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“ The Buddha, the Godhead, resides quite as comfortably in the circuits of a digital

computer or the gears of a cycle transmission as he does at the top of the mountain, or in

the petals of a flower. ”
— Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance
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Abstract

Reduced-order macromodels are a useful tool that designers can use to speed up circuit

simulations. When carefully constructed, these macromodels can guarantee a high degree of

accuracy and replace the original subcircuits under certain conditions, which the designer can

also choose. Generating reduced-order macromodels of linear subcircuits has been thoroughly

studied in the literature and several algorithms have been proposed which can successfully

achieve that. On the other hand, generating nonlinear reduced-order macromodels proved

to be a much more difficult task.

This thesis presents a general and systematic macromodeling algorithm that can be used

to reduce the size of a wide range of nonlinear electronic circuits to speed up simulation.

The method is composed of two separate algorithms that are used sequentially. In the

first step, the size of equations of the electronic circuit is reduced using Proper Orthogonal

Decomposition. The system is projected onto a predefined reduced subspace resulting in

massive reduction of circuit size. This first step can only be applied to the linear part of the

circuit, and because of the nonlinear nature of electronic circuits, the speedup gained from

this reduction remains limited. To alleviate that, the second step targets the nonlinear part.

Feedforward neural networks, known for their effectiveness as a curve fitting tool, are used

to replace the functions describing the nonlinear part of the circuit.

By applying these two steps one after the other, the algorithm generates nonlinear
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reduced-order macromodels capable of replacing complete electronic circuits. The macro-

models can be directly added to a larger system and result, on average, in four to five times

speedup in simulation time. These macromodels are valid over a specific range of conditions,

such as input power, frequency, or loading conditions, which is chosen by the designer at

construction.
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Résumé

Les macromodèles d’ordre réduit sont un outil utile que les concepteurs peuvent utiliser pour

accélérer les simulations de circuits. Une fois élaborés avec soin, ces macromodèles peuvent

garantir un haut degré de précision et remplacer les sous-circuits originaux sous certaines

conditions, que le concepteur peut également choisir. La génération de macromodèles d’ordre

réduit de sous-circuits linéaires a été pleinement étudiée dans la littérature, et plusieurs

algorithmes ont été proposés qui peuvent y parvenir avec succès. Cependant, la génération de

macromodèles d’ordre réduit non-linéaires s’est avérée être une tâche beaucoup plus difficile.

Cette thèse présente un algorithme de macromodélisation général et systématique qui

peut être utilisé pour réduire la taille d’une large gamme de circuits électroniques non-

linéaires et en accélérer la simulation. La méthode est composée de deux algorithmes distincts

qui sont exécutés séquentiellement. Dans la première étape, la taille des équations du circuit

électronique est réduite à l’aide d’une décomposition orthogonale aux valeurs propres. Le

système est projeté sur un sous-espace réduit prédéfini, ce qui entrâıne une réduction massive

de la taille du circuit. Cette première étape ne peut s’appliquer qu’à la partie linéaire du

circuit, et du fait du caractère non-linéaire des circuits électroniques, l’accélération obtenue

grâce à cette réduction reste limitée. Pour remédier à cela, la deuxième étape cible la partie

non-linéaire. Les perceptrons multicouches, connus pour leur efficacité en tant qu’outil de

régression, sont utilisés pour approximer la partie non linéaire du circuit.
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En appliquant ces deux étapes l’une après l’autre, l’algorithme génère des macromodèles

non-linéaires d’ordre réduit capables de remplacer des circuits électroniques complets. Les

macromodèles peuvent également être directement ajoutés à un système plus grand, et peu-

vent permettre de réduire le temps de simulation par un facteur quatre ou cinq. Ces macro-

modèles sont valides sur une plage spécifique de conditions, telles que la puissance d’entrée,

la fréquence ou les conditions de charge, qui sont choisies par le concepteur lors de la con-

struction.
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Chapter 1

Introduction

1.1 Motivation

In the modern digital age, it seems hard to imagine that analog still has a place in our lives.

After all, everything we use and interact with has become increasingly digital. The truth,

however, is that analog remains and will continue to be an indispensable part of electronic

design as long as the real world remains analog [1, 2]. While digital keeps on overtaking

more and more functionalities in modern day systems, analog circuits are still essential when

it comes to interfacing with the outside world. In today’s System-on-Chips (SoCs), where

whole systems with both analog and digital components are integrated on one die to achieve

a lower cost [3], analog circuits remain key elements of the input, output, and the mixed-

signal parts of the system [1]. For this reason, it is estimated that 90% of today’s SoCs

contain analog components [4].

In addition to the increased integration in modern chip design, there has also been an

explosion in complexity. Today’s circuits perform numerous functions, operate on lower

power, occupy smaller chip area, and contain a greater number of components most of which
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have also become more complex [2, 5–7]. Not only that but as it turns out, new shrinking

technologies are bringing to light never before seen problems, and analog engineers are now

dealing with very challenging design constraints [5, 7, 8]. Combined with the ever-present

need to reduce time to market, today’s chip manufacturers face a multitude of problems

while trying to meet market demands.

In the midst of all this increased complexity, shrinking time to market, and new tech-

nologies, computer-aided design (CAD) tools emerge as the key to managing all those prob-

lems [1]. Unfortunately, unlike their digital counterpart, analog CAD tools do not live up to

the challenge and remain very limited [8,9]. There exists no complete set of tools which can

guide an analog circuit designer through a full design cycle. Instead, the most used analog

CAD tool today is a powerful, yet limited, industry-standard validation software known as

simulation program with integrated circuit emphasis (SPICE). It was developed in the mid

seventies of the last century at the University of California, Berkeley [10–15].

There are several reasons why there is a lack of mature CAD tools for analog design [1].

First and foremost, analog design is less systematic, certainly when compared with digital

design. While the configuration of a basic logic gate, for example, is well established and can

be pulled up from an existing library whenever needed, the configuration of an amplifier, as

another example, is by no means standard. Second, analog design lacks higher abstraction.

In digital design, once the basic logic gate is built, this particular circuit block can be easily

packaged and has a very well defined set of input and outputs with clear relationships between

them. The logic gate can now be combined with other logic gates to create a more complex

system. That system itself could also be packaged and will have its own well defined set of

input-output relationship. Unfortunately, there is no such thing in analog design. Analog

circuit complexity and time-continuity prohibits abstraction a great deal and necessitates

using the full circuit block to clearly define the input-output relationship. Lastly, analog
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circuits are simply more complex. It should come as no surprise that developing CAD tools

for circuits with nonlinear elements is inherently more difficult than developing tools for

circuits that can represented with simple Boolean algebra.

This lack of mature CAD tools combined with the complexity of analog circuit design

brings about an alarming fact: while analog circuits on average occupy a small chip area

(about 20% [4]), their design is often the bottleneck of the design of the whole system and they

are responsible for a disproportionate number of design faults and manufacturing reruns [1,9].

Specifically, transistor-level simulation of the whole system, commonly referred to as system

verification, has become almost infeasible due to the increased CPU cost [6, 7, 16]. System

verification is a very common step in the design cycle and is typically done at the very end.

This is when the designers combine all the components and verify they all work together in

the intended manner. Even with the fastest simulators used today, such as fast-SPICE [17],

this task remains daunting.

To solve these problems, designers have come up with numerous solutions, one of which

is the topic of this thesis: macromodeling. The process of macromodeling refers to creating

reduced-order models of complex systems. A complex large circuit block is replaced by

simpler smaller block which captures, to a certain degree of accuracy, the input-output

relationship of the original one [18–20]. This order-reduction process can be done in different

ways and will be explored in detail in Chapter 3.

Macromodeling has several advantages, the most obvious of which is simulation speedup.

In reference to the problem of system verification discussed above, instead of simulating the

whole system at transistor level and spending days or even weeks to achieve the final result,

designers can now replace some of the large circuit blocks with their reduced-order models

and perform the simulation. By doing so, they can still check the validity of the system in a

shorter time. Of course, in this case the price paid is accuracy and one would hope that with
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a carefully generated macromodel, the most crucial circuit characteristics are preserved and

little loss of information occurs. Another advantage of using macromodels is fulfilling the

much sought after need for abstraction in analog design. While it certainly is not on par with

digital abstraction, macromodels can now serve as some form of higher level abstraction in

analog circuit design. Lastly, macromodels are very useful in protecting intellectual property

(IP) [1]. If a chip manufacturer decides not to share the inner workings of their design, a

macromodeling technique could be used to conceal all the details. This is in contrast with

providing a SPICE netlist which could be easily reverse-engineered.

Two well-known macromodeling techniques studied extensively in the literature are proper

orthogonal decomposition (POD) and artificial neural networks (ANNs). Proper orthogonal

decomposition belongs to a class of macromodeling techniques known as model order reduc-

tion (MOR). It has been mainly applied to linear circuits and in a limited way to nonlinear

circuits. ANNs, on the other hand, belong to a different class of macromodeling techniques

referred to as black box macromodeling. They have been used in numerous circuit simulation

applications including linear and nonlinear circuit macromodeling.

In this thesis, we present a new macromodeling technique which aims to systematically

generate reduced-order models of nonlinear circuits using POD and ANNs. Our novel ap-

proach combines the projection ability of POD with the dynamic modeling ability of neural

networks. The result is a macromodeling method that can be used on different circuit

topologies in both the time and frequency domains to generate accurate reduced-order mod-

els efficiently.
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Original system

Reduced system

Transform

Fig. 1.1 An illustration of how macromodeling works

1.2 Problem Statement

Any circuit could be represented by a set of equations similar to the one shown in Equation 1.1

below:

Gx+ Cx+ f(x) = b (1.1)

where the matrices and vectors G, C, f , and b contain all the known parameters and fully

describe all the circuit elements. The vector x is the vector of unknown parameters which

we hope to find by solving the equation. Later in Chapter 2, the reader will be presented

with a systematic way to generate these equations, but for now this information is sufficient

to illustrate the problem statement.

The number of equations in Equation 1.1 or its size, denoted by n, depends directly on

the number of elements in this circuit. If n is large, for example in the case of a full SoC,
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then solving Equation 1.1 becomes computationally very expensive.

Macromodeling aims to transform Equation 1.1 into Equation 1.2 whose size is q, where

q � n. Now solving the new equation should be much easier given that it is much smaller.

Ĝx̂+ Ĉx̂+ f̂(x̂) = b̂ (1.2)

This new smaller system could potentially be used instead of the original large system

to speed up simulation whenever needed. The challenge, however, is finding the reduced

matrices and vectors Ĝ, Ĉ, f̂ , and b̂.

1.3 Contributions

The main contribution of this work is developing a new technique that combines two existing

methods to generate reduced-order macromodels of nonlinear circuits in both the time and

frequency domains. Specifically this thesis contains three distinct contributions:

1. Macromodeling of radio frequency circuits in the frequency domain [21]: RF circuits

are typically simulated using the Harmonic Balance (HB) technique in order to study

their nonlinear behaviour. Even for small circuits that contain only a handful of nodes,

using the HB technique results in matrices that are hundreds of times larger than

the original circuit equation, thus increasing simulation times. To address this, we

extended a macromodeling technique, originally used for time-domain simulation only,

to the frequency domain. First, we transformed the circuit equations into macromodel

form that is suitable for reduction, and next we applied model-order reduction to

reduce circuit size. This contribution is described in detail in Subsection 4.1.1 and

Subsection 4.2.1 respectively.
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2. Faster macromodels using neural networks: Proper orthogonal decomposition, while

able to reduce the size of the circuit equations, lacks the ability to reduce the nonlinear

part of the equations. To address this, we use feedforward neural networks to replace

the nonlinear vector. This second contribution is an improvement over the first contri-

bution and allows for much faster simulation. This contribution is discussed in detail

in Subsection 4.2.2.

3. Macromodeling of nonlinear circuits in the time domain [22]: Circuit equations in the

time domain were previously reduced using proper orthogonal decomposition. We ex-

tended this work by relying on POD to extract out the dynamic parts of the system,

the MNA matrices, and used artificial neural networks to model the static parts, the

nonlinear vector. To decouple the static part of the system, the nonlinear functions,

from the dynamic parts, the MNA matrices, we combined proper orthogonal decom-

position with neural networks. POD was used to reduce the matrices, while ANNs

were used to model the nonlinear vector. Details of this contribution can be found in

Chapter 5.

1.4 Organization

This thesis is organized as follows. Chapter 2 presents an introduction to the topic of circuit

simulation and neural networks. The basic formulation of circuit equations and the types

of analysis performed by industry-standard simulators are presented. A brief summary

of artificial neural networks, their types, architectures, activation functions, and training

algorithms follows. Chapter 3 contains a short history of macromodeling techniques in the

literature. All the main types of macromodeling are presented, then special attention is

given to the two classes of macromodeling relevant to this thesis: model order reduction and
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artificial neural networks. Chapter 4 presents the first and second contribution of this work,

macromodeling radio frequency circuits, along with numerical results. Chapter 5 presents the

third contribution, macromodeling nonlinear circuits in the time domain. Lastly, Chapter 6

concludes the thesis and discusses opportunities for future work. A full bibliography is listed

at the end.
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Chapter 2

Background on Circuit Simulation

and Artificial Neural Networks

This chapter presents the reader with a background on the fundamental aspects of circuit

simulation and artificial neural networks. It is by no means complete or comprehensive, but

merely an introduction to the most relevant aspects of both topics to this thesis.

