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ABSTRACT

A mathematical model is proposed for the quantita-
tive treatment of the injection molding of thermoplastics
as it relates to the behavior of the polymer in the cavity.
The model is based on setting up the equations of continuity,
motion and energy for the system during each of the stages
of the injection molding cycle (filling, packing and cooling)
and the coupling of these equations with practical boundary
conditions. The treatment takes into consideration the non-
Newtonian behavior of -the melt, the effect of temperature
bn density and viscosity, the latent heat of solidification,
and the differences in thermal properties between the solid
and the melt. Numerical solutions have been obtained for the
case of a spreading radial flow in a semi-circular cavity.
The theoretical results yield data on the filling,packing
and cooling times as well as velocity pressure and temperature
prof iles throughout the filling,packing and cooling stages.
Experimental studies have been conducted with a
2 1/3 oé. reciprocating screw injection molding machine to
check the validity of the proposed theoretical model. Re-
sults show that theoretical predictions are in good agreement

with experimental data for all stages.
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1. INTRODUCT ION

Y.1 GENERAL INTRODUCT ION

The purpose of most plastics processing operations
is to transform a resin which consists of random particles into
a commercial product of predetermined shape and dimensions.
Thus, powder, beads, or pellets are converted to film, sheet,
pipe, monofilament, coating, special profiles and to a variety
of articles like cups, toys, bottles, bottle caps, gasoline
tanks, auto-body parts, furniture parts.and a multitude of
other components. In general, processing or fabricating opera-
tions have the following three basic steps in common:

1) Heating and melting of the resin.

2) Forming the desired shape by filling a-mold or
pump ing the melt through a die.

3) Cooling of the formed article to a solid mass.

Some processes, like cold forming, do not require
the formation of a high-temperature melt as an essential part
of the fabricating process. Also, the processing of thermo-
setting resins, which are excluded from this study, requires
a delicate balance between the thermal and flow conditions
and their variation with time as a result of the reactivity

of these systems.



The present study is cbncerned‘on]y with the pro-
cessing of thermoplastic resins.

The three stages of plastics fabrication may be
accomplished by continuous steady state operations or by
unsteady~-state batch or semi-batch processes.

In the extrusion operation, the solid polymer in the
form of pellets or powder is melted with the help of a
plasticating screw and pumped through a die which controls
the cross section. Then the shaped product is cooled to a
solid state. Since extrusion is a continuous steady-state
process, only two dimensional control of the shape of the ex-
truded product is possible. |In the molding operation, the
solid polymer is converted to the liquid state. |If. the melt
is not formed inside the mold cavity, it is necessary to
transfer it to a mold, where the plastic solidifies. Molding
is an unsteady state operation, and thus three-dimensional
control of the shape is achieved.

Various types of molding opérations are used com-
mercially depending on the resin used, the final product
requirements, and economic feasibility.

In compression molding, material in the form of loose
powder or a preheated preform, is placed in an open heated
mo1d cavify. Then the mold is closed. The combination of heat

and pressure softens the material and causes it to flow and



fi11 the cavity. Then the mold is cooled till solidification
is achieved.

In transfer molding, the operation starfs with the
mold in the closed position. Then, the plastic melt is
forced into the mold from an auxiliary chamber. Transfer
molding is generally accomplished with a single ram press
where the same force that closes the mold is used to trans-
fer the melt. In this respect the process is similar to
compression molding.

In rotational molding, a plastic charge is placed
inside a hollow mold. The mold and charge are rotated and
heated to the melting point of the polymer. The mold is then
cooled, solidifying the plastic and finally the molded part
is unloaded.

In blow molding, an extruded tube parison is intro-
duced into a cooled mold where it is inflated by air pressure
until the walls of the parison assume the shape of the walls
of the mold. The shaped parison is then cooled to structural
rigidity. Blow molding is an example of combined steady state
(extrusion) and unsteady state (molding) operations.

In injection molding, the raw material is melted, then
it is injected under pressure into a cold mold where it solid-

ifies to a point when it can be ejected from the mold without

mechanical damage.



Most of the theoretical work published in coﬁnection
with the processing of thermoplastics deals with the extrusion
operation (1,2,3,4,5). Much less published work is available
on the various molding operations, mainly as a result of the
complexity of the equations describing these systems. In
most instances, researchers have dealt with isolated problems
or small parts of the overall process (6,7,8,9,10).

In the présent work, an attempt is made to develop
a model for the theoretical treatment of the overall injection
molding process, excluding the plastication step, which may
be handled adequately by available extrusion theory. Inject-
ion molding has been selected for two reasons. Firstly, the
problems of heat transfer and fluid flow which are encountered
in injection molding are typical of those encountered with
other molding operations. Thus the treatment may be modified
or extended to handle processes like compression molding and
transfer molding. Secondly, injection molding is not only
the most widely used plastics molding fechnique but is also
one of the most common plastics proces;ing operations, second
only to extrusion, as shown in Table -1(1). Polyethylene
accounts for more than half of the injection molding volume

in both Canada and the United States (11,12).



TABLE 1-1
SALES OF PLASTICS PROCESSED IN CANADA

IN 1966 AND 1970

PROCESS

EXTRUS 10N
FILM
PIPE
PROF ILE
MOLD ING
INJECT 10N
COMPRESS 10N
BLOW
ROTAT ION
VACUUM FORM ING
RE INFORCED PLASTICS
HIGH PRESSURE LAMINAT ING
PLAST IC FOAMS

MISCELLANEQUS

TOTAL

SALES IN $ MILLION

1966

18
17
55

275

1970

80
27
19

409



1.2 INJECTION MOLD ING: BACKGROUND

Injection molding is accomplished in an injection
molding machine which consists of two basic coﬁponents - the
injection unit and the clamping unit. The injection unit
serves to heat the raw material to a molten state and to
transfer it under pressure into the mold which is held by the
clamping unit. Melting is achieved with the help of external
heaters and, in some cases, by mechanical heat ing produced
when the granular raw material is compressed and worked.

The earliest injection molding machines employed a
plunger unit. With units of this type, raw material is fed
volumetrically from the hopper into the plasticating chamber,
which is mounted between the plunger and the nozzle. Each
stroke of the plunger froces unmelted material into the
chamber through a spreader (called also torpedo) from which
plastic melt is forced out through a nozzle into the mold.
Later, two-stage plungers were developed, with plastication
and injection performed in two separate units.

Most of the injection molding machines produced today
are built with reciprocating-screw injection units. In these
units, the extruder chamber is utilized to achieve both
plastication and injection. A typical operating sequence may
be described as follows. Starting with the reciprocating

screw in the forward position, material is gravity fed from



the hopper. The rotation of the screw plasticizes the material
and conveys it forward in the screw barrel. Accumulation of
the plasticized material at the front of the barrel forces the
screw to move backwards and the melt collects in the front of
the injection chamber, ahead of the screw tip. ‘Material back
flow over the screw flights is prevented by a check valve.
when the injection unit is activated the screw moves forward,
as a ram, forcing the melt from the injection chamber through
the nozzle into the mold. The hot polymer melt flows into

an empty cold cavity. When filling is complete more polymer
is packed into the cavity at high pressure in order to com-
pensate for shrinkage by cooling. Cooling is continued until
sufficient solidification is achieved so that the polymer may
be ejected from the mold without damage.

It is reasonable, in attempting to develop a model
for the injection molding operation, to divide the process
into three major stages: filling, packing and cooling.
Schematically, the three stages are best described by the

pressure time curve, shown in Figure 1-1.

1.2.1 Filling Stage

The filling stage is represented by the unsteady flow
of a hot non-Newtonian compressible melt into an empty cold

cavity, which is held at a temperature below the solidification
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temperature of the polymer. The problem has to do with
simultaneous unsteady flow and heat transfer.

Earlier theoretical and experimental results have
been reported for the cases of spiral or very long molds.
Ballman, Shusman and Toor (13) studied the flow of molten
polyethylene and polystyrene in a cold long cavity. The
cavity consisted of parallel plates, one inch wide and twelve
inches long with varying thickness between 0.050 and 0.150
inches. By a set of simplifying assumptions, they reached
empirical correlations for the distance traversed by the poly-
mer as a function of time, and the maximum length of flow as
a function of operating conditions. By assuming isothermal
conditions, they were able to explain the experimental re-
sults. However, they agreed that the relationship between
the experimental results, mater ial properties and system
parameters must depend strongly upon the heat transfer in
the cavity.

Kazankov and Basov (14) attempted to calculate the
max imum flow length in a long two plate mold for polystyrene.
They assumed unidirectional flow and included only the con-
duction terms in the Energy equation. By assuming a Power
Law fluid, they were able to obtain an analytical so]utioﬁ

that consisted of the first term of an infinite series.



-10-

Grinblat (15) worked also with a rectangular cavity.
He employed the heat conduction equation to calculate the
thickness of the solidifying layer. Thus, he treated the
melt as two regions: a stationary layer and an isothermal
flowing core. From experimental results he was able to obtain
an empirical equation describing the velocity of the melt
front as a function of time and the total length of flow.

The main disadvantage of the above treatments re-
sults from poor and unspecified correlation between the behav-
jour in the model molds and actual molding conditions. A
more practical geometry for studying the filling stage would
employ '"Spreading Radial Flow", which resembles more closely
inject ion molding conditions, where the melt emerges f rom
the gate and spreads to the outer boundaries of the cavity.

Spencer and Gilmore (16) and Beyer and Spencer (6)
photographed the flow pattern of polystyrene in a disc shaped
cavity, Figure 1-2a. They described the polymer front as a
circular segment of continuously increasing radius with the
gate at the centre. In the early stages of filling, the wall
exerts a retarding force, and the polymer front in the vicinity
of the wall bends back toward the gate. |f the wall were not
present, the polymer would flow radially into the cavity from
the gate. During the later stages of filling the curved
boundary deflects the material, which would otherwise strike

it in radial flow. As a result, the front eventually becomes
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linear and then curves away from the gate just before comple-
tion of the filling operation.

Bauer (17) has reported éxperimenta] and empirical
results on the filling of a rectangular thin mold with low
density polyethylene, Figure 1-2b. He attempts to describe
the progression of the melt front in terms of wave propagation,
where the injection point is considered to be the centre of
the wave. From this point, spherical waves propagate, thus
generating the circular front. The wave front position may
be determined experimentally by registering the mold surface
temperature. A

More recently, Barrie (18) employed the disc
shaped cavity shown in Figure 1-2c. The objective of his work
was to measure and analyze the melt pressure distribution in
the cavity. By using an empirical approach he was able to
correlate the pressure profile obtained experimentally using
pressure transducers at different radial locations. In a
second paper (19) Barrie attempted to calculate the "solid
skin' content of the polymer at the end of filling. He applied
the pure heat conduction equation,and found that experimental
results did not fit the calculations. The predicted values
were higher than the experimental ones.

Harry and Parrott (20,21) suggested avnumerica]
simulation of the injection mold filling. They considered flow

in a thin rectangular cavity with a gate that occupied the



whole cross-section of the cavity. Thus, the problem was
reduced to flow in one dimension. They assumed constant
polymer properties and linear pressure drop.

Pearson (9) proposed a model for filling the mold
shown in Figure 1-2c, by radial flow. He also assumed a
linear pressure drop across the circular mold and constant
thermal properties. More recently, Berger and Gogos (10) |
simulated the filling of a circular mold by treating the
channel leading to the cavity and the cavity itself as one
flow system under the effect of the pressure at the injection
end. In their treatment, they assumed constant density and
thermal properties for the melt.

The present work is conducted to study the filling
stage for spreading radial flow in the cavity shown in
Figure 1-2d. This geometry has been chosen in order to
permit the study of radial flow in a simple geometry, without
interference from the walls of the mold as observed by some
of the above studies. The parallel feed from the gate was
employed to avoid a 90° diversion in the direction of flow,

and to allow high speed photography.
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1.2.2 Packing Stage

Polymer flow into the cavity does not cease when
the melt front reaches the outer boundaries of the cavity.

It is desirable to introduce more polymer to the cavity during
the packing stage. Such packing is necessary in order to com-
pensate for shrinkage of the polymer, as a result of cooling.

Two factors compete with regard to pressure varia-
tion in the cavity during the packing stage. The first is
the flow of the polymer into the mold which leads to an
increase of pressure corresponding to the increase of the den-
sity of the polymer in the cavity. The second factor is the
cooling of the polymer which continues during the entire pro-
cess. Cooling tends to reduce the pressure in the cavity.

Very little work is reported in the literature re-
garding the analysis of the packing stage. The main contri-
bution is an attempt by Spencer and Gilmore (16) to calculate
the maximum pressure in the mold by means of an equation of
state and an empirical relation for filling time. The bulk
of the other work deals with the thermodynamics of the packing
stage, especially as it relates to shrinkage (6,7,8).

In the present work, a mathematical model is proposed
to treat both the dynamics and'thermodynamics of the packing
stage in the same semicircular cavity'which has been employed

for the study of the filling stage.
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1.2.3 Cooling Stage

After filling and packing are complete, cooling of
the plastic continues by virtue of the lower temperature of
the mold. Cooling without flow.continues until the plastic
has reached a sufficient level of solidification. Ideally
solidification in molding operations occur under conditions
of constant mass and volume, so that the molded article retains
the shape and dimensions of the mold.

Some work is reported in the literature regarding
the cooling of polymer melts. Gloor (22) has solved the
heat conduction equation, with change of phase, for various
crystalline polymers. He assumes that cooling is achieved
under atmospheric pressure and employs constant average pro-
perties for the polymers over the whole temperature field.
Kenig and Kamal (23,24) calculated temperature profiles . and
pressure as function of time for pressurized high density poly-
ethylene and polystyrene. They included in their solution the
dependence of polymer properties ontemperature and the effects
of pressure and rates of cooling on the solidification
temperature.

In the present study, the same approach is used as
in (24). Both temperature and pressure are calculated for
the cooling stage by employing the heat conduction equations with

change of phase together with an equation of state.
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2. EXPERIMENTAL

2.1 EQUIPMENT

Exper iments were conducted on a Model 60-SR 2 1/3 oz.
reciprocating-screw injection molding machine, which is manu-
factured by Metalmec, see Figure 2-1. The melt temperature
at the injection end was controllable to within +5% . Auto-
mat ic controls and timers were available for injection pres-
sure, hold pressure, injection time, hold time and cycle time.
The machine could be operated in the automatic, semi-automatic
or manual modes. In this work only the semi-automatic and
manual modes were used, as will be described later.

The injection pressure during filling is regulated
by the injection speed and injection pressure valves. These
valves regulate the pressure at the injection end, thus the
pressure of the melt, as it enters the cavity depends on the
dimensions of the nozzle and channel that lead from the in-

" jection end to the cavity and on the material properties.

The maximum pressure in the packing stage is regul-
ated by the shot size and the hold pressure valve.

A schematic diagram of the semi-circular mold is
shown in Figure 2-2. The cavity dimensions have been governed
by the maximum shot size of the injection molding machine
(2 1/3 0z.) and space available in the clamping system, The
clamping force was obtained from twelve 5/8 inch g;;;@g: The

mold was used in two different modes. In the first mode, the



FIGURE 2-1
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FIGURE 2-2
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walls of the mold were made of transparent, especially
tempered 1 1/8 inch pyrex 7720 glass, prepared by John's
Scientific. Flow patterns and filling times were observed
with the aid of a 16 mm. high speed camera. The camera used
was a rotating-prism type '"Hycam" Model K20S4E, manufactured
by Red Lake Labs. Inc. Movies were taken at 200 frames per
second. In the second mode, the glass walls were replaced

by 1 1/4% inch steel walls. Four holes were drilled in one

of the walls, as shown in Figure 2-2 for the insertion of a
pressure transducer withabuilt-in thermocouple. The holes
were plugged when the transducer was not used. The way in
which the transducer was mounted in the wall of the cavity

is shown in Figure 2-3. Special care was taken to ensure
that the surface of .the transducer was flush with the inside
surface of the cavity, to avoid any interference with the flow
of the melt.

In addition to measuring the pressure, the trans-
ducer was used to indicate the time required for the melt to
travel from one position to the other. Since the response
of the transducer was effectively instantaneous, it would
start to indicate pressure as soon as the melt touched it.
Thus measurements taken with the transducer placed at differ-
ent points indicated the time required for the melt to reach

the corresponding radii.
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FIGURE 2-3

ARRANGEMENT OF TRANSDUCER IN THE CAVITY WALL
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In order to ensure that atmospheric pressure was
attained at the melt front, during the filling stage, shims
of 0.003 inch thickness were placed between parts 3 and 4
(Figure 2-2) in order to allow air to escape.

Water was circulated over the outside surface of the
steel cavity. The temperature of the circulating water was
controlled at 80 15°F. This was achieved by employing a
Sterlco heating-cooling unit, Model 7000. Water was circula-
ted only during the experiments involving the steel walls.

An attempt was made to circulate water during the experiments
with the glass walls. The motion of the flowing water, small
particles and air bubbles interfered with the clarity of the

films, thus air at room temperature 75 i5°F was used instead.

2.2 TRANSDUCER SYSTEM AND ITS CAL IBRAT ION

The pressure transducer used in this study is Model
TG-M-6G(T) manufactured by Sensotec for measuring pressures
up to 20,000 psi and temperature up to 4o50F , see Figure 2-4.
The active diameter of the transducer is 0.19 inch. It is
of a force collecting type, utilizing four arm foil strain
gauges, connected in a conventional Wheatestone Bridge arrange-
ment. It uses an excitation voltage of 3.0 volts D.C., and has
an input impedance of 117.0 ohms, and an output inpedance
117.1 ohms. Temperature compensation resistors are included

to compensate for the effects of temperature variation.
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FIGURE 2-4

SCHEMATIC DIAGRAM OF TRANSDUCER TG-M-6G(T)
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However, the thermal error of the transducer used is -1} psi/OF.
An iron-constantan thermocouple is built in the tran-
sducer to give a simultaneous measurement of the surface
temperature. The pressure transducer is equipped with a
signal conditioning unit, Model SCA-4 manufactured by Sensotec.
The unit consists of the following components;
a) Transducer power supply with three available
voltages{ 3, 5 and 10 volts D.C.
b) A set of variable resistors capable of balancing
the transducer bridge.
c) Gain control for varying the amplification of
the signal.
d) A fixed shunt resistor for calibration purposes.
Pressure and temperature-time curves have been
obtained with the aid of a Sanborn 7702 oscillographic
recorder, operating at various chart speeds. Two speeds were
used: 20 and 100 mm. per second. The frequency response of
the recorder is 125 Hz. Thus the recorder response is the
l1imiting factor, since the frequency response of the trans-
ducer is of the order of 20,000 Hz. while that of the signal
conditioning unit is 2,000 Hz.
A special calibration apparatus was built, as shown
in Figure 2-5. It consists of a cylindrical reservoir con-
nected to a pressure gauge Model M manufactured by Foxboro

that could measure pressures up to 3,000 psi. For the purpose
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FIGURE 2-5

TRANSDUCER CALIBRATION APPARATUS
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of calibration, the transducer was fixed in the bottom part of
the cylinder, in the same arrangement used in the mold cavity,
see Figure 2-3. The cylindrical reservoir was filled with
silicone oil TIOR to the appropriate level, and the piston
was placed inside the cylinder. The load was supplied, to
the piston by the Instron Mechanical Tester. The transducer
was connected to the signal conditioning unit and the latter
was connected to the Sanborn recorder. Various loads were
applied and the corresponding simultaneous readings were taken from
the pressure gauge and the recorder. The transducer showed
a linear increase of voltage with load as shown in Figure 2-6.
lﬁ order to calibrate the transducer permanently,
so that the pressure would be known regardless of the ampli-
fication used both in the recorder and the signal conditioning
unit, a special procedure was followed: If a resistor is
keyed across a leg of the transducer bridge as shown in Figure
o-T, a deflection in the output circuit results, which simu-
lates the effect of the combined resistance changes of the
active leg due to a change of pressure. In this way calibra-
tion of the transducer could be made, before every experiment
and regardless of the amplification of the signal, without the
necessity of applying a physical quantity, provided that the
equivalent of the change in pressure units is known. For this

purpose, a precision resistor is supplied in the signal con-
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FIGURE 2-7

SCHEMATIC DIAGRAM OF ELECTRICAL
CIRCUIT FOR THE TRANSDUCER
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ditioning unit. By shunting the resistor over a leg in the
bridge a resultant voltage change.is recorded. The equivalence
of the resistor was found to be 7200+ 50 psi. Although the
calibration was done in the range of 0-3000 psig, the cali-
bration specifications of the manufacturer gave a deviation

of 0.1% in the linearity of the output voltage versus pres-
sure applied over the range of 0-20,000 psig.

The calibration of the lron-Constantan thermocouple
was checked by inserting the probe in ice-distilled water
mixture and in distilled boiling water, and found to agree
with the charts supplied by the manufacturer. In addition,
the time constant of the thermocouple was obtained by inser-
ting the probe in boiling water from room temperature. The
temperature-time curve is given in Figure 2-8. The thermo-
couple was found to obey approximately a first order system,
since a plot of the logarithm of the temperature versus
time resulted in a straight line (25), see Figure 2-9. The

t ime constant was found to be 4.1 seconds.

