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Abstract 

The pathogenic species of trypanosomatids, including Trypanosoma brucei, T. cruzi, and 

Leishmania spp, cause serious human as well as animal diseases, with a very high 

incidence and mortality rate if untreated. Although the genome sequences of several 

trypanosomatids have been known for several years, many aspects of gene function and 

gene regulation are still unclear in these organisms. Most importantly, the lack of 

similarity between the majority of their genes and characterized genes of other organisms 

has limited our understanding of the gene functions in trypanosomatids. Not only the 

functions of many genes are unknown, the factors that are involved in their regulation are 

mostly uncharacterized. Trypanosomatids primarily rely on post-transcriptional programs 

for regulation of gene expression, and transcriptional regulation is of least importance. 

The genomes of these organisms harbour a large number of RNA-binding proteins with 

potential role in regulating mRNA stability and translation; however, the sequence 

specificity of these RNA-binding proteins and their function is mostly unknown. The 

focus of this thesis is on development of new methods for homology-independent 

functional characterization of genes in trypanosomatids, and deciphering the programs 

that are involved in their regulation. First, I describe a novel universal relationship 

between codon usage and gene function, and show the utility of this relationship for 

functional characterization of genes in various organisms, including trypanosomatids. 

This relationship most probably points to the role of codon usage in dynamic regulation 

of protein expression in different conditions, and helps the cell to adapt to new 

environments and conditions by synchronously regulating proteins with required 

functions. Then, I introduce a computational approach for identification of function-

specific cis-acting regulatory elements, and demonstrate the utility of this approach for 

identification of potential regulatory elements in trypanosomatids, as well as for 

prediction of gene function based on the flanking regulatory sequences. I also show that 

combination of cis-regulatory elements and codon usage is a strong predictor of gene 

function in trypanosomatids. In addition to these methods, which can identify biological 

processes and pathways, a new method for identification of protein molecular functions 

based on short sequence signatures is introduced in this thesis. I show that this new 
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method is able to identify function-specific protein short motifs that present functional 

sites on proteins, and demonstrate the utility of these motifs in predicting protein 

molecular function in trypanosomatids. In addition to these sequence-based approaches, I 

also explore the possibility of predicting trypanosomatid gene functions based on co-

expression. I present the first co-expression network of T. brucei, which is constructed by 

combining several microarray datasets from different studies, and use it for predicting 

new components of several essential pathways in this organism. This analysis suggested 

the presence of a conserved post-transcriptional regulatory network in trypanosomatids, 

which encouraged us to develop a novel framework for identification of regulatory 

programs with high network-level conservation across multiple species. This framework 

revealed an extensive set of conserved regulatory programs in trypanosomatids, many of 

which could be validated using available expression datasets as well as our microarray 

profiles of chemical perturbations. The studies described here contribute significantly to 

functional annotation of genes in trypanosomatids, and identify the regulatory 

mechanisms that govern gene expression in these organisms. Furthermore, the introduced 

methods can be used for functional annotation of many uncharacterized genes and 

identification of gene regulatory programs in virtually all organisms with available 

genome sequences. 
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Résumé 

Les espèces pathogènes de l’ordre des trypanosomatida, incluant Trypanosoma brucei, T. 

cruzi, et différentes espèces de Leishmania sont responsables de sérieuses maladies 

humaines et animales, avec une très forte incidence et taux de mortalité élevé lorsque non 

soignées. Bien que les génomes de plusieurs trypanosomatida soient disponibles depuis 

plusieurs années, de nombreux aspects de la fonction et de la régulation génique restent 

inexplorés chez ces organismes. De plus, l’absence de similarité entre la majorité de leurs 

gènes et les gènes caractérisés chez d’autres organismes a limité notre compréhension de 

la fonction de ces gènes chez les trypanosomatida. Non seulement la fonction de 

beaucoup de gènes est indéterminée, mais les facteurs impliqués dans leurs régulations ne 

sont, pour la plupart, pas encore caractérisés. Les trypanosomatida se reposent 

principalement sur des mécanismes post-transcriptionels pour la régulation de 

l’expression génique, et la régulation de la transcription n’a que peu d’importance. Les 

génomes de ces organismes hébergent un grand nombre de protéine se liant à l’ARN avec 

des rôles potentiels dans la régulation de la stabilité et de la traduction des ARNm. 

Néanmoins, les séquences spécifiques de ces protéines se liant à l’ARN et leurs fonctions 

restent principalement méconnues. L’objectif de cette thèse se situe au niveau du 

développement de nouvelles méthodes indépendantes de l’homologie pour permettre la 

caractérisation fonctionnelles de gènes chez les trypanosomatida, et de déchiffrer les 

mécanismes impliqués dans cette régulation. Premièrement, je décris une nouvelle 

relation universelle entre l’utilisation des codons et la fonction génique, et montre l’utilité 

de cette relation pour la caractérisation de gènes dans divers organismes, incluant les 

trypanosomatida. Cette relation pointe probablement vers un rôle de l’utilisation des 

codons dans la régulation dynamique de l’expression protéique sous diverses conditions, 

et aide la cellule à s’adapter à de nouveaux environnements et conditions en 

synchronisant la régulation des protéines avec les fonctions requises. J’ai introduis une 

approche computationnelle pour l’identification d’éléments cis-régulateurs fonction-

spécifiques et démontré l’utilité de cette approche pour l’identification d’éléments 

régulateurs potentiels chez les trypanosomatida, ainsi que pour la prédiction de fonctions 

géniques basées sur les séquences régulatrices flanquantes. Je montre également que la 
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combinaison d’éléments cis-régulateurs et l’utilisation des codons est un indicateur fort 

de la fonction génique chez les trypanosomatida. En plus de ces méthodes, qui peuvent 

identifier biologiquement des phénomènes et des voies métaboliques, une nouvelle 

procédure pour l’identification des fonctions moléculaires des protéines, basée sur de 

courtes signatures de séquences, est introduite dans cette thèse. Je démontre que cette 

nouvelle méthode est capable d’identifier de courts motifs protéiques fonction-spécifiques 

possédant des sites fonctionnels dont j’ai validé l’utilité pour identifier la fonction 

moléculaire de protéines chez les trypanosomatida. Outre cette approche basée sur les 

séquences, j’explore également la possibilité de prédire la fonction de certains gènes des 

trypanosomatida en me basant sur la co-expression. Je présente le premier réseau de co-

expression de T. brucei, élaboré en combinant plusieurs jeux de données de microarray 

provenant de différentes études, et les utilise pour prédire de nouveaux éléments de 

multiples voies métaboliques essentielles dans cet organisme. Cette analyse suggère la 

présence de réseaux post-transcriptionels conservés chez les trypanosomatida, ce qui nous 

encourage à mettre au point un nouveau cadre expérimental pour l’identification de 

mécanismes régulateurs avec un fort niveau de conservation au sein de multiples espèces. 

Ce cadre expérimental a révélé une somme importante de mécanismes régulateurs 

conservés chez les trypanosomatida, dont beaucoup pourraient êtres validés en utilisant 

des données d’expression disponibles ainsi qu’avec des profils de perturbations chimiques 

de microarrays. Les études décrites ici contribuent significativement à l’annotation 

génique fonctionnelle chez les trypanosomatida, et permet d’identifier des mécanismes de 

régulation qui gouvernent l’expression génique de ces organismes. De plus, les méthodes 

introduites peuvent être utilisée pour l’annotation fonctionnelle de nombreux gènes non-

caractérisés et l’identification de programmes de régulation génique dans virtuellement 

n’importe quel organisme dont le génome est disponible. 
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1 Introduction 

Trypanosoma brucei spp., Trypanosoma cruzi and Leishmania spp. are related parasitic 

protozoa with different life cycles and insect vectors (tsetse flies, reduviid bugs, and 

sandflies, respectively) and cause different diseases in human (and animals). T. brucei 

diverged most anciently, then T. cruzi, and most recently Leishmania within this 

trypanosomatid family [6]. The T. brucei group is an extracellular bloodstream pathogen 

that affects the central nervous system and causes human sleeping sickness (and nagana 

in cattle). T. cruzi is an intracellular pathogen that infects a wide variety of cells and 

causes Chagas disease that primarily manifests as severe cardiomyopathy. Leishmania 

spp. are intracellular pathogens in the mammalian host that target macrophages and cause 

a spectrum of diseases ranging from the lethal visceral form to the less severe cutaneous 

form of leishmaniasis. With a mortality rate of 50,000 individuals per year and annual 

loss of 2.1 million disability-adjusted life years (DALYs), leishmaniasis is the second 

most important parasitic infection after malaria, followed by sleeping sickness with 

48,000 deaths per year (1.5 million DALYs per year)[7]. Chagas disease also causes 

15,000 deaths and loss of 700,000 DALYs annually. The available drugs for these 

diseases are not ideal, since they are toxic, costly, and have invasive routes of 

administration[8-11]. Also, resistance to many of these drugs has already emerged; hence 

there is an urgent need for new drug development[12-15]. These diseases are also gaining 

increased attention in developed countries, particularly because of their transmission via 

blood transfusion and organ donation[16-20], as well as the high risk of infection among 

returning soldiers and immigrants[21-24]. 

The genome sequences of five trypanosomatids are published, including T. brucei, T. 

cruzi, L. major, L. infantum and L. braziliensis[25-29], and the genome sequences of four 

other trypanosomatids are available, including L. mexicana, T. vivax, T. congolense, and 

L. donovani (http://tritrypdb.org/tritrypdb/). Although these genome sequences, 

complemented by biochemical studies, have provided great opportunities to find new 

drug targets, their full potential is yet uncovered, given that the functions of the majority 

of genes encoded by these genomes are unknown. This scarcity of functional annotation 

primarily stems from lack of sequence similarity between many trypanosomatid genes 

http://tritrypdb.org/tritrypdb/�
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and characterized genes of other organisms. Consequently, homology-based transfer of 

annotations from other genomes is simply impossible for more than half of 

trypanosomatid genes [30]. Not only the functions of many trypanosomatid genes are 

unknown, but also it is not clear how these genes are regulated in response to internal and 

external changes. Although it has been well established that the mRNA abundance is 

vastly regulated at the post-transcriptional level in trypanosomatids [31, 32], and that the 

transcriptome is remodeled extensively during the life cycle of these organisms [33-39], 

the regulatory factors that are involved in this process are mostly unknown. 

The main objective of this research is to functionally characterize the trypanosomatid 

genes, and to understand how these genes are regulated developmentally or in response to 

external and internal stimuli, in order to obtain a systems-level understanding of the 

mechanisms that govern the biology of these parasites and help them adapt to their 

environment. Accordingly, two main specific aims are pursued in this research: 

Functional annotation of coding sequences in trypanosomatid parasites – We have 

addressed this problem by developing several homology-independent computational 

methods for gene function prediction. These include sequence-based methods for 

prediction of protein-protein interactions and functional linkages, sequence-based 

methods for prediction of pathways and biological processes, novel methods for analysis 

of expression data in order to predict pathways, and sequence-based methods for 

prediction of protein molecular functions. 

Characterization of non-coding functional elements and their role in gene regulation – We 

have developed new computational approaches for identification of non-coding functional 

elements in trypanosomatid genomes, and have used them in conjugation with 

experimental methods to identify cis- and trans-acting regulatory elements that govern 

mRNA stability and abundance in trypanosomatids and result in responsiveness against 

internal and external stimuli. 

This research is particularly innovative in the approaches to achieve the scientific 

objectives, and the establishment of a functional genomics and bioinformatics pipeline 

that can be adapted to analysis of various pathways and biological processes in different 

organisms. Furthermore, the results contribute significantly to our knowledge of the 
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biology of trypanosomatids, and provide new biological processes and genes that can be 

targeted for development of therapeutics against these parasites.  
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2 Literature Review 

The trypanosomatid parasites and their diseases – Despite the many similar biological 

aspects of the trypanosomatid species, they cause distinct human diseases whose vast 

prevalence, mortality rate and effect on normal life have rendered them major concerns in 

many developing countries. Two of the three subspecies of Trypanosoma brucei, T. b. 

gambiense and T. b. rhodesiense, cause human African trypanosomiasis (HAT); 

Trypanosoma cruzi is the causative agent of Chagas disease; and different Leishmania 

species are responsible for various forms of leishmaniasis [8]. With a mortality rate of 

50,000 individuals per year and loss of 2.1 million disability-adjusted life years (DALYs), 

leishmaniasis is the second most important parasitic infection after malaria, followed by 

HAT with 48,000 deaths per year (1.5 million DALYs per year) [7]. Chagas disease also 

causes 15,000 deaths and loss of 700,000 DALYs annually. The current drugs for these 

diseases are unsuitable since they are very toxic and not very effective, or they have 

unpractical prices [8-11]. Also, resistance to these drugs has already emerged [12-15].  

Hence, there is a need for new drug development. 

 

Human African trypanosomiasis – HAT is caused by T. b. gambiense and T. b. 

rhodesiense. The other subspecies of T. brucei, T. b. brucei, is not infectious to the 

human, hence is a safe model parasite for research. After infection, the parasite enters the 

bloodstream and transforms into the bloodstream trypomastigote, where it encounters the 

host immune response. However, the antigenic variation of the parasite, caused by either 

transcriptional switching between different expression sites (ES) or recombination of 

variable surface glycoproteins (VSG), causes immune evasion of the parasite [40]. For the 

same reason, development of a vaccine against HAT seems unlikely in the near future. 

The neurological symptoms of the disease emerge as the parasite passes the blood-brain 

barrier. The neurological damage caused by the parasite leads to coma and finally death, 

if untreated. The transmission of the parasite occurs via different species of the tsetse 

flies. The parasite transforms into trypomastigote procyclic form (PF) in the midgut of the 

fly, leaves the midgut and transforms to epimastigote, and reaches the saliva where it 
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transforms to the infective metacyclic bloodstream form (BF) and can infect the 

mammalian host. 

  

Chagas disease – Chagas disease is the result of infection with T. curzi. Following the 

infection, the metacyclic trypomastigotes invade cells of various tissues, including 

macrophages, smooth and striated muscle cells, and fibroblasts [41], where they 

transform to amastigotes that can multiply and transform again to infective 

trypomastigote form and infect other cells. The mechanism of entry is complex, and may 

involve lysosome recruitment activated by calcium-signaling pathway, which is 

specifically triggered by trypomastigote T. cruzi, or lysosome recruitment-independent 

mechanisms [42]. The trypomastigote can then escape from the formed parasitophorous 

vacuole and transform to amastigote. Shortly after infection, the acute stage of the disease 

begins which may be asymptomatic, followed by a drastic decrease in the parasite 

number. The chronic stage may start after a lag period of about 10-30 years (called 

indeterminate phase), after which sever symptoms arise such as cardiac damage, digestive 

damage and neurological disorders. If untreated, Chagas disease may be fatal. 

 

Leishmaniasis – Ranging from the self-healing cutaneous infections to severe disfiguring 

mucocutaneous and lethal visceral disease [43], leishmaniasis can be caused by at least 21 

species of Leishmania in human [44]. The fate of the disease is greatly influenced by the 

type of the immune response of the host to the infection (reviewed in [45]). After the 

infective metacyclic promastigotes are injected by the sandfly, the macrophages uptake 

them by phagocytosis, where they are delivered to phagolysosomes and differentiate into 

amastigotes which multiply and infect other cells [43]. 

 

Genomic features of trypanosomatids – The genome sequences of five trypanosomatids 

are published: T. brucei, T. cruzi, L. major, L. infantum and L. braziliensis [25-29]. 

Analysis of the genomes of the TriTryps, i.e., T. brucei, T. cruzi and L. major, has 

revealed that they have about 6100 genes in common, and about 1400, 3700 and 900 
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species-specific genes, respectively [26, 46]. Even at the first glance, the comparison of 

these genomes revealed interesting points. For example, several species-specific protein 

domains were identified, reflecting biological differences of these organisms, such as the 

presence of macrophage migration inhibitory factor only in L. major which may act in 

prevention of macrophage activation and subsequent destruction of the parasites, as L. 

major localizes into the phagolysosome of macrophages [26]. Comparison of the 

genomes of three Leishmania species also illustrated exciting differences, most notably 

the presence of an ortholog for the T. brucei Dicer-like protein TbDcl1 in L. braziliensis, 

implicating the possibility of the presence of RNAi machinery in L. braziliensis while 

absent from other Leishmania species [27]. However, the homology-based annotation of 

genes in the trypanosomatids is limited by their early divergence from other organisms 

with known genome sequences and hence, their poor similarity. For example, out of about 

9,000 predicted and validated genes in T. brucei, about 5,000 do not have any reliable 

homolog in the sequenced genomes of non-trypanosomatid organisms[30]. The remaining 

4,000 genes also cannot always be assigned a function since their homologs are also 

uncharacterized.  Currently, only about 3400 T. brucei genes have any annotation other 

than hypothetical[30]. 

Genes in trypanosomatids are transcribed as polycistronic mRNAs that are further 

processed via trans-splicing, involving a polypyrimidine tract as the signal for spliced 

leader site [47]; this feature can be used for prediction of splice sites and, less confidently, 

polyadenylation sites from the genomic sequences, giving reasonable estimates for the 

mature mRNA ends. Regulation of gene expression in trypanosomatids is mainly at the 

post-transcriptional level by either regulation of mRNA stability or translation [31, 32]. 

However, a few regulatory elements have been identified, all of which in the 3’ UTR of 

developmentally regulated genes [48-71]. Some hints exist suggesting that elements in 

other regions rather than 3’ UTRs may also play role in developmental regulation of 

expression [59],  but none has been identified yet. 

 

Computational annotation of the genome – In addition to the direct search for 

characterized homologs of a gene, other methods have been established by which gene 

functions can be inferred. Network-based approaches exploit the observation that proteins 
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with similar functions usually interact with each other, therefore cluster together in the 

network of protein-protein interactions. Several different approaches have been exploited 

to assign functions based on protein-protein interactions, reviewed in [72]. Alternatively, 

genes can be clustered based on their expression patterns [73]; it is well established that 

genes with similar expression patterns have similar functions [74-76]. Also, functions can 

be assigned based on protein motifs. However, it is shown that combination of interaction 

network, expression patterns and protein motifs is superior to any of them alone, although 

interaction network alone contributes to about 85% of the predicted GO terms [77]. As 

the genome-wide interaction network is the most informative indicator of functional 

linkages between proteins, it is critical to obtain such a network. In the absence of 

experimental data, computational methods have been used to predict protein-protein 

interactions (reviewed in [78]). These methods can also be used for prediction of 

functional linkages between proteins instead of physical protein-protein interactions. 

Combination of these methods has proved powerful in computational modeling of 

interaction networks and functional linkages [79-81]. However, many of the prominent 

current methods rely on the presence of homologs in other species [82-87], limiting their 

application to conserved genes. 

 

Current state of drug targets in trypanosomatids – Data provided by the genome 

sequences of TriTryps, complemented by biochemical studies, have provided 

opportunities for finding new drug targets. An ideal drug target should be present in all 

disease-causing trypanosomatids, either absent from the mammalian host or sufficiently 

different from its counterpart in the mammalian host, and essential for growth, survival or 

the pathogenicity of the parasite in the mammalian stages of its life cycle [8]. Other 

considerations are druggability, assay feasibility and resistance potential [88].  

Being a monophyletic group of organisms [89], trypanosomatids share peculiarities 

distinguishing them from other well-known organisms, providing interesting targets for 

therapeutics. For example, (i) the sequences of most trypanosomatid mitochondrial pre-

mRNAs are changed extensively through RNA-editing by addition and/or deletion of 

uridine nucleotides [90]; (ii) the mitochondrial DNA constitutes a major portion of the 
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genome, and is usually structured into tens of maxicircles and hundreds of minicircles. 

This complex structure is necessarily accompanied by a set of complex processes for 

replication and segregation [91, 92]; (iii) mRNAs are transcribed as polycistronic clusters 

up to tens of kb long [93], all of which are processed by trans-splicing as an integral step 

of maturation [47]; and (iv) the major part of glycolysis is compartmentalized into 

specialized peroxisomes called gylcosomes [94]. 

In addition, several biochemical pathways have been proposed as potential drug targets in 

trypanosomatids. Fatty acid biosynthesis is an essential pathway; trypanosomatids use 

microsomal elongases to synthesize fatty acids de novo, whereas other organisms use 

elongases to make long-chain fatty acids even longer [95, 96]. It has been shown that 

inhibition of elongase pathway in the procyclic form of T. brucei results in growth defect 

[95]. Considering the importance of acyl and alkyl chains in various proteins and 

glycoconjugates of all trypanosomatids in different life stages, it will be probably not 

surprising to observe that elongases are also essential in T. cruzi and Leishmania spp [95]. 

Serving as another potential drug target, Glycosylphosphatidylinositol (GPI) biosynthesis 

is essential for the survival of T. brucei in the bloodstream stage [97, 98], perhaps due to 

the essentiality of the GPI-anchored VSG coat for cell morphology or due to the loss of 

the essential GPI-anchored trypanosome transferrin [99]. Although GPI biosynthesis 

pathway between T. brucei and mammals share common features, significant differences 

allow specific inhibition of this pathway in T. brucei [99], confirmed by analogues of a 

GPI intermediate that are toxic to T. brucei but not human cells [98]. Ergosterol and 

isoprenoid biosynthesis pathways have also been suggested as potential drug targets [8], 

especially that viability and proliferation of T. cruzi in all life stages requires specific 

sterols produced via these pathways [100-102]. Trypanosomatids also require salvage of 

folate and pteridines from their host as they are auxotrophic for them . Since rapidly 

dividing parasitic cells rely heavily on the availability of these compounds for pyrimidine 

biosynthesis, this pathway seems a promising drug target, as has been shown in the case 

of malaria parasites [104]. However, several factors, including the presence of pteridine 

reductases (PTR) in the trypanosomatids [105] that can bypass the dihydrofolate 

reductase (DHFR) inhibition, cause resistance to conventional antifolates, emerging the 

need for new solutions such as simultaneous targeting of both DHFR and PTR [106].  The 
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trypanothione redox metabolism is another potential target. Trypanothione system is 

specific to trypanosomatids and replaces the nearly universal gluthatione system [107]. 

Enzymes of trypanothione redox pathway are suitable drug targets, especially the widely 

studied trypanothione reductase that seems to be essential in all trypanosomatids [108]. 

Targeting these enzymes not only can lead to parasite death per se, it can reduce 

resistance against other drugs. Despite the conservation of their active site residues 

between the host and the parasite [109], several enzymes of carbohydrate metabolism are 

also thought to be potential drug targets [110]. Glycolysis is specifically interesting as it 

is the only source of ATP at the bloodstream stage of the T. brucei life cycle. Galactose 

metabolism is another potential target, since T. brucei does not have a scavenger for the 

uptake of galactose from the host environment, while it is a crucial building block of VSG 

in the bloodstream form. Galactose-epimerase which converts glucose to galactose has 

been shown to be essential in both the bloodstream form and the procyclic form of T. 

brucei, rendering it a possible target candidate [111, 112]. Similarly, inhibition of 

mannose biosynthesis in Leishmania mexicana results in loss of virulence [113, 114], 

supposedly due to defective glycosylation of proteins involved in the establishment of 

infection in macrophages [115]. Other putative drug targets in trypanosomatids include 

protein farnesyl transferases [116-118], cysteine proteases [119], N-myristoyltransferase 

[120], polyamine metabolism [121], purine salvage [122, 123], protein kinases [124-126], 

DNA topoisomerases [127-129], and RNA-editing enzymes [130]. 

