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Abstract (EN)

Background: Schizophrenia is a complex disorder with multifactorial etiology involving genetic,

environmental, and biological factors. These intertwined factors contribute to the exceptionally

complex and challenging pathogenesis of the disease. Despite some advancements in

schizophrenia research, the lack of standardized therapeutic approaches undoubtedly adds to the

challenges posed by the disorder. Therefore, deeper understanding of this disorder is warranted to

identify more effective treatment strategies.

The brain, composed of intricate networks of neurons forming complex synaptic connections,

represents the most sophisticated structure governing cognitive processes and behaviors within

the nervous system. Recent technological advancements such as magnetic resonance imaging,

large-scale brain models, and transcriptomic data offer the potential to reveal aberrant

connectivity patterns within the brains of schizophrenia patients, providing new perspectives for

research and intervention.

Objective: This research primarily focuses on differences in brain activity patterns between

individuals with schizophrenia and healthy controls.

Methods: A mesoscopic-scale brain model is constructed employing a standard MRI dataset

containing details of structural and functional connections. Using a field model methodology,

this study attempts to simulate brain neural behaviors in different groups and individuals,

approximating the empirical functional and structural connectivity data. The interconnected

neural network model utilizes coupled Wilson-Cowan models with each representing a given

brain region, traversing high-dimensional parameter spaces, thereby enhancing our understanding

of brain operations under different conditions. Furthermore, in exploring the role of receptor

expression in schizophrenia, this study integrates receptor gene expression maps from the Allen

Brain Institute. This integration aims to reveal potential variations in receptor expression among

schizophrenic patients, establishing a connection between the computational model and the

biological impacts triggered by receptor expressions.

Results: Through whole-brain simulations using the original Wilson-Cowan model, we observed 

some differences between the two groups at the aggregate level. However, it is worth noting that 
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Conclusion: This study elucidates brain characteristics through large-scale simulations,

revealing SC-FC correlations and optimal structure-function relationships. Focused on

schizophrenia, it constructs a mesoscopic brain model, integrating receptor expression data to

highlight differences in patients, particularly in 5-HT1A receptor expression

these differences are not captured by significant differences in the model parameters, which may 

imply that the differences between the groups stem from other factors not directly captured by   

the model. Preliminary findings highlight differences among the participant groups, particularly 

concerning 5-HT1A receptor expression. For a more refined exploration, specifically regarding 

variations in receptor expression in distinct brain regions, this study applies some adjustments to 

the original receptor expression data. The adjusted fitting results align with previous literature 

reports.

.

Keywords:Whole-Brain Computational Model, Schizophrenia, Functional Networks, Genomics
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Abstract (FR)

Contexte: La schizophrénie est un trouble complexe dont l'étiologie multifactorielle implique

des facteurs génétiques, environnementaux et biologiques. Ces facteurs imbriqués contribuent à

la pathogenèse exceptionnellement complexe et difficile de la maladie. Malgré certains progrès

dans la recherche sur la schizophrénie, le manque d'approches thérapeutiques standardisées

ajoute indéniablement aux défis posés par le trouble. Par conséquent, une investigation et une

exploration plus approfondies sont justifiées pour identifier des stratégies de traitement plus

efficaces.

Le cerveau, composé de réseaux complexes de neurones formant des connexions synaptiques

complexes, représente la structure la plus sophistiquée gouvernant les processus cognitifs et les

comportements au sein du système nerveux. Les récents progrès technologiques tels que

l'imagerie par résonance magnétique, les modèles cérébraux à grande échelle et les données

transcriptomiques offrent le potentiel de révéler des schémas de connectivité aberrants dans les

cerveaux des patients schizophrènes, ouvrant de nouvelles perspectives pour la recherche et

l'intervention.

Objectif: Cette recherche se concentre principalement sur les différences dans les schémas

d'activité cérébrale entre les individus schizophrènes et les témoins en bonne santé.

Méthodes: Un modèle cérébral à l'échelle mésoscopique est construit en utilisant un ensemble

de données d'IRM standard contenant des détails sur les connexions structurelles et

fonctionnelles. En utilisant une méthodologie de modèle de champ, cette étude tente de simuler

les comportements neuronaux cérébraux dans différents groupes et individus, en approximant à

travers des données empiriques de connectivité fonctionnelle et structurelle. Le modèle de réseau

neuronal interconnecté utilise des modèles couplés Wilson-Cowan, chacun représentant une

région cérébrale donnée, traversant des espaces de paramètres de haute dimension, améliorant

ainsi notre compréhension des opérations cérébrales dans différentes conditions. De plus, en

explorant le rôle de l'expression des récepteurs dans la schizophrénie, cette étude intègre des

cartes d'expression des gènes de récepteurs de l'Institut du Cerveau Allen. Cette intégration vise à

révéler des variations potentielles dans l'expression des récepteurs chez les patients

schizophrènes, établissant un lien entre le modèle computationnel et les impacts biologiques
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déclenchés par les expressions de récepteurs.

Résultats: Les résultats indiquent quelques différences entre les deux groupes au niveau de la

population en utilisant le modèle Wilson-Cowan original mais sans exprimer de disparités de

paramètres significatives. Les résultats préliminaires mettent en évidence des différences entre

les groupes de participants, notamment en ce qui concerne l'expression des récepteurs 5-HT1A.

Pour une exploration plus raffinée, notamment en ce qui concerne les variations de l'expression

des récepteurs dans des régions cérébrales distinctes, cette étude applique quelques ajustements

aux données d'expression des récepteurs originales. Les résultats ajustés concordent avec les

rapports de littérature précédents.

Conclusion: Cette étude éclaire les caractéristiques du cerveau à travers des simulations à

grande échelle, révélant des corrélations SC-FC et des relations structure-fonction optimales.

Axée sur la schizophrénie, elle construit un modèle cérébral mésoscopique, intégrant des

données d'expression des récepteurs pour mettre en évidence les différences chez les patients,

notamment dans l'expression des récepteurs 5-HT1A.

Mots clés: Modèle informatique du cerveau entier, schizophrénie, réseaux fonctionnels,

génomiqu
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Introduction

Schizophrenia is a mentally intricate disorder with a multifaceted etiology involving interactions

among various genetic, environmental, and biological factors. Despite notable progress in

research, the pathogenesis of schizophrenia remains exceptionally intricate and elusive. The

absence of standardized therapeutic approaches poses significant challenges for both patients and

healthcare professionals, highlighting the urgent need for deeper investigation and exploration to

identify more effective treatment modalities.

The brain, comprising billions of neurons forming intricate synaptic networks, stands as one of

the most complex structures governing cognitive processes and behaviors. Advancements in

computational methods have enabled researchers to explore the dynamic properties of the brain's

resting-state networks, unveiling its operational mechanisms through modeling approaches1.

Neural imaging techniques have revealed the patterns of structural connectivity (SC) and the

collaborative effects of functional connectivity (FC) in the brain. It has been demonstrated that

damage to SC significantly influences FC2, with studies indicating that the structure-function

relationship is maximized at critical points of dynamic functional or state transitions, optimizing

the model's reproduction of brain FC. The integration of large-scale brain simulations with brain

imaging techniques facilitates the establishment of refined whole-brain computational models,

providing a solid model foundation and theoretical support for investigating the pathogenesis of

schizophrenia and developing effective intervention measures3. However, there is currently

limited research integrating genetic data with large-scale brain models, which to some extent

restricts a comprehensive understanding of the mechanisms of schizophrenia.

In recent years, with the continuous development of technologies such as magnetic resonance

imaging, large-scale brain models, and transcriptome data, there is hope that the combination of

these technologies can reveal abnormal connectivity patterns within the brains of schizophrenia

patients, offering new perspectives for research and intervention. To address this research gap,

this study aims to develop a novel approach by integrating magnetic resonance imaging and

genetic data into large-scale brain models to delve into the mechanisms and regulatory loci of

schizophrenia. Leveraging knowledge from computational neuroscience, we will investigate the

characteristics of schizophrenia patients' brains at rest from the perspective of large-scale brain

simulations and compare them with healthy control groups.
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By combining neuroimaging and genomics research methods, we hope to gain a more

comprehensive understanding of the neurobiological basis of schizophrenia, providing more

effective choices for the diagnosis and treatment of this disorder to improve patients' quality of

life. Additionally, this study will contribute to a deeper exploration of human brain function and

related disorders, offering important insights for future schizophrenia research. In summary, this

study aims to fill the current gaps in schizophrenia research, providing new perspectives and

methods for unraveling the mechanisms of schizophrenia and developing personalized treatment

plans, ultimately aiming to enhance the quality of life for patients.
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CHAPTER 1: BACKGROUND INFORMATION

1.1. Complex threads of Schizophrenia

Schizophrenia is a common mental disorder characterized by widespread abnormalities in reality

perception and thought processes4. Typically, the incidence of schizophrenia is higher among

adolescents and young adults, affecting approximately 1% of the global population, with similar

prevalence rates in males and females5. Symptoms in individuals with schizophrenia can be

categorized into positive, negative, and disorganized symptoms6. Positive symptoms involve

heightened mental activity such as hallucinations, delusions, and thought disorders; negative

symptoms include reduced mental activity like emotional blunting, social withdrawal, and

slowed thinking; disorganized symptoms typically manifest as speech disturbances, including

incoherent or "off-track" speech. Furthermore, schizophrenia also exhibits cognitive impairments

such as declining memory and lack of concentration7. Schizophrenia poses significant risks to

individuals, families, and even public safety. Presently, the pathophysiology of schizophrenia

remains under exploration, and there is no standardized medication or physical therapy regimen8.

If left unaddressed, it will lead to immeasurable serious consequences for individuals, families,

and society.

1.1.1. Neuroimaging of Schizophrenia

1.1.1.1. Magnetic resonance imaging

With the advancement of Magnetic Resonance Imaging (MRI) technology, researchers have

further developed large-scale brain simulation techniques by acquiring data on structural

connectivity (SC) and functional connectivity (FC) of the brain through diffusion Magnetic

Resonance Imaging (dMRI) and functional Magnetic Resonance Imaging (fMRI), respectively.

dMRI involves scanning the diffusion of water molecules in different directions within the brain

to obtain diffusion coefficients in various directions, thereby inferring information about the

direction and length of neuronal axons. Utilizing this technique, researchers can acquire

information about the connectivity of neural fiber bundles within the brain, including the

direction, density, and size of these fiber bundles, and subsequently compute the brain's SC9,10.

fMRI, on the other hand, is based on the blood oxygen level-dependent (BOLD) signal11 and
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involves the interaction between oxygen in the blood and hemoglobin. The intensity of this

interaction is influenced by the local level of neural activity. An increase in local neural activity

results in an increased oxygen demand, leading to enhanced blood flow and increased oxygen

content in the blood, thereby causing an enhancement in the BOLD signal. Consequently,

changes in the BOLD signal across different brain regions can reveal alterations in brain region

activities12. Additionally, fMRI can be categorized into resting-state fMRI and task-based fMRI.

Resting-state fMRI measures brain activity when the subject is not performing specific tasks,

revealing the functional connectivity between different brain regions13. Task-based fMRI

measures brain activity while the subject performs specific tasks, disclosing brain activity

patterns and functional regions during different tasks14. By constructing large-scale whole-brain

computational models based on acquired SC and FC data from experiments, researchers can

better explore the interactions and neural mechanisms between different brain regions. This lays

a solid foundation for the further advancement of large-scale brain simulation techniques to

higher levels.

1.1.2. Current status of Schizophrenia research

In the field of biotechnology, numerous studies have emphasized the multifactorial nature of

schizophrenia, including genetic, environmental, neurochemical, neuroimaging, and neural

network factors.

1.1.2.1. Neurobiological mechanisms of schizophrenia

In recent years, with the rapid advancement of fMRI technologies, there has been increasing

attention towards the abnormal connections within the functional networks of schizophrenia15.

The disruption in functional connections may be a pathological mechanism underlying cognitive

impairments in schizophrenic patients. Early research has found widely distributed disruptions in

functional connections in schizophrenic patients, presenting abnormalities in connectivity in the

medial frontal lobe, frontoparietal junction, occipital-temporal junction, and dorsolateral

prefrontal cortex16,17,18,19. Indeed among patients with schizophrenia, the most affected functional

network is the attention network, followed by the visual network and the default network20.

Studies have also reported disruptions in the connectivity between regions within the cortical-

cerebellar-thalamic-cortical circuit and the Default Mode Network (DMN) in schizophrenic
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patients21,22. These abnormalities manifest most prominently in clinically relevant brain regions,

where anomalies in the medial prefrontal cortex, posterior cingulate cortex, and other DMN areas

might lead to deficits in self-control and introspection23,24, whereas abnormalities in the

dorsolateral prefrontal cortex may result in decreased information processing capabilities25.

Frontal association with schizophrenia often exhibits a close connection, a fact substantiated by

numerous studies. Indeed, studies have highlighted region-specific volumetric deficits in the

orbitofrontal cortex (OFC) among individuals with schizophrenia26,27. They emphasize the link

between OFC volume deficit and schizophrenia along with thought disorders, and underscores

morphological alterations in the orbitofrontal cortex within this population, emphasizing the

pivotal role of specific brain regions like the OFC in understanding the neurobiological

underpinnings of schizophrenia.

Additionally, research by Waltz and Gold28 suggests that ventral aspect dysfunction of the

prefrontal cortex (PFC) is a prevalent phenomenon in the pathophysiology of schizophrenia. This

impairment potentially leads to deficits in reinforcement learning exhibited by affected

individuals, where the dopaminergic system might play a crucial role, necessitating further

research for a comprehensive understanding.

Schizophrenia patients also exhibit reduced gray matter volume in specific temporal lobe regions

compared to healthy controls and first-episode affective psychosis individuals29. This includes

notable reductions in the left middle temporal gyrus, bilateral inferior temporal gyri, left superior

temporal gyrus, and bilateral fusiform gyri. Moreover, the severity of hallucinations correlates

significantly with decreased volumes in the left hemisphere's superior and middle temporal gyri30.

