

Optimization of Fixed-Point Circuits

Represented by Taylor Series and

Real-Valued Polynomials Including

Analysis of Precision and Range

 Yu Pang

 Department of Electrical and Computer Engineering

 McGill University

 A thesis submitted to McGill University in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering

 © Yu Pang, 2010

March, 2010

Acknowledgements

I would especially like to thank my supervisors, Dr.

Radecka and Dr. Zilic who give me an opportunity to do this

research in which I am really interested, and make this thesis

possible in the Department of Computing and Electrical

Engineering at McGill University. I sincerely cannot help

expressing how I should credit this thesis to their support and

guidance.

Very special thanks are also due to my dad and mum and

my wife, Mrs Aolei Cui, and all of my friends in IML lab for

their great support and encouragement in whole remarkable

days.

Many thanks to everybody who ever gave me help and

support.

To Dad and Mum

&

Aolei Cui

 I

Table of Contents

LIST OF TABLES...VI

LIST OF FIGURES..VII

ABSTRACT..XI

CHAPTER 1 INTRODUCTION...1
 1.1 Design Flow..2

1.2 Verification Approach..3

 1.2.1 Simulation-based Verification..5

 1.2.2 Emulation...6

 1.2.3 Formal Verification..6

1.3 Introduction to Fixed-Point Arithmetic...11

 1.3.1 Fixed-Point Range – Integer Portion..12

 1.3.2 Fixed-Point Resolution – Fractional Portion ...14

 1.3.3 Range & Resolution...14

1.4 Thesis Goal and Contributions...17

 1.4.1 Compositions of AT and Extensions..17

 1.4.2 Imprecise Circuits...18

 1.4.3 Range Analysis...22

 1.4.4 Exploration of Fixed-Point Circuits...23

1.4.5 Contributions...23

CHAPTER 2 BACKGROUND... 24
 2.1 Function Representations ...25

 2.1.1 Truth Table..25

 2.1.2 Shannon Expansion...26

 2.1.3 Polynomial Representation...27

 2.1.4 Boolean Satisfiability..28

 II

 2.2 Decision Diagrams ..29

 2.2.1 Binary Decision Diagrams...29

2.2.2 Reduced Ordered Binary Decision Diagrams..31

2.2.3 Multi-Terminal BDDs...33

2.2.4 Binary Moment Diagrams..34

2.2.5 Taylor Expansion Diagrams..35

2.2.6 Disadvantages of Decision Diagrams..38

 2.3 Dynamic Analysis...38

 2.4 Static Analysis...42

 2.4.1 Interval Arithmetic...43

 2.4.2 Affine Arithmetic..45

 2.5 Alternate Methods..50

 2.6 Conclusion..52

CHAPTER 3 COMPOSITIONS OF AT AND EXTENSIONS.....................53

3.1 Introduction to Spectral Transforms..54

3.1.1 Spectral Domain... 54

3.1.2 Various Transforms.. 55

3.2 Arithmetic Transform...59

3.2.1 Basic Definition... 59

3.2.2 Utilization of Spectral Techniques.. 62

3.2.3 Calculation of AT Coefficients... 64

3.3 Extensions to the Arithmetic Transform..67

3.3.1 Mixed Arithmetic Transform.. 67

3.3.2 Sequential AT Extensions... 69

3.4 Composition Subroutines..71

3.4.1 Composition of AT and MAT... 72

3.4.2 Composition of ATS and MATS.. 74

3.5 Overall Composition Algorithm..75

3.6 Experimental Results..78

 III

3.6.1 ALU Circuit Implementation.. 78

3.6.2 CSA Circuit Implementation... 79

3.6.3 MAC Transform.. 81

3.6.4 Implementation of a FIR Filter.. 82

3.7 Conclusion...83

CHAPTER 4 BASIC ALGORITHMS..85

4.1 Taylor Series..86

4.2 Algorithm of AT Conversion by Taylor Series...88

 4.2.1 Expansion Formula..90

 4.2.2 Isomorphic AT Terms Combination...91

 4.2.3 Weights of Expanded Terms..92

 4.2.4 Other Discussions..93

 4.2.5 Flow of Conversion Algorithm..96

4.3 Processing Multivariate Polynomials..96

4.4 Imprecision Searching Algorithm...100

 4.4.1 Basic Definitions of Branch Algorithm...100

 4.4.2 Branch-and-Bound Searching Algorithm..101

4.5 Experimental Results...105

 4.6 Conclusion..106

CHAPTER 5 ANALYSIS OF PRECISION PARAMETERS......................107

5.1 Imprecise Arithmetic Computations...108

 5.1.1 Finite Wordlength...108

5.1.2 Arithmetic Transforms and Imprecise Datapaths..................................109

5.2 Function Approximation Error...111

5.3 Input Bit-width and Quantization Error...112

 5.3.1 Effect of Finite Input Bit-width – Interval Analysis...................................112

 5.3.2 Tight-bound Interval Scheme...114

 IV

5.4 Quantization of Coefficients and Output..115

5.5 Conclusion..116

CHAPTER 6 ALGORITHMS FOR PRECISION VERIFICATION AND

 OPIMIZATION...117

6.1 Component Comparison...118

6.2 Verification of Implementations..119

6.3 Finding a Feasible Implementation..121

6.4 Designing Optimized Implementations with Constraints....................123

6.4.1 AT Size as a Cost Function... 123

6.4.2 Error Sensitivity... 123

6.4.3 Constraint of the Smallest Area... 125

6.4.4 Constraint of the Minimum Delay.. 132

6.4.5 Constraint of Interface Input Bit-width... 133

6.5 Experimental Results...135

6.5.1 Comparison of Two Implementations.. 135

6.5.2 Verification of Imprecise Circuits.. 139

6.5.3 Finding Implementations with The Smallest Area... 139

6.5.4 Finding Optimized Implementations due to Various Constraints.......... 145

6.6 Conclusion..146

CHAPTER 7 RANGE ANALYSIS...148

7.1 Disadvantages of Traditional Methods..149

7.2 Datapath Analysis..153

7.2.1 AA Expressions.. 153

7.2.2 Determining Quantization Bits for Uncertain Variables.......................... 154

7.2.3 Allocating Bit-widths for All Outputs... 156

7.3 Algorithm for Calculating Ranges..156

7.4 Experimental Results...159

7.4.1 Filter Polynomial... 160

 V

7.4.2 Dickson Polynomial.. 160

7.4.3 Multivariate Datapaths... 161

7.4.4 Energy Spectral Density.. 162

7.4.5 Area of Optimized Implementations... 163

7.5 Conclusion..164

CHAPTER 8 COMBINING RANGE AND PRECISION............................165

8.1 Description of Fixed-Point Representation...166

8.2 Analysis of Range and Precision...167

8.3 Algorithm for Finding Optimized Implementations...............................170

8.4 Discussion of Cost Functions...173

8.5 Sequential Fixed-Point Circuits..174

8.6 Extension to Feedback Datapaths...175

8.6.1 Delay Units.. 176

8.6.2 FIR Filters.. 176

8.6.3 Linear Feedbacks - IIR Filters... 178

8.6.4 Non-linear Feedbacks.. 183

8.6.5 Experimental Results... 186

8.7 Extension to Floating-Point Circuits...188

8.8 Conclusion..192

CHAPTER 9 CONCLUSION AND FUTURE WORK..................................194

9.1 Conclusion..194

9.2 Future Work...196

REFERENCES...197

 VI

List of Tables

Table 3.1 Norm functions for common word encodings.......................................60

Table 3.2 Definitions of the AT and its extensions...71

Table 3.3 Results for the ALU transform..79

Table 3.4 Results of CSA transforms..81

Table 3.5 Results of MAC transforms..82

Table 3.6 Results of the FIR transform...83

Table 4.1 Performance of Taylor series conversion..105

Table 6.1 Error and performance of various components on different

 criteria..138

Table 6.2 Checking implementations whether to satisfy the error bound in

 terms of given parameters...139

Table 6.3 Optimized implementations with smallest area and performance for

 different error bounds...140

Table 6.4 Result comparison with the paper [45]..142

Table 6.5 Error comparison of AA and our method..142

Table 6.6 Hardware area of optimized circuits...143

Table 6.7 Optimization of imprecise circuits due to constraints......................145

Table 6.8 Hardware delay and area for optimized implementations.............146

Table 7.1 Comparison with AA for the filter polynomial...................................160

Table 7.2 Comparison of our method, AA and improved simulation for

 Dickson polynomial..161

Table 7.3 Comparison with AA for a multivariate datapath....................................161

Table 7.4 Our method vs. AA vs. SMT for energy spectral density........................162

Table 7.5 Area comparison of our method and AA..163

Table 8.1 Performance of the algorithm finding IIR ranges.............................188

 VII

List of Figures

Figure 1.1 A typical ASIC design flow...2

Figure 1.2 Comparison of detection time and cost of design errors..................3

Figure 1.3 Design and implementation verification..3

Figure 1.4 Breakdown of effort..4

Figure 1.5 Different aspects of verification..4

Figure 1.6 Simulation in the development procedure...5

Figure 1.7 The process model of formal verification..7

Figure 1.8 RTL-to-gate equivalence checking..8

Figure 1.9 Idea of model checking..9

Figure 1.10 Comparison of model checking and simulation..............................10

Figure 1.11 Comparison of formal verification tools..11

Figure 1.12 The basic idea of imprecise circuits..19

Figure 1.13 Comparison of two implementations..21

Figure 1.14 Optimized implementation with the smallest area..........................22

Figure 2.1 Shannon expansion in variable xi..27

Figure 2.2 Complete and ordered DD...30

Figure 2.3 Ordered DD..30

Figure 2.4 Two OBDDs of Example 2.5...32

Figure 2.5 An example of ROBDD...33

Figure 2.6 MTBDD for 213 xxf += ..33

Figure 2.7 *BMD for unsigned fractional encoding...35

Figure 2.8 Abstraction of bit-level variables into algebraic symbols..............36

Figure 2.9 A decomposition node in a TED [12]...37

Figure 2.10 An example of an expression represented with TED......................37

Figure 2.11 Design flow of the architecture-level WL optimization

 [19] ...39

Figure 2.12 The tool flow of the method in [20]..40

Figure 2.13 The design flow of dynamic analysis in [21]...................................41

Figure 2.14 Overview of the synthesis framework in [23]..................................42

 VIII

Figure 2.15 Joint range (x̂ , ŷ) of two partially dependent quantities as implied
 by their affine forms..46

Figure 2.16 An outline of the methodology in [41]...48

Figure 2.17 The tool of static analysis in [42]..49

Figure 2.18 Synoptix design flow in [47]...51

Figure 2.19 Flow of SMT technique in [55]..51

Figure 3.1 The spectral transform..54

Figure 3.2 Reed-Muller matrix for n = 3 and the polarity vector H =

 (010) ...56

Figure 3.3 A Kronecker transform matrix for n = 3...58

Figure 3.4 Sequentially ordered Haar functions for n = 3.................................58
Figure 3.5 The spectral coefficient ai test structure in [65]................................63

Figure 3.6 ACDD for n=3...65

Figure 3.7 ACDD of f in Example 3.6...66

Figure 3.8 Binary encoding use for composition of ATs......................................67

Figure 3.9 Add- and Multiply-Accumulate Loops..70

Figure 3.10 Algorithm of MAT and AT composition...72

Figure 3.11 Algorithm of MATS and ATS composition...74

Figure 3.12 The overall composition algorithm...76

Figure 3.13 A circuit with 4 modules...77

Figure 3.14 Node properties...77

Figure 3.15 Composing the MAT and the AT nodes..77

Figure 3.16 Composing the MAT and the ATS nodes...77

Figure 3.17 Composing the MATS and the ATS nodes...78

Figure 3.18 An ALU model...79

Figure 3.19 4-bit carry select adder...80

Figure 3.20 Implementation of a MAC..81

Figure 3.21 A general FIR model..82

Figure 4.1 Algorithm of converting Taylor series to AT......................................95

 IX

Figure 4.2 Algorithm for converting a multivariate polynomial98

Figure 4.3 Searching the maximum absolute value in AT.......................................102

Figure 4.4 Performing the imprecision algorithm in Example 4.5.................104

Figure 5.1 Imprecision due to the combined sources...111

Figure 5.2 Value description of Xth and X...112

Figure 5.3 Computation of input quantization error...114

Figure 6.1 Comparison of two implementations..118

Figure 6.2 Algorithm of computing imprecision between two implemen-

tations of Taylor series..119

Figure 6.3 Algorithm of verifying the implementation.......................................120

Figure 6.4 A sequential method of fitting the error bound................................122

Figure 6.5 The basic idea of sensitivity [21]...124

Figure 6.6 Algorithm of finding the optimized implementation with the

 smallest area...126

Figure 6.7 Search of optimized parameters in Example 6.1.............................128

Figure 6.8 Algorithm for finding optimized parameters for real-valued
polynomials over multiple variables ...130

Figure 6.9 The error of each variable for the initial node and the final

 node...131

Figure 6.10 Two intermediate nodes from the initial node...............................131

Figure 6.11 n-stage pipelined circuit...132

Figure 6.12 Algorithm of finding parameters for the minimum delay...........133

Figure 6.13 Description of interface input bit-width..133

Figure 6.14 Algorithm of finding parameters for interface input

 bit-width..134

Figure 6.15 Hardware area of Taylor series and real-valued polynomials in

 different Taylor terms and input bits...145

Figure 7.1 Tradeoff between ranges and calculation times..............................149

 X

Figure 7.2 Example performing z=ab+c-b by IA and AA.................................150

Figure 7.3 Data format of the signed factional number....................................154

Figure 7.4 Algorithm of allocating bit-widths..157

Figure 7.5 Algorithm for confirming correlation...158

Figure 7.6 Algorithm of determining the quantization bit-widths for
 uncertain variables...159

Figure 8.1 Exploration of the fixed-point representation..................................166

Figure 8.2 The datapath of Example 8.1..166

Figure 8.3 Fixed-point representation of variable a...169

Figure 8.4 Algorithm of finding the optimized fixed-point implementation.......
...171

Figure 8.5 Finding next satisfying FBs...172

Figure 8.6 A sequential datapath with FFs...175

Figure 8.7 A delay unit with ranges...176

Figure 8.8 Implementation of the FIR filter with k+1 taps...............................177

Figure 8.9 Ranges of a FIR filter...177

Figure 8.10 A circuit with a feedback..179

Figure 8.11 A circuit like Example 8.5 with the different coefficient.............180

Figure 8.12 Algorithm of finding ranges of IIR filters.......................................181

Figure 8.13 An IIR filter with two taps...182

Figure 8.14 An IIR filter like Example 8.7 with different coefficients...........183

Figure 8.15 A circuit with a non-linear feedback..184

Figure 8.16 Algorithm of finding ranges of circuits with non-linear

 feedbacks..186

Figure 8.17 Range of floating-point numbers...190

Figure 8.18 Non-uniform distribution error in floating-point representation...
 ...191

 XI

Abstract
 In this thesis, our research focuses on fixed-point arithmetic circuits.

Fixed-point representation is important in low power Application-Specific

Integrated Circuits (ASICs) and in Programmable Logic Devices (PLDs). There

are two aspects of the data representation problem: the precision problem and the

range problem. Both of these are addressed in this thesis. We use the new

technique based on Arithmetic Transform (AT) which is a canonical and efficient

representation for digital circuits to avoid the disadvantages of past methods, and

design an efficient algorithm which can compose detached modules to obtain the

overall AT for a complex circuit.

 First the precision problem is processed. The typical imprecise circuits

expressed in terms of Taylor series are addressed in our research. Imprecise

factors including finite terms and input quantization are analyzed by AT, and

algorithms are designed to verify and optimize imprecise circuits in terms of

different constraints. A hybrid method performs range analysis to handle the range

problem and allocates the smallest integer bit-widths. Having devised the

individual methods for precision and range analysis, we then combine the two

together to find the optimized implementation. Furthermore, we extend the

method to analyze floating-point circuits and feedback circuits.

 The proposed algorithms in the thesis overcome disadvantages of past

explorations. They are more flexible in processing both Taylor series and

multivariate polynomials and obtain more precise results, resulting in better

implementations under various constraints.

 XII

Résumé
Dans ce manuscrit, notre recherche se concentre sur les circuits de

l'arithmétique à virgule fixe. La représentation à virgule fixe est un facteur

important dans les applications d’une faible consommation pour les ASICs

(Application Specific Integrated Circuit) ainsi que les circuits logiques

programmables (PLD). Au point de la représentation des données, généralement,

il y a deux aspects de problèmes dont la précision et la gamme. Dans ce manuscrit,

nous adressons principalement à ces deux éléments. Une nouvelle technique basée

sur une transformée arithmétique (AT) est utilisée. Ceci est une représentation

canonique et efficace pour les circuits numériques qui permet d’éviter les

inconvénients des méthodes passées et de concevoir un nouvel algorithme efficace

afin de composer des modules détachés en obtenant une AT le plus générale pour

les circuits complexes.

 Un travail préliminaire sur le problème de précision est effectué. Les circuits

imprécis généraux s’expriment en termes d’une série de Taylor a été mis en œuvre

dans notre recherche. Y compris des facteurs imprécis tels que les termes finis, la

quantification d'entrée qui est analysée par AT ainsi que les algorithmes qui sont

conçus pour vérifier et optimiser les circuits imprécis en termes de contraintes

différentes. Une méthode d’une façon hybride est effectuée afin de traiter le

problème de la gamme et d’allouer un entier le plus petit de bit-widths. Mise au

point sur les différentes méthodes pour la précision et l'analyse de la gamme, nous

combinons les deux ensembles afin de trouver une implémentation optimisée. En

outre, nous étendons la méthode pour analyser des circuits en virgule flottante et

les circuits de rétroaction.

 Les algorithmes proposés dans ce manuscrit est de surmonter les inconvénients

des explorations passées. Ces algorithmes sont plus flexibles dans le traitement de

la série de Taylor et des polynômes à plusieurs variables. Ceux-ci nous permettent

d'obtenir les résultats plus précis ainsi d’entraîner les meilleures implémentations

sous diverses contraintes.

 1

Chapter 1

Introduction

In this chapter, we first introduce the design flow for most common

Integrated Circuits (ICs) and then describe verification approaches

that include simulation, emulation and formal verification. Then, we

state the research goals of thesis aiming at providing the solutions

addressing the following three aspects of fixed-point circuit design:

transform composition of a complex circuit, optimization of imprecise

circuits, and range analysis.

Chapter 1: Introduction

 2

1.1 Circuit Design Flows
 With the development of modern material and production techniques,

integrated circuits (ICs) reached a level of complexity beyond imagination of even

a few years ago. In terms of Moore’s law, the number of transistors doubled every

18 months. For example, Intel’s Itanium II processor contains more than 109

transistors. Designing such complex circuits is a great challenge. The level of

difficulties is lifted even higher by the restrictions on time-to-market. Hence, a

systematic approach to design ICs is a must. Figure 1.1 outlines one of more

commonly adopted approaches.

An idea for a new product originates usually from market analysis of customer

needs. Then a team led by product managers describes in form of a specification

the new design requirements. Once the specification is well formulated, the design

process starts usually from behavioral modeling. As a result, initial algorithms are

represented in hardware description languages (HDLs) like VHDL or Verilog, or

even in higher abstraction languages, like SystemC. The correctness of the design

refinement at this stage is checked by the comparison to the specification.

Design Space
Exploration

RTL
Coding

Logic
Synthesis Placement Routing

 Figure 1.1: A typical ASIC design flow

After the behavioral model is verified, engineers generally partition the whole

design into smaller and more refined blocks. Whenever possible, such blocks are

often represented in terms of intellectual property (IP) cores, while HDL is used to

design remaining elements at RTL coding. Once the design functionality and

estimated performance satisfy the specification, the circuit is ready to be

synthesized. This stage, performed automatically, often needs human intervention

is terms of manual modifications necessarily such as design and insertion of

boundary scan and built-in-self-test (BIST). After satisfying constraints such as

timing, area and power, etc, a layout is conceived for fabrication.

Chapter 1: Intro

 Verificat

correct. It

whether or

specificatio

practice, ve

fully correc

rather than

 Since err

shown in F

performed

scaling-up,

illustrates

verification

Specificatio

oduction

 1.2
ion is a ne

t can be al

r not a pr

on, or cond

erification is

ct since in c

its absence

rors found

Figure 1.2,

at each st

to producti

a complete

n.

Figure 1.2:

on

Des ign Ver
(property c

Fi

Verific
ecessary pro

lso viewed

roduct, ser

ditions imp

s rarely full

common pra

.

late in a d

early detec

tage of des

ion, permea

e design f

Comparison

Architec

rification
checking)

RTL Simu

igure 1.3: Des

3

cation A
ocedure aim

d as a qual

rvice, or s

posed at th

ly complete

actice verifi

esign proce

ction is obv

sign develo

ating almost

flow for th

of detection

cture

lation

Implement
Verificatio
(equivalen

sign and imp

Approa
ming to che

lity process

ystem com

e start of

ed while a g

fication only

ess can be

viously criti

opment, fro

t all steps in

he develop

time and cos

Gate L

tation
on
nce checking)

Gate-level

plementation

aches
eck whethe

s that is us

mplies with

a developm

given circuit

y shows the

potentially

ical. Hence,

om logic d

n ASIC des

pment of a

t of design er

Level

l Simulation

Implemen
Verificatio
(logic vs .

verification

er the desig

sed to eval

h a regulat

ment phase

t is never st

e error prese

very costly

, verificatio

design, thro

sign. Figure

an ASIC w

rrors

Swit
Lay

tation
on
schematic)

gn is

luate

tion,

e. In

tated

ence

y, as

on is

ough

e 1.3

with

tch/
yout

Chapter 1: Introduction

 4

In general, it is estimated, that product-developing groups often spend beyond

70% of the overall design time and cost on checking the correctness of their

design [157]. The graph in Figure 1.4 describes a breakdown of the effort spent in

each step and Figure 1.5 shows different aspects of verification.

RTL and Block Tes t

High-level Des ign

Timing Analys is

DFT

ASIC Tes tbenches

Beh Model

Simulation

Equivalence
 Checking

Emulation
Support

Emulation
SoftwareVerification

Design

Figure 1.4: Breakdown of effort

Figure 1.5: Different aspects of verification

40%

15%

10%

10%

4%

2%

2%

2%

10%

5%

0% 10% 20% 30% 40% 50%

System verification

Functional HDL verification

Establish simulation environment

Architectural verification

Analog

Noise analysis

Testability

Power analysis

Timing verification

Gate‐level verification

Chapter 1: Introduction

 5

 From the above figure, it can be seen that time spent on verification at various

stages of a design process is significant. Hence, engineers need a fast method to

achieve the goal. The mainstream verification processes can be divided into three

categories: simulation, emulation and formal methods.

1.2.1 Simulation-based Verification
 Simulation is a process in which a given design is exercised by a certain set of

inputs [150]. Its idea is straightforward to comprehend, and the aim is to produce

a set of test vectors (stimuli) used to check the design correctness. These test sets

are called testbenches (set of input vectors, expected outputs, environment

constraints, etc.). More precisely, based on the module response, which is

compared to the specification, the correctness of the design is assessed.

Simulation can be used throughout the whole development process. Figure 1.6

describes the idea.

 Specfication

Simulation

Comparison

Simulation

RTL Description Logic Gates Description Layout
Extraction

Comparison

Simulation

Comparison

Figure 1.6: Simulation in the development procedure

Although the simulation method has obviously strong points, such as simplicity

and easy testbench programming, there are some shortcomings we should note.

First, sometimes it is not feasible to simulate all input sequences to completely

verify a design. Suppose we want to test a 32-bit adder in this case - there are 264

combinations. If it requires 1 test/us, it will take 1012 years to simulate that many

vectors. Secondly, result comparison is often incomplete and it is difficult to

compare results from different models and simulators. If the system grows larger,

the number of possible states grows exponentially with increased number of

Chapter 1: Introduction

 6

possible event combinations. Furthermore, simulation can be effective to show the

presence of bugs, but it is hopelessly inadequate for showing their absence.

1.2.2 Emulation
Hardware emulation is a process that uses a piece of hardware, typically a

special purpose emulation system, to imitate the behavior of a hardware system

under design. As a special case, in-circuit emulation is very fast as it is performs a

working target system in place of a yet-to-be-built chip, so the whole system can

be debugged with live data.

High end hardware emulators provide a debugging environment with many

features that can be found in logic simulators, and in some cases they even surpass

their debugging capabilities [151]:

 The users can set a breakpoint and terminate the emulation process to

inspect the design state, interact with the design, and resume emulation. The

emulator always stops on cycle boundaries.

 The users can watch all signal or memory contents in the design without

probes before the run. While visibility is provided for past time events, an

emulator can access the backward time steps which may be limited in some

cases by the depth of the emulator’s trace memory.

 The users can even back up time (if they save checkpoints) and re-run.

1.2.3 Formal Verification

Formal verification is a process of proving or disproving the correctness of

intended algorithms underlying a system with respect to a certain property using

formal methods of mathematics. It can be used for verifying systems such as

cryptographic protocols, combinational circuits, digital circuits with internal

memory, and software expressed as source code [155].

 A formal proof is necessary to verify systems based on an abstract

mathematical model and the correspondence between the mathematical model and

Chapter 1: Introduction

 7

the nature of the system known by construction. Then formal verification is the

process of constructing a proof that a target system will behave in accordance

with its specification. Basis of formal methods, which distinguish them from

simulations are:

 Formal reasoning is used to prove that an implementation satisfies a

specification,

 Correctness of a formally verified hardware design holds regardless of

input values,

 Exhaustive exploration of all possible behaviors is conducted,

 A counter-example (proof) is presented if the property is incorrect while if

correct, all behaviors are verified;

 Figure 1.7 describes the formal verification model. A verifier is utilized to

check whether the system model matches the system specification. If so, the

verifier sends signal of correctness; if not, the verifier gives a counterexample.

correct not correct
counterexample

Mathematical
ModelSpecification

Formal Verifier

Figure 1.7: The process model of formal verification

Formal verification schemes have many advantages further on:

 Complete with respect to a property,

 Avoid generating expected output sequences,

 Helpful to detect and trace errors.

 Since formal verification is based on model methods which are applied when a

circuit description is given by propositional temporal logic, the three most widely

model-based methods are equivalence checking, model checking and theorem

Chapter 1: Introduction

 8

proving. Equivalence checking formally proves that two representations of a

circuit design exhibit exactly the same behavior. Generally, a wide range of

possible definitions of functional equivalence covers comparisons between

different levels of abstraction.

 Sequential equivalence checking considers machine equivalence, which

defines two synchronous design specifications functionally equivalent if they

generate exactly the same sequence of output signals for all valid sequences

of input signals clock by clock.

 A more general problem than equivalence checking is used to compare the

functions specified for the instruction set architecture (ISA) with a register

transfer level (RTL) implementation, ensuring that the both models executing

any program will cause an identical update of the memory contents.

 A system design flow requires comparison between a transaction level model

(TLM) and its corresponding RTL specification. The interest in this mode of

checking increases in a system-on-a-chip (SoC) design environment.

RTL
VHDL/Verilog

HDL Synthesis Generic LibraryRTL-to-Gate

Unoptmized
Netlist

Optimized & Mapped
Netlist

Technology
library

Logic Equivalence
Checker

Figure 1.8: RTL-to-gate equivalence checking

Figure 1.8 illustrates the case of verification whether the RTL design and the

modified netlist are equivalent. Because post-process often includes activities

Chapter 1: Introduction

 9

such as insertion of scan chain and some modifications, all these activities can not

change the original function so equivalence checking can solve the problem.

Given a model of a system, model checking is a process of automatic test

whether this model meets a given specification. The system can be hardware or

software, and the specification generally contains safety requirements such as

critical states that may possibly crash the system.

 The system model and the specification must be described in some precise

mathematical language in order to solve such a problem algorithmically. The

specification is formulated using a suitable language, and the verification process

checks whether a given structure satisfies a given logical formula. The general

concept can be applied to all kinds of logics and suitable structures. A simple

model-checking problem is to verify whether a given structure satisfies a given

formula in the propositional logic and it is useful to check circuit properties such

as safety and liveness property. Model checking has characteristics:

 Searches the entire solution space, for possibly infinite duration

 Responds with YES or NO (if it terminates)

 Increasingly used in industry

 Can be automated for smaller blocks or when applied earlier in the flow

Figure 1.9 illustrates the basic idea of model checking.

Behavior Model /
RTL Design

Finite State
Machine

Properties

Model
Checker

True Couterexamples

Figure 1.9: Idea of model checking

Chapter 1: Introduction

 10

 From above figures, we see that although model checking and simulation can

both verify RTL description, simulation relies on the testbenches, while model

checking relies on mathematical reasoning represented by properties and

constraints. Figure 1.10 describes their difference.

Model Checker

Properties
(liveness, safety)Behavior/RTL Constraints

True/Counterexamples

Simulator

Behavior/RTL Testbench

Simulation
Outputs

Figure 1.10: Comparison of model checking and simulation

 Theorem proving decides whether a conjecture is a logical consequence of a

set of statements (the axioms and hypotheses), which is used to prove that an

implementation fits a specification by mathematical reasoning. The

implementation and the specification are both expressed as formulas in a formal

logic, and the necessary relationship - logical equivalence or logical implication -

is described as a theorem to be proven within the context of a proof calculus. A

proof system comprises a set of axioms and interface rules such as simplification,

induction, rewriting. Authors in [159] describe how to express PSL’s syntax and

semantics in the PVS theorem prover and prove the correctness of a set of rewrite

rules.

Chapter 1: Introduction

 11

 Formal Verification Tools
Supplier Tool Name Class of Tool HDL Design

Level
Commercial Tools
Synopsys Formality Equivalence

Checking
VHDL/Verilog RTL/Gate

Cadence Affirma Equivalence
Checking

VHDL/Verilog RTL/Gate

Cadence FormalCheck Model
Checking

VHDL/Verilog RTL

IBM RuleBase Model
Checking

VHDL RTL

Abstract
Hardware

Lambda Theorem
Proving

VHDL/Verilog RTL/Gate

Public Domain Tools
CMU SMV Model.

Checking
Own Language RTL

Berkely VIS Model/Equ.
Check

Verilog RTL

Cambridge HOL Theorem
Proving

SML Universal

Figure 1.11: Comparison of formal verification tools

Figure 1.11 lists some typical tools. Although a variety of tools have been

developed to perform formal verification, simulation is still a predominant method

in verification because of the advantages of simple operation and relatively

straightforward task of writing of testbenches.

 1.3 Introduction to Fixed-Point Arithmetic
 Fixed-point arithmetic is of importance in low power designs, embedded

systems and PLDs. Although floating-point data with single or double precision

can construct algorithms more accurately, generally for signal processing

algorithms such as FFT and DCT initiated from real values, significant processor

overhead is required to perform floating-point calculations resulting from the lack

of hardware based floating-point support. This disadvantage confines the effective

Chapter 1: Introduction

 12

iteration of an algorithm. In order to improve arithmetic throughput or increase

the execution rate, calculations can be performed by fixed-point representations

which require a virtual decimal place in between two bit locations for a given

length of data [133]. Nowadays, the fixed-point representation is gaining in

importance because Field Programmable Gate Arrays (FPGAs) increasingly

replace ASICs and are widely used in high-performance computing and embedded

system. Since these applications are quite suitable for the fixed-point arithmetic,

careful handling fixed-point circuits is quite necessary.

 The labeling convention of the representation is as follows:

 Q [IB] . [FB] (1-1)

 where IB = # of integer bits and FB = # of fractional bits.

 Total number of bits used to represent the fixed-point number is yielded by the

addition of integer bits IB and factional bits FB. The sum of IB+FB is known as

the wordlength (WL) and this sum often corresponds to variable widths supported

on a given processor. The fixed-point format includes two sections of integer and

fractional content for the purpose of exploration.

1.3.1 Fixed-Point Range – Integer Portion
 A fixed-point number is viewed as two distinct parts, the integer part and the

fractional part. The integer range sets the number of IB, Eqn. (1-1), required to

represent the integer portion of the number. IB itself can only hold integer values

because of the binary nature of a bit. Two different methods of calculating the

number of integer bits match two types of numbers, unsigned and signed.

A) Unsigned Integers
 The Eqn. (1-2) describes the unsigned integer by the minimum and maximum

of any IB number.

 0 2 1IBr≤ ≤ − (1- 2)

 IB can be obtained by solving the required number as:

Chapter 1: Introduction

 13

 2[log (1)]IB r≥ +

where r is the floating-point variable being ranged. The square bracket is the

ceiling function.

Example 1.1: Consider an unsigned variable r = 4.346:

 IB = 2[log (4.346 1)]+ = [2.43] = 3

 Three bits are required for the integer portion of r.

B) Signed Integers
 The previous equations cannot represent signed variables. The changed

following equation denotes the definition for the integer contents of signed

numbers (r±):

 122 11 −≤≤− −− IBIB r

Please note that the signed integer type is asymmetrical about zero. For instance, a

signed 8-bit value ranges from -128 to 127. By solving for the negative constraint

of the equation:

 rIB ≤− −12

we get: 1)]([log2 +−≥ rIB

By solving for the positive constraint: 12 1 −≤ −IBr

we get: 1)]1([log2 ++≥ rIB

Example 1.2: If rmin = -2 and rmax = 2,

 21]2[log1)]([log| 2min2min
=+=+−≥ rIB r

 31]3[log1)]1([log| 2max2max
=+=++≥ rIB r

IB must be 3 bits to satisfy the two constraints concurrently.

 In the case of signed data type, the positive constraint is tighter than the

negative constraint because of the asymmetry. It is common for users to define

variable magnitude constraints that are symmetric about zero (for instance,

55 ≤≤− r). The computation for IB can be generated uniformly by the equation:

Chapter 1: Introduction

 14

 1)]1])[(max([log maxmin,2 ++= rrabsIB

Example 1.3: Compute a signed variable 43.443.4 ≤≤− r ,

 41]45.2[1]43.5[log1)]1)43.4,43.4[(max([log 22 =+=+=++−= absIB

1.3.2 Fixed-Point Resolution – Fractional Portion
 The number of FB sets the resolution for a fixed-point variable. The resolution

ε of a fixed-point number is given by the following equation [134]:

 FB2
1

=ε

 Therefore the number of FB required by a particular resolution is defined as:

]1[log2 ε
=FB

Example 1.4: A signed variable r= -3.2782, ≤ε 0.0001,

 14]288.13[]10000[log]
0001.0
1[log 22 ====FB

 The resolution is limited for a given wordlength and dynamic range of a

variable. The WL of the variable must be increased to provide this resolution if a

higher resolution is needed for a given range [134].

1.3.3 Range & Resolution
 The integer and fractional parts of the number for a fixed WL consist of the full

range and resolution. The combined range and resolution for an unsigned

fixed-point number is defined by [133]:

 FB
IBr −=
−≤≤

2
|)12(0
ε

The combined range and resolution for a signed fixed-point number is defined as

[133]:

FB
FBIBIB r −=

−−− −≤≤−
2

11 |)22(2
ε

Chapter 1: Introduction

 15

The integer and fractional bits are combined together and used to determine a

standard WL that is large enough to hold all integer and fractional bits as:
 FBIBWLrequired +≥

 A representation U(IB, FB) where IB + FB = N for unsigned format is denoted

to calculate the value of a fixed-point format. For an unsigned format, in the U(IB,

FB) representation, the nth bit, counting from right to left and beginning at 0, has a

weight of 2n / 2FB = 2n-FB. Please notice that if n = FB the weight is 1. The value of

a particular N-bit binary number x in a U(IB, FB) representation is given by the

expression [134]:

 ∑
−

=

=
1

0
2)2/1(

N

n
n

nb xx

where xn is the bit n of x. The range representation is from 0 to (2N-1) /2FB = 2IB

–2-FB. For instance, the 8-bit unsigned fixed-point representation U(5,3) has the

form

 b4b3b2b1b0 . b-1b-2b-3

where the bit bk has a weight of 2k. Since FB is 3, the binary point is to the right of

the third bit from the right (counting from zero), and hence the number has five

integer bits and 3 fractional bits. This representation has a range of from 0 to 25 –

2-3 = 32 – 0.125 = 31.875.

Example 1.5: U(6,2). This number has 6+2=8 bits and the range is from 0 to 26 –

1/22 = 63.75. The value 4Bh (0100, 1011b) is:

 (1/22) (20 + 21+23+26) = 18.75

 Consider an N-bit binary word x as U(N,0). The one’s complement of x is

defined to be an operation that inverts every bit of the original value x. This can

be performed in the U(N,0) representation by subtracting x from 2N-1. That is, if

we denote the one’s complement of x as x~ , then:

 x~ = 2N -1- x

The two’s complement of x, denoted as x̂ , is determined by taking one’s

complement of x and then adding one:

 x̂ = x~ +1 = 2N – x

Chapter 1: Introduction

 16

Example 1.6: The one’s complement of the U(8,0) number 05h (0000,0101) by

hex representation is FAh (1111, 1010). The two’s complement of the U(8,0)

number 05h (0000,0101) is FBh (1111, 1011).

 Considering signed two’s complement fixed-point representation, we denote

such a representation A(IB,FB) that IB = N-FB-1. The following expression gives

the value of a specific N-bit binary number x in an A(IB, FB) representation:

∑
−

=
−

− +−=
2

0
1

1]22)[2/1(
N

n
n

n
N

NFB xxx

 Notice that the number of bits in the magnitude of the sum above has one less

bit than the equivalent prior unsigned fixed-point representation. These bits are

the N-1 least significant bits because the most significant bit in a signed two’s

complement number is often referred to as the sign bit.

Example 1.7: A(11, 2). This number has 11+2+1=14 bits and the range is from

-211= -2048 to +211-1/4 = 2047.75.

 Fundamental rules of fixed-point arithmetic are listed as follows [134].

 Unsigned wordlength: the number of bits required to represent U(IB, FB) is

IB+FB.

 Signed wordlength: the number of bits required to represent A(IB, FB) is

IB+FB+1.

 Unsigned range: The range of U(IB, FB) is FBIBx −−≤≤ 220 .

 Signed range: The range of A(IB, FB) is FBIBIB x −−≤≤− 222 .

 Addition operands: Two binary numbers must keep the same scale in order

to be added. That is, X(a, b) + Y(c, d) is only valid if X=Y (either both A or

both U) and a =c and b= d.

 Addition result: The scale of the sum of two binary numbers scaled x(a, b) is

x(a+1,b), the sum of two N-bit numbers requires N+1bits.

 Unsigned multiplication: U(IB1, FB1) * U(IB2, FB2) = U (IB1 + IB2, FB1+

FB2).

Chapter 1: Introduction

 17

 Signed multiplication: A(IB1, FB1) * A(IB2, FB2) = U (IB1 + IB2+1, FB1+

FB2).

1.4 Thesis Goal and Contributions

The investigation of fixed-point representation includes two problems: range

and precision. In our research, we try to explore the two problems concurrently,

and propose new methods for verifying and optimizing fixed-point circuits.

1.4.1 Composition of AT and Extensions
The main technique in our exploration is Arithmetic Transform (AT), which is

defined in the spectral domain. The exploration of the function description in a

spectral domain aims at elevating the classical problems with the Boolean

function domain where a truth table is used. Each entry to the table describes

precisely the behavior of the function at a single point, and bears no relation to the

function behavior in the other points of the domain. For some applications this is

satisfactory, however, other like circuit verification would benefit much more if

partial information about the whole function could be included in a function value

at each point of its domain. In fact, it is possible to give an alternate representation

of a function where the information about the function is much more global in

nature. This alternate representation is in the spectral domain, where a number of

function properties are much more easily deduced than in the Boolean domain.

However, it must be stressed that the overall information content of a given

function is identical regardless of the domain considered (functional or spectral),

and data in one domain can be uniquely recreated from the data in the other. In

spite of that, the meaning of the function parameters at each individual point of

the two domains is dissimilar. In particular, the discrete nature of the data in the

functional domain will generally be replaced by data in the spectral domain,

Chapter 1: Introduction

 18

which is global in nature, being influenced by the complete functional

performance of the circuit or network under consideration. Therefore finding the

spectral transform of the circuit is an important step to verification [56].

A straightforward way to compute the AT requires a multiplication with a

matrix of size that is exponential in number of primary inputs. This is clearly an

impractical proposition. Other methods, such as conversion from diagrams,

usually focus on the whole circuit [92]. If a complex circuit comprises many

smaller modules, it is hard to get its transform directly, and then the methods

mentioned are invalid [94].

A complex circuit generally consists of modules such as adders, multipliers and

similar, for which the transforms are easily obtained. If we can take advantage of

the relatively simpler transforms to form the transform of the complex circuits, the

gain would be significant. It was shown earlier [70] that AT could be composed

out of transforms of circuit blocks by help of several extensions to AT, and we

extend that work by constructing efficient algorithms and transform

representations. In addition, since the AT representation only contains primary

inputs and outputs, if engineers know the overall transform of the complex circuit

in advance, compared to the compositional AT representation, they should be

identical, and hence the composition procedure can perform equivalence checking.

Therefore the process of constructing AT composition becomes very important.

Because basic AT cannot represent sequential circuits, extensions are necessary

for the purpose of the composition.

In this thesis, we explore AT and its extensions proposed by Zilic and Radecka

[70] [158] then develop several subroutines to compose the detached transforms

of smaller modules which exist within a bigger circuit, and finally integrate these

subroutines into a fast algorithm for the construction of AT and its extensions.

1.4.2 Imprecise Circuits
 Here we focus our attention on a large category of circuits which cannot be

exactly represented. We will refer to these as imprecise circuits, as

Chapter 1: Introduction

 19

implementations do not match specifications exactly since they are only realized

approximately. When dealing with arithmetic circuits, the imprecision of these

circuits creates added complexity for the design and verification phase. In such

cases, implementations realize intended specifications only to the certain degree

of precision, adding yet another dimension to the already complex process of

design verification. Also it is not compulsory to require them to be identical as

some imprecision should and could be tolerated. While verifying arithmetic

circuits, if the error measured as a difference (imprecision) between them is

within an acceptable range, the implementation is deemed suitable to the

specification. Mathematical forms of expressing imprecision are related to the

type of implemented designs. For example, for arithmetic circuits, the error can be

described in some arithmetic form, and is therefore referred as an arithmetic error.

Figure 1.12 denotes the basic idea of imprecise circuits. The solid line represents

the specification, and the dotted lines represent the implementations. The

implementations approximate the specification but not exactly overlap.

Figure 1.12: The basic idea of imprecise circuits

The current verification methods, such as equivalence checking cannot be

applied: in some cases, many output bit values may differ, while the

implementation might still be considered correct if the difference of the

specification and the implementation is within a given arithmetic precision.

Consider, for example, the representation of value 1.0. The approximation

0.111… can be made arbitrarily precise by increasing the wordlength, yet all the

bits are incorrect. On the other hand, the change of a single, most significant bit

can change the arithmetic value by 100%.

Chapter 1: Introduction

 20

Further, when verifying the precision, we must explore yet another problem

dimension, i.e., the imprecision for the whole domain of definition. In the thesis,

we address the problem by the following two aspects.

