au théorème. La quantification des

effets de ces modifications sur les champs chromoélectrique et chromomagnétique, ainsi que

sur la pression lors de la phase IP-Glasma, est donc centrale à cette thèse. Ces modifications

permettent aussi une évolution temporelle cohérente de l’équation du mouvement classique

de Yang-Mills, qui rend à son tour possible une application phénoménologique. L’état initial

en 3+1 dimensions IP-Glasma est ensuite jumelé à la simulation hydrodynamique visqueuse

MUSIC [5], qui est finalement jointe à UrQMD, un modèle de cascade hadronique [6]. Ce

modèle hybride est utilisé pour étudier l’initialisation et l’évolution de collisions Pb-Pb, à
√
s = 2.76 TeV, en 3+1 dimensions. Il s’agit donc de la première opportunité d’étudier

les conséquences phénoménologiques de l’équation de renormalisation JIMWLK sur la dy-

namique longitudinale de collisions d’ions lourds et des spectres de particules en résultant.
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1

Introduction

1.1 The Proposal and Later Discovery of Quarks

By the 1960’s, there was a proliferation in experimentally discovered particle species. In

1964 Murray Gell-Mann [7] and George Zweig [8] independently posited that many of these

particles were not fundamental in nature, but composite particles made up of quarks, a set

of yet-to-be discovered particles that carry fractional electric charge. It was believed for

some time that these particles were mathematical constructs, necessary to make sense of

the physics in theoretical terms, but not necessarily real particles that could be observed

experimentally.

A series of experiments at Stanford Linear Accelerator Center (SLAC), conducted in the

later 1960’s and early 1970’s (1967-73 for Deep Inelastic Scattering (DIS)) set out to explore

the sub-structure of nucleonic matter. Just as Rutherford had bombarded gold foil with

alpha particles and discovered the nucleus, these SLAC experiments consisted of bombarding

neutrons and protons, known collectively as nucleons, with electrons. Earlier experiments

of elastic scattering between electrons and protons suggested that the electric charge of the

proton may be relatively evenly distributed, a notion that recalls Thomson’s plum pudding

model of the atom. If this were the case, one would expect little scattering at high energies

and large angles due to the assumed diffuseness of the proton charge. This was not observed

[9] for the inelastic cross-section, however, indicating that there are hard scattering centers

within the proton, similar to what Rutherford had found in probing atoms with α-particles.

Shown in Fig. (1.1) is the ratio of DIS scattering and elastic electron-proton scattering to

that of Mott Scattering, or electron-electron scattering. Electrons were understand to behave

1
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Figure 1.1: Elastic and DIS scattering data at 10 degrees, in ratio to Mott Scattering, as a

function of q2. This plot was taken from [9].

as point particles, so the σDIS/σMott ≈ 1 indicated that there were also point-like scattering

centers with the proton.

To understand this behavior, consider the deep inelastic scattering (DIS) diagram below,

where an electron interacts with a quark inside the proton via a virtual photon and breaks

the proton into other hadrons. Assuming elastic scattering between the quark and electron,

the outgoing quark has

0 ≈ (p′q)
2 = (pq + q)2 = 2pq · q + q2 = 2xP · q −Q2 (1.1)

where the mass of the quark is considered negligible, Q2 is the virtuality of the photon, and

x is the fraction of the proton carried by the parton,

pq = xP. (1.2)
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Rearranging, the momentum fraction can be written,

x =
Q2

2P · q
=

Q2

2Mpν
(1.3)

where ν = P ·q
Mp

= Ee − E ′e and Q2 can be measured from the scattered electron. In this

way, experiments can determine the fraction of the hadron momentum of the parton that

participates in the collision.

Bjorken proposed a notion of scaling, which argued that hadronic matter behaves as a

collection of point-like particles at high energies. Bjorken scaling applies if experimental

results are not sensitive to the absolute energy scale of the experiment, but rather are

sensitive to certain dimensionless kinematic quantities such as Bjorken x, defined in Eq. (1.3).

As can be seen in Fig. (1.1), the value of σ/σMott for the DIS data is nearly independent

of the momentum transfer. This suggests that the particles that constitute protons are

point-like, because, if they weren’t, higher momentum transfer would suggest finer spatial

resolution, and thus yield some dependence on the momentum transfer.

In addition to finding evidence for discrete scattering centers within the proton, which

are understood to be quarks, the DIS experiments compared DIS from protons and neutrons

[10]. They found that at high energies, the neutron and proton cross sections were very

similar, yielding a ratio near unity, as seen in Fig. (1.2). At lower energies, however, the

cross sections differed substantially. This was significant for two reasons: 1) it supported

the idea that neutrons and protons were composed of different valence quarks, the neutron

of ddu and the proton of uud and 2) it gave evidence to the idea that nucleons were made of

valences quarks, but also a “sea” of quarks that could be probed at higher energies. In the
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Figure 1.2: The ratio of the DIS cross section of neutrons to that of protons as a function of

momentum fraction, x. Plot originally from [10].

high energy limit the valence quarks were less dominant and the sea quarks dominated both

the neutron and proton, making them appear much more similar to the incoming electron.

DIS lead to the discovery of quarks and continues to form the basis for understanding the

fine structure within hadrons. It will resurface in Chapter 2 in the discussion regarding the

wave function of high energy nuclei and the process of gluon saturation.

1.2 Quantum Chromodynamics (QCD)

With experimental verification of the existence of quarks, hadronic matter, or matter that is

bound by the strong nuclear force, was beginning to be understood through the quark model.

There remained issues however. For example, among the discovered hadrons there existed

particles such as the ∆++ baryon which was composed of three up quarks with aligned spin

and vanishing orbital angular momentum. The ∆++ wave function appeared symmetric

under the exchange of any two quarks, which were understood to be fermions, in apparent

violation of the Pauli exclusion principle. This led the Bardeen, Fritzsch, and Gell-Mann
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[11] to propose a new quantum number, known as colour, and that all hadrons were colour

singlet states. Colour charge could take one of three values, typically called green, blue, and

red. The existence of colour charge resolved the statistics problem for ∆++ as well as other

discrepancies between theory and experiment, such as the decay rate of a neutral pion into

two photons and the cross-section for electron-positron annihilation at high energies into

hadrons. Colour charge came to be widely accepted as an exact SU(3) symmetry obeyed by

quarks.

The question remained, however, as to why free quarks had not been observed in nature,

but only observed in bound states, known as hadrons. Certain non-abelian gauge theories

exhibit a property known as confinement [12, 13], and such a theory, Quantum Chromody-

namics (QCD), was put forth to describe the strong nuclear force. The action of QCD is

given by,

SQCD =

∫
d4x

(
−1

4
F a
µνF

µνa +
∑
f

ψ̄f
(
i /D −mf

)
ψf

)
(1.4)

where f is an index that runs over the number of quark flavors, and a is a color index that

runs from 1 to 8. Feynman’s slash notation /D = γµ∂µ is used, where γµ are Dirac matrices.

Here the field strength tensor F a
µν and the covariant derivative are defined, respectively, as

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν (1.5)

and,

Dµ = ∂µ + igAaµt
a. (1.6)

Here fabc is a structure constant particular to the Lie algebra of the group.

QCD is a specific instance of broader class of theories known as Yang-Mills theories, and is

the fundamental field theory governing quarks and gluons. Unlike Quantum Electodynamics

(QED), it is a non-abelian gauge theory, and obeys the SU(3) charge symmetry. A critically

important implication of this fact is that the coupling constant, which characterizes the

strength of the interaction between elementary particles of the theory and is denoted as g in

Eq. (1.6), actually increases with distance or equivalently decreases with increasing energy,

the opposite behavior from QED.
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This means that at short distances, quarks are relatively free, but as one tries to separate

two quarks, the force becomes constant, until eventually it becomes energetically favorable

to produce two new quarks out of vacuum, leaving two colourless bound states where there

was originally one. This is the notion of color confinement that prevents the observation of

free quarks.

There is an intuitive physical picture that is useful in thinking about this important dif-

ference between QED and QCD based on the microscopic physics. In Quantum Field Theory

(QFT), where the vacuum can be polarized much like a dielectric, an electric charge does just

that. Probed at higher and higher energies, the spatial resolution increases and one is able

to resolve the electric charge. At larger distances, however, the electric charged is screened

Figure 1.3: Top: schematic illustration

of QED screening phenomenon. Bottom:

schematic illustration showing gluons car-

rying away some of the quark colour

charge, leading to the QCD anti-screening

phenomenon. Figures from [14].

Figure 1.4: Figure showing the running of

the coupling in QCD, and the asymptotic

freedom at large energy scales, as taken

from [15].
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by the surrounding charge anti-charge pairs that arise out of the vacuum polarization, shown

in the top left of Fig. (1.3). Due to electric attraction, the vacuum charge that is oppositely

charged tends to be to the original charge. Drawing a Gaussian surface then will enclose less

charge, meaning the strength of the field at a distance r is less than that due to the original

charge. This is the idea of screening and is one way of understanding the running of the

QED coupling getting larger at higher energies, or smaller length scales. A more technical

way to do so would be to say that the QED beta-function, which quantifies how the coupling

changes as a function of energy scale, is positive, and at the one-loop level is given by

βQED(r) =
∂g

∂ log µ
=

2α2

3π
> 0. (1.7)

In QCD, however, the force carrying gauge bosons, the gluons, are themselves charged

under QCD. Just as in QED, a QCD test charge will induce a vacuum polarization. However,

the gluons that mediate the force between the test charge and the induced charge anti-charge

pairs will themselves carry away some of the charge of the original test charge. In effect,

the gluons will spread out the charge, leading to the opposite behavior of QED, known as

anti-screening. This is schematically depicted in the bottom left panel of Fig. (1.3), in which

the red color charge of the initial quark is dispersed away due to the color charge carrying

gluons. In terms of the coupling, anti-screening means that the coupling increases with

increasing distance (decreasing energy), as shown in Fig. (1.4), both in various experiments

and in terms of the theory of QCD. This idea, that the coupling, usually denoted as αs,

goes to zero, as the energy scale goes to infinity, is known as asymptotic freedom. At leading

order, the strong coupling constant at a scale Q2 is usually written,

αs(Q
2) =

1

β0 lnQ2/Λ2
(1.8)

where Λ ≈ 200 MeV is a scale parameter and β0 =
11Nc−2nf

12π
, where NC is the number of

colors, and nf is the number of quark flavors. The form of Eq. (1.8) clearly decreases with

increasing energy.
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Figure 1.5: Possible phase diagram of QCD. This figure was taken from [16].

1.3 Quark Gluon Plasma and Heavy Ion Collisions

Asymptotic freedom means that at sufficiently high temperatures, where the strong coupling

becomes small, it is possible to liberate quarks and gluons. This idea can be represented

in a phase diagram of QCD, as done in Fig. (1.5), where quarks and gluons become free

above certain temperatures and baryon densities. Indeed, lattice QCD simulations indicate

a liberation of colour degrees of freedom at around 155 MeV [17], as shown in Fig. (1.6).

To see why this suggests the liberation of quarks and gluons, consider the Stefan-Boltzmann

law, which says that the ratio ε/T 4, where T is temperature and ε is the energy density,

should be proportional to the number of degrees of freedom in the system. For a gas of light

mesons, say pions, Ndof
π = 3, whereas for a system made up of the free quarks and gluons

that compose pions,

Nquarks =
[
(spin)× (colors)× (flavours)× (q or q̄)

]
= 2× 3× 2× 2 = 24

Ngluons =
[
(colors)× (spin)

]
= 8× 2

(1.9)

so for 2 flavours,

Ndof = Ngluons +Nquark = 16 + 24 = 40 (1.10)
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Figure 1.6: The rapid increase in these quantities indicates a liberation of degrees of freedom.

The lack of a peak or divergence indicates that there is no phase transiton but rather a

smooth crossover from hadron gas to quark gluon plasma. Plot taken from the hotQCD

collaboration [17].

This rapid increase in the degrees of freedom can be seen in the lattice QCD calculation

shown in Fig. (1.6).

Experimentally, heavy ion collisions conducted at the Large Hadron Collider (LHC) and

the Relativistic Heavy Ion Collider (RHIC) reach sufficiently high energies to create Quark

Gluon Plasma (QGP), a deconfined state of quarks and gluons, in the laboratory. These

experiments accelerate heavy ions, such as lead or gold nuclei, to nearly the speed of light.

These highly Lorentz contracted pancake-like nuclei, collide and rapidly create a hot, dense

state of deconfined quarks and gluons. The QGP behaves like a near-perfect fluid with an

extremely low shear viscosity to entropy density ratio. As the QGP expands and cools it

reaches temperatures below the QCD confinement temperatures and turns back into hadrons,

a process that is often referred to as “hadronization.”

Outside of the laboratory, it is believed that the early universe was comprised of Quark

Gluon Plasma (QGP) microseconds after the Big Bang [18], and could be present in the

interior of neutron stars [19].
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1.4 Evidence of Quark Gluon Plasma

Heavy Ion Collisons are incredibly violent and short lived, creating a QGP fireball that

only survives for on the order of 10 fm/c or about 10−23 seconds and can create tens of

thousands of particles. In order to study QGP, one must infer the behavior indirectly from the

particle spectra that are detected at the particle detectors. Nonetheless, there is convincing

experimental evidence that a deconfined state of quarks and gluons is formed.

There are two prominent signatures of the formation of QGP, one in the high pT part of

the spectrum, and the other in the low pT , where pT is simply the momentum of the final

states particles that is transverse to the beam axis. In the low pT , or “soft”, part of the

the spectrum the particles exhibit a collective behavior or “flow,” that can be measured by

the two particle correlation, as seen in Fig. (1.7). In particular, notice that the two particle

correlation has a “ridge” at ∆φ = 0 indicating that the angle of the particles’ momentum

in the transverse plane is correlated in the longitudinal direction. This long-range rapidity

correlation indicates that there is a collective behavior among the particles.

Hydrodynamics provides a natural explanation of this phenomenon, and indeed has been

incredibly successful in describing experimental results. If one considers the collision of two

nuclei, where the two nuclei are offset by some distance perpendicular to the collision axis,

known as the impact parameter and usually denoted “b”, then as the impact parameter

increases from zero, the overlap region of the colliding nuclei will become almond-shaped. In

terms of hydrodynamics, the almond-shaped, or elliptical, spatial energy deposition leads to

differences in pressure gradients along the major and minor axes of this elliptical shape. The

difference in pressure gradients will lead to an anisotropy in the momentum distribution of

the final state particles, which is typically characterized by v2, the second Fourier coefficient

obtained by a Fourier decomposition of the azimuthal angle of the particle spectrum,

dN

pTdpTdydφ
=

dN

2πpTdpTdy

(
1 +

∑
n=1

2vn(y, pT ) cos [n(φ− ψn)]

)
. (1.11)

In general, a spatial anisotropy of the nth order, often characterized by

εn =

∫
d2xrnε(x)einφ∫
d2xrnε(x)

. (1.12)
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where ε(x) is the local energy density at position x in the transverse plane, will be translated

by hydrodynamic pressure gradients to a momentum anisotropy of the same order which

can be quantified by the vn Fourier coefficient [21, 22]. These include ellipticity (n = 2),

triangularity (n = 3) as first proposed in [23], quadrangularity (n = 4), and so on. This can

be seen clearly in Fig. (1.8). In panel (a), the position of nucleons from two colliding nuclei,

offset by a finite impact parameter, are shown in purple and green, respectively. In panel (b),

the resulting deposition of energy using simple geometric cross-sections for nucleon-nucleon

interactions shows a globally elliptical shape, with additional fluctuations. The red arrows

Figure 1.7: The so-called “ridge” phenomenon in HIC’s. Plotted is the two particle cor-

relation as a function of ∆φ, or azimuthal angle separation of the particles, and the ∆η

separation. One can see that there is a ridge at ∆φ = 0 radians that is long-range in ∆η.

This shows the flow, or collective behavior of particles responding to the initial geometry.

Fig. from [20]
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Figure 1.8: (a) Two colliding Pb nuclei for which the positions of the nucleons were sampled

from a Wood-Saxon distribution. The non-zero impact parameter leads to an elliptical

overlap region, which the sampled nucleon positions giving rise to fluctuations around this

shape. (b) The locations of binary nucleon-nucleon collisions from the collision in panel (a).

The arrows are a schematic representation of the momentum generated from the difference

in pressure gradients between the x and y directions. (c) A cross section along the beam axis

and impact parameter axis showing two incoming nuclei with fluctuating nucleon positions.

This figure does not show the Lorentz contraction of the nuclei. (d) Same as (c) but showing

Lorentz contraction of nucleus (not showing Lorentz contraction in nucleons).
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are a schematic representation of the different pressure gradients at play. This collision will

lead to non-zero momentum space anisotropies v2 and v3.

The high pT signature for QGP involves the hard scattering of two partons that form

a collimated beam of hadrons, known as a jet. Jets are created in proton-proton (p-p)

collisions, where the presence of QGP is assumed absent, as well as in nucleus-nucleus (A-A)

collisions, where it is believed to form. One can compare the detected particle spectrum

from these jets in the two cases mentioned. Typically one considers a quantity known as

RAA, which is simply the ratio of the particle spectra in A-A collisions over the spectra in

p-p collisions, normalized by the number of binary nucleon-nucleon collisions in the A-A

collision. In the case of nucleus-nucleus collisions, RAA is well below unity, indicating that

the jet loses energy, a process known as jet quenching. This suggests that a bulk medium,

namely QGP, is formed, with which the jet interacts and to which it loses energy.

This thesis will focus primarily on the soft part of the spectrum and the flow signature

of QGP, but its contents also have implications for high-pT that will not be explored here.

1.5 Stages of Heavy Ion Collisions

Experimentally, we are unable to directly observe the initial state or the dynamical evolution

of the collision, but only the final state particles. This means we can only study the dynamics

of the Quark Gluon Plasma indirectly by building phenomenological models and comparing

simulations to data from the final state particle spectra in order to make inferences about

the formation and evolution of QGP.

Heavy ion collisions explore high temperature, many-body QCD. Without being able to

solve the fundamental QCD equations in this context, it is necessary to rely on effective field

theories and models to describe these incredibly complex processes. As of now, no single

theoretical framework can describe the entirety of these collisions, so HIC’s are typically

modelled in three stages: the initial condition, a relativistic hydrodynamic phase, and finally

a hadron gas phase. A brief description of HIC’s is included below, along with Table 1.1

outlining the different phases and the accompanying numerical softwares used.

Before the collision, the heavy ions are accelerated to nearly the speed of light, resulting
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in highly Lorentz contracted nuclei in the lab frame. This is shown schematically in pan-

els (c) and (d) of Fig. (1.8). These highly boosted, pancake-like nuclei collide and form a

gluon dominated state that can be described by strong classical fields. The system is be-

lieved to reach the necessary conditions for the applicability of relativistic hydrodynamics

on an incredibly short time scale on the order of 0.1-1.0 fm/c. The exact criteria for the

applicability of hydrodynamics and the mechanism by which it reaches this criteria is still

very much debated in the field [24]. For the purposes of this thesis, in which only Pb-Pb

collisions are studied, the theoretical applicability of hydrodynamics is widely accepted, and

the phenomenological success of the hydrodynamic framework is considered as evidence of

the formation of QGP. The controversy regarding the applicability of hydrodynamics arises

in so-called “small” systems, such as proton-nucleus collisions.

At this point the system is comprised of quarks and gluons and is described well by

relativistic hydrodynamics with an extremely small shear viscosity to entropy density ratio,

sometimes described as a “near perfect fluid.” As the system expands and cools, it drops

below the deconfinement temperature, and the quarks and gluons hadronize, forming a gas of

hadrons that includes resonances as well as stable particles. These hadrons undergo decays

and scatterings until they reach kinetic freezeout and no longer interact. At this point the

particles can be analyzed and compared to experimental data, which is collected when the

particles reach the particle detectors.

Table 1.1: Table showing the complexity of heavy ion collisions along with the variety of

models and numerical simulations used to study them in this thesis (adapted from [25]).

Description Time Prevailing Theory Simulation Used

Before the collision τ < τ0 Color Glass Condensate/JIMWLK 3+1D IP-Glasma

Immediately after the collision τ0 < τ < 1
Qs

Strong Classical Fields - Glasma 3+1D IP-Glasma

Thermalization/Isotropization/

Hydrodynamization

1
Qs
< τ < τequilibrium Glasma/Kinetic Theory/Hydro 3+1D IP-Glasma

QGP (Hydrodynamics) τequilibrium < τ < τfreezeout Relativistic Viscous Hydrodynamics 3+1D MUSIC

Hadron Gas τfreezeout < τ < τfreestream Hadron Gas UrQMD

Free Streaming τfreestream < τ Particles free stream to detectors UrQMD
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1.6 Goal of this thesis

The dominant assumption made in Heavy Ion Collisions is that of boost invariance, or infi-

nite momentum. Boost invariance means that a Lorentz boost along the direction parallel

to the beam axis will leave the physics unchanged. In this limit, the system becomes effec-

tively 2+1D and many problems become greatly simplified. Notationally speaking, “boost

invariant”, “2D”, “2+1D” to include the temporal dimension, and “the infinite momentum

limit” will be used interchangeably to describe this idea throughout this thesis.

This assumption has allowed for great progress and understanding of the transverse dy-

namics of heavy ion collisions but has limited our understanding of the longitudinal dynamics

of HIC’s. In reality, HIC’s evolve in 3+1D and thus one must relax this assumption in order

to study HIC’s in their entirety.

To be fair, the collision energies at the LHC reach γ-factors in the 1000’s, meaning, clas-

sically, a Pb nucleus that is usually about 13 fm/c in diameter, becomes Lorentz contracted

to less than 0.01 fm/c along the beam axis in the lab frame. Experimental evidence of the

post collision results also suggests that deviations from boost invariance are relatively small

within a kinematic range. At the same time, experiments have yielded data that suggests

that, despite the approximate validity of boost invariance, there is critical physics to be

explored and understood in the longitudinal dynamics of HIC’s [26, 27]. Such data can help

constrain models and yield additional insight into the physics of HIC’s, particularly in the

initial state, which sources long range rapidity correlations. Furthermore asymmetric col-

lisions such as those between a proton and a nucleus (pA collisions) are clearly not boost

invariant. This can be seen clearly in Fig. (1.9) which shows that for central collisions the

multiplicity is consistently higher on the Pb going side of a p-Pb collision. These systems

are often approximated as boost invariant, but should not be. In order to adequately study

asymmetric collision systems, it is crucial to have fully 3-dimensional simulations that do

not assume the boost invariant longitudinal symmetry. As stated in one of the early papers

formulating the boost invariant Colour Glass Condensate effective theory [29],

“the solution is up to trivial factors rapidity independent. This has amusing

phenomenological consequences for the collisions of asymmetric nuclei. The dis-
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Figure 1.9: ATLAS data [28] showing the asymmetry in dNch/dη for p+Pb collisions.

tribution should be flat in rapidity.” (emphasis added)

The second and third stages of the standard model of HIC’s, namely the hydrodynam-

ics [30] and hadronic gas phases [6, 31], have been generalized to 3+1D. The initial state,

however, has lagged and realistic first-principles based initial conditions that are phenomeno-

logically applicable remain scarce in the field. This poses a problem because the rest of the

evolution of the QGP, i.e. the subsequent hydrodynamic and hadronic gas simulations, rely

on and are sensitive to the initial condition. The high energy nuclear wave functions of the

colliding nuclei imprint themselves on the collision, seeding long range rapidity correlations

within the evolving QGP. Thus, without constraining the initial condition, it is difficult to

pin down important physical parameters of QGP, such as its transport coefficients, including

the shear and bulk viscosities.

