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PREFACE 

This thesis is composed of 6 chapters, preceded by a general introduction, and folIowed 

by a summary and general conclusions. The first chapter is the literature review, which 

summarizes the work of other researchers and justifies the research questions. Chapters 

two to six are the experiments and results, which are presented in manuscript format 

according the guidelines of the Faculty of Graduate Studies. AlI manuscripts are co­

authored by the candidate and Joann Whalen. The candidate designed and completed the 

experiments, data analysis and wrote the manuscripts. Joann Whalen provided financial 

support, advice about the experiments and editorial assistance with the manuscripts. The 

manuscripts are presented in the folIowing order: 

1. Eriksen-Hamel, N.S., Whalen, J.K. 2006. Growth rates of Aporrectodea caliginosa 

(Oligochaetae: Lumbricidae) as influenced by soil temperature and moi sture in disturbed 

and undisturbed soi! columns. Pedobiologia. 50,207-215. 

2. Eriksen-Hamel, N.S., Whalen, J.K. 2006. Impacts of earthworms on soil nutrients and 

plant growth in soybean and maize agroecosystems. Agriculture, Ecosystems and the 

Environment. In press. 

3. Eriksen-Hamel, N.S., Whalen, J.K. 2007. The "Deduction" Approach: A Non­

Invasive Method for Estimating Secondary Production of Earthworm Communities. 

Oikos. In review. 

4. Eriksen-Hamel, N.S., Whalen, J.K. 2007. Modeling the contribution of earthworm 

communities to nitrogen cycling in maize-soybean agroecosystems. Nutrient Cycling in 

Agroecosystems. In review. 

5. Eriksen-Hamel, N.S., Whalen, J.K. 2007. Measuring the sensitivity of earthworm­

nitrogen flux models. Proceedings of the 8th International Symposium on Earthworm 

Ecology. Krakow, Poland. European Journal ofSoil Biology. In review. 
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ABSTRACT 

Earthworms have an important role in the decomposition of organic matter, 

mineralization of nutrients and physical mixing of soils. Despite a large number of 

laboratory and greenhouse-Ievel studies investigating how earthworms modify soil 

properties and promote soil fertility, we lack reliable methods to scale-up and quantify 

earthworm contributions to nutrient cycling at the agroecosystem level. The objective of 

this thesis is to determine the influence of earthworm communities on nitrogen (N) 

transformations in soils and to quantify their contribution to nitrogen flux through soils 

for soybean and maize cropping systems of Québec. Laboratory growth rates were used 

to predict how earthworm growth responded to seasonal fluctuations in soil temperature 

and moisture. The relationships between earthworrn populations, soil-N pools and annual 

crop production were evaluated in a field experiment. When favourable conditions 

occurred in 2004 (temperatures <20°C, and rainfall at least once a week), a positive 

relationship was found between earthworm numbers and the plant available-N, including 

soil mineral-N, microbial biomass-N and total-N removed in soybean grain. In 2005, soil 

conditions were unfavourable (temperatures > 20°C and little or no rainfall) to earthworm 

survival and growth, and no relationship was found between earthworm populations, soil 

N pools and corn production. These data permitted me to make assumptions about 

earthworm activity and life histories under field conditions, which were used to estimate 

N flux through earthworrn cornmunities with two models. The models were tested for 

their sensitivity to varying pararneter values within the range reported in the scientific 

literature. During a crop growing period with favourable climate conditions, a large 

earthworm population (100 g fresh weight biomass m-2 or greater) is predicted to cycle as 

much as 120 kg N ha- l
. Model predictions were very sensitive to input pararneters and did 

not correspond to the partial N budget ca1culated at the site. Accurate predictions ofN 

mineralization by earthworms require more species- and site-specifie parameter values. 

Further investigation using stable l5N isotopes as tracers would help us to follow the N 

transformations and evaluate the N flux mediated by earthworms at the field scale. 
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RESUME 

Il est reconnu que les verres ont un rôle important dans la décomposition de matiere 

organique, minéralisation des nutriments et le mélange des sols. Malgré le grand nombre 

d'études recherchant comment les verres modifient les sols et ameliorent la fertilité des 

sols, nous manquons des méthodes fiables pour mettre al' échelle du agroecosystem et 

quantifier la contribution des verres au cycles de nutriments a ce niveau. L'objectif de 

cette thèse est de déterminer l'influence des communautes de verres sur les 

tranformations d'azote dans les sols et quantifier leur contribution au flux d'azote dans 

les sols pour des systems de maïs et soya au Québec. Le taux de croissance obtenu en 

laboratoire ont été utiliser pour prévoir comment la croissance des verres répond au 

fluctuations saisonnier de température et humidité d:u sol. Les relations entres les 

. populations de verres, l'azote du sol et la recolte des cultures ont été evalué dans une 

expérience au champ. Quand les conditions ont été favourable en 2004 (temperatures < 

20°C et la précipitation au moins une fois par semaine), une relation positif a été 

decouvert entre les verres et l'azote disponible aux plantes, incluant l'azote minéral du 

sol, l'azote microbial et l'azote total dans le grain de soya. En 2005, les conditions du sol 

n'etaient pas favourable (temperature >20°C et peu de précipitation) au survie et 

croissance des verres, et aucun relation a été trouver entre les populations verres et les 

nutriements du sol et rendement de maïs. Ces donnés m'ont permet de faire des 

assomptions de l'activité et vie des verres sous des conditions du champ, qui ont été 

utliser pour estimer le flux d'azote dans les communautés de verres dans deux modèles. 

La sensibilité des modèles ont été tester en variant les valeurs des parametres entre la 

gamme trouver dans la literature scientifique. Durant la période de pousse avec des 

conditions favourable, une grande population de verres (100 g matiere frais m-2 ou plus) 

est prédit d'etre responsible pour un flux autant que 120 kg N ha- l
. Les prédictions de 

modèles sont très sensible au parametres d'entrée et n'ont pas modèles n'ont pas 

correspondu avec le budget partielle d'azote obtenu au champ. Des prédictions précis de 

la minéralisation d'azote par les verres exigent des valeurs de paramètres spécifique au 

espèces et du site. Plus de recherche utilisant d'isotop stable l5N comme traceur pourrait 

aider a suivre les transformations d'azote et evaluer le flux d'azote par les verres au 

niveau du champ. 
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CONTRIBUTION TO KNOWLEDGE 

It has been well established that earthworms play an important role in organic matter 

decomposition, mineralization of nutrients and physical mixing of soils. Despite an 

abundance oflaboratory and greenhouse-level research on how earthworms affect soil 

properties and plant growth, few researchers havt? scaled up such observations to quantify 

the contribution of earthworms to N cycling in agroecosystems. The CUITent estimates 

vary substantially, and the N flux through earthworm populations ranges from negligible 

to as much as 363 kg N ha-1 per year. This wide range of estimates arises from 

differences in climate, soil properties, cropping systems, as well as disperate assumptions 

implicit in the quantitative methods and models used by various research. Of these 

factors, climate has the greatest impact on earthworm activity and, hence, is a controlling 

factor determining the N flux through earthworm populations. In North America, the N 

flux through earthworms was estimated for populations found in row-cropped 

agroecosystems in Ohio and Georgia, however no studies have quantified the N flux 

through earthworms in cold and humid temperate agroecosystems, such as those found in 

Québec. My Ph.D. dissertation used laboratory growth rates to predict the dynamics of 

earthworm growth in reponse to seasonal fluctuations in soil temperature and moi sture 

that occur in Québec agroecosystems. Earthworm population dynamics, inc1uding 

survival, growth and reproduction, were assessed in a field-level manipulation 

experiment designed to evaluate the relationships between earthworm populations, soil-N 

pools and annual crop production. These data permitted me to make assumptions about 

earthworm activity and life histories under field conditions, and to test the sensitivity of 

two models used to determine the contribution of earthworms to N cycling. The 

experiments conducted in this thesis were designed to address these aspects, and thus, 

provide the following major contributions to knowledge. 

1. 1 determined that Aporrectodea caliginosa grew optimally at 20°C and -5 kPa water 

potential, and they lost weight when the soil water potential was less than -54 kPa and 

when the temperature was less than 5°C. 
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2. l determined that earthworm growth rates are strongly influenced by the number of 

earthworms in a container and by the shape of the container used to culture earthworms. 

This work proposes the development of standard methods for assessing growth rates, so 

that results from laboratory studies can be extrapolated to respresent earthworm growth 

rates in the field. 

3. Field manipulations of earthworm communities showed that when favourable climate 

conditions occur, larger earthworm populations are associated with more mineral-N and 

microbial biomass-N in surface soils, and higher grain-N yield in soybeans. 

4. l developed the new "deduction" approach to estimate earthworm secondary 

production in earthworm manipulation experiments. My estimates of the N flux through 

secondary production range from 0.9 - 4.6 g N m-2 per year, and are consistent with other 

published rates of secondary production. 

5. l present the first estimates of the contribution of earthworms to nitrogen cycling in 

Québec agroecosystems. My model predictions show that during the crop growing 

period, under favourable climate conditions, high earthworm biomass of greater than 100 

g fw m-2 is responsible for the cycling ofup to 120 kg N ha-1 in arable fields. However, 

these models are very sensitive to input parameters and accurate predictions ofN 

mineralization require more species and site- specific parameter values, as well as 

validation with field data. 
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General Introduction 

The excessive use of inorganic mineral fertilisers and pesticides in some agricultural 

production systems has led to significant environmental problems in surrounding 

ecosystems and waterways. Improved fertiliser use would reduce crop production costs 

and lessen the negative impacts of nutrients in the environment. Successful management 

of soil nutrient pools and fertilisers requires an excellent understanding of the highly 

diverse, delicate and heterogeneous properties of soils. Past soil nutrient management 

research has focused exc1usively on soil chemical and physical properties, largely 

overlooking the importance of soil biology. Soil organisms play a crucial role in soil 

fertility functions such as the decomposition and comminution of organic matter (OM), 

mineralisation of nutrients, and physical mixing of soils (Wardle and Lavelle, 1997; 

Lavelle et al., 1998; Lavelle and Spain, 2001). Amongst temperate soil fauna, earthworms 

are considered to have the most significant impact on macro-properties of soils, and as 

such are called "ecosystem engineers" (Jones et al., 1994; Lavelle et al., 1997). Their 

impact on soil formation was tirst recorded by Darwin (1881) and since then their 

regulation of fundamental soil processes such as nutrient cycling, OM decomposition, 

soil structure and biological community structure has been weIl established (Syers and 

Springett, 1984; Makeschin, 1997; Edwards, 1998). 

Quantifying the contribution that earthworm communities make to nutrient 

transformations and fluxes in an agroecQSystem is fundamental to deve10ping better on­

farm nutrient management. However, further research is needed to better understand the 
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temporal variation in earthworm population dynamics, and to scale up laboratory data to 

the farm scale. The majority of research investigating nutrient fluxes through earthworm 

communities has been determined in laboratory microcosms, greenhouse pot experiments 

or small-scale field manipulations. Scaling up results from laboratory microcosms to the 

field level, and developing mechanistic and nutrient budget models at larger spatial and 

temporal scales has been identified as an essential research priority (Bohlen et al., 1995). 

The direct and indirect influence of earthworm communities on the flux of nutrients in 

soils have been quantified using a variety of methods (Christensen, 1988; Marinissen and 

de Ruiter, 1993; Bouché et al., 1997; Whalen and Parmelee, 2000). These estimates ofN 

mineralization are largely based on laboratory measurements and can vary from 

negligible to as much as 363 kg N ha-1 per year due to variability in soil type, food 

availability, and c1imatic conditions as well as uncertainty in model parameters 

(Marinissen and deRuiter, 1993). Furthermore, many of the models lack validation with 

field data, and this is proposed as an important step to improving field level estimates of 

nutrients through earthworm communities (Whalen et al., 2000; Bouché et al., 1997). 

For cold and humid temperate agroecosystems such as those found in Québec, a lack of 

research exists for (1) properly integrating the laboratory-based studies on earthworms 

into farm-scale nutrient budgets, and (2) measuring the contribution that earthworm 

communities have to soil nitrogen pools and plant nutrition. The purpose of this thesis 

project will be to determine the influence of earthworm communities on nitrogen 

transformations in soils and to quantify their contribution to nitrogen flux through soils 

for maize and soybean cropping systems of Québec. 
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CHAPTER 1. 

Literature Review 

1.1 Earthworms of Québec: Life cycle and ecological classes 

Earthwonns belong to the c1ass Oligochaeta within the Annelida phylum and are divided 

into about 12 families largelybased on geographic areas (Edwards and Bohlen, 1996). 

The majority of earthwonn research has been conducted in Europe and North America, 

where the Lumbricidae family is dominant. As such the majority ofresearch has focussed 

on species ofthis family. In southern Québec, fifteen lumbricid species of earthwonns are 

known to exist (Reynolds, 1977; Tomlin and Fox, 2003). The most common species 

found in row-cropped, pasture and hayfield agroecosystems in Québec are Lumbricus 

terres tris, Aporrectodea longa, Aporrectodea rosea, and the Aporrectodea caliginosa 

complex of Aporrectodea tuberculata and Aporrectodea turgida (Whalen, 2004). 

Born from cocoons, and maturing under field conditions at about 20 - 52 weeks (Wilcke, 

1952; Gerard, 1967), the life span of mature lumbricid earthwonns is probably no longer 

than a year (Satchell, 1967). A review of the literature shows that for earthwonn species 

found in agroecosystems of Québec life history parameters have been reported for the 

following species: L. terres tris, A. longa, A.caliginosa, A. tuberculata, Lumbricus 

rubellus, Lumbricus castaneus, Aporrectodea / Allolobophora chlorotica, and Octolasion 

cyaneum (Lofs-Holmin, 1982; Andersen, 1987; Butt, 1993; Butt, 1997; Butt, 1998; 

Whalen and Parmelee, 1999). 
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Earthwonns are commonly classified into anecic, endogeic and epigeic ecological 

functional groups based on their feeding and burrowing habits, and life history 

parameters (Bouché, 1977; Edwards and Bohlen, 1996). Anecic earthwonns are large 

earthwonns characterised as having slow growth, low reproduction rates, and considered 

K-strategists. They build semi-pennanent vertical burrows and come to the surface to 

feed on litter and mate. Endogeic earthwonns generally fonn horizontal desultory 

burrows in the minerallayers of the soil. They consume more mineraI rich soil, are 

medium in size, and have high reproductive rates. The epigeic earthwonns generally are 

smallest in size, grow rapidly, have high reproductive rates, and are considered r­

strategists. They feed primarily on rich organic substrates and live in organic-rich litter 

layers, compost and manure piles. As such epigeic earthwonns are rare in row-cropped 

agroecosystems, where anecic and endogeic earthwonns dominate. 

1.2 Earthworm growth rates 

Growth rates are an important biological parameter that can be used to detennine 

population turnover, organic matter consumption, nutrient assimilation and excretion 

from earthwonns. Growth rates are affected by environmental conditions, food 

availability and food palatability. Soil moisture and soil temperature are the most 

important environmental parameters that influence earthwonn growth rates and activity. 

Unlike other environmental parameters that have a significant impact on growth rates 

(i.e., pH, OM, texture), moi sture and temperature may fluctuate significantly on short 

temporal scales (hours to days). For this reason, it is necessary to calculate growth rates 
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of earthwonns using the range of soil moisture and temperature conditions encountered in 

the field. 

The life cycle and growth rates of L. terres tris have been well described by K. Butt and 

co-workers (Butt el al., 1992; Butt, 1993; Butt et al., 1994a; Butt et al., 1994b; Lowe and 

Butt, 2003). However, most ofthis research focuses on the effect of food type and 

palatability on growth rates and the effect of temperature on cocoon incubation times and 

hatchling growth. Whalen and Parmelee (1999) detennined the growth rates ofboth L. 

terres tris and A. tuberculata at two soil moistures and three temperatures in laboratory 

cultures, and during the spring and fall in field mesocosms. Growth rates from the 

laboratory and field were very similar for both species. Although not a direct 

measurement of growth, Daniel (1991) detennined food consumption by L. terres tris 

over a wide range of temperatures and moistures, and found higher consumption at 

temperatures of around 22°C and a matric potential greater than -20 kPa. The growth 

rates of A. caliginosa have been described for individuals consuming various food 

sources (Lofs-Holmin, 1982; Bostrom and Lofs-Holmin, 1986), and under different soil 

water potentials (Holmstrup, 2001). Doube and St yan (1996) measured the distribution, 

but not growth, of A. rosea and A. trapezoides to a moisture gradient in three soils with 

different texture and found that earthwonns ofboth species avoided soils with a matric 

potential ofless than -20 kPa. Although the growth of the different earthwonn species 

have been described under these different food types and soil moistures, few studies have 

published growth rates for the important endogeic earthwonn A. caliginosa under a wide 

range ofboth soil moistures and temperatures. Furthennore, in many studies soil 
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moistures were not reported as matric potential, which makes the transferability of 

reported data much more difficult and specifie only to the soil type tested. 

1.3 Earthworm population dynamics 

The temporal heterogeneity of earthworm communities is an important yet under 

researched topic. Since earthworms are highly responsive to small changes in soil 

moisture and temperature, climatic conditions control earthworm community dynamics. 

The length of the growing season varies in temperate regions, and studies have 

established that earthworm populations fluctuate throughout the year in the 

agroecosystems of these regions (Hendrix et al., 1992; Marinissen, 1992). However, the 

reasons for temporal variation and the shape of population curves are still not fully 

understood. Earthworms are more numerous during and just after peak precipitation 

periods (late springlsummer), while the fewest earthworms are collected in the driest 

periods of the cropping season (late summer/early autumn) (Callaham and Hendrix, 

1997). Within the frost-free period ofthe year, a wide range ofratios ofminimum : 

maximum populations have been recorded in a variety of ecosystems. Ratios as high as 

1: 16 in corn-soya agroecosystems in north-eastern USA (Werner and Dindal, 1989), and 

1: lOin Slovakian meadows (Zajonc, 1970; Zajonc, 1982) have been recorded, while 

ratios as low as 1:2 to 1:4 have been found in temperate European grasslands (Ryl, 1984; 

Daniel, 1992; Spurgeon and Hopkin, 1999). 
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The diversity of earthwonns species found in agroecosystems is surprisingly low. Most 

earthwonn communities contain around 3 - 6 species, with a remarkable degree of 

consistency among different habitats and geographic regions (Edwards and Bohlen, 

1996). Furthennore, the earthwonn communities are often characterised by associations 

of specific species living together. Earthwonn species L. terrestris, A. longa, A. 

caliginosa, and A. rosea are often found in association with one another in a variety of 

agroecosystems (Baker, 1983; Falco et al., 1995). The common occurrence of species 

together in the same community rnay be explained by sorne characteristic of the habitat or 

by niche overlap ofthe different species (Falco et al., 1995; Edwards and Bohlen, 1996). 

The seasonal pattern of earthwonn populations in temperate climates is very different 

from those of other climatic zones. In temperate climates, cocoon production tends to be 

greater in spring and early summer; however, due to an accumulation of cocoons during 

the colder months (autumn to spring), many cocoons hatch in spring, producing a large 

cohort ofjuveniles (Christensen and Mather, 1990). Juveniles surviving to late summer 

mature into adults and produce cocoons. Many of these individuals then die during the 

winter due to frost or lack of food (Daniel, 1992; Marinissen, 1992). Yet cocoons are 

protected from these perturbations, tending to over-winter safely and hatch in the spring 

to start the cycle again. This life cycle of a large juvenile dominated population in spring, 

and a smaller, more evenly distributed population in late summer is commonly observed 

(Scheu, 1992; Tomlin et al., 1992; Wyss and Glasstetter, 1992). However, sorne 

exceptions are found. In sorne long season grasslands in Europe (Zajonc, 1970; Ryl, 

1984), and in Kansas (James, 1992), larger earthwonn populations were found in autumn 
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than in spring and summer. In both organic and conventional farms in Pennsylvania, 

earthworm populations were 4 - 10 times greater in autumn than in late springlearly 

summer (Werner and Dindal, 1989). Cocoons laid in spring may hatch during favourable 

humid conditions in mid-summer and may be responsible for the second cohort of 

juveniles in autumn (Bostrom and Lofs, 1996). 

Extreme c1imatic events, such as drought or prolonged surface freezing, may also 

influence the populations. Whalen et al. (1998) found that earthworm populations, 

initially large in spring and autumn, were reduced significantly following a drought 

period in late summer and autumn, and populations did not recover for another year. 

Similarly, farm management activities such as tillage and fertilization may also influence 

the population dynamics significantly. Bostrom (1995) showed that rotary cultivation and 

ploughing of a grassland caused a reduction of earthworm populations by up to 77%, 

however a year later, earthworm numbers increased to pre-ploughing levels. This shows 

that earthworm populations reduced by adverse weather (drought) or physical disturbance 

(tillage) can recover within one season, provided food and soil conditions are favourable. 

Since earthworm population dynamics can vary quite significantly between ecosystems and 

between c1imatic zones, any assessment of population dynamics needs to be determined on 

a c1imate- and ecosystem-specific basis. The majority ofpublished reports on earthworms 

in Québec are surveys in forest ecosystems (Lesage and Schwert, 1978; Garceau and 

Coderre, 1991; Coderre et al., 1995), however there are a few reports of earthworm 

populations in arable agricultural systems of Quebec (Estevez et al., 1996; Whalen, 2004). 
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1.4 Earthworm community dynamics 

Competitive and mutualistic relationships between earthworm species may significantly 

affect the community structure of earthworm populations. Many studies have shown that 

high populations and biomasses in single- and multi-species laboratory pots can have 

negative feedbacks on earthworms, reducing growth and fecundity (Hartenstein and 

Amico, 1983; Butt et al., 1994b; Dalby et al., 1998; Baker et al., 2002). Slower 

earthworm growth will reduce earthworm activity since earthworms are consuming less 

food to increase their body mass, which may consequently decrease organic matter 

decomposition and nutrient mineralization rates. This suggests that the results obtained in 

pot experiments may not quite represent the field situation if earthworm populations in 

pots are too high. In a recent review describing the optimallevels of abiotic and biotic 

factors for successfullaboratory cultures of soil dwelling earthworms, population density 

was identified as a potentially limiting. factor for earthworm growth and production 

(Lowe and Butt, 2005). However, greater amounts of food and improved food quality 

may compensate for these negative effects and allow more earthworms to be reared in 

cultures (Butt et al., 1994a). A better understanding ofhow earthworms of the endogeic 

and anecic functional groups coexist may help to determine how nutrient sources are 

partitioned and cyc1ed through the ecosystem. 

