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Abstract 
 In this thesis, our research focuses on fixed-point arithmetic circuits. 

Fixed-point representation is important in low power Application-Specific 

Integrated Circuits (ASICs) and in Programmable Logic Devices (PLDs). There 

are two aspects of the data representation problem: the precision problem and the 

range problem. Both of these are addressed in this thesis. We use the new 

technique based on Arithmetic Transform (AT) which is a canonical and efficient 

representation for digital circuits to avoid the disadvantages of past methods, and 

design an efficient algorithm which can compose detached modules to obtain the 

overall AT for a complex circuit.  

  First the precision problem is processed. The typical imprecise circuits 

expressed in terms of Taylor series are addressed in our research.  Imprecise 

factors including finite terms and input quantization are analyzed by AT, and 

algorithms are designed to verify and optimize imprecise circuits in terms of 

different constraints. A hybrid method performs range analysis to handle the range 

problem and allocates the smallest integer bit-widths. Having devised the 

individual methods for precision and range analysis, we then combine the two 

together to find the optimized implementation. Furthermore, we extend the 

method to analyze floating-point circuits and feedback circuits.  

  The proposed algorithms in the thesis overcome disadvantages of past 

explorations. They are more flexible in processing both Taylor series and 

multivariate polynomials and obtain more precise results, resulting in better 

implementations under various constraints.  
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Résumé 
Dans ce manuscrit, notre recherche se concentre sur les circuits de 

l'arithmétique à virgule fixe. La représentation à virgule fixe est un facteur 

important dans les applications d’une faible consommation pour les ASICs 

(Application Specific Integrated Circuit) ainsi que les circuits logiques 

programmables (PLD). Au point de la représentation des données, généralement, 

il y a deux aspects de problèmes dont la précision et la gamme. Dans ce manuscrit, 

nous adressons principalement à ces deux éléments. Une nouvelle technique basée 

sur une transformée arithmétique (AT) est utilisée. Ceci est une représentation 

canonique et efficace pour les circuits numériques qui permet d’éviter les 

inconvénients des méthodes passées et de concevoir un nouvel algorithme efficace 

afin de composer des modules détachés en obtenant une AT le plus générale pour 

les circuits complexes. 

  Un travail préliminaire sur le problème de précision est effectué. Les circuits 

imprécis généraux s’expriment en termes d’une série de Taylor a été mis en œuvre 

dans notre recherche. Y compris des facteurs imprécis tels que les termes finis, la 

quantification d'entrée qui est analysée par AT ainsi que les algorithmes qui sont 

conçus pour vérifier et optimiser les circuits imprécis en termes de contraintes 

différentes. Une méthode d’une façon hybride est effectuée afin de traiter le 

problème de la gamme et d’allouer un entier le plus petit de bit-widths. Mise au 

point sur les différentes méthodes pour la précision et l'analyse de la gamme, nous 

combinons les deux ensembles afin de trouver une implémentation optimisée. En 

outre, nous étendons la méthode pour analyser des circuits en virgule flottante et 

les circuits de rétroaction. 

  Les algorithmes proposés dans ce manuscrit est de surmonter les inconvénients 

des explorations passées. Ces algorithmes sont plus flexibles dans le traitement de 

la série de Taylor et des polynômes à plusieurs variables. Ceux-ci nous permettent 

d'obtenir les résultats plus précis ainsi d’entraîner les meilleures implémentations 

sous diverses contraintes. 
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Chapter 1  

Introduction 
 

 

 

 

In this chapter, we first introduce the design flow for most common 

Integrated Circuits (ICs) and then describe verification approaches 

that include simulation, emulation and formal verification. Then, we 

state the research goals of thesis aiming at providing the solutions 

addressing the following three aspects of fixed-point circuit design: 

transform composition of a complex circuit, optimization of imprecise 

circuits, and range analysis.  
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1.1 Circuit Design Flows 
  With the development of modern material and production techniques, 

integrated circuits (ICs) reached a level of complexity beyond imagination of even 

a few years ago. In terms of Moore’s law, the number of transistors doubled every 

18 months. For example, Intel’s Itanium II processor contains more than 109 

transistors.  Designing such complex circuits is a great challenge. The level of 

difficulties is lifted even higher by the restrictions on time-to-market. Hence, a 

systematic approach to design ICs is a must. Figure 1.1 outlines one of more 

commonly adopted approaches.  

An idea for a new product originates usually from market analysis of customer 

needs. Then a team led by product managers describes in form of a specification 

the new design requirements. Once the specification is well formulated, the design 

process starts usually from behavioral modeling. As a result, initial algorithms are 

represented in hardware description languages (HDLs) like VHDL or Verilog, or 

even in higher abstraction languages, like SystemC. The correctness of the design 

refinement at this stage is checked by the comparison to the specification. 

Design Space
Exploration

RTL
Coding

Logic
Synthesis Placement Routing

                      
 Figure 1.1: A typical ASIC design flow  

 
After the behavioral model is verified, engineers generally partition the whole 

design into smaller and more refined blocks. Whenever possible, such blocks are 

often represented in terms of intellectual property (IP) cores, while HDL is used to 

design remaining elements at RTL coding. Once the design functionality and 

estimated performance satisfy the specification, the circuit is ready to be 

synthesized. This stage, performed automatically, often needs human intervention 

is terms of manual modifications necessarily such as design and insertion of 

boundary scan and built-in-self-test (BIST). After satisfying constraints such as 

timing, area and power, etc, a layout is conceived for fabrication.  
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In general, it is estimated, that product-developing groups often spend beyond 

70% of the overall design time and cost on checking the correctness of their 

design [157]. The graph in Figure 1.4 describes a breakdown of the effort spent in 

each step and  Figure 1.5 shows different aspects of verification. 

 

RTL and Block Tes t

High-level Des ign

Timing Analys is

DFT

ASIC Tes tbenches

Beh Model

Simulation

Equivalence
 Checking

Emulation
Support

Emulation
SoftwareVerification

Design

 

Figure 1.4: Breakdown of effort  

 

 

Figure 1.5: Different aspects of verification  
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Noise analysis

Testability

Power analysis

Timing verification
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  From the above figure, it can be seen that time spent on verification at various 

stages of a design process is significant. Hence, engineers need a fast method to 

achieve the goal. The mainstream verification processes can be divided into three 

categories: simulation, emulation and formal methods. 

 

 

1.2.1 Simulation-based Verification 
  Simulation is a process in which a given design is exercised by a certain set of 

inputs [150]. Its idea is straightforward to comprehend, and the aim is to produce 

a set of test vectors (stimuli) used to check the design correctness. These test sets 

are called testbenches (set of input vectors, expected outputs, environment 

constraints, etc.). More precisely, based on the module response, which is 

compared to the specification, the correctness of the design is assessed. 

Simulation can be used throughout the whole development process. Figure 1.6 

describes the idea.  

 

 Specfication

Simulation

Comparison

Simulation

RTL Description Logic Gates Description Layout
Extraction

Comparison

Simulation

Comparison
 

Figure 1.6: Simulation in the development procedure  

 
Although the simulation method has obviously strong points, such as simplicity 

and easy testbench programming, there are some shortcomings we should note. 

First, sometimes it is not feasible to simulate all input sequences to completely 

verify a design. Suppose we want to test a 32-bit adder in this case - there are 264 

combinations. If it requires 1 test/us, it will take 1012 years to simulate that many 

vectors. Secondly, result comparison is often incomplete and it is difficult to 

compare results from different models and simulators. If the system grows larger, 

the number of possible states grows exponentially with increased number of 
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possible event combinations. Furthermore, simulation can be effective to show the 

presence of bugs, but it is hopelessly inadequate for showing their absence. 

 
 

1.2.2 Emulation 
Hardware emulation is a process that uses a piece of hardware, typically a 

special purpose emulation system, to imitate the behavior of a hardware system 

under design. As a special case, in-circuit emulation is very fast as it is performs a 

working target system in place of a yet-to-be-built chip, so the whole system can 

be debugged with live data.  

High end hardware emulators provide a debugging environment with many 

features that can be found in logic simulators, and in some cases they even surpass 

their debugging capabilities [151]:  

 The users can set a breakpoint and terminate the emulation process to  

inspect the design state, interact with the design, and resume emulation. The 

emulator always stops on cycle boundaries. 

 The users can watch all signal or memory contents in the design without 

probes before the run. While visibility is provided for past time events, an 

emulator can access the backward time steps which may be limited in some 

cases by the depth of the emulator’s trace memory.  

 The users can even back up time (if they save checkpoints) and re-run. 

 
 
1.2.3 Formal Verification 

Formal verification is a process of proving or disproving the correctness of 

intended algorithms underlying a system with respect to a certain property using 

formal methods of mathematics. It can be used for verifying systems such as 

cryptographic protocols, combinational circuits, digital circuits with internal 

memory, and software expressed as source code [155].  

  A formal proof is necessary to verify systems based on an abstract 

mathematical model and the correspondence between the mathematical model and 
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the nature of the system known by construction. Then formal verification is the 

process of constructing a proof that a target system will behave in accordance 

with its specification. Basis of formal methods, which distinguish them from 

simulations are: 

 Formal reasoning is used to prove that an implementation satisfies a 

specification, 

 Correctness of a formally verified hardware design holds regardless of 

input values, 

 Exhaustive exploration of all possible behaviors is conducted, 

 A counter-example (proof) is presented if the property is incorrect while if 

correct, all behaviors are verified; 

  Figure 1.7 describes the formal verification model. A verifier is utilized to 

check whether the system model matches the system specification. If so, the 

verifier sends signal of correctness; if not, the verifier gives a counterexample.   

 

correct     not correct
counterexample

Mathematical
ModelSpecification

Formal Verifier

 
Figure 1.7: The process model of formal verification 

 
Formal verification schemes have many advantages further on:  

 Complete with respect to a property, 

 Avoid generating expected output sequences, 

 Helpful to detect and trace errors. 

  Since formal verification is based on model methods which are applied when a 

circuit description is given by propositional temporal logic, the three most widely 

model-based methods are equivalence checking, model checking and theorem 
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proving. Equivalence checking formally proves that two representations of a 

circuit design exhibit exactly the same behavior. Generally, a wide range of 

possible definitions of functional equivalence covers comparisons between 

different levels of abstraction. 

 Sequential equivalence checking considers machine equivalence, which 

defines two synchronous design specifications functionally equivalent if they 

generate exactly the same sequence of output signals for all valid sequences 

of input signals clock by clock. 

 A more general problem than equivalence checking is used to compare the 

functions specified for the instruction set architecture (ISA) with a register 

transfer level (RTL) implementation, ensuring that the both models executing 

any program will cause an identical update of the memory contents.  

 A system design flow requires comparison between a transaction level model 

(TLM) and its corresponding RTL specification. The interest in this mode of 

checking increases in a system-on-a-chip (SoC) design environment. 

 

RTL
VHDL/Verilog

HDL Synthesis Generic LibraryRTL-to-Gate

Unoptmized
Netlist

Optimized & Mapped
Netlist

Technology
library

Logic Equivalence
Checker

 
Figure 1.8: RTL-to-gate equivalence checking  

 
Figure 1.8 illustrates the case of verification whether the RTL design and the 

modified netlist are equivalent. Because post-process often includes activities 
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such as insertion of scan chain and some modifications, all these activities can not 

change the original function so equivalence checking can solve the problem. 

Given a model of a system, model checking is a process of automatic test 

whether this model meets a given specification. The system can be hardware or 

software, and the specification generally contains safety requirements such as 

critical states that may possibly crash the system.  

  The system model and the specification must be described in some precise 

mathematical language in order to solve such a problem algorithmically. The 

specification is formulated using a suitable language, and the verification process 

checks whether a given structure satisfies a given logical formula. The general 

concept can be applied to all kinds of logics and suitable structures. A simple 

model-checking problem is to verify whether a given structure satisfies a given 

formula in the propositional logic and it is useful to check circuit properties such 

as safety and liveness property. Model checking has characteristics: 

 Searches the entire solution space, for possibly infinite duration 

 Responds with YES or NO (if it terminates) 

 Increasingly used in industry 

 Can be automated for smaller blocks or when applied earlier in the flow 

Figure 1.9 illustrates the basic idea of model checking. 

Behavior Model /
RTL Design

Finite State
Machine

Properties

Model
Checker

True Couterexamples  

Figure 1.9: Idea of model checking 
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  From above figures, we see that although model checking and simulation can 

both verify RTL description, simulation relies on the testbenches, while model 

checking relies on mathematical reasoning represented by properties and 

constraints. Figure 1.10 describes their difference.  

 

Model Checker

Properties
(liveness, safety)Behavior/RTL Constraints

True/Counterexamples

Simulator

Behavior/RTL Testbench

Simulation
Outputs

 
Figure 1.10: Comparison of model checking and simulation 

 
  Theorem proving decides whether a conjecture is a logical consequence of a 

set of statements (the axioms and hypotheses), which is used to prove that an 

implementation fits a specification by mathematical reasoning. The 

implementation and the specification are both expressed as formulas in a formal 

logic, and the necessary relationship - logical equivalence or logical implication - 

is described as a theorem to be proven within the context of a proof calculus. A 

proof system comprises a set of axioms and interface rules such as simplification, 

induction, rewriting. Authors in [159] describe how to express PSL’s syntax and 

semantics in the PVS theorem prover and prove the correctness of a set of rewrite 

rules.   
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                          Formal Verification Tools 
Supplier Tool Name Class of Tool HDL Design 

Level 
Commercial Tools 
Synopsys Formality Equivalence 

Checking 
VHDL/Verilog RTL/Gate 

Cadence Affirma Equivalence 
Checking 

VHDL/Verilog RTL/Gate 

Cadence FormalCheck Model 
Checking 

VHDL/Verilog RTL 

IBM RuleBase Model 
Checking 

VHDL RTL 

Abstract 
Hardware  

Lambda Theorem 
Proving 

VHDL/Verilog RTL/Gate 

Public Domain Tools 
CMU SMV Model. 

Checking 
Own Language RTL 

Berkely VIS Model/Equ. 
Check 

Verilog RTL 

Cambridge HOL Theorem 
Proving 

SML Universal 

Figure 1.11: Comparison of formal verification tools 

 
Figure 1.11 lists some typical tools. Although a variety of tools have been 

developed to perform formal verification, simulation is still a predominant method 

in verification because of the advantages of simple operation and relatively 

straightforward task of writing of testbenches.     

 

 

  1.3 Introduction to Fixed-Point Arithmetic 
 Fixed-point arithmetic is of importance in low power designs, embedded 

systems and PLDs. Although floating-point data with single or double precision 

can construct algorithms more accurately, generally for signal processing 

algorithms such as FFT and DCT initiated from real values, significant processor 

overhead is required to perform floating-point calculations resulting from the lack 

of hardware based floating-point support. This disadvantage confines the effective 
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iteration of an algorithm. In order to improve arithmetic throughput or increase 

the execution rate, calculations can be performed by fixed-point representations 

which require a virtual decimal place in between two bit locations for a given 

length of data [133]. Nowadays, the fixed-point representation is gaining in 

importance because Field Programmable Gate Arrays (FPGAs) increasingly 

replace ASICs and are widely used in high-performance computing and embedded 

system. Since these applications are quite suitable for the fixed-point arithmetic, 

careful handling fixed-point circuits is quite necessary.   

  The labeling convention of the representation is as follows: 

                      Q [IB] . [FB]                    (1-1) 

 where IB = # of integer bits and FB = # of fractional bits. 

 Total number of bits used to represent the fixed-point number is yielded by the 

addition of integer bits IB and factional bits FB. The sum of IB+FB is known as 

the wordlength (WL) and this sum often corresponds to variable widths supported 

on a given processor. The fixed-point format includes two sections of integer and 

fractional content for the purpose of exploration.  

 
 
1.3.1 Fixed-Point Range – Integer Portion 
 A fixed-point number is viewed as two distinct parts, the integer part and the 

fractional part. The integer range sets the number of IB, Eqn. (1-1), required to 

represent the integer portion of the number. IB itself can only hold integer values 

because of the binary nature of a bit. Two different methods of calculating the 

number of integer bits match two types of numbers, unsigned and signed.  

 
A) Unsigned Integers 
  The Eqn. (1-2) describes the unsigned integer by the minimum and maximum 

of any IB number. 

                        0 2 1IBr≤ ≤ −                (1- 2) 

 IB can be obtained by solving the required number as: 
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                        2[log ( 1)]IB r≥ +  

where r is the floating-point variable being ranged. The square bracket is the 

ceiling function.  

 
Example 1.1: Consider an unsigned variable r = 4.346: 

                   IB = 2[log (4.346 1)]+  = [2.43] = 3 

 Three bits are required for the integer portion of r. 

 

B) Signed Integers 
  The previous equations cannot represent signed variables. The changed 

following equation denotes the definition for the integer contents of signed 

numbers ( r± ): 

                           122 11 −≤≤− −− IBIB r  

Please note that the signed integer type is asymmetrical about zero. For instance, a 

signed 8-bit value ranges from -128 to 127. By solving for the negative constraint 

of the equation: 

                            rIB ≤− −12  

we get:  1)]([log2 +−≥ rIB    

By solving for the positive constraint:   12 1 −≤ −IBr   

we get:  1)]1([log2 ++≥ rIB  

 
Example 1.2: If rmin = -2 and rmax = 2,    

               21]2[log1)]([log| 2min2min
=+=+−≥ rIB r  

               31]3[log1)]1([log| 2max2max
=+=++≥ rIB r  

IB must be 3 bits to satisfy the two constraints concurrently.  

 
  In the case of signed data type, the positive constraint is tighter than the 

negative constraint because of the asymmetry. It is common for users to define 

variable magnitude constraints that are symmetric about zero (for instance,

55 ≤≤− r ). The computation for IB can be generated uniformly by the equation: 
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                1)]1])[(max([log maxmin,2 ++= rrabsIB  

 
Example 1.3: Compute a signed variable 43.443.4 ≤≤− r , 

     41]45.2[1]43.5[log1)]1)43.4,43.4[(max([log 22 =+=+=++−= absIB  

 
1.3.2 Fixed-Point Resolution – Fractional Portion 
  The number of FB sets the resolution for a fixed-point variable. The resolution 

ε  of a fixed-point number is given by the following equation [134]: 

                           FB2
1

=ε   

 Therefore the number of FB required by a particular resolution is defined as: 

                       ]1[log2 ε
=FB  

 
Example 1.4: A signed variable r= -3.2782, ≤ε 0.0001, 

           14]288.13[]10000[log]
0001.0
1[log 22 ====FB  

 
  The resolution is limited for a given wordlength and dynamic range of a 

variable. The WL of the variable must be increased to provide this resolution if a 

higher resolution is needed for a given range [134].  

 
 
1.3.3 Range & Resolution  
 The integer and fractional parts of the number for a fixed WL consist of the full 

range and resolution. The combined range and resolution for an unsigned 

fixed-point number is defined by [133]: 

                     FB
IBr −=
−≤≤

2
|)12(0
ε  

The combined range and resolution for a signed fixed-point number is defined as 

[133]: 

FB
FBIBIB r −=

−−− −≤≤−
2

11 |)22(2
ε
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The integer and fractional bits are combined together and used to determine a 

standard WL that is large enough to hold all integer and fractional bits as: 
                          FBIBWLrequired +≥  

 A representation U(IB, FB) where IB + FB = N for unsigned format is denoted 

to calculate the value of a fixed-point format. For an unsigned format, in the U(IB, 

FB) representation, the nth bit, counting from right to left and beginning at 0, has a 

weight of 2n / 2FB = 2n-FB. Please notice that if n = FB the weight is 1. The value of 

a particular N-bit binary number x in a U(IB, FB) representation is given by the 

expression [134]: 

                          ∑
−

=

=
1

0
2)2/1(

N

n
n

nb xx  

where xn is the bit n of x. The range representation is from 0 to (2N-1) /2FB = 2IB 

–2-FB. For instance, the 8-bit unsigned fixed-point representation U(5,3) has the 

form  

                          b4b3b2b1b0 . b-1b-2b-3 

where the bit bk has a weight of 2k. Since FB is 3, the binary point is to the right of 

the third bit from the right (counting from zero), and hence the number has five 

integer bits and 3 fractional bits. This representation has a range of from 0 to 25 – 

2-3 = 32 – 0.125 = 31.875. 

  
Example 1.5: U(6,2). This number has 6+2=8 bits and the range is from 0 to 26 – 

1/22 = 63.75. The value 4Bh (0100, 1011b) is: 

 (1/22) (20 + 21+23+26) = 18.75 

  Consider an N-bit binary word x as U(N,0). The one’s complement of x is 

defined to be an operation that inverts every bit of the original value x. This can 

be performed in the U(N,0) representation by subtracting x from 2N-1. That is, if 

we denote the one’s complement of x as x~ , then: 

                            x~ = 2N -1- x 

The two’s complement of x, denoted as x̂ , is determined by taking one’s 

complement of x and then adding one: 

                           x̂ = x~ +1 = 2N – x 
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Example 1.6: The one’s complement of the U(8,0) number 05h (0000,0101) by 

hex representation is FAh (1111, 1010). The two’s complement of the U(8,0) 

number 05h (0000,0101) is FBh (1111, 1011). 

 
  Considering signed two’s complement fixed-point representation, we denote 

such a representation A(IB,FB) that IB = N-FB-1. The following expression gives 

the value of a specific N-bit binary number x in an A(IB, FB) representation:  

∑
−

=
−

− +−=
2

0
1

1 ]22)[2/1(
N

n
n

n
N

NFB xxx  

  Notice that the number of bits in the magnitude of the sum above has one less 

bit than the equivalent prior unsigned fixed-point representation. These bits are 

the N-1 least significant bits because the most significant bit in a signed two’s 

complement number is often referred to as the sign bit.  

 
Example 1.7: A(11, 2). This number has 11+2+1=14 bits and the range is from 

-211= -2048 to +211-1/4 = 2047.75. 

 
  Fundamental rules of fixed-point arithmetic are listed as follows [134]. 

 Unsigned wordlength: the number of bits required to represent U(IB, FB) is 

IB+FB. 

 Signed wordlength: the number of bits required to represent A(IB, FB) is 

IB+FB+1. 

 Unsigned range: The range of U(IB, FB) is FBIBx −−≤≤ 220 . 

 Signed range: The range of A(IB, FB) is FBIBIB x −−≤≤− 222 . 

 Addition operands: Two binary numbers must keep the same scale in order 

to be added. That is, X(a, b) + Y(c, d) is only valid if X=Y (either both A or 

both U) and a =c and b= d. 

 Addition result: The scale of the sum of two binary numbers scaled x(a, b) is 

x(a+1,b), the sum of two N-bit numbers requires N+1bits. 

 Unsigned multiplication: U(IB1, FB1) * U(IB2, FB2) = U (IB1 + IB2, FB1+ 

FB2). 
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 Signed multiplication: A(IB1, FB1) * A(IB2, FB2) = U (IB1 + IB2+1, FB1+ 

FB2). 

 

 

1.4 Thesis Goal and Contributions 

The investigation of fixed-point representation includes two problems: range 

and precision. In our research, we try to explore the two problems concurrently, 

and propose new methods for verifying and optimizing fixed-point circuits.  

 
 

1.4.1 Composition of AT and Extensions 
The main technique in our exploration is Arithmetic Transform (AT), which is 

defined in the spectral domain. The exploration of the function description in a 

spectral domain aims at elevating the classical problems with the Boolean 

function domain where a truth table is used. Each entry to the table describes 

precisely the behavior of the function at a single point, and bears no relation to the 

function behavior in the other points of the domain. For some applications this is 

satisfactory, however, other like circuit verification would benefit much more if 

partial information about the whole function could be included in a function value 

at each point of its domain. In fact, it is possible to give an alternate representation 

of a function where the information about the function is much more global in 

nature. This alternate representation is in the spectral domain, where a number of 

function properties are much more easily deduced than in the Boolean domain. 

However, it must be stressed that the overall information content of a given 

function is identical regardless of the domain considered (functional or spectral), 

and data in one domain can be uniquely recreated from the data in the other. In 

spite of that, the meaning of the function parameters at each individual point of 

the two domains is dissimilar. In particular, the discrete nature of the data in the 

functional domain will generally be replaced by data in the spectral domain, 
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which is global in nature, being influenced by the complete functional 

performance of the circuit or network under consideration. Therefore finding the 

spectral transform of the circuit is an important step to verification [56]. 

A straightforward way to compute the AT requires a multiplication with a 

matrix of size that is exponential in number of primary inputs. This is clearly an 

impractical proposition. Other methods, such as conversion from diagrams, 

usually focus on the whole circuit [92]. If a complex circuit comprises many 

smaller modules, it is hard to get its transform directly, and then the methods 

mentioned are invalid [94]. 

A complex circuit generally consists of modules such as adders, multipliers and 

similar, for which the transforms are easily obtained. If we can take advantage of 

the relatively simpler transforms to form the transform of the complex circuits, the 

gain would be significant. It was shown earlier [70] that AT could be composed 

out of transforms of circuit blocks by help of several extensions to AT, and we 

extend that work by constructing efficient algorithms and transform 

representations. In addition, since the AT representation only contains primary 

inputs and outputs, if engineers know the overall transform of the complex circuit 

in advance, compared to the compositional AT representation, they should be 

identical, and hence the composition procedure can perform equivalence checking. 

Therefore the process of constructing AT composition becomes very important. 

Because basic AT cannot represent sequential circuits, extensions are necessary 

for the purpose of the composition. 

In this thesis, we explore AT and its extensions proposed by Zilic and Radecka 

[70] [158] then develop several subroutines to compose the detached transforms 

of smaller modules which exist within a bigger circuit, and finally integrate these 

subroutines into a fast algorithm for the construction of AT and its extensions. 

 
 

1.4.2 Imprecise Circuits 
 Here we focus our attention on a large category of circuits which cannot be 

exactly represented. We will refer to these as imprecise circuits, as 
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implementations do not match specifications exactly since they are only realized 

approximately. When dealing with arithmetic circuits, the imprecision of these 

circuits creates added complexity for the design and verification phase. In such 

cases, implementations realize intended specifications only to the certain degree 

of precision, adding yet another dimension to the already complex process of 

design verification. Also it is not compulsory to require them to be identical as 

some imprecision should and could be tolerated. While verifying arithmetic 

circuits, if the error measured as a difference (imprecision) between them is 

within an acceptable range, the implementation is deemed suitable to the 

specification. Mathematical forms of expressing imprecision are related to the 

type of implemented designs. For example, for arithmetic circuits, the error can be 

described in some arithmetic form, and is therefore referred as an arithmetic error. 

Figure 1.12 denotes the basic idea of imprecise circuits. The solid line represents 

the specification, and the dotted lines represent the implementations. The 

implementations approximate the specification but not exactly overlap.  

 

 

Figure 1.12: The basic idea of imprecise circuits 

 
The current verification methods, such as equivalence checking cannot be 

applied: in some cases, many output bit values may differ, while the 

implementation might still be considered correct if the difference of the 

specification and the implementation is within a given arithmetic precision. 

Consider, for example, the representation of value 1.0. The approximation 

0.111… can be made arbitrarily precise by increasing the wordlength, yet all the 

bits are incorrect. On the other hand, the change of a single, most significant bit 

can change the arithmetic value by 100%. 
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Further, when verifying the precision, we must explore yet another problem 

dimension, i.e., the imprecision for the whole domain of definition. In the thesis, 

we address the problem by the following two aspects. 

 
(A) Component Comparison 

The functionality of many circuits, particularly signal processing ones, can be 

described or approximated by polynomials. For instance, many algorithms use a 

common arithmetic function such as sin(X). This function, being a real-type and 

infinite, cannot be realized precisely, and hence some kind of approximation is 

needed, like, for example, the following one:   

                    X - X3/3! + X5/5! - X7/7!.... 

Here X is within the range [െ∞, ∞] for convergence. For simple explanation of 

precision analysis, we limit the input range in [-1, 1]. 

In many cases the implementation of the specification function, like the above 

is not build from scratch. More realistic problem is to realize the function by, for 

example, using only 6 terms and 16-bit inputs approximation, where there is an 

existing module to implement sin(X) by 5 terms and 12-bit. The existing 

implementation can be used, as long as the difference between the requirement 

and the library element is not beyond the given error bound. However, to 

minimize the error of such a substitution, the Taylor terms and bit-width must be 

both optimized.  

We will approach the Taylor terms and input bit-width optimization 

simultaneously, and try to provide a uniform platform, which is easily operated 

and applied. Our goal is to match and verify the precision of real DSP/arithmetic 

modules such as DCT. For this purpose, we present a method for matching 

imprecise datapath circuits expressed by Taylor series and extend it to handle 

word-level polynomials. Such representations are selected based on the fact that 

Taylor expansions provide a representation of arithmetic functions, which not 

only can be made arbitrarily close to the desired (specified) function, but also give 

an elegant solution to the verification of imprecise designs. Therefore, we devise a 

flexible tool based on Arithmetic Transforms that can assist engineers to compute 
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concurrently to get the imprecision. We propose a new method in terms of 

Arithmetic Transform (AT) to analyze these parameters statically, to ascertain 

whether the existing implementation is suitable to the specification. Please note 

that many satisfying implementations can fulfill one specification, and it is very 

much worth finding the implementation with the smallest hardware cost. In Figure 

1.14, the three dotted lines represent three implementations which all satisfy the 

specification represented by the solid line, but only one implementation has the 

smallest area. How to find out this optimized implementation is attractive in 

practical engineering.  

satis fied

satis fied
(optim ized)

 

Figure 1.14: Optimized implementation with the smallest area 

 
In the thesis we try to analyze the factors generating imprecision such as 

function approximation and finite bit-widths, and develop a series of algorithms to 

process imprecise circuits included comparison, verification and optimization. 

This problem is solved in section 6.2 – 6.4.  

 
 

1.4.3 Range Analysis 
  Range analysis is a significant step in RTL synthesis which directly influences 

cost and performance. This topic is always hot and attractive to engineers. 

Traditional methods have obvious disadvantages of low efficiency and coarse 

bounds, which lead to infeasibility and additional bits for data representation. In 

order to overcome these disadvantages, we propose a new method to calculate 

ranges for each intermediate output and the final output in the datapath. This 

method can obtain exact ranges and allocate the smallest integer bit-widths for the 

datapath, so the optimized implementation with the smallest hardware area can be 
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achieved. This problem is solved in Chapter 7.  

 

 

1.4.4 Exploration of Fixed-Point Circuits 

  After investigating the precision and the range separately, we explore the 

fixed-point representation with both integer bit-widths (IBs) and fractional 

bit-widths (FBs). The case is more complex and the most important problem is 

how to determine the fractional bit-width in the datapath and estimate the error. 

Based on the above analysis, we propose an efficient method to allocate 

appropriate IB and FB for the inputs and all outputs in the datapath in order to 

obtain the optimized implementation.  

  As blind spots in past explorations, circuits with feedbacks – such as sequential 

IIR filters – are of importance. We analyze feedback circuits and propose 

algorithms to detect stability and find ranges. Furthermore, sequential circuits are 

investigated and the process of fixed-point representation is extended to 

floating-point representation. These problems are solved in Chapter 8.  

 
 
1.4.5 Contributions 

  On the whole, the main contributions of the thesis are in: 

 designing an algorithm to obtain the spectral transform for a complex circuit 

 proposing algorithms to verify and optimized imprecise circuits 

 proposing an algorithm to calculate ranges of a datapath 

 conceiving an algorithm to find the optimized fixed-point implementation 

with integer and fractional bit-widths 

 designing an algorithm to explore imprecise arithmetic circuits with feedback.
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Chapter 2  

Background  
 
 

 

   

In this chapter, we review function representations including truth 

tables, Shannon expansion and polynomial representation. We pay 

special attention to decision diagrams, as they play an important role 

in many classical verification methods. Most commonly used 

diagrams include OBDDs, MTBDDs, BMDs and TEDs. Finally, as 

usual methods to handle imprecise circuits rely on dynamic analysis 

and affine arithmetic, we conclude this chapter with the introduction 

to the mathematical background of these methods. 

 

 

 

 

 

 



Chapter 2: Background 

 25

With VLSI (Very Large Scale Integration) technologies and the design 

techniques developing rapidly, microchips are utilized prevalently in many areas 

of human activities. The integration density increases fast beyond billions of 

transistors bringing forward a problem: how to build a right system to fit 

requirements? Thus hardware verification theory emerges as an important element 

of the overall design process. There were many corresponding explorations in past 

decades. In this chapter we will review some typical theoretical background 

dealing with function representations and verification.  

 

 

           2.1 Function Representations 
  Digital combinational circuits rely on the repreentation of Boolean functions, 

either by means of computation or evaluation processes. Truth tables belong to 

the first group, while decision diagrams belong to the second one. 

 
 
2.1.1 Truth Table 

A truth table is a mathematical table used in logic — specifically in connection 

with Boolean algebra, Boolean functions, and propositional calculus — to 

compute the functional values of logical expressions on each of their functional 

arguments, that is, on each combination of values taken by their logical (input) 

variables. In particular, truth tables can be used to tell whether a propositional 

expression is true for all legitimate input values, that is, logically valid. 

 
Example 2.1: The truth table of the 2-bit unsigned adder with inputs x = x1x0 and 

y = y1y0, and output z = z2z1z0 is presented below.   
                    x1x0y1y0  z2z1z0 
                        0 0 0 0   0 0 0 
                        0 0 0 1   0 0 1 
                        0 0 1 0   0 1 0 
                        0 0 1 1   0 1 1 
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                        0 1 0 0   0 0 1 
                        0 1 0 1   0 1 0 
                        0 1 1 0   0 1 1 
                        0 1 1 1   1 0 0 
                        1 0 0 0   0 1 0 
                        1 0 0 1   0 1 1 
                        1 0 1 0   1 0 0 
                        1 0 1 1   1 0 1 
                        1 1 0 0   0 1 1 
                        1 1 0 1   1 0 0 
                        1 1 1 0   1 0 1 
                        1 1 1 1   1 1 0 

 
  Truth tables are useful in many synthesis applications, as well, as verification 

due to their canonical property. In fact, equivalence checking of two Boolean 

functions can be done by comparing truth tables of corresponding functions.  

  A truth table has 2N rows for an N-input function, hence the size and time 

complexity are always exponential in the number of primary inputs. Consequently, 

the truth table as a binary function representation is impractical for verificaiton of 

even modertate size circuits. 

 
 
2.1.2 Shannon Expansion  
  In mathematics, Shannon expansion is a method by which a Boolean function 

can be represented by the sum of two sub-functions (co-factors) of the original. It 

provides a way for deriving a Boolean function recursively. 

 
Definition 2.1: The cofactor of a Boolean function f(x0, x2, …, xi, …, xn-1) with 

respect to variable xi is ),...,1,...,,( 110 −= nx xxxff
i

. Similarly, the 

cofactor with respect to variable ix  is ),...,0,...,,( 110 −= nx xxxff
i

. 

 
  Each Boolean function can be represented by its cofactors through Shannon 

expansion.  

 
Theorem 2.1: A Boolean function BBf n →:  can be represented as [7] 
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),,...,,( 21 nix xxxxff
i
= = )()(

iiii xixixixi fxfxfxfx +⋅+=⋅+⋅  

 
One way of representing the Shannon’s expansion is by means of a multiplexer 

selects between the two cofactors, depending on the value of a splitting variable xi. 