In particular, the dominant physical framework for the initial stage is that of the Color
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Glass Condensate (CGC), an effective field theory and novel state of matter that is believed

to describe high density ultra-relativistic nuclei. CGC based models and calculations have

had impressive agreement with experimental results, and the electron-ion collider [32] will

soon search for conclusive evidence of the formation of CGC.

The Color Glass Condensate, to be discussed in detail in Chapter 2, argues that the gluon

density of high energy nuclei saturates and forms a condensate of gluons. It has yielded a

large amount of scholarship on the initial conditions of heavy ion collisions, including a

crucially important Monte-Carlo simulation known as IP-Glasma, which this thesis aims to

generalize. IP-Glasma [1, 2] has been extremely successful phenomenologically in describing

a wide range of observables in heavy ion collisions both in terms of event averages as well

as event by event distributions. Unlike many of the other initial conditions on the market,

such as MC-Glauber, IP-Glasma is based in first principles and involves quarks and gluons.

The original formulation of IP-Glasma was 2+1D. The goal of this thesis is to extend the

phenomenologically successful IP-Glasma model to 3+1D while retaining its key features.

In doing so, we hope to explore the longitudinal dynamics of heavy ion collisions, and to

verify to what degree the transverse dynamics of the 2+1D formulation hold for a 3+1D

generalization.

1.7 Claims of Originality

There have been a variety of approaches to developing 3+1D initial conditions for the initial

state of heavy ion collisions [4, 33, 34, 35, 36, 37]. These works implemented a rapidity

dependence in a number of different ways including by JIMWLK evolution of the pre-collision

Wilson lines [4], as is done in this thesis, through rapidity fluctuations [33, 34], by including

color sources [36], or by dynamically initializing hydrodynamics with source terms [37].

In this thesis, the rapidity dependence of the model comes from the JIMWLK renormal-

ization equations, as was done in [4]. The novel part of this thesis is the adaption of the

initial condition for the gauge fields and electric fields to allow the system to be evolved

on a 3-dimensional lattice and, most importantly, to make the simulation phenomenologi-

cally applicable. In particular, the solution for the initial gauge fields from the Color Glass
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Condensate (CGC) are altered to be pure gauge in all three spatial directions, rather than

just the transverse directions. This prevents non-physical energy deposition outside of the

interaction region between the two nuclei. Additionally, an ansatz is proposed such that

Gauss’ law can be enforced locally through the iterative Jacobi method, without needing to

include dynamical color sources.

The 3+1D simulation is used in conjunction with MUSIC [38] and UrQMD [6] to com-

pute and analyze the hadronic spectrum. The effects of JIMWLK rapidity fluctuations on

longitudinal hadronic observables is explored for the first time.

1.8 Putting IP-Glasma in the Context of the Initial State of

Heavy Ion Collisions

In introducing the main focus of this thesis, the IP-Glasma model, it is useful to to do so in

the context of the most commonly used model, at least historically, for the initial condition

of heavy ion collisions, the Glauber model. The aim is to both acknowledge the usefulness

of the Glauber model, and to motivate the need to go beyond it.

Due to Lorentz contraction, the nuclei involved in high-energy heavy ion collisions are

essentially 2-dimensional in the lab frame, reaching γ-factors in the 1000’s at the LHC. When

the two nuclei collide, there is an overlap region, where the interaction takes place and where

energy is deposited in the plane transverse to the beam axis.

Nuclei are extended objects, and thus a natural place to begin understanding and mod-

elling nuclear collisions is with the shape of nuclei themselves. Elastic electron scattering ex-

periments are able to measure the charge radius of nuclei [39], which are usually parametrized

by a Woods-Saxon distribution,

ρ(r) = ρ0
1 + ω(r/R)2

1 + exp ( r−R
a

)
(1.13)

where ρ0 is the density at the center of the nucleus, ω(r/R) deforms the nucleus away from

the regular Woods-Saxon shape, R is the nuclear radius, and a is the nuclear skin thickness.

Given this information, the simplest way to model the nucleus is by a smoothly varying

density function that takes the form of Eq. (1.13). This is what is done in the Glauber
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model, a useful review of which can be found here [40].

In the Glauber model, one can define the nuclear thickness function

TA(B)(s) =

∫ ∞
−∞

ρA(B)(s, zA(B))dzA(B) (1.14)

where A(B) correspond to the projectile (target), s is the position in the transverse plane,

and zA,B is the position along the beam axis. The normalization condition is usually taken

to be
∫
d2sTA(B)(s) = 1. The overlap region, and thus the geometry of the collision at a

given impact parameter b, is given by

TAB =

∫
TA(s)TB(s− b)d2s (1.15)

This model, often called “smooth” or “optical” Glauber, treats the nuclei as continuous

charge distributions and is already able to produce energy deposition that, when coupled to

relativistic hydrodynamics, can produce reasonable values for the elliptical flow coefficients

v2. However, this model yields a triangular flow coefficient, v3, that is identically zero, a

feature that is inconsistent with data. In [23], a non-negligible value of v3 was measured at

RHIC for Au-Au collisions, and fluctuations were proposed as an important feature in the

initial state of heavy ion collisions. The success of smooth Glauber in describing v2 data can

be taken as confirmation that v2 is primarily driven by the global geometry of the collision

as determined by the impact parameter.

One way to include initial state fluctuations is to allow the position of nucleons to fluctuate

within the nuclei. Rather than model the entire nucleus with the Wood-Saxon charge distri-

bution, one can sample the position of the nucleons according to that distribution. This will

lead to event to event fluctuations in geometry and more complex geometric configurations

for the energy deposition, as can be seen in panel (a) of Fig. (1.8).

This model, known as Monte Carlo Glauber, or MC-Glauber, relies on the measured

cross-section for inelastic nucleon-nucleon collisions, σNNinel , as an input. One implementation

of the model treats the nucleons as hard disks, meaning if a nucleon from the target is less

than a distance

d ≤
√
σNNinel/π (1.16)
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from a nucleon in the projectile nucleus, then a binary collision is deemed to have taken

place and these two nucleons deposit energy. Then the collision is treated as a collection of

independent nucleon-nucleon collisions. Nucleons that undergo at least one binary collision

are said to be participants and those that do not are spectators.

MC-Glauber is modelled entirely based on geometric considerations of nuclear collisions,

and takes input parameters from experiment to determine the Wood-Saxon parameters (R, a)

and the nucleon-nucleon inelastic cross section (σNNinel ). It is able to produce non-zero values

for higher order, fluctuation driven flow harmonics, such as v3 [41].

The Glauber models (smooth and MC) are extremely useful in both their simplicity and

effectiveness in describing general geometric features of nuclei in nuclear collision. However,

they do not consider QCD or quarks and gluons. Furthermore, they are not dynamical

models, and thus cannot describe the system’s evolution towards hydrodynamic applicability.

Instead, they typically initialize hydrodynamic simulations at a non-zero proper time τ0

without any evolution and are only able to initialize one of the hydrodynamic fields, ε, the

local energy density.

Furthermore, it is important to note that v2 and v3 are quite sensitive to hydrodynamic

parameters, primarily the shear viscosity to entropy density ratio η/s, which can be tuned

to improve agreement. As one of the primary goals of the field is to determine the transport

coefficients of QGP, such as η/s, it is crucial to have as realistic an initial state model as

possible in order to be able to reliably extract information about the QGP. The Glauber

models are important in that they illustrate that the pT -integrated v2 is primarily impact

parameter driven, as was suspected, and thus any model that implements energy deposition

as an effective overlap of the colliding nuclei will roughly exhibit this behavior, if evolved

hydrodynamically. Similarly, MC-Glauber showed that fluctuations are indeed important

to reproduce experimental pT -integrated v3, and that the relevant length scales for this

observable are at the order of the size of a nucleon, ≈ 1 fm. Finally, while MC-Glauber can

obtain agreement with event averaged quantities such as v2 and v3, it is not able to describe

the distributions of these quantities in as broad of a range of centrality classes as IP-Glasma

[42]. While event averaged vn’s are important observables, the flexibility of hydrodynamic
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parameters allow for a wide range of initial state models to describe these observables. The vn

distributions, however, capture the event-by-event fluctuations which are largely independent

of hydrodynamic variables, and thus more able to discriminate between initial state models.

IP-Glasma was able to describe the vn distributions quite well [42], and other models have

since been able to do so [43]. The common feature between IP-Glasma and Trento that is

likely responsible for this is the energy deposition between the nuclei goes as the product of

the thickness functions of the two nuclei raised to some power.

IP-Glasma is a model that incorporates the important features of MC-Glauber in terms

of modelling the nucleus as a Woods-Saxon with fluctuating nucleon positions. In addition,

IP-Glasma includes sub-nucleonic fluctuations that arise from color charge fluctuations in

hadronic matter at small momentum fraction. The scale of the color charge fluctuations

are related to the gluon saturation scale, which is determined via the IP-Sat model [44]

and constrained using DIS data. Gluon saturation is a phenomenom, to be discussed in

the next chapter, of high energy hadrons in which the gluon density saturates. The color

charge is used to solve for the gauge fields, and the gluon are evolved dynamically using

the Classical Yang-Mills equations of motion. Thus, IP-Glasma incorporates the fine scale

partonic structure of nuclei as determined by DIS, and evolves the gluon fields, providing

a QCD based dynamical model that involves a full stress-energy tensor T µν for the initial

state of heavy ion collisions.

Phenomenologically, IP-Glasma has had success is describing the event-by-event distri-

butions of vn [42, 45] and charged hadron multiplicity [1, 2, 46], as well as observables that

involve higher order correlations [47]. It has been used for many collision systems including

small systems [48, 49], deformed nuclei, and other asymmetric collisions [50]. Finally, an ex-

tensive Bayesian analysis [51] of the many existing models and parameters involved in heavy

ion collision simulations found the IP-Glasma model to be compatible with experimental

data, and among the two initial state models most preferred by data, along with EKRT [52].
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1.9 A note on units and conventions

Before proceeding, a quick note on units and conventions is in order. In this thesis, so-called

“natural units” will be used everywhere unless explicitly stated otherwise. Natural units in

high energy physics means

h̄ = c = kB = 1 (1.17)

where

c ≡ speed of light

h̄ =
h

2π
≡ Planck’s contant/(2π)

kB ≡ Boltzmann’s constant

(1.18)

Using natural units means that it is not necessary to keep track of these constants during

the calculation, but these quantities can be restored at the end using simple dimensional

analysis.

In these units, energy and length are inverses. A useful combination, that is used to

convert between energies and lengths, is

h̄c = 0.1973 GeV fm. (1.19)

Regarding gauge field notation, the following convention,

Dµ = ∂µ + igAµ (1.20)

with a plus sign, corresponds to

Fµν =
−i
g

[Dµ.Dν ]

= ∂µAν − ∂νAµ −
i

g
[igAµ, igAν ]

= ∂µAν − ∂νAµ + ig[Aµ, Aν ]

(1.21)

with a plus sign in the commutator term. This in turn means that the proper form of the

gauge transformation is

A′µ = V (Au −
i

g
∂µ)V †, (1.22)
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with a minus sign. Different conventions are used for these terms, so it is important to clarify

at the outset, for the both the reader and the author. In order to be consistent with the

literature, the following convention will be used in Chapter 2,

Dµ = ∂µ − igAµ

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (1.23)

A′µ = V (Aµ + i
g
∂µ)V †.

This will be noted explicitly for clarity.
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Color Glass Condensate

2.1 CGC Overview

The Colour Glass Condensate (CGC) is an effective field theory that describes the gluon

saturation regime of high energy hadrons. The CGC is based on a separation of scales

in which the hard partons of high energy nuclei act as static sources for highly abundant

small-x gluons. The terms “hard” and “large-x” partons will be used interchangeably, and

refer to the partons, either quarks or gluons, that carry a large fraction of the longitudinal

momentum of the hadron with which they are associated. Similarly, “soft” or “small-x”

partons refer to those partons that carry a small fraction of the momentum of the hadron.

The CGC action is given by

SCGC =

∫
d4x

(
−1

4
F a
µνF

µνa + JµaAaµ

)
. (2.1)

One can see that it bears a resemblance to the QCD action, given in Eq. (1.4), except the

quark term is replaced by a source. The source Jµa represents the hard partons that source

soft gluons, denoted by Aaµ. In this section we aim to justify this action, and to comment on

its implications.

First, to motivate the separation of scales, it is convenient to introduce light-cone coor-

dinates,

x± = x∓ =
x0 ± x3

√
2

(2.2)

25
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where the metric is given by

gµν(x
+, x−, x, y) =


0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

 (2.3)

The CGC assumes infinite momentum, or equivalently, that the nuclei are travelling at

the speed of light. For a particle moving at the speed of light in the positive z-direction

x+ = ct+z√
2

= ct+vzt√
2

= ct+ct√
2

=
√

2ct, and thus x+ acts like the time variable in this coordinate

system and scenario. Note that the factor of c is included for clarity.

The conjugate momenta to x± is p∓ and thus one can apply the uncertainty principle

to a high energy nucleus using these conjugate variables. Doing so for x−, and p+, the

longitudinal extent of a constituent parton with momentum p+
parton = xP+

N , is

∆x− ∼ 1

p+
parton

=
1

xP+
N

(2.4)

where x is the parton momentum fraction and PN is the momentum of a nucleon. Compare

this to the longitudinal extent of the nucleus itself

∆x−A ∼
2RA

γ
∼ 2RAmN

P+
N

(2.5)

where A labels a nucleus of mass number A, and the γ-factor for the nucleus is approximated

by that of one of the nucleons of which it is comprised. It is clear that there is a separation

of scales between the hard valence partons that carry most of the momentum, x ∼ 1, and

source the soft gluons for which x� 1,

x−soft � x−A � x−hard (2.6)

This means that soft gluons are delocalized over a large longitudinal extent, while the valence

partons are highly localized on the x− axis. A similar analysis using x+ and p− shows that

the valence partons are time-dilated compared to the small x partons,

∆x+ ∼ 1

p−parton
=

2p+
parton

p⊥2
parton

=
2xP+

N

p⊥2
parton

(2.7)
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Figure 2.1: Net-proton multiplicity plotted as a function of the center of matter rapidity

yCM for different experiments. Plot taken from [14].

To see this, recall p+p− = E2−(pz)2

2
=

m2+p2⊥
2
≈ p2⊥

2
, in the high energy limit where it is

reasonable to neglect the mass. The important feature of Eq. (2.7) is that ∆x+ ∝ x, clearly

indicating that the large x partons are more time dilated. In this sense, the large x partons

appear frozen, and thus can be treated as static source terms on the light-cone.

To summarize, the hard partons which carry a large fraction of the overall momentum of

the hadron with which they associated, are highly localized on the x+ axis, and are effectively

“frozen” due to time dilation. Furthermore, the fact that the hard partons have far higher

momentum than the soft partons means that the radiation of soft gluons can be assumed

not to affect the momentum of the hard partons, i.e. that they are recoil-less after radiation.

These features will justify the treatment of the hard partons in the next section as δ-function

source terms on the light-cone

Jνa = ρa(x⊥)δν+δ(x−) (2.8)

where ρa(x⊥) is a random, static surface charge density. This is effectively a line charge in

light-cone coordinates that is coincident with x+-axis, a fact that will lead to simplifications

in the resulting gauge fields.

Treating the valence quarks as recoil-less source terms that propagate on the light-cone
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axes removes them from the dynamics of the forward light-cone, where the post collision

evolution takes place. For finite momentum nuclei, this will not be strictly true, but the

hard partons will still be more likely to end up at higher rapidities, meaning that they can

be assumed absent near mid-rapidity. This is supported by Fig. (2.1), which shows that the

net baryon number, which is carried entirely by the valence quarks of the nuclei, is measured

at increasingly high rapidities as the beam rapidity increases.

Outside of the source term, the CGC action does not have any quarks, either valence or

sea, meaning that the high energy hadrons are purely gluonic in this theory. How can this

be justified?

One returns again to DIS data. DIS, as mentioned, probes the fine structure of hardons,

and it is possible to fit DIS data to construct parton distribution functions (PDFs). PDFs

typically plot xfi(x) where x is the momentum fraction and fi(x) is the probability of finding

parton species i at momentum fraction x, when the hadron is probed at some fixed scale

Q2. Thus, the product xfi(x) can be interpreted as the momentum density of species i. The

function fi(x) must be true to the quantum numbers of the hadron. To make this concrete

[53], a proton is composed of uud quarks, meaning that the total number of up and down

quarks must conform to∫ 1

0

dx[fu(x)− fū(x)] = 2

∫ 1

0

dx[fd(x)− fd̄(x)] = 1. (2.9)

Similarly the sum of momentum fractions of all of the parton species in the proton must

equal one, ∫ 1

0

dxx[fu(x) + fū(x) + fd(x) + fd̄(x) + fg(x)] = 1, (2.10)

in order to satisfy momentum conservation. Now, consider Fig. (2.2), a proton PDF. At

small momentum fraction, the proton is overwhelmingly dominated by gluons. In fact, even

Fig. (2.2) has scaled the gluon distribution, denoted as xg down by a factor of 20 compared

to those of the up and down quarks. Recall from the introduction, that the ratio of the

electron-neutron to the electron-proton cross section below x ≈ 0.1 was unity, meaning that

protons and neutrons “look” the same for these values of x and can thus both be described

by the same PDF, as is done in this thesis. To estimate the value of x probed at the LHC
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at 2.76 TeV,

x ∼ 〈pT 〉√
s/2
∼ (0.413− 0.0171 ln (s) + 0.00143(ln (s))2) GeV√

s/2 GeV

∣∣∣∣∣√
s=2760 GeV

≈ 10−4 (2.11)

where we have used the fit for 〈pT 〉 from [55]. Using this as the typical momentum fraction

probed at 2.76 TeV, it is clear from the PDF in Fig. (2.2) that the system can be safely

approximated as purely gluonic.

The increasing gluon density at small-x can be understood in terms of gluon radiation via

brehmsstralung. The hard partons will radiate gluons which will in turn radiate more gluons.

This process will lead to a cascade of gluons and an increase in the gluon density. This is

shown schematically in Fig. (2.3), with one gluon recombination process circled in red.

Figure 2.2: Parton distribution function (PDF) for Q2 = 10 GeV2 from [54]. Note that the

gluon PDF, labeled xg, is multiplied by 0.05 in this figure, and dominates at low x. This

justifies the treatment of the early time dynamics of HIC’s as purely gluonic.
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Figure 2.3: Left: A schematic drawing of gluon radiation in the dilute regime. Right: Gluon

cascade and recombination. Figs. taken from [56].

As the gluon density grows, gluon recombination will become increasing likely, simply due

to the increased packing of gluons in phase space, and will eventually compete with gluon

radiation. When gluon recombination balances gluon radiation, the gluon density ceases

growing. This proposed phenomenon is known as gluon saturation and the energy-scale at

which it occurs is known as the saturation scale. Gluon saturation has not been observed

directly, but saturation inspired calculations have been highly successful. Direct evidence

of gluon saturation is a key goal of future measurements at the Electron-Ion Collider [32],

which is set to be developed at Brookhaven National Lab (BNL).

Saturation effects should become important when the product of the gluon surface density

and the probability for gluon recombination is comparable to one,

(# of gluons)

transverse size of nucleus
× σgg→g ≈

xg(x,Q2)

πR2
× αS
Q2
≈ 1 (2.12)

where xg(x,Q2) is the gluon density of the hadron at a given x when probed at the scale

Q2. The gluon-gluon recombination cross section is taken to be σgg→g = αs
Q2 . This can be

rearranged for the scale,

Q2
s ≈

αsxg(x,Q)

πR2
. (2.13)

For nuclei, one can use the radius of the nucleus RA, and consider the gluon contribution

from the A nucleons,

Q2
s ≈

A(αsxg(x,Q))

πR2
A

≈ A1/3αsxg(x,Q) ∼ A1/3x−λ (2.14)

where the relationship RA ∝ A1/3 was used. One can think about the A dependence arising

from the superposition of small-x gluon fields of the individual nucleons.
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At the LHC, the saturation scale is believed to be around 2 GeV. In the IP-Glasma

model, the saturation scale is determined via the IP-SAT model [44], to be discussed further

in chapter 2.2.

Now that the CGC has been outlined, it is worth taking a moment to consider the name

of the theory, which is itself indicative of the physics, and can serve as a brief summary.

Colour refers to the QCD colour charge. Regular glass is a liquid on long time scales and a

solid on short time scales and the molecules are disordered. Glass, in this instance, refers to

the stochastic nature of the colour charge representing the disorder and the scale separation

between slow and fast partons that lead to the hard parton sources appearing static to the

soft partons. Condensate refers to the high density of gluons that act coherently, like a Bose

condensate.

2.2 IP-Sat

IP-Sat [44] is a model for determining the saturation scale in the dipole picture of Deep

Inelastic Scattering, in which a virtual photon fluctuates into a quark anti-quark pair, and

scatters elastically off of a proton, before finally recombining into a virtual photon. The

IP-Sat model is designed to model this interaction including the proposed saturation effects

that are believed to occur in hadrons at sufficiently high energies. It uses DIS data to

constrain the small-x gluonic structure of the nucleons involved in heavy-ion collisions. By

independently constraining the parameters of the model with DIS data, the model has very

few parameters than can be tuned to heavy ion data.

As discussed in the previous section, the saturation scale can be estimated as the scale

at which the product of the gluon density and the gluon recombination cross section ex-

ceed unity. The IP-Sat model makes a more detailed, and impact parameter dependent,

estimation by considering a qq̄ dipole passing through a dense cloud of gluons, where the

density cloud of gluons represents the high-energy hadron. The cross section for a qq̄ pair

to interact with a cloud of gluons is proportional to the area of the dipole (πr2), the strong

coupling constant (αs(µ
2)), and the gluon momentum density in the cloud (xg(x,µ

2)
Nc

). Here µ

is the energy scale of the interaction and xg(x, µ2) is the density of gluons at this scale, the
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quantity shown in Fig. (2.2). This results in the following cross section,

σqq̂ =
π2

NC

r2αs(µ
2)xg(x, µ2). (2.15)

If the qq̂ pair passes through a dense cloud of gluons that extends in the z-direction,

the probability that the dipole does not undergo an inelastic scattering at a given impact

parameter within an interval dz is given by,

P (b, z) = 1− σqq̄ρ(b, z)dz (2.16)

where the density is normalized via
∫
d2bdzρ(b, z)dz = 1. The probability for no inelastic

scattering in the entire longitudinal extent in z is given by the product of probabilities for

individual dz intervals, and can be identified as the squared magnitude of the scattering

matrix S(b),

|S(b)|2 =
∏

(1− σqq̄ρ(b, z)dz) = (1− σqq̄ρ1dz1)(1− σqq̄ρ2dz2)(1− σqq̄ρ3dz3)...

=1− σqq̄(ρ1dz1 + ρ2dz2 + ...) + σ2
qq̄(ρ1dz1ρ2dz2 + ...)− ...

=1− σqq̄
∫
ρ(b, z)dz +

1

2!
σ2
qq̄

(∫
ρ(b, z)dz

)2

+ ...

