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PREFACE 

 

This thesis was prepared according to the McGill university rules for a thesis by 

manuscript as found at: 

http://www.mcgill.ca/gps/programs/thesis/guidelines/preparation/  and described 

in section I part C.  It consists of three manuscripts which are intended for 

publication in the peer-reviewed literature and have the common theme of 

methodological issues arising from describing adverse events related to warfarin 

in the General Practice Research Database (GPRD).     

 

Contributions of Authors 

 

I (Joseph Delaney) wrote the thesis and the first drafts for all of manuscripts.  I 

authored or co-authored all associated ethics protocols. I extracted the data from 

the GPRD and developed the databases on which this thesis is based.  I had 

primary responsibility for all statistical analyses and sole responsibility for the 

statistical analysis for the first two papers.   I had the original research ideas for 

the second and third papers.   

  

Dr. Suissa had the responsibility for day to day supervision.  He gave advice on 

the research questions on all three thesis papers and on the validity of the study 

designs.  He was an important source of advice on approaches to presenting 

results and greatly improved the quality of the abstracts.  He helped re-develop 

the approach to the second paper making it much more precise and focused.   

 

Dr. Lucie Opatrny had the original research idea for the first paper.  She was an 

extremely involved collaborator in the development of this paper and the process 



 ii 
 

of interpreting the results.  She was involved in all aspects of the writing of the 

paper.   

 

Dr. James Brophy substantially improved the first paper by making key 

suggestions for refocusing the scientific question, revising the draft and in 

critically commenting on the results.   

 

Dr. Robert Platt had an important role in developing the statistical approaches in 

the second paper and in critically revising the intellectual content (especially the 

statistical content) of the paper.   

 

Dr. Erica Moodie had an important role in developing the statistical approaches in 

the third paper and in critically revising the intellectual content (especially the 

statistical content) of the paper.   

 

Statement of Originality 

 

The first paper in this thesis is the first study to consider the risks 

associated with warfarin use in the GPRD using population based comparators.  

This allowed us to properly measure drug-drug interactions between warfarin and 

other drugs.  It also allowed us to provide estimates of the size of these drug-drug 

interactions.  It is also the first GPRD study on warfarin that directly modelled 

alcohol abuse as a confounder instead of using it as an exclusion criterion.  In 

addition, it is the first study to estimate the magnitude of the channelling bias that 

exists for the co-prescription of warfarin and aspirin.   

 

The second thesis paper represents the first systematic simulations of the 

properties of inverse probability of treatment weighted marginal structural models 

in the presence of effect modification.  It is also the first real example (as opposed 

to hypothetical example) of marginal structural models being applied to study 

warfarin.  It is also an implementation of marginal structural models in case- 



 iii 
 

control data and an example of where important differences can occur between 

marginal and conditional estimates in a practical example across the general 

population.  

 

The third paper is the first study to validate the blood pressure measures 

recorded in the GPRD as an outcome for a pharmacoepidemiology study.  It is 

also the first study to apply multiple imputation to improving the handling of 

missing values for blood pressure in the GPRD.   
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ABSTRACT 
 

Warfarin is an anticoagulant medication that is used for the prevention and 

treatment of venous and arterial thrombotic complications.  The evaluation of the 

risks associated with warfarin therapy, and its interaction with other drugs, poses 

important methodological challenges.  In this thesis, we studied two of these risks 

and assessed techniques to address these methodological challenges using data 

from the United Kingdom’s General Practice Research Database (GPRD).  

 

First, we conducted a case-control study to examine the risk of gastrointestinal 

bleeding associated with warfarin use.  We identified 4028 cases and 40171 

matched controls from 2000 through 2005. Using conditional logistic regression, 

we found an increased risk of bleeding associated with warfarin use [adjusted 

odds ratio (OR) 2.15; 95% confidence interval (CI):1.81 to 2.54].  We also 

observed an increased risk due to drug-drug interactions between warfarin and 

other anti-thrombotic drugs.  We also observed evidence of channelling bias as 

warfarin users were less likely to be prescribed other anti-thrombotic drugs.   

 

Second, as warfarin has many weak interactions, we re-analyzed our case-control 

study using a marginal structural model to assess the overall impact of effect 

modification.  This analysis produced a different estimate (for the population level 

instead of the individual level) for the risk of bleeding associated with warfarin 

[OR 17.2; 95% CI: 6.5 to 37.7] than analysis with conditional logistic regression.  

The impact of effect modification on these estimates was then assessed with a 

Monte Carlo simulation study.   

 

Third, we created a cohort of patients given their first prescription of warfarin, 

ibuprofen, statins, or rofecoxib/celecoxib from 2001 through 2003 to study 

whether GPRD blood pressure data was of sufficient quality to model longitudinal 

increases in blood pressure as an adverse event.  We compared different 

approaches to handling missing data.  A hypothesized increase in systolic blood 
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pressure when initiating warfarin therapy was not supported with an observed 

reduction of 0.23 mmHg (95% CI:-0.78 to 0.31). 

 

Studying warfarin adverse events poses several methodological challenges 

including channeling bias, unmeasured interactions and missing data.  However, 

the careful application of statistical and epidemiological technique can provide 

improved risk estimates.     
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RÉSUMÉ 
 
Le traitement par Warfarine est utilisé pour la prévention et le traitement 

d'événements thrombotiques artériels et veineux. L'évaluation des risques associés 

au traitement par warfarine et son interaction avec d'autres médicaments 

représentent des défis méthodologiques importants. Dans cette thèse, nous 

étudions ces risques et évaluons les techniques pour relever ces défis 

méthodologiques en utilisant les données de la base de données General Practice 

Research Database (GPRD). 

 

 

Dans un premier temps, nous avons réalisé une étude cas-témoins pour évaluer le 

risque de saignement gastro-intestinal associé à l'utilisation de la warfarine. Nous 

avons identifié 4028 cas et 40171 contrôles appariés, entre 2000 et 2005. En 

utilisant une régression logistique conditionnelle, nous avons constaté une 

augmentation du risque de saignement chez les patients sous warfarine [rapport 

des cotes ajusté (RC) 2.15 (intervalle de confiance à 95 % (IC) :1.81–2.54)]. Nous 

avons également observé un risque augmenté en raison d’une interaction 

médicamenteuse entre la warfarine et d'autres médicaments antithrombotiques. 

Enfin, nous avons  mis en évidence un biais d’indication lié à la moindre 

probabilité de prescription d’autres médicaments antithrombotiques chez les 

utilisateurs de warfarine. 

 

La warfarine ayant de nombreuses faibles interactions, nous avons, dans un 

deuxième temps analysé notre étude cas-témoins en utilisant un modèle structurel 

marginal pour évaluer l'impact global d’une modification d'effet. Cette analyse a 

produit une estimation différente (au niveau de la population et non d’un individu) 

du risque de saignement associé à la warfarine [RC 17.2 (IC à 95 % : 6.5–37.7)] 

de celle obtenue par la régression logistique conditionnelle. L'impact d’une 

modification d'effet sur ces estimations a alors été évalué par une étude de 

simulation de Monte-Carlo. 
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Enfin, nous avons créé une cohorte de patients selon leur première prescription de 

warfarine,  ibuprofène, statines, ou rofécoxibe/célécoxibe entre 2001 et 2003. 

Nous avons étudié si les données de tension artérielle de la base GPRD étaient de  

qualité suffisante pour modéliser l’augmentation longitudinale de la tension 

artérielle en tant qu’événement indésirable. Nous avons comparé  différentes 

approches pour la prise en compte des données manquantes. L’hypothèse d’une 

augmentation de la tension artérielle systolique à l’initiation du traitement par 

warfarine n'a pas été confirmée avec une réduction observée de 0.23 mmHg (IC à 

95%:-0.78–0.31). 

 

L’étude des effets indésirables liés à l’utilisation de la  warfarine représente 

plusieurs défis méthodologiques tels que la présence de biais d’indication, 

d’interactions non mesurées et de données manquantes. L'application prudente de 

techniques statistiques et épidémiologiques permet cependant d’améliorer les 

estimations de risque obtenues. 
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Chapter 1 
 
Introduction 
 
 
  The discovery of warfarin dates to the 1920’s when mouldy silage made 

from sweet clover was associated with an outbreak of fatal bleeding in cattle [1].  

Initially used as a rat poison, warfarin was approved for human use in 1954 as an 

anticoagulant and it is now the most widely used anticoagulant in the world [1].  

However, since warfarin overdoses can lead to death from bleeding 

complications, the use of warfarin requires careful monitoring with laboratory 

testing.  These tests track the degree of anticoagulation through the international 

normalized ratio (INR) to prevent under or over-anticoagulation [1].   

 

One of the important clinical and scientific challenges with warfarin 

therapy is balancing its risks and benefits.  Despite its proven efficacy at reducing 

thrombotic events [2], warfarin therapy is also associated with serious bleeding 

and even fatal bleeding episodes [2].  While warfarin has other known side effects 

such as skin necrosis and hair loss [1], the side effect of significant levels of 

bleeding is the most serious and common.       

 

 Warfarin also has broad range of interactions with a variety of other drugs 

[3] that can increase the risk of adverse events when used in combination.  To 

make matters even more complicated, there are many instances where patients are 

at extremely high risk of thrombotic events (often due to surgical recovery from 

percutaneous transluminal coronary angioplasty involving a stent) and require 

treatment with these potentially dangerous drug combinations [4].  In these cases, 

the risk of death due to bleeding is felt to be outweighed by an overall improved 

outcome due to the reduction in other extremely serious outcomes (such as 

reduced rates of a second myocardial infarction or stent thrombosis).   
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 Previous population-based research on warfarin using prescription claims 

databases from the province of Quebec, Canada, has demonstrated that 

combinations of warfarin with other antithrombotic medications can lead to a 

surprisingly high rate of bleeding complications [5].  This research also shows 

that these multi-drug combinations are not rare and could thus have an important 

public health impact [5].   

 

 Given all of the complexities associated with warfarin therapy, it should 

not be surprising that there are several methodological problems with correctly 

studying the risks and benefits of exposure to this drug in the context of the 

general population.  These methodological problems are in addition to the general 

problems that are encountered in all database research, such as missing data on 

the outcome or unmeasured confounders.  For instance, since warfarin is well 

known as a drug with many contraindications, physicians may directly account for 

these contra-indications in their warfarin prescription decisions.  This could cause 

strong channelling bias [6] and prevent the easy interpretation of the effects seen 

in an epidemiological study.   

 

 The goal of this thesis is to consider a number of methodological 

challenges associated with estimating the risk of warfarin adverse events in a 

population-based primary care database.      

 

To derive estimates of the risks associated with warfarin therapy despite 

these challenges, we will employ a variety of statistical techniques.  The goal of 

these approaches is to derive valid estimates of the elevated risks of adverse 

outcomes seen in patients who are exposed to warfarin.  These statistical 

techniques include marginal structural models [7], linear mixed models [8], and 

multiple imputation [9]. As well, we will employ traditional epidemiological 

study design techniques, such as the risk-set sampled nested case control design, 

to remove issues of temporality from these studies [10].   
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By approaching the analysis of warfarin in this more sophisticated way, 

we provide a better estimate of the real-world risks of adverse outcomes 

associated with exposure to this drug.  While there are known important benefits 

to warfarin therapy, a clear appreciation of the potential risks with therapy 

involved allows the most informed possible therapeutic decisions on the part of 

both clinicians and patients.   
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Chapter 2  
 

Background and Literature Review 
 

The most important source of potential methodological problems in this 

study is due to the nature of the data that are being used.  This study is situated in 

a clinical database.  Clinical databases, such as the General Practice Research 

Database (GPRD), are a collection of medical information recorded by the 

General Practitioner in the course of managing patients rather than a 

systematically followed medical cohort.  Because these data are not actively and 

systematically collected, it requires careful analysis to obtain estimates that can be 

properly interpreted as the mechanisms by which data are collected can be an 

important source of bias.   

 

 So we begin our background discussion by considering the source of the 

data for this study, how they are stored and their inherent strengths and 

limitations.   

 

2.1 The General Practice Research Database 

 

The GPRD is a United Kingdom (UK) clinical database based on the 

medical records of more than 400 UK general practices covering 3.2 million 

patients at any point in time [1-5].  The validity of the database has been 

extensively described in previous literature [1-5].  However, most of these 

validity studies were conducted before the year 2000; possibly because the 

validity of the GPRD database is now well accepted.     

 

This database contains four types of information on patients enrolled in 

GPRD practices: 

1) Medical codes for the diagnosis of health events/conditions including 

hospitalizations 
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2) Demographic and lifestyle information describing patients  

3) Prescriptions issued by general practitioners  

4) Laboratory test results 

 

To date, the focus of most validation studies in the GPRD have been on the 

medical codes [4] although work has been done on validating codes for 

prescriptions issued and the demographic variables [1].   

 

 The key problem with the lifestyle variables as collected in the GPRD is 

due to missing data as these variables may not be systematically recorded for all 

patients which limits their utility as potential confounders in a statistical model 

[1].  However, the presence of missing lifestyle variable data is not necessarily a 

major limitation.  Having even limited information on a confounding variable, 

such as smoking, is an improvement over prescription claims databases that lack 

this information entirely [6].  Furthermore, missing data can be accounted for in a 

variety of ways, including the use of multiple imputation [7], in order to obtain 

valid inferences.  The quality of these inferences depend on the rate of missing 

data for the variable in question, but studies have shown good performance of 

multiple imputation on medical data when the proportion of missing data is less 

than 60% [7].   

 

Prescription drug information in the GPRD is recorded based on 

prescriptions issued by general practitioners rather than prescriptions filled (as 

would be the case in prescription claims databases) [1].  This makes the GPRD an 

ideal setting to judge the impact of the prescribing behaviour of the general 

practitioner on health outcomes.  While we never know if the prescription is 

filled, we know what the effect of the physician prescribing is on the outcome.  

This can be a much more direct measure of the effectiveness of the physician’s 

behaviour on altering the patient’s outcomes through prescribing drug therapy.   
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 The medical codes that are used to diagnose diseases have been validated 

in the GPRD.  These codes capture actual events with varying levels of sensitivity 

and specificity tending to be more specific than sensitive.  However, “hard” 

outcomes that represent important events such as myocardial infarction [4], 

cancer [4], gastrointestinal bleeding [4], schizophrenia [2] and death [1] are 

generally well recorded and very specific.    There is less complete information in 

the GPRD medical codes on the minor complications (like an episode of breathing 

problems) of chronic diseases, such as diabetes or asthma, although the presence 

of the disease itself is usually very well recorded [1].   

 

 Participating general practices are not required to record consultations 

with medical specialists (even if many of them do) making this variable 

differentially recorded and of questionable value in medical research [2].  In 

particular, this can lead to misleading inferences if the general practice is not 

controlled for (often by matching) in the data analysis.   

   

 Another known limitation of the GPRD is the lack of linkage to other 

health care databases in the UK [3].  This is especially problematic with 

hospitalization information, which is not systematically captured by the GPRD.  

While hospitalizations are required to be reported back to the general practitioner 

by the hospital, there is some evidence form the earlier GPRD validation studies 

that this reporting may not be well documented in the database.  For example, 

55% of hospitalizations were found to not have been captured by the database in a 

1991 study [5].  Later GPRD studies find a much higher rate for the proper 

recording of hospitalization information (85% in a 1999 validation study) [1].  

This suggests that GPRD information on hospitalization prior to the mid-1990’s 

should be interpreted with caution. Even in modern GPRD studies, the cause of 

hospitalization may not be recorded in the database – especially for minor events.  

Despite this, the improvements in recording of medical information have played 

an important role in increasing the validity and utility of the GPRD for medical 
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research.  As a result of this improved information, many studies in the GPRD 

currently use information only after the year 2000 to improve data quality.   

  

 In summary, the GPRD is a broadly validated database with a wealth of 

important information on outpatient health care that covers a large proportion of 

the UK population.  The GPRD is broadly representative of the UK general 

population on factors such as age and sex [1-5].  This makes the GPRD an ideal 

setting for studies on drug therapy as we can infer the impact of drug therapy on 

GPRD patients to the whole of the UK population.   

 

2.2 Previous Research on Warfarin 

 

There is a broad literature on antithrombotic medications.  A search for 

“warfarin” in PubMed up to May 3rd, 2007 yielded 12, 952 articles.  A similar 

search for “aspirin” yields 39,594 articles.  A search for “clopidogrel” yields 

2,690 articles.   

 

The majority of studies on these drugs are clinical trial reports, 

commentaries or observational studies (although some animal and 

pharmacokinetic studies are present).  Commentaries interpret the results of 

previous studies and provide opinions or guidance to practitioners.  The clinical 

trial information on these drugs is extensive and, in the case of warfarin, has a 

long history.  Systematic reviews of antithrombotic drugs, such as warfarin, often 

use other systematic reviews as the units of observation [8].  In essence, this gives 

us a meta-analysis of meta-analyses which highlights the depth of research on 

warfarin involving randomized trials that is present in the literature.   

 

Our goal is to consider the observational evidence since we are concerned 

that the close monitoring of patients in clinical trials, or even in prospective 

cohort studies, could under-represent risks of adverse events in patients exposed 

to warfarin who are in the community and receive the normal standard of care.   
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To better understand the risks associated with warfarin exposure at the population 

level, it is typically necessary to have databases that capture information at the 

population level.  Clinical trials often lack the required information on potential 

adverse outcomes due to inadequate follow-up time or due to lack of power to 

detect rare but important adverse outcomes (such as death due to adverse drug 

effects).     

 

The main choices for population level coverage are either clinical 

databases such as the GPRD [1] or prescription claims databases such as the 

Régie de l’Assurance Maladie du Québec (RAMQ) [6]. Some research has been 

done in the RAMQ prescription claims databases on warfarin [9, 10], clopidogrel 

[11] and aspirin [12-16] with studies considering both protective and adverse 

outcomes associated with these drugs.  However, these studies are typically 

restricted to patients over 65 years of age due to the coverage of the database.  

Furthermore, this database lacks information regarding certain key confounders, 

such as alcohol abuse.  The lack of these confounders could impact the validity of 

these studies given that alcohol can increase the antithrombotic effect of warfarin 

even at low doses [17].    This potential limitation also applies to other 

prescription-claims databases such as the medical databases of Saskatchewan, in 

which a single study on the antithrombotic warfarin was also conducted [18], or 

the medical databases of Ontario which have been used for numerous studies of 

warfarin [19-29].   

 

Most of these database studies have shown a higher risk of bleeding in 

patients prescribed warfarin.  However, some of these studies lack information on 

the distribution of important confounders.  For example, a study in the medical 

databases of Ontario on potential drug interactions between warfarin and 

antidepressant medications was unable to assess the possible confounding effects 

of alcohol abuse [23] which is associated with both depression and some of the 

adverse outcomes (such as gastro-intestinal bleeds).  While these studies can still 

add valuable information to the medical literature, it is necessary to extend these 
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studies to settings where there is information on these confounding factors – such 

as in clinical databases.     

 

There have been previous studies on warfarin in the GPRD which is 

probably the best known example of a clinical database.  We will now focus on 

these previous studies to survey what work has been done in the context of 

clinical databases and to motivate areas that this research can be extended to other 

GPRD researchers.   

 

 

2.3 Previous GPRD Research on Antithrombotic Drugs 

 

A number of studies on antithrombotic drugs have been conducted using 

the General Practice Database (GPRD). The primary drug of interest to us is the 

antithrombotic agent warfarin.  While the use of warfarin reduces the risk of 

serious thrombotic events, it does so at the cost of increased bleeding risk.  We 

searched PubMed for any article on antithrombotic agents using the search terms 

“general practice research database” in conjunction with “aspirin”, “warfarin” and 

“clopidogrel”.  As noted before, we conducted our search up to May 3rd, 2007.   

 

 There have been a limited number of studies on warfarin prescriptions in 

the GPRD to date.  There are three studies on the treatment patterns for patients 

with atrial fibrillation (which is an important indication for warfarin therapy) [30-

32] and two studies on the bleeding risk of patients who are exposed to warfarin 

[33-34].   The previous studies on treatment patterns are drug utilization studies 

and, therefore, do not directly address the question of drug efficacy but rather 

determine the level to which treatment for medical conditions is in accordance 

with evidence-based treatment guidelines.   

 

 The first study we are considering was on warfarin and bleeding and 

conducted by Hollowell et al. [33].  This study was restricted to a group of 
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patients in the GPRD for which an indication for warfarin could be identified.   

All patients in this study were currently exposed to warfarin so the reference 

group was warfarin users with no other drug prescriptions.  This study also used a 

very tight definition of exposure (current use being a prescription in the past 30 

days) and a relatively restricted age range (40 to 85 years) based on the group of 

patients that the authors considered to be most clinically relevant.  The authors 

focused their study on estimating the incidence rate of bleeding in these exposed 

patients but did consider age, sex and clinical indication as independent predictors 

of risk.  They used a cohort approach to their study design and so were able to 

estimate the actual rate of bleeding in the GPRD.  However, because they 

restricted their study to patients currently exposed to warfarin, they were unable 

to compare the relative rates of bleeding between patients exposed to warfarin and 

similar patients who were unexposed.   

 

 A second study on warfarin and bleeding by Gasse et al. [34] was 

conducted entirely within a cohort of patients with atrial fibrillation.  While this 

study had the key advantage of insuring that the patients are more similar than 

with a general population cohort (as the patients in the general population may 

have a diverse set of indications for warfarin therapy), this focus has the downside 

of overlooking large groups of patients in which warfarin is extensively used.  As 

with Hollowell et al. [33], this study was restricted to a cohort of current warfarin 

users and the authors estimated the risk of using drugs in combination with 

warfarin versus the use of warfarin alone.  This approach does not allow the 

assessment of drug-drug interactions since there was no unexposed group (as all 

patients were exposed to warfarin), although it could document the increased 

levels of risk for bleeding episodes in patients who were also taking drugs such as 

aspirin in combination with warfarin.   

 

 In a third study and the second by Gasse et al., Gasse et al. [34] 

documented an increased risk associated with aspirin use among those patients 

who were also exposed to warfarin.  The high rate of bleeding that they reported 
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was much larger than the rate that is typically seen for aspirin alone.  So this study 

acts as an indirect test of interaction between aspirin and warfarin by suggesting 

that the addition of aspirin to a patient’s drug therapy leads to greater risks of 

bleeding among patients who are already exposed to warfarin.  The authors were 

also able to consider a broad range of other drugs that might interact with warfarin 

to increase bleeding risk by pooling these drugs and considering the number of 

potentially interacting drugs taken at the same time as warfarin.  This approach 

was a way to avoid the lack of power due to the rare nature of some of these 

interactions.  However, the increase in power came at the cost of losing specificity 

as to which drugs were the primary drivers of increased rates of adverse drug 

events.   

 

 In addition, the authors chose to exclude patients with some of the key 

confounders such as a history of alcohol use.  While restriction is a valid approach 

to controlling for confounding, not including these patients creates the possibility 

of underestimating the actual risk in the general population.  It also removes the 

ability of the authors to test for whether alcohol use is associated with an 

increased risk of bleeding among patients exposed to some of the study drugs.    

 

To our knowledge, this thesis is the first study in the GPRD to consider 

clopidogel as a primary drug exposure or to attempt to quantify its association 

with an increased risk of bleeds.  No articles were located in PubMed in evolving 

both clopiogrel and the GPRD, although this drug has been widely studied in 

other databases and the possible risks of clopidogrel exposure are extensively 

reported in the clinical trials literature.   

