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Abstract 

The three essays of this thesis touch a variety of topics in financial econometrics. The 
first is an empirical investigation of aspects of transactions dynamics of currency futures. 
Based on the analysis of years of transactions data, the author describes the seasonal 
dynamic component of trade and price durations of futures and then analyses dynamics 
of durations using the stochastic conditional duration model (SCD). 

The second essay develops a model for the robust analysis of time series. Asymptotic 
properties of the parameter estimates of this model are established. The model is applied 
to the analysis of dynamics of conditional quantiles of the quadratic variation in currency 
exchange rates. Forecasting properties of the model are also evaluated. 

Finally, the third essay uses recent advances in the theory of extremal events to analyse 
the effects of institutional changes in financial markets on the extremal behaviour of major 
stock indices, as far as this behaviour is refiected in the evolution of Hill's estimator of 
the tail index. 

Résumé 

Cette thèse est composée de trois chapitres qui ont trait à divers sujets en économétrie 
des marchés financiers. Le premier chapitre consiste en une recherche empirique sur des 
aspects de la dynamique des transactions pour les contrats futurs de devises. En se 
basent sur dix ans de données de transaction, l'auteur décrit la composante dynamique 
saisonnière qui caractérise les durées entre les transactions consécutives et ainsi que celles 
des changements de prix des contrats futurs. Il analyse la dynamique des durées en 
utilisant le modéle de durée stochastique conditionnel 

Le deuxième chapitre développe un modèle pour l'analyse robuste des séries tem­
porelles. Des propriétés asymptotiques pour les estimateurs sont établies. Le modèle est 
appliqué dans l'analyse de la dynamique des quantiles de la variance ralisée des taux de 
change. La qualité des prévisions du modèle est également évaluée. 

Finalement, le troisième chapitre exploite des développements récents dans la théorie 
d'événements extrêmes afin d'analyser les effets de changements institutionnels dans les 
marchés financiers, sur le comportement extrême des principaux indices boursiers. Les 
statistiques basées sur l'estimateur de Hill de l'indice de queue sont utilisées pour déceler 
des changements dans ce comportement extrême. 
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Chapter 1 

Introduction 

Financial econometrics has only recently evolved into an independent discipline or sub­

field within econometrics. It is not surprising that the literature and the arsenal of 

tools offered by this new and developing discipline (as weIl as the set of its sometimes 

undecipherable acronyms) is burgeoning. The three essays of my thesis touch, directly 

or indirectly, several areas of financial econometrics; in the introduction 1 would like to 

position the topics of my research within the main directions of financial econometrics, 

and to show connections between the essays. 

1.1 The discipline of tinancial econometrics 

As a new discipline, financial econometrics finds its foundations in time series analy­

sis, time series econometrics, financial economics, business practice, and even stochastic 

physics. The majority of models and methods of financial econometrics, at least of the 

vintage of financial econometrics to which 1 have been exposed, deal with the analysis of 

financial time series or financial processes. The presence of time in the models of finan­

cial econometrics is not surprising: any problem in finance is ultimately about a return 

on investment, and the return is a fiow variable defined on a per unit of time basis. A 

dedication to practical and empirical topics is yet another prominent feature of research 
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in financial econometrics; it is a de facto standard for any publication in the field to 

present at least a small empirical example, even if the focus of the publication is mainly 

theoretical. 

When an econometrician studies financial markets, his object of interest is formally 

the conditional distribution of returns of a set of assets at some point in the future, PtH , 

given the information at time t, 8't (we denote this distribution F (PtH !8't)), or some 

particular properties of this conditional distribution. Until the beginning of the 1980s, 

econometrics of financial markets was essentially limited to estimating the conditional 

mean of the distribution F (PtH !8'd. This conditional mean is not, however, a very 

interesting object of research: un der the hypothesis of market efficiency (in its simplest 

form) this expectation has to be equal to zero, and the market efficiency hypothesis 

in its various forms has become since the 1970s a dominant methodological paradigm 

in economics and finance, especially in academic research. The interesting side of the 

dynamics of financial series - the properties of conditional variances-covariances and of 

higher moments - was awaiting to be discovered. 

Engle's (1982) article, which first introduced the Autoregressive Conditional het­

eroskedasticity (ARCH) model, may be considered among the first publications in finan­

cial econometrics1
. An enormous family of models describing the dynamics of condi­

tional variance - direct descendants of ARCH - followed soon after (GARCH, ARCH-M, 

EGARCH, IGARCH, FIGARCH, FIEGARCH and many others). Multivariate GARCH­

type models have been developed too. A number of models in which the dynamics of the 

second moment are driven by latent variables, such as stochastic volatility or switching 

state models, in the univariate or multivariate context, and usually much more demand­

ing computationally than their GARCH-type relatives, have also been developed in the 

1990s. 

The common property of the models mentioned above is that the observed time 

IThe Nobel Committee has recently recognised the importance of Engel's contribution to scientific 
progress, awarding him, together with Clive Granger, the 2003 Nobel Prize in Economies. 
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series (the logarithm of asset returns Pt, for example) are modelled as the product of a 

conditional scale variable (Jt and an innovation Et, where {Et} are often assumed to be 

i.i.d. normally distributed. A few papers have parted with the assumption of normality 

of re-scaled innovation (see, for example, Engle and Gonzalez-Rivera (1991), Drost and 

Klassen (1997) and Rafner and Rombouts (2003)), but the estimation of time-varying 

conditional higher moments in empirical applications is still in the very early stages of 

development. 

An important class of models in financial econometrics encompasses the models that 

assume the data generating process (DGP) to be a continuous-time diffusion process, 

probably with jumps. An attractive feature of these models is that some of them allow 

for an analytically tractable derivative pricing theory, unlike the discrete time models. 

Regrettably, many continuous time models used today in empirical research and by prac­

titioners do not fit the empirical data well. Newer models developed in recent years, 

including multi-factor stochastic volatility models with jumps and models based on non­

Gaussian Ornstein-Uhlenbeck processes (this latter class has been popularised by Ole 

E. Barndorff-Nielsen, Neil Shephard and their co-authors) show greatly improved em­

pirical performance. Feasible estimation of continuous time models also poses difficult 

econometric problems: the algorithms are often complex, computationally intensive, and 

sensitive to model misspecifications. Recent developments in using high-frequency data 

promise a significant improvement in our ability to estimate continuous time models; 

we shall return to the econometrics of high-frequency financial data below. These latest 

developments are very encouraging for the future of continuous-time models as a tool for 

empirical research and for solving applied problems of finance. 

Continuous-time and discrete-time models offer the researcher two different ways to 

look at the same phenomenon - financial time series. While these two approaches are 

sometimes presented in the literature as if they were mutually exclusive, they, in my opin­

ion, compliment one another. Seminal results in Drost and Nijman (1993) and in Drost 

and Werker (1996) pioneered the research towards bridging the gap between the contin-
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uous time and the discrete time approaches. A discrete time pro cess is viewed by the 

authors as a discretisation of an underlying diffusion; thus, a diffusion process generates 

a connected family of discrete time pro cesses sampled at different frequencies. A discrete 

time process can represent a sampling from any diffusion pro cess belonging to a certain 

class of diffusion processes; the pro cesses within this class may be not distinguishable 

based on a single discrete data series. 

Intuitively, a dis crete time framework is often more flexible and requires fewer prior 

assumptions about the data generating process. In empirical sciences like economics or 

finance any model is merely an approximation. It is legitimate to take into account 

specific research or practical objectives during the model selection process: one can use 

discrete time modelling in exploratory analysis of the data or in forecasting and rely on 

a continuous time model for pricing derivatives, or even use a collection of models, both 

discrete-time and continuous time, to describe an empirical object in greater detail and 

from different perspectives. 

To say that the availability of high-frequency financial data and the ability to pro­

cess such data have brought revolutionary changes into financial econometrics is not 

an overstatement. While twenty years ago daily or even weekly data had been some­

times termed high frequency in macroeconomics, in financial econometrics the term high­

frequency means intra-day data up to ultimately transaction data. Use of intra-day data 

contributes to the ability of the econometrician to estimate financial and econometric 

models because of the additional information brought by these data, compared to the 

information contained in only the daily series; as a bonus, algorithms based on intra-day 

information often happen to be simpler, both conceptually and computationally, than 

algorithms based on the daily measurements. 

As we have already pointed out, the majority of models of financial series are, in 

their essence, models of the conditional dynamics of the second moment. The estima­

tion of these models using high-frequency data is premised by the fact that the statistic 

called realised quadratic variation (RV) is, under certain conditions, a consistent and 
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asymptotically unbiased estimate of a quantity called quadratic variation (Q vp 3. Re­

alised quadratic variation computed using intra-day data can be used to estimate either 

continuous or discrete time models. 

Estimation methods based on RV assume that the data is sampled at regular intervals, 

thus do not take into account the information contained in the timing of market events. 

The fundamental result upon which the use of RV is based is that it converges to the 

QV as the sampling frequency increases. Financial data, however, cannot be sampled at 

an arbitrarily high frequency - the natural limit to how often it can be sampled is the 

transactions data. As the sampling frequency increases, so does the effect on the estimate 

of the microstructure noise (the market microstructure effects contributing to the noise 

include the presence of the bid-ask spread and bounee, different information content of 

trades due to block trading or the strategie trading, discreteness of the priee quotes and 

numerous others). If the microstructure noise is not modelled explicitly, there is usually 

the optimal sampling frequency of the intra-day data to be used to compute the RV, and 

this optimal frequency is lower than the highest availablé. In practiee, RV is always a 

noisy measure of QV, both due to the practical upper limit of the sampling frequency 

and the presence of the microstructure noise. It is important for the econometrician to be 

aware of this error and either to account for it in the model or to use a robust estimation 

technique. 

An inherent property of the transactions data is that it is not recorded at regular 

intervals, and moreover, the timing between transactions is endogenous to the process: 

henee, the timing is informative with respect to the market dynamics. Theoretically, the 

2 Andersen and Bollerslev (1998) were the first to introduce realised quadratic variation, quadratic 
variation and to describe their properties; they used the term realised volatility rather than realised 
quadratic variation, but the latter term is becoming more widely used. 

3The theory of quadratic variation will be introduced in detail in Chapter 3, which is why we keep 
the exposition here very concise. 

4Aït-Sahalia and Mykland (2003) show that in the presence of microstructure noise RV may converge 
to the variance of the noise instead of Q V. They offer also an algorithm to choose the sampling frequency 
optimal in the mean-square sense when the microstructure is not modelled as well as approaches to 
modelling the microstructure noise. The problem of optimal sampling in the presence of microstructure 
noise is also considered in Bandi and Russell (2003). 
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information contained in the timing of the transactions can be used for more accurate 

estimation ofthe market dynamics (for example, in the context of our previous discussion, 

for constructing more accurate estimates of QV). It is a difficult task, however, and there 

are yet very few studies which use transaction timing in modelling the dynamics of asset 
l 

prices; l would like to mention here Gerhard and Hautsch (2002b) as an example of the 

use of transaction timing to estimate the volatility dynamics. 

Investigation of the transactions data promises answers to many questions. Among 

them, for example: insights into the market microstructure and market interactions, and 

determinants of market liquidity and market performance under stress, with applications 

of the above to optimal market design. Transactions data is often described as a point 

process5
, and one of the possible ways to study point pro cesses is through the dynamics 

of durations - intervals between consecutive occurrences of events of interest. Since 

the seminal paper of Engle and Russell (1998), financial econometrics has offered many 

models of durations (intertrade durations and other other types of durations). While 

the majority of the existing models of financial point pro cesses are econometric models 

(i.e., they are not derived from our knowledge of market structure and operation), l 

believe that once researchers achieve a better understanding of the empirical properties 

of transaction data and develop the appropriate econometric tools, they will turn to the 

constructive design of transaction data models, i.e. to design based on knowledge of the 

structure of financial institutions and of the nature of interactions between the market 

participants. 

The final comment in this section will be about the econometrics of extremal events. 

Models like GAReH and numerous incarnations of stochastic volatility models imply 

a complete specification of the distribution of a financial variable of interest. Practice 

shows, however, that models that adequately describe the dynamics of the centre of the 

distribution of asset returns often fail to accommodate the dynamics of rare events, i.e., 

of the tails of the distribution. We find ourselves once again in a situation typical to 

5The definition of a point pro cess is given in Section 2.2. 
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empirical research, and specifically to research in economics and finance, where there is 

no "correct" model, and the model selection can depend, among other factors, on the 

application for which the model is intended. Financial econometrics has responded to 

the needs of market regulators and institutional risk managers to study and forecast the 

behaviour of tails of the returns of financial assets: the theory of extremal events in appli­

cations to financial data has become a rapidly developing part of financial econometrics. 

1.2 Contribution of this research 

The three essays of this thesis touch in greater or smaller degree virtually all of the 

topics mentioned in the introductory review. The essay Dynamics of Trade and Price 

Durations of Currency Futures is an empirical study of the dynamics of transactions 

data. The subject of existing empirical studies of transactions durations was stocks; the 

empirical contribution of this research is that it investigates the dynamics of currency 

futures: neither currencies nor derivative contracts have been investigated from that per­

spective. Futures contracts have more complex seasonal dynamics of transactions than 

stocks because the former have an additional dimension to their seasonal component -

time to expiration - and our study documents this complex seasonal behaviour. While 

existing studies of the dynamics of durations use data sets spanning a period of no more 

than several months, the data used in this research spans ten years. The large data set 

used allows us to estimate meaningfully the multi-dimensional seasonal component, and 

to study the evolution of the transaction dynamics over a period of ten years. Analysis of 

the data strongly suggests that transaction durations possesses long memory properties. 

In this essay, we introduce a new model capable of accounting for long memory in trans­

action durations, the Fractionally Integrated Stochastic Conditional Duration (FISCD) 

model, and suggest an estimation algorithm for it. 

The second essay of the thesis - Estimation of Conditional Quantites of Variance 
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Using Auxiliary Variance Information6 - is an exercise in robust techniques of time series 

analysis. The developed techniques are used to estimate, using high-frequency data, the 

dynamics of conditional quantiles of Q V in a stock index and in currency exchange rates. 

The asymptotic properties of the estimator of GARCH parameters based on infinite 

robust regression are derived here for the case of an arbitrary quantile. l conduct an anal­

ysis of the dynamics of currency exchange rates, including the analysis of the forecasting 

performance of our modelling framework, by quantile regression. 

This approach allows us to model dynamics of any conditional quantile of interest in 

the distribution of the second moment; therefore, it can be viewed as a non-parametric 

technique going beyond specifying the conditional dynamics of only the second moment. 

In the context of modelling the dynamics of Q V, our technique can be either an alternative 

or a complimentary tool to the continuous time modelling framework. The advantages 

of the former are its robustness to misspecifications, its ability to focus on a specific part 

of the conditional distribution which is important in risk management applications, and 

its sim pli city in implementation and computational frugality. In addition, our technique 

provides a flexible framework for including a variety of information auxiliary to the time 

series being modelled. Continuous time financial models, on the other hand, offer a 

transparent analytical treatment of option pricing and have a better predictive power 

provided that the model and the true DGP are close 7. 

The third essay of the thesis - Circuit Breakers and the Tail Index of Equity Re­

turns 8 - uses techniques based on Hill's estimator of the tail index to examine effects of 

institutional changes on the extremal behaviour of major stock indices. 

The important advantage of the Hill's estimator is its robustness with respect to a 

wide range of the specifications of the DGP. Sorne of the statistics used in our research 

rely, nevertheless, on the rather restrictive assumption that the series under investigation 

6This chapter is based on a joint article with John W. Galbraith and Vicky Zinde-Walsh. 
7It is not surprising that continuous time models have better predictive power theoretically: because 

they are narrowly parameterised, they bring more a priori information to the estimation, and they fare 
better in comparison with methods using less prior information, provided that this information is correct. 

8This chapter is based on Galbraith and Zernov (2004). 
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follows a GARCR process. To ensure robustness of our conclusions to model misspecifi­

cation, we use several alternative approaches to test our working hypotheses. 

In this essay, we study from a historie perspective how adoption of new market strate­

gies by investors, amendments to trading rules, and institutional changes by market reg­

ulators have been refiected in the evolution of the tail index of major stock indices (DJIA 

and S&P 500). This research brings us back in time to a very interesting topic which has 

been almost in oblivion in the academic literature in the recent past - the market crash of 

1987. New econometric techniques and available market data for the years after the crash 

allow us to find compelling evidence of a decrease in the tail index measure (increase in 

the frequency of extreme events) of major stock indices in the beginning of the 1980s 

- the period coinciding with the introduction of the synthetic portfolio insurance. We 

also find evidence that changes to the market structure introduced after the events of 

1987, circuit breakers in particular, may have been successful in returning the extremal 

behaviour of the index almost to levels that existed before the introduction of portfolio 

insurance programs. 

1.3 Contribution of the authors 

Chapter 3 of this thesis - Estimation of Conditional Quantiles of Variance Using Aux­

iliary Variance Information - is based on joint research with John Galbraith and Vicky 

Zinde-Walsh. The theoretical results of this chapter - the asymptotic distribution of the 

estimated parameters of the time series quantile regression - were developed by the three 

authors with equal participation. l have carried out most of the empirical analysis of the 

study. 

Chapter 4 - Circuit Breakers and the Tail Index of Equity Returns - is based on joint 

research with John Galbraith. The authors worked closely together on this project and 

made equal contribution to the results. 
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Chapter 2 

Dynamies of Trade and Priee 

Durations of Curreney Futures 

2.1 Introduction 

Recent technological progress has made easily available the computing facilities necessary 

to process high-frequency financial data, as companies providing financial services and 

research have eased their grip on high-frequency trading records. There has been an 

academic response to these new opportunities, including a number of publications that 

make use of high-frequency financial dataI. 

Trading data (bids and ask quotes, prices, trade volumes etc.) can be viewed as ob­

servable manifestations of the economic process that involves interaction of the market 

participants given the institutional structure and the flow of economic and financial in­

formation. These data are the empirical basis of modelling the economic process and its 

components. Financial models where asset prices are described by a stochastic process 

have become a de facto standard in the science of finance. Models featuring stochas-

IThe financial industry had been studying high-frequency data long before the recent surge of interest 
by the academics. The industry had the resources and the data. Results of this research were usually 
available only in-house; in addition, the objectives and methods of research in the industry are somewhat 
different from those of academic research. 
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tic volatility, jumps and other refinements reflect how we see the reaction of market 

participants to heterogeneous flow of economic information to which they are exposed. 

Prices in economics are realized only through transactions. Thus, if we consider a 

dynamic asset pricing model (continuous-time or discrete time, or mixed), priee variables 

of such a model are not usually directly observable, in contrast with the textbook wisdom, 

but manifest themselves through transactions. Whatever inference we des ire to make 

about the constituent parts of financial markets, it will be based on the transactions 

data, plus sorne exogenous data series. 

Fitting adynamie model to transactions data may serve two purposes: first, the dy­

namie model may give insights into the operation of financial markets, and second, it 

may be used as a black-box for forecasting purposes. The main subject of interest of 

this paper is the empirieal study of trading dynamics (the dynamics of trade and priee 

durations) of currency futures. We use ten years of transactions data on Japanese yen 

(JPY)/US dollar (USD) futures traded at the Chicago Mercantile Exchange (CME). Fol­

lowing the approach adopted by other researchers we represent the durations process as 

consisting of two components: the non-stochastic seasonal component and the stochastic 

component. The assets that have been most often analyzed in empirieal studies of du­

rations are stocks. The seasonal component of futures, compared to that of stocks, has 

a dimension related to the life-cycle of the contract; we model and describe the seasonal 

behaviour of JPY /USD futures with respect to their life cycle. We model the stochastic 

part of dynamics of currency futures using the Stochastic Conditional Duration (SCD) 

model of Bauwens and Veredas (2004), which we estimate using the QML approach and 

Kalman filter. 

Standard specification diagnostics of the model with SCD dynamics, estimated on the 

futures data (we test how well the model fits the dependency properties of the data and 

we test parametric specifications of the distributions of the innovations), show that the 

SCD model with an AR (1) latent pro cess does not describe very well the dependency 

in the data. The analysis of the joint information structure of the model and of the 

12 



estimation algorithm suggests that increasing the order of the latent process is not a 

feasible alternative. We suggest in the appendix an extension to the SCD model that 

allows for long memory in the latent process. We calI this extended model Fractionally 

Integrated SCD, FISC D(p, X, q)2 (the FISCD(p,x,q) model is mathematically equivalent 

to the LM SV model of Breidt, Crato, and de Lima (1998)). In terms of basic notions 

of the theory of signal processing, SCD FISCD and LMSV are, in their essence, models 

of a discrete signal measured with white, possibly non-Gaussian, noise. We estimate 

the FISCD(l,x,O) model for trade and price durations of currency futures using the 

spectral QML approach. Breidt, Crato, and de Lima (1998) have proved the strong 

consistency of such estimates but other properties of these estimates are not known and 

will be a subject of future research. 

The data set being analyzed in this paper spans a much longer period of time than 

the data used in previous publications on a similar subject. Thanks to this fact we are 

able to look at the evolution of estimated model parameters over the years. We are also 

able to investigate whether the parameters of the SCD model vary over different periods 

of the life-cycle of the futures contracts. The analysis of such behaviour allows us to 

draw conclusions about the ability of the SCD (or FIS CD) model to capture invariant 

dynamic properties of the trading process. 

We also describe asymptotic properties of the QML estimates of the SCD model in a 

case in which the durations process is not seamless but is re-initialized in the beginning 

of every trading day. 

Our exposition proceeds as follows. Section 2.2 describes and classifies existing ap­

proaches to modelling financial point processes. Section 2.3 describes the data and the 

transformations which have been applied to the data. Section 2.4 formulates the econo­

metric model. Section 2.5 describes the estimation and specification diagnostic methods. 

Section 2.6 presents estimation results, their interpretation and discussion. Section 2.7 

concludes. Sorne technical details as weIl as notes on specification and estimation of the 

2The latent process of the FISCD follows ARFIMA(p,x,q). 
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FIS CD model are provided in Appendix B. 

2.2 Models of durations in finance 

Transactions data are often modelled within the framework of so-called point processes. 

A (temporal) point process is a sequence of events (points) on a time line, with each point 

representing a random arrivaI time ti, and a sequence of random variables {Xi}' called 

marks, associated with these arrivaI times. Instead of a sequence of arrivaI times t i it is 

often convenient to use a sequence of durations Di, Di = ti - ti- l . Thus, a data sample 

generated by a point process can be described as (Di, Xi), i = 1, ... ,N. A point process 

with marks can serve as a generator for derived thinned processes, the arrivaI times of 

which are a subsequence of the arrivaI times of the original process; this subsequence 

is chosen based on a criteria which is a function of the arrivaI times and of the marks 

of the generator. The thinned pro cesses associated with a point pro cess are also point 

processes. 

It is not difficult to describe a point process in general terms: the description will be 

given by the joint distribution of the durations and the marks conditional on their past 

values (see, for example, Engle (2000)): 

(2.1) 

where Zi == {Zi' Zi-l, ... , Zi} and e is the vector of parameters. 

In practice, it may be very difficult or even infeasible to specify the condition al distri­

bution in the form (2.1). The researcher, however, may be interested only in character­

istics of the pro cess which do not require the model to be completely specified. Among 

typical questions of interest to an econometrician are the following: 

• What is the marginal distribution of marks and durations; what is their joint 

marginal distribution? 
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• What it the distribution of the next mark conditional on the history of marks 

and/or durations? 

• What is the distribution of future durations conditional on the past durations 

and/or marks? 

• The questions ab ove , asked with respect to a specific thinned process 

If the researcher is interested only in the conditional dynamics of durations (whether of 

the generating process or of a thinned pro cess ), the conditional hazard function provides 

a convenient framework for model specification. 