Cocoon production, hatchling growth and overall reproductive success of earthworms 

under different inter- and intra-species interactions have been well documented by Butt 

and co-workers (Butt et al., 1994b; Butt, 1998; Lowe and Butt, 2002). Cocoon production 
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by large species s~ch as L. terres tris decreases significantly as the population size 

increases. Similarly, reproductive effort and growth of new hatchlings of L. terres tris 

seems to be affected negatively in the presence of other species. However, this trend does 

not hold for aIl species. Sorne smaller species such as Octolasion cyaneum and 

Dendrobaena veneta were not affected or showed slight increases in cocoon production 

and hatchling growth (Butt, 1998). With a few exceptions, Garvin et al. (2002) found 

negative effects on cocoon production and growth of Hormogaster elisae, A. rosea and A. 

caliginosa when grown in the presence of the other species. However, interactions 

between H. elisae and A. caliginosa were not very clear. Only the growth of H. elisae and 

cocoon production of A. caliginosa were negatively affected by inter-species interactions. 

In general, reproductive success of most species is negatively affected by interactions 

with other species. 

Selective competition for a shared food or habitat resource by competing earthworm 

species is hard to determine in the field (Dalby et al., 1998). In laboratory cultures, A. 

caliginosa was more strongly affected by inter-species competition with the larger sized 

A. longa than intra-species competition, while both inter- and intra-species competition 

are equally strong for A. longa (Dalby et al., 1998; Baker et al., 2002). Intra-species 

interactions amongst L. terrrestris, A. longa, A. chlorotica and L. rubel/us in laboratory 

cultures caused a decrease in growth rates and lower cocoon production compared to 

mixed speci~s cultures and monocultures (Lowe and Butt, 2002; Lowe and Butt, 2003). 

Dalby et al. (1998) showed that predation of cocoons of Microscolex dubius by A. longa 
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could occur theoretically, suggesting it as a fonn of selective competition between the 

competing peregrine and endemic species found in Australian pastures. 

Although the evidence of a decline in earthwonn reproductive success due to interactions 

is compelling, it is not known whether competition for food or habitat occurs between the 

earthwonn species found in Quebec agroecosystems. It is suggested that the influence of 

inter- and intra-species interactions on growth rates ofboth A. caliginosa and L. terres tris 

under increasing population be examined to detennine competition for food resources and 

the possible carrying capacity of certain soils. 

1.5 Earthworm contribution to soU nutrient pools and plant nutrition - pot studies 

Although the general be1ief is that earthwonns are beneficial for plant growth, the 

evidence for this in the scientific literature is not convincing. The effect of earthwonns on 

plant growth and nutrition is not consistent and seems to be highly dependent on plant 

species, soil type, and earthwonn species involved (Doube et al., 1997; Callaham et al., 

2001; Scheu, 2003). The difficulty and inability of observing the movement and 

behaviour of earthwonns and other soilinvertebrates within the medium they reside in is 

one of the major obstacles ofsoil invertebrate ecology (Villani and Wright, 1990). Rence, 

the majority of studies have focused on greenhouse pot studies where environmental 

variables, populations and soil conditions can be controlled. 
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In a pot experiment with populations of A. rosea and A. trapezoides at levels equivalent 

to about 460 individuals m-2, the biomass, grain weight and N content ofwheat was 

greater than the control, but above-ground biomass of clover was only significantly 

greater than the control in pots with A. trapezoides, but not A. rosea (Baker et al., 1997). 

In microcosms involving the same two species, a significant increase in oat (Avenafatua) 

grain was recorded under treatments with both species separately and combined, however 

the yield oflupin (Lupinus angustifolius) was not affected by the addition of earthworms 

(Baker et al., 2003). Increasing the number of A. rosea and A. trapezoides had a 

significant increase on shoot weight and foliar nitrogen content of wheat in a pot 

experiment using a sandy loam soil (Stephens et al., 1994a). The addition of L. rubellus 

earthworms to pots at levels equivalent to about 500 individuals m-2 to pots did not 

increase maize shoot yield compared to lower populations of 0 and 250 individuals m-2 

(Mackay and Kladivko, 1985). Doube et al. (1997) found similar significant increases in 

wheat and barley grown in sandy loam soils with increasing number of A. trapezoides but 

no effect on the growth offaba beans (Viciafaba). Ryegrass grown in a pot experiment 

with a high number (1040 ind. m-2
) of A. caliginosa showed significant increases in yield 

over controls with no earthworms (McCoU et al., 1982). This contradicts results by James 

and Seastedt (1986) which show that the yield ofbig bluestem taU grass (Andropogon 

gerardii) was not affected by either Lumbricid earthworms, Aporrectodea turgida, or 

native Acanthodrilidae earthworms of the genus Diplocardia spp. 

The majority of pot experiments suggest that yield improvements due to earthworms may 

benefit cereals and grasses greater than legumes. This is possibly due to the independent 

12 



nitrogen uptake associated with leguminous plants. Converse1y, the burrowing activity of 

earthworms in known to increase the vertical transport of microflora, which may benefit 

leguminous plants if the dispersion of symbiotic flora is enhanced (Madsen and 

Alexander, 1982; Thorpe et al., 1996). Root nodulation of subterranean clover by 

Rhizobium leguminosarium was enhanced in the presence of A. trapezoides (Doube et al., 

1994). Similarly, Rhizobium me/iloti was found on roots of alfalfa in greater numbers and 

at greater depths as the number of A. trapezoides in pots was increased (Stephens et al., 

1994b). 

Doube et al. (1997) found that there was no universal rule predicting the effect of 

earthworms on plant growth, and that the effects are highly dependent on soil type. They 

found that wheat and barley plants showed significantly better results due to earthworm 

addition when grown in sandy loam soils, but that the effect of the addition of 

earthworms was less in loamy and clay soils, with the barley yield in clay sol1s lower 

when earthworms were added. Callaham et al. (2001) reported that the influence ofnative 

Diplocardia spp.and exotic Octolasion tyrtaeum on soil microbial biomass and plant N 

uptake in tall grass prairie soils differed significantly between earthworm species. As well 

as soil type and earthworm species, plant species (Kreuzer et al., 2004; Wurst et al., 

2005), and fertility treatments (Blair et al., 1997) are also major factors that affect the 

re1ationship between earthworms, soil-N pools, plant nutrient uptake and yie1d. 

An important argument against the scaling up of results from pot studies to the farm-scale 

are the high populations often used. Populations in pot experiments that range as high as 
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630 ind. m-2 (Doube et al., 1997) and 1040 ind. m-2 (McColl et al., 1982) are much higher 

than field populations. Another argument is the high mortality rate of introduced 

earthworms, ranging from 10 - 46 % (McColl et al., 1982; Doube et al., 1997; Baker et 

al., 2003), which may contribute a significant amount of nutrients through the 

decomposition of earthworm tissues. Determining earthworm nutrient contribution to 

plants from pot studies may lead to large differences from actual values due to the high 

populations and high mortality rates that occur in pot studies. 

To improve the reliability of estimates it is necessary to increase the size of the "pot" so 

as to include more natural soil structure, weather conditions and realistic populations. The 

migration habits of earthworm species can be used in deve10ping a method to enclose 

them so as to better study their effects on soil and plants. Horizontal movement by 

endogeic earthworms typically occurs in the upper 20cm of the soil while anecic species 

typicallytravel on the soil surface (Bouché, 1977; Francis et al., 2001; Bastardie et al., 

2003). Therefore, a barrier dug to depths of 35 - 50 cm and protruding above the ground 

by 10 cm should, in theory, retain most ofthe earthworms in the "pot". Field studies with 

buried enclosures may be the best method of estimating field level contributions of 

earthworms to soils and plants. 

1.6 Earthworm contribution to soil nutrient pools and plant nutrition - field studies 

Enclosure studies have provided a unique way of studying the effects of earthworm 

communities on soils and plants in situ. Field enclosures studies involving earthworms 
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are relatively recent and very few studies have been conducted. Therefore, efficient 

methods to manipulate earthworm communities in situ are still under development. The 

size of field enclosures have varied from 30 cm diameter cylinders (Baker et al., 1996) to 

large 6.1 x 6.1 m enclosures (Subler et al., 1997) with most other experiments using 

rectangular enclosures ranging from 1 - 20 m2 (Bohlen et al., 1995; Zaller and Arnone, 

1999). The manipulation of earthworm communities in situ requires new methods and 

unique field techniques to be developed. Electro-shocking has been used to reduce 

earthworm populations in arable soils (Bohlen et al., 1995). Removing top soil monoliths 

during periods when earthworms are absent from the topsoil was shown to be a 

successful method to reduce resident populations of earthworms (Baker et al. 1996). The 

addition of earthworms to soils with very low or no resident earthworm community, such 

as mine spoils, landfills, peat lands or volcanic ash soils (andisols), has been useful to 

study the effects of added earthworms separately from any naturally occurring population 

without the specific need for enclosures (Curry and Boyle, 1987; Boyer et al. 1999; 

Emmerling and Pausch, 2001; Butt et al., 2004). 

The manipulation of earthworm communities in field enclosures has had varied success. 

In enclosure experiments in Ohio, high mortality among added earthworms was 

suspected since populations showed either moderate or no growth in the added 

earthworm treatments (Bohlen et al., 1995; Subler et al., 1997). Similar low to moderate 

survival rates of introduced earthworms, and invasion of moderate numbers of non­

introduced species have been recorded in enclosure experiments in Australia and Reunion 

Island (Baker et al., 1996; Baker et al., 1999; Boyer et al., 1999; Baker et al., 2002). 
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However, successful manipulations of earthworm communities have been recorded in 

German and Swiss enclosures studies where populations increased between 1.5 - 5 fold 

in earthworm addition treatments (Zaller and Amone, 1999; Emmerling and Pausch, 

2001). In aIl of these studies, the success of earthworm manipulations into field 

enclosures was not consistent for any particular species or functional group. 

Due to the limited number of earthworm enclosure studies and the varied success of 

earthworm community manipulations the effects of earthworms on soil nutrient pools are 

inconsistent and show mixed results. In a maize-based enclosure study in Ohio, the 

addition of earthworms increased the incorporation of surface htter and an increase in the 

C:N ratio of surface htter (Bohlen et al., 1997). Furthermore, earthworm additions 

increased soil N03-N concentration over a two-year period in inorganically fertilized 

plots but not in manure or legume fertilized plots (Blair et al. 1997). In another enclosure 

study in Ohio, Subler et al. (1998) reported a greater increase in soil-N pools with 

earthworm addition treatments to inorganically fertihzed plots but not in legume or 

manure fertilized plots. Earthworm additions also influence the depth stratification of 

available nitrogen either through the incorporation of litter, mineralization of the soil OM 

or increased nutrient flow (Bohlen et al, 1997; Shuster et al., 2002). In enclosure studies 

in Ohio, earthworm additions increased soil N03-N concentration at lower depths (15-

45 cm) in two consecutive growing seasons and in the 0 - 15 cm depth in only one ofthe 

two growing seasons (Blair et al., 1997). In contrast, a mesocosm experiment by Bohlen 

and Edwards (1995) demonstrated that earthworms increased the amount ofN03-N at the 

o - 5 cm depth but had no effect at the 5 - 15 cm depth. In another enclosure study in 
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Ohio, the addition of earthworms did not increase mineral-N in maize-soybean or maize­

soybean-wheat systems in the 0 - 45 cm depths but did increase pools of organic N 

(MBN and DON) (Subler et al. 1997). There have been many conflicting reports on how 

earthworms affect MBN in the field, which may be due to differences in soil organic 

matter, earthworm species, nutrient inputs and climate (Blair et al., 1995; Bohlen and 

Edwards, 1995; Blair et al., 1997; Subler et al., 1997; Callaham and Hendrix, 1998; 

Aruajo et al., 2004). 

The effects of earthworm manipulations on plant growth in field enclosure studies also 

show mixed results. In a field enclosure study in Ohio, increasing earthworm populations 

did not affect biomass, tissue-N concentration or total-N yield ofmaize. In fact, maize 

yield was higher in plots with reduced earthworm populations, and this was partially 

explained by less weed and pest pressure in the reduced earthworm treatments (Stinner et 

al., 1997). In field enclosures on Reunion Island, maize yield was greater in earthworm 

addition treatments but only when a trefoil coyer crop was present (Boyer et al., 1999). 

The trefoil probably provided food for the earthworms, who accelerated decomposition of 

the coyer crop, releasing available nutrients for the maize plants (Boyer et al., 1999). 

Overall, there have been very few studies reporting the effects of earthworm 

manipulations on plant growth in enclosure studies. This justifies further field enclosure 

studies to improve our knowledge of nutrient flows froID earthworm communities to 

crops. 
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1.7 Calculation ofnutrient fluxes through earthworm communities - Comparison of 

different models 

Estimates of the direct and indirect nitrogen flux through earthworm communities range 

from 7 to 363 kg N ha- I per year (Satchell, 1963; Syers and Springett, 1984; Christensen, 

1987; Parmelee and Crossley, 1988; Marinissen and de Ruiter, 1993; Curry et al., 1995; 

Whalen et al., 2000). The wide range of estimates is primarily caused by differences in 

the methods and value of parameters used to make estimates, and by differences in 

earthworm biomasses in different agroecosystems. Estimates made by different methods 

for the same field can vary as much as 7-fold (Marinissen and de Ruiter, 1993). While 

estimates using the same model but with small differences in the value of parameters can 

vary as much as 4-fold (Curry et al. 1995). It is therefore important to compare estimates 

ofN flux among different methods and with varying parameter values. 

Secondary production is an energetics approach to determine the production of 

earthwonn biomass and turnover of earthwonn populations. It has been used to estimate 

N flux through earthworm populations ranging from 15 - 55 kg N ha- I per year (Bostrom, 

1988; Parmelee and Crossley, 1988; Curry et al., 1995; Whalen and Parme!ee, 2000). The 

''food web" mode! is a static mode! that considers a mean earthworm biomass over the 

season. It derives N mineralization for the mean earthworm biomass from feeding rates 

and the partitioning of nutrients between the consumer (earthworm), the food source 

(detritus or microbes), and the environment (soi!) (Hunt et al., 1987; de Ruiter et al., 

1994). Estimates ofN mineralization of Il - 51 kg N ha- I per year have been reported 
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using the ''food web" model for agroecosystems in the N etherlands but no estimates for 

other agroecosystems have been reported in the literature (Marinissen and de Ruiter, 

1993; Didden et al., 1994;). The summation of all direct N excretions from earthworm 

casts, urine, mucus and dead biomass provides another method to calcu1ate N flux from 

earthworm communities. Estimates of direct N excretions range from 7 _. 74 kg N ha-1 per 

year, but these estimates are very sensitive to small differences in parameter values 

(Christensen, 1987; Christensen, 1988; Parmelee and Crossley, 1988; Marinissen and de 

Ruiter, 1993; Curry et al., 1995). 

The ''food web" model may also be used to estimate the stimulatory effect of earthworms 

grazing on microbial populations, and the subsequent microbial N mineralization. 

Estimates ofN minera1ization from the stimulated microbes is estimated to be 5 - 10 fold 

higher than estimates of direct contributions without microbial grazing (Marinissen and 

de Ruiter, 1993; de Ruiter et al., 1994). However, estimates ofthe indirect N 

mineralization from earthworms are very sensitive to parameter values and were shown 

to vary between 5 - 70 kg N ha-1 per year for small differences in parameter values 

(Marinissen and de Ruiter, 1993). 

The majority of parameters used in these model predictions are taken from literature 

values and may be applicable to only certain agroecosystems. As 1 have discussed in the 

previous sections, growth rates and other life history parameters, community level 

interactions, and the effects of earthworms on soil and plant nutrient pools are earthworm 

species-, soil-, and climate-specific. Therefore,.there is a need to obtain as many ofthese 
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parameters from similar studies in order to make valid and accurate predictions of the 

contribution of earthworms to nitrogen cyc1ing. With the exception ofWhalen et al. 

(1999) who showed good correlation between observed growth of A. tuberculata 

individuals and model predictions based on nutrient flow through earthworm bodies, few 

studies have shown field scale validation ofmodel-based nutrient flux predictions 

(Bouche et al., 1997). This justifies the need to further investigate the different types of 

models, the sensitivity of models to parameter values, and validate model predictions 

with field level data. 

1.8 Research questions 

The objectives of this research project are 1) to obtain earthworm growth rates for soil 

conditions and earthworms specifie to Québec, 2) to measure the influence of earthworm 

communities on soil nutrient pools in Québec agroecosystems, and 3) develop a model 

that can be used in other agricultural fields in Québec to predict the nitrogen flux through 

earthworm communities. To this end the following research questions will be answered. 

Research question 1) How are earthworm activity and growth rates affected by 

environmental conditions and community interactions? 

Research question 2) Are earthworm growth rates affected by the size of the experimental 

container, and are earthworm growth rates obtained in the laboratory equivalent to growth 

rates in the field? 
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Research question 3) What contribution do earthworm communities make to soil nutrient 

pools, plant nutrition and yield in soybean and maize agroecosystems in Québec? 

Research question 4) How much variability is there in CUITent earthworm nitrogen 

mineralization models, and can field data be used to validate model predictions of 

nitrogen flux through earthworm communities? 
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CHAPTER 2. 

Growth rates of Aporrectodea caliginosa (Oligochaetae: 

Lumbricidae) as influenced by soil temperature and moisture 

in disturbed and undisturbed soil columns. 

2.1 Abstract 

Earthwonn growth is affected by fluctuations in. soil temperature and moi sture and hence, 

may be used as an indicator of earthwonn activity under field conditions. There is no 

standard methodology for measuring earthwonn growth and results obtained in the 

laboratory with a variety of food sources, soil quantities and container shapes cannot 

easily be compared or used to estimate earthwonn growth in the field. The objective of 

this experiment was to detennine growth rates of the endogeic earthwonn Aporrectodea 

caliginosa (Savigny) over a range oftemperatures (5-20°C) and soil water potentials (-5 

to-54 kPa) in disturbed and undisturbed soil columns in the laboratory. We used PVC 

cores (6 cm diameter, 15 cm height) containing undisturbed and disturbed soil, and1-1 

cylindrical pots (11 cm diameter, 14 cm height) with disturbed soil. AlI containers 

contained about 500 g of moist soil. The growth rates of juvenile A. caliginosa were 

detennined after 14 to 28 days. The instantaneous growth rate (IGR) was affected 

significantly by soil moi sture, temperature, and the temperature x moisture interaction, 

ranging from -0.092-0.037 d- l
. Optimum growth conditions for A. caliginosa were at 

20°C and -5 kPa water potential, and they lost weight when the soil water potential was -

54 kPa for aIl temperatures and also when the temperature was 5°C for aIl water 
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potentials. Growth rates were significantly greater in pots than in cores, but the growth 

rates of earthwonns in cores with undisturbed or disturbed soil did not differ 

significantly. The feeding and burrowing habits of earthwonns should be considered 

when choosing the container for growth experiments in order to improve our ability to 

extrapolate earthwonn growth rates from the laboratory to the field. 

2.2 Introduction 

Earthwonns are known to accelerate nutrient mineralization and improve soil fertility in 

temperate agroecosystems (Lee, 1985; Edwards and Bohlen, 1996). The contribution of 

various earthwonn species to nutrient mineralization is affected by their feeding habits 

and life-history strategies, because individuals from different ecological groups are active 

in different parts of the soil profile when environmental conditions are favourable 

(Bouché, 1977; Brown et al., 2004). Furthennore, earthwonn mediated nutrient 

mineralization may be related to their activity and growth (Marinissen and de Ruiter, 

1993). Earthwonn growth rates are veryresponsive to fluctuations in soil temperature 

and moi sture, and may be used to estimate activity and dynamics of earthwonn 

populations (Buckerfield et al., 1997). In temperate agricultural soils, earthwonn growth 

is fastest at soil temperatures from 15-20°C when the soil moi sture is close to field 

capacity (Daniel et al., 1996; Holmstrup, 2001; Weyer et al., 2001; Baker and Whitby, 

2003). However, soil temperatures range from about 0-25°C and there may be periodic 

flooding and drought during the crop growing season. Researchers wishing to estimate 
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nutrient mineralization from earthwonns require detailed infonnation on how earthwonn 

growth rates fluctuate with changing soil temperature and moi sture conditions. 

There is no standard methodology for measuring earthwonn growth rates. A review of 

the literature reveals that growth rates for the major lumbricid earthwonn species have 

been detennined using a variety of food sources, amounts of soil and containers (Butt, 

1997; Fayolle et al., 1997; Whalen and Pannelee, 1999; Booth et al., 2000). When 

provided with abundant organic matter with a high N content, earthwonns grow faster 

than when they receive a restrlcted amount of food or one with a low N content (Bostrôm 

and Lofs-Holmin, 1986; Bostrôm 1988; Daniel, 1991). Many earthwonns grow faster 

when they consume finely-ground than coarsely ground organic substrates (Bostrôm and 

Lofs-Holmin, 1986; Lowe and Butt, 2003). Little is known ofthe relationships between 

the amounts of soil or the shape of the culture vessel may have on earthwonn growth 

rates. Growth rates have been measured commonly in the laboratory in 40 g to 2000 g of 

soil in containers with volumes ranging from 0.121 to 2.21 (Butt et al., 1994; Whalen and 

Pannelee, 1999; Baker and Whitby, 2003). In these studies, loose soil was packed or 

placed into the container before earthwonns were added. 

We hypothesize that earthwonn growth rates will differ when earthwonns are grown in 

disturbed soil than in undisturbed soil. An undisturbed soil core obtained from the field 

willlikely contain sorne bUITOWS and macropores that facilitate earthwonn movement and 

reduce their energy expenditure in moving through soil, thereby increasing growth rates. 

Containers may constrain earthwonn movement, reducing the energy used to bUITOW and 
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increasing the energy allocated for growth. Whalen and Pannelee (1999) reported that 

growth rates of A. tuberculata (Eisen) were similar in 0.12 llaboratory pots and 7.91 field 

cores, but juvenile L. terres tris L. had slower growth rates in field cores than in 

laboratory cultures. The amount of soil and shape of the culture vessel used in laboratory 

studies should provide growth data that is representative of earthworrn activity under 

field conditions. 

The objectives of our experiment were: (1) to deterrnine how growth rates of A. 

caliginosa were influenced by soil temperature and moisture; and (2) to deterrnine 

whether earthworrn growth rates were influenced by soil disturbance and culture vessel 

shape. 

