
Score-Informed Source Separation of Choral
Music

Matan Gover

Department of Music Research
Schulich School of Music

McGill University
Montreal, Canada

October 2019

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Arts.

© 2019 Matan Gover

i

Abstract

Audio source separation is the act of extracting one or more sources of interest from a
recording involving multiple sound sources. In recent years, remarkable progress has been
made in the development of source separation techniques, enabling applications such as
background noise reduction, separation of multiple speakers or multiple instruments, and
creation of ‘karaoke’ tracks by separating vocals and accompaniment in songs.

To our knowledge, this thesis is the first to study the application of source separation to
choral music. Choral music recordings are a particularly challenging target for separation
due to their inherent acoustical complexity. Every choir singer has a distinctive voice timbre,
and the combination of multiple voices singing in harmony, with slight pitch mistunings and
imperfect synchronization, creates a highly-variable ‘choral timbre’. While choir singers aim
to blend their voices, source separation aims to undo that blend. Source separation of choral
music enables applications such as fine-grained editing, analysis, and automatic creation of
practice tracks (recordings of individual choir parts used by singers as an aid for learning
new music) from professional choir recordings.

In this thesis, we address choral music separation using a deep learning separation method
called Wave-U-Net. To separate choral music, Wave-U-Net must be trained using a large
dataset of choral recordings in which each choir part is recorded separately. Due to the
scarcity of such recordings, we create a dataset of synthesized Bach chorale harmonizations.
In a series of experiments on this dataset, we show that Wave-U-Net performs significantly
better than a baseline technique that is based on non-negative matrix factorization (NMF).
We propose a simple change in the way Wave-U-Net is trained that leads to a substantial
improvement in separation of more than two sources.

To further improve separation results, we introduce score-informed Wave-U-Net, a variant
of Wave-U-Net that incorporates the musical score of the piece being separated. The musical
score has potential to aid separation because it contains detailed pitch and timing information
for every note in the piece. We experiment with different methods of representing the musical
score and feeding it into Wave-U-Net. Experiment results show that score-informed Wave-U-
Net attains significantly improved separation performance compared to the original Wave-U-
Net. Moreover, for increased control over the separation process, we devise a ‘score-guided’
technique in which the user indicates which notes should be extracted from a recording by
simply indicating the desired notes’ pitches and times.

ii

Résumé

La séparation de sources sonores consiste à extraire une ou plusieurs sources présentant un
attrait significatif d’un enregistrement contenant plusieurs sources sonores. Ces dernières
années, de nombreux progrès ont été réalisés concernant le développement de techniques
pour la séparation de sources sonores, permettant des applications telles que la réduction de
bruit de fond, la séparation de plusieurs chanteurs ou instruments ainsi que la création de
pistes « karaoké » en séparant les voix des instruments.

À notre connaissance, cette thèse est la première à présenter une étude concernant
l’application des techniques de séparation de sources à la musique chorale. La séparation
d’enregistrements de musique chorale constitue une tâche particulièrement difficile du fait
de leur complexité acoustique intrinsèque. Chaque chanteur a un timbre de voix distinctif
et la combinaison de nombreuses voix chantant en harmonie, avec de légers désaccords et
une synchronisation imparfaite, crée un « effet de chorus » extrêmement variable. Alors
que les choristes cherchent à fusionner leurs voix, la séparation de sources vise à annuler
cette fusion. La séparation de sources permet l’édition, l’analyse et la création automatique
de pistes audio pour les séances de répétition (enregistrements de parties individuelles du
chœur utilisés par les chanteurs pour faciliter l’apprentissage de nouvelles pièces) à partir
d’enregistrements professionnels.

Dans cette thèse, nous abordons la séparation de musique chorale en utilisant une méth-
ode d’apprentissage profond pour la séparation de sources appelée Wave-U-Net. Pour sa
phase d’apprentissage afin de séparer la musique chorale, Wave-U-Net nécessite une grande
base de données contenant des enregistrements choraux avec chaque partie du chœur en-
registrée séparément. En raison de la rareté de tels enregistrements, nous avons créé un
ensemble de données à partir d’harmonisations de chœurs de Bach synthétisées. Dans une
série d’expériences basées sur cet ensemble de données, nous montrons que Wave-U-Net
est nettement plus performant qu’une technique basée sur une factorisation matricielle non
négative (NMF). De plus, nous proposons un changement mineur dans la façon dont Wave-
U-Net est formé, ce qui conduit à une amélioration substantielle de la séparation de deux ou
plusieurs sources.

Afin d’améliorer les résultats des techniques de séparation, nous introduisons score-
informed Wave-U-Net, une variante de Wave-U-Net qui intègre la partition musicale de
la pièce à séparer. La partition peut potentiellement aider à la séparation des sources du

iii

fait qu’elle contient des informations précises concernant la hauteur et le temps de chaque
note. Nous expérimentons différentes méthodes de représentation de la partition musicale
et de son intégration dans Wave-U-Net. Les résultats de ces expériences montrent que la
technique Wave-U-Net intégrant les partitions musicales est significativement plus perfor-
mante dans la séparation de sources que la méthode Wave-U-Net d’origine. De plus, afin
d’avoir un meilleur contrôle du processus de séparation, nous avons développé une technique
« guidée par la partition » dans laquelle l’utilisateur peut indiquer les notes à extraire d’un
enregistrement en sélectionnant les hauteurs et temps des notes souhaitées.

iv

Acknowledgments

I thank my supervisor Professor Philippe Depalle for guiding me in my research. Philippe’s
knowledge, professionalism, and continued enthusiasm for his work greatly inspired me to
challenge myself and learn new topics. I am extremely grateful for the generous financial
assistance I have received from the Jenny Panitch Beckow Memorial Scholarship given by the
Jewish Community Foundation of Montreal, a stipend granted to me by Philippe Depalle
through NSERC, and a Graduate Excellence Fellowship granted by the Schulich School of
Music. I thank Professors Ichiro Fujinaga and Marcelo Wanderley who have taught me
enlightening graduate seminars, and the entire Music Technology faculty for fostering a
vibrant learning environment. I thank my colleagues from the Music Technology area and
especially my friend Behrad Madahi for insightful conversations and enjoyable pastimes. I
thank Compute Canada for providing the high performance computing infrastructure that
facilitated this research. My family, whom I love the most, were a constant source of support
and encouragement despite being far away, and for them I am eternally grateful. Finally, I
thank my loving and beloved partner, Jhonatan, for his constant love and compassion and
for his support in carrying out this research.

v

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Challenges . 2
1.3 Overview of Thesis . 3

2 Background 4
2.1 Audio Source Separation . 4

2.1.1 Definition . 5
2.1.2 Scenarios . 6
2.1.3 Methods . 7
2.1.4 Evaluation . 12

2.2 Deep Learning . 13
2.2.1 Artificial Neural Networks . 13
2.2.2 Training . 16
2.2.3 Gradient-Based Optimization . 19
2.2.4 Convolutional Neural Networks . 20

2.3 Deep Learning for Audio Processing . 24
2.3.1 Audio Feature Selection . 25
2.3.2 Source Separation using Deep Learning 27
2.3.3 Wave-U-Net . 30

2.4 Choral Music . 35
2.4.1 History and Musical Styles . 36
2.4.2 Choir Structure . 38
2.4.3 Musical Scores . 41

Contents vi

2.4.4 Acoustical Characteristics . 45
2.5 Score-Informed Source Separation . 50

2.5.1 Score Alignment . 50
2.5.2 Separation Techniques . 51

3 Synthesized Chorales Dataset 54
3.1 Choir Synthesis . 55
3.2 Bach Chorale Harmonizations . 56
3.3 Synthesis Procedure . 56

3.3.1 Higher-Variability Dataset . 58
3.3.2 Dataset Partitions . 58

4 Score-Informed NMF for Choral Music 60
4.1 Experiments . 63

4.1.1 Experiment A: Original Parameter Values 64
4.1.2 Experiment B: Smaller Activation Tolerances 64
4.1.3 Experiment C: Smaller Frequency Tolerance 65
4.1.4 Experiment D: Larger STFT Window 65
4.1.5 Quantitative Comparison of Experiments 66
4.1.6 Failed Experiments . 68

4.2 Conclusions . 69

5 Wave-U-Net for Choral Music 70
5.1 Training Procedure . 70
5.2 Training Infrastructure . 71
5.3 Reproducing Results on Singing Voice . 72
5.4 Experiments on Synthesized Bach Chorales 72

5.4.1 Experiment 1: Bass and Soprano Mixtures 73
5.4.2 Experiment 2: Extract SATB . 73
5.4.3 Experiment 3: Extract Single Voice 73
5.4.4 Experiment 4: Higher-Variability Dataset, Extract Single Voice . . . 74

5.5 Results . 74
5.5.1 Experiment 1: Bass and Soprano Mixtures 74
5.5.2 Experiment 2: Extract SATB . 76

Contents vii

5.5.3 Comparison of Experiments 1-2 . 77
5.5.4 Experiment 3: Extract Single Voice 79
5.5.5 Experiment 4: Higher-Variability Dataset, Extract Single Voice . . . 79
5.5.6 Comparison between Experiments 1–4 and NMF 81

6 Score-Informed Wave-U-Net 83
6.1 Conditioning Wave-U-Net on Scores . 84

6.1.1 Choosing Information to Extract from the Score 84
6.1.2 Feeding the Score into Wave-U-Net 84
6.1.3 Score Representations . 87

6.2 Score-Informed Training on Synthesized Bach Chorales 90
6.2.1 Experiment 5: MIDI Pitch, Extract SATB 90
6.2.2 Experiment 6: Normalized Pitch, Extract Single Voice 91
6.2.3 Experiment 7: Multi-Source Training 91
6.2.4 Experiment 8: Compare Conditioning Methods, Extract SATB . . . 92
6.2.5 Experiment 9: Compare Conditioning Methods, Extract Single Voice 92
6.2.6 Experiment 10: Compare Conditioning Methods, Multi-Source Training 92

6.3 Results . 93
6.3.1 Experiment 5: MIDI Pitch, Extract SATB 93
6.3.2 Experiment 6: Normalized Pitch, Extract Single Voice 94
6.3.3 Experiment 7: Multi-Source Training 96
6.3.4 Experiment 8: Compare Conditioning Methods, Extract SATB . . . 96
6.3.5 Experiment 9: Compare Conditioning Methods, Extract Single Voice 98
6.3.6 Experiment 10: Compare Conditioning Methods, Multi-Source Training 99
6.3.7 Comparison: Does Using the Score Improve Separation Performance? 101
6.3.8 Limitations of SDR . 101
6.3.9 Failed Experiments and Lessons Learned 105

7 Conclusions 106

A Datasets 108

B Supplemental Material 110

Contents viii

References 111

ix

List of Figures

2.1 Example of non-negative matrix factorization 11
2.2 Illustration of the structure of a feed-forward neural network 14
2.3 Neural network activation functions . 17
2.4 Learned convolution kernels from a CNN for image classification 24
2.5 Original U-Net architecture . 32
2.6 Schematic illustration of the Wave-U-Net model architecture 34
2.7 An example excerpt from a vocal score . 44
2.8 A spectrogram and a score showing solo singing and choral singing side by side 49

3.1 Chorale harmonization by J. S. Bach, BWV 393 57

4.1 Initializations for score-informed NMF and the resulting factorization on an
example Bach chorale . 62

4.2 SDR evaluation results of Experiments A–D 67

5.1 SDR evaluations of Experiment 1 results by voice 75
5.2 SDR evaluations of Experiment 2 results by voice 76
5.3 SDR evaluation of Experiment 1 results compared to Experiment 2 results by

voice . 77
5.4 The score for the final phrase of chorale 358 78
5.5 SDR evaluations for Experiment 3 by voice 79
5.6 SDR evaluations for Experiment 4 by voice 80
5.7 Full distribution of SDR evaluations in Experiments 3–4 by voice 80
5.8 The score corresponding to an evaluation frame that achieved a very low SDR

in Experiment 4 . 81

List of Figures x

5.9 Comparison of results for Experiments 1–4 and score-informed NMF 82

6.1 Conditioning methods for neural networks 85
6.2 Score conditioning locations . 86
6.3 Loss value during training in Experiment 5 94
6.4 SDR evaluations by voice in Experiment 6 95
6.5 SDR evaluations by voice in Experiment 7 96
6.6 SDR evaluations in Experiment 8 . 97
6.7 A comparison of SDR evaluations by score type and conditioning location in

Experiment 9 . 98
6.8 The training loss evolution of three models in Experiment 10 99
6.9 A comparison of SDR evaluations by score type and conditioning location in

Experiment 10 . 100
6.10 Comparison between tenor separation performance on the higher-variability

dataset in five scenarios . 102
6.11 Frame SDR plotted against frame energy . 103
6.12 The difference between regularized SDR and standard SDR 104

xi

List of Tables

2.1 Standard vocal ranges in choral music . 39

4.1 Listing of NMF experiments . 63

5.1 Listing of Wave-U-Net experiments . 75
5.2 The ten evaluation frames with the lowest SDR in Experiment 2 78

6.1 Listing of score-informed Wave-U-Net experiments 93
6.2 Comparison of separation performance on frames with voice crossings 95

A.1 List of dataset partitions . 109

xii

1

Chapter 1

Introduction

In this thesis, we set out to investigate the application of source separation to choral music.
Informally speaking, our goal is to “separate the voices of the choir”. More specifically, we
aim to take a recording of choral music and extract from it individual recordings for each of
the four choir sections: soprano, alto, tenor, and bass. This act of ‘de-mixing’ a recording is
known as audio source separation.

In formal terms, audio source separation refers to extracting one or more sound sources of
interest from a recording that involves multiple sound sources (Vincent et al., 2018). Source
separation has many applications in speech, music, and environmental sound processing. For
example, when a user speaks to a voice-activated virtual assistant such as Apple’s Siri or the
Google Assistant, the assistant’s software performs source separation behind the scenes in
order to separate the user’s speech from background noise and interferences, such as music
playing in the same room or the speech of other people. Separating the user’s speech from
other sounds improves the assistant’s ability to understand what the user said. Humans do
not perform source separation per se but they have an impressive ability to segregate sound
sources and understand speech in noisy environments (Bregman, 1990).

Source separation has many musical applications (Cano et al., 2019). It can be employed
to separate instruments in a recording or even to separate individual notes played by the
same instrument. This can be used, for example, to fix the tuning or timing of certain notes.
Source separation can also be used to generate ‘karaoke’ tracks and a cappella renditions by
separating the accompaniment and the lead vocals in songs.

Despite the popularity of musical source separation techniques, it appears that this thesis

1 Introduction 2

is the first to attempt the application of source separation to choral music. In the next section,
we explain our motivation for this research.

1.1 Motivation

Choral singing, and more generally, multi-part singing, is a widespread cultural phenomenon
that exists in many societies around the world, and its roots are believed to lie in very early
stages of human evolution (Jordania, 2015). In medieval Europe, monks in the Christian
Church developed choral singing practices that later evolved into the musical style that we
know today as “classical” choir music (Erickson, 2001). Today, choral singing flourishes
in various forms: from amateur choirs to professional concert choirs, church choirs, school
choirs, and many others. In Canada, for example, an estimated 10% of the population sing
in choirs (Hill, 2017).

Many choral singers cannot read music, which makes it difficult for them to practice
their parts between rehearsals. To aid singers, conductors often create practice tracks, which
are individual recordings of each choir part. Recording such tracks for every piece sung by
the choir is time-consuming, so choirs sometimes purchase professionally produced tracks
instead.1 From this need arises an idea: source separation could be used to automatically
create practice tracks by extracting individual parts from professional choir recordings. Thus,
given a good choral source separation method, high-quality practice tracks could be created
at no cost.

Given that source separation has not been applied to choral music before, we do not
expect this thesis to yield a full solution. Nonetheless, we are motivated by the potential
practical applications and by the hope that investigating this new task may lead to ideas
that are applicable to other source separation scenarios.

1.2 Challenges

At the outset, separation of choral music would seem a challenging task. The singing voice
is produced by a complex biological mechanism that yields sounds with intricate timbral

1Example websites offering choral practice tracks: ChoralPractice (https://choralpractice.
com), Choral Rehearsal Tracks (https://choralrehearsaltracks.com), PraiseCharts (https://www.
praisecharts.com/products/choir-practice-tracks/), Choral Tracks (https://choraltracks.com),
Choralia (http://www.choralia.net).

https://choralpractice.com
https://choralpractice.com
https://choralrehearsaltracks.com
https://www.praisecharts.com/products/choir-practice-tracks/
https://www.praisecharts.com/products/choir-practice-tracks/
https://choraltracks.com
http://www.choralia.net

1 Introduction 3

characteristics that vary considerably between individuals (Sundberg, 1987). Therefore,
processing the singing voice is difficult compared to many musical instruments (Rodet, 2002).
Choirs are composed of multiple singers singing simultaneously with slight variations in pitch
and in tempo, where every singer has a unique voice timbre. It follows that choral music has
extremely varied acoustical characteristics, and could pose a particular challenge for source
separation techniques compared to other types of music.

Furthermore, an important goal in choral performance is achieving blend between singers,
so that the choir is perceived by listeners as one coherent sound source (Smith & Sataloff,
2013). This blend can naturally hinder the operation of an algorithm wishing to separate
the choir. Choral music is often recorded in highly reverberant spaces such as churches, and
the reverberations constitute yet another hurdle for separation. Finally, choirs are seldom
recorded in a ‘one voice per track’ setting (Ihalainen, 2008), and this lack of multi-track
recordings makes it harder to design and validate source separation systems.

1.3 Overview of Thesis

Despite the challenges outlined above, we believe that recently developed source separation
techniques are powerful enough to tackle the case of choral music. In this thesis, we present
our research towards this goal. We start in Chapter 2 by reviewing relevant background
literature concerning source separation, choral music, and deep learning. In Chapter 3, we
present a dataset of synthesized Bach chorale harmonizations that we create in order to
design and test our separation techniques. In Chapter 4, we establish baseline separation
performance for choral music using a method based on non-negative matrix factorization. In
Chapter 5, we apply a deep learning-based separation technique called Wave-U-Net (Stoller
et al., 2018b) to choral music and test its performance in a series of experiments. We extend
Wave-U-Net in Chapter 6 to incorporate musical scores into the separation process, and
conduct several experiments to determine the effectiveness of this extension. Finally, in
Chapter 7 we summarize the main conclusions of this thesis and suggest possible future
research directions.

4

Chapter 2

Background

2.1 Audio Source Separation

Audio source separation is the act of extracting one or more source signals from an audio
recording involving several sound sources. The human auditory system is able to perceive
separate sound sources in a scene even though the ears only receive the mixture of all sources.
For example, when listening to a piano and violin duet, a human listener can easily identify
that two different instruments are playing, and can track the notes of every instrument
independently to a certain degree. As another example, when two people are conducting
a conversation in a noisy room with many people speaking in the background, the listener
is able to focus on the speaker’s voice and to understand their words; this was termed the
“cocktail party effect” by Cherry (1953). Considering that for humans this is a skill that is
acquired and exercised without any effort, source separation turns out to be a surprisingly
difficult task for a computer to perform.

Source separation has been an active field of research for many decades and is considered
a core problem in audio signal processing (Vincent et al., 2018, p. 3). Applications of source
separation abound in music, speech, and environmental audio processing. For example, it is
used in hearing aids and conference calling systems to amplify human speech while reducing
ambient noise. In automatic speech recognition systems, source separation (and more specif-
ically, speech enhancement) is used to separate and enhance the voice of a main speaker in
preparation for recognizing the speaker’s utterances. In music processing, source separation
is used to automatically produce karaoke (instrumental) tracks from song recordings, or
to extract a specific instrument from a multi-instrument recording. Another application is

2 Background 5

‘upmixing’ of mono recordings to multiple channels for playback with multiple speakers or
in 3D audio settings. The large number of real-world applications and their potential for
commercial value constitute a motivation for many researchers to investigate and constantly
improve the state of the art in source separation.

It is important to note that source separation can be applied to many kinds of signals
other than audio. For example, in image processing source separation can be used to separate
images that are overlaid on top of each other with partial transparency. In medicine, source
separation is used on electrode measurements from an electroencephalogram (EEG) device
to extract the brain activity signal while removing interferences caused by muscle activity.
In this work, however, we focus strictly on audio source separation.

2.1.1 Definition

In order to define the audio source separation task in a more precise manner, we first give
definitions for the terms sound source and mixture, after Vincent et al. (2018, pp. 4–5). In
general terms, a sound source is simply an object that emits sound, but in the context of
source separation we use the term to refer specifically to the sound that is emitted by that
object. A sound source can be a point source (located at one point in space) or a diffuse
source (spread over a whole region in space), but here we refer only to point sources. Let us
assume a scene containing J sound sources, where each source is represented by a signal sj
where j ∈ [1, J].1

Let us now assume that the scene is recorded using I microphones, producing a multi-
channel recording. We denote each channel in the recording by xi where i ∈ [1, I]. As sound
propagates from the sound sources to the microphones, it is transformed by some unknown
acoustic transfer function. Thus, for every pair of sound source and microphone we define
the spatial image cij representing the sound emitted by source j as captured by microphone
i. Every channel xi is defined as the combination of all sound sources recorded by a single
microphone:

xi(t) =
J∑

j=1

cij(t)

The multi-channel mixture x is then defined as a vector-valued function that is a com-
1Throughout this thesis, we use the following notation conventions: a denotes a scalar, a denotes a

vector, and A denotes a matrix.

2 Background 6

bination of the signals captured by all microphones:

x(t) = [x1(t), . . . , xI(t)]
T

The purpose of source separation is to obtain the original source signals sj given only the
mixture x.

2.1.2 Scenarios

The large number of scenarios in which source separation is applied has led the research
community to devise several typologies to categorize these scenarios (Vincent et al., 2018,
pp. 6–7). The first categorization relates to the number of sound sources and the number
of microphones: if there are more microphones than sound sources, the scenario is called
overdetermined; if there is an equal number of sources and microphones, the mixture is de-
termined; and when the number of sources is smaller than the number of microphones, it is
underdetermined. This distinction stems from the fact that overdetermined and determined
mixtures can be separated without additional information other than the recording itself,
by directly reversing the linear process that created the mixture (assuming that process is
known and invertible). Such methods, however, cannot often be used effectively in prac-
tical applications since most recordings are made in underdetermined scenarios or contain
interferences such as background noise.

A second categorization characterizes scenarios based on the amount of prior information
that is used to guide the separation. When no prior information is used other than the
mixture itself, the scenario is dubbed blind source separation. In semi-blind separation,
a limited amount of information about the recording or the nature of the sources can be
used to guide the separation. For example, if the sources are known to be certain musical
instruments, the separation technique could rely on some timbral characteristics of those
instruments. The prior information could also be in the form of more general assumptions
on source characteristics such as spectral or temporal smoothness. Lastly, in an informed
source separation scenario there is some form of highly-detailed information that is used to
guide separation. In speech separation, for example, that information could be a phonetic
transcript of a conversation that is synchronized with the mixture recording. In informed
music separation, the musical score could be used to indicate the instruments, fundamental
frequencies, and timings that are to be found in the mixture. Score-informed separation will

2 Background 7

be discussed in depth in Section 2.5.
Blind source separation methods typically cannot work in underdetermined scenarios,

hence their real-world applications are limited. In practice, almost any separation method
uses some amount of prior information, ranging between very little or very general informa-
tion (semi-blind separation) to highly specific and detailed information (informed scenarios).

2.1.3 Methods

Several historical paths were taken to approach the task of source separation: microphone
array processing techniques emerged from the field of telecommunications for speech local-
ization and enhancement; statistical methods such as independent component analysis and
matrix factorization were developed to tackle blind separation with no prior information;
and perceptually-informed methods were developed to mimic the function of the human au-
ditory system. These techniques are described in detail below. According to Vincent et al.
(2018, p. 10), it seems that these diverging historical paths are now tending to converge:
new techniques have emerged that combine insights from all three types of techniques, and
the distinguishing lines between them have become less clear.

Spatial filtering techniques (also known as beamforming) work on multi-channel record-
ings acquired by an array of microphones. The separation relies on the distribution of the
microphones in space. In order to perform separation, the mixture signal is passed through
a linear time-varying system, where parameters for the system are estimated in various ways
from the mixture taking into account knowledge about the microphone array and the envi-
ronment (Van Trees, 2002). Spatial filtering techniques are widely used in applications where
the mixture is captured by carefully-placed microphone arrays, such as speech enhancement
and noise cancelling for conference calling devices. In other applications, however, these
techniques are seldom relevant because the microphone configuration is not well-known.

A second class of techniques is based on Computational Auditory Scene Analysis (CASA)
(Brown & Cooke, 1994; Wang & Brown, 2006). CASA techniques are inspired by perceptual
studies that have investigated the ways in which the human brain segregates sounds into
auditory streams (Bregman, 1990). The systems aim to mimic the processing that occurs
in the human auditory system to varying degrees of accuracy. Typically, the first stage in
CASA-based methods is converting the mixture signal into a time-frequency representation
that approximates the frequency-based selectivity of the basilar membrane in the human ear.

2 Background 8

One such representation is the commonly-used gammatone filterbank (Patterson et al., 1987).
Subsequently, algorithms informed by psychoacoustical cues are used to group components in
the time-frequency representation into auditory streams. Grouping cues can be spatial (cross-
channel correlations), spectral (e.g., harmonicity or frequency co-modulation), or temporal
(onset and offset synchronicity or amplitude co-modulation).

Independent Component Analysis (ICA) is a source separation technique that aims to
produce sources that are as statistically independent as possible (Comon, 1994; Hyvärinen &
Oja, 2000). In other words, rather than relying on specific properties of each source, it models
sources as stochastic random processes and strives to maximize their independence from each
other. Since it does not assume any prior information about the signals, ICA is considered
a blind source separation technique (Cardoso, 1998). ICA can work well in applications
where components are not related in any way to each other, such as separating speech from
background noise. In music, however, sources are often highly correlated to each other leading
to poor ICA performance. Furthermore, basic ICA cannot be used in underdetermined
scenarios; the number of sources cannot exceed the number of observed signals. To overcome
this issue, Independent Subspace Analysis (Casey & Westner, 2000) transforms the observed
mixture into a time-frequency representation, and treats every frequency band as a separate
channel on which ICA is performed. However, separating in the frequency domain introduces
another problem: since every frequency band is separated individually, components output
by ICA are not ordered consistently across time frames, and a method must be devised to
group separated components into sources along the time axis (Mitianoudis & Davies, 2003).

Data-based methods

Recently, an increasing amount of source separation techniques are based on training data
rather than utilizing statistical properties or hand-crafted features (Vincent et al., 2018,
p. 11). The nature of the training data and the way it is used vary among methods. In
source-based training, a separate statistical model for each source is trained using isolated
signals of that source. The model embodies statistical characteristics of the sounds generated
from that source. For example, for singing voice separation, the model of the singing voice
would be trained using a corpus of solo singing voice recordings, and the model of the
instrumental accompaniment would be trained using a corpus of instrumental tracks. On
the other hand, separation-based training methods treat the separation task holistically;

2 Background 9

they optimize machine learning models to predict source signals given the mixture in an
end-to-end manner. In this case, the model embodies the characteristics of the mapping
from mixture to sources.

A further distinction is made between supervised and unsupervised training. In supervised
training, every training example is associated with ground truth data that helps guide the
optimization process. In supervised separation-based training, every item in the training
dataset normally consists of a mixture and the set of all individual sources that generated it.
In supervised source-based training, a training example could consist of a recording of a single
note played by an instrument along with an annotation specifying the fundamental frequency
of the played note. In unsupervised training, on the other hand, models are optimized
using recordings only, without any associated labels and without pairings of mixtures and
individual sources.

As an example for training-based methods, Hidden Markov models (HMM) have often
been used for source separation with unsupervised source-based training. An HMM is a
statistical technique that models sequential data using a set of states, state transition prob-
abilities, and probabilities of states generating certain observed outputs. The set of states
and probabilities can be estimated using a training dataset. Roweis (2000), for example,
used an HMM trained only on recordings of single speakers to separate mixtures of multiple
speakers. The HMM is used to generate a time-frequency mask that filters the desired source
from a mixture.

In the last decade, techniques based on artificial neural networks (“deep learning”) have
gained widespread popularity in many fields, and in audio processing in particular. In
recent years, deep learning techniques for source separation increasingly achieve state-of-
the-art results in various separation scenarios. Deep learning models for source separation
are normally trained using separation-based training, either supervised or unsupervised. We
give an in-depth review of deep learning in Section 2.2. We cover audio applications of deep
learning, including source separation specifically, in Section 2.3. In Section 2.3.3, we describe
a specific deep learning source separation technique called Wave-U-Net on which we base
our original work.

2 Background 10

Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) is a source separation technique that was originally
proposed for image decomposition (Lee & Seung, 1999), but it can be applied to any type of
signal. Before the advent of deep learning techniques, NMF was one of the most prominent
techniques for source separation due to its simplicity and extensibility.

The basic assumption of NMF is that the components from which a mixture is composed
are all non-negative. Hence, in the domain of audio, NMF cannot be applied directly on
time-domain signals because they do assume negative values. Rather, NMF is applied on
magnitude spectrograms (or magnitudes of other time-frequency representations) in which
values are always non-negative (Cichocki et al., 2006).