In the context of therapeutic interventions, currently available antipsychotic medications

predominantly target the blockade of specific receptor subtypes within these neurotransmitter

families31. By doing so, these medications aim to modulate neurotransmitter signaling,

particularly in dopamine pathways, and thereby provide a relative reduction in the occurrence

and severity of psychotic episodes in individuals with schizophrenia.

1.1.2.2. Advancements in the regulation of schizophrenia

The treatment of schizophrenia is diverse, including pharmacotherapy, psychotherapy, and



6

transcranial magnetic stimulation (TMS), among others. Among these modalities,

pharmacotherapy is the primary approach, mainly utilizing antipsychotic medications to alleviate

patients' symptoms. Currently, available antipsychotic drugs primarily target specific subtypes of

neurotransmitter receptors to modulate neurotransmitter signaling32. Typical antipsychotic drugs

such as chlorpromazine and haloperidol primarily act by blocking dopamine D2 receptors,

thereby reducing their impact on the central nervous system33. Atypical drugs such as olanzapine

and risperidone, on the other hand, modulate the activity of dopamine and serotonin receptors,

alleviating patients' symptoms34. Dopamine regulation is also crucial for the function of the

prefrontal cortex. Studies have shown that dopamine D2 receptors enhance cellular excitability

through a stimulatory G-protein pathway35. Although pharmacotherapy yields significant effects,

it often comes with side effects such as obesity and anxiety.

Schizophrenia patients exhibit significant impairments in cognitive functions such as attention,

memory, and executive functions36. TMS, as a non-invasive therapeutic method, has attracted

attention and interest due to its unique advantages. Research indicates that high-frequency

stimulation can improve patients' selective attention deficits and attentional diffusion symptoms37,

although not all patients show significant improvements38.

Animal experiments have shown that repetitive Transcranial Magnetic Stimulation (rTMS)

stimulation can enhance hippocampal synaptic plasticity and improve spatial cognitive function39.

In the treatment of schizophrenia, rTMS has shown promising results, not only improving

cognitive impairments but also demonstrating efficacy in alleviating both negative and positive

symptoms40.

The efficacy of rTMS depends on the stimulation frequency, with low-frequency stimulation

helping to reduce auditory hallucinations, while high-frequency stimulation improves negative

symptoms and cognitive function. Considering that tissue disruption manifests as brain

connectivity disorders in schizophrenia, rs6295 G-carriers exhibit lower HTR1A expression in

specific brain regions41, which may be associated with the relief of symptoms using TMS

stimulation of the DLPFC region commonly used in hospitals42. However, the therapeutic effects

of rTMS are influenced by various factors, including the site of stimulation, frequency range,

stimulation intensity, and duration. It should be noted that rTMS may induce adverse reactions

such as seizures, thus requiring careful treatment planning.
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In summary, the treatment of schizophrenia includes various modalities such as pharmacotherapy,

physical therapy, and psychotherapy, among others. Novel treatment methods such as

optogenetics and rTMS also show potential therapeutic effects but require further research and

clinical validation.

1.2. Large-scale brain simulation’s applications in brain disorders

1.2.1. Overview of large-scale brain simulation

To construct scalable brain models, there are two main technical approaches: bottom-up and top-

down. The bottom-up approach relies on a large number of interconnected nodes, such as the

Hodgkin-Huxley (HH) model43 or the Leaky & Integrate Fire (LIF) model44, with the former

describing the generation of neuronal action potentials and the latter being a simplified model

suitable for simulating large-scale neural networks45. In contrast, the top-down approach fits

foundational models to neural data and incorporates brain representation properties, although its

complexity and "black box" nature may hinder widespread adoption46.

In the evolution of neural network models, methods such as ResNet have emerged to address

issues like gradient vanishing and overfitting. However, these methods lack biological support,

prompting a reexamination of classical neural models based on biological features. It is necessary

to construct networks based on classical neural models that preserve biological features, as these

traditional models are grounded in experimentation and theory, anchored in biological reality,

and therefore possess significant advantages.

In modeling networks with the scale of brain, challenges include not only demanding

computational performance and communication efficiency but also fitting real physiological data.

Despite the existence of optimization methods47, simulating corresponding lengths of real

physiological neural activity within the same physical time frame remains elusive. Furthermore,

data quality is equally crucial for model construction48, requiring assurance to avoid

contradictory conclusions in simulated experiments49.

The conservatism of brain structure and function provides some guidance for brain modeling

research. Large-scale brain simulation aims to establish biologically based models that strive to

simulate neuronal structure and function as realistically as possible. These models rely on prior
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knowledge obtained from neuroscience research and biological experiments, enabling them to

simulate processes closely resembling those within real neural systems.

As research on brain network models progresses, the focus has shifted from the macaque cortex50

to the human cortex51. Scholars have successfully predicted resting-state functional connectivity

using nonlinear neural models and structural connections derived from diffusion tensor imaging,

revealing significant changes in functional connectivity due to lesions at the junction of the

midline and temporal lobe with the parietal lobe52. Moreover, researchers have simulated resting-

state functional connectivity using a Kuramoto model based on human brain structural

connections, revealing the relationship between local oscillatory activity within brain regions and

functional connections between different brain regions53. Deco et al. utilized a globally attracting

interconnected excitatory pyramidal neuron population and inhibitory GABAergic neuron

population network to simulate brain regions and studied the characteristics of brain activity in

the resting state. Their research revealed the criticality of brain working states, lying between

chaos and order, with multiple competitive states12.

However, studies on structural connections based on diffusion tensor imaging or diffusion

spectrum imaging in the macaque or human brain have revealed a lack of interhemispheric

connections in structural connections, leading to low consistency between simulated and

experimental functional connections. To address this issue, scholars have proposed a "structure-

function" iterative optimization strategy54. By using a dynamic mean-field model to construct

functional networks of macaques and humans and adjusting and weighting structural connections

using empirical functional connections, this method significantly improved the correlation

between simulated and experimental functional connections by fine-tuning a small number of

anatomical connections.

The Wilson-Cowan model is a commonly used mathematical model for describing the activity of

neuronal populations55. Some studies have used the Wilson-Cowan model to construct human

cortical network models, revealing the criticality of brain working states and the characteristics of

the alpha band56. Meanwhile, some studies have established hierarchical network models based

on the Wilson-Cowan equation to better understand interactions between neurons and signal

transmission in different frequency regions57.
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In conclusion, constructing scalable brain models is a complex and challenging task that requires

comprehensive consideration of biological theory, computational methods, and experimental data

to better understand and simulate the structure and function of the brain.

1.2.2. Brain disease research based on large-scale brain models

The study of psychiatric disorders faces significant challenges, including the difficulty of

integrating and analyzing large datasets, as well as physiological and therapeutic challenges.

Computational psychiatry, as an emerging approach, provides means to enhance the analysis of

large complex datasets and plays an important role in psychiatric disorder research58. The

development of this field has facilitated progress in psychiatric disorder research and provided

opportunities for interdisciplinary collaboration. For example, computational psychiatry involves

physical information of neural circuit models applied to predicting treatment outcomes, studying

conceptual forms of reward learning and reinforcement learning, and investigating neurobiology

and cognitive dysfunction.

Developing computational models that describe the dynamics of subcortical regions can assist us

in understanding brain mechanisms at the whole-brain level. For instance, a study utilizing data

from 22 patients with left temporal lobe epilepsy and 39 healthy controls constructed a whole-

brain computational model, revealing situations where some patients were more prone to

transition into epileptic states59. Additionally, the combination of neuroscience and

computational models also plays a crucial role in researching diseases such as Parkinson's disease.

For example, Kringelbach et al. revealed the impact of deep brain stimulation on functional brain

networks in Parkinson's disease patients by analyzing pre- and post-operative data60.

In drug development, Deco et al.'s study utilized a whole-brain neural imaging model to explain

LSD's nonlinear functional effects on the brain, paving the way for new treatments for

neurological and psychiatric disorders3. Similarly, Perl et al. revealed potential mechanisms of

neurodegenerative diseases through model-based studies of empirically structured connectivity

coupled with local dynamics research and proposed corresponding interventions61.

Functional disorders of the nervous system are a significant feature of schizophrenia; research on

neural connectivity, pharmacology, and computational modeling of the etiology of schizophrenia

has been of critical importance. Through the lens of computational neuroscience, research
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spanning various levels, from receptors and individual cells to intricate neural circuits, can be

seamlessly interconnected, culminating in a comprehensive understanding of neural system

behavior62. For instance, functional connectivity metrics can bridge the gap between various

levels, allowing us to systematically explain schizophrenia symptoms through functional

neuroimaging and pharmacology. Computational neuroscience can also help explain observed

complex behaviors and functional disorders and the underlying neural mechanisms by simulating

neural circuits and systems.

In similar studies, researchers found that schizophrenia may be associated with defects in the

glutamate neurotransmitter. This study indicates that abnormal inhibitory neural activity in

schizophrenia patients affects the excitatory and inhibitory balance in the brain cortex63. Model-

based research has proposed some drug options for treating schizophrenia, such as NMDA

receptor antagonists (e.g., ketamine) and metabolic glutamate receptor antagonists (e.g., MK-

801).

Researchers have also investigated connectivity disruptions at the functional level in

schizophrenia patients and proposed neuroscience-based computational models64. The model

predicts changes in network connectivity in schizophrenia patients by analyzing neuroimaging

data, finding that changes in network connectivity in schizophrenia patients are consistent with

model predictions, while bipolar affective disorder patients do not show such changes. This

indicates that changes in network connectivity in schizophrenia patients may be caused by

normal neural circuit characteristics, leading to disruptions at specific functional levels.

The application of multimodal data has become a trend in neuroscience research. Structural data

of the brain provide patterns of neuronal connections, while functional connectivity data reveal

interaction patterns between different brain regions. By combining these data, a multi-level,

multi-scale network model can be established to comprehensively and deeply understand how the

brain works. When delving into the mysteries of the brain, combining multiple modalities of data,

such as brain structure, functional connectivity, and EEG data, one can establish multi-scale

network models. However, despite significant progress in this research approach, particularly in

combining diseases and genomics, there is little research in practical applications.

1.2.3. Exploration of the genetics and transcriptomics of Schizophrenia
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1.2.3.1. Application of AHBA microarray expression data

Genomic data refers to the recording and analysis of genomic information of humans or other

biological organisms. These data provide detailed information on the composition, structure, and

sequence of genes in organisms, offering essential genetic information and biological

characteristics for biological research. Although in the past, integrating and analyzing such

genomic data systematically and reliably into disease or model studies often faced challenges due

to technological limitations, with the continuous innovation of gene sequencing technology,

acquiring and analyzing genomic data has become increasingly integrated with other methods.

Researchers can now use high-throughput sequencing technologies such as whole-genome

sequencing and genome-wide association studies to obtain large-scale genomic data and conduct

in-depth analysis and interpretation.

The Allen Institute for Brain Science has collected and integrated a vast amount of genomic

datasets covering the location and intensity of central nervous system gene expression in both

healthy and diseased individuals, spanning different developmental stages and including multiple

species. The Allen Brain Atlas (www.brain-map.org), a freely accessible multimodal resource

website, provides gene expression data, connectome data, and neuroanatomical information. This

atlas includes gene expression data based on whole-genome arrays, in situ hybridization (ISH)

studies of specific brain regions, and detailed records of neuronal structure and connections65.

These resources support research involving histology, microarrays, RNA sequencing, reference

atlases, mapping, and magnetic resonance imaging. Additionally, they offer comprehensive data

on the adult, developing mouse, human, and non-human primate brains, accompanied by

powerful search and visualization tools.

In the SMART-seq database included in the Allen Brain Institute, transcriptomic data on receptor

expression of various cell types in the human cortex can be accessed. Studies based on these data

have revealed significant differences in transcriptional regulation between different anatomical

locations and demonstrated highly conserved and stable molecular characteristics among

different regions and their cell types66. Further research indicates that gene expression and co-

expression relationships in different brain regions reflect the distribution of cell types67.

Moreover, studies have attempted to explore the relationship between transcriptional differences

and laminar features, cellular composition, and developmental processes68. Thus, the Allen Brain
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Atlas has become an essential open data resource driving neuroscience research.

1.2.3.2. Advancements in Genetic Research on Schizophrenia

The structure and function of the human brain are highly conserved, indicating the presence of a

conservative molecular program to regulate its development, cellular structure, and function69.

This finding provides predictability and regularity for scientific research. Studies have shown a

close correlation between gene expression and functional circuits, as well as a mutual association

between genes and the topological structure of connectomes70, highlighting the importance and

effectiveness of genes in regulating brain functional connections. However, the genetic

inheritance of phenotypes is not immutable, and specific genetic variations may affect subcortical

structures in various regions of the human brain71.

These properties of genes imply that a deeper understanding of normal and pathological brain

function can be achieved through the study of genes, providing important clues for further

exploration in neuroscience. Therefore, gene expression and transcriptomics contribute to

accelerating research on both normal and pathological states of the brain, facilitating

comprehensive exploration of the central nervous system72.

Schizophrenia often exhibits familial aggregation in genetics; estimates of the heritability of

schizophrenia range from 70% to 80%, indicating that 70% to 80% of the risk variation for

individuals developing schizophrenia is associated with genetic factors73. The greatest risk factor

for developing schizophrenia is having a first-degree relative with the disorder74, and over 40%

of schizophrenic patients' monozygotic twins are also affected75. Candidate gene studies of

schizophrenia have often failed to find consistent associations, while genome-wide association

studies have identified genetic loci that explain only a small fraction of the disease variance.