The hazard function is defined as the limit of the conditional probability of observing 

an arrivaI in a small interval, given that there has been no arrivaI up to the beginning of 

this interval: 

\ ( ) = l' Prob [t ~ T ~ t + ~IT 2: tl 
AT t - lm A , 

2.-+0 Ll 
(2.2) 

There is a simple relationship between the hazard function and the distribution function 

of the arrivaI time QT(S): 

(2.3) 

The hazard function can be specified in the condition al context given the informa­

tion set 'St: one only needs to choose the appropriate conditioning set in (2.2). Also, 

knowledge of the conditional density immediately implies the knowledge of the hazard 

function, while modelling the latter directly is often simpler. Cox (1972) and Cox (1975) 

suggested presenting the hazard function as a product of the baseline hazard and a pos­

itive function of the conditioning set and model parameters. The models based on this 

approach are called proportional hazard models and are often used in the analysis of 

point processes in statistics, and specifically in the econometrics of ultra-high frequency 

data (see, as an example, Gerhard and Hautsch (2002a)). 

Another approach to modelling the dynamics of point processes was suggested in 

Engle and Russell (1998). They assume that specification of the conditional density 
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(2.1) requires only a mean function. They define conditional duration as a function of 

past durations and marks and then assume that a duration is equal to the product of 

this condition al duration and an innovation - a random variable with a positive support: 

(2.4) 

where fi rv i.i.d .. 

The authors consider the specifie form of the function W: 

m q 

Wi = W + LŒjDi-j + L,6jWi-j, (2.5) 
j=O j=O 

and they calI the corresponding model the A utoregressive Conditional Dumtion model 

and denote it ACD(m, q). One can see that if the distribution of f is known, it is easy 

to write down the likelihood function for this model, i.e., the model is easy to estimate. 

Forms of the mean function W different from the above are possible (a comprehensive 

review and classification of mean functions used in ACD-type models is presented in 

Hautsch (2002)). 

Knowing the distribution function of the errors fi, one can cast the model of Engle 

and Russell in terms of the hazard function. SpecificalIy, the hazard function of the 

model (2.4) takes the following form: 

(2.6) 

where Ào(t) is the baseline hazard computed according to (2.3). The class of models 

defined in (2.4) is called accelemted time models because the function \li enters as the 

denominator the corresponding baseline hazard. 

The model upon which a larger part of the empirical analysis of this study is based, 

the SCD, is also an accelerated time modellike the ACD. It is a mixture model at the 
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same time: the acceleration factor in the SCD model is not a deterministic function of 

the past values of durations and marks but, conditional on the history of durations and 

marks, is still a random variable. Bringing a parallel with the models of conditional 

heteroskedasticity, the relationship between ACD and SCD is the same as the relation­

ship between GARCR models and stochastic volatility models: in the (strong) GARCR, 

the conditional variance Œ; is a deterministic function of past variances and squared 

innovations fF: 
m q 

Œ; = ŒO + LCYjŒt_j + Lf1jfT-j, 
j=O j=O 

while, conditional on the current information set, the variance in stochastic volatility 

models is a random variable, same as the duration in the SCD. 

The advantage of the SCD is that it is more flexible 3 and better fits the empirical data. 

Estimating the SCD model is, however, a more difficult problem that estimating ACD­

type models because the likelihood function of the SCD cannot be written explicitly. We 

shaH introduce the SCD model and discuss its estimation in detail, later in this chapter. 

Finally, we would like to mention another model which is a mixture modellike the SCD 

but that does not belong to the class of accelerated time models. This is the Stochastic 

Volatility Duration (SVD) model suggested by Ghysels, Gouriéroux, and Jasiak (1997). 

The authors noticed that modelling only the mean function of the duration process might 

not be enough to capture empirical properties of financial transaction data. Therefore, in 

the SVD model the conditional second moment of durations is also stochastic. As with 

the SCD, the likelihood function of the SVD cannot be written down explicitly but only 

computed using simulation. The SVD model, however, is set up in such a way that the 

simulated likelihood is relatively easy to compute. 

This review of the models of financial point processes, and specificaHy - of durations, 

is not comprehensive. The objective of this review was to position the SCD model among 

the main existing approaches to modelling the dynamics of durations. We proceed next 

3In particular, the SCD framework allows one to reproduce a wider range of shapes of hazard function 
than the ACD, including non-monotonous shapes. See Bauwens and Veredas (2004) for details. 
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to the introduction of the data used in this study. 

2.3 Description of the data 

We examine aspects of transaction dynamics of currency futures traded on the CME. 

Specifically, we study JPY jUSD futures. CME currency futures contracts follow the 

usual March-June-September-December cycle. New contracts are listed six month before 

the expiration (on the day after the front month expires); the contracts expire on the 

second business day before the third Wednesday (in our data set, the expiration day is 

always Monday). For example, the first trading date of the March 2003 futures contract 

(tick symbol- JYH3) was the 18th of September, 2002 and the last trading date was the 

17th of March, 2003. Trading opens at 7:20 and ends at 14:00 Central time. 

The data set spans the period from January 2, 1991 to August 31, 2001 and consists 

of almost 4 million records. The records of trades of 47 contracts are present in the set, 

from a contract expiring in March of 1991 to one expiring in January of 2002. For the 

purposes of our analysis the data was filtered. The records in the data set represent 

either transactions, bid quotes or ask quotes. We remove records that are marked as 

ask or bid quotes and do not represent actual transactions. As well, we do not consider 

contracts with fewer than 130 trading days within the time span of the data and we 

exclude contracts with expiration dates after August 31, 2001. This leaves 37 contracts 

in the set, from a contract expiring in June of 1991 to a June, 2001 contract. After 

filtering, the data consist of 2,743,740 records. 

Trade durations are defined as time intervals between consecutive trades; the last 

duration of a day precedes the first duration of the next day in the duration series. 

One of the problems that we had to resolve was the treatment of multiple trades that 

happened within one second (one second is the precision of the time stamp), i.e., when 

recorded trade durations were equal to zero. There are several possible ways to deal with 

this problem, sorne being more sophisticated than the others. We have employed a simple 
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solution to this problem of eensored measurements. We assign the value k~l to every zero 

duration, where k is the number of trades happening within the current second, and we 

increase the subsequent duration by k~l so that the sum of aIl durations is unchanged4 . 

Another naive approach would be, following Bauwens and Veredas (2004), deleting aIl 

null durations. Bauwens and Veredas (2004) motivated the latter approach by arguing 

that the trades that happened within a very short period of time were likely from the 

same trader, who split a large block of shares. 

A priee duration is defined as the lapse of time that is required to observe a priee 

change not less than a given threshold. It is in sorne sense natural to measure the change 

of the priee in pereentage points (or to measure the logarithm of the change ofthe priee): 

dynamic models in finance are most often formulated with respect to the logarithm of 

the priee. The matter is complicated by the fact that the transaction priee is quoted 

with a given number of significant digits, i.e., the observed priees take their values on a 

discrete set. This is yet another illustration of the ide a that transactions may be seen 

as a manifestation of the latent economic proeess; finite accuracy of the reported priees 

is a property of the "transmission mechanism" - the market. Russell and Engle (1998) 

develop a model of priee durations where the priees are explicitly discrete-valued. We 

have chosen to use a change in the logarithm of priee as the criterion for thinning. The 

empirical results presented here are for the case in which the change in the logarithm of 

the priee is equal to or larger than 0.05%5. 

4We are aware that this method may introduce spurious correlation in the data; our analysis showed 
however that this effect is negligible. 

5Stock priees are usually recorded with lower accuracy that those of currency futures, which is why 
accounting for discretisation error is more important in the former case. 
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2.4 Modelling trade and priee durations of futures 

eontraets 

Let {Di} denote the recorded durations (trade durations or priee durations). In what 

follows, if there is no ambiguity, we shall use small letters to denote logarithms of the 

values denoted by the corresponding capitalletters i.e. di == ln (Di) , .'!/Ji == ln (Wi) etc. 

The model being estimated is formally specified as follows: 

(2.7) 

We assume that cil1i-l '" iid D(1]) where I i - 1 denotes the information set at the begin­

ning ofthe spell of the duration di and D (1]) is a distribution with a positive support with 

a parameter 1]. The fourth moment of D(1]) exists and is finite. Usual choices of the para­

metric form of the distribution D (1]) in the context of duration studies are the Wei bull 

distribution and the standard Gamma distribution. The proeess '!/Ji = ln W i follows, in 

the general case, a stationary ARMA (p, q) process with Gaussian innovations. 

The function <I> (K,) is assumed to be non-stochastic and strictly positive for all ad­

missible values of K,. Taking the logarithm of the equation above, 

(2.8) 

where (Çi + tL (1])) is distributed as the logarithm of Ci and E [çiI1i-l] = O. Under the 

specifications above, log-durations are sums of the non-stochastic part cP (K,~) + tL (1]), and 

the stochastic part '!/Ji + ç. If we define di = di - cP (K,i) and assume that '!/Ji follows AR (1), 

the model in terms of di will be the SCD model as it has been formulated and studied 

in Bauwens and Veredas (2004). 

We shall argue later that it is not practical to consider SCD models with a latent 

pro cess of order higher than AR (1). The FISCD model introduced in Appendix (B.3) 

is a more flexible alternative than SCD. FISCD is a complex econometric object; many 
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properties of the parameter estimates under the FISCD are unknown and are a subject 

of future research. 

The seasonal component in the dynamics of durations 

The literature presents strong empirical evidenee of seasonality in trade and priee dura­

tions (see, for example, Engle and Russell (1998), Gouriéroux, Jasiak, and Le Fol (1999), 

and Bauwens and Veredas (2004)), which is why the seasonal component <I> (fi;) is present 

in equation (2.7). Unlike stocks that may be thought of as having an infinite time hori­

zon, derivative contracts, bonds, and sorne other assets have a life cycle, from a contract's 

ineeption to its expiration. This life cycle is refiected in the" seasonal" behaviour of time 

series describing the dynamics of such contracts. This form of seasonal behaviour of trade 

and priee durations of futures, due to their life cycle, has been given less attention in the 

empirical literature than diurnal or weekly seasonality6. 

U nder the model adopted in this study, duration series have two components: the 

deterministic seasonal component and the stochastic component that follows the SCD 

dynamics. We can approach the estimation of the seasonal component parametrically, 

semi-parametrically or non-parametrically, and there exist sever al possibilities in each of 

these classes of estimation techniques. An attractive feature of non-parametric modelling 

is its fiexibility. We shall model the seasonal dynamics of the durations in the non­

parametric spirit (strictly speaking, the approach that we use is semi-parametric, as the 

reader will see from the exposition below), similar to the approach adopted in Veredas, 

Rodriguez-Poo, and Espasa (2002) and in Bauwens and Veredas (2004) with the differenee 

that the futures considered in this paper have a more complex seasonal structure. 

The multiplicative presentation (2.7) and the additive presentation in logarithms (2.8) 

are equivalent at the stage of modelling. When it cornes to estimation, application of 

seasonal adjustment before taking logarithm or after leads to different results. In Bauwens 

6Gerhard and Hautsch (2002b) describe the seasonality over the maturity of intra-day volatility for 
BUND futures. They estimate intra-day volatility based on priee durations. 
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and Veredas (2004), the data are seasonally adjusted before taking the logarithms. The 

advantage of this approach is that the results are easier to interpret and easier to apply 

to forecasting (presumably, we are interested in durations and not in the logarithms of 

durations). We have chosen, however, to apply the seasonal adjustment after taking the 

logarithms of the data, and we shall name two reasons for this choice. First, we shall 

assume later in this study that <p (K,) follows the additive model with the logarithm as the 

link function 7 . Properties and estimation of additive models are known better than are 

properties of GAM, and we would like to build upon this knowledge. Second, the SCD 

is a model with dynamics that are linear in the logarithm of durations; estimation using 

the Kalman filter is based on the model's linearity. Seasonal adjustment of the dynamic 

variable of the model seems to be more transparent than adjustment of the non-linear 

transformation of this variable. 

As we have mentioned just ab ove , we impose additional structure on the seasonal 

component of the durations. Specifically, we assume that 

(2.9) 

where K, = {6, t, T}, Ao (6 E {M onday, ... , Friday} ) describes the weekly seasonality, X (t) 

the seasonality due to contract life cycle, t is the time to expiration, (( T) corresponds 

to the diurnal seasonal component, and T is the time elapsed from the beginning of 

the trading session. We test the assumption of orthogonality of the weekly, the life­

cycle and the diurnal components later, in Section 2.6.4. The additive form of <p reduces 

the dimensionality of the non-parametric regression problem. Preliminary analysis shows 

that even with our large data set the curse of dimensionality cannot be escaped, especially 

7 <I> (0) follows in this case the Generalized Additive Model (GAM). It is said that a non-parametric 
regression function follows the GAM if 

d 

f (m (X)) = Cl! + LXj (Xj ) 
j=l 

where f (-) is a known link function, Xl, ... , Xj are unknown univariate functions, and X = (Xl, ... , X j ) . 
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when we estimate the seasonal component at longer horizons to expiration t where the 

trading is sparse. U nder the assumption of the additive model one can achieve, under 

certain conditions, the univariate rates of convergence of the non-parametric regression 

(Linton and Nielsen 1995). 

2.5 Estimation Methods 

2.5.1 Estimation of the seasonal component 

We model the seasonal deterministic component of log durations in the following manner: 

One approach to estimating additive models is the so-called backfitting algorithm (see 

Fan and Gijbels (1996), pp.266-267). In application to our problem, the algorithm can 

be described as follows: 

1. Initialization: Cl: = i:J 2:~1 di' We subtract the sample me an from {di} and make 

initial gues ses about all but one seasonal component (about A<5 and X (t) , for ex­

ample). We force the sample expectation of each of these components to be equal 

to zero, so that the me an of the seasonally adjusted data is equal to zero. 

2 d(k+l) = d(k) - A (1) - X(I) where A (1) X(I) are the latest estimates of A and X. 
. T,t,v <5' <5 , 

d(k+l) is used to obtain an updated estimate of ( via a univariate non-parametric 

smoother. 

3. We repeat step 2 for each of the seasonal components until convergence is achieved. 

(In practice, 2 or 3 rounds are usually sufficient). 

The term backfitting in reference to the action above was first used in Friedman and 

Stuetzle (1981). If the additive specification is not the true model, the algorithm is 
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expected to give an estimate that is the best additive approximation to the regression 

surface in the mean squared error sense (Breiman and Friedman 1985). 

We have to specify a univariate smoother that will be used at step 2 of the algorithm 

above. Our current choice is the kernel regression (other choices like smoothing splines, 

for example, will probably work equally weIl). The form of kernel regression used is 

known otherwise as the Nadaraya-Watson estimator. It is defined as 

We have chosen the quartic kernel for our regression because it is fast to compute and 

has a compact support which also helps to reduce the complexity of the computations. 

For the results reported in the paper the values of the bandwidth parameters were chosen 

by visual inspection of their performance. 

The component A" is somewhat different from X and (. We estimate it as the me an 

duration for a given day of a week (formaIly, this is equivalent to setting h = 1, if we 

want to preserve the uniformity of exposition). Taking into account that we force the 

sample mean of each component of cP ("') to zero, A" has four degrees of freedom (four 

parameters to be estimated), which is why we have mentioned that our approach can be 

called "semi-parametric". 

The argument of X (t) , the life-cycle seasonal component, is the time to expiration 

in business days, t E N. We consider in our study the records with 1 :S t :S 130. The 

argument of the diurnal component ( ( T) represents the time from the beginning of the 

trading day in seconds, TE [0,24000). 

We should point out that the whole data set is used to estimate the seasonal compo­

nent of durations, cP ("') . This will allow us to capture invariant properties of the seasonal 

components across the years spanned by the data set. We estimate SCD parameters 

individually for each contract in the data set. Part of the variation of trading intensity 

will be also accounted for by the parameter w of the SCD model which we keep free. 
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2.5.2 QML estimation of the SCD model 

Once the seasonal component of the logarithm of durations has been estimated, we esti­

mate the SCD model using the adjusted series of logarithms of trade and priee durations. 

The sample me an of seasonally adjusted log durations and the average value of each of 

the adjustment factors are equal to zero over the whole sample of thirty seven contracts, 

but not for each individu al contract. To account for this we allow the conditional du-

ration to have a non-zero mean and we subtract from each of the seasonal components 

their average values over that specifie sample. We assume that the seasonally adjusted 

log durations follow the model 

di = P, ( "() + ?/Ji + Çi 

?/Ji = W + f3?/Ji-l + Ui, 1f31 < 1 

where {Çi + P, hn has log-Weibull distribution with parameter "(, E [Çi] = 08 . The pa­

rameters are estimated by maximising the QML, computed with the help of Kalman 

filter. Note that 

Making the change of variable ?/J* = ?/J - 1~;3' the model can be written as: 

(2.10) 

where w has been concentrated out of the likelihood, as suggested in Ruiz (1994) for 

estimating stochastie volatility models. The vector of parameters of the quasi-likelihood 

to be minimized is e = {()~, "(, f3} . The asymptotic theory for the QML estimate of e was 

SOur analysis as weil as the results reported in Bauwens and Veredas (2004) show that the Weibull 
distribution is preferred to the alternatives sueh as the exponential or the log-normal distributions; two­
parameter forms sueh as the Burr or the generalised gamma distributions do not noticeably improve the 
fit while inerease the number of the parameters to be estimated. 
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developed in Dunsmuir (1979) yielding T~ (e - ê) :!:., N (0, C (e)). The expression for 

C (e) and details of the computations are given in Appendix B.1. 

The estimation results presented in this paper are for the case in which the data are 

treated as continuous series, i.e. the end of one day precedes directly the beginning of 

the next except that we have cut out the first 20 minutes in the beginning of each day. 

We use a Kalman filter initialized with the diffuse prior to compute the quasi-likelihood 

function of the model (2.10). An alternative to this approach would be to re-initialize 

the Kalman filter at the beginning of every trading day. The asymptotic theory for the 

estimates obtained when the filter is re-initialised daily with a diffuse prior are presented 

in Appendix B.2. It is also possible to initiate the Kalman filter with a meaningful prior 

computed using auxiliary information. In this study, we do not pur sue further strategies 

with daily initialisation of Kalman iterations. 

2.5.3 Diagnostic methods 

As far as it concerns the nonstochastic part of the model, our primary concern is whether 

the additive form of the seasonal component is supported by the data. We use graphical 

methods to investigate this: we estimate the diurnal component for each day of the week 

and draw them on the same graph; in the same manner we draw the life cycle seasonal 

component for different days of the week and for different periods of the day. If there is 

no interdependence between seasonal variables, the lines on each of these graphs will not 

be far apart one from another. 

To assess how the SCD model describes the dynamics of seasonally adjusted durations 

we want to investigate two issues: first, how well the model accounts for the dependency 

properties of the process; second, how good are the parametric assumptions about the 

distributions of the innovations. Since the SCD model is a model with one latent variable, 
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we can compute two series of residuals resulting from the model estimation: 

êi = d; - ;j;; and 

Ûi = ;j;; - (3;j;;-1' 

The seriaI dependence structures of the series {~i} and {Ûi} are similar one to another: 

we shall focus here only on the dynamics of {Çi} because we can compare it directly 

with the dependence in the duration series. 

Under the model, the residuals {~i} are distributed as log-Weibull with parameters 

(J, 1), and {Ûi} have a standard normal distribution. 

We use traditional analysis of the ACF and the partial autocorrelation function 

(PACF) as well as Spearman's coefficient to investigate the seriaI dependence in the 

residuals. Bauwens and Veredas (2004) argue that the Ljung-Box statistic (or similar 

statistics based on the sample autocorrelations) would not be a correct measure of de­

pendence in the context of irregularly spaced data, which is why Spearman's coefficient 

should be preferred. This argument has its merits. However, within the framework of 

a dis crete time model, the Ljung-Box statistic will detect the presence of linear depen­

dence in the series, regardless of whether the measurements are taken at equal or irregular 

physical time intervals. 

In order to judge the compatibility of our parametric assumptions with the empirical 

observations we use p-value plots and p-value discrepancy plots, as weIl as commonly 

used non-parametric goodness-of-fit tests such as the Anderson-Darling test and the 

Cramèr-von Mises test9 . 

9These statistics, their properties and their critical values for normal and log-Wei bull distributions 
can be found in (Stephens 1976) and (Stephens 1977). 
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2.6 Estimation results: interpretation 

and discussion 

2.6.1 Estimated seasonality in trade and priee durations 

Before proeeeding with the analysis of the seasonal pattern of the dynamics of durations 

we would like to discuss briefly eertain descriptive properties of the data. Figure 2-1 

presents the standard deviation of the data series corresponding to each of the contracts 

(right scale) as well as analysis of how this variation is explained by the seasonal compo­

nent and the SCD model (le ft scale). The fact that the results are rather uniform across 

the contracts is encouraging: our model assumes that data corresponding to different 

contracts have similar statistical properties. The seasonal component explains about 

10% of the total variation of the logarithm of trade durations; the SCD explains 30% 

of its variation. For the price durations, the seasonal component explains 10%-20% of 

the total variation, and the SCD model explains 50% - 60% of the total variation 10. 

Overall, our model explains "-' 40% of the variation of the logarithm of trade durations 

and "-' 65% - 75% of the variation of the logarithm of priee durations. 

Figure 2-2 presents graphs of the seasonal components A", X(t), and ((7) of trade 

durations (left column) and of priee durations (right column). We observe that over a 

week, trading is the least active on Mondays with its intensity increasing towards Friday. 

This is in line with the results reported in the financialliterature. Over a day, the trading 

activity is high in the morning, then it decreases gradually to its lowest level between 

12:30CT and 13:00CT, and increases again near the end ofthe trading day. The observed 

diurnal pattern is similar to those described for stocks by Bauwens and Veredas (2004) 

or by Gouriéroux, Jasiak, and Le Fol (1999). The lowest levels of daily activity for the 

stocks studied by the aforementioned authors, Boeing in the former case and Alcatel in 

the latter, have been observed between 13:30ET and 14:00ET (Central time is equal to 

lOOur model assumes that the the seasonal component and the SCD dynamics of the data are 
orthogonal. 
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Eastern time minus one). The curious conclusion that we can draw is that there is a 

synchronicity between trading in Chicago and in New York, despite the difference in the 

time zones. The increase in the level of trading activity at the end of a day is more 

pronounced for the CME currency futures th an for the stocks studied in the articles 

just mentioned. An explanation for this may be that the trading at the CME closes at 

14:00CT, just one hour after the lunch break responsible presumably for the trough in 

trading activity, while the NYSE trades until 16:00ET. Therefore, the traders of CME 

currency futures have less time, compared to the traders of stocks on the NYSE, in the 

afternoon to take their end-of-the-day positions 11. 

The seasonal pattern resulting from the contract life cycle is in accordance with our 

expectations. Trading is the most active for the contract closest to expiration, and the 

level of trading activity is relatively fiat from 65 business days to about 5 business days 

to expiration. The closest to expiration contract is traded less actively in the last few 

days of its existence because the traders switch to the next contract. When the nearest to 

expiration contract has six business days to expiration, the second to expiration contract 

has usually (not always, because of holidays) sixty-nine business days to expiration. The 

change in the life-cycle seasonal component of durations between 70 and 60 days to 

expiration correspond to a more than tenfold change in the expected trade duration and 

to a change of about four times in the expected price duration. Traders take positions 

in the contract that is going to become the nearest to expiration. We do not study the 

trading dynamics beyond 130 business days to expiration because the trading there is 

very sparse, typically just a few trades per day, if any. 

11 The strength of this argument is mitigated by the fact that the CME futures are traded on GLOBEX 
24 hours a day. The differences in the shapes of diurnal components for stocks and CME currency futures 
may be also due to institutional differences and/or differences in the mechanism through which the trades 
are reported. 
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2.6.2 Estimated parameters of the sen model 

We discuss next the results of estimation of the SCD log-Weibull model. Figure 2-3 shows 

estimated values of the parameters (3, 0'2, and J, for each of the contracts in the calendar 

order with two asymptotic standard deviation error bars. The left column shows trade 

duration parameters, the right - the priee duration parameters. 

A prominent feature of estimated parameters of trade durations is that asymptotie 

standard errors are narrow. Given the sample sizes (the number of observations per 

contract is in the range from 53, 000 to 135,000), we believe that the asymptotie standard 

errors would be close to the true standard errors under the correct model specification. 