2.3 Materials and Methods 

2.3.1 Collection of earthworrns and soils 

Juvenile individuals of A. caliginosa were collected by hand-sorting in September 2003 

from fields under alfalfa (Medicago sativa L.) and soybean (Glycine max (L.) Merrill) 

production at the Macdonald Campus Fann ofMcGill University, Ste-Anne-de-Bellevue, 

Québec, Canada. Earthworrns were reared for about 6 weeks at room temperature (20°C) 

in soil from the field site, moistened to near field capacity. Newly emerged earthworms 

«0.25 g) and pre-c1itellite earthworrns (>0.70 g) were exc1uded from the analysis as their 

growth rates may not be truly representative of juvenile earthworrns. In totalless than 
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20% of se1ected earthwonns were excluded from the analysis for being outside of the 

desired size range (0.25 - 0.70 g). 

The soil was a sandy-Ioam mixed, frigid Typic Endoquent ofthe Chicot series taken from 

a field under soybean production. It hada pH (H20) of 6.3, a C content of 30.2 g C kg-l, 

and contained 580 g kg-1 sand, 300 g kg-1 silt and 120 g kg-1 clay. Soils were air-dried to 

about 10% gravimetric moisture content (-200 kPa matric potential) before use. The 

earthwonn food was composted cattle manure containing about 383 g C kg-1 and 19.9 g N 

kg-1 (Carlo Erba Flash NC Soils Analyzer, Milan, Italy). 

2.3.2 Calculation of soil moisture content 

Four soil gravimetric moisture contents (15%, 20%, 25%, and 30%) were used in the 

experiment to test a range of moi sture conditions. Since matric potential is a more 

meaningful way to express biological water availability, the matric potential was 

calculated for each gravimetric moi sture content using the Rosetta software program 

(Schaap, 2000). A SSCBD (texture and bulk density) pedotransfer function was used to 

predict the parameters necessary for calculating matric potential using the van Genuchten 

function for water retention (van Genuchten, 1980; Schaap et al., 1998). The calculated 

matric potentials are -5, -11, -23, -54 kPa, corresponding to 30%, 25%, 20%, 15% 

gravimetric moisture content, respective1y. 
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2.3.3 Pot experiment 

This experiment involved a completely randomised factorial design with four 

temperatures (5°C, 10°C, 15°C and 20°C), and four soil water potentials (-5, -11, -23, and 

-54 kPa), for a total of 16 factorial treatments. Each treatment was replicated 10 times. 

Each replicate pot was a 1-1 cylindrical plastic pot (11 cm diameter, 14 cm height) with a 

perforated lid containing 400-480 g of air dry soil (sieved < 10 mm mesh, 500 g of moist 

soil), and 3 g (dry matter basis) ofmanure (sieved < 4 mm mesh). The manure was mixed 

into the top 5cm ofthe soil where endogeic earthwonns typically consume their food. 

The food and soil mixture was incubated for 2-5 days before adding the earthworm. 

Juvenile earthworms with a mean mass of 0.35 ± 0.11 g (S.D.) (n=1028) were washed 

and placed on moistened paper to void their guts for 24 h. The next day the earthworms 

were washed, gently blotted dry with paper towels and weighed (gut-free fresh weight). 

One earthworm was added to each pot which was then sprayed with approximately 3 ml 

water to remoisten the earthworm and soil surface. Pots were placed into controlled 

climate incubators at four temperatures in darkness for the duration of the experiment. 

Earthworms were reared in pots for 8 weeks and were removed every 13--15 days for 

weight measurements. At each weighing, earthworms were washed, placed on a 

moistened paper to void their guts for 24 h, weighed gut-free fresh weight and then 

retumed to the same pot for 13-15 days. Washing and keeping the earthworms on a 

moistened paper for 24 h ensures that the earthworms from different soil moisture 
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treatments have equal hydration status when weighing them gut-free. Before returning 

earthworms to the pots, about 1 g (dry matter basis) ofmanure was added to the soil 

surface, pots were weighed and tap water was added to replace moi sture lost through 

evaporation. When dead earthworms were found, they were removed and a replacement 

earthworm of similar weight and age c1ass was added to the pot. The growth rates for 

replacement earthworms were considered to be missing values in the statistical analysis. 

2.3.4 Core experiment 

The experiment was designed as a completely randomised factorial design with three 

temperatures (10, 15 and 20°C), three soil water potentials (-5, -11, and -23 kPa), and two 

soil disturbance treatments (undisturbed and disturbed) with 8 replicates of each 

treatment. Each replicate core was soil in a PVC plastic tube with an internaI diameter of 

6 cm, a height of 15 cm and a volume of 0.425 1. Disturbed soil cores contained sieved 

«10 mm mesh) soil that was packed to a bulk density of 1.23 ± 0.01 g cm-3 (S.E.) 

(n=72), equivalent to the bulk density found in the undisturbed cores. This was achieved 

by gently pounding the core on the lab bench until the desired bulk density was achieved. 

Undisturbed soil cores, taken from the same field site, were obtained by hammering the 

PVC tube into the ground above a visible earthworm burrow and digging out the core. 

Fine plastic mesh (1.5 mm) was secured with elastic bands on both ends of the core to 

prevent soillosses. Undisturbed soil cores were kept in a co Id room at O°C for 6 weeks to 

kill any earthworms that may have been collected in the core. Each core contained 
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between 300-425 g of air dry soil (400-600 g of moist soil after adding different amounts 

of tap water based on the moisture treatments). 

Juvenile earthworms were washed and placed on moistened paper to void their guts for 

24 h, then removed, washed, gently blotted dry with paper towels and weighed (gut-free 

fresh weight). Earthworms added to the undisturbed and disturbed soil cores had a mean 

gut-free fresh biomass of 0.43 ± 0.14 g (S.D.) (n=59), and 0.38 ± 0.11 g (S.D.) (n=61), 

respectively. One earthworm was added per core, and 5 g dry matter of manure was 

placed on the soil surface. The surface of the soil in each core was sprayed with 

approximately 3 ml water to remoisten the earthworm and soil surface. Cores were placed 

in controlled climate incubators in darkness for 28 days, then earthworms were removed 

from each core, placed on a moistened paper to void their guts for 24 h, and their gut-free 

fresh weights determined. Replicates with dead earthworms were excluded from the 

statistical analysis. 

2.3.5 Calculation of earthworm growth rates 

Earthwonn growth rates are commonly reported as either average growth rates or relative 

growth rates, and while these measurements may be useful for laboratory experiments in 

which the growth of an age-specifie cohort is followed to maturity, they assume that 

earthworm growth through time is a continuous linear function (Whalen, 1998). It has 

been weIl established that earthworm growth through time follows a logistic curve 

(Daniel et al., 1996; Phillipson and Bolton, 1977). As an earthworm approaches maturity, 
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a greater proportion of the energy from food resources is likely used in the formation of 

sexual organs and reproduction rather than the formation of new tissues (Daniel et al., 

1996). Instantaneous growth rates (IGR, d-1
), which assume that growth proceeds 

logistically rather than linearly, are better able to account for these factors by ca1culating 

the change in an individual's growth during an infinitely short time interval (Diehl and 

Audo, 1995; Pertrusewicz and Macfayden, 1970). The IGR was ca1culated using equation 

(1). 

IGR = ln (Wf/ Wj )/?t (1) 

where Wi and Wrare initial and final earthworm mass (g), respectively, and ?t is the 

growth interval measured in days (Brafield and Llewellyn, 1982). The IGR was 

calculated for 14 and 28 day growth intervals in the pot study, and for a 28 day interval in 

the core study. The effects of container shape on earthworm growth were assessed using 

the IGR ca1culated for a 28 day growth interval. 

2.3.6 Statistical analysis 

The effect of temperature, moisture, container type, sampling time and the 

temperaturexmoisture interaction on earthworm growth rates from the pot and core study 

were evaluated using the PROC MIXED function of SAS software (SAS Institute, 2001). 

The MIXED procedure uses generalized least squares to estimate and test for fixed 

effects in the model, which is superior to the ordinary least squares used by the GLM 

procedure, and is the preferred method for analysis of animal growth experiments with 

repeated measures data since it can handle missing data in an unbalanced design (Wang 
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and Goonewardene, 2004; Spilke et al., 2005). The difference between least square 

means of significant treatment effects were evaluated at the 95% confidence level using 

the LSMEANS statement in SAS. Regression lines were fitted using the PROC REG 

function of SAS. 

2.4 Results 

2.4.1 Mortality 

Earthworm mortality in the pot study was generally less than 8%, although in soils at -54 

kPa water potential there was up to 26% mortality. In the core study, mortality ranged 

from 0-28.5%, and was not different in the intact and packed cores. 

2.4.2 Temperature and moisture effects on earthworm growth 

In the pot study, soil temperature (F=26.1, P<O.OOOI), moi sture (F= 23.8, P<O.OOOI) and 

the interactions between temperature and moi sture (F=4.1, P<O.OOOI). were all significant 

factors affecting growth. Growth rates were significantly affected (F=4.8, P<0.003) by 

the repeated weight measurements on the same individual. This indicates a change in 

growth rate as the individual earthworm grows. The change in growth rates as an 

individual changes in weight is a common re1ationship in many earthworm and animal 

growth studies (Wange and Goonewardene, 2004; Mir et al., 1998; McElroyet al., 1997). 

AlI earthworms lost weight when placed in soil with a water potential of -54 kPa, so the 
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growth data for this treatment were exc1uded from Fig. 1. Growth was negative 

(indicating weight loss) at 5°C, regardless of the moi sture content, and at 10°C when the 

soil water potential was -11 and -23 kPa (Fig 1). The IGR was greatest at -5 and -11 kPa 

water potential. 

2.4.3 Effects of container on growth 

In the core study, soi! moisture (F=63.0, P<O.OOOl) was the most significant factor 

affecting growth, followed by soil temperature (F=34.3, P<O.OOOl), the interactions 

between temperature and moisture (F=10.7, P<O.OOOl) and container type (F=4.9, 

P<0.008). A paired means comparison test showed that growth rates in the pot study were 

greater than in disturbed soil cores (P = 0.017) and undisturbed soi! cores (P=0.006). 

However, the growth rates obtained from undisturbed and disturbed soil cores were not 

significantly different. 

In soils at 10°C, earthworm growth rates were positive at water potentials greater than -

Il kPa (Fig. 2A). In soils at 15°C and 20°C, positive growth rates were observed at dryer 

conditions in pots (-23 kPa) than cores (-11 to -15 kPa) (Fig. 2B & C). Logistic growth 

describes best earthworm growth in pots at aIl three temperatures, whereas earthworm 

growth in disturbed and undisturbed cores were described best by linear equations at 

10°C, and both lin.ear and logistic equations at 15°C and 20°C (Table 1). 
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2.5 Discussion 

The rates of growth of A. caliginosa were influenced by interactions between soil 

temperature and moisture. Growth rates increased 10gistica11y with rising water potential 

when the soil temperature was lOto 20°C, but growth remained negative at 5°C for all 

water potentials. Growth rates were significantly greater at -5 kPa than at -11 kPa when 

the soil temperature was lOto 20°C, but were not different between water potentials of -

Il and -23 kPa for temperatures between 5 and 15°C. In other experiments soil 

temperature and moi sture interacted significantly to influence the growth of A. 

tuberculata (Wever et al., 2001) and L. terres tris (Berry and Jordan, 2001). They found 

that earthworm growth rates were influenced more by soil moi sture at higher 

temperatures (20°C or higher) than at lower temperatures. In our study, earthworms 10st 

weight when the soil water potential was lower than -11 kPa at 10°C, and -23 kPa at 15°C 

and 20°C, suggesting that there may be critical moisture leve1s for earthworm growth. 

Holmstrup (2001) reported a significant reduction in weight of adult and juvenile A. 

caliginosa when the water potential was lower than -12 and -19 kPa, respectively. At 

water potentials 10wer than -19 kPa, all juveniles entered diapause and 10st weight. 

Similar results were obtained for other species in laboratory studies. A. trapezoides 

avoided soil with a water potential1ess than -15 kPa in sandy loam and -25 kPa in 10am 

(Doube and St yan, 1996), and A. longa lost weight at water potentials lower than -40 kPa 

(Kretzchmar and Bruchou, 1991). 
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The earthworm growth rates in this experiment ranged from -0.092-0.037 d-l, and were 

slightly slower than those reported elsewhere (Whalen and Parmelee, 1999; Booth et al., 

2000). The growth rates for A. tuberculata (Whalen and Parmelee, 1999) were 2 to 3 

times faster (0.0108-0.0167 d -1) than those in this experiment at 10°C and water 

potentials of -5 kPa to -23 kPa. The growth rates for A. tuberculata (Wever et al., 1999) 

ranged from -0.05 - 0.05 d- l at 20°C and -0.007-0.015 d-l at 15°C in soils with moisture 

contents of 10%-25%. These results agree with our values obtained at similar moi sture 

contents (water potentials of -11 to -23 kPa). Booth et al. (2000) measured growth rates 

for A. caliginosa over the same range of gravimetric moistures (15-30%) and 

temperatures (5-20°C) as we did, but with more variability in their experiment. In their 

experiment, optimal conditions for earthworm growth were at 1 D-15°C in soils with 25-

30% moi sture content, and the IGR ranged from 0.026-0.063 d- l. Earthworms lost weight 

when the soil moi sture was 15%, regardless of temperature (Booth et al., 2000). 

Mazantseva (1982) reported that the IGR of Nicodrilus caliginosus (a variant name for A. 

caliginosa, Reynolds (1977» was 0.019-0.028 d-l at 15-20°C and optimal soil moi sture, 

while earthworms lost weight at temperatures below 12°C, similar to our findings. 

Differences in the IGR of A. caliginosa in these studies may be explained by the initial 

body mass of the earthworm. Earthworm growth rates are related inversely to their initial 

body masses, where rates of weight gain decrease as the initial body masses of 

earthworms increase (Daniel et al., 1996; Whalen and Parmelee, 1999). Mazantseva 

(1982) showed that the IGR was 50% less for 20-30 day old earthworms than for newly­

emerged earthworms. The earthworms used in many previous studies were smaller than 

52 



those used in this study, which may explain why they reported faster growth rates for A. 

caliginosa. 

Other factors that may affect growth rates are the quantity of soil, shape of the container 

and fluctuating temperature regimes. Sorne researchers kept earthworms in 40 g (Whalen 

and Parme1ee, 1999) and 100 g ofsoil (Wever et al., 2001), which is 10-25 times less 

than the quantity used in other experiments (Booth et al., 2000). We demonstrated that 

growth rates of earthworms in pots were greater than those of earthworms in soil cores. It 

is important to consider the behaviour of earthworms when selecting a container for 

measuring earthworm growth rates. The soil cores had half the diameter of the pots, 

which may have forced the earthworms to burrow vertically, contrary to the natural habits 

of this endogeic species to build temporary, shallow horizontal burrows (Francis et al., 

2001; Jégou et al. 2001). Uvarov (1995) showed that earthworms kept in cultures at a 

constant temperature (15°C) lost more weight than those kept in cultures at a fluctuating 

temperature regime (1 0-20°C). However, the effects of different fluctuating temperature 

regimes on weight loss were not significant until after 4 months in culture (Uvarov, 

1995). Since our earthworms were kept for only 8 weeks in controlled c1imate incubators, 

we assume that there was no effect of a constant temperature regime on growth rates. 

The treatment effects of container type are not entire1y due to the shape of the container 

only. To maintain an undisturbed soil it was not possible to mix the food into the top 5 

cm of the soil as in the pot study. Therefore, the pot and cores have different shapes and 

placement of food. However, since endogeic earthworms typically consume more 
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humified organic matter in the mineraI horizons of the soil (Edwards and Bohlen, 1996), 

the placement of fresh organic matter on the surface would most like1y have had little 

effect on available food resources. The volume of soil in each container was small 

compared to how much soil an earthworm could burrow through, therefore regardless of 

where the food was placed it was still easily accessible to the earthworm. Visual 

observations confirmed that earthworms were active throughout the containers and came 

into contact with the surface applied food. We assume that the different placement of 

food in the two container types could be a considered a minor source of error. 

Soil disturbance did not affect the growth of A. caliginosa because the IGR did not differ 

between disturbed and undisturbed soil cores. Since the amounts of soil were similar in 

both pot and corestudies, we suggest that the container shape influenced earthworm 

growth more than soil disturbance. It appears that the presence of intact earthworm 

burrows and other macropores in undisturbed soil cores did not increase A. caliginosa 

growth. Capowiez and Belzunces (2001) reported that earthworm burrow systems are 

individual structures, rare1y used by other earthworms. They suggest that abandoned 

burrows may be recolonised only by earthworms from the same ecological c1ass. The 

undisturbed soil cores were obtained above a surface burrow, most likely created by an 

anecic earthworm, and were probably not used by the endogeic A. caliginosa species 

introduced into the core. 

Our study confirms that temperature and moi sture strongly influence earthworm growth 

rates and activity. Optimum environmental conditions for growth of A. caliginosa were 
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200 e and a water potential of -5 kPa. Higher temperatures were not tested, but the upper 

limit for survival of many lumbricid species is around 25°e, because many life history 

parameters, such as growth rates, cocoon production, and time to reach sexual maturity, 

decrease at temperatures above 200 e (Butt, 1991; Daniel et al., 1996; Berry and Jordan, 

2001; Baker and Whitby, 2003). Furthermore, we showed that earthworm growth rates 

were influenced by the shape of the container used. Further work is needed to establish 

standard experimental parameters (i.e., food source, growth interval, quantity of soit and 

shape of container) that ensure laboratory measurements of earthworm growth rates are 

representative of those in the field. 
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Table 1. Regression equations describing the instantaneous growth rate (lGR) for A. 

caliginosa as a function of soil water potential (? ) for each container type and soil 

temperature conditions presented in Fig. 2. Lines were fitted through the average IGR 

values at each water potential. 

10°C 

Pot IGR = -0.0042Ln(\jI) + 0.011 R2 
= 0.986 

Disturbed Core IGR = -0.0002*\jI + 0.0029 R2 
= 0.989 

Undisturbed Core IGR = -0.0004*\jI + 0.004 R2 
= 0.940 

15°C 

Pot IGR = -0.0034Ln(\jI) + 0.0118 R2 
= 0.991 

Disturbed Core IGR = -0.0001 *\jI + 0.0024 R2 
= 0.953 

Undisturbed Core IGR = -0.0073Ln(\jI) + 0.0195 R2 
= 0.958 

20°C 

Pot IGR = -0.007Ln(\jI) + 0.022 R2 
= 0.967 

Disturbed Core IGR = -0.0079Ln(\jI) + 0.0218 R2 
= 0.997 

Undisturbed Core IGR = -0.0007*\jI + 0.0123 R2 
= 0.985 
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Figure 1. Influences of soil temperature and moisture on the instantaneous growth rate 

(IGR) of A. caliginosa in pots. Values are shown as mean ± S.E. (n=10). Columns with 

the same letters did not differ significantly (P < 0.05). 
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Figure 2. Effects of container type, soil temperature and soil water potential on the 

instantaneous growth rate (IGR) of A. caliginosa. Values are shown as mean ± S.E. 
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FOREWORD TO CHAPTER 3 

In the previous chapter we obtained growth rate data for Aporrectodea caliginosa 

earthwonns grown individually in containers across a wide range of soil temperatures and 

soil moistures that are specifie to Québec agroecosystems. l demonstrated that earthwonn 

growth rates are sensitive to the shape of container used for culturing the earthwonns. 

Therefore there may be bias if the relationship between earthwonns, soils and plants are 

studied in pot experiments in the greenhouse. Field enclosures will provide a much larger 

"pot" within which to study to effects of earthwonns on soil nutrient cycles. The field 

experiment will also provide more realistic climate conditions than a climate-controlled 

greenhouse. The growth rate and mortality data obtained in the previous chapter will be 

useful in Chapter 4 when l combine the data from the laboratory and field experiments 

and begin to build a model to make predictions about N mineralization from earthwonns. 

66 



CHAPTER 3. 

Impacts of earthworms on soil nutrients and plant growth in 

soybean and maize agroecosystems. 

3.1 Abstract 

The objective of this experiment was to detennine the effects of earthwonns on soil N 

pools and plant growth in soybean and maize agroecosystems. The species and number of 

individuals in earthwonn communities were manipulated in plot-scale field enclosures 

(2.4 x 1.2 m) by first reducing earthwonn populations within enclosures with carbaryl 

pesticide, and then adding earthwonn treatments to the enclosures. Soybean was grown in 

the enclosures in the first year and stover maize in the second year. 

The success of earthwonn manipulations in field enclosures was affected by climate 

conditions and available food resources. The endogeic earthwonn species Aporrectodea 

caliginosa was dominant in aIl enclosures, while introduced anecic Lumbricus terres tris 

earthwonns had poor survival. In the first season, when climate conditions were 

favourable for earthwonn survival and growth, there was a significant (P < 0.05) linear 

increase in soil mineral-N and microbial biomass N concentrations in the 0 -15 cm depth 

of enclosures with more earthwonns. Similarly, soybean grain and grain-N yield was 

significantly (P < 0.05) greater in enclosures with the largest earthwonn populations than 

the control which had no earthwonns added. In the second season, when climate 
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conditions were less favourable, there was no effect of earthwonns on soil N pools or 

maize plants, probably due to poor survival of introduced earthwonns. 

3.2 Introduction 

Earthwonns are commonly referred to as ecosystem engineers for their ability to modify 

soils and plant communities (Lavelle et al., 1997; Hale et al., 2005). Through the 

incorporation of surface Htter, casting, burrowing and other activities, earthwonns can 

significantly alter soil physical properties (Edwards and Shipitalo, 1998), soil nutrients 

(Edwards and Bohlen, 1996), soil biological communities (Doube and Brown, 1998), and 

above-ground plant communities (Piearce et al., 1994; Wurst et al., 2005). 

The functional relationships between earthwonns, soils and plants have been extensively 

studied in microcosm and laboratory experiments. However, extrapolating these results to 

the ecosystem-Ievel is difficult. Earthwonn activities may be overstated in small-scale 

experiments due to the control of environmental variables like temperature, soil moi sture 

and food availability or because an unrealistic number of earthwonns are added to small 

containers or mesocosms. The challenge is to quantify the influence of realistic 

earthwonn communities at the field-Ievel (Bohlen et al., 2004), which is often done by 

manipulating earthwonn populations and communities in large-scale field enclosures 

(see Bohlen et al., 1995; Baker et al., 1996; Subler et al., 1997). However, there is 

considerable variation in the success of earthwonn manipulations in field enclosures, 
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depending on the methods used, climate and soil conditions (Bohlen et al., 1995; Baker et 

al., 1996; Zaller and Arnone, 1999; Emmerling and Pausch, 2001). 