Many genes are known to be involved in schizophrenia, but the effect of each gene is small, and

the transmission and expression mechanisms are unclear76,77. Approximately 5% of schizophrenia

cases are attributed to rare copy number variations (CNVs)78, with some anomalies increasing the

risk of developing schizophrenia by up to 20 times. These CNVs are often comorbid with autism

and intellectual disabilities79.

Numerous whole-genome studies have identified multiple genes associated with the pathogenesis
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of schizophrenia, such as dopamine receptor D2 (DRD2), serotonin transporter (5-HTT), and

glutamate receptor (GRIN1), which play critical roles in neurotransmitter regulation80,81,82.

Additionally, some genes related to neurodevelopment and inflammatory responses, such as

DISC1, are also considered to be associated with schizophrenia83.

When discussing the pathogenesis of schizophrenia, researchers often establish links between

dopamine receptor expression genes in the dopamine family84 and serotonin receptor expression

genes in the serotonin family85, with each model playing a role in the neurobiology of

schizophrenia. Aberrant dopamine signaling is considered to be associated with schizophrenia.

The most common model is the dopamine hypothesis of schizophrenia, attributing schizophrenia

to the brain's misinterpretation of dopamine neuron misfiring86. There is also evidence that,

compared to controls, levels of 5-HT1A receptor protein are decreased in the prefrontal cortex of

female depressed suicide victims87. This observation suggests that the prefrontal cortex also plays

a crucial role in influencing central nervous system function.

Research by Scarr, Udawela, and Dean revealed significant changes in gene expression in the

prefrontal cortex area of schizophrenia patients88. This observation suggests that the prefrontal

cortex also plays a crucial role in influencing central nervous system function. Changes in gene

expression in this region may be related to cortical functional changes, leading to the

manifestation of symptoms associated with schizophrenia. This highlights the possible

interaction between neurotransmitter pathways, developmental mechanisms, and inflammatory

pathways in the pathophysiology of schizophrenia.

Bridging theoretical models of schizophrenia to its genetic underpinning is quite complex and

requires further in-depth investigation. Currently, researchers are gradually exploring this field,

hoping to eventually construct and refine the overall theoretical framework by accumulating local

theoretical knowledge. When discussing the pathogenesis of schizophrenia, we must consider the

complex interactions between neurotransmitters, gene expression, brain region connectivity, and

other aspects to fully understand the pathogenesis of this complex disease.

The application of multimodal data in neuroscience research has become a trend. Combining

structural data and functional connectivity data can establish multi-level, multi-scale network

models. Despite facing numerous challenges, combining large-scale brain simulation models
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with diseases and genomics has tremendous potential and value in revealing the workings of the

brain in disease states, bringing new insights and possibilities to medical research and clinical

practice.
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CHAPTER 2: RATIONALE & HYPOTHESIS

Modern neuroscience relies heavily on models as crucial instruments for investigation. These

models, rich in parameterized features, display high-dimensional characteristics that help

elucidate the underlying neural processes. Based on this, we formulate the following hypotheses:

Objective & Hypothesis #1

Objective & Hypothesis #

We plan to employ various algorithms and techniques, including single-patient modeling,

Riemann distance computation, Bayesian optimization, and structural and functional connectivity 

analysis, among others, to conduct an in-depth implementation and optimization of our Wilson-

Cowan model to describe brain activity. The utilization of these methods aims to more accurately 

describe the complex properties of neural networks, thereby enhancing our understanding of their 

behaviors and functionalities at the system level. Furthermore, these methodologies will enable 

us to better integrate and interpret intricate structural and functional connectivity patterns within 

the network architecture through more effective parameter tuning methods and a more rational 

approach to evaluating model performance. Through meticulous analysis and optimization of 

these highly parameterized models, we postulate that a deeper comprehension of the core 

operational principles of neural networks can be attained.

2

By merging genomic data with our models in Objective #1 using resources such as the Allen

Brain Atlas, we aim to explore the relationship between schizophrenia-related genes and neural

networks using mapping methods. This step aims to discover and understand the impact of

receptor expression (including the serotonin and dopamine family receptors) on neural system

functionality and plasticity, providing new avenues and methods for future neurological disease

research. We further hypothesize that the amalgamation of genomic data with these models will

unveil profound insights. This deep data integration approach has the potential to reveal

connections between genes and the functionalities of neural systems. We believe this

comprehensive method will not only bolster our understanding of neural systems but also pave
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the way for novel targets and therapeutic strategies in treating neurological disorders.

Objective & Hypothesis #3

Although the specific pathophysiology of schizophrenia remains unclear, its treatment often

involves interventions targeting specific brain regions, such as the use of high-frequency

repetitive transcranial magnetic stimulation (rTMS) on the patients’ left dorsolateral prefrontal

cortex (DLPFC). Our approach involves perturbing models to identify potentially affected brain

regions and related network changes. This methodology aims to enhance our ability to simulate

and predict potential alterations within the neural system affected by the disease. We believe that

this step will deepen our understanding of the correlation between model parameters and the

actual neural network, contributing to more accurate predictions and interpretations in neural

systems research.
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CHAPTER 3: MATERIAL & METHODS

3.1. Data source and analysis

3.1.1. The source and statistical analysis of magnetic resonance imaging data

The data used in this study for SC and FC of schizophrenic patients and healthy controls were

obtained from the Zenodo platform's publicly available dataset89. This dataset comprises 27

healthy participants and 27 schizophrenia patients (https://zenodo.org/record/3758534). All data

were acquired using a 32-channel head coil in a 3-Tesla MRI scanner. Schizophrenic patients

were recruited from the general psychiatric services at the University Hospital of Lausanne and

met the DSM-IV criteria for schizophrenia and schizoaffective disorders. Healthy control

participants were recruited through advertisements and assessed using genetic research

diagnostic interviews. Participants with severe mood disorders, psychosis, or substance use

disorders, and those having first-degree relatives with psychiatric illnesses were excluded.

Supplementary information about the participants is presented in Table 3-1.

Table 3-1 Subject Information

Healthy Controls Schizophrenia Patients

Number 27 27

Age (years) 35±6.8 41±9.6

Medication

Dosage (mg)
0 431±288

The signal acquisition sequences consisted of the following: (1) Structural MRI: Magnetization

Prepared Rapid Gradient Echo (MPRAGE) sequence with a slice resolution of 1mm, slice

thickness of 1.2 mm, and a voxel size of 240×257×160. TR, TE, and TI were 2300, 2.98, and

900 milliseconds, respectively; (2) Diffusion MRI: Diffusion Spectrum Imaging sequence with

128 diffusion-weighted images at b0 as reference, maximum b-value of 8000 s/mm2, acquisition

time of 13 minutes and 27 seconds, voxel size of 96*96*34, resolution of 2.2*2.2*3.0 mm, TR

of 6100 ms, and TE of 144 ms; (3) fMRI: Acquisition of an 8-minute resting-state fMRI (voxel

size 3.3*3.3*3.3mm, TR = 1920ms, TE = 30ms, 32 slices, flip angle 85°). During fMRI

https://zenodo.org/record/3758534
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acquisition, participants were instructed to remain awake and refrain from performing any tasks.

The structural and diffusion MRI data were utilized for estimating weighted and undirected SC

matrices within the connectivity mapping toolbox. Initially, the structural data underwent

segmentation into white matter, gray matter, and cerebrospinal fluid, followed by linear

registration to the b0 volume of the DSI dataset. Subsequently, a Lausanne multiscale atlas was

employed for segmenting gray matter into 66 cortical regions and 17 subcortical regions, totaling

83 brain areas. Moreover, these 83 brain regions were further parcellated into 129, 234, 463, and

1015 regions. Deterministic streamlined tractography estimated 32 diffusion directions per voxel,

reconstructing SC matrices from the DSI data. A normalized connectivity density was employed

to quantify structural connections between brain regions, defined as follows:
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where 'Wij' represents the connection between brain regions i and j, 'Si' denotes the surface areas

of regions i, 'f∈Ef' signifies a streamline 'f' belonging to the set of streamlines 'E', and 'l(f)'

represents the length of a given streamline 'f'.

The FC matrix is computed based on the fMRI BOLD time series. Initially, four time points

were removed, resulting in a total of T = 276 time points for assessment. Rigid-body registration

was applied to each time slice for motion correction. Subsequently, signal linear detrending,

physiological nuisance correction through regression of white matter, cerebrospinal fluid, and six

motion signals, and further correction for motion artifacts were performed. Finally, spatial

smoothing and bandpass filtering of signals were executed using a Hamming window with an

FIR filter within the range of 0.01-0.1 Hz. Linear registration between the mean fMRI and

MPRAGE images was conducted to obtain ROI time series. The FC matrix was derived by

computing Pearson correlations among time series of each brain area. All these procedures were

executed within the subjects' imaging native space using the Connectome Mapper toolbox,

Python, and Matlab scripts.

To construct the functional connectivity (FC) matrix for each subject, the method of computing

Pearson correlation coefficients between different brain regions' BOLD signals is utilized.

Specifically, assuming the BOLD signal of brain region i is represented as A and the BOLD
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signal of brain region j is represented as B, the value of functional connectivity FCij can be

calculated as:
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The Pearson correlation coefficient in the functional connectivity matrix takes real values

ranging from 0 to 1 and does not follow a normal distribution. To improve the efficiency of

analyzing the functional connectivity matrix, this study employs the Fisher-Z transformation to

convert Pearson correlation coefficients. The specific transformation formula is as follows:
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With this formula, one can transform the original Pearson correlation coefficients into Fisher-Z

values that follow a normal distribution, thus facilitating better analysis and processing.

3.1.2. Genetic data and mapping methodologies

The establishment of heterogeneous models involves the utilization of receptor gene data from

the Allen Human Brain Atlas (AHBA) and necessitates the introduction of additional terms in

the model. The objective is to compare the macroscopic effects and dynamic changes of different

receptors and neurotransmitters in various brain regions, aiming to analyze the underlying

pathogenic mechanisms of schizophrenia. The specific methodologies are elaborated in the

section "Wilson-Cowan single brain region neural field model", akin to adjusting two parameters

governing the firing rates of excitatory and inhibitory neuronal populations based on gene

expression levels90.

By dissecting the intricate interactions between genetic factors and brain function, avenues for

precision medicine approaches can be paved, enabling diagnostics tailored to specific neural

circuits and the development of targeted therapeutic interventions for neuro-psychiatric patients.

Despite the availability of openly accessible datasets like AHBA, variations in researchers'

methodologies can lead to disparate experimental outcomes using the same data, as the choice of

data processing methods can influence study results to some extent. Some key steps include re-
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annotating gene expression data probes, data filtering, probe selection, mapping samples to brain

region spaces, mitigating the impact of individual differences, and accounting for spatial effects.

Standardizing the steps for genetic data is crucial and adopting standardized and systematic

mapping methods becomes paramount. Standardization procedures aid in establishing more

reliable benchmarks for human brain genetics, facilitating data exchange and sharing within the

field. By employing these methods, consistency, and reproducibility are ensured when dealing

with intricate, complex data. Abagen, encompassing procedural workflows for genetic data, is an

exemplary toolbox meeting these requirements. It helps reduce various types of errors, enhancing

result reliability, and enabling comparability across studies or experiments91,92.

Specifically, to accurately align microarray samples to brain atlases, gene microarray data is

mapped to cortical or subcortical spaces in volume space by minimizing the three-dimensional

Euclidean distance between microarray samples and template coordinate points. In cases of

multiple adjacent regions, determining the closer one involves calculating the centroid of

neighboring areas. For areas not directly sampled, any blank areas are assigned the expression

value of the nearest tissue sample (defined as the sample with the smallest Euclidean distance to

the centroid of the partitioned brain region); an iterative expansion searches neighboring samples,

extending the search space (in 1 mm increments) outward by 2 mm to include nearby voxels.

During the exploration of mapping data onto graphs, it is essential to first calculate the Spearman

correlation between the expression values of each probe across all donors' brain regions.

Computing the average of these correlations and selecting probes with the highest correlations

ensures the robustness of probe detection results. Additionally, normalization of the expression

values of individual genes in microarray data for each sample and donor is crucial93, achieved by

normalizing microarray values using a sigmoid function:
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where <x> denotes the median and IQRx represents the normalized interquartile range of a given

microarray expression value, computed as follows:
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These values are then rescaled to the unit interval using a linear normalization function:
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Finally, averaging the corresponding values within each region and partitioning them into

regions yields the average gene expression values for 83 regions of interest (ROIs). Visualization

of the mapping results obtained after using Abagen is illustrated in Figure 3-1.

Figure 3-1 Display of Original Microarray Data and Mapping Results. (a) Partial

display of original microarray data from the Allen Brain Atlas. (b) Example mapping

results, visualizing expression data of the HTR1A receptor mapped to the Lausanne

atlas.
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3.2. Develop neural network models of brain activity obtained using MRI
imaging

The delineation of brain regions is crucial for brain modeling. Brain modeling often relies on

accurate brain region parcellation templates, enabling researchers to represent brain structure and

function precisely in computational models94. These templates offer detailed descriptions of

brain structure, dividing the brain into different regions and defining the spatial locations and

connectivity patterns of these regions. In brain modeling, these templates provide a fundamental

framework, allowing researchers to accurately simulate and explore the structure and function of

the brain. By utilizing brain region parcellation templates, researchers can reproduce the true

organization of the brain in computational models, facilitating in-depth investigations into brain

activity and function95.

Since brain region parcellation templates provide essential guidance and a foundation for brain

modeling, studies on brain atlases play a critical role in delineating the complex structure of the

human brain. Recent research emphasizes improvements in multi-atlas segmentation techniques,

aiming to propose methods that enhance the accuracy and precision of brain region delineation,

ultimately allowing for a more comprehensive understanding of neural structure and function96,97.

Techniques such as joint label fusion98, local weighted voting99, and automated anatomical

labeling100 exemplify the continuous efforts of scholars to improve.

