
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, sorne thesis and

dissertation copies are in typewriter face, while others may be trom any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the authùï did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had ta be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

trom left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6'" x 9" black and white

photographie prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Raad, Ann Arbori MI 48106-1346 USA

800-521-0600

NOTE TO USERS

Page(s) not included in the original manuscript
are unavailable from the author or university. The

manuscript was microfilmed as received.

Vii,38

This reproduction is the best copy available.

••

•

••

HIERARCHICAL SUPERVISORY CONTROL
SYSTEMS

Paul Hubbard

Departement of Electrical and Computer Engineering

McGill University, Montréal

J anuary 2000

A Thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

© PAUL HUBBARD, MCMXCrx

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1A ON4
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1 A ON4
Canada

The author has granted a non
exclusive licence allowing the
National Libraxy of Canada to
reproduce, loan, distribute or selI
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author'S
pemussion.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-64577-0

Canada

•

•

RéSUIné

Cette thèse présente deux approches pour la commande supervisée hiérarchique

des systèmes à évènements discrets(DES), modélisés comme des automates déterministes
finis.

On présente en premier, une théorie de commande hiérarchique, basée sur l'ensemble

(totalité) des états, différente de l'approche classique qui utilise des méthodes de lan

guage formel.

Un modèle d'automate déterministe de haut niveau est caracterisé par son util

isation de notions de consistence dynamique(DC) dans sa définition des transitions

de haut niveau. La condition Trace-DG est ainsi définie sur toute partition en éspace

d'état qui garantie: (i) Les trajectoires dans les systèmes bas niveau sont représentées

dans les systemes haut niveau. (ii) Les trajectoires dans les modèles haut niveau sont

realisées utilisant les trajectoires dans les systèmes bas niveau. Il est aussi montré

que la condition Trace-DG assure que les comportements controlables bas niveau sont

représentés comme comportements controlables haut niveau.

La condition Non-Blocking In-Block-controllability sur les partitions est définie

dans le but de garantir que les comportements, qui sont controlables dans les modèles

haut niveau, peuvent être atteints par la commande des transitions haut niveau entre

les blocs combinés avec les commandes locales à retour d'état dans chaque bloc.

Un algorithme appelé Vocalised lifting est proposé pour la construction des partitions

Trace-DG. Il est prouvé de la littérature des langages formels basés sur la théorie de la

commande hierarchique supervisée, que la formulation de la supervision hiérarchique

satisfait les conditions de consistence hiérarchique

Notre approche est illustrée avec plusieurs exemples de chaines de production

manufacturières, incluant un tranfert ré-entrant et une chaine à deux queues séquentielles.

•

•

RÉsUMÉ

Une application pour la commande des appareils de maison (Machine à laver), moti

vant notre approche est présentée.

En deuxième volet de cette thèse, une formulation de la notion des systèmes
d'automates déterministes interagis, basée sur le pro~uit multi-agent(MA) est présentée.
La relation de transition du produit MA est montrée qu'elle représente l'intersection

des relations de transition de deux produit associés: le vecteur de produit synchrone à

état dependant et le produit stimulant. Il est aussi prouvé que la langage accepeté par
le produit rvIA est l'intersection des langages embedded constraint de chaque agent.

La supervision d'un agent par autre est ainsi considérée. Il est montré que la
réalisation standard d'un automate fini peut être utlisée comme modèle pour l'agent

superviseur.

Une direction de recherche basée sur la supervision centralisée, décentralisée et
hiérarchique des systèmes produit MA est initiée. Il est montré que les comporte

ments de produit MA, qui sont individuèllement et indépendement controlables avec
le respect de chaque agent, forment un comportement controlable dans le système

produit MA .

III

•

•

Abstract

This thesis presents two approaches to the hierarchical supervisory control of
discrete event systems (DES) modelled as finite deterministic automata.

First, a hierarchical control theory based on the aggregation of states is presented
that differs from the standard approach to hierarchical supervision which mainly
employs formaI language methods. A high-ievei (i.e. aggregated) deterministic au
tomaton model is defined that uses notions of dynamical consistency (DG) in the
definition of high-Ievel transitions. A Trace-DG condition is then defined on any
gjven state-space partition which ensures that (i) trajectories in the low-Ievel system
are always represented in the high-Ievel system, and (ii) trajectories in the high-Ievel
model are realized by trajectories in the low-ievei system. 1t is also shown that the

Trace-De condition ensures low-Ievel controllable behaviours (languages) are repre
sented as high-level controllable behaviours.

The (Non-Blocking) In-Block-Controllability condition on partitions is then de
fined that ensures that behaviours that are expressly controllable in the high-Ievel

model can be achieved through the control of high-Ievel transitions between blocks
combined with local state - feedback controls in each block. A so-called vocalised lift
ing algorithrn is proposed for the construction of Trace-DC partitions. It is shown that
this formulation of hierarchical supervision satisfies conditions of hierarchicai consis

tency from the literature on formaI language-based hierarchical supervisory control
lh~ory.

The approach is illustrated with severai examples of manufacturing production

Hnes, including a re-entrant transfer Hne and a line with two sequential queues. An
application to the ernbedded control of home appliances (washing machines) which
motivates the approach is summarised.

•

•

ABSTRACT

Second, a notion of systems of interacting finite deterministic automata is for

mulated via a newly proposed multi-agent (MA) product. The transition relation of
the MA product is shown to be the intersection of the transition relations of two

associated products, the vector state-dependent synchronous product and the simul

taneous product. It is shown also that the language accepted by the rvfA product is

th~: intersection of the so-called embedded constraint language of each agent.

Thl' supervision of one agent by another is then considered and it is shown that

the stan~:·~rd finite automata realization for a supervisor can be employed as the

model for the supervising agent.

A Hne of research is then initiated on the centralised, decentralised and hier

archical supervision of MA product systems. It is shown that the MA product of
behaviours that are individually and independently controllable with respect to each

agent forms a controllable behaviour in the MA product system.

v

•

•

•

Acknowledgernents

First and foremost, l am indebted ta my thesis supervisor, Professor Peter E.
Caines for his technical advice and moral support. He is aIso the co-author of the
papers on which this thesis is based. 1 would like to thank the other members of

the systems and control research group, with whom 1 shared the process of research

and discovery, for their friendship and support. These are Carlos Martinez-IvIartinez

Mascarua, Thomas Mackling, Ekaterina Lemch, Shen Gang, Michael GIaum, Char

alambous Charalambos and Benoit Boulet. The staff at the Centre for Intelligent

Machines (CIM), Kathleen VanderNoot, Ornella Cavaliere and Marlene Gray, were

an endless source of encouragement and administrative assistance. l must add my

thanks ta Jan Binder and others involved in the CIM computer systems administra

tion which was invariably excellent.

l also greatly appreciate the time and effort put ln by Dr. Tim Johnson and

Vivek Badami at General Electric R& D.

The sources of financial support that made this research possible are the National

Science and Engineering Research Council (NSERC), General Electric R&D and the

Bank of Ivlontreal. l gratefully acknowledge their support.

Finally, thanks to my parents for their love and gracious hospitality during the

final stages of this thesis and thanks to my wife, Ann, for everything. Words do no
justice.

Paul Hubbard

Montréal, Québec, August 1999.

•

•

TABLE OF CONTENTS

Résumé

Abstract .

Acknowledgements .

Claims of Originality

LIST OF FIGURES

CHAPTER 1. Introduction

Complexity .

Discrete Event Systems

Supervisory Control Theory .

Hierarchical Strategies in Supervisory Control

DES Applications Areas ..

Manufacturing Systems .

Embedded Systems . .

Other Applications Areas and DES software

CHAPTER 2. Statt. .ggregation and Hierarchical Supervisory Control

1. Introduction

2. State Aggregation in the System Model

ii

iv

vi

vii

xi

1

1

2

3

3

4

4

5

5

6

6

8

TABLE OF CONTENTS

2.2. Mealyand Moore Representations. 12

2.3. Comparison Between Trace De and Output Control Consistency . 14

• 2.1. Maps from Low-Level Systems to High-Level Systems ..

3. Control of the Abstract Model (the 7r-Automaton)

3.1. InternaI Requirements for Controllability . . .

3.2. Synthesis of Supervisors through Sequential Refinement .

4. Controllable Sub-Languages of the 7r-Automaton

4.1. Hierarchical Consistency and (Non-blocking) IBC

Il

15

18

20

22

26

5. Designing (non-blocking) IBC Partitions and the Vocalised Lifting Aigorithm 27

5.1. The VL Aigorithm and IBC partitions . 34

CHAPTER 3. Trace-DG Hierarchical Supervisory Control: Examples and
Applications 36

1. Illustration of the Formation or IBC Partitions

2. Manufacturing Systems .

36

39

2.1. An Illustrative Example: Transfer Line with Re-entrant Flow. 41

2.2. A Double Queue 43

2.3. Join and Split Layouts 44

3. Embedded Control of Appliances at General Electric R&D 50

3.1. Background . 50

3.2. DES Washing Machine Models and a Supervisory Control Problem 50

•

3.3. Simulation of the Nominal Wash Cycle

3.4. Verification

3.5. Conclusion.

CHAPTER 4. Multi-Agent Systems and the Multi-Agent Product

1. Introduction .

52

54

58

59

59

ix

2.1. The NIA Product 63• 2. Products of Finite Automata and Regular Languages

TABLE OF CONTENTS

62

2.2. The Simultaneous and Vector Synchronous Products 64

2.3. The MA Product as a Combination of Simultaneous and Synchronous
Products 68

2.4. Commutativity and Associativity of the MA Product 72

3. MA Product and Vector Languages .

3.1. Non-Simultaneous Accepted Languages for Vector Systems

4. NIA Product and Supervisory Control

75

78

80

4.1. Agent as Supervisor: Using the MA Product Instead of the Synchronous

Product 80

4.2. Supervision of Multi-Agent System 82

4.3. Centralised Control 85

• 5. Non-Simultaneous Controllability

5.1. Aggregated Hierarchical Control ..

88

89

CHAPTER 5. Future Research 91

•

1. Suggested Research Related to Trace-DG Supervisory Control

Longer Term Suggested Research

2. Suggested Research Related to Manufacturing Layouts .

3. Suggested Research Related to the rvlulti-Agent Product .

REFERENCES .

91

92

92

93

95

x

•
LIST OF FIGURES

•

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

3.1

3.2

Aggregation and the 7r-partition automaton. 7

An example of the Ivlealy ta Moore translation. 13

Trace-DG and output control consistency are incomparable (in-sets

are shadowed). 15

Examples of Trace-DG partition automata. 17

The required (non-blocking) controllable state-sets for (non-

blocking) IBC condition (i) for the in-set state Xo.. 20

(non-blocking) IBC is not preserved under the chain union operation. 20

Translation of control from high to low levels. 23

A Hierarchically Consistent pair where G1r is not IBC. 28

A hierarchically consistent pair for which there is no partition
automaton isomorphic ta Chi. 29

The result of the VL algorithm on Figure 2.9. . 32

Illustration of the VL algorithm. 33

Hierarchical consistency on the left implies (non-blocking)-IBC on

the right when L'ffi (G) is controllable (Theorem 5.2). 36

Independent component models and a recogniser for L(GdIlL(G2). 38

IBC partitions for Gd IG2 •• • • . • • . • •• 39

• 3.3 The machine, buffer and testing unit models.

LIST OF FIGURES

40

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

A material transfer Hne with re-entrant fio\v. 42

A controllable state set and partition with a typical inhibited

undesirable event 1 (aIl others suppressed for clarity). 43

A 1r-Ievel controllable state-set. 44

A two buffer queue ("double queue"). 45

State space and partition for first portion of double queue. 46

The double queue with buffer size N = 1. . . . 47

Three levels of hierarchy for the double queue. 48

A join element with buffer size N = 1. . 49

A split element with buffer size N = 1. 50

A coarse system architecture for fault regulation. 52

3.14 A path through the state space. 53

3.15

3.16

3.17

3.18

4.1

4.2

4.3

4.4

A dangerous blocked path from the nominal cycle. 54

The Simulink block diagram for a nominal cycle with failures. 56

The StateChart for Stateflow block Washer.. 57

The Explore window with component state spaces and events.. 58

Modular control of a multi-agent system mode!. 61

LI and L 2 are not compatible. 67

Example 2 of the various products. . 71

Example of the MA product. 71

Example 1 of the various products. . 72

•
4.5

4.6 Illustration of the embedded constraint. 78

xii

•

•

4.7

4.8

4.9

4.10

LIST OF FIGURES

Example of the embedded constraint formation of MA product. 79

MA products and simultaneity: accepted strings must be of equal

length. 79

Controllable product does not imply controllable components.. 85

Centralised control of a multi-agent system mode!. 86

XlIl

•

•

CHAPTER 1

Introduction

An essentiai element in the design of a complex system, whether it be a manu

facturing plant, a communications network or an enterprise management system, is

a high level description of component functionality, logicai dependence and informa

tion flow. A common form for such a description is a graphicai representation such

as a flow chart or a finite state machine. Independent of the complexity of the reai

system, there is an informaI maximum complexity (measured perhaps, by the size or

number of elements in the flow chart) for such a description to be a meaningfui tooi

for reasoning about the design. Hence there is a need for a formaI tie between an

abstract description and the true system so that reasoning at the abstract level can

be effectively translated to the true system.

In this thesis, two forms of abstract model are proposed in the setting of a specific

formalism; that of supervisory control of discrete-event systems modelled as finite

deterministic automata. The first is based on the aggregation of states to form an

abstract model in which the abstract states now correspond to sets of states in the

true system. The second is based on a model for the concurrent evolution of multiple

agents. The product of the agent state spaces gives the true system state and the

dynamics are provided by a specific definition for the interaction of the agents.

Cornplexity

The aspects of complexity that are at issue are organisational and constitutional

complexity ([79]) rather than computational complexity. That is, the cause of the

problems at the design stage is not the length of time of calculations, but rather

the need for an organised approach to combining subsystems that have extensive

•

•

orsCRETE EVENT SYSTElVIS

interactions. Computationai complexity, on the other hand, may be of importance

if an automated tool is used to aid the design and becomes much more important
during impLementation.

It shouid be noted that the approach here is not that of disguising complexity

as uncertainty as is done in robust control or fuzzy logic. Rather, it is assumed that

exact models (deterministic or stochastic) are in principle available at any Level of

refinement and the complexi ty must he organised to form a meaningful abstraction

for design.

The most natural response to the issue of organisational complexity is hierarchical

organisation. It has been argued that hierarchies are universally present in natural

and synthetic complex systems [84, 45]. Characteristics of multi-Ievel hierarchical

structures, their vertical arrangement, and subsystem prioritisation have been defined

in various contexts [65, 90], and more recently in settings similar to this thesis in

[44, 72, 13, 99, 46]

Discrete Event Systems

Historically, discrete state systems and the complexity they engender have been

studied, at least indirectly, in many fields including game theory [98], operations

research [24], graph theory [36], discrete mathematics [11] and digital design (63].

Ivlotivated by the almost universal use of computation-based control and the

spread of systems-based philosophies ta application areas with complex discrete dy

namics, the field of Discrete Event Dynamical Systems (DEDS or sometimes simply

DES, see [4]) has emerged as the application of systems and control concepts ta formaI

computer science. Because of this dual heritage, there is a dichotomy in perspective

regarding DES. The systems-theoretic view of this field is that DESs are most often

derived from a continuous state space, e.g. by cell-wise decomposition. As a result,

many system-theoretic notions (for instance controllability) gain new interpretations

in the DES field in terms of reachability or connectedness (36, 19]. The formaI com

puter science view, on the other hand, is motivated by issues such as decidability (39]

and formaI verification [70] which regard DESs as purely computational processes.

The dichotomy is also present in the closely related field of hybrid systems (see

for instance,[18, 26, 75, 50] and [7, 8]) .

2

•

•

SlJPERVISORY CONTROL THEORY

Other fields have emerged with similar characteristics and motivations ta DES.

These include intelligent systems and expert systems [3, 86], multi-agent systems

[32], decision systems [74], etc. AIl attempt in sorne way to make systems of enor

mous complexity amenable to human understanding and (re-)organisation, either by
abstraction or by creating tools that allow for formaI verification.

Supervisory Control Theory

Within the DES field, there are many approaches to system modelling. These

include Markov chains, automata and finite state machines, Ma.x+ Aigebra and Petri

Nets (see [22] and references therein, and for a short comparison of these models

for a specifie queueing example see [21]). The contents and contributions of this

thesis lie in the automata-theoretic and finite state machine setting, specifically in

the supervisory control framework.

In the supervisory control framework, DESs are modelled as generators of a for

mal language. These are untimed logical models (see [78] and references therein, in

particular the original articles [77] and [101J and the longer works [91, 47]). Feed

back control is applied through the observation of system events and the inhibition of

future events. System behaviours are also described by languages (i.e. sets of strings

of events) and the theory seeks ta determine, among other things, which behaviours

can be achieved through the inhibition of future events by an external supervisor.

There is an extensive literature for supervisory control. A partial list of topics

includes observability [71, 60], control based on partial observation [25, 47], modular

control [76, 102], decentralised control [80, 58, 59], nondeterminism [38, 62J, timed

aspects [12J, infinite strings [91], vector systems [55, 56], concurrency [95, 57J and
supervisory control of Petri Nets [35, 85].

Hierarchical Strategies in Supervisory Control

Complexity issues arise in the supervisory framework due to combinatorial ex

plosion in the number of states (for computational complexity considerations see [94J
and for complex examples see [81, 82]). Hierarchical supervisory control formulations

in a linguistic framework have appeared in [103] and [99] and an approach based on

supervisor reduction appeared in [96].

Two approaches to hierarchical supervision are presented in this thesis. The

first approach, presented in Chapter 2, is to clump states inta blacks in order ta

3

•

•

DES APPLICATIONS AREAS

form an abstract supervisory model. This is motivated by hierarchies based on state

aggregation that appeared in [19, 15, 83] and [33] and by the expected generalisation
to hybrid systems [17, 52]. The main results for the chapter are Theorems 4.1 and 4.2

in which properties of consistency between the low level system and the abstraction
are proved. Where possible, the work is compared with the hierarchical supervisory
control theory in [103, 99].

The second approach, presented in Chapter 4, is a modular approach based on
interacting agents. This is motivated partially by the general work in [67J, the multi

agent formalisms from computer science in [32], and the concurrency ideas in [68].
The main results for the chapter are the development of an algebraic description of
the language accepted by a so-called multi-agent (MA) product system and an initial
analysis of the supervisory control problem for multi-agent systems.

DES Applications Areas

Chapter 3 of this thesis contains several worked examples and a discussion of a

motivating application areas. The intention is to demonstrate the theory and prove

the worth of the analysis for the design of much larger systems. The emphasis in the
worked examples is on manufacturing systems and discrete-event production Hnes

[28] but the analysis might weIl be exported to applications such as communication
network architecture designs and resource allocation.

Manufacturing Systems

The fields of Operations Research and Expert Systems, among others, focus on the

control and optimisation of manufacturing models. In particular, [90] and the other

papers in the same collection discuss coordination and conflict in the manufacturing

systems setting and [64] contains a survey of expert systems and manufacturing
techniques.

Within the DES field, applications in manufacturing systems are also common.

In particular, [34] discusses a probabilistic model in which the relative frequency
of events yields a hierarchical structure, [103, 29, 49] contains an analysis of re

entrant flow production Hnes in the supervisory control setting and [10] provides a

logjcal synthesis from a flow chart through automata to integratcd circuit layouts.

The supervision of batch processes modelled with Petri Nets appeared in [92] and

supervisory control in the context of programmable logic controllers was examined in
[31] .

4

•

•

DES APPLICATIONS AREAS

Embedded Systems

With the advent of automated integrated circuit design, embedded control1ers are
now pervasive in many industries, for instance in the home appliances industry, the

automotive industry and the telecommunications industry. A. pertinent discussion of
the design of embedded systems and the need for modular design based on pre-verified

components can be found in [30].

The candidate performed a brief part of the research for this thesis at General

Electric R & D in Schenectady, NYon the control of washing machines with an

embedded system (see[9]). A discussion of this exploratory phase can be found in
Chapter 3.

Other Applications Areas and DES software

Other application areas for DES include failure diagnosis (see [81, 82] and [97]),
communication systems (for a discussion of Internet topology see [20] and feature

interaction in telephony see [23]). Larger distributed applications include automotive

traffic systems (see [66] for a multi-origin multi-destination network model) and air

traffic control [73], [93].

Many software applications packages exist for DESs. These include packages

developed in the academic setting such as [5, 6] and a host of commercially available

software such as lvlatlab Stateflow [2]. These offer varying degrees of generality or

simulation environments and hence inversely varying degrees of formaI verification
tools.

5

•

•

CHAPTER 2

State Aggregation and Hierarchical
Supervisory Control

1. Introduction

The supervisory control framework for modelling discrete event systems (DES) is

an untimed logical model that is expressed in terms of the observation and inhibition

of events. Within this framework, system behaviours are described by languages (i.e.

sets of strings of events) and the theory seeks to determine which behaviours can he

achieved via the inhibition of a suhset of the system's events (see [78, 77, 101] and
[91, 47]).

Because of the generally accepted role of hierarchies in system complexity re

duction, the immediate complexity issues that arise for DESs due to combinatorial

explosion (for examples, see [23, 82]) motivate a hierarchical approach to supervisory
control.

In this chapter, which follows closely the work in [16, 40, 41, 43], a hierarchical

control theory based upon state aggregation is presented. The general idea is illus

trated Figure 2. L An abstraction of the system model is created by partitioning the

system state-space and forming an abstract model in which the abstract states now
correspond to sets of states in the true system.

Definitions of relevant conditions for partitions and high-Ievel dynamics for a

hierarchical supervisory control automaton are then given. A motivating problem for

the entire formulation is that of ensuring (non-blocking) accessibility of the designated

states; it is shown that this problem may be decomposed and solved in a hierarchical

•
2.1 INTRODUCTION

fashion with local state-feedback supervision in conjunction with supervision at the
aggregated level.

