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Abstract

[n designing optimizing and parallelizing compilers, it is often simpler and more ef-
ficient to deal with programs that have structured control flow. Although most pro-
grammers naturally program in a structured fashion, there remain many important
pregrams and benchmarks that include some number of goto statements, thus render-
ing the entire program unstructured. Such uzstructured programs cannot be handled
with compilers built with analyses and transformations for structured programs.

In this thesis we present a straight-forwar: algorithm to structure C programs
by eliminating all goto statements. The method works directly on a high-level ab-
stract syntax tree { AST) representation of the program and could easily be integrated
into any compiler that uses an AST-based intermediate representation. The actual
algorithm proceeds by eliminating each goto by first applying a sequence of goto-
movement transformations followed by the appropriate gotc-elimination transforma-
tion.

Cur McCAT (McGill Cornpiler Architecture Testbed} optimizing/parallelizing C
compiler is based on a compositional representation of the program, and hence does
not supporf unrestricted use of gotos directly. We have irnplemented the method
within the framework of the McCAT compiler. We present sorne experimental results
and study the cost of structuring. The results show that applying a small number
of simple transforrnations eliminates all the goto statements, usually with & minimal
cffect on the execution speed. Thus, we can exploit structured representations for
desigining compilers, while paying a minimal penalty due to structuring.




Résumé

En créant des compilateurs optimisants et parallélisants, il est souvent plus sim-
ple et plus efficace de travailler avec des programmes possedant un flot de contiole
structuré. Bien que la plupart des programmeurs programment naturellement d’une
fagon structurée, il subsiste plus.eurs programmes et exemples importants contenant
un nombre quelconque d’instructions goto, ceci résultant en des programmes entiers
non-sructurés. De tels programmes ne peuvent étre utilisés avec des compilateurs
construits pour analyser et transformer des programmes structurés.

Dans cette these nous présentons un algorithme utilisable directement pour struc-
turer les programmes en langage C en éliminant toutes les instructions goto la
méthode utilise directement un arbre de représentation abstraite de haut niveau
des programmes, et pourrait facilement étre intégrée & n’importe quel compilateur
utilisant une représentation intermédiare basée sur un arbre de syntaxe abstraite.
L’algorithme sous sa forme actuelle fonctionne en éliminant chaque goto en appli-
quant d’abord une séquence de transformations de goto-movements suivie par la trans-
formation goto-elimination approprieé.

Notre compilateur McCAT (McGill Compiler Architecture Testbed) optimicant
et parallélisant en langage C est basé sur une représentation compositionnelle du
programme, et donc ne peut soutenir 'utilisation directe des gotos. Nous avons
implémenté la méthode pour le compilateur McCAT. Nous présentons quelques résultats
expérimentaux et étudions le cout de structuration. Les résultats montrent que
d’appliquer un nombre réduit de transformations simples éhmine toutes les instrue-
tions goto, avec un effet minimal sur la vitesse d’exécution dans la plupart des cas.
Donc, nous pouvons exploiter des représentation stricturées pour créer des compila-
teurs, tout en ne payant qu’un prix minimal pour la structuration.
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Chapter 1

Introduction and Motivation

The great advances 1n high-performance architectures demand a simultaneous devel-
opment of sophisticated compilation techniques [HP90]. Thus, the design of optimiz-
ing and parallelizing compilers is a critical issue. These compilers perform optimiz-
ing transformation based on the information collected by various program analyses.
From the pragmatic point of view there are many reasons why structured programs
(i.e. programs without gotos) are simpler to bandle in such compilers. One impor-
tant consequence is that C prcgrams without gotos are compositional, and there-
fore structured analyses techniques can be used to compute data flow information.
For example, one can apply the efficient techniques available for structured data
flow graphs [ASUS8S], or one can use simple abstract interpretation techniques that
need not consider continuation-based semantics. From the program transformation
standpoint, compositional programs also lend themselves to simpler and often more
eflicient algorithms. Consider, for example, the efficient creation of the Static Sin-
gle Assignment (SSA) form for structured progreims consisting of straight-line code,
if statements, and while statements [CFR*91]; the structured transformations to
ALPHA [HGS92], a family of intermediate representations designed to facilitate the
development of specific analysis and transformations; the elegant formal system pro-
posed by Hoare [Hoa69] to prove the correctness of structured and compositional
programs; and the efficient construction of Program Dependence Graphs for struc-
tured programs [BM92]. Finally, compositional programs are naturally represented
as trees, and intermediate representations based on compositional representations can
be manipulated and transformed using a wide variety of strategies including the use
of attribute grammars.




In this thesis we ire concerned about the automatic structuring of programs, by
eliminating goto statements, in order to facilitate the construction of analyses and
transformations required for optimizing and parallelizing C compilers.

1.1 Goto elimination and the McCAT compiler

Over the years there has been substantial discussion about the use of explicit gotos in
high-level programs and there have been many arguments against the frequent use of
gotos from a software engineering or program understandability point of view [ij68,
Knu74, Weg76]. This discussion has led to the relatively infrequent use of gotos
in typical C programs [BM92]. However, in languages like C, there are still special
occasions where programmers like to use gotos. These include. (1) using gotos to exit
from deeply nested conditionals or loops: (2) using gotos to branch to a common piece
of code that is shared among several branches of a switch statement; (3) using gotos
in automatically generated code such as the code produced by lex; and (4) using
gotos to handle exceptions. In fact, if we study some of the well known benchmarks
such as the SPEC benchmarks, we find that many important benchmarks use some
gotos. Thus, if a compiler is restricted to programs without gotos, it is a significant
handicap.

The McGill Compiler Architecture Testbed(McCCAT) [HDE*92] was designed to
test different compilation techniques on different architecture testbeds. Two main
objectives were pursued: (1) build a compiler that supports both high level and in-
termediate representations that facilitate analyses and transformations and related
low-level transformations that are suitable for code generation; and (2) build archi-
tecture simulator tools to process the output of the compiler to produce different
performance results. The source language chosen for our compiler was C. "This deci-
sion was made taking into consideration the fact that the C language is widely used
and powerful, as it supports a variety of features.

One of the unique features of our compiler is that it is based on a family of in-
termediate representations. Three structured intermediate representations are built
and each of them fulfil a specific role in the compiler. The first, called FIRST, is a
high-level abstract representation that accurately captures the original program The
main purpose of FIRST is to cleanly separate the front-end processing of parsing and




type checking from the back-end phase of analysis, transformations and code genera-
tion. Then, a series of transformations are performed on FIRST, to create SIMPLE,
an AST suitable for high-level analyses like points-to (alias) [Ema93, EGH94] and
dependence analysis [Jus94, JH94]. Finally LAST, a low-level AST is obtained from
SIMPLE, on which low-level optimizations such as register allocation and instruction
scheduling [Don94] take place. This representation can be used to generate code for
a variety of high-performarice architectures. It should be noted, that each interme-
diate representation is related to the next so that one can use the results of analyses
performed at higher-level representations at lower-level representations. Figure 1.1
presents an overview of the McCAT compiler and its principal components.

Thus, the McCAT compiler is based on a compositional representation of the pro-
gram. It does not support unrestricted use of gotos directly. In order to have no
restriction on the benchmarks used to test our compiler, a structuring phase that elim-
inates gotos automatically is required. In this thesis we present a goto-elimination
method and its implementation for the McCAT compiler. Once all benchmarks pass
through this structuring phase, structured intermediate representations are created,
and all further analyses and transformations have to deal only with structured control
flow.

1.2 Thesis Contributions

This thesis concentrates on the design of a general algorithm for elimintating any
number of arbitrary goto statements from a C program. Qur approach to elimi-
nating gotos is based on a set of simple transformations that operate on SIMPLE,
the second high-level structured intermediate representation built in McCAT. These
transformations come in two categories: goto-movements and goto-eliminations. Intu-
itively, the method relies on the following observations: (1) when the goto statement
and target label are in the same statement sequence, a goto-elimination transforma-
tion can be directly applied to eliminate the goto; and (2) if the goto statement
1s in a different statement sequence from the target label, we can use one or more
goto-movement transformations to move the goto to the same statement sequence
as the target label and then apply the appropriate goto-elimination transformation.
The algorithm proceeds by eliminating one goto at a time, applying a sequence of
goto-movement transformations followed by the goto-elimination transformation until
the goto is eliminated. It is a straight-forward algorithm that works directly on a

3
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high-level abstract syntax tree representation of the program and can easily be inte-
grated in any compiler that uses an AST-based intermediate representation. We have
implemented this method for the McCAT compiler.

The main contributions of this thesis include:

e The design of a straight-fcrward and general method to eliminate goto state-
ments from a C program.

o The implementation of this method for the McCAT compiler.
e The design and implementation of further optimizations to this method.

o The presentation of experimental results and discussion of the cost of structuring
that show that this method is both efficient and effective.

1.3 Thesis Organization

The remainder of this thesis is structured as follows. In Chapter 2 we present the
goto-elimination and goto-movement transformations. First we show how they can be
applied to remove a single goto statement from a C program and second we present
a high-level algorithm for eliminating all gotos from a C program, thus producing a
semantically equivalent structured C program. Third we show how some optimiza-
tions to our method can improve the resulting code. In Chapter 3 we give a brief
description of SIMPLE and in Chapter 4 we provide an overview of the important
aspects of the implementation using SIMPLE. We have completely implemented the
method and in Chapter 5 we give experimental results for both the unoptimized and
optimized methods and discuss the cost of structuring. Finally, in Chapter 6 we com-
pare our method with related methods, and in Chapter 7 we conclude and discuss
further work.

)



Chapter 2

Description of the
Goto-Elimination Method

In this chapter the description of the goto-elimination method is presented. We first
explain the process of eliminating one arbitrary goto from a C program and then
ary number of gotos. Next, we study some optimizations that can be applied to the
method.

2.1 Eliminating an arbitrary goto statement from
a C program

In this section we first present the goto-elimination transformations, and then we
present the goto-movement transformations and show how to apply successive goto-
movements in order to reach a point where a goto-elimination can be apphed. T
simplify the explanation of the method, we assume that a goto statement is always a
conditional goto in the form 1f (conditicn) goto Li. Thus, we assume that any
unconditional goto of the form goto L1 is transformed inlo an equivalen! conditional
statement of the form 1f (true) goto Li.

Another importani point is that we have chosen to directly support break ani
continue staternents. Even though these statements represent a form of control flow
similar to gotos, they can be easily handled by our structured data flow analysis
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methods [Sri92, Ema93]. Break and continue statements do not change the control-
flow of the programs outside the scope of the closest enclosing loop structure. In this
sense the program remains compositional, the meaning of the program structure is
given by the meaning of its components. Thus, fur our purposes there is no benefit
in eliminating the break and continue statements. However, we could easily modify
our method to eliminate them if required.

Furthermore, we assume that each labelled statement of the form Li: stmt is
really represented as a sequence of two statements, the empty statment Li: ; and the
actual statement stmt. Thus, when we refer to a label statement, we are referring to
the empty statement containing the label.

2.1.1 Goto-elimination Transformations

When both the goto statement and the label are in the same statement sequence,
we can directly eliminate the goto statement. There are two possibilities: the goto
statement occurs in the program before the label statement, or after the label state-
ment. In the first case, the goto is eliminated and replaced by a conditional, while
in the second case the goto is eliminated and replaced by a loop.

Goto statement is before label statement: if the goto statement is before the
label statement, there is an obvious transformation to a conditional statement. As
illustrated in Figure 2.1, the goto is eliminated and the statements between the goto
statement and the label are embedded into a conditional statement guarded by the
negation of the condition of the original goto statement.!

Goto statement is after label statement: if the gotostatement is after the label
statement, then the goto statement is eliminated by embedding the statements be-
tween the label and the goto in a do-while loop. The example program in Figure 2.2
illustrates this case.

'Note that we present each goto transformation as a rewriting of a general statement sequence.
Thus rules like those in Figure 2.1 represent a general pattern for the transformation with each
stnta standing for any SIMPLE C statement including assignment statements, procedure calls,
and compositional statements such as conditionals aud loops.




<
....... stmt_i;
stmt_i; if ( 'cond )
if ( cond ) goto L_i; {
stmt_j; == stmt_j;
L_i: stmt_k; }
....... L.i: stmt_k;
L
}
Figure 2.1: Eliminating a goto with a conditional
{
{ stmt_1;
....... do
stmt_1; {
L_.i: stmt_j; L i stmt_j;
.
if ( cond ) goto L_i; } -

ooooooo

Figure 2.2: Eliminating a goto with a loop




These two goto-elimination transformations are obvious, and it is unlikely that
a programmer would use a goto in these situations where a conditional or loop is a
much more reasonable construct. However, a tool that generates C code could very
casily produce such programs. Furthermore, these goto-elimination transformations
provide the backbone for the complete method. As described in the next section, we
cap always eliminate a goto by moving the goto to the appropriate place and tien
applying one of these two goto-elimination transformations. In fact, these transfor-
mations are just the inverse of standard code generation strategies for conditionals
and loops.