= exp
(
− σqq̄

∫
ρ(b, z)dz

)
= exp

(
− σqq̄T (b)

)
(2.17)

where the last equality is simply due to the definition of T (b) in terms of ρ. The thickness

function T (b) is taken to be gaussian in b

T (b) =
1

2πBG

e−b
2/2BG (2.18)

where BG = 4 GeV2 is one of the parameters fit to DIS data. The cross-section for inelastic

scattering as a function of impact parameter b, is given by the Glauber-Mueller dipole cross-

section,
dσqq̄
d2b

= 2[1− Re(S(b))] = 2[1− exp (−σqq̄T (b)/2)]

= 2
[
1− exp

(−π2

2NC

r2αs(µ
2)xg(x, µ2)T (b)

)]
.

(2.19)

For low gluon densities, the argument of the exponent and thus the interaction probability

will tend to be small, meaning the differential cross section will be small. As the gluon
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density increases, so too does the interaction probability. The differential cross section

does not increase without bound, however, but rather plateaus, when the argument of the

exponent becomes large.

To define a saturation scale, it is useful to rewrite Eq. (2.19) slightly, in terms of a density

profile,

D(b, x, r2) =
2π2

Nc

αs(µ
2(r2))xg(x, µ2(r2))T (b) (2.20)

The saturation scale is then defined as the dipole size rs, for which the proton size is one

interaction length,

S2 = exp

(
−D(b, x, r2)r2

s

2

)
= e−1 (2.21)

or equivalently,

Q2
s(b, x) = D(b, x, r2

s) =
2

r2
s

. (2.22)

This is the definition of the saturation scale in the IP-Sat model. To find Q2
s(b, x), typically

one solves for r2
s via,

π2

Nc

αs(µ
2(r2

s))xg(x, µ2(r2
s))T (b)r2

s = 1 (2.23)

In this calculation the leading order expression for the strong coupling is used,

αs(µ
2) =

12π

(33− 2Nf ) ln
(

µ2

Λ2
QCD

) (2.24)

where Nf is the number of quark flavors. In the boost invariant case, the momentum fraction

x is taken to be

x =
Qs√
s/2

(2.25)

This means that x depends on Qs and Qs depends on x, so the system must be solved

iteratively until convergence is reached. The iterative procedure is initialized with x =

〈pT (
√
s)〉√

s/2
, where the numerator is usually taken from an experimental fit, such as the one in

Eq. (2.11).

Remember that this is a model for saturation in the qq̄ dipole interaction with a a proton.

In order to get the saturation scale for the nucleus one needs to sum the contributions from

the nucleons. Here, we do so by summing the individual nucleonic thickness functions to
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create a nuclear thickness function,

T(nucleus)(x) =
A∑
i=1

1

2πBG

e((x−xi)
2/2BG) (2.26)

where xi represents the positions of the center of the ith nucleon in the transverse plane.

Thus, if nucleons are stacked on top of each other, at similar values of xi, the nuclear

thickness function will tend to be denser, and the saturation scale will be higher.

Once Q2
s is determined, the color charge is sample from a gaussian whose width is pro-

portional to Q2
s,

〈ρaA(B)(x⊥)ρbA(B)(y⊥)〉 = g2µ2
A(B)(x,x⊥)δabδ2(x⊥ − y⊥) (2.27)

where Qs = Cg2µ, and C is a constant. This constant of proportionality is used phenomeno-

logically to control the energy normalization of the system. It is typically taken in 2D to be

in the range C ≈ 0.5− 0.75. In 3D, due to the extra energy content of the initial transverse

fields, it is necessary to change this factor to adjust the energy such that the final state

hadronic multiplicity agrees with data. The value used here is C = 1.42.

2.3 Gluon Density

The gluon density is needed in order to determine the saturation scale. The gluon density

is initialized at an initial scale µ2
0 according to the following parametrization,

xg(x, µ2
0) = Agx

λg(1− x)5.6 (2.28)

where the scale µ2 is related to the dipole size via

µ2 =
C

r2
+ µ2

0. (2.29)

The parameters that appear in these equations (Nf = 4, C = 4, µ2
0 = 1.51 GeV2, Ag = 2.308,

λg = 0.058) [57] are fit to DIS scattering data. This is important because for the purposes

of the heavy ion calculations done in this thesis, they are fixed.

Once xg(x, µ2
0) is initialized with Eq. (2.28), it is evolved to all other values µ2 via

the leading order DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) [58, 59, 60] evolution
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equation without quarks as done in the original IP-Glasma papers [1],

∂xg(x, µ2)

∂ log (µ2)
=
αs(µ

2)

2π

∫ 1

x

dzPgg(z)
x

z
g
(x
z
, µ2
)

(2.30)

where the gluon splitting function is given by,

Pgg(z) = 6

[
z

(1− z)+
+

1− z
z

+ z(1− z)

]
+

(
11

2
− Nf

3

)
δ(1− z). (2.31)

Practically speaking, a table of values for xg(x, µ2), x, and µ2 is generated that can be

accessed and interpolated by the numerical software as needed.

2.4 One Nucleus (Gauge Fields)

In this section, we discuss the pre-collision gauge fields of nuclei travelling at the speed of

light in the CGC framework. This was originally done in [29, 61] but we follow the discussions

of [62, 63] more closely. The equations that arise from the CGC action, Eq. (2.1) are the

Classical Yang-Mills (CYM) equations

[Dµ, F
µν ] = Jν = ρ(x⊥)δν+δ(x−). (2.32)

where the nucleus has been chosen to be right-moving.

Choosing axial gauge, Ã− = Ã+ = 0, where all quantities in this gauge will be written

with a tilde, is convenient because in this gauge the charge density is static. To see why,

take the covariant continuity equation,

[D̃µ, J̃
µ] = ∂µJ̃

µ − ig[Ãµ, J̃
µ] = ∂+J̃

+ − ig[Ã+, J̃
+]

= ∂+ρ̃ = 0
(2.33)

where the commutator term vanishes due to the gauge choice. Recall that we are using the

Dµ = ∂µ− igAµ convention in this chapter in order to be consistent with the literature. The

charge density is static (independent of x+), and so it is natural to look for a solution that is

also static, Ãµ(x−,x⊥). Doing so, the field strength component F̃+µ = 0 because our gauge

choice sets Ã+ = 0 and the derivatives in ∂+ vanish due to our choice of a static ansatz.

The only non-vanishing components of the field strength tensor are F̃i− = −F̃ i+ and F̃ ij.

The equation [D̃i, F̃
i−] + [D̃+, F̃

+−] = 0 is trivial. The transverse equations,

[D̃i, F̃
ij] = 0 (2.34)
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are solved by F̃ ij = 0 which means that the transverse gauge fields are pure gauge, and can

be set to zero. The last remaining YM equation is the only non-trivial one,

[D̃i, F̃
i+] = [D̃i, (∂

iÃ+ − ∂+Ãi − ig[Ãi, Ã+])] = ∂i∂
iÃ+ = −∇2

⊥Ã
+ = −∇2

⊥Ã− = ρ̃(x⊥)δ(x−).

(2.35)

This is simply the 2-dimensional Poisson equation. Numerical details for the solution to the

Poisson equation can be found in Section 8.1.

Light-cone gauge (A+ = 0) is the most physical gauge for a system with the source term

in the x+ direction. To transform to light-cone gauge, recall the general form of the gauge

transform

Aµ =
i

g
V ∂µV

† + V ÃµV
†. (2.36)

which only has one non-trivial component

A− =
i

g
V ∂−V

† + V Ã−V
†. (2.37)

Setting this to zero to impose the light-cone gauge (A+ = A− = 0) results in a solution of

the form

V †(x−,x⊥) = P exp
{
ig

∫ x−

−∞
dy−Ã−(y−,x⊥)

}
. (2.38)

Combining Eqs. (2.38) and (2.35), the Wilson line can be written in terms of the covariant

charge density, as follows.

V †(x−,x⊥) = P exp
{
ig

∫ x−

−∞
dy−Ã−(y−,x⊥)

}
= P exp

{
ig

∫ x−

−∞
dy−

ρ̃(y−,x⊥)

∇2
⊥

}
(2.39)

This last gauge transformation leaves A− = 0

A− = A+ =
i

g
V ∂+V

† + V Ã+V
† = 0 (2.40)

because Ã− = Ã+ = 0 and V † is independent of x+. Only the transverse gauge fields are

non-zero, and they are pure gauge

Ai =
i

g
V ∂iV

† (2.41)

where V † has been specified above. What remains to be determined for the individual nuclei

is the color charge ρ. The color charge cannot be known on an event-by-event basis but
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rather is taken to be a stochastic variable that fluctuates event to event as well as locally

in the transverse plane within a given nucleus. The fluctuations are taken to be Gaussian,

according to the McLerran-Venugopalan (MV) [64, 61, 65] model,

W [ρ̃] = exp
{
−
∫
dx−d2x⊥

ρ̃a(x
−,x⊥)ρ̃a(x−,x⊥)

2µ2(x−)

}
. (2.42)

where µ2 is the squared surface color charge density carried by the hard partons. From this,

ensemble averages of observables can be computed via,

〈O〉 =

∫
[δρ̃]W [ρ̃]O[ρ̃]. (2.43)

2.4.1 Putting one nucleus on the Lattice

The equations outlined in the previous section, namely the 2D pure gauge fields in Eq. (2.41),

will need to be put on a lattice for numerical implementation. In practice, the equation for

the Wilson line, Eq. (2.39), is constructed numerically as [66]

V (x) =

Ny∏
i=1

exp

(
−ig ρ

a
k(x)ta

∇2 −m2

)
. (2.44)

The stochastic surface charge density ρak(x) is sampled according to

〈ρak(x⊥)ρbl (y⊥)〉 = δabδklδ2(x⊥ − y⊥)
g2µ2(x⊥)

Ny

(2.45)

where k, l = 1, ..., Ny label the discretized longitudinal coordinate. In the continuum limit,

where Ny −→∞, this becomes the path ordered Wilson line.

The degrees of freedom on the lattice are the gauge links, defined at position x in the

i-direction as,

Ui(x) = e−igaAi(x) (2.46)

where a is an infinitesimal length element in the i direction, representing the lattice spacing.

The gauge links will be discussed in more detail in Section 8.3. One can construct the pure

gauge fields on the lattice by plugging Eq. (2.41) into Eq. (2.46). Doing so, and expanding
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the exponential to first order yields,

Ui(x) = e−igaAi(x) = e−iga( i
g
V ∂iV

†)

≈ 1 + aV (x)∂iV
†(x)

≈ 1 + aV (x)
(V †(x+ a)− V †(x)

a

)
≈ V (x)V †(x+ a),

(2.47)

a relatively simple numerical formula. This quantity is constructed at each spatial position

for both nuclei, A and B. In the next section, the procedure for combining the two pre-

collision gauge fields to form the post collision field will be outlined.

2.5 Two Nuclei

In the case of two colliding nuclei, the single nucleus solution is still valid for the individual

nuclei in regions (I) and (II) of Fig. (2.4), outside of causal contact with the collision. It

remains to determine the form of the gauge fields in the forward light-cone.

To summarize the situation, the source terms are

Jµ = δµ+δ(x−)ρA(x⊥) + δµ−δ(x+)ρB(x⊥). (2.48)

and the solution from the previous section for regions (I) and (II) is [29],

A+ = 0

A− = 0

Ai = Θ(x−)Θ(−x+)αi1(x⊥) + Θ(x+)Θ(−x−)αi2(x⊥)

(2.49)

where the subscripts 1, 2 label the regions of Fig. (2.4) for consistently with the literature.

Eq. (2.49) is a static solution to the initial gauge fields for the two pre-collision nuclei. As

described in [29], this can be understood physically as two nuclei approaching each other

with zero gauge field in front of them, and pure gauge behind them. Since the nuclei have

different charge densities, the pure gauge fields that follows them will be different. Also note

that the solutions in these regions are time independent, meaning that the fields are frozen

and only the center of mass of the nuclei propagates.
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The source terms are confined to the light-cone which means that the fields satisfy the

sourceless Yang-Mills equations everywhere else, including the forward light-cone,

[Dµ, F
µν ] = 0 (2.50)

We take the ansatz

A+ = x+α(τ, x⊥)

A− = x−β(τ, x⊥)

Ai = αi3(τ, x⊥)

(2.51)

which is explicitly independent of the spacetime rapidity η. The forms of A+ and A− are

taken to ensure that the gauge fields transform properly under longitudinal boosts. Making

the gauge choice x+A− + x−A+ = 0 fixes β(τ, x⊥) = −α(τ, x⊥). Converting to τ − η

coordinates with this ansatz gives the following form for the field strength tensor,

F+− = −1

τ
∂ττ

2α

F ij = ∂iαj3 − ∂jαi3 − ig[αi3, α
j
3]

F i± = −x±
(

1

τ
∂τα

i
3 ∓ [Di, α]

) (2.52)

where i and j refer only to the transverse directions here and in the following discussion.

Plugging these expressions into the equations of motion yields the boost invariant equations,

1

τ 3
∂ττ

3∂τα−
[
Di, [Di, α]

]
= 0

1

τ

[
Di, ∂τα

i
3

]
+ igτ [α, ∂τα] = 0

1

τ
∂ττ∂τα

i
3 − igτ 2

[
α, [Di, α]

]
− [Dj, F ji] = 0

(2.53)

These equations are satisfied in regions (I), (II), and (III), but to ensure that the fields

are continous on the boundary, one must match the fields between the regions, including

the δ-function source terms. After matching on the boundary, the equation [Dµ, F
µi] = 0

requires

αi3(τ = 0, x⊥) = αi1(x⊥) + αi2(x⊥) (2.54)

which is simply the relationship between the transverse gauge field in the forward light cone,

to that in the two pre-collision nuclei, A and B,

Ai = Ai(A) + Ai(B) (2.55)
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+
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Figure 2.4: Diagram of different regions of space time, and a concise visual summary of the

gauge fields in each.

The two equations, [Dµ, F
µ±] = J± both require

α(τ = 0, x⊥) =
ig

2
[αi1(x⊥), αi2(x⊥)] (2.56)

This can be written as

A+ = x+α =
ig

2
x+[αi1, α

i
2] (2.57)

This needs to be converted to τ − η coordinates. Recall that

τAη = cosh ηAz − sinh ηAt

Aτ = cosh ηAt − sinh ηAz
(2.58)

and

A± =
At ± Az√

2
(2.59)

Combining these expressions, one can find

Aτ =
1

τ

(
x−A+ + x+A−

)
Aη =

1

τ 2

(
x−A+ − x+A−

) (2.60)
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The current gauge means that Aτ = 0 which is the same gauge condition that will be kept

for the evolution in the following sections in τ − η coordinates. Putting the form of A+ and

A− into Aη

Aη =
1

τ 2

(
x−A+ − x+A−

)
=

1

τ 2

(
x−x+α + x+x−α

)
= 2x+x−

1

τ 2

(
ig

2
[αi1, α

i
2]

)
= τ 2 1

τ 2

(
ig

2
[αi1, α

i
2]

)
=
ig

2
[αi1, α

i
2]

(2.61)

Note that this determines Aη(τ = 0+), but that the fundamental quantity that is used to

define the Wilson line is the lower index quantity,

Aη = −τ 2Aη (2.62)

which is taken to vanish at τ = 0 in the 2D formulation.

Finally, it is necessary to specify the form of the electric fields to complete the initial

condition. In the gauge Aτ = 0, the conjugate momentum to Aη is

Eη =
1

τ
∂τAη = −1

τ
∂τ (τ

2Aη) = −(2Aη + τ∂τA
η) (2.63)

so at τ = 0,

Eη = 2Aη = −ig[αi1, α
i
2] (2.64)

Gauss’ law can be used to determine the transverse fields,

[Di, E
i] + [Dη, E

η] = 0. (2.65)

In the boost invariant case, all quantities are independent of rapidity, so the second term

on the left hand side vanishes, and the equation can be solved simply by Ei = 0. A visual

summary of the initial condition can be found in Fig. (2.4).

2.5.1 Initial conditions on the lattice

The initial condition for the transverse gauge field in the forward light cone is

Ai = Ai(A) + Ai(B) (2.66)
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This equation needs to be recast in terms of the the gauge link Ui which is the degree of

freedom that is evolved on the lattice. Doing so gives [67],

Im
[
Tr ta

(
(1 + U)(U †A + U †B)

)]
= 0 (2.67)

where the index representing which transverse component of the gauge field has been sup-

pressed. It is easy to show that this satisfies Eq. (2.66) by expanding the gauge link to first

order,

Im
[
Tr ta

(
(1 + U)(U †A + U †B)

)]
= 0

Im
[
Tr ta

(
(1 + 1− igaA)(1 + igaAA + 1 + igaAB

)]
= 0

Tr ta

(
− 2A+ 2AA + 2AB

)
= 0

Ã− Ã(A) − Ã(B) = 0.

(2.68)

This is not a simple equation to solve numerically, and, in fact, corresponds to N2
c − 1 = 8

equations. The solution that will be outlined below originally comes from [68].To start, we

call the functions that need to be zeroed Fa(x)

Fa(x) = Im
[
Tr ta

(
(1 + U)(U †A + U †B)

)]
(2.69)

and expand each of the 8 functions in a Taylor series around x,

Fa(x + δx) = Fa(x) +

N2
c−1∑
b=1

∂Fa
∂xb

δxb +O(δα2). (2.70)

Keeping only up to linear term in δx and setting Fa(x + δx) = 0, one finds a simple

relationship

Fa(x) = −
N2
c−1∑
b=1

∂Fa
∂xb

δxb = −Jabδxb (2.71)

Taking the ansatz,

U = e−ixbtbU0 (2.72)

the Jacobian matrix can be written,

Jab =
∂

∂xb
Im
[
Tr ta

(
(1 + U)(U †A + U †B)

)]∣∣∣∣
xb=0

= Im
[
Tr ta

(
(−itbe−ixbtbU0)(U †A + U †B)

)]∣∣∣∣
xb=0

= Re
[
Tr tatb

(
U0(U †A + U †B)

)] (2.73)
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where we have taken xb to be zero as an initial guess. Then Eq. (2.71) becomes,

Im
[
Tr ta

(
(1 + U0)(U †A + U †B)

)]
= − Re

[
Tr tatb

(
U0(U †A + U †B)

)]
xb (2.74)

As indicated, xb is taken to be zero initially, and then this equation is updated by xnewb =

xprevb + δxb and iterated until the equation converges.

2.5.2 Initial Eη on the lattice

Similarly to the initial condition for the transverse gauge fields, it is necessary to formulate

the initial condition for Ẽη in terms of lattice quantities. Here, Ẽη = ga2Eη relates the

physical quantity (Eη) to the lattice quantity (Ẽη). Lattice quantities will be discussed in

more detail in the next chapter. Eq. (2.64) takes the form [67] ,

Ẽη(x⊥) =
−i
4

2∑
i=1

[(
Ui(x⊥)− 1

)(
UB
i (x⊥)− UA

i (x⊥)
)†

+
(
Ui(x⊥ − ai)− 1

)†(
UB
i (x⊥ − ai)− UA

i (x⊥ − ai)
)
− h.c.

] (2.75)

where “h.c.” means the hermitian conjugate of the expression that is written out explicitly.

To show that this indeed solves Eq. (2.64), expand the gauge links to linear order in the

gauge fields,

Ẽη(x⊥) ≈ −ig
2a2

4

2∑
i=1

[(
− iAi(x⊥)

)(
iABi (x⊥)− iAAi (x⊥)

)
+
(
iAi(x⊥ − ai)

)(
− iABi (x⊥ − ai) + iAAi (x⊥ − ai)

)
− h.c.

]
≈ −ig

2a2

4

2∑
i=1

[(
Ai(x⊥)

)(
ABi (x⊥)− AAi (x⊥)

)
+
(
Ai(x⊥ − ai)

)(
ABi (x⊥ − ai)− AAi (x⊥ − ai)

)
− h.c.

]
(2.76)

and substitute Ai = AAi + ABi , to get

Ẽη(x⊥) ≈ −ig
2a2

4

2∑
i=1

[(
AAi (x⊥) + ABi (x⊥)

)(
ABi (x⊥)− AAi (x⊥)

)
+
(
AAi (x⊥ − ai) + ABi (x⊥ − ai)

)(
ABi (x⊥ − ai)− AAi (x⊥ − ai)

)
− h.c.

]
.

(2.77)
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Finally, writing the hermitian conjugate terms explicitly,

Ẽη(x⊥) ≈ −ig
2a2

4

2∑
i=1

[(
AAi (x⊥) + ABi (x⊥)

)(
ABi (x⊥)− AAi (x⊥)

)
−
(
ABi (x⊥)− AAi (x⊥)

)(
AAi (x⊥) + ABi (x⊥)

)
+
(
AAi (x⊥ − ai) + ABi (x⊥ − ai)

)(
ABi (x⊥ − ai)− AAi (x⊥ − ai)

)
−
(
ABi (x⊥ − ai)− AAi (x⊥ − ai)

)(
AAi (x⊥ − ai) + AAi (x⊥ − ai)

)]
≈ −iga

2

4

2∑
i=1

[
2AAi (x⊥)ABi (x⊥)− 2ABi (x⊥)AAi (x⊥)

+ 2AAi (x⊥ − ai)A
B
i (x⊥ − ai)− 2ABi (x⊥ − ai)A

A
i (x⊥ − ai)

]
≈ −ig2a2

2∑
i=1

[AAi , A
B
i ]

(2.78)

Recalling the relationship between the lattice quantity and the physical quantity (Ẽη =

ga2Eη), this is the equation we wanted to reproduce.
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Equations of Motion: Classical Yang Mills

3.1 Coordinate System

With the initial conditions for the gauge fields determined, as outlined in section (2.5), it is

necessary to formulate the equations of motion in order to determine how the system evolves

after the initial collision. First, it is useful to switch coordinates. The derivation of the

initial condition is done in light-cone coordinates, but the evolution is carried out in τ − η

coordinates, also known as Milne coordinates. First, the definitions are given by,

η =
1

2
ln
( t+ z

t− z

)
= tanh−1

(z
t

)
τ =
√
t2 − z2

(3.1)

and the the metric is gµν = diag(1,−1,−1,− 1
τ2

). To see why this is the natural coordinate

Figure 3.1: Figure from [69].

system, first notice that the forward light-cone, which confines the causal future of the

45
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collision coincides with τ = 0. Similarly, the rapidity, η, is ±∞ on the light-cone axes and

is ill-defined outside this region. Most importantly, τ is the time in the local rest frame of

any particle or cell. For a highly relativistic system, like heavy ion collisions at the LHC,

two particles with very different longitudinal velocities, such as those pictured in Fig. (3.1),

can be at very different points in their respective evolution, but share the same lab time td.

By using the proper time, τ , the coordinate system tracks every point or particle in their

respective rest frames, relative to the collision time. Finally, the longitudinal length element

is τdη, meaning the coordinate system expands with time. This better accommodates rapidly

expanding physical systems such as those created by heavy ion collisions.

The relevant equations of motion are the classical Yang-Mills (CYM) equations. For a

system of strong fields, such as the early stages of heavy ion collisions, quantum corrections

are small and can be neglected. This is analogous to electrodynamics, in which Maxwell’s

equations are adequate in describing systems of strong electromagnetic fields, and QED

corrections can be neglected. Although the gauge fields will be treated classically here,

quantum corrections have been studied [34] and were found to be important for pressure

isotropization.