 

 There are twenty published studies on the prescription of aspirin in the 

GPRD that we were able to locate in our PubMed search.  These studies range 

from risk studies on increased risk of bleeding to documenting the potentially 

protective effects of aspirin on the development of cancer.   
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 Four GPRD studies examined treatment patterns of drugs including aspirin 

in patients diagnosed with either atrial fibrillation or heart failure [30-32, 35] and 

three also looked at warfarin utilization in these populations [30-32].  Ten studies 

looked at potentially protective effects of aspirin therapy on cancer [36-40], 

myocardial infarction [41-44] and Parkinson’s disease [45].    

 

 The study on aspirin use and the rate of Parkinson’s disease found no 

effect of aspirin exposure.  The protective effect of aspirin on myocardial 

infarction is well known from the clinical trials literature.  Less clear, however, is 

whether the GPRD is an ideal environment to study the association between 

aspirin use and the development of cancer.  Patients with health-seeking 

behaviours may take aspirin as part of their “health promotion” regime, but these 

patients may also engage in other behaviours (improved diet, increased exercise) 

that are protective against cancer.  This confounding of health seeking behaviour 

and aspirin use is difficult to tackle in the GPRD and it makes the small protective 

effects of aspirin use on the rate of cancer that are seen by these studies difficult 

to interpret.   

 

 The authors of one study looked at aspirin as a small part of a larger 

validation study that compared the data quality in the GPRD to data quality in the 

health improvement network database [46].  This validation study used the 

validity of the GPRD as the gold standard level of validity for clinical practice 

databases.  This use of the GPRD as a gold standard is a mark of the degree of 

confidence that researchers have in GPRD validity.   

 

 The last six studies in the GPRD involving aspirin involved evaluating 

bleeding risk upon exposure to drugs.  Two of these studies used aspirin as a 

covariate in the study of other drugs [47-48] and the risk of gastro-intestinal 

bleeding (anti-depressants and cyclical etidronate).  These studies were not 

specifically designed to answer questions about the risks associated with aspirin 

and appeared to be mainly focused on controlling confounding between aspirin 
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use and the use of the primary drug under study.  One study, previously 

mentioned for its discussion of warfarin, also considered the risk of bleeding 

associated with aspirin but only among patients who were already exposed to 

warfarin [34].  However, this effect is difficult to interpret outside of the context 

of a patient population that is being treated with warfarin as the increased risk 

associated with aspirin use is likely to be some combination of a real aspirin effect 

and a drug-drug interaction.   

 

 The last two studies considered the increased risk of gastrointestinal 

bleeding among patients who were prescribed aspirin [49-50].  The study by de 

Abajo et al. [50] found a slightly higher risk associated with aspirin than that 

reported by Henandez-Diaz et al. [49].  Interestingly, de Abajo et al. also found a 

slightly higher risk among the patients prescribed entric coated aspirin than those 

patients who were prescribed regular (non-entric coated) cardio-protective aspirin.  

This finding of increased risk of gastro-intestinal bleeding among patients who 

were exposed to a protective agent is compatible with previous reports.  These 

reports suggest that drugs that are intended for use in high risk patients might be 

subject to channelling bias and this makes it difficult to obtain an unbiased 

estimate of risk in a database study [51].     

 

 While not antithrombotic agents, there have also been GPRD studies on 

other drugs that are given for indications similar to that of aspirin and have similar 

possible side effects.  These studies include ones on non-aspirin non-steroidal 

anti-inflammatory drugs [51-53], acetaminophen (paracetamol) [54] and steroids 

[55].  Some of these studies have also considered GI complications with drug use 

and have found consistent results of drug use being associated with an increased 

risk of bleeding as compared with GPRD studies on aspirin.      

 

 However, there is currently a lack of population level studies on adverse 

effects for warfarin and clopidogrel in the GPRD.  With warfarin, the previous 

GPRD studies have considered only warfarin users without population based 
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comparison groups. Without these comparison groups, it is impossible to rule out 

other reasons for observing the size of the bleeding risk associated with drug use.  

It is also impossible to determine which part of the effect of another drug, such as 

aspirin, in users of warfarin is due to the aspirin itself and which part of the effect 

is a drug-drug interaction.   

 

 Therefore, further work on adverse events associated with warfarin 

therapy in the GPRD has the potential to enrich our understanding of the potential 

risks of prescribing this drug in the UK general population.   

 

2.4 GPRD studies and matching 

 

 Cohort studies are not typically conducted using the GPRD because of the 

clustered nature of the database. Different practices in the GPRD have different 

standards for recording diagnostic codes [2] which need to be accounted for in the 

analysis of GPRD studies.  This bias could arise because of differences in the 

distribution of practice-related factors (such as recording of some types of 

medical codes such as specialist visits) between the exposed and the unexposed.  

This difference in recording practices is not as serious of an issue in certain 

studies where both the exposure and the outcome are either prescriptions issued or 

records of test information as the recording of these data is standardized across 

the GPRD [1].  However, it is never good practice not to account for the potential 

recording differences GPRD medical practices.     

 

When looking at an outcome or primary exposure that is a diagnostic code 

in the GPRD, it is therefore important to account for the variability in diagnostic 

code recording between different GPRD practices [1,2].  One way to account for 

this variability is to match incident cases with a referent group from the same 

practice.  This approach to handling confounding by practice is popular among 

GPRD researchers due to the number of practices in the database (>400) which 

makes the use of indicator variable methods inefficient [1-2].  Another alternative 
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to handle this issue with practice-related confounding would be to use a random-

effects model (in which each practice had its own unique intercept) but this has 

not been a common approach in GPRD studies due to the computational issues in 

implementing these models in large database studies.   

 

In addition, an extra advantage of the matching on practice approach is 

that it naturally extends to matching on calendar time as well.  By matching on 

both calendar time and practice, the analyst is thus able to also control for the 

changes in individual-level practice recording policy over time.  Since the quality 

of information recorded by practices increases over time, this is actually 

important.     

 

The analysis of cohort data using a matched case-control design has been 

widely described [56-60].  While this study design is often called the nested case 

control study [59-60], there is some ambiguity about this terminology as nested 

case control has also been used in the epidemiological literature to mean a regular 

case control study nested within a cohort even if this cohort is not explicitly 

defined or followed – as all cases and controls ultimately come from some 

population cohort [56].  This definition seems sub-optimal as all case-control 

studies could be considered to be nested case-control studies and this seems to 

remove any useful meaning from the definition.   

 

An alternative name for this type of approach, when one considers the 

hazard functions as being constant over time, is that of incidence density sampling 

[57].   This idea of comes from Miettinen and his early work on case-control 

studies [61].  This type of analysis often gives an average rate ratio instead of an 

instantaneous rate ratio unless the time bands selected are quite narrow (as the 

width of the time bands goes to zero, we get a hazard ratio instead of a rate ratio).   

 

The basic principle that underlies this type of “nested case control” design 

is to obtain a sample of person-moments who are representative of the “person-
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time experience out of which the cases arise” [61].  The odds ratios given by the 

analysis of these study designs will approximate the rate ratio without any need 

for a rare disease assumption [56].  While there is a slight cost in precision when 

the case is matched to less than 20 controls [60] this is typically extremely low in 

the very large studies usually conducted in the GPRD [56].   

 

However, when the controls are sampled randomly from the population 

that is at risk at the time of the event, we can describe the controls as being 

selected using risk set sampling [60, 62, 63].  The key requirement for this 

approach is that the controls must be selected as a random sample of the 

population which is at risk for the event at the exact same time as the case occurs 

(i.e. the members of the case’s risk set).  Risk set sampling of the controls allows 

the estimates from the nested case control study with risk set sampling to directly 

approximate those of a prospective cohort study [57].  We can interpret the 

estimates derived from this approach to data analysis as representing the baseline 

cumulative hazard ratio (the same parameter estimated from a cohort study that 

begins at baseline and does not account for any changes in the proportionality of 

the hazard ratio) [60].  This design also removes assumptions about the 

prevalence of the exposure across the life of the cohort [64] and is a natural 

environment to introduce other important matching criteria.     

 

 The risk set sampled nested case-control study design is the most logical 

approach to analysis of GPRD data that does not involve more complex 

techniques (such as the use of random effects models).  This is especially 

important when the medical codes are either the primary exposure or are used to 

define the study outcome.  The reason for this is that most of the differences 

between practices cannot be directly observed in the data and must be accounted 

for using either matching or clustered data analysis.   

 

While there are frequency-matched cohort studies that have been 

conducted in the GPRD [65, 66], these studies typically already match on either 
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the time that exposure begins or the time of outcome as well as practice.  Because 

they sub-sample the unexposed population, it is not trivial to correct the estimates 

obtained from these studies to get the actual underlying rate of events in the 

GPRD population.  Therefore, these approaches do not seem to bring any 

substantial advantages to the analysis of GPRD data above and beyond those that 

are seen with matched case control studies, although small advantages are 

possible with cohort approaches [61].  In particular, issues due to censoring are 

less visible in a nested case-control analysis.  However, censoring is not the 

critical issue in GPRD studies that it would be in a prospective study of an 

exposure-outcome relationship as participants typically drop-out of randomized 

controlled trials and prospective cohort studies at much larger rates than patients 

change general practices.   

 

 In the case of a database like the GPRD, the underlying structure of the 

data makes a risk set sampled nested case control study the most attractive way to 

estimate the rate ratio of events in an unbiased way.  However, this analytical 

approach does come with the disadvantage of not giving a direct estimate of the 

rates of disease in the population but only in the relative increase in rate among 

the exposed as compared to the unexposed.   

 

 However, the advantage of using a method of analysis that can use 

matching to partially control for potential unmeasured confounding by practice-

related factors is important and this limitation in choice of study design is a small 

disadvantage when compared to the ability of GPRD data to answer a broad class 

of interesting medical questions that arise in the primary care of patients.  In this 

thesis, we will first illustrate the use of a nested case control design to directly 

answer a medical question to show the use of standard technique.  Later on, we 

will show that this is not the only option when we apply a random effects model 

to GPRD data as an analytic alternative.              
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Chapter 3  
 
Drug-Drug interactions between antithrombotic medications and the risk of 

gastro-intestinal haemorrhage 

 
 
 
This chapter contains a greatly expanded version of a manuscript that was 

submitted to the Canadian Medical Association Journal.  

 

This paper describes bleeding as an adverse effect of exposure to warfarin.  This 

is the best known warfarin adverse effect.  The novelty in the papers comes from 

looking at warfarin in conjunction with other antithrombotic drug therapies.   

 

Therefore, the primary focus of this paper is on evaluating drug-drug interactions 

between antithrombotic medications leading to increased risk of bleeding.  To 

have a clear example of bleeding, we picked a single major type of bleeding for 

which hospitalization is certain (gastrointestinal bleeds).   

 

It also contains a discussion of channelling bias away from specific medications 

in the General Practice Research Database (GPRD).  This occurs when physicians 

avoid giving a medication to a patient due to concerns that it may interact with 

other medications that the patient is on.  It presents evidence that this channelling 

is happening differently among users of warfarin and clopidogrel.   

 

Particular care was used to adjust for confounding in this example, including 

those variables such as alcohol.  This is especially important given the evidence of 

drug channelling due to risk factors.  The estimates of the rate ratio for some 

drugs, such as anti-depressants, were significantly impacted by the inclusion of 

alcohol abuse as a confounder.   

 

The contributions of authors are listed in the preface to the thesis.  

25



 

Drug-Drug interactions between antithrombotic medications and 

the risk of gastro-intestinal bleeding 

 

J. A. Delaney, M.Sc.1,2, Lucie Opatrny, M.D., M.Sc.1,3,  

James M. Brophy, M.D., Ph.D.1,2 and Samy Suissa, Ph.D.1,2 

 

1 Division of Clinical Epidemiology, McGill University Health Center, 

Montreal, Canada 

2 Department of Epidemiology, Biostatistics and Occupational Health, 

McGill University, Montreal, Canada 

3 Division of Internal Medicine, McGill University Health Center, 

Montreal, Canada 

 

 

 

Please address correspondence and request for reprints to: 

 Dr. Samy Suissa 

 Division of Clinical Epidemiology 

 Royal Victoria Hospital 

 687 Pine Avenue West, Ross 4.29 

 Montreal, Quebec, Canada 

 H3A 1A1 

 Tel: 514-843-1564              Fax: 514-843-1493 

 Email: samy.suissa@clinepi.mcgill.ca  

 

 

26



 

ABSTRACT 

 

Background: Anticoagulants and antiplatelet drugs (such as warfarin, clopidogrel 

and aspirin) are key therapeutic agents in patients who have conditions such as 

atrial fibrillation and venous thrombo-embolism.  However, these drugs are 

known to increase bleeding risk and the total magnitude of any increased bleeding 

risk associated with the combination of these drugs is unclear.   

 

Objective: To assess the risk of antithrombotic drug combinations on the rate of 

gastrointestinal (GI) bleeds across a general population.   

 

Design: Population-based, retrospective case-control study in the United 

Kingdom General Practice Research Database (GPRD) from the year 2000 

through the year 2005 matched on physician practice, patient age and calendar 

date.  All patients had at least 3 years of follow-up in the database.  Index date 

was defined as the date of first-ever GI bleed for the cases and their matched 

controls.  Drug exposure was measured by any prescription issued in the 90 days 

before the index date. 

 

Participants: 4028 cases of GI bleeding and 40171 controls.    

 

Results: The co-prescribing of aspirin with either clopidogrel [rate ratio (RR): 

3.9; 95% confidence interval (CI): 2.8 to 5.5] or warfarin [RR: 6.5; 95% CI: 4.2 to 

9.8] was associated with an increased risk of a GI bleed over the risk observed 

with individual drugs.  There was also evidence of drug channelling in that 

patients exposed to warfarin were less likely to be co-prescribed other 

medications that also increase bleeding risk.  After adjusting for age and sex, 

patients who were prescribed clopidogrel were as likely as the general population 

to be prescribed either aspirin [RR:  1.00; 95% CI: 0.82 to 1.22] or a non-steroidal 

anti-inflammatory drug [RR: 0.97; 95% CI: 0.74 to 1.27].  In contrast, warfarin 
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users were much less likely to be prescribed aspirin [RR: 0.22; 95% CI:0.18 to 

0.28] or an NSAID [RR: 0.44; 95% CI:0.34 to 0.56]. 

 

Interpretation:  Drug combinations involving antiplatelet and anticoagulants are 

associated with a high risk of GI bleeding. Physicians should continue their 

current practice of exercising caution when co-prescribing antithrombotic 

medications.   

 

Word Count:  3474 

 

Abstract Word Count: 282 

 

Tables: 5 

 

Figures: 2
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INTRODUCTION 

 

 Gastro-intestinal (GI) bleeding is a significant source of morbidity and 

mortality.  Reports suggesting an incidence rate of GI bleed as high as 103 per 

100,000 people in the population [1].  It is well known that non-steroidal anti-

inflammatory agents (NSAIDs) [2], warfarin [3] and antiplatelet therapies [4] all 

independently increase the risk of a GI bleed.   

 

 Previous work on the effect of combining these drugs has strongly 

supported the notion that the combination therapy with anticoagulant and 

antiplatelet drugs can lead to an increase in major bleeding episodes [6-9]. Since 

approximately 1% of the UK population is on warfarin therapy [3] and many 

patients are simultaneously prescribed antiplatelet agents for concomitant disease 

or consume over-the-counter NSAIDs for symptom control [5], it is important to 

determine the increased risk of bleeding that combinations of these drugs may 

cause.  Since it is possible that these therapies may become more widespread, it is 

important to extend this work to the general population as well as selected 

hospital-based populations. This information would be especially informative 

with newer COX-2 inhibiting NSAIDS agents as they are thought to have a lower 

overall risk of GI bleed [10], and little population data currently exist on their 

interaction with other medications.   

 

 Database studies have played an important role in finding risk factors for 

GI hemorrhages particularly in terms of adverse drug reactions [11-15].  The 

objective of this study was to document the evidence of effect modification 

between anti-thrombotic agents, based on contemporary practice standards, 

outside the context of a controlled clinical trial.  This will enable us to assess the 

practical current risk of upper GI bleeds among patients on combinations of 

warfarin and anti-platelet agents. 
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METHODS 

 

 The General Practice Research Database (GPRD) is a United Kingdom 

(UK) based clinical database thatcontains information on a few million patients at 

the general practice level [16-21].  This is an extensively validated database that 

provides information on the community care of patients as the General 

Practitioner (Family Doctor) is the center of primary care in the UK [16-21].  This 

database is also ideal for pharmacoviligance and the finding of rare adverse drug 

events, such as drug-drug interactions, in the general population [21].   

 

 Using the GPRD we identified all cases with a first diagnosis of upper GI 

bleed in the recorded using either a READ or OMXIS medical code in the 

database between Jan 1st, 2000 and December 31st, 2005 by a General Practitioner 

reporting to the GPRD.  For a list of GI bleed codes used to identify outcomes in 

this study please refer to Table 3.5. We focused on the first-ever event (with at 

least 3 years of follow-up) in order to focus on people who did not have a specific 

drug contra-indication due to previous GI bleeds. 

 

The date of the medical event as recorded in the GPRD was defined as the 

index date for the case.  Up to ten controls were randomly selected for every case 

matched on GPRD practice, age (plus or minus 2 years) and the index date of the 

case was allocated to its controls.  All patients in this study (cases or controls) 

were required to have at least 3 years of follow-up time prior to the index date to 

enable an adequate assessment of the patient’s medical history.  

 

Exposure Definition 
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 Our main exposure was anti-thrombotic drugs.  We defined exposure to a 

drug as being any prescription for a pharmaceutical agent in the 90 days prior to 

the index date.   

 

 In order to control for confounding, we assembled a list of drugs 

previously considered to be either protective against GI bleed or to promote GI 

bleed.  We adjusted for any use of these agents.  We considered the following 

drugs as potential confounders: proton pump inhibitors, diuretics, H2 antagonists, 

antidepressants, antibiotics, corticosteroids and paracetamol.  All drugs were 

defined using the British National Formulary classification system [22]. 

 

Co-morbidity Definition    

 

 We defined the presence of a co-morbid condition as being any previous 

history (as defined by a GPRD medical code) for a medical condition being 

recorded in the database prior to the index date.  In order to control for 

confounding, we considered a broad range of indicators of patient morbidity as 

well as risk factors for GI bleeds or indications for warfarin use.   

 

 We considered as covariates a past history of the following diseases: 

gastro-esophageal reflux, peptic ulcer disease, a recorded positive test for 

Helicobacter Pylori, a moderately high blood pressure reading in the past 1 year 

(systolic blood pressure above 160 or diastolic blood pressure above 100), a 

mildly high blood pressure reading in the past year but no high reading (systolic 

blood pressure above 140 or diastolic blood pressure above 85), no blood pressure 

reading in the past year (missing data), liver failure, renal failure, rheumatoid 

arthritis, other types of arthritis (either unspecified or oesteo-arthritis), diabetes 

(either type I or type II), cancer (any type), chronic obstructive pulmonary disease 

and any form of dementia. We also examined the indication for warfarin use, 

including cardiac arrthymia [23], pulmonary embolism, deep vein thrombosis, 

congestive heart failure, myocardial infarct, angina and stroke. 
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 We also adjusted for the demographic characteristics of the cases and 

controls including age, sex, smoking status, body mass index (BMI) and history 

of heavy alcohol use as recorded in GPRD medical codes.  A BMI of under 18 

was considered underweight, a BMI above 30 but less than 40 to be obese and a 

BMI of 40 or higher to indicate morbid obesity.  A positive history of smoking 

(current or past) was grouped together as a single smoking variable given the 

known limitations in the GPRD [24] for this variable.   

 

Data Analysis 

 

 The primary data analysis was done using conditional logistic regression 

to analyze a nested case-control study [25].  This design was required to enable us 

to match by GPRD practice and account for potential recording and therapeutic 

practice differences between practices.  All covariates were entered into the model 

as well as interaction terms between anti-coagulants and NSAIDs to model effect 

modification.  Odds ratios for the outcome were computed and used as an 

approximation of the rate ratio (RR) for users of these medications [25].   We 

estimated both the RR for the interaction term (showing risk above and beyond 

that of a single medication) as well as the RR for drug combinations (showing the 

total increase risk among those patients who were exposed to many agents as 

compared to those exposed to none). 

 

We also modeled the probability of being prescribed aspirin or an NSAID 

among the controls (who are a random sample of the population from which the 

cases arose) adjusting for age and sex in order to test for channelling bias in who 

is co-prescribed these medications.  A special problem for warfarin in particular 

was that some of the drug-drug interactions are well known and this may cause 

the physician to avoid co-prescriptions.  This is slightly different from 

confounding by indication as it is confounding by “contra-indication” although it 

is the same idea.   
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 All analyses were performed using SAS version 9.1.3 software. 

 

RESULTS 

 

 There were 4028 cases identified in our study with a first episode of GI 

bleeding and matched by age, general practice and index date to 40171 controls. 

The demographic and lifestyle characteristics of the cases and controls are 

described in Table 3.1. Male sex and being underweight were associated with an 

increased risk for GI bleeding. Other variables associated with an increased risk 

for bleeding included a history of heavy alcohol use and a history of past or 

current smoking. 

 

There were a number of co-morbid conditions that we observed to be 

related to a higher rate of GI bleeding after adjustement (Table 3.1).  These 

included liver failure, renal failure, dementia and having COPD. Of note, people 

on corticosteroid therapy did not have an increased risk of GI bleed (adjusted RR 

0.90; 95% CI: 0.81 to 1.00) although only a small number of patients were 

exposed to oral agents (as opposed to inhaled or topical agents). 

 

The strong effect of heavy alcohol use (adjusted RR: 4.00; 95% CI: 3.45 

to 4.63) on the risk of GI bleeds is important to note.  If it is related to any drug 

use, it has the potential to be an extremely important confounder not generally 

available in prescription claims databases.  Since alcohol abuse is a strong contra-

indication for warfarin use but also promotes GI bleeding, it was a potentially 

important confounder.   

 

 For single agent use, the risk of GI bleed on warfarin therapy was similar, 

if higher, than that observed among users of clopidogrel alone (Table 3.2). There 

was an increased risk of GI bleed among the users of NSAIDs. 
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The rate of co-prescription of NSAIDs and warfarin was lower than would 

be expected by chance alone.  We used the rate of prescription to the overall 

control population to estimate the number of users of warfarin and clopidogrel 

that would be exposed to ibuprofen, aspirin and other NSAIDs if these sub-

populations had been prescribed drugs at the same rate as the age-matched UK 

general population (Table 3.3).  For example, if we apply the rates of prescription 

of ibuprofen in the control population as a whole to the population exposed to 

warfarin, we would have expected 38 patients to be exposed to both ibuprofen and 

warfarin.  Instead only 17 patients were actually exposed to both agents in the 

study.  This pattern of lower rates of co-prescribing did not persist in the 

clopidogrel sub-population.   

 

We can estimate the size of this effect.  After adjusting for age and sex, 

being prescribed clopidogrel had no effect on the rate of aspirin prescription [RR:  

1.00; 95% CI: 0.82 to 1.22] or an NSAID [RR: 0.97; 95% CI: 0.74 to 1.27].  In 

contrast, warfarin users were much less likely to be prescribed aspirin [RR: 0.22; 

95% CI:0.18 to 0.28] or an NSAID [RR: 0.44; 95% CI: 0.34 to 0.56]. 

