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Québec, Canada

August, 2009

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements of the degree of

Doctorate of Philosophy
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Abstract

Many nonlinear differential equations have solutions that cease to exist in finite time

because their norm becomes infinite. We say that the solution blows up in finite time.

In general, this phenomenon is especially important in the physical interpretation of

the results, but unfortunately most of these differential equations can not be explic-

itly solved. Moreover numerically approximating blow-up phenomena is a delicate

problem and most standard methods only yield poor results.

In this thesis we suggest ways to construct fixed-step numerical methods, special-

ized in the approximation of a blow-up solution, the so-called B-methods (in case of

partial differential equations, we obtain semi-discretizations in time). Two approaches

are presented in detail: one consists of a splitting method while the other comes from

a variation of the constant. Both approaches are based on the same idea: to exploit

the fact that the solution of a simplified equation (made up of the nonlinear part that

is responsible for the blow-up) can be explicitly written.

We start by properly defining the problem and presenting an extensive literature

review concerning both theoretical and numerical results. Then, after explaining the

two methods of construction on an example, we apply them to different models and

so we obtain numerous B-methods. All these methods are implemented and extensive

numerical experiments illustrate the superiority of the performance of B-methods over

standard methods. Finally a chapter is devoted to the theoretical study of some B-

methods. Theorems which are proven reinforce the promising results of the numerical
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tests.
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Résumé

De nombreuses équations différentielles non-linéaires ont des solutions qui cessent

d’exister en temps fini car leur norme devient infinie. On dit alors que la solution

explose en temps fini. Ce phénomène revêt généralement une grande importance dans

l’interprétation physique des résultats, malheureusement la plupart de ces équations

différentielles ne peuvent pas être résolues explicitement. De plus l’approximation

numérique du phénomène d’explosion est délicat et la plupart des méthodes standards

ne donnent que des résultats médiocres.

Dans cette thèse nous proposons des façons de construire des méthodes numériques

à pas de temps fixe, spécialisées dans l’approximation d’une solution qui explose, les

B-méthodes (dans le cas d’équations aux dérivés partielles, nous obtenons des semi-

discrétisations en temps). Deux approches sont présentées en détail : l’une consiste

en une splitting method tandis que l’autre provient d’une variation de la constante.

Toutes deux se basent sur la même idée : exploiter le fait que la solution d’une

équation simplifiée (formée de la partie non-linéaire responsable de l’explosion) peut

être écrite explicitement.

Nous commençons par bien définir le problème et présentons une revue étendue

de la littérature consacrée au sujet, tant du point de vue théorique que du point de

vue numérique. Puis, après avoir expliqué ces deux méthodes de construction sur un

exemple, nous les appliquons à différents modèles et obtenons ainsi de nombreuses

B-méthodes. Toutes ces méthodes sont ensuite programmées et des tests numériques
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étendus viennent illustrer la supériorité des performances des B-méthodes sur celles

des méthodes standards. Un chapitre est également consacré à l’étude théorique

de quelques B-méthodes. Les théorèmes qui y sont prouvés viennent supporter les

résultats prometteurs des tests numériques.
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Introduction

Many physical processes studied in applied sciences can be modelled using differential

equations. For some of these applications, the process can be reproduced by means

of linear (differential) equations. These equations have been deeply studied and their

theory is well-understood. However many physical phenomena require the use of

nonlinear models. Indeed some properties of nonlinear equations that are essential to

properly reproduce real-world processes are absent from the theory of linear equations.

Generally these new properties also represent new difficulties for the mathematical

analysis. Moreover, most nonlinear equations can not be solved explicitly. Thus it is

necessary to resort to approximations that can be obtained using numerical methods.

These methods are well-developed. However some nonlinear equations have solutions

that exhibit specific behaviors that may be hardly compatible with techniques of

numerical methods. Hence the numerical approximations of these equations are less

accurate than expected.

In this thesis, we are interested in finite-time singularities, a property that is

specific to nonlinear equations. Indeed, even if the solution of a linear equation

may develop a singularity in finite time, it is necessarily caused by some underlying

singularity in the data of the problem (in the initial or boundary conditions) [59].

On the other hand, in the case of nonlinear equations, the singularity may arise from

the nonlinearity itself, so that even with smooth initial and boundary conditions, the

solution may develop a singularity in finite time.
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The simplest form of singularity in nonlinear equations is known as blow-up: when

a solution of an evolution equation grows without bound as time approaches some

finite value T , we say that a blow-up occurs at time T . Essentially, the solution

becomes infinite at one or more points of the domain so that we have

lim
t→T

sup
x∈Ω

|u(x, t)| = ∞,

where T is called the blow-up time. As we will explain in Chapter 1, it is generally

very difficult to numerically simulate blow-up phenomena accurately, in particular

when using a fixed timestep. The goal of our work is thus to provide appropriate

numerical methods. We explain two different ways to construct semi-discretizations

in time with fixed stepsize, designed to solve a specific problem whose solution is

blowing up in finite time.

The first chapter gives a more detailed introduction to the subject of this thesis.

We first show the importance of blow-up phenomena by presenting several of its

domains of application. Then we present an overview of the most commonly studied

models: the semilinear parabolic equation ut = ∆u + f(u), the quasilinear equation

ut = ∆uσ+1+αuβ+1, the wave equation utt = ∆u+f(u) and the Schrödinger equation

iut = ∆u+ F (|u|2)u. For each of these problems, we give a few criteria ensuring the

occurrence of a finite-time blow-up. We then turn to the approximation of blow-

up phenomena using numerical solutions. We explain the difficulties arising with the

transition and in particular we address the problem of the definition of numerical blow-

up and numerical blow-up time. Finally, we briefly explain the idea that underlies

the constructions of B-methods that are presented in this work.

The second chapter consists of an historical review of the subject. In the first

part, we present a chronological description of the development of the theory of equa-

tions with blow-up solutions. Articles suggesting proofs of blow-up solutions started

to appear in the sixties. The first studies concentrated on conditions ensuring the
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occurrence of blow-up and estimations on the blow-up time. Afterwards, other ques-

tions arose such as where and how the blow-up occurs. The number of papers devoted

to the subject exploded in the eighties. Our presentation concentrates mainly on the

earlier period, that is from the sixties to the eighties. In the second part, we turn

ourselves to the different attempts to reproduce blow-up solutions numerically. It

started mostly in the eighties on simple problems of the form ut = ∆u+f(u) and the

subject quickly took off in the nineties.

In the third chapter we present how to construct B-methods, which are numerical

methods that are designed for a specific problem. Two different approaches are used

and the constructions are explained on the semilinear parabolic equation ut = ∆u+

δF (u). The first approach consists of a splitting method whereas the second approach

is based on the variation of a constant. Several schemes of each type are then derived

for different problems, chosen among the most commonly studied. Most of these

schemes are then put into practice in order to illustrate their performances; extensive

numerical experiments complete the chapter.

Even though it is not possible to study every B-method, we present in the fourth

chapter a theoretical study for a few schemes. We selected a method based on the

backward Euler method for each type of construction, and applied these two methods

on a semilinear parabolic problem and a quasilinear parabolic problem with power-

type nonlinearities. The two methods were chosen because of their simplicity and

their stability and the problems belong to the most-studied models. For each case,

we prove the existence and uniqueness of a positive solution of the scheme over a

finite-time interval. When necessary, an iterative method to compute the solution is

given. A lower bound for the numerical blow-up time is derived for each method,

and in two cases an upper bound is also given. Several results concerning the rate

of growth of the numerical solution are also presented. All these results confirm the

performance of these methods, as illustrated in Chapter 3.
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Chapter 1: Presentation of the Prob-

lem

Blow-up solutions occur in various models coming from a large variety of physical

backgrounds. The most well-known applications belong to combustion. The unknown

function u then represents the temperature, or the excess of temperature of some

substance (e.g. gas) in a recipient subject to a chemical reaction. The theory of

thermal self-ignition of a chemically active mixture of gasses in a vessel was presented

in particular by Gelfand in 1963 [61]. Thermal explosions are also discussed by Frank-

Kamenetskii [50] and Joseph and Sparrow [79]. One can also see [41], [80] and [82].

The second important domain of application of blow-ups is fluid dynamics. Tur-

bulent flows may be studied using nonlinear Schrödinger equations. These equations

also model the temperature of a liquid flowing around a cylinder when the viscosity

of the fluid decreases exponentially with temperature (see [93]).

In nonlinear optics, the cubic Schrödinger equation describes the propagation of

light beams in nonlinear, dispersive media [36, 88, 151, 150, 44, 115, 103]. Several

articles also stress the importance of the cubic Schrödinger equation in the domain of

plasma physics, in particular in relation to Langmuir waves because the equation can

be considered as a limit of Zakharov’s model for these oscillations [67, 162, 163, 164].

Some applications appear in the field of biology. Indeed, in [141] Souplet suggested

an interpretation in population dynamics for ut = ∆u − µ|∇u|q + up, where the
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damping term has no obvious interpretation in terms of a thermal reaction-diffusion

process. In the context of the population of a biological species, the unknown function

u represents the spatial density of individuals. More models are presented in [71].

More applications of blow-up problems are found in areas like quantum mechanics

[68], [144], colloid chemistry [159] and geometry [9, 84]. Some models can be used in

chemotaxis [145], theory of gravitational equilibrium of polytropic stars [31, 78, 91]

and Ohmic heating [94, 95].

The fields of application of blow-up solutions are varied, which explains the interest

generated by these problems, among both mathematicians and applied scientists.

Equations admitting blow-up solutions are diverse and might be complex, however

a few examples among the simplest models were more popular. The first problem that

generated great interest is the following semilinear parabolic equation






ut = ∆u+ f(u), Ω × (0, T ),

u = 0, ∂Ω × (0, T ),

u(x, 0) = u0(x), Ω,

(1.1)

where the domain Ω ⊆ R
d can be bounded or not (including the Cauchy problem),

the growth of f is superlinear at infinity and generally u0 is taken to be a positive

continuous function on Ω̄. This equation models a great variety of physical problems,

from combustion to population dynamics. However, it most commonly represents

nonlinear heat generation. If the source term f is positive, convex and grows fast

enough at infinity, then diffusion can not prevent blow-up if the initial state u0 is

large enough. We present here in more detail some conditions ensuring that the

solution blows up in finite time.

First, we assume that the function f is positive, strictly increasing and strictly

convex on (0,∞), belongs to C2([0,∞)) and satisfies
∫ ∞

b

ds

f(s)
<∞, (1.2)
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for b > 0. For the Cauchy problem, if we also assume that
∫ ∞

s

dσ

f(σ)
= o(s−2/d), as s→ 0,

then the solution blows up in finite time for all initial conditions u0 ≥ 0, u0 6≡ 0. If

the domain Ω is bounded, we need to introduce the first eigenvalue λ1 of −∆,

−∆ϕ = λ1ϕ, in Ω,

ϕ = 0, on ∂Ω.

The corresponding eigenfunction ϕ is chosen positive and normalized so that
∫

Ω

ϕ(x) dx = 1.

Then, if u0 ≥ 0 on Ω and

f(s)− λ1s > 0, for s >

∫

Ω

u0ϕdx, (1.3)

the solution blows up in finite time. In particular, if we can replace f(u) by δF (u)

where δ satisfies

δ > λ1 sup
s> 0

s

F (s)
,

the solution of the problem blows up in finite time for any initial condition u0. These

results can be found in [56] and [92]. Two particular models for the source term f

have been more specifically studied, in particular in the early works of Fujita [54, 55].

The exponential reaction model f(u) = eu is mostly known in combustion theory as

the solid-fuel model or the Frank-Kamenetskii equation. In [18], Bebernes and Eberly

explain in detail how this model is derived. The second classical choice for the source

term is f(u) = up with p > 1. Both examples satisfy the above conditions in the case

of a bounded domain.

Studies quickly diversified to quasilinear equations ut = ∆ϕ(u) + f(u), and in

particular the porous-media equation with a power-type source term

ut = ∆uσ+1 + αuβ+1,
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with σ > 0, β > 0, and α ≥ 0, on a bounded domain of Rd. This problem is also

a model for nonlinear heat propagation and has been used in plasma physics for

the computation of the temperature in a fusion reaction plasma [133]. In the fast-

diffusion case, σ ∈ (−1, 0), the solution may vanish or blow up in finite time. In the

slow-diffusion case, σ > 0, the solution either blows up in finite time or exists for all

time. In case β = σ > 0, precise results are known. They can be found in particular

in [134]: the solution blows up in finite time if and only if α is larger than the first

eigenvalue of the problem −∆ϕ = λϕ on Ω, with ϕ = 0 on ∂Ω.

The third equation that has been deeply studied is the nonlinear wave equation

utt = ∆u + f(u). In fact, it is among the first problems where mathematicians

studied blow-up solutions (see Chapter 2), but this model is rarely related to real-life

problems. The conditions ensuring the occurrence of finite-time blow-up are similar

to those of the semilinear parabolic equation. The nonnegative, nondecreasing and

convex function f must grow fast enough at infinity and satisfy (1.3). The initial

conditions u0 and u0t must be nonnegative and nonidentically zero in the case of a

bounded domain, and the initial conditions must be positive and satisfy ∆u0 ≥ 0,

for the Cauchy problem, in order for the solution to blow up in finite time. See for

example [65].

Finally nonlinear Schrödinger equations

iut = ∆u+ F (|u|2)u, in R
d, d ≤ 3, (1.4)

started to generate much interest in the eighties. Indeed these models (in particular

the cubic Schrödinger equation, F (s) = qs) occur in various areas of mathematical

physics. In one spatial dimension they arise in wave theory, in two dimensions, they

appear in nonlinear optics and in three dimensions they are derived in plasma physics.

Defining G(u) =
∫ u

0
F (s) ds and r = |x|, if the functions F and u0 satisfy

E0 :=

∫

Rd

[

|∇u0|2 −G(|u0|2)
]

dx ≤ 0,
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and

Im

(∫

rū0u0r dx

)

> 0,

and there exists a constant c > 1 + 2/d such that

sF (s) ≥ cG(s), ∀ s ≥ 0,

the solution of the equation blows up in finite time (see [66] or the monograph [148]).

As only the Cauchy problem is studied for the Schrödinger equations, we will not

address this example in this thesis.

These equations have been deeply studied and much is known about them. The

conditions ensuring finite-time blow-up we gave above are chosen among the simplest

and much more detailed and less restrictive conditions were developed (see Chapter

2). However, even though such conditions have been derived for many problems, it

is still not possible to get precise information about the exact blow-up time. Blow-

ups have an important physical interpretation. If the singularity is not caused by

the use of unphysical initial (or boundary) conditions, it illustrates the collapse of

some approximations used to derive the real-world model. It is important to be able

to reproduce the blow-up as precisely as possible in order to be able to adapt the

model in the most adequate manner according to both mathematical considerations

and physical concerns. The blow-up time is of particular interest, since such an

adjustment is only conceivable if the blow-up time can be properly predicted.

Since theoretical approaches do not provide appropriate results, it is natural to

turn to numerical approximations to obtain more information. However this is a

sensitive problem : most numerical methods lose accuracy as the solution becomes

large, and in case of blow-up numerical data grow unboundedly as the blow-up time

approaches. Close to the blow-up set, solutions vary quickly in time and the spatial

gradients are very large, whereas the solution changes very slowly on the remainder

of the domain.
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To reproduce finite-time blow-ups numerically, a natural choice is to use methods

that are adaptive in time. For these methods the definition of numerical blow-up

follows easily from the definition of the blow-up for the exact solution. The blow-up

time of the exact solution is defined to be the finite number T such that

lim
t→T

‖u(x, t)‖∞ = ∞.

For time-adaptive methods, the timestep naturally decreases as the blow-up time is

approached so that the sequence {tn} generally tends to some finite value as n goes

to infinity. We say that a numerical blow-up occurs in finite time if

T ∗ = lim
n→∞

tn,

is finite with

lim
n→∞

‖un(x)‖∞ = ∞.

The time T ∗ is called the numerical blow-up time. For time-adaptive methods, the

strategy of time-stepping plays a key role, as is explained by Stuart and Floater in

[146].

Nevertheless, methods with fixed timestep are interesting and we chose to con-

centrate our work on constructions leading to specialized fixed-step methods. If the

definition of numerical blow-up naturally followed from the definition of the theoret-

ical blow-up in the case of adaptative methods, such transition is not obvious in the

case of fixed-step methods.

For any fixed timestep h, the numerical solution un(x) approximates u(tn, x) where

tn = nh. If the function u blows up at finite time T , there exists n∗ such that

tn∗ < T ≤ tn∗+1,

and the numerical solution un should only be computed up to tn∗ . As a consequence,

the solution, and its numerical approximation, can only reach a certain value K,
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where K ≥ ‖u(T − h, x)‖∞, see Figure 1.1. Conversely, for any large number K,

there exists h such that ‖u(tn, x)‖∞ ≥ K for some n < T/h.

0   0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.18
0

1
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T − h tn∗

Figure 1.1: Numerical Blow-Up.

Hence the natural way to define the numerical blow-up time is the following. For

a fixed large number K, we define T ∗
K = nh where n is such that ‖un(x)‖∞ > K.

Then we say that the numerical solution blows up in finite time if the limit

T ∗ := lim
K→∞

T ∗
K ,

exists and is finite. The time T ∗ is called the numerical blow-up time. To prove that

a numerical blow-up occurs and to give an upper bound on the blow-up time, we

need to show the existence of an upper bound for {T ∗
K}, that is we need to prove that

there exists Tu such that for all K > 0 and h small enough, there exists n < Tu/h

such that

‖un(x)‖∞ > K.

This will be done for one B-method in Section 4.2.3.
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In this thesis, we present two different approaches that lead to the construction

of semi-discretizations in time specialized for a specific blow-up problem. As we have

seen, many blow-up models consist of two parts: a nonlinear part modelling the

source (heat source, gas reaction...) and an other part (usually linear) modelling the

diffusion process. It is clear that the nonlinear part is responsible for the blow-up and

that the diffusion part only delays the occurrence of the blow-up. Moreover the larger

the solution becomes, the more important the reaction part is. As we get closer to

the blow-up time, the diffusion process plays a minor role. Many models are simple

enough so that the differential equation obtained by removing the diffusion process

part can be explicitly solved. It is thus interesting to exploit this information. In

Chapter 3, we explain using an example how to use any standard method as a basis

for new specialized methods. The first approach consists in constructing splitting

methods and the second approach derives from the variation of the constant. Since

the resulting methods are developed specially to properly reproduce blow-ups, we call

them B-methods.

As a conclusion to this introductory chapter, we present an example of application

of our methods. We apply standard first-order methods and the corresponding B-

methods, to the classical problem

ut = uxx + 3eu,

on [−1, 1], with u(−1, t) = u(1, t) = 0 for all t and u(x, 0) = cos(πx/2). The spatial

derivative uxx is discretized using finite differences with 31 gridpoints. For the time

derivative ut we used the same fixed stepsize h = 0.0001 for all the methods we

applied, that is the standard forward Euler (FE) and backward Euler (BE) methods,

as well as six B-methods. Four of them are obtained using the first approach (splitting

methods), they are labeled SpFE, SpFEA, SpBE and SpBEA. The two remaining-ones

are obtained using the second approach (variation of the constant) and are labeled

VCFE and VCBE. All six B-methods are derived in Chapter 3. For each of these
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methods, we compute the solution u up to T = 0.1663. To get a clearer view of the

results, instead of plotting the solutions at all gridpoints for all times, we chose to

only plot the solutions at the midpoint of the domain [−1, 1], so that we plot un(0)

for n between 0 and 1663. As the exact solution of the problem is not known, we use

the adaptive method ode45 of Matlab to represent the exact solution.

0.163 0.1635 0.164 0.1645 0.165 0.1655 0.166 0.1665

4.5

5

5.5

6

6.5

7

7.5

8

Time

S
ol

ut
io

n 
at

 m
id

po
in

t

ode45
FE
BE
SpFE
SpFEA
SpBE
SpBEA
VCFE
VCBE

Figure 1.2: Application of first-order standard methods and B-methods.

On Figure 1.2, we observe that whereas the standard methods (circles and squares

on the figure) go away from the exact solution (plain line), all B-methods (in dotted

lines) stay close to it. We actually need to zoom (Figure 1.3) to properly distinguish

them and we see that the approximations obtained by the B-methods really follow

the trajectory of the exact solution. More detailed numerical examples are presented

in Section 3.3, however one can already see on this simple example the potential of

B-methods.
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Figure 1.3: Zoom of the above application.
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Chapter 2: Historical Review

2.1 Continuous Results

Another consequence of Theorem I is the existence, in any bounded domain, of a

solution of ∆u = f(u) which becomes infinite everywhere on the boundary of the

domain provided that f(u) is an increasing function.

Keller (1957) [86]

Consider the nonlinear wave equation utt − c2∆u = f(u). (...) We will show that for

a certain class of functions f(u) the solution u becomes infinite at a finite value of

t, provided the initial data satisfy appropriate conditions.

Keller (1957) [87]

Finally, we consider the question of obtaining estimates which could be used to show

that solutions of

∂u

∂t
−

n∑

i,j=1

∂

∂xi

(

aij(x)
∂u

∂xj

)

= F (u),

blow up in some finite time interval, if F grows too rapidly as a function of u.

Kaplan (1963) [81]

Even though we can not really speak about blow-up phenomena for elliptic equa-

tions as time is absent from the equations, the existence of solutions which become

infinite was first mentioned for these types of equations. It started as early as 1916

when Bieberbach published a first paper [24] about ∆u = eu in two dimensions. In
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1957, Keller generalized the known results to ∆u = f(u) in any dimension in [86] and

decided to apply a similar procedure to nonlinear wave equations in a second article

[87]. In this paper, Keller studied the general equation

utt = c2∆u+ f(u), (2.1)

with initial conditions u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), in a space of dimension d =

1, 2 or 3. Using a comparison theorem, he proved that under certain conditions on

the function f and on the initial data, the solution becomes infinite in finite time.

Moreover he generalized his result to the Euler-Poisson-Darboux equation

utt +
k

t
ut − c2∆u = f(u), (2.2)

for d = 2, k > 1, and ψ ≡ 0. Rosenbloom obtained separately, using the same method,

equivalent results concerning (2.1) in the particular case d = 1 and f(u) = u2. He

stated his results in an abstract [132] published in 1954.

We now turn to the equations which are of most interest for us. Blow-up phe-

nomena for semilinear parabolic equations in bounded domains have been studied for

the first time in a paper by Kaplan [81] in 1963. This paper is rarely presented as

the first reference on the subject, which may be explained by the fact that blow-up

solutions do not represent an important part of it. This article contains the proof of

a comparison theorem for a general parabolic equation in cylindrical domains under

very general boundary conditions, followed by many applications. In particular, the

following theorem was derived.

Theorem 2.1 (Kaplan). We suppose that Ω is bounded, and that u(x, t) ∈ C2,1 in

QT := Ω× (0, T ], and satisfies there

∂u

∂t
− L[u] ≥ G(u, t), (2.3)

where

L =
d∑

i,j=1

(
∂

∂xi
aij(x)

∂

∂xj

)

,
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is a self-adjoint uniformly elliptic differential operator with smooth coefficients (in

C3(Ω̄), say) and G(u, t) is a convex function of u for each fixed t ≥ 0. Let φ(t) satisfy

dφ(t)

dt
= G(φ(t), t)− λ1(φ(t)− k(t)), for 0 < t ≤ T,

and

φ(0) = inf
x∈Ω̄

u(x, 0),

where k(t) = infx∈∂Ω u(x, t), and where λ1 is the first eigenvalue for the problem

−L[ψ] = λ1ψ, in Ω,

with

ψ = 0, on ∂Ω.

Then, we have

sup
x∈Ω̄

u(x, t) ≥ φ(t), for 0 ≤ t ≤ T.

If we impose homogeneous Dirichlet boundary conditions, the proof is very simple

and since it will be of great importance in this thesis, we present this particular case

here. Note that in that case, we have k(t) = 0 for all t.

Proof. (Case of homogeneous Dirichlet boundary condition) One key element of the

proof is that by Courant’s Theorem, the eigenfunction ψ corresponding to λ1 does

not change sign in Ω, so that we can take ψ to be nonnegative on Ω and normalized

such that
∫

Ω
ψ dx = 1. Multiplying the inequality (2.3) by ψ and integrating over Ω,

we obtain
∫

Ω

∂u

∂t
ψ dx−

∫

Ω

L[u]ψ dx ≥
∫

Ω

G(u, t)ψ dx.

Using the fact that u is continuously differentiable and applying Stoke’s Theorem we

obtain
dv

dt
≥
∫

Ω

L[ψ]u dx+

∫

Ω

G(u, t)ψ dx,
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where v(t) is the L2-inner product of u and ψ, v(t) =
∫

Ω
u(x, t)ψ(x) dx. By definition

of ψ, we have −L[ψ] = λ1ψ and we can apply Jensen’s inequality to the last integral

since G(u, t) is a convex function of u for each fixed t:

dv

dt
≥ −λ1v(t) +G(v(t), t).

Since v(0) ≥ φ(0), by standard comparison techniques for ordinary differential equa-

tions, v(t) ≥ φ(t) for 0 ≤ t ≤ T . Since v(t) ≤ supx∈Ω̄ u(x, t), the result follows.

Using this theorem, it is easy to show that any solution of

∂u

∂t
− L[u] = F (u), (2.4)

where F (u) is convex and positive for u > u0 > 0, and
∫∞
u0
du/F (u) < +∞, can

be made to blow up in any prescribed time interval by making initial values and/or

boundary values large enough. Indeed, if u0 ≤ m ≤ u(x, 0) ≤ M , k ≤ u(x, t) ≤ K

for x ∈ ∂Ω and F (u) − λ1(u − k) > 0 for u ≥ m, the function φ(t) satisfies φ′(t) =

F (φ(t))− λ1(φ(t)− k) which gives

∫ φ(t)

φ(0)

ds

F (s)− λ1(s− k)
= t.

Under the above assumptions, we have

∫ ∞

u0

ds

F (s)− λ1(s− k)
<∞,

so φ and (by Theorem 2.1) any solution of (2.4) must become infinite as t → T0, for

some T0 such that

T0 ≤
∫ ∞

m

du

F (u)− λ1(u− k)
.

Moreover, other results from the article imply that

T0 ≥
∫ ∞

max(M,K)

du

F (u)
,
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so that estimates from above and below for the escape time for (2.4) are obtained. It is

interesting to note that Kaplan’s approach does not rely on the maximum principle,

but rather on a study of the ordinary differential inequality satisfied by the scalar

product of u and the lowest eigenfunction ψ.

The next cornerstone was the fundamental work of Fujita who published four

papers in the late sixties. These articles are often referred to as the beginning of a

deeper study of blow-up solutions. In the first paper [54], published in 1966, Fujita

studied the Cauchy problem

ut = ∆u+ u1+α, α > 0, (2.5)

and nonnegative initial data (with some growth restriction as |x| → ∞). Fujita noted

that in the previous articles about blow-ups, one constant conclusion was that the

solution blows up in finite time for large enough initial data. However, he proved that

for the above mentioned Cauchy problem, if 0 < dα < 2 all nonnegative solutions

apart from the null function blow up in finite time, no matter how small the initial data

is, whereas if 2 < αd, there is a global solution for many initial data. To prove these

results Fujita used the Green’s function of the heat equation. The proof of the first

theorem is similar in some way to the proof presented in Kaplan’s paper [81]: using

the Green’s function and Jensen’s inequality, Fujita obtained a differential inequality

and used it to show that the solution cannot exist for all t. For the second theorem,

Fujita used integral equations to construct a sequence of functions converging to the

global solution.

In 1969, Fujita published a short note [55] in which he stated several theorems

concerning the relations between the boundary value problem ∆u + eu = 0 (with

homogeneous Dirichlet boundary conditions), and the initial boundary value problem

ut = ∆u+eu (with the same boundary conditions and a nonnegative initial condition)

on a bounded domain Ω. The proofs of these theorems were only outlined in the

note [55], however a more general version of the main result concerning blow-up
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solutions was proved in a subsequent article published in 1970 [57]. In this paper, the

function eu was replaced by a general function f assumed to be increasing and strictly

convex. Using the Green’s function of −∆ in Ω with homogeneous Dirichlet boundary

conditions, Fujita proved the following result: if the boundary value problem (BVP)

has two distinct solutions u1 ≤ u2, and if the initial data u0 of the initial boundary

value problem (IBVP) satisfies u0 ≥ u2, u0 6≡ u2, then the solution of the IBVP blows

up in finite time or diverges to infinity at infinity, whereas if u0 ≤ u2, u0 6≡ u2, the

solution of the IBVP is global. The same year, Fujita published another article [56] in

which he proved that under certain conditions on f , the nonlinear parabolic problem

ut = ∆u+ f(u), (2.6)

with homogeneous Dirichlet boundary conditions have solutions which blow up in

finite time. In this article, Fujita considered two cases: the Cauchy problem (Ω = R
d),

and the case with bounded domain Ω. Concerning the Cauchy problem, Fujita first

stated the results derived in his previous paper and presented a generalization thereof.

Assuming that the initial data u0 is nonnegative and non-identically zero, and that

the function f satisfies the following conditions: f is locally Lipschitz continuous with

f(0) ≥ 0, f(s) > 0 for s > 0, 1/f integrable at infinity, f convex on [0,∞) and

∫ ∞

s

dλ

f(λ)
= o(s−2/d), as s→ 0+,

then the solution of the initial value problem blows up in finite time. The proof uses

the Green function of the heat equation and Jensen inequality. Fujita mentioned that

this result could be generalized to the case where the Laplacian is replaced by some

elliptic operator. Another theorem proving the existence of a global solution under

certain conditions on the growth of f and on the size of the initial data was also given

together with an outline of its proof. Concerning the problem on a bounded domain,

Fujita’s theorem is a particular case of Kaplan’s result. It states that for nonnegative
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initial data, if f is locally Lipschitz continuous with f(0) ≥ 0, f(s) > 0 for s > 0,

1/f integrable at infinity, f convex on [0,∞) and

f(s)− λs > 0, for s >

∫

Ω

u0(x)ϕ(x) dx,

where λ and ϕ are the first eigenvalue and first eigenfunction of −∆ϕ = λϕ, with

homogeneous Dirichlet conditions, ϕ normalized by
∫

Ω
ϕ(x) dx = 1, then the solution

blows up in finite time. In this case also, Fujita mentioned that the Laplacian could

be replaced by a more general elliptic operator and that more general boundary

conditions could be chosen. The proof of this result is the same as Kaplan’s one, it

uses the lowest eigenmode method. The critical case α = d/2 that was not studied by

Fujita in [54] and [56] was partly settled by Hayakawa in a short note [73] published

in 1973. Hayakawa proved that the limit of a sequence of subsolutions blows up in

finite time, so that the problem (2.5) has no global solution for any nontrivial initial

data u0 in case d = 2, α = 1 or d = 1, α = 2.

In the beginning of the seventies, Tsutsumi wrote several papers on blow-up so-

lutions. In his first article of 1972 [154], Tsutsumi obtained results similar to those

of Fujita [56], for solutions of

ut =
d∑

i=1

∂

∂xi

(∣
∣
∣
∣

∂u

∂xi

∣
∣
∣
∣

p−2
∂u

∂xi

)

+ u1+α, p ≥ 2, α ≥ 0,

on a bounded set Ω with homogeneous Dirichlet boundary conditions. Using Galerkin’s

method, a compactness argument and an energy inequality, Tsutsumi proved that if

p > 2+α, the problem has a global solution for all nonnegative u0 ∈ W1,p
0 (Ω), whereas

if p < 2+α, the initial condition u0 needs to be sufficiently small to get a global solu-

tion; otherwise, if u0 is large, the solution blows up in finite time. In a second article

published the same year [155], Tsutsumi considered the abstract Cauchy problems

for

ut +Au+ f(u) = 0 and utt +Au+ f(u) = 0,



22 Historical Review

where A is a nonnegative self-adjoint operator in a real Hilbert space H and f is a

nonlinear operator mapping H into itself. For these two equations, Tsutsumi stated

conditions which ensure the existence of a global solution and conditions which imply

finite blow-up time. Finally, in 1974, Tsutsumi [156] looked at

ut =
d∑

i=1

∂

∂xi

(

(1 + |u|p−2)
∂u

∂xi

)

+ u1+α, p ≥ 2, α > 0,

on a bounded set Ω with homogeneous Dirichlet boundary conditions and a nonnega-

tive initial data u0. After stating and proving some results concerning global existence

and uniqueness, Tsutsumi stated the following: if 2 < p < α, and if the initial data

u0 satisfies

1

2

d∑

i=1

∫

Ω

(1 + (u0(x))
p−2)(Dxiu0(x))

2 dx− 1

2 + α

∫

Ω

(u0(x))
2+α dx ≤ 0,

which is satisfied if u0 is large enough, then the solution blows up in finite time in

the L2-norm. Tsutsumi proved this theorem using a blow-up subsolution.

