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.. ~ l)str,élc:t 

In dcsigning optimizing and parallelizing compilers, it is often simpler and more ef
ficient to deal with programs t bat have str,uctured control flow. Although most pro
grammers naturally program in a structure-d fashion, there remain ma.ny important 
pmgrams and benchmarks that indude sorne ::mmber of goto statements, thus render
ing the E'Iltire program unstructured. Such m::structured programs cannot be handled 
with compilers built with analyses and transformations for strudured programs. 

In this thesis W~ present a stréJ.ight-forwar\~ algorithm to structure C prog.·ams 
by eliminating al! goto statements. The metbt,d VI,'Orks directly on a high-Ievel ab
stract syntax tree ( 4.ST) representation of the pr ,1gram and could easHy be integrated 
into any compiler that uses an AST -ba:sed intennediate representation. The actual 
algorithm proceeds by eliminating; ea.ch ,goto by first applying a sequence of goto

mOVfmcnt transformations followed by the appropriate gotl.,-elimination transforma
tion. 

Our McCAT (McGil! Compiler Architecture Testbed) optimizingjparalJelizing C 
compiler is ba..c:,ed on a compositional representation of the program, and hence does 
not support unrestricted use of gotos directly. We have irnplemented the method 
within the framework of the M·:::CA r compiler. We present sorne experimental results 
and study the cost of structuring. The results show that applying a small number 
of simple tran::iforrnations elimlna.tes an the goto statements, usually with (; minimal 
cffecl~ on the execution speed. Thus, we can exploit structured reprcsentations for 
desigining compikrs, while paying a minimal penalty due to structuring. 
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Résumé 

En créant des compilateurs optimisants et parallélisants, il est souvent. plll~ silll
pIe et plus efficace de travailler avec des programmes possèddllt llll flot de COli! rôle 
st.ructuré. Bien que la plupart des prograPlmeurs programment lIat.ur('lIt·H1Pill d'III\(' 

façon structurée, il subsiste plus,eurs programmes et exemples imi-'ortil.lIt.s cont,t'Ilélllt 
un nombre quelconque d'instrnctions goto, ceci résultant eIl des prograrnl1l('s ('rlt.i('rs 
non-sructurés. De tels programmes ne peuvent être utilisés avec des coIllpilat.t'lIr~ 

construits pour analyser et transformer des programmes structuré::.. 

Dans cette thèse nous présentons un algorithme utilisahle directement. pour struc
turer les programmes en langage C en éliminant toutes les instruct.ioll!"> goto La 
méthode utilise directement un arbre de représentation abstraite de haut niwil.u 
des programmes, et pourrait facilement être intégrée à n'importe quel compi lat.cur 
utilisant une représentation intermédiare basée sur un arbre de syntaxp ab~trdit(,. 
L'algorithme sous sa forme actuelle fonctionne en éliminant chaque goto en dppli
quant d'abord une séquence de transformations -le goto-movcments suivie par la trans
formation gofo-elimination approprieé. 

Notre compilateur McCAT (McGill Compiler Architecture Testbcd) optinll~allt. 
et parallélisant en langage C est basé sur une représentation compositionnelle dll 
programme, et donc ne peut soutenir l'utilisation directe des gotos. Nous avom 

implémenté la méthode pour le compilateur McCAT. Nous présentons quelque~ résultats 
expérimentaux et étudions le coût de structuration. Les rés:.lltats montrent que 
d'appliquer un nombre réduit de transformations simples élImine toutes les inst.ruc
tions goto, avec un effet minimal sur la vitesse d'exécution dans la plupart des cas. 
Donc, nous pouvons exploiter des représentation strncturées pour créer def> c.ornpila

teurs, tout en ne payant qu'un prix minimal pour la structuration . 
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Chapter 1 

Introduction and Motivation 

The great advances III high-performance architectures demand a simultaneous devel
opment of sophisticated compilation techniques [HP90]. Thus, the design of optimiz
ing and parallelizing compilers is a critical issue. These compilers perform optimiz
ing transformation based on the information collected by various program analyses. 
From the pragmatic point of view there are many reasons why structured programs 
(i.e. programs without gotos) are simpler to ha.ndle in such compilers. One impor
tant consequence is that C prcgrams without gotos are compositional, and tûere
fore structured analyses techmques can be used to compute data flow information. 
For example, one can apply the efficient techniques available for structured data 
flow graphs [ASU88], or one can use simple abstract interpretation techniques that 
need not consider continuation-hased semantics. From the program transformation 
standpoint, compositional programs also lend themselves to simpler and often more 
efficient algorithms. Consider, for example, the efficient creation of the Static Sin
gle Assignment (SSA) form for structured progrc,ms consisting of straight-line code, 
if statements, and whlle statements [CFR+91]; the structured transformations to 
ALPHA [HGS92], a family of intermediate represéntations designed to facilitate the 
development of specifie analysis and transformations; the elegant formaI system pro
posed by Hoare [Hoa69] to prove the correctness of structured and compositional 
programs; and the efficient construction of Program Dependence Graphs for struc
tured programs [BM92]. Finally, compositional programs are naturally represented 
as trees, and intermediate representations based on compositional representations can 

he manipulated and transformed using a wide variety of strategies including the use 
of attribute grammars. 

1 
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In this thesis we 1,re concerned about the automatic structuring of pro~ra11ls. hy 
eliminating goto statements, in order to facilitate the construction of analyscs and 
transformations required for optimizing and parallelizing C compilcls. 

1.1 Goto elimination and the McCAT conlpiler 

Over the years there has been substantial discussion about the USt~ of <'xplicit gotos in 
high-Ievel programs and there have been many arguments against the frcquenl USl' of 
gotos from a software engineering or program understandability point of view [DijG8, 
Knu74, Weg76]. This discussion has led to the relatively infrequenl use of gotos 
in typical C programs [BM92]. However, in languages like C, therc ar(' still sp<'ciaJ 
occasions where programmers like to use gotos. These include. (1) us mg goto!-> 1.0 <'xII, 
from deeply nested conditionals or loops; (2) using gotos to branch to a commoll pif'c{, 
of code that is shared among several branches of a switch statement; (3) using gotos 
in automatically generated code such as the code produced by lex; and (4) using 
gotos to handle exceptions. In fact, if we study sorne of the weIl known bcnchmarks 
sueh as the SPEC benchmarks, we find that many important benchmarks use SOIll(' 

gotos. Thus, if a compiler is restricted to programs without gotos, it is a sigIllficant 
handicap. 

The McGill Compiler Architecture Testbed(McCAT) [HDE+92] was desigIH'd to 
test different compilation techniques on different architecture testbeds. Two main 
objectives were pursued: (1) bllild a compiler that supports both high level and in
termediate representations that facilitate analyses and transformations and relat<>d 
low-Ievel transformations that are suitable for code gelleration; and (2) build archi
tecture simulator tools to process the output of the compiler to produce differcnt 

performance results. The source language ehosen for our compiler was C. This deci
sion was made taking into consideration the fad that the C language is widely used 
and powerful, as it supports a variety of features. 

One of the unique features of our compiler is that it is based on a family of in
termediate representations. Three structured intermediate representations arc built 
and each of them fulfil a specifie role in the compiler. The first, called FIRST, is a 
high-level abstract representation that accurately captures the original program The 
main purpose of FIRST is to cleanly separate the front-end processing of parsing and 

2 
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type checking from the back-end phase of analysis, transformations and code genera
tion. Theo, a series of transformations are performed on FIRST, to create SIMPLE, 
an AST suitable for high-Ievel analyses Iike points-ta (alias) [Ema93, EGH94] and 
dependence analysis [Jus94, JH94]. Finally LAST, a low-Ievel AST is obtained from 
SIMPLE, on which low-Ievel optimizations such as register allocation and instruction 
scheduling [Don94] take place. This representation can be used to generate code for 
a variety of high-performance architectures. It should be noted, that each interme
diate representation is related to the next so that one can use the results of analyses 
performed at higher-Ievel representations at lower-Ievel representations. Figure 1.1 
presents an overview of the McCAT compiler and its principal components. 

Thus, the McCAT compiler is based on a compositional representation of the pro
gram. It does not support unrestricted use of gotos directly. In arder to have no 
restriction on the benchmarks used ta test our compiler, a structuring phase that elim
inates gotos automatically is required. In this thesis we present a goto-elimination 
method and its implementation for the McCAT compiler. Once aU benchmarks pass 
through this structuring phase, structured intermediate representations are created, 
and all further analyses and transformations have to deal only with structured control 
flow. 

1.2 Thesis Contributions 

This thesis concentrates on the design of a general algorithm for elimintating any 
number of arbitrary goto statements from a C program. Our approach to elimi
nating gotos is based on a set of simple transformations that operate on SIMPLE, 
the secon'.i high-level structured intermediate representation built in McCAT. These 
transformations come in two categories: goio-movemenis and goio-elzmmatwns. Intu
itively, the method relies on the following observations: (1) wh en the goto statement 
and target label are in the same statement sequence, a goto-elimination transforma
tion can be directly applied to eliminate the gotoi and (2) if the goto statement 
is in a different statement sequence from the target label, we can use one or more 
goto-movement transformations to move the goto to the same statement sequence 
as the target label and then apply the appropriate goto-elzmination transformation. 
The algorithm proceeds by eliminating one goto at a time, applying a sequence of 
goto-movement transformations followed by the goto-elimination transformation llntil 
the goto is eliminated. It is a straight-forward algorithm that works directly on a 

3 
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high-level abstract syntax tree representation of the program and can easily be inte
grdted in any compiler that uses an AST-based intermediate representation. We have 
IJnplemented this method for the McCAT compiler. 

The main contributions of this thesis include: 

• The design of a straight-fcrward and general method to eliminate goto state
ments from a C program. 

• The implementation of this method for the McCAT compiler. 

• The design and implementation of further optimizations to this method. 

• The presentation of experimental results and discussion of the cost of structuring 
that show that this method is both efficient and effective. 

1.3 Thesis Organization 

The remainder of this thesis is structured as follows. In Chapter 2 we present the 
goto-elimination and goto-movement transformations. First we show how they can be 
applied to remove a single goto statement from a C program and second we present 
a high-level algorithm for eliminating ail gotos from a C program, thU5 producing a 
semantically equivalent structured C program. Third we show how sorne optimiza
tions to our method can improve the resulting code. In Chapter 3 we give a brief 
description of SIMPLE and in Chapter 4 we provide an overview of the important 
aspects of the implementation using SIMPLE. We have completely implemented the 
method and in Chapter 5 we give experimental results for both the unoptimized and 
optimized methods and discuss the cost of structuring. Finally, in Chapter 6 we com
pare our method with related methods, and in Chapter 7 we conclude and discuss 
further work. 

5 
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Chapter 2 

Deseription ()f tl.1e 
Got()-I~liIll:iIJlatilo'll Met:hod 

In this chapter the description of the goto-elimination method is presentee!. WI' fin,!, 
explain the process of eliminating one ;;trbitrary goto [rom a C program and tlwlI 
ary number of gotos. Next, we study sorne optimizations that can be applied {,o the 

met.hod. 

2.1 Elhninating an arbiltrary goto stat.eln(~nt front 
a C! program 

In this section we first present the goto-elimination transformations, and t hen W(' 

present the goto-movernent transformations and show how to apply succcssive gol.o
movements in order to reaçh a point where a goto-eliminatlOl1 can be appiied. 'Ih 

simplify the oexplanation of the method 1 we assume tha.t a gotc' statcmellt is alway:-, il 
condltional goto in the form J.f (condJ.tJ.c'n) goto L1. Thus, we assume that any 
unconditional gotc, of the farm gotcl LI is transformed into an equival(!Tl.L conditiof)a.l 
statement of the farm If (tl"Ue) goto LI. 

Another import.ant point is that. we have chosen ta directl)' support break amI 
continue staternents. Even though these statements represent a form of control flrJ't,' 
similar to gC:ltos, they can be easily handled by our structurcd data flow d.Il(j.ly:;I~ 

6 
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methods [Sri92, Ema93]. Break and continue statements do not change the control
fiow of the programs outside the scope of the closest enclosing loop structure. In this 
sense the program remains compositional, the meaning of the program structure is 
givcn by the meaning of its components. Thus, fvf our purposes there is no benefit 
in climinating the break and contlnue statements. However, we could easily modify 
our method to eliminate them if required. 

Furthermoré, we assume that each labelled statement of the form Li: stmt is 
really represented as a sequence of two statements, the empty statment Li: ; and the 
actual statement stmt. Thus, when we refer to a label statement, we are referring to 
the empty statement containing the label. 

2.1.1 Goto-elimination Transformations 

When both the goto statement and the label are in the same statement sequence, 
we can directly eliminate the goto statement. There are two possibilities: the goto 
staternent occurs in the prograrn before the label statement, or after the label state
ment. In the first case, the goto is eliminated and replaced by a conditional, while 
in the second case the goto is eliminated and replaced by a loop. 

Goto statement is before label statement: if the goto statement is before the 
label statement, there is an obvious transformation to a conditional statement. As 
illustrated in Figure 2.1, the goto is eliminated and the statements between the goto 
statement and the label are embedded into a {'onditional statement guarded by the 
negation of the condition of the original goto statement. 1 

Goto statement is after label statement: if the goto statement is after the label 
staternent, then the goto staternent is eliminated by ernbedding the staternents be
tween the label and the goto in a do-while loop. The example program in Figure 2.2 
illustrates this case. 

1 Note that we present each goto transformation as a rewritmg of a general statement sequence. 
Thus rules like those in Figure 2.1 represent a general pattern for the transformatIOn with each 
stmt..l. standmg for any SIMPLE C staternent including assignrnent staternents, procedure caUs, 
and composltlonal statements such as condltionals a"d loops. 
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{ 

} 

{ 

stmt_ii 
if ( cond ) goto L_i; 
stmt_j i 

{ 

} 

stmt_i; 
if ( ! cond ) 

{ 

Figure 2.1: Eliminating a goto with a conditional 

{ 

stmt_ii 
L_i: stmt_j ; 

stmt_ki 
if ( cond ) goto L_i; 

} 

} 
\l'hile ( cond ); 

Figure 2.2: Eliminating a goto with a loop 
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These two goto-elimination transformations are obvious, and it is unlike1y that 
a programmer would use a goto in these situations where a conditional or loop is a 
rnuch more reasonable construct. However, a too1 that generates C code could very 
casily produce such programs. Furthermore, these goto-elimination transformations 
provide the backbone for the complete method. As described in the next section, we 
can always eliminate a goto by moving tbe goto to tbe appropriate place and tilen 
applying one of these two goto-elimination transformations. In fact, these transfor
mations are just the inverse of standard code generation strategies for conditionals 
and loops. 

2.1.2 Goto-movement Transformations 

ln order to categorize the goto-movement transformations precisely, we introduce 
notions of offset, ievel, szblzng statements, dzrectly-related statements and zndirectly
relatt d statements. 

