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ABSTRACT 

A mathematical model is proposed for the quantita­

tive treatment of the injection molding of thermoplastics 

as it relates te the behavior of the polymer in the cavity. 

The model is based on setting up the equations of continuity, 

motion and energy for the system during each of the stages 

of the injection molding cycle (fill ing, pacKing and cool ing) 

and the coupl ing of these equations with practical boundary 

conditions. The treatment taKes into consideration the non­

Newtonian behavior of ·the melt, the effect of temperature 

on density and viscosity, the latent heat of sol idification, 

and the differences in thermal properties between the sol id 

and the melt. Numerical solutions have been obtained for the 

case of a spreading radial flow in a semi-circular cavity. 

The theoretical results yield data on the.filling,pacKing 

and cooling times as well as velocity pressure and temperature 

profiles throughout the fill ing,pacKing and cool ing stages. 

Experimental studies have been conducted with a 

2 1/3 oz. reciprocating screw injection molding machine to 

checK the validity of the prop~sed theoretical model. Re­

sults show that theoretical predictions are in good agreement 

with experimental data for all stages. 
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1. INTRODUCTION 

1.1 GENERAL INTRODUCTION 

The purpose of most plastics processing operations 

is to transform a resin which consists of random particles into 

a commercial product of predetermined shape and dimensions. 

Thus, powder, beads, or pellets are converted to film, sheet, 

pipe, monofilament, coating, special profiles and to a variety 

of articles like cups, toys, bottles, bottle caps, gasol ine 

tanks, auto-body parts, furniture parts and a multitude of 

other components. In general, processing or fabricating opera­

tions have the following three basic steps in common: 

1) Heating and melting of the resin. 

2) Forming the desired shape by filling a mold or 

pumping the melt through a die. 

3) Cool ing of the formed article to a solid masse 

Some processes, like cold forming, do not require 

the formation of a high-temperature melt as an essential part 

of the fabricating process. Also, the processing of thermo­

setting resins, which are excluded from this study, requires 

a del icate balance between the thermal and flow conditions 

and their variation with time as a result of the reactivity _ 

of these systems. 
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The presentstudy is concern~ only with the pro­

cessing of thermoplastic resins. 

The three stages of plastics fabrication may be 

accompl ished by continuous steady state operations or by 

unsteady-state batch or semi-batch processes. 

ln the extrusion operation, the sol id polymer in the 

form of pellets or powder is melted with thehelp of a 

plasticating screw and pumped through a die which controls 

the cross section. Then the shaped product is cooled to a 

sol id state. Since extrusion is a continuous steady-state 

process, only two dimensional control of the shape of the ex­

truded product is possible. In the molding operation, the 

solid polymer is converted to the liquid state. If the melt 

is not formed inside the mold cavity, it is necessary to 

transfer it to a mold, where the plastic sol idifies. Molding 

is an unsteady state operation, and thus three-dimensional 

control of the shape is achieved. 

Various types of molding operations are used com­

mercially depending on the resin used, the final product 

requirements, and economic feasibility. 

ln compression molding, material in the form of loose 

powder or a preheated preform, is placed in an open heated 

mold cavity. Then the mold is closed. The combination of heat 

and pressure softens the material and causes it to flow and 
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fill the cavity. Then the mold is cooled till sol idification 

is achieved. 

ln transfer molding, the operation starts with the 

mold in the closed position. Then, the plastic melt is 

forced into the·mold from an auxil iary chamber. Transfer 

molding is generally accomplished with a single ram press 

where the same force that closes the mold is used to trans­

fer the melt. In this respect the process is similar to 

compression molding. 

ln rotational molding, a plastic charge is placed 

inside a hollow mold. The mold and charge are rotated and 

heated to the melting point of the polymer. The mold is then 

cooled, sol idifying the plastic and finally the molded part 

is unloaded. 

ln blow molding, an extruded tube parison is intro­

duced into a cooled mold w~ere it is inflated by air pressure 

until the walls of the parison assume the shape of the walls 

of the mold. The shaped parison is then cooled to structural 

rigidity. Blow molding is an example of combined steady state 

(extrusion) and unsteady state (molding) operations. 

ln injection mOlding, the raw material is melted, then 

it is injected under pressure into a cold mold where it sol id­

ifies to a point when it can be ejected from the mold without 

mechanical damage. 
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Most of the theoretical work publ ished in connection 

with the processing of thermoplastics deals with the extrusion 

operation (1,2,3,4,5). Much less published work is available 

on the various molding operations, mainly as a result of the 

complexity of the equations describing these systems. In 

most instances, researchers have dealt with isolated problems 

or small parts of the overall process (6,7,8,9, la). 

ln the present work, an attempt is made to develop 

a model for the theoretical treatment of the overall injection 

molding process, excluding the plastication step, which may 

be handled adequately by available extrusion theory. Inject­

ion molding has been selected for two reasons. First1y, the 

problems of heat transfer and fluid flow which are encountered 

in injection molding are typical of those encountered with 

other molding operations. Thus the treatment may be modified 

or extended to handle processes l ike compression molding and 

transfer molding. Secondly, injection molding is not only 

the most widely used plastics molding technique but is also 

one of the most common plastics processing operations, second 

on 1 y to ext rus ion, as shown in T ab 1 e 1-1 (11). Po 1 yethy 1 ene 

accounts for more than ha1f of the injection mo1ding volume 

in both Canada and the United States (11,12). 
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TABLE 1-1 

SALES OF PLASTICS PROCESSED IN CANADA 

1 N 1 966 AN D 1970 

SALES IN $ MILLION 

PROCESS 1966 1970 

EXTRUSION 

FILM 67 80 
PIPE 11 27 
PROFILE 14 19 

MOLDING 

INJECT ION 44 74 
COMPRESSION 8 9 
BLOW 14 20 
ROTATION 5 16 

VACUUM FORMING 3 5 

REINFORCED PLASTICS 19 26 

HIGH PRESSURE LAMINATING 18 18 

PLASTIC FOAMS 17 32 

M ISCELLANEOUS 55 83 

TOTAL 275 409 
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1.2 INJECTION MOLDING: BACKGROUND 

Injection molding is accompl ished in an injection 

molding machine which consists of two basic components - the 

injection unit and the clamping unit. The injection unit 

serves to heat the raw material to a molten state and to 

transfer it under pressure into the mold which is held by the 

clamping unit. Melting is achieved with the help of external 

heaters and, in sorne cases, by mechanical heating produced 

when the granular raw material is compressed and worked. 

The earliest injection molding machines employed a 

plunger unit. With units of this type, raw material is fed 

volumetrically from the hopper into the plasticating chamber, 

which is mounted between the plunger and the nozzle. Each 

stroke of the plunger froces unmelted material into the 

chamber through a spreader (called also torpedo) from which 

plastic melt is forced out through a nozzle into the mold. 

Later, two-stage plungers were developed, with plastication 

and injection performed in two separate units. 

Most of the injection mo1ding machines produced today 

are built with reciprocating-screw injection units. In these 

units, the extruder chamber is utilized to achieve both 

plastication and injection. A typical operating sequence may 

be described as follows. Starting with the reciprocating 

screw in the forward position, material is gravit y fed from 
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the hopper. The rotation of the screw plasticizes the material 

and conveys it forward in the screw barrel. Accumulation of 

the plasticized material at the front of the barrel forces the 

screw to move backwards and the melt collects in the front of 

the injection chamber, ahead of the screw tip. Material back 

flow over the screw fl ights is prevented by a check valve. 

When the injection unit is activated the screw moves forward, 

as a ram, forc ing the melt from the inject ion chamber through 

the nozzle into the mold. The hot polymer melt flows into 

an empty cold cavity. Wh en fill ing is complete more polymer 

is packed into the cavity at high pressure in order to com-

pensate for shrinkage by cool ing. Cool ing is continued until 

sufficient solidification is achieved so that the polymer may 

be ejected from the mold without damage. 

It is reasonable, in attempting to develop a model 

for the injection molding operation, to divide the process 

into three major stages: filling, packing and cool ing. 

Schematically, the three stages are best described by the 

pressure time curve, shown in Figure 1-1. 

1.2. l F i 11 ing Stage 

The fil1ing stage is represented by the unsteady flow 

of a hot non-Newtonian compressible melt into an empty cold 

cavity, which is held at a temperature below the sol idification 
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temperature of the polymer. The problem has to do with 

simultaneous unsteady flow and heat transfer. 

Earlier theoretical and experimental results have 

been reported for the cases of spiral or very long molds. 

Ballman, Shusman and Toor (13) studied the flow of molten 

polyethylene and polystyrene in a cold long cavity. The 

cavity consisted of parallel plates, one inch wide and twelve 

inches long with varying thicKness between 0.050 and 0.150 

inches. By a set of simpl ifying assumptions, they reached 

empirical correlations for the distance traversed by the poly­

mer as a function of time, and the maximum length of flow as 

a function of operating conditions. By assuming isothermal 

conditions, they were able to explain the experimental re­

sults. However, they agreed that the relationship between 

the experimental results, material properties and system 

parameters must depend strongly upon the heat transfer in 

the cavity. 

KazanKov and Basov (14) attempted to calculate the 

maximum flow length in a long two plate mold for polystyrene. 

They assumed unidirectional flowand included only the con­

duction terms in the Energy equation. By assuming a Power 

Law fluid, they were able to obtain an analytical solution 

that consisted of the first term of an infinite series. 
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Grinblat (15) worked also with a rectangular cavity. 

He employed the heat conduction equation to calculate the 

thickness of the sol idifying layer. Thus, he treated the 

melt as two regions: a stationary layer and an isothermal 

flowing core. From experimental resu1ts he was able to obtain 

an empirica1 equation describing the velocity of the melt 

front as a function of time and the total length of f1ow. 

The main disadvantage of the above treatments re­

su1ts from poor and unspecified correlation between the behav­

iour' fn the model molds and actua1 molding conditions. A 

more practical geometry for studying the fill ing stage would 

employ IISpreading Radial Flow", which resembles more c10sely 

injection mo1ding conditions, where the melt emerges from 

the gate and spreads to the outer boundaries of the cavity. 

Spencer and Gi1more (16) and Beyer and Spencer (6) 

photographed the f10w pattern of polystyrene in a disc shaped 

cavity, Figure 1-2a. They described the polymer front as a 

circular segment of continuous1y increasing radius with the 

gate at the centre. In the ear1y stages of f ill ing, the wall 

exerts a retarding force, and the polymer front in the vicinity 

of the wall bends back toward the gate. If the wall were not 

present, the polymer would flow radially into the cavity from 

the gate. During the later stages of fill ing the curved 

boundary deflects the material, which would otherwise strike 

it in radial f1ow. As a result, the front eventually becomes 
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l inear and then curves away from the gate just before comple­

tion of the fill ing operation. 

Bauer (17) has reported experimental and empirical 

results on the fill ing of a rectangular thin mold with low 

density polyethylene, Figure 1-2b. He attempts to describe 

the progression of the melt front in terms of wave propagation, 

where the injection point is considered to be the centre of 

the wave. From this point, spherical waves propagate, thus 

generating the circular front. The wave front position may 

be determined experimentally by registering the mold surface 

temperature. 

More recently, Barrie (18) employed the disc 

shaped cavity shown in Figure l-2c. The objective of his worK 

was to measure and analyze the melt pressure distribution in 

the cavity. By using an empirical approach he was able to 

correlate the pressure profile obtained experimentally using 

pressure transducers at different radial locations. In a 

second paper (19) Barrie attempted to calculate the "501 id 

sKin" content of the polymer at the end of fill Ingo He appl ied 

the pure heat conduction equation,and found that experimental 

results did not fit the calculations. The predicted values 

were higher than the experimental ones. 

Harry and Parrott (20,21) suggested a numerical 

simulation of the injection mold filling. They considered flow 

in a thin rectangular cavity with agate that occupied the 
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whole cross-section of the cavity. Thus, the problem was 

reduced to flow in one dimension. They assumed constant 

polymer properties and linear pressure drop. 

Pearson (9) proposed a model for fill ing the mold 

shown in Figure l-2c, by radial flow. He also assumed a 

l inear pressure drop across the circular mold and constant 

thermal properties. More recently, Berger and Gogos (la) 

simulated the filling of a circular mold by treating the 

channel leading to the cavity and the cavity itself as one 

flow system under the effect of the pressure at the injection 

end. In their treatment, they assumed constant density and 

thermal properties for the melt. 

The present work is conducted to study the filling 

stage for spreading radial flow in the cavity shown in 

Figure l-2d. This geometry has been chosen in order to 

permit the study of radial flow in a simple geometry, without 

interference from the walls of the mold as observed by some 

of the above studies. The parallel feed from the gate was 

employed to avoid a 900 diversion in the direction of flow, 

and to allow high speed photography. 
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1.2.2 packing Stage 

Polymer flow into the cavity does not cease when 

the melt front reaches the outer boundaries of the cavity. 

It is desirable to introduce more polymer to the cavity during 

the packing stage. Such packing is necessary in order to com­

pensate for shrinkage of the polymer, as a resu1t of cool ing. 

Two factors compete with regard to pressure varia­

tion in the cavity during the packing stage. The first is 

the flow of the polymer into the mold which leads to an 

increase of pressure corresponding to the increase of the den­

sity of the polymer in the cavity. The second factor is the 

cool ing of the polymer which continues during the entire pro­

cess. Cooling tends to reduce the pressure in the cavity. 

Very little work is reported in the 1 iterature re­

garding the analysis of the packing stage. The main contri­

bution is an attempt by Spencer and Gilmore (16) to calculate 

the maximum pressure in the mold by means of an equation of 

state and an empirical relation for fill inE time. The bu1k 

of the other work deals with the thermodynamics of the packing 

stage, especially as it relates to shrinkage (6,7,8). 

ln the present work, a mathemat ical model is proposed 

to treat both the dynamics and thermodynamics of the pacKing 

stage in the same semicircular cavity which has been employed 

for the study of the filling stage. 
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1.2.3 Cool ing Stage 

After fill ing and pacKing are complete, cool ing of 

the plastic continues by virtue of the lower temperature of 

the mold. Cooling without flow continues until the plastic 

has reached a sufficient level of solidification. Ideally 

sol idification in molding operations occur under conditions 

of constant mass and volume, so that the molded article retains 

the shape and dimen~ions of the mold. 

Some worK is reported in the l iterature regarding 

the cooling of polymer melts. Gloor (22) has solved the 

heat conduction equation, with change of phase, for various 

crystalline polymers. He assumes that cool ing is achieved 

under atmospheric pressure and employs constant average pro­

perties for the polymers over the whole temperature field. 

Kenig and Kamal (23,24) calculated temperature profiles.and 

pressure as function of time for pressurized high density poly­

ethylene and polystyrene. They included in their solution the 

d~pendence of polymer properties ontemperature and the effects 

of pressure and rates of cooling on the sol idification 

temperature. 

ln the present study, the same approach is used as 

in (24). Both temperature and pressure are calculated for 

the cooling stage by employing the heat conduction equations with 

change of phase together with an equation of state. 
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2. EXPERIMENTAL 

2.1 EQUIPMENT 

Experiments were conducted on a Model 60-SR 2 1/3 oz. 

reciprocating-screw injection molding machine, which is manu­

factured by Metalmec, see Figure 2-1. The melt temperature 

at the injection end was controllable to within +SoF. Auto-

matic controls and timers were available for injection pres­

sure, hold pressure, injection time, hold time and cycle time. 

The machine couldbeoperated in the automatic, semi-automatic 

or manual modes. In this work only the semi-automatic and 

manual modes were used, as will be described later. 

The injection pressure during fill ing is regulated 

by the injection speed and injection pressure valves. These 

valves regulate the pressure at ~he injection end, thus the 

pressure of the melt, as it enters the cavity depends on the 

dimensions of the nozzle and channel that 1ead from the in-

jection end to the cavity and on the materia1 properties. 

The maximum pressure in the packing stage is regu1-

ated by the shot size and the hold pressure valve. 

A schematic diagram of the semi-circular mold is 

shown in Figure 2-2. The cavity dimensions have been governed 

by the maximum shot size of the injection molding machine 

(2 1/3 oz.) and space availab1e in the clamping syste~: The 

clamping force was obtained from twelve 5/8 inch screws. The 

mold was used in two different modes. In the first mode, the 
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FIGURE 2-2 
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wa11s of the mold were made of transparent, especially 

tempered 1 1/8 inch pyrex 7720 glass, prepared by John's 

Scientific. Flow patterns and fill ing times were observed 

with the aid of a 16 mm. high speed camera. The camera used 

was a rotating-prism type "Hycam" Model K20S4E, manufactured 

by Red Lake Labs. Inc. Movies were taken at 200 frames per 

second. In the second mode, the glass walls were replaced 

by l 1/4 inch steel walls. Four holes were drilled in one 

of the walls, as shown in Figure 2-2 for the insertion of a 

pressure transducer withabuilt-in thermocouple. The holes 

were plugged when the transducer was not used. The way in 

which the transducer was mounted in the wall of the cavity 

is shown in Figure 2-3. Special care was taKen to ensure 

that the surface of .the transducer was flush with the inside 

surface of the cavity, to avoid any interference with the flow 

of the melt. 

ln addition to measuring the pressure, the trans­

ducer was used to indicate the time required for the melt to 

travel from one position to the other. Since the response 

of the transducer was effectively instantaneous, it would 

start to indicate pressure as soon as the melt touched it. 

Thus measurements taken with the transducer placed at differ­

ent points indicated the time required for the melt to reach 

the corresponding radii. 
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FIGURE 2-3 

ARRANGEMENT OF TRANSDUCER IN THE CAVITY WALL 
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ln order 'to ensure that atmospheric pressure was 

attained at the me1t front, during the fi11ing stage, shims 

of. 0.003 inch thickness were p1aced between parts 3 and 4 

(F igure 2-2) in order to a110w air to escape. 

Water was circu1ated over the outside surface of the 

steel cavity. The temperature of the circulating water was 

controlled at 80 ±50F. This was achieved by employing a 

Sterlco heating-cool ing unit, Model 7000. Water was circula­

ted only during the experiments invo1ving the steel walls. 

An attempt was made to circu1ate water during the experiments 

with the glass wal1s. The motion of the f10wing water, small 

particles and air bubbles interfered with the clarity of the 

films, thus air at room temperature 75 +50F was used instead. 

2.2 TRANSDUCER SYSTEM AND ITS CALIBRATION 

The pressure transducer used in this study is Model 

TG-M-6G(T) manufactured by Sensotec for measuring pressures 

up to 20,000 psi and temperature up to 4250F, see Figure 2-4. 

The active diameter of the transducer is 0.19 inch. It is 

of a force co11ecting type, uti1 izing four arm foil strain 

gauges, connected in a conventiona1 Wheatestone Bridge arrange­

ment. It uses an excitation voltage of 3.0 volts D.C., and has 

an input impedance of 117.0 ohms, and an output inpedance 

117.1 ohms. Temperature compensation resistors are inc1uded 

to compensate for the effects of temperature variation. 
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FIGURE 2-4 

SCHEMATIC DIAGRAM OF TRANSDUCER TG-M-6G(T) 
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However, the thermal error of the transducer used is -1 psi/oF. 

An iron-constantan thermocouple is built in the tran­

sducer to give a simultaneous measurement of the surface 

temperature. The pressure transducer is equipped with a 

signal condit ion ing unit, Model SCA-4 manufactured by Sensotec. 

The unit consists of the following components: 

a) Transducer power supply with three available 

voltages: 3, 5 and 10 volts D.C. 

b) A set of variable resistors capable of balancing 

the transducer bridge. 

c) Gain control for varying the ampl ification of 

the signa l • 

d) A f ixed shunt' res istor for cal ibrat ion purposes. 

Pressure and temperature-time curves have been 

obtained with the aid of a Sanborn 7702 oscillographic 

recorder, operating at various chart speeds. Two speeds were 

used: 20 and 100 mm. per second. The frequency response of 

the recorder is 125 Hz. Thus the recorder response is the 

l imiting factor, since the frequency response of the trans­

ducer is of the order of 20,000 Hz. while that of the signal 

conditioning unit is 2,000 Hz. 

A special cal ibration apparatus was built, as shown 

in Figure 2-5. It cons ists of a cyl indr ical reservo ir con­

nected to a pressure ga.uge Model M manufactured byFoxboro 

that could measure pressures up to 3,000 psi. For the purpose 
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FIGURE 2-5 

TRANSDUCER CALIBRATION APPARATUS 
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of cal ibration, the transducer was fixed in the bottom part of 

the cylinder, in the same arrangement used in the mold cavity, 

see Figure 2-3. The cyl indrical reservoir was filled with 

sil icone oil 710R to the appropriate level, and the piston 

was placed inside the cyl inder. The load was suppl ied, to 

the piston by the Instron Mechanical Tester. The transducer 

was connected to the signal conditioning unit and the latter 

was connected to the Sanborn recorder. Various loads were 

appl ied and the correspond ing s imultaneous read ings were taken from 

the pressure gauge and the recorder. The transducer showed 

a l inear increase of voltage with load as shown in Figure 2-6. 

ln order to calibrate the transducer permanently, 

so that the pressure would be known regardless of the ampl i­

fication used both in the recorder and the signal conditioning 

unit, a special procedure was followed: If a resistor is 

keyed across a leg of the transducer bridge as shown in Figure 

2-7, a deflection in the output circuit results, which simu­

lates the effect of the combined resistance changes of the 

active leg due to a change of pressure. In this way cal ibra­

tion of the transducer could be made, before every experiment 

and regardless of the ampl ification of the signal, without the 

necessity of applying a physical quantity, provided that the 

equivalent of the change in pressure units is known. For this 

purpose, a precision resistor is suppl ied in the signal con-
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FIGURE 2-6 

CALIBRATION CURVE FOR PRESSURE TRANSDUCER 
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ditioning unit. By shunting the resistor over a leg in the 

bridge a resultant voltage change is recorded. The equivalence 

of the resistor was found to be 7200+ 50 psi. Although the 

cal ibration was done in the range of 0-3000 psig, the cal i­

bration specifications of the manufacturer gave a deviation 

of 0.1% in the linearity of the output voltage versus pres­

sure app1 ied over the range of 0-20,000 psig. 

The cal ibration of the Iron-Constantan thermocouple 

was checked by inserting the probe in ice-distil'ed water 

mixture and in disti"ed boil ing water, and found to agree 

with the charts supplied by the manufacturer. In addition, 

the time constant of the thermocouple was obtained by inser­

ting the probe in boil ing water from room temperature. The 

temperature-time curve is given in Figure 2-8. The thermo­

couple was found to obey approximately a first order system, 

since a plot of the logarithm'of the temperature versus 

time resu1ted in a straight l ine (25), see Figure 2-9. The 

time constant was found to be 4.1 seconds. 

2.3 EXPERIMENTAL PROCEDURE 

At the beginning of each run, the temperature con­

trollers were fixed at the desired melt temperature. About 

20-30 minutes were needed for the temperature to reach its final 

value. When temperature was sufficiently high, polymer pellets 

were placed in the hopper and the screw was rotated in order to 
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FIGURE 2-8 
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FIGURE 2-9 
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plasticize and convey the polymer melt to the reservoir 

section. The melt was injected a few times into the open air 

in order to clean the barrel from old material that could be 

degraded. At this point, the recorder and the signal con­

ditioning unit were switched on to allow one hour of warming 

up as recommended by the manufacturer. Water was circulated 

and about half an hour was needed for the temperature of the 

mold to reach the 800 F marK, as indicated by the thermocouple 

and an additional thermometer. 