Although the essentiality of these pathways have been established in trypanosomatids, not 

all their constituting enzymes have been identified, mainly due to the lack of significant 

similarity with their known counterparts in other organisms. Identification of other 

enzymes involved in these pathways will reveal novel drug targets, especially since these 

‘other’ enzymes will most probably be different from host enzymes and, hence, amenable 

to specific chemotherapeutic targeting. 
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3 Predicting physical and functional linkages among proteins 

based on codon usage 

Knowing the physical and functional interactions among proteins, we can predict the 

functions of uncharacterized proteins based on the functions of their neighbors in the 

interaction network. This chapter explains a novel method for prediction of such networks 

based on codon usage of protein-coding genes, and appeared as an article in Genome 

Biology in 2008 [1]. In this chapter, we introduce a novel approach to predict interaction 

of two proteins solely by analyzing their coding sequences. We found that similarity in 

codon usage is a strong predictor of protein-protein interactions and, for high specificity 

values, is as sensitive as the most powerful current prediction methods. Furthermore, 

combining codon usage with other predictors results in 75% increase in sensitivity at a 

precision of 50%, compared to prediction without considering codon usage. 
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3.1 Background  

The need for transforming the growing amount of biological information to knowledge 

has recruited several disciplines that, by means of experimental and computational 

approaches, aim to decipher functional linkages and interactions between proteins [72, 

131]. Current computational methods for predicting protein-protein interactions demand 

data that, compared to the huge amount of available genomic sequences, are scarce. Only 

in a few organisms features such as essentiality, biological function and mRNA co-

expression of genes have been partially determined. Also, a combination of different 

homology-based predictors, including phylogenetic profiles [86], Rosetta stone [82] and 

interolog mapping [83], provides incomplete information about interactions of only one-

third of all Saccharomyces cerevisiae proteins. Hence, a method to identify protein-

protein interactions solely on the basis of gene sequences would significantly expand the 

ability to predict interaction networks. 

A few studies exist on prediction of protein-protein interactions based only on amino acid 

sequence information [132-134]. However, the highest specificity reported in these 

studies is 86%. Considering the number of possible protein pairs in a genome consisting 

of no more than 6000 protein-coding genes, this level of specificity means an unbearable 

number of 2.5×106 false positives. These studies consider the protein sequences, ignoring 

the plethora of information that exists in their coding sequences. The unsatisfied demand 

for reliable sequence-based prediction of protein-protein interactions encourages 

exploration of relevant sequence features in the genome instead of the proteome. 

It has been widely acknowledged that codon usage is correlated with expression level 

[135]. In addition, it has been shown that codon usage is structured along the genome 

[136], with near neighbour genes having similar codon compositions. Some function-

specific codon preferences have also been hypothesized based on selective charging of 

tRNA isoacceptors [137] and have been confirmed experimentally [138]. Based on these 

premises and considering that similarity in mRNA expression pattern and biological 

function, along with physical gene proximity, are powerful predictors of protein-protein 

interactions [79], codon usage can be considered as a potential candidate for analysis. The 

coevolution of codon usage of functionally linked genes has been explicitly reported 
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before [139, 140]. These studies suggest that the codon adaptation index [141] of 

functionally related proteins change in a coordinated fashion over different unicellular 

organisms. However, identification of this coordination between two genes needs the 

presence of orthologues in several organisms; hence, many species-specific genes, which 

are usually the hot spots of attraction for biologists, are excluded. Also, there are genes 

with very low variation in the codon adaptation index over different organisms [139], for 

which this kind of analysis is unreliable. 

In this paper, we will show that codon usages of functionally and/or physically linked 

proteins in an organism contain enough information to enable us to detect interacting 

protein pairs, even in the absence of homologues in other organisms. Furthermore, we 

will show that our method is several times more sensitive than tracking the coordinated 

changes of codon usage over different organisms, and in fact is one of the best methods 

for identification of protein-protein interactions. 

 

3.2 Results and Discussion 

Here we consider three different organisms: S. cerevisiae, Escherichia coli and 

Plasmodium falciparum. S. cerevisiae is a eukaryote with moderate coding G+C content 

(39.77%), while the genome of P. falciparum has an extremely low coding G+C content 

(23.8%), and E. coli is a prokaryote with moderate coding G+C (52.35%). For each 

organism, a positive and a negative gold standard set of protein pairs were defined, where 

a positive gold standard set comprises ORF pairs that, based on previous reports, encode 

proteins that interact with each other (either as members of the same protein-complex or 

as functionally linked proteins), and negative set consists of ORF pairs whose products do 

not interact with each other (Table 3-1). It should be noted that the highest resolution of 

our gold standard positive datasets is protein-complex. Given each ORF pair, we 

calculated the value of dij(c)=|fi(c)-fj(c)| for each codon, where fi(c) and fj(c) are relative 

frequencies of codon c in ORF i and ORF j, respectively (Σkfi(ck) = 1 and Σkfj(ck) = 1; k = 

1,2,..64 indicates all 64 codons). Therefore, dij demonstrates the distance of two ORFs in 

terms of usage of codon c. We found that for almost all codons, distribution of d differed 

between positive and negative gold standard sets (Supplementary Figure 3-1). Generally, 
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distribution of d shifts to smaller values for ORFs within the gold standard positive set, 

indicating that interacting ORFs are more similar in codon usage profile than non-

interacting ORFs. However, this shift is marginal for each codon individually, which 

means that single codons are weak predictors of protein-protein interactions. 

 

Table 3-1. Gold standard sets used in this study – Each set comprises only ORFs that could be associated 

to their genomic sequences using the names that were provided in the original references. Self-interactions 

were considered neither in training nor in testing process. GSTD: Gold Standard Dataset; P: Positive; N: 

Negative; MIPS: Munich Information Center for Protein Sequences [142]; KEGG: Kyoto Encyclopedia of 

Genes and Genomes [143]. 

Organism GSTD Ref. #ORFs #ORF Pairs Comments/Details 

S. cerevisiae 

P [79, 81] 732 3,400 

Derived from MIPS [142] complex catalog. We 
excluded ribosomal proteins to avoid bias 
towards extreme codon usage similarity of their 
genes. 

N [79, 81] 2,760 1,442,691 
Pairs of proteins that are not localized in the 
same cell compartment. We excluded 
ribosomal proteins. 

P. falciparum 

P [80] 352 7,689 Protein pairs within the same KEGG [143] 
pathway. 

N [80] 354 27,367 Protein pairs with KEGG information, excluding 
pairs in gold standard positive set. 

E. coli 

P [144] 2,196 7,063 Pull-down assay using a His-tagged ORF 
library. 

N - 3,703 4,437,833 

We compiled a set of protein pairs that were 
not in gold standard positive set, given that at 
least one protein from each pair was co-purified 
with an associate protein by Arifuzzaman et al. 
[144]. 

 

We divided the distribution of d for each codon into 50 intervals, for each of which we 

calculated the likelihood ratio, i.e., the fraction of positive gold standards occurring in 

that interval divided by the fraction of negatives occurring in that interval. Since the 

mutual information of d for each pair of codons was negligible, we combined these 

likelihood ratios using a naïve Bayes approach (see Supplementary Figure 3-2 and 

Supplementary Figure 3-3 for graphical representations). Although not all features were 
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independent from each other (with statistical tests suggesting 10 to 16 independent 

components; see Supplementary Figure 3-4), we found that a naïve Bayesian network is 

more effective than a Bayesian network in which each variable node has one other parent 

node, perhaps because the increase of the parameters in the latter case causes partial over-

fitting of the network. Using a tenfold cross-validation method, we evaluated the 

performance of this naïve Bayesian network in predicting protein-protein interactions. To 

do so, we divided the gold standard set into ten random segments; each time we used nine 

segments as the training set and calculated the combined likelihood ratios for each ORF 

pair in the remaining segment. We designate the method “PIC” (Probabilistic-Interactome 

using Codon usage). 

Figure 3-1A summarizes the performance of PIC in S. cerevisiae, P. falciparum and E. 

coli. For all three organisms, codon usage is a strong predictor of protein-protein 

interactions. As an extremely G+C poor parasite with a highly biased codon usage [145], 

the case of P. falciparum is of special interest, showing that codon usage  is a powerful 

tool for prediction of interactomes within a wide range of G+C compositions. Figure 3-1B 

compares the performance of PIC in yeast with three widely used predictive methods: 

interolog mapping [83], phylogenetic profiles [86] and Rosetta stone [82, 85]. At low 

rates of false positives, PIC is the most sensitive method, up to seven times more sensitive 

than the next best method, interolog mapping. Also, for higher rates of false positives, 

PIC is still more sensitive than interolog mapping and Rosetta stone approach. Figure 

3-1B also compares PIC with a previous report on identification of protein-protein 

interactions based on codon adaptation index coevolution [139], illustrating up to eight 

times higher sensitivity for PIC (see Methods for the details of the analysis). Finally, for 

the sake of comparison, the predictive power of the absolute difference of CAI (codon 

adaptation index; see reference [141] for the definition of CAI and to compare it with 

PIC) between two genes is investigated, showing a very poor performance (Figure 3-1B).  



 28 

 

Figure 3-1. Results of protein-protein interaction prediction by PIC – (A) ROC (Receiver Operating 

Characteristic) curves of PIC for S. cerevisiae (red), P. falciparum (green) and E. coli (blue). (B) 

Comparison of ROC curves in yeast for PIC (red), Interolog mapping (INT, green), Phylogenetic profiles 

(PGP, blue), Rosetta stone (ROS, dark blue), CAI coevolution(co-CAI, blue dotted line) and absolute CAI 

value (CAI, red dotted line). The dashed line shows the diagonal. The same comparison is shown using the 

precision-recall curves in Supplementary Figure 3-10. For interolog mapping, phylogenetic profiles and 

Rosetta stone, data were retrieved from [146]. TP: true positive; P: positive; FP: false positive; N: negative. 

Positive and negative test sets are as indicated in Table 3-1. 

 

It should be noted that the gold standard negative set that we used for S. cerevisiae is 

made of protein pairs that do not co-localize. Therefore, it may be possible that PIC 

recognizes subcellular localization of proteins instead of protein-protein interactions. To 

examine this, we compiled a set of protein pairs that localize within the same subcellular 

compartment. Then, we assessed the enrichment of interacting protein pairs and co-

localized protein pairs in the positive predictions of PIC at different thresholds. As Figure 

3-2 shows, the PIC predictions are rapidly enriched by true interacting proteins rather 

than proteins that are localized in the same subcellular compartment. We also compiled 

an alternative standard negative set by using pairs of proteins that have KEGG 

information [143], but do not share any KEGG pathway. Although this negative set is not 
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as reliable as the main gold standard negative set that we used for the training and testing 

of PIC, it allows pairs of proteins that reside within the same subcellular compartment. 

The performance of PIC over this negative set was essentially the same as over the main 

gold standard negative set. For the other two studied organisms, E. coli and P. 

falciparum, the gold standard negative sets already contained co-localizing protein pairs. 

 

 

Figure 3-2. Enrichment of PIC predictions by interacting protein pairs versus protein pairs that co-

localize – The horizontal axis shows the fraction of co-localizing protein pairs that match PIC predictions, 

and the vertical axis shows the fraction of the gold standard interacting protein pairs that match PIC 

predictions. Rapid enrichment of PIC with interacting protein pairs indicates that it detects protein-protein 

interactions rather than localization. 

 

Although PIC considers the relative frequencies of codons in ORF pairs, it reflects not 

only synonymous codon usage, but also amino acid frequencies and ORF lengths. ORF 

length is reflected in PIC since stop codons are not omitted, and each ORF has only one 

stop codon. Therefore, the relative frequency of a stop codon in long ORFs is smaller 

than in short ORFs. We created three other probabilistic interaction networks of S. 

cerevisiae using RSCU [147], relative frequencies of amino acids, and ORF length, in 
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order to examine the effect of each factor. We named these probabilistic networks PI-

RSCU, PI-A and PI-L, respectively. RSCU is a measure of synonymous codon usage that 

is independent of amino acid composition (see reference [147] for the definition of RSCU 

and to compare it with the relative frequency of codon). RSCU as well as many other 

measures of synonymous codon usage are dependent on gene length, and result in biased 

values when the corresponding coding sequences are short [148]. In the worst case, when 

an amino acid is absent from a gene, it is impossible to calculate the RSCU for its 

corresponding codons. In the latter case, we treated the RSCU values of these codons as 

missing data, which can be easily handled by naïve Bayesian networks. In comparable 

sensitivities, the descending order of accuracy was PIC > PI-RSCU > PI-A > PI-L (see 

Supplementary Figure 3-5). This suggests a synergistic effect of each of these factors on 

the strength of PIC, with synonymous codon usage being the most important one. It 

should be mentioned that the length of the protein (PI-L) has a very marginal ability of 

distinguishing interacting from non-interacting pairs, and even this observed marginal 

prediction may be due to the bias of the gold standard positive set towards a certain range 

of protein lengths, as the length of a protein affects many experimental procedures such 

as successful cloning, etc. 

PIC can easily be combined with other probabilistic approaches, such as PIP and PIT [81] 

(see the Methods section for combining two probabilistic interactomes). PIP is a 

probabilistic predicted network of S. cerevisiae, in which four datasets of genomic 

features are integrated: two datasets of biological functions, a dataset of mRNA 

expression correlation and a dataset of essentiality [81]. Jansen et al. [81] showed that, at 

comparable levels of sensitivity, PIP is even more accurate than PIE, a probabilistic 

network constructed by integration of four experimental datasets of the yeast interactome. 

They also combined PIP and PIE into PIT as one of the most comprehensive probabilistic 

networks of known and putative protein complexes in yeast. We integrated the results of 

yeast PIC and PIP, to see how their combination improves our power in de novo 

prediction of interactions.  
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Figure 3-3. Comparison of performance in yeast for PIC, PIP and their combination – PIC is shown in 

red, PIP [81] in green and the combination of PIP and PIC (PIPxPIC) in blue. (A) ROC curves. Both axes 

are on log-scale. The dashed line shows the diagonal. (B) Precision-recall curves.  TP: true positive; P: 

positive; FP: false positive; N: negative. Positive and negative test sets are as indicated in Table 3-1. 

 

PIC, PIP [81] and their combination are compared in Figure 3-3. For false positive rates 

<10-5, PIC is as sensitive as PIP, although in general PIP is far superior to PIC. More 

strikingly, combining PIP and PIC results in a four-fold increase in sensitivity when false 

positive rate is <10-5 (after adding ribosomal proteins to the test set, a six-fold increase 

was observed). The combination of PIP and PIC remains the superior predictor for all 

false positive rates, and gets to a sensitivity of about 1.75 times that of PIP at a precision 

of 50%. Jansen et al. [81] used a likelihood threshold of 600 to cut an interaction network 

of S. cerevisiae out of PIP, referred here as PIP-Lcut600. For comparable specificity, the 

combination of PIP and PIC is 1.5 times more sensitive than PIP-Lcut600 (considering 

ribosomal proteins in the test set, the combination of PIP and PIC is 1.6 times more 

sensitive than PIP-Lcut600; see Supplementary Figure 3-6). We also calculated the per-

complex sensitivity of predictions for either PIP or combination of PIP and PIC, and 

observed that the combination of PIP and PIC outperforms PIP in every single complex as 

well (Supplementary Figure 3-7). Furthermore, we found that, compared to PIP, PIC in 

yeast is less biased towards certain biological functions (Supplementary Figure 3-8) as 
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well as highly expressed genes (Supplementary Figure 3-9). However, it is evident that at 

least in the case of P. falciparum, PIC top-scoring interactions mainly belong to the 

ribosomal proteins. This reflects the very similar codon usage profiles of ribosomal 

proteins, most likely optimized for their efficient translation. 

Finally, we combined PIT [81] and PIC to generate “PICT” which we propose as one of 

the most reliable probabilistic interactomes of S. cerevisiae (see Supplementary Figure 

3-11 for precision-recall curves of PIT and PICT. PICT, accompanied by PIC for the 

whole genome of S. cerevisiae, is available online [149]). At a likelihood cutoff of 2×103, 

PICT has the same specificity as PIT-Lcut600, while, after excluding promiscuous nodes 

(i.e., nodes each of which has ≥100 edges), includes 1306 more ORFs compared to PIT. 

Analysis of PICT-Lcut2000 reveals many interesting interactions not present in PIT-

Lcut600. Some examples are represented below. We specifically consider complexes that 

were also examined by Jansen et al. [81], in order to provide a more detailed comparison 

between PIT and PICT. Note that the following interactions should be considered as 

complex co-memberships rather than direct physical interactions, since all the 

components of PICT are trained on protein complexes and not binary physical 

interactions of proteins. However, a direct physical interaction is also possible based on 

the closeness of proteins within the same complex. 

While mammalian Pob3, an interacting partner of the nucleosome, has a high mobility 

group (HMG) for interaction with histones, yeast Pob3 lacks this domain [81]. Instead, in 

yeast, the HMG protein Nhp6 interacts with the nucleosome. PIT-Lcut600 suggests that 

Nhp6A, an isoform of Nhp6, interacts with all nucleosome histones H2A, H2B, H3 and 

H4, which is highly unlikely considering the structure of the nucleosome. In addition, it 

has been shown that Nhp6 does not influence nucleosome reassembly; thus, it is unlikely 

for Nhp6 to interact with the H2A-H2B dimer [81]. In contrast to PIT-Lcut600, PICT-

Lcut2000 only suggests an interaction between Nhp6A and HHT1 (H3), which is more 

congruent with the current models of nucleosome structure and assembly. PICT-Lcut2000 

also predicts a novel interaction between Nhp2, another HMG related protein, and H3 

(Figure 3-4). Recently, affinity capture of Nhp2 has been shown to result in co-

purification of histone proteins [150], corroborating the interaction of this protein with the 

nucleosome. PICT-Lcut2000 also predicts the interaction of an uncharacterized ORF, 
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YDL085C-A, with the nucleosome as well as with Nhp6A, which is consistent with 

previous reports showing the presence of GFP-fused YDL085C-A in the nucleus [151]. 

This example shows the potential of PICT, and codon usage in particular, to predict 

interactions of uncharacterized proteins, which should provide new insights into their 

probable functions. 

 

 

Figure 3-4. Two examples of complexes suggested by PICT-Lcut2000 – In the case of translation 

initiation/elongation factors, only novel interactions (interactions absent from PIT-Lcut600 [81]) are 

represented. A black number between two nodes stands for the reference in which the direct interaction of 

the two connected nodes is reported. A red number refers to the reference in which interaction of the two 

connected nodes with a third common protein is reported. 1: Gavin et al. 2006 [152], 2: Collins et al. 2007 

[153], 3: Jao and Chen 2006 [154], 4: Jansen et al. 2003 [81], 5: Anand et al. 2003 [155]. 

 

Another example is the case of translation initiation/elongation factors. PIT-Lcut600 fails 

to predict any interactions involving elongation factor 2 (EF-2). It also predicts only two 

interactions for EF-1α, with EF-1β and EF-1γ. Although PIT-Lcut300 suggests a few more 

interactions for these proteins, higher rate of false positives in PIT-Lcut300 renders them 
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unreliable. PICT-Lcut2000 predicts several interactions involving different elongation 

factors as well as initiation factors 4A and 5A, many of which have been recently 

confirmed by tandem-affinity purification experiments [81, 152-155]. Figure 3-4 shows a 

sub-graph of PICT-Lcut2000 representing interactions among translation 

initiation/elongation factors that are not present in PIT-Lcut600. A recent study [152] has 

shown that poly(A)-binding protein Pab1 interacts with EF-1α. Based on PICT-Lcut2000, 

we anticipate that Pab1 interacts with EF-2 and EF-1γ as well. Also, we found an 

interesting interaction between the ribosome-associated molecular chaperone Ssb1 and 

eIF4A. Interaction of Ssb1 and eIF4G has already been shown by tandem-affinity 

purification [152]. Based on the close interaction of eIF4A and eIF4G, interaction of Ssb1 

and eIF4A is reasonable. 

RNase P complex represents another interesting example of PICT predictions. PICT-

Lcut2000 predicts six new interactions between RNase P complex and other proteins in 

yeast, neither of which exists in PIT-Lcut600 or has been reported previously. Four 

interactions are with uncharacterized ORFs YKL096C-B, YDL159W-A, YKL183C-A 

and Q0255. Q0255 is likely to encode a maturase-like protein. It has been hypothesized 

that mitochondrial maturases participate in splicing by stabilizing some secondary or 

tertiary structure needed for splicing [156]. Their exact function, however, remains 

uncharacterized [157].  An interaction between RNase P complex and Q0255 implies the 

plausibility that this protein could contribute to maturation of ribosomal RNA and tRNA 

in mitochondria. According to PICT-Lcut2000, HUB1 (Histone Mono-Ubiquitination 1) is 

another interacting partner of RNase P complex. Previous data have shown that HUB1 is 

a functional homolog of the human and yeast BRE1 proteins, and suggest that it mediates 

gene activation and cell cycle regulation through chromatin modifications [158]. In 

addition, chromatin remodeling in Arabidopsis thaliana seed dormancy has been 

proposed to be mediated by H2B monoubiquitination through HUB1 and HUB2 [158]. In 

agreement with this, the recently reported binding of human RNase P to chromatin of 

non-coding RNA genes and regulation of pol III transcription [159] could be mediated 

through HUB1-RNase P interaction. Another prediction of PICT-Lcut2000, the interaction 

of RNase P with CKB1, also corroborates this observation. CKB1 is a regulatory subunit 

of casein kinase 2, whose many substrates include transcription factors and all RNA 
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polymerases. Again, this is consistent with the recently proposed role for RNase P in 

polymerase III transcription [159, 160]. 

We also noticed that PICT has the potential of providing new information about proteins 

that lack homology. For example, YAR068W is a fungal-specific gene, for which PIT has 

no interaction. This is while PICT predicts an interaction between this protein and a 

protein of the large subunit of mitochondrial ribosome. 

 

3.3 Conclusions 

PIC uses a naïve Bayesian network to combine the information provided by the 

frequencies of all codons, in order to predict protein-protein interactions. Given a set of 

independent features, naïve Bayesian networks can combine them in a way that 

minimizes the loss of information that usually occurs by the aggregation of several 

features. Depending on the training set that has been used, PIC can predict both complex 

membership (as in MIPS database or TAP-tagging experiments) and functional linkages 

between proteins (as in KEGG pathway database). Although we did not test the power of 

PIC for prediction of direct physical interactions between proteins, it is possible that it 

can be used for that purpose as well, since complex membership, functional linkage and 

direct physical interactions are all properties that are highly inter-correlated. We 

anticipate that integrating PIC with the current knowledge of protein interactions in 

different organisms will significantly increase the reliability and coverage of probabilistic 

interactomes. In the case of Saccharomyces cerevisiae, the results of PIC as well as its 

combination with PIT [81], referred to in this article as PICT, are provided online [161].  

This study not only describes a novel method for de novo prediction of protein-protein 

interactions, but also suggests the plausibility of previously unseen evolutionary forces 

acting on codon compositions of genes within a genome. A few studies have taken into 

account the effect of protein-protein interactions on codon usage; however, these studies 

generally consider the unique features of codon composition of an ORF in regions that 

encode the interacting face of the protein compared to the rest of the ORF [162], not the 

direct relationship between codon usages of two interacting proteins. Characterization of 
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evolutionary mechanisms shaping these relationships may lead to development of even 

more powerful methods for sequence-based prediction of interaction networks. 

3.4 Methods 

Genome Sequences – The genome sequences used were S. cerevisiae [163], E. coli [164] 

and P. falciparum [165]. 