Therefore, the objectives ofthis experiment were, (1) to determine the effects of an 

earthworm community, dominated by A. caliginosa and L. terres tris, on soil nutrient 

dynamics and plant growth in soybean and maize agroecosystems, and (2) determine the 

success of manipulating earthworm communities by reducing population with pesticide 

and adding earthworms belonging to different functional groups. 

3.3 Materials and Methods 

The study was conducted from May to September in 2004 and 2005 on the Research 

Farm of Macdonald Campus ofMcGill University, Quebec, Canada (45°25' N, 73°56' 

W). The field was used for soybean and maize production in the two years prior to this 

experiment and before that was a turfgrass sports field. The soil was a mixed, frigid Typic 

Endoquent, classitied as a Chicot series sandy loam. It had a pH (H20) of 5.9, an organic 

C content of24.5 g C kg-l, and contained 580 g kg-1 sand, 300 g kg-1 silt, and 120 g kg-1 

clay. A field survey in May, 2003 found an earthworm community with an average of 50 

individuals m-2 of A. caliginosa and 15 individuals m-2 of L. terres tris, and age class 

ratios ofjuveniles to adults of 4:1 and 3:1, respectively. 

Field enclosures were installed in April, 2004. These rectangular sheet metal enclosures 

measured 2.4 x 1.2 m (2.9 m2) and were buried to a depth of 0.30 - 0.40 m. The corners 
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and top edges of the enclosures were bent at right angles to ensure a tight fit between 

pieces and minimize earthworms escaping from the enclosures. The enclosures remained 

in place for the 2004 and 2005 seasons. 

At the beginning of each season, carbaryl pesticide (Sevin®) was applied to reduce 

earthworm populations in the enclosures. Beginning on April 2Sth
, 2004, carbaryl was 

applied five times during a 25 day period, giving a totalload of about 0.02 kg a.i. m-2
. 

The next year, we began on April 16th
, 2005, and applied carbaryl four times during a 35 

day period for a totalload of about 0.04 kg a.i. m-2
• In both years, the last application of 

carbaryl was made 10 days before adding earthworms to the enclosures. 

On May 2Sth
, 2004, a single row of 100 soybeans (Glycine max (L.) cv. Merril) was sown 

by hand lengthwise, in the centre of each enclosure (equivalent to a planting density of 

350,000 plants ha71
). Germination and seedling establishment was even across all 

treatments, except in one enclosure. Here we planted 30 additional seeds and thinned to a 

similar density as the other enclosures within three weeks of the original sowing date. On 

June 1 st, 2005, a single row of 15 silage maize (Zea mays (L.) cv. Mycogene 2K350) 

seeds were sown by hand lengthwise, in the centre of each enclosure (equivalent to a 

planting density of 52,000 plants ha-1
). Germination and seedling establishment was 

uneven and additional seeds were planted seven days later. After two weeks, we thinned 

to 12 plants per enclosure. No fertiliser or pesticide was added to either crop. Weeds were 

removed by hand as required throughout the season. 
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3.3.1 Experimental Design 

The experiment was a randomised complete block design with seven earthworm 

population treatments and four blocks. The seven earthworm population treatments were 

three combinations of earthworms as A. caliginosa only (A), L. terres tris only (L), and a 

combined A. caliginosa and L. terrestris treatment (AL), at either a background 

population level (lx) or double the background population level (2x), and a control 

treatment with a reduced earthworm population. In the one to four weeks before the 

experiment began, earthworms were collected from around the field site and nearby 

arable fields by hand-sorting and formalin extraction (Raw, 1959). The earthworms were 

sorted by species and age-class and kept in laboratory cultures (38 1 plastic bins) 

containing soil from the field site, regularly watered and fed with composted cattle 

manure. The mean fresh weight biomass of earthworms added to enclosures was similar 

in both years. In 2004 the fresh weight biomass of adult and juvenile A. caliginosa was 

0.48 ± 0.19 g and 0.31 ± 0.11 g, respective1y, and 4.79 ± 1.07 g and 1.53 ± 0.87 g for 

adult and juvenile L. terrestris, respectively. In 2005 the fresh weight biomass of adult 

andjuvenileA. caliginosa was 0.59 ± 0.27g and 0.24 ± 0.13 g, respectively, and 4.72 ± 

0.86 g and 1.87 ± 0.99 g for adult and juvenile L. terrestris, respectively. The ratio of 

juvenile to adult earthworms added to enclosures in both years was 1.5 for A. caliginosa 

and 3.9 for L. terres tris . In both years, we attempted to add earthworms to the enclosures 

on a cloudy overcast day; June 1 st in 2004, and June 6th in 2005. Earthworms were 

transported to the field in one litre pots, each containing 10- 30 earthworms in about 100 

g ofmoist field soil. The earthworms in each pot were spread evenly in two trenches (5-
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10 cm deep), dug lengthwise in the enclosures. The earthworms were then lightly covered 

with soil and about seven litres ofwater was poured evenly along the trenches. Straw was 

lightly placed above the trenches to provide additional protection from direct sunlight and 

predators. The straw was removed three days later. The number and biomass of 

earthworms added to each treatment in June and collected in October in 2004 and 2005 

are presented in Tables 1 and 2. We considered the results from each season 

independently since carbaryl was applied to reduce the earthworm populations in both 

years, before treatments were applied. To avoid the confounding effect of previous 

earthworm manipulation during the 2005 season, the earthworm treatments within each 

block were re-randomised in April, 2005. 

3.3.2 Plant, Earthworm and Soil Analysis 

In 2004, five soybean plants from each enclosure were carefully uprooted six, ten and 

fourteen weeks after sowing. In week six and ten only, plant roots were washed and the 

root dry weight and number of Rhizobium nodules recorded. On Sept 29th
, about 18 

weeks after sowing, the shoots of 20 soybean plants were cut at the soil surface from each 

enclosure. Shoot dry weights were determined in all weeks, and grain dry weights 

recorded in week 18 only. On August 2nd
, 2005, about nine weeks after sowing, six 

maize leaves per enclosure were taken for nutrient analysis. On September 26th
, all12 

maize plants were. harvested from each enclosure by cutting shoots at the soil surface and 

the shoot, cob and grain dry weights were determined. In both years, sub-samples were 

taken from aU shoot, leaf and grain samples and ground with a Wiley mill « Imm mesh). 
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Plant shoot, leaf and grain sub-samples were digested with H2S04/H202 (Parkinson and 

Allen, 1975) and digests were analysed colorimetrically for N and P using a Lachat Quick 

Chem autoanalyzer (Lachat Instruments, Milwaukee, WI, USA), and for K using atomic 

absorption spectrometry. N-yield of soybean grain and maize plants were determined on a 

plant specific basis by multiplying the grain or tissue N concentration by the grain or total 

weight for soybean and maize plants, respectively. 

In both years, earthworm populations were sampled from a soil pit (50 x 30 cm to a depth 

of 20 cm) dug in the middle of each enclosure one to five days after plant harvest. The 

removed soil was.hand sorted for surface-dwelling earthworms, and formalin extraction 

(Raw, 1959) was used to collect earthworms from lower depths beneath the pit. 

Earthworm numbers, age classes, and fresh biomasses of earthworms were later recorded 

in the labo Sexually mature individuals were identified to the species level using the key 

provided by Reynolds (1977). In May 2005, earthworm populations were sampled using 

the same method described above from a soil pit (15 x 15 cm to a depth of20 cm) dug in 

the middle of each enclosure one week prior to adding earthworms. 

In both years, soils from each enclosure were sampled two to three days after plant 

harvest. Four soilcores were taken diagonally across each enclosure from two depths (0-

15 cm and 15 - 30 cm) with a soil auger (2 cm internaI diameter) and composited into 

one sample per depth per enclosure. Soil samples were kept at 4°C untillaboratory 

analysis. Mineral nitrogen (N03-N + NH4-N) was determined by extracting 5 g field-

moi st soil with 50 ml of2 M KCI (Maynard and Kalra, 1993). After shaking for one hour 
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and filtering, the extract was analysed by colorimetry for N03-N and NH4-N on a Lachat 

Quick Chem auto-analyser (Lachat Instruments, Milwaukee, WI, USA). Microbial 

biomass nitrogen (MBN) in soil samples was analysed using the chloroform fumigation­

direct extraction method followed by persulfate digestion and calculated as: [(total 

extractable N after fumigation - total extractable N before fumigation)/0.54] (Brookes et 

al., 1985; Joergensen and Mueller, 1996). Dissolved organic nitrogen was calculated as 

the difference between the N03-N and NH4-N concentrations in a persulfate digested soil 

extract and the original undigested soil extract (Cabrera and Beare, 1993). Available P 

and K were detennined by extracting 2.5 g air-dry soil with 25 ml Mehlich-III solution 

(Tran and Simard, 1993). The P concentration in extracts was analysed colorimetrically 

on a Lachat Quick Chem auto-analyser (Lachat Insturments, Milwaukee, WI, USA) and 

K concentration was measured using atomic absorption spectrophotometry. 

3.3.3 Statistical Analysis 

The effects of earthworm treatment on soil properties, soybean nodulation, plant nutrients 

and yields were evaluated by one-way analysis of variance using the PROC GLM 

function of SAS software (SAS Institute, 2001). The differences between least square 

means of signific~t treatment effects were evaluated using the Tukey-Kramer HSD test 

(P = 0.05). Regre~sion lines were fitted using the PROC REG function of SAS software 

(SAS Institute, 2001). 
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3.4 Results 

Daily temperature fluctuations and weekly rainfall patterns in 2004 were similar to the 

30-year mean for the region (Environment Canada, 2005). More extreme temperature and 

precipitation events were observed in 2005. In 2005, ab ove normal temperatures began in 

early June and continued for the next 12 weeks. There were eight days in June and nine 

days in July, 2005 with a maximum temperature of over 30°C. In contrast, the 30-year 

mean indicated 1.(5 days in June and four days in July with a maximum temperature 

above 30°C. In 2004, temperatures were cooler than normal, with no days in June and 

only one day in July with a maximum temperature of over 30°C. The total precipitation 

during the experiment was similar in 2004 (305 mm) and 2005 (404 mm) to the 30-year 

mean (395 mm). However, the frequency of rainfall events was low in 2005 but the 

average rainfall per event was greater. Weekly rainfall tended to be lower than long term 

averages in June and July of 2005, except for three aboye-average rainfall events totalling 

178 mm. In the week following earthworm introductions in 2004, temperatures ranged 

from 9°C to 25°Gwith a mean temperature of 15°C, and total precipitation was 36 mm in 

the week following earthworm introduction. In 2005, temperatures ranged from 14°C to 

33°C with a mean temperature of23°C, and total precipitation was only 6 mm in the 

week after earthworms were placed in enclosures. 

In 2004 and 2005 the manipulation of species and abundance of earthworms in each 

treatment was not.successful. Although significant differences in earthworm population 

(P < 0.01) and biomass (P < 0.03) recovered in October were found between treatments 
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in 2004 (Table 1), there were no significant differences in the number of earthworms of 

each species recovered in October between treatments in 2004 or 2005 (data not shown). 

In October 2004, the earthworm community in aH enclosures was dominated by A. 

caliginosa (59 -100 %) with a few L. terrestris (0 - 33%) and Aporrectodea longa (0-

23%), and in October 2005 it was dominated by A. caliginosa (56 - 100 %) with a few L. 

terres tris (0 - 44%) andA. longa (0 - 8%). 

In May, 2005, after three applications of pesticide and before the addition of earthworms, 

the populations within enclosures were reduced to 32 individuals m-2 with a fresh weight 

biomass of 3 g m-2
, on average. There was no difference between enclosures applied the 

previous year suggesting that the re-randomising of treatments was not biased by the 

earthworm treatments. 

Even though the manipulation of the abundance of different earthworm species was not 

successful, the manipulations did achieve a wide range of population and biomass across 

aH enclosures. In 2004, the earthworm populations in enclosures ranged from 53 - 553 

individuals m-2 and biomass ranged from Il - 159 g fw m-2
, and in 2005 the populations 

ranged from 33 - 347 individuals m-2 and biomass ranged from 9 - 104 g fw m-2
• 

In 2004, a significant increasing linear relationship was found between earthworm 

numbers and N03-N (P = 0.01), NH4-N (P = 0.03), and MBN (P < 0.001) concentrations, 

and between earthworm fresh-weight biomass and MBN (P = 0.008) in the 0 - 15 cm soil 
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depth. A decreasing linear relationship was found between earthworrn numbers and the 

DON (P = 0.017) concentration in the 0 - 15 cm soil depth. No significant relationships 

were found between earthworrn numbers, biomass and soil nutrients in the 15 - 30 cm 

depth. The relationships between earthworrn numbers and the mineral-N (N03-N + NH4-

N), and MBN concentrations in the 0 - 15 cm depth are presented in Figures 1 and 2. In 

2005, there were no significant relationships between earthworrn numbers or biomass and 

soil nutrient concentrations at both depths. 

In 2004, soybean grain yield ranged from 15.7 - 28.8 g planr l
, and total harvested yield 

ranged from 44.2 - 74.8 g planr l
. Significant logistic relationships were found between 

earthworrn numbers and total grain-N per plant (P = 0.002) (Fig. 3) and grain yield (P = 

0.036), and earthworrn fresh-weight biomass and total grain-N per plant (P= 0.004), grain 

yield (P = 0.016), and total yield (P = 0.03). No relationships were found between 

earthworrn numbers or biomass and the number of nodules per plant at six and ten weeks, 

and nutrient concentrations in grain at harvest. 

In 2005, maize grain yield ranged from 62.5 - 184 g planr l
, and total sil age yield ranged 

from 184 - 384 g planr l
. However, no relationships were found between earthworrn 

numbers or biomass and nutrient concentrations in stover and grain, total N yield per 

plant at harvest, and grain, stover and total sil age yield. 
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3.5 Discussion 

The manipulation of earthwonn functional groups was not successful in both years. A. 

caliginosa earthwonns were most numerous in all treatments indicating that earthwonns 

or cocoons of this species survived better after carbaryl application than those of other 

species. The average number of L. terres tris in all treatments did not differ signiticantly 

in both years (24 vs 29 individuals m-2 in 2004 and 2005, respectively) and were similar 

to the average number found in background samples (17 and 30 individuals m-2 in 2004 

and 2005, respective1y). Moreover, in both years, treatments with introduced L. terres tris 

had the same mnI1ber as those with no introduced L. terrestris. This may indicate high 

mortality of introduced L. terres tris and persistence of the initial L. terres tris population 

and cocoons, even after several applications of carbaryl pesticide. The number of A. 

longa earthwonns in enclosures decreased from an average of 19 to 2 individuals m-2 

between the tirst and second years, indicating that it may take longer than two years to 

e1iminate non-inttoduced species from enclosures with carbaryl pesticide. 

The introduction of earthwonns, regardless of functional group, was more successful in 

2004 than in 2005, even though earthwonns were added on almost the same day each 

year. A combination ofhigher temperatures, lower precipitation and lower food 

availability may have led to greater mortality when earthwonns were introduced in a 

2005 than 2004. 
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The effectiveness· of carbaryl applications at reducing the naturaIly-occurring earthworm 

populations was not very consistent. Carbaryl applications did not completely eliminate 

earthworms from the enclosures, and the earthworms that persisted were probably active 

and capable of growing and reproducing as introduced earthworms. However, the control 

treatments were similar in both years and had the fewest number of earthworms, from 77 

- 93 individuals m-2
, and lowest biomasses, ranging from 23 - 25 g fw m-20f aIl 

enclosures. Furthermore, the earthworm populations within control enclosures were 

similar to populations at locations adjacent to the enclosures (background population) in 

2004 but not 2005 (Tables 1 & 2).In sandy loam soils, such as at our field site, carbaryl 

has a half-life of &bout four to seven days (Venkateswarlu et al., 1980). Nonetheless, 

carbaryl can reduce earthworm numbers and biomass by up to 90 % and these low 

numbers persist for up to three weeks after application (Potter et al., 1990; Vangestel, 

1992). 

In other field studies, earthworm community manipulations have had varied success. In 

pastures of south-eastem Australia, the introduction of earthworms into 30 cm diameter 

cores has generally shown moderate survival ofintroduced species (50 - 80 %), a high 

number of non-introduced species (25 - 200 individuals m-2
) and varied population 

growth ranging fr0m 0.5 - 3 times the introduced population (Baker et al., 1996; 1999a,b; 

2002; Chan et al., 2004). In Ohio, USA, earthworms introduced over a three year period 

into large 4.5 x 4.5 m field enclosures had high mortality since populations grew by only 

12 - 22 % even though the total population added over three years was three times 

greater than the final population (Bohlen et al., 1995). In another earthworm manipulation 
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study in Ohio, earthworm populations did not differ between increased and unmodified 

population treatments five months after earthworms were introduced into 6.1 x 6.1 m 

enclosures (Subler et al., 1997). Similar low survival rates were reported by Boyer et al. 

(1999) on Reunion Island, where only about 10 % of earthworms added to 6.0 x 1.5 m 

enclosures survived seven months after introduction. Emmerling and Pausch (2001) had 

better success in Gennany where earthwonn populations introduced into 1.4 x 0.9 m 

enclosures increased between two to five fold over two years. Similarly, two years after 

adding earthwonns to 1 x 1 m enclosures in a Swiss grassland, populations were about 

50% greater than ambient populations, and ambient populations were about twice the size 

of reduced populations (Zaller and Amone, 1999). In aIl of these studies, the success of 

earthworm manipulations into field enclosures was not consistent for any particular 

species or functional group. 

The effect of earthworms on soils differed in each year. In 2004, our results indicate that 

the size of the earthworm population was related positively to the total mineral-N (N03-N 

+ NH4-N) and MBN concentrations after harvest (September, 2004). The relationship 

described in Figure 1 suggests that an individual earthworm can increase the soil mineral­

N pool by 0.02 kg N m-2
• Expressed in more tangible terms, a field with a high 

eaithwonn population (300 individuals m-2
) could have 14 kg N ha-1 more in the 0 - 15 

cm soil depth than a field with a 10w population (30 individuals m-2
). We assume that 

most ofthis mineral-N was generated by the activities of the endogeic A. caliginosa since 

they were the dominant species at our site. The greater amounts ofminera1-N in soils 

suggest that high earthworm populations in the autumn may increase the risk ofN 
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leaching from soils after harvest. However, the increase in MBN also suggests that sorne 

of the increase in available-N was being captured in the microbial biomass. 

In 2005, a wide range of earthworm populations and biomass was found across aIl 

enclosures as a result of earthworm manipulations, yet there were no relationships 

between earthworm population, biomass and soil nutrients. This important result suggests 

that the effect of earthworms on soil N dynamics cannot be predicted by earthworm 

population or biomass alone. 

Previous studies investigating the effect of earthworm additions on soil nitrogen 

dynamics gave mixed results. In a maize-based enclosure study in Ohio, Blair et al. 

(1997) found that the addition of earthworms increased the soil N03-N concentration 

over a two year period in inorganicaIly fertilized plots but not in manure or legume 

fertilized plots. Furthermore, they found that earthworm addition had increased soil N03-

N concentration at lower depths (15 - 45 cm) in two consecutive growing seasons and in 

the 0 - 15 cm depth in only one of the two growing seasons. In contrast, results from a 

mesocosm experiment by Bohlen and Edwards (1995) show that earthworms increased 

the amount ofN03-N at the 0 - 5 cm depth but had no effect at the 5 - 15 cm depth. In 

another enclosurestudy in Ohio, the addition of earthworms did not increase mineral-N 

concentrations in maize-soybean or maize-soybean-wheat systems in the 0 - 45 cm 

depths but did increase pools of organic N (MBN and DON) (Subler et al. 1997). This is 

consistent with our results of greater MBN concentrations in the 0 - 15 cm soil depth 
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with increasing earthworm population, however DON concentrations decreased as 

earthworm population size increased. 

Soybean and silage maize responded differently to earthworm populations. When weather 

conditions were more favourable for earthworm activity, as under soybean production in 

2004, there were more noticeable effects of earthworms on plant growth and nutrient 

uptake. Regression analysis shows that soybean grain yield could be 25 % greater and the 

total N removed in soybean grain (g N per plant) could be 40 % greater in fields with 

high earthworm populations (> 400 individuals m-2
) than in fields with low earthworm 

populations « 50individuals m-2
) (Figure 3). 

A lack of response by maize to earthworm activity has been found in other field and 

greenhouse studies (Mackay and Kladivko, 1985; Stinner et al., 1997; Boyer et al., 1999). 

The differences between the effects of earthworms on soybean and maize growth may be 

partially related to the N requirements and rooting pattern of each plant. The 

recommended N fertiliser requirements of sil age maize (120 - 170 kg N ha- I
) are much 

greater than soybeans (0 - 30 kg N ha- I
) due to the N fixation ability of soybeans 

(CRAAQ, 2003). Therefore, any contribution of nitrogen from earthworms will supplya 

much greater proportion of the recommended N for soybeans than for maize. 

Furthermore, soybean plants have three times greater proportion ofthin roots « 0.12 cm) 

than maize plants in the 0 - 10 cm soil depth and the root dry matter density per soil unit 

volume is greater for maize than soybean plants at lower depths (Venzke et al., 2004). 

The greater proportion of thin roots of soybean plants in the 0 - 10 cm depth provides 
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greater contact with the soil matrix, enabling greater nutrient and water uptake. Since the 

effects of earthwonns on soil nutrients in our experiment occurred in the 0 - 15 cm depth, 

the sha1low rooted soybeans would probably benefit more from earthwonn activities that 

increase soil-N pools than the deep rooted maize. 

3.6 Conclusions 

Our research suggests that in sorne agroecosystems earthwonns contribute positive1y to 

plant growth only when populations are high (> 300 ind. m-2
) and when fàvourable 

weather conditions exist. Although we did not detect significant differences between the 

endogeic and anecic earthwonn treatments, a higher earthwonn population, principally 

consisting of the endogeic speciesA. caliginosa, was associated with greatermineral-N 

and MBN concentrations in surface (0 - 15 cm) soils, and higher grain N yie1d in 

soybeans. A combination of po or survival of introduced earthwonns and low activity of 

the surviving earthworms may explain the lack of effects of earthwonns on maize plants. 
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Table 1. Earthwonn populations and biomass added in June, 2004 and collected in 

October, 2004 from enclosures under soybean productiont 

Earthwonn Population Biomass 

Treatment (individuals m-2 ± S.E.) (g fresh weight m-2 ± S.E.) 