When all the components were ready, the settings 

for the pressure control valves and the shot size were 

fixed at the desired values. The recorder was run at the 

appropriate speed and the melt was injected manually. Pres­

sure was appl ied during the entire cycle, till the recorded 

pressure decreased to atmospheric. Then the mold was opened 

and the molded article was ejected and marKed. 

Subsequently, experiments were conducted for the 

same melt temperature, shot size, and transducer position 

but at different injection pressures. Then, the melt \. 

temperature was changed and the whole sequence was repeated. 

ln order to change the position of the pressure transducer, 

water circulation was stopped, the mold was taKen apart, 

and the position was changed. The whole procedure was re­

peated for the same melt temperatures and the same pressure 

valve settings as above. In this way results were obtained 

for the four transducer positions at different melt temperatures 
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and different injection pressure settings, for the same shot 

size. After this sequence was completed, the shot size was 

changed, in order to check the model for the packing stage. 

ln the movie experiments, the injection pressure 

and temperature conditions were the same as those employed 

in the corresponding transducer experiments. Thus each set 

of conditions was employed twice: once with the steel cavity 

for transducer measurements and once with the glass cavity 

for photographic analysis. 

Each run was repeated two or three times, in order 

to check reproducibility of the results and to emphasize 

different stages in the injection molding process. For 

example, since the packing stage was relatively short, the 

speed of the chart was increased to the maximum velocity of 

100 mm per second in some runs. In addition the amplifica­

tion of the recorded signal in the filling stage was increased 

in order to allow accurate readings of the relatively low 

pressures during the stage. 

The semi-automatic mode was used in order to show 

with actual moldings that radial flow existed in the parallel 

feeding injection system. This was done by setting the 

injection timer to different injection durations, at the same 

injection pressure conditions. Thus the filling stage was 

frozen at different stages. 
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2.4 MATERIALS AND PROPERTIES 

Experimental resu1ts and theoretical ca1culations 

have been carried out for two polymers: one crystall ine and 

the other amorphous. 

The crystalline category is represented by Dow 

Chemical High Density Polyethylene E.P. 245 which has a den­

sity of 0.953 corresponding to crystall inity of about 72%. 

Thermal diffusivities for the sol id and me1t phases have 

been calcu1ated from the thermal conductivity given by Nagler 

(26) for high density polyethylene. Specific heat and 

density are given by Bernhardt (27). For the sol id phase, 

the average properties are: thermal conductivity ks = 0.260 

Btu/hr/ft/oF; specific heat Cps = 0.55 Btu/lb/oF and density 

Ps = 57.0 1b/ft3 . For the melt region the average properties 

are: thermal conductivity km = 0.130 Btu/hr/ft/oF; specific 

heat Cpm = 0.70 Btu/lb/oF and density Pm = 46.0 lb/ft3 • The 

latent heat portion of the freezing enthalpy for polyethylene 

is 95 Btu/lb as given by references (22) and (28). The PVT 

diagram used is given by Bernhardt (27) and shown in Figure 

2-10. The constants for the equation of state are: w = 47,600 

psi; b = 0.875 cc/gm; Rc = 43.0 in units consistent with T in 

oK; V in cc/gm and P in psi. 

The amorphous group is represented by Dow Chemical 

Polystyrene Styron 683C. Thermal diffusivity is taken from 

Shou1berg (29) cr = 3.1 x 10-3 ft 2 /hr. Thermal conductivity 

is calculated from thermal diffusivity, specifie heat and 
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FIGURE 2-11 

P-V-T DIAGRAM FOR POLYSTYRENE 
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density at 4000 F as given by Bernhardt (30), kt= 0.06 

Btu/ft/hr/oF. The PVT diagram used is given by Bernhardt 

(30) and shawn in Figure 2-11. The corresponding constants 

for the equation of state are: W = 27,000 psi; b = 0.822 

cc/gm; Rc = 11.6 in the same units as above. 

The effective heat transfer coefficient, H, between 

the po1ymer and the cavity wall are taken to be 50-150 

Btu/ft2 /hr/oF as pointed by Jepson (31) and Carley (32). 

For rheo1ogica1 properties see Appendix 1. 
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3. FIllING STAGE 

ln the treatment of injection mo1ding, the process 

will be divided to three stages: fi1ling, packing and 

cooling. It is not intended, however, to imply that these 

three stages are independent of each other. In fact, it is 

essential to preserve/the continuity of the process and to 

recognize that in the complete treatment of the injection 

molding cycle, the conditions that exist at the end of one 

stage prevai1 at the beginning of the fo110wing stage. The 

division into three stages is intended mainly for purposes 

of discussion .and mathematica1 analysis. At the end of the 

treatment, the three stages will be recombined to evaluate 

the val idity of the proposed approach for the overall 

integrated injection molding process. 

3.1 THEORETICAl ANAlYSIS 

3.1.1 Equations and Boundary Conditions 

The fill ing stage is concerned with the unsteady-. 

state non-isothermal f10w of a hot, non-Newtonian, compressible 

f1uid, partially sol idifying during flow, as the cavity wal1s 

are kept be10w the freezing temperature of the polymer. In 

this study, spreading radial flow of the plastic me1t is of 

interest. 
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Qualitatively, the problem of mold filling may be 

summarized as follows: A polymer melt at a uniform temperature 

is contained in a reservoir. At zero time, pressure is 

appl ied to the melt (pressure may be constant or variable with 

time). Then, the polymer starts to flow through a capil1ary 

into a semicirc~lar cavity. Flow continues in a spreading 

radial flow pattern until the advancing front hits the outer 

boundary of the cavity. 

ln order to describe this qual itative picture 

mathematically, one starts from the basic equations of change 

(33,34). Assuming that the only non-zero ve10city component 

is in the radial direction, Vr , and that symmetry with respect 

to the axial direction exists, the equations of change take 

the following forms (using cyl indrical co-ordinates): 

Continuity: .Q2.. + l }r(p.r.v r ) = 0 (3-1 ) ryt r ...... 

Momentum: 
,N r Vr 

ryV r _ ..af. _ [~ }r( r • 'T r r) 
Tee èlT rz p(- + ar-) = - -- + az] at ~r r 

+ pgr ....... (3 -2) 

Ene rgy: 
2 

C (..QI + v .al) = k [1..L( r .2!) + ~ T21 + 
p p at r ~r t r ~r ~r .~z 

- T 
rz az ... (3-3) 
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Where P and T are the pressure and temperature, respectively, 

at time t and at a point which has radial and axial co-ordinates 

rand z, respectively, as in Figure 1-2d. The time elapsed 

from the beginning of injection is t, while p is the density, 

Cp is the specifie heat, kt is the thermal conductivity, and 

T rr , T rz and Tee are components of the stress tensor at 

the point of interest. 

The following simplifying assumptions are made in 

obtaining a solution to the fill ing problem: 

1. Viscoelastic and entrance effects are not included. 

2. Trr and Tee are neglected due to the lack of 

rheological data and simpl icity (see Appendix l 

and Appendix 7). Thus the only shear stress 1 rz 
is included. 

3. ft is assumed that the melt obeys the Power Law, 

see Appendix 1. 

4. The unsteady state terms in the momentum and 

continuity equations are neglected, in view of the 

comparatively long duration of flow. At any 
aV r . 

instant, at IS very small .compared to other 

terms in these equations. However, the velocity 

at any point in the cavity changes with time; 

see Appendix 2. 
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5. The polymer is assumed to be a compressible fluid 

only for the purpose of solving the continuity 

6. 

equation. It is assumed to be an incompressible 

fluid for the energy and momentum equations. 

Creeping flow i s assumed. Thus, the nonl inear term 

Vr 
~V r 

x ar' in the equation of motion i s omitted. 

This term is of some importance in the entrance 

region, since both the velocity and its derivative 

are quite large. However, due to computational 

difficulties this term is omitted in 'the present 

treatment (see Appendix 7). 

7. Heat conduct ion in the direct ion of f low (r) i s 

negligible in comparison to convected heat transfer. 

8. In the case of crystall ine polymers (like poly­

ethylene), the specifie heat, thermal conductivity 

and thermal diffusivity are assumed to be constant 

but having different values, depending on whether 

the melt is above or below the freezing temperature. 

ln the case of amorphous polymers (1 ike polystyrene) 

only one constant is assigned to these properties 

(24) • 
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Sy employing the above assumptions, the equations 

of change take the following forms: 

Con tin u i t y: }r (p. r • V r) = 0 

Mot ion: 

Energy: 

cV r n 
(az-) J .ae. = 

~r 
!z [M 

Pep (..aI. + V ll) 
~t r or 

2 
= kt

d ~ + M 
~z 

· ....•.•.... ( 3 -4 ) 

• ...•..•..•• ( 3 -5) 

..• (3 -6) 

Where M is the consistency index, and n is the flow index. 

The following boundary conditions were employed in 

conjunction with the above equations of change. 

a) There is no slip at the wall 

V r (r, +h, t) = 0 · ...••.••.•. ( 3 -7) 

Where h is half of the thickness of the cavity. 

b) The velocity profile is symmetrical around z=O. 

(r, 0, t) o · ..•..•.•.•. (3 -8) 

c) At the cavity walls, a constant heat transfer coefficient 

H is assumed, thus 

kt(~) z=+h.= H[T o - T(r,+h,t) ] 

Where To is the wall temperature. 

.• • ••. (3 -9) 
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d) The melt temperature at the entrance to the cavity, 

where r = a, is constant at TI. 

T(a, z, t) = . ....•....•. (3-10) 

Also the effects of viscous heating and cool ing in the runner 

are ignored, 50, that the temperature TI is the same as the 

melt temperature in the injection reservoir (see section 3.2.2). 

e) The temperature profile is symmetrical around z=o • 

.aI. (r 0 t) oZ ' , = 0 ...•.•..•... (3- 11 ) 

f) The radial temperature gradient is zero in a newly 

formed volume increment near the melt front, R. 

~ (R, z, t) = o ......•.•... (3-12) 

g) ln the regions where the temperature is below the sol id-

ification temperature, TF' the velocity of the polymer is zero. 

Vr(r,z,t) = 0 for T(r,z,t) ~ TF (3- 13) 

h) ln the regions where the temperature reaches the sol id-

ification temperature, TF' heat of freezing is evolved only 

in the case of crystalline polymers. In the solidifying 

layer, the following equations hold (35). 

= Ps L de 
dt ...• (3-14) 
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= = at z = e: ....•... ( 3 -1 5) 

Where sand m refer to the sol id and melt, respectively; 

€ is the axial co-ordinate of the freezing front, and L is 

the latent heat of freezing 

i) The variation of pressure w ith t ime is known at the 

entrance to the cavity: 

p(a,t) = ...•.•.•..•. (3-16) 

Po(t) is obtained experimental1y with the help of the trans­

ducer when it is positioned at the entrance to the cavity. 

The ent rance rad i us, a, i s equa l to the rad i a 1 dis tance be­

tween the centre of the cavity and the centre of the trans­

ducer at the entrance position. 

j. The pressure at the melt front, R, is equal to atmos­

pheric pressure: 

P (R , t) = •.•••••••••• ( 3 - 17) 

The volumetrie f10w rate is defined as fo110ws: 

h 
Q( r,t) = 2 S 7rr V r( r,z,t)dz ..•.•.•••..• (3- 18) 

o 

A1so, the incremental time, 6t, that is required for the 

advancement of the front from R1 to R2 is given by: 
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6t = ..••••.•••.• (3-19) 

ln the cases where the me1t is treated as a com-

pressible flu id, either an equation of state or a P-V-T 

diagram is used to relate temperature, pressure and density. 

The equation of state has the form (36): 

(p + w) (V - b) = ...•....•... ( 3 -20) 

Where w, b and Re are constants characteristic of the polymer 

and V is the specifie volume. Equation (3-20) is val id on1y 

for the me1t reg ion. ln order to extend the compressible 

f1uid treatment to the regions close to the freezing tempera­

ture and be10w it, a P-V-T diagram is emp10yed (27,30). 

The above analysis of the filling stage may be 

applied to any plastic material. If the po1ymer is amorphous, 

boundary conditions (3-14) and (3-15) are omitted. If the 

polymer is assumed to be an incompressible fluid, the density 

in equation (3-4) is omitted, and the equation of state (3-20) 

is not used. Otherwise, for the general case of a crystal1 ine 

compressible f1uid, all the equations are needed. 

The filling stage, as analyzed above, results in a 

mixed problem, with moving boundaries. The continuity equa­

tion (3-4), momentum equation (3-5) with boundary conditions 

(3-7) and (3-8) result in a boundary value problem in the axial 
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direction (z), and a two point boundary value problem in the 

radial direction as a result of boundary conditions (3-16) 

and (3-17). The energy equation (3-6) and boundary conditions 

( 3 -9, ( 3 -1 0), (3 - 11 ) and (3 - 1 2) r es u l tin an i nit i a l va lue 

problem in the axial and radial directions. As the melt 

advances in the cavity the flow boundary in the radial direction 

moves, in addition the solidification that takes place results 

in another moving boundary in the axial direction. 

The mathematical complexity inherent in the above 

equations and the fact that these equations are coupled through 

the dependence of the material properties on temperature, 

makes the ana1ytica1 solution to the fill ing stage impossible, 

thus numerical methods were emp10yed with the help of a 

digital computer. 

3.1.2 Dimensiona1 Analysis 

For the sake of general ity, a dimensional analysis 

has been carried out. The following dimensionless terms are 

def ined: 

r-l(· = r/Ro V* = V IVe 

z* = z/h P* = P IP f 

t . Ve T - T 
t* T* 0 = h = - T T , 0 

.t 
V = (1' f/Pm) 2 Ar = h/Ro e 
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Where Ro is the radius of the cavity, h is half thickness of 

the cavity, P and T are the pressure and temperature, respec­

tively, Pf is the experimentally measured pressure at the 

entrance to the cavity at the end of fill ing, and Pm is a 

reference density. To and T, are the wall temperature and the 

temperature at the entrance to the cavity, respectively. It 

should be emphasized that since compressibil ity is taken into 

account only in the continuity equation, this analysis is 

val id also for the case of a compress ible fluid, in spite of 

the fact that a reference density is involved in the definition 

of Ve . By employing the above definitions, the equations of 

chari~e take the following forms: 

Continuity: ~ (p.V*. r*) = o •••••••••••. ( 3 -2 l ) 

Motion: Since ~~: t f(z*), the equation of motion is inte­

grated to give: 

~ 
Ar ar* = 

Ene rgy: aT* A V* aT* 
ot* + r 2}r* 

l l -;:..V* n 
R e z* [( 2) z* ) ] •.•.•..... (3-22) 

= l a2T* + Br ( aV*) n+ l 
Pr·Re ~z*2 pr x Re ~z* 

••••••••.• (3 -23) 

ln the above equations, the fOllowing dimensionless groups 

have to be defined: 



-47-

2-n hn 
Ve Pm 

Re = M 

M C h 1- n 

pr = Q 

k V 1-n 
t e 

M V l+n h l-n 
e 

Br = 
Kt (T, - T 0) 

The boundary conditions take the following forms: 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

V* (r, .±.l, t*) = 0 • ........•..•. ( 3 -24 ) 

~~: (r*, 0, t*) = 0 • •••.•..•.•.•. ( 3 -2 5) 

( aI:) 
;:,z z*=+ 1 

H x h = [-T-l(-(r*,+l,t*)] 
kt 

.•.••.•• ( 3- 26.) 

T-X- (a* , z-l(- , t-l(- ) 

àT* ( r* , 0, t*) 
oz* 

iJT* (R*, z* t*) 
;:,r* 

, 

V*( r* ,z* , t*) o 

= 1 

= 0 

= 0 

for 

-l(­
aTm 

• .••••••.•.••. ( 3 -27) 

••.•.•..•.•.•• (3-28) 

· ••••.•.•.•..• (3-29) 

* T*( r-l(-, z*, t"*-) :=: TF •••• (3-30) 

Ps • L . Ve . h d8* 
= (-) 

az* Z*=8* Ks{T, - To ) dt* 

.••••••••••••• (3-31) 



i) 

j) 

K) 
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T* = T* = T* at z* = 8* •..••••... (3-32) 
s m F 

p* (a* , t*) = p*(t*) ...••.•.•. (3-33) 
0 

p* (R* , t*) = P:tm ...•.•.... (3-3 4) 

l .0 

Q*( r*, t*) = 2 \' 7f r* V* ( r* ,z* , t*) d Z°)(­

.J 
.••••. (3-35) 

o 

6t* •.•••••••• (3-36) 

3.\.3 Difference Eguations 

The set of partial differential equations (3-21), 

(3-22), (3-23) together with the boundary cond itions and 

other equations(3-24)-(3-36) are solved simultaneously by 

numerical techniques. The standard finite difference repre­

sentation is used for this purpose. Briefly, the method re­

places partial derivatives by finite difference approximations. 

Thus the set of differential equations is replaced by a set 

of algebraic equations, which may be solved simultaneously with 

the aid of a digital computer (37,38). Finite difference 

representation may be accompl ished by either an expl icit or 

an impl icit scheme,with varying degrees of accuracy. In 
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general, impl icit schemes are stable in nature but expensive 

to use, since iteration procedures are usually involved. 

Expl icit schemes have the disadvantage of l imited stability. 

Various methods have been used in order to improve the 

stabil ity of explicit schemes. 

The first step, in the numerical solution, is the 

construction of a network as in Figure 3-1. It consists 

of ~oints in r direction and J,;' po ints in z :1 i rect ion. 

A radial increment, 6r, and axial and time increments 

6z and 6t are defined, respectively. F inite difference 

equations are written for each point in the net. Since the 

energy equation (3-23) represents an unsteady-state situation, 

one may write all second derivatives in Saul'yevls manner 

(39) . Thus it is possible to employ an expl icit and stable 

scheme for computation. All other derivatives have been 

centered,whenever possible. For the derivativès in the radial 

direction the average of the forward and backward differences 

have been used. 

Equations (3-21) and (3-22) are wri~ten in differ-

ent forms for the convenlence of computation. First, equation 

(3-22) is integrated with respect to z* to give: 

~P* lIn 
V*( r~ ,z*, t*) = (à r*) x Il .•.•••• ' ••. ·(3-37) 



'-50-
FIGURE 3-1 
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z* 

Where = ( z* Ar. Re) lin d z* 

z* = l .0 

From equation (3-21) one may write the mass flow rate, Qm' 

as follows: 

z* = l .0 

Qm ( r* , t* ) = 2 ,~ 71" r* p ( P , T ) V * d z* 

z-)(-=O 

Subst itut ion of (3-37) results in: 

z*= l .0 

.•••.• (3-38) 

p* lin 
= 271"r* x (~) x \ p(P,T) x '1 x dz* 

z;/=O 

and final1y: 

èP* 
ar* 

Qm (r*, t*) 
= [--~".......,,------ ] 

z*= 1 .0 

271" r* \ p (P , T) x 

z*=O 
'1 x dz* 

••••.• (3-39) 

n 

.••••• (3-40) 

The integrals that appear in equations (3-37), (3-39) have 

been obtained numerically by employing the "Extended Trape­

zoidal Rule" (40). Equation (3-40) is written in the 

following difference form: 

* * p( i) = p( i-l) 

Q n Q n 

{
mm .} 

- [-- + [ ] 
'2( i) ] '2( i-l) 

6r*/2 

..•... ( 3 -4 l ) 
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This equation has been obtained by writing the 

forward difference for point (i-l) and a bacKward difference 

for point (i) and averaging the results (see Figure 3-1). 

'2 is defined in the following equation: 

z*= 1 

= 271" r* S p (p , T) x '1 x dz* 
z*=O 

The energy equation has been written in the 

following finite difference form: 

T*( i,j,K+l) = T*( i,j,k) x ~;~ - [V*( i,j,k+l)+V*( i-l,j,k+l)1/2 

x 
Ar x L\t* 
.6 r* (l + A ) x [T ( i , j , k) - T * ( i - 1 ,j ,K) ] 

+ 1 ! A [T*( i,j-1,K+l) + T*( i,j+l,K) ] 

+ Br At* [V*( i,j+1,k+l)-V*( i,j-I,k+l)Jn+1 
P r • R e ( 1 + A) 'u x 2 x 1::, z* 

•.•.••.• (3-42) 

Where A = 6t* and j as def ined in Figure 
llz*2 

; . pr . Re 

3-1 and k is the number of t ime increments e1apsed from the 

beginning of injection. 
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The boundary conditions are expressed in differ­

ence form as follows: 

a) 

b) 

c) 

used. 

d) 

e) 

f) 

V* ( i , + J, k) = 0 • •••.•...•..•.• ( 3 -43) 

v* ( i , 1 , k) = V*( i ,2,k) · ••••.••••.•••• ( 3 -44 ) 

T*( i ,+J,k) = T*( i,±.J-l,k)/(l b,z*·H 
+ kt 

. h) •• (3-45) 

ln this expression a backward difference has been 

T*(3, j, k) = 1.0 • ••••.......•.. ( 3 -46) 

T*( i, 1), k) 

T*(iR,j,k) 

= T*( i, 10, k) .....•..•.•.••. (3-47) 

= T*(iR-l, j, k) •..•.••••.•. (3-48) 

Where iR is the rad ial increment to wh ich the melt front has 

reached. 

g) V*( i , j, . k) = 0 for T*( i , j , k) :s:: T* ••.• (3-49) F 

h) See numerical solution in Appendix 5 .•.••• (3-50 ) 

i) See numer ica l solution in Appendix 5 •••••. (3 -51 ) 

j) P*(3, k) ·x- ( k) · •............. (3-52) = Po 

k) P·x-(i
R

, k) = p.x"atm ..•....•.•....• (3-53) 

Q*( i ,k) = 
h 

2 x ~ x [~ + h(2) + 
h 

•... + h(J-l) + ~J 
x .6z* · ........•...•• ( 3 -54 ) 

Wh e r e h ( j ) = r* • V * (i, j , k) using the '7rapezoidal Rul~~ 
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6t* = ..••.•.•.•.. (3-55) 

3.1.4 Numerical Procedure 

A computer program was set up to solve the set of 

difference equations and boundary conditions, see Figure 3-2. 

At the beginning of each time increment, the first 

and second integrals '1 and '2' respectively, were calculated 

for all points occupied by the flowing melt. To be exact, '2 

should be calculated within the iteration loop by employing 

the pressure values based on the corrected pressure profile 

for the density. However, it was found that the calculations 

could be simplfied, with no loss of accuracy, by employing 

the pressures based on the pressure profile which preva iled 

when the melt front was at the last radial pos)tion. Thus, 

when the melt front was at the ith radial position, '2 was 

based on the pressure profile prevail ing when the front was 

at the (i-l) position. Such a simpl ification was val id because 

the pressure variation in the cavity during the fill ing stage 

is small. The main contribution to density variation in this 

stage arises from the temperature gradients. 

The first set of calculations was conducted over 

three radial rings. These calculations were started by 

assuming a pressure drop in the first ring based on a l inear 



FIGURE 3-2 

COMPUTE.R FLOW DIAGRAM-FILLING STAGE 

Start 

Correct Pressure No 

Drop 

Compute Integrals 

11 ' 12 

Compute Mass 
Flow' Rate 

Eq. 3-39 

Compute Pressure 

Eq. 3-41 

Compute Yelocit ies 

Eq. 3-37 

Compute Flow 
Rate 

Eq. 3-54 

Compute Time 

Eq. 3-55 

ompute Temperature 

Eq. 3-42 

Ves 

End 



-56-

pressure profile between the entrance radius and the melt 

front. Thus, the mass flow rate at the first radial ring 

was calculated by equation (3-39). This mass flow rate 

was then employed sequentially in equation (3-41) by 

coupl ing with the available corresponding values of ' 2 to 

calculate the pressure at the remaining radial positions. 