Let us denote the mixture magnitude spectrogram with X. NMF produces an approxi-
mate factorization X̂ to represent the spectrogram X as a product of two separate matrices:
a matrix of basis signals (W) and a matrix of activations (H):

X̂ = WH .

In this way, the mixture is estimated as a superposition of basis signals that assume time-
varying magnitudes. This interpretation can be seen clearly when the matrix multiplication
is viewed as a sum of column-by-row multiplications: every basis signal spectrum (column
of W) is scaled by a time-varying activation value (row of H) and the resulting matrices are
summed to produce the final mixture estimate X̂. See Figure 2.1 for an illustration. The
mixture spectrogram X inherently assumes only non-negative elements, and the separation
process is constrained to produce W and H that contain only non-negative elements as well.

NMF factorizes a signal into spectral components, but it does not supply a way to group
these components into sources. For example, if in a recording of a flute and cello duet every
instrument plays two pitches, a successful run of NMF would produce four basis signals
corresponding to the four pitches contained in the recording. However, NMF would not
indicate which notes belong to which instrument. Normally, a post-processing technique
such as spectral clustering is used in order to group components produced by NMF into
sources.

NMF algorithms work by minimizing an objective function that measures the divergence
between the mixture X and its estimation X̂. Several measures have been proposed for
this divergence, including squared Euclidean distance (Lee & Seung, 1999), the Kullback-

2 Background 11

A

B

CCo
m

po
ne

nt

A B C
Component

0

200

400

600

800

1000

Fr
eq

ue
nc

y
(H

z)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.1 Example of non-negative matrix factorization. Left: components
(W), top: activations (H), center: spectrogram approximation (X̂ = WH).

Leibler divergence (Lee & Seung, 2000), and the Itakuro-Saito divergence (Févotte et al.,
2009). Later, the beta-divergence objective function was proposed as a generalization of all
of the above (Févotte & Idier, 2011). The choice of objective function can yield to radically
different separation results. Additionally, NMF is sensitive to the initial values of W and
H .

Several algorithms have been proposed to solve NMF, including multiplicative update
rules (Lee & Seung, 2000), alternating least squares (Finesso & Spreij, 2006), and hierarchical
alternating least squares (Cichocki & Phan, 2009).

NMF in its basic form is often not sufficient to produce well-separated basis signals,
but it is amenable to adding additional spectral and temporal constraints on sources. A
large part of the literature has focused on formulating such constraints, which naturally vary
according to the task at hand. Constraints include group sparsity (Lefèvre et al., 2011),
temporal continuity (Smaragdis et al., 2014), and harmonicity (Hennequin et al., 2010).
Musical scores can also be used to enforce a semantically meaningful factorization, as we
discuss in detail in sections 2.5 and 4.

2 Background 12

2.1.4 Evaluation

Given the fact that a large number of source separation methods are designed by the re-
search community, the challenge of evaluating and comparing the various methods arises. It
would be desirable to have the ability to compare two methods or to obtain an individual
quantitative measure of a system’s performance. The existence of such a measure would
make it easier to choose techniques based on their performance. However, since separation
quality is somewhat subjective in nature, designing an evaluation scheme turns out to be a
challenge in its own. It would be possible, of course, to conduct subjective evaluation studies
by asking human subjects to rate or compare various techniques. This task was undertaken
on several occasions (Barker et al., 2015; Emiya et al., 2011; Ward et al., 2018a).

Conducting subjective studies, however, is costly and time consuming. For this reason,
the research community has made several attempts to devise objective evaluation metrics
for separation performance. Evaluation using these metrics normally requires a test dataset
that contains mixtures along with the set of true separated sources corresponding to each
mixture. A separation algorithm’s performance is measured by comparing the true separated
sources to the source estimations produced by the algorithm. Standard criteria have been
established to perform this comparison: source-to-distortion ratio, source-to-interferences
ratio, source-to-noise ratio, and source-to-artifacts ratio (Vincent et al., 2006). The existence
of several criteria stems from the observation that several factors can affect the perceived
separation quality. The BSS Eval toolbox (Févotte et al., 2005)2 is a MATLAB software
library that computes these criteria given mixtures, true sources, and source estimations.
BSS Eval stands for Blind Source Separation Evaluation, but it can also be used for non-
blind scenarios (as defined in Section 2.1.2). Recently, version 4.0 of BSS Eval was released3

(Stöter et al., 2018). This latest version is implemented using the Python programming
language and introduces significant speed-ups in computation.

Emiya et al. (2011) propose another set of objective measures that are released as a
freely-available software toolkit under the name PEASS (Perceptual Evaluation methods for
Audio Source Separation). PEASS metrics are similar to BSS Eval in that they compare true
sources to algorithm-produced estimations, but unlike BSS Eval, PEASS was designed based
on subjective tests and it uses a perceptual salience measure to determine the weighting of

2http://bass-db.gforge.inria.fr/bss_eval
3https://sigsep.github.io/sigsep-mus-eval/

http://bass-db.gforge.inria.fr/bss_eval
https://sigsep.github.io/sigsep-mus-eval/

2 Background 13

various measures so that they correlate well with subjective evaluations. Ward et al. (2018b)
compared the BSS Eval and PEASS evaluation toolkits and checked how their evaluations
correlate with human evaluations. The authors conclude that PEASS and BSS Eval have
comparable performance, with each excelling at a different metric. These results show the
elusiveness of devising a truly objective evaluation metric that works equally well for all
kinds of mixtures.

2.2 Deep Learning

Deep learning is a set of machine learning techniques that have been used successfully to
solve a broad range of AI tasks (LeCun et al., 2015). Machine learning algorithms learn a
data distribution from a given training dataset, in the hope that the learned distribution
generalizes well to examples outside of that dataset. In classic machine learning algorithms
(e.g., k-nearest neighbors), generalization relies on smoothness of the estimated data dis-
tribution. A local smoothness prior, however, is not sufficient to estimate complex data
distributions. Deep learning, on the other hand, is powered by the assumption that data
was generated by a combination of multiple, possibly hierarchical, features. Under this as-
sumption, the number of distinguishable regions in the data distribution grows exponentially
in relation to the number of training examples. This ability to make predictions based on
learned non-local features enables deep learning to tackle a wider variety of AI tasks without
using task-specific engineered features.

Deep learning provides a powerful framework for supervised learning. In a supervised
learning setting, model parameters are optimized using a training dataset consisting of
matching input and output vectors. In general, it appears that given a large enough dataset
and a large enough model, deep learning is able to tackle most tasks that are defined as
a mapping from an input vector to an output vector and are easy for a person to perform
rapidly.

2.2.1 Artificial Neural Networks

The most prevalent type of deep learning model is a feed-forward neural network, also known
as a multilayer perceptron. A feed-forward neural network approximates some function f∗
from input x to output y by defining a mapping y = f(x;θ) and optimizing the parameters
θ to obtain the values that result in the best approximation of f∗ according to a training

2 Background 14

dataset and a predefined loss function. The model is called feed-forward because information
flows through it from x through f to y without any feedback connections back into f .

Models are customarily built in a chain structure, as a set of composed functions fk, k ∈ [1, n],
so that f = fn ◦ fn−1 ◦ . . . ◦ f1. Functions fk are called the model’s layers. fn is called the
output layer and f1 to fn−1 are the model’s hidden layers.

Figure 2.2 Illustration of the structure of a feed-forward neural network.
Each circle represents an artificial neuron and each arrow represents a unidi-
rectional connection between one neuron’s output and another neuron’s input.
The depicted network is fully-connected: every neuron is connected to all the
neurons in the following layer. The shown network has only one hidden layer
for simplicity, but in practice networks often have several hidden layers. Image
by Wikipedia user Grosser.ca, licensed under CC-BY-SA 3.0.5

These models are called artificial neural networks because they are loosely inspired by
neuroscience. Brains contain a large collection of interconnected neurons, where each neuron
receives the outputs of several other neurons and produces one output. Artificial neural
networks can be seen in a similar light: instead of viewing f as a mapping between vectors,
we can see each layer as a set of units (‘neurons’) that act in parallel, where each unit in
layer k receives several outputs from layer k − 1 and produces one output which is sent to
layer k + 1. See Figure 2.2 for an illustration.

5https://creativecommons.org/licenses/by-sa/3.0/

https://creativecommons.org/licenses/by-sa/3.0/

2 Background 15

An artificial neuron is defined by:

h(x) = g(wTx+ b), (2.1)

where x is the neuron’s input vector, w is a vector of weights, b is a scalar bias and g is a
nonlinear activation function that is inspired by the firing rate of a biological neuron.

Consequently, a layer in a feed-forward neural network is defined recursively as an affine
transformation on the output of the previous layer followed by an activation function:

hk(x) = g(Wkhk−1(x) + bk),

h0(x) = x,
(2.2)

where Wk ∈ RDk ×RDk−1 is a matrix of layer parameters, b ∈ RDk is a bias vector, and g is
the activation function.

Considering feed-forward neural networks are built from such simple mathematical con-
structs, their approximation capabilities are surprisingly powerful. According to the uni-
versal approximation theorem (Cybenko, 1989; Hornik et al., 1989), multi-layer feedforward
networks are capable of approximating any measurable function from one multidimensional
space to another with an arbitrarily small non-zero amount of error, given a sufficient number
of hidden units and under mild assumptions on the activation function.

This universal approximation theorem implies that feed-forward neural networks have the
power to represent almost any function, but it does not make any guarantee on the number
of parameters that are required in order to do that. Furthermore, it does not prove that there
exists an optimization algorithm that could find the parameters for a neural network given
a set of training examples. That is, the theorem proves there must be a network that can
model a target function, but we may never be able to find that network’s parameters. For
these reasons, the universal approximation theorem is not sufficient to guarantee the success
of neural networks for real-world tasks. In fact, for many years machine learning researchers
had believed that neural networks have limited applications due to the difficulties in training
them. In the past decade, however, advances in training algorithms and network architecture
design have made neural networks a method that is well-suited for a wide variety of tasks.

2 Background 16

Activation Function

As mentioned earlier, a nonlinear activation function is applied to the output of every hidden
unit in a neural network (see Equation 2.1). Early neuroscience-inspired techniques (Mc-
Culloch & Pitts, 1943) lacked nonlinear activation functions and were thus limited in power:
linear models cannot learn even a simple function such as XOR, and any multi-layer network
without nonlinear activation functions can be reduced to a single-layer model (Goodfellow
et al., 2016, p. 14). The activation functions are thus one of the main sources of the repre-
sentational power of neural networks. The characteristics of the activation function greatly
affect the efficiency in which neural networks can be trained, but the effects of functions
on training are not completely understood. In many cases, activation functions are chosen
based on empirical results rather than on a theoretical understanding.

Figure 2.3 shows several common activation functions. Currently, the most commonly
used activation function is a rectified linear unit, known as ReLU. A ReLU lets positive input
pass unchanged but discards negative input. It is defined as f(x) = max (x, 0). In the early
days of neural networks, a commonly used function was the logistic sigmoid: f(x) = 1

1+e−x ,
which generates values between 0 and 1. The hyperbolic tangent is also used as an activation
function. It is in fact simply a rescaled version of the logistic sigmoid, with values between
-1 and 1: f(x) = tanh(x) = ex−e−x

ex+e−x , .
One motivation for using the logistic sigmoid was that it was considered to be a plausible

emulation of the firing of a biological neuron. Nonetheless, experimental results have shown
that using the hyperbolic tangent leads to more efficient training compared to the logistic
sigmoid, due to the fact that its outputs are more likely to have a mean that is closer to
zero (LeCun et al., 1998). More recently, ReLUs were found to be superior to sigmoids for
many use cases. Experimental results have shown that using ReLUs leads to faster converge
during training and also finds minima of equal or greater quality (Glorot et al., 2011). ReLUs
have thus become the most prevalent activation function. They are also more biologically
plausible than sigmoids, because biological neurons do not have any output until their inputs
cross a certain threshold.

2.2.2 Training

Training a machine learning model is the process of finding appropriate parameters for the
model so that it approximates a desired function. In the case of feed-forward neural networks,

2 Background 17

2 0 2
2

1

0

1

2
logistic sigmoid

2 0 2
2

1

0

1

2
hyperbolic tangent

2 0 2
2

1

0

1

2
ReLU

Figure 2.3 Neural network activation functions

the parameters to train are the layer weights and biases: Wk and bk from Equation 2.2.
The most common training method for neural networks is supervised training (LeCun

et al., 2015). In supervised training, the function to be approximated is defined using a set
of training examples (the training dataset), where each training example is a pair consisting
of an input and its true output. The training dataset is normally assembled by collecting
a large set of examples from the network’s input domain and attaching a human-annotated
label to each example representing the so-called ground truth that the model is supposed to
learn.

A desirable property in a good machine learning model is being able to generalize well to
examples outside of the training set. Hence, the purpose of training is to have the model learn
a distribution that is built out of the concepts that underlie the training data, rather than
simply memorizing the correct answer for each training example. A model that memorizes
training examples is called overfitted. Overfitting occurs when the model works well on the
training dataset but not as well on real-world test data (Srivastava et al., 2014). There are
several techniques to prevent overfitting during training (Goodfellow et al., 2016, p. 221);
in general, when the dataset is large enough (and the model size remains fixed) the model
is forced to generalize rather than memorize. In order to prevent an overfitted model from
being selected, a separate set of examples is prepared: the test dataset. The test dataset must
not be used during training; it is used to measure the performance of a model on examples
that it has not encountered during training.

2 Background 18

Loss Functions

Training a neural network requires defining a loss function, also known as an objective
function (Goodfellow et al., 2016, p. 79). The loss function measures how well a specific
function models the training dataset. In supervised training, the loss function measures
the difference between the model’s predictions and the true data from the training dataset.
The training process aims to minimize that difference in order to maximize the quality of a
model’s predictions. For instance, if a model is trained to predict a person’s age from their
picture, the loss function could be chosen to be the difference between the predicted age and
the actual age, averaged over all training examples.

In deep learning, the choice of loss function used to train neural networks is usually
motivated by the principle of maximum likelihood (Goodfellow et al., 2016, pp. 172–174).
Maximum likelihood estimation is a method used to find model parameters under which
the likelihood of observing the given training data is maximized. Under the framework of
maximum likelihood, the loss function is simply the cross-entropy between the training data
and the model distribution.

The mean squared error loss function is of special interest in this regard, because mini-
mizing the mean squared error is equivalent to maximum likelihood estimation assuming a
Gaussian model distribution (Goodfellow et al., 2016, pp. 133–134). Mean squared error is
thus the most widely used loss function in many domains (Zhao et al., 2017). To define the
mean squared error, let yi be the empirical output vector in a certain training example, ŷi

be the model’s prediction for that training example, and m be the number of examples in the
training dataset. The mean squared error is then defined as the squared L2 norm (Euclidean
norm) of the difference between the empirical output and model output, averaged over all
training examples:

MSE =
1

m

m∑
i=1

∥ŷi − yi∥22

The mean squared error loss function is the de facto standard in image processing, but
Zhao et al. (2017) have shown that in some cases using the mean absolute error produces
better results. The mean absolute error is defined as the L1 norm of the difference between
the empirical output and model output, averaged over all training examples:

MAE =
1

m

m∑
i=1

∥ŷi − yi∥1

2 Background 19

2.2.3 Gradient-Based Optimization

In the previous section we explained that training a neural network is an optimization process
that finds appropriate parameters to minimize a chosen loss function. This section explains
how that optimization is performed. Classic convex optimization methods cannot be used
to train neural networks, because the nonlinearity introduced by neural network activation
functions causes the loss function to become non-convex. For this reason, neural networks
are trained using gradient-based optimization, also known as gradient descent.

Gradient descent is a general optimization method that is not specific to deep learning.
It is an iterative technique that uses a function’s gradient to make small steps towards
finding a local minimum in the function (Boyd & Vandenberghe, 2004, p. 466). In the case
of neural networks, the optimized function is the loss function. The gradient of the loss
with respect to the model parameters indicates the direction in which the model parameters
should be adjusted so that the loss increases the fastest. Thus, in order to decrease the loss
the parameters must be adjusted in the opposite direction: the direction of the negative
gradient. Hence, at every training iteration, the model parameters θ are updated by the
negative gradient of the loss L multiplied by a small value ϵ called the learning rate:

θn+1 = θn − ϵ∇θL

Unlike convex optimization methods, gradient descent does not provide any guarantees
on the number of iterations required to bring the error to a minimum, nor does it guarantee
ever converging to such a minimum. Moreover, gradient descent is sensitive to the initial
values of parameters: different starting points may lead to different final results. Despite
these limitations, in practice gradient descent was found to converge to very small local
minima after a sufficiently large number of training iterations (Goodfellow et al., 2016, pp.
171–172).

Gradient descent requires computing the value of the loss function at each training itera-
tion. Most loss functions, such as the mean squared error described above, have a computa-
tional cost that depends on the number of examples in the training dataset. In the standard
case where the training dataset contains millions of examples, computing the loss function
over all training examples at each training iteration is unfeasible; it would lead to very long
training times. For this reason, most modern neural networks are trained using stochastic
gradient descent.

2 Background 20

Stochastic gradient descent is a variant of the basic gradient descent algorithm, in which
instead of computing the loss function over all training examples, it is computed on a small
batch of examples drawn uniformly from the training dataset at each iteration. Since the loss
function is computed on a small batch at every iteration, it can be seen as an estimation for
the true value of the loss function had it been computed on all training examples (Robbins
& Monro, 1951). This estimated loss value is then used to compute the gradient and adjust
model parameters iteratively. Stochastic gradient descent is what enables neural network
training to scale easily to millions of training examples (Bottou, 2010).

Back-Propagation

Back-propagation (Rumelhart et al., 1986) is an algorithm used to speed up the computation
of the gradient of functions that have a large number of inputs. It is used in training of
neural networks to efficiently compute the gradient of the loss function at each training
iteration. The motivation for back-propagation arises from the fact that the gradient of a
neural network loss function is simple to derive analytically using the chain rule of calculus,
but actually computing its value using the analytical expression would be inefficient because
many subexpressions would be evaluated multiple times. In back-propagation, the values
of these repeated subexpressions are stored in variables so that they are calculated only
once. For typical neural network architectures built out of a large number of operations with
many parameters, back-propagation speeds up training considerably. For a full mathematical
formulation of back-propagation, see Goodfellow et al. (2016, pp. 203–221).

2.2.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a special kind of neural networks in which at
least one of the layers uses the convolution operation to define its weights in place of general
matrix multiplication (Lecun, 1989). Convolution is a mathematical operation that expresses
the amount of overlap between two functions as one function is shifted over the other. From
a signal processing point of view, convolution is equivalent to the operation of a linear time-
invariant system (Orfanidis, 1995, p. 104). Convolution is denoted using the star operator
(∗) and is defined on two discrete functions x and h as follows:

2 Background 21

(x ∗ h)[n] =
∞∑

m=−∞

x[m]h[n−m] (2.3)

In the context of neural networks, x is a layer’s input and h is a kernel with learned
parameters (Goodfellow et al., 2016, pp. 321–324). Since the values of x and h are stored in
arrays, the functions are defined over a finite range only and are assumed to be zero outside
of this range, and the infinite summation in Equation 2.3 reduces to a finite summation. In a
given convolutional layer, the kernel is normally much smaller than the layer’s input. Thus,
the operation of a convolutional layer can be seen as pattern recognition: a fixed kernel
(defining the pattern) is shifted over the layer’s input, and at each point the layer computes
the amount of ‘matching’ between the kernel and the input. Compared to a fully-connected
layer, where a full matrix of weights is learned to determine the layer’s output, a convolutional
layer has only to learn a small kernel. This reduction in the amount of parameters and
the ‘pattern recognition’ property of the convolution operation make convolutional layers
a successful regularization strategy for neural networks and enable CNNs to achieve good
generalization capacity in practice.

Training a CNN is done in the same manner as any other feed-forward neural network.
Most neural network libraries do not implement the convolution operation directly using
the definition in Equation 2.3. Rather, they take advantage of the fact that convolution is
equivalent to multiplication by a Toeplitz matrix. A Toeplitz matrix is a matrix in which
every row is equal to the row above it shifted by one element, and multiplying a vector by
such a matrix is equivalent to convolution. Thus, a convolutional layer is defined like any
other layer (see Equation 2.2) but the weight matrix W is constrained to be a Toeplitz
matrix.

The convolution operation used in practice in neural networks has several important
differences from the standard convolution operation defined in Equation 2.3. In the basic
convolution operation, one of the functions is time-reversed before computing the inner
product. In CNNs, however, there is no practical reason for performing the time-reversal,
and it is simply omitted. This leads to an amusing realization: convolutional neural networks
do not actually use the convolution operation; they use cross-correlation instead, but continue
to call the operation convolution by convention. Cross-correlation is defined as:

2 Background 22

(x ⋆ h)[n] =
∞∑

m=−∞

x[m]h[n+m] (2.4)

Until now we have only discussed convolutions (or cross-correlations) that are one-
dimensional, that is, they that are applied across one axis only, which in the example case of
audio signals is the time axis. However, if inputs are multidimensional then convolutions can
also be applied over two or more axes simultaneously. For example, two-dimensional convo-
lutions are the most common type of convolution used in image processing CNNs because
images have two dimensions: width and height. In two-dimensional convolution the kernel is
also two-dimensional and the summation is done across both dimensions. Two-dimensional
cross-correlation is then defined as:

(x ⋆ h)[m,n] =
∑
i

∑
j

x[i, j]h[m+ i, n+ j] (2.5)

In CNNs, it is often desired to treat some input dimensions differently than others. For
example, image processing models process images that are two-dimensional, but each image
also has three channels: red, green, and blue. Similarly, in audio processing it is common
to process stereo audio, thus the input has two channels: left and right. In addition, it
is desired that a convolutional layer could have multi-channel outputs, because in standard
CNN architectures convolutional layers are stacked on top of each other, each layer producing
an output tensor (feature map) with different dimensions that is passed on to the next layer.

Hence, it is desired that a convolutional layer would process multi-channel inputs and
produce multi-channel outputs, where the number of input channels is not necessarily equal
to the number of output channels. For this reason, a convolutional layer is defined using
multiple cross-correlation operations: for each output channel, each input channel is cross-
correlated with a different kernel, and the results are summed (Goodfellow et al., 2016, pp.
337–338). To define a convolutional layer mapping an input with I channels (each channel
being a vector xi) to an output with J channels (each channel being a vector cj), we define
i · j different kernels hij, one kernel per pair of input and output channels. Every output
channel is defined as a sum of cross-correlations with all input channels:

cj =
I∑

i=1

hij ⋆ xi (2.6)

2 Background 23

Note the important difference between multidimensional convolution (Equation 2.5) and
multi-channel convolution (Equation 2.6). In multi-channel convolution, we ‘slide’ a convolu-
tion kernel across the axes of every channel separately, whereas multidimensional convolution
is applied across several dimensions simultaneously. In practice, neural networks often use
convolutions that are both multidimensional and multi-channel.

The activation function and bias (see Equation 2.2) are applied after computing cj, so
the final layer output yj for channel j is:

yj = g(cj + bj) (2.7)

where g is the activation function and bj is the bias vector for output channel j.
CNNs often employ several variants of the convolutional layer defined in Equation 2.7.

Namely, strided convolutions are used to skip some elements in the output feature map; input
padding is used for increased control over the size of the output feature map; and dilated
convolutions are used to increase the receptive field of a layer while keeping the number of
kernel weights fixed. A layer’s receptive field is the number of input units that are connected
to each unit in that layer. See Dumoulin & Visin (2016) for a complete review of convolution
arithmetic as used in deep learning.

CNNs are normally built as a stack of convolutional layers with other operations in-
terspersed in-between the layers. In particular, pooling operations are used as a form of
downsampling to reduce the size of feature maps by aggregating values locally. The earliest
used form of pooling was average pooling (LeCun et al., 1990), in which the feature map
is split into small patches and the average value of each patch is carried forward to the
next layer. In max pooling (Ranzato et al., 2007), only the largest value from each patch is
carried forward. Scherer et al. (2010) have shown empirically that max pooling yields better
results than average pooling, leading to widespread adoption of max pooling in the research
community.

The modern breakthrough of CNNs occurred in 2012, when Krizhevsky et al. (2012)
famously used CNNs to obtain state-of-the-art results on the ImageNet Large-Scale Visual
Recognition Challenge for image classification (Russakovsky et al., 2015), beating other
teams by a large margin in classification accuracy. The model was dubbed AlexNet. The
stacked convolutional layers processed an input image in multiple scales, allowing AlexNet
to create increasingly abstract representations in each layer by combining the feature maps

2 Background 24

produced by the preceding layer. See Figure 2.4 for an illustration of the most abstract
image features as learned by the first layer of AlexNet.

Figure 2.4 Learned convolution kernels from the first convolutional layer in
AlexNet, a CNN for image classification. Reproduced from Krizhevsky et al.
(2012) with permission.

2.3 Deep Learning for Audio Processing

Recently, the use of deep learning techniques has achieved widespread success in many appli-
cations, both scientific and commercial (LeCun et al., 2015). Applications include computer
vision, natural language processing, bioinformatics, finance, robotics control, and recom-
mendation systems. As could be expected, audio processing is no exception. In the last
half decade, deep learning is increasingly being applied to tasks that were originally solved
using classical signal processing techniques, such as synthesis, speech recognition, speech
enhancement, sound event classification, music information retrieval, and source separation
(Purwins et al., 2019).

In many cases, deep learning models for audio are based on counterparts from the field
of image processing. For example, some models for classification of audio events are based
on models that were originally developed to classify images. This transfer of techniques is
motivated by the early developments in image processing due in part to the existence of
larger datasets. However, researchers working on deep learning models for audio sometimes
incorporate knowledge and techniques derived from classical signal processing methods; this

2 Background 25

can lead to innovative techniques that achieve state-of-the-art results (Pons et al., 2016;
Ravanelli & Bengio, 2018).

Purwins et al. (2019) give a thorough and recent review of deep learning techniques for
audio processing. The authors give a general formulation of an audio task: receiving an input
audio sequence and outputting a certain label or labels. Tasks are categorized according to
the number of labels that are predicted (one label for the whole input sequence, one label
per time step in the input sequence, or a sequence of labels) and the type of these labels
(each label can be a single class, a set of classes, or a numeric value). For example, a single-
instrument recognition task predicts one label for the whole input sequence and the label
consists of a single class which is the name of the instrument. In the speech enhancement
task, on the other hand, the output sequence is the same length as the input sequence: the
model predicts one numeric label per time step in the input.

2.3.1 Audio Feature Selection

Models differ in the type of input features they use: all models receive audio as input, but not
all work on raw audio in the time domain. Many techniques apply a transformation on the
audio before it is fed into the deep learning model. The most common transformation is con-
verting the signal to a time-frequency representation, such as the Short-Time Fourier Trans-
form (STFT). Most natural sounds appear sparser when converted into a time-frequency
representation (many frequency bins in a spectrogram assume very small amplitude values
at most time points), which makes them suitable to be used as a basis for extracting mean-
ingful information (Lewicki, 2002). A time-frequency representation is two-dimensional, as
opposed to raw audio that is one-dimensional; this makes it easier to apply models that are
adapted from image processing tasks. However, applying image processing models directly
on spectrograms is bound to yield suboptimal performance due to the inherent differences
between images and spectrograms. Images can be rotated but their content will be preserved;
in spectrograms, each dimension has a fundamentally different meaning: the x-axis denote
time and the y-axis denotes frequency. Furthermore, natural audio characteristics such as
harmonicity yield to correlations between sets of frequency bins in a spectrogram, and these
correlations have no counterpart in natural images.

Time-frequency features other than standard spectrograms are also common. In many
classical signal processing tasks, the most prominent set of audio features was the mel-

2 Background 26

frequency cepstral coefficients (MFCCs) (Furui, 1986). However, MFCCs prove to be less
efficient for deep learning models, perhaps due to the fact that they remove important
information contained in the signal. For this reason, many deep learning models use log-mel
spectrograms instead. Log-mel spectrograms are similar to MFCCs in that they both use the
outputs of a filter bank that is inspired by the human auditory system, but MFCCs include
an additional transformation which log-mel spectrograms do not. Log-mel spectrograms are
especially common for speech-related tasks. For musical tasks, constant-Q spectrograms are
also common. Constant-Q spectrograms are especially suited for musical tasks because they
maintain transposition invariance: transposing an audio excerpt up or down by some amount
yields only to a vertical shift in the spectrogram, whereas in other representations it would
also lead to scaling.

Finally, some models eschew all manually-designed audio features and choose to use raw
audio as input. Raw audio was considered difficult to use for many traditional signal process-
ing applications because of its denseness. However, some neural networks architectures are
able to efficiently process raw audio. In particular, CNNs can model a sequence of samples
in a hierarchical manner by creating a stack of convolutional layers, where each layer pro-
cesses the signal at a different time-scale. Since the operation of a filter is equivalent to the
convolution operation, and the STFT that is used to produce a spectrogram can be seen as
a set of filters, it could be said that a convolutional neural network effectively creates audio
features that are similar in nature to a spectrogram but have parameters that are learned
using task-specific training data.