In 1973, Glassey [65] considered the semilinear wave equation (2.1) with c = 1 and

showed that Kaplan’s method can actually be applied to this equation on a bounded

domain and thus proved that under certain conditions on the positivity, growth and

convexity of f , and for some initial conditions, the solution of the equation must blow

up in finite time. Glassey also considered the Cauchy problem and showed that for a

positive and convex function f , the solution blows up in finite time for many initial

conditions. He first proved his result for the case d = 3, using a combination of the

methods of Kaplan and Keller, and then showed how this result can be extended to

the general case. Finally Glassey considered the Cauchy problem for

utt = ∆u+ f(ut), (2.7)

for f positive and convex and he showed that the solution blows up at a rate greater

than the one of the corresponding wave equation (2.1).
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After the techniques involving the lowest eigenmode or the Green’s function, a

third type of well-used methods to prove that the solutions of some problems blow up

are the concavity methods, also called energy methods. These were presented for the

first time by Levine [104] in 1973. As Levine pointed out, the fact that no maximum

principle, positive first eigenfunction or Green function is used, this method can be

used for much more general problems, in particular for higher than second order

parabolic equations. In his paper, the first of a long series, Levine concentrated on

Put = −A(t)u+ F(u(t)),

where P and A are symmetric linear operators which satisfy certain positivity condi-

tions and the nonlinear function F must satisfy the following growth condition

∫

Ω

xF(x) dx ≥ 2(α + 1)

∫ 1

0

∫

Ω

xF(ρx) dx dρ, (2.8)

for all x in Ω. To prove that the solution blows up in finite time if the initial data is

large enough, Levine considered the function

Φ(t) = (T0 − t)

∫

Ω

u0Pu0 dx+ β(t+ τ)2 +

∫ t

0

∫

Ω

uPu dx dη.

He proved that for some chosen values of T0 > 0, β > 0, and τ > 0, Φ−α is concave

so that

Φ(t) ≥ Φ(1+1/α)(0)[Φ(0)− αtΦ′(0)]−1/α,

and the solution u can not exist for t ≥ Φ(0)/αΦ′(0). This result is applied to several

examples in the remainder of the paper. The same method was used the following

year in [105] for the nonlinear wave equation

Putt = −A(t)u+ F(u(t)),

where A is a symmetric linear operator, P is a strictly positive symmetric operator

and the nonlinear function F satisfies again (2.8). In this case, the function Φ is
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defined by

Φ(t) = Q2 + β(t+ τ)2 +

∫

Ω

uPu dx,

and Φ−α is concave for some nonnegative constants Q, β and τ . As for the parabolic

equation, Levine proved that if the initial potential energy of the nonlinearity is

larger than the total initial energy of the linear problem, then the problem can not

have a global solution. Some results of this paper were extended in a subsequent

article [107], which studied in particular weak solutions. Levine also published a note

[106] in which he extended some results of Keller about the Euler-Poisson-Darboux

equation (2.2). Indeed Keller only considered the case k > 1 and Levine showed that

Keller’s results are valid in the case 0 < k ≤ 1 as well. In this case, independently

of the space dimension, for certain functions f and certain initial conditions, every

classical solution must blow up in finite time. The following articles, written with

Payne, exploit the concavity method for different equations: the heat equation with

nonlinear boundary conditions [109], more general classes of higher order equations

[110], some abstract nonlinear equations (in a paper written by Knops, Levine and

Payne [89]) and the abstract Cauchy problem [111].

The introduction of another paper [108] by Levine, published in 1975, is interest-

ing as it lists different techniques that have been used to study finite-time blow-up,

together with corresponding references. In the article, Levine studied weak solutions

of utt = Lu + F1(u) and ut = Lu + F2(u) on a bounded domain, where L is not

necessarily elliptic but must have a positive eigenfunction ψ. Under some restrictions

on F1 and F2, and for large enough initial conditions, all solutions must blow up in

finite time. To prove his results, Levine obtained an ordinary differential equation for

the corresponding Fourier coefficient
∫

Ω
ψ(x)u(x, t)dx. This method was not original

in the case of an elliptic operator L, however Levine illustrated his results with several

unusual examples. He then explained how one can extend these results to nonlinear

equations in Banach spaces and concluded with a similar result for (2.7) in a bounded
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domain.

Sugitani [147] extended the study of parabolic equations by replacing the Lapla-

cian by the fractional power operator −
(
−∆

2

)β/2
(0 < β ≤ 2) in the semilin-

ear parabolic equation (2.6). Using the fundamental solution of the equation with

f(u) ≡ 0, and Jensen’s inequality, he proved that if f is increasing, convex, and grows

fast enough at infinity, the solution must blow up in finite time.

In 1977, Ball [11] illustrated the importance of combining the nonexistence argu-

ments advanced by most authors with a continuation theorem. Indeed he presented

an example of a semilinear parabolic equation (2.6) in a bounded domain of Rd whose

solution ceases to exist but does not blow up in finite time.

Another kind of equation whose solutions might blow up in finite time is the

nonlinear Schrödinger equations. This property was presented in the literature in

1977 [66], when Glassey studied iut = ∆u+F (|u|2)u in R
d. By first deriving a priori

estimates, Glassey proved that under some conditions on the initial data and the

function F , the solution blows up in finite time.

The results about semilinear parabolic equation (2.6) kept on becoming more

precise as Kobayashi, Sirao and Tanaka [90] improved the known results for the

Cauchy problem. By constructing the solution by iteration, using Green’s functions,

they proved that under some conditions on the function f , each positive solution of

the problem blows up in finite time.

The article published in 1981 by Bebernes and Kassoy [20] presents a nice review

of the known results about the semilinear parabolic equation in the specific case

f(u) = eu. A large part of this article consists in explaining the physics behind the

equation so it is an interesting link between the math and the physics. Moreover

numerical experiments comparing the actual blow-up time with the obtained bounds

(the upper bound is the one derived by Kaplan in [81]) complete the paper.

The Russian school started to work on blow-up problems at the end of the sev-
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enties. In particular, the Cauchy problem for ut = (uσ)xx + uβ was studied by

Samarskii, Kudryumov and others. The corresponding boundary value problem on a

bounded domain, with homogeneous Dirichlet boundary conditions, was first studied

by Galaktionov in 1981 [58]. The author gave conditions under which the problem

has no global solution and the solution blows up in some sense. An upper bound

for the blow-up time is explicitly stated for both case β = σ and β > σ. The same

problem was also studied by Sacks in his Ph.D. thesis and one can find his results

in [134]. Actually, the problem considered by Sacks is the “differential inclusion”

β(u)t 3 ∆u+ q∇γ(u) + F (x, t, u) and the first section is devoted to the study of the

classical solutions of the corresponding equation. A particular case of his work is of

particular interest for this thesis: when q = 0, F = F (u) = αu and β(u) = u1/m,

where m > 1, that is the porous media equation. The equation written for v = u1/m,

vt = ∆vm + αvm,

is exactly the equation studied by Le Roux in [99] and will be studied in Section

4.4. Sacks’s results imply in particular that if α is larger than the first eigenvalue of

−∆ρ = λρ, with homogeneous Dirichlet boundary conditions, the solution must blow

up in finite time.

In 1983 [92] and 1984 [93] Lacey too looked into the semilinear parabolic problem

(2.6). He presented significant results and, by writing the problem in the form

ut = ∆u+ δf(u),

he studied the connection between the existence and time of blow-up and the relation-

ship between δ and the spectrum of the corresponding steady state problem. We

denote by δ∗ the critical value for which the steady state problem corresponding

to the original equation has a positive classical solution. If δ > δ∗ under certain

conditions on f , the solution of the IBVP blows up in finite time, whereas if δ ≤ δ∗,
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conditions of the size of the initial conditions are required in order to ensure finite-

time blow-up. In case δ = δ∗, a lower bound for the blow-up time is derived and leads

to an asymptotic approximation of the blow-up time for δ close to δ∗.

Ayeni [10] considered the more general equations

ut = ∆u+ g(x, t)eu and ut = ∆u+ g(x, t)(1 + u2),

with g(x, t) ≥ λtn+α−1H(x, t), where H is the fundamental solution of the heat equa-

tion and λ and α are positive constants. Ayeni proved, using the maximum principle,

that for certain classes of initial conditions the solution blows up in finite time, and

he gave an upper bound for the blow-up time.

In the eighties, several authors started to broaden the questions about blow-up

solutions. As we have seen, some equations had been deeply studied and the condi-

tions leading to blow-up solutions were well-known, as well as approximations of the

blow-up time. Once the question “when?” was answered, the next natural questions

were “where and how does the blow-up occur”? The first to look at the blow-up set

was Weissler [160] in 1984. He restricted his study to ut = uxx + up, on the domain

Ω = [−R,R] ⊂ R, with homogeneous Dirichlet boundary conditions and nonnegative

initial conditions, and proved that the blow-up occurs only at the point x = 0. Fried-

man and McLeod [53], and Giga and Kohn [62] studied the asymptotic behavior of

the solution as the blow-up time is approached. In [62] Giga and Kohn gave, for the

same equation as Weissler, a pointwise characterization of the asymptotic behavior

of the solution near the blow-up point. Friedman and McLeod considered the more

general equation ut = ∆u+ f(u) on a bounded domain of Rd. They first studied the

set of blow-up points in the symmetric case (when the domain is a ball and the initial

condition is a radial function, decreasing in r) and the non-symmetric case (where the

domain is assumed to be convex). In the symmetric case, the authors generalized the

previous results by proving that the blow-up occurs at the single point r = 0. In the
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non-symmetric case, the authors proved that the blow-up set lies in a compact subset

of the domain. Then, for both cases, the asymptotic behavior of u at the blow-up

points was studied in the cases where f(u) = (u + λ)p and f(u) = eu and precise

estimates were given. This paper is of great importance for the development of the

subject and is often cited in subsequent papers.

These articles and the following ones represent the beginning of a much more

diversified study of equations with blow-up solutions. From that moment on, the

studies on blow-up solutions also covered where [52, 126] and how the blow-up occurs

(the asymptotic behavior is treated in [17, 33, 63, 161]), as well as what happens later

(i.e. is the blow-up complete or is it possible to extend the solution after the blow-up

time?) [14, 15, 96]. Quickly, the variety of the problems whose solution might blow up

studied expanded (nonlinear wave equations [131, 138], nonlinear Schrödinger equa-

tions [120, 130], nonlinear parabolic equations including the gradient ∇u [37], with

nonlinear memory [21], degenerate parabolic equations [112], parabolic equations de-

generate in the time derivative [49], systems of parabolic equations [52] for example).

So we will not attempt to expose an exhaustive overview of what has been done. We

are only going to present a few more relevant articles concerning the methods used

to prove that solutions blow up in finite time and approximate the blow-up time.

Indeed, another approach to prove that a solution is blowing up in finite time is

based on the result stated by Sattinger [137]: if an upper solution ū and an lower

solution u exist, there is a solution u such that u ≤ u ≤ ū. This statement applies

to elliptic equations Lu = f and to parabolic equations Lu − ut = f . The first

author to explore this path for parabolic equations was Meier in his thesis [116] in

1987. His results were announced in a short note [117] in 1986 and presented in an

article [118] in 1988. He stated conditions on the functions v(x, t) and w(x, t) which

ensure that the function u(x, t) = z(v(x, t);w(x, t)) is a lower solution, where z is

the solution of zv = f(z) ; z(0) = w. Meier’s results can be applied to bounded and
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unbounded domains and his article presents applications to several specific problems.

In his thesis, Meier showed that the bounds obtained for the blow-up time are not

directly comparable to those obtained by the method of Kaplan. Indeed the choice of

the best estimate depends on the size of the domain, the size of the initial condition

and the function f .

Another author who used a lower solution to study the blow-up time is Bellout

in his article [22] published in 1987. In this paper, assuming the concavity of (f/f ′),

the author considered the problem vt = ∆v + δa2t2f(v), for a certain constant a

depending on δ and δ∗, where δ∗ is the critical value for which the steady state

problem corresponding to the original equation has a positive classical solution. By

proving that there exists a point x0 in the domain such that v(x0, t) tends to infinity

as t tends to T = 1/a, Bellout obtained a sharp bound on the blow-up time of u.

At the same period, Kavian presented in [83] a new proof of Fujita’s results by

relating self-similar solutions of ut − Au = |u|p−1u, (x ∈ R
d), to stationary solutions

of vs + Lv = |v|p−1v + λv, s > 0, y ∈ R
d, where λ = (p − 1)−1, L = −K−1∇ ·K∇,

K = exp(|y|2/4) and L−1 is compact self-adjoint and positive on the weighted space

L2(Rd;K). Sufficient conditions for global existence or for finite-time blow-up are

given in terms of Eλ(v0), where Eλ is an energy functional for the second equation.

The technique explored by Meier in 1987, involving lower and upper solutions was

not very often used, however in 1997 Souplet and Weissler [142] compared u with a

self-similar subsolution that blows up in finite time. Assuming only a growth condition

on the nonlinear function F (u,∇u), it is possible to construct such a subsolution.

This technique improved a large part of the known results on the existence of blow-

up and allowed a unified treatment for problems that previously had to be handled

by different methods.

Finally, one should mention the large book devoted to blow-up in quasilinear

parabolic equations [135], written in 1995 by Samarskii, Galaktionov, Kurdyumov
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and Mikhailov. The content includes in particular generalized solutions for degener-

ate equations, heat localization, self-similar solutions and their asymptotic stability,

methods of generalized comparison of solutions of different equations and approxi-

mate self-similar solutions. Extensive bibliography and open problems are given for

each topic.

For an overview of the progress of the study of blow-ups, we first refer to the third

chapter of the early book by Berbernes and Eberly [18]. Motivated by the study of the

solid fuel ignition model θt = ∆θ+ δeθ, Bebernes and Eberly presented an exhaustive

summary of the results published about ut = ∆u + δf(u). Their work covers the

questions concerning the existence and uniqueness of the solution, the condition of

the existence of a finite-time blow-up and when, where and how it occurs. Also, their

Section 3.5 contains a nice overview of references. The survey article written in 1990

by Levine focuses mainly on the role of critical exponents, yet it is very interesting as

it contains many references and covers different types of problems (nonlinear parabolic

equations, nonlinear Schrödinger equations and nonlinear hyperbolic equations). The

survey article published in 1998 by Bandle and Brunner follows a thematic approach:

in Section 3 in particular, different approaches used for establishing blow-up are

presented. Moreover important questions concerning numerical blow-up solutions are

raised and Section 6 presents what had already been done in that topic. Besides,

the problem of computing and reproducing the blow-up numerically started to arise

in the mid-eighties. A historical review of the study of numerical solutions will be

covered in the following section.

For a recent overview, we refer to the comprehensive survey by Galaktionov and

Vazquez [59] published in 2002. This article focuses mainly on parabolic problems.

It starts with a good introduction and a historical review, followed by a discussion of

the main questions. These consist of the existence of the blow-up, when, where and

how it occurs and what happens beyond it. The last question is discussed in more
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detail. Different types of parabolic equations are studied, as well as systems and a

brief section about other nonlinear equations. The numerical aspect is also raised,

however they simply refer to the article by Bandle and Brunner [13]. This article

contains an extensive list of references.

2.2 Numerical approximations of blow-up solutions

Our concern is directed to the numerical study of ut = uxx+u2 with special emphasis

on the case when the exact solution blows up with the blow-up time T∞, where the

blow-up is dealt with in the sense of L2.

Nakagawa (1976) [127]

As [the blowup time] is approached, the discretization of the original problem results

in a distortion of the blowup mechanism and, unless care is exercised, the numerical

results can be misleading.

Tourigny and Sanz-Serna (1992) [153]

The pioneer article concerning approximations of blow-up solutions using numer-

ical methods was written in 1976 by Nakagawa [127]. In this article, titled “Blowing

up of a Finite Difference Solution to ut = uxx + u2”, Nakagawa restricted the study

of this equation to the one-dimensional case Ω = (0, 1), with homogeneous Dirichlet

boundary conditions and a nonnegative initial condition. He concentrated on the case

when the exact solution blows up in finite time T∞. The solution of the equation is

approximated using the following difference scheme

Dt v
n,i = DxDx̄ v

n,i + (vn,i)2, (2.9)

where Dx and Dx̄ represent respectively forward difference and backward difference

in x, and Dt represents forward difference in t, with variable time-step ∆tn = λnh
2,



32 Historical Review

where h is the spatial mesh size. The parameter λ = maxλn plays a crucial role. In

particular, since the scheme (2.9) can be rewritten as

vn+1,i = λnv
n,i+1 + (1− 2λn)v

n,i + λnv
n,i−1 +∆tn(v

n,i)2,

the condition 0 < λ ≤ 1/2 ensures the positivity of vn,i for all n and all i. The article

contains two major results. First, if λ satisfies the above condition and if the maximal

step-size τ is smaller than some value determined by the exact solution, we have for

1 ≤ k ≤ n− 1, where 0 ≤ tn ≤ T < T∞,

max
i

|vk,i − u(tk, xi)| ≤ c(T ) · h2,

where u is the exact solution. The second important theorem states that the numer-

ical blow-up time converges to T∞ when τ tends to zero and ∆tn = τ ·min{1, 1
‖vn‖}.

However these results are only valid in the case where the solution blows up in the

sense of L2, which is only true for some reaction functions. Indeed Friedman and

McLeod proved several years later [53], that it is not true for many interesting func-

tions.

A second article was published a year later by Nakagawa and Ushijima [129] to

generalize the results obtained by Nakagawa. In this article, the problem studied is

ut = ∆u+ f(u), where f is a locally Lipschitz-continuous convex function such that

f is nonnegative on R and f(u) ≥ Cu1+γ, as u tends to infinity, for some positive

constants γ and C. The space Ω is a bounded open set in R
d with smooth boundary.

Moreover they assume homogeneous Dirichlet boundary conditions and the initial

condition is taken to be continuous on Ω̄ and vanishing on the boundary. The finite

element method of lumped mass type is used to discretize in space, whereas the

time step is variable, its size being controlled by the size of the approximate solution

uh, or more precisely by the discretized analogue of J(t) =
∫

Ω
u(t, x)ϕ(x) dx, where

ϕ is the first eigenfunction of −∆ϕ = λϕ, with homogeneous Dirichlet boundary
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conditions, ϕ ≥ 0 and normalized (
∫

Ω
ϕ(x) dx = 1). As in the previous article, the

authors showed that the numerical blow-up time converges to the blow-up time of

the continuous problem and proved the convergence of the approximate solution.

These results appeared again in a following paper by Nakagawa, Ikeda and Ushi-

jima [128], put in a more abstract context and the method was applied not only to

the heat equation but also to the wave equation wtt = ∆w+f(w), where f is a convex

polynomial of arbitrary degree if n = 1 or 2, or f is a convex quadratic function if

n = 3, such that f is nonnegative on R and f(w) ≥ Cw2, as w tends to infinity,

for some positive constant C. The authors introduced v = wt and the discretized

analogue Ih(t) of I(t) =
∫

Ω
w(t, x)ϕ(x) dx in addition to the functional Jh(t) used

in the previous article to control the time step. Here again the convergence of the

numerical blow-up time of the approximate solution was proved.

Whereas these articles study the numerical approximation of problems that had

already been deeply studied from a theoretical point of view, Chorin [38] used numer-

ical methods to get some insight about equations for which no analysis of the blow-up

properties had been done. His article focuses on the incompressible Euler equations

in vorticity form,

∂tξ + (u · ∇)ξ − (ξ · ∇)u = 0,

ξ = ∇× u, ∇ · u = 0,

where u is the velocity and ξ the vorticity, in a unit cube with periodic boundary

conditions. The method used is quite sophisticated, it involves rescaling and mesh

refinement: a maximum number of points is allowed and when it is exceeded, most

parts of the domain are ignored (only the corner containing the singularity is kept)

and the problem is rescaled and the boundary conditions are adjusted. The idea

of such a study is quite different from the previous ones: whereas Nakagawa et al’s

articles put emphasis on the convergence of the numerical solution and the numerical

blow-up time, the properties of the numerical solution are not proven in the article
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of Chorin. The numerical results are used to described the nature of the solutions. A

similar work for the nonlinear Schrödinger equation was presented by Sulem, Sulem

and Patera [149] in 1984. The numerical blow-up was illustrated but not analytically

studied.

The idea of Nakagawa was extended by Chen [34] in 1986. The equation considered

is slightly more general than the one studied by Nakagawa: ut = uxx + u1+α, with

0 < x < 1 and a positive constant α. The initial condition is assumed to be sufficiently

smooth, nonnegative and zero on the boundary. Moreover Chen studied not only

Dirichlet but also Neumann boundary conditions. Whereas the scheme proposed by

Nakagawa was fully explicit, Chen changed it to be implicit in the linear part and

explicit in the nonlinear part,

un+1
j − unj
τn

=
un+1
j−1 − 2un+1

j + un+1
j+1

h2
+ (unj )

1+α,

and the size of the timestep is determined by the magnitude of the solution in a way

that is a generalization of the method used by Nakagawa. In this article, the author

was interested not only in the blow-up time but also in the blow-up set and the shape

of the blow-up. In a first part, Chen proved the convergence of the numerical solution

and the convergence of the numerical blow-up time in a way similar to Nakagawa’s,

then he proved that the blow-up concentrates to its maximum points. For this part,

Chen assumed that the initial condition was non-constant, symmetric and increasing

on (0, 1/2). Assuming that the numerical solution blows up then if α ≤ 1 the blow-

up is concentrated at its maximum point(s) (namely at 1/2 and (if α = 1) the two

adjacent points), and if α ≥ 1 the value of the solutions apart from these points

remains bounded. These conclusions are valid for Dirichlet conditions and Neumann

conditions. While these results were restricted to the one-dimensional case, they will

be extended to the general multi-dimensional case by Chen in 1992 [35], by means of

a slight modification of the scheme.
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Sanz-Serna and Verwer [136] chose another approach to add their contribution to

the study of numerical blow-ups. They restricted their work to the numerical scheme

obtained with the explicit Euler method for the simple ODE yt = ym. They derived

sharp bounds for the error and asymptotic estimates of the numerical solution in

order to illustrate the error propagation mechanism in nonlinear situations. The idea

of restricting the subject of the study to a simple ODE was new and has been used on

several occasions later. It allows for a better understanding of the semi-discretization

in time of complex PDEs.

In their paper [23] published in 1988, Berger and Kohn suggested a sophisticated

method for the numerical approximation of ut = uxx + up. This technique which was

first applied to solve hyperbolic systems combines rescaling and mesh refinement in

order to be able to keep accurate results over the entire physical interval up to very

large magnitude of the solution. The solution is stepped forward until its maximum

value reaches some predefined value. At that time the solution is rescaled, using the

scale invariance of the equation, to make it small again and extra grid points are added

in order to avoid the loss of accuracy caused by the stretch of the spatial variable.

In this article, the method is presented in detail and some conjectures concerning the

asymptotic shape are developed.

Stuart and Floater [146] used the same approach as Sanz-Serna and Verwer, that

is the study of discretization of simple ODEs, to generate an important paper con-

cerning the effect of time-discretization published in 1990. By studying the blow-up

problem for ODEs, the authors evaluated various time-stepping strategies for partial

differential equations that develop singularities in finite time. Using a natural contin-

uous embedding of the numerical method, they explained why fixed-step methods are

not a suitable choice and proposed a class of variable time-stepping strategies: they

introduced a new time-like variable in order to transform the blow-up time to infinity

and then showed that if the rescaling function is adequately defined the numerical
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blow-up time converges to the true one. They illustrated their work by studying,

theoretically and numerically, the parabolic equation xqut = uxx+f(u) on (0, 1) with

Dirichlet boundary conditions.

Other authors pointed out the care required, in particular for the time-discretiza-

tion, when trying to reproduce the blow-up numerically. Stewart and Geveci [143]

used spectral and pseudospectral methods coupled with the well-known variable-

stepsize Runge-Kutta method (RK45) in order to detect the blow-up of a nonlin-

ear evolution equation involving a Hilbert transform, however this approach did not

perform well and illustrated the fact that standard schemes are not well suited for

solving their kind of problems and that special schemes have to be derived. Tourigny

and Sanz-Serna [153] focused on the radial cubic nonlinear Schrödinger equation and

showed that different discretizations lead to different rates of growth for the blow-up,

which are thus irrelevant. They presented a procedure involving least squares fitting

that ensures reliable conclusions concerning the growth rate of the blow-up, however

their results are valid only asymptotically as the blow-up time is approached.

New equations, more and more complex, were studied. In 1992, Bona et al [25]

suggested a complex algorithm to study the formation of singularity for the Korteweg-

de Vries-Burges equations ut + upux − δuxx + εuxxx = 0 with periodic initial values.

Their method consists of a Galerkin finite element in space and an implicit Runge-

Kutta method in time and it involves a local refinement of the spatial grid, a local

selection of a temporal mesh size and a spatial translation of the solution. The proofs

of the convergence results stated were only outlined.

We mentioned earlier that Stuart and Floater [146] explained why standard fixed-

step methods were inappropriate when solving ODEs with blow-up solutions and

indeed most of the numerical schemes developed to reproduce blow-up solutions nu-

merically were based on variable time-steps governed by the amplitude of the solution.

However it is possible to construct specific fixed-step methods designed to reproduce
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the blow-up numerically. The first to explore this path was Le Roux in 1994 [99]. She

considered the porous media equation

ut = ∆um + αum,

with m > 1 on a bounded domain with Dirichlet boundary conditions. Using the

exact solution of the differential equation yt = αym, she derived an implicit semi-

discretization in time. She then proved existence and uniqueness of the solution of

this scheme, showed that this solution has the same properties as the exact solution

(i.e. blows up if α is larger than the first eigenvalue λ1 of the Dirichlet problem

−∆v = λv) and finally she proved the convergence of the solution.

As our theoretical study (Chapter 4) was largely inspired by this article, we present

shortly the strategy used by Le Roux to prove that the numerical solution blows up

in finite time and define the numerical blow-up time. First we introduce the function

v = um and the constants p = 1/m and q = 1− p. The timestep is denoted by h. As

a first step, Le Roux proves that the scheme has a unique positive solution:

Theorem 2.2 (Le Roux). If vn satisfies

‖vn‖∞ < K(h) :=

(
p

qhα

)1/q

, (2.10)

the scheme
p

q
vn+1v

−q
n − p

q
vpn+1 + h(−∆vn+1 − αvn+1) = 0, (2.11)

has a unique solution vn+1. This solution is positive and belongs to H1
0 (Ω) ∩ C2(Ω̄).

Moreover if (2.10) is satisfied, the function vn+1 can be characterized using the

functional

Jn(v) =

∫

Ω

|∇v|2 dx+
∫

Ω

(
p

qh
v−q
n − α

)

v2 dx. (2.12)

Indeed, if we denote by ψn the non-negative function belonging to the space E defined

by E := {v ∈ H1
0 (Ω) such that

∫
vp+1dx = 1} that satisfies Jn(ψn) = minv∈E Jn(v),
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we have

vn+1 =

(
p

qhJn(ψn)

)1/q

ψn.

This expression and the related functional

F (v) =

∫

Ω
(|∇v|2 − αv2)dx

‖v‖2p+1

(2.13)

lead in particular to the following inequality, that holds as long as (2.10) is satisfied,

q

p
hF (vn+1) ≤ ‖vn+1‖−q

p+1 − ‖vn‖−q
p+1 ≤

q

p
hF (vn).

This implies, in case α > λ1 and F (v0) < 0,

‖vn+1‖−q
p+1 ≤ ‖v0‖−q

p+1 +
q

p
nhF (v0).

The right-hand side of this inequality is negative if

tn := nh > Tmax :=
p

q

‖v0‖−q
p+1

(−F (v0))
,

hence there must be tñ < Tmax for which (2.10) is not satisfied anymore, in other

words we would have

‖vñ‖∞ ≥ K(h).

As K(h) can be made as large as desired by decreasing h, Le Roux refers to that

time tñ as the numerical blow-up time and says that the numerical solution becomes

infinite at tñ. Note that the numerical solution should not be computed further as

the numerical result may become irrelevant, since there are no theorems concerning

the case where the condition (2.10) is not satisfied. Hence the scheme may have no

solution at all or it may have one or more solutions, and these would not necessarily

be positive.

This definition of numerical blow-up time is slighlty different from the one we

introduced in Chapter 1 as in this case the numerical blow-up time tñ depends on h

and K (it actually corresponds to what we called T ∗
K), however as Tmax only depends
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on v0, this result proves the existence of a numerical blow-up in the sense defined in

Chapter 1. The advantage of Le Roux’s analysis is not only the fact that Tmax does

not depend on h nor K, but also the fact that for a fixed timestep h, we are sure

to reach the bound K(h) before Tmax. This makes the result particularly interesting,

however the technique to obtain this result relies on the fact that the solution has a

variational characterization (2.12). As such a characterization was not available for

most of the schemes we analyze in Chapter 4, we defined the numerical blow-up time

differently.

We will see later that scheme (2.11) can be obtained by applying one of the

constructions suggested in Chapter 3, so more details about the results proved in

Le Roux’s paper are presented in Section 4.4.1. This scheme and the corresponding

results were extended to the more general case ut = ∆um + αup, for m > 0 and

p ≥ m in Le Roux’s subsequent articles [100, 101] and a paper co-authored with

Mainge [102]. This time discretization developed in 1999 was recently combined by

Mainge with a suitable finite-dimensional space to derive a full discretization for the

Cauchy problem for the fast-diffusion equation ut = (um)xx + αup, with m ∈ (0, 1),

α > 0 and p > 1 [114]. Recently also, M-N. Le Roux constructed with A-Y. Le Roux

[97, 98] a full discretization involving variable timestep for the Cauchy problem of

ut = (umux)x + up, with m > 0 and p ≥ m+ 1.

Tourigny and Grinfeld [152] presented a new approach based on discrete meth-

ods employed in the complex domain: they discretized the governing equation and

“timestepped” in the complex domain. Their approach combines classical discretiza-

tion (Runge-Kutta methods) and methods of Taylor series (using Lyness’s algorithm

to compute approximate Taylor coefficients using Fast Fourier Transform). It is first

explained on the scalar Cauchy problem xt = f(x, t), then illustrated using several

examples, including the semilinear parabolic problem ut = uxx + u2 on (0, 1) with

Dirichlet boundary conditions.
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In [12], Bandle and Brunner discussed the choice of the time-step sequence when

the discretization in time is made by collocation using piecewise linear functions and

standard finite difference are used in space, for the semilinear parabolic problem

ut = ∆u + f(u) in a bounded domain with Dirichlet boundary conditions. The

criterion for the size of the time-step is a function of the collocation parameters so

that the implicit collocation schemes are well-defined and can be used for computing

the blow-up. Error estimates for the solutions are given but not for the blow-up time.

Their work can be generalized to more general second-order elliptic operators.

A natural approach to tackle the numerical reproduction of a blow-up is to use

moving-mesh methods. It is only in 1996 with the papers of Budd, Huang and Russell

[30] and of Budd, Chen, Huang and Russell [27] that this technique was analyzed in

the context of blow-up solution. Their work is based on the moving mesh partial

differential equations developed by Huang, Ren and Rusell in 1994 [76, 75], it uses

the scaling invariance of the solution and involves a spatial mesh that is modified as

time goes forward. They presented some analysis concerning the semilinear parabolic

equation ut = uxx+f(u) in one dimension. This approach has been further developed

for more complicated equations in [29, 28] and more recently in [74, 140].

Also in 1996, Abia, López-Marcos and Mart́ınez studied a semi-discretization in

space based on a uniform mesh for the semilinear parabolic equation in one dimension

[1]. This article, and the following [2], focus on the approximation of the blow-up

time. The authors gave conditions for the semi-discrete solution to blow up and

bounds on the blow-up time. They proved the convergence of the blow-up time of the

semi-discrete problem to the theoretical one. The main contribution of the second

article is that a strong hypothesis (that the solution achieves blow-up in some Lq(0, 1)

norm, with 1 ≤ q <∞) is removed under some conditions on f . Groisman and Rossi

[70] extended later this study by studying the blow-up rate and the blow-up set in

the special case f(u) = up. In the continuity of [1, 2], Abia et al completed this
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semi-discretization using the forward Euler method for time discretization which, in

some sense, comes down to generalizing Nakagawa and Chen’s results.

In 1997, Meyer-Spasche and Düchs [124] emphasized the relevance of nonstandard

difference schemes applied to ODEs with blow-up solutions. Indeed in the previous

studies of nonstandard schemes, see for example Mickens [125] and Agarwal [6], the

emphasis was put on avoiding numerical instabilities but the correct reproduction of a

blow-up was not explicitly set out as an asset of such schemes. In their paper, Meyer-

Spasche and Düchs studied the relation between several examples of nonstandard

schemes taken from the literature and the linearized trapezoidal rule, a time-centered

scheme coupled with the first step of a Newton iteration, that actually is a Rosenbrock-

type scheme. They showed that on their first example, u̇ = λu2, their scheme is exact

and on their second example, the logistic equation, they showed that the discrete

solution exhibits a finite-time blow-up in case the solution of the continuous problem

blows up in finite time and they compared the continuous and the discrete blow-up

times. The linearized trapezoidal rule (Lintrap) was studied further in a subsequent

article by Meyer-Spasche [121]. It is shown on an example that even if the discrete

blow-up occurs, the rate of growth is not correctly reproduced, so that the scheme

is not suitable. Even if in special cases the a priori bound for the blow-up time is

good, it is not necessarily true in most cases. In this article and the following ones

[121, 122, 123], Meyer-Spasche also gave examples of situations where exact schemes

for simpler equations led to efficient schemes for more complicated equations. One

of the examples presented is the scheme developed by Le Roux [99]: as we already

mentioned, she started from the exact scheme for yt = αym to construct her specific

scheme for the nonlinear equation ut = ∆um + αum.

