
Evaluating musical fingerprinting systems

Alastair Porter

Schulich School of Music
McGill University
Montreal, Canada

April 2013

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Arts.

c© 2013 Alastair Porter

i

Abstract

Audio fingerprinting is a process that uses computers to analyse small clips of music

recordings to answer a common question that people who listen to music often ask : “What

is the name of that song I hear ?” Audio fingerprinting systems identify musical content in

audio and search a reference database for recordings that contain the same musical features.

These systems can find matching recordings even when the query has been recorded in a

public space and contains added noise. Different audio fingerprinting algorithms are better

at identifying different types of queries, for example, queries that are short, or have a

large amount of noise present in the signal. There are few comprehensive comparisons of

fingerprinting systems available in the literature that compare the retrieval accuracy of

fingerprinting systems with a wide range of querys.

This thesis presents an overview of the historical developments in audio fingerprint-

ing, including an analysis of three state-of-the-art audio fingerprinting algorithms. The

thesis introduces factors that must be considered when performing a comparative evalua-

tion of many fingerprinting algorithms, and presents a new evaluation framework that has

been developed to address these factors. The thesis contributes the results of a large-scale

comparison between three audio fingerprinting algorithms, with an analysis recommending

which algorithms should be used to identify music queries recorded in different situations.

ii

iii

Résumé

Le système d’empreinte audio est un procédé qui analyse de courts extraits de musique

avec un ordinateur pour répondre à une question courante : � Quelle est le nom de cette

chanson que j’écoute ? �. Les systèmes d’empreintes audio identifient le contenu musical

d’un enregistrement et cherchent des documents sonores possédant les même traits musi-

caux au sein d’une base de données de référence. Ces systèmes sont capables de fonctionner

même si les requêtes qui leur sont transmises sont enregistrées dans un espace public, avec

de nombreuses sources de bruit extérieur. Les différents algorithmes d’empreinte audio se

distinguent par le type de requête qu’ils peuvent traiter : certains se concentrent sur des

requêtes de courte durée, d’autres sont optimisés pour pouvoir être performant même dans

des conditions de bruit très défavorables. Dans la littérature, il existe peu d’études compar-

atives poussées traitant spécifiquement des performances des systèmes de reconnaissance

par empreinte audio dans un large éventail de cas.

Cette thèse présente une vue d’ensemble de l’histoire du développement des systèmes

d’empreinte audio. Cette thèse introduit en suite des facteurs qui doivent être pris en

compte lors de l’évaluation comparative de plusieurs algorithmes pour la reconnaissance

par empreinte audio. De plus, ce travail présente un nouveau cadre d’évaluation développé

afin d’incorporer ces facteurs. Cette thèse combine les résultats d’une comparaison à grande

échelle de trois algorithmes d’identification d’empreinte audio avec une analyse recomman-

dant lequel de ces algorithmes est le plus efficace pour identifier la plus grande variété

d’extraits audio.

iv

v

Acknowledgements

Many people helped me during the process of producing this thesis and I would like to

take this oppourtunity to thank all of them.

I would first like to thank my supervisor, Ichiro Fujinaga, for providing simulating

work and research oppourtunities in the DDMAL research lab, and for providing valuable

feedback during the time that I was working on my thesis.

Thank you to my labmates in the DDMAL lab, and to everybody in the Music Tech-

nology department at McGill who helped me to grow my interest in music research but

were just as happy to discuss any aspect of music or technology.

To everyone who welcomed me to Canada and Montréal—flatmates, fellow students,

and friends alike: You are all too numerous to list here, but you gave me a great few years

that I’ll never forget. Thank you.

Thanks to the authors of the software that I used in the evaluation for making the code

available—Brian Whitman for Echoprint, Lukáš Lalinský for Chromaprint, and Dan Ellis

for the landmark code. Thanks again to Dan and Lukáš, who were more than willing to

answer questions that I had about implementation details in their respective software. I

would also like to thank Ashley Burgoyne for his assistance in helping me to understand and

present the statistics in my results, and Cécile Charvet and Bertrand Scherrer for helping

me to translate the abstract for this thesis.

Finally, I would like to thank my parents who always support me no matter what

country I live in.

vi

vii

Contents

1 Introduction 1

1.1 Audio fingerprinting . 2

1.1.1 Applications of fingerprinting . 4

1.2 Requirements of audio fingerprinting algorithms 5

1.3 The audio fingerprinting process . 6

1.4 Contributions of this thesis . 8

1.4.1 Fingerprinting algorithms used in the evaluation 9

1.5 Organisation of this thesis . 9

2 Audio Fingerprinting: An overview 11

2.1 Related audio retrieval techniques . 11

2.1.1 Query by humming . 12

2.1.2 Query by description . 12

2.1.3 Query by example . 13

2.1.4 Similarity retrieval . 13

2.1.5 Watermarking . 14

2.1.6 Graphical audio summaries . 15

2.2 Audio fingerprinting techniques . 16

2.2.1 Computing codes from features . 17

2.2.2 Computing codes with machine learning 19

2.2.3 Increasing fingerprinting speed . 20

2.2.4 Commercial fingerprinting systems 21

2.2.5 Fingerprinting services . 22

2.3 Measuring statistics . 23

viii Contents

2.4 Evaluating fingerprinting accuracy . 24

3 Analysis 27

3.1 Echoprint . 28

3.1.1 Preprocessing and transform . 28

3.1.2 Hashing and storage . 29

3.1.3 Lookups . 31

3.2 Chromaprint . 31

3.2.1 Preprocessing and transform . 31

3.2.2 Hashing and storage . 31

3.2.3 Lookups . 32

3.3 Landmark . 33

3.3.1 Preprocessing and transform . 33

3.3.2 Feature selection . 33

3.3.3 Hashing and storage . 34

3.3.4 Lookups . 35

4 Evaluating fingerprinting algorithms 37

4.1 Choosing evaluation criteria . 37

4.2 Evaluation framework . 38

4.2.1 Distributed computation . 39

4.2.2 Modularity . 39

4.2.3 Repeatability . 40

4.2.4 Collecting statistics . 41

4.2.5 Query modifications . 41

4.2.6 Evaluation process . 43

4.3 Document retrieval statistics . 45

4.3.1 Precision, recall, and specificity . 46

4.3.2 Confidence intervals . 47

4.3.3 Sensitivity and response bias . 48

4.4 A comparison of audio fingerprinting algorithms 51

4.4.1 Experiment . 51

4.4.2 Algorithm 1 setup: Echoprint . 51

Contents ix

4.4.3 Algorithm 2 setup: Chromaprint 51

4.4.4 Algorithm 3 setup: Landmark . 52

5 Results and concluding remarks 53

5.1 Query length . 53

5.2 Modified queries . 56

5.3 Noise . 61

5.4 Discussion . 62

5.5 Conclusion and further work . 62

5.5.1 Contributions . 68

5.5.2 Further work . 68

Bibliography 71

x

xi

List of Tables

4.1 Query modifications used in the experiment 50

5.1 Accuracy results for unmodified queries, three fingerprinting algorithms, and

six query lengths with lower limits (LL) and upper limits (UL). 54

(a) Precision (%) . 54

(b) Recall (%) . 54

(c) Specificity (%) . 54

(d) Sensitivity (d′) and response bias (c) 54

5.2 The expected retrieval numbers for a 30-second query and actual numbers

from the three fingerprinting systems. 55

5.3 Precision for modified queries . 57

5.4 Recall for modified queries . 58

5.5 Specificity for modified queries . 59

5.6 Sensitivity (d′) and response bias (c) for modified queries 60

5.7 Precision for queries modified with added noise 63

5.8 Recall for queries modified with added noise 64

5.9 Specificity for queries modified with added noise 65

5.10 Sensitivity (d′) and response bias (c) for queries modified with added noise 66

xii

xiii

List of Figures

1.1 Common steps performed in audio fingerprinting algorithms to convert audio

to a fingerprint. 7

1.2 The main processes of a fingerprinting system 8

1.3 An example of a portion of a fingerprint from the Echoprint algorithm. . . 8

3.1 Onsets detected by Echoprint. 29

3.2 Calculating the time delta between pairs of onsets to create six hashes. . . 30

3.3 The match filters used in Chromaprint. 32

3.4 A graphical representation of the Chromaprint for “Ziggy Stardust”. 32

3.5 A “constellation map” of hash pairs generated by the Landmark algorithm

for a 15 second query of “Ashes to Ashes”. 34

3.6 Encoding features of the hash for a peak pair into a single 20-bit integer. . 35

4.1 Contract for fingerprinting modules. 40

4.2 Chaining filters together. 42

4.3 Flowchart of the evaluation framework process. 44

xiv

1

Chapter 1

Introduction

Recorded music is pervasive in our society. It is broadcast over radio waves and on the

Internet. It is used as a background to videos, television, and movies. Stores play it while

people are shopping. People carry around thousands of songs every day on portable audio

players and smartphones, with access to millions more by streaming from the Internet.

Personal music players can show the name of the recording that is currently playing, but

when listening to music in public environments it can be a challenge for someone to recognise

every song that they listen to in a day.

It is an impressive skill to be able to listen to a small clip of music and recognise almost

immediately the title, composer, or performer of the work. Sometimes though you may not

recognise the song, or it might be familiar and on the tip of your tongue, but you just

can’t remember the name. You may be in a cafe or shop as a song that you want to know

more about comes on, but the song is not introduced or you miss the DJ’s introduction.

Given the ever increasing amount of music written, recorded, and performed it is virtually

impossible for any one person to recognise every song. It seems suitable to delegate such a

task to a computer.

Computers have been used to develop music-related applications since the time that they

were first available in research environments (Downie 2003). Music information retrieval

(MIR), a music-specific branch of information retrieval, is concerned with using computers

to store and analyse digital collections of music in all forms (e.g., sheet music, recorded

music, metadata about music) and perform queries on the stored data to obtain analyses

and results about the music. Audio fingerprinting is a facet of MIR that uses computers to

2 Introduction

listen to and recognise recordings of songs, much like people can listen to a piece of music

and say what the name of the song is. In the audio fingerprinting process, a computer

algorithm is used to analyse a corpus of music, identifying musical features in a song that

can be used to uniquely identify it from all songs in a corpus (an audio “fingerprint”, much

like fingerprints uniquely identify people). Once a corpus of audio fingerprints has been

created, the same algorithm can be used to generate a fingerprint of an unknown clip of

audio. The corpus can be searched for fingerprints that match the fingerprint generated by

the unknown query in order to retrieve information about the recording.

1.1 Audio fingerprinting

Audio fingerprinting is used to take a short sample of an unknown audio recording and

retrieve metadata about the recording. It does this by converting the data-rich audio signal

into a series of short numerical values (or hashes) that aim to uniquely identify a musical

recording. Audio fingerprinting systems have large databases of fingerprints for millions

of known audio recordings. To identify an unknown audio recording query, the query’s

fingerprint is generated and compared to the reference database to find recordings that

have identical or similar fingerprint hashes. Unlike symbolic music notation query methods

such as query-by-contour and query-by-humming (Ghias et al. 1995), which use symbolic

musical information (i.e., knowledge of the specific notes played in a segment of audio),

audio fingerprinting uses lower-level spectral information in a signal to generate a unique

identifier of the audio.

An audio fingerprinting system should be able to recognise recordings of songs in the

same way that a person can. If a person can recognise a song from a short clip of audio,

then an ideal computer system should be able to do the same. This means that a hashing

algorithm should utilise the perceptual aspects of the audio contained in the file and not

just consider the way that the file itself is encoded digitally. These so-called content-based

identification systems (CBIDs) are named as such because they identify matches based on

the audible content of the recordings in the corpus rather than the way that the file is

stored by the computer. Furthermore, because humans are able to recognise a recording as

being the same even in the presence of small changes to the query, such as tempo variations

or noise, effective fingerprinting algorithms should also be able to correctly identify queries

that have been modified in similar ways. Haitsma et al. (2001) call fingerprinting “robust

1.1 Audio fingerprinting 3

hashing”, because it indicates that a fingerprinting algorithm should generate a hash based

on the input that is robust to modifications to the audio that do not dramatically alter

the sound. They suggest that one approach to perform this robust hashing is to design an

algorithm that approximates the human auditory system:

A robust audio hash is a function that associates to every basic time-unit of

audio content a short semi- unique bit-sequence that is continuous with respect

to content similarity as perceived by the [human auditory system]. (Haitsma

et al. 2001, p. 2)

In order to match a query to a recording in a reference database, a fingerprinting

algorithm must generate identical hashes for the reference recording and query. The hashes

must be identical even when the query is very short, or when given a recording that sounds

similar to a human, but has a different audio signal. For example, if a recording has been

made with a microphone in a noisy room then the fingerprinting algorithm should be able to

separate the music in the recording from any additional noise recorded by the microphone.

Because fingerprinting algorithms should generate similar hashes on recordings that

sound the same to an ear but may not be stored the same on disk, hash functions such as

cryptographic hashes are unsuitable for this task. Cryptographic hashes such as MD5 or

SHA1 generate a significantly different output when given an input that differs by only one

byte on disk. Two clips of audio that sound the same to a human could have a significantly

different form when stored in a computer. Different digitisation techniques (e.g., copying

to a computer from CD or recording from Vinyl) can result in a different representation

on disk for the same song. Perceptual coding techniques such as MP3, Ogg Vorbis, and

Apple AAC result in files that sound nearly identical but have completely different on-disk

representations. Even two queries taken from the same file that differ in length only slightly

will have different cryptographic hashes. It would be unfeasible to create a set of hashes

for all song durations starting from all points in the song.

Reference databases should contain fingerprint codes for the entire length of the songs

stored in them. This is because it is useful to identify a song when only a small portion of

the song is given as a query. This segment could be recorded from any point in the song,

especially if the recording is made in a public place from music that is being played over a

PA system.

4 Introduction

Fingerprint lookup systems do not need to store a copy of the audio that is used to create

the fingerprint. Fingerprints can be generated and submitted to a database by any person

with a copy of the audio. While commercial fingerprinting systems can get fingerprints

directly from the music distributors, it is also possible to obtain fingerprints for rare music,

out of print music, or music released through independent labels directly from people who

have copies of the audio. Because audio is not stored in the fingerprinting system, copyright

issues related to storing copies of audio can be avoided.

1.1.1 Applications of fingerprinting

Audio fingerprinting is useful to a variety of people who create and consume music. Fin-

gerprinting systems can be used to identify unknown songs, determine proof of ownership,

track music as it is distributed to consumers over the radio or other distribution methods,

or to add value for consumers (Gomes et al. 2003).

Consumer playback devices can check the fingerprint of an audio signal to determine

if it is authorised to play that signal. Music distributors, for example bulk CD copying

companies, can ensure they are not unknowingly duplicating audio for which a customer

does not have a license to copy.

Broadcast monitoring can be performed to create an accurate list of the audio that was

broadcast by a radio station. This list can be used to ensure that royalties are correctly

payed to artists whose music is played. Batlle, Masip, and Guaus (2002) call this process

“song spotting”, a process that involves first separating songs from other non-musical con-

tent in an audio stream (e.g., separating songs from DJs talking or advertisements) and

then performing audio fingerprinting on the music segments to recognise the artist and song

title. A similar technique to song spotting is used in online services such as the YouTube

video sharing site 1. The automated rights-verification system identifies music that is used

in the background of videos and checks to see if the owner of the music has registered it in

a reference database. YouTube allows rights-holders to choose an action if unlicensed audio

is found: remove the audio from the video, allow the video to remain, or allow it to remain

with the addition of advertisements, the revenue of which is shared between YouTube and

the rights-holder 2.

1. http://youtube.com

2. http://www.youtube.com/t/contentid

1.2 Requirements of audio fingerprinting algorithms 5

Audio consumers can use fingerprinting to access value-added services related to the

songs being fingerprinted. A common use of fingerprinting allows consumers to quickly and

accurately copy music onto their computer from physical media and name it correctly for

storing and searching. Software on a computer can generate a fingerprint of each track of

music as it is copied from a CD and quickly look up artist and title metadata from a central

database. Mobile phones and personal devices have let people be closer to information about

things happening around them, including details of songs that are playing in public or

private venues. Smartphone apps, such as Shazam 3 and Soundhound 4 let people use their

phone to record a small segment of a song and almost immediately return information about

it, including the title, artist, song lyrics, related audio, upcoming concert appearances or

where to buy a copy of the song online. These services can identify songs that are playing

over speakers in venues such as cafes or bars, even if there is other background noise such

as people talking.

A 2001 press release by the Recording Industry Association of America and the Inter-

national Federation of the Phonographic Industry (R.I.A.A. 2001) asks for proposals for

fingerprinting systems to be used in rights management, copyright enforcement, and con-

sumer audio tasks. Suggested examples for uses of fingerprinting systems included tracking

music played by terrestrial and Internet radio stations for distributing royalties, checking

if an audio file has the right to be transmitted over a network, and providing value-added

data and other promotions to people listening to certain recordings.

1.2 Requirements of audio fingerprinting algorithms

The primary purpose of an audio fingerprinting system is to identify metadata about a

song based on a short segment of the song’s audio signal. Haitsma et al. (2001) and Cano

et al. (2005) each describe a list of desirable retrieval criteria that a fingerprinting system

should fulfill:

– A system must be able to generate compact fingerprints that can be quickly located

in a reference database, with a low error rate. The reference database must able to

be easily updated with fingerprints of newly released or digitised audio.

3. http://shazam.com

4. http://soundhound

6 Introduction

– Fingerprinting systems must be able to identify audio even if it has been altered in

different ways. Some common alterations that a system should be able to support

include ambient noise (for example, if a recording was made in a public place or while

driving in a car), and transmission interference (a reduction in quality or increase in

noise due to the medium which the audio is transmitted through, for example, FM

radio or GSM cellphone networks).