June October June October 

Control 0 77± 12 b 0 25 ± 7.5 b 

AIx 50 190 ± 56 ab 21 56± 15 ab 

A2x 100 330 ± 87 a 42 86 ± 22 ab 

L1x 15 170 ± 24 ab 34 55 ± 9.2 ab 

L2x 30 220± 46 ab 67 77 ± 12 ab 

ALIx 65 180 ± 62 ab 55 86 ± 25 ab 

AL2x 130 380± 47 a 109 92±8.7 a 

Backgroundtt 123 ± 30 59 ± 4.5 

ANOV A treatment effects 

Treatment p= 0.01 P=0.03 

t Values in each column for each treament followed by similar letters are not significantly different by 

Tuk:ey's HSD test (P = 0.05). 

tt Background samples were the average of two pits and therefore were not inc1uded in the statistical 

analysis 
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Table 2. Earthwonn populations and biomass added in June, 2005 and collected in 

October, 2005 from enclosures under silage maize production. 

Earthwonn Population Biomass 

Treatment (individuals m-2 ± S.E.) (g fresh weight m-2 ± S.E.) 

June October June October 

Control 0 93 ± 18 0 23 ± 5.4 

AIx 50 132 ± 23 24 34 ± 7.1 

A2x 100 135 ± 33 47 25 ± 8.4 

L1x 15 147 ± 67 37 44± 19 

L2x 30 117 ± 45 75 33 ± 10 

ALIx 65 153 ± 24 61 43 ± Il 

AL2x 130 95 ± 10 123 44±20 

Backgroundt 233 ± 15 118 ± 3 

ANOV A treatment effects 

Earthwonn n.s. n.s. 

t Background samples were the average of two pits and therefore were not included in the statistical 

analysis 
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) in the 0 - 15 cm 

depth and earthworm population under soybean production in 2004 (n = 28). 
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FOREWORD TO CHAPTER 4 

The previous chapter determined how the manipulation of earthworm communities in 

field enclosures affected soil nitrogen pools, and soybean and maize growth. The 

influence of weather patterns was significant on the success of earthwonn introductions 

and N mineralization by earthworms. A modelling approach will be used to extrapolate 

this information and predict N mineralization from earthworm communities in other 

agroecosystems. Laboratory growth rate data from Chapter 2 and field data from Chapter 

3 will be used to develop a model to make estimates ofN flux through earthworm 

communities. A sub-set of this model involves the calculation of earthworm secondary 

production. The N in earthworm biomass can represent a significant amount of the N 
, 

cyc1ed by earthworms and therefore an accurate estimate of earthworm secondary 

production is required. In the following chapter we present the "deduction" approach as a 

means ofestimating earthworm secondary production without repeatedly sampling 

earthworms from the enclosures. 
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CHAPTER 4. 

The "Deduction" Approach: A Non-Invasive Method for 

Estimating Secondary Production of Earthworm Communities 

4.1 Abstract 

Secondary production is an important parameter for the study of population dynamics and 

energy flow through animal communities. Secondary production of earthworm 

communities is commonly determined by using the size-frequency or instantaneous 

growth rate methods whereby earthworm populations are repeatedly sampled at regular 

intervals and the change in earthworm biomass determined between sampling dates. The 

major disadvantage with these methods is the physical disturbance of soils and removal 

of individuals from the community. The "deduction" approach is a theoretical model 

which divides earthworms into specifie "pools" and makes assumptions about the growth, 

recruitment and mortality of the different pools in order to estimate secondary production 

ofthe earthworm community. In 2004 and 2005, the size of earthworm communities were 

manipulated in field enclosures and the "deduction" approach was used to estimate 

secondary production of these earthworm communities during the crop growing period 

(17 - 18 weeks) in each year. Secondary production estimates made by the "deduction" 

approach were similar to estimates made by other direct sampling methods in other 

ecosystems. This method may be used for the estimation of secondary production of other 

organisms in manipulation studies where repeated removal ofindividuals·or physical 

disturbance could bias results. 
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4.2 Introduction 

Secondary production describes the growth, mortality and recruitment of organisms in a 

community and is an important parameter for the study of population dynamics and the 

analysis of energy flow through animal communities. Both direct and indirect methods of 

estimating secondary production have been developed. Calculations of secondary 

production using direct methods such as the cohort method (Crisp, 1971), size-frequency 

method (Hynes, 1961), and the instantaneous growth rate method (IGR) (Romanovsky 

and Polishchuck, 1982) generally yield comparable results (Sardâ et al., 2000; Medemach 

and Gremare, 1999). Indirect methods for estimating secondary production are based on 

empirical relationships between body size and production. They provide similar estimates 

of secondary production only when a large number of populations and a broad range of 

environmental conditions are used to develop the relationships (Sardâ et al. 2000). 

Secondary production of fish and aquatic invertebrates is monitored routinely (Benke, 

1984), but is also relevant to terrestrial organisms such as earthworms. Due to their key 

influence on soil organic matter decomposition, nutrient cycling and primary production 

(Fragoso et al., 1997; Lavelle et al., 1997), many researchers have attempted to quantify 

energy and nitrogen flux through earthworm communities from secondary production 

estimates (Parmelee and Crossley, 1988; Whalen and Parmelee, 2000). Secondary 

production represents about 8 - 18% of the N cycled through earthworm communities, 

which is estimated at between 7 and 363 kg N ha-1 year-1 (Parmelee and Crossley, 1988; 

Marinissen and de Ruiter, 1993; Curry et al., 1995; Whalen and Parmelee, 2000). The 
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contribution of earthworms in N cycling can be important considering that the N demand 

of field crops (wheat, maize, etc) is often greater than 100 kg N ha-1
• 

Secondary production of earthworm communities can be determined by repeatedly 

collecting earthworms at regular intervals throughout the frost-free periods ofthe year 

and inferring the change in earthworm biomass between sampling dates (Satchell, 1963; 

Bostrôm, 1988; Parmelee and Crossley, 1988). It is challenging to estimate earthworm 

secondary production due to difficulties in gauging the age of individuals, the lack of 

cohort-specific developmental phases and the heterogeneous distribution of naturally­

occurring communities (Rossi et al., 1997; Whalen and Parmelee, 2000). Earthworm 

manipulation experiments permit researchers to add individuals ofknown age and 

biomass to a designated area ( enclosure), and determine their impact on soil properties 

and plant growth during a period oftime (Eriksen-Hamel and Whalen, 2007). It becomes 

impossible to estimate their secondary production using routine methods because 

repeated earthworm collection would disturb the earthworm community in an enclosure. 

We developed the "deduction" approach which would permit researchers to estimate 

secondary production of earthworms or other terrestrial animaIs in laboratory mesocosms 

or field enclosures without repeated invasive sampling. 

The objective ofthis paper was to use the "deduction" approach to estimate secondary 

production of earthworm communities in field enclosures. This was based on 

assumptions about growth, recruitment and mortality of an introduced earthworm 
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community during a 16 week period (June - October) in soybean and maize 

agroecosystems. 

4.3 Materials and methods 

4.3.1 Description of Field Site and Experiment Design 

A field experiment was designed to evaluate the effects of controlled earthworm 

populations on soil properties and crop yield in field enclosures. It was conducted from 

May 2004 to September 2005 on the Macdonald Campus Research Farm, McGill 

University, Quebec, Canada (45°25' N, 73°56' W). In May 2004, rectangular sheet metal 

field enclosures, measuring 2.4 m x 1.2 m (2.9 m2
), were buried to a depth of 0.30 - 0.40 

m. Seven enclosures were arranged in four blocks, for a total of 28 experimental units. 

During the months of May 2004 and May 2005, carbaryl pesticide (Sevin®) was applied 

4 - 5 times to each enclosure (total application of220 kg a.i. ha- l year- l
) to reduce 

earthworm populations. The pesticide was applied according to recommended 

applications rates :made by Potter et al. (l990). Native earthworms collected from the 

surrounding field were added to the enclosures on June 1, 2004 and on June 6, 2005, and 

remained in enclosures for about 17 - 18 weeks. The seven treatments included three 

earthworm populations as Aporrectodea caliginosa only (Ac), Lumbricus terres tris only 

(Lt), and a combined A. caliginosa and L. terres tris treatment (AcLt), at either the 

background population level (lx) or double the background population level (2x), and a 

control treatment (Control). Earthworms were sampled from a soil pit (50 x 30 cm to a 
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depth of20 cm) dug in the middle of each enclosure on September 30,2004 and 

September 28,2005. Formalin extraction (Raw, 1959) was used to collect earthworms 

from lower depths beneath the pit. Earthworm numbers, age classes, formalin-preserved 

biomass and ash-free dry weight (AFDW) of collected earthworms were later recorded in 

the labo Ash-free dry weights were determined by placing dried (90°C for 24 hours) 

earthworms in a muffle fumace at 500°C for 4 hours. Sexually mature individuals were 

identified to the species level using the key provided by Reynolds (1977). The number 

and biomass of earthworms added in each treatment in the spring and collected in the 

autumn are provirled in Table 1. Further details of the experimental design, description of 

soils, and methods of plant and soil sampling and analysis are described in Eriksen­

Hamel and Whalen (2007). 

4.3.2 Assumptions about Earthworm Activity 

The number of days that earthworms are active throughout the year significantly impacts 

the estimates of secondary production. Based on weekly soil temperature and moisture 

measurements from each enclosure (Fig. 1), growth rate data for A. caliginosa determined 

in soils from the same site (Eriksen-Hamel and Whalen, 2006) and casting activity of 

earthworms in enclosures (Perreault et al., 2007), we determined that earthworm growth 

and activity ceased when soil temperatures exceeded 22°C and soil moi sture was below 

20% WFPS. Thus, earthworm activity was positive (+) at soil temperature < 22°C and 

soil moisture > 2Q% WFPS, while neutral (0) activity occurred at these values and 

negative (-) activity occurred when the critical temperature and moisture levels were 
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exceeded. Although earthwonns were expected to be inactive on days with negative 

activity, we assumed that earthwonns could possibly be active on days with neutral 

activity. We estimated the number of days with positive earthwonn activity was was 77 

(± 14) in 2004 and 49 (± 14) in 2005, where the uncertainty associated with these values 

is the number of days with neutral activity (14 d) in each year (Fig 1, Table 2). 

4.3.3 Assumptions about Earthworm Growth and Mortality to Estimate Earthworm 

Secondary Production 

Earthwonn numbers and biomass in each enclosure changed between the date of 

earthwonn addition (early June) and the final population assessment following crop 

harvest. Most lateral movement by earthwonns occurs in the 0 - 20 cm depth (Francis et 

al., 2001; Bastardie et al., 2003) and since the enclosures extended 30 - 40 cm deep, we 

assumed that there was no immigration or emigration from the enclosures. We also 

assumed that earthwonn removal by predation (eg. birds) was negligible in aIl enclosures. 

Bird flocks were observed often on neighbouring alfalfa fields, which typically have large 

earthwonn populations, and we presume that foraging success was greater elsewhere than 

at our field site. Removal of surface residues in the spring and regular weeding probably 

made field enclosures unattractive for other earthwonn predators, as we saw no evidence 

ofvoles or snakes in the vicinity of our study site. Therefore, the fluctuations in 

earthwonn populations and biomass were due to recruitment ofhatchlings from cocoons, 

growth (secondary production) and biomass 10st via mortality. 
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The "deduction" approach involves separating the earthwonns into different pools and 

deducing the fateof each pool with assumptions about growth, reproduction and 

mortality (Fig. 2). The earthwonn biomass in the control treatment at the end of the 

season (Controlfinal) was from earthwonns that survived pesticide application (Sf), 

earthwonns that hatched from a cocoon deposited prior to pesticide application (Cr) and 

the offspring of these earthwonns (RI). To differentiate these three earthwonn pools (Sf, 

Cf and RI), we detennined the maximum biomass that an earthwonn could achieve if it 

emerged from a cocoon the day after the last pesticide application. This was based on the 

number of days with soil temperature and moi sture conditions conducive for earthwonn 

growth (77 d in 2004, 49 d in 2005) and growth curves for each earthwonn species 

obtained from the literature (Table 3). The maximum fresh weight biomass that newly 

emerged earthwonns could grow to was 0.4 g for the three earthwonn species found in 

the control treatment in 2004 and 0.3 g for these species in 2005 (Table 3). This 

corresponds to instantaneous growth rates (IGR) ofapproximately 0.01 - 0.03 d-1 for aIl 

species, which are comparable to IGRs calculated in other studies (Mazantseva, 1982; 

Whalen and Pannelee, 1999; Booth et al., 2000; Weyer et al., 2001). Thus, earthwonns in 

the control treatment with a biomass greater than these maximum limits were considered 

to have survived pesticide application (Sf). 

The biomass of earthwonns belonging to the Cf and RI pools was calculated by 

subtracting the pesticide survivors (Sf), and adding mortality (Ms, Mc, MRl) from the 

earthwonns found in the control treatment at the end of the season (ControlfinaI): 

Cf+ RI = Controlfinal- Sf+ (Ms + Mc + MR1), (2) 
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where the mortality (Ms + Mc + MR1 ) of earthworrns in the control treatrnent was 

estimated to be 35% in 2004 and 50% in 2005 ofthe final earthworrn biomass 

(ControlfinaÜ, based on the number of active days and the mortality rates that occur under 

high temperatures (>20°C) and low soil moisture conditions « -30 kPa) in laboratory 

cultures and field experiments (Table 2). 

The earthworrn community in the control treatment (Controlfinal) was assumed to 

represent the background earthworrn cornrnunity in aIl enclosures, thus, the earthworrn 

community in treatment enclosures (Treatmentfinal) was calculated from equations 3 and 

4. Any Aporrectodea longa found in enclosures were considered to be part of the 

background cornrnunity (Controlfinal) since no A. longa were added to enclosures. 

Treatmentfinal = Controlfinal + Treatmentadded, 

Treatmentadded = Ac + R2 - (MA + MR2), 

(3) 

(4) 

where Ac is the final biomass of earthworrns added to the enclosures, R2 are the offspring 

of Ai, and MA and MR2 is the biomass lost through mortality. Hence, the biomass in the 

Treatmentadded pool cornes from earthworrns added to the enclosures only. 

The biomass of earthworrns in the Ac pool was deterrnined using a biomass criterion 

similar to that in the control treatrnent. The initial fresh weight biomass (Bi) of A. 

caliginosa juveniles added to enclosures (Ai) were 0.31 g ± 0.01 (S.E.) in 2004 and 0.23 

g ± 0.01 in 2005, while L. terres tris juveniles weighed 1.5 g ± 0.10 in 2004 and 1.9 g ± 

0.11 in 2005. Based on field IGR values from Whalen and Parrnelee (1999) and the 
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number of active days in each season (Table 2), we calculated the final fresh weight 

biomass (Br) for each earthworm species using equation 5. 

Br (g fw) = Bi x IGR x active days (d il), (5) 

We calculated thatA. caliginosa would grow to a minimum biomass of 0.45 gin 2004 

and 0.35 gin 2005, while L. terres tris were expected to grow to 1.6 gin 2004 and 2.0 g in 

2005. Earthworms weighing more than the minimum biomass were considered in the Ar 

pool, while earthworms weighing less than this criticalleve1 were considered as being 

recruited from the S (RI) and A (R2) pools. Mortality of added earthworms (MA) was 

estimated to be 50% of the Ar pool (Table 2). The mortality of added earthworms was 

assumed to be higher than the mortality of naturally occurring earthworms (Ms, Mc, MRI ) 

because of the stress involved in handling and adding earthworms to the enclosures. The 

mortality ofthe recruited earthworms (MR2) was considered similar to the mortality (35 -

50%) of naturally occurring earthworms (Ms, Mc, MRI ). Overall, earthworm mortality 

(Mt) from each enclosure was the sum of mortality from aIl pools. 

Mt (g fw m-2
) = Ms + MA + Mc + MR1 + MR2, (6) 

Earthworm secondary production (P) was biomass accumulated from all pools between 

earthworm addition and final biomass measurement. 

P (g AFDW m-2
) = ~ S + ~ A + Cr + RI + R2, 

~ S (g AFDW m-2
) = Sr- Si = Srx OSA/(1 + OSA) 

~ A (g AFDW m-2
) = Ar - Ai = Ar x OSA/(1 + OSA) 

(7) 

(8) 

(9) 

where ~ S and ~ A is the biomass accumulated in the S and A pools, OSA is the growth 

of earthworms in ~he S and A pools during the growing season. Estimates of growth were 
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based on growth rates obtained from laboratory and field core experiments (Whalen and 

Parmelee, 1999; Zwhalen et al., 2003; Eriksen-Hamel and Whalen, 2006) and the number 

of active days determined in each year (Table 2). We estimated the increase in earthworm 

biomass (GSA) from the Si to Sf pool, and Ai to Afpools to be 40% for A. caliginosa and 

10% for L. terres4ris in 2004 and 30% for A. caliginosa and 5% for L. terres tris in 2005 

(Table 2). 

4.3.4 Calculation of Mean Earthworm Biomass During the Season 

The mean biomass (Bmean) of active earthworms in the enclosures during the growing 

season was calculated by equations 10 - 12: 

Bmean in control enclosures (g AFDW m-2
) = (Si + Controlfinal ) / 2, (10) 

Bmean in treatment enclosures (g AFDW m-2
) = (Si + Ai + Treatmentfinal) / 2, (11) 

Si (g AFDW m-2
) == Sri (1 + GSA), (12) 

where Ai is the initial biomass of earthworms added to each treatment at the beginning of 

the experiment (Table 1), Si and Sf are the initial and final biomass of earthworms 

surviving pesticide application, and GSA is the percent age increase in biomass of the S 

pool during the growing season (Table 2). 

4.3.5 Statistical Analysis 

Regression lines of the model estimates were fitted using the PROC REG function and 

Pearson's correlation coefficients were obtained using the PROC CORR function of SAS 

software (SAS Institute, 2001). 
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4.4 Results 

Only three earthworm species, A. caliginosa, L. terres tris and A. longa, were found in the 

enclosures. The naturally occurring population of A. longa earthworms were about 9% of 

the total population in 2004 and 2% in 2005. Manipulation of earthworm species was not 

successful and the proportion of A. caliginosa and L. terres tris did not differ between 

treatments (data not shown). However, we were able to obtain a wide range of earthworm 

biomass across all enclosures. The final earthworm biomass of the different treatments 

ranged from 25 - 92 g fw m-2 in 2004 and 23 - 44 g fw m-2 in 2005, suggesting greater 

survival and growth of earthworms introduced to enclosures during 2004 than 2005 

(Table 1). 

4.4.1 Secondary Production Estimates 

The relationships between secondary production and earthworm biomass were significant 

in 2004, but not in 2005 (Fig. 3). Secondary production of Lumbricid earthworms 

measured in different temperate ecosystems by direct methods have a high correlation (r 

= 0.89, P <.0.001) with mean earthworm biomass (Fig. 4). Similarly when secondary 

production estimates made by the "deduction" approach in 2004 and 2005 were 

extrapolated for a 35 week growing season a strong correlation (r = 0.80, P < 0.001) 

exists between secondary production and mean earthworm biomass when resu1ts from 

this study were combined with other published data (Fig. 4). 
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4.5 Discussion 

4.5.1 Secondary Production Estimates 

The estimates of secondary production during the 17 week period determined by the 

"deduction" approach ranged from 3 -13 g AFDW m-2 in 2004 and from 4 - 8 g AFDW 

m-2 in 2005. If we assume that secondary production during the growing season could be 

extrapolated for the frost-free period ofthe year from April to November (35 weeks) and 

presented on an annual basis, then our estimates (6 - 27 g AFDW m-2 year-1
) are similar 

to the estimates of 4 - 32 g AFDW m-2 year-1 reported in other cold temperate arable 

agroecosystems and calculated using direct methods (Fig. 4) (Bostrom, 1988; Curry et 

al., 1995; Whalen and Parmelee, 2000). The only exception is the high secondary 

production (47 g AFDW m-2
) recorded in the study ofParmelee and Crossley (1988) 

which probably arises from the longer growing season (February - November) in 

Georgia, USA compared to the other studies from cold temperate climates (Ohio, USA, 

Sweden and Ireland). We assumed no cocoon production during this study because peak 

cocoon production occurs in early spring and late faH (Whalen et al., 1998). The 

secondary production through cocoons was calculated to be about 4 - 8 % of total tissue 

production (Parmelee and Crossley, 1988; Curry et al., 1995). Therefore, the secondary 

production determined by the "deduction" approach could be underestimated by about 

0.5 - 2 g AFDW m-2 year-1
. 
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Secondary production has been measured for the naturally-occurring earthworm 

community in forests and agroecosystems of the UK and Ireland (Satchell, 1963; 

Bostrom, 1988; Curry et al., 1995), the USA (Parmelee and Crossley, 1988; Whalen and 

Parmelee, 2000), and in India (Senapti et al., 1991; Senapti et al., 1992). Comparison of 

secondary production estimates between these studies is difficult due to differences in 

earthworm biomass, species, ecosystem and methods used. Furthermore, none of these 

studies specifically address the relationship between secondary production and the size of 

the earthworm community. This can be overcome by presenting secondary production 

versus mean earthworm biomass (Fig. 4). Also, there is little difference in secondary 

production estimates for earthworm communities when the size-frequency and IGR 

methods are used (Whalen and Parmelee, 2000). Therefore, we assume that secondary 

production estimates from these studies can be compared. 

The relationship between secondary production (P) and mean biomass (B) indicates the 

biomass turnover rate of populations, while the reciprocal of the P lB ratio indicates the 

time required to replace biomass in populations (Benke, 1984). The high correlation 

between secondary production and mean earthworm biomass across all studies suggests 

that population turnover of earthworm communities is related to population size and 

c1imate, and not necessarily available resources. The average population turnover was 

shorter in 2004 (P/B = 2.1) than in 2005 (P/B = 1.7) due tothe longer active period in 

2004. In a field study in Ohio, the biomass and secondary production of earthworm 

communities was greater in manure fertilized plots than inorganic fertilized plots, 

however no significant differences were found between the population turnover in both 
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systems (P/B was2.5 in manure plots vs 2.2 in inorganic plots) (Whalen and Parmelee, 

2000). Similarly, the biomass and secondary production of earthworm communities was 

greater in a lucerne field than in a meadow, yet no differences were found between the 

population turnover in both fields (P/B was 1.4 in lucerne vs 1.2 in the meadow) 

(Bostrom, 1988). 