This assertion is supported also by the results of Monte-Carlo experiments reported in 

Bauwens and Veredas (2004), where the size of the simulated samples is up to N = 

50,000. In their study, the simulated standard errors are very close to the asymptotic 

values. If we allow for the possibility that the model is misspecified and we want to 

evaluate how far apart are the estimated model and the data-generating proeess, this 

distanee (in sorne metrie) will have two contributing factors: the statistical error of 

estimation and the error due to the model misspecification. Tight asymptotie standard 

errors of the estimated model parameters and the fact that the asymptotie standard 

errors are close to the finite sample standard errors suggest that the first contributing 

factor, the model estimation error, is small. The argument just above is not so relevant 

for the model parameters of priee durations because the sample sizes of priee durations 

are smaller, henee, asymptotic standard errors are wider. 

The estimates of (3 ofthe latent proeess lie between 0.961 and 0.987 for trade durations 

series and between 0.882 and 0.981 for priee durations: i.e. both pro cesses are very 

persistent. The values of (3 are significantly less than 1 at conventional levels. For 

trade durations, the estimated values of the parameter J of the Weibull distribution are 

significantly less than one for the contracts before June, 1995 and significantly greater 

than one for later contracts. The price durations :y are between 1.1 and 1.33 and are 

always significantly greater than one. Whether J ~ 1 or J < 1 has implications for the 
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possible shapes of the hazard function: in the former case it is possible that the hazard 

function is non-monotonous (increasing first and then - decreasing, constant or, for large 

values of a2 , increasing, - while in the latter case the hazard is always decreasing). 

The estimated values of a~ vary from 0.011 to 0.040 for trade durations and from 

0.0057 to 0.019 for price durations. One can observe that the values of the model param­

eters (3, "l, and a~ are significantly different, based on the asymptotic standard errors, 

across the contracts considered, both for trade durations series and for priee durations. 

Qualitatively, however, we may conclude that the behaviour of the durations proeess as 

described by the SCD model is similar for aU of the contracts studied: we observe high 

persistenee and low signal-to-noise ratios (SNR)12, ranging from 1.18 to 1.36 for trade 

durations and from 1.49 to 2.94 for priee durations. As we shaU see in a moment, a low 

SNR will have interesting implications from the point of view of model identification. 

2.6.3 SCD parameters and the horizon to expiration 

It is interesting to investigate the question of stability of model parameters across different 

horizons to expiration. There is a natural split in the trading data for each contract: the 

records when the contract is the nearest to expiration and the records when the contract 

is the second nearest. Stability of the model parameters over the horizon to expiration 

would support our approach to modelling in general and in particular, our algorithm of 

seasonal adjustment. 

Consider first trade durations series. The left column of Figure 2-4 shows the es­

timated values of the SCD model parameters for contracts with horizon to expiration 

ranging from 70 to 130 business days. The values of the corresponding parameters esti­

mated using the whole sample are given on the same graphs as a referenee. A futures 

contract is traded much less actively when it is the second closest to expiration than 

when it is the closest to expiration, which is why the subsample corresponding to the 

trades with time to expiration from 70 to 130 days comprises only a small fraction of aIl 

12We define SNR here as the ratio of the unconditional variance of {di} to that of {lPi} . 
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trading records of a contract (less than 5% for sorne of the contracts). 

The estimates of (J and a~ for trade durations based on records with 1 to 130 days to 

expiration and on records with 70 to 130 days to expiration are close. InformaI analysis 

suggests that the estimates of (J in the former case are higher than in the latter; the 

estimates of a~ are smaller in the former case than in the latter. This differenee in the 

estimated parameter values can be explained, in part at least, by our treatment of the 

data as continuous series. The second to expiration contract, as has been mentioned, 

is traded much less actively than the closest to expiration; henee, the links between 

intra-day spells of trades constitute a larger proportion of the data in the former case. 

The conditional distribution of a duration will intuitively depend less on the previous 

measurement if this measurement has been taken at the end of the previous trading day, 

but we do not account for this in the model. That is why we can expect lower persistenee 

for contracts with longer horizons of expiration within our modelling framework, and also 

a higher varianee of innovations of the latent process. 

The estimates of trade durations 1 based on records with 70-130 days to expiration 

are lower than those based on contracts with 1-130 days to expiration. 

The SCD parameters of priee durations for different horizons to expiration differ less 

than those of trade durations. We still observe that the estimates of the persistenee 

parameter are lower at longer expiration horizons, and we can use the same rationale 

as for the trade duration to explain why this is the case. The estimates of a~ and of 1 

of priee durations based on records with longer expiration horizons are not statistically 

different from those based on aIl records. 

Priee durations change less with the expiration horizon than do trade durations. Thus, 

the proportion of links between trading days in the priee durations data does not increase 

as much, when we consider only trades with 70 to 130 business days to expiration, as in 

the trade durations data. This may be one of the explanations why the estimated SCD 

parameters of priee durations differ less across expiration horizon than do those of trade 

durations. Another explanation may be that the dynamics of trade durations depend 
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more on the specifics of the trading system than the dynamics of priee durations; the 

model used in this study accounts for the properties of the trading mechanism only in 

very general terms. 

The dynamics of priee durations do depend on the trading mechanism, however. A 

futures price follows very closely (virtually one-to-one) the priee of the underlying asset. 

One could expect that priee durations would not change as a function of the horizon to 

expiration, but we definitely observe life-cycle seasonality in the priee durations, albeit 

weaker than in trade durations. A possible reason for the presenee of this life-cycle 

seasonality in priee durations is that the number of futures contracts in circulation is 

smaller when the contract is the second to expiration than when it is the closest to 

expiration. This latter property, the number of contracts in circulation, is more closely 

related to the transmission mechanism than to the information proeess determining the 

dynamics of the "latent" futures priee. 

2.6.4 Specification diagnostics 

Figure 2-5 shows the estimated additive contributions of the life-cycle and diurnal compo­

nents for each day of a week and the contributions of the life-cycle components for three 

two-hour periods of a trading day. We can conclude from the visual examination of these 

graphs that the assumption of additive form of the seasonal component is compatible 

with the data both for trade durations and price durations. 

Figures 2-6 and 2-7 illustrate how the SCD model accommodates the dependenee 

properties of the seasonally adjusted series of correspondingly trade and price durations13
. 

The measures of dependence for the seasonally adjusted logarithms of durations are in the 

left columns of figures 2-6 and 2-7, the measures of dependenee for the model residuals 

are in the right columns14 . Both trade and priee durations exhibit strong dependenee, as 

13We use the series corresponding to a specifie contract to illustrate the dependence properties of the 
data, the model residuals, and the goodness of fit of the parametric distributional assumptions. The 
results are representative of aIl contracts considered. 

14We use {Ûi} residuals to compute the ACF, PACF, and Spearman's coefficient shawn. 
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has been documented in the financial literature. The SCD model fails to account fully 

the dependence properties of the data: the residuals retain a degree of dependence. 

Bauwens and Veredas (2004) found that the residuals of the SCD model with an 

AR (1) latent process, estimated using trade durations of a stock, are not independent 

(the authors used Spearman's p statistic as a measure of dependence). They mentioned 

as a possible explanation, citing Jasiak (1998), that trade durations may be fractionally 

integrated. Our preliminary analysis also suggests the presence of long memory in the 

duration series (the estimates of the fractional integration parameter x of the FISCD 

model introduced in the appendix are between 0.4 and 0.6). 

One may hope that a mechanical increase of the or der of the latent pro cess will allow 

the model to better accommodate the dependency properties of durations. This simple 

approach does not work as well as one might have expected. The reason lies in the 

structure of the model. The resolution of a system registering a mixture of signal and 

noise, i.e. its ability to distinguish between different signaIs (latent processes), as it is 

known in the the ory of signal processing, depends among other factors on the geometry 

of the space of the solutions and on the signal-to-noise ratio. Given the parameter values 

typical for our data, the SNR is low, especially for the trade duration series. If we 

increase the order of the latent process to AR (2), we increase the domain of the possible 

solutions. In the presence of white noise, the QML estimation algorithm used loses its 

resolution abilities primarily at higher frequencies, but this is exactly where the AR (1) 

and AR (2) differ from one another. 

To illustrate the argument above we compute the inverse of the information matrix 

(see equation (B.1) in Appendix) of ML estimates of the parameters of a Gaussian AR (2) 

pro cess measured with Gaussian noise (we ignore the correction for non-normality of the 

measurement noise for the sake of transparency of the exposition). The values of the 

parameters used in this example are (JI = 0.95, (J2 = 0.02, O"~ = 0.02 and "( = 1 ("( is used 

to compute the variance of the measurement noise, O"l = :,~); (Ji are the parameters of 
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the AR(2) latent processl5
. The inverse information matrix for the model parameterised 

as e = {;JI, ;J2, a;, Î} is: 

5323356.3 -5166653.3 -208937.10 -32404.133 

-5166653.3 5014563.3 

-208937.10 202786.57 

-32404.133 31450.200 

202786.57 

8200.6707 

1271.8867 

31450.200 

1271.8867 

197.83256 

We observe that the estimates of ;JI and ;J2 have very high variance and the correlation 

between them is almost -1 (this will be especially true w hen ;JI is close to one and ;J2 is 

relatively smaIl). In practical terms this means that we cannot distinguish changes in ;JI 

from the changes in ;J2 (we can estimate weIl the quantity (;JI + ;J2), however). 

Compare now the inverse information matrix above to that of the AR (1) process 

measured with white noise. We assume that ;J = 0.95 and that the values of Î and a; 
remain unchanged: 

-0.0885 -0.0591) 

0.0778 0.0555 . 

0.0555 0.584 

The difference is striking. Keeping in mind that the inverse of the Fisher matrix sets 

the lower bound to the norm of the variance-covariance matrix of the estimates, we see 

how much the uncertainty in parameter estimates is increased by extending the class of 

possible latent pro cesses from AR (1) to AR (2). 

The analysis above shows that the problem of identifying the structure of the latent 

process of the SCD model using the QML approach has properties which make it similar 

to an ill-posed problem. It is not an ill-posed problem in the strict sense of the definition 

because the unique solution exists, and for any given accuracy there is a sample size at 

15It is possible to compute the components of the inverse Fisher matrix analytically but the expressions 
are very bulky. Therefore, we present a numerical illustration. 
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which this accuracy can be achieved. For practical purposes, however, acceptable variance 

of the parameter estimates can be achieved only by restrieting the space of possible 

solutions to the class of AR (1) models. Restricting the space of possible solutions is the 

standard approach to solving ill-posed problems. 

It has been notieed above that the asymptotic standard errors of the SCD model 

when the latent process is AR (1) are very narrow, and the goodness of fit is determined 

primarily by how well the model is specified. We see that the class of SCD models 

with the AR (2) is too wide given the information available whieh results in very large 

asymptotic errors. Intuition suggests to look for a model in a class more flexible than the 

SCD with AR (1) latent pro cess but whieh would have a structure of the latent process 

different from AR (2). The FISCD model introduced in Appendix B.3 is an attempt to 

find such class of models. 

We turn next to investigating parametric assumptions about distributions of the in­

novations. Analysis of the p-value plots and of the p-value discrepancy plots of the 

empirical distribution of { Ê,i} against the log-Weibull distribution, shown in figures 2-8 

and 2-10, does not indicate gross incompatibility of the adopted parametric form either 

for the trade durations data or for the price durations data. The shape of the p-plots is 

very similar to the shape observed in Bauwens and Veredas (2004) for trade durations of 

Boeing stocks. 

Analysis of the p-value plot of the empirical distribution of estimated innovations {Ûi} 

against the normal distribution suggests a distinct departure from normality both in the 

case of trade durations and of priee durations (Figure 2-9). The empirical distribution 

has fat ter tails than the normal distribution. Our observations with respect to the tails of 

the empirical distribution of {u;} are opposite to those reported in Bauwens and Veredas 

(2004) for the trade and price durations of the Boeing stocks; in the latter case, the 

empirical distribution had thinner than normal tails. 

FormaI goodness-of-fit tests based on the Anderson-Darling statistic and Cramèr-von 

Mises statistics reject the parametric distributional assumptions of the model at any 
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conventionallevel. We expected that the parametric assumptions would be rejected by 

these tests because they would have a high power given a typical size of the sample and 

because our model was capable, by design, of capturing only the most general features 

of the data. However, a doser look at the behaviour of the goodness-of-fit statistics 

illuminates directions for improving the model and for further research. 

Our model, which treats the data as continuous series, does not describe weIl tran­

sitions from one day to another. The values of the goodness-of-fit statistics by an or der 

of magnitude if we cens or from the samples the residuals corresponding to initial and 

final moments of trading in every day (the statistics still remain in the rejection region 

however). These quantitative results confirm the graphical analysis above: the rejection 

of the assumption of normality of {Ûi} is overwhelmingly st ronger than the rejection of 

the assumption about the parametric form of { ~i }, the latter still having p-values of less 

than 1%. 

2.6.5 Discussion 

Our empirical analysis suggests several ways to improve the performance of the model. 

When estimating the seasonal components non-parametrically, we chose the bandwidth 

parameters based on visual analysis of the graphs. A more formaI approach based, for 

example, on cross-validation, is possible. The difficulty with automated choice of the 

bandwidth parameters is related to the fact that the methods of automated selection 

break down if the errors are dependent. There are few methods that can handle the de­

pendent data (for example, Francisco-Fernandez, Opsomer, and Vilar-Fernandez (2003)) 

but they are relatively complicated algorithmically and have been developed only for 

univariate nonparametric regression. Thus, even if we adopted an automated algorithm 

to choose the bandwidth, our technique would still remain ad hoc, but become much 

more complicated algorithmically. 

Treating the data as continuous series may be inappropriate when we study the trade 

durations of contracts with longer horizons to expiration, where we typically have just a 
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few records per day, or when we study price durations. The asymptotic theory developed 

in Dunsmuir (1979) is directly applicable to Kalman QML estimation provided that the 

filter is initialized with the diffuse prior. We have amended the asymptotic theory of QML 

estimation in such a way that it is applicable to the case in which the data consists of a 

set of independent subsamples (see Appendix B.2). We have investigated two alternative 

approaches: we initialized the Kalman filter at 8:00 each day using the average logarithm 

of trade durations (seasonaUy adjusted) between 7:40 and 8:00 and we initialized the 

Kalman filter at the beginning of each day with the sample mean. The estimation results 

were very close for aU three methods when we analyze the whole data set, especiaUy in 

the case of trade durations. This is because the records corresponding to the nearest 

to expiration contract constitute a larger part of the data, and the number of records 

per day is large, hence, the initialization of the Kalman filter affects only marginaUy 

the value of the quasi-likelihood function. We would like to observe in the end that the 

initialization of the Kalman filter at the beginning of every day provides us with a tool 

for introducing, in a non-trivial way, the information accumulated overnight. 

We observed that the empirical distribution of {Ûi} departs from the normal distri­

bution, especiaUy for the trade durations series. We expect that this problem will be 

mitigated if daily initialization of the Kalman filter is used: large overnight innovations 

may be responsible in part for fatter tails in the empirical distribution of {Ui}. Using a 

parametric distribution with fatter tails to model the innovations of the latent pro cess 

may also help to improve the empirical behaviour of the model: Student's t distribution 

is a good candidate (the model with normal innovations of the latent process is nested 

into the Student t parametrisation). 

2.7 Conclusions 

We have mentioned in the introduction that the latent economic pro cess can be viewed 

as manifesting itself through the transmission mechanism of the institutional structure of 
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trading. The relatively simple model used in this study is far from describing the economic 

proeess and the transmission mechanism in detail; it captures dynamic properties of the 

data without revealing the structure of the data-generating mechanism. N evertheless, 

if we adopt a constructive approach to modelling the generating mechanism for high­

frequency financial series, a parsimonious description of the output signal given by the 

SCD model can be a valuable resource in synthesising the transmission function, which, 

given as an input a signal described by one of the existing models of asset priee dynamics, 

would generate output with dynamics similar to that of the empirical point pro cesses 

investigated. 

We believe that the synthesis of models of trading mechanisms, which would bridge 

the gap between the dynamic financial models and the empirical models of high-frequency 

financial series, will be a promising area of research. Designing a realistic model of trading 

would be a very complex task and would require substantial resourees. Even a simple 

stylized model, however, may provide further insights into the microstructure of financial 

markets. Imagine a latent priee proeess following a stochastic volatility model and that 

a new transaction occurs when the latent priee deviates from the last observed priee by a 

given margin16 . This model has a continuous-time process as an input and a point proeess 

as an output and is probably the simplest coneeivable model of the trading mechanism. 

Empirical evidenee suggests the presenee of long memory in the volatility proeess and in 

the durations proeess. We conjecture that in the model just described long memory in 

the volatility of the latent priee proeess will translate into long memory in the durations 

process. 

Summarising the empirical findings of this study, we observed that while the estimated 

parameters of the SCD proeess are statistically different from contract to contract, qual­

itatively the pro cess does not change much over the years studied. This is an indication 

that the model captures eertain invariant properties of the economic proeess and the 

16 A framework with informed and uninformed traders can be used to explain the liquidity of this 
stylised market. 
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transmission mechanism. We observed that the SCD parameters, with a eertain leeway, 

are also stable across the expiration horizon, the last statement being more accurate 

with respect to the priee durations proeess. A priee of a futures contract has almost a 

functional relationship with the price of the underlying asset. From this it follows that 

the life-cycle seasonality of priee durations of futures contracts is determined to a great 

degree by characteristics of the trading mechanism rather than by only the properties of 

the latent economic process. 

Preliminary analysis shows that the fit of the model improves notieeably if the 

overnight and the weekend interruptions in trading are taken into account. The sim­

plest way to do this is to assume that in the beginning of every trading day the durations 

proeess is initialized with the unconditional mean. This approach has the advantage 

that the existing asymptotic theory of QML estimators can be applied with minor mod­

ifications (see Appendix B.2). Alternatively, the durations proeess can be initialised at 

the beginning of every trading day using auxiliary information available to the econo­

metrician. Designing various initialization procedures is not a very interesting topie for 

academic research. However, the initialisation of the proeess will be crucial in any prac­

tieal application of the model. The difficulty that one faces when using an informative 

prior to initialize the proeess in the beginning of every trading day is that the asymptotic 

theory for the estimates does not follow directly from the results of Dunsmuir (1979), 

sinee the essential assumption of ergodicity is violated, and the theory would have to be 

developed from scratch. 

The science of signal processing has traditions of the analysis of the maximal achiev­

able resolution of a system and of informational analysis of a transmission channel. We 

believe that the econometrics of high-frequency financial data can build on these tradi­

tions. The simple example of informational analysis of the SCD model given in this study 

is a modest contribution to this interesting direction of research. We illustrate practical 

limitations, given the model structure and the information available, of our ability to 

estimate and/or identify the signal (the latent process), and how these limitations can 
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be discovered through the analysis of the informational structure of a system, comprising 

the model and the estimation algorithm (our analysis of the SCD model applies also to 

stochastic volatility models which have a similar mathematical structure). Our estima­

tion and identification capabilities can be improved either by introducing new a priori 

information17 or by using an estimation algorithm, if one exists, that makes better use of 

the existing information. In economics, choosing an alternative model of the transmis­

sion channel and of the signal itself can often be productive, in contrast to the natural 

sciences where due to the established methodological paradigm, the acceptable choice of 

models is restricted. 

Because empirical evidence suggests long memory properties in the dynamics of du­

rations, a model of durations should be able to accommodate such a possibility. It is 

not a very difficult task to estimate the long memory parameter; it is more difficult to 

estimate both the high-frequency dynamics and the long-memory of the process. The 

FISCD model provides a parametric framework which allows, in theory, the modelling 

of both the high frequency dynamics and the low frequency (long memory) properties. 

QML estimation of the FISCD model in the spectral domain is simple algorithmically and 

computationally. Investigation of the properties of the QML estimates of the parameters 

of the FISCD, beyond strong consistency, which is known to hold, remains, however, a 

challenging theoretical problem. 

17 An example of such a priori information is: "The latent process is an AR (1). 
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trade durations, right column - price durations. Error bars correspond to two SE. 
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Figure 2-4: SCD parameters estimated using records with 70-130 business days to ex-
piration. Left column - trade durations, right column - trade durations. Error bars 
correspond to two SE. 
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Chapter 3 

Estimation of Conditional Quantiles 

of Variance U sing A uxiliary 

Variance Informationl 

3.1 Introduction 

A majority among researchers in finance and economics will agree that financial asset 

returns are not meaningfully predictable. It is an established empirical fact, however, 

that the volatility of the returns is very predictable. Finally, dynamic models of the 

higher moments of asset returns are still in their infancy. It is not surprising then that 

the bulk of dynamic models in financial econometrics are models of the dynamics of the 

second moment of asset returns2 . 

Volatility is not observable directly, and until very recently our ability to investigate 

the dynamics of volatility was limited to estimating parametric models such as GAReR 

or stochastic volatility, where the volatility was a latent variable. Despite the great theo-

IThis chapter is based on a joint article with John W. Galbraith and Vicky Zinde-Walsh. 
2We shaH use the terms a model of volatility and a model of variance interchangeably if this does not 

cause ambiguity. We reserve, however, the term volatility, to denote the square root of variance. 

51 



retical appeal of these models and the enthusiasm in the profession when they appeared, 

many deficiencies of these models were soon revealed. In particular, (G)ARCH-type 

models, while statistically highly significant, behaved poorly in predicting the variability 

of asset returns, measured by squared returns; stochastic volatility models, both in dis­

crete and in continuous time, were notoriously difficult to estimate and did not offer any 

breakthrough improvement in predictive power either. 

Merton (1980) was probably the first to mention in the economic literature that a 

precise estimate of the variance of Brownian motion over a period can be obtained if the 

sampling interval over this period approaches zero. This estimate is the sum of squared 

returns and is called realised quadmtic variation (RV). This knowledge had been virtually 

dormant until very recently, when Andersen and Bollerslev (1998) pointed out that intra­

day data contains useful information about the variance of asset returns, and that this 

information can and should be used when gauging the empirical performance of dynamic 

models of variancé. It has also been recognised that intra-day data are useful for model 

estimation. 

Andersen, Bollerslev, Diebold, and Labys (2001) (ABDL hereafter) have extended the 

result that RV converges to a certain measure oftrue variance - quadmtic variation (QV) 

- from simple Brownian motion to the class of semi-martingale processes. RV computed 

using intra-day data was treated at first as if it were equal to Q V (this includes the two 

articles by Andersen, Bollerslev and co-authors just mentioned). It is very appealing 

because under such an assumption QV becomes observable instead of being latent. The 

researchers have recognised, however, that RV is only an estimate of Q V and that it 

is important to take into account its statistical properties when estimating models of 

volatility or gauging the performance of such models. 

The error in RV as a measure of QV has two main components. First, even if the 

DGP satisfies the assumptions formulated in AB DL necessary for RV to be a consistent 

3This discovery has coincided, incidentally or not, with the wider availability of intra-day market 
data and of the computing power necessary to pro cess such data. 
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estimate when sampling frequency go es to infinity, for every finite sampling frequency 

there remains an estimation error. Second, any empirical high-frequency financial series 

are affected by market microstructure effects: bid-ask spread, discreteness of price quotes, 

irregular timing of quotes, and other factors, i.e., there is a measurement error. 

Our knowledge about properties of the estimation error has improved significantly 

in the last few years; very important are the contributions of Barndorff-Nielsen, Shep­

hard and co-authors, who have published a series of articles on the topie (see, for ex­

ample, Barndorff-Nielsen and Shephard (2001), Barndorff-Nielsen, Nicolato, and Shep­

hard (2002), Barndorff-Nielsen and Shephard (2002b), and Barndorff-Nielsen and Shep­

hard (2002a)); another recent paper on the topie is Meddahi (2002b). The research 

by Barndoff-Nielsen and Shephard develops, in particular, the asymptotie theory of RV 

(and more generally, of realised power variation) and second-order properties of RV for 

certain classes of pro cesses including stochastic volatility processes. 

Our knowledge of properties of the measurement error is more limited than of those 

of the estimation error. These properties depend on the institutional structure of the 

market where the trading occurs and are difficult to formalise; in addition, many of these 

properties are market-specifie, i.e., it is difficult if not impossible to develop a general 

theory of this measurement error. 