2.1 Circuit Simulation

This section presents a brief introduction to the fundamentals of circuit simulation. Com-

mercial and industry-standard circuit simulators such as SPICE use a similar set of equations

to describe electric circuits [10–15]. We begin with an introduction of how these equations

are derived and can be systematically formed. The later sections describe the most common

types of analysis performed by modern simulators.
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1 2 3

20

Ω 30Ω

Ω

10

1A 2A

Fig. 2.1 Circuit example

2.1.1 Circuit Netlist

Consider the circuit example shown in Figure 2.1. The SPICE netlist of this circuit would

look like:

R1 1 2 10

R2 2 3 30

R3 2 0 20

I1 0 1 DC 1

I2 0 3 DC 2

To analyze this netlist, SPICE arranges the information presented above as a set of

equations. Depending on the type of analysis, SPICE would then solve these equations and

present the user with the desired solution. In the few pages that follow, a brief description

of this process is presented.

Consider the circuit of Figure 2.1 drawn again in Figure 2.2 but with the node numbers

replaced by the voltage variables and the circuit components with names for clarity.

Using Kirchhoff’s Voltage Law (KVL) and Kirchhoff’s Current Law (KCL) one can derive

a set of equations that describes the relationship between the voltages and currents for the

circuit shown in Figure 2.2. Those equations can be written as:
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Fig. 2.2 Circuit example

g1(v1 − v2) = I1

g1(v2 − v1) + g3(v2 − v3) + g2v2 = 0

g3(v3 − v2) = I2

(2.1)

The above equations can be rearranged and written in matrix form as follows:


g1 −g1 0

−g1 g1 + g2 + g3 −g3

0 −g3 g3



v1

v2

v3

 =


I1

0

I2

 (2.2)

The set of equations in Equation (2.2) completely describes the circuit and solving them

will give the value of the unknown voltages of the circuit.

Modified Nodal Analysis

By carefully inspecting the matrices in Equation (2.2), one notices that the contribution of

each resistor is as follows:
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+g −g

−g +g

 (2.3)

where g is the admittance of the resistor. A similar stamp could be derived for the current

sources in the circuit in Figure 2.2. Other circuit elements such as capacitors, inductors,

voltage sources, and diodes have their own stamps which could be added to the overall set

of equations of the circuit. Those equations are commonly known as the Modified Nodal

Analysis (MNA) formulation [23,24].

The time domain MNA formulation for any circuit which contains several linear and

nonlinear elements can be written as follows:

Gx(t) + Cẋ(t) + f(x(t)) = b(t) (2.4)

where

� G ∈ Rn×n contains the contributions of the memoryless elements such as resistors,

� C ∈ Rn×n contains the contributions of the memory elements such as capacitors and

inductors,

� f(x(t)) ∈ Rn×1 contains the contributions of the nonlinear elements such as diodes

and transistors,

� b(t) ∈ Rn×1 contains the contributions of the dependent and independent current and

voltage sources,

� x(t) ∈ Rn×1 is the unknown node voltages and currents,

� and n is the size of the MNA equations.
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2.1.2 Circuit Analysis

Several types of simulations could be done on the circuit netlist to obtain different types of

solutions. The most common types are discussed here.

DC Analysis

The most basic type of analysis is DC analysis which provides the DC node voltages and

branch currents of the circuit. Finding the DC solution is almost always required for all

other types of simulations. For example, it serves as a starting point for transient simulation

and as an operating point for AC analysis.

The MNA equations for a circuit containing several linear and nonlinear elements can be

written as:

Gx(t) + Cẋ(t) + f(x(t)) = b(t) (2.5)

For DC analysis the input is constant and therefore the derivative of the voltages and

currents with respect to time, ẋ(t), will be zero, simplifying the above differential nonlinear

equations to only algebraic nonlinear equations:

Gx + f(x) = b (2.6)

These nonlinear equations can then be solved using iterative methods like the Newton-

Raphson method. The problem now is transformed into solving for the root of the following

equation:

Φ(x) = Gx + f(x)− b (2.7)
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The method begins by choosing an initial guess x0 for the root and then finding a better

approximation of the solution at every iteration as follows:

xnew = xold + ∆x (2.8)

where

∆x = −Φ(xold)

Φ′(xold)
(2.9)

and

Φ′(xold) =
∂Φ(x)

∂x

∣∣∣∣
x=xold

= G +
∂f(x)

∂x

∣∣∣∣
x=xold

(2.10)

The method converges and the solution is reached when ∆x is less than a chosen error

tolerance.

AC Analysis

A second common type of simulation performed by SPICE is AC analysis. This type of

analysis can only be done on linear circuits or linearized nonlinear circuits. Consider the

MNA equations for a linear circuit:

Gx(t) + Cẋ(t) = b(t) (2.11)

If the input to the circuit is a sinusoidal source of frequency ω, then in phasor form we

can write:

b(t)→ Bejωt (2.12)
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and

x(t)→Xejωt (2.13)

where B and X are complex vectors containing the amplitude and phase of the input and

the solution vectors respectively.

The MNA equations expressed in phasor form become:

GXejωt + C
∂Xejωt

∂t
= Bejωt (2.14)

After differentiation and canceling out ejωt, the MNA equations can be rewritten as:

GX + jωCX = B (2.15)

The unknown vector X can then be easily found as follows:

X = (G + jωC)−1B (2.16)

Transient Analysis

The third most common type of analysis is the transient simulation. The simulation starts

with a given initial condition, usually the DC solution of the circuit, and then it steps forward

in time using numerical integration.

For illustration, consider the Backward Euler Rule, which is a first order method defined

as:

xn+1 = xn + hẋn+1 (2.17)
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and so

ẋn+1 =
1

h
(xn+1 − xn) (2.18)

For simplicity, at time tn+1, the MNA equations can be expressed as:

Gxn+1 + Cẋn+1 + f(xn+1) = bn+1 (2.19)

Substituting Equation (2.18) into Equation (2.19) would result in the following equation:

Gxn+1 +
C

h
(xn+1 − xn) + f(xn+1) = bn+1 (2.20)

After reordering, the Backward Euler difference equation can be written as:

(
G +

C

h

)
xn+1 + f(xn+1) = bn+1 +

C

h
xn (2.21)

The above set of equations are nonlinear algebraic equations which can be solved using

iterative methods similar to the one described in the DC analysis section above.

Harmonic Balance

For a linear circuit with an input of frequency f1, the output will simply have the same

frequency f1. This is not the case in nonlinear circuits, where the output would have an

amplitude at the input frequency f1, referred to as the fundamental, and an amplitude at

every multiple of that fundamental, f1, 2f1, 3f1 . . . , which are referred to as the harmonics.

Furthermore, if the input has two fundamental frequencies f1 and f2, then the output would

have amplitudes at both frequencies, their harmonics, and the addition and subtraction of

them and their harmonics. This is primarily why traditional frequency domain solutions do

not work here and instead the Harmonic Balance technique is used [23,24].
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As an illustration, assume the input to a nonlinear circuit is periodic with a fundamen-

tal frequency ω, then the output is also periodic with a fundamental frequency ω and its

harmonics are 2ω, 3ω, etc. A good way to describe such a signal is by using the Fourier

transform, in which case every unknown voltage and current in the circuit could be written

as:

x(t) = ao +
H∑
k=1

(ak cos(ωkt) + bksin(ωkt)) (2.22)

and

ẋ(t) =
H∑
k=1

(bkωk cos(ωkt) + akωk sin(ωkt)) (2.23)

The nonlinear vector f(x(t)) can also be expressed as:

f(t) = fo +
H∑
k=1

(fck cos(ωkt) + fsksin(ωkt)) (2.24)

Substituting the Fourier coefficients of the solution vector and its derivative with respect

to time, the nonlinear function vector, and the source vector into the MNA equations of the

circuit results in what is referred to as the Harmonic Balance equations expressed as:

ḠX̄ + C̄X̄ + F (X̄) = B̄ (2.25)

where

� X̄ ∈ RNhb×1 is a vector that contains the unknown Fourier coefficients of x(t),

� B̄ ∈ RNhb×1 is a vector that contains the Fourier coefficients of b(t),

� F (X̄) ∈ RNhb×1 is a vector that contains the Fourier coefficients of f(x(t)),
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� Ḡ ∈ RNhb×Nhb is a block matrix whose blocks Gij ∈ RNh×Nh are

Gij = diag(gij, . . . , gij)

where gij is the corresponding element in the original G matrix of the MNA equations,

� C̄ ∈ RNhb×Nhb is a block matrix whose blocks Cij ∈ RNh×Nh are

Cij = cij



0 0 0 · · · 0 0

0 0 ω · · · 0 0

0 −ω 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 Hω

0 0 0 · · · −Hω 0


where cij is the corresponding element in the original C matrix of the MNA equations,

� Nhb = n×Nh,

� Nh = 2H + 1,

� H is the number of harmonics,

� and n is the size of the time domain MNA equations.

The above set of equations are nonlinear algebraic equations which can be solved using

iterative methods such as Newton-Raphson. The challenge here is that the size of those

equations is now much larger than the size of the original time domain equations, and

therefore more computationally expensive. To solve using Newton-Raphson method, the

problem is now finding the root of the following equation:
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Φ̄(X̄) = ḠX̄ + C̄X̄ + F (X̄)− B̄ (2.26)

The method begins by choosing an initial guess X̄0, generally the DC solution, for the

root and then finding a better approximation of the solution at every iteration as follows:

X̄new = X̄old + ∆X̄ (2.27)

where

∆X̄ = − Φ̄(X̄old)

Φ̄
′
(X̄old)

(2.28)

and

Φ̄
′
(X̄old) =

∂Φ̄(X̄)

∂X̄

∣∣∣∣
X̄=X̄old

= Ḡ + C̄ +
∂F (X̄)

∂X̄

∣∣∣∣
X̄=X̄old

(2.29)

To evaluate the nonlinear part of the Jacobian above, it is first required to evaluate it in

the time-domain. To do so, we calculate the solution vector in the time domain using the

Inverse Direct Fourier Transform (IDFT):

x(t) = ΓX̄ (2.30)

Next, the derivative of the nonlinear function is evaluated in the time domain. Using the

Direct Fourier Transform (DFT) we can then evaluate the nonlinear part of the Jacobian as

follows:
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∂F (X̄)

∂X̄
=
∂Γ−1f(x(t))

∂X̄

= Γ−1
∂f(x(t))

∂X̄

= Γ−1
∂f(x(t))

∂x(t)

∂x(t)

∂X̄

= Γ−1
∂f(x(t))

∂x(t)
Γ

(2.31)

While the time domain derivative of the nonlinear function is not necessarily a dense

matrix, multiplying and premultiplying by Γ and its inverse makes for a very dense matrix.

Since the number of HB equations is already pretty large, combined with the increased

density, this makes inverting the Jacobian very computationally expensive.

Nonetheless, the method converges and the solution is reached when ∆x is less than a

predefined error tolerance.

2.2 Artificial Neural Networks

Artificial neural networks (ANNs) are machine learning algorithms which have demonstrated

a remarkable ability in approximating mathematical functions. Inspired by biological neural

networks, artificial neural networks are made up of simple processing units known as artificial

neurons. These neurons are arranged in layers and are connected together in various ways.

Neurons that receive input from outside the network constitute the input layer, while neurons

that provide an output make up the output layer. All other neurons in between are said to

be hidden and could be arranged in one or more hidden layers [25].

Every artificial neuron in the network handles inputs from several other neurons and

generates an output, which is in turn fed into other neurons or used as an output of the
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ANN. Every connection through which the neuron receives an input has a weight associated

with it. The way the neuron handles those inputs is determined by the type of its activation

function.

The power of neural networks lies in their ability to learn from the data presented to them.

Original data from the function/system is used in a process referred to as training, whereby

the neural network adjusts the connection weights to best mimic the original data. So while

the connections, activation functions, and number of neurons have to be predetermined, it

is the weights associated with the connections that are adjusted during the training process.

Different types of ANNs are distinguished based on the activation functions used by their

neurons and the way the neurons are connected [26]. In what follows we present the most

common ANN architectures used in the context of circuit simulation.

2.2.1 Feedforward Neural Networks

One of the most common type of neural networks used today is the feedforward neural

network. As the name suggests, information in a feedforward ANN flows in one direction:

forward. Feedforward ANNs are classified based on the activation function used by their

neurons. In circuit simulation, there are three common types: multilayer perceptron (MLP),

radial basis function (RBF) networks, and wavelet networks. Other feedforward structures,

which are mainly inspired from some knowledge of the underlying circuit under test, exist

and will be presented in a later section.

Multilayer Perceptron

MLPs are by far the most common type of neural networks used today, mainly due to their

well-established training algorithm, the backward propagation of errors, more commonly

known as backpropagation. In fact, in many cases MLPs are sometimes referred to as
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backpropagation neural networks precisely because of this. Figure 2.3 shows a three layer

MLP with m-inputs and n-outputs.

Input

Layer

Hidden

Layer

Output

Layer

Input 1

Input 2

Input m n

1

2Output

Output

Output

Fig. 2.3 A three layer MLP

The general structure of an artificial neuron of an MLP is shown in Figure 2.4. Each

neuron receives inputs from every neuron of the previous layer. If this neuron is in the

input layer, then its inputs are the inputs of the neural network itself. Every input is then

multiplied by a weight associated with it and the result is added to a bias specific to each

neuron. This summation is then later processed by the activation function of the neuron

before being provided as the output.