Analysis of genomic features – We used dij(ζ k)=|ζ ki-ζ kj| to measure the distance of two 

genes i and j regarding feature ζ k. In case of PIC, ζ k=f(ck), where f(ck) is the normalized 

frequency of usage of codon ck, so that Σkf (ck) = 1 (1≤k≤64). For PI-RSCU, ζk=RSCU(ck) 

(see [147]). For PI-A, ζ k=f(ak), where f(ak) is the normalized frequency of amino acid ak 

(1≤k≤20). For PI-L, ζ=L, where L represents the ORF length. To combine a set of 

features, naïve Bayesian network [79] is employed. Naïve Bayesian networks are most 

effective when they are used to combine independent features. We assessed independency 

of dij for two features r and s by means of mutual information [79], where I[dij(ζ r); dij(ζ 
s)]<0.01 was assumed not to influence the performance of the naïve Bayesian network. To 

combine two probabilistic networks, we multiplied the likelihoods each network assigned 

to each interaction. 

Coevolution of CAI – We performed the same analysis as described by Fraser et al. 

[139], using the genome sequences of S. cerevisiae, Saccharomyces paradoxus, 

Saccharomyces mikatae, and Saccharomyces bayanus [166]. We used species-specific 

adaptation index to determine the CAI values by using the codon frequencies of the 20 

most highly expressed genes. We assumed that the 20 most highly expressed genes in the 

four species are the same; hence, we used a previous report on mRNA expression in S. 

cerevisiae [167] to identify them. Addition of Escherichia coli in the analysis did not 

improve the results. We did not add more genomes because we would lose a portion of 

our gold standard sets, especially the negative gold standard set, due to the lack of 

homology for all genes among all genomes, resulting in non-comparable 

sensitivity/specificity values. 
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3.5 Supplementary Figures 

 

Supplementary Figure 3-1. Distribution of d for each codon in yeast – The value of d is demonstrated 

on the horizontal axis, whereas the vertical axis shows the density. Black bars represent distribution of d in 

positive gold standard set and red bars stand for the distribution of d in negative gold standard set. Figure 

continues on the next page. 
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Supplementary Figure 3-1 continued 
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Supplementary Figure 3-2. Comparison of naïve 

Bayesian network and fully connected Bayesian 

network in yeast gold standard positive set – In 

each panel, the horizontal axis shows d(TTT) and 

the vertical axis shows d(TTC). Color intensity 

represents the probability of an interacting pair of 

proteins having the respective d(TTT) and d(TTC) 

values, predicted by either fully connected Bayesian 

network (shown in red, panel A) or naïve Bayesian 

network (shown in green, panel B). Panel C shows 

the combination of panels A and B (yellow).  

  

 

Supplementary Figure 3-3. Comparison of naïve 

Bayesian network and fully connected Bayesian 

network in yeast gold standard positive set – See 

the caption for Supplementary Figure 3-2. 
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Supplementary Figure 3-4. Eigenvalues of different components resulted from principal component 

analysis of the interacting gene pairs in yeast – A 64-dimensional space was constructed consisting of all 

interacting pairs of genes from yeast gold standard set, so that dimension k represents d(ck) for each pair of 

genes. Then, this space was transformed using principal component analysis (PCA). In this figure, the 

components are in decreasing order of their eigenvalues, the first component being the first principal 

component of the transformed space. The first 16 components have eigenvalues greater than unity, 

suggesting the presence of 16 effective components based on the Guttman-Kaiser criterion (Guttman, L., 

1954. Psychometrika XIX:149-61). However, the Scree test (Cattell, R.B., 1966. Multivariate Behavioural 

Research 1:245-76) suggests the presence of about 10 effective components. We also calculated an entropy-

based number of effective codons for the collection of all coding sequences in S. cerevisiae, formulated as 

, yielding in a value of 52.23. Both the effective number of components obtained 

from the Guttman-Kaiser criterion and the Scree test are small compared to the entropy-based number of 

effective codons, suggesting that the differences of codon frequencies in yeast contain redundant 

information. 
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Supplementary Figure 3-5. Comparison of ROC 

curves for PIC, PI-RSCU, PI-A and PI-L 

 

 

Supplementary Figure 3-6. Comparison of 

PIP×PIC and yeast gold standard positive set 

(including ribosomal proteins) – PIP×PIC 

(brown) covers 43% of the gold standard positives 

(green), while PIP has a coverage of 27% at the 

same specificity. (a) nucleosome; (b) COPI; (c) 

RNase MRP; (d) CCR4-NOT; (e) ER 

oligosaccharyl-transferase; (f) V-ATPase; (g) 

Cctring; (h) TFIIH; (i) small subunit of 

mitochondrial ribosome; (j) exocyst complex; (k) 

transcription; (l) pre-replication; (m) 40S 

ribosomal subunit; (n) ubiquinol cytochrome-c 

reductase; (o) cytochrome-c oxidase; (p) APC/C; 

(q) 60S ribosomal subunit; (r) RNA-polymerase II 

mediator; (s) SAGA complex; (t) proteasome; (u) 

TRAPP; (v) F1F0 ATP synthase; (w) large subunit 

of mitochondrial ribosome. 
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Supplementary Figure 3-7. Per-complex comparison of PIP and PIPxPIC – The sensitivity of each of 

these two methods is given for each complex. The complex numbers are in the descending order of the 

sensitivity of PIP. 
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Supplementary Figure 3-8. MIPS functional category enrichment for yeast genome, PIP-Lcut600 and 

PIC-Lcut600 – Each slice reflects either the number of ORFs classified under the respective functional 

category (in the case of yeast genome), or the number of interactions involving at least one ORF from the 

respective category (in the case of PIP-Lcut600 and PIC-Lcut600). Both PIP-Lcut600 and PIC-Lcut600 are, 

compared to yeast genome, enriched by proteins involved in protein synthesis, even though the training set 

of PIC was deprived from ribosomal proteins. PIC-Lcut600 contains many interactions involving proteins 

of unclassified function, while PIP-Lcut600 includes few interactions of this kind, mainly because of its 

dependence on biological function as a predictor. Figure continues on the next page. 
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Supplementary Figure 3-8 continued. 
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Supplementary Figure 3-9. Distribution of mRNA expression levels in interactions predicted by PIP-

Lcut600 (red) and PIC-Lcut600 (blue) for S. cerevisiae – PIC-Lcut600 shows less bias towards highly 

expressed ORFs compared to PIP-Lcut600. Expression data are retrieved from yeast reference mRNA 

expression set introduced by Greenbaum et al. (2002, Bioinformatics 18:585-96). 

  



 46 

 

 

Supplementary Figure 3-10. Comparison of 

precision-recall curves in yeast for PIC (red), 

Interolog mapping (INT, green), Phylogenetic 

profiles (PGP, blue), Rosetta stone (ROS, dark 

blue), CAI coevolution(co-CAI, blue dotted 

line) and absolute CAI value (CAI, red dotted 

line). 

 

 

 

Supplementary Figure 3-11. Comparison of 

precision-recall curves in yeast for PIC (red), 

PIT (green) and PICT (blue). At 50% precision, 

PICT is 12.5% more sensitive than PIT alone. 
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4 Universal function-specificity of codon usage 

In the previous chapter, we showed that codon usage can predict physical and functional 

interactions among proteins in yeast, Plasmodium falciparum, and in Escherichia coli. 

Whether this observation holds in other organisms was, however, not addressed. 

Furthermore, the reason behind this relationship between synonymous codon usage and 

protein physical/functional linkages remained unclear. In this chapter, which appeared as 

an article in Nucleic Acids Research in 2009 [2], we propose that codon usage is 

ubiquitously selected to synchronize the translation efficiency with the dynamic alteration 

of protein expression in response to environmental and physiological changes. Our 

analysis reveals that codon usage is universally correlated with gene function, suggesting 

its potential contribution to synchronized regulation of genes with similar functions. We 

directly show that coexpressed genes have similar synonymous codon usages within the 

genomes of human, yeast, Caenorhabditis elegans and E. coli. We also demonstrate that 

perturbing the codon usage directly affects the level or even direction of changes in 

protein expression in response to environmental stimuli. Perturbing tRNA composition 

also has tangible phenotypic effects on the cell. By showing that codon usage is 

universally function-specific, our results expand, to almost all organisms, the notion that 

cells may dynamically alter their intracellular tRNA composition in order to adapt to their 

new environment or physiological role. Based on the notion of universal function-

specificity of codon usage, in this chapter we also demonstrate the utility of codon usage 

in homology-independent prediction of the biological functions of genes based on their 

coding sequences, and we specifically show the application of this approach in 

Trypanosoma brucei. 
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4.1 Background 

Genome-wide analysis of gene expression has been extensively used to study the 

mechanisms underlying the dynamic regulation of gene expression. Simultaneous 

changes in transcript levels across different conditions (i.e. environmental as well as 

spacio-temporal and genetic variables) have been widely used as a proxy for identifying 

sets of coregulated genes, thus revealing the common regulatory elements underlying 

these observed correlations [74, 168]. These regulatory elements can act at both 

transcriptional and post-transcriptional levels including mechanisms such as localization 

and stability of the transcript and enhancement or suppression of translation [32, 169]. 

Most studies have focused on the non-coding genome for finding such regulatory 

elements. While coding sequences have also been shown to contain elements that 

contribute to regulation of expression for a minority of genes [170-172], the relationship 

between the dynamic regulation of expression and the sequence of coding regions is not 

considered widespread among and within organisms. 

A novel relationship between coding sequence and dynamic regulation of protein 

expression can be readily hypothesized from the observed variations in patterns of 

isoacceptor tRNA abundance and tRNA charging in different conditions and tissues [138, 

173, 174]. For example, during amino acid starvation, unlike common tRNA species, the 

charged level of certain isoacceptor tRNAs cognate to rare codons remains high [137, 

173]. Interestingly, these rare codons have been used in higher frequencies among genes 

involved in amino acid biosynthesis. Therefore, the high charged level of their cognate 

tRNA species can boost the amino acid biosynthesis pathway by supporting the high 

expression level of its enzymes [137]. Methylation of the wobble base of a tRNA in yeast 

has also been shown to affect its codon preference, enhancing levels of certain proteins 

[175]. 

Congruent with the observed tissue-specificity of tRNA composition [174], Plotkin et al. 

reported the presence of a tissue-specific codon usage in human genes [176], although 

Sémon et al. reject their hypothesis using a different statistical analysis and a richer 

database of tissue-specific genes [177]. However, many other studies indirectly suggest 

the act of selection on synonymous codons in human genome (reviewed in [178]); these 
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models propose translational efficiency [179-181], mRNA stability [182-184], and 

splicing control [185] as mechanisms underlying such selection. 

Despite all these studies, factors shaping codon usage of genes in many organisms, 

including human, are still not completely understood.  For example, no significant 

evidence for the presence of selection on codon usage was found in 30% of the bacteria 

that were examined using a population genetics-based model [186]. A recent study has 

profoundly added to this complication by reporting that it is not the codon usage, but 

rather RNA structure that affects expression level of a protein [187]. 

More than thirty years ago, Garel [188] reported that the tRNA composition of silk gland 

in silkworm changes during the development of this organ in order to accommodate for 

the high rate of synthesis of fibroin which is rich in glycine, alanine, serine and tyrosine. 

In other words, silk gland cells try to synchronize the translation efficiency of fibroin with 

its required amount at each time by providing the tRNAs that carry these four amino 

acids. Matching tRNA composition with coding sequence may extend beyond amino acid 

usage of the proteins and include synonymous codon usage as well. Here, based on 

several rigorous statistical analyses of coding sequences from almost all available 

genomes, we suggest function-specificity of synonymous codon usage in a wide range of 

organisms. This implies that functional adaptation of tRNA content [188] may be a 

universal mechanism for synchronizing the translation efficiency with the dynamic, 

function-specific alteration of protein expression. In other words, rather than having a 

single set of optimal codons, organisms could harbor different sets that change depending 

on environmental conditions or physiological roles and are related to the functions that 

are most expressed at each of these conditions. We show that this hypothesis best 

explains the synonymous codon usage of genes across all domains of life. It also explains 

our recent observation that in three different organisms, Saccharomyces cerevisiae, 

Escherichia coli and Plasmodium falciparum, genes whose products interact either 

physically or functionally use similar codons [189]. Although not as comprehensive as 

our computational analysis, we also provide limited experimental data showing that 

differences in codon usage or variations in the tRNA content of the cell can result in 

varied responses to environmental changes, in terms of regulation of protein expression 

and cell phenotype. 
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4.2 Materials and Methods 

Analysis of correlation between codon usage and function/expression pattern – 

Normalized frequency of each codon in each gene (fc) was calculated as the usage of that 

codon divided by the usage of the amino acid it codes for. For each gene, we calculated 

the normalized frequencies of codons of an amino acid only if the usage of that amino 

acid was higher than a defined cutoff, in order to remove noisy measurements. The 

distance of normalized frequencies of each codon in each pair of genes was calculated, 

and the relationship between this distance value and likelihood of functional 

linkage/coexpression was assessed by Pearson correlation coefficient. Recently 

duplicated genes have high sequence identity and, thus, similar codon usages that may not 

necessarily reflect act of selection on gene sequence. In addition, these genes tend to 

cross-hybridize on expression arrays and appear as coexpressed genes. Therefore, to 

avoid biased analysis, paralogous genes were removed from each genome prior to 

calculating Pearson correlation coefficients. This was done by sequentially selecting two 

paralogous genes and randomly removing one of them, until the remaining genes 

contained no paralogs in the dataset [168]. Non-random distribution of fc in each 

functional cluster or cluster of coregulated genes was assessed by mutual information of fc 

across the genes of that cluster, with high mutual information values indicating non-

random distribution and low mutual information values indicating random distribution. 

Evaluating the effect of codon usage on the pattern of translation efficiency – The 

effect of codon usage on protein expression profile was assessed by measuring the 

amount of expression of two lacZ variants under 16 different conditions in yeast cells. 

One of these two lacZ variants was the genomic lacZ from E. coli K12-MG1665, and the 

other variant was a synthetic gene with the same protein sequence but extensively 

different codon usage. Both of these variants were inserted in pBridge (Clontech), and 

cloned in AH109 yeast strain (Clontech), thus having the same upstream and downstream 

sequences. The expression of each variant of lacZ in each growth condition was measured 

by a β-galactosidase assay using ortho-nitrophenyl-β-galactoside (ONPG) as substrate. 

The rate of conversion of ONPG to ortho-nitrophenol was measured by absorbance at 
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405nm. This rate, normalized for cell density (estimated by OD600), was considered as the 

expression level of lacZ. Each of the experiments was performed in hexaplicate. 

Evaluating the ability of tRNA composition in conferring new phenotypes – A tRNA 

library was constructed with random combinations of 25 E. coli tRNA genes cloned into 

pBAD18 in E. coli host. This library was exposed to different stress conditions, including 

6.7µg/ml kanamycin, 0.5µg/ml tetracycline, 2.0µg/ml chloramphenicol, 5.5% ethanol, 

pH=4.5, and pH=7.5. The enrichment and/or depletion of particular constructs were 

assessed through cloning site amplification of the pool plasmids and visualization on 

agarose gels. Competition assays were performed by mixing equal volumes of E. coli 

cells carrying tRNA-containing plasmids in a ∆lacZ background and lacZ+ E. coli cells 

carrying empty plasmids, inoculating the stress-delivering culture with this mixture, and 

counting the red and white colony forming units (CFUs) on MacConkey plates after 

incubating overnight. Selection index R was defined as the ratio of logarithm of growth of 

tRNA-containing cells over logarithm of growth of cells carrying empty plasmids. 

See Supplementary Methods for detailed description of mathematical and experimental 

procedures. 

Software packages developed and used in this work are available online 

at http://webpages.mcgill.ca/staff/Group2/rsalav/web/Software/ICodPack/index.htm. 

 

4.3 Results 

4.3.1 A universal correlation between codon usage and function 

We examined the relationship between codon usage and function in 785 organisms 

(including 72 eukaryotes, 661 bacteria and 52 archaea), the sequences and functions of 

whose genes were retrieved from Kyoto Encyclopedia of Genes and Genomes – KEGG 

[190]. Since paralogous duplicates usually have the same function as well as similar 

synonymous codon usages, their presence might result in over-estimating the similarity of 

codon usage among proteins of similar function. Therefore, duplicates were removed 

within each genome using nucleotide BLAST as described before [168]. In this work, we 

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Software/ICodPack/index.htm�
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used a relatively large E-value cutoff of 0.001 to make sure that all duplicates were 

removed and the results are unbiased. For each gene, the usages of synonymous codons 

were calculated and normalized over the usages of their corresponding amino acids, here 

referred to as fc. We applied suitable filters to reduce random fluctuations and obtain a 

robust measure of synonymous codon usage (see Supplementary Methods). The distance 

of a pair of genes i and j regarding the usage of codon c was calculated as dij(c)=|fc,i – fc,j| 

[189]. If genes with similar functions use similar frequencies of synonymous codons, we 

shall expect a negative correlation between dij(c) and the likelihood of sharing a 

biological function; i.e., the more dissimilar the synonymous codon usages of two genes, 

the less likely they participate in the same pathway. We observed significantly negative 

linear correlations between d and likelihood of functional linkage in almost all the 

examined genomes (see online Supplementary Table S1 

at http://nar.oxfordjournals.org/content/suppl/2009/09/23/gkp792.DC1/nar-01747-s-2009-

File014.doc), indicating a universal pattern in which genes of similar functions have 

similar usages of synonymous codons. Our set of genomes covered all taxonomic 

domains, although in particular negative correlations were highly significant in 

eukaryotes (Figure 4-1). 

These results indicate that our previously observed pattern [189] in which functionally 

interacting proteins use similar codon usages is not restricted to a few organisms; rather, 

it is a universal characteristic of the genomes across all domains. We will investigate the 

cause of this pattern in the next section. 

 

http://nar.oxfordjournals.org/content/suppl/2009/09/23/gkp792.DC1/nar-01747-s-2009-File014.doc�
http://nar.oxfordjournals.org/content/suppl/2009/09/23/gkp792.DC1/nar-01747-s-2009-File014.doc�
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Figure 4-1. A heat map illustrating the significance of the negative correlations between d and 

likelihood of functional linkage in 72 eukaryotes and 59 codons – Each row represents one organism in 

the same order as the top 72 rows of online Supplementary Table S1 

(http://nar.oxfordjournals.org/content/suppl/2009/09/23/gkp792.DC1/nar-01747-s-2009-File014.doc), while 

each column represents one codon. Stop codons, AUG and UGG are omitted. The p-values of the 

correlations are shown by a color gradient on log scale (left bar), with yellow color standing for small p-

values. Significant correlations (p≤1×10-4) are highlighted by red frames, indicating that the corresponding 

codons are used similarly among the proteins that share the same function. The expected value of false 

discovery rate (FDR) is <4×10-4. White regions stand for cases in which the correlation coefficient could 

not be calculated due to lack of enough functional linkages. 

 

http://nar.oxfordjournals.org/content/suppl/2009/09/23/gkp792.DC1/nar-01747-s-2009-File014.doc�
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4.3.2 Genes with similar expression patterns have similar synonymous codon usages 

In the classic view on the relationship between codon usage and protein expression, a 

constant set of optimal codons is assumed for an organism over different life stages and 

conditions. This model implies that genes with a particular codon usage should have a 

translation efficiency that remains constant across different conditions. Assuming that this 

constant translation efficiency is selected based on the overall expression level of each 

gene [141], genes with similar codon usages should have similar “average” expression 

levels, but not necessarily similar expression “patterns”. An alternative, unexplored 

hypothesis can be that the set of optimal codons is not constant, and changes from one 

condition to another. In this case, the translation efficiencies of genes that have similar 

codon usages do not remain constant, but change in a synchronized manner in response to 

the changes of the set of optimal codons. Thus, it is reasonable to assume that such genes 

would have similar expression “patterns”. 

Knowing that genes with similar functions have similar expression patterns ([191] and the 

references within), the observed similarity between codon usages of functionally linked 

proteins led us to reevaluate the two abovementioned hypotheses. We tested these 

hypotheses on four divergent organisms with available genome-wide expression profiles, 

human, yeast, E. coli and C. elegans [192-195]. In each organism, clusters of coexpressed 

genes (i.e., genes with similar expression patterns) were analyzed in the same way as we 

analyzed the clusters of functionally linked genes in the previous section. Similarly, we 

also clustered the genes in each organism according to their average expression level, and 

performed the same analysis. Figure 4-2 shows that in all of the tested genomes, codon 

usage has the strongest correlation with expression pattern rather than average expression 

level, corroborating the “variable set of optimal codons” hypothesis. Strikingly, this 

correlation is most obvious for the human genome, where most of the correlations are 

between -0.80 and -0.90 (online Supplementary Table S2 

at http://nar.oxfordjournals.org/content/suppl/2009/09/23/gkp792.DC1/nar-01747-s-2009-

File015.doc) and, with only one exception (correlation between CGU and coexpression), 

all of them are highly significant (p≤1×10-4). 

 

http://nar.oxfordjournals.org/content/suppl/2009/09/23/gkp792.DC1/nar-01747-s-2009-File015.doc�
http://nar.oxfordjournals.org/content/suppl/2009/09/23/gkp792.DC1/nar-01747-s-2009-File015.doc�
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Figure 4-2. The significance of correlation between codon usage and clusters of genes according to 

different properties – Genes were clustered according to function, expression profile (resulting in clusters 

of coexpressed genes) or average gene expression level (resulting in clusters of genes with similar average 

expression levels).  Functional clusters were obtained from KEGG pathway database [190]. Coexpression 

clusters for S. cerevisiae, Homo sapiens and C. elegans were derived from [168]. For E. coli, expression 

profiles of the genes were obtained from [194] and were clustered using Iclust [73]. Average gene 

expression levels were obtained by averaging the expression profile of each gene, except for S. cerevisiae 

where a previously reported reference mRNA level dataset was used [135]. The correlation between d and 

the likelihood of occurrence in the same cluster was assessed for each property in each organism for all 

codons, excluding stop codons, AUG and UGG. Significantly negative correlations are indicated by light 

red frames (p≤1×10 -4). Refer to online Supplementary Table S2 

(http://nar.oxfordjournals.org/content/suppl/2009/09/23/gkp792.DC1/nar-01747-s-2009-File015.doc) for 

the values associated with this figure. 

http://nar.oxfordjournals.org/content/suppl/2009/09/23/gkp792.DC1/nar-01747-s-2009-File015.doc�
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Figure 4-3. Mutual information of synonymous codon usage in human coexpression clusters is 

significantly higher than expected from a random distribution. Each row represents a coexpression 

cluster, while each column, except for the first column from left, represents a codon. Stop codons, AUG and 

UGG are omitted. Significant mutual information (MI) values are shown by red frames (p≤1×10 -4). 