– Recordings should be able to be identified even if the audio has been modified before

it was broadcast. For example, frequency equalisation, or audio compression may be

applied by radio stations or a home stereo system (Cano et al. 2002). Resampling of

audio results in the audio speeding up or slowing down, causing an associated increase

or decrease in the pitch of the signal.

– A fingerprinting algorithm should be reliable. It should minimise the number of false

positives returned to any query (ideally false positives should be zero). It should be

robust enough to detect audio correctly even if the query has been distorted during

recording.

– A fingerprinting algorithm should be granular, that is, able to correctly identify a

song from just a small segment of audio. This segment could come from any part of

the song, not just the beginning.

– A fingerprinting algorithm must be versatile enough to compute a fingerprint from

any format of audio signal stored on a computer.

– The fingerprint should be computationally inexpensive to generate, and adding new

songs to the database should not result in any perceptible decrease in the speed at

which lookups can be performed.

1.3 The audio fingerprinting process

Most audio fingerprinting algorithms follow a common sequence of steps when trans-

forming an audio signal to a fingerprint (Figure 1.1): preprocessing, framing and overlap,

transform and analysis, feature extraction, and fingerprint generation (Cano 2007).

The first step, preprocessing, converts all input signals into a common format for anal-

ysis by the algorithm. Often, this step involves converting the input to a mono signal

and lowering the sampling rate from the standard CD rate of 44,100 Hz. The exact pro-

cess differs for different algorithms. Framing and overlap determines how many samples

1.3 The audio fingerprinting process 7

Preprocessing

Framing /
Overlap

Transform

Feature
extraction

Fingerprint

Input
signal

Fingerprint
generation

Figure 1.1 Common steps performed in audio fingerprinting algorithms to
convert audio to a fingerprint.

of the audio signal to consider when converting from the time domain to the frequency

domain. Each frame has a window applied to it to assist in calculations, and the frames

are processed in overlapping chunks from the time-series signal. Next, an algorithm takes

the time-series audio frames and converts them into a frequency-domain signal from which

more information can be extracted. The feature extraction process takes the signal that

has been converted into the frequency domain and selects salient features that are used to

characterise the audio. Finally, once the features have been chosen and extracted from the

signal, they need to be converted into a fingerprint representation that can be stored in a

database and compared to unknown query signals.

For a full fingerprinting software suite, the procedure does not end at the fingerprinting

algorithm (Figure 1.2). Once the fingerprint has been generated it must be stored in a

reference database. The numerical representation of the fingerprint is usually too unwieldy

to be used as an identifier (Figure 1.3), so a smaller unique identifier is used. This could

be as simple as the artist and song name, or a short unique string. A fingerprinting system

will provide a lookup service. The lookup operation should be able to take an unknown

input query and match the query’s fingerprint with a fingerprint that is in the reference

database, returning the identifier of the song that best matches the query, and optionally,

8 Introduction

Audio
files

Fingerprint Fingerprint
database

Unknown
query

Fingerprint Lookup Result

Figure 1.2 The main processes of a fingerprinting system incorporating a
fingerprinting algorithm, and a service to look up unknown queries and return
a matching recording.

the location in the song that the query comes from. If the song being looked up is not in

the reference database, the fingerprinting system should report that the song is not in the

database, rather than give a wrong answer.

168069 13 465942 13 52579 13 558476 13 739869 13 741460 13 380305 14

415399 14 661073 14 709215 14 74563 14 82703 14 1002532 15 1030366 15

106211 15 187156 15 348044 15 351350 15 35265 15 395259 15 403763 15

45438 15 474191 15 557925 15 793952 15 860815 15 883227 15 887181 15 90861

15 971810 15 1000650 16 405802 16 664990 16 771321 16 80513 16 949484

16 414620 38 47256 38 620886 38 63360 38 806318 38 971075 38 1007816 39

1014266 39 1022230 39 1036491 39 224005 39 340504 39 342618 39 394503 39

Figure 1.3 An example of a portion of a fingerprint from the Echoprint
algorithm, consisting of a series of hash value and timestamp pairs. The full
fingerprint for this 3 minute, 35 second long song is 58 kilobytes in size. The
Echoprint server internally refers to this song with the much shorter identifier
TRMQSLA132F3989B92

1.4 Contributions of this thesis

This thesis provides a survey of the current state of the art in audio fingerprinting

algorithms. It gives an overview of many current algorithms and also provides an in-depth

study of three algorithms that are currently in widespread use commercially and in research

projects.

1.5 Organisation of this thesis 9

We perform an evaluation of the three algorithms, and present statistics on the accuracy

of these algorithms when performing fingerprint lookups on a large collection of music.

The audio queries made to the fingerprinting systems are modified to simulate different

scenarios that may be encountered when performing a fingerprinting lookup, such as short

queries, degraded audio, and audio mixed with a noisy environment. This broad evaluation

directly compares different fingerprinting algorithms in identical situations. As part of the

evaluation, we have developed an extensible evaluation suite. This suite allows fingerprinting

algorithms to be tested repeatedly under the same circumstances and collects results of each

evaluation and helps in generating statistics. This evaluation platform can be used by other

researchers to test new fingerprinting algorithms in a controlled environment.

1.4.1 Fingerprinting algorithms used in the evaluation

There are a large number of fingerprinting algorithms that have been developed. Dif-

ferent algorithms perform the fingerprinting and identification steps differently, and have

different strengths in recognising different types of music. For the evaluation in this thesis,

we chose three algorithms that use different techniques to generate a fingerprint. We chose

these specific algorithms for two reasons. The first reason is because they all use signifi-

cantly different techniques for generating a fingerprint. The second reason is because each

algorithm is freely available to download and run on a server. By running our own version of

the server we are able to carefully control the audio that is added to the database and so can

tell if the result returned by the algorithm is correct or not. The algorithms are: Echoprint

(Ellis et al. 2011), Chromaprint (Lalinský 2012), based in part on the algorithm presented

by Ke, Hoiem, and Sukthankar (2005), and a landmark hashing algorithm (Ellis 2009),

based on (Wang 2003). The algorithms are all used actively in commercial (Echoprint),

community (Chromaprint), and research (Landmark) environments. Each fingerprinting

algorithm has freely available source code for both the fingerprinting component and the

lookup system, which we make use of in the evaluations.

1.5 Organisation of this thesis

The rest of this thesis is organised as follows: Chapter 2 performs a review of the

history of audio fingerprinting and other closely related technologies. Current commercial

and research uses of fingerprinting are also discussed. Chapter 3 provides an in-depth review

10 Introduction

of the three algorithms chosen for this experiment. The review covers the signal processing

specifics about how the fingerprinting algorithm generates its fingerprints and how lookups

are performed. Chapter 4 describes the experiment designed to compare the accuracy of

retrieval of these three algorithms. The results for the experiment and an overview of the

thesis and concluding remarks are given in Chapter 5.

11

Chapter 2

Audio Fingerprinting: An overview

Computers have been used for music-related retrieval tasks for almost as long as they

have been available for research (Foote 1998). Audio fingerprinting, however, is a fairly

recent application of signal processing techniques to music information retrieval. Up to

the end of the 1990s, there was little research on audio fingerprinting. Instead most music

information retrieval research centered around symbolic retrieval of music and automatic

classification of music based on style or instrument.

This chapter begins by giving an overview of music information retrieval technologies

which contain aspects that were later developed into audio fingerprinting systems. It con-

tinues with an outline of the audio fingerprinting process, with examples of different tech-

niques used by a number of different researchers. It concludes with an overview of current

commercial applications of audio fingerprinting.

2.1 Related audio retrieval techniques

Music information retrieval techniques have increased in scope and complexity since

computers were first used in connection with music-related applications. Often the com-

plexity of techniques increased as the power of contemporary computers allowed more

complex musical features to be calculated. This section describes a number of information

retrieval techniques that were developed either as precursors to audio fingerprinting, or use

similar signal processing techniques to perform analysis of audio.

12 Audio Fingerprinting: An overview

2.1.1 Query by humming

Query by humming (QBH) (Ghias et al. 1995) is a technique that lets a person get

information about an unknown song by humming or singing the main melody of the song.

A QBH system transcribes the query into symbolic form and then searches for the melody in

a database of symbolic song melodies. By representing the melody as a string of characters,

existing fuzzy string matching techniques can be used to find partial matches of melodies in

a reference database. The effect of mistakes in the sung query can be reduced by representing

melodies and search queries as contours–a string of characters indicating only if each note is

higher, lower, or the same as the preceding note. Even with these fuzzy matching techniques,

QBH systems can encounter problems if the melody sung by a person is sufficiently different

from the stored melody, or if the searcher sings a melody that is not stored in the database

(Byrd and Crawford 2002). Automatically transcribing an audio signal into a score, and

finding a salient melody in a polyphonic score are still active research problems (Poliner

et al. 2007). Song, Bae, and Yoon (2002) reduce some of the requirements to accurately

transcribe a sung query by using what they call a “mid-level melody representation”. This

representation of a melodic phrase describes a query by its spectral content rather than

transcribing the audio signal into symbolic notes which allows for a less exact matching

system to be used, reducing the effect of incorrectly sung queries.

2.1.2 Query by description

An early method of retrieving audio data from a computer database was query by

description. In this kind of system, a database holds a list of audio recordings along with

a textual description of each recording. These systems are able to retrieve music both

by description of the sound itself (e.g., thunder or applause) and by a description of the

the music (e.g., music with a saxophone and piano playing). These types of systems are

implemented as a text search database. For example, to find all pieces of audio with a

saxophone, such a system would simply find all occurrences of a tag “saxophone”. Early

versions of these databases were manually annotated, that is, the description of each audio

clip was entered by a person (Foote 1997). As databases of music grew larger, it began to

take longer and longer for expert listeners to label sounds. At the time the development of

social tagging on the Internet had yet to be developed, and so what now might have been

solved by crowdsourcing was not an option. A problem with manual annotation of audio is

2.1 Related audio retrieval techniques 13

that descriptions can be subjective, and use different words to what was used in a query.

For example, an audio clip tagged with the word “sax” may not be returned for the query

“saxophone”.

2.1.3 Query by example

As databases grew too large to annotate manually, computer systems were developed

to automatically identify the sounds in audio clips and identify either the instrument or

the type of noise (e.g., door slam, scream). Wold et al. (1996) and Pye (2000) use Hidden

Markov Models (Rabiner and Juang 1986) to create models of each sound. When presented

with an unknown sound, the same analysis is performed and the model is used to predict

a label for the sound. Wold et al. (1996) take clips of audio and measure the loudness,

pitch, brightness, bandwidth, and harmonicity of the audio signal. This information is first

used to determine if there is more than one sound in the clip. A large sudden variation in

these measurements indicates a new sound. Once individual sounds have been isolated, the

system is trained by taking these features and a manually provided description of the sound.

The system learns what values of each feature correspond to each description. Subramanya

et al. (1997) identify features after transforming the audio with the Harr transform, discrete

Fourier transform (DFT), and discrete cosine transform (DCT). In experiments, the DCT

is found to create features that most accurately identified audio clips.

2.1.4 Similarity retrieval

Cover song detection algorithms find different recordings of songs. These different record-

ings could be performed by the same performer (e.g., studio and live recordings), by different

performers, or could be “radio edits”—a modified version of a recording made for playback

on commercial radio.

Cover song detection systems share some signal processing techniques with fingerprint-

ing systems. They often use similar methods to reduce the dimensionality of input audio and

then characterise the spectral content as a numerical hash. A similarity detection system

then performs a similarity measure on the generated hashes. These matching algorithms

allow more variation in these hashes than fingerprinting algorithms (Miotto and Orio 2008;

Foote 2000). Similarity measurement systems often take into account the entire structure

of a song, rather than using a short 10–20 second query as fingerprinting systems do.

14 Audio Fingerprinting: An overview

Detecting different recordings of Western classical music can be considered a special case

of cover song detection. Because each recording of a Western classical work (e.g., a move-

ment of a symphony) is performed from the same score, the overall structure of the audio

is the same regardless of what orchestra records the music. While two different recordings

of the same score may be played at different speeds, points in the score are time-invariant,

occurring at the same relative location in each recording. Yang (2001) matches Western

classical music by identifying spectral peaks in a recording. The ratio in time distance

between three peaks is similar even when a work is performed by a different orchestra or

with a different conductor. Other classical music matching systems treat this detection as

a specialised subset of cover song detection (Crawford, Mauch, and Rhodes 2010; Müller,

Kurth, and Clausen 2005).

2.1.5 Watermarking

Audio watermarking is the act of inserting hidden information into an audio stream

that cannot be detected by the human ear. Watermarking and fingerprinting can be used

in many of the same tasks, for example, discovering the copyright status of a song, or pro-

viding metadata for a given recording. Metadata can be included in a watermark, including

information about the work or artist, or additional information (e.g., news broadcast from

a radio station along with a song). Audio watermarking techniques are able to store data

in an audio stream at rates of up to 150kbps, providing enough space to include metadata

about the currently playing song or even artwork.

Because watermarking physically affects a signal, it is important to choose a technique

that is inaudible to a person. This suggests adding the watermark to a part of the auditory

spectrum that is too high for most people to hear. A disadvantage of using this part of the

spectrum is that many perceptual coding techniques such as the MP3 format remove parts

of the spectrum that are inaudible to people. Therefore a good watermarking algorithm

must be robust against encoding formats that modify the audio signal.

Unlike audio fingerprinting, watermarking does not require a centralised lookup database.

This means that devices that check for the validity of streams do not need to have either a

local database of fingerprints (that could quickly get out of date) or an Internet connection

to connect to a central server that compares fingerprints. The advantage of watermarking

2.1 Related audio retrieval techniques 15

is that there is no central server that must remain operational in order for other systems

to run.

Fingerprinting has an advantage over watermarking in that it can be applied retroac-

tively to a library of audio. An effective watermarking system must be developed before

the first piece of audio is released with embedded watermarks, and improvements cannot

be applied to audio that has already been released.

Watermarking and fingerprinting can be combined for verification purposes. Gomez

et al. (2002) use an existing audio fingerprinting technique (Neuschmied, Mayer, and

Batlle 2001) to generate a fingerprint of an audio file and then embed that fingerprint

in the audio file as a watermark. This technique allows a playback system to verify the

integrity of an audio file before it is played and ensure that it has not been tampered with.

Watermarks that guarantee the authenticity of an audio file need to be digitally signed

in order to prevent tampering. By signing a large number of signals with the same key, a

malicious attacker may be able to derive components of the key by statistical analysis of

many signals. Mıhçak and Venkatesan (2001) present a solution that uses a component of

the audio’s fingerprint as part of the key to make deriving the key more difficult.

Gomes et al. (2003) compare fingerprinting and watermarking and discuss the potential

applications for both techniques. They suggest that while both fingerprinting and water-

marking can be used for copyright protection purposes, watermarking can be more versatile

because it can store any kind of information in the watermark, whereas fingerprinting can

only identify a recording. They state that watermarks need to have a low energy so that

they are not audible in a recording. This makes them more prone to distortion and difficult

to read if the audio file is damaged or encoded using low bitrate audio formats. Fingerprint-

ing is a more robust method for identifying a recording. Because the reference database

is separate from the audio, unlike watermarks, it can be updated at any time with new

information.

2.1.6 Graphical audio summaries

Graphical audio summary algorithms generate a graphical image that uniquely repre-

sents the structure of a recording. Like audio fingerprints, these summaries can be used visu-

ally to identify recordings without listening to the audio of the recordings. Images are more

easily comparable by people than the numerical representation that an audio fingerprinting

16 Audio Fingerprinting: An overview

algorithm generates. Audio summary algorithms generally use the same computation steps

as a fingerprinting algorithm, but produce a graphic as their final output representation

(Yoshii and Goto 2008). Bartsch and Wakefield (2005) generate auditory summaries of

music by finding repeating phrases such as choruses and render them to audio.

2.2 Audio fingerprinting techniques

This section presents an overview of existing fingerprinting algorithms. An analysis of

the three fingerprinting algorithms evaluated in this thesis (Lalinský 2012; Wang 2003; Ellis

et al. 2011) is presented in Chapter 3.

Section 1.1 introduced the idea that audio fingerprinting systems should recognise music

in a manner similar to that which people use to recognise music. In order to perform this

recognition, fingerprinting algorithms must extract meaning from the audio signal. One

way to extract meaning is to compute features of the audio, where a feature could be some

element with musical meaning (e.g., the pitch of musical content, or the rhythm of the

music), or could be based upon computed qualities of small segments of audio. Different

fingerprinting algorithms extract different types of features, and the specific algorithms

will therefore have different characteristics based upon the nature of the features computed

from an audio signal.

Fingerprinting algorithms convert features to numerical codes, or hashes, that represent

the value of a feature. If similar sounding features generate the same hashes then the

fingerprinting system can find matching audio by identifying identical codes.

Most audio fingerprinting algorithms calculate features from the audio domain, usu-

ally using the Fourier transform. The short-time Fourier transform (STFT) calculates the

frequency content at fixed time points along the audio signal, generating analysis frames.

Features are often calculated on a per-frame basis. It is common for algorithms to use

features that reflect the way people hear music, and so usually analyse the spectrum in

logarithmically spaced bands.

This section describes the ways that different algorithms convert audio features into

numerical fingerprints. The first part describes algorithms that compute codes directly

from the values of the features. The second part introduces algorithms that use machine

learning methods to generate hashes from features.