Other work on a hierarchical theory for supervisory control has appeared in the
DES literature. Within a linguistic framework, [103] and [99} develop notions of

output control consistency and hierarchical consistency which capture conditions for
effective high-Ievel control. Links and comparisons will be made with these notions

in the current work. An aggregated modular approach to controller reduction based

on covers of the state set of the supervisor also appeared in [96]. In [72], the authors
consider an approach in which high-Ievel events represent specifie sequences of low

level events ("tasks") which may need to be tracked or repeated numerous times.

An aggregation-based theory appeared in [13] in the context of statechart models.

An analysis of Petri Nets based on refinement and abstraction appeared in [88],

with a corresponding analysis of policies that enforce liveness being given in [85]. A

discussion of state-space partitions can he found in [89] and a condition is presented

which guarantees, for a given specification, the existence of a unique maximal partition

on which to base control.

FIGURE 2.1. Aggregation and the 7r-partition automaton.•

G1r

G

,,
1,

1

r
1

1

r
1
1

r
1,
r,,

r,

7

•
2.2 STATE AGGREGATION IN THE SYSTEM MODEL

The distinct characteristic of the present work is that the state aggregation is
based upon Dynamical Consistency (DC). This is a notion developed in the context
of forced event (positive-imperative) control in [19, 15), generalised to differential

control systems in [17, 18, 50, 52, 51] and which, further, is related ta notions in a

purely graph theoretic setting (see [36]) and in computer science (see [7, 37]).

State-feedback control in the supervisory framework has been considered previ
ously in [54, 48].

Relevant definitions from the literature concerning languages, supervision, con

trollability, non-blocking, etc., are given concurrently with the development of the

state aggregation theory. The following chapter contains several worked illustrative
examples.

2. State Aggregation in the System Model

A supervisory automaton G is a five-tuple,

(2.2.1)

•

where ..:l(is a set of states, :E = EuUEc is an alphabet of event labels (where EunEc ::= 0
by assumption) and cS : X x :E ---+ ..J(is a (partially-defined) transition function. Ali

(observed) admissible initial states qo lie in Qo, and Qm is the set of marked goal

states.

The notion of a set of initial start states, Qo, as defined in (2.2.1) differs from the

standard single start state defined in [77]. This is purely notational and is motivated

by a desire to rnaintain a self-similar layering in a hierarchy of abstractions in which

multiple start states rnust he considered. 1t is assumed the initial state qo E Qo

is identified a priori for any execution of the mode!. At present only completely

state-observable systems are considered. 1t is also assumed that aIl states in X are

reachable from sorne initial state and co-reac.hable from a state in Qm. The alphabet
of event labels is composed of a set of controllable labels E c which may be disabled

by an external control (a supervisor) and a set of uncontrollable labels :Eu which may

not be disabled.

An abstraction of the system can be constructed via a partition 'Ir of the state

set. Accordingly, let 'Ir = {Xl' X 2, .. , .XN} with U Xi =)[, Xi =1: 0, 1 < i ~ l'Ir 1, and

Xi n X j = 0 for i i= j .

8

•
2.2 STATE AGGREGATION IN THE SYSTEM MODEL

Nlotivated by the analysis in [15] regarding the dynamics between partition

blocks, the following definitions are made.

Definition 2.1. [(Xi, Qo)

The In-set I(Xi , Qo) of a partition block Xi is the set of states in Xi that are

either in the initial state set or directly accessible (i.e. one step accessible) from the

complement of the block, i.e.

x E [(Xj, Qo) <==> [x E Qo n Xi V

3x' E Xf.3u E E.6"(x', u) = x].

o

The relation (Xi, Xi)u holds for i f; j whenever, for each state in the in-set x

of Xi, there exists an uncontrollable path with initial state x, intermediate states

uniquely in Xi and terminal state in the in-set of)(j, i.e.

(){ù Xj)u <==>Vx E I(Xi , Qo).3a E E:.
6(x, a) E Xi /\ Va' < a, 6"(x, a') E Xi.

where < is the prefix partial arder, Le. s' < s if s' is a strict prefix of s. o

•

The relation (Xi, Xi)d holds for i f; j whenever, for each state x in the in-set

of J'Yi, there exists a path with initial state x, intermediate states uniquely in Xi

and terminal state in the in-set of X j and, furthermore, aIl such paths contain a

controllable transition, i.e.

(..Yi, Xj)d <==> Vx E I(Xi , Qo).3a E E*.

6(x, a) E Xi /\ Va' < a.6"(x, a') E Xi

/\ Vx E I(Xi , Qo). ,tIa E E:.

6(x, a) E Xi /\ Va' < a.6"(x, a') E Xi·

o

Note that (Xi, Xi)d and (Xi, Xi)u cannat hold simultaneously. The abstract

model, which is itself a supervisory automaton, may now be formally defined.

9

•

•

2.2 STATE AGGREGATION IN THE SYSTEM· MODEL

Definition 2.4. 7r-Partition Automaton

The 7f -partition automaton is defined as,

G1r ~ (7r, E~ U E~, cfr
, Q~, Q~)

where 7r = {Xl,X N } is the set of states. \Vhen (Xi, Xj)d holds between two

blocks, a 7f-Ievel disableable transition ut is defined. Similarly, when (Xi, "Yj)u holds,
an undisableable 7r-Ievel transition ~j is defined. The disjoint sets E~ and E~ are the

collections, respectively, of the defined symbols ut and ~i.

The (partially-defined) 7r-level transition function, c51r
: 7f x r;1r -+ 71, is defined

such that when a transition exists, it forms a directed edge between the associated

states, i.e. ("}(i, Xj}d ==> 61r (Xi1 ut) = Xj, and (Xi, Xj)u ==> c51r (.X"i , V/) = Xi' The

set of 7r -level initial states is Qg def {Xi E 7r 1Xi n Qo =1 0}. The set of 1T-leveZ goal

states is Q~ ~ {Xi E 1TIXi n Qm =1- 0}. 0

The selection of a high-Ievel representation which is itself a supervisory automaton

(i.e. a model in which control is applied through inhibition) is again motivated by

a desire for self-similarity between layers in the hierarchy. In practice, this allows
for a single set of algorithms to be used, independently of hierarchical layer, for

tasks such as building partitions, optimisation (for instance ma.ximal controllable
subset calculations) and instantiating control actions. There are clearly many other

candidates for the higher-Ievel descriptions. One possibility is a forced-event model.
The hierarchical theory developed in [19] then applies directly (except at the bottom

layer, which remains a supervisory automaton). Another possibility is a continuous

description rather than a granular model [50].

Definition 2.5. Trace Dynamical Consistency (Trace-De)

Arr-partition automaton G1r is Trace-DC iff

Vi =lj,1::; i,j < 11T1·

{(Xi, Xi)u V (Xi, Xi)d V -,[3w E E.3x E X i.3x' E ..-Yi . c5(x, w) = X']}.

o

The Trace-DC definition ensures that 7r-Ievel transitions are realized by trajecto

ries in the low-Ievel automaton and also that low-Ievel trajectories are always repre

sented in the 7r-partition automaton. It must be stressed that the Trace-DG property

10

•
2.2 STATE AGGREGATION IN THE SYSTEM MODEL

of a 1r-partition automaton depends upon the properties of the partition 'if and the
low-Ievel automaton.

A condition appeared in a sirnilar context in [7, 68] termed bisimulation. The
Trace-OC condition for a partition automaton is weaker than the more strict bisim

ulation equivalence condition for two reasons. In the latter, a high-Ievel transition
would represent a single-transition connection from aIl states in one partition block

to a state in another and further, aIl such transitions from a given block ta another

would be required to have identicallabels. In the Trace-OC setting, longer strings of
transitions are permitted and these need not have the same event labels.

The unmarked language, i.e. the set of strings of event labels accepted by the

automaton G but not necessarily ending at the goal set, is denoted as L(G). The

marked language is denoted Lm(G). Languages may be defined on the high-Ievel al

phabet E7r in a similar fashion, i.e. L(G7r), Lm (G7r) and when necessary, a superscript,

e.g. Krr ç L(G7r) will be included to emphasise the layer at which the language is

defined.

2.1. Maps from Law-Level Systems ta High-Level Systems

The canonical map (for states), 8 7r : X ~ 1r, is defined as

1 < i < l'if j,

•

and extended in the natural way to domains of successive greater complexity:

erreR) = {..X" E ?r1 ..X" n R #- 0}, R ç .x~

(strings af event labels) 8 7r : L(G) ~ L(G7r),

8 7r (E) = E,

8 rr (Œ)U! if cS(xo,O") E Xi, €S(x, aw) E X j and (Xi, Xj)d

for sorne 1 < i, j < l?rl,
8 7r (Œ)V/ if cS(xo,O") E Xi, €S(x, aw) E X j and (Xi, Xj)u

for sorne 1 ~ i, j ~ l?rl,
8 rr (Œ) if cS(xo,o") E Xi and cS(x, ŒW) E Xi for sorne 1 ~ i < j'ifl,

where Œ E E* and w E E.

Note that 8 7r : L(G) ~ L(G7r) is well-defined only when G7r is Trace-DG.

Il

2.2 STATE AGGREGATION IN THE SYSTEM MODEL

• (languages) 8
1r

: 2L(G) ~ 2L (G"'),

e1r (K) = {81r (a)la E K} C E
1r
-,

where 2L (G) denotes the set of sub-Ianguages of L(G).

(Mealy machine output) 8 1r : X x E -+ E1r U {f} ,

{

ut if x E Xi, a(x, w) E Xj, and (Xii Xj)d,

8 1r (x, w) = v:j if x E Xi! a(x, w) E .X'"j, and (..'-'"i, Xj)u,

f otherwise

Definition 2.6. ([39] for instance) Mealy Machine

(2.2.2)

A Mealy machine is a six-tuple (X,E,.6.,8,S, qo) where X,E and 8 are as in the

supervisory automaton (2.2.1), qo is the initial state, ~ is an output alphabet, and

the map 8 : X x E -+ ~ gives an output S(x, w) associated with the transition
from state x on input w. 0

The map 8 1r in (2.2.2) can be combined with the low-Ievel system G to form a

Mealy machine, Ge"" via

(2.2.3)

•

The interpretation of the output function in (2.2.3) is that symbols from E1r vocalise

the crossing of partition boundaries. Again, a similar caveat applies to the notation

of a set of initial states Qo; it is assumed that a start state qo is identified for each
execution of the system.

Note that, as an observation map, e1r is both formally and operationally different

from the standard observation mask or natural projection that is used most frequently
in the literature on supervisory control under partial observation ([47, 25]). As an

observer, the effect of 8 1r in the present setting is to restrict the estimate of the

current state to an element of the partition 1r.

2.2. Mealy and Moore Representations

In the next section a comparison will be made between the Trace-DG condition

and the output control consistent condition from [103]. The output control consistent

is formally defined for lVloore machines hence Moore machines will now be formally

defined and their relationship with Mealy machines summarised.

Definition 2.7. ([39] for instance) Moore Machine

12

•
2.2 STATE AGGREGATION IN THE SYSTEM MODEL

A Moore machine is a six-tuple (X, E, Ll, 8, ê, qo) where)(,E and c5 are as in the

supervisaI)" automaton (2.2.1), qo is the initial state, ~ is an output alphabet, and
the map ê : X ---+ ~ gives an output associated with each state. 0

An equivalent Moore machine representation can be constructed from a Mealy
representation, in general, by embedding the states X in a new state-set X = X X E7r
(see [39] p. 44 for instance).

In the current case, Ge,. yields the equivalent NIoore representation.,

Ge,. = (..-Y x 2:11", E, E1I" 1 J, ê1l"' [qa, A a])

where,
J([x, A], a) = [o(x, a), 811" (x, a)] E X x E1I",
è1f([x, AD = A,

for x EX, A E E1I", a E E. Ao in (2.2.4) is an arbitrary member of E1I".

(2.2.4)

Example 2.1. An example of the Mealy to Moore construction is given in 2.2. In

the figure, Ge,. is a partition machine in the Mealy format, i. e. where the observation

map, 811" : X x E ~ E1I", reports a subset of the low-level event set. Ge,. shows an
equivalent Moore representation where the observation map is now <311" : X ---+ E7r.

Note that, as stated in the text, only states x and y need be split because these are
in-set states which have incoming transitions from multiple blocks. The two repre

sentations are equivalent in the sense that ail accepted strings give the same string

of observations. Note that in Figure 2.2, the ticked arrows are used to represent

controllable transitions. Unticked arrows represent uncontrollable transitions. 0

X.1

•
FIGURE 2.2. An example of the rvlealy to Moore translation.

The interpretation of the Mealy to Moore translation is that the information

about the current transition event is carried in the state of the Moore machine.

13

•
2.2 STATE AGGREGATION IN THE SYSTEM MODEL

In practice, for the specifie case of Ger created via (2.2.2) and (2.2.3), the con
struction of the equivalent Moore representation only requires extending the state
space at specifie states, i.e. those states which (a) are in-sets and (b) have arriving

transitions from two or more different blocks XiI' ... ' X in • Such a state x E Xio is
then replaced with the states [x, io] ... [x, in], and the these are mapped to the output

symbols U;~, ...U;; respectively. The remaining states need only be replaced by one
state (x', Ao], where A o may be chosen arbitrarily and these states are mapped to the

null output symbol €.

The intention in the construction of the Mealy and Moore machines in the context

of supervisory control is that the events in 2: retain their controllability properties
(i.e. that events in E e can be inhibited). The issue in bath settings is whether there
is a meaningful setting for supervision of the events in 2:11" through the inhibition of

events in E.

2.3. Comparison Between Trace DG and Output Control Consistency

A Moore automaton is said to be output control consistent ([103]) when the high

level alphabet can be divided unambiguously iuto controllable transitions (inhibitable)

and uncontrollable transitions. A formaI definition is as follows.

Definition 2.8. ([103]) Output Control Consistency

A Moore machine G = (X, ~ = Eu U ~e' T = {TO} U Tu U Te, 6, e, xo), where
T, Tu, Te are alphabets and TO is an output symbol, is output control consistent if for

every string s E L(G) of the form

(A) s = 0"10"2 •• ·O"k

(8) s = s'0"10"2 •• . O"k,

where s E E+ and O"i E L, and,

or, respectively,

•

(A) e(6(XO,a1O"2·· ·O"i)) = Ta, for 1 <i ~ k -1, and

e(6(xo, s)) = T =1= TO

or, respectively ,

(B) 8(6(xo, s')) # TO, and

8(6(xo, S'0"10"2 •• ·O"i)), for 1 < i ~ k - 1, and

8(c5(xo,s)) = T =1= Ta,

14

•
2.2 STATE AGGREGATION IN THE SYSTE1vI MODEL

it is the case that,

if T ETc, then for sorne i, 1 < i ~ k, (Ti E E c , and

if T E Tu, then for aIl i, 1 < i < k'O'i E Eu.

o

The conditions of Tr~~e-DG for GTr and output control consistency for the asso

ciated GS>r are incomparable. Trace-DG includes a universal quantification over the

in-set of a given block which is not needed for output control consistency. Output
control consistency requires that high-Ievel uncontrollable transitions never be in

stantiated by controIlable paths, which is allowable in the definition of Ou' Examples

are shawn in Figure 2.3 in which Cl is Trace-DG but not Output Control Consistent,
while G2 is the opposite. The figures show the Moore representations, and the output

alphabets are T = E"" with Tc = E~ and Tu = E~.

•

FIGURE 2.3. Trace-DG and output control consistency are incompara
ble (in-sets are shadowed).

The definition Ou for uncontrollable 7r-Ievel transitions can be strengthened ta

Osu (strongly uncontrollable) with the additional requirement that there be no paths

from the in-set to the next black which contain any controllable events. With this

strengthening of Ou ta Osu, it may be shown that if G"" is Trace-DG then GSTr is

output control consistent.

It is significant that, as is shown in Section 4, the Trace-DG and output control
consistent conditions still achieve the same property of preserving language control

lability under mapping from low-Ievel to high-Ievel image.

15

•

•

2.3 CONTROL OF THE ABSTRACT MODEL (THE 7r-AUTO~J1ATON)

3. Control of the Abstract Madel (the 1r-Automaton)

Let a supervisor for the automaton G with start state qo in Qo be a function,

f =fqo : E- -r 2E specifying a set of enabled (Le. not controller disabled) transitions

which immediately follow any given event sequence a. It is assumed henceforth that

for aIl a, Eu ç f(O') ç 2:. After a has occurred, the controlled automaton (denoted

(G, f) may evolve \Vith any transition w satisfying both 8(8(xo, a), w)! and w E f(O').

At the 7r level, supervisors are defined in a similar fashion to that at the low
level, i.e. F7r : ~1r. ---? 2E

1T". Due to the fact that 7r-automata possess unique event

labels (the labels ut being indexed by the preceding and following blocks Xi and X j),

a starting state-set JQol ~ l, does not lead to nondeterministic behaviour at the 7f

level.

Herein, only state-feedback supervision within each local block will be considered,

i.e. at each block "X"il a supervisor fi : Xi ---? 2E specifies the enabled transitions at

the states within Xi.

Example 3.1. Figure 2.4 illustrates two low-level automata and two partition au

tomata. It can he checked that Gi is Trace-OC. There are four control inputs pos

sible at Xl in Cf and these can be enacted in Cl by the low-level state-feedhack

controls fI : X3 H- 2: u 1 fI : Xs-+ 2:u which enables neither Ur nor Ur in Ci
/2 : X3-+ ~uU{ud, f2 : Xs-+ 2:u which enables Ur, /3: X3 H- ~u, f3 : Xs-+ 2:uU{U3}

which enables U?, and f4: X3-+ 2:u U {u 11 U2}, f4 : Xs-+ ~u U {U3} which enables

both Ur and U? . (it is assumed fk(xj) = Eu for 1 < k S 4, j = 1,2,4).

In the second example, on the right of Figure 2.4, it is also the case that C2" is

Trace-OC, but now there is no low-level control which disables only Ur at Xl in G2".
o

A local automaton is now defined for each block Xi that is parameterised by a

start state x E 1(Xi, Qo) and a set of goal states Q.

Definition 3.1. Gx+ (x, Q),

The sub-aulomaton G xt(x, Q) of the automaton G = (X, 2:, 6, Qo, Qm) is defined

as

) (+ x:r)G x"!" (x, Q = Xi ,L, 6 l ,X, Q,

16

•
2.3 CONTROL OF THE ABSTRACT MODEL (THE 7r-AUTOMATON)

FIGURE 2.4. Examples of Trace-DG partition automata.

where xt = Xi U {x' E X icI3w E E.3y E X i .c5(y, w) = x'}, Le. the block Xi and the
states reachable from .X:i in one transition. ~xt is c5 with domain restricted to the set

"'Yi x E and x and Q are parameters (a state and state-set, respectively). 0

The controllability notions for state-feedback supervision and non-blocking ac

cessibility (of target states) may be formulated with the following definition (adapted

from [54), and appearing equivalently with the notion of predicates in [48]).

Definition 3.2. [54] (Non-Blocking) Controllable State-Sets

A set R ç ..1; is controllable with respect to the automaton G - (X, Eu U

Ec,~, Xo, Qm) if the following hold:

1. VxER.3lTEE*. ~(XO,Œ)=X /\ Va' <a.c5(xo, a') ER
2. Vx E R. ,tlu E Eu .c5(x, u) E Re

(R-reachable)

(closed with respect to Eu)

Additionally, R is (non-blocking) controllable with respect ta the automaton G if

the following condition also holds:

•
3. Vx E R.3a E E*. [c5(x, Œ) E Qm /\ Va' < Œ.c5(x, Œ/) E R] (Non-Blocking)

o

17

•

•

2.3 CONTROL OF THE ABSTRACT MODEL (THE 1i"-AUTOMATON)

For completeness, the analogous definition for languages is included.

Definition 3.3. ([77]) Controllable and Non-blocking Languages

A language K ç L(G) is controllable with respect to the automaton G = (X, L:u u
L:C' d, In, Qm) if K'E u n L(G) ç K. The language K is also non-blocking if K
KnLm(G). 0

In [54] it is shown that there exists a state-feedback supervisor that realizes each

R-reachable controllable state-set R (in the sense that, under the set of enablements

prescribed at each state by the supervisor, the reachable set is exactly R). Further

more, it is clear that for each R-reachable controllable set R, there exists a unique

maximally enabling state-feedback supervisor that realizes R, i.e. one that enables

the largest possible set of events at each reachable state, while still restricting the

reachable set to R.

Define the operation U on supervisors by!Ug: E·~ 2E , fug(er) de! f(a)Ug(u),

Le. .fl.g inhibits a transition only ifboth f and 9 inhibit the transition. The ma.ximally

enabling state-feedback supervisor realizing R as the reachable set can be found by

taking the union, U f, over aIl state-feedback supervisors f that realize R. This is

a different issue to that of finding a maximal controllable sublanguage or sub-set of

states for a given (possibly uncontrollable) specification. In the present discussion,

the state-set R is assumed to be controllable yet there may be more than one state

feedback supervisor which realizes R.

3.1. Internai Requirements for Control1ability

The control inputs at the 7r level are disablements of transitions in E~ but are to

be enacted by local low-Ievel state-feedback supervisors. This requires the existence

of a low-Ievel controllable state-set in the sub-automaton that allows reachability of

neighbouring blocks as requested by the 7r-Ievel supervision. The key point as far as

achieving specifications at the 1r level is the existence of such a controllable state-set

for every set of disablements at the 7r level. For example in G 2 in Example 3.1 there

was a missing instantiation of the 7i-level disablement f7r(.,}{d = {~4, U?}.