When the melt front was reached,the pressure value was com­

pared to boundary condition (3-53) - atmospheric pressure. 

If the pressure was off, a new pressure gradient was assumed 

for the first radial ring. The procedure was continued until 

the pressure at the melt front agreed with atmospheric pres­

sure to two decimal places. 

The sequence in which the pressure drop in the 

first ring was selected was as follows. In the first calcu­

lation, a linear pressure profile was assumed as outl ined 

above. For the second trial, the profile was modified by adding 

or subtracting the absolute difference between the calculated 

pressure and atmospheric pressure to the third power, 

depending on whether the calculated pressure was lower or 

higher than atmospheric, respectively. Thus 

= .•..• (3 -56) 

where l\P ll is the assumed pressure drop in the f irst ring 

during the first ca'culation,l\P ,2 is the assumed pressure 

drop in the same ring during the second calculation, and APd 
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is the deviation between the calculated pressure at the melt 

front and atmospheric pressure. The one-third power was 

selected since it gave the fastest convergence. The third 

trial was a l inear interpolation between the first and 

second trials. The fourth trial was a third order interpola­

tion and so on. It was found that an average of 3-4 Iterations 

were needed. In all these procedures the properties were 

chosen to be the same as those prevail ing for the temperature 

and pressure distributions establ ished in the previous cycle. 

After the pressure profile was calculated, the 

corresponding pressure gradients were substituted in 

equation (3-37) and the velocities at each point were obtained. 

The velocity profiles were integrated at the melt front to 

calculate the volumetrie flow rate by equation (3-54). 

Equation (3-55) gave the time needed for the front to tra­

verse the corresponding ring. At this point, velocities were 

substituted in the energy eguation (3-42). Thus, the new 

temperature profile was calculated for all points occupied 

by the melt. 

As the melt advanced to a new radial ring, the pro­

cedure was repeated, while previous calculated temperatures 

and pressures served as the Ilinitial conditions" at each point 

and for calculation of the integral '2. This procedure was 

continued till the melt front hit the boundary of the semi-
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circular cavity. F ill ing was started from the fo~rth radial 

ring, as the entrance radius was located at the second ring 

and since at least three points are needed for the iteration 

procedure. However, calcu1ations were started from the 

entrance radius of the cavity. 

The output of the computer program, gave the pres­

sure, velocity and temperature profiles, time elapsed, 

position of the front and f10w rates. 

Berger and Gogos (10) and Gee and Lyon (41) 

solved numerica11y a two-point boundary value problem. They 

iterated on the flow rate, as theysolved the simultaneous 

difference equations by "Gauss Seidel Iterative Method" (42). 

ft was felt that the present iterative method employing 

successive higher iterpolation polynomial for the unKnown 

pressure directly, was simpler to use. 

3.1.5 Stabil ity. Convergence and Unigueness 

Finite difference approximations, which replace 

partial derivatives, are subject to uncertainty as a result 

of factors relating to the stabil ity, convergence and unique­

ness of the mathemat ical scheme (43). However, it is d iff icul t 

sometimes to distinguish completely between these three terms. 

Since the set of equations (3-4), (3-5) and (3-6) 

are non1 inear in nature, and since the system has moving 

boundaries, it is not possible to follow the ana1ysis that is 
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appl icable for cases where the coefficients and boundaries 

are constant (44) in order to obta in the relat ions for the 

time and spa ce increments that lead to a stable numerical 

scheme. Consequently, the trial and error method has been 

used. Examination of the difference equation (3-42) would 

suggest that the dimensionless coefficient A plays a role 

in the stab il ity problem. As ind icated earl ier, Saulyev' 5 

representation of the second derivatives has been employed. 

It can be shown (39) that Saultyevts method is unconditionally 

stable for the case of a pure parabolic partial differential 

equation. However, this is not true for the present problem, 

where additional terms of convection and viscous heating are 

present. Since these terms are large in comparison with 

the conduction term, instabilities are encountered. In order 

to overcome these difficulties it has been found thât the 

condition: 

N = 
~t* . V*( a*) Ar 

( l + A) ~ r* < 1 .0 ....•.. (3 -57) 

must be satisfied, as the convection term is the largest one. 

To achieve this, the time already determined by equation (3-55) 

is divided into additional time increments to satisfy (3-57). 

No instabil ities have been detected in the pressure 

iteration procedure, unless the velocities computed during the 

iteration are bigger than unity. This situation will not ar ise 

due to phys i ca 1 imposs ib i l i ty. 
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Convergence of the numerical solution can be tested 

Lü* = 6t* 
by varying 6z*, 6r*, ~ = ----2 ,v 6r*" A valid solution 

6z* 

must converge as the se values decrease. The effect of the 

space Increment 6z* was tested in equation (3-37) and com­

pared with the analytical solution for the isothermal flow of 

a Power Law fluid with n = 0.5. Three sizes of space inere­

ments were used 0.2,0.1,0.05. It was found that the differ-

enee between the analytical and the numerical solutions varied 

on1y in the third significant figure as ean be seen in 

Table 3-1. 

The convergence of the pressure iteration procedure 

was tested on the analytical solution for the pressure profiles 

of an isothermal flow of an incompressible Power Law fluid 

between circular dises. The analytieal solution is given by 

the following equation: 

P *( r*) = P* atm + (1 - P*atm) x l 1-n 
( - r* ) 

l - a* I-n 

•.•••. (3 -58) 

Two different numerical schemes were tested, the average of 

the.forward and baeKward differenees as given by equation 

(3-41) and the bacKward difference given by: 

= . • •. • . (3 -59) 
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TABLE 3-1 

COMPARISON BETWEEN ANALYTICAL AND NUMERICAL VELOCITY PROFILE 

n = 0.5, 6Z* = o. 1 

.--E Analytical* Numer ical* 

.000 0.000 .000 

. 100 .271 .270 

.200 .488 .487 

.300 .657 .657 

.400 .784 .784 

.500 .875 .874 

.600 .936 .937 

.700 .973 .974 

.800 .992 .992 

.900 .999 .999 

1 .000 1 .000 1 .000 

* All values are norma1ized 
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Table (3-2) shows the results given by these two 

schemes compared with the analytical ones. As can° be seen 

from Table (3-2) the average representation gave a faster 

convergence. In all cases 10 Increments were used in the 

axial direction. Uniqueness was establ ished, as the calculated 

pres~ure profiles with 6r* = 0.025 (1 = 41) agreed to two 

significant figures with those predicted by the analytical 

solution. Convergence was achieved by increasing the number 

of the radial Increments. As can be seen from Table (3-2), 

the pressure gradients calculated numerically are greater 

than the analytical ones at large radii and are smaller at 

radii close to the entrance. As a result flow rates cal­

culated from the entrance pressure profile will be smaller 

th an those calculated from the melt front region profile. 

This may have an effect on the calculated fill ing times, as the 

flow rate is introduced through equation (3-55). Thus a 

few runs have been made using flow rates calculated on basis 

of the entrance region and the melt front, respectively. Re­

sults have indicated that the differences in the fill ing 

diagram (see section 3.2.3) deviate by less than 1%. 

Convergence of the energy equation was tested by 

varying the value for N = l, ~ ~ 
2,4· The resu1ts for N = 

and * agreed to within 2 decima1 places. 

Since it was found that the computing time was 

squared when the number of mesh points was doubled, a compro­

mise is needed between convergence properties and accuracy 



r* 

ANALYTICAL 

6r*=0.2 

6r*=0. l 

6r*=0.05 

6r*=0.025 

TASLE 3-2 

COMPARISON SETWEEN ANALYTICAL AND NUMERICAL SOLUTIONS FOR PRESSURE PROFILES 
Pf = 500 psi, n = 0.5 

Al 

S2 

Al 

S2 

Al 

S2 

Al 

S2 

O. 1 0.2 0·3 0.4 0·5 0.6 

~914 .745 .615 .505 .409 .322 

.772 .532 .337 

.791 .547 .345 

.932 .758 .627 .515 .418 .329 

.943 .761 .634 .524 .425 ·335 

.923 .751 .620 .509 .412 .324 

.930 .757 .628 .517 .419 .330 

.915 .746 .615 .506 .409 .322 

.917 .751 .622 .512 .414 .326 
- - -- - - --

Al - average of backward and forward differences 

S2 - backWard difference 

0.7 0.8 0.9 

.241 · 167 .0960 

· 174 

· 179 

.247 · 170 .0975 

.251 · 173 .0990 

.243 · 168 .0970 

.248 · 171 .0985 

.241 · 167 .0964 

.245 · 169 .0974 

1.0 

.030 

.030 

.030 

.030 

.030 

.030 

.030 

.030 

.030 

1 

1 
0\ 
W 

1 
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desired. Following this reasoning, 20 increments in radial 

direction, 10 in axial direction and a val ue of N = 1.0 were 

chosen as an optimal compromise. All results were based on 

these values. 

The proof of uniqueness of the numerical solution is 

always difficult, when introducing a new numerical solution 

to a problem which does not have an analytical solution. 

Usually the standard procedure is to compare a numerical 

solution to the closest analytical one available. As shown 

earlier, the numerical solution to the momentum equation alone 

gives a unique solution for the velocity and pressure pro­

files, see Tables 3-1 and 3-2. The uniqueness in the physical 

sense can be tested by experiments which is the objective of 

the present worK. 

3.2 RESULTS AND DISCUSSION 

Theoretical and experimental results were obta.ined 

for high density polyethylene (H.D.P.E.) and polystyrene at 

different injection pressures and melt temperatures. In all 

cases, the mold temperature was Kept at 80oF. Twelve cases 

will be analyzed in detail, eight for polyethylene and four 

for polystyrene. In addition, two short shots are demonstrated, 

one for each resin. The injection conditions employed are 

given in Table 3-3. 
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TABLE 3-3 

INJECTION CONDITIONS FOR EXPERIMENTAL PROGRAM 

Case 

l 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Me1t 
Resin Temperature Pressure 

'(OF) (ps i) 

P . E . 350 350 

P . E . 350 450 

P . E . 350 500 

P . E . 350 650 

P . E . 400 250 

P.E. 400 300 

P . E . 400 400 

P . E . 400 450 

P .S . 450 475 

P . S . 450 550 

P • S . 450 525 

P .S . 450 500 

P . E . 350 300 

P . S . 450 600 

*P f - pressure at the entrance to the cavity at the 

end of the fi11 ing stage, as determined 

exper imental1y. 

P f* 
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The lower l imit of injection pressure was selected 

so that the fill ing time did not exceed two seconds. It was 

found that a filling time of more than three seconds resulted 

in a rough and rippled surface, a situation that could in­

troduce inaccuracies in the theoretical treatment due to 

disturbed heat transfer at the interface between the polymer 

and the wall. The upper 1 imit for pressure was determined 

by the characteristics of the injection molding machine. 

The cavity could not be filled in Jess than 0.45 seconds. 

The temperature range for molding was determined by the flow 

properties of the resins. Two melt temperatures were chosen 

for polyethylene 350 and 4000 F, the common temperatures for the 

injection molding of polyethylene. 

4500 F was chosen for polystyrene. 

One melt temperature of 

At a temperature of 400oF, 

polystyrene exhibited melt fracture at relatively low shear 

rates, as could be seen also in Appendix l, section 9.1. At 

a temperature close to 5000 F, the resin employed in this study 

exhibited discoloration (yellowing) apparently due to 

degradation. The mold temperature of 800 F was chosen, since 

the corresponding high speed photography experiments were per­

formed at room temperature for reasons discussed earlier. 



-67~ 

3.2.1 General 

ln the theoret ical analys is of the fi 11 ing stage 

it was assumed that a "Spreading Radial Flow" takes place 

in a parallel feed situation. Although Spencer et al (16) 

and Bauer (17) showed that a radial flow was real ized in 

parallel feeding, they also noticed sorne deviations in their 

part icu1ar geometr ies. Therefore, it was necessary from 

the early stages of this study in a semicircular cavity to 

determine if a spreading radial flow existed and to what 

extent the front deviated from a perfect semicircle. This 

was achieved by emp10ying the automatic controls of the injection 

mo1ding machine, so that the polymer was frozen while 

the cavity was on1y partially filled. As a result, differ­

ent sizes of semicircular pieces were obtained. Although 

the moldings were rough, due to cool ing without packing, 

the frontier was a perfect semicirc1e, except for sorne 

deviation due to the wall effect close to the entrance plane 

at r = o. In arder to obtain direct experimental observation 

of the front during fil1 ing, high speed photography was 

employed. The films showed that the melt front travelled 

in a perfect radial spreading pattern, except for a small 

edge effect. Figures 3-3 and 3-4 show photographs of the 

melt front position at different stages of fill ing for poly­

ethylene and polystyrene for cases 2 and 10, respectively. 
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FIGURE 3-3 

SPREADING RADIAL FLOW IN SEMICIRCULAR CAVITY 

CASE 2 
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FIGURE 3-4 

SPREADING RADIAL FLOW IN SEMICIRCULAR CAV ITY 

CASE 10 
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3.2.2 Boundary Conditions 

An important factor for the relevance of the pro­

posed theoretical model and numerical procedure is the assign­

ment of accu rate and practical values for the boundary 

conditions. 

It has been shown in the experimental measurements 

by Bauer (17) that it is not possible to obtain a constant 

injection pressure at the injection end throughout the 

fill ing stage,due to the start-up time required before a 

constant pressure can be reached. Furthermore, the presence 

of the nozzle, channel s., sprues and gate between the reser­

voir and the cavity causes substantial pressure losses be­

fore the melt reaches the cavity. Barrie (45) points out 

that these losses may exceed 50% of the pressure at the 

injection end. The complexity of these effects, coupled with 

swell ing and other viscoelastic effects at the entrance to 

the cavity, makes it difficult at this stage to treat the 

cavity, nozzle, channel and gate as one system in the manner 

proposed by Berger et al (10). In an attempt tO.test the 

proposed filling model while avoiding the above complications, 

the boundary conditions relating to pressure at the entrance, 

equation (3-33), have been based on actual pressure values 

as measured experimentally at the entrance to the cavity. 

Experimental pressure time curves for the entrance are shown 

in Figure 3-5 for polyethylene and Figure 3-6 for polys~yrene. 
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For reasons of convenience in the calculation procedure, 

the time axis has been converted to a distance (radial) 

axis in the computer program, using the experimental fill ing 

time curve. 

Some inaccuracies may be associated with boundary con-

dition(3-2~ which assumes that the melt temperature at the 

entrance to the cavity is constant and equals the melt 

temperature at the nozzle. Some cool ing may take place 

during the flow of the melt in the cooled channel. The 

effects of this cooling may be at least part ially offset 

by the viscous heating effect due to high shear rates. 

However these effects are not considered to change the tem­

perature of the melt to a large extent, since the residence 

time of the melt in the channel isvery short, as the 

volume of the channel is only 2% of the cav,ity volume. 

The effect of the melt temperature on the fill ing time is 

discussed in Chapter 7. 

The validity of boundary condition (3-26) which 

assumes a constant heat transfer coefficient between the 

melt and the wall is discussed in Chapter 7. 

The assumption of a constant wall temperature has 

been checked by the thermocouple installed in the trans­

ducer. It has been found ~hat the average maximum tempera­

ture rise of the wall is 200 F. Such an increase is not ex-

pected to change the results to a large extent, as will be 

shown in Chapter 7. 
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Atmospheric pressure at the melt front, boundary 

condition (3-34) was maintained by install ing thin shims of 

0.003 inch thickness between parts 3 and 4, see Figure 2-2, 

and checked by the pressure transducer. The recorded 

pressure curves indicated that atmospheric pressure pre­

vailed from the beginning of the filling stage until the 

melt touched the transducer. 

3.2.3 Fill ing Times 

Figures 3-7 to 3-14 give the distance travelled 

by the melt as a function of time for polyethylene, and 

Figure 3-15 to 3-18 give the same representation for poly­

styrene. The experimental curves were obtained as exp1ained 

earl ier by the pressure transducer. For comparison, the 

results obtained from high speed photography are given for 

the same injection conditions, when available. In all cases, 

the fill ing time obtained by the photographie technique is 

shorter than that obtained from the pressure transducer 

results. This is attributed to the different thermal pro­

perties of glass and steel. The thermal conductivity of 

steel is 11.7 Btu/oF/ft/hr (46) while that of glass is on1y 

0.55 Btu/oF/ft/hr (47), thus higher temperatures and lower 

viscosities tend to prevail in the high speed experiments. 
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FIGURE 3-8 

PROGRESSION OF MELT FRONT 
CASE 2 

1.0 1.0 

.9 .9 

.8 .8 

.7 . / .7 
/ z 

0 

.6 .6 1-
,--.... U 

* « 
ct:: ct:: ---..-

.5 .. .5 l.J.... 

w 
u w 
z ~ « .4 THEORETICAL .4 ::J 
1- -' 
(/) 0 

EXPERIMENTAL > 
Cl -------.3 PHOTOGRAPHY .3 

+ EXPERIMENTAL 
.2 TRANSDUCER .2 

_._-_.- VOLUME 

• 1 • 1 ., ........... 
.0 .0 

.0 • 1 .2 .3 .1+ .5 .6 .7 .8 .9 1.0 

TIME (SEC) 



1.0 

.9 

.8 

.7 

-te 
0:: .6 -LIJ 
U 
z .5 
;! 
~ 
0 ~4 

.3 

.2 

.1 

.0 
.0 .1 .2 

-77-

FIGURE 3-9 
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FIGURE 3-11 
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FIGURE 3-12 
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FIGURE 3-13 
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FIGURE 3-15 
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FIGURE 3-16 
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FIGURE 3-17 
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FIGURE 3-18 
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Some inaccuracies in the time-distance curves obtained by the 

pressure transducer are expected, since the active diameter 

of the transducer is about 6.3% of the cavity radius. 

Therefore, transducer data are reported in terms of a range 

of values rather than as discrete points. 

A comparison between the experimental results and 

theoretical predictions shows that the proposed model can 

predict the obvious need for longer fill ing times as either 

the melt temperature or injection pressure is decreased. In 

most of the cases, both for polyethylene and polystyrene, 

the plot of volume fraction filled versus time shows a 

deflection point, which indicates a maximum in the flow 

rate. In general, this curve has an extended S shape. This 

is due to increasing pressure gradients in the cayity at 

the initial stages of fill ing, and to rncreasing difficulty 

in filling at later stages as a result of cool ing and 

so l id if i ca t ion. 

All cases show a significant deviation between 

the predicted and experimental rates of fill ing during the 

early stages of filling. The deviation decreases as the melt 

progresses in the cavity. It is felt that the main source 

of error in the early stages is related to the sudden entry 

of the melt from the channel to the empty cavity, where 

factors 1 ike die swell and pressure loss due to the sudden 

change in cross sectional area for Flow are very important. 
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ln addition to that, as poirited out in sect.ion 3.1.1, the 

partial derivative of the· radial velotity with respect to 

the radial direction times the velotity wasneglected. 

The value of this term in the entrance region maybe large 

and contribute to the deviations observed at the initial 

stages of fill ing (see Appendix 7). Accordingly, the 

calculation procedure has been modified, so that the very 

early stages of filling are ignored. In the new procedure, 

calculations start only after the front has reached the 

dimensionless radius of 0.2. The experimental measured 

time corresponding to this position istaken.as the zero. 

time for the momentum equation. The original zero time is 

used for the energy equation, in order to take into account 

the thermal effects from the beginning of fill ing. Figures 

3-8 and 3-16, show that the agreement b~tween the experi­

mental and predicted modified results is better, for poly­

ethylene and polystyrene, respectively. 

Another factor which may account for the difference 

between the expe rimenta l and ca 1 cul ated resu l ts, i s the 

pressure loss in radial flow due to the extensional stresses 

acting on the melt as it ~oves from smal.ler to larger radii. 

Cogswell and Lamb (48) have attempted to include this effect· 

in the analysis of a simpl ified flow system where the condi­

tions are assumed to be isothermal and the fluid obeys the 

Power Law. It can be shown, see Appendix 6, that the pres­

sure gradient for the above conditions cohsists of two con­

tributions: the shear contribution 
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= M x Cl x _1 
rn ....... ' ........ (3-60) 

where M is the consistency index and Cl is a constant inde­

pendent of r; and the hoop contribution 

~ ............•. (3-6l) 

~here ~ is the constant extensional viscosity and C2 a 

constant independent of r. 

From equations (3-60) and (3-61), it cao be seen 

that during the early stages of fill ing, when the radius 

of the melt is sma1l, the pressure losses due to extension 

would be large compared to the shear losses. Thus the pres­

sure which is ut'il ized to advance the front (shear stress) 

in the radial direction would be lower, and consequently 

the melt would be slowed down. The relative importance of 

pressure ,losses due to v iscous flow and to extens ion var ies 

depending on the melt radius. The viscous 1055 becomes the 

dominating factor at large radii where the relative change 

in radius is sma11er. The effect of the extensionallosses 

(called sometimes also hoop losses) will be demonstrated 

once more, in the comparison between the experimental and 

theoretical pressure profiles. It is not possible to give 

an accurate treatment of extensional effects for the present 

flow system, due to lack of a satisfactory constitutive 

equation. 
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It is interesting to consider the effect of 

assuming constant polymer density (incompressibility) during 

the fill ing stage. The assumption of incompressibil ity is 

made by most workers in the field. Figures 3-19 and 3-20 show 

that the incompressible fluid gives shorter fill ing times 

than the corresponding compressible fluide Thus the devia­

tion from experimental results becomes larger with the 

assumption of incompressibil ity. This may be due to the 

presence of large temperature gradients in the cavity both 

in the radial and axial directions. Lower temperatures exist 

in the front reg ions, as will be shown later. The large 

temperature differenees between the entrance and the melt 

front cause, at any instant, a difference between the volu­

metrie flow rates in these reg ions. The volumetrie flow 

rateat the front is lower than the correspond ing flow rate 

at the entrance. Since the volumetrie flow rate at the melt 

front is responsible for filling the empty part of the cavity, 

as given by equation (3-36), the compressible treatment re­

sults in slower fill ing rates than the treatment based on the 

assumption of incompressibi1 ity. 

The effect of latent heat on the fi 11 ing t ime, i s 

given in Figure 3-19, for polyethylene. The comparison 

between the theoretical curves for the solution including 

latent heat and the one excluding this effect shows that the 

former case gives shorter fill ing time compared to the experi-
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mental curve, due to higher temperatures and lower viscosities 

as a result of generation of heat during sol idification. On 

the other hand, ignoring the latent heat yields a longer" 

filling time than the experimental value. 

3.2.4 Velocity Profiles 

Figures 3-21 to 3-24 show the velocity profiles at 

r* ~ 0.20 at different times during the fill ing st~ge, as 

defined by the position of the melt front R*, for cases 

1,3,6 and 8 respectively, for polyethylene, and Figures 

3-25 and 3-26 for cases 10 and 12 respectively, for poly­

styrene. The main observation is that the velocity at a 

givenpoint and consequently the flow rate, increase with 

increasing injection pressure and/or melt temperature. The 

calculated velocity profiles indicate that the flow rate 

decreases with time, due to decreasing pressure gradients 

and the rise in melt viscosity as a result of cooling, as 

the melt progresses in the cavity. All cases show an in­

flection point in the velocity profile, close to the cavity 

wall. This may be due to lower temperatures and high viscos-

ities in this reg ion. This phenomenon is more pronounced 

in the polystyrene cases, since the activation energy for 

viscosity is more than double than that of polyethylene, see 

Appendix l, section 9.1. In addition, the velocity profiles 

are flatter, close to the centerline, for polystyrene, due 

to the lower value for the flow index, n, 0.368 for poly-
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FIGURE 3-22 
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FIGURE 3-23 
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FIGURE 3-24 
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FIGURE 3-26 
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styrene compared to 0.594 for polyethylene. 