Definition 2.1.1 The offset of a goto or label statement is n if, relative to the be
ginning of the program, the statement is the nth statement which zs ezther a goto or 
a label statement. Offsets may be computed by traversing the source program fïOm top 
to bottom and incrementing the offset counter each time a goto or label statement is 
encounlered.2 

Definition 2.1.2 The level of a label or a goto statement is m if the label or the 
goto statement is nested inside exactly m Ioop, switch, or lf/else statements. 

Definition 2.1.3 A label statement and a goto statement are siblings lf there exzsts 
some statement sequence, stmt_l j '" stmtj j ... stmt_j j ..• stmt...nj, such that 
the label statement corresponds to some stmt_i and the goto statement corresponds 
to some stmt_J in the statement sequence. 

Definition 2.1.4 A label statement and a goto statement are directly-related if there 
exists sorne statement sequence, stmt_l j ••• stmt-l i ... stmt_j i ... stmt..n; , such 
that ezther the label or the goto statement corresponds to some stmt_i and the match
ing goto or label staternent is nested inside sorne stmt_J Cstmt_i <> stmt_j) zn the 
statement sequ.ence. 

20ffsets are used to deterrnme if a label statement occurs before or after the matching goto 
staternent. 
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Definition 2.1.5 A label statement and a goto statemcllf m'l' indirectly-r<,lat,<,d If 
they appear in the same procedure body, but they are llfzthrr siblings 1101' dll('('t Iy
relatecl. 

Given these definitions, it is clear that the goto-elimÎnation transformat.lons PI(' 
sented in the previous subsection are applied exactly when the goto stat.eI1lellt. and 
target label statements are siblings. The goto-elimination transformation givl'II in 
Figure 2.1 is useJ when the offset of the goto statement Îs less than tht:' offs(lt, of t ht· 
target label statement, while the goto-elimination transformatIon glven in Figur(' 2.2 
is applied when the offset of the goto statement Îs greater than tht-' offset of t!te t (trg<'t 
label statement. 

We can DOW restate our overall strategy as follows. Givcn any goto-Iabrl paIr, 
we can eliminate the goto by first moving the goto until it becomes a siblillg of thl' 
label, and then applying the applopriate goto-eliminatioll t.ransformation. FIgure 2.3 
illustrates the four situations that may occur. 

Figure 2.3(a) illustrates the case when the label and goto are dircctly-rclaled, 
and the level vf the goto is greater than the level of the target label. The object.ive 
is to move the goto to the same level as the label. In this case we apply olllward

movement transformations, where each transformation moves the goto out 011<' lC'v('1. 
Figure 2.3(b) illustrates the case where the label and goto arp directly-related, and 
the level of the goto is less than the level of the label. In this case w(' apply lTtward

movement transformations, where each transformation moves the goto HI one It'vel. 

Figures 2.3( c) and 2.3( d) illustrate more complicated situations whcfe the goto 
and label are indirectly-related. When the label and goto are In eniirely differmt 
statements (Figure 2.3(c)), the goto is first rnoved using outward-movt'rnents untll il, 
becomes directly-related to the label, a.nd then inward-moverncnts arc used to move 
the goto to the same level as the label. When the label and goto arc in ddlcrent 
branches of tbe same lf or swi tch statements (Figure 2.3( d)), then the goto b first. 
moved using outward-movements until it becomes directly-related to the enc\osing if 
or swi tch, and then inward-movements are used to move it to the same level as th(> 
label. 

Given that aU situations may be handled by inward or outward goto-movernents, 
the only remaining problern is to define both outward- and inward-movement trans
formations for each kind of construct. The next paragraphs present these transfor
mations for each of the statemellts that neecl to be considered: loops (i.e. for, do 
and while), lf and sWltch statements . 

Outward-movernent Transformations 
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• 

whlle(""prl ) 

HI 8xlY2) 

then 

_rt~(I) 

case 1 

If ( cond ) goto Ll. 

..... 

.... 

1 ». 
li 

(a) Directly-related 
(level(goto) > level(label)) 

IWHch(l) 
r;;ü;e 1 

H (exprl ) 
lllen 

Il ( cond ) 9010 Ll.· . ... . 

-'-, 

~ 
, , 

whU. ( 8xpr2 ), 
~ .. , ... 

JJ If (expr3) 

I~'" 
( c) Indirectly -related 
(dzfferent statements) 

Il ( cond ) got:' Ll. 

' .. 

If (8XPr2) 
then 

eise .' .' 
' .. 

(b) Directly-related 
(level(goto) < level(label)) 

H (cond) 

then 

whUe ( eXPi'l l 

III ( cond ) 9010 -: ~ ; • .' ... • .1 ." . . erse 
Â ". ' .. 
• hII. ( expr2} 

Â.: .... 
1ft expr3) .' 

I~' . 
1 

J;.' 

(cl) Indirectly-relatecl 
(different branches of the same if/switch) 

Figure 2.3: The four situations for gClto/label relationships 
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The outward-movement transformatIOns are vcry stralp;ht-forward Theil' .lIt' h\tl 

cases, moving a goto out of a loop or SWl tch stat,ement., and t1lOvilll!, d goto ouI t)f 

an lf statement. 

• Moving a goto out of a loop or SWl tch statement: 

This transformation is very simple since we make use of the break statt'IIlt'Ilt 10 

e:~it the SWl teh or Ioop. We have made usc of break SlIlCC Il IS composltlOllctl 
and our compiler can handle it easily. Howcver, note that Il would also Ill' po~ 
sible to use a more complicated transformation that doC's Ilot !l1akt' us\' of 1 lit' 
break statement, if so desired. Thc complete transformatioll i" dlustl'alt'd III 

Figure 2.4. Note that a new variable IS introduced tü stor(' t.ht' vetlue of tht' (011-

ditional at the point at which the goto is encountered Till:' VdltW IS t!iell Il'Il~('d 
in the goto statement that is introduced at the exit of tilt' SWI teh/loup '1'0 

be safe, to preserve the semantic correctness of the program, the goto VilIIelhlt' 
must be reinitialized to false at the point of the label. 

• Moving a goto out of an If statement: 

In this case the break statement cannot be used. Instcad il. new cOIlditlOllal IS 

introduced as illustrated in Figure 2.5. 

Inward-movement Transformations 

In the previous subsection we presented the relatively simple out.ward-rnow'ment 
transformations. The inward-movement transformations are slightly more compl! 
cated. Firstly, wc cannot take advantage of the break staternents, and sPcoIldly w(' 
must consider whether the goto appears before or after the targct lal)('1. W(' d('· 
scribe the inward-movement transformations for the cases whcrc the goto aprwaT~ 
before the label, and the!} show how we can apply a golo-hflmg transformation (set' 
Section 2.1.2) that can always move the goto so that it appears b('füre the lalwl. 

• Moving a goto into a loop statement: 

This transformation first introduces a conditional that: (1) embeds the &tate
ments that occur between the goto and the start of the loop; and (2) lT1odIfi(·~ 
the loop condition such that it will be entered either when the goto exprc~!>I<JII 
is true, or when the original loop e)(pression is truc. The transformation is 11-
lustrated in Figure 2.6. Note that the short-circuit evaluatlOn 1Il C WIll ell~Uf(' 

that the original loop expression will not be evaluated if entry into the 100[> 

is due to the goto. Further, note that the reinitialization tü false of the goto 
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{ 

Li: 

} 

• 

••• 1 ..... 

svitch(i) : 
{ 

case 1 : 
.............. 
stmt_i; 
if ( cond 
stmt_jj 
............ 
stmt_kj 
break; 

case 2: 
............. 

default: 
............ 

} 

............. 
stmt_l; 
........... 

) goto Li; 

{ 

svitch(i) : 
{ 

} 

case 1: 

stmt_i; 
goto_Ll=cond; 
if ( goto_Ll ) break; 
stmt_j; 

stmt_ki 
break; 

case 2: 

default: 

if ( goto_Li ) goto L1; 

Li: goto_Ll=O; 
stmt_l; 

} 

Figure 2.4: Moving a goto out of a switch 
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{ 

....... 
{ if ( expr ) 

{ · ...... 
if ( expr ) 

....... 
{ 

stmt_i; 
goto_Ll=cond; ....... 

stmt_i; if ( !goto_L1 ) 

if ( cond ) goto L1: => 
{ 

....... ...... . 
stmt_j; 

stmt_j; 

} 
} 

} · ...... 
L1: stmt_k: 

if ( gete_Li ) goto L1 ; 
....... · ...... 

} 
L1 : goto_L1=O; 

stmt_k; 

} 

Figure 2.5: Moving a goto out of an lf 

• 14 
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Li: 

{ 

... " .. 
{ goto_Ll=cond; 

....... if ( !goto_Ll ) 

if ( cond ) goto Li; { 

stmt_i; stmt_i; 
. . .. .. . . . ....... 
stmt_j; stmt_j; 
while ( expr ) } 

{ while ( goto_L1 1/ expr) 
., ...... { if ( goto_Ll ) goto Li; 
stmt_k; ....... 
....... stmt_k; 
stmt_n; Li: goto_Li = 0; 

} ....... 
.......... stmt_n; 

} } 

........ 
} 

Figure 2.6: Moving a goto into a loop 

variable at the point of the label preserves the correct behavior of the loop in 
succeeding iterations (i.e. force evaluation of the loop expression). 

The transformation for do loops is similar, except that the condition of the loop 
does not need to be modified. To handle for loops that have labels in their 
body, one can simply transform it to the equivalent whlle or do loop and then 
apply the appropriate inward-movement transformation . 

• Moving a goto into an lf statement: 

In this case the transformation is similar to the loop transformation, except 
that the if condition is modified differently depending on whether the label is 
in the then or else part. If the label is in the then part, the modification of 
the condition would be the same as for the while condition. If the label is in 
the else part the if condition is modified to Iead to the else part, when the 
goto condition is true, or the if condition is faise. Figure 2.7 illustrates this 
case . 

• Moving ê goto into a swi tch statement: 

In order to move a goto into a swi tch statement, one must first locate the case 
that con tains the target label. In order to force control to enter this case, a 
llew variable is defined to be used as the swi tch variable, and a conditional is 
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{ 

Li: 

} 

• 

if ( cond ) goto Li; 
stmt_i; 

stmt_j; 
if ( expr ) 

{ ...... . 
stmt_k; 
....... 

} 

else 
{ stmt_l: 

stmt_n; 
....... 

} 

{ 

Li: 

} 

goto_Ll=cand; 
if ( ! gata_Li ) 

{ stmt_i; 
....... 
stmt_j; 

} 

if ( !gata_Li &&: 
{ ....... 

stmt_k; 

} 

else 

expr ) 

{ if ( goto_L1) goto Li; 
stmt_l; 
gota_Ll=O; 
stmt_n; 

} 

Figure 2.7: Moving a gota into an if 
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Ll : 

introduced that imtializes the new variable to the constant expression of the case 
in question when the condition of the goto is true and to the switch expression 
when the condition of the goto is false. If the label occurs in the defaul t 
statement, the new variable is set to a deIault value. Figure 2.8 illustrates this 
case. 

{ 

} 

if ( cond ) goto Ll j 
stmt_ij 

stmt,_j; 
switch (i) 

{ 

case 1: 
{ 

} 

default: 

} 

{ 

L1: 

} 

goto_Ll=condj 
if ( !goto_L1 ) 

{ stmt_ij 

} 

stmt_j; 
t_sllitch=ij 

else t_sllitch = 1; 
switch (t_switch) 

{ 

} 

c.ase 1: 
{ if (goto_L1) goto Ll j 

stmt_k; 

} 

goto_L1=O; 
stmt_l; 

default: 

Figure 2.8: Moving a goto into a svitch 

Goto-Iifting Transformation 

Each of the previous inward-movement transformations have moved a goto that 
appeared before the target label (i.e.offset(goto) < offset(label)). However, there are 
also situations where the target label appears before the matching goto. In this 
case, one must first move the goto to just before the statement containing the target 
label using the goto-lifting transformation, and then apply the appropriate inward
movement transformation. 

17 
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Figure 2.9 illustrates the goto-lifting tra.nsformation. Let stmt-1.abel be tIlt' 
statement that contains label L1, and let the matching goto staternent b(, bclow 
stmt-1.abel in the statement sequence. We can lift the goto up ahov(' stmt~abel by 
introducing a do-Ioop that on the first iteration ignores the goto and on subs('qu('lli. 
iterations uses the value of the conditional at the bot tom of the loop. ACter tll(, goto 
has been lifted, the inward-movement transformations can be used to Illove the goto 
inside stmt~abel. 

{ 

} 

{ 

stmt_label; 1* contains Li *1 =} 

if ( cond ) goto L1; 

} 

int goto_L1 = 0; 

do 
{ if (goto_L1) goto L1; 

stmt_label; 1* contains L1 *1 

goto_L1 = cond; 
} 

while (goto_L1); 

Figure 2.9: Lifting a goto ab ove the statement containing the lahel 

2.1.3 Examples of Inward and Out"ward Transformations 

Figure 2.10 illustrates a series of outward-movement transformations followed by a 
goto-elimination transformation, performed to eliminate the go'to in Figure 2.3(a). 
Figure 2.11 illustrates a series of inward-movement transformations followed by a 
goto-elimination transformal,ic.1, performed to eliminate the goto in Figure 2.:3(b). 
Figure 2.12 illustrates a series of outward-movement transformations, followed hy a 
goto-lifting transformation, a series of inward-movement transformations, and a goto
elimination transformation, performed to eliminate tl~e goto in Figure 2.3(d). Note 
that the dotted arrows indicate the movement just apphed, while the dashed arrows 
indicate the next movement . 
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whl" ( el'prl ) 

If (expr..!) 
then 

_iteh/,) 
case 1 

golo_L l=cond, 
Il ( goto_L' ) break, .... 

If( goto _11 ) 9010 l1, ~. ----------- ----1"'- -

1..-, 

L1 golO_Ll..o, 

(a) outward-movement from S~l1tch 
r-------------------------

whl" ( exprl ) 

H (expr2) 
lIlen 

swltchll) 
case 1 

goto_L1zeond, 
Il ( 9Oto_L 1 ) br86k , 

... , ..... 
" . 