3.2 Derivation of Equations of Motion

In order to derive the equations of motion, it is useful to begin with the action [33],

S =

∫
d3x

(
−1

4
gαβgσρFασFβρ + Jµg

µνAν

)
=

∫
d3x

(
−1

4
F βρFβρ + JµA

µ

)
= −1

2

∫
τdηdxdy

(
F τηFτη + F τiFτi + F iηFiη +

1

2
F ijFij

)
= −1

2

∫
τdηdxdy

(
−
F 2
τη

τ 2
− F 2

τi +
F 2
iη

τ 2
+ F 2

xy

)
=

∫
dηdxdy

{τ
2

(F 2
τη

τ 2
+ F 2

τi −
F 2
iη

τ 2
− F 2

xy

)}
=

∫
dxdydηL

(3.2)

where we are using the metric gµν = diag(1,−1,−1,− 1
τ2

). As in 2D, the source terms in

the Lagrangian are assumed to be eikonal and propagate along the light-cone axes, meaning

that the gluon fields evolve according to the sourceless CYM equations in the forward light
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cone, and we can neglect the source term in the Lagrangian in the forward light-cone. The

effect of the source term is implemented through the initial gauge fields, as they are derived

using δ-function source terms on the light-cone and the JIMWLK evolution, as discussed in

sections 2.5 and 4.3, respectively.

In general, in a non-boost invariant system the current is not strictly on the light cone,

but has some finite extent within the forward light-cone. This is for two reasons: 1) the nuclei

are no-longer infinitely length contracted to δ-functions, and 2) vz < c which actually means

the propagation of the source is no longer parallel to the light-cone axis. If one considers a

slightly shifted τ − η coordinate system where τ0 corresponds to the last instant of contact

between the two nuclei, as we do here, then the first issue is no longer a problem. This

is because the new coordinate system excludes the region that includes finite extent of the

nucleus. To do this, we start the evolution of the fields once the two nuclei have completely

passed through one another, at approximately τ0 = 2R/γ, where R is the nuclear radius and

γ is the Lorentz factor. For Pb-Pb collisions at the LHC at
√
s = 2.76 TeV , this is roughly

γ =

√
s/2

mN

=
2760/2 GeV

0.940 GeV
≈ 1500

τ0 =
2R

γ
≈ 13 fm

1500
≈ 0.01 fm.

(3.3)

The issue of sub-luminal velocity of the source terms is dealt with to some extent by the

rapidity dependent source term that is generated by the JIMWLK evolution. As will be

discussed in section 4.3, the CGC employs a separation of scales that integrates out high

momentum modes and incorporates them into a source term, and the JIMWLK evolution

implements this in a rapidity dependent way. This should mean that the color sources in

the rapidity range yIPGmax < y < ybeam should be incorporated in the effective charge density

for the gauge fields at yIPGmax , where this is the maximum rapidity extent of the IP-Glasma

simulation. Any effects from source terms in the forward light-cone beyond this can be

assumed to be neglected by this treatment.

Given these clarifications, we will now proceed with the derivation for the classical, source-

less Yang-Mills equations of motion in the Hamiltonian formalism in 3+1D. In the typical

2+1D derivation, the longitudinal gauge field is treated as an adjoint scalar φ with conjugate

momentum π that couples to the 2+1D transverse Yang-Mills fields [70]. This is useful when
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evolving a boost invariant system on a 2+1D lattice. However, since the goal here is to evolve

in 3+1D dimensions, we will derive the 3+1D Hamiltonian equations of motion here. The

essential dynamical features are the same as the 2+1D formulation, given the same initial

conditions, but to save time, we only derive the EOM’s only once.

In general, the Hamiltonian can be written in terms of the Lagrangian as,

H =
∑
i

q̇i
∂L
∂q̇i
− L =

∑
i

q̇ipi − L (3.4)

where qi are the generalized coordinates, which are the gauge fields Aµ in our case. Having

chosen the gauge Aτ = 0, it is easy to see that the conjugate momenta are,

∂L
∂(∂τAi)

= τ∂τAi = Ei (3.5)

and

∂L
∂(∂τAη)

=
1

τ
∂τAη = Eη. (3.6)

The extra factors of τ that deviate from the Maxwell Equations inspired intuition for these

types of equations is due to the τ − η coordinate system. Putting the momentum terms into

the Hamiltonian gives,

H = (∂τAi)E
i + (∂τAη)E

η − L =
(Ei)2

τ
+ τ(Eη)2 − L

=
(Ei)2

τ
+ τ(Eη)2 − 1

2
τ
[F 2

τη

τ 2
+ F 2

τi −
F 2
iη

τ 2
−
F 2
ij

2

]
=

(Ei)2

τ
+ τ(Eη)2 − 1

2
τ
[(Eητ)2

τ 2
+

(Ei)2

τ 2
−
F 2
iη

τ 2
−
F 2
ij

2

]
=

1

2

[(Ei)2

τ
+ τ(Eη)2 +

F 2
iη

τ
+ τF 2

xy

]
.

(3.7)

Now that we have the Hamiltonian density, it is possible to write the Hamiltonian equations

of motion, which are typically written

∂H
∂pi

=
∂qi
∂τ

,
∂H
∂qi

= −∂pi
∂τ

. (3.8)

In our case,
∂H
∂Eµ

=
∂Aµ
∂τ

,
∂H
∂Aµ

= −∂E
µ

∂τ
(3.9)
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where µ = x, y, η for a total of 6 EOM’s. The evolution equations for the gauge fields are

given by,
∂Ai
∂τ

=
∂

∂Ei

[1

2

((Ei)2

τ
+ τ(Eη)2 +

F 2
iη

τ
+ τF 2

xy

)]
=

1

τ
Ei (3.10)

and
∂Aη
∂τ

=
∂

∂Eη

[1

2

((Ei)2

τ
+ τ(Eη)2 +

F 2
iη

τ
+ τF 2

xy

)]
= τEη (3.11)

The equations for the electric fields are,

−∂E
i

∂τ
=
∂H
∂Ai

−∂τEi =
∂

∂Ai

[1

2

((Ei)2

τ
+ τ(Eη)2 +

F 2
iη

τ
+ τF 2

ij

)]
=

1

2

∂

∂Ai

[F 2
iη

τ
+ τF 2

ij

]
=

1

τ
[Dη, Fiη] + τ [Dj, Fij]

(3.12)

Similarly,

−∂E
η

∂τ
=

∂H
∂Aη

−∂τEη =
∂

∂Aη

[1

2

((Ei)2

τ
+ τ(Eη)2 +

F 2
iη

τ
+ τF 2

ij

)]
=

1

2

∂

∂Aη

[F 2
iη

τ
+ τF 2

ij

]
= −1

τ
[Di, Fiη]

(3.13)

The final form of the EOM’s for the electric field is,

∂τE
i =

1

τ
[Dη, Fηi] + τ [Dj, Fji]

∂τE
η =

1

τ
[Di, Fiη].

(3.14)

where i, j are transverse directions. Finally, the Gauss constraint is given by

[Di, E
i] + [Dη, E

η] = 0 (3.15)

Due to gauge freedom, the equations of motion are not sufficient to determine the gauge fields.

Gauss’ law does not arise out of the Hamiltonian formulation without adding constraints to

the Hamiltonian. For details on this procedure, see chapter (3.2) of [71].
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To summarize, the Hamiltonian EOM’s, along with Gauss’ law, are

∂τE
i =

1

τ
[Dη, Fηi] + τ [Dj, Fji]

∂τE
η =

1

τ
[Di, Fiη]

∂Ai
∂τ

=
1

τ
Ei

∂Aη
∂τ

= τEη

0 = [Di, E
i] + [Dη, E

η]

(3.16)

The evolution equations are coupled, so that the gauge fields depend on the electric fields

at a given time, and vice versa. In order to solve these equations, a leap-frog algorithm is

employed so that the electric field is evaluated at E(τ) and the gauge fields are evaluated

at A(τ + dτ/2). In this sense, the fields “leap-frog” over one another in time. At the end of

the evolution the electric fields are evolved by an additional dτ/2 to bring them to the same

time as the gauge fields.

3.3 Putting it on the Lattice - Preliminaries

In the next section, we will cast the Hamiltonian in terms of lattice quantities and derive

the equations of motion that are implemented numerically. Before doing so, it is useful to

address some preliminary considerations. First, it is useful for the numerical calculation to

re-scale everything with the lattice spacing a⊥ and the coupling constant so that it is not

necessary to keep track of these terms in the numerical simulation. Of course, they will be

restored at at end of the calculation in order to compute physically relevant quantities. All

rescaled quantities will be denoted with a tilde. Rescaling the transverse length scale and

the time by the lattice spacing makes them dimensionless, or puts them in what we will call

“lattice units”,

τ̃ = τ/a⊥

x̃i = xi/a⊥.
(3.17)

Recall that η is a dimensionless quantity, which means that we cannot determine where

factors of aη belong strictly from dimensional analysis, so we need to keep track of the
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factors of aη. Rescaling the fields themselves gives,

Ãi = ga⊥Ai

Ãη = gAη

Ẽi = τ̃ ∂̃τ Ãi = ga⊥E
i

Ẽη =
1

τ̃
∂̃τ Ãη = (ga2

⊥)Eη

(3.18)

The degrees of freedom that are evolved explicitly in time are the electric field and the

gauge links, defined as

Ui(x
i
N , x

i
0) = P exp

(
− ig

∫ xiN

xi0

dziAi(z
i)
)

(3.19)

with a minus sign in the exponent because we are using the convention Dµ = ∂µ + igAµ. On

the lattice, the gauge link that connects neighboring vertices in the transverse plane at xi

and xi+i, respectively, can be written, for sufficiently small lattice spacing, as

Ui(xk, xk+1) = P exp
(
− ig

∫ xk

xk+1

dziAi(z
i)
)
≈ exp

(
iga⊥Ai(xk)

)
(3.20)

where A(xk) is the gauge field associated with the link that points from vertex xk to xk+1.

The change in sign in the exponent is because the direction of the limits of integration. In

this thesis, the gauge link for the xi direction on the lattice will be defined as going in the

positive xi direction. After rescaling, we have

Ui(x̃k, x̃k+1) = exp
(
iÃi(xk)

)
(3.21)

where i = x, y because one needs to keep track of factors of aη for Ũη,

Uη(ηk, ηk+1) = exp
(
iaηÃη(ηk)

)
. (3.22)

From these last two equations, it is apparent why the rescaling done in Eq. (3.18) is so

useful: the factors of a⊥ and g no longer need to be tracked explicitly. One can define the

plaquette (see section (8.3)) which is a closed loop of gauge links,

Uij(x) = Ui(x)UJ(x+ î)U †i (x+ î+ ĵ)U †j (x+ ĵ) ≈ exp
(
iF̃ ij

)
(3.23)
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For numerical precision, the quantities

DUi = Ui − 1

DUij = Uij − 1
(3.24)

are used in place of the gauge link and plaquette, respectively. It is easy to construct the

squared field strength component F 2
ij, which appears in the Hamiltonian, by taking the real

part of DUij

DUij =
(

exp (iF̃ij)− 1
)

=
(

1 + iF̃ a
ijta −

1

2
F̃ a
ijF̃

b
ijtatb +O(a6)

)
− 1.

(3.25)

Taking the real part of the trace over colors and using Tr(tatb) = 1
2
δab,

R[Tr(DUij)] = −1

4
F̃ a
ijF̃

a
ij +O(a8). (3.26)

This means, for sufficiently small lattice spacing, one can take,

F̃ 2
ij = −4R[Tr(DUij)] (3.27)

Without the tilde, this can be written,

F 2
ij =

−4

g2a2
i a

2
j

R[Tr(DUij)]. (3.28)

Finally, for the equations of motion, it will be necessary to take derivatives of the gauge links

in the Hamiltonian with respect to the gauge fields, which is non-trivial due to the matrix

structure of the exponent. We can re-write the gauge link, that goes from lattice site x to

site x+ ai, at fixed time, as

Ui(x) = exp (igAi(x)h)... exp (igAi(x+ ai)h) (3.29)

where h is an infinitesimal length element, and the second line shows the explicit path-

ordering. Taking the derivative with respect to the gauge field,

∂

∂Aai (x)
Uj(x) =

∂

∂Aai (x)
eigajtaA

a
j = igajtaUj(x)δij (3.30)

yields a color matrix ta on the left hand side, due to the path ordering. Here aj is the lattice

spacing in the j-direction. More details about lattice gauge theory and numerical details can

be found in Section 8.3.
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3.4 Lattice Equations of Motion Derivation

Now it is possible to re-write the action, Eq. (3.2), in terms of lattice quantities. First,

discretizing the differential volume element that is being integrated over,

S = −1

2

∫
τdηdxdyTr

(
F τηFτη + F τiFτi + F iηFiη +

1

2
F ijFij

)
=

1

2

∑
τaηa

2
⊥Tr

{(F 2
τη

τ 2
+ F 2

τi −
F 2
iη

τ 2
− F 2

xy

)}
.

(3.31)

Next, replacing the field strength components with the electric field using Eq.’s (3.5), (3.6)

and gauge links using Eq. (3.28),

S =
1

2

∑
τaηa

2
⊥

{(Tr(τEη)2

τ 2
+

Tr(Ex)2

τ 2
+

Tr(Ey)2

τ 2
+

4

g2a2
xa

2
ητ

2
R[Tr(DUxη)]

+
4

g2a2
ya

2
ητ

2
R[Tr(DUyη)] +

4

g2axa2
y

R[Tr(DUxy)]
)}

=
1

2

∑
aηa

2
⊥

{(
Trτ(Eη)2 +

Tr(Ex)2

τ
+

Tr(Ey)2

τ
+

4

g2a2
xa

2
ητ
R[Tr(DUxη)]

+
4

g2a2
ya

2
ητ
R[Tr(DUyη)] +

4τ

g2a2
xa

2
y

R[Tr(DUxy)]
)}

(3.32)

We can write this in term of the lattice quantities (with tildes),

S =
1

2

∑
aηa

2
⊥

{(
Trτ(Eη)2 +

Tr(Ex)2

τ
+

Tr(Ey)2

τ
+

4

g2a2
xa

2
ητ
R[Tr(DUxη)]

+
4

g2a2
ya

2
ητ
R[Tr(DUyη)] +

4τ

g2a2
xa

2
y

R[Tr(DUxy)]
)}

=
1

2

∑
aηa

2
⊥

{(
(τ̃ a⊥)Tr(

Ẽη

ga2
⊥

)2 + Tr(
Ẽx

ga⊥
)2 1

a⊥τ̃
+ Tr(

Ẽy

ga⊥
)2 1

a⊥τ̃
+

4

g2a2
xa

2
η(τ̃ a⊥)

R[Tr(DUxη)]

+
4

g2a2
ya

2
η(τ̃ a⊥)

R[Tr(DUyη)] +
4(τ̃ a⊥)

g2a2
xa

2
y

R[Tr(DUxy)]
)}

=
1

2

aη
a⊥g2

∑{(
τ̃Tr(Ẽη)2 + Tr(Ẽx)2 1

τ̃
+ Tr(Ẽy)2 1

τ̃
+

4

a2
η(τ̃)
R[Tr(DUxη)]

+
4

a2
η(τ̃)
R[Tr(DUyη)] + 4(τ̃)R[Tr(DUxy)]

)}
.

(3.33)
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The lattice action can be written,

S̃ =
1

2

∑{(
τ̃Tr(Ẽη)2 + Tr(Ẽx)2 1

τ̃
+ Tr(Ẽy)2 1

τ̃
+

4

a2
η(τ̃)
R[Tr(DUxη)]

+
4

a2
η(τ̃)
R[Tr(DUyη)] + 4(τ̃)R[Tr(DUxy)]

)}
.

(3.34)

One can follow a similar procedure as done in the previous section to derive the lattice

equations of motion. Going back to the Hamiltonian again and casting in terms of the

lattice quantities,

H̃ =
1

2

[
Tr

(Ẽx)2

τ̃
+ Tr

(Ẽy)2

τ̃
+ τ̃Tr(Ẽη)2 +

4

a2
η(τ̃)
R[Tr(1− Uxη)]

+
4

a2
η(τ̃)
R[Tr(1− Uyη)] + 4(τ̃)R[Tr(1− Uxy)

] (3.35)

As before, the Hamiltonian EOM’s are

∂H
∂Aµ

= −∂E
µ

∂τ
(3.36)

Recall from the previous section, the definition of the the derivative of the transverse gauge

link, this times in terms of scaled lattice quantities,

∂

∂Ãai (x)
Uj(x) =

∂

∂Ãai (x)
eitaÃ

a
j = itaUj(x)δij (3.37)

In the action, there is a sum over all the lattice sites. In this sum, there are only two

plaquettes in the x − y plane that include the link Ax(x), one starting at position x, the

other starting at position x− êy,

Uxy(x) = Ux(x)Uy(x + êx)U−x(x + êx + êy)U−y(x + êy) (3.38)

and

Uxy(x− êy) = Ux(x− êy)Uy(x− êy + êx)U−x(x + êx)U−y(x)

= Ux(x− êy)Uy(x− êy + êx)U †x(x)U−y(x).
(3.39)

The derivative of the Hamiltonian with respect to the gauge field, then, has two terms,



3.4 Lattice Equations of Motion Derivation 55

Tr
∂

∂Ãax(x)

(
Uxy(x) + Uxy(x− êy)

)
= Tr

(
itaUx(x)Uy(x + êx)U−x(x + êx + êy)U−y(x + êy)

+ Ux(x− êy)Uy(x− êy + êx)U †x(x)(−ita)U−y(x)
)

= iTr
[
ta

(
Uxy(x)− Uxy(x− êy)

)]
= iTr

[
ta

(
Uxy(x)− U−yx(x)

)]
.

(3.40)

There are also two plaquettes that contains the gauge link Ax(x) in the x-η plane. Following

a similar procedure, one ultimately arrives at

Tr
∂

∂Ãax(x)

(
Uxη(x) + Uxη(x− êη)

)
= iTr

[
ta

(
Uxη(x)− U−ηx(x)

)]
.

.

(3.41)

Applying this to the relevant terms in the Hamiltonian yields,

∂H̃
∂Ãax

=
∂

∂Ãax(x)

(
− 2(τ̃)R[Tr(Uxy)]− 2(

1

a2
η τ̃

)R[Tr(Uxη)]
)

= −2R
(
iTr
[
ta[τ̃(Uxy(x)− U−yx(x)) +

i

τ̃a2
η

(Uxη(x)− U−ηx(x))]
])

= 2I
(

Tr
[
ta[τ̃(Uxy(x)− U−yx(x)) +

1

τ̃ a2
η

(Uxη(x)− U−ηx(x))]
])

.

.

(3.42)

Using the fact that I(z) = − i
2
[z − z∗] for a complex number z, and properties of the trace,

allows this to be re-written as,

∂H̃
∂Ãax

= −iTr
(
ta

[
τ̃(Uxy(x)− U−yx(x)− U †xy(x) + U †−yx(x))

+
1

τ̃ a2
η

(Uxη(x)− U−ηx(x)− U †xη(x) + U †−ηx(x))
])

= −iTr
(
ta

[
τ̃(Uxy(x)− U−yx(x)− Uyx(x) + Ux−y(x))

+
1

τ̃ a2
η

(Uxη(x)− U−ηx(x)− Uηx(x) + Ux−η(x))
])
.

(3.43)
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Finally, this is equal to −∂Ẽx

∂τ̃
, which gives,

∂τ̃ Ẽ
x =

i

2

([
τ̃(Uxy(x)− U−yx(x)− Uyx(x) + Ux−y(x))

+
1

τ̃ a2
η

(Uxη(x)− U−ηx(x)− Uηx(x) + Ux−η(x))
]
− trace

) (3.44)

where the −trace subtracts the part that is proportional to the trace. The y-component

takes the same form,

∂τ̃ Ẽ
y =

i

2

([
τ̃(Uyx(x)− U−xy(x)− Uxy(x) + Uy−x(x))

+
1

τ̃ a2
η

(Uyη(x)− U−ηy(x)− Uηy(x) + Uy−η(x))
]
− trace

)
.

(3.45)

For the η-direction, the derivative of the gauge link changes slightly, due to the factor aη

∂

∂Ãaη(x)
Uη(x) =

∂

∂Ãai (x)
eitaaηÃ

a
η = itaaηUη(x). (3.46)

The two plaquettes that are relevant for the η-derivative have a common coefficient in the

lattice Hamiltonian, and get this extra factor aη from the η-derivative. Other than that, the

EOM takes the same form as those for the transverse electric fields,

∂τ̃ Ẽ
η =

i

2

1

τ̃ aη

([
(Uηx(x)− U−xη(x)− Uxη(x) + Uη−x(x))

+ (Uηy(x)− U−yη(x)− Uyη(x) + U−ηy(x))
]
− trace

)
.

(3.47)

For the transverse gauge links, the Hamiltonian EOM’s are

∂Ãi
∂τ̃

=
∂H̃

∂Ẽi
=
Ẽi

τ̃
(3.48)

but this needs to be related to the degrees of the freedom on the lattice, namely the gauge

links. Taking a time derivative of the transverse gauge link,

∂τ̃Ui = ∂τ̃e
iÃi = i∂τ̃ Ãie

iÃi = i∂τ̃ ÃiUi (3.49)

where the ordering of the matrices is taken as written above as an approximation in the

small lattice spacing limit. As indicated in Eq. (3.50), U really involves an exponential path

integral over the gauge field, but is approximated in the small a⊥ limit as

Ui(xk, xk+1) ≈ exp
(
iga⊥Ai(xk)

)
. (3.50)
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Having made this approximation, it is not clear which is the appropriate order for the ma-

trices Ãi and Ui when taking the derivative, so the order taken in Eq. (3.49) can simply

be regarded as a choice that introduces some numerical error. This approximation becomes

better, meaning the associated numerical error should decrease, as the lattice spacing ap-

proaches the continuum limit.

Plugging Eq. (3.48) in for ∂τ Ãi, one gets,

∂τ̃Ui = i
Ẽi

τ̃
Ui, (3.51)

for the transverse components. For the η-component, the equation of motion,

∂Ãη
∂τ̃

=
∂H̃

∂Ẽη
= τ̃ Ẽη, (3.52)

can be related to the gauge field to the gauge link via

∂τ̃Uη = ∂τ̃e
iaηÃη = iaη∂τ̃ Ãηe

iaηÃη = iaη∂τ̃ ÃηUη. (3.53)

Plugging Eq. (3.52) in,

∂τ̃Uη = iaη τ̃ Ẽ
ηUη (3.54)

gives the final equation of motion. To summarize, the lattice equations of motion are,

∂τ̃Ui = i∂τ̃ ÃiUi = i
Ẽi

τ̃
Ui

∂τ̃Uη = iaη∂τ̃ ÃηUη = iaη τ̃ ẼηUη

(3.55)

for the gauge links and

∂τ̃ Ẽx =
iτ̃

2

(
Ux,y(x) + Ux,−y(x)− Uy,x(x)− U−y,x(x)− trace

)
+

i

2τ̃ a2
η

(
Ux,η(x) + Ux,−η(x)− Uη,x(x)− U−η,x(x)− trace

) (3.56)

∂τ̃ Ẽy =
iτ̃

2

(
Uy,x(x) + Uy,−x(x)− Ux,y(x)− U−x,y(x)− trace

)
+

i

2τ̃ a2
η

(
Uy,η(x) + Uy,−η(x)− Uη,y(x)− U−η,y(x)− trace

) (3.57)

∂τ̃ Ẽη =
i

2aη τ̃

(
Uη,x(x) + Uη,−x(x)− U−x,η(x)− Ux,η(x)

+ Uη,y(x) + Uη,−y(x)− Uy,η(x)− U−y,η(x)− trace
) (3.58)
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for the evolution of the electric field components. Gauss’ Law is an additional constraint,

the lattice form of which will be discussed in Section 4.6 regarding generalizing the initial

conditions to 3D.