The necessity to account for the measurement error has been recognised in the Q V 

literature: ABDL, for example, notice that it may be suboptimal to use the highest 

available frequency of the data: while the estimation error decreases with an increase in 

the sampling frequency, the measurement error tends to "average out" at lower sampling 

frequencies. The recent article by Aït-Sahalia and Mykland (2003) considers the case in 

whieh the signal (the priee pro cess ) is measured with additive i.i.d. noise, independent 

of the signal. They show that when the sampling frequency go es to infinity, RV may 

estimate consistently the variance of noise instead of the quantity of interest - the Q V. The 

authors offer an algorithm to choose the optimal, in the MSE sense, sampling frequency in 

the case in which the measurement noise is not modelled; they argue also that modelling 
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the microstructure noise often benefits the estimation even if the model is misspecified. 

The problem of optimal sampling in the presence of microstructure effects is also being 

solved in Bandi and Russell (2003). 

The results of the research just mentionned promise a substantial improvement in 

the estimation of Q V when the price process is measured with noise, but they will not 

eliminate the presence of the measurement error, which is why it is important to develop 

dynamic models and estimation methods robust to the specification of the error. 

As we have noted ab ove , use of RV facilitates and improves estimation of dynamic 

financial models, both in continuous and discrete time. It has been suggested in the 

recent literature to use the conditional moments of QV to estimate continuous-time 

stochastic volatility diffusion or jump-diffusion models (see, for example, Bollerslev and 

Zhou (2002) and Garcia, Lewis, and Renault (2001)). Care should be taken, however, 

to ensure that algorithms based on fitting asymptotic moments of Q V are robust to the 

presence of measurement error in the empirical Q V. 

While continuous time stochastic volatility models are more convenient analytically 

for the purpose of derivative pricing, they are narrowly parameterised and often do not fit 

the empirical data weIl. Incorporation of jumps and of several latent variables improves 

the empirical fit but also complicates the estimation (it is recognised that identification 

and estimation of the jump component poses especially difficult econometric problems). 

For the purposes of asset pricing or risk management, if the price pro cess is a continuous 

time stochastic volatility process, the object of interest of the econometrician is often 

not the instantaneous volatility but Q V. Modelling directly the dynamics of Q V as a 

dis crete variable and the estimation of such models using realised variance series has 

been a subject of increasing interest in recent research. It has been shown (see, for exam­

pIe, Barndorff-Nielsen and Shephard (2002a), and Meddahi (2002a) among others) that 

certain classes of continuous time stochastic volatility processes imply ARMA dynamics 

of the Q V and RV series, and that there is a correspondence between the number of 

latent volatility variables in the continuous time model and the or der of the correspond-
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ing ARMA processes4 . ARMA dynamics of Q V may encompass a class of diffusion or 

jump-diffusion processes as possible DGPs, i.e., the discrete modelling provides a more 

flexible framework than that of the diffusion models which may serve as its generator5 (). 

There is also a connection between ARMA dynamics of RV and weak GAReR processes: 

a weak GAReR pro cess implies that the RV pro cesses sampled at various frequencies 

are ARMA. 

If it is assumed that the DGP is a well-behaved stochastic volatility or GAReR 

process, then the variance of the innovations in the ARMA presentation of RV exists 

(also the innovations are, of course, not Gaussian and moreover, they do not necessarily 

follow an m.d. sequence - see Meddahi (2002b) and references there) and it is a function of 

the parameters of the DGP. Then the ARMA can be estimated using QML or sorne other 

standard method, and the ARMA presentation can be used to estimate the parameters 

of the assumed continuous-time DGP. This approach is not legitimate, however, if there 

is measurement noise with unknown properties. 

The objective of our research was to develop an estimation and forecasting methodol­

ogy robust to the specification of the estimation noise and the measurement noise in RV. 

It is not possible, of course, to develop a model with no assumptions about the nature of 

the DGP, and the robustness do es not come without costs - a loss of efficiency is one of 

them. We believe nevertheless that the technique we suggest complements the existing 

methods of modelling the dynamics of realised quadratic variation and quadratic vari­

ation. Our robust technique may offer superior performance in cases in which the gain 

in efficiency due to a more rigid model structure is more than offset by the misspecifica­

tion error; our technique can set an empirical "reality check" benchmark for alternative 

approaches. We think also that thanks to robustness and computational simplicity our 

4This research can be viewed as a continuation of the agenda started in Drost and Nijman (1993) 
and Drost and Werker (1996) on temporal aggregation of heteroskedastic pro cesses and on bridging the 
gap between discrete time and continuous time modelling of financial processes. 

5The adverse side of this fiexibility is the problem of identifying the assumed diffusion or jump 
diffusion DGP based on the estimated dis crete model of quadratic variation. 

6See also Andersen, Bollerslev, and Meddahi (2002a) and Andersen, Bollerslev, and Meddahi (2002b) 
where the ability of dynamic models to forecast volatility is analysed. 
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approach offers researchers and practitioners a convenient tool for data exploration. 

Our methodology builds on two main ideas: first, on using AR( (0) to estimate ARMA 

parameters and to identify ARMA models; this idea has been developed, in particular, 

in Galbraith and Zinde-Walsh (1997). Second, because of the measurement error on the 

I.h.s. we use robust least absolute deviation regression (LAD), or quantile regression, to 

estimate this infinite regression. Our model is a regression model in which the coefficients 

are those from the ARCR(oo) model (which can be seen as a representation of the 

underlying GARCR model). We apply our technique to studying the dynamics of realised 

quadratic variation of foreign exchange rates (DMjUS$ and YenjUS$) and of the TSE 35 

stock index. We also evaluate the forecasting performance of our estimator and compare 

it to the performance of alternative models of volatility dynamics. 

The exposition will proceed as follows: Section 3.2 describes concisely the main results 

of the the ory of QV and RV. Section 3.3 introduces the results on the asymptotic 

distribution of the infinite autoregressive quantile estimator and on LAD estimation and 

identification of ARMA pro cesses using the AR( (0) representation. Empirical results of 

the study are reported in Section 3.4: we st art the section with the description of the 

data, proceed with the results of LAD and quantile estimation of RV of the stock index 

and the exchange rates, and with the empirical analysis of the forecasting performance 

of our LAD estimators. Section 3.5 concludes the exposition. The proofs of the theorems 

are presented in the Appendix. 
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3.2 Semimartingales, Quadratic Variation and Re­

alised Quadratic Variation 

3.2.1 RV as a measure of QV 

We write the log-priee pro cess as y* (t). Let ft > 0 denote a fixed interval; the return 

over this interval is defined as 

Yi = y* (ift) - y* ((i - 1) ft) 

During the interval ft we can compute M intra-interval returns which we denote 

* ((. 1) lo ftj) * ((. 1) lo ft (j - 1)) yj,i = Y z - n + M - Y Z - n + M 

The RV is defined as 
M 

[Y~L = LyJ,i 
j=l 

A stochastie proeess y* (t) (y* (0) = 0) is a semimartingale, if it ean be presented as 

y* (t) = Œ (t) + m (t), Œ (0) = m (0) = 0 

where Œ (t) is a pro cess with loeally bounded variation paths, and m (t) is a local martin­

gale. If Œ (t) is a predictable pro cess , then y* (t) is called a special semimarlingale; the 

processes of interest to us are always special semimartingales. A Q V pro cess is defined 

as 

[y*] (t) = y*2 (t) - 21t 

y* (s-) dy* (s) 

For semimartingales, as it has been shown in ABDL, 

[Y*L = p lim [Y~]i 
M--+oo 
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Let us consider several special cases. First, 

[y*] (t) = [y*C] (t) + L {~y;}2 
0':::89 

where y*c is a continuous component of y* (t) and the rest is the jump component. In 

the context of special semimartingales we can write further 

[y*] (t) = [m](t) + L {~Œ (S)}2 + 2 L ~m (s) ~Œ (s) 

As one can see, if Œ (t) is continuous (even if m (t) is not), then 

[y*] (t) = [ml (t). 

From the above follows an important result about quadratic variation of semimartingales 

(noted first, probably, in ABDL) that 

Claim 3.2.1 For all semimartingales, RV converges in probability to QV as M --+ 00. 

The rate of convergence is unknown, as is the asymptotic distribution. 

A set of conditions, still in the general semimartingale setup, sufficient for: 

Var (y* (li) 1J'0) - E [{y~ h 1J'0] = 0 (1) 

is formulated in Barndorff-Nielsen and Shephard (2002b). 

For the class of stochastic volatility pro cesses for which the log-priee follows 

y* (t) = Œ (t) + lt a (t) dw (t) , (3.1) 

where the drift Œ(t) and a(t) > 0 obey sorne mild regularity assumptions, Barndoff­

Nielsen and Shephard developed (see Barndorff-Nielsen and Shephard (2002b) and other 

articles of these authors referrenced in the bibliography) the asymptotic theory of RV 
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summarised by the expression below7 8: 

L M 2 ];lïi 2 ( ) d . ,,- . (J S S 
)=1 Y)" 1ï(,-1) ~ N (0, 1). 

J~ L~lyj,i 
(3.2) 

As one can see, the asymptotic distribution of the RV is mixed Gaussian since both the 

numerator and the denominator of (3.2) are random. The implications of this result are 

that while RV is a consistent estimator of Q V under the stated assumptions, it is noisy, 

and that the approximation noise is higher at higher volatility levels. Barndorff-Nielsen 

and Shephard (2002b) illustrate this fact empirically using currency exchange rate series 

- the same data we use in our study. Our analysis using conditional quantiles detects 

qualitatively similar regularity in the data. 

3.2.2 Second order properties of QV and RV 

One can approach the modelling of the dynamics of QV from two perspectives: first, by 

describing the behaviour of this statistic implied by a DGP of practical or theoretical 

interest (in continuous-time or in discrete-time formulated at a higher frequency); second, 

by designing an econometric model of the Q V process itself, assuming as litt le as possible 

about the true DGP in continuous time or at a higher frequency, or even not assuming 

existence of such a DGP at aIl. Our approach follows the latter paradigm, and as it 

is often do ne in statistics, we assume a certain linear structure in the dynamics of the 

statistics of inter est - Q V and RV. Remarkably, several widely used financial dynamic 

models also imply linear dynamics of these statistics - specifically that they follow an 

7They extended this result to a more general case of power variation. 
BThe authors offer also an alternative formulation of the asymptotic theory of RV, which has, in their 

opinion, superior finite sam pIe behaviour: 

2:~11n(YJ,i) -ln(J~~_l) (]'2 (8) d8) L 
NI 4 --> N (0, 1) . 

2 I: J~l Yj,i 

'3 (I:~~, y;S 
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ARMA process. 

It has been shown in Barndorff-Nielsen and Shephard (2002a) that if the spot volatil­

ity follows a linear combination of p constant elasticity of variance (CEV) or positive 

Ornstein-Uhlenbeck (OU)9 processes and if o:(t) = 0 in (3.1), then RV follows an 

ARMA(p,p) process. Among other processes which imply ARMA dynamics of the QV 

and RV processes are the continuous SR-SARV process of Meddahi and Renault (2004), 

which encompasses sorne of the processes mentioned ab ove , and the weak GARCR pro­

cess; in aIl these cases the restriction that the drift of the pro cess o:(t) = 0 stayslO. 

Knowing the ARMA representation of QV is helpful for forecasting, filtering, and 

impulse response analysis. The relationship between the parameters and the hyperpa­

rameters of the ARMA and the parameters of the assumed DG P allows estimation and 

statistical inference with respect to the parameters of the DGP based on the estimated 

ARMA representation. Under the assumption that the DGP is one of the pro cesses listed 

just above, estimation of the weak ARMA dynamics of QV poses little problem: the DGP 

guarantees the existence of moments of innovations necessary for applying traditional es­

timation techniques, for example - QML (with the quasi-likelihood function computed 

using the Kalman filter, as suggested in Barndorff-Nielsen and Shephard (2002a). Our 

robust approach cornes to the rescue when the underlying DGP is not known, or when 

the measurements of Q V are polluted with an error, the properties of which are not weIl 

known, and thus the convergence of traditional estimation techniques can not be assured. 

9The use of positive OU pro cesses in tinancial econometrics has been popularised by Barndorff-Nielsen 
and Shephard; see, for example, Barndorff-Nielsen and Shephard (2001). 

lOThe requirement to set the drift to zero is a limitation, especially in tinancial applications, where 
the risk premium on an asset is a function of time, implying the presence of drift. In the article just 
mentioned and in other publications Barndorff-Nielsen and Shephard claim that for practical purposes 
the error resulting from setting the drift to zero is small. Our technique do es not require assumptions 
with respect to the drift. 
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3.3 Asymptotic Theory of Robust Infinite Regres-

. 
SIon 

3.3.1 Conditional Quantile Estimation 

We consider a discrete stochastic process {Yt, X t}, and an increasing sequence of a-fields 

{'St}, where X t is rneasurable W.r.t. 'St. Denote Xq(Yt) == Xq (Ytl'St) the qth quantile of 

the conditional distribution of Yt. Define the check function as: 

(3.3) 

We introduce sorne notational conventions. We denote the vector 

Xt(k) == (XO,t,X1,t, ... ,Xk,t)' with XO,l = 1 (we allow k = (0). For any k < 00, 

Xt(oo) can be partitioned as Xt(oo) = (Xt(k),Xt(k+ 1,(0)); analogously, )'q(oo), an 

infinite vector of coefficients of the linear representation of Xq(Yt) considered below, can 

be partitioned as hq(k), )'q(k + 1,(0)). 

Assumption 3.3.1 

For a sequence of (possibly random) matrices {VT(k)}, 

(a) VT(k)-l Xt(k) is 'St-measurable for all T, kll; 

(c) et - Wq = Yt - X;(oo))'q(oo), where Wq is a constant, is such that 

(i) {et, X t} is a stationary ergodic sequence 

(ii) p.d.f. of Pe(x) exists and is continuous and positive at Wq 

llT is an integer index; in practice, T can be thought as a sam pIe size. 
12The derivative of the check function, f~ (x), is defined and continuous everywhere except O. 
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(d) sup max iVi1(k)Xt(k) 1 = Op(1)13,. 
l::;tST 

(e) 
T 

max LVT(k)-lXt(k)'Xt(k)VT(k)-l - Ik+l = op(1): 
t=l 

(f) There exists a monotonically increasing function w(x) such that k = w(T) -+ 00 as 

T ---+ 00 and 

We denote by iq(k) the quantile estimator of "(q(k): 

T 

iq(k) = argmin Lfq (Yt - Xt(k)"((k). 
"((k) t=l 

[
h' 0 1 For any fixed k' < k, define Dk == 0 0 . We are now ready to formulate the result 

pertaining the asymptotic distribution of the quantile estimator. 

Theorem 3.3.1 Under Assumption 3.3.1 as T ---+ 00, k = w (T), 

Note that we assume only that a specifie quantile is represented as in Assumption 3.3.lb 

and that the approximation error satisfies the other conditions formulated in Assumption 

3.3.1. We do not daim that these conditions are satisfied when the true DGP follows one 

of the processes considered in the previous section. We just offer this linear representation 

of conditional quantiles as a flexible framework for modelling the dynamics of Q V. 

13For any matrix X, max IX 1 denotes in this paper the absolute value of the largest component of the 
matrix. 

14Note that if components of Î, Îk decline exponentially in k and components of X t grow at most at 
a polynomial rate then for k = Ta:, Clé > 0 condition (f) is satisfied. 
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If Xl,t = Yt-l, l 2:: 1 then this estimation approach deals with an AR( (0) represen­

tation which is more general than any ARMA representation. In sorne cases it may be 

advantageous to use the ARMA model instead of the AR( (0), or its feasible counter­

part - AR(p). For example, a more parsimonious representation like ARMA may yield a 

better forecasting performance, or we may want to incorporate into the estimation and 

forecasting prior knowledge about the pro cess - that it is indeed an ARMA. To obtain 

estimates of ARMA parameters from the AR( (0) presentation we pursue the strategy 

developed in Galbraith and Zinde-Walsh (1994) and Galbraith and Zinde-Walsh (1997), 

where the autoregressive presentation and OLS are used for estimating an ARMA. The 

parameters of AR( (0) are estimated using a truncated AR( k) representation; the order 

of truncation k must be such that k ---> 00, kiT ---> 0 for consistent estimation of the 

parameters of the ARMA. The ARMA parameters are evaluated using the deterministic 

relationship between them and the coefficients of AR( 00 ). Since the coefficients of an 

AR( (0) presentation are continuous functions of the corresponding ARMA parameters, 

obtaining the asymptotic distribution of the estimates of the latter poses no difficulties. 

We refer the reader to Galbraith and Zinde-Walsh (1997) for details of the method, and 

we shall illustrate its application in the example below. 

Example: Robust Estimation of Weak GAReR using RV. Let's assume that 

the data generating process (DPG) at a higher frequency is a weak GARCR15, i.e., that 

the linear projection of the conditional variance is expressed as: 

p q 

a; = w + L o;iaL + L (3i ELi' (3.4) 
i=1 i=1 

A weak GARCR process, as has been shown in Francq and Zakoïan (2000) results 

in a stationary, invertible ARMA presentation of squared innovation E; and thus allows 

for an infinite autoregressive representation of the variance a; == Pr (EnSt)16, CSt = 

15Since weak GAReR is invariant with respect to aggregation, we do not need to worry if the choice 
of the high sampling frequency is appropriate. 

16Pr (·I;St) denotes here a linear projection. 
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We have a measurement ô-; for 0";; 0"; is measured with error, and the value ô-; can 

be represented as ô-; = 0"; + Wt. Then 

(3.5) 

Using the notation introduced at the beginning of this section, we denote XO,t = 1, 

X/,t = EL and re-write equation (3.5) as 

fJ; = X; (00) 1 (00) + Wt = X; (k) 1 (k) + X; [k + 1, (0) 1 [k + 1, (0) + Wt. 

To proceed, we need to specify a set of conditions. 

Assumption 3.3.2 

(a) {E;, Wt} is a stationary ergodic sequence; 

(b) EEt < 00; 

(d) XO.5 (fJ;l'St) = X;(oo)/(oo) or equivalently, XO.5(Wtl'St) = 0, 

where XO.5 denotes the median (50% quantile) of the distribution; 

(e) the probability density function of Wl, fw(x), exists, and is positive and continuous 

in a neighbourhood of XO.5. 

We now define 

where k can be infinite; the matrix obtained from L:( (0) by deleting the first row and the 

first column is the covariance matrix for {En~l. Define VT = T!L:(k)!. 
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Theorem 3.3.2 Under the Assumption 3.3.2 the least absolute deviation (LAD) esti­

mator ~(k), for any matdx n ~ (I~' :), has the following Mymptotic distdbution, 

V(T)D("!Ck)-r(k))=>N(O, 1 2 (DI: (00) D)-l) 
(2fw (XO.5)) 

where (fŒ (00) D)-l can be consistently estimated by D (~X'(k)X(k)r1 D provided that 

as T -+ 00, k = w(T) = 0 (T~); Inw(T) -+ 00. 

The proof of the theorem is in Appendix 3.3.2. Notice that the conditions of Assump­

tions 3.3.2 are not very restrictive: we require only the existence of the 4th moment of the 

GARCR innovations, plus ergodicity; these conditions can be substituted by sorne alter­

native conditions which would allow the application of the law of large numbers (LLN) 

(see proof). We do not impose any assumptions about the existence of the moments of 

the measurement error of (}2, as long as the error has zero median. 

To estimate the parameters of the GARCR model (3.4) we notice that if the GARCR 

and the AR( (0) representations of conditional variance are non-stochastic, then the 

AR( (0) parameters can be expressed recursively as functions of the G ARCR parame-

ters: 

min(Z,p) 

Vz = (3z - L aiVZ-i, l :S q 
i=l 

min(Z,p) 

Vz = L aivZ-i, l > q 
i=l 
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and finally, 

With Vo == 0 we define 

v(O) = , and v( -i) = 

Next, define the (k-q) xp matrix W = [v( -l)v( -2) ... v( -p)] where V r == 0 for r :s; O. It 

follows from (3.6) that v(O) = a/W. The p xl vector of estimates of GAReR parameters 

a is defined by 

a = (W'W) -1 W'v(O), 

where the VI are substituted in the expression above by their estimates VI. The estimate 

of the vector of GAReR parameters (3 is easily obtained from (3.6), knowing a and VI. 

The variance-covariance matrix of the estimated vector of GAReR parameters (w, a,~) 

is computed knowing the variance-covariance of the estimates of the AR(k) parameters 

given by the Theorem 3.3.2 and the Jacobian of the transformation, using the usual 

sandwich formula. 

End of the example 

We must point out a caveat here. The ARMA presentation of RV series considered 

in Section 3.2 describes the dynamics of the mean of RV (conditional on the information 

set consisting of past values of RV). The estimation procedure described in the example 

above yields the condition al median; the two are equal if the conditional distribution is 

symmetric. While we cannot daim that the conditional distribution is necessarily sym-
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metric when we apply our model to RV series, i.e. our characterisation of the conditional 

location is different from that of the models of conditional mean, we do not see this as 

an obstacle to practical use. 

In the example above and in the empirical part of our study we project the conditional 

quantile on the set of past squared innovations, but our theoretical result says nothing 

specifie about the nature of the projection set: it may consist of other non-linear functions 

of the innovations or the set may include auxiliary variables. These variables in the linear 

presentation must only meet the requirements of Assumption 3.3.1. 

3.4 Empirical results: dynamics of QV and RV of 

foreign exchange rates and a stock index 

3.4.1 Description of the data 

As we have noted, two types of data are used in this study: an equity-price index and 

a set of foreign exchange priees. The former is a short (one-year) span of very high­

frequency data, spaced fifteen seconds apart, on the Toronto Stock Exchange index of 

thirty-five large-capitalization stocks (TSE 35), for the calendar year 19981718 . The lat­

ter is a fourteen-year sequence of observations spaced at five minutes, and pertain to 

the DEM/USD and JPY /USD (German mark and Japanese yen respectively to US dol­

lar) exchange rates. The fifteen-second intra-day data on the TSE 35 index value (as 

well as bid and ask) are available through the 9:30 to 16:00 trading day, for a total of 

approximately 1560 observations per day. 

The data must be filtered to recognize the fact that trading does not take place 

throughout the 24-hour day, and that there are occasional anomalies near the beginning 

17This index has since been superseded by the S&P /TSE 60 Index of large capitalisation stocks. 
18It is well documented in the financial literature that stock priees exhibit a leverage effect. Our 

dynamic model does not take the leverage effect into account. However, for the class of SV models, for 
example, convergence in probability of RV to QV holds in the presence of leverage, i.e., projecting RV 
on past innovations may yield meaningful inference about Q V even in the presence of leverage. 
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of the trading day. First, we treat the change in the index value between the 16:00 close 

and 9:30 open on the following day as a contribution to realised quadratie variation. The 

logie for such treatment is the following: one can assume that there is a latent information 

pro cess which is manifested through trading; even though there are no trades between the 

close and the open, this latent process is not interrupted, and in the absence of trading the 

best available estimate of the Q V overnight (or over the weekend) is probably the squared 

return over this period 19. Second, the first few minutes of the trading day typically show 

the index value outside the bid/ask range; within the first two minutes of trading, the 

index value is usually again within the range. We therefore use the midpoint between 

bid and ask for the first two minutes of the trading day, by which point the two measures 

are almost invariably compatible. Finally, of course, we must decide on a level of time 

aggregation, or ft in the notation of Section 2. Since the raw data are provided at 15-

second intervals, summing four squared returns to obtain a single intra-day observation, 

that is aggregating to one-minute returns, implies ft = 1560/4 = 390 observations per 

day; aggregation to the five-minute interval corresponds to ft = 1560/20 = 78; the results 

presented in this paper correspond to the latter aggregation frequency. Each of the 

filtering operations applied to these TSE 35 data are described more fully in Galbraith 

and Kisinbay (2002). 

The foreign exchange data used in this study are taken from the HFDF 2000 data 

set compiled and distributed by Olsen Group, Switzerland. Foreign exchange returns 

recorded every five minutes span the period from January 2, 1986, 00:00:00 GMT to 

January 1, 1999, 23:35:00. The returns are computed as the mid-quote price difference, 

expressed in basis points (i.e. multiplied by 10,000). The midquote priee at the regular 

time point is estimated through a linear interpolation between the previous and following 

mid-priee of the irregularly spaced tick-by-tick data. The average bid-ask spread over the 

last 5-minute interval is expressed in basis points. If there is no quote during an interval, 

19I.e., we cannot feasibly construct RV series in the way required by the asymptotic theory, and we 
know very litt le about the properties of the approximation error. This is a case in which a robust 
approach becomes useful 
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the mean bid-ask spread is zero. Currencies are traded continuously throughout the day, 

seven days a week; thus the data set contains 1,262,016 5-minute returns, expressed in 

USD terms. In order to compute realised variances, it is necessary to perform filtering. 