2.2 Audio fingerprinting techniques 17

2.2.1 Computing codes from features

Amplitude

Papaodysseus et al. (2001) present a system designed to work on radio broadcast audio

that does not have any additional noise present in the signal. This system works by splitting

the audio into frames and taking the discrete Fourier transform. The spectrum of each frame

is split into 48 exponential bins. From these bins, a 48-bit “band representative vector” is

created, with each element containing a 1 if there is a spectral peak in the corresponding

frequency bin and a 0 if not. To determine if a query exists in the database, a set of band

representative vectors for a query are calculated and the database is searched. Matches are

identified if band representative vectors only differ by 2–3 bits. Band vectors are compared

by performing a bitwise AND operation between two vectors. The algorithm can match

queries to a reference database even if there is a small increase in speed (up to 4%) or

frequency boosting in the audio query.

Wang (2003) describes the algorithm that is used in the Shazam music recognition ser-

vice. The algorithm takes a short-time Fourier transform of the audio and selects a “con-

stellation” of spectral peaks that have an amplitude larger than the peaks in a surrounding

area. The time and frequency distances between pairs of these peaks is encoded into a hash

that represents the audio. This algorithm is discussed in more detail in Section 3.3.

Baluja and Covell (2008) use a wavelet transform (Graps 1995) to convert an audio

signal into the time domain. They then use a method similar to that of Wang (2003) to

generate fingerprint codes from the distance in time and frequency between nearby audio

peaks.

The Philips algorithm and improvements

Haitsma, Kalker, and Oostveen (2001) develop a fingerprinting algorithm that has be-

come well known for its accuracy, gaining the name of the “Philips algorithm” after the

research group at which they worked. First, each audio frame is converted into the frequency

spectrum using the Fourier transform. The spectrum between 300Hz and 2000Hz is then

split into 33 bands according to the Bark scale, where each band has the bandwidth of a

musical semitone. The difference in energy between each band is encoded as 0 or 1 depend-

ing on whether the energy between the bands increases or decreases. This results in a 32-bit

value per sub-fingerprint. A fingerprint is made up of 256 sub-fingerprints, corresponding

18 Audio Fingerprinting: An overview

to about 3 seconds of audio. A custom index system is used to provide fast lookups of

queries into a reference database. Each sub-fingerprint hash in the query is searched for in

the reference database, and all tracks that contain this hash are added to a candidate list.

The candidate match that has the lowest bit error rate to the query fingerprint is given as

the matching track. This lookup system requires there to be at least one sub-fingerprint

between the query and reference fingerprint, otherwise it will not return a match.

Aspects of this general algorithm have been improved and analysed by numerous publi-

cations. Doets and Lagendijk (2004) and Balado et al. (2007) both perform theoretical anal-

yses of the algorithm to generate mathematical models of it, the first to characterise how the

output changes when the audio is compressed, and the second to determine the upper prob-

ability that no sub-fingerprints of differing audio share an identical hash. Kashino, Smith,

and Murase (1999) and Kimura et al. (2001) present improved lookup times for searching

for candidate matches. Miller, Rodriguez, and Cox (2005) increase lookup speeds by build-

ing a 256-ary tree for fast lookups—with one branch for each candidate sub-fingerprint. Liu

et al. (2009) show how with heavily distorted query signals there may not be at least one

identical hash between the reference recording and the query. In this situation, a match

would not be found. To increase the chance of a match in this situation, the new proposed

algorithm generates two separate hashes using different techniques. The second hash is

created by taking the discrete cosine transform (DCT) of the initial sub-fingerprints. These

“metahashes” are stored in another hash table and both hashes are used to select candi-

date tracks. Results show that with especially noisy query signals, the dual-hash system

increases recognition rates from 96% in a single hash system to over 99%.

Onsets

The Echo Nest Musical Fingerprint (ENMFP) (Ellis et al. 2010) and Echoprint (Ellis,

Whitman, and Porter 2011) use the difference in time between musical onsets (generally

equivalent to the beginning of notes). Echoprint calculates onset features in eight evenly

spaced frequency bands from 0–5512Hz. ENMFP calculates onsets by using a comb filter

to perform beat detection (Jehan 2005). The time difference between pairs of onsets is

combined with the frequency band in which the event occurs to create a hash. More details

about the fingerprint and lookup process of Echoprint are presented in Section 3.1.

2.2 Audio fingerprinting techniques 19

2.2.2 Computing codes with machine learning

Some audio fingerprinting systems use machine learning methods to convert audio into

fingerprint codes. These systems have a “training” process where a machine learning model

is used to map musical sounds to identifiers. When importing audio to a reference database,

such systems generate a list of identifiers that represent the sounds in the recording. To

perform a lookup the query audio is processed in the same way, and another list of identi-

fiers is created. The query identifiers can be compared to the reference database to find a

matching recording.

Kastner et al. (2002) convert audio to the frequency domain and then calculate the

spectral flatness of each frame. Spectral flatness characterises how ‘tone-like’ a sound is,

compared to noise. The algorithm uses the Vector Quantization (VQ) pattern recognition

method to cluster similar flatness values together. Queries are matched by finding the

nearest neighbours of the flatness values generated by the query audio and are matched to

the reference track that gives the most number of closest matches. Allamanche et al. (2001)

create a VQ model in the same manner as Kastner et al. (2002), but use a vector of

psychoacoustic features to represent each frame, including loudness, flatness, and sharpness.

The spectral flatness method described by Kastner et al. (2002) is formally specified in the

MPEG7 standard (Chang, Sikora, and Purl 2001), a content description standard published

by the Motion Picture Experts Group (MPEG).

Batlle, Masip, and Guaus (2002) use MFCCs (Mel-frequency Cepstral Coefficients) as

a method of extracting features and create models of audio using hidden Markov models

(Rabiner and Juang 1986). In order to reduce the effect of noise on the audio query, they

model noise using a linear filter and apply the filters inverse to the audio query before

generating a fingerprint. The HMMs are used to create a sequence of states that represent

frames of the recording. A full recording is represented by an ordered set of states. To find

a match, a query is split into frames, and the most likely state to create each segment is

calculated using the HMM. The model can also be used to find if recordings have been

edited (sections removed) or if two different recordings have been mixed together.

Cano et al. (2002) present a system called AudioDNA, which uses sequence matching

methods from biology and text searching. Audio is converted into the frequency spectrum

with a Fourier transform, and the spectrum is split into MFCCs. An HMM is trained

to represent similar MFCCs with one of 32 ‘genes’. A clip of audio is represented by a

20 Audio Fingerprinting: An overview

sequence of these genes. Queries are matched by creating a gene sequence, using the HMM

to estimate genes for each MFCC, and then comparing it to the gene sequences in the

reference database.

Ke, Hoiem, and Sukthankar (2005) build on the matching technique developed by

Haitsma, Kalker, and Oostveen (2001). The method uses a machine learning algorithm

called Adaboost, with an iterative thresholding algorithm to find the best way to create

black and white image masks that can be applied to a spectral representation of the au-

dio. These image masks are created outside of the fingerprinting process and are part of

the algorithm. Once black and white masks are applied to the audio file then matches are

performed by finding subfingerprints with low bit-error rates. A variation of this algorithm,

Chromaprint (Lalinský 2012), is discussed further in Section 3.2.

2.2.3 Increasing fingerprinting speed

Speeding up fingerprint calculation

Transforming audio content into the frequency domain is a computationally expensive

process. Some algorithms use methods to reduce the computation time needed to generate

the frequency bands. Pye (2000) skips the transform step by performing fingerprinting

on MP3 files. MP3 encodes information about each frequency separately, so this data

can be directly extracted from the file. Seo, Haitsma, and Kalker (2002) use a Fourier-

Mellin transform, which is faster to compute than a Fourier transform. The Fourier-Mellin

transform also results in a fingerprint that is robust to speed increases by up to 10%. The

fingerprint hash is calculated in a manner similar to that of Haitsma and Kalker (2002).

Papaodysseus et al. (2001) use an adaptive FFT, which uses the results from the previous

frame’s FFT calculation as a starting point for computing the current frame’s transform.

Speeding up lookups

Audio fingerprinting systems need to perform lookups of queries quickly. As more files

are added to the reference database, lookups should remain fast. An approach to main-

taining a fast lookup speed while performing query lookups is to split up the reference

database over many machines and send the query to all database machines simultaneously.

Each lookup machine will return the best match given the contents of that machine’s

2.2 Audio fingerprinting techniques 21

database, and then the best match of all results is chosen and returned to the client. Ma-

hedero et al. (2004) use a cluster of machines, using CORBA to perform a distributed search

and collate results. They use their previously published fingerprinting algorithm (Batlle,

Masip, and Guaus 2002) to perform the fingerprinting process. Shrestha and Kalker (2004)

integrate a distributed fingerprinting system using the algorithm developed by Haitsma

and Kalker (2002). This system is integrated into a distributed peer-to-peer filesharing ap-

plication that has knowledge of the content being shared between peers. The system can

request an identification of a music file, and if another node on the network reports it as

being copy protected then the file is not transferred.

2.2.4 Commercial fingerprinting systems

Systems that accurately perform audio fingerprinting are useful in a commercial context.

As has already been discussed, there is a lot of interest in using fingerprinting systems to

monitor the distribution of audio and for verifying that audio is authorised to be played.

An early application to enter into the digital music scene, Napster, was ordered as part

of a court settlement to integrate fingerprinting into its application. Napster was a peer-

to-peer file sharing application that allowed computer users to download MP3s of songs

from other users on the network. Napster implemented the Relatable 1 algorithm in their

software (Cremer et al. 2001).

In a similar copyright infringement detection system, Google uses both audio and video

fingerprinting on its video sharing site, YouTube. YouTube lets any person with an account

upload videos to be watched by anyone else who visits the site. In response to complaints

by the music industry about the use of copyrighted material, Google released a content

identification system that can identify songs embedded in videos in order to display ads

and generate revenue for rights-holders.

In consumer-facing applications, audio fingerprinting has found success in recording

identification in public areas. The Shazam 2 and Soundhound 3 smartphone applications

record a segment of a song playing in a public area, such as a cafe or on a radio and return

information about the song being played. Early versions of Shazam recorded audio over the

cellphone network, and returned metadata in a text message to the calling phone. Because

1. http://www.relatable.com

2. http://shazam.com

3. http://soundhound.com

22 Audio Fingerprinting: An overview

cellphone networks are designed to efficiently carry voice transmissions and not music the

fingerprinting algorithm needs to be robust to the significant reduction in signal bandwidth

that the phone network imposed (Wang 2006). With the release of these applications on

smartphones, the fingerprint can be calculated on the device and transmitted over the

Internet, though the recording quality is still low because of the device microphones. Shazam

and Soundhound also provide additional services beyond song identification, for example

related information about the artist and song, song lyrics, and links to purchase the song

from an online store.

Other companies that provide commercial fingerprinting services include Gracenote 4,

Relatable 5, and Amplifind Music Services 6.

2.2.5 Fingerprinting services

In non-commercial systems, audio fingerprinting has found a use among music fans and

consumers. The online music encyclopedia MusicBrainz 7 aims to create a comprehensive

database of all recorded music and musicians. It contains mappings from two fingerprinting

systems, PUID and Chromaprint, to recordings that are listed in its database. Fingerprints

and mappings are contributed by volunteers who generate fingerprints from recordings

copied from CD, or otherwise recorded into a digital format. The result of this mapping

can be used to accurately update metadata in audio files in an automated manner. Track

metadata can be looked up by using the fingerprint of a file, reliably identifying unknown

files. Musicbrainz originally used Relatable’s TRM fingerprinting service 8, before switching

to PUID (Holm and Hicken 2006) in 2006. Recently (2012) they have changed to AcoustId 9,

an open-source implementation of Ke, Hoiem, and Sukthankar (2005).

Last.fm 10 provides a service that lets music listeners report in real time what song they

are listening to (“scrobbling”). The site provides music listening recommendations based on

collaborative filtering using the large number of listener contributions. Last.fm developed a

4. http://www.gracenote.com

5. http://www.relatable.com

6. http://www.amplifindmusicservices.com

7. http://musicbrainz.org

8. http://www.relatable.com

9. http://acoustid.org

10. http://last.fm

2.3 Measuring statistics 23

fingerprinting service in order to more accurately identify songs as members were listening

to them, rather than needing to rely on potentially error-prone metadata 11.

More recently, The Echo Nest 12 released two fingerprinting systems, ENMFP (Ellis

et al. 2010), and the open source Echoprint (Ellis, Whitman, and Porter 2011), which

is discussed in further detail in Section 3.1, for use by music developers to accurately

link audio and music metadata in the Echo Nest developer ecosystem. The fingerprinting

services allow developers to upload a recording’s fingerprint and gain access to metadata,

analysis information, and cross-referenced metadata to a number of other music services on

the Internet. The fingerprinting algorithm and software for the lookup server are released

under open-source licenses, allowing developers to set up independent fingerprinting servers

for private use.

2.3 Measuring statistics

A fingerprinting answer can give the correct answer to a query or it can give the in-

correct answer. The accuracy of fingerprinting systems can be evaluated by calculating the

proportion of correct answers that they provide. The retrieval of a fingerprinting system is

measured as a fraction of how many queries it successfully identifies out of all queries that

were given to it. This is one of the most common rates reported in the literature (Kastner

et al. 2002; Wang 2003; Baluja and Covell 2007; Jang et al. 2009; Fenet et al. 2011).

Cano et al. (2002) and Jang et al. (2009) report only the number of errors made,

including errors where a query was not retrieved when it should have been (false negative)

and where the wrong recording was retrieved from a query (false positive). The rate at

which false negatives and false positives occur are also called type I and type II error rates,

respectively (Lutz 2009). As well as a single accuracy rate, Fenet et al. (2011) report the

false alarm rate—how often the system gives a result when the query was known to not be

in the database.

Some fingerprinting systems can be configured to trade off the number of correct re-

sults to the number of times that it does not return an answer. To visualise this tradeoff

between recall and precision as a parameter of the system changes, the Receiver Operator

Characteristic (ROC) curve can be used. Covell and Baluja (2007) and Chandrasekhar,

11. http://blog.last.fm/2007/08/29/audio-fingerprinting-for-clean-metadata

12. http://the.echonest.com

24 Audio Fingerprinting: An overview

Sharifi, and Ross (2011) compare the accuracy of different algorithms as the accuracy rate

is changed.

Ellis, Whitman, and Porter (2011) present a weighted metric, Perr which measures the

probability that the retrieval algorithm will make a mistake when given a query. It gives

more weight to false positives than to false negatives, with the rationale that giving an

incorrect answer is worse than reporting that a query is not in the database.

2.4 Evaluating fingerprinting accuracy

For fingerprinting algorithms that are resilient to noise in the query signal, there is a

common set of alterations that simulate the effect of noise on queries in order to test the

robustness of an algorithm. The alterations should be representative of real-life degradations

that could be applied to a query signal in fingerprinting situations. Haitsma, Kalker, and

Oostveen (2001) show a comprehensive list of signal degradations, which include

– Downsample to a lossless codec (e.g., MP3) at 128kbps and 32kbps bitrates

– Apply an allpass filter

– Apply audio compression

– Apply equalisation

– Add echo to the query

– Pass the query through a bandpass filter

– Resample the query to a different bitrate (and therefore change the pitch)

– Introduce noise by converting to analog (recording to tape) then convert back to

digital

Herre, Allamanche, and Hellmuth (2001) perform a similar list of alterations, including

changing the amplitude of the query signal (both by a constant value and with compression),

resampling the query with a speed change, performing EQ, encoding as MP3, and adding

background noise.

Chandrasekhar, Sharifi, and Ross (2011) measure the suitability of fingerprinting algo-

rithms for mobile devices, for example, the effect of encoding a query using the GSM audio

codec, which is often used by cellphones. Their comparison of three different fingerprinting

algorithms only measures a fingerprinting algorithm’s suitability to being used in a mobile

2.4 Evaluating fingerprinting accuracy 25

device, and thus concentrates on statistics like computational power required to calculate

the fingerprint and the size in bytes of the fingerprint for transmission.

26

27

Chapter 3

Analysis

This chapter presents an overview and analysis of the three audio fingerprinting systems

that are evaluated in Chapter 5 of this thesis. These algorithms were chosen because of

their availability and reputation in the academic and audio communities. Each algorithm

has a freely available implementation which can be run as a standalone server. This ability

to run a server independently from any hosted service was an important requirement as it

allowed us to host our own servers containing a known dataset of audio that we could use

to verify the results of a fingerprint lookup from.

We describe the fingerprinting, storage, and lookup processes for the following finger-

printing algorithms:

– Echoprint: A freely available audio fingerprint algorithm 1 and server 2 created and

released by music technology company The Echo Nest, described by Ellis et al. (2011).

The algorithm is designed to be robust against noise in queries and the server is

scalable to support over 50 concurrent queries per second. Both the fingerprinting

algorithm and the server are made available under open source licenses (MIT and

Apache 2.0, respectively). The Echo Nest hosts a fingerprint server that performs

over 5 million lookups per day 3.

– Chromaprint: An implementation of the algorithm described by Ke et al. (2005),

with some features from Jang et al. (2009) and Müller, Kurth, and Clausen (2005).

The Chromaprint system is used by the Musicbrainz project, described in Section 2.2.5.

1. https://github.com/echonest/echoprint-client

2. https://github.com/echonest/echoprint-server

3. http://notes.variogr.am/post/27796385927

28 Analysis

An accompanying server application, Acoustid, provides a database of fingerprints

and a server to look up queries on. At the time of writing, the hosted Acoustid ser-

vice 4 contains 14 million fingerprints representing over 5 million distinct songs and

performs about 2 million lookups per day 5. The Chromaprint algorithm is released

under the Lesser GPL license and the server under the MIT license.