To ensure that there is such an instantiating state-set for each control in each

block, further conditioning is required. This is given below for a block "'Yi and the

collections of blocks pl = {Xj : (Xi, Xj)d}, pr = {Xj : (Xi, Xj)u}. This definition

constitutes the supervisory control counterpart to the IBe definition in [15] for forced

event systems. In particular, in the cases where aIl events are controllable (E = ~c)

18

•
2.3 CONTROL OF THE ABSTRACT MODEL (THE 7r-AUTOMATON)

or aIl events are uncontroIlable (E = Eu) this definition and that of ST-in-block

controllability [15] differ only in the latter's requirement for mutual accessibility of

out-sets (i.e. the set of states that are either goal states or from which transitions

lead out of the block).

Definition 3.4. (Non-Blocking) In Block Controllable (IBC) Partition
Automaton

A Trace-DCpartition automaton GTr is (non-blocking) IBCiffor aIl blocks Xi E 1r,

both of the following hold,

(i) VXj E prVx E I(Xi, Qo).3R~:,x ç xt such that

1. Vk.(Xk n R~:,x =1= 0] <=> [k=i V k=j V){kEPt], and

2. R~:,x is (non-blocking) controllable w.r.t.

the sub-automaton G x+ (x, Pt U [Xj n xt])·.
(ii) [Xi n Qm =1= 0]~ Vx E [(Xi, Qo).3R~~x C Xi such that

1. Qm n R~~x =1= 0, and

2. R~r;,x is (non-blocking) controllable w.r.t.

the sub-automaton G x:+-(x, Qm n Xi) ..
In this event, the partition 1r is also termed (non-blocking) [BC. o

•

Example 3.2. Figure 2.5 shows possibilities for the four required controllable

state-sets (shown as shaded regions) for condition (i) of the (non-blocking) [BC con

dition at block)(1 . The slanted inhibition lines are used to represent the status "in

hibitable but not inhibited". Consider the the third state-set from the left (which would

correspond to RJX~2 x in Definition 3.4), in which the high-level transition Ut is inhib-
l, a

ited. Note that blocks "'\'"2 and X 4 are still (non-blocking) accessible from Xo because

R~2 x is (non-blocking) controllable with respect to the automaton Gx+(xo, {X2' X3})
~"'l, 0 l

which has goal states in the blocks X 2 and X 4 • 0

Note that due to the definition of (,)u, any controllable subset R ç xt must

always contain states from each block in pr, i.e. it is never possible, through low-Ievel

control~ to block high-Ievel uncontrollable transitions.

Condition (ii) of the (non-blocking) IBC condition assures that, within each 1r

level goal state, non-blocking goal state reachability is guaranteed ta hold.

19

•

•

2.3 CONTROL OF THE ABSTRACT MODEL (THE 1r-AUTOMATON)

FIGURE 2.5. The required (non-blocking) controllable state-sets for
(non-blocking) rBe condition (i) for the in-set state Xo.

Unfortunately, unlike the situation in [19, 15, 17), the (non-blocking) rBe condi

tion is not preserved, in general, under either the greatest lower bound (intersection)

or least upper bound (chain union) operations in the lattice of partitions. An example

of the loss of the (non-blocking) rBe condition under the chain union operation is

given in Figure 2.6, where two partitions (one marked with dashed lines, the other

with solid lines and singletons assumed unless otherwise shown) are themselves (non

blocking) rBe, but their chain union is not (the blocks {X31 X4, xs}, {X2} fail the Trace

De condition).

FIGURE 2.6. (non-blocking) rBC is not preserved under the chain
union operation.

The IBC condition is transitive along the hierarchical layering. Let fI be a

partition of Ji, i.e. II = {Xi, i = 1. .. jIII} such that U~ = 'Ir, 'Vi. Xi =1= 0, and
'Vi =F j Xi n X j = 0. If G1r is (non-blocking) IBe and G n is (non-blocking)
rBe (with G1r as the low level machine), then G1r' is (non-blocking) rBe, where

'Ir' = {X:lX: = UXjEx, X j } .

20

•

•

2.3 CONTROL OF THE ABSTRACT MODEL (THE 1r-AUTOMATON)

3.2. Synthesis of Supervisors through Sequential Refinement

Singleton blocks satisfy trivially the requirements in the definition of (non-blocking)

IBC, hence the identity partition, 7rid = {{x}lx E X} is (non-blocking) IBC. A Trace

De hierarchical control structure is a chain, or sequence of (non-blocking) rBe parti

tions of increasing refinement. The key motivation is that specification and analysis

may be performed at any level of granularity and the resulting supervisors may be

translated clown this chain of partitions, yielding subsequent levels of control refine

ment.

Definition 3.4 posits the existence of controllable state-sets. Hence for a given

(non-blocking) IBe 1r-partition automaton, for each (Xi, Xj)d, (1 < i, j < 17r1)
and x E I(Xi, Qo), the maximal (non-blocking) controllable state-set, which will

be labellecl R-;~.x' can be found by taking the union of aIl sets satisfying the (non

blocking) controllable condition. Similarly, for each block .4"(i E Q~(l < i < 17r1) and

state x E I(.JYi , Qo), the maximal (non-blocking) controllable state-set can be labelled
by RQ..rn .

X"x

Furthermore, the maximally permissive state-feedback supervisors which realize

R;~,x and R~~x are labelled by f;:,x : Xi ~ 2I: and f(l7x :Xi~ 2I: respectively.

For a 7r-Ievellanguage specification KTr ç L(GTr) , the following scheme translates
the control HTr : L(GTr) ---7 2I:", which synthesises KTr in GTr, ta a low-Ievel control

hlow : L(G) --+ 2E (now possibly history-dependent by the dependence on HTr in its

construction) .

21

•

•

2.4 CONTROLLABLE SUB-LANGUAGES OF THE 1r-AUTOMATON

IBC Synthesis Algorithm Kld:ucO
Input: H1r

[a] For s E L(G) such that 8 1r (s) = f, let

hlow(s) = U f~:~~o,W)(8(xo, s)).
WEH"'CE)

[b] For s E L(G) such that 8 1r (s) = S, let

U o"'cx' W)h1ow(s) = f x' x" (5(xo, s»,
1 0

WEH""CS)

where X' = e51r (Xo, S), x~ = e5(xo, Si) and Si is a minimal string
such that 8 1r (S') = S and Si ~ s (i.e. for any other Sil satisfying

these requirements, s' < Sil ~ s).

[cl Finally, for s E L(G) such that 8 1r (s) = S E L m (G1r),

h1ow(s) = !x'?;n, (8(xo l s)),
,Ia

where, again, X' = 81r (Xo, S), x~ = 8(xo, s') and s' is a minimal

string such that 8 1r (S') = 8 1r (s) and s' < s.
Output: hlow

The scheme is illustrated in Figure 2.7 for the intermediate case [b]. Consider the

low-Ievel supervision after a low-Ievel string s. hlow(s) is to be calculated via the IBC

Synthesis Aigorithm. In this case, the high-Ievel control action at S = 8 1r (s) is H1r(S)
which means U~ is inhibited (this is the inhibitable arc between X J and X 6). Within

the block ..Y"J this high-Ievel control action is translated to the low level state-feedback

as f..~;,x' which inhibits flow to X 6 as illustrated. Hence the control to be applied at
xs is hlow(s) = !x;,x'(x) where x = 5(xo, s).

Let the unique low-Ievel language resulting from the control hlow found through

the IBC synthesis algorithrIl be Kld:uC (K1r). An illustration of this high-to-Iow syn

thesis for (non-blocking) IBC partitions is provided in the following chapter in the

context of manufacturing systems.

4. Controllable Sub-Languages of the 1r-Automaton

The principal theoretical results of this chapter are now given. It will be shown

first in Theorem 4.1 that the Trace-DG condition alone achieves the same consis

tency result as that of output control consistency; namely that the 1r-level image of

22

• G1r

2.4 CONTROLLABLE SUB-LANGUAGES OF THE 1r-AUTOMATON

oo

•

FIGURE 2.7. Translation of control from high to low levels.

a controllable language is controllable. It will then be shown in Theorem 4.2 that,

with the added (non-blocking) IBC hypothesis, the inverse holds; namely that for any

controllable 1r-Ievel language, there exists a low-Ievel controllable language with the

7r-Ievellanguage as its image. These results are shown in the setting of languages and

then as a corollary are obtained for state-sets.

Theorem 4.1. Gonsider a Trace-DG partition 1r of X in the automaton

and any Xo E Qo. If a language K is non-blocking and controllable 'W. r. t. G then

811"(K) is non-blocking and controllable w.r.t.

Proof. Let arr E 811"(K) and V E E~ and let a1l"V E L(G7r). AIso, let a E K

be an instantiating string such that 8 7r (a) = a1l". That 8 7r (K) is non-blocking and

controllable can be shown (independently) as follows .

23

•

•

2.4 CONTROLLABLE SUB-LANGUAGES OF THE tr-AUTOMATON

(controllable) V represents an uncontrollable OC link (Xi, Xj)u for sorne 1 ~

i,j :::; 17r1. Let al < a he such that c5(xo, al) E I(Xi , Qo). Since (Xi, Xj)u, a' can be
continued by SEL: such that c5(xo, a's) E Xj. But K is controlIable, sa aIs E K,

meaning arrV = 8 rr (as) E 8 rr (K). Hence 8 rr (K) is controlIable.

(non-blocking) As K is non-blocking, a can be continued by sorne s E L* to the

goal states. AlI low-Ievel goal states are contained in 'Tf-Ievel goal states 50 the image

8 rr (0") can be continued to 8 rr (as) such that c51r (Xo,8rr (as)) E Q~. •

In order to translate the results from languages to state-sets, the following obser
vations are needed. First, note that for any non-blocking, controllahle subset H, there

exists a unique maximal non-blocking and controllable language L R that has R as the
reachable state-set. Second, note that for any non-blocking, controlIable language K,
the (unique) reachable state-set must also be non-blocking and controllable.

Corollary 4.1. Consider a Trace-DG partition 'Tf of X in the automaton Gand

any Xo E Qo. If R ç }(is (non-blocking) controllable w.r.t. G then 8 rr (R) is (non
blocking) controllable w.r.t. Grr.

Proof. It can be verified that the reachable set (of 'lI"-level states) associated

with 8 rr (L R) is erreR). The (non-blocking) controllability of 8 rr (R) follows from that

of 8 1r (L R) (which is non-blocking and controllable via Theorem 4.1). •

The construction in the previous section via the synthesis algorithm K/!nc allows

the formation of a low-Ievellanguage Kl~?(K7r) from a high-Ievel specification K7r.
This construction is effective in the sense that it yields a non-blocking, controllable
low-Ievellanguage which has the correct image Krr.

Theorem 4.2. Consider a (non-blocking) IBC partition 'lI" of X in the automaton

and any Xo E Qo. If I{Tr is non-blocking and controllable w.r.t.

G7r = (1r, E~ÜE~, c51r
, Q~, Q~)

then K/~?(K1r) is non-blocking and controllable w. T. t. Gand S7r (K/!nc (K7r)) = K7r.

Proof. (controllable) Let a E K{::UC (K7r) and let v E Eu be such that

o"v E L(G). Let al he the shortest prefix of a with the same image (i.e. cl ::; 0" and

8 1r (al) = 8 7r (a) = a 1r and for any other such ail, al < ail). Further, let x' = c5(xo, a')

and XI = c57r (Xo, a 7r
) •

24

•

•

2.4 CONTROLLABLE SUB-LANGUAGES OF THE tr-AUTOMATON

The string a is realizable under h{::nc (i.e. is an element of the language generated

by G llnder the control h{:fuC) since, by assumption, a E K[:UC (K1r). 50 for at least

one W E H1r(a 1r) with X" = c51r (X', W), it is the case that v E f::'x'(c5(xo, a)) (or

j~:r:x,(c5(xo,a)) if X' is already in the goal set Q~). Hence, '

E h l BC() - U jcS"'{Xo,ull'W)
V Law a - x',x'

WEHlI'{u"')

and therefore K !:!nc (K1r) is controllable.

(non-blocking) Let a E K!:!OC(K1r), and let a 1r = S1r(a) be continued by S =

SIS2··· SI5[, where Si E L;lI', i = 1... ISI, such that c51r (Xo, a 1rS) E Q~ (which is possible
as K1r is non-blocking).

We may recllfsively construct an instantiating string S = S1S2 ... SI81+1, Si E E·,

by finding, in succession:

[a] Sl such that aSI E K!~C and

c5(xo, a) S7 I(c51r (Xo, all'Sd, Qo),

[b] Si, for 2 < i ::; ISI, such that aSI ... Si E Kld:nC(K1r) and

I(c51r (Xo, a 1r S1S2 ... Si), Qo) s: I(c51r (Xo, a 1r8182 •.• Si+l' Qo)),

[cl S151+1 sllch that

In cases [a] and [b], 5uch a string exists becallse

h{~C(a) ~ f:(<:'·:)~~~s.i)(c5(xo,a)),

where A(8,i) = c51r(XO,all'SI82·"Si) and B(s,i) = c5(XO,asls2···Si)' This is the
case for aIl a sllch that S1r(a) = a 1r8 18 2 ••. Si since

S{i+l) E H1r(a 1r8 1S 2 ... Si), by assumption, and the application of each local function

J.... results in a (non-blocking) controllable state-set. For the case i = [SI + 1, we
can find a string to instantiate the final portion within the high-Ievel goal state

c511'(..,\"0, a 1r S), because we use the local non-blocking control j~(Xo.u"'8),6{Xo,us).

Hence for any a E Kfd:nC(/(1r) , there exists S such that as E K[d:nC(K1r) and

c5(xo, as) E QTn' Hence [([:!oc (K1r) is non-blocking.

(K1r ç 8 1r (K{1:uC (K1r(K1r)))) Let 8 = SIS2'" SI51 E KlI'. S rnay be instantiated

by S E Kf:/vc (KlI') such that S1r(s) = S; this is by the sarne construction used for the

25

•

•

2.4 CONTROLLABLE SUB-LANGUAGES OF THE 7r-AUTOMATON

proof above of non-blocking starting from the empty string € and leading to the block
c51T (.X·O, S). Hence S E 8 1T (KI:/nC(K1T».

(81r(K,~~C(K1r)) ç K1r) Let S = SlS2··· Sl51 E 8 1T (KI:UC(K1T)) and S = SlS2, ..sI51 E

K low be such that for each i,

c5(xo, SlS2 ...Si) E I(c57r (Xo, SlS2·· ·Si), Qo), i.e. for each pair SiSf+1' Si connects in-set
to subsequent in-set.

Recall the construction of h,ow in c51T (X0, SI S2 ... Sd, and the fact that non
blocking controllability and reachability from a given start state are closed with

respect to union. Hence it iti the case that c5(xo, S1S2· .. si+d is reachable from

I(c51r ("-Yo, SlS2 ... Sd, Qo) if and only if Si+1 E H1T(S1S2··· Si)' But this means S
is a realizable string under the application of Hr., i.e. S E K1T . _

By the very specification of 811" and the definition of controllable state subsets in
the 7r-partition automaton G1I", one obtains:

Corollary 4.2. Consider a 7r-level (non-blocking) IBe partition of X in the au

tomaton Gand any Xa E Qo. If R7r ç 7r is (non-blocking) controllable w. r. t. G1T
then there exists a set R ç X which is (non-blocking) controllable w. r. t. G suck that

S1T(R) = R1r.

Proof. To R1r can be associated a unique maximal nonblocking controllable

language I<RYr. From Theorem 4.2, Kf~c (KRYr) is non-blocking, controllable and

8 1r (Kf1fvC(KRTr)) = KRYr. Hence the reachable state-set R associated with Kf:/nC(KRYr)
also has these properties. _

4.1. Hierarchical Consistency and (Non-blocking) IBC

To further the comparison with the work in [103] (in the light of Theorem 4.2)

the definition of hierarchical consistency is now provided. Let Glo = (Z, ~, T, 5, e, xa)
be a Moore automaton where e : Z -4 T is an output map from state to output
symbols in T. In analogy with the map e1r defined in Section 2, the map e can
be extended to S : 2L (G,o) -4 2T • which associates to each low-Ievel language E,a

a high-Ievel language Ehi composed of strings of symbols observed along the state

trajectories of the strings in E,a. Let G hi be an automaton with alphabet T, Le.
L(Ghi) ç T* .

26

•
2.4 CONTROLLABLE SUB-LANGUAGES OF THE 1r-AUTOMATON

Definition 4.1. ([103]) Hierarchical Consistency
A pair (G,o , Chi) possesses hierarchical consistency if Lm(Chi) = 8(Lm (G1o)) and for

every non-empty, closed, controllable language E hi C Lm(Ghi),

where 0 T is the maximal controllable sub-Ianguage operator. o

•

The symbol Gall" will continue to represent a rvloore automaton as defined in
Section 2 via the translation from Mealy to Moore automata. Note that a language

is controllable with respect to G if and only if it is controllable with respect to Gall"'

Theorem 4.3. Consider a (non-blocking) IBe partition 1r of X in the automa

ton Gand any choice of Ia in Qo. Then the pair (Gall"' G7I") possesses hierarchical
consistency.

Proof. Consider E hi C Lm (C7I") , a non-empty, closed, controllable language,

and let El~ be the maximal controllable language satisfying e(EI~) c E1r, ~.e. Ela =

(G-l(Ehi))T. For any choice of Ia E Qo, the mapping Ehi -+ K/f:nC(Ehi) ~ Ef:Oc of

the IBC synthesis algorithm gives a low-Ievellanguage Ef:Oc controllable with respect

to G such that e(Ef:?nC) = E hi (by Theorem 4.2). By assumption Ef:/vc ç El~ so we
have that Ehi 2 e(EI~) :) 8(Ef:OC) = E hi , and hence 8(S-1(Ehi)T) = G(Ela) = E7I",
as required. _

Hierarchical Consistency of the pair (Gall"' G7I") does not, in general, imply that
G7I" is (non-blocking) lBC. A counter-example is as follows.

Example 4.1. In Figure 2.8, Hierarchical Consistency of the pair (Gall" l G1r) can

be verified by checking the four high-level controllable languages accepted by G7I" and

27

{f, U;, u;ut, U;Ui} :

2.4 CONTROLLABLE SUB-LANGUAGES OF THE 7r-AUTOMATON

their associated inverse images, e.g.

a-l{f, U~} = {f, a, b, ac, be}

(a-l{f,U~})T = {f,a,b,ae}

==> ecce-l{E,Ul})T) = {f,U;}

a-l{f, U~, U;U]} = {E, a, b, ae, be, acd, bef}

ca- l {f, U;, UlUi}) T = {f, a, b, ae, acd}

==> ecce-l{f, U;, U;Ui})T) = {f, U;, UiUi}

a-l{f, U~, V~Ui} = {f, a, b, ac, be, aeg, beh}

ca-l{f, ul, UiUi}) T = {f, a, b, ac, aeg}

==> eCce-1 { f, Ui, uiui })T) = {f, u~,vivi}
a-l{f, u~, U~U],uiui} = LCGefr)

==> ecce-l{f, U~, u;ut, u~ui})T) = if, Uf, U;U;, viUi}·
This partition is Trace-DG but is not (non-blocking) [BG due to the canonicallack of

control of the fiow after transition e. 0

•

FIGURE 2.8. A Hierarchically Consistent pair where G7r is not IBC.

•
It is still possible to discuss the consistency criteria from the perspective of ex

istence of the partitions, i.e. does hierarchieal consisteney imply the existence of
(non-blocking) IBC partitions? And if not, under what conditions is this the case?
These are discussed in the following section.

28

•
2.5 (NON-BLOCKING) me PARTITIONS AND THE VOCALISED LIFTING ALGORITHM

5. (Non-blocking) IBe Partitions and the Vocalised Lifting
Aigorithm

Given the appealing transparency of a hierarchy based on state aggregation and

the requirement for hierarchical consistency between layers, an immediate issue that
arises is whether aH systems that exhibit hierarchical consistency will have IBe par
titions. This is generaIly not the case as is shown in Example 5.1 below.

Example 5.1. Figure 2.9 iliustrates a pair (Gio , Ghi) where Gia is a Moore au
tomaton and the automaton G hi is such that L(Ghi) = 8(L(Gio». (Gia, G hi) possess

hierarchical consistency yet there does not exist a partition 7f of the state space of Gia

such that the partition automaton Gif is isomorphic to Chi. This is because X3 cannot

be placed in a block with any of the other states. For example, if X3 is placed in a block

with X2 as iliustrated on the diagram then < Xl, X 2 >u holds yet there is no high-level
transition between Xl and X 2 in Chi as there would be in Gir

• Similarly: if X3 is placed

with X4 then < X 3 , X 4 >u holds yet, again, there is no high-level transition between
"\:"3 and .X"4 in Chi as there would be in G ir

• X3 cannot be placed as a singleton block

as there are insufficient states in Ghi . 0

GZo
Xl

•

FIGURE 2.9. A hierarchically consistent pair for which there is no par
tition automaton isomorphic to Chi.

The essential problem in Example 5.1 is that the output map for Cio, when

translated to a Mealy output, bears no representation in the form of Equation 2.2.2

which is the partition-based Mealy machine output (the output map for Gia is based on

the current state and the eurrent event which can be accomplished by setting, for aIl

x E X and a E E, 8 Meaiy (a, x) = 8 Moore (x»). To treat this issue, aso-called Vocalised

Lifting (VL) is provided below that extends the state space in order to make the

29

•
2.5 (NON-BLOCKING) me PARTITIONS AND THE VOCALISED LIFTING ALGORITHM

system amenable ta state-aggregation. The goal is ta create, presumably at the design
stage, a state-based hierarchical structure that maintains hierarchical consistency.

The advantage is that the a state-based hierarchy is now available and the level of

granularity can be chosen ta suit the design considerations. The disadvantage is that
the cardinality of the state-space is increased. Essentially, minimality is sacrificed for
regularity.

Aigorithm VL
Input: G = (X, E, 6, Qo, Qm), X seed ç X.

Output: G"'L de! (XVL,~,6VL,Q~,Q~), 'TrVL.