3.5 Conservation of Energy

The advantage of the Hamiltonian formulation is that it guarantees energy conservation,

which we turn to now. The statement of energy conservation in Milne-coordinates, outlined

from a hydrodynamic point of view in [72], is given by,

∂τT
τν = 0

∂τT
ττ + ∂⊥T

⊥τ + ∂ηT
ητ = −τT ηη − T ττ/τ

(3.59)

where the terms on the right-hand side are geometric terms coming from Christoffel symbols.

Multiplying by τ and combining the two T ττ terms gives

∂τ (τT
ττ ) + ∂⊥(τT⊥τ ) + ∂η(τT

ητ ) = −τ 2T ηη. (3.60)

Integrating over the 4-dimensional volume (dxdydττdη) where we have already included the

factor of τ ,∫
dxdydηdτ∂τ (τT

ττ ) +

∫
dxdydηdτ∂⊥(τT⊥τ ) +

∫
dxdydηdτ∂η(τT

ητ )

= −
∫
dxdydηdτ(τ 2T ηη).

(3.61)

The second term becomes an integral over the transverse boundary, where the stress energy

tensor is zero, so this term vanishes. The remaining terms are∫
dxdydη(τT ττ )

∣∣∣∣τmax
τmin

+

(∫
dxdydτ(τT ητ )

)∣∣∣∣ηmax
ηmin

= −
∫
dxdydηdτ(τ 2T ηη). (3.62)

In Fig. (3.2), the deviation of the ratio of the LHS to the RHS of Eq. (3.62) from unity

is plotted. Explicitly, the quantity on the y-axis is1−

∫
dxdydη(τT ττ )

∣∣∣∣τmax
τmin

+
(∫

dxdydτ(τT ητ )
)∣∣∣∣ηmax
ηmin

−
∫
dxdydηdτ(τ 2T ηη)

× 100%. (3.63)
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Figure 3.2: Despite fluctuations at very early times, energy is nicely conserved throughout

the evolution of the system. This figure is a typical event with b = 0 fm.
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Figure 3.3: The form of the adaptive time step used as a function of time. Parameters are

chosen to illustrate the limiting behavior at early times and late times. For the results in

this thesis the following parameters are used: dξ = 0.035a⊥, T0 = 8a⊥, with a⊥ = 0.044 fm.

There is deviation from energy conservation at extremely early times, likely due to lattice

effects. Two such sources of numerical error are the approximations made in Eqs. (3.49)

and (3.53), which both rely on small lattice spacing. The curve quickly settles down and

approaches zero, indicating that energy is conserved throughout the evolution. It is worth

noting that because of the time integrations in Eq. (3.62), in order to get an accurate mea-

sure, one must compute T µν at sufficiently fine time intervals, which can be computationally

expensive.

3.6 Adaptive Time Steps

The equations of motion require very small time steps at early times, but not at later times,

due to the appearance of dτ
τ

terms. For this reason, adaptive time steps are employed in the

following form,

dτ = dξ tanh
τ

T0

. (3.64)
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For τ << T0, this behaves as dτ ≈ dξ τ
T0

while for τ > T0 the value plateaus at dτ ≈ dξ.

This achieves the goal of producing small time steps for small τ and larger time steps for

later times, when they are no longer necessary. The dynamical time step is shown for values

T0 = 0.2 fm and dξ = 0.005 fm in Figure (3.3), in order to illustrate the behavior. As can be

seen, dξ governs the maximum dτ , while T0 determines how quickly dτ will grow.
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4

Generalizing to 3+1D

4.1 Introduction

The equations of motion have already been outlined for fully 3+1D evolution in Chapter

3. The initial conditions, however, still need to be generalized to 3+1D in a way that is

consistent with evolution on a 3-dimensional lattice. In this section, the saturation scale,

as determined by IP-Sat, will be used to the determine the scale from which to sample

the color charge, although in 3+1D this will be done away from mid-rapidity. Solving the

Poisson equation with this color charge will allow for the initialization of the Wilson lines.

The JIMWLK equations, QCD-based renormalization group equations, will then evolve this

Wilson lines to all other rapidities. Next, the initial condition for the gauge fields from 2D

will be altered and applied at all rapidities. Finally, Gauss’ law will be solved iteratively using

an ansatz proposed here. These changes, taken together, provide a non-trivial longitudinal

structure that is consistent with temporal evolution of a 3D lattice.

4.2 Qs(η)

The saturation scale that is determined from the IP-Sat model is typically used for a boost

invariant system. In 3+1D, the saturation scale is rapidity dependent. Different rapidities,

y, correspond to different reference frames, and the momemtum fraction x depends on this.

To apply IP-Sat away from mid-rapidity, we simply determine the momentum fraction away

from mid-rapidity, and use this value of x to solve for the saturation scale. To calculate x

63
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at non-zero rapidities, recall the definition of kinematic rapidity,

y =
1

2
ln

(
E + pz
E − pz

)
. (4.1)

Constructing the hyperbolic cosine function and simplifying,

cosh y =
ey + e−y

2
=

1

2

(√
E + pz√
E − pz

+

√
E − pz√
E + pz

)
=

1

2

E + pz + E − pz√
E2 − p2

z

=
E

mN

(4.2)

one gets a relationship between energy, nucleon mass, and rapidity, allowing us to express

the beam rapidity as ybeam,

ybeam = cosh-1
( √s

2mN

)
. (4.3)

In addition, we can use the fact that boosts are additive in rapidity,

yobs = ybeam − yboost (4.4)

To see why this relationship is true, consider a system travelling in the longitudinal direction

in two frames, F and F’, where they have a relative velocity in the z-direction [73]. The

rapidity in frame F’ is

y′ =
1

2
ln

(
p′0 + p′z
p′0 − p′z

)
(4.5)

The Lorentz transformation from F to F’ is

p′0 = γ(p0 − βpz)

p′z = γ(pz − βp0)
(4.6)

where β is the relative velocity between the frames F ′ and F . Putting these relationships

into the equation for y′,

y′ =
1

2
ln

[
γ(p0 − βpz) + γ(βp0 − pz)
γ(p0 − βpz)− γ(βp0 − pz)

]
=

1

2
ln

[
(p0 + pz)(γ − γβ)

(p0 − pz)(γ + γβ)

]
= y − 1

2
ln

(
1 + β

1− β

)
= y(particle in frame F)− y(F′ relative to F)

(4.7)
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The rapidity of the particle in the two frames differs by the rapidity of the boost between

the frames. This property makes rapidity very useful for describing relativistic particles. In

order to change frames, one simply has to add/substract the rapidity of the boost.

Using this, one can write the momentum fraction at y’ as,

x =
Qs

mN cosh(ybeam − yboost)
(4.8)

With the approximation that y = η, to be justified in section 4.4, this is given by

x =
Qs

mN cosh(ybeam − η)
(4.9)

Notice that taking η = 0, one recovers the 2D form that was used in the previous chapter,

x =
Qs

mN cosh (ybeam)
=

Qs

mN((
√
s/2)/mN)

=
Qs√
s/2

(4.10)

Then one solves Eq. (4.9) iteratively with the equations outlined in Section 2.2. Once the

value of Q2
s(x, ηmin) is determined for each nucleus, the color charge is sampled and the gauge

fields can be found using the MV model. Then the JIMWLK evolution evolves the Wilson

lines to all other rapidities, as will be discussed in the following section.

4.3 JIMWLK

In a previous chapter, it was argued that the CGC relies on a separation of scale between the

hard partons that remain on the light cone and act as sources, and the soft gluons. This is

depicted in Fig. (4.1), where ycut separates the source terms from the soft gluons. The exact

scale, denoted as ycut was rapidity independent in 2D because the system was boost invariant.

This meant that the color charge density was a function of the transverse position and had

no longitudinal structure. This is an idealization of course, because heavy-ion collisions are

not boost invariant, and yobs is not fixed for a 3D system. The JIMWLK (Jalilian-Marian,

Iancu, McLerran, Weigert, Leonidov, Kovner) renormalization equations [74] integrate out

modes at higher rapidities, effectively making the separation scale rapidity dependent. This

leads to a self-similar Lagrangian to the CGC, meaning that it takes the same form but with

a rapidity dependent charge density term,

ρ2D(x⊥)
JIMWLK Evolution−−−−−−−−−−−→ ρ3D(x⊥, y) ≈ ρ3D(x⊥, η) (4.11)
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Figure 4.1: Visualization of the separation of scales made in the CGC. Figure taken from

[56].

The actual renormalization procedure is outlined in [74]. To summarize, the CGC effective

Lagrangian is considered at a momentum scale k+ � P+, where P+ is an ultraviolet cutoff

on the order of the longitudinal momentum of the nucleus under consideration. To obtain the

effective Lagrangian at k+, the quantum fluctuations modes with momentum k+ ≤ q+ ≤ P+

are integrated out. The result is a new effective Lagrangian that takes the same form as that

of the CGC, but it now has additional quantum fluctuations integrated out into the charge

squared per unit area. Because this process produces a self-similar Lagrangian, it can be

done iteratively to higher and higher rapidities, which each successive iteration increasing

the charge density. The JIMWLK renormalization equations are thus equations for how

µ2(y,Q2), the squared color charge per unit area, evolves as a function of rapidity, y, and

the transverse resolution scale, Q2. The scale of the additional charge squared per unit area

at each iteration is

µ2(y,Q2)dy = µ2(y,Q2)(− ln (x)) = µ2(y,Q2) ln (1/x). (4.12)

As long as αs ln
(

xN
xN+1

)
� 1, where N and N + 1 label consecutive iterations, the additional
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fluctuations can be treated perturbatively, and the renormalization procedure is under con-

trol.

More concretely, the JIMWLK equation can be written in Hamiltonian form, derived

rigorously using the Schwinger-Keldysh formalism in [63] and [75], as

∂WY [α]

∂Y
= HJIMWLKWY [α] (4.13)

where WY is a weight function at rapidity Y and −∇2
⊥α(x⊥,Y) = ρ(x⊥, Y ) relates the gauge

field to the surface charge density. The Hamiltonian is given by

H =
1

2π

∫
x,y

δ

δαa(x⊥)
ηab(x,y)

δ

δαb(y⊥)
. (4.14)

Here, ηab(x⊥,y⊥) ∝ 〈δρa(x⊥)δρb(y⊥)〉 is the induced charge-charge correlator between trans-

verse positions x⊥ and y⊥
1. In the CGC, the expectation value of an observable O is given

by,

〈O〉Y =

∫
D[α]WY [α]O[α] (4.15)

where now the subscript on WY indicates that the rapidity dependence of the theory is in

the weight function.

4.3.1 JIMWLK: Numerical Implementation

The form of the JIMWLK equation used is from [3] and given in terms of the Langevin step,

VA,B(x,Y + dY ) = exp
(
−i
√
αsdY

π

∫
z

Kx−z · VzξzV †z
)

× VA,B(x, Y )× exp
(
i

√
αsdY

π

∫
z

Kx−z · ξz
) (4.16)

where ξz = {ξ1,a(z, Y )ta, ξ2,a(z, Y )ta} and the subscripts 1, 2 label the transverse directions.

Its correlator is given by,

〈ξai (x, Y1)ξbj(y, Y2)〉 = δabδijδ2(x− y)δY1Y2 . (4.17)

To be clear, a, b are color indices, i, j label the transverse components x and y, and x,y and

Y1, Y2 label the transverse and longitudinal positions, respectively. Here αs is constant and

1The author has found the thesis [76] to be an instructive and valuable resource for understanding the

JIMWLK equation.
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the noise correlator has a Kronecker delta for (Y1, Y2), rather than a delta function, because

the 1/dY has already been incorporated into Eq. (4.16). The noise term represents the

stochastic nature of the gluon emission, part of the quantum mechanical correction to the

charge that sources boost invariant classical fields.

For a running coupling constant, Eq. (4.16) is modified [3]

VA,B(x,Y + dY ) = exp

(
−i
√
dY

π

∫
u

Kx−u(·VuηuV †u )

)
VA,B(x, Y ) exp

(
i

√
dY

π

∫
v

Kx−v · ηv

)
(4.18)

where ηz = {ηa1(z, Y )ta, ηa2(z, Y )ta}. The correlator for the noise term, η, in this case is given

by,

〈ηa,i(x, Y1)ηb,j(y, Y2)〉 = δabδijδY1Y2
∫

d2k

(2π)2
eik·(x−y)αs(k). (4.19)

This can be contrasted with the noise term in the constant αs case,

αs〈ξai (x, Y1)ξbj(y, Y2)〉 = αsδ
abδijδY1Y2

∫
d2k

(2π)2
eik·(x−y) (4.20)

where we have explicitly written out the δ-function. Notice that the coupling αs is absorbed

into the noise term in Eq. (4.19) and thus it does not appear explicitly in equation Eq. (4.18).

In this thesis, the running coupling is used. For the running coupling, the noise correlator is

no longer local which breaks the left-right symmetry of the fixed coupling equation (see [3]

for details). The notation used in Eq. (4.18) reflects this breaking of symmetry.

The modified kernel, as used in [77], is given by,

Kx−z = m|x− z|K1(m|x− z|) x− z

(x− z)2
(4.21)

where K1(x) is the Bessel function of the second kind, and m = 0.4 GeV is an infrared

regulator . The form of the running coupling is taken to be

αs(k) =
4π

β ln [(
µ20

Λ2
QCD

)1/c + ( k2

Λ2
QCD

)1/c]c
(4.22)

with β = 11− 2Nf/3, ΛQCD = 0.2 GeV, c = 0.2, and µ0 = 0.4 GeV [3].

In principle, the scale at which the noise fluctuations occur should not exceed the satura-

tion scale, as it is the only physical scale in the problem. However, the noise correlator is a
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η=0

Decreasing Bjorken x
JIMWLK Evolution

Decreasing Bjorken x
JIMWLK Evolution

Y 0
(A )

Y 0
(B)

Figure 4.2: Two nuclei evolving in rapidity via the JIMWLK equations. At Y
(0)
A and Y

(0)
B

the Wilson lines are determine as done in the 2D formulation. Then these Wilson Lines are

evolved via equation (4.16). Plotted are snapshots of the quantity 1
Nc

Tr(1− V ), a proxy for

gluon density. It is possible to see as the JIMWLK evolution proceeds to smaller Bjorken-x,

the gluon density increases while the large scale geometry of the nuclear structure persists.

delta-function, which means the numerical fluctuations take place at the scale of the inverse

lattice spacing ≈ 1/a. Incorporating the running coupling in the kernel acts to filter out

higher energy modes. It has been checked that this reduces the lattice-spacing dependence of

the initial energy content of the system. Physically, this means that the scale of the running

coupling is taken to be that of the emitted gluon. As described in [3], the running coupling

implementation slows down the JIMWLK evolution which means that neighboring η values

will be more correlated (differ less) than in the constant αs implementation.
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Figure 4.3: The form of αs(k) used here, as taken from [3], using the parameters cited in the

text here.

The expression in the exponent of Eq. (4.16) is computed by Fourier transforming the

kernel and the noise terms, thus turning the 2-dimensional integration into a convolution

[78]. As discussed in [78], this improves numerical speed considerably: the problem that

would have scaled as N4 is reduce to N2 log(N) for an N ×N transverse grid. The form of

the integral in the JIMWLK equation takes the form of a convolution [78],

∫
z

Kx−z · ξ(z) =
∑
x−z

K(x− z) · ξ(z) = F−1 [F(K) ·F(ξ)] (4.23)

We can Fourier transform the noise term, ξ(z) using FFTW, and the kernel can be done

explicitly. The Fourier transform is given by,

F(K) =

∫
d2xe−ik·(x−z)mK1(m|x− z|) x− z

|x− z|
(4.24)

and can be cast in polar coordinates, where each component in the x̂ and ŷ directions take

the form,

F(K) = m

∫ ∞
0

rdr

∫ 2π

0

dθe−ikr cos θK1(m|r|) cos(θ). (4.25)
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After the angular integration, one finds

F(K) = −2πim

∫ ∞
0

rdrJ1(kr)K1(m|r|) (4.26)

where J1 is a Bessel function of the first kind. Finally, the radial integration gives

F(K) =
−2πik

k2 +m2
(4.27)

where the two components have been recombined to form the vector quantity. This can be

convoluted with the Fourier transformed noise term,∫
z

Kx−z · ξ(z) =
∑
z

K(x− z) · ξ(z) = F−1 [F(K) ·F(ξ)]

= F−1

[
−2πik

k2 +m2
· ξ(k)

] (4.28)

The numerical technique used to compute this quantity will be discussed in Section 8.2.

4.3.2 Testing JIMWLK Evolution

The most important scale in the problem is the saturation which is now rapidity dependent.

One does not know the value of Qs(y) directly from the JIMWLK evolution since this

equation evolves the Wilson lines. In order to calculate or “measure” the value of Qs(y),

one can compute the Wilson line correlator between two points in the transverse plane, say

x and z, at a fixed rapidity via [79],

C(r = |x⊥ − z⊥|) =
1

Nc

〈Tr(V †x Vz)〉 (4.29)

where Vx and Vz are the Wilson lines at transverse positions x and z, and the average is

done over the transverse plane. The saturation scale is then typically defined [79] as Q2
s = 2

r2s

where rs is the distance between x and z for which the correlator drops to e−1/2, meaning

C(rs =

√
2

Qs

) = e−1/2, (4.30)

although sometimes different definitions are taken [77]. This quantity, C(r), is plotted in

Fig. (4.4), and three distinct rapidities are highlighted to show the direction of increasing

Qs, which coincides with the direction of the JIMWLK evolution, but opposes the direction
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of propagation of the nucleus. The horizontal red line indicates the value e−1/2, making it

easy to read off the value of Qs from the horizontal axis.

To quantify how fast the saturation scale changes via the JIMWLK evolution, the follow-

ing quantity is used [3],

λ =
d ln(Q2

s(y))

dy
. (4.31)

Rather than solving this equation, it is simpler to simply fit the curve of Q2
s(y) vs y with an
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η=4.25
η=0

η=-4.25

Figure 4.4: An example of the the Wilson line correlator as a function of
√

2
r

under numerical

testing conditions using a running coupling. Highlighted in color are three rapidity slices,

showing the direction of saturation scale growth, increasing from negative rapidity to positive

rapidity. The saturation scale can be read off of the curves from where they cross the

horizontal red C(r) = e(−1/2) line.
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exponential that solves Eq. (4.31), namely

Q2
s(y) = Q2

s(y0)eλ(y−y0), (4.32)

and extract a fit parameter for λ. Data from structure functions suggest the value should

be around λ = 0.2− 0.3 [80].

In Fig. (4.5), a sheet of coloured glass is used to measure the evolution speed of the

JIMWLK implementation. In this context, a sheet of coloured glass is simply a rapidity

slice for which a constant scale g2µ that is independent of the transverse position x⊥, is used

to sample the colour charge. Using such a setup removes the length scales associated with

the nucleus and nucleons which allows for a cleaner measurement of the evolution of the

saturation scale across rapidities. For sake of comparison, λ is extracted via fit in Fig. (4.5)

for the case of constant coupling αs = 0.3 as well as for the running coupling described in

the previous section αs(k). For the running coupling, several different initial values of the

saturation scale Qs,0 are used. As one would expect, the running coupling slows down the

JIMWLK evolution for higher values of Qs,0, as indicated by smaller extracted values of λ.

The values of λ extracted are consistent with those plotted in Fig (8) of [3]. For the values

of Qs probed in the Pb-Pb collisions presented in this thesis, λ ≈ 0.5. The constant αs = 0.3

leads to a much larger value of λ ≈ 0.9.

It has been argued that the energy density deposition in the transverse plane in the

IP-Glasma framework, after averaging over color charge fluctuations, goes like [81]

ε ∝ (QA
s )2(QB

s )2. (4.33)

Using this, along with the determination of Qs from the Wilson line correlator, it is possible

to roughly estimate how the multiplicity will behave as a function of rapidity,

dN

dy
(y) ∝ (QA

s (y))2(QB
s (y))2 (4.34)

where 〈...〉 is the average for a given rapidity slice. For asymmetric systems such as p-

A collisions, the asymmetry in the rapidity evolution of the proton and nucleus naturally

lead to asymmetry in the rapidity dependence of the energy. Thus, the JIMWLK evolution
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Figure 4.5: This figure shows the growth of the saturation scale due to the JIMWLK evo-

lution for different initial values of Qs,0. For each curve ∼ 20 events are averaged for Q2
s(y)

and fit with an exponential to extract λ. This is done for the running coupling, αs(k), as

well as for αs = 0.3.
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should be able to naturally generate asymmetries in the rapidity dependence of the final

state particles, thereby achieving at least qualitative agreement with experimental data.

Lattice effects are expected to become large when Qs ∼ 1
L

or Qs ∼ 1
a

where L is the

linear size of the system in the transverse plane and a is the transverse lattice spacing [3].

The JIMWLK evolution leads to approximately exponential growth of the saturation scale,

which puts limits on the rapidity range one can explore for a given lattice size and lattice

spacing. For most of the results presented in this thesis, the rapidity range used is |y| < 4.25,

and the value of Qs should remain between the values

1

L
=

1

22 fm
≈ 0.009 GeV (4.35)

and
1

a
=

1

22 fm/500
≈ 4.5 GeV. (4.36)

The value of Qs explored in this work are well within this range. Due to the presence

of strong transverse fields in the 3D formulation, as will be discussed later in this chapter,

the saturation scales used to initialize the JIMWLK evolution in this work are smaller than

those used in 2D simulations.

Both the 2D simulation and the rapidity slice used to initialize the JIMWLK evolution

at ±ymax use IP-Sat to determine the saturation scale (as opposed to Eqs. (4.29) and (4.30),

which are used here to measure Qs from the Wilson lines). Using IP-Sat, Qs is related to

the scale that is sampled for the color charge by a constant of proportionality Qs = Cg2µ

where C is a constant. In 2D, C = 0.5-0.75, whereas C = 1.42 is used in this work. This

reduces the scale that is sampled for the color charge by a factor of about 2-3 compared to

what is typically done in 2D.

It is worth noting that the rapid increase of Q2
s for the αs = 0.3 curve in Fig. (4.5)

restricts the rapidity range accessible to a given lattice as compared to a smaller effective

value of αs. The smaller value of λ for the running coupling, for example, means that Qs

grows more slowly and a larger rapidity interval is numerically accessible for a fixed lattice,

as compared to αs = 0.3.