2.1.2 Goto-movement Transformations

In order to categorize the goto-movement transformations precisely, we introduce
notions of offset, level, sibling statements, directly-related statements and indirectly-
related statements.

Definition 2.1.1 The offset of a goto or label statement is n if, relative to the be-
ginning of the program, the statement is the nth statement which 1s euther a goto or
a label statement. Offsets may be computed by traversing the source program from top
to bottom and incrementing the offset counter each time a goto or label statement s
encountered.?

Definition 2.1.2 The level of a label or a goto statement is m if the label or the
goto statement is nested inside ezactly m loop, switch, or 1f/else statements.

Definition 2.1.3 A label statement and a goto statement are siblings if there exists
some statement sequence, stmt_1; ...stmti; ...stmt_j; ...stmton;, such that
the label statement corresponds to some stmt_i and the goto statement corresponds
to some stmt_3j in the statement sequence.

Definition 2.1.4 A label statement and a goto statement are directly-related if there
exists some statement sequence, stmt_1; ...stmt; ...stmt_j; ...stmtn;, such
that either the label or the goto statement corresponds to some stmt_i and the match-
ing goto or label statement is nested inside some stmt_j (stmt_i <> stmt_j) un the
statement sequence.

2Offsets are used to determme if a label statement occurs before or after the matching goto
staternent.




Definition 2.1.5 A label statement and a goto statement are indirectly-related of

they appear in the same procedure body, but they are neither siblings nor duectly-
related.

Given these definitions, it is clear that the goto-elimination transformations pre
sented in the previous subsection are applied exactly when the goto statement and
target label statements are siblings. The goto-elimination transformation given in
Figure 2.1 is used when the offset of the goto statement is less than the offset of the
target label statement, while the goto-elimination transformation given in Figure 2.2
is applied when the offset of the goto staternent is greater than the offset of the target
label statement.

We can now restate our overall strategy as follows. Given any goto-label pair,
we can eliminate the goto by first moving the goto until it becomes a sibling of the
label, and then applying the appiopriate goto-elimination transformation. Figure 2.3
illustrates the four situations that may occur.

Figure 2.3(a) illustrates the case when the label and goto are directly-related,
and the level of the goto is greater than the level of the target label. The objeciive
is to move the goto to the same level as the label. In this case we apply outward-
movement transformations, where each transformation moves the goto out one level.
Figure 2.3(b) illustrates the case where the label and goto are directly-related, and
the level of the goto is less than the level of the label. In this case we apply mward-
movement transformations, where each transformation moves the goto in one level.

Figures 2.3(c) and 2.3(d) illustrate more complicated situations where the goto
and label are indirectly-related. When the label and goto are in entirely different
statements (Figure 2.3(c)), the goto is first moved using outward-movernents until it
becomes directly-related to the label, and then inward-movements are used to move
the goto to the same level as the label. When the label and goto are in different
branches of the same 1f or switch statements (Figure 2.3(d)), then the goto is first
moved using outward-movements until it becomes directly-related to the enclosing if
or switch, and then inward-movements are used to move it to the same level as the

label.

Given that all situations may be handled by inward or outward goto-movements,
the only remaining problem is to define both outward- and inward-movement trans-
formations for each kind of construct. The next paragraphs present these transfor-
mations for each of the statements that need to be considered: loops (i.e. for, do
and while), 1f and switch statements.

Outward-movement Transformations

10




while ( sxpr1 )

H{axpe2)

then
switch (1)

case 1

if { cond ) goto L1,

L1

(a) Directly-related

(level(goto) > level(label))

tw_itch(l)

case 1

it (expr1)
then

if(cond ) gowo L1,

« .

b

vihile ( e;x.pn"z Y

(' ...... .

if { expr3

b

L1

if ( cond ) got= L1,

legom )

i (expre)

then

else.-"

switch (i)

?81

L

(b) Directly-related

(level(goto) < level(label))

if {cond)

then

while ( expr1)

i (cond)goto _L1;- - - .
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! tgexpra) .-
|

Lt

e

(c) Indirectly-related
(different statements)

(d) Indirectly-related

(different branches of the same if/switch)

Figure 2.3: The four situations for goto/label relationships



The outward-movement transformations are very straight-forward Thete aie two

cases, moving a goto out of a loop or switch statement, and moving a goto out of
an 1f statement.

¢ Moving a goto out of a loop or switch statement:

This transformation is very simple since we make use of the break statement to
exit the switch or loop. We have made use of break since it 1s compositional
and our compiler can handle it easily. However, note that it would also be pos

sible to use a more complicated transformation that does not make use of the
break statement, if so desired. The complete transformation is illustrated
Figure 2.4. Note that a new variable is introduced to store the value of the con-
ditional at the point at which the goto is encountered This value 1s then reused
in the goto statement that is introduced at the exit of the switch/loop To
be safe, to preserve the semantic correctness of the program, the goto vanable
must be reinitialized to false at the point of the label.

e Moving a goto out of an 1f statement:

In this case the break statement cannot be used. Instead a new conditional 1s
introduced as illustrated in Figure 2.5.

Inward-movement Transformations

In the previous subsection we presented the relatively simple outward-movement
transformations. The inward-movement transformations are slightly more comph
cated. Firstly, we cannot take advantage of the break statements, and secondly we
must consider whether the goto appears before or after the target label. We de-
scribe the inward-movement transformations for the cases where the goto appears
before the label, and then show how we can apply a goto-liffing transformation (sec
Section 2.1.2) that can always move the goto so that it appears before the label.

¢ Moving a goto into a loop statement:

This transformation first introduces a conditional that: (1) embeds the state-
ments that occur between the goto and the start of the loop; and (2) modifies
the loop condition such that it will be entered either when the goto expression
is true, or when the original loop expression is true. The transformation is 1l-
lustrated in Figure 2.6. Note that the short-circuit evaluation in C will ensure
that the original loop expression will not be evaluated if entry into the loop
is due to the goto. Further, note that the reinitialization to false of the goto
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L1:

e

stmt_1i;

stmt_j;

LR

.......

-------

stmt_i;

goto_Li=cond;

if ( goto_L1 ) break;
stmt_j;

.......

.......

.......

ooooooo

Li: goto_L1=0;
stmt_1;

Figure 2.4: Moving a goto out of a switch
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.......

if ( expr )
{
b R i
‘ goto_Li=cond;
....... . :
stmt_i; if E tgoto_L1 )
if ( cond ) goto Li; =
....... e
stmt_j; )
i }
stmt_k; if ( goto_L1 ) goto L1;

-------

L1: goto_L1=0;
stmt_k;

.......

Figure 2.5: Moving a goto out of an 1f
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Li:

{

{ goto_Ll=cond;
....... if ( !goto_L1 )
if ( cond ) goto Li; {
stmt _i; stmt_i;
stmt_j; stmt_j;
wvhile ( expr ) }

{ = while ( goto_L1 || expr )
....... { if ( goto_L1 ) goto L1;
stmt_k; L.

....... stmt_k;
stmt_n; L1: goto_ L1 = O;
2
....... stmt_n;
} ¥
}

Figure 2.6: Moving a goto into a loop

variable at the point of the label preserves the correct behavior of the loop in
succeeding iterations (i.e. force evaluation of the loop expression).

The transformation for do loops is similar, except that the condition of the loop
does not need to be modified. To handle for loops that have labels in their
body, one can simply transform it to the equivalent while or do loop and then
apply the appropriate inward-movement transformation.

Moving a goto into an 1f statement:

In this case the transformation is similar to the loop transformation, except
that the if condition is modified differently depending on whether the label is
in the then or else part. If the label is in the then part, the modification of
the condition would be the same as for the while condition. If the label is in
the else part the if condition is modified to lead to the else part, when the
goto condition is true, or the if condition is false. Figure 2.7 illustrates this
case.

Moving a goto into a switch statement:

In order to move a goto into a switch statement, one must first locate the case
that contains the target label. In order to force control to enter this case, a
new variable is defined to be used as the switch variable, and a conditional is
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L1

-------

if ( cond ) goto L1;
stmt_1i;

stmt._j;

if ( expr )

-------

else
{ stmt_1;
stmt_n;

.......

L1:

goto_Li=cond;
if ( !'goto_L1)
{ stmt_i;

.......

else
{ if ( goto.L1) goto L1;
stmt_1;
goto_L1=0;
stmt_n,

.......

ooooooo

Figure 2.7: Moving a goto into an if
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introduced that initializes the new variable to the constant expression of the case
in question when the condition of the goto is true and to the switch expression
when the condition of the goto is false. If the label occurs in the default
statement, the new variable is set to a default value. Figure 2.8 illustrates this

case.
{
c goto_Li=cond;
if ( tgoto_L1 )
if ( cond ) goto L1; € stat.i;
stmt_i; stmt_]
DS t_switch=i;
stmt._j; }
szltch 1) else t_switch = 1;
switch (t_switch)
case 1: {
{ stot k = case 1:
- { if (goto_L1) goto L1;
L1: stmt_1; stat.k;
y Li: goto_L1=0;
stmt_1;
default:
, o }
default:
} , o

Figure 2.8: Moving a goto into a switch

Goto-lifting Transformation

Each of the previous inward-movement transformations have moved a goto that
appeared before the target label (i.e.offset(goto) < offset(label)). However, there are
also situations where the target label appears before the matching goto. In this
case, one must first move the goto to just before the statement containing the target
label using the goto-lifting transformation, and then apply the appropriate inward-
movement transformation.

17




Figure 2.9 illustrates the goto-lifting transformation. Let stmt_label be the
statement that contains label L1, and let the matching goto statement be below
stmt_label in the statement sequence. We can lift the goto up above stmt_label by
introducing a do-loop that on the first iteration ignores the goto and on subsequent
iterations uses the value of the conditional at the bottom of the loop. After the goto
has been lifted, the inward-movement transformations can be used to move the goto
inside stmt_label.

{
int goto.L1 = O;
{ .......
stmt_1;
stmt_i; stmt J )
stmt_j; d """
o

.......

{ if (goto_L1) goto Li;
stmt_label; /* contains L1 */

-------

goto_L1 = cond;

}
vhile (goto_L1);

-------

ooooooo

Figure 2.9: Lifting a goto above the statement containing the label

2.1.3 Examples of Inward and Outward Transformations

Figure 2.10 illustrates a series of outward-movement transformations followed by a
goto-elimination transformation, performed to eliminate the goto in Figure 2.3(a).
Figure 2.11 illustrates a series of inward-movement transformations followed by a
goto-elimination transformatic., performed to eliminate the goto in Figure 2.3(b).
Figure 2.12 illustrates a series of outward-movement transformations, followed by a
goto-lifting transformation, a series of inward-movement transformations, and a goto-
elimination transformation, performed to eliminate the goto in Figure 2.3(d). Note
that the dotted arrows indicate the movement just apphed, while the dashed arrows
indicate the next movement.
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while { exprt)

M (expr2)

then
switch (1)
case 1

goto_L1=cond,
if{ goto_L1 ) break,

f(goto_L1) goo L1, &

-

— -
-
-

- -

&

L1 goto_L1a0,

(a) outward-movement from switch

while (expr1)

H ( expr2)

then

switch (1)
case 1

goto_L1=cond,
if { goto_L1 ) break ,

i ( ‘gob_L1)
{
}

i(goto_L1)break, - . -.....,

f(goto_L1)gotob1,

L1 goto_Lt=0,

(c) outward-movement from while

Figure 2.10: Outward-movements followed by goto-elimination

(d) application of goto-elimination
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while (expr1 )

i (expr2 )

then
switch (1)

case 1

goto_L1=cond,

if ( gom_L1) break ,

if  ‘goto_LT)
{
}

 (gom_L1) oo L1, &

<

L1 goto_L1=0,

(b) outward-movement from if

whils (expr1 )