1. (closure from Seeds)

For each state x E X seed U QOl compute the forward closure,

}~ = {x' E XI3s E ~* .[(6(x, s) = x') 1\ (Vs', f. > s' ::; s.6(x, s') ~ X seed)]}'

and define the caver IC de! {Yx 1 X E X seed U Qo} and number

the blacks Y17 ••• Y1X:I.

2. (definitian of X \IL , 1rVl,)

For each state Xk EX, if Xk E Yi l n Yi 2 n n Yin 1 (where

1 ::; n < JICI), define the states X5l' Xfi2' ,x~n in a new
state set X VL and let,

where xtL;rr, 1 < i ::; IICI are blacks in a partition 7rVL of X VL .
The sets ..Y \IL and xtL;rr contain no other states other than

those specified by this step.

3. (definition of 6w.)

For (J E E and Xk, Xc EX, the (partial) transition function

6\tL is defined such that

•
(i) i = j and 6(Xk, 0") = Xi, or

(ii) Xc E X seed U Qo and 6(Xk, 0") = xc·

30

•

•

2.5 (NON-BLOCKING) me PARTITIONS AND THE VOCAL/SED LIFTING ALGORlTHl\t[

4. (definition of Q~, Q~)

Define the start states and goal states Q~ - {xFlx E Qo}
be Q~ = {xP"lx E Qm} respectively.

The VL algorithm creates a new supervisory automaton C VL from G and a par

tition 1r\IL of the state space of C\IL. For each state in X seed U Qo, the effect of this
algorithm is to create one state in X \IL . Each such new state is placed in a different

partition element of 7r\IL (note that the cardinality 1r\IL is also IXseedl + IQol).

The effect of the algorithm for each state in X(Xseed U Qo) is to create up to

IXseedl + IXol states in the new set X \IL , and place them in appropriate blocks in 1rvL

such that they share a block with a seed state or initial state if and only if the state

for which they were created is reachable from the original seed state. The transition

function is then defined for GVL such aIl cross-boundary transitions end in a seed

state.

A similar algorithm to the VL algorithm was presented in [103]. It should be

noted that the algorithms have different goals; the VL algorithm seeks to create

an IBC partition in a structure that was already hierarchically consistent while the

algorithm in [103] seeks ta enhance the system structure sa that it is hierarchically

consistent when previausly it was nat. Unlike the VL algorithm this was done in [103]

by enhancing the observation functian rather than increasing the number of states.

A possible interpretation of the seed points X seed ç X is that of states in a Moore

automaton that are not mapped to E by the output map. A growth bound on the

state-set cardinality is O(n2). In the worst case, aIl non seed nodes need to be put in

each seed node's cover and seed nodes make up 50% of the total nodes.

Farrnally, the 1rVL-partition automaton can be defined as follows.

Definition 5.1. G1rVL

The partition automaton G1rVL is defined (in the same manner as partition au

tomata in Section 2) to be,

G1r
VL de! (1rVL, E~ÛE~, 81rVL , Q~VL , Q~VL)

where 1r\IL. is now the state-set. When (Xi\IL, XJ'L)d holds between two blocks, we define

a 1r-Ievel disableable transition ut. Similarly, when {Xi
VL , XjVL)u halds we define

an undisableable 1r-Ievel transition ~j. The (partiaIly-defined) transition function,

31

•

•

2.5 (NON-BLOCKING) me PARTITIONS AND THE VOCALISED LIFTING ALGORITITh'I

ok : 1rvL x ~1r -t 1rw.., is defined such that when a transition exists; it forms a

directed edge between the associated states, i.e. (Xi'ilL, Xj'ilL)d ~ 01r
llL (Xi'iIL ,Ul) =

...1(i'ilL~ and <y:'iIL, X}"L)u ==> Ok (Xi'ilL, ut) = X)"L. The set of 1rw.,-level initial states is

Q~lIL def {xtL E 1rIXiw., n Q~L -# 0}. The set of 1r-level goal states is Q~'L def {xtL E

1rvLIX'i\IL n Q~ i= 0}. 0

Example 5.2. The VL algorithm is applied to Example 5.1 with the seed set

"Yse.ed = {Xl, X2, X4, xs}. The result is shown in the bottom right of Figure 2.10.

The effect is to split the state X3 into xf and x: and place these in separate partition
elements. Note tkat G 1r

llL is tken isomorphic to Chi.

FIGURE 2.10. The result of the VL algorithm on Figure 2.9.

o

Example 5.3. Another example of the application of the VL algorithm is given in

Figure 2.11, where the states in X seed are labelled A and B, and the states in X'iIL are

shown with subscripts tagging them to their respective seed nodes. 0

Theorem 5.1. Gk is Trace-De

Proof.

Note first that for every block Xi'iIL E 1rw.: (i) l (Xi'iIL ,Qo) = {y} for sorne y E

Xse.e.d U Qo, i.e. there is only one in-set state per black; and (ii) by construction every

state in the block Xi'iIL is reachable from this in-set state y .

32

•

•

2.5 (NON-BLOCKING) mc PARTITIONS AND THE VOCALISED LIFTING ALGORITHM

X

Xo/ -
(GvL,1rvd 1

'-

FIGURE 2.11. Illustration of the VL algorithme

The Trace-De condition can be restated as,

Vi =1= j, 1 ::; i,j ::; l1rllLl·
{[3w E E.3x' E X i\lL.3x " E X}'L. c5(x',w) = x"] => ((XrL,XrL)u V (XrL,.-yrL)d)},

which is now proved.

Consider a!lY pair of blocks XYL , XYL E 1r\lL and let there exist sorne x' E

~Y1VL, x" E ..YrLand w E E such that 6vL (Xl, w) = x". The state x' is reachable

[rom f(XrL,Qo) and so there exists at least one path [rom f(XrL,Qo) to XYL. If

aIl such paths contain at least one controllable transition, then, as there is only one

in-set state in XiV"L, it is the case that (XYL, XJL)d" Similarly, if there is at least one

such path that is composed entirely of uncontrollable transitions~ then (XYL, XJL)U"

•
The statement that minirnality is sacrificed for regularity can now be clarified. Let

X seed be interpreted as a set of observable states of a rvloore automaton (Le. let the

observation map e : X ---+ T, where T is a high-Ievel alphabet map X seed ~ T / {f}
and X/)(seed ---+ f). Let (G,8) and (GvL , e) denote the lVloore machines formed
via the observation e of the sets X and X \IL. The following remarks can he made

regarding G , GvL , (G,8) and (G\tL,8):

• L(G) = L(G\tL)
• The string of observations rq E T· along the state trajectory in G of a string

(j E L(G) is the same as the string of observations along the state trajectory

in G\tL of (j

33

•

•

2.5 (NON-BLOeKING) me PARTITIONS AND THE VOCAL/SED LIFTING ALGORITHM

• A language K ç L(G) is controUable W.r.t. G if and only if it is control

lable w.r.t. C vL since the (i) Ec and Eu retain their meaning in the alphabet
of G VL and (ii) after a string s, for aU symbols a E E, 6(6(xo, s), a)! ~

6VL (6vL (xo, s), a'w), i.e. the set of symbols As that may foUow a string s in G

is equal to that which may follow s in GVL .
• The Nerode equivalence classes for the mapping from E· to T· defined by the

pair (C, 8), i.e.

a =c a' <=> \:Iw. 8(6(xo, aw)) = 8(6(xo, a'w))

are identical to those for the mapping defined by the pair (C vL , 8), i.e.

a =C\,L a' <=> \:Iw. 8(6vr,(xo, aw)) = 8(6\IL(xo, a'w))

Hence, from an input-output perspective, the systems (G,8) and (Gvr" 8) are equiv

aIent (i.e. their respective maps E* to T* are identical). The state-set of C\IL is

generally larger, hence the claim that the VL algorithm leads to loss of minimality

(if indeed C was minimal).

5.1. The VL Aigorithm and IBC partitions

Next it is shawn that a non-trivial IBC partition of C VL exists when (C, Chi) are

hierarchicaIly consistent, G is unmarked (Le. Qm = X) and the map e :X seed ---+ T

is injective.

Theorem 5.2. Let (C,8) denote a Moore automaton with vocal nodes X seed ç X
and goal states Qm = X and let the automaton Chi = (Xhi , T, 6hi , Q~i, Q~) be such

that L(Chi) = 8(L(G)).

If the following conditions hold for all Xo E Qo :

(i) the pair ((G, 8), Chi) is hierarchically consistent, and

(ii) e : X seed ---+ T is injective,

then G1rVL is a (non-blocking) IBe partition automaton, i. e. the partition 7r~L of X \IL
is (non-blocking) 1Re.

Proof. By Theorem 5.1, G1rVL is Trace-OC.

Since T is injective, there exists a many-to-one map e~i : E1rVL ~ T such that

for aIl Elow ç L(G), it is the case that 8(Elow) = 8~i(e1rVL(Elow))'

Let Xi\IL E 7lVL and let ri. = {Vikl<Xiw."X~L)u} u {Ul}. It is shown that for all

start states qo E Qo, there exists a controIlable language Ehi ç L(Chi), such that for

34

•
2.5 (NON-BLOCKING) mc PARTITIONS AND THE VOCALISED LIFTING ALGORlTHM

aIl control policies f1rVL with e~i(L(G1rVL/ f1r VL » = Ehi it is the case that,
(1) ~\;iVL E Rbl (G1r VL / f 1r\tL) and (2) f1r VL (Xi

VL) = {Tf}.

This can be shown by construction for each ,f of the appropriate language E hi c'if).
Consider the state-feedback control for G1rVL ,

k = i

elsewhere,

•

which inhibits only those transitions necessary in the application of the action ,..4 at

)(iVL • Let EhiC,f) = 8~i(L(G1rVL / f1r VL .Y,». This language is by construction control

lable, and from the global assurnption stated in Section 2 that aIl states in Gare

reachable from sorne start state xo, it is the case that XiVI, is reachable when the
policy fhi,y, is applied to G1rVL (satisfying (1)). Furtherrnore, event labels are unique

in G1r\-L (since labels are indexed by the preceding and following blocks) hence any

other policy f1r VL such that e~iCL(G1rVL/ f1r VL ») = Ehi('Yf) must also apply 'Yf at Xi'vL

(satisfying (2)).

Since the pair «G, 8), G hi) is hierarchically consistent, Ehi('Yi) necessarily has at

least one controllable low-Ievel counterpart Elow such that e(Elow) = Ehi('Yi). Let

!Law be the control policy which results in Ecow· Let f;:~:IVL be flow extended to the

set X\-L and then restricted to the state set XiVL+ (see Definition 3.1). The reachable
x VL x VL

sets within)(t
L + for fXO~XiVL provide the necessary sets Rx:,x.VL for the (Non-blocking)

IBC definition part (i) (see Definition 3.4).

Part (ii) of the (non-blocking) IBC condition follows trivially as every state XVI,

is a goal state, so within each goal block X~VL on, the set ~\;rL + is the required set

R~?L,X" where x' is the unique in-set state in block Xr L . •

Figure 2.12 shows the relationship between the two consistency conditions under the
assumptions of Theorem 5.2). The many-to-one map e~i is shown to emphasise that

the original high-Ievel observations can he recaptured from the transition labels in

the VL partition automaton.

Theorem 5.2 extends naturally to systems with three or more layers since hi

erarchical consistency and the (non-hlocking) IBC property are transitive. The VL

algorithm can he perforrned either top-down or bottorn-up (i.e. apply the VL al

gorithm to the high-level, then to the low-Ievel, or vice-versa) leading to the same

result .

35

2.5 (NON-BLOCKING) mc PARTITIONS AND THE VOCAL/SED LIFTING ALGORITHM

GVL
----------...
VL Algorithm

8: L(G) ~ T*
(8 : Xseed ~ T

injective)

G

•

FIGURE 2.12. Hierarchical consistency on the left implies (non
blocking)-IBC on the right when Lm(G) is controllable (Theorem 5.2) .

• 36

1.

•

CHAPTER 3

Trace-DG Hierarchical Supervisory
Control: Exarnples and Applications

1. Illustration of the Formation of IBC Partitions

In many applications, the overall system is composed of subsystems that act inde

pendently and are only synchronised or co-ordinated via the application of control. In

the special case of non-interacting subsystem models, Non-blocking IBC partitions of

the overaIl system space can be built-up from partitions in the individual components.

The lack of interaction between subsystems can be captured by the lack of overlap

between the event alphabets of the components. Consider two automata Cl and C 2

with alphabets El and E2 such that El nE2 = 0. Figure 3.1 shows an example of such

a case along with a recogniser for the shuffie product L(GdIIL(C2) labelled G 11IC2

(in which the event labels have been suppressed for convenience).

This example is the standard "cat and mouse" scenario taken from [78J. The

problem context may be summarised as follows (the reader is referred to [78] for a

full discussion):

• The states represent the location of agents (cat and mouse, perhaps) in one of

5 numbered rooms. The transitions represent doors between rooms that are

aIl blockable (i.e. controUable) except for C7 •

• The control problem is to block apprapriate doors in order to achieve the

control objectives of:

[1] not allowing the agents to occupy the same room ("cat eats mouse"),

[2J always ensuring accessibility ta the start state (rooms (2) and (4)), and

NOTE TO USERS

Page(s) not included in the original manuscript
are unavailable trom the author or university. The

manuscript was microfilmed as received.

38

This reproduction is the best copy available.

3.1 ILLUSTRATION OF THE FORlvIATION OF me PARTITIONS

• cr: a' b '0: ù'
-. - -. ~ ..

p-:~~.p.-p -p
.. ..-

p': ~ ~ p- p: . p
, -.d

lrl

~: §- ~-~".~
«i ~. g -0 -:p .~Ô)

. . .

@: Q;-o '-p:.--ô)
.

(éf: d:~ .0'_:0 .~

•

FIGURE 3.2. rBC partitions for GdIG2 -

substitution properly [37], namely: for any two states z and Zl in Xl x X 2 and for any

transition label a E E, (z =1r; Zl) ~ (a(z,a) =1r; b(ZI, a»), i = 1,2.

The partition 1r3 in Figure 3.2 illustrates the more general fact that (non-blocking)

lBC partitions 1rCI and 1rC2 of the component state spaces Xl and X 2 can be combined
to form a (non-blocking) lBC partition of "'X"l x X 2 via the equivalence relation

(x, y) =1I"G 1 xG2 (Xl, yi) ~ {(x =1I"G I Xl) /\ (y = 1rG2 y')}.

in this manner, the partitions 1rc l = { {(2)}, {(1), (0), (3)}, {(4)} } and 1rC2 = {{ (4), (3),

(O)}, {(l), (2)} } yield the partition 1ra- Note that 1r1 and 1r2 are also cases of this phe

nomenon with 1rCl = 1rid, 1rC2 = {X2 } and 1rc l = {Xl}, 1rC2 = 1rid respectively.

The partition 1r4 is an illustration that not aU (non-blocking) lBC partitions may
be decomposed into component partitions. 1r4 also highlights the conceptual reward

of a hierarchical description. lt can be checked that the top left block in 1r4 is the

maximal controllable state set which satisfies the original control objectives. The

bottom right block represents a set of states that are "safe" (i.e. states which do not

39

•
3.2 MANUFACTURING SYSTEMS

allow access via uncontrollable events to a state in which both agents occupy the same

room), but are disallowed because they are not co-accessible to the start state without
travelling through unsafe states. Possible extensions are immediately apparent that

would make the bottom right block safely co-accessible to the start state; for instance,
put an attendant in room (4) to separate the agents. This would allow a safe trajectory
between the two high level blocks and hence permit considerably more freedom to the
agents. This argument illustrates the relative ease with which one can reason about

complex systems when presented with a hierarchical decomposition.

For the case of systems that do interact, i.e. when either L:1 n L:2 # 0 or a
synchronisation constraint is used (see Chapter 4), the IBe condition is in general no

longer preserved when component partitions are combined.

2. Manufacturing Systems

In this section, the hierarchical decomposition and control of manufacturing

plants will be examined. Several examples will be presented and aIl are based on the

models in Figure 3.3 for machines, buffers and testing units. The states l, W, E and
F stand for "idle", "working", "empty" and "full", respectively. By assumption, the

machines and testing units may be disabled from starting a task, but may not be dis

abled from finishing. These models form a set of primitives Qprimitives = {M, B, TU}.

The plant layout for a manufacturing plant is defined as follows.

Machine Buffer Machine

1 .-M 2 2 B
-3

~- TU 4-- - - - .. - ...
.... _---- - ...

1 E 1

3~2
2 § 4

~
3 2

w Cl
F:-l 2

C2 G3
~

overfill

FIGURE 3.3. The machine, buffer and testing unit models.• 40

•
3.2 MANUFACTURlNG SYSTEl'JIS

Definition 2.1. Mannfacturing Plant Layant

Let g = {Gi , i = 1, ... , N} be a finite set of automata with G i E gprimitives for
each i. Let E = Ui E i be the union of aIl alphabets. A manufacturing plant layout is
defined as a 3-tuple,

(g, Jlayout, E)

where Jtayout ç {guS} x E x {guS} in which S is the set {S...,,! E E} where each S~I

is an automaton with alphabet {!} accepting the language , •. Each event in Jlayout

is one of the fol1owing forms:

[Ci,!, C j],

[S...,,!, Gd,
[Ci,!, S...,],

! E [Eic n Ejc] U[Eiu n Eju],

! E E i ,

! E E i

(an internaI move)

(introduction of a piece)

(removal of a piece).

o

•

The interpretation cf the layout is that the events in Jlayout represent physical
connections (pathways for pieces) between primitive units (in this case machines,

buffers and testing units). The event label captures the synchronisation requirement

for the removal of a piece from one model and the corresponding addition of a piece

in another. It is assumed that these labels are either contrallable in the alphabets

of bath systems invalved, or uncontrollable in both systems. The introduction of

pieces from outside the layout, and their removal, is captured by events ta and from

the automata in S respectively, with the convention that the automata S.., are not

explicitly illustrated on the layout.

The dashed lines in Figure 3.3 sho\v an illustration of a plant layout. Hence the

machine l'vI and the buffer B share the event label "2" in their alphabets. An automa

ton capturing the complete dynamics can be constructed by taking the synchronous

product (see Chapter 4, Equation 2.4.1 for the definition) of the primitive models,

with event labels assigned appropriately from the layout. Note that S...,IIGi = Ci if

! E E i , so the synchronous product SdIGdIC21IC311S4 for the Machine-Buffer-Testing

Unit sequence in Figure 3.3 reduces to Gd1G2 11G3 •

Several layouts will now examined. The control objective will be the same for

each layout considered. This is to avoid overfilling the buffers while

A) maintaining reachability to the "empty" state, Le. where aIl buffers are empty

and aIl machines idle and

B) allowing maximally permissive use of the machines.

41

•

•

3.2 MANUFACTURING SYSTEMS

This objective can be re-stated as a non-blocking accessibility problem by creating

a "dump" state to which aH overfill events lead, and from which there are no exiting
transitions, i.e. the empty state (the goal) is not accessible from the "dump" state.

For illustrative purposes, aIl overfill states (those shaded in Figure 3.3) will often be
condensed to a single "dump" state, as the dynamics, once an overfill event may have
occurred, are considered inconsequential.

The intention is for the resulting controls to represent the first layer, designed
for safety, of a control architecture. Additional control action may be applied, in

combination with the control for safety, in order to optimise for throughput, minimise
time, etc. The additional control action could be applied with a forced-event style

control, in which case the inhibitions from the safety-supervisor would override the

forced-event control. Alternatively, additional control could be applied as further
inhibition of events that are permitted by the safety-supervisor.

The examples have been simulated, and data files can be found at [1] for software

in the formats of [5] and [6].

2.1. An Illustrative Example: Transfer Line with Re-entrant Flow

Consider the layout for a transfer Hne with re-entrant fiow shown in Figure 3.4
(an extension to an example in [103, 29]). Each workpiece must be processed by aIl

the machines, and upon testing by the testing unit, may be accepted or rejected, the
latter resulting in another pass through machines NI2 and NI3.

FIGURE 3.4. A material transfer line with re-entrant fiow.

The state in which all buffers are empty and aU machines and testing units are

idle is identified as bath the initial and goal state. This system has 129 states. A
portion of the automaton for the complete dynamics is displayed in Figure 3.5. A

natural partition based on the number of active pieces is alsa displayed for this portion
of the automaton. ft can be verified that this partition satisfies the non-blocking IBC
condition in Definition 3.4. The 7r-automaton for this partition is illustrated in Figure

3.6. GTr is a non-blocking lBe partition automaton.

The main result of Section 4 states that the fiow at the level of the 1r-automaton

can be realized in the low-Ievel system via the lBC Synthesis Aigorithm (see Section

4). This can he illustrated for this example for the control within the block X 4 •

42

•

•

3.2 MANUFACTURING SYSTEMS

Let the 7r-Ievel supervisor be the shaded blacks in Figure 3.6. Now consider the
action of this control at the block X 2 •

i.e. the control applied at the black X 4 is ta enable only U] and hence force the state
to X 3 . In general, the 7r-Ievel control may he history dependent, but for illustrative

purposes, a state-feedhack supervisor is considered.

8

R

FIGURE 3.5. A controllahle state set and partition with a typical in
hibited undesirable event 1 (aIl others suppressed for clarity).

Ta achieve the necessary 7r-Ievel control, the following low-Ievel control, h1uw wauld

be be synthesised by the IBC synthesis algorithm (with uncontrollable events that

are not defined at the given state suppressed for clarity).

X a~ {2,4}, Xb t----+ {2, 5}, Xc~ {2,6}, Xd~ {2},

Xe~ {4}, Xf t----+ {5}, X g 1---)- {3,6}, Xh 1---)- {3},

Xi~ {4, 6}, Xj t----+ {4, 7}, Xk 1---)- {6}, Xl 1---)- {7}

43

•

•

3.2 MANUFACTURING SYSTEMS

FIGURE 3.6. A 7r-Ievel controllable state-set.