We have followed Bollersiev and Domovitz (1993) and other researchers who have worked 

with these data, in defining the trading day t as the interval from 21:05 GMT of the 

previous calendar day to 21:00 GMT on the calendar day t. The estimate of daily realised 

quadratic variation, is computed by summing squares of currency's five-minutes returns 

over the day. Following ABDL, we have filtered out of the data days with low trading 

volume. The filters that we applied to the data eliminated weekends, fixed holidays 

(December 24-26, 31, January 1-2) as weIl as moving holidays (Good Friday, Easter 

Monday, Memorial Day, the Fourth of July, Labour Day, Thanksgiving (US) and the day 

after Thanksgiving. In addition, we have eliminated from the data the days for which the 

indicator variable (the bid-ask spread) had 144 or more zeroes, thus corresponding with 

technical "holes" in the recorded data. Application of aIl of these filters reduced the data 

sets to 876,096 data points, or 3042 days, for the DEMjUSD, and 877,248 or 3046 days 

for the JPY jUSD. Graphs of daily series of realised quadratic variation of DEMjUSD 

and JPY jUSD exchange rates are presented in Figure 3-1. 

3.4.2 Projection of quantiles of QV on past squared innovations 

In this section we use quantile regression to describe certain empirical dynamic properties 

of the conditional distribution of Q V and RV. 

Figure 3-2 depicts a one-period-ahead in-sample forecast of conditional 0.1, 0.3, 0.5, 

0.7, and 0.9 quantiles of QV for the period from November 1995 to December 19982°. 
The forecast is computed using the AR(14)21 representation. 

Visual inspection of the graph confirms our a priori conjecture that the distribution 

20We have chosen not to show an of the data, to improve the readability of the graph; the choice of 
the period is arbitrary. 

21Here and below in this section AR(k) denotes LAD or quantile regression of RV on the k past 
squared daily returns. 
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Data Series T 

TSE 35 352 

DEM/USD 2970 

JPY /USD 2970 

Table 3.1: Correlation of realised quadratic variation with ratios of upper- to lower 
conditional quantiles 

of the variance would be skewed to the right: almost uniformly the difference between the 

conditional median and the 0.7 quantile (or 0.9 quantile) exceeds the distance between 

the 0.3 (0.1) quantile and the median; the distance between the 0.7 and 0.9 quantiles 

exceeds the distance between the 0.1 and 0.3 quantiles. 

As has been mentioned, the asymptotic theory developed by Shephard and co-authors 

implies that typically the variability of RV as an estimator of Q V is higher when the level 

of volatility is higher. Our empirical analysis discovers qualitatively similar properties 

in the dynamics of the data. We analyse the correlation between the level of realised 

quadratic variation and the ratios of upper-to-lower quantiles of conditional forecast of 

Q V; the quantitative results of this analysis - the correlations and the corresponding HAC 

standard errors are presented in Table 3.1. In all cases we observe that the correlation 

is positive; it is not statistically significant for the smaller TSE data set but for larger 

currency exchange series it is significant at the 1 % level for three cases out of the four 

presented. In the fourth case the estimated Corr ( RV, t.;-) for JPY /USD has the p-value 

of 10%. 

3.4.3 ARMA Models of Conditional Quantiles of Variance 

In the context of this section ARMA(p,q) denotes a parsimonious representation of the 

coefficients of the infinite-dimensional quantile regression. We now consider estimates 
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of the ARMA parameters of the condition al quantiles of volatility using the methods 

introduced in Section 3.322
. We begin with the ARMA(1,l) model and then consider the 

possibility of using ARMA representations of higher order23
. 

Table 3.2 presents estimates of the parameters of the ARMA(1,l) model for quantiles 

from 0.1 to 0.9 of daily QV for foreign exchange series. As an example of the inter­

pretation of these numbers, consider the DEM/USD exchange rate. Conditional on a 

previous-period RV of 0.0004 and squared return of 0.00015, the lOth and 90th per­

centiles of the conditional distribution of quadratic variation lie at 0.00026 and 0.00033. 

That is, 10% of values of quadratic variation would be below the first number and above 

the second, given the conditions mentioned. This calculation therefore allows daily com­

putation of the quantiles of the conditional distribution of the next day's volatility, given 

the conditions just observed. 

If the DGP of the process were ARMA with homoscedastic innovations, then we 

would expect only the intercept of the quantile regression to change from one quantile 

to another, while the slope coefficient would remain invariant. We observe empirically, 

however, that while the intercept indeed increases from lower quantiles to higher, the 

slope coefficients change too, most notably - the moving average coefficient, which tends 

to be larger for higher quantiles than for lower lower quantiles. One of the implications 

of this observation is that it is not consistent with strong GARCH(l,l) as the true DGP. 

On a smaller data set of equity returns, we present only 0.2, 0.5 and 0.8 conditional 

quantiles. We observe the same pattern: the conditional variance has a higher intercept 

and higher values of f3 at higher quantiles. 

N ext consider the specification of alternative ARMA models for the conditional quan­

tiles. In Table 3.4 we report the results of ARMA model selection using the Bayesian 

22 As follows from the discussion in Section 3.3 and the Example on page 63, if the DGP is a weak 
GARCH(p,q), the QV and RV follow an ARMA(p,q), but other DGP may also generate ARMA dy­
namics of RV. 

23Throughout this section the number of approximating AR terms used in the ARMA model estimation 
is k = 14 for the foreign exchange data and k = 8 for the sm aller equity index data set. These orders 
are approximately those implied by the rule of thumb k = 8 + int (21n c~o)) stated in Galbraith and 
Zinde-Walsh (1997). 
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DEM/USD JPY/USD 
Quantile w Ct (3 W Ct (3 

0.1 1.0 x 10-5 0.607 0.059 0.064 0.594 0.065 
(9.0 x 10-7 ) (0.028) (0.003) (0.007) (0.032) (0.003) 

0.2 1.2 x 10-5 0.595 0.079 0.072 0.632 0.084 
(1.1 x 10-6 ) (0.025) (0.003) (0.007) (0.024) (0.003) 

0.3 1.2 x 10-5 0.640 0.087 0.091 0.596 0.108 
(1.1 x 10-6 ) (0.023) (0.003) (0.007) (0.020) (0.004) 

0.4 1.5 x 10-5 0.634 0.100 0.102 0.609 0.122 
(1.3 x 10-6 ) (0.024) (0.004) (0.008) (0.019) (0.004) 

0.5 1.5 x 10-5 0.655 0.112 0.120 0.590 0.141 
(1.3 x 10-6 ) (0.023) (0.004) (0.008) (0.017) (0.004) 

0.6 1.6 x 10-5 0.689 0.118 0.130 0.613 0.154 
(1.5 x 10-6 ) (0.023) (0.004) (0.008) (0.016) (0.004) 

0.7 1.7 x 10-5 0.695 0.134 0.170 0.579 0.183 
(1.8 x 10-6 ) (0.024) (0.005) (0.010) (0.017) (0.004) 

0.8 2.0 x 10-5 0.686 0.171 0.251 0.480 0.253 
(2.3 x 10-6 ) (0.027) (0.007) (0.016) (0.019) (0.006) 

0.9 2.5 x 10-5 0.698 0.194 0.360 0.423 0.403 
(4.1 x 10-6 ) (0.038) (0.013) (0.032) (0.026) (0.012) 

Table 3.2: Foreign exchange rates: estimated ARMA(l,l) coefficients for specifie quan-
tiles of variance 

Quantile w Ct (3 
0.2 5. x 10-6 0.70 0.05 

(4. x 10-6 ) (0.14) (0.02) 
0.5 6. x 10-6 0.76 0.10 

(4. x 10-6 ) (0.07) (0.02) 
0.8 2. x 10-5 0.55 0.16 

(8. x 10-6 ) (0.08) (0.02) 

Table 3.3: TSE 35 equity index returns: estimated GARCH(l,l) coefficients for specifie 
quantiles 
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DEMjUSD JPYjUSD 
Quantile (p*, q*) I>l:i L. (Ji (p*, q*) Œ L. (Ji 

0.1 (4,1) 0.709 0.059 (4,1) 0.733 0.065 
0.2 (4,2) 0.623 0.113 (3,4) 0.825 0.061 
0.3 (3,2) 0.700 0.112 (2,2) 0.568 0.114 
0.4 ( 4,1) 0.768 0.101 (2,2) 0.601 0.146 
0.5 (4,1 ) 0.754 0.126 (2,2) 0.472 0.187 
0.6 (3,2) 0.788 0.127 (2,2) 0.467 0.227 
0.7 (4,3) 0.760 0.165 (2,2) 0.474 0.247 
0.8 (3,4) 0.711 0.229 (3,2) 0.550 0.282 
0.9 (2,2) 0.687 0.264 (4,1) 0.547 0.403 

Table 3.4: Foreign exchange rates: ARMA model selection by quantile of variance 

Information Criterion (BIC) and the Final Prediction Errar (FPE), from the set of model 

orders (p,q), p = 1, ... ,4; q = l, ... ,4. The chosen optimal order is the same for the two 

criteria in each case. 

The information criteria favour models with at least four ARMA parameters in ad­

dition to the intercept. In these higher-order models as weIl we see the larger values of 

(J associated with higher quantiles. The intercept values (not recorded in Table 3.4) also 

increase monotonically with the quantile, as in the results of Table 3.2, while there is no 

pattern of regular increase in the coefficients on lagged realised quadratic variation: that 

is, the higher quantiles do show similar persistence of volatility, and the higher values 

are refiected in higher weight on recent squared returns. 

The observation that fitting empirical realised quadratic variation series requires an 

ARMA pracess of order higher than one is consistent with the analysis presented by other 

researchers (for example, Barndorff-Nielsen and Shephard (2002a), Meddahi (2002a), and 

Andersen, Bollerslev, and Meddahi (2002a)), who notice that continuous-time stochastic 

volatility models often require more than one latent factor driving the spot volatility, 

to achieve a satisfactory fit to empirical data. As has been mentioned, many of these 

models imply ARMA dynamics of Q V of order equal to the number of independent latent 

factors. 
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3.4.4 Forecasting performance of AR(p) and ARMA estimators 

Forecasting performance, especially out-of-sample forecasting performance, is tradition­

ally an important criterium of model evaluation in empirical financial research. A compre­

hensive investigation of forecasting performance with respect to Q V and RV of dynamic 

models of volatility, estimated using high-frequency data, has been conducted recently 

in Andersen, Bollerslev, and Meddahi (2002a) and Andersen, Bollerslev, and Meddahi 

(2002b). This research shows that if the DGP is one of the popular stochastic volatility 

models with parameters typical for financial series 24 then first, QV is highly predictable 

with an ideal (infeasible) one-period-ahead forecast R2 exceeding in many cases 95% , and 

second, that the loss in the performance of the feasible forecast based on RV, compared 

with the ideal forecast, is not large, and that the feasible forecast R 2 is in many cases 

in the 80th or even in the 90th percentile. The study points out also that the theoretical 

predictive power of forecasts based on past daily squared innovations is substantially 

inferior to that of model-based forecasts. 

In practice, unfortunately, we do not know the true dynamic model of volatility; 

the properties of both misspecification error and the estimation error are difficult to 

formalise. As one would expect, while the dynamic models of volatility show a good 

ability to forecast RV in empirical applications, they do not achieve their theoretical 

forecasting power. 

We have anticipated that the fiexibility and robustness of our estimation approach 

would translate into good forecasting performance. Table 3.5 presents results of the 

study of the forecasting performance of our models. For this analysis the data set is split 

into two parts: we use the first three quarters of the data to estimate the model and 

for in-sample analysis; we use the remaining quarter for the analysis of out-of-sample 

performance. In the table we report the ordinary R 2 of one-day-ahead forecasts and also 

the results (the intercept, the slope and the R2) of the Mincer-Zarnovitz regression of 

24Three models are considered: the GARCH diffusion model of Nelson (1990), the two-factor affine 
stochastic volatility model, and the log-normal diffusion. 
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realised values on the forecasted values. We also report the intercepts and the slopes of 

LAD Mincer-Zarnovitz regressions for the ARMA model (the intercept and the slope for 

the AR model are 0 and 1 by definition). 

We consider two models: AR(12) and ARMA(1,l), and two estimation techniques, 

OLS and LAD. This gives for each currency (JPY and DEM) four sets of results in­

sample and four out-of-sample sets. Both for DEM and JPY the in-sample R2s are in 

the upper 20th - lower 30th percentiles for the models considered. We would not be 

surprised if there were a bias in the Mincer-Zarnovitz regression for LAD estimation 

of the AR model, since it is forecasting the condition al median and not the conditional 

mean, but the estimated bias is not statistically significant. The in-sample forecasts using 

the ARMA(1,l) model have a statistically significant bias; in addition, the slope of the 

Mincer-Zarnovitz regression is less than one, i.e., a more parsimonious model produces 

a smoother the forecast in this case. The bias and the slope are similar for the two 

estimation techniques. The in-sample predictive R 2 are very close to the values reported 

in Andersen, Bollerslev, and Meddahi (2002b), who studied the same data set 25. The 

in-sample predictive power ofthe ARMA(1,l) model is consistently but not substantially 

lower than that of the AR(12) model, which is not surprising because the former is more 

parsimonious. The in-sample predictive R2 s of the models estimated using the LAD 

approach are somewhat lower than those estimated using OLS, which is again natural 

because the R 2 criterium puts LAD at a disadvantage in comparison with OLS. 

We turn now to the analysis of out-of-sample forecasts. For the DEM series, the 

predictive R 2 of the AR(12) model, 20%, is almost identical to the value reported in 

Andersen, Bollerslev, and Meddahi (2002b). A more parsimonious GARCH(l,l) model 

outperforms the forecast obtained using the AR(12). The robust LAD estimator outper­

forms the OLS. The out-of-sample predictive R2s achieved by our models applied to the 

25The results reported in Andersen, Bollerslev, and Meddahi (2002b) are for an AR(5) model, but 
according to the authors, other models produce similar R2s; the R2s reported in this reference are 
adjusted for bias due to measurement error in the future RV. We do not adjust our R2 because we do 
not want to introduce the additional assumptions required for such adjustment, i.e. our R 2s are biased 
downwards. 
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JPY /USD series ranges from the upper 30th to the upper fiftieths percentiles; they are 

higher than than those resulting from the in-sample forecasting. While we attribute these 

unexpectedly high predictive R2s to peculiarities of the data, we again notice that out­

of-sample the ARMA(1,l) performs better than the AR(l2), and that robust estimation 

yields better results than the OLS approach. 

It was suggested (see, again, for example, Andersen, Bollerslev, and Meddahi (2002b) 

and references there) that a linear model be used to describe the dynamics of a non-linear 

transformation (square root or logarithm) of QV and RV instead of those quantities 

themselves. While these transformations bring the distribution of the error doser to 

the normal and thus improve the accuracy of the estimation and of the forecast, the 

drawback is that the transformation producing the best estimation or forecast results is 

not necessarily the quantity of interest to the researcher. We have a chance to emphasise 

again here the advantage of the robust approach, which allows the researcher to specify 

the model in terms of the quantity of interest. 

3.5 Concluding remarks 

We develop in this research a framework for modelling conditional quantiles for a dass 

of processes, where these quantiles can be represented or approximated by linear combi­

nations of infinite series of random variables. We impose very mi Id restrictions on these 

series which enSures the fiexibility of our modelling framework. Since our approach allows 

us to model any quantile of the distribution, it can be viewed as a non-parametric tool 

permitting us to investigate the whole shape of the conditional distribution of the series 

of interest. 

We apply our technique to investigate an object that has attracted a great deal of 

attention from researchers in the last several years - the dynamics of quadratic variation 

(QV) and realised quadratic variation (RV). The advantage of our estimator here is that 

it is robust - it retains consistency and asymptotic normality, without requiring that the 
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Model Method R2 a b 
JPY /USD in-sample 

AR(12) OLS 0.312 - - - - -

LAD 0.302 1. 14e-5 0.939 0.304 - -

(1.65e-6) (0.030) 
ARMA(1,l) OLS 0.288 1.82e-5 0.688 0.363 - -

(1.33e-6) (0.019) 
LAD 0.289 2.04e-5 0.697 0.356 1.05e-5 0.738 

(1.30e-6) (0.020) (9.24e-7) (0.014) 
JPY /USD out-of-sample 

AR(12) OLS 0.399 -4.20e-5 1.943 0.522 - -
(5.50e-6) (0.069) 

LAD 0.440 -2.58e-5 1.953 0.578 5.75e-6 1.055 
(4.65e-6) (0.062) (3.61e-6) (0.048) 

ARMA(l,l) OLS 0.396 2.03e-5 0.814 0.418 - -

(4.62e-6) (0.036) 
LAD 0.450 1.91e-5 0.898 0.456 1.85e-5 0.660 

( 4.44e-6) (0.036) (3.24e-6) (0.026) 
DEM/USD in-sample 

AR(12) OLS 0.333 - - - - -

LAD 0.319 2.93e-6 1.116 0.322 - -

(1.80e-6) (0.034) 
ARMA(l,l) OLS 0.254 2.01e-5 0.663 0.342 - -

(1.33e-6) (0.019) 
LAD 0.286 2.04e-5 0.712 0.342 1.20e-5 0.722 

(1.30e-6) (0.021) (8.61e-7) (0.014) 
DEM/USD out-of-sample 

AR(12) OLS 0.199 -1.024e-6 0.885 0.203 - -

(2.76e-6) (0.065) 
LAD 0.199 1.65e-6 0.989 0.199 9.15e-7 0.852 

(2.60e-6) (0.074) (1.84e-6) (0.052) 
ARMA (1,1) OLS 0.287 9.68e-6 0.713 0.343 - -

(1.4ge-6) (0.037) 
LAD 0.310 1.00e-5 0.764 0.343 8.47e-6 0.674 

(1.47e-6) (0.039) (1.074e-6) (0.029) 

Table 3.5: One-Day-Ahead Predictive Power 
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daily volatility estimate become arbitrarily accurate through a high frequency sampling 

interval converging to zero. This point is particularly important because in practical 

application, despite the very high frequencies of sampling sometimes available, market 

microstructure effects such as bid-ask bounce invalidate the diffusion approximation at 

very high frequencies. In practice, therefore, one must place sorne limit on the frequency 

of sampling, implying that consistency cannot be obtained via complete convergence of 

the daily volatility estimates to the true values. 

Our analysis of conditional quantiles of the volatility of a stock index and of currency 

exchange series enabled us to discover certain regularities in the dynamics of the condi­

tional distribution of realised quadratic variation; specifically, that the higher quantiles 

of conditional variance increase more than proportionallY in periods of higher levels of 

variance. The latter observation is qualitatively consistent with the asymptotic theory 

of RV developed in recent research by Barndorff-Nielsen, Shephard, and co-authors for 

a class of stochastic volatility models. 

Model selection based on information criteria (BIC or AIC) shows that an ARMA 

model of or der higher than one is necessary to fit the data well (specifically, the infor­

mation criteria favour ARMA(4,1) for the median of the DEMjUSD exchange rate and 

ARMA(2,2) for the median of the JPY jUSD exchange rate). This is consistent with 

recent empirical analysis of stochastic volatility models in application to financial series 

showing that at least two independent latent factors driving volatility are required to fit 

the data adequately; for the popular affine stochastic volatility diffusion models the num­

ber of independent latent factors translates into the autoregressive order of the ARMA 

presentation of the corresponding Q V and RV series. 

Finally, we evaluate the forecasting performance of our estimation framework. We 

show that while the long AR presentation exhibits higher predictive power in-sample (as 

measured by predictive R2
), the parsimonious ARMA(l,l) presentation achieves better 

results in out-of-sample tests. The robust estimation approach consistently improves 

out-of-sample prediction R 2s relative to OLS. In the empirical example considered in 
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this study (DEM/USD and JPY /USD exchange rates), the predictive performance of 

our robust estimators is either comparable or exceeds the performance of alternative 

techniques (see Andersen, Bollerslev, and Meddahi (2002b) and Andersen, Bollerslev, 

Diebold, and Labys (2003)). 
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DEM/USD: Daily RV and Conditional Median 
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Figure 3-1: Daily Realised Quadratic Variation and In-Sample Conditional Median 
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DEMIUSD: Predicted auantiles of av 
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Figure 3-2: In-Sample Conditional Quantiles of Volatility 
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Chapter 4 

Circuit Breakers and the Tail Index 

of Equity Returns 1 

4.1 Introduction 

The ide a of this short empirical investigation came in the spring of 2002. At the time, the 

stock market was continuing its steady faU from the stratospheric highs of the nineties (the 

key word here is steady). Indeed, although at the time Dow Jones Industrial Average 

(DJIA) had declined almost by 20% from its highest level in January of 2000 (and it 

had been even lower immediately after the events of September 11, 2001), we did not 

observe during this decline extreme fluctuations similar to those before the famous (or the 

infamous) crash of October 17, 1987. It is difficult to pinpoint a specifie event which may 

have caused the market crash in October, 1987, i.e. one does not have reasons to treat 

it as an outlier when describing the dynamics of the stock market of that period. There 

may, however, have been a qualitative difference between the dynamics of the market 

in the recent past and in 1987. These observations came out in a discussion with John 

Galbraith, and we decided that it would be interesting to analyse them more formaUy. 

A number of publications, both academic and professional, offered possible expla-

lThis chapter is based in part on Galbraith and Zernov (2004) 
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nations for the events of October 17, 1987. Changes aimed, in particular, at limiting 

the impact of program trading(and especially of portfolio insurance programs) which was 

widely blamed for the crash, were introduced in the last years of the 1980s and at the 

beginning of the 1990s. There were also publications that analysed the effects of these 

changes. The interest in the topic, however, naturally faded away in the early nineties, 

and few people have touched it since. There are two main reasons why a new study may 

be able to provide further evidence regarding changes in market dynamics before and 

after the crash. First, there has been considerable progress in the theory and practice of 

the analysis of financial extreme events. We build our empirical study on these recent 

developments and focus our attention on the tails of distribution rather than on volatility 

measures, the methodology used by earlier researchers. By focusing on the tails, we can 

examine the evolution of the extreme behaviour over time, within a framework that does 

not put too restrictive conditions on the dynamics of the process. Second, a large sample 

is typically required for any study of extreme behaviour. This is due to the very nature 

of extreme events - they are rare. More than a dozen years of post-crash data allow us to 

obtain a more accurate description of the extreme dynamics of the time series of interest. 

The rest of this chapter will proceed as follows: Section 4.2 presents historical facts 

regarding the emergence of program trading and of portfolio insurance techniques, intro­

duces hypotheses about how program trading and portfolio insurance may have affected 

the dynamics of the stock market, describes the institutional changes which took place 

soon after the events of October, 1987, and reviews the previous literature on the effects 

of circuit breakers on the dynamics of the stock market; Section 4.3 reviews recent devel­

opments in the statistical theory of extreme events and describes the inferential methods 

which will be used in our study; Section 4.4 describes the data and empirical results; and 

Section 4.5 concludes the chapter. 
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4.2 Portfolio Insurance, Crash of October 1987, and 

Circuit Breakers 

The events of October 1987 caught many academic economists and professionals in the 

the investment industry by surprise. It not only destroyed billions of dollars worth of 

wealth but also the comfortable belief shared by many professionals that the science of 

economics and finance had harnessed the wild forces of the market, that famous and 

spectacular market fads, bubbles and crashes, like the Dutch tulipmania of the 17th 

cent ury, or the South Sea bubble in Great Britain at the beginning of the 18th cent ury, 

or Black Monday in 1929 in the United States2 were nothing more than historie facts, 

and that nothing similar would be possible again. 