 

Patients on either celecoxib or rofecoxib showed a higher risk of GI bleed 

(RR = 1.64) than those patients exposed to no NSAID of any kind.  We lacked 

sufficient sample size to test for effect modification with these drugs (Table 3.4).   

 

 We did find an important effect modification (26) between co-prescription 

for aspirin and warfarin as well as for co-prescription of aspirin and clopidogrel 

(Table 3.4) on the rate of GI bleed.  We can see the rate ratios for exposure to 

each of these agents in Figure 3.2. 

 

 We also tested for evidence of a warfarin-paracetamol effect modification 

due to suggestions in the literature of a mechanism for a drug  interaction that 

could give rise to this (27) but the test for effect modification did not reach 

significance (p=0.06).  We did, however, continue to see a higher risk for users of 
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paracetamol for GI bleeding [RR: 1.47; 95% CI: 1.35 to 1.60] as compared to 

non-users.  We did not find a protective effect for proton pump inhibitors on the 

rate of GI Bleed when comparing those patients who were exposed to these agents 

as compared to those patients who were not (Table 3.1).   

 

 

INTERPRETATION 

 

The goal of this study was to determine the excess risk caused by the 

combinations of the anti-thrombotic agents such as aspirin, clopidegel and 

warfarin.  We also intended to document the surplus risk caused by the 

combination of these agents with NSAIDS.  The main new finding of this study 

was to document large size of the effect modification between clopidogrel and 

aspirin (RR = 3.90 for patients exposed to both agents as compared to patients 

exposed to neither).  If we combined this effect with the effect observed between 

warfarin and aspirin then the size of the potential risk increase becomes even 

larger for patients who are exposed to all three agents; although we were unable to 

directly observe any meaningful number of cases exposed to all three agents in 

this population.  Therefore, any discussion of the effect of exposure to all three 

antithrombotic agents simultaneously remains speculative.   

 

While we lacked the power to properly assess the effect modification of 

warfarin with cyclooxygenase-2 (COX-2) inhibiting NSAIDs on the risk of GI 

bleeding, it was interesting to note that exposure to these drugs was associated 

with a significant increase in risk of GI bleeding when compared to patients 

unexposed to any of the drugs detailed in Table 1.  Our finding of increased risk 

among users of COX-2 selective inhibitors (both rofecoxib and celecoxib in this 

study) is supported by previous studies on these drugs [28-29] that also showed 

increased bleeding risk among patients who were exposed to these agents. In 

addition, given the limited evidence for protection against GI bleeding supplied 

by these studies, the use of these agents should be further weighed in the balance 
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against recent highly publicized data about cardiovascular [30] and renal failure 

[31] risks related to the use of COX-2 inhibitors.  

 

However, as we did not find a protective effect of proton pump inhibitors 

on the risk of GI bleed, it is possible that the confounding that was present with 

these drugs has also influenced the estimates for the COX-2 inhibitors.    

 

Methodological Issues 

 

Our study supports a previous study in the GPRD that has suggested 

channeling bias [32] in the prescription of drugs to warfarin users [33] due to the 

low rate of co-prescription of drugs like ibuprofen and aspirin observed in the 

database.  Both our study and MacDonald et al. [33] suggest that careful patient-

based prescribing practice of warfarin therapy reduces the rate of GI bleeds that 

would otherwise be experienced in the UK.  It is unknown what criteria 

physicians use clinically to determine elevated risk of bleed and how this 

perception of increased risk may affect their prescribing choices, although some 

work has indicated that physicians base prescription choice more on potential 

risks than benefits [34].  

 

We evidence of confounding by indication in this study with the “elevated 

risk” seen with proton pump pump inhibitors as these drugs are given to high risk 

patients.   This risk increased has been seen in previous observational studies of 

GI bleed [35] and occurs because proton pump inhibitor use is a marker for 

greatly elevated risk.  Clinical trial evidence confirms that these drug are actually 

protective and, therefore, this is confounding by indication [36] and that these 

drugs are actually protective.   

 

The channeling bias seen with warfarin should be in the direction of 

reducing the size of an adverse effect by making risky drug combination less 

likely.  This is supported by the low rate of drug co-prescription for warfarin with 
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drugs known to interact with it to increased bleeding that we noted in the 

database.  Therefore, we should interpret the estimates of risk seen between 

warfarin and NSAIDs/aspirin to the “lower limit” of the actual effect size as there 

is likely to be channeling away from high risk patients.   

 

This pattern of lower co-prescription did not persist with clopidogrel and 

aspirin.  This suggests that physicians are less aware of the risks of co-

prescription with clopidogrel or are deciding that the benefits of co-prescribing 

these drugs outweigh the risks.  This might be especially true if the patients 

prescribed both clopidogrel and aspirin had a recent procedure with a risk of 

complications such as percutaneous transluminal coronary angioplasty involving a 

stent [37], where the risk of stent thrombosis may be felt to outweigh the risk of 

bleed.   However, because of the limitations of the GPRD, it was not possible to 

assess the history of these hospital-based procedures among the patients in our 

study [16].  If most patients who are exposed to this drug combination have 

recently had surgery then it is possible that the excess risk of the drug 

combination may be balanced by the known benefits of coronary surgery [38] and 

the lower risk of post-surgical complications [37]. 

 

In observational studies there is always the possibility of unknown 

confounders that could influence the results of our study despite our extensive 

attempts to broadly control for confounding.  Our definition of co-morbidity was 

developed to account for the possibility that some conditions are likely to be 

recorded only once upon the patient’s admission to a practice in order to 

maximize the chances of detecting potential confounders. Given the broad range 

of conditions that we have controlled for, it seems unlikely that there is a strong 

unmeasured confounder that could completely explain our results.  The ability for 

studies in the GPRD to control for potential confounders such as past readings of 

clinical blood pressure, alcohol use and smoking are key advantages that this 

study has over prescription claims database studies on these drugs [6, 29].   
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Other issues common to large database studies with secondary use of data 

were also present.  These include missing data (which we account for using 

indicator variables) and the selective recording of other variables (such as blood 

pressure).  In addition, some important variables such as smoking or alcohol use 

are relatively crudely defined.  It would have been an advantage to have a more 

complete definition of smoking such as pack-years smoked, for example.   

 

A more abstract approach to confounding, like that of counterfactuals, 

might motivate a different type of analysis such as a marginal structural model 

approach.  This type of analytic approach might be a logical extension of this 

approach as it makes fewer parametric assumptions about the relationships in the 

data [39].   

 

Because we have prescriptions written but not filled, it is possible that 

some of the patients classified as exposed are actually unexposed.  However, this 

misclassification would make the exposed and the unexposed more similar and 

result in a bias towards a null effect.   It is also possible that warfarin use could 

involve some degree of cumulative risk and, in such a case, use of a fixed time 

window to measure exposure may not be the ideal approach [40].  However, 

cohort studies of warfarin use do not seem to reveal any evidence of an increase 

in risk over time [41] suggesting that the fixed time window approach is 

appropriate for this study question.    

 

The 90 day exposure window is another potential limitation.  In the GPRD 

there are some assumptions required to calculate duration of prescription and this 

can be especially difficult to establish when studying a drug like warfarin where 

the dose may be modified mid-prescription due to the results of laboratory tests 

[42].  This may result in slightly lower estimates of risk due to exposure 

misclassification.  However, the reverse (misclassifying users as non-users) would 

seem to be the greater risk here.  Not only would it reduce our power to look at 

drug-drug interactions, but it would also induce a misclassification bias that could 
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be at least as large by placing exposed patients among the controls.  As problems 

with the drug might be part of why a longer time window occurs between refills 

(as warfarin doses are dynamically changed during treatment) this could actually 

remove some of the highest risk patients who give the most important information 

as to the risk associated with warfarin exposure.   

 

Clinical Interpretation 

 

The combination of warfarin and aspirin has a stronger effect in this study 

than that seen in a recent meta-analysis of clinical trials [43].  While this could be 

due to residual confounding, it is more likely due to the higher risk observed with 

warfarin outside of the tightly controlled setting of a clinical trial where 

monitoring of the degree of anti-coagulation in patients may be more frequent 

[44], and patient comorbid factors are fewer.  Studies have shown that patients in 

community practice often do not have precisely controlled anticoagulation [42].  

The translation of clinical trial results to clinical practice can be tricky when the 

trial involves intensive monitoring of high risk patients that might not be available 

in routine care.   

 

While this study is a step forward, more research is needed to better 

understand the overall burden of risk due to co-prescription of aspirin and 

clopidogrel.  This is especially true given current suggestions in the literature that 

the effect modification could have been in the opposite direction [45] which 

would have predicted much less risk than we observed.   

 

Studies have shown that up to half of some types of adverse bleeding 

events in warfarin users may be due to adverse drug reactions [46] and it would 

be surprising if clopidogrel did not have similar increased risks associated with 

drug combinations (although the mechanisms may differ).   Physicians need to 

weigh the increased risk of GI bleed against the known therapeutic benefits of 

these drugs; especially when using them in combination.  Providing evidence of 
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the empirical risk of treatment in the community is an important step forward in 

balancing the risk of GI bleeds with the known benefits of these drugs. 

   

40



 

 

REFERENCES 
 
1) Rockall TA, Logan RF, Devlin HB, Northfield TC. Incidence of and mortality 
from acute upper gastrointestinal haemorrhage in the United 
Kingdom. Steering Committee and Members of the National Audit of 
Acute Upper Gastrointestinal Haemorrhage. BMJ 1995; 311: 222–226.  
 
2) Peura DA. Prevention of nonsteroidal anti-inflammatory drug-associated 
gastrointestinal symptoms and ulcer complications. Am J Med. 2004; 117 Suppl 
5A:63S-71S. 
 
3) Pirmohamed M. Warfarin: almost 60 years old and still causing problems. Br J 
Clin Pharmacol. 2006; 62(5):509-511. 
 
4) Liberopoulos EN, Elisaf MS, Tselepis AD, Archimandritis A, Kiskinis D, 
Cokkinos D, Mikhailidis DP.  Upper gastrointestinal haemorrhage complicating 
antiplatelet treatment with aspirin and/or clopidogrel: where we are now? 
Platelets. 2006; 17(1):1-6. 
 
5) Cullen G, Kelly E, Murray FE. Patients' knowledge of adverse reactions to 
current medications. Br J Clin Pharmacol. 2006; 62(2):232-236. 
 
6) Buresly K, Eisenberg MJ, Zhang X, Pilote L. Bleeding complications 
associated with combinations of aspirin, thienopyridine derivatives, and warfarin 
in elderly patients following acute myocardial infarction. Arch Intern Med. 2005; 
165(7):784-789. 
 
7) Quilliam BJ, Lapane KL, Eaton CB, Mor V. Effect of antiplatelet and 
anticoagulant agents on risk of hospitalization for bleeding among a population of 
elderly nursing home stroke survivors. Stroke. 2001; 32(10):2299-2304. 
 
8) Shireman TI, Howard PA, Kresowik TF, Ellerbeck EF. Combined 
anticoagulant-antiplatelet use and major bleeding events in elderly atrial 
fibrillation patients.  Stroke. 2004; 35(10):2362-2367. 
 
9) Beyth RJ, Quinn LM, Landefeld CS. Prospective evaluation of an index for 
predicting the risk of major bleeding in outpatients treated with warfarin. Am J 
Med. 1998; 105(2):91-99. 
 
10) Becker JC, Domschke W, Pohle T. Current approaches to prevent NSAID-
induced gastropathy--COX selectivity and beyond. Br J Clin Pharmacol. 2004; 
58(6):587-600. 
 
11) Suissa S, Bourgault C, Barkun A, Sheehy O, Ernst P. Antihypertensive drugs 
and the risk of gastrointestinal bleeding. Am J Med. 1998; 105(3):230-235. 

41



 

 
12) Jick SS. The risk of gastrointestinal bleed, myocardial infarction, and newly 
diagnosed hypertension in users of meloxicam, diclofenac, naproxen, and 
piroxicam. Pharmacotherapy. 2000; 20(7):741-744. 
 
13) Gonzalez-Perez A, Rodriguez LA. Upper gastrointestinal complications 
among users of paracetamol. Basic Clin Pharmacol Toxicol. 2006; 98(3):297-303. 
 
14) Gasse C, Hollowell J, Meier CR, Haefeli WE.  Drug interactions and risk of 
acute bleeding leading to hospitalisation or death in patients with chronic atrial 
fibrillation treated with warfarin. Thromb Haemost. 2005; 94(3):537-543. 
 
15) Hollowell J, Ruigomez A, Johansson S, Wallander MA, Garcia-Rodriguez 
LA.  The incidence of bleeding complications associated with warfarin treatment 
in general practice in the United Kingdom. Br J Gen Pract. 2003; 53(489):312-
314. 
 
16)  Lawrenson R, Williams T, Farmer R. Clinical information for research; the 
use of general practice databases. J Public Health Med. 1999; 21(3):299-304. 
 
17) Walley T, Mantgani A. The UK General Practice Research Database. Lancet 
1997; 350(9084):1097-1099. 
 
18) Garcia Rodriguez LA, Perez GS. Use of the UK General Practice Research 
Database for pharmacoepidemiology. Br J Clin Pharmacol. 1998; 45(5):419-425. 
 
19) Jick SS, Kaye JA, Vasilakis-Scaramozza C, Garcia Rodriguez LA, Ruigomez 
A, Meier CR, Schlienger RG, Black C, Jick H. Validity of the general practice 
research database. Pharmacotherapy 2003; 23(5):686-689. 
 
20) Jick H, Jick SS, Derby LE. Validation of information recorded on general 
practitioner based computerised data resource in the United Kingdom. BMJ 1991; 
302(6779):766-768. 
 
21) Wood L, Martinez C. The general practice research database: role in 
pharmacovigilance. Drug Saf. 2004; 27(12):871-881. 
 
22) British National Formulary. www.bnf.org/bnf/ . 2006. Last accessed 9-19-
2006. Electronic Citation 
 
23)  Huerta C, Lanes SF, Garcia Rodriguez LA. Respiratory medications and the 
risk of cardiac arrhythmias. Epidemiology. 2005; 16(3):360-366. 
 
24) Lewis JD, Brensinger C. Agreement between GPRD smoking data: a survey 
of general practitioners and a population-based survey. Pharmacoepidemiol Drug 
Saf. 2004; 13(7):437-441. 

42



 

 
25) Suissa S. Novel Approaches to Pharmacoepidemiology Study Design and 
Statistical Analysis. In: John Wiley & Sons L, editor. Pharmacoepidemiology. 
Sussex: 2000: 785-805.  
 
26) Greenland S, Rothman KJ.  Modern Epidemiology.  Philadelphia, PA: 1998: 
329-342.   
 
27) Mahe I, Bertrand N, Drouet L, Simoneau G, Mazoyer E, Bal dit Sollier C, 
Caulin C, Bergmann JF. Paracetamol: a haemorrhagic risk factor in patients on 
warfarin. Br J Clin Pharmacol. 2005; 59(3):371-374. 
 
28) Hippisley-Cox J, Coupland C, Logan R. Risk of adverse gastrointestinal 
outcomes in patients taking cyclo-oxygenase-2 inhibitors or conventional non-
steroidal anti-inflammatory drugs: population based nested case-control analysis. 
BMJ. 2005; 331(7528):1310-1316. 
 
29) Battistella M, Mamdami MM, Juurlink DN, Rabeneck L, Laupacis A. Risk of 
upper gastrointestinal hemorrhage in warfarin users treated with nonselective 
NSAIDs or COX-2 inhibitors. Arch Intern Med. 2005; 165(2):189-192. 
 
30) Levesque LE, Brophy J, Zhang B. The risk for myocardial infarction with 
cyclooxygenase-2 inhibitors: a population study of elderly adults. Ann Intern 
Med. 2005; 142(7):481-489. 
 
31) Schneider V, Levesque LE, Zhang B, Hutchinson T, Brophy JM. Association 
of Selective and Conventional Nonsteroidal Antiinflammatory Drugs with Acute 
Renal Failure: A Population-based, Nested Case-Control Analysis. Am J 
Epidemiol. 2006; 164(9):881-889. 
 
32)  Petri H, Urquhart J. Channeling bias in the interpretation of drug effects. Stat 
Med. 1991; 10(4):577-581. 
 
33) MacDonald TM, Morant SV, Goldstein JL, Burke TA, Pettitt D. Channelling 
bias and the incidence of gastrointestinal haemorrhage in users of meloxicam, 
coxibs, and older, non-specific non-steroidal anti-inflammatory drugs. Gut. 2003; 
52(9):1265-1270. 
 
34) Gross CP, Vogel EW, Dhond AJ, Marple CB, Edwards RA, Hauch O, 
Demers EA, Ezekowitz M. Factors influencing physicians' reported use of 
anticoagulation therapy in nonvalvular atrial fibrillation: a cross-sectional survey. 
Clin Ther. 2003; 25(6):1750-1764. 
 
35) Wolfe F, Anderson J, Burke TA, Arguelles LM, Pettitt D. Gastroprotective 
therapy and risk of gastrointestinal ulcers: risk reduction by COX-2 therapy.  J 
Rheumatol. 2002; 29(3):467-473. 

43



 

 
36) Leontiadis GI, Sharma VK, Howden CW. Proton pump inhibitor therapy for 
peptic ulcer bleeding: cochrane collaboration meta-analysis of randomized 
controlled trials. Mayo Clin Proc. 2007; 82(3):286-296. 
 
37) Yan BP, Gurvitch R, Ajani AE. Double jeopardy: balance between bleeding 
and stent thrombosis with prolonged dual antiplatelet therapy after drug-eluting 
stent implantation. Cardiovasc Revasc Med. 2006; 7(3):155-158. 
 
38) Brophy JM, Belisle P, Joseph L. Evidence for use of coronary stents. A 
hierarchical bayesian meta-analysis.  Ann Intern Med. 2003; 138(10):777-786. 
 
39) Newman SC. Commonalities in the classical, collapsibility and counterfactual 
concepts of confounding. J Clin Epidemiol. 2004; 57(4):325-329. 
 
40) Lefebvre G, Angers JF, Blais L. Estimation of time-dependent rate ratios in 
case-control studies: comparison of two approaches for exposure assessment. 
Pharmacoepidemiol Drug Saf. 2006; 15(5):304-316. 
 
41) Gitter MJ, Jaeger TM, Petterson TM, Gersh BJ, Silverstein MD. Bleeding and 
thromboembolism during anticoagulant therapy: a population-based study in 
Rochester, Minnesota. Mayo Clin Proc. 1995; 70(8):725-733. 
 
42) Sarawate C, Sikirica MV, Willey VJ, Bullano MF, Hauch O. Monitoring 
anticoagulation in atrial fibrillation. J Thromb Thrombolysis. 2006; 21(2):191-
198. 
 
43) Rothberg MB, Celestin C, Fiore LD, Lawler E, Cook JR. Warfarin plus 
aspirin after myocardial infarction or the acute coronary syndrome: meta-analysis 
with estimates of risk and benefit. Ann Intern Med. 2005; 143(4):241-250. 
 
44) Meade TW, Roderick PJ, Brennan PJ, Wilkes HC, Kelleher CC. Extra-cranial 
bleeding and other symptoms due to low dose aspirin and low intensity oral 
anticoagulation. Thromb Haemost. 1992; 68(1):1-6.  
 
45) Schroeder WS, Ghobrial L, Gandhi PJ. Possible mechanisms of drug-induced 
aspirin and clopidogrel resistance. J Thromb Thrombolysis. 2006; 22(2):139-150.  
 
46) Jonsson AK, Spigset O, Jacobsson I, Hagg S. Cerebral haemorrhage induced 
by warfarin-the influence of drug-drug interactions. Pharmacoepidemiol Drug 
Saf. 2007; 16(3):309-315.

44



 

 
Table 3.1: Characteristics of Upper gastro-intestinal (GI) Bleed Case-Control 
Population and relationship (odds ratio) between each characteristics and the 
first episode of Upper GI Bleed 
 

Covariates Cases 
(N=4028) 

Controls 
(N=40171) 

Crude 
Odds 
Ratio 

Adjusted 
Odds 
Ratio 

95% Confidence 
Interval 

Personal 
Characteristics 

   

 Age (year) 
      Mean [Range] 

69.3
[18-104]

69.1
[18-105]

1.06 1.05 1.03 to 1.08 

    Male Sex 2171 17237 1.58 1.50 1.40 to 1.62 
    Female Sex 1857 22934 1.00 1.00 n/a 
 Body Mass Index    
    < 18 105 690 1.57 1.52 1.21 to 1.91 
    30 to 39.9 514 4780 1.11 0.96 0.86 to 1.07 
    40 + 56 399 1.48 1.07 0.78 to 1.45 
    Missing BMI 1064 10666 1.03 1.22 1.11 to 1.35 
    18 to 29.9 2289 23636 1.00 1.00 n/a 
 Blood Pressure (BP)    
    Moderately High   
     Blood Pressure 

959 8848 0.83 0.90 0.81 to 1.01 

    Mildly High Blood  
      Pressure 

978 8264 0.90 0.93 0.83 to 1.04 

    No BP reading in  
      the past year 

1350 17541 0.55 0.71 0.64 to 0.78 

    Normal Blood  
      Pressure 

741 5518 1.00 1.00 n/a 

 Smoking    
    Smoker 1797 13780 1.58 1.23 1.15 to 1.34 
    No Smoking  
      Recorded 

468 5689 0.93 0.94 0.82 to 1.08 

    Non-Smoker 1763 5689 1.00 1.00 n/a 
 Heavy Alcohol Use 395 791 5.90 4.00 3.45 to 4.63 
Comorbid 
Conditions (patients 
with a history of 
these conditions)* 

   

  Acid Reflux Disease 431 3321 1.35 0.88 0.78 to 0.99 
  Peptic Ulcer 76 403 1.91 1.25 0.95 to 1.64 
  H. Pylori 56 228 2.50 1.91 1.38 to 2.64 
  Pulmonary  
     Embolism 

89 410 2.21 1.33 1.03 to 1.74 

  Deep vein  139 907 1.55 1.03 0.84 to 1.26 

45



 

    Thrombosis 
  Myocardial Infarct 358 2014 1.87 1.04 0.91 to 1.20 
  Angina 672 4477 1.66 1.00 0.90 to 1.11 
  Stroke 329 1489 2.38 1.56 1.35 to 1.79 
  Arrthymia 536 3362 1.73 1.11 0.99 to 1.25 
  Congestive Heart 
     Failure 

472 2290 2.34 1.33 1.17 to 1.52 

  Rheumatoid  
    Arthritis 

101 616 1.65 1.16 0.92 to 1.47 

  Other Arthritis 1252 10841 1.26 0.94 0.86 to 1.02 
  Diabetes 512 3204 1.71 1.27 1.13 to 1.42 
  Cancer 143 852 1.73 1.59 1.31 to 1.94 
  Dementia 171 1029 1.74 1.76 1.46 to 2.12 
  Liver Failure 89 62 14.69 7.00 4.78 to 10.27 
  Renal Failure 125 490 2.60 1.57 1.26 to 1.95 
  COPD 354 1875 2.04 1.41 1.23 to 1.62 
Drug Related 
Covariates** 

   

  Antibiotics 1009 5990 1.93 1.47 1.34 to 1.60 
  Antidepressants 632 3702 1.84 1.30 1.17 to 1.44 
  Corticosteroids 599 4729 1.32 0.90 0.81 to 1.00 
  Diuretics 1370 10348 1.58 1.05 0.96 to 1.14 
  H2 Antagonists 268 1287 2.18 1.83 1.58 to 2.13 
  Paracetamol 1336 7934 2.18 1.47 1.35 to 1.60 
  Proton Pump  
    Inhibitors 

930 3985 2.83 2.07 1.88 to 2.28 

* Previous history of condition in GPRD medical records prior to index date 
** Any prescription issued in the 90 days prior to the index date 
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Table 3.2: Association of Warfarin/Clopidogrel and Non-steroidal anti-
inflammatory Agents with the risk of GI haemorrhage 
 
 

 
* Any prescription issued in the 90 days before the index date 
 
** This class includes aclofenac, dexketoprofen, diclofenac, diflunisal, etodolac, 
fenoprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, mefenamic acid, 
meloxicam, nabumetone, naproxen, piroxicam, sulindac, tenoxicam and 
tiaprofenic acid.  
 