0      1 xi

 
ixf  

ixf

f
 

Figure 2.1: Shannon expansion in variable xi 

 
Example 2.2: Given a function of '''''' zyxzyxzxyxyzf +++= , we can 

re-write the function in terms of any two variables — namely, a variable and its 

complement: xx gxxgf ''+= . Simply apply the distributive theorem to the 

function about x: )'()'''(' zyyzxyzzyzyxf ++++= . Now we have expanded the 

function f about the variable x. The work [154] describes a method based on  

Shannon expansion for low- power and testable circuit synthesis.  

 

 

2.1.3 Polynomial Representation 
  Positive and negative Davio expansions are other two expressions of  

Boolean functions by means of cofactors and the XOR operation.  

 
Definition 2.2: The positive Davio expansion of a Boolean function f(x0, x2, …, 

xi, …, xn-1) with respect to variable xi is:  

       )(),...,...,,( 110 iii
xxixni ffxfxxxxff ⊕⋅⊕== −  

Similarly, the negative Davio expansion is: 

)(),...,...,,( 110 iii xxixni ffxfxxxxff ⊕⋅⊕== −  
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  The two representations adopt XOR operations over two cofactors. They are 

useful for polynomial expressions and decision diagrams representations. 

  If all variables are decomposed by positive Davio expansion, another canonical 

representation of Boolean functions is obtained as Reed-Muller transform 

[4][5][6]. RM transform is used in technology mapping by symmetry detection, 

which will be introduced in section 3.1.2.  

 
 
2.1.4 Boolean Satisfiability  

Boolean Satisfiability (SAT) is often used as the underlying model for a 

significant and increasing number of applications in electronic design automation 

(EDA) as well as in many other fields of computer science and engineering. 

Satisfiability determines whether the variables of a given Boolean formula can be 

assigned in such a way as to make the formula evaluate to TRUE. Another 

importance is to determine whether no presence of such assignments would imply 

that the function expressed by the formula is identically FALSE for all possible 

variable assignments. In this latter case, we say that the function is unsatisfiable, 

or else it is satisfiable [152] . 

  The SAT is a decision problem in complexity theory, whose instance is a 

Boolean expression written using operations of AND, OR, NOT, variables, and 

parentheses. The question is that given the expression, whether some assignment 

of TRUE and FALSE values to the variables will make the entire expression true. 

In particular, satisfiability searches are most often applied to Boolean functions 

represented as product of sums. The search for a function variables assignment, 

which would make all the clauses true, is proven to be NP-Complete [152]. 

  
Example 2.3: After converting Boolean equations from Example 2.1 into 

product-of-sums, we obtain the following set of clauses: 

 

 
 

  The set of input assignments satisfying the above equations is empty. This fact 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
++++++++++++++

+++++
=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

))((
))()()()()((

))()()()((
),,,(

0000

01010101101011101011

1001110101

0

1

2

0101

yxyx
yyxxyyxxyxxyyxyxxyyx

yxyxyxyyxx

z
z
z

yyxxf



Chapter 2: Background 

 29

is easy to verify by checking the multiplier truth table, which holds no input (x1, x0, 

y1, y0)  assignment resulting in all the output bits (z2, z1,z0) being equal to one. 

 

 

2.2 Decision Diagrams 
Decision diagrams are the binary function representations that explore 

evaluation process. They do not need to compute the response of input stimuli and 

evaluate a function based on a set of binary-valued decisions.  

 
 

2.2.1 Binary Decision Diagrams 
Binary decision diagram (BDD) [7] was already introduced in 1959 as a data 

structure that is used to represent a Boolean function. Furthermore, under the 

name of Branching Programs they were intensively studied in theoretical 

computer science. Within the following years the importance of BDDs for VLSI 

CAD was realized by several groups, and an increasing number of BDD 

algorithms and successful applications were reported. 

  On a more abstract level, BDDs can be considered as a compressed 

representation of sets or relations. Unlike other compressed representations, 

operations are performed directly on the compressed representation, i.e. without 

decompression. BDDs are based on the Shannon expansion. Generally, bit-level 

decision diagrams are constructed in terms of one of the three Boolean function 

decompositions: 

             Shannon: 
ii xixi fxfxf ⋅⊕⋅=  

             positive Davio: )(
iii xxix ffxff ⊕⋅⊕=  

            negative Davio: )(
iii xxix ffxff ⊕⋅⊕=  

 
Definition 2.3: “A Decision Diagram (DD) over a set of Boolean variables Xn 
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and a non-empty terminal set T is a connected, directed acyclic graph G=(V, E) 

with exactly one root and the following properties: 

 A vertex in V is either a non-terminal or a terminal vertex. 

 Each non-terminal vertex v is labeled with a variable from Xn, called the 

index index(v) of v and has exactly two successors in V , denoted by low(v), 

high(v). 

 Each terminal vertex v is labeled with a value Tvvalue ∈)(  and has no 

successors.” [7] 

 
Example 2.4: Consider Decision Diagrams in Figure 2.2 and 2.3. The graph in 

Figure 2.2 represents a complete tree that by definition is also a complete and 

ordered DD. The DD in Figure 2.3 is also ordered, but not complete. Since both 

DDs are ordered they are also free. 

x1

x2

x3x3

x2

x3 x3

1 0 1 0 1 1 1 0
 

                       Figure 2.2: Complete and ordered DD                 

                             

x1

x2

x3

0 1

0 1

1

1

0

0

 
Figure 2.3: Ordered DD 

 

Definition 2.4: “A BDD is a DD over Xn and terminal set T={0, 1}. If the BDD 
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has a root vertex v, then the BDD represents a Boolean function fv defined as 

follows: 

1. If v is a terminal vertex and value(v)=1 (value(v)=0), then fv=1 (fv = 0). 

2. If v is a non-terminal vertex and index(v)= xi, then fv is the function  

    ).,...,(),...,(),...,( 1)(1)(1 nvhighinvlowinv xxfxxxfxxxf ⋅+⋅=  

flow(v) (fhigh(v)) denotes the function represented by low(v) (high(v)).” [7] 

 
 
2.2.2 Reduced Ordered Binary Decision Diagrams 

BDDs have obvious limitations because of exponential sizes which confine 

applications. Some extensions have been proposed to overcome these limitations. 

Recently, (especially in the area of verification) DDs have also been used to 

represent Pseudo-Boolean functions, i.e., function of the form f : ZBn → . The 

simplest extension of BDDs, ROBDDs (Reduced Ordered Binary Decision 

Diagrams), has two restrictions: 

 Appearance of the variable keeps in the same order along each path from the 

root to a terminal. 

 No isomorphic sub-trees or redundant vertices exist. 

 
Definition: 2.5: “Let π  be a total order on the set of variables x1,…xn. An 

ordered binary decision diagram (OBDD) with respect to the variable order π  

is a directed acyclic graph with exactly one root which satisfies the following 

properties: 

 There are exactly two nodes without outgoing edges. These two nodes are 

labeled by the constants 1 and 0, respectively, and are called sinks. 

 Each non-sink node is labeled by a variable xi, and has two outgoing edges, 

which are labeled by 1 and 0, respectively. These edges are called the 1-edge 

and the 0-edge, respectively.  

 The order, in which the variable appear on a path in the graph, is consistent 

with the variable order π , i.e., for each edge leading from a node labeled by 
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xi to a node labeled by xj it holds xi < jxπ .” [7] 

 
An OBDD is a read-once branching program with an additional ordering 

restriction on the variables. The computation path of an input a = (a1 ,…, an) ∈Bn 

is the path from the root to a sink in the OBDD which is defined by the input. 

More precisely, the computation path begins in the root, and in each node labeled 

by xi the path follows the edge with label ai.  

 
Example 2.5: Let π  be the variable order x1 < x2 <x3. Figure 2.4 illustrates two 

OBDD representations of the function 21321321 ),,( xxxxxxxxf += with respect 

to the orderπ . 

x1

.

.

.

1 0

x2 x2

x3 x3 x3 x3

1

1

11

1
1 1

                  

x1

.

.

.

1 0

x2 x2

x3x3

1

1 1

11

 

Figure 2.4: Two OBDDs of Example 2.5 

 

Definition 2.6: “Two OBDDS of P1 and P2 are isomorphic if there is a bijective 

mapping φ  from the set of nodes of P1 to the set of nodes of P2 such that, for each 

node v, the two nodes v and )(vφ are sinks with identical labels, that means 

var(v)=var( )(vφ ), ))(())(( vhighvhigh φφ = , ))(())(( vlowvlow φφ = . An OBDD is 

called reduced if  

1. it does not contain a node v with high(v) = low(v), and 

2. there does not exist a pair of nodes u, v such that the sub-OBDDs rooted in u 

and v are isomorphic.”[7]  

 
Example 2.6: Consider a Boolean function f = x1x2x3 + x4x5x6 +…+ xn-2xn-1xn. The 
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ROBDD G1 for f with variable ordering x1, x2…xn-1, xn is given in Figure 2.5. The 

size of the corresponding graph is given by |G1| = n. Since f depends on all n 

variables the ROBDD has optimal size. 

x1

xn-2

x7

x5

x2

x4

.

.

.

xn-1

0 1

x3

x6

xn

 
Figure 2.5: An example of ROBDD  

 
 

2.2.3 Multi-Terminal BDDs 
Another extension of BDDs to aim on handling word-level values is to 

introduce non-Boolean terminals, i.e, to allow integers in terminal nodes. The 

resulting DDs are called Multi-Terminal BDDs (MTBDDs) [8] if in each node an 

(integer-valued) Shannon decomposition is carried out.  

 
Example 2.7: A MTBDD for function f=3x1+x2 is given in Figure 2.6.  

x1

x2x2

0 1 3 4
 

Figure 2.6: MTBDD for f=3x1+x2 
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2.2.4 Binary Moment Diagrams 
Binary Moment Diagrams (*BMDs) [9][10][11], which belong to the class of 

word-level decision diagrams, are generalizations of the BDD to linear functions 

over domains such as Boolean, but also to integers or to real numbers. They can 

deal with Boolean functions with complexity comparable to BDDs, but also some 

functions that are dealt with very inefficiently in a BDD are handled easily by 

BMD, most notably multiplication. The most important properties of BMD is that, 

like with BDDs, each function has exactly one canonical representation, and many 

operations can be efficiently performed on these representations. The main 

features that differentiate BMDs from BDDs are using linear diagrams instead of 

pointwise diagrams, and having weighted edges. No node may have all decision 

parts equivalent to 0 (links to such nodes should be replaced by links to their 

always part). No edge may have weight zero (all such edges should be replaced by 

direct links to 0). Weights of the edges should be coprime. Without this rule or 

some equivalent of it, it would be possible for a function to have many 

representations, for example 4x+4 could be represented as 4*(1+x) or 1*(4+4x).  

  *BMDs are particularly effective for representing digital systems at the word 

level, where sets of binary signals are interpreted as encoding integer (fixed point) 

or rational (floating point) values. Common integer and floating point encodings 

have efficient representations as *BMDs, as do operations such as addition and 

multiplication. *BMDs can also represent Boolean functions as a special case, 

with size comparable to BDDs .  

 
Example 2.8: A *BMD for the fractional coding (3 bits) is illustrated as: 

∑
=

−==
3

1
123123 2:],,[:),,(

i
i

i
enc xxxxxxxf  
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x3

x2

x1

0 1

0.125

0.5
0.25

 

Figure 2.7: *BMD for unsigned fractional encoding  

 

   Edge weighting leads to a much more concise representation of a function. As 

an illustration, Figure 2.7 describes the representations of *BMD for the same 

function. 

 
 
2.2.5 Taylor Expansion Diagrams 
  A new type of diagram, Taylor Expansion Diagram (TED) [12] – [15], has 

been developed to solve the problem of word-level computation, such as 

A[0:n-1]+B[0:n-1], requiring the decomposition of the function with respect to 

each bit-level variable A[0],…,A[n-1],B[0],…,B[n-1]. It is unnecessary to expand 

the word-level variables when treating them as algebraic symbols. Figure 2.8 

depicts the decomposition with respect to the word-level variables A and B. If we 

group the nodes corresponding to the individual bits of these variables, we can 

abstract the integer variables and use them directly in the design. The figure 

describes the idea of symbolic abstraction of variables from bit-level components 

[12].  
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b0

b1

1

2

a0

a1

10
1

2

*BMD: A*B

2b1+b0 B[1:0]

2a1+a0 A[1:0]

B

A

10

TED: A*B

 

Figure 2.8: Abstraction of bit-level variables into algebraic symbols 

 

Assume a regular algebra (R, *, +) over real numbers R with integer 

coefficients on a real differentiable function f(x,y,…). Using the Taylor series 

expansion with respect to a variable x, the function f can be represented as [14]: 

.....).,0(
2
1,...),0(...),0(...),( ''2' +=+=+== yxfxyxxfyxfyxf  

where f’(x=0, y…), f’’(x=0, y…),etc., are first, second, and higher order 

derivatives of f with respect to x. The derivatives of evaluated at x=0 are 

independent of variable x, and can be further decomposed w.r.t. the remaining 

variables, one variable at a time. The resulting recursive decomposition can be 

represented by a decomposition diagram called the Taylor Expansion Diagram. 

 
Definition 2.9: “The Taylor Expansion Diagram, is a directed acyclic graph (φ , 

V, E, T), representing a multi-variable polynomial expression φ . V is the set of 

nodes and E is the set of directed edges connecting the nodes. T is the set of 

terminal nodes. Every node Vv∈  has an index var(v) which identifies the 

decomposing variable. The variable of the TED are ordered. The function at node 

v is determined by the taylor series expansion at the point var(v)=0. The edge 

emanating from a node v point to its children nodes which correspond to the 

derivative of the function with respect to the variable var(v). The out-degree of a 

terminal node Tv∈  is 0. The function computed at a terminal node is an integer 

constant c.”[14]  
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Vx

f

1
x x2

x3

f(0) f'(0) f' '(0)/2
f'' '(0)/3!

 
Figure 2.9: A decomposition node in a TED [12] 

 
The decomposition is applied recursively to the subsequent children nodes. The 

kth derivative of a function f rooted at node v with var(v)=x is referred to as a 

k-child of v; f(x=0) is a 0-child, )0(' =xf is a 1-child, )0(
!2

1 '' =xf  is a 

2-child, etc. Notice the implicative terms associated with each arc: x0=1 for the 

0-edge, x1=x for the 1-edge, x2 for the 2-edge, etc.  

TEDs are a new canonical, graph-based representation for arithmetic 

expressions, which can be exploited to facilitate equivalence checking of high-level 

specifications of digital designs in terms of the compactness and the canonicity 

properties. TEDs handle algebraic variables as real numbers. Figure 2.10 shows an 

example of TED representation for a simple algebraic expression. Note the additive 

and multiplicative weights assigned to the edges. The computation of the 

derivatives, and hence the children of f, performed recursively, is trivial for 

polynomial functions.  

 

A

C

B B

0 1

3

A3+3AC+AB+3BC

 

Figure 2.10: An example of an expression represented with TED  
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2.2.6 Disadvantages of Decision Diagrams 
  The canonicity and ease of composition that OBDDs and MTBDD provide 

make them ideal for matching small combinational circuits. In order to handle 

complex circuits such as multiplication, the potentially exponential size of BDD 

structures makes comparison of BDDs time consuming and memory intensive. 

BMDs and TEDs manipulate the complex circuits by easing the requirement of 

memory and time. They have been used to verify the functionality of linear 

circuits [141]. However, they can only yield information on whether or not an 

implementation matches a specification exactly, but offer no path for quantifying 

the degree to which the two offer. Therefore, if two functions are similar but not 

exactly equal, BMDs and TEDs structures may implement drastically different 

arithmetic functions, while two very different diagrams may implement the same 

mathematical operation with different degrees of precision. Also, BMDs and 

TEDs are unsuitable for use in non-linear functions because of the resulting 

exponential complexity in the worst case [77], and hence decision diagrams are 

not suitable to be used to explore imprecise circuits.   

 

 

2.3 Dynamic Analysis 
  Decision diagrams are explored in formal verification as a part of equivalence 

and model checking, but they have no ability to process the fixed-point 

representation. The usual method to handle fixed-point designs is through the 

dynamic analysis which uses appointed vectors as specific inputs. The major 

elements include the tested circuit and a group of vectors. A testbench represents 

stimuli to the circuit under verification. The results of the circuit simulations with 

the stimuli indicate whether the implementation is suitable for the specification. 

The simple idea makes it prevalently used. In fact, historically, dynamic analysis 

is the oldest technique to verify digital designs. The major draw back of this class 

of methods is the requirement to enumerate all possible input values in order to 
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verify a circuit in 100%. 

  The exhaustive test vectors are usually infeasible for dynamic analysis because 

of huge execution time. A practical testing method requires as few vectors as 

possible to cover as many faults as possible, so the technique of test generation 

has been developed. ATPG (Automatic Test Pattern Generation) is a technology to 

distinguish between the correct circuit behavior and the faulty circuit behavior 

caused by defects. Obviously, the processed objects are precise designs and it is 

difficult to handle or optimize imprecise designs by these methods. Varieties of 

explorations adopt dynamic analysis and avoid exhaustive vectors to optimize 

imprecise designs, which are introduced next.   

Authors in [18] – [25] rely on the straightforward technique to get optimization 

of a bit-width. In [19] Kung and Sung develop a combined word-level (WL) 

optimization and high-level synthesis algorithm to minimize the hardware 

implementation cost and significantly reduce the optimization time. Their 

algorithm initially finds the WL sensitivity or minimum WL of each signal 

throughout fixed-point simulations of a signal flow graph. Then it performs the 

WL high-level synthesis where signals having the similar WL sensitivity are 

assigned to the same functional unit. Finally, the algorithm conducts the final WL 

optimization by iteratively modifying the WLs of the synthesized hardware model. 

Figure 2.11 [19] depicts the design flow of optimization. 

 

Data flow
graph

Signal grouping

Scaling factor
determination

Minimum WL
determination

Scheduling and
binding

Optimal WL
search

Synthesize
architecture

 

Figure 2.11: Design flow of the architecture-level WL optimization [19] 
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  Willems and Bursgens [20] present a tool that allows an automated, interactive 

transformation from floating-point ANSI-C into a bit-true specification. The tool 

quantizes the input value and analyzes quantization effects on an algorithmic level. 

Then it invokes the simulation-based fixed-point algorithm to target the described 

specification. The main disadvantage of the above method is that it requires a 

large set of input vectors, and hence a long simulation time is unavoidable. 

 

 

Figure 2.12: The tool flow of the method in [20] 

 

  Gaffar et al. [21] offer a uniform treatment for bit-width optimization of 

fixed-point designs. They utilize automatic differentiation to compute the 

sensitivities of outputs to the bit-width of the various operands in the design. This 

sensitivity analysis enables to explore and compare fixed-point and floating-point 

implementation for a particular design. As a result they can automate the selection 

of the optimal number representation for each variable in a design to optimize 

area and performance. Figure 2.13 describes its design flow.  
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Figure 2.13: The design flow of dynamic analysis in [21] 

 
  C. Shi et al. [22] set up a statistical model to estimate hardware resource in 

terms of perturbation theory. A tool that automates the floating-point to 

fixed-point conversion (FCC) process for digital signal system is described based 

on a simulation tool, Simulink. The tool automatically optimizes fixed-point data 

types of arithmetic operators, including overflow modes, integer word lengths, 

fractional word lengths, and the number systems. The approach is based on 

statistical modeling, hardware resource estimation and global optimization based 

on an initial structural system description.  

  Nayak et al. [23] propose a precision analysis algorithm to determine the 

minimum number of bits required by an integer variable, and present a framework 

to generate an efficient hardware for signal processing applications. Their range 

optimization relies on data range propagation, while precisions are analyzed and 
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optimized by the DFG which is an acyclic graph representation of a circuit. A 

memory packing algorithm is proposed to generate faster hardware requiring less 

execution time. Figure 2.14 illustrates the framework.  

 

   

Input Matlab
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Figure 2.14: Overview of the synthesis framework in [23] 

 
  Though dynamic analysis provides bit-widths closer to the optimal set for those 

particular stimuli, it is not a perfect solution since a large set of stimuli signals is 

required to analyze a design with sufficient confidence. This possibly leads to 

prohibitively long simulation time without guarantees for alternative input stimuli 

encountered in practice. Hence, often not only low efficiency of the overall 

process can be encountered, but the above methods can become infeasible for 

some cases. Therefore, other methods should be explored. 

 

 

           2.4 Static Analysis 
Static analysis such as interval arithmetic and affine arithmetic can avoid 

tedious simulation. This section introduces static methods to handle fixed-point 

circuits represented by polynomials.  
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2.4.1 Interval Arithmetic 
In mathematics, a (real) interval is defined as a set of real numbers with the 

property that any number that lies between two numbers in the set is also included 

in the set. For example, the set of all numbers x from the interval [0,1] include 0 

and 1, as well as all real numbers between them. Interval arithmetic (IA) is a 

method developed by mathematicians in 1950s and 1960s as an approach to 

putting bounds on rounding errors in mathematical computation. Among many 

contributors, we distinguish Hansen, who in [26] introduced basic ideas of 

interval arithmetic and Kearfott, who in [27] presented some important 

applications of interval computations.  In general, the advances in interval 

arithmetic led to the development of numerical methods that yield very reliable 

results.  

Where classical arithmetic defines operations on individual numbers, interval 

arithmetic defines a set of operations on intervals. An operation <OP> on two 

intervals is defined as: 

]},[],,[|{],[],[ 21212121 yyyxxxyOPxyyOPxx ∈∈><=><  
The operand <OP> can, for example, represent addition or multiplication. For 

practical applications the above notation can be simplified to: 

Addition:  ],[],[],[ 22112121 yxyxyyxx ++=+  

Subtraction: ],[],[],[ 22112121 yxyxyyxx −−=−  

Multiplication:  

)],,,max(),,,,[min(],[],[ 22122111221221112121 yxyxyxyxyxyxyxyxyyxx =∗
Division:  

]),/[1(],[],/[],[ 21212121 yyxxyyxx ∗= ,  

where ]/1,/1[],/[1 2121 yyyy =  if ],[0 21 yy∉  

With the help of these definitions, it is already possible to calculate the range of 

simple functions, such as f(a,b,x) = ax+b. If, for example a = [1,2], b = [5,7] and x 

= [2,3], it is clear that 

 ]13,7[]7,5[]32,21[]7,5[])3,2[]2,1([),,( =+∗∗=+∗=xbaf  

Interval methods can also apply to functions which do not just use simple 

arithmetic, and we must also use other basic functions for redefining intervals as 
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known monotonicity properties. The range of values is easy to determine for 

monotonic functions in one variable. If RRf →: is monotonically rising or 

falling in the interval y1, y2∈ [x1, x2], then one of the following  

inequalities applies for all values in the interval such that y1 ≤ y2 : 

f(y1) ≤  f(y2)  or  f(y1) ≥  f(y2)    

The range corresponding to the interval [y1, y2] ⊆ [x1, x2] can be calculated by  

applying the function to the endpoints  y1 and  y2:  

f([y1, y2] ) = [min{f(y1 ), f(y2)}, max{f(y1 ), f(y2)}] 

Using the above equation, the following basic features for interval functions  

can easily be defined: 

• Exponential function: ],[ 2121 ],[ xxxx aaa =     a ≥ 1, 

• Logarithm: ],[ 2121 ],[ x
a

x
a

xx
a LogLogLog =   for positive intervals [x1, x2] 

and a >1, 

• Odd powers: [x1, x2]n = [x1
n, x2

n] for odd n⊆ N. 

The methods of classical numerical analysis cannot be transferred one-to-one 

into interval-valued algorithms, as dependencies between numerical values are 

usually not taken into account. 

In order to work effectively in a real-life implementation, intervals must be 

compatible with floating point computing. The earlier operations were based on 

exact arithmetic, but in general fast numerical solution methods may not be 

available. The range of values of the function f(x,y) = x + y for x∈ [0.1, 0.8] and y

∈ [0.06, 0.08] are for example [0.16, 0.88]. Where the same calculation is done 

with single digit precision, the result would normally be [0.2, 0.9]. But [0.16, 0.88]

∉ [0.2, 0.9], so this approach would contradict the basic principles of interval 

arithmetic, as a part of the domain of f([0.1, 0.8], [0.06, 0.08]) would be lost.  

Instead, it is the outward rounded solution [0.1, 0.9] which is used. 

The required external rounding for interval arithmetic can thus be achieved by 

changing the rounding settings of the processor in the calculation of the upper 

limit and lower limit. Alternatively, an appropriate small interval [ 21 ,εε ] can be 

added. 
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Interval arithmetic is used in association with error analysis to control rounding 

errors arising from each calculation. The advantage of interval arithmetic is that 

after each operation there is an interval which reliably includes the true result. The 

distance between the interval boundaries gives the current calculation of rounding 

errors directly: 

Error = abs(a − b) for a given interval [a,b].  

 
 

2.4.2 Affine Arithmetic 
Affine arithmetic (AA) is a model for numerical analysis introduced first by 

Stolfi and Figueiredo [32][33]. In AA, the quantities of interest are represented as 

affine combinations (affine forms) of certain primitive variables, which stand for 

sources of uncertainty in the data or approximations made during the computation. 

It is meant to be an improvement on interval analysis (IA).  

In affine arithmetic, each input or computed quantity x̂  is represented by a  

formula: 

nnxxxxx εεε ++++= ...ˆ 22110  

where x0, x1, ... xn are floating-point numbers and nεεε ..., 21  are symbolic 

variables whose values are only known to lie in the range [-1,+1]. We call x0 the 

central value of the affine form x̂; the coefficients xi are its partial deviations, and 

the iε  are the noise symbols. Thus, for example, a quantity x̂ which is known 

to lie in the range [3,7] can be represented by the affine form kx ε25ˆ += .  

The key feature of AA is that the same symbol iε  may contribute to the 

uncertainty of two or more quantities (inputs, outputs, or intermediate results) x̂  

and ŷ  arising in the evaluation of an expression. The noise symbols can be 

shared which indicates some partial dependency between the underlying 

quantities x and y, determined by the corresponding coefficients xi and yi. Note 

that the signs of these coefficients are not meaningful in themselves, because the 

sign of iε  is arbitrary; but the relative sign of xi and yi defines the direction of 
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the correlation. For example, suppose that the quantities x and y are represented 

by the affine forms: 

x̂  = 17 − 3 1ε  + 2 3ε  + 4 4ε      ŷ  = 9 − 1ε  + 2ε  - 2 4ε  

From this data, x lies in the interval x̂= [8, 26] and y lies in ŷ = [5, 13], i.e., 

the pair (x, y) lies in the grey rectangle of Figure 2.16; however, since the two 

affine forms include the same noise variables 1ε  and 4ε  with non-zero 

coefficients, they are not entirely independent of each other. In fact, the pair (x, y) 

lies in the dark grey region of Figure 2. 15, which is the set of all possible values 

of ( x̂ , ŷ ) when the noise variables 1ε , .. 4ε  are independent. This  

set is the joint range of the forms x̂  and ŷ , denoted < x̂ , ŷ >. 

8 26

5

13

 

Figure 2. 15: Joint range ( x̂ , ŷ ) of two partially dependent quantities 

 as implied by their affine forms  

 
  In order to evaluate a formula with AA, we need to replace each elementary 

operation z ←  f(x, y) on real quantities x and y by a corresponding procedure 

ˆ ˆˆ ( , )z f x y← , which uses affine forms of those quantities and returns an affine 

form for the result z. By definition, there are:  

nnxxxxx εεε ++++= ...ˆ 22110  

nnyyyyy εεε ++++= ...ˆ 22110  

Therefore, the result ẑ  is a function of the unknown variables iε  as: 

                    0 1 1 0 1 1ˆ ˆˆ ( , ) ( ... , ... )n n n nz f x y f x x x y y yε ε ε ε= = + + + +  

 
Example 2.10: Consider the multiplication of two affine forms ˆ ˆẑ xy← , where 
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21 3420ˆ εε +−=x  and 31230ˆ εε ++=y . Please notice that the operands are 

partially correlated through the shared noise symbol 1ε . The product of ˆˆxy  is: 

ˆ ˆẑ xy= = 600 - 80 1ε +90 2ε + 20 3ε  – 8 2
1ε – 4 1 3ε ε + 6 1 2ε ε + 3 2 3ε ε  

      = 600 - 80 1ε +90 2ε +20 3ε  – 8 4ε – 4 5ε + 6 6ε +3 7ε  

Using the form of ẑ , we can estimate the range of ẑ  is [389, 811]. The actual 

range of ˆˆxy  is [403, 756], so the obtained range by AA is (811-389) / (756 – 403) 

= 1.2 times wider than the exact range. If using IA for comparison, z = [13, 27] * 

[27, 33] = [351, 891], that is (891 – 351) / (756 – 403) = 1.53 times wider than 

the exact range. The reason is AA can partly process the correlation between x̂ 

and ŷ  implied by the shared symbol 1ε . The correlated terms −120 1ε  and +40

1ε  nearly cancel out in the AA computation, but are added with the same sign in 

the IA computation. 

 
Fang et al. [39] [40] take advantage of affine arithmetic modeling to analyze 

range and precision from fixed-point implementations of DSP algorithms. The 

resulting numerical error estimates are comparable to detailed statistical 

simulation, but achieve speedups of four to five orders of magnitude by avoiding 

actual bittrue simulation. Authors in [41][43] propose an approach that optimizes 

the bit-widths of fixed-point and floating-point designs. Range analysis depends 

on a combined affine and interval arithmetic approach to reduce the number of 

bits. Precision analysis involves a coarse-grain and fine-grain analysis. The best 

representation in fixed-point or floating-point is then chosen based on the range, 

precision and latency. Figure 2.16 illustrates the methodology.  
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Simulation-Error
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Word-length Optimized Fixed /
Floating-Point Design

 

Figure 2.16: An outline of the methodology in [41] 

 
  The algorithm starts from generating cost and error functions and then analyzes 

range. The next stage is precision analysis. A coarse-grain analysis produces 

uniform bit-widths. These results are then refined to produce non-uniform 

bit-widths. The last stage is floating-point scheduling before the source code is 

reconstructed to a given C/C++ design.  

  Authors in [42] use AA to investigate bit-width due to truncated and rounded 

data, and explore hardware area and delay in FPGA on the condition of different 

bit-width. Figure 2.17 introduces the tool of static analysis.  
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variable wordlength reduction. Fourth, a genetic algorithm with 

selective-crossover and high mutation probability is applied to obtain 

near-optimal results. 

In [93], authors set up models for error source dependence. In these models, the 

dependence is approximated by linear functions (AA) or by general polynomials 

(Taylor series methods), which are proved optimal. They also describe that the 

optimal way to decrease the excessive bit-width is to use implicit polynomial 

dependence. 

Affine arithmetic is potentially useful in every numeric problem where one 

needs guaranteed enclosures to smooth functions, such as solving systems of 

non-linear equations, analyzing dynamical systems, integrating functions 

differential equations, etc. Additionally, AA has many applications in areas such 

as computer graphics, optimization and curve drawing in [35], [36], [37], [38]. 

Here it is used to handle range analysis and bit-width optimization. 
 

 

       2.5 Alternate Methods 
Constantinides et al. [46] present an approach to the wordlength allocation and 

optimization for linear DSP systems. The tool Synoptix [47] - an optimization 

technique targeting linear time-invariant digital signal processing systems using a 

novel resource binding technique is proposed. It is based on saturation arithmetic 

to perform the range of bit-width optimizations and allows the user to tradeoff 

implementation area for arithmetic error at system outputs. 
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Figure 2.18: Synoptix design flow in [47] 

 

Figure 2.18 describes the tool flow. The input to Synoptix is a Simulink 

block diagram, and the output is a structural description in VHDL. Third-party 

tools are then used to perform the low-level logic synthesis, placement, and 

routing of the designs. 

Kinsman and Nicolici [55] introduce the theory of SAT-Modulo (SMT) to 

explore ranges. SMT first uses the coarse bounds obtained by IA, and then refines 

them by inserting constraints. More precise bounds than AA can be obtained, so 

determine smaller bit-widths for an implementation. Based on the scheme, an 

SMT engine can be used to prove/disprove validity of a bound on a given 

expression by checking for satisfiability. 

 

Affine
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       Calculation) Range

Refinement

Initial
ranges

SAT-Modulo

 
Figure 2.19: Flow of SMT technique in [55] 



Chapter 2: Background 

 52

 Ahmadi and Zwolinski [54] address the bit-width assignment in hardware 

implementation in the context of high-level synthesis. They introduce a symbolic 

noise analysis (SNA) to surpass the pessimism of IA, which is based on modeling 

of the error bounds by an assumed probability distribution function over a known 

range. In comparison to SNA which assumes the error distributions more localized, 

IA is pessimistic by assuming the uniform distribution. The proposed method is 

used in combination with models of power consumption, circuit area and delay. 

Results demonstrate a considerable saving in costs when these optimizations are 

applied. 

 

 

2.6 Conclusions 
In this chapter, we introduced the usual Boolean function representations such 

as decision diagrams. Although decision diagrams such as TEDs are suitable to 

equivalence checking and model checking, they cannot be applied to imprecise 

circuits or to bit-width optimization. Dynamic analysis is a common method and 

many explorations are based on it, but its low efficiency confines its applications. 

Static analysis has been developed to overcome this limitation. IA is the usual 

method of finding ranges and AA is a derivation which can calculate more precise 

ranges than IA.   

These explorations only get one optimization of bit-width such as [42] or 

hardware area such as [51]. Another disadvantage is that they do not consider the 

function approximation so they are not capable of investigating these factors 

concurrently. In our research, we overcome this disadvantage and simultaneously 

processed bit-widths and various constraints as well as approximations for Taylor 

series and real-valued polynomials. 
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Chapter 3  

Compositions of AT and 
Extensions 

 
 

 

 

 Arithmetic Transform (AT) must be extended to represent 

combinational circuits and sequential circuits efficiently. We state past 

methods of calculating AT coefficients, and then address the use of AT 

and its extensions to express word-level quantities and sequential 

elements. Since a circuit transform can express properties of the 

circuit distinctly and help engineers to penetrate its essence 

straightforwardly, obtaining an overall transform by symbolic 

compositions of individual blocks’ transforms becomes most 

significant. For the purpose of running time and memory, the best 

algorithm is proposed for a compositional verification of the complex 

datapath. 
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   3.1 Introduction to Spectral Transforms 
As a main method exploring the fixed-point circuits in our research, Arithmetic 

Transform (AT) is a spectral representation different with Boolean representations. 

So we introduce the spectral domain and the basic AT definition at first in this 

Chapter. 

 
 

3.1.1 Spectral Domain 
  It is common to use the product and sum operators of the Boolean algebra 

together with negation to define such functions － for example, f(x1, x2, x3) = 

321 xxx + 321 xxx . The use of Boolean algebra for the manipulation and analysis of 

switching circuits is well known. Part of the problem with the definition in the 

Boolean domain is that each of the entries in the truth table for f tells us precisely 

the behavior of the function at a single point but nothing of its behavior for any 

other points. It is possible to give an alternate representation of a function where 

the information about the function is much more global in nature. This alternate 

representation is in the spectral domain, and a number of properties are much 

more easily deduced in the spectral domain than in the Boolean one [56]. Spectral 

techniques are very powerful tools for logic functions to express the principle of 

linearity and superposition. 