Notice, for instance, that the low-Ie~el control h ,ow inhibits the event l at Xi to

prevent a transition to the block X s because U: is inhibited at the tr-Ievel.

AlI control actions of H7r can similarly be instantiated at the law-Ievel illustrating

Corollary 4.2 by praviding a state set R with required image R7r. In this specifie

example, R7r is the maximal controllable state-set satisfying the objectives, though

maximality is not required for CoroIlary 4.2 to hold and hence aIl controllable state

sets could be instantiated in this fashion.

2.2. A Double Queue

Consider the two-stage queue in Figure 3.7, with buffer size lV for bath buffers. As

a preliminary step, the first machine-buffer-machine sequence MI-BI-M2 is analysed

independently (see the top left of Figure 3.8). The state space (4N states) for the

Nfl-BI-M2 portion is shown at the right in Figure 3.8 with a (non-blocking) rBC

partition. The corresponding partition automaton is shown on the left. The labeUing

refers to the state of the machines and buffers: "0" is used for "empty", "N" for "full"

and "N+l" for "overfill" (e.g. in the state "IkW", Ml is idle, there are k pieces

B2 and M2 is working). The overfill states and their images at the higher levels are

shaded. Note that adjacent blocks in Figure 3.8 can be amalgamated to form larger

(non-blocking) IBC blocks.

44

Bllffcr Size = :-:

3.2 MANUFACTURING SYSTEJ\;IS

• - M

2

B

3
, .
.---~-- M

3 5

B .-\--- M
------ ---~ ~ -~-- .

Bllffcr Sire = :-:

6

•

FIGURE 3.7. A two buffer queue ("double queue").

The automaton for the àouble queue is formed by taking the synchronous product

of the low-Ievel automaton in Figure 3.8 with its counterpart for the second portion of

the queue. The shared events (3 and 4) force the second machine in the first portion

to be in the same state as that of the fi rst machine in the second portion, hence the

total count of the reachable state space is the expected 4N x 4N/2 = 8N2
• A partition

automaton, G 1r1 for this system is displayed in Figure 3.9 f~r buffer size N = 1 and

in Figure 3.10 in the general case.

Finally, a partition of the 7rl-Ievel state-set is also presented in Figure 3.10, which

leads to a third level, G1r2 in the hierarchicallayering. The partition 7r2 has a natura1

description at the base level since each diagonal band has the same number of active

pieces within a margin of 2.

The utility of the theory is exhibited by the fact that the control specifica

tion, i.e. that of not allowing reachability of the overfill states, can be stated and

solved for through common sense reasoning at the aggregate level; for instance,

in the case of iV = 1 a reasonable evolution which is clearly safe is the language

](Tr = Ur(U]utul)*UiUl. The control can then be translated down a chain of in

creasingly refined partitions to the full system model in a straightforward and sound

manner.

2.3. J oin and Split Layouts

Analyses of other formats for the machine-buffer connections can be made in a

similar manner. Figures 3.11 and 3.12 show a join and split respectively for the buffer

size lV = 1 case. These can be extepded similarly ta the N sized buffer case. A

possible goal in this work is the emergence of primitives that would allow for the

immediate description of control methodologies for arbitrary plant layouts.

45

Buffer Size = N

N+3 Blocks

3.2 MANUFACTURING SYSTEMS

4

M2
3

---\--.

'r.

o
o
o

p; BI
2

.......~

9"
Q
.......,

Ml
1,..

•

FIGURE 3.8. State space and partition for first portion of double queue.

• 46

2 3

M

6

M

.----

(ë;~~~)
:~~~_:_~'. -----~._.- i

\ ,
---- -'-I.-"':--u:;~..... ~

3.2 SYSTEMSMANUFACTURlNG

-....@J........_,

--------.,

:~~..~:
""------- ... -

•

FIGURE b ffi r size Nq ueue with u e3.9. The double -1.

47

FIG URE 3.10. Three levels of hierarchy for the clouble queue.

•

•

, ---- -_ - ---- ---.:--
~:::=7 ~--

,z

, ,. ,

:.ë-::i-~:-":··:~'-
---- .---~ ----- .~--~

-,.~ ~--- - ..
.......----~.

~'
.~.__ o •••• ~_ •

:u_ 1•••'_, '

: " 2~~'" o."., ~. ~

--- .:..--------~-~ ...
l ,1

:-'.1 Bln.b

)

3.2 MANUFACTURING SYSTEMS

\
\
\

\

\\
\
\

\
\

\
\

\

\
\

48

•
3.2 wIANUFACTURING SYSTEMS

.--------------------
:~__:.~'i? ~:~':

.-------------------.. .
:<:il,::> <"'L·D :----- ----------- \ _.'

---,---,. _.
----1........--

:,'c,-~ip -----~-';;'5D ':
:~ d;:$-~~:'..;--_... -r-----_:-. ---- ~ -1

2 ;2 2; 2/ 2\ 2i "2
___ •~--->---~, :~~~~"j:,~-~.', _----1--------- ; ~_=_-,---......... _--------------------

.. • . ._____---- • ~ t li . t ,. ' '"

: ~---...~~ '4 / 4! \: ' "'WII 4 *,w.*' :~~:
.. _-- ----------- ---' ~ :'--_..~~--:- '----_:",':_--\-, ,)'----.-,----------\,_.- - ----_.--_.

~ ·n \' 3 t, \ /3
, _.1.. _. .'.. l - __ . _":''1- /

,r" ' Il,*Q11 fHI'

:.S~ .~'"':'i~"?)

FIGURE 3.11. Ajain element with buffer size lV = 1.

• 49

3.2 MANUFACTURING SYSTEMS

•
--,1 MI

.--------------------

•

FIGURE 3.12. A split element with buffer size N 1.

50

•

•

3.3 EMBEDDED CONTROL OF APPLIANCES AT GENERAL ELECTRIC R&D

3. Embedded Control of Appliances at General Electric R&D

This section summarises a preliminary investigation of DES models for home

appliances. This work was performed by the candidate as part of a joint industry
university collaboration with General Electric Corporate R & D in Schenectady, NY.

The goal of the work and this section is ta illustrate a possible application of DES
control, rather than prototype an implementable appliance control scheme.

3.1. Background

Historically, most home appliance control applications are performed with electro
mechanical contraIs. The contraIs took the form of rotating disks (cams) ta control
wash and dry cycles and could be regarded as a form of open loop control. Dangerous
failure conditions were and still are identified by performing a Failure Modes Effect
Analysis (FMEA). Safety features are included in the appliance by the use of hard

wired electrical overrides or built in mechanical fail-safes.

With the addition of micro-processors to modern appliance control, there is now

the possibility of extensive branching within the nominal cycle as information re

garding the status of the appliance is fed back to the controlling device (see [9] for a
discussion of home appliance "smarts"). In particular, measurements related to safety

as weIl as measurements of performance are available and hence safety features, such

as failure diagnosis, may be included within the framework of the nominal control.

There are several benefits to this. One is the wider range of actions available ta

correct for failures and other unplanned events when the nominal control and safety
actions are designed together. Another is that methods may be developed ta formally

verify (within the context of the model of the appliance), that corrective actions do

indeed lead to safe configurations.

3.2. DES Washing Machine Models and a Supervisory Control Problem

There is extensive literature on the continuous processes involved in washing

and drying fabries [61, 87, 27] but, as yet, there are no discrete event models for
appliances as a whole. The intention in the use of a discrete event model is to subsume

the continuous underlying process dynarnics in favour of purely discrete dynamics.

In sorne cases, such as a valve or pump, this is straightforward; the valve rnay open

or close and the purnp may turn off or turn on. In other cases, the abstraction is

arbitrary. For instance, the continuous rise in water level might be modelled by a

transition from a tub-empty state to a tub-full state.

51

3.3 EMBEDDED CONTROL OF APPLIANCES AT GEI\'ERAL ELECTRIC R&D

• ------ .. Failure Regulator
(Fault Logic)

1- _.

Cycle contrOl~

Appliance
&l

Timer
Nominal Cycle

.....

•

1 Failure Components 1

FIGURE 3.13. A coarse system architecture for fault regulation.

Figure 3.13 shows a coarse system-Ievel architecture for appliance control. Con

ceptually, the nominal cycle can be thought of as a single path through the product

space of the appliance and the cycle controller (see Figure 3.14 for an illustration). A

failure manifests itself as an exogenous transition off the nominal cycle in an extended

< nominal cycle, failure modes> state space. When a failure occurs (e.g. a valve is

stuck open), the failure regulator must drive the system to a safe region. This may be

a continuation of the nominal cycle if the fault is recoverable but will more orten be a

termination of the cycle, and, in this case, the washer is simply turned off. Note that

both 3.14 and 3.15 are purely illustrative and refer ta neither a running simulation

nor a usable model for the appliance.

In Figure 3.13, the combination of failure modes and a nominal cycle result

in a language of possible evolutions, each an interleaving of cycle events, failures

events and recovery actions. The design of the failure regulator can be cast in

the supervisory control framework. Direct control events~ such as "turn on pump"

are controllable. Exogenous events such as the transition ta a tub-full state men

tioned above and failure events are uncontrollable The control problem is then:

• Find a supervisor (Failure regulator), that allows maximal use of the appliance

while not allowing access to states that exhibit dangerous failure conditions

(as determined through the FMEA) .

52

•

•

3.3 ElVIBEDDED CONTROL OF APPLIANCES AT GENERAL ELECTRIC R&D

FIGURE 3.14. A path through the state space.

The illustration in Figure 3.15 shows an example of the avoidance of a "spin when

full" state. When the "pump stuck" event occurs, the appliance must be inhibited

from entering the spin cycle.

3.3. Simulation of the Nominal Wash Cycle

The Matlab package Statefiow [2] was used as a simulation testbed for a DES

appliance model. It must be noted immediately that Matlab provides a deterministic

single sample path evolution which is in direct contrast ta supervisory models in

which multiple sample paths (Le. the strings in the behaviour language) are usually

considered. Despite this, and as a first approach, a purely discrete nominal cycle with
several failure modes was developed with the Stateflow software. This is illustrated

in Figure 3.17, with the Simulink top level in Figure 3.16. A printout of the "explore"
interface window with a list of states and events is shown in Figure 3.18. The state

space for the appliance model is a 5 tuple ; the InleL Valve, the DrainYump, the

ClutchYosition,the Motor_Status and the Tub_level. The possible states for each

system component and the Controller are listed at the left in the "explore" window

under the respective component name. The events are also listed at the right of the

explore window.

53

•
3.3 EMBEDDED CONTROL OF APPLIANCES AT GENERAL ELECTRlC R&D

< TubLeveL, InLetVaLve, DrainPump, MotarSpeed,

MotoirSPeed, MotarMod.e, OOBstrikes, Timer >

~--~ StartSoak
~-- .-----.......,;Utimer

" /

"------------/\ vS.oakDone
~ ~ tlmer

.~ ----/)' washDonevt "
,',-------~, lmer

,~y~
\, Wash ''-----==:) StartWashut -_____ - --~ lmer
,/ '.

< Law, dosed, off, ofl, high, spin, Law, OFF>

WASH

FILL

SOAK

FIGURE 3.15. A dangerous blocked path from the nominal cycle.

•
The reader is referred to the Matlab Stateflow manual for a full description of the

evolution of the charts, but a partial illustration of the event broadcast methodology

follows. The majority of the events in the simulation reside at the level (or scope
on the Explore window) of the Washer block. That is ta say, when these events

are broadcast, only blocks below (i.e. graphically inside) the Washer block will be

54

•

•

3.3 EMBEDDED CONTROL OF APPLIANCES AT GENERAL ELECTRIC R&D

evaluated. The events that do not reside at this level are the input data events from

the simulink environment which include a Ume_base event (indicating the passage of

a non-zero finite time slice) and the failure events (set to occur at any user-selected
time). The Explore window shows aU the events an!.l their scope.

The following is an example of the evolution of the chart. Within the DrainYump

component, the initial state (indicated by a source-Iess arrow in the top left) is the Off

state. vVhen the event tUTn_pump_on is broadcast, the DrainYump component en
acts the arc with label tUTn_pump_on. The effect is to move to the state WilLtum_on

if (pump_fail==O] is true or back to Off if (pump_fail==l] is true. The pump_fail

is an external value sampled by the block (see the Simulink Figure 3.16). The
tUTn_pump_on event is also broadcast to all other components and these must be

updated with respect to this event. In this case, the update has no effect because the
event tUTn_pump_on either does not appear, or cannot be immediately enacted within

these components. The Statefiow chart Washer is then in a stable and fully updated

status, and requires exogenous input to update further. The exogenous input cornes

in the form of the event time_base which here represents the start-up time of the
pump. Similarly to the tUTn_pump_on event, the time_base event is broadcast to each

component in turn (the ordering in fact is with respect to position within the interface

window, starting from the top left). The only component which is ready to act on

the time_base event is the DrainYump which moves to the On state, and in so doing,

broadcasts the event pump_on as part of the broadcast of the event time_base. It does

this due to the presence of the command exit:pump_on within the WilLtuTn_on state.

As this short description illustrates, the evolution has a strong sequential charac
ter which, as noted, contrasts the supervisory control framework in which inhibition

and evolution are often considered simultaneous. Sequencing within a single run is a

difficult issue within the object hierarchy and event broadcast structure of Statefiow.

In the final analysis, this sequence performed may be determined by the placement

of blocks within the Stateflow visual user interface.

3.4. Verification

As mentioned above, it is the language of all possible sample paths (interleavings

of cycle events, failure events and regulator events), that must be exhaustively checked

for lack of dangerous conditions in order to verify the safety logic. There are various

options for performing this search in Matlab. AlI of these require multiple simulations.
One option is to incorporate noise sources in model the stochastic occurrence of

failure events. Multiple runs can the he used to cover sorne significant portion (in

55

3.3 E~fBEDDED CONTROL OF APPLIANCES AT GENERAL ELECTRIC R&D

•
-4
c:
c- nen
lD C

~:J n
en =r g, il0 Q..,

" c:
""Tl ~ "Tl 3
tu ê: "C

"Tl
~

en
8
"C
lD

•

FIGURE 3.16. The Simulink block diagram for a nominal cycle with failures.

a probabilistic sense) of the sample paths. This can be extended to an exhaustive

simulation of aIl failure sequences by sequentially testing aIl possible failure orderings

with respect to the system's evolution.

56

•

•

3.3 EMBEDDED CONTROL OF APPLIANCES AT GENERAL ELECTRIC R&D

Washer

.~.....,.~-

PrInI-.J 28-Oct-I999 17:59:!U

FIGURE 3.17. The StateChart for Stateflow black Washer.

57

3.3 EMBEDDED CONTROL OF APPLIANCES AT GENERAL ELECTRIC R&D

•

•

vents(23)
asitate_/'l'Iode
close_inlet
end_sense_fill
inlet_closed
inlet_open
/'l'Iode_to_asitate
mode_t0l"spin
motor_orf
motor_on
open_inlet
pump_off
pump_on
spin_mode
tub_AFC_full
tub_AFC_start_Ievel
tub_e/'llpty
tub_full
turn_/'llotor_off
turn_/'llotor_on
turn_pump_off
turn_pump_on
two_inch_full
time_base

ata(S)
valve_fail
pump_fail
motor fail
clutcFi_fail
tub_sensor_fail

local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
input{1)

input(1)
input(2)
input{3}
input(4}
input{S}

58

FIGURE 3.18. The Explore window with component state spaces and events.

•

•

3.3 EMBEDDED CONTROL OF APPLIANCES AT GENERAL ELECTRlC R&D

3.5. Conclusion

The design task is performed iteratively by testing the logic, adapting when it

fails, then re-testing. It is this task that is perhaps better suited to the Discrete

Event Systems setting and perhaps solved via a maximal controllable sublanguage

calculation. It must be concluded that the Stateflow package is not weIl suited to this

purpose and software at sources such as [6, 5], written specifically for the supervisory

control community~ represent better testbeds for this work.

Independent of the software package used, the verification task for a gÏven control
policy is computationally intensive and therefore impractical for fine models that have

many state components. As a result, proposed future research efforts will concentrate
on ways to avoid the verification task, specifically by tailoring the design methodology

to synthesise control1ers that are already known to satisfy the safety conditions. Thus,

hierarchical decompositions such as those described in Chapters 2 and 4 of this thesis

are proposed as tools to aid in the design and implementation of these controllers.

59

•

•

CHAPTER 4

Multi-Agent Systems and the
Multi-Agent Product

1. Introduction

Systems in the areas of transportation, telecommunications and manufacturing

are often represented by networks of interacting agents. Such multi-agcnt ~ystems

are distinguished from classical single agent systems in that both task specifications

and cost functions may differ from agent to agent in the cooperative, as weIl as

in the competitive, case. Due to the dynamical interactions between agents, and

because of the inherent complexity of many physical networks, the analysis and control

of multi-agent network systems often engenders problems of enormous complexity.

The objective of this chapter, which closely follows two related papers [42, 14], is

to introduce a formaI system theoretic framework for multi-agent systems and to

introduce tractable methods for their analysis, control and optimisation.

Here, we propose a multi-agent (MA) product to formulate the simultaneous evo

lution of two automata models, Le. the system model G is a specific vector product

G11I M AG2 (see Figure 4.1). This represents a horizontal decomposition in contrast
to Chapter 2 in which a vertical hierarchy was presented. A key motivation in this

chapter, perhaps to be achieved in future work, is the modular design of a supervisor

S when individual supervisors are based on respective system components.

More general settings of the interaction of finite automata exist (see [44] and

[37]), and indeed pertinent and general discussions of agent interaction have appeared

in such guises as information structures in epistemic and modal logic [32] or game

playing models [98]. An attempt has been made in the present work to reach a

•

•

4.1 INTRODUCTION

compromise between the generality of a broad definition of concurrent interaction

and the specialisation to specifie interaction rules. Several possible interaction rules

(e.g. a simultaneous and synchranous vector products) are discussed in order to

motivate and aid in the analysis of the multi-agent product.

FleURE 4.1. Modular control of a multi-agent system mode!.

In the supervisory control literature, the synchronous product is used both as a

method to combine component systems and as a model for the interaction between the

system and the supervisor (see [78], among others). The use of a so-called independent

product appeared in the analysis of batch process applications in [92]. A key difference

in the formulation presented here to that of the synchronous product is the notion of

vector event labels (though work on other vector label systems has appeared in [55,

56, 57] discussed below) . In the synchronous product, event strings are interleaved

with the interpretation that one eamponent may make a transition while the other

is inactive. This represents more than a notational difference. Consider two distinct

events, u and v, occurring in Pl and P2 , respecti\"ely. A sequential description, uv,

as in the synchronous product, admits sample paths contain other syrnbols, e.g. w,

interleaved \Vith u and v as in uwv. In the simultaneous case, a vector event [~]

admits no such interleaving with other events.

This leads to a philosophical stalemate for the issue of real-time feedback control.

\Vhen simultaneity is modelled through the use of vector symbols, the argument can

be made that any two distinct events must occur separated in time by sorne positive

non-zero time o. Therefore, there is room for a control implementation with response

o < € < 0 ta react between the events (and perhaps even, in a supervisory system,

inhibit the second event). Interleaved symbols offer no better solution as the argument

can also be made that for a reaction tirne 0 of a control implernentation, there can be

two events which occur separated in time by only € < 8. Hence no feedback control

can take place to prevent their simultaneous evolutian. These two views are also

differentiated during the rnodelling phase, by the ordering of (i) the determination of

61

•

•

4.2 PRODUCTS OF FINITE AUTOMATA AND REGULAR LANGUAGES

the sampling period and (ii) the generation of the system mode!. The view taken in

the present work is that in many applications the sampling frequency is limited by a

cycle time and so the use of vector symbols is meaningful.

Other usage of vector-event labels is found in [55, 56] in whieh both the system

state and transition labels are formed as a vector of integer components, and the

controllability and supervisor synthesis issues of supervisory control are addressed.

lu [57], concurreney is added to the model of [55] by allowing multiple events to

occur simultaneously resulting the synthesis of non-deterministic supervisors.

Our primary motivating example for the MA product is that of multiple agents
migrating through an underlying infrastructure or network where, at each time step,

aIl agents must perform an action. "Stays" or "waits" can be defined artificially
with self loops. Examples of this include produet pieces moving through a flexible

manufacturing system, messages through a communication system and individuals
through a traffic management system.

The key components in this chapter are i) the development of an algebraic de

scription of the language accepted by a multi-agent product system, and ii) an initial

analysis of the supervisory control problem in the context of the multi-agent prod

uet. The former is presented in Sections 2 and 3 in which several produets, including

the MA product, are defined and properties such as assoeiativity and distributivity

between the various praducts, are discussed. Section 4 cavers the second eomponent

and eonsiders supervision of one agent by another, centralised supervision of multiple

agents and notions of non-simultaneous acceptance of a string and non-simultaneous

controllability of a vector language.

2. Products of Finite Automata and Regular Languages

Let Ci = (Xi, E i , Ji! QOi' QmJ, i = 1,2, .. , IV be lV finite deterministic automata,
where Xi are discrete state spaces, L:i are alphabets (possibly with L:i n L:j =1 0
for i i= j), Ji are transition functions and QOi and Qmi are the start sets and goal

sets, respectively. For any given run of the systems, the start states XO i belong to

theh respective start sets and are identified a priori. The generality of a start set is

maintained in order to allow for analysis under partial information in future work.

Through much of this section, only the case of the concurrent evolution of two
systems will be considered rather than an arbitrary finite number. This is done for

illustrative purposes. Associativity of the MA product is shown in Section 2.4.