 
*** adjusted for all of the variables in table 1 as well as anticoagulant/NSAID use  
  
NSAID= Non-steroidal anti-inflammatory drug 
COX 2 = Cyclooxygenase-2 

Agent* Cases 
(N=4028) 

Controls 
(N=40171) 

Crude 
Rate Ratio 

Rate 
Ratio*** 

95% 
Confidence 
Interval 

No exposure 2124 (52.7%) 28264 
(70.4%) 

1.00 
(Reference)

1.00 
(Reference) 

Reference 

Antithrombotic Agent    
  Warfarin 281 (7.0%) 1130 (2.8%) 2.64 1.94 1.61  to  2.34 
  Clopidogrel 160 (4.0%) 532 (1.3%) 3.16 1.67 1.27  to  2.20 
NSAIDs    
  Ibuprophen 210 (5.2%) 1340 (3.3%) 1.60 1.42 1.20  to  1.67 
  Aspirin 1122 (27.9%) 7350 (18.3%) 1.85 1.39 1.26  to  1.53 
  Cox 2 inhibitors 129 (3.2%) 630 (1.6%) 2.12  1.64 1.31  to  2.06 
  Other NSAIDs** 495 (12.3%) 2469 (6.2%) 2.16 1.92 1.71  to  2.15 
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Table 3.3: Difference between expected prescriptions in the study controls of 
two separate drugs assuming no drug contra-indications and the observed 
prescriptions in the data 
 

Warfarin User Clopidogrel User Number of 
Prescriptions 
by Agent 

Expected Observed  Expected Observed  

Ibuprofen 38 17 18 17
Aspirin 207 82 98 133
Other 
NSAIDs 

70 36 33 28

 
NSAID= Non-steroidal anti-inflammatory drug
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Table 3.4: Estimates of the magnitude of the effect modification between 
NSAIDs and Warfarin/Clopidogrel on the risk of GI haemorrhage.  
Reference is exposure to none of the antithrombotic agents in the study.  
GPRD data from 2000 to 2005.   
 

Agent Cases 
(N=4028) 

Controls 
(N=40171) 

Effect 
Modification 
Rate Ratio* (95% 
CI) 

Estimated Rate Ratio 
of users of drug 
combination (95% 
CI) 

No exposure 2124 
(52.7%) 

28264 
(70.4%) 

1.00 (Reference) 1.00 (Reference) 

Warfarin Effect 
Modification* 

    

  Warfarin*Ibuprofen 11 (0.3%)  17 (0.04%) 2.57 (1.09  to 6.09) 6.63 (2.84  to 15.46) 
  Warfarin*Aspirin 48 (1.2%) 82 (0.2%) 2.23 (1.46  to 3.41) 6.48 (4.25  to 9.87) 
  Warfarin*Cox 2 6 (0.2%) 9 (0.0%) 1.37 (0.44  to 4.30) 4.62 (1.48  to 14.43) 
  Warfarin*Other   
    NSAIDs 

19 (0.5%) 36 (0.1%) 0.95 (0.50  to 1.81) 3.26 (1.74  to 6.12) 

Clopidogrel Effect 
Modification 

  

 Clopidogrel*Ibuprofen 8 (0.2%) 17 (0.04%) 1.17 (0.44  to 3.10) 2.84 (1.09  to 7.40) 
 Clopidogrel*Aspirin 73 (1.8%) 133 (0.3%) 1.75 (1.17  to 2.64) 3.90 (2.78  to 5.47) 
 Clopidogrel*Cox 2 9 (0.2%) 19 (0.1%) 0.98 (0.40  to 2.44) 2.60 (1.09  to 6.23) 
 Clopidogrel*Other  
    NSAIDs 

15 (0.4%) 28 (0.3%) 0.91 (0.43  to 1.94) 2.93 (1.38  to 6.21) 

 
*adjusted for all of the variables in table 1 as well as anticoagulant/NSAID use 
and terms to test for effect modification

49



 

Table 3.5: Medical codes (READ/OXMIS codes) used to define a serious and 
clear episode of GI haemorrhage in the GPRD database 
 
 
 
GPRD 
Medical 
Code 

Term 
Type 

Read / 
OXMIS 
Code* Read / OXMIS Term 

207375 READ J68zz00 Gastrointestinal tract haemorrhage NOS 
211264 OXMIS  569 MH INTESTINAL HAEMORRHAGE 

211265 OXMIS  569 MI 
HAEMORRHAGE 
GASTROINTESTINAL 

234580 READ J68z200 Upper gastrointestinal haemorrhage 
243602 READ J68..00 Gastrointestinal haemorrhage 
243603 READ J68z.11 GIB - Gastrointestinal bleeding 
252731 READ J68z000 Gastric haemorrhage NOS 

280274 READ J68z.00 
Gastrointestinal haemorrhage 
unspecified 

298679 READ J68z100 Intestinal haemorrhage NOS 
304156 OXMIS  5339DB DUODENAL ULCER BLEEDING 
304252 OXMIS  569 M GI BLEEDING 

306674 OXMIS  569 ME 
UPPER GASTROINTESTINAL 
HAEMORRHAGE 

 
* READ and OXMIS are UK based medical coding schemes used to classify 
medical events. 
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Figure 3.1 Schematic of the case-control design using incidence density 
sampling 
 
 
 

 
 
 
 
 
There is one case and 4 possible controls.  One control is not eligible because it 
was censored before the index date.  One control later becomes a case but is still 
an eligible control at the time shown.  The drug exposure is assessed for the case 
and the three potential controls at starting the data before the index date and for a 
time period going backwards (90 days in this study) 
 

Index Date Assessment of  
Exposure (90 days)

Endpoints

Case  

 

 Ineligible 
as control 

Controls 

Time 
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Figure 3.2: Forest plot of the odds ratio of gastro-intestinal bleeding for 
patients prescribed: aspirin (ASA), clopidogrel, warfarin  as well as non-
steroidal anti-inflammatory drugs (NSAIDs) whether alone or in 
combination.   
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Chapter 4   
 
Comparing a marginal structural model to logistic regression in the presence 
of baseline effect modification  
 
 
 
This chapter contains a manuscript that will be submitted to 

Pharmacoepidemiology and Drug Safety.     

 

Like the previous paper, the adverse effect of warfarin that are considering here is 

upper gastro-intestinal bleeding.   

 

The focus of this paper was to consider cases where the estimate of the odds ratio 

as given by a logistic regression analysis might differ from that given by a 

marginal structural model.  As both estimates have slightly different 

interpretations, it is important to understand when these models give different 

answers and the implications of these answers. 

 

Marginal structural models model the counterfactual (the same as a randomized 

control trial) which is “what is the effect of treating the whole population versus 

treating nobody?”  Adjusted logistic regression models estimate the effect with 

the covariates that are adjusted for or “what is the effect of treating vs. not treating 

people with an identical covariate pattern” 

 

The difference between the individual estimates (the conditional effect) and the 

population effect (the marginal effect) was first observed by Gail, Wiand and 

Piantadosi in their 1984 Biometrics paper.  There they discussed how the estimate 

of effect given by a clinical trial could be altered by statistical adjustment if there 

was a non-linear relationship between the exposure, outcome and a confounder.  

While this is not bias, the difference in effects can show important properties of 

the data. 
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The largest difference between conditional and marginal effects occurs because of 

effect modification.  This made it the ideal object of study for this thesis.   

 

This is also relevant because Marginal Structural Models can control for time-

varying confounders in a way that regression cannot.  However, alternative 

explanations for differences between the results of these approaches (regression 

analysis vs. marginal structural models) should also be considered.  Since a 

clinical trial always gives a marginal estimate, a higher concordance between the 

results of observational data analyzed using Marginal Structural Models and 

randomized control trials would thus be expected – even if the Marginal 

Structural Models had no improved control of confounding relative to traditional 

analysis.   

 

The contributions of authors are listed in the preface to the thesis.   
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Abstract 
 
Introduction: The proper interpretation of the results of different statistical 

modeling approaches is a key step to properly describing a drug-outcome 

relationship.   The interpretation depends on whether the statistical model used is 

estimating an individual-level (conditional) or a population-level (marginal) 

effect.   

 

Methods: We present the results of a Monte Carlo simulation study in which we 

show that strong interactions can create a difference between the marginal effect 

of exposure on outcome (as estimated by a marginal structural logistic model) and 

the conditional effect (as estimated by an adjusted logistic regression model).  We 

illustrate this approach using a real database example from the General Practice 

Research Database.  We consider the effect of warfarin on gastro-intestinal 

bleeding, in a study of 4030 cases and 79239 controls from the years 2000 to 

2005.   

 

Results: We estimated the conditional Odds Ratio (OR) of a gastro-intestinal 

bleed among patients prescribed warfarin as 2.09 (95% Confidence Interval 

(CI):1.74,2.50) using adjusted logistic regression, and the marginal OR as 17.22 

(95% CI:6.46,37.65) using a marginal structural logistic model.  This large 

difference in estimates suggests that there may be non-linear relationships or 

effect modification between warfarin exposure and the risk of gastro-intestinal 

bleeding.   
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Conclusions: Divergences between the marginal and conditional estimates of the 

effect of an exposure on an outcome can be taken as suggestive of either non-

linearity or effect modification in the exposure-outcome relationship under study. 

 
 
 
Keywords: effect modification; warfarin; marginal structural models; statistical 

models; epidemiology.; General Practice Research Database (GPRD) 
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What this study adds 

 

1) Examples have entered the literature showing differences between the results 

of marginal structural models and traditional regression approaches.  We provide 

an example of this phenomenon using the drug warfarin. 

 

2) We demonstrate, using simulations, the size of the effect modifier required in 

order to create the sort of large differences being observed.   

 

3) We show that the effect modifier must have the opposite sign compared to the 

exposure in order to generate the pattern of results seen (here and elsewhere) 

solely due to effect modification.   
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INTRODUCTION 

 

Logistic regression with adjustment for candidate confounders is currently 

the standard analytical approach to analyzing observational epidemiological data 

with binary outcomes, such as the effect of treatment with prescription drugs on 

an adverse outcome [1,2].   Logistic regression generates an estimated odds ratio 

(OR) which can be used to approximate the ratio of event rates (rate ratio, RR) 

between exposed and unexposed subjects [2, 3]. 

 

However, regression is not the only analytical technique used to analyze 

observational data.  Marginal structural models (MSMs) are an alternative for the 

analysis of pharmacoepidemiology studies [4-6] although other alternatives exist 

[7].  MSMs are models for the marginal causal effect of exposure on potential 

outcomes; the parameters are typically estimated using inverse probability of 

treatment weighting (IPTW).  MSMs rely on two important assumptions.  The 

first assumption, common to all observational research including regression, is 

that there are no unmeasured confounders [8].  The second assumption is that 

there are no impossible treatment combinations (the experimental treatment 

assumption) [9]. 

 

The MSM approach generates a pseudopopulation through IPTW 

reweighting; the pseudopopulation includes potentially counterfactual outcomes 

for all subjects under each treatment condition.   Since we have the complete set 
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of counterfactual outcomes in the pseudopopulation, we can directly contrast the 

outcomes of subjects under treatment and non-treatment.  Very rare treatment 

combinations can reduce the stability of the estimate of the MSM and result in a 

loss of normality of the estimates in finite samples.  This is due to the presence of 

large weights distorting the pseudopopulation [4].  However, stabilization of the 

weights resolves this issue in most practical problems [4]. 

 

Adjusted logistic regression and marginal structural logistic models give 

estimates of the parameters of a model that have different interpretations.  The 

parameter estimated by a marginal model is the effect of giving the treatment to 

everyone in the entire source population relative to withholding it from everyone.  

This parameter is very logically connected to the difference between 

counterfactuals - the contrast between treating everybody in the population versus 

treating nobody in the population.  This gives a MSM a direct causal 

interpretation. 

 

This marginal effect is different from the conditional effect that is 

estimated by adjusted logistic regression.  The conditional effect is the effect of 

the exposure within each stratum of the collection of covariates in the statistical 

model [10, 11].  This is the effect of treatment at the individual level.  As noted by 

Gail et al., when the relationship between the response variable and exposure 

(treatment and covariates) is linear, the conditional effect and marginal effect are 

equivalent [12].  Marginal and conditional estimates of the odds ratio will differ, 
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however, when the relationships are not linear or when effect modification is 

present [13-14].  This can occur even in the case of an estimate from a clinical 

trial [12].  This feature of the odds ratio and hazard ratio, sometimes referred to as 

non-collapsibility, is often considered a disadvantage of the odds ratio [15-16].  

However, odds ratios do become effectively collapsible when the outcome is rare, 

in which case the conditional and marginal estimates will be similar [17]. 

 

This difference between marginal and conditional effects has been 

previously reported in both a real example [18] and in a teaching example [11].  

The real example looked at the effect of administering thrombolytic therapy 

(tissue plasminogen activator or t-PA) as a post-stroke treatment to reduce the risk 

of death [18].  This study, by Kurth et al., found large differences in the estimates 

for the odds ratio (OR) of the outcome between treated and untreated when 

different modeling techniques were used.  In particular, the estimate from 

multivariate logistic regression was OR=1.9 while the estimate of the IPTW 

model was OR=10.8 [18].  More interestingly, the unadjusted regression estimate 

was OR=3.4 so the two techniques moved the estimate in opposite directions 

relative to the crude [18].  This evidence was consistent with the possibility that 

there was a difference between the effect of the drug at the population level and at 

the individual level.  The IPTW model correctly estimated what would be the 

effect of the drug if it were given to the entire population even in cases where the 

drug should not be prescribe. 
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The goal of the present study was to use a series of simulated datasets to 

introduce ``hidden'' effect modification to generate cases where the crude estimate 

of the effect of an exposure on an outcome lay between an adjusted logistic model 

(conditional effect) and an IPTW model (marginal effect).  The effect modifier 

was hidden, or unknown, because a known effect modifier would be explicitly 

modeled in both adjusted regression models and MSMs.  These simulations 

illustrated that a difference between the parameters estimated by a MSM and the 

conditional estimates of the parameters could be due to the presence of effect 

modification or non-linearity in the data.  We then explored both effect 

modification and non-linearity using Monte-Carlo simulations. 

 

 

MATERIALS AND METHODS 

 

There are two components to this study: a Monte-Carlo simulation study 

and an illustration based on empirical data. 

 

Monte-Carlo study 

 

In this Monte Carlo simulation study, we aim to show that by introducing 

effect modification into the data, we can cause the conditional and the marginal 

estimates to diverge. 
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Assumptions and Approach 

 

Our study goal was to develop a simulation approach that was consistent 

with the structure of data reported by Kurth et al. [18].   As a basic assumption, 

we assumed a scenario where there was a relatively rare treatment (such as t-PA) 

and outcome (such as death).  This was consistent with the treatment rate 

observed in the Kurth et al. study where the authors reported only 212 treated 

patients compared to 6057 patients who were not treated [18].  Among the 

patients population in the study by Kurth et al., only 469 deaths were reported 

[18]. 

 

We considered a situation with a single exposure XE with two levels (0/1) 

and a single covariate (which was also a potential confounder) (XC) with three 

levels (0/1/2).   To explore the effect of the interaction between the exposure (XE) 

and covariate (XC) on the marginal and conditional estimates we used a strong 

interaction so that the effect could be clearly seen.  To make this interaction more 

complex, we assumed that the relationship between the covariate and outcome 

was linear but that the relationship between the interaction and outcome was 

quadratic. 

 

Generation of Outcome 
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We estimated the probability of a positive outcome from the logistic 

regression equation: 

 

P(Y=1) =
e

e
Ω

Ω

+1
  

 

where Ω was given by: 

 

Ω= λ0 + λ1 XE + λ_2 XC + λ3 XE (XC)2 + λ4 XC XE 

 

We set λ0 = -4.595 which yielded an approximately 1% chance of a 

positive outcome when both XE and XC are equal to zero.  We manipulated λ1, λ2 

and λ3 across scenarios to create different relationships between the exposure, 

covariate and outcome.  In all cases, we have considered the case where λ4= 0. 

 

Data Generation 

 

We set the level of exposure to be P(XE=1) = 5% when XC =0.   We 

started by generating two levels of a covariate with the following distribution: 

P(XC =0) =70%, P(XC =1) =20% and P(XC=2) =10%.  Since it was required that 

the covariate affect both the treatment and the outcome in order for the covariate 

to be a confounder [19], we set P(XE=1) = 2% when XC =1 and P(XE=1) = 1% 

when XC =2. 
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We used a sample size of 20000 observations to create a large enough 

sample size to identify rare events.  Our least likely combination of covariates was 

XC =2 and XE=1 which occurred in only 0.1% of observations (giving an average 

of 20 observations in a given random sample).  Much smaller numbers of 

observations would be liable to make the influence of a rare covariate/exposure 

combination (which was one of our assumptions) too difficult to detect in our 

simulations as there might not be any events with this combination of exposure 

and covariate in some of the independent random samples.  However, 20000 

observations was three times the size of Kurth's study [17].  A study based on 

larger sample size than this would be unrealistic in the context of a typical 

pharmacoepidemiology study. 

 

We generated 1000 independent random samples of this data which was 

sufficient to allow us to systematically evaluate the performance of various 

candidate models. 

 

All generation of the independent random samples was done using SAS 

version 9.1.3 running on a Windows XP platform with coding done by one author 

(JD). 

 

Scenarios 
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We explored the following scenarios for these models to systematically 

test the properties of these models in the presence of interactions: 

 

1) Changes in the measure of effect (λ1= 0 or λ1 = 0.68925) between a null effect 

of exposure and a real effect. 

 

2) Changes in the intensity of the covariate λ2 = - 0.68925, λ2 = 0 and λ2 = 

0.68925).  This enabled us to consider cases where there was no effect of the 

covariate on the outcome, where the covariate protects against the outcome and 

where the covariate promotes the outcome. 

 

3) Changes in the interaction effect (λ3= 0 vs. λ3= 0.919).  This enabled us to 

compare cases where the summary of the conditional odds ratios approaches that 

of the marginal odds ratio to those where there was substantial difference.  

 

Altering the size of the different parameters for λ1 would simply alter the size of 

the conditional effect.  Altering λ2 would increase or decrease the size of the 

potential confounding. 

 

 

Statistical Analysis 
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We considered 4 logistic regression models in order to analyze this data 

representing various degrees of complexity.  The names of these models 

correspond to the columns in Tables 1 and 2 of the results section.  The models 

were: 

 

1) The crude model: 

Logit [P(Y=1)] = β0 + β1XE 

 

2) The adjusted model: 

Logit [P(Y=1)] = β0 + β1XE + β2 XC 

 

3) The linear interaction model: 

Logit [P(Y=1)] = β0 + β1XE + β2 XC + β3 XE XC  

 

4) The true model: 

Logit [P(Y=1]] = β0 + β1XE + β2 XC + β3 XE XC
2 

 

where Y was an outcome (0/1), XE was our drug exposure (0/1) and XC was our 

confounding variable (0/1/2). 

 

The marginal structural logistic model was specified as: 

 

Logit [P(YX=1)] = β0 + β1XE 
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where YX was the weighted outcome Y.  This model was fit by a weighted 

logistic regression with weights given by: 

 

w1= P
P

Ei

E  

 

for the exposed observations and 

 

w0= P
P

Ei

E

−

−

1
1

 

 

in the unexposed, where PE  was the overall probability of exposure in the cohort 

and PEi
 was the probability of a given observation, i, getting the treatment 

received given their covariate pattern [11].  We modeled the individual 

probability of exposure using logistic regression, which is typically sufficient, 

although non-parametric approaches can also be used [5, 8].  The form of the 

model was: 

 

Logit [P(XE=1)] = γ0 + γ1 XC  

 

where XE was the exposure status and XC was the covariate status. 
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We presented the mean estimate of the odds ratio for the event of interest 

as well as the mean estimate of β1 across scenarios.  We also presented the 

variance, bias and mean squared error (MSE) for each of these 12 scenarios [20-

21].  Bias was based on the true value β1 from the logistic model used to generate 

the outcomes given random data. We also estimated bias for MSMs in the 

scenarios without interactions term where the marginal and conditional effect 

should be identical. 

 

In this study we used the conditional effect as the basis for comparing 

differences between these approaches.  The use of conditional estimate as the 

standard for reporting effects is a common decision [22] as individual effects are 

often the parameter of most interest to the medical decision maker [14].  Marginal 

effects give the estimate across the population without reference to the individual 

[12] and most medical decisions are made within the context of the characteristics 

of the individual patient. 

 

Sensitivity testing of the assumptions for collapsibility 

 

Collapsibility occurs when the measure of association between two 

parameters remains constant across a series of strata [15]. 

 

To explore the conditions under which the summary of conditional odds 

ratios (across all strata) was collapsible and the conditional and marginal odds 
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ratios are equivalent, we considered a series of scenarios designed to demonstrate 

when the conditional and marginal effects differ.  We contrasted rare and 

common exposures/outcomes as well as different underlying relationships 

between the exposure and outcome.  In all cases, we set λ1 and λ2 equal to 

0.68925. In all scenarios we considered a λ3 = 0.0919; this less extreme value for 

λ3 illustrated the difference in estimates of the size of the effect of the exposure β1 

between the models in the absence of extremely strong effect modifiers and non-

linear covariates. 

 

To generate a common (as opposed to a rare) covariate, we set the level of 

exposure to be P(XE=1) = 50%, P(XE=1) = 20% when XC=1 and P(XE=1) = 10% 

when XC=2.  This was exactly a 10 fold increase over the probability of exposure 

in the rare case defined above. 

 

As part of our sensitivity testing of our simulation assumptions, we 

considered different data generating equations to examine different assumptions 

about the relationship between the response variable, exposure and covariate.  The 

first example was a linear equation: 

 

Ω= λ0 + λ1XE + λ2 XC 

 

The second example was one with a quadratic covariate: 

 

70



 

Ω= λ0 + λ1XE + λ2 XC + λ3XC
2 

 

The third example was a linear effect modifier: 

 

Ω= λ0 + λ1XE + λ2 XC + λ3 XC XE 

 

This last case differed from the primary model considered in our study in that the 

effect of the covariate was linear and not quadratic.  In these scenarios we 

replaced the "True Model" with a model with a "Quadratic covariate model" 

specified as: 

 

Logit [P(Y=1)] = β0 + β1XE + β2 XC + β3 XC
2 

 

These scenarios allowed us to explore the impact of the assumptions that we made 

in our primary set of simulations. 