(A) Component Comparison

The functionality of many circuits, particularly signal processing ones, can be

described or approximated by polynomials. For instance, many algorithms use a

common arithmetic function such as sin(X). This function, being a real-type and

infinite, cannot be realized precisely, and hence some kind of approximation is

needed, like, for example, the following one:

 X - X3/3! + X5/5! - X7/7!....

Here X is within the range [െ∞, ∞] for convergence. For simple explanation of

precision analysis, we limit the input range in [-1, 1].

In many cases the implementation of the specification function, like the above

is not build from scratch. More realistic problem is to realize the function by, for

example, using only 6 terms and 16-bit inputs approximation, where there is an

existing module to implement sin(X) by 5 terms and 12-bit. The existing

implementation can be used, as long as the difference between the requirement

and the library element is not beyond the given error bound. However, to

minimize the error of such a substitution, the Taylor terms and bit-width must be

both optimized.

We will approach the Taylor terms and input bit-width optimization

simultaneously, and try to provide a uniform platform, which is easily operated

and applied. Our goal is to match and verify the precision of real DSP/arithmetic

modules such as DCT. For this purpose, we present a method for matching

imprecise datapath circuits expressed by Taylor series and extend it to handle

word-level polynomials. Such representations are selected based on the fact that

Taylor expansions provide a representation of arithmetic functions, which not

only can be made arbitrarily close to the desired (specified) function, but also give

an elegant solution to the verification of imprecise designs. Therefore, we devise a

flexible tool based on Arithmetic Transforms that can assist engineers to compute

Chapter 1: Intro

imprecision

Figure 1.

is, the maxi

can be subs

(B) Precis

From the

optimizatio

synthesis. I

exactly, one

imprecision

 Given an

input bit-w

implementa

compute th

specificatio

An appro

such as si

simulation-

specificatio

domain the

oduction

n between tw

13 describe

imum error

stituted by e

sion Verifi
e design per

on resource,

In particula

e can search

n.

n implemen

width, engin

ation and th

he imprec

on according

oximate imp

in(X) by f

-based, or d

on and the

e function

wo impleme

es two comp

r, is smaller

each other. T

Figure 1.13:

fication an
rspective, h

, similar in

ar, as imple

h for the lea

ntation with

neers have

he specifica

ision and

g to the give

plementatio

fixed-point

dynamic me

implementa

definition,

21

entations ea

ponents wit

than the gi

This problem

Comparison

d Optimiz
however, the

n nature to

ementations

ast expensiv

a group of

interest to

ation. So w

verify wh

en error bou

on is requir

circuits. T

ethods, to a

ation. In es

with man

asily.

th difference

iven error b

m is solved

n of two imple

zation
e imprecisio

the notion

do not nee

ve impleme

f parameters

know wha

we need to d

hether the

und.

red to reali

Traditionall

analyze the

ssence, one

ny precision

e. If their im

ound, the tw

d in section 6

ementations

on can prov

of “don't

ed to match

entation with

s such as Ta

at differenc

develop fas

implement

ize a real-v

y, one mo

e imprecisio

has to exp

n paramete

mprecision,

wo compon

6.1.

vide yet ano

cares” in l

h specificat

hin the allo

aylor terms

ce between

st algorithm

tation fits

valued func

ostly relies

on between

plore the wh

ers investig

that

nents

other

ogic

tions

owed

and

 the

ms to

the

ction

s on

n the

hole

gated

Chapter 1: Introduction

 22

concurrently to get the imprecision. We propose a new method in terms of

Arithmetic Transform (AT) to analyze these parameters statically, to ascertain

whether the existing implementation is suitable to the specification. Please note

that many satisfying implementations can fulfill one specification, and it is very

much worth finding the implementation with the smallest hardware cost. In Figure

1.14, the three dotted lines represent three implementations which all satisfy the

specification represented by the solid line, but only one implementation has the

smallest area. How to find out this optimized implementation is attractive in

practical engineering.

satis fied

satis fied
(optim ized)

Figure 1.14: Optimized implementation with the smallest area

In the thesis we try to analyze the factors generating imprecision such as

function approximation and finite bit-widths, and develop a series of algorithms to

process imprecise circuits included comparison, verification and optimization.

This problem is solved in section 6.2 – 6.4.

1.4.3 Range Analysis
 Range analysis is a significant step in RTL synthesis which directly influences

cost and performance. This topic is always hot and attractive to engineers.

Traditional methods have obvious disadvantages of low efficiency and coarse

bounds, which lead to infeasibility and additional bits for data representation. In

order to overcome these disadvantages, we propose a new method to calculate

ranges for each intermediate output and the final output in the datapath. This

method can obtain exact ranges and allocate the smallest integer bit-widths for the

datapath, so the optimized implementation with the smallest hardware area can be

Chapter 1: Introduction

 23

achieved. This problem is solved in Chapter 7.

1.4.4 Exploration of Fixed-Point Circuits

 After investigating the precision and the range separately, we explore the

fixed-point representation with both integer bit-widths (IBs) and fractional

bit-widths (FBs). The case is more complex and the most important problem is

how to determine the fractional bit-width in the datapath and estimate the error.

Based on the above analysis, we propose an efficient method to allocate

appropriate IB and FB for the inputs and all outputs in the datapath in order to

obtain the optimized implementation.

 As blind spots in past explorations, circuits with feedbacks – such as sequential

IIR filters – are of importance. We analyze feedback circuits and propose

algorithms to detect stability and find ranges. Furthermore, sequential circuits are

investigated and the process of fixed-point representation is extended to

floating-point representation. These problems are solved in Chapter 8.

1.4.5 Contributions

 On the whole, the main contributions of the thesis are in:

 designing an algorithm to obtain the spectral transform for a complex circuit

 proposing algorithms to verify and optimized imprecise circuits

 proposing an algorithm to calculate ranges of a datapath

 conceiving an algorithm to find the optimized fixed-point implementation

with integer and fractional bit-widths

 designing an algorithm to explore imprecise arithmetic circuits with feedback.

 24

Chapter 2

Background

In this chapter, we review function representations including truth

tables, Shannon expansion and polynomial representation. We pay

special attention to decision diagrams, as they play an important role

in many classical verification methods. Most commonly used

diagrams include OBDDs, MTBDDs, BMDs and TEDs. Finally, as

usual methods to handle imprecise circuits rely on dynamic analysis

and affine arithmetic, we conclude this chapter with the introduction

to the mathematical background of these methods.

Chapter 2: Background

 25

With VLSI (Very Large Scale Integration) technologies and the design

techniques developing rapidly, microchips are utilized prevalently in many areas

of human activities. The integration density increases fast beyond billions of

transistors bringing forward a problem: how to build a right system to fit

requirements? Thus hardware verification theory emerges as an important element

of the overall design process. There were many corresponding explorations in past

decades. In this chapter we will review some typical theoretical background

dealing with function representations and verification.

 2.1 Function Representations
 Digital combinational circuits rely on the repreentation of Boolean functions,

either by means of computation or evaluation processes. Truth tables belong to

the first group, while decision diagrams belong to the second one.

2.1.1 Truth Table

A truth table is a mathematical table used in logic — specifically in connection

with Boolean algebra, Boolean functions, and propositional calculus — to

compute the functional values of logical expressions on each of their functional

arguments, that is, on each combination of values taken by their logical (input)

variables. In particular, truth tables can be used to tell whether a propositional

expression is true for all legitimate input values, that is, logically valid.

Example 2.1: The truth table of the 2-bit unsigned adder with inputs x = x1x0 and

y = y1y0, and output z = z2z1z0 is presented below.
 x1x0y1y0 z2z1z0
 0 0 0 0 0 0 0
 0 0 0 1 0 0 1
 0 0 1 0 0 1 0
 0 0 1 1 0 1 1

Chapter 2: Background

 26

 0 1 0 0 0 0 1
 0 1 0 1 0 1 0
 0 1 1 0 0 1 1
 0 1 1 1 1 0 0
 1 0 0 0 0 1 0
 1 0 0 1 0 1 1
 1 0 1 0 1 0 0
 1 0 1 1 1 0 1
 1 1 0 0 0 1 1
 1 1 0 1 1 0 0
 1 1 1 0 1 0 1
 1 1 1 1 1 1 0

 Truth tables are useful in many synthesis applications, as well, as verification

due to their canonical property. In fact, equivalence checking of two Boolean

functions can be done by comparing truth tables of corresponding functions.

 A truth table has 2N rows for an N-input function, hence the size and time

complexity are always exponential in the number of primary inputs. Consequently,

the truth table as a binary function representation is impractical for verificaiton of

even modertate size circuits.

2.1.2 Shannon Expansion
 In mathematics, Shannon expansion is a method by which a Boolean function

can be represented by the sum of two sub-functions (co-factors) of the original. It

provides a way for deriving a Boolean function recursively.

Definition 2.1: The cofactor of a Boolean function f(x0, x2, …, xi, …, xn-1) with

respect to variable xi is),...,1,...,,(110 −= nx xxxff
i

. Similarly, the

cofactor with respect to variable ix is),...,0,...,,(110 −= nx xxxff
i

.

 Each Boolean function can be represented by its cofactors through Shannon

expansion.

Theorem 2.1: A Boolean function BBf n →: can be represented as [7]

Chapter 2: Background

 27

),,...,,(21 nix xxxxff
i
= =)()(

iiii xixixixi fxfxfxfx +⋅+=⋅+⋅

One way of representing the Shannon’s expansion is by means of a multiplexer

selects between the two cofactors, depending on the value of a splitting variable xi.

0 1 xi

ixf

ixf

f

Figure 2.1: Shannon expansion in variable xi

Example 2.2: Given a function of '''''' zyxzyxzxyxyzf +++= , we can

re-write the function in terms of any two variables — namely, a variable and its

complement: xx gxxgf ''+= . Simply apply the distributive theorem to the

function about x:)'()'''(' zyyzxyzzyzyxf ++++= . Now we have expanded the

function f about the variable x. The work [154] describes a method based on

Shannon expansion for low- power and testable circuit synthesis.

2.1.3 Polynomial Representation
 Positive and negative Davio expansions are other two expressions of

Boolean functions by means of cofactors and the XOR operation.

Definition 2.2: The positive Davio expansion of a Boolean function f(x0, x2, …,

xi, …, xn-1) with respect to variable xi is:

)(),...,...,,(110 iii
xxixni ffxfxxxxff ⊕⋅⊕== −

Similarly, the negative Davio expansion is:

)(),...,...,,(110 iii xxixni ffxfxxxxff ⊕⋅⊕== −

Chapter 2: Background

 28

 The two representations adopt XOR operations over two cofactors. They are

useful for polynomial expressions and decision diagrams representations.

 If all variables are decomposed by positive Davio expansion, another canonical

representation of Boolean functions is obtained as Reed-Muller transform

[4][5][6]. RM transform is used in technology mapping by symmetry detection,

which will be introduced in section 3.1.2.

2.1.4 Boolean Satisfiability

Boolean Satisfiability (SAT) is often used as the underlying model for a

significant and increasing number of applications in electronic design automation

(EDA) as well as in many other fields of computer science and engineering.

Satisfiability determines whether the variables of a given Boolean formula can be

assigned in such a way as to make the formula evaluate to TRUE. Another

importance is to determine whether no presence of such assignments would imply

that the function expressed by the formula is identically FALSE for all possible

variable assignments. In this latter case, we say that the function is unsatisfiable,

or else it is satisfiable [152] .

 The SAT is a decision problem in complexity theory, whose instance is a

Boolean expression written using operations of AND, OR, NOT, variables, and

parentheses. The question is that given the expression, whether some assignment

of TRUE and FALSE values to the variables will make the entire expression true.

In particular, satisfiability searches are most often applied to Boolean functions

represented as product of sums. The search for a function variables assignment,

which would make all the clauses true, is proven to be NP-Complete [152].

Example 2.3: After converting Boolean equations from Example 2.1 into

product-of-sums, we obtain the following set of clauses:

 The set of input assignments satisfying the above equations is empty. This fact

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
++++++++++++++

+++++
=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

))((
))()()()()((

))()()()((
),,,(

0000

01010101101011101011

1001110101

0

1

2

0101

yxyx
yyxxyyxxyxxyyxyxxyyx

yxyxyxyyxx

z
z
z

yyxxf

Chapter 2: Background

 29

is easy to verify by checking the multiplier truth table, which holds no input (x1, x0,

y1, y0) assignment resulting in all the output bits (z2, z1,z0) being equal to one.

2.2 Decision Diagrams
Decision diagrams are the binary function representations that explore

evaluation process. They do not need to compute the response of input stimuli and

evaluate a function based on a set of binary-valued decisions.

2.2.1 Binary Decision Diagrams
Binary decision diagram (BDD) [7] was already introduced in 1959 as a data

structure that is used to represent a Boolean function. Furthermore, under the

name of Branching Programs they were intensively studied in theoretical

computer science. Within the following years the importance of BDDs for VLSI

CAD was realized by several groups, and an increasing number of BDD

algorithms and successful applications were reported.

 On a more abstract level, BDDs can be considered as a compressed

representation of sets or relations. Unlike other compressed representations,

operations are performed directly on the compressed representation, i.e. without

decompression. BDDs are based on the Shannon expansion. Generally, bit-level

decision diagrams are constructed in terms of one of the three Boolean function

decompositions:

 Shannon:
ii xixi fxfxf ⋅⊕⋅=

 positive Davio:)(
iii xxix ffxff ⊕⋅⊕=

 negative Davio:)(
iii xxix ffxff ⊕⋅⊕=

Definition 2.3: “A Decision Diagram (DD) over a set of Boolean variables Xn

Chapter 2: Background

 30

and a non-empty terminal set T is a connected, directed acyclic graph G=(V, E)

with exactly one root and the following properties:

 A vertex in V is either a non-terminal or a terminal vertex.

 Each non-terminal vertex v is labeled with a variable from Xn, called the

index index(v) of v and has exactly two successors in V , denoted by low(v),

high(v).

 Each terminal vertex v is labeled with a value Tvvalue ∈)(and has no

successors.” [7]

Example 2.4: Consider Decision Diagrams in Figure 2.2 and 2.3. The graph in

Figure 2.2 represents a complete tree that by definition is also a complete and

ordered DD. The DD in Figure 2.3 is also ordered, but not complete. Since both

DDs are ordered they are also free.

x1

x2

x3x3

x2

x3 x3

1 0 1 0 1 1 1 0

 Figure 2.2: Complete and ordered DD

x1

x2

x3

0 1

0 1

1

1

0

0

Figure 2.3: Ordered DD

Definition 2.4: “A BDD is a DD over Xn and terminal set T={0, 1}. If the BDD

Chapter 2: Background

 31

has a root vertex v, then the BDD represents a Boolean function fv defined as

follows:

1. If v is a terminal vertex and value(v)=1 (value(v)=0), then fv=1 (fv = 0).

2. If v is a non-terminal vertex and index(v)= xi, then fv is the function

).,...,(),...,(),...,(1)(1)(1 nvhighinvlowinv xxfxxxfxxxf ⋅+⋅=

flow(v) (fhigh(v)) denotes the function represented by low(v) (high(v)).” [7]

2.2.2 Reduced Ordered Binary Decision Diagrams

BDDs have obvious limitations because of exponential sizes which confine

applications. Some extensions have been proposed to overcome these limitations.

Recently, (especially in the area of verification) DDs have also been used to

represent Pseudo-Boolean functions, i.e., function of the form f : ZBn → . The

simplest extension of BDDs, ROBDDs (Reduced Ordered Binary Decision

Diagrams), has two restrictions:

 Appearance of the variable keeps in the same order along each path from the

root to a terminal.

 No isomorphic sub-trees or redundant vertices exist.

Definition: 2.5: “Let π be a total order on the set of variables x1,…xn. An

ordered binary decision diagram (OBDD) with respect to the variable order π

is a directed acyclic graph with exactly one root which satisfies the following

properties:

 There are exactly two nodes without outgoing edges. These two nodes are

labeled by the constants 1 and 0, respectively, and are called sinks.

 Each non-sink node is labeled by a variable xi, and has two outgoing edges,

which are labeled by 1 and 0, respectively. These edges are called the 1-edge

and the 0-edge, respectively.

 The order, in which the variable appear on a path in the graph, is consistent

with the variable order π , i.e., for each edge leading from a node labeled by

Chapter 2: Background

 32

xi to a node labeled by xj it holds xi < jxπ .” [7]

An OBDD is a read-once branching program with an additional ordering

restriction on the variables. The computation path of an input a = (a1 ,…, an) ∈Bn

is the path from the root to a sink in the OBDD which is defined by the input.

More precisely, the computation path begins in the root, and in each node labeled

by xi the path follows the edge with label ai.

Example 2.5: Let π be the variable order x1 < x2 <x3. Figure 2.4 illustrates two

OBDD representations of the function 21321321),,(xxxxxxxxf += with respect

to the orderπ .

x1

.

.

.

1 0

x2 x2

x3 x3 x3 x3

1

1

11

1
1 1

x1

.

.

.

1 0

x2 x2

x3x3

1

1 1

11

Figure 2.4: Two OBDDs of Example 2.5

Definition 2.6: “Two OBDDS of P1 and P2 are isomorphic if there is a bijective

mapping φ from the set of nodes of P1 to the set of nodes of P2 such that, for each

node v, the two nodes v and)(vφ are sinks with identical labels, that means

var(v)=var()(vφ),))(())((vhighvhigh φφ = ,))(())((vlowvlow φφ = . An OBDD is

called reduced if

1. it does not contain a node v with high(v) = low(v), and

2. there does not exist a pair of nodes u, v such that the sub-OBDDs rooted in u

and v are isomorphic.”[7]

Example 2.6: Consider a Boolean function f = x1x2x3 + x4x5x6 +…+ xn-2xn-1xn. The

Chapter 2: Background

 33

ROBDD G1 for f with variable ordering x1, x2…xn-1, xn is given in Figure 2.5. The

size of the corresponding graph is given by |G1| = n. Since f depends on all n

variables the ROBDD has optimal size.

x1

xn-2

x7

x5

x2

x4

.

.

.

xn-1

0 1

x3

x6

xn

Figure 2.5: An example of ROBDD

2.2.3 Multi-Terminal BDDs
Another extension of BDDs to aim on handling word-level values is to

introduce non-Boolean terminals, i.e, to allow integers in terminal nodes. The

resulting DDs are called Multi-Terminal BDDs (MTBDDs) [8] if in each node an

(integer-valued) Shannon decomposition is carried out.

Example 2.7: A MTBDD for function f=3x1+x2 is given in Figure 2.6.

x1

x2x2

0 1 3 4

Figure 2.6: MTBDD for f=3x1+x2

Chapter 2: Background

 34

2.2.4 Binary Moment Diagrams
Binary Moment Diagrams (*BMDs) [9][10][11], which belong to the class of

word-level decision diagrams, are generalizations of the BDD to linear functions

over domains such as Boolean, but also to integers or to real numbers. They can

deal with Boolean functions with complexity comparable to BDDs, but also some

functions that are dealt with very inefficiently in a BDD are handled easily by

BMD, most notably multiplication. The most important properties of BMD is that,

like with BDDs, each function has exactly one canonical representation, and many

operations can be efficiently performed on these representations. The main

features that differentiate BMDs from BDDs are using linear diagrams instead of

pointwise diagrams, and having weighted edges. No node may have all decision

parts equivalent to 0 (links to such nodes should be replaced by links to their

always part). No edge may have weight zero (all such edges should be replaced by

direct links to 0). Weights of the edges should be coprime. Without this rule or

some equivalent of it, it would be possible for a function to have many

representations, for example 4x+4 could be represented as 4*(1+x) or 1*(4+4x).

 *BMDs are particularly effective for representing digital systems at the word

level, where sets of binary signals are interpreted as encoding integer (fixed point)

or rational (floating point) values. Common integer and floating point encodings

have efficient representations as *BMDs, as do operations such as addition and

multiplication. *BMDs can also represent Boolean functions as a special case,

with size comparable to BDDs .

Example 2.8: A *BMD for the fractional coding (3 bits) is illustrated as:

∑
=

−==
3

1
123123 2:],,[:),,(

i
i

i
enc xxxxxxxf

Chapter 2: Background

 35

x3

x2

x1

0 1

0.125

0.5
0.25

Figure 2.7: *BMD for unsigned fractional encoding

 Edge weighting leads to a much more concise representation of a function. As

an illustration, Figure 2.7 describes the representations of *BMD for the same

function.

2.2.5 Taylor Expansion Diagrams
 A new type of diagram, Taylor Expansion Diagram (TED) [12] – [15], has

been developed to solve the problem of word-level computation, such as

A[0:n-1]+B[0:n-1], requiring the decomposition of the function with respect to

each bit-level variable A[0],…,A[n-1],B[0],…,B[n-1]. It is unnecessary to expand

the word-level variables when treating them as algebraic symbols. Figure 2.8

depicts the decomposition with respect to the word-level variables A and B. If we

group the nodes corresponding to the individual bits of these variables, we can

abstract the integer variables and use them directly in the design. The figure

describes the idea of symbolic abstraction of variables from bit-level components

[12].

Chapter 2: Background

 36

b0

b1

1

2

a0

a1

10
1

2

*BMD: A*B

2b1+b0 B[1:0]

2a1+a0 A[1:0]

B

A

10

TED: A*B

Figure 2.8: Abstraction of bit-level variables into algebraic symbols

Assume a regular algebra (R, *, +) over real numbers R with integer

coefficients on a real differentiable function f(x,y,…). Using the Taylor series

expansion with respect to a variable x, the function f can be represented as [14]:

.....).,0(
2
1,...),0(...),0(...),(''2' +=+=+== yxfxyxxfyxfyxf

where f’(x=0, y…), f’’(x=0, y…),etc., are first, second, and higher order

derivatives of f with respect to x. The derivatives of evaluated at x=0 are

independent of variable x, and can be further decomposed w.r.t. the remaining

variables, one variable at a time. The resulting recursive decomposition can be

represented by a decomposition diagram called the Taylor Expansion Diagram.

Definition 2.9: “The Taylor Expansion Diagram, is a directed acyclic graph (φ ,

V, E, T), representing a multi-variable polynomial expression φ . V is the set of

nodes and E is the set of directed edges connecting the nodes. T is the set of

terminal nodes. Every node Vv∈ has an index var(v) which identifies the

decomposing variable. The variable of the TED are ordered. The function at node

v is determined by the taylor series expansion at the point var(v)=0. The edge

emanating from a node v point to its children nodes which correspond to the

derivative of the function with respect to the variable var(v). The out-degree of a

terminal node Tv∈ is 0. The function computed at a terminal node is an integer

constant c.”[14]

Chapter 2: Background

 37

Vx

f

1
x x2

x3

f(0) f'(0) f' '(0)/2
f'' '(0)/3!

Figure 2.9: A decomposition node in a TED [12]

The decomposition is applied recursively to the subsequent children nodes. The

kth derivative of a function f rooted at node v with var(v)=x is referred to as a

k-child of v; f(x=0) is a 0-child,)0(' =xf is a 1-child,)0(
!2

1 '' =xf is a

2-child, etc. Notice the implicative terms associated with each arc: x0=1 for the

0-edge, x1=x for the 1-edge, x2 for the 2-edge, etc.

TEDs are a new canonical, graph-based representation for arithmetic

expressions, which can be exploited to facilitate equivalence checking of high-level

specifications of digital designs in terms of the compactness and the canonicity

properties. TEDs handle algebraic variables as real numbers. Figure 2.10 shows an

example of TED representation for a simple algebraic expression. Note the additive

and multiplicative weights assigned to the edges. The computation of the

derivatives, and hence the children of f, performed recursively, is trivial for

polynomial functions.

A

C

B B

0 1

3

A3+3AC+AB+3BC

Figure 2.10: An example of an expression represented with TED

Chapter 2: Background

 38

2.2.6 Disadvantages of Decision Diagrams
 The canonicity and ease of composition that OBDDs and MTBDD provide

make them ideal for matching small combinational circuits. In order to handle

complex circuits such as multiplication, the potentially exponential size of BDD

structures makes comparison of BDDs time consuming and memory intensive.

BMDs and TEDs manipulate the complex circuits by easing the requirement of

memory and time. They have been used to verify the functionality of linear

circuits [141]. However, they can only yield information on whether or not an

implementation matches a specification exactly, but offer no path for quantifying

the degree to which the two offer. Therefore, if two functions are similar but not

exactly equal, BMDs and TEDs structures may implement drastically different

arithmetic functions, while two very different diagrams may implement the same

mathematical operation with different degrees of precision. Also, BMDs and

TEDs are unsuitable for use in non-linear functions because of the resulting

exponential complexity in the worst case [77], and hence decision diagrams are

not suitable to be used to explore imprecise circuits.

2.3 Dynamic Analysis
 Decision diagrams are explored in formal verification as a part of equivalence

and model checking, but they have no ability to process the fixed-point

representation. The usual method to handle fixed-point designs is through the

dynamic analysis which uses appointed vectors as specific inputs. The major

elements include the tested circuit and a group of vectors. A testbench represents

stimuli to the circuit under verification. The results of the circuit simulations with

the stimuli indicate whether the implementation is suitable for the specification.

The simple idea makes it prevalently used. In fact, historically, dynamic analysis

is the oldest technique to verify digital designs. The major draw back of this class

of methods is the requirement to enumerate all possible input values in order to

Chapter 2: Background

 39

verify a circuit in 100%.

 The exhaustive test vectors are usually infeasible for dynamic analysis because

of huge execution time. A practical testing method requires as few vectors as

possible to cover as many faults as possible, so the technique of test generation

has been developed. ATPG (Automatic Test Pattern Generation) is a technology to

distinguish between the correct circuit behavior and the faulty circuit behavior

caused by defects. Obviously, the processed objects are precise designs and it is

difficult to handle or optimize imprecise designs by these methods. Varieties of

explorations adopt dynamic analysis and avoid exhaustive vectors to optimize

imprecise designs, which are introduced next.

Authors in [18] – [25] rely on the straightforward technique to get optimization

of a bit-width. In [19] Kung and Sung develop a combined word-level (WL)

optimization and high-level synthesis algorithm to minimize the hardware

implementation cost and significantly reduce the optimization time. Their

algorithm initially finds the WL sensitivity or minimum WL of each signal

throughout fixed-point simulations of a signal flow graph. Then it performs the

WL high-level synthesis where signals having the similar WL sensitivity are

assigned to the same functional unit. Finally, the algorithm conducts the final WL

optimization by iteratively modifying the WLs of the synthesized hardware model.

Figure 2.11 [19] depicts the design flow of optimization.

Data flow
graph

Signal grouping

Scaling factor
determination

Minimum WL
determination

Scheduling and
binding

Optimal WL
search

Synthesize
architecture

Figure 2.11: Design flow of the architecture-level WL optimization [19]

Chapter 2: Background

 40

 Willems and Bursgens [20] present a tool that allows an automated, interactive

transformation from floating-point ANSI-C into a bit-true specification. The tool

quantizes the input value and analyzes quantization effects on an algorithmic level.

Then it invokes the simulation-based fixed-point algorithm to target the described

specification. The main disadvantage of the above method is that it requires a

large set of input vectors, and hence a long simulation time is unavoidable.

Figure 2.12: The tool flow of the method in [20]

 Gaffar et al. [21] offer a uniform treatment for bit-width optimization of

fixed-point designs. They utilize automatic differentiation to compute the

sensitivities of outputs to the bit-width of the various operands in the design. This

sensitivity analysis enables to explore and compare fixed-point and floating-point

implementation for a particular design. As a result they can automate the selection

of the optimal number representation for each variable in a design to optimize

area and performance. Figure 2.13 describes its design flow.

Chapter 2: Background

 41

 Design Description System Generator
Design

BitSizeCost Function Runtime Data

Annotated Dataflow GraphVerification Output

System Generator

VHDL Synthesis
Matlab Simulation

Xilinx Tools

FPGA Configuration Bitstream

Comparison

Output Error

Figure 2.13: The design flow of dynamic analysis in [21]

 C. Shi et al. [22] set up a statistical model to estimate hardware resource in

terms of perturbation theory. A tool that automates the floating-point to

fixed-point conversion (FCC) process for digital signal system is described based

on a simulation tool, Simulink. The tool automatically optimizes fixed-point data

types of arithmetic operators, including overflow modes, integer word lengths,

fractional word lengths, and the number systems. The approach is based on

statistical modeling, hardware resource estimation and global optimization based

on an initial structural system description.

 Nayak et al. [23] propose a precision analysis algorithm to determine the

minimum number of bits required by an integer variable, and present a framework

to generate an efficient hardware for signal processing applications. Their range

optimization relies on data range propagation, while precisions are analyzed and

Chapter 2: Background

 42

optimized by the DFG which is an acyclic graph representation of a circuit. A

memory packing algorithm is proposed to generate faster hardware requiring less

execution time. Figure 2.14 illustrates the framework.

Input Matlab
Code

Matlab AST

Type-Shape
Analysis

Scalarization Levelization

Dependence
Analysis

Precision and
Error Analysis

Memory
Packing

Output VHDL
Code

Figure 2.14: Overview of the synthesis framework in [23]

 Though dynamic analysis provides bit-widths closer to the optimal set for those

particular stimuli, it is not a perfect solution since a large set of stimuli signals is

required to analyze a design with sufficient confidence. This possibly leads to

prohibitively long simulation time without guarantees for alternative input stimuli

encountered in practice. Hence, often not only low efficiency of the overall

process can be encountered, but the above methods can become infeasible for

some cases. Therefore, other methods should be explored.

 2.4 Static Analysis
Static analysis such as interval arithmetic and affine arithmetic can avoid

tedious simulation. This section introduces static methods to handle fixed-point

circuits represented by polynomials.

Chapter 2: Background

 43

2.4.1 Interval Arithmetic
In mathematics, a (real) interval is defined as a set of real numbers with the

property that any number that lies between two numbers in the set is also included

in the set. For example, the set of all numbers x from the interval [0,1] include 0

and 1, as well as all real numbers between them. Interval arithmetic (IA) is a

method developed by mathematicians in 1950s and 1960s as an approach to

putting bounds on rounding errors in mathematical computation. Among many

contributors, we distinguish Hansen, who in [26] introduced basic ideas of

interval arithmetic and Kearfott, who in [27] presented some important

applications of interval computations. In general, the advances in interval

arithmetic led to the development of numerical methods that yield very reliable

results.

Where classical arithmetic defines operations on individual numbers, interval

arithmetic defines a set of operations on intervals. An operation <OP> on two

intervals is defined as:

]},[],,[|{],[],[21212121 yyyxxxyOPxyyOPxx ∈∈><=><
The operand <OP> can, for example, represent addition or multiplication. For

practical applications the above notation can be simplified to:

Addition:],[],[],[22112121 yxyxyyxx ++=+

Subtraction:],[],[],[22112121 yxyxyyxx −−=−

Multiplication:

)],,,max(),,,,[min(],[],[22122111221221112121 yxyxyxyxyxyxyxyxyyxx =∗
Division:

]),/[1(],[],/[],[21212121 yyxxyyxx ∗= ,

where]/1,/1[],/[1 2121 yyyy = if],[0 21 yy∉

With the help of these definitions, it is already possible to calculate the range of

simple functions, such as f(a,b,x) = ax+b. If, for example a = [1,2], b = [5,7] and x

= [2,3], it is clear that

]13,7[]7,5[]32,21[]7,5[])3,2[]2,1([),,(=+∗∗=+∗=xbaf

Interval methods can also apply to functions which do not just use simple

arithmetic, and we must also use other basic functions for redefining intervals as

Chapter 2: Background

 44

known monotonicity properties. The range of values is easy to determine for

monotonic functions in one variable. If RRf →: is monotonically rising or

falling in the interval y1, y2∈ [x1, x2], then one of the following

inequalities applies for all values in the interval such that y1 ≤ y2 :

f(y1) ≤ f(y2) or f(y1) ≥ f(y2)

The range corresponding to the interval [y1, y2] ⊆ [x1, x2] can be calculated by

applying the function to the endpoints y1 and y2:

f([y1, y2]) = [min{f(y1), f(y2)}, max{f(y1), f(y2)}]

Using the above equation, the following basic features for interval functions

can easily be defined:

• Exponential function:],[2121],[xxxx aaa = a ≥ 1,

• Logarithm:],[2121],[x
a

x
a

xx
a LogLogLog = for positive intervals [x1, x2]

and a >1,

• Odd powers: [x1, x2]n = [x1
n, x2

n] for odd n⊆ N.

The methods of classical numerical analysis cannot be transferred one-to-one

into interval-valued algorithms, as dependencies between numerical values are

usually not taken into account.

In order to work effectively in a real-life implementation, intervals must be

compatible with floating point computing. The earlier operations were based on

exact arithmetic, but in general fast numerical solution methods may not be

available. The range of values of the function f(x,y) = x + y for x∈ [0.1, 0.8] and y

∈ [0.06, 0.08] are for example [0.16, 0.88]. Where the same calculation is done

with single digit precision, the result would normally be [0.2, 0.9]. But [0.16, 0.88]

∉ [0.2, 0.9], so this approach would contradict the basic principles of interval

arithmetic, as a part of the domain of f([0.1, 0.8], [0.06, 0.08]) would be lost.

Instead, it is the outward rounded solution [0.1, 0.9] which is used.

The required external rounding for interval arithmetic can thus be achieved by

changing the rounding settings of the processor in the calculation of the upper

limit and lower limit. Alternatively, an appropriate small interval [21 ,εε] can be

added.

Chapter 2: Background

 45

Interval arithmetic is used in association with error analysis to control rounding

errors arising from each calculation. The advantage of interval arithmetic is that

after each operation there is an interval which reliably includes the true result. The

distance between the interval boundaries gives the current calculation of rounding

errors directly:

Error = abs(a − b) for a given interval [a,b].

2.4.2 Affine Arithmetic
Affine arithmetic (AA) is a model for numerical analysis introduced first by

Stolfi and Figueiredo [32][33]. In AA, the quantities of interest are represented as

affine combinations (affine forms) of certain primitive variables, which stand for

sources of uncertainty in the data or approximations made during the computation.

It is meant to be an improvement on interval analysis (IA).

In affine arithmetic, each input or computed quantity x̂ is represented by a

formula:

nnxxxxx εεε ++++= ...ˆ 22110

where x0, x1, ... xn are floating-point numbers and nεεε ..., 21 are symbolic

variables whose values are only known to lie in the range [-1,+1]. We call x0 the

central value of the affine form x̂; the coefficients xi are its partial deviations, and

the iε are the noise symbols. Thus, for example, a quantity x̂ which is known

to lie in the range [3,7] can be represented by the affine form kx ε25ˆ += .

The key feature of AA is that the same symbol iε may contribute to the

uncertainty of two or more quantities (inputs, outputs, or intermediate results) x̂

and ŷ arising in the evaluation of an expression. The noise symbols can be

shared which indicates some partial dependency between the underlying

quantities x and y, determined by the corresponding coefficients xi and yi. Note

that the signs of these coefficients are not meaningful in themselves, because the

sign of iε is arbitrary; but the relative sign of xi and yi defines the direction of

Chapter 2: Background

 46

the correlation. For example, suppose that the quantities x and y are represented

by the affine forms:

x̂ = 17 − 3 1ε + 2 3ε + 4 4ε ŷ = 9 − 1ε + 2ε - 2 4ε

From this data, x lies in the interval x̂= [8, 26] and y lies in ŷ = [5, 13], i.e.,

the pair (x, y) lies in the grey rectangle of Figure 2.16; however, since the two

affine forms include the same noise variables 1ε and 4ε with non-zero

coefficients, they are not entirely independent of each other. In fact, the pair (x, y)

lies in the dark grey region of Figure 2. 15, which is the set of all possible values

of (x̂ , ŷ) when the noise variables 1ε , .. 4ε are independent. This

set is the joint range of the forms x̂ and ŷ , denoted < x̂ , ŷ >.

8 26

5

13

Figure 2. 15: Joint range (x̂ , ŷ) of two partially dependent quantities

 as implied by their affine forms

 In order to evaluate a formula with AA, we need to replace each elementary

operation z ← f(x, y) on real quantities x and y by a corresponding procedure

ˆ ˆˆ (,)z f x y← , which uses affine forms of those quantities and returns an affine

form for the result z. By definition, there are:

nnxxxxx εεε ++++= ...ˆ 22110

nnyyyyy εεε ++++= ...ˆ 22110

Therefore, the result ẑ is a function of the unknown variables iε as:

 0 1 1 0 1 1ˆ ˆˆ (,) (... , ...)n n n nz f x y f x x x y y yε ε ε ε= = + + + +

Example 2.10: Consider the multiplication of two affine forms ˆ ˆẑ xy← , where

Chapter 2: Background

 47

21 3420ˆ εε +−=x and 31230ˆ εε ++=y . Please notice that the operands are

partially correlated through the shared noise symbol 1ε . The product of ˆˆxy is:

ˆ ˆẑ xy= = 600 - 80 1ε +90 2ε + 20 3ε – 8 2
1ε – 4 1 3ε ε + 6 1 2ε ε + 3 2 3ε ε

 = 600 - 80 1ε +90 2ε +20 3ε – 8 4ε – 4 5ε + 6 6ε +3 7ε

Using the form of ẑ , we can estimate the range of ẑ is [389, 811]. The actual

range of ˆˆxy is [403, 756], so the obtained range by AA is (811-389) / (756 – 403)

= 1.2 times wider than the exact range. If using IA for comparison, z = [13, 27] *

[27, 33] = [351, 891], that is (891 – 351) / (756 – 403) = 1.53 times wider than

the exact range. The reason is AA can partly process the correlation between x̂

and ŷ implied by the shared symbol 1ε . The correlated terms −120 1ε and +40

1ε nearly cancel out in the AA computation, but are added with the same sign in

the IA computation.

Fang et al. [39] [40] take advantage of affine arithmetic modeling to analyze

range and precision from fixed-point implementations of DSP algorithms. The

resulting numerical error estimates are comparable to detailed statistical

simulation, but achieve speedups of four to five orders of magnitude by avoiding

actual bittrue simulation. Authors in [41][43] propose an approach that optimizes

the bit-widths of fixed-point and floating-point designs. Range analysis depends

on a combined affine and interval arithmetic approach to reduce the number of

bits. Precision analysis involves a coarse-grain and fine-grain analysis. The best

representation in fixed-point or floating-point is then chosen based on the range,

precision and latency. Figure 2.16 illustrates the methodology.

Chapter 2: Background

 48

C/C++ Program

Simulation-Error
Function Generation

Guaranteed-Error
Function Generation

Coarse Precision
Analysis

Fine Precision
Analysis

Scheduling
Floating-point Units

Range
Optimization

Cost Table
Generation

Word-length Optimized Fixed /
Floating-Point Design

Figure 2.16: An outline of the methodology in [41]

 The algorithm starts from generating cost and error functions and then analyzes

range. The next stage is precision analysis. A coarse-grain analysis produces

uniform bit-widths. These results are then refined to produce non-uniform

bit-widths. The last stage is floating-point scheduling before the source code is

reconstructed to a given C/C++ design.

 Authors in [42] use AA to investigate bit-width due to truncated and rounded

data, and explore hardware area and delay in FPGA on the condition of different

bit-width. Figure 2.17 introduces the tool of static analysis.

Chapter 2: Bac

 The alg

optimize th

the precisio

tool, Leng

fixed-point

The tool ad

analyzed an

iterations c

heuristics a

requiremen

capable of

ckground

gorithm gen

he fractiona

on analysis.

gthFinder,

arithmetic

dopts a mult

nd loops are

can be extra

are used to

nts from th

reducing t

Figure 2.17:

nerates erro

l bit-width.

. Osborne e

for optimi

based on a

ti-stage app

e selected to

acted to gen

 produce n

he guarante

the search s

49

The tool of st

or function

 An optimi

et al. [45] e

zing word

analytical e

proach, with

o instrumen

nerate more

non-uniform

ed error fu

space is de

tatic analysis

n and cost

zed fixed-p

extend the w

dlengths of

error model

h four novel

nt, so inform

e accurate r

m wordlengt

unctions. T

eveloped fo

s in [42]

function r

point design

work in [42

f hardware

s that guara

l features. F

mation abou

results. Seco

ths rapidly

Third, a me

or data-parti

respectively

n is obtained

2] to propo

designs w

antee accur

First, the cod

ut the numbe

ond, aggres

while mee

ethod whic

itioning wi

y to

d by

ose a

with

racy.

de is

er of

ssive

eting

h is

ith a

Chapter 2: Background

 50

variable wordlength reduction. Fourth, a genetic algorithm with

selective-crossover and high mutation probability is applied to obtain

near-optimal results.

In [93], authors set up models for error source dependence. In these models, the

dependence is approximated by linear functions (AA) or by general polynomials

(Taylor series methods), which are proved optimal. They also describe that the

optimal way to decrease the excessive bit-width is to use implicit polynomial

dependence.

Affine arithmetic is potentially useful in every numeric problem where one

needs guaranteed enclosures to smooth functions, such as solving systems of

non-linear equations, analyzing dynamical systems, integrating functions

differential equations, etc. Additionally, AA has many applications in areas such

as computer graphics, optimization and curve drawing in [35], [36], [37], [38].

Here it is used to handle range analysis and bit-width optimization.

 2.5 Alternate Methods
Constantinides et al. [46] present an approach to the wordlength allocation and

optimization for linear DSP systems. The tool Synoptix [47] - an optimization

technique targeting linear time-invariant digital signal processing systems using a

novel resource binding technique is proposed. It is based on saturation arithmetic

to perform the range of bit-width optimizations and allows the user to tradeoff

implementation area for arithmetic error at system outputs.

Chapter 2: Background

 51

simulink
signal
scaling

wordlength
optimization

error
constraints

bit-true
simulator

synthesis
of HDL

vendor
synthesis

completed
design

HDL
libraries

library
cost models

multiple
wordlength
 libraries

Figure 2.18: Synoptix design flow in [47]

Figure 2.18 describes the tool flow. The input to Synoptix is a Simulink

block diagram, and the output is a structural description in VHDL. Third-party

tools are then used to perform the low-level logic synthesis, placement, and

routing of the designs.

Kinsman and Nicolici [55] introduce the theory of SAT-Modulo (SMT) to

explore ranges. SMT first uses the coarse bounds obtained by IA, and then refines

them by inserting constraints. More precise bounds than AA can be obtained, so

determine smaller bit-widths for an implementation. Based on the scheme, an

SMT engine can be used to prove/disprove validity of a bound on a given

expression by checking for satisfiability.

Affine
Arithmetic

Interval
ArithmeticRange

Precision

 Specification
 (Scientific
 Calculation) Range

Refinement

Initial
ranges

SAT-Modulo

Figure 2.19: Flow of SMT technique in [55]

Chapter 2: Background

 52

 Ahmadi and Zwolinski [54] address the bit-width assignment in hardware

implementation in the context of high-level synthesis. They introduce a symbolic

noise analysis (SNA) to surpass the pessimism of IA, which is based on modeling

of the error bounds by an assumed probability distribution function over a known

range. In comparison to SNA which assumes the error distributions more localized,

IA is pessimistic by assuming the uniform distribution. The proposed method is

used in combination with models of power consumption, circuit area and delay.