H{oxpr2)

then
switch (1)

case 1’

goto_L1=cond,
if ( goto_L1 ) break ,

it ( igoto_L1)
{
}

if (goto_L1 ) break,

(! goto_L1)
{

}
goto_L1=0,




@

Qoo Limet nd,

H{igovo_L1 ) - i @40 _Limcond
{ 3 :(lqom_l-\ )
} .
while (goto_Lijjexpri) \).Mto  {goto_L 1{[epry
4 hile (goto Lillewped)
W (goto_L 1) goto L1, -\ ¢ oo L1 )
Hie ] Vs ‘ ;
then 7 iy ’E‘%‘l&‘-ﬁ.?{?'.@l_ sy
7 7 ’
¥ e
(gow_Lt )gotle = - —
S
”
4 - !
wwitch (i) ' ! svritch () - - |
case 1 . agg i ” T .
Cﬁ‘-' \
L1 gow_L10, ‘ L1 gato_Lis0,
(a) inward-movement into a whale (b) inward-movement into an f
goto_Limcond; goto_L1ecaxwd,
H{lgow_L1) #(igolo_L1)
{ {
} }
while (goto L1 ijexpri) while { goto L !]isxpr )
# (1goto_L1) :’('ibdo_L'I)
{
} }
H{lgoto_Lt &8 oxpr2) H {golo_L1 &8expi2)
then then
slse oiso
] (( Igoto_L1), . f{koto_L1)
- ., . (
,!__swnm-u. . t_switchw|,
oo ) .,,),
1_switchw1; " t_swilche1,
switch (1 swich) writéh (1_switch)
case 1; ~ cise 1
] L1
# {gow_L1)gotoLs, { {goto L1}
}
L1 goto_L1ad, ! L1 gato_L1,
|
(c) inward-movement into a switch (d) application of goto-elimination
‘ Figure 2.11: Inward-movements followed by goto-elimination

20




it (cond )

¥ (goto_L1) break,

i ( 1goto_L1 %
{3
alse
~
~

-~
~

while ( expr2)*

\
\
\

i ( expr3 )
then

hadil TRPSRE PR

L1 gow_L1-0,
I

I
—~r

# (goto_L1) gotoL1! ¥

do
{ 4 (goto_Lt1 )go}oLL

M (cond ) ,’

gofo _L1 = cond,
#{ goto_L1) break;

——

#(Jgoto_L1 )
{1}

oko
y

while ( expr2;

H (exprd )
then

L1 goto Li=0;

Jwhite (goto_L1)

do
{4 (lgoto_L1)

-1
#{ lgoto L1 8& cond )

goto _L1 = cond,
if { goto_L 1) break,

d{igoto_L1 )
{ 1}

LAt goto_L1'rg« tolh L -

while (expr2 ) i

H(expr3)
thon

L1 goto_L1=0;

}whie (goto_L1)

(a) outward-movements

(b) goto-lifting

(c) inward-mov. into if

do
{ & (1goto_L1)

{ -}
¥ ( igoto L1 84 cond )

i { goto_L.1 ) break,

f (Igoto_L1)
{..}

olse

it (1 goto_L1)
{ .

}
while ( goto_L1 |l expr2 )

#( goto_L1)goto L#&_

W(opd) -~

!N},”

L1 golo_L1e0,

Jwhile (gow_L1)

do
{ ¢ (i goto_L1)

{-]
#(igoto Lt &3 cond )

o ( goto_L1 ) break,

(1gote L)
{..}
olse
(1 goto_L1)
{

}
while ( goto_L1 | expre )

d( 1goto_L)
{on

}

H( goto L1 expr3)

then v
#{gow_L1) gutoLl;

L1 goto_L1s0,

}while (gotw_L1)

(d) inward-mov. into vhile

do
{d#(lgoto_L1)

{-}
#( Igoto_L1 && cond )

goto _L1 = cond,
d{goto_L1)break,

d(1goto_L1 )
{ .}
oio
1(1 goto_L1)
{

]

while ( goto_L1 |} expr2)

i tgoto_L1)

{.-

}

H( goto_L1|lexpr3)
then

¥{1goto_ L)
(.

}
Li:goto_L1«0,

Jwhile (gow_L1)

(e) inward-mov. into if

(f) goto-elimination

Figure 2.12: Qutward- and Inward-movements followed by goto-elimination
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2.1.4 Avoiding the Capture of break and continue State-
ments

Since we are directly supporting break and continue statements, there is one twist
that we must consider when applying the goto-elimination (Section 2.1.1) and goto-
lifting (Section 2.1.2) transformations that introduce new do loops. Although these
transformations seem quite simple and innocent at first, there 1s one subtle point that
arises due to the presence of break and continue statements. The crucial point is
that, on rare occasions, the do loop that we introduce captures a break or continue
statement that belongs to an enclosing loop or switch statement. Consider, for
example, the original program in Figure 2.13(a) and the mcorrect capturing of a
break statement in Figure 2.13(b). In order to avoid this situation, we must add
one further transformation for each captured break or continue. As illustrated in
Figure 2.13(c), we need to: (1) introduce one new logical variable for each loop that
captlures a break, (2) set these variables to false at the beginning of procedure, (3)
set the appropriate variable to true at the point of the break, and (4) check the
variable at the exit of the introduced loop: if it is true reset the logical variable to
false and issue the proper break for the enclosing loop. A similar method for captured
continue statements is used, except that at the exit of the introduced loop, if the
variable is true, we issue the continue instead of the break fur the enclosing loop
Figure 2.14 illustrates this case.

2.2 Eliminating all goto statements from a C pro-
gram

Based on the goto-elimination, goto-movement and goto-lifting transformations, we
can now state the complete algorithm for removing all goto statements from a C
program. The complete algorithm is presented in Figure 2.15.

For each procedure, the algorithm proceeds in five steps. The first two steps are
simple initializations. The first step collects a list of all label and goto statements
in the procedure. The second step introduces one logical variable for each label,
initializes the variable to false, and inserts a reinitialization to false at the point of
the label. These initializations and reinitializations are required to make sure that
the value of the logical variable is false on all paths except the path coming from
the point at which the appropriate conditional test evaluated to true. The third step
converts all unconditional gotos to conditional gotos.

The fourth step is the heart of the algorithm where each goto is eliminated one
at a time. For each goto, the matching label is located. Once the goto-label pair
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stmt_j;

¥

(a) original program

{ int do_brk = 0;

-------

c while (1)
e { ...
“1{1119 (1) do{
do{ T Li: goto_Li=0;
Li: goto_Li=0; StmE-1;
stmt_1; stmt_j;
if (expl)
stmt_j;
. . {do_brk=1;
if (expil) break; break;}
goto Li =exp2;, oo oo
Y : iy, goto_Li = exp2;
} while (goto.Li); } while (goto_Li);
"""" if (do_brk)
}s“‘t‘k ; {do_brk=0;
} break;}
stmt_k;
}
b) i t t {f break ! t treat t of
(b) incorrect capture of bre (c) correct treatment o

captured break

Figure 2.13: Avoiding capture of break statements
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Li: goto._Li=0;
stmt_1i;
stmt_j;
if (exp1l) continue;
goto_Li = exp2;
} while (goto.Li);

(b) incorrect capture of continue

.......

stmt_j;

}
}

(a) original precgram

{ int do_cont = 0;

-------

Li: goto_Li=0;
stmt_1i;
stmt_j;
if (expl)
{do_cont=1;
break;}
goto_Li = exp2;
} while (goto_Li);
if (do_cont)
{do_cont=0;
continue;?}

(c) correct treatment of
captured continue

Figure 2.14: Avoiding capture of continue statements
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for each procedure p do

{

/* get the list of labels and gotos for this procedure */
label_list := all labels in procedure p;
goto_last := all gotos in procedure p
/* 1ntroduce and initialize the logical variables */
for each label L1 1n label_list do
{ 1ntroduce a variable goto_Li initialized to false
introduce a stmt just after the label Li that resets goto_Li to fals.
}
/% change all unconditional gotos to conditional gotos */
for each unconditional goto g in goto_liast do
change g to a conditional goto

/* eliminate gotos */
while not empty(goto_last) do
{ /* select the next goto/label pair */
g := select a goto from goto_iist; 1 := label matching g
/* force g and 1 to be diractly related */
1f indirectly_related(g,l) then
1f different_statements(g,l) then
move g out using outward-movement transformations
until 1t becomes directly related to 1
else /* different branches of the same 1f or switch */
move g out using outward-movement transformations
until 1t becomes directly related to the 1f or switch containing 1
/* force g and 1 to be siblings */
1f directly_related(g,l) then
1f level(g) > level(l) then
move g out to level(l) using outward-movement transformations
else /% level(g) < level(l) */
{ 1f offset(g) > offset(l) then
111t g to above stmt containing 1 using goto-lifting transf.
move g 1n to level(l) using inward-movemsnt transformations

}

/% g and 1 are guaranteed toc be siblings, eliminate g */
1f offset(g) < offset(l) then
eliminate g with a conditional
elsa
eliminate g with a do-loop
1
/* eliminate labels */
for each label Li in label_list do
eliminate L1

Figure 2.15: High-level algorithm for removing all gotos
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has been located, it is simply a matter of applying goto-movement transformations
until the goto-label pair become siblings and then applying the appropnate goto-
elimination transformation. The fifth step is the elimination of all the labels (since
all gotos to these labels have now been eliminated).

2.3 Optimizations

In this section we present some optimizations to the goto-elimination method First,
some simple optimizations that can be made as the goto-ehmination and goto-movement
transformations are applied are presznted. Then an optimization for a particular sit
uation in which gotos can occur is described.

2.3.1 Simple Optimizations

While applying the goto-movement and goto-elimination transformations by following
the rules straight away, many unnecessary conditional 1f statements (1. with null
bodies) can be introduced. There are three situations where we can avoid generating
these statements.

Goto statement is next to the label statement: Figure 2 161llustraies this case
in which the goto statement is immediately next to the label statement ‘Fhis
situation may occur after several movement transformations, and clearly in this
case we may just eliminate the goto statement

{ .
stmt_i: {.......
stmt_1;
if (cond) goto L1; =¥ Ly stat.n; |
Li: stmt_n; }
....... )
}

Figure 2.16: Goto is next to the label
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{ if ( expr)

{ if ( expr) { ......
{....... stmt_i;
stmt_i; Lii
....... goto_Li=cond;
if (cond) goto L1; = }
} if (goto.L1) goto Li;
Li: stmt_n; L1: goto_L1=0;
} stmt_n;
}

Figure 2.17: Goto at the end of an if block

Goto is at the end of an if block: Figure 2.17 illustrates this case in which the
goto is at the end of a statement sequence and is being moved out of an if.
In this case we can avoid introducing a conditional statement at the end of the
block (there are no statements after the goto that must be guarded).

Goto is before a loop that contains the label: Figure 2.18 illustrates this case
in which the goto is immediately before a loop. We can avoid introducing a
conditional statement before this loop.

1{
{ goto_Ll=cond;
if (cond) goto L1; while ( goto_ L1 || expr )
while ( expr ) { if ( goto_L1 ) goto Li;
L
stmt _1i; = stmt_i;
L1: stmt_n; L1: goto_L1=0;
} stmt_n;
} }
}

Figure 2.18: Goto immediately before a loop
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2.3.2 A special case optimization

Another common situation that can be optimized occurs when there is more than one
goto associated with a label inside the same 1f, switch or loop statement. If we were
to apply the transformations blindly, we would introduce, for each goto, a conditional
check at the exit of the if, switch or loop. This conditional check introduced could
be: (i) the conditional if introduced to guard a sequence of statements; (ii) the
do-while introduced to create a cycle of control-flow; and (iii) the conditional 1f
containing a break statement introduced to exit from a loop or swaitch statement. It
is clear that when there is more than one goto statement to the same label, it would
be preferable to insert only one of these conditional checks per label. For example,
we would like the transformation given in Figure 2.19 for the case where there are
multiple gotos to the same label from a switch. We implement this optimization
by first checking to see if the appropriate conditional has already been inserted, and
avoiding duplicating the code if it is already there.

{ ...
{ switch(x)
....... >
switch(x) { case
{case 1: e
break;
broak; case 2:
case 2: e
goto_error = 1;
....... Boto- ¢
goto error; re
case 3: case 3:
' =
....... : ’
break; reak
case 4: case 4:
gotoerror goto_error = {;
¥ ' break;
}
en"c;;-. o if (goto_error) goto error;
Y e

error: goto_error = 0

¥

Figure 2.19: Optimizing multiple gotos from the same switch
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Chapter 3

An overview of SIMPLE

In this section an overview of SIMPLE is presented. As its name suggests, SIMPLE
is a simplified version of the first intermediate representation FIRST, where complex
program constructs are translated to a simpler form. SIMPLE is based on a simple
grammar that is powerful enough to represent all constructs of C.

During the simplify process, complex expressions and statements are broken down
to simpler forms, complicated variable names are split whenever possible and all loops,
switches and conditionals are modified to adhere to the restricted SIMPLE format.

A complete description of SIMPLE is out of the scope of this thesis, but we will
refer to some of the important features through examples which would be helpful in
understanding some of the later sections. A detailed description of SIMPLE can be
found in {Sri92].

For our purposes, the relevant features include: the different types of statements
(statement nodes), along with the most relevant aspects of their tree representation,
and the tree representation for sequences of statements and compound statements.