Therefore, a red frame around a square indicates that the genes within the corresponding coexpressoin 

cluster use similar frequencies of the corresponding codon. The expected value of false discovery rate 

(FDR) is 1×10-3. MI of regional GC content in each coexpression cluster was assessed similarly (shown in 

the first column from left). Regional GC content was calculated as the GC content of the 50kb genomic 

region surrounding each gene, similar to [177]. Coexpression clusters are sorted according to the 

descending order of the MI of regional GC content; thus, the upper rows represent clusters whose genes 

have significantly similar regional GC contents, while the lower rows correspond to clusters whose genes 

occur in different GC contexts. 
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We further analyzed the codon usage of each coexpression cluster in human, following 

the same methodology that has been used before for finding informative regulatory 

elements [168]. We calculated the mutual information of the usage of each codon for each 

expression profile, and assessed whether the observed mutual information was 

significantly higher than expected by chance (see Supplementary Methods for details). A 

high mutual information value signifies a non-random usage of the corresponding codon 

among genes within the corresponding coexpression cluster. Figure 4-3 shows that, in 

many different coexpression clusters, synonymous codons are used non-randomly; in 

other words, specific frequencies of synonymous codons are preferred for each expression 

pattern, resulting in similar synonymous codon usages among the genes that are 

coregulated. Moreover, this non-random distribution of synonymous codon usage is not 

merely a result of similar GC content as reported before [177]. This is particularly 

obvious in coexpression clusters whose genes occur in genomic isochores with different 

GC contents but still show significantly similar synonymous codon usages (the lower half 

of Figure 4-3). It should be noted that non-random usage of a codon could be due to either 

preference for using that codon or preference for not using it (both resulting in high 

mutual information values). An example is shown in Supplementary Figure 4-1, where 

some coexpression clusters are over-represented among genes with high frequencies of 

codon UUU, while some other clusters are over-represented among genes that have low 

frequencies of UUU. Clustering the human genes based on their “average” expression 

level instead of expression pattern, we performed the same analysis and found no 

significant mutual information values. We also found no significant mutual information 

between expression pattern and the usage of any amino acid, indicating that the non-

randomness of codon usage among coexpressed genes is independent of the amino acid 

context. 

As a complementary method, we also clustered human genes just based on their 

synonymous codon usage (using 59 codons), and examined whether different 

coexpression groups show non-random distribution among these clusters. It is shown in 

Supplementary Figure 4-1 that many coexpression groups show significantly non-random 

distribution; each coexpression group is specifically enriched within certain codon usage 



 58 

clusters, while significantly under-represented in other clusters. A similar analysis on S. 

cerevisiae also reveals coexpressed genes with significantly similar synonymous codon 

usages. Interestingly, these coexpression clusters do not always consist of the most 

abundant genes. Instead, there exist many low-abundance coexpressed genes that show 

significant similarities regarding the usage of several synonymous codons 

(Supplementary Figure 4-2), although it is not as noticeable as in human.  

4.3.3 Difference in codon usage directly affects regulation of protein expression 

We examined whether modification of the codon usage of a gene can change the response 

of this gene to environmental conditions in vivo. To this end, we constructed a modified 

version of lacZ from E. coli K12-MG1655, in which the codon usage was changed 

considerably while keeping the original protein sequence (see Supplementary Methods). 

The original lacZ [GenBank:U00096, region 362455-365529] and the modified lacZ  

[GenBank:FJ839685] were cloned in yeast, and the expression pattern of LacZ was 

assessed in 16 different growth and stress conditions, using a quantitative β-galactosidase 

assay. Although the CAI values of these two genes were different (0.649 for modified 

lacZ compared to 0.213 for original lacZ), their average expression levels were not 

significantly different (paired Student’s t-test score 0.86, p<0.25). However, as we 

expected, there were several conditions in which the protein expression was significantly 

different between the two variants. Particularly, three conditions yielded significantly 

higher galactosidase activities of the modified lacZ compared to the original lacZ, while 

two conditions yielded significantly higher activities of the original lacZ (Figure 4-4). 

We propose that codon usage affects the regulation of protein expression by linking it to 

the regulation of tRNA composition in the cell. In other words, as in different conditions 

different proteins are required, tRNA composition of the cell may change accordingly in 

order to accommodate the changing demands for synthesis of new proteins. The response 

of genes to the new tRNA composition depends on their codon usages; hence, the 

translation efficiencies of genes with different codon usages change differently, causing 

the observed difference between the patterns of expression of the two lacZ variants. It has 

to be emphasized that this is a very likely, yet indirect conclusion from our experiment 

and we did not measure the tRNA content of yeast in the examined 16 conditions. In the 



 59 

next section, we hypothesize that not only the tRNA content may change according to the 

expression demands of the cell, but also we can change the cell phenotype by engineering 

the tRNA content. 

 

 

Figure 4-4. Expression pattern of lacZ gene varies as a result of codon usage modification – Two 

different lacZ sequences, i.e., the original gene from E. coli K12-MG1665 and a variant with modified 

codon usage, were expressed in yeast in different conditions, and galactosidase activity was measured. The 

two yeast strains carrying the two lacZ variants did not show any significant differences in their growth 

pattern (estimated by OD600). However, the galactosidase activity was significantly different between the 

two strains in several conditions. The unit of galactosidase activity in this figure is OD405×s-1×(OD600)-1. 

Blue circles indicate higher expression of original lacZ, while red circles indicate higher expression of 

modified lacZ (p<0.05 with Bonferroni correction for 16 experiments). Experiment conditions: (1) YPDA: 

37°C; (2) YPDA: 30°C; (3) DTT shock: 30°C; (4) 2% sucrose: 37°C; (5) DTT shock: 37°C; (6) 2% ethanol: 

37°C; (7) 2% glucose: 37°C; (8) 2% glucose: 30°C; (9) hyper-osmotic shock: 37°C; (10) SD: 37°C; (11) 

2% ethanol: 30°C; (12) steady 1M sorbitol: 37°C; (13) 2% sucrose: 30°C; (14) SD: 30°C; (15) hyper-

osmotic shock: 30°C; (16) steady 1M sorbitol: 30°C. Each experiment was performed in hexaplicate; the 

standard deviations are depicted by error bars. 
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4.3.4 Changes in tRNA abundance confer adaptative capacity 

The results of the previous analyses and experiments suggest indirectly that the tRNA 

composition of the cell may follow its expression demands. But is tRNA composition also 

able to push the expression profile of the cell to a different state in order to cause a 

particular phenotype? We examined this by looking for phenotypic changes that might 

occur in the cell as a result of perturbation of its tRNA content. 

Briefly, we constructed a plasmid library in pBAD18 backbone, each carrying a random 

selection of 25 tRNA genes from E. coli (see Supplementary Methods). From each tRNA 

gene, a plasmid could have zero, one, or multiple copies. Each copy could be oriented 

randomly in forward or reverse direction. The rational for this approach was that those 

sequences cloned in the forward orientation result in an overabundance of the tRNA, 

while those cloned in reverse most likely decrease the tRNA concentration through 

double strand formation with the tRNA transcribed in the cell. This library was 

transformed into E. coli, and the pool of transformed cells was grown under different 

environmental stresses. The initial frequency of constructs was visualized through cloning 

site amplification (Supplementary Figure 4-3). After one or two rounds of selection, the 

plasmid population was visualized to see whether certain constructs were enriched upon 

selection. We found two selection conditions in which particular plasmids had highly 

significant adaptive consequences in a short time-scale (~10 generations): sub-inhibitory 

concentrations of kanamycin (6.7μg/ml) and tetracycline (0.5μg/ml). In the case of 

kanamycin-containing medium, the enriched plasmid (named pBAD-tKAN) contained 

one copy of glyT tRNA gene in forward direction and one copy of serW tRNA gene in 

reverse direction. On the other hand, growth in the presence of tetracycline resulted in the 

enrichment of a plasmid containing ileX  tRNA gene in forward direction, designated 

pBAD-tTET (in each case, 10 clones were randomly selected for sequence analysis; see 

Supplementary Methods). Repeating the experiment on the library resulted in selection of 

the same plasmids, indicating that the observed enrichment is selective and is not due to 

drift. We also confirmed that the selection of these particular tRNA isoacceptors was not 

a result of bias in the original library; all tRNA isoacceptors of Gly, Ser and Ile were 

represented in the library in both forward and reverse directions at different combinations 

(See Supplementary Methods and Supplementary Figure 4-3). This shows that, for 
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example, in the presence of tetracycline, ileX has a significant fitness advantage over ileT 

since only ileX was selected. 

Using a competition assay, we observed that in kanamycin-containing medium, E. coli 

cells freshly transformed with pBAD-tKAN have a selection index of about 1.5 over 

wild-type E. coli (MG1655) carrying an empty pBAD18 plasmid (p-value<0.025; for 

definition of selection index, see the Materials and Methods section). pBAD-tKAN 

confers no growth advantage over empty pBAD18 in tetracycline-containing medium 

(negative control). Similarly, pBAD-tTET-carrying cells with clean genomic background 

have a selection index of ~2 in tetracycline-containing medium (p-value<0.001), and no 

growth advantage in kanamycin-containing medium, indicating that each plasmid 

specifically increases the fitness in the medium at which it is selected. 

 

4.4 24BDiscussion 

We showed that there is a universal correlation between codon usage and gene function, 

and that this correlation is even more obvious if we consider, instead of function, 

expression pattern as the basis for clustering the genes within each genome. The best 

hypothesis that can explain this observation as well as the results of our experiments is 

that the tRNA composition follows the expression demands of the cell. In other words, if 

in a particular condition a set of proteins with a particular function are needed and thus 

are expressed at high levels, tRNA composition changes accordingly to provide the 

required material. Since this adaptation would best work if in each condition the 

expressed genes had similar codon usages, a universal function-specificity has emerged in 

the codon usage within each genome. 

The new hypothesis postulates that genes with similar expression patterns, even though 

having different average expression levels, should have similar codon usages. This is 

most obvious in organisms with complex developmental and physiological circuits such 

as human and C. elegans [196], in which there is a very strong correlation between codon 

usage and expression pattern but almost no correlation between codon usage and average 

expression level (Figure 4-2). In the case of simpler, fast-growing organisms such as 
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yeast and E. coli, it is more difficult to discriminate between our new hypothesis and the 

conventional view, since there is a high correlation between average expression level and 

expression pattern: in these organisms, genes that have similar expression patterns usually 

show similar average expression levels as well. It is reasonable to think that in 

microorganisms with high growth rate, both the overall expression level of proteins and 

the dynamic pattern of expression may contribute to shaping the coding sequence. This is 

supported by the observation that in many cases the correlation coefficient of codon usage 

with expression pattern is still significant after correcting for the confounding effect of 

average expression level and vice versa (Supplementary Figure 4-4). However, the effect 

of expression pattern seems to be more profound than average expression level. 

There have been previous reports suggesting that, via regulation of tRNA activity, genes 

with certain codon usages may be regulated in particular conditions [175, 197]. In this 

work, we showed that codon usage may have a wider effect on the response of a protein 

to environmental stimuli: in five out of 16 environmental conditions that we examined, a 

change in codon usage alters the extent and sometimes even the direction of LacZ 

response. Since both lacZ variants that we used had the same regulatory sequences in 

their upstream and downstream regions, the simplest explanation for the differences in 

their expression patterns is a difference in translation efficiency: while in some conditions 

the original lacZ showed greater translation efficiency, in some other conditions the 

modified lacZ exhibited greater translation efficiency. This corroborates the “variable 

optimal codon set” hypothesis. This is not however the only explanation; for example, the 

translation efficiency of LacZ may be affected by, in addition to codon usage, the 

structure of its mRNA. To examine the latter case, we studied the free folding energy for 

the critical regions of mRNAs of the two lacZ variants, and found no significant 

differences (Supplementary Figure 4-5). Our results are congruent with a recent report 

that the folding energy affects overall expression level [187]: indeed the average 

expression levels of the two lacZ variants were similar; rather, the expression patterns 

were different. To our knowledge, there is no known mechanism based on which mRNA 

structure, without involvement of regulated trans-acting factors, could affect the 

expression pattern. 



 63 

We also showed that changes in tRNA composition may bring about significant adaptive 

consequences, such as higher resistance to particular antibiotics. This means that changes 

in tRNA composition results in tangible phenotypic effects, thus suggesting the 

possibility that tRNA composition not only follows the expression demands of the cell, 

but may also change the expression profile of the cell on its own. 

The antibiotics that we examined suppress cell growth by inhibition of translation. Thus, 

it might be argued that the plasmids pBAD-tKAN and pBAD-tTET confer resistance to 

these antibiotics by overexpression of tRNAs and, hence, generally enhancing translation. 

However, this scenario seems unlikely due to the nature of the tRNAs that these plasmids 

carry: both glyT and ileX encode tRNAs that recognize rare codons in E. coli [198] 

(GGA/G and AUA, respectively). This is while the overall rate of translation would be 

enhanced much more efficiently if tRNAs that could recognize abundant codons were 

overexpressed. In fact, overexpression of glyT and ileX has no direct effect on translation 

efficiency of many highly demanded genes in E. coli, as these genes lack the cognate 

codons of these tRNAs. Furthermore, selection of the reverse complement of serW cannot 

be explained by enhancement of translation: the reverse complement of serW is assumed 

to inhibit Seryl-tRNA 5 through direct binding. Specificity of pBAD-tKAN and pBAD-

tTET in conferring resistance towards only kanamycin and tetracycline, respectively, and 

not vice versa, adds to the above reasons to conclude that the mechanism of action of 

these constructs is not through a general enhancement of translation. 

It is interesting to see that the combination of glyT in forward direction (glyTf) and serW 

in reverse direction (serWr), and not glyTf or serWr alone, was selected in the presence of 

kanamycin. This indicates that the combination of these two is much stronger in 

conferring kanamycin resistance than any of them alone. Assuming that such cooperative 

action of tRNAs can have beneficial effects on cell fitness in other situations as well, a 

regulatory network that manages and synchronizes the activity of different tRNAs can be 

readily hypothesized. This also suggests that usages of different codons may have 

coevolved. 

Although in this experiment we tested the effect of tRNA concentration on phenotype, 

cells may potentially change the activity profiles of tRNAs in ways other than changing 
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the concentration as well. For example, enzymatic modification of tRNA has been shown 

to change the codon preference [175]. This mechanism especially seems possible since 

even for amino acids that have only two codons there is an expression pattern-specific 

codon usage (Figure 4-2 and Figure 4-3). In most organisms, there is only one kind of 

tRNA for each of the amino acids with two U/C-ending codons. It is thus not possible to 

change which codon is preferred by varying the concentration of this tRNA, as this tRNA 

recognizes both of the codons. However, enzymatic modification of tRNA can result in a 

change in its preference towards its two cognate codons [175], which can describe 

expression pattern-specificity of codon usage for two-codon amino acids. This indicates 

that variation of tRNA composition may extend beyond concentration and may include 

variation of tRNA activity by means such as enzymatic modification as well. 

The above experiments suggest a novel approach for modulating functions with 

applications in biology and biotechnology: we showed that perturbations to a single tRNA 

gene may change the survival of the cell in certain conditions. It can also be anticipated 

that certain metabolic pathways will be enhanced by overexpression of tRNAs that 

recognize the specific codons of those pathways. Also, pathway engineering may benefit 

from more careful design of coding sequences regarding their codon usage. 

Last but not least, the above observations lead to a novel method for prediction of gene 

expression profiles and gene functions. We employed a naïve Bayesian network to 

construct a classifier that is able to predict expression profile or the function of a gene 

solely based on its codon usage. Using this classifier, we were able to achieve a high 

sensitivity and specificity in predicting many human coexpression clusters. Furthermore, 

applying the same classifier on functional groups instead of coexpression clusters showed 

that some functions can be reliably predicted based on synonymous codon usage 

(Supplementary Figure 4-6). We anticipate that this method can considerably enhance 

homology-independent annotation of genes, especially for genomes whose genes are not 

conserved in well-studied model organisms (see Supplementary Figure 4-6 for a few 

examples in Trypanosoma brucei, the causative agent of human African 

trypanosomiasis). 
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4.5 Supplementary Methods 

4.5.1 Genome sequences, functional annotations and coexpression clusters 

All sequences and gene-pathway assignments were retrieved from KEGG GENES 

database [190] on Aug 1, 2008. In each genome, paralogues were recognized using 

nucleotide BLAST with the relatively large E-value cutoff of 0.001 and removed in order 

to avoid any biases due to presence of duplicate genes. Coexpression clusters for human, 

mouse, yeast and Caenorhabditis elegans were the same as used before by Elemento et 

al. [168]. Elemento et al. used Iclust [73] to cluster the genes based on their previously 

reported expression profiles over different tissues [192], different environmental 

conditions [193], and/or different developmental stages and varieties of mutants [195]. 

We obtained coexpression clusters for Escherichia coli genes by applying Iclust [73] on a 

previously compiled compendium of E. coli gene expression profiles [194]. 

 

4.5.2 59BCalculating the normalized frequency of each codon 

The normalized frequency of each codon in each gene, referred in this article as fc, was 

calculated as the usage of that codon divided by the usage of the amino acid it codes for: 

( )
( )c

c an
cnf =  

Therefore, fc is a measure of synonymous codon usage and does not reflect amino acid 

usages (fc is directly proportional to RSCU [147]). For each gene, we calculated this value 

for codons of an amino acid only if the frequency of that amino acid was at least ζ times 

the number of its codons, i.e., the average expected number of each codon could not be 

less than ζ, assuming a uniform distribution of synonymous codons. For example, when 

ζ=5, if phenyl alanine was used less than 10 times in a gene, we did not calculate fUUU and 

fUUC for that gene. This filtering reduces the random fluctuations in fc and provides a 

robust measure of codon usage. Wherever an amino acid did not meet the above criteria, 

fc values of its codons were treated as missing data. For the analysis of the genomes of 

human and C. elegans, ζ was set to 10. For all other analyses, ζ was set to 8. 
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4.5.3 Analysis of the correlation coefficient between `codon usage distance and co-

clustering 

The distance of a pair of genes i and j regarding their usage of codon c was calculated as 

dij(c)=|fc,i – fc,j| [189]. The distances of all gene pairs were calculated, and gene pairs were 

sorted according to their d values. Then, the sorted gene pairs were divided into several 

equally populated bins, and for each bin bi, the likelihood of being in the same cluster 

(either functional cluster or cluster of coregulated genes) was calculated as: 

( ) ( ) ( ) ( )
( ) ( )negnnegbn

posnposbn
negbpposbpL

i

i
iii


==  

In the above equation, pos means being co-clustered, and neg means not being co-

clustered. Two genes were considered co-clustered if there was at least one cluster 

containing both of them. Pearson correlation coefficient between the minimum d value of 

each bin and the L value associated with that bin was calculated. Significance of Pearson 

correlation coefficient was estimated by randomly shuffling gene-cluster assignments 104 

times, each time repeating the calculations and comparing them with the original 

correlation coefficient. 

 

4.5.4 Analysis of the mutual information between a continuous property of genes and 

a particular gene cluster 

Given a variable γ and a particular gene cluster α, we are interested to know whether the 

distribution of γ in α is random or not. We use mutual information (MI) to capture such 

non-random relationships. The variable γ can be any continuous or semi-continuous 

property of genes such as synonymous codon usage, regional GC content, genomic 

location, etc. The cluster α can represent a set of coregulated genes, a set of genes that 

participate in the same metabolic pathway, etc. The set of genes that are not in cluster α is 

called α′. The genes in α+α′ are sorted according to the value of γ, and are divided into m 

equally populated bins. A 2×m table is formed in which the element e1,i shows the number 



 67 

of genes in the ith bin that are in α, and the element e2,i shows the number of genes in the 

ith bin that are in α′ (1 ≤ i ≤ m). Then, the value of MI across this table is calculated as 

described before [168]. To examine whether the obtained MI is significantly higher than 

would be expected from a random distribution, the gene-cluster assignments are randomly 

shuffled n times, MI is calculated each time, and the probability of observing a random 

MI ≥ the original MI is calculated. 

In this work, m (the number of bins) was set to 5 for the analysis of codon usage, and10 

for the analysis of regional GC content. Gene-cluster assignments were shuffled 104 times 

for the assessment of significance of MI. 

 

4.5.5 Prediction of gene-cluster assignments by means of codon usage 

We used a naïve Bayesian network to predict gene-cluster assignments based on codon 

usage. Naïve Bayesian networks assume that the properties based on which they classify 

the objects are independent. Thus, the likelihood that the gene g belongs to cluster α is 

calculated as: 

( ) ( )∏
∈

∈=∈
Cc

cfgLCgL αα  

The cluster α can be a coexpression cluster, a metabolic pathway, etc. Here, C is the set of 

codons that are used for classification of g, L(g∈α | C) is the likelihood that g belongs to α 

given the set of codons C, and L(g∈α | fc) represents the likelihood that g belongs to α 

given its normalized usage of codon c, i.e., fc. If fc is missing, L(g∈α | fc) = 1. For more 

information about the calculation of conditional likelihoods and implementation of naïve 

Bayesian networks, refer to [81]. 

The degree of freedom for synonymous codon usage of each amino acid is always one 

unit less than the number of synonymous codons of that amino acid. Therefore, ignoring 

one codon from each amino acid, we will still have the same amount of information. C is 

chosen in a way to avoid such redundancies as well as to maximize the prediction power. 

Briefly, codons are selected iteratively, starting from the one that can best distinguish 

between α and α′. Then, at each iteration, all codons are tested and the one whose addition 
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to C results in the maximum prediction power is selected. Prediction power is assessed by 

the area under the ROC curve (Receiver Operating Characteristic or ROC curve plots 

sensitivity against false positive discovery rate). This procedure is repeated until C 

contains a predefined number of codons. Since stop codons are excluded and one codon 

from each amino acid is ignored, the maximum possible size of C is 41. 

Software packages developed and used in this work are available online 

at http://webpages.mcgill.ca/staff/Group2/rsalav/web/Software/ICodPack/index.htm. 

 

4.5.6 Investigating the effect of changing codon usage on expression pattern of lacZ 

We have hypothesized that codon usage regulates protein expression by responding to 

tRNA composition dynamics. One of the most direct implications of this hypothesis is 

that changing the codon usage of a gene will change the way it responds to alterations of 

tRNA composition. We examined two variants of a gene with essentially the same protein 

sequence but different codon usages in different growth and stress conditions, with the 

assumption that these different conditions could induce alteration of tRNA composition. 

We selected lacZ from Escherichia coli K12-MG1655 (GenBank U00096, region 

362455-365529) for this purpose. The activity of this gene can easily be monitored in a β-

galactosidase assay. Furthermore, yeast does not contain a homolog of this gene, making 

it possible to measure the activity of only the ectopic allele. Also, the relatively long 

sequence of this gene (1024 codons) makes it possible to design variants with desired 

codon usages. 

The coding sequence of our modified lacZ (GenBank FJ839685) in alignment with the 

original lacZ can be found in Appendix I. The modified lacZ was synthesized by 

GenScript (New Jersey). The original lacZ was amplified from the genomic DNA of E. 

coli. The two variants of lacZ were cloned into pBridge (Clontech #630404) using NotI 

and BglII restriction sites. AH109 yeast cells (Clontech #630444) were then transformed 

by the two constructs according to YeastMaker™ Yeast Transformation System 2 

(Clontech #630439) User Manual (document PT1172-1). Six clones for each construct 

were chosen randomly and used for inoculating 5ml of Minimal SD supplemented with –

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Software/ICodPack/index.htm�
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Met/–Trp DO Supplement (Clontech #630431). After 72h incubation at 30°C (250rpm), 

OD600 of each culture was adjusted to 0.5 by adding suitable amount of medium, and 25μl 

was used to inoculate 500μl of eight different culture media, as follows (the base for all 

media is –Met/–Trp DO-supplemented SD, except for YPDA) : 

(A) –Met/–Trp DO-supplemented SD; (B) YPDA (Clontech #630306); (C) 2% ethanol; 

(D) 2% glucose; (E) 2% sucrose; (F) –Met/–Trp DO-supplemented SD; (G) 1M sorbitol; 

(H) –Met/–Trp DO-supplemented SD. 