2.3 EXPERIMENTAL PROCEDURE

At the beginning of each run, the temperature con-
trollers were fixed at the desired melt temperature. About
20-30 minutes were needed for the temperature to reach its final
value. When temperature was sufficiently high, polymer pellets

were placed in the hopper and the screw was rotated in order to



TEMPERATURE (F)

...29_

FIGURE 2-8

TEMPERATURE-TIME CURVE FOR
THERMOCOUPLE CALIBRATION

212

200f-

150

100

75

2 4 6

TIME (SEC)



TEMPERATURE { 212"_';55)

_30_

FIGURE 2-9
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plasticize and convey the polymer melt to the reservoir
section. The melt was injected a few times into the open air
in order to clean the barrel from old material that could be
degraded. At this point, the recorder and the signal con-
ditioning unit were switched on to allow one hour of warming
up as recommended by the manufacturer. Water was circulated
and about half an hour was needed for the temperature of the
mold to reach the 809 mark, as indicated by the thermocouple
and an additional thermometer.

when all the components were Eeady, the settings
for fhe pressure control valves and the sHot size were
fixed at the desired values. The recorder was run at the
appropriate speed and the melt was injected manually. Pres-
sure was applied during the entire cycle, till the recorded
pressure decreased to atmospheric. Then the mold was opened
and the‘mo1ded article was ejected and marked.

Subsequenf]y, exper iments were conducted for the
same melt temperature, shot size, and transducer position
but at different injection pressures. Then, the melt .
temperature was changed and the whole sequence was repeated.
In order to change the position of the pressure transducer,
water circulation was stopped, the mold was taken apart,
and the position was changed. The whole procedure was re-
peated for the same melt temperatures and the same pressure
valve settings as above. In this way results were obtained

for the four transducer positions at different melt temperatures
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and different injection pressure settings, for the same shot
size. After this sequenée was completed, the shot size was
changed, in order to check the model for the packing stage.

In the movie experiments, the injection pressure
and temperature conditions were the same as those employed
in the corresponding transducer experiments. Thus each set
of conditions was employed twice: once with the steel cavity
for transducer measurements and once with the glass cavity.
for photographic analysis.

Each run was repeated two or three times, in order
to check reproducibility of the results and to emphasize
different stages in the injection molding process. For
example, since the packing stage was relatively short, the
speed of the chart was increased to the maximum velocity of
100 mm per second in some runs. In addition the amplifica-
tion of the recorded signal in the filling stage was increased
in order to allow accurate readings of the relatively low
pressures during the stage.

The semi-automatic mode was used in order to show
with actual moldings that radial flow existed in the parallel
feeding injection system. This was done by setting the
injection timer to different injection durations, at the same
injection pressure conditions. Thus the filling stage was

frozen at different stages.
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2.4 MATERIALS AND PROPERTIES

Experimental results and theoretical calculations
have been carried out for two polymers: one crystalline and
the other amorphous.

The crystalline category is represented by Dow
Chemicé] High Density Polyethylene E.P. 245 which has a den-
sity of 0.953 corresponding to crystallinity of about 72%.
Thermal diffusivities for the solid and melt phases have
been calculated from the thermal conductivity given by Nagler
(26) for high density polyethylene. Specific heat and
density are given by Bernhardt (27). For the solid phase,
the average properties are : thermal conductivity Kg = 0.260
Btu/hr/ft/°F; specific heat Cps = 0.55 Btu/1b/°F and density
pg = 57.0 1b/ft3. For the melt region the average properties
are: thermal conductivity kK, = 0.130 Btu/hr/ft/°F; specific
heat C_. = 0.70 Btu/1b/%F and density p, = 46.0 1b/ft3. The
latent heat portion of the freezing enthalpy for polyethylene
is 95 Btu/1b as given by references (22) and (28). The PVT
diagram used is given by Bernhardt (27) and shown in Figure
2-10. The constants for the equation of state are: w = 47,600

psi; b = 0.875 cc/gm; R. = 43.0 in units consistent with T in

c
OK; V in cc/gm and P in psi.

The amorphous group is represented by Dow Chemical
Polystyrene Styron 683C. Thérmal diffusivity is taken from
Shoulberg (29) a = 3.1 x 1073 ft2/hr. Thermal conductivity

is calculated from thermal diffusivity, specific heat and
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density at 400°F as given by Bernhardt (30), k¢= 0.06
Btu/ft/hr/°F. The PVT diagram used is given by Bernhardt
(30) and shown in Figure 5-11. The corresponding constants
for the equation of state are: w = 27,000 psi; b = 0.822
cc/gm; R = 11.6 in the same units as above.

The effective heat transfer coefficient, H, between
the polymer and the cavity wall are taken to be 50-150
Btu/ft2/hr/OF as pointed by Jepson (31) and Carley (32).

For rheological properties see Appendix 1.



...37_

3. F_ILLING STAGE

In the treatment of injection molding, the process
will be divided to three stages: filling, packing and
cooling. It is not intended, however, to imply that these
three stages are independent of each other. In fact, it is
essential to preserve, the continuity of the process and to
recognize that in the complete treatment of the injection
molding cycle, the conditions that exist at the end of one
stage prevail at the beginning of the fo]lbwing stage. The
division into three stages is intended mainly for purposes
of discussion.and mathematical analysis. At the end of the
treatment, the three stages will be recombined to evaluate
the validity of the proposed approach for the overall

integrated injection molding process.

3.1 THEORET ICAL ANALYSIS

3.1.1 Equations and Boundary Conditions

The filling stage is concerned with the unsteady-.
state non-isothermal flow of a hot, non-Newtonian, compressible
fluid, partially solidifying during flow, as the cavity walls
are kept below the freezing temperature of the polymer. In
this study, spreading radial flow of the plastic melt is of

interest.



Qualitatively, the problem of mold filling may be
summarized as follows: A polymer melt at a uniform temperature
is contained in a reservoir. At zero time,'pressure is
applied to the melt (pressure may be constant or variable with
time). Then , the polymer starts to flow through a capillary
into a semicircular cavity. Flow continues in a spreading
radial flow pattern until the advancing front hits the outer
boundary of the cavity.

In order to describe this qualitative picture
mathematically, one starts from the basic equations of change
(33,34). Assuming that the only non-zero velocity component

is in the radial direction, V_, and that symmetry with respect

r
to the axial direction exists, the equations of change take

the following forms (using cylindrical co-ordinates):

Continuity: %% + % '%F (p.r. Ve) = 0 cesees (3-1)
Momen tum: p(-g%L *V, gél) = - %% _ E%'gF(r‘Trr) _ I%_ . 8;;2

SN - 7 (3-2)

T Ter %%l Y ¥£ " Trz g%i --+(3-3)
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Where P and T are the pressure and temperature, respectively,
at time t and at a point which has radial and axial co-ordinates
r and z, respectively, as in Figure 1-2d. The time elapsed
from the beginning of injection is t, while p is the density,
Cp is the specific heat, ki is the thermal conductivity, and
Ter ¢ Try and oo 2T components of the stress tensor at
the point of interest.
The following simplifying assumptions are made in

obtaining a solution to the filling problem:

1. Viscoelastic and entrance effects are not included.

2. Ty and T9g are neglected due to the lack of
rheological data and simplicity (see Appendix 1
and Appendix 7). Thus the only shear stress g,
is included.

3. It is assumed that the melt obeys the Power Law,

see Appendix 1.
. The unsteady state terms in the momentum and
continuity equations are neglected, in view of the

comparatively long duration of flow. At any
=\
ot
terms in these equations. However, the velocity

instant, is very small compared to other

at any point in the cavity changes with time;

see Appendix 2.
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The polymer is assumed to be a compressible fluid
only for the purpose of solving the continuity
equation. It is assumed to be an incompressible
fluid for the energy and momentum equations.
Creeping flow is assumed. Thus, the nonlinear term

AV
V_ x —~, in the equation of motion is omitted.

r ar ’
This term is of some importance in the entrance
region, since both the velocity and its derivative
are quite large. However, due to computational
difficulties this term is omitted in the present
treatment (see Appendix T).
Heat conduction in the direction of flow (r) is
negligible in comparison to convected heat transfer.
In the case of crystalline polymers (1ike poly-
ethylene), the specific heat, thermal conductivity
and thermal diffusivity are assumed to be constant
but having different values, depending on Qhether
the melt is above or below the freezing temperature.
In the case of amorphous polymers (1ike polystyrene)

only one constant is assigned to these properties

(24).
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By employing the above assumpt ions, the equations

of change take the following forms:

inuity: 2= - -
Continuity: =% (p-r-V,) 0 S € T
; P oA V"
Mot ion: iy = 3z (M (-—a—z—)] ......... ...(3—5)

2 n+ 1
Energy: oc (AL v 2Ly = 2T+ M (5 .. .(3-6)

where M is the consistency index, and n is the flow index.
The following boundary conditions were employed in
conjunction with the above equations of change.

a) There is no slip at the wall

V. (r, +h, t) e ee.e(3-7)
where h is half of the thickness of the cavity.
b) The velocity profile is symmetrical around z=0.

3V
Lo (r,0,8) = 0 e ... (3-8)

c) At the cavity walls, a constant heat transfer coefficient

H is assumed, thus

kt(—g%) pesp = HITo - T(r,th,t) 7  «eeees(3-9)

Where T is the wall temperature.
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d) The melt temperature at the entrance to the cavity,

where r = a, is constant at T|.

T(a, z, t) = T teveesiensse(3-10)

Also the effects of viscous heating and cooling in the runner
are ignored, so, that the temperature T is the same as the
melt temperature in the injection reservoir (see section 3.2.2).

e) The temperature profile is symmetrical around z=0.

T = -—
A (r,o,t) =0 e eveeea(3711)

f) The radial temperature gradient is zero in a newly

formed volume increment near the melt front, R.

ﬁa—Tr—(R, z, t) = O errernee.e(3712)
g9) In the regions“whefe the temperature is below the solid-

ification temperature, T, the velocity of the polymer is zero.
Vr(r,z,t) = 0 for T(r,z,t) s T (3-13)

h) In the regions where the temperature reaches the solid-
ification temperature, T, heat of freezing is evolved only
in the case of crystalline polymers. In the solidifying
layer, the following equations hold (35).
AT,
Ke(577) pee ~ km(SE— = ps L Tt ce.o(3-14)

Z= —
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wWhere s and m refer to the solid and melt, respectively;

¢ is the axia) co-ordinate of the freezing front, and L is
the latent heat of freezing

i)  The variation of pressure with time is known at the

entrance to the cavity:
P(a,t) = Po(t) -oooo.oooooa(3—16)

Po(t) is obtained experimentally with the help of the trans-
ducer when it is positioned at the entrance to the cavity.
The entrance radius, a, is equal to the radial distance be-
tween the centre of the cavity and the centre of the trans-
ducer at the entrance position.

Je The pressure at the melt front, R, is equal to atmos-

pheric pressure:

PR,t) = P.o

The volumetric flow rate is defined as follows:

h
Q(r,t) =2 \mr Vv (r,z,t)dz eereeeeena(318)
o

Also, the incremental time, At, that is required for the

advancement of the front from R, to Ry is given by:



.

2 2
T(R5 - R}) x h
At = Q(R]’ t) ...... o.oocu(3—]9)

In the cases where the melt is treated as a com-
pressible fluid, either an equation of state or a P-V-T
diagram is used to relate temperature, pressure and density.
The equation of state has the form (36):

(P+ w (V-b) = R_T eeeenenes(3-20)

Where w, b and R, are constants characteristic of the polymer
and V is the specific volume. Equation (3-20) is valid only
for the melt region. 1n order to extend the compressible
fluid treatment to the regions close to the freezing tempera-
ture and below it, a P-V-T diagram is employed (27,30).

The above analysis of the filling stage may be
applied to any plastic material. If the polymer is amorphous,
boundary conditions (3-1%) and (3-15) are omitted. |If the
polymer is assumed to be an incompressible fluid, the density
in equation (3-14) is omitted, and the equation of state (3-20)
is not used. Otherwise, for the general case of a crystalline
compressible fluid, all the equations are needed.

The filling stage, as analyzed above, results in a
mixed problem, with moving boundaries. ‘The continuity equa-
tion (3-4), momentum equation (3-5) with boundary conditions

(3-7) and (3-8) result in a boundary value problem in the axial
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direction (z), and a two point boundary value problem in the
radial direction as a result of boundary conditions (3-16)
and (3-17). The energy equation (3-6) and boundary conditions
(3-9, (3-10), (3-11) and (3-12) result in an initial value
problem in the axial and radial directions. As the melt
advances in the cavity the flow boundary in the radial direction
moves, in addition the solidification that takes place results
in another moving boundary in the axial direction. |
The mathematical complexity inherent in the above
equat ions and the fact that these equations are coupled through
the dependence of the material properties on temperature,
makes the analytical solution to the filling stage impossible,
thus numerical methods were employed with the help of a

digital computer.

3.1.2 Dimensional Analysis

For the sake of generality, a dimensional analysis

has been carried out. The following dimensionless terms are

defined:
r¥ = ,r/Ro V¥ = V/Vg
z%¥ = z/h p¥ = P/Pg
t -V T-T
e o
t* = - T* = U S
1 _
Ve = (Pf/pm)z Ar = h/Ro
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Where R is the radius of the cavity, h is half thickness of
the cavity, P and T are the pressure and temperature, respec-
tively, Pg is the experimentally measured pressure at the
entrance to the cavity at the end of filling, and p_ is a
reference density. Tg and T, are the wall temperature and the
temperature at the entrance to the cavity, respectively. It
should be emphasized that since compressibility is taken into
account only in the continuity equation, this analysis is

valid also for the case of a compressible fluid, in spite of
the fact that a reference density is involved in the definition

of Vg . By employing the above definitions, the equations of

‘change take the following forms:

Continuity: gz (p:V*.r¥) = O coveenennenn(3721)

Mot ion: Since §%§ # f(z*), the equation of motion is inte-

grated to give:

AP* 1 AVE
Ar ar* = Re Z* [( ) ] . s 00 00 (3—22)
2
. al* * 3T* 1 3°T* AV % N+1
Energy: ¥ * ALV ar¥ Pr-Re 32*2 * Pl‘ x Re (az*)

ceeeeeeese(3-23)

In the above equations, the following dimensionless groups

have to be defined:



2-n n
Re = Ve Pm "
M
Mc h'™m
Pr = .__.___&__—-
kyv 1
t'e
M V;+n h‘ n
Br =
kt(TI To>

The boundary conditions take the following forms:

a)

b)

c)

d)

f)

9)

V¢ (r, 41, t¥) = 0 e (3-214)
g%; (rF%, O, t¥) = 0  ceeiieiienenes (3-25)
<a;:>z*?i] S BB rr(rean, o)) (3-26)
T* (a%, z%, t¥) = | i eeeeceaeanen (3-27)
g%; (r%, 0, t¥) = 0 ... ceiene..(3-28)
AT* (R, z%, t%) = O aeeeeeen . .(3-29)

yr¥
VE(r*,z%,t%) = 0 for T*(r¥,z¥,t¥) < TE ....(3-30)

Y

(3li) g g . P L " Ve "N ge*
AZ* _waex  Kg 13T pxaex k (T, - To) dt¥
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i) TR o= TH = T et z¢ = eX U G B 7-)
j) px (a%, t¥) = Pr(t¥*) ceeeeees.a(3-33)
K) px (R¥, t*) = PI cereeess(3-34)
1.0
Q*(r*,t*) = 2 \)‘vr* V¥(r*,z%,t%) dz*  ......(3-35)
: |
m(REZ - R}
At* = AORRE, B eoe..(3-36)

3.1.3 Difference Equations

The set of partial differential equations (3-21),
(3-22), (3-23) together with the boundary cond itions and
other equations(3-24)-(3-36) are solved simultaneously by
numer ical techniques. The standard finite difference repre-
sentation is used for this purpose. Briefly, the method re-
places partial derivatives by finite difference approximations.
Thus the set of differential equations is replaced by a set
of algebraic equations, which may be solved simultaneously with
the aid of a digita) computer (37,38). Finite difference
representation may be accomplished by either an explicit or

an implicit scheme,with varying degrees of accuracy. In
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general, implicit schemes are stable in nature but expensive
to use, since iteration procedures are usually involved.
Explicit schemes have the disadvantage of limited stability.
Various methods have been used in order to improve the
stability of explicit schemes. |

The first step, in the numerical solution, is the
construction of a network as in Figure 3-1. It consists
of ¥ points in r direction and J.: points in z direction.
A radial increment, Ar, and axial and time increments
Az and At are defined, respectively. Finite difference
equations are written for each point in the net. Since the
energy equation (3-23) represents an unsteady-state situation,
one may write all second derivatives in Saul'yev's manner
(39). Thus it is possible to employ an explicit and stable
scheme for computation. A1l other derivatives have been
centered,whenever possible. For the derivatives in the radial
direction the average of the forward and backward differences
have been used.

Equations (3-21) and (3-22) are written in differ-
ent forms for the convenience of computation. First, equation
(3-22) is integrated with respect to z* to give:

ap-x- 1/n

V*(f%,z*,t*) RN

X |] .......'....(3-37)
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z¥
=\ (z A Re) /" dzx

z%¥=1.0

Where I]
From equation (3-21) one may write the mass flow rate, Q.,

as follows:

z¥=1.0
Qu(r*,t%) = 2 | mrx p(P,TIVE dz¥ e (3-38)
Z')‘(-=O

Substitution of (3-37) results in:

z¥=1.0
* .
Qm(r*’t*) = Orr¥ x (2%;) | X S p(P,T) x '] x dz¥
z¥=
..... .(3-39)
and finally:
Q. (r¥, t*) :
*
%PF;(: =[ Zr_)'(_]=].o ] ......(3"‘40)
err¥ x p(P,T) x Iy x dz*
z%=0

The integrals that appear in equations (3-37), (3-39) have
been obtained numerically by employing the "Extended Trape-
zoidal Rule" (40). Equation (3-40) is written in the

following difference form:

n

" « Q Q, .
Peiy = Pi-ny {E——mi—] + [———"ug(";_,)l} ar¥s2
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This equation has been obtained by writing the
forward difference for point (i-1) and a backward difference
for point (i) and averaging the results (see Figure 3—]);

|, is defined in the following equationf

2
z¥=]

I, = 2rr¥ S p(P,T) x I, x dz¥

z¥=0

The energy equation has been written in the

following finite difference form:

TR VR, k) R T=T, k) 172

T*(i,]j,k+1) T*(i,j,k) x

T+
Ap x AtX .. . .
X mx [T(l,_],k) —T*(I—],J,k)]
b [TH(1,5-1,ke0) + T*(i,]4+1,k) ]
Br _ V¥ (i, J+#1,k+1)=V¥(i,j=1,k+1) N+
toPrRe (R A X Uz )
. ceeeesea(3-42)
*
Where A = 5 4t , i and j as defined in Figure
Az*¥S < Pr -+ Re

3-1 and k is the number of time increments elapsed from the

beginning of injection.
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The boundary conditions are expressed in differ-

ence form as follows:

a) V¥ (0, £J, K) = 0  iiieieieieeians (3-43)
b) VE (B, T, K) = V¥(1,2,K)  eevnnrnennnan . (3-44)
) T*(i,+d,k) = T*(i,+£d-1,K)/(1 + AZ—*Et'—” © h)..(3-45)
In this expression a backward difference has been

used.

d) T*(3, j, K) = 1.0 ceieeiiiiieeans (3-46)
e) T*(i, ¥, k) = T¥(i,10,K) toieierinnnnnns (3-47)
f) T*(iR, Js K) = T¥( iR—l, Js K)  veieiiinennn (3-48)
Where iR is the radial increment to which the melt front has
reached.

9) V¥(i, j,.k) =0 for T*(i, j, k) < TZ ....(3-%9)
h) See numerical solution in Appendix 5 ...... (3-50)
i) See numerical solution in Appendix 5 ...... (3-51)
J) P¥(3, K) = Py (K)  eeeiieeeaeaens (3-52)
K) P¥(ig, k) = P¥atm ..ol (3-53)

h h
Q*(i,k) = 2X1r><['—£—-u+h(2)+”_.+h(J_])+_£AD_]

X AZ¥ e iiieienaeas .(3-54)

Where h(j) = rx ., V" (i,J,K) using the''Trapezoidal Rulé'
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*2 *2
T (3—55)'
AL 0% (g _ysK)

At* =

3.1.4% Numerical Procedure

A computer program was set up to solve the set of
difference equations and boundary conditions, see Figure 3-2.

At the beginning of each time increment, the first
and second integrals l] and |2, respectively, were calculated
for all points occupied by the flowing melt. To be exact, l2
should be calculated within the iteration Yoop by employing
the pressure values based on the corrected pressure profile
for the density. However, it was found that the calculations
could be simplfied, with no loss of accuracy, by employing
the pressures based on the pressure profile which prevailed
when the fielt front was at the last radial position. Thus,
when the melt front was at the ith radial position, I, was
based on the pressure profile prevailing when the front was
at the (i-1) position. Such a simplification was valid because
the pressure variation in the cavity during the filling stage
is small. The main contribution to density variation in this
stage arises from the temperature gradients.