It is in 1998 that the first (and only) survey about the numerical study of blow-ups

was published. Indeed the survey by Bandle and Brunner [13] that we already men-

tioned in Section 2.1 contains an excellent review of the beginning of the numerical



42 Historical Review

study of parabolic equations of type ut = ∆u + f(x, t, u,∇u). In their introduction

they enumerated the different methods used for spatial discretization and empha-

sized the importance of the choice of the time integrator. A more detailed review

of timestepping strategies is given at the end of the paper (Section 6). In particular

several of the papers cited above are referred to in more detail.

A new and quite different approach to prove the convergence of the numerical

blow-up time to the original equation’s blow-up time in case of a semi-discretization in

space was presented by Ushijima [157] in 2000. His approach is based on functionals.

He assumed there exists a functional J such that J [u](t) or d
dt
J [u](t) tends to infinity

as t tends to the blow-up time and a corresponding discrete functional. Ushijima

showed that if the semi-discrete solution uh converges to the solution in the sense of

functional then, under certain assumptions on J and Jh, the numerical solution uh

blows up in finite time Th that converges to the exact blow-up time. He illustrated

his theory by applying it to different problems, including the semilinear parabolic

equation ut = ∆u+ f(u).

As one can see, the subject really took off during the nineties. In the new decade,

the most commonly used semi-discretization in space remained the piecewise linear

finite element (which coincides with the classical central finite difference second order

scheme in one dimension) with mass lumping, that was already used in the pioneering

work of Nakagawa and Ushijima [129]. Duran, Etchevery and Rossi [42] applied it

to the heat equation with nonlinear flux condition and their work was generalized by

Acosta and al [5]. It was also applied to a system of semilinear heat equations [69]

and used to study the blow-up sets of the heat equation with nonlinear boundary

conditions [46]. However Ferreira, Groisman and Rossi explained the limits of this

uniform mesh when it comes to reproducing the numerical blow-up sets or rate of

growth [47] and suggested two ways to adapt the spatial mesh, either by adding mesh

points or by moving mesh points [48].
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Most of the fully-discrete schemes suggested also used the same spatial-discretization

as the one mentioned above, with or without mesh refinement, and they involved a

time-stepping strategy: some used a control of the time increment [77, 3], others

used a rescaling in time ([39] for a nonlinear Schrödinger equation, and [4] for a heat

equation with nonlinear flux boundary conditions).

Finally, very few of the authors suggested fixed time-step discretizations. Actually

among those who did, we mostly find people who took up the time discretization

suggested by Le Roux [99]. Barro et al [16] modified it for the reaction-diffusion

equation ut − ∆u1+δ + γ
−→
V · ∇u1+δ = αup and combined it with a finite difference

in space to produce a numerical simulation. In [43] Duvnjak and Eberl studied

a reaction-diffusion equation arising in biofilm modelling ut = ∆Φ(u) + ku, where

Φ(u) =
∫ u

0
sb

(1−s)a
ds, a, b ≥ 1. By applying the change of variables v = Φ(u), the

non-standard diffusion effects were removed from the spatial operator: v satisfies

β(v) = ∆v+ kβ(v), where β = Φ−1. This approach can be related to Le Roux’s work

[99]; as in this paper, Duvnjak and Eberl applied the implicit Euler discretization

which leads to a scheme equivalent to Le Roux’s. The authors then followed her way

to study the properties of their scheme.
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Chapter 3: Construction of Special-

ized Methods

In this chapter, we explain how to construct B-methods. For this purpose, we chose

to use the semilinear parabolic equation which has been widely studied (see Chapters

1 and 2). We explain in detail the two types of construction of schemes for this

problem. The idea is then applied to several other examples and a section devoted to

numerical experiments concludes the chapter.

3.1 Methods of construction of schemes

The construction of the methods will be illustrated using the semilinear parabolic

problem presented in Chapter 1






ut = ∆u+ δF (u), for (x, t) ∈ Ω × (0, T ),

u = 0, for (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), for x ∈ Ω,

(3.1)

where δ is a positive constant, Ω is a bounded domain of Rd and u0 is a positive

continuous function on Ω̄. We recall that the function F is supposed to be positive,

strictly increasing and strictly convex on (0,∞), to belong to C2([0,∞)) and to satisfy

∫ ∞

b

ds

F (s)
<∞,
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for some finite b, so that the function

g(s) =

∫ ∞

s

1

F (σ)
dσ

is well-defined on (0,∞). We have lims→∞ g(s) = 0 and we denote M = lims→0 g(s),

so that if we allow F (0) = 0, then M can be finite or infinite. Moreover, since F

is continous and positive on (0,∞), g is continuous and strictly decreasing on R
∗
+.

Hence g is invertible on R
∗
+ and G = g−1 is defined on (0,M) and satisfies

lim
s→0

G(s) = ∞, and lim
s→M

G(s) = 0.

In order to be able to construct specialized methods, we need to get an explicit form

of g and often G. Examples of functions F which satisfy all these conditions are

✗ F (u) = eu, g(u) = e−u, G(u) = − ln u,

✗ F (u) = (u+ α)p+1, α ≥ 0, p > 0, g(u) = 1
p(u+α)p

, G(u) = (pu)−1/p − α,

✗ F (u) = eu − 1, g(u) = ln
(

eu

eu−1

)
, G(u) = u− ln(eu − 1),

✗ F (u) = (u+ 1)[ln(u+ 1)]p+1, p > 0, g(u) = 1
p[ln(u+1)]p

, G(u) = e(pu)
−1/p − 1,

✗ F (u) = u2 + 1, g(u) = π
2
− arctan(u), G(u) = cot(u).

In problem (3.1) the nonlinearity in F is responsible for the finite-time blow-up

and becomes increasingly important as we approach the blow-up time. The conditions

imposed on F allow us to write explicitly the solution of the nonlinear ordinary

differential equation yt = δF (y). Indeed we get for any S > 0,

∫ y(S)

y(t)

ds

F (s)
=

∫ S

t

δds,

and then g(y(t)) = [g(y(S)) + δS]− δt, that is

y(t) = y(t,K) = G(K − δt), (3.2)
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where K is a constant, for all t satisfying K − δt ∈ (0,M). It is then natural to seek

integrators that exploit this information. In the following we present two different

ways to obtain semi-discretizations in time for the semilinear problem (3.1) from this

exact solution. We obtain two different types of B-methods.

3.1.1 Splitting Methods

It may happen that the differential equation ẏ = f(y) can be split accord-

ing to

ẏ = f [1](y) + f [2](y),

such that only the flow of, say, ẏ = f [1](y) can be computed exactly. If

f [1](y) constitutes the dominant part of the vector field , it is natural to

search for integrators that exploit this information.

Hairer, Lubich, Wanner (2002) [72]

As suggested in Hairer, Wanner and Lubich [72], one way to exploit the exact

solution of the nonlinear part of the equation is by using splitting methods. If we

decompose ut = ∆u+ δF (u) into

f [1](u) = δF (u) and f [2](u) = ∆u,

we can make good use of the fact that we know the exact flow ϕ
[1]
t of ut = δF (u)

(note that ϕt does not represent a time derivative) . Indeed, the exact flow of an

equation yt = f(y) is the map defined by ϕt(y0) = y(t) if y(0) = y0, so in this case,

using (3.2), we have

ϕ
[1]
t (un) = G(g(un)− δt), for t < g(un)/δ.
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Note that the notation ϕt represents a map, not a time derivative. Then we can

choose any numerical integrator Φ
[2]
h for ut = ∆u, and by composing the exact flow

and the numerical integrator, we obtain two new methods for ut = ∆u+ δF (u),

Φh = ϕ
[1]
h ◦ Φ[2]

h and Φ∗
h = Φ

[2]∗
h ◦ ϕ[1]

h , (3.3)

where Φ
[2]∗
h is the adjoint of Φ

[2]
h (see Section II.3 in [72]). As the two original methods

Φ
[2]
h and Φ

[2]∗
h are consistent, that is

Φ
[2]
h (z0) = z0 + hf [2](z0) +O(hp) and Φ

[2]∗
h (z0) = z0 + hf [2](z0) +O(hp),

with p ≥ 2, and ϕ
[1]
t is the exact flow of ut = δF (u), so that its Taylor expansion is

ϕ
[1]
h (y0) = y(h) = y0 + hf [1](y0) +O(h2),

the resulting methods Φh and Φ∗
h are of first order. This construction can only lead

to methods of first order, however as these two integrators are adjoint, we can use

them as the basis of the composition method

Φh = Φαsh ◦ Φ∗
βsh ◦ · · · ◦ Φ∗

β2h
◦ Φα1h ◦ Φ∗

β1h
,

to construct methods of any desired order (see [72]). In particular, by choosing

α1 = β1 = 1/2 for s = 1, we obtain a second-order symmetric method

Ψh = Φh/2 ◦ Φ∗
h/2.

It is interesting to note that if Φh (not Φ
[2]
h ) is the forward (respectively backward)

Euler method, the resulting method Ψh corresponds to the midpoint (respectively

trapezoidal) rule.

We saw that the exact flow of ut = δF (u) is given by

ϕ
[1]
t (un) = G(g(un)− δt),
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so we just have to choose a numerical integrator for the second part ut = ∆u. For

example, even though this problem is stiff, we start with forward Euler

Φ
[2]
h (un) = un + h∆un,

whose adjoint is backward Euler

Φ
[2]∗
h (un) = un + h∆un+1.

By composing these integrators with the exact flow ϕ
[1]
t , we get two B-methods. The

first one is

Φh(un) = ϕ
[1]
h ◦ Φ[2]

h (un),

which gives the explicit scheme

un+1 = G(g(un + h∆un)− δh),

and requires the condition g(un + h∆un) ∈ (0,M), and the second method is

Φ∗
h(un) = Φ

[2]∗
h ◦ ϕ[1]

h (un),

which gives the implicit scheme

un+1 = G(g(un)− δh) + h∆un+1,

and requires the condition g(un) − δh ∈ (0,M). This scheme is studied in detail in

Section 4.2. We derive more schemes for problem (3.1) in Section 3.2.1.

Local truncation error. We mentioned above that the B-methods obtained

using this construction are of first-order if the standard methods used in the con-

struction are consistent. In order to show that B-methods have the potential to be

better than standard methods, we need to compare the local truncation errors of both

types of methods.
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We consider the problem ut = F (u) + Υ(u), where Υ can be a function or an

operator (like the Laplacian in our example). We denote by ϕ the function that

satisfies

ϕt(t, v) = F (ϕ(t, v)), and ϕ(0, v) = v, ∀v. (3.4)

Keeping the notation introduced at the beginning of the chapter, we have ϕ(t, v) =

G(g(v) − t). We also consider the numerical method Φ applied to vt = Υ(v), with

v(0) = v0. If v(t) is this simplified problem, we have

Φ(h, v0) = v(h) + E(h), (3.5)

where E represents the local truncation error of the standard method.

We first consider the B-methods obtained by applying the numerical method first

and use the result in the exact scheme: starting with u0, we define v0 = u0 and we

apply the numerical method Φ to get v1 = v(h) + E(h), then we set

u1(h) = ϕ(h, v1) = ϕ(h, v(h) + E(h)).

To expand u1 as a series of h, we need to compute its derivatives. We have

u′1(h) = ϕt + ϕv (v
′(h) + E ′(h)),

and

u′′1(h) = ϕtt + 2ϕtv (v
′ + E ′) + ϕvv (v

′ + E ′)2 + ϕv (v
′′ + E ′′),

where the derivatives of ϕ are evaluated at (h, v(h) + E(h)).

From the definition of ϕ given in (3.4) (or using ϕ(t, v) = G(g(v)− t)), we obtain

u1(0) = ϕ(0, v(0) + E(0)) = ϕ(0, u0) = u0, ϕt = F (ϕ), ϕv(0, v) = 1, ϕtt = F ′(ϕ)ϕt,

ϕtv = F ′(ϕ)ϕv and ϕvv(0, v) = 0. Moreover we have v′(h) = Υ(v) and v′′(h) =

Υ′(v)Υ(v). Hence the derivatives of u1 evaluated at h = 0 are

u′1(0) = F (u0) + Υ(u0) + E ′(0),
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and

u′′1(0) = F ′(u0)F (u0) + 2F ′(u0)(Υ(u0) + E ′(0)) + Υ′(u0)Υ(u0) + E ′′(0).

The values of E ′(0) and E ′′(0) depend on the standard method used, in particular

for any consistent method, we have E ′(0) = 0 and if the method is of second- or

higher-order, we also have E ′′(0) = 0.

The Taylor expansion of the exact solution u is

u(h) = u0 + h(Υ(u0) + F (u0)) +
h2

2
(Υ′(u0) + F ′(u0))(Υ(u0) + F (u0)) + · · · , (3.6)

where the derivative Υ′(u0) can be an operator, so the local truncation error of the

B-methods is given by

τB := u1 − u(h) =
h2

2

(

F ′(u0)Υ(u0)−Υ′(u0)F (u0) + E ′′(0)

)

+O(h3), (3.7)

if a first-order standard method is used, while it becomes

τB =
h2

2

(

F ′(u0)Υ(u0)−Υ′(u0)F (u0)

)

+O(h3),

if a higher-order standard method is used.

Before comparing these results with the local truncation error of standard meth-

ods, let us derive the error of the adjoint of these B-methods in order to verify that

we obtain

τB∗ = −h
2

2

(

F ′(u0)Υ(u0)−Υ′(u0)F (u0)− E ′′(0)

)

+O(h3),

as is expected by definition of adjoint methods.

To construct the adjoint methods we first use the exact scheme and then apply

a numerical methods on the result. In other words, starting with the initial condi-

tion u0, we define v0 = ϕ(h, u0), where ϕ satisfies condition (3.4), and we compute

u1 = Φ(h, v0), where Φ is defined by (3.5) (to get a simpler notation, we denote the
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numerical method by Φ instead of Φ∗). The definition of Φ implies in particular that

for all ξ, we have

Φ(0, ξ) = ξ+E(0), Φt(0, ξ) = Υ(ξ)+E ′(0), Φtt(0, ξ) = Υ′(ξ)Υ(ξ)+E ′′(0), (3.8)

and

Φv(0, ξ) = 1, Φvv(0, ξ) = 0, and Φtv(0, ξ) = Υ′(ξ). (3.9)

We now expand

u1 = Φ(h, ϕ(h, u0))

in a series of h. We have u1(0) = Φ(0, ϕ(0, u0)) = ϕ(0, u0) = u0, and then

u′1(h) = Φt(h, ϕ(h, u0)) + Φv(h, ϕ(h, u0)) · ϕt(h, u0),

and

u′′1(h) = Φtt(h, ϕ) + 2Φtv(h, ϕ)ϕt(h, ϕ) + Φvv(h, ϕ)ϕt(h, ϕ)
2 + Φv(h, ϕ)ϕtt(h, ϕ).

Using the properties of Φ stated in (3.8) and (3.9) and the definition of ϕ given in

(3.4), the derivatives of u evaluated at h = 0 become

u′1(0) = Υ(u0) + E ′(0) + F (u0),

and

u′′1(0) = Υ′(u0)Υ(u0) + E ′′(0) + 2Υ′(u0)F (u0) + F ′(u0)F (u0).

As the Taylor expansion of the exact solution u is given by (3.6), the local truncation

error of these B-methods are, as expected,

τB∗ =
h2

2

(

Υ′(u0)F (u0) + E ′′(0)− F ′(u0)Υ(u0)

)

+O(h3), (3.10)

in case a first-order standard method is used, while they become

τB∗ =
h2

2

(

Υ′(u0)F (u0)− F ′(u0)Υ(u0)

)

+O(h3),
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if a higher-order standard method is used.

We now need to show that in case of finite-time blow-up, the local truncation

error of B-methods is smaller than the one of the corresponding standard methods.

We can not get a general result but we will consider the two most used first-order

methods: forward and backward Euler.

The local truncation errors of the forward and backward Euler methods applied

to the general equation yt = f(t, y) are given by

τ := y1 − y(h) = ∓h
2

2
(ft + fyf) +O(h3), (3.11)

respectively, which means that if we apply these methods to ut = F (u) + Υ(u), we

obtain

τs = ∓h
2

2
(Υ′(u0) + F ′(u0))(Υ(u0) + F (u0)) +O(h3). (3.12)

On the other hand, if we apply forward or backward Euler to vt = Υ(v), we obtain

respectively

E(h) = ∓h
2

2
[Υ′(v0)Υ(v0)] +O(h3),

which gives E ′′(0) = ∓Υ′(v0)Υ(v0). Going back to (3.7) and (3.10) we obtain the

truncation error of the corresponding B-methods,

τB =
h2

2

(

F ′(u0)Υ(u0)−Υ′(u0)F (u0)∓Υ′(u0)Υ(u0)

)

+O(h3).

and

τB∗ = −h
2

2

(

F ′(u0)Υ(u0)−Υ′(u0)F (u0)±Υ′(u0)Υ(u0)

)

+O(h3).

In order for the function F to be responsible for the finite-time blow-up it needs

to be superlinear at infinity, while the remaining part Υ(u) becomes less important

as u becomes large. Let’s first consider the case where Υ(u) is a bounded function of
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u. We define F (u) = eu and Υ(u) = sin(u). The local truncation errors can then be

written as

τs = ∓h
2

2
(cos(u0) + eu0)(sin(u0) + eu0) +O(h3),

= ∓h
2

2

(

e2u0 + eu0(sin(u0) + cos(u0)) + cos(u0) sin(u0)

)

+O(h3)

for the standard methods and

τB = ±h
2

2

(

eu0(sin(u0)− cos(u0))∓ cos(u0) sin(u0)

)

+O(h3),

for the specialized methods. We see that the fastest growing term in τs, that is (e
u0)2,

does not appear in τB while the other terms are of similar order. Given the size of

this term compared to the remaing terms, τB is considerably smaller than τs.

If we go back to the case Υ(u) = ∆u, we can numerically observe the same

phenomenon. Indeed, with F (u) = 3eu and Υ(u) = ∆u, the local truncation errors

are

τs = ∓h
2

2

(

∆(∆u0 + 3eu0) + 3eu0∆u0 + 9e2u0

)

+O(h3),

and

τB = ±h
2

2

(

3eu0∆u0 −∆(3eu0)∓∆(∆u0)

)

+O(h3).

In this case also the term e2u0 of τs is absent from τB, however it is not obvious that

this term is much larger than the remaining terms. Some numerical experiments using

Matlab show that the difference between e2u and the other terms is considerable and

increases as u gets larger. Using the built-in adaptive method ode45 we computed

the solution of ut = 3eu + ∆u on [−1, 1] with u0(x) = cos(πx/2), we then evaluated

each of the four terms that appear in τs. When t = 0.1660 (the blow-up occurs

approximately at t=0.1664), the norm of the different terms are

‖∆(∆u0)‖2 = 342, 439, ‖∆(3eu0)‖2 = 1, 466, 377, ‖3eu0(∆u0)‖2 = 1, 542, 768,
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and

‖(3eu0)2‖2 = 16, 544, 121.

So we see that removing this last term from the local error might greatly improve the

results.

3.1.2 Variation of the Constant

A more original approach to construct schemes for ut = ∆u + δF (u) from the exact

solution of the nonlinear part is to apply an idea of variation of the constant to the

exact solution. The solution of y′ = δF (y) being y(t) = G(K − δt), we introduce the

variation of the constant K = K(x, t) and we look for a solution in the form

u(x, t) = G(K(x, t)− δt), (3.13)

which is possible since G is onto. Using the fact that G′(s) = 1/(g′(G(s))) =

−F (G(s)), we obtain

ut(x, t) = G′(K − δt)(Kt − δ) = −F (G(K − δt))Kt + δF (G(K − δt)),

so that u is a solution of (3.1) if

∆u+ δF (u) = −F (G(K − δt))Kt + δF (u),

that is

∆u = −F (G(K − δt))Kt.

Hence we get a differential equation for K

Kt(x, t) =
−1

F (G(K − δt))
∆(G(K − δt)). (3.14)

To solve this differential equation, one can use several methods, each leading to a

different semi-dicretization in time for the original partial differential equation (3.1).

Note also that from (3.13), we get

K(x, t) = g(u(x, t)) + δt. (3.15)
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As first example, we solve the differential equation (3.14) using the backward Euler

method with timestep h to get

Kn+1 −Kn =
−h

F (G(Kn+1 − δtn+1))
∆(G(Kn+1 − δtn+1)),

(where Kn = Kn(x)). Then, introducing the definition of K given in (3.15), we obtain

g(un+1)− g(un) + δh =
−h

F (un+1)
∆un+1,

where un and un+1 are functions of x. This scheme is studied in detail in Section 4.1.

Consistency of the methods and local truncation error. We need to show

that the B-methods constructed using this approach are consistent and (as for the

B-methods obtained using splitting methods) we want to show that they have the

potential to be better than standard methods by comparing the local truncation errors

of both types of methods.

As in the previous section, we consider the general problem ut = F (u) + Υ(u),

where Υ can be a function or an operator. The function ϕ satisfies ϕt = F (ϕ), that

is, with the notation introduced at the beginning of the chapter, ϕ(t,K) = G(K− t).

We then consider u(x, t) = ϕ(t,K(t)) so that

ut = ϕt + ϕKK
′ = F (ϕ) + Υ(ϕ), (3.16)

and thus K must satisfy

K ′ =
1

ϕK

Υ(ϕ). (3.17)

To construct B-methods by variation of the constant, we define K0 so that u0 =

ϕ(0, K0) and then we apply a standard method to equation (3.17) to obtain K1, so

that we have

K1 = K(h) + E(h),

where E represents the local truncation error of the standard method. Finally we

define

u1 = ϕ(h,K1) = ϕ(h,K(h) + E(h)).
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To consider the local truncation error of the resulting B-method, we need to

expand u1 in a series in h:

u1(h) = u1(0) + u′1(0)h+ u′′1(0)
h2

2
+ · · · .

Differentiating u1 = ϕ(h,K(h) + E(h)) with respect to t we obtain

u′1(h) = ϕt(h,K(h) + E(h)) + ϕK(h,K(h) + E(h)) · (K ′ + E ′(h)).

We saw in (3.16) that the exact solution u satisfies

ut(h) = ϕt(h,K) + ϕK(h,K) ·K ′.

In other words, the derivatives coincide except that K and its derivatives are replaced

by (K + E) and the corresponding derivatives. For example the second derivative is

u′′1(h) = ϕtt(h,K + E) + 2ϕtK(h,K + E) · (K ′ + E ′)

+ ϕKK(h,K + E) · (K ′ + E ′)2 + ϕK(h,K + E) · (K ′′ + E ′′),

while

utt(h) = ϕtt(h,K) + 2ϕtK(h,K) ·K ′ + ϕKK(h,K) ·K ′2 + ϕK(h,K) ·K ′′

= [F ′(ϕ) + Υ′(ϕ)][F (ϕ) + Υ(ϕ)].

Moreover we observe that in the p-th derivative of u1, the highest-order derivative of

E, which is E(p), appears only once, in the term ϕK(h,K + E) · E(p).

Using these observations, we obtain that if the standard method is of order p (that

is E(h) = O(hp+1) so that E(0) = E ′(0) = · · · = E(p)(0) = 0), the local truncation

error of the resulting B-method is given by

τB =
hp+1

(p+ 1)!
ϕK(0, K0)E

(p+1)(0) +O(hp+2). (3.18)

So the B-method is of same order as the original standard method, and in particular

it is consistent. In order for the B-method to be more accurate than the standard
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method, the local truncation error of the former needs to be smaller than the error

of the latter. From (3.18) we can not obtain a general result, however we illustrate

below the cases of forward and backward Euler, as we did for the splitting B-methods.

First, we rewrite (3.17) using ϕ(t,K) = G(K − t) and G′ = −F (G), that is

ϕK = −F (ϕ), to get

K ′(t) =
−1

F (ϕ(t,K))
Υ(ϕ(t,K)),

and since the local truncation errors of forward and backward Euler are given by

(3.11), we obtain in this case

E(h) = ∓h
2

2

[
F ′(ϕ)

F (ϕ)2
Υ(ϕ)− 1

F (ϕ)
Υ′(ϕ)

]

[ϕt + ϕKK
′] +O(h3)

= ∓h
2

2

[
F ′(ϕ)

F (ϕ)2
Υ(ϕ)− 1

F (ϕ)
Υ′(ϕ)

]

[F (ϕ) + Υ(ϕ)] +O(h3).

Replacing E ′′(0) in (3.18) we obtain the truncation error of the corresponding B-

methods,

τB = ±h
2

2

[
F ′(u0)

F (u0)
Υ(u0)−Υ′(u0)

]

[F (u0) + Υ(u0)] +O(h3).

Comparing τB with τs given in (3.12), we see that the term F ′(u0)[F (u0) + Υ(u0)] in

τs is replaced by −F ′(u0)
F (u0)

Υ(u0)[F (u0) + Υ(u0)] in τB.

As for splitting B-methods, we first consider the case F (u) = eu and Υ(u) = sin(u).

We have

τB = ±h
2

2

[
eu0

eu0
sin(u0)− cos(u0)

]

[eu0 + sin(u0)] +O(h3)

= ±h
2

2

[
eu0(sin(u0)− cos(u0)) + sin2(u0)− cos(u0) sin(u0)

]
+O(h3),

while

τs = ∓h
2

2

[
e2u0 + eu0(sin(u0) + cos(u0)) + cos(u0) sin(u0)

]
+O(h3).

We see that the highly-weighted term e2u0 that appears in τs is replaced in τB by

sin2(u0) which remains bounded by 1 for any u0, and thus τB should be much smaller

than τs.
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We then consider the case Υ(u) = ∆u and F (u) = 3eu. The local truncation

errors are

τs = ∓h
2

2

(

∆(∆u0 + 3eu0) + 3eu0(∆u0 + 3eu0)

)

+O(h3),

and

τB = ±h
2

2
[∆u0(∆u0 + 3eu0)−∆(∆u0 + 3eu0)] +O(h3).

As these terms are not easily evaluated theoretically, we use again numerical exper-

iments to compare them. We use the same example as in the previous section: the

solution of ut = 3eu + ∆u on [−1, 1], with u0(x) = cos(πx/2) is computed using the

apdaptive method ode45 of Matlab and we evaluate the norm of the different terms

of τs and τB at = 0.1660. The common term

‖∆(∆u0 + 3eu0) ‖2 = 1, 145, 556,

is of same order than the remaining terms of τB

‖∆u0(∆u0 + 3eu0)‖2 = 1, 391, 072,

while the second term of τs is considerably larger

‖3eu0(∆u0 + 3eu0)‖2 = 15, 062, 542.

Hence we expect the error of the B-methods to be significantly smaller than the error

of the corresponding standard methods.

3.2 More Equations, More Schemes

For many problems with blow-up solutions, the two types of construction presented

in Section 3.1 lead to examples of B-methods. We chose several examples, among

the most-studied ones, to illustrate further the derivation of B-methods. For each of

these problems, we derive several B-methods of each type.
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3.2.1 Semilinear Parabolic Equation

We already derived three B-methods for problem (3.1) in the previous section. We

now present several other methods, of first and second order.

For the splitting methods, instead of choosing Φ
[2]
h to be forward Euler in (3.3),

we could choose it to be backward Euler; then Φ
[2]∗
h is forward Euler and the resulting

schemes are

Φh(un) = un+1 = G(g(v)− δh), with v = un + h∆v,

and

Φ∗
h(un) = un+1 = G(g(un)− δh) + h∆(G(g(un)− δh)).

Another possibility would be to choose Φ
[2]
h to be a second-order method, like the

symmetric midpoint rule, however the scheme becomes more complicated without

necessarily bringing more accuracy as the resulting scheme is only first order. As

mentioned earlier, in order to get higher-order method, we need to compose first order

methods. The simplest way to obtain a second-order method is thus to construct

Ψh = Φh/2 ◦ Φ∗
h/2 = ϕ

[1]
h/2 ◦ Φ

[2]
h/2 ◦ Φ

[2]∗
h/2 ◦ ϕ

[1]
h/2, (3.19)

where Φ
[2]
h and Φ

[2]∗
h are adjoint first-order methods.

If we choose Φ
[2]
h to be forward Euler, we obtain

Ψh(un) = G

(

g(v +
h

2
∆v)− δh

2

)

, with v − h

2
∆v = G

(

g(un)−
δh

2

)

,

and if Φ
[2]
h is chosen to be backward Euler, we get

Ψh(un) = G(g(v)− δh

2
), with v − h

2
∆v = G(g(un)−

δh

2
) +

h

2
∆G(g(un)−

δh

2
).

Concerning the approach by variation of the constant, we obtain more schemes

by applying different methods to solve the differential equation (3.14): using forward
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Euler we would obtain the explicit scheme

g(un+1) = g(un)− δh− h

F (un)
∆un;

using the trapezoidal rule, we get

g(un+1)− g(un) + δh+
h

2F (un)
∆un +

h

2F (un+1)
∆un+1 = 0,

and the midpoint rule leads to

[g(un+1)−g(un)+δh]F
(

G

(
g(un) + g(un+1)

2

))

+h∆

(

G

(
g(un) + g(un+1)

2

))

= 0.

More generally, if a general s-stage Runge-Kutta method given by Table 3.1 is applied,

c A = (aij)

bT

Table 3.1: s-stage Runge-Kutta method

we obtain

g(un+1) = g(un)− δh+
s∑

j=1

bjkj ,

with, for i = 1..s,

ki =
−h

F
(

G(g(un) +
∑s

j=1 aij(kj − δh))
)∆

(

G

(

g(un) +
s∑

j=1

aij(kj − δh)

))

.

Similar schemes can be obtained for the slightly more general equation (results

concerning blow-up of the exact solutions of this equation can be found in [10], [118]

and [119])

ut = ∆u+ δq(x)ψ(t)F (u),
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where q is bounded on Ω̄ with q(x) > 0 and ψ is continuous on [0,∞), with ψ(t) > 0.

We also assume that the function F satisfies the conditions stated in Section 3.1 and

we only consider the case where the function

ϕ(t) =

∫ t

0

ψ(s) ds,

can be explicitly computed so that the solution of yt = δqψ(t)F (y) is

y(t) = G(g(s)− δqϕ(h)).

Using this result, we notice that we can easily modify the above schemes for this

new equation. In all schemes obtained using the splitting method, it is enough to

replace each g(s)− δh by g(s)− δq(x)ϕ(h), and in the schemes obtained by variation

of the constant, the term δh must be replaced by δq(x)(ϕ(tn+1) − ϕ(tn)). Moreover

the scheme obtained using the midpoint rule becomes much more complicated,

[g(un+1)− g(un) + δqϕ(h)]·
F
(

G
(

g(un)+g(un+1)
2

+ δq
[
ϕ(tn)+ϕ(tn+1)

2
− ϕ

(
tn+tn+1

2

)]))

+∆
(

G
(

g(un)+g(un+1)
2

+ δq
[
ϕ(tn)+ϕ(tn+1)

2
− ϕ

(
tn+tn+1

2

)]))

= 0.

Similarly, the schemes obtained by applying general Runge-Kutta methods would be

quite complicated.

In some specific cases, it is possible to apply these methods for more general

problems. We consider for example

ut = ∆u+m

∫ t

0

eu(x,τ) dτ + g(x), (3.20)

whose nonlinear part

y′(t) = m

∫ t

0

ey(τ) dτ,

can be solved explicitly. Indeed the solution of this equation is given by

y(t) = 2 ln [K sec (αtK)] , (3.21)
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where K is the constant of integration and α =
√
2m/2. If we apply the method of

variation of the constant, two difficulties arise. The first one is due to the integral

term: if we let u(x, t) = 2 ln [K(x, t) sec (αtK(x, t))], the term

m

∫ t

0

eu(x,τ)dτ = m

∫ t

0

K(x, τ)2 sec2(ατK(x, τ))dτ,

is not equal to 2αK(x, t) tan(αtK(x, t)) therefore this simplification which is the main

advantage of this method cannot be applied. The differential equation for K would

be

Kt =
K

1 + αtK tan(αtK)

[

∆(ln(K sec(αtK))) +
g

2

+
m

2

∫ t

0

K2 sec(ατK)dτ − αK tan(αtK)

]

.

The second difficulty comes from the fact that it is not possible to invert formula

(3.21) analytically to express K as a function of y. A numerical inversion would then

be required. The interest of the resulting method is clearly weakened by these two

complications. Yet, such problems do not arise when we apply the splitting method.

The exact flow of the nonlinear part of equation (3.20) is

ϕ
[1]
t (un) = 2 ln

[
eun/2 sec(αteun/2)

]
,

so if we apply the forward Euler method to the linear part of the equation, we obtain

two schemes

Φh(un) = un+1 = 2 ln
[
e(un+h∆un+hg)/2 sec(αhe(un+h∆un+hg)/2)

]
,

and

Φ∗
h(un) = un+1 = 2 ln

[
eun/2 sec(αheun/2)

]
+ h∆un+1 + hg.

If we use the backward Euler method, the resulting schemes are

Φh(un) = 2 ln
(
ev/2 sec(αheh/2)

)
, with v − h∆v = un + hg,
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and

Φ∗
h(un) = 2 ln

(
eun/2 sec(αheun/2)

)
+ 2h∆ ln

(
eun/2 sec(αheun/2)

)
+ hg.