(c) outward-movement from while 

whlle (exprl ) 

H (expt'2 ) 
then 

SWitch(l) 
case 1 

gOIo_l1 =cond, 
Il (go"_l1 ) break , 

If ( 19o1O_11 ) 

1 

( 

1 
Il (gow_L1 ) golo L1, ~ -... ... .. 

~ 

-- --- ---,.--
Ll gOIO_L1-0, 

(b) outward-movement from if 

whllo (expr1 ) 

H (expr2) 
1 

lIlan 

switch / Il 
case l' 

goto_L 1-cond, 
1 

of (9Oto_L 1 ) break , 

If ( 19oto_L 1 ) 
( 

1 
of (go1D_ll ) break, 

If(1 goto_l1) 
( 

1 
goto_l1=O, 

( cl) application of goto-elimination 

Figure 2.10: Outward-movements followed by goto-elimination 
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go\lO •• Ll-ccnd. 
1f(~~Ü') 
1 , 
whlle ( gOlo _L ll1expr\) • 

.(~o_tl'OJ'OL1. ~--.~ 

H(e 1 ~ 
Itlen --.-;r------, , 
e)-' 

IIWltch i ------, c .... , , 

'-----------_._-
'-------------._--

(a) inward-movemEmt into a vhlle 

golo_Ll-cond: 
H (1 golO_LI ) 
( , 
whlle (11010 L'.lI,ax~~pr1.J.I_. ___ _ 

H (lgolO_LI) l 
( , 
If (10010 LI && exp? ) 

lhen 

else 
H ( 1901o_Ll " • 

1 .. 
'_Swr1Ch_I, , 

.Ise 
t sW1lCh-l; 

nHdt{' 'Sw4cn ~ 
case 1: "-

(c) Înward-movement into a s,dt,ch 

F~!7;~ ----.--.----.- --1 

, 
whlklJ.Il~_~!ILe..~ _.__ . __ , 

1 ~ (1IOtO,LI ) • , 
il (1~~l~.~p~.L ----. --'1 

tIlom • 

T~"'~---
\ \ L1 geto,L1.o, 

Il~-=:~L 1 

~=.:::=========--==_.I 
(b) Înwa,rd .. movement into an tf 

gclo_L 1.",,,d, 

• ( 19oIo_1.1) 
1 , 
white ~..!:.Ul!.Y!.ll-______ "'1 

H( "1OI0.Ll) 
( 

1 
If ( o_LI Uexpt'2) 

1 

lhen -------... ---

elle 

• ( klOt'J_L 1 ) 
( 
' .. sn.en.l. , .... 
1 w..,lch.l. .,.,:h ( t..swlch 1 
ëi~-----

d ( 19oIo .. 1.1) 

1 , 
L1 galo"L1.o, 

L 
(d) application of goto-elimination 

Figure 2.11: Inward-movements followed by goto-elimination 
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III cond' 
dIS" 

while t 8xorl 1 

1 galo _L 1 • cond, 
1 ( goIo_l1 , breal<, ··1 

Il ( 1900o_L1 ~ •• ' 
.' . 

1 } 

81s8 
~ .... 

" .... .... ... 
whlle 1 8xpI2,', 

\ , 
\ 
\ 

H ( 8xpr3 , , 
lhen 1 

1 
1 
/ 

li gOIlÜI.O, 
/ 

1 , 
H 19oI_ )gotl oU o l" 

(a) outward-movements 

do 
( ~ (1 golo_LI ) 

1 _.) 
" 1 0 LI && oond , 

d (1 gOlo_LI) 
1 ... 1 
else 
Il (1 golo_LI) 
( . 
) 
.hlle ( gOlo_LI lIexpr2 , 

d ( golo_l1' gala l!'-_ 

If ( expo3' 

-.... 
1 

(d) inward-mov. into whlle 

do 

{ d 1 golo_lI ) go~o..L.~ 

Il ( nd) 1 00 

Ihen 1 

whlleleill:>,,) 

go(o _LI .oond, 1 1 1 f golo •• L l , break; 
1 

~1)~0_L1 1 
1,.1 
.fIie ,. 
whlle ( expl2: 

If (exp!3' 

[:J L1 QOCo_LI.o; 

(b) goto-lifting 

1 ( 1.;010 LI && oond , 
lhen 

Whlle 1 exPrl 1 

1 gala_LI _oond, 
ri (90lo_L 1) break, 

1 

I! ( 1 got< .L 1 ) 
( .... ) .. 
Il (1 golo_LI' 
1 
1 
Whlle ( golO II Il expr2 ) 

• ( 1 golo_LI ) 

1 .. -
) 
If ( goto_L 1 Il exp!3 ) 

~goto_ll) golo LI;" 

LI golo_U.O, 

(e) inward-mov. into i.f 

do 
1 d 1 Igolo_L1) 

1 -1 
Il ( 1 9010 U && oond , 
then 

Whlle { "XDrl 1 

1 

gOlo LI. oond, 
"( gOlo_L 1 ) bl8aM, 

whlfe ( expr2 ) 

Il (expr3) 
l''''n 

1 

.... , 

(c) inward-mov. into if 

do 
( "(1 goto.L 1 ) 

1 -1 
UI golo l1 && cond , 
lhen 

whlfe { eXDrl 1 

1 11010 _LI - oond. 
ri ( golo.ll ) break, 

d ( 1 gala. LI) , .) 
Me 
d ( 1 goIO.L1 ) 
1 
1 
whUe ( golo_L1 Il expr2 ) 

• ( 1 golo.LI ) 
{ .-
) 
Il ( goIo LI Il expr3 ) 

Ihen 
r ( 1 goIo.L1 1 
( .. 
1 
Ll:goto_L1.0, 

,whlle (goIo.L') 

(f) goto-elimination 

Figure 2.12: Outward- and Inward-movements followed by goto-elimination 

21 



• 

• 

2.1.4 Avoiding the Capture of break and continue State
ments 

Since we are directly supporting break and contlnue statements, ther(' is olle t.wist 
that we must consider when applying the goto-elimination (Section 2.1.1) and got.o
lifting (Section 2.1.2) transformations that introducc new do loops. Althou~h tht's(' 
transformations seem qui te simple and innocent al. first, therc 18 one subt.lt' point 1 h,\1 
arises due to the presence of break and continue statemcnts. The cruC!dl pOlllt is 
that, on rare occasions, the do loop that we introducc captl1r('s a break 01 cont lnue 

statement that belongs to an enclosing loop or SWl tch statement. COllsidt'r, 101 
example, the original program in Figure 2.13(a) and the mcorrcct capturing of cL 

break statement in Figure 2.13(b). In order to avoid thls situatIOn, wc mll~t. add 
one further transformation for each captured break or contmue. As illustrat.t'd in 
Figure 2.13(c), we need to: (1) introduce one new logical varIable for cach loop that 
captures a break, (2) set these variables to false at the beginning of proc('durc, (:q 
set the appropriate variable to true at the point of the break, and (4) check 1.11(' 
variable at the exit of the introduced loop: if it is true reset the logical variable 1.0 

false and issue the proper break for the enclosing loop. A similar method for capt.urt!<l 
continUé statements is used, except that at the exit of the introduced \oop, if t.ht' 
variable is true, we issue the contlnue instead of the break f,'r the cnc\osing loo!> 
Figure 2.14 illustrates this case. 

2.2 Eliminating all goto statements from a C pro
gram 

Based on the goto-elimination, goto-movement and goto-lifting transformations, wc 
can now state the complete algorithm for removing ail goto statements from a C 
program. The complete algorithm is presented in Figure 2.15. 

For each procedure, the algorithm proceeds in five steps. The first I.wo steps an' 
simple initiali:~ations. The first step coUects a li st of aIl label and goto statements 
in the procedure. The second step introduces one \ogical variable for each label, 
initializes the variable to faIse, and inserts a reinitialization to false at the point of 
the label. These initializations and reinitializations are required to make sure that 
the value of the logical variable is false on all paths except the path coming from 
the point at which the appropriate conditional test evaluated ta true. The thif(l step 
converts aH unconditional gotos to conditional gotos. 

The fourth step is the heart of the algorithm where each goto is eliminated one 
at a time. For each goto, the matching label is Iocated. Once the goto-label pair 
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{ ...... . 
vhile (1) 

{ ...... . 
do{ 

Li: goto_Li=O; 
stmt_i; 

stmt_j; 
if (exp!) break; 

goto_Li = exp2; 
} vhile (goto_Li); 

} 
} 

(b) incorrect capture of break 

{ ...... . 
vhile (1) 

{ ..... . 
Li: stmt_i; 

stmt_j; 
if (exp 1) break; 

if (exp2) goto Li; 

} 
} 
(a) original progrdm 

while (1) 

{ ...... . 
do{ 

Li: goto_Li=O; 

} 

} 

stmt_i; 

stmt_j; 
if (expl) 

{do_brk=l; 
break;} 

goto_Li = exp2; 
} while (goto_Li); 

if (do_brk) 
{do_brk=O; 

break;} 

( c) correct treatment of 
captured break 

Figure 2.13: Avoiding capture of break statements 
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{ ...... . 
llhile (1) 

{ ...... . 
Li: stmt_i; 

stmt_j; 
if (expl) continue; 

if (exp2) goto Li; 

} 

} 
(a) original prf:gram 

{ int do_cont = 0; 

{ ...... . while (1) 

while (1) { ...... . 
{ ...... . do{ 

do{ Li: goto_Li=O; 
stmt_i; Li: goto_Li=O; 

stmt_i; 

stmt_j; 
if (expl) continue; 

goto_Li = exp2; 
} llhile (goto_Li); 

} 
} 

(b) incorrect capture of continue 

} 

} 

stmt_j; 
if (expl) 

{do_cont=l ; 
break;} 

goto_Li = exp2; 
} llhile (goto_Li); 

if (do_cant) 
{do_cont=O; 

continue;} 

(c) correct trcatrncnt of 
captured contInue 

Figure 2.14: Avoiding capture of contInue staterncnts 
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f~r each procedure p do 

{ /* get the l~st of labels and gotos for th~s procedure */ 
label_l~st := aIl labels ~n procedure p; 

} 

goto_l~st := aIl gotos ~n procedure p 
/* ~ntroduce and in~t~al~ze the log1cal var~ables */ 
for each label L~ ~n label_l~st do 

{ 1ntroduce a var~able goto_L~ ~n1t~al~zed to false 
1ntroduce a stmt Just after the label L1 that resets goto_L~ to fals'. 

} 

/* change all uncondlt~onal gotos to condit1onal gotos *1 
for each uncond~t~onal goto g ln goto_l1st do 

change g to a cond~t~onal goto 

/* el~mlnate gotos */ 
~h~le not empty(goto_l~st) do 

{ /* select the next goto/label pair */ 

} 

g : = select a goto from goto_l~st; 1 : = label mi.\tchJ.ng g 
/* force g and l to be d~ractly related */ 
1f lndlrectly_rGlated(g,l) then 

lof dlfferent_statements(g,l) th en 
move g out us~ng out~ard-movement transformatlons 
untll 1t becomes dlrectly related to l 

else /* d1fferent branches of the same ~f or s~~tch */ 
MOye g out us~ng out~aTd-movement transformat~ons 
untll 1t becomes dlrectly relat6d to the lf or svitch conta1nlng l 

/* force g and 1 te be slbllngs */ 
1f d~rectly_related(g,l) then 

1f level(g) > level(l) then 
move g out to level(l) us~ng outward-movement transformat~ons 

else /* level(g) < level(l) */ 
{ 1f offset(g) > offset(l) then 

} 

11ft g to above stmt conta1nlng l using goto-11ft1ng transfo 
move g 1n to lovel(l) uSlng 1nvard-movemant transformations 

/* g and l are guaranteed to be siblings. el1m1nate g */ 
11 offset(g) < offset(l) then 

ell.mlnate g w~th a condltlonal 
e1.so1 

elimlnate g w1th a do-loop 

/. el1m1nate labels */ 
for each label L1 J.n label_l1st do 

ell.lllinate L~ 

Figure 2.15: High-Ievel algorithm for removing aIl gotos 
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has been located, it is simply a matter of applying goto-movement t rctIls for III cl t ion:-. 
until the goto-label pair become siblings and then applying the appwpnatt' ~\lto
elimination transformation. The fifth step is the eliminatlOl1 of a\l tht' laheb (SIIH (' 

aU gotos to these labels have now been eliminated). 

2.3 Optimizations 

In this section we present sorne optimizations to the goto-elimlllcltlon IlId,hod Flr:-.\.. 
sorne simple optimizations that can be made as the goto-ehmlTldtlOll and gOt.O-IllllV(·llH·llt 
transformations are applied are pre:,:!tlted. Then an optimizatIon fJr a particuldr ~;It 

uation in which gotos can occur is described. 

2.3.1 Simple Optimizations 

While applying the goto-movement and goto-elimination transformat.ions by followlIlp; 
the rules straight away, many unnecessary conditional If staterneuts (.(. wlt.h 111111 
bodies) can be introduced. There are three situations where wp can avoid g(·Ilt'rd,t.llIg 
these statements. 

Coto statement is next to the label statement: Figurf' 2 16 dlustrat('~ t111~ ca~l' 
in which the goto staternent is immediately next to the label statcnwllt Thi~ 

situation may occur after sever al movement transformatlOl1s, alld clcarly III t.!ti:-. 
case we may just elirninate the goto statement 

{ ....... 
{ 

stmt_i; 
....... 
stmt_1; ....... 

if (cond) goto Li; =}- ....... 
L1: stmt_n; 

L1: stmt_ni ....... ...... . 
} 

} 

Figure 2.16: Goto is next to the label 
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{ if ( expr ) 
{ if ( elpr ) { ........... 

{ ............. stmt_i; 
stmt_i; ............. 
.............. goto_Ll=cond; 
if (cond) goto L1; => } 

} if (goto_Ll) goto Li; 
.. .. .. . .. .. .. .............. 

L1 : stmt_n; L1: goto_L1=O; 
} stmt_n; 

} 

Figure 2.17: Gota at the end of an if block 

Goto is at the end of an if block; Figure 2.17 illustrates this case in which the 
goto is at the end of a statement sequence and is being moved out of an if. 
In this case we can avoid introducing a conditional statement at the end of the 
block (there are no statements after the goto that must be guarded). 

Goto is before a loop that contains the lab~l: Figure 2.18 illustrates this case 
in which the goto is immediately before a loop. We can avoid introducing a 
conditional statement before this loop. 

{ 

if (cond) goto Li; 
vhil e ( expr ) 

{ ...... . 

Li: 
} 

} 

{ 

goto_Ll=cond; 
while ( goto_Li 1 1 expr ) 

{ if ( goto_L1 ) goto L1; 

L1: 

} 

} 

Figure 2.18: Goto immediately before a loop 
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2.3.2 A special case optimization 

Another common situation that can be optimized occurs when there is more than 01\<

goto associated with a label inside the same lf, SWl tch or loop statement. If wc wert' 
to apply the transformations blindly, we would introduce, for each goto, a ronditioual 
check at the exit of the if, switch or loop. This conditional check introduced could 
be: (i) the conditional if introduced to guard a sequence of statements; (ii) the 
do-while introduced to create a cycle of control-flowj and (iii) the conditional lf 

containing a break statement introduced to exit from a loop or SWl tch staLerncnt. It, 

is clear that when there is more than one goto statement to the same label, it would 
be preferable to insert only one of these conditional checks per label. For cxampl(', 
we would like the transformation given in Figurt: 2.19 for the case wherc therc arc 
multiple gotes to the same label from a SWl tch. We implement this optimization 
by first checking to see if the appropriate conditional has already been inscrted, and 
avoiding duplicating the code if it is already there. 