Elaborate market regulations and safeguards adopted since the crash of 1929 and 

the Great Depression, in the United States and elsewhere in the world, were among the 

sources of increased confidence. Other source was the ground-breaking developments in 

economics and finance that occurred at the end of 1960s and the beginning of 1970s: 

the rational expectations revolution in economics; the development, under the reigning 

hypothesis of market efficiency, of asset pricing and asset allocation theories; and the 

emergence of financial engineering. lronically, in the postmortem analysis of the events 

of October 1987, many put the blame for the crash on investors' over-reliance on the 

financial technologies which were supposed to protect them from financial bad weather. 

The buzz phrases mentioned almost every time in discussions about causes of the 

events of October 1987 are: program trading, index arbitrage, and portfolio insurance. 

Sometimes, however, authors are not very scrupulous in distinguishing between these 

terms. To avoid this, we define and discuss briefiy each of these terms below. 

2There is an abundant literature describing and analysing these famous historical market catastro­
phes. See, for example, Post humus (1929), Garber (1990), and White (1990). 
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4.2.1 Program trading 

The term program trading was probably born at the beginning of 1970s when investment 

professionals were forming groups of stocks with similar characteristics, in order to design 

portfolios with given properties. These groups were called baskets. When adjusting their 

portfolios, managers were trying to sell whole baskets of stocks as quickly as possible 

and to re-invest funds into other baskets. A basket of stocks to be bought or sold came 

to be referred to as a buy or sell program. This term had come into use even before 

index funds and portfolio insurance arrived on the scene (Miller 1989, Chapter 3). In 

general, program trading can be defined as a sequence of trades, usually automatically 

initiated, aimed at achieving a goal which is most often a pre-determined function of 

available market information. Program trading was a tool for implementing in practice 

the financial technologies developed at the end of 1960s and the beginning of 1970s; the 

emergence of affordable mainframe comput ers made program trading a fact of everyday 

life on Wall Street. 

Although the trading on the exchanges was not computer-based at the time and sell­

ers and buyers were matched either by specialists (for example, on the NYSE) or through 

the open out cry system (for example, on the CME), computers and computerised com­

munications were becoming more and more important in the operation of the exchanges. 

In 1976, the AMEX and the NYSE introduced the Designated Order Turnaround system 

(DOT). Originally, DOT was developed as a system to batch together small orders to 

relieve specialists from sorne repetitive functions. After amendments and modifications, 

however, the capacity of DOT to handle larger trades had grown, and the system be­

came a key component in the implementation of program trades. The performance of 

DOT would ultimately prove unsatisfactory during the crash of 1987, contributing to the 

turmoil on this day. 
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4.2.2 Index arbitrage 

In the USA, the first derivative product based on an index was introduced in 1982: 

futures on the index of 1500 stocks published by Value Line, and traded on the Kansas 

City Futures Exchange. Later in the same year, the trading of futures on the Standard 

& Poor 500 (S&P 500) started on the CME (see Miller (1989) for details). Futures based 

on the S&P 500 proved to be very popular - it became the most actively traded futures 

contract. The high liquidity of index futures translated into lower transaction costs. 

This, together with lower margin requirements and an absence of restrictions on short 

sales, have soon made index futures the preferred vehicle for asset allocation, speculation, 

stock indexing, and portfolio insurance. 

The ide a of index arbitrage is very simple: to buy (sell) futures contracts and to sell 

(buy) stocks when futures are underpriced (over-priced) relative to the underlying basket 

of stocks. Since the implementation of index arbitrage requires the trading of many 

securities at the same time, the purchases and sales are likely to be executed through 

program trading. Index arbitrageurs consider, of course, transaction costs: futures priees, 

which lie within the transaction co st range from the value determined by the underlying 

index, do not present arbitrage opportunities. 

Index arbitrageurs play an important role in transmitting information between the 

futures market and the stock market and in establishing the efficiency of the markets, 

i.e., if we believe that the existence of the market for index derivatives is beneficial, then 

the presence of arbitrageurs is necessary for this market to function. After the events 

of October 1987, index arbitrage programs were sometimes blamed for the crash, but it 

seems more likely that it was rather the inability of the arbitrageurs to perform their 

functions which contributed to the severity of the market failure of October 19, 1987. 

4.2.3 Synthetic options and portfolio insurance 

The discovery of the option-pricing formula by Fischer Black, Myron S. Scholes, and 

Robert C. Merton in 1973 was without a doubt a major event among the many other 
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developments in economics and finance at the time. This discovery coincided with the 

establishment of the first US exchange for trading options on stocks, and once again, with 

commercial availability of the mainframe computers that were essential in implementing 

option valuation algorithms. To derive their option pricing result, Black and Scholes 

used the assumption of no arbitrage, and the equivalence of an option to a continuously 

adjusted position in a risky asset and a risk-free bond. This notion of an equivalent 

portfolio immediately suggested the possibility of creating synthetic options. The use of 

synthetic options as a portfolio insurance tool was first popularised, probably, by O'Brien 

(1982) and Rubinshein and Leland (1981)34. 

Synthetic portfolio insurance strategy is essentially a replication of a protective put 

option. A real protective put strategy is a combinat ion of a put option on a stock or 

an index and a long position in this stock or index. Synthetic put replication requires 

buying the stocks as the market rises and selling as it falls. There are several important 

differences between the strategy using a real protective put and the strategy based on 

put replication. The strategy using a real protective put provides the investor with 

a minimum Ho or below which the portfolio value cannot fall. The synthetic portfolio 

insurance strategy promises such a Hoor theoretically; this promise, however, may not 

be fulfilled in practice due to imperfections of the market, as the events of October 1987 

demonstrated. If the investor decides to follow the protective put strategy, he has to 

pay the price of the put up front, which is essentially the insurance premium. With the 

synthetic strategy, the investor does not have to pay anything up front. This does not 

mean, however, that the synthetic insurance strategy is free: its cost is the reduction in 

the achievable returns in periods in which the stock returns exceed cash returns. This 

reduction is called a shortfall. In addition to the shortfall, there are other costs, sorne of 

which were anticipated by those who offered or adopted synthetic insurance strategies in 

3The authors Iater joined forces to form Leland O'Brien Rubinstein Associates which Iaunched its 
first portfolio insurance products in 1982. 

4Historical development of portfolio insurance strategies and their presumed role in the crash of 1987 
is eIoquently presented in Jacobs (1999). Our presentation of the topie draws from this source. 
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the period of their introduction in the beginning-middle of the 1980s, yet sorne came to 

many as an unpleasant surprise. 

The market for listed options was only emerging at the time, and large institutional 

investors were not satisfied with the available menu of options listed (even induding 

available OTe contracts). Synthetic puts seemed to offer a way to go beyond this menu. 

Originally, most of the synthetic insurance programs were implemented through the stock 

market; but soon after the introduction of stock index futures in 1982 the latter became 

the preferred instrument for portfolio insurance programs, due to lower transaction costs 

and more lax margin requirements on short sales (index futures could be used to create 

synthetic cash positions by selling them short). 

4.2.4 Synthetic portfolio insurance and market dynamics 

As we have already mentioned, as a result of the rational expectations revolution in 

economics, theoretical discoveries in finance and advancements in financial engineering, 

belief in the concepts of market efficiency and rationality of investors was strong among 

practitioners and even more so - among academic researchers. After the events of October 

1987, sorne researchers looked for the causes of the crash within the paradigm of market 

efficiency and rationality, while others, in the spirit of John Maynard Keynes, tried to 

find an explanation for the crash in the animal spirits of the investors. 

It is not our objective to introduce these theories in any detail here. We simply want to 

point out that many of these theories suggest that implementation of synthetic portfolio 

insurance by sorne investors would amplify market movements. For example, one of the 

approaches to explaining crashes of financial markets is termed informational cascades. 

An informational cascade occurs when a sequence of agents base their actions not only 

on their private information but on observed actions of other agents. Such behaviour is 

not necessarily irrational: obtaining adequate private information may be costly or time­

consuming, and it may weIl be an optimising behaviour to incorporate into the decision 

signaIs contained in the actions of other market participants (see an extensive review 
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of theories of rational herding in Chamley (2003) and in references contained therein). 

Portfolio insurers are essentially noise traders who trade in the direction of the movement 

of the market. Sorne of the investors may tind it rational over, a short horizon to act on 

signaIs contained in the price rather than on fundamentals (see Froot, Scharfstein, and 

Stein (1992)), and thus the presence of noise traders who coherently trade in the direction 

of market movements may, under this theory, amplify market fluctuations. 

Shleifer and Vishny (1997) suggest a theory where arbitrageurs may decide not to 

trade against mispricing caused by the noise traders, even though the former believe 

that the mispricing will be corrected eventually. This is true because the arbitrageurs 

have to commit capital as long as the mispricing persists, and in the real world they act 

under capital constraints (for example, they may need external investors who are willing 

to capitalise them). Again, the presence of noise traders such as synthetic portfolio 

insurers, who coherently trade along with the market may lead to an increase in the 

length of mispricing spells, and the longer is the persistence of these spells, the less may 

arbitrageurs be willing to trade against this noise. 

Generalising different theories for the purposes of our discussion, we can view tinancial 

markets as a dynamic system; stock prices and stock indices measure responses of this 

system to arriving information, and they are informational inputs to the system at the 

same time. We can view synthetic portfolio insurance programs as a positive feedback 

loop. Starting at the beginning of the 1980s, the number of market participants who 

adopted the strategy grew, as did the strength of the feedback, leading, as predicted 

by the dynamic control theory, to longer and more volatile responses of the market to 

arriving news. Ultimately, if the feedback is sufficiently strong, the system may begin to 

amplify very small input signaIs. If this stylised vision of tinancial markets and of the 

role of portfolio insurance is correct, we may observe changes in the dynamic behaviour 

of the market at sorne point prior October 1987. 
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4.2.5 Circuit Breakers 

As a response to the events of October 1987, regulatory authorities launched a broad 

investigation into possible causes of the crash. Two major investigative efforts in this 

direction were undertaken by the Presidential Task Force and by the Securities and 

Exchange Commission. The finding of the former are known as the Brady Report. Among 

the recommendations for changes in the institutional structure of the markets which 

would either prevent such events in the future or at least mitigate their effects were 

circuit breakers. Originally, US stock exchanges put circuit breakers in place in October 

1988. 

Circuit breakers constitute a set of rules that may haIt trading when a change during 

a trading day, or from the previous day close priee of a stock priee or a market indicator 

like a stock index exceeds a defined threshold. These rules may also impose restrictions 

on certain types of trading during periods of higher market volatility determined again by 

a stock index going outside a given collar. These latter restrictions include a requirement 

that arbitrage trades be stabilising, i.e., that they be implemented on the uptick during 

market declines or on the downtick during market advances, or that program trades 

be put in a sidecar5
, i.e., delaying their execution for a certain period of time. Rules 

80A and 80B set circuit breaker rules for the NYSE; as has been mentioned, they were 

introduced originally in 1988 and modified many times later. Specifically, the triggering 

thresholds, originally set in absolute values, were relaxed in July 1996 and in January 

1997 to account for an increase in the absolute values of the stock indices (DJIA and S&P 

500); starting in February 1999, the trigger thresholds came to be defined as percent ages 

of the indices, and their absolute values have subsequently been set quarterly using these 

percentage trigger levels. For more detailed descriptions of circuit breaker trading rules, 

see Lindsey and Pee or a (1998) and official documents of the exchanges. 

The designers of the circuit breakers envisioned that trading halts would provide 

"breathing room" for investors during periods of intensive trading, and improve dissemi-

'OThe sidecar rule was abolished in 1999, 
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nation of information among the investors, i.e., essentially help the markets to approach 

a fully revealing rational expectations equilibrium (the motivation behind the circuit 

breakers is not expressed, of course, exactly in these words in the reports and regulatory 

documents)6. The evidence with respect to the efficiency and usefulness of circuit break­

ers is mixed: there are theoretical investigations which find that circuit breakers may 

have even adverse effects on market volatility, while sorne empirical studies have found 

no evidence that the imposition of price limits has reduced volatility of the markets. 

Subrahmanyam (1994), for example, concludes that circuit breakers may increase price 

volatility in the framework of the one-market intertemporal model considered, while in 

the two-market situation analysed, the agents may migrate out of the market with the 

circuit breaker, thereby transferring price variability to the alternative market. 

Santoni and Liu (1993) analyse daily closing values of the S&P 500 index from July 

1962 to May 1991, fitting an ARCH model to the data and looking for structural breaks 

in the estimated model. They conclude that the data is not consistent w'ith the hypoth-

esis that adoption and revis ion of circuit breaker rules reduces the conditional variance 

of stock returns. The two studies of Ma, Rao, and Sears (1989a) suggest that the intro­

duction of trading restrictions decreased volatility in the bond and commodity markets 

studied. 

Studies on equity markets outside the U.S. include those of Roll (1989), Bertero and 

Mayer (1990), and Lauterbach and Ben-Zion (1993). The last paper examines the period 

surrounding the 1987 crash on the Tel A viv market, where circuit breaker mechanisms 

were in place in 1987, and for which order imbalance data are available. These authors 

suggest that trading restrictions did not affect the overall degree of market decline, but 

did smooth returns around the crash date. Roll (1989) and Bertero and Mayer (1990) 

each compare 23 stock markets around the time of the crash, in monthly and daily 

data respectively; the latter study finds a substantial impact of circuit breakers on price 

6Continuing the analogy between financial markets and a dynamic system, circuit breakers may be 
viewed as an attenuator or a phase shifter in the feedback loop. 
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declines, while the former do es not. Nonetheless, as Lauterbach and Ben-Zion point out, 

trading restrictions differ substantially across international markets making the results 

of such exercises difficult to interpret. 

To summarise, despite conflicting evidence on their effectiveness, circuit breakers have 

remained a part of the trading mechanism for more than 15 years now; circuit breaker 

mechanisms have been revised many times but they are unlikely to be abolished in the 

near future. 

Empirical testing of effects and efficiency of the circuit breakers in the D.S. stock 

market is further complicated by the fact that many other changes were being introduced 

to the market structure and to market regulations concurrently. Examples are: increase 

in capacity and improvements in the electronic execution and information systems of the 

exchanges; and changes to the capital requirements of the market participants. When 

we state therefore in this study, that empirical evidence suggests that the introduction of 

circuit breakers in the late 1980s to the early 90s has affected extremal dynamics of market 

indices, we must offer the caveat that this change must be attributed to a whole complex 

of changes in the market structure and in investors' behaviour. Our analysis presents 

historical evidence that changes in the dynamics of stock indices coincide sometimes with 

known dates of changes in parameters of circuit breakers, but this evidence, in light of 

the discussion above, must be interpreted with caution. 

4.3 Statistical Modelling of Extremal Events 

In this section we briefly summarise sorne facts from extreme value theory (EVT) and 

statistical techniques relevant for the empirical analysis in our study. First, consider a 

sequence of i.i.d. r. vs. {Xi}' In the language of statistics, rare (or extremal) events in 

such a sequence are described by the behaviour of the tails of the distribution of Xi' 
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4.3.1 Estimation of the shape parameter of the generalised ex­

treme value distribution 

Statistical inferential methods for tail behaviour of a distribution function are most often 

based on the application of the Fisher-Tippett theorem which specifies limit laws for max­

ima of a sequence of i.i.d. LVS. (see, for example, Embrechts, Klüppelberg, and Mikosch 

(1997, Ch.3)): properly normalised and scaled maxima converge in distribution to one of 

the standard extreme value distributions: Fréchet, Cumbel, or (reversed)WeibuZZ7 . These 

three distributions can be conveniently represented using the generalised extreme value 

distribution (CEV) with parameter ç, namely 

{ 

eXP{-(1+çx)-1/Ç} if 
Hç(x) = 

exp { - exp { -x}} if 

ç#O 
, where 1 + çx > O. 

ç=O 

We say that the LV. X belongs to the maximum domain of attraction (MDA) of the 

GEV Hç (X E M DA(Hç)) if there exist constants Cn > 0, dn En such that 

The primary case of interest of our study is when ç > 0 (the Fréchet distribution) which 

characterises the MDA for heavy-tailed distributions: heavy tails is an empirical reality 

for financial series such as stock returns8 . 

Fitting the GEV is central to the statistical analysis of extreme events. In many 

applications, including this study, the main interest is in estimating the shape parameter 

ç of the limiting distribution. There are three main approaches to estimating the shape 

parameter of the GEV under the maximum domain of attraction condition: Pickhand's, 

7In the extreme value theory, the reversed Weibull distribution with the location and the scale param­
eters omitted is traditionally referred simply is the Weibull distribution. The reverse Weibull distribution 
and the Weibull distribution are related one to another through the change of sign of the variable 

8To provide a point of reference, the case ç = 0 corresponds to the MDA for the distributions ranging 
from moderately heavy-tailed such as the log-normal distribution to light-tailed such as the normal 
distribution. 
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Hill's, and Dekkers-Einmahl-de Haan's estimators. While we use only Hill's estimator 

and its modifications in the empirical section, we give a brief description here of each of 

these approaches, following once again Embrechts, KÙippelberg, and Mikosch (1997, Ch. 

6.4). 

Method 1: Pickhand's Estimator. It can be shown that for F E M DA (Hr;) , 

U (t) = F- I (1 - Cl) satisfies 

where c (t) ---+ 2. 

lim U (c (t) t) - U (t) = 2r; 
t->CX) U (t) - U (t / c ( t ) ) 

Pickhand's estimator is defined as 

f,P = _1_ln Xk,n - X 2k ,n 

k,n ln2 X 2k n - X 4k n , , 

U nder certain conditions, this estimator is weakly-consistent (or even strongly con­

sistent) and asymptotically normal (see Dekkers and de Haan (1989)). 

Method 2: Hill's Estimator. Suppose that Xl, ... , X T are i.i.d. with d.f. F E 

M DA (Hr;) , ç > 09 . It can be shown that the above is equivalent to 

9I.e. that the distribution belongs to the MDA of the Fréchet distribution. 
lOSee Embrechts, Klüppelberg, and Mikosch (1997, Theorem 3.3.7). 
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where 0: == 1/ ç, for a slowly-varying L n. Let Xj,T denote the ph order statistic from 

the sample. Hill's estimator takes the form 

& = (~ f,lnxj,T _ lnXm,T)-1 
J=1 

(4.2) 

where m = m (n) ~ 00 in an appropriate way. Hill's estimator can be derived in 

a few different ways: through the maximum likelihood approach, the regular variation 

approach, or the mean excess function approach. The fact that different approaches yield 

the same result can be viewed as an indication that Hill's estimator is, in some ways, 

very "natural". 

The theorem given in Embrechts, Klüppelberg, and Mikosch (1997, Theorem 6.4.6) 

establishes the weak consistency of Hill's estimator for weakly dependent sequences or 

linear processes, strong consistency for i.i.d sequences, and asymptotic normality for 

i.i.d. sequences. A penultimate approximation of Hill's estimator's distribution (an 

improvement in comparison with the asymptotic normal approximation) is given in Cheng 

and de Haan (2001) for the case of i.i.d. observations. 

The consistency (and under additional assumption - even asymptotic normality) of 

the Hill's estimator for a wide class of strictly stationary processes satisfying certain 

mixing conditions was first shown in Hsing (1991); this class includes linear processes. 

The latter result forms the basis of the statistical technique used in our study of detecting 

a change in the tail index at an unknown date (Quintos, Fan, and Phillips (2001)). 

Method 3: The Dekkers-Einmahl-de Haan estimator for ç E R. Dekkers, Ein­

mahl, and de Haan (1989) suggested a generalisation of Hill's estimator for cases in which 

ç ::::; O. Since the latter case is not of inter est in this research, we do not present further 

details here. 

11 A Lebesgue-measurable function L on (0,00) is called slowly varying at 00 (we write L E ~o) if 

1· L(tx) - 1 ° Imx~oo L(x) - , t > 
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Maximum likelihood estimation of the GEV parameters. The generalized ex­

treme value distribution can also be written as 

{ ( X-IL)-~} ( X-IL) Hç;!t,1jJ (x) = exp - 1 - ç-7jJ ,1 - ç---:;;;- > 0, 

if one includes explicitly the location and the sc ale parameters in its definition. We 

shall denote the vector of parameters () = (ç, IL, 7jJ). We shall assume that the random 

variables under consideration have approximately a He (x) distribution, meaning that the 

distribution of these variables belongs to the domain of attraction of the corresponding 

extreme value distribution. 

In maximum value the ory data is often represented in the following form: 

X<1) (XP), ... , X~l)) 
X<2) (x?), ... , X~2)) 

where the vectors X<i) are assumed to be i.i.d. The basic i.i.d. sample from Hç;!t,1jJ, on 

which the statistical inference is performed, then consists of Xi = max (xii), ... , X~i)) . 
The set-up above corresponds to the standard parametric case and in principle can 

be solved by maximum likelihood. Problems typical to extreme value theory ususlly 

arise when the support of the underlying dJ. depends on the unknown parameters. In 

finance, most of the distributions have a support unbounded to the right; hence, the 

MLE technique offers a reliable procedure. 

4.3.2 Detection of a break in the shape parameter 

Phillips-Loretan test for equality of shape parameters of two samples. Lore­

tan and Phillips (1994) propose, in the context of the discussion of methods of testing 
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covariance stationarity of heavy-tailed time series, a test that is suitable for testing for 

equality of tail indices of two subsamples. Assuming that the sample {Xi }f=l is split 

into two subsamples of sizes ml and m2, ml + m2 = T, the Phillips - Loretan statistic is 

defined as: 
( A A)2 

ml 0:1 - 0:2 d 2 
QI = ---+ Xl 

( &irh + ~~ &§1']2 - 21']12) 

(4.3) 

where &1 and &2 denote respectively the Hill's estimates of the tail index for the first and 

the second parts of the sample. It has been shown originally in Hall (1982) that Hill's 

statistic has an asymptotically normal distribution provided that m goes to infinity at an 

appropriate rate (dependent on the parameters of the distribution). This leads to a xi 
asymptotic distribution of the Phillips-Loretan statistic. In practice, the scaling factors 

1']1 and 1']2, and the covariance factor 1']12 are substituted in (4.3) by their estimates which 

are computed in a way accounting for the dependency in the series (the estimator of 1']1 

and 1']2 is given by formula (4.5); the estimator of the covariance factor 1']12 is constructed 

similarly) 12. 

Test for an unknown breakpoint in the shape parameter. The structural change 

tests of Quintos, Fan, and Phillips (2001) are based on sequences of tail index estimates. 

The null hypothesis is that the tail index has the constant value 0: over the real interval 

t E [to, T - to], with an alternative of departure from 0: at sorne point in the interval, and 

is tested with sequences of estimates defined over different sets of samples. Recursive esti­

mates produce a sequence of estimates &t using samples 1, ... t, for t = to, to+ 1, ... T-to; 

rolling estimates use samples 1 + (t - to), . .. t, with t indexed over the same values, for a 

constant sample size to == fT. The sequential tests use both a recursive set of estimates 

and a reverse recursive set labelled &2t defined over samples 1, ... t and t + 1, ... T re­

spectively, where once again t indexes the values to, to + 1, ... T - to. The sequences of 

12This form of the Phillips-Loretan statistic, which accounts for dependence in the series and between 
the subsamples, was suggested in Quintos, Fan, and Phillips (2001). 
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test statistics are based on the sequences: 

YT (t) 

VT (t) 

ZT (t) 

bm,)1/2 (!~ - 1) 

(t;t) 1/2 (::t -1) , 
( 4.4) 

where &; is Hill's estimator using the sample of size w = [,T] ending at t, which is rolled 

through the whole sample. mt and m, denote the number of order statistics used to 

compute correspondingly &t and &;. The sup's over t of Yi(t), Vi(t), and Zj(t) were 

suggested in Quintos, Fan, and Phillips (2001) as the statistics for detecting a breakpoint; 

the cri tic al values of these statistics are tabulated 13. 