62

•
4.2 PRODUCTS OF FINITE AUTOMATA Al\TJ) REGULAR LANGUAGES

2.1. The MA Product

Definition 2.1. Multi-Agent (MA) Product

b.CtiI MA G 2 = (4~1 X X 2 , LI X E 2 , 8MA , Q01 X Q02' QTTl1 X Qm2)

where,

undefined

if 5dx, u)! /\ 52 (y, v)! /\
[(u = v) V (-,52 (y, u)! 1\ -,51 (x, v)!)]

otherwise

o

•

In the rvIA product, Cl and C2 must both make a transition at every step. If one

of the automata has no available transition from its current state, the product will
also have no available transitions from its (vector) state. Similarly labelled events

are necessarily synchronised when these are defined for both components models. In

particular, this mIes out a transition [~] at astate [;] if 8(x, u)! and 8(y, u)!.

For the prefix closed languages LI = L(Cd and L 2 = L(G2), e.g. when Qml = ..Xl
and Qm 2 = "'\'"2, the language L(G I JI MAG 2) accepted by the multi-agent product
system can be defined recursively. More will be said regarding decomposition of the

vector language in Section 3.

Definition 2.2. LdlMA L2

Let LI and L2 be prefix-closed languages over the alphabets LI ç Land L2 ç L

respectively. Define the (vector) product language LdlMA L2 recursively as follows:

and for a E LI, b E L2, W E Li, v E L;,

[:] [:] ELtiIMAL 2 if [:] ELtiIMAL 2 and Cr.:12 (w, v, a, b),

where the boolean-valued multi-agent coïncidence condition is,

C~;12(w,v,a,b) = (wa E L I /\ vb E L 2)/\

{(va ~ L 2 /\ wb (j. Ld V a = b}

o

63

•
4.2 PRODUCTS OF FINITE AUTOMATA AND REGULAR LANGUAGES

There are two aspects of this product which differ from a standard notion of

a synchronous product: first, simultaneity, i.e. the vector form of the event labels
which necessarily preserve an equal count on symbols from each system; and second,

a synchronisation constraint that applies only in cases where a given symbol may be
accepted by both systems al the current state, rather than whenever the symbol is in

El n L2'

A vector-state system with simultaneous transitions was defined in [57]. The NIA
product differs from this in at least two ways. First, vector symbols in [57] may have

an arbitrary number of components, i.e. the symbols are subsets of E, whereas in

the NIA product, symbols always have the same number of components (equal to the

number of component systems). Second, strict simultaneity, as defined here in the

simultaneous and MA products, may cause blocking in one system (and hence the
product system) when there is simply no symbol available in the other system.

2.2. The SÏInultaneous and Vector Synchronous Products

In order to aid the characterisation of the MA product, which is the main goal

of this section, several other products will be considered. It will be shown that

the lVIA product is a combination of the simultaneous and (state-dependent) vector

synchronous product.

Definition 2.3. Simultaneous Product

where,

if c)l(X, u)! and c)2(Y, v)!

otherwise

•

o

In the simultaneous product, G I and G 2 must make a transition at every step.
There is no other restriction.

It is not necessary that each component change state at each step; there may be

self-Ioops in the original component models. The interpretation of loops within one

of the component machines is that of a "stay" or "wait" denoted 'Yi for a machine

G i (see below). Note that if both machines have self loops at every state in both

machines, the state transition structure of the siffiultaneous product is richer than

64

•
4.2 PRODUCTS OF FINITE AUTOMATA AND REGULAR LANGUAGES

the shuffie product; i.e. aIl single-component state transitions can be made as weIl as

aIl simultaneous transitions.

Again, the the language accepted by G IiisimG2 can be determined directly from
the component languages, i.e.

Ldl.;mL 2 = {[:] : U E L"v E L 2 , lui = Ivl}

where lai is the length, or number of symbols, in a.

The natural projection and component-wise projection

Pi : E* ~ E; and lPi : (E x Er --+ E*

can both be defined recursively as fol1ows,

(i)Pi(f) = f

(ii)Pi(a) = a if a E E i , f if a E E/Ei

(iii)Pi(sa) = Pi(s)Pi(a) for s E E*, a E E.

and,

(i)./Pi(E) = f

(ii)IPi(ü) = Ui

(iii)IPi(sü) = lPi(S)lPi(Ü) for sE Ë*, Ü E Ë,

where f = [:] and il = [~~].

In the scalar synchronous product (see [102] or [47] for instance),

L 1 1I s L 2 de! Pl-
l LI nP2-

1L 2 , (2.4.1)

•

two generators Cl and G 2 for LI and L 2 respectively would interact by synchronizing

the events that have labels in El U E 2 .

A synchronous product can aiso be formed in the vector format with the addition

of explicit "wait" events as follows.

65

•
4.2 PRODUCTS OF FINITE AUTOMATA AND REGULAR LANGUAGES

Definition 2.4. Vector Synchronous Product

where,

undefined

if ((v = r2) A (u E E/E2) /\ 81(x, u)!)
V ((u = rd /\ (v E E/L:d /\ J2 (y, v)!)
v (81(x, u)! f\ J2 (y, v)!/\

((u E E/E2 /\ v E E/L:d v (u = v)))
otherwise,

with the convention that the symbols rl and '"'fl are not in El U E 2 , and J l (x, 'Yd = x
for aU xE ''':\:"1 and c52 (Y,Î'2) = y for aU y EY"2. 0

In the vector synchronous product, Cl and C 2 generate L l ll vs L 2 by synchronising
those events with labels a E El n E2 , but may each change state independently on

unshared symbols via the vector symbols [~'] , [:] or [~].

With projection p\{-y} defined as the natural projection E* ~ E*/{Î'1,'"'f2}, the

components of the vector synchronous product match the natural projections of the
scalar product, Le.

but in general,

(2.4.2)

An issue of interest is when the projected components of a product of two systems

actually equal the original systems prior to forming the product (i.e. when equation

2.4.2 yields equality). It will be shown that this requires that component systems

stem from consistent masked observations of a single universal generating process

(i.e. the language L 1 1I s L 2). Equivalently, this could he viewed as the absence of

blocking in each component due ta the other component fiot accepting a symhol even

though this symbol is observed through the observation mask.

•
Definition 2.5. COlIlpatible languages

The languages L l and L2 are compatible if and only if

F\{-y}[1P1(Ldlvs L2)] = L l and P\b} [1P2(Ltllvs L2)] = L2,

or equivalently, iff Pl (LI! IsL2) = LI and P2(L I lI sL 2) = L2 • o

66

•
4.2 PRODUCTS OF FINITE AUTOMATA AND REGULAR LANGUAGES

Theorem 2.1. Let LI and L2 be prefix-closed languages. If LI and L 2 are com

patible then P I (L 2) = P2 (Lr).

Proof. The projections Pl and P2 commute, so PIP2(K) = P2P I (K) for aIl K.
In particular, with K = L I ll s L 2 ,

•
A pertinent condition in this context appeared in [80] termed decomposable. The

definition is included here for comparison and completeness.

Definition 2.6. [80] Decomposable Languages

A language K ç L(G) is decomposable (w.r.t. G and projections Pl and P2) if

K = L(G) nPI-I(PI(K)) nP2-
I (P2(K)).

o

Proposition 2.1. When LI and L2 are compatible, LdlsL2 is decomposable with
respect to G accepting ~*. 0

Proof. "Vith K = L I II s L 2 and L(G) = L:* it can be checked that,

L*nPI-I(PI (L I ll sL 2)) nP2-I(P2(LIllsL2)) - L*nPI-I(L I)nP2-
1 (L 2)

- ~·nLdlsL2

- LdlsL2 "

•
Note that the contrary does not hold. A counterexample is Figure 4.2 where

Ld I s L 2 = {a, t} is decomposable with respect to a*, but LI and L2 are not compatible.

•
FIGURE 4.2. LI and L 2 are not compatible.

A second property that has appeared in the literature, [102], is,

67

•
4.2 PRODUCTS OF FINITE AUTOi\-IATA AND REGULAR LANGUAGES

Definition 2.7. [102]Non-conflicting

Two languages, L Land L 2 , are non-conflicting if

o

Compatibility is incomparable to non-confiicting. Figure 4.2 shows non-conflicting

but also not compatible languages, and the case LL = {ab},L2 = {ac} with EL =

{a, b} and E2 = {a, c} corresponds to compatible and not non-conflicting languages.

2.3. The MA Product as a Combination of Simultaneous and Synchronous
Products

The opportunity for blocking aIluded to above (Le. where one component is

blocked due to the other not accepting a recognised symbol) does not appear in the

IVIA product in 2.1. Hence, the comparison of the MA product with a synchronous

product requires another product system, Le. a more liberal (state-dependent) syn

chronous product is defined.

Definition 2.8. Vector (State-dependent) Synchronous Product

GdlusdC2 = (X"L x X 2,({1'1} UEr) X ({"Y2}UE2),<5usd,QOl x Q02,Qm l x Qm2)

where,

undefined

if (u = v 1\ <51(x, u)! 1\ <52 (y, v)!)
V ((v = 1'2) 1\ 6L(x, u)! 1\ -,t52 (y, u)!)

V ((u = 1'd 1\ -,6L(x, v)! 1\ t52 (y, v)!)
V (t5L(x, u)! 1\ -,62 (y, u) !

1\-,6L(x, v)! 1\ 82 (y, v)!)
otherwise

•

with the convention that the symbols 1'1 and "YI are not in EL U 2:2 , and 81 (x, 1'd = x

for aIl x E XL and 82 (y, 1'2) = Y for aIl y E X 2 . 0

In the (state-dependent) synchronous product, Cl and G 2 synchronise similarly

labelled transitions if and only if that event is available at the current state in both

machines. Otherwise they may act independently.

Contrary to the vector synchronous product, it is always the case that

68

•
4.2 PRODUCTS OF FINITE AUTOMATA AND REGULAR LANGUAGES

because 5, (x, u)! -4 5([:] , [~])1.
In general lPi(L(GdlvsdG2» :::> JPi(LrllsvL2) because the evolution condition in

the vector synchronous product is more stringent than in the state-dependent vector

synchronous. Equality, JPi(L(GdlvsdG2») = lPi(LdlvsL2), occurs if and only if LI and
L 2 are compatible languages because aIl instances of blocking due to the absence of a

symbol in one of the alphabets is removed. In both products then, blocked symbols

requre the same conditions; that an alternative symbol is available both agents.

Similarly, it is always the case that P2(JPl(LdlvsL2» = Pl(JP2(LdlvsL2», but with
the additional constraint that LI and L 2 are compatible, we also get this commutative

property for the (state-dependent) synchronous product, i.e.,

(2.4.3)

•

Again, Figure 4.2 provides a counter example for (2.4.3) when LI and L 2 are not

compatible. Here

L(Gdlvsd
G 2) = {[~:r'[~:r[:][~: r. [~:r[:][~:r[;2][~: r},

so P2(ffJl(L(GrllvsdG2») = {f, a, aa} while P l (JP2 (L(GdlvsdG2)) = {f, a}.

Two examples illustrating the various products for two simple systems can be

found in Figures 4.5 and 4.3 and a third example of the MA product is shown in 4.4.

To each transition function eS : Z x E --7 Z we associate a transition relation

J ç Z x E x Z by (z, u, z') E J ~ eS(z, u) = z'. The MA product can then

be categorised by the following theorem which highlights the way in which the MA

product from the intersection of sirnultaneous and vector state-dependent synchronous

products.

Theorem 2.2. Consider two deterministic automata Gland G2 with transition

functions eS l and 62 , Let 8MA , Jsim and Jvsd be the transition relations associated

with the products GriI MAG 2 , GriisimG2 and GdlvsdG2 extended (as undefined) to the

domain ({"rd U El x (f'Y2} U E2). Then it is the case that,

o

69

•

•

4.2 PRODUCTS OF FINITE AUTOMATA AND REGULAR LANGUAGES

Proof. Consider astate [:] and event [:] .

([:] , [:] , [~~~:::;]) d sim n Jvsd

<=* os'm([:] , [:]) = [~~~:: :;] A Ov.d([:] , [:]) = [~~~:::;]
~ [61(x, a)! /\ 62 (y, b)! /\ a E El /\ b E E 2] /\ [((a = b) /\ 61(x, a)! /\ 62 (y, b)!)

V ((b = /2) /\ 61(x, a)! /\ -,62(y, a)!)
V ((a = '"'Id /\ -,61 (x, b)! /\ 62 (y, b)!)
V (61(x, a)! /\ -,c52 (Y, a)!

/\-,61 (x, b)! 1\ 62 (y, b)!)]

~ [c51 (x, a)! /\ 62 (y, b)! /\ a E El /\ b E E 2] 1\ [((a = b) /\ 61(x, a)! 1\ 62 (y, b)!)
V (61 (x, a)! /\ -,62 (y, a)!

/\ -,61 (x, b)! 1\ 62 (y, b)!)]

<=> [a E El /\ b E E2] /\ (61 (x, a)! /\ 62 (y, b)! /\ [(a = b) V (-,62 (y, a)! 1\ -,61 (x, b)!)]

<=* 0M ,\ ([:] , [:]) = [~~~:: :;]

<=* ([:], [:] , [~~~:::;J) E6MA

•
In the case that there are self-Ioops at each node labelled distinctly in both

automata from aIl non self-Ioop transitions this reduces ta

6MA = 6vsd o

70

•
4.2 PRODUCTS OF FINITE AUTOMATA AND REGULAR LANGUAGES

G I El=={a,b}

GI IIMAG2

Y
~

FIGURE 4.3. Example 2 of the various products.

!:, = (a.b.rf

YI a
!:, = (b. dl

~XQ

• FIGURE 4.4. Example of the MA product.

71

•
4.2 PRODUCTS OF FINITE AUTOMATA .<\l'ffi REGULAR LANGUAGES

El = {a, h}

b

•

FIGURE 4.5. Example 1 of the various products.

2.4. Commutativity and Associativity of the MA Product

The MA product is not commutative as the components are ordered. On the

other hand, there is a symmetry between the components, i.e.

In order to show associativity, consider the NIA product of N systems.

Definition 2.9. G11I MA •• 'IIMAGN

The MA product of N systems

is defined to be

72

•
4.2 PRODUCTS OF FINITE AUTOMATA AND REGULAR LANGUAGES

where,

X MA - Xl X X 2 X ••• X)(N

E MA - LI X L:2 X •.. X EN

QOMA - QOI X Q02 X ••• X Qo,v

QmMA Qml X Qm2 X ..• X Qm,v

and

bl(Xl l ud
b2 (X2, U2)

undefined

if [Vi.l < i < iV. bi(Xi, ud!J
1\ [Vi, j, 1 ::; i,j ::; N. «Ui = Uj)

V (-'bi (Xi, Uj)! 1\ -,bj(Xjl Ui)!))]
otherwise

o

undefined

•

Now, consider the NIA product oÏ two MA systems,

Let (GdIMA·· ·IL\1AGM) and (GM+dIMA" ·IIMAGN) be two MA systems with
1 < AI < N. Let their transition functions be b1,M and 6M + 1,N respectively. The

transition function bl.M,N for their product is,

[
bl,M(Xtf 1 Ürf)] M !vi (N N'))if (b1,M(XI ,ü1)! /\ bM+I,N xU + 1' ÜM +1·

e5M + 1,N(XZ+ 1 , üZ+J 1\ [\ii, 1 ::; i ::; Nf. \ij,]VI + 1 ::; j < N.

«Ui = Uj) V (-,bi(Xi, Uj)! 1\ -'bj(Xj, 'Ui)!))]
otherwise

Theorem 2.3.

The transition function bl,M,N in Definition 2.10 is independent of M. Further

more it is equaL to the transition function bMA of Definition 2.9.

Proof. We proceed by induction on N. The case N = 2 is trivial as M = 1

and c51,1,2(X, ü) = bMA(X, ü) of Definition 2.9.

73

•
4.2 PRODUCTS OF FINITE AUTOMATA AND REGULAR LANGUAGES

vVe assume the result holds up to N as the induction hypothesis. For the case

lV + 1, note that, when defined,

61,M,N+I (x, il) -
[

1: (-M -M)]uI,M Xl 'U l
-N+l -N+ldM+l,N+I(XM+I , UM +l)

61(Xl, ur)
62 (X2, U2)

•

dN+l(XN+l, uN+d

By the induction hypothesis dl,M(Xr, ür) and dM+l,N+l(XZ~ll'iLZ~ll)' which have N
or less components, can be formulated as in Definition 2.9. Note that, when defined,

d1,M,N+l(X, il) is independent of M and equal to dMA(X, ü) in Definition 2.9. Hence

only the condition that the transition is defined needs to be checked. By the induction

hypothesis, the condition for dl,M(Xr, ûr)! and dM+l,N+l (xZ~ll' ÜZ.~ll)! is formulated
as in Definition 2.9. Therefore the condition 6l ,M,N+l(X, ü)! is,

OI,M(xtf,üî"f)! 1\ 6M+l,N+I(XZ~11,ÜZ"tII)! 1\ [Yi, 1 < i < M.Yj, M + 1 ~ j < iV + 1.

((Ui = Uj) V (-,di(Xi, Uj)! 1\ -,6j (xj, Ui)!»]

{::::=> [Vi, 1 < i < !v!. di(Xi, Ui)!] 1\ [Vi, M + 1 < i $ N + 1. 6i (Xi, Ui)!]
1\ [Vi, j, 1 < i, j < A1. ((Ui = Uj) 1\[Yi, j,!v! + 1 $ i,j $ N + 1. ((Ui = Uj)

v(-,6i (Xil Uj)! 1\ -'dj(xj, Ui)!»] V(-'Oi(Xi, Uj)! 1\ .dj(xj, ud!»]

1\ ['v'i, 1 < i, j < !v!.Vj, !vI + 1 $ j $ N + 1.

((Ui = Uj) V (--,6i (Xi, Uj)! 1\ -'dj(xj, Ui)!»]

<==> [Vi, 1 < i < N + 1. di(Xi, Ui)!]
1\ [Vi, j. 1 < i, j ::; lV + 1. ((Ui = U j)

v(-,6i (Xi, Uj)! 1\ -,<5j (Xjl Ui)!»]

which is equal to the condition that <5MA (X, ü)! for .lV + 1 systems as defined in Defi

nition 2.9. •

The result of the theorem is that the products of N ordered systems,

is unique and independent of the arder in which the products are performed.

74

•

•

4.3 MA PRODUCT AND VECTOR LANGUAGES

The interpretation of the product is that all the automata necessarily make a

transition in unison at every step and the synchronisation constraint is that if a tran

sition, labelled J.l for instance, is to be made by sorne automaton then any automata

for which a similarly labelled transition is available must make that transition.

It is interesting that there are circumstances in which aIl components have at

least one transition available at a given state, but the unique product has none at the

vector state. This is sirnilar to the loss of the deadlock-free property for languages

over intersection (see [53]).

The definition of the NIA praduct for languages can sirnilarly be extended ta the

case of iV systems

Let LI, L 2 , .•. , LN be prefix-clased languages. The unique language resulting frorn

their NIA product is defined recursively as fallows.

ËE LdL'vf.4L2I1MA·· ·IIMALN

üëi E LdI MAL2 1IMA·· ·IIMALN

if ü E LdI MA L2 IJMA·· ·IIMALN and

[(Vi, 1 < N.Uiai E Li) and (Vi,j, i =1= j.(Uiaj ft Li Vai = aj))]

o

3. MA Product and Vector Languages

In this section an algebra is developed for describing the vectar languages. The

fallowing definition is made ta shaw, belaw, haw the MA product can be forrned

through taking the intersection of the permitted behaviour with respect ta each COffi

ponent.

Definition 3.1. Embedded Constraint [f]
Let L be a prefix-closed language over the alphabet El ç E. Define the embedded

constraint of L recursively as follows:

75

•
4.3 MA PRODUCT AND VECTOR LANGUAGES

and for a E El, bEL, w E Ei, v E E*,

[:] [:] E [~] if [:] E [~] andCLCw,a,b).

where CL (w, a, b) is a boolean valued coincidence condition,

CL(W, a, b) = (wa E L) /\ (wb rf- L or a = b).

[L] is defined similarly with co-ordinates interchanged.

The relationship with union and intersection is as follows.

Proposition 3.1.

with equalily if and only if LI n L 2 = 0 or LI = L 2 •

Proof.

o

•

(1) Proceed by induction on length of strings. For the base case, it is true that

EE [~I] n[~2]==} f E [LI C1 L 2] trivially.

Assume, for vector strings of length n, that, Ü E [~l] n [~2] ==> ü E [LI 0L 2] •

For strings of length n + 1 (with il = [~]) consider,

il [:] E [1:'] n[1:']
Ç::=:} ü E [f;I] n[~2] /\ (ua E LI /\ [ub rf- LI V a = b)] /\ (ua E L 2 /\ [ub rf- L 2 V a = b)]

Ç::=:} ü E [f;I] n[L.2] /\ (ua E LI /\ ua E L 2) /\ [(ub ~ LI /\ ub ~ L 2) V (a = b)]

Ç::=:} ü E [~I] n [L.2] /\ (ua E LI n L2) /\ [(ub ~ LI U L 2)V (a = b)] (3.4.1)

===:;> ü E [LI 0L 2] /\ (ua E LI n L 2) /\ [(ub ft LI n L 2) V (a = b)] (3.4.2)

= il [:] E [Ld) L,]

76

•
4.3 l\.1A PRODUCT AND VECTOR LANGUAGES

which completes the inductive step. Equality holds if(L IuL2)!(LInL2) = 0 (compare
3.4.1 and 3.4.2).

(2) Follows a similar induction to (1).