3.1 Basic statements

In SIMPLE a set of fifteen basic expression statements are identified and any other
complex expression statement in C can be broken into a sequence of these statements.
Figure 3.1 illustrates three examples of statements (two assignment statements and a
function call) broken down into a series of simpler statements. The tree node related
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to the basic statement in SIMPLE is the EXPR_.STMT node. Every statement node
has a parent node called a TREE_LIST node. This TREE_LIST node is also used
to link sequences of statements. Figure 3.2 illustrates a high-level representation of
the SIMPLE-AST for the first example in Figure 3.1. The triangles in the figures

represent subtrees that will not be described in detail as they are irrelevant to our
work.

temp_.1 = b * ¢;
temp.2 = *d;
a=bx*xc+ (xd) / e; = temp_3 = temp_2 / e;

a = temp.l + temp_3;

temp_0 = &a;
f (3, &a, *b ); = temp_1 = *b;
£f( 3, temp.0, temp_1)

)
L]
o
1

c; = a=b:

Figure 3.1: Example of FIRST to SIMPLE transformations

( TREE_LIST ’ TREE_LIST ’ TREE_LIST

Figure 3.2: SIMPLE AST representation
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3.2 Compositional Control Statements

The compositional control statement forms supported by SIMPLE are restricted (sim-
plified) versions of statement sequences, for-loops, while-loops, do-loops, switch /
case statements, and 1f-else statements. In addition, return is supported for ex-
iting a procedure or function, break and contanue are supported for exiting a loop
and break is supported for exiting switch/case statements.

Figure 3.3 illustrates the syntax of some of the control statements in SIMPLE and
the corresponding AST representation. For a complete description of the SIMPLE
grammar rules, refer to [Sri92].

The condition expressions for loops and conditionals are reduced to equivalent
simple expressions that are free from side-effects. Figure 3.4 shows an example of
simplifying the condition of a while loop, while Figure 3.5 illustrates the handling
of a typical short-circuit condition. In the later case the short-circuit is expressed
directly by introducing the appropriate conditional statement.

It should be noted that switchand case statements need special attention since in
C, the body of a case statement can be thared partially by different case statements
and the compositionality of the control flow is then lost. Each case statement is forced
to begin with a case and end with a break, return or continue, and to replicate
shared code. Figure 3.6 illustrates an example of simplifying a switch statement.

In order to make the format of the SIMPLE-AST uniform, even when the body
of a compositional control statement contains a single statement, it is treated as a
compound statement and the statement is therefore put within braces.

Compound statements are represented by a TREE._LIST node being the parent
of the sequence of statements that formed this compound statement. Figure 3.7
illustrates a sequence of statements in a compound statement and its corresponding
tree. Thus each new compound statement is identified by the piesence of two levels

of TREE_LIST nodes in the AST.

SIMPLE does not allow variables to be defined inside compound statements. A
process called unnesting [Sre92], removes them by lifting variables to the function
level, renaming them if necessary.

Thus, the programs represented in SIMPLE, have a regular and simple grammar,
where complex statements and expressions are simplified, and compound expressions
are broken into simple ones. This is the most convenient point to insert our structur-
ing phase. All analyses and transformations after this phase can assume structured
programs.
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stmt: IF ‘(’ condexpr ‘)’ stmt
IIF ‘(’ condexpr ‘)’ stmt ELSE stmt

(a) if-else statement

stmt: FOR ‘(’ expr ‘;’ condexpr °;’

expr ‘)’ stmt!

(b) for statement

stmt: WHILE ‘(° condexpr ‘)’ stmt

A A

(c) while statement

DO_STMT

AN

stmt: DO stmt WHILE ‘(‘ condexpr )’

(d) do statement

Figure 3.3: SIMPLE grammar and tree nodes for some compound statements

temp_1 = a + b;

while (a + b > ¢) while (temp_1 > ¢)
{ = {

} temp_1 = a + b;
}

Figure 3.4: Simplification of a while-loop condition expression
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temp.1 = a > ¢;

if (a>c &k a > d) if ie;;mz-: i > d
{ = if ( te;p_l ) '
} .
}

Figure 3.5: Simplification of a condition with a short-circuit

switch(a)
{
case 1:

switch(a) case 2:

{ stmt_1 ;
case 1: stmt_2 ;
case 2: stmt_3 ;

stmt_1 ; break ;
case 3: case 3:

stat.2 ; = stmt_2 ;
default:

stmt_3 ; stmt._3 ;

break ; break ;
case 4: case 4:

stmt_4 ; stmt_4

} break ;

default:
stmt_3 ;
break ;
}

Figure 3.6: An example of switch statement in SIMPLE
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Chapter 4

Implementing Goto-elimination in
the McCAT compiler

.1 Overview

This chapter presents some implementation details of the algorithm given in Sec-
tion 2.2,

First, the selected data structures are discussed. Data structures that efficiently
support the operations to categorize a goto-label relationship are mandatory. All the
information concerning the goto and label stasements should be stored in them, to
be able to implement the goto-elimination algorithm after.

The implementation of the goto-elimination method is divided into two subphases.
The first subphase deals with the first three steps of the algorithm presented in
Section 2.2, i.e. the initialization phases. They include: (i) the collection of all the
label and goto statements information; (ii) the creation of the statements to define,
initialize and reinitialize the goto variables; (iii) the conversion of unconditional gotos
to conditional ones.

In the second subphase, the goto-elimination algorithm is implemented. The gotos
are eliminated one by one, and at the end all the labels are removed.

An efficient method to determine if the given goto and label statements are sib-
lings, directly-related, or indirectly-related is required. The information stored in the
data structures and the SIMPLE-AST should be enough to be able to categorize the
relationship of a goto-label pair and apply the required transformation.
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4.2 Data Structures

Two data structures are used to handle the information related to the gotos and
labels. The gotos are stored in a linked list. The labels are stored in a hash table.
The simplest order to eliminate the gotos is in the order in which they occur in the
linked list. However, as discussed in Chapter 5, there may be better orderings that
can be considered. For each goto to be eliminated, the matching label is located.
To do this efficiently we make use of the hash table of labels. Figure 4.1 presents
an example program, and Figures 4.2 and 4.3 illustrate the label table and goto

list contents for the given program. The next section describes in detail how the
information is stored in these data structures.

current current
offset level
I
1 if (cond_1) gotoL_1;
.................. 1
2 L3: e
while ( expr)
oo 2
for{i=1;i<n '§++)
{
3 it{mnci a)goml. 2 2
sl T <
4 i { oontf“g\} gota LJ*
56 L_2: ;f(cond 4ygoloL_3;
€S A 4D CRERSD CRORON 2
7 L_1: RO
}
m | I 4
}

Figure 4.1: Example program

4.3 Initialization Phases

As mentioned before, the initialization phases are implemented in one subphase.
There, the SIMPLE-AST of the current procedure is traversed in a recursive manner,
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collecting all the information for the goto list and the label table, creating the ini-
tialization statements, and converting the unconditional gotos to conditional gotos.
More specifically, during the traversal the following actions are performed.

1.

o

A global variable for level is maintained. It is incremented each time we cu-
ter a loop, switch or if statement, and decremented each time we exit these
statements.

. A global variable for offset is maintained, it is incremented each time we find a

goto or a label statement.

. Every TREE_LIST node is linked to its parent’s TREE_LIST node and the

current level is assigned to the level field of this node. That is, from every
statement node (i.e., the TREE_LIST node associated with the statement) we
can access the parent statement node (i.e. the TREE_LIST node associated
with the parent statement) and we can know the statement level.

. Every unconditional goto is transformed into a conditional one.

. For each goto found:

- the offset is incremented.

- a new node in the goto list is created and the goto information 1s stored.

. For each] el statement found:

- the offset 1s incremented.
- a new variable associated with the label is created.
- the statements to initialize and reset the new variable are created.

- a new node in the hash table is created and the label information is stored.

From the Figures 4.2 and 4.3 we observe that a label node is inserted in the hash
label table each time a label is found, using the label name as the hash function

argument. The current level and offset (refer to Figure 4.1), the label name and a
pointer to the SIMPLE-AST label node are stored.

For each goto, a node is inserted at the head of the goto list. The current level and
offset, the label name associated with the goto, and a pointer to the SIMPLE-AST
goto node are stored.

The nodes are inserted at the head of the goto list, and gotos are eliminated in
the order they appear in the goto list. Thus, as it can be observed from Figure 4.3,
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the order of the goto-elimination is the reverse order to the order the gotos appear
in the procedure.

It should be noted that we actually implement all the initialization steps during
one pass through the SIMPLE-AST in the first subphase, and then no further passes
through the SIMPLE-AST are required. Subsequent steps can be performed directly
using the information collected during this first pass. That is, in the first subphase
we store enough information about the location of goto and label statements so as to
allow direct manipulation of the required parts of the AST in the second subphase.
We create parent pointers in the SIMPLE tree to find common ancestors that can be
used to efficiently determine the relationship between the goto and label. Thus, we
are able to support eflicient operations to get the level and offset of each label and
goto(by accessing the data structures) , and determine if the goto and the label are
indirectly-related, directly-related, or siblings.

4.4 Determining the relationships between gotos
and labels.

Now we will show how to categorize a goto-label pair as siblings, directly-related, or
indirectly-related.

4.4.1 Siblings

Definition 2.1.3 states that a label and a goto statement are siblings if there exists
some statement sequence stmt.1; ...stmt.i; ...stmt_j; ...stmt.n; such that
the label statement corresponds to some stmt_1 and the goto to some stmt_j.

In the SIMPLE_AST a goto-label pair are siblings if both nodes have a com-
mon parent. As illustrated in the example in Figure 4.4 this means that the back-
pointer of the TREE_LIST node associated with the goto and the backpointer of the
TREE_LIST node associated with the label point to the same TREE_LIST node.

4.4.2 Directly-related

Definition 2.1.4 states that a label and a goto statement are directly-related if there
exists a stalement sequence stmt_1; ...stmt.i; ...stmt.j; ...stmt.n;such that
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{ —
stmt_1 ; " T~ "
.......... @ TREE_UST
if ( cond ) goto L_»;
stmt_n ;

T stma_1 ,;:"("\.\

TB = Tree Backpointer

Figure 4.4: goto and label are siblings

either (i) the label corresponds to some stmt_1 and the matching goto is nested inside
some stmt_j in the statement sequence or (ii) the goto corresponds to some stmt_1
and the matching label is nested inside some stmt_j in the statement sequence.

Let level(stmt_i) represent the level associated with statement stmt_1, and let

parent(stmt_1) represent the parent pointer (backpointer) of the TREE_LIST node
associated with stmt_i.

In the SIMPLE-AST the first case can be specified by the following two conditions-

1. level(goto) > level(label)

2. Let the goto be nested inside some stmt_3, which is a sibling of stmt_1, the label
statement. Then parent(label) = parent(stmi_j) where stmt_j is the statement
obtained by traversing 2* (level(goto) —level(label)) backpointers from the goto
node. (For each statement that contains the goto and not the label, two parent
pointer levels should be {ollowed since, as we specified in Chapter 3 a compound
statement is represented by two levels of TREE_LIST nodes).

Thus we can state the condition as:

parent(label) — parentZ-(levcl(goto)—leuel(labcl))+l (gOtO)

The example in Figure 4.5 illustrates this case, where the goto is nested inside
two statements (if and while), and the label is in the same statement sequence as
the outermost of these statements. The label level is one and the goto level is three.
From the TREE_LIST node associated with the goto statement, by following four
backpointers of TREE_LIST nodes, we reach the TREE_LIST node associated with
the while statement. The backpointer of this TREE_LIST node points to the same
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TREE.LIST node as the backpointer of the TREE_LIST node associated with the
label.

Similarly, the second case can be specified by these two conditions:

1. level(label) > level(goto)

2. Let the label be nested inside some stmt_j, which is a sibling of stmt_i, the goto
statement. Then parent(goto) = parent(stmt_j) where stmt_j is the statement
obtained by traversing 2* (level(label)—level(goto)) backpointers from the label
node.

Thus we can state the condition as:
parcnt(goto) = parent2t(level(label)-levcl(gota))+l(Iabel)

The example in Figure 4.6 illustrates this case.

4.4.3 Indirectly-related

Definition 2.1.5 states that a label and a goto statement are indirectly-related if they
appear in the same procedure body but they are neither siblings nor directly-related.

Thus, indirectly-related goto-label pairs include the cases when the goto and label
are in entirely different statements and the special cases when the goto and label are
in different branches of the same 1f or switch statement.

To categorize a goto and label statements as indirectly-related, first it is checked
they are not siblings (parent(goto) <> parent(label)).