{ ...... . 
svitch(x) 

{ case 1: 

} 

break; 
case 2: 

goto error; 
case 3: 

break; 
case 4: 

goto error; 

error: 
} 

{ ...... . 
svitch(x) 

{ ca::le 1: 

} 

break; 
case 2: 

goto_error = 1; 
break; 

case 3: 

break; 
case 4: 

goto_error = 1 j 
break; 

if (gote_error) goto error; 

error: geto_error = 0 
} 

Figure 2.19: Optimizing multiple gotos from the same swi tch 
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Chapter 3 

An overview of SIMPLE 

In this section an overview of SIMPLE is presented. As its name suggests, SIMPLE 
is a simplified version of the first intermediate representation FIRST, where complex 
program constructs are translated to a simpler form. SIMPLE is based on a simple 
grammar that is powerful enough to represent aIl constructs of C. 

During the simplify process, complex expressions and statements are broken down 
to simpler forms, complicated variable names are split whenever possible and allloops, 
switches and c0nditionals are modified to adhere to the restricted SIMPLE format. 

A complete description of SIMPLE is out of the scope of this thesis, but we will 
refer to sorne of the important features through examples which would be helpful in 
understanding sorne of the later sections. A detailed description of SIMPLE can be 
round in [Sri92]. 

For our purposes, the relevant features include: the different types of statements 
(statement nodes), along with the most relevant aspects of their tree representation, 
and the tree representation for sequences of statements and compound statements. 

3.1 Basic statements 

In SIMPLE a set of fifteen basic expression statements are identified and any other 
complex expression statement in C can be broken into a sequence of these statements. 
Figure 3.1 illustrates three examples of statements (two assignment statements and a 
function caIl) broken down into a series of simpler statements. The tree node related 
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to the basic statement in SIMPLE is the EXPR_STMT node. Every stat.ement. nod(· 
has a parent no de called a TREE_LIST node. This TREE_LIST no de is also ust'd 
to link sequences of statements. Figure 3.2 illustrates a high-Ievel rcpresentation of 
the SIMPLE-AST for the first example in Figure 3.1. The triangles in the figures 
represent subtrees that will not be described in detail as they are irrelcvant t.o our 

work. 

a = b * c + (*d) 1 a: =} 

f ( 3, ta, *b ); 

a = b = c; 

temp_l = b * c; 
temp_2 = *d: 
tamp_3 = tamp_2 / a; 
a = temp_l + temp_3: 

temp_O = ta: 
tamp_l = *b; 
f( 3. temp_O, temp_l) 

b = c; 
a = b; 

Figure 3.1: Example of FIRST to SIMPLE transformations 

Figure 3.2: SIMPLE AST representation 
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3.2 Compositional Control Statements 

The compositional control statement forms supported by SIMPLE are restricted (sim
plified) versions of statement sequences, for-loops, whüe-Ioops, do-Ioops, swi tch / 
case statements, and lf-else statements. In addition, return is supported for ex
iting a procedure or function, break and cont1nue are supported for exiting a loop 
and break is supported for exiting sw~tch/case statements. 

Figure 3.3 illustrates the syntax of sorne of the control statements in SIMPLE and 
the corresponding AST representation. For a complete description of the SIMPLE 
grammar rules, refer to [Sri92]. 

The condition expressions for loops and conditionals are reduced to equivalent 
simple expressions that are free from side-effects. Figure 3.4 shows an example of 
simplifying the condition of a while loop, while Figure 3.5 illustrates the handling 
of a typical short-circuit condition. In the later case the short-circuit is expressed 
directly by introducing the appropriate conditional statement. 

lt should be noted that SWl tch and case statements need special ~ttention since in 
C, the body of a case statement can be thared partially by different case statements 
and the compositionality of the control flow is then lost. Each case statement is forced 
to begin with a case and end with a break, return or cont~nue, and to replicate 
shared code. Figure 3.6 illustrates an example of simplifying a sw~ tch statement. 

In order to make the format of the SIMPLE-AST uniform, even when the body 
of a compositional control statement contains a single statement, it is treated as a 
compound statement and the statement is therefore put within braces. 

Compound statements are represented by a TREE_LIST node being the parent 
of the sequence of statements that formed this compound statement. Figure 3.7 
illustrates a sequence of statements in a compound statement and its corresponding 
tree. ThUEl each new compound statement is identified by the plesence of two levels 
of TREE_LIST nodes in the AST. 

SIMPLE does not allow variables to be defined inside compound statements. A 
process called unnesting [Sre92], removes them by lifting variables to the function 
level, renaming them if necessary. 

Thus, the programs represented in SIMPLE, have a regular and simple grammar, 
where complex statements and expressions are simplified, and compound expressions 
are broken iuto simple ones. This is the most convenient point to insert our structur
ing phase. AlI analyses and transformations after this phase can assume structured 
programs. 
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stmt: IF cC, condexpr ')' stmt 
IIF cC' condexpr ')' stmt ELSE stmt 

(a) if-else statement 

stmt: FOR 'c' expr '. , , condexpr , . , , expr C)' 

(b) for statement 

stmt: WHILE 'c' condexpr ')' stmt 

(c) vhile statement 

stmt: DO stmt WHILE 'C' condexpr ')' 

( d) do stat.ement 

Figure 3.3: SI~lPLE grammar and tree nodes for sorne compound statements 

vhile (a + b > c) 
{ 

} 

temp_l = a + b; 
vhile Ctemp_l > c) 

{ 

Figure 3.4: Simplification of a while-loop condition expression 
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temp_1 = a > c; 

if ( a > c ct&: a > d) 
if ( temp_l ) 

{ 
temp_1 = a > d 

if ( temp_l ) 

} 
{ 

} 

Figure 3.5: Simplification of a condition with a short-circuit 

svitch(a) 
{ 

} 

case 1: 
case 2: 

stmt_l 
case 3: 

stmt_2 
default: 

stmt_3 
break ; 

case 4: 
stmt_4 ; 

switch(a) 
{ 

} 

case 1: 
case 2: 

stmt_1 
stmt_2 
stmt_3 
break 

case 3: 
stmt_2 
stmt_3 
break 

case 4: 
stmt_4 
break ; 

default: 
stmt_3 ; 
break ; 

Figure 3.6: An example of swi tch statement in SIMPLE 
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{ 

} 

• 

stmC1 ; 
stmC2 ; 

stmt_n; 

TV = Troo Value 
TC = Tree Chain 

E~-~ 
TV 

stmCn 

Figure 3.7: SIMPLE representation of staternents in a compound staternent 
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Chapter 4 

Implementing Goto-elimination 
the McCAT compiler 

':.:.1 Overview 

• ln 

This chapter presents sorne implementation details of the algorithm given in Sec
tion 2.2. 

First, the selected data structures are discussed. Data structures that efficiently 
support the operations to categorize a goto-Iabel relationship are mandatory. AU the 
information concerning the goto and label staLements should be stored in them, to 
be able to implement the goto-elimination algorithm after. 

The implementation of the goto-elimination method is divided into two subphases. 
The first subphase deals with the first three steps of the algorithm presented in 
Section 2.2, i.e. the initialization phases. They include: (i) the collection of aU the 
label and goto statements information; (ii) the creation of the statements to define, 
initialize and reinitialize the goto variables; (iii) the conversion of unconditional gotos 
to conditional ones. 

In the second suhphase, the goto-elimination algorithm is implemented. The gotos 
are eliminated one by one, and at the end all the labels are removed. 

An efficient method to determine if the given goto and label statements are sib
lings, directly-related, or indirectly-related is required. The information stored in the 
data structures and the SIMPLE-AST should he enough to be able to categorize the 
relationship of a goto-label pair and apply the required transformation. 
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4.2 Data Structures 

Two data structures are used to handle the information related to the gotos and 
labels. The gotos are stored in a linked list. The labels are stored in a hash table. 
The simplest or der to eliminate the gotos is in the order in which they occur in the 
linked list. However, as discussed in Chapter 5, there may be better orderings that 
can be considered. For each goto to be eliminated, the matching label is locat.ed. 
To do this efficiently we make use of the hash table of labels. Figure 4.1 present.s 
an example program, and Figures 4.2 and 4.3 illustrate the label table and goto 
li st contents for the given program. The next section describes in detail how the 
information is stored in these data structures. 

current 
offset 

1 

2 

3 

4 

5-6 

7 

m 

{ 
if (cond_1 ) goto L_1; 

.................. 
L_3 : .................. 

while ( expr ) 
{ 

for (i ... 1 ; i<n ; i++ ) 
,{ 

, , , 

"'tf ( concL2 ) gotO 1._2; 
IIC .... , ........... .. 'stmt.,t " t ' ,',' , 

,"~'ÎLe oqnd,:,,~)~, u;' 
),' ," , , 

L_2: if ( COOO_ 4 } gom L_~; 
... III ............... k ...... 

L_ 1 : ................ 10. ............. 

} 
L_ n: .................. 
} 

Figure 4.1: Example program 

4.3 Initialization Phases 

current 
level 

1 

2 

~ 
" 

" 
, 

2 

1 

As mentioned before, the initialization phases are implemented in one subphase . 
There, the SIMPLE-AST of the current procedure is traversed in a recursive manner, 
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L: set of labels 

/HEAD 

1 

.. ~, ~,,~, 
\ , 

, " " " " , , " , , 

A A A A 
1 1 1 1 

1 1 1 1 

nome 1 1 

lewl 1 1 

OfJut 1 

ptr_SIMPLE 

Figure 4.2: Label hash table 

/Dbtl Mme k'vel offset ptr _SIMPLE 

Figure 4.3: Goto linked list 
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collecting all the information for the goto list and the label table, crrating the il1l
tialization statements, and converting the unconditional gotOR to cOllditional gotos. 
More specifically, during the traversaI the following actions are perfornwd. 

1. A global variable for level i8 maintained. It is incremcnt.ed each tim(' Wt' t'li

ter a loop, svi tch or if statemeDt, and decremented each tinlt' we exit thes(' 
statements. 

2. A global variable for offset is maintained, it is incrementcd cach lime wr find a 
goto or a label statement. 

3. Every TREE_LIST node is linked to its parent 's TREE_LIST nod(' and the 
current level is assigned to the level field of this node. That is, from cvery 
statement Dode (i.e., the TREE-LIST no de associated with the statement.) we 
can access the parent statement node (i.e. the TREE_LIST node associ,ttt'd 
with the parent statement) and we can know the statement lcvcl. 

4. Every unconditional goto is transformed into a conditional one. 

5. For each goto found: 

- the offset is incremented. 

- a new node in the goto list is created and the goto informatiull IS stored. 

6. For each] '"'el statement found: 

- the offset IS incremented. 

- a new variable associated with the label is created. 

- the statements to initialize and reset the new variable are created. 

- a new node in the hash table is created and the label information is stored. 

From the Figures 4.2 and 4.3 we observe that a label node is inserted in the hash 
label table each time a label is found, using the label name as the hash fundion 
argument. The current level and offset (refer to Figure 4.1), the label name and a 
pointer to the SIMPLE-AST label Dode are stored. 

For each goto, anode is inserted at the head of the goto list. The current Leve! and 
offset, the label name associatcd with the goto, and a pointer to the SIMPLE-AST 
goto no de are stored. 

The nodes are inserted at the head of the goto list, and gotos a.re eliminatcd in 
the order they appear in the goto list. Thus, as it can be observed from Figure C3, 

38 



........ ~,~ ........ ----------------------------------------

• 

• 

the order of the goto-elimination is the reverse order to the order the gotos appear 
in the procedure. 

It should he noted that we actually implement all the initialization steps during 
one pass through the SIMPLE-AST in the first suhphase, and then no further passes 
through the SIMPLE-AST are required. Subsequent steps can be performed directly 
using the information collected during this first pass. That is, in the first subphase 
we store enough information about the location of goto and label statements 50 as to 
allow direct manipulation of the required parts of the AST in the second subphase. 
We create parent pointers in the SIMPLE tree to find common ancestors that can he 
used to efficiently determine the relationship between the goto and label. Thus, we 
are able to support efficient operations to get the level and offset of each label and 
goto(by accessing the data structures) , and determine if the goto and the label are 
mdirectly-related, directly-related, or siblings. 

4.4 Determining the relationships between gotos 
and labels. 

Now we will show how to categorize a goto-Iabel pair as siblings, directly-relafed, or 
zn directly-related. 

4.4.1 Siblings 

Definition 2.1.3 states that a label and a goto statement are siblings if there exists 
sorne statement sequence stmt_l; ... stmt..i ; ... stmt_j; ... stmt..ll.; such that 
the label statement corresponds to sorne stmt_~ and the goto to some stmt_j. 

In the SIMPLE_AST a goto-Iabel pair are siblings if both nodes have a com
mon parent. As illustrated in the exarnple in Figure 4.4 this means that the back
pointer of lthe TREE_LIST node associated with the goto and the backpointer of the 
TREE_LIST node associated with the label point to the same TREE_LIST node. 

4.4.2 Directly-related 

Definition 2.1.4 states that a label and a goto statement are directly-related if there 
exists a statement sequence stmt_l j ••• stmt.i.; ... stmt_j; ... stmt..ll.; such that 
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{ 
stmt_1 ; 

jf ( cond ) goto L_I ; 

stmt_n; 
L_i: .......... . 
} 

TB = T ree &.!ckpotnter 

Figure 4.4: goto and label are sibIings 

either (i) the label corresponds to sorne stmt_l and the rnatching goto Îs nest,ed ITlsid(' 
sorne stmt_j in the statement sequence or (ii) the goto corresponds to sonw stmLl 
and the mat ching label is nested inside sorne stmt_j in the statcmcnt scqll('nCt'. 

Let level(simLi) represent the level associated with staterncnt stmt_l, and Id, 

parent(stmLz) represent the parent pointer (backpointer) of the TREE_LIST Ilod(' 

associated with stmt_i. 

In the SIMPLE-AST the first case can be specified by the following two condltloll!'>· 

1. level(goto) > level(label) 

2. Let the goto be nested inside sorne stmt_J, which is a sibling of stmt_l, the lalw) 
statement. Then parent(label) = parent(stmLj) wherc stmt_J is the statemcnt 
obtained by traversing 2* (level(goto) -level( label)) backpointers frorn the goto 
node. (For each statement that contains the goto and not the label, two parpnt 
pointer levels should be followed since, as we specified in Chapter 3 a compound 
statement is represented by two levels of TREE_LIST nodes). 

Thus we can state the condition as: 

parent( label) = parent2*(level(goto)-level(label})+1 (goto) 

The ex ample in Figure 4.5 illustrate::: this case, where the goto Îs nested insid(· 
two staternents (if and while), and the label is in the same statement sequence a.c., 

the outermost of these statements. The labellevel is one and the goto level is three. 
From the TREE_LIST node associated with the goto statement, by followmg four 
backpointers of TREE_LIST nodes, we reach the TREE_LIST node associat('(J with 
the while staternent. The backpointer of this TREE_LIST node points to the sarne 
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TREE-LIST node as the backpointer of the TREE_LIST node associated with the 
label. 

Similarly, the second case can be specified by these two conditions: 

1. level(label) > level(goto) 

2. Let the label be nested inside sorne stmt.j, which is a sibling of stmt_i, the goto 
statement. Then parent(goto) = parent(stmLj) where stmt.j is the statement 
obtained by traversing 2* (level(label)-level(goto)) backpointers from the label 
node. 