Input 3

Input 2

Input 1

Input m

Outputf (.)

Bias

Fig. 2.4 The general structure of an artificial neuron

There are three types of activation functions which are commonly used in MLPs. The

first is the log-sigmoid function shown in Figure 2.5 and expressed in Equation 2.32. The
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second is the hyperbolic tangent sigmoid function shown in Figure 2.6 and expressed in

Equation 2.33. Lastly, the purely linear function is shown in Figure 2.7 and expressed in

Equation 2.34.
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Fig. 2.5 The log-sigmoid activation function

f(x) =
1

1 + e−x
(2.32)

f(x) =
ex − e−x

ex + e−x
(2.33)

f(x) = x (2.34)

A major advantage MLPs have is that they are proven to be universal approximators [27].

That is to say that it has been mathematically proven that an MLP with sufficient neurons in

the hidden layer is capable of approximating any continuous function with any desired degree
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Fig. 2.6 The tan-sigmoid activation function
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Fig. 2.7 The linear activation function
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of accuracy. As of now, we do not possess a way to determine the number of neurons needed

to approximate the desired function. So if a trained MLP was not able to approximate a

function, it could be deduced that we either did not use enough neurons in the hidden layer,

we do not have enough training data, or the function is random and not continuous [26].

Another major advantage MLPs have is their very well-established training algorithm,

backpropagation [28]. The basic idea of backpropagation is as follows. A forward pass of

information takes place first and the outputs are calculated. Next, the outputs are compared

with the training data. For the output neurons, the weights are adjusted such that the error

difference between the MLPs’ outputs and the training data is minimized. For the hidden

and input neurons, the weights are also adjusted in the same manner, however the proceeding

neurons have to be taken into account.

To illustrate how this works mathematically, consider the two-layer MLP shown in Fig-

ure 2.8. The main components of both layers are shown for clarity and x and y are the

inputs and outputs respectively. w1 and w2 are matrices containing the weights associated

with the neurons of layer 1 and layer 2 respectively. f1 and f2 are the activation functions

of the neurons of layer 1 and layer 2 respectively. Finally, a, b, and c are the outputs of the

intermediate stages as shown in the figure.

The first step is to define the error E.

E = −1

2
(d− y)2 (2.35)

where d is the output provided by the training data.

Next, the weights are updated according to the following equation to minimize the error.

wij = wij − α
∂E

∂wij
(2.36)
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Fig. 2.8 General structure of a feedforward neural network

where α is the learning rate.

To find the derivative of the error with respect to the weights, we could use the following

equation:

∂E

∂wij
= −(d− y)

∂(d− y)

∂wij
= (d− y)

∂y

∂wij
(2.37)

To find the effect of each weight on the output, we compute the derivative of the output

with respect to every weight as shown in the equations below:

∂y

∂w2

=
∂y

∂c

∂c

∂w2

=
∂f2(c)

∂c

∂(w2 × b)
∂w2

= b
∂f2(c)

∂c
(2.38)

∂y

∂w1

=
∂y

∂c
× ∂c

∂b
× ∂b

∂a
× ∂a

∂w1

=
∂f2(c)

∂c
× w2 ×

∂f1(a)

∂a
× x (2.39)

It should be noted that one major advantage here is that there is no need to compute the

derivatives of the activation functions in the above equation. Through some simple mathe-
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matical manipulation, it can be shown that the value of the derivative could be computed

from the function itself as expressed below:

f(x) =
1

1 + e−x
=⇒ ∂f(x)

∂x
= f(x) (1− f(x)) (2.40)

Radial Basis Function Network

Another common type of feedforward neural networks is the radial basis function (RBF)

neural network. It is similar to MLPs, but with only one hidden layer with an RBF activation

function, which is shown in Figure 2.10 and expressed in Equation 2.41. The basic general

structure of an RBF network is shown in Figure 2.9.
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RBF

Layer

Output

Output

Output

Fig. 2.9 Radial basis function network

f(x) = ex
2

(2.41)

Like MLPs, RBF networks have also been proven to be universal approximators [29],

giving them a huge advantage over other ANN structures. In terms of training, RBF networks

are trained in two steps [26]. The first step is determining the centers of the activation

functions of the hidden neurons. The second training step is a backpropagation to adjust
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Fig. 2.10 The radial basis activation function

the weights of the connections.

Wavelet Neural Networks

A third type of feedforward neural networks used in circuit simulation are wavelet neural

networks [30]. They are similar to RBF networks, with one hidden layer with its activation

functions being the wavelet function. For more details on the wavelet functions and the

wavelet transform, the reader is referred to [26]. More details on how wavelet neural networks

are used in circuit simulation are presented in the next chapter.

2.2.2 Recurrent Neural Networks

The second major type of artificial neural networks used today both in general and in circuit

simulation is recurrent neural networks (RNNs). The general structure of an RNN is shown

in Figure 2.11.
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Fig. 2.11 General structure of a recurrent neural network

The biggest difference between feedforward networks and RNNs is the presence of feed-

back. Outputs of RNNs can be used as inputs to input and hidden neurons. This is done in

a delayed fashion where the current outputs are stored to be later used in the next forward

pass. Otherwise, activation functions and the overall structure of RNNs remain similar to

feedforward networks. Training of RNNs is also adjusted to take into account the presence

of feedback.

2.2.3 Other Structures

Several other structures of artificial neural networks have been used and proposed in the

literature for use in circuit simulation. These structures are not standard, systematic, or

general, but rather specific to certain applications. This is why their study is left for the

next chapter, where they will be covered.
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Chapter 3

Review of Macromodeling Techniques

In this chapter, a brief review of the macromodeling techniques used in circuit simulation is

presented. After presenting the general types of macromodeling, special attention is given

to the types related to this thesis: model order reduction and neural networks.

3.1 Types of Macromodeling

In the context of circuit simulation, there are four main macromodeling techniques used by

designers today [18,20].

3.1.1 Manual Abstraction

Manual macromodeling, or an automated version of it, is one of the earliest macromodeling

techniques used by designers. An engineer attempts to create a macromodel of the original

circuit by capturing specific circuit behavior and representing it in a reduced-order form.

Manual macromodeling requires advanced expertise and detailed knowledge of the internal

structure of the circuit block under consideration and hence is generally carried out by the
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original designer. Examples can be found in [31, 32]. This technique is unsystematic, time

consuming, and error prone [18,20].

3.1.2 Symbolic Analysis

First appeared in the 1960s, this type of macromodeling represents all circuit elements and

variables by symbols. The simulator can then proceed to use the symbolic circuit to produce a

symbolic expression of its input-output behavior. This expression could be further simplified

to produce a reduced-order macromodel of the circuit block [33–36].

3.1.3 Black-Box Methods

Macromodeling techniques based on black-box methods assume no knowledge of or have no

access to the internal structure of the circuit block, but rather a collection of simulated or

measured input and output data is available. Using this data, a reduced-order macromodel

can then be generated. Examples include artificial neural networks [37–39], vector fitting [40,

41], and the Loewner matrix approach [42–44].

3.1.4 Model Order Reduction

Algorithmic macromodeling [16,18], more commonly known as model order reduction (MOR),

starts with a set of mathematical equations that describes the behavior of the circuit. It then

attempt to replace this set of equations with a smaller one without too much loss in accuracy.

This could be done in several ways and will be explored in the following two sections.

MOR has several advantages over the other methods. First, it tends to be more general.

Since MOR is applied to the numerical equations describing the original system, it allows for

one macromodeling algorithm to be used on several types of systems as long as they are pre-

sented in the same fashion [20]. Second, since the macromodels are directly generated from
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the original system itself, MOR makes use of more information to create accurate macro-

models with significantly less effort [45]. Third, better error estimation is possible because

of the presence of the original system [45]. Lastly, second-order effects or perturbations can

also be included in the macromodel because of the availability of the original system [20].

3.2 Linear Model Order Reduction

The first linear model order reduction techniques focused on macromodeling large intercon-

nect networks in an attempt to reduce their simulation time. These techniques can generally

be split into three categories: direct moment matching, projection methods, and truncated

balanced realization.

3.2.1 Direct Moment Matching

Asymptotic waveform evaluation (AWE), introduced in 1990, is a transfer function fitting

method that matches the first few moments of the transfer function to a rational Padé

approximation [46–49].

To illustrate how this method works, consider the MNA equations in the frequency do-

main of a linear circuit shown below:

GX(s) + sCX(s) = b(s) (3.1)

where,

X(s) =


...

Vout(s)

...

 (3.2)
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and Vout is the output of the circuit whose transfer function we are interested in finding.

To generate the moments of the circuit, the transfer function h(s) is expanded in a Taylor

series:

Vout(s) = h(s) = m0 +m1s+m2s
2 + . . . (3.3)

Substituting the moments in the MNA equations gives:

G(M0 +M1s+ · · ·+Mns
n) + sC(M0 +M1s+ · · ·+Mns

n) = b (3.4)

where,

M0 =


...

m0

...

 , M1 =


...

m1

...

 , M2 =


...

m2

...

 , . . . (3.5)

To calculate the moments, s is set to zero and the coefficients of the powers of s are

equated on both sides of the equation:

M0 = G−1b

M1 = −G−1CM0

...

Mi = −G−1CMi−1

(3.6)

Now that the moments are calculated, we can find the approximation for the transfer

function. This can be done using a Padé rational function of an order L/M .
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h(s) = m0 +m1s+m2s
2 + · · · = a0 + a1s+ a2s

2 + · · ·+ aLs
L

1 + b1s+ b2s2 + · · ·+ bMsM
(3.7)

Cross multiplying the above equation results in:



mL−M+1 mL−M+2 · · · mL

mL−M+2 mL−M+3 · · · mL+1

...
...

. . .
...

mL mL+1 · · · mL+M−1





bM

bM−1
...

b1


= −



mL+1

mL+2

...

mL+M


(3.8)

By equating the coefficients of the powers of s, we can calculate:

a0 = m0

a1 = m0b1 +m1

a2 = m0b2 +m1b1 +m2

...

aL = mL +

min(L,M)∑
n=1

bnmL−n

(3.9)

Complex frequency hopping (CFH) introduced in 1995 extends the concept of AWE to

multi-point expansions in order to capture more dominant poles [50].

3.2.2 Projection Methods

Krylov based reduction offers two main advantages over direct moments matching. First, it is

possible to capture many more dominant poles in one expansion. Second, the reduced-order

macromodels created are passive by construction.
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To illustrate how this works, consider the frequency domain MNA equations of a linear

circuit:

GX(s) + sCX(s) = B (3.10)

where

X(s) = M0 +M1s+M2s
2 +M3s

3 + . . . (3.11)

and

GM0 = B =⇒ M0 = G−1B

GM1 = −CM0 =⇒ M1 = −G−1CM0

GM2 = −CM1 =⇒ M2 = −G−1CM1

...

GMn+1 = −CMn =⇒ Mn+1 = −G−1CMn

(3.12)

Consider the matrix K defined as

K = [M0,M1,M2, . . .Mq] (3.13)

Because of the nature of circuits, the above Krylov subspace will contain many redundant

directions and therefore will be ill-conditioned. To overcome this, we can construct an

orthonormal basis Q of this subspace:

colsp[Q] = colsp[K] (3.14)
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Model order reduction is then applied by congruence transformation using the orthonor-

mal basis Q.

GX(s) + sCX(s) = B (3.15)

First, a change of variables is made:

X(s) = QX̂(s) (3.16)

and X(s) is replaced in the equation:

GQX̂(s) + sCQX̂(s) = B (3.17)

Next is premultiplying by QT

QTGQX̂(s) + sQTCQX̂(s) = QTB (3.18)

The equation can now be rewritten as

ĜX̂(s) + sĈX̂(s) = B̂ (3.19)

where

Ĝ = QTGQ (3.20a)

Ĉ = QTCQ (3.20b)

B̂ = QTB (3.20c)
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The most known of these methods are Padé via Lanczos [51–53], Arnoldi [54], Congruence

Transformations [55–57], and PRIMA [58–60].

3.2.3 Truncated Balanced Realization

Truncated Balanced Realization (TBR) was borrowed from control theory [61,62], and first

appeared in circuit simulation in [63], then later expanded in [64–66]. TBR is more accurate

than other methods and has an error bound, however it is computationally very expensive to

extract the macromodel. It is usually applied as the last step in combination with another

macromodeling technique that had been used to perform the first reduction step [66–68].

3.3 Nonlinear Model Order Reduction

Linear MOR techniques have been studied extensively with a high degree of success, and

today we can say that we have a strong foundation for multiple techniques that can serve

various macromodeling purposes. Unfortunately, the same is not true for nonlinear model

order reduction. To this day, we still lack a comprehensive unified foundation for reducing

the order of complexity of nonlinear circuits [19]. Furthermore, we do not even posses a

single method which is capable of generating accurate nonlinear reduced-order macromodels

suitable for the general nonlinear system [18].

There are several reasons behind this. First, unlike linear systems for which we have

a thorough mathematical understanding, nonlinear systems are more complex and varied

and have not been fully understood yet [18]. Second, reducing the nonlinear functions is

not straightforward and in many cases the original non-reduced functions still have to be

evaluated [69, 70]. Lastly, we have no guarantee on how well the macromodel will perform

and all we can achieve is a simple comparison with the original system given a specific set
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of inputs [16].