Then the level of the goto and the level of the label is compared. According to
this result there are two possibilities:

o if level(goto) = level{label) then they are not directly-related, so it can be stated
they are indirectly-related.
o if level(goto) <> level(label) the following steps are performed:

(1) Select the statement, (goto or label) that has greater level. Let this statement
be greater level.stmt and let the other statement be smaller level stmt.

(i1) From the greater_level stmt node, pairs of parent pointers are traversed,
' until the level of smaller_level_stmt is reached. If the parent pointer of

41




{

while (cond_1)

{
if {cond_2)

stmi;1;
abatatedabade 1
i {oond } gozo L i,

G o Soan N A
[ORENEN (SN

................

Figure 4.5: Dectermining a directly-related goto-label pair
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Figure 4.6: Determining a directly-related goto-label pair
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the statement node that was reached is the same as the parent pointer of
smaller level _stmt, then they are directly-related, otherwise they are indirectly-
related.

Once a goto-label pair has been categorized as indirectly-related then the condi-
tions for the special cases are checked.

General case: goto and label are entirely in different statements

In this case, there exists a statement sequence stmt_1; ...; stmt.1; ...stmt.);

.. .stmt_n; where the goto is nested inside some stmt_1 and the label is nested nside
some stmt_j (stmt_i <> stmt_j).

In the SIMPLE-AST, from the goto node by traversing pairs of parent pointers,
and from the label node by traversing pairs of parent pointers, stmt_.1 and stmt_j
nodes are reached such that parent(stmt_i) = parent(stmt_j).!

Figure 4.7 illustrates this case. The goto statement is nested inside an 1f and a
while statement, so its level is 3. The label statement is inside an 1f statement so
its level is 2. From the TREE_LIST node associated with the goto, by following four
backpointers we reach the TREE_LIST node associated with the while statement
that contains the goto, and from the TREE_LIST node associated with the label, by
following two backpointers we reach the if statement that contains the label. The
backpointers of these while and 1f statements point to the same TREE_LIST node.

Special cases: goto and label are nested in different branches of the same
if or switch

In this case the goto and label are nested in zero or more statements inside different
branches of the same 1f or switch.

In the SIMPLE-AST, from the goto node by traversing pairs of parent pointers,
and from the label node by traversing pairs of parent pointers, stmt_1 and stmt_j
nodes are reached such that parent(stmt_i) <> parent(stmt_j) and either:

(1) parent(parent(stmi_i)) = parent(parent(stmt_j))

for the case the goto and label are in different branches of the same 1£

1For each statement where the goto (label) is nested inside two parent pointer levels should be
followed.
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Figure 4.7: Determining an indirectly-related goto-label pair
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or

(ii) parent(parent(parent(stmt_1))) = parent(parent(parent(stmi.))))
parent(parent(stmi_i)) and parent(parent(stmt_j)) are case statements

for the case the goto and label are in different branches of the same switch.

In the case of the if statement, the fact that this statement has two children
that are TREE_LIST nodes (one that points to the compound statement of the then
body and the other that points to the compound statement of the else body) is a
unique condition in the format of the SIMPLE-AST. Thus, the backpointers of these
TREE_LIST nodes point to the same TREE_LIST node (the one corresponding to
the if statement).

In the case of the switch statement, there is no special condition regarding the
format of the SIMPLE-AST itself. We specially check if the label and the goto are
in different case of the same switch.

Figure 4.8 illustrates the case of a label and a matching goto that belong to dif-
ferent parts of the same 1£. From the TREE_LIST node of the goto by following two
backpointers and from the TREE_LIST node of the label by following two backpoint-
ers the same TREE_LIST node is reached. Figure 4.9 illustrates the case of a label
and a matching goto that belong to different case statements of the same switch
statement. From the TREE_LIST node cf the goto by following two backpointers
the TREE_LIST node associated with a case statement is rcached, and from the
TREE_LIST node of the label by following two backpointers the TREE_LIST node

associated with a different case but the same switch is reached.

These tests to categorize the general and special cases are done after the adjuste-
ment of the greater level stmt to be equal to smallerlevel stmt.

4.5 Elimination Phase

The elimination phase is implemented in the second subphase, as explained before.
In this subphase, the goto list is traversed sequentially, eliminating one by one the
gotos associated with each of the nodes in the list.

For each goto the matching label is searched in the hash table. Both the goto
list and the hash table contain pointers to the TREE_LIST nodes associated with
the corresponding goto and label staternents. Making use of these pointers, and *he
backpointers we can:
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Figure 4.9: Determining an indirectly-related goto-label pair in same switch
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o determine if the goto and the label are siblings, directly-related or indirectly-
related, as explained in the previous section.

o apply the required goto-movement or goto-elimination transformations accord-
ing to the previous classification.

o perform the required changes to the fields of the statement nodes (level and
backpointers) that need to be modified after applying a goto-movement trans-
formation.

A high level description of the implementation of the transformations applied to
eliminate one goto is given in Figures 4.10, 4.11 and 4.12.

for each goto g in the goto-list do
{

/* for g find the matching label 1 */

1 := label matching g in the hash label tablas

1f parent(l) <> parent(g) then
/* g and 1 are not siblings, move g to be & =ibling of 1%/
g := Goto-movement-transformations(g,l)

/* g and 1 are sablings, apply one of the goto-elimination
transformations*/

1f offset(g) < offset(l) then
apply goto-elimination transformation for g before 1

else
apply goto-elimination transformation for g after 1

Figure 4.10: Implementation of the goto-elimination phase

Note that the variables stmt_has_1 and stmt_has.g in Figures 4.11 and 4.12 corre-
spond to what we call greater_level stmt and smaller_level_stmt in the previous
section, depending on the value of the goto and label levels.
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Goto-movement-transformations(g,1)
{ if level(g) > level(l) then
{ /* determine whether g 1s directly or indirectly related to 1%/
stmt_has_g := g
vhile level(stmt_has_g) > level(l) do
stmt_has_g := parent(parent(stmt_has_g))
if parent(stmt_has_g) = parent(l) then
/* g and 1 are directly-related => move g out using outward
movements until it becomes a sibling of 1 #*/
while level(g) > level(l)
g := apply outward-movement transformation to g
else
{ /% g and 1 are indirectly-related => move g out using outward
movements and then move g 1n using inward movements */
stmt_has_1l := 1
g := Indirectly-related-transformations(g,l,stmt_has_g,stmt_has_1)
}
}
else
{ if level(l) > level(g) then
{ /= determine whether g 1s directly or indirectly related to 1%/
stmt_has_ 1l := 1
while level{(stmt_has_1) > level(g) do
stmt_has_1 := parent(parent(stmt_has_1))
if parent(stmt_has_l) = parent(g) then
/* g and 1 are directly-related => move g 1n using inward
movements until 1t becomes a sibling of 1 #/
while level(g) < level(l)
if offset(g) > offset(l) then
g := apply goto-lifting transformations to lift g above 1
g := apply inward-movement transformation to g
else
{ /* g and 1 are indirectly-related => move g out using outward
movements and then move g 1n using inward movements */
stnt_has_g := g
g := Indirectly-related-transformations(g,l,stmnt_has_g,stnt_has_1)
}
3
else
{ /* g and 1 are indirectly-related => move g out using outward
movements and then move g in using inward movements */
stmt_has_1l := 1; stmt_has_g := g
g := Indirectly-related-transformations(g,l,stmt_has_g,stmt_has_ 1)
}
return g

}

Figure 4.11: Implementation of the goto-movement transformations
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Indirectly-related-transformat aons( g,1,stmt_has_g,stmt _has_1)
{
/* g and 1 are either in entirely different statements or in different
branches of the same 1f or switch statement */
while parent(stmt_has_g) <> parent(stmt_has_1) do
{
stmt_has_g := parent(parent(stmt_has_g))
stmt_has_l := parent(parent(stmt_has_l))
}
while level(g) > level(stmt_has_1) do
1t stmt_has_1 = parent(parent(g))
/* g and 1 are in <> branches of the same 1f statement */
g := apply outvard-movement transformations to g for the
case g and 1 1n <> branches of an IF stmt

[

else
1f parent(parent(parent(g))) = parent(stmt_has_1)
and parent(parent(g)) and stmt_has_l are CASE stmts
/* g and 1 are in <> branches oi the same switch statement */
g := apply outward-movement transformations to g for the
case g and 1 1in <> branches of a SWITCH stmt
else
/* g and 1 are in entirely different statements */
g := apply outward-movement transformation to g
while level(g) < level(l) do
1f offset(g) > offset(l) then
g := apply goto-lifting transformations to lift g above 1

g := apply inward-movement transformation to g
return g

1

Figure 4.12: Implementation of the transformations for indirectly-related goto-label

pairs
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Chapter 5

Experimental Results

In this chapter we give some experimental results using our implementation of the
goto-elimination method for the McCAT compiler. First a description of the selected
benchmarks is presented. Then, the experimental method is described, and finally
the results are discussed.

5.1 Benchmarks

In order to test our structuring method we collected a set of 11 benchmarks that
contain goto statements. Although in practical terms, our structurer is required for
programs that contain even one goto, we wanted to test the effect and complexity
of our approach on at least some benchmarks that contained a significant number of
goto statements.

5.1.1 Benchmark description

Here a brief description of each of the benchmarks is presented.

asuite and nrcode2 : These programs are part of the kernels designed by Lauren
Smith to test C vectorizing compilers and their ability to recognize vector struc-
tures [Smi91]. For asuite we work with a subset of its functions, the ones that
contain gotos.
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compress : A file compression program of the style similar to the one described
in IEEE Computer, March 1992. This version of the program was written by
Spencer W. Thomas et al.

cq : This program performs a series of tests on a C compiler, based on information
in The C Programmang Language by Kerningham and Ritchie [KR78].

frac : This program finds a rational approximation for a floating point value. It was
written by Robert J. Craig at AT&T Bell Laboratories, Naperville.

FSM : This is a program that implements a finite state machine with an irreducible
loop. The program is presented in Appendix A and was provided by David
Chasc

indent : This program is the GNU’s indentation/formatting program, version 1.8.

tomcatv : A C version of the FORTRAN program tomcatv, a highly vectorizable
double precision floating point mesh generating benchmark. The FORTRAN
version is part of the SPEC benchmark suite.

lex.yy : This is the output of a program generated by lex. The input lex specifi-
cation is given in Appendix B.

par : This program is a filter which copies its input to its output, changing all white
characters (except newlines) to spaces, and reformatting each paragraph. It
was written by Adam M. Costello, 1993.

whetstone : This is a C version of the FORTRAN synthetic benchmark whetstone.

5.1.2 Benchmark characteristics

The benchmark characteristics relevant to our work are presented in Table 5.1. For
each benchmark the number of gotos, the number of labels, the number of lines of
source code and a general characterization of the types of gotos used are presented.
To provide a fair comparison of the number of lines of source code we ran a script
that strips comments, eliminates blank lines and formats the programs into a standard
form.

To help the discussion of the results, depending on the complexity of the trans-
formations required to eliminate a goto, we classify the usage of gotos into two cat-
egories: simple goto-usage and compler goto-usage. Simple goto-usage includes the
cases when the gotos are siblings to their labels or used as outward branches from
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control constructs. Compler goto-usage includes the cases when the gotos branch to
a label that is within a control construct, or when the gotos belong to a goto-label
pair that overlaps with other goto-label pairs (i.e. a goto jumps to a label within a
region spanned by another goto-label pair).

Based on the above classification and depending on the frequency of the simple
and complex goto-usages in the benchmark, we have divided the set of benchmarks
into two sets: sumple goto-usage benchmarks (with a majority of simple goto-usages)
and complezr goto-usage benchmarks (with a majority of complex goto-usages).

We will refer to the specific characteristics of each benchmark throughout the
discussion of the results.

name of #of | #of | # of | goto-
benchmark || gotos | labels || stmts | usage
cq 1 1 5760 | simple
nrcode2 2 2 106 | simple
lex.yy 4 3 1681 | complex
frac 6 5 58 | simple
tomcatv 7 6 197 | complex
compress 9 6 1331 | complex
TFSM 12 6 56 | complex
asuite 22 21 244 | simple
indent 28 10 3923 | complex
whetstone 31 31 316 | simple
par 59 11 1665 | complex

Table 5.1: Benchmark characteristics

5.2 Experimental Method

As explained in the previous chapters, structuring takes place after the simplification
process. From the SIMPLE intermediate representation, we can either dump out a C
program (using McCAT as source-to-source compiler) or continue with the back-end
phases of McCAT, as illustrated in Figure 1.1.

In order to measure the effectiveness of our structuring phase, we performed the
following experiment. For each benchmark we used our McCAT compiler as a source-
to-source compiler and we produced the following three semantically equivalent ver-
sions of the benchmark:
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SIMPLE version: This is a C program that is dumped after conversion into our
high-level SIMPLE interrnediate representation. All goto statements remain.