3.2.5 Temperature Profiles 

Figures 3-27 to 3-30 give the calculated temperature 

profiles at the end of fill ing for cases 2, 4, 5 and 7 

respect ive l y, fo r po l yethy 1 ene and F i.gu res 3-3 land 3-32 fo r 

cases 9 and 11, respectively for polystyrene. The temperature 

at the centerline of the cavity appears to be unaffected, 

except for relatively long filling times, cases 5 and 9 for 

polyethylene and polystyrene, respectively. Large temperature 

differences exist in the cavity, and are responsible, as 

mentioned earlier, for the differences between the compress ible 

and incompressible solutions. With relatively long filling 

times, Figures 3-29 and 3-31, about 15% of the cross section 

is sol idified during the fill ing stage. With" shorter fill ing 

times obtained at higher injection pressure and temperature, 

viscous heating causes the temperature of the melt near the 

entrance to rise above the initial value as shown in Figure 

3-28 for polyethylene. The viscous heating effect is apparently 

stronger in the case of polyethylene than in polystyrene, due 

to the lower flow index and lower velocity gradients close to 

the wall in the cases of polystyrene. 

No tempe rature measurements have been conducted 

during the course of experiments, except for the wall tempera­

ture. Temperature profiles at the wall are given for a few 
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FIGURE 3-28 
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FIGURE 3-29 
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FIGURE 3-30 
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FIGURE 3-31 
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FIGURE 3-32 
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cases in Figures 3-33 to 3-35. The maximum temperature rise 

at the wall is about 200 F, a fact that could have a small 

effect on the fill ing stage, as discussed in Chapter 7 .. 

Barrie (19) attempted to estimate the solid skin 

content of the polymer at the end of fill ing. He appl ied 

the heat conduction equation and obtained poor agreement 

between the experimental and calculated values, with the 

former being lower. As shown in the above discussion, vis­

cous heating effects and convective heat transfer, should 

be taken into account. This may explain the lack of agree­

ment in Barrie's approach. 

3.2.6 Pressure Profiles 

Figures 3-3G to 3-47 show the experimental values 

and calculated pressure profiles at the end of filling stage 

for polyethylene and polystyrene. The experimental measure­

ments are subjected to errors due to the area of the pressure 

transducer, which accounts for 6.3% of the cavity radius, 

and to the non-isothermal conditions at the wall which are 

estimated at l psi/oF. The effects of these variables are 

discussed in detail in Chapter 7. 

Generally, larger differences in temperature be­

tween the entrance and the front result in lower pressure 

gradients close to the entrance and greater ones close to 

the front, compared with the isothermal case. This is due 
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to higher viscosities in the low temperature regions. 

Temperature effects together with sol idification that takes 

place close to the front, result in a def1ection point in 

the pressure profile. This may ~e due to the large increase 

in the pressure drop as the front temperature and the cross 

section available for flow are decreased. These effects are 

1arger for polystyrene cases due to the large activation 

energy for viscosity AE/Rg= 5910 l/Ko while that of poly­

ethylene is .only 2300 l/Ko . A relatively smal1 change in 

temperature wou1d cause a large change in viscosity in the 

former case. The calculated pressure profil~s for po1ysty­

rene exhibit less curvature than the corresponding profiles 

for polyethylene, due to the lower flow index in polystyrene 

cases. The effect of the melt flow index may be seen clearly 

in equation (3-58). 

As can be seen from all the cases, the experimenta1 

values lie always below the calculated curve, and deviations 

are larger close to the entrance of the cavity. ft is gener­

ally agreed that dissipative phenomena occur at the entrance, 

which may result in lower measured values. As mentioned be­

fore, the elimination of the extensional stresses and the 

non-linear term from the theoretical treatment may contribute 

to the large differences at small radii. 
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3.2.7 Short Shot 

A partia1ly fi1led cavity may be obtained at the 

end of the fill ing stage if 10w injection pressure and/or 

low me1t temperature are employed. These conditions result 

in the solidification of the flowing melt before it reaches 

the boundary of the cavity. 

The theoretical mode1 for the fil1ing stage was 

successful in predicting a short shot. Two short shots 

were performed experimentally: one for polyethylene and 

one for polystyrene. 

Figures 3-48 and 3-49 give the calculated fill ing 

diagramsfor the two cases, respectively. Experimentally, 

the short shot for polyethylene occurred after 18.5 seconds and 

the melt reached the radius of 2.5 inches (measured after 

cool ing) while the calculated result gave 13.0 seconds and a 

radius of 2.1 inches. For polystyrene, the Experimental short 

shot was obtained after 14.2 seconds at a radius of 2.9 

inches, while calculations showed a short shot of 2.7 inches 

at a time of 9.9 seconds. The difference between the experi-

mental and calculated results are reasonable considering the 

fact that slow fill ing, above 3 seconds, results in a rippled 

surface that may change the heat transfer conditions at the 

interface between the melt and the wall. 

Figure 3-50 and 3-51 show the corresponding tempera­

ture profiles at the end of the short shot for polyethylene 

and polystyrene, respectively. As can be seen in Figure 3-50 
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FIGURE 3-49 
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FIGURE 3-51 
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the centerl ine temperature 1 ies below the freezing tempera­

ture of the resin and according to equation (3-13) fill ing 

is stopped at this point and a short shot is obtained. For 

polystyrene, Figure 3-51, the centerl ine temperature 1 ies 

above the freezing temperature at the end of the predicted 

time for a short shot, as distinct from the former polyeth­

ylene case. This is due to the large viscosity activation 

energy for polystyrene. At the predicted time for the short 

shot the computer showed a very small flow rate that resulted 

in a very long time for advancement of the front to the 

next rad ia 1 increment. Th is t ime exceeded hal f an hour. At 

this time the temperature would have dropped well below the 

freezing temperature. 

3.2.8 Melt Fracture 

As shown in Appendix l, melt fracture for poly­

styrene occurred at 1800 c at a relatively low shear rate 

(400 l/sec) in the Instron Capillary Rheometer. Similarly, 

melt fracture conditions were observed with polystyrene when 

it was injected to the cavity. Under these conditions, the 

pressure recorded at the entrance to the cavity showed 

fluctuations of about 150 psi. The recordings at the other 

three positions were smoother, but still some fluctuations 

could be detected. An attempt was made to "smooth" the pres­

sure curve at the entrance and ta solve for the fil 1 ing stage, 
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but the deviations were large. For example, molding conditions 

that gave an experimental fil 1 ing time of 0.7 seconds yielded 

a theoretical fil 1 ing time of 2.1 seconds. However, an exam-

ination of the molded article did not reveal any irregularities 

in its appearance. On the other hand, examination of the 

high speed films produced under melt fracture conditions in­

dicated irregular, interrupted flow at regions close to the 

entrance of the cavity, these disturbances vanished at larger 

radii. An attempt was made to develop still pictures from 

the movies, inorder to demonstrate this phenomenon. However, 

the still pictures did not givea good representation of 

this effect which could be seen clearly from the continuous 

movies. 

3.2.9 Summary 

1. Spreading radial flow taKes place in the parallel feed 

situation of this study. 

2. Good agreement is obtained between experimental and 

theoretical fill ing times, except for deviations at 

the beginning of fil 1 ing due mainly to extensional 

stresses and entrance effects. 

3. Compressible fluid treatment of the melt, results in 

longer fill ing times compared with the incompressible 

treatment. 
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4. El imination of latent heat of freezing in the case of 

crystall ine polymers results in longer fi 11 ing t ime 

compared with the solution that includes this effect. 

5. Large temperature gradients exist in the cavity at the 

end of fi 11 i ng • 

6. Good agreement is obtained between experimenta1 and 

calculated pressure profiles, except near the entrance 

where large deviations are observed, due to the 

el imination of extensional stresses and entrance effects 

from the theoretica1 treatment. 

7. The filling model is able to predict a short shot. 

8. Me1t fracture was observed both photographically and 

by pressure measurements. 
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4. PACKING STAGE 

4.1 THEORETICAL ANALYSIS 

4.1.1 Equations and Boundary Conditions 

According to the proposed packing mode1, the poly­

mer melt flows from the reservoir at the injection end 

through the nozzle and channel into the mold cavity by virtue 

of the difference in pressure between the cavity and the reser­

voir. Since the cavity is filled with polymer, the driving 

force for flow in the nozzle and channel is assumed to be the 

di f fe rence between the pres su re in the rese rvo i r and the 

average pressure in the cavity, Pa, the latter is defined by: 

pa( t) = l _ x 

7TR~/2 
P(r,t)7Trdr ..••• ( 4-1 ) 

o 

Where r is the radial distance from the entrance of the cavity 

to the point under consideration, Ro is the radius of the 

cavity; P is the pressure and t is the time elapsed from the 

beginning of packing. 

At the beginning of the packing stage, the flow 

rate Qo is assumed to be equal to that at the end of fill ing 

stage as given by the following equation: 

h 

Qo = 2 S 7Tav~a,z,o)dz 
o .. 

...•.•.••. ( 4 -2) 
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Where a corresponds to the radius of the entrance to the 

cavity, z is the height of the point under consideration above 

the mid-plane of the cavity, and h is the half thickness of 

the cavity. Subsequently, the flow rate Qt at a given time 

t, is obtained by assuming that the melt obeys the Power 

Law. Thus 

= .............. (4-3) 

Where 6Po and 6P t are the differences between the pressure in 

the reservoir and the cavity at time zero and t, respectively, 

and n is the Power Law exponent for the melt. 

Temperature profiles in the cavity are obtained 

from the heat conduction equations with phase transformation 

(for crystalline polymers only) neglecting convective heat 

transfer. ft is assumed that heat is conducted only in the 

z direction since Ro/h = 48. However, temperature is different 

at different radial positions due to differences in temperature 

profiles at the end of fill ing stage. The polymer is assumed 

to have constant but different values for specific heat Cp' 

thermal conductivity ~ and density p, in the sol id and melt 

regions, for purpose of solving the heat conduction equation. 

Under the above assumption, heat conduction is 

described by the following equations: 
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ln thesolid region: 
aT s 

= h 
at a.s az2 · ••...•..•.. ( 4 -4 ) 

ln the melt region: 
r)Tm = Cl m 

h 
at 

az2 
· ..••.•••••. ( 4-5) 

Where sand m refer to sol id and melt respectively, Cl is the 

thermal diffusfvity': and T is the temperature. 

Latent heat of freezing is taken into account by 

solv ing equat ions (3-14) and (3-15). 

The following boundary cQnditions are assumed: 

a) Temperature gradient at the centre of the cavity is zero: 

fz (r,o, t) = 0 · .•••.••.••• ( 4-6) 

b) Temperature at the mold surface is held at a constant 

value To ' and a constant effective heat transfer coefficient, H, 

1s assumed between the melt and the wall cavity: 

= H [To - T( r,.±.h,t) ] ••••.• ( 4-7) 

The average tempe rature in the cavity, Ta' is defined 

as fo 110ws: 

h Ro 

T a( t) = 2 x ,\ S T ( r , z , t) 7f r " d rd z •• ( 4-8) 2 h 7fRo . o 0, 
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An average density Pa is calculated from the volume 

cavity and the mass of the polymer at each moment: 
t 

of the 

Pa = Po + ~ •..•.• ( 4 -9) 

Where Po is the initial density in the cavity at the begin­

n ing of packing: stage, Pe{T, ,Pm) is the dens ity of the melt 

at the temperature and pressure prevailing before the melt 

enters the cavity. 

The relation between the average pressure Pa' the 

average temperature Ta and the average dens.ity Pa is given 

by an equation of state, the same as equation (3-20). As a 

matter of fact, a P-V-T diagram was used instead, as in the 

fi 11 ing stage (27,30). 

4.1.2 Dimensional Analysis 

For the sake of generality, a dimensional analysis 

is" carr ied out. The follow ing d imens ionless var iables are 

defined, the same as in the fill ing stage: 

r* = rlRo P* = P/P f 

T - T 
z* z/h T* = 0 = 

T, - T 
0 

t . Ve 
t* = h Ar = h/Ro 

P 1/2 
VIJ = (2.) p* = pipo Pm 
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Where Ro is the radius of the cavity, h is half thickness 

of the cavity, P and T are the pressure and temperature of 

the melt, respectively. Pf is the injection pressure at the 

entrance to the cavity at the end of fil1 ing, Pm is a 

reference density, To and T, are the wall temperature and 

initial me1t temperature, respective1y. 

Equations 4-1 to 4-9 take the following forms by 

introducing the above definitions: 

1 
= 2 S P*(r*,t*)r*dr* .•.•.•• (4-10) 

1 
Q* = 2 S 1Ta*V* (a*, z* ,0) dz* ••••••• (4-11) 

0 
0 

Q* Q* 
6P~ . 1/ n 

.••..•••.•••• (4-12) = (-) t 0 .6p* 
0 

* 2 
oT s 

= 
a. s r! Ts .••.••••••••• (4-13) ot* Ve . h oz*2 

* 2T* oT a.m m = ~ .••.•...•••.• (4-14) 2l t * Ve 
. h oz*2 
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aT* 
ry z * (r*, 0 , t* ) = 0 .......•....• (4-15) 

( aT*) 
à Z* z*=+ 1 

,. H • h [_ T* ( r* ,.±.1 , t*) ] 
kt 

•.. ( 4-16) 

1 1 

T:(t*) = 2 S S T*(r*,z*,t*)r*dr*dz* .• (4-17) 
o 0 

= + _h_ 
'J1"R o 

t* 
\" Q*t * j Pe dt*' ......•..•. (4-18) 
o 

Equations (3-14) and (3-15) take the fo110wing 

dimension1ess form: 

_ km ar; 
ks (~z*) 

o z*=e: 
= 

Ps . L • Ve • h 

ks(T, - ro) 
d e* 
dt* 

( 4-19) 

r* = r* = r* at z* = e:* 
s m F ( 4-20) 

And the equation of state (3-20): 

p* 
a = 

r: Rc(T, - T 0) 

( * 1 _ b) 
Pa . Po 

w - Pf 

. (4-21) 
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4.1.3 Difference Equations 

The set of equations (4-1)-(4-9) together with the 

latent heat equations (3-14) and (3-15) and an equation of 

state (3-20) are solved simultaneously by numerical techni­

ques. The standard finite different representation is used. 

By fixing the number of radial and axial increments 

to equal the numbers used in the fill ing state (1-1) and 

(J-1) respectively, a radial increment, .6r, and an axial 

increment, .6z, are defined. The difference equations are given 

in dimensional variables; however some results are also 

presented, later, in dimensionless form, using the above 

definitions in section 4.1.2. 

All integrals appearing in equation (4-1), (4-2), 

(4-8) and (4-9) are solved by using the "Extended Trapazoida1 

R u l e" (40). 

The heat conduction equations are solved by using 

Saul'yev's expl icit method, thus equations (4-4) and (4-5) 

are reduced to the fo11owing forms: 

where 

l - B l 
T s ( i , j , k+ 1) = T s ( i , j , k) x 1 + B + 

1 

x 

[T s ( i , j - l , k. t)+ Ts( i , j + 1 , k) ] 

B1 ( 4-22) 
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l - 82 = T m ( i , j , k) x l + 8
2 

+ [T m ( i , j - 1 , k + 1)+~,( i , j + l , K) ] 

a. • ~t m 

x 
82 ( 4-23) 

The finite difference form of equations (4-6) and (4-7) is: 

T(i,l,k) = T(i,2,k) (4-24 ) 

and 
To 

. Al T. 2 
T(i,l) = + 1 z 

1 + Al l + Al ( 4-25) 

Al = H • ~z 
k where 

Equations (3-14) and (3-15) are solved in the same 

modified conventional method, as outlined in Appendix 5. 

4.1.4 Stabilityz Convergence and Unigueness 

The finite difference equations (4-22) and (4-23) 

and the numerical solution to equations (3-14) and (3-15) need 

to be evaluated with regard to stability, convergence and 

uniqueness. As in the fill ing stage, one seeKs the available 

analytical solution to the c10sest physical problem. No 

analytical solutions are available for the case of unsteady 

heat conduction with phase transformation in confined spaces 
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1ike a s1ab, cyl inder or sphere. The uniqueness of the nu­

merical treatment of equations (3-14) and (3-15) has been 

tested in the case of a stationary coo1ing melt in a long 

cylinder, see reference (24). 

ln order to complete the test for stability, con­

vergence and uniqueness of equations (4-22) and (4-23), an 

analytical solution (49) was compared for the numerical 

solution for the fo11owing problem: An infinite long slab 

at initial temperature T, is subjected to a step change in 

temperature,To ' at time zero. The temperature profiles as 

function of time and axial position are compared for the 

analytical and numerical cases, see Figure 4-1. Different 

values for 81 were chosen 0.1,0.5 and 0.7, but results are 

given only for 81 = 0.1. These results demonstrate that 

both convergence and uniqueness were achieved. 

No additional problems wou1d arise from the other 

integrals and a1gebraic equations which describe the packing 

stage. However, due to the high values of flow rate, 

especia11y at the beginning of packing, it was necessary to 

select a time increment smaller than that associated with 

convergence requirements for the heat conduction equations. 

A time increment of 0.005 sec gave the best convergence 

properties. 
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4.1.5 Numerical Procedure 

A computer simulation of the packing stage was set 

up as outl ined in Figure 4-2. 

At the beginning of the packing stage, temperature 

and pressure profiles are the same as those prevail ing at the 

end of the filling stage. Average temperature and pressure 

values are calculated by equations (4-8) and (4-1) respectively. 

The initial average density is calculated from the equation of 

state (3-20) by util izing the initial average temperature and 

pressure in the cavity. In subsequent steps the average 

density is calculated from equation (4-9) and the average 

temperature (4-8) obtained from the temperature profile cal­

culated from equations (4-4)-(4-7) and the numerical solution 

to equations (3-14) and (3-15). The average temperature and 

average density are emp10yed in the equation of state (3-20) 

to yield the average pressure Pa. The latter is used in 

equation (4-3) to ca1cu1ate the new flow rate. This cycle 

is repeated till the packing stage is terminated. Termina-

tion of the packing stage occurs when the new calculated 

pressure or density is equal to or smaller than the previous 

calculated pressure or density. The detailed computer pro-

gram for the packing stage is given in Appendix 4 section 9.4. 
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FIGURE 4-2 
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4.2 RESULTS AND DISCUSSION 

Following the proposed model and numerical procedure 

for the packing stage, average pressures, flow rates and 

temperature profiles were calculated for the twelve cases 

discussed in the filling stage. 

The maximum pressure that could be obtained at the 

end of the packing stage was l imited, and depended on the 

maximum clamping force obtained from the twelve screws that 

held the two halves of the mold and the flow properties of 

the polymer. Pressures above 3500 psi and 5000 psi would 

cause flash to occur for polyethylene and polystyrene, respec­

tively, in the temperature range used. Thus, the shot size 

and the holding pressure control valves were adjusted in 

order not to exceed these limits. 

4.2.1 General 

Since the pressure transducer was placed only in 

the cavity, it was not possible to obtain a dependable experi­

mental value for the pressure at the injection end before the 

melt entered the channel. This pressure had to be at least 

equal to the pressure measured at the end of packing and 

possibly higher. In order to overcome this difficulty, a 

few alternative values were tested in the computational scheme. 

It was found that the best fit to the experimental curves could 

be obtained, when this pressure was taken to be 300 psi above 
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the maximum average cavity pressure recorded for polyethylene 

and 1100 psi above the maximum average pressure recorded for 

polystyrene. The maximum average pressure was obtained by 

averaging the maximum values recorded for the pressure at the 

four transducer locations. The extra pressure might be due to 

cool ing of the melt and pressure loss as a result of the flow 

which taKes place in the channel. The difference in the 

additional pressure needed for polyethylene and polystyrene, 

might be due to the difference between the viscosity activation 

energy for these two resins and the higher viscosities real­

ized in the case of polystyrene (see Appendix 1). 

The average initial density calculated from the 

average temperature and average pressure in the cavity at 

the end of the filling stage was compared with the average 

density calculated from the flow rates, fill ing time and 

volume of the cavity, as expressed in the following equation: 

~ Pe (T l 'Po ( t)) x Q t x dt 
= =o ________ ~-------------

7r Rg x h 
( 4-26) 

The average difference between values calculated 

from the P-V-T relation and equation (4-26) was less than 2%. 

ln the above equation, t refers to the fill ing time. 
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4.2.2 PacKing Profiles 

Experimental and theoretical pacKing curves are given 

in Figures 4-3 to 4-10 for polyethylene for cases 1-8, 

respectively, and Figures 4-11 to 4-14 for polystyrene for 

cases 9-12, respectively. In general, good agreement is 

obtained between the experimental results and the predicted 

average values. At the initial stages of pacKing, the 

predicted rates of pressure buildup in the cavity are some­

what higher than the average experimental results. This may 

be due to the initial flow rate which has been employed in 

the computations. In most cases, the calculated initial flow 

rates are higher than the experimental ones, as can be seen 

from the slope of the distance-time curves at the end of 

filling, Figures 3-7 to 3-18. 

It can be observed, in all cases for both polyethy­

lene and polystyrene, that the rate of pressure rise and the 

maximum in pressure vary from one measuring position to another 

in the cavity. For polyethylene, the difference at the end 

of pacKing between the maximum and the minimum values measured 

is about 500 psi (for the same shot size), while for poly­

styrene the difference is about 1600 psi. These differences 

may be due to elastic and wave propagation effects in addition 

to bacK flow which may occur as a result of flow of the melt 

into the closed filled cavity, and density differences in the 

radial direction due to the temperature profiles realized. 
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FIGURE 4-4 
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FIGURE 4-5 
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FIGURE 4-6 
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FIGURE 4-7 
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FIGURE 4-8 
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FIGURE 4-10 
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An attempt has been made to increase the shot size, 

for polyethylene, and thus obtain different packing curves 

for the same fill ing conditions. Figures 4-15 and 4-16 show 

results for cases 2 and 6, respectively. As the shot size 

increased, the difference between the measured minimum and 

maximum values increased to 900 psi from the former value of 

500 psi. In addition by comparing Figures 4~4 and 4-8 to 

Figures 4-15 and 4-16, respectively, it is seen that the 

location of the maximum pressure in the cavity varies for 

the different shot sizes. As the shot size is increased, 

the location of the maximum pressure in the cavity moves 

from the third transducer position (r* = 0.70) to the fourth 

transducer position (r* = 0.95). Furthermore, tbe pressure 

profile in the cavity appears to depend on the shot size. 

These effects may be the result of combined backflow and 

elastic phenomena which tend to be more important as the shot 

size is increased. The four cases reported for po1ystyrene 

show that the pressure at the end of packing, increases 

from a minimum at the first position to a maximum at the 

fourth position. The pressure gradient which is establ ished 

in the cavity indicates a situation in which back flow 

prevai1s. 

Comparing Figures 4-4 and 4-8 to Figures 4-15 and 

4-16 respective~y, shows that a longer packing period is 

needed as the shot size is increased for the same filling time. 

This is confirmed both by the experimental and theoretical 

results. 
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FIGURE 4-15 
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FIGURE 4-16 
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The rates of pressure rise are reduced as packing 

proceeds. As packing progresses, the pressure 1evel in the 

cavity increases and thus the driving force for flow and 

packing decreases causing the latter stages of packing to be 

accomplished slowly. 

4.2.3 Flow Rate Variation 

Together with the rate of pressure rise in the 

cavity, the flow rate of material drops, as shown in Figures 

4-3 to 4-10 for polyethylene and 4-11 to 4-14 forppo1ystyrene. 