Currently, widely used anatomical atlases include the Desikan-Killiany101, AAL102 (Automated

Anatomical Labeling), MNI152103 (Montreal Neurological Institute), and Lausanne atlases. By

segmenting the brain into regions with specific anatomical and functional attributes, these atlases

serve as indispensable tools for analyzing inter-regional differences and understanding the

complex organization of the brain.

This study employed data from 27 patients with schizophrenia and 27 healthy controls, using the

83 brain region template from the Lausanne atlas for segmentation. This resulted in a structural

connectivity (SC) matrix and functional connectivity (FC) matrix of size 83*83 for subsequent

analyses. This whole-brain template comprises cortical and subcortical regions, with the 83 brain

region SC and FC matrices used in the study consisting of 66 cortical regions and 17 subcortical

regions. Specifically, subcortical regions include the insula, thalamus, caudate nucleus, putamen,
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pallidum, ventral tegmental area, hippocampus, amygdala, and brainstem.

Table 3-2 lists the arrangement positions and corresponding English names of each brain region.

Figure 3-2 illustrates partial SC and FC matrices of some patients with schizophrenia and normal

controls.

Table 3-2 Brain region arrangement and names

Brain region identifiers Brain region names Brain region identifiers Brain region names

1, 43 lateralorbitofrontal 22, 64 pericalcarine

2, 44 parsorbitalis 23, 65 lateraloccipital

3, 45 frontalpole 24, 66 lingual

4, 46 medialorbitofrontal 25, 67 fusiform

5, 47 parstriangularis 26.68 parahippocampal

6, 48 parsopercularis 27, 69 entorhinal

7, 49 rostralmiddlefrontal 28, 70 temporalpole

8, 50 superiorfrontal 29, 71 inferiortemporal

9, 51 caudalmiddlefrontal 30, 72 middletemporal

10, 52 precentral gyrus 31, 73 bankssts

11, 53 paracentral gyrus 32, 74 superior temporal

12, 54 rostralanteriorcingulate 33, 75 transversetemporal

13, 55 caudalanteriorcingulate 34, 76 insula

14, 56 posterior cingulate 35, 77 thalamus proper

15, 57 isthmuscingulate 36, 78 caudate

16, 58 postcentral gyrus 37, 79 putamen

17, 59 supramarginal 38, 80 pallidum

18, 60 superior parietal 39, 81 accumbensarea

19, 61 inferior parietal 40, 82 hippocampus

20, 62 precuneus 41, 83 amygdala

21, 63 cuneus 42 brainstem

A critical component of this modeling study is the Wilson-Cowan model and the blood oxygen

level-dependent (BOLD) model, where the Wilson-Cowan model provides simulation of neural



24

field activity, while fMRI relies on the BOLD signal, translating neural activity into BOLD

signals. This enables matching simulated data with experimental data, facilitating the evaluation

of simulation results. The Wilson-Cowan model is a simplified model of neuronal population

dynamics that uses a mean-field approach104, neglecting many details between neurons such as

chemical synapses and morphological features. It is a mathematical model used to describe the

activity of neuronal populations, based on interactions between neurons to simulate the activity

of neuronal populations, primarily used to study the dynamic properties of neuronal population

activity. The model's construction is based on the following assumptions:

(1) Neuronal populations can be divided into several interacting subpopulations, with

interactions between neurons within each subpopulation.

(2) The activity state of each neuronal population can be represented by variables, such as

the action potential frequency of neurons.

(3) The interactions between neurons can be represented by functions describing the

mutual influence of neuronal activity states.

Figure 3-2 The schizophrenia group and the control group experienced SC and FC; a

subset of the raw data have been presented. A. SC and FC of the control group. B. SC

and FC of the schizophrenia group.

In this study, the whole-brain model treats each brain region as a set of Wilson-Cowan dynamic

equations, comprising excitatory and inhibitory neurons. Each pair of differential equations
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forms a unit cell, describing the temporal evolution of two mutually coupled inhibitory and

excitatory neuronal populations using mean-field methods55. The model employs nonlinear

functions to represent interactions between neuronal populations, assuming that the neural circuit

model in each brain region is composed of local networks formed by excitatory and inhibitory

neuronal populations coupled by synaptic connections. The interactions between neuronal

populations are described by connection weights estimated based on anatomical connectivity

data57. The numerical simulation method is commonly used to solve these equations, employing

Euler's method or the Runge-Kutta method to approximate the differential equations.

The simulation of the whole brain is constructed using multiple coupled Wilson-Cowan models,

with each model including the neural circuit architecture of a single brain region. These models

consist of locally interconnected excitatory and inhibitory neuronal populations within each brain

region, as illustrated in Figure 3-3.

Figure 3-3 Conceptual diagram of the model. Here, JEE represents the synaptic strength

between excitatory neurons, JEI signifies the strength of connections from inhibitory to

excitatory neurons, JIE indicates connections from excitatory to inhibitory neurons, and

JII represents the synaptic strength between inhibitory neurons.

The neural circuit model of each brain region consists of local networks formed by excitatory

and inhibitory neuronal populations coupled via synaptic connections. External inputs come from

excitatory populations of other brain regions.
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3.2.1. Wilson-Cowan single brain region neural field model

This study establishes a large-scale brain model consisting of 66 cortical regions and 17

subcortical regions, providing a precise and simplified representation of real pulse networks at

the mathematical level. The neuronal types within the network are diverse, encompassing

neurons with excitatory and inhibitory synaptic receptors. In the model, these neurons are

organized into inhibitory and excitatory populations in an orderly manner to simulate the

complex interactions and dynamic balance in the brain. Notably, the coupling of individual

regions in the model is initially achieved through an empirical structural connectivity (SC)

matrix, ensuring a high degree of realism and practicality in both structure and function. The

establishment of this brain model provides a powerful tool for delving into the workings of the

brain56, as depicted in Figure 3-3. Assuming each brain region as a local network of excitatory

and inhibitory populations and utilizing the Wilson-Cowan equations to characterize their

dynamic behavior90, the global brain dynamics of the interconnected local networks in this study

can be succinctly and consistently described by the following set of coupled differential

equations:
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where 'i' serves as the identifier of brain regions, 'r iE,I' stands for the firing rates of excitatory and

inhibitory neuronal populations, 'τ iE,I' represent the time constants for these populations, the term

'ξ i
E,I (t)' signifies the intensity of Gaussian white noise, with zero mean and standard deviation,

specific to both excitatory and inhibitory neuronal populations, and the function 'Φ(x)' is the

transfer function, converting electrical current into firing rates.

Within the microcircuit, synaptic inputs are denoted by JEEr iE、JEIr iI、JIEr iE、JIIr iI , where JEE
signifies the strength of excitatory-excitatory synaptic connections, JEI represents inhibitory-

excitatory synaptic connection strength, JIE indicates excitatory-inhibitory synaptic connections,

and JII signifies inhibitory-inhibitory synaptic connections. The term 'Ib' symbolizes background
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current, while 'I ex t
E,I ' denotes external currents for both excitatory and inhibitory neuronal

populations.

To formulate equations describing the dynamics of the entire brain, this study introduces a

coupled current I i
g constrained by the brain's structural connectivity (SC)56 into the excitatory

neuronal groups of microcircuit models. This coupled current is designed to receive the coupled

currents from other brain regions' excitatory neuronal groups. Building upon this framework, we

introduce a global coupling factor G for weighting, as described in the following equation:
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By applying a global coupling factor G for weighted processing, this study effectively regulates

the dynamic stability of the system.

Figure 3-4 illustration of Incorporating Transcriptomic Data into the Model.

Furthermore, the constraint of transcriptomic data in the model is manifested as the adjustment

of neural population gains, which are achieved through parameterized transfer functions Φ(x).

This function determines how neural populations convert received currents into firing rates.

Transcriptomic data provide information about gene expression within neural populations, which
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can be used to adjust the parameters of Φ(x), thereby influencing the response characteristics and

interaction strength of neural populations. This model adjustment based on transcriptomic data of

gene expression levels within neural populations enables a more accurate simulation of the

intrinsic behavior of neural populations, as illustrated in Figure 3-4.

The introduction of gain parameters ap for excitatory and inhibitory neuronal population p∈{E,I}

in the model allows for scaling proportionally to the regional gene expression levels, as

specifically introduced through the following expressions:
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Following model simulations, average firing rate of each brain region was obtained, as depicted

in Figure 3-5 (excitatory firing rates) and Figure 3-6 (inhibitory firing rates). The results indicate

that certain brain regions such as the superior frontal gyrus, angular gyrus, and thalamus exhibit

higher average excitatory firing rates compared to others, while regions like the precentral gyrus

and the superior frontal gyrus display relatively lower average excitatory firing rates. Concerning

inhibitory firing rates, regions like the orbitofrontal cortex and thalamus show relatively higher

average inhibitory firing rates, whereas the superior frontal gyrus also presents higher average

inhibitory firing rates

 

 

 

   

 

 

 

where subscript ‘i’ represents brain regions, and 'hi' represents the expression level of

receptors in brain region 'i', provided by transcriptomic data, while 'δE' and 'δI' are used to 

modulate the amplitude of excitatory and inhibitory population currents, respectively. In 

Equation (3-10), when ap equals 1, the transfer function in this case is identical to the original 

transfer function in the Wilson-Cowan equation.

.
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Figure 3-5 illustration of the average excitatory firing rates across various brain regions

obtained through model simulations. Due to space constraints, only results for four

subjects are displayed.
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Figure 3-6 illustration of the average inhibitory firing rates across various brain regions

obtained through model simulations. Due to space constraints, results for only four

subjects are presented.



31

Given that schizophrenia may involve multiple brain regions21,28,60, it is essential to consider the

functions and interactions of multiple brain regions comprehensively. Specific brain regions may

play crucial roles in the onset of schizophrenia, potentially responsible for the processing of

important functions such as emotion, cognition, and social interaction20,22. When the activity in

these regions becomes abnormal, it may lead to various symptoms in individuals with

schizophrenia. Therefore, these simulation results provide clues for further investigating the

pathogenesis of schizophrenia.

3.2.2. Blood oxygen level dependence model

When the brain is activated, neuronal activity consumes oxygen and glucose, leading to an

increase in local blood flow, an increase in oxygenated hemoglobin, and a decrease in

deoxygenated hemoglobin, thereby increasing the local cortical signal intensity105. This

physiological process can be simulated using the Balloon-Windkessel hemodynamic model11,12

(also known as the Balloon Model), a model used to describe changes in blood flow and oxygen

saturation during brain activation. This model considers the venous system in the brain as a

balloon, which expands when blood flow into the brain increases during activation, leading to

increased pressure until reaching a new steady state. The model can explain the dynamic

processes of changes in blood flow and oxygen saturation during brain activation. The

mathematical representation of the dynamic equations corresponding to this model are as follows:
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where s stands for vascular dilation signal, r represents neural activity signal, k indicates signal

decay rate, γ signifies the blood-flow-dependent elimination rate, f denotes cerebral blood

inflow, v represents blood volume, q represents baseline deoxyhemoglobin content, E0 = 0.34
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denotes the resting oxygen extraction fraction,τ indicates the blood oxygenation dynamics time

constant, and α = 0.32 represents the Grubb's constant. The blood oxygen signal can be

expressed through the Balloon-Windkessel model given by:
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where V0 = 0.02 represents the resting-state blood volume ratio, while k1、k2, and k3 denote

signal decay rates, given respectively by 2.38, 2, and 0.48, and 'y' represents the blood oxygen

signal.

Figure 3-7 The process of BOLD signal simulation for control group subjects in the

model. (a) Firing rates of excitatory and inhibitory neuronal population for 480s; (b)

The simulated signal; (c) The simulated BOLD signal after downsampling for 480s.

To obtain simulated BOLD signals closer to experimental data, this study used a whole-brain

computational model to generate simulated electrical signals with a sampling frequency of 1000

Hz and a duration of 500 seconds. To reduce errors, the first 20 seconds of signal data were

discarded. Subsequently, the Balloon-Windkessel hemodynamic model was employed to

transform the simulated neural activity signals. Based on the simulated firing rate signals,

simulated BOLD signals were generated, followed by downsampling to match the temporal

resolution of experimentally acquired BOLD signals. The simulated signals obtained through
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these processes are shown in Figure 3-7 and Figure 3-8.

After obtaining the BOLD signals of each brain region simulated by the model, the Pearson

correlation coefficients between the BOLD signals of each brain region and all other brain

regions were calculated. Through this step, a simulated functional connectivity (FC) matrix with

dimensions of 83*83 was obtained. When constructing this matrix, the diagonal elements were

set to 0 to avoid calculating the correlation between any brain region and itself. To ensure the

stability and reliability of the results, the above process was repeated 7 times, each time

generating a simulated FC matrix. Finally, the average of these 7 matrices was calculated to

obtain an averaged simulated FC matrix, which more accurately reveals the functional

connectivity patterns between brain regions.

Figure 3-8 The process of BOLD signal simulation for schizophrenia group patients in

the model. (a) The firing rates of the excitatory and inhibitory neuronal population for

480s; (b) The simulated signal; and (c) The simulated BOLD signal after downsampling

for 480s.
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3.3. Model optimization methods

3.3.1. Optimization strategy for whole brain model

Utilizing the aforementioned model construction approach, we systematically varied the global

coupling factor G within the range of 0 to 0.8 with increments of 0.025. The aim was to select

the G value corresponding to the maximum correlation, thus obtaining simulated average

functional connectivity (FC) as a preliminary FC simulation. The search process yielded initial

optimal simulation results, as depicted in Figure 3-9.