The first set of calculations was conducted over
three radial rings. These calculations were started by

assuming a pressure drop in the first ring based on a 1linear
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pressure profile between the entrance radius and the melt
front. Thus, the mass flow rate at the first radial ring
was calculated by equation (3-39). This mass flow rate

was then employed sequentially in equation (3-41) by
coupling with the available correspondfng values of I, to
calculate the pressure at the remaining radial positions.
wWhen the melt front was reached,the pressure value was com-
pared to boundary condition (3-53) - atmospheric pressure.
If the pressure was off, a new pressure gradient was assumed
for the first radial ring. The procedure was continued until
the pressure at the melt front agreed with atmospheric pres-
sure to two decimal places.

The sequence in which the pressure drop in the
first ring was selected was as follows. |In the first calcu-
lation, a linear pressure profile was assumed as outlined
above. For the second trial, the profile was modified by adding
or subtracting the absolute difference between the calculated
pressure and atmospheric pressure to the third power,
depending on whether the calculated pressure was lower or

higher than atmospheric, respectively. Thus

3
AP p = APy + (aPy) cve..(3-56)

where AP, is the assumed pressure drop in the first ring
during the first ca]culat:ion,AP‘2 is the assumed pressure

drop in the same ring during the second calculation, and APy
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is the deviation between the calculated pressure at the melt
front and atmospheric pressure. The one-third power was
selected since it gave the fastest convergence. The third
trial was a linear interpolation between the first and

second trials. The fourth trial was a third order interpola-
tion and so on. It was found that an average of 3-4 iterations
were needed. In all these procedures the properties were
chosen to be the same as those prevailing for the temperature
and pressure distributions established in the previous cycle.

After the pressure profile was calculated, the
corresponding pressure gradients were substituted in
equation (3-37) and the velocities at each point were obtained.
The velocity profiles were integrated at the melt front to
calculate the volumetric flow rate by equation (3-54) .
Equation (3-55) gave the t ime needed for the front to tra-
verse the corresponding ring. At this point, velocities were
subst ituted in the energy egquation (3-42). Thus, the new
temperature profile was calculated for all points occupied
by the melt.

As the melt advanced to a new radial ring, the pro-
cedure was repeated, while previous calculated temperatures
and pressures served as the ninitial conditions" at each point
and for calculation of the integral |2. This procedure was

continued till the melt front hit the boundary of the semi-
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circular cavity. Filling was started from the fourth radial
ring, as the entrance radius was located at the second ring
and since at least three points are needed for the iteration
procedure. However, calculations were started from the
entrance radius of the cavity.

The output of the computer program, gave the pres-
sure, velocity and temperature profiles, time elapsed,
position of the front and flow rates.

Berger and Gogos (10) and Gee and Lyon (41)
solved numerically a two-point boundary value problem. They
iterated on the flow rate, as they solved the simultaneous
difference equations by '"Gauss Seidel Iterative Method (42).
It was felt that the present iterative method employ ing
successive higher iterpolation polynomial for the unknown

pressure directly, was simpler to use.

3.1.5 Stability, Convergence and Uniqueness

Finite difference approximations, which replace
partial derivatives, are subject to uncertainty as a result
of factors relating to the stability, convergence and unique-
ness of the mathematical scheme (43). However, it is difficult
somet imes to distinguish completely between these three terms.
Since the set of equations (3-4), (3-5) and (3-6)
are nonlinear in nature, and since the system has moving

boundaries, it is not possible to follow the analysis that is
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applicable for cases where the coefficients and boundaries
are constant (44) in order to obtain the relations for the
time and space increments that lead to a stable numerical
scheme. Consequently, the trial and error method has been
used. Examination of the difference equation (3-4%2) would
suggest that the dimensionless coefficient A plays a role

in the stability problem. As indicated earlier, Saulyev's
representation of the second der ivat ives has been employed.
It can be shown (39) that Saul'yev's method is unconditionally
stable for the case of a pure parabolic partial differential
equation. However, this is not true for the present problem,
where additional terms of convection and viscous heating are
present. Since these terms are large in comparison with

the conduction term, instabilities are encountered. In order
to overcome these difficulties it has been found that the
condition:

At* - V¥(a¥) AL

N - T] T A) Ar* ].0 ..----0(3—57)

must be satisfied, as the convection term is the largest one.
To achieve this, the time already determined by equation (3-55)
is divided into additional time increments to satisfy (3-57).
No instabilities have been detected in the pressure
iteration procedure, unless the velocities computed during the
iteration are bigger than unity. This situation will not arise

due to physical impossibility.
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Convergence of the numerical solut ion can be tested

by varying Az¥, Ar¥, § = é£f§ , ¥ T %%;. A valid solution

Az*
must converge as these values decrease. The effect of the

space increment Az* was tested in equation (3-37) and com-
pared with the analytical solution for the isothermal flow of
a Power Law fluid with n = 0.5. Three sizes of space incre-
ments were used 0.2, 0.1, 0.05. |t was found that the differ-
ence between the analytical and the numerical solutions varied
only in the third significant figure as can be seen in

Table 3-1.

The convergence of the pressure iteration procedure
was tested on the analytical solution for the pressure profiles
of an isothermal flow of an incompressible Power Law fluid
between circular discs. The analytical solution is given by

the following equation:

cu(re) = e am s (1 - Pratm) x (LT

.. (3-58)
Two different numerical schemes were tested, the average of
the .forward and backward differences as given by equation
(3—4]) and the backward difference given by:

Q, .n

Py = Pmy TRyt et e 379
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TABLE 3-1
COMPAR ISON BETWEEN ANALYT ICAL AND NUMER ICAL VELOCITY PROF ILE
n=0.5, AZ¥ = 0.1

_I¥* Analytical* Numerical*
.000 0.000 .000
.100 .27 .270
.200 .488 487
.300 .657 .657
.4oo _ .784 . 784
-500 .875 874
.600 .936 .937
.700 .973 9T
.800 .992 -992
.900 .999 .999

1.000 1.000 1.000

*¥ A1) values are normalized
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Table (3-2) shows the results given by these two
schemes compared with the analytical ones. As can be seen
from Table (3-2) the average representation gave a faster
convergence. In all cases 10 increments were used in the
axial direction. Uniqueness was established, as the calculated
pressure profiles with Ar¥ = 0.025 (I = 41) agreed to two
significant figures with those predicted by the analytical
solution. Convergence was achieved by increasing the number
of the radial increments. As can be seen from Table (3-2),
the pressure gradients calculated numerically are greater
than the analytical ones at large radii and are smaller at
radii close to the entrance. As a result flow rates cal-
culated from the entrance pressure profile will be smaller
than those calculated from the melt front region profile.
This may have an effect on the calculated filling times, as the
flow rate is introduced through equation (3-55). Thus a
few runs have been made using flow rates calculated on basis
of the entrance region and the melt front, respectively. Re-
sults have indicated that the differences in the filling
diagram (see section 3.2.3) deviate by less than 1%.

Convergence of the energy equation was tested by
varying the value for N = 1, 3, #. The results for N =1
and & agreed to within 2 decimal places.

Since it was found that the computing time was
squared when the number of mesh points was doubled, a compro-

mise is needed between convergence properties and accuracy



TABLE 3-2

COMPAR ISON BETWEEN ANALYT ICAL AND NUMER ICAL SOLUTIONS FOR PRESSURE PROF ILES

Pe = 500 psi, n = 0.5
r¥ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ANALYT ICAL 91 .TU5 615 | .505 .109 .322 .ol 167 .0960 .030
1
arse0.p A 772 .532 .337 T4 .030
B2 .791 ST .345 179 .030
Al 932 | .758 | .627 |.515 .18 329 | .o47 | .170 .0975 .030
AF%=0.1
B .ol3 761 634 | 524 o5 .335 .251 T3 .0990 .030
Al .923 751 620 | .509 L2 324 | .ou3 .168 .0970 .030
AF%=0.05 |
B .930 757 .628 517 RAYe] .330 .248 A7 .0985 .030
Al 915 | .76 | .615 | .506 .409 322 | .2l 67 096k .030
Ar¥=0.025
B 17 | 731 | 622 |.512 RN .326 .oL5 .169 097! .030

Al - average of backward and forward differences

B

2

- backward difference

- €9_
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desired. Following this reasoning, 20 increments in radial
direction, 10 in axial direction and a value of N = 1.0 were
chosen as an optimal compromise. All results were based on
these values.

The proof of uniqueness of the numerical solution is
always difficult, when introducing a new numerical solution
to a problem which does not have an analytical solution.
Usué]ly the standard procedure is to compare a numerical
solution to the closest analytical one available. As shown
earlier, the numerical solution to the momentum equation alone
gives a unique solution for the velocity and pressure pro-
files, see Tables 3-1 and 3-2. The uniqueness in the physical
sense can be tested by experiments which is the quective of

the present work.

3.2 RESULTS AND DISCUSS ION

Theoretical and experimental results were obta.ined
for high density polyethylene (H.D.P.E.) and polystyrene at
different injection pressures and melt temperatures. In all
cases, the mold temperature was kept at 80°F. Twelve cases
will be analyzed in detail, eight for polyethylene and four
for polystyrene. In addition, two short shots are demonstrated,
one for each resin. The injection conditions emp]oyed are

given in Table 3-3.



INJECT ION COND ITIONS FOR EXPER IMENTAL PROGRAM

TABLE 3-3

Melt
Case Resin Temperature Pressure P ¥
(°F) (psi)
1 P.E. 350 350
2 P.E. 350 450
3 P.E. 350 500
) P.E. 350 650
5 P.E. Loo 250
6 P.E. 400 300
7 P.E. 400 400
8 P.E. 400 450
9 P.S. 450 475
10 P.S. 450 550
1 P.S. 450 525
12 P.S. 450 500
13 P.E. 350 300
14 P.S. 450 600

¥P. - pressure at the entrance to the cavity at the

end of the filling stage, as determined

exper imentally.
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The lower limit of injection pressure was selected
so that the filling time did not exceed two seconds. It was
found that a filling time of more than three seconds resulted
in a rough and rippled surface, a situation that could in-
troduce inaccuracies in the theoretical treatment due to
disturbed heat transfer at the interface between the polymer
and the wall. The upper limit for pressure was determined
by the characteristics of the injection molding machine.

The cavity could not be filled in less than 0.45 seconds.

The temperature range for molding was determined by the flow
properties of the resins. Two melt temperatures were chosen
for polyethylene 350 and 400°F, the common temperatures for the
injection molding of polyethylene. One melt temperature of
450°%F was chosen for polystyrene. At a temperature of MOOOF,
polystyrene exhibited melt fracture at relatively low shear
rates, as could be seen also in Appendix 1, section 9.1. At

a temperature close to 500°F, the resin employed in this study
exhibited discoloration (yellowing) apparently due to
degradation. The mold temperature of 80°F was chosen, since
the corresponding high speed photography experiments were per-

formed at room temperature for reasons discussed earlier.
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3.2.1 General

In the theoretical analysis of the filling stage
it was assumed that a "Spreading Radial Flow" takes place
in a parallel feed situation. Although Spencer et al (16)
and Bauer (17) showed that a radial flow was realized in
parallel feeding, they also noticed some deviations in their
particular geometries. Therefore, it was necessary from
the early stages of this study in a semicircular cavity to
determine if a spreading radial flow existed and to what
extent the front deviated from a perfect semicircle. This
was achieved by employing the automatic controls of the injection
molding machine, so that the polymer was frozen while
the cavity was only partially filled. As a result, differ-
ent sizes of semicircular pieces were obtained. Although
the moldings were rough, due to cooling without packing,
thé frontier was a perfect semicircle, except for some
deviation due to the wall effect close to the entrance plane
at r = 0. In order to obtain direct experimental observation
of the front during filling, high speed photography was
employed. The films showed that the melt front travelled
in a perfect radial spreading pattern, except for a small
edge effect. Figures 3-3 and 3-4 show photographs of the
melt front position at different stages of filling for poly-

ethylene and polystyrene for cases 2 and 10, respectively.
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FIGURE 3-3
SPREAD ING RAD IAL FLOW IN SEMICIRCULAR CAVITY
CASE 2
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FIGURE 3-4
SPREAD ING RAD IAL FLOW IN SEMICIRCULAR CAVITY

CASE 10
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3.2.2 Boundary Conditions

An important factor for the relevance of the pro-
posed theoretical model and numerical procedure is the assign-
ment of accurate and practical values for the boundary
conditions.

It has been shown in the experimental measurements
by Bauer (17) that it is not possible to obtain a constant
injection pressure at the injection end throughout the
filling stage,due to the start-up time requireq before a
constant pressure can be reached. Furthermore, the presence
of the nozzle, channels, sprues and gate between the reser-
voir and the cavity causes substantial pressure losses be-
fore the melt reaches the cavity. Barrie (45) points out
that these losses may exceed 50% of the pressure at the
injection end. The complexity of these effects, coupled with
swelling and other viscoelastic effects at the entrance to
the cavity, makes it difficult at this stage to treat the
cavity; nozzle, channel and gate as one system in the manner
proposed by Berger et al (10). In an attempt to test the
proposed filling model while avoiding the above complications,
the boundary conditions relating to pressure at the entrance,
equation (3-33), have been based on actual pressure values
as measured experimentally at the entrance to the cavity.
Experimental pressure time curves for the entrance are shown

in Figure 3-5 for polyethylene and Figure 3-6 for polystyrene.
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For reasons of convenience in the calculation procedure,
the time axis has been converted to a distance (radial)
axis in the computer program, using the exper imental filling
time curve.

Some inaccuracies may be associated with boundary con-
dition(3—27) which assumes that the melt temperature at the
entrance to the cavity is constant and equals the melt
temperature at the nozzle. Some cooling may take place
during the flow of the melt in the cooled channel. The
effects of this coo]ingvmay be at least partially offset
by the viscous heating effect due to high shear rates.
However these effects are not considered to change the tem-
perature of the melt to a large extent, since the residence
time of the melt in the channel is very short, as the
volume of the channel is only 2% of the cavity volume.

The effect of the melt temperature on the filling time is
discussed in Chapter 7.

The validity of boundary condition (3-26) which
assumes é constant heat transfer coefficient between the
melt and the wall is discussed in Chapter 7.

Thebassumption of a constant wall temperature has
been checked by the thermocouple installed in the trans-
ducer. |t has been found that the average max imum tempera-
ture rise of the wall is 20°% . Such an increase is not ex-
pected to change the results to a large extent, as will be

shown in Chapter 7.
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Atmospheric pressure at the melt front, boundary
condition (3-34) was maintained by installing thin shims of
0.003 inch thickness between parts 3 and 4, see Figure 2-2,
and checked by the pressure transducer. The recorded
pressure curves indicated that atmospheric pressure pre-
vailed from the beginning of the filling stage until the

melt touched the transducer.

3.2.3 Filling Times

Figures 3-7 to 3-14 give the distance travelled
by the melt as a function of time for polyethylene, and
Figure 3-15 to 3-18 give the same representat ion for poly-
styrene. The experimental curves were obtained as explained
earlier by the pressure transducer. For comparison, the
results obtained from high speed photography are given for
the same injection conditions, when available. In all cases,
the filling time obtained by the photographic technique is
shorter than that obtained from the pressure transducer
results. This is attributed to the different thermal pro-
perties of glass and steel. The thermal conductivity of
steel is 11.7 Btu/OF/ft/hr (46) while that of glass is only
0.55 Btu/OF/ft/hr (47), thus higher temperatures and lower

viscosities tend to prevail in the high speed exper iments.
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FIGURE 3-18
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Some inaccuracies in the time-distance curves obtained by'the
pressufe transducer are expected, since the active diameter
of the transducer is about 6.3% of the cavity radius.
Therefore, transducer data are.reported’in terms of a range
of valueS rather than as discrete points.

A comparison between the experimental results and
theoretical predictions éhows that the proposed model can
predict the obvidus need for lbnger fi]ling times as either
the melt temperature or injection pressure is decreased. In
most ofvthe cases, bofh fdr polyethylene and polystyrene,
the plot of volume fraction filled versus time shows a
deflection point, which indicates a maximum in the flow
rate. In general, this curve has an extended S shape. This
is due to increasing pressure gradients in the cavity at
the initial stages of ff]ling, and to increasing difficulty
in filling at later stages as a result of cooling and
solidification.

Al caseg show a signiffcant deviation between
the predicted and experimental rates of filling during the
early stages of filling. The deviation decreases as the melt
progresses in the cavity. It is felt that the main source
of error in the early stages is related to the sudden entry
of the melt from the channel to the empty cavity, where
factors like die swell and pressﬁre loss due to the sudden

change in cross sectional area for flow are very important.
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in addition to that, as pointed out in section 3.1.1, the
partial derivative of the radial velocity With‘respect to
the radial direction timés the vélotity was neglected.

The value of this term in the entrance region may be large
and contribute to the deviations observed at the initial
stages of filling (see Appendix 7). Accordingly, the
calculation procedure has been modified, so that the very
early stages of filling are ignofed; In the new procédure,‘
calculations start only aftef the Frbnt has reached the
dimensionless radius of 0.2. 'Thele%perimenta] measured
timevcorresponding to this position is taken as the zero.
time for the momentum equation. The original zero time is
used for the energy equation, in order to take into account
the thermai effects from the beginning of filling. Figures
3-8 and 3-16, show that the agreement between the experi-
‘mental and predicted modified results is better, for poly-
ethylene and polystyrene, respectively.

Another factor which may account for the difference
between the experimental and calculated results, is the
pressure loss in radial flow due to the‘extensional stresses
acting on the melt as it moves from smaller to ]arger radii.
Cogswell and Lamb (48) have attempted to include this effect
in the analysis of a simplified flow system where the condi-
tions are assumed to be isothermal and the fluid obeys the
Power Law. It can be shown, see Appendix 6, that the pres-
sure gradient for the above conditionS'cohsists of two con-

tributions: the shear contribution
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n

(%%)S = Mx Cy x LI | ceerecvenesesss(3-60)
r | -

where M is the consistency index and Cy is a constant inde-

pendent of r; and the hoop'contributibn

P
(??)h = G

T
l
[ ]

Py
w
i
(o)
—
p—

where ) is the constant extensidnal‘viscosity and C, a
constant independent of r,.

From equations (3-60) and (3-61), it can be seen
that during the early stages of filling, when the radius
of the melt is small, the pressure losses due to extensioﬁ
would be large compared to the shear losses. Thus the pres-
sure which is utilized to advance the front (shear stress)
in the radial direction would be lower, and consequently
the melt would be slowed down. The relative importance of
pressure losses due to viscous flow and to extension varies
depending on the melt radius. The viscous loss becomes the
dominating factor at large radii where the relative change
in radius is smaller. The effect of the extensional losses
(called sometimes also hoop losses) will be demonstrated -
once‘more, in the comparison between the experimental and
theoretical pressure profiles. It is not possible to give
an accurate treatment of extensional effects for the présent
flow system, due to lack of a satisfactory constitutive

equation.
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It is interesting to consider the effect of
assuming constant polymer density (incompressibility) during
the filling stage. The assumption of incompressibility is
made by most workers in the field. Figures 3-19 and 3-20 show
that the incompressible fluid gives shorter filling t imes
than the corresponding compressible fluid. Thus the devia-
tion from experimental results becomes larger with the
assumption of incompressibility. This may be due to the
presence of large temperature gradients in the cavity both
in the radial and axial directions. Lower temperatures exist
in the front regions, as will be shown later. The large
temperature differences between the entrance and the melt
front cause, at any instant, a difference between the volu-
metric flow rates in these regions. The volumetric flow
rate at the front is lower than the corresponding flow rate
at the entrance. Since the volumetric flow rate at the melt
front is responsible for filling the empty part of the cavity,
as given by equation (3-36), the compressible treatment re-
sults in slower filling rates than the treatment based on the
assumpt ion of incompressibility.

The effect of latent heat on the filling time, is
given in Figure 3-19, for poiyethy]ene. The comparison
between the theoretical curVes for the solution including
latent heat and the one excluding this effect shows that the

former case gives shorter filling time compared to the experi-
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FIGURE 3-20
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mental curve, due to higher temperatures and lower viscosi
as a result of generation of heat during solidification.
the other hand, ignoring the latent heat yields a lohger'

filling time than the experimental value.

3.2.4 Velocity Profiles

Figures 3-21 to 3-24 show the velocity profiles

ties

On

at

r¥ = 0.20 at different times during the filling stage, as

defined by the position of the melt front R*, for cases

1, 3, 6 and 8 respectively, for polyethylene, and Figures

3-25 and 3-26 for cases 10 and 12 respectively, for poly-

styrene. The main observation is that the velocity at a

given. point and consequently the flow rate, increase with

increasing injection pressure and/or melt temperature. The

calculated velocity profiles indicate thet the flow rate

decreases with time, due to decreasing pressure gradients
and the rise in melt viscosity as a result of cooling, as
the melt progresses in the cavity. All cases show an in-

flection point in the velocity profile, close to the cavit

4

wall. This may be due to lower temperatures and high viscos-

ities in this region. This phenomenon is more pronounced
in the polystyrene cases, since the activation energy for
viscosity is more than double than that of polyethylene, s
Appendix 1, section 9.1. |In addition, the velocity profil
are flatter, close to the centerline, for polystyrene, due

to the lower value for the flow index, n, 0.368 for poly-

ee

€s



-9~

FIGURE 3-21
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FIGURE  3-22
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FIGURE 3-23
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FIGURE 3-24
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FIGURE 3-26
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styrene compared to 0.594% for polyethylene.