Finally, now that the JIMWLK equation as well as its numerical implementation and
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Figure 4.6: The left column is gluon density of the target at different rapidities. The second

column from the left is the same quantity, but for the projectile. The third column is the

initial energy density that is deposited in the transverse plane at different rapidities. The

right column is the same quantity, evolved using CYM until τ = 0.6 fm. The color scales

are different for gluon density and energy density, but both are arbitrary.

testing have been discussed, it is worthwhile to get a qualitative phenomenological under-

standing of its effect. In Fig. (4.6), the first column on the left shows the gluon density

of the target nucleus at three different rapidities, evolving from negative rapidity (bottom
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row) to positive rapidity (top row), with increasing gluon density. The target, in the case, is

propagating in the direction of positive rapidity. The easiest way to make sense of this is to

consider boosting along the beam axis. Given a boost with the nucleus, i.e. in the positive

rapidity direction, the nucleus will appear slower, and thus less dense. Given a boost in the

opposite direction, against the direction of propagation, the nuclei will appear faster and

thus more dense. In the second column, the same quantity is plotted but for the projectile

nucleus, propagating in the direction of negative rapidity. It is clear that the JIMWLK evo-

lution increases the gluon density of the nucleus through gluon radiation, but that the nuclei

retain their global geometric features. The third column shows the initial energy density

after the collision at τ0 = 0.01 fm, resulting from the collison of the nuclei shown in the first

two columns. Finally the fourth column is the energy density after the Classical Yang-Mills

evolution at τ = 0.6 fm. The CYM time evolution smooths out the small scale structure of

the initial gauge fields at τ0.

4.4 From Kinematic Rapidity to Spacetime Rapidity

The JIMWLK evolution is in the kinematic rapidity variable y, but as discussed in the

section on the equations of motion, the system is evolved in τ − η coordinates, meaning that

the Wilson lines that are evolved in y in this chapter via the JIMWLK equations, need to

be converted or connected in some way to their position in η. Consider a particle traveling

in the z-direction

y =
1

2
ln

(
E + pz
E − pz

)
=

1

2
ln

(
γm+ γmvz
γm− γmvz

)
≈ 1

2
ln

(
t+ z

t− z

)
= ηs (4.37)

where the approximation vz ≈ z/t was made. Because this is a good approximation in

the highly relativistic limit, we convert the JIMWLK evolution which is a function of y to

space-time rapidity by simply taking y −→ ηs.

4.5 Initial Gauge Fields

In Chapter (2.4), the gauge fields for the pre-collision nuclei in the boost invariant case were

discussed. This solution does not work in the 3+1D case. To see why, consider gauge fields
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that are pure gauge outside of the source terms,

Aµ = − i
g
V ∂µV

† (4.38)

A pure gauge can be gauge transformed to zero, which means Eq. (4.38) should not con-

tribute to the physically measurable field strength tensor Fµν . To see this mathematically,

plug Eq. (4.38) into the field strength,

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]

= ∂µ(− i
g
V ∂νV

†)− ∂ν(−
i

g
V ∂µV

†) + ig[(− i
g
V ∂µV

†), (− i
g
V ∂νV

†)]

= − i
g
∂µV (∂νV

†) +
i

g
∂νV ∂µV

† − i

g
V (∂µV

†)V (∂νV
†)

+
i

g
V (∂νV

†)V (∂µV
†).

(4.39)

Using the fact that −∂µV V † = V ∂µV
†, the third and fourth terms can be simplified and the

whole expression is shown to vanish,

Fµν = − i
g
∂µV ∂νV

† +
i

g
∂νV ∂µV

† +
i

g
∂µV ∂νV

†

− i

g
∂νV ∂µV

† = 0.
(4.40)

However, if one were to use the 2D initial gauge fields outlined in Section (2.5) for a

non-boost invariant system, the rapidity derivatives would lead to energy deposition in the

transverse plane wherever a single nucleus had non-zero gauge fields, rather than only in

the overlapping interaction region between both nuclei. This is shown in the left panel of

Fig. (4.7). The reason is the initial gauge field in the 2D formulation is a pure gauge field

in the transverse dimensions (again, outside of the source terms), and Aη = 0. This works

because the longitudinal direction is trivial in the boost invariant scenario and the problem

is essentially 2D. If one plugs the initial gauge field from the 2D formulation into the field

strength tensor Fiη, in a 3-dimensional system, one finds

Fiη = ∂iAη − ∂ηAi + ig[Ai, Aη] = ∂ηAi 6= 0. (4.41)

In other words, there is no commutator term to cancel the η derivative term in the case

of pure gauge. Thus, in order to preserve the necessary condition that the field strength
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Figure 4.7: Left: The transverse energy density if the 2D initial condition for the gauge

fields is applied in a system with longitudinal structure. As can be seen, energy density is

deposited outside of the interaction region. Right: The resulting transverse energy density

for the same nucleon positions as shown on the left but with the inclusion of the pure gauge

component for the longitudinal gauge field.

vanishes outside of the interaction region of the two nuclei, the η component on the initial

gauge field is altered to also be pure gauge,

Aη = − i
g
V ∂ηV

†. (4.42)

This is the natural extension of the purely transverse pure gauge in the 2-dimensional boost

invariant scenario. It both retains the crucial feature that the field strength vanishes for an

individual nucleus, as shown in the right panel of Fig. (4.7), and reduces to the 2D initial

condition in the boost invariant limit for which η derivatives vanish.

Because the two nuclei have different source terms, it is not possible to simultaneously

gauge transform to vacuum for both nuclei, even outside of the source terms. This means

that in the forward light-cone, the overlap region in the transverse plane will have a non-

vanishing field strength, and energy will be deposited. For the forward lightcone, we adopt

the analogous equation to the transverse gauge fields,

Aη = A(A)
η + A(B)

η . (4.43)

The initial condition for the longitudinal electric field remains the same as it was in the 2D
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formulation (up to a minus sign from the covariant derivative convention used here),

Eη = ig[A
(A)
i , A

(B)
i ]. (4.44)

4.6 Gauss’ Law

The covariant form of Gauss’ law in τ − η coordinates without a source term is given by

[Di, E
i] + [Dη, E

η] = 0 (4.45)

In the boost invariant system, derivatives in η vanish which leaves,

[Di, E
i] = 0. (4.46)

This is trivially solved by Ei = 0, making the electric field in the 2D system purely longi-

tudinal at the initial time. This is true, however, only in the limit of infinite momentum.

At finite energies, the longitudinal derivatives do not vanish and it is necessary to enforce

Gauss’ law locally.

The form of Eη at a given rapidity slice is fixed by the 2D initial condition, and has

a rapidity dependence that comes from the JIMWLK evolution. Thus, we can take the

rapidity term as fixed and treat it as a source term,

[Di, E
i] + [Dη, E

η] = 0

[Di, E
i] = −[Dη, E

η]

[Di, E
i] = −ρ

(4.47)

This is one equation with two unknowns: Ex and Ey. In order to solve this problem, we

take the ansatz

Ei = [Di, φ] (4.48)

which relates the two unknowns and converts Gauss’ law into the covariant Poisson equation,

[Di, [D
i, φ]] = −ρ. (4.49)

To discuss the numerical solution, consider first the regular Poisson equation,

∇2φ = −ρ.
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This can be solved using the Jacobi method. Discretizing, where i and j label the lattice

site in the x and y directions, respectively, yields

φi+1, j + φi−1, j − 2φi, j
a2
xy

+
φi, j+1 + φi, j−1 − 2φi, j

a2
xy

= −ρi, j. (4.50)

This can be solved for φi, j,

φi, j =
1

4
(φi+1, j + φi−1, j + φi, j+1 + φi, j−1 + a2

xyρi, j). (4.51)

Then the Jacobi iterative procedure gives the (n + 1)th iteration in terms of the values at

the nth iteration via,

φn+1
i, j =

1

4
(φni+1, j + φni−1, j + φni, j+1 + φni, j−1 + a2

xyρ
n
i, j). (4.52)

For covariant derivatives, all quantities not located at the i , j lattice site, need to be parallel

transported,

φn+1
i, j =

1

4
(Ui, jφ

n
i+1, jU

†
i, j + U †i−1, jφ

n
i−1, jUi−1, j+

Ui, jφ
n
i, j+1U

†
i, j + U †i, j−1φ

n
i, j−1Ui, j−1 + a2

xyρ
n
i, j).

(4.53)

It can be shown that the equations of motion preserve Gauss’ law throughout the evolution

and this has been checked explicitly for the numerical simulation. A summary of the updated

initial conditions, including the solution to Gauss’ law and the initial gauge fields is shown

in Fig. (4.8).

4.7 Evolution of Fields and Pressure

In the boost invariant formulation, Gauss’ law leads to Ei(τ = 0+) = 0. This is due to

the lack of longitudinal structure that leads to vanishing derivatives in η. Similarly, the

transverse chromo-magnetic fields vanish at initial time

Fiη = ∂iAη − ∂ηAi + ig[Ai, Aη] = 0 (4.54)

because Aη(τ = 0+) = 0 and the derivatives in η are vanishing. This means that the initial

chromo-electric and chromo-magnetic fields are purely longitudinal in 2+1D, the so called

“flux-tube” picture that constitutes the widely held picture of the early time dynamics of

the chromo-electric and chromo-magnetic fields.
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Figure 4.8: Visual summary of initial condition for gauge and electric fields in 3+1D. The

colored labels represents things that differ from the 2+1D formulation. Nuclei are represented

propagating with finite thickness but are still treated as δ-functions.

The picture of longitudinal flux tubes does not hold in 3+1D. Due to non-vanishing

longitudinal derivatives and the changes in the initial condition described in the previous

section, the fields are no longer purely longitudinal and the energy density is dominated by

the transverse fields. To see why, consider the form of the energy density in the different

fields,

εi=x,y =
1

2

1

τ 2

[
(Ei)2 + (Bi)2

]
(4.55)

εη =
1

2

[
(Eη)2 + (Bη)2

]
. (4.56)

The evolution of the energy density in the fields can be seen for both the 2+1D and

3+1D scenarios in Fig. (4.9). In 2+1D the transverse fields are identically zero at τ = 0+

and grow until their contribution to the energy density is comparable to the longitudinal

fields. In 3+1D the transverse fields provide the majority of the energy density initially. By

typical hydrodynamic initialization times of τ = 0.2−0.6 fm, the 3+1D fields all have similar

contributions to the energy, as is the case in 2+1D.
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Figure 4.9: Top: The time evolution of the energy density in the different field components

in 2+1D. Bottom: The same quantity as the left panel plotted for the 3+1D implementation.

Both results are computed using the same 3+1D software, but with the initial 2+1D and

3+1D setups, respectively. For both plots, the x-axis, τ , is in fm.
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The early time behavior of the fields in 3+1D causes the longitudinal and transverse

pressures to behave radically different than in the boost invariant case. First, it is useful

to express the diagonal components of the stress energy tensor in terms of the quantities

defined in eq. [4.55],

T ττ = εx + εy + εη = ε

T ii = − εi + εj + εη

∣∣∣∣i=x,y
j 6=i

τ 2T ηη = εx + εy − εη.

(4.57)

The pressure to energy ratios are given by,

PL
ε

=
τ 2T ηη

T ττ

P⊥
ε

=
T xx + T yy

2T ττ
.

(4.58)

In the plot shown here, PL, PT , and ε are all volume integrated quantities, meaning the

comparison is a global, not local, one. As can be seen in Fig. (4.10), the τ −→ 0+ limit is

quite different in 2+1D and 3+1D,

lim
τ→0+

PL
ε

=


εx+εy
εx+εy

= 1 in 3+1D

−εη
εη

= −1 in 2+1D
(4.59)

lim
τ→0+

P⊥
ε

=


εη

εx+εy
= 0 in 3+1D

εη
εη

= 1 in 2+1D.
(4.60)

The intersection of the pressures necessarily occurs at ε/3, the condition for pressure isotropy,

due to the tracelessness of T µν . The pressure does not remain isotropic, however, and

approaches the 2+1D asymptotic behavior for large τ , as the longitudinal pressure free-

streams towards zero in both cases. The 3+1D approaches the free-streaming condition of

P⊥/ε = 1
2

much more slowly than the 2+1D case.

The difference in pressure and field evolution affects the development of pre-equilibrium

flow, and also likely affects the sensitivity to the hydrodynamic switching time, something

that would be interesting to study in more detail. Figure (4.11) shows how the 3+1D

implementation affects the development of pre-equilibrium flow. As can be seen, in both

cases the transverse flow starts low and builds over time. The longtiudinal flow is actually
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Figure 4.11: RMS flow components as a function of τ for typical events in the 0 − 5%

centrality bin in 2+1D and 3+1D. Both the 2+1D and 3+1D simulations were run using the

same 3+1D software, in the appropriate modes.
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rather similar in both cases. The transverse flow, on the other hand, takes much longer to

build. This is likely due to the fact that the transverse pressure, relative to the energy, is

smaller in 3D, compared to 2D, over the entire time interval depicted in Fig. (4.10).

4.8 Recovering the 2D Limit: A Subtle Question

The existing paradigm in the field is the 2+1D glasma picture, which differs substantially

from the 3+1D picture just described. The natural question, given such differences in the

fields and pressure between the 2+1D and 3+1D scenarios, is whether the 3+1D case can

recover the 2+1D physics in the appropriate limit. This is a subtle question and it is not

clear whether or not the 3+1D case should reduce nicely to the 2+1D case at all.

There has been a long-held understanding of the negative longitudinal pressure in the

early time evolution of the glasma, often analogized by comparing the nuclei to two capacitor

plates pulling away from one another. It is clear, however, that the 3+1D initialization leads

to positive longitudinal pressure at early times after the collision. This corresponds to the

system being pushed apart rather than held together by the longitudinal pressure at early

times.

It is hard to provide physical motivation for these two scenarios simultaneously. In order

to recover the 2+1D fields, the energy density in the transverse fields would have to go to zero

as the energy goes to infinity. In our formulation, this will only happen if the η-derivatives

goes to zero faster than τ0 goes to zero. Taking the infinite momentum limit will eventually

“turn off” the JIMWLK evolution because the running coupling will go to zero. The αs

dependence of the JIMWLK evolution can be written as

Vx(Y + dY ) = exp (i
√
αs[...])Vx(Y ) exp (−i

√
αs[...]) (4.61)

Expanding the exponential to linear order, and substituting the logarithmic beam energy

dependence of αs

Vx(Y + dY ) ≈ (1 + i
√
αs + ...)[...]Vx(Y )(1− i

√
αs + ...)[...]

≈ (1 + i

√
1

ln s
+ ...)[...]Vx(Y )(1− i

√
1

ln s
+ ...)[...]

≈ Vx(Y ) +O(
1

ln s
)

(4.62)
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This means that the JIMWLK evolution, and thus the rapidity derivatives, ”turn off” as

lim
s→0

like 1/ ln (s). Simultaneously, the factor 1
τ0

in front of the terms involving the transverse

fields in the Hamiltonian will grow, because 1
τ0
∝
√
s. It is clear that this competition is won

by the 1
τ0

term, and so the boost invariant initial energy composition will never be recovered

in this setup.

This question, whether the derivatives in η or the 1
τ0

term goes to zero quicker, is never

explicitly considered in the 2D derivation. Rather, the 2D derivation implicitly assumes

that the derivatives goes to zero quicker. As a reminder, in the 2D case the equations of

motion are formulated as rapidity independent, and this rapidity independence is used as

justification for setting the initial transverse fields to zero, without explicitly considering

the 1
τ0

factors. This is the opposite of what we find in the rapidity dependence of our 3D

formulation using the physically motivated JIMWLK evolution. Thus, unless it is shown

that this implicit assumption of the boost invariant derivation is correct, there is no reason

to expect the 3D implementation to recover the 2D case in the infinite beam energy limit.

In this case, the purely longitudinal flux tube picture is simply an artifact of the assumption

made in the 2D derivation.
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Constructing T µν and Matching to Hydro

5.1 Matching to Hydrodynamics

After the IP-Glasma simulation is over, it is passed to relativistic viscous hydrodynamics.

In order to do so, the stress-energy tensors of the two theories, Classical Yang-Mills, and

relativistic hydrodynamics, are matched. The Classical Yang-Mills stress energy tensor is

given by [33]

T µν = Tr

(
−gµαgνβgγδFαγFβδ +

1

4
gµνgαγgβδFαβFγδ

)
(5.1)

This stress energy tensor is symmetric and gauge invariant and is often referred to as the

improved stress energy tensor. This is to distinguish it from what is usually referred to as the

canonical stress energy tensor, which can be found from the Langrangian using Noether’s

Theorem. The improved stress energy tensor can be obtained by adding an anti-symmetric

divergence term, sometimes called a superpotential term, to the canonical form, details on

which can be found here [82].

Once the stress-energy tensor is constructed, it can be diagonalized to obtain the hydro-

dynamic fields ε and uµ

T µνu
ν = εuµ. (5.2)

The timelike eigenvector is taken and the flow velocity is normalized to uµu
µ = 1. The stress

energy tensor for viscous hydrodynamics can be written

T µν = εuµuν − (P + Π)(gµν − uµuν) + πµν

= T µνideal − Π(gµν − uµuν) + πµν
(5.3)

where

T µνideal = (ε+ P )uµuν − Pgµν (5.4)

88
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and ε is the local energy density, uµ is the flow velocity, P is the pressure, Π is the bulk

pressure, and πµν is the viscous stress tensor. Thus, when matching to hydro, the following

quantities need to be initialized:

1. Local energy density - ε

2. Flow velocity - uµ

3. Pressure - P (given by EoS P (ε))

4. Shear stress tensor - πµν

5. Bulk pressure - Π

The equation of state (EoS), which relates the energy density and the pressure P (ε), closes

the system of equations, making it possible to reconstruct the hydrodynamic stress-energy

tensor (Eq. 5.3). In this work, the lattice QCD EoS from the HotQCD Collaboration is used

[17]. Historically, only the ideal part, Eq. (5.4), has been used when matching IP-Glasma

to hydrodynamic simulations, neglecting the viscous components.

More recently, there have been studies that include the full IP-Glasma T µν [83]. By

doing so, one conserves energy and momentum in switching from the CYM evolution to

hydrodynamics. The shear stress tensor can be found by taking the difference between the

ideal hydro stress-energy tensor and that of IP-Glasma (here called CYM),

πµν0 = T µνCYM − T
µν
ideal (5.5)

since Classical Yang-Mills is a conformal theory for which the bulk pressure vanishes (Π = 0).

There is, however, a discontinuity in the equation of state between CYM and the Lattice

EoS used in hydro. Due to the conformality of CYM, ε = 3P and Π = 0. On the other hand,

when the energy density ε is passed to the hydrodynamic simulation, the EoS produces a

pressure that is in general different from that on the CYM side. The discontinuity of the

pressure during the matching gives the initial bulk pressure,

PCYM − Phydro = ε/3− PLatticeEoS(ε) = Π0 (5.6)
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This arises in the numerical simulations because, in switching between IP-Glasma and hy-

drodynamics, the equation of state abruptly transitions from a purely gluonic system to a

locally equilibrated system of quarks and gluons comprising the Quark Gluon Plasma. The

mechanism that brings the purely gluonic system of strong classical fields to the point of hy-

drodynamic applicability is not well understand but important work has been done applying

QCD kinetic theory to explore this phase of the evolution [84].

5.2 Hydrodynamics

Hydrodynamics is a long wavelength effective theory that evolves average thermodynamic

quantities such as temperature and pressure. The validity of hydrodynamics relies on a

separation of microscopic and macroscopic scales. One way to gauge the validity of hydro-

dynamics is via the Knudsen number, defined as

K =
λmfp
Lhydro

(5.7)

where λmfp is the mean free path of the microscopic particles, and Lhydro is the macroscopic

length scale of the system, often taken to be the inverse of the scalar expansion rate of the

system

Lhydro =
1

Θ
=

1

∂µuµ
. (5.8)

Hydrodynamics is usually considered applicable when the Knudsen number is below or com-

parable to one. This condition and the general applicability of hydrodynamics has been

pushed in the context of Quark Gluon Plasma in recent years as experimental evidence for

collective behavior in small systems has been observed and hydrodynamic modelling has

found success in these systems [85] that had previously been thought to be outside the realm

of applicability of hydrodynamics.

The hydro attractor framework [86, 24] argues that hydrodynamics is applicable in far

from equilibrium systems because the so-called “non-hydrodynamic” modes decay exponen-

tially and the system relaxes to a “hydro attractor” solution. The realm of applicability of

hydrodynamics in heavy ion collision is contested, and remains an active area of research.

In order to be conservative, this thesis only considers hydrodynamic simulations for A-A
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collisions below 50% centrality which are widely accepted to be within the applicability of

hydrodynamics.

The hydrodynamic equations of motion are conservation equations for the energy and

momentum plus any additional conservation laws for conserved currents. In the language of

the stress-energy tensor,

∂µT
µν = 0 (5.9)

Ideal hydrodynamics, without any additional conserved currents, has 5 independent fields:

the energy density in the local rest frame ε, the thermodynamic pressure P , and the local

flow velocity uµ, where the condition uµuµ = 1 means there are only three independent flow

components. Explicitly,

uµ =
1√

1− v2

1

v

 = γ

1

v

 (5.10)

and thus,

uµuµ = uµgµνu
ν = γ2(1− v2) = 1. (5.11)

The four equations in (5.9) along with the equation of state, close the system of equations.

Here the choice of uµ is the Landau-Lifshitz frame, whereby the flow is defined by the flow

of energy. Another possible choice that is usually mentioned is the Eckart frame, in which

the flow velocity is defined by the charge current.

In MUSIC [30], the relativistic hydrodynamics code used in this thesis, the viscous terms,

πµν and Π, evolve according to their own relaxation-time type equations:

Π̇ =
1

τΠ

(−Π− ζΘ− δΠΠΠΘ + λΠππ
µνσµν) (5.12)

π̇〈µν〉 =
1

τπ
(−πµν + 2ησµν − δπππµνΘ + φ7π

〈µ
α π

ν〉α − τπππ〈µα σν〉α + λπΠΠσµν) (5.13)

In practice, we tend to only evolve the first three terms on the right hand side of Eq.

(5.12) and Eq. (5.13) because the other terms have negligible phenomenological effect. The

form of the coefficients are derived in the 14-moment approximation [87], and given by
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δΠΠ

τΠ

=
2

3
+O(z2 ln z),

λΠπ

τΠ

=
8

5

(
1

3
− c2

s

)
+O(z4)

λπΠ

τπ
=

6

5
+O(z2),

δππ =
4

3
τπ,

τππ =
10

7
τπ,

φ7 =
9

70P0

(5.14)

where z = m/T is the ratio of the mass of the particle to the temperature, cs is the speed

of sound, and P0 is the thermodynamic pressure. As the QGP evolves hydrodynamically,

it expands and cools until it reaches the temperature at which the QGP will turn back

into hadrons, or “hadronize.” The hydrodynamical simulation evolves until it reaches a 4-

dimensional constant-temperature surface, often called a “hyper-surface.” From this hyper-

surface, particles are sampled from a thermal distribution using the Cooper-Frye formalism

[88].

The exact temperature at which to switch from a hydrodynamic description to a hadron

gas description is informed by lattice QCD calculations, but it is usually taken to be a

parameter phenomenologically. For the purposes of this thesis, this temperature is taken to

be Tsw = 145 MeV. Phenonemologically, the quantity that tends to be the most sensitive to

the choice of Tsw is the proton multiplicity [89], and to a lesser degree, the proton 〈pT 〉, and

the choice of Tsw is chosen primarily in order to find agreement with these quantities. The

proton multiplicity is sensitive to the switching temperature because ones samples a thermal

distribution for the particles, and if the temperature is too low, it becomes very unlikely to

sample a heavy particle like a proton.