Pro cesses with Conditional heteroskedasticity and the TaU Index. A promi­

nent property of financial data is that it is not i.i.d. but exhibits dependence in the 

second moment (and possibly in the higher moments). Quintos, Fan, and Phillips (2001) 

notice that the dynamics of the second moment of a GAReH pro cess can be described 

by a linear process, and thus the asymptotic theory for linearly dependent pro cesses 

developed by Hsing (1991) applies to squared logarithmic returns. The required modifi­

cations to the statistics described above are based on a re-scaling of each of the equations 

of (4.4) to account for the different variances of the Hill estimates when the raw data 

are serially dependent; with the appropriate re-scaling the same asymptotic distribution 

holds. That is, seriaI dependence does not affect the consistency or asymptotic normality, 

with convergence at the rate m ~, of the Hill estimator. The effect of seriaI dependence 

is to increase the variance in the asymptotic distribution, and a valid test must embody 

an estimate of this higher variance. With an appropriately modified asymptotic vari­

ance estimate, inference on changes in tail behaviour can then be conducted, despite the 

13We shaH not use the recursive test in the empirical part of our research because it has power with 
respect to a decrease in the tail index only, not an increase. 

98 



clustering of large squared returns that arises in such data. 

In these cases the statistics defined in Equation (4.4) are re-scaled by the factor 'f}, 

which is equal to 1 in the i.i.d. case. Hsing (1991, Theorems 3.3, 3.5, Corollary 3.4) 

and Quintos, Fan, and Phillips (2001, Theorem 8) describe the asymptotic theory for 

the scaling factor 'f} and also suggest how an estimate of the scaling factor fJ can be 

constructed from the data. Specifically, fJ = 1 + X + W - 21jJ, where 

w 

&m;;;I L Cw,jdw,jH + Cw,jH dw,j 

j=l 

w 

W 2m;;;I L dw,jdw,jH' 

j=l 

(4.5) 

with Cw,j = (In(X2)Y' - In(X2)(w_m
w

H))+' and dw,j = I(ln(X2 )Y' > In(X2)(w_m
w

H))' 

where 1(.) is the indicator function and where it is now understood that & is estimated 

on the squares of the data. We have followed Quintos et al. in these definitions and 

in defining the additional notation w to indicate the window on which estimation takes 

place, for the full sample w = T, for a rolling sample w = 'IT, and so on. The modified 

statistics based on (4.5) account for GARCH(1,1) dependence in the squared returns. 

These are the versions of the (rolling and sequential) tests that we employ below: all of 

the core inferential results reported in sections 4.1 and 4.2 use these tests which allow 

for dependence in the conditional variance. If {Xi} has a tail index a, then {Xl} has a 

tail index a/2; in the figures below we re-sc ale the estimated tail index parameters by 2 

to report the estimated tail index for the original series of logarithmic returns. 

Two important notes are required here. First, the limit the ory developed in Quintos, 

Fan, and Phillips (2001) assumes that the process under investigation is a strong GARCH 

process. The conditional distribution of innovations is assumed to be normal and the 

tail parameter a is in this case a function of GARCH (or ARCH) parameters. The 

asymptotic theory developed in Quintos et al. does not apply to cases in which the 

99 



conditional distribution of innovations has fat tails. 

Second, the tests described above are on the unconditional distribution of the variable 

of interest (logarithmic equity returns in our case: rt == In(Ptf Pt- 1), where Pt denotes 

here the price of an asset or the value of the index). In investigating changes in market 

structure, we are interested in the question of whether we observe corresponding changes 

in the distribution function of the returns {rt}, which is an important object ofinterest to 

market regulators in particular. In contrast, short-term risk management activity would 

typically be concerned with a standardized return of the form ft = 1:t or ft = (rt
-:

fltl , 
Ut (Tt 

where Pt and (ft are the estimated daily mean and the conditional standard deviation of 

returns; because an estimate of (ft is available to the risk manager, actions at date t can 

be conditioned on this information. Tests for changes in the tail index of standardized 

returns can also be constructed (see Andreou and Ghysels (2002)). 

Even if a pro cess un der investigation is a strong GARCR, the break in the tail index 

of this process may happen either due to a change in the GARCR parameters, or to a 

change in the distribution of innovations, or both. The statistics of Quintos et al. can 

be used only in the first case. The statistics of Phillips and Loretan or tests based on 

the bias-corrected estimators described below can be used in any of these three cases to 

test the equality of the tail indices in the pre-determined subsamples. 

4.3.3 Choice of m and the bias-corrected Hill's estimator 

The choice of m is a moot point when using Rill's estimator. As we have stated above, 

consistency and asymptotic normality of the Rill's estimator require that m go to infinity 

at an appropriate rate. Rowever, depending on the choice of m and the properties of the 

slowly-varying function L(x) there may be a trade-offbetween the bias and the variance of 

Rill's estimator. Usually, an increase in the rate of growth of m decreases the asymptotic 

variance but increases the bias. 
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Algorithms to choose the number of order statistics m. One has to provide a 

more detailed specification of the dJ. of X than the one in Equation (4.1) in order to 

develop feasible methods for choosing m. Assume that the second order properties of 

F(x) are specified as follows: 

1
. FCtx)/F(x) - ra _a tP - 1 
lm = t --, t > 0, 

x-->oo a( x) p 
(4.6) 

where a(x) is a measurable function of constant sign. If p = 0, the right-hand si de of 

(4.6) is interpreted as ta ln t. 

Hall (1990) suggests a solution to the problem of the optimal choice of m for the 

special case of the presentation in (4.6): 

(4.7) 

where Il > 0, b E lR., (3 > 0 (the case (3 = 0 corresponds to the expansion P(x) 

ax-a [l + blnx + o(lnx)]). It was shown in Hall's (1990) article that for the class of 

distributions which can be presented in the form of Equation (4.7), for a given m, 

E[ A -1] ~ 1 b(3 _fi (m) ~ Il ~-- a u -

Œ Œ(Œ+(3) n' 
(4.8) 

The equation above shows clearly that the bias increases in m. Hall makes a further 

assumption that Œ = (3 in the presentation in (4.7) and develops a subsample bootstrap 

technique for choosing m. In Danielsson and de Vries (1997) and Danielsson, de Haan, 

Peng, and de Vries (2001) the approach of Hall is extended to allow for a more general 

specification of the second order behaviour, as specified in Equation (4.6). 

While the focus of our empirical study is on the change in the tail index and not 

its level per se, and thus one can expect that the importance of the bias is attenuated 

when we look at the difference between two estimators, we still want to account for 

the bias whenever this is possible. Feuerverger and Hall (1999) and Quintos, Fan, and 
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Phillips (2001) (the latter in the context of their methods for detecting a break in the tail 

index) suggested an adaptive algorithm for choosing the time-varying values of m. In our 

empirical computations of the statistics in (4.4), we compute m as a proportion of the 

sample size, following a recommendation in DuMouchel (1983); choosing m adaptively 

does not qualitatively change the test results. When we test the equality of the tail index 

across sub-periods, we opt not to use the bootstrapping techniques mentioned above but 

apply a somewhat different approach to correcting the bias of Hill's estimator of the tail 

exponent. 

Bias-corrected estimation of the tail index. The method of bias correction used 

in sorne of the empirical computations of this study was suggested in Huisman, Koedijk, 

Kool, and Palm (2001). Their approach is also based on the decomposition (4.7) of the 

distribution function of the data. They noticed that if in this decomposition one imposed 

the restriction that 0; = (3, then the bias of Hill's estimator (see Equation 4.8) would be 

linear in m 14 .This observation allows us to run a regression of Hill's estimator on a 

constant and the number of order statistics m used in its computation. The unbiased 

estimate of the tail exponents will be thus the estimated intercept of this regression. 

Specifically, Equation (4.8) can be transformed into 

o;-l(m) = fLa + fL1m + E(m), m = 1, ... , k. (4.9) 

It follows from the analysis above that an unbiased estimate of 0;-1 can be obtained only 

when m approaches zero: evaluation of Equation (4.9) for m approaching zero gives an 

unbiased estimate of 0;-1, under the assumptions specified, and it is equal to the intercept 

term fLa. 

The parameters in (4.9) can be estimated using ordinary least squares but certain 

14The assumption that ct = f3 has been used by other authors (eg. Hall (1990). Huisman et al. 
present an argument based on the simulation evidence and also citing Dacorogna, Müller, Pictet, and 
de Vries (1995) that imposing such a restriction does not distort estimation results for a range of relevant 
distributions 
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econometric problems remain to be resolved: first, the error term in the regression is het­

eroskedastic; second, there is a problem of overlapping data due to the way the a- 1 (k) 's 

are estimated. Several approaches can be taken to resolving these problems; we use in 

our study the weighted least squares estimation of the regression (4.9) with the weighting 

matrix computed using asymptotic properties of order statistics (see Huisman, Koedijk, 

Kool, and Palm (2001, Appendix)). 

The number of Hill's statistics k included in the regression (4.9) still has to be deter­

mined but one may expect the sensitivity of this bias-corrected estimate to a choice of k 

to be lower than the sensitivity of the Hill's proeedure to the value of m - the number 

of order statistics used - as there is implicit averaging across the values of Hill's statis­

tics corresponding to different ms. The assertion just made is confirmed by simulation 

results presented in Huisman, Koedijk, Kool, and Palm's (2001) paper. Based on these 

simulation results, the authors recommend choosing k in the range (~, ~); it would 

be unacceptable, of course, to choose m for Hill's estimator in this range due to the 

increasing bias. 

4.4 Empirical Dynamics of Extremal Behaviour of 

Stock Indices 

4.4.1 Data 

This study examines the two longest-standing indices of U.S. equity priees, the Dow Jones 

Industrial Average and the broader S&P 500 Index. Because the structure of circuit 

breakers is based on daily stock priee changes-that is, the measure of priee change which 

these deviees use is implicitly set to zero at the beginning of each trading day-we examine 

daily changes in these index levels. Daily information is available for a long historie al 

period for the Dow Jones index; we use data from October 1 1928, the date at which the 

index took its current 30-stock form. Our daily sample of the S&P 500 begins on January 
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3 1950; both series end in March of 2002, for total sample sizes of 18443 days (DJIA) and 

13129 days (S&P). Each of these data series is transformed to daily logarithmic returns, 

rt = ln( J!L), where Pt is the index value at time t, reducing sample sizes by 1. 
Pt-l 

4.4.2 Evolution of the tail index on the full samples 

The first set of empirical results concerns the hypothesis of constancy of the tail index 

on the full historical samples. The results for rolling tests using different rolling windows 

as proportions of the sample and for the sequential tests are presented in Table 4.1 (see 

relevant formulas in Equation (4.4)). For the results reported in the tables, we take m 

to be 10% of the relevant sample size 15. 

Test 'Y l%c.v. DJIA Date S&P 500 Date 
(5%c.v) 

Rolling 0.15 1.9 3.39 5-Nov-73 3.01 16-Aug-82 
0.2 2.3 3.33 10-Feb-86 4.24 24-Apr-84 
0.25 2.55 3.7 9-Dec-86 5.83 6-0ct-87 
0.3 2.86 5.44 3-Jun-87 6.81 27-Mar-87 

(2.12) 
Sequential 28.82 52.9 5-Nov-98 79.51 1l-Sep-98 

(18.31) 

Table 4.1: Full sample rolling and sequential tests for different sizes (as a proportion of 
the sample) of the moving window 'Y 

These results are easily summarised. On all tests and on both stock indices, the null 

hypothesis of constancy of the tail index is rejected at a confidence level of 0.01 (the 

smallest tabulated); that is, each of the test statistics exceeds (by a substantial margin) 

the 99th percentile of the null distribution16 . The dates of maxima ofthe statistics occur, 

15Quintos, Fan, and Phillips (2001) use the same rule in the empirical part of their paper. 
16 As we mentioned above, we shall not use the recursive test because of the lack of consistency against 

an increase in the tail index (decrease in the tail thickness) over the sample. We note, however, that the 
recursive statistics corresponding to those in Table 1 also show strong rejection of the null of constant 
Ct on the full samples, and that these tests are consistent against a substantial decrease in the tail index 
as appears to have occurred in the neighbourhood of 1987. 
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in most of the cases, in the eighties: they precede the crash of 1987. Sensitivity to the 

number of included or der statistics, m, is very low on these full-sample tests. All rolling 

statistics are in the 1% tail for a wide range of values of m (we examined values as low 

as 2% of the relevant sample size). The sequential tests are similarly robust, with the 

exception that for very small values of m such as 2% of the sample size, the sequential 

test on the S&P500 data falls outside the 5% tail (the p-value is approximately 0.06). 

The sequential tests are unaffected in this case by moderate changes in the initial sample 

size, since the maxima do not occur near the ends of the sample, where the trimming 

affects the included statistics. 

A further form of sensitivity analysis addresses the possibility that changes in index 

composition may have affected these results, for example by including more relatively­

risky technology firms in the index17 . To explore this, we examine four firms that have 

been part of the DJIA from the beginning of our sample in 1928, or shortly thereafter: 

E.I. DuPont de Nemours (from 1935), Exxon Mobil (Formerly Exxon and Standard Oil 

of New Jersey), General Electric and General Motors. We repeat the tests just described 

on an equally-weighted index of the prices of these four large industrial firms, using data 

beginning in July of 1962 (note that these sample sizes are therefore sm aller than for 

the Table 4.1 results). The results are qualitatively unchanged. Test statistics for this 

four-stock index, corresponding with those of Table 4.1 for the DJIA and the S&P 500, 

are as follows. In the rolling tests for 1 = 0.15,0.20,0.25,0.30, and the sequential test 

with to = 500, the values are 2.46, 2.88, 4.35, 6.28 and in the sequential test, 169.0. Each 

of these statistics exceeds the 1 % critical value. The estimated dates of structural change 

are again in the mid-1980's, with the exception of the rolling test for 1 = 0.15 where a 

date in 1976 gives the maximal statistic. 

For the DJIA data, the months in which the maximum statistics in the rolling tests 

occur vary from April 1986 h = 0.15) to October 1987 h = 0.2); in the sequential test, 

17Note, however, that current Dow components Intel and Microsoft were added to the index only 
in November of 1999, affecting only a small part of the sample, and weil past the estimated dates of 
structural changes. 
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the maximum occurs in September 1998. In the S&P 500 data, the maxima occur between 

August 1982 h = 0.15) and October/December 1987 h = 0.25,0.30); note, however, 

from Figure 4-2, upper-left panel, that the early peak is isolated and only slightly exceeds 

the statistics from 1987. The sequential test again shows a late maximum in October 

199818
. AH of these dates should be interpreted cautiously, in part because the alternative 

hypothesis of a break at a particular date is not something that we wish to interpret 

literaHy in the present discussion. Moreover, we note from Quintos, Fan, and Phillips 

(2001) (see esp.Table 3 in this source) that estimates of breakpoint dates may be quite 

poor, and even in favourable cases show substantial variability around the true date. 

N onetheless, we note that the strongest evidence of statisticaHy significant change in the 

tail index does occur in the period of interest, i.e. weeks or months before the events of 

October 1987. 

The graphs of the rolling test statistic and the tail index for varying sizes of the 

moving window are presented in Figure 4-1 for the DJIA and in Figure 4-2 for the S&P 

500. These graphs indicate clearly that the change in the tail index which is identified 

by the tests is in the direction of a faH in 0:, that is, an increase in the relative frequency 

of extreme events. 

Next, we consider constancy of the tail index on the post-1984 sample alone. 

4.4.3 Circuit breakers and the evolution of the tail index 

The results of the analysis in the previous sections suggest that there was a qualitative 

change in the extreme behaviour of the stock index series sorne time before the crash 

of October 1987. We are now interested in the possibility that the tail index may have 

increased (tail thickness decreased) later in the sample. Since the first circuit breaker 

took effect in October of 1988, we have an initial sample of almost one thousand trading 

days (January 1985 - October 1988) on which to base pre-circuit breaker estimates. 

18Recall, that the sequential test compare samples before and after a hypothesised break date, whereas 
rolling and recursive tests use data up to the particular date. 

106 



Recall, however, from the discussion in Section 4.2, that first, the post-crash changes to 

the regulations and circuit-breaker mechanisms were introduced gradually, and second, 

that the severity with which the circuit breaker regulations bind has been changing over 

time as the trigger points as a percentage of index value have changed (see Booth and 

Broussard (1998) for a more detailed analysis of this issue). 

We examine the possibility of a significant change in oc in this later sample of data 

using the rolling and sequential tests which are consistent for a change in oc in any 

direction. The results of the tests on the post-program-trading subsample are presented 

in Table 4.2. 

Test 1 l%c.v. DJIA Date S&P 500 Date 
(5%c.v) 

Rolling 0.15 1.9 3.13 5-Mar-97 2.22 6-Jul-01 
0.2 2.3 2.49 13-Mar-97 3.91 12-Mar-02 
0.25 2.55 2.17 24-Mar-97 2.16 1-Mar-02 

(1.98) 
0.3 1.86 4.62 1O-Mar-97 2.24 24-Jan-96 

Sequential 28.82 28.82 62.9 5-Nov-98 18.7 ll-Sep-98 
(18.31) 

Table 4.2: Sub-sample rolling and sequential test statistics (2-Jan-85 - 14-Mar-02) for 
different sizes (as a proportion of the sam pIe ) of the moving window 1 

The evidence is weaker on this pair of samples, and the tests with unknown breakpoint 

do not find a statistically significant increase in the tail index for the end of the 1980s -

beginning of the 1990s, which could have been associated with the original introduction of 

circuit breakers. There is still substantial evidence, however, against the null of constancy 

of the tail index. Five of eight rolling statistics have p-values below 0.01, the remaining 

three rolling tests, and the sequential test are in the upper 5% of the null distribution. 

For the DJIA for all four sizes of the moving window 1 of the rolling test, the estimates 

of the date of the change for this shorter sample occur early in 1997. This coincides with 

the known changes to the circuit breaker trigger levels (see section 4.2.5). Inspection of 
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the graphs of the tail index of the DJIA in Figure 4-3 (left panels) shows that there is 

a decrease in the tail index at the beginning of 1997, and this decrease is being picked 

up by the test as statistically significant. The estimated timing of the change in the 

S&P 500 index is different and does not coincide with any known changes in the trading 

regulations19 20 (see Figure 4-3, right panels). 

The conclusion about the presence of the change in oc in the post-program-trading 

period is quite robust with respect to the choice of m : if it is equal to 5% of the relevant 

sample, the rolling test statistic is still significant at the 1% level in 6 cases out of 8, and 

in one case it is significant at the 5% level. With m = 5%, the rolling test change dates 

are estimated to be in March of 1997 for two choices of "l, both for the DJIA and for the 

S&P 500 series. The sequential test statistics are not significant. The sequential test, 

however, does not perform weIl in small samples, as noted in Quintos, Fan, and Phillips 

(2001, p.65), and we regard the rolling test as the preferred alternative here. 

Thus, although the analysis of the shorter post-program-trading period detects that 

there may have been statistically significant breaks in the tail indices in the post-program 

trading period and that the timing of these breaks can be associated with known changes 

in trading regulations, analysis using the statistics of Quintos, Fan, and Phillips (2001) 

does not provide evidence that the introduction of circuit breakers and other institutional 

changes in the late 1980s and early 1990s led to an increase in the tail index. This analysis, 

however, shouldn't be viewed as evidence of the contrary. We shall further investigate 

this issue in section 4.4.4 using the bias-corrected Hill's estimator. Before closing this 

section, we note, however, a few relevant features of the second-order dependence of the 

data. 

Consider the properties of this dependence across sub-samples. The second-moment 

19The relevant trigger levels of the circuit breakers are formulated in terms of the DJIA. Therefore, 
one may have expected that introduced changes would have a stronger effect on the DJIA tham on the 
broader S&P 500. 

2oBooth and Broussard (1998) present an empirical argument that a change in the trigger levels of 
the circuit breakers at the beginning of 1997 did not affect the distribution of the series. Our analysis 
shows the evidence to the contrary. 
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conditional dependence of financial returns data is very commonly modelled with a 

GARCH(l,l) specification: (J"; = W + a(J";_l + br;_l; typical estimates show that a + b ~ 1; 

moreover, a + b = 1 corresponds with the integrated GARCH (IGARCH) model, and 

this condition defines the threshold at which the unconditional second moment no longer 

exists. As has been mentioned in the discussion above (see page 99), if a process has the 

GARCH form with a known distribution of standardised residuals, then the tail index 

is a function of the GARCH parameters; see, in particular Mikosch and Staridî (2000). 

We would therefore expect that differences in the tail index across sub-samples would 

correspond with differences in the estimated GARCH parameters, to the extent that the 

GARCH model provides a reasonable approximation in these data. Table 4.3 presents 

estimates of this model on each of the three sub-samples examined in this section. 

DJIA 
Sample â (s.e.) b (s.e.) 
01-Jan-50 - 31-Dec-84 0.93 (0.04) 0.06 (0.01) 
02-Jan-85 - 31-0ct-88 0.85 (0.01) 0.15 (0.05) 
01-Nov-88 - 14-Mar-02 0.93 (0.06) 0.06 (0.02) 

S & P 500 
01-Jan-50 - 31-Dec-84 0.92 (0.03) 0.08 (0.01) 
02-Jan-85 - 31-0ct-88 0.83 (0.10) 0.16 (0.05) 
01-Nov-88 - 14-Mar-02 0.95 (0.05) 0.04 (0.02) 

Table 4.3: GARCH(l,l) a and b parameter estimates 

We note two points relevant to interpreting the statistical inference of Section 4.4.3. 

First, each of the sub-samples shows a sum of â + b which is insignificantly different from 

unit y; however, the point estimates are less than 1 in five of the six sub-samples, and 

ê::: 1 for the intermediate DJIA sub-sample. The condition for fourth moment existence 

in the GARCH(l,l) with (for example) gaussian innovations, 1 - 3a2 
- 2ab - b2 > 0, is 

far from being fulfilled on any sample; the implications for second moment existence -

that results lie close to the threshold - are also similar across the samples. 

Second, we see that the second order dynamics, as described by GARCH parameters, 
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are different between these three subsamples (the difference being especially noticeable 

between the second subsample and the first and third subsamples). We have to point 

out as a caveat, however, that estimates of the tail index implied by estimated GARCR 

parameters (we used a non-parametric technique to account for the properties of the 

distribution of the re-scales innovations) do not exhibit any regular pattern across the 

sub-samples. That is, there is no prima facie indication that differences in the tail index 

across sub-samples arise through differences in the second-order dynamic structure as it 

is described by GARCR. 

We want to emphasize again, however, that our primary interest is in the uncondi­

tional distribution of {rt} itself, and not in attributing any changes in this distribution 

to changes in parameters of a specifie parametric dynamic model. 

4.4.4 Point estimates of the tail index 

Our analysis of the extremal behaviour of stock indices through the crash of October 

1987 and thereafter, using the methods suggested by Quintos et al., has produced inter­

esting observations but it is far from being complete and conclusive. In this section, we 

complement our analysis of the matter using an alternative technique. 

We estimate in this section the tail exponents of the stock index returns for three 

subsamples: the period before January 1985 when portfolio insurance trading presumably 

had not yet introduced qualitative changes in the extremal dynamics of the markets; the 

period from January 1985 through October 1988 - the period covering the crash of the 

markets and before the introduction of the after-crash institutional changes; and finally, 

the period from November 1988 to March 2002 - the period after the introduction of the 

circuit breakers. 

The main technique used in this section is the bias-corrected estimator of Ruisman, 

Koedijk, Kool, and Palm (2001) (see Equation (4.9). Table 4.4 presents these bias­

corrected estimates with K, = T /3, on three subsamples chosen to approximate, respec­

tively, the pre-program-trading period, the program trading period before the introduc-
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tion of circuit breakers, and the period after the introduction of circuit breakers. 

Sample & (s.e.) 
DJIA S & P 500 

01-Jan-50 - 31-Dec-84 4.91 (0.22) 4.60 (0.21) 
02-Jan-85 - 31-0ct-88 2.65 (0.27) 3.53 (0.36) 
01-Nov-88 - 14-Mar-02 3.78 (0.26) 4.69 (0.32) 

Table 4.4: Bias-corrected tail index estimates 

These results are obtained using raw logarithmic returns instead of the squared re­

turns used in our previous analysis. This allows us to examine only the left tail of the 

distribution. The estimates suggest several observations. First, in common with Huis­

man, Koedijk, Kool, and Palm (2001), we find that the bias-corrected estimated tail index 

values tend to be substantially higher (a lower relative frequency of extreme events) than 

the raw Hill's estimates. Second, estimates on the post-circuit breaker sample show a 

tail index similar to those prevailing in the 1950-1984 sample, although whether the es­

timate of the index actually attains its pre-1985 values depends on the particular equity 

index considered. Finally, the difference across the sub-samples, and in particular - the 

distinction between 1985-1988 period and those earlier and later: is not only statistically 

significant (as established earlier) but quite substantial. 