GTE version: ! This is a C program that is dumped after the SIMPLE representa-
tion has been structured using the transformation rules presented in Section 2.1.
No optimizations of the transformation rules are used.

GTE(opt) version: Thisisa C program that is dumped after the SIMPLE program
has been structured using the transformation rules presented in Section 2.1, and
the optimizations presented in Section 2.3.

Note that in the two GTE versions we eliminated the goto statements in the
reverse order from how they appeared in the source code.

Given the three versions of each program, we then compiled each version using
the GNU C gcc, version 2.4.5, with the -0 option, and timed the resulting exe-
cutables using the UNIX system call , getrusageon a SPARCstation SLC. We have
reported the user time from these experiments.

5.3 Results and Discussion

Next, the results of the experimental measurements are described using the following
five tables:

(1) A comparison of the number of transformations applied for the GTE and GTE(opt)
versions of the programs is presented in Table 5.2.

(ii) A comparison of the number of new statements created for the GTE and GTE(opt)
versions of the programs is presented in Table 5.3.

(iii) Concentrating on the GTE(opt) version of the benchmarks, the distribution of
the different types of transformations applied is presented in Table 5.4.

(iv) Concentrating on the GTE(opt) version of the benchmarks, the distribution of
the different types of new statements is presented in Table 5.5.

(v) A comparison of the ezecution times (times collected as described in the previous
section) for the GTE and GTE(opt) versions of the program is presented in
Table 5.6.

!GTE stands for goto-elimination
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5.3.1 Comparing transformations for GTE and GTE(opt)

In this subsection we evaluate cur structurer depending on the number of transfor-
mations applied. Table 5.2 illustrates these results for our set of benchmarks. First
note that, whereas for the GTE(opt) version around 2 or 3 transformations per goto
eliminated are applied, for the GTE around 2 to 4 transformations are applied. The
number of transformations that occur when we apriy the GTE and the GTE(opt)
versions varies for five of the benchmarks (lex.yy, compress, FSM, indent and
par). These benchmarks are the ones that apply the last of the optimizations re-
ferred to in Section 2.3 and illustrated in Figure 2.19. In this cace there is more than
one goto associated with a label inside the same 1f,switch or loop statement. The
first of these gotos is eliminated using the regular transformations. For the rest of
the gotos, the remaining transformations are the same, once the common 1f, swatch
or loop statement is exited. Thus, we avoid duplicating the same code. Indent is
a good example to illustrate the benefii obtained from this optimization, where the

number of transformations is reduced by 33% by using the GTE(opt) instead of the
GTE.

GTE GTE(opt)
name of #of | # transf./ || # of | # transf./
benchmark || transf. jtgoto transf. #goto
cq 1 1 1 1
nrcode2 5 2.5 ) 2.5
lex.yy 16 4 12 3
frac 7 1.2 7 1.2
tomcatv 14 2 14 2
comipress 27 3 23 2.5
FSM 23 1.9 19 1.6
asuite 34 1.5 34 1.5
indent 108 3.9 74 2.6
whetstone 63 2 63 2
par 189 3.2 160 2.7

Table 5.2: Transformations for the GTE and the GTE(opt)

5.3.2 Comparing new statements for GTE and GTE(opt)

In this subsection, we evaluate our structurer depending on the number of new state-
ments created. Table 5.3 illustrates these results for our set of benchmarks. Let us
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first discuss a special case, the case of lex.yy. Note the remarkable difference be-
tween the number of new statements per goto for lex.yy as compared to the other
benchmarks for both the GTE and the GTE(opt) versions. The reason for this is
that this benchmark contains 4 break statements inside a for statement that require
the transformation to avoid their incorrect capture by a new do-while statement
(this result is illustrated next, in Table 5.4). Thus, for this reason, 6 new statements
are created, which relative to the number of gotos in the benchmarks (4) represents
a significant increase. Next, consider the rest of the benchmarks. There is an im-
portant difference between the number of statements created by the GTE and the
GTE(opt). For the GTE(opt) version between 2 to 4 statements are created whereas,
for the GTE between 2 to 7 are created. The difference is due mostly to the num-
ber of new conditional 1f and do-while statements. The plain application of the
goto-elimination method (i.e. without applying the simple optimizations described in
Section 2.3) usually produces many 1f statements with null bodies.

GTE GTE(opt)
name of # of | # new stmt/ # of # new stmt/
benchmark || new stmt #gotos new stmt #gotos
cq 2 2 2 2
nrcode2 8 4 5 2.5
lex.yy 30 7.5 16 4
frac 12 2 11 1.8
tomcatv 28 4 20 2.9
compress 43 4.8 30 3.3
FSM 50 4.2 33 2.8
asuite 78 35 68 3.1
indent 187 6.7 95 3.4
whetstone 107 3.5 62 2
par 262 4.4 164 2.8

Table 5.3: New statements for the GTE and the GTE(opt)

Since the GTE(opt) is clearly more efficient with respect to the number of trans-
formations and the number of new statements created, we shall now concentrate
on studying these two aspects in more detail for just the GTE(opt) version of the
programs.




5.3.3 Distribution of transformations for GTE (opt)

Table 5.4 presents the distribution of the transformations performed for the GTE
(opt).

The transformations can be classified as follows:

(1) goto-elimination transformations that includes the transformations when the
goto and label are in the same compound statement (i.e. siblings), where
the goto occurs either before or after the label;

(i1) goto-movement transformations that includes the outward-movement transfor-
mations (moving gotos out from control constructs), the inward-movement
transformation (moving gotos into control constructs) and the goto-lifting trans-
formations (performed before the inward-movement transformation, in order to
move a goto that occurs after the label before the label);

(iii) the transformations that avoid the incorrect capture by a new do-while state-

ment of a break or a continue statement enclosed in a loop or a switch state-
ment.

Let us first consider the goto-elimination transformations. We observe that for
each goto a goto-elimination is performed, except when the optimizations for the
cases when more than one goto is associated with a label inside the same 1f, switch
or loop is applied. We observe that forward branches occur six times more often than
backward branches.

Now, let us consider the goto-movement transformations. Looking at the table, we
observe that outward-movement transformations are applied almost five times more
frequently than the inward-movement transformations. Indent and lex.yy are the
ones which have the highest ratio of outward-movement transformations to number
of gotos. In Indent there is a big switch statement where gotos are used to branch
from different case statements, to a label in another case (all cases belong to the
same switch). Lex.yy presents three overlapping goto-label pairs and with the gotos
nested inside three levels of 1fs.

A study of all the benchmarks suggests that inward-movement transformations
are rarely used; i.e., gotos are rarely use to jump into a control construct. Most of
the inward-movement transformations performed are caused by labels that are in the
scope of new statements introduced by a previous transformation of a goto previously
eliminated. The number of goto-lifting transformations is insignificant.
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Benchmarks such as frac where the number of goto-movement transformations
per goto is very low are cases where the majority of the goto-label pairs are siblings
that seldom overlap with other goto-label pairs and where almost all the labels are-
associated with a single goto.

The third group of transformations, the ones performed to avoid an incorrect
capture of a break or a continue statement, as illustrated by the table, are performed
an insignificant number of times. As we said in Section 2.1.4, these situations happen
on rare occasions, but it is a subtle point that must be taken into account.

Finally, we can note that all these results are consistent with a study done by
Ballance and Maccabe [BM92], which indicates that only 2.9% of 119,000 functions
examined use gotos. Of those gotos, 68% can be characterized as simple gotos: one
target label per function, with one or more associated gotos, where the goto and
label are in the same compound statement or the goto is used to exit from a control
structure.

Transformations for GTE( opt )

name of #of goto-elimination goto-movement capture
benchmarks || gotos || goto-first | label-first [| Outw. | Inw. | Lift. || break-cont.
cq 1 1 0 0 0 0 0
nrcode2 2 1 | 3 0 0 0
lex.yy 4 1 1 10 0 0 4
frac 6 5 1 0 1 0 0
tomcatv 7 6 1 i) 2 0 0
compress 9 3 4 13 3 0 0
FSM 12 8 2 5 4 0 0
asuite 22 16 6 8 4 0 0
indent 28 10 1 56 5 2 0
whetstone 31 30 1 29 3 0 0
par 59 41 2 94 23 0 0
JTTOTAL: [ 181 | 122 | 20 J 215 ] 45 ] 2 ] 4 |

Table 5.4: Detail of the transformations for GTE(opt)

5.3.4 Distribution of new statements for GTE(opt)

Table 5.5 illustrates the different types of new statements created for the GTE(opt).
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If and do-while statements are the most expensive of all the added statements.
Also, their introduction might increase the number of transformations for the elimi-
nation of subsequent gotos that overlap with the one that is being ehminated. From
Table 5.5 we observe that usually 1, and at most 2 conditional 1f or do-whaile state-
ments per goto are created. The worst cases occur, as expected, for the benchmarks
included in the group of compler-goto usage benchmarks. However, note that for
whetstone the number of 1fs and do-whiles created is only roughly half the number
of gotos contained. The reason is that this benchmark, translated from FORTRAN
with £2c, has the same pattern repeated 13 times in the program. Figure 5.1 illus-
trates this pattern. For one of the gotos (goto L2) the initialization, setting and
reinitialization of the goto variables are the only new statements required for the
GTE(opt). No conditional 1fs need be added. Thus, the GTE(opt) substantially
reduces the total number of 1fs created for this benchmark, resulting in a very low
ratio of if and do-while statements per goto.

int goto_L2=0;
int goto_L1=0;

-----

it C cond ) if ( cond )
goto L1; goto_L1 = 1;
et H else
‘ goto_L2 = 1;
L. goto L2; :=>' if ( ¢ goto L1 )
P, {
" e goto_L2=0;
}
goto_L1=0;

Figure 5.1: Repested pattern in whetstone

We now cons.der the new basic statements created. They include (i) the initial-
ization, reinitial’ ation and setting with the goto condition of the goto variable; (ii)
the initialization and setting of the temporary variables used by the method; and (iii)
the break statements used to exit loops and switch statements. Since the gotos and

label statements are eliminated, this number is subtracted from the total nur:ber of
new statements.

Note that the new statements created by the structurer should be consistent with
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the SIMPLE grammar. When performing an inward-movement transformation into
a while or if statement, the condition of these statements is modified into a com-
pound condition, as explained in Chapter 3. In this case, to adhere to the SIMPLE
format, the compound expression should be simplified by transforming it into an
1f-then-else statement. Figure 5.2 illustrates this case for the 1f statement. Three
new statements should be created, and a temporary variable defined to store the
condition. The same applies to the while, but these stutements should be included
at the end of the while body as well, to evaluate the condition once more. ln order
to distinguish the number of statements created strictly by the structurer method,
from the ones created to be consistent with SIMPLE, we present these results in two
different columns.

Finally, let us consider the number of new variables created. These include the
goto variables and the following temporary variables: (i) the ones created to adhere
to the STMPLE format; (ii) the ones created to save the switch condition; and (iii)
the ones created to avoid an incorrect capture of a break or continue. One single
variable is created for each label, to store the goto condition, regardless of the number
of gotos associated with a label. Thus, as expected, the number of new variables per
goto decreases when the number of gotos associated with a label is high. Two
good example benchmarks to illustrate this fact are par and indent which have the
highest ratio of gotos per label. They have the lowest ratio (less than one half) of
new variables per goto.

int temp_1;

. tgmp_i = goto_Li;
if Egoto_Ll || expr ) =~ if ( 'temp_1)

{ temp_1i=(expr!=0);}
if ( temp.1)
{

Figure 5.2: Transforming the new compound condition to the SIMPLE format

5.3.5 Comparing execuiion times for SIMPLE, GTE and
GTE(opt)

Finally, let us consider the effect of structuring on execution time. Figure 5.6 contains
‘ the execution times for the three different versions of the programs (SIMPLE, GTE
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name of # of || New Statements for GTE( opt ) || New Variables
benchmark || gotos || if/do-while | basic | SIMPLE || for GTE( opt )
cq 1 1 1 0 1
nrcode2 2 2 3 0 2
lex.yy 4 5 11 0 4

frac 6 6 5 0 5
tomcatv 7 6 6 8 8
cumpress 9 15 15 0 6

FSM 12 15 10 8 8
asuite 22 24 28 16 25
indent 28 44 40 11 12
whetstone 31 18 32 12 34

par 59 101 35 28 18

Table 5.5: Detail of the new statements and variables for GTE(opt)

and GTE(opt)).

As expected, structuring programs with very few goto statements has very little
impact on execution time. This is true, for example, for nrcode2 and cq with ouly
two and one goto respectively. This is an important observation since many programs
have only a few goto statements, and our method allows us to handle them with a
structure-based compiler at low cost.