One can compose these methods as in (3.19) to obtain second-order methods.

3.2.2 Quasilinear Parabolic Equation

As we said in Chapter 1, another model that has been deeply studied is the quasilinear

equations of the type

ut = ∆φ(u) +Q(u),

and more specifically, the case of power-type nonlinearities

ut = ∆uσ+1 + αuβ+1, (3.22)

with β > 0, σ > 0 and α ≥ 0. We now use the two constructions presented in Section

3.1 to derive B-methods for this problem.

To derive the schemes, the first step is to consider the nonlinear part

yt = αyβ+1,

whose solution is given by

y(t) =

(
1

K − αβt

)1/β

. (3.23)

We can now use this explicit solution to construct B-methods.

Splitting method. We recall that the first construction consists in splitting the

equation (3.22) into f [1](u) = αuβ+1 and f [2](u) = ∆uσ+1. The exact flow of the first

part is derived from (3.23):

ϕ
[1]
t (un) =

[
u−β
n − αβt

]−1/β
.
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By choosing Φ
[2]
h to be the forward Euler method, so that Φ

[2]∗
h is the backward Euler

method we obtain

Φh(un) = un+1 =
[
(un + h∆uσ+1

n )−β − αβh
]−1/β

,

and its adjoint

Φ∗
h(un) = un+1 =

(
u−β
n − αβh

)−1/β
+ h∆uσ+1

n+1.

If we choose Φ
[2]
h to be backward Euler we get

Φh(un) =
[
v−β − αβh

]−1/β
, where v is solution of v − h∆(vσ+1) = un,

and

Φ∗
h(un) =

[
u−β
n − αβh

]−1/β
+ h∆

([
u−β
n − αβh

]−(σ+1)/β
)

.

The second-order methods obtained by composing these methods are quite simple. If

Φ
[2]
h is the forward Euler method, the composed method is

Ψh(un) =

((

v +
h

2
∆(vσ+1)

)−β

− αβ
h

2

)−1/β

,

where v is the solution of

v − h

2
∆(vσ+1) = (u−β

n − αβ
h

2
)−1/β.

Similarly, the second-order method obtained using the backward Euler method for

Φ
[2]
h is given implicitly by

Ψh(un) = un+1 =

((

v +
h

2
∆(uσ+1

n+1)

)−β

− αβh

2

)−1/β

,

where

v =

[

u−β
n − αβh

2

]−1/β

+
h

2
∆

[(

u−β
n − αβh

2

)−(σ+1)/β
]

.
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Variation of the constant. The second type of B-methods is obtained by

introducing the variation of the constant K = K(x, t) and let

u(x, t) =

(
1

K(x, t)− αβt

)1/β

.

Differentiating with respect to t and going back to (3.22), we obtain

−1

β

(
1

K − αβt

) 1
β
+1

Kt = ∆uσ+1,

so that the differential equation for K is

Kt = −β∆
(

1

K(x, t)− αβt

)σ+1
β

(K − αβt)
β+1
β ,

and we can express K as a function of u and t

K(x, t) = u(x, t)−β + αβt.

Solving the differential equation for K with different methods, we obtain the following

schemes: using the forward Euler method,

u−β
n+1u

β+1
n − un + hβ[αuβ+1

n +∆uσ+1
n ] = 0,

using the backward Euler method,

un+1 − u−β
n uβ+1

n+1 + hβ[αuβ+1
n+1 +∆uσ+1

n+1] = 0,

using the trapezoidal rule,

u−β
n+1 − u−β

n + αβh+
βh

2

[

v−(β+1)
n ∆uσ+1

n + u
−(β+1)
n+1 ∆uσ+1

n+1

]

= 0,

and using the midpoint rule,

u−β
n+1 − u−β

n + αβh+ βh

(

u−β
n + u−β

n+1

2

)β+1
β

∆





(

u−β
n + u−β

n+1

2

)−σ+1
β



 = 0.
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More generally, if we consider the general s-stage Runge-Kutta method given by Table

3.1, we obtain

u−β
n+1 = u−β

n − αβh+
s∑

j=1

bjkj ,

where for i = 1..s,

ki = −hβ
(

u−β
n +

s∑

j=1

aij(kj − αβh)

)β+1
β

∆

(

u−β
n +

s∑

j=1

aij(kj − αβh)

)−σ+1
β

.

3.2.3 Systems

In [52] and [51], Friedman and Giga considered parabolic systems of the form ut −
uxx = f(v), vt − vxx = g(u), where f and g are positive, increasing and superlinear.

They showed that the solutions exhibit a single-point blow-up. More complex systems

of the form

(ui)t = ∆ui + fi(u1, . . . , um),

were studied by Bebernes and Lacey [19], Gang and Sleeman [60] and Chen [32]. In

this section, we derive several specialized methods for the simple case







ut = ∆u+ δev,

vt = ∆v + γeu.
(3.24)

We first solve the nonlinear system of ordinary differential equations







y′(t) = δez(t),

z′(t) = γey(t),
(3.25)

to get






y(t) = lnK − ln[1− δeKt+D]− ln γ,

z(t) = lnK − ln[1− δeKt+D] +Kt+D,
(3.26)

where K and D are constants of integration.
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Variation of the constant. To derive specialized methods using variation of

the constants, we set






u(x, t) = lnK(x, t)− ln[1− δeK(x,t)t+D(x,t)]− ln γ,

v(x, t) = lnK(x, t)− ln[1− δeK(x,t)t+D(x,t)] +K(x, t)t+D(x, t),
(3.27)

and compute the derivatives

ut =
Kt

K
+
δeD+tK(Dt +K + tKt)

1− δed+tK
=
Kt

K
+
δeD+tK(Dt + tKt)

1− δed+tK
+ δev,

and

vt =
Kt

K
+
δeD+tK(Dt +K + tKt)

1− δed+tK
+Dt +K + tKt,

=
Kt

K
+
δeD+tK(Dt + tKt)

1− δed+tK
+Dt + tKt +

K

1− δed+tK
,

=
Kt

K
+
δeD+tK(Dt + tKt)

1− δed+tK
+Dt + tKt + γeu.

So for u and v to satisfy the system (3.24), we need







∆u = Kt

K
+ δeKt+D

1−δeKt+D
(tKt +Dt),

∆v = ∆u+ tKt +Dt,

which lead to the following system






Kt = K
1−δeKt+D

(
∆u− δeKt+D∆v

)
,

Dt = ∆v −∆u− tK
1−δeKt+D

(
∆u− δeKt+D∆v

)
,

(3.28)

where u and v are given by (3.27). We also need to invert the system (3.27) to obtain

K and D as functions of u and v:






K = γeu − δev,

D = v − u− ln γ + δtev − γteu.

Solving the system (3.28) using the forward Euler method and simplifying, we obtain

γ(eun+1 − eun)− δ(evn+1 − evn) = h(γeun∆un − δevn∆vn),
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and

(vn+1 − vn + δtn+1e
vn+1 − δtne

vn)− (un+1 − un + γtn+1e
un+1 − γtne

un)

= h(∆vn −∆un)− htn(γe
un∆un − δevn∆vn),

and solving it using the backward Euler method, we obtain

γ(eun+1 − eun)− δ(evn+1 − evn) = h(γeun+1∆un+1 − δevn+1∆vn+1),

and

(vn+1 − vn+δtn+1e
vn+1 − δtne

vn)− (un+1 − un + γtn+1e
un+1 − γtne

un)

= h(∆vn+1 −∆un+1)− htn+1(γe
un+1∆un+1 − δevn+1∆vn+1).

If we solve system (3.28) using the midpoint rule, the resulting scheme is quite

complex to write. First we define

K̃ =
Kn+1 +Kn

2
=

1

2
(γeun+1 − δevn+1) +

1

2
(γeun − δevn),

and

D̃ =
Dn+1 +Dn

2
=

1

2
(vn+1 − un+1 − ln γ + δtn+1e

vn+1 − γtn+1e
un+1)

+
1

2
(vn − un − ln γ + δtne

vn − γtne
un),

and for simplicity

Ẽ = 1− δ exp(K̃(tn + h/2) + D̃).

The first equation can now be written as

(γeun+1 − δevn+1)− (γeun − δevn)

=
hK̃

Ẽ

(

∆
(

ln K̃ − ln[Ẽ]
)

+ (Ẽ − 1)∆
(

ln K̃ − ln[Ẽ] + (K̃(tn + h/2) + D̃)
))

,

and the second equation is

(vn+1 − un+1 + δtn+1e
vn+1 − γtn+1e

un+1)− (vn − un + δtne
vn − γtne

un)

= h∆(K̃(tn + h/2) + D̃)− (tn +
h

2
)
hK̃

Ẽ

(

∆
(

ln K̃ − ln[Ẽ]
)

+ (Ẽ − 1)∆
(

ln K̃ − ln[Ẽ] + (K̃(tn + h/2) + D̃)
))

.
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For the method obtained using the trapezoidal rule, we first define

E1 = 1− δeKntn+Dn =
γeun − δevn

γeun
and E2 =

γeun+1 − δevn+1

γeun+1
,

and

Kt
1 = γeun(∆un + (E1 − 1)∆vn) = γeun∆un − δevn∆vn,

Kt
2 = γeun+1(∆un+1 + (E2 − 1)∆vn+1) = γeun+1∆un+1 − δevn+1∆vn+1.

The first part of the scheme can then be written as

(γeun+1 − δevn+1)− (γeun − δevn) =
h

2
(Kt

1 +Kt
2),

and the second

(vn+1 − un+1 + δtn+1e
vn+1 − γtn+1e

un+1)− (vn − un + δtne
vn − γtne

un)

=
h

2
(∆(vn − un)− tnK

t
1 −∆(vn+1 − un+1) + tn+1K

t
2).

Splitting method. To construct B-methods using the splitting method, we first

note that the exact solution of the system of ODEs (3.25) is given by (3.26) with

K = γey(0) − δez(0) and D = z(0) − y(0) − ln γ. Then for each choice of numerical

integrator Φ
[2]
h applied to







ut = ∆u,

vt = ∆v,

we obtain two adjoint schemes. The forward Euler method leads to the explicit

scheme

Φh(un, vn) =




lnKn − ln[1− δeDn+hKn ]− ln γ

lnKn − ln[1− δeDn+hKn ] +Dn + hKn



 ,

where 





Kn = γeun+h∆un − δevn+h∆vn ,

Dn = vn + h∆vn − un − h∆un − ln γ,
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and the implicit scheme Φ∗
h given by







un+1 = lnKn − ln[1− δeDn+hKn ]− ln γ + h∆un+1,

vn+1 = lnKn − ln[1− δeDn+hKn ] +Dn + hKn + h∆vn+1,

where 





Kn = γeun − δevn ,

Dn = vn − un − ln γ.
(3.29)

If we choose instead the backward Euler method, we obtain

Φh(un, vn) =




lnKn − ln[1− δeDn+hKn ]− ln γ

lnKn − ln[1− δeDn+hKn ] +Dn + hKn



 ,

where 





Kn = γew1 − δew2 ,

Dn = w2 − w1 − ln γ,

and w1 and w2 are solutions of

w1 = un + h∆w1 and w2 = vn + h∆w2.

For its adjoint method, we first define







Kn = γeun − δevn ,

Dn = vn − un − ln γ,

and 





w1 = lnKn − ln[1− δeDn+hKn ]− ln γ,

w2 = lnKn − ln[1− δeDn+hKn ] +Dn + hKn.

Then the scheme can be written as

Φ∗
h(un, vn) =




w1 + h∆w1

w2 + h∆w2



 .
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We can also compose these methods to construct second-order specialized meth-

ods. For these, we first define Kn and Dn as in (3.29). Then, if we choose Φ
[2]
h to be

the forward Euler method, we define w1 and w2 to be the solutions of






w1 − h
2
∆w1 = lnKn − ln[1− δeDn+

h
2
Kn ]− ln γ,

w2 − h
2
∆w2 = lnKn − ln[1− δeDn+

h
2
Kn ] +Dn +

h
2
Kn,

and we define






K̃ = γ exp(w1 +
h
2
∆w1)− δ exp(w2 +

h
2
∆w2),

D̃ = w2 +
h
2
∆w2 − w1 − h

2
∆w1 − ln γ,

to finally get 





un+1 = ln K̃ − ln[1− δeD̃+h
2
K̃ ]− ln γ,

vn+1 = ln K̃ − ln[1− δeD̃+h
2
K̃ ] + D̃ + h

2
K̃.

(3.30)

If we choose to use the backward Euler method as Φ
[2]
h , we need to first define







ũ = lnKn − ln[1− δeDn+
h
2
Kn ]− ln γ,

ṽ = lnKn − ln[1− δeDn+
h
2
Kn ] +Dn +

h
2
Kn,

then w1 and w2 are the solutions of






w1 − h
2
∆w1 = ũ+ h

2
∆ũ,

w2 − h
2
∆w2 = ṽ + h

2
∆ṽ,

and we define 





K̃ = γ exp(w1)− δ exp(w2),

D̃ = w2 − w1 − ln γ,

to finally get un+1 and vn+1 by (3.30).

3.2.4 Wave Equation

As mentioned in Chapter 2, blow-up phenomena were first studied by Keller [87] for

nonlinear wave equations of the form utt = c2∆u+ f(u), in a space of dimension 1, 2
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or 3. In [65], Glassey considered the same problem,







utt = ∆u+ δF (u), for (x, t) ∈ Ω × (0, T ),

u = 0, for (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), for x ∈ Ω,

ut(x, 0) = ut0(x), for x ∈ Ω,

(3.31)

on a bounded domain. We present here the case where F (u) = eu. The general

solution of the ordinary differential equation

y′′(t) = δey(t),

is

y(t) = ln

[
2K2

δ
(1 + tan2(D + tK))

]

,

which we rewrite as

y(t) = ln 2− ln δ + 2 lnK − 2 ln[cos(D + tK)].

Variation of the constant. First we apply the variation of the constant and

look for a solution u(x, t) of the form

u(x, t) = ln 2− ln δ + 2 lnK(x, t)− 2 ln[cos(D(x, t) + tK(x, t))]. (3.32)

We have

ut(x, t) = 2
Kt

K
− 2

− sin(D + tK)(Dt +K + tKt)

cos(D + tK)
,

so the first condition we set is

Kt

K
+

sin(D + tK)(Dt + tKt)

cos(D + tK)
= 0, (3.33)

so that

ut(x, t) = 2K tan(D + tK).
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If we differentiate again, we obtain

utt(x, t) = 2Kt tan(D + tK) + 2K(Dt + tKt +K) sec2(D + tK),

= 2Kt tan(D + tK)− 2Kt

tan(D + tK)
sec2(D + tK) + 2K2 sec2(D + tK),

where we used (3.33) which gives

(Dt + tKt) =
−Kt

K tan(D + tK)
.

Since u is given by (3.32), it becomes

utt(x, t) = 2Kt
tan2(D + tK)− sec2(D + tK)

tan(D + tK)
+ δeu,

= δeu − 2Kt
1

tan(D + tK)
.

So in order for u to satisfy the PDE (3.31), we need

(∆u =)− 2∆ [ln(cos(D + tK))− lnK] =
−2Kt

tan(D + tK)
,

that is

Kt = tan(D + tK)∆ [ln(cos(D + tK))− lnK] .

Hence we obtained a system of equations for K and D,







Kt = tan(D + tK)∆ [ln(cos(D + tK))− lnK] ,

Dt = −∆ [ln(cos(D + tK))− lnK]
(
t tan(D + tK) + 1

K

)
.

(3.34)

Remember that we have






u = ln 2− ln δ + 2 lnK − 2 ln[cos(D + tK)],

v = ut = 2K tan(D + tK),

from which we obtain






K = 1
2

√
2δeu − v2,

D = arctan v√
2δeu−v2

− t
2

√
2δeu − v2.
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Note that we need 2δeu ≥ v2.

Now we can apply different numerical schemes to system (3.34), for example using

the backward Euler method, we get

Kn+1 −Kn = h tan(Dn+1 + tn+1Kn+1)∆ [ln(cos(Dn+1 + tn+1Kn+1))− lnKn+1] ,

and

Dn+1 −Dn

= −∆ [ln(cos(Dn+1 + tn+1Kn+1))− lnKn+1]

(

tn+1 tan(Dn+1 + tn+1Kn+1) +
1

Kn+1

)

,

so going back to u and v it becomes

√

2δeun+1 − v2n+1 −
√

2δeun − v2n

= 2h
vn+1

√
2δeun+1 − v2n+1

∆

[

ln

(√
2δeun+1 − v2n+1√

2δeun+1

)

− ln

(
1

2

√

2δeun+1 − v2n+1

)]

,

= −h vn+1
√
2δeun+1 − v2n+1

∆un+1,

and

arctan
vn+1

√
2δeun+1 − v2n+1

− tn+1

2

√

2δeun+1 − v2n+1

− arctan
vn

√

2δeun − v2n
+
tn
2

√

2δeun − v2n

=
h

2
∆un+1

(

tn+1
vn+1

√
2δeun+1 − v2n+1

+
2

√
2δeun+1 − v2n+1

)

.

If we apply the forward Euler method instead, we get the following scheme







√
2δeun+1 − v2n+1 −

√

2δeun − v2n = h vn√
2δeun−v2n

∆un,

arctan vn+1√
2δeun+1−v2n+1

− tn+1

2

√
2δeun+1 − v2n+1

− arctan vn√
2δeun−v2n

+ tn
2

√

2δeun − v2n

= h
2
∆un+1

(

tn+1vn+1+2√
2δeun+1−v2n+1

)

.
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In order to write the scheme obtained using the midpoint rule, we need to introduce

S1 =
√

2δeun − v2n and S2 =
√

2δeun+1 − v2n+1,

so that K̃ =
S1 + S2

4
and

D̃ =
1

2

(

arctan

(
vn
S1

)

− tn
2
S1 + arctan

(
vn+1

S2

)

− tn+1

2
S2

)

.

The scheme is now given by

S2 − S1

2
= h tan

(

K̃

(

tn +
h

2

)

+ D̃

)

∆
[

ln
(

cos
(

K̃(tn + h/2) + D̃
))

− ln K̃
]

,

and
(

arctan

(
vn+1

S2

)

− tn+1

2
S2

)

−
(

arctan

(
vn
S1

)

− tn
2
S1

)

= −h∆



ln
cos
(

K̃(tn +
h
2
) + D̃

)

K̃





(

(tn +
h

2
) tan

(

K̃(tn +
h

2
) + D̃

)

+
1

K̃

)

.

For the scheme obtained by the trapezoidal rule, using the same notation as above,

we can write
S2 − S1

2
= −h

4

[
vn+1

S2

∆un+1 +
vn
S1

∆un

]

and
(

arctan

(
vn+1

S2

)

− tn+1

2
S2

)

−
(

arctan

(
vn
S1

)

− tn
2
S1

)

= −h
2

[

∆un

(
tnvn + 2

S1

)

+∆un+1

(
tn+1vn+1 + 2

S2

)]

.

Splitting method.In order to get schemes by the splitting method, it is more

convenient to write the second order equation (3.31) as a first order system:







ut = v,

vt = ∆u+ δeu.
(3.35)
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The general solution of the simplified system






yt = z,

zt = δey,
(3.36)

is given by






y(t) = 2 ln[K sec(αKt+D)] = −2 ln[ 1
K
cos(αKt+D)],

z(t) = 2αK tan(αKt+D),

where α =
√
2δ/2. In order to get the exact flow of the simplified system, we need to

express the constants K and D as functions of the initial conditions y0 and z0. From

y(0) = 2 ln(K secD) and z(0) = 2αK tanD,

we obtain

secD =
1

K
ey0/2 and tanD =

z0
2αK

, (3.37)

and then
ey0

K2
− z20

4α2K2
= 1,

from which we obtain

K2 = ey0 − z20
4α2

.

This gives K explicitly, however for D we only have (3.37), so we need to isolate tanD

and cosD in the expression of y(t) and z(t). For this we use the following identities

tan(x+ y) =
tan x+ tan y

1− tan x tan y
,

and

cos(x+ y) = cos x cos y − sin x sin y = cos y[cos x− sin x tan y].

The exact flow of (3.36) is given by

y(t) = −2 ln

[
1

K
cosD[cos(αKt)− sin(αKt) tanD]

]

= −2 ln[e−y0/2[cos(αKt)− z0
2αK

sin(αKt)]]

= y0 − 2 ln[cos(αKt)− z0
2αK

sin(αKt)],
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and

z(t) = 2αK

(
tan(αKt) + tanD

1− tan(αKt) tanD

)

= 2αK

(
z0 + 2αK tan(αKt)

2αK − z0 tan(αKt)

)

,

with K = (ey0 − z20
4α2 )

1/2.

In order to get specialized methods for the original system (3.35), we simply choose

a numerical method for 





ut = 0,

vt = ∆u,

and compose it with the above exact flow. Since by the first equation we have

un+1 = un, choosing Φ
[2]
h to be forward Euler or backward Euler leads to the same

scheme 





un+1 = un − 2 ln[cos(αKnh)− vn+h∆un
2αKn

sin(αKnh)],

vn+1 = 2αKn

(
vn+h∆un+2αKn tan(αKnh)
2αKn−(vn+h∆un) tan(αKnh)

)

,

with Kn =
√

eun − (vn+h∆un)2

4α2 . The adjoint of this method is given by







un+1 = un − 2 ln[cos(αKnh)− vn
2αKn

sin(αKnh)],

vn+1 = 2αKn

(
vn+2αKn tan(αKnh)
2αKn−vn tan(αKnh)

)

+ h∆un+1,

with Kn =
√

eun − v2n
4α2 . To write the second-order method obtained by composing

theses two, we first set Kn =
√

eun − v2n
4α2 and







ũ = un − 2 ln[cos(αKn
h
2
)− vn

2αKn
sin(αKn

h
2
)],

ṽ = 2αKn

(
vn+2αKn tan(αKn

h
2
)

2αKn−vn tan(αKn
h
2
)

)

+ h
2
∆un+1,

then the scheme is given by







un+1 = ũ− 2 ln[cos(αKn
h
2
)− (ṽ+h

2
∆ũ)

2αKn
sin(αKn

h
2
)],

vn+1 = 2αKn

(
(ṽ+h

2
∆ũ)+2αKn tan(αKn

h
2
)

2αKn−(ṽ+h
2
∆ũ) tan(αKn

h
2
)

)

,

with K̃ =

√

eũ − (ṽ+h
2
∆ũ)2

4α2 .
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3.2.5 An “Accretive” Equation

Another type of second order equation that exhibits blow-up behavior, the initial-

value problem utt = ∆u + F (ut), was first studied by Glassey in [65]. The corre-

sponding initial-boundary value problem was studied by Levine [108]. In this section,

we derive specialized methods for the following problem:






utt = ∆u+ δeut , for (x, t) ∈ Ω × (0, T ),

u = 0, for (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), for x ∈ Ω,

ut(x, 0) = ut0(x), for x ∈ Ω.

(3.38)

As for the nonlinear wave equation, we rewrite the equation as a system






ut = v,

vt = ∆u+ δev.

The general solution of the simplified system






yt = z,

zt = δez,

is given by 





y(t) = D + K−δt
δ

[ln(K − δt)− 1],

z(t) = − ln(K − δt).

Splitting method. In order to use the splitting methods approach, we need to

get the exact flow of the simplified system, so first, we express the constants K and

D as functions of the initial conditions y0 and z0. Since z(0) = − ln(K), we obtain

K = e−z0 and then y(0) = D+ K
δ
[ln(K)− 1], which gives D = y0 +

K
δ
(z0 + 1). So we

get 





y(t) = y0 +
e−z0
δ

(z0 + 1) + e−z0−δt
δ

[ln(e−z0 − δt)− 1],

z(t) = − ln(e−z0 − δt),
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and the exact flow is given by






ϕh(un, vn) = un +
e−vn

δ
(vn + 1) + e−vn−δh

δ
[ln(e−vn − δh)− 1],

ψh(un, vn) = − ln(e−vn − δh).

The numerical method Φ
[2]
h is only applied to the very simple system







ut = 0,

vt = ∆u.

As for the wave equation, the first equation implies that un+1 = un, so that choosing

Φ
[2]
h to be forward Euler or backward Euler leads to the same scheme

Φh(un, vn) =




un +

e−vn

δ
(vn + 1) + e−vn−δh

δ
[ln(e−vn − δh)− 1]

− ln(e−vn−h∆un − δh)



 ,

whose adjoint Φ∗
h is given by







un+1 = un +
e−vn

δ
(vn + 1) + e−vn−δh

δ
[ln(e−vn − δh)− 1],

vn+1 = − ln(e−vn − δh) + h∆
(

un +
e−vn

δ
(vn + 1) + e−vn−δh

δ
[ln(e−vn − δh)− 1]

)

.

We can obtain a method of second order by composing these two schemes: Φh/2◦Φ∗
h/2,

which gives the explicit second-order method






un+1 = ϕh/2(ϕh/2(un, vn), ψh/2(un, vn) + h∆ϕh/2(un, vn)),

vn+1 = ψh/2(ϕh/2(un, vn), ψh/2(un, vn) + h∆ϕh/2(un, vn)).

Variation of the constant. We now turn to the method by variation of the

constant: we look for a solution of the form

u(x, t) = D(x, t) + (K(x, t)− t)[ln δ − 1 + ln(K(x, t)− t)].

The first partial derivative in time is

ut(x, t) = Dt + (Kt − 1)[ln δ − 1 + ln(K − t)] + (K − t)

[
Kt − 1

K − t

]

= Dt + (Kt − 1)(ln δ + ln(K − t)),
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so we get the first condition Dt + Kt(ln δ + ln(K − t)) = 0. Differentiating again

ut = −(ln δ + ln(K − t)), we obtain the second partial derivative

utt = −Kt − 1

K − t
.

Since we have

∆u+ δeut = ∆u+ δ
1

δK − δt
= ∆u+

1

K − t
,

we need

∆u =
−Kt

K − t
,

for u to be solution of (3.38). Hence we end up with the following system for K and

D






Kt = −(K − t)∆[D + (K − t)[ln δ − 1 + ln(K − t)]],

Dt = [ln δ + ln(K − t)](K − t)∆[D + (K − t)[ln δ − 1 + ln(K − t)]].
(3.39)

From the definitions of u and v, u = D + (K − t)[ln δ − 1 + ln(K − t)] and v =

−[ln δ + ln(K − t)], we obtain






K = t+ 1
δev
,

D = u+ v+1
δev
.

We can now apply different standard methods to the system (3.39) to obtain several

specialized schemes for our original equation. Applying forward Euler, we obtain






e−vn+1 − e−vn + δh+ he−vn∆un = 0,

δ(un+1 − un) + (vn+1 + 1)e−vn+1 − (vn + 1)e−vn + hvne
−vn∆un = 0,

which can be written in explicit form






vn+1 = − ln(e−vn − δh− he−vn∆un),

un+1 =
vn+1

δ
e−vn + un − vn+1+1

δ
e−vn+1 − vn

h
δ
e−vn∆un,

and applying backward Euler, we obtain






e−vn+1 − e−vn + δh+ he−vn+1∆un+1 = 0,

δ(un+1 − un) + (vn+1 + 1)e−vn+1 − (vn + 1)e−vn + hvn+1e
−vn+1∆un+1 = 0.
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In order to write the scheme obtained with the midpoint rule, we first introduce

Ẽ =
Kn +Kn+1

2
− tn + tn+1

2
=
e−vn + e−vn+1

2δ
,

and

D̃ =
Dn +Dn+1

2
=
un + un+1

2
+
vn + 1

2δevn
+
vn+1 + 1

2δevn+1
,

then the schemes are






e−vn+1 − e−vn + δh = −δhẼ∆
[

D̃ + Ẽ
(

ln(δẼ)− 1
)]

,

δ(un+1 − un) +
vn+1+1
evn+1 − vn+1

evn
= δhẼ ln(δẼ)∆

[

D̃ + Ẽ
(

ln(δẼ)− 1
)]

.

Finally the schemes corresponding to the trapezoidal rule are






e−vn+1 − e−vn + δh = −h
2
(e−vn∆un + e−vn+1∆un+1) ,

δ(un+1 − un) +
vn+1+1
evn+1 − vn+1

evn
= −h

2
(vne

−vn∆un + vn+1e
−vn+1∆un+1).

3.3 Numerical Experiments

3.3.1 Implementation of the methods

Most of the B-methods are implicit. In order to implement them, we need to solve a

nonlinear system at each step. One way to do so is to use a simple fixed-point iteration,

however it has been shown (see [113]) that a better approach is to use Newton’s

method. It is also possible to use the simplified Newton’s iterations presented by

Hairer et al in [72]. Our extensive numerical experiments showed that in most cases

simplified iterations lead to the same results as classical ones. The classical Newton

iteration for F (v) = 0 is given by

JF (vn)(vn+1 − vn) = −F (vn),

where JF represents the Jacobian matrix of F . In order to simplify this, Hairer et

al. [72] approximate JF (vn) by JF (v0), which allows them to compute only once the
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LU-decomposition of the Jacobian matrix. Hence, to get un+1 from un, we would

solve iteratively

JF (un)(vk+1 − vk) = −F (vk),

with v0 = un, and then we would define un+1 = vk+1. In other words, the procedure

would be

Compute JF (un)

Set v0 = un

Newton’s Iteration: Compute F (vk)

Solve JF (un)dv = −F (vk)
Define vk+1 = vk + dv

Set un+1 = vk+1.

3.3.2 Numerical Experiments

In this section, we illustrate with numerical experiments the improvement brought

by the B-methods derived in Section 3.2 for computing blow-up solutions accurately.

The schemes we derived are only semi-discretizations in time. To complete them, we

chose to apply finite-differences to discretize the Laplacian in space. The mesh was

chosen in order to lead to stable solutions.

We apply the fourteen methods listed in Table 3.2 to each problem, except for the

second-order equations for which several of these methods are identical (see Sections

3.2.4 and 3.2.5). Hereafter, we use the abbreviations listed in Table 3.2 in legends

and tables of values.

We present two types of results for each problem. The first two figures, together

with the corresponding tables of values, illustrate the general improvement in the

accuracy of numerical solutions obtained with B-methods. They also show the order

of each method. To obtain these figures, all methods are applied to the problem on
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Methods Abbreviations

Standard Forward Euler FE

Standard Backward Euler BE

Splitting Forward Euler SpFE

Adjoint Splitting Forward Euler SpFEA

Splitting Backward Euler SpBE

Adjoint Splitting Backward Euler SpBEA

Variation of the Constant with Forward Euler VCFE

Variation of the Constant with Backward Euler VCBE

Standard Midpoint Rule MR

Standard Trapezoidal Rule TR

Second-Order splitting method, with forward Euler SoSpFE

Second-Order splitting method, with backward Euler SoSpBE

Variation of the constant with midpoint rule VCMR

Variation of the constant with trapezoidal rule VCTR

Table 3.2: List of methods and their abbreviations.
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[0, Tf ], where Tf is smaller than, yet quite close to the blow-up time, with several

different timesteps. For each stepsize, we compute the infinity norm of the error at

time Tf . Since we do not have the exact solution, an adaptive method is used as a

reference to compute the error: the function ode45 in Matlab, which is based on an

explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. The tolerance is set to

10−12. The errors obtained are then plotted on two loglog graphs, one for first-order

methods and the other for second-order methods.

The second set of figures illustrates how the accuracy of the numerical solutions

evolves as we approach blow-up time. To obtain these figures, we apply the methods

with a fixed stepsize on [0, Tf ], where Tf is very close to the blow-up time, and we

compute and plot the infinity norm of the error at each timestep. The adaptive

method ode45 is again used to represent the exact solution. The figures are then

refocused on the timesteps close to the blow-up time as the potential of the B-methods

is more noticeable there. As for the first set of figures, we separate the first-order and

second-order methods.

For the most important problem, the semilinear parabolic equation (3.1), we

treated several examples of functions F . An example of the case F (u) = eu is pre-

sented below, whereas more examples with different initial conditions and parameter

choices as well as the results concerning F (u) = (u+α)p and F (u) = (u+1) ln(u+1)p+1

are presented in the Appendix. We also present one example of each type of prob-

lem: the quasilinear problem (3.22) and the second-order equation (3.31) that are

widespread models (see Chapter 1) are presented below, whereas the system (3.24)

and the second-order equation (3.38) are put into the Appendix.

Semilinear parabolic equation ut = ∆u+ δeu. For the first example, we use the

function F (u) = eu in the semilinear equation (3.1), on the interval Ω = [−1, 1]. We

set δ = 3 and u0(x) = cos(πx/2), which is concave on the whole interval. (Different
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initial conditions are presented in the Appendix.) Using adaptive methods, we can

evaluate the blow-up time at Tb ≈ 0.1664.

10
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10
−3

10
−2

10
−1

Timestep

E
rr

or

FE
BE
SpFE
SpFEA
SpBE
SpBEA
VCFE
VCBE

Figure 3.1: Error at Tf = 0.1660 for first-order methods applied to the semilinear

equation with F (u) = eu, with different values of h.