In the above description, we were concerned only with how the model’s inputs were rep-
resented. For tasks in which the output is audio, such as synthesis and source separation,
there is a similar challenge with the model’s output. If the model outputs raw audio, no
further work is necessary. The WaveNet model (Oord et al., 2016), for example, generates
audio sample-by-sample where the prediction probability for every sample is conditioned on
all previous samples. However, if the model outputs spectrograms (STFT, log-mel, or other),
some post-processing stage must convert the spectrograms to raw audio. This is tradition-
ally done using the Griffin-Lim algorithm that recovers the phase from a spectrogram that
contains magnitudes only (Griffin & Lim, 1984). However, this algorithm usually does not
recover the phase well enough to achieve satisfactory audio quality. Deep learning models
can yield better results when trained to convert spectrograms to audio. For example, Shen
et al. (2018) conditioned WaveNet on log-mel spectra to generate raw audio.

2 Background 27

2.3.2 Source Separation using Deep Learning

Deep learning has emerged as a major paradigm for source separation in the last few years
(Vincent et al., 2018, p. 443). Most deep learning source separation techniques use super-
vised learning with separation-based training (described in Section 2.1.3) thus formulating
the source separation task holistically as minimizing the error of a mapping from mixtures
to source signals (Vincent et al., 2018, p. 113). Deep learning-based methods currently show
the best performance among source separation techniques (Rafii et al., 2018). In a recent
evaluation campaign, SiSEC 2018, deep learning-based submissions were found to outperform
all other methods for singing voice separation and multiple instrument separation (Stöter et
al., 2018).

Due to the large number of publications and ongoing developments in this field, we
cannot give an exhaustive survey here. We present several major types of methods and
representative examples of each type: generic feed-forward neural networks, CNNs, recurrent
neural networks, generative adversarial networks, and finally hybrid and other models. The
reader is referred to Wang & Chen (2018) for a recent review of deep learning for speech
separation and enhancement and to Rafii et al. (2018) and Cano et al. (2019) for extended
overviews of music separation with sections on deep learning.

Feed-Forward Neural Networks

Some of the earliest deep learning source separation techniques used generic feed-forward
neural networks (FNNs, described Section 2.2.1). Uhlich et al. (2015) approached multi-
instrument separation using an FNN that is fed a mixture spectrogram frame, along with
neighboring context frames, and trained to predict source spectrograms. The predicted
source spectrograms are then combined with the mixture phase to reconstruct the source
estimate.

Generally speaking, the specialized neural architectures described below, which enforce
parameter sharing within the network, were found to be more effective than generic FNNs
for source separation (Cano et al., 2019).

Convolutional Neural Networks

CNNs have been found effective for source separation (Wang & Chen, 2018) since they
effectively model shift-invariant features using convolutional layers, where in each layer the

2 Background 28

same convolution kernel is applied to different parts of the layer’s input (see Section 2.2.4
for details). Simpson et al. (2015) used a CNN for singing voice separation that receives the
mixture spectrogram as input and outputs a binary mask for extracting the vocals.

Takahashi & Mitsufuji (2017) employed a CNN which is composed of “dense blocks” of
layers. Every layer in a dense block receives as input not only the output of the previous layer,
but the concatenated outputs of all the previous layers in the block. The model contained
several interconnected dense blocks, with downsampling and upsampling layers interspersed
in-between. The CNN processed a mixture spectrogram by splitting it into several frequency
bands and processing each band separately, and then combining the computed feature maps
for all bands. The authors showed that this technique outperformed all other techniques
evaluated in the SiSEC 2016 evaluation campaign (Liutkus et al., 2017).

Recurrent Neural Networks

Recurrent neural networks (RNNs; Rumelhart et al., 1986) are particularly effective for audio
processing and source separation in particular because they are designed to model sequences
(Vincent et al., 2018, p. 118). In RNNs, every hidden or output unit can have feedback
connections to that unit’s values in previous time steps. The feedback connections remain
fixed for the entire sequence, which is what creates the recurrent structure (Goodfellow et
al., 2016, pp. 363–364).

Huang et al. (2015) proposed an RNN that processes spectrograms in short frames.
The RNN incorporates relationships between processing frames over time using feedback
connections. The network predicts soft masks which are applied to the original mixture to
produce source spectra estimates.

Uhlich et al. (2017) continued their aforementioned previous work (Uhlich et al., 2015)
by blending the FNN’s outputs with outputs from an RNN that ran in parallel. The RNN
was shown to outperform the FNN due to the RNN’s ability to better take into account the
context information from the mixture. Blending the output of the two networks led to even
better results.

Generative Adversarial Networks

Generative adversarial networks (GANs; Goodfellow et al., 2014) combine two neural net-
works: a generator and a discriminator. The generator is designed to manufacture examples

2 Background 29

that resemble the training examples as closely as possible and the discriminator is trained
to distinguish between the training examples and those produced by the generator. The
generator is trained to maximize the probability of the discriminator making a mistake.

The use of GANs has achieved widespread popularity for image synthesis, and recently
they have been employed for audio tasks including speech enhancement, sound synthesis,
and source separation (Engel et al., 2019; Pascual et al., 2017; Wang & Chen, 2018). Fan et
al. (2018) created a GAN for singing voice separation which operated on magnitude spec-
trograms. In order to bootstrap the generator network, they first trained it in a supervised
fashion and then continued with standard GAN training.

Subakan & Smaragdis (2017) used a GAN as part of a generative separation formulation
in which each source is modelled using a probability distribution that is conditioned on a
latent variable, and the mixture distribution is conditioned on the sum of all sources. The
GAN was trained to generate source spectra from the latent variable values. A mixture was
then separated by finding latent variable values that maximize the probability of the mixture
and using the GAN to predict source spectra from those values.

Stoller et al. (2018a) used GAN-like adversarial training, but combined supervised and
unsupervised training by alternating between two training datasets: a labelled multi-track
dataset and an unlabelled dataset containing unassociated sources and mixtures. The nov-
elty of this method is that training is separation-based and yet it still takes advantage of
unlabelled data, which is easier to find than multi-track data.

Hybrid and Other Methods

Luo et al. (2016) approached singing voice separation using a unique approach based on
clustering: every time-frequency bin in the mixture spectrogram was transformed using an
encoder network to an embedding vector, and bin embeddings were then grouped using k-
means clustering to associate every bin to one estimated source. The idea of clustering
spectrogram bins was originally used for speech separation (Hershey et al., 2016).

Nugraha et al. (2016) combined deep learning with classic signal processing techniques
for singing voice separation in multi-channel mixtures. They used an FNN to predict source
spectra and combined those spectra with spatial covariance matrices, which were estimated
using an iterative expectation-maximization algorithm, to create a multi-channel filter.

Takahashi et al. (2018b) built an improved version of the aforementioned CNN with

2 Background 30

dense blocks (Takahashi & Mitsufuji, 2017) by combining it with an RNN. More specifi-
cally, RNN “blocks” were inserted into the network immediately following some dense CNN
blocks. This was motivated by the effectiveness of CNNs in modelling local structure and
the effectiveness of RNNs in modelling temporal relationships. This technique outperformed
all other submissions in SiSEC 2018 (Stöter et al., 2018). Remarkably, it was even found to
outperform an ideal binary mask, which is considered as an upper baseline when measuring
separation performance.

Phase Estimation

The choice of model type is orthogonal to the choice of audio features, but the majority of
methods use time-frequency features and more specifically magnitude spectrograms (Wang
& Chen, 2018). When a network predicts only magnitude spectrograms, phase must be
estimated separately.

As described above, some techniques simply use the mixture phase as is for the source
estimates. Several other techniques have addressed the phase estimation problem. Lee et al.
(2017) built a complex-valued neural network that processes the mixture’s complex STFT
without discarding phase information. Muth et al. (2018) proposed a fused approach com-
bining two networks: the first network processes the magnitudes while the second processes
the phase (or, more specifically, the derivative of the phase). The outputs of the two are
then concatenated and fed into a fusion network that predicts the complex source spectra.

Takahashi et al. (2018a) devised a method for estimating phases only: a CNN is trained
to predict the source phase given the mixture spectrum (phase and magnitude) and the
source magnitude (which must be estimated by some other means). Interestingly, they took
a classification-based approach by discretizing the phase into a predetermined number of
classes.

Yet another way to deal with the problem of phase estimation is to process audio directly
in the time domain, without using time-frequency features at all. In the next section we
discuss a technique that does exactly that.

2.3.3 Wave-U-Net

In this section we describe a source separation method called Wave-U-Net. Wave-U-Net
(Stoller et al., 2018b) is a CNN that was originally designed for two tasks: singing voice

2 Background 31

separation (voice and accompaniment) and multi-instrument separation (bass, drums, guitar,
vocals, and “other”). In the SiSEC 2018 evaluation campaign (Stöter et al., 2018), Wave-U-
Net received a high score compared to other state-of-the-art techniques.

In the following chapters of this thesis, we will use Wave-U-Net extensively for our exper-
iments on source separation of choral music (see chapters 5 and 6). In preparation for this,
we describe here the original Wave-U-Net technique, starting with its predecessor: U-Net.

U-Net for Image Segmentation

Wave-U-Net is based on U-Net (Ronneberger et al., 2015), a technique that was originally
proposed for semantic segmentation of biomedical images. In image segmentation, the input
is an image and the desired output is a classification of each pixel into a segment label. U-Net
is designed to perform this pixel-by-pixel classification by using the information contained
in the image on multiple scales. It does this by employing a hierarchical encoder-decoder
architecture with skip connections. As seen in Figure 2.5, the schematic diagram of the
neural network resembles the letter U and this is the reason for the name U-Net.

In U-Net’s encoder, an input image is gradually scaled in a sequence of convolutional
downsampling layers into a low-resolution feature map with a high number of channels.
The decoder then scales the feature map back up to the original image’s resolution in a
sequence of convolutional upsampling layers. Crucially, the feature map that is output from
each encoder layer is also directly connected to the input of the corresponding decoder layer.
These skip connections, depicted by gray arrows in Figure 2.5, enable the network to combine
high-resolution information from finer levels of processing with coarse-level features derived
using the context of the entire image.

U-Net for Audio Source Separation

U-Net has first been used for source separation by Jansson et al. (2017). In this work,
the authors essentially treated the source separation task as an image-to-image mapping.
The mixture is first cut into short segments of fixed length and the Short-Time Fourier
Transform is computed for each segment. The U-Net is applied on a mixture segment’s
magnitude spectrum (the “input image”) and outputs a soft mask (the “output image”).
The soft mask is applied to the mixture magnitude spectrum by element-wise multiplication,
and the resulting magnitude spectrum is combined with the mixture’s phase to give the final

2 Background 32

Figure 2.5 Original U-Net architecture. Each blue box corresponds to a
multi-channel feature map. The number of channels is denoted on top of the
box. The x-y-size is provided at the lower left edge of the box. White boxes
represent copied feature maps. The arrows denote the different operations.
Reproduced from Ronneberger et al. (2015) with permission.

2 Background 33

predicted source spectrum.
The spectrogram U-Net achieved state-of-the-art performance on singing voice separation

when it was published. The authors further demonstrated the effectiveness of the U-Net’s
skip connections by showing that removing them had a significant negative impact on the
model’s performance.

Wave-U-Net

Wave-U-Net is similar in architecture to the spectrogram U-Net. Its main contribution was
to abolish completely the use of spectrograms and apply the U-Net architecture directly on
the time-domain signal. The signal is cut into short segments and each segment is fed into
the network to directly predict the separated sources. Since a waveform is one-dimensional,
the network must now use one-dimensional convolutions rather than the two-dimensional
convolutions used in image processing. According to the authors’ experiments, Wave-U-Net
yields separation results that are superior to those of the spectrogram U-Net. See Figure 2.6
for an illustration of the Wave-U-Net architecture.

The Wave-U-Net authors made several other important architectural changes. First,
they observed that the transposed convolution operation used by the original U-Net in the
upsampling layers causes aliasing artifacts. This was also previously observed by researchers
working on image processing as ‘checkerboard artifacts’ (Odena et al., 2016). In order to
avoid the aliasing artifacts, Wave-U-Net replaced the transposed convolutions with linear
interpolation followed by normal convolution.

Another contribution made by Wave-U-Net authors is refraining from the use of zero-
padded convolutions in downsampling layers. Zero-padding was originally used in downsam-
pling layers to avoid shrinking the image after every layer, and to better preserve information
at the borders of the image. However, Wave-U-Net authors found that using zero-padded
convolutions created transient-like artifacts at the beginning and the end of the network’s
outputs. Since the network operates on short segments that are subsequently concatenated
to each other, those artifacts created discontinuities at segment boundaries and their effect
was intensified. As already mentioned, zero-padding is needed to preserve the dimensions of
the input data; without it, the network’s output will be shorter than the input. However,
due to the segment-wise manner in which Wave-U-Net operates, this limitation was turned
into an advantage. Instead of padding input segments with zeros, every segment is padded

2 Background 34

Figure 2.6 Schematic illustration of the Wave-U-Net model architecture.
Copyright (c) 2018 Daniel Stoller, licensed under the MIT License.7

7https://github.com/f90/Wave-U-Net/blob/master/LICENSE

https://github.com/f90/Wave-U-Net/blob/master/LICENSE

2 Background 35

with the actual audio that precedes it and follows it. In other words, in order to process
an audio track it is divided into overlapping segments, and each of those segments is fed
to the network to predict a much shorter source segment (the input and output segments
are centered on the same time point). In this way, the network is able to use the temporal
context in the input signal to effectively predict the separated sources without artifacts at
segment boundaries.

Wave-U-Net further improved separation quality by enforcing source additivity. Enforc-
ing source additivity is based on the assumption that the mixture is a sum of all sources.
Originally, Wave-U-Net had predicted every source independently of the others. The source
additivity assumption means that in order to predict n desired sources, only the first n− 1

sources need to be predicted independently. The last source is predicted simply as the
difference between the mixture and the sum of all other source predictions.

Wave-U-Net can be trained to work with multi-channel audio inputs and outputs. The
authors report that working with stereo input and output yielded better results than working
with mono audio. This shows that Wave-U-Net is able to leverage inter-channel correlations
to improve separation.

2.4 Choral Music

A choir is an organized group of singers who sing together. The music sung by a choir is
called choral music. Choral music can be monophonic if all singers sing the same melody at
the same time. However, choral music is often polyphonic in nature, that is, it is comprised
of different parts that are sung simultaneously.

Until the 20th century, many researchers had believed that polyphonic choral music was
invented by medieval Christian monks in the 9th century. However, ethnomusicological re-
search has made it clear that traditions of polyphonic choir music could be found in many
different cultures in various parts of the world long before the 9th century (Jordania, 2011).
Nonetheless, in this thesis we focus on professional music (“art music”) rather than tradi-
tional music. The term choral music will be used hereafter to refer specifically to the style
of European professional choral music, and mainly to music composed during the Baroque,
Classical, and Romantic eras (17th to 19th centuries).

2 Background 36

2.4.1 History and Musical Styles

In many cultures, the origins of traditional polyphonic choir music are not well-understood
due to the lack of historical documentation (Jordania, 2011). However, the course of devel-
opment of European professional choir music is fairly well-known based on documents dating
as early as the 9th century. Musica enchiriadis is a treatise from the 9th century that details
contemporary singing practices in liturgical music of the Christian Church, including a poly-
phonic singing technique called organum (Erickson, 2001). The treatise was disseminated
widely in Europe and is considered one of the most widely read medieval music theory trea-
tises. Most researchers today believe that the polyphonic singing practices described in the
treatise originated from the integration of traditional European polyphonic traditions into
the rigid framework of monophonic church hymns that were the prominent form of liturgical
music at the time (Jordania, 2015, p. 266). The fusion of these two contrasting styles led to
the creation of the unique choral style known to us today as the style of classical choir music,
influenced by dominance of the melody on the one hand and by independence of parts on
the other hand.

Early organum consisted of parallel singing in consonant intervals only. Subsequent
developments between the 9th and 12th centuries introduced more sophisticated types of
interaction between parts such as contrary, oblique, and similar motion. Rhythmic modes
were introduced as a creative principle to guide the rhythmic organization of notes in a
melody. These developments and others lead to a gradual increase in the independence of
parts in the polyphonic texture and paved the way for the development and formalization of
techniques known as counterpoint. Counterpoint is a set of musical composition techniques
employing simultaneously sounding musical parts (Sachs & Dahlhaus, 2001). The term
was first used in the 14th century and the techniques continued to evolve throughout the
following centuries. Early counterpoint techniques are considered to have culminated in the
Renaissance era with the compositions of Giovanni Pierluigi da Palestrina in the 16th century.
While early counterpoint techniques are characterized by strict rules, the 17th century saw
an insurgence of a more free counterpoint style in which less limitations were put on the
treatment of dissonant sonorities.

An important transition in musical style occurred in the 16th and 17th centuries. Coun-
terpoint of the Renaissance was modal: parts were treated as individual lines and the main
principle guiding part writing was melodic coherence; pitches in each part were organized

2 Background 37

using one of eight musical modes that determined the set of allowed pitches and the melodic
relationships between them. Going into the 17th century which marks the beginning of the
Baroque era, the musical basis for counterpoint moved gradually towards the newly devel-
oped concept of tonal harmony. In tonal harmony there is a crucial importance to sonorities
created from the combination of simultaneous pitches and the interactions between these
sonorities. In other words, rather than focusing on individual part melodies, writing was
now increasingly guided by chords and chord progressions (Hyer, 2001). Pitches in tonal
harmony are organized using one of only two modes, called major and minor, instead of
the eight medieval modes. The complex imitation textures of Renaissance counterpoint
were simplified into more homophonic textures that consist of one dominant melody and
harmonic accompaniment.

In the ensuing Classical era (18th century to early 19th century), the use of tonal harmony
continued to expand as a framework of organization for vocal and instrumental music alike.
While in Baroque music some harmonic progressions were still motivated by counterpoint
considerations of melodic motion, in the Classical era it was harmony and tonal functions
that served as the main basis for musical organization. In Classical music, the harmonic
rhythmic (the rate at which chords change) is considerably slower than in Baroque music.
That is, chords were no longer a passing phenomenon, and harmony was now used to establish
structure both locally and globally. Locally, chords fulfilled functions of tension and relief
in relation to the tonic (the “home key”) and were used for syntactical purposes to form
phrases. Globally, harmony was used to create long-term structure and coherence (Cohn et
al., 2001).

In the Romantic era (19th century to early 20th century), the developments in harmony
can be seen as reflecting the general spirit of that era, a spirit of increased personal expression
and emotions. New sonorities that extend the pure harmonies of the Classical era were
valued as novel and inspirational. Music development seems to have stemmed from a “more
of everything” kind of mentality: longer compositions, larger ensembles and orchestras, new
musical instruments, and an extended harmonic language characterized by more frequent
use of dissonances.

2 Background 38

2.4.2 Choir Structure

Choirs that sing in the style of European professional choir music are generally structured by
dividing the singers into four different parts according to their vocal range. A singer’s vocal
range is the range of notes that are comfortable for them to sing. Women singers are split
into two parts: those with higher-pitched voices are called soprano while the lower-pitched
are called alto. Men are similarly split into two parts: the higher men voices are called tenor
and the lower bass. This common choir structure is dubbed SATB: soprano, alto, tenor,
bass.

Most choir music from the Baroque, Classical, and Romantic periods is written for SATB
choirs. Other common types of choirs include women’s choirs, usually comprised of two
soprano and two alto sections (SSAA) or two soprano sections and one alto section (SSA);
male choirs, with two tenor sections and two bass sections (TTBB); and boy choirs, which
are normally made up of boys whose voices have not yet changed and thus sing in the soprano
and alto ranges.

Sometimes a choral part is split into two or more parts; this is called divisi. For example,
the soprano part can be split into soprano 1 and soprano 2. Divisi can be requested by a
composer for sections where more than four simultaneous pitches are desired.

A singer’s assignment into one of the choir parts is determined first and foremost by
their vocal range, but the decision is not always straightforward. It is influenced by many
additional factors including the singer’s vocal timbre, agility, ability to sing harmony (as
opposed to melody), the blend of a singer’s voice with other singers in the same section, and
overall choir balance (Smith & Sataloff, 2013). Even the exact vocal ranges used for voice
classification vary between sources, and are different between classification for solo singing
and choral singing. In choral music, composers tend to write mostly pitches that lie in the
comfortable range for most singers, contrary to solo singing (e.g., opera) where limits of the
vocal range are often stretched.

Approximate standard choral voice ranges are given in Table 2.1. Throughout this thesis
we indicate pitches using Scientific Pitch Notation (Holoman, 2014) that consists of a pitch
name followed by an octave number, where C4 denotes the “middle C” note on a piano and
A4 denotes the A above that middle C with the standardized fundamental frequency of 440
Hz.

2 Background 39

Table 2.1: Standard vocal ranges in choral music according to Smith & Sataloff (2013, p.
234). Other sources give slightly different ranges, see for example The Harvard Dictionary of
Music (Randel, 2003b). Frequencies are given according to a reference point of A4 = 440 Hz.

Voice Pitch Range Frequency Range (Hz)

Soprano 1 F4–A5 349.23–880.00
Soprano 2 C4–F5 261.63–698.46
Alto 1 A3–E5 220.00–659.26
Alto 2 F3–D5 174.61–587.33
Tenor 1 F3–A4 174.61–440.00
Tenor 2 C3–F4 130.81–349.23
Bass 1 G2–D4 98.00–293.66
Bass 2 E2–C4 82.41–261.63

Note the significant amount of overlap between the pitch ranges of the different voices.
For example, a low bass and a low soprano are able to sing the same note, and the alto
2 range is completely contained in the tenor 1 range. However, it is standard practice for
composers to maintain the natural ordering of the voices. That is, when all voices sing at
the same time, soprano will always sing the highest note, followed by alto, tenor, and bass
in that order. Sometimes, however, melodic, timbral, or other musical considerations cause
composers to create a voice crossing in which the natural ordering is disrupted.

A choir is normally led by a conductor. The conductor is a person who uses his hand,
face, and body gestures to lead the choir in song during performance. Furthermore, the
conductor has the important role of directing choir rehearsals. A choir rehearsal normally
starts with warm-up and voice exercises, followed by practice of the musical pieces that are
to be performed. The conductor manages the practice by choosing what pieces and which
sections are worked on. In some professional choirs, singers are able to sight-sing their parts
from the musical score without prior learning of the parts. However, in difficult pieces and
in amateur choirs, singers often need to sing their parts several times before mastering the
pitches, the rhythms, and the text. Thus, a significant portion of choir rehearsals is devoted
to part reading in order to achieve familiarity with the music, many times assisted by a re-
hearsal pianist doubling the choir parts on the piano. In order to enhance the musicality and
expressivity of the performance, the conductor often adds their own personal interpretations

2 Background 40

on top of the score and makes choices regarding every aspect of the performance, including
dynamics, tempo, articulation, phrasing, breaths, timbre, and diction.

The size of choirs varied widely across centuries and still varies today across choirs. In
early medieval days of polyphonic vocal church music, it may well be that every part was
sung by only a single singer; there is no evidence to support that multiple singers sang the
same part. In the Renaissance, church choirs grew considerably: choirs of the 15th and 16th

are estimated to have had an average of 20 to 30 singers (Randel, 2003a). In the 17th and 18th

centuries choirs continued to grow up to 40 singers and more, and in special events choirs were
sometimes combined to form bodies of several hundred singers. In Germany, however, the
musical customs of the Protestant church were quite different. There is considerable amount
of debate among scholars about the conventional size of choirs, specifically regarding choirs in
the music of J. S. Bach. Some believe that Bach wrote for choirs with only one singer per part,
with supporting singers (ripienists) who joined the main singers only for some movements
(Parrott, 2010; Rifkin, 1982). Others believe that Bach’s choirs were customarily 12 to 16
singers in size (Glöckner, 2010).

In the 19th century, choir sizes continued to grow; community choirs increased in pop-
ularity with the expanding availability of musical education in Europe and North America.
Earlier pieces that were originally composed for small choirs were now being customarily
performed by choirs of 40 singers and more. In large-scale pieces involving both a choir and
an orchestra, very large choirs were required to rival the powerful sound of the increasingly
large orchestras employed at the time. In the premiere of Beethoven’s 9th symphony in 1824,
for example, it is estimated that the choir consisted of between 80 and 120 singers (Kelly,
2001, p. 134). Mahler’s 8th symphony (‘Symphony of a Thousand’) is an extreme example
in the late Romantic period: the choir in this symphony’s premiere in 1910 consisted of no
less than 858 singers, with an orchestra of 171 instrumentalists (Floros & Wicker, 1995, p.
243).

Despite such extreme examples, smaller choirs have continued to exist and perform
throughout the 19th, 20th, and 21st centuries. Today, choirs are popular in many cultures
around the world not only as professional performance bodies, but also (and mainly) as ama-
teur groups performing for the sake of enjoyment. For example, a recent survey of Canadian
choirs and choir singers in 2017 has found that an estimated 10% of Canada’s population sing
in choirs (Hill, 2017). The most common types of choirs in Canada are church choirs, school
choirs, community choirs, and professional choirs. According to the survey, the estimated

2 Background 41

total number of choirs in Canada is 28,000, the majority of which are church choirs (63%).
The median number of singers in a choir was found to be 36.

2.4.3 Musical Scores

Musical scores are a key element of the work presented in this thesis. In the following
chapters, we use musical scores to generate a synthetic training dataset for source separation
(Section 3) and to guide source separation (Section 6). In this section we therefore present
the characteristics of musical scores with a specific focus on choral scores.

A musical score is a graphical symbolic representation of a musical composition (Charl-
ton & Whitney, 2001). The score is created by a composer to indicate to performers how
the music should be performed. A score is similar to a recipe in this respect: it guides the
performance but cannot completely describe the music (as a recording, for example, could);
some room is always left for interpretation by the performers. The term score is used with
different meanings: sometimes, it is used broadly to refer to all written or printed represen-
tations of music. Other times, it is used more narrowly to refer only to such representations
that show the music of all the instruments and voices participating in a composition (as
opposed to showing only one or some of the parts). We henceforth use the term score in the
latter more narrow sense.

History and Characteristics of Music Notation

Scores are written using music notation. Many different music notation systems have de-
veloped in various cultures around the world. The most prevalent notation system in use
today for Western art music is common Western music notation. This standardized notation
system establishes a common language between composers and performers around the world,
thus enabling performers to easily learn new pieces and granting composers the knowledge
that pieces they write will be interpreted correctly.

The complex notation system we know today as common Western music notation has
evolved gradually over many centuries through various innovations introduced by individual
composers and theoreticians. The roots of this notation lie in a system of signs known as
neumes that were used by monks to indicate the melody contours of church chants. The
earliest examples of neume notation date back to the 9th century and were found in various
places in Europe (Bent et al., 2001).

2 Background 42

Between the 9th and 19th centuries, the rudimentary set of neume signs developed into a
complex system for notating almost every aspect of music, including pitch, rhythm, meter,
note grouping, key, dynamics, articulation, tempo, and instrument-specific playing tech-
niques (Bent et al., 2001). Notable notation innovations throughout history include: the
introduction of staff lines and clefs for precise indication of pitch, circa 1030 by Guido of
Arezzo; the adoption of square notation in the 13th century shifting the focus from melodic
lines and phrases to individual notes; the formulation in the 13th century of rhythmic modes
as an abstraction of repeating rhythmic patterns; the development of mensural notation
throughout the 13th, 14th, and 15th centuries for more precise indication of note duration;
bar lines in the 16th century for a clear visual separation of time units; increased usage in
the 16th and 17th centuries of beams and slurs to group and connect notes; fractional time
signatures to indicate meter independently from tempo in the 18th century along with verbal
indications of tempo; formalization of accidentals and key signatures in their modern sense in
the 17th and 18th centuries to indicate raising or lowering of a note’s pitch; dynamic markings
in the 17th century to indicate loudness and hairpin symbols in the 18th century to indicate
gradual change in loudness; the gradual adoption in the 17th to 19th centuries of scores with
multiple staves for notating keyboard music and music with multiple instruments or voices
(scores previously existed in the Middle Ages for polyphonic singing but were abandoned
around the 13th century); and finally, the large expansion of the vocabulary of dynamics and
articulation signs in the 19th century.

The long list of notation developments presented above is just a small fraction of the
diverging historical trends; many other developments and proposed systems did not make it
into the mainstream notation system that is widely taught today to musicians. See Bent et
al. (2001) for an in-depth description of the history of Western music notation and a review
of other notation systems.

Types of Scores

There are several types of musical scores. A full score contains the music for all instruments
and voices participating in a piece. Each part is written on a separate staff and staves are
laid out one under the other on each page. It is often not convenient for performers to play
directly from a full score, as the music of other parts could distract them from playing their
own part. This is especially true in music with many instruments such as orchestral music.

2 Background 43

For this reason, in these cases performers play from individual parts showing only their own
music. Conductors still use the full score during performances and rehearsals because they
need to integrate information from all parts in order to conduct effectively.

Choral Music Scores

In choral music, the standard practice is that singers sing from the score rather than from
individual parts (Butcher & Studebaker, 1985). Singing from the score encourages every
singer to be more aware and attentive to the music sung by other voices. In pieces involving
both a choir and an orchestra, it would be inconvenient for singers to sing from a full score
with all orchestral parts in it; in these cases, singers use a vocal score that contains all vocal
parts but reduces all instrumental parts to a single piano part. The piano part can then be
used by a rehearsal pianist during choir rehearsals.