– Landmark: A Matlab implementation of Wang (2003), also referred to commonly as

the “Shazam algorithm”, due to it being the basis of the commercial Shazam audio

fingerprinting service 6. Shazam performs over ten million lookups from around the

world every day 7. It can identify an unknown audio segment recorded by a mobile

phone in a noisy room in under 10 seconds. This implementation of the algorithm

provides the fingerprinting and server/lookup process. It is available online for down-

load 8. This implementation is often in other literature when comparing the Shazam

algorithm to other fingerprinting algorithms (Chandrasekhar, Sharifi, and Ross 2011;

Fenet, Richard, and Grenier 2011).

3.1 Echoprint

The Echoprint algorithm works by finding onsets—points in time where musical notes

occur. Features are created by calculating the difference in time between subsequent onsets

and creating a hash of these time values. Matching recordings are found by looking for

identical hashes in the reference database.

3.1.1 Preprocessing and transform

Audio signals coming in to the Echoprint algorithm are converted to mono and their

sample rate is reduced to 11025 Hz. In order to prevent sudden noisy events such as pops and

bangs from being mistaken for musical onsets, the input signal is “whitened”. To perform

the whitening, a 40-pole linear predictor filter is generated from the input signal. This filter

changes each sample to be estimated by a smoothed value of the previous 40 samples. This

process reduces the amplitude of sudden peaks in the signal.

4. http://acoustid.org

5. http://acoustid.org/stats

6. http://shazam.com

7. http://www.shazam.com/music/web/about.html

8. http://labrosa.ee.columbia.edu/matlab/fingerprint

3.1 Echoprint 29

Once the audio has been downsampled and whitened it is transformed into the frequency

domain. Echoprint uses a 128 band cosine filter bank to perform this transform (Ramstad

and Tanem 1991). The filterbank is moved over the signal with a hop size of 32 samples.

The resulting frequency bands are grouped into eight equally spaced bins by summing the

absolute difference of adjacent bands. The eight bins are equally spread out from 0 Hz to

5512.5 Hz.

3.1.2 Hashing and storage

Echoprint hashes are calculated based on the time difference between musical onsets in

each band. The first step of the hashing process is to detect the onsets in the audio signal.

Onsets are detected in each frequency band independently. In each band, an envelope

follower is used to measure the amplitude of the band. When the amplitude reaches a

threshold, an onset is registered. After an onset has been detected, 128 samples must pass

before the next onset. The amplitude of the onset is multiplied by an exponentially decaying

curve to calculate a new threshold value. Subsequently detected onsets must exceed this

threshold in order to be counted. The multiplier decay is adaptive to the number of onsets

that are being detected. Echoprint has a target of generating one onset per second in each

frequency band. If onsets are being generated at more than this rate, the multiplier decay

is increased, resulting in a larger threshold to exceed. If the rate of onsets decreases too

much, the multiplier is decreased to compensate.

Figure 3.1 Onsets detected by Echoprint on eight frequency bands for the
first 30 seconds of “Life on Mars”, by David Bowie.

30 Analysis

Figure 3.1 shows a graphical view of the spectrogram of an audio track generated by

the filter bank and split in to eight bands. Onsets in each band are indicated by the black

bars. Onsets can occur at different times in each frequency band.

To encode the onsets to numerical values, the algorithm considers the time of each onset

(o) and the time of its four successors (s1–s4). A hash value is created by taking the time

delta between pairs of the five onsets (Figure 3.2), and the band in which the onsets occur.

Hash 1 2 3 4 5 6
bytes 1–2 s1 − o s1 − o s2 − o s1 − o s2 − o s3 − o
bytes 3–4 s2 − s1 s3 − s1 s3 − s2 s4 − s1 s4 − s2 s4 − s3

byte 5 band band band band band band

Figure 3.2 Calculating the time delta between pairs of onsets to create six
hashes.

The two hash values and band index are stored in a 40-bit (5 byte) number (two bytes

for each delta and 1 byte for the band index). The number is reduced to a 32-bit integer

with the MurmurHash algorithm (Appleby 2009).

Each onset and set of successors generates six hashes. By pairing onsets and successors,

the algorithm adds robustness against the failure of onsets to be detected. If one onset is

missed then there will still be some matching hashes at that point in time. This hashing

method results in approximately 48 hashes per second of audio (8 bands, 1 onset per second,

6 hashes per onset).

To store hashes, they are paired with the time that the onset occurs in the audio query.

The offset hash pairs for a single recording are split into a number of sub-recordings,

each 60 seconds long, overlapping with the previous sub-recording by 30 seconds. Hashes

are split in this manner because the matching component of the system scores recordings

by the number of times a hash in the recording matches hashes in the query. If the hashes

were not split, then long recordings would receive an unfair advantage at the lookup stage

because recordings with repeated content could generate the same hash value at many

points in the recording. The hash values are stored in an inverted index, mapping a hash

to a sub-recording id and the point in time at which the hash occurs. The Echoprint server

application uses Apache Solr 9, a fast text search engine, to store the hash index. The full

9. http://lucene.apache.org/solr

3.2 Chromaprint 31

set of offset hash values for each recording are stored in a separate database for use in

the lookup process.

3.1.3 Lookups

Lookups are performed in two steps. The same fingerprinting process is performed on

the query signal, resulting in a set of offset hash pairs. For the first step, the time values

are discarded. The inverted index is searched to find all 60 second sub-recordings that

contain a hash value that is present in the query. These sub-recordings are ordered by the

number of times a recording hash matches a query hash. The 15 sub-recordings with the

highest number of matching hashes are returned. If more than one sub-recording for the

same recording is returned from this stage, all but one of them are discarded.

The final score of each candidate recording is calculated by trying to fit the query hashes

to the recordings. This is done by calculating the time difference between the onset time in

the query and the onset time in the recording for each hash in the recording, and keeping a

sum of the number of times each time difference occurs. If a query fingerprint is similar to a

recording fingerprint then this offset will be the same for all matching hashes. The reference

recording with the highest number of identical time offsets is chosen as the matching query

as long as it has more than twice the number of matching offsets as the next recording.

3.2 Chromaprint

3.2.1 Preprocessing and transform

Input audio to Chromaprint is converted to mono and downsampled to 11025 Hz. The

audio signal is converted to the frequency domain by performing a short-time Fourier

transform (STFT) with a frame size of 4096 samples (190 ms) and a 2/3 overlap (2731

samples). The resulting spectrum is converted to 12 bins representing the chroma of the

signal. Each bin in the chromagram represents the energy that is present in a musical note.

The 12 bins represent the 12 notes of the chromatic scale (Kurth and Muller 2008).

3.2.2 Hashing and storage

To calculate hash values for Chromaprint, the six filter shapes in Figure 3.3 are used.

Using the AdaBoost technique described by Jang et al. (2009), the algorithm generates 16

32 Analysis

Figure 3.3 The match filters used in Chromaprint.

filters that are composed of different sizes of the six filters shown above. These 16 filters

are pre-calculated as part of the Chromaprint algorithm and do not change.

A 12-by-16 sliding window is moved over the chromagram one sample at a time. For

each frame, the 16 generated filters are applied to the window. To apply a filter, the filter

sums the amount of energy in the white area and subtracts the amount of energy in the

black area, resulting in a single value. Each of the filters quantizes the energy value to a

2-bit number (from 0–3). The 2-bit value is encoded using Gray coding. Gray coding stores

numbers in such a way that adjacent values differ by only one bit.

The 2-bit hash values from each of the 16 filters are converted to a single 32-bit integer

representing the subfingerprint of the 12-by-16 window. The window is advanced one sample

to calculate the next subfingerprint (Figure 3.4). The subfingerprints are stored in an

inverted index pointing to the recording in which they occur, and the full fingerprint is

stored in a database.

Figure 3.4 A graphical representation of the Chromaprint for the first 10
seconds of “Ziggy Stardust”, by David Bowie. Each vertical block represents
a 32 bit integer, with 1 encoded as black and 0 as white.

3.2.3 Lookups

It is expected that at least one 32-bit subfingerprint in a query is identical to a sub-

fingerprint in the matching recording in the reference database. This assumption is used

to select the candidate recordings. Given a query, all tracks in the reference database that

contain one of the hashes in the query are retrieved from the inverted index.

3.3 Landmark 33

Noise in the query can result in bits being flipped in subfingerprints. Due to the nature

of the Gray coding used in the hash generation step, slight changes to the chromagram are

manifested as a 1- or 2-bit change in the subfingerprint. The real score of each recording

is calculated by counting how many subfingerprints in the query match a subfingerprint

in the candidate recording within a Hamming distance of 2 (that is, there are 0, 1, or 2

changed bits between subfingerprints). The recording with the highest score is returned as

a match to the query.

3.3 Landmark

3.3.1 Preprocessing and transform

Before feature extraction is performed, the signal is converted to mono and the sampling

rate is reduced to 11025 Hz.

In order to transform the signal into the frequency domain the algorithm performs a

short-time Fourier transform (STFT, Portnoff 1981) with a window size of 46.4ms (512 sam-

ples) and a hop size of 32ms (352 samples). The Fourier transform results in frequency bins

21.5 Hz wide. A Hamming window is used on each frame before performing the transform.

3.3.2 Feature selection

After the signal has been converted to the frequency domain the next step is to select

features from the spectrum. The Landmark algorithm uses peaks in the amplitude of the

spectrum in each frame to find features to encode as the fingerprint.

To find the target maximum amplitude, the highest amplitude in the first 10 frames

of the STFT is found. Each time a peak is found, a threshold is updated to be 0.998 of

the amplitude of that peak. The next peak that is selected must exceed this threshold,

after which the threshold value is updated again. This amplitude decay is chosen to achieve

a target hash distribution of approximately 7 hashes per second. The threshold can be

decreased to find more peaks in the audio, which can increase accuracy but at the expense of

computation time to create hashes from all of the peaks and search for them in the database.

Once the peaks have been found in a frame, the amplitude of the peaks is discarded. The

time (in 512 sample steps) and frequency (in 21.5 Hz bins) of each peak is stored for the

next step.

34 Analysis

Once the amplitude peaks have been selected, pairs of peaks are gathered together. The

pairing algorithm only pairs peaks within 31 frequency bins (∼484 Hz) and 63 time steps

(2016 ms) of each other. Only the closest 3 peaks in time to each other are selected. This

“fanout factor” can be increased to generate more hashes to make matching more reliable,

at the expense of computation time. Plotting peak pairs on the STFT graph results in what

is called a “constellation map”, as the lines between peaks somewhat resemble constellations

in the night sky (Figure 3.5).

Figure 3.5 A “constellation map” of hash pairs generated by the Landmark
algorithm for a 15 second query of “Ashes to Ashes”, by David Bowie.

3.3.3 Hashing and storage

Hash pairs are represented as the two frequency bins in which the points lie, and the

time between them. These values are encoded in a simple hash. The reference algorithm

uses a 20-bit hash, consisting of 8 bits for the starting frequency (F1), 6 bits for the delta

between F1 and F2 (FD), and 6 bits for the difference in time between the two peaks (TD).

Time differences are stored in units of 32 ms (the STFT hop size).

Figure 3.6 shows how the details of a pair of peaks are encoded into a single hash

value. This hash value is stored in an inverted index with the hash number referencing the

recording ID and the time in the recording that the hash is from.

3.3 Landmark 35

(start time, Freq 1, Freq 2, Time delta) = (917, 59, 44, 14)

bits 1–8 (F1) bits 9–14 (FD) bits 15–20 (TD)
5910 1510 1410

001110112 0011112 0011102

= 242638

Figure 3.6 Encoding features of the hash for a peak pair into a single 20-bit
integer containing the starting frequency (F1), the delta between F1 and F2
(FD) and the time delta between the peaks (TD).

3.3.4 Lookups

To perform a lookup of a query, the same hashing process is performed to create a set

of hashes for the query signal. To increase the chance of generating matching hashes, three

more sets of hashes are created by advancing the signal by 1/4, 1/2, and 3/4 of the window

size and the STFT and repeating the hashing process. When finding peaks in the signal the

target density for landmarks is increased from 7 per second to 20 per second by reducing

the threshold multiplier to generate more possible matching hashes.

Once a set of hashes has been generated the lookup table is searched to return all refer-

ence recordings that contain a hash present in the query signal. The candidate recordings

are ordered by the number of matching hashes between the query and the candidate record-

ings. The candidate recording with the most matching hashes is returned as the match to

the query. Because each hash points to a recording as well as the time offset at which the

hash occurs at in the recording the point in time of the query can be recreated.

36

37

Chapter 4

Evaluating fingerprinting algorithms

One contribution of this thesis is a large-scale evaluation of a selection of publicly avail-

able audio fingerprinting algorithms. This chapter discusses criteria of an evaluation suite

designed to compare such algorithms. The evaluation suite is designed to allow many fin-

gerprinting algorithms to be simultaneously evaluated, each using the same input query

parameters. The chapter begins by introducing the aspects of fingerprinting systems that

should be tested in an evaluation, before introducing a framework that fulfils these re-

quirements. We present an experiment that uses this evaluation suite to compare the three

fingerprinting algorithms discussed in Chapter 3. The results of this experiment are pre-

sented in Chapter 5.

4.1 Choosing evaluation criteria

Many publications introducing new fingerprinting algorithms or improvements only pub-

lish retrieval results for experiments performed using only a small number of recordings in

a reference database (e.g., Batlle, Masip, and Guaus 2002, 2000 files; Fragoulis et al. 2001,

450 files; Papaodysseus et al. 2001, 1000 files). While this small number of reference files is

sufficient for producing preliminary results for a retrieval system, a larger dataset is useful

to be able to identify issues that might only become apparent when the size of the dataset

increases. Small datasets increase the risk of not including styles of music that may cause

problems for a fingerprinting algorithm (Catalán 2009). To be representative of a wide

range of music, an evaluation should be performed using a large reference database.

38 Evaluating fingerprinting algorithms

Other reports of algorithm success rates provide a larger database of test songs: Kastner

et al. (2002) use a database of 85,000 recordings, but only 30-second excerpts. Haitsma and

Kalker (2002) test with 10,000 tracks, and Wang (2003) with 20,000. Recent evaluations

test even more: Fenet, Richard, and Grenier (2011) use 30,000 files and Ellis, Whitman, and

Porter (2011) 100,000. This literature often only presents the retrieval results of the single

algorithm described in the paper and does not directly compare the presented algorithm

with other algorithms from the literature. Due to differences in the corpus used and different

ways of processing input signals in different experiments, it can be difficult to compare the

success rate of different algorithms based on results from the publications. Many papers

that present results for modified queries refer to Haitsma et al. (2001) for a list of possible

modifications, but sometimes do not give complete descriptions of the modifications in order

to accurately reproduce the results. Some publications present comparative results of more

than one algorithm (Chandrasekhar, Sharifi, and Ross 2011), but only showing results for

a specific set of criteria. A comprehensive evaluation should compare many fingerprinting

algorithms under identical conditions.

A key feature of many audio fingerprinting systems is to be able to record queries in

a noisy environment and still obtain a correct match. Some algorithms are designed to

accurately identify music from a particular environment, for instance, music that has been

broadcast via FM radio and has been changed from its original signal prior to transmis-

sion. In the absence of queries recorded in these situations, it can be useful to artificially

manipulate the query signal in order to simulate the behaviour of these sorts of treatments.

The results of an evaluation should be an indication of how good a fingerprinting system

is at identifying an unknown audio query given a corpus of known audio. Such a metric

should indicate how often the algorithm fails to identify a recording given a query or gives

the wrong answer.

4.2 Evaluation framework

We have developed an audio fingerprinting evaluation framework to compare multiple

fingerprinting algorithms against each other. The framework is written in Python 1, and

uses a MySQL 2 database server to store intermediate data. The evaluation system was

1. http://python.org

2. http://mysql.com

4.2 Evaluation framework 39

specifically designed so that it can be run in parallel on many computers at the same

time, with a queue server used to distribute work between these separate computers. Any

fingerprinting algorithm can be tested using the framework through a module, a software

interface that provides a mapping between that fingerprinting algorithm and the evaluation

suite. The module interface presents a consistent API (Application Programming Interface)

for the evaluation system, allowing for different fingerprinting algorithms to be easily eval-

uated. The framework can modify a query sound to simulate situations where the audio is

modified during transmission or if noise is also recorded with a query. The modifications

are repeatable and the same modifications can be made to each query before sending to

different algorithms, for a direct comparison.

4.2.1 Distributed computation

The evaluation framework makes use of multiple computers in order to speed up the

evaluation process. The framework, which uses the RabbitMQ 3 queue broker system, can

be installed on many computers and run simultaneously. The queue contains a list of actions

to perform in the running of a single evaluation, for example, take a single file, turn it into a

query, and look up the query in a fingerprinting system. Each of the algorithms being tested

can run independently on different computers, or many computers can concurrently run

an evaluation for a single algorithm, testing simultaneous access to the fingerprint lookup

server. The queue system provides a locking mechanism to ensure that no two workers

attempt to perform a fingerprint action on the same file.

4.2.2 Modularity

Each algorithm to be tested is represented by a module in the evaluation framework.

Modules are required to fulfil a simple contract in order to give a consistent interface for

the framework to test different algorithms. The contract defines the input and output of

each step that the module performs. Figure 4.1 shows the contract that modules in the

evaluation framework must adhere to.

An audio fingerprinting system consists of two main steps: importing audio into a refer-

ence database and querying the database for the metadata on an unknown piece of audio.

Both of these steps require a process that generates a fingerprint from a segment of audio.

3. http://www.rabbitmq.com

40 Evaluating fingerprinting algorithms

Audio
stream Fingerprint Fingerprint

hash

Fingerprint
hash

Ingest

Database

Internal
identifier

Fingerprint
hash

Lookup Prediction

Figure 4.1 Contract for fingerprinting modules. Each module must be able
to generate a fingerprint, add a fingerprint to a database, and look up a query.