4.5.2 Limitations and Constraints ofthe "Deduction" Approach 

The "deduction" approach is a reasonab1e method that can be used if the experimenta1 

design prevents repeated sampling or physical disturbance of the experimental plots. The 

major conditions for using the "deduction" approach are the use of manipulation 

experiments where individuals are added to a contained area (eg: laboratory mesocosms 

or field enclosures), and the inclusion of a control treatment without any added 

individuals. In addition, accurate estimates of growth rates, duration of growth, and 

mortality must be known for the organism in question. We acknowledge that these 

conditions may limit the wide-spread use of this method, however there is growing 

interest in conducting plot-Ievel manipulation experiments to determine the role of 

different species, functional groups and abundance of soil organisms in ecosystems (Blair 

et al., 1995). 

A drawback of our experiment was that the earthworm manipulations were conducted 

during the summer (June - September) when soil temperatures were high (>20°C) and 

soil moistures were highly variable. Visual observations of casting activity show that 
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earthworrns were most active in the early spring (April and May) and autumn (late 

September and October) when soils were cooler (10 - 15°C) and moister. Clearly we 

have missed peaks periods of secondary production and therefore would expect greater 

biomass production if the experiment had included the entire frost-free period of our 

temperate agro-ecosystem. Nonetheless, the extrapolated estimates made by the 

"deduction" approach are within the range of secondary production estimates made by 

other direct methdds (Fig. 4). Yet, this method still requires validation and future field 

work should compare this approach with other direct methods of assessing secondary 

production such as the IOR and size-frequency methods. 

4.6 Conclusions 

The "deduction" approach to estimating secondary production can be used in studies 

where frequent and repeated measurement of earthworrn biomass is not possible. The 

accuracy of these estimates are based on the accuracy of estimates of the duration of 

earthworrn activity, field growth rates and mortality that are used in the model. Our 

estimates of secondary production using the "deduction" approach are very similar to 

those obtained in other studies using direct methods of assessing secondary production. 

Nonetheless, further field work is required to validate the estimates made by the 

"deduction" approach and compare them with other methods of calculating earthworrn 

secondary production such as the IOR and size-frequency methods. At a broader scale the 

"deduction" approach may be useful to deterrnine secondary production for other 

organisms in manipulation studies where repeated removal of individuals or disturbance 
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could bias experimental results. This approach increases the set of tools available to 

ecologists to assess secondary production of organisrns and rnay help to better understand 

the energy flow and nutrient fluxes through cornrnunities in different ecosysterns. 

111 



4.7 References 

AI-Y ousef, S., Shoreit, A., 1992. Effects of earthworm Aporrectodea caliginosa on sorne 

factors in different soil cultures. Zoologischer Anzeiger 228,201-211. 

Baker, G.H., Whitby, W.A., 2003. Soil pH preferences and the influence of soil type and 

temperature on the survival and growth of Aporrectodea longa (Lumbricidae). 

Pedobiologia 47, 745-753. 

Bastardie, P., Capowiez, Y., Cluzeau, D., 2003. Burrowing behviour of radio-Iabelled 

earthworms revealed by analysis of 3 D-trajectories in artificial soil cores. Pedobiologia 

47,554-559. 

Benke, A.C., 1984. Secondary production of aquatic insects. In: Resh, V.H., Rosenberg, 

D.M. (Eds.) The ecology of aquatic insects. Praeger, New York, pp 289-322. 

Blair, J.M., Parme1ee, R.W., Lavelle, P., 1995. Influences of earthworms on 

biogeochemistry. In: Hendrix, P.P. (Ed.) Earthworm ecology and biogeography in North 

America. Lewis Publishers, Boca Raton, FL. pp 127-158. 

Booth, L.H., Heppelthwaite, V., McGlinchy, A., 2000. The effect of environmental 

parameters on growth, cholinesterase activity and glutathione S-transferase activity in the 

earthworm (Aporr:ectodea caliginosa). Biomarkers 5, 46-55. 

112 



Bostrom, U., 1988. Earthworm population dynamics and flows of carbon and nitrogen 

through Aporrectodea caliginosa (Lumbricidae) in four cropping systems. PhD thesis, 

Swedish University of Agricultural Sciences, Uppsala. 

Bostrom, U., Lofs-Holmin, A., 1986. Growth of earthworms (Allolobophora caliginosa) 

fed shoots and roots ofbarley, meadow fescue and Lucerne. Studies in relation to partic1e 

size, protein, crude fiber content, and toxicity. Pedobiologia 29, 1-12. 

Boyer, J., Michellon, R., Chabanne, A., Reyersat, G., Tibere, R., 1999. Effects oftrefoil 

cover crop and earthworm inoculation on maize crop and soil organisms in Reunion 

Island. Biology & Fertility of Soils 28, 364-370. 

Butt, K.R., 1991. The effects oftemperature on the intensive production of Lumbricus 

terres tris (Oligochaeta, Lumbricidae). Pedobiologia 35, 257-264. 

Butt, K.R., 1998. Interactions between selected earthworm species: a preliminary, 

laboratory-based study. Applied Soil Ecology 9, 75-79. 

Crisp, D.J., 197LEnergy flow measurements. In: Holme, N.A., McIntyre, AD. (Eds). 

Methods for the study of marine benthos. Blackwell. Oxford. UK. pp. 197-279. 

113 



Curry, J.P., Byme, D., Boyle, KE., 1995. The earthworm population ofa winter cereal 

field and its effects on soil and nitrogen turnover. Biology & Fertility ofSoils 19, 166-

172. 

Eriksen-Hamel, N.S., Whalen, J.K, 2006. Orowth rates of Aporrectodea caliginosa 

(Oligochaetae: Lumbricidae) as influenced by soil temperature and moisture in disturbed 

and undisturbed soil columns. Pedobiologia 50,207-215. 

Eriksen-Hamel, N.S., Whalen, J.K, 2007. Impacts of earthworms on soil nutrients and 

plant growth in soybean and maize agro-ecosystems. Agriculture, Ecosystems & 

Environment. In press. 

Frago.so, C., Brown, 0.0., Patron, J.C., Blanchart, E., Lavelle, P., Pashanasi, B., 

Senapati, B., Kumar, T., 1997. Agricultural intensification, soil biodiversity and 

agroecosystems function in the tropics: the role of earthworms. Appl. Soil Ecol. 6, 17-35. 

Francis, O.S., Tabley, FJ., Butler, R.C., Fraser, P.M., 2001. The burrowing 

characteristics of three common earthworm species. Australian Journal of Soil Research 

39, 1453-1465. 

Hynes, H.B.N., 1961. The invertebrate fauna of a Welsh mountain stream. Arch. 

Hydrobiol. 57, 344-388. 

114 



Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O.W., 

Dhillion, S., 1997. Soil function in a changing world: the role ofinvertebrate ecosystem 

engineers. Eur. J. Soil Biol. 33, 159-193. 

Lofs-Holmin, A., 1982. Reproduction and growth of common arable land and pasture 

species of earthworms (Lumbricidae) in laboratory cultures. Swedish Journal of 

Agricultural Research 13,31-37. 

Lowe, C.N., Butt, K.R., 2002. Growth ofhatchling earthworms in the presence of adults: 

interactions in laboratory culture. Biology & Fertility of Soils 35, 204-209. 

Lowe, C.N., Butt, K.R., 2003. Influence of food particle size on inter- and intra-specific 

interactions of Al/olobophora chlorotica (Savigny) and Lumbricus terres tris (L.). 

Pedobiologia 47,574-577. 

Marinissen, lC.Y., de Ruiter, P.C., 1993. Contribution ofearthworms to carbon and 

nitrogen cycling in. agroecosystems. Agriculture, Ecosystems & Environment 47,59-74. 

Mazantseva, G.P., 1982. Growth patterns in the earthworm Nicodrilus caliginosus 

(Oligochaeta: Lumbricidae) during the first year oflife. Pedobiologia 23,272-276. 

Medernach, L., Gremare, A., 1999. Comparison ofmethods to estimate the secondary 

production of the polychaete Ditrupa arietina (O.F. Muller). Oceanol. Acta, 22, 337-352. 

115 



Pannelee, R.W., Crossley, D.A. Jr., 1988. Earthworm production and role in the nitrogen 

cycle of a no-tillage agroecosystems on the Georgie Piedmont. Pedobiologia 32, 353-361. 

Perreault, J.M., Eriksen-Harnel, N.S., Whalen, J.K. 2007. Temporal and spatial dynamics 

of earthworm surface casting in a temperate soybean agroecosystem. Appl. Soil Ecol. In 

review 

Potter, D.A., Buxton, M.C., Redmond, C.T., Patterson, C.G., Powell, A.J., 1990. Toxicity 

of pesticides to earthworms (Oligochaeta: Lumbricidae) and effect on thatch degradation 

in Kentucky Bluegrass turf. J. Econ. EntomoI. 83,2362-2369. 

Raw, F., 1959. Estimating earthworm populations by using formalin. Nature 181,1661-

1662. 

Reynolds, J.W., 1977. The earthworms (Lumbricidae and Sparganophilidae) of Ontario. 

Life Sciences Miscellaneous Publication. Royal Ontario Museum, Toronto. 

Romanovsky, Y.E., Polishchuk, 1982. A theoretical approach to calculation of secondary 

production at the population leveI. Int. Rev. Gesamten HydrobioI. 67, 341-359. 

Rossi, J.P., LaveUe, P., Albrecht, A., 1997. Relationships between spatial pattern ofthe 

endogeic earthworm Polypheretima elongate and soil heterogeneity. Soil Biol. Biochem. 

29,485-488. 

116 



SAS Institute Inc., 2001. SAS procedures guide, Version 9.1, SAS institute, Cary, North 

Carolina. 

Sarda, R., Pinedo, S., Dueso, A., 2000. Estimating secondary production in natural 

populations ofpolychaetes: sorne general constraints. B. Mar. Sci. 67, 433-437 

Satchell, J.E., 1963. Nitrogen turnover by a woodland population of Lumbricus terrestris. 

In: Doeksen, J. van der Drift, J. (Eds.). Proceedings ofthe colloquium on soil fauna, soil 

microflora and their relationships. Oosterbeek, North-Rolland Publishing Company, 

Amsterdam, The Netherlands. pp. 60-66. 

Senapati, B.K., Biswal, J., Sahu, S.K., Pani, S.C., 1991. Impact ofmalathion on Drawida 

willsi, Michaelsen, a dominant earthworm in Indian rice fields. Pedobiologia 35, 117-128. 

Senapati, B.K., Biswal, J., Pani, S.C., Sahu, S.K., 1992. Ecotoxicological effects of 

malathion on earthworms. Soil Biol. Biochem. 24, 1719-1722. 

Subler, S., Baranski, C.M., Edwards, C.A., 1997. Earthworm additions increased short­

term nitrogen availability and leaching in two grain-crop agroecosystems. Soil Biology & 

Biochemistry 29,413-421. 

117 



Weyer, L.A., Lysyk, T. J., Clapperton, M.J., 2001. The influence of soil moi sture and 

temperature on the survival, aestivation, growth and development ofjuvenile 

Aporrectodea tubercu/ata (Eisen) (Lumbricidae). Pedobiologia 45, 121-133. 

Whalen, J.K., Parmelee, R.W., 2000. Earthworm secondary production and N flux in 

agroecosystems: a comparison oftwo approaches. Oecologia 124, 561-573. 

Whalen, J.K., Pannelee, R.W., 1999. Growth of Aporrectodea tuberculata (Eisen) and 

Lumbricus terres tris L. under laboratory and field conditions. Pedobiologia 43, 1-10 

Whalen, J.K., Parmelee, R.W., Edwards, C.A., 1998. Population dynamics of earthworm 

communities in corn agroecosystems receiving organic and inorganic fertilizer 

amendments. Biol. Fertil. Soils 27, 400-407. 

Zwhalen, C., Hilbeck, A., Howald, R., Nentwig, W., 2003. Effects oftransgenic Bt corn 

litter on the earthwormLumbricus terrestris. Molecular Ecology 12, 1077-1086. 

118 



Table 1. Earthwonn numbers (ind. m-2
) and fresh weight biomass (g fw m-2

) added in 

June (Ai), mean biomass coUected in September (TreatmentfinaJ), and the mean active 

biomass (Bmean) in each treatment in 2004 and 2005. 

2004 2005 

Earthwonn Earthworms Treatmentfinal Bmean Earthworms Treatmentfmal Bmean 

Treatment Added (Ai) Added (Ai) 

Ind. m-2 gfwm-2 g fw m-2 (± S.E.) Ind. m-2 gfwm-2 g fw m-2 (± S.E.) 

1: Control 0 0 25 ± 7.5 20 0 0 23 ± 5.4 19 

2: Ac1 50 21 56± 15 53 50 24 34 ± 7.1 42 

3:Ac2 100 42 86±22 75 100 47 25 ± 8.4 46 

4: Lt1 15 34 55 ± 9.2 56 15 37 44± 19 55 

5: Lt2 30 67 77± 12 85 30 75 33 ± 10 66 

6: AcLt1 65 55 86± 25 97 65 61 43 ± Il 65 

7: AcLt2 130 109 92 ± 8.7 127 130 123 44±20 93 
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Table 2. Parameter values used in the "deduction" approach for estimating secondary 

production of earthworm communities in 2004 and 2005. 

Parameter 

Active period 

(N on-aesti vation) 

Mortality over season 

(Ms + Mc +MR1 ) & (MR2) 

Mortality of added 

earthworms (MA) 

Growth of addeçl and 

surviving earthworms 

(GSA) 

gfw: gAFDW 

Estimate 

2004: 77 days 

2005: 49 days 

A. c. 

2004: 35 % 

2005: 50 % 

50% 

2004: 40 % 

2005: 30 % 

2004: 10 % 
L. t. &A. 1. 

2005: 5 % 

7.5 
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Table 3. Maximum biomass (g fw) attained by each earthwonn species surviving 

pesticide application in the control treatments. Literature values from laboratory and field 

studies were considered when choosing the value used for the model. 

Earthwonn 2004 2005 
References 

Species (77 days) (49 days) 

Lab: 0.30 - 0.80 
Literature 

Lab: 0.20 - 0.50 Lofs-Holmin, 1982; 

Field: 0.30 Field: 0.20 Bostrorn and Lofs-
A. caliginosa 

Holmin, 1986; Whalen 
Model 0.4 0.3 

and Parmelee, 1999 

Lab: 0.40 - 1.2 
Literature 

Lab: 0.30 - 0.6 Butt, 1991; Whalen and 

L. terrestris Field: 0.25 Field: 0.20 Parmelee, 1999; Lowe 

Model 0.4 0.3 and Butt, 2003 

Literature Lab: 0.4 - 1.3 Lab: 0.30 - 0.8 Butt, 1998; Lowe and Butt, 

A.longa 
Model 0.4 0.3 

2002; Baker and Whitby, 

2003 
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Figure 1. Mean weekly soil temperature (OC) (grey and sohd line) and water-filled pore 

space (%) (black and dashed line) in enclosures in 2004 and 2005. The grey long dashed 

hne at 22°C and black dotted hne at 20% indicate the hmits of earthworm growth. 

Periods of positive and negative earthworm activity are shown for each week. 
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Control Treatment 

Pesticide survivors (S) Cocoons (C) Added Earthworms (A) 

Mortality (Ms) 

Mortality (MRI') 

Recruitment (RI) Recruitment (R2) 
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\. Y ) ~ 
Contro1fina1 = S + C + RI - (Mp + Mc + M R1) 

~ ~ ~ ) 
y 

TreatmentfinaiContro1finai + Treatmentadded 

Mortality (MR2) 

Figure 2. Flowchart of the earthworm population dynamics in control and treatment 

enclosures used to infer growth and mortality rates for the calculation of secondary 

production using the "deduction" approach. 
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Figure 3. Re1ationships between secondary production (P) (g AFDW m-2
) from the 

"deduction" approach and mean earthworm biomass (B) (g AFDW m-2
) during the period 

June - October in 2004 (.) and 2005 (.Â.). 

124 



50 
x 

40 

-"'E 
30 -3= 

c 
LI. 
<C 20 
C) -0.. 

10 

0 
....... 

0 ..... 
- ....... --...... ...... • 0 • ••••••• r = 0.80 

À 

.... ..... .... 
o ~~ .•.•.. 

• o .,. 0 ~ .. , 
••••• A 

• A.······-v • · ..... /::,. . /::,. 
·'Zi /::,. 

o 
o 2 4 6 8 10 12 14 16 18 

Mean Biomass (g AFDW 1 m2
) 

/::,.Bostrom,1988 xParmelee&Crossley, 1988 o Curry etaI., 1995 

o Whalen.& Parmelee, 2000 • "Deduction" approach - 2004 • "Deduction" approach - 2005 

Figure 4. The relationship between secondary production (P) (g AFDW m-2
) and mean 

earthworm biomass (B) (g AFDW m-2
) from different studies. Data from this study were 

extrapolated to a 35 week period, to be consistent with other studies. Pearson's 

correlation coefficient across aH studies is r = 0.80, P < 0.001. 
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FOREWORD TO CHAPTER 5 

In the previous chapter we presented the "deduction" approach as a non-invasive method 

to estimate secondary production of earthworm communities in field enclosures. We will 

build off this initial modeling work to develop and compare two models, the "growth and 

output" and ''food web" models, that estimate N flux through earthworm communites. 

Manipulation of earthworm communities in field enclosures allowed us to evaluate how 

the spatial variability in earthworm populations may affect N flux estimates, while 

differences in climate in the two study years allowed us to evaluate the effect of the 

duration of earthworm activity on N flux estimates. Model parameters in both the 

"growth and output" and ''food web" models will be varied between minimum and 

maximum literature values to evaluate the robustness and variance in model estimates. 
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CHAPTER 5. 

Modelling the contribution of earthworm communities to 

nitrogen cycling in temperate maize-soybean 

ag roecosystem 5 

5.1 Abstract 

In temperate agroecosystems, the nitrogen (N) cycled from earthworms is estimated at 

between 7 and 363 kg N ha-1 year-1
. The wide range of estimates is partly explained by 

differences in c1imate and agricultural practices across temperate agroecosystems, which 

affects earthworm population dynamics and activity. However, there is also uncertainty 

associated with the methods and parameters used to estimate N flux for earthworms. The 

objectives ofthis.paper were to compare the N flux estimates for earthworms using the 

"growth and output" and "food web" models, and to determine the range ofN flux 

estimates obtained when model parameters were set to the minimum, mean and 

maximum values reported in the literature. The "growth and output" mode1 inc1udes the 

total-N leaving the active earthworm biomass in cast, urine and mucus excretions, the N 

re1eased in dead earthwonn biomass, and the N used for secondary production. The ''food 

web" model calculates N mineralization by earthwonns as a function of feeding rates. 

The N flux predictions from both models varied considerably (10- 50 fold) when model 

parameters were Set to the minimum and maximum values. In particular, the ''food web" 

mode1 made either unrealistically high or negative estimates ofN mineralization when 
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certain model parameters were set to minimum and maximum values. This indicates that 

the "growth and output" model is more robust than the "food web" model since a wide 

range of parameter values can be used without causing unrealistic estimates. The N flux 

from earthworms is strongly affected by soil temperature and moi sture conditions, 

indicating that frequent or continuous monitoring is necessary to accurately gauge the 

level of earthworm activity in the field. More accurate data for weather dependent 

parameters will permit us to better quantify N flux from earthworms. 

5.2 Introduction 

Among soil fauna, earthworms are the most important organism contributing to soil N 

mineralization and cycling in temperate ecosystems (Lee, 1982). Earthworms release 

considerable quantities ofN from their bodies through urine and mucus excretions, in 

casts and in dead biomass (Blair et al. 1995; Whalen et al., 1999a). Furthermore, 

earthworm interactions with soil microbial communities through litter comminution, 

casting, and burrowing aiso increase N mineralization and cycling rates (Wolters, 1991; 

Blair et al. 1995). Therefore, earthworm communities may have a significant impact on 

soil N cycling and primary production in agricuiturai systems. 

Earthworm communities are estimated to cycle between 7 and 363 kg N ha-1 per year 

(Satchell, 1963; Syers and Springett, 1984; Christensen, 1987; Parmelee and Crossley, 

1988; Marinissen and deRuiter, 1993; Curry et al., 1995; Whaien et al., 2000). Such a 

wide estimate Ieads to a high degree ofuncertainty about the role of earthworms in N 
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cycling. Sorne of the variation arises from the differences in cropping systems, 

agrochemicals, tillage and residue management among the temperate agroecosystems 

where earthworm. populations and communities have been studied. Yet, there is also 

considerable uncertainty associated with the methods used to estimate the contribution of 

earthworms to N cycling. 

One way to determine the contribution to N cycling is to sum aIl N excretions from 

earthworms, tirst described by Satchell (1963). This method determines the total-N flux, 

in organic and inorganic forms, leaving the active earthworm biomass in casts, urine and 

mucus excretions, as weIl as the total-N released in dead earthworm biomass. Although 

this method has been used frequently to estimate total-N flux through earthwonn 

communities (SatcheIl, 1963; Christensen, 1987; Christensen, 1988; Marinissen and de 

Ruiter, 1993), it does not provide a complete estimate oftotal-N flux because it is based 

on the mean earthworm biomass present in an agroecosystem during the year. The 

fluctuation in biomass due to growth, reproduction and mortality, also known as 

secondary production, is not considered. A more complete "growth and output" model 

includes the N excreted from earthworms and the N used for secondary production. 

Secondary production of earthworm communities is commonly estimated by sampling 

earthworm populations at regular intervals throughout the frost-free periods of the year 

and inferring the change in earthworm biomass determined between sampling dates. The 

N used for secondary production is then determined by multiplying the N concentration 

of earthworm bio:mass by the secondary production. Estimates oftotal-N flux through 

earthworms using variations of the combined "growth and output" model range from 3 -
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74 kg N ha-1 (Bôstrôm, 1988; Parme1ee and Crossley, 1988; Curry et al., 1995; Whalen 

and Parme1ee, 2000; Whalen et al., 2000). The total-N flux from earthworm populations, 

as estimated by the "growth and output" model, inc1udes organic and inorganic forms of 

N. While inorganic N is considered to be plant-available, organic forms ofN may be 

immobilised, which makes it difficult to determine how much the total-N flux contributes 

to crop production in agroecosystems. 

Sorne researchers have used the "food web" model, originally developed by Hunt et al. 