Figure 3-9 Traversing the coupling factor G to simulate the optimal functional

connectivity. (a) Empirical structural connectivity matrix; (b) Empirical functional

connectivity matrix; (c) Variation of the influence of coupling factor G on correlation

during the traversal process; (d) Preliminary simulated functional connectivity matrix

based on the aforementioned analysis.
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However, the simulated FC matrix generated solely from the initial structural connectivity (SC)

matrix exhibited relatively low similarity to the experimental FC matrix, manifesting some

missing connections and thus failing to fully replicate the genuine dynamics of the whole brain.

Consequently, new algorithms need to be proposed for optimization.

Figure 3-10 The iterative optimization process. (a) The change in correlation between

empirical FC and simulated FC as the threshold decreases. (b) The addition of new

connections within and between hemispheres as the threshold decreases from 1 to 0. (c)

The optimal SC matrix (threshold at 0.175). (d) The optimal FC matrix (threshold at

0.175).

In this study, the iterative self-consistency enhancement process based on empirical FC-SC is

implemented through the following steps:

First, empirical SC matrix SCe is used to simulate neural and synaptic activities in each region
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using the Wilson-Cowan model and generate BOLD signals through the balloon model. During

this process, the global coupling parameter G is adjusted to operate the system at the edge of

spontaneous instability bifurcation. Pearson correlation coefficients of BOLD signals between

different brain regions are computed to obtain a simulated FCs matrix. The obtained FCs are then

fitted with empirical FC data FCe, and the differences between the connections are compared.

Next, based on FC data, iterative enhancement of the SC matrix is performed. The algorithm sets

the threshold level T to 1 initially, and for connections with differences exceeding T, SCij is

modified according to the inversion rules proposed by Deco et al54. In the next iteration, the new

SC matrix is used to constrain the whole-brain model. Subsequently, the error level is gradually

reduced (e.g., by decreasing T from 1 to 0.025 in increments of 0.025), and the fitting between

simulated FCs and empirical FCe is reassessed. This process continues until the error level

reaches the predefined minimum. In summary, this algorithm is integrated with the Wilson-

Cowan model to enhance the fitting between simulated FCs and empirical FCe by adjusting SC

weights. The iterative process and related illustrations are shown in Figure 3-10.

Through optimization analysis, it is observed that when the threshold is adjusted to 0.175, the

fitting between simulated functional connections (FC) and empirical FC reaches its highest level,

approximately 0.74 (Pearson correlation coefficient). Furthermore, as the threshold gradually

decreases from 1 to 0, the addition of new connections within and between hemispheres shows

varying degrees of growth. Specifically, interhemispheric connections increase by 32.37%, while

intrahemispheric connections increase by 21.85%. These changes indicate that by moderately

increasing effective connections, this study can more accurately replicate the overall brain

dynamic processes. Based on the above analysis, this study concludes that the optimal

performance of the corresponding structural connectivity (SC) matrix and functional connectivity

(FC) matrix is achieved when the threshold is set at 0.175.

3.3.2. Parameter optimization process based on Bayesian optimization

Optimization is a process of locating points aimed at minimizing a real-valued function (i.e., the

objective function). Traditional optimization methods, such as grid search, have certain

limitations in practical applications. One notable drawback is their high computational cost. Grid

search systematically explores all possible combinations of parameters, resulting in exponential
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growth in time complexity as the number of parameters increases. Especially in cases with

numerous model parameters, this method may become impractical. Additionally, these methods

face challenges when dealing with continuous parameters, as they require discretizing the

parameter space, potentially overlooking optimal values within the parameter space. Moreover,

these traditional methods lack flexibility during the search process, making it difficult to

dynamically adjust the search space based on temporary results. Therefore, despite their

simplicity and ease of use, these techniques encounter significant limitations when dealing with

complex and extensive parameter spaces.

Among various optimization methods, Bayesian optimization stands out prominently. This

optimization demonstrates outstanding performance in searching the parameter space by

optimizing sample points to reduce computational costs while swiftly identifying the optimal

parameter combination. This method significantly enhances the fitting performance of

mathematical models, particularly in fields such as human brain research involving high-

dimensional space attributes106.

Its advantages mainly manifest in several aspects: Bayesian optimization accelerates the search

for the optimal solution by employing efficient strategies to select sample points through

predictive modeling. Compared to random search or fixed-step methods, it avoids inefficient

search paths, significantly improving search efficiency. Moreover, Bayesian optimization

significantly reduces computational resources and time consumption compared to traditional

methods. Its intelligent sampling strategy enables obtaining optimal results with fewer iterations,

thereby reducing computational costs. Additionally, Bayesian optimization can automatically

adjust sampling strategies based on previous observation results, dynamically adjusting the

position of the next sample point. This feature allows the method to maintain a high possibility

of accommodating optimal solutions even in addressing complex non-convex optimization

problems. It is worth mentioning that it does not rely on gradient information, thus possessing

unique advantages in optimizing complex models where computing gradients or function costs

are expensive. Additionally, owing to its probabilistic model characteristics, it excels in

identifying global optimal solutions rather than being limited to local optimal solutions, which is

crucial for solving certain practical problems.

As for the method itself, Bayesian optimization is a probabilistic model-based optimization
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method, assuming that the prior distribution of the target function follows a Gaussian process. It

utilizes surrogate models such as Gaussian processes for approximation and continuously

evaluates the objective function to select the next point most likely to lead to optimization.

During the iteration process, Bayesian optimization continuously employs a "sampling function"

strategy to search for the optimal solution globally. Based on the latest sampling results, the

Bayesian theorem is applied to derive the posterior distribution of the function. At each selected

parameter point, the algorithm probabilistically evaluates based on the current surrogate model.

After each sampling round, the surrogate probability model is updated. This process continues

until convergence is achieved.

Based on the above analysis, the process of Bayesian optimization can be outlined as follows:

1. For each sampling point t = 1, 2, ..., perform the following steps:

2. Optimize the surrogate model Gaussian process GP to find the optimal solution xt。

)|(maxarg 1:1  txt Dxux (3-14)

3. Define the objective function for the sample as:

ttt xfy  )( (3-15)

4. Add the new sample (xt, yt) to the sample set D1:t, and then update GP:

)};(,{ 1:1:1 tttt yxDD  (3-16)

5. Repeat the above steps until the termination condition is met.

Here, x represents the parameter vector, corresponding to model parameters in this paper; y

represents the observation value corresponding to x, corresponding to the similarity between the

model output matrix and the empirical matrix; u represents the sampling function; D represents

the set of observation data; f is the target function to be estimated, which in this study can be

regarded as the relationship function between the model parameter vector and the fitting result;

to avoid falling into local optima, a bias εt is usually added at (3-15).

There are two important components in the process: the posterior distribution of the target and
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the sampling function. Focusing first on the posterior distribution, when accumulating

observation values D1:t = {x1:t,y1:t}, the prior distribution P(f) is combined with the likelihood

function P(D1:t|f) to maximize the posterior probability given the observation values:
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Because P(D1:t) in the f space is constant given the sample D1:t, it can be simplified as:
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This simplifies to:

)()|()|( :1:1 fPfDPDfP tt  (3-19)

The posterior distribution captures updated information about the unknown target function and

can also replace the target function f at this step with the acquisition function (surrogate function).

The core idea is to use the Gaussian process model to characterize the target function and

gradually improve model accuracy by evaluating this function107.

The Gaussian process (GP) is an extension of the multivariate Gaussian distribution to infinite-

dimensional random processes. Its characteristics lie in maintaining the attributes of Gaussian

distribution for any finite combination in dimensions. Similar to how the Gaussian distribution is

a distribution of random variables fully determined by its mean and covariance, the distribution

characteristics of Gaussian processes on functions are determined by its mean function m and

kernel function k:

)),(),((~)( 'xxkxmGPxf (3-20)

Intuitively, GP is analogous to the target function, except that it does not return a scalar f(x) for

any x, but rather the mean and variance of the normal distribution corresponding to the x value.

Among the many kernel functions, one typical example is the exponential square function with

an ARD (automatic relevance determination) vector108:
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Where diag(θ) is a diagonal matrix with θ on the diagonal, generally resulting in a function close

to 1 when x values are close, and close to 0 when x values are separated. Assuming that {x1:t} has

been sampled from the prior, and the values of the function are sampled at these indices to

generate the sample pair set {x1:t, fi:t} (where f1:t= f(x1:t)). Function values are drawn according to

the multivariate normal distribution N(m(x), K), where the kernel matrix is:
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For example, after t sampling iterations, accumulated observation samples D1:t = {x1:t, y1:t}.

Because any point ft+1 and previous observation data in the Gaussian process follow a joint

Gaussian distribution,
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Where,

]),(),(),([ 12111 tttt xxkxxkxxkk   (3-24)

Given the prior mean function as the zero function here, i.e., m(x) = 0, the expression for

predicting the distribution of the sample point after using existing observation data is derived

using the Sherman-Morrison-Woodbury formula109:
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Where the mean and variance functions are:
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The acquisition function plays a crucial role in the Bayesian optimization algorithm, guiding the

algorithm to select the next evaluation point, thus achieving a balance between modeling low-

value areas of the objective function and exploring areas of insufficient modeling. Through

continuously iterating and refining estimates, Bayesian optimization eventually converges to the
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optimal parameter values.

Figure 3-11 The iterative process of the Bayesian optimization algorithm in the two-

dimensional parameter space of the Wilson-Cowan model. (a) Represents six typical

iterations (Iteration 2, Iteration 3, Iteration 4, Iteration 12, Iteration 13, Iteration 20); (b)

The variation of the estimated proxy value and the sampled observation value with the

number of iterations.
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Figure 3-11 illustrates the iterative process of the algorithm in practical use, employing Bayesian

optimization in the two-dimensional parameter space of the Wilson-Cowan model. After only

twenty iterations of searching the parameter space, the results gradually converge.

In the initial state, the surrogate model significantly differs from the true function; after the 3rd

and 4th iterations, the surrogate model improves but still deviates from the truth; by the 12th

iteration, the surrogate model finds a local optimum; after the 13th iteration, it quickly converges

to that point; the algorithm converges to the global optimum in the 20th iteration.

It is noteworthy that Bayesian optimization is not a panacea; its performance depends largely on

the nature of the objective function and the complexity of the search space. However, with

appropriate prior settings and flexible sampling function selection, Bayesian optimization

demonstrates powerful global optimization capabilities in many practical problems.

3.3.3. Riemann distance

In the intersection of neuroscience and genetics, a pivotal issue is how genes influence brain

function. With advancements in scientific technology, researchers are increasingly recognizing

the highly complex mechanisms through which genes affect brain function110,111. These

mechanisms may exhibit non-linear and non-Euclidean characteristics, a viewpoint gradually

gaining recognition in the scientific community.

Firstly, the influence of genes on the brain is not a simple one-to-one relationship. Humans

possess tens of thousands of genes, each of which may play different roles in various

circumstances. Even different alleles of the same gene may lead to markedly different outcomes.

This complexity renders the influence of genes on brain function non-linear.

Secondly, the brain itself is a highly complex network structure, comprised of billions of neurons

and synapses interconnected. These connections form intricate networks, and genes play crucial

roles in influencing the number of neurons, the structure and function of synapses, and even the

connectivity of neural networks. This influence is largely non-Euclidean, as it involves highly

complex network structures and dynamic processes, rather than simple linear relationships. To

better understand the impact of genes on brain function, more advanced statistical and

computational methods need to be developed to analyze and interpret the vast amount of genetic



43

and neuroscience data.

To accurately quantify the similarity of brain functional connectivity matrices, selecting

appropriate comparison methods becomes crucial112. This method not only directly affects the

model construction process but also determines, to some extent, the effectiveness and

generalization ability of the model. Traditional methods for comparing matrix similarities often

lead to overfitting during the optimization process of large parameter spaces, thereby limiting the

model's performance on other datasets.

In the exploration of the human brain, scientists have discovered the unique advantages of using

Riemannian distance as the loss function to measure the similarity of mathematical model fits.

Compared to traditional Euclidean distance, Riemannian distance performs better when dealing

with non-linear parameter spaces, capturing the complex features of actual brain dynamics and

model simulation results more accurately113.

Riemannian distance considers the curvature and non-Euclidean geometric structure of parameter

spaces, reflecting the differences between data more accurately. This characteristic makes

Riemannian distance more biologically relevant in the study of brain functional connectivity

matrices, aiding in a deeper understanding of the complexity of the human brain. Adopting

advanced comparison methods like Riemannian distance allows for a more accurate

measurement of model fit similarity.

Furthermore, Riemannian distance possesses several advantages. Firstly, in terms of convergence

speed, models using Riemannian distance as the loss function typically converge faster. This is

because Riemannian distance metrics consider the geometric structure on positive definite matrix

manifolds, allowing the model to search more effectively along the manifold during optimization,

thereby finding the optimal solution more quickly. In contrast, traditional distances do not

consider the manifold structure, which may cause the model to deviate from the optimal solution

during optimization, thereby increasing convergence time.

Secondly, in terms of accuracy, models using Riemannian distance as the loss function usually

achieve higher accuracy. This is because Riemannian distance metrics more accurately reflect

the distance relationship between points on positive definite matrix manifolds, allowing the

model to better learn the inherent patterns of the data during training. Meanwhile, Euclidean
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distance, due to ignoring the manifold structure, may cause the model to learn surface features of

the data during training, thereby reducing the model's accuracy.

Lastly, in terms of robustness to outliers, models using Riemannian distance as the loss function

typically exhibit stronger robustness. This is because Riemannian distance metrics are more

sensitive to shape changes in matrix manifold space, enabling the model to better identify and

handle outliers. Meanwhile, Euclidean distance does not possess this characteristic, which may

lead to poorer robustness when the model encounters outlier data.

Essentially, the Riemannian distance is a metric used to measure the geodesic distance between

two points on a Riemannian manifold114. The formula for computing geodesic distance is as

follows:
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where P1 and P2 are two points in the Riemannian space. This formula reveals the fundamental

principle of using the metric tensor to calculate the geodesic distance between two points on a

Riemannian manifold.