For comparison we also provide estimation results using two other techniques: the 

traditional Hill plot and the maximum likelihood estimation of 0: via the generalised 

extreme value distribution. The Hill plots corresponding to the periods of interest for 

the DJIA and the S&P 500 are presented in Figure 4-4. It is well known that it is 

difficult to extract a single value from the Hill plot; for the purpose of comparison, 

however, we have attempted to do so. The results are recorded in Table 4.5, and come 

from a proportion of the sample (also recorded in the table) chosen by visual inspection to 

correspond with a region of approximate stability of the estimates. We tend to interpret 

these results as consistent with other evidence that the value of the tail index was lower 

in the intermediate period, but we emphasize the difficulty in extracting a reliable point 
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estimate. 

& (s.e.) 
Sample [proportion of the sample used as order statistics] 

DJIA S & P 500 
O1-J an-50 - 31-Dec-84 3.83 (0.22)[3.1%] 3.59 (0.21)[2.7%] 
02-Jan-85 - 31-0ct-88 3.00 (0.27) [7.0%] 2.97 (0.36)[8.0%] 
01-Nov-88 - 14-Mar-02 3.75 (0.26)[3.9%] 3.45 (0.32)[3.1%] 

Table 4.5: Tail index estimates from Hill plot 

Our findings based on the bias-corrected estimator of Huisman et al. are also cor­

roborated by estimation results based on the GEV maximum likelihood technique. We 

estimate the shape parameter of the G EV via the method of fitting block maxima, where 

block length is chosen such that dependence across blocks can be treated as negligible, 

despite within-block dependence (see Embrechts, Klüppelberg, and Mikosch (1997) and 

Gençay, Selçuk, and Ugulülyagci (2001) for an exposition and implementation). The 

method requires a block size choice, which we take here to be either 80 or 125 trading 

days (approximately 4 or 6 months of daily trading data). Estimates of Œ from the GEV 

are given in Table 4.6. 

ç(s.e.); & = ç-l 
Sample DJIA S & P 500 

Block size: 80 
01-Jan-50 - 31-Dec-84 0.149 (0.06); 6.69 0.180 (0.07); 5.57 
02-Jan-85 - 31-0ct-88 1.217 (0.98); 0.82 1.189 (0.54); 0.84 
01-Nov-88 - 14-Mar-02 0.259 (0.13); 3.86 0.281 (0.15); 3.56 

Block size: 125 
01-Jan-50 - 31-Dec-84 0.269 (0.11); 3.72 0.260 (0.10); 3.85 
02-Jan-85 - 31-0ct-88 1.097 (0.61); 0.91 1.307 (0.73); 0.77 
01-Nov-88 - 14-Mar-02 0.211 (0.16); 4.75 0.295 (0.21); 3.39 

Table 4.6: Maximum likelihood estimation of the GEV parameter ç using block maxima 

The most important observation from this last exercise is that we again see indic a-
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tions of a substantially lower tail index in the intermediate period; the GEV estimates 

display yet higher variation across sub-samples than the Huisman, Koedijk, Kool, and 

Palm (2001) bias corrected estimates reported in Table 4.4. The standard errors of the 

estimates of GEV's ç are substantially higher than those of the bias-corrected Hill's 

estimates21
. 

4.5 Conclusion 

Revolutionary innovations in economics and finance that occurred in the early 1970s, 

together with important technological changes (commercial availability of mainframe 

computers being probably the most important), soon found their way into the develop­

ment and adoption of new financial technologies by market participants. One of these 

technologies - synthetic portfolio insurance - had been available starting from the be­

ginning of the 1980s and gained popularity among investors by the middle of the 1980s. 

Synthetic portfolio insurance is often blamed as one of major factors contributing to the 

market crash of 1987. 

The first goal of this study is to consider whether known changes in financial tech­

nologies were consistent with the observed patterns in the dynamics of equity markets, 

to the extent that these dynamics are summarised by the tail index of the distribution of 

logarithmic returns of several major stock indices. The statistical evidence is very clear 

and it indicates a strong rejection of the hypothesis of constant tail behaviour of the stock 

indices considered. The dating of significant statistics in the sequence is compatible with 

the known historical schedule of the penetration of synthetic portfolio insurance tech­

nology into the market: the equity markets began to exhibit significantly more extreme 

behaviour in the second half of the eighties, before the market crash of October 1987. 

The second question of interest is whether we can detect an attenuating influence 

21 It is possible to increase the accuracy of GEV parameter estimates by taking into consideration more 
than one order statistic from each block when computing the likelihood. However, the GEV approach 
is not the focus of our present study. 
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on extremal market behaviour, of regulatory reforms which followed the 1987 crash, and 

whether the changes in the extremal behaviour were consistent with the known historical 

implementation schedule of these reforms. The statistical evidence on the second question 

is less strong than for the first and not without ambiguity. When applied to the period 

after the introduction of portfolio insurance (chosen to be 02-Jan-85 - 14-Feb-02), the 

hypothesis of the constancy of the tail index is marginally rejected. In sorne cases, 

however, the tests detect not an increase of the tail index but a decrease (an increase in 

the frequency of extreme events). The timing of this decrease (in ear ly 1997) is consistent 

with the known review (widening) of the NYSE circuit breaker collars. This last fact may 

be interpreted as evidence that circuit breakers do affect the dynamics of markets, but, 

of course, it does not allow us to make conclusions about a causal relationship between 

circuit breakers' parameters and the extreme dynamics of the markets. 

Point estimates of the tail index show that for the S&P 500, in the period from 

November 1988 to March 2002, it attains almost the same value as before the portfolio 

insurance era; the tail index of logarithmic returns of the DJIA remains significantly 

below the levels it had achieved prior 1985. 

An important conclusion that one can draw from these results is that long series of 

equity returns, covering the period before and after the middle of the 1980s should not 

be treated as drawn from the same distribution, when extremal behaviour of these data 

is the object of interest. Sorne past studies of equity returns, however, treat the data 

this way. In these cases the series is drawn from a mixture of several distributions with 

different tail indices; it is known that the estimate of the tail index will be dominated 

by the subsample having the lowest tail index (highest frequency of extremes) among 

all the subsamples (see, for example, Quintos, Fan, and Phillips (2001, Theorem 3)). 

Thus, if the heterogeneity among the subsamples is not taken into account, the tail index 

estimate will give a misleading impression concerning the frequency of extremal events 

in the present market conditions, which may in turn lead to costly errors (for example, 

an excessive allocation of reserve capital or excessive insurance price). 
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Figure 4-1: DJIA. Rolling Test Statistic (left seale) and Tail Index (right seale) 

115 



S&P 500. Rolling Test Statistic and 
Taillndex. 1= 0.15 

S&P 500. Rolling Test Statistic and 
Tail Index. 1 = 0.25 

4 

3.5 

3 

2.5 

,"-----------,- 4 

5 

4 

3 

2 

3.8 

3.6 

3.4 

3.2 

3 

2.8 

2.6 

2.4 

2.2 

o -+-...,.A--r...u.,....fIL,...--,...--,---,-.l.wI!~+ 2 

oS~ OJ'O<'v OJ~ OJ,\<'v OJ'\'\ OJco<'v OJc{}- OJOJ<'v OJOJ'\ ~~<'v 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

S&P 500. Rolling Test Statistic and 
Taillndex. 1 = 0.20 

3 

2.5 

2 

1.5 

0.5 

4 

3.5 

3 

2.5 

0-+-~-;-:~"""'r-.,...-""":""""'"-l'''''''+2 

f.). ~<'v ~ ~<'v ~'\ fb<'v fb'. 2I<'v 21'\ !:)<'v 
"q) "q) "q) "OJ "OJ "q) "q) "q) "q) <'vCJ 

S&P 500. Rolling Test Statistic and 
Taillndex. 1 = 0.30 

~---~"-----~·~-·--~4 

5 

4 

3 

2 

3.8 

3.6 

3.4 

3.2 

3 

2.8 

2.6 

2.4 

2.2 

0-+--r--r--'-'I''''-'1-.,--.,----,-......,.....M:f-2 

f.). ~<'v ~ ~<'v ~'\ fb<'v fb'. 2I<'v ~ !:)<'v 
"q) "q) "q) "OJ "OJ "q) "q) "q) "Cl) <'vCJ 
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Appendix A 

Quantile AR( (0) and ARMA 

Regression: Asymptotic Results 
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A.1 Proof of Theorem 3.3.1 

Praaf. Define 

ZT b(k); q) 

= L fq (et - Wq - X t (k) b (k) - "(q (k)) + Xt[k + 1, oohq[k + 1,00)) 

- L fq (et - Wq + Xdk + 1, oohq[k + 1,00)) 

Here and below the summation is assumed to be over t = 1, ... , T if there is no ambiguity. 

Note that "((k) = 1q(k) is the minimiser of ZT b(k); q). 

Following Phillips (1995), who considered generalised functions for LAD asymptotics, 

we choose a set of test functions \[T, 1jJ (x) E \[T. It will be sufficient for our objectives 

to require that functions in \[T are twice continuously differentiable and have a compact 

support in [-1,1]. We shall also normalise these functions so that J 1jJ (x) dx = 1. Using 

this set of test functions, a sequence of smoothed functions defined by 

converges weakly, as integer m -+ 00, to the check function treated as a generalised 

function 1. 

For a specifie q, define now 9 (k) 

Zr (g(k); q): 

Zr (g(k); q) = 

VT (1q (k) - "(q (k)) and the smoothed pro cess 

L f:; (et - Wq - Xt (k) Vi 1g (k) + Xt[k + 1, oohq[k + 1,00)) 

- L f:; (et - w q + Xt[k + 1, oohq[k + 1,00)) 

lNote that f;;'(x) = fq(x) when Ixl > m- 1 • 
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To simplify the notation, we introduce At,T(k) == Xt(k)VT(k)-l and use At instead of 

At,T(k) whenever there is no ambiguity. Consider the Taylor expansion of Zr (g(k); q) 

around g(k) = 0: 

- L f:;' (et - W q + Xdk + 1, oohq[k + 1,00)) Atgq (k) 

+ ~ L f:;" (e; - w q + Xtlk + 1, oohq[k + 1, 00)) g~ (k) A~Atgq (k) (A.1) 

where e; = et + AtŒg(k) with 0::; Œ::; 1. 

Note that f~ (x) = (q - ~) + ~sgn (x) and f~' (x) = 8 (x), where 8 (x) denotes the 

Dirak delta-function and the equalities are defined for generalised functions. Moreover, 

f:;' -+ f~ and f;:" -+ fq", where convergence is understood as (weak) convergence of 

generalised functions (see, for example, Phillips (1995)). 

We shaH establish asymptotic limits of the terms in expansion (A.1) by showing that 

D 
-+ N (0,1) (A.2) 

and for 

Bt = f:;" (e; - w q + Xt [k + 1,00) fq [k + 1, 00)) A~At 

that 

for any constant Cg > O. 

To prove (A.2) notice first that by continuity of f;:', stationarity of et and 

assumption (f) 

so that we can ignore Xdk + 1, oohq[k + 1,00) in (A.2). 
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1 
We have for any E > 0, e.g. E = T-'i, 

Pr (J;:'(et - wq)I (let - wql < m-l)) < Pr (I (let - wql < m-l)) 

= 1 Pe(s)ds = Pe(Wq)m- 1 + 8(m)m-1 = O(m-l ) 
!et-Wq!<m-1 

where 8( m) ----t 0 as m ----t 00. Thus for m ----t 00, noting that f~ is an ordinary function, 

we have: 

f:;"(et - Wq) = f:;"(et - wq)I (let - wql < m- l
) 

+ f:;"(et - wq)I (let - wql > m- l
) 

= op (T-~) + f~(et - w) (A.5) 

. T 1 (T 2) ~ Smce any 2:t =IIVtI :::; T'i 2:t =1 ~ , we have from (A.4), (A.5) and 3.3.1(d) 

T 

max L [f:;" (et - Wq + Xt(k + 1, oo)"((k + 1, (0)) - f~(et - Wq)] At 
t=l 

1 

:s max If;" (c, - m, + X,(k + 1,00 h(k + 1,00 II - f;(c, - m,li .1" (t1' t, A,A;) , 
= op(I). 

Note that direct computation shows E (J~ (et - wq))2 = q(1 - q). Then consider 

( 
1 )~ 

ÇT,t = q(1 _ q) f~ (et - Wq) At 

and for an arbitrary E > 0 

(T,t = çT,t I ( sup max IAt,T(k)1 < E ) 
l~t~T 
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Since f;" is a bounded function and because of Assumption 3.3.1 (d), we have that 

(A.6) 

We show that the m.d. {(T,t, 'S} array satisfies the conditions of the central limit 

theorem of McLeish (see, e.g., Bierens (1994, Theorem 6.1.6)). lndeed, 

and the condition (a) of the McLeish theorem is satisfied. Condition (b) follows from 

3.3.1(d) and boundedness of f~. For condition (c) we need to show that ~r=l (f,t -+p I. 

Consider 

Note that E [7]T,t] = 0 and by Assumption 3.3.1 (c(i» 7]T,t is a stationary ergodic sequence 

and thus ~ 7]T,t ~ O. Sinee ~ A' A ~ Ik+l by 3.3.1(e) and from (A.6) we get the required 

condition (c). This concludes the pro of of (A.2). 

To prove (A.3) note that similarly to (A.4) we also can have 

Bt = [f;''' (et - IDq + X[k + 1, oohq[k + 1, (0))] A~At 

= f;n"(e; - IDq)A~At + op (T-!) 

Similarly, over Ilgll < Cq by differentiability of f;''' and 3.3.1(d), 
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thus Bt = !:;'"(et - wq)A~At + Op (T-~). Also, as in (A.5) but for expectation2
, 

as long as m -1 = 0 ( T- ~ ) . 

Thus, 

where the proof that the first sum goes to zero follows exactly the same steps as the 

similar pro of for L: 'f}T,t --> 0; the second term goes to zero by 3.3.1( e). This establishes 

(A.2) and (A.3). 

Next, we follow the same argument as in Phillips (1995). The smoothed process 

Zr (1q; k, q) weakly (as a generalised random process) converges to the same limit process 

as ZT ("Iq; k, q) for each "Iq. The limit process is an ordinary random process (by (A.2) 

and (A.3)), it and ZT (1q; k, q) itself are convex as a result of (A.3) and (A.7); thus the 

sequence of minimisers of ZT (1q; k, q) has the same limit process as that of g(k), the 

minimisers of Zr (1q; k, q), namely, the minimiser of the limit process. By (A.2) and 

(A.3) we have that 

(A.8) 

• 
2 f~' is a o-function, but as in Phillips (1995) its expectation is an ordinary function as long as density 

at w q exists and is continuous. 
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A.2 Proof of the Theorem 3.3.2 

Proof. The proof of this theorem is directly based on the results of the theorem 3.3.1. We 

verify the conditions of Assumption 3.3.1. 2: (k) = E (T-1X(k)'X(k)) = T-1VT(k)'VT(k) 

exists by Assumption 3.3.2(a, b). Assumption 3.3.2 (a) ensures that T-1 (X(k)'X(k)) 

converges to E (T- 1 X (k)' X (k)) a.s. by the ergodic theorem. Statements a, (d) and (e) 

of Assumption 3.3.2 provide (b) and (c) for Assumption 3.3.1. Part (a) of Assumption 

3.3.1 follows from the definition of <;St and from non-randomness of VT . Part (d) follows 

from (c) of Assumption 3.3.2. 

For (e) of Assumption 3.3.1 we have, by the ergodic theorem, that 

Then (e) follows. 

The (e) of Assumption 3.3.2 together with the fact that the ARCH(oo) coefficients 

for the GARCH model are summable provides (f) of Assumption 3.3.1. 

Note that while T-1X(k'X(k)) as T ---7 00, k ---7 00 and kiT ---7 0, consistently 

estimates 2:, by Berk (1974) we need extra conditions on the growth of k to ensure 

that as T ---7 00, k ---7 00, (T-1X(k)'X(k))-1 ~ (2:(k)r1. We assume here that the 

ARC H (00) model is based here on a finite G ARC H and thus the coefficients of the 

ARCH (00) presentation de cline at an exponential rate. It follows that selecting k to be 

such that k-2T ---7 00 and ln k ---7 00 is sufficient to ensure the existence of the limit. • 
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Appendix B 

Technical Notes to Chapter 2 
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B.I Computation of asymptotic standard errors for 

the log-Weibull SCD model 

Application of Dunsmuir's (1979) asymptotic theory to the case when the quasi-likelihood 

function is estimated using the Kalman filter is described in Harvey (1989, pp.220-221). 

The QML estimate of the parameter vector e of the model is asymptotically normal, 

unbiased and has the variance-covariance matrix C = 2A -1 + A -1 BA -1 where 

A =~ j7r a log (g (À)) a log (g (À)) dÀ 
27r -7r ae ae' 

is proportional to the information matrix of the process and 

B = fi; [~j7r 8log (g (À)) dÀ] [~j7r a log (g (À)) dÀ] . 
27r -7r ae 27r -7r ae' 

Here, 9 (À) is the spectral-generating function of the process. It is easy to write down the 

spectral-generating function of the pro cess di: the spectrum of this pro cess is different 

only by a constant form the spectrum of the AR process with normal innovations. The 

spectrum of the log-durations of the SCD model when the latent process is AR (1) and 

the observation error has a log-Wei bull distribution is 

Analytical computation of the matrices A and B is a conceptually straightforward 

but tedious task. We opted to use approximate dis crete representations of these integrals 

in our computations. Given our sample sizes, the discrete approximation is very accurate 

and much easier to implement. 
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As in Harvey (1989), we define discrete analogs of the matrices A and B, 

A _!.. T-1 alogg e~m) 8logg e~m) 
T - TL aB aB' 

m=O 

_ [!.. T-1 8logg e~m)l [!.. T-1 8logg e~m)l 
BT - K; T L aB T L aB ' 

m=O m=O 

limT-tCXl (AT) = A, limT-tCXl (BT) = B. 

The information matrix that we are considering in the text of the paper is defined as 

(we omit the component which is due to the non-normality for the sake of simplicity): 

I:F=~ r alog (g (À)) a log (g (À)) dÀ. 
47r ) -7r aB aB' 

(B.1) 

B.2 Asymptotic theory when the sample consists of 

T independent subsamples 

Claim B.2.1 Assume that the sample from the process {Zi (Bo)} satisfying the conditions 
·N 

of Theorem 2.1 of (Dunsmuir 1979) consists of T independent subsamples {zni~l ' 
N = 2:~=1 N j (we consider only scalar processes to simplify the exposition). Assume 

that N ~ 00 in such way that !ff ~ Ài' Denote go (À) the spectral density of the process 

Z (B) and Ij (À) - the periodogram of the subsample. Then if eN = arg max LN (B), 
- T' 
LN (B) = 2:j =l LJ (B), where 

Lj (B) = log (2~ J go (À)dÀ) + 2~ J ~:~~~dÀ 
then the quantity N 1/ 2 ( eN - Bo) has an asymptotic normal distribution with zero mean 

and the covariance matrix 
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where 

o = ~ J alngo (À) alngo (À) dÀ 
27r ae' ae 

and 

K, is the forth cumulant of the innovations. 

Proof. The proof of the daim requires only a slight modification of the proof of the 

theorem 2.1 of (Dunsmuir 1979). We can see that under the conditions of the daim the 

quantity a:;o,LN (e) --+p TO (each Lj (e) converges to 0), and the quantity N 1
/

2 toLN (e) 

is asymptotically normal with the variance-covariance matrix 

T 

L Àj1 (20 + II) 
j=l 

The result of the daim immediately follows. • 

B.3 Long-memory in the dynamics of durations 

FISCD model 

The fractionally-integrated stochastic conditional duration model is specified as follows 

(we give here the general specification but we shalllater consider only F ISCD (1, x, 0)): 

ft (1) + 'l/Ji + ~i 

TJ(L)Ui, 

(B.2) 

where E ['l/Ji] = 'l/J, and all roots of the polynomials cP (L) and TJ (L) are outside the 

unit cirde. As before, {exp (Çi + ft h))} are i.i.d. with a distribution having a positive 

support, and {Ui} cv n.i.i.d. (0, a~). The spectral density of this pro cess exists provided 
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that x < ~ and it has the following form: 

where a~ (t) is the variance of {Çi}. The spectrum has a singularity at À = 0 which is 

integrable for the stationary range of the fractional integration parameter x. When the 

process is stationary one can easily compute the autocovariances of the pro cess knowing 

the spectrum (they cannot be expressed in elementary functions but it is not important 

for our exposition): 

Ik = 1: 9 (À) exp (iÀk) dÀ, k = 0,1, ... 

where Ik denotes the k-th autocovariance. It is also possible to compute auto covariances 

of the pro cess {Di}, if necessary. 

B.3.1 QML estimation of FIS CD in the spectral do main 

The asymptotic theory of Dunsmuir (1979) is not applicable to fractionally-integrated 

pro cesses and the quasi-likelihood can not be computed using the state-space representa­

tion. Several approaches have been suggested for estimating models with latent variables 

that have a structure similar to that of the equation (B.2). These approaches, either 

based on the generalized method of moments or on computing the likelihood using simu­

lations, have a common property: they are very computationally intensive. It is possible 

to compute the quasi-likelihood function of the FISC D (p, x, q) process based on the 

sample spectrum of the pro cess (this approach has been suggested in the context of 

stochastic volatility processes with long memory). The applicability of the spectral QML 

estimation technique (which gives essentially a Whittle-type estimator) to the problem 

at hand is based on results of Breidt, Crato, and de Lima (1998) who showed that the 

maximizer of the expression (B.3) is a strongly-consistent estimator of e, provided that 

the parameter space is compact and that the parameter is uniquely identified at the true 
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value. There is no asymptotic theory available for the spectral QML estimator. 

The first steps in estimating the FIS CD model are the same as those in the estimation 

of the SCD model. After seasonal adjustment and subtracting the mean, the model to 

be estimated has the following form: 

The logarithm of the spectral likelihood function of the pro cess {di} is 

(B.3) 

w here go (.À) is the spectrum of the FISC D (1, x, 0) proeess with the parameter vector 

() = (a;,,,,x,,G), 
1 (7r2 a;2-X(I-COS.À)-X) 

g (.À) - - -- + --"'--------''----------'----
- 27r 6,,2 ,132 - 2,13 cos .À + 1 

and IN (.À) is the sample periodogram . .Àk = 2;/, k = 0,1,2, ... , N. 

B.3.2 Estimation results and discussion 

The estimated FISC D(I, x, 0) parameters for trade and priee durations are presented 

in Figure B-l in a format similar to that used for depicting the estimates of the SCD 

parameters. The estimates of x vary between 0.42 and 0.52 for trade durations and 

between 0.23 and 0.65 for priee durations. There are several contracts where the QML 

point estimates of x are greater than 0.5, i.e., are outside the stationarity region. We 

cannot draw definitive conclusions coneerning the stationarity of the durations proeesses 

sinee the confidence intervals are not available. 

The estimates of the parameter " of the Weibull distribution lie between 0.95 and 

1.26 for trade durations and between 1.2 and 2.65 for priee durations. The estimates 

of a; and ,13 are very volatile and the data indicates that these two quantities have a 
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strong negative correlation. It seems also that we observe two types of estimates: those 

with higher Ô"~ and ~ close to 0 and those with smaller Ô"~ and estimates of (3 in the 

range of 0.4 - 0.6. Again, we cannot draw definitive conclusions because we don't know 

the distribution of the estimated parameters, even asymptotically. We can hypothesize 

that the instability of parameter estimates may be caused in part by the features of the 

data, such as overnight and weekend gaps in the trading, which are not accounted by 

the model. A study in a controlled environment through simulation will be helpful in 

discovering properties of QML parameter estimates of the FISCD model. We leave this 

as a topic for future research. 
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Figure B-1: FISCD(l,x,O) parameters for contracts with varying expiration dates. Trade 
durations are in the 1eft co1umn, priee durations - in the right co1umn. 
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