Thus we can state the condition as: 

parent(goto) = parent2*(level(label)-level(goto))+l (label) 

The exarnple in Figure 4.6 illustrates this case. 

4.4.3 Indirectly-related 

Definition 2.1.5 states that a label and a goto statement are indirectly·related if they 
appear in the same procedure body but they are neither siblzngs nor directly-related. 

Thus, indirectly-related goto-label pairs include the cases when the goto and label 
are in entirely different statements and the special cases when the goto and label are 
in different branches of the same If or svi tch statement. 

To categorize a goto and label statements as indirectly-related, first it is checked 
they are not slblings (parent(goto) <> parent (label)). 

Then the level of the goto and the level of the label is compared. According to 
this result there are two possibilities: 

• if level(goto) = level(label) then they are not directly-related, so it can be stated 
they are indirectly-related . 

• if level(goto) <> level(label) the following steps are performed: 

(i) Select the statement (goto or label) that has greater level. Let this statement 
be greater~eveLstmt and let the other statement be smaller...leveLstmt. 

(ii) From the greater~evel...stmt noà~) pairs of parent pointers are traversed, 
until the level of smaller..leveLstmt i~ reached. If the parent pointer of 
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~~~31 IrHl- 1 1 Intl= 2 
1 Ina=] 

{ 
while ( cond 1 ) 
{ 
if (cond 2) 

C,:, , 
$tm~1; 

, 

, ~ ...... 
... · .. ·· .. ·, .. t···· ' .. :: ......... ........ " 

ift~ nj~lô'L_i; 
............ +.+. , 

,$tint n; 
}",,,,,,- '''' '" 

, ........ .. .. , .. , 

} 
................ 

L_ i: ................. 
} 

Figure 4.5: Dctermining a directly-related goto-label pair 
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§~'leYtl=1 
• Inel.2 
1 lewl.3 

{ 
while (cond 1 ) 
{ 
if (conct~) 

{ "', 

" 'stnlL1; "" ,.. .. .......... ~ ............ 

....... \~~++~~;~++"" .... : 
:( .... } "1' ":","~ .......... : .. ~ .... ~ 

, .. ~.... .. , ........... ; ..... , , .. ;: ........ ~~ 

,Stmt ni ' , " 
, 

} ',:--
} 
................ 

if ( cond ) goto L_i TB 
} 

Figure 4.6: Deterrnining a directly-related gete-label pair 
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the statement node that was reached is the same as the parrnt pointer of 
smaller..leveLstmt, then they are directly-related, otherwise they are wdi1'cctly
related. 

Once a goto-label pair has been categorized as indirectlY-7'elalcd then the condi
tions for the special cases are checked, 

General case: goto and label are entirely in different statements 

In this case, there exists a staternent sequence stmt_1; ... ; stmLl; .,. stmt_J ; 
... stmt..n; where the goto is nested inside sorne stmt_l and the label is nested lIIside 
sorne stmt_j (stmt_i <> stmt_j). 

In the SIMPLE-AST, from the goto Dode by traversing pairs of parent point.ers, 
and from the label no de by traversing pairs of parent pointers, stmt_l and stmt_J 
nodes are reached such that parent(stmLi) = parent(stmL}j.1 

Figure 4.7 illustrates this casc, The goto staternent is nested inside an lf and a 
while staternent, so its level is 3. The label staternent is inside an lf staterncnt so 
its level is 2. From the TREE_LIST node associated with the goto, by following four 
backpointers we reach the TREE_LIST no de associated with the whlle staterncnt 
that contains the goto, and from the TREE_LIST node associated with the label, by 
following two backpointers we reach the if staternent that contains the label. The 
backpointers of these whlle and lf statements point to the same TREE_LIST node. 

Special cases: goto and label are nested in different branches of the same 
if or switch 

In this case the goto and label are nested in zero or more statements inside diffcrcnt. 
branches of the same lf or swi tch. 

In the SIMPLE-AST, from the goto node by traversing pairs of parent pointers, 
and from the label Dode by traversing pairs of parent pointers, stmt_l and stmLJ 
nodes are reached such that parent(stmLi) <> parent(stmL}) and either: 

(i) parcnt(parent(stmLi)) = parent(parent(stmLj)) 

for the case the goto and label are in different branches of the sarne lf 

1 For each statement where the goto (label) is nested inside two patent pointer levels should be 
followed. 
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§~I kwl=J 1 kwl= 2 
1 kYel= J 

{ 
while (cond 1 ) 
{ 
if (cond 2) 

{ 
$~ 1"" ,,' 
h" ,:,"" *, ~ , , .' +M ........ I""C.,.. ... "( ~ 

~,t êOnd) ~ fJ; 
<I~,.. ... 'I( .. y.,,<I. 
$tmtJ1;' ," ....... , .. ~ .... 

} " 

Il 
If (cond_3) 
{ 
stmcm; 

TB 

S 
à 

TB 

.............. 
L_i: 

............. 
stmt ,. 

-' 
} 

} 

Figure 4.7: Determining an indirectly-related gete-label pair 
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or 

(ii) parent(pa1'ent(parent(stmLt))) = parent(parent(parenf(stmL)))) 

parent(parent(stmLi)) and parent(parent(stmLj)) are case statemcnts 

for the case the goto and label are in different branches of the same SWl tch. 

In the case of the if statement, the fad that this statemcnt has two clllldrt'll 
that are TREE_LIST nodes (one that points to the compound statenwnt of the then 
body and the other that points to the compound statement. of t.ll{' else body) i~ a 
unique condition in the format of the SIMPLE-AST. Thus, the backpointers of tht'~t' 
TREE_LIST nodes point tü the same TREE-LIST no de (the one correspo\1tling to 
the if statement). 

In the case of the SWI tch statement, there is no specidol condition regarding tht' 
format of the SIMPLE-AST itself. We specially check if the label and the goto arc 
in different case of the same SWI tch. 

Figure 4.8 illustrates the case of a label and a matching goto that belong 1,0 dif
ferent parts of the same If. From the TREE_LIST node of the goto by following two 
backpointers and from the TREE-LIST node of the label by following two backpomt
ers the same TREE_LIST node is reached. Figure 4.9 illustrates the case of a lal)('l 
and a matching goto that belong to different case statements of th<, sam(' SWI tch 
statement. From the TREE_LIST node cf the goto by followmg two backpointers 
the TREE_LIST node associated with a case statement is rcached, and from the 
TREE_LIST node of the label by following two backpointers the TREE_LIST nod(' 
associated with a different case but the same swi tch is reached. 

These tests to categorize the general and special cases are donc after the adjust.e
ment of the greater~evel....stmt to be equal to smaller-1eveLstmt. 

4.5 Elimination Phase 

The elimination phase is implemented in the second subphase, as explained before. 
In this subphase, the goto list is traversed sequentially, eliminating one by one the 
gotos associated with each of the nodes in the li st. 

For each goto the mat ching label is searched in the hash table. Both the goto 
li st and the hash table contain pointers to the TREE_LIST nodes associatcd with 
the corresponding goto and label statements. Making use of these pointers, and f he 
backpointers we can: 
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} 

• 

If (cond_l ) 

l 
~l~ -............ ..., 
lf'{~_~) r;otO tj; 

,l" , , 

AI",.,. 

,{ 

1-~ ~ +'.,:~:--::~,~;--" , : , 

L::=J Irlel = J 
1 : 1 lrlel=2 

Figure 4.8: Deterrnining an indirectly-related goto-label pair in same if 
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switch (expr) 
J " '" *," ...... .. 

~ta$é 1x ' 
, 1tmt 1; " 

, ...... ~.... .. 

1 1 kwl. J 
1 » » ;; » {j;l lnII= 2 

Figure 4.9: Determining an indirectly-related goto-label pair in same SW1 tch 
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• dctermine if the goto and the label are siblings, directly-related or indirectly
related, M explained in the previous section. 

• apply the required goto-movement or goto-elimination transformations accord
ing to the previous classification. 

• perform the required changes to the fields of the statement nodes (level and 
backpointers) that need to be modified after applying a goto-movement trans
formation. 

A high level description of the implementation of the transformations applied to 
eliminate one goto is given in Figures 4.10, 4.11 and 4.12. 

for each goto g l.n the goto-list do 
{ 

} 

/* for g find the matchlng label l *1 
1 : = label matchl.ng g ln the hash label tabh 
li parent(l) <> parent(g) then 

/* g and 1 are not Slbll.ngs, lIove g to be ~ ",ibling of 1*1 
g := Goto-movement-transformations(g,l) 

/* g and l are sl.blJ.ngs, apply one of the goto-elimination 
transformatl.ons*1 

lf offset(g) < offset(l) then 
apply goto-elJ.m1natlon transformation for g before l 

else 
apply goto-elim1natlon transformation for g after 1 

Figure 4.10: Implementation of the goto-elimination phase 

Note that the variables stmt..has.J. and stmt-1las..g in Figures 4.11 and 4.12 corre
spond to what we calI greater...leveLstmt and smaller...leveLstmt in the previous 
section, depending on the value of the goto and labellevels . 

49 



• 

• 

Goto-movement-transformatlons(g,l) 
{ if level(g) > level (1) then 

{ 1* determlne whether g lS directly or lndlrectly related to 1./ 
stmt_has_g : = g 
whlle level(stmt_has_g) > level(l) do 

stmt_has_g := parent(parent(stmt_has_g» 
if parent(stmt_has_g) = parent el) then 

} 

else 

/* g and l are dlrectly-related => move g out uSlng out ward 
movements untll lt becomes a slbl1ng ot l */ 

whlle level(g) > level(l) 
g : = apply outward-movel\)ent transformatlon to g 

{ /* g and l are lnduectly-related => move g out uSlng outward 
movements and then move g ln uSlng lnward movements */ 

stmt_has_l :;; 1 
g := Indlrectly-related-transformatlons(g,l,stmt_has_g,stmt_has_l) 

} 

eise 
{ if leveIel) > level(g) then 

{ /* determlne whether g lS dlrectly or lndlrectly related to 1.1 
stmt_has_l : = l 

} 

while Ievel(stmt_has_l) > Ievel(g) do 
stmt_has_1 := parent(parent(stmt_has_l» 

if parentCstmt_has_l) = parent Cg) then 
1* g and l are dlrectly-related => move g ln uSlng lnvard 

movements untll lt becomes a slb11ng of 1 *1 
whi1e level(g) < level(l) 

if offset(g) > offset(l) then 

else 

g := app1y goto-11ftlng transformatlons to 11ft g above l 
g : = app1y lnward-movement transformatlon to g 

{ 1* g and l are lndirectly-related => move g out uSlng out ward 
movements and then move g ln uSlng lnward movements *1 

stmt_has_g : = g 
g := IndirectIy-related-transformatlons(g,l,stmt_has_g,stmt_has_1) 

} 

eise 
{ /* g and l are indirectIy-related => move g out uSlng out ward 

movements and then .ove g in uBlng lnward movementa *1 
stmt_has_1 : = 1; stmt_has_g : = g 
g := Indlrectly-related-transformations(g,l,stmt_has_g,stmt_has_l) 

} 

return g 
} 

Figure 4.11: Implementation of the goto-movement transformations 
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Ind1rect1y-re1ated-transformat1ons( g,l,stmt_has_g,stmt_has_1) 
{ 

/* g and l are either in ent1rely d1fferent statements or 1n different 
branches of the same 1! or sW1tcn statement */ 

wh11e parentCstmt_has_g) <> parent(stmt_has_l) do 
{ 

stmt_has_g .- parent(parent(stmt_has-s» 
stmt_has_l .- parent(parent(stmt_has_l» 

} 

wh11e level(g) > leve1(stmt_has_l) do 
1f stmt_has_l = parent(parent(g» 

/* g and l are 1D <> branches of the same 1f statement */ 
g .- apply outward-movement transformat10ns to g for the 

case g and l 1n <> branches of an IF stmt 
else 
1f parent(parent(parent(g») = parent (stmt_has_1) 

e1se 

and parent(parent(g» and stmt_has_l are CASE stmts 
/* g and 1 are 1n <> branches oi the same switch statement */ 
g:= apply outward-movement transtormat10ns to g for th~ 

case g and l 1n <> branches of a SWITCH stmt 

/* g and l are 1n ent1rely d1fferent statements */ 
g := apply outvard-œovement transformation to g 

whlle level(g) < level(l) do 
1f of!set(g) > offset(l) then 

g := apply goto-lift1ng transformations to lift g above 1 
g ::; apply inward-movement transformat1on to g 

return g 

Figure 4.12: Implementation of the transformations for indirectly-related goto-Iabel 
paJfS 
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Chapter 5 

Experimental Results 

In this chapter we give sorne experimental results using our implemcntatioJl of the 
goto-elimination method for the McCAT compiler. First a description of the s(·!ect.ed 
benchmarks is presented. Then, the experimental method is describcd, and filléllly 
the results are discussed. 

5.1 Benchmarks 

In or der to test our structuring method we collected a set of Il ben ch marks that 
contain goto statements. Although in practical terms, our structurer is requircd for 
programs that contain even one goto, we wanted to test the effect and cornp)cxlty 
of our approach on at least some benchmarks that contained a significant numbcr of 
goto statements. 

5.1.1 Benchmark description 

Here a brief description of each of the benchmarks is presented. 

asuite and nrcode2 : These programs are part of the kernels designed by Lauren 
Smith to test C vectorizing compilers and their ability to recognize vector struc
tures [Smig1]. For asui te we work with a subset of its functions, the one~ that 
contain gotos . 
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corn press : A file compression program of the style similar to the one described 
in IEEE Computer, March 1992. This version of the program was written by 
Spencer W. Thomas et al. 

cq This program pe:.-forms a series of tests on a C compiler, based on information 
in The C Programmzng Language by Kerningham and Ritchie [KR78]. 

frac : This program finds a rational approximation for a fioating point value. lt was 
written by Robert J. Craig at AT&T Bell Laboratories, Naperville. 

FSM : Thi~ is a program that implements a finite state machine with an irreducible 
loop. The program is presented in Appendix A and was provided by David 
Chase 

indent : This program is the GNU's indentationjformatting program, version 1.8. 

torncatv : A C version of the FORTRAN program tomcatv, a highly vectorizable 
double precision floating point mesh generating benchmark. The FORTRAN 
version is part of the SPEC benchmark suite. 

lex.yy : This is the output of a program generated by lex. The input lex specifi
cation is given in Appendix B. 

par : This program is a filter which copies its input to its output, changing aIl white 
characters (except newlines) to spaces, and reformatting each paragraph. It 
VIas written by Adam M. Costello, 1993. 

whetstone : This is a C version of the FORTRAN synthetic benchmark whetstone. 

5.1.2 Benchmark characteristics 

The benchmark characteristics relevant to our work are presented in Table 5.1. For 
each benchmark the number of gotos, the number of labels, the number of Hnes of 
source code and a general characterization of the types of gotos used are presented. 
1"0 provide a fair comparison of the number of lines of source code we ran a script 
that strips comments, eliminates b!ank lines and formats the programs into a standard 
form. 