Results demonstrate a considerable saving in costs when these optimizations are

applied.

2.6 Conclusions
In this chapter, we introduced the usual Boolean function representations such

as decision diagrams. Although decision diagrams such as TEDs are suitable to

equivalence checking and model checking, they cannot be applied to imprecise

circuits or to bit-width optimization. Dynamic analysis is a common method and

many explorations are based on it, but its low efficiency confines its applications.

Static analysis has been developed to overcome this limitation. IA is the usual

method of finding ranges and AA is a derivation which can calculate more precise

ranges than IA.

These explorations only get one optimization of bit-width such as [42] or

hardware area such as [51]. Another disadvantage is that they do not consider the

function approximation so they are not capable of investigating these factors

concurrently. In our research, we overcome this disadvantage and simultaneously

processed bit-widths and various constraints as well as approximations for Taylor

series and real-valued polynomials.

 53

Chapter 3

Compositions of AT and
Extensions

 Arithmetic Transform (AT) must be extended to represent

combinational circuits and sequential circuits efficiently. We state past

methods of calculating AT coefficients, and then address the use of AT

and its extensions to express word-level quantities and sequential

elements. Since a circuit transform can express properties of the

circuit distinctly and help engineers to penetrate its essence

straightforwardly, obtaining an overall transform by symbolic

compositions of individual blocks’ transforms becomes most

significant. For the purpose of running time and memory, the best

algorithm is proposed for a compositional verification of the complex

datapath.

Chapter 3: Compositions of AT and Extensions

 54

 3.1 Introduction to Spectral Transforms
As a main method exploring the fixed-point circuits in our research, Arithmetic

Transform (AT) is a spectral representation different with Boolean representations.

So we introduce the spectral domain and the basic AT definition at first in this

Chapter.

3.1.1 Spectral Domain
 It is common to use the product and sum operators of the Boolean algebra

together with negation to define such functions － for example, f(x1, x2, x3) =

321 xxx + 321 xxx . The use of Boolean algebra for the manipulation and analysis of

switching circuits is well known. Part of the problem with the definition in the

Boolean domain is that each of the entries in the truth table for f tells us precisely

the behavior of the function at a single point but nothing of its behavior for any

other points. It is possible to give an alternate representation of a function where

the information about the function is much more global in nature. This alternate

representation is in the spectral domain, and a number of properties are much

more easily deduced in the spectral domain than in the Boolean one [56]. Spectral

techniques are very powerful tools for logic functions to express the principle of

linearity and superposition.

The basic idea of the spectral domain and how to get there is illustrated in

Figure 3.1. In order to avoid losing information, the transform should be reversed,

that is, we can move to and from the spectral domain without any loss of

information.

Conventional
Boolean data

Appropriate
transform

Original Boolean
data re-expressed as

a different set of
numbers

The Boolean domain The transform The spectral domain
Figure 3.1: The spectral transform

Chapter 3: Compositions of AT and Extensions

 55

 The information content in the functional and spectral domains will be identical,

and the data in either domain is uniquely recreatable from the data in the other,

but the meaning of the parameters in the two domains will be dissimilar. In

particular, the discrete nature of the data in the function domain will be generally

influenced by the complete functional performance of the circuit or network under

consideration. The following section outlines several usual spectral transforms.

3.1.2 Various Transforms
A) Reed-Muller Transform
Definition 3.1: In matrix notation, positive polarity Reed-Muller (PPRM)

expressions for functions in GF(2) are given by:

 RM(f) = Rn F

where F is the truth table for the Boolean function f and

 ⎥
⎦

⎤
⎢
⎣

⎡
=

−−

−

11

1 0

nn

n
n RR

R
R , 10 =R (3-1)

Example 3.1: Consider a function f(x2, x1, x0) = x1x2+x0, i.e., F = [0, 1, 0, 1, 0, 1,

1, 1]T . Using the Eqn. (3-1), coefficients of Reed-Muller transform are calculated

as:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
1
0
0
0
0
1
0

1
1
1
0
1
0
1
0

11111111
01010101
00110011
00010001
00001111
00000101
00000011
00000001

7

6

5

4

3

2

1

0

r
r
r
r
r
r
r
r

Thus RM(f) = x0 ⊕ x1x2⊕ x0 x1x2

B) Fixed-Polarity Reed-Muller Transform

Chapter 3: Compositions of AT and Extensions

 56

The fixed polarity Reed-Muller (FPRM) transform is derived from the negative

Davio expansion together with the positive Davio expansion (no need for the

same variable). These transforms are characterized by the polarity vectors H =

(h1, . . . , hn) ∈ {0, 1}n, whose ith coordinate hi = 1 shows that the corresponding

variable is represented by the negative literal ix in the polynomial

representation for a given function f [57].

For a given polarity vector H, the FPRM polynomial is given in the matrix

notation by:

FPRM(f) =
1 1

([1])([(1)])i i

n n
h h
i

i i

x R F
= =
∏ ∏

where

, 0

, 1
i i ih

i
i i

x h
x

x h

=⎧ ⎫⎪ ⎪= ⎨ ⎬
=⎪ ⎪⎩ ⎭

1 0
, 0

1 1
(1)

0 1
, 1

1 1

i

i
h

i

h
R

h

⎧ ⎫⎡ ⎤
=⎪ ⎪⎢ ⎥

⎪ ⎣ ⎦ ⎪= ⎨ ⎬
⎡ ⎤⎪ ⎪=⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

Example 3.2: Figure 3.2 [57] shows the Reed-Muller transform matrix for n = 3

and the polarity vector H = (0, 1, 0).

(0,1,0)

0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0

(3)
0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 1
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 3.2: Reed-Muller matrix for n = 3 and the polarity vector H = (010)

The indices of columns in R(010)(3) are defined as (i1⊕h1, i2 ⊕h2, i3 ⊕h3)

compared to the positive polarity (H = (0, 0, 0)) Reed-Muller matrix R(3). So the

original output order (0, 1, 2, 3, 4, 5, 6, 7) changes to (2, 3, 0, 1, 6, 7, 4, 5). With

this matrix, for a function f given by the truth-vector F =[1, 0, 0, 1, 0, 1, 1, 1]T, the

Reed-Muller expansion for H = (0, 1, 0) is given by

Chapter 3: Compositions of AT and Extensions

 57

FPRM(f) = x0 ⊕ 1x ⊕ x2 ⊕ x2x0 ⊕ x2 1x x0

C) Walsh Transform

The Walsh functions [57] [59] [60] [61] are a closed set of two-valued

orthogonal functions, given by

 })1{(),(
1

0

}{ 1∏
−

=

+ −−−−=
n

jkk nnnkjWal
η

ηη

Where ηj , ηk are determined by the binary expansions of j, k respectively, j, k

∈ 0 to 2n-1, where

 j = {jn-12n-1 + jn-22n-2 +… + j020} k = {kn-12n-1 + kn-22n-2 +… + k020}

 The Walsh transform is a complete orthogonal square matrix, with row and

column entries ∈ {+1, -1} and with a recursive structure as follows:

where ⊗ denotes the Kronecker product operator. The transform is given by W(f)

= Wn F.

D) Fixed-Polarity Walsh Transform

For a given polarity vector H = (h1, . . . , hn) the fixed polarity Walsh

polynomial is given in the matrix notation by [57]:

 FPW(f) =
1 1

2 ([1 1 2])([(1) (1)])i i i

n n
h h hn
i

i i

x F−

= =

− − −∏ ∏

E) Kronecker Transform
Definition 3.2: For a function f, the Kronecker spectrum is defined as:

 K(f) = Kn F

where 1
11

1

11
100

−
−−

− ⊗⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= n

nn

n
n K

KK
K

K

Figure 3.3 shows the Kronecker transform matrix K(3):

1
11

11

11
11

−
−−

−− ⊗⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

= n
nn

nn
n W

WW
WW

W

Chapter 3: Compositions of AT and Extensions

 58

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11110000
10100000
00110000
00010000
00001111
00001010
00000011
00000010

)3(K

Figure 3.3: A Kronecker transform matrix for n = 3

F) Haar Transform
 The orthogonal Haar functions [56] may be defined as follows, where k is taken

over the continuous interval 0 to 1:

 0.1)(0
0 +=kH

)0.1(|2|)(1 += −iq
i kH for

11 2
2
1

2 −−

+
<≤ ii

q
kq

)0.1(|2| 1 −= −i for 11 2
1

2
2
1

−−

+
<≤

+
ii

qk
q

where i = 1, 2, … , n and q = 0, 1, … , 2i-1-1.

The sequentially ordered discrete Haar functions for n = 3 are shown in Figure

3.4.

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

2 2 2 2 0 0 0 0

0 0 0 0 2 2 2 2(3)
2 2 0 0 0 0 0 0
0 0 2 2 0 0 0 0
0 0 0 0 2 2 0 0
0 0 0 0 0 0 2 2

sH

⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥− −= ⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

Figure 3.4: Sequentially ordered Haar functions for n = 3

Chapter 3: Compositions of AT and Extensions

 59

3.2 Arithmetic Transform
3.2.1 Basic Definition

We adopt Arithmetic Transform that is defined in the spectral domain as our

main method to analyze imprecise factors and compute imprecision. Traditional

methods are hard to determine the maximum error on the condition of the Taylor

word-level input, but AT can decompose word-level variables into bit-level

quantity to avoid the disadvantage and represent the error function essentially. AT

has been proved to be suitable for precision verification and optimization by

precision constraints, so here we use it to analyze imprecision of Taylor series.

AT is a canonical polynomial representing uniquely multi-input and

multi-output Boolean functions mn BBf →: . Multi-output can be grouped to

form a word-level (integer) number w to obtain an AT description in a form of a

single polynomial, leading to a pseudo Boolean function wBf n →: . Therefore,

the AT representation has Boolean inputs and a word-level output.

Definition 3.3: The Arithmetic Transform (AT) [62] is a polynomial representing

a pseudo Boolean function wBf n →: using an arithmetic operation “+”,

word-level coefficients
niiic ...21

, binary inputs nxxx ,, 21 and binary exponents

niii ..., 21 :

n

n

n

i
n

i

i i i

i
iii xxxcfAT)(2

1 2

1

21 2

1

0

1

0

1

0
1...∑ ∑ ∑

= = =

=

The matrix multiplication is most frequently used to determine AT of a given

function. In this method, the set of AT coefficients }{ ...21 niiicC = are obtained by

multiplying the nn 22 × matrix Tn by a 12 ×n vector of function values (truth

table of f): fTC n ×= where the transform matrix Tn is defined recursively:

 . (3-2)

AT generates a word-level output and it is encoded by binary weights addition.

⎥
⎦

⎤
⎢
⎣

⎡
−

=
−−

−

11

1 0

nn

n
n TT

T
T 10 =T

Chapter 3: Compositions of AT and Extensions

 60

A word-level encoding is explicitly expressed by the number norm function

| |:Bm→W, defining a Boolean vector interpretation in the word-level domain.

Table 3.1 [70] gives a summary of common integer and fractional number norms

for a vector of Boolean values xi.

Word Number Norm |x|

Unsigned Sign Extended 2’s Complement

Integer
∑
−

=

1

0

2
n

i

i
ix ∑

−

=
−−

2

0
1 2)21(

n

i

i
in xx ∑

−

=

−
−−

2

0

1
1 22

n

i

n
n

i
i xx

Fractional
∑
−

=

−
1

0

2
n

i

i
ix ∑

−

=

−−
1

1
0 2)21(

n

i

i
ixx ∑

−

=

−+−
1

1
0 2

n

i

i
ixx

Fixed Point
∑
−

=

−
1

0

2
n

i

mi
ix ∑

−

=

−−
1

1
0 2)21(

n

i

mi
ixx nm

n

i

mi
i xx −

−

=

− −∑ 22 0

1

1

Table 3.1: Norm functions for common word encodings

Example 3.3: Consider the following Boolean function, where (x2, x1, x0) are

bit-level variables, and output variables are grouped to form an integer at

Boolean domain. Arithmetic Transforms can be obtained using the function truth

table:

11111111
01010101
00110011
00010001
00001111
00000101
00000011
00000001

)(

−−−−
−−
−−

−
−−

−
−

=FAT *

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

8
17
14

18
2
8
11
2

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

0
7
19

16
7
6
13
2

Hence AT = 2 - 13x0 + 6x1 + 7x1x0 + 16x2 -19x2x0 +7x2x1

Arithmetic polynomials are used for efficient representation and calculation of

multi-output functions fk , fk−1, . . . , f0 represented as integer-valued functions f(z)

000 2

001 -11

010 8

011 2

100 18

101 -14

110 17

111 -8

Chapter 3: Compositions of AT and Extensions

 61

via the mapping [57]:

 f(Z) = i

k

i

i f∑
=0

2

Example 3.4: Consider a system of functions:

 (f2(x2, x1, x0), f1(x2, x1, x0), f0(x2, x1, x0))

where f0(x2, x1, x0) = x2(x0 + x1)

f1(x2, x1, x0) = x2x0ْx1

f2(x2, x1, x0) = x1+ x2x0

A matrix F whose columns are truth-vectors of f2, f1, and f0, with their values

interpreted as integers is used:

],,[

101
111
111
000
011
011
000
000

012 FFFF =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

An integer valued representation for f2, f1, and f0 is obtained as f = 22f2 + 2f1 + f0,

i.e,

012
2 24

1
1
1
0
0
0
0
0

0
1
1
0
1
1
0
0

2

1
1
1
0
1
1
0
0

2

7
6
4
3
3
3
0
0

FFF ++=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 Now, the arithmetic spectrum of F = [0, 0, 3, 3, 3, 4, 6, 7]T is

Chapter 3: Compositions of AT and Extensions

 62

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−
−−

−
−−

−
−

9
1
7
0
0
6
0
0

5
7
7
0
6
6
0
0

11111111
01010101
00110011
00010001
00001111
00000101
00000011
00000001

012

12

02

2

01

1

0

1

xxx
xx
xx

x
xx

x
x

Therefore, f is represented as the arithmetic polynomial

f(z) = 6x1 + 7x2x0+ x2x1 -9 x2x x0

 From the linearity of the arithmetic transform, this polynomial can be

generated as the sum of the arithmetic polynomials for f1, f2, f3.

3.2.2 Utilization of Spectral Techniques

Spectral techniques have been applied for circuit synthesis, verification and

testing by many researches. Clarke et al. [64] describe how to calculate concise

representations of the Walsh transform for a Boolean function with huge variables.

The technique is applied for Boolean technology mapping and obtains a speed up

for matching case.

Klaus [65] develops a new method based on AT for the derivation of fault

signatures for the detection of faults in single-output combinational networks. The

signatures do not require exhaustive testing so they provide substantially less

work than syndrome testing or the verification of Rademacher-Walsh spectral

coefficients. Two counters are used to test spectral coefficients in [65] as the

following figure.

Chapter 3: Compositions of AT and Extensions

 63

Counter for
(xi: i I) ∈

Crcuit under
test

xi=0, i N-1∈

Counter

parity bit

direction

up=0
down=1

Figure 3.5: The spectral coefficient ai test structure in [65]

 Lui et al. [66] use spectral signature testing methods for the model of multiple

stuck-at faults. The testability condition for multiple-input faults is established

and a minimal spanning signature (MSS) is defined to cover all these faults. A

MSS contains a single spectral coefficient to detect over 99% of all input and

internal multiple faults. The approach can obtain a complete signature for all

multiple faults in any irredundant combinational network with small numbers of

fan-outs and the possible overhead being an extra control input.

 Miller and Muzio [67] describe a method for the derivation of fault signatures

for certain classes or irredundant combinational networks. These signatures

consist of a set of values derived from the network. Any stuck-at fault causes at

least one of the values to change. The signatures provide complete fault detection

for all single stuck-at faults.

 Schneeweiss [160] discusses the AT of the Boolean function which is to be

very useful for a deeper understanding of switching functions on fault tolerant

electronics system. Radecka et al. [68] exploit the algebraic properties of the AT

that are used in the compact graph-based representations of arithmetic circuits.

Verification time can be shortened under assumption of corrupting a bounded

number of transform coefficients. Bounds are derived for a number of test vectors

and the vectors successfully verify arithmetic circuits under a class of error

models derived from proposed basic design error classes including single stuck-at

faults.

In [135], authors describe a methodology for simulation-based verification in

the presence of a fault model. The authors propose an implicit fault model that is

Chapter 3: Compositions of AT and Extensions

 64

based on the AT representation of a circuit and design faults. The proposed

approach has the advantage of compatibility with formal verification and

manufacturing testing methods. Errors can be modeled implicitly, and such an

implicit error model is given by AT of a difference between the correct and faulty

circuits. Since a fault is treated as a quantity added to the circuit output, the

behavior f~ of the faulty circuit is represented as a sum of the correct output and

the error function e, that is, f~ = f + e. The relation:

 AT(f~) = AT(f)+ AT(e)

is satisfied. The size of the error is measured in terms of the number of non-zero

spectral coefficients in AT of the error e, that is, AT(e). Based on the linearity

feature, black-box verification can be performed without any knowledge of a

circuit structure and implementation, as it is performed through design interfaces

without accessing directly any of internal states.

3.2.3 Calculation of AT Coefficients
 The definition of AT has been introduced. The usual method relies on matrix

multiplication, which needs huge computation of multiplication and addition, so it

is always inefficient. Past explorations investigate some other methods to

calculate AT coefficients.

 Folkowski and Chang [92] develop an algorithm to calculate the AT of the

Boolean function from its OBDD representation. The method of decomposition of

arithmetic spectral coefficients in terms of the cofactors of Boolean functions that

resembles Shannon decomposition has been introduced. A new algorithm to

synthesize OBDD from arithmetic spectrum is described.

Authors in [94] introduce a fast algorithm to generate AT. In that paper,

different properties and ways of calculation for multi-polarity generalized

arithmetic and adding transforms have been presented. Mutual relationships

among spectra of different polarities have been discussed and the possibility to

generate spectrum of an arbitrary polarity directly from the known spectrum of

Chapter 3: Compositions of AT and Extensions

 65

some polarity has been indicated. The following figure illustrates the fast

algorithm.

 Krenz et al. [95] present a fast algorithm for evaluating the arithmetic transform

of a Boolean function based on its circuit representation. Unlike previous

algorithms requiring an orthogonal and non-redundant representation or a single

BDD, a new algorithm is proposed to partition the evaluation based on the

dominator relations of the circuit graph. The dominators simplify intermediate

evaluation steps greatly. So the algorithm can process larger circuits.

 Whitley et al. [96] use representations of decision diagrams to calculate spectral

coefficients by graph-based algorithms which produce Walsh, Arithmetic and

Reed-Muller transforms for multi-output functions. Thornton et al. [97] propose

matrix based techniques to calculate direct transformations amongst Walsh, Haar,

Arithmetic and Reed-Muller spectral domains. They implement the fast

transforms directly on decision diagrams.

 Moraga et al. [98] introduce new diagrams based on AT, that is, arithmetic

transform decision diagrams (ACDDs) which are the integer counterparts of the

functional decision diagrams (FDDs). The paper describes how to construct the

diagrams by the structure of arithmetic transform spectrum of Boolean functions.

Example 3.6 shows an ACDD for a Boolean function.

Example 3.5: Figure 3.6 shows the ACDD for functions of n = 3 variables. Figure

3.7 shows the reduced ACDD for the Boolean function:

f(x1, x2, x3) = 3 - 2x1 - x2 + 4x1x2 + x1x3 + 2x2x3

The constant nodes represent the arithmetic spectrum of f given by Af = [3 1 2 4 3

2 4 7]T .

Chapter 3: Compositions of AT and Extensions

 66

A

A

AA

A A A

r000 r001 r010 r011 r100 r101

f

1

x1

1 1

1 1 1

x2
x2

x3

r111r110

1 x1
x1 x1

Figure 3.6: ACDD for n=3

A

A

AA

A A A

1 3 4 2 7

f

1

x1

1 1

1
1

1 1

x2
x2

x3

x1

x1
x1

Figure 3.7: ACDD of f in Example 3.6

 Cintra et al. [99] propose a unified theory for AT of a variety of discrete

trigonometric transforms. Interpolation process is required and determines the

transform. Authors also introduce a new algorithm to calculate the discrete

Hartley transform by AT.

Past explorations calculate AT coefficients directly in spite of using matrix

multiplication or starting from OBDDs or other function representations. The

direct way sometimes leads to low efficiency especially for larger circuits. We

design a new method to calculate AT in this chapter which is an indirect way by

composing detached blocks in the circuit. First three extensions of AT are

introduced.

Chapter 3: Compositions of AT and Extensions

 67

3.3 Extensions to the Arithmetic Transform
Consider a circuit consisting of two blocks B1 and B2 in Figure 3.8. The

composition of the two ATs: P=AT(B1) and Q=AT(B2) require the binary

encoding, that is from the conversion of the word-level output P of the first AT

into the bit-level values T, acceptable as inputs to the second AT [70].

B2
.
.
.

I
P=AT(B1(I))

T=|R|-1
.
.
.

Q=AT(B2(T))
B1

Figure 3.8: Binary encoding use for compositions of ATs

 Instead of closed-form expression for binary encoding, the integer-to-binary

conversion algorithm is applied to the AT polynomial to obtain |w|-1. AT

extensions should accept both word- and bit-level inputs because of no simple

form of AT(|w|-1).

The majority of digital circuits subject to verification are complex designs

composed out of many smaller sub-blocks. AT can still be used to represent such

designs, however in order to facilitate the compositions of ATs describing

individual blocks (some of them may be sequential) we need to derive extensions

to the basic AT. Radecka and Zilic [70] has proposed three extensions to represent

complex combinational and sequential circuits. Here a summary introduces them

shortly.

3.3.1 Mixed Arithmetic Transform
The first extension (MAT) facilitates the compositions of two or more AT

blocks. The introduction to MAT is dictated by the incompatibility of inputs and

outputs accepted and generated by AT. Note, that ATs in their original forms

accept inputs as only binary variables, while for the compositions of ATs some of

the inputs may be binary as well as word-level.

Chapter 3: Compositions of AT and Extensions

 68

Definition 3.4: The Mixed AT (MAT) [70] is a polynomial representing the

function wwBf km →×: which uses an arithmetic “+” operation, word-level

coefficients
niiic ...21
, binary x1,x2,…,xm and word-level kwww ..., 21 inputs as well

as binary exponents i1,i2,…,in and e1,e2,…,ek:

k

k

m

n k

n

e
k

e
ee

i
m

i i e e

i
ii wwcxxcfMAT)(1

1

1 1

1

1 1...

1

0

1

0

1

0

1

0
1...∑ ∑∑ ∑

= = = =

= (3-3)

Eqn. (3-4) can be used to calculate the coefficients of a MAT, which is

expanded around binary input variables, and treat word-level input quantities

unassigned as symbols:

fTwwwc nk *)...,(21 = (3-4)

Example 3.6: Consider the MAT of a function f=3a+b, where “a” and “b” are

2-bit unsigned integers. We treat a=a1a0 as a bit vector, and “b” as a single

word-level quantity. We obtain the truth table:

 f = [b 3+b 6+b 9+b]T

from which the AT transform application generates:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−
−

==

0
6
3

9
6
3

1111
0101
0011
0001

*)(

b

b
b
b

b

fTfMAT

The resulting polynomial is F(a1a0) = b+3a0+6a1

 The size of the matrix Tn is shrunk from 16*16 to 4*4 by treating the input b as

word-level values. Therefore, the above example denotes that a MAT allows a

compact way of generating AT.

 A block represented by MAT can always be converted to the AT with

polynomial size increase in wordlength m. A MAT is of importance for

composing ATs by means of its word-level input variables, rather than for

representing all functions. A function should be expressed explicitly in terms of

designated word-level inputs.

Chapter 3: Compositions of AT and Extensions

 69

3.3.2 Sequential AT Extensions
 Since AT and MAT have no ability to represent sequential circuits, as there is

no notion of time provided by these transforms, two extensions are introduced to

allow variables to change over time to facilitate sequential implementations. We

refer to such variables as timed variables.

Definition 3.5: The Timed variable “v[n]” is a variable “v” to which a time tag

“[n]” is assigned to indicate that the function generating the value of “v”

changes with time instance “n”[70].

 Timed variables are used to abstract away the clock in the sequential

implementation. A timed function f[n] represents the value of f in the nth clock

period. The function f[n] is executed in a finite number of clock cycles.

Example 3.7: A timed equation of a memory element such as a flip-flop whose

content is reloaded every clock cycle is defined as [70]:

 mout[n] = min[n-1]

Definition 3.6: The AT Sequential (ATS) is the Arithmetic Transform AT(f)[n] of

timed function “f” at time instance “n”, while the MAT Sequential (MATS) is

analogously MAT(f)[n] of a timed function with word- and bit-level inputs [70].

Example 3.8: Consider a standard flip-flop with input “D”, reset signal

“reset” and an enable signal “En” – all bit type is represented by ATS [70]:

])1[*)1(*)(1(])[(−−+−= nfEDEresetnfATS nn

 In fact, if intermediate variables generated by sequential elements are

word-level quantities, the only appropriate sequential transform is an ATS.

 The MATS of a sequential function “f” can be obtained from the MAT of the

combinational part of “f” by the replacement of each MAT input that is generated

by a memory element with its defining MATS. MATS have two forms. A type I

MATS presents a case where the timed output variable f is expressed only in

terms of timed input values, and a type II MATS describes a recurrence equation,

Chapter 3: Compositions of AT and Extensions

 70

where a symbol of a considered function f appears on both sides of a definition.

The circuit behavior at a given time instance can be obtained through solving the

recurrence equation analytically and symbolically by tools such as Maple or

Mathmatica.

Example 3.9: In Figure 3.9(a), block A1 represents an N-bit adder. In the nth step,

one summand is taken from primary inputs, while the other is supplied from

multiplication of a constant and the register storing the values of the previous n-1

additions. The register has been initially reset.

A1 +

Register

f[n]

f[n]

a[n] f [n-1]

a)

B1 *

B2 +

f[n]

X[i] Y[i]

b)

Register

f[i]

f[i-1]
0.5

0.5

Figure 3.9: Add- and Multiply-Accumulate Loops

 The MATS of this loop is obtained by considering the register input f[n], with

the value given by the recurrence:

MATS(f)[n]=a[n]+0.5*MATS(f)[n-1], MATS(f)[0]=0

Its solution is: MATS(f)[n] = ∑
=

−
n

i

in ia
1

][5.0

 Then block B1 in Figure 3.9(b) represents an N*N-bit multiplier, and block B2

is a (2N+1)-bit adder creating a multiply-and-accumulate loop. The MATS results

from the previously derived MAT transforms of its individual blocks. The inputs to

the MAC loop at the time instance “i” are the N-bit binary vectors x[i] and y[i],

and the output f[i] is a binary of size (2N+1). The ATS (all inputs are bits) of the

multiplier B1 is defined for inputs at time instance “i”:

Chapter 3: Compositions of AT and Extensions

 71

][2][*2][][])[*1(
00

iaiyixifiyxBATS k
N

k
k

k
N

k
k ==== ∑∑

==

The recurrence solution of the loop transform is:

)2][*2][(5.0][5.0])[(
1 001
∑ ∑∑∑
= ==

−

=

− ==
n

i

k
N

k
k

k
N

k
k

in
n

i

in iyixianfMATS

 Table 3.2 [70] clearly enumerates all definitions of transforms.
Transform Definition

AT
n

n

n

i
n

i

i i i

i
iii xxxcfAT)(2

1 2

`

21 2

1

0

1

0

1

0
1...∑ ∑ ∑

= = =

=

MAT
k

n

k

n

k

n

e
k

i i e

e
ee

i
n

e

i
ii wwcxxcfMAT)(

1

0

1

0

1

0
1...

1

0
1...

1 1

1

1

`

1∑ ∑ ∑ ∑
= = = =

=

ATS AT transform ATS(f)[n] of a timed function f at a time instance n
MATS MAT transform MATS(f)[n] of a timed function f at a time instance n

Table 3.2: Definitions of the AT and its extensions

3.4 Composition Subroutines
After describing each design sub-block in terms of corresponding MAT, MATS

or ATS, the overall AT can be constructed. Some of the approaches to the AT

compositions focus on transferring ATs into decision diagrams [92]. However, due

to their limitations, they are inadequate for many complex cases. In addition,

factors such as running time and space are significant for these schemes. In this

section we propose several subroutines to manage the complexity of constructing

AT and its extensions.

3.4.1 Composition of AT and MAT
 Composition of MAT and AT blocks can get a combinational circuit transform.

While word-level variables are substituted by their AT polynomials, the overall

circuit transform comes from the replacements and the Boolean algebra law

Chapter 3: Compositions of AT and Extensions

 72

i
n
i xx = (0≠n). A block downstream must be represented by a MAT or an AT.

Throughout the composition procedure, lots of intermediate terms would be

generated and they should be combined for simplification, so running time and

spaces are crucial factors that need attention. A best algorithm gets a tradeoff

between them.

The following observation is a key to facilitating the combination of

polynomial terms that become isomorphic by applying Boolean algebra rules to

polynomials. A single, easy-to-calculate integer parameter referred to as an index

of the term will be sufficient for finding isomorphic terms. We say that the index

of the term is the integer encoded characteristic function of its variable indices.

For instance, the index for the term 2
01

2
3 xxx is computed as 23+21+20 = 11,

and it is identical to the index of the term 0
3
13 xxx . Thus, the two terms are

isomorphic terms and should be combined.

Figure 3.10: Algorithm of MAT and AT composition

Figure 3.10 elaborates the subroutine in detail. The algorithm loops all terms in

the MAT polynomial and searches whether the terms comprise the word-level

variable represented by the AT polynomial. If so, the variable is expanded to form

new terms; if not, the MAT terms are stored in an intermediate polynomial

Compose_AT_MAT (AT_poly, MAT_poly)
1.{ for (p=0; p<MAT_poly.term_num; p++)
2. { for (i=0; i<MAT_term.wordvarnum; i++)
3. { if (word_var[i] = AT_poly)
4. { inter_term = Substitute (MAT_term, AT_poly);
5. inter_term = Norm (inter_term);
6. Store (inter_term, inter_poly); } }
7. if (i = MAT_term.WordVarNum)
 Store (MAT_term, inter_poly);
 }
8. Set_index (inter_poly);
9. for (p=0; p<inter_poly.term-1; p++)
10. { Adjust_term_position(term[p], term[p+1]);
11. if (term[p].index = term[p+1].index)
 term[p].coeff += term[p+1].coeff); }
12. final_poly = inter_poly; return final_poly;
}

Chapter 3: Compositions of AT and Extensions

 73

directly; the procedures are described in Step 1 - 7. After the loop is finished, an

intermediate polynomial is obtained and all terms’ indices are computed in Step 8.

The algorithm then sorts terms with smaller indices forward, and if two terms

have identical indices, the algorithm adds their coefficients. Ultimately, the

composition polynomial is obtained, as reflected by Step 9 - 12. If the algorithm

sorts and combines terms after each expansion procedure, it might be costly, so an

intermediate polynomial is essential to cut computation time. Therefore, the

procedures of adjustment and combination occur after all expansions are

accomplished.

Example 3.10: Steps for composition of MAT and AT. Assume two modules with

three primary inputs (x2, x1, x0).

AT(f1) = 1+ 2x0 + 3x1 – 4x1x0 = w0

MAT(f2) = 2 -3w0 - 5x1 + x2 – 6w0x2 + 4x2x1

A main loop begins with the first MAT term, a constant “2”, until it reaches the

last term “4x2x1”. Since the first term of MAT does not contain the word-level

number w0, it is stored in an intermediate polynomial directly. The second term of

MAT comprises the word-level variable, using w0=AT(f1) as a substitute for

expansion in this term. After simplification, the expanded terms are stored in the

intermediate polynomial. When the loop is finished, an intermediate AT

polynomial is obtained:

inter_poly = 2 -3 - 6x0 -9x1 +12x1x0 -5x1 + x2 -6x2 -12x2x0 -18x2x1 +24x2x1x0+ 4x2x1

and the indices of the expanded terms are:

(0, 0, 1, 2, 3, 2, 4, 4, 5, 6, 7, 6)

Through position adjustment, the sequence sort orderly:

(0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7)

Now, the intermediate polynomial changes:

inter_poly = 2 -3 - 6x0 - 9x1 -5x1 +12x1x0+ x2 -6x2 -12x2x0 -18x2x1 +4x2x1+ 24x2x1x0

Terms “2” and “-3”, “x2” and “-6x2”, “-18x2x1” and “4x2x1” are combined, and

the overall AT polynomial is generated:

AT(f) = - 1 - 6x0 - 14x1 + 12x1x0 - 5x2 - 12x2x0 - 14x2x1 + 24x2x1x0

Chapter 3: Compositions of AT and Extensions

 74

3.4.2 Composition of ATS and MATS
 ATS and MATS have time tags, so the subroutine has a distinct step to process

the tags. The difference is denoted in Figure 3.11. The returning polynomial is an

ATS polynomial or a MATS polynomial.

Figure 3.11: Algorithm of MATS and ATS composition

Step 4 adds time tags of the word-level variables in the MATS polynomial to

the ATS polynomial and then expands the MATS term. If two identical bit-level

variables in an expanded term have same time tags, they must be combined，for

instance, a term of 5x0[n-2]x1[n-1]x1[n-1] is simplified as 5x0[n-2]x1[n-1]. This

procedure is described in Step 7. After the intermediate polynomial is generated, if

two terms have identical indices, and corresponding variables in the two terms

also have same time tags, the algorithm combines their coefficients. Step 13 - 15

Compose_ATS_MATS (ATS_poly, MATS_poly)
1.{ for (p=0; p<MAT_poly.term_num; p++)
2. { for (i=0; i<MATS_term.wordvarnum; i++)
3. { if (word_var[i] = ATS_poly)
4. { Add_time(word_var[i].tag, ATS_poly);
5. inter_term=Substitute(MATS_term,ATS_Poly);
6. for (k=0; k<inter_term.varnum-1; k++)

{
7. if (var[k].index = var[k+1].index && var[k].tag = var[k+1].tag)
 Norm(inter_term); }
8. Store (inter_term, inter_poly);

}
}

9. if (i = MATS_term.wordvarnum)
 Store (MATS_term, inter_poly);.
 }
10. Set_index (inter_poly);
11. for (p=0; p<inter_poly.term_num-1; p++)

{
12. Adjust_term_position(term[p], term[p+1]);
13. if (term[p].index = term[p+1].index)
14. { if term[p].var[k].tag!=term[p+1].var[k].tag)
 term[p].coeff += term[p+1].coeff); }

}
15. final_poly = inter_poly; return final_poly;
}

Chapter 3: Compositions of AT and Extensions

 75

elaborate the procedure.

Example 3.11: Steps for composition of MATS and ATS.

ATS(f1) = 1 + 2x0[n-1] + 3x1[n-1]

MATS(f2) = w0 - w1[n-2] - 4w0[n-1]x0[n-2]

 MATS includes two word-level variables w0 and w1, and w0 = ATS(f1), therefore

the overall transform is a MATS polynomial. A loop begins with the first MATS

term w0 and it contains the ATS output variable w0, so it is substituted by ATS(f1)

and expanded terms are stored in an intermediate polynomial. The second term

comprises another word-level variable so it does not need expansion. The last

term has a word-level variable with a time tag and it is accumulated to ATS tags,

since two x0 variables have same tags “2”, they are combined.

inter_poly = 1 +2x0[n-1] + 3x1[n-1] - w1[n-2] - 4x0[n-2] - 8x0[n-2] -

12x0[n-2]x1[n-2]

 Through position adjustment and combination of isomorphic terms, the overall

transform is generated:

MATS(f) = 1- w1[n-2] + 2x0[n-1] -12x0[n-2] +3x1[n-1] - 12x0[n-2]x1[n-2]

The other two subroutines, Composition of ATS and MAT, and Composition of

AT and MATS, are similar to the mentioned subroutines. They are omitted here.

3.5 Overall Composition Algorithm
Each block represented by a corresponding transform is as a node defined by a

data structure to describe its properties to facilitate composition of detached

blocks. The suitable structure definition is:

{ unsigned long type; unsigned long type_index;

 unsigned long level; unsigned long in_word_num;

 char *in_index; char out_index; }

 The parameter type indicates which the transform type is corresponding to AT,

Chapter 3: Compositions of AT and Extensions

 76

ATS, MAT or MATS; type_index evaluates its index inside nodes which have

same type with this node; level determines its depth in the constructed diagram,

and blocks with primary inputs are always set “0”; in_word_num indicates the

number of input word-level variables, in_index stores indices of input word-level

variables and out_index stores the index of its output word-level variable. Figure

3.12 outlines steps to compose modules to get an overall transform.

Figure 3.12: The overall composition algorithm

The most important issue confirming the parameter level of each node at the

block-level netlist is dedicated in Step 2 - 6. The “level” parameter builds a

hierarchy to designate a composition path. The composition procedure always

begins from AT or ATS with primary inputs, and they are set to level “0”. While it

goes forward according to the current level, and encounters a block which has an

1. for (i=0; i<node_num; i++)
 Set_property (node[i]);
2. for (i=0; i<node_num; i++)
3. { if (node[i].type = 2 or 3) // MAT or MATS
4. { for (j=0; j<node_num; j++)
5. { if (node[j].out_word_index = node[i].in_word_index)

 6. { if (node[i].level<node[j].level+1)
node[i].level=node[j].level+1; }

}
}

}
7. current_level = 1;
8. for (i=0; i<node_num; i++)

{
9. if (node[i].level = current_level)

{
10. for (j=0; j<node_num; j++)

 {
11. if (node[j].out_index = node[i].in_index)

 {
new_node = Subroutine(node[i], node[j];
Set_property (new_node);

 }
 }

}
12. current_level++;

}

Chapter 3: Compositions of AT and Extensions

 77

identical level with the current level, the algorithm invokes a corresponding

subroutine in terms of the block’s type, eventually the overall transform of the

circuit is achieved, and please note this transform with primary inputs does not

contain any intermediate variables, so the final transform is AT or ATS.

Example 3.12: Consider a circuit consisting of four nodes with four primary input

bits as Figure 3.13. Each word-level output is assigned to a different index. By the

composition algorithm, we get its overall transform.

AT

ATS

MAT

MATS

W0

X0

X3

X2

X1
W1

W1

W2
W3

Figure 3.13: A circuit with 4 modules Figure 3.14: Node properties

First, each node properties are labeled through step 1 - 6 in Figure 3.14. N

represents NULL and the MATS node has the largest level “2”.

ATS

MAT

MATS

(1,0,0,0,N,1)
(2,0,1,1,1,2)

(3,0,2,2,{1,2},3)

 ATS

ATS

MATS

(1,0,0,0,N,1)

(1,1,1,0,N,2)

(3,0,2,2,{1,2},3)

Figure 3.15: Composing the MAT and Figure 3.16: Composing the MAT and

the AT nodes the ATS nodes

 A parameter current_level is set to “1” at the beginning, and the algorithm

searches which nodes has a level the same as the current_level. It is the AT node

in this case and its out word-level variable is one of the input variables in the

MAT node. The algorithm calls Compose_MAT_AT function and since the MAT

node has two different word-level variables, it generates a new MAT mode as in

Figure 3.15. Next, the algorithm finds that the ATS output variable is another

input variable of the MAT node. Therefore, it calls the subroutine

Compose_MAT_ATS and gets a new ATS node in Figure 3.16.

While no other nodes have same level, the parameter current_level is increased

(0,0,0,0,N,0)

AT

ATS
MAT MATS

(1,0,0,0,N,1)

(2,0,1,2,{0,1},2)

(3,0,2,2,{1,2},3)

Chapter 3: Compositions of AT and Extensions

 78

by 1, to become 2. The algorithm matches it with the MATS node, and then the

subroutine of Compose_MATS_ATS can be invoked.

ATS
MATS

(1,1,1,0,N,2)

(3,0,2,1,2,3)

Figure 3.17: Composing the MATS and the ATS nodes

Finally, an ATS polynomial is obtained through the composition of the new

MATS node and the remaining ATS node.

 From the example, one can notice that the algorithm follows a fixed order

determined by the parameter “level” to compose block representations. Its logic is

easy to follow, to implement simply for arbitrary topologies and even transforms.

3.6 Experimental Results

In this section, the composition algorithm in Figure 3.12 is verified by several

benchmarks such as ALU, CSA and MAC.

3.6.1 ALU Circuit Implementation

Arithmetic Logic Unit (ALU) is a necessary block of microchips. It takes

charge of data operations, including arithmetic, logic and relation operations, and

stores results in memory. Figure 3.18 illustrates a typical ALU model. The AT of

an adder is:

)22()(
1

0
1 i

N

i

i
i

i yxfAT ∑
−

=

+=

Chapter 3: Compositions of AT and Extensions

 79

+
...

...

*

xN-1zm-1 z0

...
yN-1 x0y0

w0

 Figure 3.18: An ALU model

Inputs of a multiplier consist of bit-level variables and a word-level variable

which is from the output of the adder, so the multiplier has MAT form:

∑
−

=

=
1

0
02 2*)(

m

k
k

k zwfMAT

 Table 3.3: Results for the ALU transform

Table 3.3 gives parameters of the adder and multiplier inputs and gets the

number of their transform terms based on given input variables. It reveals the

overall transform terms number after composition.

3.6.2 CSA Circuit Implementation

Carry-Select Adder (CSA) is a common implementation of adders, which

computes alternative results in parallel and subsequently selects the correct results

with single or multiple stage hierarchical techniques. The carry-select adder

increases its area requirements for purpose of enhancing its speed performance. In

carry-select adders both sum and carry bits are calculated for the two alternatives:

input carry “0” and “1”. Once the carry-in is delivered, the correct computation is

Adder
Inputs

Multiplier
Inputs

Adder Terms Multiplier
Terms

AT
Terms

Time [s]

12 7 12 7 84 0.875
14 8 14 8 112 1.672
16 9 16 9 144 3.834
24 13 24 13 312 13.4
32 17 32 17 544 34.3

Chapter 3: Compositions of AT and Extensions

 80

chosen by a multiplexer to generate a desired output. Therefore waiting for the

carry-in to calculate the sum is avoidable, and the sum is correctly generated as

soon as the carry-in gets there. The obvious advantage is that CSA largely reduces

time of computing the sum. Two adders share 8-bit inputs variables and have

different input carry. The adder transform is:

 carryyxfAT
N

i
i

i
N

i
i

i ++= ∑∑
−

=

−

=

1

0

1

0
1 22)(

The multiplexer transform is:

 MAT(f2) = (1-c)w0 + cw1

Here c is a bit-level variable and (w0, w1) are word-level variables from outputs of

the two adders. The concept is illustrated in Figure 3.19.

x0~ x3

0
+ +

1

0 1

W0

c

Z

x0~ x3 y0 ~ y3y0~ y3

W1

Figure 3.19: 4-bit carry select adder

Since the MUX transform has two word-level variables, an intermediate MAT

polynomial is generated for convenience to incorporate one word-level variable.

The seventh column of Table 3.4 indicates the space requirements.