The basic idea of the spectral domain and how to get there is illustrated in 

Figure 3.1. In order to avoid losing information, the transform should be reversed, 

that is, we can move to and from the spectral domain without any loss of 

information.  

 

Conventional
Boolean data

Appropriate
transform

Original Boolean
data re-expressed as

a different set of
numbers

The Boolean domain The transform The spectral domain  
Figure 3.1: The spectral transform  
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  The information content in the functional and spectral domains will be identical, 

and the data in either domain is uniquely recreatable from the data in the other, 

but the meaning of the parameters in the two domains will be dissimilar. In 

particular, the discrete nature of the data in the function domain will be generally 

influenced by the complete functional performance of the circuit or network under 

consideration. The following section outlines several usual spectral transforms. 

 
 
3.1.2 Various Transforms 
A) Reed-Muller Transform 
Definition 3.1: In matrix notation, positive polarity Reed-Muller (PPRM) 

expressions for functions in GF(2) are given by: 

                       RM(f) = Rn F                

where F is the truth table for the Boolean function f and  

                ⎥
⎦

⎤
⎢
⎣

⎡
=

−−

−

11

1 0

nn

n
n RR

R
R ,       10 =R           (3-1) 

 
Example 3.1:  Consider a function f(x2, x1, x0) = x1x2+x0, i.e., F = [0, 1, 0, 1, 0, 1, 

1, 1]T . Using the Eqn. (3-1), coefficients of Reed-Muller transform are calculated 

as: 
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Thus RM(f) = x0 ⊕ x1x2⊕ x0 x1x2 

 

B) Fixed-Polarity Reed-Muller Transform 
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The fixed polarity Reed-Muller (FPRM) transform is derived from the negative 

Davio expansion together with the positive Davio expansion (no need for the 

same variable). These transforms are characterized by the polarity vectors H = 

(h1, . . . , hn) ∈ {0, 1}n, whose ith coordinate hi = 1 shows that the corresponding 

variable is represented by the negative literal ix  in the polynomial 

representation for a given function f [57]. 

For a given polarity vector H, the FPRM polynomial is given in the matrix 

notation by: 

FPRM(f) = 
1 1

( [1 ])( [ (1)])i i

n n
h h
i

i i

x R F
= =
∏ ∏  

where 

, 0

, 1
i i ih

i
i i

x h
x

x h

=⎧ ⎫⎪ ⎪= ⎨ ⎬
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1 0
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1 1
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⎧ ⎫⎡ ⎤
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⎪ ⎣ ⎦ ⎪= ⎨ ⎬
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Example 3.2: Figure 3.2 [57] shows the Reed-Muller transform matrix for n = 3 

and the polarity vector H = (0, 1, 0).  

(0,1,0)

0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0

(3)
0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 1
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Figure 3.2: Reed-Muller matrix for n = 3 and the polarity vector H = (010) 

The indices of columns in R(010)(3) are defined as (i1⊕h1, i2 ⊕h2, i3 ⊕h3) 

compared to the positive polarity (H = (0, 0, 0)) Reed-Muller matrix R(3). So the 

original output order (0, 1, 2, 3, 4, 5, 6, 7) changes to (2, 3, 0, 1, 6, 7, 4, 5). With 

this matrix, for a function f given by the truth-vector F =[1, 0, 0, 1, 0, 1, 1, 1]T, the 

Reed-Muller expansion for H = (0, 1, 0) is given by 
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FPRM(f) = x0 ⊕ 1x  ⊕ x2  ⊕ x2x0  ⊕ x2 1x x0 

 
C) Walsh Transform 

The Walsh functions [57] [59] [60] [61] are a closed set of two-valued 

orthogonal functions, given by  

               })1{(),(
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+ −−−−=
n

jkk nnnkjWal
η

ηη  

Where ηj , ηk  are determined by the binary expansions of j, k respectively, j, k 

∈ 0 to 2n-1, where 

  j = {jn-12n-1 + jn-22n-2 +… + j020}       k = {kn-12n-1 + kn-22n-2 +… + k020} 

  The Walsh transform is a complete orthogonal square matrix, with row and 

column entries ∈ {+1, -1} and with a recursive structure as follows: 

 

 

   

where ⊗  denotes the Kronecker product operator. The transform is given by W(f) 

= Wn F. 

 
D) Fixed-Polarity Walsh Transform 

For a given polarity vector H = (h1, . . . , hn) the fixed polarity Walsh 

polynomial is given in the matrix notation by [57]: 

        FPW(f) = 
1 1

2 ( [1 1 2 ])( [( 1) ( 1) ])i i i

n n
h h hn
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i i
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E) Kronecker Transform 
Definition 3.2: For a function f, the Kronecker spectrum is defined as: 

                       K(f) = Kn F 
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Figure 3.3 shows the Kronecker transform matrix K(3): 
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Figure 3.3: A Kronecker transform matrix for n = 3 

 

F) Haar Transform 
  The orthogonal Haar functions [56] may be defined as follows, where k is taken 

over the continuous interval 0 to 1: 
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where i = 1, 2, … , n and q = 0, 1, … , 2i-1-1.  

The sequentially ordered discrete Haar functions for n = 3 are shown in Figure 

3.4. 

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

2 2 2 2 0 0 0 0

0 0 0 0 2 2 2 2(3)
2 2 0 0 0 0 0 0
0 0 2 2 0 0 0 0
0 0 0 0 2 2 0 0
0 0 0 0 0 0 2 2
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Figure 3.4: Sequentially ordered Haar functions for n = 3 
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3.2 Arithmetic Transform 
3.2.1 Basic Definition  

We adopt Arithmetic Transform that is defined in the spectral domain as our 

main method to analyze imprecise factors and compute imprecision. Traditional 

methods are hard to determine the maximum error on the condition of the Taylor 

word-level input, but AT can decompose word-level variables into bit-level 

quantity to avoid the disadvantage and represent the error function essentially. AT 

has been proved to be suitable for precision verification and optimization by 

precision constraints, so here we use it to analyze imprecision of Taylor series. 

AT is a canonical polynomial representing uniquely multi-input and 

multi-output Boolean functions mn BBf →: . Multi-output can be grouped to 

form a word-level (integer) number w to obtain an AT description in a form of a 

single polynomial, leading to a pseudo Boolean function wBf n →: . Therefore, 

the AT representation has Boolean inputs and a word-level output. 

 
Definition 3.3: The Arithmetic Transform (AT) [62] is a polynomial representing 

a pseudo Boolean function wBf n →:  using an arithmetic operation “+”, 

word-level coefficients 
niiic ...21

, binary inputs nxxx ,, 21  and binary exponents 

niii ..., 21 : 

n

n

n

i
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i i i

i
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The matrix multiplication is most frequently used to determine AT of a given 

function. In this method, the set of AT coefficients }{ ...21 niiicC =  are obtained by 

multiplying the nn 22 ×  matrix Tn  by a 12 ×n  vector of function values (truth 

table of f ): fTC n ×=  where the transform matrix Tn is defined recursively:  

 

             .                                              (3-2) 

AT generates a word-level output and it is encoded by binary weights addition. 
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A word-level encoding is explicitly expressed by the number norm function   

| |:Bm→W, defining a Boolean vector interpretation in the word-level domain. 

Table 3.1 [70] gives a summary of common integer and fractional number norms 

for a vector of Boolean values xi.  
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Table 3.1: Norm functions for common word encodings 

 
Example 3.3: Consider the following Boolean function, where (x2, x1, x0) are 

bit-level variables, and output variables are grouped to form an integer at 

Boolean domain. Arithmetic Transforms can be obtained using the function truth 

table: 

11111111
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Hence AT = 2 - 13x0 + 6x1 + 7x1x0 + 16x2 -19x2x0 +7x2x1 

 
Arithmetic polynomials are used for efficient representation and calculation of 

multi-output functions fk , fk−1, . . . , f0 represented as integer-valued functions f(z) 

000  2 

001 -11 

010 8 

011 2 

100 18 

101 -14 

110 17 

111 -8 
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via the mapping [57]:  

                                   f(Z) = i

k

i

i f∑
=0

2  

 
Example 3.4: Consider a system of functions: 

 (f2(x2, x1, x0), f1(x2, x1, x0), f0(x2, x1, x0)) 

where         f0(x2, x1, x0) = x2(x0 + x1) 

f1(x2, x1, x0) = x2x0ْx1 

f2(x2, x1, x0) = x1+ x2x0 

A matrix F whose columns are truth-vectors of f2, f1, and f0, with their values  

interpreted as integers is used: 

],,[
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An integer valued representation for f2, f1, and f0 is obtained as f = 22f2 + 2f1 + f0, 

i.e,  
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 Now, the arithmetic spectrum of F = [0, 0, 3, 3, 3, 4, 6, 7]T is 
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Therefore, f is represented as the arithmetic polynomial 

f(z) = 6x1 + 7x2x0+ x2x1 -9 x2x x0 

  From the linearity of the arithmetic transform, this polynomial can be 

generated as the sum of the arithmetic polynomials for f1, f2, f3. 

 
 
3.2.2 Utilization of Spectral Techniques 

Spectral techniques have been applied for circuit synthesis, verification and 

testing by many researches. Clarke et al. [64] describe how to calculate concise 

representations of the Walsh transform for a Boolean function with huge variables. 

The technique is applied for Boolean technology mapping and obtains a speed up 

for matching case. 

Klaus [65] develops a new method based on AT for the derivation of fault 

signatures for the detection of faults in single-output combinational networks. The 

signatures do not require exhaustive testing so they provide substantially less 

work than syndrome testing or the verification of Rademacher-Walsh spectral 

coefficients. Two counters are used to test spectral coefficients in [65] as the 

following figure.  
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Counter for
(xi: i    I) ∈

Crcuit under
test

xi=0, i    N-1∈

Counter

parity bit

direction

up=0
down=1

               
Figure 3.5: The spectral coefficient ai test structure in [65] 

 
   Lui et al. [66] use spectral signature testing methods for the model of multiple 

stuck-at faults. The testability condition for multiple-input faults is established 

and a minimal spanning signature (MSS) is defined to cover all these faults. A 

MSS contains a single spectral coefficient to detect over 99% of all input and 

internal multiple faults. The approach can obtain a complete signature for all 

multiple faults in any irredundant combinational network with small numbers of 

fan-outs and the possible overhead being an extra control input. 

  Miller and Muzio [67] describe a method for the derivation of fault signatures 

for certain classes or irredundant combinational networks. These signatures 

consist of a set of values derived from the network. Any stuck-at fault causes at 

least one of the values to change. The signatures provide complete fault detection 

for all single stuck-at faults.   

  Schneeweiss [160] discusses the AT of the Boolean function which is to be 

very useful for a deeper understanding of switching functions on fault tolerant 

electronics system. Radecka et al. [68] exploit the algebraic properties of the AT 

that are used in the compact graph-based representations of arithmetic circuits. 

Verification time can be shortened under assumption of corrupting a bounded 

number of transform coefficients. Bounds are derived for a number of test vectors 

and the vectors successfully verify arithmetic circuits under a class of error 

models derived from proposed basic design error classes including single stuck-at 

faults. 

In [135], authors describe a methodology for simulation-based verification in 

the presence of a fault model. The authors propose an implicit fault model that is 
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based on the AT representation of a circuit and design faults. The proposed 

approach has the advantage of compatibility with formal verification and 

manufacturing testing methods. Errors can be modeled implicitly, and such an 

implicit error model is given by AT of a difference between the correct and faulty 

circuits. Since a fault is treated as a quantity added to the circuit output, the 

behavior f~  of the faulty circuit is represented as a sum of the correct output and 

the error function e, that is, f~  = f + e. The relation: 

                  AT( f~ ) = AT(f)+ AT(e) 

is satisfied. The size of the error is measured in terms of the number of non-zero 

spectral coefficients in AT of the error e, that is, AT(e). Based on the linearity 

feature, black-box verification can be performed without any knowledge of a 

circuit structure and implementation, as it is performed through design interfaces 

without accessing directly any of internal states. 

 
 
3.2.3 Calculation of AT Coefficients 
 The definition of AT has been introduced. The usual method relies on matrix 

multiplication, which needs huge computation of multiplication and addition, so it 

is always inefficient. Past explorations investigate some other methods to 

calculate AT coefficients. 

  Folkowski and Chang [92] develop an algorithm to calculate the AT of the 

Boolean function from its OBDD representation. The method of decomposition of 

arithmetic spectral coefficients in terms of the cofactors of Boolean functions that 

resembles Shannon decomposition has been introduced. A new algorithm to 

synthesize OBDD from arithmetic spectrum is described.  

Authors in [94] introduce a fast algorithm to generate AT. In that paper, 

different properties and ways of calculation for multi-polarity generalized 

arithmetic and adding transforms have been presented. Mutual relationships 

among spectra of different polarities have been discussed and the possibility to 

generate spectrum of an arbitrary polarity directly from the known spectrum of 
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some polarity has been indicated. The following figure illustrates the fast 

algorithm. 

  Krenz et al. [95] present a fast algorithm for evaluating the arithmetic transform 

of a Boolean function based on its circuit representation. Unlike previous 

algorithms requiring an orthogonal and non-redundant representation or a single 

BDD, a new algorithm is proposed to partition the evaluation based on the 

dominator relations of the circuit graph. The dominators simplify intermediate 

evaluation steps greatly. So the algorithm can process larger circuits.  

  Whitley et al. [96] use representations of decision diagrams to calculate spectral 

coefficients by graph-based algorithms which produce Walsh, Arithmetic and 

Reed-Muller transforms for multi-output functions. Thornton et al. [97] propose 

matrix based techniques to calculate direct transformations amongst Walsh, Haar, 

Arithmetic and Reed-Muller spectral domains. They implement the fast 

transforms directly on decision diagrams.  

  Moraga et al. [98] introduce new diagrams based on AT, that is, arithmetic 

transform decision diagrams (ACDDs) which are the integer counterparts of the 

functional decision diagrams (FDDs). The paper describes how to construct the 

diagrams by the structure of arithmetic transform spectrum of Boolean functions. 

Example 3.6 shows an ACDD for a Boolean function.  

 
Example 3.5: Figure 3.6 shows the ACDD for functions of n = 3 variables. Figure 

3.7 shows the reduced ACDD for the Boolean function: 

f(x1, x2, x3) = 3 - 2x1 - x2 + 4x1x2 + x1x3 + 2x2x3 

The constant nodes represent the arithmetic spectrum of f given by Af = [3 1 2 4 3 

2 4 7]T .  
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Figure 3.6: ACDD for n=3  
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Figure 3.7: ACDD of f in Example 3.6  

 
  Cintra et al. [99] propose a unified theory for AT of a variety of discrete 

trigonometric transforms. Interpolation process is required and determines the 

transform. Authors also introduce a new algorithm to calculate the discrete 

Hartley transform by AT.  

Past explorations calculate AT coefficients directly in spite of using matrix 

multiplication or starting from OBDDs or other function representations. The 

direct way sometimes leads to low efficiency especially for larger circuits. We 

design a new method to calculate AT in this chapter which is an indirect way by 

composing detached blocks in the circuit. First three extensions of AT are 

introduced.  
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3.3 Extensions to the Arithmetic Transform 
Consider a circuit consisting of two blocks B1 and B2 in Figure 3.8. The 

composition of the two ATs: P=AT(B1) and Q=AT(B2) require the binary 

encoding, that is from the conversion of the word-level output P of the first AT 

into the bit-level values T, acceptable as inputs to the second AT [70].  

B2
.
.
.

I
P=AT(B1(I))

T=|R|-1
.
.
.

Q=AT(B2(T))
B1

 
Figure 3.8: Binary encoding use for compositions of ATs 

 
  Instead of closed-form expression for binary encoding, the integer-to-binary 

conversion algorithm is applied to the AT polynomial to obtain |w|-1. AT 

extensions should accept both word- and bit-level inputs because of no simple 

form of AT(|w|-1).  

The majority of digital circuits subject to verification are complex designs 

composed out of many smaller sub-blocks. AT can still be used to represent such 

designs, however in order to facilitate the compositions of ATs describing 

individual blocks (some of them may be sequential) we need to derive extensions 

to the basic AT. Radecka and Zilic [70] has proposed three extensions to represent 

complex combinational and sequential circuits. Here a summary introduces them 

shortly.  

 
 

3.3.1 Mixed Arithmetic Transform 
The first extension (MAT) facilitates the compositions of two or more AT 

blocks. The introduction to MAT is dictated by the incompatibility of inputs and 

outputs accepted and generated by AT. Note, that ATs in their original forms 

accept inputs as only binary variables, while for the compositions of ATs some of 

the inputs may be binary as well as word-level. 
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Definition 3.4: The Mixed AT (MAT) [70] is a polynomial representing the 

function wwBf km →×:  which uses an arithmetic “+” operation, word-level 

coefficients 
niiic ...21
, binary x1,x2,…,xm and word-level kwww ..., 21  inputs as well 

as binary exponents i1,i2,…,in and e1,e2,…,ek: 
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i i e e

i
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1 1

1
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0

1
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Eqn. (3-4) can be used to calculate the coefficients of a MAT, which is 

expanded around binary input variables, and treat word-level input quantities 

unassigned as symbols: 

fTwwwc nk *)...,( 21 =                       (3-4)     

 
Example 3.6: Consider the MAT of a function f=3a+b, where “a” and “b” are 

2-bit unsigned integers. We treat a=a1a0 as a bit vector, and “b” as a single 

word-level quantity. We obtain the truth table: 

                  f = [b 3+b 6+b 9+b]T 

from which the AT transform application generates:  
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The resulting polynomial is F(a1a0) = b+3a0+6a1 

 
  The size of the matrix Tn is shrunk from 16*16 to 4*4 by treating the input b as 

word-level values. Therefore, the above example denotes that a MAT allows a 

compact way of generating AT.  

  A block represented by MAT can always be converted to the AT with 

polynomial size increase in wordlength m. A MAT is of importance for 

composing ATs by means of its word-level input variables, rather than for 

representing all functions. A function should be expressed explicitly in terms of 

designated word-level inputs.  
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3.3.2 Sequential AT Extensions  
  Since AT and MAT have no ability to represent sequential circuits, as there is 

no notion of time provided by these transforms, two extensions are introduced to 

allow variables to change over time to facilitate sequential implementations. We 

refer to such variables as timed variables. 

 
Definition 3.5: The Timed variable “v[n]” is a variable “v” to which a time tag 

“[n]” is assigned to indicate that the function generating the value of “v” 

changes with time instance “n”[70]. 

  Timed variables are used to abstract away the clock in the sequential 

implementation. A timed function f[n] represents the value of f in the nth clock 

period. The function f[n] is executed in a finite number of clock cycles.  

 
Example 3.7: A timed equation of a memory element such as a flip-flop whose 

content is reloaded every clock cycle is defined as [70]: 

                     mout[n] = min[n-1] 

 
Definition 3.6: The AT Sequential (ATS) is the Arithmetic Transform AT(f)[n] of 

timed function “f” at time instance “n”, while the MAT Sequential (MATS) is 

analogously MAT(f)[n] of a timed function with word- and bit-level inputs [70]. 

 
Example 3.8: Consider a standard flip-flop with input “D”, reset signal  

“reset” and an enable signal “En” – all bit type is represented by ATS [70]: 

])1[*)1(*)(1(])[( −−+−= nfEDEresetnfATS nn  

 
  In fact, if intermediate variables generated by sequential elements are 

word-level quantities, the only appropriate sequential transform is an ATS.  

  The MATS of a sequential function “f” can be obtained from the MAT of the 

combinational part of “f” by the replacement of each MAT input that is generated 

by a memory element with its defining MATS. MATS have two forms. A type I 

MATS presents a case where the timed output variable f is expressed only in 

terms of timed input values, and a type II MATS describes a recurrence equation, 
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where a symbol of a considered function f appears on both sides of a definition. 

The circuit behavior at a given time instance can be obtained through solving the 

recurrence equation analytically and symbolically by tools such as Maple or 

Mathmatica.  

 
Example 3.9: In Figure 3.9(a), block A1 represents an N-bit adder. In the nth step, 

one summand is taken from primary inputs, while the other is supplied from 

multiplication of a constant and the register storing the values of the previous n-1 

additions. The register has been initially reset.  

A1 +

Register

f[n]

f[n]

a[n] f [n-1]

a)

B1 *

B2  +

f[n]

X[i] Y[i]

b)

Register

f[i]

f[i-1]
0.5

0.5

 

Figure 3.9: Add- and Multiply-Accumulate Loops  

  The MATS of this loop is obtained by considering the register input f[n], with 

the value given by the recurrence:  

MATS(f)[n]=a[n]+0.5*MATS(f)[n-1],     MATS(f)[0]=0 

Its solution is:  MATS(f)[n] = ∑
=

−
n

i

in ia
1

][5.0  

  Then block B1 in Figure 3.9(b) represents an N*N-bit multiplier, and block B2 

is a (2N+1)-bit adder creating a multiply-and-accumulate loop. The MATS results 

from the previously derived MAT transforms of its individual blocks. The inputs to 

the MAC loop at the time instance “i” are the N-bit binary vectors x[i] and y[i], 

and the output f[i] is a binary of size (2N+1). The ATS (all inputs are bits) of the 

multiplier B1 is defined for inputs at time instance “i”: 
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The recurrence solution of the loop transform is: 
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  Table 3.2 [70] clearly enumerates all definitions of transforms. 
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ATS AT transform ATS(f)[n] of a timed function f at a time instance n  
MATS MAT transform MATS(f)[n] of a timed function f at a time instance n 

Table 3.2: Definitions of the AT and its extensions 

 

 

3.4 Composition Subroutines 
After describing each design sub-block in terms of corresponding MAT, MATS 

or ATS, the overall AT can be constructed. Some of the approaches to the AT 

compositions focus on transferring ATs into decision diagrams [92]. However, due 

to their limitations, they are inadequate for many complex cases. In addition, 

factors such as running time and space are significant for these schemes. In this 

section we propose several subroutines to manage the complexity of constructing 

AT and its extensions. 

 
 

3.4.1 Composition of AT and MAT 
 Composition of MAT and AT blocks can get a combinational circuit transform. 

While word-level variables are substituted by their AT polynomials, the overall 

circuit transform comes from the replacements and the Boolean algebra law 
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i
n
i xx =  ( 0≠n ). A block downstream must be represented by a MAT or an AT. 

Throughout the composition procedure, lots of intermediate terms would be 

generated and they should be combined for simplification, so running time and 

spaces are crucial factors that need attention. A best algorithm gets a tradeoff 

between them. 

The following observation is a key to facilitating the combination of 

polynomial terms that become isomorphic by applying Boolean algebra rules to 

polynomials. A single, easy-to-calculate integer parameter referred to as an index 

of the term will be sufficient for finding isomorphic terms. We say that the index 

of the term is the integer encoded characteristic function of its variable indices. 

For instance, the index for the term 2
01

2
3 xxx  is computed as 23+21+20 = 11, 

and it is identical to the index of the term 0
3
13 xxx . Thus, the two terms are 

isomorphic terms and should be combined.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Algorithm of MAT and AT composition 

Figure 3.10 elaborates the subroutine in detail. The algorithm loops all terms in 

the MAT polynomial and searches whether the terms comprise the word-level 

variable represented by the AT polynomial. If so, the variable is expanded to form 

new terms; if not, the MAT terms are stored in an intermediate polynomial 

Compose_AT_MAT (AT_poly, MAT_poly) 
1.{  for (p=0; p<MAT_poly.term_num; p++)  
2.   {  for (i=0; i<MAT_term.wordvarnum; i++) 
3.      {   if (word_var[i] = AT_poly) 
4.          {  inter_term = Substitute (MAT_term, AT_poly); 
5.             inter_term = Norm (inter_term); 
6.          Store (inter_term, inter_poly);   }  } 
7.       if (i = MAT_term.WordVarNum) 
           Store (MAT_term, inter_poly); 
    } 
8.   Set_index (inter_poly); 
9.   for (p=0; p<inter_poly.term-1; p++)  
10.  {  Adjust_term_position( term[p], term[p+1]);  
11.     if (term[p].index = term[p+1].index) 
            term[p].coeff += term[p+1].coeff);   } 
12.   final_poly = inter_poly;  return final_poly; 
} 
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directly; the procedures are described in Step 1 - 7. After the loop is finished, an 

intermediate polynomial is obtained and all terms’ indices are computed in Step 8. 

The algorithm then sorts terms with smaller indices forward, and if two terms 

have identical indices, the algorithm adds their coefficients. Ultimately, the 

composition polynomial is obtained, as reflected by Step 9 - 12. If the algorithm 

sorts and combines terms after each expansion procedure, it might be costly, so an 

intermediate polynomial is essential to cut computation time. Therefore, the 

procedures of adjustment and combination occur after all expansions are 

accomplished. 
 

Example 3.10: Steps for composition of MAT and AT. Assume two modules with 

three primary inputs (x2, x1, x0). 

AT(f1) = 1+ 2x0 + 3x1 – 4x1x0 = w0 

MAT(f2) = 2 -3w0 - 5x1 + x2 – 6w0x2 + 4x2x1 

A main loop begins with the first MAT term, a constant “2”, until it reaches the 

last term “4x2x1”. Since the first term of MAT does not contain the word-level 

number w0, it is stored in an intermediate polynomial directly. The second term of 

MAT comprises the word-level variable, using w0=AT(f1) as a substitute for 

expansion in this term. After simplification, the expanded terms are stored in the 

intermediate polynomial. When the loop is finished, an intermediate AT 

polynomial is obtained: 

inter_poly = 2 -3 - 6x0 -9x1 +12x1x0 -5x1 + x2 -6x2 -12x2x0 -18x2x1 +24x2x1x0+ 4x2x1 

and the indices of the expanded terms are: 

(0, 0, 1, 2, 3, 2, 4, 4, 5, 6, 7, 6) 

Through position adjustment, the sequence sort orderly: 

(0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7) 

Now, the intermediate polynomial changes: 

inter_poly = 2 -3 - 6x0 - 9x1 -5x1 +12x1x0+ x2 -6x2 -12x2x0 -18x2x1 +4x2x1+ 24x2x1x0 

Terms “2” and “-3”, “x2” and “-6x2”, “-18x2x1” and “4x2x1” are combined, and 

the overall AT polynomial is generated: 

AT(f) = - 1 - 6x0 - 14x1 + 12x1x0 - 5x2 - 12x2x0 - 14x2x1 + 24x2x1x0 
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3.4.2 Composition of ATS and MATS 
  ATS and MATS have time tags, so the subroutine has a distinct step to process 

the tags. The difference is denoted in Figure 3.11. The returning polynomial is an 

ATS polynomial or a MATS polynomial. 

 
  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Algorithm of MATS and ATS composition 

 
Step 4 adds time tags of the word-level variables in the MATS polynomial to 

the ATS polynomial and then expands the MATS term. If two identical bit-level 

variables in an expanded term have same time tags, they must be combined，for 

instance, a term of 5x0[n-2]x1[n-1]x1[n-1] is simplified as 5x0[n-2]x1[n-1]. This 

procedure is described in Step 7. After the intermediate polynomial is generated, if 

two terms have identical indices, and corresponding variables in the two terms 

also have same time tags, the algorithm combines their coefficients. Step 13 - 15 

Compose_ATS_MATS (ATS_poly, MATS_poly) 
1.{  for (p=0; p<MAT_poly.term_num; p++) 
2.   {  for (i=0; i<MATS_term.wordvarnum; i++) 
3.      {  if (word_var[i] = ATS_poly) 
4.         {  Add_time(word_var[i].tag, ATS_poly); 
5.            inter_term=Substitute( MATS_term,ATS_Poly); 
6.       for (k=0; k<inter_term.varnum-1; k++) 

{  
7.              if ( var[k].index = var[k+1].index && var[k].tag = var[k+1].tag) 
                  Norm( inter_term);   } 
8.           Store (inter_term, inter_poly);     

} 
} 

9.      if (i = MATS_term.wordvarnum) 
           Store (MATS_term, inter_poly);.    
    } 
10.  Set_index (inter_poly);    
11.  for (p=0; p<inter_poly.term_num-1; p++) 

{  
12.     Adjust_term_position(term[p], term[p+1]); 
13.     if (term[p].index = term[p+1].index ) 
14.     {   if term[p].var[k].tag!=term[p+1].var[k].tag) 
             term[p].coeff += term[p+1].coeff);  } 

} 
15. final_poly = inter_poly;  return final_poly; 
} 
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elaborate the procedure. 

 
Example 3.11: Steps for composition of MATS and ATS.  

ATS(f1) = 1 + 2x0[n-1] + 3x1[n-1] 

MATS(f2) = w0 - w1[n-2] - 4w0[n-1]x0[n-2] 

  MATS includes two word-level variables w0 and w1, and w0 = ATS(f1), therefore 

the overall transform is a MATS polynomial. A loop begins with the first MATS 

term w0 and it contains the ATS output variable w0, so it is substituted by ATS(f1) 

and expanded terms are stored in an intermediate polynomial. The second term 

comprises another word-level variable so it does not need expansion. The last 

term has a word-level variable with a time tag and it is accumulated to ATS tags, 

since two x0 variables have same tags “2”, they are combined. 

inter_poly = 1 +2x0[n-1] + 3x1[n-1] - w1[n-2] - 4x0[n-2] - 8x0[n-2] - 

12x0[n-2]x1[n-2] 

  Through position adjustment and combination of isomorphic terms, the overall 

transform is generated: 

MATS(f) = 1- w1[n-2] + 2x0[n-1] -12x0[n-2] +3x1[n-1] - 12x0[n-2]x1[n-2] 

 
The other two subroutines, Composition of ATS and MAT, and Composition of 

AT and MATS, are similar to the mentioned subroutines. They are omitted here. 

 

 

3.5 Overall Composition Algorithm 
Each block represented by a corresponding transform is as a node defined by a 

data structure to describe its properties to facilitate composition of detached 

blocks. The suitable structure definition is: 

{   unsigned long type;    unsigned long type_index; 

  unsigned long level;   unsigned long in_word_num; 

  char *in_index;      char out_index;  } 

  The parameter type indicates which the transform type is corresponding to AT, 
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ATS, MAT or MATS; type_index evaluates its index inside nodes which have 

same type with this node; level determines its depth in the constructed diagram, 

and blocks with primary inputs are always set “0”; in_word_num indicates the 

number of input word-level variables, in_index stores indices of input word-level 

variables and out_index stores the index of its output word-level variable. Figure 

3.12 outlines steps to compose modules to get an overall transform. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.12: The overall composition algorithm 

The most important issue confirming the parameter level of each node at the 

block-level netlist is dedicated in Step 2 - 6. The “level” parameter builds a 

hierarchy to designate a composition path. The composition procedure always 

begins from AT or ATS with primary inputs, and they are set to level “0”. While it 

goes forward according to the current level, and encounters a block which has an 

1. for (i=0; i<node_num; i++) 
    Set_property (node[i]); 
2. for (i=0; i<node_num; i++) 
3. {  if (node[i].type = 2 or 3)     // MAT or MATS 
4.   {  for (j=0; j<node_num; j++) 
5.      {   if (node[j].out_word_index = node[i].in_word_index) 

 6.          {   if (node[i].level<node[j].level+1)   
node[i].level=node[j].level+1; }  

}  
} 

} 
7. current_level = 1; 
8. for (i=0; i<node_num; i++) 

{   
9.   if (node[i].level = current_level) 

{  
10.     for (j=0; j<node_num; j++) 

 { 
11.        if (node[j].out_index = node[i].in_index) 

       {   
new_node = Subroutine(node[i], node[j]; 
Set_property ( new_node);  

 } 
       } 

} 
12.  current_level++; 

} 
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identical level with the current level, the algorithm invokes a corresponding 

subroutine in terms of the block’s type, eventually the overall transform of the 

circuit is achieved, and please note this transform with primary inputs does not 

contain any intermediate variables, so the final transform is AT or ATS. 

 
Example 3.12: Consider a circuit consisting of four nodes with four primary input 

bits as Figure 3.13. Each word-level output is assigned to a different index. By the 

composition algorithm, we get its overall transform. 

AT

ATS

MAT

MATS

W0

X0

X3

X2

X1
W1

W1

W2
W3

 
Figure 3.13: A circuit with 4 modules              Figure 3.14: Node properties 

First, each node properties are labeled through step 1 - 6 in Figure 3.14. N 

represents NULL and the MATS node has the largest level “2”. 

ATS

MAT

MATS

(1,0,0,0,N,1)
(2,0,1,1,1,2)

(3,0,2,2,{1,2},3)

      ATS

ATS

MATS

(1,0,0,0,N,1)

(1,1,1,0,N,2)

(3,0,2,2,{1,2},3)

 
Figure 3.15: Composing the MAT and           Figure 3.16: Composing the MAT and 

the AT nodes                               the ATS nodes 

 A parameter current_level is set to “1” at the beginning, and the algorithm 

searches which nodes has a level the same as the current_level. It is the AT node 

in this case and its out word-level variable is one of the input variables in the 

MAT node. The algorithm calls Compose_MAT_AT function and since the MAT 

node has two different word-level variables, it generates a new MAT mode as in 

Figure 3.15. Next, the algorithm finds that the ATS output variable is another 

input variable of the MAT node. Therefore, it calls the subroutine 

Compose_MAT_ATS and gets a new ATS node in Figure 3.16.  

While no other nodes have same level, the parameter current_level is increased 

(0,0,0,0,N,0)

AT

ATS
MAT MATS

(1,0,0,0,N,1)

(2,0,1,2,{0,1},2)

(3,0,2,2,{1,2},3)
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by 1, to become 2. The algorithm matches it with the MATS node, and then the 

subroutine of Compose_MATS_ATS can be invoked. 

ATS
MATS

(1,1,1,0,N,2)

(3,0,2,1,2,3)

 
Figure 3.17: Composing the MATS and the ATS nodes 

Finally, an ATS polynomial is obtained through the composition of the new 

MATS node and the remaining ATS node.  

 
  From the example, one can notice that the algorithm follows a fixed order 

determined by the parameter “level” to compose block representations. Its logic is 

easy to follow, to implement simply for arbitrary topologies and even transforms. 

 

 

3.6 Experimental Results 

In this section, the composition algorithm in Figure 3.12 is verified by several 

benchmarks such as ALU, CSA and MAC. 

 
 
3.6.1 ALU Circuit Implementation 

Arithmetic Logic Unit (ALU) is a necessary block of microchips. It takes 

charge of data operations, including arithmetic, logic and relation operations, and 

stores results in memory. Figure 3.18 illustrates a typical ALU model. The AT of 

an adder is: 
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                    Figure 3.18: An ALU model 

 
Inputs of a multiplier consist of bit-level variables and a word-level variable 

which is from the output of the adder, so the multiplier has MAT form: 
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  Table 3.3: Results for the ALU transform 
 

Table 3.3 gives parameters of the adder and multiplier inputs and gets the  

number of their transform terms based on given input variables. It reveals the 

overall transform terms number after composition. 