3.2.5 Temperature Profiles

Figures 3-27 to 3-30 give the calculated temperature
profiles at the end of filling for cases 2, 4, 5 and 7
respectively, for polyethylene and F igures 3-31 and 3-32 for
cases 9 and 11, respectively for polystyrene. The temperature
at the centerline of the cavity appears to be unaffected,
except for relatively long filling times, cases 5 and 9 for
polyethylene and polystyrene, respectively. Large temperature
differences exist in the cavity, and are responsible, as
mentioned earlier, for the differences Between the compress ible
and incompressible solutions. With relatively long filling
times, Figures 3—29 and 3-31, about 15% of the cross section
is solidified during the filling stage. With shorter filling
times obtained at higher injection pressure and temperature,
viscous heating causes the temperature of the melt near the
entrance to rise above the initial value as shown in Figure
3—28‘for polyethylene. The viscous heatingbeffect is apparently
stronger in the case of polyethylene than in polystyrene, due
to the lower flow index and lower velocity gradients close to
the wall in the cases of polystyrene.

No temperature measurements have been conducted
during the course of experiments, except for the wall tempera-

ture. Temperature profiles at the wall are given for a few
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FIGURE 3-27
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FIGURE 3-28
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FIGURE 3-29
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FIGURE 3-30
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FIGURE 3-31
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FIGURE 3-32
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cases in Figures 3-33 to 3-35. The maximum temperature rise
at the wall is about 20°, a fact that could have a small
effect on the filling stage, as discussed in Chapter 7.
Barrie (19) attempted to estimate the solid skiﬁ
content of the polymer at the end of filling. He applied
the heat conduction equation and obtained poor agreement
between the experimental and calculated values, with the
former being lower. As shown in the above discussion, vis-
cous heating effects and convective heat transfer, should
be taken into account. This may explain the lack of agree-

ment in Barrie's approach.

3.2.6 Pressure Profiles

Figures 3-36 to 3-47 show the experimental values
and calculated pressure profiles at the end of filling stage
for polyethylene and polystyrene. The experimental measure-
ments are subjected to errors due to the area of the pressure
transducer, which accounts for 6.3% of the cavity radius,
and to the non-isothermal conditions at the wall which are
estimated at 1 psi/9F. The effects of these variables are
discussed in detail in Chapter 7.

Generally, larger differences in temperature be-
tween the entrance and the front result in lower pressure
gradients close to the entrance and greater ones close to

the front, compared with the isothermal case. This is due
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FIGURE 3-36
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FIGURE 3-37
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FIGURE 3-38
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FIGURE 3-39
PRESSURE PROFILE AT THE END OF FiLLING
CASE 4
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FIGURE 3-40
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FIGURE 3-41
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FIGURE 3-42
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FIGURE 3-43
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FIGURE 3-44
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. FIGURE 3-45

PRESSURE PROFILE AT THE END OF FILLING
CASE 10

e THEORET ICAL

Ly EXPER IMENTAL

1 ] | i | 1 1 1 1

A 2 3 .4 8] .6 N} .8 9

DISTANCE (r*)




PRESSURE (P¥)

-121-

FIGURE 3-46
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FIGURE  3-47
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to higher viscosities in the low temperature regions.
Temperature effects together with solidification that takes
place close to the front, result in a deflection point in
the pressure profile. This may be due to the large increase
in the pressure drop as the front temperature and the cross
section available for flow are decreased. These effects are
larger for polystyrene cases due to the large activation
energy for viscosity AE/Rg= 5910 1/K° while that of poly-
ethylene is only 2300 1/K°. A relatively small change in
temperature would cause a large change in viscosity in the
former case. The calculated pressure profiles for polysty-
rene exhibit less curvature than the corresponding profiles
for polyethylene, due to the lower flow index in polystyrene
cases. The effect of the melt flow index may be seen clearly
in equation (3-58).

| As can be seen from all the cases, the experimental
values lie always below the calculated curve, and deviations
are larger close to the entrance of the cavity. It is gener-
ally agreed that dissipative phenomena occur at the entrance,
which may result in lower measured values. As mentioned be-
fore, the elimination of the extensional stresses and the
non-linear term from the theoretical treatment may contribute

to the large differences at small radii.
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3.2.7 Short Shot

A partially filled cavity may be obtained at the
end of the filling stage if low injection pressure and/or
low melt temperature are employed. These conditions result
in the solidification of the flowing melt before it reaches
the boundary of the cavity.

The theoretical model for the filling stage was
successful in predicting a short shot. Two.short shots
were performed experimentally: one for polyethylene and
one for polystyrene. .

F igures 3-48 and 3—49 give the calculated filling
diagramsfor the two cases, respectively. Experimentally,
the short shot for polyethylene occurred after 18.5 seconds and
the melt reached the radius of 2.5 inches (measured after
cooling) while the calculated result gave 13.0 seconds and a
radius of 2.1 inches. For polystyrene, the experimental short
shot was obtained after 14.2 seconds at a radius of 2.9
inches, while calculations showed a short shot of 2.7 inches
at a time of 9.9 seconds.. The difference between the experi-
mental and calculated results are reasonable considering the
fact that slow fi]ling, above 3 seconds, results in a rippled
surface that may change the heat transfer conditions at the
interface between the melt and the wall.

Figure 3-50 and 3-51 show the corresponding tempera-
ture profiles at the end of the short shot for polyethylene

and polystyrene, respectively. As can be seen in Figure 3-50



-125-

3WNT0A

NOILJvid

(93s) 3WIL

€l 3sVd
LOHS 1MOHS-1NO¥d 113W 40 NOISS3U90¥Ud

8v-¢ T DIE]

3ONV1SIa

(x¥)



(R¥)

DISTANCE

-126-

FIGURE 3-49
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the centerline temperature lies below the freezing tempera-
ture of the resin and according to equation (3-13) filling
is stopped at this point and a short shot is obtained. For
polystyrene, Figure 3-51, the centerline temperature lies
above the freezing temperature at the end of the predicted
time for a short shot, as distinct from the former polyeth-
ylene case. This is due to the large viscosity activation
energy for polystyrene. At the predicted time for the short
shot the computer showed a very small flow rate that resulted
in a very long time for advancement of the tront to the

next radial increment. This time exceeded half an hour. At
this time the temperature would have dropped well below the

freezing temperature.

‘3.2.8 Melt Fracture

As shown in Appendix 1, melt fracture for poly-
styrene occurred at 180°C at a relatively low shear rate
(400 1/sec) in the Instron Capillary Rheometer. Similarly,
melt fracture conditions were observed with polystyrene when
it was injected to the cavity. Under these conditions, the
pressure recorded at the entrance to the cavity showed
fluctuations of about 150 psi. The recordings at the other
three positions were smoother, but still some fluctuations
could be detected. An attempt was made to '"smooth' the pres-

sure curve at the entrance and to solve for the filling stage,
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but the deviations were large. For example, molding conditions
that gave an experimental filling time of 0.7 seconds yielded

a theoretical filling time of 2.1 seconds. However, an exam-
ination of the molded article did not reveal any irregularities
in its appearance. On the other hand, examination of the

high speed films produced under melt fracture conditions in-
dicated irregular, interrupted flow at regions close to the
entrance of the cavity, these disturbances vanished at larger
radii. An attempt was made to develop still pictures from

the movies, in order to demonstrate this phenomenon. However,
the still pictures did not give a good representation of

this effect which could be seen clearly from the continuous

movies.

3.2.9 Summary
1. Spreading radial flow takes place in the paralle) feed

situation of this study.

2. Good agreement is obtained between experimental and
theoretical filling times, except for deviations at
the beginning of filling due mainly to extensional
stresses and entrance effects.

3. Compressible fluid treatment of the melt, results in
longer filling times compared with the incompressible

treatment.
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Elimination of latent heat of freezing in the case of
crystalline polymers results in longer filling time
compared with the solution that includes this effect.
Large temperature gradients exist in the cavity at the
end of filling.

Good agreement is obtained between experimental and
calculated pressure profiles, except near the entrance
where large deviations are observed, due to the
elimination of extensional stresses and entrance effects
from the theoretical treatment.

The filling model is able to predict a short shot.
Melt fracture was observed both photographically and

by pressure measurements.
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4., PACKING STAGE

4.1 THEORET ICAL ANALYSIS

4.1.1 Equations and Boundary Conditions

According to the proposed packing model, the poly-
mer melt flows from the reservoir at the injection end
through the nozzle and channel into the mold cavity by virtue
of the difference in pressure between the cavity and the reser-
voir. Since the cavity is filled with polymer, the driving
force for flow in the nozzle and channel is assumed to be the
difference between the pressure in the reservoir and the

average pressure in the cavity, Pa, the latter is defined by:

Ro
] .
Pa(t) = - X P(r,t)rrdr ceeeo(4-1
(9 = e § R (4-1)
)

Where r is the radial distance from the entrance of the cavity

to the point under consideration, R, is the radius of the

o
cavity; P is the pressure and t is the time elapsed from the
beginning of packing.

At the beginning of the packing stage, the flow
rate Qg is assumed to be equal to that at the end of filling

stage as given by the following equation:

h
Q, = 2 S Tavfa,z,0)dz  ........ . (B-2)
o -
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Where a corresponds to the radius of the entrance to the
cavity, z is the height of the point under consideration above
the mid-plane of the cavity, and h is the half thickness of
the cavity. Subsequently, the flow rate Qt at a given time

t, is obtained by assuming that the melt obeys the Power

Law. Thus

AP, 1/n
Qt = QOX (ZP_:;-) R o-o-o(,'l'_.?))

Where AP and APt are the differences between the pressure in
the reservoir and the cavity at time zero and t, respectively,
and n is the Power Law exponent for the melt.
Temperature profiles in the cavity are obtained
from the heat conduction equations with phase transformation
(for crystalline polymers only) neglecting convective heat
transfer. It is assumed that heat is conducted only in the
z direction since R /h = 48. However, temperature is different
at different radial positions due to differences in temperature
profiles at the end of filling stage. The polymer is assumed
to have constant but different values for specific heat Cp,
thermal conductivity k, and density p, in the solid and melt
regions, for purpose of solving the heat conduct ion equation.
Under the above assumption, heat conduction is

described by the following equations:



-134-

. T 2
In the solid region: S?E = ag -i{% B € ad)
dz
: AT 2
In the melt region: S?m = ag i;% N L. 55))

Where s and m refer to solid and melt respectively, o is the
thermal diffusivity: and T is the temperature.

Latent heat of freezing is taken into account by
solving equations (3-14) and (3-15).

The following boundary conditions are assumed:

a) Temperature gradient at the centre of the cavity is zero:

-a]z; (l‘,O,t) = 0 ieeses ....-(4_6)

by Temperature at the mold surface is held at a constant
value To’ and a constant effective heat transfer coefficient, H,

is assumed between the melt and the wall cavity:

ke (3 2% eeh H [T, - T(r,th,t)] e (4-7)

The average temperature in the cavity, T is defined

a,
as follows:

(o]

R
T (t) = WR2 S T(r,z,t)rr.drdz ..(4-8)
0.

oL— T
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An average density p_ is calculated from the volume of the

cavity and the mass of the polymer at each moment:
t

. A Qt X Pe (TI’ Pm)dt
2
T RO h

ceeei(509)

Pa = Po

Where Po is the initial density in the cavity at the begin-
ning of packing: stage, pe(Tl,Pm) is the density of the melt
at the temperature and pressure prevai]fng before the melt
enters the cavity.

The relation between the average pressure P, the
average temperature T and the average density Pa is given
by an equation of state, the same as equation (3-20). As a
matter of fact, a P-V-T diagram was used instead, as in the

filling stage (27,30).

4,1.2 Dimensional Analysis

For the sake of generality, a dimensional analysis
is- carried out. The following dimensionless variables are

defined, the same as in the filling stage:

r* = Tr/Ry p¥ = P/Pg
T - T,
zx = z/h T* = T T
I o
t - Vg
t* = —p— Ar = h/R0
Pe 172
Ve = (50)° p* = plpg
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Where Ro is the radius of the cavity, h is half thickness
of the cavity, P and T are the pressure and temperature of
the melt, respectively. Pe is the injection pressure at the
entrance to the cavity at the end of filling, P is a
reference density, T, and T, are the wall temperature and
initial melt temperature, respectively.

Equations 4-1 to 4—9 take the following forms by

introducing the above definitions:

1

P:(t*) = 2 S P¥(r¥,t*)rxdr* R €. 23 [o)!
1
Qz = 2 X'Wa*v* (a¥,z*%,0) dz*x  .......(4=-11)
0 .
AP¥ 1/n
Q.)te = Q-)O(- (-_P_)E(_' --..-........(4-]2)
AO
aTy T (513)
at* Ve . h az*2 s 00 0000800
'BT; _ %m BET; 414
.a_t;? - V .h *2 -oooo-co.o.‘no( -] )
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-g-l—:—(r*,o,t*) - 0 e eeeeeea (B15)
ar* -~ H-h -
(aZ*)Z*_ ] K [~ T*(r¥,+1,t%)] ...(4-16)
1]
Th(t*) = 2 X x T*(r%,z% t*) redredz* .. (4-17)
00
Py = 5 Q¥ p¥ dt*¥ ...... eee..(4-18)

Equations (3-14%) and (3-15) take the following

dimensionless form:

* L] -
LI el _Ps b Ve gt
az* xeg Kg 3Z% jxoc k(T - Tp) | dt¥
(4-19)
™ o= T = T oAt 2= (4-20)

And the equation of state (3-20):

. *
p* - T R(Ty - To) . Re To oW
a 1 1 P
(—— - b) Pe(—— - b) f
Pa " Po Pa * Po
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4.,1.3 Difference Equations

The set of equations (4—])—(4-9) together with the
latent heat equations (3-14) and (3-15) and an equation of
state (3-20) are solved simultaneously by numerical techni-
ques. The standard finite different representation is used.

By fixing the number of radial and axial increments
to equal the numbers used in the filling state (1-1) and
(J-1) respectively, a radial increment, Ar, and an axial
increment, Az, are defined. The difference equations are given
in dimensional variables; however some results are also
presented,‘]ater, in dimensionless form, using the above
definitions in section 4.1.2.

A1l integrals appearing in equation (4-1), (4-2),
(4-8) and (4-9) are solved by using the "Extended Trapazoidal
Rule" (40).

The heat conduction equations are solved by using
Saul'yev's explicit method, thus equations (4-4) and (4-5)

are reduced to the following forms:

1 -B
Ts(i,j,K“l']) = TS( i,j,k) x '-'—_T_—B—: + [Ts(i,_]-],kﬂ)ﬂ's(f,j+],k)]
By
X T—:—B—; . (4-22)
g * At
where B] = =
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1 - B
Tm(l,J,k+]) = Tm(l,J,k) X T—:—§;'+ [Tm(l,J—],K+D¥E(I,J+],K)J
B
2
X T+8, (%-23)
2
o, ° At
where 82 = M 5
Az

The finite difference form of equations (4-6) and (4-7) is:

T(i,0,k) = T(i,2,K) (4-24)
and
T, - A T,
_ _0 1 i,2 _
T, S T+A T T+ A (#-25)
_ H - Az
where A] = %

Equations (3-14) and (3-15) are solved in the same

modified conventional method, as outlined in Appendix 5.

4,1.4 Stability, Convergence and Uniqueness

The finite difference equations (4-22) and (4-23)
and the numerical solution to equations (3-14) and (3-15) need
to be evaluated with regard to. stability, convergence and
uniqueness. As in the filling stage, one seeks the available
analytical solution to the closest physical problem. No
analytical solutions are available for the case of unsteady

heat conduction with phase transformation in confined spaces
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‘1ike a slab, cylinder or sphere. The uniqueness of the nu-
merical treatment of equations (3—14) and (3-15) has been
tested in the case of a stationary cooling melt in a long
cylinder, see reference (24).

In order to complete the test for stability, con-
vergence and uniqueness of equations (4-22) and (4-23), an
analytical solution (49) was compared for the numerical
solution for the following problem{ An infinite long slab
at initial temperature T is subjected to a step change in
temperature T, at time zero. The temperature profiles as
function of time and axial position are compared for the
analytical and numerical cases, see Figure 4-1. Different
values for By were chosen 0.1, 0.5 and 0.7, but results are
given only for By = 0.1. These results demonstrate that
both convergence and uniqueness were achieved.

No additional problems would arise from the other
integrals and algebraic equations which describe the packing
stage. However, due to the high values of flow rate,
especially at the beginning of packing, it was necessary to
select a time increment smaller than that associated with
convergence requirements for the heat conduction equations.
A time increment of 0.005 sec gave the best convergence

properties.

T e
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4,1.5 Numerical Procedure

A computer simulation of the packing stage was set
up as outlined in Figure 4-2.

At the beginning of fhe packing stage, temperature
and pressure profiles are the same as those prevailing at the
end of the filling stage. Average temperature and pressure
values are calculated by equations (4-8) and (4-1) respectively.
The initial average density is calculated from the equation of
state (3-20) by utilizing the initial average temperature and
pressure in the cavity. In subsequent steps the average
density is calculated from equation (4-9) and the average
temperature (4-8) obtained from the temperature profile cal-
culated from equations (4-4)-(4-7) and the numerical solution
to equations (3-14) and (3-15). The average temperature and
average density are employed in the equation of state (3-20)
to yield the average pressure P_. The latter is used in
equation (4-3) to calculate the new flow rate. This cycle
is repeated till the packing stage is terminated. Termina-
tion of the packing stage occurs when the new calculated
pressure or density is equal to or smaller than the previous
calculated pressure or density. The detailed computer pro-

gram for the packing stage is given in Appendix 4 section 9.4.
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4.2 RESULTS AND DISCUSS ION

Following the proposed model and numerical procedure
for the packing stage, average pressures, flow rates and
temperature profiles were calculated for the twelve cases
discussed in the filling stage.

The maximum pressure that could be obtained at the
end of the packing stage was limited, and depended on the
max imum clamping force obtained from the twelve screws that
held the two halves of the mold and the flow properties of
the polymer. Pressures above 3500 psi and 5000 psi would
cause flash to occur for polyethylene and polystyrene, respec-
tively, in the temperature range used. Thus, the shot size
and the holding pressure control valves were adjusted in

order not to exceed these limits.

4.2.1 General

Since the pressure transducer was placed only in
the cavity, it was not possible to obtain a dependable experi-
mental value for the pressure at the injection end before the
melt entered the channel. This pressure had to be at least
equal to the pressure measured at the end of packing and
possibly higher. In order to overcome this difficulty, a
few alternative values were tested in the computational scheme.
It was found that the best fit to the experimental curves could -

be obtained, when this pressure was taken to be 300 psi above
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the max imum average cavity pressure recorded for polyethylene
and 1100 psi above the maximum average pressure recorded for
polystyrene. The maximum average pfessure was obtained by
averaging the maximum values recorded for the pressure at the
four transducer locations. The extra pressure might be due to
cooling of the melt and pressure loss as a result of the flow
which takes place in the channel. The difference in the
additional pressure peeded for polyethylene and polystyrene,
might be due to'the difference between the viscosity activation
energy for these two resins and the higher viscosities real-
ized in the case of polystyrene (see Appendix 1). |
The average initial density calculated from the
average temperature and average pressure in the cavity at
the end of the filling stage was compared with the average
density calculated from the flow rates, filling time and

volume of the cavity, as expressed in the following equation:

g‘%(Tl’Po(t)) x Qp X dt
p = 0] :
o

(4-26)

TTRgxh

The average difference between values calculated
from the P-V-T relation and equation (4-26) was less than 2%.

In the above equation, t refers to the filling time.



~146-

4 .2.2 Packing Profiles

Exper imental and theoretical packing curves are given
in Figures 4-3 to 4-10 for polyethylene for cases 1-8,
respectively, and Figures 4-11 to 4-14 for polystyrene for
cases 9-12, respectively. In general, good agreement is
obtained between the experimental results and the predicted
average values. At the initial stages of packing, the
predicted rates of pressure buildup in the cavity are some-
what higher than the average experimental results. This may
be due to the initial flow rate which has been employed in
the computations. In most cases, the calculated initial flow
rates are higher than the experimental ones, as can be seen
from the slope of the distance-time curves at the end of
filling, Figures 3-7 to 3-18.

It can be observed, in all cases for both polyethy-
lene and polystyrene, that the rate of pressﬁre rise and the
max imum in pressure vary from one measuring position to another
in the cavity. For polyethylene, the difference at the end
of packing between the maximum and the minimum values measured
is about 500 psi (for the same shot size), while for poly-
styrene the difference is about 1600 psi. These differences
may be due to elastic and wave propagation effects in addition
to back flow which may occur as a result of flow of the melt
into the closed filled cavity, and density differences in the

radial direction due to the temperature profiles realized.
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An attempt has been made to increase the shot size,
for polyethylene, and thus obtain different packing curves
for the same filling conditions. Figures %-15 and 4-16 show
results for cases 2 and 6, respectively. As the shot size
increased, the difference between the measured minimum and
max imum values increased to 900 psi from the former value of
500 psi. In addition by comparing Figures 44 and 4-8 to
Figures 4-15 and 4-16, respectively, it is seen that the
location of the max imum pressure in the cavity varies for
the different shot sizes. As the shot size is increased,
the location of the maximum pressure in the cavity moves
from the third transducer position (r¥ = 0.70) to the fourth
transducer position (r¥ = 0.95). Furthermore, the pressure
profile in the cavity appears tdudepend on the shot size.
These effects may be the result of combined backflow and
elastic phenomena which tend to be more important as the shot
size is increased. The four cases reported for polystyrene
show that the pressure at the end of packing, increases
from a minimum at the first position to a maximum at the
fourth position. The pressure gradient which is established
in the cavity indicates a situation in which back flow
prevails.