Nonlinear macromodeling techniques can be generally split into three main categories:

time-varying, polynomial, and trajectory approximations.

3.3.1 Time-Varying Approximations

The first attempt at macromodeling nonlinear circuits was in 1998 when Roychowdhury [71]

realized that it is possible to model a specific type of nonlinear circuits as a linear time-

varying system. The input-output relationship of an RF mixer, for example, is indeed linear

but time-shifted despite the strongly nonlinear behavior of the circuit itself. The technique,

called time-varying Padé (TVP), first transforms the LTV system to an LTI systems by

adding extra inputs to capture the time varying nature of the circuit. Next, a reduced-order

model is obtained by applying any MOR technique to the new LTI equations. The last step

is to reformulate the reduced LTI system back to its original LTV form.

3.3.2 Polynomial Approximations

Time-varying approximations presented above are only suitable for a specific type of nonlin-

ear circuits where the input-output relationship is indeed linear but time shifted. However,

for the general purpose nonlinear circuit where the input-output relationship is inherently

nonlinear, time-varying approximations can no longer be used. Nonlinear model order re-

duction based on polynomial approximations were first introduced in 1999 by Roychowd-

hury [72] as an extension to his TVP method to model nonlinearities more accurately using

the Volterra series. The main idea is to replace the original nonlinear functions of the circuit

equations by a set of linear equations that represent and then later compute the distortions

caused by the nonlinearities.

The main advantage of this technique is that instead of solving the original nonlinear
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system, here we are solving a set of linear equations. By doing so, we can now make use

of the well-established linear model order reduction techniques to reduce the size those

equations. Each linear equation can be reduced to a smaller equation, for example using

some projection technique. If the reduced subspace of x1 is q1, x2 is q2 and so on, then the

reduced subspace of the whole system is the union of all the individual reduced subspaces [18].

Another interesting observation from using this technique is that the perturbation responses

x1, x2, . . . correspond to quantities of interest for circuit designers such as distortion and

intermodulation [18]. The main drawback in using Volterra series approximation is that

those type of algorithms are limited to weakly nonlinear systems. The reason behind that

is that the underlying assumption here is that the first linear term is much larger than the

perturbation terms.

From the above description, one realizes that the overall reduced subspace containing

the union of all the individual reduced subspaces increases when more perturbation calcula-

tions are required. To overcome this, in [70] Phillips suggested performing a singular value

decomposition on the reduced subspaces which results in a single reduced subspace. This

new subspace could be used to perform all the projections resulting in smaller equation size.

Furthermore, Phillips in [45,69] proposed rewriting the nonlinear system as a bilinear system

of higher dimensionality. The advantage here is that the bilinear system is easier to solve.

NORM

In 2003, an important advancement in nonlinear macromodeling based on polynomial ap-

proximations was presented by Li and Pileggi in [73,74]. The new algorithm called compact

nonlinear model order reduction method (NORM) builds upon the ideas presented above.
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QLMOR

Another milestone in polynomial approximation came in 2009 and was presented by Gu [75,

76]. Dubbed model order reduction via quadratic-linear systems (QLMOR), the new algo-

rithm is also based on Volterra series approximation. The first step of the algorithm is to

transform the differential algebraic equations describing the circuits under study into the

special representation that is quadratic-linear differential algebraic equations. Unlike previ-

ous methods, no Taylor expansion is used here so QLMOR does not suffer from the same

Taylor-related problems that the other methods suffer from. In the second step, the algo-

rithm uses a projection-based approach to reduce the quadratic-linear differential equations

resulting in a reduced macromodel. Results show that using this special representation re-

sults in a more general approach than the previous Volterra-based methods and is no longer

limited to weakly nonlinear methods.

3.3.3 Trajectory Approximations

Polynomial approximations presented in the previous section were ideal for weakly nonlinear

systems where the whole system is essentially biased at one point and only small perturba-

tions around that point happen. For the general case, where a system has stronger nonlin-

earities and several operating points, polynomial approximations fail. Instead, researchers

diverted their attention towards trajectory-based methods. The key idea here is to create a

reduced-order macromodel which is valid on and limited to one specific trajectory.

Trajectory-based methods can be split into three broad categories. The first method is

the projection method, where the nonlinear system is projected onto a reduced subspace

using the regular linear projection approach. The key difference here is dealing with the

nonlinear function, as will be shown in the following few paragraphs. The second approach
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is the piecewise linear technique, where the nonlinear function is modeled as a linear piecewise

function. The resulting combined linear functions are then projected on a reduced subspace

via linear projection. The last trajectory-based technique is the most recent ManiMOR

algorithm where a nonlinear projection is used.

Projection Methods

Projection methods in nonlinear macromodeling are a continuation of the linear ones with

special attention given to the nonlinear functions. Consider again the circuit subsection

containing linear and nonlinear elements expressed by Equation 3.21 below.

Gx(t) + Cẋ(t) + f(x(t)) = Ru(t) + b(t)

i(t) = RTx(t)

(3.21)

Using congruence transformation, the reduced-order nonlinear macromodel of this sub-

section could be written as shown in Equation 3.22 below.

Ĝx̂(t) + Ĉ ˙̂x(t) + f̂(x̂(t)) = R̂u(t) + b̂(t)

i(t) = R̂
T
x̂(t)

(3.22)
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where

Ĝ = QTGQ (3.23a)

Ĉ = QTCQ (3.23b)

R̂ = QTR (3.23c)

b̂(t) = QTb(t) (3.23d)

f̂(x̂)(t) = QTf(x(t)) (3.23e)

The main problem here is dealing with the nonlinear function f(x(t)). Every time we

need to calculate the reduced version of this function, we have to go back to the original

system and calculate the original function. After that, we can later project onto the reduced

subspace to find the reduced order function f̂(x̂(t)). Clearly this is a major drawback of

the projection methods. Calculating the nonlinear function of the original macromodel is

often expensive and therefore limits any speedup achieved by reducing the other matrices.

Furthermore, while a smaller size is achieved for the equations, this method is still inherently

a linear order-reduction method. No real reduction of the nonlinear part is ever carried out.

Regarding the reduced subspace Q, there exists several ways to construct it. One of

the well established ones is proper orthogonal decomposition (POD) [77, 78]. In [77], the

transient response of the circuit subsection is computed on a specific trajectory, essentially

different inputs and loading conditions. The responses are then collected into a subspace K:

K = [x1(t) x2(t) . . . xn(t)] (3.24)

Realizing that the above subspace contains many redundant directions, a singular value

decomposition (SVD) is carried out to compute the most dominant directions of this sub-
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space:

UΣV = SVD(K) (3.25)

where U and V are orthonormal matrices and Σ contains the singular values in descending

order.

The reduced subspace Q is then constructed from the first few columns of U which

correspond to the most dominant directions of the original subspace K.

Piecewise Linear Approach

The first attempt at piecewise linear approximations was the trajectory piecewise-linear

(TPWL) technique introduced in 2001 by Rewienski and White [79,80]. The idea is to model

the nonlinear system as a combination of reduced linear models. First, a training input is

applied and a linearization is performed at specific points on this particular trajectory. Each

linearized model is then reduced using Krylov subspace methods. The last step is to combine

all the linear models to create an overall reduced model for the whole system.

For more details on the choice of weights and the reduced subspace, refer to [80]. Later,

Tiwary and Rutenbar in [19,81] expanded the TPWL approach, making it scalable to larger

circuits, parametric, and even faster. Furthermore, in [82, 83], Dong and Roychowdhury

combined TPWL with polynomial approximations in a new method they termed piecewise

polynomial (PWP). Instead of approximating the nonlinear functions with linear ones, they

suggested polynomial approximations. This combines the global approximation capabilities

of TPWL with the weakly nonlinear behavior that polynomial approximations are capable

of capturing.
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ManiMOR

The last trajectory-based approximation we discuss here was presented by Gu and Roy-

chowdhury [84, 85] in 2008. Unlike the previous methods, which employ a linear projection

scheme to generate the macromodels by projection on a reduced linear subspace, maniMOR

performs a nonlinear projection on a nonlinear manifold. Moreover, unlike previous methods

where the reduced subspace and the projection are done in one step, maniMOR explicitly

splits them into two clear steps. In what follows, we outline the general steps of this algo-

rithm.

The first step in this algorithm is creating the trajectory where the macromodel is con-

sidered valid. To do that, the original circuit is simulated under different conditions on this

trajectory. Multiple input and different simulation types are performed, then sample points

are taken based on a specific criterion. Next, the reduced nonlinear subspace, the manifold,

is constructed from the sample points collected above. Lastly, the reduced-order macromodel

is created by projecting the sample points onto the newly generated manifold.

The main advantage in this algorithm can be observed by noting that the nonlinear

manifolds contain more information than their linear counterparts. This allows for the

construction of smaller macromodels compared to other methods. In fact, the authors showed

that in some cases using maniMOR, they were able to generate macromodels half the size

of TPWL, but with the same accuracy.

3.4 Neural Network-Based Macromodeling

From the early days of macromodeling, artificial neural networks were used to approximate

circuit behavior. ANN-based macromodeling belongs to the black box category of macro-

modeling. The designer does not have or even need to have access to the inner workings of
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the circuit under test. Instead all they have is a set of input-output data with which they

define the macromodel [27,86–88].

Macromodeling using neural networks is very useful for the following reasons. First, no

information about the original circuit is required aside from its input-output relationship

represented with a set of data points. This data is then used to train a neural network to

teach the behavior of the original circuit. If enough data points are available and the ANN

is of a suitable structure, then the newly trained ANN can replace the original circuit and

act as a reduced-order macromodel. Second, several neural network structures are proven

to be universal approximators if the function they are approximating is continuous, which is

the case for circuits.

In what follows, we present a short survey of the artificial neural network structures used

so far in macromodeling circuit blocks. There are two common themes in those macromod-

eling techniques. First, many of the proposed algorithms rely on special structures of neural

networks built for specific applications. The designer must know the inner workings of the

subcircuit to be able to make use of those algorithms. The second theme is using a neural

network to represent the whole input-output relationship of a subcircuit. This requires the

usage of a special type of neural networks to capture dynamic behaviour and is not general

enough for all circuits.

Feedforward neural networks were the first method of choice for circuit designers given

their popularity and availability. Therefore, the first macromodeling attempts that used

neural networks focused on feedforward networks with all its types. One of the earliest

attempts to use artificial neural networks in circuit design came in 1996 when [89] used a

feedforward neural network to model microstrip vias and interconnects.

Recurrent Neural Networks are currently among the most popular architectures used to

model nonlinear circuits. In [90], the authors trained a recurrent neural network to predict
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the input-output behaviour of nonlinear circuits. In [91], the authors used a similar approach

to model an IO buffer. Also, in [92], the authors used recurrent neural networks to model

highly nonlinear digital input/output drivers. Lastly, in [93], recurrent neural networks were

used to dynamically model linear and nonlinear microwave circuits.

Radial basis neural networks have also been used for macromodeling nonlinear circuits.

Specifically in [94], a radial-basis function neural network was used to model the behaviour

of an RF power amplifier successfully.

In [38], an artificial neural network was used, aided by extra knowledge provided by the

circuit under test. Dubbed Knowledge-based neural networks (KBNNs), the authors added

extra neurons with special functions used to emulate the specific behaviour of the circuit

being modeled. Given the special structure of the new network and the fact that it must be

designed with a specific circuit in mind, it remains limited to those circuits and requires a

significant amount of work and modifications to generalize or even modify for another type

of circuit.

Similary, in [95], the author used their knowledge of the circuit being modeled to decide

on the specific structure of neural network being used. While effective, a very thorough

understanding and careful study of the circuit must be done in order to choose the network

architecture and ensure accuracy. Here as well, the algorithm is not general enough and is

tailored to specific circuits in mind.
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Chapter 4

Macromodeling Radio Frequency

Circuits

In this chapter, we present the proposed reduction method applied to radio frequency circuits.

With the growth of the wireless communications sector, RF circuits are now widely used in

numerous connected devices. The challenge with those types of circuits is that they require a

special kind of analysis, known as the Harmonic Balance technique, discussed in Section 2.1.2

of this thesis. This type of analysis is necessary to study and observe specific nonlinear

behaviour.

A typical RF circuit usually contains only a handful of elements, and therefore its MNA

equations are small in size. However, given the nature of the Harmonic Balance technique, the

resulting HB equations are typically quite large. As noted in Section 2.1.2, these equations

are nonlinear algebraic equations. While there exist many techniques that are able to reduce

the size of linear equations considerably, since these equations contain a nonlinear component,

common model order reduction techniques will not work here straight out of the box. Instead,

some modifications to those techniques are necessary to extend them for those types of
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circuits and their simulations.

In this chapter, we present our proposed reduction technique that is suitable for use with

radio frequency circuits. However, before we are able to do this, we need to reformulate

our MNA equations into a macromodel format. This format will later allow us to insert the

model into a larger circuit. With that out of the way, the first step of reduction, proper

orthogonal decomposition, is used to reduce the linear part of the circuit. In the second step

we use feedforward neural networks to replace the nonlinear part of the circuit. The result

is a reduced-order macromodel, that has the same format as the original one (only smaller

in size). The newly-formed macromodel will be able to replace the original and emulate its

behaviour within a well-defined range chosen by the user.