(1987), to determjne the contribution of earthworm communities to N mineralization in 

arable ecosystems (Marinissen and de Ruiter, 1993; de Ruiter et al., 1994; Didden et al., 

1994; Zwart et al., 1994). The "food web" model uses an energetics approach to calculate 

the flux ofinorganic-N from earthworms based on feeding rates and the partitioning of 

nutrients between the consumer (earthworm), the food source (detritus or microbes), and 

the environment (soil) (de Ruiter et al., 1994). The model can estimate the direct N 

mineralization due to earthworm consumption of organic substrates and the indirect N 

mineralization from micro-organisms stimulated by earthworm feeding activities. 

Estimates of direct N mineralization due to earthworms range from 1 - 97 kg N ha-1 

(Marinissen and de Ruiter, 1993; de Ruiter et al., 1994; Didden et al., 1994), while 

indirect N mineralization was from Il - 267 kg N ha-1 (Marinissen and de Ruiter, 1993). 

The uncertainty in mode1 parameters partly explains the wide range in N flux estimates 

made by both models. Curry et al. (1995) reported that estimates ofN turnover from 

earthworms increased about 4-fold, from 5.1 - 7.4 g N m-2 year-1 to 21 - 26 g N m-2 year-1
, 
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depending on which N excretion rates were selected from the literature. The majority of 

growth, excretion and cast production data come from laboratory studies, partly because 

of the difficulty of quantifying these parameters in the field. However, it is not clear that 

alliaboratory values can be extrapolated directly to field conditions. Furthermore, few 

studies have evaluated how using laboratory-based parameters may affect N flux 

estimates (Marinissen and de Ruiter, 1993). For example, both the "growth and output" 

and ''food web" niodels inc1ude physiological parameters (i.e: excretion rates, growth 

rates and mortality) that are strongly related to soil temperature and moi sture conditions. 

Weather conditions lead to seasonal fluctuations in soil temperature and moi sture 

conditions, which affect the intensity and duration of earthworm activity duringthe 

growing season. Despite this, many previous studies have not explicitly considered the 

variation in soil temperature and moi sture conditions when estimating the contribution of 

earthworms to N cycling (Bostrom, 1988; Parmelee and Crossley, 1988; Marinissen and 

de Ruiter, 1993; de Ruiter et al., 1994; Curry et al., 1995; Whalen and Parmelee, 2000). 

Furthermore, earthworm communities show high spatial variation in population and 

biomass (Whalen, 2004). This implies that sorne areas within an agroecosystem will be 

"hotspots" for N cycling due to earthworm activities. As far as we know, previous 

modelling work has not explicitly considered how spatial variation in earthworm numbers 

and biomass could influence the estimates oftotal-N flux or N mineralization from 

earthworms in agroecosystems. 

The objectives ofthis paper were: 1) to explicitly consider the temporal variation in the 

duration of earthworm activity when modelling physiological parameters in the "growth 
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and output" and "food web" models, 2) to evaluate the relationship between the spatial 

variation in earthworm biomass and N flux, within the same agroecosystem, and 3) to 

determine the range of N flux estimates when model parameters are set to the minimum, 

mean and maximum values reported in the literature. 

5.3 Materials and Methods 

5.3.1 Description of Field Site and Experiment Design 

The study was designed to evaluate the effects of controlled earthworm populations on 

soil properties and crop yield in field enclosures. It was conducted from May 2004 to 

September 2005 on the Macdonald Campus Research Farm, McGill University, Quebec, 

Canada (45°25' N, 73°56' W). In May 2004, rectangular sheet metal field enclosures, 

measuring 204 m x 1.2 m (2.9 m2
), were buried to a depth of 0.30 - 0040 m. Seven 

enclosures were arranged in four blocks, for a total of 28 experimental units. During the 

months of May 2004 and May 2005, carbaryl pesticide (Sevin®) was applied 4 - 5 times 

to each enclosure (total application of220 kg a.i. ha-1 year-1
) to reduce earthworm 

populations. Native earthworms collected from the surrounding field were added to the 

enclosures on June 1, 2004 and on June 6, 2005 and remained in enclosures for 17 - 18 

weeks. The seven treatments included three earthworm populations as Aporrectodea 

caliginosa only (Ac), Lumbricus terres tris only (Lt), and a combined A. caliginosa and 

L. terres tris treatment (AcLt), at either the background population level (lx) or double 

the background population level (2x), and a control treatment (Control). On May 28th
, 
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2004, a single row of 100 soybeans (Glycine max (L.) cv. Merril) was sown by hand 

lengthwise in the centre of each enclosure, and on June 1 st, 2005, a single row of 15 

silage maize seeds (Zea mays (L.) cv. Mycogene 2K350) was sown in a similar manner. 

Earthworms were sampled from a soil pit (50 x 30 cm to a depth of20 cm) dug in the 

middle of each enclosure on September 30,2004 and September 28,2005. Formalin 

extraction (Raw, 1959) was used to collect earthworms from lower depths beneath the pit. 

Earthworm numbers, age classes, formalin-preserved biomass and ash-free dry weight 

(AFDW) of each earthworm collected were later recorded in the labo Ash-free dry 

weights were determined by placing dried (90°C for 24 hours) earthworms in a muffle 

fumace at 500°C for 4 hours. Sexually mature individuals were identified to the species 

level using the key provided by Reynolds (1977). The number and biomass of 

earthworms added in each treatment are described in Chapter 3 & 4. Soil temperature and 

gravimetric moisture were measured weekly in the 0 - 10 cm depth of each enclosure in 

both years. Water'filled pore space (WFPS) was calculated as: (gravimetric moi sture x 

soil bulk density / total porosity). Soil bulk density was determined as the mean bulk 

density of two 400 cm3 cylinders obtained from the 0 - 10 cm depth of each enclosure 

after harvest in 2005. Total porosity was determined as: 1 - (bulk density / particle 

density), where a particle density of 2.65 g cm-3 was assumed. Further details of the 

experimental design, description of soils, and methods of plant and soïl sampling and 

analysis are described in Chapter 3. 
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5.3.2 Calculation of Total-N Flux using the "Growth and Output" Model 

The "growth and output" model estimates the flux oftotal-N as the total amount ofN 

released from earthworm excretion and casts (equation 1), and through secondary 

production (equation 2). 

N-excreted (g N m-2
) = Bmean (g AFDW m-2

) x active days (d) x [urine & mucus-N 

excretion + cast-N x surface cast production x (l + suh-surface : surface cast 

ratio)] (gN gAFDW- I d- I
) , (1) 

N-secondary production (g N m-2
) = P (g AFDW m-2

) x New (g N g AFDW-I
) (2) 

where Bmean (g AFDW m-2
) is the mean biomass of earthworms in the enclosures during 

the growing season and New (g N g AFDW-1
) is the N concentration in earthworms. In 

2004, surface cast production in each enclosure was measured (Perreault et al., 2007). We 

estimated surface cast production in 2005 and the N released in urine and mucus in both 

years from literature values and field observations (Table 1). Selected literature and 

experimental values were used to convert fresh weights (fw) into ash-free dry weight 

(AFDW) (Table 1). The number of active days, Bmean and secondary production (P) of 

earthworm biomass from the enclosures was determined using the "deduction" approach 

(see Chapter 4). 

134 



5.3.3 Calculation ofNitrogen Mineralization using the "Food Web" Model 

The "food web" modelcalculates the N mineralization (Nmin) from earthworms based on 

a feeding rate (F) .and the difference between the C:N ratios ofthe earthworm (C:New) and 

food source (C:Nfood) as shown in equations 3 and 4. 

Nmin (g N m-2 season-1
) = F x Eass x ((1/C:Nfood) - (Eprod / C:New)}, (3) 

(4) 

where the assimilation efficiency of nutrients per unit consumed (Eass), the production 

efficiency of nutrients per unit assimilated (Eprod), and C:N ratios of earthworm tissue and 

food are based onliterature values (Table 1). The specific death rate (D) was calculated 

as the ratio of secondary production (P) to the mean biomass (Bmean) for each treatment 

(Eriksen-Hamel and Whalen, 2007b). Mean earthworm biomass (Bmean) was expressed as 

biomass-C using the ratio ofbiomass-C: ash free dry weight (AFDW) of earthworm 

biomass that was selected from literature values and experimental observations (Table 1). 

The proportion of earthworm diet that consists of detritus was varied between 20 - 100% 

and was initially set at 75% detritus and 25% microbes (Table 1). 

5.3.4 Range in Model Estimates 

The range of estimates calculated by the "growth and output" and "food web" models 

were evaluated by varying parameters between minimum and maximum values. The 

minimum and ma{{.imum values of parameters were selected from experimental 

observations and literature values (Table 1). 
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5.3.5 Statistical Analysis 

Regression lines of the model estimates were fitted using the PROC REG function (SAS 

version 9.1, SAS Institute, 2001). 

5.4 Results 

Climate, soil conditions and earthworm communities in enclosures during the two study 

years have been reported in Chapter 4. The manipulation of earthworm communities in 

experimental enclosures allowed us to evaluate N flux from earthworm populations of 

varying size within the same agroecosystems. Furthermore, the drastic difference in 

climate in the tWQ study years allowed us to evaluate N flux from earthworm populations 

with different dutations of activity. 

In 2004, the relationships between N flux estimates and earthworm biomass were 

significant for the "growth and output" and ''food web" models, but was only significant 

for the "growth and output" model in 2005 (Fig. 1 & 2). Secondary production accounted 

for 10 - 12% of the N flux calculated by the "growth and output" model in 2004, and 8 -

18% in 2005. The ratio ofmaximum to minimum total-N flux estimates made by the 

"growth and output" mode! ranged between 10.1 -11.4 in 2004 and 14.9 -16.9 in 2005 

(Fig. 1 & 2). In 2004, N mineralization estimates made using the ''food web" model at 

minimum parameter values were negative because of the large difference between the 

minimum C:N ratio of earthworm tissue and maximum C:N ratio of detritus, therefore 

estimates are reported as zero. However, the ratio of maximum to mean values ranged 
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between 41.4 - 49.5 in 2004, and the ratio ofmaximum to minimum values ranged 

between 27.0 - 32.4 in 2005 (Fig. 1 & 2). 

5.5 Discussion 

5.5.1 UncertaintyinParameter Values and Model Constraints 

The number of days for earthworm activity is a key driving parameter because when 

earthworms are inactive, they are expected to have slower growth, lower casting, 

excretion and consumption rates (Daniel, 1991; Holmstrup, 2001). Henee, their 

contribution to the N cycle would slow down or stop. Although we used soil conditions in 

the top soil (0 - 10 cm) as an indicator of earthworm activity (negative activity was 

assumed when soil temperature > 22°C and moi sture < 20 % WFPS), we realize that 

earthworms can retreat to deeper depths to avoid desiccation and mortality. However, we 

assumed that growth and activity at lower depths would be negligible because the sub­

surface soil contains fewer organic substrates than the surface layer, and we encounter a 

distinct sandy layer at 30 - 40 cm depth. The concept of "active days" helps us to predict 

the duration of general earthworm activity, although we realize that individuals differ in 

their tolerance to.heat and soil moisture. For example, Weyer et al. (2001) reported that 

up to 20% of A. tuberculata earthworm activity ceases, due to aestivation, when soils are 

at optimal temperatures of 15 - 20 oC and moistures of20 - 25 % (w/w), and this 

increases to 60% of the population when soils are at temperatures of 20°C and moistures 

of<15 % (w/w). 
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A drawback of our experiment was that the earthworm manipulations were conducted 

during the summer (June - September) when soil temperatures were high (>20°C) and 

soil moistures were highly variable. Visual observations of casting activity show that 

earthworms were most active in the early spring (April and May) and fall (late September 

and October) when soils were cooler (10- 15°C) and moister. Clearly, we have missed 

peaks periods of secondaiy production, cast production and mucus and urine excretions, 

and therefore would expect greater N flux estimates if the experiment had included the 

entire frost-free period of our temperate agroecosystem. 

5.5.2 N flux estimates from each model 

The mean estimates oftotal-N flux determined by the "growth and output~' model during 

the 17 week growing season ranged from 3.9 - 12.2 g N m-2 in 2004 and 2.4 - 5.3 g N m-2 

in 2005. Ifthese results are extrapolated for the frost-free period of the year from April 

to November (35 weeks) and presented on an annual basis, then the N flux from 

earthworms in field enclosures (4.9 - 25.1 g N m-2 year-I) would be greater than N fluxes 

reported in the literature of 0.3 -7.4 g N m-2 yea(I released from earthworm excretions, 

dead tissue and used in secondary production (Bostrom, 1988; Parmelee and Crossley, 

1988; Curry et al., 1995; Whalen and Parmelee, 2000; Whalen et al., 2000). This is 

largely the result ofuncertainty in mean values for N excretion in mucus and urine, cast­

N and surface and sub-surface cast production. Our initial estimate (269 /.tg N g fw-I d-I) 

and maximum estimate (744 I!g N g fw-I d-I) ofN excreted in mucus and urine are much 

greater than the 30 - 88 I!g N g fw-I d-I reported by Christensen (1987) and Needham 
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(1957). Similarly, our estimate for the cast-N concentration (3.1 mg N g dw-1
) was three 

times greater than the low estimate (0.9 mg N g dw-1
) reported by Flegel et al. (1998). 

James (1991) reported a sub-surface : surface cast production ratio of 50, which was 

determined by extrapolating a laboratory based model to field conditions. Since this value 

was 30 times greater than the next largest value, we did not inc1ude it in our parameter 

estimates. However, it shows that site-specifie data is needed to improve our confidence 

in N flux estimates using the "growth and output" model. Although we have site-specifie 

values for surface cast production and cast-N concentrations, it would be helpful to also 

have site-specifie date for urine and mucus excretion, and sub-surface cast production. 

The mean estimates of inorganic-N flux determined by the "food web" mode1 during the 

17 week growing season ranged from 0.2 - 0.6 g N m-2 in 2004, and from 0.1 - 0.4 g N 

m-2 in 2005. Extrapolated for the frost-free period of the year from April to November (35 

weeks) and presented on an annual basis, these estimates (0.2 -1.2 g N m-2 year-1
) are 

lower than the N flux estimates of 1.1 - 5.1 g N m-2 year-1 reported using the "food web" 

mode1 for agroecosystems in the Netherlands (Marinissen and de Ruiter, 1993; Didden et 

al., 1994). The maximum estimates made by the "food web" mode1, which were as large 

as 26.3 g N m-2 in2004 may be unrealistically high. These estimates were obtained when 

we used the minimum value of 0.2 for the production efficiency (Eprod), the minimum 

value of 4 for the of C:N ratio of microbes and the maximum value of 80% for proportion 

of diet that is microbes (Table 1). The minimum estimates made by the "food web" mode1 

are negative because we used the maximum value of 40 for the C:N ratio of detritus and 

the maximum value of 100% for the proportion of diet that is detritus (Table 1). This 
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confinns previously reported findings that N mineralization results from the "food web" 

mode1 are sensitive to the production efficiency and food C:N ratio values (Marinissen 

and de Ruiter, 1993; de Ruiter et al. 1993). It also shows that the "food web" model is 

less robust than the "growth and output" mode1 since the minimum and maximum 

literature values for certain parameters cause either unrealistically high or negative 

estimates ofN mineralization. 

It is expected that areas of fields with more earthwonns will generate greater total-N flux. 

In 2004, when earthwonn biomass was doubled, the "growth and output" mode1 

estimated an increase in total-N flux of 4.7 g N m-2
, and the ''food web" model estimated 

an increase in inorganic-N flux of 0.2 g N m-2
• In 2005, the "growth and output" mode1 

estimated an increase in total-N flux of 1.9 g N m -2 when earthwonn biomass was 

doubled; however no significant relationship between inorganic-N flux and earthwonn 

biomass was estimated by the ''food web" model. This suggests that as earthwonn 

biomass increases, more organic-N than inorganic-N is excreted in the casts, urine and 

mucus. This is physiologically unlikely and is probably explained by increased burrowing 

and casting activity by earthwonns which stimulate the growth and activity of microbial 

populations, and subsequently lead to an increase in extractable soil N concentrations, 

including inorganic-N and microbial biomass-N (Bohlen and Edwards, 1995; Edwards 

and Bohlen, 1996; Brown et al., 2000; Chaoui et al., 2003). 

The "food web" model has been used to estimate the stimulating effect of earthwonns on 

microbial N mineralization, but we did not have the necessary data on microbial 
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populations to perform this analysis (Marinissen and de Ruiter, 1993; de Ruiter et al., 

1994). However, Marinissen and de Ruiter (1993) showed that the indirect microbial N 

mineralization resulting from earthworms was between 2.5 - Il fold greater than direct N 

mineralization from earthworms. This is partially validated in our field experiment, as we 

found a stronger positive linear relationship between microbial biomass-N, and 

earthworm population and than between soil-N concentration and earthworm population 

(see Chapter 3). Similarly, in arable farming systems in the Netherlands, soil microbes 

(bacteria and fungi) were responsible for 70% of the gross N mineralization and other soil 

fauna, primarily earthworms and nematodes, were responsible for 30% (Verhoef and 

Brussaard, 1990; de Ruiter et al. 1994). Further work is needed to quantify the influence 

of earthworms on microbially-mediated N mineralization in temperate agroecosystems. 

Relating model estimates with plant-N and labile soil-N pools in the field is difficult 

because the fate ofthe N released from earthworms is poorly understood. The total-N 

flux estimates made by the "growth and output" model are likely greater than the quantity 

ofN available to plants. During the growing season, N can be cycled through an 

earthworm community more than once, thereby being counted twice in model estimates. 

Up to 70% of the N that is excreted by earthworms or released from dead earthworm 

biomass can be immobilized in the microbial biomass or plant-N pool within 15 days 

(Whalen et al., 1999b; Hodge et al., 2000). If an earthworm dies early in the season, then 

the N estimated in its tissue could cycle through the microbial biomass and plant-N pools, 

and be consumed by another earthworm later in the season. This N would be reported 

twice, once as N excreted and again as the N used for secondary production. On the other 

141 



hand, inorganic-N flux from the ''food web" mode1 is probably less than the labile-N pool 

since microbial mineralization of organic-N is not considered. This suggests that the 

actual quantity ofN made available to plants from earthworms lies between these model 

estimates. Further research using improved nutrient budgets or isotope analysis will be 

necessary to validate these mode1s and determine the contribution of earthworms to the 

plant-available N pool in agroecosystems. 

5.6 Conclusions 

Earthworm manipulation experiments provide a unique opportunity to deduce changes in 

earthworm biomass and determine N flux through earthworm communities. The wide 

range of estimates made by the "growth and output" and ''food web" mode1s arises from 

uncertainty in the mode1 parameters. Site-specifie soil temperature and moi sture data, as 

well as excretion data, are required to make N flux estimates with greater certainty. The 

"growth and output" model appears to be more robust than the ''food web" mode1, since 

adjusting sorne P'lrameters to the minimum or maximum values reported in the literature 

generate unrealistically high or negative estimates ofN mineralization. More complete 

nutrient budgets or isotope analysis are required to quantify the N flux through 

earthworms and predict their contribution to the plant-available N pool in temperate 

agroecosystems. Comparison of these models will he1p us advance our understanding of 

the temporal and spatial dimensions of earthworm involvement in N cycling and primary 

production. 
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Table 1. Range of values for the parameters used in the models 

Parameter Units Estimate Minimum Maximum References 
Active period 

days 
2004:77 2004:63 2004:91 Fig. 1, Eriksen-Hamel and 

(Non-aestivation) 2005:49 2005:35 2005:63 Whalen, 2007b 
Experimental observations; 

gfw: gAFDW ratio 7.5 5.0 8.3 Bôstrôm, 1988; Curry et al., 
1995 

Bôstrôm, 1988; Parmelee and 
gN:gAFDW 

ratio 0.1 0.08 0.13 
Crossley, 1988; Whalen and 
Parmelee, 1999b; Curry et al., 
1995 

Drine & mucus- N IlgN 269 30 744 
Needham, 1957; Christensen, 

excretions gfw,l d,l 1987; Whalen et al. 2000 
Syers et al., 1979; Lee, 1982; 

mg tot-N 
Flegel et al., 1998; Buck et 

Cast N content gdw,l 3.1 0.9 5.4 al., 1999; Norgrove and 
Hauser, 1999; Jégou et al., 
2001; Perreault et al., 2007 

Scheu, 1987; Shipitalo and 

gdw 
Protz, 1989; Curry et al., 

Cast production gfw,l d,l 0.09 - 0.28 0.09 0.4 1995; Curry and Baker, 1998; 
Flege1 et al., 1998; Whalen et 
al. 2004; Perreault et al., 2007 

Sub-surface : Whalen et al., 2004; 
surface cast ratio 1.25 1.5 Perreault and Whalen, 2006 
production 

Assimilation 
Marinissen and de Ruiter, 

efficiency (Eass) 
ratio 0.2 0.1 0.4 1993; Whalen and Parmelee, 

1999b; 

, Production 
de Ruiter et al., 1993; 

efficiency (Eprod) 
ratio 0.4 0.2 0.45 Marinissen and de Ruiter, 

1993; 

C:New ratio 5 4.5 8.0 
Experimental observations; 

Whalen et al., 1999a 

C:Ndetritus ratio 10 8 40 
Marinissen and de Ruiter, 

1993; Whalen et al., 1999a 

C:Nmicrobes ratio 6 4 8 
Marinissen and de Ruiter, 

1993; de Ruiter et al.,1994 

gC: gAFDW ratio 0,8 0.5 0.9 
Experimental observations; 

Bôstrôm, 1988 
Proportion of diet 

% 75 20 100 
Marinissen and de Ruiter, 

from detritus 1993; Didden et al., 1994 
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Figure 1. Relationships between earthworm ash-free dry weight biomass (g AFDW m-2
) 

in 2004 and N flux estimates (g N m-2
) made by the "growth and output" and ''food web" 

models. Solid lines show the relationship at the initial parameter values and dotted lines 

show the relationships when parameters were set to the minimum and maximum values. 

The minimum estimates made by the "food web" mode1 were negative and are not 

shown. 
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Figure 2. Relationships between earthworm ash-free dry weight biomass (g AFDW m-2
) 

in 2005 and N flux estimates (g N m-2
) made by the "growth and output" and ''food web" 

models. Solid lines show the relationship at the initial parameter values and dotted lines 

show the relationships when parameters were set to the minimum and maximum values. 

The minimum estimates made by the ''food web" model were negative and are not 

shown. 