As the pressure rises sharply during the initial stages of 

packing, the flow rate is reduced due to the decrease in the 

driving force for f1ow, as can be seen clearly from equation 

(4-3) . 

There appears to be some correlation between the 

filling times and the corresponding packing times. A short 

filling time is associated always with a short packingtime 

and visa versa. In general, packing time varies between 

25-40% of the filling time for polyethylene and between 30-80% 

for polystyrene. The main contribution to the differences 

in packing times results from differences in the flow rate 

at the end of the fill ing stage which dominates the initial 

stages of packing. A1so the temperature distribution in 

the cavity at the beginning of packing plays an important 

ro 1 e. 
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FIGURE 4-11 

PROFILES AT THE END OF PACKING 

CASE 2 

.4 .5 .6 .1 

DISTANCE (r·) 

.0 1.0 

.6 

.1 
.9 

.8 
.8 

.1 
.9 

.6 

* Z =1.0 
.5 

.8 .9 1.0 

'" 1--L&J 
a:: 
::» 
1-
ct a:: 
L&J 
CL 
% 
L&J 
1-



-u. . -
LIJ 
r:t: 
~ 

~ 
r:t: 
LIJ 
~ 
~ 
LIJ 
t-

350 

300 

250 

200 

-164-

FIGURE '-18 

TEMPERATURE PROFILES AT THE END OF PACKING 
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FIGURE 4-19 

TEMPERATURE PROFILES AT THE END OF PACKING 
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FIGURE 4-20 

TEMPERATURE PROFILES AT THE END OF PACKING 
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FIGURE 4-21 

TEMPERATURE PROFILES AT THE END OF PACKING 
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FIGURE 4-22 

TEMPERATURE PROFILES AT THE END OF PACKING 
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4.2.4 Temperature Profiles 

Figure 4-17 to 4-22 give the calculated temperature 

profiles at the end of packing. The relatively short 

packing times seem to have a minor effect on the temperature 

profiles. However, some reduction in temperature and increase 

in the amount of sol idified material may be noted. 

The effect of the different parameters on the packing 

stage are discussed in Chapter 7. 

4.2.5 Summary 

1. Good agreement is obtained between experimental and 

calculated packing curves. 

2. Pressure profiles exist in the cavity during the 

packing stage. 

3. As the pressure rises in the cavity calculations show 

that the flow rate decreases. 

4. A short fill ing time is associated with a short packing 

time and visa versa. 
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5. COOLING STAGE 

5.1 THEORETICAL ANALYSIS AND COMPUTATIONAL PROCEDURE 

ln the cool ing stage no flow taKes place, cool ing 

of the molded article proceeds and the pressure in the 

cavity drops as a result. From the computational point of 

v i ew, th i s s ta 9 e , i sap art i cul arc as e 0 f the pre v i 0 us 

pacKing stage. The equations that are used in the cooling 

stage are: (4-1), (4-4), (4-5), (3-14), (3-15), (4-6), 

(4-7), (4-8). For each time increment, the temperature 

profile is computed by using equations (4-4) and (4-5) and 

boundary conditions (4-6) and (4-7). Latent heat is taKen 

into consideration by equations (3-14) and (3-15). 

Since flow ceases at the end of the pacKing stage, 

the density remains constant (unless pressure reaches the 

atmospheric level) at the same value as at the end of 

pacKing. Thus, pressure drop is found directly from the 

average temperature as defined by equat ion (4-8) and an 

equation of state (3-20) using the constant value for den­

sity. As in the other two stages, instead of an equation 

of state a P-V-T diagram was used in order to increase 

accuracy. In addition, the equation of state is val id 

only for the melt region, and the use of a tabulated P-V-T 

diagram allows the extension of the calculations to regions 

below the freezing temperature. 
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The same computer program was used for both the 

pacKing stage and the cool ing stage. So that the temperature 

profile and the average pressure at the end of pacKing were 

automatically used as the initial temperature profile and 

average pressure, respectively, in the cooling stage. 

5.2 RESULTS AND DISCUSSION 

As indicated earlier, the cooling stage was fol10wed 

experimentally only by the pressure transducer measurements. 

No temperature measurements inside the bulK of the polymer 

were' conducted, in order to avoid interference of the temper­

ature measuring elements with the flow in the cavity. 

5.2.1 General 

Since no flow taKes place in the cool ing stage, it 

is possible to simulate this stage by performing temperature 

measurements in static polymer systems under pressure. Such 

measurements have been conducted and I"eported by Kenig and 

Kamal (23,24) for the cool ing and sol idifcation of a polymer 

meltcontained in a cylindrical cavity under varying combina­

tions of initial temperature and pressure. These measurements 

give direct confirmation of the val idity of the proposed model 

for the cooling stage in injection molding. Indirect evalua­

tions of the proposed model for the cooling stage may be 

obtained by comparing the calculated and experimental values 

of pressure in the cavity, as functions of cool ing time. 
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5.2.2 Pressure Variation 

Figure 5-1 to 5-8 show the calculated average pressure 
~ 

and the experimental curves for polyethylene, and Figures 5-9 

to 5-12 for polystyrene, for the twelve cases discussed in the 

fill ing and packing stages. 

Cool ing results show that the experimental pressure 

gradients, that are observed in the packing stage, persist 

during the cooling stage and that the cool ing curves tend to 

intersect each other at later stages of cool ing. In general, 

the time needed for th~ pressure to drop from its initial 

value to atmospheric is about twice longer for polystyrene 

than for polyethylene, as a result of the lower thermal dif­

fusivity and the higher initial pressure realized in poly-

styrene cases. 

The shapes of both the theoretical and experimental 

curves are different for polyethylene and polystyrene. While 

in polyethylene the rate of pressure drop is higher at longer 

cool ing times, it is lower for polystyrene. This is due to 

the different types of phase transition that the two po1ymers 

undergo during cooling. Polyethylene undergoes a first order 

transition; as a result, its thermal cond~ctivi~y, thermal 

diffusivity and density change to a large extent. The thermal 

properties change by 100%, as the density changes by about 20% 

in the solidification temperature region (see section 2.4). 

Polystyrene undergoes a second order transition, and thus its 

thermal properties change only slightly, as reported by Nagler 
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(26), while its density changes moderately. As cool ing pro­

gresses, more of the polymer will sol idify and thus, in the 

case of polyethylene, the temperature will decrease with an 

increased rate due to the sol id layer. Thfs leads to an in­

flection point in the pressure, time curve. Since, the ther­

mal properties of polystyrene are practically constant, the 

rate of temperature drop will decrease at longer cool ing 

times due to lower temperature gradients at these times. 

Consequently, the rate of pressure drop will decrease. The 

general shape of the pressure curve for polystyrene resem­

bles the polyethylene curve at shorter times before the 

inflection point. The same general results are reported by 

Kenig and Kamal (23,24) for cool ing both polyethylene and 

polystyrene. 

As expected, the time required for the pressure 

to drop from its initial value to atmospheric is shorter 

for higher initial melt temperature, as can be seen in Figures 

5-1 to 5-4 compared with Figures 5-5 to 5-8. This is due 

to the faster rates of cool ing which are real ized with higher 

initial temperatures. It taKes 6-7 seconds for the pressure 

to reach the atmospheric level for polyethylene at the initial 

melt temperature of 3500 F, and only 5-6 seconds at the initial 

temperature of 4000 F. 
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The values which are assigned to the heat trans­

fer coefficient between the polymer and the mold are crucial 

for the cool ing stage, where most of the heat transfer takes 

place. While the value of 100 Btu/ft2/hr/oF gives satis­

factory results for polyethylene at the initial melt tempera­

ture of 350oF, there is less satisfactory agreement with 

experimenta1 resu1ts, for the initial melt temperature of 

4000F. For polystyrene, deviations are 1arger. An attempt 

has been made to assign different values for the heat trans­

fer coefficient in the range of 50-150 Btu/ft2/hr/ oF (31,32). 

It can be seen in Figure 5-11 that better agreement between 

the experimenta1 and predicted values is achieved when the 

value of the heat transfer coefficient, for polystyrene, 

is lowered to 50 Btu/ft2/hr/oF. A more detai1ed analysis 

of the effect of heat transfer coefficient is given in 

sect ion 7 . 

5.2.3 Residua1 Pressure 

ln one case for polystyrene, Figure 5-9 for case 9, 

the pressure measurements detected a residua1 pressure in the 

cavity at the entrance to the cavity. Spencer and Gi1more 

(50) reported residual pressures for polystyrene, when the 

length of the packing stage exceeded a critica1 value. In the 

present case the sum of both the fil1 ing and packing st~ges was 
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about 2.65 seconds. The residual pressures might be attributed 

to the thermodynamic relation between the pressure, tempera­

ture and density. According to the P-V-T diagram (30) and 

Figure 2-11, a re1ative1y low temperature combined with a high 

pressure at the beginning of coo1ing (or end of packing) 

wou1d resu1t in a residua1 pressure at room temperature. This 

was confirmed when the init ia1 melt temperature of'polystyrene 

was lowered to 400oF, where residua1 pressure were obtained 

for fill ing and packing times exceeding one second. In 

addition, when the shot size was decreased and consequently 

the maximum pressure at the end of packing did not exceed 

3500 psi, no residual pressure were noticed at the initial 

melt temperature of 450oF. As the melt temperature was lowered 

to 400oF, residual pressures were detected when combined time 

for fil1ing and packing exceeded 3 seconds. Manipulations 

of the calculation procedure as by lowering the heat transfer 

coefficient to 25 Btu/ft2/hr/oF and increasing the initial 

pressure to the maximum pressure registered in curve 4 Figure 

5-9, resulted only in increasing the cool ing time to 20 

seconds. It should be emphasized that Kenig and Kamal (24) 

did not observe residua1 pressures in the cool ing of poly­

styrene from an initial pressure of 10,000 psi. In fact the 

reported experimenta1 cool ing times were even shorter than 

these predicted by calculations. The reason for the differ­

ences between experimental and calculated times was attributed 
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to end effects, since the ratio of the length to diameter 

was only 5.5. 

The inabil ity of the present theoretical calcula­

tions to predict the residual pressures may be a result of 

the time scale of. the cool ing stage. Allthermodyn~mic 

relations between volume, pressure and temperature are 

appl icable only under equilibrium conditions, relations would 

be true under unsteady conditions, only if the relaxation 

phenomena that take place in a dynamic process were negl ig­

ible, in the sense that the t ime necessary for the polymer 

to readjust to time-varying conditions is much 1ess than 

the t ime sca 1 e of the exper iment. S ince the re 1 axat ion t ime 

depends on the temperature and it increases as the tempera­

ture decreases, it seems that relaxation phenomena at low 

initial temperatures are not negl igible when compared ta the 

duration of cool ing which is in order of ten seconds in the 

present case. These phenomena are not expected to be impor-

tant when cool ing times are more th an ten minutes in the 

exper iments conducted by Ken ig and Kamal (24) in a two-inch 

d iameter cyl inder. 
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5.2.4 Temperature Profiles 

Figures 5-13 to 5-16 give the calcu1ated temperature 

profiles, at the end of' cool ing for polyethylene and Figures 

5-17 and 5-18 for polystyrene for cases 2, 4, 5, 7, 9, 11 

respectively. The main observation from these figures is that 

the temperature profiles are quite flat and that the tempera­

ture difference between the entrance and the cavity boundaries 

is about 200 F for any given axial distance. At the time 

when the average calculated pressure reaches the atmospheric 

level, about 40% of the cross section has sol idified for 

polyethylene at the initial melt temperature of 3500 F, while 

only about 30% has sol idified when the initial melt tempera­

ture is 4000 F. In the case 9 for polystyrene, more than 50% 

is below the defined freezing temperature (see section 9.1, 

Appendix 1), and about 25% below the glass transition 

temperature (2200 F), and about 40% is below the freezing 

temperature for case 11. 

5.2.5 RemarKs on Pressure Measurement in the Cool ing Stage 

Sorne questions may arise in the cool ing stage, as 

to the rel iabil ity of the pressure values"measured by the 

pressure transducer. Since the pressure transducer is cali­

brated with a fluid "(sil icone oil) it may show different values 

for solids. Since in the cooling stage, sol idification has 

reached high levels, it may introduce sorne errors in the experi­

mental measurements. In principle, it is unimporta':1t whether 
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FIGURE 5-13 
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FIGURE 5-14 

TEMPERATURE PROFILES AT THE END OF COOLING 

CASE 4 
350 1 1 1 1 1 • • • • 1.0 

- .9 

1- - .0 -300 
.8 

- 1i* 
fo------ - -------------- ___ t: __________ ... 6 __ --~ 

.7 

250 
.......-..... .7 - - .6 _ -• La. 
.......... .8 « 

t-- -LIJ - .5 LIJ 
0= 
:::) 200 t-
~ 
0= 

- .9 

-
0= 
:::) 

.4 ~ 0= 
LIJ 
Il. 
2: 
LIJ 
t-

* Z=1.0 
- .. 

W 
Il. 

.3 
2: w 
t-

150 1-

- .2 

., - .1 
100 l-

I 1 1 1 1 1 1 1 • .0 
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

DISTANCE Cr·) 



-.LL -

350 

UJ 250 
a: 
:::» 
~ a: 
~ 200 
2: 
UJ 
1-

150 

100 

Il 

-192-

FIGURE 5-15 

TEMPERATURE PROFILES AT THE END OF COOLING 
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FIGURE 5-16 

TEMPERATURE PROFILES AT THE END OF COOLING 
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FIGURE 5-17 

TEMPERATURE PROFILES AT THE END OF COOLING 
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FIGURE 5-18 

TEMPERATURE PROFILES AT THE END OF COOLING 
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the load is transmitted to the diaphragm of the transducer 

by a melt or a sol id, as long as perfect mechanical contact 

between the polymer and the diaphragm is ensured. As th~ 

main idea in molding is to produce an object which retains 

the dimensions of the cavity, this condition of a perfect 

mechanical contact is met till the molding shrinks away from 

the walls of-the cavity, usually after the pressure reaches 

the atmospheric value. Evidence of good contact between the 

transducer and the polymer has been obtained by noting the 

mark left by the boundaries between the transducer and the 

cavity in the moldings. 

5.2.6 Summary 

1. Good agreement is obtained between experimental and 

calculated cooling times. 

2. The shape of the pressure curves is different for 

polyethylene and polystyrene. 

3. Pressure gradients are maintained in the cavity through­

out the cool ing stage. 

4. The value assigned for the effective heat transfer 

coefficient is crucial. It seems that the coefficient 

for polystyrene is half that for polyethylene. 

5. The cooling stage cannot predict residual pressure 

possibly due to the inadequacy of the equation of 

state for short cooling times. 
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6. COMPOSITE CYCLE 

When the three parts of the pressur.e-time curve 

are combined, the composite curve for the overall injection 

molding cycle is obtained. Figures 6-1 and 6-2 give the 

calculated and experimental composite pressure-time curves 

for polyethylene and polystyrene for case 2 and case 10, 

respectively. The experimental values of pressure are the 

values recorded at the four transducer positions. The cal­

culated values for the fill ing stage have been obtained 

to correspond to the four transducer positions. Since the 

packing stage is relatively short all experimental and 

theoretical lines collapse on a single l ine for the time scale 

employed in these graphs. It is obvious that both the 

theoretical and experimental curves conform to the standard 

forms reported in the injection molding literature (6,7,8). 

Furthermore, the general agreement between experimental and 

calculated results is good. Thus it may be concluded that 

the proposed computer simulation of the different stages of 

the injection molding process is realistic. 

It can be seen from the composite curves that the 

cool ing stage is four to five times longer than the fill ing 

and packing stages combined for case 2, and about seven 

times longer for case 10. As the filling stage becomes 

shorter (cases 3, 4, 7,8, 11, 12) this ratio b~comes larger, 
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while for longer filling and packing times (cases 1,5,9) 

this ratio becomes smaller. Naturally, this ratio depends 

on the radius and thickness of the cavity. As the thickness 

of the cavity increases for the same length of fïow, the 

cooling stage becomes more controlling. Furthermore, the 

injection conditions may be critical in some cases. For 

example, it is conceivable that fill ing and packing may,be 

control 1 ing for small th1cknesses and long cavities. 
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7. REPRODUCIBILrTY, ACCURACY AND 
ERROR ANALYSIS 

Any attempt to compare the experimental and c~lcu­

lated results must consider the accuracy and reproducibility 

of the experimental measurements and the error which is 

introduced into the theoretical solution by the uncertainty 

of the material properties and processing conditions which 

are measured experimentally. 

ln order to check the overall reproducibility of 

the experimental sèt-up as described earlier, experimental 

measurements taken at different times in the same day, and in 

different daysfor the same processing conditions were com­

pared. The different stages in the injection molding cycle 

were checked at different amp'tifications of the signal and 

different chart speeds. The difference between the maximum 

and minimum measured pressures and the maximum and minimum 

times did not exceed an average of 2% if taken at the same 

day. Measurements done at different days deviated up to an 

average of 5%. These differences can be attributed to the 

error introduced by the melt and mold temperature controllers 

with an accuracy level of +50 F and the error in setting the 

pressure control valves. Naturally, differences were smaller 

for experiments at the same day. The performances of the 
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pressure transducer, the signal conditioning unit and the 

recorder were checked separately by following the cal ibration 

procedure at different days., Identical cal ibration curves 

were obtained, with deviations of less than one half a 

percent. 

The main errors in the pressure-time measurements 

are attributed to the active area of the transducer which 

is 6.34% of the radius of the cavity, and the thermal error 

of the transducer (1 psi/oF) which is estimated to be of a 

maximum value of 20-25 psi as a result of the temperature rise 

in the wall,equivalent to a maximum of 20-250 F. These two 

errors are given graphically in the fill ing stage where they 

are most significant. Since very l ittle flow takes place in 

the packing stage and no flow occurs in the cool ing stage, 

the error due to the area of the transducer is negl igible and 

the thermal error may be neglected except for the latter 

stages of cooling due to the low values of pressure in these 

stages. 

ln addition to the direct errors in pressure­

temperature-time measurements, indirect errors may be attri­

buted to viscometric measurements to evaluate the flow index 

n, the activation energy 6E/Rg and the constant Ac in the Power 

Law for the melts (See Appendix l, section 9.1). Furthermore, 

sorne uncertainty is introduced by the heat transfer coefficient 

between the polymer and the wall, since the two references 

consulted give a range of values (31,32). 



ln the following discussion an error analysis of 

the above uncertainties will be carried out. Since it is 

very expensive to check all the variables involved for all 

these stages in the twelve cases reported and th us obtain 

a complete statistical error analysis, two cases are 

followed thoroughly (case 3 and case 11) for polyethylene 

and polystyrene. The criterion for comparison of the 

different variables are the respective deviations of fill ing, 

packing and cooling times from the nominal values. 

As can be seen from Table 7-1, 7-2 and 7-3, the 

highest deviations exist in the filling stage, where both 

momentum and heat transfer processes take place. Since 

these processes are time-dependent and coupled through the 

temperature dependence of viscosity~ the effect of each 

variable is magnified in this stage. This explains also 

the higher deviation in the case of polystyrene where the 

activation energy for viscosity is higher than that of, poly­

ethylene. 

The effects of the flow index, n, the activation 

energy, 6E/Rg,and the constant, Ac,that were evaluated by 

the double linear fitting (Appendix l, section 9.1), are 

lumped into one variable, i.e. viscosity, the absolute 

average deviation of which was 7.2% for polyethylene and 13.6% 

for polystyrene. The variation of the wall temperature 

during the fill ing stage is estimated to be lOoF due to the 
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TABLE 7-1 

ERROR ANALYSIS: FILLING STAGE 

Polyethylene Case 3 Po1ystyrene Case 11 

F i 11 i ng F i11 ing 
Time Deviation Time Dev~at ion 
(sec) % ( sec) 

Nominal Value .689 - .674 -

f] + 6f]** .788 + 14.5 .982 + 30.9 

'Yl - 6f]** .594 - 13.8 .492 - 27. 1 

To + 100 F .676 - 1.9 .661 - 1.9 

T - 100 F .701 + 1 .7 .686 + 1 .8 
0 

TI + 10°F .603 - 12.5 .532 - 21. 1 
'" 

TI - 100 F .784 + 13.8 .845 + 25.4 

P f + 25 ps i .634 - 8.0 .584 - 13.3 

Pf - 25 ps i . .738 + 7. 1 .791 + 15.9 

H = 50* .611 - 11.3 .573 - 15.0 

H = 150* .759 + 10.2 .768 + 14.0 

H = (Xl .983 + 30.0 1.080 + 58.8 

* Units: Btu/oF/hr/ft2 

** 6f] = 7% for pOlyet,hylene and 13% for polystyrene 
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TABLE 7-2 

ERROR ANALYSIS: PACKING STAGE 

Polyethylene Case 3 Po1ystyrene Case 11 

pacl<ing Packing 
Time Dev~ation ~ im~) Dev~ation 
( sec) sec 

Nominal Value .3153 - .4250 -

n + 10% .2802 - 11.2 .4350 - 1. 1 

n - 10% .3503 + 11. 1 .4303 + 2.4 

P + a 10% .3102 - 1.6 .4203 - 1. l 

Pa - 10% .3195 + 1.3 .4291 + 1.0 

Q + 
° 

10% .3002 - 4.8 .4153 - 2.3 

Q - 10% .3353 + 6.4 .4454 + 4.8 
° 

T + 20°F .3203 + 1.6 .4303 + 1.3 
° 

H = 50* .3303 + 4.8 .4454 + 4.8 

H = 150* .3102 - 1 .6 .4153 - 2.3 

H = CIO .3053 - 2.0 .4148 - 2.4 

* Units: Btu/oF/hr/ft2 

.'. l," 
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TABLE 7-3 

ERROR ANALYSIS: COOLING STAGE 

Polyethylene Case 3 Po1ystyrene Case 11 

Coo 1 ing Coo 1 ing 
Time Dev~ation Iime Dev~ation 
( sec) sec) 

Nominal Value 6.35 - 8.40 -

n + 10% 6.35 - 8.40 -

n - 10% 6.35 - 8.40 -

Q + 10% 6.35 - 8.40 -
0 

Qo - 10% 6.35 - e.40 -

P + 10% 6.35 - 8.40 -a 

Pa - 10% 6.35 - 8.40 .. -

T + 200 F 7.36 + 
0 

15.9 8.83 + 5. 1 

H = 50* 8.60 + 35.4 11 .09 + 32.0 

H = 150* 5.40 - 15.0 7.26 - 13.5 

H = 00 3.95 - 39.3 5.3 - 36.9 
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temperature rise and is also bound~d by a lower l imit of -lOoF., 

However, these effects are shown to be small. The deviation 

of the melt temperature was estimated to be ± lOoF due to 

the uncertainty introducedby the melt temperature controller 
(' 

(~50F) and the cool ing and/or viscous heating effects in the 

channel. The upper and the lower deviations for the injection 

pressure were estimated to be + 5% due to the thermal effect 

on the pressture transducer. It should be emphasized that 

the values assigned to the heat transfer coefficient are very 

important, large deviation occur when perfect thermal contact 

(H = ~) between the wall and the melt is assumed. 

On the average, deviations in the packing stage 

are smaller than those in the fill ing stage, due to the 

fact that the duration of packing is shorter and thus tempera-

ture variations are relatively small. The error introduced 

into the pac~ing stage by the preceding fill ing stage is 

represented by the deviations in the initial flow rate and 

the initial average pressure that are est:imated not to exceed 

10%. The average error in the evaluation of the flow index, 

n, has been found to be less than 10% for both resins. The 

rise of the wall temperature (a maximum of 200F) does not 

seem to change the packing stage significantly, nor does the 

value asslgned to the heat transfer coefficient. 