Table 3.4: Results of CSA transforms

Inputs Adder
Terms

MUX
Terms

Inter
Terms

AT Terms Time (s) Space (MB)

24 25 3 49 25 0.1 0.02
32 33 3 65 33 0.18 0.036
40 41 3 81 41 0.26 0.058
48 49 3 97 49 0.35 0.073
56 57 3 113 57 0.44 0.092
64 65 3 129 65 0.53 0.12

Chapter 3: Compositions of AT and Extensions

 81

It is apparent that even when the number of input bits becomes large, the

running time and space requirement remain modest. The program provides an

effective interface to process sparse coefficients which comprise lots of “0” values.

Hence, the time is dominated by the number of non-zero AT terms, rather than

being possibly exponential function of the number of input bits. We observe that

additional speedup can be obtained by relying on the equivalence checking of the

individual blocks, before the module is incorporated in larger netlist. As inclusion

of AT of individual blocks is less costly than the construction by a netlist traversal

of those blocks.

3.6.3 MAC Transform

The AT specification of a MAC circuit from Figure 3.20 can be determined by

combining AT, MAT, and MATS components. The unit is built using shift

registers, a multiplier, and an adder-register loop.

The expression of a MAC is shown below:

)][2*][2(][
1

0

1

0

1

0
∑∑ ∑
−

=

−

=

−

=

=
N

k
k

k
n

i

N

k
k

k iyixnf

The equation should be solved at a time instance n to obtain the MAC transform.

For example, for n=8 and N=2, the ATS of the multiplier is:

*

.

.

.

.

.

.

+Reg

Figure 3.20: Implementation of a MAC

Chapter 3: Compositions of AT and Extensions

 82

=])[(kmulATS

The overall ATS is given by followed equation:

∑∑
==

+−−+−−=
8

1
10

8

1
00]8[]8[2]8[]8[)(

kk
kykxkykxfATS

∑∑
==

−−+−−
8

1
11

8

1
01]8[]8[4]8[]8[2

kk

kykxkykx

Table 3.5: Results of MAC transforms

Table 3.5 displays results of the MAC implementation. Column 1 and 2 denote

its word-level variable size and time instance value. Even though the AT terms

grows exponentially with word size, the computation time and space are satisfied.

3.6.4 Implementation of a FIR
 Finite impulse response filter (FIR) is often used in digital signal processing.

Figure 3.21 gives a general FIR structure.

+

Z ZX Z Z

w0

w1

wi

wN-2

wN-1

 Figure 3.21: A general FIR model

]8[]8[4]8[]8[2]8[]8[2]8[]8[11100100 kykxkykxkykxkykx −−+−−+−−+−−

Word Size Time Instance AT Terms Time(s) Space (MB)
8 4 256 0.137 0.085
8 8 512 0.465 0.14
8 16 1024 1.28 0.26
16 4 1024 1.459 0.28
16 8 2048 3.251 0.46
16 16 4096 6.874 0.91
32 16 16384 25.43 3.82
32 32 32768 55.8 7.46
32 64 65536 132.9 15.8

Chapter 3: Compositions of AT and Extensions

 83

The timed register equation is:

]1[][−= nmnm inout
These sequential registers make the overall transform represented by ATS.

The MAT of adder is:

 ∑
−

=

=
1

0
)(

N

i
iXfMAT

where Xi is a word-level input from each tap output.

Table 3.6: Results of the FIR transform

The FIR implementation has a structure that is easily represented by ATS.

Furthermore, the task of equivalence checking or the verification of imprecise

implementations can facilitate to verify whether the implementation fits the

specification.

3.7 Conclusion
 AT is the most important representation in our research, so in this chapter the

spectral techniques and the basic definition of AT were introduced. Although AT

can represent an arithmetic circuit compactly, it has limitations. The proposed

three extensions for representing combinational and sequential circuits were

outlined. Getting the circuit transform is significant for verification. Direct

computation sometimes requires too much time for these processes. We proposed

Taps Word Size ATS Terms Time(s) Space(MB)
32 16 512 0.21 0.56
32 32 1024 0.39 1.3`
32 64 2048 0.72 2.53
64 16 1024 0.53 1.22
64 32 2048 0.98 2.54
64 64 4096 1.87 5.1

128 16 2048 0.78 2.55
128 32 4096 1.98 5.23
128 64 8192 4.05 10.68

Chapter 3: Compositions of AT and Extensions

 84

a topological method of composing the transforms of detached blocks to facilitate

the calculation, so it is easy to obtain the overall transform for a complex circuit.

The experiments proved its high efficiency.

 85

Chapter 4

Basic Algortihms

Imprecise circuit specifications such as Taylor series complicate

the process of design and verification. We adopt a spectral technique,

Arithmetic Transform (AT), to process the imprecise circuits. In this

chapter, three basic algorithms based on AT are described which

convert polynomials and search for the maximum absolute value.

These are fundamental algorithms for the verification and

optimization in following chapters.

Chapter 4: Basic Algorithms

 86

)()()(
!

)()...(''
2

2
)(')(0

0
000 XRXnf

n

nXXXfXXXfXf n+
−

+++

The fixed-point representation problem includes two facets, the precision

problem and the range problem. Beginning in this chapter, we explore the

precision problem. First, the typical imprecise representation is introduced.

4.1 Taylor Series
In mathematics, the Taylor series is a representation of a function as an infinite

sum of terms calculated from the values of its derivatives at a single point. Let f(X)

be a real and differentiable function corresponding to an algebraic expression. The

variables are real numbers with usual field operations (+,*) over real numbers R.

Definition 4.1: The function can be represented as Taylor series using a variable

X and an initial constant X0.

=

where)(),(''' XfXf , etc, are first, second and higher derivatives of f(X), and Rn(X)

is a Lagrange remainder.

The error R is bounded, using point ξ in the interval I, as:

Rn(X) = 1
0

)1(

)(
)!1(

)(+
+

−
+

n
n

XX
n

f ξ (4-1)

Taylor series can be used to calculate the value of an entire function in every

point, if the value of the function, and of all of its derivatives, are known at a

single point. Uses of the Taylor series for entire functions include:

 The partial sums (the Taylor polynomials) of the series can be used as

approximations of the entire function. These approximations are good if

sufficiently many terms are included.

 The series representation simplifies many mathematical proofs.

)()(
!

1)(0
)(

0
0

XfXX
n

Xf nn

n
−= ∑

∞

=

Chapter 4: Basic Algorithms

 87

If this series converges for every x in the interval (a − r, a + r) and the sum is

equal to f(x), then the function f(x) is analytic in the interval (a − r, a + r). If this is

true for any r then the function is an entire function. One normally uses estimation

for the remainder term of Taylor's theorem to check whether the series converges

towards f(x). A function is analytic iff it can be represented as a power series; the

coefficients in that power series are then necessarily the ones given in the above

Taylor series formula.

Many transcendental arithmetic functions such as sin(X) and log(X) are realized

through Taylor series. For example, Taylor series of sin(X) is:

)!12(
)1()sin(

12

0 +
−=

+∞

=
∑ i

xX
i

i

i

Naturally, any hardware realization implements finite terms of Taylor series,

which invariably would lead to an error. Imprecision further comes from a

finite-word representation of real numbers. The precision analysis is therefore

necessary to make use of the fixed-point number representation, which is

attractive in balancing complexity, cost and energy consumption.

Both of the above approximations cause the implementation imprecision error.

The first case from truncation of Taylor terms is easy to evaluate. The remainder

Rn(X) has an explicit expression and can be estimated without actually computing.

The most common estimation is based on bounding the absolute value of the nth

order derivative on the entire interval that contains the intermediate point ξ .

While estimating the derivative on a given interval, it is not necessary to find the

exact maximum of a function, for most cases trying to find some upper bound is

not too rough. Therefore our emphasis concentrates on the error due to finite

wordlength. Arithmetic Transform (AT) is used to investigate the imprecision.

Chapter 4: Basic Algorithms

 88

4.2 Algorithm for AT Conversion

by Taylor Series
Many arithmetic functions can be represented as (infinite) Taylor series,

however their hardware realization inevitably leads to imprecision due to the

restrictions regarding the finite number of terms to be implemented. Any

imprecision of the implementation causes a circuit to behave differently with the

assumed specification. Nevertheless, known imprecision cannot be treated as

unintended errors committed during the design process. Therefore, we accept the

design to be fault free, if its behavior differs from specification within assumed

error interval. We convert the Taylor series specification/design representation

into a corresponding AT to evaluate the error upper bound of the implementation.

This step is needed in order to integrate the verification of the imprecisely

implemented blocks into the overall verification scheme proposed in this work,

and based on the Arithmetic Transform data representation.

AT is canonical, and will be used to directly represent approximation and

imprecision errors coming from the finite Taylor series function representations.

The correspondence between Taylor and AT representation is illustrated by the

following lemma.

Lemma 4.1: Consider a finite Taylor polynomial around X0=0 where the variable

X will be represented as an m-bit unsigned fractional number. By denoting f0(i)=f
(i)(X0), we have:

.
)!1(

''
!2

')()1(
0

1

0

2

00
−

−

−
++++= n

n

f
n
XfXXffXf L

The AT of f(X) is expanded from the Taylor polynomial as:

)]([)]([XATfXfAT = = 1
1

0

)1(
)1(

02
1

0

)1(
''

0
1

0

)1(
00)2(

)!1(
)2(

!2
)2(−

−

=

+−
−−

=

+−
−

=

+− ∑∑∑ −
++′+ n

m

i
i

i
nm

i
i

i
m

i
i

i x
n
fxfxff L

Proof: The transform of an m-bit unsigned fractional number X is

i

m

i

i xXAT ∑
−

=

+−=
1

0

)1(2)(. Since AT is linear, that is, AT(f1+f2) = AT(f1)+AT(f2) and

Chapter 4: Basic Algorithms

 89

AT(C*f) = C*AT(f), where C is a constant , we can obtain:

AT[f(X)]=)
)!1(

''
!2

'()1(
0

1

0

2

00
−

−

−
+++ n

n

f
n
XfXXffAT L

=)
)!1(

()''
!2

()'()()1(
0

1

0

2

00
−

−

−
+++ n

n

f
n
XATfXATXfATfAT L

=)(
)!1(

)...(
!2

)(1
)1(

02
''

0
00

−
−

−
++′+ n

n

XAT
n
f

XAT
f

XATff

= 1
1

0

)1(
)1(

02
1

0

)1(
''

0
1

0

)1(
00)2(

)!1(
)2(

!2
)2(−

−

=

+−
−−

=

+−
−

=

+− ∑∑∑ −
++′+ n

m

i
i

i
nm

i
i

i
m

i
i

i x
n
fxfxff L

=f [AT(X)] □

Lemma 4.1 denotes that AT[f(X)] results from substituting expanded bit-level

variables for the word-level variable X in f(X). By combining coefficients of

isomorphic terms in the expanded polynomial, the AT representation in Def. 3.3 is

obtained, thus leading to the conversion of Taylor expansions to AT.

While Lemma 4.1 might seem to lead to a simple realization of the conversion

between Taylor and AT, in reality the process could be time- and

memory-consuming. To evaluate the imprecision error using AT, the specification

should be translated into AT as well. In this section we describe the conversion of

Taylor series into AT by expansion from Lemma 4.1. A straightforward method

for generating AT[f(X)] replaces each monomial in Taylor series f(X) by its

defining AT, followed by the consolidation of AT terms. Although the overall

conversion procedure is conceptually simple, the expansion of the real-valued

quantities from Taylor series into word-level AT terms can lead to a large

intermediate polynomial, similar to what is known to happen in symbolic

computing.

By the rule that Boolean algebra xi
n equals xi, lots of expanded terms are

identical and they should be combined to form a simplified AT polynomial. A

straightforward method multiplies each factor recursively, and gets an

intermediate polynomials, then simplifies it by using the Boolean rule, so the AT

Chapter 4: Basic Algorithms

 90

polynomial is achieved. Although the procedure is easy to comprehend,

complexity in the calculation comes from large Taylor degrees and bits number

which leads to a large size of the intermediate polynomial since it comprise a

great many expanded terms.

For example, with degree k=7 and input bits N=16, the number of intermediate

terms increases to over 2000000. Consequently, storage and grouping of the same

terms are major hurdles and result in low efficiency. We now show how to

perform conversion into AT polynomial that handles efficiently the intermediate

data swell.

4.2.1 Expansion Formula
The key problem in converting Taylor series into an AT polynomial is the

calculation of the corresponding AT terms k
N

i
i

i x)2(
1

0
∑
−

=

. Assume kN ≤ , and the

above sum can be obtained as:

=∑
−

=

k
N

i
i

i x)2(
1

0
...)2()4()2()2(01201

1

0

qpkqpq
pk

p
k

pkp
N

i

p
k

k
i

i xxxCCxxCx −−
−

−
−

=

++∑ (4-2)

where m
kC is defined as ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

m
k

C m
k . Based on Eqn. (4-2), we find that the

intermediate coefficients of the isomorphic terms must be combined to simplify

the obtained AT. The structure of equation will be explored to reveal the

possibility to derive an efficient conversion algorithm. In particular, the following

property is used for efficient grouping of common terms.

Property 4.1: For AT raised to the exponent k, Eqn. (4-2), the sum of the

individual variable’s exponent is k for each term.

Proof: The calculation of the sum requires k-1 multiplication, where all bit-level

variables in a single factor have a fixed component ‘1”. Through each

multiplication procedure, the term’s exponent augments one and its beginning

exponent is also one, so finally the total exponent is k-1+1= k.

Chapter 4: Basic Algorithms

 91

Property 4.2: If an AT term has p variables, the largest exponent which a

variable can obtain is the Taylor degree k subtracting variables number p plus 1,

and the least exponent is 1 in all expanded isomorphic terms.

Proof: If a variable appears in an AT term, that’s easy to know it has an exponent

“1” at the lowest. In terms of Property 4.1, the summed exponent of the p

variables is Taylor degree k, while other p-1 variables all have a least exponent

“1”, the variable can get the largest exponent, etc., k-p+1.

 Towards that goal, some definitions are in place. An integer coefficient

multiplying expanded terms is named “weight”. For example, in the expanded

term 01
3
22560 xxx , “2560” is its weight. We refer to final terms after combination

as “AT terms”. Next, msv and lsv represent most significant and least significant

variables, respectively, in an AT term. For instance, for the AT term x2x1x0, x2 is

msv and x0 is lsv; for the AT term x1x0, x1 is msv and x0 is lsv. The algorithm

requires two computation steps: one gets forms of isomorphic terms, which is

most important to determine performance; the other calculates the weight of each

expanded term.

4.2.2 Isomorphic AT Terms Combination
 The following example describes the expanded terms.

Example 4.1: Given three input bits (x2, x1, x0) and Taylor degree k=5, the

expansion is:

3
012

1
4

1
5

2
0

2
12

2
4

1
50

3
12

3
4

1
5

2
01

2
2

1
3

2
5

0
2

1
2

2
2
3

2
501

3
2

1
2

3
5

4
12

1
5

3
1

2
2

2
5

2
1

3
2

3
51

4
2

4
5

4
02

1
5

3
0

2
2

2
5

2
0

3
2

3
50

4
2

4
5

5
2

4
01

1
5

3
0

2
1

2
5

2
0

3
1

3
50

4
1

4
5

5
1

5
0

5
2

0

)2)(4()2)(4()2)(4()2()4(

)2()4()2()4()2)(4(

)2()4()2()4()2()4()4(

)4()4()4()4()2(

)2()2()2()2()2(

xxxCCxxxCCxxxCCxxxCC

xxxCCxxxCCxxC

xxCxxCxxCxxC

xxCxxCxxCxxxC

xxCxxCxxCxxx
i

i
i

++++

+++

++++

+++++

++++=∑
=

 One can easily see that the degree of every bit-level variable amounts to k in

each expanded term due to the property, etc., the summed degree of 01
3
2 xxx is

Chapter 4: Basic Algorithms

 92

3+1+1=5. There are 2N-1=7 AT terms as (x0, x1, x1x0, x2, x2x0, x2x1, x2x1x0). The

isomorphic terms for the AT term x2x1x0 in the expanded equation is obtained as:
3 2 2
2 1 0 2 1 02560 ,1920 ,x x x x x x 2 2 2 2 2 3

2 1 0 2 1 0 2 1 0 2 1 0960 ,640 ,480 ,160x x x x x x x x x x x x

 Now we show how to get all isomorphic terms for an arbitrary AT term such as

x2x1x0 under a specific Taylor degree. A tuple (m,o,p) expresses variable degrees

of x2, x1 and x0. At beginning msv x2 is set to the largest degree “3”, and degrees of

x1 and x0 are “1” according to Property 4.1 and 4.2. The first degree representation

is (3,1,1) and after that a next degree representation is computed. Beginning from

lsv x0, preceding variables are searched until one variable with the degree larger

than “1” is discovered. In the case considered here, such a variable is x2.

Therefore its degree decreases one and the degree of the succedent variable

increases one. After this iteration the degree representation is changed to (2,2,1).

The computation process continues until lsv x0 is set to the largest degree 3, and

degrees of other two variables are both 1. At this time, the degree representation

turns into (1,1,3). Transformation of the degree sequence is:

 (3,1,1) (2,2,1) (2,1,2) (1,3,1) (1,2,2) (1,1,3)

 Here, the sequence determines the movement order of degree representations,

and guarantees them not to be repeated or missed. Also it makes an easy

implementation by a program.

4.2.3 Weights of Expanded Terms

Next we calculate terms’ weights. They are obtained by an input binary weight

multiplying a combination constant. For example, in the case of an expanded term

0
2

1
2

2
2
3

2
5)2()4(xxxCC , the input binary weight equals to 64124 22 =∗∗ , and the

combination constant is 302
3

2
5 =CC . Using variable indices simplifies the

computational process of the input binary weight, so the problem reduces to

getting the combination constant. The terms number of the combination constant

is N-1 (result of the last Nth term is always 1, so it is neglected). According to Eqn.

(3-3), the first term is p
kC , where k is the total degree (5 in considered case), and

Chapter 4: Basic Algorithms

 93

p is the degree of first variable x2 (equals to 2 in the example). The second term is
q

pkC −
, where q is the degree of second variable x1 (equals 2 in the example). The

procedure continues until it reaches the last variable. Since each variable degree is

known from the previous sequence in advance, it becomes easy to compute.

4.2.4 Other Discussion
Above we assume that the bits number is lower than the Taylor degree; if not,

etc., N>k, the circumstance would be more complicated. For instance N=4 and

k=2,

)4)(8()2)(8()8()8()2)(4(

)4()4()2()2()2(

23
1
213

1
203

1
2

2
312

1
2

02
1
2

2
201

1
2

2
1

2
0

2
3

0

xxCxxCxxCxxxC

xxCxxxCxxx
i

i
i

+++++

++++=∑
=

There are no terms with 3 and 4 variables, so the algorithm only needs a little

amendment — terms which have the variable number beyond the Taylor degree

would be neglected. In this example, the neglected terms are x2x1x0, x3x2x1, x3x2x0,

x3x1x0 and x3x2x1x0.

 Integrating these two cases, Property 4.3 counts how many AT terms from

Taylor conversion.

Property 4.3: The number of AT terms is determined by the bits number N and the

highest Taylor degree k. If N<k, the terms number equals 2N-1; if not, it is ∑
=

k

g

g
NC

1
.

Please note if the constant f(X0) is not zero in Taylor series, the number needs to

add 1.

 The situation of X0=0 in Taylor Series has been elaborated. X0 must not be 0 at

some functions such as log(X) and (1/X)n. Y replaces X0 to avoid confusion with

the binary bit x0 to explore it.

Example 4.2: Given three input bits and Taylor degree k=3, Y is not zero value,

the expansion is:

Chapter 4: Basic Algorithms

 94

012
1
2

1
312

1
2

1
3

2
12

1
31

2
2

2
302

1
2

1
3

2
02

1
30

2
2

2
3

2
2

1
3

2
2

2
3

3
201

1
2

1
3

2
01

1
3

0
2

1
2
3

2
1

1
3

2
1

2
3

3
1

2
0

1
3

2
0

2
3

3
0

33
2

0

)2)(4()2)(4()2)(4()2()4()4(

)4()4()4()4()4()2()2(

)2()2()2()2()2(

xxxCCYxxCCxxCxxCYxxCC

xxCxxCYxCYxCxYxxCCxxC

xxCYxCYxCxYxCYxCxYYx
i

i
i

+−++−

+++−+−+

++−++−+−=−∑
=

Y is regarded as a variable and expanded in terms of Equation (4-2) although it

is a constant in fact. x0
3, C3

1x0Y2 and -C3
2x0

2Y represent the same AT term x0 thus

they should be combined. The difference in comparison with a true variable (not a

constant) is that its exponent can be permitted to set “0” whereas an ordinary

bit-level variable has a smallest exponent “1” in terms of Property 4.2. Therefore,

the algorithm needs to be revised: if Y is not 0, let the exponent of Y change from

0 to the largest to get weights of expanded terms. For example, Y changes its

degree from 0 to 2 in the AT term x0 and from 0 to 1 in the term x2x1.

Chapter 4: Basic Algorithms

 95

Figure 4.1: Algorithm of converting Taylor series to AT

Compute number of AT polynomial

Construct AT link list and set variable
indices for each term

p<= m?

Retrive AT item variable indices and
varibale number p

Retrieve current order m of Taylor series

Y

N

point next
AT item

Set largest order for msv and other variables "1"

Compute temp coefficient

Tail of Taylor
polynomial?

From lsv, whether
current variable order

is not "1"?

Y

N

Whether lsv
order is largest?

Y
Set lsv order "1",msv order
decrease "1" and compute

second msv order

N

whether lsv
order is "1"?

Y

order of the variable
which order is not "1"
decrease "1", and back

variable order increases '1"

N

Order of middle
variables except

lsv and msv is "1"?

Y

N

 Back variable
is lsv?

order of the variable which
order is not "1" decrease "1",

N

Compute back variable
order and set lsv order "1"

Y

lsv order
increases "1"

Y
Complete

N

Tail of AT
polynomial?Y

Point next
Taylor order

Y

Chapter 4: Basic Algorithms

 96

4.2.5 Flow of Conversion Algorithm
Eqn. (4-2) establishes the algorithm foundation. The algorithm first computes

how many AT terms will be according to Property 4.3 and creates an AT linked list

to allocate their variable indices, then commences a main loop. Within each loop

procedure, the algorithm retrieves a Taylor degree from Taylor series and starts an

inner loop to point the AT link list, which indicates the first AT term at beginning.

Based on the retrieved Taylor degree, isomorphic forms and their weights for the

indicated AT term are fast computed due to Property 4.1 and 4.2, the weights

addition is a temporary coefficient for the AT term under the specific Taylor

degree. While the pointer has moved to the last AT term, a new procedure of the

main loop occurs to retrieve a next Taylor degree and the pointer resets to the first

AT term. When the algorithm finishes the main loop, AT coefficients can be

obtained eventually by summation of all corresponding temporary coefficients.

Figure 4.1 outlines the algorithm in detail. We observe that the algorithm does not

generate any intermediate polynomials to store expanded terms explicitly,

therefore, the algorithm avoids expending huge memory and running time.

4.3 Processing Multivariate Polynomials
The conversion of Taylor series to AT has been solved above. However, Taylor

series only comprises one word-level variable – work in [84] gave examples for

verification and the limitation was similar to Taylor series, that is, the benchmarks

only consisted of one word-level variable. This case restricts further applications

since many circuits are represented by polynomials included beyond one

word-level variable or mixed with bit-level variables such as a multiplexer.

Emergence of the fast more realistic conversion algorithm above makes it possible

to conquer the problem for cases. In addition, a significant advantage is

polynomial data structures are often represented by decision diagrams like BMDs

and TEDs, which stand for bit- and word-level variables, respectively. These

Chapter 4: Basic Algorithms

 97

diagrams can be transferred to ATs easily, therefore a bridge is generated between

decision diagrams and the imprecision model to overcome their weakness to do

component matching. The conversion algorithm mentioned above is unable to

process the more difficult case. The algorithm is revised to deal with several

word-level variables to overcome this limitation.

For an AT term, we define its index, which is unique for each term. The index

will facilitate the combination of isomorphic terms in an intermediate polynomial.

Definition 4.2: Let the term consist of p bit-level literals bp-1 … b0. Let every bit br

belong to the word-level variable Wr, that is mr-bit wide. Then, the term index of

the AT term is defined as:

 term.index = ∑
−

=

+∑
−

=

1

0

)(
1

02
p

r

mb
Wr

q
qr

 (4-3)

Example 4.3: Consider AT over three word-level variables X, Y and Z consisting

of 3, 4 and 3 bits, respectively. Let X be the least significant variable indexed

as ”0”, and Z be the most significant variables indexed as “2”. For the three

bit-level literal term z2z1x0, the word-level variables to which the respective

literals belong, are (W2, W1, W0) = (2, 2, 0). The index of the term is obtained as

the sum of the three literal indices. First, the computation for x0 produces its

index 20 =1, since b0 is 0 and W0 is 0. Then, z1 contributes 21+(3+4)=256, since b1

is 1 and W1 is 2, so m0+m1 = 3+4=7. Finally, z2 produces 22+(3+4) =512, because

b2 is 2 and W2 is 2. Therefore, the term index for the AT term z2z1x0 is

512+256+1=769.

It is evident that this case incurs more complexity. Figure 4.2 describes the

algorithm to produce AT over multiple word-level variables from a real-valued

polynomial. The algorithm first generates AT for each monomial, and then

performs additions of the isomorphic intermediate monomials, leading to the final

transform. The function Expand_Term expands a single word-level polynomial

term into its AT. The subroutine Convert_Univar_AT introduced in Figure

Chapter 4: Basic Algorithms

 98

4.1 obtains ATs for all word-level variables in the term.

Figure 4.2: Algorithm for converting a multivariate polynomial

Then, the subroutine Multiply_AT multiplies the resulting univariate AT into

the multivariate AT. Note that Multiply_AT follows the conversion of a

word-level variable that reduces the number of terms. Hence, the size of resulting

AT can be kept under control by avoiding storing expanded terms. In each

Convert_Multivar_AT(f, term_num, bit_num)
{ for (i=0; i< term_num; i++)

{ temp_AT = Expand _Term (bit_num);
sum_AT = Add_AT (sum_AT, temp_AT); }

 final_AT = sum_AT; return final_AT;
}
Expand _Term (bit_num)
{ for (p=0; p<word_var_num; p++)

{ AT_poly[p]=Convert_Univar_AT (f, term_num, bit_num);
product_AT= Multiply_AT(AT_poly[p], AT_poly[p-1]); }

 Set_index (product_AT); return product_AT;
}
Add_AT (augend_AT, addend_AT)
{ While (!augend_AT.tail && !addend_AT.tail())
 { if (augend_AT.term.index < addend_AT.term.index)

 Copy_AT_term (sum_AT.term, augend_AT.term);
else if (augend_AT.term.index> addend_AT.term.index)

 Copy_AT_term (sum_AT.term, addend_AT.term);
else { Copy_AT_term(sum_AT.term, augend_AT.term);

 sum_AT.term.coeff = augend_AT.term.coeff + addend_AT.term.coeff; }
 }
 Delete (augend_AT, addend_AT); return sum_AT; }
}
Multiply_AT (multiplicand_AT, multiplicator_AT)
{ while (!multiplicand_AT.tail)

{ while (!multiplicator_AT.tail)
 { product_AT.term.coeff = multiplicand_AT.term.coeff

 * multiplicator_AT.term.coeff;
 for (p=0; p<cand_bit_num; p++)
 product_index[p] = cand_index[p];
 for (p=cand_bit_num; p<product_bit_num; p++)
 product_index[p]=cator_index[p-cand_bit_num]; }

}
return product_AT; }

Chapter 4: Basic Algorithms

 99

iteration, the algorithm adjusts term indices and combines isomorphic terms. Each

AT term input to the Multiply_AT is assigned a unique index from Definition

4.2, which guarantees linear ordering among terms.

The function Add_AT adds two AT polynomials in a canonical way. In this

procedure, the isomorphic term combination and the term ordering by index occur

concurrently. When comparing indices of terms, the AT term with a smaller index

is moved forward in the ordered list. If two terms have identical indices, they are

isomorphic, and hence their coefficients are accumulated.

Example 4.4: Consider a polynomial that has two word-level variables consisting

of (2, 3) bits.

F(X, Y) = 2X3Y +X2Y2

This polynomial has two terms. The algorithm loops them and expands them to

two AT polynomials. In the first term 2X3Y, expansions of X3 and Y are:

AT(X3)= (2x1+x0)3=x0 +8x1+18x1x0 AT(Y)= 4y2+2y1+y0

This term transform is multiplied by the two sub-AT polynomials:

AT(2X3Y)=2y0x0+16y0x1+36y0x1x0+4y1x0+32y1x1+72y1x1x0+8y2x0+64y2x1

+ 144y2x1x0

The individual AT term index is: (5, 6, 7, 9, 10, 11, 17, 18, 19)

In the second term, expansions of X2 and Y2 are:

AT(X2) = x0+4x1+4x1x0 AT(Y2) = y0+4y1+4y1y0+16y2+8y2y0+16y2y1

Their multiplication is the transform of X2Y2:

AT(X2Y2)= y0x0+4y0x1+4y0x1x0+4y1x0+16y1x1+16y1x1x0 +4y1y0x0

+16y1y0x1+16y1y0x1x0+16y2x0 +64y2x1 +64y2x1x0

+8y2y0x0+32y2y0x1+32y2y0x1x0 +16y2y1x0 +64y2y1x1+64y2y1x1x0

Its index is: (5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27)

 The addition subroutine is invoked to compute the transform of 2X3Y + X2Y2 in

terms of their indices:

AT(2X3Y+X2Y2)= 3y0x0 +20y0x1 +40y0x1x0 +8y1x0 +48y1x1 +88y1x1x0 +16y1y0x1

+16y1y0x1x0 +24y2x0+128y2x1+208y2x1x0 +8y2y0x0 +32y2y0x1

+32y2y0x1x0 +16y2y1x0 +64y2y1x1 +64y2y1x1x0

Chapter 4: Basic Algorithms

 100

 Because polynomial multiplications described as the subroutine

Multiply_AT take place after conversion of a word-level variable, the result AT

size can be controlled and avoid storing expanded terms, also in each loop

procedure the algorithm adjusts terms position and combines isomorphic terms,

and releases memory in time, so it disperses computation time then reduces total

complexity. Therefore, the algorithm keeps good performance even though there

are a number of word-level variables.

4.4 Imprecision Searching Algorithm
Saving costs and speeding up a design are so important to engineers, whenever

available, they benefit from reusing a previously designed module. However,

these modules usually do not match specifications so they are only

approximations. If discrepancy (imprecision) is within an acceptable boundary, it

could be chosen. The approximations come from various aspects and this paper

concentrates on restrict input space and finite realization of Taylor series.

Therefore, a good solution to find difference between specifications and

implementations is significant.

 A static method for range and precision analysis was used in [43], where

circuits described by Verilog were assessed for FPGA implementations. This

solution did not provide a uniform platform and it depended on tools of simulation

annealing which are often inefficient. In this paper we explore the suitability of

Arithmetic Transform in the representation of the imprecise blocks and make up

their deficiency.

4.4.1. Basic Definitions of the Algorithm
 Related definitions are introduced to describe the imprecision searching

algorithm comprehensibly.

Chapter 4: Basic Algorithms

 101

A straightforward approach tries every input value to compute its error AT. The

procedure requires 2N calculation because of total 2N possible inputs. Experiments

indicate that such an approach would require an infeasible amount of time, and

therefore a fast algorithm is necessary. In this work we propose such an improved

algorithm.

For each input variable xi, we say that Si is a sum of coefficients multiplying

terms with xi. The most positive variable (mpv) is the variable xj where the sum Sj

is largest. An upper bound ubcoef of AT polynomial is by summing all

coefficients that are positive and the coefficient c00…00 that contributes an offset

for all input assignments. Such a bound is calculated as:

∑
>

=
0

...
21

c
iiicoef n

cccub + c00…00

The algorithm checks whether there are the input assignments to be made

without the search to avoid calling the main search loop unnecessarily. Such a

preprocessing step is used at each call of the search routine.

a) Assign xi =1 if coefficients of the AT monomials with xi present are all positive

(or zero).

b) Assign xi =0 if coefficients of the AT monomials with xi present are all negative

(or zero).

4.4.2. Branch-and-Bound Searching Algorithm

The algorithm first removes the constant in the polynomial if it exists, and gets

the mpv sequence as the order of decomposition variables, and then the reversed

AT polynomial and the reversed mpv sequence are obtained easily.

A subroutine Decompose is invoked to compute the maximum value and the

minimum value due to the two AT polynomials and two sequences. The

preprocessing step deals with a variable to explore whether it can be evaluated

directly by probing into its coefficients; if not, the algorithm chooses a path which

has a larger upper bound. Figure 4.3 describes the branch searching algorithm in

detail.

Chapter 4: Basic Algorithms

 102

Figure 4.3: Searching the maximum absolute value in AT

Example 4.5: Consider the following AT polynomial:

AT(f) = -2 +x0 -3x1x0 +3x2 + 3x2x1 - 4x3x1 -2x3x2x0 +5x3x2x1

 Figure 4.4 illustrates all the steps taken to compute the maximum absolute

value. First remove the constant and get a new AT polynomial:

AT(f)’ = x0 - 3x1x0 + 3x2 + 3x2x1 - 4x3x1 - 2x3x2x0 + 5x3x2x1

S0=-4, S1=1, S2=9, S3=-1, so the mpv sequence is (x2, x1, x3, x0). The reversed

polynomial is: AT(f)’’ = -x0 + 3x1x0 - 3x2 - 3x2x1 + 4x3x1 + 2x3x2x0 - 5x3x2x1

Search_max (AT_poly)
{ const = Remove_constant(AT_poly);

var_index = Mpv(AT_poly);
 rev_AT_poly = Reverse(AT_poly); rev_var_index = Mpv(rev_AT_poly);
 value_0 = Decompose(AT_poly, var_index);

value_1 = Decompose(AT_poly, rev_var_index);
 value_2 = Decompose(rev_AT_poly, var_index);

value_3 = Decompose(rev_AT_poly, rev_var_index);
max_value = Max(value_0, value_1); |min_value| = Max(value_2, value_3);

 mismatch = Max (|max_value+const|, |min_value+const|; }
Decompose(AT_poly, mpv)
{ for (i=0; i<var_num; i++)

{ flag = Preprocess(AT_poly, mpv[i]);
 if (flag = 1)

{ 11)(==
ixfATAT , ub_1 = Ub(AT1);

 00)(==
ixfATAT , ub_0 = Ub(AT0);

 if (ub_1> ub_0) 1ATAT = ;
 else 0ATAT = ;
 }
 Delete_var (mpv[i]); var_num--;
 for (i=0; i<var_num; i++)
 { flag = Preprocess(AT_poly, mpv[i]);
 if (flag = 0)
 Delete_var (mpv[i]); var_num--;
 }

 }
}
Preprocess (AT_poly, xi)
{ if (all

ixc > 0) val = 1;

 else if (all
ixc < 0) val = 0; else return 1;

 valxi
fATAT ==)(; return 0;

}

Chapter 4: Basic Algorithms

 103

The reversed mpv sequence is (x0, x3, x1, x2).

 First AT(f)’ is searched by the order of the mpv sequence, due to the ubcoef

value, x2 and x1 are set to 1, here the decomposed polynomial is 3- x0 + 4x1- 3x1x0,

then the algorithm finds coefficients of all terms with variable x0 present are

negative, so x0 is preprocessed to 0; and it continues to preprocess x3 = 1, finally a

constant value_0 = 7 is obtained; the procedure is displayed by a) in Figure 4.4.

Using the reversed mpv sequence upon AT(f)’, the obtained constant is value_1 =

3, showed by b), so the maximum value of the AT polynomial without the constant

“-2” is:

max_value = max (value_0, value_1) = 7.

 Decompose AT(f)’’ by the mpv and the reversed mpv sequences respectively,

showed by c) and d), value_2 = value_3 = 6, so the minimum value of the AT

polynomial without the constant “-2” is:

 min_value =max (value_0, value_1)* -1 = -6.

x1

3+x0+3x1
-3x1x0-2x3x0+x3x1
ub=8

ub=7

x2

0

1

7

ub=1

Preprocess x0=0

x0-3x1x0-4x3x1

0

3+3x1-2x3x0
ub=6

6+x3

1

Preprocess x3=1

3-x0+4x1-3x1x0

a)

x3

1-3x1+3x2+3x2x1

-4x3x1-2x3x2+5x3x2x1
ub=12

ub=10

x0

0 1

3

ub=11

Preprocess x2=1
0

3+3x1-2x3x0
ub=6

2+x1
Preprocess x1=1

3x2+3x2x1

-4x3x1+5x3x2x1

1-7x1+x2+8x2x1

 b)

Chapter 4: Basic Algorithms

 104

-3-x0-3x1
+3x1x0+2x3x0-x3x1

ub=5

x2

0

6

ub=7

Preprocess x1=1

-x0+3x1x0+4x3x1

Preprocess x3=1
-x0+4x1+3x1x0

4+2x0
Preprocess x0=1

1

c)

x3

-1+3x1-3x2-3x2x1

+4x3x1+2x3x2-5x3x2x1
ub=8

ub=6

x0

0 1

6

ub=4

Preprocess x2=0
0

-1+3x1-3x2-3x2x1
ub=3

-1+7x1
Preprocess x1=1

-3x2-3x2x1

+4x3x1-5x3x2x1

-1+7x1-x2-8x2x1

1

 d)

 Figure 4.4: Performing the imprecision algorithm in Example 4.5

 Eventually the maximum mismatch is computed as:

8)26,27max()2min_,2max_max(=−−−=−− valuevalue

Compared to the searching algorithm in [70] and [85], the predominance of the

algorithm improvement stands to reason. It recursively seeks the variables which

can be preprocessed in a decomposition procedure. If successful, complexity is

minified much since the computation avoids decomposing the variable and

directly sets its value, and then the residual polynomial is simplified. For example,

only one node, x2, is searched to determine its value in c), and other three variables

are preprocessed, therefore time and space requirements are diminished.

Chapter 4: Basic Algorithms

 105

 4.5 Experimental Results
The conversion algorithm is a basic algorithm for verification and optimization

of imprecise circuits because of its huge impact on performance. Here we mainly

aim the benchmarks of Taylor series. All experiments are done on an Intel

Celeron 2.4GHz CPU with 1G main memory under Linux.

X0 = 0

Function Taylor
degree

Bits AT terms

Expanded
terms

Run
time (s)

Memory
(MB)

sin(x) 7 31 3572223 10625591 586.593 156
sin(x) 9 26 5658536 55962920 179.171 247
sin(x) 11 24 7036529 316283264 921.218 293
sin(x) 13 20 988115 409609664 1167.58 59
exp(x) 10 24 4540386 131128139 371.266 239
exp(x) 12 22 3096514 548354039 1633.36 182
exp(x) 14 18 261156 471435599 1497.81 3
exp(x) 14 20 1026876 1391975639 4222.25 59
exp(x)*sin(x) 10 24 4540385 123221864 314.703 254
exp(x)*sin(x) 13 20 988115 429816984 1445.19 88
exp(x)*sin(x) 15 16 65534 282662144 985.703 18

X0 = 0.5

Function Taylor
degree

Bits

AT terms

Expanded
terms

Run
time (s)

Memory
(MB)

sin(x) 7 31 3572224 13002888 873.437 163
sin(x) 9 24 2579130 41317895 158.125 159
sin(x) 11 20 784626 95629666 269.093 43
sin(x) 13 20 988116 668795865 2286.89 49
exp(x) 10 24 4540386 183578305 509.89 156
exp(x)*sin(x) 10 24 4540386 173039772 625.171 150

Table 4.1: Performance of Taylor series conversion

Table 4.1 shows results of the algorithm described by Figure 4.1. The two

sub-tables correspond to “0” and “0.5” values of X0 respectively. Column 2 and 3

list the highest degree and input bits. Column 4 and 5 show final AT terms and

expanded isomorphic terms.

From the table, the conversion algorithm is feasible even though Taylor degree

and input variables are very large. The performance of time and space are satisfied,

Chapter 4: Basic Algorithms

 106

and the AT terms only occupy around 5% - 20% of isomorphic terms. So

combining these terms to form AT terms will spend huge processing time, but the

algorithm can handle it easily. During experiments, we find this algorithm has

been always the fastest algorithm compared to various multiplication methods.

4.6 Conclusions
 Taylor series is a typical imprecise representation with function approximation

and finite wordlengths, so it is our main research object that we adopt AT. In order

to utilize AT technique, we propose several algorithms which can convert Taylor

series to AT and search for its maximum absolute value. These algorithms can

handle not only Taylor series but also real-valued polynomials with multiple

variables, and are fundamental to the future verification and optimization, so they

can cover a majority of applications.

 107

Chapter 5

Analysis of Precision Parameters

Arithmetic circuits such as these realizing Taylor series-based

algorithms incorporate many generalizations leading to imprecision.

In order to design and verify imprecise circuits, the first step is to

analyze these factors carefully. Traditional methods have difficulty to

represent the factors mathematically. In this chapter we describe the

imprecise arithmetic computations, and then utilize AT to analyze

imprecise parameters in a polynomial, and estimate how much error

is caused by each parameter.

Chapter 5: Analysis of Precision Parameters

 108

5.1 Imprecise Arithmetic Computations
Major causes of imprecision in an implementation come from two aspects. One

is the approximations of the specifications in hardware realization and the other is

using finite wordlength to represent an infinite length of specification data. For

example, real fractional numbers are usually realized by finite size registers which

are regarded as fixed-point data representations. Radecka and Zilic [70]

introduced the fundamental idea based on AT representations.

Definition 5.1: The error is a numerical difference between the results required

by the specification and the quantity obtained in the implementation. The unit in

the last place (ULP) used to evaluate the error is the least significant bit for

binary encoding of a given number.

 The function approximation is an inexact implementation regardless of the

precision while the precision is the total bit number used to represent the

fixed-point circuit. Although there might be some other causes of imprecision in

ASIC implementations, the above two reasons are the focal points in this work.

5.1.1 Finite Wordlength
 Using finite precision to represent infinite length real numbers is performed by

truncation and rounding. Output bit-width is always restricted so it is unavoidable

to cause imprecision. The following example explores data truncation and

rounding.

Example 5.1: A circuit has four N-bit unsigned fractional inputs: “a”, “b”, “c”

and “d” to perform the operation ab+cd. The output result has 2N-1 bits :

 If the result of the implementation is restricted to N most significant bits of the

original expression, two cases would be considered:

∑∑∑∑
=

−

=

−

=

−

=

− ∗+∗=+
N

k

k
k

N

k

k
k

N

k

k
k

N

k

k
k dcbacdabAT

1111

2222)(

Chapter 5: Analysis of Precision Parameters

 109

a) Rounding to the nearest value causes the error bounded to half of the ULP, i.e.,

2-(N+1).

b) When truncating to “N” bits, the error is bounded by one ULP, which is 2-N.

Explicit representation of output values is required for the precision verification

because the precision on a per-bit basis is not reasonable. A simple example can

describe the situation that even though all output bits are incorrect, the

imprecision is arbitrarily small. For instance, if the exact N-bit result is 100….0,

and the approximation is 011…1, then all bits are incorrect; the error is one ULP,

however, which for large N becomes negligible.