4.1 Harmonic Balance Equations of a Nonlinear Subsection

In order to tackle the problem of creating reduced-order macromodels of nonlinear circuits, we

will first reformat the MNA equations presented in Section 2.1.1 into macromodel form. This

macromodel format, reduced or not, can be readily added to a larger circuit for simulation.

4.1.1 Network Formulation

Consider the multi-port circuit subsection which contains several linear and nonlinear ele-

ments shown in Figure 4.1.

The MNA formulation for this multi-port nonlinear circuit subsection in the time domain

can be written as:
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VDD

Fig. 4.1 A multi-port circuit subsection

Gx(t) + Cẋ(t) + f(x(t)) = Ru(t) + b(t)

i(t) = RTx(t)

(4.1)

where

� u(t) ∈ Rp×1 contains the ports’ voltages,

� i(t) ∈ Rp×1 contains the ports’ currents,

� R ∈ Rn×p is a selector matrix that maps the ports’ voltages and currents into the state

space of the circuit,

� p is the number of ports,

� and n is the size of the MNA equations.

This is the nonlinear circuit subsection, which we are interested in reducing. However,

since the type of analysis that will be carried out is the Harmonic Balance technique, we

need to rewrite Equation 4.1 describing this macromodel in a way that is appropriate to use

with Harmonic Balance. This formulation could be written as:
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ḠX̄ + C̄X̄ + F (X̄) = R̄Ū + B̄

Ī = R̄
T
X̄

(4.2)

where

� X̄ ∈ RNhb×1 is a vector that contains the unknown Fourier coefficients of x(t),

� B̄ ∈ RNhb×1 is a vector that contains the Fourier coefficients of b(t),

� F (X̄) ∈ RNhb×1 is a vector that contains the Fourier coefficients of f(x(t)),

� Ḡ ∈ RNhb×Nhb is a block matrix whose blocks Gij ∈ RNh×Nh are

Gij = diag(gij, . . . , gij)

where gij is the corresponding element in the original G matrix of the MNA equations,

� C̄ ∈ RNhb×Nhb is a block matrix whose blocks Cij ∈ RNh×Nh are

Cij = cij



0 0 0 · · · 0 0

0 0 ω · · · 0 0

0 −ω 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 Hω

0 0 0 · · · −Hω 0


where cij is the corresponding element in the original C matrix of the MNA equations,
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� Ū ∈ RNpb×1 is a vector that contains the unknown Fourier coefficients of u(t),

� Ī ∈ RNpb×1 is a vector that contains the unknown Fourier coefficients of i(t),

� R̄ ∈ RNhb×Npb is a selector matrix that maps the Fourier coefficients of the ports’

voltages and currents into the state space of the circuit,

� Nhb = n×Nh,

� Npb = p×Nh,

� Nh = 2H + 1,

� H is the number of harmonics,

� and n is the size of the time domain MNA equations.

The nonlinear circuit subsection which we are interested in is now in a suitable format for

reducing. The resulting reduced format will be identical to the original one, except smaller

in size. However, in order to make use of this reduced macromodel, we should be able to

add it to a larger system. This larger system might contain other macromodels and linear

and nonlinear components.

4.1.2 System Formulation

Consider a circuit φ containing several linear and nonlinear elements in addition to m non-

linear circuit subsections. The contributions of linear and nonlinear components and the m

nonlinear circuit subsections can be added to the overall equations of circuit φ as follows:
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Gφ D1R
T
1 · · · DmR

T
m

R1D
T
1 G1 0 0

... 0
. . . 0

RmD
T
m 0 0 Gm





xφ(t)

x1(t)

...

xm(t)



+



Cφ 0 · · · 0

0 C1 0 0

... 0
. . . 0

0 0 0 Cm





ẋφ(t)

ẋ1(t)

...

ẋm(t)


+



fφ(xφ(t))

f 1(x1(t))

...

fm(xm(t))


=



bφ(t)

b1(t)

...

bm(t)


(4.3)

where

� Gφ, Cφ, fφ(xφ(t)) and bφ(t) are the vectors and matrices of the linear and nonlinear

elements of circuit φ,

� G1, · · · , Gm, C1, · · · , Cm, f 1(x1(t)), · · · , fm(xm(t)), b1(t), · · · , bm(t) and R1, · · · ,

Rm are the vectors and matrices of the m subsections,

� and D1, · · · , Dm are selector matrices that map the port voltages and currents of the

subsections to the state space of circuit φ.

Here again, since we are interested in simulating this system using the Harmonic Balance

technique, we need to modify our system equations to allow for that. In this case, the

Harmonic Balance equations of this larger circuit could be rewritten as:
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Ḡφ D̄1R̄
T
1 · · · D̄mR̄

T
m

R̄1D̄
T
1 Ḡ1 0 0

... 0
. . . 0

R̄mD̄
T
m 0 0 Ḡm





X̄φ

X̄1

...

X̄m



+



C̄φ 0 · · · 0

0 C̄1 0 0

... 0
. . . 0

0 0 0 C̄m





X̄φ

X̄1

...

X̄m


+



F φ(X̄φ)

F 1(X̄1)

...

Fm(X̄m)


=



B̄φ

B̄1

...

B̄m


(4.4)

where

� Ḡφ, C̄φ, F φ(X̄φ) and B̄φ are the vectors and matrices of the linear and nonlinear

elements of circuit φ,

� Ḡ1, · · · , Ḡm, C̄1, · · · , C̄m, F 1(X̄1), · · · , Fm(X̄m), B̄1, · · · , B̄m and R̄1, · · · , R̄m are

the vectors and matrices of the m subsections,

� and D̄1, · · · , D̄m are selector matrices that map the port voltages and currents of the

subsections to the state space of circuit φ.

We are now able to represent the circuit we are interested in reducing in macromodel

format and to add it using this format to a larger system. The macromodel format we are

using was also expanded so that it can handle Harmonic Balance simulations since they are

typically used for RF circuits. At this point, we are ready to proceed to the next step, which

is the reduction technique itself.



54 Macromodeling Radio Frequency Circuits

4.2 Reduction Technique

The reduction technique proposed in this thesis can be split into two separate steps. Each

step is, in fact, a full reduction technique in its own right and can be used to greatly reduce

simulation times. Our goal here is to use both techniques together and get the advantages

of each one.

The first step of our method is to use proper orthogonal decomposition. This step is aimed

at the linear part of the circuit and therefore greatly reduces the size of the MNA matrices.

However, despite this reduction, simulation speedup remains limited. Radio frequency cir-

cuits are nonlinear, and therefore their MNA equations contain a nonlinear component. This

nonlinear part is usually solved using the Newton-Raphson method which requires calculat-

ing the nonlinear vector and its derivative in every iteration. Unfortunately, while POD is

capable of reducing the size of the linear parts of the equation, it cannot tackle the nonlinear

part. In fact, the only thing we can do to evaluate the nonlinear part and its derivative is to

revert back to the original non-reduced system and calculate it. This quickly becomes the

bottleneck in simulation and greatly limits any speedup achieved by using this method.

One way to overcome this is to replace the nonlinear part of the circuit with something

else that can emulate its behaviour, but has a smaller size. This is the second step of

the proposed reduction technique, where artificial neural networks are used to mimic the

behaviour of the reduced-order form of the nonlinear vector without the need to resort to

evaluating the original one.

In the following two sections, we present both steps of reduction: proper orthogonal

decomposition and artificial neural networks. Effort is made to explain the specific choices

taken throughout the process. Specific emphasis is given to the choices of the size of the

congruence transformation matrix, the number of hidden neurons, the structure of the neural
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networks, and the training of the neural networks.

4.2.1 Proper Orthogonal Decomposition

Proper orthogonal decomposition was initially proposed for linear systems and then later

extended to only time-domain nonlinear systems. The method allows us to generate a

reduced-order macromodel of a specific nonlinear circuit by projecting it onto a reduced

orthogonal subspace Q, also known as the congruence transformation matrix. It is precisely

this projection that reduces the size of the MNA equations. For the first time, this method

will be applied to the frequency domain. Specifically, we will extend this method such that it

can be applied to the harmonic balance simulation. This is only possible because we rewrote

the macromodel formulation in a way that is suitable for the Harmonic Balance technique.

Generating the congruence transformation matrix on which the subsection will be pro-

jected is the heart of this method. The next section will be devoted for that, however, for

now we are going to assume that we already have this matrix and that it is indeed a reduced

orthogonal subspace. This is to give the reader an appreciation of how effective the method is

at reducing the size of the equations before getting into the details of creating the subspace.

Consider again Equation 4.2 that describes a circuit macromodel ready for simulation

using the Harmonic Balance technique. Performing a change of variables, X̂ = QX̄ and then

pre-multiplying by the congruence transformation matrix Q, we can rewrite it as follows:

ĜX̂ + ĈX̂ + F̂ (X̂) = R̂Ū + B̂

Ī = R̂
T
X̂

(4.5)
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where

Ĝ = QT ḠQ (4.6a)

Ĉ = QT C̄Q (4.6b)

R̂ = QT R̄ (4.6c)

B̂ = QT B̄ (4.6d)

F̂ (X̂) = QTF (X̄) (4.6e)

GQT Q ⇒ Ĝ

Fig. 4.2 A visual representation of POD

While Equation 4.5 looks similar to Equation 4.2, they have very different sizes. If the

size of the congruence transformation matrix, q, is chosen carefully such that q � Nhb, then

the reduced-order macromodel will be significantly smaller than the original. Figure 4.2

shows a visual representation of how this reduction occurs. It is worth noting here that

while the sizes of the Ḡ, C̄, R̄, and Ḡ have truly been reduced and replaced completely

by Ĝ, Ĉ, R̂, and Ĝ, the same could not be said about the nonlinear vector F . Anytime

we run a simulation and we need to evaluate this vector, we will need to go back to the

original system to evaluate the nonlinear vector and then return to the reduced one. This is

a significant limitation of this method.
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Congruence Transformation Matrix

As mentioned before, the heart of this method is the finding the congruence transformation

matrix. In this section will address this issue. First, we need to realize that the newly formed

reduced-order macromodels created using this technique will only be valid under specific

conditions. These conditions should be chosen at the time the macromodel is created and

generally depend on how the user intends to use the macromodel later. Generally speaking

those conditions will include input power, input frequency, and loading conditions. To ensure

that the macromodel is valid over those specific conditions, they need to be accounted for

while constructing the reduced subspace Q. For that to happen, the original macromodel

should be simulated over the whole range of conditions desired by the user, and the solution

of the system is then stored in a matrix K as follows:

K =

[
X1 X2 · · · Xs

]
(4.7)

Given the nature of electronic circuits, there will be many similarities in the responses

above. This is only natural since we are simulating over a specific range of conditions and

not randomly. Hence, the above subspace will surely contain many redundant directions. In

order to capture the most dominant directions, singular value decomposition is used:

K = UΣV T (4.8)

The result of SVD is three matrices. The first is an orthogonal matrix, the second is

the singular values in descending order, and the third is also an orthogonal matrix. The

congruence transformation matrix Q is then constructed from the first few columns of the

matrix U ensuring it contains the most dominant directions of the subspace. Figure 4.3
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[
X1 X2 · · · Xs

] SVD−−→ USV T

Q

Fig. 4.3 Visual representation of the SVD process

shows a visual representation of this process.

The choice of the number of columns, and therefore the size of the reduced macromodel,

is a critical one. Too small and the reduced-order macromodel might not be accurate enough.

Too big and we risk not having any reduction or speedup. For linear circuits, researchers have

come up with systematic methods to make this choice. Unfortunately, this does not exist

for nonlinear circuits. In fact, trial and error must be used to determine what is sufficiently

accurate. In the numerical results section, the user will be presented with more details on

this since it varies from one circuit to another.

With Q formed, we can now perform proper orthogonal decomposition, as discussed in

the previous section, and obtain the reduced-order macromodel. This macromodel can now

be readily added to a larger system containing other macromodels (reduced or not reduced)

and other linear and nonlinear elements:
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Gφ D̂1R̂
T

1 · · · D̂mR̂
T

m

R̂1D̂
T

1 Ĝ1 0 0

... 0
. . . 0

R̂mD̂
T

m 0 0 Ĝm





Xφ

X̂1

...

X̂m


(4.9)

+



Cφ 0 · · · 0

0 Ĉ1 0 0

... 0
. . . 0

0 0 0 Ĉm





Xφ

X̂1

...

X̂m


+



F φ(Xφ)

F̂ 1(X̂1)

...

F̂m(X̂m)


=



Bφ

B̂1

...

B̂m


While the size of the above system is definitely much smaller when reduced-order macro-

models are used, the challenge is how to deal with the nonlinear vector. Although the size

of F̂ is small, we do not have a straightforward way of evaluating it without reverting to

the original system that contains F . Therefore at every iteration where the reduced non-

linear vector is needed, we must first return to the original system by multiplying X̂ with

the congruence transformation matrix Q, evaluate the original nonlinear vector F , and then

multiply by QT to get F̂ . This also needs to be repeated for every reduced-order macromodel

in the system:



F φ(Xφ)

F̂ 1(X̂1)

...

F̂m(X̂m)


=



F φ(Xφ)

QT
1F 1(Q1X1)

...