 

Illustration 

 

We illustrated the concepts under study in a population-based, 

retrospective case-control study in the United Kingdom's General Practice 

Research Database (GPRD) [23].   
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We identified 4030 cases of upper GI bleeding in the GPRD between the 

years 2000 and 2005.   Each case was matched on index date with up to 20 

potential controls drawn the general population and satisfying the matching 

criterion yielding a total of 79239 controls.  Both cases and controls were required 

to have at least 3 years of information in the database. The matching on index date 

requires us to assume that the population was stationary (or independent of time) 

[24].  This assumption required that the population was stable (which is true in a 

dynamic cohort like the GPRD that samples a relatively fixed fraction of a stable, 

large population) and that the incidence rate of the disease was constant over time 

[24].  The range of events across the study period was between 759 and 840 (with 

no trend) suggesting that our assumption of a stationary population was 

approximately met in this population (over this time period and for this outcome).   

 

It is not required that the rate of drug prescriptions be stable over time 

which is important as GPRD prescribing patterns can vary strongly over time 

[25].  It would also have been possible to use a higher degree of matching with 

this type of study design when computing the conditional effect of treatment [26], 

but a design matched only on time was used to make the two modeling 

approaches directly comparable.   

 

The primary exposure of interest was the prescription medication warfarin 

which was known to be associated with bleeding complications [27].  Patients 

were considered exposed to warfarin if they received at least one prescription for 
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warfarin in the preceding 90 days.  We used three modeling strategies:  a crude 

regression estimate from conditional logistic regression, a multivariate estimate 

using conditional logistic regression and a marginal structural model [25]. 

 

The multivariate models were adjusted for a broad range of potential 

confounders including: age, sex, body mass index, clinical blood pressure, 

smoking, heavy alcohol use, GI disease (acid reflux, peptic ulcer, positive test for 

H. Pylori), indications for warfarin use (pulmonary embolism, deep vein 

thrombosis, stroke, arrthymia), general comorbidity (angina, myocardial 

infraction, congestive heart failure, arthritis, diabetes, cancer, dementia, liver or 

renal failure and chronic obstructive pulmonary disease) or other drugs associated 

with bleeds (non-steroidal anti-inflammatory drugs including aspirin, 

paracetamol, gastric acid suppressants, corticosteroids, antibiotics, 

antidepressants, clopidogrel and heparin).  To adequately assess potential 

confounders we considered medical records recorded at any time since the patient 

was enrolled in the database but before the index date.  Blood pressure was 

assessed in the year before the index date.  Drug exposure was measured by any 

prescription being issued in the 90 days before index date. 

 

The odds ratios were generated using conditional logistic regression.  For 

the marginal structural model, we developed a probability of treatment model 

using information on the controls [24] (who can be seen as a random sample of 

the source population from which the cases arise) using all available covariates to 
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estimate the probability of getting the treatment received given the patient's 

covariate pattern.  We applied this model to all of the observations in the study 

and inverted it to obtain the weights.  We then stabilized the weights using the 

baseline probability of getting the treatment received [1, 2].  We created 

confidence intervals for the IPTW-based parameter estimate using bootstrapping 

[28]. 

 

RESULTS 

 

The results from our five candidate models where we designed the 

scenarios for the true effect of the interaction to be zero are presented in Table 1.  

Here we see that all models do well in controlling for confounding except for the 

crude model.  All models perform well in terms of accuracy (MSE).  These 

simulations enable us to verify that the marginal and conditional effects are 

equivalent given our rare outcome study assumptions.  This was important as, if 

the outcome were common, differences between these estimates could be due to 

other causes than effect modification. 

 

The marginal and conditional estimates were similar in these scenarios 

because we defined all of our effects as linear and did not have any effect 

modification [12]. 

 

Simulated Data for Effect Modification 
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The results where we have designed the scenarios to have a non-linear 

interaction between the covariate and the exposure are presented in Table 2.  Only 

the true logistic model performs well at modeling the conditional effect of 

exposure across all scenarios.  The model with the linear interaction term tends to 

systematically overcorrect for the interaction and has extremely high variance 

between estimates.   However, failing to statistically adjust for the interaction 

between the covariate and the exposure, as with the adjusted model and the crude 

model, results in overstating the effect of exposure on outcome. 

 

The results from MSMs in these scenarios differ from all of the logistic 

models.  It was important to note that the estimate from the MSM was always 

greater than that of the true model because the positive interaction term λ3 = 0.919 

created greater changes at the population level among those observations with a 

non-zero covariate term. 

 

When the covariate was negative λ2 = -0.68925 we observe the expected 

reduction in the size of the effect of the adjusted model as compared to the crude 

model,  This was because a negative confounding covariate caused the model to 

overestimate the association between the exposure and outcome.  When the 

covariate and the interaction are in opposite directions, you can get the crude 

estimate lying between the conditional and marginal estimates as seen in cases 7 

and 8. 
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Increasing the size of the interaction had a fairly direct impact on the 

marginal effects.  Increasing λ3 to 1.8238 for case 12 gave a mean estimate for the 

effect of treatment, β1, across 1000 simulations for the IPTW-based estimate of 

β1=2.537 and for the true model gave an estimate of β1=0.637.  Likewise, 

decreasing λ3 to 0.4595 gave a mean estimate of β1over 1000 simulations for the 

MSM of β1=1.445 and for the true model β1=0.658.  Of course, the impact on the 

odds ratio estimated by the MSM for β1 due to varying λ3 will also depend on the 

distribution of the covariate in the overall population. 

 

Simulated Data for Non-linearity 

 

To demonstrate the conditions under which the marginal and conditional 

effects would diverge, we conducted a sensitivity analysis on the results of case 6 

from Table 1.  These results are presented in Table 3.   We see that the variability 

between estimates was greatly reduced in the scenario the common outcome and 

exposure when compared to the scenario with rare exposure and outcome. This 

sensitivity analysis verifies that the odds ratio is non-collapsible for common 

exposures even in the absence of an interaction term [14, 17].  However, the mean 

odds ratio across simulations remained the same for the rare exposure until the 

linear effect modifier was introduced when they diverged. 

 

Real Data Illustration 
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The results of our case control study designed to illustrate a difference 

between conditional and marginal effects in real data are presented in Table 4.  In 

this case, we see a divergence between the estimate of the OR with adjusted 

logistic regression and the estimate of the OR given by the MSM.  The results are 

consistent with previous hypotheses of effect modification by age in warfarin 

studies [11].  Part of this was because the cases (mean age=69.0 years) were older 

than the source population (mean age=48.2 years).  When we restricted the 

analysis to the portion of the population over 60, the estimates became more 

similar, suggesting that the effect of warfarin differs in older vs. younger patients. 

 

DISCUSSION 

 

 The objective of this study was to use simulated data to demonstrate how a 

hidden effect modification can give rise to differences between the conditional 

effect given by logistic regression and the marginal effect given by an IPTW-

based MSM.  When there is a large difference between the parameter estimates of 

an adjusted logistic regression model and a marginal structural model, effect 

modification in the data is a possible cause. 

 

 The Kurth et al. study, which motivated this study, evaluated an exposure-

outcome relationship between tPA post-strike and death.  In this analysis, 

statistical adjustment for potential confounders reduced a crude estimate of the 
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effect of t-PA treatment on mortality from OR=3.4 (95% CI:2.3, 4.9) to OR=1.9 

(95% CI:1.2, 3.1).  However, when estimates for the counterfactual effect of 

treatment were derived using inverse probability of treating weighting (IPTW), an 

estimate of OR=11.8 (95% CI:2.5, 47.0) was obtained.  The authors resolved this 

using stratification by propensity scores above 5% and determined that the 

“correct” estimate for the IPTW-based model was OR=1.1 (95% CI:0.6, 1.9).  

These results were compared to a meta-analysis of RCT results which estimated 

the effect as OR 1.2 (95% CI:0.9, 1.4) [18].  This effect could be explained due to 

either true effect modification or unmeasured confounding among “unusual” (and 

thus very highly weighted) patients.   

 

 One result of our simulation study was to show the dramatic size of the 

effect modification that would be required to generate this level of difference in 

estimates.  Another was to rule out reasonable levels of non-linearity as a 

potential alternate explanation for difference between conditional (statistical 

adjustment) and marginal (IPTW-based) results.  Finally, we demonstrated that 

the effect modification term needs to have an opposite sign from the confounder 

in order for statistical adjustment and IPTW to shift the estimate in opposite 

direction relative to the crude estimate.  This suggests important properties about 

the possible mechanisms that could lead to this type of effect modification and the 

interpretation of these results and is consistent with the hypothesized mechanism 

of Stürmer et al. [11].   
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 The conditional effect is the "stratum specific" or estimate of effect of 

treatment on the individual.  The marginal effect is the effect of either treating or 

not treating across the entire population.  Deviations between these estimates for 

rare outcomes appear to only occur in the presence of either effect modification or 

a non-linear relationship between the treatment, response variable and covariates 

[12-14].  The results of the primary simulation study show two scenarios that are 

consistent with the pattern of divergent point estimates seen in Kurth et al. [18] 

(cases 7 and 8 from Table 2).  This may suggest that there is either effect 

modification or non-linearity is a possible explanation for the relationship 

between the exposure and outcome in that study [18]. 

 

 The empirical bias in the parameter estimates from the true model and 

linear interaction model show less bias than the adjusted model when there is a 

covariate with an effect on the outcome but the true effect of the interaction is 

zero.  This is surprising because the one would expect the correctly specified 

model show equal or better performance than the over-specified models.  A 

plausible explanation is that these two models correct for "chance confounding" 

by including variables that are pure predictors of exposure in the model [29].  

This sort of behavior has been seen in variable selection studies for propensity 

score-based models [29] where the inclusion of pure risk factors improves the 

parameter estimates for the same reason.  The improved performance of rich 

models for propensity score is further discussed by Robins et al. where it is shown 

that including extraneous surrogate variables can improve precision [30].  
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However, the MSE is lower for the adjusted model than the true model when 

there is no interaction but a confounding covariate is present.  The crude model 

has the best MSE when there is no interaction and the covariate has no effect on 

the outcome suggesting that it is the most accurate in this case. 

 

 One limitation to our approach is that, while a difference between 

marginal and conditional estimates may indicate the presence of effect 

modification, it may not be possible to identify this interaction, to properly 

specify it once identified or to distinguish it from non-linearity in the covariate.  

Failure to properly specify the functional form of a complex relationship can lead 

to complex residual confounding although advanced techniques do exist to deal 

with relationships between exposure and outcome that do not have a simple 

functional form [31].  It is also important to note that these results only apply to 

baseline effect modification and that time-varying effect modifiers require special 

treatment [32-33].   

 

 The difference in results in Table 4 between the general population and 

those restricted to age 60+ are almost certainly due to the unusual nature of young 

patients who are both exposed to warfarin and have gastro-intestinal bleeds.  

These patients are very rare and, therefore, are given very high weights.  If these 

patients also have other unusual characteristics that are not captured in the 

database, than the difference in estimates between OR=17.2 and OR=4.2 for the 

Marginal Structural Model analysis could be due to unmeasured confounding of 
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these rare but heavily re-weighted observations.  This is similar to what was found 

by Kurth et al. as their IPTW-based estimate was much closer to the null when 

they stratified their analysis by propensity score [18]. 

 

 The results of this Monte-Carlo study suggest an additional sensitivity 

analysis that could be used to detect effect modification or non-linearity in the 

data for a pharmacoepidemiology study.  The increased use of sensitivity analysis 

is an important part of richly describing medical data and properly interpreting 

[34-35].  If the results of a MSM differ greatly from a logistic regression analysis 

then one can justify the decision to systematically test for one or more important 

effect modifiers or to introduce non-linear regression techniques.  Given that 

properly specified effect modification will provide a richer description of the data 

and allow better understanding of the effect of drug therapy, any improvements in 

detecting these features are an important contribution to improving our 

understanding of the effects of drugs in populations. 
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Table 4.1: Comparison of parameter estimates (where β1 is the estimator of the treatment effect) 
by type and specification of model with no interaction present.  Results from 1000 Simulated 
datasets with 20,000 observations each: Estimates for no interaction term (λ3 = 0) 
 
λ1 λ2 Parameter 

Estimated 
Crude 
Model 

Adjusted 
Model 

Linear 
Interaction 
Model 

True 
Model 

Marginal 
Structural 
Model* 

Case 1: No true effect of exposure, negative confounder 
0 - 0.68925 Odds Ratio 1.12 0.99 1.00 1.01 0.99 
  β1 0.031 -0.089 -0.085 -0.069 -0.104 
  Bias - 0.031 0.089 0.085 0.069 0.104 
  Variance 0.182 0.183 0.192 0.186 0.204 
  MSE 0.183 0.191 0.199 0.191 0.215 

Case 2: True effect of exposure, negative confounder 
0.68925 - 0.68925 Odds Ratio 2.24 1.99 2.00 2.02 1.98 

  β1 0.770 0.650 0.652 0.663 0.640 
  Bias -0.081 0.039 0.037 0.026 0.049 
  Variance 0.082 0.082 0.087 0.085 0.094 
  MSE 0.089 0.084 0.088 0.086 0.096 

Case 3: No true effect of exposure, no confounder 
0 0 Odds Ratio 0.99 0.99 1.00 1.02 0.99 
  β1 -0.086 -0.086 -0.082 -0.066 0.112 
  Bias 0.086 0.086 0.082 0.066 0.112 
  Variance 0.172 0.174 0.188 0.180 0.230 
  MSE 0.179 0.181 0.195 0.184 0.243 

Case 4: True effect of exposure, no confounder 
0.68925 0 Odds Ratio 1.98 1.98 2.00 2.02 1.97 

  β1 0.649 0.649 0.654 0.664 0.632 
  Bias 0.040 0.040 0.035 0.025 0.057 
  Variance 0.076 0.077 0.085 0.082 0.101 
  MSE 0.078 0.079 0.086 0.083 0.104 

Case 5: No true effect of exposure, positive confounder 
0 0.68925 Odds Ratio 0.78 0.99 1.00 1.01 1.01 
  β1 -0.318 -0.073 -0.081 -0.063 -0.093 
  Bias 0.318 0.073 0.081 0.063 0.093 
  Variance 0.142 0.144 0.182 0.170 0.226 
  MSE 0.243 0.149 0.189 0.174 0.235 

Case 6: True effect of exposure, positive confounder 
0.68925 0.68925 Odds Ratio 1.55 1.98 2.00 2.01 2.00 

  β1 0.407 0.654 0.653 0.661 0.644 
  Bias 0.282 0.035 0.036 0.028 0.045 
  Variance 0.064 0.065 0.083 0.077 0.106 
  MSE 0.144 0.066 0.084 0.078 0.108 

* with no effect modification present, conditional effect = marginal effect under our rare outcome 
assumption so we will present bias and mean square error for the Marginal Structural Model. 
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Table 4.2: Comparison of parameter estimates (where β1 is the estimator of the treatment effect) 
by type and specification of model with a strong interaction present.  Results from 1000 Simulated 
datasets with 20000 observations each: Estimates for with an interaction term (λ3 = 0.919).   
 

* with effect modification present, conditional effect ≠ marginal effect under our rate outcome 
assumption so we do not present bias or mean square error for the marginal structural model.    
 

λ1 λ2 Parameter 
Estimated 

Crude 
Model 

Adjusted 
Model 

Linear 
Interaction 
Model 

True 
Model 

Marginal 
Structural 
Model 

Case 7: No true effect of exposure, negative confounder 
0 - 0.68925 Odds Ratio 1.46 1.32 0.94 1.00 2.34 
  β1 0.316 0.209 -0.157 -0.081 0.740 
  Bias - 0.316 - 0.209 0.157 0.081 n/a 
  Variance 0.143 0.148 0.210 0.185 0.258 
  MSE 0.243 0.192 0.235 0.192 n/a 

Case 8: True effect of exposure, negative confounder 
0.68925 - 0.68925 Odds Ratio 2.89 2.63 1.87 1.99 4.52 

  β1 1.030 0.934 0.585 0.651 1.454 
  Bias -0.341 -0.245 -0.104 0.038 n/a 
  Variance 0.065 0.069 0.093 0.081 0.117 
  MSE 0.181 0.129 0.104 0.082 n/a 

Case 9: No true effect of exposure, no confounder 
0 0 Odds Ratio 1.80 1.86 0.87 0.99 4.40 
  β1 0.547 0.580 -0.235 -0.084 1.425 
  Bias -0.547 -0.580 0.235 0.084 n/a 
  Variance 0.089 0.094 0.218 0.169 0.122 
  MSE 0.388 0.430 0.273 0.176 n/a 

Case 10: True effect of exposure, no confounder 
0.68925 0 Odds Ratio 3.33 3.51 1.77 1.99 7.56 

  β1 1.180 1.230 0.527 0.654 1.995 
  Bias -0.491 -0.541 0.162 0.035 n/a 
  Variance 0.045 0.049 0.097 0.076 0.057 
  MSE 0.286 0.342 0.123 0.077 n/a 

Case 11: No true effect of exposure, positive confounder 
0 0.68925 Odds Ratio 1.94 2.61 0.79 0.99 6.14 
  β1 0.635 0.933 -0.333 -0.075 1.789 
  Bias - 0.635 - 0.933 0.333 0.075 n/a 
  Variance 0.054 0.056 0.236 0.149 0.052 
  MSE 0.457 0.926 0.347 0.155 n/a 

Case 12: True effect of exposure, positive confounder 
0.68925 0.68925 Odds Ratio 3.10 4.25 1.69 1.99 8.67 

  β1 1.116 1.430 0.475 0.653 2.144 
  Bias -0.427 -0.741 0.214 0.036 n/a 
  Variance 0.033 0.035 0.105 0.071 0.032 
  MSE 0.215 0.584 0151 0.072 n/a 
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Table 4.3: Sensitivity Analysis for marginal versus conditional effects.  Results from 1000 
Simulated datasets with 20000 observations each: all cases have the same exposure and 
confounder effect size (λ1 = 0.68925, λ2 =0.68925 ).  Common  
exposures are 10 times as likely as rare exposures.   

 

λ0 λ3 Parameter 
Estimated 

Crude 
Model 

Adjusted 
Model 

Quadratic 
Confounder 
Model 

Linear 
Interaction 
Model 

Marginal 
Structural 
Model 

Case `13: Rare Exposure and Outcome, Linear Model 
 -4.595 0 Odds Ratio 1.55 1.98 1.98 2.00 2.00 

  Β1 0.407 0.654 0.654 0.653 0.644 
  Variance 0.0637 0.0651 0.0652 0.0828 0.1058 

Case 14: Rare Exposure and Outcome; Quadratic Model 
-4.595 0.0919 Odds Ratio 1.42 2.00 1.99 2.02 2.01 

  β1 0.325 0.662 0.656 0.666 0.648 
  Variance 0.0617 0.0639 0.0640 0.0827 0.1083 

Case 15: Rare Exposure and Outcome, Linear Effect Modifier 
-4.595 0.0919 Odds Ratio 1.60 2.05 2.05 2.00 2.15 

  β1 0.437 0.686 0.686 0.653 0.718 
  Variance 0.627 0.0642 0.0643 0.0819 0.1045 

Case 16:  Common Exposure and Outcome, Linear Model 
-0.60 0 Odds Ratio 1.49 1.99 1.99 1.99 1.96 

  β1 0.397 0.689 0.689 0.689 0.674 
  Variance 0.0008 0.0009 0.0009 0.0011 0.0009 

Case 17:  Common Exposure and Outcome; Quadratic Model 
-0.60 0.0919 Odds Ratio 1.41 2.00 1.99 2.01 1.95 

  β1 0.341 0.694 0.689 0.699 0.666 
  Variance 0.0007 0.0009 0.0009 0.0011 0.0009 

Case 18:  Common Exposure and Outcome, Linear Effect Modifier 
-0.60 0.0919 Odds Ratio 1.50 2.02 2.03 1.99 2.02 

  β1 0.406 0.704 0.705 0.689 0.700 
  Variance 0.0007 0.0009 0.0009 0.0011 0.0009 
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Table 4.4: Comparison of the effect of warfarin exposure on the risk of gastro-intestinal bleeding 
using different analytical techniques with different interpretations in a case control study; data 
from the General Practice Research Database (2000to 2005) 
 
 
All ages Cases 

(N=4030) 
Controls 
(N=792391) 

Odds 
Ratio 

95% 
Confidence 
Interval 

Unexposed  3747 (93.0%) 39041 (99.0%) 1.00 Reference 
Crude estimate 281 (7.0%) 810 (1.0%) 7.23 6.28, 8.31 
Adjusted (age+sex only) 
estimate 

281 (7.0%) 810 (1.0%) 2.81 2.42, 3.25 

Adjusted Estimate 281 (7.0%) 810 (1.0%) 2.09 1.74, 2.50 
Marginal Structural Model 281 (7.0%) 810 (1.0%)  17.22 6.46, 37.65*  
Age > 60 Cases 

(N=2903) 
Controls 
(N=20741) 

Odds 
Ratio 

95% 
Confidence 
Interval 

Unexposed  2655 (91.5%) 20074 (96.8%) 1.00 Reference 
Crude estimate 248 (8.5%) 667 (3.2%) 2.72 2.32, 3.20 
Adjusted (age+sex only) 
estimate 

248 (8.5%) 667 (3.2%) 2.43 2.05, 2.87 

Adjusted Estimate 248 (8.5%) 667 (3.2%) 1.87 1.52, 2.30 
Marginal Structural Model 248 (8.5%) 667 (3.2%) 4.22 1.73, 9.27* 
* 95% confidence interval estimated by 1000 iterations of an empirical bootstrap 
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4.3 Supplementary Material 
 
 
  The following three tables show additional results based on the second 

thesis paper that were beyond the scope of the published article.   

  The first table presents the results of the marginal structural model 

analysis with matching for age and time.  The results in the actual paper do not 

contain any matching.  The time matching does not matter as the population is 

stationary.  But the age matching reduces the size of the point estimate 

considerably.  It also makes the estimate partially conditioned and thus less 

directly interpretable.   

  The second two tables are just additional simulations to test model 

assumptions.  The first repeats table 3 with much larger sizes of effect modifiers 

and non-linear terms.  This table demonstrates that the rare disease assumption is 

not sufficient to ensure equality of the conditional and marginal estimates when 

the effect size of the non-linear term is very large.   