 
 
3.6.2 CSA Circuit Implementation 

Carry-Select Adder (CSA) is a common implementation of adders, which 

computes alternative results in parallel and subsequently selects the correct results 

with single or multiple stage hierarchical techniques. The carry-select adder 

increases its area requirements for purpose of enhancing its speed performance. In 

carry-select adders both sum and carry bits are calculated for the two alternatives: 

input carry “0” and “1”. Once the carry-in is delivered, the correct computation is 

Adder 
Inputs 

Multiplier  
Inputs 

Adder Terms Multiplier 
Terms 

AT  
Terms

Time [s] 

12 7 12 7 84 0.875 
14 8 14 8 112 1.672 
16 9 16 9 144 3.834 
24 13 24 13 312 13.4 
32 17 32 17 544 34.3 
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chosen by a multiplexer to generate a desired output. Therefore waiting for the 

carry-in to calculate the sum is avoidable, and the sum is correctly generated as 

soon as the carry-in gets there. The obvious advantage is that CSA largely reduces 

time of computing the sum. Two adders share 8-bit inputs variables and have 

different input carry. The adder transform is: 

             carryyxfAT
N

i
i

i
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i
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0

1

0
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The multiplexer transform is:  

                    MAT( f2 ) = (1-c)w0 + cw1 

Here c is a bit-level variable and (w0, w1) are word-level variables from outputs of 

the two adders. The concept is illustrated in Figure 3.19. 

 
x0~ x3

0
+ +

1

0 1

W0

c

Z

x0~ x3 y0 ~ y3y0~ y3

W1

 
Figure 3.19: 4-bit carry select adder 

 
Since the MUX transform has two word-level variables, an intermediate MAT 

polynomial is generated for convenience to incorporate one word-level variable. 

The seventh column of Table 3.4 indicates the space requirements. 

Table 3.4: Results of CSA transforms  

Inputs Adder 
Terms 

MUX 
Terms 

Inter 
Terms 

AT Terms Time (s) Space (MB) 

24 25 3 49 25 0.1 0.02 
32 33 3 65 33 0.18 0.036 
40 41 3 81 41 0.26 0.058 
48 49 3 97 49 0.35 0.073 
56 57 3 113 57 0.44 0.092 
64 65 3 129 65 0.53 0.12 
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It is apparent that even when the number of input bits becomes large, the 

running time and space requirement remain modest. The program provides an 

effective interface to process sparse coefficients which comprise lots of “0” values. 

Hence, the time is dominated by the number of non-zero AT terms, rather than 

being possibly exponential function of the number of input bits. We observe that 

additional speedup can be obtained by relying on the equivalence checking of the 

individual blocks, before the module is incorporated in larger netlist. As inclusion 

of AT of individual blocks is less costly than the construction by a netlist traversal 

of those blocks. 

 
 
3.6.3 MAC Transform 

The AT specification of a MAC circuit from Figure 3.20 can be determined by 

combining AT, MAT, and MATS components. The unit is built using shift 

registers, a multiplier, and an adder-register loop.  

The expression of a MAC is shown below: 
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The equation should be solved at a time instance n to obtain the MAC transform. 

For example, for n=8 and N=2, the ATS of the multiplier is:  
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Figure 3.20: Implementation of a MAC 
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The overall ATS is given by followed equation: 
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Table 3.5: Results of MAC transforms 

 
Table 3.5 displays results of the MAC implementation. Column 1 and 2 denote 

its word-level variable size and time instance value. Even though the AT terms 

grows exponentially with word size, the computation time and space are satisfied. 

 
 
3.6.4 Implementation of a FIR 
  Finite impulse response filter (FIR) is often used in digital signal processing. 

Figure 3.21 gives a general FIR structure.  

+

Z Z ......X Z Z

w0

w1

wi

wN-2

wN-1

              

               Figure 3.21: A general FIR model  

]8[]8[4]8[]8[2]8[]8[2]8[]8[ 11100100 kykxkykxkykxkykx −−+−−+−−+−−

Word Size Time Instance AT Terms Time(s) Space (MB) 
8 4 256 0.137 0.085 
8 8 512 0.465 0.14 
8 16 1024 1.28 0.26 
16 4 1024 1.459 0.28 
16 8 2048 3.251 0.46 
16 16 4096 6.874 0.91 
32 16 16384 25.43 3.82 
32 32 32768 55.8 7.46 
32 64 65536 132.9 15.8 
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The timed register equation is: 

               ]1[][ −= nmnm inout  
These sequential registers make the overall transform represented by ATS. 

The MAT of adder is: 
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where Xi  is a word-level input from each tap output. 

 
 
 
 
 
 
 
 
 
 

Table 3.6: Results of the FIR transform 

 
The FIR implementation has a structure that is easily represented by ATS. 

Furthermore, the task of equivalence checking or the verification of imprecise 

implementations can facilitate to verify whether the implementation fits the 

specification. 

 

 

3.7 Conclusion 
  AT is the most important representation in our research, so in this chapter the 

spectral techniques and the basic definition of AT were introduced. Although AT 

can represent an arithmetic circuit compactly, it has limitations. The proposed 

three extensions for representing combinational and sequential circuits were 

outlined. Getting the circuit transform is significant for verification. Direct 

computation sometimes requires too much time for these processes. We proposed 

Taps Word Size ATS Terms Time(s) Space(MB) 
32 16 512 0.21 0.56 
32 32 1024 0.39 1.3` 
32 64 2048 0.72 2.53 
64 16 1024 0.53 1.22 
64 32 2048 0.98 2.54 
64 64 4096 1.87 5.1 

128 16 2048 0.78 2.55 
128 32 4096 1.98 5.23 
128 64 8192 4.05 10.68 
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a topological method of composing the transforms of detached blocks to facilitate 

the calculation, so it is easy to obtain the overall transform for a complex circuit. 

The experiments proved its high efficiency. 
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Chapter 4  

Basic Algortihms 
 

 

 

 

Imprecise circuit specifications such as Taylor series complicate 

the process of design and verification. We adopt a spectral technique, 

Arithmetic Transform (AT), to process the imprecise circuits. In this 

chapter, three basic algorithms based on AT are described which 

convert polynomials and search for the maximum absolute value. 

These are fundamental algorithms for the verification and 

optimization in following chapters.  
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The fixed-point representation problem includes two facets, the precision 

problem and the range problem. Beginning in this chapter, we explore the 

precision problem. First, the typical imprecise representation is introduced.  

 

 

4.1 Taylor Series 
In mathematics, the Taylor series is a representation of a function as an infinite 

sum of terms calculated from the values of its derivatives at a single point. Let f(X) 

be a real and differentiable function corresponding to an algebraic expression. The 

variables are real numbers with usual field operations (+,*) over real numbers R.  

 
Definition 4.1: The function can be represented as Taylor series using a variable 

X and an initial constant X0. 

 

 

=                                                    

where )(),( ''' XfXf , etc, are first, second and higher derivatives of f(X), and Rn(X) 

is a Lagrange remainder. 

 
The error R is bounded, using point ξ  in the interval I, as:      

Rn(X) = 1
0
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Taylor series can be used to calculate the value of an entire function in every 

point, if the value of the function, and of all of its derivatives, are known at a 

single point. Uses of the Taylor series for entire functions include: 

 The partial sums (the Taylor polynomials) of the series can be used as 

approximations of the entire function. These approximations are good if 

sufficiently many terms are included. 

 The series representation simplifies many mathematical proofs. 
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If this series converges for every x in the interval (a − r, a + r) and the sum is 

equal to f(x), then the function f(x) is analytic in the interval (a − r, a + r). If this is 

true for any r then the function is an entire function. One normally uses estimation 

for the remainder term of Taylor's theorem to check whether the series converges 

towards f(x). A function is analytic iff it can be represented as a power series; the 

coefficients in that power series are then necessarily the ones given in the above 

Taylor series formula. 

Many transcendental arithmetic functions such as sin(X) and log(X) are realized 

through Taylor series. For example, Taylor series of sin(X) is: 
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Naturally, any hardware realization implements finite terms of Taylor series, 

which invariably would lead to an error. Imprecision further comes from a 

finite-word representation of real numbers. The precision analysis is therefore 

necessary to make use of the fixed-point number representation, which is 

attractive in balancing complexity, cost and energy consumption.  

Both of the above approximations cause the implementation imprecision error. 

The first case from truncation of Taylor terms is easy to evaluate. The remainder 

Rn(X) has an explicit expression and can be estimated without actually computing. 

The most common estimation is based on bounding the absolute value of the nth 

order derivative on the entire interval that contains the intermediate point ξ . 

While estimating the derivative on a given interval, it is not necessary to find the 

exact maximum of a function, for most cases trying to find some upper bound is 

not too rough. Therefore our emphasis concentrates on the error due to finite 

wordlength. Arithmetic Transform (AT) is used to investigate the imprecision. 
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4.2 Algorithm for AT Conversion  

by Taylor Series 
Many arithmetic functions can be represented as (infinite) Taylor series, 

however their hardware realization inevitably leads to imprecision due to the 

restrictions regarding the finite number of terms to be implemented. Any 

imprecision of the implementation causes a circuit to behave differently with the 

assumed specification. Nevertheless, known imprecision cannot be treated as 

unintended errors committed during the design process. Therefore, we accept the 

design to be fault free, if its behavior differs from specification within assumed 

error interval. We convert the Taylor series specification/design representation 

into a corresponding AT to evaluate the error upper bound of the implementation. 

This step is needed in order to integrate the verification of the imprecisely 

implemented blocks into the overall verification scheme proposed in this work, 

and based on the Arithmetic Transform data representation. 

AT is canonical, and will be used to directly represent approximation and 

imprecision errors coming from the finite Taylor series function representations. 

The correspondence between Taylor and AT representation is illustrated by the 

following lemma. 

 
Lemma 4.1: Consider a finite Taylor polynomial around X0=0 where the variable 

X will be represented as an m-bit unsigned fractional number. By denoting f0(i)=f 
(i)(X0), we have: 
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The AT of f(X) is expanded from the Taylor polynomial as: 
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Proof: The transform of an m-bit unsigned fractional number X is 
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)1(2)( . Since AT is linear, that is, AT(f1+f2) = AT(f1)+AT(f2) and 
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AT(C*f) = C*AT(f), where C is a constant , we can obtain: 
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=f [AT(X)]                      □ 

 

Lemma 4.1 denotes that AT[f(X)] results from substituting expanded bit-level 

variables for the word-level variable X in f(X). By combining coefficients of 

isomorphic terms in the expanded polynomial, the AT representation in Def. 3.3 is 

obtained, thus leading to the conversion of Taylor expansions to AT.         

While Lemma 4.1 might seem to lead to a simple realization of the conversion 

between Taylor and AT, in reality the process could be time- and 

memory-consuming. To evaluate the imprecision error using AT, the specification 

should be translated into AT as well. In this section we describe the conversion of 

Taylor series into AT by expansion from Lemma 4.1. A straightforward method 

for generating AT[f(X)] replaces each monomial in Taylor series f(X) by its 

defining AT, followed by the consolidation of AT terms. Although the overall 

conversion procedure is conceptually simple, the expansion of the real-valued 

quantities from Taylor series into word-level AT terms can lead to a large 

intermediate polynomial, similar to what is known to happen in symbolic 

computing.   

By the rule that Boolean algebra xi
n equals xi, lots of expanded terms are 

identical and they should be combined to form a simplified AT polynomial. A 

straightforward method multiplies each factor recursively, and gets an 

intermediate polynomials, then simplifies it by using the Boolean rule, so the AT 



Chapter 4: Basic Algorithms 

 90

polynomial is achieved. Although the procedure is easy to comprehend, 

complexity in the calculation comes from large Taylor degrees and bits number 

which leads to a large size of the intermediate polynomial since it comprise a 

great many expanded terms.    

For example, with degree k=7 and input bits N=16, the number of intermediate 

terms increases to over 2000000. Consequently, storage and grouping of the same 

terms are major hurdles and result in low efficiency. We now show how to 

perform conversion into AT polynomial that handles efficiently the intermediate 

data swell. 

 
 

4.2.1 Expansion Formula 
The key problem in converting Taylor series into an AT polynomial is the 

calculation of the corresponding AT terms k
N

i
i
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1

0
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where m
kC  is defined as ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

m
k

C m
k . Based on Eqn. (4-2), we find that the 

intermediate coefficients of the isomorphic terms must be combined to simplify 

the obtained AT. The structure of equation will be explored to reveal the 

possibility to derive an efficient conversion algorithm. In particular, the following 

property is used for efficient grouping of common terms. 

 
Property 4.1: For AT raised to the exponent k, Eqn. (4-2), the sum of the 

individual variable’s exponent is k for each term. 

Proof: The calculation of the sum requires k-1 multiplication, where all bit-level 

variables in a single factor have a fixed component ‘1”. Through each 

multiplication procedure, the term’s exponent augments one and its beginning 

exponent is also one, so finally the total exponent is k-1+1= k. 
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Property 4.2: If an AT term has p variables, the largest exponent which a 

variable can obtain is the Taylor degree k subtracting variables number p plus 1, 

and the least exponent is 1 in all expanded isomorphic terms. 

Proof: If a variable appears in an AT term, that’s easy to know it has an exponent 

“1” at the lowest. In terms of Property 4.1, the summed exponent of the p 

variables is Taylor degree k, while other p-1 variables all have a least exponent 

“1”, the variable can get the largest exponent, etc., k-p+1. 

 
  Towards that goal, some definitions are in place. An integer coefficient 

multiplying expanded terms is named “weight”. For example, in the expanded 

term 01
3
22560 xxx , “2560” is its weight. We refer to final terms after combination 

as “AT terms”. Next, msv and lsv represent most significant and least significant 

variables, respectively, in an AT term. For instance, for the AT term x2x1x0, x2 is 

msv and x0 is lsv; for the AT term x1x0, x1 is msv and x0 is lsv. The algorithm 

requires two computation steps: one gets forms of isomorphic terms, which is 

most important to determine performance; the other calculates the weight of each 

expanded term. 

 
 
4.2.2 Isomorphic AT Terms Combination 
  The following example describes the expanded terms.  

 
Example 4.1: Given three input bits (x2, x1, x0) and Taylor degree k=5, the 

expansion is: 
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  One can easily see that the degree of every bit-level variable amounts to k in 

each expanded term due to the property, etc., the summed degree of 01
3
2 xxx  is 
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3+1+1=5. There are 2N-1=7 AT terms as (x0, x1, x1x0, x2, x2x0, x2x1, x2x1x0). The 

isomorphic terms for the AT term x2x1x0 in the expanded equation is obtained as:  
3 2 2
2 1 0 2 1 02560 ,1920 ,x x x x x x 2 2 2 2 2 3

2 1 0 2 1 0 2 1 0 2 1 0960 ,640 ,480 ,160x x x x x x x x x x x x  

  Now we show how to get all isomorphic terms for an arbitrary AT term such as 

x2x1x0 under a specific Taylor degree. A tuple (m,o,p) expresses variable degrees 

of x2, x1 and x0. At beginning msv x2 is set to the largest degree “3”, and degrees of 

x1 and x0 are “1” according to Property 4.1 and 4.2. The first degree representation 

is (3,1,1) and after that a next degree representation is computed. Beginning from 

lsv x0, preceding variables are searched until one variable with the degree larger 

than “1” is discovered. In the case considered here, such a variable is x2. 

Therefore its degree decreases one and the degree of the succedent variable 

increases one. After this iteration the degree representation is changed to (2,2,1). 

The computation process continues until lsv x0 is set to the largest degree 3, and 

degrees of other two variables are both 1. At this time, the degree representation 

turns into (1,1,3). Transformation of the degree sequence is:  

    (3,1,1) (2,2,1) (2,1,2) (1,3,1) (1,2,2) (1,1,3) 

  Here, the sequence determines the movement order of degree representations, 

and guarantees them not to be repeated or missed. Also it makes an easy 

implementation by a program.  

 
 
4.2.3 Weights of Expanded Terms 

Next we calculate terms’ weights. They are obtained by an input binary weight 

multiplying a combination constant. For example, in the case of an expanded term 

0
2

1
2

2
2
3

2
5 )2()4( xxxCC , the input binary weight equals to 64124 22 =∗∗ , and the 

combination constant is 302
3

2
5 =CC . Using variable indices simplifies the 

computational process of the input binary weight, so the problem reduces to 

getting the combination constant. The terms number of the combination constant 

is N-1 (result of the last Nth term is always 1, so it is neglected). According to Eqn. 

(3-3), the first term is p
kC , where k is the total degree (5 in considered case), and 
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p is the degree of first variable x2 (equals to 2 in the example). The second term is 
q

pkC −
, where q is the degree of second variable x1 (equals 2 in the example). The 

procedure continues until it reaches the last variable. Since each variable degree is 

known from the previous sequence in advance, it becomes easy to compute.  

 
 

4.2.4 Other Discussion 
Above we assume that the bits number is lower than the Taylor degree; if not, 

etc., N>k, the circumstance would be more complicated. For instance N=4 and 

k=2,  
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There are no terms with 3 and 4 variables, so the algorithm only needs a little 

amendment — terms which have the variable number beyond the Taylor degree 

would be neglected. In this example, the neglected terms are x2x1x0, x3x2x1, x3x2x0, 

x3x1x0 and x3x2x1x0. 

  Integrating these two cases, Property 4.3 counts how many AT terms from 

Taylor conversion. 

 
Property 4.3: The number of AT terms is determined by the bits number N and the 

highest Taylor degree k. If N<k, the terms number equals 2N-1; if not, it is ∑
=

k

g

g
NC

1
. 

Please note if the constant f(X0) is not zero in Taylor series, the number needs to 

add 1. 

 
  The situation of X0=0 in Taylor Series has been elaborated. X0 must not be 0 at 

some functions such as log(X) and (1/X)n. Y replaces X0 to avoid confusion with 

the binary bit x0 to explore it.  

 
Example 4.2: Given three input bits and Taylor degree k=3, Y is not zero value, 

the expansion is:  



Chapter 4: Basic Algorithms 

 94

012
1
2

1
312

1
2

1
3

2
12

1
31

2
2

2
302

1
2

1
3

2
02

1
30

2
2

2
3

2
2

1
3

2
2

2
3

3
201

1
2

1
3

2
01

1
3

0
2

1
2
3

2
1

1
3

2
1

2
3

3
1

2
0

1
3

2
0

2
3

3
0

33
2

0

)2)(4()2)(4()2)(4()2()4()4(

)4()4()4()4()4()2()2(

)2()2()2()2()2(

xxxCCYxxCCxxCxxCYxxCC

xxCxxCYxCYxCxYxxCCxxC

xxCYxCYxCxYxCYxCxYYx
i

i
i

+−++−

+++−+−+

++−++−+−=−∑
=

   
Y is regarded as a variable and expanded in terms of Equation (4-2) although it 

is a constant in fact. x0
3, C3

1x0Y2 and -C3
2x0

2Y represent the same AT term x0 thus 

they should be combined. The difference in comparison with a true variable (not a 

constant) is that its exponent can be permitted to set “0” whereas an ordinary 

bit-level variable has a smallest exponent “1” in terms of Property 4.2. Therefore, 

the algorithm needs to be revised: if Y is not 0, let the exponent of Y change from 

0 to the largest to get weights of expanded terms. For example, Y changes its 

degree from 0 to 2 in the AT term x0 and from 0 to 1 in the term x2x1. 
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Figure 4.1: Algorithm of converting Taylor series to AT 

Compute number of AT polynomial

Construct AT link list and set variable
indices for each term

p<= m?

Retrive AT item variable indices and
varibale number p

Retrieve current order m of Taylor series

Y

N

point next
AT item

Set largest order for msv and other variables "1"

Compute temp coefficient

Tail of Taylor
polynomial?

From lsv, whether
current variable order

is not "1"?

Y

N

Whether lsv
order is largest?

Y
Set lsv order "1",msv order
decrease "1" and compute

second msv order

N

whether lsv
order is "1"?

Y

order of the variable
which order is not "1"
decrease "1", and back

variable order increases '1"

N

Order of middle
variables except

lsv and msv is "1"?

Y

N

 Back variable
is lsv?

order of the variable which
order is not "1" decrease "1",

N

Compute back variable
order and set lsv order "1"

Y

lsv order
increases "1"

Y
Complete

N

Tail of AT
polynomial?Y

Point next
Taylor order

Y



Chapter 4: Basic Algorithms 

 96

4.2.5 Flow of Conversion Algorithm 
Eqn. (4-2) establishes the algorithm foundation. The algorithm first computes 

how many AT terms will be according to Property 4.3 and creates an AT linked list 

to allocate their variable indices, then commences a main loop. Within each loop 

procedure, the algorithm retrieves a Taylor degree from Taylor series and starts an 

inner loop to point the AT link list, which indicates the first AT term at beginning. 

Based on the retrieved Taylor degree, isomorphic forms and their weights for the 

indicated AT term are fast computed due to Property 4.1 and 4.2, the weights 

addition is a temporary coefficient for the AT term under the specific Taylor 

degree. While the pointer has moved to the last AT term, a new procedure of the 

main loop occurs to retrieve a next Taylor degree and the pointer resets to the first 

AT term. When the algorithm finishes the main loop, AT coefficients can be 

obtained eventually by summation of all corresponding temporary coefficients. 

Figure 4.1 outlines the algorithm in detail. We observe that the algorithm does not 

generate any intermediate polynomials to store expanded terms explicitly, 

therefore, the algorithm avoids expending huge memory and running time. 

 

 

4.3 Processing Multivariate Polynomials 
The conversion of Taylor series to AT has been solved above. However, Taylor 

series only comprises one word-level variable – work in [84] gave examples for 

verification and the limitation was similar to Taylor series, that is, the benchmarks 

only consisted of one word-level variable. This case restricts further applications 

since many circuits are represented by polynomials included beyond one 

word-level variable or mixed with bit-level variables such as a multiplexer. 

Emergence of the fast more realistic conversion algorithm above makes it possible 

to conquer the problem for cases. In addition, a significant advantage is 

polynomial data structures are often represented by decision diagrams like BMDs 

and TEDs, which stand for bit- and word-level variables, respectively. These 
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diagrams can be transferred to ATs easily, therefore a bridge is generated between 

decision diagrams and the imprecision model to overcome their weakness to do 

component matching. The conversion algorithm mentioned above is unable to 

process the more difficult case. The algorithm is revised to deal with several 

word-level variables to overcome this limitation.  

For an AT term, we define its index, which is unique for each term. The index 

will facilitate the combination of isomorphic terms in an intermediate polynomial. 

 
Definition 4.2: Let the term consist of p bit-level literals bp-1 … b0. Let every bit br 

belong to the word-level variable Wr, that is mr-bit wide. Then, the term index of 

the AT term is defined as:  

                  term.index = ∑
−

=

+∑
−

=

1

0

)(
1

02
p

r

mb
Wr

q
qr

               (4-3)     

 
Example 4.3: Consider AT over three word-level variables X, Y and Z consisting 

of 3, 4 and 3 bits, respectively. Let X be the least significant variable indexed 

as ”0”, and Z be the most significant variables indexed as “2”. For the three 

bit-level literal term z2z1x0, the word-level variables to which the respective 

literals belong, are (W2, W1, W0) = (2, 2, 0). The index of the term is obtained as 

the sum of the three literal indices. First, the computation for x0  produces its 

index 20 =1, since b0 is 0 and W0  is 0. Then, z1 contributes 21+(3+4)=256, since b1  

is 1 and W1  is 2, so m0+m1 = 3+4=7. Finally, z2 produces 22+(3+4) =512, because 

b2 is 2 and W2 is 2. Therefore, the term index for the AT term z2z1x0 is 

512+256+1=769. 

 
It is evident that this case incurs more complexity. Figure 4.2 describes the 

algorithm to produce AT over multiple word-level variables from a real-valued 

polynomial. The algorithm first generates AT for each monomial, and then 

performs additions of the isomorphic intermediate monomials, leading to the final 

transform. The function Expand_Term expands a single word-level polynomial 

term into its AT. The subroutine Convert_Univar_AT introduced in Figure 
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4.1 obtains ATs for all word-level variables in the term.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Algorithm for converting a multivariate polynomial  

 
Then, the subroutine Multiply_AT multiplies the resulting univariate AT into 

the multivariate AT. Note that Multiply_AT follows the conversion of a 

word-level variable that reduces the number of terms. Hence, the size of resulting 

AT can be kept under control by avoiding storing expanded terms. In each 

Convert_Multivar_AT(f, term_num, bit_num ) 
{  for (i=0; i< term_num; i++) 

{  temp_AT = Expand _Term (bit_num); 
sum_AT = Add_AT (sum_AT, temp_AT);   }  

   final_AT = sum_AT;     return final_AT;  
} 
Expand _Term (bit_num) 
{  for (p=0; p<word_var_num; p++) 

{  AT_poly[p]=Convert_Univar_AT (f, term_num, bit_num);  
product_AT= Multiply_AT(AT_poly[p], AT_poly[p-1]); } 

  Set_index (product_AT);   return product_AT;  
} 
Add_AT (augend_AT, addend_AT) 
{   While (!augend_AT.tail && !addend_AT.tail( ) ) 
    {  if ( augend_AT.term.index < addend_AT.term.index) 

     Copy_AT_term (sum_AT.term, augend_AT.term);  
else if (augend_AT.term.index> addend_AT.term.index ) 

         Copy_AT_term (sum_AT.term, addend_AT.term); 
else {  Copy_AT_term(sum_AT.term, augend_AT.term); 

        sum_AT.term.coeff = augend_AT.term.coeff + addend_AT.term.coeff; } 
    } 
   Delete (augend_AT, addend_AT);  return sum_AT;  } 
} 
Multiply_AT (multiplicand_AT, multiplicator_AT) 
{  while (!multiplicand_AT.tail) 

{  while (!multiplicator_AT.tail) 
  {  product_AT.term.coeff = multiplicand_AT.term.coeff 

                           * multiplicator_AT.term.coeff; 
     for (p=0; p<cand_bit_num; p++) 
     product_index[p] = cand_index[p]; 
  for (p=cand_bit_num; p<product_bit_num; p++) 
            product_index[p]=cator_index[p-cand_bit_num]; } 

} 
return product_AT; } 
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iteration, the algorithm adjusts term indices and combines isomorphic terms. Each 

AT term input to the Multiply_AT is assigned a unique index from Definition 

4.2, which guarantees linear ordering among terms.  

The function Add_AT adds two AT polynomials in a canonical way. In this 

procedure, the isomorphic term combination and the term ordering by index occur 

concurrently. When comparing indices of terms, the AT term with a smaller index 

is moved forward in the ordered list. If two terms have identical indices, they are 

isomorphic, and hence their coefficients are accumulated.  

 
Example 4.4: Consider a polynomial that has two word-level variables consisting 

of (2, 3) bits.   

F(X, Y) = 2X3Y +X2Y2  

This polynomial has two terms. The algorithm loops them and expands them to 

two AT polynomials. In the first term 2X3Y, expansions of X3 and Y are: 

AT(X3)= (2x1+x0)3=x0 +8x1+18x1x0          AT(Y)= 4y2+2y1+y0 

This term transform is multiplied by the two sub-AT polynomials: 

AT(2X3Y)=2y0x0+16y0x1+36y0x1x0+4y1x0+32y1x1+72y1x1x0+8y2x0+64y2x1 

+ 144y2x1x0 

The individual AT term index is:   (5, 6, 7, 9, 10, 11, 17, 18, 19)  

In the second term, expansions of X2 and Y2 are: 

AT(X2) = x0+4x1+4x1x0       AT(Y2) = y0+4y1+4y1y0+16y2+8y2y0+16y2y1 

Their multiplication is the transform of X2Y2:        

AT(X2Y2)= y0x0+4y0x1+4y0x1x0+4y1x0+16y1x1+16y1x1x0 +4y1y0x0      

+16y1y0x1+16y1y0x1x0+16y2x0 +64y2x1 +64y2x1x0 

+8y2y0x0+32y2y0x1+32y2y0x1x0 +16y2y1x0 +64y2y1x1+64y2y1x1x0 

Its index is:  (5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27 ) 

  The addition subroutine is invoked to compute the transform of 2X3Y + X2Y2 in 

terms of their indices: 

AT(2X3Y+X2Y2)= 3y0x0 +20y0x1 +40y0x1x0 +8y1x0 +48y1x1 +88y1x1x0 +16y1y0x1 

+16y1y0x1x0 +24y2x0+128y2x1+208y2x1x0 +8y2y0x0 +32y2y0x1 

+32y2y0x1x0 +16y2y1x0 +64y2y1x1 +64y2y1x1x0 
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  Because polynomial multiplications described as the subroutine 

Multiply_AT take place after conversion of a word-level variable, the result AT 

size can be controlled and avoid storing expanded terms, also in each loop 

procedure the algorithm adjusts terms position and combines isomorphic terms, 

and releases memory in time, so it disperses computation time then reduces total 

complexity. Therefore, the algorithm keeps good performance even though there 

are a number of word-level variables.  

 

 

4.4 Imprecision Searching Algorithm 
Saving costs and speeding up a design are so important to engineers, whenever 

available, they benefit from reusing a previously designed module. However, 

these modules usually do not match specifications so they are only 

approximations. If discrepancy (imprecision) is within an acceptable boundary, it 

could be chosen. The approximations come from various aspects and this paper 

concentrates on restrict input space and finite realization of Taylor series. 

Therefore, a good solution to find difference between specifications and 

implementations is significant. 

  A static method for range and precision analysis was used in [43], where 

circuits described by Verilog were assessed for FPGA implementations. This 

solution did not provide a uniform platform and it depended on tools of simulation 

annealing which are often inefficient. In this paper we explore the suitability of 

Arithmetic Transform in the representation of the imprecise blocks and make up 

their deficiency. 

 
 
4.4.1. Basic Definitions of the Algorithm 
  Related definitions are introduced to describe the imprecision searching 

algorithm comprehensibly. 
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A straightforward approach tries every input value to compute its error AT. The 

procedure requires 2N calculation because of total 2N possible inputs. Experiments 

indicate that such an approach would require an infeasible amount of time, and 

therefore a fast algorithm is necessary. In this work we propose such an improved 

algorithm.  

For each input variable xi, we say that Si is a sum of coefficients multiplying 

terms with xi. The most positive variable (mpv) is the variable xj where the sum Sj 

is largest. An upper bound ubcoef of AT polynomial is by summing all 

coefficients that are positive and the coefficient c00…00 that contributes an offset 

for all input assignments. Such a bound is calculated as: 

∑
>

=
0

...
21

c
iiicoef n

cccub + c00…00 

The algorithm checks whether there are the input assignments to be made 

without the search to avoid calling the main search loop unnecessarily. Such a 

preprocessing step is used at each call of the search routine.  

a) Assign xi =1 if coefficients of the AT monomials with xi present are all positive 

(or zero). 

b) Assign xi =0 if coefficients of the AT monomials with xi present are all negative 

(or zero). 

 
 
4.4.2. Branch-and-Bound Searching Algorithm 

The algorithm first removes the constant in the polynomial if it exists, and gets 

the mpv sequence as the order of decomposition variables, and then the reversed 

AT polynomial and the reversed mpv sequence are obtained easily.  

A subroutine Decompose is invoked to compute the maximum value and the 

minimum value due to the two AT polynomials and two sequences. The 

preprocessing step deals with a variable to explore whether it can be evaluated 

directly by probing into its coefficients; if not, the algorithm chooses a path which 

has a larger upper bound. Figure 4.3 describes the branch searching algorithm in 

detail. 



Chapter 4: Basic Algorithms 

 102

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Searching the maximum absolute value in AT 

 
Example 4.5: Consider the following AT polynomial: 

AT(f) = -2 +x0 -3x1x0 +3x2 + 3x2x1 - 4x3x1 -2x3x2x0 +5x3x2x1 

  Figure 4.4 illustrates all the steps taken to compute the maximum absolute 

value. First remove the constant and get a new AT polynomial: 

AT(f)’ = x0 - 3x1x0 + 3x2 + 3x2x1 - 4x3x1 - 2x3x2x0 + 5x3x2x1 

S0=-4, S1=1, S2=9, S3=-1, so the mpv sequence is (x2, x1, x3, x0). The reversed 

polynomial is:  AT(f)’’ = -x0 + 3x1x0 - 3x2 - 3x2x1 + 4x3x1 + 2x3x2x0 - 5x3x2x1 

Search_max (AT_poly) 
{ const = Remove_constant(AT_poly); 

var_index = Mpv(AT_poly);      
  rev_AT_poly = Reverse(AT_poly);      rev_var_index = Mpv(rev_AT_poly); 
  value_0 = Decompose(AT_poly, var_index); 

value_1 = Decompose(AT_poly, rev_var_index); 
  value_2 = Decompose(rev_AT_poly, var_index); 

value_3 = Decompose(rev_AT_poly, rev_var_index);  
max_value = Max(value_0, value_1);  |min_value| = Max(value_2, value_3); 

   mismatch = Max ( |max_value+const|, |min_value+const|; } 
Decompose(AT_poly, mpv) 
{  for (i=0; i<var_num; i++) 

{  flag = Preprocess(AT_poly, mpv[i]); 
   if (flag = 1)   

{  11 )( ==
ixfATAT  , ub_1 = Ub(AT1); 

         00 )( ==
ixfATAT ,  ub_0 = Ub(AT0); 

     if (ub_1> ub_0)   1ATAT = ;  
     else   0ATAT = ;  
 }   
 Delete_var (mpv[i]);    var_num--; 
 for (i=0; i<var_num; i++) 
 {  flag = Preprocess(AT_poly, mpv[i]); 
    if (flag = 0) 
      Delete_var (mpv[i]);   var_num--; 
 } 

   } 
} 
Preprocess (AT_poly, xi) 
{  if (all 

ixc > 0)  val = 1;   

  else if (all 
ixc < 0)  val = 0;  else  return 1; 

  valxi
fATAT == )( ;   return 0; 

} 
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The reversed mpv sequence is (x0, x3, x1, x2).  

  First AT(f)’ is searched by the order of the mpv sequence, due to the ubcoef 

value, x2 and x1 are set to 1, here the decomposed polynomial is 3- x0 + 4x1- 3x1x0, 

then the algorithm finds coefficients of all terms with variable x0 present are 

negative, so x0 is preprocessed to 0; and it continues to preprocess x3 = 1, finally a 

constant value_0 = 7 is obtained; the procedure is displayed by a) in Figure 4.4. 

Using the reversed mpv sequence upon AT(f)’, the obtained constant is value_1 = 

3, showed by b), so the maximum value of the AT polynomial without the constant 

“-2” is:  

max_value = max (value_0, value_1) = 7. 