To help the discussion of the results, depending on the complexity of the trans
formations required to eliminate a goto, we classify the usage of gotos inb two cat
egories: simple goto-usage and complex goto-usage. Simple goto-usage includes the 
cases when the gotos are siblings to t.heir labels or used as outward branches from 
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control constructs. Comp/ex goto-usage includes the cases when the gotos brandi t 0 

a label that is within a control construct, or when the gotos belong to a goto-ld.bt'l 
pair that overlaps with other goto-Iabel pairs (i.e. a goto jumps ta a label withill ,\ 
region spanned by another goto-label pair). 

Based on the above classification and depending 011 the frequency of t.he simple 
and complex goto-usages in the benchmark, 'Ve have divided tht' set of bellchlllarks 
into two sets: szmple goto-usage benchmarks (with a majority of simple got.o-llsag('s) 
and complex goto-usage benchmarks (with a majority of complcx goto-u~ag('s). 

We will refer to the specifie characteristics of each benchrndTh, t.hruugholl\' t.he 
discussion of the results. 

name of # of # of # of goto-
benchmark gotos labels stmts usage 
cq 1 1 5760 simple 
nrcode2 2 2 106 simple 
lex.yy 4 3 1681 complex 
frac 6 5 58 simple 
tomcatv 7 6 197 complex 
compl'ess 9 6 1331 complex 

"FSM 12 6 56 complex 
asuite 22 21 244 simple 
indent 28 10 3923 complex 
whetstone 31 31 316 simple 
par 59 11 1665 complex 

Table 5.1: Benchmark characteristicf> 

5.2 Experimental Method 

As explained in the previous chapters, structuring takes place after the simplification 
process. From the SIMPLE intermediate representation, we can either dump out a C 
program (using McCAT as source-to-source compiler) or continue with the back-cnd 
phases of McCAT, as illustrated in Figure 1.1. 

In order to measure the effectiveness of our structuring phase, we performed the 
following experiment. For each benchmark we used our McCAT compiler as a sourœ
to-source compiler and we produced the following three semantically equivalcnt ver
sions of the benchmark: 
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SIMPLE version: This is a C prograrn that is dumped after conversion into our 
high-level SIMPLE interrnediate representation. AlI goto statements remain. 

GTE version: 1 This is a C program that is dumped aftf::r the SIMPLE representa
tion has been structured using the transformation rules presented in Section 2.1. 
No optimizations of the transformation rules are used. 

GTE(opt) version: This is a C prograrn that is dumped after the SIMPLE program 
has been structured using the transformation rules presented in Section 2.1, and 
the optimizations presented in Section 2.3. 

Note that in the two GTE versions we eliminated the goto statements in the 
reverse order from how they appeared in the source code. 

Given the three versions of each program, we then compiled each version using 
the GNU C gcc, vet"s~on 2.4.5, witn the -0 option, and timed the resulting exe
cutables using the UNIX system caU, getrusage on a SPARCstation SLC. We have 
reported the UBer time from these experiments. 

5.3 Results and Discussion 

Next, the results of the experimental measurements are described using the following 
five tables: 

(i) A companson of the number of transformations applied for the GTE and GTE(opt) 
versions of the programs is presented in Table 5.2. 

(ii) A comparzson of the number of new statements created for the GTE and GTE( opt) 
versions of the programs is presented in Table 5.3. 

(iii) Concentrating on the GTE(opt) version of the benchmarks, the distribution of 
the different typ~s of transformations applied is presented in Table 5.4. 

(iv) Concentrating on the GTE( opt) version of the benchmarks, the distribution of 
the differenl types of new statements is presented in Table 5.5. 

(v) A companson of the execution times (times collected as described in the previous 
section) for the GTE and GTE( opt) versions of the program is presented in 
Table 5.6 . 

1 GTE stands for goto-elimination 
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5.3.1 Comparing transformations for GTE and GTE(opt) 

In this subsecti.>n we evaluate our structurer depending on the number of transfor
mations applied. Table 5.2 illustrates these results for our set of bcnchmarks. First. 
note that, whereas for the GTE( opt) version around 2 or 3 transformat.ions per goto 
eliminated are applied, for the GTE around 2 to 4 transformations are applied. Tht> 
number of transformations that occur when we aprly the GTE and t.he GTE(opt) 
versions varies for five of the benchmarks (lex. y J, compress) FSM) lnden t and 
par). These benchmarks are the on es that apply the last 0f the optllnizatlOns re
ferred to in Section 2.3 and illustrated in Figure 2.19. In thlS C<I,:(> thcre is more than 
one goto associated witL a label inside the same ~f) swi tch or loop statement. The 
first of these gotos is elirninated using the regular transformatIOns. For the rest. of 
the gotos, the remaining transformations are the same, once the common lf, sv~ tell 
or loop statement is exited. Thus, we avoid duplicating the same code. lndent is 
a good example to illustrate the bencfit obtained from this optimization, where the 
numbcr of transformations is reduced by 33% by using the GTE( opt) instead of the 
GTE. 

GTE GTE(opt) 
name of # of # t:ansf./ # of # transf./ 
benchmark transf. 1'i:gOtO transf. #goto 
cq 1 1 1 1 
nrcode2 5 2.5 5 2.5 
lex.yy 16 4 12 3 
frac 7 1.2 7 1.2 
tomcatv 14 2 14 2 
compress 27 3 23 2.5 

FSM 23 1.9 19 1.6 
asuite 34 1.5 34 1.5 --
ïndent 108 3.9 74 2.6 
whetstone 63 2 63 2 
par 189 3.2 160 2.7 

Table 5.2: Transiormations for the GTE and the GTE( opt) 

5.3.2 Comparing new statements for GTE and GTE(opt) 

In this subsection, we evaluate our structurer depending on the nurnber of new state
ments created. Table 5.3 illustrates these results for our set of benchrnarks. Let us 

56 



• 

• 

first discuss a special case, the case of le~. yy. Note the remarkable difference be
tween the number of new statements per goto for lex. yy as compared to the other 
benchmarks for both the GTE and the GTE( opt) versions. The reason for this is 
tbat this benchmark cantains 4 break statements inside a for statement that require 
the transformation ta avoid their incorrect capture by a new do-whlle statement 
(this result is illustrated next, in Table 5.4). Thus, for this reason, 6 new statements 
are created, which relative to the number of gotos in the benchmarks (4) represents 
a significant increase. Next, consider the rest of the benchmarks. There is an im
portant. difference between the number of statements created by the GTE and the 
GTE(opt). For the GTE(opt) version between 2 to 4 statements are created whereas, 
for the GTE between 2 to 7 are created. The difference is due mostly to the num
ber of new conditional lf and do-whlle statements. The plain application of the 
goto-elimination method (i.e. witbout applying the simple optimizations described in 
Section 2.3) usually produces many lf statements with null bodies. 

GTE GTE(opt) 
name of # of # new stmtj # of # new stmtj 
benchmark new stmt #gotos new stmt #gotos 
cq 2 2 2 2 
nrcode2 8 4 5 2.5 -
lex.yy 30 7.5 16 4 
frac 12 2 11 1.8 
tomcatv 28 4 20 2.9 
corn press 43 4.8 30 3.3 
FSM 50 4.2 33 2.8 
asuite 78 3.5 68 3.1 
indent 187 6.7 95 3.4 
whetstone 107 3.5 62 2 
par 262 4.4 164 2.8 

Table 5.3: New statements for the GTE and the GTE( opt) 

Since the GTE( opt) is clearly more efficient with respect to the number of trans
formations and the number of new statements created, we shaH now concentrate 
on studying these two aspects in more detail for just the GTE(opt) version of the 
programs . 
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5.3.3 Distribution of transformations for GTE( opt) 

Table 5.4 presents the distribution of the transformations performed for the GTE 
(opt). 

The transformations can be classified as follows: 

(i) goto-elimination transformations that includes the transformations whcn the 
goto and label are in the same compound statement (i.e. siblings), whcre 
the goto occurs either before or after the label; 

(ii) goto-movement transformations that includes the outward-movement transfor
mations (moving gotos out from control constructs), the mward-movemcnt 
transformation (moving gotos iuto control constructs) and the goto-lifting trans
formations (performed before the inward-movement transfol mation, in order to 
move a goto that occurs after the label before the label); 

(iii) the transformations that avoid the incorrect capture by a new do-vh11e statc
ment of a break or a continue statement enclosed in a loop or a SVI tch stat.e
ment. 

Let us first consider the goto-elimination transformations. Wc observe that for 
each goto a goto-elimination is performed, except when the optimizations for the 
cases when more than one goto is associated with a label inside the same If, SVl tch 
or loop is applied. We observe that forward branches occur six times more often than 
backward branches. 

Now, let us consider the goto-movement transformations. Looking at the table, wc 
observe that outward-movement transformations are applied almost five times more 
frequently than the inward-movement transformations. Indent and lex. yy are the 
ones which have the highest ratio of outward-movement transformations to Ilurnber 
of gotos. In Indent there is a big SVl tch statement where gotos are uscd to branch 
from different case statements, to a label in another case (ail cases bclong to the 
same svitch). Lex .yy presents three overlapping goto-label pairs and with the gotos 
nested inside three levels of Ifs. 

A study of aIl the benchmarks suggests that inward-movement transformations 
are rarely used; i.e., gotos are rarely use ta jump into a control construct. Mm,t of 
the inward-movement transformations performed are caused by labels that arc in the 
scope of new etatements introduced bya previous transformation of a goto previously 
eliminated. The number of goto-lifting transformations is insignificant. 
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Benchmarks such as frac where the number of goto-movement transformations 
per goto is very low are cases where the majority of the goto-label pairs are siblings 
that sel dom overlap with other goto-Iabel pairs and where almost aIl the labels are' 
associated with a single goto. 

The third group of transformations, the ones performed to avoid an incorrect 
capture of a break or a cont~nue statement, as illustrated by the table, are performed 
an insignificant number of times. As we said in Section 2.1.4, these situations happen 
on rare occasions, but it is a subtle point that must be taken into account. 

Finally, we can note that aIl these results are consistent with a study done by 
Ballance and Maccabe [BM92], which indicates that only 2.9% of 119,000 functions 
examined use gotos. Of those gotos, 68% can be characterized as simple gotos: one 
target label per function, with one or more associated gotos, where the goto and 
label are in the same compound statement or the goto is used to exit from a control 
structure. 

Transformations for GTEl opt ) 
name of #of goto-elimination goto-movement capture 
benchmarks gotos goto-first label-first Outw. Inw. Lift. break-cont. 
cq 1 1 0 0 0 0 0 
nrcode2 2 1 1 3 0 0 0 -
lex.yy 4 1 1 10 0 0 4 
frac 6 5 1 0 1 0 0 
tomcatv 7 6 1 5 2 0 0 
compress 9 3 4 13 3 0 0 
FSM 12 8 2 5 4 0 0 -asuite 22 16 6 8 4 0 0 
indent 28 10 1 56 5 2 0 
whetstone 31 30 1 29 3 0 0 
par 59 41 2 94 23 0 0 

n TOTAL: Il 181 Il 122 20 ~ 215 r 45 1 2 Il 4 Il 

Table 5.4: Detail of the transformations for GTE( opt) 

5.3.4 Distribution of new statements for GTE( opt) 

Table 5.5 illustrates the different types of new statements created for the GTE( opt) . 
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If and do-while statements are the most expensive of an the added statements. 
AIso, their introduction might increase the number of transformations for the elimi
nation of subsequent gotos that overlap with the one that is being ehminated. From 
Table 5.5 we observe that usually 1, and at most 2 conditional If or do-whlle statc-
ments per goto are ereated. The worst cases oecur, as expected, for the bendllnark~ 
included in the group of complex-goto usage benehmarks. Bowever, note that for 
whetstone the number of Ifs and do-whlles created Îs only roughly half the number 
of gotos contained. The reason is that this benchmark, translated From FORTRAN 
with f2c, has the same pattern repeated 13 tlmes in the program. Figure 5.1 illus
trates this pattern. For one of the gotos (goto L2) the initialization, setting and 
reinitialization of the goto variables are the only new statements required for the 
GTE(opt). No conditional Ifs neecl be added. Thus, the GTE(opt) substantially 
reduces the total number of Ifs created for this benchmark, resulting in a very low 
ratio of if and do-while statements per goto. 

if ( cond ) 
goto L1; 

else 
goto L2; 

L2: 

Li: 

int goto_L2=O; 
int goto_Ll=O; 

if ( cond ) 
goto_Li = 1; 

aIse 
goto_L2 = 1; 

if ( ! goto_L1 ) 
{ 

Figure 5.1: Repeê,ted pattern in whetstone 

We now cons\cler the new basic statements created. They include (i) the initial
ization, reinitiaF.'ation and setting with the goto condition of the goto variable; (ii) 
the initialization and setting of the temporary variables used by the methodj and (iii) 
the break statements used to exit loops and swi tch statements. Since the gotos and 
label statements are eliminated, this number is subtracted from the total nur:lber of 
new statements . 

Note that the new statements created by the structurer should be consistent with 
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the SIMPLE grammar. When performing an inward-movement transformation into 
a vhlle or if statement, the condition of these statements is modified into a com
pound condition, as explained in Chapter 3. In this case, to adhere to the SIMPLE 
format, the compound expression should be simplified by transforming it into an 
l.f-then-else statement. Figure 5.2 illustrates this case for the l.f statement. Three 
new statements should be created, and a temporary variable defined to store the 
condition. The same applies to the whl.le, but these st ... tements should be included 
at the end of the while body as well, to evaluate the condition once more. ln order 
to distinguish the number of statements created strictly by the structurer method, 
from the ones created to be consistent with SIMPLE, we present these results ln two 
different columns. 

Finally, let us consider the number of new variables created. These include the 
goto variables and the following temporary variables: (i) the on es created to adhere 
to the SIMPLE format; (ii) the ones created to save the swi tch condition; and (iii) 
the ones created to avoid an incorrect capture of a break or contl.nue. One single 
variable is created for each label, to store the goto condition, regardless of the number 
of gotos associated with a label. Thus, as expected, the number of new variables per 
goto decreases when the number of gotos associated with a label is high. Two 
good example benchmarks to illustrate tllis fact are par and indent which have the 
highest ratio of gotos per label. They have the lowest ratio (less than one half) of 
new variables per goto. 

if (goto_Li Il expr) 
{ 

temp_i = goto_Li; 
:::} if ( ltemp_l ) 

{ temp_l=(exprl=O);} 
if ( temp_i ) 

{ 

Figure 5.2: Transforming the new compound condition to the SIMPLE format 

5.3.5 Comparing execut.ion times for SIMPLE, GTE and 
GTE(opt) 

Finally, let us consider the effect of structuring on execution time. Figure 5.6 contains 
the execution times for the three different versions of the programs (SIMPLE, GTE 

61 



• 

• 

name of # of New Statements for GTE( opt ) New Variables 
benchmark gotos if/do-w hile basic SIMPLE for GTE( opt ) 
cq 1 1 1 0 1 
nrcode2 2 2 3 0 2 
lex.yy 4 5 11 0 4 
frac 6 6 5 0 5 
tomcatv 7 6 6 8 8 
cumpress 9 15 15 0 6 
FSM 12 15 10 8 8 
asuite 22 24 28 16 25 
indent 28 44 40 11 12 
whetstone 31 18 32 12 34 
par 59 101 35 28 18 

Table 5.5: Detail of the new statements and variables for GTE( opt) 

and GTE(opt)). 