5.3 Cooper-Frye Freezeout

In the following, we will briefly describe the procedure of switching from hydrodynamics to

hadronic degrees of freedom, closely following the discussion outlined in [89].
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In order to transition from a hydrodynamic medium where one only has fluid cells, to a

hadronic gas where the degrees of freedoms are hadrons, one must match the fluid dynamics

T µνhydro with that of a hadron gas governed by kinetic theory, T µνhadron gas. Using the notation

of [90]

T µνkinetic =
∑
i

di

∫
d4p

(2π)3
δ(pµpµ −m2

i )2θ(p
0)pµpνf(p, x) = T µνhydro (5.15)

where the sum is over particle species, and di represents the particle degeneracy. The single

particle distribution function, f(p,x), represents the phase space density of on-shell particles,

f(p,x) ∝ dN

d3pd3x
. (5.16)

The transition from hydrodynamics to hadron gas should happen when the mean free

path is no longer sufficiently small compared to the macroscropic scale of the system, given

by the expansion rate in the last section. By insufficient, we mean that the interactions are

no longer strong enough to keep the system close to local thermal equilibrium, meaning that

hydrodynamics is no longer applicable.

It can be shown that the number of particles crossing a hypersurface is given by the

Cooper-Fry formula

dN

d3p
=

d

(2π)3

∫
Σ

pµd3Σµ

Ep

× [f0(x,p) + δfshear(x,p) + δfbulk(x,p)] (5.17)

where d is a degeneracy factor, dΣµ is the normal vector to the 4-dimensional constant

temperature hypersurface, δfshear is a shear viscous correction [91] to the single particle

distribution function, and δfbulk [92, 93] is a correction due to the bulk viscosity. Assuming

the momentum distribution is isotropic in the local rest frame, one can take the single particle

momentum distribution at a temperature T , and with local flow velocity uµ to be either a

Bose of Fermi distribution,

f0 =
1

exp (p · u/T )∓ 1
. (5.18)

In order to sample the number of particles in each cell from the Cooper-Frye formula 5.17,

a Poisson distribution with average value,

N̄ |1−cell =

 [n0(x) + δnbulk(x)]uµ∆Σµ if uµ∆Σµ ≥ 0

0 otherwise
(5.19)
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is used, where

n0(x) = d

∫
d3k

(2π)3
f0(x,k)

δnbulk(x) = d

∫
d3k

(2π)3
δfbulk(x,k).

(5.20)

This has been tested to adequately reproduce the Cooper-Frye particle number for hydro-

dynamic calculations with 135MeV ≤ Tsw ≤ 165MeV despite small error arising from the

non-Poisson nature of the quantum thermal distributions [89].

Once the number of particles in a cell is determined, the momentum of each particle is

sampled according to

dN

d3p
|1−cell =

 d
(2π)3

[f0 + δfshear + δfbulk]
pµ∆Σµ
Ep

if (f0 + δfshear + δfbulk) > 0, pµ∆Σµ > 0

0 otherwise

(5.21)

Again, this procedure has been tested [89] to adequately reproduce the particle spectra from

the Cooper-Frye procedure, particularly for particles with pT < 5 GeV.

5.4 UrQMD

Once the number of particles, and their momenta, are sampled, they are evolved using

UrQMD [6]. UrQMD propagates the hadrons along classical trajectories, allowing for stochas-

tic binary collisions between hadrons, color string formation, and resonance decays [94]. It

is, in effect, a Monte-Carlo evolution of the the phase space densities fi(x, p), where i labels

the particle species, via the relativistic Bolzmann equation,

pµ∂µ(xν , pν) = Ci (5.22)

where Ci is the collision term. UrQMD treats cross-sections geometrically, meaning that a

collision occurs if

d <
√
σtot/π (5.23)

where σtot(
√
s, species) is the total cross-section that depends on the hadron species and

center of mass energy
√
s, and d is their impact parameter. It is sometimes described as
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treating the hadrons as “billiard balls,” in terms of scattering. Once a collision is determined

to occur by this geometric criterion, the specific outcome of the collision is sampled according

to the probability of each outcome, and the angular distribution is determined by dσ
dΩ

. If

experimental data for a given cross-section is available, that value is used. Otherwise the

additive quark model and arguments using detailed balance are used. UrQMD only treats

2 −→ 2 scatterings and neglects long range two-body forces such as the Coulomb force.

UrQMD also includes resonance decays.

5.5 The 3D IP-Glasma Cookbook

Now that the physics of 3D IP-Glasma has been outlined, it is useful to give a practical

summary of how to construct the numerical simulation in broad strokes. Hopefully, this will

orient the reader to the sequence of computation that is necessary, and serve as a useful

structure to understand the details of the calculation.

1. Sample the position of nucleons from a Wood-Saxon,

ρ(r)dr =
r2dr

1 + exp ((r −R)/a)
(5.24)

Alternatively, use a pre-calculated configurations of nuclei that include nucleon-nucleon

correlations [95].

2. Sample impact parameter from

P (b)db =
2b

b2
max − b2

min

db (5.25)

and shift nucleus A by b/2 and nucleus B by −b/2 in the x-direction.

3. Construct nuclear thickness functions by summing contributions from individual nu-

cleons

T(nucleus)(x) =
A∑
i=1

1

2πBG

e((x−xi)
2/2BG) (5.26)

where xi is the location of the ith nucleon.
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4. Compute Q2
s at ±ymax via IP-Sat

π2

Nc

αs(µ
2(r2))xg(x, µ2(r2))T (b)r2

s = 1 (5.27)

where Q2
s = 1

r2s
.

5. Sample color charge density from

〈ρaA(B)(x⊥)ρbA(B)(y⊥)〉 = g2µ2
A(B)(x,x⊥)δabδ2(x⊥ − y⊥) (5.28)

where Qs = Cg2µ. The proportionality constant is taken to be C ≈ 0.5-0.75 in 2D but

C ≈ 1.3-1.4 in 3D.

6. Solve Poisson equation,

∇2
⊥A

a = −ρa (5.29)

The numerical solution is given in Section 8.1.

7. Construct Wilson Lines at ±Ymax

V (x,±Ymax) =

Ny∏
i=1

exp

(
−ig ρ

i
a(x)ta

∇2 −m2

)
(5.30)

8. Evolve Wilson lines at ±Ymax to ∓Ymax using JIMWLK equations

VA,B(x,Y + dY ) = exp
(
−i
√
αsdY

π

∫
z

Kx−z · VzξzV †z
)

× VA,B(x, Y )× exp
(
i

√
αsdY

π

∫
z

Kx−z · ξz
) (5.31)

9. Construct pure gauge fields for each nucleus

AA(B)
µ =

−i
g
V A(B)∂µV

A(B)† (5.32)

10. Solve initial gauge field problem

Aµ = A(A)
µ + A(B)

µ

Eη = ig[A
(A)
i , A

(B)
i ]

(5.33)
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11. Solve Gauss’ Law problem using ansatz

Ei = [Di, φ]

[Di, [D
i, φ]] = ρ

(5.34)

12. Evolve using the sourceless CYM equations of motion, written for simplicity as,

[Dµ, F
µν ] = 0 (5.35)

13. Construct T µν

T µν = −gµαgνβgγδFαγFβδ +
1

4
gµνgαγgβδFαβFγδ (5.36)

14. Diagonalize T µν

T µνu
ν = εuµ. (5.37)

15. Construct ideal and viscous components of hydrodynamics stress tensor to initialize

the hydrodynamic evolution.
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6

Description of Observables and Results

6.1 Introduction

The boost invariant IP-Glasma was able to describe a wide range of transverse observables

in heavy ion collisions when used to initialize relativistic hydrodynamics simulations. Be-

fore moving onto longitudinal observables, it is necessary to explore how well the 3+1D

formulation is able to describe the transverse dynamics of heavy ion collisions.

To be clear, there are several parameters that can be tuned, including the hydrodynamics

transport coefficients, to achieve agreement with data, and the values used here do not cor-

respond precisely to the values typically used for the boost invariant formulation. The goal

is to show that the 3+1D formulation is able to describe the transverse physics of heavy ion

collisions at mid-rapidity while using parameter values that are consistent with our broader

physical understanding of these parameters, but not to make a one-to-one comparison be-

tween the 2+1D and 3+1D results and parameters.

The current work did not control for all differences between the 2D and 3D simulations to

isolate the features of making the model 3+1D but rather sought to implement the physics

in the best possible way in this work, making several implementation improvements over the

2+1D version with which we will make a comparison [45].

For example, the momentum fraction x that is used to determine the saturation scale

was taken to be constant for a given beam energy in [45]. It this work, however, x and Qs

depend on each other and are solved iteratively, according to Eq. (2.25) x = Qs/(
√
s/2).

As argued elsewhere, this has the effect of flattening the multiplicity distribution because a

small x value will typically lead to a large Qs which will result in a larger x, etc.

99
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Additionally, instead of sampling a Wood-Saxon for the nucleon position, as done in

[45], the nucleon positions are taken from pre-calculated Pb nuclei that include nucleon-

nucleon correlations, taken from [95]. To mention one final parameter difference, the infrared

regulator used in the Poisson equation is chosen as mreg = 0.4 GeV to match that used in

the JIMWLK kernel, but differs from what was used in [45], where mreg = 0.2 GeV was used.

Finally, in [45], only the ideal components of T µν were used to initialize the hydrodynamic

evolution, whereas the whole T µν including the viscous components were used in this thesis.

With these differences in mind, it is nonetheless useful to briefly compare the initial state in

3+1D to the boost invariant implementation [45] for reference.

6.2 Comparison of 2D and 3D Initial States

6.2.1 Centrality Selection

In order to compare with experimental data, which is often categorized into centrality classes,

it is important to carry out a centrality selection of our own. Centrality is generally under-

stood to correspond to impact parameter: small impact parameter correponds to small

centralities (”central collisions”) and large centralities correspond to large impact parameter

(”peripheral collisions”). However, experimentally the impact parameter is unknown, and

centrality is determined by the multiplicity or energy in an event. Our centrality selections

adheres as closely to the experimental procedure as possible, in which we bin events on

charged hadron multiplicity dNch/dη. In doing so, we take two parameters: 1) the energy

that constitutes a collision and 2) the overall energy normalization, fit to the 0-5% centrality

bin. The result is the charge hadron multiplicity that agrees with the experimental data, as

shown in Fig. (6.1).



6.2 Comparison of 2D and 3D Initial States 101

0 10 20 30 40 50
Centrality (%)

0
250
500
750

1000
1250
1500
1750
2000

dN
ch

/d

3DIPG+MUSIC+UrQMD 2.76 TeV
ALICE Pb+Pb @ 2.76 TeV

Figure 6.1: The charged hadron multiplicity as a function of centrality for
√
s = 2.76 TeV.

This figure validates the centrality selection process discussion in this section. ALICE data

is from [96].

6.2.2 Comparison of 2D and 3D Initial State Quantities

Although the initial state is not observable experimentally, the hydrodynamic evolution is

sensitive to it. Thus, by quantitatively comparing initial state models and understanding

their effects on the hydrodynamic evolution and final state particle spectra, it is possible to

deduce features of the initial state of heavy ion collisions.

The initial state geometry, as characterized by the position space anisotropies (εn’s),

εn(η) =

∫
d2xrnε(x⊥, η)einφ∫
d2xrnε(x⊥, η)

. (6.1)

where ε(x⊥, η) is the local energy density, is converted to momentum space anisotropies (vn’s)

by the hydrodynamic evolution. Figure 6.2, panel (a) shows εn for n = 2, 3, 4 for both 2+1D

and 3+1D IP-Glasma as a function of centrality. The εn’s do not differ substantially in 3+1D

from those in 2+1D, but those of 3+1D are systematically below those in 2+1D for the same
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Figure 6.2: Comparison of various initial state quantities between the 3D IP-Glasma events

and 2D IP-Glasma events from [45]. Note that the 3D lines are taken at τ = 0.6 fm, whereas

the 2D lines are taken at τ = 0.4 fm, their respective matching times to hydro.
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Figure 6.3: The event averaged quantity 〈1−Re(Tr(V ))/Nc〉events, which can be thought of

as a proxy for the gluon density, vs. one of the transverse coordinates, and averaged over

many events. It is plotted at three different points in the JIMWLK rapidity evolution. The

four different lines for each color simply correspond to the target, projectile, and for the

transverse coordinates x, and y. The JIMWLK evolution clearly increases the density of the

gluon fields.The bottom panel is the same quantity, except re-scaled to have roughly the

same peak height, in order to be able to compare the shapes of the curves. The JIMWLK

evolution does not change the average shape or size of the nuclei, only their density.
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centrality classes. In panel (d) of this figure, the number of binary collisions Nbin is plotted

as a function of centrality, and the 2+1D and 3+1D cases differ only mildly, indicating that

the centrality selection is similar in the two cases, at least in terms of geometric overlap as

indicated by Nbin.

Outside of the differences noted in the introduction to this chapter, there are two plausible

possibilities for why these quantities could differ due to the additional dimension in 3+1D.

Either the JIMWLK evolution or the addition of the initial transverse chromo-electric and

chromo-electric fields could alter the shape of the nuclei sufficiently to change the geometry

of the overlap regions. In Fig. (6.3) the average density of the pre-collision nuclei are plotted

at three different points in the JIMWLK evolution. It is clear from this figure that the

JIMWLK evolution increases the density of the nuclei and leads to fluctuations in shape

on an event-by-event basis, but does not alter the shape of the nucleus on average, as a

function of rapidity. Thus the JIMWLK evolution itself should not alter the eccentricities

computed at mid-rapidity much. Regarding the other possibility mentioned, we computed

the eccentricities at mid-rapidity using one the initial longitudinal fields, to mimic the 2D

case, and compared with the result computed using the full 3D energy density, and there was

negligible difference. Thus neither the JIMWLK evolution nor the initial transverse fields

substantially alter the geometry of the collisions at mid-rapidity relative to the 2D case.

The slight differences in εn between the 2+1D and 3+1D events are likely due to centrality

selection, differences in parameters, and slightly different implementations.

In panels (b) and (c), the energy density weighted root mean square values of the pre-

equilibrium flow components are shown. They are defined as

uµRMS =

√
〈
∫
d2x⊥ε(x⊥)(uµ)2∫
d2x⊥ε(x⊥)

〉 (6.2)

where γ = uτ for panel (b). The pre-equilibrium flow can play an important role in the

final state momentum anisotropy, particularly in small systems. This can affect the values of

transport coefficients, such as the shear and bulk viscosities, needed to obtain agreement with

experimental data [83]. The 3+1D IP-Glasma generates significantly less pre-equilibrium

flow due to the difference in pressure evolution shown in Fig. (4.10). In 3+1D, the transverse

pressure is small at the initial time and takes much longer to reach ∼ 0.5ε, whereas in the
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2+1D the initial transverse pressure is large (≥ 0.5ε) compared to the energy and remains

large throughout the evolution. This leads to substantially more transverse flow in the

IP-Glasma phase in 2+1D.

The slightly smaller values for εn in 3+1D and the significantly smaller pre-equilibrium

flow require a smaller value of η/s to obtain values of v2 that agree with experimental data.

With the EOS used in this thesis, the 2D IP-Glasma implemented in [45] requires η/s ≈ 0.12

for Pb-Pb at 2.76 TeV, compared to η/s ≈ 0.08 used for the 3+1D events in this thesis.

6.3 Mid-Rapidity Hadronic Observables

The centrality selection procedure leads to good agreement with the charged hadron mul-

tiplicity at mid-rapidity as shown if Fig. (6.1). This is a crucial step in validating the

centrality selection, and ensuring that the comparison between experimental and theoretical

curves as a function of centrality is a fair one.

The charged hadron pT -integrated vn flow harmonics for n = 2, 3, 4 are shown in Fig.

(6.4). As a reminder, the flow harmonics are the Fourier coefficients of the decomposition of

the particle spectra in the the azimuthal angle,

dN

pTdpTdydφ
=

dN

2πpTdpTdy

(
1 +

∑
n=1

2vn(y, pT ) cos [n(φ−Ψn)]

)
. (6.3)

where Ψn is the reaction plane angle. As suggested by this notation, the flow coefficients

vn(y, pT ) are typically rapidity (y) and transverse momentum (pT ) dependent, and are thus

referred to as differential flow harmonics. The integrated flow harmonics at a given rapidity

are given by

vn =

∫∞
0
vn(pT ) dN

dpT
dpT∫∞

0
dN
dpT

dpT
. (6.4)
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Figure 6.4: The anisotropic flow coefficients v2, v3, and v4 as a function of centrality, com-

pared to ALICE data [41].

There are different methods for computing the vn flow coefficients. In this thesis, we

compute and plot vn{2}, following the analysis described in [45] for flow analysis for a finite

number of particles. In particular, for each hydrodynamic simulation, Noversampled UrQMD

events are run in order to be able to reduce the fluctuations arising from sampling a finite

number of particles from the underlying hydrodynamic event. The flow vector is computed

via,

Qn =
Noversampled∑

k=1

Nparticles∑
j=1

einφj (6.5)

where j runs over all particles in an individual UrQMD event within the specified kinematic

cuts, typically taken to match the experimental cuts. The index k runs over all of the

UrQMD events that correspond to the same underlying hydrodynamic event, and runs to

Noversampled = 100 in this work. From the flow vector, the pT -differential flow coefficient is
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determined with the scalar product method,

vn{SP}(pT ) =
〈 Re[Qn(pT ) · (Qref

n )∗]〉hydro ev

〈N(pT )N ref〉hydro evvn{2}
. (6.6)

The two particle cumulant is defined as

(vn{2})2 =
〈 Re[Qn · (Qn)∗]〉hydro ev

〈N2〉hydro ev

. (6.7)

When matching to experimental data for vn{2}(η) for which different collaborations use

different kinematic cuts for their reference flow vectors,

(vn{2}(η))2 =
〈 Re[Qn(η) · (Qn(ηref))

∗]〉hydro ev

〈N(η)N(ηref)〉hydro ev

. (6.8)

The differential flow harmonics for n = 2, 3, 4, 5 are shown in Fig. (6.5) for the 0-5% and

30-40% centralities, along with the ratios of theoretical data to experimental data. Similar

plots are shown for the particle identified spectra in Fig. (6.6). Taken together, these

two figures show the key components that factor into the calculation of the integrated flow

harmonics, and can be used to understand the varying agreement between experimental data

and theoretical curves in terms of the applied kinematic cuts.

The higher harmonics v3{2} and v4{2} agree with the data quite well, while the v2{2}

harmonic deviates from experimental data for larger centralities. The level of agreement,

however, depends on the pT range included in the integration, as will be seen in the next

section. The comparison in Fig. (6.4) is done for 0.2 < pT < 3.0 GeV to match that of the

ALICE data.

In Fig. (6.7), the mean transverse momentum at mid-rapidity for protons, kaons, and

pions is plotted and good agreement is found. This quantity, particularly for heavier particles

such as protons, is sensitive to the bulk viscosity, freeze-out temperature, and hadronic

afterburner. In fact, the phenomenological motivation for the inclusion of bulk viscosity is

primarily the 〈pT 〉 of protons. Hydrodynamic models without bulk viscosity describe 〈pT 〉

of lighter particles, such as pions and kaons, relatively well but the heavier proton is almost

always over predicted. This is because the 〈pT 〉 of protons is more sensitive to the radial

flow velocity of the QGP, which is dampened by the bulk viscosity. To see why, consider a

fluid cell which describes the flow of a small amount of QGP, with a given velocity. When
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Figure 6.5: Differential flow harmonics vn{2}(pT ) for two centralities, compared to ALICE

data. Left upper panel is for 0-5% and right upper panel is 30-40% centrality. Lower panels

show the ratio of theoretical data to experimental data from the upper panels.

pT (GeV)
10 3

10 2

10 1

100

101

102

103

dN
/(2

dy
p T

dp
T) 

(G
eV

2 )

0-5% Pb+Pb
@ 2.76 A TeV (a)

ALICE +

ALICE K × 0.5
ALICE p × 0.2

pT (GeV)

30-40% Pb+Pb

(b)

0.0 0.5 1.0 1.5 2.0 2.5
pT (GeV)

0.0
0.5
1.0
1.5

th
./e

xp
.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
pT (GeV)

Figure 6.6: Identified particle spectrum for two centralities, compared to ALICE data [97].

The lower panels show the ratio of the theoretical data to the experimental calculation for

each curve.
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Figure 6.7: Identified particle 〈pT 〉 for protons, kaons, and pions, compared to ALICE data,

[97].

this particular cell cools and turns back into hadrons, the collective flow is shared by all the

particles within the cell, and thus particles with larger mass, given the same flow velocity,

end up with larger momentum. The inclusion of bulk viscosity dampens the radial expansion

and improves agreement with 〈pT 〉 data for protons.

Fig. (6.6) shows the spectrum for these same three hadronic species in the 0-5% and

30-40% centrality classes. The 0-5% centrality class agrees quite well, while the 30-40% bin

deviates from the experimental data for pT > 1.5 GeV, where mini-jets, physics that is not

included in this calculation, are expected to become more important.
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6.4 Longitudinal Observables

The 2+1D formulation of IP-Glasma had no longitudinal structure, meaning that it was

only able to explore transverse physics. A prime motivation for the 3+1D formulation is to

explore the longitudinal dynamics of heavy ion collisions and to understand to what degree

the rapidity fluctuations introduced by the JIMWLK evolution are able to describe the

rapidity fluctuations that are measured experimentally in the final state particle spectra.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

-6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6

50 events in 0-5% bin at 2.76 TeV

d
E

/(
τ
d

η
 )

 [
G

e
V

/f
m

]

η

3D-IPGlasma
MUSIC Initialization

Figure 6.8: The rapidity profile of the energy density at the end of the IP-Glasma evolution

for 50 events, and the corresponding profiles used to initialize MUSIC. The horizontal axis

is spacetime rapidity.

Because the JIMWLK evolution is not able to begin at arbitrarily high rapidities, the

initial profiles generated by the 3+1D IP-Glasma are only in the range of −4 < η < 4.

When matching to the hydrodynamic evolution outside of these values, it is important nu-

merically to take the energy density gradually to zero in order to avoid sharp gradients in

the η-direction or boundary effects if the medium extends all the way to the boundary. Ad-
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ditionally, in order to find agreement with the longitudinal structure of hadron multiplicity

measurements, we modify the rapidity profile for |η| > 2.5. We implement the following

profile

T µνhydro(x⊥, η, τ0) = T µνIP−Glasma(x⊥, η, τ0) exp

[
−θ (|η| − 2.5|) (|η| − 2.5)2

2

]
(6.9)

which leaves the stress energy unchanged in the range |η| < 2.5 and takes it gradually to

zero as a half gaussian outside of this region. The result can be seen in Fig. (6.8). From this

figure, one can see that the unmodified 3D IP-Glasma profile would both lead to numerical

problems, and that it would not adequately describe the “shoulders” of the rapidity profile

shown in Fig. (6.9).
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Figure 6.9: Charged hadron multiplicity vs pseudorapidity, as compared to ALICE data [98].