Figure 2.7 shows an example of a vocal score for a piece of choral music. The score is
made up of five parts: soprano, alto, tenor, bass, and piano. The piano part is a reduction
of all the original orchestra parts combined for use in rehearsals. Every part is written on
a single staff, except for the piano part that is written across two staves (one staff for the
left hand and one for the right hand). The score excerpt contains two lines of music, called
‘systems’, and each line contains three bars that are separated by bar lines. A time signature
at the beginning of the excerpt (circled in blue) indicates the meter, 12

8 , meaning every bar
is made up of 12 eighth notes (four beats of three eighth notes each). Every staff contains
notes indicating pitch and duration. Some notes are connected using ties to extend their
duration. Rests on the staff indicate the absence of any note. Slurs are used to mark several
notes that are sung on the same syllable (this is a convention specific to vocal writing).
Dynamic markings (circled in orange) indicate loudness: p stands for piano meaning soft,
f (forte) means loud, and cresc. (crescendo) indicates a gradual increase in loudness. The
tempo marking Larghetto (circled in green) indicates the speed and character in which this
excerpt should be performed: ‘fairly slowly’. A clef on each staff (circled in red) determines
the pitch reference point for reading note pitches on that staff: some staves use the treble
clef and others use the bass clef. A syllable is written under each note (underlined in pink) to
indicate the text for singing, and dashes are used to connect individual syllables into words.

2 Background 44
Lacrimosa

6

Pno.

Piano

B.

Bass

T.

Tenor

A.

Alto

S.

Soprano









 























    

             

      

         



 



 



   



  





































































  

   

  

   

  

   

  

   








































us,remohoduscandijulavilfaex

getsurrequala,ilesdisacrimoLa

us,remohoduscandijulavilfaex

getsurrequala,ilesdisacrimoLa

us,remohoduscandijulavilfaex

getsurrequala,ilesdisacrimoLa

us,remohoduscandijulavilfaex

getsurrequala,ilesdisacrimoLa

Larghetto

cresc.

cresc.

cresc.

cresc.

cresc.

















www.cafe-puccini.dk - 2017-10-20









Figure 2.7 An example excerpt from a vocal score: the first phrase of the
Lacrimosa movement from the Requiem by Wolfgang Amadeus Mozart. See
text for an explanation of the colored markings. Score under the public domain,
edited by Jes Wagner.9

9http://www.cpdl.org/wiki/index.php/Requiem,_KV_626_(Wolfgang_Amadeus_Mozart)

http://www.cpdl.org/wiki/index.php/Requiem,_KV_626_(Wolfgang_Amadeus_Mozart)

2 Background 45

2.4.4 Acoustical Characteristics

Since our work in this thesis is concerned with processing recordings of choral music, it is
crucial that we understand its acoustical properties. Before examining choirs specifically, we
briefly explain the acoustics and physiology of the human singing voice, given that a choir
is simply a group of singers.

The Singing Voice

The human singing voice can be described acoustically as a “voice source” generated by the
vibrating vocal folds and a vocal tract “filter” that modifies it (Sundberg, 1987). Physiolog-
ically, the voice starts as a stream of air that exits the lungs and passes through the vocal
folds and then through the vocal tract. Under the right conditions, the air flow created by
the breathing system causes the vocal folds to vibrate and generate a sound called the voice
source. The vibration of the vocal folds is periodic and so the voice source can be described
as a harmonic series of partials. The partials’ amplitudes decrease at a rate of about 12
dB per octave; the exact spectral envelope of the voice source varies across voice types and
people (Sundberg, 1987, pp. 63–65). The voice source subsequently passes through the vocal
tract, which consists of the laryngeal cavity, the pharynx, the mouth cavity, and the nasal
cavities. The vocal tract acts as a resonator, amplifying some frequencies more than others.
The frequencies that are transmitted with the highest amplitude through the vocal tract are
called the formant frequencies (Sundberg, 1987, p. 93). As the shape of the vocal tract
changes, so do the formant frequencies. It is this change in formant frequencies that creates
the distinct timbre of each vowel in speaking and in singing.

The timbre of the human singing voice varies considerably between groups of people. For
example, women normally have a distinctly different voice timbre than men, and children
have a different timbre than adults. Furthermore, the timbre varies among individuals
within those groups: no two people have exactly the same voice. The factors that determine
a person’s voice timbre are mainly morphological, that is, they are related to the shape and
structure of the person’s voice production organs (Sundberg, 1987, pp. 1–2). The length,
thickness, and viscosity of the vocal folds affect the voice’s pitch range. The dimensions of the
vocal tract (the shape and size of the pharynx and mouth cavities) affect formant frequencies.
Apart from these inherent morphological differences, a person’s speech and singing voice are
greatly affected by the way the voice production organs are used. Naturally-acquired speech

2 Background 46

habits vary across geographical regions and across societies, and professional voice training
can further modify the timbre and range of the singing voice.

Choral Singing

Acoustically, choral music can be seen simply as a superposition of several singing voices.
There are, however, several acoustical characteristics that are unique to choral music. Tern-
ström & Karna (2002, p. 272) give a holistic overview of topics in choir acoustics, including
issues related to loudness and balance (diversity of singers’ vocal power, effects of choir size
and formation, and a singer’s perception of their own voice compared to other singers),
intonation (vibrato, vowel-related pitch perturbations, interval intonation between voices,
unison intonation within voices, and the effect of amplitude on pitch perception), timbre
(acoustical differences between voice types, trained vs. untrained voices, and pitch salience
in relation to timbre), and inter-voice relationships (uniformity of vowels, ensemble timing,
and blending of different voice types).

Ternström (2003) reports results of several empirical investigations into choral music
acoustics. One study measured the effect of room acoustics on choir singing and found that
singers from different choirs consistently adapted their voice usage and sound levels to the
room acoustics. Another study found that intonation errors of a choir singer significantly
increase when the individual singer’s sound level is low compared to the combined sound level
of the other singers. The paper also presents several studies that investigate the differences
between solo singing and choral singing. In solo singing, singers were found to use vibrato
with a larger extent compared to choral singing. Furthermore, singers asked to sing in
solo singing style were found to use more power in a frequency region dubbed the singer’s
formant (2–3 kHz), while when singing in choral style they did not exhibit this phenomenon,
and emphasized the lower partials instead. It is clear that solo singing and choir singing
are fundamentally different tasks, and when singing in a choir singers tend to reduce the
individuality of their timbre and strive to blend with the rest of the choir (Sundberg, 1987,
p. 143).

Several studies have investigated intonation specifically. Jers & Ternström (2005) studied
a multi-channel choir recording and reported several findings: ascending scales were more
accurately intoned than descending scales; melodic big intervals (fifths and octaves) are
enlarged; during note transitions, intonation within voices is more scattered (as is to be

2 Background 47

expected due to non-perfect transition synchronization); intonation is also more scattered
during sections with a faster tempo; and vibrato seems to be at least partly synchronized
between singers. Daffern (2017) studied vibrato in an SATB vocal quartet and found that
singers attempt to control vibrato in order to improve blend by reducing its extent, and
that in some cases singers synchronized their vibrato with each other. Dai & Dixon (2017)
also investigated SATB vocal quartet singing under different conditions and found that
when singers can hear each other, the pitch error of each individual singer increases but the
harmonic interval error between the singers decreases; this can be interpreted as an attempt
by singers to adjust their intonation to each other so that the overall ensemble tuning is
improved. Cuesta et al. (2018) analyzed semi-professional choir recordings and found that
pitch dispersion within a specific voice varied between 16 and 30 cents, and these results
agree with those reported in Ternström (2003). In the same study, singers were found to
use vibrato in less than half of the notes, but it is suggested that professional choir singers
would employ vibrato more often.

When a choir sings a cappella (i.e., without instrumental accompaniment), pitch drift
may occur due to the absence of a reference tone. When a choir experiences pitch drift, the
intonation of intervals within the choir remains the same but all the pitches of all voices
shift together with respect to an absolute reference pitch. The most common type of drift
is gradual lowering of the pitch (Alldahl, 2008, p. 4). Howard (2007) investigated drift in
a cappella SATB singing and found that the singers’ tendency to non-equal temperament
caused pitch drift when singing a piece containing certain key modulations. Devaney et al.
(2012) made a similar study with three-part a cappella ensembles and found that a specially-
crafted exercise caused a slight drift upwards in pitch. Interval intonation is just one possible
cause for drift; Mauch et al. (2014) found that even solo singers drift slightly when singing
without accompaniment.

Solo Singing and Choral Sound Characteristics

To illustrate the acoustical characteristics of vocal and choral music, Figure 2.8 shows a
spectrogram of a short musical excerpt along with the corresponding score. The excerpt
consists of a short musical phrase that is repeated twice: it is first sung by a bass soloist
and then repeated by the choir (the sopranos repeat the melody sung by the soloist while
the other three voices provide harmony). The spectrogram illustrates the main acoustical

2 Background 48

characteristics of vocal and choral music. In the solo phrase, partial trajectories are distinctly
visible: the fundamental frequency (starting with a G3 note at around 196 Hz, marked with
the letter A) and above it equally-spaced overtones up to about 3200 Hz. The singer’s
vibrato can be seen as oscillations in the partial trajectories, which have a larger extent in
the higher partials (marked with the letter B) due to the nature of the harmonic series.

The sung vowels influence the sound’s spectral envelope. For example, the onset of the
Norwegian vowel /æ/ (for the word “er”) is clearly marked by an increase in amplitude in
frequencies around 700 Hz (marked with the letter C), which is the frequency of the first
formant for that vowel. Wherever the consonant /s/ appears in the text, a vertical bar
appears in the spectrogram (marked with the numbers 1–8 in the spectrogram and in the
score) showing that the energy is spread across a large range of frequencies in the pronuncia-
tion of this fricative consonant. There are no partial trajectories during the pronunciation of
/s/ because it is an unvoiced consonant. Due to room reverberations, the /s/ sound decays
gradually rather than ending abruptly when the singer finishes to pronounce it.

In comparison to the solo half of the excerpt, the choral half may seem more disorganized.
Partials appear more like “blobs” rather than clearly distinguished lines because the sound
is a mixture of many voices, and the voices are neither perfectly synchronized nor perfectly
in tune with each other, even though the recording was made by professional musicians and
generally sounds very well-blended and in tune. Vibrato can barely be distinguished in the
choral phrase: as discussed above, singers tend to use smaller vibrato when singing choral
music, and the vibrato of different singers are for the most part unsynchronized. Even the
sibilant consonants appear more “fuzzy” due to pronunciation and timing variations (num-
bers 5–8 compared to numbers 1–4). Since four parts are sung simultaneously, multiple
fundamental frequencies can be observed (marked with the letter D) along with their cor-
responding overtones, which reach higher frequencies (marked with the letter E) due to the
participation of the soprano, alto, and tenor singers.

In conclusion, this example illustrates that vocal music has complex acoustical charac-
teristics, mainly due to smooth pitch changes (such as vibrato and note transitions), the
combination of voiced and unvoiced elements in sung lyrics, and continuous variations of
the spectral envelope. In choral music, these complexities are intensified by the fact that
the choir sound is a superposition of multiple singers’ voices, where each singer has a unique
and variable timbre, and synchronization between singers is never perfect. Due to these
characteristics, it is logical to assume that source separation of choral music would be more

2 Background 49

15 20 25 30

21
183
344
506
667
829
990
1152
1313
1475
1636
1808
1970
2131
2293
2454
2616
2777
2939
3100
3262
3434
3596
3757
3919
4080
4242
4403
4565
4726
4888
5060
5221
5383
5544
5706
5867
6029
6190
6352

bass solo choir

3 41 2

3 41 2

Jesus Kristus er opfaren
from FIRE SALMER (Op.74)

Edvard Grieg
Hans Tomissön

!

"#

!#
ren,

! "

"

"

!p
Je

#
ren,

!#
ren,

!#
ren,

"

"

$

!
stus

!
stus

!
stus

!
er

!
er

!
er

!

Kri

!
Kri

%

%
stus

!

%

%

pfa

!
pfa

&
pfa
&

pfa

&

'

er

(

o

!
o

!
o

!
o

!

)

)

)

)

)

)

)

)

)

! !
stus

% ! !
er

!
sus

$!
Kri

% !
pfa

) !
o

Lento

**

!

!

(

!
stus

!

$

+

!
Kri

!
Kri

!
Kri

!
Kri

%
er

!
er

!
er

!
er

stus

!
stus

!
stus

% ! !

,** ! %+ ,

!

! !#
ren,

Solo

Soprano

Alto

Tenor

Bass

-

.

)
! = 88

!
sus

!
sus

!
sus

!
sus

!
p
Je

!
p

Je

!p
Je

!p
Je

Lentopp
/ ** +

Je

!
pp

Je

!pp
Je

!pp
Je

% !
ren,

!
ren,

!
ren,

!
ren,

!

/

!
sus

!
sus

!
sus

!
sus

0

0

!
Kri

!
Kri

!

1

1

%

%

%

o

!
o

!
o

8

!
pfa

!
pfa

!
pfa

!

+** !,

!
o

!

/

$

+

! %, !

**
,

pfa

© 2011 MUSÍK SPECIÁLNÍK & CPDL <http://cpdl.org>. May be fully distributed, duplicated, performed, recorded.
Engraving by Lilypond <http://lilypond.org>. Transcription and Edition by Peter Kaplan <pefty@aya.yale.edu>, 2011.

Jesus Kristus er opfaren
from FIRE SALMER (Op.74)

Edvard Grieg
Hans Tomissön

!

"#

!#
ren,

! "

"

"

!p
Je

#
ren,

!#
ren,

!#
ren,

"

"

$

!
stus

!
stus

!
stus

!
er

!
er

!
er

!

Kri

!
Kri

%

%
stus

!

%

%

pfa

!
pfa

&
pfa
&

pfa

&

'

er

(

o

!
o

!
o

!
o

!

)

)

)

)

)

)

)

)

)

! !
stus

% ! !
er

!
sus

$!
Kri

% !
pfa

) !
o

Lento

**

!

!

(

!
stus

!

$

+

!
Kri

!
Kri

!
Kri

!
Kri

%
er

!
er

!
er

!
er

stus

!
stus

!
stus

% ! !

,** ! %+ ,

!

! !#
ren,

Solo

Soprano

Alto

Tenor

Bass

-

.

)
! = 88

!
sus

!
sus

!
sus

!
sus

!
p
Je

!
p

Je

!p
Je

!p
Je

Lentopp
/ ** +

Je

!
pp

Je

!pp
Je

!pp
Je

% !
ren,

!
ren,

!
ren,

!
ren,

!

/

!
sus

!
sus

!
sus

!
sus

0

0

!
Kri

!
Kri

!

1

1

%

%

%

o

!
o

!
o

8

!
pfa

!
pfa

!
pfa

!

+** !,

!
o

!

/

$

+

! %, !

**
,

pfa

© 2011 MUSÍK SPECIÁLNÍK & CPDL <http://cpdl.org>. May be fully distributed, duplicated, performed, recorded.
Engraving by Lilypond <http://lilypond.org>. Transcription and Edition by Peter Kaplan <pefty@aya.yale.edu>, 2011.

7 85 6

7 85 6

A

B

C

D

E

Figure 2.8 A spectrogram and a score showing solo singing and choral singing
side by side. The spectrogram shows an excerpt from an unaccompanied choral
music recording, ‘Jesus Kristus er opfaren’ (op. 74 no. 3) by Edvard Grieg
performed by Grex Vocalis and Carl Høgset.12 The excerpt’s score is shown
below the spectrogram. The score was transcribed by Peter Kaplan and is used
with permission.13 See text for an explanation of the colored markings.

12The performance can be found on YouTube: https://youtu.be/9BxiCtbEpxQ
13http://www.cpdl.org/wiki/index.php/Jesus_Kristus_er_opfaren_(Edvard_Grieg)

https://youtu.be/9BxiCtbEpxQ
http://www.cpdl.org/wiki/index.php/Jesus_Kristus_er_opfaren_(Edvard_Grieg)

2 Background 50

challenging than many other source separation tasks.

2.5 Score-Informed Source Separation

As mentioned in Section 2.1.2, blind source separation techniques are difficult to use for
real-world musical applications. Most separation techniques use prior information of some
kind to guide the separation process, for example, in the form of training data or signal
models that characterize the acoustical properties of each source. When separation relies on
prior information that is highly detailed, it is called informed separation. One such highly
detailed source of information is the musical score, when available.

As discussed in Section 2.4.3, musical scores contain many types of information. At the
most basic level, the score specifies which parts (instrumental or vocal) are contained in a
composition. For each part, the score specifies a sequence of notes with pitch and timing
information for every note. In addition, the score may contain instructions specifying meter
(a recurring pattern of beats), tempo (speed and character), dynamics (relative loudness and
gradual loudness changes), articulation (type of note attack or transition between notes), and
in the case of vocal music, lyrics.

Score-informed source separation techniques use elements from the musical score to guide
the separation process (Ewert et al., 2014). Normally, these techniques rely mostly on the
part, pitch, and timing information from the score. The way in which this information is
used varies across techniques.

2.5.1 Score Alignment

Unfortunately, there is no direct mapping between time in the score and time in a recording
that corresponds to that score. This is due to the fact that the score contains only high-level
timing information which is then interpreted by a human performer. Multiple recordings of
the same score often have different timing both globally (due to different playing speeds)
and locally (due to expressive interpretation and slight timing variations). As such, before
employing a musical score for source separation it is necessary to align it to the recording.

Score alignment (also known as score-audio synchronization) can be done manually, but
this is time-consuming and error-prone, so we wish to automate it. Automatic score align-
ment has been tackled in two different scenarios: online and offline (Dannenberg & Raphael,
2006). In online alignment, also known as score following, the score is aligned in real-time

2 Background 51

to an incoming music signal. This is used in applications such as automatic page turning
and real-time computer accompaniment. For score-informed source separation, however, we
are generally interested in the offline scenario, in which the complete recording is available
when performing the alignment.

Score alignment is generally performed by extracting a sequence of features from both
the audio and the score and then finding the optimal alignment between those two sequences
(Ewert et al., 2014). Chroma-based features have been found to work well for this purpose
as they can easily be extracted from both audio and scores (Hu et al., 2003). Recently,
transposition-invariant features have been proposed to allow for matching of scores with
recordings transposed to a different key (Arzt & Lattner, 2018).

For aligning the extracted feature sequences of the audio and the score, two commonly-
used techniques are dynamic time warping (DTW) and hidden Markov models (HMMs).
Both are general techniques that are applied to score alignment. DTW finds an optimal
alignment between any two time series while allowing for stretching (“warping”) along the
time axis (Hu et al., 2003). HMMs can be used to model the musical performance as a
stochastic process with multiple hidden states; they have been employed to align recordings
of the singing voice (Cano et al., 1999).

2.5.2 Separation Techniques

Scores have been used as early as 1998 to guide musical source separation (Meron & Hirose,
1998). One popular way to use the score is synthesizing a signal that is similar to one of the
sources and then using it in some way to guide separation. Meron & Hirose (1998) separated a
singer from piano accompaniment by synthesizing the piano part from the musical score using
note models built from a database of recordings, and then subtracting the synthesized piano
part from the mixture to retrieve the separated singing voice. Raphael (2008) separated a solo
instrument from orchestral accompaniment by creating a binary mask: every spectrogram
bin is classified as belonging to one of the two sources. The classifier that creates the mask
is trained on a dataset of synthesized recordings produced from a set of scores. Similarly,
Ganseman et al. (2010) created source models from audio synthesized from each source’s
score, and then applied those source models to real mixtures to perform separation.

Another way to use the score is to create harmonicity-based constraints driven by the
pitch and timing information contained in it. Ben-Shalom & Dubnov (2004) performed

2 Background 52

multiple instrument separation using optimal filtering, where the filter imposed a harmonicity
constraint on the separated signals based on the pitches indicated by the score. Li et al.
(2009) similarly employed harmonic masks for each source and initialized those masks based
on MIDI (Musical Instrument Digital Interface) scores. They then used the masks with
least-squares estimation to effectively separate overlapping harmonics. Duan & Pardo (2011)
created a real-time separation system in which, again, time-frequency masking was used to
assign each spectrogram bin to one of the sources based on the expected pitches in each
source. Score following was used in order to align the score to the audio in real time.

Scores were also integrated into the framework of NMF as additional factorization con-
straints. Ewert & Müller (2012) developed a score-informed NMF technique to separate
the left and right hand notes in piano recordings by initializing the NMF basis signals and
activations matrices: basis signals were initialized to harmonic combs and activations were
initialized as binary matrices resembling a piano roll representation of the score. We describe
this technique in detail and present our own implementation in Section 4 below. Hennequin
et al. (2011) employed a technique quite similar to Ewert & Müller but used a parametric
harmonic model for source spectrograms rather than fixed basis signal initializations. Using
a parametric model enabled the factorization to explicitly take vibrato into account.

Şimşekli & Cemgil (2012) performed separation using a method called generalized coupled
tensor factorization, which is a generalization of NMF to simultaneously factorize multiple
matrices or tensors. They proposed two models: in the first, activations are constrained
according to the score (similar to the piano roll initializations described above) and basis
signals are constrained using isolated note recordings. For the second model, the activation
constraints are also initialized from a score but interestingly, the score does not have to be
perfectly aligned to the audio and it can even belong to another piece. Instead of explicit
activation constraints, the second model relies on relationships between notes in the score:
which pitches tend to appear at the same time. The authors showed that using the second
model, which only relied on an approximate score, sometimes surpassed the performance of
the first model that required a perfectly aligned score.

Rodriguez-Serrano et al. (2015) also built on top of NMF with instrument timbre models.
In their technique, every instrument is constrained using a multi-excitation source-filter
model that is pre-trained on solo excerpts of that instrument. Separation is done in real
time: the score is aligned to the audio, the pre-trained instrument models are updated to fit
the audio according to the score, and finally the mixture is separated based on the updated

2 Background 53

models. Rodriguez-Serrano et al. (2016) focused on improving separation of overlapping
partials by using a variant of NMF called complex matrix factorization (CMF) that takes
into account the mixture’s phase, as opposed to NMF which only factorizes the magnitude
spectrogram. They used the same constraints on basis signals and activations as used by
Ewert & Müller (2012), but additionally introduced shift-invariance to the basis signals in
order to better account for vibrato in the separated sources.

Recently, score information has also been integrated into separation techniques based on
deep learning. Ewert & Sandler (2017) take an interesting approach: they treat separation
as an unsupervised learning task by training an autoencoder neural network on each mix-
ture separately. An autoencoder is a network that transforms (“encodes”) its input to a
low-dimensional representation and is trained to reconstruct (“decode”) the original input
back from that latent representation. For score-informed separation, activity constraints
are imposed on the latent representation during training so that each latent unit is associ-
ated to a single note in the score. Separation is then performed on a note-by-note level by
altering the latent representation to contain only the desired notes and resynthesizing the
corresponding audio using the decoder part of the network. The authors comment that this
technique can be seen as a nonlinear extension of NMF because both techniques involve a
parts-based representation of the mixture. Compared to a score-informed NMF technique
described above (Ewert & Müller, 2012), this autoencoder-based approach was found to
perform better on the same task of separating the two hands in piano recordings.

Miron et al. (2017b) created a CNN that operates on masked spectrograms. Instead
of feeding the mixture spectrogram directly to the CNN, a filtered version of the spec-
trogram was created for each source. The “score-filtered” spectrograms were then all fed
simultaneously into the CNN as multiple input channels, and the CNN predicted the final
source spectrograms which were combined with the mixture’s phase and resynthesized. The
score-filtered spectrograms were created by applying a mask that kept only frequency bins
that were expected to be associated with that source’s notes, assuming all note spectra are
shaped approximately as harmonic combs. All training data was synthesized from scores
with varying human-like performance characteristics such as tempo, dynamics, timbre, and
local timing deviations (Miron et al., 2017a). The CNN method was shown to outperform a
score-informed NMF system (Miron et al., 2016).

54

Chapter 3

Synthesized Chorales Dataset

In this chapter, we describe the creation of a dataset that consists of synthesized renditions
of chorale harmonizations composed by Johann Sebastian Bach. In the next chapters, we will
use this dataset to train and evaluate source separation techniques. Since we wish to exper-
iment with deep learning-based techniques, we require a large dataset of choir recordings in
which every choir part is recorded on a separate track without instrumental accompaniment.
Unfortunately, such a dataset proved hard to find, as choirs are usually recorded using a set
of microphones that capture a mixture of all voices and instruments (Ihalainen, 2008).

Several studies have been performed using multi-track a cappella vocal and choral record-
ings (Devaney et al., 2012; Jers & Ternström, 2005) but these studies did not publish the
actual recordings. The freely available Mixing Secrets multi-track dataset1 contains three
multi-microphone choral recordings, but each microphone picked up multiple voices, so the
recordings are unsuitable for use as training examples for source separation.

Recently, a dataset of multi-track choral recordings was published in which every choir
part was recorded separately (Cuesta et al., 2018). In order to ensure that all recordings
are properly synchronized, singers were instructed to follow a pre-recorded video of the choir
conductor. The dataset also contains a semi-synchronized MIDI file for each recording.
Unfortunately, the dataset consists of only three songs, yet deep learning methods for source
separation normally require a much larger amount of training data. For example, a recent
dataset for music separation called MUSDB18 (Rafii et al., 2017) contains 150 songs with a
total duration of about 10 hours.

1http://www.cambridge-mt.com/ms-mtk.htm

http://www.cambridge-mt.com/ms-mtk.htm

3 Synthesized Chorales Dataset 55

Several websites sell professionally-recorded choir practice tracks,2,3 which are synchro-
nized solo recordings of individual choir parts. However, we were unable to obtain autho-
rization from the rights holders to conduct experiments using these tracks.

3.1 Choir Synthesis

In the absence of a choral music dataset that is suitable for deep learning-based source
separation, we opt to synthesize our own dataset. Synthesizing a choir can be achieved by
synthesizing multiple singing voices with slight timing, timbre, and pitch variations (Schnell
et al., 2000). Overviews of methods for singing voice synthesis are given by Rodet (2002)
and Sundberg (2006). Additional approaches include concatenative synthesis (Bonada &
Serra, 2007) and deep neural networks (Gómez et al., 2018). Recently, a method for choir
synthesis was proposed based on voice cloning: a model that is trained on recordings from
multiple singers is adapted to individual target voices using small amounts of data (Blaauw
et al., 2019).

Professional choir audio tracks are often produced using commercial sample libraries.4,5

These sample libraries contain thousands of professionally recorded samples of choirs singing
different pitches and syllables with various dynamics and articulations. These short samples
can then be combined to produce realistic-sounding choir music. Unfortunately, these sample
libraries are prohibitively expensive for use in our project.

In light of the high price and complexity of the aforementioned synthesis methods, we
choose a much simpler sample-based approach for our dataset. We use the FluidSynth
software synthesizer (Henningsson & Team, 2011), which converts MIDI messages to audio by
using audio samples and synthesis rules stored in a SoundFont file. The MuseScore_General
SoundFont6, which is distributed with the MuseScore notation software, is free to use and
contains decent choir samples. We use the SoundFont’s ‘Choir Aahs’ preset, which contains
14 samples. Each sample is a short recording of a single choir section singing a sustained
note on an /a/ vowel. Every sample corresponds to a single pitch. To synthesize a pitch
that does not have an associated sample, FluidSynth simply pitch-shifts the sample that has

2ChoralPractice: https://www.choralpractice.com
3Choral Rehearsal Tracks: https://choralrehearsaltracks.com
4EastWest Hollywood Choirs: http://www.soundsonline.com/hollywood-choirs
5Vienna Choir: https://www.vsl.co.at/en/Voices_Complete/Vienna_Choir
6https://musescore.org/en/handbook/3/soundfonts-and-sfz-files#soundfonts

https://www.choralpractice.com
https://choralrehearsaltracks.com
http://www.soundsonline.com/hollywood-choirs
https://www.vsl.co.at/en/Voices_Complete/Vienna_Choir
https://musescore.org/en/handbook/3/soundfonts-and-sfz-files#soundfonts

3 Synthesized Chorales Dataset 56

the closest pitch. This way, the entire pitch range of the four choral voices is covered. To
synthesize a note that is longer than the corresponding sample, a predefined segment of the
sample is looped.

This sample-based synthesis method is simple and effective, but it regrettably cannot
synthesize sung lyrics. On the one hand, this is a disadvantage because it means our dataset
is less representative of real-world recordings. On the other hand, the consistency of the
dataset allows us to conduct highly controlled experiments. We believe that insights we gain
from using the synthesized dataset will be applicable to real-world recordings as well.

3.2 Bach Chorale Harmonizations

In order to create our dataset, we require a suitable corpus of choral music that is available in
MIDI format. We choose a well-known corpus of chorale harmonizations by Johann Sebastian
Bach. A chorale is a Lutheran church hymn (Marshall & Leaver, 2001a). Bach harmonized
around 400 chorales throughout his life; around half of them are part of large-scale vocal
compositions such as oratorios, Passions, and cantatas, while the other half are found in
shorter works and unidentified manuscripts (Marshall & Leaver, 2001b). Throughout this
thesis, we use the chorale numbering scheme established by the Riemenschneider edition
(Bach, 1941), which assigned each harmonization a number from 1 to 371.

Bach’s chorale harmonizations possess several characteristics that make them good can-
didates to serve as a coherent dataset for source separation. They are all written for four
voices in homorhythmic texture, that is, the rhythm is identical (or very similar) in all voices
(Marshall & Leaver, 2001b). The writing is mostly syllabic (every chord matches one syllable
in the text) and the rhythm consists mainly of quarter notes and eighth notes. The chorales
are composed in the style of tonal harmony; modulations are relatively infrequent and occur
only to closely related tonalities. Structurally, the chorales are built as a sequence of short
phrases, each ending with a fermata (musical pause). Figure 3.1 shows an example chorale
harmonization that exhibits these characteristics.