-208-

Since the pacKing and cool ing stages are solved by 

one computer program, the deviations introduced by the 

pac~ing stage are carried over to the cool ing stage. As 

can be seen from Table 7-3, the cool ing stage is not affected 

by the previous errors in the fill ing and pacKing stages due 

to the fact that the only two variables that effect the cool­

ing stage are the temperature and pressure at the end of 

pacKing and these do not change to a large extent, as a re­

sult of the errors in the previous two stages. S ince cool ing 

is predominantly a heat removal stage, the variables that 

affect the heat transfer process play the main role. A 

maximum increase in the wall temperature by 200 F affects 

more the cooling time of polyethylene than that of poly­

styrene, due to the larger thermal diffusivity of the former 

resin. The main deviationsin the cool ing stage are related 

to the effective heat transfer coefficient between the poly­

mer and the wall cavity. Since the cool ing stage is usually 

the longest stage in the overall inject ion cycle, it would 

maKe the largest contribution to the total deviation. 
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8. CONCLUSION 

8.1 CONCLUSIONS 

The filling, packing and cooling stages in the in­

jection molding of thermoplastics may be described adequately 

by models which permit quantitative treatment of the process 

through a numerical solution of the equations of continuity, 

motion and energy. 

The fill ing stage model takes into consideration the 

non-Newtonian behaviour of the melt, the effect of temperature 

on density and viscosity, the latent heat of solidification 

(for crystalline polymers), and the difference in the thermal 

properties between the solid and the melt. In employing the 

proposed model~ it is necessary to know the pressure-time 

variation at the entrance to the cavity. The complexity of 

the injection system, coupled with the lack of dependable 

data on viscoelastic and entrance-exit phenomena, prevents an 

accurate treatment based on the pressure-time varjations at 

the injection end. The model gives the fill ing time, pressure, 

temperature and velocity profiles as well as flow rates 

during the filling stage. These results are in good agree­

ment with experimental data for polyethylene and polystyrene. 

The proposed model for the packing stage starts 

with the temperature and pressure profiles at the end of the 

filling stage, as calculated from the model for that stage. 

The packing model yields information on the pressure develop~ 
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ment and the variations in temperature and flow rate during 

pacKing as functions of time. The model taKes into account 

the non-Newtonian behaviour of themelt, latent heat effects, 

the difference of thermal properties between the sol id and 

the melt, and the density dependence on boih pressure and 

temperature. It is necessary to have a good estimate of the 

injection pressure of the meltprior to entering the channel. 

Calculated results based on the proposed model are in good 

agreement with experimental data both for polyethylene and 

polystyrene. These results show a pressure profile in the 

cavity throughout the pacKing stage. The profile is appar­

ently due to elastic, wave propagation, bacK flow and density 

effects. 

The proposed model for the cool ing stage starts from 

the pressure and temperature conditions that exist in the 

cavity at the end of the pacKing stage. Although no direct 

confirmation has been obtained of the calculated temperature 

profiles, calculated results on the variation of pressure with 

time are in good agreement with experimental values for poly­

ethylene. Good agreement for polystyrene is obtained when the 

effective heat transfer coefficient between the polymer and 

the wall is taKen to be half that of polyethylene. Experimental 

data show that a pressure profile is maintained in the cavity, 

even at late stages of the cool ing step. The cool ing stage 

appears to be the controlling step for the geometry and 

dimensions of the cavity used in this study. 
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The composite calculated curves based on the pro­

posed simulation of the overall injection molding process 

are in qual itative agreement with standard curves reported 

in the l iterature. The overall agreement between experimental 

and theoretical results is good. 

8.2 RECOMMENDATIONS 

As a result of the present study,the following is 

recommended: 

1. To try to include the extensional stresses in the theor­

etical solution for the filling stage by using an appro­

priate constitutive equation for the melt. 

2. To try to include in the theoretical solution for the 

filling stage the dependency of the flow index, n, and 

the activation energy, ~E, on shear rate and temperature. 
. 9 

3. To try and include in the solution for the filling stage 

the non-l inear term Vr ' ~~r. 
4. To measure pressure at the injection end to confirm the 

val idity of the assumptions made in the packing stage. 

5. Touse more than one transducer simultaneously in order 

to check the val idity of the pressure profile in the 

packing and cooling stages. 

6. To find a modified equation of state that will include al­

so a time-dependent term; thus relaxation processes may 

be taken into account. 
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7. To use different channel geometries, other than sharp 

edges, to reduce die swell and entrance pressure losses. 

8. To use different cavity dimensions in order to check 

the relative importance of the different stages. 

9. To find experimentally the heat transfer coefficient 

between the polymer and the wall for the materials under 

study under different conditions. 

10. To consider the appl icability and extension of the 

proposed model to cavities of different geometry. 

8.3 CLAIMS FOR ORIGINAL WORK 

1. The present study is the first attempt to describe 

theoretically the complete injection molding cycle. 

2. The "conventional" method for latent heat treatment 

has been modified for partially crystall ine polyme~s 

and has been used throughout the injection molding 

cycle. 

3. The first treatment of the fill ing stage for a compres­

sible fluid is presented. 

4. The experimental data reported in this work are the 

most complete and detailed data which are available 

on the filling of semicircular mold cavities by 

spreading radial flow. 
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5. The first attempt is made to obtain a quantitative treat­

ment of the packing stage that includes both the ther­

modynamics and dynamics of the stage. 

6. This study has shown for the first time that pressure 

profiles persist in the cavity during the packing and 

cool ing stages. 

7. The calculations presented in this study represent the 

first time that a short shot has been predicted by a 

filling stage model and confirmed experimentally. 

8. The theoretical composite curves presented in Chapter 

6 are the first curves to be calculated theoretically for 

describing th~ overall injection molding cycle. 
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LIST OF SYMBOLS 

a entrance radius 

a* dimensionless entrance radius 

A dimensionless number = ~t* 
~z*2 x pr x Re 

constant in the viscosity least square fitting 

dimensionless number = h/Ro 

dimensionless number = H x ~z 
kt 

Br 

constant in the equation of state 

Br inkman number 

dimensionless number = 

dimensionless number 

Cp specifie heat 

CPa average specifie heat 

Cl constant independent on r 

C2 constant independent on r 

D diameter of capillary 

Dl constant coefficient 

D2 constant coefficient 

D3 constant coefficient 
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E constant coefficient 

F constant coefficient 

Fr fraction 

h half thickness of the cavity 

h(j) jth term in the Trapezoidal integration 

H heat transfer coefficient 

H~ ~th coefficient in infinite series 

k 

K 

~ 

~l 

L 

m 

M 

n 

ith radial ring 

number of radial rings 

first integral 

second integral 

jth ax ial increment 

number of axial increments 

kth time increment 

thermal conductivity 

constant 

integer number 

in t e'~'ieÎ: n umb e r 

latent heat of freezing 

length of capillary 

melt region 

consistency index 

flow index 



N 

p 

p* 

pr 

r 

r* 

R 

R* 

s 
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dimensionless coefficient in the momentum equation 

pressure 

dimensionless pressure 

average pressure 

experimentally measured pressure at the entrance 
to the cavity at the end of fill ing 

Prandtl number 

experimental measured pressure at the entrance 
to the cavity 

mass flow rate 

volumetric flow rate 

heat conducted 

flow rate at the beginning of the pacKing stage 

dimensionless flow rate 

radial co-ordinate 

dimensionless radial co-ordinate 

melt front location 

dimensionless melt front location 

constant in the equation of state 

gas constant for polymer viscosity 

radius of cavity 

solid region 
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t time 

t* dimensionless time 

T temperature 

T* dimensionless temperature 

Ta average temperature 

Td delayed temperature 

Teq equivalent temperature 

TF freezing temperature 

T; dimensionless freezing temperature 

T, melt temperature at the cavity entrance 

TLF lower limit of freezing range 

Tu undelayed temperature 

V specifie volume 

V~ equivalent velocity 

Vr radial velocity 

V* dimensionless radial velocity 

z axial co-ordinate 

z* dimensionless axail co-ordinate 
, . 

Z function dependent on z only 
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Greek Letters 

v 

Va 

Vt 

thermal diffusivity 

dimensionless number = 6t* 
6Z*2 

6t* dimensionless number = 6r* 

shea r rate 

apparent shear rate 

true shear rate 

viscosity activation energy 

enthalpy of sol idification 

deviation between the calculated pressure at the 
melt front and atmospheric pressure 

difference between the pressure in the reservoir 
and the cavity at t ime t 

difference between the pressure in the reservo i r 
and the cavity at t ime zero 

assumed pressure drop during the first iteration 

assumed pressure drop during the second iteration 

rad ial increment 

.6r* dimensionless radial increment 

.6t time increment 

.6t* dimensionless time increment 

/l,z axial increment 

Az-Y: d imens ionles5 ax ial increment 
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"a 
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Il 

P 

p* 

Pa 

Pe 

Po 

T 

Trr 

Trz 

Tee 
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rate of deformation tensor 

axial co-ordinate of freezing front 

dimensionless axial co-ordinate of freezing front 

non-Newtonian viscosity 

apparent viscosity 

true viscosity 

capillary entrance angle 

extensional viscosity 

constant 

Newtonian viscosity 

density 

dimensionless density 

average density 

melt density before entering the cavity 

initial density in packing stage 

function dependent on t only 

component of the stress tensor 

component of the stress tensor 

component of the stress tensor 

stress tensor 

function independent on r(= Vr x r) 

* dimensionless function independent on r*(= Vr x r*) 

constant in the equation of state 
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9. APPENDICES 

9.1 APPENDIX 1: CONSTITUTIVE EQUATION AND VISCOSITY 

ln order to solve the equations of change (3-2) and 

(3-3) a rheological equation of state, which relates the 

stress tensor to the velocity field, is required. 

A large volume of data available in the 1 iterature 

indicate that the "Power-Law" model is successfu1 in 

describing the stress-rate of strain re1ationship in the 

po1ymer me1ts, especia11y in narrow shear rate ranges. The 

genera1 form of th is mode1 is 9 iven by (51). 

. .•.•• ( 9-1 ) 

Where ~ and 6 are the deviative stress tensor and the rate of 

deformation tensor, respective1y; M and n are constants. The 

non'-van ish ing components of the stress tensor, for the rad ia1 

f low case are: 

'l"rr = - 2{M 1 [1/2(6:6)J1/ 2
1 

n-1} aV r .•••• (9-2) or 

V 
'l"ee = - 2{M 1 [1/2(6:6)]1/l n-1}-f • • . • . (9-3) 

'1" = 'l"zr = -{MI[1/2(~;6) ]1/2,n-1} :~r ••. (9-4) rz 
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Where 1/2(.6:6) = . • · .... ( 9-5) 

The mathematical complexity inherent in th is formula­

tion makes the solution of the boundary value problem equations 

(3-1), (3-2) and (3-3) almost impossible. Thus, further 

simplification is needed. ft is assumed that the rate of 

change of the velocity Vr with respect to the radial direction, 

r, i s much sma 11 e r th en i ts rate of change in the z-d i rect ion 

(For relative magnitudes see Appendix 7, section 9.7). As 

a result: 

= = o ............. ( 9-6) 

and 
= 

oV r n 
- M (-) oZ .••••.•.••••. ( 9 -7) 

Equations (9-6) and (9-7) describe a "Simple Shear 

Flow". However, the above simpl ifications and assumptions 

can lead to inaccuracies in the final solution, especially 

in the regions close to the entrance to the cavity, where the 

velocity gradient in the radial direction cannot be neglected 

(see-Appendix 7, section 9.7). In additi9n,. the extensional 

stress Tee may play an important role in the entrance regions 

(48). The latter problem can be solved by using a constitutive 

equation which relates the extensional stresses to the velocity 

field. Since it is very difficult to find such an equation for 
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polymer melts, this approach is abandoned in the present work. 

As a result sorne deviations are anticipated in the entrance 

region in the mold cavity. 

Equation (9-7) can be expressed in terms of the 

apparent viscosity by 

"a = 1• 1 n-l M Ya .............. ( 9-8) 

and by assuming an Ahrenius-type dependence on temperature 

....... · ... · · . ( 9-9) 

• ?:N r 
where Ya = az-' Ac is a constant independent of temperature 

and 6E/Rg is the activation energy for viscosity. In order to 

evaluate the constants in equation (9-9), viscometric measure­

ments were made on the materials under study with the aid of 

the Instron Capillary Rheometer. In these measurements two 

capillaries were used: 

1. D = 0.052 inch and Le = 1.04 inch (Lc/D = 20) entrance 

ang 1 e e = 900
• 

2. D = 0.052 inch and Lc = 3. 12 inch (LcID = 60) ent rance 

ang 1 e e = 900 • 

Where Lc is the length and D is the diameter of the capillary. 

Measurements were taken for Dow Chemicals polyethylene E.P. 245 

in the temperature range of l30-l900 C and for Dow Chemicals 

polystyrene Styren 683 in the temperature range l60-2300 C. 
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The lower l imit indicates the temperature below which the 

viscosities are too high to be measured and these were the 

freezing temperatures employed in equation (3-13). 

The Rabinow'itsch-Mooney-Weissenberg Correction was 

applied and thus true viscosity values were obtained (52). 

The use of the true shear rate and true viscosity was very 

important since the viscometric measurements were conducted 

in a capillary where axial flow exists for util ization in a 

radial flow system. No Bagley corrections were needed (52) 

since measurements were taken with high Ld/D ratios. 

Figure 9-1 shows the viscosity as function of shear 

rate for different temperatures for polyethylene based on 

161 measured values (not all of them shown). Figure 9-2 

shows the same representation for polystyrene based on 111 

measured values (not all of them shown). From the diagrams, 

it is apparent that the curves are not l inear. Thus a 

single n cannot describe the flow behaviour of the melt in the 

entire temperature-shear rate range. A careful analysis shows 

that n and 6E/Rg are functions of both shear rate and tempera­

ture. From the results, it seems unl ikely that a single shift 

factor would be satisfactory to superpose all the different 

temperature curves to a single master curve, as reported by 

some workers(53). However, in order to simpl if y the computa­

tional procedures, it is desirable that a single n and a single 

6E/Rg describe the flow behaviour. Taking n and 6E/Rg to be 
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, FIGURE 9-1 

VISCOSITY AS FUNCTION OF SHEAR RATE AND TEMPERATURE 

POLYETHYLENE E.P. 245 
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FIGURE 9-2 

VISCOSITV AS FUNCTION OF SHEAR RATE AND TEMPERATURE 

POLVSTVRENE-STVRON 683 
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functions of both shear rate and temperature would result in 

an iteration at each radial position for the computation of 

the velocity profile. 

ln order to find the best single n, the viscosity 
. 

data for log ~t vs. log Yt were fitted by 1 inear least 

squares using all 161 points for polyethylene and 111 points 

for polystyrene. The result for polyethylene was n = 0.594 

and for polystyrene n = 0.368. From equation (9-8), it 

follows that a plot of [log ~t - (n - 1) log YtJ vs. lIT would 

give 6E/Rg from the slope, and Acfrom the intercepte Thus a 

second 1 inear least squares fitting was carried out using all 

measured values. For polyethylene the result was: 

6E/Rg= 2300 ~/oK and Ac = 8.53 x 105 lb/ft/hrn- 2 . For 

polystyrene 6E/~= 5910 1/0K and Ac = 2.14 x 104 in the same 

units as above. 

The resultant equations are: 

For polyethyelen: ~t = 8.53 x 105 x exp(2300/T) x ~~-0.406) 
.•.•• (9-10) 

For polystyrene: ~t = 2.14 x 104 x exp(5910/T) x y~-0.632) 
.•... (9-11) 

Where ~t is in units of lb/ft/hr, T in oK and ~t in hr- l • 

ln order to find the standard deviation, the average 

deviation and the mean, the experimental shear rates at each 

temperature were substituted into equations (9-10) and (9-11) 

for polyethylene and polystyrene, respectively, and the 
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calculated viscosities were compared with the corresponding 

experimental ones. The mean of population for polyethylene 

1.59 x 106 1b/ft/hr with a standard deviation over the 

mean of 1.51% and an average deviation over the mean of 

7.2%. For polystyrene the mean was 6.44 x 106 1b/ft/hr 

with a standard deviation of 3.81% and an average deviation 

of 13.6%. 



-232-

9.2 APPENDIX 2: ANALYTICAL SOLUTION OF A SIMPLIFIED 
RADIAL FLOW PROBLEM 

As indicated earlier, the fact that the equations 

of change are coupled and need to be solved simultaneously 

makes the analytical solution of the present problem 

impossible. However, if one considers the isothermal flow 

of an incompressible Newtonian fluid, which is contained 

between semi-circular plates, the continuity and momentum 

equations may be solved analytically to give expressions 

for the pressure and velocity profiles as functions of 

time and distance resulting from a constant pressure 

appl ied to the entrance at time zero. This analytical 

solution is equivalent to one step in the fil1 ing of a cir­

cular cavity, and thus will be helpful in demonstrating 

the fact that the estab1 ishment of steady-state in momentum 

transfer is very fast compared with the duraction of 

fill ing. 

The equations to be solved are: 

Continuity: a ( r* x V~) = 0 ............... (9-12) ar* 

* 2V* 
Momentum: 

?N r riP* 
Ar + 1 ~ r 

.•.•.••.• (9-13) at * = - ;:,r* Re ~z*2 



Where Re = 
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Ve x Pm x h 

\.l 
, u 

Pm is a reference density. 

is the Newtonian viscosity and 

With the following boundary and initial conditions: 

V* ( r*, ±-1 , t*) = 0 ............... ( 9- 14 ) r 

* ?IV r ( r*, 0 , t*) = 0 ............... (9-15) 
~z* 

V* (a* , z* , 0) = 0 ......••.•.•.•. (9-16) r 

p* (a* , t*) = .•....•......•. (9-17) 

p* ( 1 , t*) = 0 ............... (9-18) 

By integration of (9-12) we obtain: 

V* r* = 1>* = constant .•••.•.. (9-19) r 

and 

V* = sil. ............... ( 9 -2 0) r r* 

Substituting ( 9-19) and ( 9-20) into (9-13 ) yields: 

1 ~ 0P* 
+ Re â •.•.. ( 9-2 1 ) ï=* = - or* Ar 0t* x r* 0z*2 



-234-

Integrating (9-21) with respect to r* (~* = const.): 

R 1 o2dJ* ~ - A = (Re - a t *) x .en ( aO) r oz*2 

~ l a2dJ* Ar 
= K 

a t * - Re az*2 
= R 

.en ~ a 

The equation to solve is: 

K 

As sum i ng that: 

~* ( z*, t*) ~ ~: - ~~ ( t*, z*) 

a. = o 

( 9-23) and ( 9-24) 9 ive: 

l a2~* 
0 = co + K Re az*2 

a~* 
co - K x Re x z* oz* = 

Boundary conditions (9-15) ~ Dl = 0 

~* = 
co 

+ Dl 

• .•.••.• ( 9-22) 

• .•.••.• (9-23) 

• .••••.• ( 9-24 ) 

• •••.••• (9-25) 

· .•••••• ( 9-26) 

· .•.•... ( 9-2:7) 

..•.••.• (9-28) 

· .•••••• (9~29) 

• •.•.••• (9-30) 
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Boundary condition (9-14) ..... D = K . Re .•....•... (9-3 1) 2 2 

cp* K = 
(XI 

Substituting ( 9-32) into 

b. 
ocp* 
_t (t* z*) 
è t * , 

. Re ( 1 _ z*2) . •••..•.•. (9-32) 2 

( 9-25) and then into (9-24): 

1 
1:1 -Re .••.•.•••• (9-33) 

Using the method of separation of variab1~s: 

cp~ = 'T • Z ......... ~ ...... (9-34) 

Substituting into ( 9-33) and dividing by 'T x z: 

l .aL. = 1 1 è2Z = _ À. 2 .•. • .. ( 9-35) 
'T ot* Ré l è Z*2 l 

1. Left hand s ide..... 'T = D3 x exp (- À.~ x t*) .•.•.. (9-36) 

.1. .1. 
Il. R ight hand side ..... Z = E Sin(À.1Re 2 z*) + F Cos(À.1Re 2z*) 

.•..•• ( 9-37) 

Boundary condition (9-15) ..... E = 0 
.1. 

Boundary cond it ion '(9-14) ..... 0 = F Cos (Â1Re 2
) .•.•.• (9-38) 

From equation (9-38): 
.1. .1. 

Cos (À. 1Re 2
) = 0 ..... À. 1Re 2 = (t + i) x ~ 

...•.. (9-39) 

From equation (9-39): t = 0, 1,2, •.. , (9-40) 
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(9-3 4), (9-35), (9-36) and (9-40) 9 ive = 

x Cos [(J + t) x v x z*] . · ..•.•.. ( 9-4 1 ) 

Where HJ = DJ x FJ 

From the initial condition (9-16) (at t*·= 0 .... 

cf>* (z*, t*) = cf>* 50 that cf>*. = 0) 
t IX) 

IX) 

= ~ HJ COS[(J + t) x v x z*] 
J=O 

· ....... ( 9-42) 

Multiplying both sides by COS[(J 1 + t) x v x z*J 

and integrating between -1 and +1: 

z*=+ 1 

z*=-l 

· ....... (9-43) 
+1 

Left hand 5 ide = \ K~e [( 1 - z*2)] x Cos[(J 1 + t)vz* Jdz* 
-1 
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Equations (9-44) and (9-43) give: 

K Re 
= -2- x 

4(-n.e 
•.•.••... (9-45) 

Substituting all above coefficients and resu1ts into (9-25); 

x 'TT" 
2 

Re x t* J 

x Cos [(.e + t) 'TT" Z*J} ..•.•.... ( 9-46) 

Rearranging equation (9-13): 

...••• (9-47) 

Substituting the appropriate expressions for the partial 

derivatives according to (9-46) gives the simple result: 

dP* 
ëfr* == 

Integrating (9-48) gives: 

1 l 
R x r* 

.en (a 0) 
...••.•.. (9-48) 

.•..•. ( 9-49) 
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FIGURE 9-3 

UNSTEADV STATE VELOCITV PROFILES 

FOR ANALVTICAL SOLUTION 
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The analysis of the above solution results in the 

following conclusions: 

1. Pressure is not a function of time but only of the 

radial position in the cavity. 

2. Steady state is achieved very quickly and is a function 

of Re number (see equation (9-46)). Figure 9-3 gives 

the unsteady-state velocity profile development for 

the case of 500 psi injection pressure, for the dimen­

sions of the experimental cavity and a Newtonian visco­

sity 8.53xl05 lb/ft/hr (3500 poise). As can be seen 

from Figure 9-3 steady-state is achieved after 0.75 

dimensiqnless time units which corresponds to about 

5 x 10-9 h r. 
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9.3 APPENDIX 3: COMPUTER PROGRAM - F ILLING STAGE 

program. 