Base case: ËE [LI YL 2] ~ ËE [~I] U [~2] .
Inductive hypothesis: il E [LI YL 2] ~·ü E [L.I] U [~2] .
Inductive step (with ü = [:]):

ü [~] E [L 1 YL2]

~ il E [L l YL 2] /\ (ua E LIU L 2) /\ [(ub ft LIU L 2) V (a = b)]

~ il E [L l YL 2] /\ (ua E LI V ua E L 2) /\ [(ub ft LI /\ ub ft L 2) V (a = b)]

<===} il E [L l YL 2] /\ (ua E LI V ua E L 2) /\ [(ub ~ LI V a = b) /\ (ub rt L 2 V a = b)]

<===} il E [L I YL 2] /\ {((ua E LI) /\ [ub fi. LI V a = b] /\ [ub fi. L 2 V a = b])

V«ua E L2) /\ [ub ~ LI Va = b] /\ [ub ~ L2 Va = bD}

~ il E [~I] U [~2] /\ {(ua E LI /\ [ub fi. LI Va = b)] V (ua E L 2 /\ [ub rt L 2 Va = b)]}

= ü [nE [~I] U [~2]
which completes the proof. •

•

The sense in which the embedded constraint can be used to form a component

wise construction of the MA product can now be made explicit. This is illustrated in
Figure 4.6 and an example is provided in 4. ï

Proposition 3.2.

Proof. Note first that

Cr:12(w,u,a,b) {::::=>CLtew,a,b) and C L2 (u,a,b).

Proceed by induction on lengths of strings [:]. For the base case it is clear

that,

77

•
4.3 MA PRODUCT AND VECTOR LANGUAGES

[:] ELdl MAL2 andCt;1,(w,v,a,b)

(w E L 1 and v E L 2) and

CL1 (w, a, b) and C L2 (V, a, b)

[:] [:] E [~I] n [L2]

Assume [:] ELdI MA L2 = [:] E [~I]n[L2]. Then,

• [:][:] E LdlMA L2 =

•

Agent 1

LI····· ...
tind "",bftJdod
CDmlnunt

Agent 2

~ L2
find embc!dded
C'ohlllr"nt

•

FIGURE 4.6. Illustration of the embedded constraint.

3.1. Non-Simultaneous Accepted Languages for Vector Systems

The standard sense of (marked) acceptance is that a string is accepted if its

associated state trajectory ends at a goal state. The standard label will be used for

the language of (marked) accepted strings, Le. Lm(G), which applies bath ta scalar

and vector systems.

78

4.3 MA PRODUCT AND VECTOR LANGUAGES

•

FIGURE 4.7. Example of the embedded constraint formation of MA product.

Simultaneity clearly restricts the accepted language as accepted strings (of vector

symbols) must be composed of equallength strings from the language LI and L2 (or

Lm(Gr) or Lm(G2) for marked acceptance).

For example, in Figure 4.8, L m (GtiI MAG 2) = {[:]}, and L m (G2 /1MAG3) =

{ [:] [~]}. If the goal set in G2 was changed from {YI, Y2} ta {YI}, the result

would be Lm{G211."'f.4G3) = 0.

Cl

~
I()

FIGURE 4.8. MA products and simultaneity: accepted strings must be
of equal length.

•
Because of the restriction imposed by simultaneity a more general notion of lan

guage acceptance is now introduced (provided here for the case of two automata, but

extendible to arbitrary finite N).

Definition 3.2. Non-Simultaneous Acceptance

79

•

•

4.4 ~IA PRODUCT AND SUPERVISORY CONTROL

For a given (XOI, Yod, when self loops (labelled 'Yi) are introduced at each goal
state in Qm, in the automaton Gi , if the string B is such that for each i, 1 < i < 2,

then P,b} (a) is non-simultaneously accepted by the product system GrilMAG2 • A

vector language l E (~ x L:2)* is non-simultaneously accepted if aIl strings in lare
non-simultaneously accepted. 0

Let Lnon-sim(GdIMAG2) be the set of aIl strings non-simultaneously accepted by
G111A-f.4G2' For an index set A ç {l, ... , 2}, the following is defined.

Definition 3.3. (A-partial) Non-Sim.ultaneous Acceptance

For a given (XOI, Yod, when self loops (labelled Ti) are introduced at each goal
state in Qmi in the automaton Ci, if the string B is such that for each i E A,

cSi(XOi,IPi(B)) E Qmi'

then the language P'{-r} (a) is (A-partiallyj non-simultaneously accepted by the prod

uct system GdI MA G2 . 0

[aa] [bE]In Figure 4.8, with G 2 goal states changed to {YI}' the vector string

is non-simultaneously accepted.

4. MA Product and Supervisory Control

4.1. Agent as Supervisor: Using the MA Product Instead of the Synchro
nous Product

The standard interaction for the supervisor-system pair is that of the synchronous

product (see [78] or [47]). An automaton S = (Y, L:, cSs, Yo, Y~) representing the

supervisor operates with the plant, an automaton G = (X, L: = ~c u :Eu, cS, Xo, Xm),

and the resulting language is the scalar synchronous product L(S)lI sL(G) (see 2.4.1).

An alternative is to consider control of a system G with a supervisor S acting in

unison, as an agent, leading to the combined evolution L(S)IIMAL(G). In what follows

it is assumed that aIl languages are prefix-closed, hence bath the terms L(SIIMAG)
and L(S)IIMAL(G) can be used equivalently (note the latter is only defined for prefix

closed languages). This assumption extends to specification languages (e.g. K below) .

80

•

•

4.4 rvIA PRODUCT AND SUPERVISORY CONTROL

It is also assumed that the goal states X m and Ym are the entire states X and Y .
This has the effect of sirnplifying the algebraic derivations by alleviating the need

for a non-marking condition for the supervisor (as in [47J, p. 66) and isolating the

controllability criteria.

The results regarding controllability of a language and the synthesis of synchro

nous product based supervisors apply almost directly when the l'vIA product is used

iz: lieu. Consider the following lernma.

LEMMA 4.1. Let K and L be prefix-closed languages. Then,

K ç L ==> KILuAL = KIIMAK = {[:] lu E K}.

Proof. It will be shawn that [:] E KIIMAL ==> (w = v).

Assume (a =1 b) for a, b, E L:. Then,

[~] E KIIMAL

~ [(a E K /\ bEL) /\ {(a ~ L /\ b ~ K) V (a = b)}]

~ [a E K /\ a ~ L /\ bEL /\ b ri K]

cantradicting the assumptian that K C L. Similarly, the assumptian that [:] [~] E

KIIMAL with (a =1 b) also contradicts the assumption that K ç L.

From definition 2.1, [:] E KIIMAL is logicallyequal to (u E K) /\ (u EL),

completing the proof . •

The following definition is required.

Definition 4.1. [47] L:u-enabling

A supervisor S is Lu -enabling if the following condition holds,

Vs E E*, CI E L:u : [8 E L(S)llsL(G) /\ sa E L(G)] => sa E L(S)lI sL(G).

o

81

•

•

4.4 MA PRODUCT AND SUPERVISORY CONTROL

Theorem 4.1 .

Let G be the plant and K ç L(G) be a prefix-closed specification. There exists a

Lu-enabling supervisor 5MA such that P2(L(S)II MAL(G» = K iff K is controllable
w.r.t. G (i.e. KL.u n L(G) ç K).

Proof. This result is established in [47] (Theorem 3.1, p. 66) for the synchro

nous product case, i.e. there exists a Lu-enabling supervisor such that L(S) II s L(G) =

K if and only if K is controllable, and further, it is shown that any automaton S
with L(S) = [< can be used as a supervisor.

To establish the result in the context of the MA-product, one may choose the

same supervisor SMA = 5, and note, from Lemma 4.1, that this gives the result

1P2 (L(S)II MAL(G» = K. •

To complete the link with [47] (Theorem 3.1, p. 66), it should also be noted that

Definition 4.1 is equivalent to an MA product version with condition,

'Vs E L*, CI E Eu : [s E L(S)IIMAL(G) /\ SCI E L(G)] => SCI E L(S)IIMAL(G).

The result is that MA-product based supervisors synthesising a language K are

interchangeable with synchronous product based supervisors synthesising K. Note

that this holds in general only for the full observation case where the alphabet of the

supervisor is equivalent to that of the plant. The partial observation case is described

in the future work of Chapter 5.

4.2. Supervision of Multi-Agent Systenl

The results in the previous subsection assumed the interaction between system

and supervisor were to be based on the MA product. In this subsection the supervision

is assumed to be via the standard synchronous product, but the system is now formed

from the NIA product of multiple systems.

Let the plant model consist of the MA product of supervisory automata, i.e. the

model from Figure 4.1 and let the components be,

Gi = (Xi, Lie ULiu' c5i , Qo" Qmi)' i = 1,2... , N

where Lie are the disableable events and Liu are the undisableable events. It is

assumed that (for the case N = 2),

E lc nE2u = 0, Elu nE2c = 0,

82

•
4.4 MA PRODUCT AND SUPERVISORY CONTROL

which forces synchronised events ta he uncontrollable in both components .

Definition 4.2. Multi-Agent Product (Supervisory Case)

Gdl MAG2 = C·'YI X "'~2, I:c U~u, cSMA , QOl X Q02' Qml x Qm2)

where,

if cSl (x, u)! A c)2(Y, v)! A

[(u = v) V (-,c52 (y,U)!A-'c51(x,v)!)]
otherwise

(4.4.1)

(4.4.2)

•

o

It is emphasised that the MA product is to be interpreted in the automata sense

in that (non-disabled) legal moves occur in Gdl MA G2 in order to generate a language

L(GI II MA G 2)·

Let LI = L(Gd and L 2 = L(G2) and let SI, S2 he prefix closed and such that

SI ç LI and S2 ç L 2. Two questions will be considered,

A When is SriIMAS2 controllable w.r.t. LdI MAL 2?

B \iVhen is SdlMAS2 ç LtlIMAL 2 ?

Consider the following as a preliminary answer to question A.

Theorem 4.2. Let LI, L2 , SI, S2 be prefix closed with SI ç LI and S2 C L 2 • If SI

is controllable w. r. t. LI and S2 is controllable with respect to L2 , then, SlllMAS2 is

controllable w.r.t. LtlI MA L 2 .

Proof. lt needs ta he shown that

SdIMAS2~unLrlIMAL2ç StlIMAS2.

Let [:] be in Eu (Le. a is in El. and b is in E2.J and let [:] satisfy

83

•

•

4.4 MA PRODUCT AND SUPERVISORY CONTROL

This means u E SI, ua E LI and so ua E (SIE l " n Ld. Therefore, by the controlla

bility of SI, ua E SI' Similarly, vb E 52-

(Case a = b) From the definition of Il MA,

[[~] E SdlMAS2 /\ (ua E SI /\ vb E 52) /\ (a = b)] =- [~][:] E SdIMA52.

(Case a i= b) Consider the case where va E S2. This implies va E L 2 , which implies

[~] [:] rt LdIMAL2 , contradicting the assumption to the contrary. Similarly,

ub E SI contradicts the assumptions. The remaining case is va Ft S2 and ub t/. SI and

in this case,

[[~] E SdIMAS2/\(ua E Sl/\vb E S2)/\(va rt S2/\ub rt Sd] =- [~][:] E SdIMAS2.

•
Note that if the assumption regarding the overlap of alphabets (see Equations

4.4.1 and 4.4.2) is modified so that both components must be controllable in order

for a vector event to be controllable~ then the converse of Theorem 4.2 holds, i.e. the

controllability of the product language ensures the controllability of the image in the

components.

Exam.ple 4.1. In Figure 4.9, Li represent the sys~em models, Si the specifications

and E i the maximal controllabLe sublanguages of Si w. r. t. Li. The language K is

controllabLe w. r.t. LtilMAL2 as expected from Theorem 4.2, yet JP2 (K) is not controL
Lable w.r.t. L2. The caleulation of eontrollable subLanguages of SdlMAS2 is a topie of

current research and discussed funher in Chapter 5. 0

The assumptions in Theorem 4.2 are insufficient for a positive answer to question

B. Consider the case L l = SI = {E, a, b}, S2 = {E, c} ç L 2 = {E, b, c} where

Sdl MAS2 = {[:] , [:] , [~] } ~ L dlMAL 2 = {[:] , [:] , [:]}.

A case by case analysis of how strings in the language S111MAS2 cao escape the

language LdlMA L2 follows. Let [~] be in 5dlMAS2 nL,IIMAL2 and consider when

[~] [:] E SdlMAS2 yet [~] [:] rt LdIMAL 2.

(case a = b) Never. ua E Sl, vb E 8 2 so (ua E LI 1\ vb E L 2) which together with

84

•
4.4 MA PRODUCT AND SUPERVISORY CONTROL

FIGURE 4.9. Controllable product does not imply controllable components.

(a = b) means [:] [:] E LtiIMAL2

(case a =P b) (ua E Sl,vb E 8 2) implies (ua E LI 1\ vb E L 2) 50 it must be the

coincidence condition that succeeds for Sri L~{fAS2 but fails for LIli M AL2 , i.e.

•

The result is that [:] escapes LtiI MAL2 whenever

(ua E SI 1\ vb E S2) 1\

[(ub ~ SI 1\ va FI. S2 /\ ub E Ld V (ub FI. SI /\ va FI. 82 /\ va E L 2)]

These can be rewritten as the conjunction of the following two formulas,

(ua FI. SI /\ ua E L l /\ va E L 2) => (va FI. 52),

(vb (j. S2 /\ vb E L 2 1\ ub E Lt) =? (va fi. Sr),

(4.4.3)

(4.4.4)

(4.4.5)

85

•
4.4 MA PRODUCT AND SUPERVISORY CONTROL

which can be interpreted as next-event rules:

(Equation 4.4.4): If Agent 1 has blocked a, a playable move, and a can also be played
by Agent 2, then agent 2 must must also block a.

(Equation 4.4.5): If Agent 2 has blocked b, a playable move, and b can also be played
by Agent 1, then agent 1 must must also block b.

The conclusion, for the purposes of supervisory control, is that at a state (x, y),
the uninhihited next events fI and r 2 must be equal over the set fn = {a 18(x, a) ~ /\

6(x, a)!}. Given rI and r 2, there is a unique pair f~ and f~ of maximally enabling
subsets of fI and r2 satisfying this condition. These are

r~ = f 1/(f2 n r n
)

f; = f 2/(f1n fn).

When it is not the case that SdlMAS2 ç LriIMAL 2 , there are unique maximal
sublanguages of S~ ç SI and S~ C S2 such that

S~IIMAS~ = SriIMAS2 nLriIMA L 2 •

These in turn may not he controllable. An iteration is suggested in Chapter 5 to find

sublanguages S~ and S~ so that Sf"MAS~ C LdlMA L 2 and at the same time SUIMAS~

is controllable w.r.t. L I II MA L 2 .

4.3. Centralised Control

Consider a single supervisor GI with language LI supervising a plant GriI MAG2

as illustrated Figure 4.10. This yields a horizontal decomposition of the system but

with centralised control. This is to be contrasted with Figure 4.1 of the introduction,

in which the supervisor is also decomposed.

s ~----------
r---------- G

FIGURE 4.10. Centralised control of a multi-agent system model.•
CONTROL SYSTEM MODEL

86

•
4.4 MA PRODUCT AND SlJPERVISORY CONTROL

There is sorne ambiguity in the implementation of this scheme. This stems from

competing interpretations of the formation of a vector language from the scalar lan

guage LI- Two interpretations are

and,

[
LI] de! [u]where LI = { w

(LlIIMALl)lls(L21IMAL3)

lu, W E LI, lui = Iwj}.

(4.4.6)

•

Note that the synchronous product retains its standard scalar meaning in Equa

tion 4.4.6 in the environment of vector symbols, i.e. for sets of vector symbols

Ë l , Ë2 ç (~ X ~), and languages LI ç Ëi and l2 ç Ë;,

- - -1 - -1 -LdlL2 = Pl LI n P2 L'l,

where Pl : (E x E)* ---7 (Ëd* is defined analogously to the scalar natural projection

Pl : ~* ---7 Ei-

Equation 4.4.6 reduces to the intersection (as in Lemma 4.2) when the alphabets

associated \Vith GlllMAGl and G2 11 MAG3 (Ë l and Ë2 respectively) are equal. This

would be the case if ~ 1 = ~2 = ~. Therefore consider the following lemma.

LEMMA 4.2.

Proof.

L II L"ALI n L211 At A L 3 - ([~1]n [;1]) n([~2]n [;3])
- ([~2]n [;1]) n([~I]n [;3])

•
In the partial observation case when ~l C E 2 U~, the vector alphabets Ël and Ë2

need further definition. Ë1 can reasonably be set equal to (~l x Er) or, instead, set
equal to (El x E) u (E x ~d. In both cases, straightforward algebraic results relating

4.4.6 to either (L21IMALdll(LdIMAL3) or (L11IL2)IIMA(L11IL3) have high complexity

87

•

•

4.5 NON-SIMULTAl\Œ~OUS CONTROLLABIT..ITY

(see Future works section) and it is at present unclear how these forrn a coherent

rnodular supervision system.

5. Non-Simultaneous Controllability

In a more general setting of rnarked languages, non-simultaneously accepted lan
guages (see Definition 3.2) must oc considered. Let El ç Lm(Gd and E 2 ç Lm(G2)

be controllable languages (i.e. Ei"EUt n L(Gi) ç E i , i = 1,2 where the E is the prefix
closure of E). AIso, let

fI : E; ---)- 2E1

12 : "E; ---)- 2E2 ,

where fi(a) are the uninhibited next transitions after the string a, be such that

Lm(fI/Ct} = El and L m ef2lG2) = E 21 where Lm(fIC) is the scalar (rnarked) lan
guage created by the application of the control f to the automaton G.

Definition 5.1. Non-Simultaneous Controllability

For a given (XOI' Yod, when uncontrollable self loops (labelled ,i) are introduced

at each goal state in Qm t in the the automaton G i (labelled Gn, if the vector language

L ç «"El u {,d) x ("E 2 U {'Il))· is snch that

(A) for aIl if E L, if is (non-simultaneously) accepted

and

(B) L is controllable w.r.t. CIII MAC;, i.e. LEu n L(C7IIMAm) c L

then the language p\{-r} (L) is (non-simultaneously) controllable with respect ta the

system C I II MA C 2 . 0

Note that if a language is controllable in the standard sense, then it is (non

simultaneously) controLlable.

The motivation for this notion of non-simultaneous acceptance and controIlability
is that of ensuring cornponent-wise task completion, i.e. if L is non-simultaneously

controllable, then the projections IPi(L), 1 < i < N contain marked strings each or

which is independently accepted by the associated system Ci .

88

•

•

4.5 NON-SThfULTANEOUS CONTROLLABILITY

In general, it is not true that, if El and E2 are controllable W.Lt. Cl and G2

respectively, then the vector language (El, E2) (with 1'1 and "/2 added to ensure equal

symbol counts) is non-simultaneously controllable W.Lt. CtiI MAG 2 . It is also not

necessarily true that, when l is non-simultaneously controllable, the projections lPi(l)
will themselves be controllable W.Lt. the component automata Gi •

Without further conditions, the problem of determining the controllability of lan

guages (or finding maximal controllable sublanguages subject to given specifications)

for IV!A product systems requires the solution of a standard supervisory problem on

the vector state space.

Two possible approaches to tackling this problem are proposed. The first is

through hierarchical decomposition discussed in the next section. The second is

through the definition of additional conditions on component systems and their

specifications such that the vector language is non-simultaneously controllable w.r. t.

CdI MAC 2 • The following problem can be stated:

Problem 1: Find sufficient conditions on Cl, G 2 , El and E 2 and vector control

policy f based on fI and /2 such that JPi [L(//CtiI MAG2] = E i , i = 1,2. 0

Note these notions are similar to the notions of observability and controllability

in the decentralised setting discussed in [80, 69].

5.1. Aggregated Hierarchical Control

The multi-agent systems defined via the MA product are subject to the explosion

in state cardinality that appears in any product system. Hence there is a need for

a hierarchical theory. The hierarchical theory based on state aggregation presented

in Chapter 2 applies directly to the supervisory control of the NIA product system,

but requires the computation of the partitions with the necessary conditions, either

directly or through the combination of partitions in the component systems. The two

theorems on consistency from Chapter 2 will then apply and hence allow high-Ievel

specifications to he achieved via hierarchical control.

Consider the situation where the partitions 7l"1 and 7l"2 are Trace-DG and (non

blocking) IBG with respect to Gland G 2 respectively. It is observed that the Trace-DG

property is not preserved, in general, for the partition 7l"1 x 7l"2 of the MA product

system. The same is true for the simultaneous product system and the synchronous

product system (except for the case where El n E 2 = 0) .

89

•

•

4.5 NON-SThfULTANEOUS CONTROLLABILITY

Problem 2: Find a sufficient condition of on G I , G 2 , '!rI and 7[2 in order to preserve

the properties of Trace-DG and non-blocking IBe, for the partition '!rI x '!r2. 0

vVhile the required additional conditions on G I and G 2 (and more generally,
G l, G2, ... , G N) may be stringent, it is conjectured that this will provide a methodology

for the design of interacting systems. Consider, for instance, transfer Hnes (with
shared resources and synchronised events) and traffic flow (for both communication
systems and public transport), in which component systems are designed as building

blocks with the a priori knowledge that they can be combined in an efficient (from

the point of view of hierarchical control) and meaningful (from the point of view of

verified solutions to achieving component goals) manner.

90

•

•

CHAPTER 5

Future Research

This chapter presents suggestions for future lines of research for each of the topies
covered in this thesis.

1. Suggested Research Related to Trace-DC Supervisory Con

trol

• As noted in Chapter 2, the set of (non-blocking) IBC partitions is not closed

under ehain union. Prima face, this would appear to be beeause, in contrast

to [15], mutual accessibility of out-sets (i.e. the set of states that are either

goal states or from which transitions lead out of the block) is not required in

the (non-blocking) IBe condition. It would be of value to determine if this
is in fact the case and, if not, what further conditions would be required to

attain closure under chain union. If suitable conditions are established for the

closure of the set of IBC partitions under chain union, it would be possible to

study the resulting lattice of IBC partitions. Such a structure would be usefui
(as in [15]) for the formulation of control hierarchies.

• The notion of an observer appeared in [100] and was utilised in [60] and [99J.
Essentially, 8 : r;* ---+ T*, a possibly history-dependent map, is an observer

if 8- 1 commutes with the prefix closure operator. A future research area is

to develop the connection between the Trace-DC property, the VL algorithm

and the notion of an observer.