From each medium, two 500μl aliquots were inoculated, one of which was incubated at 

30°C and the other one at 37°C (overnight, 250rpm). A total of 192 cultures were 

prepared (8 media × 2 temperatures × 2 yeast transformants × 6 replicates). After 16h, an 

additional 500μl of each medium was added to the corresponding cultures, except for 

media F and H, to which 500μl of –Met/–Trp DO-supplemented SD containing either 

5mM DTT or 2M sorbitol (for hyper-osmotic shock) was added, respectively. Cultures 

were incubated again for 120min, after which β-galactosidase activity was measured as 

follows: 

OD600 of each culture was determined. Cells were spun down at 5000rpm for 2min and 

supernatants were decanted. Pellets were shock-frozen in liquid nitrogen, thawed at room 

temperature water bath, and resuspended in 153μl Buffer H (100ml HEPES, 150mM 

NaCl, 2mM MgCl2, 1% BSA). To each suspension, 11μl 0.1% SDS and 11μl chloroform 

was added and vortexed for 1min at the highest settings. Then, from each extract, 140μl 

was transferred to assay plate, where 20μl of 4mg/ml ortho-Nitrophenyl-β-galactoside 

(ONPG, Sigma #N1127) solution was added. OD405 was monitored for 25min, and the 

slope at the beginning of the resulting curve was considered as the β-galactosidase 

activity. This activity was divided by OD600 of cultures in order to normalize for cell 

density. 
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4.5.7 In vivo selection of a tRNA library for resistance against stress conditions 

We hypothesized that for each environmental condition there should be an optimal tRNA 

composition that confers the highest fitness to the organism specifically for that 

condition, based on the following premises: 

1. At each environmental condition, specific functions need to be up-regulated and certain 

functions need to be down-regulated. 

2. We see a function-specific codon usage among genes. 

3. tRNA composition affects translation rate of genes with different codon usages 

differently. Thus, at each condition, a tRNA composition is optimal if it results in higher 

translation rate for functions that are demanded at that condition, and lower translation 

rate for functions that are not needed. 

We selected a subset of E. coli tRNAs so that (i) each codon was represented by at most 

one tRNA and (ii) each tRNA had at least one iso-accepting partner in this subset (i.e., 

another tRNA that recognized a different codon, but corresponded to the same amino 

acid). A total of 25 tRNAs were selected this way. Primers were designed so as to amplify 

these tRNA genes along with about 40bp upstream and 40bp downstream of them 

(Appendix II). Amplified fragments were pooled and cloned into pBAD18 using XmaI 

restriction site and electroporated into E. coli K12-MG1655∆lacZ host. LB+Amp was 

used for culture and selection of transformants. 

For selection under each of the stress conditions, pool of transformants was cultured in 

the corresponding medium for two passages (100X dilution after each passage), after each 

of which the result of amplification of the cloning site in the pool of plasmids was 

analyzed on agarose gel (see Supplementary Figure 4-3 for some examples). In case of 

kanamycin and tetracycline, where selection of particular plasmids could be observed 

after the second round of selection, the sequences of 10 clones were analyzed (Appendix 

III and Appendix IV). 

The selected plasmids contained glyT, ileX and serW (see the article for more details). In 

order to show that other isoacceptors of Gly, Ile and Ser were also present in the original 

library although they were not selected, we used our library as the template in individual 
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PCRs for glyT, glyU, glyV, ileT, ileX, serU, serV and serW. Each gene was amplified 

from the library using the primer CCATAGCATTTTTATCCATAAG, which binds to the 

upstream region of pBAD18 cloning site, and either the forward or reverse tRNA-specific 

primer (Appendix II). All of these tRNA genes were present in the library in both forward 

and reverse directions at different combinations (Supplementary Figure 4-3), indicating 

that selection of glyT, ileX and serW was fitness-directed rather than the result of biased 

starting library. 

For assessing the fitness of the selected clones in comparison to cells carrying no ectopic 

tRNA alleles, 1μl from overnight culture of each strain was mixed with 1μl from 

overnight culture of E. coli cells carrying empty pBAD18 plasmid, in either 

LB+Amp+Kan or LB+Amp+Tet. After an overnight incubation, diluted cultures were 

spread on LB+Amp+X-gal+IPTG plates, incubated again overnight, and colonies were 

counted (colonies having empty pBAD18 are in a lacZ+ background and are 

distinguishable from colonies having pBAD18-tRNA by their red color on MacConkey 

plates). Selection index R is defined as: 

( ) ( )[ ]
( ) ( )[ ]initialfinal

initialfinal

pBADnpBADn
tRNApBADntRNApBADn

R
1818log
1818log ⋅⋅

=  

In the above equation, n(pXintial) and n(pXfinal) are the counts of the cells carrying pX 

before and after the overnight competition with the other strain, respectively. If pBAD18-

tRNA-carrying cells have a growth advantage over wild-type cells, R index >1 is 

expected. 

 

4.5.8 Appendix I 

Alignment of original lacZ from E. coli K12-MG1655 (U00096, region 362455-365529) and our 

modified lacZ 

 
original.lacZ      ATGACCATGATTACGGATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCT 
modified.lacZ      ATGACCATGATCACCGACTCTTTGGCCGTCGTCTTGCAACGGAGAGACTGGGAAAACCCA 
                   *********** ** ** **  ********** ** *****  * **************  
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original.lacZ      GGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGC 
modified.lacZ      GGTGTAACCCAATTGAACAGGTTGGCCGCCCACCCACCATTCGCCTCTTGGAGAAACTCT 
                   ** ** ****** * **  *  * ** ** ** ** ** ******   *** * **     

 

original.lacZ      GAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGC 
modified.lacZ      GAAGAAGCCAGGACCGACAGGCCATCTCAACAACTTCGGTCTTTGAACGGTGAATGGAGG 
                   ***** *** * *****  * ** ** *****  * **     **** ** ****** *  

 

original.lacZ      TTTGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCT 
modified.lacZ      TTCGCCTGGTTCCCAGCCCCAGAAGCCGTACCAGAAAGCTGGTTGGAATGCGACTTGCCA 
                   ** ******** ** ** ******** ** ** ********* **** *****  * **  

 

original.lacZ      GAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATC 
modified.lacZ      GAAGCCGACACCGTCGTCGTACCCTCTAACTGGCAAATGCACGGTTACGACGCCCCAATC 
                   ** ***** ** ******** ***** ******** ************** ** ** *** 

 

original.lacZ      TACACCAACGTGACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCG 
modified.lacZ      TACACCAACGTCACCTACCCAATCACCGTCAACCCACCATTCGTCCCAACCGAAAACCCA 
                   *********** ***** ** ** ** ***** ** ** ** ** ** ** ** ** **  

 

original.lacZ      ACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACG 
modified.lacZ      ACCGGTTGCTACTCTTTGACCTTCAACGTCGACGAATCTTGGTTGCAAGAAGGTCAAACC 
                   ** ***** *****  * ** ** ** ** ** ***   *** * ** ***** ** **  

 

original.lacZ      CGAATTATTTTTGATGGCGTTAACTCGGCGTTTCATCTGTGGTGCAACGGGCGCTGGGTC 
modified.lacZ      AGGATCATCTTCGACGGCGTCAACTCGGCCTTCCACTTGTGGTGTAACGGTAGATGGGTC 
                    * ** ** ** ** ***** ******** ** **  ******* *****  * ****** 

 

original.lacZ      GGTTACGGCCAGGACAGTCGTTTGCCGTCTGAATTTGACCTGAGCGCATTTTTACGCGCC 
modified.lacZ      GGTTACGGTCAAGACTCGAGACTTCCAAGCGAATTCGACTTGTCGGCCTTCTTGAGGGCC 
                   ******** ** ***    *  * **    ***** *** **   ** ** **  * *** 

 

original.lacZ      GGAGAAAACCGCCTCGCGGTGATGGTGCTGCGCTGGAGTGACGGCAGTTATCTGGAAGAT 
modified.lacZ      GGAGAAAACCGATTGGCCGTCATGGTCTTGAGATGGTCGGACGGCTCTTACTTGGAAGAC 
                   ***********  * ** ** *****  ** * ***   ******  ***  *******  

 

original.lacZ      CAGGATATGTGGCGGATGAGCGGCATTTTCCGTGACGTCTCGTTGCTGCATAAACCGACT 
modified.lacZ      CAAGACATGTGGAGGATGTCTGGTATCTTCAGGGACGTCTCTTTGTTGCACAAGCCAACC 
                   ** ** ****** *****   ** ** *** * ******** *** **** ** ** **  

 

original.lacZ      ACACAAATCAGCGATTTCCATGTTGCCACTCGCTTTAATGATGATTTCAGCCGCGCTGTA 
modified.lacZ      ACCCAAATCAGCGACTTCCACGTCGCCACCAGATTCAACGACGACTTCTCTAGGGCCGTC 
                   ** *********** ***** ** *****  * ** ** ** ** ***    * ** **  

 

original.lacZ      CTGGAGGCTGAAGTTCAGATGTGCGGCGAGTTGCGTGACTACCTACGGGTAACAGTTTCT 
modified.lacZ      TTGGAAGCCGAAGTCCAAATGTGTGGTGAATTGCGGGACTACTTGCGAGTCACCGTCTCT 
                    **** ** ***** ** ***** ** ** ***** ****** * ** ** ** ** *** 
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original.lacZ      TTATGGCAGGGTGAAACGCAGGTCGCCAGCGGCACCGCGCCTTTCGGCGGTGAAATTATC 
modified.lacZ      TTGTGGCAAGGTGAAACCCAAGTCGCCTCTGGAACCGCCCCATTCGGTGGTGAAATCATC 
                   ** ***** ******** ** ******   ** ***** ** ***** ******** *** 

 

original.lacZ      GATGAGCGTGGTGGTTATGCCGATCGCGTCACACTACGTCTGAACGTCGAAAACCCGAAA 
modified.lacZ      GACGAACGGGGTGGTTACGCCGACAGAGTCACCTTGAGGTTGAACGTCGAAAACCCAAAG 
                   ** ** ** ******** *****  * *****  *  *  **************** **  

 

original.lacZ      CTGTGGAGCGCCGAAATCCCGAATCTCTATCGTGCGGTGGTTGAACTGCACACCGCCGAC 
modified.lacZ      TTGTGGTCTGCCGAAATCCCAAACTTGTACAGAGCCGTCGTCGAATTGCACACCGCCGAC 
                    *****   *********** **  * **  * ** ** ** *** ************** 

 

original.lacZ      GGCACGCTGATTGAAGCAGAAGCCTGCGATGTCGGTTTCCGCGAGGTGCGGATTGAAAAT 
modified.lacZ      GGTACCTTGATCGAAGCCGAAGCCTGCGACGTCGGTTTCAGAGAAGTCCGGATCGAAAAC 
                   ** **  **** ***** *********** ********* * ** ** ***** *****  

 

original.lacZ      GGTCTGCTGCTGCTGAACGGCAAGCCGTTGCTGATTCGAGGCGTTAACCGTCACGAGCAT 
modified.lacZ      GGTTTGTTGTTGTTGAACGGTAAGCCATTGTTGATCAGGGGTGTCAACAGGCACGAACAC 
                   *** ** ** ** ******* ***** *** ****  * ** ** *** * ***** **  

 

original.lacZ      CATCCTCTGCATGGTCAGGTCATGGATGAGCAGACGATGGTGCAGGATATCCTGCTGATG 
modified.lacZ      CACCCATTGCACGGTCAAGTCATGGACGAACAAACCATGGTCCAAGACATCTTGTTGATG 
                   ** **  **** ***** ******** ** ** ** ***** ** ** *** ** ***** 

 

original.lacZ      AAGCAGAACAACTTTAACGCCGTGCGCTGTTCGCATTATCCGAACCATCCGCTGTGGTAC 
modified.lacZ      AAGCAAAACAACTTCAACGCCGTCCGATGCTCTCACTACCCAAACCACCCATTGTGGTAC 
                   ***** ******** ******** ** ** ** ** ** ** ***** **  ******** 

 

original.lacZ      ACGCTGTGCGACCGCTACGGCCTGTATGTGGTGGATGAAGCCAATATTGAAACCCACGGC 
modified.lacZ      ACCTTGTGCGACAGATACGGTTTGTACGTCGTCGACGAAGCCAACATCGAAACCCACGGT 
                   **  ******** * *****  **** ** ** ** ******** ** ***********  

 

original.lacZ      ATGGTGCCAATGAATCGTCTGACCGATGATCCGCGCTGGCTACCGGCGATGAGCGAACGC 
modified.lacZ      ATGGTCCCAATGAACCGGTTGACCGACGACCCACGCTGGTTGCCAGCCATGTCTGAAAGG 
                   ***** ******** **  ******* ** ** ****** * ** ** ***   *** *  

 

original.lacZ      GTAACGCGAATGGTGCAGCGCGATCGTAATCACCCGAGTGTGATCATCTGGTCGCTGGGG 
modified.lacZ      GTCACCAGGATGGTCCAAAGGGACCGGAACCACCCATCTGTCATCATCTGGTCTTTGGGT 
                   ** **  * ***** **  * ** ** ** *****   *** ***********  ****  

 

original.lacZ      AATGAATCAGGCCACGGCGCTAATCACGACGCGCTGTATCGCTGGATCAAATCTGTCGAT 
modified.lacZ      AACGAATCTGGTCACGGAGCCAACCACGACGCCTTGTACAGGTGGATCAAGTCTGTCGAC 
                   ** ***** ** ***** ** ** ********  ****  * ******** ********  

 

original.lacZ      CCTTCCCGCCCGGTGCAGTATGAAGGCGGCGGAGCCGACACCACGGCCACCGATATTATT 
modified.lacZ      CCATCTAGGCCAGTCCAATACGAAGGTGGTGGAGCCGACACCACCGCCACCGACATCATC 
                   ** **  * ** ** ** ** ***** ** ************** ******** ** **  
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original.lacZ      TGCCCGATGTACGCGCGCGTGGATGAAGACCAGCCCTTCCCGGCTGTGCCGAAATGGTCC 
modified.lacZ      TGCCCAATGTACGCCCGAGTCGACGAAGACCAACCATTCCCAGCCGTCCCAAAGTGGTCT 
                   ***** ******** ** ** ** ******** ** ***** ** ** ** ** *****  

 

original.lacZ      ATCAAAAAATGGCTTTCGCTACCTGGAGAGACGCGCCCGCTGATCCTTTGCGAATACGCC 
modified.lacZ      ATCAAGAAGTGGCTTTCTTTGCCAGGTGAAACCAGGCCATTGATCTTGTGCGAATACGCC 
                   ***** ** ********  * ** ** ** **  * **  ***** * ************ 

 

original.lacZ      CACGCGATGGGTAACAGTCTTGGCGGTTTCGCTAAATACTGGCAGGCGTTTCGTCAGTAT 
modified.lacZ      CACGCCATGGGTAACTCTCTTGGAGGTTTCGCCAAGTACTGGCAAGCCTTCAGGCAATAC 
                   ***** *********  ****** ******** ** ******** ** **  * ** **  

 

original.lacZ      CCCCGTTTACAGGGCGGCTTCGTCTGGGACTGGGTGGATCAGTCGCTGATTAAATATGAT 
modified.lacZ      CCACGGCTTCAAGGTGGTTTCGTCTGGGACTGGGTCGACCAATCTTTGATCAAGTACGAC 
                   ** **  * ** ** ** ***************** ** ** **  **** ** ** **  

 

original.lacZ      GAAAACGGCAACCCGTGGTCGGCTTACGGCGGTGATTTTGGCGATACGCCGAACGATCGC 
modified.lacZ      GAAAACGGTAACCCATGGTCTGCCTACGGTGGTGACTTCGGCGACACCCCAAACGACAGA 
                   ******** ***** ***** ** ***** ***** ** ***** ** ** *****  *  

 

original.lacZ      CAGTTCTGTATGAACGGTCTGGTCTTTGCCGACCGCACGCCGCATCCAGCGCTGACGGAA 
modified.lacZ      CAATTCTGCATGAACGGTTTGGTCTTCGCCGACAGGACCCCACACCCAGCCTTGACCGAA 
                   ** ***** ********* ******* ****** * ** ** ** *****  **** *** 

 

original.lacZ      GCAAAACACCAGCAGCAGTTTTTCCAGTTCCGTTTATCCGGGCAAACCATCGAAGTGACC 
modified.lacZ      GCCAAGCACCAACAACAATTCTTCCAATTCAGGTTGTCTGGTCAAACCATCGAAGTCACC 
                   ** ** ***** ** ** ** ***** *** * ** ** ** ************** *** 

 

original.lacZ      AGCGAATACCTGTTCCGTCATAGCGATAACGAGCTCCTGCACTGGATGGTGGCGCTGGAT 
modified.lacZ      TCTGAATACTTGTTCAGACACTCTGACAACGAATTGTTGCACTGGATGGTCGCCTTGGAC 
                      ****** ***** * **    ** *****  *  ************* **  ****  

 

original.lacZ      GGTAAGCCGCTGGCAAGCGGTGAAGTGCCTCTGGATGTCGCTCCACAAGGTAAACAGTTG 
modified.lacZ      GGTAAGCCATTGGCCTCTGGTGAAGTCCCATTGGACGTCGCCCCACAAGGTAAGCAATTG 
                   ********  ****    ******** **  **** ***** *********** ** *** 

 

original.lacZ      ATTGAACTGCCTGAACTACCGCAGCCGGAGAGCGCCGGGCAACTCTGGCTCACAGTACGC 
modified.lacZ      ATCGAATTGCCAGAATTGCCACAACCAGAATCTGCCGGTCAATTGTGGTTGACCGTCCGA 
                   ** *** **** *** * ** ** ** **    ***** *** * *** * ** ** **  

 

original.lacZ      GTAGTGCAACCGAACGCGACCGCATGGTCAGAAGCCGGGCACATCAGCGCCTGGCAGCAG 
modified.lacZ      GTCGTCCAACCAAACGCCACCGCCTGGTCTGAAGCCGGTCACATCTCTGCCTGGCAACAA 
                   ** ** ***** ***** ***** ***** ******** ******   ******** **  

 

original.lacZ      TGGCGTCTGGCGGAAAACCTCAGTGTGACGCTCCCCGCCGCGTCCCACGCCATCCCGCAT 
modified.lacZ      TGGCGGTTGGCCGAAAACTTGTCTGTCACCTTGCCAGCCGCCTCTCACGCCATCCCACAC 
                   *****  **** ****** *   *** **  * ** ***** ** *********** **  
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original.lacZ      CTGACCACCAGCGAAATGGATTTTTGCATCGAGCTGGGTAATAAGCGTTGGCAATTTAAC 
modified.lacZ      TTGACCACCTCTGAAATGGACTTCTGTATCGAATTGGGTAACAAGAGATGGCAATTCAAC 
                    ********   ******** ** ** *****  ******* *** * ******** *** 

 

original.lacZ      CGCCAGTCAGGCTTTCTTTCACAGATGTGGATTGGCGATAAAAAACAACTGCTGACGCCG 
modified.lacZ      CGACAATCTGGCTTCCTTTCTCAAATGTGGATCGGCGACAAGAAGCAATTGTTGACCCCA 
                   ** ** ** ***** ***** ** ******** ***** ** ** *** ** **** **  

 

original.lacZ      CTGCGCGATCAGTTCACCCGTGCACCGCTGGATAACGACATTGGCGTAAGTGAAGCGACC 
modified.lacZ      TTGAGGGACCAATTCACCAGAGCCCCATTGGACAACGACATCGGCGTCTCTGAAGCCACC 
                    ** * ** ** ****** * ** **  **** ******** *****   ****** *** 

 

original.lacZ      CGCATTGACCCTAACGCCTGGGTCGAACGCTGGAAGGCGGCGGGCCATTACCAGGCCGAA 
modified.lacZ      AGGATCGACCCAAACGCCTGGGTCGAAAGGTGGAAGGCCGCCGGCCACTACCAAGCCGAA 
                    * ** ***** *************** * ******** ** ***** ***** ****** 

 

original.lacZ      GCAGCGTTGTTGCAGTGCACGGCAGATACACTTGCTGATGCGGTGCTGATTACGACCGCT 
modified.lacZ      GCCGCCTTGTTGCAATGTACCGCCGACACCCTTGCCGACGCCGTCTTGATCACCACCGCC 
                   ** ** ******** ** ** ** ** ** ***** ** ** **  **** ** *****  

 

original.lacZ      CACGCGTGGCAGCATCAGGGGAAAACCTTATTTATCAGCCGGAAAACCTACCGGATTGAT 
modified.lacZ      CACGCCTGGCAACACCAAGGTAAGACCTTGTTCATCTCTAGAAAGACCTACAGGATCGAC 
                   ***** ***** ** ** ** ** ***** ** ***    * ** ****** **** **  

 

original.lacZ      GGTAGTGGTCAAATGGCGATTACCGTTGATGTTGAAGTGGCGAGCGATACACCGCATCCG 
modified.lacZ      GGTTCTGGTCAAATGGCCATCACCGTCGACGTCGAAGTCGCCTCTGACACCCCACACCCA 
                   ***  ************ ** ***** ** ** ***** **    ** ** ** ** **  

 

original.lacZ      GCGCGGATTGGCCTGAACTGCCAGCTGGCGCAGGTAGCAGAGCGGGTAAACTGGCTCGGA 
modified.lacZ      GCCAGGATCGGCTTGAACTGCCAATTGGCCCAAGTCGCCGAAAGGGTCAACTGGTTGGGT 
                   **  **** *** **********  **** ** ** ** **  **** ****** * **  

 

original.lacZ      TTAGGGCCGCAAGAAAACTATCCCGACCGCCTTACTGCCGCCTGTTTTGACCGCTGGGAT 
modified.lacZ      TTGGGTCCACAAGAAAACTACCCAGACAGACTTACCGCCGCCTGTTTCGACAGATGGGAC 
                   ** ** ** *********** ** *** * ***** *********** *** * *****  

 

original.lacZ      CTGCCATTGTCAGACATGTATACCCCGTACGTCTTCCCGAGCGAAAACGGTCTGCGCTGC 
modified.lacZ      TTGCCATTGTCTGACATGTACACCCCATACGTCTTCCCATCTGAAAACGGTTTGAGGTGC 
                    ********** ******** ***** ***********    ********* ** * *** 

 

original.lacZ      GGGACGCGCGAATTGAATTATGGCCCACACCAGTGGCGCGGCGACTTCCAGTTCAACATC 
modified.lacZ      GGTACCAGAGAATTGAACTACGGCCCACACCAATGGCGGGGCGACTTCCAATTCAACATC 
                   ** **  * ******** ** *********** ***** *********** ********* 

 

original.lacZ      AGCCGCTACAGTCAACAGCAACTGATGGAAACCAGCCATCGCCATCTGCTGCACGCGGAA 
modified.lacZ      TCTCGCTACTCTCAACAACAATTGATGGAAACCTCTCACAGGCACTTGTTGCACGCCGAA 
                      ******  ****** *** ***********   **  * **  ** ******* *** 
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original.lacZ      GAAGGCACATGGCTGAATATCGACGGTTTCCATATGGGGATTGGTGGCGACGACTCCTGG 
modified.lacZ      GAAGGCACCTGGTTGAACATCGACGGTTTCCACATGGGTATCGGTGGCGACGACTCTTGG 
                   ******** *** **** ************** ***** ** ************** *** 

 

original.lacZ      AGCCCGTCAGTATCGGCGGAATTCCAGCTGAGCGCCGGTCGCTACCATTACCAGTTGGTC 
modified.lacZ      TCTCCATCTGTATCTGCCGAATTCCAATTGAGCGCCGGTAGATACCACTACCAATTGGTC 
                      ** ** ***** ** ********  *********** * ***** ***** ****** 

 

original.lacZ      TGGTGTCAAAAATAA 
modified.lacZ      TGGTGCCAAAAGTGA 
                   ***** ***** * * 

 

4.5.9 Appendix II 

Primers for amplification of E. coli tRNA genes – In addition to the shown sequences, each primer 

contains a 5′ end carrying the recognition sequence of XmaI. 

tRNA Gene Forward Primer Reverse Primer 

tyrU:4173495-4173579 CACCAGTTCGATTCCGGTAG ACTTATCGTCTCGGGCTACG 

tyrT:1286761-1286845 GGGAGCAGGCCAGTAAAAAG TCTCACCGAAGTTACCACATC 

thrU:4173411-4173486 TGAACTCGCATGTCTCCATAG CTTTGGCCGCTCGGGAAC 

thrT:4173777-4173852 GATGATGCGGGTTCGATTC GAAGGAAAAAACAGGGAGGAG 

serW:925107-925194 CCACCCATGAGGTTTGGTAG AAAAAAAGCTCGCACTTTCG 

serV:2816575-2816667 AGCACTCGTAAGAGGCGTGT CGTAGCCGAGTACTCTATCCAG 

serU:2041492-2041581 CAAATTTCCTGGCATCATGG CGGGAAGTCGGGAGATAAG 

proL:2284233-2284309 ATCGGTGTGGAAAACGGTAG CCGTAAGGGTTGGTTTTTTC 

proK:3706639-3706715 CGTATCTGCGCAGTAAGATGC AAAAAAGCCTGCTCGTTGAG 

leuX:4494428-4494512 ACAACGTTTTCCGCATACCT CCTCAGTTGAGGTCTATTTACATACTTT 

leuU:3320094-3320180 GACCAGCGATATCCCGAAC TTTTCAGCGTCTCTTTTCTGG 

leuP:4604223-4604309 CGTTGATATTGCTCGCACTG CGCACAGTCATCTTACTTTTTTTG 

ileX:3213620-3213695 GGATTGCGACACGGAGTTAC GATTTCTCGTCAGCCTTTGC 

ileT:4035164-4035240 AGATTGTCTGATGAAAATGAGCA AACATGTAGTTAAAACCTCTTCAAA 

glyV:4390383-4390458 GAAATGCGAAAATTACGAAAGC GGTGGTCTGTGCTTTGCAG 

glyU:2997006-2997079 AAGGAGAGCGTAAGGTTTATAATG GGGGAAGTATTACGGCGAAG 

glyT:4173696-4173770 AAAATCAGGTAGCCGAGTTCC AAGGGTGCGCTCTACCAAC 

glnV:695765-695839 TGTTCGGCAAATTCAAAACC CAACTGGGTGCACTTACAAGG 

glnU:696088-696162 CGCACCATTCACCAGAAAG AATAACCGGGCGGTGAAC 

argX:3980398-3980474 TGGGAAGTCCGTATTATCCAC TACTACCACCGCAGCTCAAG 

argW:2464331-2464405 TACCCCGCACTCCATTAGC ATTTTGCGGACTGGTACGG 

argU:563946-564022_4 ACGCGATTACACCGCATTG TGGAGGATATAAAGAAGGCGTAAC 

argQ:2815806-2815882 AGCGGTATCAATATCAGCAGTAG TCTCTTCGATACCTTCATTGC 

alaW:2516178-2516253 CCCGTCAACTCGACAAGC CGATGCGTTTACGTACCAAG 

alaT:4035283-4035358_1 GGCAAATTTGAAGAGGTTTTAACTAC GGTACACTCTGAAGTATTTTTTATTTAATC 
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4.5.10 Appendix III 

 

The sequence of the inserted fragment carried by pBAD-KAN (the plasmid that was selected in the 

presence of kanamycin) – Ten clones were analyzed for their sequences, all of which contained one copy 

of serW gene in reverse direction (blue) and one copy of glyT in forward direction (red). XmaI digestion 

sites are underlined. 