5.1.2 Arithmetic Transforms and Imprecise Datapaths
 AT has a property of linearity which can be directly applicable to verification

of imprecise circuits. The transform of an imprecise circuit, i.e, IAT(f), can be

represented as a linear superposition of the specified AT form SpecAT(f) and the

error e. Generally, error accumulation makes that various errors throughout the

circuit can be observed at outputs and expressed by the error e and fault-free AT

representation of SpecAT(f):

 SpecAT(f) = IAT(f) + ErrAT(f) (5-1)
The error AT polynomial (ErrAT) is determined by a series of imprecision

sources, which may be caused by function approximations, or size restrictions of

intermediate data of an implementation.

Definition 5.2: “The AT error polynomial (ErrAT) is a difference polynomial

between Arithmetic Transforms of specification (SpecAT) and its corresponding

implementation (IAT)” [70].

Example 5.2: A circuit calculates the product a*b with 8-bit for each variable

and disregards all partial products needed for obtaining 8 least significant bits.

This approximation will save half the circuit area, but causing the AT error:

Chapter 5: Analysis of Precision Parameters

 110

ErrAT(f) = SpecAT(a*b) – IAT(a*b) = i
i

i

i

j
ji

j

ji
i

i
i baba −

=

−

=
−

=

−−

=
∑ ∑∑∑ − 22

9

2

1

1

8

1

8

1

 = ji
i

j ji
i ba −−

= −=
∑ ∑ 2

8

2

8

6

 After summation, we obtain that the worst case error is bounded by

(6*28+2)/211, which is O(2-6).

 Since AT has the linear property, if a module within a circuit has an error, this

error can be peeled off from the transform of the module, the following equation

describes it:

 AT(f+e) = AT(f) + AT(e) (5-2)
 The arithmetic transform of the erroneous module equals the addition of the

transform of the good module and the error transform. The property makes it easy

to analyze the effect caused by errors.

Once the overall AT is constructed for an imprecise circuit, the maximum

allowable value of an error polynomial (ErrAT) can be determined. When an

input/output size of an implementation differs from that of specification, the

precision of the implementation, expressed in terms of acceptable error bounds is a

required parameter. Only then we can state that the implementation (IAT) is in

agreement with the specification (SpecAT) within a precision error bound ε . In

consequence, the maximum absolute value of ErrAT must accord with the

inequality [70]:

ε≤−= IATSpecATErrAT max)max((5-3)

 The maximum absolute error can be calculated by the branch-and-bound

searching algorithm introduced in Chapter 4. If SpecAT is imprecise itself and

represents a function f up to an absolute precision of δ, the following inequality

[70] holds:

δε +≤−+−≤

−

|))(()(|max)()(max
|))(()(|max

XfATXSpecATXSpecATXIAT
XfATXIAT (5-4)

While the value δ is known, Eqn. 5-4 can be used to verify the imprecision

Chapter 5: Analysis of Precision Parameters

 111

between SpecAT and IAT.

 5.2 Function Approximation Error
Determining the set of parameters needed to achieve a circuit of the allowed

imprecision is a challenge that is in part due to the difficulties with the precision

analysis. The traditional method of using simulations over various values of the

parameters is costly and not guaranteed to produce the optimal result. We next

analyze the arithmetic precision parameters due to all approximations and finite

bit widths in the implementations of real-valued specifications such as Taylor

series in Figure 5.1. In summing the imprecision, we will repeatedly use the

triangle inequality.

Figure 5.1: Imprecision due to the combined sources

In implementing real-valued functions by arithmetic circuits, an algorithm

might be employed to approximate, rather than exactly implement the function.

For instance, when using n Taylor terms to represent a transcendental function, the

approximation error is provably bounded by a remainder Rn(X), Eqn. (4-1). Hence,

for a function given in interval I, this truncation error bound et is:

 e t = max
X ∈ I

| R n (X) | (5-5)

Example 5.3: Consider the following function f(X) = cos(X). In interval [-1, 1], its

Taylor approximation around X0=0 with 3 terms is:

42

24
1

2
11)(cos XXXTaylor +−= ,

Chapter 5: Analysis of Precision Parameters

 112

Now we can estimate its error bound:

007.0|1sin
120

1||sin
120

1|max|)(|max 5
5 =≤∗== XXRet ξ

Given the desired error bound E, it is easy to find the appropriate number of

Taylor terms n as a largest integer for et < E. Such a finite truncation of Taylor

series will have the least number of terms that result in an acceptable imprecision

over the given interval I. Please note from Eqn. (4-1) that instead of finding the

exact maximum of the (n+1)st derivative on I, using an upper bound might suffice.

5.3 Input Bit-width and Quantization Error
In fixed-point implementations, a bit vector represents the real-valued input

variable X, so the input quantization due to finite bit-width affects the final result.

An insufficiently precise result can be caused by using too few bits, and we hence

try to find an appropriate bit-width resulting in the acceptable overall error.

5.3.1 Effect of Finite Input Bit-width – Interval Analysis
 An argument of a real-valued function is potentially infinitely precise. Such a

theoretical value Xth is instead replaced by the quantized input value X in function

calculation. The classical interval analysis [26]-[31] is expressed in terms of AT as

follows. Let FB represent Fractional Bits. The input range is divided into uniform

2FB intervals, so the difference between two consecutive intervals is 2-FB. The

point representing Xth is between two quantized values, as in Figure 5.2. The

relationship between Xth and X is then:

......

0 11-2 +FB

thX X

2-FB

Figure 5.2: Value description of Xth and X

Chapter 5: Analysis of Precision Parameters

 113

)1()1()1(222 +−+−+− +≤≤−⇒≤− FB
th

FBFB
th XXXXX (5-6)

Hence, by replacing Xth by m fractional bits of X in accordance with Eqn. (5-6),

we get the expressions for the theoretical fth and quantized f function values (given

X0 = 0):

∑ ∑
=

−−
−

=

+− ±=
n

i

im
m

k
k

k
i

th x
i
Xf

f
0

1
1

0

)1(0]2)2[(
!

)(

∑ ∑
=

−−
−

=

+− ±=
n

i

im
m

k
k

k
i xC

0

1
1

0

)1(]2)2[((5-7)

∑ ∑
=

−

=

+−=
n

i

i
m

k
k

k
i xCf

0

1

0

)1()2((5-8)

where Ci is a Taylor coefficient that equals to
!

)(0

i
Xf i

.

We represent fth and f by AT polynomials AT(fth) and AT(f) to efficiently search

over binary inputs, obtained from Eqn. (5-7) and (5-8), respectively. The

conversion algorithm introduced in Figure 4.1 is designed to deal efficiently with

the intermediate terms swell when the number of Taylor series terms and the

bit-widths increase. The error polynomial AT(fei) is then a difference between AT(fth)

and AT(f):

∑ ∑∑ ∑
=

−

=

+−

=

−−
−

=

+− −±=
n

i

i
m

k
k

k
i

n

i

im
m

k
k

k
ie xCATxCATfAT

i
0

1

0

)1(

0

1
1

0

)1())2(()]2)2[(()(

(5-9)

This AT formulation of the interval analysis assumptions allows us to obtain a

bound ei on the effects of input quantization of half an ulp to the output precision.

The maximum absolute value of AT(fei) in Eqn. (5-9) gives the error bound ei.

While a straightforward approach requires 2m polynomial evaluations, ei can be

obtained by the efficient branch-and-bound searching algorithm tuned for this

application.

The interval method is represented by the Eqn. (5-9) which considers the worst

case, and applies the algorithms for Taylor conversion and imprecision searching.

Figure 5.3 shows the AT usage of interval analysis to estimate error of input

quantization.

Chapter 5: Analysis of Precision Parameters

 114

 t hf f

)(fAT

Conversion
Algorithm

)(thfA T

ie

Subtraction

Searching
Algorithm

AT(fei)

Figure 5.3: Computation of input quantization error

5.3.2 Tight-bound Interval Scheme
 The interval analysis unavoidably overestimates the error bound and gets a

coarse result. We now propose a tight-bound interval scheme, which employs a

more precise specification with larger input bit-width, to obtain tighter error

bounds.

For example, assume that m=8 bits is used to represent fractional number. Let f

and fth represent the quantized function and the theoretical function, respectively.

For interval analysis:

)2(|| 8−Θ==− Ihpff ε

We improve precision analysis by the tight-bound method. For this, we use

another, finer quantized function representation with, say t=17 bits, labeled by fhp

and get:

hphpff ε=− ||

The error in the higher-precision specification alone is estimated by the interval

analysis as:

)2(|| 17
_

−Θ=≤− TBIthhp ff ε

 From the triangle inequality, it follows that:

Chapter 5: Analysis of Precision Parameters

 115

TBIhpthhphpth ffffff _|||||| εε +=−+−≤− (5-10)

In other words, the tight bound analysis uses the exact knowledge of the

mismatch to a more precise specification, to which a significantly smaller residual

error by interval analysis is added, which allows us to get a tighter error bound.

 Please note that the second, larger bit-width function is used here only for

analysis purposes, and will not increase the cost. Actually, due to the tighter

bounds, the tight-bound interval analysis can lead to a sufficiently precise

implementation with less bits used in the implementation. For example, instead of

m=8, it might suffice to have only bit-width of 7, as the tight-bound comparison

with the 17-bit implementation will arrive to the imprecision not worse to that

with m=8 bits, obtained by the straightforward interval analysis. The scheme for

tight-bound interval based on AT technique combines Figure 5.3 and the

inequality (5-10) to obtain the suitable bit-width.

5.4 Quantization of Coefficients and Output
The finite-word representation of real-valued constants such as coefficients of

Taylor expansions causes coefficient quantization. If q stands for the coefficient

bit-width, then the value of the theoretical (infinite precision) coefficient Cth and

its word-level representation C are related as follows:
)1()1(22 +−+− +≤≤− q

th
q CCC .

Using this inequality to replace Cth, the expression of fth becomes:

∑ ∑
=

−

=

+−−− ∗±=
n

i

m

k
k

kq
ith xcf

0

1

0

)1(1)]2[()2((5-11)

The error function fec is defined as the difference between fth and f, while the

error polynomial ATec is its transform:

)))2((2(
0

1

0

)1(1∑ ∑
=

−

=

+−−−±=
n

i

m

k

i
k

kq
e xATAT

c (5-12)

The tight-bound analysis can also be applied to explore coefficient bit-widths.

Chapter 5: Analysis of Precision Parameters

 116

The maximum error ec is again computed by the branch searching algorithm

combined with the tight-bound scheme over this AT polynomial.

Finally, if the output bit-width is o, the bound on the output quantization error eo

is 2-O -1. With et, ei and ec determined, the upper bound of eo is eo =2-O -1 =E- et - ei -

ec. Hence, o is given as: o = -log2 (E- et - ei - ec) + 1. Since eo can be obtained

easily and the output bit-width does not affect on internal hardware structure, it is

omitted from further considerations ahead.

 5.5 Conclusions
Imprecise circuits generally contain many imprecise factors leading to error

generation. Here we focus to analyze Taylor series which has four imprecise

factors as function approximation, quantization of input bit-width, coefficient

bit-width and output bit-width. We use AT and construct mathematical expressions

for each factor to facilitate analysis. These expressions are fundamental to future

verification and optimization.

 117

Chapter 6
Algorithms for Precision

Verification and Optimization

 In this chapter, we propose an algorithm to compare two similar,

but not exact components. A verification algorithm is then introduced

to check whether the implementation satisfies the error bound. A

sequential method is designed to find a feasible implementation to

satisfy the error bound. In order to single out the best implementations

under different constraints, such as area, delay, and fixed bit-width, an

optimization algorithm is described. Finally, we integrate these

algorithms into a package to handle imprecise circuits.

Chapter 6: Algo

We will

implementa

the given er

their differe

6.1 illustra

specificatio

the allowed

be substitut

 The pro

 The erro

specified an

the maximu

the implem

 The use

two differe

The interfa

orithms for Pre

 6.1
now outl

ations. If th

rror bound,

ence can as

ates two

on Spec by

d error boun

ted for each

oblem descr

or AT polyn

nd impleme

um mismat

mentation.

of the algo

ent impleme

ace file desc

Problem

Inputs:

Output:

cision Verificat

Compo
line our m

he imprecisi

they can be

ssist in findi

implementa

errors e1 an

nd E, then th

h other.

Figure 6.1: C

ription is as

nomial (ATe

ented AT p

ch which d

orithm withi

entations of

cribes two

6.1: Compu

f1(X), n1

 imp

tion and Optimi

118

onent C
method of

ion between

e substituted

ing the imp

ations, Imp

nd e2 respe

hese two im

Comparison o

s follows.

) introduced

polynomials

denotes diff

in a realistic

f real-value

implementa

uting differe

1, m1, f2(X),

precision

ization

Compa
finding im

n the two co

d by each o

plementation

p1 and Im

ctively. If e

mplementatio

of two implem

d in Def. 5

, and its m

ference betw

c tool for co

ed function

ations of Ta

ence of two

n2, m2

arison
mprecision

omponents

other, so an i

n at a reduc

mp2, differ

errors e1 an

ons are acce

mentations

.2 is a diffe

maximum ab

ween the sp

omparing p

s is shown

aylor series

implement

between

is restricted

investigatio

ced cost. Fig

ring from

nd e2 are wi

eptable and

erence betw

bsolute valu

pecification

recision am

n in Figure

s or real-va

tations

two

d by

on of

gure

the

ithin

d can

ween

ue is

and

mong

6.2.

lued

Chapter 6: Algorithms for Precision Verification and Optimization

 119

polynomials and the bit-widths of corresponding variables. The front-end and the

parser hide the details needed to deal with AT. The conversion algorithm converts

the two implementations of real-valued functions into two AT polynomials, while

the error AT is obtained by subtracting the two polynomials. Then the imprecision

is obtained by the searching algorithm introduced in Chapter 4.

Interface File

Implemented
Taylor Series 1

Implemented
Taylor Series 2

Parser

Implemented
AT Polynomial 1

Implemented
AT Polynomial 2

Conversion
 Algorithm

Error AT Polynomial

Bits 1 Bits 2

Conversion
 Algorithm

Branch
Searching
Algorithnm

Maximum Mismatch

Subtraction

Figure 6.2: Algorithm of computing imprecision between

two implementations of Taylor series

6.2 Verification of Implementations
Given an implementation, the imprecision between the specification and the

implementation determines whether the implementation can fit the specification,

so it becomes necessary to calculate the imprecision coming from the four sources

Chapter 6: Algorithms for Precision Verification and Optimization

 120

described in Figure 5.1. The problem description is as follows.

The given implementation includes the number of Taylor terms, quantization

bits of the inputs, coefficients and output. Calculating the imprecision can be

achieved by adding the values of et, ei, ec and eo. If the imprecision is beyond the

error bound, the implementation does not satisfy the specification. It is helpful to

evaluate the validity of the implementation.

Figure 6.3: Algorithm of verifying the implementation

Figure 6.3 describes an algorithm that checks an implementation by computing

each type of error. The result indicates whether the implementation is suitable to

the specification through the confirmation of a relationship between the

imprecision and the given error bound. The algorithm concurrently investigates

Problem 6.2: Verifying an implementation

Inputs: f(X), E, n, m , q, o

Judgment: et + ei + ec + eo < E

Outputs: Satisfied? (Yes or No)

Check_Imp (f, E, n, m , q, o)
1. { if (et ≥ E) return false;
2. ei = Get_input_error (f, n, m);
3. if (et + ei ≥ E) return false;
4. ec = Get_coeff_error (f, n, m, q);
5. if (et + ei + ec ≥ E) return false;
6. eo = 2-O-1;
7. if (et + ei + ec + eo ≥ E) return false;

else return true;
}

Get_input_error (f, n, m)
{ AT_theoretical = Convert_AT (f, n, m, 2-m-1);

AT_real = Convert_AT (f, n, m);
 error_AT = AT_theoretical - AT_real;
 ei = Search_imprecision (error_AT);
 return ei;
}
Get_coeff_error (f, n, m, q)
{ ATec = Convert_AT (f, n, m, 2-q-1);
 ec = Search_imprecision (ATec); return ec;
}

Chapter 6: Algorithms for Precision Verification and Optimization

 121

function approximation and bit-widths. It handles not only Taylor series but also

any real-valued specifications without approximations, and so has wide

applications.

 6.3 Finding a Feasible Implementation
As distinct from the above section, our goal here is to explain how to design a

satisfying implementation to restrict the imprecision within the error bound if

given a specification represented by Taylor series expanded around Xo and the

error bound. We now solve the problem of finding a feasible implementation, so

that the error in the given interval I is smaller than E.

The algorithm in Figure 6.4 applies sequential selection of parameters such that

the total imprecision is smaller than E. The symbols n, m and q represent the

Taylor terms, input bit-width and coefficients bit-width respectively. Since all the

error causes can be made arbitrarily small by increasing n, m or q, we can

investigate them in any order. As the Taylor approximation error, Eqn. (4-1), is

independent of bit-widths, while the errors caused by the bit-widths rely on the

exact number of Taylor terms, et is investigated first (Step 1), and n is selected

such that the imprecision due to approximation is smaller than E. In Steps 2 and 3,

we find input and coefficient bit-widths m and q using triangle inequality in order

to obtain the required precision.

This algorithm always terminates with a feasible implementation, because each

of the three steps can determine an arbitrarily small error. Although one can

apportion the percentage of E for each step, this is potentially wasteful. Since the

Problem 6.3: Feasible Precision Parameters

Inputs: f(X), X0, I, E

Constraint: imprecision < E, IX ∈∀

Outputs: n, m, q

Chapter 6: Algorithms for Precision Verification and Optimization

 122

first source of error is relatively small in comparison to the whole error bound, the

distance to E will leave room for subsequent quantization values of errors ei and ec

without needing very long bit-widths m and q.

Figure 6.4: A sequential method of fitting the error bound

The method is applicable to Taylor series, but also to any real-valued

polynomial specifications. Please note that when some (input or output) bit-widths

are fixed because of other modules, those steps are skipped. This scheme achieves

a tighter match than the traditional error bounding techniques as its exact searches

for the worst-case imprecision account for the interplay between multiple

imprecision causes. Although this algorithm can stand on its own, its immediate

application is as a pre-selection stage of the full precision optimization algorithm,

which is presented next.

1. Determine Taylor terms
{ assume n terms and obtain et;

while (et≥E) { n++; obtain et ; }
}

2. Determine input bit-width
{ assume input bit-width m;
 for ()

{ AT(f)th = Convert_Taylor_AT (fth, n, m);
AT(f) = Convert_Taylor_AT (f, n, m);
ei = Imprecision_Searching (AT(fth - AT(f));
if (ei ≥ E-et) m++; else break; }

}
3. Determine coefficient bit-length

{ assume bit-width of coefficients q;
 while ()

{ ATec = Convert_Taylor_AT(fec);
 ec = Imprecision_Searching (ATec);
 if (ec ≥ E-et- ei) q++; else break; }

}

Chapter 6: Algorithms for Precision Verification and Optimization

 123

6.4 Designing Optimized Implementations

with Constraints
Although the algorithms in Figure 6.3 and 6.4 compute the precision

automatically and indicate whether the implementation is feasible to the error

bound, it cannot give information to optimize the implementation. Because the

satisfying implementation is not the best one possible in different constraints, it is

necessary to develop an algorithm to allow for a flexible distribution of

imprecision due to the error sources. In this section, we demonstrate an automated

way to find the precision parameters (bit widths, approximation schemes) of the

minimum cost determined by constraints.

6.4.1 AT Size as a Cost Function
While it is impossible to know precise area data before mapping a circuit by a

concrete technology, we do not need to know the exact area as long as the

different alternatives can be compared realistically. In our case, the area increases

monotonically in both n and m. More Taylor terms (n) require more stages in

hardware, which raises inputs to higher exponents. Similarly, longer bit-width (m)

requires more arithmetic circuitry. As the number of AT polynomial terms |AT(f)|

exhibits the same tendency, we use it as the cost function to be minimized. The

size of AT is obtained by directly expanding the n-term Taylor polynomial over

m-bit input words. One can show that:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

= i
m

fAT
n

i
mn

1
,)((6-1)

6.4.2 Error Sensitivity
We recall first that the Taylor series representation comes with a provable bound

on the error due to the truncation of the Taylor terms n, given by Eqn. (4-1). This

Chapter 6: Algorithms for Precision Verification and Optimization

 124

bound can be readily used during the precision searches, when different values of

n are explored. Further, we can readily access the information on error sensitivity

due to the input bit width m.

Traditionally, sensitivity [21] is defined as Eqn. (6-2) and Figure 6.5 to describe

the influence that a small change ∆X of X has on the output Y:

XXfY Δ≈Δ)(' (6-2)

where f’(X) is the derivative of f(X).

ΔX

f(X)

X

X1
X
Xf

∂

∂)(

Figure 6.5: The basic idea of sensitivity [21]

In order to use sensitivity to investigate the input quantization error and find the

suitable input bit-width, we re-define the sensitivity.

Definition 6.1: The sensitivity is a numerical value to describe the influence that

a small change of X has on the output Y in condition of the worst case:

YΔ = AT(f’(X))max * 2-m-1 (6-3)

The sensitivity reflects the output change in terms of tiny input turbulence. It

has the same essence as the representations of Eqn. (5-7) and (5-8), so sensitivity

can be used as a substitution. The performance bottleneck in determining the

optimized implementation is that the procedure must repeat itself to invoke the

conversion algorithm when searching different Taylor terms and input bits. In

each flow, this requires invoking the conversion algorithm twice, and subtracting

two AT polynomials as Eqn. (5-7) and (5-8) to get the input error in order to

confirm whether the input bit-width is satisfied. Of course the complex procedure

Chapter 6: Algorithms for Precision Verification and Optimization

 125

will consume a lot of time and memory. However, if using sensitivity, as long as

f’(X) is converted to AT(f’(X)) and the branch-bound algorithm is used to find the

maximum value to match the worst case, the sensitivity can be calculated by its

multiplication with ∆X . Here ∆X is 2-m-1, i.e., half of the ulp. We can see this

procedure only invokes the conversion algorithm one time to transform f’(X) into

AT(f’(X)). The advantage is very obvious. When the sensitivity is obtained,

combined with the input error bound, it is easy to conclude the suitable input

bit-width.

Similarly, the search for an appropriate bit-width of the Taylor coefficients Ci is

guided through the corresponding sensitivity, readily calculated using Taylor

series, the conversion algorithm and the searching algorithm.

6.4.3 Constraint of the Smallest Area
A) Optimized Parameters for Taylor Series

In some cases, there is no limitation for Taylor terms and input bit-width, so

engineers can adjust the parameters to achieve an error-satisfied circuit with the

smallest area. Consider the following problem, where the total imprecision due to

the disparate causes and the cost are obtained through AT.

The goal is to get a satisfying implementation with the minimum AT size which

represents the smallest area. The constraint which restricts the imprecision must

be smaller than the error bound. Since coefficients and output bit-width have

much less effect of area, we mainly focus on the number of Taylor terms and input

Problem 6.4: Finding optimized Taylor terms and input bit-width to get

the smallest area

Inputs: f(X), X0, I, E

Constraints: imprecision < E, IX ∈∀

Outputs: n, m

Chapter 6: Algorithms for Precision Verification and Optimization

 126

bit-width. In deriving a more thorough search scheme, we need the ability to

concurrently explore multiple precision parameters.

Figure 6.6: Algorithm of finding the optimized implementation with smallest area

Figure 6.6 describes the algorithm optimizing the number of Taylor terms and

Design_min_Taylor_area (f, E)
{
1. while (et > E) { ++n; et = Get_Taylor_error (n) }
2. AT_derivative = Convert_Univar_AT('f , n, m0);
3. sensitivity=Search_Imprecision (AT_derivative)* 102 −−m ;
4. ini_m = m0 – log[(E- et) / sensitivity];
5. Store_node (n, ini_m); m = ini_m;
 while

6. { et = Get_Taylor_error (++n);
7. ei = Get_input_error (f, n, --m);
8. if (ei < E)
 { while (ei <E - et) ei = Get_input_error (f, n, --m);
9. if (++m != ini_m)

{ Store_node (n, m); ini_m = m;
10. Tight_interval (node); }

}
11. else break;

}
12. best_node = Compare_AT_size (nodes);
13. (ec, q) = Get_coeff_bit (E, et, ei) ;
14. o = -log2 (E- et - ei - ec) + 1;
 return best_node;
}
Get_input_error (f, n, m) // Using Eqn. (6-3)
{ AT_derivative = Convert_Univar_AT('f , n, m);
 max_val = Search_Imprecision (AT_derivative);
 ei = max_val * 2-m-1; return ei ;
}
Compare_AT_size (nodes)

{ for (i=0; i<nodes_num; i++)

 AT_size[i] = Get_AT (node[i](n), node[i](m));

 Sort (AT_size); return the node with smallest AT_size;
}

Get_AT (n, m)

{ for (i=1; i<=n; i++) AT_num += Choose (m, i); }

Chapter 6: Algorithms for Precision Verification and Optimization

 127

the input bit-width. A pair (n, m) is referred to as a node, representing a

combination of a number of Taylor terms (n) and an input bit-width (m) used in

each step of the search. In the first iteration, the algorithm gets the smallest

number of Taylor terms for the given error bound, and obtains input bit-width by

sensitivity computation (Steps 1 to 5). It is sufficient to consecutively increase the

set of Taylor terms used to explore the search space, while simultaneously

exploring the alternative input bit-widths (Steps 6 and 7). If the new node can

satisfy the error bound E, the newly computed number of Taylor terms is assumed,

and the algorithm continues to decrease input bit-width until the current node

breaks the bound. When it happens, the algorithm backtracks to the previous node

and stores it (steps 9 and 10). The procedure is repeated until the change of

bit-widths is exhausted, while ei > E (step 8).

Since Taylor series cannot be compared directly, it is necessary to use AT for

comparison because of the easy computation of Eqn. (6-1), so in the above

procedure the conversion algorithm is invoked to achieve that goal. The searching

algorithm helps to find the quantization error represented by AT polynomials. A

subroutine Compare_AT_size is called into action to compare the AT size of

each stored node, and selects the one with the smallest AT representation. In fact,

while the algorithm begins with the largest et value (within the total bound E) –

initially ei is smallest, but in subsequent steps et shrinks while ei grows until ei

becomes the largest value – the procedure explores the search space, eliminating

nodes that will have larger AT than already obtained solutions. Finally, the

bit-width of coefficients is calculated using the notion of sensitivity, while the

output bit-width o is determined using the expression o = -log2 (E- et - ei - ec) + 1

(Step 13 and 14). Note that at this point all the error parameters in the above

equation can be determined using the optimal values of n, m and q.

The algorithm provides a branch-and-bound exploration of the space of all

potential optimized nodes. When the error bound E is exceeded, the complete

subtree of the search tree is safely abandoned. Further, the search is guided by the

sensitivity function, as a heuristic to speed up the search. At each node, the error ei

from Eqn. (6-3) is computed in the subroutine Get_input_error, which uses

Chapter 6: Algorithms for Precision Verification and Optimization

 128

the sensitivity definition. The transform of the first order derivative of f(X) is

obtained in terms of the Taylor terms n and input bit-width m. Then, the branch

searching algorithm is invoked to get its maximum mismatch, so the sensitivity is

calculated through the multiplication of the maximum mismatch and ∆X, i.e., 2-m-1.

As a result, the conversion algorithm is invoked only once to get AT of f ’(X),

while the use of Eqn. (5-7) to (5-9) would activate the algorithm twice. The

following example illustrates the use of the precision optimization algorithm.

Example 6.1: Consider an implementation of sin(x) represented by Taylor series.

Due to the given error bound 0.0002, the algorithm finds the least number of

Taylor terms to be 4, and the corresponding input bit-width to be 14 on the

condition of the Taylor terms. Therefore, the initial node is (4,14).

m-1
n+1

4, 14

5, 13

5, 12

6, 11
m-1

5, 11

m-1

n+1
m-1

7, 10

n+1
m-1

ei > E

ei + et > E

redundant
 node

branch
termination

branch
terminationinvalid

node

invalid
node

1
2

Figure 6.7: Search of optimized parameters in Example 6.1

The algorithm adds then one Taylor term and cuts one input bit at the same time,

hence generating a new node (5, 13). By using the sensitivity, ei is estimated fast,

and as this node satisfies the error bound, input bits are decreased again.

However, when the node reached (5, 11), the error addition of et and ei is beyond

the bound but ei is smaller than the bound, and the algorithm backtracks to the

previous node (5, 12). The node (5, 13) is redundant because its AT terms number

is obviously larger than the node (5, 12), and the node (5, 11) is an invalid node.

The procedure is repeated with Taylor terms increased to 6 giving the node (6, 11)

which satisfies the bound. The input error ei of the next node (7, 10) breaks

through the error bound so it is an invalid node, which means the smallest input

bit-width is 11 regardless of the increase in the number of Taylor terms, so the

Chapter 6: Algorithms for Precision Verification and Optimization

 129

algorithm stops.

Figure 6.7 indicates three nodes (4, 14), (5, 12) and (6, 11) that satisfy the

given error bound. The procedure Compare_AT_size is then called to select the

node with the smallest AT size, so the node (6, 11) is the optimized parameters for

Taylor terms and input bit-width.

From this example, we see that starting from an initial feasible implementation,

the algorithm proceeds with generating nodes of improved parameters, and then

checks whether such new nodes are within the error bound. In each search step,

the sensitivity is used to accelerate calculation of the input quantization error,

drastically improving the performance. When the error bound is exceeded, the

backtracking technique returns the previously determined feasible solutions, and

no solution will be missed.

B) Optimized parameters for multivariate polynomials
The above section proposes an algorithm that is limited to Taylor series of only

one word-level variable. Since many real-valued polynomials comprise

word-level variables beyond one, the optimization algorithm needs an extension

to process it. An algorithm is now presented to handle cases of specifications

given over several word-level variables.

A set of bit-widths for each variable is referred to as a node in Figure 6.8. The

algorithm first gets sensitivity for each variable as in Step 1 – 5, and obtains the

initial node and final node by using sensitivity as in Step 6 – 7. The initial node

makes the first variable determine the minimum bit-width and the final node

makes the last variable calculate the minimum bit-width.

Beginning from the initial node, the algorithm shrinks the error generated by

the first variable by increasing its bit-width. At the same time, the bit-width of the

following variable decreases and this may enlarge the error. The procedure

propagates the input error within the error bound from the first variable to the last

variable in sequence. When the final node is reached, the loop stops and all

possible nodes are traversed as in Step 8 – 14. While all intermediate nodes are

Chapter 6: Algorithms for Precision Verification and Optimization

 130

obtained, the redundant nodes are deleted in Step 15.

If two nodes only differ in one variable and other variables have the same bit

widths, the node which has more bits is identified as the redundant node. For

example, if the two nodes have three variables consisting of (12, 13, 12) and (12,

14, 12) bits respectively, one variable is different and the node of (12, 14, 12) is

deleted as a redundant node. The optimized bit-widths for variables are selected

by comparing AT sizes of obtained nodes and choosing the smallest one as in Step

16.

Figure 6.8: Algorithm for finding optimized parameters for real-valued

polynomials over multiple variables

Example 6.2: Consider a function F with three word-level variables and the given

error bound is 60.

 F(X, Y, Z) = 2X 2+ 3YZ – 4Z3 + XYZ

Design_best_poly_imp (f, E)
{
1. for (i=0; i<word_var_num; i++)
2. { AT_th = Convert_AT(f, i, 0);
3. AT_real = Convert_AT(f, i, 102 −−m);
4. error_AT = AT_th – AT_real;
5. sens [i]=Search_imprecision (error_AT);
 }
6. ini_bit = Get_ini_node (sensitivity);
7. final_bit = Get_final_node (sensitivity);
8. for (i=word_var_num-1; i>=0; i--)
9. { ini_bit[i]++; ini_bit[i+1]--;

for (m=word_var_num-1; m>=i; m--)
10. { stop_error = Compute_input_error (sens, ini_bit);
12. ei[0] = pow(2, init_bit[0]-m0) * sens[i];
13. if (ei[0] = stop_error)
 break;
 else { while (ei < E) init_bit[0]--;
 Store (nodes); Tight_interval (node); }

}
14. if (ini_bit = final_bit)

 break;
}

15. Irredundant (nodes);
16. optimized_bit = Compare_AT (nodes);
}

Chapter 6: Algorithms for Precision Verification and Optimization

 131

By using sensitivity the initial node is obtained as (14, 16, 18) which means that

the error generated by X has the largest value within the error bound, and the

final node is (18, 16, 13) which means that the error generated by Z has the

largest value within the error bound. The Figure 6.9 describes the two nodes and

the error generated by each variable.

E

e[X]
e[Y]

e[Z]

E
e[X]

e[Y]

e[Z]

Figure 6.9: The error of each variable for the initial node and the final node

Now the algorithm begins with the initial node to increase bit-width of Y and

decrease bit-width of Z, etc., e[Y] is reduced and e[Z] is augmented. The new

obtained node is (14, 17, 16) and since the bit-width of Z cannot be cut down any

more, the bit-width of X has to be increased to “15” and bit-widths of Y and Z are

computed again. Consequently, the node changes to (15, 15, 15). The two nodes

are shown in Figure 6.10.

E

e[X]

e[Y]

e[Z]

E

e[X]
e[Y]

e[Z]

Figure 6.10: Two intermediate nodes from the initial node

The algorithm continues to get intermediate nodes until it reaches the final

node. It removes the redundant nodes and creates a search path to represent each

node. The chain is described as:

(14,16,18) (14,17,16) (15,15,15) (15,16,14) (16,14,16)

(16,15,14) (17,14,15) (17,17,13) (18,16,13)

The AT size of each node is calculated and a node with the smallest size is

chosen as the optimized node. In this example the optimized node is (16, 15, 14).

Chapter 6: Algorithms for Precision Verification and Optimization

 132

6.4.4 Constraint of the Minimum Delay
 Some applications often require that the implementation has a minimum delay.

Taylor series is implemented by a Horner polynomial evaluation such as the

cosine circuit:

(...)))
!4

1(
!2

1(1
)!2(

)1()(222
2

0
XXX

i
XXf

in

i

i ++−+=−= ∑
=

*R
X

1/n!

+

1/(n-1)!

R

*R
+

1/(n-2)!

R

R *

From R
in Stage n-1

R f(X)

Stage 1

Stage 2

Stage n

Figure 6.11: n-stage pipelined circuit

In Figure 6.11, n-terms Taylor series correspond to an n-stage circuit

represented by a Horner polynomial. Although input bit-width and coefficient

bit-width both have effect on delay, it is obvious that the number of Taylor terms

has far bigger impact. More terms result in a longer delay, so the minimum delay

requires the least Taylor terms and is restricted by the imprecision. The least

number of Taylor terms is simple to obtain and the input bit-width can be obtained

by using Eqn. (6-3). The problem description is as follows.

Problem 6.5: Finding optimized parameters to get the minimum delay

Inputs: f(X), X0, I, E

Outputs: n, m

Constraint: imprecision < E, IX ∈∀

Goal: minimum satisfying Taylor terms n

Chapter 6: Algorithms for Precision Verification and Optimization

 133

Figure 6.12: Algorithm of finding parameters for the minimum delay

Figure 6.12 describes the algorithm for finding the optimized implementation

with the minimum delay. It calculates the least number of Taylor terms to satisfy

the inequality et < E, then decreases the initial input bit-width and keeps the

calculation of the input error ei until ei > E - et. So the appropriate input bit-width

is obtained.

6.4.5 Constraint of Interface Input Bit-width

 In some cases the input comes from the output of another module, so the

bit-width is determined by that module and it cannot be changed. Figure 6.13

illustrates this situation.

output input Taylor SeriesAnother Module

Interface

 Figure 6.13: Description of interface input bit-width

Since the parameter of input bit-width is fixed in this case, only the Taylor

terms and coefficient bit-width should be explored to make the imprecision

suitable to the error bound. Figure 6.14 describes the algorithm of calculating

Taylor terms and coefficients bit-width.

Design_min_delay (f, E)
{ while (et < E) { --n; et = Get_Taylor_error (n) };

m = Initiate (f, n) ;
ei = Get_input_error (f, n, m) ;
while (ei < E - et)
{ m--;
 ei = Get_input_error (f, n, m) ;
}
m++ ;
return (n, m)

}

Chapter 6: Algorithms for Precision Verification and Optimization

 134

Figure 6.14: Algorithm of finding parameters for interface input bit-width

The algorithm first finds the least satisfying Taylor number to make the

approximation error et smaller than the error bound (Step 1), and calculates the

corresponding input error (Step 2). If the error ei is larger than the error bound, it

means that the interface input bit-width is too small to fit the error bound and the

algorithm will give the error information (Step 3). If the addition of et and ei is

larger than the error bound, which would indicate that the number of Taylor terms

is too small, the algorithm increases the number value n and re-calculates its input

error (Step 4 – 7) since the number of terms will affect ei even though the input

bit-width is fixed. After the suitable Taylor number n is obtained, the coefficient

quantization error ec is determined, and the algorithm calculates the coefficient

bit-width by Eqn. (5-12) corresponding to the worst case (Step 9 - 11).

Example 6.3: Given an error bound E=2e-4 for exp(X), the interface input

bit-width is 13. The algorithm finds the least number of Taylor terms is 6, and gets

et = 1.98e-4, ei = 1.76e-4. Since ei < E and et + ei > E, that denote the number of

Taylor terms is too small so the algorithm loops to find that the suitable number of

Taylor terms is 8. It obtains et = 2.76e-6 and ei = 1.79e-4, so ec = E - et - ei =

Design_fixed_input (f, E, m)
1. { while (et < E) { --n; et = Get_Taylor_error (n) };
2. ei = Get_input_error (f, n, m);
3. if (ei ≥ E)

 print “The interface input bit-width is too small to fit the error bound”;
4. else if (et + ei ≥ E)
5. { while (et + ei ≥ E)
6. { et = Get_Taylor_error (--n);
7. ei = Get_input_error (f, n, m); }

}
8. ec = E - et - ei;
9. for (i=0 ; i<m ; i++)

 input_val += pow(2, -i-1) ;
10. for (i=0 ; i<n; i++)

 coeff_sen += pow(input_val, i) ;
11. q = (-log(ec / coeff_sen) / log2) – 1;

return (n, m, q) ;
}

Chapter 6: Algorithms for Precision Verification and Optimization

 135

1.82e-5. In order to calculate the coefficient bit-width, Step 9 and 10 execute:

∑ ∑
= =

−−
7

0

12

0

1)2(
i k

i
k

k x = 7.99561

when each xk equals 1 considering the worst case, the equation is 1.82e-5 =

2-q-1* 7.99561 and the coefficient bit-width q is obtained as 18 bit, so the final

obtained parameters are n=8, m=13, q=18.

 6.5 Experimental Results
6.5.1 Comparison of Two Implementations
(A) Benchmarks
1) Imprecise Cosine circuit implementation

 In ASICs or FPGAs, the pipelined implementation of a cosine circuit

represented by finite terms of Taylor series often uses the Horner’s polynomial

evaluation:

(...)))
!4

1(
!2

1(1
)!2(

)1()(222

0

2

xxx
i

xxf
n

i

i
i ++−+=−= ∑

=

2) B-splines

Uniform cubic B-splines are used for image warping applications. Four B-spline

basic functions B0, B1, B2 and B3 are defined by:

6
1

2
1

2
1

6
1)(23

0 +−+−= uuuuB
3
2

2
1)(23

1 +−= uuuB

6
1

2
1

2
1

2
1)(23

2 +++−= uuuuB
3

3 6
1)(uuB −=

where u= [0, 1]. We use different bits to represent u to implement this design and

observe imprecision effects.

3) Chebyshev polynomials

Chebyshev filters are analog or digital filters with a steeper roll-off and more

Chapter 6: Algorithms for Precision Verification and Optimization

 136

passband ripple. The gain response as a function of angular frequency w of the nth

order low pass filter is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

0

221

1)(

w
wT

wG

n

n

ε

Where ε is the ripple factor and Tn is the Chebyshev polynomial of the nth order.

Its mathematical characteristics are derived from Chebyshev polynomials. They

are a sequence of orthogonal polynomials which are related to de Moivre's

formula and which are easily defined recursively. The Chebyshev polynomials of

the first kind are defined by the recurrence relation:

T0(X) = 1 T1(X) = 1 Tn+1(X) = 2XTn(X) - Tn-1(X)

According to the relation, we get:

T8(X) = 128X8 – 256X6 + 160X4
 – 32X2

 + 1

T9(X) = 256X9 – 576X7 + 432X5
 – 120X3

 + 9X

4) Implementations of cubic filters

 Cubic filters generally have multiple word-level variables, such as the

benchmarks from University of Utah [51]. The complicated module contains three

word-level variables, and we have to try exhaustive variable combinations if

simulation is adopted, but the method of AT can avoid this time-consuming

situation. Consider a filter:

F(X, Y, Z) = 16384X4 + Y4 +57344Z4 + 64767XY3 + 16127Y2Z2 + 8965X3Z

+19275X2YZ +51903XYZ + 32768X2Y +40960Z2 +32768XY2 + 49152X2

+ 4869Y

5) Discrete Cosine Transform (DCT)

DCT is the kernel of JPEG and MPEG. Here the 88 × DCT implementation

according to is considered. A vector of input data x0…x7 can be transformed to

DCT coefficients by y0…y7. Coefficients c0…c6 are fractional numbers within

(-0.5, 0.5) and generally approximated by 8 – 16 bits.

Chapter 6: Algorithms for Precision Verification and Optimization

 137

0 70 0 0 0 0

1 62 2 5 5 2

0 0 0 04 2 5

5 2 2 56 3 4

x xy c c c c
x xy c c c c

c c c cy x x
c c c cy x x

+⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ +− ⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥− − +
⎢ ⎥⎢ ⎥ ⎢ ⎥− − +⎣ ⎦⎣ ⎦ ⎣ ⎦

0 71 1 3 4 6

3 1 63 6 1 4

4 1 6 05 2 5

6 4 3 17 3 4

x xy c c c c
y x xc c c c

c c c cy x x
c c c cy x x

−⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ −− − − ⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥− −
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎣ ⎦ ⎣ ⎦

6) Box-Muller implementation

 Box-Muller algorithm for generating Gaussian random variable is critical to a

number of applications such as accurate bit error rate testers. The algorithm uses

the following expression:

)2cos(*)ln(2)(*)(),(21221121 XXXYXYXXY π−==

We represent it by a finite number of Taylor series terms:

)ln(2)(111 XXY −= around the point X1 = 0.5 and)2cos(22 XY π=

around X2 = 0.
3

1
2

1111)5.0(582.1)5.0(4733.0)5.0(6984.117741.1)(−−−+−−= XXXXY
6

1
5

1
4

1)5.0(7848.2)5.0(3284.3)5.0(0198.1 −+−−−+ XXX

)!2(
)2()1()(

2
2

0
22 i

XXY
i

i

i π∑
∞

=

−=

The implementation consists of two Taylor series and two word-level variables.

Imprecision in two variables affect each other, so it is difficult to evaluate

imprecision and get the optimized implementation by past univariate explorations.