QT
mFm(QmXm)


(4.10)

This obviously is a major limitation for speedup given the cost of evaluating the original

nonlinear vector due to its large size. Unfortunately, it does not stop there. While performing
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the Newton-Raphson method in the Harmonic Balance technique, we need the derivative of

the objective function and hence the derivative of the nonlinear vector. This is true for all the

reduced-order macromodels present in the system. The general structure of the derivative

of the nonlinear vector would be:



∂F φ(Xφ)

∂Xφ

0 · · · 0

0
∂F̂ 1(X̂1)

∂X̂1

0 0

... 0
. . . 0

0 0 0
∂F̂m(X̂m)

∂X̂m


We now are facing the same problem again: we do not have a way to evaluate the reduced-

order nonlinear derivative without reverting to the original system. And so everytime we

need this derivative, we must multiply X̂ by Q to get X, evaluate the derivative
∂F̂ (X̂)

∂X̂
,

and lastly multiply and pre-multiply by Q and QT :

∂F̂m(X̂m)

∂X̂m

= QT ∂Fm(Xm)

∂Xm

Q (4.11)

Because of the above two required evaluations, it can easily be seen that while the newly

formed system that contains the reduced-order macromodels is much smaller than the original

one that contains the full-size macromodels, simulation speedup will remain limited. During

every Newton-Raphson iteration, we need to revert back to the original system to evaluate

the nonlinear vector and its derivative. This in fact becomes the bottleneck of the whole

simulation and hinders any improvements in speedup.

Nevertheless, the first step of reduction achieved something significant: it reduced the

size of the linear part of the MNA matrices. All that remains is figuring out how to reduce

the nonlinear vector and its derivative. If we could figure out a way to avoid ever returning
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to the original system to avoid the nonlinearities, it would remove this great limitation on

speedup and opens up more reduction possibilities. This paves the way for the next step in

reduction: artificial neural networks in the specific form of feedforward neural networks.

4.2.2 Feedforward Neural Networks

As discussed in the previous section, to overcome the speedup limitation, we would need to

come up with a way to evaluate the nonlinear vector and its derivative without resorting to

the need to revert back to the original system. Ideally, the reduced nonlinear vector would be

replaced with something that would have similar behaviour without the need of the original

vector or its derivative. More importantly, whatever the replacement is, it should also be

simple enough such that it does not add too much overhead or require too much computation

that might take away any possible speedup improvements.

Our proposed solution to this problem, which is the second step of our reduction tech-

nique, is artificial neural networks which can do exactly that. Artificial neural networks,

specifically the feedforward ones, are known to have remarkable curve fitting abilities and

when constructed carefully, they can mimic any nonlinear function to any desired accuracy,

as discussed in the early introductory chapters. We intend to use this structure of the neural

network to replace the reduced-order nonlinear vector. Furthermore, the derivative of the

function that represents this neural network will serve as the new derivative of the nonlinear

vector.

Since a three-layer neural network, shown in Figure 4.4, is a proven universal approxima-

tor and is capable of emulating any function to a desired accuracy, we will go ahead and use

that here to replace the reduced-order nonlinear vector F̂ . The advantage here is that if we

are successful, then during the Newton-Raphson iterations, we will not need to revert to the

original system to evaluate the nonlinear elements, but instead we can simply use the neural
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Fig. 4.4 Feedforward neural network

network to get the values that F̂ would have provided. If the neural network is accurate yet

simple enough, then a great speedup could be achieved. It should also be noted that the

derivative of the neural network function also needs to be evaluated because it too will be

needed during the Newton-Raphson iterations.

Once the neural network is constructed, it can replace the nonlinear vector as such:

Fnn(X̂) ≈ F̂ (X̂) (4.12)

where Fnn is the function that describes the neural network. In other words, Fnn de-

scribes the activation functions, the weights and biases, and the layers of the neural network.

The derivative of this function could also then be computed to replace the derivative of the

original nonlinear vector as such:

∂Fnn(X̂)

∂X̂
≈ ∂F̂ (X̂)

∂X̂
(4.13)
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It is evident that to be able to completely express Fnn and its derivative, we need to

have all the details of the neural network, including its structure, layers, activation functions,

weights, and biases.

Training of the Neural Network

Neural networks are only able to emulate the behaviour of other functions under two condi-

tions. First, they need sufficient data for training, and second, a complex enough structure

to learn this specific data and be able to predict its input-output behaviour or the input-

output behaviour of similar data. Both are not trivial to find and require investigation. In

most cases, they depend on the type and difficulty of the problem at hand.

On the amount of data provided, if too little data is provided then the neural network

does not have enough information to learn the underlying functions and will fail to generalize

or predict the input-output behaviour. The structure of the neural network is also critical.

If it is too small, then again here the network will not have enough “flexibility” to learn the

underlying functions. If it is too big, the user risks over-fitting, or in other words, the network

“memorizes” the data. This is not advantageous because the network did not really learn

the data and will fail to generalize its input-output behaviour. If the network “sees” this

exact same data again, it will predict its input-output accurately, but if it “sees” something

very close to it, then it will most likely fail.

In the context of neural networks, training or learning refers to the step when the weights

and biases of the individual artificial neurons are adjusted such that a minimum error in the

output of the network is achieved. In other words, the weights and biases are changed until

the neural network gives an output which is considered close enough to the function it is

trying to represent. The way those weights and biases are changed is through an algorithm

known as the training algorithm. To do its job successfully, the training algorithm will
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need access to input and output data. For feedforward neural networks, the most popular

algorithm today is the back-propagation algorithm with all its different flavours.

For the neural network to accurately approximate the nonlinear function, it will need

a large set of data to use for training. This training data should be extracted from the

behaviour of the original system. The inputs in our data will be X̂ and the outputs will

be F̂ (X̂). This data will be taken from the same exact range where the reduced-order

macromodel is considered to be valid. Therefore, we can guarantee that the neural network

will be able to mimic the behaviour of the nonlinear vector within that specified range.

As for the choice of the training algorithm, since this is a feedforward neural network, the

back-propagation algorithm was used. Specifically, we found that the Levenberg-Marquardt

back-propagation algorithm worked best for our case and resulted in the best performance

of the neural network. It converged faster, but did require more memory and CPU compu-

tations than the other back-propagation algorithms we tried.

Structure of the Neural Network

While the overall general structure of the feedforward network was described in Figure 4.4,

in this section we will discuss it in a bit more detail. Specifically, we will express the

function that completely describes the inside workings of our feedforward neural network.

That includes the number of layers, the number of neurons, the weights and biases, and the

activation functions. Figure 4.5 shows precisely that. Here the reader can see a representation

of every layer of the neural network, with its weights, biases, and activation functions. In

our case, since we are using a two-layer network, there will only be the input, the hidden

layer, and the output layer.

In our case, x̂ is the input, w1 represents the weights of the neurons of the hidden layer,

and b1 represents the biases of these neurons. The activation function f1 takes in a as an
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Fig. 4.5 Feedforward Neural Network

input and provides b as output, where a is the result of the weights multiplied by the inputs

plus the biases. In our structure of the neural network, the activation function of the first

layer is the logsig function:

f1(x) =
ex − e−x

ex − e−x
(4.14)

The same rationale applies to the output layer of the neural network. It has its own

weights, biases, and activation function. The activation function we used for the output

layer is simply the linear function:

f2(x) = x (4.15)

It can now be seen that the whole structure of the neural network could be described

using one function fnn(x̂) that could be written as a series of the previous functions of the

neural network:

fnn(x̂) = f2(c) (4.16)

and
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c = b ∗W2 + b2 (4.17)

where W2 is the matrix containing the weights of the ouptput layer, b2 is the matrix

containing the biases of the output layer, and b is the output of the hidden layer:

b = f1(a) (4.18)

and

a = x̂ ∗W1 + b1 (4.19)

where W1 is the matrix containing the weights of the hidden layer and b1 is the matrix

containing the biases of the hidden layer.

Assuming the neural network has been trained carefully and successfully, we can now

use the function that describes it, fnn, to replace the reduced-order nonlinear vector in our

calculations. If this function is accurate, yet simple enough, then a large speedup could be

achieved.

It should be noted that in creating the above network, we did not start from scratch. We

used available tools in Matlab which allowed us to create and train the above network. We

then simply extracted the weights, biases, and activation functions to come up with a closed

form for fnn. Of course, we can not stop there. We now need to compute the derivative of

this neural network to be able to use it properly in our Harmonic Balance simulations.
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Derivative of the Neural Network

To be able to use the neural network during the Newton-Raphson iteration, we will need to

not only evaluate the function describing it, but also the derivative of the function describing

it with respect to the input x̂:

∂fnn(x̂)

∂x̂
(4.20)

To be able to do that, we need to use the derivative chain rule and take into account

every function inside the neural network. That includes the multiplication of the weights,

the addition of the biases, and the activation functions. We also need to include any scaling

functions used.

The chain derivative is:

∂fnn(x̂)

∂x̂
=
∂fnn
∂c
× ∂c

∂b
× ∂b

∂a
× ∂a

∂x̂
(4.21)

where,

∂fnn
∂c

=
∂f2(c)

∂c
=

c

∂c
= 1 (4.22)

∂c

∂b
=
∂b ∗W2 + b2

∂b
= W2 (4.23)

∂b

∂a
=
∂f1(a)

∂a
= 1− f 2(a) (4.24)

and
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∂a

∂x̂
=
∂x̂ ∗W1 + b1

∂x̂
= W1 (4.25)

Lastly, the neural network uses a scaling function that maps its inputs and outputs to

a specific range. This range is used in order to assist the training algorithm to converge

faster. This scaling function becomes part of the neural network itself and has to be taken

into account when creating the closed form function fnn that describes its structure.

Using the above, we now have a closed form that describes the derivative of the neural

network and can be used in the calculation of the nonlinear Jacobian matrix of the Harmonic

Balance technique.

Calculating the Output of the Neural Network and its Derivative

One major advantage of the neural networks is not only that they simplify the evaluation of

the nonlinear elements, but also the their derivatives requires minimal computation. Con-

sider the tansig function that is used as the activation function of the hidden layer:

f(x) =
ex − e−x

ex + e−x
(4.26)

The derivative of this function can be rewritten as:

∂f(x)

∂x
= 1− f 2(x) (4.27)

What this means is that we do not need to reevaluate any new functions to compute the

derivative. We have already computed f(x) when we evaluated the function of the neural

network, and to compute its derivative we simply need to square it and subtract it from 1.

The same is true for the linear activation function:
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f(x) = x (4.28)

and its derivative will simply be:

∂f(x)

∂x
= 1 (4.29)

Furthermore, if we also consider the effects of the weights and biases, then at any input

to any layer of the network, we can write:

Output = Input×Weights + Biases (4.30)

Once again the derivative is simple to calculate for every layer:

∂ Output

∂ Input
= Weights (4.31)

This is a quantity that is readily available and needs no extra computations to acquire.

This is a major advantage for using neural networks. While in the past, the derivative of the

nonlinear vector was not only complicated, but also had its own functions, now the function

itself and its derivative are very closely related and require little extra computation. As will

be clear from numerical results, this provides more speedup than expected.

4.3 Numerical Results

In this section, we will show the numerical results of our proposed method applied to various

radio frequency circuits. For every example, we will address how we we decided on the size

of Q, the number of hidden neurons, and the size of training data.
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4.3.1 Low-Noise Amplifier

The first example is the low noise amplifier shown in Figure 4.6. The macromodel has

two ports: one at the input and one at the load. The goal is to generate a reduced-order

macromodel of this system that is valid over a specific range of input power and loading

conditions. The size of the original Harmonic Balance equations is 4862.

Rsig

RL

outv

sigv

Fig. 4.6 Cascode amplifier

Congruence Transformation Matrix

The original system was simulated over the desired range. The input voltage was varied

between 10µV and 1mV in steps of 10µV. The load was varied between 45Ω and 55Ω in

steps of 1Ω. The total number of simulations carried out was 1100 and used to create the
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subspace:

K = [X1 X2 X3 . . . X1100] (4.32)

Singular value decomposition was then used to capture the most dominant directions of

this subspace and the congruence transformation matrix was constructed. For this example,

a Q size of 5 was sufficient to accurately capture the behaviour of the system.

Feedforward Neural Networks

To train the neural network accurately, more data points are needed than the ones used

to generate the reduced subspace. To achieve this, the same points used to generate the

subspace were used again in addition to points taken between them. The size of the data

used to train the neural network was close to 10 thousand points.

As for the architecture of the neural network, 20 hidden neurons were used to ensure

the network has enough ”flexibility” to learn the data. Lastly, before training was done,

two mapping functions were used to scale the data and make it more normalized in order to

make the training easier.

Simulation

The reduced-order macromodel was simulated inside the valid range and compared to the

original models. Figures 4.7, 4.8, and 4.9 show a comparison when the load was changed.

Figures 4.10, 4.11, and 4.12 show a comparison when the input power was changed. As

can be observed the reduced-order macromodels matched the original to a high degree of

accuracy.

Overall, the speedup gain achieved by using the newly generated macromodels ranged
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between 4 to 5 times.
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Fig. 4.7 A comparison between the
reduced and original system when the
load is 45Ω.
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Fig. 4.8 A comparison between the
reduced and original system when the
load is 50Ω.
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Fig. 4.9 A comparison between the
reduced and original system when the
load is 55Ω.