 

 

4.5.11 Appendix IV 

 

The sequence of the inserted fragment carried by pBAD-TET (the plasmid that was selected in the 

presence of tetracycline) – Ten clones were analyzed for their sequences, all of which contained one copy 

of ileX gene in forward direction (red). XmaI digestion sites are underlined. 

 

 
 
  

TCGCACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCGAATTCNAGCTCGGTAC
CCGGGGATTGCGACACGGAGTTACTTTATAATCCGCTACCATGGCCCCTTAGCTCAGTGGT
TAGAGCAGGCGACTCATAATCGCTTGGTCGCTGGTTCAAGTCCAGCAGGGGCCACCAGATA
TAGCAAAGGCTGACGAGAAATCCCCGGGGATCCTCTAGAGTCGACCTGCAGGCATGCAAGC

 

 

TGACNCTGAGCTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGC
GAATTCGAGCTCGGTACCCGGGAAAAAAAGCTCGCACTTTCGTACGAGCTCTTCTTTAAAT
ATGGCGGTGAGGGGGGGATTCGAACCCCCGATACGTTGCCGTATACACACTTTCCAGGCGT
GCTCCTTCAGCCACTCGGACACCTCACCAAATTGTTTTGCTACCAAACCTCATGGGTGGCC
CGGGAAAATCAGGTAGCCGAGTTCCAGGATGCGGGCATCGTATAATGGCTATTACCTCAGC
CTTCCAAGCTGATGATGCGGGTTCGATTCCCGCTGCCCGCTCCAAGATGTGCTGATATAGC
TCAGTTGGTAGAGCGCACCCTTCCCGGGGATCCTCTAGAGTCGACCTGCAGGCATGCAAGC
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4.6 Supplementary Figures 

 

 

Supplementary Figure 4-1. clustering genes based on their synonymous codon usage results in 

specific enrichment of different expression profiles – (Left panel) Human genes were clustered based on 

their synonymous codon usage, exploiting a modified k-means algorithm that could handle missing data. 

The mutual information (MI) of distribution of each expression profile among different codon usage 

clusters was examined. Expression profiles that showed significantly non-random distributions based on 

their MI values (p≤1×10 -4) are shown in this figure. Each row represents one coexpression cluster, whose 

number, according to [168], is shown at left. Each column stands for one of the codon usage-based clusters. 

(Right panel) codon UUU is over-represented in some coexpression clusters and under-represented in 

others. Only clusters whose mutual information for UUU is significantly higher than random (p≤1×10 -4) are 

shown. In both panels, a yellow frame around a square means significant over-representation of the 

corresponding expression (p≤1×10-4), and a blue frame around a square means significant under-

representation (p≤1×10-4). 
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Supplementary Figure 4-2. Mutual information of synonymous codon usage in yeast coexpression – 

Each row represents a coexpression cluster with the ID number of the cluster written on left, while each 

column represents a codon. Stop codons, AUG and UGG are omitted. Significant mutual information (MI) 

values (p≤1×10-4) are highlighted by red frames. The average expression level of genes within each 

coexpression cluster is shown on the right chart, normalized to the maximum of 1.0. Coexpression cluster 

ID numbers are the same as reported in [168]. 
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Supplementary Figure 4-3. Stress conditions can select a particular plasmid from the tRNA library – 

(Top panel) Unselected tRNA library results in a ladder-like pattern on the gel after cloning site 

amplification, with amplicons containing no tRNA genes at the bottom and amplicons containing several 

tRNA genes at the top. Culturing the library in LB+Amp medium (negative control) does not change this 

pattern (pBAD18 has an Ampr marker; thus, presence of Amp is not considered a selection pressure). This 

is while after two passages in LB+Amp+Kan, a single plasmid is enriched in the library. A single plasmid is 

also selected in the presence of tetracycline (LB+Amp+Tet). (Bottom panel) The tRNA library represents 

different tRNA isoacceptors of Gly, Ile and Ser in both forward and reverse directions. Each PCR 

amplification results in more than one fragment since a tRNA gene may be placed in different combinations 

with respect to other tRNA genes: directly after annealing site of the first primer, or isolated from this site 

by one or more other tRNAs. 1-8: glyV, glyU, glyT, ileX, ileT, serW, serV and serU, respectively; f: 

forward; r: reverse; M: standard 1kb plus ladder (Invitrogen). 
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Supplementary Figure 4-4. The significance of correlation coefficient between codon usage and either 

average expression level or expression pattern, after correcting for confounding effect of each factor 

– The correlation coefficient between codon usage and each factor was evaluated in a multivariate analysis, 

including the other factor as the covariate. Thus, for example, in the first row a red frame indicates that the 

correlation between codon usage and expression pattern in E. coli is significant even after the confounding 

effect of average expression level is considered. Although it is apparent that average expression level 

correlates with expression pattern in both E. coli and yeast, there are many cases in which correlation of 

expression pattern with codon usage only partly overlaps with correlation of average expression level and 

codon usage. It is notable that in yeast, 33 out of 59 codons have significant correlation with expression 

pattern after correcting for the confounding effect of average expression level, while only 17 codons have 

significant correlation with average expression level after removing the confounding effect of expression 

pattern. This indicates that expression pattern can more strongly explain the synonymous codon usage.  
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Supplementary Figure 4-5. Local folding energy of original and modified versions of lacZ mRNA – 

Folding energy was calculated for sliding windows of 40nt, including the 5′ UTR of each mRNA (the 

results are shown only for the 5′ UTR and the first 400nt of the coding sequence). The folding energies of 

the two variants are especially similar in the first 40nt of the coding region; this region has been found 

recently to have the strongest correlation with expression level [187]. 

 



 83 

 

Supplementary Figure 4-6. Prediction of expression profile and function in human and a 

Trypanosoma brucei, based on synonymous codon usage – These examples illustrate that genes may be 

successfully assigned to coexpression clusters and/or functions, solely based on their synonymous codon 

usage. This indicates that codon usages of different coexpression/function clusters are different, allowing 

their discrimination from each other. Panel (A) belongs to coexpression cluster 50 from human [168] which 

mostly consists of proteins involved in mRNA metabolic process (GO:0016071). Panel (B) belongs to base 

pair excision repair proteins (KEGG:hsa03410). Panel (C) corresponds to homology-independent prediction 
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of gene function in Trypanosoma brucei. T. brucei is the causative agent of human African 

trypanosomiasis. Almost 55% of the genes in the genome of T. brucei do not have any homologs outside of 

trypanosomatid clade. Thus, their functions cannot be determined by homology-dependent methods. Out of 

seven functional clusters that had at least 40 T. brucei genes in KEGG pathway, four could be predict by 

our naïve Bayesian network with reasonable accuracy. In each panel, the standard deviation of sensitivity is 

illustrated by the shaded region. In all cases, a two-fold cross-validation was used, where each time half of 

the genes were selected randomly and used for training the classifier, while the other half was reserved for 

assessing the prediction power. Standard deviation of sensitivity, indicated as a gray region in each panel, 

was calculated by repeating the cross-validation 10 times. The diagonal lines represent the expected 

performance if codon usage was not able to classify the genes. 
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5 Genome-wide computational identification of functional 

RNA elements in Trypanosoma brucei and their application 

in gene function prediction 

The previous chapter introduced codon usage as an expression regulator, which correlates 

with gene function in a wide range of organisms. As shown in Supplementary Figure 4-6, 

this function-specificity can be utilized to predict gene function. However, the 

performance of this prediction method is not satisfactory on its own, and needs to be 

improved by integrating with orthogonal sources of information. In the next chapter, 

which was published as an article in BMC Genomics in 2009 [3], we describe prediction 

of functional RNAs, including non-coding RNAs (ncRNAs) and cis-acting RNA elements 

involved in post-transcriptional gene regulation, based on two independent computational 

analyses of the genome of Trypanosoma brucei. We then discuss the utility of these 

regulatory elements in homology-independent function prediction in T. brucei. This first 

genome-wide analysis of fRNAs in trypanosomatids restricts the search space of 

experimental approaches and, thus, can significantly expedite the process of 

characterization of functional RNA elements. Our classifiers for function prediction based 

on cis-acting regulatory elements can also, in combination with other methods, provide 

the means for homology-independent annotation of trypanosomatid genomes. 
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5.1.1 Background 

RNA elements that are functional at RNA level, i.e., functional RNAs (fRNAs), are 

becoming to be appreciated more and more as their diverse structural, regulatory and 

catalytic roles are revealed [199, 200]. Several classes of fRNAs have been identified, 

including different types of non-coding RNAs (ncRNAs) such as tRNAs, rRNAs, 

microRNAs (miRNAs), telomerase RNA, RPR1 (the RNA component of nuclear RNase 

P), small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). The cis-

regulatory elements in the 5′ - and 3′-untranslated regions (UTRs) of mRNAs constitute 

another class of fRNAs that are mostly involved in post-transcriptional regulation of gene 

expression (see [31, 32]). Recent developments in computational tools for prediction of 

fRNAs have shown a widespread set of RNA elements that are specifically involved in 

post-transcriptional regulatory processes [201]. Although crucial in many different 

species, post-transcriptional regulation is especially the major mechanism for regulation 

of gene expression in a group of unicellular parasites called trypanosomatids. 

Trypanosomatids, including Trypanosoma brucei, T. cruzi and different Leishmania 

species, are the causative agents of serious human as well as animal diseases, with a very 

high incidence and mortality rate if untreated. Genes in trypanosomatids are transcribed 

as polycistronic mRNAs [93] that are further processed via trans-splicing [47]. Regulation 

of gene expression, which occurs mostly during or after splicing, involves several cis-

acting fRNA elements, such as U-rich elements (UREs), short interspersed degenerated 

retroposons (SIDERs), etc. [31, 32]. These elements mostly regulate either the stability or 

translation rate of mRNAs via interaction with different trans-acting proteins, many of 

which are unknown. It has also been proposed recently that miRNAs may play a role in 

posttranscriptional gene regulation in T. brucei [202], although no experimental 

substantiation has been found.  

Experimental identification of cis-acting fRNA elements is an exhausting task that 

requires extensive functional assays with several strains carrying deletion/substitution 

mutants of a likely regulatory sequence. The situation is not better for ncRNAs, as it is 

not clear in which region(s) in the genome they should be searched for and for what 

particular function the screening experiment should be designed (as opposed to cis-acting 
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fRNA elements that occur adjacent to coding sequences and affect gene expression). 

Although computational identification of fRNAs from genome sequences can be an 

alternative, it is not yet as robust as identification of protein-coding RNAs, due to the lack 

of strong conserved signals in their sequences [203]. Here, we present a computational 

examination of the genomes of T. brucei and L. braziliensis in order to identify a set of 

conserved ncRNAs that, based on computational and statistical analysis, are highly 

reliable. We show that our methodology is able to find a large number of known as well 

as novel potential ncRNAs. We further examine our candidate ncRNAs for the presence 

of potential pre-miRNAs, and show that the existence of miRNA genes that are conserved 

between T. brucei and L. braziliensis is highly unlikely. We also use a different method 

for homology-independent identification of short regulatory RNA motifs in 5′ and 3′ 

UTRs of T. brucei genes. These motifs complement our predicted ncRNAs by providing a 

set of the most functionally important regions of potential cis-regulatory fRNA elements. 

In addition to offering new insights about the regulatory mechanisms of protein 

expression in T. brucei, these regulatory motifs can be used for prediction of gene 

function. 

 

5.2 Results and Discussion 

5.2.1 Identification of conserved ncRNAs in T. brucei 

We compared the genome sequences of T. brucei and L. braziliensis in order to identify 

conserved genomic regions. L. braziliensis is the only trypanosomatid other than T. 

brucei with available genome sequence in which the putative components of RNAi 

machinery have been identified [27]. Thus, its comparison with T. brucei provides the 

possibility of detecting conserved ncRNAs involved in or processed by this machinery. 

We used a binomial-based model [204] to assess the conservation across T. brucei 

genome in comparison to the genome sequence of L. braziliensis. Using this model, we 

found that about 18% of the T. brucei genome shows conservation degrees above the 

median that would be expected from a random distribution. These regions, in addition to 

being enriched for functional elements, have allegedly the highest-quality alignments 



 88 

compared to the alignments that correspond to less conserved regions. This conserved 

subset of the T. brucei genome consisted of about 5.26 Mbp of protein-coding sequences 

and 887 kbp of non-coding sequences. We used QRNA [205] to identify parts of these 

conserved genomic regions that showed patterns of conserved structural RNA elements. 

About 37.2 kbp of the non-coding conserved genomic regions obtained RNA scores 

above zero, using QRNA. For the protein-coding conserved regions, this number was 

about 16.8 kbp, indicating a false positive rate of about 0.3%. Assuming this false 

positive rate, we would expect about 2.8 kbp of false positives among non-coding 

genomic regions and, hence, a precision of about 92.3% (precision was defined as 

TP/(TP+FP), where TP and FP stand for the number of true positives and false positives 

among non-coding genomic regions, respectively). 

It should be noted that the estimated false positive rate from coding sequences would not 

be applicable to non-coding sequences if we had included scores other than the RNA 

score from QRNA, such as the COD and OTH scores (COD and OTH scores express the 

likelihood of being a coding sequence and a non-RNA, non-coding sequence, 

respectively). However, the behavior of QRNA may still be different between coding 

regions and non-RNA, non-coding genomic regions as coding sequence evolves in a very 

specific way. Furthermore, RNA structure in coding sequence may be specifically 

selected against. We have thus used a different, more conservative method for estimating 

the false positive rate of our ncRNA predictions, which is explained in the section 

“Identification of highly significant candidate ncRNAs” 

About 5.2 kbp of our found candidate fRNAs overlapped with already annotated rRNA, 

snRNA,  and tRNA genes, indicating the capability of our approach in finding non-coding 

RNAs. The sensitivity of this approach, i.e., TP/(TP+FN) where FN indicates the number 

of false negatives, showed considerable differences among different classes of structural 

RNAs. For example, 30 of our predicated candidates overlapped one of the 65 known 

tRNAs, equal to about 50% sensitivity for detection of tRNAs. On the other hand, only 21 

candidates overlapped one of the 106 known rRNA genes, indicating a lower sensitivity 

for rRNA detection. This is while we detected none of the 353 known small nucleolar 

RNAs (snoRNAs). This may indicate the lack of conservation of snoRNA structure 

between T. brucei and L. braziliensis. 
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Figure 5-1. Homology table for the predicted ncRNAs – Many candidate ncRNAs can be grouped into 

several homology clusters, here shown by color labels (clusters 1-15). In this figure, only ncRNAs are 

shown for which there is at least one other predicted ncRNA with homology E-value < 0.0025 and 

alignment coverage > 50%. The color of each square reflects the BLAST E-value with the sequence in the 

corresponding row as the query. 

 

A complete list of all found ncRNA candidates along with their associated information 

can be found in the online Additional File 1 at http://www.biomedcentral.com/1471-

2164/10/355/additional/. Many of these candidates can be grouped into several homology 

clusters, as shown in Figure 5-1. When several homologous sequences are independently 

http://www.biomedcentral.com/1471-2164/10/355/additional/�
http://www.biomedcentral.com/1471-2164/10/355/additional/�
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predicted to be ncRNAs, the predictions can be considered highly reliable. Sequences 

within clusters 1, 2, 6, 7, 9, 11, 12 and 14 either overlap with or are homologous to known 

tRNAs. Similarly, sequences within clusters 3, 4, 8 and 13 seem to represent rRNAs. 

However, clusters 5, 10 and 15 do not correspond to any known ncRNAs and, thus, may 

represent novel ncRNA classes with unknown functions. Cluster 10 is of particular 

significance due to its large size, indicating that the elements of this class may be present 

at a high frequency in the genome. 

 

5.2.2 Investigating the presence of conserved miRNA genes 

Based on a computational analysis of T. brucei genome, it has been recently proposed that 

trypanosomatids may use miRNAs in order to regulate the levels of particular mRNAs 

[202]. However, this report is not consistent with our current knowledge of miRNA origin 

[206, 207]; regulation via miRNA seems to have emerged in a completely different 

branch of life, although its convergent evolution in several branches is not impossible. 

Hence, we decided to investigate the presence of putative miRNA precursors among our 

predicted ncRNAs through a relatively simple, yet specific approach that considers a few 

structural and thermodynamic criteria for identification of pre-miRNA sequences (see 

Methods section). Using 250 pre-miRNAs that, as control sequences, were randomly 

selected from 24 different organisms (Supplementary Table 5-1), it can be estimated that 

the sensitivity of pre-miRNA prediction using our criteria is about 32.4% ± 2.1%. Also, 

using a set of 30770 randomly selected sequences from T. brucei genome, the specificity 

of this method can be estimated at about 99.1% ± 0.3%. 

After removing low-complexity regions (LCRs, see the Methods section), only five of the 

predicted ncRNA sequences met our criteria for structure and free folding energy 

(Supplementary Figure 5-1). However, these rare sequences mostly consist of 

dinucleotide repeats (particularly AU repeats), and can be accounted for false positives of 

our method. Based on our analysis, it is highly unlikely to expect any conserved miRNA 

genes in T. brucei. It should be mentioned that a large number of the previously predicted 

T. brucei miRNAs [202] were potentially targeting variant surface glycoproteins (VSGs), 

which are absent in L. braziliensis. However, other predicted miRNAs were targeting 
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conserved complexes such as 20S proteasome, and thus would be expected to be found in 

this study if they were conserved. Although this analysis does not definitely reject the 

presence of miRNAs in T. brucei genome, suggests that a reexamination of this genome 

for the presence of such elements is required.  

 

5.2.3 Identification of highly significant candidate ncRNAs 

In order to select a highly significant subset from our set of candidate conserved ncRNAs, 

we filtered out the candidates whose QRNA scores were not significantly higher than 

expected from a random distribution. The random distribution for each candidate ncRNA 

was obtained by computing the QRNA scores of 1000 randomly scrambled T. brucei-L. 

braziliensis alignments, as described in the Methods section. A candidate ncRNA was 

rejected if it was outscored by more than three randomized versions (i.e., p≤0.003; this p-

value threshold was selected so as the expected number of false positives would be less 

than one). This filtering procedure resulted in 117 highly significant novel putative 

ncRNAs (online Additional File 4 and the first 117 candidates in online Additional File 1 

at http://www.biomedcentral.com/1471-2164/10/355/additional/), of which 53 neither 

overlapped nor were homologous to any annotated features of T. brucei genome and, 

hence, may represent completely novel ncRNAs (Table 5-1). All 117 candidates that did 

not overlap with a coding sequence had the highest score for the RNA model and not the 

COD and OTH models, although they were initially selected only based on their RNA 

scores and irrespective of their COD and OTH scores. 

The calculated p-value provides another measure, though more conservative, for 

estimating the precision of our method. For example, a p-value ≤0.001 is equal to about 

0.887 kbp of false positives (out of 887 kbp of the non-coding conserved genomic 

regions), assuming that most of the non-coding genome consists of non-RNA random 

sequences. This is while more than 5.7 kbp of our candidates (the top 79 candidates in 

online Additional File 1 at http://www.biomedcentral.com/1471-2164/10/355/additional/) 

were significant at this level, indicating a precision of about 85%. 

 

http://www.biomedcentral.com/1471-2164/10/355/additional/�
http://www.biomedcentral.com/1471-2164/10/355/additional/�
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Table 5-1. Classification of predicted ncRNAs in T. brucei genome – Candidate ncRNAs are classified 

based on either homology with known ncRNAs or overlap with known genomic features. Candidate 

ncRNAs within each class are further divided into subgroups based on their location relative to known 

genomic features. 
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Overlap CDS 0 0 0 36 36 

Overlap pseudogene 0 0 0 1 1 

Overlap unlikely proteins 0 0 0 0 0 

Homologous to rRNA*,** 0 4 2 1 5 

Homologous to tRNA* 1 0 0 0 1 

Overlap known ncRNA** 0 25 7 1 26 

Overlap Ingi/RIME repeat 0 0 0 0 0 

Unclassified 8 1 1 43 53 

Total 9 26 8 81 117 

* Each candidate may contain several closely located single ncRNAs, some of which may have already 

been annotated on the current release of the T. brucei genome. However, at least one ncRNA within each 

sequence is unannotated, for which a known homolog is found. These unannotated ncRNAs represent novel 

instances of their classes. 