(B) Comparison Results

Chapter 6: Algorithms for Precision Verification and Optimization

 138

Table 6.1: Error and performance of various components on different criteria

The module in Figure 6.2 is critical for both the conversion and the branch

searching algorithms, so it is important to pay special attention to it. The error AT

polynomial is derived from two implemented AT polynomials, from which

imprecision can be discovered by the brand search. The module has the

advantages of being fast and space-efficient, as Table 6.1 shows.

More bits imply that the results are more precise, i.e., the implemented function

value is closer to the originally specified data output. However, the precision

comes not only at the cost of area, but also the rate of speed and energy

consumption. In light of this, choosing an appropriate length to represent

coefficients is worth the effort. Table 6.1 displays imprecision based on different

degrees and input bits. It is obvious that imprecision decreases in proportion to the

increase of the Taylor degree and input bits. Running time is acceptable even for a

large number of terms. Hence, this module provides a reliable method of

calculating and matching the imprecision of implementations, which will allow

the engineers to lower the cost of design. The results also help to obtain an

understanding of whether the existing implementations can be reused.

Case Imp
 Degree 1

Imp
Degree 2

Imp Bit 1 Imp Bit 2 Error AT
Terms

Error Time(s) Space(MB)

cos(x) 8 8 20 16 224747 1.2e1-5 7.98 66.6
cos(x) 8 8 24 20 1007676 7.52e-7 38.84 347.3

cos(x) 10 8 24 20 615115 2.75e-7 44.16 71
cos(x) 10 8 24 24 4533805 2.76e-7 214.9 523.5

B-splines 3 3 20 16 654 2.86e-5 0.375 0.38
B-splines 3 3 24 20 974 1.79e-6 6.2 0.46
B-splines 3 3 28 24 1356 1.12e-7 114.4 0.55

Chebyshev 8 8 20 16 224747 9.15e-4 7.9 75.6
Chebyshev 8 8 24 20 1007676 5.72e-5 38.73 347
Chebyshev 9 9 20 16 381267 0.0012 21.1 145
Chebyshev 9 9 24 20 2147220 7.24e-5 132.6 599

Filter 4 4 (16,16,16) (16,16,14) 11549 19.39 2.13 55.2
Filter 4 4 (20,20,20) (18,18,18) 307909 3.83 23.5 221.1
Filter 4 4 (20,20,20) (20,18,18) 68156 2.36 16 144.5
DCT 1 1 16 8 512 15.62 0.08 0.24
DCT 1 1 16 10 512 3.86 0.11 0.27
DCT 1 1 16 12 512 0.92 0.13 0.29

Box-Muller (5,4) (4,4) (10,10) (8,8) 219001 0.013 4.65 38.2
Box-Muller (5,6) (5,4) (12,12) (10,10) 613567 0.0068 18.3 86.5

Chapter 6: Algorithms for Precision Verification and Optimization

 139

6.5.2 Verification of Imprecise Circuits
In this section, the algorithm in Figure 6.3 is verified. In order to cover general

applications, two elementary functions represented by Taylor series and three

circuits represented by real-valued polynomials are used as benchmarks to assess

the effectiveness of the algorithm.

Table 6.2: Checking implementations whether to satisfy

the error bound in terms of given parameters

 Table 6.2 lists corresponding errors of various functions due to given

parameters and indicates whether the implementation is suitable to the

specification on the condition of the error bound. Column 11 shows the number of

obtained AT terms; Column 12, “Imprecision,” is a summation of the four types of

errors; time and space requirements are showed in Columns 14 and 15

respectively, which indicates the performance level of the checking algorithm. It

is clear that even when the given error bound is small and parameters have a large

bit size, our algorithm is fast and efficient in terms of time and memory

requirements.

6.5.3 Finding Implementations with the Smallest Area
Engineers usually try to find the implementation with the smallest area, which

helps to lower costs. In Figures 6.6 and 6.8 we verify the algorithms used to

Case Error
Bound

n m q o et ei ec eo AT
Term

Impre-
cision

Satisfied Time
(S)

Mem
(MB)

sin(X) 5e-4 4 12 13 12 2.48e-5 1.22e-4 2.44e-4 1.22e-4 3301 5.13e-4 No 0.78 1.63
sin(X) 5e-4 4 15 14 11 2.48e-5 1.53e-5 1.22e-4 2.44e-4 16383 4.06e-4 Yes 2.42 6.47
sin(X) 2e-4 5 14 15 13 2.76e-7 3.06e-5 7.63e-5 6.1e-5 14912 1.68e-4 Yes 15.5 12.7
sin(X) 2e-4 4 15 13 14 2.48e-5 1.53e-5 2.44e-4 3.05e-5 16383 3.15e-4 No 4.7 6.28
exp(X) 2e-3 6 13 12 12 1.98e-4 1.66e-4 7.32e-4 1.22e-4 4095 1.22e-3 Yes 0.47 1.11
exp(X) 5e-4 6 14 13 14 1.98e-4 8.29e-5 3.66e-4 3.05e-5 6475 6.77e-4 No 0.54 1.77
exp(X) 5e-4 6 16 14 13 1.98e-4 2.07e-5 1.83e-4 6.1e-5 14892 4.63e-4 Yes 0.89 3.68
Bspline 1e-3 -- 12 12 10 -- 7.12e-5 3.66e-4 4.88e-4 298 9.26e-4 Yes 0.09 0.14
Bspline 1e-3 -- 13 10 11 -- 3.56e-5 1.46e-3 2.44e-4 377 1.74e-3 No 0.13 0.19
Cheby 5e-3 -- 14 -- 8 -- 6.54e-3 -- 1.95e-3 14912 8.49e-3 No 5.84 5.14
Cheby 3e-3 -- 17 -- 9 -- 8.2e-4 -- 9.77e-4 89845 1.97e-3 Yes 26.2 28.3
DCT 4 -- -- 8 -- -- -- 15.71 -- 512 15.71 No 0.08 0.24
DCT 4 -- -- 10 -- -- -- 3.93 -- 512 3.93 Yes 0.11 0.27
DCT 1 -- -- 12 -- -- -- 0.98 -- 512 0.98 Yes 0.13 0.29

Chapter 6: Algorithms for Precision Verification and Optimization

 140

process Taylor series and multivariate polynomials.

(A) Performance of Scheme for Optimized Implementations
Using traditional methods, simulation cannot find the optimized

implementations efficiently because all possible parameters should be investigated

for all input values. We provide a much better technique than traditional error

bounding techniques which select the precision parameters without exhaustive

investigation of the interplay between the imprecision sources.

Two elementary functions (cos(x) and exp(x)) given by Taylor series, and three

circuits (B-spline, Chebyshev and DCT) represented by polynomials with one

variable are used in Figure 6.6 as benchmarks to assess the effectiveness of our

algorithm. In Figure 6.8, two circuits (cubic filter and Box-Muller) are used to

verify the algorithm to find the optimized implementations of real-valued

polynomials with multiple input variables.

Table 6.3: Optimized implementations with smallest area

and performance for different error bounds

Column 2 in Table 6.3 gives different error bounds for various functions;

Circuit Error
Bound

n m q o et ei ec eo Node AT
Terms

Impreci-
sion

Time
 [s]

Mem
[MB]

cos(x)/S 5e-4 5 13 14 11 2.32e-6 5.96e-5 1.23e-4 2.44e-4 -- 7098 4.29e-4 1.56 1.86
cos(x)/O 5e-4 5 10 17 17 2.32e-6 4.77e-4 1.52e-5 3.82e-6 4 1012 4.98e-4 1.33 1.52
cos(x)/S 3e-4 5 14 13 15 2.76e-6 3.03e-5 2.46e-4 1.53e-5 -- 12910 2.94e-4 2.56 3.01
cos(x)/O 3e-4 4 12 18 17 1.67e-4 1.19e-4 7.69e-6 3.8e-6 7 2509 2.97e-4 1.58 2.13
exp(x)/S 3e-4 8 14 15 13 2.48e-5 8.42e-5 1.07e-4 6.1e-5 -- 9908 2.77e-4 1.98 2.34
exp(x)/O 3e-4 7 14 18 17 1.98e-4 8.42e-5 1.31e-5 3.7e-6 6 6476 2.95e-4 2.37 2.86
B-spline/S 7e-4 -- 11 11 15 -- 2.45e-4 2.43e-4 1.5e-5 -- 231 5.03e-4 0.09 0.18
B-spline/O 7e-4 -- 10 12 13 -- 4.91e-4 1.22e-4 6.1e-5 1 175 6.74e-4 0.08 0.11
Cheby/O 3e-2 -- 12 -- 7 -- 2.57e-2 -- 3.91e-3 1 3797 2.96e-2 1.42 1.53
Cheby/O 1e-2 -- 14 -- 8 -- 6.54e-3 -- 1.95e-3 1 12911 8.49e-3 3.84 5.14
Cheby/O 3e-3 -- 16 -- 9 -- 1.64e-3 -- 9.77e-4 1 39203 2.62e-3 9 15.2
DCT/O 20 -- -- 8 -- -- -- 15.71 -- 1 512 15.71 0.08 0.13
DCT/O 4 -- -- 10 -- -- 3.92 -- 1 512 3.92 0.11 0.14
DCT/O 1 -- -- 12 -- -- -- 0.98 -- 1 512 0.98 0.13 0.15
Filter/S 50 (14, 14, 14) -- 27.6 -- -- -- 47865 27.6 6.7 8.9
Filter/O 50 (13, 13, 13) -- 49.3 -- -- 21 37636 49.3 11.9 25.4
Filter/S 35 (15, 14, 15) -- 19.5 -- -- -- 51391 19.5 9.2 12.3
Filter/O 35 (13, 14, 14) -- 32.4 -- -- 14 45232 32.4 18.9 25.5
Box-Mul/S 5e-3 (5,6) (12,12) 11 8 1.3e-3 5.8e-4 6.6e-4 1.95e-3 -- 2153903 4.5e-3 2.68 1.58
Box-Mul/O 5e-3 (5,6) (11,11) 11 10 1.3e-3 2.4e-3 6.8e-4 4.9e-4 13 1620432 4.9e-3 5.22 6.87
Box-Mul/S 1e-3 (7,6) (12,13) 12 11 4.2e-5 2.8e-4 3.3e-4 2.5e-4 -- 9725892 9e-4 7.46 4.92
Box-Mul/O 1e-3 (6,6) (12,12) 13 12 3.6e-4 3.2e-4 1.6e-4 1.2e-4 17 5938969 9.6e-4 13.3 17.6

Chapter 6: Algorithms for Precision Verification and Optimization

 141

Columns 3 – 10 list the obtained parameters and corresponding errors for

implementations optimized for the bounds. Columns 11 and 12 show how many

nodes are investigated in the whole procedure and the number of obtained AT

terms; Column 13 gives the total imprecision, which is always smaller than the

given error bound. Time and space requirements are reported in Columns 14 and

15.

In comparison to Figure 6.6, we invoke the sequential method introduced in

Figure 6.4 to solve Problem 6.3, which is a case of feasible implementation. By

considering the precision parameters sequentially, it mimics often applied

schemes for setting precision parameters in isolation. The label “/S” in Column 1

indicates that this sequential assignment algorithm is used in Figure 6.4, while the

label “/O” points to the area optimization algorithm here. The optimization

algorithm traverses more nodes to investigate the real-valued polynomials with

multiple variables, such as cubic filter and Box-Muller, than Taylor series. Please

notice that no unique group of parameters satisfies the error bound; changing one

parameter would affect the others, as in rows 2 and 3, 4 and 5. These rows have

different parameters, and all fit the given error bound indicated by Column 2.

It is clear that, even when the given error bound is small and the parameters are

large, our algorithm is fast and efficient in memory requirements. It takes

advantage of appropriate paths to search and traverse the least valid nodes, which

then leads to very good performance. Our method is not only feasible but a highly

efficient way to get the best implementation. In many cases the optimization

algorithm is faster than the sequential algorithm, which indicates that finding the

best implementation is sometimes more efficient than finding a feasible

implementation. We are unique in searching for the optimized implementation for

a given error bound, while other researches mostly consider area reduction only in

terms of wordlengths.

Chapter 6: Algorithms for Precision Verification and Optimization

 142

 Table 6.4: Result comparison with the paper [45]

Research in [45] utilizes a multi-stage approach to get 8-bit and 16-bit output

precision. Its benchmarks are real-valued polynomials where input wordlength is

considered – it cannot deal with Taylor series and function approximation. We

consider not only the input but coefficients and the output. Table 6.4 compares

results with those in [45]. Our algorithm achieves higher speed and smaller area.

We also notice that benchmarks in [45] have lower degrees than ours. We can

handle functions with higher degrees, such as Chebyshev polynomials of degree 9.

Furthermore, our algorithms are able to process functions with multiple variables.

Cubic filter and Box-Muller, which are more difficult for verification and

optimization, are used to prove it. We facilitate a more complex exploration of

combining as many factors as possible when investigating the imprecision and

approximation of the specification.

Table 6.5: Error comparison of AA and our method

Table 6.5 compares the errors obtained by AA and our method for the same

number of Taylor terms and input bit-widths, listed in Columns 2 and 3. The error

obtained by our method is far smaller than that of AA, which is an indicator of

better accuracy compared to past explorations.

Case Precision Time (s) [45] Area [45]
(Slices)

Time (s) Area
(Slices)

B-Spline 8 0.12 1368 0.07 1132
16 0.19 2188 0.15 2056

DCT 8 0.89 3598 0.08 857
16 0.51 5069 0.17 1481

Degree 4
Polynomial

8 1.9 803 0.96 763
16 2.0 1921 1.55 1208

Case n m AA Ours
sin(X) 3 9 1.52e-2 1.1e-3
sin(X) 3 11 1.52e-2 2.7e-4
sin(X) 4 10 1.57e-2 5.46e-4
sin(X) 4 12 1.57e-2 1.37e-4
sin(X)*exp(X) 4 8 6.7e-2 1.5e-2
sin(X)*exp(X) 4 11 6.7e-2 1.9e-3
sin(X)*exp(X) 5 8 8.9e-2 1.48e-2
sin(X)*exp(X) 5 11 8.9e-2 1.87e-3

Chapter 6: Algorithms for Precision Verification and Optimization

 143

(B) Area of Mapped Optimized Hardware
While the optimization algorithm produces precision parameters for a minimal

size AT polynomial, the exact area of the resulting circuit depends on the

technology used in mapping circuits. We perform further experiments with

mapping on FPGAs to evaluate the real area impact of the proposed optimization

algorithm. In this section we use the Xilinx Virtex-4 XC4VLX100-12 FPGA, with

the ISE tool (version 8.1), the same device and tool as in [45], to obtain a fair

comparison of the results.

Table 6.6: Hardware area of optimized circuits

Table 6.6 compares the area of the FPGA implementations in terms of different

parameters. All implementations can satisfy the given error bound E, shown in the

second column. The rows labeled “/I” use the tight-bound interval method for

input bit-width and coefficient bit-width to improve on the sequential algorithm,

still labeled with “/S”. This new case produces less input and coefficient bits than

the sequential algorithm. The rows labeled “/O” invoke the optimization

algorithm which contains the tight interval method of this dissertation. The results

achieve ~5% area reduction over the optimization algorithm reported in [86] (as

“/O”), which uses the plain interval method for transcendental functions such as

cos (X) and exp (X). The optimization algorithm, in combination with the tight

interval method, can save the area by up to 30% over the sequential exploration of

Circuit E Taylor Terms Input [bits] Coef. [bits] Area [Slice] Saving
cos(X)/S 3e-4 5 13 14 1037 --
cos(X)/I 3e-4 5 12 15 965 6.9%
cos(X)/O 3e-4 4 12 16 746 28.1%
exp(X)/S 3e-4 8 14 15 1179 --
exp(X)/I 3e-4 8 14 13 1136 3.6%
exp(X)/O 3e-4 7 14 16 933 20.9%
Cheby/S 3e-3 -- 20 -- 1906 —
Cheby/O 3e-3 -- 16 -- 1439 24.5%
DCT/S 4 -- -- 14 1162 —
DCT/O 4 -- -- 10 894 23.1%
Filter/S 35 -- (15,15,15) -- 3036 7.6%
Filter/O 35 -- (13,14,14) -- 2725 17%
Muller/S 1e-3 (7,6) (13, 14) 13 4327 --
Muller/I 1e-3 (7,6) (12, 11) 12 3986 7.9%
Muller/O 1e-3 (6,6) (12, 12) 13 3759 13.1%

Chapter 6: Algorithms for Precision Verification and Optimization

 144

individual precision parameters.

In the case of real-valued polynomials that do not contain function

approximation, the optimized algorithm does not benefit from either tight-bound

interval method, so the results do not show “/I” for real-valued polynomials.

Finally, Figure 6.15 describes an achievable FPGA hardware area for

benchmark circuits using different combinations of Taylor terms and input bits.

Such a tabulation facilitates the exploration of trade-offs between precision and

complexity. For comparison, Figure 6.15(b) shows B-spline and Chebyshev

polynomial results from [45]. Results from our optimization algorithm require less

hardware area. When mapped to the same FPGA with the same synthesis tools,

our benchmarks – such as B-Splines or the Chebyshev polynomial – reduce the

area achieved in [45] by 20% while obtaining the same precision.

(5,14) (6,20)(5,16) (7,20)(4,12) (4,14)

2000

2500

3000

1500

1000

ar
ea

 (s
lic

e) ln(X)
cos(X)
sin(X)

(6,18) (7,22)

 a)

 b)

2500

3000

2000

ar
ea

 (s
lic

e)

16 18 20 24 3228

Chebyshev
Polynomial

4000

5000
Degree 4
polynomial in [16]

B-Spline
 in [16]

B-Spline

Chapter 6: Algorithms for Precision Verification and Optimization

 145

 c)

Figure 6.15: Hardware area of Taylor series and real-valued

polynomials in different Taylor terms and input bits

6.5.4 Finding Implementations due to Various Constraints
In this section, we verify that the algorithms can handle more constraints in

terms of area, delay and interface input, as shown in Figures 6.6, 6.12 and 6.14.

 Table 6.7: Optimization of imprecise circuits due to constraints

The constraints are listed in Column 3, and Column 4 shows calculated

optimized parameters; Columns 5 - 8 indicate each error, and the column labeled

“Imprecision” (which is smaller than the given error bound) is a summation of the

four types of errors; time and space requirements are shown in Columns 11 and 12.

The performance indicates the optimization algorithms are highly efficient, while

the algorithms can calculate different implementations in terms of the three

Case Error
Bound

Constraint Optimized
Parameters

et ei ec eo Impre-
cision

AT
Term

Time
(s)

Mem
(MB)

cos(x) 5e-4 fixed input (12) (4,12,13,14) 1.67e-4 1.19e-4 1.83e-4 3.05e-5 4.99e-4 2510 0.14 0.1
cos(x) 5e-4 delay (4,11,14,18) 1.67e-4 2.39e-4 9.14e-5 1.91e-6 4.99e-4 1486 0.31 0.43
cos(x) 5e-4 area (5,10,17,17) 2.32e-6 4.77e-4 1.52e-5 3.82e-6 4.98e-4 1012 0.55 0.48
exp(x) 1e-4 fixed input (17) (7,17,16,16) 2.48e-5 1.04e-5 5.34e-5 7.63e-6 9.62e-5 41225 0.56 1.41
exp(x) 1e-4 delay (7,15,17,17) 2.48e-5 4.15e-5 2.67e-5 3.81e-6 9.68e-5 16383 0.41 0.95
exp(x) 1e-4 area (8,14,19,17) 2.76e-6 8.29e-5 7.63e-6 3.81e-6 9.71e-5 12910 1.7 0.91
B-spline 5e-4 fixed input (11) (-,11,11,16) -- 2.45e-4 2.43e-4 7.63e-5 4.95e-4 67 0.17 0.3
B-spline 5e-4 area (-,10,16,19) -- 4.91e-4 7.63e-6 9.53e-7 4.99e-4 56 0.14 0.13
Cheby 3e-3 fixed input (18) (-,18,-,8) -- 4.1e-4 -- 1.95e-3 2.36e-3 45685 11.6 19.7
Cheby 3e-3 area (-,16,-,9) -- 1.64e-3 -- 9.77e-4 2.62e-3 39203 9 15.2
Filter 50 fixed input

(15,14,-)
(15,14,12) -- 42.6 -- -- 42.6 42827 3.25 4.71

Filter 50 area (13,13,13) -- 49.3 -- -- 49.3 37636 11.9 25.4

5000

5500

4500

4000ar
ea

 (s
lic

e)

(12,12) (14,14) (16,16) (18,18) (20,20) (22,22)

(5,5)(5,5)

(6,6)
(6,6)

(6,6)

(7,7)Box-Muller

Chapter 6: Algorithms for Precision Verification and Optimization

 146

constraints.

We map the obtained logic to Xilinx Virtex5 FPGAs by their ISE tool. Table 6.8

lists the mapped area and delay for each implementation from Table 6.7. Columns

5 and 6 show the mapped results of delay and area respectively. The

implementations in Rows 3 and 6 have the minimum delay, while those in Rows 4

and 7 have the smallest area on the condition of the same error bound. Clearly, the

optimized implementations save significant area or delay for circuits compared to

other feasible implementations. Less area and less delay means less power

dissipation and faster calculation speed, and these are important factors in

microchips. This demonstrates the necessity of finding an implementation with

the smallest area or delay in real applications.

Table 6.8: Hardware delay and area for optimized implementations

 6.6 Conclusions
 We proposed a series of algorithms to handle imprecise circuits in this chapter.

A comparison algorithm was described to compute imprecision between two

components, and a verification algorithm was then proposed to verify whether a

given implementation satisfies the error bound. We determined that a sequential

method can find a feasible implementation to fit the given error bound, while

optimization algorithms are designed to obtain optimized implementations in

terms of different constraints, including the smallest area, minimum delay and

Case E Constraint Parameter Delay (ns) Area (Slices)
exp(x) 1e-4 fixed input (7,17,16,16) 11.85 1662
exp(x) 1e-4 delay (7,15,17,17) 9.13 1536
exp(x) 1e-4 area (8,14,19,17) 10.1 1389
B-spl 5e-4 fixed input (-,11,11,16) 6.37 422
B-spl 5e-4 area (-,10,16,19) 5.76 396
Cheby 3e-3 fixed input (-,18,-,8) 13.58 1758
Cheby 3e-3 area (-,16,-,9) 12.23 1439
Filter 50 fixed input (15,14,12) 14.9 2646
Filter 50 area (13,13,13) 13.79 2435

Chapter 6: Algorithms for Precision Verification and Optimization

 147

interface input bit-width. We saw that these algorithms can process both Taylor

series and multivariate polynomials, and cover various applications of imprecise

circuits. The experiments used several arithmetic circuits as benchmarks to verify

these algorithms and the results were satisfactory.

 148

Chapter 7

Range Analysis

Range analysis is an important task for obtaining the best cost and

performance of arithmetic circuits. The traditional methods, either

simulation-based or static, have the disadvantages of low efficiency

and coarse bounds leading to the use of unnecessary bits. We propose

a new method of performing fixed-point range analysis that combines

several techniques to efficiently obtain exact ranges.

Chapter 7: Range Analysis

 149

7.1 Disadvantages of Traditional Methods
In Chapters 5 and 6, we analyzed precision and proposed a series of algorithms

to process the design and verification of imprecise circuits. In this chapter we

address range and allocate integer bit-widths. Allocating bit-widths in a datapath

is a necessary step in the synthesis because of its direct impact on resources and

delay. Manual or sub-optimal methods might over- or under-allocate bit-widths.

Too few bits will cause overflow, while too many are not cost efficient. Therefore,

an automatic way of finding the most appropriate bit-widths is a significant

contribution in the high-level synthesis of datapaths.

In obtaining the optimal allocation of bit-widths, the data representation that

exposes the variable ranges plays a key role. If we can find the exact ranges for all

intermediate variables we can achieve the smallest bit-widths, which will reduce

both the circuit area and the delay. Chapter 2 explored past attempts at this. In the

range analysis so far, there is a clear separation among the solutions that deal with

the quality of the result versus those where the computation time has been the

focus, without the explicit possibility to exploit the specifics of a given problem.

Dynamic methods and SMT focus on tight ranges, while IA and AA are designed

to shorten the calculation time. Figure 7.1 compares the time requirement for each

method.

Figure 7.1: Tradeoff between ranges and calculation times

Chapter 7: Range Analysis

 150

The error E, defined as the largest difference between the true and the resulting

range values, reflects the method accuracy. The goal is to obtain the smallest

value of E whilst maintaining the one-sided error, i.e., not underestimating the

bit-width. From the figure, SMT, AA and IA may overestimate ranges, which may

generate additional bits for data representation.

Example 7.1: Use of IA and AA in range calculation. Consider the

implementation of a function z=ab+c-b with the range of signals as shown in

square brackets in Figure 7.2.

Using IA is easy to get the ranges for each output. For example, dI = ab is

calculated as [min(-1*4, -1*10, 2*4, 2*10) , max(-1*4, -1*10, 2*4, 2*10)]= [-10,

20]. In AA, an ordinary interval [xmin, xmax] for an input variable can be converted

into an equivalent affine form 0 1Ax x x ε= + with

max min
0 2

x xx +
=

max min
1 2

x xx −
= (7-1)

The intermediate signal or the output is represented as a first degree

polynomial:

0 1 1 2 2...A n ny y y y yε ε ε= + + +

where y0, y1, ... yn are real-valued numbers and 1 2, ... nε ε ε are symbolic

variables whose values are only known to lie in the range[-1,+1].

b = [-1,2]

zA= [-34, -4]

a = [4,10]c= -22

dA=[-13,20]

eA=[-35, -2]

Input
Variables

Intermediate
Variables

Output
Variable

dI=[-10,20]

eI =[-32, -2]

zI = [-34, -1]

d =[-10,20]

e=[-32, -2]

z = [-31, -4]

Figure 7.2: Example performing z=ab+c-b by IA and AA

Chapter 7: Range Analysis

 151

In affine forms, we get:

aA=7+3 1ε bA =0.5+1.5 2ε cA = -22

dA = aAbA = 3.5+1.5 1ε +10.5 2ε + 4.5 1 2ε ε = 3.5+1.5 1ε +10.5 2ε + 4.5 3ε

eA = dA + cA = -18.5+1.5 1ε +10.5 2ε + 4.5 3ε

zA = eA - bA = -19+1.5 1ε + 9 2ε + 4.5 3ε

Figure 7.2 describes the exact ranges and the ranges obtained by IA and AA

respectively. We observe that by AA the intermediate variable e must be

represented by 7 signed integer bits since its range is beyond [-32, 31] by 6 signed

integer bits, and the primary output is also using 7 bits; however, 6 bits are enough

for the exact ranges to represent e and z since their ranges are [-32, -2] and [-31,

-4]. The reason is as 1 2 3ε ε ε= in aAbA, so the term 1 2ε ε is dependant of the two

variables 1ε and 2ε , but AA uses a new variable 3ε as a substitution. This new

variable is independent of 1ε and 2ε , hence AA has to extend the range.

 Note that AT can encode intervals, as required in range analysis. It is easy to

represent an entire domain, that is, [0, 2N-1] for unsigned integers and [-2N, 2N-1]

for sign extended integers. AT can represent them compactly as
1

0
2

N
k

k
k

x
−

=
∑ and

2

1
0

(1 2) 2
N

k
N k

k
x x

−

−
=

− ∑ . For example, the expression of 8x3+4x2+2x1+x0 represents the

entire domain [0, 15]. However, in order to represent the subset of [0, 13], the

expression, needs a larger polynomial, 8x3+4x2+2x1+x0 -14x3x2x1-x3x2x1x0.

Obviously, the subset generates a much more complex expression, and if there are

operations such as multiplication and exponentiation, a number of AT terms will

be generated leading to a need for a branch-and-bound search.

Considering the features of AT, Example 7.1 provides useful information for

range analysis:

 AA can get the tighter range than IA. For instance, the range of the final

output z in the datapath obtained by AA is tighter than that of IA.

 IA is not always worse than AA. Observing the intermediate variables “d” and

Chapter 7: Range Analysis

 152

“e” in Figure 7.2, IA gets the tighter ranges than AA, because there is no

correlation existing in the two intermediate outputs d = ab and e = ab-c.

Correlation is the concept defined in [42], meaning that if the value of a term in

a polynomial changes, the other terms will follow the change. If the

polynomial exhibits no correlation, IA is better than AA; otherwise, AA is

better.

 AA can represent the arbitrary input range compactly while AT might not, so

the input is better to be represented by AA. We note that if the uncertain

variable ε in AA takes an entire range (say normalized to [-1, 1]), AT may

easily represent it.

 The worst case is when the unit quantity of range leads to an additional bit. For

example, if the exact range of e is [-32, -2] and if the lower bound moves by 1,

leading to -33, an additional bit will be generated. Since the intermediate

variables cannot obtain the exact range, the datapath propagates the coarse

ranges backward to lead the inexact result. Of course, the additional bits are

useless and cause unnecessary area and deteriorate the performance.

In terms of the above analysis, we conclude that the advantages of IA, AA and

AT are complementary and can be used together, as long as they are employed in

suitable conditions. Hence, a hybrid algorithm for the static range analysis and

bit-width optimization is appealing. In this chapter, we introduce the methods that

try to achieve the exact ranges and the short calculation time concurrently, by

tackling every (sub-)problem in a precise, yet efficient way, depending on its

nature. We develop a hybrid engine that can get exact ranges while reducing the

calculation time as much as possible by analyzing the correlation between the

variables, which then lends itself to a selection of a best approach for a given

(sub-)problem. The method combines advantages of IA, AA and AT with high

efficiency. It is capable of obtaining the exact ranges and allocating the smallest

bit-widths to find optimized implementations with the smallest area.

Chapter 7: Range Analysis

 153

 7.2 Datapath Analysis
In order to develop the hybrid engine, it is useful to analyze the polynomial

representing a datapath. We use Example 7.1 to assist the explanation of the

analysis.

7.2.1 AA Expressions
The datapath of Example 7.1 has three primary inputs, two intermediate outputs

and one primary output. The three primary variables a, b and c are represented by

AA in terms of Eqn. (7-1) as:

aA=7+3 1ε bA=0.5+1.5 2ε cA= -22

The first intermediate variable is d = ab. It is easy to confirm that there is no

correlation in the polynomial since a and b are independent, and the two variables

only occur once in the polynomial, so the range of d can be calculated by IA, that

is, [-10, 20]. Although it is simple to get the range of d, the AA expression is

necessary since in the future the expression may be used. So we get:

dA=aA bA = (7+3 1ε) (0.5+1.5 2ε) =3.5+ 1.5 1ε +10.5 2ε + 4.5 1 2ε ε

Then the next intermediate variable in the datapath is e = ab+c. By scanning

the polynomial, there is also no correlation, so the range of e is calculated by IA,

that is, [-32, -2]. The AA expression of e is:

eA = dA – cA = -18.5 +1.5 1ε +10.5 2ε + 4.5 1 2ε ε
 The final step is to determine the range of the primary output z =ab + c - b. The

polynomial has correlation because the variable b occurs two times in the

polynomial, so the two terms of “ab” and “-b” have correlation. The case is much

more complex than the cases without correlation. The AA expression of z is:

 zA = -19 +1.5 1ε + 9 2ε + 4.5 1 2ε ε

Chapter 7: Range Analysis

 154

7.2.2 Determining Quantization Bits of Uncertain

Variables
 As 1ε and 2ε belong to [-1, 1], AT can represent the scope approximately by

m bits as a signed fractional number, i.e.,
1

0
1

(1 2) 2
m

i
i

i

x x
−

−

=

− ∑ in Figure 7.3.

sign 0.5 0.25 0.125

x0 x1 x2 x3…

 Figure 7.3: Data format of the signed factional number

 If we can determine the value of m, the output is represented compactly and the

approximation can be evaluated. So the next step is to choose the appropriate

bit-widths for 1ε and 2ε . Please note that the two uncertain variables may have

different bit-widths, but at first we suppose that they have same bit-widths.

 From the Example 7.1, the worst case occurs if the approximation error is

beyond 1, which means the difference between the exact range and the obtained

range is larger than “1”, that is, |exact_range – obtained_range| > 1. The case is

possible to generate an additional bit. In order to avoid the worst case, the error

must be limited to 1 unit to avoid this case, and the inequality becomes:

1 2 1 2| 1.5 | | 9 | | 4.5 | 1err err errε ε ε ε+ + <
r r r r

1ε
r

 and 2ε
r

 are quantized uncertain variables to replace 1ε and 2ε . So there is

the inequality (here we assume that 1ε
r

 and 2ε
r

 have uniform bit-widths m):

1 2| 4.5 | 1errε ε <
r r

 ⇒ 4.5[1- (1-2-m+1)2] <1

The reason to choose the term “ 1 24.5ε ε
r r ” first is because the term has second-order

uncertainty while terms such as 11 .5 εr and 29εr have first-order uncertainties.

The order of uncertainty for a monomial is defined as the degree summation of

uncertain variables in the monomial. The preferential choice of the term with

highest order uncertainty is helpful to decrease the calculation complexity.

Obviously when all bits in the data format are 1, the fractional number has the

Chapter 7: Range Analysis

 155

largest approximation error 2-m+1, or else 2-m for other values. For instance, in the

Figure 7.3 to approximate “1”, while x1, x2 and x3 are all 1, the error is 2-3 = 0.125,

and in other values the error is 2-4 = 0.0625. While the maximum error is 2-m+1, the

value of 1ε
r

is 1-2-m+1 and 1 2ε ε
r r

equals to (1-2-m+1)2. Therefore, the maximum error

of the term 1 24 .5ε ε
r r is represented as 4.5[1- (1-2-m+1)2].

By solving the inequality, the value of m is 5, that means, 1ε
r

and 2ε
r

both have

5 bits at least to satisfy that the approximation error is restricted to 1 unit.

Substituting 1ε
r

= 2ε
r

= 0.9375 as five bits, the real value is 4.5 * 0.93752 = 3.955.

 We conclude that the real maximum error is 4.5 – 3.955 = 0.545 so the left error

space is 1-0.545 = 0.455. Then we explore the term 1.5 1ε
r

. The inequality is 1.5 *

2-m+1 < 0.455. So 1ε
r

 must have three bits at least. Considering 5 bits in the term

1 24.5ε ε
r r and 3 bits in the term 11 .5 ε

r , 1ε
r

 should be 5 bits to satisfy the two

terms at the same time. So we get 11 .5 ε
r = 1.5 * 0.9375 =1.40625.

 The real maximum error for the term 11 .5 εr is 1.5-1.40625 = 0.09375 so the

left error space is 1-0.545-0.09375=0.36125. The final term 29ε
r must satisfy the

inequality 9 * 2-m+1 < 0.36125.

The bit-width of 1ε
r is 6 in the inequality and in combination with the

bit-width in the term 1 24 .5ε ε
r r , we obtain the final bit-width of 2ε

r
is 6. At last,

we determine the two uncertain variables have 5 and 6 bits. The expression of z is

changed as:

z = -19 +1.5
4

0
1

(1 2) 2 i
i

i
x x −

=
− ∑ + 9

5

0
1

(1 2) 2 i
i

i
y y −

=
− ∑ + 4.5

4 5

0 0
1 1

[(1 2) 2][(1 2) 2]i i
i i

i i
x x y y− −

= =
− −∑ ∑

By invoking the conversion algorithm and the branch searching algorithm, the

lower bound and the upper bound are -4.7881 and -30.3814. Since the bounds are

approximate to the exact bounds, and the absolute values of uncertain variables

are smaller, the calculated bounds should be covered by the exact bounds, so we

get the exact bounds of the primary output are [-31, -4].

If the term 1 24 .5ε ε
r r is not chosen first, 1ε

r and 2ε
r both need 8 signed bits for

representations. Although the obtained range of z is same, the calculation time

Chapter 7: Range Analysis

 156

increases much more since more quantization bits burden the conversion

algorithm and the branch searching algorithm. Hence, the first choice of the term

with higher uncertain degree is very significant.

7.2.3 Allocating Bit-widths for All Outputs
It is easy to allocate the bit-widths After all intermediate ranges have been

obtained. The integer bit-width (IB) is calculated as:

IB = [log2 (max(|xlow|, |xupp|))] + α (7-2)
where

ߙ ൌ ൜2 ݉݀݋൫݈݃݋ଶሺ݉ܽݔሺ|ݎ௟௢௪|, ௨௣௣|ሻ,1൯ݎ| ൌ 0
 ݁ݏ݅ݓݎ݄݁ݐ݋ 1

 In Eqn. (7-2), xlow and xupp represent the lower and the upper bound of the

obtained range, and the square bracket is the ceiling function. The intermediate

outputs and the primary output all have signed 6 bits since their ranges are

restricted in the scope [-32, 31]. Compared to AA, e and z save one bit;

compared to IA, the final output range is much tighter.

Our method combines techniques of IA, AA and AT. If the polynomial has no

correlation, it adopts IA to calculate the range; if not, using AA gets compact

expressions while AT is applied to handle correlation. The step of quantizing the

uncertain variables in AA expressions keeps trace to the correlation, hence the

accuracy is guaranteed. Therefore, the method avoids their disadvantages and

integrates each advantage, and hence it can process the worst case to obtain exact

ranges.

7.3 Algorithm for Calculating Ranges
 Figure 7.4 describes the algorithm to allocate bit-widths in a datapath. It first

retrieves the polynomial description, and gets the AA expression for future

Chapter 7: Range Analysis

 157

utilization. If the polynomial has no correlation, IA is used to get the exact range

so the bit-width is determined; if not, the uncertain variables are quantized in AA

expression, the conversion algorithm is invoked to convert the expression to an AT,

and the branch-and-bound searching algorithm finds the upper and the lower

bounds. Finally, the bit-width of the output is allocated.

start Retrieve polynomial
description

for an output

Confirm
correlation?

Get AA expression

NoRange
obtained

IA

Quantize
uncertain variables in

AA expression

Invoke conversion
algorithm

Invoke branch
searching algorithm

Range
obtained

Allocate
bit-width

Allocate
bit-width

Done

Yes

Finish
datapath?

No

Yes

Figure 7.4: Algorithm for allocating bit-widths

The two key steps in Figure 7.4 are how to confirm correlation and quantize

uncertain variables. Figure 7.5 describes how to check whether a polynomial has

some correlation. The symbol n represents the number of input variables in the

polynomial and the symbol t[i] records occurred times of the variable vi. If all

variables occur only once, the function clearly exhibits no correlation.

Chapter 7: Range Analysis

 158

Figure 7.5: Algorithm for confirming correlation

 In Example 7.1, the algorithm scans the intermediate variable d and finds that

the variables a and b only occur one time in the polynomial, so no correlation

exists; similarly, the variable b occurs two times in the expression of z, so the

polynomial has correlation and IA cannot obtain its range directly. AA and AT are

used to process the case. The important step is determining the quantization bits

for each uncertain variable. Figure 7.6 describes the subroutine.

The subroutine sorts the terms in the AA expression. The terms with higher

uncertain degrees are explored with higher priority. Considering the worst case,

the initial error space is set to 1 unit, so the initial bit-widths of uncertain variables

can be procured. The error space is reset and the sub-routine continues to handle

the next term. After all terms are processed, the final bit-widths of corresponding

uncertain variables are the maximum obtained bit-widths.

Confirm_correlation (f)

{ for (p=0; p<terms_num; p++) // loop all terms

{ for (i=0; i<n; i++)

if (variable vi is present)

 t[i]++; // count appearances for the variable

 }

 for (i=0; i<n; i++)

{ if (t[i] >1) // the polynomial f has correlation

 return corr_flag = 1;

}

if (i = n) // the polynomial f has no correlation

return corr_flag = 0;

 }

Chapter 7: Range Analysis

 159

Figure 7.6: Algorithm for determining quantization bit-widths for uncertain variables

The initial error space limits the deviation of the obtained ranges - the unit

value can cause the worst case to make the obtained ranges not equal to the exact

ranges. The efficient AT conversion and branch-and-bound searching are

instrumental to the high efficiency in performing the range analysis.

 7.4 Experimental Results
We implement the algorithm by C++. The benchmarks are described by Verilog

HDL augmented with the datapath representation and range information. We try

several benchmarks to assess its performance. Experiments are done on a 512MB,

Determine_uncertain (AA_Expre)

{ for (p=0; p<terms_num; p++)

// loop all terms in AA_Expre

 { if (current_term.degree < next_term.degree)

 Move_forward (next_term);

 } // sort terms with higher uncertain degrees;

 error_space = 1;

 for (p=0; p<terms_num; p++)

// loop all sorted terms

 {)])./_1(1(log1[deg/1
2

ree
p coefftermspaceerrorm −−−= ;

 error_space = error_space - term.coeff * [1- ree
m

i

i deg
1

1
)2(∑

−

=

−];

 store mp in corresponding uncertain variable ε ;

}

for (i=0; i<uncertain_var_num; i++)

qi = max (bit-widths for the uncertain variable iε);

 return q; }

Chapter 7: Range Analysis

 160

2.4GHz Intel Celeron machine under Linux.

7.4.1 Filter Polynomial
 Image processing applications often use polynomial filter with presentation

given by:

 F = a1x4 + a2x3 + a3x2

 Here we consider an example as (X∈[-20, 10]):

F = 4X4 + 16X3 + 20X2

 The implementation has four intermediate variables.

q1 = X2 q2 = q1X q3 = q2X

q4 = 4q2 + 16q3 z = q4 + 20q1

Table 7.1: Comparison with AA for filter polynomial

7.4.2 Dickson Polynomial
Dickson polynomials have important applications in coding and communication

areas. The definition for n>0 is:

D0(x, a) = 2 Dn(x, a) =

The polynomial contains two variables. Here we explore the implementation of

the 4th order polynomial over real numbers (assume x∈[-50, 50], a∈[-20, 40]):

 D4(x, a) = x4 -4x2a + 2a2

 The implementation has 5 intermediate variables from q1 to q5:

Output Our Method AA
Range Bit Range Bit

q1 [0, 400] 9 [-350, 400] 10
q2 [-8000, 1000] 14 [-8000, 7750] 14
q3 [0, 160000] 18 [-158750,160000] 19
q4 [-108,512000] 20 [-511000,534000] 21
z [0, 520000] 19 [-511000,542000] 21

pnp
n

p
xa

p
pn

pn
p 2

]2/[

0
)(−

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−∑

Chapter 7: Range Analysis

 161

 q1 = x2 q2 = q1
2 q3 = 4q1a

 q4 = 2a2 q5 = q2 – q3 z = q5 + q4

Table 7.2: Comparison of our method, AA, improved simulation

and AT for Dickson polynomial

7.4.3 Multivariate Datapaths
 Here, a datapath is always expressed by a polynomial with multiple variables.

The polynomial with 3 integer variables is:

F = 30A2– 60AB - 40BC

 Here A ∈ [-20, 30], B ∈ [10, 40] and C ∈ [-10, 30]. The case is broken

intermediately into:

 q1 = 30A2 q2 = 60AB q3 = 40BC

 q4 = q1 – q2 z = q4 - q3

 Table 7.3: Comparison with AA for a multivariate datapath

Output
Our Method AA
Range Bit Range Bit

q1 [0, 27000] 15 [-25650, 27000] 16
q2 [-48000, 72000] 18 [-57000,72000] 18
q3 [-16000, 48000] 17 [-28000, 48000] 17
q4 [-45000, 60000] 17 [-82500, 69000] 18
z [-93000, 76000] 18 [-131500, 97000] 19

Output Our Method AA Time (s)
Range Bit Range Bit Ours Sim AT

q1 [0,2500] 12 [-2500, 2500] 13 0.03 0.03 0.08
q2 [0，6250000] 23 [-6250000,

6250000]
24 0.04 0.14 1.56

q3 [-200000,400000] 20 [-400000,
400000]

20 0.06 0.2 0.25

q4 [0, 3200] 12 [-2800, 3200] 13 0.03 0.03 0.27
q5 [-6399,6450000] 24 [-6450000,

6450000]
24 1.15 > 60 1.87

z [-3199,6453200] 24 [-6453200, 6453200] 24 1.4 > 60 2.35

Chapter 7: Range Analysis

 162

7.4.4 Energy Spectral Density
 The benchmark of energy spectral density [55] calculates:

)()(
2
1)(* wFwFw
π

φ =

where F(w) is the FFT of discrete signals. The experiments use an 8-point with

each of the 8 inputs a complex number in [−128,128] + [−128,128]i.