3.3 Synthesis Procedure

We have created a program to synthesize the corpus of Bach chorale harmonizations. Our
program is made available as open-source software (see Appendix B). The program is written

3 Synthesized Chorales Dataset 57

Figure 3.1 Chorale harmonization by J. S. Bach, BWV 393 (chorale number
295 in the Riemenschneider edition). The chorale is made up of 6 short phrases
of 2 to 3 measures (phrases are marked in red). Each of the four voices maintains
its standard range. There is one voice crossing between the soprano and the
alto, marked in yellow. Several voices sing in unison on several occasions,
marked in blue. Most chords are homorhythmic apart from a few passing tones
and similar embellishments. The chorale is written in the key of A major with
tonicizations of the 5th and 2nd scale degrees. This transcription by Center for
Computer Assisted Research in the Humanities is licensed under CC BY-NC
3.0.8

8https://creativecommons.org/licenses/by-nc/3.0/

https://creativecommons.org/licenses/by-nc/3.0/

3 Synthesized Chorales Dataset 58

in Python and uses music21 (Cuthbert & Ariza, 2010), a software library for processing
musical scores. Music21 contains a comprehensive corpus of Bach chorales in MusicXML
format. Our program reads all of the 371 chorales in the Riemenschneider edition and omits
chorales that contain instrumental parts, bringing the total number of chorales down to 351.
See Appendix A for the full list of chorales. The program splits each chorale into four tracks,
one track per voice. Each of the tracks is then exported to a MIDI file and synthesized using
FluidSynth, as described above.

3.3.1 Higher-Variability Dataset

Real-world recordings possess many sources of variability that are absent from the synthe-
sized chorales described above. In order to test our separation techniques on a dataset that
more closely resembles real-world choir recordings, we create an altered version of the dataset
with three added features: simulated breaths, random omitted notes, and tempo variations.

Real chorale performances contain breaths between phrases. Rather than meticulously
going through each chorale and choosing musically-pleasing locations to insert breaths, we
take a simpler approach: we simulate one-beat-long breaths by inserting short silences in all
voices simultaneously. We do this by simply changing the note that occurs on every eighth
beat into a rest.

Another issue we wish to deal with in this dataset is that in the chorales, all four voices
sing at all times. In other types of choral music, there are often sections where one or more
voices are silent while the other voices continue to sing. In order to simulate this situation, we
further alter the dataset by randomly choosing 10% of the notes in each voice and changing
them into rests.

In the original dataset, all chorales are synthesized at a fixed tempo of 90 beats per
minute (BPM). In this version of the dataset, we synthesize each chorale at a random tempo
between 70 and 100 BPM, in steps of 5 BPM. Human performers add many slight tempo
changes and local note timing variations. However, simulating human-like timing variations
is out of scope for our synthesized dataset and is left for future work.

3.3.2 Dataset Partitions

Following standard machine learning practices, each of the two datasets is divided into three
partitions: training, validation, and test (Goodfellow et al., 2016, p. 110). The training set

3 Synthesized Chorales Dataset 59

is used for iterative gradient-based model optimization (see Section 2.2.2). The test set is
only used after training, to estimate the trained model’s generalization error. The validation
set is used during model development to determine optimal values for hyperparameters that
control the learning process itself, such as the learning rate (Goodfellow et al., 2016, p. 120).

In our datasets, we use about 75% of the examples for the training set, 15% for the
validation set, and the remaining 10% for the test set. A full listing of dataset partitions is
given in Appendix A.

60

Chapter 4

Score-Informed NMF for Choral
Music

Having created a dataset of synthesized Bach chorale harmonizations (described in Section 3),
we proceed to test a score-informed source separation technique on it to establish a baseline
for separation performance. Out of the several methods described in Section 2.5, we choose
to focus on the score-informed NMF technique proposed by Ewert & Müller (2012), which
we henceforth call SI-NMF.

SI-NMF is an extension of classic NMF (described in Section 2.1.3). The premise of
SI-NMF is that classic NMF is difficult to control: the optimization process may produce
a factorization that approximates the mixture well but has little to no correlation with the
actual sound sources. Using the pitch and timing information contained in the musical score,
the factorization can be constrained in both the time and frequency axes simultaneously in
order to yield a more meaningful separation.

In classic NMF, the basis signals and activations matrices are typically initialized with
random values before starting the optimization process. Alternatively, they could be initial-
ized using a technique based on singular value decomposition to improve the factorization
in some cases (Boutsidis & Gallopoulos, 2008). SI-NMF uses specially-crafted initializations
of the basis signals and activations to impose score constraints. It does this by relying on
a simple fact: any element that is initialized to zero will remain zero in the final factoriza-
tion. This is an inherent property of the multiplicative update rules used to perform the
optimization (Lee & Seung, 2000).

4 Score-Informed NMF for Choral Music 61

The SI-NMF initialization scheme works in the following manner. First, the number of
basis signals is determined by counting the number of unique pitches that occur in the score.
One basis signal is then initialized for each pitch as an approximation of a harmonic series
with a fundamental frequency that corresponds to that pitch. The harmonic series is created
with a set number of partials p and some tolerance ϕ (expressed in semitones) around each
partial to allow for slight pitch deviations and non-harmonicities. p and ϕ are parameters
that can be adjusted according to the application. Since the amount of energy in higher
partials is normally smaller than in the fundamental frequency, each partial’s frequency
region is initialized to 1

n2 , where n is the partial index (n = 1 being the fundamental). All
frequency bins not corresponding to any partial are initialized to zero. The basis signal
initialization is illustrated in Figure 4.1a.

In order to make use of the timing information contained in the score, the activations
matrix is initialized in a manner similar to a piano roll, as illustrated in Figure 4.1b. Recall
that each column in the activations matrix initialization corresponds to one time frame.
In each column, all elements corresponding to pitches that are active at that time frame
are set to 1, while the rest are set to 0. In order to account for reverberations and slight
misalignments of the score to the audio, the activations matrix is also initialized to 1 in
frames preceding every note onset by up to ton seconds, and following every note offset by up
to toff seconds. These tolerances are set according to the expected properties of the mixture
and the score alignment.

As a result of this initialization scheme, the factorization process is forced to find basis
signals W that are shaped approximately like harmonic combs with pitches corresponding
to the notes in the score, and activations H that approximately match the expected note
onsets and offsets. An example factorization is shown in Figures 4.1c and 4.1d.

Following the spectrogram factorization, H is segregated according to the musical score
into a set of per-source activation matrices Hi, so that every Hi contains only the activations
corresponding to notes that belong to source i. A ratio mask Mi is then computed for each
source as follows:

Mi = (WHi)⊘ (WH + ϵ) ,

where ⊘ denotes element-wise division (Hadamard division) and ϵ is a small positive constant
used to prevent division by zero. The mask for each source is then applied to the mixture

4 Score-Informed NMF for Choral Music 62

G2 A2 B2 C3 D3 E3 F3F#3G3G#3A3A#3B3 C4 D4 E4 F4F#4G4 A4 B4 C5 D5 E5 F5
Pitch

0

250

500

750

1000

1250

1500

1750

2000

Fr
eq

ue
nc

y
(H

z)

80

70

60

50

40

30

20

10

0

(a) Basis signal initializations

0 5 10 15 20 25 30
Time (seconds)

G2
A2
B2
C3
D3
E3
F3

F#3
G3

G#3
A3

A#3
B3
C4
D4
E4
F4

F#4
G4
A4
B4
C5
D5
E5
F5

P
itc

h

80

70

60

50

40

30

20

10

0

(b) Activation initializations

G2 A2 B2 C3 D3 E3 F3F#3G3G#3A3A#3B3 C4 D4 E4 F4F#4G4 A4 B4 C5 D5 E5 F5
Pitch

0

250

500

750

1000

1250

1500

1750

2000

Fr
eq

ue
nc

y
(H

z)

70

60

50

40

30

20

10

0

(c) Factorized basis signals

0 5 10 15 20 25 30
Time (seconds)

G2
A2
B2
C3
D3
E3
F3

F#3
G3

G#3
A3

A#3
B3
C4
D4
E4
F4

F#4
G4
A4
B4
C5
D5
E5
F5

P
itc

h

40

30

20

10

0

10

20

30

(d) Factorized activations

Figure 4.1 Initializations for score-informed NMF and the resulting factor-
ization on an example Bach chorale. In this example, the parameter values are
p = 15, ϕ = 0.5, and ton = toff = 0.2. Colors indicate amplitude in dBFS.

4 Score-Informed NMF for Choral Music 63

spectrum S (which includes the mixture’s phase) to retrieve the final source estimate, Ŝi:

Ŝi = Mi ⊙ S,

where ⊙ denotes element-wise multiplication (Hadamard product).

4.1 Experiments

We have implemented the SI-NMF technique described above using Python. Our code is
made available as open-source software (see Appendix B). To perform the score-informed
initialization, we first read the score corresponding to each reference source from a MIDI file.
We then initialize the basis signals and activations using the scheme outlined above according
to MIDI note on and note off messages from all sources combined. Next, we initialize
per-source activation matrices Hi from each source’s MIDI file separately. To perform the
factorization, we use librosa (McFee et al., 2015) which in turn relies on scikit-learn’s NMF
implementation.1

We have run and evaluated our implementation on the synthesized chorales datasets de-
scribed in Section 3. In order to better adapt the technique to our dataset, we tested various
combinations of parameters in four experiments, listed in Table 4.1. These experiments and
their results are presented below.

Table 4.1 Listing of NMF experiments

Experiment Onset tolerance
(seconds)

Offset tolerance
(seconds)

Pitch tolerance
(semitones)

STFT window size
(samples)

A 0.2 1 1 2,048
B 0 0.2 1 2,048
C 0 0.2 0.4 2,048
D 0 0.2 0.4 4,096

1https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html

4 Score-Informed NMF for Choral Music 64

4.1.1 Experiment A: Original Parameter Values

In the first experiment, we use the same parameter values given in the original SI-NMF
paper: ϕ = 1, ton = 0.2 and toff = 1. The value of p is not mentioned in the original paper,
so we assume the series of partials extends up to the Nyquist frequency. Also not indicated
in the original paper are the parameters used for the STFT, so we assumed sensible defaults:
a Hann window with length of 2,048 samples and a hop size of 512 samples. (The audio
sample rate in our dataset is 22,050 Hz.)

A qualitative examination of this experiment’s results reveals that separation was some-
what successful. The segregation of basis signals, as dictated by the score-informed ini-
tialization, was musically meaningful: every basis signal mostly corresponded to a single
note. Furthermore, each estimated source mostly contained the right notes. However, the
estimated sources exhibited several problems. First, they contained significant amplitude
modulation in sustained notes, where such modulation did not exist in the reference sources.
This was caused by the existence of vibrato in the reference sources: since SI-NMF only
allocates one static spectral template per note, continuous changes in frequency cannot be
accounted for.

Another problem that surfaced in the results is that notes sometimes appeared in the
estimated sources when they should not have. This happened in places where the same pitch
occurred in two different voices within a short time span. In those cases, there was no way
to differentiate between the two occurrences because they appeared as overlapping in the
activations matrix. This, in turn, was caused by overly permissive values of the activation
tolerances ton and toff: any two notes less than ton + toff seconds apart would “collide” in
the activations matrix initialization and their association to the correct source would thus
become ambiguous. We attempt to solve this problem in the next experiment by adjusting
the activation tolerances.

4.1.2 Experiment B: Smaller Activation Tolerances

Since we fully control the synthesis method used to create our chorales dataset, we know
that the score is in fact precisely aligned to the audio. As such, no tolerance is required for
note onsets, and we set ton = 0. For note offsets, however, some tolerance is still required
because notes do not end abruptly after a note off MIDI message is received. Rather,
notes decay over a time span determined by the SoundFont used for synthesis. Examining

4 Score-Informed NMF for Choral Music 65

our SoundFont (specified in Section 3) we determine that the note decay time is 0.2 seconds.
Hence, we set ton = 0.2.

Listening to separation results with these modified parameters, we notice an improvement
compared to Experiment A: notes do not overlap in the estimated sources anymore. We
note, however, that this improvement relies on our intimate knowledge with the test dataset.
Such fine tunings are less feasible when working with real-world recordings performed under
unknown conditions, and when the score alignment is not known to be perfect.

In the results of this experiment we notice that each note still contains some interferences.
This is especially pronounced in the bass estimates which contain many interferences in the
higher part of the spectrum. This may be caused by the frequency tolerance ϕ: since ϕ is
specified in semitones, its effect is larger on higher partials. For low fundamental frequencies
and high values of ϕ, higher partials start to overlap each other and eventually become one
contiguous strip instead of a harmonic comb. We attempt to solve this issue in the next
experiment.

4.1.3 Experiment C: Smaller Frequency Tolerance

In order to reduce interferences for low notes in the higher part of the spectrum, we test
reducing the value of the frequency tolerance ϕ, which was set to 1 in the previous experi-
ments. We find that reducing it to 0.1 is too restrictive: extracted sources sound too “thin”
and the distinctiveness of the vocal timbre is reduced. On the other hand, using a value of
0.8 allows too many interferences in the bass estimates. We find that ϕ = 0.4 strikes the best
balance for our dataset between preserving the original sources and preventing interferences.

As in the previous experiment, we note here that this reduction of the tolerance works
well due to the nature of our synthesized dataset, in which pitches are always perfectly in
tune. In real choir music there are often mistunings and significant pitch drifts, which would
cause complete failure of SI-NMF with a low value of ϕ.

4.1.4 Experiment D: Larger STFT Window

Since NMF operates on the result of the STFT, any changes in the STFT parameters are
bound to affect separation results. Examining the default STFT parameters used in the
previous experiments, we notice that the size of one frequency bin is 10.77 Hz. And yet,
one semitone in the bass range (the difference between A#2 and A2) is equivalent to 6.54

4 Score-Informed NMF for Choral Music 66

Hz. Hence, two bass fundamental frequencies could belong in the same frequency bin, and
separating them using NMF would be more difficult.

We can increase the frequency resolution of the STFT by increasing its window size. We
found the optimal window size for our dataset to be 4,096 samples. With this window size
the bass estimates contained less interferences between notes, presumably because each basis
signal was more accurately separated. Increasing the window size further to 8,192, we found
that note onsets and offsets became “smeared” due to the decreased time resolution of the
STFT.

4.1.5 Quantitative Comparison of Experiments

To quantitatively compare between the experiments described above, we use the evaluation
metrics provided by the BSS Eval library version 4 (Stöter et al., 2018) which was discussed
in Section 2.1.4. The library computes several evaluation metrics by splitting the signal into
short frames and comparing the reference sources from the test dataset to the estimated
sources generated by the separation technique. We use the default setting of 1-second non-
overlapping evaluation frames for consistency with the SiSEC 2018 evaluation campaign
(Stöter et al., 2018).

Out of the four metrics computed by BSS Eval, in presenting our evaluations we use
mainly the source-to-distortion (SDR) metric which represents the total separation error.
When comparing SDR across techniques, we prefer to use the median and interquartile
range (visualized using box plots) rather than mean and standard deviation. This, again,
is in line with the SiSEC 2018 evaluation campaign and is motivated by the tendency of
the SDR metric to yield extreme outlier evaluations in specific situations. We discuss the
limitations of SDR further in Section 6.3.8 below.

We evaluated Experiments A–D on the 31 synthesized Bach chorales belonging to the
test partition in our two datasets: the normal dataset and the higher-variability dataset,
described in Section 3. The evaluation results are given in Figure 4.2.

As can be seen in the figure, the best separation performance was achieved on the soprano
voice, followed by the alto, tenor, and bass in that order. The mean SDR in Experiment A is
lower than in the other experiments for all voices. Overall there seems to be little difference
in SDR between Experiments B-D, unlike our qualitative observations may have suggested.

In all experiments, the evaluation on the higher-variability dataset produced many out-

4 Score-Informed NMF for Choral Music 67

A B C D
experiment

5

0

5

10

15

20

25
S

D
R

 (d
B

)

soprano

A B C D
experiment

alto

A B C D
experiment

tenor

A B C D
experiment

bass

(a) Results on the normal chorales dataset, by voice

A B C D
experiment

5

0

5

10

15

20

25

S
D

R
 (d

B
)

soprano

A B C D
experiment

alto

A B C D
experiment

tenor

A B C D
experiment

bass

(b) Results on the higher-variability chorales dataset, by voice

A B C D
experiment

20

15

10

5

0

5

10

15

20

25

S
D

R
 (d

B
)

normal

A B C D
experiment

higher-variability

(c) Combined results for all voices, by dataset

Figure 4.2 SDR evaluation results of Experiments A–D

4 Score-Informed NMF for Choral Music 68

liers: evaluation frames in which the SDR was particularly low compared to the overall
distribution. A closer examination of some of these frames reveals that they often occur
when the evaluated source is silent while the others continue to sing. Since in the higher-
variability dataset some notes are randomly omitted, this situation is more common in it
compared to the normal dataset. When one voice was silent, SI-NMF sometimes mistakenly
attributed to that voice partials that belong to other voices in the mixture. This caused a
particularly low SDR due to reasons that will be discussed in Section 6.3.8 below.

4.1.6 Failed Experiments

Apart from Experiments A–D, we tried several other combinations of parameters that did
not improve results. We nonetheless report those failed attempts here because we believe
they shed light on the limitations of employing SI-NMF on our dataset.

In the original SI-NMF paper, the authors reported achieving an improvement in sep-
aration quality by using two basis signals per note: one signal for the onset and one for
the sustained part. This was motivated by the difference in spectral characteristics: piano
note onsets are transient-like with energy spread across a broad frequency range, while the
sustained part of each note is (nearly) harmonic. In our synthesized dataset there are no
distinct note onsets, but we did try using two basis signals per pitch by simply initializing
both with the same spectral and temporal constraints. We hypothesized that this might
improve the handling of the smooth temporal evolution of each note. However, it did not
work as expected: the two basis signals belonging to the same pitch were always factorized
identically (presumably due to the way the multiplicative updates work), so the second basis
signal did not supply any added value.

We also tried initializing only the activations while leaving the basis signals randomly
initialized, so that NMF is left solely with the temporal constraints. This degraded separation
performance significantly compared to explicit spectral constraints, matching the findings in
the original SI-NMF paper, so we did not pursue it further. The degradation occurred mainly
because certain note combinations (such as thirds and octaves) often occur simultaneously
in our mixtures, so factorized basis signals often contained a mix of two notes.

Since the number of partials p in the spectral initializations was unspecified in the original
paper, and high partials overlapped across basis signal initializations due to the tolerance
ϕ, we attempted to limit the number of partials. We found, however, that any limit on p

4 Score-Informed NMF for Choral Music 69

degrades separation quality, probably because the amount of energy in the high frequencies,
despite being sometimes very low, never actually reaches zero in any source.

4.2 Conclusions

All in all, SI-NMF achieved decent separation results on our synthesized dataset of Bach
chorales. Interferences between estimated sources were very low or nonexistent due to the
hard constraints imposed using the score. However, these hard constraints rely on strong
assumptions that are valid on our synthesized dataset but less so on real choir recordings.
First, the score must be perfectly aligned to the audio: recall that separation quality was
significantly reduced when we attempted to use a higher temporal tolerance. Second, the
basis signal initializations can only capture harmonic components, while real choir music
normally has lyrics that contain many consonants that are inharmonic.

Most importantly, SI-NMF only uses static spectral templates. This works well for piano
recordings but is bound to be less effective for vocal music because the latter is characterized
by continuous evolution of spectral parameters. Pitches change continuously due to vibrato,
note transitions, and drift. Spectral envelopes also evolve continuously due to changes in
formant frequencies when transitioning between vowels. Hence, sources estimated in our ex-
periments contained noticeable amplitude modulation artifacts caused by SI-NMF’s inability
to model vibrato and other variation factors in the synthesized chorales.

The limitations of SI-NMF could be alleviated by employing one of the more powerful
signal models we discussed when reviewing score-informed separation techniques in Sec-
tion 2.5.2. Specifically, integrating source-filter signal models into NMF proved rather suc-
cessful in separating the singing voice and instruments with vibrato (Durrieu et al., 2009;
Heittola et al., 2009; Nakamura & Kameoka, 2016; Smaragdis et al., 2014). It is unclear,
however, whether source-filter models would be effective for choral music separation. As we
have shown in Section 2.4.4, the spectral characteristics of choral music are highly varied
because in fact, every choir singer is an individual sound source with a distinctive timbre,
pitch, amplitude, and timing.

These conclusions left us unsure whether NMF is the right tool for choral music separa-
tion. In the next chapters, we explore a completely different approach that is based on deep
learning. After conducting several experiments with the deep learning-based technique, we
finally (in Section 5.5.6) compare the new results to those obtained with SI-NMF.

70

Chapter 5

Wave-U-Net for Choral Music

Following our experiments with score-informed NMF, we concluded in the previous chapter
that classic NMF, even with added score constraints, is not sufficient for the task of choral
music source separation. When considering in which direction to proceed, we examined the
results of SiSEC 2018, an evaluation campaign for source separation techniques (Stöter et
al., 2018). The results of that campaign showed that for the task of singing voice separation
and multi-instrument separation, the best performing techniques were those based on deep
learning. One of the leading submissions in the campaign was Wave-U-Net, described in
Section 2.3.3. Since the source code of Wave-U-Net was made publicly available by its
authors1, we decided to use it to bootstrap our experimentation process without having to
reinvent the wheel.

This chapter details our experiments with Wave-U-Net on source separation of choral
music. In these experiments, we do not modify the Wave-U-Net architecture in any way
(chapter 6 will discuss our modifications). We simply train Wave-U-Net on our own dataset
of synthesized Bach chorales presented in chapter 3 and measure its performance.

5.1 Training Procedure

We use a training procedure that is identical to the procedure used for the original Wave-
U-Net. We describe the procedure here for completeness, as some details were omitted from
the original Wave-U-Net paper and documentation.

1Wave-U-Net code: https://github.com/f90/Wave-U-Net

https://github.com/f90/Wave-U-Net

5 Wave-U-Net for Choral Music 71

For training, each chorale in the training partition of the dataset is divided into segments
with length matching the input size of the neural network. Segments are extracted at random
positions, and they may overlap. All segments from all chorales are randomly shuffled and
collected into batches of 16 segments each. Training is performed on these batches using
the Adam optimizer (Kingma & Ba, 2014) with an initial learning rate of 0.0001. The loss
function is the mean squared error (see Section 2.2.2) between the predicted source and the
reference source, averaged over all sources and all segments in each batch.

The validation partition of the dataset is used to adjust the learning rate and decide
when training should be stopped. In this context, an epoch is defined as 2,000 training
iterations. After each epoch, the loss is evaluated on the entire validation set. When there is
no improvement in the minimum validation set loss for 20 consecutive epochs, a “fine-tuning”
stage is entered: the learning rate is reduced to 0.00001 and the batch size is doubled to 32.
When, again, there is no improvement in the validation set loss for 20 consecutive epochs,
training is stopped. When training is finished, model performance is evaluated on the entire
test partition of the dataset.

5.2 Training Infrastructure

The deep learning software library used to implement Wave-U-Net, TensorFlow (Abadi et
al., 2016), allows training neural networks on CPUs (central processing units) and certain
types of GPUs (graphical processing units). Using a GPU speeds up training significantly
because GPUs are optimized for parallel execution of linear algebra computations of the
kind used in neural networks. We used GPUs provided by Compute Canada2 to run our
training tasks. Compute Canada is an organization that provides high performance com-
puting infrastructure for Canadian researchers. We ran a simple benchmark to compare the
training speed on our private laptop’s CPU (Intel Core i5 2.7 GHz) and on a GPU provided
by Compute Canada (NVIDIA P100) and found that on the GPU training speed increased
by a factor of about 30. To illustrate, this means that a one-day training task on Compute
Canada would take a whole month on our private laptop. For this reason, the availability of
GPUs on Compute Canada significantly increased our ability to experiment with different
model configurations.

Compute Canada uses a scheduling mechanism to execute jobs. Every job requests a
2https://www.computecanada.ca

https://www.computecanada.ca

5 Wave-U-Net for Choral Music 72

certain running time and a set of resources, and is assigned to available matching nodes on
large compute clusters. We ran our training jobs on the Graham cluster3. For each job we
requested an allocation of a single GPU, 6 CPU cores, and 32 gigabytes of random access
memory. The CPUs are used to load and prepare training data while the GPUs perform the
gradient-based optimization. The configuration for every training task was saved in a JSON
file (JavaScript Object Notation, a structured text format) for reproducibility.

5.3 Reproducing Results on Singing Voice

In order to verify that our training environment is set up correctly, we first set out to
reproduce the original Wave-U-Net training procedure and check that we can obtain results
comparable to the pre-trained models shared by the authors. We acquired the original
datasets for training: CCMixter (Liutkus et al., 2015) and MUSDB (Rafii et al., 2017).

We trained two of the published model variants for the singing voice separation task. The
variants are dubbed M1 and M5-HighSR. M1 is the baseline separation model. M5-HighSR
is the best-performing model variant according to the authors (it was added to the code
after the paper was published). M5-HighSR includes the following improvements over M1:
it enforces source additivity rather than predicting each source individually; it uses temporal
input context; it uses stereo input and output rather than mono; it uses learned upsampling
parameters rather than naive linear interpolation; and finally, it uses a sample rate of 44.1
kHz rather than the baseline of 22.05 kHz.

After completing training we obtained separation results for several songs from the test
dataset (that is, songs that were not used during training). Our trained models obtained
results with comparable quality to the pre-trained models. As the Wave-U-Net authors
reported, results from M1 contained audible artifacts at segment boundaries (approximately
every 750 milliseconds). M5-HighSR, on the other hand, was able to produce separation
results that were almost free of artifacts.

5.4 Experiments on Synthesized Bach Chorales

After having successfully reproduced Wave-U-Net results on the original singing voice sep-
aration dataset, we commence with experiments on the synthesized Bach chorales dataset

3https://docs.computecanada.ca/wiki/Graham

https://docs.computecanada.ca/wiki/Graham

5 Wave-U-Net for Choral Music 73

presented in Section 3. We describe the methodology for Experiments 1–4, followed by their
results.

5.4.1 Experiment 1: Bass and Soprano Mixtures

We first train the model to separate the soprano and bass voices from a mixture of the
two. That is, the chorale mixtures in this experiment do not contain all four voices; they
contain only the soprano and bass, the so-called outer voices. We choose to conduct our first
experiment on bass and soprano only because we hypothesized that they would be the easiest
for the model to separate. Several factors support this hypothesis. First, the normal pitch
ranges for these voices have almost no overlap: soprano range is normally C4 to A5, while
bass range is E2 to D4 (see Table 2.1). Furthermore, the voices are different in their melodic
content: soprano carries the chorale melody and thus tends to contain stepwise motion, while
the bass has a higher frequency of leaps due to its harmonic function. In comparison, the
two inner voices (tenor and alto) have overlapping ranges and similar melodic characteristics,
possibly making them harder for the model to distinguish without additional information.

5.4.2 Experiment 2: Extract SATB

We proceed by training the model to separate all four voices from a mixture containing all
four voices. We anticipate that in this experiment, results for the soprano and bass voices
would be worse than Experiment 1 because of the confounding factors introduced by having
two additional voices in the mixture. Furthermore, we expect that results for alto and tenor
would be worse than results for soprano and bass in this experiment due to the overlap in
pitch ranges and similarity in melodic characteristics between alto and tenor.

5.4.3 Experiment 3: Extract Single Voice

In this experiment, we train the model to extract a single voice from a mixture of all four
voices. We hypothesize that this experiment would generate an improvement over Experi-
ment 2 because in this experiment, the model training could optimize an almost equal number
of parameters for a task that is simpler. The learned feature map could be geared specifically
for the extracted voice, rather than having to be generic enough to enable extraction of all
voices.

5 Wave-U-Net for Choral Music 74

The disadvantage of this approach is that we would have to train four different models
in order to extract all four voices. These four models would together use four times the
number of parameters compared to the single model from Experiment 2 that was trained to
extract all four voices. This is only a real disadvantage in an execution environment with
limited memory or compute resources or where prediction time must remain short. Such
environments are not part of our research goals.

5.4.4 Experiment 4: Higher-Variability Dataset, Extract Single Voice

In this experiment we train and evaluate models on the higher-variability dataset described
in Section 3.3.1 in order to test Wave-U-Net on mixtures that more closely resemble real-
world choir music. Specifically, we saw that the models in Experiments 1–3 were unable to
cope well with silences in the mixture (this will be explained in Section 5.5.2 below). We
anticipate that in this experiment, the model’s performance in such cases would improve
due to the inclusion of silences in the training dataset. Still, we reason that results in this
experiment would be slightly worse than previous experiments due to the added variability
in the dataset. In particular, we assume that in some cases the model would confuse between
sources. For example, in a case where a soprano note is omitted but the alto sings a note
that falls in the soprano range, the model might confuse the alto note as belonging to the
soprano.

Like in Experiment 3, in this experiment we train four models. Every model is trained
to extract a single voice from the SATB mixture.

5.5 Results

In this section we present quantitative results from Experiments 1–4. A listing of these exper-
iments is given in Table 5.1. As in the evaluation of score-informed NMF (see Section 4.1.5),
we use the SDR metric provided by the BSS Eval library with its default settings.