As expected, structuring programs with very few goto statements has very littlc 
impact on execution time. This is true, for example, for nrcode2 and cq with ouly 
two and one goto respectively. This is an important observation sinee many programs 
have only a few goto statements, and our method allows us to handle them wlth a 
structure-based compiler at low cost. 

On the other hand, the FSM benchmark which is an irreducible loop, IS the other 
extreme. This has many overlapping goto-label pairs, and the ratio of gotos to total 
of statements is very high ( if we consider only the function that Implements the finite 
state machine, which contains aU the gotos, and where the prograrn spends most of 
its time, the ratio of gotos to the number of statements is one to two). Thus, we see 
that there is a significant performance impact with even the optimlzed GTE version 
executing significantly slower. In the next section we show sorne further experiments, 
where we observe that the order of goto-elimination cOilsiderably influences in the 
run time for this exarnple. 

For the other benchmarks, the difference registered in the executioll times is not 
considerable. Compress and frac are the ones that follow FSM, consldering differences 
in execution time. The first one has complex goto-usages with aimost aIl the gotos 
coneentrated in the same function. The second one contains Simple goto-usages but 
the prograrn is a single small function, with a high ratio of gotos per lines of source 
code. 
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The power of the optimizations is demonstrated by benchmarks such as indent 
with a significant difference between GTE and GTE(opt) versions of the program. 

We can summarize by stating that. our results show that applying a smaU number 
of simple transformations ëliminates aU goto statements, and on most benchmarks the 
effect on execution speed is minimal. Thus, we can exploit structured representations 
for designing compilers while paying only a minimal penalty due to restructuring. 

name of tlme for tlme for tlme for GTE(opt)j 
benchmark SIMPLE GTE GTE(opt) SIMPLE 

cq 004 0.04 0.04 100 
nrcode2 1075 10.78 10.75 100 
lex yy 1.47 1.51 152 1.03 
frac 0.51 0.54 0.54 1.06 
tomcatv 78 7.99 7.97 102 
FSM 7.46 9.02 ~.OO 1.20 
compress 1.33 1.55 1.51 1 14 
asuite 11 41 11 69 11.68 102 
iodent 3.78 4.88 3.85 1.02 
whetstone 46.49 48.2 4796 1.03 
par 2.09 2.16 2.14 1.02 

Table 5.6: Execution times for SIMPLE, GTE and GTE( opt) 

5.4 Studying different orderings of goto-elimination 

In sorne programs with complex goto-usages, and where the goto density is very 
high, the or der in which gotos are eliminated can cause a significant diL"erence in the 
number of new lf and do-vhile statements introduced, and hence cause a significant 
change in the running time of the strudured program. 

FSM is a good example to illustrate this facto Its principal function which imple
ments the finite state machine, has 24 lines of code, and 12 goto-label pairs. These 
goto-Iabel pairs are aIl siblings and many of them overlap. 

In this section, the results of the experiments performed with three different goto
elimination orderings for FSM using the GTE(opt) are presented. 

Figure 5.3 illustrates the FSM source code aud the intervals created by the goto
label pairs. Ta distinguish among the different goto statements associated with a 
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single label, subscripts are used. Consider the interval graph for these inlervals , as 
illustrated in Figure 5.4. From the interval graph, the maximum independent. set can 
be calculated [Gav72]. A maximum independent set is a subset of the set of vcrtices 
of the graph, of maximum cardinality, such that no edge is adjacent to two vertices 
in this subset. This maximum independent set represents, in our case, the maximum 
set of goto-label pairs that do not overlap2 with each other. If wc eliminah' t,he 
gotos corresponding to these intervals first, for these gotos, the number of transfor
mations applied and new statement created are minimal. AIl these gata-label pairs 
are siblings, thus only goto-elimination transformations would be applied, and lIonc 
of the transformations for these gotas is affected by a new statemcnt introduccd hy 
a previous goto-elimination. Renee the possibility of reducing the number of new 
if and dO-ilhile statements in the structured program is high comparing to oUler 
possible orderings. 

The structuring was tested by eliminating the gotos using the following orderings: 

(i) the regular ordering of goto-elimination (reverse order af how they appear in the 
program) 

(ii) the inverse to the regular ordering of goto-elimination (same order in which they 
appear in the program) 

(iii) eliminating first the gotos corresponding to the maximum independent set of 
the interval graph, and elirninating the rest of the gotos in the same order a..<; 

they appear in the program. 

elimination Transformations New strnt/var Run 

ordering goto-elim. out-mov. inw-mov. goto-lif. if/do-vhile var times 
regular 10 5 4 0 17 8 9.00 
inverse 12 40 3 1 26 9 12,11 .-

MIS-first 10 13 2 0 17 7 9.20 

Table 5.7: Comparing different goto-elimination orderings for FSM 

The results are presented in Table 5.7. First, we observe a remarkable difference 
between the results of the inverse-goto-elimination ordering and the other two. With 

2We do Dot CODsider as overlapping the case where a goto-label pair is completely contalfied 10 

another . 
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start: 
x - fgetc(in) 
,f ( x--'a') goto a1 

If (x .... ·b·) 90to b1 
goto fail1 

a: 
X = fgatc(ln) 
if ( x-. 'b') goto b2 
if ( x ... ·c·) goto c1 

goto fail2 
b: 

c: 

x :a: fgatc(,") 
if ( x ... ·a·) goto a2 

if ( x .. :·c') goto ~ 

goto fail3 

x .. fgatc(in) 
if ( x •• 'd·) goto start 
if (x •• 'e') goto accept 
goto fail4 

fail: 
return "FAIL" 
accept: 
return "ACCEPT" 

t 

1 
~ , 

Figure 5.3: FSM and its goto-Iabel intervals 
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Figure 5.4: Interval graph and its Maximum Independent Set 

this ordering 53% more if or do-while statements are created. Thus, the diffcrcllcc 
in execution time, as expected, is also significant. 

For the other two versions, the results are similar. The number of transforma
tions for the regular version is lower, however the nurnber of new ~f and do-whlle 
statements is the same. For the regular version, more inward-movement transforma
tions are performed, and then one more temporary variable is created. The diffcrcnce 
hetween both versions in execution time is negligible. 

We observe that the order of goto-elimination for the regular version happens Lo 
he very good. It eliminates almost all the gotos corresponding to the non overlapping 
goto-Iabel pairs first, together with the gotos associated with the falllabel. In this 
particular case, this ordering is a good choice. When the goto associated with the 
start label is eliminated, a do-while statement is introduced, and this captures 
three of the goto fail statements to be eliminated after. The fall label is the 
next statement after the new do-while. Thus, only a conditional if wit.h the break 
statement is added to eliminate each of these goto statements associated with tht" 
faillabel. 

We performed the same experiment with a simpler finite state machine (with one 
state less) and the results of the maximum independent set ordering were much better 
compared to the results of the regular goto-elimination ordering . 

It is difficult to state a general best goto-elimination ordering. It depends very 
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much on the specifie t.ype of goto-usages in the program under consideration. 

Regarding the FSM benchmark, eliminating the gotos in the inverse order in which 
thcy appear in the program seems a good choice. But that is not the case for ot.her 
benchmarks. For example, for aSUl te, the pa~tern illustrated in Figure 5.5 is repeated 
several times in the program. In this case there are two goto-Iabel pairs that are 
siblings. If the first goto in the program is eliminated first, an outward-movement 
transformation is required later. Whereas if the second g,cto is eliminated first, an 
inward-movement transformation is required later. Considering the number of lf 

statements created, the inward-movement transformation is more expensive than the 
outward-movement transformation. The new compound expression for the if, created 
by the inward-movement transformation, should be simplified and therefore one extra 
condi tionallf is created. Thus in this case, to eliminate the got os in the regular order 
is not the best choice. 

However, it is difficult to calculate in ad van ce the number and type of transforma
tion to be applied, because after eliminating one goto the situation for the remaining 
gotos may change. 

We conclu de that it is hard to determine, in general, the best goto-elimination 
ordering. We believe it is an interesting problem to study. 

{ 

if (expr1) goto L1; 

goto L2; 
L1: 
L2: 
} 

(a) repeated pattern 

{ 

goto_L1=exprl ; 
if (!goto_L1) 

{ ... 
goto_L2=1; 

} 

if (! goto •. L2) 
{ 

{ 

goto_L1=exprl ; 
if (!goto_L1) 

{ ... 
goto_L2=1 ; 

} 

if (goto_Lll 1 !goto_L2) 
{ 

} 

L2: goto_L2=O j 

} } 
(b) eliminate goto L1 first (c) eliminate goto L2 first 

Figure 5.5: Different orderings of goto-elimination for asui te 
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Chapter 6 

Related Work 

One of the first approaches to structuring was given by Bohm and Jacopini [BJ66]. 
Their structuring method was done in the context of normalizing flowgraphs (whcre 
the fiowgraph represented mappings of a set onto itself). This re~;u\t is mostly of 
historical and theoretical interest and does not give a ('omplete algorithm, huI, ratlH'r 
presents a set of pattern matching rules and transformatit)n~. 

There have been several approaches to structuring progr<'.m flowgraphs. PCLerson 
et. al. present a proof that every fiowgraph can be tra,nsforrned into an eqUlvalent 
well-formed flowchart(loops and conditionals drc properly nested and cau be t'nten>d 
only at the beginning) [PKT73]. They present a graph algorithm to do :mch a trans
formation using a technique of node-splitting ar.d they prove that the transformation 
is correct. William and Osher also use node-splitting, but they present the prohlern 
as recognizing five basic llnstructured sub-graphs, and show how tù ff'plaC(' Uwse 
sub-graphs with equivalent structured forms [Wil77, \V078]. Ashcroft a.nd Manna 
tackled the pn")blem of structuring by presenting two algorithmf. for ÎOllvertiug pro
gram schemas into while scLernas. Rather than using node-~plittlllg they u~c extra 
logical variables to achieve thefte trd,usformations [EMn,j. 

AlI of the Plevious methods were intended to stIUcturc fiowcharth. Howcver, 
there have also been t\îJproaches suggested that are used to ~tI ucture progl ams in 
order to expose the nutural st ru ct',JrI::' of the program, leaving sorne gotos llnstruc
tured. The first such method was given by Baker as a method for structuring Fortran 
programs [Bak77] in order to make them more understandable. Sinre her goal was 
to obtain understandable Fortran programs, she only structures in situations where 
there is a clear possibility of the use of a structured construct and leaws some gotos 
in the program. This is of historical interest, but since she Jeaves sorne goto~ JrI the 
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progran., her method is not applicable to the complete structuring of programs with 
a goal like ours. More recently, Cifuentes has presented an algorithm for program 
structuring in the context of decompilation [Cif93]. This work is similar in spirit to 
Baker's problem in that shc only structures the parts of the program that correspond 
naturally to structured control constructs. 

Mueller et. al. present a compiler back-end optimization method that attempts to 
elimmate unLonditional branches, whether they originate from gotos or not [MW92]. 
The metbod elirninates almost aIl the unconditional branches by performing code du
plication. It replaces each unconditional jump with the shortest possible sequence 
of instructions, to minimize growth in code size. It i~, implemented on a RTL in
t.ermediatc repre:;entatioD in the early stages of the back-end phase, so that later 
optimizé.ttions can benefit of the simplified control flow. The results show the number 
of instructions executed is decreased, and also the total cache work is reduced (except 
for ::;r.lall caches), despite the increases in the code. 

More r·.!levant to our work are the structuring œet.h.ods proposed by Allen et. al. 
for vectorizing compilers [AKPW83], and the work by Ammarguellat for parallelizing 
compilers [Amrn92]. 

The first method was develop':!d at Rice University [AKPW83] for a translat.or 
that converts Fortran sequential programs inte. equivalent Fortran vector prograrns. 
In vectorizing compilers, the dependence analysis performed is based on data depen
dence. Statement S1 is dependant on statement S2 if S2 uses the value that S1 has 
created. However, in the presence of complex control flow, data dependence is not suf
ficient to transform prograrns because of the introduction of control dependences. S 1 

is control dependent on S2, when the out come of a test in S1 determines whether S2 
will be executed. Allen et. aL present the IF-converswn rnethod that ('onverts con
trol dependences into data dependences by introducing logical varia.bles to control the 
execution of the statements and elirninating goto statements. Figure 6.1 illustrates 
an example where a control dependence is transformed into a data dependence. 

{ 
{ 

tor (1=1;1<100;i++) 
1f ( a [il <=0 ) :::} 

a[iJ =b[i] +10; 
} 

} 

for (i=1;i<100;i++) 
{ br1= a[i]<=Oj 

it(br1)a[i]=b[i]+10; :::} 
} 

{ 

} 

br1[1 :n]= a[1 :n]..::=Oj 
it (br1[1:n])a[1:n]=b[1:n]+10; 

Figure 6.1: Loop vectorization transformation via control dependence elimination 
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Although the goal of this work is not the samc as ours, this method can also bl' 
used for structuring, and in fact has similar characteristics. Their methùd proce(·ds 
in three steps. Fmt they categorize the branches into tluce types: fJ'lt bmnchf.'i 
(exits from a loop) , forward branches and backward branches. 'fhm, according t.o 
this branch classification, IF-con1,erswn uses two different transformations lo t'Iimi
nate the branches in the programs: hranch reloca/lOn and brancl~ 1't'1nOllal. Brandi 
relocation moves branches out of loops until the branell and its label are llcsted in the 
same number of dO-loops. This is accomplished by introrlucing guard expressions 1.0 
enforce conditional execution of statements. Afterwards, brallch removal takes pl,tct', 
removing all the forward branches. They do not eliminate backward branches. 

Figures 6.2, 6.3 and 6.4 present three example programs \l1 which IF-converslO1I 

and the goto-eliminatzon methods are d.pplied. 

The first example program, Figure 6.2, illustrates an irreducible 100p tltat presents 
a forward branch (goto L2), and a backward branch (goto L1). The IF-converSIOTl 
method introduces two logical variables (br1 and br2) to eliminate the forward 
branch. The branch flag, br1, is defined to be true if and only if the condition of 
the goto evaluates to true. This logical variable is used as a guard to aIl statements 
between the goto and the label, avoiding their execution when the guard is trlle. As 
the label associated with the goto is inside an iterative region (detcrmincd by Ll and 
goto L1), the statements in this region are also executed when this backward jUlIlp 
is taken. An ex a logical variable, a branch back flag (bbl) is needt>d to denot{' thlS 
case. The backward jump goto L1 is not eliminated and the cycle of control-f]ow i~ 

not replaced by a structured loop. An extra transformation, Ilot pr<,scnted in the pa
per, should be applied to replace this backward oranch by a whlle loop. Somdllnes, 
as in the case of this example, a loop-carried dependence (on the variablc's bbl and 
go1.o-L2) might be introduced. If we in tend to perform loop parall('lizati<Jn, UliS cali 
be a negative factor, as the dependence rnay inhibit parallehzatlOIl of the loop. 