• ft was assumed in Chapter 2 that the abstract representation of a supervi
sory automaton would itself be a supervisory automaton. A natura1 extension

is to consider higher-Ievel representations where control is implemented in a

•

•

5.2 SUGGESTED RESEARCH RELATED TO MANUFACTURING LAYOUTS

different fashion (e.g. forced-event rather than permissive). Notions of consis

tency between models would he of interest independently of the hierarchical

framework.

Longer Term Suggested Research

• The theory is presented for finite automata. A topic for future research is the

application of a state-partitioning methodology to the case of infinite state

devices. These could be modelled by Petri Nets, or perhaps push-down au

tomata. The illustrations in Chapter 3 regarding buffers would seem to indicate

that (non-blocking) IBC partitions for any finite subset of the state could be

developed from the model dynamics.

• A quantitative approach would be of value in the examination of the exis

tence of (non-hlocking) rBC partitions. Specifically, counting arguments or

simulation could be used ta check aIl input/output devices (lVloore represen

tations, for instance) with N internaI states for the existence and number of

non-trivial (non-blocking) rBC partitions. Estimates of the relative frequency

of non-trivial (non-blocking) rBC partitions with respect ta the number of

states or connectivity could then be developed. This would be of particular

interest in the extension to hybrid systems.

2. Suggested Research Related to Manufacturing Layouts

• A goal in the worked examples in Chapter 3 is the emergence of primitives

that would allow for the immediate description of control methodologies for

arbitrary plant layouts. As each portion is added, a new partition can be

formed (as was illustrated in Figure 3.10 for the extension from one buffer to

two buffers). A recursive formulation of this process of alternating extensions

and re-partitioning is a suggested future line of research. It would be of interest

to investigate whether paradigrnatic systems emerge for this recursion .

• It was noted in Chapter 3 that, in general, the rBC property is not preserved

when forming partitions on a product state space by combining partitions on

component state spaces. An investigation of alternative definitions for weak
interaction under which the rBC property is preserved would be of value. For

instance, a possibility is

Systems (GtlIG2 •· ·IIGm) and (Gm +dIGm +211·· ·GN) interact weakly if the al
phabets satisfy I:i n I:j = 0, i = 1, .. , m - 1 and j = m + 1, .. , N.
Another candidate definition for weak interaction can be found in [95]. The

92

•

•

5.3 SUGGESTED RESEARCH RELATED TO THE ~TI-AGENT PRODUCT

product

can be formed by analysing GmIlMAGm+1 first, then determining their impact
on the remainder of the subsystems. The motivation would be that under

the condition of weak interaction, hierarchical control (of the product) of the

component models could easily he transferred to hierarchical control of the

product system without the need for verification of properties in the product

state space.

This also motivates a line of research on the design of a mezzo system (an "ad

judicator") which is inserted hetween agents, i.e.... GmllCadjudicatorIlGm+1···.

The adjudicator is then designed to negotiate prioritisation between agents.

3. Suggested Research Related ta the Multi-Agent Praduct

• Theorem 4.2 shows that controllability is preserved in the MA product of con

trollable languages. This was true for the interaction condition Ct~:12(w, v, a, b)
in Definition 2.1. A possible question for future research is for which inter

action conditions does the property in Theorem 4.2 hold. There is perhaps

a maximal interaction (in the sense that Cl is greater than C2 if Cl implies

C2) for which the preservation of controllability holds. This would he a novel

approach as it would employ the form of the agent interaction as a source of

control.

• It was noted in Chapter 4 that SI ç L l and 52 ç L 2 does not imply 5 1 11A-[AS2 ç
LdI MA L 2 . Rence even though Sd/MAS2 may be controllable, it may not be
implementable in the system LdI MA L 2 . This means that the diagram

liMA
8 1 ,S2 • Slil MA S2 n L 1 1I MA L 2

J(*) 1

liMA
J(*)1

EIl E2 • E I IIMA E 2 n L 1 1IMAL2

may not commute. Hence, an immediate future line of research is the problem:

Find the maximal sublanguage of SrlIMAS2 such that SdlMAS2 is controllable

93

•

•

5.3 SUGGESTED RE5EARCH RELATED TO THE MULTI-AGENT PRODUCT

w.r.t. LtilMALz and SdlMASZ ç L 1 II MAL 2 •

If one calculates EtlI MAE 2 , where E i is the maximal controllahle sublanguage

of Si w.r.t. Li, this may not he a suhset of L 1 1I MA L 2 • An iterative approach

might take the form:

(a] Initial E? = Si
[b] Repeat

5:+1 = ~(E~IIMAE; n LdI MA L 2)

E:+ 1 = (Sf+l)Tw.r.t.L i

[cl Until E;+l = Ef.
• Partial observation of one agent by the other is a naturai extension in the MA

product setting. State estimate sets for each agent from each other agent could

be developed. It wouid be of value ta import notions from epistemic logic in

[32] to this framework. A formaI notion snch as common knowledge [32] may
perhaps have important implications for observation and control.

94

•

•

REFERENCES

[1] Centre for intelligent machines: Researeh and publications of the hierarchieal,

hybrid and logie control group, http://www.cim.mcgill.ca/ ...phubbard. May

1999.

[2] The mathworks: Devp-lopers of matlab and simulink,

http://www.mathworks.com/. October 1999.

[3] IEEE journal of intelligent systems and their applications,

http://www.iel.ihs.com. December 1999.

[4] IEEE working group on discrete event systems,

http://yara.ecn.purdue.edu/ echong/des_ wg/Home.html, October 1999.

[5] UMDES software library

http://www.eecs.umich.edu/umdes/projects/lib/umdeslib.html. wlay 1999.

[6] Ratnesh kumar's home page

ftp://kumar.ee.engr.uky.edu/pub/HTTP/index.html, May 1999.

[7] R. Alur and T.A. Henzinger, Computer aided verification, Lecture Notes,
Deptartment of Electrical Engineering and Computer Science, UC Berkeley,

1996.

[8] A. Asarin, O. Maler, and A. Pnueli, Reaehability analysis of dynamical sys

tems having pieeewise-constant derivatives, Theoretical Computer Science

138 (1995), 35-66.

[9] V. Badami and N. Chbat, Home applio,nces get smart, IEEE Spectrum Mag

azine 35 (1998), no. 8, 36-43.

[la] S. Baranov, Logie synthesis for control automata, Kluwer Academie Publish

ers, 1994.

[Il} N. Biggs, Diserete mathematies, Oxford University Press, 1985.

•

•

REFERENCES

[12] B. Brandin and W.l\tf. Wonham, Supervisory control of timed discrete-event

systems, IEEE Transactions on Automatic Control 39 (1994), no. 2,329-341.

[13] Y.P. Brave and Nf. Heymann, Control of discrete Event systems modeled as

hierarchical state machines, IEEE Transactions on Automatic Control 38

(1993), no. 12, 1803-1819.

[14] P. E. Caines, P. Hubbard, and G. Shen, Multi-agent products for finite state
systems, In preparation (1999).

[15J P.E. Caines, V. Gupta, and G. Shen, The hierarchical control of ST-finite

state machines, Systems and Control Letters 32 (1997), 185-192.

[16] P.E. Caines, P.J. Hubbard, and G. Shen, State aggregation and hierarchical
supervisory control, Proc. of 36th IEEE CDC (San Diego, CA), December
1997, pp. 3590-3591.

[17] P.E. Caines and Y-J Wei, Hierarchical hybrid control systems, Control Using
Logic-Based Switching (Steve Morse, ed.), Proceedings of the Block Island
\;Vorkshop, Springer Vedag, 1996, pp. 39-48.

[18] , Hierarchical hybrid control systems: A lattice theoretic formulation,

IEEE Transactions on Automatic Control (1998), 501-508.

[19J P.E. Caines and Y.J. Wei, The hierarchical lattices of a finite machine, Sys
tems and Control Letters 25 (1995), 257-263.

[20J K.L. Calvert, IvLB. Doar, and E.W. Zegura, Modeling internet topology, IEEE

Communications tvlagazine (1997), 160-163.

[21] X. Cao and Y. Ho, Models of discrete Event dynamic systems, IEEE Control
Systems Ivragazine (1990), 69-76.

[22] C.G. Cassandras and S. Lafortune, Introduction ta discrete Event systems,

Kluwer Academic Publishers, 1999.

[23J Y-L. Chen and S. Lafortune, Resolving feature interaction using modular su
pervisory control with priorities, Feature Interactions in Telecommunications

and Distributed Systems IV (P. Dini, ed.), ras Press, 1997, pp. 108-121.

[24] C.W. Churchman, R.L. Ackoff, and E.L. Arnoff, Operations research, John
Wiley & Sons, 1957.

[25] R. Cieslak, C. Desclaux, A.S. Fawaz, and P. Varaiya, Supervisory control

of discrete-event processes with partial observations, IEEE Transactions ûn

Automatic Control 33 (1988), no. 3, 249-260.

96

•
REFERENCES

[26] J.E.R. Cury, B.H. Krogh, and T. Niinomi, Synthesis of supervisory controllers

for hybrid systems based on approximating automata, IEEE Transactions on
Automatic Control 43 (1998), no. 4, 564-568.

[27J G. Cutler and E. Kissa, Detergency - theory and technology, Surfactant Sci

ence Series, 1995.

[28] H. D'Angelo, M. Caramanis, S. Finger, A. Mavretic, Y. Phillis, and E. Rams
den, Event-driven model of unreliable production lines with storage, Int. J.

Prod. Res. 26 (1988), no. 7, 1173-1182.

[29] A. A. Desrochers and R. Y. AI-Jaar, Applications of petri nets in manufac

turing systems, IEEE Press, 1995.

[30] S. Edwards, L. Lavagno, A.L. Lee, and A. Sangiovanni-Vincentelli, Design of
embedded systems: FormaI models, validation and synthesis, Proceedings of

the IEEE 85 (1997), no. 3, 366-389.

[31] rvr. Fabian and A. Hel1gren, Plc-based implementation of supervisory control

for discrete event .systems, Proceedings of the 37th IEEE CDC (Tampa, FA),
December 1998, pp. 3305-3310.

[32] R. Fagin, J. Halpern, Y. Moses, and Y. Moshe, Reasoning about knowledge,

MIT press, 1995.

[33] J-P. Forestier and P. Varaiya, Multilayer control of large markov chains, IEEE

Transactions on Automatic Control 23 (1978), no. 2, 298-305.

[34] S.B. Gershwin, Hierarchical fiow control: A framework for .scheduling and

planning discrete events in manufacturing systems, Proceedings of the IEEE

77 (1989), no. 1, 195-209.

[35] A. Guia and F. DiCesare, Blocking and controllability of petri nets in super
visory control, IEEE Transactions on Automatic Control 39 (1994), no. 4,

818-824.

[36] F. Harary, R.Z. Norman, and D. Cartwright, Structural models: An introduc
tion to the theory of directed graphs, John Wiley & Sons, New York, 1965.

[37] J. Hartmanis and R.E. Stearns, Algebraic structure theory of sequential ma

chines, Prentice Hall, 1966.

[38J iVi. Heymann and F. Lin, Discrete event control of nondeterministic systems,

Proceedings of the 35th IEEE CDC, December 1996, pp. 4445-4450.

•
[39] J. E. Hopcroft and J. D. Ullman, Introduction ta automata theory, languages,

and computation, Addison-Wesley, 1979.

97

[40]•
REFERENCES

P. Hubbard and P.E. Caines, Astate aggregation approach to hirarchical su

pervisory control with applications to a transfer line example, Proc. of the
WODES98: Workshop on Discrete Event Systems (Cagliari, Italy), IEE, Au
gust 1998.

[41 J Trace-de hierarchical supervisory control with applications to

transfer-lines, Proceedings of the 37nd IEEE Conference on Decision and
Control (Tampa, FL), 1998, pp. 3293-98.

[42] , Initial investigations of hierarchical supervisory control for multi-

agent systems, submitted ta the 38th IEEE CDC, Pheonix, AZ, 1999.

[43] Paul Hubbard and Caines P.E., Trace-de hierarchical supervisory control,

Submitted ta IEEE transactions on Automatic Control (1999).

[44] T. Kam, T Villa, R. Brayton, and A. Sangiovanni-Vincentelli, Synthesis of

finite state machines: Functional optimization, Kluwer Academie Publishers,
1997.

[45] A. Koestler, The ghost in the machine, The Macmillan Company, 1967.

[46] R.E. Korf, Planning as search: A quantitative approach, Artificial Intelligence

(1987), no. 33, 65-68.

[47] R. Kumar and V.K. Garg, Modeling and control of logical discrete event sys

tems, Kluwer Academie Publishers, 1995.

[48] R. Kumar, V.K. Garg, and S.I. Marcus, Predicates and predicate transform

ers for supervisory control of discrete event systems, IEEE Transactions on

Automatic Control 32(2) (1993), 232-247.

[49] R..J. Leduc and \V.M. Wonham, Discrete event systems modeling and control

of a manufacturing testbed, Proceedings of the CCGEI, 1995, pp. 793-797.

[50] E.S. Lemch and P.E. Caines, Hierarchical hybrid systems: Partition deforma

tians and applications to the acrobot system, Hybrid Systems: Computation

and Control (T. Henzinger and S. Sastry, eds.), Lecture Notes in Computer
Science, no. 1386, Springer, 1998, pp. 237-252.

[51] , Hybrid partition machines with disturbances: Hierarchical control via

partition machines, Proc. of 39th IEEE CDC (Phoenix, AZ), December 1999.

[52] , On the existence of hybrid models for finite state machines, Systems

and Control Letters 36 (1999), 253-259.

•
[53] Y. Li, On deadlock-free modular supervisory control of discrete-event systems,

IEEE Transactions on Automatic Control 42 (1997), no. 12, 1705-1708.

98

REFERENCES

[54] Y. Li and WJvI Wonham, Controllability and observability in the state

feedback control of discrete-event systems, Proc. of 29th IEEE CDC (New

York), Dec. 1988, pp. 203-208.

[55] Y. Li and W.rvI. vVonham, Control of vector discrete-event systems i-the base

model, IEEE Transactions on Automatic Control 38 (1993), no. 8,1214-1227.

[56J , Control of vector discrete-event systems ii-controller synthesis, IEEE

Transactions on Automatic Control 39 (1994), no. 3, 512-531.

[57] , Concurrent vector discrete-event systems, IEEE Transactions on Au-

tomatic Control 40 (1995), no. 4, 628-638.

[58J F. Lin and H. Mortazavian, A normality theorem for decentralized control of

discrete-event systems, IEEE Transactions on Automatie Control 39 (1994),

no. 5, 1089-1093.

[59] F. Lin and W.M. \iVonham, Decentralized supervisory control of discrete-event

systems, Information Sciences (1988), no. 44, 199-224.

[60J , On observability of discrete-event systems, Information Sciences

(1988), no. 44, 173-198.

[61J L. Loeb and Cochran S.D. Sanford, P.B., Soil removal as a rate process,

Journal of American Oil Chemists' Society (1964), 120-124.

[62] T. !vlackling, Contributions to automated-theorem proving and formal meth

ods with applications ta control systems, Ph.D. thesis, McGill University,

1997.

[63J NL!vL ~,;fano, Digital design, Prentice-Hall, 1984.

[64] R. !vIaus and J. Keyes, Handbook of expert systems zn manufactuïing,

~'1cGraw-Hill, Inc., 1991.

[65] NLD Mesarovic, D. Nlacko, and Y. Takahara, Theory of hierarchicaL, multi

Level, systems, Academie Press, 1970.

[66] A. Messmer and rv1. Papageorgiou, Automatic control methods appLied to free

way network traffic, Automatica 30 (1994), no. 4, 691-702.

[67] Faron Mailer and Graham (Eds.) Birtwistle, Logics for concurrency - struc

ture versus automata, Lecture Notes in Computer Science, no. 1043, Springer,

1991.

•

•
[68] ---, Logics for concurrency - structure versus automata, Lecture Notes

in Computer Science, no. 1043, Springer, 1991.

99

• [69]

[70]

[71]

[72]

[73]

[74]

[75]

REFERENCES

J.O. Moody and P.J. Antsaklis, Supervisory controL of discrete event systems
using petri nets, Kluwer Academie Publishers, 1998.

S.G. Ostroff, Temporallogic for reaL time systems, John Wiley & Sons, 1989.

C. Ozveren and A.S. WHIsky, Observability of discrete event systems, IEEE

Transactions on Automatic Control 35 (1990), no. 7, 797-806.

___ , Aggregation and multi-level control in discrete event dynamic sys

tems~ Automatica 26 (1992), no. 3, 565-577.

T .S. Perry, In search of the future of air traffic controL, IEEE Spectrum rYlag
azine (1997), 18-35.

R. Peterson, Decision systems for inventory management and production
planning, "Viley, 1979.

J. Raisch and S.D. O'Young, Discrete approximation and supervisory control

of continuous systems, IEEE Transactions on Automatic Control 43 (1998),
no. 3, 569-572.

[76] P.J. Ramadge and W.M. Wonham, Modular feedback logic for discrete event

systems, SIAM J. Control and Optimization 25 (1987), no. 5, 1202-1218.

[77] , Supervisory controL of a class of discrete event systems, SIAM J.
Control and Optimization 25 (1987), no. 1, 206-230.

[78] , The control of discrete event systems, Proceedings of the IEEE 77

(1989), no. 1, 81-98.

[79] N. Rescher, ComplexitY1 a philosophicaL overview, Transaction Publishers,

1998.

[80] K. Rudy and W.M. Wonham, Think gLobalLy, act Locally: Decentralized super

visory controL, IEEE Transactions on Automatic Control 37 (1992), no. Il,

1692-1708.

[81] M. Sampath, A discrete event systems approach to failure diagnosis, Tech.
report, The University of Michigan, Decmeber 1995.

[82] NI. Sampath, S. Lafortune, and D. Teneketzis, Active diagnosis of discrete
event systems, IEEE Transactions on Automatic Control 43 (1998), no. i,
908-929.

[83] G. Shen and P.E. Caines, ControL consistency and hierarchicaLLy acceLerated

dynamic programming, Proceedings of the 37th IEEE Conference on Decision

and Control (Tampa, Florida), 1998, pp. 1686-91.

• [84J Herbert A. Simon, The sciences of the artificial, The MIT Press, 1996.

100

•

•

REFERENCES

[85] R. S. Sreenivas, On supervisory polides that enforce liveness in a class of

completely controlled petri nets obtained via refinemenl, IEEE Transactions
on Automatic Control 44 (1999), no. 1, 173-177.

[86] R. D. Sriram, Intelligent systems for engineering: a knowledge-based ap
proach, Springer, 1997.

[87] C. Strumillo and T. Kudra, Drying: Principle, applications and design, Gor
don and Breach Science Publishers, 1986.

[88] 1. Suzuki and T. Murata, A method for stepwise refinement and abstraction

of petri nets, Journal of Computer and System Sciences 27 (1983), 51-76.

(89] S. Takai, Optimal stat space partition for control of des w'ith static specifica

tion, preprint, 1999.

[90] J. Talavage and B. Elliott, Toward a theory of hierarchical coordination and

confiict, vol. Disaggregation, problems in manufacturing and service organi

zations, Martinus Nijhoff Pub., 1979.

[91] J.G. Thistle, Supervisory control of discrete event systems, rvlathematical

Computer rvlodeling (1996), 25-53.

[92] NI. Tittus and L. Bengt, Hierarchical supervisory control for batch processes,

IEEE Transactions on Automatic Control 1 (1999), no. 5, 542-554.

[93] C. Tomlin, G.J. Pappas, and S. Sastry, Conflict resolution for air traffic

management: A study in multiagent hybrid systems, IEEE Transactions on

Automatic Control 43 (1998), no. 4, 509-52l.

[94] J.N. Tsitsiklis, On the control of discrete event dynamical systems, wlathe

maties of Control Signais and Systems 2 (1989), no. 2, 95-107.

[95] T. Ushio, Y. Li, and W.N!. Wonham, Concurrency and state feedback in

discreet-event systems, IEEE Transactions on Alltomatic Control 31 (1992),

no. 8, 1180-1184.

[96] A.F. Vaz and WJvI. Wonham, On supervisor reduction in discrete-event sys

tems, Int. J. Control 44 (1986), no. 2, 475-491.

[97] N. Viswanadham and T.L. Johnson, Fault detection and diagnosis fo auto

mated manufacturing systems, Proceedings of the 27th IEEE COC, 1988,

pp. 2301-2307.

[98] .1. Von Neumann, Theory of games and econom,ic behaviour, Princeton Uni

versity Press, 1953.

101

•

--

REFERENCES

[99] K.C. Wong and W.M. \Vonham, Hierarchical control of discrete-event sys
tems, Discrete Event Dynamical Systems 6 (1996), 241-273.

[100] W.M. Wonham, Towards an abstract internat model principle, IEEE Trans
actions on Systems, 1\1an, and Cybernetics (1976), 735-740.

[101] \V.Nf. vVonham and P.']. Ramadge, On the supremal controllable sublanguage

of a given language, SIAM J. Control and Optimization 25 (1987), no. 3,
637-659.

[102} , Modular supervisory control of discrete event systems, Mathematics
of Control, Signal and Systems (1988), no. l, 13-30.

[103] H. Zhong and W.M Wonham, On the consistency of hierarchical supervi

sion in discrete-event systems, IEEE Transactions on Automatic Control 35

(1990), no. 10, 1125-1134.

102

•

•

Document Log:

Nlanuscript Version 0 - 24 J anuary 2000

Typeset by ANfS-U1EX-24 January 2000

PAUL HUBBARD

CENTER FOR INTELLIGENT rvIACHINES, lVlcGILL UNIVERSITY, 3480 UNIVERSITY ST., l\10NTRÉAL

(QUÉBEC) H3A 2A7, CANADA

E-mail address:phubbardlDcim.mcgill.ca

Typeset by ANtS-UTEX