5.5.1 Experiment 1: Bass and Soprano Mixtures

Figure 5.1 shows the results of Experiment 1. Recall that the model in this experiment was
trained on separating the soprano and bass only. The figure shows that performance on the
soprano was significantly better than on the bass. Note that these results are significantly

5 Wave-U-Net for Choral Music 75

Table 5.1 Listing of Wave-U-Net experiments. HV stands for higher-
variability.

Experiment Dataset Mixture Voices Extracted Voices Model Type
1 normal SB SB one model for all voices
2 normal SATB SATB one model for all voices
3 normal SATB SATB one model per voice
4 HV SATB SATB one model for all voices

soprano bass

10

15

20

25

30

S
D

R
 (d

B
)

Figure 5.1 SDR evaluations of Experiment 1 results by voice

5 Wave-U-Net for Choral Music 76

better than those achieved by techniques evaluated in SiSEC 2018 on singing voice separation.
Leading submissions in SiSEC 2018 achieved median SDR of 5–10 dB for vocals and 10–15
dB for accompaniment (Stöter et al., 2018). This difference is probably due to the fact
that here the task is simpler since we use synthesized mixtures as opposed to real-world
recordings.

5.5.2 Experiment 2: Extract SATB

soprano alto tenor bass

0

5

10

15

20

S
D

R
 (d

B
)

Figure 5.2 SDR evaluations of Experiment 2 results by voice. The dashed
lines indicate the mean.

The results of this experiment, illustrated in Figure 5.2, show that median performance
was best on the soprano voice, followed by the alto, bass, and tenor in that order. Impor-
tantly, the figure shows that the interquartile range for the inner voices (alto and tenor)
is larger than that of the outer voices (soprano and bass). Also, the mean for the inner
voices is noticeably lower than the median due to outliers. This indicates that separation
performance on the inner voices was less consistent.

In order to investigate this inconsistency, we examine the ten frames with the lowest
SDR in this experiment (see Table 5.2). Negative SDR generally indicates bad separation
quality. In the two frames with the lowest SDR, it seems the failure was caused by a silent
section in the alto part in chorale 358. Figure 5.4 shows the score for this section: note the

5 Wave-U-Net for Choral Music 77

silences in alto and tenor. Silences are very unusual for Bach chorale harmonizations and
so the training dataset contained very little of them. For this reason, the model did not
learn to predict silences well: its predictions on silent segments contained a large amount
of interference from other voices. Note also that the SDR for these two near-silent frames
is extremely low (below -40 dB). This extremity is caused by the way the SDR metric is
designed. We discuss this further in Section 6.3.8 below.

The bad performance on all the other 8 frames in Table 5.2 was caused by voice crossings
between the alto and the tenor: segments in which the alto goes lower than the tenor (see
Section 2.4.2 for an explanation). For example, the third frame in the table (chorale 358
frame 46) corresponds to the voice crossing shown in Figure 5.4. Voice crossings pose a
challenge for the model because it has evidently learned to rely on the standard SATB
ordering of the voices. In Section 6 below, we explore using the musical score to improve
separation in such challenging cases.

5.5.3 Comparison of Experiments 1-2

soprano bass

0

5

10

15

20

25

30

S
D

R
 (d

B
)

experiment
Experiment 1
Experiment 2

Figure 5.3 SDR evaluation of Experiment 1 results compared to Experiment
2 results by voice. Only soprano and bass are compared because they are the
sources common to both models.

Figure 5.3 shows that when extracting from an SATB mixture (as opposed to an SB
mixture as in Experiment 1), the performance on the soprano and bass voices degrades

5 Wave-U-Net for Choral Music 78

Table 5.2: The ten evaluation frames with the lowest SDR in Experiment 2. The last
column shows the reason for the bad performance, as explained in the text.

Source Chorale Frame SDR Reason

alto 358 39 -45.28 Silent
alto 358 38 -39.70 Silent
alto 358 46 -5.33 Crossing
alto 341 19 -5.25 Crossing
tenor 367 3 -5.14 Crossing
tenor 367 4 -4.68 Crossing
alto 366 20 -4.04 Crossing
tenor 358 45 -3.64 Crossing
tenor 358 48 -3.22 Crossing
tenor 358 44 -3.19 Crossing

Figure 5.4 The final phrase of chorale 358. Unusually for Bach chorale har-
monizations, the alto and tenor parts contain silences in measure 15 (marked
in orange). Furthermore, there is a voice crossing between the alto and tenor
parts that lasts for 7 beats (marked in blue).

5 Wave-U-Net for Choral Music 79

significantly. This degradation is to be expected, given that the task in Experiment 2 is
more difficult yet the number of model parameters remained the same.

5.5.4 Experiment 3: Extract Single Voice

soprano alto tenor bass

0

5

10

15

20

25

S
D

R
 (d

B
)

experiment
Experiment 2
Experiment 3

Figure 5.5 SDR evaluations for Experiment 3 by voice, with Experiment 2
results shown for reference.

Results for Experiment 3 are shown in Figure 5.5. Separation in this experiment is
significantly better than Experiment 2 on all voices. This confirms our hypothesis that
optimizing a model for extracting a single voice yields better performance than extracting
all voices at once. The results show that models perform significantly better on the outer
voices (soprano and bass) than on the inner voices.

5.5.5 Experiment 4: Higher-Variability Dataset, Extract Single Voice

Results for Experiment 4 are shown in Figure 5.6. Like in Experiment 3, performance on
the outer voices is superior to performance on the inner voices. The comparison between
Experiment 4 and Experiment 3 shows that as we hypothesized, using a dataset with higher
variability leads to inferior separation results. This can be seen as an indication that training
on real-world recordings (rather than a synthesized dataset) would lead to an even larger
degradation, since real-world music has many additional variation factors that are not in-
cluded in this dataset, such as lyrics, choir timbre, choir size, use of divisi, room acoustics,

5 Wave-U-Net for Choral Music 80

soprano alto tenor bass
5

0

5

10

15

20

25

S
D

R
 (d

B
)

experiment
Experiment 3
Experiment 4

Figure 5.6 SDR evaluations for Experiment 4 by voice, with Experiment 3
results shown for reference.

musical textures, and recording quality.

Figure 5.7 Full distribution of SDR evaluations in Experiments 3–4 by voice.

Figure 5.7 shows that results in this experiment contain a large number of outlier frames
with low SDR compared to Experiment 3. Investigation of these outliers reveals that many
of them are caused by segments in which one voice is silent while the other voices continue
to sing. In such segments it was difficult for the model to ‘guess’ which voice is silent due to
the overlap between voice ranges, so the model sometimes conflated one voice with another.

5 Wave-U-Net for Choral Music 81

The score for one such example is shown in Figure 5.8.

Bass

Tenor

Alto

Soprano



 

     
    

       
     































Figure 5.8 The score corresponding to an evaluation frame that achieved a
very low SDR in Experiment 4 (chorale 364, frame 10). Some notes from the
original Bach harmonization are omitted in the score because it is part of the
higher-variability dataset. The SDR for the frame corresponding to the score
segment marked in blue was low because the model mistook the long tenor note
for a bass note. This is an ‘understandable’ mistake because this note (F#3)
lies close to the middle of bass range.

5.5.6 Comparison between Experiments 1–4 and NMF

For an overall comparison, Figure 5.9 shows the results of Experiments 1–4 side by side,
along with the best results achieved with NMF as described in Section 4. As expected,
Experiment 1 had the best results for soprano and bass, due to the fact that the mixtures in
that experiment consisted only of these two voices. All Wave-U-Net models outperformed
the best results achieved with NMF by a large margin. Interestingly, Experiment 4 models
achieved a higher median SDR compared to Experiment 2, even though Experiment 4 was
evaluated on the higher-variability dataset. This improvement was likely caused by the use
of one model per voice as opposed to one model for all voices. Still, Experiment 4 shows
a high number of outliers mostly due to misclassified notes, as explained earlier. In the
next section, we explore integrating the musical score into the separation process in order to
reduce errors that are caused by misclassified notes.

5 Wave-U-Net for Choral Music 82

soprano alto tenor bass
50

40

30

20

10

0

10

20

30

S
D

R
 (d

B
)

experiment
Experiment 1
Experiment 2
Experiment 3
Experiment 4
Experiment B (NMF)

Figure 5.9 SDR results for Experiments 1–4 by voice, with outlier frames
shown as points. Results from Experiment B (the score-informed NMF experi-
ment that achieved the highest median SDR) are shown for comparison.

83

Chapter 6

Score-Informed Wave-U-Net

One of the goals in choral music performance is achieving a blend of the different voices
(see Section 2.4). For this reason, in some cases even expert human listeners cannot identify
individual parts in a choral recording. In these difficult cases where parts are well blended,
the score (see Section 2.4.3) may prove useful to human listeners in identifying individual
parts, as it provides information on what pitches to expect and at what times. If the score
helps human listeners to identify parts, it might similarly assist a machine learning separation
model. We therefore investigate in this section the integration of score information into the
separation process.

Timbre is generally a useful differentiating factor that could be used for source separation.
In choral music, however, the timbres of the women’s voices (soprano and alto) are similar
to each other, and so are the men’s (tenor and bass). If not timbre, separation of choral
music could be guided by the pitch ranges of each choir part, but unfortunately the ranges
have considerable overlap. For example, an F4 note can easily belong to the soprano, alto,
or tenor; in rare cases it could even be sung by the bass (see Section 2.4.2). Another option
would be to rely on the ordering of the voices: normally, when all four voices sing at the
same time, the lowest note would belong to the bass and the highest to the soprano, with
tenor and alto in-between. However, there are many cases in which not all voices sing at the
same time, and even when they do, they sometimes cross over each other (see Section 2.4.2).
Hence, we conclude that in pitch ranges that are shared between two or more choir parts,
the musical score might be the only way to associate notes to a specific voice.

We publish our score-informed version of Wave-U-Net, including all the code related to

6 Score-Informed Wave-U-Net 84

the experiments described in this section, as open-source software (see Appendix B).

6.1 Conditioning Wave-U-Net on Scores

Having decided that we wish to integrate information from the score into the separation
process, the question arises how to feed that information into Wave-U-Net. There are three
main questions to be answered: what information do we extract from the score, how do we
represent that information, and in what way do we feed it into the neural network.

6.1.1 Choosing Information to Extract from the Score

As discussed in Section 2.5, many types of information can be extracted from a score. For
our model, we choose to extract only timing and pitch information from the score. We
reason that this information would be the most crucial to guide separation of each note to
the voice it originated from. In choral music, every choir part sings at most one note at a
time (as opposed to some instruments that can play several notes at the same time). There
are cases of divisi in which one part is divided into several parts (for example, soprano 1
and soprano 2); we simply choose to treat these divisi as distinct parts, so that our initial
statement always holds: for every point in time a part can have at most one active note.
Consequently, in order to represent a four-part choral piece we simply need four sequences,
where each sequence is comprised of notes each having a pitch and a duration, and of rests
that have only duration. We discard any other information from the score.

As discussed in Section 2.5.1, score alignment is normally a prerequisite for score-informed
separation. Fortunately, for our experiments on synthesized chorales, we already have a
perfectly aligned score for every recording, as our recordings are deterministically generated
directly from the score.

6.1.2 Feeding the Score into Wave-U-Net

Wave-U-Net is designed to handle audio inputs only. Here we desire to feed an additional
input of a different modality: a musical score, and we wish that the model incorporates
information from both input modalities when generating the output. In machine learning,
this general idea is referred to as conditioning: predicting outputs for a certain input using
information extracted from an auxiliary input (Perez et al., 2018).

6 Score-Informed Wave-U-Net 85

Finding methods for conditioning neural networks is an open research problem. Du-
moulin et al. (2018) describe three methods: concatenation-based conditioning, in which the
conditioning vector is concatenated to the input vector; conditional biasing, in which the
conditioning vector is added to the input vector; and conditional scaling, in which the input
vector is multiplied by the conditioning vector. These methods are illustrated in Figure 6.1.
The authors point out that all three conditioning methods may seem natural and intuitive.
For our experiments, we used the straightforward approach of concatenation; we leave it to
future work to explore other conditioning methods. Interestingly, Dumoulin et al. (2018)
point out that concatenation-based conditioning is equivalent to conditional biasing with a
linear transformation applied to the conditioning vector.

Figure 6.1 Conditioning methods for neural networks. Adapted from Du-
moulin et al. (2018), licensed under CC-BY 4.0.2

Once we have decided to concatenate the score to the audio, we have to decide where in
the network to concatenate it: we could concatenate it directly to the audio input that is
sent to the first layer of the encoder; or we could concatenate it to the low-resolution feature
map at the bottleneck between the encoder and the decoder; or we could concatenate it after
the last layer of the decoder just before generating the output audio. It is also possible, of
course, to condition the network in multiple locations at the same time. See Figure 6.2 for
an illustration of conditioning locations.

In Section 6.2 we investigate concatenative score conditioning in three locations: input
conditioning, output conditioning, and input-output conditioning. Input-output condition-
ing simply means feeding the score at both the input and output locations. We did not

2https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

6 Score-Informed Wave-U-Net 86

`

`

upsampling

layers

bottleneck

downsampling

layers

input mixture

source

estimates

                
  input

conditioning

                
  bottleneck

conditioning

output
conditioning`                 

 

Figure 6.2 Score conditioning locations.

6 Score-Informed Wave-U-Net 87

investigate conditioning at the bottleneck. Concatenative conditioning at the bottleneck
would necessitate resampling the score information to the bottleneck’s much lower temporal
resolution; that way, we would lose important timing information. When we condition at
the input or output of the network, we can use the same sampling rate for the audio and
the score.

Different conditioning methods of the same network architecture could apply to different
tasks; compare, for example, Slizovskaia et al. (2019), who used multiplicative conditioning
in the Wave-U-Net bottleneck to condition the separation on instrument labels. In that work,
the conditioning vector has no temporal dimension: it applies to the whole audio segment;
it thus makes sense to apply it at the bottleneck where temporal resolution is low and the
amount of channels in the feature map space is high.

Intuitively, when we concatenate the score to the audio input, we treat the score simply
as an additional channel of input to the neural network. Recall that the input of the original
non-score-informed Wave-U-Net is an audio segment: a matrix of size c × n, where n is
the number of time instants (16,384 in the basic model variant) and c is the number of
audio channels (1 for the basic mono model variant and 2 for stereo). Since the score is a
temporally-evolving structure just like the audio, and they are temporally aligned to each
other, we simply concatenate the score to the audio input along the rows axis. Consequently,
a column in the input matrix continues to represent a single time instant. Note that this
means that we must use the same sampling rate for score representation as for the audio
input.

6.1.3 Score Representations

Before feeding the score information into the neural network, we must decide how to represent
it. The choice of score representation might significantly affect the performance of the neural
network. There are no conceptually right or wrong representations; the best representation
is the one that maximizes the model’s performance. Note that following the discussion in
the previous section, we are interested in a representation for the music of a single part only
(as opposed to a score of all parts combined).

The first score representation we propose is MIDI pitch. In this representation, a score
is a vector of n integers (n is the input segment length). Values from 1 to 127 indicate
that a note with the corresponding MIDI note number is active (the MIDI note number is

6 Score-Informed Wave-U-Net 88

a standardized way to specify a note’s pitch). The value 0 has a special meaning in this
representation: it is reserved to indicate that there is no active pitch at that time.

A possible problem with the MIDI pitch representation is that the range of the score
data (0 to 127) is radically different from the range of audio data (-1 to 1). This difference
might cause the gradient-based training process to work inefficiently. In fact, it is generally a
recommended practice to normalize any neural network inputs by shifting and scaling them
so that their average is zero and they all have the same covariance (LeCun et al., 1998). We
thus propose a second representation, normalized pitch, in which we normalize the score to
be in the same range as the audio data.

Given a MIDI note number M , the normalized pitch is computed as:

Mnormalized =

−1, M = 0

M−Mmin
Mmax−Mmin

, otherwise
,

where Mmin and Mmax are constants expressing the minimum and maximum expected note
pitches, respectively. We set Mmin = 36 and Mmax = 84, based on the knowledge that pitches
in choral music normally range from C2 (very low bass note) to C6 (very high soprano note);
in Bach chorales there are no notes outside of this range. Note that in this representation
values are real numbers rather than integers.

Mnormalized receives the value -1 when no note is active, and a value from 0 to 1 when a
note is active. The rationale in leaving values between -1 and 0 unused is that there should
be a clear differentiation between the case where a note is active and the case where no
note is active. This differentiation is admittedly somewhat artificial, but given that we are
limiting the representation to a single value per time point, it seemed like the most logical
choice.

The problem of representing silences in the previous two representations leads to the
following representation. Rather than representing pitch only, we introduce a two-channel
representation: pitch and amplitude. In this representation, the score is a matrix of size 2×n,
in which the first row represents the pitch and the second one represents the amplitude. The
full range of pitches is normalized to the range [−1, 1]:

P = −1 + 2 · M −Mmin

Mmax −Mmin
.

6 Score-Informed Wave-U-Net 89

The second row, representing the amplitude, is actually boolean: its value is 1 when a note
is active and 0 when no note is active. Unfortunately, this does not completely solve the
issue with representing silences: the pitch channel must still be assigned a value when no
note is active, a value which has no musical meaning; we chose this value arbitrarily to be
-1.

As an attempt to resolve issues in the above representations, we propose a piano roll
representation. Here, the score is represented as a matrix of size p×n where p is the number
of available pitches (p = Mmax −Mmin + 1). This representation is similar to a piano roll or
to the interface in which MIDI notes are entered in a digital audio workstation: each pitch
is represented as a row and columns represent time instants. The matrix element at row pi

and column nj is set to 1 if a note with pitch pi is active at time pj. Otherwise, the element
is set to 0. Since a vocal part can only sing at most one note at a time, this is a one-hot
representation: any column can only contain at most one value of 1.

Lastly, we propose an additional score representation: pure tone. Since our model is
a convolutional neural network that excels at processing audio, we reason that feeding the
score into the model as audio might work well for guiding the separation. For simplicity,
we do not deal with smooth note transitions; any note onset will result in a transient in
the audio-like score. We define the score as a piecewise sine function where the frequency
is controlled by the active note’s pitch. The pure tone frequency f is determined by the
standard MIDI note number to frequency mapping:

f = 440 · 2
M−69

12 .

Whenever there is no active note, f is set to 0. The score vector of length n samples then
receives the following value at each sample index i:

Si = sin

(
2πf ∗ i

Fs

)
,

where Fs is the sample rate of the model’s audio input (for consistency).
It is important to note a shortcoming in all of the above representations. These represen-

tations do not differentiate between a sustained note and a repeated note. In other words,
two consecutive notes with the same pitch are represented exactly the same as one note with
a longer duration. In contrast, in practice there is a big audible difference between these

6 Score-Informed Wave-U-Net 90

two cases due to the attack of the second note. It might prove beneficial to devise a score
representation that does encode this difference. One possibility that is left for future work is
refining the pitch and amplitude representation so that the amplitude channel emulates an
attack-decay-sustain-release envelope for every note.

6.2 Score-Informed Training on Synthesized Bach Chorales

In this section we describe the experiments we conducted on training score-informed vari-
ants of Wave-U-Net. For score-informed training, we generated a variant of the synthesized
chorales dataset described in Section 3. In this score-informed dataset, every example con-
tains the mixture audio, each part’s audio, and each part’s score information. Following the
observations in Section 6.1, we only keep timing and pitch information from the score and
discard all the rest. In order to create the dataset, we follow the same procedure outlined
in Section 3. After we synthesize each part’s audio from a MIDI file, we also use the same
MIDI file to extract score information for that part by converting the MIDI note on and
note off events into a vector containing the active MIDI note number (or 0 if no note is
active) for every time instant. This vector uses the same sample rate as the model’s audio
input.

The experiments presented in this section are designed to check whether introducing the
score into the separation process could improve results for separating SATB mixtures (Ex-
periment 2–4). Given that non-score-informed Wave-U-Net performed very well on two-voice
mixtures (see Section 5.5.1), it seemed that introducing the scores for this task is unneces-
sary. We investigate five score types (defined in Section 6.1.3): MIDI pitch, normalized pitch,
pitch and amplitude, piano roll, and pure tone. We also independently investigate three score
conditioning locations (defined in Section 6.1.2): input conditioning, output conditioning,
and input-output conditioning.

6.2.1 Experiment 5: MIDI Pitch, Extract SATB

This is a preliminary experiment to check the viability of score-informed training. Like in
Experiment 2, in this experiment we train the model to separate all four voices from an
SATB mixture. We use the simplest score representation: MIDI pitch. We hypothesized
that the model would be able to use the score to improve separation quality, or in the worst
case, it would just learn to ignore the score and achieve results comparable to Experiment

6 Score-Informed Wave-U-Net 91

2. In this experiment, we use input-output conditioning. Input-output conditioning makes
sense intuitively because we feed the score into the model in the same locations as the audio:
recall that in the Wave-U-Net architecture the original audio input is concatenated to the
computed feature map just before the output layer (see Section 2.3.3).

6.2.2 Experiment 6: Normalized Pitch, Extract Single Voice

Since extracting only a single voice from an SATB mixture turned out to improve results
for non-score-informed separation (see Experiment 3), we wished to check whether it would
have the same effect on score-informed separation. Hence, in this experiment we train four
models, one per voice. As mentioned in Section 5.5.2, the worst model performance was
encountered in segments containing voice crossings. We hypothesize that the models in this
experiment will be able to utilize the pitch and timing information contained in the score
to disambiguate these cases. For this reason, we expect the largest improvement in this
experiment (compared to Experiment 3) to be in the alto and tenor voices.

In the analysis of results from Experiment 5, we found that conditioning on the MIDI
pitch score representation does not work well (see Section 6.3.1 below). For this reason, in
this experiment we switch to the normalized pitch score representation. We continue to use
input-output conditioning in this experiment.

6.2.3 Experiment 7: Multi-Source Training

Instead of training the network to separate specific voices, in this experiment we train it to
separate any of the four voices given that voice’s score. In this model variant, the score is the
only indication as to which voice should be extracted from the mixture. In this sense, the
separation is not only score-informed, it is score-guided. Whereas in previous score-informed
variants the model could use the score to improve separation results, in this variant the
model must make use of the score. This mode of operation also gives greater flexibility to
users of the model: here, one could choose individual notes to extract from a recording,
possibly alternating between voices, rather than only being able to extract voices as a whole.
Furthermore, multi-source training potentially enables the model to be used on recordings
with less or more than four voices.

To achieve this mode of operation, we train the model on all four voices without specifying
which training examples belong to which voice. That is, for each example in the original

6 Score-Informed Wave-U-Net 92

training dataset we generate four separate training examples, one for each choir voice.
We continue to use the same score conditioning as in Experiment 6: normalized pitch

score with input-output conditioning.

6.2.4 Experiment 8: Compare Conditioning Methods, Extract SATB

In this experiment we examine the effects of the different score representations and score
conditioning locations on separation performance. Following the insights gained from Ex-
periment 4, we use the higher-variability dataset for the present experiment. The higher-
variability dataset contains many cases of ambiguity in associating notes to their proper
voice, and this would enable us to evaluate the way in which the different score conditioning
methods help to disambiguate these cases.

We run a total of 12 tests to compare all possible combinations of four score repre-
sentations (normalized pitch, pitch and amplitude, piano roll, and pure tone) and three
conditioning locations (input, output, and input-output). Models in this experiment are
trained to extract all four voices, like in Experiment 2.

6.2.5 Experiment 9: Compare Conditioning Methods, Extract Single Voice

In order to further isolate the effect of score conditioning method, we test all combinations
of score type and score conditioning locations on extraction of only a single voice (similar
to Experiment 3). We choose to test specifically on the tenor because it achieved the worst
median SDR in Experiments 2–4, due in part to being frequently conflated with the alto
and bass. For this reason we expect tenor extraction to serve as a good benchmark case for
comparing the different score conditioning methods.

Like in Experiment 8, in this experiment we run 12 tests (4 score representations times
3 conditioning locations). All models are trained to extract the tenor only from the higher-
variability dataset.

6.2.6 Experiment 10: Compare Conditioning Methods, Multi-Source Training

In this experiment we examine the effect of score conditioning method (similar to Experi-
ments 8–9) in a multi-source training setting (as defined in Experiment 7) on the higher-
variability dataset. To this end, we again run tests on all combinations of score representation

6 Score-Informed Wave-U-Net 93

and score conditioning location, with multi-source training to extract any of the four voices
in a score-guided manner.

6.3 Results

In this section we present quantitative evaluation results of Experiments 5–10. Table 6.1
lists these experiments for reference.

Table 6.1: Listing of score-informed Wave-U-Net experiments. HV stands for higher-
variability.

Experiment Dataset Voices Score Conditioning Model Type

5 normal SATB MIDI pitch, input-output one model for all voices
6 normal SATB normalized pitch, input-output one model per voice
7 normal SATB normalized pitch, input-output multi-source
8 HV SATB multiple3 one model for all voices
9 HV tenor multiple3 one model per voice
10 HV SATB multiple3 multi-source

6.3.1 Experiment 5: MIDI Pitch, Extract SATB

This experiment using the MIDI pitch score representation did not yield the expected results.
During training, we noticed that after several iterations the loss value stopped improving
and got “stuck” around a very high mean squared error of about 0.5, even when left to
train for over 100,000 iterations (see Figure 6.3). We are not completely sure what caused
this to occur. Failure of the neural network optimization process can have many causes: an
inadequate choice of learning rate (Goodfellow et al., 2016, pp. 82–87); local saddle points
or large flat regions in the loss function landscape (Goodfellow et al., 2016, p. 278); and
the so-called exploding and vanishing gradient problems, in which the norm of the gradient
increases or decreases rapidly (Bengio et al., 1994; Pascanu et al., 2013). In our case, we
suspect that the failure was caused by the large values of the score conditioning, as the range

3All 12 combinations of four score representations (normalized pitch, pitch and amplitude, piano roll,
and pure tone) and three conditioning locations (input, output, and input-output).

6 Score-Informed Wave-U-Net 94

of MIDI pitch values (0 to 127) is radically different from the range of the audio data that
flows through the network (-1 to 1). This is elaborated in Section 6.1.3. A simple possible
solution is scaling the score so that it lies in the same range as the audio data, and this is
what we investigate in the next experiment.

TensorBoard 	SCALARS GRAPHS INACTIVE

Tooltip	sorting

method:

Smoothing

Horizontal	Axis

Runs

914434

726622

Show	data	download	links

Ignore	outliers	in	chart

scaling

default

0

STEP RELATIVE

WALL

Write	a	regex	to	�lter	runs

sep_loss

test_loss

Filter	tags	(regular	expressions	supported)

0.00

2.000e-6

4.000e-6

6.000e-6

8.000e-6

1.000e-5

1.200e-5

1.400e-5

1.600e-5

1.800e-5

2.000e-5

0.000 40.00k 80.00k 120.0k 160.0k 200.0k 240.0k

TensorBoard 	SCALARS GRAPHS INACTIVE

Tooltip	sorting

method:

Smoothing

Horizontal	Axis

Runs

914434

726622

Show	data	download	links

Ignore	outliers	in	chart

scaling

default

0

STEP RELATIVE

WALL

Write	a	regex	to	�lter	runs

sep_loss

test_loss

Filter	tags	(regular	expressions	supported)

0.470

0.475

0.480

0.485

0.490

0.495

0.500

0.505

0.510

0.515

0.520

10.00k 20.00k 30.00k 40.00k 50.00k 60.00k 70.00k 80.00k

Experiment 2Experiment 5

Lo
ss

Training iterationTraining iteration

Lo
ss

Figure 6.3 Left: the loss value during training in Experiment 5, plotted
against training iteration. Right: the loss value during training in Experiment
2, for comparison. Note the orders of magnitude difference in the scale of the
y axis.

6.3.2 Experiment 6: Normalized Pitch, Extract Single Voice

Figure 6.4 shows the results of this experiment, with the results of Experiment 3 (the non-
score-informed counterpart of this experiment) shown for reference. As we expected, adding
the score information improves separation performance specifically on the alto and tenor
voices. In order to verify that the score was actually employed by the model, we inspect
the performance on frames involving voice crossings between the alto and tenor. Recall that
these frames were seen to cause trouble in Experiments 2–4. Table 6.2 shows that in all the
frames we examined, SDR indeed improved substantially in this experiment. This indicates
that the score was employed to disambiguate voice crossings.

For the soprano and bass voices, Figure 6.4 shows a slight degradation in performance
in this experiment compared to its non-score-informed counterpart. This degradation may
have occurred because the score-informed model must learn to use the score without any

6 Score-Informed Wave-U-Net 95

soprano alto tenor bass

0

5

10

15

20

25

S
D

R
 (d

B
)

experiment
Experiment 3
Experiment 6

Figure 6.4 SDR evaluations by voice in Experiment 6. Experiment 3 is shown
for comparison.

Table 6.2 Comparison between Experiments 2, 3, and 6 of performance on
frames with voice crossings (frames taken from Experiment 2, see Table 5.2).
A clear improvement is achieved in Experiment 6 using the score.