Comparing Figures 4-4 and 4-8 to Figures %-15 and
4-16 respectively, shows that a longer packing period is
needed as thé shot size is increased for the same filling time.
This is confirmed both by the experimental and theoretical

results.
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The rates of pressure rise are reduced as packing
proceeds. As packing progresses, the pressure level in the
cavity increases and thus the driving force for flow and
packing decreases causing the latter stages of packing to be

accomplished slowly.

h.,2,3 Flow Rate Variation

Together with the rate of pressure rise in the
cavity, the flow rate of material drops, as shown in Figures
4-3 to 4-10 for polyethylene and 4-11 to 4-14 for;polystyrene.
As the pressure rises sharply during the initial stages of
packing, the flow rate is reduced due to the decrease in the
driving force for flow, as can be seen clearly from equation
(4-3) .

There appears to be some correlation between the
filling times and the corresponding packing times. A short
filling time is associated always with a short packing time
and visa versa. In general, packing time varies between
25-40% of the filling time for polyethylene and between 30-80%
for polystyrene. The main contribution to the differences
in packing times results from differences in the flow rate
at the end of the filling stage which dominates the initial
stages of packing. Also the temperature distribution in
the cavity at the beginning of packing plays an important

role.
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FIGURE 4-18
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FIGURE 4-19
TEMPERATURE PROFILES AT THE END OF PACKING
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FIGURE 4t-20
TEMPERATURE PROFILES AT THE END OF PACKING
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FIGURE  4-22
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L.2.4 Temperature Profiles

Figure 4-17 to 4-22 give the calculated temperature
profiles at the end of packing. The relatively short
packing times seem to have a minor effect on the temperature
profiles. However, some reduction in temperature and increase
in the amount of solidified material may be noted.

The effect of the different parameters on the packing

stage are discussed in Chapter 7.

4.,2.5 Summary

1. Good agreement is obtained between experimental and
calculated packing curves.

2. Pressure profiles exist in the cavity during the
packing stage.

3. As the pressure rises in the cavity calculations show
that the flow rate decreases.

4, A short filling time is associated with a short packing

time and visa versa.
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5. COOL ING STAGE

5.1 THEORETICAL ANALYSIS AND COMPUTAT IONAL PROCEDURE

In the cooling stage no flow takes place, cooling
of the molded article proceeds and the pressure in the
cavity drops as a result. From the computational point of
view, this stage, is a particular case of the previous
packing stage. The equations that are used in the cooling
stage are : (4-1), (4%-4), (4-5), (3-14), (3-15), (4-6),
(4-7), (4-8). For each time increment, the temperature
profile is computed by using equations (44 and (4-5) and
boundary conditions (4-6) and (4-7). Latent heat is taken
into consideration by equations (3-14) and (3-15).

Since flow ceases at the end of the packing stage,
the density remains constant (unless pressure reaches the
atmospheric level) at the same value as at the end of
packing. Thus, pressure drop is found directly from the
average temperature as defined by equation (4-8) and an
equation of state (3-20) using the constant value for den-
sity. As in the other two stages, instead of an equation
of state a P-V-T diagram was used in order to increase
accuracy. In addition, the equation of state is valid
only for the melt region, and the use of a tabulated p-V-T
diagram allows the extension of the calculations to regions

below the treezing temperature.
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The same computer program was used for both the
packing stage and the cooling stage. So that the temperature
profile and the average pressure at the end of packing were
automatically used as the initial temperature profile and

average pressure, respectively, in the cooling stage.

5.2 RESULTS AND D ISCUSSION

As indicated earlier, the cooling stage was followed
experimentally only by the pressure transducer measurements.
No temperature measurements inside the bulk of the polymer
were conducted, in order to avoid interference of the temper-

ature measuring elements with the flow in the cavity.

5.2.1 General

Since no flow takes place in the cooling stage, it
is possible to simulate this stage by performing temperature
measurements in static polymer systems under pressure. Such
measurements have been conducted and reported by Kenig and
Kamal (23,é4) for the cooling and solidifcation of a polymer
melt contained in a cylindrical cavity under varying combina-
tions of initial temperature and pressure. These measurements
give direct confirmation of the validity of the proposed model
for the cooling stage in injection molding. Indirect evalua-
tions of the proposed model for the cooling stage may be
obtained by comparing the calculated and experimental values

of pressure in the cavity, as functions of cooling time.
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5.2.2 Pressure Variation

Figure 5-1 to 5-8 show the calculated average pressure
and the experimental curves for polyethylene, and F igures 5-9
to 5512 for polystyrene, for the twelve cases discussed in the
filling and packing stages.

Cooling results show that the experimental pressure
gradients, that are observed in the packing stage, persist
during the cooling stage and that the cooling curves tend to
intersect each other at later stages of cooling. In general,
the time needed for the pressure to drop from its initial
value to atmospheric is about twice longer for polystyrene
than for polyethylene, as a result of the lower thermal dif-
fusivity and the higher initial pressure realized in poly-
styrene cases. |

The shapés of both the theoretical and experimental
curves are different for polyethylene and polystyrene.. While
in polyethylene the rate of pressure drop is higher at longer
cooling times, it is lower for polystyrene. This is due to
the different types of phase transition that the two polymers
undergo during cooling. Polyethylene undergoes a first order
transition; as a result, its thermal conductivity, thermal
diffusivity and density change to a large extent. The thermal
properties change by 100%, as the density changes by about 20%
in the solidification temperature region (see section 2.%).
Polystyrene undergoes a second order transition, and thus its

thermal propefties change only slightly, as reported by Nagler
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(26), while its density changes moderately. As cooling pro-
gresses, more of the polymer will solidify and thus, in the
case of polyethylene, the temperature will decrease with an
increased rate due to the solid layer. This leads to an in-
flection point in the pressure, timé curve. Since, the ther-
mal properties of polystyrene ére practically constant, the
rate of temperature drop will decrease at longer cooling
times due to lower temperature gradients at these times.
Consequently, the rate of pressure drop will decrease. The
general shape of the pressure curve for polystyrene resem-
bles the polyethyiene curve at shorter times before the
inflection point. The same general results are reported by
Kenig and Kamal (23,24) for cooling both polyethylene and
polystyrene.

As expected, the time required for the pressure
to drop from its initial value to atmospheric is shorter
for higher initial melt temperature, as can be seen in Figures
5-1 to 5-4 compared with Figures 5-5 to 5-8. This is due
to the faster rates of cooling which are realized with higher
initial temperatures. |t takes 6-T7 seconds for the pressure
to reach the atmospheric level for polyethylene at the initial
melt temperature of 350°F, and only 5-6 seconds at the initial

temperature of 400°F.
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The values which are assigned to the heat trans-
fer coefficient between the polymer and the mold are crucial
for fhe cooling stage, where most of the heat transfer takes
place. While the value of 100 Btu/fte/hr/oF gives satis-
factory results for polyethylene at the initial melt tempera-
ture of 350°F, there is less satisfactory agreement with
experimental results, for the initial melt temperature of
400oF . For polystyrene, deviations are larger. An attempt
has been made to assign different values for the heat trans-
fer coefficient in the range of 50-150 Btu/ft2/hr/OF (31,32).
It can be seen in Figure 5-11 that better agreement between
the experimental and predicted values is achieved when the
value of the heat tiansfer coefficient, for polystyrene,
is lowered to 50 Btu/ft2/hr/%F. A more detailed analysis
of the effect of heat transfer coefficient is given in

section 7.

5.2.3 Residual Pressure

In one case for polystyrene, Figure 5-9 for case 9,
the pressure measurements detected a residual pressure in the
cavity at the entrance to the cavity. Spencer and Gilmore
(50) reported residual pressures for polystyrene, when the
length of the packing stage exceeded a critical value. In the

present case the sum of both the filling and packing stages was
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about 2.65 seconds. The residual pressures might be attributed
to the thermodynamic relation between the pressure, tempera-
ture and density. According to the P-V-T diagram (30) and
Figure 2-11, a relatively low temperature combined with a high
pressure at the beginning of cooling (or end of packing)

would result in a residual pressure‘ét room temperature. This
was confirmed when the initial melt temperature of polystyrene
was lowered to 400PF, where residual pressure were obtained
for filling and packing times exceeding one second. In
addition, when the shot size was decreased and consequently
the maximum pressure at the end of packing did not exceed

3500 psi, no residual pressure were noticed at the initial
melt temperature.of 450°F . As the melt temperature was lowered
to 400°F, residual pressures were detected when combined time
for filling and packing exceeded 3 seconds. Manipulations

of the calculation procedure as by lowering the heat transfer
coefficient to 25 Btu/ft2/hr/OF and increasing thevinitia]
pressure to the maximum pressure registered in cufve 4 Figure
5-9, resulted only in increasing the cooling time to 20
seconds. It should be emphasized that Kenig and Kamal (24)
did not observe residual pressures‘in the cooling of poly-
styrene from an initial pressure of 10,000 psi. In fact the
reported experimental cooling times were even shorter than
these predicted by calculations. The reason for the differ-

ences between experimental and calculated times was attributed
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to end effects, since the ratio of the length to diameter
was only 5.5.

The inability of the present theoretical calcula-
tions to predict the residual pressures may be a‘resulf of
the time scale of the cooling stage. A1l thermodynamic
relations between volume, pressure and temperature are
applicable only under equilibrium conditions, relations would
be true under unsteady conditions, only if the relaxation
phenomena that take place in a dynamic process were neglig-
ible, in the sense that the time necessary for the polymer
to readjust to time-varying conditions is much less than
the time scale of the experiment. Since the relaxation time
depends on the temperature and it increases as the tempera-
ture decreases, it seems that relaxation phenomena at low
initial temperatures are not negligible when compared to the
duration of cooling which is in order of ten seconds in the
present case. These phenomena are not expected to be impor-
tant when cooling times are more than ten minutes in the
exper iments conducted by Kenig and Kamal (24) in a two-inch

diameter cylinder.
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5.2.4 Temperature Profiles

F igures 5-13 to 5-16 give the calculated temperature
profiles, at the end of cooling for polyethylene and Figures
5-17 and 5-18 for polystyrene for cases 2, 4, 5, T, 9, 11
respectively. The main observat ion from these figures is that
the temperature profiles are quite flat and that the tempera-
ture difference between the entrance and the cavity boundaries
is about 20°F for any given axial distance. At the time
when the average calculated pressure reaches the atmospheric
Jevel, about 40% of the cross sect ion has solidified for
polyethylene at the initial melt temperature of 350°F, while
only about 30% has solidified when the initial melt tempera-
ture is 4O0°F. In the case é for polystyrene, more than 50%
is below the defined freezing temperature (see section 9.1,
Appendix 1), and about 25% below the glass transition
temperature (220°F), and about 40% is below the freezing

temperature for case 11.

5.2.5 Remarks on Pressure Measurement in the Cooling Stage

Some questions may arise in the cooling stage, as
to the reliability of the pressure values measured by the
pressure transducer. Since the pressure transducer is cali-
brated with a fluid (silicone oil) it may show different values
for solids. Since in the cooling stage, solidification has
reached high levels, it may introduce some errors in the experi-

menta)l measurements. In principle, it is unimportant whether
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the load is transmitted to the diaphragm of the transducer
by a melt or a solid, as long as perfect mechanical contact
between the polymer and the diaphragm i§ ensured. As the
main idea in molding is to produce an object which retains
the djmensions of the cavity, this condition of a perfect
mechanical contact is met till the molding shrinks away from
the walls of “the cavity, usually after the pressure reaches
the atmospheric value. Evidence of good contact between the
transducer and the polymer has been obtained by noting the
mark left by the boundaries between the transducer and the

cavity in the moldings.

5.2.6 Summary

1. Good agreement is obtained between experimental and
calculated cooling times.

2. The shape of the pressure curves is different for
polyethylene and polystyrene.

3. Pressure gradients are maintained in the cavity through-
out the cooling stage. .

4, The value assigned for the effective heat transfer
coefficient is crucial. It seems that the coefficient
for polystyrene is half that for polyethylene.

5. The cooling stage cannot prediét residual pressure
possibly due to the inadequacy of the equation of

state for short cooling times.
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6. COMPOSITE CYCLE

When the three parts of the pressure-time curve
are combined, the composite curve for the overall injection
molding cycle i< obtained. Figures 6-1 and 6-2 give the
calculated and experimental composite pressure-time curves
for polyethylene and polystyrene for case 2 and case 10,
respectively. The experimental values of pressure are the
values recorded at the four transducer positions. The cal-
culated values for the filling stage have been obtained
to correspond to the four transducer positions. Since the
packing stage is relatively short all experimental and
theoretical lines collapse on a single line for the time scale
employed in these graphs. It is obvious thatﬁboth the
theoretical and experimental curves conform to the standard
forms reported in the injection molding literature (6,7,8).
Furthermore, the general agreement between experimental and
calculated results is good. Thus it may be concluded that
the proposed computer simulation of the different stages of
the injection molding process is realistic.

It can be seen from the composite curves that the
codling stage is four to five times longer than the filling
and packing stages combined for case 2, and about seven
times longer for case 10. As the filling stage becomes

shorter (cases 3, 4%, 7, 8, 11, 12) this ratio becomes larger,
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while for longer filling and packing times (cases 1, 5, 9)
this ratio becomes smaller. Naturally, this ratio depends
on the radius and thickness of the cavity. As the thickness
of the cavity increases for the same length of fiow, the
cooling stage becomes more controlling. Furthermore, the
injection conditions may be critical in some cases. For
example, it is conceivable that filling and packing may.be

controlling for small thicknesses and long cavities.
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7. REPRODUCIBILITY, ACCURACY AND
ERROR ANALYS IS '

Any attempt to compare the experimental and calcu-
lated results must consider the accuracy and reproducibility
of the experimental measurements and the error which is
introduced into the theoretical solution by the uncertainty
of the material properties and processing conditions which
are measured experimentally.

In order to check the overall reproducibility of
the experimental seét-up as described earlier, experimental
measurements taken at different times in the same day, and in
different days .for the same processing conditions were com-
pared. The different stages in the injection molding cycle
were checked at different amplifications of the signal and
different chart speeds. The difference between the maximum
and minimum measured pressures and the maximum and minimum
times did not exceed an average of 2% if taken at the same
day. Measurements done at different days deviated up to an
average of 5%. These differences can be attributed to the
error introduced by the melt and mold temperature controllers
with an accﬁ?écy]eve]of +59% and the error in setting the
pressure control valves. Nafura]]y, differences were smaller

for experiments at the same day. The performances of the
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pressure transducer, the signal conditioning unit and the
recorder were checked separately by following the calibration
procedure at different days. Identical calibration curves
were obtained, with deviations of less than one half a.
percent.
The main errors in the pressure-time measurements

are attributed to the active area of the transducer which

is 6.34% of the radius of the cavity, and the thermal error
of the transducer (1 psi/9F) which is estimated to be of a
max imum value of 20-25 psi as a result of the temperature rise
in the wall,equivalent to a maximum of 20-25%F. These two
errors are given graphically in the filling stage where they
are most significant. Since very little flow takes place in
the packing stage and no flow occurs in the cooling stage,
the error due to the area of the transducer is negligible and
the thermal error may be neglected except for the latter
stages of cooling due to the low values of pressure in these
stages.

In addition to the direct errors in pressure-

temperature-time measurements, indirect errors may be attri-
buted to viscometric measurements to evaluate the flow index

n, the activation energy AE/Rjand the constant A. in the Power

g
Law for the melts (See Appendix 1, section 9.1). Furthermore,
some uncertainty is introduced by the heat transfer coefficient
between the polymer and the wall, since the two references

consulted give a range of values (31,32).
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In the following discussion an error analysis of
the above uncertainties will be carried out. Since it is
very expensive to check all the variables involved for all
these stages in the twelve cases reported and thus obtain
a complete statistical error analysis, two cases are
followed thoroughly (case 3 and case 11) for polyethylene
and polystyrene. The criterion for comparison of the
different variables are the respective deviations of filling,
packing and cooling times from the nominal values.

As can be seen from Table 7-1, 7-2 and 7-3, the
highest deviations exist in the filling stage, where both
momentum and heat transfer processes take place. Since
these processes are time-dependent and coupled through the
temperature dependence of viscosity, the effect of each
variable is magnified in this stage. This explains also
the higher deviation in the case of polystyrene where the
activation energy for viscosity is higher than that of poly-
ethylene.

The effects of the flow index, n, the activation

energy, AE/Rg,and the constant, A

c» that were evaluated by

the double linear fitting (Appendix 1, section 9.1), are
lumped into one variable, i.e. viscosity, the absolute

average deviation of which was 7.2% for polyethylene and 13.6%
for polystyrene. The variation of the wall temperature |

during the filling stage is estimated to be 10°F due to the
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TABLE T7-1
ERROR ANALYSIS: FILLING STAGE

Polyethylene Case 3 Polystyrene Case 11
Filling Filling
T ime Deviation T ime Deviation
(sec) % (sec) b
Nominal Value .689 - 6Th -
n + An¥¥ .788 + 14,5 .982 + 30.9
n = Art¥ 594 - 13.8 492 - 27
TO + 10°F 676 - 1.9 .661 - 1.9
T, - 10°F .701 T .686 + 1.8
T, + 10°F .603 - 12.5 .532 —‘21.1
T, - 10°F . 784 + 13.8 .845 + 25.4
Pe + 25 psi - .634 - 8.0 .584 - 13.3
Pe - 25 psi .738 + T TN + 15.9
H = 50% 611 - 11.3 .573 - 15.0
H = 150% .759 + 10.2 . 768 + 14.0
H = o .983 + 30.0 1.080 + 58.8

¥ Units: Btu/SF/hr/ft?

*% An = T% for polyethylene and 13% for polystyrene
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TABLE 7-2
ERROR ANALYS IS: PACKING STAGE

Polyethylene Case 3 Polystyrene Case 11

Packing Packing

T ime ‘Deviation T ime Deviation

(sec) % (sec)
Nominal Value .3153 - 4250 -

n+ 10% .2802 - 11.2 .4350 - 1.
n - 10% .3503 + 111 .4303 + 2.4
P+ 10% ©.3102 - 1.6 4203 W
Pa - 10% .3195 . + 1.3 4291 + 1.0
Qo + 10% .3002 - 4.8 153 - 2.3
Q, - 10% .3353 + 6.4 J4hsh + 4.8
T, + 20°%F .3203 + 1.6 .4303 + 1.3
H = 50% .3303 + 4.8 45k + 4.8
H = 150% 3102 - 1.6 1153 - 2.3
H = e .3053 - 2.0 148 - 2.4

% Units: Btu/CF/hr/ft?
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TABLE T7-3
ERROR ANALYS IS: COOL ING STAGE

Polyethylene Case 3 Polystyrene Case 11
Cooling Cooling '
};22) Dev%ation {;ggs Dev%ation
Nominal Value 6.35 - 8.40 -
n+ 10% 6.35 - 8.40 -
n - 10% 6.35 - 8.40 -
Q0 + 10% 6.35 - 8.40 -
Q, - 10% 6.35 - 8.4'0 -
P, + 10% 6.35 -~ 8.40 -
P, - 10% 6.35 - 8.4%0 |- -
T, + 20°F 7.36 + 15.9 8.83 "+ 5.1
H = s5o* 1 8.60 + 35.%4 11.09 + 32.0
H = 150*% 5.40 - 15.0 7.26 - 13.5
H = o 3.95 - 39.3 5.3 - 36.9

* Units: Btu/oF/ftE/hr
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temperature rise and is also bounded by a lower 1limit of -10°F . .
However, these effects are shown to be small. The deviation
of the melt temperature was estimated to be + 10%F due to
the uncertainty iﬁtroduged'by the melt temperature controller
(+5°F) and the cooling and/or viscous heating effects in the
channel. The upper and the lower deviations for the injection
pressure were estimated to be + 5% due to the thermal effect
on the pressture transducer. It should be emphasized that
the values assigned to the heat transfer coefficient are very
important, large deviation occur when perfect thermal contact
(H = ») between the wall and the melt is assumed.