On the other hand, the FSM benchmark which is an irreducible loop, 1s the other
extreme. This has many overlapping goto-label pairs, and the ratio of gotos to total
of statements is very high ( if we consider only the function that implements the finite
state machine, which contains all the gotos, and where the program spends most of
its time, the ratio of gotos to the number of statements is one to two). Thus, we see
that there is a significant performance impact with even the optimized GTE version
executing significantly slower. In the next section we show some further experiments,
where we observe that the order of goto-elimination cousiderably influences in the
run time for this example.

For the other benchmarks, the difference registered in the execution times is not
considerable. Compress and frac are the ones that follow FSM, considering differences
in execution time. The first one has complex goto-usages with almost all the gotos
concentrated in the same function. The second one contains simple goto-usages but
the program is a single small function, with a high ratio of gotos per lines of source
code.
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The power of the optimizations is demonstrated by benchmarks such as indent
with a significant difference between GTE and GTE(opt) versions of the program.

We can summarize by stating that our results show that applying a small number
of simple transformations €liminates all goto statements, and on most benchmarks the
effect on execution speed is minimal. Thus, we can exploit structured representations
for designing compilers while paying only a minimal penalty due to restructuring.

name of time for | time for | time for | GTE(opt)/
benchmark || SIMPLE | GTE | GTE(opt) | SIMPLE
cq 004 0.04 0.04 100
nrcode? 1075 10.78 10.75 100
lex yy 1.47 1.51 152 1.03
frac 0.51 0.54 0.54 1.06
tomcatv 78 7.99 7.97 102
FSM 7.46 9.02 3.00 1.20
compress 1.33 1.55 1.51 114
asuite 11 41 11 69 11.68 102
indent 3.78 4.88 3.85 1.02
whetstone 46.49 48.2 47 96 1.03
par 2.09 2.16 2.14 1.02

Table 5.6: Execution times for SIMPLE, GTE and GTE(opt)

5.4 Studying different orderings of goto-elimination

In some programs with complex goto-usages, and where the goto density is very
high, the order in which gotos are eliminated can cause a significant difZerence in the
number of new 1f and do-while statements introduced, and hence cause a significant
change in the running time of the structured program.

FSM is a good example to illustrate this fact. Its principal function which imple-
ments the finite state machine, has 24 lines of code, and 12 goto-label pairs. These
goto-label pairs are all siblings and many of them overlap.

In this section, the results of the experiments performed with three different goto-
elimination orderings for FSM using the GTE(opt) are presented.

Figure 5.3 illustrates the FSM source code aud the intervals created by the goto-
label pairs. To distinguish among the different goto statements associated with a
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single label, subscripts are used. Consider the interval graph for these intervals , as
illustrated in Figure 5.4. From the interval graph, the maximum independent set can
be calculated [Gav72]. A maximum independent set is a subset of the set of vertices
of the graph, of maximum cardinality, such that no edge is adjacent to two vertices
in this subset. This maximum independent set represents, in our case, the maximum
set of goto-label pairs that do not overlap® with each other. If we eliminate the
gotos corresponding to these intervals first, for these gotos, the number of transfor-
mations applied and new statement created are minimal. All these goto-label pairs
are siblings, thus only goto-elimination transformations would be applied, and none
of the transformations for these gotos is affected by a new statement introduced by
a previous goto-elimination. Hence the possibility of reducing the number of new
if and do-while statements in the structured program is high comparing to other
possible orderings.

The structuring was tested by eliminating the gotos using the following orderings:

(1) the regular ordering of goto-elimination (reverse order of how they appear in the
program)

(ii) the inverse to the regular ordering of goto-elimination (same order in which they
appear in the program)

(iii) eliminating first the gotos corresponding to the maximum independent set of
the interval graph, and eliminating the rest of the gotos in the same order as
they appear in the program.

elimination Transformations New stint/var Run
ordering goto-elim. | out-mov. | inw-mov. | goto-lif. || if/do-while | var || times
regular 10 5 4 0 17 8 9.00
inverse 12 40 3 1 26 9 12.4
MIS-first 10 13 2 0 17 7 9.20

Table 5.7: Comparing different goto-elimination orderings for FSM

The results are presented in Table 5.7. First, we observe a remarkable difference
between the results of the inverse-goto-elimination ordering and the other two. With

2We do not consider as overlapping the case where a goto-label pair is completely contained in
another.
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start:
x = tgete{in)
if ( x=='3") goto a,
if (x=="0") goto by
goto faily
a:
x = fgetc{in)
it ( X--'b') goto bz
if (x=='c") goto ¢4
goto fail,
b:
x = fgetc(in)
if ( x=="a") goto ap
it ( x=='c’) goto co
goto failg
c:
x = fgetc(in)
it ( x=='d") goto stant
if { x=='e") goto accept
goto faily

fail:

return "FAIL”
accept:

return "ACCEPT™

-« S —

' fail2

Figure 5.3: FSM and its goto-label intervals
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MIS = { ay,bp ap, Cp start, accept, failg }

¢

Figure 5.4: Interval graph and its Maximum Independent Set

this ordering 53% more if or do-while statements are created. Thus, the difference
in execution time, as expected, is also significant.

For the other two versions, the results are similar. The number of transforma-
tions for the regular version is lower, however the number of new 1f and do-while
statements is the same. For the regular version, more inward-movement transforma-
tions are performed, and then one more temporary variable is created. The difference
between both versions in execution time is negligible.

We observe that the order of goto-elimination for the regular version happens to
be very good. It eliminates almost all the gotos corresponding to the non overlapping
goto-label pairs first, together with the gotos associated with the f£ail label. In this
particular case, this ordering is a good choice. When the goto associated with the
start label is eliminated, a do-while statement is introduced, and this captures
three of the goto fail statements to be eliminated after. The fail label is the
next statement after the new do~while. Thus, only a conditional if with the break
statement is added to eliminate each of these goto statements associated with the
fail label.

We performed the same experiment with a simpler finite state machine (with one
state less) and the results of the maximum independent set ordering were much better
compared to the results of the regular goto-elimination ordering.

It is difficult to state a general best goto-elimination ordering. It depends very
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much on the specific type of goto-usages in the program under consideration.

Regarding the FSM benchmark, eliminating the gotos in the inverse order in which
they appear in the program seems a good choice. But that is not the case for other
benchmarks. For example, for asuite, the pattern illustrated in Figure 5.5 is repeated
several {imes in the program. In this case there are two goto-label pairs that are
siblings. If the first goto in the program is eliminated first, an outward-movement
transformation is required later. Whereas if the second goto is eliminated first, an
inward-movement transformation is required later. Considering the number of 1f
statements created, the inward-movement transformation is more expensive than the
outward-movement transformation. The new compound expression for the if, created
by the inward-movement transformation, should be simplified and therefore one extra
conditional 1f is created. Thus in this case, to eliminate the gotos in the regular order
is not the best choice.

However, it is difficult to calculate in advance the number and type of transforma-
tion to be applied, because after eliminating one goto the situation for the remaining
gotos may change.

We conclude that it is hard to determine, in general, the best goto-elimination
ordering. We believe it is an interesting problem to study.

{ {
goto_Li=expri; goto_Li=expri;
it (!'goto_L1) if ('goto_L1)
n {.. {...
if (expri) goto Li; }goto_L2=1; }goto-L2=1;
éc.)t.;o L2: if (igoto.L2) if (goto_L1l|!'goto_L2)
) ! { {
i; goto_L1=0; goto_L1=0;
} } }
goto_L2=0; L2: goto_L2=0;
y y
(a) repeated pattern (b) eliminate goto L1 first (c) eliminate goto L2 first

Figure 5.5: Different orderings of goto-elimination for asuite

67




Chapter 6

Related Work

One of the first approaches to structuring was given by Bohm and Jacopini [BJ66].
Their structuring method was done in the context of normalizing flowgraphs (where
the flowgraph represented mappings of a set onto itself). This result is mostly of
historical and theoretical interest and does not give a complete algorithm, but rather
presents a set of pattern matching rules and transformations.

There have been several approaches to structuring progrem flowgraphs. Peterson
et. al. present a proof that every flowgraph can be transformed into an equivalent
well-formed flowchart(loops and conditionals are properly nested and can be entered
only at the beginning) [PKT73]. They present a graph algorithm to do such a trans-
formation using a technique of node-splitting and they prove that the transformation
is correct. William and Osher also use node-splitting, but they present the problem
as recognizing five basic unstructured sub-graphs, and show how to replace these
sub-graphs with equivalent structured forms [Wil7T7, WO78]. Ashcroft and Manna
tackled the problem of structuring by presenting two algorithms for converting pro-
gram schemas into while schemas. Rather than using node-splitting they use extra
logical variables to achieve these transformations [EM75).

All of the pievious methods were intended to structure flowcharts. However,
there have also been approaches suggested that are used tc ctructure progiams in
order to expose the natural structure of the program, leaving some gotos unstruc-
tured. The first such method was given by Baker as a method for structuring Fortran
programs [Bak77] in corder to make them more understandable. Since her goal was
to obtain understandable Fortran programs, she only structures in situations where
there is a clear possibility of the use of a structured construct and leaves some gotos
in the program. This is of historical interest, but since she leaves some gotos in the
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program., her methed is not applicable to the complete structuring of programs with
a goal like ours. More recently, Cifuentes has presented an algorithm for program
structuring in the context of decompilation [Cif93]. This work is similar in spirit to
Baker’s problem in that she only structures the parts of the program that correspond
naturally to structured control constructs.

Mueller et. al. present a compiler back-end optimization method that attempts to
eliminate unconditional branches, whether they originate from gotos or not [MW92).
The method eliminates almost all the unconditional branches by performing code du-
plication. It replaces each unconditional jump with the shortest possible sequence
of instructions, to minimize growth in code size. 1t i. implemented on a RTL in-
termediate representation in the early stages of the back-end phase, so that later
optimizations can benefit of the simplified control flow. The results show the number
of instructions executed is decreased, and also the total cache work is reduced (except
for smaall caches), despite the increases in the code.

More rzlevant to our work are the structuring methods proposed by Allen et. al.
for vectorizing compilers [AKPW83], and the work by Ammarguellat for parallelizing
compilers {Amm92].

The first method was develop=d at Rice University [AKPW83] for a translator
that converts Fortran sequential programs intc equivalent Fortran vector programs.
In vectorizing compilers, the dependence analysis performed is based on data depen-
dence. Statement S1 is dependant on statement S2 if S2 uses the value that S1 has
created. However, in the presence of complex control flow, data dependence is not suf-
ficient to transform programs because of the introduction of control dependences. S1
is control dependent on S2, when the outcome of a test in S1 determines whether S2
will be executed. Allen et. al. present the IF-conversion method that converts con-
trol dependences into data dependences by introducing logical variables to control the
execution of the statements and eliminating goto statements. Figure 6.1 illustrates
an example where a control dependence is transformed into a data dependence.

{
{ e .
. s for (i=1;i<100;i++) {
t:: él;ll:;;::go)' i+4) - { bri= a[il<=0; = brili:nl= al1:0]<=0;
al[i]=b[i]+10; if(br1)alil=b[il+10; it (vril1:n])ali:n]l=b[1:n]+10;
! } }
}
}

Figure 6.1: Loop vectorization transformation via control dependence elimination
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Although the goal of this work is not the same as ours, this method can also be
used for structuring, and in fact has similar characteristics. Their method proceeds
in three steps. First they categorize the branches into three types: crit branches
(exits from a loop) , forward branches and backward branches. Then, according to
this branch classification, [F-conversion uses two different transformations to elimi-
nate the branches in the programs: branch relocation and branch removal. Branch
relocation moves branches out of loops until the branch and its label are nested in the
same number of do-loops. This is accomplished by introducing guard expressions to
enforce conditional execution of statements. Afterwards, branch removal takes place,
removing all the forward branches. They do not eliminate backward branches.

Figures 6.2, 6.3 and 6.4 present three example programs in which /F-conversion
and the goto-elimination methods are applied.

The first example program, Figure 6.2, illustrates an irreducible loop that presents
a forward branch (goto L2), and a backward branch (goto L1). The [F-conversion
method introduces two logical variables (br1l and br2) to eliminate the forward
branch. The branch flag, bri, is defined to be true if and only if the condition of
the goto evaluates to true. This logical variable is used as a guard to all statements
between the goto and the label, avoiding their execution when the guard is true. As
the label associated with the goto is inside an iterative region (determined by L1 and
goto L1), the statements in this region are also executed when this backward jump
is taken. An ex a logical variable, a branch back flag (bb1) is needed to denote this
case. The backward jump goto L1 is not eliminated and the cycle of control-flow is
not replaced by a structured loop. An extra transformation, not presented in the pa-
per, should be applied to replace this backward branch by a whale loop. Sometimes,
as in the case of this example, a loop-carried dependence (on the variables bbl and
goto_L2) might be introduced. If we intend to perform loop parallelization, this can
be a negative factor, as the dependence may inhibit parallehzation of the loop.