Source Chorale Frame Ex. 2 SDR Ex. 3 SDR Ex. 6 SDR
alto 358 46 -5.25 -2.99 2.30
alto 341 19 -5.33 -2.58 8.11
tenor 367 3 -3.19 -3.41 5.54
tenor 367 4 -3.64 -5.34 10.44
alto 366 20 -3.22 -4.86 8.21
tenor 358 45 -4.04 -5.26 7.37
tenor 358 48 -5.14 -5.65 8.47
tenor 358 44 -4.68 -4.01 6.88

6 Score-Informed Wave-U-Net 96

increase in the number of parameters. It is possible that increasing the number of model
parameters would eliminate this regression.

6.3.3 Experiment 7: Multi-Source Training

soprano alto tenor bass

0

5

10

15

20

25

S
D

R
 (d

B
) experiment

Experiment 3
Experiment 6
Experiment 7

Figure 6.5 SDR evaluations by voice in Experiment 7, compared to Experi-
ments 3 and 6.

Figure 6.5 shows the results of multi-source training (this experiment) compared to non-
score-informed training (Experiment 3) and single-source score-informed training (Experi-
ment 6). Interestingly, this experiment achieves SDR results that are inferior to Experiments
3 and 6 in terms of median, but it can be seen that in all voices the SDR distribution is
more concentrated in this experiment (the interquartile range is smaller). This indicates that
separation performance is more consistent using multi-source training. Most importantly,
we note that Experiment 7 uses a quarter of the parameters compared to Experiments 3
and 6 (because it separates all four voices using a single model), yet it achieves comparable
separation performance on the inner voices.

6.3.4 Experiment 8: Compare Conditioning Methods, Extract SATB

Figure 6.6 shows the results of this experiment comparing score types and conditioning
locations. Comparing the different score types, normalized pitch and pure tone seem to have
about the same performance, with pitch and amplitude and piano roll performing slightly

6 Score-Informed Wave-U-Net 97

normalized pitch pure tone pitch and amplitude piano roll

0

5

10

15

20
S

D
R

 (d
B

)

source = soprano

normalized pitch pure tone pitch and amplitude piano roll

0

5

10

15

20

S
D

R
 (d

B
)

source = alto

normalized pitch pure tone pitch and amplitude piano roll

0

5

10

15

20

S
D

R
 (d

B
)

source = tenor

normalized pitch pure tone pitch and amplitude piano roll

0

5

10

15

20

S
D

R
 (d

B
)

source = bass

Conditioning Location
input
output
input-output

Figure 6.6 SDR evaluations by voice, score type, and conditioning location
in Experiment 8.

6 Score-Informed Wave-U-Net 98

worse. Interestingly, the conditioning location has no consistent effect on soprano and bass
separation performance. For alto and tenor, however, where the score is most important, the
results seem to indicate that output conditioning is significantly worse than both input and
input-output conditioning, in terms of median and interquartile range for all score types.

We suspect that conditioning at the output does not perform well because of the structure
of Wave-U-Net’s output layer. The output is computed sample-by-sample as a dot product
of the output layer’s weights and a vector consisting of: one score sample, one input audio
sample, and one sample from the computed feature map. Hence, in the case of output-only
conditioning, the score can only have a “shallow” effect as it is only involved in this final
dot product and has no effect on the feature map that is computed in multiple convolutional
layers.

6.3.5 Experiment 9: Compare Conditioning Methods, Extract Single Voice

(d
B
)

Figure 6.7 A comparison of SDR evaluations by score type and conditioning
location in Experiment 9. We also show the ‘no score’ condition for comparison,
taken from the tenor model trained in Experiment 4 on the same dataset.

The results of this experiment which tested the effect of score conditioning method on
tenor extraction are shown in Figure 6.7. As in Experiment 8, it can be seen that output
is the worst conditioning location. In fact, performance with output conditioning is almost
identical to performance without a score at all. This leads us to suspect that the models
conditioned at the output have learned to simply ignore the score.

There is almost no difference in separation performance between input and input-output
conditioning. All combinations of conditioning locations (other than output) and score types

6 Score-Informed Wave-U-Net 99

perform similarly and considerably better than no score at all, which confirms our findings
from Experiment 8: tenor separation benefits greatly from score conditioning.

6.3.6 Experiment 10: Compare Conditioning Methods, Multi-Source Training

This experiment tested the effect of score conditioning method on multi-source training. The
training of 4 models out of 12 in this experiment ended prematurely. The failed models are
those that used output conditioning (which performed badly also in Experiment 9). Like
in Experiment 5, the training loss in the failed models got stuck at a relatively high value,
although in this experiment the actual value was significantly lower than in Experiment 5.
Figure 6.8 illustrates the failed training process.

0.00

1.000e-5

2.000e-5

3.000e-5

4.000e-5

5.000e-5

6.000e-5

7.000e-5

8.000e-5

0.000 20.00k 40.00k 60.00k 80.00k 100.0k 120.0k 140.0k 160.0k

Training iteration

Lo
ss

Figure 6.8 The training loss evolution of three models in Experiment 10. All
three models used the pitch and amplitude score representation, and differed
in the score concatenation location.

Excluding the models that failed to train we are left with 8 models. The per-source results
for these models are shown in Figure 6.9. Recall that every one of the 8 trained models is
able to separate all four choir voices, guided by the score alone. In this experiment, score
type and conditioning location do not seem to have a significant effect on separation quality.
Interestingly, the pure tone score type achieves the best median SDR (by a small margin)
for soprano and alto, but for tenor and bass it ranks among the lowest.

6 Score-Informed Wave-U-Net 100

normalized pitch pure tone pitch and amplitude piano roll

5

10

15

20

S
D

R
 (d

B
)

source = soprano

normalized pitch pure tone pitch and amplitude piano roll

5

10

15

20

S
D

R
 (d

B
)

source = alto

normalized pitch pure tone pitch and amplitude piano roll

5

10

15

20

S
D

R
 (d

B
)

source = tenor

normalized pitch pure tone pitch and amplitude piano roll

5

10

15

20

S
D

R
 (d

B
)

source = bass

Conditioning Location
input
input-output

Figure 6.9 A comparison of SDR evaluations by score type and conditioning
location in Experiment 10, for each voice separately.

6 Score-Informed Wave-U-Net 101

6.3.7 Comparison: Does Using the Score Improve Separation Performance?

After having run the experiments described above and analyzing their results, we finally
come to the bottom line that we set out to investigate: Can the musical score be used
to improve the quality of source separation of choral music? To answer this question we
compare results from Experiments 4, 8, 9, and 10. All these experiments were trained on the
higher-variability dataset, which was more representative of real-world choir music compared
to the initial dataset of unaltered Bach chorales, and was also shown in Experiment 4 to
be more challenging for our models. We choose to compare performance on the tenor voice
specifically because it is challenging, as discussed above.

Figure 6.10 shows a comparison of the best models from Experiments 8–10 along with
their non-score-informed counterparts. The comparison confirms that using the score signif-
icantly improves separation performance in our models. Surprisingly, multi-source training
achieves the highest median SDR, even though it extracts all four choir voices with a single
model, guided only by the score. However, the interquartile range in multi-source training
is large compared to single-voice training and even SATB training. This may indicate that
the multi-source model requires more parameters.

6.3.8 Limitations of SDR

In the above sections we have used SDR for evaluating separation quality. SDR is the
accepted standard used by a prominent source separation evaluation campaign, SiSEC 2018
(Stöter et al., 2018). However, when performing our evaluations we noticed a problem with
the use of SDR. In certain cases, the ranking of evaluations determined by SDR did not
match our subjective ranking. Specifically, some frames in which the reference source was
near-silent and the estimated source was very quiet received SDR of -20 to -10 dB, even
though perceptually the error did not seem significant. And yet, other frames in which the
estimated source contained a wrong note or omitted a certain note were evaluated with a
higher SDR of -5 to 0 dB.

The SDR is designed such that the energy ratio between the reference source and the
residual (separation error) determines the score (Vincent et al., 2006). With s being the
reference source frame and ŝ the estimated source frame, the SDR is defined by:

6 Score-Informed Wave-U-Net 102

Score: multi-source Score: tenor Score: SATB No score: tenor No score: SATB
5

0

5

10

15

20

S
D

R
 (d

B
)

Figure 6.10 Comparison between tenor separation performance on the
higher-variability dataset in five scenarios: score-informed multi-source train-
ing (the best model from Experiment 10), score-informed single-voice training
(the best model from Experiment 9), score-informed SATB training (the best
model from Experiment 8), non-score-informed single-voice training (Experi-
ment 4), and non-score-informed SATB (like Experiment 2 but re-run on the
higher-variability dataset).

6 Score-Informed Wave-U-Net 103

SDR = 10 log10

(
∥s∥2

∥s− ŝ∥2

)
This works well in the general case, but in cases where the reference source is completely

silent the SDR is undefined (log(0)). Furthermore, in cases where the reference source is
nearly silent (due to dithering or a reverb tail of a note from a previous frame, for example),
the SDR could be misleadingly low even if the estimated signal is relatively quiet (but not
completely silent).

To investigate this further, we checked whether there is a correlation between frame
energy and SDR in our experiment evaluations. As illustrated in Figure 6.11, we found that
frames with lower energy tended to get a lower SDR evaluation. Furthermore, extremely
quiet frames were the only ones with extremely low SDR values.

0 1 2 3 4 5
energy

60

40

20

0

20

S
D

R
 (d

B
)

Figure 6.11 Frame SDR plotted against frame energy, showing all evaluation
frames from Experiment 4.

Stoller et al. (2018b) have also recently commented on this limitation of the SDR, and
have circumvented it by using the median rather than the mean so that the effect of outliers is

6 Score-Informed Wave-U-Net 104

reduced. We followed the same practice in our evaluations, as did the SiSEC 2018 evaluation
campaign.

Using the median does not fix the underlying problem, however: SDR does not correlate
with subjective rankings for near-silent frames. In order to address this issue, we propose
adding a small positive regularization parameter ϵ to the standard definition of the SDR:

SDRreg = 10 log10

(
∥s∥2 + ϵ

∥s− ŝ∥2

)
Regularization is a common technique for controlling the behavior of objective functions

(Tikhonov et al., 1995). The effect of ϵ on SDRreg increases as the energy in s decreases.
The value of ϵ should be chosen on a case-by-case basis according to the nature of the
dataset being evaluated, so that it boosts the rating of frames that are near-silent but does
not significantly alter the ratings of other frames. On our dataset, we found that using
ϵ = 0.0001 had the desired effect. For reference, the mean frame energy in our dataset is
1.40 (for 1-second frames and a sample rate of 22,050 Hz). Figure 6.12 shows that SDRreg

remained almost unchanged compared to SDR for most frames, but was boosted for some
extremely quiet frames.

0 1 2 3 4 5
energy

0

2

4

6

8

S
D

R
re

g
- S

D
R

 (
dB

)

Figure 6.12 The difference between regularized SDR (ϵ = 0.0001) and stan-
dard SDR, plotted against frame energy. Regularization has a significant effect
only on near-silent frames.

Regularization is a simple yet effective method to improve the correlation between SDR

6 Score-Informed Wave-U-Net 105

and perceptual rankings of quiet segments in the reference sources. When using regular-
ization one should be careful to note the chosen value of ϵ. In order to remain consistent
with other evaluations and enable meaningful comparisons with other studies, we did not
use regularization when evaluating the results of our experiments.

6.3.9 Failed Experiments and Lessons Learned

We have run several additional experiments that failed for various reasons. One important
lesson we have learned in the process is that when training a neural network, the quality
of the training dataset is crucial to the success of the trained model. In early stages of our
experimentation, we generated a dataset of all 371 chorales. Unknown to us, a small number
of chorales in this dataset were badly labeled because we had forgotten to filter out chorales
with instrumental parts. For example, in one chorale in this early version of the dataset, the
ground truth for the soprano part was actually the trumpet part, and in the same chorale
the ground truth for the alto part was the soprano part. The existence of bad examples in
the training data significantly degraded the trained model’s performance, even though the
number of bad examples was very small compared to the overall number of examples.

After a careful inspection of our dataset we discovered some more errors. For example,
in chorales that contained grace notes (short notes that are notated differently than normal
notes) sometimes the voices in a chorale would get out of sync. This was caused by a bug
in music21, the library that we used to convert the chorales from MusicXML files to MIDI
files for synthesis. Fixing that bug led to an improvement in model performance.

We made several experiments varying the configuration of the Wave-U-Net model. Specif-
ically, we tried to train the model with and without temporal context in the input. As
reported in the original Wave-U-Net paper, we found that training without temporal con-
text creates click artifacts at segment boundaries. As such, we discarded these experiments.
However, training with temporal context just to minimize these artifacts may seem like an
overkill. It introduces a large increase in the number of model parameters: an input segment
of over 5 seconds is used to predict an output segment of less than 1 second. This increase
in the number of parameters leads to a large increase in training time and prediction time,
and it is not clear whether these are strictly necessary. More experimentation is needed in
order to determine the optimal amount of temporal context for Wave-U-Net.

106

Chapter 7

Conclusions

The experiments presented in this thesis are, to our knowledge, the first to investigate source
separation of choral music. In Section 3, we developed a dataset of synthesized Bach
chorales on which we conduct our experiments. We proceeded to establish a baseline for
separation performance using a score-informed NMF method in Section 4. Our exper-
iments showed that score-informed NMF is fairly effective on our dataset, but we found
several limitations that suggested that it would be less effective on real-world recordings.

Following the recent success in using deep learning methods for source separation, in Sec-
tion 5 we investigated a technique called Wave-U-Net. Initial tests on separation of soprano
and bass mixtures showed excellent results, but separating four-voice mixtures proved more
difficult. We introduced a simple change to Wave-U-Net: instead of training one neural
network to separate all sources at once, we trained a separate network for each source.
This led to a significant improvement and to results that are comparable with the state of
the art in separation of vocals and accompaniment.

In order to test separation of recordings that more closely resemble real-world choral
music, we created a higher-variability version of the dataset. We found that Wave-U-Net’s
performance significantly degraded on this dataset. In an attempt to improve performance,
in Section 6 we introduced score-informed Wave-U-Net. We investigated the effects of
introducing the musical score into the separation process by experimenting with various score
conditioning methods on all four choir voices in our two datasets. In total, we ran more than
a hundred neural network training sessions, each session lasting 24 hours. Our experiments
showed that using the score significantly improves separation quality.

7 Conclusions 107

Compared to the score-informed NMF baseline, score-informed Wave-U-Net attained
significantly better separation results. NMF, however, has the advantage of simplicity: it is
easier to implement, faster to produce estimates, and does not necessitate a lengthy training
stage.

In Section 6.2.3, we introduced multi-source training, in which we trained Wave-U-
Net to separate any of the four choir voices using only the score as a guide. This idea
enables a mode of operation in which the user extracts individual notes from a recording
by simply indicating the desired pitches and times. We found that multi-source training
performs comparably to single-source training, even though it can extract any of the four
voices using a single model.

Unfortunately, we were not able to test Wave-U-Net on real choir recordings due to the
absence of suitable training data. We do believe, however, that score-informed Wave-U-
Net has the potential to work well on such recordings, due to its success in singing voice
separation and following our experiments on synthesized data. A major challenge remains,
then, to compile a multi-track dataset of choral music that is of sufficient size and quality for
neural network training. Until such a dataset is created, another possible avenue of research
is to employ better choir synthesis methods, particularly ones that can synthesize sung lyrics.

It remains to be seen whether score-informed Wave-U-Net would work well with scores
that are not perfectly aligned to the recording. It would be interesting to try and incor-
porate score alignment directly into the separation process, so that Wave-U-Net could be
conditioned using only a symbolic, non-aligned score.

Objective evaluation of source separation methods remains an open challenge. As we
have reported in Section 6.3.8, we found a widely used evaluation metric to be inadequate
in certain cases. Other researchers have recently reached similar conclusions. We proposed
regularization as a possible remedy, but a widely applicable metric that is better correlated
with subjective ratings is yet to be found.

In conclusion, we have found that Wave-U-Net’s multi-scale convolutional structure, built
on the strong foundations of deep learning, allows it to effectively handle the complexities
of choral music separation. We developed a score-informed variant of Wave-U-Net that
significantly improved separation performance on a synthesized dataset of Bach chorales.
We believe that score-informed Wave-U-Net could be applicable to other musical source
separation tasks, such as lead and accompaniment separation, in cases where the musical
score is available.

108

Appendix A

Datasets

The datasets described in Section 3 are built from Bach chorale harmonizations collected and
published in the Riemenschneider edition (Bach, 1941). The edition contains a total of 371
harmonizations, out of which we exclude 20 because they contain instrumental parts or more
than four vocal parts. The following chorales are excluded: 11, 43, 46, 51, 116, 150, 270,
298, 313, 323, 327, 329, 330, 331, 344, 347, 348, 353, 362, 368. The 351 remaining chorales
are sorted by their number in the Riemenschneider edition and split into three partitions, as
listed in Table A.1.

A Datasets 109

Table A.1 List of dataset partitions

number of chorales total duration avg. chorale duration
normal dataset

training 270 02:45:28 00:00:36
validation 50 00:28:58 00:00:34
test 31 00:18:09 00:00:35
total 351 03:32:36 00:00:36
higher-variability dataset

training 270 02:56:48 00:00:39
validation 50 00:32:14 00:00:38
test 31 00:19:33 00:00:37
total 351 03:48:36 00:00:39

110

Appendix B

Supplemental Material

We publish the following audio and code to accompany this thesis. All software is released
under an open-source license on GitHub.

• Audio examples for all of our experiments:
https://www.matangover.com/choir-separation

• Code used to create the synthesized chorales dataset (described in Section 3):
https://github.com/matangover/synthesize-chorales

• Score-informed NMF code (described in Section 4):
https://github.com/matangover/score-informed-nmf

• Score-informed Wave-U-Net code (described in Section 6):
https://github.com/matangover/score-informed-Wave-U-Net

• Code used to analyze experiment results and generate figures:
https://github.com/matangover/thesis-results-analysis

https://www.matangover.com/choir-separation
https://github.com/matangover/synthesize-chorales
https://github.com/matangover/score-informed-nmf
https://github.com/matangover/score-informed-Wave-U-Net
https://github.com/matangover/thesis-results-analysis

111

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., … Zheng, X. (2016). Ten-
sorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX
conference on Operating Systems Design and Implementation (pp. 265–283). Savannah,
GA: USENIX Association.

Alldahl, P.-G. (2008). Choral intonation. Stockholm, Sweden: Gehrmans Musikförlag.
Arzt, A., & Lattner, S. (2018). Audio-to-score alignment using transposition-invariant fea-

tures. In Proceedings of the International Society for Music Information Retrieval Con-
ference (pp. 592–599). Paris, France.

Bach, J. S. (1941). 371 harmonized chorales and 69 chorale melodies with figured bass (A.
Riemenschneider, Ed.). New York, NY: G. Schirmer, Inc.

Barker, J., Marxer, R., Vincent, E., & Watanabe, S. (2015). The third “CHiME” speech sep-
aration and recognition challenge: Dataset, task and baselines. In 2015 IEEE Workshop
on Automatic Speech Recognition and Understanding (ASRU) (pp. 504–511). https:
//doi.org/10.1109/ASRU.2015.7404837

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.
https://doi.org/10.1109/72.279181

Ben-Shalom, A., & Dubnov, S. (2004). Optimal filtering of an instrument sound in a mixed
recording given approximate pitch prior. In Proceedings of the International Computer
Music Conference (ICMC). San Francisco, CA: International Computer Music Associa-
tion.

Bent, I. D., Hughes, D. W., Provine, R. C., Rastall, R., Kilmer, A., Hiley, D., … Chew, G.
(2001). Notation. In Grove Music Online. Oxford, UK: Oxford University Press.

Blaauw, M., Bonada, J., & Daido, R. (2019). Data efficient voice cloning for neural singing
synthesis. In IEEE International Conference on Acoustics, Speech and Signal Processing

https://doi.org/10.1109/ASRU.2015.7404837
https://doi.org/10.1109/ASRU.2015.7404837
https://doi.org/10.1109/72.279181

References 112

(ICASSP) (pp. 6840–6844). Brighton, UK.
Bonada, J., & Serra, X. (2007). Synthesis of the singing voice by performance sampling and

spectral models. IEEE Signal Processing Magazine, 24(2), 67–79. https://doi.org/10.
1109/MSP.2007.323266

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Y.
Lechevallier & G. Saporta (Eds.), Proceedings of COMPSTAT’2010 (pp. 177–186). Hei-
delberg, Germany: Physica-Verlag HD.

Boutsidis, C., & Gallopoulos, E. (2008). SVD based initialization: A head start for nonneg-
ative matrix factorization. Pattern Recognition, 41(4), 1350–1362. https://doi.org/
10.1016/j.patcog.2007.09.010

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge, UK: Cambridge
University Press.

Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound.
Cambridge, MA: The MIT Press.

Brown, G. J., & Cooke, M. (1994). Computational auditory scene analysis. Computer Speech
& Language, 8(4), 297–336. https://doi.org/10.1006/csla.1994.1016

Butcher, K., & Studebaker, D. (1985). Choral part-books then and now. Choral Journal,
26(2), 19–21.

Cano, E., FitzGerald, D., Liutkus, A., Plumbley, M. D., & Stöter, F. (2019). Musical
source separation: An introduction. IEEE Signal Processing Magazine, 36(1), 31–40.
https://doi.org/10.1109/MSP.2018.2874719

Cano, P., Loscos, A., & Bonada, J. (1999). Score-performance matching using HMMs. In
Proceedings of the 1999 International Computer Music Conference (ICMC) (pp. 441–444).
Beijing, China: Michigan Publishing.

Cardoso, J. (1998). Blind signal separation: Statistical principles. Proceedings of the IEEE,
86(10), 2009–2025. https://doi.org/10.1109/5.720250

Casey, M. A., & Westner, A. (2000). Separation of mixed audio sources by independent
subspace analysis. In Proceedings of the 2000 International Computer Music Conference
(ICMC) (Vol. 2000). Berlin, Germany: Michigan Publishing.

Charlton, D., & Whitney, K. (2001). Score (i). In Grove Music Online. Oxford, UK: Oxford
University Press.

Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with
two ears. Journal of the Acoustical Society of America, 25, 975–979. https://doi.org/

https://doi.org/10.1109/MSP.2007.323266
https://doi.org/10.1109/MSP.2007.323266
https://doi.org/10.1016/j.patcog.2007.09.010
https://doi.org/10.1016/j.patcog.2007.09.010
https://doi.org/10.1006/csla.1994.1016
https://doi.org/10.1109/MSP.2018.2874719
https://doi.org/10.1109/5.720250
https://doi.org/10.1121/1.1907229

References 113

10.1121/1.1907229
Cichocki, A., & Phan, A.-H. (2009). Fast local algorithms for large scale nonnegative matrix

and tensor factorizations. IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences, 92(3), 708–721.

Cichocki, A., Zdunek, R., & Amari, S.-i. (2006). New algorithms for non-negative matrix
factorization in applications to blind source separation. In 2006 IEEE International
Conference on Acoustics Speech and Signal Processing Proceedings (Vol. 5, pp. 621–624).
Toulouse, France: IEEE.

Cohn, R., Hyer, B., Dahlhaus, C., Anderson, J., & Wilson, C. (2001). Harmony. In Grove
Music Online. Oxford, UK: Oxford University Press.

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing,
36(3), 287–314. https://doi.org/10.1016/0165-1684(94)90029-9

Cuesta, H., Gómez, E., Martorell, A., & Loáiciga, F. (2018). Analysis of intonation in unison
choir singing. In Proceedings of the International Conference on Music Perception and
Cognition (ICMPC). Graz, Austria.

Cuthbert, M. S., & Ariza, C. (2010). Music21: A toolkit for computer-aided musicology
and symbolic music data. In J. S. Downie & R. C. Veltkamp (Eds.), Proceedings of the
International Society for Music Information Retrieval Conference (pp. 637–642). Utrecht,
Netherlands.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2, 303–314. https://doi.org/10.1007/BF02551274

Daffern, H. (2017). Blend in singing ensemble performance: Vibrato production in a vo-
cal quartet. Journal of Voice, 31(3), 385.e23–385.e29. https://doi.org/10.1016/j.
jvoice.2016.09.007

Dai, J., & Dixon, S. (2017). Analysis of interactive intonation in unaccompanied SATB
ensembles. In X. Hu, S. J. Cunningham, D. Turnbull, & Z. Duan (Eds.), Proceedings of
the International Society for Music Information Retrieval Conference. Suzhou, China.

Dannenberg, R. B., & Raphael, C. (2006). Music score alignment and computer accompani-
ment. Communications of the ACM, 49(8), 38–43. https://doi.org/10.1145/1145287.
1145311

Devaney, J., Mandel, M. I., & Fujinaga, I. (2012). A study of intonation in three-part singing
using the Automatic Music Performance Analysis and Comparison Toolkit (AMPACT). In
F. Gouyon, P. Herrera, L. G. Martins, & M. Müller (Eds.), Proceedings of the International

https://doi.org/10.1121/1.1907229
https://doi.org/10.1121/1.1907229
https://doi.org/10.1016/0165-1684(94)90029-9
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/j.jvoice.2016.09.007
https://doi.org/10.1016/j.jvoice.2016.09.007
https://doi.org/10.1145/1145287.1145311
https://doi.org/10.1145/1145287.1145311

References 114

Society for Music Information Retrieval Conference (pp. 511–516). Porto, Portugal:
FEUP Edições.

Duan, Z., & Pardo, B. (2011). Soundprism: An online system for score-informed source
separation of music audio. IEEE Journal of Selected Topics in Signal Processing, 5(6),
1205–1215. https://doi.org/10.1109/JSTSP.2011.2159701

Dumoulin, V., Perez, E., Schucher, N., Strub, F., Vries, H. de, Courville, A., & Bengio, Y.
(2018). Feature-wise transformations. Distill, 3(7), e11. https://doi.org/10.23915/
distill.00011

Dumoulin, V., & Visin, F. (2016). A guide to convolution arithmetic for deep learning.
Retrieved from http://arxiv.org/abs/1603.07285

Durrieu, J., Ozerov, A., Févotte, C., Richard, G., & David, B. (2009). Main instrument
separation from stereophonic audio signals using a source/filter model. In 2009 17th
European Signal Processing Conference (pp. 15–19). Glasgow, UK: IEEE.

Emiya, V., Vincent, E., Harlander, N., & Hohmann, V. (2011). Subjective and objective
quality assessment of audio source separation. IEEE Transactions on Audio, Speech,
and Language Processing, 19(7), 2046–2057. https://doi.org/10.1109/TASL.2011.
2109381

Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C., & Roberts, A. (2019). GAN-
Synth: Adversarial neural audio synthesis. In Proceedings of the International Conference
on Learning Representations (ICLR). New Orleans, LA.

Erickson, R. (2001). Musica enchiriadis, Scolica enchiriadis. In Grove Music Online. Oxford,
UK: Oxford University Press.

Ewert, S., & Müller, M. (2012). Using score-informed constraints for NMF-based source
separation. In 2012 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP) (pp. 129–132). https://doi.org/10.1109/ICASSP.2012.6287834

Ewert, S., Pardo, B., Mueller, M., & Plumbley, M. D. (2014). Score-informed source separa-
tion for musical audio recordings: An overview. IEEE Signal Processing Magazine, 31(3),
116–124. https://doi.org/10.1109/MSP.2013.2296076

Ewert, S., & Sandler, M. B. (2017). Structured dropout for weak label and multi-instance
learning and its application to score-informed source separation. In 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2277–2281).
New Orleans, LA: IEEE.

Fan, Z., Lai, Y., & Jang, J. R. (2018). SVSGAN: Singing voice separation via generative

https://doi.org/10.1109/JSTSP.2011.2159701
https://doi.org/10.23915/distill.00011
https://doi.org/10.23915/distill.00011
http://arxiv.org/abs/1603.07285
https://doi.org/10.1109/TASL.2011.2109381
https://doi.org/10.1109/TASL.2011.2109381
https://doi.org/10.1109/ICASSP.2012.6287834
https://doi.org/10.1109/MSP.2013.2296076

References 115

adversarial network. In 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (pp. 726–730). https://doi.org/10.1109/ICASSP.2018.
8462091

Févotte, C., Bertin, N., & Durrieu, J.-L. (2009). Nonnegative matrix factorization with the
Itakura-Saito divergence: With application to music analysis. Neural Computation, 21(3),
793–830.

Févotte, C., Gribonval, R., & Vincent, E. (2005). BSS_EVAL Toolbox User Guide – Revision
2.0 (Technical Report No. 1706). Retrieved from Institut de Recherche en Informatique
et Systèmes Aléatoires website: https://hal.inria.fr/inria-00564760

Févotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix factorization with the
β-divergence. Neural Computation, 23(9), 2421–2456.

Finesso, L., & Spreij, P. (2006). Nonnegative matrix factorization and I-divergence al-
ternating minimization. Linear Algebra and Its Applications, 416(2), 270–287. https:
//doi.org/10.1016/j.laa.2005.11.012

Floros, C., & Wicker, V. (1995). Gustav Mahler: The symphonies. Portland, OR: Scolar
Press.

Furui, S. (1986). Speaker-independent isolated word recognition based on emphasized spec-
tral dynamics. In IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP) (pp. 1991–1994). https://doi.org/10.1109/ICASSP.1986.1168654

Ganseman, J., Mysore, G. J., Abel, J. S., & Scheunders, P. (2010). Source separation by
score synthesis. In Proceedings of the International Computer Music Conference (ICMC)
(pp. 462–465). New York, NY.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. In Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
(pp. 315–323). Fort Lauderdale, FL.