4.3.2 Frequency Mixer

In this example, we use the proposed algorithm to create a reduced-order macromodel of the

RF mixer shown in Figure 4.13. Unlike the previous example, the mixer subcircuit has three



4.3 Numerical Results 73

0 1 2 3 4 5 6 7 8 9 10

Frequency 10
9

-180

-160

-140

-120

-100

-80

-60

O
u
tp

u
t 
P

o
w

e
r 

(d
B

m
)

Original

Reduced

Fig. 4.10 A comparison between the
reduced and original system when the
input voltage 50µV.
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Fig. 4.11 A comparison between the
reduced and original system when the
input voltage 100µV.
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Fig. 4.12 A comparison between the
reduced and original system when the
input voltage 1mV.
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ports: one port for the local oscillator vLO, another port for the RF input vRF , and lastly

one port for the load vout.

v
LO

v
RF

v
out

Fig. 4.13 Frequency mixer

The circuit is designed for a local oscillator frequency of 1 GHz and an RF frequency of

100 MHz. In this example, we create a macromodel of this mixer that is valid over a range

of RF input power. Specifically, it is valid for an RF input of 10 mV to 100 mV.
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Congruence Transformation Matrix

To construct the congruence transformation matrix for the macromodel, we need to simulate

the original circuit over the desired range of which we would like it be valid. Therefore, the

mixer was simulated with an RF input power varying from 10 mV to 100mV in steps of 1

mV, for a total of 91 simulations. The solution of every simulation is stored and the matrix

containing the subspace would be:

K = [X1 X2 X3 . . . X99] (4.33)

To capture the most dominant directions of this subspace, SVD is used and the congru-

ence transformation matrix is constructed from the most dominant of those directions. For

this example, a Q size of 5 was enough to capture accurately the behaviour of the mixer.

Using this size of Q, the circuit can be reduced from its original size of 21,097 to only 5.

Feedforward Neural Networks

Unlike the construction of Q, where only a handful of simulations are required, the training of

the neural network requires a significantly larger data set to accurately emulate the behavior

of the nonlinear function. To accomplish this, a much larger number of points within the

desired region of validity is taken, specifically 4,411 (as opposed to only the 91 simulation

points needed to construct Q).

The ANN has five inputs and five outputs. To ensure a high degree of accuracy, the

ANN was constructed with 20 hidden neurons. The Levenberg-Marquardt backpropagation

algorithm was used to train this network.
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Simulation

The figures below show the a comparison between the reduced system constructed using the

proposed method and the original method. The speedup achieved in all simulations ranged

between 7 to 8 times.

Figure 4.14 shows a comparison between the harmonics of the original and reduced system

when the input of the RF source was low, while Figure 4.15 shows a comparison between the

harmonics of the original and reduced system when the input of the RF source is high. In

both cases, the reduced-order macromodel constructed using the proposed method matches

the original system to a high degree of accuracy while achieving a large speedup in simulation.

For a more comprehensive picture, Figure 4.16 shows a comparison between the harmonics

of the original system and the reduced system for three harmonics over the whole range of

predefined inputs. Figure 4.17 shows the output voltage in the time domain. Both figures

illustrate that the reduced system matches the original one fairly well while still achieving

speedup.
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Fig. 4.14 A comparison between the original and reduced system at low RF
input power.
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Chapter 5

Macromodeling Nonlinear Circuits in

the Time Domain

In this chapter, we turn our focus to creating reduced-ordered macromodels of nonlinear

circuits suitable for simulation in the time domain. The reduction technique presented in

this chapter is similar to the one used for radio frequency circuits, however, it is adjusted to

work for circuits to be simulated in the time domain.

The main difference between the two techniques is in the architecture of the neural

network. While one feedforward neural network was used to represent the nonlinear vector

of the Harmonic Balance equations, here we will be using one feedforward neural network

for each entry of this vector. The reason is that in the Harmonic Balance equations, all

entries in the nonlinear vector had a similar behaviour and range. That is because these

RF circuits are usually operated around a point where they behave almost linearly. On the

other hand, the nonlinear circuits that we will encounter in this chapter exhibit very strong

nonlinearities. This means that the entries in the nonlinear vector of their equations have

a much wider dynamic range, which makes it extremely challenging to represent the whole



82 Macromodeling Nonlinear Circuits in the Time Domain

vector with only one neural network. Our solution was to simply represent each entry with

one neural network.

5.1 Time Domain Equations of a Nonlinear Subsection

Before we could tackle the problem of creating the reduced-order models of the nonlinear

circuits, we have to reformulate the MNA equations into macromodel. This is similar to

Section 4.2, but without the need for having the Harmonic Balance equations.

5.1.1 Network Formulation

Consider the multi-port circuit subsection, which contains several linear and nonlinear ele-

ments shown in Figure 5.1.

VDD

Fig. 5.1 A multi-port circuit subsection.

The MNA formulation for this subsection in the time domain can be written as:

Gx(t) + Cẋ(t) + f(x(t)) = Ru(t) + b(t)

i(t) = RTx(t)

(5.1)

where
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� u(t) ∈ Rp×1 contains the ports’ voltages,

� i(t) ∈ Rp×1 contains the ports’ currents,

� R ∈ Rn×p is a selector matrix that maps the ports’ voltages and currents into the state

space of the circuit,

� p is the number of ports,

� and n is the size of the MNA equations.

The above equations, which can completely describe a nonlinear subsection, will be re-

duced to created the reduced-order macromodel. However, to be able to simulate the macro-

model as part of a larger circuit, we need to also address how those equations could be added

to a bigger system.

5.1.2 System Formulation

A nonlinear subsection such as the one defined in the previous section can be readily added

to the overall equations of a circuit. Consider a circuit φ, similar to the one in Figure 5.2,

containing several linear and nonlinear elements in addition to m subsections.

Subsection 1 Subsection 2

Fig. 5.2 A circuit that contains elements and subsections.
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The contributions of the m subsections can be added to the overall equations of circuit

φ as follows:



Gφ D1R
T
1 · · · DmR

T
m

R1D
T
1 G1 0 0

... 0
. . . 0

RmD
T
m 0 0 Gm





xφ(t)

x1(t)

...

xm(t)



+



Cφ 0 · · · 0

0 C1 0 0

... 0
. . . 0

0 0 0 Cm





ẋφ(t)

ẋ1(t)

...

ẋm(t)


+



fφ(xφ(t))

f 1(x1(t))

...

fm(xm(t))


=



bφ(t)

b1(t)

...

bm(t)


(5.2)

where

� Gφ, Cφ, fφ(xφ(t)) and bφ(t) are the vectors and matrices of the linear and nonlinear

elements of circuit φ,

� G1, · · · , Gm, C1, · · · , Cm, f 1(x1(t)), · · · , fm(xm(t)), b1(t), · · · , bm(t) and R1, · · · ,

Rm are the vectors and matrices of the m subsections,

� and D1, · · · , Dm are selector matrices that map the port voltages and currents of the

subsections to the state space of circuit φ.

With the ability to format any nonlinear circuit into macromodel form, we can now

move to describing the reduction technique. The macromodel equations described above

will be used as the starting point for reduction, and the newly reduced equations could be
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readily plugged into a larger system. This reduction in the size of the equations will result

in simulation speedup.

5.2 Reduction Technique

Similar to the previous chapter, the reduction technique is split into two steps. The first step

aims to reduce the size of the MNA equations by reducing the size of the linear matrices.

This is achieved by using proper orthogonal decomposition, where the MNA equations are

projected onto a reduced subspace. While the reduction in the size of the equations is very

significant, speedup will continue to be limited. The reason behind this is the presence of

the nonlinear elements.

When simulating nonlinear circuits, we need to be able to evaluate the nonlinear vector

at any point in time. However, we do not possess a way to do that if the system is reduced.

In fact, the only possible thing to do is to revert back to the original system in every iteration

of the simulation just to evaluate the nonlinear vector and its derivative. This greatly limits

speedup.

This brings us to the next step of reduction: artificial neural networks. Artificial neu-

ral networks have been used, with great success, to model the behaviour of any nonlinear

function to any desired accuracy. In our proposed method, we will use feedforward neu-

ral networks to emulate the behaviour of our nonlinear vector. Since the derivative is also

needed to solve the Newton-Raphson method, we will also compute the derivative of the

neural network.
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5.2.1 Proper Orthogonal Decomposition

The first step of our proposed reduction technique is proper orthogonal decomposition. In

this step, we tackle the large size of the matrices of the original system. Using POD, we can

project the original system onto a reduced subspace Q using congruence transformation:

Ĝx̂(t) + Ĉ ˆ̇x(t) + f̂(x̂(t)) = R̂u(t) + b̂(t)

i(t) = R̂
T
x̂(t)

(5.3)

where

Ĝ = QTGQ (5.4a)

Ĉ = QTCQ (5.4b)

R̂ = QTR (5.4c)

b̂(t) = QTb(t) (5.4d)

f̂(x̂(t)) = QTf(x(t)) (5.4e)

The congruence transformation matrix Q is an orthonormal matrix that is constructed

and defined over a specific range. This range is usually a set of load or input conditions. If

the size of this congruence transformation matrix, q, is chosen carefully such that q << n,

where n is the size of the original system, then we can achieve a large speedup in simulation.

The following section describes how this congruence transformation matrix is constructed.
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Congruence Transformation Matrix

The subspace onto which the reduced-order system will be projected is defined over a specific

range. This range could be over various input and loading conditions. The manner through

which we get this subspace is by simulating the original system over this range. The circuit

response over this range is then collected to construct the subspace:

K =

[
x1(t) x2(t) · · · xs(t)

]
(5.5)

Predictably, this subspace will contain many vectors that will be linearly dependent given

the nature of electronic circuits and the way they behave over a similar range of inputs and

loads. To capture the most dominant directions of this subspace, we can use singular value

decomposition:

K = UΣV T (5.6)

In a similar fashion to what we did in the previous chapter, the congruence transformation

matrix Q is constructed from the first few columns in U making it an orthonormal subspace.

Figure 5.3 shows a graphical depiction of this process.

Circuit Simulation

With the reduced subcircuit ready to use, we can plug it into a larger circuit that contains

other reduced or non-reduced subcircuits in addition to linear and nonlinear elements. The

MNA equations for this overall circuit would look like:
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[
X1 X2 · · · Xs

] SVD−−→ USV T

Q

Fig. 5.3 Visual representation of the SVD process.



Gφ D̂1R̂
T

1 · · · D̂mR̂
T

m

R̂1D̂
T

1 Ĝ1 0 0

... 0
. . . 0

R̂mD̂
T

m 0 0 Ĝm





xφ(t)

x̂1(t)

...

x̂m(t)


(5.7)

+



Cφ 0 · · · 0

0 Ĉ1 0 0

... 0
. . . 0

0 0 0 Ĉm





ẋφ(t)

ˆ̇x1(t)

...

ˆ̇xm(t)


+



fφ(xφ(t))

f̂ 1(x̂1(t))

...

f̂m(x̂m(t))


=



bφ(t)

b̂1(t)

...

b̂m(t)


Unfortunately, in order to simulate this circuit we need to evaluate the nonlinear vector.

Since we do not possess a way to evaluate this vector directly when the circuit is in reduced

form, we will have to revert back to the original system and evaluate it. After the original

nonlinear vector is evaluated, we can then return to the reduced system using the congruence

transformation matrix. If there are several reduced macromodels in the circuit, this has to

be done for every one of them:
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fφ(xφ(t))

f̂ 1(x̂1(t))

...

f̂m(x̂m(t))


=



fφ(xφ(t))

QT
1 f 1(Q1x1(t))

...

QT
mfm(Qmxm(t))


(5.8)

Furthermore, since we will be solving those nonlinear equations using the Newton-

Raphson method, we also need to evaluate the derivative of the nonlinear vector to use

it in evaluating the Jacobian matrix. If several reduced-order subcircuits are used, this has

to be done for every one of them:



∂fφ(xφ(t))

∂xφ(t)
0 · · · 0

0
∂f̂ 1(x̂1(t))

∂x̂1(t)
0 0

... 0
. . . 0

0 0 0
∂f̂m(x̂m(t))

∂x̂m(t)


where

∂f̂m(x̂m(t))

∂x̂m(t)
= QT ∂fm(xm(t))

∂xm(t)
Q (5.9)

It can be easily observed that the evaluation of the nonlinear vector and its derivative

quickly become the bottleneck in any simulation where these reduced-order subcircuits are

used. Similar to what we did in the previous chapter, we will use artificial neural networks

to replace the nonlinear vector and its derivative to overcome this problem.
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5.2.2 Feedforward Neural Networks

Artificial neural networks, and specifically feedforward ones, are known for their ability to

model functions. In this work, we will use them in order to emulate the behaviour of the

nonlinear vector. If the function describing the neural network’s structure, weights, and

biases is expressed as fnn(x̂(t)), then our aim is to create a neural network such that:

fnn(x̂(t)) ≈ f̂(x̂(t)) (5.10)

Since we also need to evaluate the derivative of the nonlinear vector, then we also need

to estimate it using the derivative of the neural network as well:

∂fnn(x̂(t))

∂x̂(t)
≈ ∂f̂(x̂(t))

∂x̂(t)
(5.11)

While in the previous chapter, we managed to used one neural network to emulate the

behaviour of the whole nonlinear vector, this time it will be more difficult. When simulating

the circuits using the Harmonic Balance technique, those circuits are almost always operating

around a point where they are acting almost linearly. Therefore, the value at every entry

of the nonlinear vector does not really vary much from other entries throughout the whole

simulation. The same cannot be said about a simulation in the time domain. In fact, the

value of every entry of the nonlinear vector could exhibit a very wide dynamic range.