The second example program, Figure 6.3, presents two forward branches to be
eliminated. Two logical variables br1 and br2 are created. For each of the statements
between the goto and the matching label a guard 1s generated as disjoin or conjoin
of these booleans variables, according to the conditions under which each statement
should be executed. For this example we present two goto-elunination solutions: the
first one eliminates the gotos in the regular order, while the second one in the or-
der reverse to 1t. The similarities and differences between the second solution and
the IF-conversion solution can be clearly observed. For IF-conversion a separate
conditional is introduced to guard each of the first three staternents. While the goto-
elimination algorithm uses a single conditional to guard these three statements as a
block. Further, the statements for which IF-conversion introduces compound condi-
tionals, goto-elimination uses nested 1fs. However, for the last conditional created by
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IF-conversion, the stimplification of the compound conditional, would yield the same
result as the goto-elimination method.

The third example program, Figure 6.4, illustrates an exit branch. In this case,
all the statements in the loop, i.e. the statements both before and after the branch are
affected by the guard. Thus, the do-loop, once entered, will run its full course, even
when the exit flag is false and no real computation is being done. The authors expect
that the speedup gained from vectorization will more than offset this inefliciency.

{ {
bri=x; goto L2=x;
bb1=0; do{‘
{ Li: if (tbr1 || (brigebhi)) if (!goto_L2)
if (x) goto L2; stmt_1; {
Li: stmt_1; L2: stmt_2; goto_L1=0;
L2: stmt_2; if (y) stmt_1;
if (y)goto Li; { }
} bbi=1; goto_L2=0;
goto Li; stmt_2;
} goto_Lil=y;
} } while(goto_L1)
(a) irreducible loop (b) IF-conversion (c) goto-elimination

Figure 6.2: Irreducible loop example

The IF-conversion method is similar tc ours in that both methods consist of
step-by-step transformations applied to structured intermediate representations of
the program, where each transformation produces a more structured code. The ideas
of branch relocation and branch removal are somewhat similar to our concepts of goto-
movement and goto-elimination. We both use logical variables to guard the execution
of statements. Differences between the methods include the fact that we structure C
programs (and thus treating break, continue, and switch statements) rather than
just Fortran programs. Furthermore, we are interested in removing all gotos, not just
those associated with forward branches. Ancther difference is the way we introduce
guards into the code. Since they were interested in vectorization they intioduced
a new conditional for each action statement whereas in our method it is preferable
to introduce one conditional for each block of statements. A potential advantage of
our approach 1s that we only have to make one pass through the program collecting
information about gotos and labels, and then we can directly modify the interme-
diate representation of the program. Their approach requires several passes through
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for ( i=1; i<100 ;i++ )
{
if (al[i]>10) goto Li;
x=0;
alil=alil+10;
if (b[i]>10) goto L2;
blil=x+10;
Li:alil=b[il+a[il;
L2:b[i]=al[i]+5;
}

(a) example program

for ( i=1; i<100 ; i++)
{
bri=(al[i]>10);
if (‘bri1)
x=0;
if ('bri)
alil=a[il+10;
if ('bri1)
br2=b[i]>10;
if ((tbr1)ge(tbr2))
b[i]=x+10;
if (br1}|('bri&&!'br2))
alil=b[i]}+a[il;
blil=a[i]+5;

(b) IF-conversion

for ( i=1; i<100; i++ )
{

goto_L1=a[i]>10;

if (!goto.L1)

{x=0;
ali)=a[il+10;
goto._L2=b[i]>10;

}

if(tgoto_L1|[!goto_L2)
{
if(tgoto_L1)
b[il=x+10;
goto_L1=0;
ali]=b[il+a[i];
}
goto_L2=0;
blil=a[i]+s;
}

goto-elimination
(c) eliminate goto L1 first

for ( i=1; i<100; i++ )
{
goto_Li=a[i]l>10;
if (!goto.Ll1)
{x=0;
a[il=a[i]l+10;
goto_L2=b[i]>10;
if ('gotol?2)
{
b[i]=x+10;
}
}
if (igoto.L2)
{ goto_L1=0;
ali]=b[il+alil;
}
goto_L2=0;
blil=a[il+s;

goto-elimination
(d) eliminate goto L2 first

Figure 6.3: Forward branches example
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{
{ for ( i=1;i<100;i++)
c exi=1; {
for (i=1;i<100;i++) fzr (i=1;3<100;144) Z:ZZIl,i:x[i];
¢ . if (ex1) stmt_1; if (goto_L1) break;
?:mﬁ]’ L1 if (ex1) exi=!x[i]; stmt_2;
it xlil goto L1; if (ex1) stmt_ 2; }
stmt.2; X if (!'goto_L1)
ztmt 3; bri= texl {
Lizstmt-tl' if (bri) stmt_3;
} - stmt_3; }
Li:stmt_4; goto_L1=0;
} stmt_4;
(a) exit branches (b) IF-conversion (c) goto-elimination

Figure 6.4: Exit branches example

the program for the different stages of branch categorization, branch relocation and
branch removal.

The method presented by Ammarguellat [Amm92], which she calls control-flow
normahzation, 1s the closest work in terms of the goals of structuring. That is, we
both wish to fully structure programs in order to facilitate program analyses, program
transformations and automatic parallelization. However, the intermediate representa-
tions that we structure are quite different. We structure a high-level representation of
C programs that directly supports break and continue, while Ammarguellat struc-
tures a lisp-like intermediate representation and she requires that all looos have a
single exit.

Ammarguellat’s approach to the problem is very different from ours. She defines
a continuaticn-based semantic language and transforms the syntactic constructs of
the prograra into algebraic constructs. She converts the program into a system of
simultaneous equations whose unknowns represent the continuations associated with
the programs labels. A source continuation will contain the solution of the system
after its resolution. By transformations applied to the system of equations: precalcu-
lation, if distribution, factorization, derecursivation and substitution and elimination,
the system is solved. The quality of the normalized form of the program in terms
of code duplication, code size and running time of resolution process depends on the
order in which unknowns are eliminated. To study this order she has to consider the
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control-flow of the program, eliminate the back and cross edges of the graph and sort
the resulting graph in a topological order.

Figure 6.5 illustrates an example of an irreducible loop along with the result given
by the control-flow normalization and our solution. Figure 6.6 illustrates another
example program, and the results of applying the goto-elimination, the unoptimized
and the optimized control-flow normalization. The comparison of these methods
for these examples shows that the results are similar in that we both create new
logical variables to store the conditions and to guard the execution of the statements
and we both create cycles of control flow when there is an implicit cycle. However,
Ammarguellat replicates code in the case of irreducible loops and when she does not
study the best order of the unknowns.

In the cases of backward branches that do not imply cycles, we introduce a loop
whereas Ammarguellat does not. Figure 6.7 illustrates an example. However, this
loop will not execute the enclosed statements more times than in the original program,
and it does not imply an increase in the execution time of the program.

t {
pred_50=x; e
if ( pred_50 ) gzto_LQ—x,
{ { s;:;§2= , { if (lgoto_L2)
if (x) goto L2; } proc.nesys { goto_L1=0;
Li: stmt_1; . stmt_1;
= [}
L2¢ stmt.2; :n.fd‘(> 'pred_50 || pred_52 ) }
if (y) goto L1; { stot_1: goto_L2=0;
} stmt_2: stmt_2;
- goto_Li=y;
red_52=y; .
} zhile ( ;y)red 52 ) } while(goto_L1)
- }
(a) an irreducible loop (b) control flow normalization (¢) goto-elimination

Figure 6.5: Irreducible loop example

Another distinction is that we do not require single-exit loops because our compiler
analysis framework easily handles continue and break statements. However, we can
easily modify our approach to force single-exit loops if this is required. It appears to
us that our method is easier to explain and more straight-forward to implement as
we only need a set of simple transformations, and we do not require the collection or
solution of equations.
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h(i,j,k)

(c.1) control-flow normalization

{

h(i,j,k) i=1;

{ do{
i=1; goto_L2=0;

L2:if (i>10) goto L3; goto_L3=(i>10);
j=1; if (goto_L3) break;
k=1; =1
i=j+k; k=1;
goto L2; i=j+k;

L3:return(i); goto_L2=1;

} } while{goto_L2);
goto_L3=0;
return(i);

(a) example program (b) goto-elimination
h(i,j,k)

{

i=1; h(i,j,k)

pred2=(i>10); {

if (!pred2) i=1;

{j=1; while(!predi)
k=1; { pred1=(i>10);
while(!pred1) if (Ypred1)

{i=j+k; {j=1;
predi=(i>10); k=1;
if (!predl) i=j+k;
{ =t ¥
k=1; }
} return(i);
} }
}
return(i);

(¢.2) optimized
control-flow normalization

Figure 6.6: Example program
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: |
goto_L2=x;
do{
{ if (!goto_L2)
{ pred_162=x; {goto_L1=0;
if (x) goto LZ; if (pred_162) stmt_1;
L1: stmt_1; { stmt_2; goto_L3=1;
goto L3; pred_164=y; if (goto_L3) break;
L2: stmt_2; } }
if (y)goto L1; if (tpred_162{|pred_164) goto_L2=0;
L3: stmt_3; stmt_1; stmt _2;
} stmt_3; goto_L1=y;
} }while(goto_L1);
goto_L3=0
stmt_3;

(a) example program

(b) control-flow normalization

(c) goto-elimination

Figure 6.7: Transforming a program with no cycles
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Chapter 7

Conclusions

In this thesis we have presented a structured approach to eliminating all goto state-
ments in C programs. The goal of this transformation is to provide a structured and
compositional intermediate representation that is amenable to structured approaches
to analysis, optimization and parallelization.

The method is straight-forward and can be easily implemented directly on an
abstract tree representation of C programs. The approach is built upon a set of goto-
limination and gote-movement transformations. Each goto statement is removed
by using the goto-movement transformations to move the goto to the same state-
ment sequence and then applying the appropriate goto-eliminetion transformation.
We present some optimizations to the method that avoid creating unnecessary new
statements.

We completely implemented our method on the SIMPLE intermediate represen-
tation of the McCAT para'lelizing/optimizing compiler, and we have presented ex-
perimental measurements for 11 benchmark programs using this implernentation. It
appears that most C programs use goto statements relatively sparsely and on such
programs the structured prograins have similar execution speeds as the original pro-
grams. Thus, the structuring does not have a performance penalty, while at the same
time allows us to use structured analyses and transformations in the latter phases of
the compiler. For programs that are very dense in goto statements there is some per-
formance penalty. Experiments performed with different goto elimination orderings
show a significant difference in the execution times of the resulting programs. It is
hard to determine a general best goto-elimination ordering. It would be an interesting
problem to study in the future.
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We feel that a major advantage of our approach is that the structuring method
itself is straight-forward to integrate into any C compiler using a structured intermedi-
ate representation. Furthermore, as shown by our experimental results, the approach
is very efficient, applying only a small number of simple transformations per goto
statement. Finally, it has been our experience that the presence of a structuring
phase that can always eliminate gotos allows us to develop more efficient and simpler
analyses and transformations in the remainder of the McCAT compiler.
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Appendix A

Finite State Machine example
program

This is the function that implements the Finite State Machine presented for our
experiments.

fsm()
{
int x;
start:
x = fgetc(an);
1f ( x==’a’) goto a;
if ( x=='b’) goto b;

x = fgetc(an);

if ( x=='b’) goto b;
if ( x==’c’) goto c;
goto fail;

x = fgetc(in);
if ( x==’a’) goto a;
if ( x==’c’) goto c;

goto fail;

x = fgetc(in);
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if (

1f (

goto
fail:
return
accept:
return

¥

x==’d’) goto start;
x==’e’) goto accept;
fail;

WFAIL";

"ACCEPT";
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Appendix B

Lex Specifications

These are the regular expressions given in the lex specification, used to generate the
output program lex.yy.c.

i

"4 ["\nl* ;

"Qunpublished{"[~@]* ;
"Qbook{"["0]* ;

"Q@booklet{"["Q]* ;
"@inbook{"["Q]* ;
"Qincollection{"["@]* ;
"Qmanual{"["0]* ;
"@phdthesis{"["@]* ;
"@string{"["Q]* ;
"@techreport{"[~Q]* ;
"Qmisc{"["Q]* ;

"Qarticle" printf ("}s***" ,yytext);
"Q@inproceedings" { printf("%sx**" yytext); }
(\n\t] ;

. printf(yytext);

wh
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