  The last table shows how much a smaller covariate impacts the results of 

the second table in the paper.   Here we see that the separation between the 

marginal and conditional effects is clearly being driven by the interaction and not 

the covariate.    
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Table 4.5: Sensitivity analysis for matched data: Comparison of the effect of 
Warfarin exposure on GI Bleed using different analytical techniques with 
different interpretations in a GPRD case control study 
 
 

Analytical 
Technique 

Cases 
(N=4028) 

Controls 
(N=40171) 

Odds 
Ratio 

95% 
Confidence 
Interval 

Unexposed  3747 (93.0%) 39041 (97.2%) 1.00 Reference 
Crude estimate 281 (7.0%) 1130 (2.8%) 2.64 2.31 - 3.03 
Adjusted Estimate 281 (7.0%) 1130 (2.8%) 2.15 1.81 – 2.54 
Marginal Structural 
Model 

281 (7.0%) 1130 (2.8%) 5.12 2.86 – 8.80* 

* 95% confidence interval estimated by 1000 iterations of an empirical bootstrap 
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Table 4.6: Sensitivity Analysis for marginal versus conditional effects with 
large interaction/non-linear term.  Results from 1000 Simulated datasets with 
20000 observations each: all cases have the same exposure and confounder 
effect size (λ1 = 0.68925, λ2 =0.68925 ).  Common exposures are 10 times as 
rare exposures 
  
 
 

 
 
 

λ0 λ3 Parameter 
Estimated 

Crude 
Model 

Adjusted 
Model 

Quadratic 
Confounder 
Model 

Linear 
Interaction 
Model 

Marginal 
Structural 
Model 

Case `19: Rare Exposure and Outcome, Linear Model 
 -4.595 0 Odds Ratio 1.55 1.98 1.98 2.00 2.00 

  Β1 0.407 0.654 0.654 0.653 0.644 
  Variance 0.0637 0.0651 0.0652 0.0828 0.1058 

Case 20: Rare Exposure and Outcome; Quadratic Model 
-4.595 0.919 Odds Ratio 0.53 2.20 2.00 3.01 1.53 

  β1 -0.634 0.767 0.669 1.052 0.415 
  Variance 0.0306 0.0482 0.0440 0.1076 0.0299 

Case 21: Rare Exposure and Outcome, Linear Effect Modifier 
-4.595 0.919 Odds Ratio 2.33 3.08 3.09 2.00 4.79 

  β1 0.827 1.104 1.105 0.654 1.539 
  Variance 0.0434 0.0451 0.452 0.785 0.0582 

Case 22: Common Exposure and Outcome, Linear Model 
-0.60 0 Odds Ratio 1.49 1.99 1.99 1.99 1.96 

  β1 0.397 0.689 0.689 0.689 0.674 
  Variance 0.0008 0.0009 0.0009 0.0011 0.0009 

Case 23:  Common Exposure and Outcome; Quadratic Model 
-0.60 0.919 Odds Ratio 1.07 2.03 1.99 2.06 1.82 

  β1 0.083 0.710 0.689 0.721 0.599 
  Variance 0.0008 0.0011 0.0010 0.0011 0.0007 

Case 24:  Common Exposure and Outcome, Linear Effect Modifier 
-0.60 0.919 Odds Ratio 1.60 2.23 2.25 1.99 2.37 

  β1 0.469 0.805 0.813 0.689 0.861 
  Variance 0.0008 0.0009 0.0009 0.0010 0.0008 
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Table 4.7: Sensitivity Analysis for when the effect of the covariate is smaller 
than the effect of the exposure.  Results from 1000 Simulated datasets with 
20000 observations each.  Estimates for covariate term (λ2 = 0.344625) and 
data generated with same interaction structure as Table 4.2.   

 
 
 

λ1 λ3 Parameter 
Estimated 

Crude 
Model 

Adjusted 
Model 

Linear 
Interaction 
Model 

True 
Model 

Marginal 
Structural 
Model 

Case 25: No true effect of exposure, no interaction 
0 0 Odds Ratio 0.89 0.99 1.00 1.02 0.99 
  β1 -0.189 -0.085 -0.081 -0.062 -0.117 
  Variance 0.164 0.165 0.186 0.177 0.235 

Case 26: True effect of exposure, no interaction 
0.68925 0 Odds Ratio 1.79 1.98 2.02 2.01 1.99 

  β1 0.547 0.651 0.653 0.662 0.637 
  Variance 0.072 0.073 0.084 0.080 0.108 

Case 27: No true effect of exposure, interaction 
0 0.919 Odds Ratio 1.95 2.26 0.83 0.99 5.54 
  β1 0.634 0.781 -0.284 -0.081 1.677 
  Variance 0.067 0.071 0.228 0.161 0.073 

Case 28: True effect of exposure, interaction 
0.68925 0.919 Odds Ratio 3.37 3.99 1.72 1.99 8.73 

  β1 1.200 1.361 0.496 0.655 2.145 
  Variance 0.039 0.0426 0.098 0.071 0.044 
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Chapter 5 
 
Modeling blood pressures changes after drug treatment in the 
general practice research database 
 
 
This chapter contains a manuscript that has been submitted to 

Pharmacoepidemiology and Drug Safety.   

 

The adverse effect of warfarin considered in this paper is a hypothesized increase 

in systolic blood pressure among patients who are prescribed warfarin therapy.  

This is an unexpected adverse effect that was reported in the secondary analysis 

of a very small clinical trial of warfarin therapy.   While it is unlikely that such a 

finding is not by chance, the existence of such an effect would be of clinical 

importance.  This is because it could become important to alter blood pressure 

medications when beginning warfarin therapy if this therapy was leading to 

important rises in systolic blood pressure.   

 

However, before we can answer this question, we need to find out of the data in 

the GPRD can give answers that are comparable to those found in randomized 

control trials on changes in blood pressures.  Therefore, the primary focus of this 

paper is validating the blood pressure information in the General Practice 

Research Database in order to be able to examine this hypothesis about the effect 

of warfarin on blood pressure.  This validation is done using drugs with well 

known effects on blood pressure from clinical trials.  Multiple approaches to 

modeling this data are considered and the results are compared with each other.   

 

The contributions of authors are listed in the preface to the thesis.   
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ABSTRACT 

 

Purpose: Observational studies using clinical databases, such as the United 

Kingdom’s General Practice Research Database (GPRD), may provide an 

alternative to clinical trial data for detecting longitudinal changes in blood 

pressure due to drug exposures that vary over time.  Blood pressure data measured 

at variable intervals and often missing present a particular methodological 

challenge to the analysis of such studies.  

 

Methods: To assess effects on blood pressure, we extracted from the GPRD 

several cohorts of new drug users of warfarin (n=21,532), ibuprofen (n=92,037), 

proton pump inhibitors (n=153,695), statins (n=118,704), rofecoxib (n=6,399) and 

celecoxib (n=6,217) from 2001 through 2003.  Several blood pressure readings 

were missing either before or after initiating therapy.  We compared the results of 

analysis using a linear mixed model with a pre-post quasi-experimental design, 

using the multiple imputation approach to account for missing data.  

 

Results: There was evidence that the missing blood pressure data were not 

missing completely at random as subjects with more blood pressure readings 

tended to have higher recorded values.  For statins, the mixed model estimated a 

change in systolic blood pressure of -3.80 mmHg (99% confidence interval: -3.97 

to -3.63), similar to the quasi-experimental model and to the -4.00 mmHg 

estimated from clinical trials.  Sensitivity analyses indicate that these estimates 

are robust.  For rofecoxib, the change in systolic blood pressure were 2.20 mmHg 
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(99% confidence interval: 1.09 to 3.32) and 1.21 mmHg (99% confidence 

interval: 0.21 to 2.22) for the two methods respectively, again confirming the 

findings of randomized trials. 

 

Conclusion: With appropriate statistical techniques, GPRD blood pressure data 

can be used to estimate blood pressure changes secondary to drug therapy. 
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What this study adds 

 

1) Blood pressure data in clinical databases, such as the General Practice 

Research Database, can provide valid estimates of the effect of drug treatment on 

blood pressure 

 

2) Missing data need to be accounted for when using blood pressure data in a 

clinical database 

 

3) Estimates of blood pressure changes in clinical database studies are robust to 

modest departures from the assumption that the data are missing at random and 

different approaches yield similar estimates 
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1. INTRODUCTION 

 

 Blood pressure is an important biologic parameter that is predictive of 

cardiovascular outcomes [1].  Elevated blood pressure is widely targeted for 

reduction in order to decrease the mortality and morbidity due to cardiovascular 

disease [1].  It is estimated that roughly half of deaths due to coronary heart 

disease can be attributed to sub-optimal blood pressure control [1].  Therefore, the 

detection of drugs that may unexpectedly effect blood pressure is an important 

public health issue. 

 

 However, acquiring information on and developing estimates of 

population level blood pressure changes due to drug exposures is challenging [2].  

The individual effects of medications are frequently estimated using data from 

randomized controlled trials whose participants may not be representative of the 

general population.  One means of obtaining such information on the population 

level effects of treatment on blood pressure is through clinical practice databases 

where blood pressure is recorded as part of routine care.  However, before these 

data can be used to estimate population level effects, it is important to verify that 

the estimates of drug effects obtained from such data are comparable to those 

obtained from randomized controlled trials.   

 

Clinical databases are often prone to missing information.  Subjects 

enrolled in these databases may not visit their physician in a given time frame or 

the physician may choose not to measure the blood pressure of a specific subject.  

This creates a problem of missing blood pressure data.  The issue of missing 

blood pressure data has been previously considered as part of studying drop-outs 

from clinical trials [3, 4] and missed visits in prospective cohort studies [5].  In 

this study, we will apply similar approaches to clinical databases where the data 

tend to be less balanced than in studies with regular follow-up visits.   
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2. DESCRIPTION OF THE PROBLEM 

 

The General Practice Research Database (GPRD) is a large clinical 

database that stores the medical treatment information of about 3.2 million 

residents of the United Kingdom (UK) at any point in time [6].  The GPRD has 

been operating in different forms since 1988 and contains over 50 million person-

years of data.  The data recorded in the GPRD include prescriptions issued, 

clinical diagnoses, demographic/lifestyle data, laboratory tests and blood pressure 

readings. 

     

The GPRD is a very rich database source of population level information 

on blood pressure.  However, the blood pressure readings in the GPRD are taken 

by general practitioners at patient visits and so are recorded at irregular intervals.   

Furthermore, some subjects (possibly the healthiest subjects) will have no 

recorded blood pressure values in the GPRD at all.  Therefore, it is important to 

validate the results of analyses using GPRD blood pressure data by comparing 

these results with previously validated sources. 

 

A common source of information on the effects of medications is 

randomized clinical trials which are considered the current gold standard.  

Comparisons of results from GPRD data with those derived from randomized 

controlled trial data can determine if these data sources are in broad agreement.  If 

so, the GPRD has the additional advantage that it can then be used to estimate the 

effects of a drug on blood pressure in populations that are often excluded or 

under-represented in clinical trials such as the very elderly [5]. 

 

In addition, GPRD data on blood pressure can be used to examine 

epidemiological questions when blood pressure data from randomized clinical 

trials are not readily available.  One example is warfarin, a drug that has a long 

history of adverse event reports [7].  A recent study reported a new possible side 
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effect of warfarin: increased systolic blood pressure [8].  We will attempt to 

replicate this finding using GPRD blood pressure data. 

   

Therefore, the objectives of this study were: 

 

1) To validate the blood pressure data in the GPRD.  To do this we use three 

classes of drugs with known effects on blood pressure as well as two separate 

approaches to modeling the data.  These results will then be compared to those 

found by randomized controlled trials.     

 

2) To illustrate the use of GPRD blood pressure data by testing for clinically 

meaningful effect of a drug (warfarin) where the effects on blood pressure are not 

known from clinical trials and are debated in the literature. 

 

We defined a clinically meaningful result as a change of 2 points (mmHg) 

in systolic blood pressure based on previous definitions [9].   

 

 

 

3. DESCRIPTION OF THE COHORT 

 

We formed a series of cohorts of new users of different medications.  We 

focused on new users to avoid the confounding that may arise with medication 

effects among prevalent users [10].  The medications that we considered for this 

study are statins (known to lower blood pressure), non-steroidal anti-

inflammatory drugs or NSAIDs (known to increase blood pressure), warfarin 

(unknown effect on blood pressure) and proton pump inhibitors (uninvolved with 

blood pressure changes).  None of these medications are directly used to treat 

hypertension. 
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We defined the index date for a subject as the date of the first ever 

prescription of any study drug (a statin, warfarin, an NSAID or a proton pump 

inhibitor) for each subject since their initial enrolment in the GPRD.   All subjects 

were required to have been enrolled in the GPRD for at least one year prior to this 

index date to verify that they were new users of the medication and had not been 

prescribed the drug in a previous medical practice. 

 

We distinguish between types of NSAID (ibuprofen, rofecoxib, celecoxib) 

as they are thought to have different effects on blood pressure.  We wanted to 

replicate the increasing effect of NSAIDs on blood pressure as a function of their 

Cox 2 selectivity.  However, to exclude switchers from one type of NSAID to 

another, we only considered subjects for whom one of these three NSAIDs was 

the first ever NSAID prescription issued to this subject in the GPRD. 

 

We focused this study on blood pressure changes in a stable and relatively 

healthy population to increase the comparability of participants in the GPRD and 

the RCTs to which we compare our results. Therefore all subjects who transferred 

out of the GPRD within two years of their index date were excluded.  This 

included all subjects who died within the 2 year period after their first 

prescription.  Consequently, we have a full three years of information on all 

subjects in this study. 

 

In order to mimic the results obtained from clinical trials as precisely as 

possible, an intention to treat (ITT) analysis was used where subjects are 

classified as treated from the date of their first prescription and persisting 

throughout follow-up.  This approximation is less biased for drugs with many 

repeat prescriptions in this population (statins, warfarin) than for drugs with low 

levels of repeated prescribing (ibuprofen).  This is because the ITT approach 

assumes that once a subject becomes exposed they have perfect adherence to 

therapy.  If adherence is good, then ITT is a good approximation.  However, with 

poor adherence there will be misclassification of exposure so that treatment 
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exposure may be overestimated.  This typically results in a biased estimate of the 

treatment effect towards the null, leading to an underestimate of the effect of the 

drug on blood pressure.  

 

4. MIXED MODELS APPROACH 

 

 Our primary analytical strategy used linear mixed models [11] to account 

for the pattern with which blood pressure information is recorded in the GPRD.  

Blood pressure readings on the same subject will be correlated over time.  Linear 

mixed models take this correlation into account and can accommodate variations 

from the population average blood pressure trajectories that may occur at the 

individual level.   

  

Following Diggle [12], we modeled blood pressure as a vector response 

variable, Yi for individual i using a linear mixed model with a random effect for 

both time (allowing different subjects to have different blood pressure 

trajectories) and intercept (allowing subjects to have different baseline blood 

pressures).  The statistical model used was: 

Yi = β Xi + Ui Zi + ei 

where Yi is the response variable (blood pressure readings for person i), Xi is a 

matrix of covariates that have fixed effects, and Zi is a matrix of covariates that 

have random effects (typically a subset of Xi; in our case we assume random 

intercepts and slopes in time so that Zi is a matrix whose first column is a vector 

of 1’s and whose second is the vector of time).  The vector of fixed coefficients is 

β and Ui is a multivariate Normal vector with zero mean that accounts for person 

i’s deviation from the population-average fixed effect.  The vector of error terms 

is represented by ei; these are also Normally distributed with zero mean.  

  

The explicit model for the unadjusted linear mixed model using only time, 

t, and treatment, d (0 or 1), as covariates can be expressed as: 
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Yi = β0 + β1 ti + β2 di +  U0i +U1i ti + ei 

 

In this model, Xi = (1, ti, di) and Zi = (1, ti).  Here β0 is the untreated population 

average blood pressure at time zero (one year prior to the first drug prescription), 

β1 represents population-average blood pressure changes over time and β2 

represents the effect of treatment on blood pressure.  The deviations Ui and ei 

were assumed to be mutually independent.  The random effects, U0i and U1i, were 

assumed to have mean zero and to be Normally distributed.  The random 

intercept, U0i, represents the subject-specific deviation from the population-

average blood pressure at time zero.  The random slope, U1i, represents the 

subject-specific deviation from the population average trajectory of blood 

pressures over time [13].   

 

The mixed model approach allowed us to efficiently handle the 

unbalanced structure in the clinical database where subjects have different 

measures at different times [13].  As a further advantage, linear mixed models are 

unbiased when the data are missing at random or missing completely at random 

so long as the mean model and correlation structure are correctly specified [14].   

 

We adjusted for the baseline population characteristics that are presented 

in Table 5.1. Repeat prescriptions of the treatment were not considered in our 

analysis as an intention to treat approach was taken, an approach that has been 

used in other studies [15].  We used 99% confidence intervals as the large cohorts 

allowed for a high level of precision in our estimates.     

 

All blood pressure readings in the first 90 days after beginning the new 

medication were excluded to ensure that the medication had sufficient time to 

affect blood pressure.  Analyses were conducted using SAS 9.1.3 using the PROC 

MIXED procedure using restricted maximum likelihood (REML).    

 

 

104



 

 

 

5. PRE-POST DESIGN WITH MULTIPLE IMPUTATION 

 

 Another strategy we employed to deal with the effect of treatment on 

blood pressure was to analyze the data using a pre-post quasi-experimental design 

with the decision to begin prescribing medication to the subjects as the “policy 

change” [16].  In this design, the last blood pressure reading taken before the 

beginning of drug treatment (up to one year before) was taken to be the baseline 

blood pressure.  The first reading measured one year post-therapy initiation was 

taken as the outcome.  An illustration of the quasi-experimental design is given in 

Figure 5.1.   

 

The main challenge with this approach was that some subjects had no 

blood pressure measures either before or after beginning therapy.  These missing 

values are unlikely to be missing completely at random.  Therefore, an analysis 

based entirely on complete cases was inappropriate [17].  A good choice for this 

approach was multiple imputation [18] which is a well validated approach to 

estimating missing values when the data are missing at random [19].  Multiple 

imputation yields improved estimates of the variance over conventional single 

imputation techniques by accounting for variability in the imputation procedure 

[18].  

 

 Multiple imputation was used to estimate the unobserved blood pressures 

by modeling blood pressure as a function of a broad range of covariates 

representing both the demographic, clinical and medication use characteristics of 

the cohort.  Estimation was performed using PROC MI in SAS with a multiple 

chain full imputation using the MCMC method and 10 copies.  Using a richer 

model for the imputation step than for the primary analysis can improve coverage 

and reduce the size of confidence intervals [20] and so this did not impact the 

validity of our results.  

105



 

 

5.1 Missing not at random sensitivity analysis 

 

 Following van Buuren et al. [5], we performed an analysis to determine 

the sensitivity of the pre-post design treatment effect estimates to the assumption 

that data were missing not at random (MNAR) due to unrecorded predictors.  We 

considered the case where subjects with missing information had an increase of 

either 1 mmHg or 2 mmHg of SBP above what was predicted by the imputation 

model  These results were then compared with the results found in the quasi-

experimental study which assumed that data were missing at random to determine 

whether estimates were robust to small violations of this assumption.     

 

5.2 Effect of blood pressure measurement density on mortality   

 

To further explore the comparability of the GPRD with other studies of 

blood pressure, a new cohort was formed in which we no longer excluded subjects 

who died or were censored in the two years after beginning treatment.  In this 

cohort, we considered how the number of blood pressure readings at baseline or 

the absence of baseline blood pressure information predicted mortality in the two 

years post-treatment.  We focused this sub-analysis on the warfarin and statins 

cohorts to determine whether the number of blood pressure measurements were 

predictive of all-cause mortality.  This also allowed us examine whether the effect 

of the number of blood pressure readings varied between relatively healthy 

subjects (statin users) and much sicker subjects (warfarin users).    

 

The association between number of blood pressure measurements and 

mortality was estimated using a Cox proportional hazards model [21] with the 

outcome being time to death.  The index date for this analysis was taken to be the 

date that the subject began drug therapy for either warfarin or a statin.  Subjects 

who transferred out of their GPRD practice in this two year time window were 

censored.  We defined three fixed-time exposure categories based on the number 

106



 

of blood pressure recordings available before the index date when therapy begins: 

no blood pressure readings at baseline, between 1 and 3 blood pressure readings at 

baseline (reference) and 4 or more blood pressure readings at baseline.   

 

Since all of the measurements were taken before the index date (baseline) 

and used to predict future mortality, this study is not subject to immortal time bias 

[22].  If we wanted to model the effect of blood pressure readings after baseline, 

some version of time-dependent Cox would be required to account for the time-

varying nature of post-treatment blood pressure readings [23] as well as their 

change in prognostic significance over time [24]. 

 

 

6. RESULTS 

 

 The results of the linear mixed models analysis are presented in Table 5.2.  

These results indicate a clinically important change [9] in SBP for two drugs: 

statins, which decrease SBP by 3.8 mmHg (99% confidence interval (CI): 3.63 to 

3. 97), and rofecoxib, which increases SBP by 2.2 mmHg (99% CI: 1.09 to 3.32).   

  

Using the pre-post quasi-experimental design approach to the analysis 

with multiple imputation to account for the missing blood pressure values 

suggested that the patients with missing data had different average blood 

pressures than those with recorded blood pressures.  Table 5.3 shows the pattern 

of baseline systolic blood pressure based on the pattern of blood pressure 

reporting in the data.     

 

From Table 5.4 we observe that ibuprofen, with an increase in SBP of 0.53 

mmHg (99% CI: 0.17 to 0.90), and rofecoxib, with an increase of SBP of 1.21 

mmHg (99% CI: 0.21 to 2.22), are associated with statistically significant 

changes.  However, neither drug showed a clinically meaningful increase in 

systolic blood pressure due to therapy.  Statins continue to show a strong effect in 
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reducing systolic blood pressure compared to proton pump inhibitors with a 

reduction of 3.81 mmHg (99% CI: 3.54 to 4.08) in systolic blood pressure.  

Sensitivity analyses for blood pressure being MNAR in Table 5.4 suggests that 

estimates of the change in blood pressure are robust to small underestimates of 

blood pressure in subjects with missing baseline or exit blood pressure readings.   

 

Figure 5.2 shows the absolute values of the estimates using a complete 

case approach to the missing data as compared to using multiple imputation.    

 

The estimates for the effect of the number of blood pressure measurements 

on mortality are found in Table 5.5.  The results suggest that the subjects who are 

missing blood pressure information at baseline have higher mortality than those 

with recorded information.  In particular, close follow-up (as marked by more 

than 3 visits with a blood pressure reading taken in a one year period) appears to 

be protective against mortality in the next two years.  Sensitivity analyses indicate 

that including the subjects who perish in the follow-up period in the mixed model 

has no impact on the statistical inference (Table 5.6).     

 

To examine the size of bias that could be caused by changes in 

antihypertensive drug use, we conducted an additional sensitivity analysis: we 

included antihypertensive drugs (by class including: beta blockers, angiotensin-

converting enzyme inhibitors, angiotensin receptor blockers, diuretics, calcium 

channel blockers and alpha blockers) in the random effects model for systolic 

blood pressure.  We obtained an adjusted estimate for the change in systolic blood 

pressure of 0.16 (95% CI: -0.38 to 0.70) for warfarin and -3.22 (95% CI: -3.39 to 

-3.05) for statins. 

 

7. CONCLUSIONS 

   

The effect of statin treatment on blood pressure is consistent with the 

effect observed in clinical trials for subjects with blood pressure profiles 
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comparable to those we captured in the GPRD [25].  Two different approaches 

gave similar answers for the effect of statin therapy on blood pressure with a 

linear mixed model estimating a decrease of 3.80 mmHg (99% CI: 3.63 to 3.97) 

and the quasi-experimental design estimating a decrease of 3.81 mmHg (99% CI: 

3.54 to 4.08).   

 

These estimates are both qualitatively similar to a meta-analysis of clinical 

trial which predicted a drop of approximately 4.00 mmHg in subjects with the 

blood pressure range of the subjects included in this study [25].  The meta-

analysis reviewed 20 clinical trials in which statins were used, blood pressures 

were recorded and concomitant antihypertensive treatment was not altered [25].  

The estimates were larger for subjects with systolic blood pressure above > 130 

mmHg or diastolic blood pressure > 80 mmHg.  The baseline characteristics of 

the subjects in the GPRD analyzed here are similar to the subgroup with elevated 

blood pressure that was considered in the meta-analysis.  The decrease in diastolic 

blood pressure of 2.18 mmHg (99% CI: 2.09 to 2. 28) given by the linear mixed 

model is, however, larger than the decrease of 1.24 mmHg (95% CI: -2.57 to 

0.10) predicted by the meta-analysis.  However, the estimate derived from the 

GPRD data is within the 95% confidence interval found by the meta-analysis.       