In Figs. (6.10) and (6.11), the rapidity dependence of the flow harmonics vn(η) are

plotted. The kinematic cuts are made to match those of the experimental data. For CMS, the

reference flow is computed using only particles in the range |η| < 2.4, and the pT integration
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Figure 6.10: The rapidity dependence of v2(η) as compared to CMS data. Both data and

calculation integrate over 0.3 < pT < 3.0 GeV and use reference particles in the range

|η| < 2.4. Data from [26]

is for 0.3 < pT < 3.0 GeV . ALICE, on the other hand, uses reference flow computed at

mid-rapidity and integrates all particles, pT > 0. For the theoretical calculation, the range

is limited to 0 < pT < 3.0 GeV because hydrodynamic applicability becomes questionable

above 3.0 GeV. Comparing the two figures, one sees a must stronger peak in the vn(η) curve

for ALICE. This is due to the reference flow being from mid-rapidity. One can think of

vn{2} as correlating two different flow vectors, and the maximum correlation comes from self-

correlation, i.e. mid-rapidity with mid-rapidity. This peak does not show up as prominently

for the CMS data because the reference flow is taken over a much larger rapidity range. Of

course, in the limit of a boost invariant system, this distinction would disappear, because

all rapidity slices would produce the same flow vectors. Thus, the superior agreement of the

theoretical result with the rapidity dependence of the CMS data is an indication that the

model is likely more correlated in rapidity than the experimental results.

It is interesting to explore the comparison of rapidity correlation in the initial state

anisotropies to the final state flow correlations after hydrodynamic evolution. The final
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Figure 6.11: The rapidity dependence of vn(η) (n = 2, 3, 4) as compared to ALICE data.

Both data and calculation integrate over pT > 0 GeV and use reference particles in the range

|η| < 0.5. Data from [99].

state quantity is given in terms of flow coefficients,

rn(ηa, ηb) =
〈vn(−ηa)vn(ηb) cos(n(φn(−ηa)− φ(ηb))〉
〈vn(ηa)vn(ηb) cos(n(φn(ηa)− φ(ηb))〉

(6.10)

where η is the pseudo-rapidity. This should not be confused with that using initial state

energy anisotropies,

r̃n(ηas , η
b
s) =

〈εn(−ηas )εn(ηbs) cos(n(ψn(−ηas )− ψ(ηbs))〉
〈εn(ηas )εn(ηbs) cos(n(ψn(ηas )− ψ(ηbs))〉

(6.11)

where ηs is the spacetime rapidity and εn is the nth order initial state energy anisotropy. In

both cases ηb is a reference, taken to be ηb = 3.5. When computing εn, it is typical to define r

such that r = 0 at the center of energy density in the transverse plane. In order to compute

r̃n(ηa, ηb), we define r as the transverse distance from the center of energy of at mid-rapidity

(η = 0). This defines an axis parallel to the beam axis and a common reference from which

to measure the spatial energy anisotropies εn(η) for all η.

The flow factorization breaking ratios rn quantify the ratio of the correlation between a

reference ηb and a rapidity slice −ηa on the opposite side of mid-rapidity, and one on the

same side, ηa. It is clear that rn depends on the magnitude as well as the angular correlation
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Figure 6.12: The top row shows the magnitude of the deviation of |εn| from the value at

mid-rapidity, in ratio to the value at mid-rapidity. The bottom row quantifies that angular

deviation from mid-rapidity.

of the εn vectors. To give an idea on how the magnitude of |εn| as well as the angle Φn vary

over a rapidity range, they are both compared to the mid-rapidity value in Fig. (6.12). For

central collisions, ε2(ηs) and ε3(ηs) are both fluctuation driven, and the variation in these

quantities in rapidity, both magnitude and angle, are comparable. As one moves to more

peripheral collisions, ε3(ηs) continues to be fluctuation driven, and the variation in ε3(ηs) does

not change much over centralities. At these centralities ε2 becomes driven primarily by the

impact parameter, and the fluctuations become less important. This is evident particularly

for the angular variation shown in Fig. (6.12), where Φ2(ηs) and ε2(ηs) deviate less and less

from the value at mid-rapidity as the impact parameter becomes the defining feature of the

geometry.

In Fig. (6.13), it is apparent that the decorrelation, meaning deviation below unity, in

the initial state as quantified by r̃n(ηas , η
b
s), is smaller than that of the final state observable

rn(ηa.ηb). For one thing, r̃n is computed using εn which only takes into account the energy

density of the initial state, but not the flow. In fact, it ignores all components of T µν except

for the energy density, while hydrodynamics evolves the full stress-energy tensor. This could

certainly account for some of the difference. Furthermore, the modification of the rapidity
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Figure 6.13: Flow factorization breaking ratios, as a function of rapidity. Data taken from

[27]

profile according to Eq. (6.9) to agree with the multiplicity distribution will lead to some

additional decorrelation due the reduction in the energy density, and thus the lifetime of

the QGP for rapidities outside of |η| < 2.5. The reduction in lifetime will give less time

for the hydrodynamic evolution to build up the momentum anisotropy and thus reduce vn.

Additionally, the sampling of particles and the hadron gas evolution can decorrelate things

further. Finally, as noted, the initial state quantity, r̃n(ηas , η
b
s), is defined as a function of

space-time rapidity, whereas rn(ηa, ηb) is defined as a function of pseudo-rapidity, making

their comparison a bit more subtle than it may seem at first. Ultimately, the emphasis should

be placed on the the final state rn, which allows for direct comparison to experimental data.

In comparing to data, the decorrelation in the model calculation is clearly less than that

measured in experiment. There are, however, other potential sources of decorrelation, that

have been neglected here. Thermal fluctuations in the hydrodynamic evolution, and mini-jets

are other potential sources of decorrelation that are not included in this or virtually any other

similar calculations. Hydrodynamic fluctuations are known to exist in viscous hydrodynam-

ics due to the fluctuation-dissipation theorem, and could in principle lead to decorrelation

in the rapidity direction, although whether these fluctuations could substantially affect an
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observable such as rn(ηa, ηb) would seem to depend on the length scales affected by the

fluctuations. Mini-jets, or hard scatterings with energy greater than the temperature scale

but less than say, 10 GeV, are also known to be present in heavy ion collisions and highly

abundant. They can contribute significantly to the overall energy of the system, and do

not provide long range flow correlations like those arising from hydrodynamic flow. For this

reason, it is reasonable to believe that mini-jets, if included concurrently with hydrodynamic

evolution could provide significant decorrelation between rapidity slices. Until the decor-

relation introduced by these other sources, that are known to exist in heavy ion collisions,

are studied in state-of-the-art simulations, it is hard to draw clear conclusions on whether

the fluctuations arising from the JIMWLK evolution provide sufficient decorrelation to agree

with data, or if there is additional unknown physics that needs to be included.

It is worth noting however that the implementation of this model, such as the parameters

implemented in the running coupling constant, or the prescription for how it runs, could be

fine tuned to improve agreement with data for rn(ηa, ηb). Fine-tuning of parameters to find

agreement with this particular observable has not been done, and is considered future work.
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Conclusion

Asymptotic freedom means that it is not possible to study free quarks and gluons, at least

under normal laboratory conditions. Heavy ion collisions provide the ability to create a

deconfined state of quarks and gluons, known as Quark Gluon Plasma, in the laboratory

at extreme temperatures and pressures. The fundamental theory that could describe such

dynamics is high temperature many-body QCD. While high temperature QCD, and its nu-

merical counterpart Lattice QCD, are incredibly important and active fields, it is not feasible

to adequately describe the full complexity of heavy ion collisions from these perspectives.

Instead, a number of effective theories are employed, typically using Monte-Carlo techniques,

to simulate the physics of heavy ion collisions. It is then possible to compare the particle

spectra produced using these simulations with those measured at experimental detectors, in

order to deduce properties of heavy ion collisions including the conditions for and evolution

of Quark Gluon Plasma.

In only ∼ 10 fm/c these collisions evolve through at least three distinct phases, each of

which is typically modelled by its own effective theory: an initial state that is governed by

strong classical gluon fields, a relativistic viscous hydrodynamic phase, and a hadronic gas

phase. This is sometimes referred to as the “standard model of heavy ion collisions,” and

describes the phenomenological approach taken in this thesis.

At the energies explored in most heavy ion collision experiments, particularly those at

the Large Hadron Collider, there is an approximate symmetry in the direction that coincides

with beam axis, known as boost invariance, that can be used to simplify the dynamics of

heavy ion collisions to two spatial and one temporal dimension. While the assumption of

boost invariance has long been useful in simplifying the dynamics of heavy ion collisions to

117
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2+1D, it limits the study of heavy ion collisions to their transverse dynamics. By extending

the phenomenologically successful IP-Glasma from its original boost-invariant formulation

to 3+1D dimensions, it is possible to study the full 3+1D dynamics of heavy ion collisions.

In particular, the JIMWLK renormalization group equations allow for a rapidity depen-

dent source term in the CGC Lagrangian that leads to longitudinal fluctuations that break

boost invariance. Experimental data clearly indicates that heavy ion collisions are not strictly

boost invariant and that longitudinal fluctuations can be quantified in observables such as

the rn(ηa, ηb) flow factorization breaking ratios.

In order to evolve non-boost invariant gauge fields on a 3+1D lattice, it is necessary to

adapt the CGC initial condition. Firstly, the initial gauge fields are made to be pure gauge

outside of the source terms in all three spatial dimensions in order to avoid energy deposition

outside of the interaction region between the nuclei. The gauge fields are still sourced by

δ-function color sources that remain on the light-cone. Additionally, Gauss’ law is no longer

trivially satisfied and must be solved iteratively, the procedure and ansatz for which are

novel to this thesis and outlined in section 4.6.

These alterations dramatically modify the evolution of the chromo-magnetic and chromo-

electric fields as well as the pressure. Whereas in 2+1D, the initial chromo-electric and

chromo-magnetic fields are purely longitudinal, in 3+1D the initial energy density is actually

dominated by the transverse fields. As argued in section 4.7, this feature of the 3+1D

calculation challenge the 2+1D understanding of purely longitudinal initial fields as flux

tubes that lead to negative longitudinal pressure. In fact, the formulation presented in this

thesis seems to suggest that the 2+1D picture will not be recovered in the infinite moment

limit.

Evolving the system in 3+1D dimensions means that it can be matched to 3+1D hydro-

dynamics, and is thus phenomenologically applicable. Fully 3+1D simulations using 3+1D

IP-Glasma+MUSIC+UrQMD, were run for the first time and the phenomenological conse-

quences of the rapidity fluctuations from the initial state JIMWLK evolution were studied

on hadronic observables.

The phenomenological results of the 3+1D IP-Glasma are able to describe mid-rapidity
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observables, although with slightly different parameters than those typically used in the

boost invariant case. Longitudinal observables such as multiplicity and elliptic flow are well

described, although they show only a slight rapidity dependence over a large range of rapidi-

ties. Decorrelation of different rapidities are quantified by the rn(ηa, ηb) flow factorization

breaking ratio. The model results shown clearly break boost invariance and show the correct

trends. The magnitude of the decorrelation is less that of the experimental data, leaving

room for other sources of decorrelation such as mini-jets, thermal fluctuations, etc, or possi-

bly for slight modifications to the model, such as the parameters and implementation of the

running coupling.

Heavy ion collisions can only be understood completely through their full 3+1D dynam-

ics. The 3+1D IP-Glasma initial condition, coupled to 3+1D hydrodynamic and hadron

gas evolutions, gives a 3+1D dimensional understanding of the formation and evolution of

Quark Gluon Plasma (QGP) in heavy ion collisions. This thesis moves closer to fully 3+1D

simulations of the heavy ion collisions and, with it, a more complete understanding.
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Numerical Details

8.1 Poisson Equation

In this section, we will outline the numerical details of how the Poisson equation is solved, as

done in chapter 19 of Numerical Recipes for C [100]. This will provide a good starting place

from which to discuss the numerical solution to the JIMWLK evolution equation discussed

in section 4.3. The Poisson equation is

∇2A = ρ (8.1)

This can be solved more easily in momentum space. Fourier transforming A,

A(x) =

∫
d2k

(2π)2
A(k)eik·x (8.2)

and applying the derivatives gives,

∇2A(x) =

∫
d2k

(2π)2
A(k)∇2eik·x =

∫
d2x

(2π)2
(−k2)A(k)eik·x. (8.3)

Comparing this to the Fourier transform of ρ,

ρ(x) =

∫
d2k

(2π)2
ρ(k)eik·x (8.4)

it is plain to see that −k2A(x) = ρ(x). In this section, we will outline a discretized solution

to this equation, first by discretizing the Poisson equation,

∇2A = (
∂2

∂x2
+

∂2

∂y2
)A = ρ

=
1

∆x
2 (Aj+1,l − Aj,l − Aj,l + Aj−1,l + Aj,l+1 − Aj,l − Aj,l + Aj,l−1) = ρj,l

=
1

∆x
2 (Aj+1,l − 4Aj,l + Aj−1,l + Aj,l+1 − Aj,l−1) = ρj,l

(8.5)

120
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where ∆x is the transverse grid size, or discretization resolution. Fourier transforming the

field and the charge density,

Aj,l =
1

JL

J−1∑
m=0

L−1∑
n=0

Ãm,ne
−2πijm/Je−2πiln/L (8.6)

ρj,l =
1

JL

J−1∑
m=0

L−1∑
n=0

ρ̃m,ne
−2πijm/Je−2πiln/L (8.7)

Plugging equations 8.6 and 8.7 into 8.5, one gets,

1

∆x
2

( 1

JL

J−1∑
m=0

L−1∑
n=0

Ãm,ne
−2πi(j+1)m/Je−2πiln/L − 4

1

JL

J−1∑
m=0

L−1∑
n=0

Ãm,ne
−2πijm/Je−2πiln/L

+
1

JL

J−1∑
m=0

L−1∑
n=0

Ãm,ne
−2πi(j−1)m/Je−2πiln/L +

1

JL

J−1∑
m=0

L−1∑
n=0

Ãm,ne
−2πijm/Je−2πi(l+1)n/L

+
1

JL

J−1∑
m=0

L−1∑
n=0

Ãm,ne
−2πijm/Je−2πi(l−1)n/L

)
=

1

JL

J−1∑
m=0

L−1∑
n=0

ρ̃m,ne
−2πijm/Je−2πiln/L.

(8.8)

It is possible to pull out the common terms,

1

∆x
2

(
1

JL

J−1∑
m=0

L−1∑
n=0

Ãm,ne
−2πijm/Je−2πiln/L

(
e−2πim/J − 4 + e2πim/J + e−2πin/L + e+2πin/L

))

=
1

JL

J−1∑
m=0

L−1∑
n=0

ρ̃m,ne
−2πijm/Je−2πiln/L.

(8.9)

Equating coefficients on both sides of equation 8.9,

1

∆x
2 Ãm,n(e−2πim/J − 4 + e2πim/J + e−2πin/L + e+2πin/L) = ρ̃m,n (8.10)

This can be written in terms of cosine functions,

Ãm,n(2 cos
2πm

J
+ 2 cos

2πn

L
− 4) = ρ̃m,n∆x

2

Ãm,n =
ρ̃m,n∆x

2

2(cos 2πm
J

+ cos 2πn
L
− 2)

(8.11)

Thus the Poisson equation can be solved by Fourier transforming the charge density ρ(x)

into momentum space, constructing the Fourier modes that appear in the denominator of
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Eq. (8.12), before finally computing Ãm,n and inverse Fourier transforming back into position

space. In our particular case, an infrared regulator, mreg is used in the solution to the Poisson

equation. The regulator models color confinement and cuts off Coulomb tails in the gauge

fields. Including this factor, makes the solution,

Ãm,n =
ρ̃m,n∆x

2

−m2
reg + 2(cos 2πm

J
+ cos 2πn

L
− 2)

(8.12)

Eq. (8.12) works for periodic boundary conditions. If one wants to impose boundary condi-

tions such that the gauge fields vanishes at the boundary, one can carry out the same analysis

as done above for the complex Fourier transform using the sine transform. The result is,

Ãm,n(2 cos
2πm

J
+ 2 cos

2πn

L
− 4) = ρm,n∆x

2

Ãm,n =
ρ̃m,n∆x

2

2(cos πm
J

+ cos πn
L
− 2)

(8.13)

In this thesis, we employ the periodic boundary condition (8.12) for the solution to the

JIMWLK equation and (8.13) for the solution to the Poisson equation in solving for the

initial gauge fields.

8.2 JIMWLK in Momentum Space

This previous discussion, based on the numerical solution to the Poisson equation in [100] is

useful because it lays the foundation for how we solve the JIMWLK equation numerically.

For the JIMWLK equation, what we actually want to compute is

∇2β = 2π∇ · ξ (8.14)

because, in momentum space, this gives the Fourier transform of the JIMWLK kernel dotted

with the noise term ξ,

− k2β = 2iπk · ξ (8.15)

so

β =
−2πik · ξ

k2
= −2πi

kxξx + kyξy
k2

(8.16)

Following a similar procedure as the previous section, we find a result similar to Eq. (8.9),

except we need to discretize the divergence of the source term on the right hand side,
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1

∆x
2

(
1

JL

J−1∑
m=0

L−1∑
n=0

β̃m,ne
−2πijm/Je−2πiln/L

(
e−2πim/J − 4 + e2πim/J + e−2πin/L + e+2πin/L

))

= 2π
1

2∆x

1

JL

J−1∑
m=0

L−1∑
n=0

ξ̃xm,ne
−2πijm/Je−2πiln/L(e−2πim/J − e+2πim/J)

+ ξ̃ym,ne
−2πijm/Je−2πiln/L(e−2πin/L − e+2πin/L)

(8.17)

where the term 1
2∆x

is because the derivative on the right hand side is taken using a central

difference derivative (over 2 cells). This becomes,

β̃m,n =
−2πi(sin 2πm

J
ξ̃xm,n + sin 2πn

L
ξ̃ym,n)∆x

−m2
reg + 2(cos 2πm

J
+ cos 2πn

L
− 2)

(8.18)

8.3 Lattice Gauge Theory

Conisder a complex valued Dirac field, ψ(x), that is invariant under local gauge transforma-

tion of the form [53],

ψ(x)→ eiα(x)ψ(x) (8.19)

where α(x) is a phase rotation. This phase rotation can vary locally, which means that

in order to take derivatives that are gauge invariant, it is necessary to define a covariant

derivative that takes this possible variation into account. Looking at the derivative of the

field ψ(x),

nµ∂µψ = lim
ε→0

1

ε
[ψ(x+ εn)− ψ(x)] (8.20)

the terms ψ(x+ εn) and ψ(x) have different transformations under Eq. (8.19), meaning that

in order to take their difference in a gauge invariant way that makes sense, it is necessary to

introduce the gauge link, or connection, which has the transformation property

U(y, x)→ eiα(y)U(y, x)e−iα(x) (8.21)

where U(x, x) = 1. This makes it so that ψ(y) and U(y, x)φ(x) transform the same way

under gauge transformations. This can be used to define the covariant derivative,

nµDµψ = lim
ε→0

1

ε
[ψ(x+ εn)− U(x+ εn, x)ψ(x)] (8.22)
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Here, both of the terms on the right hand side transform the same way, so that it is possible

to take the difference in a meaningful way.

In QCD, the gauge link is

Uµ(x) = P exp

(
ig

∫ 1

0

ds
dxµ

ds
Aaµ(x(s))ta

)
≈ exp{igaAaµ(x)ta} (8.23)

which can be expanded for small lattice spacing, a, as

Uµ = 1 + igaAaµt
a − 1

2
g2a2AaµA

b
µt
atb +O(a3) (8.24)

With this definition, it is possible to build plaquettes, which are a string of consecutive gauge

links that form a closed loop,

Uxy = Ux(x+ ax/2)Uy(x+ ax + ay/2)U †x(x+ ax/2 + ay)U
†
y(x+ ay/2) (8.25)

To linear order in the lattice spacing this becomes (dropping color indices),

U (1)
xy ≈ 1 + ig{axAx(x+ ax/2) + ayAy(x+ ax + ay/2)− axAx(x+ ax/2 + ay)− ayAy(x+ ay/2)}

U (1)
xy ≈ 1 + igaxay{∂xAy − ∂yAx}

(8.26)

Going to second order in the lattice spacing, one gets the non-abelian term of the field

strength.

U (2)
xy ≈ 1 + iga2(∂xAy − ∂xAy)− g2a2[Ax, Ay] = 1 + iga2F a

xyt
a ≈ exp{+iga2Fxy}. (8.27)

This is the plaquette. Its conjugate is found by traversing the square in the reverse

direction,

U †µν ≈ 1− iga2F a
µνt

a +
g2

2
a4F a

µνF
b
µνt

atb + ... ≈ exp{−iga2Fµν}. (8.28)

Taking the trace gives us a gauge invariant way of computing the field strength on the

lattice. We can take different combinations of plaquettes in order to compute quantities that

are relevant for the action or stress-energy tensor, to varying orders of the lattice spacing.

For example, to compute the field strength tensor squared, a quantity that will appear in

the energy-momentum tensor, we can take

Tr[4− 2Uµν − 2U †µν ] = g2a4F a
µνF

a
µν +O(a6) (8.29)
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(we have used Tr[tatb] = 1
2
δab).

In order to improve numerical accuracy, the quantities that are used to do the computa-

tions are as follows,

DUi = Ui − 1 = exp (iga⊥A
a
i t
a)− 1 ≈ iga⊥A

a
i t
a − g2a2

⊥A
a
i t
aAbit

b + ... (8.30)

and similarly, the plaquette

DUij = Uij − 1. (8.31)

8.4 Construction on the Lattice

  

η

x

y U x y (x)

U x y (x+eη)

~
Fxy

2 ( xcell)=−4 ℜ[Tr (U x y (x )−1)+Tr (U x y ( x+eη)−1)] /2

U x y (x)=U x (x )U y (x+e x)U x
†( x+ex+e y)U y

† (x+e y)

U x (x)

U y ( x+ex )U y
† ( x+e y)

U x
† (x+ex+e y)

x+e y x+ex+e y

x+exx

Figure 8.1: The greyed faces of the cell represent the faces whose normal vectors are parallel

or anti-parallel to the η-direction. The plaquettes that traverse the boundary of the grey

faces construct the plaquette, Uxy which is used to construct field strength components, Fxy.

The gauge links connect vertices and thus the gauge fields “live” on these links, along

with the electric fields. This can be seen in Fig. (8.2). The plaquettes, which construct

the magnetic fields, “live” in the center of a face of a cube of gauge links, as shown in Fig.
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Eη( x)

η

x

y

Eη
2 (xcell)=

1
4 [Eη

2 (x )+Eη
2 (x+ex)+Eη

2 (x+e y)+Eη
2 (x+e x+e y)]

Eη( x+ex )

Eη( x+e y) Eη( x+ex+e y )

x+ex+e y

x+exx

x+e y

Figure 8.2: A diagram of one lattice cell, and the 12 links that border it. Of those 12 links,

the four in the η direction contribute to the the electric field in the η direction. To compute

E2
η for this cell, one must average the contribution from these four links. The same applies

to the other components (not shown).

(8.1). The stress-energy tensor, T µν lives in the center of a cell. In order to construct the

components of T µν in the center of the cell, one much average the electric field component Ei

over the four links in the i-direction that border a given cube, or cell. For the magnetic field,

there are two faces of the cube that correspond to a given magnetic field component. This is

because, for a given cell there are two plaquettes whose normal vector point in the i-direction,

and thus this component of the field strength Fjk would be constructed by averaging the two

plaquettes associated with these faces. For example, the x component of the magnetic fields

is the average of the two plaquettes whose faces have a normal vector parallel or anti-parallel

to the x-direction.
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