The Fingerprint step takes an audio signal and computes the numerical fingerprint that

represents the audio passed to it. The Ingest step takes the fingerprint of a whole audio file

and adds it to the algorithm’s reference database. In order to succinctly refer to a recording

in the fingerprinting system’s database, the ingest method returns a short unique identifier

that maps to the fingerprint codes.

The evaluation framework maintains a mapping between source files and these finger-

print IDs. Comparison of these IDs provides the main metric for evaluating the accuracy of

the algorithms. The Lookup step takes a fingerprint that has been generated from a short

query of music and searches for the fingerprint in the algorithm’s database. It returns the

internal ID that the fingerprinting system believes belongs to the query that was passed

in. The evaluation framework stores this identifier and can match it to the actual ID of the

file used to perform the query.

4.2.3 Repeatability

Experimental repeatability is important when performing evaluations. Having a record

of the steps performed during the evaluation can help to reproduce results and determine

what changes to the lookup process result in an increase or decrease in accuracy. Being

able to repeat an experiment with the same inputs is also useful during the development of

fingerprinting algorithms. By performing the same evaluation on different variations of an

4.2 Evaluation framework 41

algorithm, it is possible to determine which modifications increase its accuracy. In order to

ensure that experiments can be repeated exactly, the evaluation framework keeps a record

of the choices of files it chooses while running, and the modifications made to query audio.

4.2.4 Collecting statistics

The accuracy of fingerprinting systems can be measured by the successful retrieval rate.

To calculate retrieval rate statistics for each fingerprinting algorithm with a particular

query, the framework stores the result of each query to the fingerprinting system. The

framework maintains a list of all of the audio files being used in the evaluation. The frame-

work can compare the result of a lookup to the expected fingerprint ID to determine if

the fingerprinting system was correct or incorrect. As a starting point, the evaluation suite

provides tools to calculate the true positive, true negative, false positive, false negative,

and false accept rates. From these statistics, precision, recall, specificity, and sensitivity

can be calculated. These metrics are discussed in further detail in Section 4.3. By storing

results rather than computing statistics as the evaluation is running, new statistics can be

calculated if needed, without having to run the evaluation again.

In addition to retrieval statistics, the framework also captures runtime information of

the algorithm, including the speed taken to fingerprint the audio file, and the speed taken

to perform a lookup. These metrics are important because some algorithms may trade

fingerprinting and lookup speed for accuracy.

4.2.5 Query modifications

Effective fingerprinting algorithms are able to identify audio queries that differ from the

reference recording in the database. These modifications can be due to noise introduced

if the query is recorded in a noisy environment (e.g., in a car or public venue) or because

the audio was intentionally modified (e.g., for radio transmission, or to reduce file size

to make downloads faster). In order to simulate these kinds of modifications to a query

signal, the evaluation framework contains a number of filters that can alter the audio

before it is used as a query. The filters can be used individually or joined together in a

sequence, using the audio output of one filter as the input to another, to adjust many

aspects of the audio query at the same time (see Figure 4.2 for an example). The following

list of modifications was created based on other publications that discuss the robustness

42 Evaluating fingerprinting algorithms

requirements of fingerprinting algorithms (Haitsma et al. 2001; Cano et al. 2002). The name

of each filter as used in the evaluation suite is given in parentheses. The modifications were

performed with the Sound eXchange (sox) sound processing program 4.

Input
file

Select 15 seconds
from position 0:30

Add 10dB SNR
pink noise

Convert to
GSM bitrate

Query
signal

Figure 4.2 Chaining filters together. The output of the first filter (excerpt
section) is used as input to the second filter (adding noise), and so on, resulting
in a signal that can be used for a query.

– Query position & length (chop): A fingerprinting algorithm should be able to

identify an unknown recording from a short audio query. On many occasions, the

entire song may not be able to be recorded, in which case the fingerprinting algorithm

must still be able to identify the query. Not only does this reduce the time needed to

generate a fingerprint and compare the fingerprint to the reference database, but it

also means that a person trying to identify a part of a recording in realtime does not

need to record the full song.

– Audio bitrate (bitrate): Music encoded in the MP3 format has its quality ex-

pressed as an audio bitrate, which characterises how much audio content remains in

the signal stream after parts of the frequency spectrum are removed from the signal

when it is encoded. MP3s encoded for transmission over the Internet often have low

bitrate in order to reduce the file size and therefore decrease the time needed for

download. A notable example of this is the low-quality video setting on the video

sharing site YouTube. Many music videos are uploaded to YouTube at the lowest

video quality setting, which has an associated audio bitrate of 64 kbps. Audio en-

coded at this rate has a noticeably lower quality than the same recording played from

a CD, but should still be correctly identified by a fingerprinting algorithm.

– GSM audio: (gsm): Many commercial audio fingerprinting services provide the abil-

ity to record audio using a smartphone and perform a lookup. Telephone networks are

designed to efficiently transmit speech rather than music. This means that fingerprint

lookup systems that transmit queries over a phone call rather than the Internet need

to correctly identify audio that has been compressed for voice transmission. GSM is

4. http://sox.sourceforge.net

4.2 Evaluation framework 43

an industry standard speech transmission format. GSM audio is mono with a sample

rate of 8000Hz.

– Playback speed: (samplerate): Audio broadcast by radio stations is often manipu-

lated by the station before transmission to make the audio sound more energetic. One

technique used is to adjust the sample rate of the audio, resulting in an increase in the

speed of the audio when played back. A side-effect of this sample rate modification

is that the pitch of the audio signal is also increased.

– Compression & Equalisation: (fm): In order to make broadcast music sound more

appealing after being transmitted over FM radio, some radio stations increase the

amplitude of some frequency bands before transmitting the signal. These alterations

are used to make the audio sound better in certain listening situations, such as on

car stereos.

– Noise: (noise): To simulate the recording of an audio query from an environment

where there is ambient noise, the noise filter can mix in any audio with the query.

The evaluation framework provides some sample noise that can be used to create

queries. These noise samples are pink noise, noise from a car driving on the road, and

spoken conversation. Pink noise was chosen because it has the same loudness at all

frequencies, as opposed to other noise signal such as white noise. Each noise sample

is available at three different volume levels. The first sample is normalised to give

a signal-to-noise ratio (SNR) to the query of 0 dB (that is, the query and noise are

equally loud). The other two samples are reduced by 10 dB to give an SNR of 10 dB

and 20 dB, respectively. The −10 dB steps are perceived as a halving of the volume of

the noise in each test. The sample noise queries were downloaded from the freesound

audio archive 5. The two noise sounds used are “Bar Crowd - Logans Pub - Feb

2007.wav” 6 and “Driving in Streamwood IL with the windows down (05-04-2009)” 7.

4.2.6 Evaluation process

The main database and queue software for the evaluation system are installed on a

single computer. Each worker machine is able to connect to this server to write results

and retrieve work. All workers have access to the same test files, accessible at the same

5. http://freesound.org

6. http://www.freesound.org/people/lonemonk/sounds/31487/

7. http://www.freesound.org/people/audible-edge/sounds/72830/

44 Evaluating fingerprinting algorithms

Query filters

Get file

Apply filter
Perform

fingerprint
Find best

match

Testset
20,000 files

Randomise

User specified
files

Store result

Run Execution

Holdback
set

Testset
Perform

fingerprint
Fingerprint
database

Fingerprint id

Query
fingerprint

Figure 4.3 A flowchart of how the evaluation framework imports audio to
fingerprinting algorithms and then performs lookup queries

4.3 Document retrieval statistics 45

location on each worker. Figure 4.3 shows the steps that are performed when adding files

to a reference database and performing the evaluation.

To import the audio, the user specifies a source of files to be used for the evaluation.

The evaluation framework reads the list of files and performs a fingerprint action on each

of them with each fingerprint algorithm. This becomes the reference fingerprint for the

recording. The fingerprint is sent to the fingerprinting system server, which stores it and

returns a unique identifier. The evaluation suite records the unique combination of input file,

fingerprint algorithm, and unique identifier. A small percentage of files are not fingerprinted

(by default, 20%). These files are used as a holdback set, and used to test the behaviour

of the fingerprinting lookup process when given a query for a recording that is not in the

reference database.

A test set is a random collection of files from the corpus under test. A run is an execution

of a test set, the files of which are all modified with the same query filter and then looked

up in a fingerprint server. To directly compare two or more fingerprinting algorithms, a set

of runs with the same testset, same query filters, and different fingerprint algorithms can

be created.

To execute a run, a worker reads test files from a queue. It performs each of the query

modifications in order and uses the result as an input to the lookup method of the module for

the fingerprinting algorithm under test. The lookup method returns the unique identifier

that is the best match of the fingerprinting system for the given query. The framework

stores this result in the database. The result returned for this specific run can be compared

to the actual unique identifier created when the file was added to the fingerprint database.

4.3 Document retrieval statistics

When a fingerprinting system is being evaluated, each file in the testset is modified

in the same way to generate a query signal. Some of the queries are known to be in the

database of the fingerprinting system, and others are known to not be in the database (the

holdback set). When given a query signal, a fingerprinting system can return one of two

responses: It can respond that there is no known recording in the database that matches

the query or it can return the identifier of a recording that it thinks matches the query.

Based on the known fact that a query is in the system database or not, and the response

from the system, the evaluation framework can classify the response in one of five categories:

46 Evaluating fingerprinting algorithms

– True positive (tp): The system returns the recordng ID, which corresponds to the

query

– True negative (tn): The system returns no recording ID, and no recording corre-

sponding to the query exists in the database

– False negative (fn): The system returns no recording ID, but a recording corre-

sponding to the query exists in the database

– False positive (fp): The system returns a recording ID, but it does not correspond

to the query, the recording of which exists in the database

– False accept (fa): System returns recording ID, but it does not correspond to the

query, the recording of which does not exist in the database

Often the last two categories (false positive, false accept) are both reported as false positives—

the system reported a result (‘positive’) but it was incorrect. We report the false accept and

false positive values separately in order to discover if fingerprinting systems have different

error rates for both of these categories. By counting the number of times each of these cases

occur in an evaluation we can calculate statistics that provide a general indication of the

accuracy of a fingerprinting system.

4.3.1 Precision, recall, and specificity

The most widely used statistics in information retrieval are precision and recall (Baeza-

Yates, Ribeiro-Neto, et al. 2011). These statistics are often used in other related literature

(see Section 2.3 for an overview).

The precision (Equation 4.1a) of an algorithm measures how many of the positive results

reported by the the system were correct. A positive result occurs when a system reports

that a query exists in the reference database. This value could be correct (tp), incorrect

(fp), or the query is not in the database and the system should not have reported it (fa).

The recall (Equation 4.1b, also called sensitivity in some fields) measures how often

an algorithm returns the correct recording when the recording is known to exist in the

database. It weighs the number of correct responses (tp) against the number of times the

system says the query is not in the database (fn), or incorrectly chooses a different recording

(fp). It is important to consider both the precision and recall together when evaluating the

retrieval accuracy of a system. As a contrived example, a system could successfully identify

one known recording (tp = 1), and report that no recording exists for 99 other queries,

4.3 Document retrieval statistics 47

when they in fact do exist in the database (fn = 99). In this case precision would be 100%,

however the recall would only be 1%.

Finally, we consider specificity (Equation 4.1c), the measurement of how good the system

is at identifying negative results, where the query is known to not be in the reference

database. This metric compares the correct responses (tn) against responses where the

system incorrectly reports that the query matches a recording (fa).

In audio fingerprinting systems it is desirable to have a high precision and a high

specificity. Low values for either of these metrics means that the system is reporting the

incorrect recording as the result to a query. We propose that fingerprinting systems should

favour precision and specificity over recall—that is, if at all uncertain about a match, the

system should report that the query is unknown, rather than give an incorrect answer.

We present specificity in addition to the more common statistics of precision and recall

in this evaluation as it makes it possible to recreate the five raw values recorded by the

evaluation framework by using the statistics presented in Chapter 5.

precision =
tp

tp + fp + fa
(4.1a)

recall =
tp

tp + fp + fn
(4.1b)

specificity =
tn

tn + fa
(4.1c)

The f -measure, a statistic sometimes used in information retrieval systems is defined

as the harmonic mean of precision and recall:

f = 2 · precision · recall
precision + recall

(4.2)

While this measure is common in many document retrieval evaluations we instead favour

the sensitivity and response bias metrics presented in Section 4.3.3, as they can help indicate

the reason for a particular choice by a fingerprinting system.

4.3.2 Confidence intervals

In addition to calculating retrieval metrics for a system, we can provide a confidence

interval surrounding the estimate. When we calculate the confidence interval of a value for

48 Evaluating fingerprinting algorithms

the fingerprinting algorithm, we are indicating a level of uncertainty where we expect the

distribution of that value to fall. With smaller data sets the confidence interval may be

wider, indicating that there are not enough reported values in order to make an accurate

estimate of a particular metric.

We use the “add two success and two failures” adjusted Wald interval as described

by Agresti and Coull (1998). In this equation, n represents the numerator of the fraction

for which the interval is being calculated, and d the denominator. For example, when

calculating the confidence interval of precision, n = tp, d = tp + fp. The lower limit (LL)

and upper limit (UL) compute an approximate 95% confidence that the metric falls within

the bounds of the limits.

p0 =
n + 2

d + 4
(4.3a)

LL,UL = p0 ± 2 ·
√
p0 ·

1 − p0
d + 4

(4.3b)

4.3.3 Sensitivity and response bias

The final metrics that we will show for the evaluation are the sensitivity and response

bias of the retrieval system, from the field of detection theory (Macmillan and Creel-

man 1991). Sensitivity measures how much better a system is than randomly choosing

an answer.

We introduce one more metric, the false alarm rate (far, also known as the false accept

rate).

far =
fa

fa + tn
(4.4)

The false alarm rate is a reformulation of specificity (Equation 4.1c). It measures the

probability of error rather than the probability of success, far = 1 − specificity.

The sensitivity measure calculates the difference between the mean values of recall (also

called hit rate, H, in detection theory literature) and the false alarm rate, F . The further

apart these means are, the more the system is able to correctly identify queries. Overlaps

4.4 A comparison of audio fingerprinting algorithms 49

in the distributions of these values causes uncertainty that leads to false positives, false

negatives, and false accepts.

The sensitivity of the classifier, d′, is given by

d′ = Z(recall) − Z(far), (4.5)

where Z(n) is the inverse Gaussian distribution of the probability n. The Z transform

converts the mean values into standard deviation units.

The response bias, c, describes the tendency of a system to return a correct response

irrespective of the input query. We calculate the criterion, c of a system as:

c = −1

2

[
Z(recall) + Z(far)

]
(4.6)

The d′ value indicates if a signal can be differentiated from a randomly selected answer.

The measure has a generally accepted upper limit of d′ = 4.65, when recall = 0.99 and

far = 0.01. It is possible, however, to compute values as high as 6.93 with some recall

and far. A value of d′ = 0 indicates that recall = far and the selection of an answer

is effectively random. Higher values of d′ indicates that the system is able to successfully

discriminate between true and false answers.

Values for c are centered around 0, with a total range similar to that of sensitivity. As

c increases from 0 it shows a tendency of a system to respond that the recording for a

query is not in the database. Values decreasing from 0 indicate a tendency to respond with

recording IDs (even if they are incorrect).

If there are adjustable parameters in a fingerprinting system to trade off the recall and

far values then this trade off can visualised by plotting the d′ and c values for different

settings on an ROC (receiver operating characteristic) curve. This graph plots the trade

off between true positives and false positives. We do not report a metric based on the ROC

curve in this evaluation because we performed no parameter tuning for any of the tested

algorithms.

50 Evaluating fingerprinting algorithms

Query start time Query length Query modifications
0 8, 15, 30 seconds none
30 8, 15, 30 seconds none
0 15, 30 seconds 96k MP3 bitrate
0 15, 30 seconds 64k MP3 bitrate
0 15, 30 seconds Convert to mono
0 15, 30 seconds Change sample rate to 22k
0 15, 30 seconds Change sample rate to 8k (GSM)
0 15, 30 seconds FM Radio modifications
0 15, 30 seconds Increase volume by 20%
0 15, 30 seconds Decrease volume by 50%
0 15, 30 seconds Decrease volume by 20%
0 15, 30 seconds Increase speed 1.0%
0 15, 30 seconds Increase speed 2.5%
0 15, 30 seconds Increase speed 5.0%
0 15, 30 seconds Decrease speed 1.0%
0 15, 30 seconds Decrease speed 2.5%
0 15, 30 seconds Decrease speed 5.0%
0 8, 15, 30 seconds Mix 0dB SNR pink noise
0 8, 15, 30 seconds Mix 10dB SNR pink noise
0 8, 15, 30 seconds Mix 20dB SNR pink noise
0 8, 15, 30 seconds Mix 0dB SNR road noise
0 8, 15, 30 seconds Mix 10dB SNR road noise
0 8, 15, 30 seconds Mix 20dB SNR road noise
0 8, 15, 30 seconds Mix 0dB SNR bar noise
0 8, 15, 30 seconds Mix 10dB SNR bar noise
0 8, 15, 30 seconds Mix 20dB SNR bar noise

Table 4.1 Query modifications used in the experiment

4.4 A comparison of audio fingerprinting algorithms 51

4.4 A comparison of audio fingerprinting algorithms

4.4.1 Experiment

We performed an evaluation using the presented evaluation framework and the three

fingerprinting algorithms introduced in Chapter 3. We wrote a module for each of the al-

gorithms in the experiment, fulfilling the ingest & lookup contract. The experiment was

run using the Codaich dataset (McKay, McEnnis, and Fujinaga 2006). This collection con-

tains 30,283 unique audio files in MP3 format covering a wide range of genres such as pop,

western classical, jazz, and a selection of world music. To test that the false accept rate

(Section 4.3.3) of the algorithms is low, we withheld 20% of the recordings in the dataset.