On the average, deviations in the packing'stage
are smaller than those in the filling stage, due to the
fact that the duration'of packing is shorter and thus tempera-
ture variations are relatively small. The error introduced
into the packing stage by the preceding filling stage is
represented by the deviations in the initial flow rate and
the initial average pressure that are est:imated not to exceed
104. The average error in the evaluation of the flow index,
n, has been found to be less than 10% for both resins. The
rise of the wall temperature (a maximum of 20°F) does not
seem to change the packing stage significantly, nor does the

value assigned to the heat transfer coefficient.
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Since the packing and cooling stages are solved by
one computer program, the deviations introduced by the
packing stage are carried over to the cooling stage. As
can be seen from Table 7-3, the cooling stage is not affected
by the previous errors in the filling and packing stages due
to the fact that the only two variables that effect the cool-
ing stage are the temperature and pressure at the end of
packing and these do not change to a large extent, as a re-
sult of the errors in the previous two stages. Since cool ing
is predominantly a heat removal stage, the variables that
affect the heat transfer process play the main role. A
max imum increase in the wall temperature by 20°F affects
- more the cooling time of polyethylene than that of poly-
styrene, due to the larger thermal diffusivity of the former
resin. The main deviations in the cooling stage are related
to the effective heat transfer coefficient between the poly-
mer and the wall cavity. Since the cooling stage is usually
the longest stage in the overall injection cycle, it would

make the largest contribution to the total deviation.
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8. CONCLUS ION

R AR _2A e

8.1 CONCLUSIONS

The filling, packing and cooling stages in the in-
jection molding of thermoplastics may be descr ibed adequately
by models which permit quantitative treatment of the process
through a numer ical solution of the equations of continuity,
mot ion and energy. |

The filling stage model takes into consideration the
non-Newton ian behaviour of the melt, the effect of temperature
on density and viscosity, the latent heat of solidification
(for crystalline polymers), and the difference in the thermal
properties between the solid and the melt. In employing the
proposed model, it is necessary to Know the pressure—time
variétion at the entrance to the cavity. The complexity of
the injection system, coupled with the lack of dependable
data on viscoelastic and entrance-exit phenomena, prevents an
accurate treatment based on the pressure-time variations at
the injection end. The model gives the filling time, pressure,
temperature and velocity profiles as well as flow rates
during the filling stage. These results are in good agree-
ment with experimental data for polyethylene and polystyrene.

The proposed model for the packing stage starts
with the temperature and pressure profiles at the end of the
filling stage, as calculated from the model for that stage.

The packing model yields information on the pressure develop-
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ment and the variations in temperature and flow rate during
packing as functions of time. The model takes into account
the non-Newtonian behaviour of themelt, latent heat effects,
the difference of thermal properties between the solid and
the melt, and the density dependence on both pressure and
temperature. [t is necessary to have a good estimate of the
injection pressure of the melt prior to enter ing the channel.
' Ca]cu]ated results based on the proposed model are in good
agreement with experimental data both for polyethylene and
polystyrene. These results show a pressure profile in the
cavity throughout the packing stage. The profile is appar-
ently due to elastic, wave propagation, back flow and density
effects.

The proposed model for the cooling stage starts from
the pressure and temperature conditions that exist in the
cavity at the end of the packing stage. Although no direct
confirmation has been obtained of the calculated temperature
profiles, calculated results on the variation of pressure with
time are in good agreement with experimental values for poly-
ethylene. Good agreement for polystyrene is obtained when the
effective heat transfer coefficient between the polymer and
the wall is taken to be half that of polyethylene. Experimental
data show that a pressure profile is maintained in the cavity,
even at late stages of the cooling step. The cooling stage
appears to be the controlling step for the geometry and

d imens ions of the cavity used in this study.
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The composite calculated curves based on the pro-

posed simulation of the overall injection molding process

are in qualitative agreement with standard curves reported

in the literature. The overall agreement between experimental

and theoretical results is good.

8.2 RECOMMENDAT IONS

As a result of the present study, the following is

recommended:

].

To try to include the extensional stresses in the theor-
etical solution for the filling stage by using an appro-
priate constitutive equation for the melt.

To try to include in the theoretical solution for the
filling stage the dependency of the flow index, n, and
the activation energy, %5, on shear rate and temperature.
To try and include in the solution for the filling stage

v
the non-linear term V, - oL,

Ar

To measure pressure at the injection end to confirm the
validity of the assumptions made in the packing stage.

To use more than one transducer simultaneously in order

to check the validity of the pressure profile in the
pécking and cooling stages.

To find a modified equation of state that will include al-

so a time-dependent term; thus relaxation processes may

be taken into account.
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To use different channel geometries, other than sharp
edges, to reduce die swell and entrance pressure fosses.
To use different cavity dimensiéns in order to check

the relative importance of the different stages.

To find experimentally the heat transfer coefficient
between the polymer and the wall for the materials under
study under different conditions.

To consider the applicability and extension of the

proposed model to cavities of different geometry.

CLAIMS FOR ORIGINAL WORK

The present study is the first attempt to describe
theoretically the complete injection molding cycle.
The "conventional'" method for latent heat treatment
has been modified for partially crystalline poTyméfs
and has been used throughout the injection molding
cycle. |

The first treatment of the filling stage for a compres-
sible fluid is presented.

The experimental data reported in this work are the
most complete and detailed data which are available
on the filling of semicircular mold cavities by

spreading radial flow.
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The first attempt is made to obtain a quantitative treat-
ment of the packing stage that includes both the ther-
modynamics and dynamics of the stage.

This study has shown for the first time that pressure
profiles persist in the cavity during the packing and
cooling stages.

The calculations presented in this study represent the
first time that a short shot has been predicted by a
filling stage model and confirmed experimentally.

The theoretical composite curves presented in Chapter

6 are the first curves to be calculated theoretically for

describing the overall injection molding cycle.
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LIST OF SYMBOLS

a entrance radius
a% dimensionless entrance radius
*
A dimensionless number = - %5 At
Az X Pr x Re
A constant in the viscosity least square fitting
Ar dimensionless number = h/Ro
A] dimensionless number = ﬂ—%—éz
t
b constant in the equation of state
Br Brinkman number
‘ asxAt
B] dimensionless number = ———s—
2
Az
amXAt
82 dimensionless number = —5
Az
cp specific heat
Cp, average specific heat
Cy constant independent on r
C2 constant independent on r
D diameter of capillary
D] constant coefficient
D constant coefficient

D3 constant coefficient
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constant coefficient

constant coefficient

fraction

half thickness of the cavity

jth term in the Trapezoidal integration
heat transfer coefficient

fth coefficient in infinite series

ith radial ring
number of radial rings

first integral
second integral

jth axial increment
number of axial increments
kth time increment

thermal conductivity

constant

integer number

integer number

latent heat of freezing
length of capillary
melt region

consistency index

flow index
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dimensionless coefficient in the momentum equation
pressure
dimensionless pressure

average pressure

exper imentally measured pressure at the entrance
to the cavity at the end of filling

Prandtl number

exper imental measured pressure at the entrance
to the cavity

mass flow rate

volumetric flow rate

heat conducted

flow rate at the beginning of the packing stage

dimensionless flow rate

radial co-ordinate

dimensionless radial co-ordinate
melt front location

dimensionless melt front location

constant in the equation of state
gas constant for polymer viscosity
radius of cavity

solid region
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t ime

dimensionless time
temperature

dimensionless temperature

average temperature

deiayed temperature

equivalent temperature

freezing temperature

dimensionless freezing temperature

melt témperature at the cavity entrance
lower limit of freezing range

undelayed temperature

specific volume

equivalent velocity
radial velocity
dimensionless radial velocity

axial co-ordinate
dimensionless axail co-ordinate

function dependent on z on]y
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Greek Letters

a thermal diffusivity
B dimensionless number = éifé
Az*
y dimensionless number = %%;
¥ shear rate
;a apparent shear rate
Ye true shear rate
AE viscosity activation energy
AH¢ enthalpy of solidification
APy deviation between the calculated pressure at the

melt front and atmospheric pressure

AP, difference between ghe pressure in the reservoir
and the cavity at time t

AP difference between the pressure in the reservoir
and the cavity at time zero

APy assumed pressure drop during the first iteration

AP]2 assumed pressure drop during thg‘second iteration

Ar radial increment

Ar¥ dimensionless radial increment

At time increment

At¥* dimensionless time increment

Az axial increment

AzZ¥* dimensionless axial increment
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rate of deformation tensor

axial co-ordinate of freezing front

dimensionless axial co-ordinate of freezing front
non-Newtonian viscosity

apparent viscosity
true viscosity

capillary entrance angle
extensional viscosity

constant

Newtonian viscosity

density

dimensionless density

average density

melt density before entering the cavity
initial density in packing stage
function dependent on t only

component of the stress tensor

component of the stress tensor

component of the stress tensor

stress tensor
function independent on r(= V. X r)

*
dimensionless function independent on r¥(= V. x r¥)

constant in the equation of state
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9. APPEND ICES

9.] APPEND IX 1: CONSTITUTIVE EQUATION AND VISCOSITY

In order to solve the equations of change (3-2) and
(3-3) a rheological equation of state, which relates the
stress tensor to the velocity field, is required.

A large volume of data available in the literature
indicate that the '""Power-Law' model is successful in
describing the stress-rate of strain relationship in the
polymer melts, especially in narrow shear rate ranges. The

general form of this model is given by (51).

o= - Mpnzz @' e L (9-1)

Where 1 and A are the deviative stress tensor and the rate of
deformation tensor, respectively; M and n are constants. The
non-vanishing components of the stress tensor, for the radial

flow case are:

: v
- 2{M| [l/e(é:é)]”zl n-1y &r ceeee(9-2)

Trr T ar

e = - 2fM) /2(aa))F TR L(93)
-1, dV

O I CONE LT L =P )
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v, 2 2

v
r r
+ 2(7)

aVr 2 '
Where ]/E(Q:é) = 2('37 + (-a—z‘— .....--(9—5)

The mathematical complexity inherent in this formula-
tion makes the solution of the boundary value problem equations
(3-1), (3-2) and (3-3) almost impossible. Thus, further
simplification is needed. It is assumed that the rate of
change of the velocity V. with respect to the radial direction,
r, is much smaller then its rate of change in the z-direction
(For relative magnitudes see Appendix 7, section 9.7). As

a result:

rr 66

and 3V, n
T RSSO,
dZ

]
!
<

rz

Equations (9-6) and (9-7) describe a “Simple Shear
Flow'. However, the above simplifications and assumptions
can lead to inaccuracies in the final solution, especially
in the regions close to the entrance to the cavity, where the
velocity gradient in the radial direction cannot be neglected
(see- Appendix 7, section 9.7). |In addition, the extensional
stress Ty, may play an important role in the entrance regions
(48). The latter problem can be solved by using a constitutive
equation which relates the extensional stresses to the velocity

field. Since it is very difficult to find such an equation for

]
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polymer melts, this approach is abandoned in the present work.
As a result some deviations are anticipated in the entrance
region in the mold cavity.

Equation (9-T) can be expressed in terms of the

apparent viscosity by

n, = M %" U ¢ )

and by assuming an Ahrenius-type dependence on temperature

ng = AcﬂAE/RgTI \'(aln—] e ceeeees(9-9)

3V

SEL’ A. is a constant independent of temperature

and AE/Rq is the act ivation energy for viscosity. In order to

where Qa =

evaluate the constants in equation (9-9), viscometric measure-
ments were made on the materials under study with the aid of
the Instron Capillary Rheometer. In these measurements two

capillaries were used:

I

1. D =0.052 inch and L_ = 1.04 inch (Lo/D = 20) entrance
angle 6 = 90°.

3.12 inch (L_/D= 60) entrance

2. D = 0.052 inch and LC
angle 6 = 90°,.

Where L. is the length and D is the diameter of the capillary.

Measurements were taken for Dow Chemicals polyethylene E.P. 245

in the temperature range of 130-190°C and for Dow Chemicals

polystyrene Styren 683 in the temperature range 160-230°C.
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-The lower limit indicates the temperature below which the
viscosities are too high to be measured and these were the
freezing temperatures employed in equation (3-13).

The Rabinowitsch-Mooney-Weissenberg Correction was
applied and thus true viscosity values were obtained (52).
The use of the true shear rate'and true viscosity was very
important since the viscometric measurements were conducted
in a capillary where axial flow exists for utilization in a
radial flow system. No Bagley corrections were needed (52)
since measurements were taken with high L./D rat ios.

Figure 9-1 shows the viscosity as function of shear
rate for different temperatures for polyethylene based on
161 measured values (not all of them shown). Figure 9-2
shows the same representation for polystyrene based on 111
measured values (not all of them shown). From the diagrams,
it is apparent that the curves are not linear. Thus a
single n cannot describe the flow behaviour of the melt in the
entire temperature-shear rate range. A careful analysis shows
that n and AE/Rg are functions of both shear rate and tempera-
ture. From the results, it seems unlikely that a single shift -
factor would be satisfactory to superpose all the different
temperature curves to a single master curve, as reported by
some workers (53). However, in order to simplify the computa-
tional procedures, it is desirable that a single n and a single

AE/Rg describe the flow behaviour. Taking n and AE/Rg to be
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~ FIGURE
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functions of both shear rate and temperature would result in
an iteration at each radial position for the computation of
the velocity profile.

In order to find the best single n, the viscosity
data for log N VS- log Qt were fitted by linear least
squares using all 161 points fof polyethylene and 111 points
for polystyrene. The result for polyethylene was n = 0.594
and for polystyrene n = 0.368. From equation (9—8), it
follows that a plot of [log m, - (n - 1) log ¥, vs. 1/T would
give AE/Rg from the slope, and A.from the intercept. Thus a
second linear least squares fitting was carried out using all
measured values. For polyethylene the result was:
ME/Rg= 2300 1/°K and A_ = 8.53 x 10° 1b/ft/hr" ™2, For
' 4

polystyrene AE/R9=:59]O 1/9K and A, = 2.14 x 10" in the same

units as above.

The resultant equations are:

+(-0.406)
t
...(9-10)

For polyethyelen: =n, = 8.53 x 10° x exp(2300/T) x

For polystyrene: N, = 2.14 x 10" x exp(5910/T) x Q£“0-632)

e (9-11)

Where n, is in units of Yb/ft/hr, T in 9K and Qt in hrl.

In order to find the standard deviation, the average
deviation and the mean, the experimental shear rates at each
temperature were substituted into equations (9-10) and (9-11)

for polyethylene and polystyrene, respectively, and the
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calculated viscosities were compared with the corresponding
experimental ones. The mean of population for polyethylene
1.59 x 106 Ib/ft/hr with a standard deviation over the

mean of 1.51% and an average deviation over the mean of
7.2%. For polystyrene the mean was 6.44 x 106 Ib/ft/hr
with a standard deviation of 3.81% and an average deviation

of 13.6%.
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9.2 APPENDIX 2: ANALYTICAL SOLUTION OF A SIMPLIFIED
RAD IAL_FLOW PROBLEM

As indicated earlier, the fact that the equations
of change are coupled and need to be solved simultaneously
makes the analytical solution of the present problem
impossible. However, if one considers the isothermal flow
of an incompressible Newtonian fluid, which is contained
between semi-circular plates, the continuity and momentum
equations may be solved analytically to give expressions
for the pressure and velocity profiles as functions of
time and distance resulting from a constant pressure
applied to the entrance at time zero. This analytical
solution is equivalent to one step in the filling of a cir-
cular cavity, and thus will be helpful in demonstrating
the fact that the establishment of steady-state in momentum

transfer is very fast compared with the duraction of

filling.
The equations to be solved are:
. . o) *
Continuity: SFF (r¥ x Vi) = 0 ceerecenasens ..(9-12)
* 2\ %
AV 3V
r AP* 1 r
Momentum: 3BF T T 3% Ar * Re 32*2 eeeeae(9-13)
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Vo X pp X h
Where Re = m , u is the Newtonian viscosity and

py is @ reference density.

With the following boundary and initial conditions:

VE (r*, £1, t¥) e o J A (9-14)
Ny (5, 0, ) = 0 erereenannn . .(9-15)
3z¥

Vi (a%, z*, 0) = 0 e Ceeeeeen (9-16)
p* (a%, t*.) e «.(9-17)
Px (1, t¥) = 0 iieeeeaeanen ...(9-18)

By integration of (9-12) we obtain:

V? r = ¢¥ = constant ceeeeeas(9719)
and
*
vEo= S (9-20)

1 ag* _ P 1 a°¢* -
r* Jt¥ ¥ Ap * Rex % — .2 ' (9-21)
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Integrating (9-21) with respect to r¥ (¢* = const.);

- A = (l_. QEQi - Xoud
r Re

RO
ot 200 x In () .e.e....(9722)

az* _ ..L. 32 E* _ Ar _ K . )
at* Re 2*2 - Ro - --o-.o..(9 23)
3 In — .
The equation to solve is:
EZ* N 1 32 ¥* .
3t¥* ~ Re —235 + K iieeeee. (9-24)
o}

Assuming that:

P*(z%, t*) = ¢: - ¢§(t*, z*)

........ (9-25)
a. t* o @ o gt o g—é‘% S (9-26)
(9-23) and (9-24) give:
2 %
1 3%
O = 5= —/8—= + K = tieeeens -2
Re 2 " (5-27)
26,
SE¥ = - K x Re x z¥ + D] ........ (9—28)
Boundary conditions (9-15) -~ D, =0  ........ (9-29)
*2
¢: - -k RS &0
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Boundary condition (9-14) - D, = K é Re ... (9-31)
o = BrRe (v o2y L vee (9-32)

S 2 %
XN 3" ¢ '
b. ‘a—t_)%‘ (t*, Z*) = —R]—E- aZ*g ...... 0000(9_33)

1 oar. - 1.1 = -8 -
N REZ 2 Ay e (9-35)
I. Left hand side - T = D3 x exp (- X? X t*¥) ..., (9-36)

1 < 1
1. Right hand side ~ Z = E Sin(ARe®*z¥) + F Cos( A Re®z¥)

0
1
F Cos (M Re?) ceee.+(9-38)

Boundary condition (9-15) - E

Boundary condition (9-14) -0

: : 1 1
From equation (9-38): Cos (A ,Re®) = 0 - aRe® = (£ + ) xT

From equation (9-39): A, = L+ 4y -0, ,2,..., (9-40)

Re?
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(9-34), (9-35), (9-36) and (9-40) give:

%E X t*]

B = gEo Hy exe [-(0 + )2

Cos [(£ + ) x T x z%]

X

Where Hz = DZ X‘ Fz
=0 =

From the initial condition (9-16) (at t*
¢% (2%, t*) = ¢* so that ¢* = 0)

K ; Re 11 - 2%2)] = 5 Hp Cos[(f + 3) x 7 x z*]
e (9-42)

Multiplying both sides by Cos[(zl +3) x T ox z¥%]

and integrating between -1 and +1:

T 3(£)+3) mz* + ISin(f ed)omzx 2T

R. t id = H L)

19 and side ) L e
----- o 0(9—43)

E%9[(] - z*2n x Cos[ (£, + %)mz*]dz¥

Left hand side = x
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Equafions (9-44) and (9-43) give:

' y/
_ K Re 4(-1) -
Hz ) 2 g (z + %)3#3 teerereee (9 45)

Substituting all above coefficients and results into (9-25);

© )/
v _ KRe 2 (-1)
¢-)(- = D5 1 ~z% - hN ).l. X
2 {[ ] £ =0 (4 + %)3v3

2
P exp[—(ﬂ-o-%)ex vﬁr_e_ X t*]

x Cos [(£ + %) 7 2]} (9-46)

Rearranging equation (9-13):

dpx - 1 3%t 1 ag* -
arF Ar % Re T 62*2 r* 3t e (9-47)

Substituting the appropriate expressions for the partial

derivatives according to (9-46) gives the simple result:

x Lo ,1 . ..(9-48)

R
| £n (39)
Integrating (9-48) gives:
.

1 - p¥ = 4n (£5)/8n (59-) (9-49)
ey s e
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FIGURE 9-3

UNSTEADY STATE VELOCITY PROFILES
FOR ANALYTICAL SOLUTION
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| The analysis of the above solution results in the

following conclusions:

1.

Pressure is not a function of time but only of the
radial position in the cavity.

Steady state is achieved very quickly and is a function
of Re number (see equation (9—46)). Figure 9-3 gives
the unsteady-state velocity profile development for

the case of 500 psi injection pressure, for the dimen-
sions of the experimental cavity and a Newtonian visco-
sity 8.53x10° 1b/ft/hr (3500 poise). As can be seen
from Figure 9-3 steady~state is achieyed after 0.75

dimensionless time units which corresponds to about

5 x 10~2 hr.
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9.3 APPENDIX 3; COMPUTER_PROGRAM - F ILLING STAGE

The following symbols are used in the computer

program.