154 



FOREWORD TO CHAPTER 6 

In the previous chapters laboratory growth rates, results from the field enclosure 

experiment and literature data were used to model the contribution of earthworms to soil 

N cycling. Secondary production was estimated from field data using the "deduction" 

approach and used in the "growth and output" model while literature data was mostly 

used in the ''Jood web"model. A wide range of estimates was found when parameter 

values were varied between minimum and maximum values .. The labour and financial 

resoureces required to obtain accurate estimates of an parameters for a given agro­

ecosystem is simply too great. Therefore, it is important to determine the most important 

factors controlling N flux estimates in each model. In the following chapter a sensitivity 

analysis of each model will help to identify which parameters are most important. Future 

researchers will be able to focus on the identified parameters in order to improve the 

estimates of the contribution of earthworms to N cYcling for other agroecosystems. 
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CHAPTER 6. 

Measuring the sensitivity of earthworm - nitrogen flux 

models 

6.1 Abstract 

The objective of this paper was to conduct sensitivity analysis of the "growth and output" 

and "food web" models, which estimate the contribution to nitrogen (N) cycling by 

earthworms. Model parameters were incrementally varied between minimum and 

maximum valuesobtained experimentally and from the scientific literature. The duration 

of earthworm activity, cast production and cast N content were the most important factors 

controlling N flux estimates from the "growth and output" mode!. Site-specific data for 

these pararneters would reduce uncertainty in N flux estimates made by this mode!. The 

production efficiency, C:N ratio ofbiomass, and biomass conversions were the most 

sensitive parameters in the ''food web" model, suggesting that species-specific data are 

necessary to optimize N mineralization estimates from this mode!. Direct measurement of 

the most sensitive pararneters we identified should permit us to more accurately model 

and quantify the N cycled by earthworms. Selecting literature values for other model 

pararneters may be appropriate if monetary and human resources are not available to 

gather site- or species-specific data. 
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6.2 Introduction 

Earthwonn communities have a significant impact on soil N dynamics in temperate agro­

ecosystems, and are thought to cycle between 7 and 363 kg N ha- I per year (Satchell, 

1963; Syers and Springett, 1984; Christensen, 1987; Panne1ee and Crossley, 1988; 

Marinissen and deRuiter, 1993; Curry et al., 1995; Whalen et al., 2000). Sorne variation 

is expected due to differences in cropping systems, tillage and residue management in the 

temperate agroecosystems studied by these researchers, but such a wide estimate implies 

uncertainty about the role of earthwornls in N cycling. Sensitivity analysis of the mode1s 

used to estimate the contribution of earthwonns to N cycles can provide insight into how 

model parameters contribute to the variation in N flux estimates. 

One earthwonn N flux model is the "growth and output" mode1 described by Eriksen­

Hamel and Whalen (2006a), based on a model first presented by Satchell (1963). This 

model accounts for the total-N leaving the active earthwonn biomass in casts, urine and 

mucus excretions, the amount ofN re1eased in dead earthwonn biomass, as well as the N 

used for secondary production. Variations of the "growth and output" model give 

estimates of earthwonn N flux ranging from 3 -74 kg N ha- I (B6str6m, 1988; Pannelee 

and Crossley, 1988; Curry et al., 1995; Whalen and Panne1ee, 2000; Whalen et al., 2000; 

Eriksen-Hame1 and Whalen, 2006a). Small changes in sorne parameters ofthe "growth 

and output" model can greatly change the N flux estimates. Curry et al. (1995) reported 

that estimates ofN turnover from earthwonns increased about 4-fold, from 5.1 -7.4 g N 
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m-2 year-1 to 21 ~ 26 g N m-2 year-1
, depending on which N excretion rate was selected 

from the literature. 

Another earthworm N flux model, the 'food web" model, uses an energetics approach. 

Originally developed by Hunt et al. (1987) to analyze N flux through the detrital food 

web of a shortgrass prairie, the ''food web" model was adapted to calculate N 

mineralization by earthworm communities in arable ecosystems (Marinissen and de 

Ruiter, 1993; de Ruiter et al., 1994; Didden et al., 1994; Zwart et al., 1994). The ''food 

web" model estimates direct N mineralization due to earthworm consumption of organic 

substrates and the indirect N mineralization from micro-organisms stimulated by 

earthworm feeding activities. Estimates of direct N mineralization by earthworms range 

from 1 - 97 kg N ha-1 (Marinissen and de Ruiter, 1993; de Ruiter et al., 1994; Didden et 

al., 1994; Eriksen-Hamel and Whalen, 2006a), with an additional11 - 267 kg N ha-1 

released through indirect N mineralization (Marinissen and de Ruiter, 1993). Estimates 

from the ''food web" model are sensitive to earthworm feeding rates and C:N ratios of 

organic substrates (de Ruiter et al., 1994). 

The objective of this paper was to identify the parameters in the "growth and output" 

model and the ''food web" model having the greatest impact on earthworm N flux 

estimates. 
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6.3 Materials and methods 

6.3.1 Calculation oftotal-N flux using the "growth and output" model 

The "growth and output" model estimates the total-N flux as the total amount ofN 

released from earthworm excretion and casts (equation 1), dead tissue (equation 2) and 

secondary production (equation 3). 

N-excreted (g N m-2
) = Bmeanx Tactive x [urine & mucus-N excretion + 

surface cast production x Ncast x (1 + sub-surface : surface cast ratio) ], 

N-dead tissue (g N m-2
) = Mt x New, 

N-secondary production (g N m-2
) = P x New 

(1) 

(2) 

(3) 

where Bmean is the mean biomass of active earthworms during the growing season; T active 

is the number of days with positive earthworm activity; Ncast is the N concentration in 

earthworm casts; New is the N concentration in earthworm biomass; Mt is the mortality of 

earthworms; and P is the secondary production of earthworm biomass. 

The specific death rate (D), defined as the ratio of secondary production (P) to the mean 

biomass (Bmear:) (Parmelee and Crossley, 1988), was used to determine earthworm 

mortality (Mt) (equation 4) and secondary production (P) (equation 5). The specific death 

rate, excretion rates and casting data were independent parameters selected from field 

observations and literature values (Table 1). 

Mt (g AFDW m-2
) = (D -l)*Bmean (4) 

P (g AFDW m-2
) = D* Bmean (5) 
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6.3.2 Calculation ofN mineralization using the "food web" mode1 

The N mineralization from the "food web" model is calculated based on a feeding rate 

(F) and the difference between the C:N ratios of the earthworm (C:New) and food source 

(C:Nfood) as shown in equations 6 and 7. 

F (g C m-2 season-l
) = D x Bmeanx Eass- l x Eprod-l

, 

Nmin (g N m-2 season-l
) = F x Eassx [(l/C:Nfood) - (Eprod / C:New)], 

(6) 

(7) 

where D is the specific death rate of earthworms, Eass is the assimilation efficiency of 

nutrients per unit consumed, and Eprod is the production efficiency of nutrients per unit 

assimilated (Table 1). The independent parameters for the C:N ratios of earthworm tissue 

and food are based on literature values (Table 1). The proportion of earthworm diet that 

consists of detritus was varied between 20 - 100% and was initially set at 75% detritus 

and 25% microbes (Table 1). Mean earthworm biomass (Bmean) was expressed as 

biomass-C using the ratio ofbiomass-C : ash free dry weight (AFDW) of earthworm 

biomass (Table 1). 

6.3.3 Sensitivity ofmodel predictions to variation in independent parameters 

Both the "growth and output" and the ''food web" mode1s respond linearly to changes in 

the dependent field parameter Bmean, and the ratio of maximum to minimum estimates did 

not change when the Bmean varied. Therefore, N flux estimates were calculated for Bmean = 

75 g fw m-2
, which was close to the background biomass of60 -120 g fw m-2 for a mixed 

A. caliginosa / L. terres tris community found in corn and soybean agroecosystems in 
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Québec (Eriksen-Hame1 and Whalen, 2006b) (Table 2 & 3). Earthwonn biomass was 

converted from fresh weight (fw) into ash-free dry weight (AFDW) and the N 

concentration (New) in earthwonn biomass was calculated on an AFDW basis using 

se1ected literature and experimental values (Table 1). The sensitivity ofN flux estimates 

calculated by the "growth and output" and "food web" models were evaluated by 

varying the independent parameters one at a time, therefore interactions between 

parameters were not considered (Lenhart et al., 2002). The "growth and output" mode1 is 

a linear model, and the change in total-N flux estimates was detennined for every ± 1 % 

change from the initial value of the parameter, to the minimum or maximum value 

reported in Table 1. The ''food web" mode1 does not respond linearly to aIl parameters, 

therefore the sensitivity ofN mineralization estimates was detennined by varying the 

initial value of independent parameters by ± 10 % and ± 25 %. 

6.3.4 Uncertainty associated with independent parameters 

The uncertainty associated with each independent parameter in the mode1s is reflected in 

the range ofN flux estimates detennined when minimum and maximum values were 

tested (Table 2 & 3). The ratio ofthese N flux estimates (maximum / minimum) indicates 

the maximum uncertainty in N flux estimates caused by varying each parameter. 

161 



6.4 Results and Discussion 

The active period (Tactive) had the greatest impact on total-N flux estimates from the 

"growth and output" model. There was a ± 0.8 % change in N flux estimates when the 

parameter variedby ± 1 % (Table 2). Cast production and cast N content are the next 

most important parameters, causing a ± 0.7 % change in N flux estimates with a ± 1 % 

change in parameter value. Varying other independent parameters in the "growth and 

output" model by ± 1 % caused minor (= ± 0.4 %) changes in N flux estimates. The max : 

min ratios ofN flux estimates were greatest for the active period, cast production and cast 

N content. 

The sensitivity analysis ofthe "growth and output" model showed that site-specifie data 

on the period of earthworm activity, cast production and cast N content would greatly 

improve the reliability of model estimates. For the other parameters, changing the median 

values had little effect on model estimates, but it should be noted that N flux estimates 

were 20-60% greater at maximum than minimum values for these parameters (Table 2). 

In the ''food web" model, the production efficiency (Eprod) and C:N ratio of earthworm 

biomass (C:New) had the greatest impact on N mineralisation estimates (Table 3). These 

independent parameters caused a change in N mineralization estimates that was greater 

than the change in parameter value (Table 3). The specifie death rate (D) and biomass 

conversion parameters (fw to AFDW, AFDW to biomass-C) changed the N flux 

estimates proportionally to the change in parameter values (Table 3). Changes in the 
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remaining parameters did not greatly change the N flux estimates (Table 3). The max: 

min ratios were greatest for the specific death rate, the production efficiency and C:N 

ratio of earthworm biomass, with N flux estimates 110 - 400 % greater at maximum than 

minimum values (Table 3). For aIl other parameters, the N flux estimates changed by 0 -

80 % when parameters varied between minimum and maximum values. 

The sensitivity analysis ofthe ''food web" mode! shows the importance ofhaving species­

specific physiological data such as the production efficiency, C:N ratio of earthworm 

biomass and accurate conversions for fresh weight, biomass-C and AFDW. Aiso of 

importance is site-specific information conceming the specific death rate of the 

earthworm community. Although the ''food web" model is modeIled around the 

composition of earthworm diet and the C:N ratio of detritus and microbes, our sensitivity 

analysis shows that these parameters do not cause significant changes in N flux estimates, 

contrary to findings by Marinissen and de Ruiter (1993). Selected literature values for 

these parameters may be used without the risk of increasing uncertainty in model 

estimates. 

A high ratio of maximum to minimum values for an independent parameter may indicate 

high uncertainty regarding the initial value of this parameter. However, it does not 

necessarily indicate the impact that this parameter will have on N flux estimates. For 

example in the "growth and output" model, the extreme values (maximum and minimum) 

for mucus and urine-N excretions varied 25-fold (Table 1) yet the N flux· estimates 

determined at these extreme values varied by only 1.4-fold (Table 2). Conversely, in the 
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''food web" model, the extreme values (maximum and minimum) for the C:N ratio of 

earthworm biomass vary by 1.8 fold (Table 1), but N flux estimates determined at these 

extreme values vary by 2.1 fold (Table 3). Therefore, it is more important to have an 

accurate value for the C:N ratio of earthworm biomass than an accurate value for mucus 

and urine-N excretions. Choosing an inaccurate value for the C:N ratio of earthworm 

biomass within the range given by the literature (Table 1) will have a much greater effect 

on N flux estimates than choosing an inaccurate value for mucus and urine-N excretions. 

Fortunately, the ranking of important parameters by the sensitivity analysis c1ose1y 

follows the ranking made by the ratio ofN flux estimates obtained at maximum and 

minimum literature values. The most sensitive parameters usuallY have the greatest ratio 

of maximum to minimum N flux estimates. Although not as precise as the sensitivity 

analysis, the ratio ofN flux estimates obtained at maximum and minimum literature 

values could be used as a secondary indicator for determining the most important 

parameters in each model in the event that the. sensitivity analysis shows equal ranking 

for two or more parameters. 

6.5 Conclusions 

Sensitivity analysis identified the parameters that have the greatest impact on N flux 

estimates from each model. In the "growth and output" mode1, site-specifie information 

is required for the active period, cast production and cast N content. In the ''food web" 

mode1, species-specific physiological information, such as the production efficiency, C:N 

ratio ofbiomass and biomass conversions are required. Our results suggest that most 
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other parameters in earthworm N flux models can be adequately represented with 

literature values. Research to better quantify the sensitive parameters identified from our 

analysis could reduce the uncertainty associated with estimates from earthworm N flux 

models. 
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Table 1. Range of values, and difference between maximum and minimum values 
{max.lmin}, for the ~arameters used in the "growth and outp"uf' and ''food web" roodels 

Parameter Units 
Initial 

Minimum Maximum max./min. References 
value 

Weather conditions in 
Active period 

days 80 50 110 2.2 
Québec for 2004 & 2005; 

(Tactive) Eriksen-Hamel and 
Whalen, 2006a 

1.7 
Experimental observations; 

gfw: gAFDW ratio 7.5 5.0 8.3 B6str6m, 1988; Curry et 
al., 1995 

B6str6m, 1988; Parmelee 
gN: gAFDW 

ratio 0.1 0.08 0.13 1.6 
and Crossley, 1988; 

Whalen and Parme1ee, 
1999; Curry et al., 1995 

Urine & mucus-N J.lgN 25 
Needham, 1957; 

excretions g fw- l d- l 269 30 744 Christensen, 1987; 
Whalen et al. 2000 

Syers et al., 1979; Lee, 
1982; Plegel et al., 1998; 

Cast N content mg tot-N 
3.1 0.9 5.4 6.0 

Buck et al., 1999; 
(Ncast) gdw- l Norgrove and Hauser, 

1999; Jégou et al., 2001; 
Perreault,2005 

Scheu, 1987; Shipital0 and 
Protz, 1989; Curry et al., 

Cast production 
gdw 

0.2 0.09 0.4 4.4 
1995; Curry and Baker, 

gfw- l d- l 1998; Flegel et al., 1998; 
Whalen et al. 2004; 

Perreault, 2005; 

Sub-surface : surface Whalen et al., 2004; 

cast production 
ratio 1.25 1.5 1.5 Perreault, 2005 

Assimilation Marinissen and de Ruiter, 

efficiency (Eass) 
ratio 0.2 0.1 0.4 4.0 1993; Whalen and 

Parmelee, 1999; 

Production 
de Ruiter et al., 1993; 

efficiency (Eprod) 
ratio 0.4 0.2 0.45 2.2 Marinissen and de Ruiter, 

1993; 

C:New ratio 5.0 4.5 8.0 1.8 
Experimental observations; 

Whalen et al., 1999 

C :Ndetritus ratio 10 8 40 5.0 
Marinissen and de Ruiter, 
1993; Whalen et al., 1999 

C:Nmicrobes ratio 6 4 8 2.0 
Marinissen and de Ruiter, 
1993; de Ruiter et al.,1994 

gC: gAFDW ratio 0.8 0.5 0.9 1.8 
Experimental observations; 

B6str6m, 1988 
Proportion of diet 

% 75 20 100 5.0 
Marinissen and de Ruiter, 

from detritus 1993; Didden et al., 1994 
Parmelee and Crossley, 

Specifie Death rate 1988; Curry et al., 1995; 

(D) 
ratio 2 1 4 4.0 Whalen and Parme1ee, 

2000; Eriksen-Hamel and 
Whalen, 2006a 
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Table 2. Sensitivity of the "growth and output" model N flux estimates (g N m-2
) to 

incremental change in parameter values, and the uncertainty associated with each 

parameter (max. / min.). 

% change in N flux N flux estimates (g N m -2) t 

Parameter estimate when parameter 

value varied by ± 1 % 
mmImum mean maXImum max. /min. 

Active period 
±0.8% 8.0 13.0 16.7 2.1 

(Tactive) 

Cast N content 
±0.7% 7.0 13.0 19.2 2.7 

(Ncast) 

Cast production ±0.7% 8.4 13.0 21.4 2.5 

Sub-surface : 

surface cast ± 0.4% 12.1 13.0 13.9 1.2 

production 

Specifie Death 
±0.3 % 11.0 13.0 17.0 1.5 

rate (D) 

gfw: gAFDW ±0.2% 12.7 13.0 14.5 1.1 

gN: gAFDW 
±0.2% 12.4 13.0 13.9 1.1 

(New) 

Urine & mucus-N 
±0.1 % 11.6 13.0 15.8 1.4 

excretions 

t: N flux estimates calculated for a Bmean = 75 g fw m-2 
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Table 3. Sensitivity ofthe "food web" model N flux estimates (g N m-2
) to ± 10% and ± 

25% change in parameter values, and the uncertainty associated with each parameter 

(max. / min.). 

% change in N flux estimate 
N flux estimates (g N m-2

) t 
Parameter when parameter value varied by 

±1O% ±25% minimum mean maximum max. /min. 

Production 
± 12 -13 % ± 29-33 % 5.6 6.5 14.5 2.6 

efficiency (Eprod) 

C:New ± 12 -13 % ± 29-33 % 3.5 6.5 7.4 2.1 

gC: gAFDW ±9-11% ± 20-33 % 4.0 6.5 7.3 1.8 

Specific Death rate 
± 10% ±25% 3.2 6.5 13.0 4.0 

(D) 

gfw: gAFDW ± 10% ±25% 5.9 6.5 9.7 1.7 

C:Ndetritus ±3-4% ±8-12% 5.9 6.5 7.5 1.3 

Proportion of diet 
±2% ±4-5% 5.8 6.5 6.7 1.2 

from detritus 

C:Nmicrobes ± 1 % ±2% 6.4 6.5 6.6 1.0 

Assimilation 
0% 0% 6.5 6.5 6.5 1.0 

efficiency (Eass) 

t: N flux estimates calculated for a Bmean = 75 g fw m-2 
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SUMMARYAND CONCLUSIONS 

It is established that earthwonns have an important role in the decomposition of organic 

matter, mineralization of nutrients and physical mixing ofsoils. Despite a large number 

oflaboratory and greenhouse-level studies investigating how earthwonns modify soil 

properties and promote soil fertility, we lack reliable methods to scale-up and quantify 

earthwonn contributions to nutrient cycling at the agroecosystems level. My Ph.D. 

research used laboratory growth rates to predict the dynamics of earthwonn growth in 

reponse to seasonal fluctuations in soil temperature and moi sture that occur in Québec 

agroecosystems. Furthennore, the relationships between earthwonn populations, soil-N 

pools and annualcrop production were evaluated in a field-level manipulation 

experiment. These data pennitted me to make assumptions about earthwonn activity and 

life histories under field conditions, and to test the sensitivity of two models used to 

detennine the contribution of earthwonns to N cycling. 

Earthwonns contribute to N cycling primarily during periods when they are actively 

growing. The structures, such as burrows and casts, resulting from earthwonn activity 

also provide enhanced microbial N mineralization. Therefore, in my first experiment, 1 

developed growth curves for A. caliginosa, the most common earthwonn in Québec 

agroecosystems, that considered the range of soil temperatures (5 to 20 OC) and soil water 

potentials (-5 to -54 kPa) nonnally encountered in field soils. The optimum growth 

conditions for A. caliginosa were at 20°C and -5 kPa water potential, and weight loss 

occurred when soil water potential was less than -54 kPa and when the temperature was 
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less than 5°C. Earthwonn growth rates were influenced by the shape of the container 

used to culture earthwonns. Growth rates of A. caliginosa were reduced in small narrow 

cores compared to small pots. Further work is needed to develop standard methodologies 

so laboratory measurements are representative of earthwonn growth rates in the field. 

The enclosure experiment showed that varied success in manipulating earthwonn 

populations in field enclosures was linked to climate conditions and possibly available 

food resources. In 2004, when favourable conditions (temperatures < 20°C, and rainfall at 

least once a week) occurred, earthwonn manipulations were successful and a positive 

relationship was found between earthwonn numbers and the plant available-N, including 

soil mineral-N, microbial biomass-N and total-N removed in soybean grain. In 2005, 

when unfavourable conditions (temperatures > 20°C and little or no rainfall) occurred in 

the weeks following earthwonn additions, no relationship was found between earthwonns 

and yield or plant and soil nutrients. 

The fourth chapter combined the infonnation from these experiments into a model to 

estimate the N flux through earthwonn communities. My "deduction" approach to 

estimate earthwonn secondary production gave estimates ranging from 0.9 - 4.6 g N m-2 

per year, which were similar to other published rates of secondary production. The 

"growth and output" and ''food web" models made significantly different estimates ofN 

flux and had large variations due to the uncertainty in the minimum and maximum values 

of parameters. The "growth and outpuf' model predicts that during the crop growing 

period, under favourable climate conditions, high earthwonn biomass of greater than 100 
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g fw m-2 is responsible for the cyc1ing ofup to 120 kg N hé in arable fields. Yet, under 

the same conditions, the "food web" model predicts that earthworms are responsible for 

cycling up to 15 kg N ha- l
. Both these models are very sensitive to input parameters. The 

relationships between earthworm biomass plant-N and labile soil-N at harvest obtained 

from the field were not validated by model predictions. 

In the final chapter the model was tested for its sensitivity to parameter values. 

Sensitivity analysis identified the parameters that have the greatest impact on N flux 

estimates from each model. In the "growth and output" model, more accurate estimates of 

site-specifie parameters are required while for the ''food web" model, more accurate 

estimates of species-specific physiological parameters are required. Our results suggest 

that most other parameters in earthworm N flux models can be adequately represented 

with literature values. Improved estimates of the contribution of earthworms to N cyc1ing 

can be obtained if accurate estimatesare obtained for the sensitive parameters identified. 

More complete nutrient budgets or isotope analysis are also required to correctly evaluate 

the N flux through earthworms, predict their impact on N mineralization at the field scale 

and validate model N flux estimates. 
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