Glöckner, A. (2010). On the performing forces of Johann Sebastian Bach’s Leipzig church
music. Early Music, 38(2), 215–222.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT
Press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio,
Y. (2014). Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N.
D. Lawrence, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing
Systems 27 (pp. 2672–2680). Curran Associates, Inc.

https://doi.org/10.1109/ICASSP.2018.8462091
https://doi.org/10.1109/ICASSP.2018.8462091
https://hal.inria.fr/inria-00564760
https://doi.org/10.1016/j.laa.2005.11.012
https://doi.org/10.1016/j.laa.2005.11.012
https://doi.org/10.1109/ICASSP.1986.1168654

References 116

Gómez, E., Blaauw, M., Bonada, J., Chandna, P., & Cuesta, H. (2018). Deep learning
for singing processing: Achievements, challenges and impact on singers and listeners.
Keynote speech presented at the 2018 Joint Workshop on Machine Learning for Music,
Stockholm, Sweden.

Griffin, D., & Lim, J. (1984). Signal estimation from modified short-time Fourier transform.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(2), 236–243. https:
//doi.org/10.1109/TASSP.1984.1164317

Heittola, T., Klapuri, A., & Virtanen, T. (2009). Musical instrument recognition in poly-
phonic audio using source-filter model for sound separation. In Proceedings of the In-
ternational Society for Music Information Retrieval Conference (pp. 327–332). Kobe,
Japan.

Hennequin, R., Badeau, R., & David, B. (2010). Time-dependent parametric and harmonic
templates in non-negative matrix factorization. In Proceedings of the 13th International
Conference on Digital Audio Effects (DAFx). Graz, Austria.

Hennequin, R., David, B., & Badeau, R. (2011). Score informed audio source separation
using a parametric model of non-negative spectrogram. In Proc. Of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 45–48). Prague,
Czech Republic: IEEE.

Henningsson, D., & Team, F. D. (2011). FluidSynth real-time and thread safety challenges.
In Proceedings of the 9th International Linux Audio Conference (pp. 123–128). Maynooth,
Ireland.

Hershey, J. R., Chen, Z., Roux, J. L., & Watanabe, S. (2016). Deep clustering: Discrim-
inative embeddings for segmentation and separation. In 2016 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 31–35). https:
//doi.org/10.1109/ICASSP.2016.7471631

Hill, K. (2017). Choral singing, choral attendance, and the situation of choirs in Canada
[Report]. Retrieved from https://hillstrategies.com/resource/choral-singing-
choral-attendance-and-the-situation-of-choirs-in-canada/

Holoman, D. K. (2014). Writing about music: A style sheet. Berkley, CA: University of
California Press.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5), 359–366. https://doi.org/10.1016/
0893-6080(89)90020-8

https://doi.org/10.1109/TASSP.1984.1164317
https://doi.org/10.1109/TASSP.1984.1164317
https://doi.org/10.1109/ICASSP.2016.7471631
https://doi.org/10.1109/ICASSP.2016.7471631
https://hillstrategies.com/resource/choral-singing-choral-attendance-and-the-situation-of-choirs-in-canada/
https://hillstrategies.com/resource/choral-singing-choral-attendance-and-the-situation-of-choirs-in-canada/
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8

References 117

Howard, D. M. (2007). Intonation drift in a cappella soprano, alto, tenor, bass quartet
singing with key modulation. Journal of Voice, 21(3), 300–315. https://doi.org/10.
1016/j.jvoice.2005.12.005

Hu, N., Dannenberg, R. B., & Tzanetakis, G. (2003). Polyphonic audio matching and align-
ment for music retrieval. In 2003 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (pp. 185–188). https://doi.org/10.1109/ASPAA.2003.1285862

Huang, P.-S., Kim, M., Hasegawa-Johnson, M., & Smaragdis, P. (2015). Joint optimization
of masks and deep recurrent neural networks for monaural source separation. IEEE/ACM
Transactions on Audio, Speech and Language Processing, 23(12), 2136–2147. https:
//doi.org/10.1109/TASLP.2015.2468583

Hyer, B. (2001). Tonality. In Grove Music Online. Oxford, UK: Oxford University Press.
Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and appli-

cations. Neural Networks, 13(4), 411–430. https://doi.org/10.1016/S0893-6080(00)
00026-5

Ihalainen, K. (2008). Methods of choir recording for an audio engineer (Bachelor’s thesis,
Tampere University of Applied Sciences). Retrieved from http://urn.fi/URN:NBN:fi:
amk-201003065302

Jansson, A., Humphrey, E., Montecchio, N., Bittner, R., Kumar, A., & Weyde, T. (2017).
Singing voice separation with deep U-Net convolutional networks. In Proceedings of the
International Society for Music Information Retrieval Conference. Suzhou, China.

Jers, H., & Ternström, S. (2005). Intonation analysis of a multi-channel choir recording
[Quarterly Progress and Status Report]. Stockholm, Sweden: KTH Computer Science
and Communication, Dept. for Speech, Music and Hearing.

Jordania, J. (2011). Why do people sing? Music in human evolution (A. Jordania, Ed.).
Tbilisi, Georgia: Logos.

Jordania, J. (2015). Choral singing in human culture and evolution. Lambert Academic
Publishing.

Kelly, T. F. (2001). First nights: Five musical premieres. New Haven, CT: Yale University
Press.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR). San Diego, USA.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Wein-

https://doi.org/10.1016/j.jvoice.2005.12.005
https://doi.org/10.1016/j.jvoice.2005.12.005
https://doi.org/10.1109/ASPAA.2003.1285862
https://doi.org/10.1109/TASLP.2015.2468583
https://doi.org/10.1109/TASLP.2015.2468583
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.1016/S0893-6080(00)00026-5
http://urn.fi/URN:NBN:fi:amk-201003065302
http://urn.fi/URN:NBN:fi:amk-201003065302

References 118

berger (Eds.), Advances in Neural Information Processing Systems 25 (pp. 1097–1105).
Curran Associates, Inc.

Lecun, Y. (1989). Generalization and network design strategies. In R. Pfeifer, Z. Schreter,
F. Fogelman, & L. Steels (Eds.), Connectionism in perspective. Zürich, Switzerland:
Elsevier.

LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K.-R. (1998). Efficient BackProp. In
G. Montavon, G. B. Orr, & K.-R. Müller (Eds.), Neural Networks: Tricks of the Trade
(Second Edition, pp. 9–48). https://doi.org/10.1007/978-3-642-35289-8_3

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
https://doi.org/10.1038/nature14539

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel,
L. D. (1990). Handwritten digit recognition with a back-propagation network. In D.
Touretzky (Ed.), Advances in Neural Information Processing Systems (NIPS 1989) (Vol.
2). Denver, CO: Morgan Kaufmann.

Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755), 788–791. https://doi.org/10.1038/44565

Lee, D. D., & Seung, H. S. (2000). Algorithms for non-negative matrix factorization. In Pro-
ceedings of the 13th International Conference on Neural Information Processing Systems
(pp. 535–541). Cambridge, MA: MIT Press.

Lee, Y., Wang, C., Wang, S., Wang, J., & Wu, C. (2017). Fully complex deep neural
network for phase-incorporating monaural source separation. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 281–285). https:
//doi.org/10.1109/ICASSP.2017.7952162

Lefèvre, A., Bach, F., & Févotte, C. (2011). Itakura-Saito nonnegative matrix factorization
with group sparsity. In 2011 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (pp. 21–24). https://doi.org/10.1109/ICASSP.2011.
5946318

Lewicki, M. S. (2002). Efficient coding of natural sounds. Nature Neuroscience, 5(4), 356.
https://doi.org/10.1038/nn831

Li, Y., Woodruff, J., & Wang, D. (2009). Monaural musical sound separation based on pitch
and common amplitude modulation. IEEE Transactions on Audio, Speech, and Language
Processing, 17(7), 1361–1371. https://doi.org/10.1109/TASL.2009.2020886

Liutkus, A., Fitzgerald, D., & Rafii, Z. (2015). Scalable audio separation with light Kernel

https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/44565
https://doi.org/10.1109/ICASSP.2017.7952162
https://doi.org/10.1109/ICASSP.2017.7952162
https://doi.org/10.1109/ICASSP.2011.5946318
https://doi.org/10.1109/ICASSP.2011.5946318
https://doi.org/10.1038/nn831
https://doi.org/10.1109/TASL.2009.2020886

References 119

Additive Modelling. In 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (pp. 76–80). https://doi.org/10.1109/ICASSP.2015.
7177935

Liutkus, A., Stöter, F.-R., Rafii, Z., Kitamura, D., Rivet, B., Ito, N., … Fontecave, J. (2017).
The 2016 Signal Separation Evaluation Campaign. In P. Tichavský, M. Babaie-Zadeh, O.
J. J. Michel, & N. Thirion-Moreau (Eds.), Latent Variable Analysis and Signal Separation
(LVA/ICA 2017) (pp. 323–332). Cham, Switzerland: Springer International Publishing.

Luo, Y., Chen, Z., Hershey, J. R., Roux, J. L., & Mesgarani, N. (2016). Deep clustering
and conventional networks for music separation: Stronger together. In 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 61–65).
https://doi.org/10.1109/ICASSP.2017.7952118

Marshall, R. L., & Leaver, R. A. (2001a). Chorale. In Grove Music Online. Oxford, UK:
Oxford University Press.

Marshall, R. L., & Leaver, R. A. (2001b). Chorale settings. In Grove Music Online. Oxford,
UK: Oxford University Press.

Mauch, M., Frieler, K., & Dixon, S. (2014). Intonation in unaccompanied singing: Accuracy,
drift, and a model of reference pitch memory. The Journal of the Acoustical Society of
America, 136(1), 401–411. https://doi.org/10.1121/1.4881915

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.
1007/BF02478259

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., & Nieto, O.
(2015). librosa: Audio and music signal analysis in Python. In Proceedings of the 14th
Python in Science Conference (pp. 18–24). Austin, Texas.

Meron, Y., & Hirose, K. (1998). Separation of singing and piano sounds. In 5th International
Conference on Spoken Language Processing. Sydney, Australia.

Miron, M., Carabias-Orti, J. J., Bosch, J. J., Gómez, E., & Janer, J. (2016). Score-informed
source separation for multichannel orchestral recordings. Journal of Electrical and Com-
puter Engineering, 2016. https://doi.org/10.1155/2016/8363507

Miron, M., Janer, J., & Gómez, E. (2017a). Generating data to train convolutional neural
networks for classical music source separation. In Proceedings of the International Society
for Music Information Retrieval Conference (pp. 227–233). Suzhou, China.

Miron, M., Janer, J., & Gómez, E. (2017b). Monaural score-informed source separation for

https://doi.org/10.1109/ICASSP.2015.7177935
https://doi.org/10.1109/ICASSP.2015.7177935
https://doi.org/10.1109/ICASSP.2017.7952118
https://doi.org/10.1121/1.4881915
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1155/2016/8363507

References 120

classical music using convolutional neural networks. In Proceedings of the International
Society for Music Information Retrieval Conference (pp. 55–62). Suzhou, China.

Mitianoudis, N., & Davies, M. E. (2003). Audio source separation of convolutive mixtures.
IEEE Transactions on Speech and Audio Processing, 11(5), 489–497. https://doi.org/
10.1109/TSA.2003.815820

Muth, J., Uhlich, S., Perraudin, N., Kemp, T., Cardinaux, F., & Mitsufuji, Y. (2018, July
7). Improving DNN-based music source separation using phase features. Presented at the
Joint Workshop on Machine Learning for Music at ICML, IJCAI/ECAI and AAMAS.
Retrieved from http://arxiv.org/abs/1807.02710

Nakamura, T., & Kameoka, H. (2016). Shifted and convolutive source-filter non-negative
matrix factorization for monaural audio source separation. In 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 489–493). https:
//doi.org/10.1109/ICASSP.2016.7471723

Nugraha, A. A., Liutkus, A., & Vincent, E. (2016). Multichannel music separation with
deep neural networks. In 2016 24th European Signal Processing Conference (EUSIPCO)
(pp. 1748–1752). https://doi.org/10.1109/EUSIPCO.2016.7760548

Odena, A., Dumoulin, V., & Olah, C. (2016). Deconvolution and checkerboard artifacts.
Distill, 1(10), e3. https://doi.org/10.23915/distill.00003

Oord, A. van den, Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., … Kavukcuoglu,
K. (2016). WaveNet: A generative model for raw audio. In 9th ISCA Speech Synthesis
Workshop. Sunnyvale, CA.

Orfanidis, S. J. (1995). Introduction to signal processing. Upper Saddle River, NJ: Prentice-
Hall, Inc.

Parrott, A. (2010). Bach’s chorus: The Leipzig line. A response to Andreas Glöckner. Early
Music, 38(2), 223–235.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent
neural networks. In Proceedings of the 30th International Conference on International
Conference on Machine Learning (Vol. 28, pp. 1310–1318). Atlanta, GA: JMLR.org.

Pascual, S., Bonafonte, A., & Serrà, J. (2017). SEGAN: Speech enhancement generative
adversarial network. In Proceedings of Interspeech 2017 (pp. 3642–3646). https://doi.
org/10.21437/Interspeech.2017-1428

Patterson, R., Nimmo-Smith, I., Holdsworth, J., & Rice, P. (1987). An efficient auditory
filterbank based on the gammatone function. Presented at the Meeting of the Institute of

https://doi.org/10.1109/TSA.2003.815820
https://doi.org/10.1109/TSA.2003.815820
http://arxiv.org/abs/1807.02710
https://doi.org/10.1109/ICASSP.2016.7471723
https://doi.org/10.1109/ICASSP.2016.7471723
https://doi.org/10.1109/EUSIPCO.2016.7760548
https://doi.org/10.23915/distill.00003
https://doi.org/10.21437/Interspeech.2017-1428
https://doi.org/10.21437/Interspeech.2017-1428

References 121

Acoustics on Auditory Modelling, RSRE, Malvern, UK.
Perez, E., Strub, F., Vries, H. de, Dumoulin, V., & Courville, A. (2018). FiLM: Visual

reasoning with a general conditioning layer. In 32nd Conference on Artificial Intelligence
(AAAI-18). New Orleans, LA.

Pons, J., Lidy, T., & Serra, X. (2016). Experimenting with musically motivated convolutional
neural networks. In 14th International Workshop on Content-Based Multimedia Indexing
(CBMI) (pp. 1–6). https://doi.org/10.1109/CBMI.2016.7500246

Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S.-y., & Sainath, T. (2019). Deep
learning for audio signal processing. IEEE Journal of Selected Topics in Signal Processing,
206–219. https://doi.org/10.1109/JSTSP.2019.2908700

Rafii, Z., Liutkus, A., Stöter, F.-R., Mimilakis, S. I., & Bittner, R. (2017). MUSDB18 – a
corpus for music separation [Data set]. https://doi.org/10.5281/zenodo.1117372

Rafii, Z., Liutkus, A., Stöter, F.-R., Mimilakis, S. I., FitzGerald, D., & Pardo, B. (2018).
An overview of lead and accompaniment separation in music. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 26(8), 1307–1335. https://doi.org/10.
1109/TASLP.2018.2825440

Randel, D. M. (Ed.). (2003a). Chorus. In The Harvard Dictionary of Music (4th edition).
Cambridge, MA: Harvard University Press.

Randel, D. M. (Ed.). (2003b). Voice. In The Harvard Dictionary of Music (4th edition).
Cambridge, MA: Harvard University Press.

Ranzato, M., Huang, F. J., Boureau, Y. L., & LeCun, Y. (2007). Unsupervised learning
of invariant feature hierarchies with applications to object recognition. In 2007 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’07).
https://doi.org/10.1109/CVPR.2007.383157

Raphael, C. (2008). A classifier-based approach to score-guided source separation of musical
audio. Computer Music Journal, 32(1), 51–59. https://doi.org/10.1162/comj.2008.
32.1.51

Ravanelli, M., & Bengio, Y. (2018). Speaker recognition from raw waveform with SincNet.
In 2018 IEEE Spoken Language Technology Workshop (SLT) (pp. 1021–1028). https:
//doi.org/10.1109/SLT.2018.8639585

Rifkin, J. (1982). Bach’s chorus: A preliminary report. The Musical Times, 123(1677),
747–754. https://doi.org/10.2307/961592

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of

https://doi.org/10.1109/CBMI.2016.7500246
https://doi.org/10.1109/JSTSP.2019.2908700
https://doi.org/10.5281/zenodo.1117372
https://doi.org/10.1109/TASLP.2018.2825440
https://doi.org/10.1109/TASLP.2018.2825440
https://doi.org/10.1109/CVPR.2007.383157
https://doi.org/10.1162/comj.2008.32.1.51
https://doi.org/10.1162/comj.2008.32.1.51
https://doi.org/10.1109/SLT.2018.8639585
https://doi.org/10.1109/SLT.2018.8639585
https://doi.org/10.2307/961592

References 122

Mathematical Statistics, 22(3), 400–407.
Rodet, X. (2002). Synthesis and processing of the singing voice. In Proceedings of the 1st

IEEE Benelux Workshop on Model-based Processing and Coding of Audio (MPCA-2002)
(pp. 15–31). Leuven, Belgium.

Rodriguez-Serrano, F. J., Duan, Z., Vera-Candeas, P., Pardo, B., & Carabias-Orti, J. J.
(2015). Online score-informed source separation with adaptive instrument models. Jour-
nal of New Music Research, 44(2), 83–96. https://doi.org/10.1080/09298215.2014.
989174

Rodriguez-Serrano, F. J., Ewert, S., Vera-Candeas, P., & Sandler, M. (2016). A score-
informed shift-invariant extension of complex matrix factorization for improving the sep-
aration of overlapped partials in music recordings. In 2016 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 61–65). https:
//doi.org/10.1109/ICASSP.2016.7471637

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomed-
ical image segmentation. In International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI 2015) (pp. 234–241). Cham, Switzerland:
Springer.

Roweis, S. T. (2000). One microphone source separation. In Advances in Neural Information
Processing Systems 13 (pp. 793–799). Cambridge, MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533. https://doi.org/10.1038/323533a0

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015).
ImageNet large scale visual recognition challenge. International Journal of Computer
Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y

Sachs, K.-J., & Dahlhaus, C. (2001). Counterpoint. In Grove Music Online. Oxford, UK:
Oxford University Press.

Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations in con-
volutional architectures for object recognition. In Proceedings of the 20th International
Conference on Artificial Neural Networks (pp. 92–101). Berlin, Heidelberg: Springer-
Verlag.

Schnell, N., Peeters, G., Lemouton, S., Manoury, P., & Rodet, X. (2000). Synthesizing a
choir in real-time using pitch synchronous overlap add (PSOLA). In Proceedings of the
International Computer Music Conference (ICMC). Berlin, Germany.

https://doi.org/10.1080/09298215.2014.989174
https://doi.org/10.1080/09298215.2014.989174
https://doi.org/10.1109/ICASSP.2016.7471637
https://doi.org/10.1109/ICASSP.2016.7471637
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11263-015-0816-y

References 123

Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., … Wu, Y. (2018).
Natural TTS synthesis by conditioning WaveNet on mel spectrogram predictions. In 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp.
4779–4783). https://doi.org/10.1109/ICASSP.2018.8461368

Simpson, A. J. R., Roma, G., & Plumbley, M. D. (2015). Deep karaoke: Extracting vo-
cals from musical mixtures using a convolutional deep neural network. In E. Vincent,
A. Yeredor, Z. Koldovský, & P. Tichavský (Eds.), 12th International Conference on La-
tent Variable Analysis and Signal Separation (pp. 429–436). Liberec, Czech Republic:
Springer.

Slizovskaia, O., Kim, L., Haro, G., & Gómez, E. (2019). End-to-end sound source separation
conditioned on instrument labels. In 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (pp. 306–310). https://doi.org/10.1109/
ICASSP.2019.8683800

Smaragdis, P., Fevotte, C., Mysore, G. J., Mohammadiha, N., & Hoffman, M. (2014).
Static and dynamic source separation using nonnegative factorizations: A unified view.
IEEE Signal Processing Magazine, 31(3), 66–75. https://doi.org/10.1109/MSP.2013.
2297715

Smith, B., & Sataloff, R. T. (2013). Choral pedagogy (3rd edition). Plural Publishing.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15(1), 1929–1958.

Stoller, D., Ewert, S., & Dixon, S. (2018a). Adversarial semi-supervised audio source
separation applied to singing voice extraction. In 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2391–2395). https:
//doi.org/10.1109/ICASSP.2018.8461722

Stoller, D., Ewert, S., & Dixon, S. (2018b). Wave-U-Net: A multi-scale neural network for
end-to-end audio source separation. In Proceedings of the International Society for Music
Information Retrieval Conference (pp. 334–340). Paris, France.

Stöter, F.-R., Liutkus, A., & Ito, N. (2018). The 2018 signal separation evaluation campaign.
In Y. Deville, S. Gannot, R. Mason, M. D. Plumbley, & D. Ward (Eds.), 14th International
Conference on Latent Variable Analysis and Signal Separation (LVA/ICA 2018) (pp. 293–
305). Guildford, UK: Springer.

Subakan, C., & Smaragdis, P. (2017). Generative adversarial source separation. In 2018

https://doi.org/10.1109/ICASSP.2018.8461368
https://doi.org/10.1109/ICASSP.2019.8683800
https://doi.org/10.1109/ICASSP.2019.8683800
https://doi.org/10.1109/MSP.2013.2297715
https://doi.org/10.1109/MSP.2013.2297715
https://doi.org/10.1109/ICASSP.2018.8461722
https://doi.org/10.1109/ICASSP.2018.8461722

References 124

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(pp. 26–30). Calgary, AB, Canada: IEEE.

Sundberg, J. (1987). Science of the singing voice. DeKalb, IL: Northern Illinois University
Press.

Sundberg, J. (2006). The KTH synthesis of singing. Advances in Cognitive Psychology, 2(2),
131–143.

Şimşekli, U., & Cemgil, A. T. (2012). Score guided musical source separation using General-
ized Coupled Tensor Factorization. In Proceedings of the 20th European Signal Processing
Conference (EUSIPCO) (pp. 2639–2643). Bucharest, Romania.

Takahashi, N., Agrawal, P., Goswami, N., & Mitsufuji, Y. (2018a). PhaseNet: Discretized
phase modeling with deep neural networks for audio source separation. In Proceedings of
Interspeech 2018. https://doi.org/10.21437/Interspeech.2018-1773

Takahashi, N., Goswami, N., & Mitsufuji, Y. (2018b). MMDenseLSTM: An efficient combi-
nation of convolutional and recurrent neural networks for audio source separation. In 2018
16th International Workshop on Acoustic Signal Enhancement (IWAENC) (pp. 106–110).
https://doi.org/10.1109/IWAENC.2018.8521383

Takahashi, N., & Mitsufuji, Y. (2017). Multi-scale Multi-band DenseNets for Audio Source
Separation. In 2017 IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA) (pp. 21–25). New Paltz, NY: IEEE.

Ternström, S. (2003). Choir acoustics: An overview of scientific research published to date.
International Journal of Research in Choral Singing, 1(1), 3–12.

Ternström, S., & Karna, D. R. (2002). Choir. In R. Parncutt & G. McPherson (Eds.), The
science & psychology of music performance: Creative strategies for teaching and learning.
Oxford, UK: Oxford University Press.

Tikhonov, A. N., Goncharsky, A., Stepanov, V. V., & Yagola, A. G. (1995). Numerical
methods for the solution of ill-posed problems. In Mathematics and Its Applications.
Springer Netherlands.

Uhlich, S., Giron, F., & Mitsufuji, Y. (2015). Deep neural network based instrument extrac-
tion from music. In 2015 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP) (pp. 2135–2139). https://doi.org/10.1109/ICASSP.2015.
7178348

Uhlich, S., Porcu, M., Giron, F., Enenkl, M., Kemp, T., Takahashi, N., & Mitsufuji, Y.
(2017). Improving music source separation based on deep neural networks through data

https://doi.org/10.21437/Interspeech.2018-1773
https://doi.org/10.1109/IWAENC.2018.8521383
https://doi.org/10.1109/ICASSP.2015.7178348
https://doi.org/10.1109/ICASSP.2015.7178348

References 125

augmentation and network blending. In 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP) (pp. 261–265). https://doi.org/10.
1109/ICASSP.2017.7952158

Van Trees, H. L. (2002). Optimum array processing. In Detection, Estimation, and Modula-
tion Theory: Vol. IV. New York, NY: Wiley-Interscience.

Vincent, E., Gribonval, R., & Fevotte, C. (2006). Performance measurement in blind audio
source separation. IEEE Transactions on Audio, Speech, and Language Processing, 14(4),
1462–1469. https://doi.org/10.1109/TSA.2005.858005

Vincent, E., Virtanen, T., & Gannot, S. (2018). Audio source separation and speech en-
hancement. John Wiley & Sons.

Wang, D., & Brown, G. J. (2006). Computational auditory scene analysis: Principles,
algorithms, and applications. Wiley-IEEE Press.

Wang, D., & Chen, J. (2018). Supervised speech separation based on deep learning: An
overview. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(10),
1702–1726. https://doi.org/10.1109/TASLP.2018.2842159

Ward, D., Mason, R. D., Kim, R. C., Stöter, F.-R., Liutkus, A., & Plumbley, M. D. (2018a).
SiSEC 2018: State of the art in musical audio source separation – subjective selection of
the best algorithm. In Proceedings of the 4th Workshop on Intelligent Music Production.
Huddersfield, UK: University of Huddersfield.

Ward, D., Wierstorf, H., Mason, R. D., Grais, E. M., & Plumbley, M. D. (2018b). BSS
Eval or PEASS? Predicting the perception of singing-voice separation. In 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 596–
600). https://doi.org/10.1109/ICASSP.2018.8462194

Zhao, H., Gallo, O., Frosio, I., & Kautz, J. (2017). Loss functions for image restoration with
neural networks. IEEE Transactions on Computational Imaging, 3(1), 47–57. https:
//doi.org/10.1109/TCI.2016.2644865

https://doi.org/10.1109/ICASSP.2017.7952158
https://doi.org/10.1109/ICASSP.2017.7952158
https://doi.org/10.1109/TSA.2005.858005
https://doi.org/10.1109/TASLP.2018.2842159
https://doi.org/10.1109/ICASSP.2018.8462194
https://doi.org/10.1109/TCI.2016.2644865
https://doi.org/10.1109/TCI.2016.2644865

	Introduction
	Motivation
	Challenges
	Overview of Thesis

	Background
	Audio Source Separation
	Definition
	Scenarios
	Methods
	Evaluation

	Deep Learning
	Artificial Neural Networks
	Training
	Gradient-Based Optimization
	Convolutional Neural Networks

	Deep Learning for Audio Processing
	Audio Feature Selection
	Source Separation using Deep Learning
	Wave-U-Net

	Choral Music
	History and Musical Styles
	Choir Structure
	Musical Scores
	Acoustical Characteristics

	Score-Informed Source Separation
	Score Alignment
	Separation Techniques

	Synthesized Chorales Dataset
	Choir Synthesis
	Bach Chorale Harmonizations
	Synthesis Procedure
	Higher-Variability Dataset
	Dataset Partitions

	Score-Informed NMF for Choral Music
	Experiments
	Experiment A: Original Parameter Values
	Experiment B: Smaller Activation Tolerances
	Experiment C: Smaller Frequency Tolerance
	Experiment D: Larger STFT Window
	Quantitative Comparison of Experiments
	Failed Experiments

	Conclusions

	Wave-U-Net for Choral Music
	Training Procedure
	Training Infrastructure
	Reproducing Results on Singing Voice
	Experiments on Synthesized Bach Chorales
	Experiment 1: Bass and Soprano Mixtures
	Experiment 2: Extract SATB
	Experiment 3: Extract Single Voice
	Experiment 4: Higher-Variability Dataset, Extract Single Voice

	Results
	Experiment 1: Bass and Soprano Mixtures
	Experiment 2: Extract SATB
	Comparison of Experiments 1-2
	Experiment 3: Extract Single Voice
	Experiment 4: Higher-Variability Dataset, Extract Single Voice
	Comparison between Experiments 1–4 and NMF

	Score-Informed Wave-U-Net
	Conditioning Wave-U-Net on Scores
	Choosing Information to Extract from the Score
	Feeding the Score into Wave-U-Net
	Score Representations

	Score-Informed Training on Synthesized Bach Chorales
	Experiment 5: MIDI Pitch, Extract SATB
	Experiment 6: Normalized Pitch, Extract Single Voice
	Experiment 7: Multi-Source Training
	Experiment 8: Compare Conditioning Methods, Extract SATB
	Experiment 9: Compare Conditioning Methods, Extract Single Voice
	Experiment 10: Compare Conditioning Methods, Multi-Source Training

	Results
	Experiment 5: MIDI Pitch, Extract SATB
	Experiment 6: Normalized Pitch, Extract Single Voice
	Experiment 7: Multi-Source Training
	Experiment 8: Compare Conditioning Methods, Extract SATB
	Experiment 9: Compare Conditioning Methods, Extract Single Voice
	Experiment 10: Compare Conditioning Methods, Multi-Source Training
	Comparison: Does Using the Score Improve Separation Performance?
	Limitations of SDR
	Failed Experiments and Lessons Learned

	Conclusions
	Datasets
	Supplemental Material
	References