AR dimensionless number = h/RO

B dimensionless number in the energy equation

B1 coefficient in the energy equation

cP specific heat

COEF dimensionless number for heat transfer at the.
wall

DELTP pressure gradient in the entrénce ring

DELTP1 pressure gradient for the first iteration

DELTP2 pressure gradient for the second iteration

DELTP3 pressure gradient for the third iteration

DELTP4 ~ pressure gradient for the fourth iteration

DENS density

DENSTP(T,P) subroutine for calculation of density as a
function of temperature and pressure

DENS1 .density array for O psig

DENS2 density array for 5000 psig

DR dimensionless radial increment
DT time increment

DZ dimensionless axial increment

ETHA(1,J) viscosity array
FH( 1,J) latent heat of freezing array

FT(1,J) previous cycle temperature array
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H heat transfer coefficient at the cavity wall
HT thickness of the cavity

| ith radial increment

1D radial increment where -the melt front is located
IDF previous cycle value of 1D

J jth axial increment

K integer number of repeated time increment

KX integer number for control purposes

NM integer number for control purposes

NX integer number for control purposes

N1 the third radial ring

P(I) dimensionless pressure array

PATM dimens ionless atmospheric pressure

PK pressure

PMAX max imum pressure at the end of filling

PRI pressure at the melt front as calculated in the

first iteration

PR2 pressure at the melt front as calculated in the
second iteration

PR3 pressure at the melt front as calculated in the
third iteration

PRY pressure at the melt front as calculated in the
fourth iteration

PX(1) array for dimensionless experimental measured
pressure at the entrance to the cavity

QlI(1) summat ion of the second integral

QT volumetric flow rate
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R dimensionless radius of melt front

RO radius of mold cavity

SUM summat ion of the first integral

T(1,J) dimensionless temperature array

TEMPD1 temperature array for density at O psig

TEMPD2 temperature array for density at 5000 psig

TERMI a term in the first integral

TERM2 a term in the second integral

TF dimensionless freezing temperature

TFO freezing temperature

TI initial melt temperature

T IME time elapsed from the beginning of filling

T IMET t ime increment calculated from flow rate

TIMET2 time increment as calculated from stability
requirements for energy equation

TIMET time increment used in the energy equation

TK temperature

TO wall temperature

v(l,J) dimensionless velocity array

VEQ equivalent velocity

Vi coefficient in the energy equatian

X constant coefficient in the momentum equation

XK thermal conductivity

XKP thermal conductivity

XLF dimensionless freezing enthalpy
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SWATFIV CF20001.682705_KENIG
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APPENDIX 3t COMPUTER PRUCRAM_FILLING

STAGE

e e ool e ool e e el ool e ool ol ok i RNl sl e e ke sk ook
DIMENSION V(21s11)5T(21,11),FT(21211)5P(21)5PX(21)0SUM(21s11)>
1TERM1 (21,110, TERM2(21,11),ETHA(21,11),Q1(21),TEMPDL(12),DENSLI(12)>

2TEMPD2(11),DENS2(11)2FH(21511)

CUMMON TEMPD1,DENS1, TEMPD2,DENS2,T1,TO,PMAX

REAR  DATA

REAN(S521)IDRIDZsDTI,TIoTO2TFOsHIXKPSROSQTHPMAXSHT
F“RMAT(ZFH.OJEGo2:3F5.1:F5.1)F5-3;Eﬂ.21F5.11F7.1)EB.2)
hPlTE(6:29)DR;DZJDTl)TI,TO’TFOJH)XKP:ROIQTJPNAXJHT
FQRMAT(3510c3’3F10;lJF10¢3JE10o2)F10¢3JF10-1)E10|2)F10-3)
REAN(5,75) (TEMPDL(1)2 12101205 (DENSL(I)»1I=21512)

15 CYVEMPD2CT)» I=1511)2 (DENS2(T),1=1511)
FORMAT(12F5,0/12F5,0/11F5,0/11F5,0)

WRITE(65301) (TEMPD1(I),121,12)2 (DENSL(I)21=1012)

1, (TEMPD2(1),1=1511), (DENS2(I)21=1s11)
FIORMAT(2(12FB.1/)s 2(11F8.1/))
READ(523)(PX(]1)s1Im1,21)

FORMAT (16F5,0/5F5,0)
WRITE(629)(PX(1)s1=102]1)
FORMAT(21F6.3)

PAT!H=14,7/PMAX
XLF=13040/0.625/(T1=T0)
TF=(TFO=TN)/(TI-TO)
VEQaSQRT(PMAX%32.2/46,0)%3600%12
Xe(HT/2,0)#%0,594%VEQu%(2,0~0,594)
Ak=1.0/48,0

IMITIAL CONDUTIDNS

noo2 J=lsll

T(l:J)=l-0
Tt22J)=140
T(3sd)=1.0
T(4,J)=1.0
CONTINUE

D0 14 1=3,21

P 14 J=ls11
FH(12J)=0,0

CONTINUE

10=4

R.0'15

L=1

TIME=Q,.0

PO 15 1=2,1D

PeIY  =PX(ID)=PX(ID)™(I-2)/(1D=2)
CONTINUE

Lak+l

MELT ADVANCES TD NEXT INCEMENT
INF=]D .
10=104+1

RaR+DR

0 51 Jelylld
TeIR,Y)=T(IDF,J)
PCID)aP(IDF)

CONT INUE

oy 52 J=1l,11
Tt2sJ1=1.0

COMNTINRUE
IF(R,GE.1,0)60 TON 13



12

2006

11

61

62
63

65

b
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li1es
NELTPL=0.0
DELTYP2=0.0
DFLTPA=0.0
IF(L.EQ,2)DELTP=0.2
Hit=0
wRITE(6539) DELTP,INsNELTPL,DELTP2,DELTP3,P(ID)

FORMAT(Y tyoX,EL0.2s1454E10.2)

CALCULATE FIRST INTEGRAL

DIl 5 1=N1,10

SUM (1,51)=0,0

ne 5 y=1sll
ETHA(XJJ)18.53E+5*EXP(230000/((T(1)J)*(TI-TO)+T0'32nO)*5oO/900
1+273,0)) :
TERMI(llJ)*((ll-J)*DZ*“b-O*X*AR/ETHA(I’J))*#(1.0/0n594)*DZ/20ﬁ
IF(J.FQ,1) GO T0 12
SUM(I,J)=SUMLT»J=1)+TERML(IJ=1)+TERML( TN )
IFITCI2d),LT.TFISUM(L,J)=0,0

CUNTINUE

CALCULATE SECOND INTEGRAL

D6 I=M1,ID

QI(1)=0,0

TERM2(IsL)=0.0

DN 6 J=2s11

Y=1|0

IF(JeEQel)l)Y=0.5
TERMZ(l'J)=UENSTP(T(XIJ))P(!))*2-0*3'14159*(I-l)*DR*DZ *SUM(I1,J)
QI =QIC(I)+TERM2(TsJ ) %Y

CUNTINUE

CALCULATE PRESSURE PRDFILF

P(3)=pPX(10)=DELTP

P(2YapX(1D)

Doy 7 1=451D
P(I)=P(1‘1)-05LTP/0.75/2-0*((QI(3)/QI(I))**0-5940(Q1(3)/Q[(I"1))**

- 10,594}

CHNTIRUE

WRITE(G6,LLY(P(I)»I=3,1D)

FORMAT(20F5,3)

IFCIN,EQ.iNL) GO TU 909

{TERAYE FUR PRESSURE .
IF(PCID)  oLT.1.5%PATH,AND,P(ID) .GT.0.5%PATM)GD TO 909

MM=MMa ]
IF(NM.,EQ.1)DELTPL=DELTP

IF(NM EQe1)PRL=P(ID)
IF(NM,EQ,2)DELTP2=DELTP
TF(NMJEQ 2)PR2=P(ID)
IF(NM,GEs2) GO TO 65

IF(P(ID) -PATM 161561262

Fa(PATH  ~P(ID) )4%3

Fe=F

GG YO 63

Fa(P(ID) <=PATM %3

DELTPaDELTP+F

1FCABS(DELTP),GT,1,0)DELTP=0,5

IF(NM,EQ.1) GO TO 69

{F(PR].EQ,PR2)GL TO 909
1F(NH.GE,3) GO T0 66
IF(NM.EO.Z)DELTP=DELTP2+(DELTP1-DELTP2)/(PRZ—PRl)*(PRz-PATM )

GO TO 69

IF(NM . EQ.3IDELTP3=DFLTP

-




67

69

909

93

12
81
82

91
73

71
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IF(MM,EQ.3)PRI=PLID)

IF(NM,GECa) 6N T0 67

DELTP=(PATH ~PR2)¥(PATM -PRB)/(PRl-PRz)/(PR1-PR3)*DELTP1
2+(PATM  =PRLI*(PATM -PRB)/(PRZ-PRl)/(PRZ-PRB)*DELTPZ
3+ ({PAT!Y  =PR1)*(PATM -PRZ)/(PR3-PR1)/(PRB-PRZ)*DELTPB

GO TN o®

TF(PLTD) LLE.PATH VDELTP2=DELTP

{FEPCTM «LEJPATM YPR2sP(10)

[F(PLLD) JGT,PATM )JDELTP1=DELTP

[F(P(IN) +GT.PATM YPR1=P(ID)

DELTP=(PATM =PR2)%({PATM -PRB)/(PRl-PRZ)/(PRl-PRB)*DELTpl
2¢(PATHH  =PR1I)Y%(PATM -PRB)/(DRz-Pal)/(PRZ-PRB)*DELTPZ
3+ {PATH =PR1IM(PATM —PRZ)/(PR3-PR1)/(PRB-PRZ)*DELTPB
WRITE(Ls39) DELTP:lDoDELTPl:DELTPZ:DELTPB:P(ID)

GU T 906

CALCULATE VELDCITIES

Do 8 1=N1,1D

pe 8 J=ls1l

IF(1.EQ,ID) GO TO 16

Yp=1e0

IF(I.EQ.NI)YP=0.875
V(laJ)=SUM(I,J)*((P(I-l)-P([+1))/(2.0*DR*YP))#*(1.0/0.594)
IF(!.EQ.ID)V(I:J):SUH([:J)*((P(I-l)-P(l))/DR)#*(1.0/0.594)
CONTINUE

CALCULATE FLOW RATE

QT=0.0

Nty 93 432,10

0T=0T+V(ID-I;J)*2.0*3.14159*DR*(ID-Z)*DZ

CONTIHUE

OT=0T+V(ID=1>» 1)*2.0*3.1“159*DR*(lD-Z)#DZ/Z.O
QT=QT+V(10-1:11)*2.0*3.14159*DR#(lD-z)*DZ/Z.O

Xp=1,0

TIMET1=2.0#3.14159#(((ID-I)*DR)**Z-((ID-Z)*DR*XP)**Z)/(Z.O*QT)*I.O

1/4AR

TIME=TIME4TIMETL
XF(L-EQ.Z)TIMET1=T1ME
IF(L-EQ.Z)TINET1=T1ME

HX=0

CHECK FDR STABILITY

TIMET2=DR/ (AR%V(3,10))
IF(YIMETZ.LE-O.65E+4) Gn TO 81
IF(TIMETI.LE.O.65E+a)NX=1
IF(TIMETI.LE.0.655+4)TIMET=TIMET1
IF((TIMET1-0.65E+6))71;71:72
KaTIMETL/D,65E+4

TIMET=0,65E+4

6o TO 91
1F(TIMETLLE.TIMET2)NX=]
IF(TIHETI.LE.TIMETZ)TIMET:TIMETL
IF((TIMETL—TIHETZ))71;71;82
KaTIMET1/TIMET2

TIMET=TIMET2

Gn T 91

Kx&0

KX=KX+1
IF(KX.EQ.(K+1))TIMET=T1MET1-T!MET*K
IF(XX. 6T+ (K+1))IGN TN 74 ..
CALCULATE TEMPERATURE FROFILE

Po 910 Iatil,ID

pr 910 J=1,11
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FT(1o4)=T(1sJ)

FT(2,J)eT(2,J)

V(2,J)=Vv(3sJ)

IF(J,EQ,11) GO TaO 22

IF(T(I2J) (LT TF)INENS=57.0

IF(T(15J)GFE.TF)DENS=846.0

IF(T(IsJ),LT.TF)XK=0426

IF(T(15J) LT.TFICP=0,55

TF{T{1,J),GE,TFIXK=04130

IF(T(I»J)GE.TF)CPa0.70

CIEF=DZ¥HXHT/2.,0/XK

IF(J.FQ,1) GO TD 21

A=TIMET/ (NZ%D/VEQ¥HT /2.0 1%XK/DENS/CP
Vl=3-hBE*5*EX?(Z3OO/((T(loJ)*(Tl-TO)4T0-32-0)*5/9*273-0))
HI'VI*VEQ#*0.594/((TI—TO)#(HT/Z.O)**0.594*CP*UENS*32-2*778*3600*
13600%(1+8))%TIMET

T(Isd)1=T ()% (1=R)/(1+R)~-TIMET JOR/(1+8)%(V(IsJ)+V(I-12J))/2.0
lttT([,J)-FT(I-l,J))#AR#B/(1+B)*(T(I:J—1)+T(I;J+1))+(Bl#((V(TJJ+1)
2=Y(1sJ=1))/2.0/D2)%%(1,0+0,594))

C LATENT HEAT EFFECT
IF(V(IJJ).EQ.O.O.AND-FH(I;J)-LT.XLF)FH(IIJ)=FH(IJJ)*FT(IJJ)-T(IJJ)
IF(V(IIJ).EQ-O-O.AND.FH(I:J).LT.XLF)T(IJJ)=FT(I)J)-(FT(1)J)-T(I’J)

1)%0,28
21 IF(JEQeLIT(I»J)=2T(IsJd+1)/(1,0+COEF)
22 IF(JEQ INT(I»d)=T(Iad=-1)
910 CONTINUE
IF(NX,EQ.,0)GO TO 73
C PRINT RESULTS
74 DO 911 Is=Nl,ID
Do 911 Jd=1»11
WRITE(6220)P(1)sV(1sd3sT(I5d)2R,TIMEST5JsBLQAT
20 FORMAT(! 153E10.3,FB435E10.35213,2E10.3)
911 CoINTINUE
6H TN 10
13 WRITE(6s23)((FH(I»J)ad=1211)s1=2521)
23 FORMAT(20(11F11.3/7))
sToe
END

FUNCTION DENSYP(T,P)

DIMENSION TEMPD1(12)sDENS1(12),TEMPD2(11)4DENS2(11)
COMMON TEMPD1,DENS1,TEMPD2,DENS2,T1,TO,PMAX
TKeT#(TI-TO)+TO

PK=pRpMAX

IF(PK.LT¢1407)|’K=14|7
DENSTP=DEMSPL(TK)+(DENSP2(TK)~DENSP1(TK))/5000%PK
RETURM

EnD

FUNCTION DENSPL(TK)®
DIMENSION TEMPD1(12),DENS1(12)sTEMPD2(11),DENS2(11)
CHMMON TEMPD1,DENS1» TEMPD2,GENS2,T1,TO,PMAX
INTEGER Z
JF(TK,LE.240.0)G0O TO 100
NENSP] =50,0=4.8%(TK=240,0)/160,0
RETURN
100 Zel
110 IF(TK-TEMPD1(Z))1l01,102,103
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103
102
101

130 2

140
143

142
141

Iul+l

G0 TO 110

DENSP1=DENSL(Z)

RETURM
DENSP1=DENSI(Z-l)#(DENSl(Z)—DENSI(Z-l))/(TEMPDI(Z)-TEMPDI(Z'l))*
1(TK-TEMPDI(Z-I))

RETURH

FND

FUMCTIDON DENSP2(TK)

DIMENSION TEMPDI(12):DEN51(12):TEMPDZ(Il);DENSZ(ll)
COMMON TEMPDI;DENSIJTEMPDZ:DENSZ:TIJTOJPMAX

INTEGER 2 :

1F(TK,LE.225)60 TO 130
DENSP2=52.3—3.4*(TK-255)/145

RETURN

al

IF(TK-TEMPDZ(l))141:142;143

Zelwl

60 TO 140

DENSP2=DEMNS2(Z)

RETURN
DENSP2=DENSZ(Z-1)+(DENSZ(Z)—DENSZ(Z-l))/(TEMPDZ(Z)-TEMPDZ(Z-I))*
I(TK—TEHPDZ(Z-I))

RETURN

END
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9.4 APPENDIX Y4: COMPUTER PROGRAM - PACKING STAGE

The following symbols are used in the computer

program.

B dimensionless coefficient

COEF dimens ionless number for heat transfer at the
wall

cp specific heat

DAVT average density

DENS density

DENSTP(T,P) subroutine for calculating density as a function
of temperature and pressure

DENSPI(T) subroutine for calculating density as a function
, of temperature at O psig

DENSP2(T) subroutine for calculating density as a function
of temperature at 5000 psig

DENSP3(T) subroutine for calculating density as a function
of temperature at 10000 psig

DENSPA4(T)  subroutine for calculating density as a function
of temperature at 15000 psig

DENS) densify array for O psig

DENS2 density array for 5000 psig

DENS3 - density array for 10000 psig

DENSY4 density array for 15000 psig

DPT | difference between the pressure at the injection

end and the average pressure in the cavity

DPT1 value of DPT in previous cycle



DR
DT
DZ
FH( I, J)
FT(1,J)
HT

NM
P(1)
PAV
PMAX
PR(D,T)

PO

QT

Q0

RO ~

T(1,J)
TEMPD1
TEMPD2
TEMPD3
TEMPDY
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radial increment

time increment

axial increment

array for latent heat of freezing
array for previous cycle temperatures

thickness of the cavity

ith radial ring

jth axial increment

integer number for control purposes
integer number for control purposes
pressure arfay

average pressure

pressure at the injection end

subroutine for calculating pressure from average
density and temperature

difference between the pressure at the injection
end and the average pressure in the cavity at
zero time

flow rate at time t

initial flow rate

radius of cavity

temperature array

temperature array for density at O psig
temperature array for density at 5000 psig
temperature array for density at 10000 psig

temperature array for density at 15000 psig



TF
TI

T IME
TO
voL

XMAV
XK

..250...

freezing temperature

initial melt temperature

time elapsed from the beginning of packing
wall temperature

volume introduced into the cavity during time
increment DT

polymer mass in the cavity

thermal conductivity
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APPENDIX 4: COMPUTER PROGRAM.PACKING+COOLING STAGES
W ol o e el ool ok oo MRl oo et o ool el sl ol ool o sl ook ol ook

DIMENSIDN P(11)»TEMPDL(12),TEMPD2(11)oTEMPD3(12),T(11011)
LTEMPD4(12),DENSL(12)9DENS2(11)sDENS3(12)sDENS4(12)sFH(11s11)2RT( 1]
1,11) .

COMMON TEMPD1,DENS1,TEMPD2,DENS2, TEMPD3,DENS3,TEMPD4)DENS4,TF,1,J
FGRMAT(11(11EL1143/))

READ DATA

READ(5570) ((T(I,J)admlyll)sl=lo11)a(P(I),1I1,11)
FORMAT(T(16F5.0/)s9F5,0/11F5.0)
READ(557L)(TEMPD1(I)a1=1,12)2(TEMPD2(1)»1u1s1 1) (TEMPDA(I),1Im1,12)
1o (TEMPDG (1) 121512)2(DENSL(1)sI=1,12)5(DENS2(1)»1a1s11)s(DENS3(I),
21wly12)2 (DENSG4(1)»1Imly12)

FORMAT (12F5,0/11F5,0/12F5,0/12F5,0/12F5,0/11F5.0/12F5,0/12F5.0)
READ(5,72)PMAXsRQsHT2DT)DR,DZsTOLTE »XKP ,TF,Q0
FNRMAT(10E8,2/F5.0)

DD 303 I=1,11

WRITE(62304)(T(1,J)yJnl,1l)

FORMAT(11ELl1,3 )

CONTINUE

WRITE(6,301) (P(I)slnlsll)s (TEMPDL(!),s1a)
15122 (DENSL(I)»I=1,12)s (TEMPD2(1)sImls11)5(DENS2(T)sInls11)s(TEMPD
23(1)51=1»12),(DENS3(I1),1m1,12)(TEMPDA(I),I=1,12)2(DENS4(I)yEnl,12
3)sPMAXIROLHT»DTLDRHDZsTO»TI5 TR XKP

FORMAT ( 11E1143/22(12FBe¢l/)22(11FB,1/)24(12FB8,1/)510E}
10,37/77)

Nit=0

PX=0,0

TIME=0,0

DPT=1000.,0

M0

CALCULATE AVERAGE PRESSURE

PAVE0,0

PO 103 1=2,10

PAVSPAVS 3.14159%(1=1)%pR¥DR*P ()

CONTINUE

PAVEPAVS3 ,14159%DR¥DR%P(11)%10,0/2,0

PAVePAV+3,14159%DR*DR*P(2) /2,0

PAVSPAV/(3,14159%R0%R0/2,0)

WRITE(6,305) PAV

FORMAT(F9,2)

PO®PMAX=PAYV

no 150 I=i,11

DO 150 J=1,11

FH(1»J)=0,0

CONTINUE

IF(NM,EQ.1)GO TO 2

DPT1=DPT

DPTuPMAX=PAV

MM+

CALCULATE FLOW RATE

QT=QO%(DPT/PO)%*%(1,0/0,594)

IF(ABS(DPT1=DPT).LT.1:5)QT=0,0

{F(ABS(DPT1=DPT)eLTole5)NM=1

IFCABS(DPT1=DPT),LTels5)
IWRITE(65302)((T(IsJdYodmlnll)rlnlrll)

VNL=QT*DT
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1 TIME=TIME+DT%3600

CALCULATE AVERAGE TEMPERATURE

TAV=0,0
Do 100 1=2,10
DO 100 J=2,10

TAVeTAV+ 243,14159%(1=1)%DR¥DR¥DZ*T(15J)

100 CONTINUE
DO 101 1=2,10

TAVeTAVe  3,14159% (1wl )*DR&DR*DZ*T(I,11)
TAVaTAVe 3,14159%(1=))#DR¥DR*DZ*T(I,1)

101 CONTINUE
00 102 J=2,10

TAVaTAVe 2%3,14159%)0%DR&DR*DZ/2%T(11,J)
TAVaTAVS 2%3,14159%] ¥DR*DR¥*DZ/2%T( 1,4)

102 CONTINUE

TAVRTAVS 3,14159%10%DR*DR/2%DZ*T(11,11)
TAVaTAVe 3,14159%10%DR*DR/2%DZ%T(11s1)

TAVeTAVS  3,14159%])
TAVETAVe 3,14159%]

*DRXDR/2%DZ¥T( 1,1)
¥DR*DR/2%DZ¥T( 1s11)

TAVTETAV/(3,14159%(RO%RO)I*HT/2)

CALCULATE AVERAGE DENSITY
“TF(MJEQa1)XMAV=DENSTP I TAVT,PAV)%3,14159%RO*ROMHT /2,0
XMAVEXMAVSQTHDTH*DENSTP(TI, PMAX)
DAVT=aXMAV/(3,14159%ROBROHT/2,0)

CALCULATE NEW AVERAGE PRESSURE

PAVEPR(DAVT, TAVT)
IF(PAV.EQ,.14.70)
LURITE(6,302)((T(1,J)

2JEslol1)sInmlyll)

CALCULATE TEMPERATURE PROFILE

DO 97 I=l,ll

Do 97 Jsl,ll
FT(1,J)=T(1,J)
1F(J,EQ.11)G0 TO 81
IF(T(10J),6T.TF
IF(T(1sJ),GT,.TF
IF(T(I)J"GTOTF
TE(T(Y2J)4LTTF
IE(T(25J) LT TF
IF(TC1,d) LT, TF
COEF=100,0%D2 /XK
1IF(J«EQ,1)GO TO 80

}XK=0,130
1cP=0,70
}XK=0.,260
YDENS=57,0
1€P=0,55

BaXK/DENS/CP*DT/DZ/DZ -
TUI,d)aTC T, J)k(1=B)/(14B)+B/(14BIR(T(I,J=1)+T(15J%1))

Go TO 82

80 T(I,1)=TONCOEF/(L+COEF)+T(1,2)/(1+COEF)

GO TO 82

8L T(I,d)=T(1s4-1)
LATENT HEAT EFFECT

82 IF(T(1,J)LT.TF
11,0)=T(1,4))
IF(T(1sJ),LT,.TF
11,J))%0,28

98 TF(NM,EQ.0)T(15J)=TI

97 CANTINUE

PRINT RESULTS

sAND FH(Isd) LT 130)FH( T, =FH{T,J)+0,628%(FT(
o ANDSFHIIJ) o LT o130 TUI, 1) oFTCI, )= (FT(1py)=T(

201 WRITE(6,300)QT,DT,TIME,DPT 2 TAV,PAV,DAVT, TAVT

300 FIRMAT(9E13.4)

1F(PAY,.GT,PMAX)GO TO 113
[F(PAV,LE,14.7)G0 TO 113
IF(TIME.GT,9.1) GO TO 113




31
32

33
34
35
36

100
110
103
102

1ol

139
140
143
142

141
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6o YO 99
sroe
END

FUNCTION DENSTP(T,P)

DIMENSION TEMPD1(12)»DENS1(12)»TEMPD2(11),DENS2(11)»TEMPD3(12),DENS3(12)
153(12)» TEMPD4(12),DENS4(12)

COMMON TEMPD1,DENSL1sTEMPD2,DENS2, TEMPD3,DENS3, TEMPD4,DENS4, TFs 15
lF(P-LT.lh.?)Pﬂl‘h?