Table 7.4: Our method vs. AA vs. SMT for energy spectral density

 We use the AA method introduced in [42] for comparison, and show the

generated bit-widths by our method and AA respectively. In Table 7.1 to 7.3, the

intermediate variables’ and the primary outputs’ ranges are exact and far tighter

than those of AA. Table 7.2 compares execution time with the methods of

improved simulation and pure AT. Since the pure AT method generates more terms

and spends time in conversion and the search, while the improved simulation has

to calculate many points and compare them to found bounds, their execution time

is much longer than our method. Table 7.4 compares our results with those

obtained by SMT [55]. Using a benchmark from [55], our method can get the

exact ranges, while SMT obtains more precise ranges than AA. Regarding the

SMT results, since there are negative quantities, the bit-widths could require one

additional bit, but as authors estimate that the function will only have positive

values, the additional bit is omitted in their reporting. Reported runtime in [55] is

on the order of 100s of seconds, while we spend 8.9 seconds for the same

benchmark.

Output

 Our Method AA SMT
Range Bit Range Bit Range Bit

0 [0, 2097152] 22 [-1835008, 2097152] 22 [-1, 2097153] 22
1 [0, 1984106] 21 [-2373666, 2635814] 23 [-1, 1984106] 21
2 [0, 1790022] 21 [-2269321, 2531463] 23 [-1, 1790022] 21
3 [0, 2052757] 21 [-2373666, 2635814] 23 [-1, 2052757] 21
4 [0, 2097152] 22 [-1835008, 2097152] 22 [-1, 2097153] 22
5 [0, 1957096] 21 [-2373666, 2635814] 23 [-1, 1957096] 21
6 [0, 1790023] 21 [-2269321, 2531463] 23 [-1, 1790023] 21
7 [0, 2029555] 21 [-2373666, 2635814] 23 [-1, 2029555] 21

Chapter 7: Range Analysis

 163

7.4.5 Area of Optimized Implementations
As the exact area of the resulting circuit depends on the technology used in

mapping circuits, we perform further experiments with mapping to FPGAs. We

map the circuits to Xilinx Virtex5 FPGAs using ISE tool, version 8.1, to evaluate

the real area impact of the proposed algorithm in Table 7.5. Again, the

implementations obtained by AA are used as comparison.

Table 7.5: Area comparison of our method and AA

Rows 2 – 4, 5 – 7, and 8 – 10 use the same datapaths but different input ranges

so leading to different input bit-widths which reflect the area change. Column 4

indicates the saving ratio. There are four variables which save bits in the filter

benchmark, while another two benchmarks only have three variables, so the filter

has larger area saving ratio. With the increase of the input ranges, the saving ratio

decreases because the auxiliary area caused by additional bits reduces. Our

method can achieve the optimized implementations with area smaller for around 6%

- 12%. The delay of implementations is compared in Column 5 - 7. Due to the he

smaller bit-widths, we are able to decrease delay around 6%- 10%. Hence, the

hybrid method is helpful to both area and delay. The calculation time of AA is

close to 1 second while our method requires 3 – 6 seconds. The increase in

computation time pays off, as the obtained ranges are far tighter.

Circuit Area (Slices) Delay (ns)
Ours AA Saving Ours AA Saving

Filter 686 772 11.1% 23.5 26 9.62%
Filter 725 805 9.96% 24.6 26.9 8.55%
Filter 756 820 7.77% 25.4 27.5 7.64%
Dickson 809 897 9.8% 31.3 33.5 6.57%
Dickson 845 926 8.7% 32 33.9 5.6%
Dickson 877 948 7.5% 32.4 34.1 4.99%
MultiVar 532 574 7.3% 27.4 29.9 8.36%
MultiVar 557 596 6.5% 27.9 30.2 7.62%
MultiVar 588 623 5.6% 28.7 30.7 6.51%

Chapter 7: Range Analysis

 164

 7.5 Conclusions
Range analysis is an important step in RTL synthesis since it directly impacts

cost and performance. Previous methods, including the improved

simulation-based techniques, are of low efficiency, while the AA-based methods

reach coarse bounds. The coarse ranges may generate unnecessarily additional

bits, leading to more costly circuits. In this thesis, we propose a new method to

calculate ranges statically. It combines techniques of IA, AA and AT to find ranges

efficiently, while at the same time the obtained ranges can be exact, hence

avoiding the generation of additional bits. The key to our hybrid method is the

ability to handle the correlation. Each intermediate output can obtain the smallest

satisfying bit-width based on the ranges; therefore, the optimal implementation

with the smallest hardware area can be achieved. The experiments indicate that

the method is much closer in computation time to the approximate methods such

as AA-based rather than more exhaustive SMT-based, while at the same time

optimizing the bit-widths, which necessarily leads to the efficient area and delay

characteristics obtained by synthesis.

 165

Chapter 8
Combining Range and Precision

 We discuss fixed-point circuits together with range and precision in

this chapter. The important aspects lie in how to allocate appropriate

integer and fractional bit-widths, and estimate the error. It is

necessary to conduct the mathematic model of the circuit in order to

get the optimized implementation. We analyze precision, and propose

an algorithm to calculate range and optimize the allocation of

fractional bit-width. Furthermore, circuits with feedbacks and

floating-point representation are investigated.

Chapter 8: Combining Range and Precision

 166

8.1 Fixed-Point Representation
We have discussed precision and range corresponding to fractional bit-width

(FB) and integer bit-width (IB) respectively in above chapters. A fixed-point

representation often has IB and FB concurrently. Figure 8.1 describes the two

problems in the fixed-point representation.

Fixed-point
Specification

(IB, FB)

Range Precision

Figure 8.1: Exploration of the fixed-point representation

Example 8.1: A datapath with three primary inputs a, b and c is shown in Figure

8.2. The numerical bounds are given in the square brackets.

b= [-2.8, 5.6]a= [-3.6, 4.2]

Intermeidate
Variable

Output
Variable

d

Input
Variables

c= [-2.5, 2.7]

e

Figure 8.2: The datapath of Example 8.1

 The datapath has one intermediate output d and one primary output e where

d=ab and e=d+c. All variables need to be represented by the fixed-point format

both with IB and FB.

Important problems in the example are stated as follows:

 How to get the value bounds for all variables?

Chapter 8: Combining Range and Precision

 167

 How to allocate the bit-widths for all variables included the primary inputs?

 How to estimate the error for the primary output?

 How to get the optimized implementation?

The above four questions are most significant to all fixed-point circuits. Since

the primary inputs have FB, we can conclude that the primary output also has FB.

In real applications, engineers generally give the error bound to make the

maximum difference between the exact value and the true value of the primary

output restricted in the bound. The interplay of the four problems results in

hardness of analysis. Determination of IBs relies on the values bounds of all

variables, while determination of FBs and optimization rely on the error bound.

 Past explorations only focus one aspect. For instance, authors in [55]

investigate how to get ranges and then allocate IB, but they do not explore the

precision so cannot allocate FB. The paper [42] analyzes both range and precision,

and allocates IB and FB. But it has no capability to get the optimized

implementation with the smallest hardware area. Exploring the four problems

concurrently is difficult. In this chapter, we analyze range and precision, and

propose an algorithm to allocate IB and FB, and then obtain the optimized

implementation.

 8.2 Analysis of Range and Precision
 Now we use the Example 8.1 to help analysis of range and precision. The

Chapter 7 has already given the algorithm that combines IA, AA and AT in Figure

7.3 to get the exact ranges. The algorithm represents primary inputs as AA

expressions, and then checks whether the polynomial representing the datapath

has correlation between monomials. If not, IA is invoked to get ranges; otherwise,

it quantizes the uncertain variables, and the algorithms of AT conversion and

branch searching are invoked to find ranges. The hybrid method has high

efficiency and can get exact ranges to allocate smallest IB for all variables. Using

Chapter 8: Combining Range and Precision

 168

the hybrid method in the Chapter 7, the minimum and the maximum integer parts

of the intermediate variable d are -21 and 24 respectively, while for the primary

output e they are -23 and 26. Therefore, the IBs for the two output are both 6

(included the sign bit).

 So the main problem changes to how to analyze precision. It is easy to know

the biggest error is 2-FB-1 if the fractional part has the length of FB.

Example 8.2: Given the range of [0, 14.95], IB is 4 and let FB be 3. We can

evaluate the precision is 2-4 = 0.0625. The maximum value “14.95” can be coded

to “15” and the error is 0.05. There is a special case. If the range is [0, 15.95],

since the IB is only 4, the maximum value “15.95” is coded as 15.875, the error is

0.075 and beyond 2-4. In this case, the reason is that the IB restricts the coding to

represent 16, so the largest error is not 2-FB-1 but 2-FB.

 Generally, we do not consider the special case that the integer part equals 2N-1.

If it occurs, as long as the IB increases one bit, the special case is cancelled. So we

explore the biggest error 2-FB-1. Let a% represent the exact value and a represent

the true value. We get:

 a%= a + 12 aFB− −
1ε b%= b + 12 bFB− −

2ε (8-1)

where FBa is the FB of a. Hence, the error at x due to finite precision effects is

given by

 Ea = 12 aFB− −
1ε

For multiplication: d% = a% b% = ab + a Eb + b Ea + Ea Eb + 12 dFB− −
3ε

 ⇒ Ed = a Eb + b Ea + Ea Eb + 12 dFB− −
3ε

The primary output:

 e%= d% + c% = ab + a Eb + b Ea + Ea Eb + 12 dFB− −
3ε + c + Ec + 12 eFB− −

5ε

⇒ Ee = a Eb + b Ea + Ea Eb + 12 dFB− −
3ε + Ec + 12 eFB− −

5ε

Note that Ee would be at its maximum when the signals a and b are at their

absolute maximum, that is, a = 4.2 and b = 5.6. We get the following maximum

error at the output e% :

Chapter 8: Combining Range and Precision

 169

max(Ee)=4.2* 12 bFB− − +5.6* 12 aFB− − + 22 a bFB FB− − − + 12 dFB− − + 12 cFB− − + 12 eFB− − (8-2)
We first assume all variables with uniform FBs, so get:

 max(Ee) = 6.4 * 2-FB + 0.25 * 4-FB < 0.01

Solving the inequality, the FB is 10 which means if all variables have 10 bits for

fractional representations, the error of the primary output can be limited in the

error bound. However, the uniform FBs do not lead to the optimized

implementation. The Chapter 6 introduces how to use the AT size as the cost

function to find the optimized implementation with the smallest area. Therefore,

we need to represent the datapath by AT.

 The sign bit is assumed to be the most significant bit (MSB) of the input vector.

Figure 8.3 describes the fixed-point representation of a.

 Figure 8.3: Fixed-point representation of variable a

 Since the range of a is [-3.6, 4.2], the IB is 3 and one bit sign, so the AT

representation is:

 AT(a) =
12

3
0 0

(1 2) 2 2
a

a

a a

FB
k FBi

FB FB i k
i k

a a a
−

−
+ +

= =

− +∑ ∑ (8-3)

The first part in Eqn. (8-3) represents the sign and integer number, while the

second part represents the fractional number.

 In Chapter 6, we introduce using AT size to indicate the area because AT size is

in a good correspondence to the overall circuit area. The datapath is represented

by AT as:

 AT(d) = AT(a) * AT(b)

=
12

3
0 0

((1 2) 2 2)
a

a

a a

FB
k FBi

FB FB i k
i k

a a a
−

−
+ +

= =

− +∑ ∑ *
12

3
0 0

((1 2) 2 2)
b

b

b b

FB
k FBi

FB FB i k
i k

b b b
−

−
+ +

= =

− +∑ ∑

 AT(e) = AT(d) + AT(c)

 =
14

5
0 0

((1 2) 2 2)
d

d

d d

FB
k FBi

FB FB i k
i k

d d d
−

−
+ +

= =

− +∑ ∑ +
11

2
0 0

((1 2) 2 2)
c

c

c c

FB
k FBi

FB FB i k
i k

c c c
−

−
+ +

= =

− +∑ ∑

The AT size of the datapath is calculated by:

IB FBsign

aFBa+3 aFBa+2 aFBa+1 aFBa aFBa-1 a0

Chapter 8: Combining Range and Precision

 170

 |AT(f)| = |AT(d)| + |AT(e)| (8-4)
It requires the smallest |AT(f)| to obtain the optimized implementation with the

smallest area. The uniform FBs for all variables are FBa = FBb = FBc = FBd =FBe

=10 and the maximum error of the primary output is represented as Eqn. (8-2):

max(Ee) = 2.1* 2 bFB− +2.8* 2 aFB− +0.25* 2 a bFB FB− − +0.5* 2 dFB−

+ 0.5* 2 cFB− +0.5* 2 eFB−

 A searching algorithm is proposed in Figure 6.6. Observing the Eqn. (8-4), FBa

and FBb have more impact on the AT size than FBc and FBd. Hence, starting from

the uniform FBs, that is, FBa =FBb =FBc =FBd =FBe =10, the algorithm first

decreases FBa and computs the AT size, until the calculated error of e is beyond

the error bound. Then the algorithm backtracks to search FBb. After all possible

implementations are found, the algorithm compares their AT sizes, and the

implementation with the smallest AT size is the best one. In Example 8.1, the

satisfying sequence is (each value in a bracket represents a variable FB):

(10, 10, 10, 10, 10)→ (9, 10, 10, 10, 10)→(8, 11, 11, 12, 13) → (8, 11, 11, 13,

12)→ (8, 11, 12, 11, 13)→ (8, 11, 12, 13, 11)→ (9, 9, 11, 12, 13)→ (9, 9, 11, 13,

12)→(9, 9, 12, 11, 13)→(9, 9, 12, 13, 11)

 The above implementations all satisfy the error bound. By calculating their AT

sizes, the implementation of (9, 9, 11, 12, 13) has the smallest AT size, so it is the

optimized implementation. Finally, the bit-width allocation of the optimized

implementation is:

a (4, 9) b (4, 9) c (3, 11) d (6, 12) e (6, 13)

The first value is IB including the sign bit and the second is FB in the bracket.

8.3 Algorithm for Finding

Optimized Implementations
 We propose an algorithm to allocate bit-widths for all variables in the datapath

Chapter 8: Combining Range and Precision

 171

to satisfy the given error bound and get the optimized implementation with the

smallest area in terms of the above analysis in this section.

 The inputs of the algorithm comprise the datapath structure and the error bound.

The constraint restricts that the error of the primary output cannot break through

the error bound. The AT size of the datapath is used as an indicator to the area, and

the optimized implementation demands the smallest size.

 Figure 8.4: Algorithm of finding the optimized fixed-point implementation

Figure 8.4 describes the algorithm. It first invokes the algorithm introduced in

Chapter 7 to get exact ranges of all variables, and allocates IBs (Step 1). Then the

algorithm constructs the expression of the primary output and gets the uniform

FBs (Step 2 and 3). After that, the AT size expression is obtained (Step 4). By

analyzing the expression, the algorithm determines the variable searching order

Problem 8.1: Finding the optimized implementation for a fixed-point datapath

Inputs: imp, E

Constraints: imprecision < E

Outputs: bit-widths of all variables

Goal: minimum |AT(f)|

Design_Opt_Imp (imp, E)
1. { IBs = Calculate_Range (imp);
2. Construct expression e of the primary output;
3. FB = Uniform_FB (e);
4. Construct expression of AT size |AT(f)|;
5. Determine the searching order V;
6. for (i=0; i< var_num; i++)
7. { e = Calculate_error (--FBvi);
8. if (e < E) continue;
9. else ++ FBvi ;
10. Re-compute FBs of other variables;
11. |AT(f)| = Calculate_AT_size (AT(f), FBs);
12. Store (FBs, |AT(f)|);

}
13. Compare (|AT(f)|);
14. return FBopt;

}

Chapter 8: Combining Range and Precision

 172

(Step 5). A loop begins in Step 6 in terms of the searching order, and decreases the

variable FB with highest priority and calculates the error until the error is beyond

the error bound (Step 6 - 9). Then, FBs of other variables will be updated (Step

10). The algorithm calculates the AT size, and stores it for the obtained satisfying

FBs (Step 11 and 12); while the loop is finished, all AT sizes are compared to find

the smallest one, so the optimized FBs are found.

Example 8.3: Starting from the first group with the uniform FBs (10, 10, 10, 10,

10), Figure 8.5 describes how to find the satisfying group (8, 11, 11, 12, 13).

The FBa is first decreased to get the group (9, 10, 10, 10, 10) and the

calculation of the error is within the error bound, so the new group is satisfying.

Then the algorithm continues to cut down FBa and finds that the group (8, 10, 10,

10, 10) cannot satisfy the error bound. However, the error caused by FBa is within

the error bound, so the algorithm increases FBb to get the group (8, 11, 11, 10, 10).

The new group does not satisfy the error bound, but the error addition caused by

FBa and FBb is smaller than the bound, then FBc is increased to form the group (8,

11, 11, 11, 10). The procedure is continued until the group (8, 11, 11, 12, 13) is

reached. Since the error is limited in the bound, the group satisfies the error

bound. The searching process is repeated until all satisfying groups are found.

Figure 8.5 lists all the traversed groups and the satisfying groups are marked by

gray color.

10,10,10,10,10

9,10,10,10,10

8,10,10,10,10

8,11,11,10,10

8,11,11,11,10

8,11,11,12,10 8,11,11,12,11

8,11,11,12,12

8,11,11,12,138,11,10,10,10

Figure 8.5: Finding next satisfying FBs

Chapter 8: Combining Range and Precision

 173

If the coefficients also have fractional numbers, we can use the same

multiplication analysis like d% to process precision and search them together with

other variables, so in the datapath all fixed-point variables can be allocated

appropriate bit-widths to get the optimized implementation.

 8.4 Discussion of Cost Functions
 In above analysis, AT size is a cost function to estimate hardware cost and

choose the optimized implementation. There are other cost functions besides AT

size. The usual one employs factorization. Given a polynomial to describe the

specification, factorization allows us to find the optimized implementation with

the smallest area. For example, the polynomial of c = ab + b2 has two word-level

variables a and b. The direct implementation needs two multipliers and one adder.

However, if using factorization method to change the form as c = b(a+b), the

implementation only needs one multiplier and one adder. In this example,

factorization plays as a cost function to shrink the number of multipliers.

 However, factorization has an obvious disadvantage. For example, given two

implementations of Taylor series with the first implementation having 5 finite

terms and 12-bit inputs, and the other with 6 terms and 10-bit inputs. They both

have Horner forms and structures as Figure 6.11. Although the second

implementation has one more stage, the input bit-width is smaller, that is, the

multiplier size is 10*10 and smaller than the first one with multiplier size of

12*12.

The case generates a problem: which factor has more impact on area, stage or

multiplier size? The cost function of factorization (counting the number of

multipliers) cannot answer the question because it is too coarse to estimate the

cost. That is the reason why we use AT size as a cost function in Taylor series.

 More commonly, given a specification represented by a polynomial, it can be

minimized by many ways. Factorization is one possibility. However, as there is

Chapter 8: Combining Range and Precision

 174

not a unique answer how to conduct factorization, we must be very careful here,

as different approaches may have different multiplier sizes. For instance, using

factorization needs a 12*12 multiplier, and another implementation needs two

multipliers as 6*6 and 9*9, so the question is how to determine which

implementation is better? Of course AT size can solve the problem. So there is a

prerequisite to use factorization as a cost function, that is, all implementations

must keep same size of multipliers.

 It is possible to combine factorization and AT size. Consider an example: d =

ab +b2+ac with different bit-widths of a, b and c. There are three

implementations:

 Direct implementation with 3 multipliers and 2 adders

 Factorization by b: d= b (a+b) +ac with 2 multipliers and 2 adders

 Factorization by a: d= a(b+c)+b2 with 2 multipliers and 2 adders

The first one may need more area so factorization is possibly leading to the

optimized implementation. Consider the latter two implementations. They have

same numbers of multipliers and adders. Comparing AT sizes in the two

implementations, we can choose the one with smaller AT size. That means,

factorization and AT size can play together. In this case factorization is a coarse

cost function and then using AT size refines it.

8.5 Sequential Fixed-Point Arithmetic Circuits
 The above analysis and past explorations of fixed-point representations are

based on combinational circuits. Given a datapath with FFs like Figure 8.6, the

analysis of range and precision depends on the lengths of the FFs.

Chapter 8: Combining Range and Precision

 175

b= [-2.8, 5.6]a= [-3.6, 4.2]

Intermediate
Variable

Output
Variable

d

Input
Variables

c= [-2.5, 2.7]

e

FFs

FFs

g

h

Figure 8.6: A sequential datapath with FFs

 If the lengths of the FFs equal to the lengths of their inputs, that is, (dIB= eIB,

dFB= eFB) and (gIB= hIB, gFB= hFB), the analysis of range and precision is the same

as the combinational circuit without FFs. Otherwise, the sequential circuit may

cause overflow, and the analysis expression is different with the combinational

circuit. For instance, d and e are two different variables so they have their own

precision expressions. Therefore, the analysis of sequential fixed-point designs

has no special essence.

8.6 Extension to Feedback Datapaths
 Past explorations cannot process the datapaths with feedbacks. The usual

datapaths with feedbacks are IIR (infinite impulse response) filters which apply to

DSP. In this section, we propose algorithms to find ranges of circuits with

feedbacks.

Chapter 8: Combining Range and Precision

 176

8.6.1 Delay Units
 A feedback circuit always includes delay units that consist of registers, so

analyzing the characteristic of delay units is the first step. Figure 8.7 describes the

relationship of the input range and the output range.

z-1x [xmin, xmax] y [ymin, ymax]

Figure 8.7: A delay unit with ranges

Since the delay unit only has the shift operation and cannot change the input

value, its output keeps the same range as the input range, that is, ymin = xmin and

ymax = xmax. Here xmin and xmax, ymin and ymax represent the lower bounds and the

upper bounds of the input and the output respectively.

8.6.2 FIR Filters
 First, we explore FIR (finite impulse response) filters. The impulse response is

finite because it settles to zero in a finite number of sample intervals. The

difference equation of Eqn. (8-5) defines the output of an FIR filter based on the

input:

0

[] []
N

i
i

y n h x n i
=

= −∑ (8-5)

where x[n] is the input signal, hi are the filter coefficients and N is the filter order

which are commonly referred to as taps. The Z-transform of the impulse response

yields the transfer function of the FIR filter:

 FIR filters are inherently stable because all the poles are located within the unit

circle. The absence of feedbacks means that any rounding errors are not

compounded by summed iterations. The same relative error occurs in each

calculation which makes implementation simpler. The main disadvantage of FIR

0
()

N
n

n
n

H z h z−

=

= ∑

Chapter 8: Combining Range and Precision

 177

filters is that a lot of taps cause considerably more computation especially when

low frequency (relative to the sample rate) cutoffs are needed. Figure 8.8

describes an implementation of the FIR filter with k+1 taps.

Z-1 Z-1 Z-1......

+

y[n]

x[n]

h0 h1 h2 hn-k

x[n-1] x[n-2] x[n-k]

Figure 8.8: Implementation of the FIR filter with k+1 taps

 Given the range of the input x, calculating ranges of intermediate variables and

the primary output is easy. The ranges of the intermediate variables are calculated

by the multiplication of the coefficients and the range of the primary input, and

the range of the primary output is calculated by the addition of intermediate

ranges.

Example 8.4: The following circuit is a FIR filter with three taps. All ranges are

described in the square brackets.

z-1 z-1
x [-5, 10]

0.1 0.3
-0.2

y [-4, 5]

a [-5, 10] b [-5, 10]

c [-0.5, 1]

d [-1.5, 3]

e [-2, 4]

f [-2, 1]

Figure 8.9: Ranges of a FIR filter

 In the figure, the delayed variables a and b have the same ranges as the

primary input x. The ranges of the intermediate variables c, d and f equal to the

range of x multiplying the tap coefficients, and the range of the primary output y

Chapter 8: Combining Range and Precision

 178

equal to the summation of the ranges of e and f.

8.6.3 Linear Feedbacks – IIR Filters
 Calculating the ranges of FIR filters without feedbacks is a simpler task

compared to the much more complex case of IIR filters. IIR systems have an

impulse response function that is non-zero over an infinite length of time. A

condensed form of the difference equation is:

 ∑∑
==

−+−=
S

j
j

R

i
i jnyainxbny

10
][][][(8-6)

where R is the feedforward filter order, and bi are the feedforward filter

coefficients; S is the feedback filter order, and ai are the feedback filter

coefficients. The Z-transform of the impulse response yields the transfer function

of the IIR filter:

0

1

()
1

P
i

i
i

Q
j

j
j

b z
H z

a z

−

=

−

=

=
−

∑

∑

 The first part in Eqn. (8-6) is the same as Eqn. (8-5) so the ranges are easy to

find. We focus on the second part as feedbacks possibly leading to unstability,

meaning that the range of the output is not convergent and will increase (or

decrease) to infinity (or become infinitesimal).

Example 8.5: The following circuit has a feedback. The primary input x is limited

in the range [-5, 10], and the output z has the expression of z =2(x+ z-1). It is

obvious that the circuit is unstable since the range of z has no limitation.

Chapter 8: Combining Range and Precision

 179

x [-5, 10]

2 z-1

z

Figure 8.10: A circuit with a feedback

Now we analyze why the circuit is unstable. We assume the circuit is stable and

the range of z is [r0, r1] (r1 > r0). In terms of the above analysis of delay units, z-1

has the same range of z and they are considered as same variables since z-1 is

driven completely by z, so the expression representing the datapath is:

 2(2.5+7.5 1ε + 2
0101

22
εrrrr −

+
+) = 2

0101

22
εrrrr −

+
+

 ⇒ 5+15 1ε = 2
0101

22
εrrrr −

−
+

−

Since the assumption requires the convergence of z, the parts with certainty and

the parts with uncertainty in the left and the right of the above equation should

equal respectively:

5
2

01 =
+

−
rr

 15
2

01 =
−

−
rr

By solving the two equations, we obtain r1= -10 and r0=20. The results violate the

assumption r1 > r0 so the circuit is unstable and the output has no convergent

range.

 Example 8.5 describes how to explore whether the circuit with linear feedbacks

is stable by AA. Now we amend the multiplicand coefficient in the Figure 8.10 to

re-calculate the output range.

Example 8.6: The output z has the expression of z =0.25(x+ z-1).

Chapter 8: Combining Range and Precision

 180

x [-5, 10]

0.25 z-1

z

Figure 8.11: A circuit like Example 8.5 with the different coefficient

We get the expression by AA forms:

0.25(2.5+7.5 1ε + 2
0101

22
εrrrr −

+
+

) = 2
0101

22
εrrrr −

+
+

 ⇒ 18
15

8
5 ε+ = 2

0101

8
)(3

8
)(3 εrrrr −
+

+

8
5

8
)(3 01 =

+ rr

8
15

8
)(3 01 =

− rr

By solving the equations, we get r1 =
3

10 and r0 =
3
5

− . The results fit the

assumption of r1 > r0 that denotes the circuit is stable. Using this initial range to

replace the unknown variable z-1 in the polynomial 0.25(x+ z-1) gets the final

output range [
3
5

− ,
3

10] which is the same as the initial range. .The experiment

proves the circuit is convergent to the range.

Based on the two examples, we propose a method in Figure 8.12 to explore

whether IIR is stable and calculate the ranges in the datapath if stable. It uses AA

forms to express the implementation, and partitions the forms into parts of

certainty and uncertainty after simplification (Step 2 - 4). Here CL and CR

represent the certainty expressions in the left and the right of the AA form while

UL and UR are the uncertainty expressions. The initial range is obtained by solving

the equations of certainty and uncertainty (Step 5). If the condition r1 > r0 is

satisfied, the initial range replaces the unknown feedback variable and the

algorithm re-calculates the final output range (Step 7). Please note that the Step 7

Chapter 8: Combining Range and Precision

 181

is necessary since the initial range may under-estimate the bounds so it needs

refinement.

 Figure 8.12: Algorithm of finding ranges of IIR filters

Find_Linear_Range (imp)

{

1. Assume the range (r0 , r1);

2. AA_form = AA_Express (imp, r0 , r1);

3. Simplify (AA_form);

4. ({CL, UL}, {CR, UR}) = Partition (AA_form);

5. (r0 , r1) = Solve (CL= CR , UL = UR);

6. if (r1 < r0) return “The circuit is unstable!”;

else

7. { (r0 , r1) = AA_Range (imp, r0 , r1);

return range (r0 , r1);

}

}

AA_Express (imp, r0 , r1)

{ Using AA to replace known inputs;

AAout = (r1 + r0)/2 +ε (r1 - r0)/2 ;

Replace all feedback variables with AAout ;

return AA_form;

}

AA_Range (imp, r0 , r1)

{ loop all uncertain terms in the expression

{ if (term.coeff < 0) uncertain_var = -1;

 else uncertain_var = 1;

 r1 += term.coeff * uncertain_var;

}

r0 = -r1 + constant; r1 += constant; return (r0 , r1)

}

Chapter 8: Combining Range and Precision

 182

Example 8.7: An IIR filter is described in the Figure 8.13. It has two taps with

coefficients 0.2 and -0.3.

Figure 8.13: An IIR filter with two taps

The expression of the IIR filter is: x+ 0.2* z-1 - 0.3* z-2 = z
Using the AA form of z replaces z-1 and z-2 to get the representation in terms of

step 2 in Figure 8.13:

2
0101

2
0101

2
0101

1 22
)

22
(*3.0)

22
(*2.05.75.2 εεεε

rrrrrrrrrrrr −
+

+
=

−
+

+
−

−
+

+
++

 2
0101

1 20
)(11

20
)(115.75.2 εε rrrr −
+

+
=+

 5.2
20

)(11 01 =
+ rr

 5.7
20

)(11 01 =
− rr

The results are r1 =9.09 and r0 = -4.56 so the filter is stable and the output has the

convergent range. The initial range replaces the unknown variables z-1 and z-2 by

the AA form 2.27+ 6.83 2ε in the expression of x+ 0.2* z-1 - 0.3* z-2, so

the polynomial changes to:

21221 683.05.7273.2)83.627.2(*3.0)83.627.2(*2.05.75.2 εεεεε −+⇒+−+++

The coefficient of the term “ 15.7 ε ” is positive so the algorithm sets 11 =ε while

sets 12 −=ε to get r1. Based on Step 7, the final output range is re-calculated as

[-5.91, 10.46]. The ranges of the two intermediate variables can be calculated by

the coefficients of taps as a=[-0.1.82, 2.09], b=[-3.14, 1.77]. The range of the

intermediate variable c cannot be calculated directly by the range addition of a

and b because the two variables are both driven by z so present correlation leads

to a coarse range. Using IA to calculate the range of c by range subtraction of z

and x obtains [-0.91, 0.45]. By experiments, the output range is [-5.901, 10.447],

z-1

z-1

0.2

-0.3

zx [-5, 10]

c
a

b

Chapter 8: Combining Range and Precision

 183

after 14 iterations and the experiments prove the correctness of the calculated

results.

Example 8.8: An IIR filter is described like Example 8.7 in the Figure 8.13. It has

two taps with coefficients 0.2 and 0.3.

z-1

z-1

0.2

0.3

zx [-5, 10]

a [-2, 4]

b [-3, 6]
Figure 8.14: An IIR filter like Example 8.7 with different coefficients

The expression of the IIR filter is: x+ 0.2* z-1 + 0.3* z-2 = z

The representation of AA forms is:

2
0101

2
0101

2
0101

1 22
)

22
(*3.0)

22
(*2.05.75.2 εεεε rrrrrrrrrrrr −

+
+

=
−

−
+

+
−

−
+

++

⇒ 2

0101
1 44

5.75.2 εε rrrr −
+

+
=+

5.2
4

01 =
+ rr

 5.7
4

01 =
− rr

The results are r1 =20 and r0 = -10 so the filter is stable and the output has the

convergent range. Using the initial range to replace the unknown variables z-1 and

z-2 by the AA form 2155 ε+ in the polynomial of x+ 0.2* z-1 + 0.3* z-2, and the

final output range is re-calculated as [-10, 20] which is the same as the initial

range. By experiments, the output range is [-9.96, 19.92], and the two

intermediate variables a and b have ranges [-1.98, 3.978] and [-2.96, 5.95]

respectively after 13 iterations. The experimental results are quite suitable to the

calculated results.

8.6.4 Non-linear Feedbacks
 Consider a circuit with a non-linear feedback in the Figure 8.15. The expression

Chapter 8: Combining Range and Precision

 184

is z = x + (0.25* z-1) 2.

x [-1, 2]

0.25

z-1

z

a

b

c

Forward
Path

Backward
Path

Figure 8.15: A circuit with a non-linear feedback

If using the above method processing the non-linear feedback, we obtain:

 2
0101)(323264 rrrr +−+=

 2
01

2
0

2
101)()(2)(32128 rrrrrr −−−−−=

 Obviously solving the two equations is difficult, so we need to develop a new

method to handle the circuits with non-linear feedbacks. First we introduce

definitions.

Definition 8.1: A bounded range is an interval value [rlow, rupp] which does not

contain infinity on any one side.

Definition 8.2: BIBO Stability. A system is Bounded-Input, Bounded-Output

(BIBO) stable when the output bound is always finite for an arbitrary bounded

input.

 Based on the above two definitions, if all intermediate variables have bounded

ranges which means these variables are convergent, the primary output is also

convergent. It is easy to know that a bound range adds or multiplies an unbound

range will lead to an unbound output range. For example, [a, b] + [c, ∞] = [a+c,

Chapter 8: Combining Range and Precision

 185

∞] or [a, b] ൈ [c, ∞] = [min(ac, bc), ∞] result in infinity.

In Figure 8.15, we assume the primary output z is convergent. We split the

datapath into the forward path and the backward path, and the feedback is

included in the backward path. By above analysis, the variables a and b should be

both convergent. The expression of the non-linear variable c is c = b2. Based on

the knowledge of power series, when the range of b lies in [-1, 1], the variable c

obtains the range [0, 1] and forms a closure space to b, that is,

)()(brangecrange ⊆ , to guarantee convergence of the non-linear feedback. By

the addition of x in the forward path, we obtain that the range of z is [-1, 3] labeled

as zforward. We go back to the variable a from b, and conclude that the range of a is

[-4, 4], and then we obtain that the range of z is [-4, 4] labeled as zbackward. The

convergence requires the condition of backwardforward zz ⊆ because if the condition

is violated, the real range of z will increase in each iteration and ultimately reach

infinity (or infinitesimal). Now the ranges of zforward and zbackward satisfy the

condition, we confirm that the circuit is stable.

The different ranges of zforward and zback denote that the obtained ranges are

coarse and they need to be refined. Let z = zforward then a loop calculation of z

starts. Each loop begins to go through the backward path to get the range of c, and

then follows the forward path to obtain the new range of z. The threshold value

“0.01” is set. In two consecutive iterations, if the error of the two obtained ranges

is smaller than the threshold, that is, |znew – zold| < threshold, the loop calculation

is stopped. In this example, after four loops the threshold condition is reached, so

finally we get the convergent range of z as [-0.944, 2.341]. Figure 8.16 describes

the algorithm to find ranges for circuits with non-linear feedbacks.

The algorithm first splits the datapath to two sub-paths as the forward path and

the backward path. The coarse range of the feedback variable is calculated in

terms of the non-linear feedback expression. Then two ranges of the output are

obtained due to the forward path and the backward path by the subroutine

Calculate_range introduced in Chapter 7. Comparing the two ranges, if the

circuit is stable, the algorithm starts a loop calculation until the error between the

two consecutive obtained ranges is limited in the threshold. Therefore, the

Chapter 8: Combining Range and Precision

 186

convergent range of the primary output is found.

Figure 8.16: Algorithm of finding ranges of circuits with non-linear feedbacks

8.6.5 Experimental Results
We implement the algorithm in Figure 8.12 in C++. Several benchmarks are

sued to assess its performance. Experiments are done on a 512MB, 2.4GHz Intel

Celeron machine under Linux. Using the variable y represents the first part in Eqn.

(8-5) and the primary output is z.

A) Butterworth Filters
Butterworth filters are also known as "maximally flat" filters because they have

no passband ripple. They also have a monotonic response in both the stopband

and passband. The indicators of (wp, ap, ws, as) represent passband frequency,

Find_Nonlinear_Range (imp, threshold, input_range)

{

(forward_path, backward_path) = Split (imp);

feedback_range = Converge (feedback_expression);

zforward = Calculate_range (forward_path, input_range);

zbackward = Calculate_range (backward_path, feedback_range);

if (backwardforward zz ⊄) return “The circuit is not stable.”;

else

{ znew = zforward ;

while (|znew – zold| ≥ threshold)

 { zold = znew ;

 feedback_range = Calculate_Range (backward_path, zold);

 znew = Calculate_Range (forward_path, input_range, feedback_range);

 }

 return znew ;

}

Chapter 8: Combining Range and Precision

 187

amplitude error, stopband frequency and stopband attenuation.

The first Butterworth filter has indicators (0.2π , 1dB, 0.35π , 10dB), and the

coefficients from smaller orders to larger orders are:

b = (0.0456, 0.1027, 0.0154) a = (1.9184, -1.6546, 0.6853, -0.1127)

 The second Butterworth filter has indicators (0.2π , 3dB, 0.6π , 40dB), and the

coefficients are:

b = (0.0473, 0.0709, 0.0473, 0.0118)

 a = (1.8778, -1.6214, 0.663, -0.1087)

The third Butterworth filter is a bandpass filter which has indicators ((0.3π -

0.4π), 3dB, (0-0.2π , 0.5π), 18dB), and the coefficients are:

b = (-0.042, 0.021) a = (1.491, -2.848, 1.68, -1.273)

B) Chebyshev Filters
Chebyshev filters are analog or digital filters having a steeper roll-off and more

passband ripple or stopband ripple than Butterworth filters.

 The first Chebyshev filter has coefficients:

b = (9.055E-5, 0, -0.00027, 0, 0.00027, 0, -9.055E-5)

a = (5.765, -13.899, 17.936, -13.067, 5.095, -0.831)

The second Chebyshev filter corresponds to the indicators (0.2π , 1dB, 0.3π ,

15dB) and has the coefficients:

b = (0.0073, 0.011, 0.0073, 0.0018)

 a = (1.5548, -2.9809, 2.2925, -0.5507)

C) Cauer Filters
A Cauer filter has a feature of equalized ripple behavior in both the passband

and the stopband. The indicators of the Causer filter are (0.1π , 0.1dB, 0.5π ,

32dB) and the coefficients are given:

b = (-0.724, 0.0984, 0, 0.00027, 0,-9.055E-5)

 a = (3.3553, -4.3439, 2.5578, -0.5771)

Chapter 8: Combining Range and Precision

 188

Table 8.1: Performance of the algorithm finding IIR ranges

 Table 8.1 describes the ranges of the benchmarks. Column 2 denotes the input

ranges, and the intermediate ranges and the primary ranges are shown in Column

3 and 4. Column 6 describes the real obtained ranges by simulation after iterations

whose number is listed in Column 5. Column 7 and 8 indicate the algorithm

performance of time and memory. From the table, we can find that the real ranges

approximate the calculated ranges very well, and the requirements of time and

space are satisfiable. Using simulation will spend huge time by a lot of iterations

such as Row 5 and is hard to determine the lower bound and the upper bound.

However, the algorithm can complete the job very easily.

8.7 Extension to Floating-Point Circuits
 If the radix point (decimal point, or, more commonly in computers, binary point)

can "float", that is, it can be placed anywhere relative to the significant digits of

the number, the representation refers to the term “floating-point”. Because the

position of the radix point is indicated separately in the internal representation,

floating-point representation can thus be thought of as a computer realization of

scientific notation.

The floating-point representation can support a much wider range of values

than the fixed-point representation. For example, a fixed-point representation that

has eight decimal digits, with the decimal point assumed to be positioned after the

sixth digit, can represent the numbers 123450.67, 87654.32, 2345.00, and so on,

IIR Input Range Range of y Output Range z Time
(s)

Memory
(MB)

Butter [-500, 1000] [-81.85, 163.7] [-511.9, 1023.1] 0.12 0.16
Butter [-2000, 1000] [-354.6, 177.3] [-1970.3, 985.3] 0.15 0.19
Butter [-5000, 10000] [-210, 105] [-2100, 4200] 0.15 0.2
Cheby [-4E+5, 1E+6] [-504.8, 504.8] [-504800, 504800] 0.26 0.25
Cheby [-3000, 2000] [-82.2, 54.8] [-120.9, 80.6] 0.16 0.2
Cauer [-500, 800] [-500.3, 312.7] [-63309, 39602] 0.18 0.17

Chapter 8: Combining Range and Precision

 189

whereas a floating-point representation (such as the IEEE 754 decimal32 format)

with eight decimal digits could in addition represent 12.3456789, 123.4567,

0.0001234567, 1234567000000000, and so on. The floating-point format requires

a little more storage (to encode the position of the radix point), so the

floating-representation can achieve greater range at the expense of precision when

stored in the same space.

Floating point numbers are used to obtain a dynamic range for representable

real numbers without having to scale the operands. Floating point numbers are

approximations of real numbers and it is not possible to represent an infinite

continum of real data into precisely equivalent floating point value.

Logically, a floating-point number consists of [156]:

 A signed digit string of a given length in a given base (or radix). This is

known as the significand, or sometimes the mantissa or coefficient. The radix

point is implicitly assumed to always lie in a certain position within the

significand — often just after the most significant digit. The length of the

significand determines the precision to which numbers can be represented.

 A signed integer exponent is a scale to modify the magnitude of the number.