  Decompose AT(f)’’ by the mpv and the reversed mpv sequences respectively, 

showed by c) and d), value_2 = value_3 = 6, so the minimum value of the AT 

polynomial without the constant “-2” is: 

           min_value =max (value_0, value_1)* -1 = -6. 

x1

3+x0+3x1
-3x1x0-2x3x0+x3x1
ub=8

ub=7

x2

0

1

7

ub=1

Preprocess x0=0

x0-3x1x0-4x3x1

0

3+3x1-2x3x0
ub=6

6+x3

1

Preprocess x3=1

3-x0+4x1-3x1x0

                 
a)                                    

x3

1-3x1+3x2+3x2x1

-4x3x1-2x3x2+5x3x2x1
ub=12

ub=10

x0

0 1

3

ub=11

Preprocess x2=1
0

3+3x1-2x3x0
ub=6

2+x1
Preprocess x1=1

3x2+3x2x1

-4x3x1+5x3x2x1

1-7x1+x2+8x2x1

 
 

                     b) 
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-3-x0-3x1
+3x1x0+2x3x0-x3x1

ub=5

x2

0

6

ub=7

Preprocess x1=1

-x0+3x1x0+4x3x1

Preprocess x3=1
-x0+4x1+3x1x0

4+2x0
Preprocess x0=1

1

 
c)

x3

-1+3x1-3x2-3x2x1

+4x3x1+2x3x2-5x3x2x1
ub=8

ub=6

x0

0 1

6

ub=4

Preprocess x2=0
0

-1+3x1-3x2-3x2x1
ub=3

-1+7x1
Preprocess x1=1

-3x2-3x2x1

+4x3x1-5x3x2x1

-1+7x1-x2-8x2x1

1

 
                    d) 

   Figure 4.4: Performing the imprecision algorithm in Example 4.5 

   Eventually the maximum mismatch is computed as: 

8)26,27max()2min_,2max_max( =−−−=−− valuevalue
 

 
Compared to the searching algorithm in [70] and [85], the predominance of the 

algorithm improvement stands to reason. It recursively seeks the variables which 

can be preprocessed in a decomposition procedure. If successful, complexity is 

minified much since the computation avoids decomposing the variable and 

directly sets its value, and then the residual polynomial is simplified. For example, 

only one node, x2, is searched to determine its value in c), and other three variables 

are preprocessed, therefore time and space requirements are diminished.    
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            4.5 Experimental Results 
The conversion algorithm is a basic algorithm for verification and optimization 

of imprecise circuits because of its huge impact on performance. Here we mainly 

aim the benchmarks of Taylor series. All experiments are done on an Intel 

Celeron 2.4GHz CPU with 1G main memory under Linux.  

 
X0 = 0 

Function Taylor  
degree 

Bits AT terms 
 

Expanded  
terms 

Run 
time (s) 

Memory
(MB) 

sin(x) 7 31 3572223 10625591 586.593 156 
sin(x) 9 26 5658536 55962920 179.171 247 
sin(x) 11 24 7036529 316283264 921.218 293 
sin(x) 13 20 988115 409609664 1167.58  59 
exp(x) 10 24 4540386 131128139 371.266 239 
exp(x) 12 22 3096514 548354039 1633.36 182 
exp(x) 14 18 261156 471435599 1497.81  3 
exp(x) 14 20 1026876 1391975639 4222.25 59 
exp(x)*sin(x) 10 24 4540385 123221864 314.703 254 
exp(x)*sin(x) 13 20 988115 429816984 1445.19 88 
exp(x)*sin(x) 15 16 65534 282662144 985.703 18 

X0 = 0.5 

Function Taylor 
degree 

Bits 
 

AT terms 
 

Expanded  
terms 

Run  
time (s) 

Memory 
(MB) 

sin(x) 7 31 3572224  13002888 873.437 163 
sin(x) 9 24 2579130  41317895 158.125 159 
sin(x) 11 20  784626  95629666 269.093  43 
sin(x) 13 20  988116 668795865 2286.89  49 
exp(x) 10 24 4540386 183578305 509.89 156 
exp(x)*sin(x) 10 24 4540386 173039772 625.171 150 

Table 4.1: Performance of Taylor series conversion 

 
Table 4.1 shows results of the algorithm described by Figure 4.1. The two 

sub-tables correspond to “0” and “0.5” values of X0 respectively. Column 2 and 3 

list the highest degree and input bits. Column 4 and 5 show final AT terms and 

expanded isomorphic terms.    

From the table, the conversion algorithm is feasible even though Taylor degree 

and input variables are very large. The performance of time and space are satisfied, 
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and the AT terms only occupy around 5% - 20% of isomorphic terms. So 

combining these terms to form AT terms will spend huge processing time, but the 

algorithm can handle it easily. During experiments, we find this algorithm has 

been always the fastest algorithm compared to various multiplication methods.  

 

 

4.6 Conclusions 
 Taylor series is a typical imprecise representation with function approximation 

and finite wordlengths, so it is our main research object that we adopt AT. In order 

to utilize AT technique, we propose several algorithms which can convert Taylor 

series to AT and search for its maximum absolute value. These algorithms can 

handle not only Taylor series but also real-valued polynomials with multiple 

variables, and are fundamental to the future verification and optimization, so they 

can cover a majority of applications. 
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Chapter 5  

Analysis of Precision Parameters 
 
 

 

 

Arithmetic circuits such as these realizing Taylor series-based 

algorithms incorporate many generalizations leading to imprecision. 

In order to design and verify imprecise circuits, the first step is to 

analyze these factors carefully. Traditional methods have difficulty to 

represent the factors mathematically. In this chapter we describe the 

imprecise arithmetic computations, and then utilize AT to analyze 

imprecise parameters in a polynomial, and estimate how much error 

is caused by each parameter.  
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5.1 Imprecise Arithmetic Computations 
Major causes of imprecision in an implementation come from two aspects. One 

is the approximations of the specifications in hardware realization and the other is 

using finite wordlength to represent an infinite length of specification data. For 

example, real fractional numbers are usually realized by finite size registers which 

are regarded as fixed-point data representations. Radecka and Zilic [70] 

introduced the fundamental idea based on AT representations. 

 
Definition 5.1: The error is a numerical difference between the results required 

by the specification and the quantity obtained in the implementation. The unit in 

the last place (ULP) used to evaluate the error is the least significant bit for 

binary encoding of a given number.   

 
  The function approximation is an inexact implementation regardless of the 

precision while the precision is the total bit number used to represent the 

fixed-point circuit. Although there might be some other causes of imprecision in 

ASIC implementations, the above two reasons are the focal points in this work.  

 
 
5.1.1 Finite Wordlength  
  Using finite precision to represent infinite length real numbers is performed by 

truncation and rounding. Output bit-width is always restricted so it is unavoidable 

to cause imprecision. The following example explores data truncation and 

rounding. 

 
Example 5.1: A circuit has four N-bit unsigned fractional inputs: “a”, “b”, “c” 

and “d” to perform the operation ab+cd. The output result has 2N-1 bits : 

     

 

  If the result of the implementation is restricted to N most significant bits of the 

original expression, two cases would be considered:  
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a) Rounding to the nearest value causes the error bounded to half of the ULP, i.e., 

2-(N+1). 

b) When truncating to “N” bits, the error is bounded by one ULP, which is 2-N. 

 
Explicit representation of output values is required for the precision verification 

because the precision on a per-bit basis is not reasonable. A simple example can 

describe the situation that even though all output bits are incorrect, the 

imprecision is arbitrarily small. For instance, if the exact N-bit result is 100….0, 

and the approximation is 011…1, then all bits are incorrect; the error is one ULP, 

however, which for large N becomes negligible. 

 
 

5.1.2 Arithmetic Transforms and Imprecise Datapaths 
  AT has a property of linearity which can be directly applicable to verification 

of imprecise circuits. The transform of an imprecise circuit, i.e, IAT(f), can be 

represented as a linear superposition of the specified AT form SpecAT(f) and the 

error e. Generally, error accumulation makes that various errors throughout the 

circuit can be observed at outputs and expressed by the error e and fault-free AT 

representation of SpecAT(f): 

                   SpecAT(f) = IAT(f) + ErrAT(f)                (5-1)    
The error AT polynomial (ErrAT) is determined by a series of imprecision 

sources, which may be caused by function approximations, or size restrictions of 

intermediate data of an implementation. 

 
Definition 5.2: “The AT error polynomial (ErrAT) is a difference polynomial 

between Arithmetic Transforms of specification (SpecAT) and its corresponding 

implementation (IAT)” [70]. 

 
Example 5.2: A circuit calculates the product a*b with 8-bit for each variable 

and disregards all partial products needed for obtaining 8 least significant bits. 

This approximation will save half the circuit area, but causing the AT error: 
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ErrAT(f) = SpecAT(a*b) – IAT(a*b) = i
i

i
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  After summation, we obtain that the worst case error is bounded by  

(6*28+2)/211, which is O(2-6). 

 

 Since AT has the linear property, if a module within a circuit has an error, this 

error can be peeled off from the transform of the module, the following equation 

describes it: 

                         AT(f+e) = AT(f) + AT(e)            (5-2)   
  The arithmetic transform of the erroneous module equals the addition of the 

transform of the good module and the error transform. The property makes it easy 

to analyze the effect caused by errors.  

Once the overall AT is constructed for an imprecise circuit, the maximum 

allowable value of an error polynomial (ErrAT) can be determined. When an 

input/output size of an implementation differs from that of specification, the 

precision of the implementation, expressed in terms of acceptable error bounds is a 

required parameter. Only then we can state that the implementation (IAT) is in 

agreement with the specification (SpecAT) within a precision error bound ε . In 

consequence, the maximum absolute value of ErrAT must accord with the 

inequality [70]: 

ε≤−= IATSpecATErrAT max)max(                 (5-3)        

  The maximum absolute error can be calculated by the branch-and-bound 

searching algorithm introduced in Chapter 4. If SpecAT is imprecise itself and 

represents a function f up to an absolute precision of δ, the following inequality 

[70] holds:  

δε +≤−+−≤

−

|))(()(|max)()(max
|))(()(|max

XfATXSpecATXSpecATXIAT
XfATXIAT      (5-4)  

While the value δ is known, Eqn. 5-4 can be used to verify the imprecision 
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between SpecAT and IAT.  

 

 

     5.2 Function Approximation Error 
Determining the set of parameters needed to achieve a circuit of the allowed 

imprecision is a challenge that is in part due to the difficulties with the precision 

analysis. The traditional method of using simulations over various values of the 

parameters is costly and not guaranteed to produce the optimal result. We next 

analyze the arithmetic precision parameters due to all approximations and finite 

bit widths in the implementations of real-valued specifications such as Taylor 

series in Figure 5.1. In summing the imprecision, we will repeatedly use the 

triangle inequality.  

 

 

Figure 5.1: Imprecision due to the combined sources 

 
In implementing real-valued functions by arithmetic circuits, an algorithm 

might be employed to approximate, rather than exactly implement the function. 

For instance, when using n Taylor terms to represent a transcendental function, the 

approximation error is provably bounded by a remainder Rn(X), Eqn. (4-1). Hence, 

for a function given in interval I, this truncation error bound et is: 

                     e t = max
X ∈ I

| R n ( X ) |                      (5-5)   

 
Example 5.3: Consider the following function f(X) = cos(X). In interval [-1, 1], its 

Taylor approximation around X0=0 with 3 terms is:  

42

24
1

2
11)(cos XXXTaylor +−= , 
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Now we can estimate its error bound:  

007.0|1sin
120

1||sin
120

1|max|)(|max 5
5 =≤∗== XXRet ξ    

 
Given the desired error bound E, it is easy to find the appropriate number of 

Taylor terms n as a largest integer for et < E. Such a finite truncation of Taylor 

series will have the least number of terms that result in an acceptable imprecision 

over the given interval I. Please note from Eqn. (4-1) that instead of finding the 

exact maximum of the (n+1)st derivative on I, using an upper bound might suffice. 

 

 

5.3 Input Bit-width and Quantization Error  
In fixed-point implementations, a bit vector represents the real-valued input 

variable X, so the input quantization due to finite bit-width affects the final result. 

An insufficiently precise result can be caused by using too few bits, and we hence 

try to find an appropriate bit-width resulting in the acceptable overall error. 

 
 

5.3.1 Effect of Finite Input Bit-width – Interval Analysis 
  An argument of a real-valued function is potentially infinitely precise. Such a 

theoretical value Xth is instead replaced by the quantized input value X in function 

calculation. The classical interval analysis [26]-[31] is expressed in terms of AT as 

follows. Let FB represent Fractional Bits. The input range is divided into uniform 

2FB intervals, so the difference between two consecutive intervals is 2-FB. The 

point representing Xth is between two quantized values, as in Figure 5.2. The 

relationship between Xth and X is then: 

...... .....

0 11-2 +FB

thX  X

2-FB
 

Figure 5.2: Value description of Xth and X 
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)1()1()1( 222 +−+−+− +≤≤−⇒≤− FB
th

FBFB
th XXXXX        (5-6)      

Hence, by replacing Xth by m fractional bits of X in accordance with Eqn. (5-6), 

we get the expressions for the theoretical fth and quantized f function values (given 

X0 = 0):                  
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where Ci is a Taylor coefficient that equals to 
!

)( 0

i
Xf i

. 

We represent fth and f by AT polynomials AT(fth) and AT(f) to efficiently search 

over binary inputs, obtained from Eqn. (5-7) and (5-8), respectively. The 

conversion algorithm introduced in Figure 4.1 is designed to deal efficiently with 

the intermediate terms swell when the number of Taylor series terms and the 

bit-widths increase. The error polynomial AT(fei) is then a difference between AT(fth) 

and AT(f): 
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(5-9) 

This AT formulation of the interval analysis assumptions allows us to obtain a 

bound ei on the effects of input quantization of half an ulp to the output precision. 

The maximum absolute value of AT(fei) in Eqn. (5-9) gives the error bound ei. 

While a straightforward approach requires 2m polynomial evaluations, ei can be 

obtained by the efficient branch-and-bound searching algorithm tuned for this 

application.  

The interval method is represented by the Eqn. (5-9) which considers the worst 

case, and applies the algorithms for Taylor conversion and imprecision searching. 

Figure 5.3 shows the AT usage of interval analysis to estimate error of input 

quantization.  
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Figure 5.3: Computation of input quantization error 

 
 

5.3.2 Tight-bound Interval Scheme 
  The interval analysis unavoidably overestimates the error bound and gets a 

coarse result. We now propose a tight-bound interval scheme, which employs a 

more precise specification with larger input bit-width, to obtain tighter error 

bounds. 

For example, assume that m=8 bits is used to represent fractional number. Let f 

and fth represent the quantized function and the theoretical function, respectively. 

For interval analysis:  

)2(|| 8−Θ==− Ihpff ε  

We improve precision analysis by the tight-bound method. For this, we use 

another, finer quantized function representation with, say t=17 bits, labeled by fhp 

and get: 

hphpff ε=− ||  

The error in the higher-precision specification alone is estimated by the interval 

analysis as:  

)2(|| 17
_

−Θ=≤− TBIthhp ff ε  

  From the triangle inequality, it follows that: 
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TBIhpthhphpth ffffff _|||||| εε +=−+−≤−      (5-10)  

In other words, the tight bound analysis uses the exact knowledge of the 

mismatch to a more precise specification, to which a significantly smaller residual 

error by interval analysis is added, which allows us to get a tighter error bound.  

  Please note that the second, larger bit-width function is used here only for 

analysis purposes, and will not increase the cost. Actually, due to the tighter 

bounds, the tight-bound interval analysis can lead to a sufficiently precise 

implementation with less bits used in the implementation. For example, instead of 

m=8, it might suffice to have only bit-width of 7, as the tight-bound comparison 

with the 17-bit implementation will arrive to the imprecision not worse to that 

with m=8 bits, obtained by the straightforward interval analysis. The scheme for 

tight-bound interval based on AT technique combines Figure 5.3 and the 

inequality (5-10) to obtain the suitable bit-width.  

 

 

5.4 Quantization of Coefficients and Output  
The finite-word representation of real-valued constants such as coefficients of 

Taylor expansions causes coefficient quantization. If q stands for the coefficient 

bit-width, then the value of the theoretical (infinite precision) coefficient Cth and 

its word-level representation C are related as follows:    
)1()1( 22 +−+− +≤≤− q

th
q CCC .  

Using this inequality to replace Cth, the expression of fth becomes:       
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The error function fec is defined as the difference between fth and f, while the 

error polynomial ATec is its transform: 
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The tight-bound analysis can also be applied to explore coefficient bit-widths. 
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The maximum error ec is again computed by the branch searching algorithm 

combined with the tight-bound scheme over this AT polynomial.  

Finally, if the output bit-width is o, the bound on the output quantization error eo 

is 2-O -1. With et, ei and ec determined, the upper bound of eo is eo =2-O -1 =E- et - ei - 

ec. Hence, o is given as: o = -log2 (E- et - ei - ec) + 1. Since eo can be obtained 

easily and the output bit-width does not affect on internal hardware structure, it is 

omitted from further considerations ahead.  

 

 

                       5.5 Conclusions 
Imprecise circuits generally contain many imprecise factors leading to error 

generation. Here we focus to analyze Taylor series which has four imprecise 

factors as function approximation, quantization of input bit-width, coefficient 

bit-width and output bit-width. We use AT and construct mathematical expressions 

for each factor to facilitate analysis. These expressions are fundamental to future 

verification and optimization. 
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Chapter 6  
Algorithms for Precision  

Verification and Optimization  
 
 

 

 

   In this chapter, we propose an algorithm to compare two similar, 

but not exact components. A verification algorithm is then introduced 

to check whether the implementation satisfies the error bound. A 

sequential method is designed to find a feasible implementation to 

satisfy the error bound. In order to single out the best implementations 

under different constraints, such as area, delay, and fixed bit-width, an 

optimization algorithm is described. Finally, we integrate these 

algorithms into a package to handle imprecise circuits. 
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polynomials and the bit-widths of corresponding variables. The front-end and the 

parser hide the details needed to deal with AT. The conversion algorithm converts 

the two implementations of real-valued functions into two AT polynomials, while 

the error AT is obtained by subtracting the two polynomials. Then the imprecision 

is obtained by the searching algorithm introduced in Chapter 4.  

 

Interface File

Implemented
Taylor Series 1

Implemented
Taylor Series 2

Parser

Implemented
AT Polynomial 1

Implemented
AT Polynomial 2

Conversion
 Algorithm

Error AT Polynomial

Bits 1 Bits 2

Conversion
 Algorithm

Branch
Searching
Algorithnm

Maximum Mismatch

Subtraction

            
Figure 6.2: Algorithm of computing imprecision between  

two implementations of Taylor series 

 

 

6.2 Verification of Implementations 
Given an implementation, the imprecision between the specification and the 

implementation determines whether the implementation can fit the specification, 

so it becomes necessary to calculate the imprecision coming from the four sources 
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described in Figure 5.1. The problem description is as follows. 
 

 
 
 
 
 
 
 

The given implementation includes the number of Taylor terms, quantization 

bits of the inputs, coefficients and output. Calculating the imprecision can be 

achieved by adding the values of et, ei, ec and eo. If the imprecision is beyond the 

error bound, the implementation does not satisfy the specification. It is helpful to 

evaluate the validity of the implementation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.3: Algorithm of verifying the implementation 

 
Figure 6.3 describes an algorithm that checks an implementation by computing 

each type of error. The result indicates whether the implementation is suitable to 

the specification through the confirmation of a relationship between the 

imprecision and the given error bound. The algorithm concurrently investigates 

Problem 6.2: Verifying an implementation 

Inputs:   f(X), E, n, m , q, o 

Judgment:  et + ei + ec + eo < E 

Outputs:  Satisfied? (Yes or No) 

Check_Imp (f, E, n, m , q, o) 
1. {  if (et ≥ E)  return false; 
2.   ei = Get_input_error (f, n, m); 
3.   if (et + ei ≥ E)  return false; 
4.   ec = Get_coeff_error (f, n, m, q); 
5.   if (et + ei + ec ≥ E)  return false; 
6.   eo = 2-O-1; 
7.   if (et + ei + ec + eo ≥ E)  return false; 

else  return true; 
} 

Get_input_error (f, n, m) 
{  AT_theoretical = Convert_AT (f, n, m, 2-m-1); 

AT_real = Convert_AT (f, n, m); 
   error_AT = AT_theoretical - AT_real; 
   ei = Search_imprecision (error_AT); 
   return ei; 
} 
Get_coeff_error (f, n, m, q) 
{  ATec = Convert_AT (f, n, m, 2-q-1); 
   ec = Search_imprecision (ATec);   return ec;  
}
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function approximation and bit-widths. It handles not only Taylor series but also 

any real-valued specifications without approximations, and so has wide 

applications. 

 

 

 6.3 Finding a Feasible Implementation 
As distinct from the above section, our goal here is to explain how to design a 

satisfying implementation to restrict the imprecision within the error bound if 

given a specification represented by Taylor series expanded around Xo and the 

error bound. We now solve the problem of finding a feasible implementation, so 

that the error in the given interval I is smaller than E. 

 

 

 
   

 

The algorithm in Figure 6.4 applies sequential selection of parameters such that 

the total imprecision is smaller than E. The symbols n, m and q represent the 

Taylor terms, input bit-width and coefficients bit-width respectively. Since all the 

error causes can be made arbitrarily small by increasing n, m or q, we can 

investigate them in any order. As the Taylor approximation error, Eqn. (4-1), is 

independent of bit-widths, while the errors caused by the bit-widths rely on the 

exact number of Taylor terms, et is investigated first (Step 1), and n is selected 

such that the imprecision due to approximation is smaller than E. In Steps 2 and 3, 

we find input and coefficient bit-widths m and q using triangle inequality in order 

to obtain the required precision. 

This algorithm always terminates with a feasible implementation, because each 

of the three steps can determine an arbitrarily small error. Although one can 

apportion the percentage of E for each step, this is potentially wasteful. Since the 

Problem 6.3: Feasible Precision Parameters 

Inputs:   f(X), X0, I, E  

Constraint:  imprecision < E, IX ∈∀  

Outputs:  n, m, q 
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first source of error is relatively small in comparison to the whole error bound, the 

distance to E will leave room for subsequent quantization values of errors ei and ec 

without needing very long bit-widths m and q.  

 

 

 

 

 

 

 

 

 
Figure 6.4: A sequential method of fitting the error bound 

 
The method is applicable to Taylor series, but also to any real-valued 

polynomial specifications. Please note that when some (input or output) bit-widths 

are fixed because of other modules, those steps are skipped. This scheme achieves 

a tighter match than the traditional error bounding techniques as its exact searches 

for the worst-case imprecision account for the interplay between multiple 

imprecision causes. Although this algorithm can stand on its own, its immediate 

application is as a pre-selection stage of the full precision optimization algorithm, 

which is presented next.  

 

 

 

1. Determine Taylor terms 
{  assume n terms and obtain et; 

while (et≥E)     {  n++;  obtain et ;  } 
} 

2. Determine input bit-width 
{ assume input bit-width m; 
  for ( )   

{  AT(f)th = Convert_Taylor_AT (fth, n, m); 
AT(f) = Convert_Taylor_AT (f, n, m); 
ei = Imprecision_Searching (AT(fth - AT(f)); 
if (ei ≥ E-et )   m++;   else  break;  }   

} 
3. Determine coefficient bit-length 

{  assume bit-width of coefficients q; 
   while ( ) 

{   ATec = Convert_Taylor_AT(fec); 
         ec = Imprecision_Searching (ATec);  
         if (ec ≥ E-et- ei )  q++;   else  break;  }   

} 



Chapter 6: Algorithms for Precision Verification and Optimization 

 123

6.4 Designing Optimized Implementations 

with Constraints 
Although the algorithms in Figure 6.3 and 6.4 compute the precision 

automatically and indicate whether the implementation is feasible to the error 

bound, it cannot give information to optimize the implementation. Because the 

satisfying implementation is not the best one possible in different constraints, it is 

necessary to develop an algorithm to allow for a flexible distribution of 

imprecision due to the error sources. In this section, we demonstrate an automated 

way to find the precision parameters (bit widths, approximation schemes) of the 

minimum cost determined by constraints.  

 
 

6.4.1 AT Size as a Cost Function 
While it is impossible to know precise area data before mapping a circuit by a 

concrete technology, we do not need to know the exact area as long as the 

different alternatives can be compared realistically. In our case, the area increases 

monotonically in both n and m. More Taylor terms (n) require more stages in 

hardware, which raises inputs to higher exponents. Similarly, longer bit-width (m) 

requires more arithmetic circuitry. As the number of AT polynomial terms |AT(f)| 

exhibits the same tendency, we use it as the cost function to be minimized. The 

size of AT is obtained by directly expanding the n-term Taylor polynomial over 

m-bit input words. One can show that: 
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6.4.2 Error Sensitivity 
We recall first that the Taylor series representation comes with a provable bound 

on the error due to the truncation of the Taylor terms n, given by Eqn. (4-1). This 
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bound can be readily used during the precision searches, when different values of 

n are explored. Further, we can readily access the information on error sensitivity 

due to the input bit width m. 

Traditionally, sensitivity [21] is defined as Eqn. (6-2) and Figure 6.5 to describe 

the influence that a small change ∆X of X has on the output Y: 

XXfY Δ≈Δ )('                       (6-2) 

where f’(X) is the derivative of f(X).  
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Figure 6.5: The basic idea of sensitivity [21] 

 
In order to use sensitivity to investigate the input quantization error and find the 

suitable input bit-width, we re-define the sensitivity. 

 
Definition 6.1: The sensitivity is a numerical value to describe the influence that 

a small change of X has on the output Y in condition of the worst case: 

YΔ = AT(f’(X))max * 2-m-1                          (6-3)    
 

The sensitivity reflects the output change in terms of tiny input turbulence. It 

has the same essence as the representations of Eqn. (5-7) and (5-8), so sensitivity 

can be used as a substitution. The performance bottleneck in determining the 

optimized implementation is that the procedure must repeat itself to invoke the 

conversion algorithm when searching different Taylor terms and input bits. In 

each flow, this requires invoking the conversion algorithm twice, and subtracting 

two AT polynomials as Eqn. (5-7) and (5-8) to get the input error in order to 

confirm whether the input bit-width is satisfied. Of course the complex procedure 
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will consume a lot of time and memory. However, if using sensitivity, as long as 

f’(X) is converted to AT(f’(X)) and the branch-bound algorithm is used to find the 

maximum value to match the worst case, the sensitivity can be calculated by its 

multiplication with ∆X . Here ∆X is 2-m-1, i.e., half of the ulp. We can see this 

procedure only invokes the conversion algorithm one time to transform f’(X) into 

AT(f’(X)). The advantage is very obvious. When the sensitivity is obtained, 

combined with the input error bound, it is easy to conclude the suitable input 

bit-width.  

Similarly, the search for an appropriate bit-width of the Taylor coefficients Ci is 

guided through the corresponding sensitivity, readily calculated using Taylor 

series, the conversion algorithm and the searching algorithm. 

 

 

6.4.3 Constraint of the Smallest Area 
A) Optimized Parameters for Taylor Series 

In some cases, there is no limitation for Taylor terms and input bit-width, so 

engineers can adjust the parameters to achieve an error-satisfied circuit with the 

smallest area. Consider the following problem, where the total imprecision due to 

the disparate causes and the cost are obtained through AT. 

 
 
 
 
 
 
 
  
The goal is to get a satisfying implementation with the minimum AT size which 

represents the smallest area. The constraint which restricts the imprecision must 

be smaller than the error bound. Since coefficients and output bit-width have 

much less effect of area, we mainly focus on the number of Taylor terms and input 

Problem 6.4: Finding optimized Taylor terms and input bit-width to get  

the smallest area 

Inputs:   f(X), X0, I, E 

Constraints:  imprecision < E, IX ∈∀  

Outputs:   n, m 
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bit-width. In deriving a more thorough search scheme, we need the ability to 

concurrently explore multiple precision parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.6: Algorithm of finding the optimized implementation with smallest area 

 
Figure 6.6 describes the algorithm optimizing the number of Taylor terms and 

Design_min_Taylor_area (f, E) 
{  
1.  while (et > E)   { ++n;   et = Get_Taylor_error (n)  } 
2.  AT_derivative = Convert_Univar_AT( 'f , n, m0); 
3.  sensitivity=Search_Imprecision (AT_derivative)* 102 −−m ; 
4.  ini_m = m0 – log[(E- et) / sensitivity];   
5.  Store_node (n, ini_m);    m = ini_m; 
  while 

6.  {  et = Get_Taylor_error (++n); 
7.     ei = Get_input_error (f, n, --m); 
8.     if (ei < E) 
      {  while (ei <E - et)  ei = Get_input_error (f, n, --m); 
9.          if (++m != ini_m)   

{  Store_node (n, m);  ini_m = m; 
10.            Tight_interval (node);   } 

}   
11.    else  break; 

}  
12.  best_node = Compare_AT_size (nodes); 
13.  (ec, q) = Get_coeff_bit (E, et, ei) ; 
14.  o = -log2 (E- et - ei - ec) + 1;  
    return best_node; 
} 
Get_input_error (f, n, m)         // Using Eqn. (6-3) 
{  AT_derivative = Convert_Univar_AT( 'f , n, m); 
   max_val = Search_Imprecision (AT_derivative); 
   ei = max_val * 2-m-1;     return  ei ; 
} 
Compare_AT_size (nodes) 

{  for (i=0; i<nodes_num; i++) 

      AT_size[i] = Get_AT (node[i](n), node[i](m) ); 

   Sort (AT_size);   return the node with smallest AT_size; 
} 

Get_AT (n, m) 

{ for (i=1; i<=n; i++)  AT_num += Choose (m, i); } 
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the input bit-width. A pair (n, m) is referred to as a node, representing a 

combination of a number of Taylor terms (n) and an input bit-width (m) used in 

each step of the search. In the first iteration, the algorithm gets the smallest 

number of Taylor terms for the given error bound, and obtains input bit-width by 

sensitivity computation (Steps 1 to 5). It is sufficient to consecutively increase the 

set of Taylor terms used to explore the search space, while simultaneously 

exploring the alternative input bit-widths (Steps 6 and 7). If the new node can 

satisfy the error bound E, the newly computed number of Taylor terms is assumed, 

and the algorithm continues to decrease input bit-width until the current node 

breaks the bound. When it happens, the algorithm backtracks to the previous node 

and stores it (steps 9 and 10). The procedure is repeated until the change of 

bit-widths is exhausted, while ei > E (step 8).  

Since Taylor series cannot be compared directly, it is necessary to use AT for 

comparison because of the easy computation of Eqn. (6-1), so in the above 

procedure the conversion algorithm is invoked to achieve that goal. The searching 

algorithm helps to find the quantization error represented by AT polynomials. A 

subroutine Compare_AT_size is called into action to compare the AT size of 

each stored node, and selects the one with the smallest AT representation. In fact, 

while the algorithm begins with the largest et value (within the total bound E) – 

initially ei is smallest, but in subsequent steps et shrinks while ei grows until ei 

becomes the largest value – the procedure explores the search space, eliminating 

nodes that will have larger AT than already obtained solutions. Finally, the 

bit-width of coefficients is calculated using the notion of sensitivity, while the 

output bit-width o is determined using the expression o = -log2 (E- et - ei - ec) + 1 

(Step 13 and 14). Note that at this point all the error parameters in the above 

equation can be determined using the optimal values of n, m and q.  

The algorithm provides a branch-and-bound exploration of the space of all 

potential optimized nodes. When the error bound E is exceeded, the complete 

subtree of the search tree is safely abandoned. Further, the search is guided by the 

sensitivity function, as a heuristic to speed up the search. At each node, the error ei 

from Eqn. (6-3) is computed in the subroutine Get_input_error, which uses 
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the sensitivity definition. The transform of the first order derivative of f(X) is 

obtained in terms of the Taylor terms n and input bit-width m. Then, the branch 

searching algorithm is invoked to get its maximum mismatch, so the sensitivity is 

calculated through the multiplication of the maximum mismatch and ∆X, i.e., 2-m-1. 

As a result, the conversion algorithm is invoked only once to get AT of f ’(X), 

while the use of Eqn. (5-7) to (5-9) would activate the algorithm twice. The 

following example illustrates the use of the precision optimization algorithm. 

 
Example 6.1: Consider an implementation of sin(x) represented by Taylor series. 

Due to the given error bound 0.0002, the algorithm finds the least number of 

Taylor terms to be 4, and the corresponding input bit-width to be 14 on the 

condition of the Taylor terms. Therefore, the initial node is (4,14). 
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Figure 6.7: Search of optimized parameters in Example 6.1 

The algorithm adds then one Taylor term and cuts one input bit at the same time, 

hence generating a new node (5, 13). By using the sensitivity, ei is estimated fast, 

and as this node satisfies the error bound, input bits are decreased again. 

However, when the node reached (5, 11), the error addition of et and ei is beyond 

the bound but ei is smaller than the bound, and the algorithm backtracks to the 

previous node (5, 12). The node (5, 13) is redundant because its AT terms number 

is obviously larger than the node (5, 12), and the node (5, 11) is an invalid node. 

The procedure is repeated with Taylor terms increased to 6 giving the node (6, 11) 

which satisfies the bound. The input error ei of the next node (7, 10) breaks 

through the error bound so it is an invalid node, which means the smallest input 

bit-width is 11 regardless of the increase in the number of Taylor terms, so the 
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algorithm stops. 

Figure 6.7 indicates three nodes (4, 14), (5, 12) and (6, 11) that satisfy the 

given error bound. The procedure Compare_AT_size is then called to select the 

node with the smallest AT size, so the node (6, 11) is the optimized parameters for 

Taylor terms and input bit-width. 

 
From this example, we see that starting from an initial feasible implementation, 

the algorithm proceeds with generating nodes of improved parameters, and then 

checks whether such new nodes are within the error bound. In each search step, 

the sensitivity is used to accelerate calculation of the input quantization error, 

drastically improving the performance. When the error bound is exceeded, the 

backtracking technique returns the previously determined feasible solutions, and 

no solution will be missed. 

 

B) Optimized parameters for multivariate polynomials 
The above section proposes an algorithm that is limited to Taylor series of only 

one word-level variable. Since many real-valued polynomials comprise 

word-level variables beyond one, the optimization algorithm needs an extension 

to process it. An algorithm is now presented to handle cases of specifications 

given over several word-level variables. 

A set of bit-widths for each variable is referred to as a node in Figure 6.8. The 

algorithm first gets sensitivity for each variable as in Step 1 – 5, and obtains the 

initial node and final node by using sensitivity as in Step 6 – 7. The initial node 

makes the first variable determine the minimum bit-width and the final node 

makes the last variable calculate the minimum bit-width. 

Beginning from the initial node, the algorithm shrinks the error generated by 

the first variable by increasing its bit-width. At the same time, the bit-width of the 

following variable decreases and this may enlarge the error. The procedure 

propagates the input error within the error bound from the first variable to the last 

variable in sequence. When the final node is reached, the loop stops and all 

possible nodes are traversed as in Step 8 – 14. While all intermediate nodes are 
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obtained, the redundant nodes are deleted in Step 15. 

If two nodes only differ in one variable and other variables have the same bit 

widths, the node which has more bits is identified as the redundant node. For 

example, if the two nodes have three variables consisting of (12, 13, 12) and (12, 

14, 12) bits respectively, one variable is different and the node of (12, 14, 12) is 

deleted as a redundant node. The optimized bit-widths for variables are selected 

by comparing AT sizes of obtained nodes and choosing the smallest one as in Step 

16.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.8: Algorithm for finding optimized parameters for real-valued  

polynomials over multiple variables 

 
Example 6.2: Consider a function F with three word-level variables and the given 

error bound is 60.  