** These categories may overlap. 

*** These categories may overlap. 

 

These novel ncRNAs did not show any statistically significant enrichment in particular 

genomic positions such as regions with clustered ncRNAs, strand switch regions (regions 

where the coding strand changes) or regions adjacent to coding sequences (significance 

was defined as p-value < 0.05 in a genomic position permutation test), indicating a 
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relatively uniform distribution on the genome. Nonetheless, an educated guess can be 

made for biological functions of some candidates based on their positions. For example, 

eight unclassified candidate elements occur in the vicinity of a coding sequence. These 

elements may represent regulatory structures at 5′ or 3′ UTRs of coding sequences, 

involved in post-transcriptional regulation of gene expression. Also, one unclassified 

candidate fRNA was found to occur in a strand switch region. As transcription of 

polycistronic mRNAs start from strand switch regions, this fRNA may represent an 

element in the 5′ end of the resultant transcript, and may be involved in its localization, 

posttranscriptional processing or regulation. 

Expectedly, none of the previously characterized cis-regulatory RNA elements of T. 

brucei were found among our set of candidate structural RNA elements. This is not 

surprising since the known regulatory RNA elements of T. brucei are not conserved in 

Leishmania species [31, 32]. Furthermore, many of these elements are known via their 

sequence, not their structure. We specifically discuss the computational identification of 

cis-regulatory RNA elements in T. brucei in the next section. 

 

5.2.4 Finding informative function-specific regulatory elements 

We used a homology-independent approach to investigate the presence of function-

specific motifs in 5′ and 3′ UTRs of T. brucei genes, using a recently developed 

algorithm, named FIRE [168]. It has been shown that FIRE is able to identify many 

known and novel regulatory elements, with a near-zero false positive discovery rate, in 

upstream and downstream of genes that are clustered according to their expression 

patterns. Here, we used FIRE to find ‘function-specific’ regulatory elements in 5′ and 3′ 

UTRs of T. brucei genes: genes with similar functions are usually co-regulated [74], 

indicating that they should have similar cis-regulatory elements. Thus, clustering genes 

according to their functions can be used as a surrogate of clustering them according to 

their expression patterns. This approach is particularly useful for organisms in which gene 

regulation occurs mostly at post-transcriptional levels, such as trypanosomatids (transcript 

profiling studies have been suggested to be unable to identify the dynamics of protein 

expression in such organisms; see [208]). We were able to identify 15 function-specific 
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motifs in 5′ UTRs of T. brucei genes and 21 function-specific motifs in their 3′ UTRs 

(Table 5-2, Table 5-3, and Supplementary Figure 5-2). Based on the results of running 

FIRE on 10 permuted sets of gene-function assignments, we can estimate an expected 

precision of 75.3% for discovering function-specific 5′ UTR motifs and 84.8% for 3′ 

UTR motifs. 

Most of the motifs that are found by FIRE have orientation bias, i.e., mostly occur at a 

particular orientation with respect to the coding sequence. This property is expected from 

RNA motifs. Furthermore, two of the motifs that were predicted in 3′ UTRs have position 

bias, which means that they prefer to be at a particular distance from the stop codon of the 

upstream coding sequence. This property has also been observed for many regulatory 

motifs in different organisms [74, 168], and further increases the possibility that the 

predicted motif has a biological role.  

Our predicted function-specific motifs overlap with a number of experimentally found 

regulatory sequences in T. brucei, mostly identified by deleting different parts of UTRs 

and evaluating the effects of these deletions on regulation of a reporter gene: It has been 

shown that the 3′ UTR of glycosomal phosphoglycerate kinase PGKC can cause 

bloodstream form-specific gene expression [68, 209]. We found that this regulatory 

sequence contained six of our predicted 3′ UTR motifs (p<1×10 -5), most notably the 

glycolysis-specific motif VGGGCCRCV (degenerate positions are shown using IUPAC 

nomenclature of mixed bases [210]). Interestingly, the 5′ UTR of the same gene, which 

has been shown to affect splicing in procyclic stage [211, 212], also contains two copies 

of the 5′ UTR motif UHUDUCNH. As another example, the 3′ UTR of fructose 

bisphosphate aldolase contains an instance of the fructose metabolism-specific motif 

MUGGVACAK. This untranslated region has also been reported to be able to cause 

regulated expression of genes in T. brucei [209]. 
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Table 5-2. Function-specific motifs in 5′ UTRs of T. brucei genes – The functions in which each motif is 

significantly overrepresented or underrepresented are indicated in the second column using black and blue 

text colors, respectively. 

 

a. Mutual information value b. Z-score associated with the MI value c. Robustness, obtained from ten jack-

knife trials of randomly removing one-third of the genes and reassessing the statistical significance of the 

resulting MI value d. Position bias indicator (“Y” if a position bias is observed) e. Orientation bias, 

indicating the orientation of the motif with respect to its associated coding sequence 
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Table 5-3. Function-specific motifs in 3’ UTRs – See Table 5-2 for column explanations. 
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It should be noted that our approach is only able to identify function-specific short RNA 

motifs, not motifs that are involved in regulation of expression in a rather genome-wide 

scope, or in a gene-specific manner. Thus, it is not surprising to see that some of the 

previously identified regulatory elements, such as the widely used U-rich elements [32] 

are not among our motifs. Structural RNA elements also cannot be identified using FIRE; 

nonetheless, some of our found short motifs may represent the most functionally 

important regions of RNA structural elements. 

 

5.2.5 Function prediction using regulatory RNA motifs 

We devised a naïve Bayesian network that based on the pattern of presence and absence 

of motifs in 5′ UTRs and 3′ UTRs can predict whether a gene belongs to a particular 

pathway (see the Methods section). For many pathways, this naïve Bayesian network can 

be used to classify T. brucei genes with acceptable reliability (see Figure 5-2 for an 

example). As it is shown in Figure 5-2A, only a few motifs are needed to reach the 

maximum possible prediction power. However, adding more motifs to this classifier does 

not reduce the prediction power, which simplifies the design of effective naïve Bayesian 

networks. We expect that by combining this method with other function prediction 

methods, we will be able to expand the functional annotations of T. brucei genes 

extensively. A complete assessment of function prediction in T. brucei using our method 

can be found in the online Additional File 6 at http://www.biomedcentral.com/1471-

2164/10/355/additional/. 

 

http://www.biomedcentral.com/1471-2164/10/355/additional/�
http://www.biomedcentral.com/1471-2164/10/355/additional/�
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Figure 5-2. Function prediction using regulatory motifs in T. brucei – This figure shows inositol 

phosphate metabolism (KEGG:tbr00562) as an example. (A) The performance of our naïve Bayesian 

network using different numbers of motifs for prediction of inositol phosphate metabolism genes. We used 

a two-fold cross-validation for assessing the prediction power, where half of the dataset was used for 

training and the other half for validation. Cross-validation was repeated 100 times for each number of 

motifs, and each time the AUC (area under the curve) of the ROC curve was measured as the prediction 

power. Standard deviation of AUC is shown by the error bars. (B) The ROC curve for prediction of inositol 

phosphate metabolism genes using all 36 predicted motifs. Standard deviation of sensitivity is shown by the 

grey shaded region. The diagonal line shows the performance that would be expected if our naïve Bayesian 

network were not able to predict inositol phosphate metabolism genes. This classifier has a very high 

specificity (~99%) at sensitivities of up to 20% for this pathway. 

 

5.3 Conclusions 

The ncRNAs predicted in this study can provide candidates for experiments that are 

focused on understanding the functional RNA repertoire of trypanosomatids. The most 

interesting candidates are perhaps those that do not have characterized homologs, as they 

most probably represent novel ncRNA classes in T. brucei. Unraveling the function of 

these ncRNAs will help us to understand the biology of these parasites more clearly. 

However, it should be noted that our set of predicted ncRNAs is far from complete, as we 
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only considered two genomes in this study. Considering a larger number of 

trypanosomatid genomes may reveal other ncRNAs and provide a more thorough view of 

the non-coding functional transcriptome of these organisms. 

Prediction of gene functions based on our set of function-specific short motifs can also 

provide a very useful alternative to homology-based annotation methods, especially that a 

huge number of trypanosomatid genes are not conserved in other organisms. We 

anticipate that combining this method with other established systems-based function 

prediction approaches provides a robust method that can be applied to many genomes. 

 

5.4 Methods 

 

5.4.1 Identification of conserved genomic regions 

Conserved genomic regions were identified using a binomial-based model [204]. Briefly, 

after masking LCRs using mreps, the two genomes of T. brucei and L. braziliensis were 

aligned using BlastZ [213]; for each window of 25 nucleotides, N, the number of 

conserved nucleotides, was determined; the probability of observing N conserved 

nucleotides out of 25 nucleotides was calculated under the null hypothesis of neutral 

substitution and based on binomial distribution of mutations; and regions showing 

evidence of negative selection were chosen. Finally, conserved regions that were less than 

25 nucleotides apart were connected to each other as a single region (see [204] for 

detailed description of the method). 

 

5.4.2 Identification of conserved ncRNAs 

We used QRNA [205] to identify parts of the conserved genomic regions (see above) that 

showed patterns of conserved structural RNA elements. Long sequences were broken into 

smaller overlapping fragments of 80 nucleotides, each of which having 40 nucleotides 

overlap with its adjacent fragments. Overlapping sequences with RNA scores higher than 

zero were merged again, QRNA scores were recalculated, and those with final positive 
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RNA scores were selected as putative fRNAs. False positive rate was calculated as the 

fraction of conserved coding sequences that were classified as fRNA. LCRs were 

determined using a combination of ‘mreps’ and ‘mdust’ from TIGR, marked in the online 

Additional File 1 (http://www.biomedcentral.com/1471-2164/10/355/additional/) by 

lowercase letters. Significance of each candidate was assessed by comparing its QRNA 

score to a distribution obtained by randomizing T. brucei-L. brazilensis alignments: the 

alignment of each ncRNA candidate was considered separately, and columns with similar 

conservation patterns were shuffled randomly (i.e., a column containing a gap was 

swapped only with another gap-containing column, mismatch with mismatch, and match 

with match [214]). The fraction of random alignments outscoring the original alignment 

was considered as the p-value (online Additional File 1 

at http://www.biomedcentral.com/1471-2164/10/355/additional/, column H). 

 

5.4.3 Examining the candidate ncRNAs for the presence of potential pre-miRNAs. 

We used a set of simple, yet powerful criteria for detection of potential miRNA 

precursors among our candidate fRNAs. A nucleotide sequence of length 80nt was 

considered a potential pre-miRNA if it could be folded into a structure with (i) a single 

stem-loop (ii) whose free folding energy was <= -25kcal/mol [215], (iii) which contained 

an at least 9bp-long continuous paired region with no internal loops or bulges, (iv) and 

contained no unpaired internal segment (internal loop or bulge) longer than 3 nucleotides. 

These criteria, while selected empirically to optimize for specificity and sensitivity, are in 

agreement with previous studies on pre-miRNA structure [216]. We used RNAfold from 

Vienna RNA package for folding the sequences. 

The sensitivity and specificity of these criteria were tested on a set of 250 pre-miRNAs 

from 24 different organisms (Supplementary Table 5-1) and a set of 30770 randomly 

selected sequences from T. brucei genome (random sequences matching the selected 

criteria were considered false positives, based on which the specificity was estimated). To 

estimate the standard deviations of sensitivity and specificity, we performed 10 jack-knife 

trials in each of which one third of all sequences were randomly removed and the 

performance was reevaluated on the remaining two thirds. Then, all T. brucei genomic 

http://www.biomedcentral.com/1471-2164/10/355/additional/�
http://www.biomedcentral.com/1471-2164/10/355/additional/�
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sequences of length 80nt that overlapped with at least one nucleotide of one of the 

predicted ncRNAs, as well as the reverse complements of such genomic sequences, were 

examined using the above criteria for presence of pre-miRNAs. 

 

5.4.4 Finding informative regulatory elements in 5′ and 3′ UTRs  

A recently developed algorithm, named FIRE, is able to identify DNA and RNA motifs 

that are unevenly distributed among different clusters of sequences, i.e., are 

overrepresented in some clusters while underrepresented in some others [168]. Here, we 

used FIRE to identify motifs that are unevenly distributed among different functions. 

Functional annotations of T. brucei genes were retrieved from KEGG pathway database 

[190]. For each pathway, we grouped the genes into two clusters based on whether they 

were involved in that pathway or not. Then we used FIRE to find 5′ UTR or 3′ UTR 

motifs that showed significant overrepresentation or underrepresentation in either of the 

two clusters. The sequences of mature 5′ and 3′ UTRs were isolated from T. brucei 

genome based on splicing site predictions reported previously [47]. The resulting motifs 

from different functions were collected, and duplicate motifs were removed. 

The same procedure was repeated for 10 sets of randomly shuffled gene-function 

assignments, and the average number of motifs reported by FIRE was used as an estimate 

of the expected number of false positives. The expected precision was consequently 

calculated as E(Precision)=E(TP)/P =[P-E(FP)]/P. Here, E(X) denotes the expected value 

of X, TP stands for true positive, P stands for positives (motifs detected by FIRE from 

actual dataset), and FP indicates false positives (motifs detected by FIRE from shuffled 

datasets). 

It should be noted that KEGG annotations might not correspond to the precise function of 

the genes, since KEGG uses an automated pipeline for assigning the genes to template 

pathways based on homology with known proteins. However, we expect that the 

relationships of the genes are conserved through this procedure, e.g., if two genes are 

assigned to the same pathway in KEGG, they most probably have very closely related 

functions, even if the exact assigned functions in KEGG are not correct. 
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5.4.5 Function prediction using regulatory motifs 

We used a naïve Bayesian network to predict gene-function assignments based on the 

predicted regulatory motifs in 5′ and 3′ UTRs. Naïve Bayesian networks assume that the 

properties based on which they classify the objects are independent. Thus, the likelihood 

that gene g belongs to cluster α given a set of known motifs is calculated as: 

 

Here, M is the set of motifs that are used for classification of g, and FM = {f1, f2, …, f|M|} 

where fi is {1} if the ith motif is present in gene g, and {0} otherwise. L(g∈α | FM) is the 

likelihood that g belongs to α given FM, and L(g∈α | fi) represents the likelihood that g 

belongs to α given the status of the ith motif in g, i.e., fi. For more information about the 

calculation of conditional likelihoods and implementation of naïve Bayesian networks, 

refer to [81]. 

M is chosen in a way to maximize the prediction power. Briefly, motifs are selected 

iteratively, starting from the one that can best distinguish between α and α′. Then, at each 

iteration, all motifs are tested and the one whose addition to M results in the maximum 

prediction power is selected. Prediction power is assessed by the area under the ROC 

curve (Receiver Operating Characteristic or ROC curve plots sensitivity against false 

positive discovery rate). This procedure is repeated until M contains a predefined number 

of motifs. We removed paralogs prior to training and testing our naïve Bayesian network 

in order to avoid any biases towards duplicated UTRs. 
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5.5 Supplementary Tables and Figures 

 

Supplementary Table 5-1. List of microRNA sequences that were used for assessing the sensitivity of 

our microRNA prediction method – Accession numbers correspond to miRBase 

(http://microrna.sanger.ac.uk/sequences/). 

Apis mellifera Oikopleura dioica Macaca mulatta Danio rerio 

ame-let-7 MI0005726 odi-mir-1b MI0007134 mml-mir-16-1 MI0002958 dre-mir-1-1 MI0001878 

ame-mir-2-1 MI0001589 odi-mir-124a MI0007145 mml-mir-26a-1 MI0002646 dre-let-7a-5 MI0001862 

ame-mir-9b MI0001597 odi-mir-1469 MI0007080 mml-mir-124a-1 MI0002766 dre-let-7e MI0001871 

ame-mir-13a MI0005730 odi-mir-1475 MI0007086 mml-mir-127 MI0002582 dre-mir-18a MI0001900 

ame-mir-79 MI0005742 odi-mir-1480 MI0007091 mml-mir-145 MI0002558 dre-mir-26a-2 MI0001925 

ame-mir-100 MI0005728 odi-mir-1485 MI0007096 mml-mir-181a-2 MI0002808 dre-mir-30b MI0001941 

ame-mir-184 MI0001580 odi-mir-1489 MI0007099 mml-mir-181b-1 MI0002932 dre-mir-128-2 MI0001981 

ame-mir-275 MI0005733 odi-mir-1495 MI0007108 mml-mir-181c MI0002811 dre-mir-137-1 MI0002000 

ame-mir-279 MI0005734 odi-mir-1498 MI0007120 mml-mir-221 MI0002892 dre-mir-196b MI0002036 

ame-mir-927 MI0005748 odi-mir-1502 MI0007124 mml-mir-1240 MI0006330 dre-mir-430b-
10 MI0002150 

        

Drosophila melanogaster Xenopus tropicalis Anopheles gambiae Chlamydomonas reinhardtii 

dme-mir-1 MI0000116 xtr-let-7c MI0004886 aga-let-7 MI0001600 cre-MIR910 MI0005703 

dme-mir-2c MI0000431 xtr-let-7e-1 MI0004907 aga-mir-12 MI0006240 cre-MIR912 MI0005705 

dme-mir-31b MI0000410 xtr-let-7e-2 MI0004909 aga-mir-34 MI0006239 cre-MIR915 MI0005708 

dme-mir-284 MI0000369 xtr-let-7f MI0004887 aga-mir-275 MI0001613 cre-MIR917 MI0005710 

dme-mir-927 MI0005843 xtr-mir-7-1 MI0004790 aga-mir-281 MI0001618 cre-MIR918 MI0005697 

dme-mir-960 MI0005815 xtr-mir-7-2 MI0004792 aga-mir-306 MI0006243 cre-MIR1144b MI0006235 

dme-mir-969 MI0005826 xtr-mir-7-3 MI0004791 aga-mir-989 MI0006242 cre-MIR1148 MI0006209 

dme-mir-986 MI0005845 xtr-mir-27b MI0004810 aga-mir-996 MI0006241 cre-MIR1161 MI0006222 

dme-mir-1000 MI0005862 xtr-mir-98 MI0004820 aga-mir-1174 MI0006237 cre-MIR1164 MI0006225 

dme-mir-1002 MI0005824 xtr-mir-196a MI0004942 aga-mir-1175 MI0006238 cre-MIR1168 MI0006228 

        

Caenorhabditis elegans Gallus gallus Mus musculus Physcomitrella patens 

cel-let-7 MI0000001 gga-let-7b MI0001172 mmu-mir-1-2 MI0000652 ppt-MIR156c MI0005654 

cel-mir-1 MI0000003 gga-mir-215 MI0001203 mmu-mir-29b-2 MI0000712 ppt-MIR160d MI0005658 

cel-mir-36 MI0000007 gga-mir-16-2 MI0001222 mmu-mir-30d MI0000549 ppt-MIR160g MI0005903 

cel-mir-41 MI0000012 gga-mir-27b MI0001274 mmu-mir-98 MI0000586 ppt-MIR166g MI0005910 

cel-mir-51 MI0000022 gga-mir-187 MI0001193 mmu-mir-101b MI0000649 ppt-MIR390a MI0003494 

cel-mir-65 MI0000036 gga-mir-7-3 MI0001269 mmu-mir-129-1 MI0000222 ppt-MIR538b MI0003511 

cel-mir-70 MI0000041 gga-mir-181b-1 MI0001219 mmu-mir-410 MI0001161 ppt-MIR1029 MI0005974 

cel-mir-243 MI0000319 gga-mir-301 MI0001240 mmu-mir-467h MI0006302 ppt-MIR1056 MI0006015 

http://microrna.sanger.ac.uk/sequences/�
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cel-mir-784 MI0005184 gga-mir-20b MI0001517 mmu-mir-669b MI0004666 ppt-MIR1216 MI0004715 

cel-mir-1818 MI0007980 gga-mir-146a MI0001235 mmu-mir-669e MI0006300 ppt-MIR1223c MI0005952 

        

Homo sapiens Canis familiaris Rattus norvegicus Arabidopsis thaliana 

hsa-mir-7-3 MI0000265 cfa-mir-1-1 MI0008060 rno-let-7f-2 MI0000834 ath-MIR156e MI0000182 

hsa-mir-135a-2 MI0000453 cfa-mir-26a-2 MI0007990 rno-mir-19b-2 MI0000848 ath-MIR161 MI0000193 

hsa-mir-181d MI0003139 cfa-mir-212 MI0008155 rno-mir-103-1 MI0000888 ath-MIR167b MI0000209 

hsa-mir-320b-2 MI0003839 cfa-mir-365-1 MI0001657 rno-mir-138-2 MI0000911 ath-MIR169e MI0000979 

hsa-mir-496 MI0003136 cfa-mir-365-1 MI0001657 rno-mir-181b-2 MI0000927 ath-MIR172e MI0001089 

hsa-mir-548k MI0006354 cfa-mir-365-2 MI0001647 rno-mir-222 MI0000962 ath-MIR395f MI0001012 

hsa-mir-567 MI0003573 cfa-mir-429 MI0001644 rno-mir-380 MI0006141 ath-MIR781 MI0005111 

hsa-mir-633 MI0003648 cfa-mir-448 MI0001640 rno-mir-503 MI0003555 ath-MIR827 MI0005383 

hsa-mir-1197 MI0006656 cfa-mir-449 MI0001651 rno-mir-742 MI0006161 ath-MIR840 MI0005396 

hsa-mir-1302-1 MI0006362 cfa-mir-450a MI0001655 rno-mir-878 MI0006120 ath-MIR860 MI0005437 

        

Schmidtea mediterranea Monodelphis domestica Bos taurus Brassica napus 

sme-let-7a MI0005122 mdo-let-7a-1 MI0005360 bta-let-7c MI0005454 bna-MIR166b MI0006475 

sme-lin-4 MI0005125 mdo-let-7b MI0005351 bta-mir-29a MI0004733 bna-MIR167a MI0006471 

sme-mir-2c MI0005134 mdo-mir-10b MI0005274 bta-mir-30d MI0004747 bna-MIR168 MI0006470 

sme-mir-7b MI0005137 mdo-mir-19b MI0005358 bta-mir-127 MI0005008 bna-MIR169a MI0006457 

sme-mir-12 MI0005141 mdo-mir-27b MI0005367 bta-mir-181c MI0005032 bna-MIR169g MI0006463 

sme-mir-79 MI0005153 mdo-mir-107 MI0005286 bta-mir-200a MI0005037 bna-MIR169m MI0006469 

sme-mir-184 MI0005163 mdo-mir-181b MI0005344 bta-mir-215 MI0005016 bna-MIR171d MI0006453 

sme-mir-747 MI0005166 mdo-mir-214 MI0005319 bta-mir-345 MI0005019 bna-MIR390a MI0006447 

sme-mir-752 MI0005178 mdo-mir-340 MI0007268 bta-mir-365 MI0005465 bna-MIR390c MI0006449 

sme-mir-756 MI0005182 mdo-mir-365 MI0005326 bta-mir-497 MI0005467 bna-MIR397b MI0006446 

        

Populus trichocarpa Oryza sativa Triticum aestivum Kaposi sarcoma-associated 
herpesvirus 

ptc-MIR156i MI0002192 osa-MIR439a MI0001691 tae-MIR171 MI0006175 kshv-miR-K12-
2 MI0002476 

ptc-MIR162a MI0002209 osa-MIR444c MI0006975 tae-MIR408 MI0006177 kshv-mir-K12-
12 MI0004987 

ptc-MIR162b MI0002210 osa-MIR444f MI0006978 tae-MIR1117 MI0006179   

ptc-MIR164b MI0002213 osa-MIR535 MI0003505 tae-MIR1118 MI0006180 Mouse gammaherpesvirus 68 

ptc-MIR168a MI0002243 osa-MIR809h MI0005228 tae-MIR1120 MI0006182 mghv-mir-M1-4 MI0001672 

ptc-MIR171f MI0002282 osa-MIR810a MI0005229 tae-MIR1124 MI0006186   

ptc-MIR171n MI0007034 osa-MIR819d MI0005255 tae-MIR1125 MI0006187 Rhesus lymphocryptovirus 

ptc-MIR478d MI0002373 osa-MIR819h MI0005259 tae-MIR1125 MI0006187 rlcv-mir-rL1-3 MI0003739 

ptc-MIR1449 MI0007049 osa-MIR1430 MI0006970 tae-MIR1134 MI0006196 rlcv-mir-rL1-9 MI0003745 

ptc-MIR1446a MI0007042 osa-MIR1436 MI0007022 tae-MIR1137 MI0006199   

        

Ciona intestinalis Epstein barr virus Rhesus monkey rhadinovirus   

cin-let-7a-1 MI0007149 ebv-mir-BART5 MI0003727 rrv-miR-rR1-3 MI0005720   
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cin-let-7d MI0007153 ebv-mir-
BART16 MI0004989     

cin-mir-31 MI0007156       

cin-mir-34 MI0007158 Herpes simplex virus 1     

cin-mir-92a MI0007160 hsv1-mir-H1 MI0004730     

cin-mir-126 MI0007166       

cin-mir-141 MI0007168 Human cytomegalovirus     

cin-mir-153 MI0007169 hcmv-mir-US4 MI0003687     

cin-mir-200 MI0007175       

cin-mir-219 MI0007178       

 

 

 

 

Supplementary Figure 5-1. miRNA-like predicted ncRNAs – Candidate ncRNAs whose predicted 

secondary structures match our criteria for miRNA prediction are shown in this figure. It can be seen that 

their sequences mostly consist of AU repeats, rendering them unlikely candidates for being miRNA. 
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Supplementary Figure 5-2. Function-specific regulatory motifs that were identified in 5′ and 3′ UTRs 

of T. brucei – Each row represents one motif, while each column stands for one function. 