 

The estimates for NSAIDs are lower than expected [26].  This is likely 

explained by low adherence as few subjects refilled prescriptions for these drugs 

in this population. ITT approaches in observational studies always run the risk of 

a strong bias toward the null when adherence is low [27].  Nevertheless, the 

estimates correctly rank the ordering of the change in blood pressure by the 

degree of Cox-2 selectivity of each type of NSAID.    

  

The unexpected effect of warfarin on blood pressure found by Krishnan et 

al. [8] was not replicated in this study.  The GPRD is a very rich database 

containing information on a large number of subject characteristics.  Thus, it is 

unlikely that the analysis of warfarin effects performed here suffers from any 
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substantial bias due to confounding.  The ability to search for unexpected drug 

effects in a large and unselected population database is one of the strengths of the 

GPRD.   

 

As expected, proton pump inhibitors do not cause clinically important (or 

statistically significant) changes in blood pressure.  The small increase seen in the 

mixed model analysis is entirely due to subjects on long term NSAID therapy also 

being prescribed proton pump inhibitors.  This small effect is removed completely 

if we adjust for post-baseline NSAID exposure.    

 

An ITT approach was taken in all of the analyses presented in this study.  

It is unlikely that the decision to discontinue prescriptions, especially for 

medications indicated for long term use, is random.  If the reason for 

discontinuation is related to other unmeasured subject characteristics, an “as 

treated” (observational) analysis could produce biased estimates.  This may be 

especially true of blood pressure where general lifestyle effects, such as salt 

intake, may affect blood pressure and also be linked to the probability of being 

adherent to a medication.  

  

The statistical approach used in this study is not suitable for drugs that are 

prescribed for hypertension or for examining the effects of drug treatment regimes 

that change over time.  In cases where treatment is time-varying, unbiased 

estimation may require the use of different techniques from those used here such 

as a structural nested mean model [28].  The need for these special models arises 

because the decision of the physician either to treat or to discontinue treatment is 

typically a function of the subject’s time-varying treatment history.  Traditional 

regression techniques will not give valid estimates in the presence of time-varying 

confounders [29] in a longitudinal setting especially if some of the variables are 

intermediate between the treatment and the outcome [30].   
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The estimates of missing blood pressure given by the pre-post design 

using multiple imputation support the notion that, on average, subjects who do not 

have blood pressure values recorded in a one year time span have lower blood 

pressure than those who do.  However, we also observe that subjects who are 

missing blood pressure readings are also at higher risk of mortality as reported by 

van Buuren et al. [5].  This suggests that subjects who are more ill are less likely 

to have a reading recorded.  However, it is not clear if the increase in mortality is 

due to a lower intensity of follow-up or poorer underlying health status.   

  

The sensitivity analysis for MNAR data indicate that estimates from the 

pre-post design analysis were robust to small increases in the modelled blood 

pressure of the subjects with missing data. Therefore, even if the multiple 

imputation approach leads to small underestimates of the true blood pressure of 

subjects with missing values, the direction of the change in blood pressure is 

correctly estimated.  Including censored subjects (i.e. subjects who die in the 2 

years post-treatment) in the mixed model produces remarkably consistent results.  

 

It is also possible that changes in antihypertensive therapy could have 

acted as a time varying confounder that should be adjusted for in the statistical 

model [23, 31].  The prevalence of antihypertensive drug therapy increases over 

time in both the statin and the warfarin groups.  This is expected as both groups 

are likely to have some level of cardiovascular disease and likely experience 

increasing disease severity with time.  However, these groups do not show similar 

changes in blood pressure despite similar rises in intensity of therapy suggesting 

that the observed changes in blood pressure are an effect of the drugs and not of 

changes in adjunct therapies.   

  

Modeling unexpected blood pressure changes due to drug treatment is 

feasible in clinical databases such as the GPRD and other databases with similar 

characteristics [32].  The use of random effects models makes it possible to 
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account for the unbalanced nature of clinical data and allows valid inferences to 

be made about the effect of medications on blood pressure. 

 

Ethical Review: Ethical review for this study was done by the Independent 

Scientific Advisory Committee for MHRA database research   

 

Funding: This study was funded by the Canadian Institutes of Health Research 

(CIHR) and the Canadian Foundation for Innovation.  

 

112



 

REFERENCES 
 
1) Marmot M, Elliott P.  Coronary Heart Disease Epidemiology: From aetiology 
to public health, 2nd edition.  Oxford: Oxford University Press, 2005: 153-173.   
 
2) Heitjan DF, Landis JR. Assessing Secular Trends in Blood Pressure: A 
Multiple-Imputation Approach. J Am Stat Assoc. 1994; 89 (427): 750-759. 
 
3) Cook NR. An imputation method for non-ignorable missing data in studies of 
blood pressure. Stat Med. 1997;16(23):2713-28. 
 
4) Cook NR. Imputation strategies for blood pressure data nonignorably missing 
due to medication use. Clin Trials. 2006;3(5):411-20. 
 
5) van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing 
blood pressure covariates in survival analysis. Stat Med. 1999;18(6):681-94. 
 
6) Jick SS, Kaye JA, Vasilakis-Scaramozza C, Garcia Rodriguez LA, Ruigomez 
A, Meier CR, Schlienger RG, Black C and Jick H. Validity of the general practice 
research database. Pharmacotherapy 2003; 23(5):686-689. 
 
7) Delaney JA, Opatrny L, Brophy JM, Suissa S.  Interactions between anti-
thrombotic drugs and the risk of gastro-intestinal haemorrhage. CMAJ. 2007; 
177(4):347-351. 
 
8) Krishnan S, Chawla N, Ezekowitz MD, Peixoto AJ. Warfarin therapy and 
systolic hypertension in men with atrial fibrillation. Am J Hypertens. 2005;18(12 
Pt 1):1592-9. 
 
9) Lange S, Freitag G. Choice of delta: requirements and reality--results of a 
systematic review. Biom J. 2005; 47(1):12-27. 
 
10) Ray WA. Evaluating medication effects outside of clinical trials: new-user 
designs. Am J Epidemiol. 2003;158(9):915-20. 
 
11) Gelman A, Hill J. Data Analysis Using Regression and 
Multilevel/Hierarchical Models.  New York: Cambridge University Press, 2007. 
 
12) Diggle PJ. An approach to the analysis of repeated measurements. Biometrics. 
1988;44(4):959-71. 
 
13) Laird NM, Ware JH. Random-effects models for longitudinal data. 
Biometrics. 1982;38(4):963-74. 
 
14) Little RJ. Modeling the Drop-Out Mechanism in Repeated-Measures Studies.  
J Am Stat Assoc. 1995; 90(431): 1112-1121.   

113



 

 
15) Suissa S. Effectiveness of inhaled corticosteroids in chronic obstructive 
pulmonary disease: immortal time bias in observational studies. Am J Respir Crit 
Care Med. 2003;168(1):49-53. 
 
16) Harris AD, McGregor JC, Perencevich EN, Furuno JP, Zhu J, Peterson DE, 
Finkelstein J. The use and interpretation of quasi-experimental studies in medical 
informatics. J Am Med Inform Assoc. 2006;13(1):16-23. 
 
17) Greenland S, Finkle WD. A critical look at methods for handling missing 
covariates in epidemiologic regression analyses.  Am J Epidemiol. 
1995;142(12):1255-64. 
 
18) Rubin DB. Multiple imputation after 18+ years. J Am Stat Assoc. 1996; 91: 
473-489. 
 
19) Schafer JL, Graham JW. Missing data: our view of the state of the art. 
Psychol Methods. 2002;7(2):147-77. 
 
20) Meng XL. Multiple-imputation inferences with uncongenial sources of input 
(with discussion). Stat Sci 1994; 10: 538-573. 
 
21) Cox DR. Regression Models and Life Tables (with Discussion).  J R Stat Soc 
B. 1972; 34:187-220. 
 
22) Suissa S. Immortal time bias in observational studies of drug effects. 
Pharmacoepidemiol Drug Saf. 2007;16(3):241-9. 
 
23) Abrahamowicz M, MacKenzie T, Esdaile JM. Time-dependent hazard ratio: 
Modeling and hypothesis testing with application in lupus nephritis. J Am Stat 
Assoc. 1996; 91 (436): 1432-1439. 
 
24) Abrahamowicz M, MacKenzie TA. Joint estimation of time-dependent and 
non-linear effects of continuous covariates on survival. Stat Med. 2007;26(2):392-
408. 
 
25) Strazzullo P, Kerry SM, Barbato A, Versiero M, D'Elia L, Cappuccio FP. Do 
statins reduce blood pressure?: a meta-analysis of randomized, controlled trials. 
Hypertension. 2007;49(4):792-8. 
 
26) Aw TJ, Haas SJ, Liew D, Krum H. Meta-analysis of cyclooxygenase-2 
inhibitors and their effects on blood pressure. Arch Intern Med. 2005;165(5):490-
6. 
 
27) Ray WA. Observational studies of drugs and mortality. N Engl J Med. 
2005;353(22):2319-21. 

114



 

 
28) Moodie EE, Richardson TS, Stephens DA.  Demystifying Optimal Dynamic 
Treatment Regimes. Biometrics. 2007; 63(2):447-55. 
 
29) Hernán MA, Hernandez-Diaz S, Robins JM. A structural approach to 
selection bias. Epidemiology 2004; 15:615–25. 
 
30) Robins J. The control of confounding by intermediate variables. Stat Med. 
1989; 8:679–701. 
 
31) Schneeweiss S. Methods in pharmacoepidemiology: time-varying drug effects 
revisited. Pharmacoepidemiol Drug Saf. 2006; 15(2):93-94. 
 
32) Lewis JD, Schinnar R, Bilker WB, Wang X, Strom BL. Validation studies of 
the health improvement network (THIN) database for pharmacoepidemiology 
research. Pharmacoepidemiol Drug Saf. 2007; 16(4):393-401. 
 
 
 
 
 
 
 
 
 
 
 

115



 

 
Table 5.1: A description of characteristics for new drug user cohort.  All 
variables are measured at baseline (date of 1st Rx) unless otherwise stated.  
Data from the General Practice Research Database from 2001 through 2003.   
 

 Statin Proton 
Pump 
Inhibitor 

Ibuprofen Celecoxib Rofecoxib  Warfarin 

Number of 
Patients 

118,704 153,695 92,032 6,217 6,399 21,532 

Baseline Covariates 
Age [SD] 64.5 [11.2] 56.5 [16.3] 51.5 [17.0] 62.5 [15.6] 61.4 [15.8] 67.5 [13.1] 
% Male 53.7 44.8 44.3 40.1 41.4 53.0 
% Alcohol 
Abuse 

2.9 3.4 2.4 2.3 2.2 2.6 

% Myocardial 
Infarct 

12.9 4.2 2.0 3.5 3.7 10.5 

% Stroke 5.3 2.0 0.9 1.5 1.9 6.7 
% Congestive 
Heart Failure 

4.4 2.7 1.1 2.1 2.2 12.3 

% Arrythmia 7.9 4.8 2.3 4.8 4.0 39.5 
% Pulmonary 
Embolism 

1.3 0.9 0.4 0.7 0.9 10.1 

% Deep Vein 
Thrombosis 

2.1 1.7 0.8 1.7 1.6 17.7 

% Diabetes 24.6 5.9 4.4 5.9 5.5 9.5 
% Gastro-
intestinal 
bleed 

0.4 0.6 0.1 0.4 0.4 0.6 

% Renal 
Failure 

1.2 0.7 0.1 0.1 0.2 1.7 

% Liver 
Failure 

0.1 0.2 0.2 0.3 0.4 0.1 

% Arthritis 25.9 21.5 6.7 19.2 19.0 30.5 
Num Hosp 
Prev Year 

0.3 [1.1] 0.3 [1.3] 0.1 [0.6] 0.1 [0.7] 0.1 [0.7] 0.6 [1.7] 

Covariates measured at one year after baseline 
Number of Rx 
refills  

8.1 3.4 0.6 1.9 2.0 7.8 
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Table 5.2: Effect of beginning drug treatment on blood pressure (using an 
intention to treat approach).  Analysis is with a longitudinal linear mixed 
model.  Data from the general practice research database from 2001 through 
2003.   
 
 Number Crude 

Change in 
Blood 

Pressure 

Adjusted 
Change in 

Blood 
Pressure 

99% 
Confidence 

Interval 

1) Systolic Blood Pressure 
Statin 118,704 -4.18 -3.80 -3.97 to -3.63 
Proton Pump 
Inhibitor 

153,695 0.13 0.51 0.29 to 0.74 

Ibuprofen 92,032 1.11 1.17 0.86 to 1.49 
Celecoxib 6,217 1.03 1.30 0.22 to 2.38 
Rofecoxib 6,399 2.01 2.20 1.09 to 3.32 
Warfarin 21,532 -1.01 -0.23 -0.78 to 0.31 
2) Diastolic Blood Pressure 
Statin 118,704 -2.40 -2.18 -2.28 to -2.09 
Proton Pump 
Inhibitor 

153,695 0.18 0.26 0.13 to 0.38 

Ibuprofen 92,032 0.71 0.67 0.49 to 0.85 
Celecoxib 6,217 0.44 0.45 -0.14 to 1.05 
Rofecoxib 6,399 1.16 1.10 0.50 to 1.70 
Warfarin 21,532 -1.00 -0.70 -1.00 to -0.39 
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Table 5.3: Effect of study drugs on systolic blood pressure (SBP) and 
diastolic blood pressure (DBP) relative to change observed in proton pump 
inhibitor users (control drug).   Quasi-experimental pre-post study design 
analyzed with linear regression.  Data from the General Practice Research 
Database from 2001 through 2003.   
 
 Crude 

SBP 
Adjusted SBP (99% 
confidence interval) 

Crude DBP Adjusted DBP (99% 
confidence interval) 

Full Analysis 
Statin -5.13 -3.81 (-4.08 to -3.54) -3.08 -2.25 (-2.45 to -2.06) 
Ibuprofen 0.90 0.53 (0.17 to 0.90) 0.44 0.15 (-0.19 to 0.49) 
Celebrex 0.43 0.48 (-0.62 to 1.58) -0.01 0.17 (-0.51 to 0.85) 
Rofecoxib 1.05 1.21 (0.21 to 2.22) 0.41 0.39 (-0.49 to 1.27) 
Warfarin -2.21 -0.00 (-1.10 to 1.10) -1.78 -0.47 (-0.94 to 0.00) 

Sensitivity Analysis (+1 mmHg for missing value) 
Statin -5.10 -3.76 (-4.06 to -3.46) -3.05 -2.21 (-2.38 to -2.04) 
Ibuprofen 0.89 0.52 (0.15 to 0.89) 0.44 0.14 (-0.20 to 0.47) 
Celebrex 0.42 0.47 (-0.62 to 1.58) -0.02 0.16 (-0.52 to 0.85) 
Rofecoxib 1.32 1.20 (0.20 to 2.20) 0.39 0.38 (-0.50 to 1.26) 
Warfarin -2.21 0.03 (-1.07 to 1.14) -1.79 -0.44 (-0.90 to 0.03) 

Sensitivity Analysis (+2 mmHg for missing value) 
Statin -5.06 -3.72 (-4.01 to -3.42) -3.02 -2.17 (-2.34 to -2.00) 
Ibuprofen 0.89 0.51 (0.14 to 0.87) 0.43 0.12 (-0.22 to 0.46) 
Celebrex 0.40 0.47 (-0.63 to 1.57) -0.04 0.16 (-0.52 to 0.84) 
Rofecoxib 1.29 1.19 (0.18 to 2.19) 0.36 0.37 (-0.51 to 1.25) 
Warfarin -2.20 0.07 (-1.04 to 1.17) -1.77 -0.40 (-0.87 to 0.07) 
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 Table 5.4: Hazard ratio (HR) for all-cause mortality (in the two years first drug prescription) based on number of blood 
pressure readings in the year before first drug prescription.  Drugs considered are warfarin and statins.   Analysis is with Cox 
proportional hazards model.  Data from the General Practice Research Database from 2001 through 2003.   
 

 Patients Deaths Crude 
HR 

Adjusted HR 99% Confidence 
Interval 

Warfarin      
  No BP readings 9,524 (35.6%) 1643 (40.8%) 1.14 1.13 1.01 to 1.25 
  1-3 readings 10,760 (40.2%) 1662 (41.3%) 1.00 1.00 Reference 
 4+ readings 6,482 (24.2%) 722 (17.9%) 0.70 0.67 0.59 to 0.76 
Statin      
  No BP readings 25,422(19.6%) 1309 (23.4%) 1.24 1.23 1.11 to 1.36 
  1-3 readings 67,109 (51.9%) 2816 (50.3%) 1.00 1.00 Reference 
  4+ readings 36,852 (28.5%) 1475 (25.3%) 0.95 0.88 0.81 to 0.96 
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Table 5.5: Sensitivity analysis for selection bias.  Effect of beginning drug 
treatment on blood pressure (using an intention to treat approach).  Analysis 
is with a longitudinal linear mixed model.  This is a sensitivity analysis that 
includes both the population that remains across the study period as well as 
patients who die or are censored in the 2 years after beginning drug therapy.  
Data from the general practice research database from 2001 through 2003.   
 
 
 Number Crude 

Change in 
Blood 

Pressure 

Adjusted 
Change in 

Blood 
Pressure 

99% 
Confidence 

Interval 

1) Systolic Blood Pressure 
Statin 129,458 -4.20 -3.80 -3.97 to -3.63 
Proton Pump 
Inhibitor 

179,714 -0.13 0.33 0.11 to 0.54 

Ibuprofen 102,273 1.00 1.08 0.78 to 1.39 
Celecoxib 7,005 0.83 1.13 0.08 to 2.18 
Rofecoxib 7,354 1.75 1.95 0.88 to 3.03 
Warfarin 26,793 -1.28 -0.52 -1.04 to 0.00 
2) Diastolic Blood Pressure 
Statin 129,458 -2.39 -2.16 -2.26 to -2.07 
Proton Pump 
Inhibitor 

179,714 0.16 0.23 0.11 to 0.35 

Ibuprofen 102,273 0.68 0.64 0.47 to 0.82 
Celecoxib 7,005 0.52 0.52 -0.06 to 1.10 
Rofecoxib 7,354 1.20 1.14 0.57 to 1.72 
Warfarin 26,793 -1.12 -0.83 -1.12 to -0.54 
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Figure 5.1: Quasi-experimental pre-post study design used to evaluate 
changes in blood pressure in cohort of new users of medication.  Policy 
change is the decision to prescribe medication (index date).   
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Figure 5.2: Imputed and measured baseline systolic blood pressure by cohort 
and by measurement information available pre and post index date (1st ever 
prescription) by drug class.  Data from the General Practice Research 
Database from 2001 through 2003. Means presented are from observed blood 
pressure data only (where both measurements were recorded), from 
observed and imputed blood pressure measures (where only one of pre- and 
post-treatment measurements was recorded), or from imputed blood 
pressure data only (where both pre- and post-treatment measurements were 
missing). 
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5.3 Supplementary Material 
 
 
  The following 4 figures and one table are additional information for the 

paper in this chapter.  The figures show the performance of the multiple 

imputation for systolic blood pressure (both pre- and post- treatment) in the statins 

cohort for the quasi-experimental study.  They are intended as illustrative 

examples of the good properties that the imputation had in this study.   

 

  The table shows the properties of the imputed data in the quasi-

experimental study by category of missingness.  Of general interest is that patients 

with missing baseline blood pressure values seemed to show less effect of drug 

exposure on blood pressure.  Whether this is a property of the patients with 

missing blood pressure values in the GPRD or evidence of missing not at random 

will require further validation work.   
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Figure 5.3: Time plots for multiple imputation of systolic blood pressure pre-

intervention in the Statins cohort 
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Figure 5.4: Time plot for multiple imputation of systolic blood pressure post 
intervention in the Statins cohort  
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Figure 5.5: Autocorrelation plot for multiple imputation of systolic blood 
pressure pre intervention in the Statins cohort 
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Figure 5.6: Auto-correlation plot for multiple imputation of systolic blood 
pressure post intervention in the Statins cohort 
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Table 5.7: Imputed Effects for Missing Blood Pressure by drug class and 

status of missing data in the General Practice Research Database [GPRD, 1st 

Rx 2000 to 2003].  Data from second manuscript (Modeling blood pressures 

changes after drug treatment in the general practice research database) 

 

 

 
Measure Both baseline 

and 1 year BP 
measured 

Baseline BP 
but no 1 year 
BP 

No baseline BP 
but 1 year BP 
measured 

Neither baseline 
or 1 year BP 
measured 

Statin N = 83,650 N = 11,969 N = 16,528 N = 6,557 
Systolic Blood 
Pressure (baseline) 

146.4 142.9 143.4 140.7 

Systolic Blood 
Pressure (exit) 

142.4 140.1 138.6 137.9 

Delta Systolic Blood 
Pressure 

-4.0 -2.8 -4.8 -2.7 

Diastolic Blood 
Pressure (baseline) 

82.7 82.6 82.6 82.6 

Diastolic Blood 
Pressure (exit) 

80.0 80.6 79.5 80.6 

Delta Systolic Blood 
Pressure 

-2.7 -2.0 -3.1 -2.1 

Proton Pump 
Inhibitor 

N = 54,330 N = 21,900 N = 32,334 N = 45,131 

Systolic Blood 
Pressure (baseline) 

140.4 133.1 135.5 130.8 

Systolic Blood 
Pressure (exit) 

140.5 134.9 136.8 132.8 

Delta Systolic Blood 
Pressure 

0.2 1.8 1.3 2.0 

Diastolic Blood 
Pressure (baseline) 

80.6 79.3 80.3 79.5 

Diastolic Blood 
Pressure (exit) 

80.5 80.1 80.8 80.4 

Delta Systolic Blood 
Pressure 

-0.2 0.8 0.5 1.0 

Warfarin N = 11,365 N = 2,752 N = 4,126 N = 3,289 
Systolic Blood 
Pressure (baseline) 

142.1 137.8 139.9 135.8 

Systolic Blood 
Pressure (exit) 

140.3 137.9 139.0 136.4 
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Measure Both baseline 
and 1 year BP 
measured 

Baseline BP 
but no 1 year 
BP 

No baseline BP 
but 1 year BP 
measured 

Neither baseline 
or 1 year BP 
measured 

Delta Systolic Blood 
Pressure 

-1.8 0.0 -0.9 0.6 

Diastolic Blood 
Pressure (baseline) 

81.6 80.7 81.3 80.4 

Diastolic Blood 
Pressure (exit) 

79.7 80.0 80.0 80.3 

Delta Systolic Blood 
Pressure 

-1.8 -0.7 -1.3 -0.1 

Ibuprofen N = 24, 869 N = 12,278 N = 18,860 N = 36,030 
Systolic Blood 
Pressure (baseline) 

137.9 129.4 133.5 128.5 

Systolic Blood 
Pressure (exit) 

138.9 131.9 135.9 131.0 

Delta Systolic Blood 
Pressure 

1.1 2.4 2.4 2.5 

Diastolic Blood 
Pressure (baseline) 

80.0 80.0 79.5 78.4 

Diastolic Blood 
Pressure (exit) 

80.3 79.1 80.6 79.5 

Delta Systolic Blood 
Pressure 

0.2 1.1 1.1 1.2 

Celecoxib N = 2,415 N = 827 N = 1,352 N = 1,623 
Systolic Blood 
Pressure (baseline) 

142.5 135.6 139.2 134.0 

Systolic Blood 
Pressure (exit) 

143.1 137.8 141.0 136.6 

Delta Systolic Blood 
Pressure 

0.7 2.2 1.7 2.6 

Diastolic Blood 
Pressure (baseline) 

80.8 79.7 80.9 80.1 

Diastolic Blood 
Pressure (exit) 

80.5 80.5 81.5 81.3 

Delta Systolic Blood 
Pressure 

-0.2 0.8 0.5 1.2 

Rofecoxib N = 2,257 N = 851 N = 1,450 N = 1,841 
Systolic Blood 
Pressure (baseline) 

142.0 136..5 138.5 133.0 

Systolic Blood 
Pressure (exit) 

143.7 139.5 140.8 136.6 

Delta Systolic Blood 
Pressure 

1.7 3.0 2.3 3.5 

Diastolic Blood 
Pressure (baseline) 

80.3 79.9 80.7 79.6 
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Measure Both baseline 
and 1 year BP 
measured 

Baseline BP 
but no 1 year 
BP 

No baseline BP 
but 1 year BP 
measured 

Neither baseline 
or 1 year BP 
measured 

Diastolic Blood 
Pressure (exit) 

81.0 81.0 81.3 80.7 

Delta Systolic Blood 
Pressure 

0.7 1.1 0.7 1.2 
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Chapter 6 
 
Conclusions 
 
 
 

 Warfarin is a powerful drug that has many well documented benefits in the 

reduction of adverse cardiovascular events in high-risk patients [1]. However, 

warfarin is a complex drug to study because it has a number of unfavourable 

properties from a pharmacoepidemiology point of view.  It is known to have 

strong channelling bias due to prescribing guidelines [2], it has many different 

interactions with a large number of other drugs [3] and the duration of 

prescriptions is hard to quantify because the dose of the drug may be dynamically 

adjusted between prescriptions (making duration impossible to easily estimate) 

[4].   