As these files were not added to the reference databases, when a query is made with one

of the recordings the fingerprinting system should return no match. The remainder of the

recordings were imported into the reference databases. We selected 20,000 files that were

at least 60 seconds in length with which to perform the evaluation. Each query file was

modified using each of the modifications shown in Table 4.1. These generated queries were

used to perform a lookup using each fingerprinting system. Results for this experiment are

presented in Chapter 5. Each of the fingerprinting algorithms was set up as follows.

4.4.2 Algorithm 1 setup: Echoprint

The Echoprint server software requires the Solr search server 8 and Tokyo Tyrant 9 key-

value store to be installed. The Echoprint server software 10 package comes with a library

written in Python to interact with this software to store fingerprints in the databases and

perform lookups. The library also calculates the final distance measure between an input

query and results from the search server.

4.4.3 Algorithm 2 setup: Chromaprint

We installed the Acoustid server 11 application. The server uses the PostgreSQL database 12

and a custom in-memory inverted index, acoustid-index, in order to speed up the lookup

8. http://lucene.apache.org/solr

9. http://fallabs.com/tokyotyrant

10. http://echoprint.me/server

11. http://acoustid.org/server

12. http://postgres.org

52 Evaluating fingerprinting algorithms

process. An existing Python library, pyacoustid 13 was used to interact with the Acoustid

webservice from the evaluation software.

4.4.4 Algorithm 3 setup: Landmark

The author of the Landmark fingerprinting code makes available a compiled binary,

audfprint 14, for the purposes of evaluating the algorithm. By using a compiled binary it was

unnecessary to interact with Matlab, in which the system was written. The only additional

dependency is the freely available Matlab runtime. Because the audfprint system did not

have a separate server component, and the startup process took some time (a matter of

seconds) the lookup method in the Landmark module was adapted to process queries in

blocks of 100 files. A list of queries was sent to the audfprint lookup program, which returned

a list of predicted recordings.

13. https://github.com/sampsyo/pyacoustid

14. http://labrosa.ee.columbia.edu/matlab/audfprint

53

Chapter 5

Results and concluding remarks

This chapter presents the results of the experiment described in Section 4.4. We present

precision, recall, specificity, and d′ values for all types of modified query and compare the

results returned by each fingerprinting system. We finish with an overview of the thesis and

its contributions and give suggestions for further work.

5.1 Query length

Table 5.1 shows the accuracy statistics for fingerprinting algorithms with differing query

lengths 1. For the queries starting at time t = 0, we see that the precision for Echoprint

and Chromaprint are almost 100%. The specificity for all algorithms is also high, indicating

that there are few false alarms. The high recall and specificity values for Echoprint and

Chromaprint show that they are able to generate fingerprints that uniquely identify almost

all recordings in the reference database. The Landmark algorithm has a lower recall due

to many recordings having identical hashes generated, which we discuss in further detail

below.

The Chromaprint algorithm does not work well on short queries (8 s), but as the query

length is increased to 30 seconds it provides the highest accuracy of all the algorithms.

Nevertheless, it only achieves high precision and recall on queries that are taken from the

beginning of the recording, not from queries starting from part-way through. The low recall

values correspond to a matching low sensitivity (for example, 8 s queries with Chromaprint)

1. In this and all other tables presented in this section, accuracy percentages are rounded to the nearest
whole number. Error limits are bounded within the range 0%–100%

54 Results and concluding remarks

Query length 8 s 15 s 30 s 0:30–0:38 0:30–0:45 0:30–0:60

Algorithm P LL–UL P LL–UL P LL–UL P LL–UL P LL–UL P LL–UL

Echoprint 100 100–100 100 100–100 100 99–100 91 88–94 99 99–100 100 99–100
Chromaprint 100 98–100 99 99–100 99 99–100 0 0–100 100 16–100 100 44–100
Landmark 94 93–94 94 94–94 94 94–94 94 94–95 94 94–94 94 93–94

(a) Precision (%)

Query length 8 s 15 s 30 s 0:30–0:38 0:30–0:45 0:30–0:60

Algorithm R LL– UL R LL– UL R LL– UL R LL– UL R LL– UL R LL– UL

Echoprint 63 63– 64 90 90– 91 96 96– 96 2 2– 2 55 54– 56 87 86– 87
Chromaprint 3 3– 3 96 96– 97 99 99– 99 0 0– 0 0 0– 0 0 0– 0
Landmark 63 63– 64 88 87– 88 94 94– 94 63 63– 64 88 88– 89 92 92– 93

(b) Recall (%)

Query length 8 s 15 s 30 s 0:30–0:38 0:30–0:45 0:30–0:60

Algorithm S LL–UL S LL–UL S LL–UL S LL–UL S LL–UL S LL–UL

Echoprint 99 99–100 99 98–99 98 98–99 100 99–100 99 99–99 99 98–99
Chromaprint 100 100–100 99 99–100 99 99–100 100 100–100 100 100–100 100 100–100
Landmark 99 99–100 99 98–99 98 98–99 99 99–99 99 98–99 98 98–99

(c) Specificity (%)

Query length 8 s 15 s 30 s 0:30–0:38 0:30–0:45 0:30–0:60

Algorithm d′ c d′ c d′ c d′ c d′ c d′ c

Echoprint 2.80 1.06 3.55 0.46 3.90 0.22 0.74 2.38 2.49 1.11 3.34 0.56
Chromaprint 0.46 2.10 4.35 0.39 4.81 0.04 0.00 2.33 0.00 3.08 0.00 2.90
Landmark 2.82 1.07 3.41 0.53 3.65 0.26 2.77 1.04 3.42 0.53 3.54 0.33

(d) Sensitivity (d′) and response bias (c)

Table 5.1 Accuracy results for unmodified queries, three fingerprinting al-
gorithms, and six query lengths with lower limits (LL) and upper limits (UL).

5.1 Query length 55

showing an uncertainty in identifying the correct response. The high response bias also

shows a tendency for Chromaprint to respond that a query is not in the database when

it in fact is. This means that Chromaprint is only useful in cases where the query can be

chosen from the recording (e.g., when identifying files on a computer). Because Chromaprint

is only suited to match files on a computer, the low performance with short query lengths

is not problematic as queries sufficiently long enough to perform an accurate match can be

taken.

For short queries (8 s) both Echoprint and Landmark give similar results. Landmark

gives more consistent results for queries taken from any point in the recording compared

to both Echoprint and Chromaprint, even though it has a lower precision. The Landmark

algorithm performs poorly with 8-second queries, compared to 15- and 30-second queries.

This result was unexpected, as the Shazam smartphone application which is at least par-

tially based on this algorithm has been observed to identify music recorded in a room with

queries about this length.

The precision values for the Landmark algorithm are significantly lower than the other

two algorithms, indicating that the Landmark system often returns the incorrect recording

in response to a query. To show this further, we give the breakdown of results for the case

of 30-second queries to each of the three algorithms (Table 5.2). This evaluation was out

of 20,000 recordings.

FP system True positive True negative False negative False positive False accept

Expected 15959 4041 0 0 0

Echoprint 15300 3980 655 4 61
Chromaprint 15813 4012 88 58 29
Landmark 15017 3966 61 881 75

Table 5.2 The expected retrieval numbers for a 30-second query and actual
numbers from the three fingerprinting systems.

Landmark has a significantly higher number of false positive results than the other two

systems. This means that it often gave the wrong answer to a query. We observed through

the results that the fingerprint algorithm would sometimes generate the same hashes for

different recordings. When a query was made for one of these recordings, more than one

recording would be returned with matching hashes. If the number of matching hashes was

56 Results and concluding remarks

the same in more than one recording, then it was not possible for the algorithm to make a

decision on what recording was correct.

We can see that Echoprint has a very low number of false positives, although this is at

the expense of false negatives, which are significantly higher than both Chromaprint and

Landmark.

5.2 Modified queries

The next series of tests involve modifying the queries in ways that represent real-world

query modifications. These tests change the bit rate, sample rate, speed, volume, frequency

equalisation, and number of channels of the queries (as described in Section 4.2.5) before

searching the fingerprint database. The results for this series of tests are presented in

Tables 5.3–5.6.

The query modification that had the largest impact on the accuracy rate was the altering

of the speed of the query. Even small increases or decreases in the speed (1%) caused a

complete failure in recall for Echoprint and close to 0% recall for Landmark. The high

response bias values also indicate that these systems have a tendency to report no match

when one exists. Only Chromaprint achieved some success, with 27% recall for 30-second

queries that had been sped up by 1% and 18% recall for queries that had been slowed

down by the same amount. Increasing and reducing the speed by more than 1% effectively

resulted in no accuracy over all algorithms. Lowering the sample rate to 8kHz also had an

effect on recall rates. Audio sampled at 8 kHz has a Nyquist frequency of 4 kHz, meaning

that there are no frequencies above this value present in the signal. As all of the algorithms

use frequencies above 4 kHz to generate the hashes that form the fingerprint of a query, the

hashes will be different on audio that originally contained audio above this frequency.

Changing the bitrate of queries encoded in MP3 format, adjusting the volume, and

changing frequency equalisation had a small effect on the retrieval rates. Converting the

queries to mono and reducing the sample rate to 22 kHz had no effect on the accuracy. All

of the algorithms perform a preprocessing step on the signal before generating a fingerprint.

The preprocessing step for all algorithms reduces the sample rate to 11 kHz and converts

the signal to mono, and so making these modifications before sending the query to the

fingerprinter has no effect.

5.2 Modified queries 57

E
ch

o
p

ri
n
t

C
h

ro
m

ap
ri

n
t

L
an

d
m

ar
k

1
5

s
30

s
15

s
30

s
15

s
30

s

P
L

L
–
U

L
P

L
L

–U
L

P
L

L
–U

L
P

L
L

–U
L

P
L

L
–U

L
P

L
L

–U
L

O
ri

g
in

al
q
u

er
y

1
0
0

10
0
–
10

0
1
0
0

99
–1

00
99

99
–1

00
99

99
–1

00
94

94
–9

4
94

94
–9

4
R

ed
u

ce
b

it
ra

te
9
6

K
b

p
s

1
0
0

10
0
–
10

0
1
0
0

10
0–

10
0

99
99

–1
00

99
99

–1
00

94
94

–9
4

94
93

–9
4

6
4

K
b

p
s

1
0
0

99
–
1
00

1
0
0

10
0–

10
0

99
99

–1
00

99
99

–1
00

94
94

–9
4

94
93

–9
4

S
p

ee
d

u
p

1
%

34
26

–
43

7
3–

15
9
9

98
–1

00
9
9

99
–9

9
91

86
–9

3
92

90
–9

3
2.