A floating point number system is completely specified by specifying a suitable

base β, significand (or mantissa) M, and exponent E. A floating point number F

has the value

 F = M βE
β is the base of exponent and it is common to all floating point numbers in a

system. Commonly the significand is a signed - magnitude fraction. The floating

point format consists of a sign bit S, e bits of an exponent E, and m bits of an

unsigned fraction M, as shown below:

S Exponent E Unsigned SignificandM

The value of such a floating point number is given by:

 F = (-1)SM βE
The most common representation of exponent is as a biased exponent,

according to which E = Etrue + bias, where bias is a constant and Etrue is the true

Chapter 8: Combining Range and Precision

 190

value of exponent. The range of Etrue using the e bits of the exponent field is:

122 11 −≤≤− −− etruee E

The bias is normally selected as the magnitude of the most negative exponent; i.e.

2e-1, so that

120 −≤≤ eE
When comparing two exponents, which is required in the floating point

addition for example, the sign bits of exponents can be ignored and they can be

treated as unsigned numbers. This is an advantage of using biased exponent.

Representable
Negative Numbers

Representable
Positive Numbers

Negative
Underflow

Positive
Underflow

Negative
Overflow Positive

Overflow

< -21 27
> -2-126 < 2-126 > 2127

Figure 8.17: Range of floating point numbers

 Not only cannot all real numbers be expressed exactly, there are whole ranges

of numbers that cannot be represented. Consider the real number line as shown in

Figure 8.17. The number zero can be represented exactly because it is defined by

the standard. The positive numbers that can be represented fall approximately in

the range 2-126 to 2+127.

Numbers greater than 2+127 cannot be represented; this is called positive

overflow. A similar range of negative numbers can be represented. Numbers to

the left of that range cannot be represented; this is negative overflow.

Example 8.9: S=0, E=3 bits, M = 4 bits. Then the bias is 2E-1 -1 =3. The

maximum range is:

0 1 1 1 1 1 1 1

(-1)0 1.1111 27-3 = 1.1111 24 = 11111 = 3110

The minimum range, assuming exponent 000 is reserved for zero.

0 0 0 1 0 0 0 0

(-1)0 1.0000 21-3 = 1.0000 2-2 = 0.01 = 0.2510

Chapter 8: Combining Range and Precision

 191

 The precision of floating-point numbers is not like fixed-point numbers which

have uniform error as 2-FB-1. The error in each exponent value is different. Figure

8.18 describes the error with non-uniform distribution for Example 8.9.

......

0.25 0.25+2-6 0.5 0.5+2-5

......

1 1+2-4

.............

16 16+20 31

......

Figure 8.18: Non-uniform distribution error in floating-point representation

 In the figure, there are 2M = 16 values in each exponent interval, and the

smallest error is 2-7, that is,
1(2 1)2

E M−− − + in the left axis, while the largest error is
12 12

E M− − − = 2-1 in the right axis. We can obtain the expression of each interval error

as 12c bias M− − − . Here c is the coded value of the interval, and bias is calculated as

2E-1-1. For example, the interval “2” includes values from 2 to 2+15*2-3. “2” is

coded as “100” and bias is “011”, so they correspond to the values of “4” and “3”

respectively. The interval error is calculated as 24-3-1-4 = 2-4.

 In terms of the above analysis, we can perform range and precision analysis for

floating-point circuits. The range analysis is the same as the Chapter 7, and the

hybrid method is also suitable for floating-point circuits to find exact ranges.

Precision analysis is a bit different with the fixed-point circuits. Given the input

range as [r1, r2], Eqn. (8-1) represents the relation between the exact value and the

real value for fixed-point circuits. Since the floating-point representation has no

uniform distribution error, the coefficient of the uncertain variable must set the

largest error value:

 a%= a + 12c bias M− − − ε

Here c is chosen the larger coded value in the two intervals of r1 and r2, that is, if |

r1| > | r2|, we choose the interval coded value of r1; if not, we choose the interval

coded value of r2.

Example 8.10: The floating-point representation is as Example 8.9. The input

range is a= [-7.5, 13]. Since the absolute values of the lower bound and the upper

bound are 7.5 and 13 respectively, we choose the interval value of 13. Because the

value “13” is located in the interval of “8”, the interval coded value is 110 as

Chapter 8: Combining Range and Precision

 192

c=6, so the coefficient of the uncertain variable is 12c bias M− − − = 2-2. The

expression of the exact input value is changed to a%= a + 2-2ε .

 After we amend the input expression, the method of performing precision

analysis in section 8.2 can also be used for floating-point datapath. So we extend

the fixed-point process to the floating-point process.

8.8 Conclusions
 Fixed-point representations often comprise integer and fractional bit-widths.

The problems of exploring fixed-point circuits include range analysis and

precision analysis. Since the circuits cannot get the exact fractional numbers, the

satisfying implementation must fit the error bound, that is, the maximum error of

the primary output is restricted by the bound. In order to find the attractive

optimized implementation with the smallest area, it is necessary to obtain ranges

and construct the precision models. The AT size plays an indicator to describe area.

We propose an algorithm to find the optimized implementation in this chapter. It

invokes the algorithm in Chapter 7 to get ranges and allocates IBs, and then

calculates uniform FBs. Starting from the FBs, the algorithm searches all

satisfying implementations and calculates their AT sizes. The implementation with

the smallest AT size is the optimized one that can fit the error bound and have the

smallest area.

 The circuits with feedbacks are more complex to find ranges like IIR filters. We

handle FIR filters without feedbacks only with delay units, and then propose a

method to process IIR filters with linear feedbacks. The method can explore

whether IIR filters are stable and calculate the ranges if stable. Furthermore, we

analyze the circuits with non-linear feedbacks.

Sequential datapaths with FFs are investigated to extend combinational models

based on previous chapters. Floating-point representation is different with

Chapter 8: Combining Range and Precision

 193

non-uniform error distribution. We analyze floating-point representation and

develop the mathematical models for error distribution, then extend the methods

processing fixed-point representation to the floating-point datapath.

 194

Chapter 9
Conclusions and Future Work

 9.1 Conclusions
 As the complexity of integrated circuit increases rapidly, the challenge of

time-to-market arises. In the overall design procedure, verification plays a

significant role since it concentrates on most steps from system specification to

manufacturing. Verification often requires beyond 70% time and capital in the

whole ASIC design process. Because of its importance, engineers are forced to

explore verification techniques. Simulation as a main technology has advantages

of easy operation but low efficiency is the fatal weakness, so formal verification

emerged. Various bit-level and word-level decision diagrams adapt to equivalence

checking and model checking.

 Fixed-point data format is suitable for a number of implementations of digital

circuits, especially in FPGAs. Because of increasing importance of FPGAs,

fixed-point representation gains more attention. Traditional methods of dealing

with imprecise fixed-point circuits have disadvantages in both verification and

optimization. In our exploration, we adopt a spectral technique, that is, Arithmetic

Transform, to investigate fixed-point circuits. Basic AT only represents

combinational circuits, so three transform extensions have been proposed. The

total four types of transforms form a complete group to represent complex

combinational and sequential circuits, and every circuit can be represented by one

type. Because obtaining a circuit transform is a significant step for verification,

 195

various spectral transformation methods have been explored. The most

straightforward method relies on matrix multiplication, and a fast algorithm has

been proposed. These methods all compute the transform directly. We design a

new algorithm to obtain transform of a complex circuit by composing transforms

of detached blocks in the circuit. It is a method based on traversing the sub-block

topology, to provide an efficient way to get the transforms for complex arithmetic

circuits.

 The fixed-point representation often includes IB and FB. First, we explore them

separately. As a big category, imprecise circuits need to be explored carefully.

They are different with common circuits because they have a feature that the

implementations do not match the specifications exactly, so decision diagrams

have no capability to handle them. Many methods have been developed. Dynamic

analysis based on simulation is usually used to investigate range and static

analysis is applied such as IA and AA to avoid its disadvantage. They primarily

handle optimization of input bit-width but do not consider other factors, so AT is

introduced in the work to make up the weakness.

We explore imprecise circuits such as ones realizing Taylor series-based

algorithms, and construct mathematical expressions for each imprecise factor due

to AT representations. A series of algorithms that can process function

approximation and bit-widths concurrently and handle Taylor series and

real-valued polynomial with multiple variables are designed for verification and

optimization due to various constraints.

 Imprecise circuits do not confine the utilization of AT. We develop a fast and

accuracy-guaranteed method to perform range analysis for arithmetic circuits by

mixed techniques. The method can find the maximum value and the minimum

value for each intermediate output in the datapath in terms of given input ranges,

and allocate the smallest bit-width. Since the method does not extend the range

and handles polynomials statically, it can obtain exact ranges, and avoid low

efficiency simulation. The obtained smallest bit-widths lead to the optimized

implementation with the smallest area.

 Finally, we combine range and precision together. In the datapath of fixed-point

 196

representation, given the error bound, the most important problem is confirming

the bit-widths include IBs and FBs for all variables. The appropriate bit-widths

must fit the error bound, and lead to the implementation with the smallest area.

We propose an algorithm to solve the problem. It can allocate the smallest IBs,

and find non-uniform FBs to satisfy the error bound and obtain the optimized

implementation with the smallest area.

 9.2 Future Work
 Exploring range value and component difference are always hot topics. They

refer to circuit optimization with smaller area or faster speed and keep attracting

engineers. We resolve the problem for fixed-point circuits and obtain good results.

In the future, we will continue to explore optimized implementations in various

constraints such as the minimum delay and the smallest power. Furthermore, how

to obtain an implementation which compromise different constraints is important.

We will extend the method to process floating-point circuits and more subtle error

models will be investigated.

 We have solved problems of allocating IBs and FBs for IIR filters, but this is

not enough. Now we only handle the direct type and the parallel type for an IIR

filter, and the coefficients and intermediate signals have uniform fractional

bit-widths. In the future, the proposed methods will be extended to cover any

arbitrary type of an IIR filter such as the cascade type and lattice type, also

allocate non-uniform bit-widths for each signal and coefficients, which can

provide more flexibility and shrink the hardware area for the optimized IIR

implementation. Two indicators as and SNR (signal-noise-ratio) and LSE (least

square error) will be used to evaluate implementations of the IIR filter.

 197

References
[1] Jacob Abraham, “Hardware Verification - Application of formal techniques

to chip designs”, University of Texas

[2] A. Evans, A. Silburt, G. Vrckovnik, T. Brown, M. Dufresne, G. Hall, T.

Ho and Y. Liu; “Functional verification of large ASICs”, Design

Automation Conference, pp. 650 – 655, 15-19 Jun, 1998

[3] S. Tahar, Slides of “Formal Verification”, Concordia University.

[4] Z. Zilic and Z. G. Vranesic, “Reed-Muller forms for incompletely

specified functions via sparse polynomial interpolation”, 25th

International Symposium on Multiple-Valued Logic, pp. 36 – 43, May

1995

[5] I. L. Zhegalkin, “Arithmetization of Symbolic Logic - Part One”,

Matematicheskii Sbornik, 35(1), pp. 311-373, 1928, (in Russian with

French summary).

[6] B. J. Falkowski, “A Note on the Polynomial Form of Boolean Functions

and Related Topics”, IEEE Transactions on Computers, 48(8), pp.

860-864, Aug. 1999.

[7] Rolf Drechsler and Bernd Becker, “Binary Decision Diagrams: Theory

and Implementation”, Kluwer Academic Publishers, 1998

[8] E. Clarke, M. Fujita, P. McGeer, K. L. McMillan, J. Yang and X. Zhao,

“Multi terminal binary decision diagrams: An efficient data structure for

matrix representation”, International Workshop on Logic Synthesis, pp.

P6a:1-15, 1993

[9] R. P. Bryant and Y. A. Chen, “Verification of Arithmetic circuits with

Binary Moment Diagrams”, Proceeding of 32nd Design Automation

Conference, pp. 535-541, 1995

[10] K. Hamaguchi, A. Morita and S. Yajima, “Efficient Construction of Binary

Moment Diagrams for Verification of Arithmetic Circuits”, In

International Conference on Computer-Aided Design, pp.78-82, 1995.

[11] R. Drechsler, B. Becker and S. Ruppertz, “The K*BMD: A Verification

Data Structure”, IEEE Design and Test of Computers, vol. 14, No. 2, pp.

 198

51-59, April-June 1997

[12] M. Ciesielski, P. Kalla, Z. Zeng and B. Rouzeyre, “Taylor Expansion

diagrams: a new representation for RTL verification”, Sixth IEEE

International High-Level Design Validation and Test Workshop, pp. 70 –

75, Nov. 2001

[13] M. Ciesielski, P. Kalla, Z. Zeng and B. Rouzeyre, “Taylor Expansion

Diagrams: a Compact, Canonical Representation with Applications to

Symbolic Verification”, Proceeding Design Automation & Test in Europe,

pp. 285-289, Mar. 2002

[14] M. Ciesielski, P. Kalla; S. Askar, “Taylor Expansion Diagrams: A

Canonical Representation for Verification of Data Flow Designs”, IEEE

Transactions on Computers, Volume 55, Issue 9, pp. 1188 – 1201, Sep.

2006

[15] M. Ciesielski, P. Kalla, Z. Zeng and B. Rouzeyre, “Taylor Expansion

Diagrams: a Compact, Canonical Representation with Applications to

Symbolic Verification”, Proceeding of Design Automation & Test in

Europe, pp. 285-289, Mar. 2002.

[16] B. Becker, R. Drechsler and R. Enders, “On the representational power of

bit-level and word-level decision diagrams”, Proceedings of ASP-DAC, pp.

461 – 467, Jan. 1997,

[17] B. Alizadeh and M. Fujita, “Modular-HED: A Canonical Decision

Diagram for Modular Equivalence Verification of Polynomial Functions”,

in the fifth Workshop on Constraints in Formal Verification (CFV), pp.

22-40, 2008

[18] S. Kim and W. Sung, “Fixed-point error analysis and word length

optimization of 8 × 8 IDCT,” IEEE Transaction Circuits and Systems for

Video Technology, Vol. 8, No. 8, pp. 935–940, Dec. 1998

[19] K. Kum and W. Sung, “Combined wordlength optimization and highlevel

synthesis of digital signal processing systems,” IEEE Transaction on CAD

of Integrated Circuits and Systems, vol. 20, No. 8, pp. 921–930, Aug. 2001

[20] M. Willems, V. Bürgens, H. Keding, T. Grötker and H. Meyr, “System

 199

Level fixed-point design based on an interpolative approach,” Proc.

Design Automation Conference, pp. 293–298, 1997

[21] A. Gaffar, O. Mencer, W. Luk, and P. Cheung, “Unifying bit-width

optimisation for fixed-point and floating-point designs,” in Proc. IEEE

Symposium on Field-Programmable Custom Computing Machines, pp.

79–88, 2004

[22] C. Shi and R. Brodersen, “Automated fixed-point data-type optimization

tool for signal processing and communication systems,” Proc. Design

Automation Conference, pp. 478–483, 2004

[23] A. Nayak, M. Haldar, A. Choudhary and P. Banerjee, “Precision and error

analysis of Matlab applications during automated synthesis for FPGAs,”

Proc. Design, Automation and Test in Europe, pp. 722–728, 2001

[24] W. Sung and K. I. Kum, “Simulation-based wordlength optimization

Method for fixed-point digital signal processing systems”, IEEE

Transaction on Signal Processing, vol. 43, pp. 3087–3090, Dec. 1995

[25] S. Roy and P. Banerjee; “An algorithm for trading off quantization error

with hardware resources for MATLAB-based FPGA design”, IEEE

Transactions on Computers, 54(7), July 2005

[26] E.R. Hansen, “A generalized interval arithmetic”, in “Interval

Mathematics” (K. Nickel, ed.), Lecture Notes in Computer Science 29, pp.

7–18, Springer, 1975.

[27] R. B. Kearfott and V. Kreinovich, “Applications of Interval

Computations”, Kluwer, Dordrecht, 1996.

[28] R. Baker Kearfott, “Algorithm 763: INTERVAL ARITHMETIC — A

Fortran 90 module for an interval data type”, ACM Transactions on

Mathematical Software, 22, No. 4 (1996), 385–392

[29] R. Moore, "Interval Analysis”, Englewood Cliffs, NJ: Prentice- Hall, 1966.

[30] W. Barth, R. Lieger, and M. Schindler, “Ray tracing general parametric

surfaces using interval arithmetic”, The Visual Computer, 10, No. 7 (1994),

363–371.

[31] K. Ichida and Y. Fujii, “An interval arithmetic method for global

 200

optimization”, Computing, 23 (1979), 85–97

[32] J. Stolfi and L.H. de Figueiredo, “An Introduction to Affine Arithmetic”,

TEMA Tend. Mat. Apl. Comput., 4, No. 3 (2003), 297-312

[33] L.H. de Figueiredo and J. Stolfi, “Affine arithmetic: Concepts and

applications”, Journal of Numerical Algorithms, vol. 37, 147- 158, 2004

[34] J. Stolfi and L. de Figueiredo, “Self-Validated Numerical Methods and

Applications”, Institute for Pure and Applied Mathematics (IMPA), Rio de

Janeiro, 1997

[35] J. L. D. Comba and J. Stolfi, “Affine arithmetic and its applications to

computer graphics”, in Anais do VI Simp´osio Brasileiro de Computa¸c˜ao

Gr´aficae Processamento de Imagens (SIBGRAPI’93), pp. 9–18, Recife

(Brazil), October, 1993.

[36] A. Bowyer, R. Martin, H. Shou and I. Voiculescu, “Affine intervals in a

CSG geometric modeler”, in Proc. Uncertainty in Geometric

Computations, pp. 1–14. Kluwer Academic Publishers, July, 2001.

[37] F. Messine, “Extensions of affine arithmetic: Application to unconstrained

global optimization”, Journal of Universal Computer Science, 8, No. 11

(2002), 992–1015.

[38] Q. Zhang and R. R. Martin, “Polynomial evaluation using affine arithmetic

for curve drawing”, in Proc. of Eurographics UK 2000 Conference, pp.

49–56, 2000

[39] C. Fang, R. Rutenbar and T. Chen, “Fast, accurate static analysis for

fixed-point finite-precision effects in DSP designs,” in Proc. ACM/IEEE

International Conference on Computer-Aided Design, 2003, pp. 275–282.

[40] C. Fang, R. Rutenbar, M. Püschel, and T. Chen, “Toward efficient static

analysis of finite-precision effects in DSP applications via affine

arithmetic modeling,” in Proc. ACM/IEEE Design Automation Conference,

pp. 496–501, 2003

[41] W. G. Osborne, R. C. C. Cheung, J. G. F. Coutinho, and W. Luk.

“Automatic accuracy guaranteed bit-width optimization for fixed and

floating-point systems”, 17th International Conference on Field-

 201

Programmable Logic and Applications, August 2007.

[42] D.-U. Lee, A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, and G.

Constantinides, “Accuracy-Guaranteed Bit-Width Optimization”, IEEE

Transaction on CAD of Integrated Circuits and Systems, Vol. 25, No. 10,

pp. 1990 –2000, Oct. 2006

[43] D.-U. Lee and J. D. Villasenor, “A Bit-Width Optimization Methodology

for Polynomial-Based Function Evaluation”, IEEE Transaction on

Computers, Vol. 56, No.4, pp. 567 – 571., Apr. 2007

[44] D. Lee, A. Abdul Gaffar, O. Mencer, and W. Luk, “MiniBit: Bit-Width

Optimization via Affine Arithmetic,” Proc. ACM/IEEE Design

Automation Conference, pp. 837-840, 2005.

[45] W. G. Osborne, J. Coutinho, R. Cheung, W. Luk and O. Mencer,

“Instrumented Multi-Stage Word-Length Optimization”, Proc. Field-

Programmable Technology，pp. 89 – 96, Dec. 2007

[46] G. Constantinides and G. Woeginger, “The complexity of multiple

wordlength assignment,” Appl. Math. Lett., vol. 15, no. 2, pp. 137–140,

2001.

[47] G. Constantinides, P. Cheung and W. Luk, “Wordlength optimization for

linear digital signal processing”, IEEE Transaction on CAD of Integrated

Circuits and Systems, vol. 22, no. 10, pp. 1432–1442, Oct. 2003.

[48] G. Constantinides, P. Cheung and W. Luk, “Optimum wordlength

location”, in Proc. IEEE Symposium on Field-Programmable Custom

Computing Machines, pp. 219–228, 2002

[49] G. Constantinides, “Perturbation analysis for word-length optimization”,

in Proc. IEEE Symposium on Field-Programmable Custom Computing

Machines, pp. 81–90, 2003

[50] G. Constantinides, P. Cheung and W. Luk, “Heuristic datapath allocation

for multiple wordlength systems”, In Proceedings of the Design

Automation and Test in Europe (DATE) (Munich), 2001

[51] S. Gopalakrishnan and P. Kalla, “Optimization of polynomial datapaths

using finite ring algebra”, ACM Transactions on Design Automation of

 202

Electronic Systems (TODAES), Volume 12 Issue 4, Sep.2007

[52] N. Shekhar, P. Kalla and F. Enescu, “Equivalence Verification of

Polynomial Datapath with Multiple Word-Length Operands”, in Proc. of

Design Automation and Test in Europe (DATE), pp. 824-829, 2006

[53] N. Shekhar, P. Kalla, F. Enescu and S. Gopalakrishnan, “Equivalence

Verification of Polynomial Datapaths with Fixed- Size Bit-Vectors using

Finite Ring Algebra”, in International. Conference on Computer-Aided

Design, 2005

[54] A. Ahmadi and M. Zwolinski; “Symbolic noise analysis approach to

computational hardware optimization”, Proc. ACM/IEEE Design

Automation Conference, pp. 391 – 396, June, 2008

[55] A. B. Kinsman and N. Nicolici, “Finite Precision bit-width allocation

using SAT-Modulo Theory”, Design, Automation & Test in Europe

Conference & Exhibition, pp. 1106 – 1111, 20-24 April, 2009

[56] S. L. Hurst, D. M. Miller and J. C. Muzio, “Spectral Techniques in Digital

Logic”, Academic Press, 1985

[57] Radomir S. Stankovic and Jaakko T. Astola; “Spectral Interpretation of

Decision Diagrams”, Springer, 2003

[58] Radomir S. Stankovic and Tsutomu Sasao; “A Discussion on the History

of Research in Arithmetic and Reed–Muller Expressions”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol.20, no.9, Sep. 2001

[59] B. J. Falkowski, “Calculation of Rademacher-Walsh spectral coefficients

for systems of completely and incompletely specified Boolean functions”, ,

IEEE International Symposium on Circuits and Systems, 3-6 May, 1993,

Page(s):1698 - 1701 vol.3

[60] B. J. Falkowski and Chip-Hong Chang, “Efficient algorithms for the

calculation of Walsh spectrum from OBDD and synthesis of OBDD from

Walsh spectrum for incompletely specified Boolean functions”, Circuits

and Systems, 1994., Proceedings of the 37th Midwest Symposium, Volume

1, pp. 393 – 396, vol.1, 3-5 Aug. 1994

 203

[61] B. J. Falkowski and M. A. Perkowski, “Walsh type transforms for

completely and incompletely specified multiple-valued input binary

functions”, Proceedings of the Twentieth International Symposium on

Multiple-Valued Logic, pp.75 – 82, May 1990

[62] K. Radecka and Z. Zilic, “Specifying and Verifying Imprecise Circuits

by Arithmetic Transforms”, Proceedings of IEEE/ACM International

Conference on Computer-Aided Design, pp. 128-131, 2002

[63] Chip-Hong Chang and B. J. Falkowski, “Operations on Boolean functions

and variables in spectral domain of arithmetic transform”, Circuits and

Systems, 1996. ISCAS '96., 'Connecting the World'., 1996 IEEE

International Symposium, Volume 4, pp. 400 – 403, May 1996

[64] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita and J. Yang, “Spectral

Transforms for Large Boolean Functions with Applications”, Design

Automation Conference, pp. 54 – 60, June 1993

[65] K. D. Heidtmann, “Arithmetic spectrum applied to fault detection for

combinational networks”, IEEE Transaction on Computer, vol.40, no.3,

pp. 320-324, March 1991

[66] P. K. Lui and J. C. Muzio, “Spectral signature testing of multiple stuck-at

faults in irredundant combinational networks,” IEEE Transaction on

Computer, vol. C-35, pp. 1088-1092, Dec. 1986

[67] J. C. Muzio and D. M. Miller, "Spectral fault signatures for internally

unate combinational networks", IEEE Transaction on Computer, vol. C-32,

pp. 1058-1062, Nov. 1983.

[68] K. Radecka and Z. Zilic; “Using Arithmetic Transform for Verification of

Datapath Circuits via Error Modeling”, IEEE VLSI Test Symposium, pp.

271 – 277, May 2000

[69] Katarzyna Radecka; “Arithmetic Transform in Verification of Datapath

Circuits”, Ph.D thesis, McGill University, 2003

[70] K. Radecka and Z. Zilic, “Arithmetic Transforms for Compositions of

Sequential and Imprecise Datapaths”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Volume

 204

25, Issue 7, pp.1382 – 1391, July 2006

[71] K. Radecka and Z. Zilic, “Arithmetic Transforms for Verifying

Compositions of Sequential Datapaths”, Proc. IEEE international

Symposium on Computer Design, pp. 348-358, 2001

[72] Z. Zhou and W. Burleson, “Equivalence Checking of Datapaths Based on

Canonical Arithmetic Expressions”, Proceedings of 32nd Design

Automation Conference, pp. 546-551, San Francisco, 1995

[73] Kuo-Hua Wang and TingTing Hwang , “Boolean matching for

Incompletely specified functions”, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, pp. 36 – 43, May 1995

[74] S. Purwar, “Polynomial representation of spectral coefficients”,

Electronics Letters, Volume 28, Issue 15, pp. 1412 – 1413, July 1992

[75] M. Keim, M. Martin, B. Becker, R. Drechsler and P. Molitor,

“Polynomial formal verification of multipliers”, IEEE VLSI Test

Symposium, pp. 150 – 155, May 1997

[76] J. Smith and G. De Micheli，” Polynomial methods for component

matching and verification”, Computer-Aided Design, 1998. ICCAD 98.

Digest of Technical Papers. 1998 IEEE/ACM International Conference, pp.

678 – 685, Nov. 1998

[77] J. Smith and G. De Micheli, “Polynomial Circuit Models for Component

Matching in High-level Synthesis”, IEEE Transactions on VLSI, vol. 9, no.

6, pp. 783-800, Dec. 2001

[78] D. W. Currie, A. J. Hu, S. Rajan and M. Fujita, “Automatic Formal

Verification of DSP Software”, Proceedings of 37th ACM/IEEE Design

Automation Conference, pp. 130-135, 2000

[79] D. Knuth, “The Art of Computer Programming,” Addison-Wesley, 1998.

[80] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I. Bolsens, “A

methodology and design environment for DSP ASIC fixed point

refinement,” in Proc. ACM/IEEE Design Automation Test Europe

Conference, pp. 271–276, 1999

[81] D. Menard and O. Sentieys, “Automatic evaluation of the accuracy of

 205

fixed-point algorithms,” in Proc. ACM/IEEE Design Automation Test

Europe Conference, pp. 1530–1591, 2002

[82] S. Wadekar and A. Parker, “Accuracy sensitive word-length selection for

algorithm optimization,” in Proc. IEEE International Conference on

Computer Design, pp. 54–61, 1998

[83] W. G. Osborne, R. C. C. Cheung, J. G. F. Coutinho and W. Luk,

“Automatic accuracy guaranteed bit-width optimization for fixed and

floating-point systems”. In 17th International Conference on Field-

Programmable Logic and Applications, Aug. 2007

[84] J. Smith and G. De Micheli, “Polynomial methods for allocating complex

components”, In Proc. Design, Automation and Test in Europe, DATE, pp.

217 –222, 1999.

[85] Y. Pang, K. Radecka and Z. Zilic, “Arithmetic Transforms of Imprecise

Datapaths by Taylor Series Conversion”, International Conference on

Electronics, Circuits and Systems, pp. 696-699, Dec. 2006.

[86] Y. Pang and K. Radecka, “Optimizing imprecise fixed-point arithmetic

circuits specified by Taylor Series through Arithmetic Transform”,

ACM/IEEE Design Automation Conference, pp. 397 – 402, Jun. 2008

[87] Y. Pang, K. Radecka and Z. Zilic, “Verification of Fixed-Point Circuits

Specified by Taylor Series Using Arithmetic Transform”, Circuits and

Systems and TAISA Conference, 2008. NEWCAS- TAISA 2008. 2008 Joint

6th International IEEE Northeast Workshop on, pp. 261 – 264, Jun. 2008

[88] M. Gok, M. J. Schulte and M. G. Arnold, “Integer multipliers with

overflow detection”, IEEE Transactions on Computers, Volume 55, Issue

8, pp. 1062 – 1066, Aug. 2006

[89] M. J. Schuite, P. I. Balzola, A. Akkas and R. W. Brocato, “Integer

multiplication with overflow detection or saturation”, IEEE Transactions

on Computers, Volume 49, Issue 7, pp. 681 – 691, Jul. 2000

[90] A. Landauro and J. Lienard, “On Overflow Detection and Correction in

Digital Filters”, IEEE Transactions on Computers, Volume C-24, Issue

12, pp. 1226 – 1228, Dec. 1975

 206

[91] P.D. Pai and A. Tran, “Overflow Detection in Multioperand Addition”,

International Journal of Electronics, vol. 73, no. 3, pp. 461-469, Sept.

1992

[92] B. J. Falkowski and Chip-Hong Chang; “Efficient algorithms for the

calculation of arithmetic spectrum from OBDD and synthesis of OBDD

from arithmetic spectrum for incompletely specified Boolean functions”,

IEEE International Symposium on Circuits and Systems, Volume 1, pp.

197 – 200, Jun. 1994

[93] N. S. Nedialkov, V. Kreinovich and S. A. Starks, “Interval Arithmetic,

Affine Arithmetic, Taylor Series Methods: Why, what next?”, Numerical

Algorithms, vol.37, no. 1-4, pp. 325-336, 2004

[94] B. J. Falkowski and Chip-Hong Chang, “Fast generalized arithmetic and

adding transforms”, Design Automation Conference, 1995. Proceedings of

the ASP-DAC '95/CHDL '95/VLSI '95., IFIP International Conference on

Hardware Description Languages; IFIP International Conference on Very

Large Scale Integration., Asian and South Pacific, pp. 723 – 728, 1995

[95] Rene Krenz, Elena Dubrova and Andreas Kuehlmann, “Circuit-based

Evaluation of the Arithmetic Transform of Boolean Functions”,

International Workshop on Logic Synthesis, 2002

[96] Whitney J. Townsend, Mitchell A. Thornton, Rolf Drechsler and D.

Michael Miller, “Computing Walsh, Arithmetic, and Reed-Muller Spectral

Decision Diagrams Using Graph Transformations”, Proceedings of the

12th ACM Great Lakes symposium on VLSI, New York, New York, USA,

pp. 178 – 183, 2002

[97] M. A. Thornton, D. M. Miller and R. Drechsler, “Transformations

Amongst the Walsh, Haar, Arithmetic and Reed-Muller Spectral

Domains”, International Workshop on Applications of the Reed-Muller

Expansion in Circuit Design (RMW), pp. 215-225, Aug. 2001

[98] C. Moraga, T. Sasao and R. Stankovic, “A Unifying Approach to

Edge-valued and Arithmetic Transform Decision Diagrams”, Automation

and Remote Control, Vol. 63, No. 1, pp. 125–138, 2002

 207

[99] R. Cintra and H. de Oliveira, “How to interpolate in arithmetic transform

algorithms”, IEEE International Conference on Acoustics, Speech, and

Signal Processing, Volume 4, pp. IV-4169, May 2002

[100] Y. Pang, K. Radecka and Z. Zilic, “Fast Algorithms for Compositions of

Arithmetic Transforms and Their Extensions”, Circuits and Systems and

TAISA Conference, 2008. NEWCAS-TAISA 2008. 2008 Joint 6th

International IEEE Northeast Workshop on, pp. 314 – 317, Jun. 2008

[101] Y. Pang, K. Radecka and Z. Zilic, “Algorithms for Compositions of

Arithmetic Transforms and Their Extensions”, IEEE International

Conference on Electronics, Circuits and Systems, pp. 379 – 382, Dec.

2006

[102] A. Madisetti and A. N. Willson, “A 100 MHz 2-D 8x8 DCT/IDCT

processor for HDTV applications”, IEEE Transaction on Circuits System

for Video Technoogy., vol.5, no.2, pp. 158-165, Apr. 1995

[103] B. Alizadeh and M. Fujita, “A Canonical and Compact Hybrid

Word-Boolean Representation as a Formal Model for Hardware/ Software

Co-designs”, in the fourth Workshop on Constraints in Formal

Verification (CFV), pp. 15-29, 2007

[104] D. Brand, “Incremental Synthesis”, in Proc. of International Conference

on Computer-Aided Design (ICCAD), pp. 14-18, 1994

[105] M. Fujita, T. Kakuda and Y. Matsunaga, “Redesign and Automatic Error

Correction of Combinational Circuits”, in Proc. of the IFIP TC10/WG10.5

Workshop on Logic and Architecture Synthesis, pp. 253-262, 1990.

[106] M. Kubo and M. Fujita, “Debug Algorithm for Arithmetic Circuits on

FPGAs”, International Conference on Field-Programmable Technology,

(FPT), pp. 236-242, 2002

[107] D. Stoffel and W. Kunz, “Verification of Integer Multipliers on the

Arithmetic Bit Level,” in Proc. of International Conference on

Computer-Aided Design (ICCAD), pp. 183-189, 2001

[108] O. Sarbishei, B. Alizadeh and M. Fujita, “Polynomial Datapath

Optimization Using Partitioning and Compensation Heuristics”, in Proc.

 208

of International Design Automation Conference (DAC), pp. 931-936, 2009

[109] T. Stanion, “Implicit Verification of Structually Dissimilar Arithmetic

Circuits”, in Proc. of IEEE International Conference on Computer Design,

pp. 46-50, 1999.

[110] M. J. Schulte and E. E. Swartzlander, “Hardware designs for exactly

rounded elementary functions,” IEEE Transaction on Computers., vol. 43,

no. 8, pp. 964–973, Aug. 1994

[111] A. Mallik, D. Sinha, P. Banerjee and H. Zhou, “Low-power optimization

by smart bit-width allocation in a SystemC based ASIC design

environment”, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 26(3):447-455, March 2007

[112] A. Peymandoust and G. DeMicheli, “Application of Symbolic Computer

Algebra in High-Level Data-Flow Synthesis”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 22, pp.

1154–11656, 2003

[113] D. Cyrluk, O. Moller and H. Rues, “An Efficient Decision Procedure for

the Theory of Fixed-Size Bitvectors”, In Proc. of LNCS, Computer Aided

Verification, vol. 1254, 1997

[114] S. Kim, K. Kum, and W. Sung, “Fixed-point Optimization Utility for C

and C++ Based Digital Signal Processing Programs,” in Workshop on

VLSI and Signal Processing ’95, (Osaka), pp. 197-206, Nov. 1995

[115] G. De Micheli, “Synthesis and optimization of digital circuits”,

McGraw-Hill, 1994

[116] F. Catthoor, J. Vandewalle and H. De Man, “Simulated annealing based

optimization of coefficient and data word-lengths in digital filters,”

International Journal of Circuit Theory and Applicatation, vol. 16, pp.

371–390, Sep. 1988

[117] J.-I. Choi, H.-S. Jun and S.-Y. Hwang, “Efficient hardware optimization

algorithm for fixed point digital signal processing ASIC design,”

Electronic Letters., vol. 32, no. 11, pp. 992–994, May 1996.

[118] Y. C. Lim and S. R. Parker, “Finite word-length FIR filter design using

 209

integer programming over a discrete coefficient space,” IEEE Transaction

on Acoustic, Speech, Signal Processing, vol. ASSP-30, pp. 661–664, Aug.

1982

[119] D. Menard and O. Sentieys, “A methodology for evaluating the precision

of fixed-point systems,” Proc. IEEE International Conference on Acoustic,

Speech, and Signal Processing, vol. 3,2002. pp. 3152-315

[120] M. A. Cantin, Y. Savaria and P. Lavoie, “A comparison of automatic word

length optimization procedures,” IEEE International Symposium on

Circuits and Systems, 2002, vol. 2, pp. 612 -615

[121] C. Shi and R. W. Brodersen, “A perturbation theory on statistical

quantization, effects in fixed-point DSP with nonstationary inputs,” IEEE

International Symposium on Circuits and Systems, pp. III- 373-6, 2004

[122] C. Shi and R. W. Brodersen, “Floating-point to fixed-point conversion

with decisipn-errors due to quantization,” IEEE International Conference

on Acoustic, Speech, and Signal Processing, pp. V- 41- 4, 2004

[123] B. Lee and N. Burgess, “Some Approximations on Taylor-Series Function

Approximation on FPGA,” Proc. Asilomar Conf. Circuits, Systems, and

Computers, vol. 2, pp. 2198-2202, 2003

[124] A. Tzidon, I. Berger and Y. M. Yoeli, “A practical approach to fault

Detection in combinational circuits”, IEEE Transaction on Computers.,

vol. C-27, pp. 968-971, Oct. 1978

[125] H. Choi and W. P. Burleson, “Search-based wordlength optimization for

VLSI/DSP synthesis,” in Proc. VLSI Signal Processing, La Jolla, CA,

1994, pp. 198–207

[126] M.-A. Cantin, Y. Savaria, D. Prodanos and P. Lavoie, “An automatic word

length determination method,” in Proc. IEEE International Symposium

Circuits and Systems, Sydney, Astralia, vol. 5, pp. 53–56, 2001

[127] M. Berz and G. Hoffstätter, "Computation and application of Taylor

polynomials with interval remainder bounds", Reliable Computing, 4 (1998)

83–97.

[128] A. Hosangadi, F. Fallah and R. Kastner, “Energy Efficient Hardware

 210

Synthesis of Polynomial Expressions”, in International Conference on

VLSI Design, pp. 653–658, 2005

[129] X. W. Xing and C. C. Jong, “Using symbolic computer algebra for

subexpression factorization and subexpression decomposition in high-level

synthesis”. Proceedings of the IEEE International Symposium on Circuits

and Systems, Kobe, pp.5645-5648, 2005

[130] A. Hosangadi, F. Fallah and R. Kastner. “Optimizing polynomial

expressions by algebraic factorization and common subexpression

elimination”. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 25(10), pp. 2012-2022, 2006

[131] M. Gok, M. J. Schulte, P. I. Balzola and R. W. Brocato, “Efficient Integer

Multiplication Overflow Detection Circuits,” Proc. 35th Asilomar

Conference on Signals, Systems, and Computers, pp. 1661-1665, 2001

[132] Y. H. Cha, G. Y. Cho, H. H. Choi and H. B. Song, “N Bit Result Integer

Multiplier with Overflow Detector,” Electronic Letters, vol. 37, pp.

940-942, July 2001

[133] Erick L. Oberstar, “Fixed-Point Representation & Fractional Math”, Aug.

2007

[134] Randy Yates, “Fixed-Point Arithmetic: An Introduction”, Jul. 2009

[135] K. Radecka and Z. Zilic, "Verification by Error Modeling: Using Testing

Techniques for Hardware Verification" , Kluwer Academic Publishers,

2003

[136] A. Veneris and M. Abadir, “Design Error Diagnosis and Correction via Test

Vector Simulation”, IEEE Transactions of CAD of Integrated Circuits and

Systems, 18(12), pp. 1803-1816, 1999

[137] Synopsys Inc, “Co-centric Fixed Point Designer Datasheet”, 2002

[138] M. Huhn, K. Schneider, Th. Kropf and G. Logothetis, “Verifying

Imprecisely Working Arithmetic Circuits”, Proc. Design Automation and

Test Europe, pp. 65-69,1999

[139] T. Damarla and M. Karpovsky, “Fault Detection in Combinational

Networks by Reed-Muller Transform”, IEEE Transactions on Computers,

 211

38(6), pp. 788-797, Jun.1989

[140] G. Even and W. J. Paul, “On the Design of IEEE Compliant Floating Point

Units”, IEEE Trans. Computers, Vol. 49, No. 5, pp. 398-413, May 2000

[141] Y. A. Chen and R. Bryant, “ACV: An arithmetic circuit verifier,” in Proc.

ACM/IEEE International Conference on Computer-Aided Design, San

Jose, CA, Nov. 1996, pp. 361–365

[142] A. J. Al-Khalili; Slides of “Digital Systems Designs and Synthesis”,

Concordia University.

[143] M. Huhn, K. Schneider, Th. Kropf and G. Logothetis, “Verifying

Imprecisely Working Arithmetic Circuits”, Proc. Design Automation and

Test Europe, pp. 65-69,1999

[144] L. Entrena and K-T. Cheng, “Combinational and Sequential Logic

Optimization by Redundancy Addition and Removal”, IEEE Transactions

on CAD, 14(7), pp. 909-916, Jul. 1995.

[145] T. Damarla, “Generalized Transforms for Multiple Valued Circuits and

their Fault Detection”, IEEE Transactions on Computers, 41(9), pp.

1101-1109, Sep. 1992

[146] T. Kropf, “Introduction to Formal Hardware Verification”, New York,

Springer, 1999

[147] T. Larrabee, “Test Pattern Generation using Boolean Satisfiability”, IEEE

Transactions on CAD of Integrated Circuits and Systems, 11(1), pp. 4-15,

Jan. 1992.

[148] C. Lee, “Representation of Switching Circuits by Binary-Decision

Programs”, Bell Systems Technical Journal, vol. 38, pp. 985-999, July

1959

[149] Z. Zilic and Z. G. Vranesic, “A Deterministic Multivariate Interpolation

Algorithm for Small Finite Fields”, IEEE Transactions on Computers,

Volume 51, Issue 9, pp. 1100 – 1105, 2002

[150] http://en.wikipedia.org/wiki/Simulation#Engineering.2C_technology_or_

process_simulation

[151] http://en.wikipedia.org/wiki/Hardware_emulation

 212

[152] http://en.wikipedia.org/wiki/Satisfiability_problem

[153] SoftJin Infotech Private Limited, “Enabling RTL-to-gate equivalence

checking”

[154] Swaroop Ghosh, Swarup Bhunia and Kaushik Roy, “Low-Power and

Testable Circuit Synthesis Using Shannon Decomposition”, ACM

Transactions on Design Automation of Electronic Systems, vol.12 (no.4),

2007

[155] http://en.wikipedia.org/wiki/Formal_verification

[156] http://en.wikipedia.org/wiki/Floating_point

[157] M. Boule and Z. Zilic, "Generating Hardware Assertion Checkers for

Hardware Verification, Emulation, Post-Fabrication Debugging and

On-Line Monitoring" , Springer, 2008. ISBN: 978-1-4020-8585-7

[158] K. Radecka and Z. Zilic, "Verification by Error Modeling: Using Testing

Techniques for Hardware Verification", Kluwer Academic Publishers,

2003. ISBN: 978-1-4020-7652-7

[159] K. Morin-Allory, M. Boule, D. Borrione and Z. Zilic, “Proving and

disproving assertion rewrite rules with automated theorem provers”, IEEE

International High Level Design Validation and Test Workshop, pp: 56 –

63, Nov. 2008

[160] W. G. Schneeweiss, “On the polynomial form of Boolean functions:

derivations and applications”, IEEE Transactions on Computers, Volume:

47, Issue: 2, pp: 217 – 221, 1998