            F(X, Y, Z) = 2X 2+ 3YZ – 4Z3 + XYZ 

Design_best_poly_imp (f, E) 
{ 
1.   for (i=0; i<word_var_num; i++) 
2.   {   AT_th = Convert_AT(f, i, 0); 
3.       AT_real = Convert_AT(f, i, 102 −−m ); 
4.       error_AT = AT_th – AT_real; 
5.       sens [i]=Search_imprecision (error_AT); 
     } 
6.    ini_bit = Get_ini_node (sensitivity); 
7.    final_bit = Get_final_node (sensitivity); 
8.    for (i=word_var_num-1; i>=0; i--) 
9.    {   ini_bit[i]++;  ini_bit[i+1]--; 

for (m=word_var_num-1; m>=i; m--) 
10.      {  stop_error = Compute_input_error (sens, ini_bit); 
12.         ei[0] = pow(2, init_bit[0]-m0) * sens[i]; 
13.         if (ei[0] = stop_error) 
                break; 
           else { while (ei < E)   init_bit[0]--; 
                Store (nodes);  Tight_interval (node);  } 

} 
14.       if (ini_bit = final_bit) 

         break; 
} 

15.   Irredundant (nodes); 
16.   optimized_bit = Compare_AT (nodes); 
} 
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By using sensitivity the initial node is obtained as (14, 16, 18) which means that 

the error generated by X has the largest value within the error bound, and the 

final node is (18, 16, 13) which means that the error generated by Z has the 

largest value within the error bound. The Figure 6.9 describes the two nodes and 

the error generated by each variable. 

E
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E
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Figure 6.9: The error of each variable for the initial node and the final node 

Now the algorithm begins with the initial node to increase bit-width of Y and 

decrease bit-width of Z, etc., e[Y] is reduced and e[Z] is augmented. The new 

obtained node is (14, 17, 16) and since the bit-width of Z cannot be cut down any 

more, the bit-width of X has to be increased to “15” and bit-widths of Y and Z are 

computed again. Consequently, the node changes to (15, 15, 15). The two nodes 

are shown in Figure 6.10. 

E

e[X]

e[Y]

e[Z]
             

E

e[X]
e[Y]

e[Z]
 

Figure 6.10: Two intermediate nodes from the initial node  

The algorithm continues to get intermediate nodes until it reaches the final 

node. It removes the redundant nodes and creates a search path to represent each 

node. The chain is described as: 

(14,16,18)    (14,17,16)    (15,15,15)    (15,16,14)     (16,14,16)    

(16,15,14)    (17,14,15)    (17,17,13)    (18,16,13) 

The AT size of each node is calculated and a node with the smallest size is 

chosen as the optimized node. In this example the optimized node is (16, 15, 14). 
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6.4.4 Constraint of the Minimum Delay 
  Some applications often require that the implementation has a minimum delay. 

Taylor series is implemented by a Horner polynomial evaluation such as the 

cosine circuit: 
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Figure 6.11: n-stage pipelined circuit  

 
In Figure 6.11, n-terms Taylor series correspond to an n-stage circuit 

represented by a Horner polynomial. Although input bit-width and coefficient 

bit-width both have effect on delay, it is obvious that the number of Taylor terms 

has far bigger impact. More terms result in a longer delay, so the minimum delay 

requires the least Taylor terms and is restricted by the imprecision. The least 

number of Taylor terms is simple to obtain and the input bit-width can be obtained 

by using Eqn. (6-3). The problem description is as follows. 

 
 
  
 

 

 
 
 
 
 

Problem 6.5: Finding optimized parameters to get the minimum delay 

Inputs:   f(X), X0, I, E 

Outputs:  n, m 

Constraint:  imprecision < E, IX ∈∀  

Goal:      minimum satisfying Taylor terms n 
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Figure 6.12: Algorithm of finding parameters for the minimum delay 

 
Figure 6.12 describes the algorithm for finding the optimized implementation 

with the minimum delay. It calculates the least number of Taylor terms to satisfy 

the inequality et < E, then decreases the initial input bit-width and keeps the 

calculation of the input error ei until ei > E - et. So the appropriate input bit-width 

is obtained.  

 
 

6.4.5 Constraint of Interface Input Bit-width 

  In some cases the input comes from the output of another module, so the 

bit-width is determined by that module and it cannot be changed. Figure 6.13 

illustrates this situation. 

output           input Taylor SeriesAnother Module

Interface

              
    Figure 6.13: Description of interface input bit-width 

Since the parameter of input bit-width is fixed in this case, only the Taylor 

terms and coefficient bit-width should be explored to make the imprecision 

suitable to the error bound. Figure 6.14 describes the algorithm of calculating 

Taylor terms and coefficients bit-width. 

 

 

Design_min_delay (f, E) 
{  while (et < E)   { --n;  et = Get_Taylor_error (n) }; 

m = Initiate (f, n) ;  
ei = Get_input_error (f, n, m) ; 
while (ei < E - et) 
{  m--; 
   ei = Get_input_error (f, n, m) ;   
} 
m++ ; 
return (n, m) 

} 
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Figure 6.14: Algorithm of finding parameters for interface input bit-width 

 
The algorithm first finds the least satisfying Taylor number to make the 

approximation error et smaller than the error bound (Step 1), and calculates the 

corresponding input error (Step 2). If the error ei is larger than the error bound, it 

means that the interface input bit-width is too small to fit the error bound and the 

algorithm will give the error information (Step 3). If the addition of et and ei is 

larger than the error bound, which would indicate that the number of Taylor terms 

is too small, the algorithm increases the number value n and re-calculates its input 

error (Step 4 – 7) since the number of terms will affect ei even though the input 

bit-width is fixed. After the suitable Taylor number n is obtained, the coefficient 

quantization error ec is determined, and the algorithm calculates the coefficient 

bit-width by Eqn. (5-12) corresponding to the worst case (Step 9 - 11).  

 
Example 6.3: Given an error bound E=2e-4 for exp(X), the interface input 

bit-width is 13. The algorithm finds the least number of Taylor terms is 6, and gets 

et = 1.98e-4, ei = 1.76e-4. Since ei < E and et + ei > E, that denote the number of 

Taylor terms is too small so the algorithm loops to find that the suitable number of 

Taylor terms is 8. It obtains et = 2.76e-6 and ei = 1.79e-4, so ec = E - et - ei = 

Design_fixed_input (f, E, m) 
1. { while (et < E)   { --n;  et = Get_Taylor_error (n) }; 
2.  ei = Get_input_error (f, n, m); 
3.  if (ei ≥ E )   

 print  “The interface input bit-width is too small to fit the error bound”;  
4.   else if (et + ei ≥ E ) 
5.   {  while (et + ei ≥ E ) 
6.      {  et = Get_Taylor_error (--n); 
7.        ei = Get_input_error (f, n, m);  } 

} 
8.   ec = E - et - ei;  
9.   for (i=0 ; i<m ; i++) 

     input_val += pow(2, -i-1) ; 
10.  for (i=0 ; i<n; i++) 

     coeff_sen += pow(input_val, i) ; 
11.  q = (-log(ec / coeff_sen) / log2) – 1; 

return (n, m, q) ; 
} 
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1.82e-5. In order to calculate the coefficient bit-width, Step 9 and 10 execute: 
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when each xk  equals 1 considering the worst case, the equation is 1.82e-5 = 

2-q-1* 7.99561 and the coefficient bit-width q is obtained as 18 bit, so the final 

obtained parameters are n=8, m=13, q=18.  

 

 

          6.5 Experimental Results 
6.5.1 Comparison of Two Implementations 
(A) Benchmarks 
1) Imprecise Cosine circuit implementation 

  In ASICs or FPGAs, the pipelined implementation of a cosine circuit 

represented by finite terms of Taylor series often uses the Horner’s polynomial 

evaluation: 
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2) B-splines   

Uniform cubic B-splines are used for image warping applications. Four B-spline 

basic functions B0, B1, B2 and B3 are defined by:  
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where u= [0, 1]. We use different bits to represent u to implement this design and 

observe imprecision effects. 

3) Chebyshev polynomials  

Chebyshev filters are analog or digital filters with a steeper roll-off and more 
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passband ripple. The gain response as a function of angular frequency w of the nth 

order low pass filter is: 
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Where ε  is the ripple factor and Tn is the Chebyshev polynomial of the nth order. 

Its mathematical characteristics are derived from Chebyshev polynomials. They 

are a sequence of orthogonal polynomials which are related to de Moivre's 

formula and which are easily defined recursively. The Chebyshev polynomials of 

the first kind are defined by the recurrence relation: 

T0(X) = 1     T1(X) = 1   Tn+1(X) = 2XTn(X) - Tn-1(X) 

According to the relation, we get: 

T8(X) = 128X8 – 256X6 + 160X4
 – 32X2

 + 1 

T9(X) = 256X9 – 576X7 + 432X5
 – 120X3

 + 9X 

4) Implementations of cubic filters 

  Cubic filters generally have multiple word-level variables, such as the 

benchmarks from University of Utah [51]. The complicated module contains three 

word-level variables, and we have to try exhaustive variable combinations if 

simulation is adopted, but the method of AT can avoid this time-consuming 

situation. Consider a filter: 

F(X, Y, Z) = 16384X4 + Y4 +57344Z4 + 64767XY3 + 16127Y2Z2 + 8965X3Z 

+19275X2YZ +51903XYZ + 32768X2Y +40960Z2 +32768XY2 + 49152X2 

+ 4869Y 

5) Discrete Cosine Transform (DCT) 

DCT is the kernel of JPEG and MPEG. Here the 88 × DCT implementation 

according to is considered. A vector of input data x0…x7 can be transformed to 

DCT coefficients by y0…y7. Coefficients c0…c6 are fractional numbers within 

(-0.5, 0.5) and generally approximated by 8 – 16 bits. 
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6) Box-Muller implementation 

  Box-Muller algorithm for generating Gaussian random variable is critical to a 

number of applications such as accurate bit error rate testers. The algorithm uses 

the following expression: 

 )2cos(*)ln(2)(*)(),( 21221121 XXXYXYXXY π−==    

We represent it by a finite number of Taylor series terms: 
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The implementation consists of two Taylor series and two word-level variables. 

Imprecision in two variables affect each other, so it is difficult to evaluate 

imprecision and get the optimized implementation by past univariate explorations. 

 
(B) Comparison Results 
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Table 6.1: Error and performance of various components on different criteria 
 

The module in Figure 6.2 is critical for both the conversion and the branch 

searching algorithms, so it is important to pay special attention to it. The error AT 

polynomial is derived from two implemented AT polynomials, from which 

imprecision can be discovered by the brand search. The module has the 

advantages of being fast and space-efficient, as Table 6.1 shows.  

More bits imply that the results are more precise, i.e., the implemented function 

value is closer to the originally specified data output. However, the precision 

comes not only at the cost of area, but also the rate of speed and energy 

consumption. In light of this, choosing an appropriate length to represent 

coefficients is worth the effort. Table 6.1 displays imprecision based on different 

degrees and input bits. It is obvious that imprecision decreases in proportion to the 

increase of the Taylor degree and input bits. Running time is acceptable even for a 

large number of terms. Hence, this module provides a reliable method of 

calculating and matching the imprecision of implementations, which will allow 

the engineers to lower the cost of design. The results also help to obtain an 

understanding of whether the existing implementations can be reused. 

 
 
 

Case Imp 
 Degree 1 

Imp  
Degree 2 

Imp Bit 1 Imp Bit 2 Error AT 
Terms 

Error Time(s) Space(MB) 

cos(x) 8 8 20 16 224747 1.2e1-5 7.98 66.6 
cos(x) 8 8 24 20 1007676 7.52e-7 38.84 347.3 

cos(x) 10 8 24 20 615115 2.75e-7 44.16 71 
cos(x) 10 8 24 24 4533805 2.76e-7 214.9 523.5 

B-splines 3 3    20    16 654 2.86e-5 0.375 0.38 
B-splines 3 3    24    20 974 1.79e-6 6.2 0.46 
B-splines 3 3    28    24 1356 1.12e-7 114.4 0.55 

Chebyshev 8 8    20    16 224747 9.15e-4 7.9 75.6 
Chebyshev 8 8    24    20 1007676 5.72e-5 38.73 347 
Chebyshev 9 9    20    16 381267 0.0012 21.1 145 
Chebyshev 9 9    24    20 2147220 7.24e-5 132.6 599 

Filter  4 4 (16,16,16) (16,16,14) 11549 19.39 2.13 55.2 
Filter  4 4 (20,20,20) (18,18,18) 307909 3.83 23.5 221.1 
Filter  4 4 (20,20,20) (20,18,18) 68156 2.36 16 144.5 
DCT 1 1 16 8 512 15.62 0.08 0.24 
DCT 1 1 16 10 512 3.86 0.11 0.27 
DCT 1 1 16 12 512 0.92 0.13 0.29 

Box-Muller (5,4) (4,4) (10,10) (8,8) 219001 0.013 4.65 38.2 
Box-Muller (5,6) (5,4) (12,12) (10,10) 613567 0.0068 18.3 86.5 



Chapter 6: Algorithms for Precision Verification and Optimization 

 139

6.5.2 Verification of Imprecise Circuits 
In this section, the algorithm in Figure 6.3 is verified. In order to cover general 

applications, two elementary functions represented by Taylor series and three 

circuits represented by real-valued polynomials are used as benchmarks to assess 

the effectiveness of the algorithm. 

 

Table 6.2: Checking implementations whether to satisfy  

the error bound in terms of given parameters 

 
  Table 6.2 lists corresponding errors of various functions due to given 

parameters and indicates whether the implementation is suitable to the 

specification on the condition of the error bound. Column 11 shows the number of 

obtained AT terms; Column 12, “Imprecision,” is a summation of the four types of 

errors; time and space requirements are showed in Columns 14 and 15 

respectively, which indicates the performance level of the checking algorithm. It 

is clear that even when the given error bound is small and parameters have a large 

bit size, our algorithm is fast and efficient in terms of time and memory 

requirements. 

 
 

6.5.3 Finding Implementations with the Smallest Area 
Engineers usually try to find the implementation with the smallest area, which 

helps to lower costs. In Figures 6.6 and 6.8 we verify the algorithms used to 

Case Error 
Bound 

n m q o et ei ec eo AT 
Term 

Impre- 
cision 

Satisfied Time
(S) 

Mem
(MB)

sin(X) 5e-4 4 12 13 12 2.48e-5 1.22e-4 2.44e-4 1.22e-4 3301 5.13e-4 No 0.78 1.63 
sin(X) 5e-4 4 15 14 11 2.48e-5 1.53e-5 1.22e-4 2.44e-4 16383 4.06e-4 Yes 2.42 6.47 
sin(X) 2e-4 5 14 15 13 2.76e-7 3.06e-5 7.63e-5 6.1e-5 14912 1.68e-4 Yes 15.5 12.7 
sin(X) 2e-4 4 15 13 14 2.48e-5 1.53e-5 2.44e-4 3.05e-5 16383 3.15e-4 No 4.7 6.28 
exp(X) 2e-3 6 13 12 12 1.98e-4 1.66e-4 7.32e-4 1.22e-4 4095 1.22e-3 Yes 0.47 1.11 
exp(X) 5e-4 6 14 13 14 1.98e-4 8.29e-5 3.66e-4 3.05e-5 6475 6.77e-4 No 0.54 1.77 
exp(X) 5e-4 6 16 14 13 1.98e-4 2.07e-5 1.83e-4 6.1e-5 14892 4.63e-4 Yes 0.89 3.68 
Bspline 1e-3 -- 12 12 10 -- 7.12e-5 3.66e-4 4.88e-4   298 9.26e-4 Yes 0.09 0.14 
Bspline 1e-3 -- 13 10 11 -- 3.56e-5 1.46e-3 2.44e-4   377 1.74e-3 No 0.13 0.19 
Cheby 5e-3 -- 14 -- 8   -- 6.54e-3 -- 1.95e-3 14912 8.49e-3 No 5.84 5.14 
Cheby 3e-3 -- 17 --  9   -- 8.2e-4 -- 9.77e-4 89845 1.97e-3 Yes 26.2 28.3 
DCT   4 -- -- 8 --   --  -- 15.71 -- 512 15.71 No 0.08 0.24 
DCT   4 -- -- 10 --   --  -- 3.93 -- 512 3.93 Yes 0.11 0.27 
DCT   1 -- -- 12 --   --  -- 0.98 -- 512 0.98 Yes 0.13 0.29 
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process Taylor series and multivariate polynomials.  

 

(A) Performance of Scheme for Optimized Implementations 
Using traditional methods, simulation cannot find the optimized 

implementations efficiently because all possible parameters should be investigated 

for all input values. We provide a much better technique than traditional error 

bounding techniques which select the precision parameters without exhaustive 

investigation of the interplay between the imprecision sources. 

Two elementary functions (cos(x) and exp(x)) given by Taylor series, and three 

circuits (B-spline, Chebyshev and DCT) represented by polynomials with one 

variable are used in Figure 6.6 as benchmarks to assess the effectiveness of our 

algorithm. In Figure 6.8, two circuits (cubic filter and Box-Muller) are used to 

verify the algorithm to find the optimized implementations of real-valued 

polynomials with multiple input variables. 

 

Table 6.3: Optimized implementations with smallest area  

and performance for different error bounds 

 

Column 2 in Table 6.3 gives different error bounds for various functions; 

Circuit   Error 
Bound 

n m q o et ei ec eo Node AT 
Terms 

Impreci- 
sion 

Time
 [s] 

Mem
[MB]

cos(x)/S 5e-4 5 13 14 11 2.32e-6 5.96e-5 1.23e-4 2.44e-4 -- 7098 4.29e-4 1.56 1.86
cos(x)/O 5e-4 5 10 17 17 2.32e-6 4.77e-4 1.52e-5 3.82e-6 4  1012 4.98e-4 1.33 1.52
cos(x)/S 3e-4 5 14 13 15 2.76e-6 3.03e-5 2.46e-4 1.53e-5 -- 12910 2.94e-4 2.56 3.01
cos(x)/O 3e-4 4 12 18 17 1.67e-4 1.19e-4 7.69e-6 3.8e-6 7  2509 2.97e-4 1.58 2.13
exp(x)/S 3e-4 8 14 15 13 2.48e-5 8.42e-5 1.07e-4 6.1e-5 -- 9908 2.77e-4 1.98 2.34
exp(x)/O 3e-4 7 14 18 17 1.98e-4 8.42e-5 1.31e-5 3.7e-6 6 6476 2.95e-4 2.37 2.86
B-spline/S 7e-4 -- 11 11 15   -- 2.45e-4 2.43e-4 1.5e-5 --   231 5.03e-4 0.09 0.18
B-spline/O 7e-4 -- 10 12 13   -- 4.91e-4 1.22e-4 6.1e-5 1 175 6.74e-4 0.08 0.11
Cheby/O 3e-2 -- 12 -- 7 -- 2.57e-2  -- 3.91e-3 1 3797 2.96e-2 1.42 1.53 
Cheby/O 1e-2 -- 14 -- 8 -- 6.54e-3 -- 1.95e-3 1 12911 8.49e-3 3.84 5.14 
Cheby/O 3e-3 -- 16 -- 9 -- 1.64e-3 -- 9.77e-4 1 39203 2.62e-3 9 15.2 
DCT/O   20 -- -- 8 -- -- -- 15.71   -- 1 512 15.71 0.08 0.13 
DCT/O   4 -- -- 10  -- --   3.92   -- 1 512 3.92 0.11 0.14 
DCT/O   1 -- -- 12 -- -- --   0.98   -- 1 512 0.98 0.13 0.15 
Filter/S  50 (14, 14, 14) -- 27.6   --   -- -- 47865 27.6 6.7 8.9 
Filter/O  50 (13, 13, 13) -- 49.3   --   -- 21 37636 49.3 11.9 25.4 
Filter/S  35 (15, 14, 15) -- 19.5 --   -- -- 51391 19.5  9.2 12.3 
Filter/O  35   (13, 14, 14) -- 32.4   --   -- 14 45232 32.4 18.9 25.5 
Box-Mul/S 5e-3 (5,6) (12,12) 11 8 1.3e-3 5.8e-4 6.6e-4 1.95e-3 -- 2153903 4.5e-3 2.68 1.58 
Box-Mul/O 5e-3 (5,6) (11,11) 11 10 1.3e-3 2.4e-3 6.8e-4 4.9e-4 13 1620432 4.9e-3 5.22 6.87 
Box-Mul/S 1e-3 (7,6) (12,13) 12 11 4.2e-5 2.8e-4 3.3e-4 2.5e-4 -- 9725892 9e-4 7.46 4.92 
Box-Mul/O 1e-3 (6,6) (12,12) 13 12 3.6e-4 3.2e-4 1.6e-4 1.2e-4 17 5938969 9.6e-4 13.3 17.6 
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Columns 3 – 10 list the obtained parameters and corresponding errors for 

implementations optimized for the bounds. Columns 11 and 12 show how many 

nodes are investigated in the whole procedure and the number of obtained AT 

terms; Column 13 gives the total imprecision, which is always smaller than the 

given error bound. Time and space requirements are reported in Columns 14 and 

15.  

In comparison to Figure 6.6, we invoke the sequential method introduced in 

Figure 6.4 to solve Problem 6.3, which is a case of feasible implementation. By 

considering the precision parameters sequentially, it mimics often applied 

schemes for setting precision parameters in isolation. The label “/S” in Column 1 

indicates that this sequential assignment algorithm is used in Figure 6.4, while the 

label “/O” points to the area optimization algorithm here. The optimization 

algorithm traverses more nodes to investigate the real-valued polynomials with 

multiple variables, such as cubic filter and Box-Muller, than Taylor series. Please 

notice that no unique group of parameters satisfies the error bound; changing one 

parameter would affect the others, as in rows 2 and 3, 4 and 5. These rows have 

different parameters, and all fit the given error bound indicated by Column 2. 

It is clear that, even when the given error bound is small and the parameters are 

large, our algorithm is fast and efficient in memory requirements. It takes 

advantage of appropriate paths to search and traverse the least valid nodes, which 

then leads to very good performance. Our method is not only feasible but a highly 

efficient way to get the best implementation. In many cases the optimization 

algorithm is faster than the sequential algorithm, which indicates that finding the 

best implementation is sometimes more efficient than finding a feasible 

implementation. We are unique in searching for the optimized implementation for 

a given error bound, while other researches mostly consider area reduction only in 

terms of wordlengths. 
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 Table 6.4: Result comparison with the paper [45] 
 

Research in [45] utilizes a multi-stage approach to get 8-bit and 16-bit output 

precision. Its benchmarks are real-valued polynomials where input wordlength is 

considered – it cannot deal with Taylor series and function approximation. We 

consider not only the input but coefficients and the output. Table 6.4 compares 

results with those in [45]. Our algorithm achieves higher speed and smaller area. 

We also notice that benchmarks in [45] have lower degrees than ours. We can 

handle functions with higher degrees, such as Chebyshev polynomials of degree 9. 

Furthermore, our algorithms are able to process functions with multiple variables. 

Cubic filter and Box-Muller, which are more difficult for verification and 

optimization, are used to prove it. We facilitate a more complex exploration of 

combining as many factors as possible when investigating the imprecision and 

approximation of the specification. 

 

 

 

 

 

 

 
Table 6.5: Error comparison of AA and our method 

 
Table 6.5 compares the errors obtained by AA and our method for the same 

number of Taylor terms and input bit-widths, listed in Columns 2 and 3. The error 

obtained by our method is far smaller than that of AA, which is an indicator of 

better accuracy compared to past explorations. 

 

Case Precision Time (s) [45] Area [45] 
(Slices) 

Time (s) Area 
(Slices) 

B-Spline 8 0.12   1368 0.07  1132 
16 0.19   2188 0.15 2056 

DCT 8 0.89   3598 0.08   857 
16 0.51   5069 0.17  1481 

Degree 4 
Polynomial 

8 1.9    803 0.96   763 
16 2.0   1921 1.55  1208 

Case n m AA Ours 
sin(X) 3 9 1.52e-2 1.1e-3 
sin(X) 3 11 1.52e-2 2.7e-4 
sin(X) 4 10 1.57e-2 5.46e-4
sin(X) 4 12 1.57e-2 1.37e-4
sin(X)*exp(X) 4 8 6.7e-2 1.5e-2 
sin(X)*exp(X) 4 11 6.7e-2 1.9e-3 
sin(X)*exp(X) 5  8 8.9e-2 1.48e-2
sin(X)*exp(X) 5 11 8.9e-2 1.87e-3
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(B) Area of Mapped Optimized Hardware 
While the optimization algorithm produces precision parameters for a minimal 

size AT polynomial, the exact area of the resulting circuit depends on the 

technology used in mapping circuits. We perform further experiments with 

mapping on FPGAs to evaluate the real area impact of the proposed optimization 

algorithm. In this section we use the Xilinx Virtex-4 XC4VLX100-12 FPGA, with 

the ISE tool (version 8.1), the same device and tool as in [45], to obtain a fair 

comparison of the results.  

 

Table 6.6: Hardware area of optimized circuits 

 
Table 6.6 compares the area of the FPGA implementations in terms of different 

parameters. All implementations can satisfy the given error bound E, shown in the 

second column. The rows labeled “/I” use the tight-bound interval method for 

input bit-width and coefficient bit-width to improve on the sequential algorithm, 

still labeled with “/S”. This new case produces less input and coefficient bits than 

the sequential algorithm. The rows labeled “/O” invoke the optimization 

algorithm which contains the tight interval method of this dissertation. The results 

achieve ~5% area reduction over the optimization algorithm reported in [86] (as 

“/O”), which uses the plain interval method for transcendental functions such as 

cos (X) and exp (X). The optimization algorithm, in combination with the tight 

interval method, can save the area by up to 30% over the sequential exploration of 

Circuit  E Taylor Terms Input [bits] Coef. [bits] Area [Slice] Saving 
cos(X)/S 3e-4 5 13 14 1037 -- 
cos(X)/I 3e-4 5 12 15 965 6.9% 
cos(X)/O 3e-4 4 12 16 746 28.1% 
exp(X)/S 3e-4 8 14 15 1179 -- 
exp(X)/I 3e-4 8 14 13  1136 3.6% 
exp(X)/O 3e-4 7 14 16  933 20.9% 
Cheby/S 3e-3 -- 20 -- 1906 — 
Cheby/O 3e-3 -- 16 -- 1439 24.5% 
DCT/S  4 -- -- 14 1162 — 
DCT/O  4 -- -- 10  894 23.1% 
Filter/S  35 -- (15,15,15) -- 3036 7.6% 
Filter/O  35 -- (13,14,14) -- 2725 17% 
Muller/S 1e-3 (7,6) (13, 14) 13 4327 -- 
Muller/I 1e-3 (7,6) (12, 11) 12 3986 7.9% 
Muller/O 1e-3 (6,6) (12, 12) 13 3759 13.1% 
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individual precision parameters. 

In the case of real-valued polynomials that do not contain function 

approximation, the optimized algorithm does not benefit from either tight-bound 

interval method, so the results do not show “/I” for real-valued polynomials.  

Finally, Figure 6.15 describes an achievable FPGA hardware area for 

benchmark circuits using different combinations of Taylor terms and input bits. 

Such a tabulation facilitates the exploration of trade-offs between precision and 

complexity. For comparison, Figure 6.15(b) shows B-spline and Chebyshev 

polynomial results from [45]. Results from our optimization algorithm require less 

hardware area. When mapped to the same FPGA with the same synthesis tools, 

our benchmarks – such as B-Splines or the Chebyshev polynomial – reduce the 

area achieved in [45] by 20% while obtaining the same precision. 
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                         c) 

Figure 6.15: Hardware area of Taylor series and real-valued 

polynomials in different Taylor terms and input bits 

 
 

6.5.4 Finding Implementations due to Various Constraints 
In this section, we verify that the algorithms can handle more constraints in 

terms of area, delay and interface input, as shown in Figures 6.6, 6.12 and 6.14. 

 

          Table 6.7: Optimization of imprecise circuits due to constraints 

 
The constraints are listed in Column 3, and Column 4 shows calculated 

optimized parameters; Columns 5 - 8 indicate each error, and the column labeled 

“Imprecision” (which is smaller than the given error bound) is a summation of the 

four types of errors; time and space requirements are shown in Columns 11 and 12. 

The performance indicates the optimization algorithms are highly efficient, while 

the algorithms can calculate different implementations in terms of the three 

Case Error 
Bound 

Constraint Optimized 
Parameters 

et ei ec eo Impre- 
cision 

AT 
Term 

Time
(s) 

Mem
(MB)

cos(x) 5e-4 fixed input (12) (4,12,13,14) 1.67e-4 1.19e-4 1.83e-4 3.05e-5 4.99e-4 2510 0.14 0.1 
cos(x) 5e-4     delay (4,11,14,18) 1.67e-4 2.39e-4 9.14e-5 1.91e-6 4.99e-4 1486 0.31 0.43
cos(x) 5e-4     area (5,10,17,17) 2.32e-6 4.77e-4 1.52e-5 3.82e-6 4.98e-4 1012 0.55 0.48
exp(x) 1e-4 fixed input (17) (7,17,16,16) 2.48e-5 1.04e-5 5.34e-5 7.63e-6 9.62e-5 41225 0.56 1.41 
exp(x) 1e-4 delay (7,15,17,17) 2.48e-5 4.15e-5 2.67e-5 3.81e-6 9.68e-5 16383 0.41 0.95
exp(x) 1e-4     area (8,14,19,17) 2.76e-6 8.29e-5 7.63e-6 3.81e-6 9.71e-5 12910 1.7 0.91
B-spline 5e-4 fixed input (11) (-,11,11,16)   -- 2.45e-4 2.43e-4 7.63e-5 4.95e-4   67 0.17 0.3 
B-spline 5e-4    area (-,10,16,19)   -- 4.91e-4 7.63e-6 9.53e-7 4.99e-4   56 0.14 0.13
Cheby 3e-3 fixed input (18) (-,18,-,8)   -- 4.1e-4 -- 1.95e-3 2.36e-3 45685 11.6 19.7
Cheby 3e-3    area (-,16,-,9)   -- 1.64e-3 -- 9.77e-4 2.62e-3 39203 9 15.2
Filter 50 fixed input 

(15,14,-) 
(15,14,12) -- 42.6 --   -- 42.6 42827 3.25 4.71

Filter 50    area (13,13,13) -- 49.3 -- -- 49.3 37636 11.9 25.4
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constraints.  

We map the obtained logic to Xilinx Virtex5 FPGAs by their ISE tool. Table 6.8 

lists the mapped area and delay for each implementation from Table 6.7. Columns 

5 and 6 show the mapped results of delay and area respectively. The 

implementations in Rows 3 and 6 have the minimum delay, while those in Rows 4 

and 7 have the smallest area on the condition of the same error bound. Clearly, the 

optimized implementations save significant area or delay for circuits compared to 

other feasible implementations. Less area and less delay means less power 

dissipation and faster calculation speed, and these are important factors in 

microchips. This demonstrates the necessity of finding an implementation with 

the smallest area or delay in real applications. 

 

 
Table 6.8: Hardware delay and area for optimized implementations 

 

 

                6.6 Conclusions 
  We proposed a series of algorithms to handle imprecise circuits in this chapter. 

A comparison algorithm was described to compute imprecision between two 

components, and a verification algorithm was then proposed to verify whether a 

given implementation satisfies the error bound. We determined that a sequential 

method can find a feasible implementation to fit the given error bound, while 

optimization algorithms are designed to obtain optimized implementations in 

terms of different constraints, including the smallest area, minimum delay and 

Case E Constraint Parameter Delay (ns) Area (Slices) 
exp(x) 1e-4 fixed input (7,17,16,16) 11.85 1662 
exp(x) 1e-4 delay (7,15,17,17) 9.13 1536 
exp(x) 1e-4 area (8,14,19,17) 10.1 1389 
B-spl 5e-4 fixed input  (-,11,11,16) 6.37 422 
B-spl 5e-4    area (-,10,16,19) 5.76 396 
Cheby 3e-3 fixed input  (-,18,-,8) 13.58 1758 
Cheby 3e-3    area (-,16,-,9) 12.23 1439 
Filter 50 fixed input  (15,14,12) 14.9 2646 
Filter 50    area (13,13,13) 13.79 2435 
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interface input bit-width. We saw that these algorithms can process both Taylor 

series and multivariate polynomials, and cover various applications of imprecise 

circuits. The experiments used several arithmetic circuits as benchmarks to verify 

these algorithms and the results were satisfactory.  
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Chapter 7  

Range Analysis 
 
 

 

 

Range analysis is an important task for obtaining the best cost and 

performance of arithmetic circuits. The traditional methods, either 

simulation-based or static, have the disadvantages of low efficiency 

and coarse bounds leading to the use of unnecessary bits. We propose 

a new method of performing fixed-point range analysis that combines 

several techniques to efficiently obtain exact ranges. 
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7.1 Disadvantages of Traditional Methods 
In Chapters 5 and 6, we analyzed precision and proposed a series of algorithms 

to process the design and verification of imprecise circuits. In this chapter we 

address range and allocate integer bit-widths. Allocating bit-widths in a datapath 

is a necessary step in the synthesis because of its direct impact on resources and 

delay. Manual or sub-optimal methods might over- or under-allocate bit-widths. 

Too few bits will cause overflow, while too many are not cost efficient. Therefore, 

an automatic way of finding the most appropriate bit-widths is a significant 

contribution in the high-level synthesis of datapaths. 

In obtaining the optimal allocation of bit-widths, the data representation that 

exposes the variable ranges plays a key role. If we can find the exact ranges for all 

intermediate variables we can achieve the smallest bit-widths, which will reduce 

both the circuit area and the delay. Chapter 2 explored past attempts at this. In the 

range analysis so far, there is a clear separation among the solutions that deal with 

the quality of the result versus those where the computation time has been the 

focus, without the explicit possibility to exploit the specifics of a given problem. 

Dynamic methods and SMT focus on tight ranges, while IA and AA are designed 

to shorten the calculation time. Figure 7.1 compares the time requirement for each 

method. 

 

 

Figure 7.1: Tradeoff between ranges and calculation times 
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The error E, defined as the largest difference between the true and the resulting 

range values, reflects the method accuracy. The goal is to obtain the smallest 

value of E whilst maintaining the one-sided error, i.e., not underestimating the 

bit-width. From the figure, SMT, AA and IA may overestimate ranges, which may 

generate additional bits for data representation.  

 
Example 7.1: Use of IA and AA in range calculation. Consider the 

implementation of a function z=ab+c-b with the range of signals as shown in  

square brackets in Figure 7.2.  