1F(P=10000)31,32,33

IF(P=5000)34,35,36

DENSTP=DENSP3(T)

RETURN

DENSTP=DENSP3(T)+(DENSP4(T)-DENSP3(T))/5000%(P~10000)

RETURN

DENSTP=DENSPL(T)+(DENSP2(T)-DENSPL(T))/5000%P

RETURN

DENSTR=DENSP2(T)

RETURN

NENSTP=DENSP2(T)+(DENSP3(T)-DENSP2(T))/5000%(P=5000)

RETURM

END

FUNCTION DENSPL(T)

IMENSION TEMPD1(12)sNDENS1(12),TEMPD2(11),DENS2(11)2TEMPD3(12),DENS3(12)
183(12), TEMPD4(12),DENS4(12)

COMMON TEMPD1,DENS1, TEMPD2,DENS2, TEMPD3,DENS3, TEMPD4,DENSL, TR, 1,V
INTEGER Z

JF(T.LE.220)60 TO 100

DENSP1:350,0-3,7%(T~240)/160.0

RETURN

sl

IF{T~TEMPD1(Z))101,102,103

Inle) ’

G0 TO 110

DENSP1=DENS1(Z)

RETURM
DENSP1=DENS1(Z=1)+(DENS1(2)=DENS1(Z~1))/(TEMPDL(Z)wTEMPDL(Zw]) )%
1(T=TEMPD)(Z=1))

RETURN

END

FUNCTION DENSP2(T)
DIMENSION TEMPD1(12)»DENS1(12),TEMPD2(11),DENS2(11),TEMPD3(12),DEN

153(12), TEMPD4(12),DENS4(12)

CUMMON TEMPD1s,DENS1aTEMPD2,DENS2, TEMPD3,DENS3, TEMPD4,DENSG,TF,10J
INTEGER  Z

IF(T.LE,225)G0 TO 130

DENSP2=52,3=3,4%(T=255)/145

RETURN

=1

IF(T=TEMPD2(Z))1415142,143

Lal#+)

G0 TO 140

DENSP2=DENS2(Z)

RETURN
DENSP2=DENS2(Z~1)%(DENS2(2)-DENS2(2«1))/(TEMPD2(Z)»TEMPD2(Zw]) )%
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150 2

160
163

TI{T-TEMPD2(Z-1))

RETURN
END

FUNCTION DENSP3(T)
OIMENSION TEMPDl(IZ)JDENSI(12)}TEMPDZ(ll)oDENSZ(ll):TEMPDS(lZ’:DEN

1530121, TEMPD4(12) 2 DENS4(12)

COMMON TEMPDI;DENS!JTEMPDZJDENSZ;TEMPDB:DENS3,TEMPDb;DEN56;TF;XJJ
INTEGER Z

IF(T.LEs265)60 TO 150

DENSP3=564,2-3,2%(T=265)/135

RETURN

n)
1F(T=-TEMPD3(Z))161,162,163
Zulé)

60 TQ 160

162 DENSP3=DENS3(Z)

16}

RETURN

DENSP3=DEN53(Z-l)#(DENSB(Z)-DENSS(Z-l))/(TEMP03(Z)-TEMPDBQZ-1))*
L{T=TEMPD3(Z=1))

RETURN

END

FUNCTION DENSP4(T)
DIMENSION TEMPDl(IZ)JDENSI(12):TEMPDZ(11);DENSZ(11)'TEHPDE(12):DEN

153(IZ)ITEMPDQ(IZ);DEN54(12)
OMMON TEMPDI;DENSI;YEMPDZ;DENSZ:TEMPDB;DENSS;TEMPDQJDEN56;TF0IJJ
INTEGER Z

IF(T.LE.275)60 TO 170

DENSP4=56,0=2,8%(T=-275)/125

RETURN

170 2=l
180 IF(T~TEMPD4(Z))181,182,183
183 Zals]

60 TN 180

182 DENSP4=DENS4(Z)

181

1

RETURN .
DENSPhsDENSQ(Z-1)+(DENSQ(Z)-DEN54(Z-l))/(TEHPD#(Z)-TEMPD‘(Z-I))*
1{T=-TEMPD4(Z~1))

RETURN

END

FUNCTION PR(D,T)
DIMENSION TEMPDI(IZ)JDENSI(IZ)JTEMPDZ(11):DENSZ(11):TEMPDB(12);DEN

153(12)ITEMPD4(IZ)JDENSQ(IZ)
DIMENSIDN DE(&) .

COMMON O MPDL . DENS 1, TEMPD2, DENS2, TEMPD3, DENS3, TEMPD4s DENS 6, TRa T,
DE(1)=DENSPL(T)

DE(2)wDENSP2(T)

DE(3)=DENSP3(T)

DE(4)sDENSP4(T)

IF(DE(1)=D)1,2,2

{F(DE(2)=D)4s556

4 [F(DE(3)=D)T7»8,9

2
5

PR=14,7
RETURN
PR=5000
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RETURN
PR=5000/(DE(2)~DE(1))%(D=DE(1))
RETURN

PR=10000+5000/ (DE(4)=DE(3))*(D=DE(3))
RETURN . .

PR=10000

RETURN
PR=5000+5000/(DE(3)=DE(2))%(D-DE(2))
RETURM

END
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9.5 APPEND IX 5; NUMER ICAL TREATMENT OF LATENT HEAT

When latent heat of freezing is involved during
phase transformation, as in the case of crystalline polymers,
equations (3-14) and (3-15) for the generation of latent
heat in the solidifying layer need to be solved.

A few methods are suggested in the literature for
solving equations similar to (3-14%) and (3-15) for the case
of stationary systems and sharp transition temperatures
(5%,22). The '"conventional' method is the simplest, from
the computational point of view. In this method, the solu-
tion to equations (3-14) and (3-15) is indirect. Instead
of dealing with latent heat, one deals with an equivalent

temperature def}ned by Toq = L/Cp where L is the latent heat

of freezing and Cp is theqspecific heat. When the solidific-
ation temperature is reached at a given mesh point during
computation, further reduction in temperature (as a result

of cooling) at this point is delayed until the equivalent
temperature is achieved,

In this work, the "conventional'" method has been
modified for applications involving partially crystalline
materials (1ike polyethylene) which exhibit a freezing range.
Instead of a complete delay of temperature when the upper
1imit of the freezing range T, is reached at a given mesh
point, only a partial delay i5s applied. The partial delay is

based on a fraction F, defined as follows:
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AHe = Cp_ (T -T,¢)
_ OH¢ a \'yp = vF -
Fr' = - AHf ...-.......(9 50)

Where AH. is the enthalpy of solidification and Cp, is the
weighted average specific heat for the partially crystalline
polymer. Thus a fraction (1 - Fr) of the heat which is
conducted at any lump of the difference scheme is utilized

to lower the temperature of the lump as sensible heat, while
‘the other fraction Fr,is utilized in freezing the crystalline
part as latent heat. The partial reduction is terminated
when the lower 1imit of the freezing range T . is reached.

The value T is obtained from the following definition.

T e TdfTLF
Mg = Tz Qr = S Cpy dTu  .e.enn .(9-51)
ufF -
Td=T

Where Qy is the amount of heat conducted across the freezing
boundary when its temperature equals T. Td and Tu refer to
delayed and undelayed temperature values as obtained in the
computational scheme.

In the literature, it is emphasized (54,55) that,
since one deals with space and time increments, the conven-
tional method fails to describe the travel of the freezing
front continuously and to give a precise temperature near the

freezing line. Furthermore, it is possible for the front to
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remain at one mesh point so long (as a result of large latent
hear or small specific heat) that the constant temperature
which pertains at the solidifying layer eventually may cause
the calculated temperature profile to reach a steady-state
situation. In the modified proposed method for partially
crystalline polymers, this risk of reaching a steady state
and inaccurate temperature near the freezing front are
eliminated by partial delay. A steady state is not achieved
since the temperature decreases due to the amorphous portion.
The modified '"conventional'' method would fail to represeht
temperature profiles near the phase change boundary in the
case of highly crysta]line polymers like Nylon. In these
extreme cases, one has always the choice to go to the more
sophisticated methods outlined by Murray and Landis (5%).
This method was first tested and used in the case

of cooling polymer melts in a long cylinder (24).
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9.6 APPENDIX 6: EXTENS IONAL STRESSES

For the isothermal flow of an incompressible fluid,
one may include the extensional viscosity in the momentum
equation. The momentum equation, after eliminating the

unsteady; the nonlinear term, and T.p» takes the following form:

T 3T '
.g.'; = % - —a%z— .....-.-oa-----(9_52)
Assuming that:
Vr ‘
,'.69 = - A T— s e e st ¢ o -(9—53)
and
AaV. n '
Trz =—M (gi—l:-) 0 00 00000 ...-0(9_54)

where X is the constant extensional viscosity.

Substituting of (9-53) and (9-54) into (9-52) gives:

av
g% = - :L M (D .. (9-55)
From continuity (3-1):
V. xr = ¢(z) = constant Cereeeaa (9-56)

Substitution of (9-56) into (9-55) yie]dsf

AP Ly e, mLl oA sy }
T = - 53+ M e (2D 1 eeens .o (9-57)
The total pressure loss as expressed in equation

(9-5T) can be divided into two contributions. The shear

contribution
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(?P?)s = M -'_n 2 [(M)n] .......... (9-58)

[Nz Faz

and the hoop contribution:

w s -
(ar)h A m: S RCRCREES (9-59)

It can be seen from equations (9-58) and (9-59) that
the hoop loss is large especially at small radii. The rela-
tive magnitude of the sHear loss and fhe hoop loss depends
on the shear rate, the magnitude of the extensional viscosity,
the consistency index and the radial co-ordinate of the point
under consideration.

In an oversimplificatioﬁ of the prdb]em, Cogswell
and Lamb (48) separated the shear loss and the hoop loss then
integrated each term separately with respect to the radial
direction and added up the two losses. Furthermore in the
integration of the hoop loss they assumed a plug flow situation.

As a result of the above simplifications they obtained the

following expression for the pressure loss:

= A b - 1
" 2 ROQ) e (9-60)

n Land —-—
X (g%) X T%ﬁ X (R; o al

2M
* h1+2n

Equation (9-60) gives the total pressure loss and
shows that part of this loss is contributed to the extensional

stresses.
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The simplifications and assumptions made by

Cogswell et al (48) can be avoided for the case of a steady

radial flow of a Newtonian incompressible fluid, and an

analytical solution can be obtained.

Starting from equation (9-52) and assuming the

following constitutive equations:

v
Tee = - A ?'—-‘ ceo e . oon(9—6])

AV '
Tz = T OZE e cereneane.(9-62)

Substituting (9-61) and (9-62) into (9-52) gives:

v 32y

B o Lo I (9-63)

Jr r2 32

Expressing all variables in the same dimensionless

variables as in Chapter 3.1.2 results in:

Where:

2 .
apx 1 V¥ 1 3 V¥ -
yr* Re2 Ar %2 * Re A 32*2 -+ 0+ (9-64)

V .p lh
Re. = -€ m
! U
Re = Ve ~ Pm "
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Using the continuity equation{
V¥ x ¥ = g% cecesrsnneea..(9-65)

Substituting (9-65) into (9-64) gives{

. o 2 ‘
B e il ®o L L e -66
ar* Re, “r 43 " RejA_ r¥ yz%2 T (9-66)

- Integrating with respect to r* and using boundary conditions

(9-17) and (9-18) yields:

2 .« , AfRe]

Re,A
d
= - R x (-1 = -t
dz* (o} a¥* o)
2Re21’,n(-a—) ,en(-a— ,
------ ® 60 00 00 0 (9—67)

Equation (9-67) is an ordinary differential equation

the solution of which is given by:

gcz* 2 -cz¥
o = '2_2(1 e ++z‘° ) veee..(9-68)
Where:
K = Re]Ar
Ro
In(—
a
and
2
A% + Re
c® = r L — x (L -
. o a¥
2 R82 En(—a——
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Substituting (9-68) into (9-66) and solving for P¥(r¥)

yie]dsf
¥* -cZ2¥
ol rw) = -V ) A
P (r ) ] a (a*a r*e)(] zc N B—c )
gn.Ef cz¥ -cz¥ C
- —_"(—a_f-)_ X (‘e + z ) -0100(9_69)
Ry 2€ + g°C
,@n(-a—)

The solution for the same problem excluding the

extensional stress is given byﬁ

In '
P¥(r¥) = 1 - ( ) ...... ....(9-70)

En(-—a;—)

It can be seen from equations (9-69) and (9-T0)
that the pressure will vary with the axial direction z¥%.
The same pressure will be obtained only for z* = 1 (at the
wall); at all other positions the pressure will differ from
the Newtonian case. Assuming that the extensional viscosity
is three times the Newtonian one (56) and for the dimensions
of the cavity in the present study, the pressure values com-
puted at the wall are higher by more than 10% from the ones
computed at the centerline.

AYthough an analytical solution is impossible for
a Power Law fluid, a similar result can be expected. Thus,
the hoop and shear losses canﬁﬁt be separated and integrated

separately as done by Cogswell et al (48).
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9.7 APPENDIX T7: ESTIMATE OF DIFFERENT TERMS
IN THE MOMENTUM EQUAT ION

An estimate of the relative magnitudes of the dif-
ferent terms in the momentum equation is very important in
assessing the valid ity of eliminating a few of these terms
for the sake of simplicity of the calculation procedure.

Tables 9-1 and 9-2 compare the magnitudes of the
derivative of the radial velocity with respect to the axial
distance and with respect to the radial direction, for poly-
ethylene and polystyrene for cases 3 and 11, respectively.

The latter derivative also gives a good estimate of the ratio
between the velocity and the radial position (?L)’ as may be
deduced from the continuity equation (3-1) for an incompressi-
ble fluid. Both %¥£ and ?L were neglected in order to
simplify the rheological equation of stage and to use the
 data obtained from the capillary rheometer.

Tables 9-1 and 9-2 also compare the magnitude of the
rate of change of the shear stress with respect to the axial
direction (which is constant for isothermal flow) and the
magnitude of the nonlinear term in the momentum equation that
was eliminated in order to simplify the calculation of the
velocity profile at each radial position. Keeping the last
term in the equation would have demanded an iteration procedure
for its calculétion. A1) values are given at three different

positions (R¥ = 0.2, 0.5, 1.0) and both at the wall and the

centre of the cavity, in addition to the entrance and melt

front regions.



TABLE 9-1
MAGN ITUDES OF DIFFERENT TERMS IN THE MOMENTUM EQUAT ION
POLYETHYLENE CASE 3

R* = 0.20 R¥ = 0.50 R* = 1.00
Entrance Entrance Melt Front Entrance Melt Front
wWall Centre Wall Centre wall Centre Wall Centre| Wall Centre
IV, 3 2 2 | 2 |
1. s;— * 1.7xX10 0] T.3x10 0 2.2x10 0 5.6x10 0 6.6x10 (0]
Ve Vo 1 2 -1 1 ] 5 ) 1
2. S;—=6-F—) *| 1.8x10' 1.6x10 8.2 7.9 6.8x10 2.5x10 6.8 6.2x10'|2.2x10° 1.0x10

3 O
3. PV r 7 ** 8.2x102 1.37x10% |1.25x102 3.9x103 | 3.1 1.33x102 | 7.8x10" 2.5x103[3.1x107 9.4

3V, n '
4, M%;[cgzi)fm’ 7.5x100 8.25x107 7.8x107

3.14x107 5.3x10°

% Units: 1/sec

*¥* Units: lb/ftg/sec2



MAGN ITUDES OF DIFFERENT TERMS

TABLE 9-2

POLYSTYRENE CASE M1

IN THE MOMENTUM EQUAT ION

R¥ = 0.20 R¥ = 0,50 R¥ = 1,00
Entrance Entrance Melt Front Entrance .Melt Front
wWall Centre Wall Centre Wall Centre wall Centre| Wall Centre
3V, 3 2 2 2 ]
1 5—;—* 4.6x10 0 6.6x10 0 1.8x10 0 3.3x10 0 1.1x10 0
aVr Vl" 1 3 . 1 -] 1 i -3 -1
2. aT=('7') * | 5.0x10° 1.6x10 8.0 4.3x10" [3.3x10 4.6 6.2x10° 3.1x10'{1.7x10 2 8.0x10
=\ A - _
3. pV sr ** | 8.2x103 7.9x10% 19.7x10" %.9x103 |9.1x107" 1.8x10% | 2.1x10" 2.6x103|5.5x107* 1.2x10]
e 2ry 9 9 9 9 9
4, az[(gz—)]** k. ox10 3.4x10 3.12x10 L . 11x10 4 .21x10
¥ Units: 1/sec

** Units:

]b/fte/sec2
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It can be noticed from both tables, that the
change of velocity with respect to the radial direction is
negligible at all front positions near the wall. At the mid-
plane of the cavity 6he magn itude of %¥£ reaches its
max imum value and g;i is zero, as fo]lowzvfrom boundary
conditions (3-8). However; the value of 'SFL even in the
centre region is less than 104, in average, compared with
the Qa]ue of SEL close to the wall.

The comparison of the magnitude of terms 3 and 4
in Tables 9-1 and 9-2 shows that in all given regions and
positions the elimination of the nonlinear term is justifiable.

An attempt was made to include the nonlinear term
v, %;L in the solution to the filling stage for an isothermal
system. A different numerical procedure was used to achieve
it, as follows. The velocity profile was calculated for the
first radial ring usinglequation (3-22) and assuming a pres-
sure gradient in the same way as described in Chapter 3.1.4.
Velocity profiles down stream to the melt front were calcu-
lated by using the continuity equation (3-21). The calcula-
ted velocity profiles were substituted in the momentum equa-
tion, including the nonlinear term, to calculate the corre-
sponding pressure profile. The test for atmospheric pressure
at the melt front and the iteration procedure for the pres-
sure correction were identical to the ones described in

Chapter 3.1.%. The pressure profiles obtained by this pro-

cedure were compared with the same problem excluding the non-
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linear term. Results showed that the pressure profiles and
filling times were different only in the third decimal place.
The solution to the former case gave higher values for pres-
sure at the entrance by 1% compared with the latter case.

In the above procedure, the nonlinear term vV, x §¥£ was

taken into account in all regions except at the entrance ring,
and was shown to be of minor ‘importance.

It should be emphasized that the magnitudes of the
terms in Table 9-1 and 9-2 have been evaluated from the nu-
merical solution of the equations of change that have already
neglected a few of these terms, as pointed out in section

3.1.1 and Appendix 1. Thus, the above values can serve only

as a first approximation and do not represent the true values.