 

These same properties also make warfarin an excellent drug to focus 

methodology work around as there is potential to detect large differences between 

approaches with studies on this drug.  Also, as a well understood drug, it is 

possible to have some guidance about what is or is not a credible answer.   

 

This thesis provides elements necessary to improve the methodology of 

studies conducted in the General Practice Research Database (GPRD).  We started 

with a series of methodological challenges in the GPRD including:  detecting 

interactions, account for confounding by indication or channelling bias and the 

problem of missing data. 

 

 One of the most important elements of this thesis was the implementation 

of different approaches to statistical modeling of exposure-outcome relationships.  

While one should always use the simplest model that can answer the study 

question in a valid manner, sometimes the result of this decision is not a simple 

model.  In many cases, the problem itself requires a complex model in order for 
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valid estimates to be obtained.  In particular, the use of marginal structural models 

is an important step forward in handling time-varying confounders more 

appropriately as they are more able to handle the issues of time-varying 

confounding than regular regression approaches [5].  Understanding the properties 

of these models and the correct interpretation of their results is important as they 

become more common the epidemiological literature.  Discussing how their 

interpretation is different and systematically testing their properties improved our 

understanding of these models.   

 

 Other modeling techniques, like linear mixed models [6] and multiple 

imputation [7], are not new techniques but have not always been applied as 

broadly as they might have been in epidemiological research.  There are many 

advantages to including these techniques in the arsenal of the practicing 

epidemiologist who is doing research in the GPRD.  This is especially true for the 

use of the test based data where data is unbalanced, patients often have missing 

data and repeated measures are common.   

 

The GPRD, being based on practices, is a naturally clustered study 

environment [8].  Traditionally, this clustering has been handled by matching on 

GPRD practice.  However, for some rare diseases or when there are tight 

matching requirements, this may result in the loss of cases when one can afford to 

lose them the least.  Linear mixed models are another alternative that might be 

extended to handle cases where the epidemiologist does not want to match on 

GPRD practice but either the outcome or the exposure is a GPRD diagnostic code.   

 

In the same vein, one of the key advantages of the GPRD over prescription 

claims databases is the presence of information on demographic characteristics 

such as smoking and body mass index.  However, it is squandering invaluable 

data to not to use the best possible technique to account for this missing data in 

the analysis of GRPD studies.  The introduction of multiple imputation as a 
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technique to handle missing data, while not the only good choice, is a logical way 

forward [7].   

 

There are two other logical next steps to improving modeling for 

pharmacoepidemiology studies in the GPRD.  One step is to introduce Bayesian 

models for which contain priors for the measurement error in the data.  Large 

database studies often systematically under-represent the amount of uncertainty in 

the data as the systematic error may be much greater than the random error [9].  

We began the process of trying to be more explicit about uncertainty by 

increasing the size of the confidence intervals in the last manuscript, but a more 

formal approach would be much more appropriate.   

 

The other logical step is to formally introduce longitudinal marginal 

structural models to account for time-varying nature of many of the confounders 

in the GPRD.  This is especially important in dynamic treatment regimes where 

standard approaches are unable to account for the past history of the patient 

correctly [10].  In particular, good studies need to be done comparing the 

estimates from marginal structural models to estimates obtained from time 

dependent Cox models.   

 

Our careful work on confounding in the GPRD is also important to note.  

We built extremely large models to try and broadly adjust for the health status of 

the patients in these studies -- taking full advantage of the statistical power that 

we have in GPRD studies to create large models.  We also tried to demonstrate 

channelling bias away from high risk drug combinations that are well known to 

general practitioners by comparing the well known high risk combination to a 

more recent and less well known combination.   

 

In addition, our work on marginal versus conditional effects also gives us 

some insight into this potential source of bias.  By comparing the results of the 

logistic regression and the marginal structural model we are actually able to 
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estimate how much risk warfarin would pose in the absence of this “good 

prescribing practice”.  After all, the marginal effect represents what would happen 

if the patients in the GPRD were randomized to warfarin irrespective of their 

covariates.  In that sense, our second paper is able to uniquely document the 

beneficial effects of prescription policy and awareness of adverse drug effects 

among physicians.   

 

 Like any observational study, the studies in this thesis have a number of 

limitations.  In particular, we are always vulnerable to the influence of unknown 

confounders on our estimates.  It is possible to do sensitivity analyses to 

determine how robust your results are to unmeasured confounders.  This is 

especially true if the magnitude of the confounding relationship can be estimated 

from external information (other studies, for example).  However, there is no way 

to ensure against the presence of unknown confounding.   

 

 We also have to assume that we have exchangeability between the 

exposed and unexposed when we construct our marginal structural model  – that 

within a given covariate pattern we can exchange the exposed and the unexposed.  

While this is an explicit assumption for marginal structural models, if there are 

unexchangeable subjects in the analysis it is not immediately clear that 

conditional logistic regression will be able to estimate exposure-outcome effects 

in an unbiased manner either.   

 

 There are also the special problems that are unique to 

pharmacoepidemiology studies.  Here we can have confounding by indication 

(channelling bias) where the drug is being given to patients at high risk.  We see 

this clearly in the effect of proton pump inhibitors (a highly protective drug) in the 

first study (where they appear to be risky due to confounding by indication).  

There is also the problem of reverse causality due to protopathic bias (as it is 

essential that the drug exposure precedes the outcome and not be marker for the 

outcome having already happened).  Where this does not hold and the drug 
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therapy is being given to treat the early symptoms of the outcome then we would 

have a case of reverse causality.  This is a plausible explanation for the results 

seen in the first paper for proton pump inhibitors and the risk of gastrointestinal 

bleeding where a protective drug appears to increase risk.   

 

 However, despite the limitations of databases such as the GPRD, there is a 

lot of valuable information that can be extracted from them that are able to answer 

questions on adverse effects that may not be available from other sources.  In 

some cases the hurdle is ethical – we are unable to randomize patients to a given 

exposure because it is known to be harmful (the classic example being smoking).  

Or current clinical trial information could be too sparse to find an effect or it 

could fail to include the relevant sub-group for a specific study question.   

 

 In other cases, there may be no currently relevant clinical trial information 

the time required to do a series of experimental studies may be too long.  This is 

especially true of extremely severe adverse events (such as death) or for 

exposures with long onset times before the outcome occurs.  While the length of 

time that the GPRD has excellent data recoding is mostly post-2000, over time 

researchers using this database will gain the ability to ask longer term questions.     

 

 Lastly, there are many cases where the results of clinical trials may not 

generalize to the general population or to situations of standard practice.  The 

patients in the experiments may be sub-selected such that particular groups 

(including high risk groups) may be excluded.   As a result, the tightly controlled 

nature of the clinical trial environment may not match the reality of actual clinical 

practice.  This is especially relevant with a drug like warfarin where there are a lot 

of contra-indications and extensive monitoring options.  It may simply not be 

feasible to replicate the expertise or the environment of the clinical trial in “real 

world” settings.   
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 Because of these limitations with non-observational approaches to 

pharmacoepidemiology, it is important to develop approaches to the analysis of 

observational data that allow one to make the best inferences possible given the 

data available.  Given the high cost of data acquisition and the amount of effort 

that is put into developing a database like the GPRD, it only makes sense to 

analyze studies based on this data with care.  We have seen the potential harm that 

poor methodology can do with the many studies containing immortal time bias 

that gravely mislead patients and physicians alike.    

 

   By providing guidance on how to handle potential methodological 

problems (interactions, channelling bias, missing data), we improve the ability of 

researchers to perform more validobservational studies in the GPRD.  

 

 In terms of substantive conclusions, this thesis and provides new insights 

into the link between warfarin use and serious bleeding episodes in the general 

practice setting.  We show the practical effect of drug-drug interactions in a real-

world setting and demonstrate that the risk shown in the trials is not greatly 

increased despite less stringent monitoring.  We are also able to more broadly 

document the interaction of warfarin with drugs that it would not be routinely 

tested in combination with for a clinical trial.  We also demonstrate the magnitude 

of additional bleeding risk that warfarin therapy would have if applied to 

everyone making it clear that careful population selection is important for 

techniques like marginal structural models.  Finally, we look at another possible 

adverse drug outcome for warfarin (increases in systolic blood pressure) and 

conclude that we can find no evidence to support this hypothesis.   
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Appendix I : Ethics Approval from the United Kingdom 

ISAC Approval (Papers 1 and 2) and SEAG (Paper 3) 
 
 
The following are the 4 ethics approvals used for these research projects (2 from 
the UK and 2 from McGill).  The protocol on gastro-intestinal bleeding covers the 
first two studies while the protocol on primary prevention of cardiovascular 
disease covers the third thesis paper.   
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Appendix 2: Variables used in Multiple Imputation for Chapter 5 
(Modeling blood pressures changes after drug treatment in the 
general practice research database) 
 
 
Number of the following drugs as prescribed in the year prior to index date: beta 
blockers,  ace inhibitors,  arbs,  calcium channel blockers, alpha blockers, statins, 
ibuprofen,  celecoxib,  rofecoxib,  warfarin, diuretics and insulin  
 
Blood pressure readings taken between baseline and one year: number, mean 
systolic blood pressure, mean diastolic blood pressure 
 
Clinical diagnoses in the GPRD database at baseline for: hypertension, angina, 
diabetes, cancer, chronic obstructive pulmonary disease, stroke, arrhythmia, liver 
failure, renal failure, arthritis, serious blood clots, myocardial infarction, 
congestive heart failure and alcohol abuse.  
 
Demographic characteristics: sex, age, body mass index, smoking, drinking, and 
calendar year at baseline 
  
Number of the following drugs as prescribed in the year after index date 
beta blockers,  ace inhibitors,  arbs,  calcium channel blockers, alpha blockers, 
statins, ibuprofen,  celecoxib,  rofecoxib,  warfarin, diuretics, insulin, aspirin, 
proton pump inhibitors, corticosteroids and paracetomol.   
 
Outcome variables (in imputation as parameters being estimated for missing): 
Baseline systolic blood pressure,  baseline diastolic blood pressure, Systolic blood 
pressure at one year, and Diastolic blood pressure at one year. 
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Appendix 3: SAS code used for Models in Chapter 5 (Modeling 
blood pressures changes after drug treatment in the general 
practice research database) 
 
Mixed Models 
 
proc mixed data=z METHOD=REML; 
  model systolic_bp =treated time /Solution DDFM=BW cl alpha=0.01; 
  random Intercept time/subject=id type=un; 
  repeated /subject=id type=ar(1); 
      title 'Intent to Treat Model for Statin'; 
      title2 'Treated is main effect [post 1st Statin Rx]'; 
run; 
 
proc mixed data=z METHOD=REML; 
  model systolic_bp =treated time Pulmonary_embolism age_baseline male 
     alcohol chf dvt gi_bleed MI stroke arrythmia diabetes  
      num_hosp liver_failure renal_failure arthritis/Solution DDFM=BW cl 
alpha=0.01; 
  random Intercept time/subject=id type=un; 
  repeated /subject=id type=ar(1); 
    title 'Intent to Treat Model for Statin'; 
    title2 'Treated is main effect [post 1st Statin Rx]'; 
run; 
 
Multiple Imputation 
 
proc mi data=bps out=bps_mi_2 seed=8499244 nimpute=10; 
    where match=2; /* Statins Group Only */ 
  mcmc impute=full chain=multiple timeplot acfplot nbiter=1000 niter=1000  
    initial=em (maxiter=1000); 
  var  b_systolic_bp b_diastolic_bp e_systolic_bp e_diastolic_bp 
     /* Baseline Drug Therapy*/ 
     num_beta_blocker num_ace_inhibitor num_arb num_ccb num_alpha_blocker 
     num_statin num_ibuprofen num_celebrex num_vioxx num_warfarin 
     num_diuretic num_insulin  
     /* Blood Pressures during follow-up */ 
     num_IBP mean_ISBP mean_IDBP 
     /* Medical Codes at Baseline */ 
     prev_hypertension angina diabetes cancer copd stroke arrythmia 
     liver_failure renal_failure arthritis dvt  MI chf  
     /* Demographic Charactertistics */ 
     alcohol male age_baseline BMI smoker drinker event_year 
     /* Drug Therapy during follow-up */     
     num_insulin_base num_beta_blocker_base num_ace_inhibitor_base  
     num_arb_base num_ccb_base num_diuretic_base num_alpha_blocker_base 
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     num_celebrex_base num_asa_base num_statin_base num_ppi_base     
     num_cortico_base  num_paracetamol_base; 
run; 
 
Quasi-Experimental Analysis Code for Systolic Blood Pressure 
 
data x; 
  set gprd.Imputed_bp; 
   if match =8 or match =2; /* match=2 is statins, match=8 is proton pump 
inhibitors */ 
   if match =2 then statin=1; 
   else statin=0; 
run; 
 
proc sort data=x; 
  by _imputation_; 
run; 
 
/* Crude Estimate */ 
proc reg outest=parmcov covout data= x;  
   by _imputation_; 
  model delta_sbp=statin; 
run; 
 
proc mianalyze data=parmcov; 
   modeleffects statin; 
run; 
 
/* Adjusted Estimate */ 
proc reg outest=parmcov covout data= x;  
  by _imputation_; 
   model delta_sbp= statin prev_hypertension angina diabetes cancer copd stroke    
          arrythmia liver_failure renal_failure arthritis dvt  MI chf  
          alcohol male age_baseline BMI smoker drinker  
          num_beta_blocker  num_arb num_ccb num_alpha_blocker 
          num_ace_inhibitor num_ibuprofen num_celebrex num_vioxx 
          num_warfarin num_diuretic num_insulin ; 
run; 
 
proc mianalyze data=parmcov; 
modeleffects statin; 
run; 
 
 

145



 

Appendix 4: Annotated code for Marginal Structural Models in a 
Case Control Setting 
 
/* 
SAS code for Marginal Structural Models (annotated version) 
Date:April 10, 2006 
Programmer: Chris Delaney  
->Based on code in Hernan 2000 and ideas in Newman 2006 
This is a set of code designed to determine the relationship between an exposure and  
outcome.  Exposure is 90 day exposure to Warfarin (warfarin)   
*/ 
 
*Set SAS Library; 
libname gprd 'C:\Temporary\'; 
 
data q_msm; 
 set gprd.communitycohort2; 
run; 
 
/* Model Selection for probability of Treatment model – here we us all major covariates 
but sub-selection may be important with smaller databases due to narrow strata.  
NOTE: Model is built using controls only!*/ 
 
proc logistic data=q_msm descending; 
where case=0; 
model  warfarin = antidepressants  plavix heparin  vioxx celebrex ibuprofen asa  
  naproxen_plus paracetamol diuretic abx_90d corticosteroids h2_block ppi  
  acid_reflux peptic_ulcer H_pylori alcohol Pulmonary_embolism chf dvt mi angina  
  stroke afib liver_failure renal_failure r_arthritis other_arthritis diabetes cancer copd 
  age underweight obese morbid_obese missing_bmi smoker no_smoker_rec dementia   
  no_bp_reading male high_bp med_bp; 
title 'Propensity Model for IPTW; we can do full model because sample size > 40,000'; 
run; 
/*  
Now we take the model derived above and implement it into IPTW weights 
*/ 
 
data x_msm; 
set q_msm; 
 
x=  -5.9690+ 
 antidepressants        *   -0.1308+ 
 plavix                 *   -2.4986+ 
 heparin                *    1.6436+ 
 vioxx                  *   -0.7720+ 
 celebrex               *   -0.7046+ 
 ibuprofen              *   -0.9249+ 
 asa                    *   -2.8815+ 
 naproxen_plus          *   -0.8055+ 
 paracetamol            *    0.3585+ 
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 diuretic               *    0.9520+ 
 abx_90d                *    0.0242+ 
 corticosteroids        *    0.1342+ 
 H2_block               *    0.0207+ 
 ppi                    *   -0.2342+ 
 acid_reflux            *   -0.0959+ 
 peptic_ulcer           *    0.2053+ 
 h_pylori               *    0.3979+ 
 alcohol                *    0.1024+ 
 Pulmonary_embolism     *    2.4518+ 
 chf                    *    0.4249+ 
 dvt                    *    1.7863+ 
 mi                     *    0.4509+ 
 angina                 *    0.4654+ 
 stroke                 *    0.9611+ 
 afib                   *    3.3969+ 
 liver_failure          *   -0.3718+ 
 renal_failure          *   -0.1468+ 
 r_arthritis            *    0.0675+ 
 other_arthritis        *  -0.00899+ 
 diabetes               *    0.0993+ 
 cancer                 *    0.1815+ 
 copd                   *   -0.0996+ 
 age                    *    0.0100+ 
 underweight            *    0.0131+ 
 obese                  *    0.1034+ 
 morbid_obese           *   -0.4259+ 
 missing_bmi            *   -0.1160+ 
 smoker                 *    0.1591+ 
 no_smoker_rec          *   -0.1716+ 
 dementia               *   -0.5850+ 
 no_bp_reading          *   -0.4801+ 
 male                   *    0.6237+ 
 high_bp                *   -0.0875+ 
 med_bp                 *    0.1287; 
; 
/* This gives probability of treatment and acts as a propensity score.  In Marginal 
Structural Models we will use something slightly different*/ 
 
p=exp(x); 
prob =p/(1+p); 
 
/*Now we define the Inverse Probability of Treatment weight.  it's not time dependent so 
we take the probability of receiving the treatment that you actually got as our probability 
of treatment for stabilizing the weights */ 
 
if warfarin=1 then IPTW=1/prob;  /*exposed*/ 
else IPTW =(1/(1-prob));               /*unexposed*/ 
 
/*Stabilized Weights */ 
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if warfarin=1 then s_iptw=IPTW*0.0280865; 
else s_iptw=IPTW*(1- 0.0280865); 
run; 
 
/*Crude Estimate of Effect */ 
proc phreg  nosummary data= x_msm; 
  model timefake*case(0)=  warfarin  /rl ties=discrete; 
  strata match; 
  title ' Statin and warfarin Exposure in GI Bleed Cohort: Crude Effect of Warfarin'; 
run; 
 
/* This is the adjusted Conditional Logistic Regression */ 
 
proc phreg  nosummary data=  x_msm; 
 model timefake*case(0)= antidepressants warfarin plavix heparin vioxx celebrex  
   ibuprofen asa naproxen_plus paracetamol diuretic abx_90d  corticosteroids 
   h2_block ppi acid_reflux peptic_ulcer H_pylori alcohol Pulmonary_embolism chf dvt 
   mi angina stroke afib liver_failure renal_failure r_arthritis other_arthritis diabetes  
   cancer copd age underweight obese morbid_obese missing_bmi smoker no_smoker_rec 
   dementia  no_bp_reading male high_bp med_bp 
    int_vioxx_war int_celebrex_warfarin  int_ibu_warfarin int_naprox_warfarin    
    int_asa_war  int_vioxx_plavix  int_celebrex_plavix int_ibu_plavix int_naprox_plavix  
    int_asa_plavix  int_war_plavix_asa int_para_war int_war_cort /rl ties=discrete; 
  strata match; 
  title ' NSAID and warfarin Exposure in GI Bleed Cohort: Full Analytic Model'; 
 run; 
 
/* Marginal Structural Model using stabolized weights. 
NOTE: the confidence intervals are computed below */ 
 
proc genmod data=x_msm descending ; 
class practice_id; 
model case = warfarin /link=logit dist=bin; 
estimate 'warfarin' warfarin 1/exp; 
scwgt s_IPTW; 
repeated subject=practice_id;  
title 'Marginal Structral Model for Warfarin in GI Bleed Cohort'; 
run; 
 
/* This is the inference for the Marginal Structural Model.  It is a bootstrap method; the 
alternative is a robust sandwich estimator.  1000 repetitions appear to work well. We do 
1000 sampels of size N from our dataset and see how much the coverage is of the 1000 
samples.  */ 
 
data parms; 
run; 
 
%MACRO boot; 
%DO i = 1 %to 1000; 
            DATA analysis; 
             choice = INT(RANUNI(23456+&i)*n)+1; 
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             SET x POINT = choice NOBS = n; 
             j+1; 
             IF j > n THEN STOP; 
            RUN; 
 
proc genmod data=analysis descending; 
    ods output Estimates=outests;    
    ods listing exclude Estimates;         
class match; 
model case = warfarin /link=logit dist=bin; 
estimate 'warfarin' warfarin 1/exp; 
scwgt s_IPTW; 
run; 
DATA PARMS; 
 SET PARMS outests; 
 if ChiSq>0 then delete; *includes both the beta and the RR! this step  
                          ensures that we keep only the RR.  There are 
                          probably cleaner ways to code this; 
run; 
 
%END; 
%MEND; 
 
%boot 
 
/* 
This looks at the output from the 1000 samples.  Note the min/max for range of data and 
also consider the mean which should be the same as the point estimate of the MSM 
defined 
above or very close  
*/ 
 
PROC means DATA=parms;  
run; 
 
*We have one junk parameter for n =1, this gets rid of it; 
data aaa; 
 set parms; 
 if _N_=1 then delete; 
run; 
 
proc sort data=aaa; 
 by Estimate; 
run; 
 
data aaa; 
 set aaa; 
 num=_N_; 
run; 
 
Proc Print; 
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where num=26; 
title 'Lower Confidence Interval Limit'; 
run; 
 
Proc Print; 
where num=975; 
title 'Upper Confidence Interval Limit'; 
run; 
 
*This should give a valid Marginal Structural Model in the case control setting; 
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