Using IA is easy to get the ranges for each output. For example, dI = ab is 

calculated as [min(-1*4, -1*10, 2*4, 2*10) , max(-1*4, -1*10, 2*4, 2*10)]= [-10, 

20]. In AA, an ordinary interval [xmin, xmax] for an input variable can be converted 

into an equivalent affine form 0 1Ax x x ε= +  with 

max min
0 2

x xx +
=             

max min
1 2

x xx −
=         (7-1)   

The intermediate signal or the output is represented as a first degree  

polynomial: 

0 1 1 2 2...A n ny y y y yε ε ε= + + +  

where y0, y1, ... yn are real-valued numbers and 1 2, ... nε ε ε  are symbolic  

variables whose values are only known to lie in the range[-1,+1]. 

b = [-1,2]

zA= [-34, -4]

a = [4,10]c= -22

dA=[-13,20]

eA=[-35, -2]

Input
Variables

Intermediate
Variables

Output
Variable

dI=[-10,20]

eI =[-32, -2]

zI = [-34, -1]

d =[-10,20]

e=[-32, -2]

z = [-31, -4]
 

Figure 7.2: Example performing z=ab+c-b by IA and AA 
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In affine forms, we get: 

aA=7+3 1ε            bA =0.5+1.5 2ε            cA = -22 

dA = aAbA = 3.5+1.5 1ε +10.5 2ε + 4.5 1 2ε ε  = 3.5+1.5 1ε +10.5 2ε + 4.5 3ε  

eA = dA + cA = -18.5+1.5 1ε +10.5 2ε + 4.5 3ε  

zA = eA - bA = -19+1.5 1ε + 9 2ε + 4.5 3ε  

 
Figure 7.2 describes the exact ranges and the ranges obtained by IA and AA 

respectively. We observe that by AA the intermediate variable e must be 

represented by 7 signed integer bits since its range is beyond [-32, 31] by 6 signed 

integer bits, and the primary output is also using 7 bits; however, 6 bits are enough 

for the exact ranges to represent e and z since their ranges are [-32, -2] and [-31, 

-4]. The reason is as 1 2 3ε ε ε=  in aAbA, so the term 1 2ε ε  is dependant of the two 

variables 1ε  and 2ε , but AA uses a new variable 3ε  as a substitution. This new 

variable is independent of 1ε  and 2ε , hence AA has to extend the range.  

  Note that AT can encode intervals, as required in range analysis. It is easy to 

represent an entire domain, that is, [0, 2N-1] for unsigned integers and [-2N, 2N-1] 

for sign extended integers. AT can represent them compactly as 
1

0
2

N
k

k
k

x
−

=
∑  and 

2

1
0

(1 2 ) 2
N

k
N k

k
x x

−

−
=

− ∑ . For example, the expression of 8x3+4x2+2x1+x0 represents the 

entire domain [0, 15]. However, in order to represent the subset of [0, 13], the 

expression, needs a larger polynomial, 8x3+4x2+2x1+x0 -14x3x2x1-x3x2x1x0. 

Obviously, the subset generates a much more complex expression, and if there are 

operations such as multiplication and exponentiation, a number of AT terms will 

be generated leading to a need for a branch-and-bound search.  

Considering the features of AT, Example 7.1 provides useful information for 

range analysis: 

 AA can get the tighter range than IA. For instance, the range of the final  

output z in the datapath obtained by AA is tighter than that of IA. 

 IA is not always worse than AA. Observing the intermediate variables “d” and 
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“e” in Figure 7.2, IA gets the tighter ranges than AA, because there is no 

correlation existing in the two intermediate outputs d = ab and e = ab-c. 

Correlation is the concept defined in [42], meaning that if the value of a term in 

a polynomial changes, the other terms will follow the change. If the 

polynomial exhibits no correlation, IA is better than AA; otherwise, AA is 

better. 

 AA can represent the arbitrary input range compactly while AT might not, so 

the input is better to be represented by AA. We note that if the uncertain 

variable ε in AA takes an entire range (say normalized to [-1, 1]), AT may 

easily represent it.  

 The worst case is when the unit quantity of range leads to an additional bit. For 

example, if the exact range of e is [-32, -2] and if the lower bound moves by 1, 

leading to -33, an additional bit will be generated. Since the intermediate 

variables cannot obtain the exact range, the datapath propagates the coarse 

ranges backward to lead the inexact result. Of course, the additional bits are 

useless and cause unnecessary area and deteriorate the performance.  

In terms of the above analysis, we conclude that the advantages of IA, AA and 

AT are complementary and can be used together, as long as they are employed in 

suitable conditions. Hence, a hybrid algorithm for the static range analysis and 

bit-width optimization is appealing. In this chapter, we introduce the methods that 

try to achieve the exact ranges and the short calculation time concurrently, by 

tackling every (sub-)problem in a precise, yet efficient way, depending on its 

nature. We develop a hybrid engine that can get exact ranges while reducing the 

calculation time as much as possible by analyzing the correlation between the 

variables, which then lends itself to a selection of a best approach for a given 

(sub-)problem. The method combines advantages of IA, AA and AT with high 

efficiency. It is capable of obtaining the exact ranges and allocating the smallest 

bit-widths to find optimized implementations with the smallest area. 

 

 



Chapter 7: Range Analysis 

 153

           7.2 Datapath Analysis 
In order to develop the hybrid engine, it is useful to analyze the polynomial 

representing a datapath. We use Example 7.1 to assist the explanation of the 

analysis. 

 
 

7.2.1 AA Expressions  
The datapath of Example 7.1 has three primary inputs, two intermediate outputs 

and one primary output. The three primary variables a, b and c are represented by 

AA in terms of Eqn. (7-1) as: 

aA=7+3 1ε        bA=0.5+1.5 2ε         cA= -22 

The first intermediate variable is d = ab. It is easy to confirm that there is no 

correlation in the polynomial since a and b are independent, and the two variables 

only occur once in the polynomial, so the range of d can be calculated by IA, that 

is, [-10, 20]. Although it is simple to get the range of d, the AA expression is 

necessary since in the future the expression may be used. So we get: 

dA=aA bA = (7+3 1ε ) (0.5+1.5 2ε ) =3.5+ 1.5 1ε +10.5 2ε + 4.5 1 2ε ε      

Then the next intermediate variable in the datapath is e = ab+c. By scanning 

the polynomial, there is also no correlation, so the range of e is calculated by IA, 

that is, [-32, -2]. The AA expression of e is:     

eA = dA – cA = -18.5 +1.5 1ε  +10.5 2ε  + 4.5 1 2ε ε  
  The final step is to determine the range of the primary output z =ab + c - b. The 

polynomial has correlation because the variable b occurs two times in the 

polynomial, so the two terms of “ab” and “-b” have correlation. The case is much 

more complex than the cases without correlation. The AA expression of z is: 

                   zA = -19 +1.5 1ε  + 9 2ε  + 4.5 1 2ε ε      
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7.2.2 Determining Quantization Bits of Uncertain 

Variables 
  As 1ε  and 2ε  belong to [-1, 1], AT can represent the scope approximately by 

m bits as a signed fractional number, i.e., 
1

0
1

(1 2 ) 2
m

i
i

i

x x
−

−

=

− ∑  in Figure 7.3. 

 
sign 0.5 0.25 0.125

x0 x1 x2 x3… 

                  Figure 7.3: Data format of the signed factional number 

 
  If we can determine the value of m, the output is represented compactly and the 

approximation can be evaluated. So the next step is to choose the appropriate 

bit-widths for 1ε  and 2ε . Please note that the two uncertain variables may have 

different bit-widths, but at first we suppose that they have same bit-widths.  

  From the Example 7.1, the worst case occurs if the approximation error is 

beyond 1, which means the difference between the exact range and the obtained 

range is larger than “1”, that is, |exact_range – obtained_range| > 1. The case is 

possible to generate an additional bit. In order to avoid the worst case, the error 

must be limited to 1 unit to avoid this case, and the inequality becomes: 

1 2 1 2| 1.5 | | 9 | | 4.5 | 1err err errε ε ε ε+ + <
r r r r

 

1ε
r

 and 2ε
r

 are quantized uncertain variables to replace 1ε  and 2ε . So there is 

the inequality (here we assume that 1ε
r

 and 2ε
r

 have uniform bit-widths m): 

1 2| 4.5 | 1errε ε <
r r

  ⇒   4.5[1- (1-2-m+1)2 ] <1 

The reason to choose the term “ 1 24.5ε ε
r r ” first is because the term has second-order 

uncertainty while terms such as 11 .5 εr  and 29εr  have first-order uncertainties. 

The order of uncertainty for a monomial is defined as the degree summation of 

uncertain variables in the monomial. The preferential choice of the term with 

highest order uncertainty is helpful to decrease the calculation complexity. 

Obviously when all bits in the data format are 1, the fractional number has the 
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largest approximation error 2-m+1, or else 2-m for other values. For instance, in the 

Figure 7.3 to approximate “1”, while x1, x2 and x3 are all 1, the error is 2-3 = 0.125, 

and in other values the error is 2-4 = 0.0625. While the maximum error is 2-m+1, the 

value of 1ε
r

is 1-2-m+1 and 1 2ε ε
r r

equals to (1-2-m+1)2. Therefore, the maximum error 

of the term 1 24 .5ε ε
r r is represented as 4.5[1- (1-2-m+1)2].  

By solving the inequality, the value of m is 5, that means, 1ε
r

and 2ε
r

both have 

5 bits at least to satisfy that the approximation error is restricted to 1 unit. 

Substituting 1ε
r

= 2ε
r

= 0.9375 as five bits, the real value is 4.5 * 0.93752 = 3.955. 

  We conclude that the real maximum error is 4.5 – 3.955 = 0.545 so the left error 

space is 1-0.545 = 0.455. Then we explore the term 1.5 1ε
r

. The inequality is 1.5 * 

2-m+1 < 0.455. So 1ε
r

 must have three bits at least. Considering 5 bits in the term 

1 24.5ε ε
r r  and 3 bits in the term 11 .5 ε

r , 1ε
r

 should be 5 bits to satisfy the two 

terms at the same time. So we get 11 .5 ε
r = 1.5 * 0.9375 =1.40625.  

  The real maximum error for the term 11 .5 εr  is 1.5-1.40625 = 0.09375 so the 

left error space is 1-0.545-0.09375=0.36125. The final term 29ε
r must satisfy the 

inequality 9 * 2-m+1 < 0.36125.  

The bit-width of 1ε
r  is 6 in the inequality and in combination with the 

bit-width in the term 1 24 .5ε ε
r r , we obtain the final bit-width of 2ε

r
is 6. At last, 

we determine the two uncertain variables have 5 and 6 bits. The expression of z is 

changed as: 

z = -19 +1.5
4

0
1

(1 2 ) 2 i
i

i
x x −

=
− ∑ + 9

5

0
1

(1 2 ) 2 i
i

i
y y −

=
− ∑ + 4.5

4 5

0 0
1 1

[(1 2 ) 2 ][(1 2 ) 2 ]i i
i i

i i
x x y y− −

= =
− −∑ ∑                       

By invoking the conversion algorithm and the branch searching algorithm, the 

lower bound and the upper bound are -4.7881 and -30.3814. Since the bounds are 

approximate to the exact bounds, and the absolute values of uncertain variables 

are smaller, the calculated bounds should be covered by the exact bounds, so we 

get the exact bounds of the primary output are [-31, -4].  

If the term 1 24 .5ε ε
r r  is not chosen first, 1ε

r and 2ε
r both need 8 signed bits for 

representations. Although the obtained range of z is same, the calculation time 
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increases much more since more quantization bits burden the conversion 

algorithm and the branch searching algorithm. Hence, the first choice of the term 

with higher uncertain degree is very significant. 

 
 

7.2.3 Allocating Bit-widths for All Outputs 
It is easy to allocate the bit-widths After all intermediate ranges have been 

obtained. The integer bit-width (IB) is calculated as:  

IB = [log2 (max(|xlow|, |xupp| ))] + α               (7-2)        
where 

ߙ             ൌ ൜2    ݉݀൫݈݃ଶሺ݉ܽݔሺ|ݎ௪|, ௨|ሻ,1൯ݎ| ൌ 0
                                                  ݁ݏ݅ݓݎ݄݁ݐ    1

 

  In Eqn. (7-2), xlow and xupp represent the lower and the upper bound of the 

obtained range, and the square bracket is the ceiling function. The intermediate 

outputs and the primary output all have signed 6 bits since their ranges are 

restricted in the scope [-32, 31]. Compared to AA, e and z save one bit;  

compared to IA, the final output range is much tighter.  

Our method combines techniques of IA, AA and AT. If the polynomial has no 

correlation, it adopts IA to calculate the range; if not, using AA gets compact 

expressions while AT is applied to handle correlation. The step of quantizing the 

uncertain variables in AA expressions keeps trace to the correlation, hence the 

accuracy is guaranteed. Therefore, the method avoids their disadvantages and 

integrates each advantage, and hence it can process the worst case to obtain exact 

ranges.    

 

 

7.3 Algorithm for Calculating Ranges 
  Figure 7.4 describes the algorithm to allocate bit-widths in a datapath. It first 

retrieves the polynomial description, and gets the AA expression for future 
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utilization. If the polynomial has no correlation, IA is used to get the exact range 

so the bit-width is determined; if not, the uncertain variables are quantized in AA 

expression, the conversion algorithm is invoked to convert the expression to an AT, 

and the branch-and-bound searching algorithm finds the upper and the lower 

bounds. Finally, the bit-width of the output is allocated. 

 

start Retrieve polynomial
description

for an output

Confirm
correlation?

Get AA expression

NoRange
obtained

IA

Quantize
uncertain variables in

AA expression

Invoke conversion
algorithm

Invoke branch
searching algorithm

Range
obtained

Allocate
bit-width

Allocate
bit-width

Done

Yes

Finish
datapath?

No

Yes

 

Figure 7.4: Algorithm for allocating bit-widths  

 
The two key steps in Figure 7.4 are how to confirm correlation and quantize 

uncertain variables. Figure 7.5 describes how to check whether a polynomial has 

some correlation. The symbol n represents the number of input variables in the 

polynomial and the symbol t[i] records occurred times of the variable vi. If all 

variables occur only once, the function clearly exhibits no correlation.  
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Figure 7.5: Algorithm for confirming correlation 

 
  In Example 7.1, the algorithm scans the intermediate variable d and finds that 

the variables a and b only occur one time in the polynomial, so no correlation 

exists; similarly, the variable b occurs two times in the expression of z, so the 

polynomial has correlation and IA cannot obtain its range directly. AA and AT are 

used to process the case. The important step is determining the quantization bits 

for each uncertain variable. Figure 7.6 describes the subroutine.  

The subroutine sorts the terms in the AA expression. The terms with higher 

uncertain degrees are explored with higher priority. Considering the worst case, 

the initial error space is set to 1 unit, so the initial bit-widths of uncertain variables 

can be procured. The error space is reset and the sub-routine continues to handle 

the next term. After all terms are processed, the final bit-widths of corresponding 

uncertain variables are the maximum obtained bit-widths.  

 

 

 

 

Confirm_correlation (f) 

{  for (p=0; p<terms_num; p++)   // loop all terms 

{ for (i=0; i<n; i++) 

if (variable vi is present) 

      t[i]++;   // count appearances for the variable 

   }   

   for (i=0; i<n; i++)  

{  if (t[i] >1)   // the polynomial f has correlation 

     return corr_flag = 1;    

}  

if (i = n)    // the polynomial f has no correlation 

return corr_flag = 0;   

 } 
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Figure 7.6: Algorithm for determining quantization bit-widths for uncertain variables 

 
The initial error space limits the deviation of the obtained ranges - the unit 

value can cause the worst case to make the obtained ranges not equal to the exact 

ranges. The efficient AT conversion and branch-and-bound searching are 

instrumental to the high efficiency in performing the range analysis. 

 

 

              7.4 Experimental Results 
We implement the algorithm by C++. The benchmarks are described by Verilog 

HDL augmented with the datapath representation and range information. We try 

several benchmarks to assess its performance. Experiments are done on a 512MB, 

Determine_uncertain (AA_Expre) 

{  for (p=0; p<terms_num; p++)  

// loop all terms in AA_Expre 

   { if (current_term.degree < next_term.degree) 

       Move_forward (next_term); 

   }  // sort terms with higher uncertain degrees;   

   error_space = 1; 

   for (p=0; p<terms_num; p++)  

// loop all sorted terms  

   {  )])./_1(1(log1[ deg/1
2

ree
p coefftermspaceerrorm −−−= ; 

   error_space = error_space - term.coeff * [1- ree
m

i

i deg
1

1
)2(∑

−

=

− ]; 

   store mp in corresponding uncertain variable ε ; 

} 

for (i=0; i<uncertain_var_num; i++) 

qi = max (bit-widths for the uncertain variable iε ); 

   return q;  } 
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2.4GHz Intel Celeron machine under Linux. 

 
 

7.4.1 Filter Polynomial 
  Image processing applications often use polynomial filter with presentation 

given by:  

                 F = a1x4 + a2x3 + a3x2 

  Here we consider an example as (X∈[-20, 10]):  

F = 4X4 + 16X3 + 20X2 

   The implementation has four intermediate variables. 

q1 = X2        q2 = q1X           q3 = q2X  

q4 = 4q2 + 16q3            z = q4 + 20q1 

 

 

 

 

 

Table 7.1: Comparison with AA for filter polynomial 

 
 

7.4.2 Dickson Polynomial 
Dickson polynomials have important applications in coding and communication 

areas. The definition for n>0 is:  

D0(x, a) = 2        Dn(x, a) =  

   

The polynomial contains two variables. Here we explore the implementation of 

the 4th order polynomial over real numbers (assume x∈[-50, 50], a∈[-20, 40]):  

  D4(x, a) = x4 -4x2a + 2a2 

  The implementation has 5 intermediate variables from q1 to q5:  

Output Our Method AA 
Range Bit Range Bit 

q1 [0, 400]  9 [-350, 400] 10 
q2 [-8000, 1000] 14 [-8000, 7750] 14 
q3 [0, 160000] 18 [-158750,160000] 19 
q4 [-108,512000] 20 [-511000,534000] 21 
z [0, 520000] 19 [-511000,542000] 21 

pnp
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p
xa

p
pn

pn
p 2

]2/[
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   q1 = x2        q2 = q1
2           q3 = 4q1a 

 q4 = 2a2           q5 = q2 – q3       z = q5 + q4  

 

 

 

Table 7.2: Comparison of our method, AA, improved simulation  

and AT for Dickson polynomial 

 
 

7.4.3 Multivariate Datapaths  
  Here, a datapath is always expressed by a polynomial with multiple variables. 

The polynomial with 3 integer variables is:  

F = 30A2– 60AB - 40BC  

  Here A ∈ [-20, 30], B ∈ [10, 40] and C ∈ [-10, 30]. The case is broken 

intermediately into: 

             q1 = 30A2         q2 = 60AB       q3 = 40BC 

    q4 = q1 – q2            z = q4 - q3 
 

           Table 7.3: Comparison with AA for a multivariate datapath 

 
 
 

Output 
Our Method AA 
Range Bit Range Bit 

q1 [0, 27000] 15 [-25650, 27000] 16 
q2 [-48000, 72000] 18 [-57000,72000] 18 
q3 [-16000, 48000] 17 [-28000, 48000] 17 
q4 [-45000, 60000] 17 [-82500, 69000] 18 
z [-93000, 76000] 18 [-131500, 97000] 19 

Output Our Method            AA    Time (s) 
Range Bit Range Bit Ours Sim AT 

q1 [0,2500] 12 [-2500, 2500] 13 0.03 0.03 0.08
q2 [0，6250000] 23 [-6250000, 

6250000] 
24 0.04 0.14 1.56

q3 [-200000,400000] 20 [-400000, 
400000] 

20 0.06 0.2 0.25

q4 [0, 3200] 12 [-2800, 3200] 13 0.03 0.03 0.27
q5 [-6399,6450000] 24 [-6450000, 

6450000] 
24 1.15 > 60 1.87

z [-3199,6453200] 24 [-6453200, 6453200] 24 1.4 > 60 2.35
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7.4.4 Energy Spectral Density  
  The benchmark of energy spectral density [55] calculates: 

)()(
2
1)( * wFwFw
π

φ =  

where F(w) is the FFT of discrete signals. The experiments use an 8-point with 

each of the 8 inputs a complex number in [−128,128] + [−128,128]i. 

Table 7.4: Our method vs. AA vs. SMT for energy spectral density 

 
  We use the AA method introduced in [42] for comparison, and show the 

generated bit-widths by our method and AA respectively. In Table 7.1 to 7.3, the 

intermediate variables’ and the primary outputs’ ranges are exact and far tighter 

than those of AA. Table 7.2 compares execution time with the methods of 

improved simulation and pure AT. Since the pure AT method generates more terms 

and spends time in conversion and the search, while the improved simulation has 

to calculate many points and compare them to found bounds, their execution time 

is much longer than our method. Table 7.4 compares our results with those 

obtained by SMT [55]. Using a benchmark from [55], our method can get the 

exact ranges, while SMT obtains more precise ranges than AA. Regarding the 

SMT results, since there are negative quantities, the bit-widths could require one 

additional bit, but as authors estimate that the function will only have positive 

values, the additional bit is omitted in their reporting. Reported runtime in [55] is 

on the order of 100s of seconds, while we spend 8.9 seconds for the same 

benchmark.  

 

   
Output 

    Our Method            AA        SMT 
Range Bit Range Bit Range Bit 

0 [0, 2097152] 22 [-1835008, 2097152] 22 [-1, 2097153] 22 
1 [0, 1984106] 21 [-2373666, 2635814] 23 [-1, 1984106] 21 
2 [0, 1790022] 21 [-2269321, 2531463] 23 [-1, 1790022]  21 
3 [0, 2052757] 21 [-2373666, 2635814] 23 [-1, 2052757]  21 
4 [0, 2097152] 22 [-1835008, 2097152] 22 [-1, 2097153]  22 
5 [0, 1957096] 21 [-2373666, 2635814] 23 [-1, 1957096]  21 
6 [0, 1790023] 21 [-2269321, 2531463] 23 [-1, 1790023]  21 
7 [0, 2029555] 21 [-2373666, 2635814] 23 [-1, 2029555]  21 
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7.4.5 Area of Optimized Implementations 
As the exact area of the resulting circuit depends on the technology used in 

mapping circuits, we perform further experiments with mapping to FPGAs. We 

map the circuits to Xilinx Virtex5 FPGAs using ISE tool, version 8.1, to evaluate 

the real area impact of the proposed algorithm in Table 7.5. Again, the 

implementations obtained by AA are used as comparison.  

 

 

 

 

 

 

 

Table 7.5: Area comparison of our method and AA 

 
Rows 2 – 4, 5 – 7, and 8 – 10 use the same datapaths but different input ranges 

so leading to different input bit-widths which reflect the area change. Column 4 

indicates the saving ratio. There are four variables which save bits in the filter 

benchmark, while another two benchmarks only have three variables, so the filter 

has larger area saving ratio. With the increase of the input ranges, the saving ratio 

decreases because the auxiliary area caused by additional bits reduces. Our 

method can achieve the optimized implementations with area smaller for around 6% 

- 12%. The delay of implementations is compared in Column 5 - 7. Due to the he 

smaller bit-widths, we are able to decrease delay around 6%- 10%. Hence, the 

hybrid method is helpful to both area and delay. The calculation time of AA is 

close to 1 second while our method requires 3 – 6 seconds. The increase in 

computation time pays off, as the obtained ranges are far tighter.  

 

 

Circuit Area (Slices)      Delay (ns) 
Ours  AA Saving Ours AA Saving 

Filter  686 772 11.1% 23.5 26 9.62% 
Filter  725 805 9.96% 24.6 26.9 8.55% 
Filter  756 820 7.77% 25.4 27.5 7.64% 
Dickson 809 897  9.8% 31.3 33.5 6.57% 
Dickson 845 926 8.7% 32 33.9 5.6% 
Dickson 877 948  7.5% 32.4 34.1 4.99% 
MultiVar 532 574 7.3% 27.4 29.9 8.36% 
MultiVar 557 596 6.5% 27.9 30.2 7.62% 
MultiVar 588 623 5.6% 28.7 30.7 6.51% 
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                 7.5 Conclusions 
Range analysis is an important step in RTL synthesis since it directly impacts 

cost and performance. Previous methods, including the improved 

simulation-based techniques, are of low efficiency, while the AA-based methods 

reach coarse bounds. The coarse ranges may generate unnecessarily additional 

bits, leading to more costly circuits. In this thesis, we propose a new method to 

calculate ranges statically. It combines techniques of IA, AA and AT to find ranges 

efficiently, while at the same time the obtained ranges can be exact, hence 

avoiding the generation of additional bits. The key to our hybrid method is the 

ability to handle the correlation. Each intermediate output can obtain the smallest 

satisfying bit-width based on the ranges; therefore, the optimal implementation 

with the smallest hardware area can be achieved. The experiments indicate that 

the method is much closer in computation time to the approximate methods such 

as AA-based rather than more exhaustive SMT-based, while at the same time 

optimizing the bit-widths, which necessarily leads to the efficient area and delay 

characteristics obtained by synthesis.  
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Chapter 8  
Combining Range and Precision 

 
 

 

 

  We discuss fixed-point circuits together with range and precision in 

this chapter. The important aspects lie in how to allocate appropriate 

integer and fractional bit-widths, and estimate the error. It is 

necessary to conduct the mathematic model of the circuit in order to 

get the optimized implementation. We analyze precision, and propose 

an algorithm to calculate range and optimize the allocation of 

fractional bit-width. Furthermore, circuits with feedbacks and 

floating-point representation are investigated.  
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8.1 Fixed-Point Representation 
We have discussed precision and range corresponding to fractional bit-width 

(FB) and integer bit-width (IB) respectively in above chapters. A fixed-point 

representation often has IB and FB concurrently. Figure 8.1 describes the two 

problems in the fixed-point representation.  

 

Fixed-point
Specification

(IB, FB)

Range Precision
 

Figure 8.1: Exploration of the fixed-point representation 

 
Example 8.1: A datapath with three primary inputs a, b and c is shown in Figure 

8.2. The numerical bounds are given in the square brackets.  

b= [-2.8, 5.6]a= [-3.6, 4.2]

Intermeidate
Variable

Output
Variable

d

Input
Variables

c= [-2.5, 2.7]

e  

Figure 8.2: The datapath of Example 8.1 

  The datapath has one intermediate output d and one primary output e where 

d=ab and e=d+c. All variables need to be represented by the fixed-point format 

both with IB and FB.  

 
Important problems in the example are stated as follows: 

 How to get the value bounds for all variables? 
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 How to allocate the bit-widths for all variables included the primary inputs? 

 How to estimate the error for the primary output? 

 How to get the optimized implementation? 

The above four questions are most significant to all fixed-point circuits. Since 

the primary inputs have FB, we can conclude that the primary output also has FB. 

In real applications, engineers generally give the error bound to make the 

maximum difference between the exact value and the true value of the primary 

output restricted in the bound. The interplay of the four problems results in 

hardness of analysis. Determination of IBs relies on the values bounds of all 

variables, while determination of FBs and optimization rely on the error bound.  

  Past explorations only focus one aspect. For instance, authors in [55] 

investigate how to get ranges and then allocate IB, but they do not explore the 

precision so cannot allocate FB. The paper [42] analyzes both range and precision, 

and allocates IB and FB. But it has no capability to get the optimized 

implementation with the smallest hardware area. Exploring the four problems 

concurrently is difficult. In this chapter, we analyze range and precision, and 

propose an algorithm to allocate IB and FB, and then obtain the optimized 

implementation.  

 

 

     8.2 Analysis of Range and Precision 
  Now we use the Example 8.1 to help analysis of range and precision. The 

Chapter 7 has already given the algorithm that combines IA, AA and AT in Figure 

7.3 to get the exact ranges. The algorithm represents primary inputs as AA 

expressions, and then checks whether the polynomial representing the datapath 

has correlation between monomials. If not, IA is invoked to get ranges; otherwise, 

it quantizes the uncertain variables, and the algorithms of AT conversion and 

branch searching are invoked to find ranges. The hybrid method has high 

efficiency and can get exact ranges to allocate smallest IB for all variables. Using 
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the hybrid method in the Chapter 7, the minimum and the maximum integer parts 

of the intermediate variable d are -21 and 24 respectively, while for the primary 

output e they are -23 and 26. Therefore, the IBs for the two output are both 6 

(included the sign bit). 

  So the main problem changes to how to analyze precision. It is easy to know 

the biggest error is 2-FB-1 if the fractional part has the length of FB.  

 
Example 8.2: Given the range of [0, 14.95], IB is 4 and let FB be 3. We can 

evaluate the precision is 2-4 = 0.0625. The maximum value “14.95” can be coded 

to “15” and the error is 0.05. There is a special case. If the range is [0, 15.95], 

since the IB is only 4, the maximum value “15.95” is coded as 15.875, the error is 

0.075 and beyond 2-4. In this case, the reason is that the IB restricts the coding to 

represent 16, so the largest error is not 2-FB-1 but 2-FB. 

 
 Generally, we do not consider the special case that the integer part equals 2N-1.  

If it occurs, as long as the IB increases one bit, the special case is cancelled. So we 

explore the biggest error 2-FB-1. Let a%  represent the exact value and a represent 

the true value. We get:  

       a%= a + 12 aFB− −
1ε                 b%= b + 12 bFB− −

2ε        (8-1)   

where FBa is the FB of a. Hence, the error at x due to finite precision effects is 

given by  

                          Ea = 12 aFB− −
1ε    

For multiplication: d% = a% b%  = ab + a Eb + b Ea + Ea Eb + 12 dFB− −
3ε  

              ⇒ Ed = a Eb + b Ea + Ea Eb + 12 dFB− −
3ε  

The primary output: 

 e%= d% + c%  = ab + a Eb + b Ea + Ea Eb + 12 dFB− −
3ε + c + Ec + 12 eFB− −

5ε  

⇒ Ee = a Eb + b Ea + Ea Eb + 12 dFB− −
3ε + Ec + 12 eFB− −

5ε  

Note that Ee would be at its maximum when the signals a and b are at their 

absolute maximum, that is, a = 4.2 and b = 5.6. We get the following maximum 

error at the output e% : 
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max(Ee)=4.2* 12 bFB− − +5.6* 12 aFB− − + 22 a bFB FB− − − + 12 dFB− − + 12 cFB− − + 12 eFB− −   (8-2)  
We first assume all variables with uniform FBs, so get: 

        max(Ee) = 6.4 * 2-FB + 0.25 * 4-FB  < 0.01 

Solving the inequality, the FB is 10 which means if all variables have 10 bits for 

fractional representations, the error of the primary output can be limited in the 

error bound. However, the uniform FBs do not lead to the optimized 

implementation. The Chapter 6 introduces how to use the AT size as the cost 

function to find the optimized implementation with the smallest area. Therefore, 

we need to represent the datapath by AT.  

  The sign bit is assumed to be the most significant bit (MSB) of the input vector. 

Figure 8.3 describes the fixed-point representation of a.  

 
 

               Figure 8.3: Fixed-point representation of variable a 

 
  Since the range of a is [-3.6, 4.2], the IB is 3 and one bit sign, so the AT 

representation is: 

        AT(a) = 
12

3
0 0
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The first part in Eqn. (8-3) represents the sign and integer number, while the 

second part represents the fractional number.    

  In Chapter 6, we introduce using AT size to indicate the area because AT size is 

in a good correspondence to the overall circuit area. The datapath is represented 

by AT as: 

 AT(d) = AT(a) * AT(b)  

= 
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 AT(e) = AT(d) + AT(c) 
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The AT size of the datapath is calculated by:  

IB FBsign

aFBa+3 aFBa+2 aFBa+1 aFBa aFBa-1 ...... a0
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                   |AT(f)| = |AT(d)| + |AT(e)|                (8-4)        
It requires the smallest |AT(f)| to obtain the optimized implementation with the 

smallest area. The uniform FBs for all variables are FBa = FBb = FBc = FBd =FBe 

=10 and the maximum error of the primary output is represented as Eqn. (8-2): 

max(Ee) = 2.1* 2 bFB− +2.8* 2 aFB− +0.25* 2 a bFB FB− − +0.5* 2 dFB−
 

+ 0.5* 2 cFB− +0.5* 2 eFB−  

  A searching algorithm is proposed in Figure 6.6. Observing the Eqn. (8-4), FBa 

and FBb have more impact on the AT size than FBc and FBd. Hence, starting from 

the uniform FBs, that is, FBa =FBb =FBc =FBd =FBe =10, the algorithm first 

decreases FBa and computs the AT size, until the calculated error of e is beyond 

the error bound. Then the algorithm backtracks to search FBb. After all possible 

implementations are found, the algorithm compares their AT sizes, and the 

implementation with the smallest AT size is the best one. In Example 8.1, the 

satisfying sequence is (each value in a bracket represents a variable FB): 

(10, 10, 10, 10, 10)→  (9, 10, 10, 10, 10)→(8, 11, 11, 12, 13) →  (8, 11, 11, 13, 

12)→ (8, 11, 12, 11, 13)→ (8, 11, 12, 13, 11)→  (9, 9, 11, 12, 13)→  (9, 9, 11, 13, 

12)→(9, 9, 12, 11, 13)→(9, 9, 12, 13, 11) 

  The above implementations all satisfy the error bound. By calculating their AT 

sizes, the implementation of (9, 9, 11, 12, 13) has the smallest AT size, so it is the 

optimized implementation. Finally, the bit-width allocation of the optimized 

implementation is: 

a (4, 9)    b (4, 9)    c (3, 11)   d (6, 12)   e (6, 13) 

The first value is IB including the sign bit and the second is FB in the bracket.  

 

 

8.3 Algorithm for Finding  

Optimized Implementations 
  We propose an algorithm to allocate bit-widths for all variables in the datapath 
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to satisfy the given error bound and get the optimized implementation with the 

smallest area in terms of the above analysis in this section.  

 

 

 

 

 
  The inputs of the algorithm comprise the datapath structure and the error bound. 

The constraint restricts that the error of the primary output cannot break through 

the error bound. The AT size of the datapath is used as an indicator to the area, and 

the optimized implementation demands the smallest size.  

   

 

 

 

 

 

 

 

 

 

 
        Figure 8.4: Algorithm of finding the optimized fixed-point implementation 

 
Figure 8.4 describes the algorithm. It first invokes the algorithm introduced in 

Chapter 7 to get exact ranges of all variables, and allocates IBs (Step 1). Then the 

algorithm constructs the expression of the primary output and gets the uniform 

FBs (Step 2 and 3). After that, the AT size expression is obtained (Step 4). By 

analyzing the expression, the algorithm determines the variable searching order 

Problem 8.1: Finding the optimized implementation for a fixed-point datapath 

Inputs:    imp, E 

Constraints:  imprecision < E 

Outputs:   bit-widths of all variables 

Goal:   minimum |AT(f)| 

Design_Opt_Imp (imp, E) 
1. {  IBs = Calculate_Range (imp); 
2.    Construct expression e of the primary output; 
3.    FB = Uniform_FB (e);  
4.    Construct expression of AT size |AT(f)|; 
5.    Determine the searching order V;  
6.    for (i=0; i< var_num; i++) 
7.    {  e = Calculate_error (--FBvi); 
8.       if (e < E)   continue;  
9.       else  ++ FBvi ;  
10.       Re-compute FBs of other variables;  
11.       |AT(f)| = Calculate_AT_size (AT(f), FBs); 
12.       Store (FBs, |AT(f)| ); 

} 
13.     Compare (|AT(f)| ); 
14.     return FBopt;  

} 
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(Step 5). A loop begins in Step 6 in terms of the searching order, and decreases the 

variable FB with highest priority and calculates the error until the error is beyond 

the error bound (Step 6 - 9). Then, FBs of other variables will be updated (Step 

10). The algorithm calculates the AT size, and stores it for the obtained satisfying 

FBs (Step 11 and 12); while the loop is finished, all AT sizes are compared to find 

the smallest one, so the optimized FBs are found.  