For Figures 3.1 and 3.2, we computed the solution up to Tf = 0.1660 with dif-

ferent stepsizes. For first-order methods, we used h = 0.00005, 0.000025, 0.0000125,

0.000008 and 0.000005. For second-order methods, we used h = 0.0002, 0.000125,

0.0001, 0.00005 and 0.000025. As expected, the slopes of the lines corresponding

to first-order methods are approximately one, whereas the slopes of the lines cor-

responding to second-order methods are close to two. The values used to generate

these figures are listed in Tables 3.3 and 3.4. We observe that the error of B-methods

is approximately 10 times smaller for first-order methods (and even more for SpBE

and SpBEA) and 30 times smaller for second-order B-methods compared to standard

methods.

For Figures 3.3 and 3.4, we used h = 0.0001 and computed the solution up to
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Figure 3.2: Error at Tf = 0.1660 for second-order methods applied to the semilinear

equation with F (u) = eu, with different values of h.

Timestep 5e-005 2.5e-005 1.25e-005 8e-006 5e-006

FE 0.277 0.152 0.08 0.0522 0.0331

BE 0.468 0.194 0.0904 0.0565 0.0347

SpFE 0.0361 0.0183 0.00919 0.00589 0.00369

SpFEA 0.0379 0.0187 0.0093 0.00594 0.00371

SpBE 0.00533 0.00269 0.00135 0.000864 0.000541

SpBEA 0.00551 0.00273 0.00136 0.000869 0.000543

VCFE 0.019 0.00956 0.0048 0.00307 0.00192

VCBE 0.0195 0.0097 0.00483 0.00309 0.00193

Table 3.3: Error at Tf = 0.1660 for first-order methods applied to the semilinear

equation with F (u) = eu.
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Timestep 0.0002 0.000125 0.0001 5e-005 2.5e-005

MR 0.00833 0.00324 0.00207 0.000516 0.000129

TR 0.0407 0.0152 0.00961 0.00237 0.000591

SoSpFE 0.000305 0.000121 7.75e-005 1.94e-005 4.87e-006

SoSpBE 0.000305 0.000121 7.75e-005 1.94e-005 4.87e-006

VCMR 0.00033 0.00013 8.36e-005 2.1e-005 5.25e-006

VCTR 0.000733 0.000287 0.000184 4.6e-005 1.15e-005

Table 3.4: Error at Tf = 0.1660 for second-order methods applied to the semilinear

equation with F (u) = eu.
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Figure 3.3: Error for first-order methods applied to the semilinear equation with

F (u) = eu, for timesteps close to Tf = 0.1663.
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Figure 3.4: Error for second-order methods applied to the semilinear equation with

F (u) = eu, for timesteps close to Tf = 0.1663.

Tf = 0.1663.

Quasilinear Equation For the quasilinear equation (3.22), we consider

ut = ∆u2 + 8u3, (3.40)

on Ω = [−1, 1] with the same initial condition as above: u0(x) = cos(πx/2). The

blow-up time is approximately Tb ≈ 0.1128.

For Figures 3.5 and 3.6 we computed the solution up to Tf = 0.1000, using

the stepsizes h = 0.000125, 0.00008, 0.00005, 0.000025 and 0.0000125 for first-order

methods and h = 0.0005, 0.00025, 0.000125, 0.00008 and 0.00005 for second-order

methods. The errors are listed in Tables 3.5 and 3.6. We observe that the B-methods

obtained by variation of the constant are more accurate than those obtained by split-

ting methods. Compared with standard methods, the errors are 10 times smaller for
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Figure 3.5: Error at Tf = 0.1000 for first-order methods applied to the quasilinear

equation (3.40), with different values of h.
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Figure 3.6: Error at Tf = 0.1000 for second-order methods applied to the quasilinear

equation (3.40), with different values of h.
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Timestep 0.000125 8e-005 5e-005 2.5e-005 1.25e-005

FE 0.0188 0.0121 0.00762 0.00383 0.00192

BE 0.0196 0.0125 0.00774 0.00386 0.00192

SpFE 0.0082 0.00526 0.00329 0.00165 0.000824

SpFEA 0.00829 0.0053 0.00331 0.00165 0.000825

SpBE 0.004 0.00256 0.0016 0.0008 0.0004

SpBEA 0.004 0.00256 0.0016 0.0008 0.0004

VCFE 0.00209 0.00134 0.000837 0.000419 0.000209

VCBE 0.0021 0.00134 0.000839 0.000419 0.00021

Table 3.5: Error at Tf = 0.1000 for first-order methods applied to the quasilinear

equation (3.40).

Timestep 0.0005 0.00025 0.000125 8e-005 5e-005

MR 0.000191 4.78e-005 1.19e-005 4.89e-006 1.91e-006

TR 0.000499 0.000125 3.11e-005 1.28e-005 4.98e-006

SoSpFE 3.72e-005 9.29e-006 2.32e-006 9.52e-007 3.72e-007

SoSpBE 5.84e-005 1.46e-005 3.65e-006 1.49e-006 5.84e-007

VCMR 2.15e-006 5.37e-007 1.34e-007 5.5e-008 2.15e-008

VCTR 2.17e-005 5.42e-006 1.35e-006 5.55e-007 2.17e-007

Table 3.6: Error at Tf = 0.1000 for second-order methods applied to the quasilinear

equation (3.40).
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first-order methods of the first type and between 2 and 7 times smaller for first-order

methods of the second type. Among second-order methods, the method obtained by

variation of the constant and the midpoint rule (VCMR) is remarkably better than

the others, as its error is more than fifty times smaller that the error of the standard

midpoint rule.

0.109 0.1095 0.11 0.1105 0.111

0

0.1

0.2

0.3

0.4

0.5

0.6

Time

E
rr

or

FE
BE
SpFE
SpFEA
SpBE
SpBEA
VCFE
VCBE

Figure 3.7: Error for first-order methods applied to the quasilinear equation (3.40),

for timesteps close to Tf = 0.1110.

The step-by-step errors is plotted in Figures 3.7 and 3.8 up to Tf = 0.1110, when

the solutions are computed using the timestep h = 0.0001.

Wave Equation As a last example (more examples are presented in the Appendix),

we present the wave equation

utt = ∆u+ 5eu, (3.41)

on Ω = [−1, 1]. The initial conditions are u0(x) = cos(πx/2) and ut0 = 0.1. The

blow-up time can be approximated by Tb = 0.643.
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Figure 3.8: Error for second-order methods applied to the quasilinear equation (3.40),

for timesteps close to Tf = 0.1110.
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Figure 3.9: Error at Tf = 0.600 for first-order methods applied to the wave equation

(3.41) with different values of h.
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Figure 3.10: Error at Tf = 0.600 for second-order methods applied to the wave

equation (3.41) with different values of h.

Timestep 0.00125 0.0008 0.0005 0.00025 0.000125

FE 0.106 0.0688 0.0435 0.022 0.011

BE 0.117 0.0735 0.0453 0.0224 0.0112

SpFE 0.00591 0.00379 0.00237 0.00118 0.000592

SpFEA 0.00593 0.00379 0.00237 0.00118 0.000592

VCFE 0.00362 0.00231 0.00145 0.000723 0.000361

VCBE 0.00361 0.00231 0.00145 0.000723 0.000361

Table 3.7: Error at Tf = 0.600 for first-order methods applied to the wave equation

(3.41).
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Timestep 0.005 0.0025 0.00125 0.0008 0.0005

MR 0.00331 0.000827 0.000207 8.46e-005 3.31e-005

TR 0.00608 0.00151 0.000378 0.000155 6.04e-005

SoSpFE 4.28e-005 1.07e-005 2.67e-006 1.09e-006 4.28e-007

VCMR 2.53e-005 6.35e-006 1.59e-006 6.51e-007 2.54e-007

VCTR 6.41e-005 1.6e-005 4e-006 1.64e-006 6.4e-007

Table 3.8: Error at Tf = 0.600 for second-order methods applied to the wave equation

(3.41).

For Figures 3.9 and 3.10 we computed the solution up to Tf = 0.6, using stepsizes

h = 0.00125, 0.0008, 0.0005, 0.00025 and 0.000125 for first-order methods and h =

0.005, 0.0025, 0.00125, 0.0008 and 0.0005 for second-order methods. The errors are

listed in Tables 3.7 and 3.8. For second-order methods, the error is between 80 and

125 times smaller and for first-order methods it is 20 or 30 times smaller.

We used h = 0.0001 to compute the solutions of (3.41) up to Tf = 0.630. The

errors for the last steps are plotted in Figures 3.11 and 3.12.

Concluding remarks As a conclusion, we note that on all examples, B-methods

bring a clear improvement for the numerical approximation of blow-up solutions. This

improvement is generally increasing as we approach the blow-up time. This allows us

to obtain a better approximation of the blow-up time by fixed-step methods.

These methods can also be used to construct specialized adaptive methods. For

example, the function ode12, which involves backward Euler and the midpoint rule,

can be improved to a B-ode12 using VCBE and VCME. To compare the performance

of ode12 and B-ode12, we applied both methods to the wave equation (3.41), with the
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Figure 3.11: Error for first-order methods applied to the wave equation (3.41), for

timesteps close to Tf = 0.630.
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Figure 3.12: Error for second-order methods applied to the wave equation (3.41), for

timesteps close to Tf = 0.630.
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same initial conditions as above. To compute the solution up to Tf = 0.64, the func-

tion ode12 requires 32, 333 timesteps (with 87 rejected steps), whereas the function

B-ode12 requires only 13, 184 timesteps (with 26 rejected steps). As a consequence,

it is approximately 5 times faster to compute the solution using B-ode12. The differ-

ence is even more obvious as we get closer to the blow-up time. Indeed computing

the solution up to Tf = 0.6434 requires 41, 530 timesteps (with 127 rejected steps)

for ode12 and 13, 414 timesteps (with 49 rejected steps) for B-ode12, and it is close

to 7 times faster to obtain the results with B-ode12.
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Chapter 4: Theoretical Study of Se-

lected Schemes

As B-methods are numerous and different for every model, it is not possible to study

them as a whole and one needs to study each one separately. Thus we chose to

concentrate on a few selected schemes, chosen among those derived in Chapter 3.

Since the problem is stiff and we wanted to consider schemes as simple as possible,

we chose two methods based on the backward Euler method. The first B-method,

referred to as VCBE, is obtained using the backward Euler method in the construction

by variation of the constant. The second B-method, referred to as SpFEA, was

obtained by composing the backward Euler method (which is the adjoint of Forward

Euler) and the exact flow of a simpler equation.

Since we only constructed semi-discretizations in time, B-methods are partial

differential equations. Thus we first need to prove the existence and uniqueness of a

positive solution. Of course this solution should only exist for a finite time. In this

chapter we prove that the numerical solution un exists as long as it is smaller than a

certain constant (which depends on the timestep h). We also give a minimal time T1

that does not depend on h, for which un is small enough so that the solution exists.

This value corresponds to a lower bound for the numerical blow-up time. For some

B-methods, we were also able to find an upper bound for the numerical blow-up time.

For some specific problems, the behaviour of the exact solution close to the blow-
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up time has been studied, so we prove that the numerical solution follows the same

rate of growth as the exact solution. While these results do not prove by themselves

that B-methods are better than standard methods, they do show that they lead to

solutions that exhibit the expected behavior.

In Chapter 3, we derived several B-methods to solve the semilinear parabolic

problem 





ut = ∆u+ δF (u), Ω × (0, T ),

u = 0, ∂Ω × (0, T ),

u(x, 0) = u0(x), Ω,

where Ω is a bounded domain in R
d, u0 is a positive continuous function on Ω̄ and δ

is a positive constant. In Sections 4.1 and 4.2, we present several results concerning

two of these B-methods (namely, VCBE and SpFEA). As in Section 3.1, we introduce

g(s) =
∫∞
s

1
F (σ)

dσ and G = g−1. As the behaviour of these functions and the function

F will be used many times throughout the chapter, it may be convenient to summarize

most information in a lemma for future references.

Assumption 4.1. The function F is assumed to be positive, strictly increasing and

strictly convex on (0,∞), belonging to C2([0,∞)) and satisfying

∫ ∞

b

ds

F (s)
<∞, (4.1)

for b > 0. Then the function g(s) =
∫∞
s

1
F (σ)

dσ is continuous and strictly decreasing

on (0,∞). The function G = g−1 is continuous and strictly decreasing on (0,M),

where M = lims→0 g(s) ≤ ∞. Note also that g and G are positive with

lim
s→∞

g(s) = 0 and lim
s→0

G(s) = ∞.

Several examples of such functions are given in Section 3.1, including the most

studied examples F (u) = eu and F (u) = (u+α)p, with α ≥ 0 and p > 1 (see Chapters

1 and 2).
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For the first B-method (VCBE), some additional assumptions on the function F

are necessary to prove the existence and uniqueness of a positive solution. Moreover,

as the resulting differential equation is nonlinear, we present an iterative method

leading to the solution. As the second B-method (SpFEA) is linear, there is no need

for such a solver, and the existence and uniqueness of a positive solution are easily

obtained. We prove for both methods that the solution exists as long as ‖un‖∞ <

G(δh) and we prove that this condition is satisfied at least until T1 = g(‖u0‖)/δ. This
lower bound for the numerical blow-up time is the same as the one given by Kaplan

[81]. Kaplan also gives an upper bound for the exact blow-up time and we prove

that the solution obtained by the second B-method blows up in a finite time that is

smaller than this bound. Finally we also prove for both methods that if F (u) = eu

or F (u) = (u + α)2, the rate of growth of the numerical solution follows the rate of

growth of the exact solution.

In Section 4.3 we show how the results of existence and uniqueness of a positive

solution need to be modified when the two B-methods are adapted to the more general

equation

ut = ∆u+ δq(x)ψ(t)F (u),

where q is bounded on Ω̄ with q(x) > 0, ψ is continuous on [0,∞), with ψ(t) > 0.

Some conditions on the function ψ are necessary and the condition ‖un‖∞ < G(δh)

must be adapted and leads to a different condition for each method. Accordingly,

two different lower bounds T1 for the blow-up time are derived.

Finally we present in Section 4.4 several results about two schemes for the quasi-

linear parabolic equation with power-like nonlinearities. The first method (VCBE)

has been deeply studied by Le Roux [99] so we quickly present some of her results. In

her paper, the existence and uniqueness of a positive solution were proven and a lower

bound T1 for the numerical blow-up time was derived. As the scheme is nonlinear

a specific solver was presented. Moreover Le Roux proved that the upper bound for
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the numerical blow-up time is the same as the bound for the exact one. The rate of

growth and the existence of a subsolution were also studied. Concerning the second

B-method, we only prove a few results: the existence and uniqueness of a positive

solution and the minimal time of existence T1.

4.1 B-Method Obtained by Variation of the Con-

stant and Backward Euler (VCBE)

In this section, we study the scheme obtained by using the backward Euler method

when applying the variation of the constant construction. This scheme was given in

Section 3.1.2 in the form

g(un+1)− g(un) + δh =
−h

F (un+1)
∆un+1. (4.2)

In order to study that scheme, we introduce Au = −∆u and write it as Aun+1 =

f(x, un+1) with

f(x, u) =
1

h
F (u) (g(u)− g(un(x)) + δh). (4.3)

For our purposes, we need f to be defined and continuous at u = 0. This is clearly

the case if F (0) > 0 since g(s) =
∫∞
s

1
F (σ)

dσ, however if F (0) = 0, the function f may

not be defined at u = 0 as g(0) = ∞. We prove below that limu→0+ f(x, u) = 0, so

that f can be continuously extended by setting f(x, 0) = 0 for all x in Ω.

By definition, for each c > 0, we have g(c) =
∫∞
c

ds
F (s)

, so that

F (c)g(c) =

∫ ∞

c

F (c)

F (s)
ds =

∫ a

c

F (c)

F (s)
ds+

∫ ∞

a

F (c)

F (s)
ds.

for any fixed a ≥ c. Then, since F is increasing and s ≥ c,

F (c)g(c) ≤
∫ a

c

1 ds+

∫ ∞

a

F (c)

F (s)
ds = (a− c) + F (c)

∫ ∞

a

ds

F (s)
.
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The last integral is finite by condition (4.1), we call it Ia. Then we let c tend to zero.

We get

lim
c→0+

F (c)g(c) ≤ a+ F (0)Ia = a,

since F (0) = 0. So for any fixed a > 0, we get limc→0+ F (c)g(c) ≤ a, hence

lim
c→0+

F (c)g(c) = 0,

and limu→0+ f(x, u) = 0 for all x ∈ Ω.

By abuse of notation, we shall refer to f as its continuous extension on [0,∞).

4.1.1 Existence and Uniqueness of the solution

Existence

Amann proved in [8] that in case f(x, 0) ≥ 0, a necessary and sufficient condition

for the existence of a non-negative solution of problem (4.4) is the existence of a

non-negative supersolution.

Theorem 4.2 (Amann). Let f ∈ Cα(Ω̄× R+) be given, with α ∈ (0, 1), and assume

that f(x, 0) ≥ 0. Then a necessary and sufficient condition for the existence of a

non-negative solution u ∈ C2+α(Ω) of the BVP

Au := −∆u = f(x, u), in Ω,

u = 0, on ∂Ω,
(4.4)

is the existence of a non-negative function v ∈ C2+α(Ω̄) satisfying

Av ≥ f(x, v), in Ω,

v ≥ 0, on ∂Ω.

Moreover, if this condition is satisfied, there exist a maximal non-negative solution

û ≤ v and a minimal non-negative solution ū ≤ v in the sense that, for every non-

negative solution u ≤ v of (4.4), the inequality

ū ≤ u ≤ û
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holds.

We use this result to prove the existence of a non-negative solution of the scheme.

Theorem 4.3. If the function un is positive in Ω, continuous in Ω̄, and satisfies

‖un‖∞ < G(δh), (4.5)

then scheme (4.2) has a maximal nonnegative solution û ≤ Cn with

Cn = G(g(‖un‖∞)− δh),

and a minimal solution ū ≥ 0 and if u is a solution, then u ∈ C2(Ω̄) and satisfies

ū ≤ u ≤ û.

Note that by definition of G we have limh→0G(δh) = ∞ (see Assumption 4.1),

so that by choosing h small, the bound on the right-hand side of (4.5) can be made

as large as desired. All following results need this condition to be satified, hence

even when the solution can be computed further, the numerical result can become

incorrect once this bound is reached.

Proof. As stated at the beginning of the section, if F (0) = 0, we have f(x, 0) = 0

for all x ∈ Ω. If F (0) > 0, since g is decreasing, we have g(un) < g(0) + δh and we

get f(x, 0) > 0. So to apply Theorem 4.2, we need to show that the constant Cn is a

supersolution, that is

1

h
F (Cn) (g(Cn)− g(un) + δh) ≤ 0 (= ACn),

and since F (Cn) > 0 and G is decreasing, it becomes

Cn ≥ G(g(un)− δh).

Hence, the constant

Cn = G(g(‖un‖∞)− δh),
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which is well-defined if condition (4.5) is satisfied and positive by definition of G, is

a supersolution.

If F (0) = 0, the identically zero function is solution of scheme (4.2). In this case

we need to use a stronger result, proved in [26] by Brezis and Oswald, to prove the

existence of a non-identically zero solution.

We consider a problem of the form







−∆u = f(x, u), in Ω,

u ≥ 0, u 6≡ 0 in Ω,

u = 0, on ∂Ω,

(4.6)

where Ω ⊂ R
d is a bounded domain with smooth boundary and f(x, u) : Ω×[0,∞) →

R. Set

a0(x) = lim
u→0

f(x, u)

u
,

and

a∞(x) = lim
u→∞

f(x, u)

u
.

For a(x) = a0(x), a∞(x), we denote by λ1(−∆−a(x)) the first eigenvalue of −∆−a(x)
with zero Dirichlet boundary condition. Brezis and Oswald proved the following

result.

Theorem 4.4 (Brezis and Oswald). We suppose that the function f satisfies the

following properties

a. for almost every x ∈ Ω, the function u 7→ f(x, u) is continuous on [0,∞);

b. for each u ≥ 0, the function x 7→ f(x, u) belongs to L∞(Ω);

c. there exists C1 > 0 such that f(x, u) ≤ C1(u + 1) for almost every x ∈ Ω, and

for all u ≥ 0;
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d. for each δ > 0, there exists Cδ ≥ 0 such that f(x, u) ≥ −Cδu for all u ∈ [0, δ],

and almost every x ∈ Ω;

e. we have λ1(−∆− a0(x)) < 0 and λ1(−∆− a∞(x)) > 0. Note that in the special

case where a0(x) and a∞(x) are independent of x, this is equivalent to

a∞ < λ1(−∆) < a0.

Then problem (4.6) has a solution u ∈ H1
0 (Ω) ∩ L∞(Ω).

As we only need this stronger result for the case where F (0) = 0, the following

theorem is only proved for that case.

Theorem 4.5. If the function un is positive in Ω, continuous in Ω̄, and satisfies

condition (4.5), the following hold.

a. If F (0) = 0 and F ′(0) > 0, scheme (4.2) has a non-identically zero nonnegative

solution.

b. If F (0) = 0, F ′(0) = 0 and

L := lim
u→0

−F (u)
F (u)− uF ′(u)

,

is positive, then scheme (4.2) has a non-identically zero nonnegative solution if

h <
1

λ1(−∆)
L.

Proof. We already proved in the introduction of the section that the function u →
f(x, u) is continuous on [0,∞), and since Ω is bounded, condition (b) of Theorem 4.4

is satisfied for all u ≥ 0.

Since F (0) = 0 by hypothesis, we have f(x, 0) = 0 and condition (d) of Theorem

4.4 is satisfied for u = 0. For u > 0, condition (d) of Theorem 4.4 requires that there

exists Cδ such that for all u ∈ (0, δ] and all x ∈ Ω,

f(x, u) ≥ −Cδu⇐⇒ g(u) ≥ c(x)− hCδu

F (u)
, where c(x) = g(un)− δh.
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Since g is positive, it is enough that the right-hand side be negative, that is

Cδ >
F (u)

u

c(x)

h
.

By definition of M and because un satisfies condition (4.5), we have c(x) ∈ (0,M).

By hypothesis F (0) = 0 so that

lim
u→0

F (u)

u
= F ′(0) <∞,

(since F ∈ C2([0,∞))), hence such a constant Cδ exists for all δ and condition (d) of

Theorem 4.4 is satisfied.

Since un satisfies condition (4.5), we have g(‖un‖∞) > δh, so that there exists

ε > 0 such that g(‖un‖∞) > δh+ ε, and then

c(x) > ε > 0,

for all x ∈ Ω. Hence

f(x, u) ≤ F (u)

h
(g(u)− ε),

and since limu→∞ g(u) = 0 and limu→∞ F (u) = ∞ (see Assumption 4.1), we have

lim
u→∞

F (u)

h
(g(u)− ε) = −∞,

and condition (c) of Theorem 4.4 is satisfied with

C1 = max
u≥0

F (u)

h
(g(u)− ε).

Because of condition (4.1), we have

lim
u→∞

F (u)

u
= ∞,

and since limu→∞ g(u) = 0, we obtain

a∞(x) = lim
u→∞

F (u)

hu
(g(u)− c(x)) = −∞,
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for all x. Finally if limu→0
F (u)
u

= F ′(0) > 0,

a0(x) = lim
u→0

F (u)

hu
(g(u)− c(x)) = ∞,

for all x, whereas if F ′(0) = 0, we need to use l’Hôpital’s Rule to compute

a0(x) = lim
u→0

F (u)

hu
(g(u)− c(x)) = lim

u→0

F (u)

hu
g(u) =

1

h
lim
u→0

g(u)
u

F (u)

=
1

h
lim
u→0

g′(u)
F (u)−uF ′(u)

F 2(u)

=
1

h
lim
u→0

−F (u)
F (u)− uF ′(u)

,

where we used that g′ = −1/F . So a0 and a∞ are both independent of x, and

condition (e) of Theorem 4.4 becomes

−∞ < λ1(−∆) < a0,

where a0 = ∞ if F ′(0) > 0, and a0 =
1
h
L if F (0) = 0.

Corollary 4.1. If F (u) = up+1 or F (u) = (u + 1)[ln(u + 1)]p+1 with p > 0 and

h < 1
pλ1(−∆)

or if F (u) = eu − 1, scheme (4.2) has a non-identically zero nonnegative

solution.

Proof. If F (u) = eu − 1, we have F (0) = 0 and F ′(0) = 1, so we can apply part (a)

of Theorem 4.5.

If F (u) = up+1, we have F ′(u) = (p+1)up and F ′(0) = 0, so to obtain the existence

of a non-identically zero solution, we need

hλ1(−∆) < lim
u→0

−F (u)
F (u)− uF ′(u)

= lim
u→0

−up+1

up+1 − (p+ 1)up+1
=

1

p
.

Similarly, if F (u) = (u + 1)[ln(u + 1)]p+1, we have F ′(u) = [ln(u + 1)]p[(p + 1) +

ln(u+1)] and F ′(0) = 0, so to obtain the existence of a non-identically zero solution,

we need

hλ1(−∆) < lim
u→0

−F (u)
F (u)− uF ′(u)

= lim
u→0

−(u+ 1)[ln(u+ 1)]p+1

(u+ 1)[ln(u+ 1)]p+1 − u[ln(u+ 1)]p[(p+ 1) + ln(u+ 1)]

= lim
u→0

−(u+ 1) ln(u+ 1)

ln(u+ 1)− (p+ 1)u
=

1

p
.
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Uniqueness

A second result of Amann [8] could be used to prove the uniqueness of positive

solutions in case the function f is decreasing in u, as will be done in Section 4.2,

however as the function f defined in (4.3) is not generally decreasing in u, we need

to use a more general result by Brezis and Oswald [26].

Theorem 4.6 (Brezis and Oswald). Consider system (4.6). If the function f satisfies

the following properties

a. for almost every x ∈ Ω, the function u 7→ f(x, u) is continuous on [0,∞);

b. for each u ≥ 0, the function x 7→ f(x, u) belongs to L∞(Ω);

c. for almost every x ∈ Ω, the function u 7→ ϕ(u) := f(x,u)
u

is decreasing on (0,∞);

then problem (4.6) has at most one solution and this solution is positive.

We apply this result to problem (4.2).

Theorem 4.7. We suppose that the function un is positive in Ω, continuous in Ω̄,

and satisfies condition (4.5). If the function F satisfies the following property

(
F (u)

u

)′(∫ ∞

u

1

F (s)
ds− c

)

<
1

u
, ∀ u > 0, ∀ c ∈ (0,M − δh), (4.7)

then scheme (4.2) has at most one solution and this solution is positive.

Proof. We already proved that the first two conditions of Theorem 4.6 are satisfied,

so it only remains to show that the function ϕ(u) = f(x, u)/u is decreasing on (0,∞)

for all x. From

ϕ(u) =
1

h

F (u)

u
(g(u)− g(un) + δh),
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we get

ϕ′(u) =
1

h

(
F (u)

u

)′
(g(u)− g(un) + δh)− 1

h

1

u
.

Since g(un(x))− δh ∈ (0,M − δh), ϕ is decreasing if (4.7) is satisfied.

Condition (4.7) is satisfied by many functions F of interest; two important exam-

ples are given in the following corollary.

Corollary 4.2. We suppose that the function un is positive in Ω, continuous in Ω̄,

and satisfies condition (4.5). If F (u) = eu or F (u) = (u + α)p+1, α ≥ 0, p > 0, the

scheme has a unique non-identically zero solution which is positive.

Proof. If F (u) = eu, condition (4.7) becomes

eu(u− 1)

u2
(e−u − c) <

1

u
, ∀ u > 0, ∀ c ∈ (0, 1− δh),

that is,

−ceu(u− 1) < 1.

Since the function on the left-hand side is decreasing in u and is equal to c if u = 0,

this condition is satisfied for all c ∈ (0, 1) and u > 0 and Theorem 4.7 applies.

Similarly, if F (u) = (u + α)p+1, with α ≥ 0 and p > 0, condition (4.7) can be

written as
[(p+ 1)u− (u+ α)](u+ α)p

u2

[
(u+ α)−(p)

p
− c

]

<
1

u
,

for all u > 0 and c ∈ (0, 1
pαp

− δh) (or c > 0 if α = 0), which becomes after

simplifications

−c[pu− α](u+ α)p <
α

p
.

If α = 0, this condition is clearly satisfied for all u > 0, c > 0. If α > 0, the function

on the left-hand side is again decreasing in u and is equal to cαp+1 when u = 0, so that

we end up with the condition c < 1/(p αp). In both cases, Theorem 4.7 applies.
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Minimal Time of Existence of the Solution

If the function F satisfies the hypothesis of Theorem 4.7, and either F (0) 6= 0 or F

satisfies the hypothesis of Theorem 4.5, then it remains to show that the condition

(4.5) is satisfied for a positive number of steps.

Theorem 4.8. If the function F satisfies the hypothesis of Theorem 4.7, and either

F (0) 6= 0 or F satisfies the hypothesis of Theorem 4.5, the scheme (4.2) has a positive

solution un for n such that tn = nh < T1, where

T1 =
1

δ
g(‖u0‖∞) =

∫ ∞

‖u0‖∞

ds

δF (s)
.

This theorem gives a lower bound on the numerical blow-up time equal to the one

given by Kaplan in [81] for the exact solution.

Proof. We want to prove that if tn < T1, that is

‖u0‖∞ < G(δtn),

we have ‖un−1‖∞ < G(δh) so that un is well-defined. To obtain this result, we prove

by induction that if ‖u0‖∞ < G(δtn), then un is well-defined and satisfies

‖un‖∞ ≤ G(g(‖u0‖∞)− δtn). (4.8)

For this, we will need in particular the following result which comes from Theorem

4.3:

if ‖un‖∞ < G(δh), then ‖un+1‖∞ ≤ Cn = G(g(‖un‖∞)− δh). (4.9)

By choosing n = 0 in (4.9), we obtain the initial step of the induction, in particular

(4.8) for n = 1. We suppose now that for some fixed n, if ‖u0‖∞ < G(δtn), then un

is well-defined and satisfies (4.8), and we also suppose that

‖u0‖∞ < G(δtn+1). (4.10)
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Since G is decreasing, (4.10) implies ‖u0‖∞ < G(δtn) and then by induction hypoth-

esis, we get

‖un‖∞ ≤ G(g(‖u0‖∞)− δtn). (4.11)

Moreover from (4.10) we also get

g(‖u0‖∞) > δtn+1,

that we write as

g(‖u0‖∞)− δtn > δh.

Inserting this estimate into (4.11), and using that G is decreasing, we obtain

‖un‖∞ < G(δh),

which implies that un+1 is well-defined. Moreover using Theorem 4.3, we have

‖un+1‖∞ ≤ G(g(‖un‖∞)− δh).

Since from (4.11), we get that

g(‖un‖∞)− δh ≥ g(‖u0‖∞)− δtn+1,

we obtain

‖un+1‖∞ ≤ G(g(‖u0‖∞)− δtn+1)

and the induction is proved.

Computation of the numerical solutions

In this section, we introduce a specific fixed-point iteration method to solve Au =

f(x, u), namely







−∆vk − ϕ(x)vk = f(x, vk−1)− ϕ(x)vk−1, in Ω,

vk = 0, on ∂Ω.
(4.12)
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where the preconditioning function ϕ ∈ Cγ(Ω̄) is non-positive and satisfies (4.14).

The iteration scheme was first presented by Courant and Hilbert in [40]; however

we present the results in the form given by Keller in [85]. The proof of the following

theorem follows the proofs of Theorems 4.1 and 4.2 in [85].

Theorem 4.9 (Keller). Consider the problem







−∆u = f(x, u), in Ω,

u = 0, on ∂Ω.
(4.13)

Suppose there exist two constants M ≥ 0 and m ≤ 0 and a non-positive function

ϕ(x) ∈ Cγ(Ω̄) such that the function f satisfies f(x, u) ∈ Cγ(Ω̄×[m,M ]), f(x,m) ≥ 0

and f(x,M) ≤ 0 on Ω, and

f(x, z1)− f(x, z2)

z1 − z2
≥ ϕ(x) on Ω, for all z1, z2 ∈ [m,M ]. (4.14)

If v0(x) ∈ Cγ(Ω̄) is a supersolution (resp. subsolution) of problem (4.13), with

m ≤ v0(x) ≤ M , then problem (4.13) has at least one solution u(x) ∈ C2+γ(Ω̄), with

m ≤ u(x) ≤M and given by

u(x) = lim
n→∞

vn(x),

where the monotone non-increasing (resp. non-decreasing) sequence {vn(x)} is defined

by (4.12).

Proof. The operator L defined by Lu = ∆u + ϕ(x)u is elliptic, with ϕ(x) ≤ 0, and

ϕ ∈ Cγ(Ω̄), f ∈ Cγ(Ω̄ × [m,M ]), so from Schauder’s theory (see Theorem 6.14 in

[64]), problem (4.12) has a unique solution lying in C2+γ(Ω̄). Hence the sequence

{vk} is well-defined and vk ∈ C2+γ(Ω̄) for all k ≥ 1.

We only prove the monotonicity of the sequence for the case where v0 is a super-

solution so that the sequence {vk} satisfies

m ≤ · · · ≤ vk(x) ≤ · · · ≤ v0(x) ≤M, (4.15)
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because the proof is similar if v0 is a subsolution. First, we show that v1 ≤ u0 on Ω̄.

We have from (4.12),

−∆(v1 − v0)− ϕ(x)(v1 − v0) = f(x, v0)− ϕ(x)v0 +∆v0 + ϕ(x)v0 = f(x, v0) + ∆v0,

which is negative since v0 is a supersolution of problem (4.13). Thus we have L(v1 −
v0) ≥ 0 and from the strong maximum principle (see Theorem 2.1 of [85]) we obtain

v1 − v0 ≤ 0 on Ω̄.