Because FC typically falls within the realm of covariance matrices, when manipulating these

matrices, operations leverage their inherent properties as Symmetric Positive Definite (SPD)

matrices, which are part of the unique structure of Riemannian manifold114. Specifically, for

P∈S(n) (where S(n) is defined as the set of all n×n symmetric matrices) and any vector u∈Rn，

uTPu>0. This endows it with the property of explicit formulaic operations on Riemannian

manifolds. Riemannian geometry provides a rich framework for operating on these matrices,

facilitating algorithm implementation.

Assuming the space of positive definite matrices P(n) is a differentiable Riemannian manifold,

the tangent space is associated with each point on the manifold, representing the space of

minimal variations at that point. On the manifold of Symmetric Positive Definite (SPD) matrices,

the tangent space lies within the space of SPD matrices at the corresponding point. Each point on

the tangent space has an inner product <.>P, corresponding to the angle and magnitude between

two vectors on the tangent space. This inner product, associated with each point on the tangent

space, allows for smooth variation between different points. It is used to define the natural metric
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on the manifold of positive definite matrices, i.e., a distance metric defined at each point on the

manifold reflecting its local geometric properties. In this case, the natural metric is defined by

the local inner product formula:
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This metric smoothly varies with changes in points on the manifold.

Furthermore, assuming the space of positive definite matrices P(n) is a differentiable

Riemannian manifold, the tangent space Tp lies within the corresponding space S(n) at the given

point. The introduction of Riemannian geodesic distance is represented by paths:

Γ(t):[0,1]→P(n), with length:
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Finally, by introducing the natural metric, the geodesic distance can be expressed as:
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where λi，i=1...n are the generalized eigenvalues of the matrix P - 1
1 P2. The logarithmic operation

for SPD matrices is obtained through the eigenvalue decomposition of P:

T
n UUdiagP ))log(),...,(log()(log 1  (3-31)

Then, the Frobenius norm of the matrix is given by the following expression:
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This Riemannian distance metric provides a theoretical basis for measuring the distance

relationship between points on the manifold of positive definite matrices.
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Figure 3-12 Parameter topology space using different distance metrics during model

parameter search. (a) Riemannian distance. (b) Euclidean distance.

Comparison of the results of model fitting using Riemannian distance and Euclidean distance as

loss functions (as shown in Figure 3-12) reveals differences between them in the parameter

topology space.
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CHAPTER 4: RESULTS

4.1. Single patient modeling

Personalized modeling, also known as single-subject modeling, is one of the core methods in

current research. Its importance lies in its unique information mining advantages and

indispensable data completeness. One of its key advantages is the ability to avoid the common

problem of key information loss in ensemble or group models. Customizing models for each

individual can overcome the limitations of ignoring individual differences in population analysis,

thus capturing complex subtle differences and specificities that may be overlooked115. This

precision can more accurately reflect the unique biological, physiological, or behavioral

processes of the research subjects.

With the development of computing technology, especially the widespread application of parallel

computing technology, the feasibility of modeling individual patients becomes increasingly

important. Parallel computing enables researchers to utilize vast computing resources to handle

computations that require complex simulations and analyses, thereby driving the implementation

of personalized modeling116. This computational capability greatly reduces the time required for

processing large-scale datasets and complex algorithms, accelerating the development and

refinement of personalized models117. Therefore, by leveraging parallel computing capabilities,

single-subject modeling has become an indispensable tool in contemporary scientific research,

deeply exploring personalized characteristics within populations and promoting customized

interventions across research fields.

When multiple simulations are required for each subject, the complexity of the task significantly

increases, and the demand for computational resources also grows exponentially. To address this

challenge, this study fully utilized computing resources, with cluster nodes serving as the

primary computing processors. By combining the advantages of cluster multi-core

multithreading and high storage performance, it provided powerful computing and data

processing storage capabilities for simulating and processing large-scale neural network models,

significantly reducing the time required for the simulation process. This approach not only

improves research efficiency but also provides strong support for in-depth exploration of the

application of personalized modeling in scientific research.
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In the current study, a thorough exploration of the parameter space of two sets of experimental

model parameters (G、τE、τI、JEE、JEI、JIE、JII) was conducted using Bayesian optimization

methods, and the experimental results are presented in Figure 4-1.

Figure 4-1 The results of the model parameter search using the Bayesian optimization

method are as follows: (a) Model parameters for the control group. (b) Model

parameters for the schizophrenia group.

Independent samples t-tests were conducted on each parameter in the two groups to assess

whether there were significant differences between the two groups. The results of the

calculations are as follows: Independent samples t-test for G: p = 0.15326; Independent samples

t-test for τE: p = 0.1605; Independent samples t-test for τI: p = 0.6502; Independent samples t-test

for JIE: p = 0.6066; Independent samples t-test for JII: p = 0.40132; Independent samples t-test

for JEE: p = 0.6455; Independent samples t-test for JEI: p = 0.54600.

From these results, it can be observed that there were no significant differences in the

distribution of model variables between the schizophrenia group and the control group. Although

there were some differences between the parameters of the two groups, these differences did not

reach statistical significance. Therefore, the specific sources of differences between the two

groups cannot be determined at present, and further research and experiments are needed to

explore the underlying reasons.
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In the previous section, it was elaborated on how to construct a whole-brain model covering 66

cortical regions and 17 subcortical regions using the Wilson-Cowan equation, accurately

depicting the dynamic behavior of each brain region. Subsequently, personalized modeling was

conducted for each subject, and the firing rates of excitatory and inhibitory neuron populations in

each brain region were calculated through the model. Detailed results are shown in Figure 4-2

and Figure 4-3.

Figure 4-2 Envelope plots of firing rates for the control group: (a) Envelope plot of

excitatory neuron firing rates in different brain regions for 27 subjects in the control

group; (b) Envelope plot of inhibitory neuron firing rates in different brain regions for

27 subjects in the control group; (c) Envelope plot of the ratio between excitatory and

inhibitory firing rates in different brain regions for 27 subjects in the control group
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Figure 4-3 Envelope plots of firing rates for the schizophrenia group: (a) Envelope plot

of excitatory neuron firing rates in different brain regions for 27 subjects in the

schizophrenia group; (b) Envelope plot of inhibitory neuron firing rates in different

brain regions for 27 subjects in the schizophrenia group; (c) Envelope plot of the ratio

between excitatory and inhibitory firing rates in different brain regions for 27 subjects

in the schizophrenia group

After completing the group averages of firing rates and excitatory-inhibitory ratios, a statistical

analysis was conducted to determine whether there were significant differences between them.

The specific results are shown in Figure 4-4.

Through independent sample t-tests, it was found that the p-value for excitatory firing rates was

0.5714, for inhibitory firing rates was 0.5643, and for the excitatory-inhibitory ratio was 0.0783.

Under the significance threshold of 0.05, the null hypothesis could not be rejected, indicating

that there were no significant differences in firing rate data between the two groups at the

network level. However, from the perspective of the excitatory-inhibitory ratio, there was a near-

significant difference between the two groups.
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Based on this, firing rate signals from various brain regions simulated by the Wilson-Cowan

equation were used to model the BOLD signal using the Balloon-Windkessel hemodynamic

model. This model, based on hemodynamic principles, can simulate the hemodynamic response

of the brain during neural activity. Through this model, changes in BOLD signals in various

brain regions during neural activity can be obtained.

Figure 4-4 The firing rate and excitation inhibition ratio of the control group and the

schizophrenia group were compared

To quantify the functional connectivity between different brain regions, the Pearson correlation

coefficients of BOLD signals between each pair of brain regions were calculated. In this study, a

separate simulated functional connectivity (FC) matrix of size 83×83 was constructed for each

participant, where each element represented the functional connectivity strength between two

brain regions. To increase the stability and reliability of the results, the above process was

repeated multiple times in this study, and multiple simulated FC matrices were averaged to

provide a more stable estimation of functional connectivity. Ultimately, each participant obtained

an averaged FC matrix, the results of which are shown in Figure 4-5.

By observing Figure 4-5, it can be observed that the functional connectivity between different

brain regions exhibits a complex network structure. Some brain regions show positive

correlations, indicating that they tend to synchronize their activity during neural processes, while
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other brain regions may exhibit negative correlations, suggesting the presence of inhibition or

complementary relationships in their functions. Further analysis of these functional connectivity

patterns is needed to understand how the brain processes information and coordinates activities

between different brain regions.

When exploring the complex neural networks of the biological brain, the concept of connection

strength is particularly important as it provides essential references for weighted connections

between network nodes. In this study, these nodes represent neural populations in the brain, and

the connection strength reflects the efficiency and intensity of information exchange between

them, such as neuronal synchronization and signal transmission efficiency.

Figure 4-5 The simulated functional connectivity (FC) matrices for the control group

and the schizophrenia group. Due to space limitations, only partial data results are

displayed. Each lateral matrix represents the simulated FC matrix for a specific

participant. (a) Simulated FC for the control group. (b) Simulated FC for the

schizophrenia group.
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4.2. Computing and Analyzing Global Brain Connectivity

To assess the strength of connections between brain regions in the brain network, this study

computed the sum of the connectivity strengths of all edges directly connected to a brain region,

known as Global Brain Connectivity (GBC), and performed statistical analysis on the

connectivity at the level of brain lobes. The formula for calculating GBC is as follows:





N

i
iji w

N
GBC

1

1 (4-1)

where N represents the total number of network nodes, which is the total number of brain regions,

and wij represents the connection weight between node i and node j.

Table 4-1 Division of brain lobes

Brain Lobe Brain Region Name
Number of Brai

n Regions

Prefrontal Lobe

Lateralorbitofrontal, Parsorbitalis, Frontalpole,

Medialorbitofrontal, Parstriangularis, Parsopercularis,

Rostralmiddlefrontal, Superiorfrontal,

Caudalmiddlefrontal, Rostralanteriorcingulate,

Caudalanteriorcingulate

22

Frontal Lobe Precentral, Paracentral 4

Parietal Lobe
Posterior cingulate, Isthmuscingulate, Postcentral,

Supramarginal, Superiorparietal, Inferiorparietal
12

Occipital Lobe Precuneus, Cuneus, Pericalcarine, Lateraloccipital, Lingual 10

Temporal Lobe

Fusiform, Parahippocampal, Entorhinal, Temporalpole,

Inferiortemporal, Middletemporal, Bankssts,

Superiortemporal, Transversetemporal

18

Subcortical
Insula, Thalamusproper, Caudate, Putamen, Pallidum,

Accumbensarea, Hippocampus, Amygdala, Brainstem
17

To further analyze the differences in FC between the control group and patients with

schizophrenia, based on prior anatomical information, the brain regions in the atlas were
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classified according to the categories listed in Table 4-1. The brain was divided into six main

lobes: prefrontal lobe (PFL), frontal lobe (FL), parietal lobe (PL), temporal lobe (TL), occipital

lobe (OL), and subcortical regions (SUB)

Figure 4-6 The changes of functional connectivity strength with brain regions under

group average. (a) Comparison of empirical functional connectivity (FC) strengths

between the control group and the schizophrenia group; (b) Comparison of model-

simulated FC strengths between the control group and the schizophrenia group.

Subsequently, we can use Equation (4-1) to calculate the connectivity strength of each brain

region, and further compare the differences in connectivity strength between the control group

and schizophrenia patients at both brain region and lobe levels. These differences may reveal

abnormal changes in the brain network structure of schizophrenia patients, as shown in the

computational results in Figure 4-6 and Figure 4-7.
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Figure 4-7 Functional connectivity strength across brain lobes (a) Empirical functional

connectivity data at the lobe level; (b) Model-simulated functional connectivity at the

lobe level; (c) Model-simulated mean FC of the control group arranged by lobe order;

(d) Model-simulated mean FC of the schizophrenia group arranged by lobe order. Blue

represents the control group, and red represents the schizophrenia group.

Comparing the FC differences in these lobes between the control group and schizophrenia

patients, it can be observed that schizophrenia patients exhibit decreased functional connectivity

strength in multiple brain regions and lobes, especially in the frontal and temporal lobes. This
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finding is consistent with previous research results, further supporting the hypothesis of

abnormal brain connectivity in schizophrenia patients.

Specifically, schizophrenia patients show weakened FC in areas such as the lateral orbitofrontal

cortex, frontal pole, and superior frontal gyrus in the frontal lobe. The frontal lobe is responsible

for cognitive control, decision-making, and emotion regulation, among other higher-order

functions. Therefore, the reduction in FC in the frontal lobe may lead to functional impairments

in these cognitive and emotional domains in patients.

Furthermore, decreased FC is also observed in areas such as the temporal pole and superior

temporal gyrus in the temporal lobe. The temporal lobe is closely associated with functions such

as auditory processing, language comprehension, and memory. Hence, the decrease in FC in the

temporal lobe may affect the patients' auditory and language processing abilities, as well as

memory function.