5%
0

0–
7

1
0–

8
9
8

93
–1

00
9
8

95
–9

9
20

2–
65

11
0–

46
5
%

0
0
–
7

0
0–

5
1
0
0

16
–1

00
1
0
0

16
–1

00
0

0–
72

0
0–

41
S

lo
w

d
ow

n
1%

2
3

1
6–

3
3

3
1–

9
1
0
0

99
–1

00
9
9

99
–1

00
89

85
–9

3
90

88
–9

2
2
.5

%
0

0
–
6

0
0–

5
1
0
0

92
–1

00
9
9

96
–1

00
0

0–
56

17
3–

47
5
%

0
0
–
8

0
0–

6
0

0–
10

0
0

0–
10

0
0

0–
10

0
0

0–
41

A
d

ju
st

vo
lu

m
e

5
0%

1
0
0

10
0
–
10

0
1
0
0

99
–1

00
99

99
–1

00
99

99
–1

00
94

94
–9

4
94

94
–9

4
8
0
%

1
0
0

1
00

–
1
00

1
0
0

10
0–

10
0

99
99

–1
00

99
99

–1
00

94
94

–9
4

94
94

–9
4

12
0
%

1
0
0

1
0
0–

1
0
0

1
0
0

99
–1

00
99

99
–1

00
99

99
–1

00
94

94
–9

4
94

94
–9

4
C

o
n
ve

rt
to

m
o
n

o
1
0
0

9
9
–1

0
0

1
0
0

99
–1

00
99

99
–1

00
99

99
–1

00
94

93
–9

4
94

93
–9

4
D

ow
n

sa
m

p
le

22
k
H

z
1
0
0

9
9
–1

0
0

1
0
0

99
–1

00
99

99
–1

00
99

99
–1

00
94

93
–9

4
94

94
–9

4
8

k
H

z
1
0
0

99
–
1
00

1
0
0

99
–1

00
99

99
–1

00
99

99
–1

00
94

93
–9

5
94

94
–9

5
R

a
d

io
E

Q
1
0
0

99
–
10

0
1
0
0

99
–1

00
99

99
–1

00
99

99
–1

00
94

94
–9

4
94

94
–9

4

T
a
b
le

5
.3

P
re

ci
si

on
fo

r
m

o
d

ifi
ed

q
u

er
ie

s

58 Results and concluding remarks

E
ch

op
rin

t
C

h
rom

ap
rin

t
L

an
d

m
ark

15
s

30
s

15
s

30
s

15
s

30
s

R
L

L
–U

L
R

L
L

–U
L

R
L

L
–U

L
R

L
L

–U
L

R
L

L
–U

L
R

L
L

–U
L

O
rigin

a
l

q
u

ery
90

90–91
96

96–96
9
6

96–97
9
9

99–99
88

87–88
94

94–94
R

ed
u

ce
b

itra
te

96
K

b
p

s
86

85–86
93

93–94
8
9

89–90
9
9

99–99
84

83–84
94

93–94
6
4

K
b

p
s

8
6

85–86
94

93–94
8
9

89–90
9
9

99–99
84

83–84
94

93–94
S

p
eed

u
p

1
%

0
0–0

0
0–0

9
9–10

2
7

26–28
2

1–2
7

6–7
2
.5

%
0

0–0
0

0–0
1

1–1
2

2–3
0

0–0
0

0–0
5
%

0
0–0

0
0–0

0
0–0

0
0–0

0
0–0

0
0–0

S
low

d
ow

n
1
%

0
0–0

0
0–0

5
5–6

1
8

18–19
1

1–2
6

6–6
2.5%

0
0–0

0
0–0

0
0–0

1
1–1

0
0–0

0
0–0

5%
0

0–0
0

0–0
0

0–0
0

0–0
0

0–0
0

0–0
A

d
ju

st
volu

m
e

50
%

8
6

85–86
93

93–94
9
0

90–91
9
9

99–99
85

84–85
94

93–94
80%

8
6

85–86
94

93–94
9
0

90–91
9
9

99–99
85

84–85
94

93–94
1
2
0%

8
6

85–86
94

93–94
9
0

90–91
9
9

99–99
85

84–85
94

94–94
C

on
vert

to
m

o
n

o
90

89–90
96

95–96
90

89–90
9
9

99–99
82

81–82
93

93–94
D

ow
n

sa
m

p
le

2
2

k
H

z
9
0

89–90
96

95–96
90

89–90
9
9

99–99
80

79–81
93

93–94
8

k
H

z
28

27–29
34

33–35
5
8

57–59
9
6

95–96
10

10–11
50

49–50
R

a
d

io
E

Q
8
9

88–89
95

95–95
8
9

89–90
9
9

99–99
87

87–88
94

94–94

T
a
b
le

5
.4

R
ecall

for
m

o
d

ifi
ed

q
u

eries

5.2 Modified queries 59

E
ch

o
p

ri
n
t

C
h

ro
m

ap
ri

n
t

L
an

d
m

ar
k

15
s

30
s

15
s

30
s

15
s

30
s

S
L

L
–U

L
S

L
L

–U
L

S
L

L
–U

L
S

L
L

–U
L

S
L

L
–U

L
S

L
L

–U
L

O
ri

g
in

al
q
u

er
y

99
9
8
–9

9
98

98
–9

9
9
9

99
–1

00
9
9

99
–1

00
99

98
–9

9
98

98
–9

9
R

ed
u

ce
b

it
ra

te
9
6

K
b

p
s

9
9

9
9–

9
9

99
98

–9
9

1
0
0

99
–1

00
9
9

99
–1

00
99

99
–9

9
98

98
–9

9
64

K
b

p
s

9
9

98
–
9
9

99
98

–9
9

1
0
0

99
–1

00
9
9

99
–1

00
99

99
–9

9
98

98
–9

9
S

p
ee

d
u

p
1
%

10
0

9
9
–1

0
0

1
00

99
–1

00
1
0
0

10
0–

10
0

1
0
0

10
0–

10
0

10
0

10
0–

10
0

10
0

10
0–

10
0

2.
5%

1
00

99
–
10

0
10

0
10

0–
10

0
1
0
0

10
0–

10
0

1
0
0

10
0–

10
0

10
0

10
0–

10
0

10
0

10
0–

10
0

5
%

10
0

9
9–

1
0
0

10
0

99
–1

00
1
0
0

10
0–

10
0

1
0
0

10
0–

10
0

10
0

10
0–

10
0

10
0

10
0–

10
0

S
lo

w
d
ow

n
1%

99
9
9
–1

0
0

99
99

–1
00

1
0
0

10
0–

10
0

1
0
0

10
0–

10
0

10
0

10
0–

10
0

10
0

10
0–

10
0

2
.5

%
10

0
9
9–

1
0
0

10
0

99
–1

00
1
0
0

10
0–

10
0

1
0
0

10
0–

10
0

10
0

10
0–

10
0

10
0

10
0–

10
0

5%
1
00

10
0
–
10

0
10

0
99

–1
00

10
0

10
0–

10
0

10
0

10
0–

10
0

10
0

10
0–

10
0

10
0

10
0–

10
0

A
d

ju
st

vo
lu

m
e

50
%

99
99

–
99

99
98

–9
9

9
9

99
–1

00
9
9

99
–1

00
99

98
–9

9
98

98
–9

9
80

%
99

98
–
99

99
98

–9
9

9
9

99
–1

00
9
9

99
–1

00
99

98
–9

9
98

98
–9

9
12

0
%

99
98

–
99

99
98

–9
9

9
9

99
–1

00
9
9

99
–9

9
99

98
–9

9
98

98
–9

9
C

o
n
ve

rt
to

m
o
n

o
99

9
8
–9

9
99

98
–9

9
1
0
0

99
–1

00
9
9

99
–1

00
99

98
–9

9
98

98
–9

9
D

ow
n

sa
m

p
le

22
k
H

z
99

9
8
–9

9
99

98
–9

9
9
9

99
–1

00
9
9

99
–1

00
99

99
–9

9
98

98
–9

9
8

k
H

z
10

0
9
9
–1

0
0

9
9

99
–1

00
10

0
99

–1
00

99
99

–1
00

1
0
0

10
0–

10
0

99
99

–9
9

R
ad

io
E

Q
9
9

98
–
9
9

98
98

–9
9

1
0
0

99
–1

00
9
9

99
–1

00
99

98
–9

9
98

98
–9

9

T
a
b
le

5
.5

S
p

ec
ifi

ci
ty

fo
r

m
o
d

ifi
ed

q
u

er
ie

s

60 Results and concluding remarks

E
ch

op
rin

t
C

h
rom

ap
rin

t
L

an
d

m
ark

15
s

30
s

15
s

30
s

15
s

30
s

d
′

c
d
′

c
d
′

c
d
′

c
d
′

c
d
′

c

O
rigin

a
l

q
u

ery
3.55

0.46
3.90

0.22
4
.3
5

0
.3
9

4
.8
1

0
.0
4

3.41
0.53

3.65
0.26

R
ed

u
ce

b
itrate

9
6

K
b

p
s

3.38
0
.6
2

3.72
0.35

3
.8
6

0.69
4
.7
0

0
.1
1

3.27
0.65

3.64
0.29

64
K

b
p

s
3
.3

2
0
.5
9

3.76
0.36

3
.8
4

0.68
4
.6
8

0
.1
1

3.27
0.65

3.64
0.29

S
p

eed
u

p
1
%

0.00
2.72

0.00
2.96

1
.9
7

2
.3
1

2
.2
7

1
.7
5

0.97
2.61

1.41
2.22

2
.5

%
0
.3

3
2
.4
9

0.00
3.31

1
.1
0

2.93
1
.5
0

2
.7
4

0.00
3.56

0.00
3.51

5%
0
.3

3
2
.4
9

0.29
2
.4
7

0.00
3.08

0.00
3.08

1
.1
6

2.90
0
.9
7

2.81
S

low
d
ow

n
1
%

0.00
2.76

0.00
3.06

0.72
1
.9
7

2
.5
8

2.19
0
.8
7

2.66
1.23

2
.1
6

2.5%
0.29

2
.4
7

0
.3
1

2.48
0.00

2.51
0.00

2
.3
4

0
.9
7

2.81
0.00

3.38
5
%

0
.5
2

2.59
0
.4
0

2.53
0.00

2.33
0.00

2.33
0.00

2.33
0.00

2.33
A

d
ju

st
vo

lu
m

e
5
0%

3.37
0.63

3.72
0.36

3
.8
4

0.63
4
.6
9

0
.1
0

3.30
0
.6
2

3.66
0.28

80%
3
.3

4
0
.6
0

3.75
0.36

3
.8
3

0.63
4
.7
0

0
.1
1

3.28
0.61

3.65
0.28

1
2
0%

3
.3

4
0
.6
0

3.74
0.35

3
.8
5

0.64
4
.6
7

0
.1
0

3.30
0.62

3.63
0.27

C
o
n
vert

to
m

on
o

3
.5

1
0
.4
8

3.89
0.24

3
.9
1

0.68
4
.7
1

0
.1
1

3.16
0.68

3.62
0.30

D
ow

n
sa

m
p

le
2
2

k
H

z
3.51

0
.4
8

3.90
0.23

3
.8
2

0.64
4
.7
0

0
.1
1

3.16
0.73

3.63
0.31

8
k
H

z
2
.1

5
1.65

2.15
1.49

2
.8
8

1
.2
4

4
.2
1

0
.4
1

1.66
2.09

2.39
1.21

R
a
d

io
E

Q
3
.4

3
0
.5
0

3.81
0.25

3
.8
9

0.69
4
.7
0

0
.1
1

3.40
0.56

3.65
0.27

T
a
b
le

5
.6

S
en

sitiv
ity

(d
′)

an
d

resp
on

se
b

ias
(c)

for
m

o
d

ifi
ed

q
u

eries

5.3 Noise 61

For all of the query modifications that did not significantly affect the retrieval rate (ex-

cluding the speed increase and the sample rate of 8 kHz), Chromaprint performed the best

in almost all situations, except those that did not start at the beginning of the recording.

From Section 5.1 it was seen that Chromaprint performed poorly on any query not taken

from the beginning of the recording. For modified queries that were to be taken from any

point in a recording, both Echoprint and Chromaprint give similar results, with Echoprint

winning slightly due to its increased precision.

5.3 Noise

The final experiment took three different types of noise and mixed it in to the audio

query at three different volume levels before performing the query. The retrieval results are

presented in Tables 5.7–5.10.

Adding noise to queries had a significant effect on the accuracy rates of all of the

fingerprinting systems that were tested. The recall statistics visibly show that the accuracy

of all fingerprinting systems increase both as the query length increases, and as the level of

added noise is reduced.

For all algorithms the precision and specificity remain similar to the original unmodified

queries, indicating that the systems are not making any more false positives or false alarms.

The majority of the errors are instead false negatives, resulting in a drop in recall, where the

system was unable to identify the recording when given a query. Chromaprint introduces

some uncertainty in precision values for shorter queries and louder noise, e.g., Pink noise

and Car noise 8 s.

An interesting observation of the precision statistics for the Landmark algorithm is

that they actually increase for almost all query modifications, including very noisy queries.

Recalling from Section 5.1 that the Landmark algorithm had lower precision than expected

because it tended to provide a match with very few matching hashes, it seems that with

the noise added to the query, the number of matching hashes decreased enough for the

landmark system to no longer consider recordings to be the same as the query.

With queries mixed with noise at 0 dB all algorithms perform poorly, but Echoprint

manages to perform slightly better than the other algorithms. It performs worse on uniform

pink noise than on the other two types of noise, which are less uniform. Specificity is high

62 Results and concluding remarks

for all algorithms at all types of noise and noise levels, indicating that the added noise is

not creating any hashes that match recordings in the reference database.

For shorter length queries, Echoprint has the best recall. It also has a very high precision,

close to 100% most of the time. Along with the high specificity, this shows that the algorithm

frequently does not find a match, but when it does there is a good chance that the result

is correct.

As with the modified queries presented in Section 5.2, for quiet noise and long queries,

Chromaprint performs the best. For louder and shorter queries, Echoprint is better, followed

by Landmark.

5.4 Discussion

This evaluation tested three fingerprinting algorithms on a test set of 20,000 recordings.

Each test file was modified in a different way to represent the kind of query that a finger-

printing service might receive, including audio that had spectral content removed, altered,

or was mixed with varying levels of noise.

The Chromaprint algorithm performed well with almost all modified queries, especially

when the query was long. One major failing of the Chromaprint algorithm is that it requires

queries to be taken from the beginning of a recording. It is possible that some changes to

the matching algorithm for this fingerprinting system would result in high retrieval rates

for queries taken from different points in the recording as well.

For short signals, both Echoprint and the Landmark algorithm perform well. The Land-

mark algorithm has a lower recall, resulting in a significant number of false positive matches.

It is likely that the recall of the Landmark algorithm can be improved by adjusting some

of the parameters used to generate the hashes from an audio signal.

For query identification on audio that has light to moderate modifications or noise,

Echoprint is the recommended fingerprinting system to use. For queries using exact copies

of the recordings, Chromaprint is the ideal choice.

5.5 Conclusion and further work

This thesis presented a review of fingerprinting algorithms and developed a new evalu-

ation framework which was used to compare the accuracy of three different fingerprinting

5.5 Conclusion and further work 63

8 s 15 s 30 s

P LL–UL P LL–UL P LL–UL

Echoprint
Original query 100 100–100 100 100–100 100 99–100
Pink noise

0 dB SNR 99 96–100 99 98–99 99 99–100
10 dB SNR 100 99–100 100 99–100 100 99–100
20 dB SNR 100 99–100 100 99–100 100 99–100

Car noise
0 dB SNR 100 99–100 100 99–100 100 99–100
10 dB SNR 100 100–100 100 100–100 100 100–100
20 dB SNR 100 100–100 100 100–100 100 100–100

Babble noise
0 dB SNR 99 99–100 99 99–100 99 99–100
10 dB SNR 100 100–100 100 100–100 100 99–100
20 dB SNR 100 100–100 100 100–100 100 99–100

Chromaprint
Original query 100 98–100 99 99–100 99 99–100
Pink noise

0 dB SNR 0 0–100 95 73–100 100 97–100
10 dB SNR 98 88–100 99 99–100 99 99–100
20 dB SNR 100 98–100 99 99–100 99 99–100

Car noise
0 dB SNR 100 83–100 99 99–99 99 99–100
10 dB SNR 100 73–100 99 98–100 99 99–100
20 dB SNR 99 97–100 99 99–100 99 99–100

Babble noise
0 dB SNR 100 50–100 100 96–100 99 99–100
10 dB SNR 100 96–100 99 99–100 99 99–100
20 dB SNR 100 98–100 99 99–100 99 99–100

Landmark
Original query 94 93–94 94 94–94 94 94–94
Pink noise

0 dB SNR 95 90–98 96 95–98 96 96–97
10 dB SNR 96 95–97 96 95–97 96 95–96
20 dB SNR 96 95–96 96 95–96 95 95–95

Car noise
0 dB SNR 96 95–97 96 95–96 95 95–96
10 dB SNR 95 95–96 95 94–95 94 94–95
20 dB SNR 95 94–95 94 94–95 94 94–94

Babble noise
0 dB SNR 96 95–97 96 95–97 96 95–96
10 dB SNR 96 95–96 96 95–96 95 95–96
20 dB SNR 95 95–96 95 95–95 95 94–95

Table 5.7 Precision for queries modified with added noise

64 Results and concluding remarks

8 s 15 s 30 s

R LL– UL R LL– UL R LL– UL

Echoprint
Original query 63 63– 64 90 90– 91 96 96– 96
Pink noise

0 dB SNR 1 1– 2 5 5– 6 8 8– 9
10 dB SNR 14 13– 14 30 29– 30 39 39– 40
20 dB SNR 39 38– 39 62 62– 63 73 72– 73

Car noise
0 dB SNR 25 24– 25 48 47– 48 58 58– 59
10 dB SNR 64 63– 65 84 84– 85 91 90– 91
20 dB SNR 77 76– 77 92 92– 93 96 96– 96

Babble noise
0 dB SNR 11 10– 11 20 19– 20 18 18– 19
10 dB SNR 35 34– 36 52 51– 53 55 55– 56
20 dB SNR 60 59– 61 77 76– 77 82 81– 82

Chromaprint
Original query 3 3– 3 96 96– 97 99 99– 99
Pink noise

0 dB SNR 0 0– 0 0 0– 0 2 1– 2
10 dB SNR 0 0– 0 19 19– 20 48 47– 49
20 dB SNR 2 2– 2 72 71– 73 90 90– 90

Car noise
0 dB SNR 0 0– 0 12 12– 13 35 34– 36
10 dB SNR 0 0– 0 7 7– 8 24 23– 24
20 dB SNR 1 1– 1 58 57– 59 81 80– 81

Babble noise
0 dB SNR 0 0– 0 1 1– 1 6 5– 6
10 dB SNR 1 1– 1 33 32– 34 63 63– 64
20 dB SNR 3 2– 3 78 77– 78 93 92– 93

Landmark
Original query 63 63– 64 88 87– 88 94 94– 94
Pink noise

0 dB SNR 1 1– 1 4 4– 4 16 16– 17
10 dB SNR 7 7– 7 21 21– 22 47 46– 48
20 dB SNR 22 21– 22 46 45– 46 72 71– 72

Car noise
0 dB SNR 14 13– 14 34 34– 35 63 62– 64
10 dB SNR 42 41– 42 69 68– 70 87 87– 88
20 dB SNR 54 53– 54 79 79– 80 92 91– 92

Babble noise
0 dB SNR 9 8– 9 16 16– 17 33 32– 34
10 dB SNR 26 26– 27 44 43– 44 65 64– 66
20 dB SNR 43 42– 44 65 64– 66 82 82– 83

Table 5.8 Recall for queries modified with added noise

5.5 Conclusion and further work 65

8 s 15 s 30 s

S LL–UL S LL–UL S LL–UL

Echoprint
Original query 99 99–100 99 98–99 98 98–99
Pink noise

0 dB SNR 100 100–100 100 100–100 100 100–100
10 dB SNR 100 100–100 100 99–100 99 99–100
20 dB SNR 99 99–100 99 99–99 99 99–99

Car noise
0 dB SNR 100 99–100 99 99–100 99 99–99
10 dB SNR 100 99–100 99 99–99 99 98–99
20 dB SNR 99 99–100 99 98–99 99 98–99

Babble noise
0 dB SNR 100 100–100 100 99–100 100 99–100
10 dB SNR 100 99–100 99 99–100 99 99–99
20 dB SNR 99 99–100 99 99–99 99 98–99

Chromaprint
Original query 100 100–100 99 99–100 99 99–100
Pink noise

0 dB SNR 100 100–100 100 100–100 100 100–100
10 dB SNR 100 100–100 100 100–100 100 100–100
20 dB SNR 100 100–100 100 99–100 99 99–100

Car noise
0 dB SNR 100 100–100 100 100–100 100 100–100
10 dB SNR 100 100–100 100 100–100 100 100–100
20 dB SNR 100 100–100 100 100–100 99 99–100

Babble noise
0 dB SNR 100 100–100 100 100–100 100 100–100
10 dB SNR 100 100–100 100 100–100 100 99–100
20 dB SNR 100 100–100 100 99–100 99 99–100

Landmark
Original query 99 99–100 99 98–99 98 98–99
Pink noise

0 dB SNR 100 100–100 100 100–100 100 100–100
10 dB SNR 100 100–100 100 99–100 99 99–99
20 dB SNR 100 100–100 99 99–100 99 98–99

Car noise
0 dB SNR 100 100–100 99 99–100 99 99–99
10 dB SNR 100 99–100 99 99–99 98 98–99
20 dB SNR 100 99–100 99 98–99 98 98–99

Babble noise
0 dB SNR 100 100–100 100 100–100 100 99–100
10 dB SNR 100 100–100 99 99–100 99 99–99
20 dB SNR 100 99–100 99 99–99 98 98–99

Table 5.9 Specificity for queries modified with added noise

66 Results and concluding remarks

8 s 15 s 30 s

d′ c d′ c d′ c

Echoprint
Original query 2.80 1.06 3.55 0.46 3.90 0.22
Pink noise

0 dB SNR 0.99 2.68 1.22 2.23 1.55 2.15
10 dB SNR 1.79 1.99 2.08 1.58 2.19 1.36
20 dB SNR 2.26 1.42 2.69 1.03 2.91 0.85

Car noise
0 dB SNR 1.97 1.67 2.40 1.26 2.61 1.10
10 dB SNR 2.95 1.12 3.34 0.67 3.59 0.47
20 dB SNR 3.26 0.90 3.68 0.42 3.95 0.22

Babble noise
0 dB SNR 1.60 2.04 1.78 1.75 1.80 1.80
10 dB SNR 2.28 1.52 2.56 1.24 2.53 1.13
20 dB SNR 2.79 1.15 3.08 0.82 3.12 0.66

Chromaprint
Original query 0.46 2.10 4.35 0.39 4.81 0.04
Pink noise

0 dB SNR 0.00 2.33 0.00 2.69 0.17 2.24
10 dB SNR 0.00 2.54 2.43 2.08 2.73 1.41
20 dB SNR 0.25 2.20 3.24 1.04 3.77 0.60

Car noise
0 dB SNR 0.00 2.65 2.33 2.32 2.59 1.68
10 dB SNR 0.00 2.74 0.87 1.89 2.46 1.95
20 dB SNR 0.05 2.30 2.98 1.29 3.41 0.84

Babble noise
0 dB SNR 0.00 2.87 0.00 2.39 0.74 1.96
10 dB SNR 0.00 2.37 2.59 1.73 3.00 1.16
20 dB SNR 0.40 2.13 3.36 0.92 3.93 0.52

Landmark
Original query 2.82 1.07 3.41 0.53 3.65 0.26
Pink noise

0 dB SNR 0.00 2.37 1.43 2.46 1.83 1.90
10 dB SNR 1.62 2.28 1.90 1.75 2.34 1.24
20 dB SNR 2.03 1.80 2.36 1.29 2.79 0.83

Car noise
0 dB SNR 1.94 2.06 2.16 1.48 2.64 0.99
10 dB SNR 2.43 1.42 2.85 0.92 3.26 0.50
20 dB SNR 2.70 1.26 3.07 0.72 3.50 0.36

Babble noise
0 dB SNR 1.94 2.32 1.89 1.94 2.25 1.57
10 dB SNR 2.21 1.74 2.35 1.34 2.69 0.95
20 dB SNR 2.48 1.41 2.75 0.99 3.09 0.61

Table 5.10 Sensitivity (d′) and response bias (c) for queries modified with
added noise

5.5 Conclusion and further work 67

algorithms when presented with different audio queries.