By hypothesis, we have m ≤ v0 ≤M . We then suppose that m ≤ vk(x) ≤M and

we show that vk+1 ≥ m on Ω̄. Choosing z1 = vk and z2 = m in (4.14), we obtain

f(x, vk)− f(x,m)

vk −m
≥ ϕ(x),

which gives, since vk ≥ m,

f(x, vk)− ϕ(x)vk ≥ f(x,m)− ϕ(x)m.

Using (4.12), it becomes

−∆vk+1 ≥ f(x,m) + ϕ(x)(vk+1 −m).

Since f(x,m) ≥ 0 and ϕ(x) ≤ 0 by hypothesis, we have ∆vk+1 ≤ 0 on Ω ∩ {x ∈
Ω̄ | vk+1(x) ≤ m}. Using Theorem 2.2 of [85], which is a consequence of the maximum

principle, we obtain vk+1 ≥ m on Ω̄.

Finally, we need to show that if m ≤ vk(x) ≤ vk−1(x) ≤ M on Ω̄, we have

vk+1 ≤ vk on Ω̄. We consider

−∆(vk+1 − vk)− ϕ(x)(vk+1 − vk) = f(x, vk)− f(x, vk−1)− ϕ(x)(vk − vk−1).

Since vk − vk−1 ≤ 0, choosing z1 = vk and z2 = vk−1 in (4.12) leads to

−∆(vk+1 − vk)− ϕ(x)(vk+1 − vk) ≤ 0,



4.1 B-Method Obtained by Variation of the Constant 115

and using as above Theorem 2.1 of [85], we obtain vk+1 ≤ vk on Ω̄.

Hence the monotonicity of the sequence {vk(x)} is established, together with

(4.15). As the sequence is monotone and uniformly bounded, it converges to some

function û defined by

û(x) = lim
k→∞

vk(x).

To show that û belongs to C2+γ(Ω̄) and is a solution of (4.13), we will use the

Compactness Theorem 12.2 in [7], however we first need to show that the convergence

is uniform on Ω̄.

From Morrey’s inequality (see Section 5.6.2 in [45]), we have

max
x,ξ∈Ω̄

|vk(x)− vk(ξ)|
|x− ξ|α ≤ K0‖vk‖1,p , (4.16)

for some constant K0 independent of vk, and α = 1 − d
p
, for any p ≥ d (recall that

Ω ⊂ R
d). Moreover, the following estimate, taken from [139],

‖u‖s,p ≤ K1(‖Au‖s−2,p + ‖u‖s−2,p),

leads to, using (4.12) and letting s = 2,

‖vk‖2,p ≤ K1(‖f(x, vk−1)− ϕ(x)vk−1‖0,p + ‖vk‖0,p).

Since f ∈ Cγ(Ω̄ × [m,M ]), ϕ ∈ Cγ(Ω̄) and uk(x) ≤ M on Ω̄ for all k, there exists a

constant K2 such that

‖vk‖2,p ≤ K2, for all k ≥ 0.

Hence inequality (4.16) becomes

max
x,ξ∈Ω̄

|vk(x)− vk(ξ)|
|x− ξ|α ≤ K0K2,

and the vk are uniformly Hölder continuous, from which the equicontinuity and the

uniform convergence of {vk(x)} to û(x) follow.
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Thus we can apply the Compactness Theorem 12.2 of [7] with Li = L for all i and

Fi = −f(x, vi−1) + ϕ(x)vi−1 which converges uniformly to −f(x, û) + ϕ(x)û. Hence

a subsequence of {vk} converges to a solution of (4.12) that belongs to C2+γ(Ω̄) and

this solution must be û by monotonicity of the sequence {vk}.

We consider functions F that satisfy the hypothesis of Theorem 4.8 so that the

scheme has a unique positive solution 0 < u(x) < Cn. In order to apply Theorem 4.9

with m = 0 and M = Cn to scheme (4.2), we need to find a function ϕ that satisfies

(4.14). Indeed, the conditions f(x, 0) ≥ 0 and f(x, Cn) ≤ 0 on Ω were proved in

Theorem 4.3. We proved in Corollaries 4.1 and 4.2 that two important functions

F satisfy the hypothesis of Theorem 4.8. We now show that they also satisfy the

hypothesis of Theorem 4.9. Note that since the constant Cn is a supersolution, one

can use v0 = Cn as the initial iterate.

Corollary 4.3. If F (u) = eu, the solution of the scheme is given by iteration (4.12)

with

ϕ(x) = −1

h
(g(un)− δh)eCn ,

where Cn = G(g(‖un‖∞)− δh), with g(s) = e−s and G(s) = − ln(s).

Proof. We define c(x) = g(un) − δh > 0 (by condition (4.5)). In order to apply

Theorem 4.9, we need to prove that

f(x, u)− f(x, v)

u− v
≥ −c(x)

h
eCn , ∀ v ≤ u ∈ [0, Cn]. (4.17)

Recall that

f(x, u) =
1

h
eu(e−u − c(x)) =

1

h
(1− euc(x)).

Suppose first that v < u. After simplifications inequality (4.17) becomes

eu − ev

u− v
≤ eCn .
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We rewrite it as

eu
1− e−(u−v)

u− v
≤ eCn ,

so all we need is to check that for x > 0,

1− e−x

x
≤ 1,

which is obtained using the inequality

1− x ≤ e−x.

Finally, we consider the case u = v. We have for u fixed,

lim
v→u

f(x, u)− f(x, v)

u− v
= −c(x)

h
lim
v→u

eu − ev

u− v
= −c(x)

h
eu ≥ −c(x)

h
eCn .

Hence Theorem 4.9 applies with ϕ(x) = − c(x)
h
eCn < 0 and the proof is complete.

Corollary 4.4. If F (u) = (u + α)p+1, α ≥ 0, p > 0, the solution of the scheme is

given by iteration (4.12) with

ϕ(x) =
1

h

[
1

p
− (p+ 1)(Cn + α)p(g(un)− δh)

]

,

where Cn = G(g(‖un‖∞)− δh), with g(s) = 1
p
(s+ α)−p and G(s) = (ps)−1/p − α.

Proof. We define c(x) = g(un) − δh > 0 (by condition (4.5)). In order to apply

Theorem 4.9, we need to prove that

f(x, u)− f(x, v)

u− v
≥ 1

h

[
1

p
− (p+ 1)(Cn + α)pc(x)

]

, ∀ u ≤ v ∈ [0, Cn]. (4.18)

Recall that f(x, u) = 1
h
F (u)(g(u)− c(x)), that is

f(x, u) =
1

h
(u+ α)p+1

(
1

p(u+ α)p
− c(x)

)

=
1

h

(
u+ α

p
− c(x)(u+ α)p+1

)

.

We suppose first that u < v, then

f(x, u)− f(x, v)

u− v
=

1

h(u− v)

[
u+ α

p
− (u+ α)p+1c(x)− v + α

p
+ (v + α)p+1c(x)

]

=
1

h

[
1

p
− (u+ α)p+1 − (v + α)p+1

u− v
c(x)

]

,
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so the inequality (4.18) is satisfied if and only if

(u+ α)p+1 − (v + α)p+1

u− v
≤ (p+ 1) (Cn + α)p.

We define U = u+ α and V = v + α, so that 0 ≤ α ≤ U < V ≤ Cn + α and we need

Up+1 − V p+1

U − V
≤ (p+ 1) (Cn + α)p.

If V = 0, the inequality is satisfied. If V 6= 0, we define ξ := U/V ∈ (0, 1) and get

V p ξ
p+1 − 1

ξ − 1
≤ (p+ 1)(Cn + α)p,

so all we need is the sufficient condition

1− ξp+1

1− ξ
≤ p+ 1,

which is satisfied for p > 0 and ξ ∈ (0, 1). Now for the case u = v, we have

lim
v→u

f(x, u)− f(x, v)

u− v
=

1

h

[
1

p
− c(x)(p+ 1)(u+ α)p

]

.

Hence Theorem 4.9 applies with ϕ(x) = 1
h

[
1
p
− (p+ 1)(Cn + α)pc(x)

]

, if ϕ(x) is neg-

ative for all x. Since Cn = G(g(‖un‖∞) − δh) and G and g are both decreasing, we

have

Cn ≥ G(g(un)− δh) = [p c(x)]
−1
p − α,

and then

ϕ(x) =
1

h

[
1

p
− (p+ 1)(Cn + α)pc(x)

]

≤ 1

h

[
1

p
− (p+ 1)[p c(x)]−1c(x)

]

= −1

h
.

In Section 3.3, we chose not to use this fixed-point method to implement the non-

linear schemes and to use Newton’s method instead. We prove here the convergence of

Newton’s method under certain conditions on F . Using another result of Keller [85],

we prove that if f satisfies the hypotheses of Theorem 4.9 and fu is decreasing and if

the first iterate w0 is a supersolution, then Newton’s method converges monotonically

to the solution of the problem.
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Theorem 4.10 (Keller). Suppose that f satisfies the hypothesis of Theorem 4.9 and

fu(x, u) ∈ Cγ(Ω̄× [m,M ]),

and

fu(x, z1) ≥ fu(x, z2), ∀ x ∈ Ω, 0 ≤ z1 ≤ z2 ≤M.

Then the unique solution u(x) ∈ [m,M ] of problem (4.13) is given by

u(x) = lim
n→∞

wn(x),

where {wn(x)}, the Newton iterates, form a monotone non-increasing sequence defined

by

Awn+1 − fu(x, wn)wn+1 = f(x, wn)− fu(x, wn)wn, in Ω,

wn+1 = 0 on ∂Ω,
(4.19)

with an initial iterate w0 satisfying Aw0 ≥ f(w0) and fu(x, w0) ≤ 0 in Ω and w0 ≥ 0

on ∂Ω.

We proved in Corollaries 4.1 and 4.2 that two important examples of functions

F satisfy the hypotheses of Theorem 4.8. We now show that they also satisfy the

hypotheses of Theorem 4.10 with m = 0 and M = Cn.

Corollary 4.5. If F (u) = eu or F (u) = (u + α)p+1, the solution of (4.13) can be

obtained by Newton’s iteration (4.19), with w0 = Cn.

Proof. If F (u) = eu, we have fu(x, u) = − 1
h
(g(un) − δh)eu ∈ Cγ(Ω̄ × [0, Cn]). Since

g(un) − δh is positive, fu is negative and decreasing in u, so Theorem 4.10 applies

with w0 = Cn.

Similarly, if F (u) = (u+ α)p+1, we have

fu(x, u) =
1

ph
− 1

h
(p+ 1)(g(un)− δh)(u+ α)p ∈ Cγ(Ω̄× [0, Cn]),
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which is decreasing in u and since Cn satisfies g(Cn) ≤ g(un)− δh, that is

(g(un)− δh)(Cn + α)p ≥ 1

p
,

we have fu(x, Cn) ≤ −1/h. Hence we can apply Theorem 4.10 with w0 = Cn.

4.1.2 Rate of Growth

For specific functions F , the rate of growth of the exact solution close to the blow-up

has been approximated. In this section we derive similar results for the solution of

scheme (4.2).

Since the solution of yt = δF (y) is given by y(t) = G (δ(T − t)), where T is the

blow-up time, we expect

u(t) ∼ G (δ(T − t)) ,

close to the blow-up. In [53], Friedman and McLeod proved that if F (u) = up (and

then G(u) = [(p − 1)u]−1/(p−1)) and δ = 1, solutions u(x, t) with suitable initial-

boundary conditions satisfy

(T − t)
1
p−1u(x, t) → 1

p− 1

1
p−1

, as t→ T−,

provided |x| ≤ C(T − t)1/2, for some C > 0. For F (u) = eu (and G(u) = 1/ ln u),

δ = 1 and n = 1 or 2, Bebernes and al [17] proved that the solutions u(x, t) satisfy

u(x, t)− ln
1

T − t
→ 0, as t→ T−,

uniformly on |x| ≤ C(T − t)1/2, C ≥ 0.

Similarly, if F (u) = eu, we expect that the numerical solution satisfies

un(x) ∼ ln

(
1

δ(T ∗ − tn)

)

,

for some T ∗ and for values of x close to the blow-up point, and then

un+1(x)− un(x) ∼ ln

(
1

δ(T ∗ − tn+1)

)

− ln

(
1

δ(T ∗ − tn)

)

= ln

(
T ∗ − tn
T ∗ − tn+1

)

.

This motivates the following theorem.
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Theorem 4.11. Let C0 be a constant such that

C0 ≥ δe‖u0‖∞ and Au0 − δeu0 + C0 ≥ 0. (4.20)

Note that if Au0 ≥ 0, we can take C0 = δe‖u0‖∞.

If tn+1 < T2 :=
1
C0
, the function un+1 given by

Aun+1 − δeun+1 +
1

h
(eun+1−un − 1) = 0, (4.21)

satisfies for all x

un+1(x) ≤ un(x) + ln

(
T2 − tn
T2 − tn+1

)

.

Proof. First, let’s prove that if t1 = h < T2, then

u1 ≤ u0 + ln

(
T2

T2 − h

)

. (4.22)

The function u0 + ln
(

T2

T2−h

)

is a supersolution of (4.21) for n = 0 if

Au0 ≥ δeu0

(
T2

T2 − h

)

+
1

h

(
T2

T2 − h
− 1

)

=
1

T2 − h
(δeu0T2 − 1).

Since 1
T2

= C0 ≥ δe‖u0‖, the right-hand side is decreasing in h so in order to get a

bound valid for all h ∈ (0, T2), we need

Au0 ≥ lim
h→0

1

T2 − h
(δeu0T2 − 1) = δeu0 − 1

T2
,

which is exactly condition (4.20), hence we get (4.22).

We now assume that

un ≤ un−1 + ln

(
T2 − tn−1

T2 − tn

)

.

Since 1
T2

= C0 ≥ δe‖u0‖, we have T2 ≤ 1
δe‖u0‖

and u0 ≤ ‖u0‖ ≤ ln( 1
δT2

), and by

induction

un ≤ un−1 + ln

(
T2 − tn−1

T2 − tn

)

≤ ln

(
1

δ(T2 − tn−1)

)

+ ln

(
T2 − tn−1

T2 − tn

)

= ln

(
1

δ(T2 − tn)

)

.

(4.23)



122 Theoretical Study of Selected Schemes

The function un + ln
(

T2−tn
T2−tn+1

)

is a supersolution of the scheme (4.21) if

Aun − δeun
(

T2 − tn
T2 − tn+1

)

+
1

h

(
T2 − tn
T2 − tn+1

− 1

)

≥ 0. (4.24)

Since un is solution of

Aun = δeun − 1

h
(eun−un−1 − 1),

and the induction hypothesis gives

eun−un−1 ≤ T2 − tn−1

T2 − tn
,

condition (4.24) is satisfied if

δeun
(

1− T2 − tn
T2 − tn+1

)

− 1

h

(
T2 − tn−1

T2 − tn
− 1

)

+
1

T2 − tn+1

≥ 0,

which simplifies to

δeun ≤ 1

T2 − tn
,

which is exactly (4.23).

If F (u) = (u+ α)2, we expect the numerical solution to satisfy

un ∼ 1

δ(T ∗ − tn)
,

for some T ∗, so that
un+1

un
∼ δ(T ∗ − tn)

δ(T ∗ − tn+1)
=

T ∗ − tn
T ∗ − tn+1

.

Theorem 4.12. Suppose these exists a constant C0 that satisfies

C0 ≥ δ(‖u0‖∞ + α), and Au0 − δ(u0 + α)2 + C0u0 ≥ 0. (4.25)

Note that if Au0 ≥ 0, we can take C0 = δ(‖u0‖∞ + α).

If tn+1 < T2 :=
1
C0
, the function un+1 given by

hAun+1 = (un+1 + α)2
[

1

un+1 + α
− 1

un + α
+ δh

]

, (4.26)

satisfies for all x

un+1(x) ≤
T2 − tn
T2 − tn+1

un(x).
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Proof. First, we need to show that T2

T2−h
u0 is a supersolution if h < T2 to prove that

(4.12) for n = 1. Letting λ = (T2 − h)/T2, the condition to satisfy is

hAu0
λ

≥
[u0
λ

+ α
]2
[

1
u0

λ
+ α

− 1

u0 + α
+ δh

]

. (4.27)

It becomes

hAu0 ≥
1

λ

(
u0 + αλ

u0 + α

)

[(λ− 1)u0 + δh(u0 + αλ)(u0 + α)] ,

and substituting back λ = (T2 − h)/T2, we obtain

Au0 ≥
T2

T2 − h

(

1− αh

T2(u0 + α)

)[

δ(u0 + α)2 − 1

T2
u0 −

αδ

T2
h(u0 + α)

]

.

We denote by β(h) the function of h on the right-hand side and we prove that it is

decreasing. The derivative

β′(h) =
T2

(T2 − h)2

(

1− αh

T2(u0 + α)

)[

δ(u0 + α)2 − 1

T2
u0 −

αδ

T2
h(u0 + α)

]

+
T2

T2 − h

(

− α

T2(u0 + α)

)[

δ(u0 + α)2 − 1

T2
u0 −

αδ

T2
h(u0 + α)

]

+
T2

T2 − h

(

1− αh

T2(u0 + α)

)(

−αδ
T2

(u0 + α)

)

,

is negative if

1

T2 − h

(

1− αh

T2(u0 + α)

)[

δ(u0 + α)2 − 1

T2
u0 −

αδ

T2
h(u0 + α)

]

−
(

α

T2(u0 + α)

)

[

δ(u0 + α)2 − 1

T2
u0 −

αδ

T2
h(u0 + α)

]

−
(

1− αh

T2(u0 + α)

)(
αδ

T2
(u0 + α)

)

< 0.

Expanding and simplifying, we obtain

−α2δ(u0 + α)h2 + 2T2α
2δ(u0 + α)h+ (δT 2

2 (u0 + α)2(u0 − α)− T2u
2
0) < 0.

Since the leading coefficient is negative, this quadratic polynomial P (h) attains its

maximum at

h =
2T2α

2δ(u0 + α)

2α2δ(u0 + α)
= T2,
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so we only need to show that P (T2) is negative. We have

P (T2) = −α2δ(u0 + α)T 2
2 + 2T2α

2δ(u0 + α)T2 + δT 2
2 (u0 + α)2(u0 − α)− T2u

2
0

= T2[α
2δ(u0 + α)T2 + δT2(u

2
0 − α2)(u0 + α)− u20]

= T2u
2
0 [δ T2 (u0 + α)− 1],

and since T2 ≤ 1
δ(‖u0‖+α)

, P (T2) is negative and the function β(h) is decreasing. Hence

condition (4.27) becomes

Au0 ≥ lim
h→0

β(h) = δ(u0 + α)2 − 1

T2
u0,

which is exactly (4.25).

We now assume that λnun ≤ un−1, with

λn =
T2 − tn
T2 − tn−1

,

and we prove that un/λn+1 is a supersolution of (4.26).

First we note that we have

u0 <
1

δT2
− α,

and by induction

un ≤ T2 − tn−1

T2 − tn
un−1

<
T2 − tn−1

T2 − tn

(
1

δ(T2 − tn−1)
− α

)

<
1

δ(T2 − tn)
− α,

where we used that
T2 − tn−1

T2 − tn
> 1.

The function un/λn+1 is a supersolution if

hAun
λn+1

≥
(

un
λn+1

+ α

)2 [
λn+1

un + αλn+1

− 1

un + α
+ δh

]

. (4.28)
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Since un satisfies

hAun = (un + α)2
[

1

un + α
− 1

un−1 + α
+ δh

]

,

and the induction hypothesis gives

−1

λnun + α
≤ −1

un−1 + α
,

condition (4.28) is satisfied if

(un + α)2
[

1

un + α
− 1

λnun + α
+ δh

]

≥ λn+1

(
un + αλn+1

λn+1

)2 [
λn+1

un + αλn+1

− 1

un + α
+ δh

]

.

Expanding, simplifying and collecting the terms in un, we obtain

− δhλn(1− λn+1)u
4
n + [−αδh(1 + λn)(1− λn+1) + (λn − λn+1)]u

3
n

+ α[−αδh(1− λn+1)(1− λnλn+1) + (1− 3λn+1 + 3λn+1λn − λ2n+1λn)]u
2
n

+ α2λn+1[αδh(1− λn+1)(1 + λn) + (λn − λn+1)]un

+ α4δhλn+1(1− λn+1) ≥ 0.

Substituting back λn and λn+1, we simplify further

− δ(T2 − tn)u
4
n + (1− αδ(T2 − tn + T2 − tn−1))u

3
n + 2α(1− αδh)u2n

+ α2λn+1(1 + αδ(T2 − tn−1 + T2 − tn))un + α4δλn+1(T2 − tn−1) ≥ 0.

We denote by P this polynomial of degree 4 in un. We note that the leading coefficient

is negative, the second coefficient may be positive or negative and the remaining ones

are all positive. If we consider the second derivative of P , we remark that it is a

quadratic polynomial, which is concave (as the leading coefficient of P (and thus P ′′)

is negative) and that P ′′(0) = 4α(1 − αδh) > 0, so that P ′′ admits two roots, one

positive X+ and one negative X−. Moreover, since P ′(0) > 0, we have the following

analysis
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X− 0 X+

P ′′ - 0 + + 0 -

P ′ ↘ ↗ + ↗ ↘

Hence there exists x̃ such that P ′ is positive for all x ∈ [0, x̃] and negative for x > x̃.

We conclude that since P (0) > 0, there exists x such that P is positive on [0, x) and

negative on (x,∞). Since we need to prove that P is positive for un ∈ (0, 1
δ(T2−tn)

−α),
it is enough to check that

P

(
1

δ(T2 − tn)
− α

)

≥ 0.

One can compute

P

(
1

δ(T2 − tn)
− α

)

=
α

δ2(T2 − tn)3
[
α2δ2h(T2 − tn)(T2 − tn+1) + (T2 − tn+1)

]

which is positive for tn+1 < T2, so that un/λn+1 is a supersolution of (4.26).

There is no obvious way to generalize this proof for F (u) = (u+α)p+1, with p > 0,

however we can suggest which form the theorem should take. Since we expect

un ∼
(

1

δ(T ∗ − tn)

)1/p

,

for some T ∗, we would have

un+1

un
∼
(

δ(T ∗ − tn)

δ(T ∗ − tn+1)

)1/p

=

(
T ∗ − tn
T ∗ − tn+1

)1/p

.

Conjecture 4.13. Suppose there exists a constant C0 that satisfies

C0 ≥ δp (‖u0‖∞ + α)p, and Au0 − δ(u0 + α)p+1 +
C0

p
u0 ≥ 0. (4.29)

If tn+1 < T2 :=
1
C0
, the function un+1 given by

hAun+1 = (un+1 + α)p+1

[
1

p
(un+1 + α)−p − 1

p
(un + α)−p + δh

]

,

satisfies for all x

un+1(x) ≤
(

T2 − tn
T2 − tn+1

)1/p

un(x), if tn+1 ≤ T2.
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Justification of condition (4.29): We obtain the condition on u0 by following

an approach close to the one used in the case p = 1.

For the initial step, we would need to prove that
(

T2

T2−h

)1/p

u0 is a supersolution,

that is

Au0 ≥
1

hλ
(λu0 + α)p+1

[
1

p
(λu0 + α)−p − 1

p
(u0 + α)−p + δh

]

.

with λ =
(

T2

T2−h

)1/p

. Though we are not able to prove that the function of the right-

hand side is non-increasing in h, it seems to be the case, so that this inequality is

satisfied if

Au0 ≥ lim
h→0

1

hλ
(λu0 + α)p+1

[
1

p
(λu0 + α)−p − 1

p
(u0 + α)−p + δh

]

,

that is

Au0 ≥ δ(u0 + α)p+1 − 1

p T2
u0.

4.2 B-Method Obtained by Splitting Methods and

Backward Euler (SpFEA)

In this section, we prove results analogous to the ones derived in Section 4.1, for the

scheme obtained by using the backward Euler method in the composition method.

This scheme was derived in Section 3.1.1 and can be written in the form

Aun+1 = f(x, un+1) = −1

h
un+1 +

1

h
G(g(un)− δh). (4.30)

As we mentioned at the beginning of the chapter, the proofs of the existence and

uniqueness of a positive solution are easily obtained: they directly follow from Amann’s

results [8]. The lower bound for the numerical blow-up time and the rate of growth

of the solution are identical to the ones derived is Section 4.1 for the first method and
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the upper bound for the numerical blow-up time derived in Section 4.2.3 is the same

as the one obtained by Kaplan [81] for the exact solution. Since the scheme is linear,

the numerical solution can be computed without the use of a specific solver.

4.2.1 Existence and Uniqueness of the Solution

Since scheme (4.30) is linear, it has a unique solution if and only if G(g(un)− δh) is

well-defined, that is

g(un) ∈ (δh,M + δh).

Since g is decreasing, M = lims→0 g(s) and un > 0, we have g(un) < M + δh, so the

only condition is ‖un‖∞ < G(δh). This result can also be obtained using Theorem

4.2, which leads to the following theorem, identical to Theorem 4.3.

Theorem 4.14. If the function un is positive in Ω, continuous in Ω̄, and satisfies

‖un‖∞ < G(δh), (4.31)

then scheme (4.30) has a maximal nonnegative solution

û ≤ Cn = G(g(‖un‖∞)− δh),

and a minimal solution ū ≥ 0 and if u is a solution, then u ∈ C2(Ω̄) and satisfies

ū ≤ u ≤ û.

Note that condition (4.31) is the same as condition (4.5), so that we can make the

bound on the right-hand side as large as desired by choosing h small enough. This

condition is necessary for scheme (4.30) to be well-defined.

Proof. The constant Cn is a supersolution of the scheme, if it satisfies

−1

h
Cn +

1

h
G(g(un)− δh) ≤ 0 (= ACn),
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that is

Cn ≥ G(g(un)− δh).

Hence the constant

Cn = G(g(‖un‖∞)− δh),

which is well-defined if condition (4.31) is satisfied and positive by definition of G

(see Assumption 4.1), is a supersolution. Moreover, since

f(x, 0) =
1

h
G(g(un)− δh) > 0,

we can apply Theorem 4.2 and we get the result.

Since un ≡ 0 is not a solution of the scheme, this result implies that there exists a

non-zero nonnegative solution. Moreover the strong maximum principle applies (see

for example [158]) and any nonnegative solution is positive on Ω. Uniqueness of the

positive solution can also be obtained using the following result of Keller [85] with

m = 0 and M = Cn.

Theorem 4.15 (Keller). If there exist two constants m andM such that for all x ∈ Ω

and all u1, u2 such that m ≤ u1 < u2 ≤M , we have

f(x, u1) ≥ f(x, u2),

then problem (4.4) has at most one solution u ∈ C2 satisfying m ≤ u ≤M .

Since f(x, u) defined in (4.30) is decreasing in u, we get the uniqueness of the

solution. Hence Theorem 4.8 applies to scheme (4.30) and we obtain the same minimal

time of existence for the solution:

Theorem 4.16. Scheme (4.30) has a unique positive solution un for n such that

tn = nh < T1, where

T1 =
1

δ
g(‖u0‖∞) =

∫ ∞

‖u0‖∞

ds

δF (s)
.
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Since we know from Theorem 4.14 that

if ‖un‖∞ < G(δh), then ‖un+1‖∞ ≤ Cn = G(g(‖un‖∞)− δh),

the proof is exactly the same as the proof of Theorem (4.8).

Finally, we recall that scheme (4.30) is linear so that no particular solver is re-

quired.

4.2.2 Rate of Growth

In this section we prove that Theorems 4.11 and 4.12 of Section 4.1.2 are also valid

when scheme (4.30) is used.

Theorem 4.17. Let C0 be a constant such that

C0 ≥ δe‖u0‖∞ and Au0 − δeu0 + C0 ≥ 0. (4.32)

Note that if Au0 ≥ 0, we can take C0 = δe‖u0‖∞.

If tn+1 < T2 :=
1
C0
, the function un+1 given by

un+1 + hAun+1 = − ln(e−un − δh). (4.33)

satisfies for all x

un+1(x) ≤ un(x) + ln

(
T2 − tn
T2 − tn+1

)

.

Proof. We prove this result by induction, using a supersolution approach. First, let’s

prove that if t1 = h < T2, we have

u1 ≤ u0 + ln

(
T2

T2 − h

)

. (4.34)

The function

u0 + ln

(
T2

T2 − h

)

= u0 − ln

(

1− h

T2

)

= u0 − ln(1− hC0),
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is a supersolution of (4.33) with n = 0 if

u0 − ln(1− hC0) + hA(u0 − ln(1− hC0)) ≥ − ln(e−u0 − δh),

which simplifies to

Au0 ≥
1

h
ln(1− hC0)−

1

h
ln(1− δheu0). (4.35)

Since ln(1− x) = −∑k≥1
xk

k
for x smaller than 1, we have

β(h) :=
1

h
ln(1− hC0)−

1

h
ln(1− δheu0)

=
−1

h

∞∑

k=1

(hC0)
k

k
+

1

h

∞∑

k=1

(δheu0)k

k

=
∞∑

k=0

hk

k + 1
[(δeu0)k+1 − Ck+1

0 ].

Since 1
T2

= C0 ≥ δe‖u0‖ ≥ δeu0 , the bracket is negative and β is decreasing in h so

inequality (4.35) holds for all h ∈ (0, T2) if

Au0 ≥ lim
h→0

(
1

h
ln(1− hC0)−

1

h
ln(1− δheu0)

)

= δeu0 − C0,

which is exactly condition (4.32), and we get (4.34).

To complete the induction we assume that

un ≤ un−1 + ln

(
T2 − tn−1

T2 − tn

)

, (4.36)

and we show that un + ln
(

T2−tn
T2−tn+1

)

is a supersolution of (4.33), that is

un + ln

(
T2 − tn
T2 − tn+1

)

+ hAun + ln(e−un − δh) ≥ 0. (4.37)

First, we note that since 1
T2

= C0 ≥ δe‖u0‖, we have T2 ≤ 1
δe‖u0‖

, and u0 ≤ ‖u0‖ ≤
ln( 1

δT2
), and by induction

un ≤ un−1 + ln

(
T2 − tn−1

T2 − tn

)

≤ ln

(
1

δ(T2 − tn−1)

)

+ ln

(
T2 − tn−1

T2 − tn

)

= ln

(
1

δ(T2 − tn)

)

.

(4.38)
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By definition of un, we have

un + hAun = − ln(e−un−1 − δh),

and from the induction hypothesis (4.36), we obtain

− ln(e−un−1 − δh) > − ln

[

e−un

(
T2 − tn−1

T2 − tn

)

− δh

]

,

so that inequality (4.37) is satisfied if

ln

(
T2 − tn
T2 − tn+1

)

− ln

[

e−un

(
T2 − tn−1

T2 − tn

)

− δh

]

+ ln(e−un − δh) ≥ 0.

which simplifies to

(T2 − tn)δ ≤ e−un ,

which is exactly (4.38).

Theorem 4.18. Suppose these exists a constant C0 that satisfies

C0 ≥ δ(‖u0‖∞ + α), and Au0 − δ(u0 + α)2 + C0u0 ≥ 0. (4.39)

Note that if Au0 ≥ 0, we can take C0 = δ(‖u0‖∞ + α).

If tn+1 < T2 :=
1
C0
, the function un+1 given by

un+1 + hAun+1 =
1

1
un+α

− δh
− α, (4.40)

satisfies for all x

un+1(x) ≤
T2 − tn
T2 − tn+1

un(x).

Note that if Au0 ≥ 0, we can take C0 = δ(‖u0‖∞ + α).

Proof. For the initial step, we need to prove that if h < T2, then
T2

T2−h
u0 is a superso-

lution of (4.40) with n = 0, that is

u0 + hAu0 ≥
(
T2 − h

T2

)[
u0 + α

1− δh(u0 + α)
− α

]

, (4.41)
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which simplifies to

Au0 ≥
1

T2

1

1− δh(u0 + α)

[
δT2(u0 + α)2 − u0 − δhα(u0 + α)

]
.

Let x = δh(u0 + α) < 1, so that the function on the right-hand side is

f(x) =
1

T2(1− x)
[δT2(u0 + α)2 − u0 − αx].

Its derivative

f ′(x) =
−α(1− x) + δT2(u0 + α)2 − u0 − αx

(1− x)2
,

is negative if

δT2(u0 + α)2 − (u0 + α) < 0,

that is

T2 <
1

δ(u0 + α)
.

As 1/T2 ≥ δ(‖u0‖∞ + α), this condition is satisfied and f is decreasing. So condition

(4.41) is satisfied if

Au0 ≥ lim
x→0

1

T2(1− x)
[δT2(u0 + α)2 − u0 − x] =

1

T2
[δT2(u0 + α)2 − u0],

which is exactly (4.39).

We define

λn =
T2 − tn
T2 − tn−1

∈ (0, 1),

and we assume by induction hypothesis that λnun ≤ un−1. First we note that we

have u0 <
1

δT2
− α, and by induction

un ≤ T2 − tn−1

T2 − tn
un−1

<
T2 − tn−1

T2 − tn

(
1

δ(T2 − tn−1)
− α

)

<
1

δ(T2 − tn)
− α,
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where we used that
T2 − tn−1

T2 − tn
> 1.