The brain, as an extremely complex biological structure, contains billions of neurons and

synapses that are interconnected and interact with each other, forming an incredibly intricate

functional system. To better understand the workings of the brain, it is necessary to analyze and

discuss it from a network perspective. From the perspective of functional subnetworks, the brain

can be divided into six subnetworks: the Default Mode Network (DMN), Attention Network

(ATN), Auditory Network (AUN), Visual Network (VIS), Somatomotor Network (SMN), and

Subcortical Network (SUN). These networks perform different cognitive and functional tasks,

collectively constituting the intricate functional system of the brain. It is worth mentioning that

the Default Mode Network (DMN) is the most active one in the brain during rest. When at rest,

the DMN spontaneously activates and is responsible for processing thoughts related to self-

reflection, imagination, and memory. Research suggests that schizophrenia patients often exhibit

abnormalities in the DMN network. The division of subnetworks is detailed in Table 4-2.
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Table 4-2 Brain functional sub-network partitions

Subnetwork Brain Regions
Number of Regi

ons

Default Mode Netwo

rk (DMN)

Superior

frontal, Rostralanteriorcingulate, Caudalanteriorcingu

late, Posterior

cingulate, Isthmuscingulate, Inferiorparietal, Precune

us, Entorhinal, Middletemporal

18

Attention Network

(ATN)

Lateralorbitofrontal, Parsorbitalis, Frontalpole, Media

lorbitofrontal, Parstriangularis, Parsopercularis, Rostr

almiddlefrontal, Caudalmiddlefrontal, Superiorparieta

l

18

Auditory Network

(AUN)

Supramarginal, Temporalpole, Bankssts, Superiortem

poral, Transversetemporal, Insula
12

Visual Network

(VIS)

Cuneus,Pericalcarine,Lateraloccipital,Lingual,Fusifor

m
10

Sensorimotor Netwo

rk

(SMN)

Precentral,Paracentral,Postcentral 6

Subcortical Network

(SUN)

Parahippocampal, Inferior temporal, Thalamusproper,

Caudate, Putamen, Pallidum, Accumbensarea,

Hippocampus, Amygdala, Brainstem

19

Based on Table 4-2 and Equation (4-1), this study further analyzed the Global Brain

Connectivity (GBC) at the network level to compare the differences in connectivity strength

between the control group and schizophrenia patients. The results are shown in Figure 4-8.
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Figure 4-8 illustrates the changes in functional connectivity strength across brain

networks. Dashed boxes represent the control group, while solid-colored boxes

represent the schizophrenia group.

Independent sample t-tests were conducted on the GBC data for each network to assess whether

significant differences existed between the two groups. The calculations yielded the following

results: for the DMN network, p = 0.7450; for the ATN network, p = 0.6368; for the AUN

network, p = 0.8204; for the VIS network, p = 0.4904; for the SMN network, p = 0.3244; and for

the SUN network, p = 0.8371. Accepting the null hypothesis at a significance threshold of 0.05,

it was concluded that there were no significant differences in GBC data between the two groups

at the network level.

Possibly due to the stability and consistency of GBC data within networks, the differences

between the two groups' GBC data were not significant across all networks. This may suggest

that such data exhibit similar distribution patterns and characteristics in both groups, indicating

the need for further exploration of the potential pathogenesis of schizophrenia using more

methods.

4.3. Model construction from a genetic perspective

While some p-values of certain parameters approached significance levels (as shown in Figure 4-

1 and Figure 4-8), the existing data are still insufficient to confirm the statistical significance of
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these differences. Particularly, during the parameter search process of the Wilson-Cowan model

using Bayesian optimization methods, no significant differences in model parameters between

the control group (CTRL) and the schizophrenia group (SCHZ) were observed. Similarly, no

significant differences were found in subsequent functional GBC analysis. Therefore,

introducing new elements into the model is crucial.

4.3.1. Integration results of transcriptome data models

The influence of genes on brain structure and function is gradually becoming apparent and

increasingly significant. Integrating genomic data with neural system models has demonstrated

enormous research potential. This depth of data integration aids in uncovering the close

relationship between genes and neural system function. Not only does this method provide an

opportunity to delve deeper into the characteristics of the neural system, but it may also offer

new methodologies and treatment targets for neurological disorders. By combining genomic data

obtained from resources such as the Allen Brain Atlas with models, this study aims to explore

the relationship between schizophrenia-related genes and neural networks.

The brain contains various neurotransmitters, each with its unique topological characteristics,

capable of mediating diverse neural activity patterns. Neurotransmitters released by the

Ascending Arousal System (AAS) project extensively to various brain areas, exerting profound

effects on local and global neural activity. Connectionist models are based on specific

assumptions regarding the effects of neurotransmitters, such as regulating the input-output

relationships of neurons and the overall synaptic strength of specific connections118.

The widespread distribution of neurotransmitters in the brain and their diffusion characteristics

significantly influence the stability and plasticity of neural activity. To better understand brain

function and neural regulatory mechanisms, it is crucial to investigate the topological

characteristics of neurotransmitters and their modes of propagation. Such research may also

reveal the crucial role of neurotransmitters in brain disorders and neurological conditions,

providing important insights for the development of new therapies. Previous studies have

attempted to introduce the expression of serotonin and dopamine receptors into large-scale brain

simulation models to further explore their roles3,90.

Serotonin and dopamine receptors are two important neurotransmitters in the nervous system,



60

playing broad biological roles and often being associated with schizophrenia119. Serotonergic

neurons are mainly distributed in regions such as the midline nucleus, cortex, and amygdala,

participating in the regulation of emotions, sleep, appetite, and various physiological functions120.

Dopaminergic neurons are mainly distributed in the mesencephalic dopaminergic system, closely

related to functions such as reward, motivation, and cognition121. The expression levels,

distribution, and functional characteristics of these neurotransmitters in the nervous system

significantly impact neuronal excitability, synaptic plasticity, and the overall function of neural

networks.

Receptors, on the other hand, are structural proteins embedded in the cell surface capable of

recognizing and binding specific signaling molecules, thereby initiating a series of intracellular

signal transduction processes. In the nervous system, receptors play a crucial role, as they can

receive signaling molecules such as neurotransmitters, thereby regulating the excitability of

neurons, synaptic plasticity, and the information transmission of the entire neural network, with

their expression levels often influenced by genetic regulation.

In this study, various methods such as neuroimaging, model construction, and transcriptomics

will be employed to investigate the expression, distribution, and functional characteristics of

serotonin and dopamine receptor families in depth, as well as their roles in neural system

function and plasticity among two groups of individuals. Additionally, this study will focus on

the abnormal expression of these receptors in neurological disorders and their relationship with

the occurrence and development of diseases, aiming to provide new perspectives and

methodologies for the study of neurological disorders.

The expression data of dopamine and serotonin receptor families have been incorporated into the

model using the parameter "hi", where "hi" represents the expression level of receptors in brain

region "i". In this process, the search results of the parameters of the original W-C model

obtained through Bayesian optimization were first fixed, and then a search and fitting of the

gene-related parameters introduced into the model were conducted. These parameters are

represented as δE and δI. The visualization results of dopamine and serotonin receptor expression

data mapped onto the Lausanne anatomical atlas are shown in Figure 4-9. The schematic

diagram of HTR1A receptor expression can be found in Figure 3-1. Differences in the expression

levels of different receptors in different brain regions can be observed. These differences reflect
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the uniqueness and complexity of different brain regions in processing information, regulating

emotions, and performing other cognitive functions.

Figure 4-9 The schematic diagrams of receptor expression utilized in this study. (a)

DRD1 receptor expression. (b) DRD2 receptor expression (c) DRD4 receptor

expression. (d) HTR2A receptor expression. (e) HTR2C receptor expression. (f) HTR7

receptor expression

After the aforementioned transcriptomic data are incorporated into the process of model

simulation, to evaluate the fit of the model, a fitness index is typically generated for each

participant. However, handling and analyzing these data is a complex task that requires the use
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of statistical models and computational methods. When evaluating the fit of multiple models, a

unified indicator is needed for comparison and measurement. AIC (Akaike Information Criterion)

is a comprehensive indicator of model fit and complexity, which penalizes complex models to

avoid overfitting. In general, AIC can be expressed as:

n
LK )22(AIC 

 (4-2)

In this context, K represents the number of parameters in the fitted model, L denotes the

logarithm of likelihood, and n is the number of observations.

However, when the sample size is small, AIC may underestimate the model's complexity,

leading to the selection of overly complex models. In such cases, the AICc (Akaike Information

Criterion with correction) is introduced into the research. AICc, a modification of AIC, is

employed to address the issue of small sample sizes122. Consequently, in scenarios with small

sample sizes, researchers tend to favor using AICc to assess model fit. The formula for

calculating AICc is as follows123:

1
)1(22)ln(AICc
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Here, SSE represents the sum of squared errors between actual observed data and model-

predicted values, K is the number of model parameters, and n is the sample size. As the sample

size n increases, AICc gradually converges to AIC, thus making the difference between AIC and

AICc negligible in cases with large sample sizes. This property allows for the application of

AICc across various sample sizes124. By incorporating the AICc criterion, the goodness-of-fit

indicators for each subject are amalgamated, forming a unified evaluation standard, which

facilitates model comparison and selection in this study.
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Figure 4-10 The results of integrating genetic data into the model. DRDx represents

receptors of the dopamine family, while HTRx represents receptors of the serotonin

family. (a) The distribution of Riemann distances among subjects in the control group

(where smaller distances imply greater similarity); (b) The distribution of Riemann

distances among subjects with schizophrenia; (c) The mean Riemann distances and

absolute AICc values when adjusting the expression levels of various receptors; (d) The

distribution of Riemann distances calculated using original and shuffled HTR1A

receptor expressions in the model; (e) The mean Riemann distances and absolute AICc

values when adjusting the expression levels of shuffled HTR1A receptors.
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Figure 4-10 highlights pertinent findings. Notably, when adjusting the gain of HTR1A receptor

expression levels, both the absolute differences in Riemann distances (left vertical axis) and

AICc values (right vertical axis) peak (as depicted in Figure 4-10 (c)), indicating differences in

5-HT1A receptors between the two subject groups. Further validation was conducted by

employing randomly shuffled HTR1A expression for model computation, revealing a lower

goodness of fit in the shuffled results compared to the original expression. Moreover, larger

absolute differences in Riemann distances (left vertical axis) and AICc values (right vertical axis)

were observed in the control group, thereby affirming the rationality of incorporating

transcriptome data into the model.

As a crucial member of the serotonin family, 5-HT1A receptors play key roles in neuronal

activity, synaptic transmission, and neural plasticity. Therefore, the findings of this study may

offer new insights into individual differences and the mechanisms of neuropsychiatric disorders,

holding potential scientific and practical significance.

4.4. Model modification

To explore the impact of receptor expression on brain function, a more nuanced analysis of the

intricate associations between these receptors and the functional networks of the brain is required,

alongside an investigation into how they influence the functional integration of brain networks.

This analytical process will offer a more comprehensive perspective on the role of receptors in

neuropsychiatric disorders and their potential correlations.

As previously mentioned, genome-wide studies have identified several genes closely related to

the pathogenesis of depression and schizophrenia, including genes such as DRD2 and 5-HTT80,81.

Studies have indicated decreased levels of 5-HT1A receptor protein in the prefrontal cortex of

female depression suicide victims87, while significant changes in gene expression in the

prefrontal pole area have been observed in schizophrenia patients88. These changes may be

related to cortical functional abnormalities, thereby triggering associated symptoms.

Of particular note is the significant cognitive impairment in schizophrenia patients, especially in

attentional aspects. Despite repetitive transcranial magnetic stimulation (rTMS) being attempted

as a non-invasive treatment method for schizophrenia, research findings regarding the impact of
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rTMS on patient attention are inconsistent37,38. Therefore, devising personalized treatment plans

for patients is crucial.

Currently, available antipsychotic drugs primarily alleviate or relieve patient symptoms by

modulating specific neurotransmitter receptor subtypes. When exploring the relationship

between receptor expression and schizophrenia, attention should be paid not only to subtle

differences in receptor gene expression but also to a comprehensive analysis within the broader

context of brain network statistical properties. This holistic analysis not only aids in

understanding the role of receptor expression in the nervous system but also provides a unique

perspective for research, revealing the interplay between receptor expression variability and the

overall structure and function of brain networks.

Further exploration of the role of brain network characteristics in the development of

schizophrenia is crucial for devising more effective treatment strategies. Although the specific

pathophysiology of schizophrenia is not yet fully understood, its treatment typically involves

interventions targeting specific brain regions, such as using high-frequency repetitive

transcranial magnetic stimulation (rTMS) to intervene in the left dorsolateral prefrontal cortex

(DLPFC) of patients.

To gain a deeper understanding of this intervention process, this paper employs simulation

experimental methods, identifying potentially affected brain regions and associated network

changes through perturbation models. This approach aims to enhance the ability to simulate and

predict potential changes within the neural system affected by the disease. Through this step, a

deeper understanding of the correlation between model parameters and actual neural networks

will be gained, thus promoting more accurate predictions and explanations of the nervous system

and providing important references for future research and treatment.

4.4.1. Network properties of schizophrenic patients and healthy controls

In the field of neuroscience, the exploration of network properties holds significant importance.

The brain represents a highly intricate network system, housing a vast array of neurons and

synaptic connections. These connections constitute functionally interrelated neural networks, and

the topological structure of these networks is crucial for understanding information transmission.

Grasping the network attributes of the brain can assist us in gaining a deeper understanding of
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how information is conveyed and processed within the nervous system.

Graph theory analysis is built upon the foundation of topology mathematics, abstracting brain

regions into nodes and connections between brain regions into edges. Therefore, it allows for the

representation of the topological characteristics of brain networks using graph theory metrics,

including global efficiency, local efficiency, characteristic path length, clustering coefficient, and

others. The human brain is often likened to a vast, intricate network with efficient small-world

attributes that enable the efficient generation and integration of information. Numerous prior

neuroimaging investigations have consistently shown evidence of "dysfunctional connectivity"

between different brain regions in individuals with schizophrenia. The results revealed that the

brain's functional networks exhibited efficient small-world characteristics among healthy

individuals, but these attributes were disrupted in individuals with schizophrenia. Particularly

noteworthy was the significant alteration of small-world topological attributes in numerous brain

regions within the prefrontal, parietal, and temporal lobes of schizophrenia patients125. These

findings align with the hypothesis of impaired brain integration in this disorder. The calculation

of the majority of network coefficients can be achieved using the Brain Connectivity Toolbox

(BCT) package126. This offers a unique perspective for understanding brain networks. Currently,

these graph theory metrics have been widely applied to various studies of brain disorders, such as

Parkinson's disease, depression, autism, schizophrenia, and other mental disorders127.