AR 

B 

B l 

CP 

COEF 

DELTP 

DELTPl 

DELTP2 

DELTP3 

DELTP4 

DENS 

The fo1lowing symbo1s are used in the computer 

dimension1ess number K h/R o 

dimension1ess number in the energy equation 

coefficient in the energy equation 

specifie heat 

dimension1ess number for heat transfer at the· 
wall 

pressure gradient in the entrance ring 

pressure gradient for the first iteration 

pressure gradient for the second iteration 

pressure gradient for the third iteration 

pressure gradient for the fourth iteration 

density 

DENSTP(T,P) subroutine for calculation of density as a 
function of temperature and pressure 

DENS1 

DENS2 

DR 

DT1 

DZ 

ETHA( l ,J) 

FH( l, J) 

~T(I,J) 

.density array for 0 psig 

density array for 5000 psig 

d imens ionless rad ial increment 

time increment 

dimensionless axial increment 

viscosityarray 

latent heat of freezing array 

previous cycle temperature array 



H 

HT 

-241-

heat transfer coefficient at the cavity wall 

thickness of the cavity 

i th rad i a lin e r emen t 

ID rad ial increment where -the melt front is located 

lOF previous cycle value of ID 

J jth axial increment 

K 

KX 

NM 

NX 

Nl 

integer number of repeated 

integer number for control 

integer number for control 

integer number for control 

the third radial ring 

time increment 

purposes 

purposes 

purposes 

P(I) dimensionless pressure array 

PATM dimensionless atmospheric pressure 

PK 

PMAX 

PR 1 

PR2 

PR3 

PR4 

pressure 

maximum pressure at the end of fill ing 

pressure at the melt front as calculated 
fi rst iteration 

pressure at the melt front as calculated 
second iteration 

pressure at the 
third iteration 

melt front as calculated 

pressure at the melt front as calculated 
fourth iteration 

in the 

in the 

in the 

in the 

PX ( 1) array for dimensionless experimental measured 
pressure at the entrance to the cavity 

QI ( 1) 

QT 

summation of the second integral 

volumetrie flow rate 



R 

RO 

SUM 

T(I,J) 

TEMPDl 

TEMPD2 

TERMl 

TERM2 

TF 

TFO 

TI 

TIME 

T IMET l 

TIMET2 

TIMET 

TK 

TD 

V ( 1, J) 

VEQ 

VI 

X 

XK 

XKP 

XLF 
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dimensionless radius of melt front 

radius of mold cavity 

summation of the first integral 

dimensionless temperature array 

temperature array for density at 0 psig 

temperature array for density at 5000 psig 

a term in the first integral 

a term in the second integral 

dimensionless freezing temperature 

freezing temperature 

initial melt temperature 

time elap~ed from the beginning of filling 

time increment calculated from flow rate 

time increment as calculated from stabil ity 
requirements for energy equation 

time increment used in the energy equation 

tempe rature 

wall temperature 

dimensionless velocity array 

equivalent velocity 

coefficient in the energy equation 

constant coefficient in the momentum equation 

thermal conductivity 

thermal conductivity 

dimensionless freezing enthalpy 
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$WATFIV CF20001_6Bl705_KENIC 
C ******************************************** 
C APPENCIX 3: COMPUTF~ PRUGRAM_FILLING STAGE 
C ******************************************** 

DIMENSION VI21,11"TIZ1,ll"FT(ll,ll),PIll"PXI21"SUHI21,11l, 
ITERMlI21,ll"TERM2(21,lll,ETHAI21,ll),QI(Zl),TEMP0111Z"DENS1(12), 
2TEMP02(11',OENSZ(11',FH(ll,ll' 
CuNMn~1 TEllP01,DENS l, 1 n1fl 021 DENSl, Tl, TO, PMAX 

C R(An DATA 
REAn ( 5, 1 , IIR, Dl, IH 1" Tl, TO" T F 0, H, XKP, RO, QT ,p MAX, HT 
FnRMAT(2FR.O,E8.2,3F5.1,F~.l,F5.3,E8.2,FS.1,F7.1,E8.l) 
~~lTECb,29'DR,oz,nTl,TI/TO,TFO,H,~KP,RO,QT,PMAX,HT 

29 F~R~ATI3EIO.3,3~10.l,F10.3,EIO.l,FIO.3,FIO.l,ElO.l,FlO.3' 
R~AnI5,7S'(TEMP01(1),Ial,12'/(OENS1(1I,I=l,lZ) 

11 (lE Mp Dl ( 1 " 1 = 11 11 " ( OE!>ISl ( 1 ), 1 = 11 11 , 
75 FDRMAT(12F5.0/12F5.0/tlFS.O/11F5.0) 

WRIT~(b,3al'(TEMP()1(I),I·1,ll)I(DENS1(1',I=1112' 
l,(TEMPD2(I',I=l,ll),(DENS2(I',I=1111) 

301 FORMAT(l!llFB.1/)1 2(11FB.1/» 
RE AO ( 51 3 ) ( PX ( 1 ) , 1 .. 11 21 ) 

3 FORMAT (16F5.015F5.0) 
WRITE(bI9)(PX(I),I=l,21' 

9 FOR~AT(21Fb.3) 
pt.TIIII.t4.7/PMAX 
XLF=130.0/0.625/(TI-TO) 
TF=(T~O-Tn"(TI-TOI 
VEQ=S~RT(PMAX*32.2/46.01*J600*12 
X.(HT/2.Q)**O.594*VEQ~*(l.O-O.594) 
Ak=1.rt/4B,O 

C plJTIAL CDNntTIONS 
r,f.'? ,1=1,11 
TC1,J)=1.0 
TC2,J)=l.() 
T(3/J)=1.O 
T(4,J)=1.O 

2 CDNTIt·IUE 
l1ti 14 1 =3, II 
0(1 14 J=l,ll 
HI ( t" J ) = 0 • 0 

14 Cl1NTI:'JUE 
ID"4 
R·O,l':> 
L=l 
TIME-O.O 
Dll 15 I=l . .IU 
pel) QPX(IDI-PX(IO)*CI-21/(10-21 

15 CI,NTII>lUE 
10 I. .. L+l 

C HELT ADVANCES T8 NEXT INCFMENT 
lf'1F .. lo 
ID=ln+1 
RaR+DR 
(lIJ 51 J=l,l1 
TCIDIJI=T(lDF,J) 
P( ID)"P( lOF) 

51 CnNTINUE 
OU 52 J=l,ll 
T(2,J)=1.0 

52 CtlNTWUE 
IFCR,G~.l.O)GO TD 13 



IJ1=~ 
nF.LTPt=O.O 
OU TPZ=O.O 
OFLTPi\::O.ll 
IF(L.EQ.2)OELTP=O.2 
IlIl=O 
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w~ITE(6,39) nELTO,ID"nELTP1,OELTP2,OELTP3"P(ID) 
3-i F:'\R~AT<' I,oX,EI0.2"J4,,4EIO.21 

C CALCULATE FIRST INTEG~Al 
Dll!l t=N1,IO 
SUM (111)=0.0 
1)(1 5 J=llll 
ETHA(1"J).8.53E+~*EXP(2300.0/«T(I,J)*(TI-TO)+TO-32.0)*5.0/9,0 

1+Z73.Cl» 
TER~1(l,J)=«11-J)*Ol*46.0*X*AR/ETHA(1"J»**(1.O/O.594)*DZ/2,O 
IF(J.EO.1) CO 10. 1Z 
SUM(I,J)=SUM(l,J-11+TERM1(I,J-l)+TERM1(I,J) 

12 IF(T(l,J),lT.Tr)SUM(l,J)·o.O 
5 C UNTI NUE 

C tALCULATE S~COND INTEG~AL 
l>rl " 1 =~Il,,! D 
1./1(1) .. 0.0 
TE fUIZ ( 1,1) =0. () 
Dr) 6 J=2111 
Y .. 1.O 
lr(J.EQ.llIY=O.5 
TERM2(l,J)=OENSTP(T(1/JI/P(J»*Z.O*3,141S9*(I-1)*OR*OZ $SUM(I,J) 
aI(!)=QJ(I)+TERHZ(I"J,*V 

~ r..:HnU!UE 
C caLCULATE PRE~SURE PROFILF 

90b P(3)=PX(lü)-OELTP 
1'(2)"PX( 10) 
[Ji! 7 1=4,,10 
P(I)=P(J-1)-DELTP/O.7~/2.n*«QI(3)IQI(I»**O.594+(QI(3)/QI(I~l»** 

10.594) 
7 CONTINUE: 

\.'R IlE (6,11 ) (P ( 1 )" 1 =3,d 0) 
11 FPRPIAT(20FS,3) 

IF(IO.EQ.N1) GO TU 909 
C ITEPA1'E FOR PRESSURE 

IF(P(ID) .LT.l.S*PATtl.ANQ.P(ID) .GT.O.S*PATM)GO TD 909 
NI1·~IM ... 1 
IF(NM.EQ,110ELTPI-0ELTP 
IF(NM.EQ.l)PR1=P(10) 

IF(NH.EQ.2)DELTPZ=DELTP 
I~(NM.EQ.2)PP.2=P(IO) 

IF(NM.GE.2) GO TD 65 
IF(P(ID) -PATM 161/61,,62 

61 ~.(PATM ~P(JD) )**3 
F=-F 
r.li TO b3 

62 F~(PCIO) -PATM )**3 
63 DtLTp.OELTP+F 

IFCARS(DELTP).GT.l.O)OELTP=O.5 
IF(NM.EO.l) GO TO 69 
IFCPR] .EQ.PR2)GO TD 909 

65 rF(NM.G~.3) GD Tn 66 
IF(NM.EQ.2)~ELTP=DELTP2+(D~LTP1-DELTP2)/(PR2-PR1)*(PR2-PATM) 
GO TO 69 

6b IF(NM.EQ.3)DELTP3=DFLTP 
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1 F (~I"'. ECl. ~l) p~ 3=P (101 
I~(~M.GE.4) Gn Ta 67 
OELTPc(PATH -PR2)*(PATM -PR3)/(PR1-PR21/(PR1-PR31*OELTPl 

2+tPATM -PR1'*(PATM -PR31/(PRl-PRll/(PR2-PR3)*OELlPZ 

3+!PATr, -PR1)*(PATH -PRZ)/(PR3-PR1)/(PR3-PRZ)*DE~TP3 

(iL' T(1 oQ 

67 IF(PPO) oLE.PATtI )UF.LTPZ=OELTP 
IflPltO) .LE.PATM IPR2 a P(IO) 
IF(P(lU) .GT.PATM )OF.LTP1=DELTP 
IF(p(ln) .GT.PATM IPRl~P(IO) 

D[LTP.tPATH -PRZ,*(PATM -rR31/(PR1-PRZ'/(PRI-PR~)*OELTPl 

2 ... tI'ATI\ -PR1,*(PATM -F'R3,/tPRZ-PR1'/(PRZ-PR3'*OELTP2 

3+(PATH -PR1,*tPATM ~PRl,/(PR3-PR1'/tPR3~PR2)*OELTP3 

b9 WRITElb,39' OELTP,IDpOELTP1,DELTP2,OELTP3,P(IOl 
GU TI.1 906 

C tALCULATE VELOCITIES 
909 DO ~ l cN11ID 

I:'(~ S ,1 = l, 11 
IF(I.P.Q.ID' GO TO 16 
vP=l.n 
IF(I.CQ,N1)VP=O.875 
V(l,JI=SUM(I,J'*«P(I-l'-P(l+ll'/(Z,O*OR*VP'I**(l.O/O.594) 

16 IF(J.EQ.ID'V(I,JI=SUH(I,J,*«P(I-l'-P(I)l/DR'**(l,O/O.594) 

a CONTI/lUE 
C CALCULATE FLOW RATE 

QT=r)or1 
nr] 93 ,1:02,,10 
QT=QT+VIIU-1,JI*2.0*3.14159*OR*(IO-21*UZ 

93 C(1NTJNlIf 
OT~QT+VIIO-l, l'*2.0*3.l4159*OR*IID-2'*DZ/2.0 
OT=OT+V(lD-11111*Z.O$3.14159*OR*(IO-Z).OZ/2.0 
XP-l,{'\ 
TIMET1=2.0*3.14159*«IID-11*OR,**Z-«IO-2)*OR*XP1**2'/12,0*QT'*1,0 

11 td~ 
ltME=TlME ... TIMETl 
IF(L.EQ.Z,TIMET1=TIME 
IF(L.EQ.21TIMETl=TIME 
IlX-O 

C CflECK FOR STABILITV 
TIM~T2=OR/(AR*VI3"lO») 

I~(TIM~T2,LE.O.b5E+4) GO TO 81 
IF(TIMET1,LE,O,65E+4INX=1 
IF(TIMET1.LE.O.65E+4)TIMET=TIME Tl 
lF«TIMETl-O.65E+4)17t,71,72 

72 K.TIM~Tl/0.65E+4 
TIMET.O,6SE+4 
GU TO 91 

81 IF(TI"II:Tl.LE.TlMET2,NX a l 
IFITIHErl.LE.TIMET2)TIHET~TtMETl 

IF«TIMETI-TIMET21)71,,7l,ij2 
82 K_TIM~Tl/TIMET2 

TIMF;hTI~'t=TZ 

GU Tn 91 
91 k)(=O 
73 KX=KX+l 

IF(KX,EQ.(K+1),TIMET=TIMET1-TIMET*K 
IF(I(X.GT.(K+L»GIJ TO 74 

e CALCULATE TEMPERATURE FRDFILE 
71 rel 910 1"111, ID 

[Ir,' 91:) J = 1,11 
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FTllIJ)"TeI"J) 
FTC2,JlcTeZ,J) 
V(2,J)=\t13,J) 
IFCJ,EQ,11) Go Tn 22 
IFITCr,J),LT.TF)OENS=57.0 
IFCTII"JI,G~.TF)DENSa46.0 
I~CTCI,JI.LT.TF)XK=O.?6 
IFITCl,JI.LT.TFICP=O.~5 
IFCTCI,J),GE.TFIXK"O.130 
IFCTCl,J).GE.TF)CP=O,70 
CJEFcDZ*H*HT/2.0/XK 
IFCJ.FQ,11 GO TO 21 
R=TIMlT/COZ*Ol*VEQ*HT/2.0 )*XK/OENS/CP 
VI=~.~3F.+j*EXPCl300/(CTII,J)*ITI-TOI+TO-32.01*5/9+Z73.0» 
~1.VI*VEQ**O.594/CITI-TO)*CIIT/Z.O)**O.594*CP*DE4S*32.~*77H*3600* 

13600*ll+B»*TIMET 
TCI,JI=Tlt"JI*Cl-R)/C1+BI-TIMET IDR/Cl+BI*IVCI,JI+VII-1,J»/2.0 

l*ITCI,JI-FTII-l,JII.AR+B/(I+BI*ITII,J-l)+TII,J+ll)+CBl*ceveI,J+l) 
2-V(I,J-11)/2.0/DZI •• Cl.n+O.59411 

C LhTF.NT HE AT EFFECT 
lF(V(I,JI,EQ.o.O.ANO,FHII.J),LT.XLFIFHII,JI=FHCI,J)+FTCI,J)-TCI,J) 
IF(VeI,JI.EQ.o.O.AND,FHel,J),LT.XLF)TCJ,J)=FTeI,J)-IFTCI,JI·TeI"J) 

1l*O,2A 
21 IFIJ.EQ,lITCI"JI=TII,J+ll/Cl.O+COEF) 

22 IFeJ,EQ,1lITII,J,=rcI,J-l1 
911) CDNTI"JUE 

IF(NX.EQ.o)GO TO 73 
C PRINT RESULTS 

74 00 911 IcNl,ID 
DD 911 J=l,ll 
WRITEc 6,ZOIPIII,VCI,J),Tel,JI,R,TIME,I"J,Bl,QT 

20 FoRMATC' ',3EIO.3,FB.3,E10.3,ZI3,ZEIO.31 
911 CI)NTINUE 

GU TO 10 
1~ W~ITEc6,2~)C(FHII,JI,J=l,11),I=l,Zl) 

23 FOR~ATe20CIIFll.3/11 
STOP 
Ef~D 

FUNCTION DENSTPCT,PI 
DIMENSION TEMPOIC1ZI,DfNSIC121,TEMP02Cll),DENS2C111 
CUMMON TEMPD1,DENS1,TEMPDz,DENSZ,TI,TO,PMAX 
TK"H'(Tl-TOI+TO 
PK-P*PMAX 
IFCPK,LT.14.7)PK=14.7 
DENSTP=DE~SPICTKI+CDENSPZITK)-DENSPleTK»/5000*PK 
RHURr·! 
Er.ID 

FUNCTION ~ENSPICTkl' 
DIMfNSIJN TEMPDI(12),OEMSIC12),TEMP02Cll),DENS2Cll) 
cnMHQ~ TEMP01,OENSl,TEMP02,OENS~,TI,TO,PMAX 
I:-.JTEGER L 
IFCTK.LE.240.0IGO TO 100 
OENSPI =50.0-4.S*CTK-240,O)/160,O 
Rl'TURN 

100 Zcl 
110 IF(TK.TEMPOIIZ»lOl,102,lo3 



--------------------------- ---

103 Z.Z+l 
GrJ TO 110 

Laz DENSP1=OENSlIZ) 
RETI.lRN 
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lOl OF.NSP1=OENS1I~-1)+IOENS1(Z)-OENSI(Z·l»/(TEMP
Dl(Z)-TEMP01(l-l»* 

l(TK-TEMPDIIZ-l» 
RF.. TURtl 

r.·ND 

FU~lcnON DENSP2ITK) 
DIM~NSJON TEMPOII1Z),DENS1(lZ),TEMPOZII1),DENSZ(11) 
COMMON TEMPD1/OENS1,TEMPOZ,OENSZ,Tl,TO,PMAX 
INTEGER Z 
IF(TK.LE.225)GO TO 130 
DENSP2=5Z.3-3.4*(TK-2'5)/145 
RETURN 

UO Zai 
140 IF(TK-TEMPD2(l»141/142,143 
14'3 ZeZ+1 

GCl TO 140 
142 DENSPZ=OEtIS2( Z) 

RETURN 
141 DENSPZ=DENS2(Z-1)+(DENS2(Z)-DENS2(Z-1»/(TEMPD2(Zl-TEMPD2(Z

~1')* 

1(TK-TEMP02IZ-1» 
RETURN 
END 

,.. 
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9.4 APPENDIX 4: COMPUTER PROGRAM - PACKING STAGE 

The following symbols are used in the computer 

program. 

B dimensionless coefficient 

COEF dimensionless number for heat transfer at the 
wall 

CP specifie heat 

DAVT average density 

DENS density 

DENSTP(T,P) subroutine for calculating density as a function 
of tempe rature and pressure 

DENSP1(T) 

DENSP2(T) 

DENSP3(T) 

DENSP4(T) 

DENSl 

DENS2 

DENS3 

DENS4 

DPT 

DPTl 

subroutine for calculating density as a function 
of temperature at 0 psig 

subroutine for calculating density as a function 
of temperature at 5000 psig 

subroutine for calculating density as a function 
of temperature at 10000 psig 

subroutine for calculating density as a function 
of temperature at 15000 psig 

density array for 0 psig 

density array for 5000 psig 

density array for 10000 psig 

density array for 15000 psig 

difference between the pressure at the injection 
end and the average pressure in the cavity 

value of DPT in previous cycle 



DR 

DT 

DZ 

FH(I,J) 

FT(I,J) 

HT 

J 

M 

NM 

P ( 1) 

PAV 

PMAX 

PR(D,T) 

PO 

QT 

QO 

RO 

T ( 1 , J) 

TEMPDl 

TEMPD2 

TEMPD3 

TEMPD4 
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rad ial Increment 

time Increment 

axial Increment 

array for latent heat of freezing 

array for previous cycle temperatures 

thickness of the cavity 

ith radial ring 

jth ax ial Increment 

integer number for control purposes 

integer number for control purposes 

pressure array 

average press~re 

pressure at the injection end 

subroutine for calculating pressure from average 
density and temperature 

difference between the pressure at the injection 
end and the average pressure in the cavity at 
zero time 

flow rate at t ime t 

initial flow rate 

radius of cavity 

temperature array 

temperature array for dens ity at 0 psig 

temperature array for density at 5000 psig 

tempe rature array for density at 10000 psig 

tempe rature array for density at 15000 psig 
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TF freezing temperature 

TI initial melt temperature 

TIME time elapsed from the beginning of packing 

TO wall temperature 

VOL volume introduced into the cavity during time 
increment DT 

XMAV pol ymer mass in the cavity 

XK thermal conductivity 
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C *************************************************.***** 
C APP~NDIX 41 COMPUTER PROGRAM_PACKING+COOLING STAGES 
C ******************************************************* 

O'M~NSION PC11l,TEMP01C1Z"TEMP02Cll"TEMPD3(12),TCll,ll" 
lTEMP04C1Zl,DENSl(12),OENS2(11l,DENS3(1Zl,DENS4(1Z),FH(11,il),PT(11 
1'11 l 

COMMON TEMPOl,OENS1,TEMP02,OENS2,TEMP03,OENS3,TEM P04,OENS4,TF,I,J 
302 FORMAT(ll(llEll.3/» 

C READ DATA 
REAO(S,70l (CT(I,J),J_l,ll),[=l,ll),CPIIl,I=l,ll) 

70 FORMAT(1ClbF5.0/,,9F5.0/11F5.0) 
REAO(S,71)(TEMPOlCIl,l.l,lZl,(TEMP02(ll,I-1,lll,CTEMPD3(ll,I-1,lZ) 

l,(TEMP04(ll,I=l,12),CDENSICll,I=1,lZl,(OENSZ(ll,l-l,l1),CDENS3(ll, 
2I_l,lZl,IOENS4CIl,l-l,lZ) 

71 FORMAT C1ZF5.0/l1FS.O/l2FS.0/12F5.0/12FS,O/11F5.0/12F5.0/12F5.Ol 
REAOC5,7Z)PHAX,RO,HT,OT,DR,OZ,TO,TI ,XKP ,TF,QO 

72 FORMAT(lOE8.Z/F5.0l 
00 303 1=1,11 
WRITE(b,304lCTCI,Jl,J_l,11) 

304 FORMAT(11E11.3 l 
303 CONTINUE 

WRITEtb,30ll CPCll,l.l,ll),CTEHPDltll,I=l 
l,lZ),CDENS1CIl,l=l,lZl,(TEMPOZCI),I-I,ll),(OENS2CI),1-l,ll),CTEMPO 
Z3CIl,I=1,lZl,(OENS]CIl,I-1,lZl,(TEMP04IIl,I=1,lZl,COENS4CIl,l"l,lZ 
3),PHAX,RO,HT,DT,OR,OZ,TO,TI,TF,XKP 

301 FORMAT( llEll.3/,Z(lZF8,1/l,2CllF8,1/l,4C12F8,1/),lOEl 
lO,3111l 
Nrl-C 
PX-O.O 
TIMEc:O.O 
DPh1000.0 
M.O 

C CALCULATE AVERAGE pr.,'SSIJRE 
PAV.O.O 
on 103 I=Z,lO 
PAV.PAV. 3.l4l59*(I-ll*OR*oR*PCIl 

103 CONTINUE 
PAV.PAV.3.14159*OR*OR*P(11)*10,0/2.0 
PAV.PAV.3,14159*OR*DR*PCZl 12.0 
PAV·PAV/(3.l4l59*RO*RO/Z,Ol 
WRITECb,30Sl PAV 

305 FORHATCF9,Zl 
PO·PMAX-PAV 
1)0 1'0 1=1,11 
DO 1.50 J-l,l1 
FHCI/J l -0,0 

150 CONTINUE 
99 IFCNM,EQ.llGO TO 2 

DP T1-0PT 
DPhPMAX-PAV 
M.M·l 

C CALCULATE FLOW RATE 
QT·QO~CDPT/PO)**(1,0/O.594l 
[FCABSCDPT1-DPTl.LT.l.SlQT-O.O 
IFCABSCDPT1-DPT).LT.l • .5lNM=1 
IFCABSCDPT1-DPTl.LT.l.Sl 

lWPlTE(b~30ZlCCT(I,J',J·l'11),I·l,lll 
Z IFCTIME.GT.O.50l DT.O.70E-4 

vnL-QT*OT 
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C CALCULATE AVERAGE TEMPERATURE 
TAV.O.O 

c; 

c; 

C 

C 

C 

DO 100 1-2,10 
DO 100 J-2,10 
TAV-TAV+ Z*3.14159*CI-l)*OR*DR*OZ*TCI,J) 