The function un/λn+1 is a supersolution of (4.40) if

1

λn+1

(un + hAun) ≥ [(un + α)−1 − δh]−1 − α. (4.42)

Since un satisfies

un + hAun =
1

1
un−1+α

− δh
− α,

and the induction hypothesis gives

1

λnun + α
≥ 1

un−1 + α
,

condition (4.42) is satisfied if

[(λnun + α)−1 − δh]−1 − α ≥ λn+1[(un + α)−1 − δh]−1 − λn+1α.

Expanding, simplifying and collecting the terms in un, we get

− δhλn(1− λn+1)(1 + δhα)u2n + [λn − λn+1 − (δhα)2(1 + λn)(1− λn+1)]un

+ δhα2(1− δhα)(1− λn+1) ≥ 0.

We denote by P (un) this quadratic polynomial. Its constant term is positive, so

P (0) ≥ 0 and since its leading coefficient is negative, if P is positive at un = 1
δ(T2−tn)

−α
then P is positive on the whole interval [0, 1

δ(T2−tn)
−α]. Algebraic manipulations lead

to

P

(
1

δ(T2 − tn)
− α

)

=
αh2(T2 − tn+1)(1 + δhα)

(T2 − tn)2(T2 − tn−1)
≥ 0.

Since P is positive on [0, 1
δ(T2−tn)

− α], un/λn+1 is a supersolution and the theorem is

proved.

Similarly, for the case F (u) = (u + α)p+1, with p > 0, we obtain the following

conjecture.
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Conjecture 4.19. Suppose there exists a constant C0 that satisfies

C0 ≥ δp (‖u0‖∞ + α)p and Au0 − δ(u0 + α)p+1 +
C0

p
u0 ≥ 0. (4.43)

If tn+1 < T2 :=
1
C0
, the function un+1 given by

un+1 + hAun+1 =
[
(un + α)−p − p δh

]−1/p − α, (4.44)

satisfies for all x

un+1 ≤
(

T2 − tn
T2 − tn+1

)1/p

un, if tn+1 ≤ T2.

Justification of condition (4.43): The justification given for Conjecture 4.13

holds for scheme (4.44):

For the initial step, we would need to prove that
(

T2

T2−h

)1/p

u0, is a supersolution,

that is
(

T2
T2 − h

)1/p

(u0 + hAu0) ≥
[
(u0 + α)−p − δhp

]1/p − α,

that we rewrite

Au0 ≥ −u0
h

+
1

h

(

1− h

T2

)1/p(
(u0 + α)

[1− δhp (u0 + α)p]1/p

)

− α

h

(

1− h

T2

)1/p

.

Though we were not able to prove that the function of the right-hand side is decreasing

in h, it seems to be the case, so that this inequality is satisfied if

Au0 ≥ lim
h→0

[

−u0
h

+
1

h

(

1− h

T2

)1/p(
(u0 + α)

[1− δhp (u0 + α)p]1/p

)

− α

h

(

1− h

T2

)1/p
]

,

that is

Au0 ≥ δ(u0 + α)p+1 − 1

T2p
u0.
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4.2.3 Numerical Blow-up

In this section we want to prove that for values of δ large enough, the numerical

blow-up time T ∗ satisfies

T ∗ ≤
∫ ∞

0

ds

δF (s)− λs
<∞.

Since we already proved that T ∗ > T1 = 1
δ
(g(‖u0‖∞), we obtain exactly the same

bounds as Kaplan in [81].

While most of our previous results were following Le Roux’s approach in [99], we

could not use the same method as hers to prove this result. Indeed a key element

of Le Roux’s approach is the use of the functionals Jn and F (defined in (2.12) and

(2.13) in Chapter 2) and no equivalent functionals could be found for this scheme.

Hence we chose to adapt the approach used by Kaplan for the continuous problem to

our semi-discretization. This lead to the definition of numerical blow-up time given

in Chapter 1. As we explained there, we need to prove that for all K > 0 and h small

enough, there exists n < T ∗/h such that ‖un‖∞ > K. We now state it in our main

result.

Theorem 4.20. Suppose that δ satisfies

δF (u)− λu > 0, ∀u ≥ 0, (4.45)

where λ is the first eigenvalue of −∆ϕ = λϕ, ϕ = 0 on the boundary. We fix some

large positive constant K and choose ε ∈ (0, g(K)). Then there exists h∗ > 0 such

that for all h < min(h∗, g(K)−ε
δ

), the numerical scheme

un+1 + hAun+1 = G(g(un)− δh), (4.46)

has a numerical blow-up time

T ∗ ≤
∫ ∞

0

ds

δF (s)− λs
,

in the sense that there exists n∗ < T ∗

h
such that ‖un∗‖∞ > K.
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The proof presented in this section is constructive so that one can compute an

explicit bound h∗. We suppose thereafter that K and ε are fixed.

Remark 4.1. The assumption h < g(K)−ε
δ

implies that K < G(δh + ε) < G(δh) so

that as long as ‖un‖∞ ≤ K, condition (4.31) is satisfied and scheme (4.46) has a

unique positive solution.

Remark 4.2. Condition (4.45) imposed on δ is identical to the one given by Kaplan

in [81] (see Chapter 2). It can not be satisfied at u = 0 if F (0) = 0, however, if

F (0) > 0, since F satisfies (4.1), we have

lim
u→0

u

F (u)
= 0 and lim

u→∞

u

F (u)
= 0,

and condition (4.45) is satisfied for all δ large enough. For example, if we consider

F (u) = eu, condition (4.45) becomes δ > λu
eu
, for all u ≥ 0, that is

δ >
λ

e
,

and if we consider F (u) = (u + α)p, with α > 0, since the derivative of the function

β(u) := u/(u+ α)p satisfies

β′(u) =
(u+ α)p − p(u+ α)p−1u

(u+ α)2p
> 0 ⇔ u <

α

p− 1
,

and we have

β

(
α

p− 1

)

=
α

(p− 1)(αp)p
,

condition (4.45) becomes

δ >
λα

(p− 1)(αp)p
.

Outline of the Proof

We need to show that there exists n∗ < T ∗/h such that ‖un∗‖∞ > K, where K is a

fixed large constant. Following the eigenfunction methods, we introduce the sequence
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(an), defined by

an =

∫

Ω

ϕundx, (4.47)

where ϕ is the eigenfunction corresponding to the first eigenvalue λ of −∆ϕ = λϕ,

ϕ = 0 on the boundary, with λ > 0, ϕ ≥ 0 and
∫

Ω
ϕdx = 1 (we can assume ϕ ≥ 0

since by Courant’s theorem, the eigenfunction ϕ does not change sign in Ω). Our

approach consists in finding n∗ such that an∗ > K. Indeed we have

an ≤
∫

Ω

ϕ ‖un‖∞ dx = ‖un‖∞
∫

Ω

ϕ dx = ‖un‖∞.

We divide our work into the following steps:

a. We prove that (an) is increasing.

b. We define a(t), solution of






a′(t) = δF (a(t))− λa(t),

a(0) = a∗ ∈ (0, a0),

which blows up in finite time at T =
∫∞
a∗

ds
δF (s)−λs

if δ satisfies condition (4.45).

Defining Dn = an − a(nh), we need to bound Dn from below in order to prove

that for h small enough, Dn is positive for all n for which an and a(tn) are

well-defined.

Jensen’s Inequality

An important tool in proving finite-time blow-up is Jensen’s inequality. As mentioned

in Chapter 2 it has been used under different forms in several articles. We prove below

the version we will need.

Lemma 4.1. If a function f ∈ C2([0,∞)) is convex, and ϕ satisfies ϕ ≥ 0 and
∫

Ω
ϕ(x) dx = 1, we have for all functions u(x) ≥ 0

f

(∫

Ω

ϕu dx

)

≤
∫

Ω

f(u)ϕdx. (4.48)
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Proof. First, we note that f is convex if and only if g := f −αx is convex, for α ∈ R.

For some fixed c ≥ 0, we let α = f ′(c), so that g′(c) = f ′(c) − α = 0, and since g is

convex, c is a minimum of g and g(s) ≥ g(c), ∀s ≥ 0, that is

f(s) ≥ α(s− c) + f(c).

So, for s = u(x), we get

f(u(x)) ≥ α(u(x)− c) + f(c),

and multiplying by ϕ(x) ≥ 0 and integrating over Ω,
∫

Ω

ϕ(x)f(u(x))dx ≥ α

(∫

Ω

ϕ(x)u(x)dx− c

∫

Ω

ϕ(x)dx

)

+ f(c)

∫

Ω

ϕ(x)dx.

Now, we let c =
∫

Ω
uϕ dx, then since

∫
ϕ(x)dx = 1, we obtain the Jensen’s inequality

(4.48).

Growth of the sequence (an)

To prove that (an) is increasing, we need the following lemma.

Lemma 4.2. As long as un satisfies ‖un‖∞ < G(δh), the sequence (an) defined in

(4.47) satisfies

an+1 ≥
1

1 + hλ
G(g(an)− δh).

The condition is satisfied in particular if h < g(K)−ε
δ

and ‖un‖∞ ≤ K.

Proof. Since ‖un‖∞ < G(δh), scheme (4.46) is well-defined. We multiply each side

by ϕ and integrate over Ω to get
∫

Ω

ϕun+1 − hϕ∆un+1dx =

∫

Ω

ϕG(g(un)− δh)dx.

Using the fact that un and ϕ vanish on the boundary, the left-hand side can be

rewritten as

an+1 − h

∫

Ω

un+1∆ϕdx = (1 + hλ)an+1,
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and we obtain

an+1 =
1

1 + hλ

∫

Ω

ϕG(g(un)− δh)dx.

We now prove that the function f(x) := G(g(x)− δh) is convex for x ≥ 0. We have

f ′(x) = G′(g(x)− δh)g′(x) = −F (G(g(x)− δh))
−1

F (x)
=

1

F (x)
F (G(g(x)− δh)),

since G′(s) = −F (G(s)) and g′(s) = −1
F (s)

, and then

f ′′(x) =
1

F (x)2
[F ′(G(g(x)− δh))G′(g(x)− δh)g′(x)F (x)− F ′(x)F (G(g(x)− δh))]

=
1

F (x)2
[F ′(G(g(x)− δh))F (G(g(x)− δh))− F ′(x)F (G(g(x)− δh))]

=
F (G(g(x)− δh))

F (x)2
(F ′(G(g(x)− δh))− F ′(x)) ,

which is positive since F being strictly convex implies that F ′ is increasing and we

have G(g(x) − δh) ≥ x. Hence f is convex and we apply Jensen’s inequality (4.48)

to complete the proof.

Lemma 4.3. If δ satisfies condition (4.45), the sequence (an) defined in (4.47) is

increasing as long as un satisfies ‖un‖∞ < G(δh) (this is satisfied in particular if

h < g(K)−ε
δ

and ‖un‖∞ ≤ K).

Proof. To prove this result, we show that for all x ∈ (0, G(δh)), we have

1

1 + hλ
G(g(x)− δh) > x, (4.49)

that is

g(x)− g((1 + hλ)x) < δh.

Since g is continuous, we can apply the Mean Value Theorem on the interval (x, (1+

hλ)x), so there exists ξ ∈ (x, (1 + hλ)x), such that

g(x)− g((1 + hλ)x) = g′(ξ)(x− (1 + hλ)x),
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which becomes

g(x)− g((1 + hλ)x) =
1

F (ξ)
hλx.

So we need

1

F (ξ)
hλx < δh,

i.e.

F (ξ) >
λx

δ
, ∀ ξ ∈ (x, (1 + hλ)x).

Since F is increasing and δ satisfies condition (4.45), we have

F (ξ) > F (x) >
λx

δ
.

Hence inequality (4.49) holds for all x ∈ (0, G(δh)) and Lemma 4.2 completes the

proof.

Definition of a(t) and Dn

From now on, we assume that condition (4.45) is satisfied and h < g(K)−ε
δ

and

‖un‖∞ ≤ K. This implies that un+1 is well-defined, thus so are an+1 and Dn+1

defined below.

Definition of a(t). From Lemma 4.2, we have

an+1 − an
h

≥ 1

h

(
1

1 + hλ
G(g(an)− δh)− an

)

,

hence we will compare (an) with (a(tn)) where tn = nh and a(t) is the solution of







a′(t) = limh→0
1
h

(
1

1+hλ
G(g(a(t))− δh)− a(t)

)
,

a(0) = a∗,
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where a∗ can be any fixed number in [0, a0). This limit simplifies to

lim
h→0

1

h

(
1

1 + hλ
G(g(a)− δh)− a

)

= lim
h→0

1

h

[(
1

1 + hλ
− 1

)

G(g(a)− δh) +G(g(a)− δh)−G(g(a))

]

= lim
h→0

1

h

[( −hλ
1 + hλ

)

G(g(a)− δh)− δ
G(g(a)− δh)−G(g(a))

−δ

]

= lim
h→0

[( −λ
1 + hλ

)

G(g(a)− δh)

]

− δ G′(g(a))

= −λG(g(a)) + δ F (G(g(a)))

= δF (a)− λa.

So a(t) is the solution of







a′(t) = δF (a(t))− λa(t),

a(0) = a∗ < a0.

By integrating this equation, we note that a(t) is defined on [0, Ta∗), where

Ta∗ =

∫ ∞

a∗

1

δF (s)− λs
ds <∞,

so that a(t) blows up at finite time Ta∗ . Our goal is to show that an is larger than

a(tn).

Definition of Dn. For all n such that an and a(tn) are well-defined, we define

Dn = an − a(tn).

To prove Theorem 4.20, we will prove by induction that there exists h∗ such that

∀h ≤ h∗, ∀n such that ‖un‖∞ ≤ K, we have Dn+1 > 0. The initial condition a∗

was chosen such that D0 is positive, so assuming that Dn is positive, we prove that

Dn+1 is also positive. First, we need to verify that a(tn+1) exists so that Dn+1 is

well-defined and tn+1 < Ta∗ .
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Lemma 4.4. If Dn > 0, the function a(tn + ξ), with ξ ∈ [0, h], is bounded above by

a(tn + ξ) < G(ε),

where ε is a fix number belonging to (0, g(K)) (see Theorem 4.20).

Proof. We introduce for t ≥ tn the function b(t), solution of







b′(t) = δF (b(t)) > δF (b(t))− λb(t),

b(tn) = a(tn).

This function can be written explicitly,

b(t) = G(g(a(tn)) + δtn − δt),

and we have a(t) ≤ b(t), ∀t ≥ tn. Moreover since δ satisfies condition (4.45), a(t) is

increasing and we have

a(tn + ξ) ≤ a(tn + h) ≤ b(tn+1) = G(g(a(tn))− δh),

and since a(tn) < an ≤ K and h < g(K)−ε
δ

, we get

a(tn + ξ) ≤ G(g(a(tn))− δh) ≤ G(g(K)− δh) < G(ε).

Hence Dn+1 is well-defined and we first bound it using Lemma 4.2

Dn+1 ≥
1

1 + hλ
G(g(an)− δh)− a(tn + h),

then we consider the right-hand side as a function of h and we take a Taylor expansion

around h = 0. We get

Dn+1 ≥ Dn + h(ψ(an)− ψ(a(tn))) +
h2

2
η(ξ), (4.50)
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for some ξ ∈ (0, h), with ψ(x) = δF (x)− λx and

η(ξ) =
2λ2

(1 + ξλ)3
G(g(an)− δξ)− 2δλ

(1 + ξλ)2
F (G(g(an)− δξ))

+
δ2

1 + ξλ
F ′(G(g(an)− δξ))F (G(g(an)− δξ))

− [(δF ′(a(tn + ξ))− λ)(δF (a(tn + ξ))− λa(tn + ξ))].

(4.51)

To be able to bound Dn+1 further, we need another lemma.

Lemma 4.5. The function η(ξ) defined in (4.51) satisfies η(ξ) ≥ C2 for all ξ ∈ (0, h),

with

C2 =
2λ2δ3a0

(δ + λ(g(K)− ε))3
− 2δλF (G(ε))− β(G(ε)),

where β(x) := (δF ′(x)−λ)(δF (x)−λx) = ψ′(x)ψ(x), and ε is a fix number belonging

to (0, g(K)) (see Theorem 4.20).

Proof. In order to bound below η(ξ), we will try to bound each term separately.

Recall that we suppose h < g(K)−ε
δ

and an ≤ K so that G(g(an)− δh) < G(ε).

• To bound 2λ2

(1+ξλ)3
G(g(an)− δξ), we use the fact that ξ ∈ (0, h): since

ξ < h <
g(K)− ε

δ
,

we have
1

(1 + ξλ)3
>

δ3

(δ + λ(g(K)− ε))3
,

and since ξ > 0 and (an) is increasing, we have

G(g(an)− δξ) > G(g(an)) = an > a0.

Hence
2λ2

(1 + ξλ)3
G(g(an)− δξ) >

2λ2δ3a0
(δ + λ(g(K)− ε))3

.
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• To bound −2δλ
(1+ξλ)2

F (G(g(an)−δξ)), we first observe that the minimum is reached

on the boundary of the interval. Indeed, let

α(x) =
1

(1 + xλ)2
F (G(g(an)− δx)),

then its derivative

α′(x) =
−2λ

(1 + xλ)3
F (G(. . . )) +

δ

(1 + xλ)2
F ′(G(. . . ))F (G(. . . ))

is positive if

F ′(G(g(an)− δx)) ≥ 2λ

δ(1 + xλ)
.

Since F ′ is increasing, and G is decreasing, the function (1+ xλ)F ′(G(g(an)− δx)) is

increasing in x. Hence α has no maximum in the interval and we have

max
0≤ξ≤h

α(ξ) = max{α(0), α(h)} = max{F (an);
1

(1 + hλ)2
F (G(g(an)− δh))}

≤ max{F (K);F (G(ε))}.

Since g(K)− δh > ε, we have K < G(ε), so

max
0≤ξ≤h

α(ξ) ≤ F (G(ε)),

and
−2δλ

(1 + ξλ)2
F (G(g(an)− δξ)) ≥ −2δλF (G(ε)).

• The next term to bound is δ2

1+ξλ
F ′(G(g(an)− δξ))F (G(g(an)− δξ)).

Let α(x) = 1
1+xλ

F ′(G(g(an)− δx))F (G(g(an)− δx)), then

α′(x) =
−λ

(1 + xλ)2
F ′(G)F (G) +

−δ
1 + xλ

F ′′(G)G′F (G) +
−δ

1 + xλ
F ′(G)F ′(G)G′

=
−λ

(1 + xλ)2
F ′(G)F (G) +

δ

1 + xλ
F ′′(G)(F (G))2 +

δ

1 + xλ
(F ′(G))2F (G)
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is positive if F ′′(G)F (G) + [F ′(G)]2 ≥ λ
δ(1+xλ)

F ′(G), i.e.

(1 + xλ)

(
F ′′(G(g(an)− δx))F (G(g(an)− δx))

F ′(G(g(an)− δx))
+ F ′(G(g(an)− δx))

)

≥ λ

δ
.

In many cases, in particular if (F ′′F/F ′)′ ≥ 0, the function of x on the left-hand side

is increasing and α may have a minimum at x∗ ∈ (0, h). This would lead to

minα(x) = min{α(0), α(h), α(x∗)}.

So for a general function F , it is not possible to evaluate this minimum and since the

term to bound is positive, we simply bound it by zero.

• For the last part, we let β(x) = (δF ′(x) − λ)(δF (x) − λx), for x ≥ 0. Since

F ′′(x) ≥ 0 and δ satisfies condition (4.45), we have

β′(x) = δF ′′(x)(δF (x)− λx) + (δF ′(x)− λ)2 ≥ 0.

Thus β is non-decreasing and in order to bound β(a(tn + ξ)), we use Lemma 4.4.

We are now able to prove Theorem 4.20.

Proof of Theorem 4.20

We suppose that ‖un‖∞ ≤ K and Dn > 0 and we show that Dn+1 > 0. Indeed since

a(t) blows up at time Ta∗ with

Ta∗ ≤ T0 =

∫ ∞

0

ds

δF (s)− λs
,

there exists ñ < Ta∗/h, such that a(tñ) ≤ K and

either tñ+1 ≥ Ta∗ or a(tñ+1) > K.
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The first case implies that ‖un‖∞ > K for some n ≤ ñ, and in the second case, by the

positivity of Dn+1, we have ‖uñ+1‖∞ > a(tñ+1) > K with tñ+1 < Ta∗ . Hence there

exists n∗ < T0/h such that ‖un∗‖∞ > K.

We assume that Dn > 0 and we go back to (4.50) to write

Dn+1 ≥ Dn + h[ψ(an)− ψ(a(tn))] +
h2

2
η(ξ)

≥ Dn + h[ψ(a(tn) +Dn)− ψ(a(tn))] +
h2

2
C2

≥ Dn + hDnψ
′(ζ) +

h2

2
C2,

with ζ ∈ (a(tn), a(tn) + Dn), by the Mean Value Theorem. The derivative ψ′(x) =

δF ′(x)− λ is increasing and ζ > a(tn) ≥ a(0) = a∗ so we get

Dn+1 ≥ Dn(1 + hψ′(a∗)) +
h2

2
C2. (4.52)

By induction, we obtain

Dn+1 ≥ (1 + hψ′(a∗))n+1D0 +
h2

2
C2

n∑

k=0

(1 + hψ′(a∗))k.

We assume that 1 + hψ′(a∗) > 0, so if ψ′(a∗) < 0, we need h to be smaller than

1/(−ψ′(a∗)), that is

if F ′(a∗) <
λ

δ
, h <

1

λ− δF ′(a∗)
.

If C2 is positive, the positivity of Dn+1 follows from (4.52). We now study the case

C2 < 0. We obtain different bounds on h depending on the sign of ψ′(a∗).

• if ψ′(a∗) = 0, we get

Dn+1 ≥ D0 + (n+ 1)
h2

2
C2,

so that since C2 < 0 and tn+1 < Ta∗ , Dn+1 is positive if

h <
2D0

(−C2)Ta∗
.
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• if ψ′(a∗) > 0, we get

Dn+1 ≥ (1 + hψ′(a∗))n+1D0 +
h2

2
C2

(
(1 + hψ′(a∗))n+1 − 1

hψ′(a∗)

)

,

so we need

h2

2
C2 ≥ − (1 + hψ′(a∗))n+1

(1 + hψ′(a∗))n+1 − 1
︸ ︷︷ ︸

hψ′(a∗)D0.

The underbraced term is greater than 1 since ψ′(a∗) > 0, so we need

h <
2ψ′(a∗)D0

(−C2)
.

• if ψ′(a∗) < 0 we also get

Dn+1 ≥ (1 + hψ′(a∗))n+1D0 +
h2

2
C2

(
(1 + hψ′(a∗))n+1 − 1

hψ′(a∗)

)

,

so we need

(1 + hψ′(a∗))n+1D0 +
h

2

C2

ψ′(a∗)
[(1 + hψ′(a∗))n+1 − 1] > 0,

which simplifies to

h

(1 + hψ′(a∗))n+1
<

2D0

(−C2)
(−ψ′(a∗)) + h.

Since h > 0, it is enough to satisfy

h

(1 + hψ′(a∗))n+1
≤ 2D0

(−C2)
(−ψ′(a∗)).

Since tn+1 = (n+ 1)h < Ta∗ , i.e. (n+ 1) < Ta∗/h, and (1 + hψ′(a∗)) ∈ (0, 1), we have

β(h) :=
h

(1 + hψ′(a∗))Ta∗/h
>

h

(1 + hψ′(a∗))n+1
.
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To prove that β(h) is strictly increasing for h > 0, we consider

β′(h) =
1

(1 + hψ′(a∗))Ta∗/h
− h

[(1 + hψ′(a∗))Ta∗/h]2
(1 + hψ′(a∗))Ta∗/h

·
[−Ta∗
h2

ln(1 + hψ′(a∗)) +
Ta∗

h

ψ′(a∗)

1 + hψ′(a∗)

]

=
1

(1 + hψ′(a∗))Ta∗/h

[

1 + Ta∗

(
1

h
ln(1 + hψ′(a∗))− ψ′(a∗)

1 + hψ′(a∗)

)]

,

which is clearly positive if

ln(1 + hψ′(a∗)) > h
ψ′(a∗)

1 + hψ′(a∗)
.

Since x − ln x > 1 for x > 1, and (1 + hψ′(a∗))−1 ∈ (1,∞), the above inequality is

satisfied and β(h) is strictly increasing. Moreover β(0) = 0 and limh→ −1
ψ′(a∗)

β(h) =

+∞, so that the equation

h

(1 + hψ′(a∗))Ta∗/h
=

2D0(−ψ′(a∗))

(−C2)

has exactly one solution h̃ and if h < h̃ we have Dn+1 > 0.

Numerical Example

We present an example of computation of h∗ in the case where Ω = [−1, 1], so that

λ =
π2

4
and ϕ =

π

4
cos
(π

2
x
)

.

We consider the case where F (x) = (x + α)p+1, with α = 2 and p = 1, and δ = 3.

The initial condition is given by u0(x) = cos(πx/2), so

a0 =

∫ 1

−1

ϕ(x)u0(x) dx =
π

4

and we can choose a∗ ∈ [0, π/4). We now fix K = 500, so that

g(K) =
1

K + α
≈ 0.001992031872,
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and we choose ε = 0.0019.

A first bound on h is given by

g(K)− ε

δ
≈ 0.00003067729067.

We now need to compute C2. We have

β(G(ε)) = (δ(p+ 1)(G(ε) + α)p − λ)(δ(G(ε) + α)p+1 − λx)

=

(
δ(p+ 1)

pu
− λ

)

(δ(pu)−(p+1)/p − λx)

≈ 2.618156616 · 109,

and then

C2 =
2λ2δ3a0

(δ + λ(g(K)− ε))3
− 2δλ((p ε)−(p+1)/p)− β(G(ε))

≈ −2.622257550 · 109.

Since C2 is negative, we need to derive a second bound on h to ensure the positivity

of Dn+1. As we said above, we can choose a∗ ∈ [0, π/4). For all these values,

ψ′(a∗) = δ(p + 1)(a∗ + α)p − λ, is positive in which case the second bound for h is

given by

h∗ =
2ψ′(a∗)D0

(−C2)
=

2(δ(p+ 1)(a∗ + α)p − λ)(a0 − a∗)

(−C2)
.

The greatest value of h∗ is obtained by choosing a∗ = 0, for which we obtain

h∗ ≈ 5.710259596 · 10−9

So if we choose h smaller than h∗, there exists n∗ < T
h
such that ‖un∗‖∞ > 500.

4.3 More General Equation

In this section, we present how several of the previous results of existence and unique-

ness of a positive solution can be generalized to the case of the more general equation

ut = ∆u+ δq(x)ψ(t)F (u),
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where q is bounded on Ω̄ with q(x) > 0, ψ is continuous on [0,∞), with ψ(t) > 0

and F satisfies the conditions mentioned in Assumption 4.1. We explained in Section

3.2.1 how the previous schemes should be modified for this equation in the case where

ϕ defined by

ϕ(t) =

∫ t

0

ψ(s) ds,

can be explicitly computed. Recall that ϕ is strictly increasing and ϕ(0) = 0. Since

δh in the original scheme is replaced by δq(x)(ϕ(tn+1) − ϕ(tn)) in the first method

and by δq(x)ϕ(h) in the second method, the condition ‖un‖∞ < G(δh) of Theorems

4.3 and 4.14 leads to a different condition for each method. Indeed the first scheme

has a solution if

‖un‖∞ < G

(

δ‖q‖∞(ϕ(tn+1)− ϕ(tn))

)

,

whereas the second scheme has a solution if

‖un‖∞ < G

(

δ‖q‖∞ϕ(h))
)

.

We present in detail how these conditions affect the minimal time of existence T1 of

the solution.

4.3.1 Variation of the Constant and Backward Euler

The scheme obtained using the backward Euler method and the variation of the

constant construction can be written as Aun+1 = f(x, un+1), with

f(x, v) =
1

h
F (v)[g(v)− g(un) + δq(ϕ(tn+1)− ϕ(tn))].

As in Section 4.1, if F (0) = 0, we have limv→0+ f(x, v) = 0 for all x ∈ Ω and by abuse

of notation, we shall refer to f as its continuous extension on [0,∞). For this scheme,

Theorem 4.3 becomes
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Theorem 4.21. If the function un is positive in Ω, continuous in Ω̄, and satisfies

‖un‖∞ < G

(

δ‖q‖∞(ϕ(tn+1)− ϕ(tn))

)

, (4.53)

then our scheme has a maximal nonnegative solution

û ≤ Cn = G

(

g(‖un‖)− δ‖q‖ [ϕ(tn+1)− ϕ(tn)]

)

,

and a minimal solution ū ≥ 0 and if u is a solution, then u ∈ C2(Ω̄) and satisfies

ū ≤ u ≤ û.

Note that, in case M is finite, we need to take h small enough so that

δ‖q‖∞ [ϕ(tn+1)− ϕ(tn)] ∈ (0,M),

that is

ϕ(tn+1)− ϕ(tn) <
M

δ‖q‖∞
.

Proof. As stated above, if F (0) = 0, we have f(x, 0) = 0 for all x ∈ Ω. If F (0) > 0,

since g is decreasing, we have

g(un) < g(0) + δ‖q‖ [ϕ(tn+1)− ϕ(tn)],

and we get f(x, 0) > 0. Moreover, f(x, Cn) ≤ 0 if

g(Cn)− g(un) + δq(ϕ(tn+1)− ϕ(tn)) ≤ 0,

that is

Cn ≥ G(g(un)− δq(ϕ(tn+1)− ϕ(tn)),

so that under condition (4.53), we get the constant supersolution

Cn = G

(

g(‖un‖)− δ‖q‖ [ϕ(tn+1)− ϕ(tn)]

)

.
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Theorem 4.5 is valid if we replace condition (4.5) with condition (4.53), thus so is

Corollary 4.1. In Theorem 4.7 condition (4.5) must be replaced by condition (4.53)

and condition (4.7) must be satisfied for all c ∈ (0,M). Thus Corollary 4.2 is also

satisfied.

In order to show that condition (4.53) is satisfied for a positive number of steps,

we need to adapt the induction of Theorem 4.8. The idea of that proof is to use a

result of the form

‖un‖ < G(β(h)) ⇒ ‖un+1‖ ≤ G(g(un)− β(h)),

where β depends on h but not on n, to prove by induction that

‖u0‖ < G(β(tn)) ⇒ ‖un+1‖ ≤ G(g(u0)− β(tn)).

However the result we get from Theorem 4.21 is

‖un‖ < G(δ‖q‖ [ϕ(tn+1)− ϕ(tn)])

⇒ ‖un+1‖ ≤ G(g(‖un‖)− δ‖q‖ [ϕ(tn+1)− ϕ(tn)]),
(4.54)

so that unless ϕ is linear, β does depend on n. So we need to find how to adapt the

induction hypothesis. We are looking for a result of the form

‖u0‖ < G(δ‖q‖ f1(n)) ⇒ ‖un‖ ≤ G(g(‖u0‖)− δ‖q‖ f1(n)), (4.55)

where f1 has to satisfy certain conditions.

To get the initial condition, we need that putting n = 0 in (4.54) gives the case

n = 1 in (4.55), that is

f1(1) = ϕ(h).

For the induction step, we suppose that (4.55) is satisfied at step n and that

‖u0‖ < G(δ‖q‖ f1(n+ 1)).
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Then we need the following three inequalities to be satisfied

G(δ‖q‖f1(n+ 1) ≤ G(δ‖q‖f1(n)), (4.56a)

G(g(u0)− δ‖q‖f1(n)) < G(δ‖q‖ [ϕ(tn+1)− ϕ(tn)]), (4.56b)

G(g(un)− δ‖q‖ [ϕ(tn+1)− ϕ(tn)]) ≤ G(g(u0)− δ‖q‖f1(n+ 1)). (4.56c)

The first inequality (4.56a) is equivalent to

f1(n+ 1) ≥ f1(n) ∀n. (4.57)

The second inequality (4.56b) becomes

g(u0)− δ‖q‖f1(n) > δ‖q‖ [ϕ(tn+1)− ϕ(tn)),

and since ‖u0‖ < G(δ‖q‖ f1(n+ 1)), we get

δ‖q‖f1(n+ 1)− δ‖q‖f1(n) ≥ δ‖q‖ [ϕ(tn+1)− ϕ(tn)],

that is

f1(n+ 1) ≥ f1(n) + ϕ(tn+1)− ϕ(tn). (4.58)

If this condition is satisfied, condition (4.57) and thus inequality (4.56a) are also

satisfied. From the third inequality (4.56c), since we have g(un) > g(u0)− δ‖q‖f1(n),
we obtain

g(u0)− δ‖q‖f1(n)− δ‖q‖ [ϕ(tn+1)− ϕ(tn)] ≥ g(u0)− δ‖q‖f1(n+ 1),

which is condition (4.58). Thus f1 needs to satisfy

f1(1) = ϕ(h) and f1(n+ 1) ≥ f1(n) + ϕ(tn+1)− ϕ(tn).
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By induction,

f1(1) = ϕ(h),

f1(2) ≥ ϕ(h) + ϕ(2h)− ϕ(h) = ϕ(2h),

f1(3) ≥ ϕ(3h),

...

f1(n) ≥ ϕ(tn).