In order to address this problem, and not make the training of the neural network more

difficult than it needs to be, we will use one network for every entry in the nonlinear vector.

This is in contrast to what we did in the previous chapter where we used one network for

the whole vector.

Figure 5.4 shows the structure of the network we used. The input to this network is
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Input
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Input 1

Input 2

Input m

Output

Output

Layer

Fig. 5.4 Feedforward Neural Network.

the whole unknown vector x̂. The output of this neural network is only one entry of the

nonlinear vector f̂ .

Training of Neural Networks

For the neural networks to be able to emulate the behaviour of the nonlinear vector, they

must be trained using the appropriate data. In this case, the reduced order subsection must

be simulated over the predefined range once again. However, this time the data collected

will be the reduced vector of unknowns, x̂, and the reduced nonlinear vector f̂ . This data

is collected for ever iteration in the simulation. The reduced vector of unknowns, x̂, is the

input to all the neural networks, while every entry of the reduced nonlinear vector, f̂ , will

be the output of one of those neural networks.

Derivative of the Neural Network

To be able to use the neural network during the Newton-Raphson iteration, we will need to

not only evaluate the function describing it, but also the derivative of the function describing

it with respect to the input x̂:
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∂fnn(x̂)

∂x̂
(5.12)

To do that, we need to use the derivative chain rule and take into account every function

inside the neural network. That includes the multiplication of the weights, the addition of

the biases, and the activation functions. We also need to include any scaling functions used.

f1

w3

f3

w2

f2

w1

x nnf   x(   )

Input

Layer

Hidden

Layer

Output

Layer

a d eb c

Fig. 5.5 Feedforward Neural Network.

Figure 5.5 shows in detail the internal structure of the neural network. Carefully, studying

this structure, we can determine that the chain derivative is:

∂fnn(x̂)

∂x̂
=
∂fnn
∂e
× ∂e

∂d
× ∂d

∂c
× ∂c

∂b
× ∂b

∂a
× ∂a

∂x̂
(5.13)

where,

∂fnn
∂e

=
∂f3(e)

∂e
=

e

∂e
= 1 (5.14)

∂e

∂d
=
∂(w3 ∗ d+ b3)

∂d
= w3 (5.15)
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∂d

∂c
=
∂f2(c)

∂c
= 1− f 2

2 (c) (5.16)

∂c

∂b
=
∂(w2 ∗ b+ b2)

∂b
= w2 (5.17)

∂b

∂a
=
∂f1(a)

∂a
= 1− f 2

1 (a) (5.18)

and

∂a

∂x̂
=
∂(w1 ∗ a+ b1)

∂a
= w1 (5.19)

Using the above, we now have a closed form that describes the derivative of the neural

network that can be used in the calculation of the nonlinear Jacobian matrix.

5.3 Numerical Results

In this section, we provide a numerical example to show the accuracy and speedup achieved

using the proposed reduction technique. The reader is provided with more details on specific

decisions made regarding the size of the congruence transformation matrix, the number of

hidden neurons, the training algorithms, and the training data among others.

The numerical example used to illustrate our method is a popular circuit used in literature

and shown in Figure 5.6. This example is similar to the one in [96]. The number of nodes

used is 50. All capacitors have a capacitance of 1F, and all resistors have a resistance of 1Ω.

Lastly, the current through every diode is expressed as:
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id(v) = e40v − 1 (5.20)

C
L

in
v

21 N

Fig. 5.6 Nonlinear transmission line.

5.3.1 First Step of Reduction

The size of the original non-reduced subsection is 50, while the size of the original circuit is

52. The first step of reduction requires the congruence transformation matrix Q. To create

this matrix, we must first construct the subspace K.

To construct the subspace K, the input voltage rise time was varied between 1s to 10s,

the input voltage was varied between 1V to 2V, and finally the capacitive load was varied

between 1F to 1F. For every simulation, a transient simulation was carried out till a stop

time of 150s is reached. The total number of points collected to construct K was 12, 016.

Singular value decomposition was then applied to K to find the most dominant direction

from which we can construct the congruence transformation matrix Q. For this circuit, a

Q of size 10 was chosen. Using this Q, we can now perform the first step of the reduction

where the sizes of the linear matrices can be reduced. This reduces the size of the original

system from 50 to 10, or 20% of the original size.
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5.3.2 Second Step of Reduction

The next step in the reduction is the creation of the feedforward neural networks. Since the

size of f̂ is 10, then we will need to create 10 different feedforward neural networks, one for

every entry in f̂ . For this circuit we chose to use a three-layer neural network, with 30 input

neurons, 30 hidden neurons, and 1 output neuron.

To ensure that the neural networks are emulating the behaviour of the nonlinear vector

properly, they must be trained with input-output data that corresponds to the desired range

of operation. This can be done by simulating the newly reduced circuit over the same range.

Here again, x̂ values will be collected for use as input, and f̂ values will be collected for use

as output. However, contrary to the first step and in order to ensure we collect as much data

as possible, this time we will add the points taken in every Newton-Raphson iteration and

not just the final solution. For this reason, the number of points collected for the training

of the neural networks is 39,390.

5.3.3 Circuit Simulation

To test our reduced circuit subsection and measure its accuracy, it was simulated and com-

pared to the original non-reduced system. Figure 5.7 shows a comparison between the original

and reduced systems with the rise time varied from 1s to 30s. This comparison includes the

risetimes 20s and 30s, both of which the subsection was not trained to model, but still was

able to capture. It can be clearly seen in the figure that the original and reduced system

responses are identical.

Next is testing whether the reduced system can capture the behaviour of the original

under different voltage inputs. Figure 5.8 shows this comparison. For the range in which the

circuit was trained, between 1V and 2V, the reduced matched the original system perfectly.
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Fig. 5.7 Results for various rise times: 1s, 10s, 20s, and 30s.
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For the 3V range, which the circuit was not trained to model, it was still able to match it,

but with only small variations at the beginning.
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Fig. 5.8 Results for various voltage inputs 0.5V, 1V, 2V, and 3V.

Lastly, the reduced system was simulated and compared to the original one to check if

they match when the capacitive load was varied. Figure 5.9 shows the comparison in the

responses between the original and reduced system over a wide range of capacitances, some

of which the original system was not trained to model. Here again, the reduced system was

able to perfectly match the original.
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Fig. 5.9 Results for various capacitive loads: 1F, 10F, 20F, and 30F.
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5.3.4 Speedup

The average speedup achieved by using the reduced circuit subsection over all the simulation

that were run was five. One notable exception was when the input voltage was increased,

where the speedup was much higher. For example, when the input voltage was only 1V, the

speedup was five times, but when the input voltage was 2V and 3V, the speedup was 12 and

90 times respectively.

There are three main reasons for this speedup. The first reason is the reduction of the

size of the matrices. While this reduction is significant, the speedup achieved by it is still

very limited and on average was about 1.5 times only. The second, and most important

reason for this speedup, was the substituting the nonlinear vectors with the neural networks.

This eliminated the need to go back to the original system and therefore greatly sped up

the simulation. The third reason for the speedup is the lack of need to do any calculation

to compute the derivative of the neural networks. This derivative is needed during the

Newton-Raphson iteration, but thanks to the activation functions used, their derivatives can

be rewritten to be represented by the functions themselves as discussed in Section 2.2.1.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we presented a new algorithm to create reduced-order macromodels of non-

linear circuits suitable for addition to an overall Harmonic Balance or time domain system

simulation. The algorithm is split into two steps, which are done consecutively. While each

of those steps is an algorithm that can be used independently to create a reduced-order

macromodel, in this work we combined them in such a way that allows us to realize the

advantages of both algorithms.

The first step of reduction uses proper orthogonal decomposition to reduce the size of the

matrices that represent the MNA equations of the macromodel. This method has been the

cornerstone of many model-order reduction techniques, but is limited to only the linear parts

of the system. Using congruence transformation, we can project the circuit equations onto an

orthogonal reduced subspace. This subspace is constructed by simulating the original system

over a predefined range of conditions. As a result, the macromodels are only guaranteed to

be valid over this subspace.
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The second step of reduction uses feedforward neural networks to replace the nonlinear

vector and its derivative. While the first step greatly reduces the size of the MNA matrices,

it remains limited because it lacks a way to reduce the size of the nonlinear vector. Therefore,

a part of the original system, in this case the nonlinear vector, needs to be saved and used

every time there is a need to evaluate it. A carefully trained neural network, however, can

emulate the behaviour of this nonlinear vector and thus replace it completely. After this

step, we can eliminate the need to save any part of the original model to resort to it during

simulation, giving further speedup.

The macromodels generated using this algorithm are smaller in size and therefore faster

to simulate relative to the original models, and they are accurate over a desired range of

input or output conditions. Furthermore, it is possible, with some modifications, to generate

reduced macromodels for different types of simulations. In this work, we focused on two

types of simulations: Harmonic Balance and time domain.

In the case of Harmonic Balance, the congruence transformation matrix is constructed

by applying singular value decomposition on the subspace containing the predefined range

to obtain its most dominant directions. In the second step, one feedforward multi-layer

neural network was used to represent the nonlinear vector. In the case of time domain,

the congruence transformation matrix was constructed in a similar fashion, however, one

neural network was used for every entry in the nonlinear vector. The reason for the two

different approaches is the much wider dynamic range the nonlinear vector exhibits in the

time domain compared to Harmonic Balance. In both cases, the derivative of the neural

network replaces the derivative of the nonlinear functions of the original system.

Overall, this new algorithm has three main advantages. First, this algorithm is system-

atic. To generate a reduced-order macromodel of any circuit, the same steps of the algorithm

are applied every time. If the user intends to create a macromodel for use in a Harmonic



102 Conclusion

Balance simulation, then the two steps of the algorithm are applied consecutively without

any regard to other factors. There is no need for any modifications of any sort regardless of

the situation.

Second, this algorithm is generic and is independent of the type of circuit under test.

Whether it is a low noise amplifier, a frequency mixer, or a nonlinear transmission line

has no effect on how the algorithm is applied. The internal structure of the circuit is of

no concern. As long as the circuit is represented by its MNA equations and the type of

simulation is known, the algorithm can be applied without any other considerations.

Lastly, this algorithm creates reduced-order macromodels. The circuits on which this

algorithm is applied are formulated in macromodel format and the reduction technique is

applied to the circuit in this specific format. This allows for the reduced-order macromodels

to be added directly to other circuits without modifications. Anyone wishing to use these

reduced macromodels can simply plug them into a larger system in the same way they would

plug in a non-reduced macromodel or another circuit element.

6.2 Future Work

While the algorithm provides a promising new way of achieving speedup and maintaining

accuracy, there are many areas which could explored for further improvement. Below we list

some, where future work is possible and could be pursued:

� Connecting several macromodels together: In the numerical examples presented above,

we only focused on one reduced macromodel at a time, however, it is entirely possible

(and desirable) to connect several macromodels, whether reduced or not, together

and run an overall system simulation. This could give greater insight into how much

speedup is possible when all macromodels are replaced with their reduced-order form.
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It will also give the user a better feel of how well this algorithm performs in “real-

life” scenarios. Furthermore, it serves as an opportunity to discover possible areas of

improvements or limitations.

� Establishing a more systematic way to choose the size of the congruence transformation

matrix Q: In this work, we relied on trial and error to decide on the size of this matrix,

however, in the future it would be much more productive and faster to come up with

a systematic way to decide on its size. While some work has been done in this field,

there is still a lack of a comprehensive mathematical theory and therefore no clear way

of making this decision. The singular values of the SVD could be taken into account

to help with this decision. By investigating those values, it is possible to come up with

some criteria to determine a cutoff after which increasing the size is no longer useful.

� Architecture of the neural networks: While in this thesis we focused on using feedfor-

ward neural networks only, there are many new emerging architectures in the literature

today which could be promising. Using recurrent neural networks (which can save pre-

vious states), employing different types of activation functions, adding more layers, or

exploring different types of training algorithms are just a few examples.

� Creating more general macromodels: the macromodels generated using this algorithm

are guaranteed to work in the range that was defined at construction. In some cases,

the macromodels do work outside this range with a high degree of accuracy, but that is

not always the case. It would be interesting to see if it is possible to create macromodels

that are general enough to work outside the predefined range.

� Macromodeling strongly nonlinear circuits: Some nonlinear circuits, such as inverters,

exhibit very strong nonlinearities. An inverter or a ring oscillator could have many
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transistors switching back and forth between different modes of operation many times

in one simulation. That means there is a different function and model representing

every transistor when this switch occurs and that could be very challenging to deal

with from a reduction point of view. To capture this behaviour, the first step of

reduction would have to have a large enough congruence transformation matrix. Not

only is this a problem by itself since it limits size reduction, but also the bigger challenge

here is that now the size of the neural network would have to be larger. The larger

neural network is caused by the increased number of inputs and outputs in this case.

Furthermore, since the underlying nonlinear functions are now much more complex

and variant, it would be more challenging than ever to train those neural networks.

� Comparisons with other reduction techniques: In this work, we only compared the

speedup gained by using the reduced-order macromodels with the original models

serving as reference. However, in future it would be interesting to make a compar-

ison between our algorithm and another nonlinear model-order reduction algorithms.

Of course, to have a fair comparison both algorithms would have to be implemented

in the same simulator and using the same environment.
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