LOO CONTINue 
DO 101 l''Z,lO 
TAVcT~V+ 3,14159*C!-1)*OR*OR*OZ*TCl,11) 
TAV.TAV+ 3,14159*CI·l)*OR*OR*OZ*TCI,1) 

101 CUNTINUE 
no 102 J-2,10 
TAV.TAV+ 2*3.14159*10*OR*OR*OZ/2*TC11,J) 
TAV-TAV+ 2*3.14159*1 *OR*DR*OZ/2*TC l,JI 

102 CONTINUE 
TAV.TAV+ 3.14159*10*DR*OR/2*OZ*TCll,11) 
TAV.TAV+ 3.14159*10*OR*OR/2*OZ*TCll,1) 
TAV-TAV+ 3,14159*1 *nR*OR/2*OZ*TC 1,1) 
TAV-TAV+ 3,14159*1 *OR*OR/2*OZ*TC 1,11)· 
TAVT-TAV/C3,14159*CRO*ROI*HT/ZI 
CALCULATE AVERAGE OENSITV 
JFCM,EQ.l)XMAV-OENSTPCTAVT,PAV)*3,14159*RO*RO*HT/Z.O 
XMAV-XMAV+QT*OT*OENSTPCTl,PMAX) 
DAVT-xMAV/C3,14159*RO*RO*HT/2.0) 
CALCULATE NEW AVERAGE PRESSURE 
PAV-PRCDAVT,TAVT) 
IFCPAV,EQ.14.70) 

1WRITEC6,30Z)CCTCl,J),J-l,11),I-l,11) 
CALCULATE TEMPERATURE PROFILE 
on 97 hl,l1 
00 97 J.l,l1 
FT(J,J)-TCI,J) 
IFCJ.EQ.l1)GO TO 81 
IFCTCI,J).GT,TF 
IFCTCt,J).GT.TF 
JFCTCJ,J).GT,TF 
JFITcr,J).LT.TF 
1 F (T ( :' J ) • L T • TF. 
IF(TCI,J).LT.TF 
COEFclOO.O*OZ/XK 
JFCJ.EQ~lIGO TD BD 

)XK-O.130 
)OENS=46,O 
ICP .. O.70 
»(K a O.Z60 
)DENS-57.0 
)tP=O.S5 

B .. XK/nENS/CP*OT/OZ/OZ 
TCl,JlIITCI,Jl*ll-BI/Cl+B)+B/Cl+B)*CTCI,J-ll+TCI,J+l» 
GO TO 82 

80 T(I,1)=TO*CDEF/Il+COEF)+TIJ,2)/11+COEF) 
GO TO 82 

Hl TCI,JI=TCI,J-l) 
LATENT HEAT EFFECT 

82 IF(TCr,J).LT.TF 
lt,J)-TC I,J» 

1 F C TC II JI. L T • TF 
LJ,J) )*0,28 

98 IFlNM,EQ,OITC1,JI=TI 
9'1 cnNTINUE 

PRINT RESULTS 
201 WRITF.C6,300IQT,OT,TIHE,DPT 
~oO F~RMATC9E13.41 

JF(PAV,GT.PMAX)GO TO 113 
JF(PAV,LE.14.7)GO TO 113 
IFCTJME.GT,9.11 GO TO 113 

-----------



GÙ TÙ 99 
113 STUP 

END 
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FUNCTION DENSTP(T,P' 
DIMENSION TEMPD1(lZI,DENS1(lZI,TEMPD2(11"DENSZ(11"TEMPD3(lZI,DENS3(lZI 

lS3(lZ),TEMP04(lZI,DENS4(lZ1 
COMMON TEHP01,DENS1,TEMPDZ,DENS2,TEMPD3,DENS3,TEMPD4,OENS4,TF,I,J 
JF(P,LT.14,7IP=14,7 
IF(P~lOOOOI31,32,33 

31 IFCP-5000134,35,36 
32 OENSTP=OENSP3(TI 

RETURN 
33 DFNSTP=OENSP3(Tl+(DENSP4(Tl-DENSP3(T)l/5000.CP~10000' 

RETURN 
34DENSTP=DENSP1(TI+(DENSP2(TI-OENSP1(T)I/5000*P 

RETURN 
35 OENSTP=DENSPZ(TI 

RETURN 
3~ DENSTP=OENSPZ(TI+(DENSP3CTl-DENSP2CT)I/SOOO*(P-5000' 

RETUIHl 
END 

FUNCTION OENSP1(Tl 
ülMENSION TEMPD1(lZI,OENS1(lZl,TEMPDZ(11),DENS2C11),TEMPD3CIZI,DENS3(lZl 

lS3(lZl,TEMPD4(lZl,DENS4(lZ1 
tnMMON TEMPD1,DENS1,TEMPDZ,DENSZ,TEMP03,DENS3,TEMPD4,DENS4,TF,I,J 
ItJTEGER 1. 
l~(T,LE,ZZOIGO TO 100 
OENSP1=50.0-3.7*(T-Z401/160.0 
RETURN 

100 Zd 
110 IFCT"TEMPn1(ZlllOl,lOZ,103 
103 Z.Z+l 

GU TO 110 
102 DENSP1=OENS1(ZI 

RETlIRtJ 
101 DENSP1=DENS1(Z-11+(OENS1(!I-DENS1(Z-111/CTEMPOl(Z'-TEMP01(Z-1)1* 

lIT-TEMPOleZ-1l 1 
RFTURN 
F.~ID 

FUNCTION DENSPZCTl 
DIMENSION TEMPD1(lZ"OENS1(lZl,TEMP02(11),DENSZ(11"TEMP03CIZI,DEN 

lS3(lZI,TEMP04(1ZI,OENS4(lZl 
CUMMON TEMP01,OENS1,TEMPD2,DENS2,TEMPD3,DENS3,TEMPD4,DENS4,TF,I,J 
INTF.GER Z 
IF(T.LE.ZZSIGO TO 130 
OENSPZ=52.3-3.4*(T-ZSSI/145 
RETLIRN 

130 Z=l 
140 IP(T-TEMPDZ(Zll14l,14Z,143 
143 Z=Z"'1 

GO T(1 140 
14Z OENSP2=OENSZ(ZI 

RETURN 
141 DENSPl=OENSZ(Z-11+(OENS2(ZI-OENS2(Z-III/(TEMPOZ(Z).TEMPOzeZ-l,,* 



" ""--ï(r.-"TËMP02(Z':'i )-) 
ReTuRN 
END 
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FUNCTION DENSP3(T) 
DIMENSION TEMPD1(lZ),DENS1(lZ),TEMPOZ(11I,OENSZ(11),TEMP01(lZ"DEN 

lS3(lZI,TEMPD4(lZ),OENS4(lZI 
CoMMON TEMPD1,OENS1,TF.MPOZ,DENSz,TEMPD3,OENS3,TEMPD4,OENS4,TF,I,J 

INTEGER Z 
rF(T.L~.Z&5)GO TD 150 
DENSP3~54.2-3.Z*IT-Zb5'/135 

RETURtJ 
150 hl 
lbO IF(T-TEMPD3(Z)'lbl,16Z,163 
103 Z.Z"'l 

GO TO 160 
162 DFNSP3~OENS3(Z' 

RETURN 
161 OENSP3~DENS3IZ-1)+(OENS3(l)-OENS3(Z.l')/(TEMP03(Z)-TEMP03(Z

w l"* 

lCT-TEMP03(Z-l,) 
RETlJRN 
END 

FUNCTION IlENSP4(T) 
OJMENSION TEMP01C1Z"OENS1(12),TEMPD2(11),OENSZC11',TEMPD3(lZ),DEN 

lS3(lZ),TEMPD4(lZ),DENS4(12) 
COMMON TEMP01,DENS1,1EMPDZ,DENSZ,TEMPD3,DENS3,TEMPD4,DENS4,TF,I,J 

INTeGER Z 
IF(T.LE.Z7S)GO Ta 170 
DENSP4=5b.0-2.S*IT-Z75)/125 
RETURN 

170 Zd 
180 IF(T-TEMPD4(Z)'lSl,18Z,183 
183 Z.Z"'l 

GOTO 180 
ldZ OENSP4 n DENS41Z' 

Rf;TURN 
181 OENSP4=DENS4IZ-1)+(DENS4(Z)-DENS4(Z-1)'/(TEMP04(Z)-TEMP04(Z-1". 

l( T-TEMP04 (Z-l ) ) 
RETURN 
END 

FUNCTlON PR(D,T) 
DIMENSION TEMPD1(lZ),OENS1(lZ),TEMPOZ(11I,DENSZ(11),TEMPD3(lZ),OEN 

lS3(lZ"TEMP04112),DENS4(lZ) 
D1MENSION DE(4' . 
COMMON TEMP01,DENS1,TEMPDZ,DENSZ,TEMPD3,DENS3,TEMP04,DENS4,TF,I,J 

OE:< l l "OENSP 1< Tl 
DE(2,.DENSPZIT) 
DE (3' .DENSP3 (.Tl 
DE(4'.DENSP4(T) 
IF(OE(l'-01l,212 

1 IF(DE(2'-D'4,5,b 
4 IF(DE(31-0)7,8,9 

2 PR.14.7 
RETURN 

!:i PI"-5000 
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RETURN 
6 PR-5000/COEC21-DEClll*CO-OECll) 

RETURN 
7 PR-l00DO+5000/COEC41-0E(3)1.(O-OEC3) 

RETlIRN . 
8 Plh. lOODO 

RETURt. 
9 PRc5000+5000/(OE(3)-UE(2)1.(O-DEC211 

RETlJRN 
END 
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9.5 APPENDIX 5: NUMERICAL TREATMENT OF LATENT HEAT 

When latent heat of freezing is involved during 

phase transformation, as in the case of crystal1 ine polymers, 

equations (3-14) and (3-15) for the generation of latent 

heat in the solidifying layer need to be solved. 

A few methods are suggested in the literature for 

solving equations similar to (3-14) and (3-15) for the case 

of stationary syatems and sharp transition temperatures 

(54,22). The Itconvent ional" method is the s implest, from 

the computational point of view. In this method, the solu­

tion to equations (3-14) and (3-15) is indirect. Instead 

of deal ing with latent heat, one deals with an equivalent 

temperature defined by Teq = L/Cp where L is the latent heat 

of freezing and Cp is the specifie heat. When the solidific­

ation temperature is reached at a given mesh point during 

computation, further reduction in temperature (as a result 

of cooling) at this point is delayed unti1 the equivalent 

temperature is achieved. 

ln this work, the "conventional" method has been 

modified for applications involving partially crysta11ine 

materials (1 ike polyethylene) which exhibft a freezing range. 

Instead of a complete delay of temperature when the upper 

1 imit of the freezing range TuF is reached at a given mesh 

point, on1y a partial delay is applied. The partial delay is 

based on a fraction Fr, defined as follows: 



Fr = 

-257-

6H f - CPa (Tu F - T LF') 
6H f 

........... (9-50 ) 

Where 6H f is the enthalpy of sol id if,jcat ion and CPa is the 

weighted average specific heat for the partially crystalline 

polymer. Thus a fraction (1 - Fr) of the heat which is 

conducted at any lump of the difference scheme is util ized 

to lower the temperature of the lump as sensible heat, while 

the other fraction Fr, is utilized in freezing the crystalline 

part as latent heat. The partial reduction is terminated 

when the lower '1 im i t of the f reez i ng range T LF i 5 reached. 

The value TLF is obtained from the following definition. 

= = 

Td=T LF 
S' . . .....• ( 9-5 1) 

Td=T uF 

Where QT is the amount of heat conducted across the freezing 

boundary when its temperature equals T. Td and Tu refer to 

delayed and undelayed temperature values as obtained in the 

computational scheme. 

ln the l iterature, it is emphas ized (54,55) that, 

since one deals with space and time increments, the conven­

tional method fails to describe the travel of the freezing 

front continuously and to give a precise temperature near the 

freezing line. Furthermore, it is poss ible for the front to 
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remain at one mesh point 50 long' (as a result of large latent 

hear or small specifie heat) that the constant temperature 

which pertains at the solidifying layer eventually may cause 

the calculated temperature profile to reach a steady-state 

situation. In the medified proposed method for partially 

crystall ine polymers, this risk of reaching a steady state 

and inaccurate temp~rature near the freezing front are 

el iminated by partial delay. A steady state is not achieved 

since the temperature decreases due te the amorphous portion. 

The medified "conventional" method would fail to represent 

temperature profiles near the phase change boundary in the 

case of highly crystall ine polymers like Nylon. In these 

extreme cases, one has always the choice te go to the more 

sophisticated methods outlined by Murray and Landis (54). 

This method was first tested and used in the case 

of cool ing polymer melts in a long cyllnder (24). 
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9.6 APPENDIX 6: EXTENSIONAL STRESSES 

For the isothermal flow of an incompressible fluid, 

one may include the extensional viscosity in the momentum 

equation. The momentum equation, after el iminating the 

unsteady, the nonl inear term, and Trr , takes the following form: 

.af = Tee - oT rz 
or r ;,r .••.••.•.•.•.•. ( 9-52) 

Assuming that: 

= À 
Vr 

Tee r ••.•......•.•.• ( 9-53 ) 

and 

T rz = -M 
?'IV r n 

(az-) .•••.•••..•...• (9-54) 

where À is the constant extensional viscosity. 

Subst itut ing of (9-53) and (9-54) into (9-52) 9 ives: 

.aE. V ?'IV r n 
= À .-r. + M.2... [(~) ] 2'lr r2 oZ · •••..•. • . (9-55) 

From continuity (3-1) : 

Vr x r = cp( z) = constant • ••.••...• ( 9-56) 

Substitution of ( 9-56) into (9-55) yields: 

.a!: -À.L+M.L .a... .MI!.n = [(oz) J ?'Ir r3 rn oZ · ••••.•. • . ( 9-57) 

The total pressure 10ss as expressed in equation 

(9-57) can be divided· into two contributions. The shear 

cont r ibut ion 
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M .......... ( 9-58) 

and the hoop contribution: 

= - À .......... (9-59) 

It can be seen from equations (9-58) and (9-59) that 

the hoop loss is large especially at small radii. The rela­

tive magnitude of the shear loss and t~e hoop loss depends 

on the shear rate, the magnitude of the extensional viscosity, 

the consistency index and the radial co-ordinate of the point 

under consideration. 

ln an oversimplification of the problem, Cogswell 

and Lamb (48) separated the shear loss and the hoop loss then 

integrated each term separately with respect to the radial 

direction and added up the two losses. Furthermore in the 

integration of the hoop loss they assumed a plug flow situation. 

As a result of the above simpl ifications the y obtained the 

fol lowing expression for the pressure loss: 

p _. à~h (_1 - _1_) 
a2 R 2 

0 ...•.. ( 9-60) 
2M x (QQ.)n 1 ( l-n l-n) + 

h l+ 2n x l-n x Ro - a 271" 

Equation ( 9-60) gives the total pressure loss and 

shows that part of this 10S5 is cantributed ta the extensianal 

stresses. 
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The simpl ifications and assumptions made by 

Cogswe11 et al (48) can be avoided for the case of a steady 

radial flow of a Newtonian incompressible f1uid, and an 

analytica1 solution can be obtained. 

Starting from equation (9-52) and assuming the 
..• 

fol1owing constitutive equations: 

À 
Vr 

Tee = - r ............... (9-61) 

= - ~V r 
Trz I..l or ............... (9-62) 

Subst itut ing (9-61) and (9-62) into (9-52) 9 ives: 

.ae. = 
or - À .......•.....•. ( 9-63) 

Expressing all variables in the same dimensionless 

variables as in Chapter 3.1.2 results in: 

v* -- + 
r*2 

l ..•• (9-64) 

Where: 
Ve 

. Pm . h 
Rel = 

Il 

Ve 
. Pm . h 

Re2 = 
À 
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Using the continuity equation: 

v* x r* = cp* ••••.••••••...• (9-65) 

Substituting (9-65) into (9-64) gives: 

R-L A <1>*3 + R l A ~ 0
2

<1>*2 ••••• (9-66) 
e2 r r* el r r oZ* 

Integrating with respect to r* and using boundary conditions 

(9-17) and (9-18) yields: 

= 
RelA r 

R 
.en(a

o
) 

......•.•....•. (9-67) 

Equation (9-67) is an ordinary differentia1 equation 

the solution of which is given by: 

cp* 
K .e cz* + .e -cz* 

= C2 (1 - .e c + .e -c ) .•.... (9-68) 

Where: 

K = 
Re1A r 

R 
.en(~) 

a 
and 

A2 

C2 • Re l (_1_ r - 1) = R x 

2 • Re • .en(ao ) 
a*2 

2 
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Substituting (9-68) into (9-66) and solving for P*(r*) 

yields: 

p*( r*) = 

x 

l - -)(1 
r*2 

.e cz* + .e -cz* 
.e c + .e -c ) 

.e c z* .e -c z* 
( .e c : .e -c ) .•.•. (9-69) 

The solution for the same problem excluding the 

extensional stress is given by: 

p*( r*) = l ......•.•. (9-70) 

ft can be seen from equations (9-69) and (9-70) 

that the pressure will vary with the axial direction z*. 

The same pressure will be obtained only for z* = l (at the 

wall); at all other positions the pressure will differ from 

the Newtonian case. Assuming that the extensional viscosity 

is three times the Newtonian one (56) and for the dimensions 

of the cavity in the present study, the pressure values com­

puted at the wall are higher by more than 10% from the ones 

computed at the centerl ine. 

Although an analytical solution is impossible for 

a Power Law fluid, a similar result can be expected. Thus, 

the hoop and shear loss~s cannot be separated and integrated 

separately as done by Cogswell et· al (48). 
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9.7 APPENDIX 7: ESTIMATE OF DIFFERENT TERMS 
IN THE MOMENTUM EQUATION 

An estimate of the relative magnitudes of the dif­

ferent terms in the momentum equation is very important in 

as ses sin g the val id i t Y 0 f e l i min a tin g a f ew 0 f the set e rm s 

for the saKe of simpl icity of the calculation procedure. 

Tables 9-1 and 9-2 compare the magnitudes of the 

derivative of the radial velocity with respect to the axial 

distance and with respect to the radial direction, for poly­

ethylene and polystyrene for cases 3 and Il, respectively. 

The latter derivative also gives a good estimate of the ratio 
V 

between the velocity and the radial position (~), as may be 

deduced from the continuity equation (3-1) for an incompressi-
rN V 

ble fluide Both ___ r and -L were neglected in order to or r 
simpl if y the rheological equation of stage and to use the 

data obtained from the capillary rheometer. 

Tables 9-1 and 9-2 also compare the magnitude of the 

rate of change of the shear stress with respect to the axial 

direction (which is constant for isothermal flow) and the 

magnitude of the nonl inear term in the momentum equation that 

was el iminated in order to simpl if y the calculation of the 

velocity profile at each radial position. Keeping the last 

term in the equation would have demanded an iteration procedure 

for its calculation. All values are given at three different 

positions (R* = 0.2,0.5, 1.0) and both at the wall and the 

centre of ~he.cavity, in addition to the entrance and melt 

f ron t reg ions. 



1 • 
aV r 
-* az 

aV r V r 
2 -=f- -) * • ar r 

aV r 
3. PmV r ar- ** 

~ aVrnr 
4. az[ (?lZ ) 

TABLE 9-1 

MAGNITUDES OF DIFFERENT TERMS IN THE MOMENTUM EQUATION 

POLYETHYLENE CASE 3 

R* = 0;20 R* = 0.50 R* = 1.00 
Entrance Entrance Me1t Front Entrance Me1t Front 

Wall Centre Wall Centre Wall Centre Wall Centre Wall Centre 

1 .7x103 0 7.3x102 0 2.2x102 0 5.6xl02 0 6.6x101 0 
, 

1.8x101 1.6xl02 8.2 7.9 6.8xl0-1 2.5xl01 6.8 6.2xl01 2 ~2x 10-1 1.Ox101 

8.2xl02 1.37xl04 1.25xl02 3.9xl03 3.1 1.33xl02 7.8xl01 2.SX103 -1 3.1xl0 . 9.4 

7.5xl08 8.25xl07 7.8xl07 . 3. 14xl07 5.3xl06 

- --- ___ o. - - __ 

* Un its: l/sec 

** Units: 1b/ft2/sec2 



aV r 
l -* • 'oZ 

aV r V r 
2. ~=(-r) * 

;:N r · 
3 pV ._** • m r ~r 

aV n 
4. ~[(_r) ]** 

'oZ az 

TABLE 9-2 

MAGNITUDES OF DIFFERENT TERMS IN THE MOMENTUM EQUATION 

POLYSTYRENE CASE 11 

R* = 0.20 R* = 0.50 R* = l .00 1 

i 

Entrance Entrance Melt Front Entrance .Me1t Front 

Wall Centre Wall Centre Wall Centre Wall Centre Wall Centre 

4.6xl03 0 6.6xl02 0 1.8xl02 0 3.3xl02 0 1.lxl01 0 

1 

5.0xl01 l • 6x l 03 . 8.0 4.3xl0 1 3.3xlO-1 4.6 6. 2x l 0 l 3. lx l 0 l 1.7xlO-3 8.0xlO-1 

1 

8.2xl03 7.9xl04 9.7xl01 4.9xl03 9.1xlO-1 1.8xl02 2 • l x l 0 l 2. 6x l 03 5. 5x l 0 -4 1. 2x l 0 l 1 

4.0xl09 3.4xl09 3.12xl09 4.llxl09 4.21xl09 

-

* Un its: l/sec 

** Un its: lb/ft2/sec2 
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It can be noticed from both tables, that the 

change of velocity with respect to the radial direction is 

negligible at all front positions near t~e wall. At the mid­
rN· 

plane of the cavity the magnitude of ___ r reaches its 
\1 . or 

?Iv r 
maximum value and oZ 
c~nditions (3-8). 

is zero, as follows from boundary 
'O':tI r 

However; the value of ~ even in the 

centre region is less than 10%, in average, compared with 
'O':tI ~ 

the value of --- close to the wall. 
~Z 

The comparison of the magnitude of terms 3 and 4 

in Tables 9-1 and 9-2 shows that in all given regions and 

positions the elimination of the nonl inear term is Justifiable. 

An attempt was made to include the nonl inear term 
o':tl r 

':tir ar- in the solution to the filling stage for an isothermal 

system. A different numerical procedure was used to achieve 

it, as follows. The velocity profile was calculated for the 

first radial ring using equation (3-22) and assuming a pres­

sure gradient in the same way as described in Chapter 3.1.4. 

':tIelocity profiles down stream to the melt front were calcu­

lated by using the continuity equation (3-21). The calcula­

ted velocity profiles were substituted in the momentum equa-

t ion, includ ing the nonl inear term, to calculate the corre­

sponding pressure profile. The test for atmospheric pressure 

at the melt front and the iteration procedure for the pres­

sure correction were identical to the ones described in 

Chapter 3.1.4. The pressure profiles obtained by this pro­

cedure were compared with the same problem excluding the non-
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l inear terme Results showed that the pressure profiles and 

filling times were different only in the third decimal place. 

The solution to the former case gave higher values for pres­

sure at the entrance by 1% compared with the latter case. 
aV 

ln the above procedure, the nonlinear term Vr x ~rr was 

taken into account in all regions except at the entrance ring, 

and was shawn ta be of minor ·imp·ortance. 

l't should be emphasized that the magnitudes of the 

terms in Table 9-1 and 9-2 have been evaluated from the nu­

merical solution of the equations of change that have already 

neglected a few of these terms, as pointed out in section 

3.1.1 and Appendix 1. Thus, the above values can serve only 

as a first approximation and do not represent the true values. 