Audio fingerprinting algorithms convert audio signals into a sequence of numerical codes

that not only uniquely identify individual recordings, but are the same for perceptually

similar sounding music. An audio fingerprinting algorithm performs five main steps in gen-

erating a fingerprint: preprocessing, framing, transform, feature extraction, and fingerprint

generation. The first chapter gave a general background of audio fingerprinting and de-

scribed the fingerprinting process. Specific audio fingerprinting algorithms were described

in Chapter 2 along with a history of audio fingerprinting and technologies that are related

to audio analysis and fingerprinting.

Chapter 3 presented an analysis of three audio fingerprinting algorithms that are widely

used in industry and academia. The three algorithms, Echoprint, Chromaprint, and the

Landmark algorithm perform steps for preprocessing, framing, and transform, but differ in

the feature extraction and fingerprint generation stages. The algorithms also use different

techniques when identifying queries in a reference database.

We introduced a list of criteria that should be considered when evaluating audio finger-

printing algorithms in order to accurately compare the results of two or more algorithms.

Chapter 4 introduced an experimental framework that was designed to perform this eval-

uation. The framework was developed to allow many different fingerprinting algorithms to

be tested simultaneously. The framework allows the same queries to be made to multiple

fingerprinting algorithms to see how they respond to identical stimuli. The framework has

a library of alterations that can be made to queries to simulate the way that real-world

signals differ from reference audio.

We performed an evaluation of the Echoprint, Chromaprint, and Landmark fingerprint-

ing systems using the evaluation framework. Each of the fingerprinting systems was tested

with 63 different types of query. We have discussed the results of these experiments. The

results show that for a fingerprinting environment using audio that is very close to the

original signal, the Chromaprint algorithm is an excellent choice, however, it does not work

well when presented with audio taken from any point in a recording. For queries that con-

tain a moderate amount of noise, both Echoprint and the Landmark algorithm are good

choices, with the Landmark algorithm performing slightly better on shorter queries.

68 Results and concluding remarks

5.5.1 Contributions

The major contribution of this thesis was the development of a framework for performing

repeatable evaluations of audio fingerprinting algorithms. This framework can be used by

other researchers while developing new algorithms and for testing their algorithms against

other systems. Because the framework is able to repeat the conditions of an experiment

it is suitable for evaluating different versions of the same algorithm as well as comparing

differing algorithms.

The execution of an evaluation of the three major audio fingerprinting algorithms is

also a contribution of this thesis. The success of the evaluation shows that a comprehensive

experiment can be performed in a controlled manner with known audio and known query

modifications. More audio fingerprinting algorithms could be added to this evaluation to

obtain more results. The results of the evaluation are useful to people wanting to choose

an audio fingerprinting algorithm for their own use.

5.5.2 Further work

The evaluation framework presented here is expandable and can be used to evaluate

other fingerprinting systems. We envisage a MIREX-like evaluation competition (Downie

et al. 2005) in which researchers can submit fingerprinting algorithms that are evaluated

against other entries.

In order for this kind of evaluation to be performed, an infrastructure around these

evaluations would need to be established. One requirement for real-world evaluations is

access to a large reference database of audio. This evaluation used a database of 30,000 files,

large in relation to most contemporary evaluations, but commercial fingerprinting systems

still contain orders of magnitude more songs (millions) in their database. Collecting a large

corpus of audio in a manner with respects copyrights may be difficult. Testing with such

a large database also takes time. Even for our modest test of 20,000 files, a full evaluation

for a single type of query modification on a single fingerprinting system took over 4 hours.

This kind of evaluation can be split over many machines in order to reduce the total time

required for the evaluation, but it still represents a large amount of computation time

needed to test a wide range of query types and large number of fingerprinting systems.

We would like to see queries that are more representative of real-world environments.

For example, the queries that were created by mixing noise with the original query recording

5.5 Conclusion and further work 69

were generated synthetically. A way of performing an evaluation that better reflects real-

world recording situations would be to record audio from the environments that we would

like to test, for example, using a sound recorder in a car or cafe. The amount of noise in

these recordings would differ based on when the recording was made. The recordings would

need to be manually classified to ensure that they were evaluated correctly. For a more

controlled application of noise that reflects real-world environments, a virtual microphone

system such as ViMiC (Braasch 2005) could be used. For queries simulating radio playback

we could either record real playback from a radio broadcast, or perform an analysis on a

broadcast signal to see how it differs from the signal distributed on CD.

The framework that has been developed is a powerful tool for testing a large number

of fingerprinting algorithms and evaluating their accuracy. We hope that by providing

direct comparisons of algorithm accuracy in a large-scale public evaluation contest, we

can generate competition to advance the speed and accuracy of fingerprinting algorithms

further in the future.

70

71

References

Agresti, A., and B. A. Coull. 1998. Approximate is better than “exact” for interval
estimation of binomial proportions. The American Statistician 52 (2): 119–26.

Allamanche, E., J. Herre, O. Hellmuth, B. Fröba, T. Kastner, and M. Cremer. 2001.
Content-based identification of audio material using MPEG-7 low level description.
In Proceedings of the International Symposium on Music Information Retrieval.

Appleby, A. 2009. MurmurHash. Last accessed 15 December 2012, https://sites.

google.com/site/murmurhash/.

Baeza-Yates, R., B. Ribeiro-Neto et al. 2011. Modern information retrieval, 2nd edition.
New York: Addison-Wesley.

Balado, F., N. Hurley, E. McCarthy, and G. Silvestre. 2007. Performance analysis of ro-
bust audio hashing. IEEE Transactions on Information Forensics and Security 2 (2):
254–66.

Baluja, S., and M. Covell. 2007. Audio fingerprinting: Combining computer vision data
stream processing. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, Volume 2, 213–6.

Baluja, S., and M. Covell. 2008. Waveprint: Efficient wavelet-based audio fingerprinting.
Pattern Recognition 41 (11): 3467–80.

Bartsch, M., and G. Wakefield. 2005. Audio thumbnailing of popular music using chroma-
based representations. Proceedings of the IEEE Transactions on Multimedia 7 (1):
96–104.

Batlle, E., J. Masip, and E. Guaus. 2002. Automatic song identification in noisy broadcast
audio. In Proceedings of the International Conference on Signal and Image Processing.

Braasch, J. 2005. A loudspeaker-based 3D sound projection using virtual microphone
control (ViMiC). In Audio Engineering Society Convention 118.

Byrd, D., and T. Crawford. 2002. Problems of music information retrieval in the real
world. Information Processing & Management 38 (2): 249–72.

Cano, P. 2007. Content-based audio search from fingerprinting to semantic audio re-
trieval. Ph. D. thesis, Universitat Pompeu Fabra.

Cano, P., E. Batlle, T. Kalker, and J. Haitsma. 2005. A review of audio fingerprinting.
The Journal of VLSI Signal Processing 41 (3): 271–84.

72 References

Cano, P., E. Batlle, H. Mayer, and H. Neuschmied. 2002. Robust sound modeling for song
detection in broadcast audio. In Audio Engineering Society Convention 112, 1–7.

Catalán, C. 2009. Quality assessment and enhancement of an industrial-strength audio
fingerprinting system. Master’s thesis, Universitat Pompeu Fabra.

Chandrasekhar, V., M. Sharifi, and D. A. Ross. 2011. Survey and evaluation of audio
fingerprinting schemes for mobile query-by-example applications. In Proceedings of
the International Society for Music Information Retrieval Conference, 801–6.

Chang, S., T. Sikora, and A. Purl. 2001. Overview of the MPEG-7 standard. IEEE
Transactions on Circuits and Systems for Video Technology 11 (6): 688–95.

Covell, M., and S. Baluja. 2007. Known-audio detection using Waveprint: Spectrogram
fingerprinting by wavelet hashing. In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, Volume 1, 237–40.

Crawford, T., M. Mauch, and C. Rhodes. 2010. Recognizing classical works in histor-
ical recordings. In Proceedings of the International Society for Music Information
Retrieval Conference.

Cremer, M., B. Froba, O. Hellmuth, J. Herre, and E. Allamanche. 2001. Audioid: To-
wards content-based identification of audio material. In Audio Engineering Society
Convention 110.

Doets, P., and R. Lagendijk. 2004. Stochastic model of a robust audio fingerprinting sys-
tem. In Proceedings of the International Conference on Music Information Retrieval,
349–52.

Downie, J. 2003. Music information retrieval. Annual Review of Information Science and
Technology 37 (1): 295–340.

Downie, J., K. West, A. Ehmann, E. Vincent et al. 2005. The 2005 Music Information
Retrieval Evaluation eXchange (MIREX 2005): Preliminary overview. In Proceedings
of the International Conference on Music Information Retrieval, 320–3.

Ellis, D. 2009. Robust landmark-based audio fingerprinting. Last accessed 15 December
2012, http://labrosa.ee.columbia.edu/matlab/fingerprint.

Ellis, D. P. W., B. Whitman, T. Jehan, and P. Lamere. 2010. The Echo Nest musical fin-
gerprint. In Proceedings of the International Society for Music Information Retrieval
Conference.

Ellis, D. P. W., B. Whitman, and A. Porter. 2011. Echoprint—an open music identi-
fication service. In Proceedings of the International Society for Music Information
Retrieval Conference.

Fenet, S., G. Richard, and Y. Grenier. 2011. A scalable audio fingerprint method with
robustness to pitch-shifting. In Proceedings of the International Society for Music
Information Retrieval Conference.

Foote, J. 1997. Content-based retrieval of music and audio. In Proceedings of SPIE Mul-
timedia Storage and Archiving Systems II, Volume 3229, 138–47.

References 73

Foote, J. 1998. An overview of audio information retrieval. ACM Multimedia Sys-
tems 7 (1): 2–10.

Foote, J. 2000. Arthur: Retrieving orchestral music by long-term structure. In Proceedings
of the International Symposium on Music Information Retrieval.

Fragoulis, D., G. Rousopoulos, T. Panagopoulos, C. Alexiou, and C. Papaodysseus. 2001.
On the automated recognition of seriously distorted musical recordings. IEEE Trans-
actions on Signal Processing 49 (4): 898–908.

Ghias, A., J. Logan, D. Chamberlin, and B. Smith. 1995. Query by humming: Musical
information retrieval in an audio database. In Proceedings of the Third ACM Inter-
national Conference on Multimedia, 231–6.

Gomes, L. d. C., P. Cano, E. Gómez, M. Bonnet, and E. Batlle. 2003. Audio watermarking
and fingerprinting: For which applications? Journal of New Music Research 32 (1):
65–81.

Gomez, E., P. Cano, L. Gomes, E. Batlle, and M. Bonnet. 2002. Mixed watermarking-
fingerprinting approach for integrity verification of audio recordings. In Proceedings
of the International Telecommunications Symposium.

Graps, A. 1995. An introduction to wavelets. IEEE Conference on Computational Science
& Engineering 2 (2): 50–61.

Haitsma, J., and T. Kalker. 2002. A highly robust audio fingerprinting system. In Pro-
ceedings of the International Conference on Music Information Retrieval, 144–8.

Haitsma, J., T. Kalker, and J. Oostveen. 2001. Robust audio hashing for content identi-
fication. In Proceedings of the International Workshop on Content-Based Multimedia
Indexing, Volume 4, 117–24.

Herre, J., E. Allamanche, and O. Hellmuth. 2001. Robust matching of audio signals using
spectral flatness features. In IEEE Workshop on the Applications of Signal Processing
to Audio and Acoustics, 127–30.

Holm, F., and W. T. Hicken. 2003. Audio fingerprinting system and method. US Patent,
7,013,301, filed, Mar. 14, 2006, and issued, Mar. 14, 2006.

Jang, D., C. Yoo, S. Lee, S. Kim, and T. Kalker. 2009. Pairwise boosted audio fingerprint.
IEEE Transactions on Information Forensics and Security 4 (4): 995–1004.

Jehan, T. 2005. Creating music by listening. Ph. D. thesis, Massachusetts Institute of
Technology.

Kashino, K., G. Smith, and H. Murase. 1999. Time-series active search for quick retrieval
of audio and video. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, Volume 6, 2993–6.

Kastner, T., E. Allamanche, J. Herre, O. Hellmuth, M. Cremer, and H. Grossmann. 2002.
MPEG-7 scalable robust audio fingerprinting. In Audio Engineering Society Conven-
tion 112.

74 References

Ke, Y., D. Hoiem, and R. Sukthankar. 2005. Computer vision for music identification.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 597–604.

Kimura, A., K. Kashino, T. Kurozumi, and H. Murase. 2001. Very quick audio search-
ing: introducing global pruning to the time-series active search. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol-
ume 3, 1429–32.

Kurth, F., and M. Muller. 2008. Efficient index-based audio matching. IEEE Transactions
on Audio, Speech, and Language Processing 16 (2): 382–95.

Lalinský, L. 2012. Chromaprint. Last accessed 15 December 2012, http://acoustid.
org/chromaprint.

Liu, Y., K. Cho, H. Yun, J. Shin, and N. Kim. 2009. DCT based multiple hashing
technique for robust audio fingerprinting. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, 61–4.

Lutz, S. 2009. Hokua–a wavelet method for audio fingerprinting. Master’s thesis, Brigham
Young University.

Macmillan, N., and C. Creelman. 1991. Detection theory: A user’s guide. Cambridge:
Cambridge University Press.

Mahedero, J., V. Tarasov, E. Batlle, E. Guaus, and J. Masip. 2004. Industrial audio
fingerprinting distributed system with CORBA and web services. In Proceedings of
the International Conference on Music Information Retrieval.

McKay, C., D. McEnnis, and I. Fujinaga. 2006. A large publicly accessible prototype
audio database for music research. In Proceedings of the International Conference on
Music Information Retrieval, 160–3.

Mıhçak, M., and R. Venkatesan. 2001. A perceptual audio hashing algorithm: A tool for
robust audio identification and information hiding. In Proceedings of the International
workshop on Information Hiding, 51–65.

Miller, M., M. Rodriguez, and I. Cox. 2005. Audio fingerprinting: Nearest neighbor search
in high dimensional binary spaces. The Journal of VLSI Signal Processing 41 (3):
285–91.

Miotto, R., and N. Orio. 2008. A music identification system based on chroma indexing
and statistical modeling. In Proceedings of the International Conference on Music
Information Retrieval, 301–6.

Müller, M., F. Kurth, and M. Clausen. 2005. Audio matching via chroma-based statis-
tical features. In Proceedings of the International Conference on Music Information
Retrieval, 288–95.

Neuschmied, H., H. Mayer, and E. Batlle. 2001. Content-based identification of audio
titles on the internet. In Proceedings of the First International Conference on Web
Delivering of Music, 96–100.

References 75

Papaodysseus, C., G. Roussopoulos, D. Fragoulis, T. Panagopoulos, and C. Alex-
iou. 2001. A new approach to the automatic recognition of musical recordings. Journal
of the Audio Engineering Society 49 (1): 23–35.

Poliner, G., D. Ellis, A. Ehmann, E. Gomez, S. Streich, and B. Ong. 2007. Melody
transcription from music audio: Approaches and evaluation. IEEE Transactions on
Audio, Speech, and Language Processing 15 (4): 1247–56.

Portnoff, M. 1981, jun. Time-scale modification of speech based on short-time Fourier
analysis. IEEE Transactions on Acoustics, Speech and Signal Processing (3): 374–90.

Pye, D. 2000. Content-based methods for the management of digital music. In Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing,
Volume 6, 2437–40.

Rabiner, L., and B. Juang. 1986. An introduction to hidden markov models. IEEE ASSP
Magazine 3 (1): 4–16.

Ramstad, T., and J. Tanem. 1991. Cosine-modulated analysis-synthesis filterbank with
critical sampling and perfect reconstruction. In Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing, 1789–92. IEEE.

R.I.A.A. 2001. Request for information on audio fingerprinting technologies.
Last accessed 15 December 2012, http://www.ifpi.org/content/section_news/
20010615.html.

Seo, J., J. Haitsma, and T. Kalker. 2002. Linear speed-change resilient audio fingerprint-
ing. In Proceedings of the IEEE Workshop on Model based Processing and Coding of
Audio.

Shrestha, P., and T. Kalker. 2004. Audio fingerprinting in peer-to-peer networks. In
Proceedings of the International Conference on Music Information Retrieval.

Song, J., S. Bae, and K. Yoon. 2002. Mid-level music melody representation of polyphonic
audio for query-by-humming system. In Proceedings of the International Conference
on Music Information Retrieval.

Subramanya, S., R. Simha, B. Narahari, and A. Youssef. 1997. Transform-based indexing
of audio data for multimedia databases. In Proceedings of the IEEE International
Conference on Multimedia Computing and Systems, 211–18.

Wang, A. 2003. An industrial strength audio search algorithm. In Proceedings of the
International Conference on Music Information Retrieval.

Wang, A. 2006. The Shazam music recognition service. Communications of the
ACM 49 (8): 44–8.

Wold, E., T. Blum, D. Keislar, and J. Wheaten. 1996. Content-based classification,
search, and retrieval of audio. IEEE Multimedia 3 (3): 27–36.

Yang, C. 2001. Music database retrieval based on spectral similarity. Technical Report
2001-14, Stanford InfoLab.

76 References

Yoshii, K., and M. Goto. 2008. Music thumbnailer: Visualizing musical pieces in thumb-
nail images based on acoustic features. In Proceedings of the International Conference
on Music Information Retrieval.