The specific descriptions and calculation formulas for four network metrics: global efficiency,

local efficiency, characteristic path length, and clustering coefficient, are provided as follows:

(1) Global efficiency

Global efficiency measures a network's capability for parallel information processing and is

defined as the average of the reciprocal of the shortest paths between any two nodes. Typically,

the shortest path length is used in conjunction with global efficiency to assess a network's overall

transmission capacity; shorter paths correspond to higher global efficiency, while longer paths

indicate lower global efficiency, signifying a decrease in information transmission and

interaction capabilities among nodes. The calculation formula for global efficiency is as follows:

 


N

ji
ji

global dNN
E

1,
,

1
)1(

1
(4-4)



67

(2) Local efficiency

Local efficiency measures the capability of propagating information through the directly

connected neighbors of a node. In contrast to global efficiency, local efficiency reflects the

integration level of the immediate neighboring nodes for a given node. Typically, local

efficiency is used in conjunction with the clustering coefficient to measure the efficiency of

information transmission within a network. It also partially reflects the network's resilience to

random attacks, indicating whether the removal of a node affects the communication efficiency

among its adjacent nodes. The calculation formula for local efficiency is as follows:
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(3) Characteristic path length

The characteristic path length measures the overall routing efficiency and the network's

capability for parallel information processing. In contrast to global efficiency, an increase in the

characteristic path length reflects a decrease in the efficiency of information transmission and

interaction between nodes. The characteristic path length of a network is the average of the

shortest paths between any two nodes in the network. Here, the shortest path refers to the path

with the fewest edges between two nodes, and the number of edges this path passes through

represents the length of the shortest path between these two nodes. The calculation formula for

the characteristic path length is as follows:

 


N

ji jidNN
L

1, ,)1(
1

(4-6)

(4) Clustering coefficient

The clustering coefficient of a node in a graph is defined as the ratio between the actual number

of edges among the node's directly connected neighboring nodes and the maximum possible

number of edges among these neighboring nodes. The clustering coefficient of a node describes

the density of connections between a node and its neighboring nodes, while the average

clustering coefficient of all nodes represents the clustering coefficient of the entire network.

Generally, the clustering coefficient of the entire network is used to assess the efficiency of local
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information processing. A higher value indicates stronger local communication capability. The

calculation formula for the clustering coefficient is as follows:
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To compare the distribution of network coefficient data between the two groups, we initially

assessed whether the network coefficient data in both groups adhered to a normal distribution.

Given the relatively small sample size, we employed the Shapiro-Wilk test. The results are

illustrated in Figure 4-11.

Figure 4-11 Results of Shapiro-Wilk normality tests. (a) Normality test for clustering

coefficient; (b) Normality test for characteristic path length; (c) Normality test for

global efficiency; (d) Normality test for local efficiency
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We performed the Shapiro-Wilk test on the network coefficient data from both groups to assess

their adherence to a normal distribution. A significance level of 0.05 was set, assuming the null

hypothesis that the data follows a normal distribution. In the case of the control group, the

resulting p-values were as follows: p=0.439 (ns) for clustering coefficient, p=0.996 (ns) for

characteristic path length, p=0.954 (ns) for global efficiency, and p=0.476 (ns) for global

efficiency. Hence, considering this threshold, we substantiate the hypothesis of a normal

distribution for all network coefficient data within the control group.

In the case of the schizophrenia group, the resulting p-values were: p < 0.0001 (****) for

clustering coefficient, p = 0.0409 (*) for characteristic path length, p < 0.001(***) for global

efficiency, and p < 0.0001 (***) for global efficiency. Considering this threshold, we reject the

hypothesis of a normal distribution for all network coefficient data within the schizophrenia

group.

Through Shapiro-Wilk tests, it was found that the network coefficient data of the control group

conforms to a normal distribution, while the network coefficient data of the schizophrenia group

does not follow a normal distribution, exhibiting significant within-group differences, possibly

related to functional network abnormalities caused by schizophrenia. Due to some data not

conforming to a normal distribution, the non-parametric Mann-Whitney test was chosen to

compare the two data sets. The test results are shown in Figure 4-12.
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Figure 4-12 Mann-Whitney test. (a) Distribution test of clustering coefficient between

groups; (b) Distribution test of characteristic path length between groups; (c)

Distribution test of global efficiency between groups; (d) Distribution test of local

efficiency between groups.

Given that none of the network coefficient data within the schizophrenia group follows a normal

distribution, the Mann-Whitney test was conducted to compare the distributions of network

coefficient data between both groups. A significance level of 0.05 was utilized to test the null

hypothesis, which examines the existence of significant differences between the distributions of

the two groups. The resulting p-values were computed as 0.6067 (ns) for the clustering

coefficient, 0.027 (*) for characteristic path length, 0.078 (ns) for global efficiency, and 0.918

(ns) for global efficiency. These outcomes suggest the absence of significant differences in the

distributions of network coefficient data between the groups except for characteristic path length.
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4.5. Identification of Potentially Impaired Brain Regions

Previous research has revealed the largest differences in integrated receptor expression of

HTR1A receptors between the control group and the schizophrenia group. To further investigate

the impact of gene expression changes in the frontal lobe and DLPFC region on overall brain

functional changes, this study modified the HTR1A receptor expression data based on control

group data to make it more similar to the data of the schizophrenia group. Specifically, the

DLPFC is located in the frontal lobe, and based on literature references, its location in Brodmann

areas 9 and 46 were determined128,129. Based on this, the corresponding location of the DLPFC in

the brain atlas (Lausanne Anatomy Atlas) used in this study was determined.

Figure 4-13 Modified result in the prefrontal lobe and the principal component analysis

result. (a) The results of the frontal lobe modification, where the blue bars represent the

distribution values of gene expression after modification for each subject, with the

DLPFC region highlighted in green. (b) The results of the Principal Component

Analysis, with the number of principal components and the cumulative variance

explained ratio depicted
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During the simulation process, the Kolmogorov-Smirnov statistical test method130 was utilized to

compare the simulated FC with empirical FC network properties, assessing the consistency of

the coefficient distribution of generated data with real data, thereby imposing certain constraints

on the generation process. The modified results are shown in Figure 4-13.

Figure 4-13 reveals the results of the frontal lobe modification, showing a decrease in the

average expression level of HTR1A compared to the original expression in most cortical areas of

the frontal lobe. Since the frontal lobe plays a crucial role in cognitive and emotional processing,

changes in HTR1A expression levels may have implications for these functions.

Although the direct presentation of these results provides preliminary insights, further processing

with mathematical methods is necessary to obtain a deeper and more intuitive understanding.

Principal Component Analysis (PCA), as an analysis tool widely used in neuroscience, holds

significant value. The work of researchers such as Karamizadeh131 and Gauch Jr132 has

demonstrated the advantages of PCA in noise reduction and extraction of key information. In this

case, even in the face of complex influences between multiple brain regions, PCA can still help

accurately identify the main contributors affecting the results. Therefore, Principal Component

Analysis (PCA) is employed for further analysis of the existing results.

Further observation of Figure 4-13(b) shows that the first 5 principal components explain

82.05% of the total variance, while the first 8 principal components explain 89.27% of the total

variance. This indicates that these principal components capture most of the variability in the

data. The brain regions contributing significantly to the variance include the Lateral

Orbitofrontal, Parsopercularis, Parstriangularis, Medial Orbitofrontal, Rostral Middle Frontal,

Parsorbitalis, Superior Frontal and Rostral Anterior Cingulate. Many of these regions are

associated with schizophrenia, as confirmed by extensive neuroimaging or genomic

reports26,27,29,30,88. It is noteworthy that many of these prominent brain regions belong to the

Attention Network (ATN) and Default Mode Network (DMN). These results suggest that the

attention network and default mode network of schizophrenia patients may be more severely

impaired.
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CHAPTER 5: SUMMARY & DISCUSSION

The brain is comprised of intricately interconnected neurons and various types of associated cells,

forming a precise synaptic network that serves as the core structure governing cognitive

processes and behaviors within the nervous system. This paper aims to investigate the

differences in brain activity patterns between individuals with schizophrenia and healthy controls.

By integrating multidimensional perspectives from neuroimaging, genetics, and computational

neuroscience, this study seeks to unveil the pathogenesis of schizophrenia through large-scale

brain simulations, offering novel insights and methodologies for a deeper understanding of this

complex disorder.

Initially, this paper elaborates on the sources and processing procedures of the dataset, including

the acquisition and preprocessing of magnetic resonance imaging (MRI) and genetic data. The

integration of neuroimaging and brain simulation technologies enables an in-depth exploration of

brain operation mechanisms, revealing the close relationship between structural and functional

connections. The paper attempts to simulate the neural behaviors of different populations and

individuals using a mesoscale brain model constructed with standard MRI datasets containing

details of structural and functional connections, employing field modeling methodology. This

mesoscale neural network model, based on the coupled Wilson-Cowan model, assigns each node

to a specific brain region, further enhancing the understanding of brain operation under different

conditions through traversing high-dimensional parameter spaces.

Subsequently, the Wilson-Cowan model and its extended application in whole-brain modeling

are detailed, with the Balloon-Windkessel hemodynamic model employed to transform neural

electrical signals into BOLD signals. To enhance model accuracy, this study utilizes an empirical

structural connectivity (SC) matrix as a constraint, weighting it via a global coupling term G and

compensating for its deficiencies through a "structure-function" iterative optimization strategy.

Furthermore, a Bayesian optimization algorithm based on probabilistic modeling is employed in

the parameter space to improve model fitting performance. Through these methods, an

individualized whole-brain model is successfully constructed. However, a comparative analysis

of model parameters between schizophrenia patients and controls does not reveal significant

differences. Nevertheless, global brain connectivity analysis indicates reduced functional

connectivity strength in schizophrenia patients, particularly in the frontal and temporal regions.
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Based on these findings, it is deemed necessary to further integrate research on neurotransmitters,

neural networks, and personalized therapeutic approaches to delve deeper into the

neurobiological basis of schizophrenia and provide more effective diagnostic and therapeutic

strategies for patients. Additionally, to explore the role of receptor expression in schizophrenia,

this study integrates receptor gene expression data from the Allen Brain Institute, aiming to

uncover potential variations in receptor expression among schizophrenia patients and establish

connections between computational models and receptor expression to explore potential

biological impact processes. The research results suggest that abnormal brain connectivity in

patients may be related to changes in 5-HT1A receptor expression levels.

Furthermore, based on 5-HT1A receptor expression and under the constraint of brain network

indicators, the whole-brain computational model of healthy control subjects is modified to

identify potential differences between schizophrenia patients and normal individuals. Regarding

the modified results, attention is focused on brain regions contributing significantly to variance,

concentrated in the attention network (ATN) and default mode network (DMN), including the

lateral orbitofrontal cortex, insula, triangular part, inferior frontal gyrus, medial orbitofrontal

cortex, inferior frontal gyrus, and anterior cingulate gyrus. An in-depth study of these regions is

expected to provide personalized treatment options for schizophrenia patients, such as cognitive

training or drug therapy targeting impaired ATN.

The results of this study indicate reduced connectivity levels in the frontal and temporal regions

of schizophrenia patients. Furthermore, by establishing connections between computational

models and receptor expression, it is discovered that abnormal brain activity in patients may be

associated with changes in 5-HT1A receptor expression levels. The modified whole-brain

computational model shows that the attention network and default mode network of

schizophrenia patients are more severely impaired. In conclusion, by combining research

methods from modeling, neuroimaging, and genomics, a more comprehensive understanding of

the neurobiological basis of schizophrenia can be achieved. In-depth studies focusing on specific

brain regions or neural pathways can more accurately identify issues. Such precision-targeted

therapeutic approaches are expected to provide more effective diagnostic and treatment options

for patients, realizing more targeted interventions. Research in this field not only holds promise

for improving the quality of life for patients but also provides deeper insights into human brain

function and disorders.
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CHAPTER 6: FUTURE RESEARCH

While this article provides insights into some potential mechanisms of schizophrenia based on

large-scale brain models constrained by transcriptomic data, there are still some limitations that

need to be addressed:

(1) Despite the utilization of a whole-brain computational model at the mesoscale and the

attempt to simulate individual-level dynamics using existing data and computational resources,

the construction of the model still lacks precision compared to the detailed information covered

at the neuronal scale. To establish a high-precision model that truly reflects the dynamics at the

microscale of the human brain, future research could consider integrating prior information from

layered heterogeneous T1w/T2w-weighted images, high-density electroencephalography (EEG),

magnetoencephalography (MEG), and other modalities to build a multimodal whole-brain model.

(2) Although receptor gene expression data were incorporated into the model, the complex

interactions among neurotransmitters and receptors were not considered. Subsequent studies

could employ more targeted and refined data, as well as more accurately design physiological

models based on relevant literature reports.

(3) While modifications to receptor gene expression in this study were targeted at certain brain

regions delineated by templates, they did not further specify more finely divided brain regions

and lacked actual experimental data for result validation. Additionally, due to limited sample

sizes or datasets, there may be insufficient subjects. Future research should focus on recruiting

more schizophrenia patients, grouping them based on disease subtypes using data analysis

methods and conducting intervention experiments. Through these experiments, a deeper

exploration of the association between brain function and specific symptoms can be conducted,

thereby formulating more effective treatment plans for different symptoms.

(4) Researchers with practical experimental capabilities may consider integrating physical field

interventions, involving simulating low-frequency or high-frequency repetitive transcranial

magnetic stimulation (rTMS) in computational models to stimulate and influence specific brain

regions of patients. This comparative approach will introduce a new perspective of data to

explore the activity of the model and relevant system-level neural circuits in practice.
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Despite schizophrenia being a complex disorder, with the continuous development and

advancement of science and technology, we have reasons to believe that in the future,

researchers will be able to gain a deeper understanding of this disease and develop more

effective treatment methods. This will bring hope to those affected by this condition and help

them live better.
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