The second example program, Figure 6.3, presents two forward branches to he 
eliminated. Two logical variables brl and br2 are created. For each of the statcments 
between the goto and the matching label a guard 18 gencrated as disjoin or conjoin 
of these booleans variables, according to the conditions under which each staternent 
should be executed. }or this example we present two golo-elzrninatzon solutioIls: the 
first one eliminates the goto,> in the regular order, while the second one in the or
der reverse to It. The similarities and differences between the second solution and 
the IF-converszon solution can be clearly observcd. For IF-conversion a separate 
conditional is introduced to guard each of the first three statements. Whilc the golo
e1imination algorithm uses a single conditional to guard these three statemcnts as il 

block. Further, the statements for which IF-contJersion introduces compound condi
tionals, goto-elimination uses nested lfs. However, for the last conditional created by 
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IF-con1Jersion, the simpltficatwn of the compound conditional, would yield the same 
result as the golo-ellmznaizon method. 

The third example program, Figure 6.4, illustrates an exit branch. In this case, 
aU the statements in the loop, i.e. the statements both before and after the branch are 
affected by the guard. Thus, the do-loop, once entered, will run its full COUIse, even 
when the exit flag is faIse and no real computation ls being done. The authors expect 
that the speedup gained from vectorization will more than offset this inefficiency. 

{ { 

bri=x; goto L2=x; 

bbi=O j do{ 
{ Li: if (!brl Il (briii:bb1) ) if ( !goto_L2) 

if (x) goto L2; stmt_l ; { 

Li: stmt_i ; L2: stmt_2; goto_Li=O; 

L2: stmt_2 j if (y) stmt_l; 

if (y)goto Li; { } 

} bbi=i ; goto_L2=O; 

goto Li; stmt_2; 

} goto_Li=Yj 
} } while(goto_Li) 

} 
(a) irreducible loop (b) IF-conversion ( c) goto-elimination 

Figure 6.2: Irreducible loop example 

The IF-conversion method is similar to ours in that both methods consist of 
step-by-step transformations applied to structured intermediate representations of 
the program, where each transformation produces a more structured code. The ideas 
of branch relocatzon and branch rcmoval are somewhat sirnilar to our concepts of goto
movement and goto-elzmznation. We bath use logical variables to guard the execution 
of statcments. DIfferences between the methods include the fact that we structure C 
programs (and thus treating break, contInue, and swi tch statements) rather than 
just Fortran programs. Furthermore, we are interested in removing aIl gotos, not just 
those associated with forward branches. Another difference is the way we intr.Jduce 
guards into the code. Since they were interested in vectorization they intIoduced 
a new conditional for each actIOn statement whereas in our method it is preferable 
t.o introduce one conditional for each block of statements. A potential advantage of 
our approach is that we only have to make one pass thro1.lgh the program collecting 
information about gotos and labels, and tben we can directly modify the interme
diate representation of the program. Their approach requires several passes through 
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for ( i=1; i<100 ; i++ ) 
{ 

if (a[i]>10) goto L1; 

x=O: 
a[i] =a[i]+10: 
if (b[i]>10) goto L2; 
b[i]=;.t+l0; 

L1: a[i] =b [il +a[i] ; 
L2 :b[i] =a[i] +5; 

} 

(a) example program 

for ( i=1: i<100; i++ ) 
{ 

goto_Ll=a[i]>10; 
if (! goto_L1) 

{x=O; 
a[i]=a[i]+10j 
goto_L2=b [il > 10; 

} 

if(!goto_Llll!goto_L2) 
{ 

if (! goto_L1) 
b[i]=x+l0j 

goto_L1=O; 
a [il =b [il +a [il ; 

} 

goto_L2=0; 
b [il =a[i]+5: 
} 

goto-elirnination 
( c) eliminate got 0 L 1 first 

for ( i=1; i<100 i++) 
{ 

} 

brl=(a[i] >10) : 
if (!br!) 

x=O; 
if (!br1) 

a[i]=a[i) +10; 
if (!br!) 

br2=b [il > 10; 
if «!br1)U(!br2» 

b[i]=x+l0; 
if (br111 (! brUi! br2» 

a [il =b [il +a ri] ; 
b[i] =a [il +5; 

(b) IF-conversion 

for ( i=1; i<100; i++ ) 
{ 

goto_L1=a[iJ >10; 
if (!goto_Ll) 

{x=O; 
a[i]=a[i]+10; 
goto_L2=b [il > 10; 
if (! gotoL2) 

{ 

b [i]=x+l0; 
} 

} 

if (! goto_L2) 
{ goto_Ll=O; 

a[i]=b[i]+a[i] ; 
} 

goto_L2=0; 
b ri] =a [il +5 ; 
} 

goto-elimination 
(d) eliminate goto L2 first 

Figure 6.3: Forward brl:l.Dches example 

72 



• 

• 

1. 
{ for ( i=1; i<100; i++) 

{ 
8x1=1; { 

for (i=1;i<100;i++) stmt_1 ; 
for (i=1;i<100;i++) 

{ goto_L1=x[iJ; 
{ 

if (ex1) stmt_1; if (goto_L1) break; 
stmt_1 ; 

if (ex1) 8d=!x[i] ; stmt_2; 
if xci] goto L1; 

if (ed) stmt_2; } 
stmt_2; 

} if ( !goto_L1) 
} 

br1= !ex1 { 
stmt_3 ; 

if (br1) stmt_3; 
Ll:stmt_4; stmt_3 ; } 
} 

L1 :stmt_4; goto_L1=0; 
} stmt_4; 

} 
(a.) exit branches (b) IF -conversion ( c) goto-elimination 

Figure 6.4: Exit branches example 

the program for the different stages of bt'anch categorization, branch relocation and 
branch removal. 

The method presented by Ammarguellat lAmm92], which she calls control-fiow 
normaltzatwn, lS the closest work in terms of the goals of structuring. That is, we 
both wish to fully structure programs in order to facilitate progl'am analyses, program 
transformations and automatic parallelization. However, the intermediate representa
tions that we structure are quite different. We structure a high-Ievel representation of 
C programs that directly supports break a'1d contlnue, while Ammargllellat struc
tures a lisp-like intermediate representation and she requires that aH loops have a 
single exit. 

Ammarguellat 's approach to the problem is very different from ours. She defines 
a continuati<:. n -bascd semantic language and transforms the syntadic constructs of 
the program into algebraic constructs. She converts the program into a system of 
simultaneous equations whose unknowns represent the continuations associated with 
the programs labels. A source cùntinuation will contain the solution of the system 
after its resolution. By transformations applied to the system of equations: precalcu
lation, li dtstributwn, jactonzatwn. derecurszvat;on and substitution and ellmination, 
the system is solved. The quality of the normalized form of the prograrn in terms 
of code duplication, code size and running time of resolution process depends on the 
order in which unknowns are eliminated. '1'0 study this order she has to consider the 
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control-flow of the program, eliminate the back and cross edges of the graph and sort. 
the resulting graph in a topological order. 

Figure 6.5 illustrates an ex ample of an irrcducible loop along with the rt'sult given 
by the control-fiow normalzzatwn and our solution. Figure 6.6 illustrates another 
example program, and the results of applying the golo-elimmation, the unoptimized 
and the optimized control··flow normalzzatwn. The comparison of thest' methods 
for these examples shows that the results are similar in that we both create new 
logical variables to store the conditions and to guard the exccution of the statcments 
and we both create cycles of control flow when there is an irnplicit cycle. However, 
Ammarguellat replicates code in the case of irreducible loops and when she dops not. 
study the best order of the unknowns. 

In the cases of backward branches that do not imply cycles, we introducc a Ioop 
whereas Ammarguellat do~s not. Figure 6.7 illustrates an example. Howevcr, this 
loop will not execute the enclosed statements more times than in the original prograrn, 
and it does not imply an increase in the execution time of the program. 

{ 

if (x) goto L2; 
Li: stmt.l; 
.(.2: stmt.2; 

if (y) goto Li: 
} 

"l { 
pred.50=% ; 

goto_L2=x; if ( prad_50 ) 
do 

{ stmt •. 2; 
{ if ( !goto.L2) 

pred_52=y: 
} 

{ goto.Ll=O; 

if( !prad.50 Il prad. 52 ) 
stmt.l; 

} 
do 
{ stmt_l; 

goto.L2=O; 

stmt_2; 
stmt.2; 

prad_52=y; 
goto.Ll=y; 

} vbila ( prad_52 ) 
} vhile(goto.Ll) 

} 
} 

(a) an irreducible loop (b) control flow normalization (c) goto-elimination 

Figure 6.5: Irreducible loop example 

Another distinction is that we do not require single-exit loops because our compiler 
analysis framework easily han dIes continue and break statements. Howevel', we can 
easily modify our approach to force single-exit loops if this is rcquired. It appears to 
us that our method is easier to explain and more straight-forward to implemtïiL as 
we only need a SE:t of simple transformations, and we do not require the collection or 
solution of equations. 
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h(i,j,k) 
{ 

i=l; 
L2:if (i>10) goto L3; 

j=l; 
k=l; 
i=j+k; 
goto L2; 

L3 : retum (i) ; 
} 

(a) example program 

hei,j,k) 
{ 

} 

i=l; 
pred2=(i>lO) ; 
if( !pred2) 

{j=l ; 
k=l; 
while( !pradl) 
{i=j+k; 

predl=(i>10) ; 
if (!pradl) 

{ j=l; 
k=l; 

} 

} 

} 

retum(i) ; 

(c.l) control-flow norrnalization 

h(i,j ,k) 
{ 

} 

i=l; 
do{ 

goto_L2=0; 
goto_L3=(i>10) ; 
if (goto_L3) break; 
j=l; 
k=l; 
i=j+k; 
goto_L2=1; 

} while,(goto_L2); 
goto_L3=O; 
retum(i); 

(b) goto-elirnination 

h(i.j .k) 
{ 

i=1; 
while( !pred1) 
{ predl=(i>10) ; 

if( !predO 
{j=l; 
k=l; 
i=j+k; 

} 
} 

retum(i) ; 
} 

(c.2) optimized 
control-flow normalization 

Figure 6.6: Exarnple program 
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{ 

if (x) goto L2 j 
Li: stmt_l; 

goto L3; 
L2: stmt_2; 

if (y)goto Li; 
L3: stmt_3; 

} 

(a) example program 

{ 

pred_162=x; 
if (pred_162) 
{ stmt_2; 

pred_164=y; 
} 

if (!pred_1621Ipred_164) 
stmt_i; 

stmt_3; 
} 

(b) control-fiow normalization 

"l 
goto_L2=x; 
do{ 

if (! goto_L2) 
{goto_Ll=O; 
stmt_l ; 
goto_L3=1 ; 
if (goto_L3) break; 

} 

goto_L2=O; 
stmt_2; 
goto_Ll=y; 

}vhile(goto_Ll) ; 
goto_L3=O 
stmt_3; 
} 

(c) got.o-elimination 

Figure 6.7: Transforming a program with no cycles 
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Chapter 7 

Conclusions 

In this thesis we have presented a structured approach to eliminating aIl goto state
ments in C programs. The goal of this transformation is to provide a structured and 
compositional intermediate representation that is amenahle to structured approaches 
to analysis, optimization and parallelization. 

The method is straight-forward and can he easily implemented directly on an 
ahstract tree representation of C programs. The approacb is built upon a set of goio-

limmalzon and got(.l-movement transformations. Each goto statement is removed 
by using the goto-movement tram,formations to move the geto to the same state
ment sequence and then applying the appropriate goto-elzmination transformation. 
We present sorne optimizations to the method that avoid creating unnecessary new 
statements. 

We completely implemented oar method on the SIMPLE intermediate represen
tation of the McCAT para'.lelizingjoptimizing compiler, and we have presented ex
perimental rnea.'mrements f(lr 11 benchmark programs using this implewentation. It 
appears that most C prograrns use goto statements relatively sparsely ~nd on such 
programs the structured prograùls have similar execution speeds as the original pro
grams. Thus, the structuring does not have a, performance pendlt.y, while at the same 
time allows us to use siructured analyses and transformations in the latter phases of 
the compiler. For programs that are very dense in goto statements there is sorne per
formance penalty. Experiments performed with different goto elimination orderings 
show a significant difference in the execution times of the resulting prograrns. It is 
hard to determinc a genera,l best goto-elimination ordcring. It would be an interesting 
problem to study in the future . 
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We feel that a major advantage of our approach is that the struct.uring lUethod 
itself is stl'aight-forward to integrate into any C compiler using a strudured intermedi
ate representation. Furtherrnore, as shown by our experirnental results. the approarh 
is very efficient, applying only a smaU number of simple transformations pel' goto 
statement. Finally, it has been our experience that the presence of a struct.uring 
phase that can al ways eliminate gotos allows us to develop more efficient. and sirnplt'I" 

analyses and transformations in the remainder of the McCAT compiler . 
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Appendix A 

Finite State Machine exaInple 
prograID 

This is the function that implements the Finite State Machine prescntcd for our 
experiments. 

fsmO 
{ 

int x; 
start: 

a: 

b: 

c: 

x = fgetc (1n) ; 
1f ( x=='a') goto a; 
if (x=~'b') goto b; 

x = fgetc(1n); 
if ( x=='b') goto b; 
if ( x=='c') goto c; 
goto fail; 

x = fgetc(in); 
if ( x=='a ' ) goto a; 
if ( x=='c J

) goto c; 
goto fail; 

x = fgetc(in); 
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if ( x=='d') goto start; 
~f ( x=='e') goto ac.:::eptj 
goto fa~l; 

fall: 
return IFAIL"j 

acct:::pt: 
retut"n "ACCEPT"; 
} 
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Appendix B 

Lex Specifications 

Thesc are the regular expressions given in the lex specification, used to generate the 
output program lex. yy . c. 

"x" [~\n] * 
"ltlunpublished{1I [-Itl] * 
"ltlbook{"[~Q]* ; 
"Itlbooklet{" [~«l] * ; 
"Itllnbook{" [~Q] * ; 
"«llncollectlOn{" [~Q] * 
Il «lmanual {" [~I!l] * ; 
"«lphdthesls{" [-al] * ; 
lI(Qstring{1I [~«l] * ; 
lI(Qtechreport{II [-(0] * ; 
"«lmlsc{" [~Q]* ; 

"Qartlcle" pnntf (IIYoS***" ,yytext) ; 
"Clhnproceedings" { printf("Yos***" ,yytext); } 
[\n\t] 
. printf(yytext); 

'!.Yo 
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