Since we should choose f1 to be as small as possible, we let f1(n) = ϕ(tn), and we

obtain by induction that

‖u0‖ < G(δ‖q‖ϕ(tn)) ⇒ ‖un‖ ≤ G(g(‖u0‖)− δ‖q‖ϕ(tn)).

Therefore the following theorem holds.

Theorem 4.22. If the function F satisfies condition (4.7) for all c ∈ (0,M), and

either F (0) 6= 0 or F satisfies the hypotheses of Theorem 4.5, the scheme has a

positive solution un for n such that tn = nh < T1, where

T1 = ϕ−1

(
1

δ‖q‖∞
g(‖u0‖∞)

)

,

if h is small enough so that

ϕ(tn+1) < ϕ(tn) +
M

δ‖q‖∞
,

for all tn < T1.

4.3.2 Adjoint Splitting Method with Backward Euler

If we use the backward Euler method and the splitting method technique, we obtain

the following scheme

un+1 − h∆un+1 = G

(

g(un)− δq(x)ϕ(h)

)

.
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We write it as Aun+1 = f(x, un+1) with

f(x, v) =
1

h
G

(

g(un)− δq(x)ϕ(h)

)

− 1

h
v.

A necessary condition for the scheme to be well-defined is that

g(un)− δq(x)ϕ(h) ∈ (0,M).

This is satisfied if

ϕ(h) <
M

δ‖q‖∞
,

and

‖un‖∞ < G

(

δ‖q‖∞ϕ(h)
)

.

So Theorem 4.14 must be replaced with

Theorem 4.23. If the function un is positive in Ω, continuous in Ω̄, and satisfies

‖un‖∞ < G

(

δ‖q‖∞ϕ(h)
)

, (4.59)

then our scheme has a maximal nonnegative solution

û ≤ Cn = G

(

g(‖un‖∞)− δ‖q‖∞ϕ(h)
)

,

and a minimal solution ū ≥ 0, and if u is a solution, then u ∈ C2(Ω̄) and satisfies

ū ≤ u ≤ û.

Remark 4.3. Whereas Theorems 4.3 and 4.14 were the same, condition (4.59) is

different from condition (4.53).

Proof. If condition (4.59) is satisfied, we have

f(0) =
1

h
G

(

g(un)− δq(x)ϕ(h)

)

> 0.

Moreover f(Cn) is negative if

Cn ≥ G

(

g(un(x))− δq(x)ϕ(h)

)

∀x ∈ Ω,
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which is satisfied by

Cn = G

(

g(‖un‖∞)− δ‖q‖∞ϕ(h)
)

.

Since f is decreasing, Theorem 4.15 applies and the scheme has a unique solution

and it is positive. To obtain a minimal bound T1 for the blow-up time, we use the

same approach as in Section 4.3.1. From Lemma 4.23, we have

if ‖un‖ < G(δ‖q‖ϕ(h)), then ‖un+1‖ ≤ Cn = G(g(‖un‖)− δ‖q‖ϕ(h)),

and we look for a result of the form of (4.55). The function f1 needs to satisfy

f1(1) = ϕ(h) and

G(δ‖q‖f1(n+ 1)) ≤ G(δ‖q‖f1(n)),

G(g(‖u0‖)− δ‖q‖f1(n)) ≤ G(δ‖q‖ϕ(h)),

G(g(‖un‖)− δ‖q‖ϕ(h)) ≤ G(g(‖u0‖)− δ‖q‖f1(n+ 1)).

All three conditions are satisfied if

f1(n+ 1) ≥ f1(n) + ϕ(h).

Hence we can only set f1(n) = ϕ(tn) if ϕ satisfies

ϕ(tn+1) ≥ ϕ(tn) + ϕ(h). (4.60)

In this case we get the same result as Theorem 4.22. Condition (4.60) is satisfied in

particular for all h > 0 and all n ∈ N if ψ is a nondecreasing function.

Theorem 4.24. If ϕ satisfies condition (4.60) for all tn < T1, the scheme has a

unique positive solution un for n such that tn = nh < T1, where

T1 = ϕ−1

(
1

δ‖q‖∞
g(‖u0‖∞)

)

.
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If ϕ does not satisfy condition (4.60), we set f1(n) = nϕ(h), so that we obtain by

induction

if ‖u0‖ < G(δ‖q‖nϕ(h)), then ‖un‖ ≤ G(g(‖u0‖)− δ‖q‖nϕ(h)).

so that we have a solution if

nϕ(h) <
g(‖u0‖)
δ‖q‖ .

So for tn = nh, we get

tn
ϕ(h)

h
<
g(‖u0‖)
δ‖q‖ ,

and for each h the bound T1 is

T1 =
h

ϕ(h)

g(‖u0‖)
δ‖q‖ .

As the constant c defined by

c = max
0≤h≤1

{
ϕ(h)

h

}

,

is finite, we can also obtain a bound independent of h

T1 =
g(‖u0‖)
cδ‖q‖ .

4.4 Quasilinear Parabolic Equation with Power-

Like Nonlinearities

In Section 3.2.2, we derived several schemes for the quasilinear parabolic equation

with power-like nonlinearities







ut = αum +∆um, in Ω × (0, T ),

u = 0, on ∂Ω × (0, T ),

u(x, 0) = u0(x), in Ω,
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where Ω is a bounded domain in R
d, m > 1 and α ≥ 0. Following the analysis for

the semilinear parabolic equation, we present several results concerning the methods

obtained by using the backward Euler method in the construction by variation of the

constant and in the splitting method. Actually, the first B-method is deeply studied

in an article by M-N Le Roux [99], so we summarize here the results she obtained.

These cover existence and uniqueness of a positive solution and a minimal time of

existence of the solution T1. A specific solver based on Theorem 4.9 is presented as

well as several inequalities concerning the behaviour of the numerical solution. Finally

Le Roux proved that the upper bound for the numerical blow-up time is the same as

the bound for the exact one. In Section 4.4.2, we prove the existence and uniqueness

of the solution for the second B-method, and we obtain the same minimal time of

existence T1 as Le Roux derived for the first method.

4.4.1 Variation of the Constant and Backward Euler

The scheme derived in Section 3.2.2 by applying the variation of the constant and

backward Euler is

un+1 − u−(m−1)
n umn+1 + h(m− 1)[αumn+1 +∆umn+1] = 0.

If we define v = um and A = −∆ and introduce p = 1/m and q = 1 − p, so that

m− 1 = q/p, the scheme becomes

h(Avn+1 − αvn+1) +
p

q
vn+1v

−q
n − p

q
vpn+1 = 0, (4.61)

which is exactly the scheme derived by Le Roux in [99]. She studied it in detail for

α > λ1 as well as for α ≤ λ1. We present here most results she obtained in the case

where α > λ1, as this is the blow-up case. Some of these results were already shortly

presented in Chapter 2.
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To prove existence and uniqueness of the solution of scheme (4.61), Le Roux first

uses Theorem 4.2 to prove that if

‖vn‖∞ <

(
p

αqh

)1/q

, (4.62)

there exists a maximal solution

v̂ ≤ Cn =
‖vn‖∞

(1− αhp
q
‖vn‖q∞)1/q

,

and if v is a solution of the scheme, then 0 ≤ v ≤ v̂.

A direct argument ensures uniqueness of a positive solution, however since u ≡ 0

is a solution of the scheme, extra work is required to ensure the existence of a positive

solution. This solution is obtained by minimizing the functional

Jn(v) =

∫

Ω

|∇v|2 dx+
∫

Ω

(
p

qh
v−q
n − α

)

v2 dx,

on K = {v ∈ H1
0 (Ω)|

∫

Ω
vp+1 dx = 1}. Denoting by ψn the non-negative solution of

this optimization problem, the unique positive solution is given by

vn+1 =

(
p

qhJn(ψn)

)1/q

ψn.

Then Le Roux obtained the lower bound T1 = p
αq
‖v0‖−q

∞ on the numerical blow-up

time (see Theorem 4.27), and since scheme (4.61) is nonlinear, she used Theorem 4.9

with ϕ(x) = α− p
qh
v−q
n , to derive a specific solver for the problem.

Le Roux also derived several inequalities concerning the numerical solution ob-

tained by scheme (4.61): the existence of a subsolution

vn+1 ≥
(

tn
tn+1

)1/q

vn,

and two bounds on the rate of growth. The first one

vn+1 ≤
(

T2 − tn
T2 − tn+1

)1/q

vn,
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where T2 = p/(qC0) and C0 is a constant satisfying

Av0 − αv0 + C0v
p
0 ≥ 0,

can be related to the solution

v(t) =

(
p

αq(T − t)

)1/q

of pv−qvt = αv. The second bound, given in the following theorem, is linked to the

numerical blow-up time, for which we also get an upper bound.

Theorem 4.25 (Le Roux). If α > λ1, there exists T ∗ depending on h and v0 such

that the numerical solution vn exists for nh < T ∗ and becomes infinite at T ∗. In

addition, we have

‖vn‖p+1 ≤
(

T ∗

T ∗ − tn

)1/q

‖v0‖p+1.

If
∫

Ω
(|∇v0|2 − αv20)dx is negative, we have the estimate

T ∗ ≤ p

q

−‖v0‖2−q
p+1

∫

Ω
(|∇v0|2 − αv20)dx

.

This theorem is obtained by introducing the functional

F (v) =

∫

Ω
(|∇v|2 − αv2)dx

‖v‖2p+1

.

Le Roux proved that the sequence {F (vn)} is decreasing with

q

p
hF (vn+1) ≤ ‖vn+1‖−q

p+1 − ‖vn‖−q
p+1 ≤

q

p
hF (vn).

This inequality is used to derive the upper bound for the blow-up time given in the

theorem. Indeed, if α > λ1 and F (v0) < 0, we obtain

‖vn+1‖−q
p+1 ≤ ‖v0‖−q

p+1 +
q

p
tnF (v0).

As the right-hand side of this inequality is negative if

tn > Tmax :=
p

q

‖v0‖−q
p+1

−F (v0)
,
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there must be tñ < Tmax for which (4.62) is not satisfied anymore and thus

‖vñ‖∞ ≥
(

p

αqh

)1/q

.

As the constant on the right-hand side can be made as large as desired by decreasing

h, Le Roux refers to that time tñ as the numerical blow-up time T ∗ and says that the

numerical solution becomes infinite at T ∗. As we already pointed out in Chapter 2,

the numerical solution should not be computed further as the numerical result may

become irrelevant.

4.4.2 Adjoint Splitting Method with Backward Euler Method

In this section we prove existence and uniqueness of the solution of the scheme ob-

tained using the backward Euler method in the adjoint splitting method. This scheme

is given by

un+1 =
(
u−(m−1)
n − α(m− 1)h

)−1/(m−1)
+ h∆umn+1.

Introducing Av = −∆v, v = um, p = 1/m and q = 1− p, it becomes

Avn+1 = f(x, vn+1) =
−1

h
vpn+1 +

1

h

(

v−q
n (x)− α

qh

p

)−p/q

. (4.63)

For this scheme to be well-defined, we need condition (4.62) to be satisfied. Moreover,

under this condition, we have

f(x, 0) =
1

h

(

v−q
n − α

qh

p

)−p/q

> 0,

for all x. The constant Cn is a supersolution if f(Cn) ≤ 0, that is

Cp
n ≥ (v−q

n − α
qh

p
)−p/q,

and since
[

1

v−q
n − α qh

p

]1/q

≤
[

1

‖vn‖−q
∞ − α qh

p

]1/q

,
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we can take

Cn =

[

1

‖vn‖−q
∞ − α qh

p

]1/q

.

Hence we can apply Theorem 4.2 to obtain the same result as Le Roux:

Theorem 4.26. If the function vn is positive in Ω, continuous in Ω̄, and satisfies

‖vn‖∞ <

(
p

αqh

) 1
q

, (4.64)

then scheme (4.63) has a maximal nonnegative solution

v̂ ≤ Cn =

[

1

‖vn‖−q
∞ − α qh

p

]1/q

,

and a minimal solution v̄ ≥ 0 and if v is a solution, v ∈ C2(Ω̄) and satisfies v̄ ≤ v ≤ v̂.

Since v ≡ 0 is not a solution of the scheme (4.63), this theorem implies the exis-

tence of a non-identically zero nonnegative solution, which by the Maximum Principle,

must be positive. Moreover, since f is decreasing in v, Theorem 4.15 applies and the

solution is unique.

It remains to prove that the condition (4.64) is satisfied for a positive number of

steps. Since Theorem 4.26 is the same result as the one given by Le Roux [99], we

obtain the same lower bound T1:

Theorem 4.27. Scheme (4.63) has a unique positive solution vn for n such that

tn = n∆t < T1, where

T1 =
p

αq
‖v0‖−q

∞ .

Proof. We have seen that if ‖vn‖q∞ < p
q∆tα

, then we have a supersolution

Cn =
‖vn‖∞

(1− α qh
p
‖vn‖q∞)1/q

,
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and ‖vn+1‖∞ ≤ Cn. We can rewrite this as

‖vn+1‖∞ ≤ ‖vn‖∞
(1− α∆t q

p
‖vn‖q∞)1/q

if ‖vn‖q∞ <
p

qα∆t
. (4.65)

We want to prove by induction that

‖vn‖∞ ≤ ‖v0‖∞
(1− αtn

q
p
‖v0‖q∞)1/q

if ‖v0‖q∞ <
p

qαtn
.

If n = 1, we have ‖v0‖q∞ < p
qα∆t

implies

‖v1‖∞ ≤ ‖v0‖∞
(1− α∆t qh

p
‖v0‖q∞)1/q

.

Now suppose that

‖v0‖q∞ <
p

qαtn
⇒ ‖vn‖∞ ≤ ‖v0‖∞

(1− αtn
q
p
‖v0‖q∞)1/q

and assume that ‖v0‖q∞ < p
qαtn+1

< p
qαtn

, so that, by induction hypothesis,

‖vn‖q∞ ≤ ‖v0‖q∞
1− αtn

q
p
‖v0‖q∞

=
1

‖v0‖−q
∞ − αtn

q
p

,

but since ‖v0‖q∞ < p
qαtn+1

, that is ∆t‖v0‖q∞+tn‖v0‖q∞ < p
qα

and ‖v0‖−q
∞ −αtn q

p
> ∆t qα

p
,

we get that

‖vn‖q∞ <
p

qα∆t
,

and we can apply (4.65) to get

‖vn+1‖∞ ≤ ‖vn‖∞
(1− α∆t q

p
‖vn‖q∞)1/q

,

that is

‖vn+1‖q∞ ≤ 1

‖vn‖−q
∞ − α∆t q

p

,

and we use

‖vn‖q∞ ≤ ‖v0‖q∞
1− αtn

q
p
‖v0‖q∞

,

to obtain

‖vn+1‖q∞ ≤ 1
(1−αtn‖v0‖q∞q/p)

‖v0‖q∞ − α∆tq/p
=

‖v0‖q∞
1− αtn+1

q
p
‖v0‖q∞

,

which concludes the proof of the induction.
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Conclusion

We addressed in this thesis the delicate problem of approximating a blow-up solution

using numerical methods. We introduced new fixed-step methods, called B-methods,

that are designed to properly reproduce a blow-up solution. These methods can be

constructed in different ways but the constructions are all based on the same idea:

since the diffusion part of the equation becomes less essential as we get closer to

the blow-up, it is relevant to consider the simplified equation obtained by removing

the diffusion part. If the exact solution of this simplified equation can be explicitly

derived, it is wise to exploit this information, in order to construct more efficient

numerical methods. We presented two types of construction that follow different

approaches.

The first simply consists in a splitting method. The right-hand side of the original

equation is decomposed into two parts, and generally only the exact flow of the

simplified equation (obtained by removing the diffusion part) can be derived, so that

a first-order numerical method is used to solve the sub-equation with the diffusion

part. The exact flow and the numerical method are then composed in order to obtain

a consistent method for the original problem.

The idea of the second approach is quite innovative. We look for a solution u

in a specific form: by plugging in the original equation the solution of the simplified

equation in which the constant of integration K is considered as a function, we obtain

a differential equation for this function K. Any numerical method can be applied to



166 Conclusion

this differential equation, and the corresponding B-method is obtained by rewriting

the resulting scheme with the original unknown function u.

These two types of B-methods have been presented in detail. However one can

think of other ways of constructing such methods. For example, even if the scheme

derived by Le Roux in [99] can be obtained using the construction by variation of

the constant, Le Roux’s approach was different. We briefly explain a generalization

of her approach on the semilinear problem ut = ∆u + δF (u). Using the notation

introduced in Section 3.1.1, the exact scheme of the simplified equation ut = δF (u)

can be written as

un+1 = G(g(un)− δh). (4.66)

To construct a B-method, the idea is to first isolate δ in (4.66) to get

g(un)− g(un+1)

h
= δ,

and then to multiply each side of the resulting scheme by an approximation of F (u).

For example, this could be F (un) if we use forward Euler, F (un+1) if we use backward

Euler, F (un+un+1

2
) if we use the midpoint rule or F (un)+F (un+1)

2
if we use the trapezoidal

rule. Finally, the terms left aside (diffusion part) are added accordingly. The schemes

obtained using forward Euler and backward Euler, respectively

−g(un+1)− g(un)

h
F (un) = δF (un) + ∆un,

and

−g(un+1)− g(un)

h
F (un+1) = δF (un+1) + ∆un+1,

are exactly the same as the ones obtained using the construction by variation of the

constant. Indeed, for these methods the differential equation for K leads to

Kn+1 −Kn

h
=
g(un+1)− g(un) + δh

h
=

−1

F (u)
∆u,
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where u in the right-hand side is un if we use forward Euler and un+1 if we use back-

ward Euler. However, for more complex methods, like the midpoint or trapezoidal

rules, the two constructions lead to different schemes. Moreover, both schemes

−g(un+1)− g(un)

h
F

(
un + un+1

2

)

= δF

(
un + un+1

2

)

+∆

(
un + un+1

2

)

,

and

−g(un+1)− g(un)

h

(
F (un) + F (un+1)

2

)

= δ

(
F (un) + F (un+1)

2

)

+
∆un +∆un+1

2
,

are second-order methods. This third way to construct B-methods is clearly of interest

and would have a place in a larger study of B-methods. It illustrates the fact that

the theory of B-methods is only at its beginnings and that other types of methods

can be developed.

As shown by the numerous numerical examples we presented in Chapter 3, the B-

methods we constructed bring a clear improvement compared to the original standard

methods. The theoretical results proved in Chapter 4 also reinforce these observations

as the behavior of the numerical solutions obtained using the selected B-methods

was proven to be very similar to the behavior of the exact solution. Unfortunately,

the theoretical results we presented are somehow unsatisfying as they only represent

the beginning of a more thorough study of B-methods. In particular, we chose to

concentrate on two B-methods applied to two different problems. In future work,

similar results should be proved for a larger variety of schemes and problems.

The methods of construction we presented are aimed at relatively simple problems

since they require that the solution of the simplified equation can be explicitly written.

And even if this condition is satisfied, some difficulties can weaken the interest of the

methods: an example of the limits of the construction by variation of the constant

was given in Section 3.2.1. As a next step, one should try to find a way to overcome

these difficulties in order to widen the application area.
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Finally, one can see from the numerical experiments presented in this thesis that

the type of B-methods leading to the best results depends on the problem. While

on some problems splitting methods give better results than methods obtained by

variation of the constant, on other problems it is the opposite. At the same time

as new types of B-methods are developed, more extended numerical experiments can

lead to the creation of a large database on which a deeper study of the comparative

performances of the different B-methods can be performed. This study could lead to

the development of guidelines aimed at advising users in their selection of numerical

methods. Moreover one can expect that new avenues of research to improve B-

methods can be drawn from this reflection.
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Appendix A: Additional Numerical

Experiments

A.1 A Semilinear Parabolic Equation with Differ-

ent Initial Conditions

Most of the experiments we present are done with the initial conditions u0(x) =

cos(πx/2). This symmetric bell-shaped function is concave on the whole interval so

that the second derivative is negative everywhere. As mentioned in Chapter 4, the

negativity of the Laplacian plays a part in the results concerning the rate of growth

of the numerical solution. Actually, whatever the shape of the initial condition is,

the Laplacian quickly becomes negative on the whole interval. To show that B-

methods are efficient no matter what the initial conditions are, we applied them

to the semilinear equation (3.1) with F (u) = eu and δ = 3 with different initial

conditions.

As a first example, we used u0(x) = (x2 − 1)2 on [−1, 1], whose particularity is

that the second derivative is positive close to the boundary. The blow-up time can

be approximated by Tb ≈ 0.1830 and for Figures A.1 and A.2, we used Tf = 0.1829.

For the second example, we used the initial condition: u0(x) = (1−x2)(8x2+1) on

[−1, 1], whose particularity is that the second derivative is positive in the middle of
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Figure A.1: Error for first-order methods applied to the semilinear parabolic equation

with u0(x) = (x2 − 1)2, for timesteps close to Tf = 0.1829.

0.1818 0.182 0.1822 0.1824 0.1826 0.1828

0

1

2

3

4

5

6

x 10
−3

Time

E
rr

or

MR
TR
SoSpFE
SoSpBE
VCMR
VCTR

Figure A.2: Error for second-order methods applied to the semilinear parabolic equa-

tion with u0(x) = (x2 − 1)2, for timesteps close to Tf = 0.1829.
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the interval. The blow-up time can be approximated by Tb ≈ 0.0587, so we computed

the solutions using h = 0.0001 up to Tf = 0.0586. The errors are plotted in Figures

A.3 and A.4.
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Figure A.3: Error for second-order methods applied to the semilinear parabolic equa-

tion with u0(x) = (1− x2)(8x2 + 1), for timesteps close to Tf = 0.0586.

A.2 Semilinear Parabolic Equations with Different

Functions F

In this section we present the results of numerical experiments for the semilinear

parabolic equation (3.1) with F (u) = (u+ α)p+1 and F (u) = (u+ 1)(ln(u+ 1))p+1.

For the first example, F (u) = (u + α)p+1, we used δ = 3, α = 2 and p = 1.

The initial condition is u0(x) = cos(πx/2) on Ω = [−1, 1]. The blow-up time is

approximately Tb ≈ 0.1209.

For Figures A.5 and A.6 we computed the solution up to Tf = 0.1150, using
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Figure A.4: Error for second-order methods applied to the semilinear parabolic equa-

tion with u0(x) = (1− x2)(8x2 + 1), for timesteps close to Tf = 0.0586.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Timestep

E
rr

or

FE
BE
SpFE
SpFEA
SpBE
SpBEA
VCFE
VCBE

Figure A.5: Error at Tf = 0.1150 for first-order methods applied to the semilinear

equation with F (u) = (u+ 2)2, with different values of h.
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Figure A.6: Error at Tf = 0.1150 for second-order methods applied to the semilinear

equation with F (u) = (u+ 2)2, with different values of h.

Timestep 0.0001 5e-005 2.5e-005 1.25e-005 8e-006

FE 2.67 1.38 0.701 0.353 0.227

BE 3.06 1.47 0.725 0.359 0.229

SpFE 0.0353 0.0177 0.00884 0.00442 0.00283

SpFEA 0.0355 0.0177 0.00885 0.00442 0.00283

SpBE 0.0224 0.0112 0.00562 0.00281 0.0018

SpBEA 0.0226 0.0113 0.00563 0.00281 0.0018

VCFE 0.0188 0.0094 0.0047 0.00235 0.00151

VCBE 0.0189 0.00942 0.00471 0.00235 0.00151

Table A.1: Error at Tf = 0.1150 for first-order methods applied to the semilinear

equation with F (u) = (u+ 2)2.
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Timestep 0.0002 0.0001 5e-005 2.5e-005 1.25e-005

MR 0.0143 0.00357 0.000893 0.000223 5.58e-005

TR 0.0301 0.00752 0.00188 0.00047 0.000117

SoSpFE 7.43e-005 1.86e-005 4.65e-006 1.16e-006 2.9e-007

SoSpBE 7.43e-005 1.86e-005 4.65e-006 1.16e-006 2.9e-007

VCMR 8.18e-005 2.05e-005 5.12e-006 1.28e-006 3.2e-007

VCTR 0.000149 3.72e-005 9.31e-006 2.33e-006 5.84e-007

Table A.2: Error at Tf = 0.1150 for second-order methods applied to the semilinear

equation with F (u) = (u+ 2)2.

the stepsizes h = 0.0001, 0.00005, 0.000025, 0.0000125 and 0.000008 for first-order

methods and h = 0.0002, 0.0001, 0.00005, 0.000025 and 0.0000125 for second-order

methods. The errors are listed in Tables A.1 and A.2.

For Figures A.7 and A.8, we used h = 0.0001 and computed the solutions up to

Tf = 0.1200.

For the second example, F (u) = (u + 1)(ln(u + 1))p+1, we used δ = 6 and p = 1.

The initial condition is u0(x) = cos(πx/2) on Ω = [−1, 1]. The blow-up time is

approximately Tb ≈ 0.3426.

For Figures A.9 and A.10 we computed the solution up to Tf = 0.3000, using

the stepsizes h = 0.0001, 0.00005, 0.000025, 0.0000125 and 0.000008 for first-order

methods and h = 0.0008, 0.0004,0.0002, 0.0001 and 0.00005 for second-order methods.

The errors are listed in Tables A.3 and A.4.

For Figures A.11 and A.12, we used h = 0.0001 and computed the solutions up to

Tf = 0.3280.
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Figure A.7: Error for first-order methods applied to the semilinear equation with

F (u) = (u+ 2)2, for timesteps close to Tf = 0.1200.
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Figure A.8: Error for second-order methods applied to the semilinear equation with

F (u) = (u+ 2)2, for timesteps close to Tf = 0.1200.
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Figure A.9: Error at Tf = 0.3000 for first-order methods applied to the semilinear

equation with F (u) = (u+ 1)(ln(u+ 1))2, with different values of h.
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Figure A.10: Error at Tf = 0.3000 for second-order methods applied to the semilinear

equation with F (u) = (u+ 1)(ln(u+ 1))2, with different values of h.
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Timestep 0.0001 5e-005 2.5e-005 1.25e-005 8e-006

FE 1.99 1.01 0.51 0.256 0.164

BE 2.13 1.05 0.519 0.258 0.165

SpFE 0.42 0.211 0.106 0.0528 0.0338

SpFEA 0.425 0.212 0.106 0.0529 0.0338

SpBE 0.0681 0.0341 0.017 0.00852 0.00545

SpBEA 0.0683 0.0341 0.017 0.00852 0.00545

VCFE 0.188 0.094 0.047 0.0235 0.0151

VCBE 0.189 0.0942 0.0471 0.0235 0.0151

Table A.3: Error at Tf = 0.3000 for first-order methods applied to the semilinear

equation with F (u) = (u+ 1)(ln(u+ 1))2.

Timestep 0.0008 0.0004 0.0002 0.0001 5e-005

MR 0.0884 0.0221 0.00552 0.00138 0.000345

TR 0.147 0.0366 0.00913 0.00228 0.000571

SoSpFE 0.00046 0.000115 2.88e-005 7.19e-006 1.8e-006

SoSpBE 0.00046 0.000115 2.88e-005 7.19e-006 1.8e-006

VCMR 0.000497 0.000124 3.1e-005 7.76e-006 1.94e-006

VCTR 0.000838 0.000209 5.24e-005 1.31e-005 3.27e-006

Table A.4: Error at Tf = 0.3000 for second-order methods applied to the semilinear

equation with F (u) = (u+ 1)(ln(u+ 1))2.
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Figure A.11: Error for first-order methods applied to the semilinear equation with

F (u) = (u+ 1)(ln(u+ 1))2, for timesteps close to Tf = 0.3280.
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Figure A.12: Error for second-order methods applied to the semilinear equation with

F (u) = (u+ 1)(ln(u+ 1))2, for timesteps close to Tf = 0.3280.



A.3 Semilinear System 197

A.3 Semilinear System

In this section we present the results of numerical experiments for the system of

semilinear parabolic equations (3.24) with δ = 3 and γ = 5. The initial conditions

are u0(x) = cos(πx/2) and v0(x) = cos(πx/2) on Ω = [−1, 1]. The blow-up time is

approximately Tb ≈ 0.1181.
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Figure A.13: Error at Tf = 0.1100 for first-order methods applied to the system of

semilinear equations with different values of h.

For Figures A.13 and A.14 we computed the solution up to Tf = 0.1100, using

the stepsizes h = 0.0001, 0.00005, 0.000025, 0.0000125 and 0.000008 for first-order

methods and h = 0.0004, 0.0002, 0.0001, 0.00005 and 0.000025 for second-order

methods. The errors are listed in Tables A.1 and A.2.

For Figures A.15 and A.16, we used h = 0.0001 and computed the solutions up to

Tf = 0.1170.
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Figure A.14: Error at Tf = 0.1100 for second-order methods applied to the system of

semilinear equations with different values of h.

Timestep 0.0001 5e-005 2.5e-005 1.25e-005 8e-006

FE 0.0146 0.00736 0.00369 0.00185 0.00118

BE 0.015 0.00747 0.00372 0.00186 0.00119

SpFE 0.00146 0.00073 0.000365 0.000183 0.000117

SpFEA 0.000679 0.000339 0.000169 8.47e-005 5.42e-005

SpBE 0.000675 0.000338 0.000169 8.46e-005 5.42e-005

SpBEA 0.00146 0.000731 0.000365 0.000183 0.000117

VCFE 0.00118 0.00059 0.000295 0.000148 9.45e-005

VCBE 0.00118 0.000591 0.000295 0.000148 9.45e-005

Table A.5: Error at Tf = 0.1100 for first-order methods applied to the system of

semilinear equations.
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Timestep 0.0004 0.0002 0.0001 5e-005 2.5e-005

MR 5.91e-005 1.48e-005 3.69e-006 9.23e-007 2.31e-007

TR 0.000339 8.48e-005 2.12e-005 5.3e-006 1.32e-006

SoSpFE 4.85e-006 1.21e-006 3.03e-007 7.57e-008 1.89e-008

SoSpBE 4.85e-006 1.21e-006 3.03e-007 7.57e-008 1.89e-008

VCMR 5.82e-006 1.46e-006 3.64e-007 9.1e-008 2.28e-008

VCTR 6.4e-006 1.6e-006 4e-007 1e-007 2.5e-008

Table A.6: Error at Tf = 0.1100 for second-order methods applied to the system of

semilinear equations.
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Figure A.15: Error for first-order methods applied to the system of semilinear equa-

tions, for timesteps close to Tf = 0.1170.



200 Additional Numerical Experiments

0.1135 0.114 0.1145 0.115 0.1155 0.116 0.1165 0.117

10
−6

10
−5

10
−4

Time

E
rr

or

MR
TR
SoSpFE
SoSpBE
VCMR
VCTR

Figure A.16: Error for second-order methods applied to the system of semilinear

equations, for timesteps close to Tf = 0.1170.

A.4 “Accretive” Equation (3.38)

In this section we present the results of numerical experiments for the “accretive”

equation (3.38) with δ = 3. The initial conditions are u0(x) = cos(πx/2) and ut0(x) =

cos(πx/2) on Ω = [−1, 1]. The blow-up time is approximately Tb ≈ 0.1483.

For Figures A.17 and A.18 we computed the solution up to Tf = 0.1450, using the

stepsizes h = 0.00025, 0.000125, 0.00005, 0.000025 and 0.0000125 for first-order meth-

ods and h = 0.005, 0.001, 0.0005, 0.00025 and 0.000125 for second-order methods.

The errors are listed in Tables A.7 and A.8.

For Figures A.19 and A.20, we used h = 0.0001 and computed the solutions up to

Tf = 0.1482.
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Figure A.17: Error at Tf = 0.1450 for first-order methods applied to the accretive

equation, with different values of h.
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Figure A.18: Error at Tf = 0.1450 for second-order methods applied to the accretive

equation, with different values of h.
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Timestep 0.000125 5e-005 2.5e-005 1.25e-005 8e-006

FE 0.000679 0.000275 0.000138 6.91e-005 4.43e-005

BE 0.000709 0.00028 0.000139 6.94e-005 4.44e-005

SpFE 0.000101 4.03e-005 2.02e-005 1.01e-005 6.45e-006

SpFEA 0.000101 4.03e-005 2.02e-005 1.01e-005 6.45e-006

VCFE 7.95e-005 3.18e-005 1.59e-005 7.95e-006 5.09e-006

VCBE 7.96e-005 3.18e-005 1.59e-005 7.95e-006 5.09e-006

Table A.7: Error at Tf = 0.1450 for first-order methods applied to the accretive

equation.

Timestep 0.001 0.0005 0.00025 0.000125 5e-005

MR 3.7e-005 9.22e-006 2.3e-006 5.76e-007 9.21e-008

TR 7.13e-005 1.76e-005 4.39e-006 1.1e-006 1.75e-007

SoSpFE 5.41e-007 1.35e-007 3.38e-008 8.45e-009 1.35e-009

VCMR 4.79e-007 1.2e-007 3e-008 7.49e-009 1.19e-009

VCTR 1.81e-007 4.53e-008 1.13e-008 2.83e-009 4.58e-010

Table A.8: Error at Tf = 0.1450 for second-order methods applied to the accretive

equation.
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Figure A.19: Error for first-order methods applied to the accretive equation, for

timesteps close to Tf = 0.1482.
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Figure A.20: Error for second-order methods applied to the accretive equation, for

timesteps close to Tf = 0.1482.
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