 
Example 8.3: Starting from the first group with the uniform FBs (10, 10, 10, 10, 

10), Figure 8.5 describes how to find the satisfying group (8, 11, 11, 12, 13).  

The FBa is first decreased to get the group (9, 10, 10, 10, 10) and the 

calculation of the error is within the error bound, so the new group is satisfying. 

Then the algorithm continues to cut down FBa and finds that the group (8, 10, 10, 

10, 10) cannot satisfy the error bound. However, the error caused by FBa is within 

the error bound, so the algorithm increases FBb to get the group (8, 11, 11, 10, 10). 

The new group does not satisfy the error bound, but the error addition caused by 

FBa and FBb is smaller than the bound, then FBc is increased to form the group (8, 

11, 11, 11, 10). The procedure is continued until the group (8, 11, 11, 12, 13) is 

reached. Since the error is limited in the bound, the group satisfies the error 

bound. The searching process is repeated until all satisfying groups are found. 

Figure 8.5 lists all the traversed groups and the satisfying groups are marked by 

gray color.   

10,10,10,10,10

9,10,10,10,10

8,10,10,10,10

8,11,11,10,10

8,11,11,11,10

8,11,11,12,10 8,11,11,12,11

8,11,11,12,12

8,11,11,12,138,11,10,10,10

 
Figure 8.5: Finding next satisfying FBs  



Chapter 8: Combining Range and Precision 

 173

If the coefficients also have fractional numbers, we can use the same 

multiplication analysis like d%  to process precision and search them together with 

other variables, so in the datapath all fixed-point variables can be allocated 

appropriate bit-widths to get the optimized implementation.  

 

 

      8.4 Discussion of Cost Functions 
  In above analysis, AT size is a cost function to estimate hardware cost and 

choose the optimized implementation. There are other cost functions besides AT 

size. The usual one employs factorization. Given a polynomial to describe the 

specification, factorization allows us to find the optimized implementation with 

the smallest area. For example, the polynomial of c = ab + b2 has two word-level 

variables a and b. The direct implementation needs two multipliers and one adder. 

However, if using factorization method to change the form as c = b(a+b), the 

implementation only needs one multiplier and one adder. In this example, 

factorization plays as a cost function to shrink the number of multipliers.  

  However, factorization has an obvious disadvantage. For example, given two 

implementations of Taylor series with the first implementation having 5 finite 

terms and 12-bit inputs, and the other with 6 terms and 10-bit inputs. They both 

have Horner forms and structures as Figure 6.11. Although the second 

implementation has one more stage, the input bit-width is smaller, that is, the 

multiplier size is 10*10 and smaller than the first one with multiplier size of 

12*12.  

The case generates a problem: which factor has more impact on area, stage or 

multiplier size? The cost function of factorization (counting the number of 

multipliers) cannot answer the question because it is too coarse to estimate the 

cost. That is the reason why we use AT size as a cost function in Taylor series.  

 More commonly, given a specification represented by a polynomial, it can be 

minimized by many ways. Factorization is one possibility. However, as there is 
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not a unique answer how to conduct factorization, we must be very careful here, 

as different approaches may have different multiplier sizes. For instance, using 

factorization needs a 12*12 multiplier, and another implementation needs two 

multipliers as 6*6 and 9*9, so the question is how to determine which 

implementation is better? Of course AT size can solve the problem. So there is a 

prerequisite to use factorization as a cost function, that is, all implementations 

must keep same size of multipliers. 

  It is possible to combine factorization and AT size. Consider an example:  d = 

ab +b2+ac with different bit-widths of a, b and c. There are three 

implementations: 

 Direct implementation with 3 multipliers and 2 adders 

 Factorization by b:   d= b (a+b) +ac  with 2 multipliers and 2 adders 

 Factorization by a: d= a(b+c)+b2   with 2 multipliers and 2 adders 

The first one may need more area so factorization is possibly leading to the 

optimized implementation. Consider the latter two implementations. They have 

same numbers of multipliers and adders. Comparing AT sizes in the two 

implementations, we can choose the one with smaller AT size. That means, 

factorization and AT size can play together. In this case factorization is a coarse 

cost function and then using AT size refines it.  

 

 

8.5 Sequential Fixed-Point Arithmetic Circuits 
 The above analysis and past explorations of fixed-point representations are 

based on combinational circuits. Given a datapath with FFs like Figure 8.6, the 

analysis of range and precision depends on the lengths of the FFs.  
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b= [-2.8, 5.6]a= [-3.6, 4.2]

Intermediate
Variable

Output
Variable

d

Input
Variables

c= [-2.5, 2.7]

e

FFs

FFs

g

h
 

Figure 8.6: A sequential datapath with FFs 

 
  If the lengths of the FFs equal to the lengths of their inputs, that is, (dIB= eIB, 

dFB= eFB) and (gIB= hIB, gFB= hFB), the analysis of range and precision is the same 

as the combinational circuit without FFs. Otherwise, the sequential circuit may 

cause overflow, and the analysis expression is different with the combinational 

circuit. For instance, d and e are two different variables so they have their own 

precision expressions. Therefore, the analysis of sequential fixed-point designs 

has no special essence. 
 

 

8.6 Extension to Feedback Datapaths 
  Past explorations cannot process the datapaths with feedbacks. The usual 

datapaths with feedbacks are IIR (infinite impulse response) filters which apply to 

DSP. In this section, we propose algorithms to find ranges of circuits with 

feedbacks.  
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8.6.1 Delay Units 
 A feedback circuit always includes delay units that consist of registers, so 

analyzing the characteristic of delay units is the first step. Figure 8.7 describes the 

relationship of the input range and the output range.  
 

z-1x [xmin, xmax] y [ymin, ymax]  

Figure 8.7: A delay unit with ranges  

 
Since the delay unit only has the shift operation and cannot change the input 

value, its output keeps the same range as the input range, that is, ymin = xmin and 

ymax = xmax. Here xmin and xmax, ymin and ymax represent the lower bounds and the 

upper bounds of the input and the output respectively. 

 
 
8.6.2 FIR Filters 
  First, we explore FIR (finite impulse response) filters. The impulse response is 

finite because it settles to zero in a finite number of sample intervals. The 

difference equation of Eqn. (8-5) defines the output of an FIR filter based on the 

input: 

                      
0
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where x[n] is the input signal, hi are the filter coefficients and N is the filter order 

which are commonly referred to as taps. The Z-transform of the impulse response 

yields the transfer function of the FIR filter: 

 

 

  FIR filters are inherently stable because all the poles are located within the unit 

circle. The absence of feedbacks means that any rounding errors are not 

compounded by summed iterations. The same relative error occurs in each 

calculation which makes implementation simpler. The main disadvantage of FIR 
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filters is that a lot of taps  cause considerably more computation especially when 

low frequency (relative to the sample rate) cutoffs are needed. Figure 8.8 

describes an implementation of the FIR filter with k+1 taps. 

 

        

Z-1 Z-1 Z-1......

+

y[n]

x[n]

h0 h1 h2 hn-k

x[n-1] x[n-2] x[n-k]

 
Figure 8.8: Implementation of the FIR filter with k+1 taps 

 
  Given the range of the input x, calculating ranges of intermediate variables and 

the primary output is easy. The ranges of the intermediate variables are calculated 

by the multiplication of the coefficients and the range of the primary input, and 

the range of the primary output is calculated by the addition of intermediate 

ranges. 

 
Example 8.4: The following circuit is a FIR filter with three taps. All ranges are 

described in the square brackets. 

z-1 z-1
x [-5, 10]

0.1 0.3
-0.2

y [-4, 5]

a [-5, 10] b [-5, 10]

c [-0.5, 1]

d [-1.5, 3]

e [-2, 4]

f [-2, 1]

 

Figure 8.9: Ranges of a FIR filter 

  In the figure, the delayed variables a and b have the same ranges as the 

primary input x. The ranges of the intermediate variables c, d and f equal to the 

range of x multiplying the tap coefficients, and the range of the primary output y 
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equal to the summation of the ranges of e and f.  

 
 
8.6.3 Linear Feedbacks – IIR Filters 
  Calculating the ranges of FIR filters without feedbacks is a simpler task 

compared to the much more complex case of IIR filters. IIR systems have an 

impulse response function that is non-zero over an infinite length of time. A 

condensed form of the difference equation is: 

                 ∑∑
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where R is the feedforward filter order, and bi are the feedforward filter 

coefficients; S is the feedback filter order, and ai are the feedback filter 

coefficients. The Z-transform of the impulse response yields the transfer function 

of the IIR filter: 
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 The first part in Eqn. (8-6) is the same as Eqn. (8-5) so the ranges are easy to 

find. We focus on the second part as feedbacks possibly leading to unstability, 

meaning that the range of the output is not convergent and will increase (or 

decrease) to infinity (or become infinitesimal). 

 
Example 8.5: The following circuit has a feedback. The primary input x is limited 

in the range [-5, 10], and the output z has the expression of z =2(x+ z-1). It is 

obvious that the circuit is unstable since the range of z has no limitation.  
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x [-5, 10]

2 z-1

z  

Figure 8.10: A circuit with a feedback 

Now we analyze why the circuit is unstable. We assume the circuit is stable and 

the range of z is [r0, r1] (r1 > r0). In terms of the above analysis of delay units, z-1 

has the same range of z and they are considered as same variables since z-1 is 

driven completely by z, so the expression representing the datapath is: 
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Since the assumption requires the convergence of z, the parts with certainty and 

the parts with uncertainty in the left and the right of the above equation should 

equal respectively:   
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−
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By solving the two equations, we obtain r1= -10 and r0=20. The results violate the 

assumption r1 > r0  so the circuit is unstable and the output has no convergent 

range.  

 
  Example 8.5 describes how to explore whether the circuit with linear feedbacks 

is stable by AA. Now we amend the multiplicand coefficient in the Figure 8.10 to 

re-calculate the output range.  

 
Example 8.6: The output z has the expression of z =0.25(x+ z-1). 
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x [-5, 10]

0.25 z-1

z
 

Figure 8.11: A circuit like Example 8.5 with the different coefficient 

We get the expression by AA forms:  
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By solving the equations, we get r1 =
3

10  and r0 =
3
5

− . The results fit the 

assumption of r1 > r0 that denotes the circuit is stable. Using this initial range to 

replace the unknown variable z-1 in the polynomial 0.25(x+ z-1) gets the final 

output range [
3
5

− , 
3

10 ] which is the same as the initial range. .The experiment 

proves the circuit is convergent to the range.  

 
Based on the two examples, we propose a method in Figure 8.12 to explore 

whether IIR is stable and calculate the ranges in the datapath if stable. It uses AA 

forms to express the implementation, and partitions the forms into parts of 

certainty and uncertainty after simplification (Step 2 - 4). Here CL and CR 

represent the certainty expressions in the left and the right of the AA form while 

UL and UR are the uncertainty expressions. The initial range is obtained by solving 

the equations of certainty and uncertainty (Step 5). If the condition r1 > r0 is 

satisfied, the initial range replaces the unknown feedback variable and the 

algorithm re-calculates the final output range (Step 7). Please note that the Step 7 
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is necessary since the initial range may under-estimate the bounds so it needs 

refinement.  

 
   

 

 

 

 

 

 

 

 

 

 

  

 

 

 
 
 
 
 
 
 
 

 

 

 

 

                 Figure 8.12: Algorithm of finding ranges of IIR filters 

 

Find_Linear_Range (imp) 

{ 

1.  Assume the range (r0 , r1); 

2.  AA_form = AA_Express (imp, r0 , r1);  

3.  Simplify (AA_form); 

4.  ({CL, UL}, {CR, UR}) = Partition (AA_form); 

5.  (r0 , r1) = Solve (CL= CR , UL = UR);  

6.   if (r1 < r0)   return “The circuit is unstable!”;  

else    

7.   {  (r0 , r1) = AA_Range (imp, r0 , r1); 

return range (r0 , r1); 

} 

} 

AA_Express (imp, r0 , r1) 

{   Using AA to replace known inputs; 

AAout = (r1 + r0)/2 +ε (r1 - r0)/2 ; 

Replace all feedback variables with AAout ; 

return AA_form;  

} 

AA_Range (imp, r0 , r1) 

{   loop all uncertain terms in the expression 

{  if (term.coeff < 0)      uncertain_var = -1; 

   else   uncertain_var = 1;  

   r1 += term.coeff * uncertain_var; 

} 

r0 = -r1 + constant;   r1 += constant; return (r0 , r1) 

} 
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Example 8.7: An IIR filter is described in the Figure 8.13. It has two taps with 

coefficients 0.2 and -0.3.  

 
 
 
 
 
 

Figure 8.13: An IIR filter with two taps 

The expression of the IIR filter is:  x+ 0.2* z-1 - 0.3* z-2 = z      
Using the AA form of z replaces z-1 and z-2 to get the representation in terms of 

step 2 in Figure 8.13: 
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The results are r1 =9.09 and r0 = -4.56 so the filter is stable and the output has the 

convergent range. The initial range replaces the unknown variables z-1 and z-2 by 

the AA form 2.27+ 6.83 2ε  in the expression of x+ 0.2* z-1 - 0.3* z-2, so  

the polynomial changes to: 

21221 683.05.7273.2)83.627.2(*3.0)83.627.2(*2.05.75.2 εεεεε −+⇒+−+++  

The coefficient of the term “ 15.7 ε ” is positive so the algorithm sets 11 =ε  while 

sets 12 −=ε  to get r1. Based on Step 7, the final output range is re-calculated as 

[-5.91, 10.46]. The ranges of the two intermediate variables can be calculated by 

the coefficients of taps as a=[-0.1.82, 2.09], b=[-3.14, 1.77]. The range of the 

intermediate variable c cannot be calculated directly by the range addition of a 

and b because the two variables are both driven by z so present correlation leads 

to a coarse range. Using IA to calculate the range of c by range subtraction of z 

and x obtains [-0.91, 0.45]. By experiments, the output range is [-5.901, 10.447], 

z-1

z-1

0.2

-0.3

zx [-5, 10]

c
a

b
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after 14 iterations and the experiments prove the correctness of the calculated 

results.   

 
Example 8.8: An IIR filter is described like Example 8.7 in the Figure 8.13. It has 

two taps with coefficients 0.2 and 0.3.  

z-1

z-1

0.2

0.3

zx [-5, 10]

a [-2, 4]

b [-3, 6]  
Figure 8.14: An IIR filter like Example 8.7 with different coefficients 

The expression of the IIR filter is:  x+ 0.2* z-1 + 0.3* z-2 = z 

The representation of AA forms is:   
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The results are r1 =20 and r0 = -10 so the filter is stable and the output has the 

convergent range. Using the initial range to replace the unknown variables z-1 and 

z-2 by the AA form 2155 ε+  in the polynomial of x+ 0.2* z-1 + 0.3* z-2, and the 

final output range is re-calculated as [-10, 20] which is the same as the initial 

range. By experiments, the output range is [-9.96, 19.92], and the two 

intermediate variables a and b have ranges [-1.98, 3.978] and [-2.96, 5.95] 

respectively after 13 iterations. The experimental results are quite suitable to the 

calculated results.  

 
 

8.6.4 Non-linear Feedbacks 
  Consider a circuit with a non-linear feedback in the Figure 8.15. The expression 
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is z = x + (0.25* z-1) 2. 

x [-1, 2]

0.25

z-1

z

a

b

c

Forward
Path

Backward
Path

 

Figure 8.15: A circuit with a non-linear feedback 

 
If using the above method processing the non-linear feedback, we obtain: 

                    2
0101 )(323264 rrrr +−+=  

                 2
01

2
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2
101 )()(2)(32128 rrrrrr −−−−−=  

 Obviously solving the two equations is difficult, so we need to develop a new 

method to handle the circuits with non-linear feedbacks. First we introduce 

definitions. 

 
Definition 8.1: A bounded range is an interval value [rlow, rupp] which does not 

contain infinity on any one side.  

 
Definition 8.2: BIBO Stability. A system is Bounded-Input, Bounded-Output 

(BIBO) stable when the output bound is always finite for an arbitrary bounded 

input. 

 
  Based on the above two definitions, if all intermediate variables have bounded 

ranges which means these variables are convergent, the primary output is also 

convergent. It is easy to know that a bound range adds or multiplies an unbound 

range will lead to an unbound output range. For example, [a, b] + [c, ∞] = [a+c, 
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∞] or [a, b] ൈ [c, ∞] = [min(ac, bc), ∞] result in infinity.  

In Figure 8.15, we assume the primary output z is convergent. We split the 

datapath into the forward path and the backward path, and the feedback is 

included in the backward path. By above analysis, the variables a and b should be 

both convergent. The expression of the non-linear variable c is c = b2. Based on 

the knowledge of power series, when the range of b lies in [-1, 1], the variable c 

obtains the range [0, 1] and forms a closure space to b, that is,

)()( brangecrange ⊆ , to guarantee convergence of the non-linear feedback. By 

the addition of x in the forward path, we obtain that the range of z is [-1, 3] labeled 

as zforward. We go back to the variable a from b, and conclude that the range of a is 

[-4, 4], and then we obtain that the range of z is [-4, 4] labeled as zbackward. The 

convergence requires the condition of backwardforward zz ⊆  because if the condition 

is violated, the real range of z will increase in each iteration and ultimately reach 

infinity (or infinitesimal). Now the ranges of zforward and zbackward satisfy the 

condition, we confirm that the circuit is stable.  

The different ranges of zforward and zback denote that the obtained ranges are 

coarse and they need to be refined. Let z = zforward then a loop calculation of z 

starts. Each loop begins to go through the backward path to get the range of c, and 

then follows the forward path to obtain the new range of z. The threshold value 

“0.01” is set. In two consecutive iterations, if the error of the two obtained ranges 

is smaller than the threshold, that is, |znew – zold| < threshold, the loop calculation 

is stopped. In this example, after four loops the threshold condition is reached, so 

finally we get the convergent range of z as [-0.944, 2.341]. Figure 8.16 describes 

the algorithm to find ranges for circuits with non-linear feedbacks. 

The algorithm first splits the datapath to two sub-paths as the forward path and 

the backward path. The coarse range of the feedback variable is calculated in 

terms of the non-linear feedback expression. Then two ranges of the output are 

obtained due to the forward path and the backward path by the subroutine 

Calculate_range introduced in Chapter 7. Comparing the two ranges, if the 

circuit is stable, the algorithm starts a loop calculation until the error between the 

two consecutive obtained ranges is limited in the threshold. Therefore, the 
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convergent range of the primary output is found.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

Figure 8.16: Algorithm of finding ranges of circuits with non-linear feedbacks   
 
 

8.6.5 Experimental Results 
We implement the algorithm in Figure 8.12 in C++. Several benchmarks are 

sued to assess its performance. Experiments are done on a 512MB, 2.4GHz Intel 

Celeron machine under Linux. Using the variable y represents the first part in Eqn. 

(8-5) and the primary output is z.  

A) Butterworth Filters 
Butterworth filters are also known as "maximally flat" filters because they have 

no passband ripple. They also have a monotonic response in both the stopband 

and passband. The indicators of (wp, ap, ws, as) represent passband frequency, 

Find_Nonlinear_Range (imp, threshold, input_range) 

{ 

(forward_path, backward_path) = Split (imp); 

feedback_range = Converge (feedback_expression); 

zforward = Calculate_range (forward_path, input_range);        

zbackward  = Calculate_range (backward_path, feedback_range);  

if ( backwardforward zz ⊄ )   return “The circuit is not stable.”;  

else  

{  znew = zforward ;   

while (|znew – zold| ≥ threshold ) 

  {  zold = znew ;  

     feedback_range = Calculate_Range (backward_path, zold);  

    znew = Calculate_Range (forward_path, input_range, feedback_range); 

  } 

  return znew ; 

} 
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amplitude error, stopband frequency and stopband attenuation. 

The first Butterworth filter has indicators (0.2π , 1dB, 0.35π , 10dB), and the 

coefficients from smaller orders to larger orders are: 

b = (0.0456, 0.1027, 0.0154)    a = (1.9184, -1.6546, 0.6853, -0.1127) 

  The second Butterworth filter has indicators (0.2π , 3dB, 0.6π , 40dB), and the 

coefficients are: 

b = (0.0473, 0.0709, 0.0473, 0.0118)  

 a = (1.8778, -1.6214, 0.663, -0.1087) 

The third Butterworth filter is a bandpass filter which has indicators ((0.3π - 

0.4π ), 3dB, (0-0.2π , 0.5π ), 18dB), and the coefficients are: 

b = (-0.042, 0.021)    a = (1.491, -2.848, 1.68, -1.273) 

B) Chebyshev Filters 
Chebyshev filters are analog or digital filters having a steeper roll-off and more 

passband ripple or stopband ripple than Butterworth filters. 

  The first Chebyshev filter has coefficients: 

b = (9.055E-5, 0, -0.00027, 0, 0.00027, 0, -9.055E-5) 

a = (5.765, -13.899, 17.936, -13.067, 5.095, -0.831) 

The second Chebyshev filter corresponds to the indicators (0.2π , 1dB, 0.3π , 

15dB) and has the coefficients: 

b = (0.0073, 0.011, 0.0073, 0.0018)    

 a = (1.5548, -2.9809, 2.2925, -0.5507) 

C) Cauer Filters 
A Cauer filter has a feature of equalized ripple behavior in both the passband 

and the stopband. The indicators of the Causer filter are (0.1π , 0.1dB, 0.5π , 

32dB) and the coefficients are given: 

b = (-0.724, 0.0984, 0, 0.00027, 0,-9.055E-5) 

           a = (3.3553, -4.3439, 2.5578, -0.5771) 
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Table 8.1: Performance of the algorithm finding IIR ranges 

 
  Table 8.1 describes the ranges of the benchmarks. Column 2 denotes the input 

ranges, and the intermediate ranges and the primary ranges are shown in Column 

3 and 4. Column 6 describes the real obtained ranges by simulation after iterations 

whose number is listed in Column 5. Column 7 and 8 indicate the algorithm 

performance of time and memory. From the table, we can find that the real ranges 

approximate the calculated ranges very well, and the requirements of time and 

space are satisfiable. Using simulation will spend huge time by a lot of iterations 

such as Row 5 and is hard to determine the lower bound and the upper bound. 

However, the algorithm can complete the job very easily.   

 

 

8.7 Extension to Floating-Point Circuits 
  If the radix point (decimal point, or, more commonly in computers, binary point) 

can "float", that is, it can be placed anywhere relative to the significant digits of 

the number, the representation refers to the term “floating-point”. Because the 

position of the radix point is indicated separately in the internal representation, 

floating-point representation can thus be thought of as a computer realization of 

scientific notation. 

The floating-point representation can support a much wider range of values 

than the fixed-point representation. For example, a fixed-point representation that 

has eight decimal digits, with the decimal point assumed to be positioned after the 

sixth digit, can represent the numbers 123450.67, 87654.32, 2345.00, and so on, 

IIR  Input Range Range of y Output Range z Time 
(s) 

Memory 
(MB) 

Butter [-500, 1000] [-81.85, 163.7] [-511.9, 1023.1] 0.12   0.16 
Butter [-2000, 1000] [-354.6, 177.3] [-1970.3, 985.3] 0.15   0.19 
Butter [-5000, 10000] [-210, 105] [-2100, 4200] 0.15   0.2 
Cheby [-4E+5, 1E+6] [-504.8, 504.8] [-504800, 504800] 0.26   0.25 
Cheby [-3000, 2000] [-82.2, 54.8] [-120.9, 80.6]  0.16   0.2 
Cauer [-500, 800] [-500.3, 312.7] [-63309, 39602] 0.18   0.17 
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whereas a floating-point representation (such as the IEEE 754 decimal32 format) 

with eight decimal digits could in addition represent 12.3456789, 123.4567, 

0.0001234567, 1234567000000000, and so on. The floating-point format requires 

a little more storage (to encode the position of the radix point), so the 

floating-representation can achieve greater range at the expense of precision when 

stored in the same space.  

Floating point numbers are used to obtain a dynamic range for representable 

real numbers without having to scale the operands. Floating point numbers are 

approximations of real numbers and it is not possible to represent an infinite 

continum of real data into precisely equivalent floating point value.  

Logically, a floating-point number consists of [156]: 

 A signed digit string of a given length in a given base (or radix). This is 

known as the significand, or sometimes the mantissa or coefficient. The radix 

point is implicitly assumed to always lie in a certain position within the 

significand — often just after the most significant digit. The length of the 

significand determines the precision to which numbers can be represented. 

 A signed integer exponent is a scale to modify the magnitude of the number. 

A floating point number system is completely specified by specifying a suitable 

base β, significand (or mantissa) M, and exponent E. A floating point number F 

has the value  

                       F = M βE 
β is the base of exponent and it is common to all floating point numbers in a 

system. Commonly the significand is a signed - magnitude fraction. The floating 

point format consists of a sign bit S, e bits of an exponent E, and m bits of an 

unsigned fraction M, as shown below:  

           
S Exponent E Unsigned SignificandM

 
The value of such a floating point number is given by:  

                  F = (-1)SM βE 
The most common representation of exponent is as a biased exponent, 

according to which  E = Etrue + bias, where bias is a constant and Etrue is the true 
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value of exponent. The range of Etrue using the e bits of the exponent field is: 

122 11 −≤≤− −− etruee E  

The bias is normally selected as the magnitude of the most negative exponent; i.e. 

2e-1, so that  

120 −≤≤ eE  
When comparing two exponents, which is required in the floating point 

addition for example, the sign bits of exponents can be ignored and they can be 

treated as unsigned numbers. This is an advantage of using biased exponent.   

Representable
Negative Numbers

Representable
Positive Numbers

Negative
Underflow

Positive
Underflow

Negative
Overflow Positive

Overflow

< -21 27
> -2-126 < 2-126 > 2127  

Figure 8.17: Range of floating point numbers 

  Not only cannot all real numbers be expressed exactly, there are whole ranges 

of numbers that cannot be represented. Consider the real number line as shown in 

Figure 8.17. The number zero can be represented exactly because it is defined by 

the standard. The positive numbers that can be represented fall approximately in 

the range 2-126 to 2+127. 

Numbers greater than 2+127 cannot be represented; this is called positive 

overflow. A similar range of negative numbers can be represented. Numbers to 

the left of that range cannot be represented; this is negative overflow.  

 
Example 8.9: S=0, E=3 bits, M = 4 bits. Then the bias is 2E-1 -1 =3. The 

maximum range is: 

0 1 1 1 1 1 1 1
   

(-1)0 1.1111 27-3 = 1.1111 24 = 11111 = 3110 

The minimum range, assuming exponent 000 is reserved for zero.  

0 0 0 1 0 0 0 0
 

(-1)0 1.0000 21-3 = 1.0000 2-2 = 0.01 = 0.2510 
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  The precision of floating-point numbers is not like fixed-point numbers which 

have uniform error as 2-FB-1. The error in each exponent value is different. Figure 

8.18 describes the error with non-uniform distribution for Example 8.9.  

 
......

0.25 0.25+2-6 0.5 0.5+2-5

......

1 1+2-4

.............

16 16+20 31

......

      
Figure 8.18: Non-uniform distribution error in floating-point representation 

 
  In the figure, there are 2M = 16 values in each exponent interval, and the 

smallest error is 2-7, that is, 
1(2 1 )2

E M−− − +  in the left axis, while the largest error is 
12 12

E M− − − = 2-1 in the right axis. We can obtain the expression of each interval error 

as 12c bias M− − − . Here c is the coded value of the interval, and bias is calculated as 

2E-1-1. For example, the interval “2” includes values from 2 to 2+15*2-3. “2” is 

coded as “100” and bias is “011”, so they correspond to the values of “4” and “3” 

respectively. The interval error is calculated as 24-3-1-4 = 2-4.  

  In terms of the above analysis, we can perform range and precision analysis for 

floating-point circuits. The range analysis is the same as the Chapter 7, and the 

hybrid method is also suitable for floating-point circuits to find exact ranges. 

Precision analysis is a bit different with the fixed-point circuits. Given the input 

range as [r1, r2], Eqn. (8-1) represents the relation between the exact value and the 

real value for fixed-point circuits. Since the floating-point representation has no 

uniform distribution error, the coefficient of the uncertain variable must set the 

largest error value: 

                           a%= a + 12c bias M− − − ε    

Here c is chosen the larger coded value in the two intervals of r1 and r2, that is, if | 

r1| > | r2|, we choose the interval coded value of r1; if not, we choose the interval 

coded value of r2.  

 
Example 8.10: The floating-point representation is as Example 8.9. The input 

range is a= [-7.5, 13]. Since the absolute values of the lower bound and the upper 

bound are 7.5 and 13 respectively, we choose the interval value of 13. Because the 

value “13” is located in the interval of “8”, the interval coded value is 110 as 
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c=6, so the coefficient of the uncertain variable is 12c bias M− − −  = 2-2. The 

expression of the exact input value is changed to a%= a + 2-2ε .  

  
  After we amend the input expression, the method of performing precision 

analysis in section 8.2 can also be used for floating-point datapath. So we extend 

the fixed-point process to the floating-point process. 

 

 

8.8 Conclusions 
  Fixed-point representations often comprise integer and fractional bit-widths. 

The problems of exploring fixed-point circuits include range analysis and 

precision analysis. Since the circuits cannot get the exact fractional numbers, the 

satisfying implementation must fit the error bound, that is, the maximum error of 

the primary output is restricted by the bound. In order to find the attractive 

optimized implementation with the smallest area, it is necessary to obtain ranges 

and construct the precision models. The AT size plays an indicator to describe area. 

We propose an algorithm to find the optimized implementation in this chapter. It 

invokes the algorithm in Chapter 7 to get ranges and allocates IBs, and then 

calculates uniform FBs. Starting from the FBs, the algorithm searches all 

satisfying implementations and calculates their AT sizes. The implementation with 

the smallest AT size is the optimized one that can fit the error bound and have the 

smallest area.  

 The circuits with feedbacks are more complex to find ranges like IIR filters. We 

handle FIR filters without feedbacks only with delay units, and then propose a 

method to process IIR filters with linear feedbacks. The method can explore 

whether IIR filters are stable and calculate the ranges if stable. Furthermore, we 

analyze the circuits with non-linear feedbacks.  

Sequential datapaths with FFs are investigated to extend combinational models 

based on previous chapters. Floating-point representation is different with 
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non-uniform error distribution. We analyze floating-point representation and 

develop the mathematical models for error distribution, then extend the methods 

processing fixed-point representation to the floating-point datapath.  
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Chapter 9  
Conclusions and Future Work 

 
 

 

 

                   9.1 Conclusions 
 As the complexity of integrated circuit increases rapidly, the challenge of 

time-to-market arises. In the overall design procedure, verification plays a 

significant role since it concentrates on most steps from system specification to 

manufacturing. Verification often requires beyond 70% time and capital in the 

whole ASIC design process. Because of its importance, engineers are forced to 

explore verification techniques. Simulation as a main technology has advantages 

of easy operation but low efficiency is the fatal weakness, so formal verification 

emerged. Various bit-level and word-level decision diagrams adapt to equivalence 

checking and model checking.  

  Fixed-point data format is suitable for a number of implementations of digital 

circuits, especially in FPGAs. Because of increasing importance of FPGAs, 

fixed-point representation gains more attention. Traditional methods of dealing 

with imprecise fixed-point circuits have disadvantages in both verification and 

optimization. In our exploration, we adopt a spectral technique, that is, Arithmetic 

Transform, to investigate fixed-point circuits. Basic AT only represents 

combinational circuits, so three transform extensions have been proposed. The 

total four types of transforms form a complete group to represent complex 

combinational and sequential circuits, and every circuit can be represented by one 

type. Because obtaining a circuit transform is a significant step for verification, 
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various spectral transformation methods have been explored. The most 

straightforward method relies on matrix multiplication, and a fast algorithm has 

been proposed. These methods all compute the transform directly. We design a 

new algorithm to obtain transform of a complex circuit by composing transforms 

of detached blocks in the circuit. It is a method based on traversing the sub-block 

topology, to provide an efficient way to get the transforms for complex arithmetic 

circuits.  

  The fixed-point representation often includes IB and FB. First, we explore them 

separately. As a big category, imprecise circuits need to be explored carefully. 

They are different with common circuits because they have a feature that the 

implementations do not match the specifications exactly, so decision diagrams 

have no capability to handle them. Many methods have been developed. Dynamic 

analysis based on simulation is usually used to investigate range and static 

analysis is applied such as IA and AA to avoid its disadvantage. They primarily 

handle optimization of input bit-width but do not consider other factors, so AT is 

introduced in the work to make up the weakness.  

We explore imprecise circuits such as ones realizing Taylor series-based 

algorithms, and construct mathematical expressions for each imprecise factor due 

to AT representations. A series of algorithms that can process function 

approximation and bit-widths concurrently and handle Taylor series and 

real-valued polynomial with multiple variables are designed for verification and 

optimization due to various constraints.   

  Imprecise circuits do not confine the utilization of AT. We develop a fast and 

accuracy-guaranteed method to perform range analysis for arithmetic circuits by 

mixed techniques. The method can find the maximum value and the minimum 

value for each intermediate output in the datapath in terms of given input ranges, 

and allocate the smallest bit-width. Since the method does not extend the range 

and handles polynomials statically, it can obtain exact ranges, and avoid low 

efficiency simulation. The obtained smallest bit-widths lead to the optimized 

implementation with the smallest area.  

  Finally, we combine range and precision together. In the datapath of fixed-point 
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representation, given the error bound, the most important problem is confirming 

the bit-widths include IBs and FBs for all variables. The appropriate bit-widths 

must fit the error bound, and lead to the implementation with the smallest area. 

We propose an algorithm to solve the problem. It can allocate the smallest IBs, 

and find non-uniform FBs to satisfy the error bound and obtain the optimized 

implementation with the smallest area. 

 

 

             9.2 Future Work 
  Exploring range value and component difference are always hot topics. They 

refer to circuit optimization with smaller area or faster speed and keep attracting 

engineers. We resolve the problem for fixed-point circuits and obtain good results. 

In the future, we will continue to explore optimized implementations in various 

constraints such as the minimum delay and the smallest power. Furthermore, how 

to obtain an implementation which compromise different constraints is important. 

We will extend the method to process floating-point circuits and more subtle error 

models will be investigated.  

  We have solved problems of allocating IBs and FBs for IIR filters, but this is 

not enough. Now we only handle the direct type and the parallel type for an IIR 

filter, and the coefficients and intermediate signals have uniform fractional 

bit-widths. In the future, the proposed methods will be extended to cover any 

arbitrary type of an IIR filter such as the cascade type and lattice type, also 

allocate non-uniform bit-widths for each signal and coefficients, which can 

provide more flexibility and shrink the hardware area for the optimized IIR 

implementation. Two indicators as and SNR (signal-noise-ratio) and LSE (least 

square error) will be used to evaluate implementations of the IIR filter.  
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