Overrepresentation of a motif in a function is indicated by a yellow square, while underrepresentation is 

shown by blue. The probabilities of overrepresentation or underrepresentation were calculated based on 

hypergeometric distribution assumption and are shown here by the color gradient on log scale. 
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6 Predicting molecular functions of non-conserved proteins 

using a comprehensive catalogue of function-specific short 

sequence signatures 

In chapters 3-5 we discussed novel methods for homology-independent sequence-based 

prediction of biological processes and pathways. However, the pathway to which a 

protein belongs is only partially informative about the exact function of a protein. 

Knowing the molecular function(s) of a protein in addition to its associated biological 

process(es), one can more precisely predict its biological role. In this chapter, we describe 

a catalogue of more than 4800 function-specific short protein motifs that can be used for 

homology-independent prediction of protein molecular functions. We show that this 

catalogue, which is obtained from analysis of all molecular functions in the GO database, 

represents known as well as novel protein functional sites such as enzyme active sites and 

ligand-binding pockets. We then present classifiers that use these motifs to predict 

molecular functions of proteins, and describe their application in annotating the 

uncharacterized proteins of Trypanosoma brucei. The function-specific short protein 

motif catalogue that is presented here, along with the provided software, serves as a new 

resource for functional annotation of uncharacterized proteins in different organisms. 
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6.1 Background 

The massive amount of available annotated nucleic acid and amino acid sequences has 

provided an unprecedented source of information for functional annotation of new genes 

and proteins. The majority of current automated methods for function prediction use 

homology-based approaches, in which a query sequence is searched against a database of 

sequences or patterns with known functions, and a predicted function is then assigned to 

the query sequence based on its similarity to the database entries [217]. However, along 

with publication of new sequences emerge novel families of proteins that share little 

similarity with functionally characterized known proteins [218, 219]. Furthermore, 

proteins of evolutionary distant organisms are too diverged to be reliably aligned to 

characterized proteins of well-studied organisms. These factors severely limit the 

applicability of homology-based methods, leaving large portions of newly released 

sequences uncharacterized. 

While homology-dependent methods are based on identification of conserved features 

among evolutionary related proteins, other methods rely on convergent evolution of 

features in proteins of similar functions. Examples of such features include sequence 

length, physiochemical properties, and amino acid composition. It has been shown that 

such features can be integrated in order to increase the performance of protein classifiers 

[220]. However, their specificity is a matter of concern, given that they are mostly shaped 

by more general factors such as subcellular localization, rather than by the specific 

molecular function of the protein. 

Function-specific short sequence signatures constitute a group of features that may have 

been formed by either convergent or divergent evolution. Sequence signatures that are 

formed by convergent evolution mostly function as mediators of protein-protein 

interactions, signal peptides for protein sorting, and recognition sites for protein-

modifying enzymes [221]. The most notable of short sequence signatures that are 

conserved during divergent evolution of homologous proteins are enzyme active sites, 

ligand-binding residues, and signatures that represent structurally/functionally critical 

regions of protein domains [222]. Unlike long sequence profiles, short sequence 

signatures can be detected even in proteins that are only remotely related to characterized 
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proteins with known molecular functions. However, because of their small size, they can 

sporadically occur in unrelated sequences, overshadowing the true instances by a large 

number of false positives. 

Whether created through convergent evolution or conserved during divergent evolution, 

function-specific short sequence signatures can lead to new approaches toward prediction 

of functions of non-conserved or less-conserved proteins. A few specialized databases are 

allocated to short protein motifs, including The Eukaryotic Linear Motif Resource [223] 

and PROSITE [224]. Also, several methods have been developed for computational 

identification of short protein motifs, particularly from protein interaction networks [225-

227] and proteomics data [228]. However, these studies have been mostly concerned with 

identification of short motifs rather than their application in predicting molecular 

functions of proteins. In addition, lack of a comprehensive analysis of available functional 

data for identification of function-specific short protein motifs is apparent. 

Here, we present a thorough analysis of available protein sequences in the Gene Ontology 

database in order to identify function-specific short sequence signatures. We explore the 

application of these signatures in predicting molecular functions of proteins, and show 

that despite their short profiles, they can effectively predict protein functions if they are 

appropriately integrated. We then apply our method to annotate the proteins of 

Trypanosoma brucei, a deadly parasite of the trypanosomatid clade, and demonstrate that 

this approach can predict the functions of proteins for which homology-based methods 

fail. This analysis provides a novel resource for functional annotation of newly sequenced 

genomes. 

 

6.2 Materials and Methods 

Gold standard datasets – We extracted 27802 protein-molecular function associations 

from GO database, considering only annotations that were supported by the evidence 

code IDA (Inferred from Direct Assay). Sequences associated with these proteins were 

also extracted from GO. We ensured that our dataset did not contain any proteins from 

Trypanosoma brucei by removing proteins that could be aligned to at least one T. brucei 
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protein with ≥95% identity. This step was necessary, as we would later validate ou r 

classifiers using T. brucei annotations. For each target GO term, positive and negative 

gold standard sets were determined considering the directed acyclic graph nature of GO 

database, as previously described [229]. Gold standard sets were further filtered to 

remove homologous proteins. Filtering homologous proteins was necessary to prevent the 

subsequent analysis from identifying abundant signals of homologous regions, which may 

overshadow the weaker signatures from less conserved regions or signatures of 

convergent evolution. We used BLAST-P to find homologous pairs with E-value ≤1. If 

two homologs happened to be both in the positive gold standard set or both in the 

negative gold standard set for a particular GO term, one of them was randomly chosen to 

be removed, ensuring that no protein pairs in either of the positive or negative sets had 

homologous regions. Overall, 13986 protein sequences and 3891 GO terms were 

analyzed. 

Identification of function-specific short protein motifs – We developed an algorithm, 

called HyperMotif, which searches for degenerate short protein patterns that are 

significantly over-represented in at least one GO term. Briefly, HyperMotif creates an 

exhaustive list of degenerate short motifs by running a sliding window of size ≤6 through 

the sequences of all input proteins, and considers degenerate versions of each of the 

obtained peptides by replacing different amino acids with the symbol X (which represents 

a completely degenerate site). Each degenerate motif is then examined for its overlap with 

each GO category if that motif has at least four non-degenerate residues, and if at least 

one of the proteins within that GO category has the motif. The significance of overlap is 

evaluated using hypergeometric test (see Supplementary Figure 6-1). False discovery rate 

(FDR) is then calculated based on the obtained p-values and the number of motif-

category comparisons. In this study, we chose to accept motif-category associations with 

FDR ≤0.1. 

HyperMotif, accompanied by several accessory programs that allow subsequent motif 

analysis and protein function prediction, is available 

at http://webpages.mcgill.ca/staff/Group2/rsalav/web/Software/HyperMotif/index.htm. 

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Software/HyperMotif/index.htm�
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Identification of PROSITE patterns that match the discovered motifs – To evaluate the 

ability of HyperMotif in finding functional protein motifs, we compared the patterns 

reported by HyperMotif to the patterns in PROSITE database. Matching patterns were 

identified based on the extent of overlap of their instances. Briefly, the 13986 protein 

sequences from GO database were searched for instances of PROSITE patterns, 

excluding profiles as well as frequently matching (unspecific) patterns. For a HyperMotif 

pattern of length l, we determined the total number of sliding windows of length l in the 

sequence database, the number of sliding windows that overlapped at least one residue of 

at least one instance of a specific PROSITE pattern, the number of sliding windows that 

actually matched the HyperMotif pattern, and the number of sliding windows that met 

both of the last two criteria. Then, these numbers were used to calculate the p-value of 

overlap of the HyperMotif pattern and the PROSITE pattern based on hypergeometric 

test. We chose a stringent Bonferroni-corrected p-value threshold of 0.005. 

Prediction of molecular functions – We developed an algorithm to integrate the motifs 

from HyperMotif using naïve Bayesian classifiers in order to predict protein molecular 

functions. First, motif-category associations that are still significant even after removal of 

any single protein from the gold standard dataset are identified. This step removes motifs 

that would not show up if a leave-one-out cross-validation method was used for motif 

identification. Then, for each category, a specific naïve Bayesian classifier is created 

using the motifs that significantly overlap that category in all leave-one-out tests, and a 

likelihood of association with that category is assigned to each protein based on the 

presence or absence of the motifs [see Ref. [81] for a description of naïve Bayesian 

networks]. The performance of the naïve Bayesian classifier is evaluated by leave-one-out 

cross validation, and a likelihood threshold is chosen in order to obtain a precision of 0.8 

– precision is defined as TP/(TP+FP), where TP is the number of true positives and FP is 

the number of false positives. A p-value is also assigned to each classifier, indicating the 

chance that a random classifier would result in the same or better sensitivity at precision 

of 0.8 – sensitivity is defined as TP/(TP+FN), where FN is the number of false negatives. 

The p-value is calculated using hypergeometric test by evaluating the overlap of the set of 

positive proteins from gold standard dataset and the set of proteins whose likelihood 

scores are greater than the likelihood threshold (Supplementary Figure 6-2). The obtained 
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classifiers were then applied to the genome of T. brucei to predict the molecular functions 

of T. brucei proteins. Predictions were compared to GO molecular functions that are 

known for T. brucei proteins according to TriTrypDB version 2.4 [230], accepting all 

evidence codes except for IC, IRD, IKR, IBD, IBA, NAS, and ND. For catalytic activity, 

predictions were improved by considering the number of transmembrane helices that are 

predicted for each protein using SOSUI [231]. 

 

6.3 Results and Discussion 

HyperMotif identifies short protein signatures of different molecular functions –

Analysis of the complete GO database using HyperMotif identified 6496 associations 

between 4883 short protein motifs and 414 GO molecular functions at FDR ≤0.1. Of 

these associations, 513 are significant at FDR ≤0.01. Many of the discovered protein 

motifs match known functional sites. For example, GXGKT, which obtained the most 

significant p-value for association with nucleoside-triphosphatase activity, matches the 

sequence of Walker A motif, a well-known ATP-binding motif that is found in many 

ATP hydrolyzing enzymes [232]. The next highest-scoring associations belong to several 

proline-rich motifs that are associated with transcription regulator activity, congruent with 

the long-known trans-activation of transcription by proline-rich domains [233]. The 

HEXGH motif also closely resembles the HEXXH motif which forms part of the metal-

binding site of metalloproteases [234], congruent with the association found by 

HyperMotif between HEXGH motif and metallopeptidase activity. 

To systematically compare HyperMotif patterns with our current knowledge of short 

protein signatures, we searched for PROSITE patterns that matched the motifs found by 

HyperMotif. The PROSITE database [224] contains many short patterns (Supplementary 

Figure 6-3) that represent protein functional sites. We identified a total of 469 matches 

between 420 HyperMotif patterns and 181 PROSITE patterns (online Supplementary 

Table 1 

at http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplemen

tary%20Table%20S1.xlsx). This extent of overlap validates a large number of motifs 

identified by HyperMotif as known functional protein sites. It is not surprising to observe 

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplementary%20Table%20S1.xlsx�
http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplementary%20Table%20S1.xlsx�
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that in several cases one PROSITE pattern matches more than one HyperMotif pattern, 

given that HyperMotif examines an exhaustive set of degenerate motifs that may be 

closely similar to each other. For example, two motifs PGXSG and PGXXGP match the 

same region of the PROSITE entry for EGF-like domain signature 1. To examine the 

level of redundancy of patterns that were discovered by HyperMotif, we measured the 

overlap among HyperMotif patterns using the same methodology that we employed for 

measuring the overlap of HyperMotif patterns and PROSITE patterns. We found that a 

relatively small fraction of HyperMotif patterns overlap each other (Figure 6-1A), 

meaning that most of these short patterns are distinct functional sites. 

 

 

Figure 6-1. HyperMotif identifies many non-redundant motifs representing functional protein sites –

(A) There is not much overlap among instances of different HyperMotif patterns. Each row and each 

column represent one HyperMotif pattern. A yellow dot represents two motifs whose instances significantly 

overlap each other (redundant motifs). (B) A close-up view of Dengue-3 NS5 methyltransferase bound to 

the substrate S-adenosyl methionine (PDB accession number 3P97). The methyltransferase-specific motif 

DXGCG is highlighted in red, and the substrate S-adenosyl methionine is shown as sticks. (C) 

Mycobacterium smegmatis MshC in complex with 5'-O-(N-(L-cysteinyl)-sulfamoyl)-adenosine (PDB 

accession number 3C8Z). The red patch highlights the accessible surface of the motif DIXXGG which is 

specific to adenyl-ribonucleotide binding proteins. 
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More than 4400 of the motifs found by HyperMotif do not have a match in PROSITE, 

many of which may represent novel function-specific motifs. For example, HyperMotif 

found a highly significant overlap between the set of proteins that contain the motif 

DXGCG and the set of proteins that have methyltransferase activity – about half of the 

proteins that contain this motif are methyltransferases (p<1×10-6). Analysis of the 

structure of known methyltransferases that contain this motif showed that this motif 

indeed directly interacts with the methyl donor substrate of these enzymes, i.e. S-

adenosyl-methionine (Figure 6-1B). Another example is a novel DIXXGG motif, which 

was found to be highly enriched among adenyl-ribonucleotide binding proteins (p<1×10-

5). We found that this motif interacts with the ribose or ribitol of adenyl-ribonucleotide 

derivatives (Figure 6-1C). 

Intriguingly, neither the popular motif-discovery tool MEME [235] nor the more recent 

FIRE-pro [228] were able to identify the adenyl-ribonucleotide binding motif DIXXGG. 

Instead of the DIXXGG motif, FIRE-pro reported several highly degenerate motifs that 

we were not able to correlate with the available protein structures, except for a Walker A-

like motif which was also discovered by MEME (Supplementary Figure 6-4). FIRE-pro 

also failed to identify the methyltransferase-specific motif DXGCG. In comparison, 

MEME was able to discover the DXGCG motif with an E-value of 7.8×10-9 

(Supplementary Figure 6-5) based on the sequences of proteins with methyltransferase 

activity. However, MEME also identified several motifs with similar E-values in equally 

sized random samples of proteins that did not have any common functions – in eight out 

of 20 random protein sets MEME identified at least one motif with E-value ≤7.8×10 -9. 

This is while at a p-value of 5.5×10-9 HyperMotif did not identify any motifs in protein 

sets whose molecular functions were randomly shuffled (5.5×10-9 corresponds to the p-

value of association of DXGCG and methyltransferase activity). These few examples 

suggest a higher specificity and sensitivity for HyperMotif in comparison to MEME and 

FIRE-pro. Furthermore, the ability of HyperMotif to correctly model the directed acyclic 

graph of Gene Ontology makes it more suitable for identification of motifs from 

ontology-based categories. In the next section, we address the question as to whether we 

have captured enough information in the form of these motifs to predict the molecular 

functions of proteins based on their presence and absence. 
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Figure 6-2. HyperMotif patterns can predict molecular functions of different proteins – (A) At 0.8 

precision, different GO molecular functions are predicted with different sensitivities. While the sensitivity 

of predicting many molecular functions is less than 0.5, some other molecular functions can be predicted 

with sensitivities as high as 0.9. Nonetheless, in most cases the obtained sensitivities are far better than 

would be expected by random. (B) Different classifiers use different numbers of motifs to predict the 

proteins that are associated with their corresponding molecular functions. These motifs are integrated into a 

naïve Bayesian classifier, as described in the text. 

 

Short motifs are able to predict protein molecular functions – By combining the 

HyperMotif patterns using naïve Bayesian classifiers, we were able to predict 192 GO 

molecular functions at 0.8 precision (Figure 6-2A and online Supplementary Table 2 

at http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplemen

tary%20Table%20S2.xlsx). Of these, the sensitivity of 173 classifiers was significantly 

higher than what would be expected from a random classifier at 0.8 precision (Bonferroni 

corrected p-value ≤0.05). In many cases, only a few signature motifs were enough to 

obtain 0.8 precision: 50 out of 173 classifiers used five or fewer motifs to identify 

proteins that belonged to their respective molecular functions, and more than 70% of the 

classifiers used at most 15 short motifs (Figure 6-2B and online Supplementary Table 3 

at http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplemen

tary%20Table%20S3.xlsx). In contrast to HyperMotif patterns, PROSITE patterns were 

able to predict no more than four molecular functions at 0.8 precision; glycosyltransferase 

activity and pentosyltransferase activity could be both predicted based on the PROSITE 

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplementary%20Table%20S2.xlsx�
http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplementary%20Table%20S2.xlsx�
http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplementary%20Table%20S3.xlsx�
http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplementary%20Table%20S3.xlsx�
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entry for purine/pyrimidine phosphoribosyl transferases signature, cysteine-type peptidase 

activity could be predicted using either of the PROSITE entries ubiquitin carboxyl-

terminal hydrolases family 2 signatures 1 or 2, and cysteine-type endopeptidase inhibitor 

activity could be predicted based on the presence of cysteine proteases inhibitors 

signature. This clearly shows the utility of a comprehensive catalogue of function-specific 

short motifs similar to what we are reporting here. Furthermore, this analysis suggests 

that a much wider range of functions are covered by HyperMotif patterns in comparison 

to existing databases. 

Exclusion of GO annotations that are not inferred from direct assay has enabled us to 

define a highly reliable and conservative set of positive gold standards for each GO 

molecular function. Obtaining a reliable negative gold standard set, however, is not as 

trivial, as we may inadvertently include some potential positives in the negative gold 

standard set. A possible source of error in constructing an accurate negative gold standard 

set is the incomplete knowledge that we have about the different functions that proteins 

may have. For example, our analysis predicts a novel interaction between 

phosphodiesterase 3B (Pde3B) and beta-catenin. While this prediction is considered a 

false positive when estimating the error rate of our classifier for the beta-catenin binding 

category, it may actually describe a previously unidentified function of Pde3B. This is 

particularly likely as both Pde3B and beta-catenin are known to be activated by insulin 

[236, 237], indicating a possible functional interaction (cross-talk) between the two 

proteins (although the current signaling pathways that are proposed for insulin-mediated 

activation of these two proteins are different). This incomplete knowledge has probably 

resulted in the underestimation of the precision of our classifiers, and perhaps the 

performance of HyperMotif patterns in prediction of molecular functions is better than 

what we have estimated here. This problem is more obvious when we try to evaluate the 

predictions of our classifiers in poorly annotated genomes, as we will discuss in the next 

section. 

Prediction of protein molecular functions in Trypanosoma brucei – As described in the 

previous section, we have validated the naïve Bayesian classifiers by performing leave-

one-out cross-validation – i.e. one protein is removed from the training set, the parameters 

of the naïve Bayesian network are trained on the remaining proteins, and the function of 



 117 

the left-out protein is then predicted using the naïve Bayesian network. However, these 

classifiers were built using motifs that were identified from the whole gold standard set, 

raising the possibility that the cross-validation that we performed was ‘contaminated’ 

[238]. As described in the methods section, we tried to address this issue by filtering out 

motifs that would not be significant if any of the gold standard proteins was removed. In 

other words, features that were used by the naïve Bayesian classifiers were ‘robust’, and 

would be used even if leave-one-out cross-validation were carried out from the motif-

finding step. To further validate our classifiers and examine their utility in predicting 

molecular functions, we applied them to the genome of T. brucei, an early diverged 

eukaryote whose proteins were excluded from the training set during motif finding and 

Bayesian parameter selection. 

 

 

Figure 6-3. HyperMotif patterns can be used to predict several molecular functions in T. brucei 

proteins –(A) Molecular functions are grouped based on the estimated precision of their corresponding 

predictions in T. brucei, represented here by different shadings. This figure only shows the molecular 

functions for which at least one known true positive was among the predictions. (B) By considering the 

number of potential helices, proteins with catalytic activity can be predicted at higher precision. The highest 

precision is obtained when proteins that have more than five helices are filtered out. At this precision, the 

number of true positives is barely reduced, meaning a negligible loss of sensitivity. 

 



 118 

T. brucei is a human parasite of the trypanosomatid clade which is responsible for the 

death of several thousand individuals per year. The genome sequence of this organism 

harbors a large number of uncharacterized proteins with no predicted functions, primarily 

because of the lack of similarity between their sequences and the sequences of 

characterized proteins or protein domains from other organisms. This evolutionary 

distance has rendered T. brucei an appropriate model to test homology-independent 

methods of protein function prediction. 

Using the naïve Bayesian classifiers that were originally trained on GO database 

excluding T. brucei proteins, we were able to make a total of 4666 predictions for T. 

brucei proteins, consisting of 2675 predictions for previously uncharacterized proteins. 

We evaluated the performance of each classifier (for each molecular function) separately 

using available molecular function annotations of T. brucei. As shown in Figure 6-3A and 

online Supplementary Table 4 

(http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplementa

ry%20Table%20S2.xlsx), HyperMotif patterns were able to identify 17 different 

categories of molecular functions with precisions ≥0.7 (high quality predictions) and an 

additional 10 categories with precisions between 0.3 and 0.7 (moderate quality 

predictions). It should be noted that these estimates suffer from the same errors that we 

discussed above for performance evaluation, i.e. we may underestimate the number of 

true positives and overestimate the number of false positives. This is especially the case 

for a poorly characterized genome as that of T. brucei. This uncertainty became more 

pronounced when we realized that the precision of predictions for 53 categories could not 

be estimated, because none of the T. brucei proteins that we assigned to those categories 

had been characterized previously. Therefore, although we have grouped our predictions 

into high quality, moderate quality and low quality categories, this categorization may 

simply be an artifact of our inability in detecting true positive predictions. Yet, high 

quality and moderate quality sets contain 329 and 616 predictions for previously 

uncharacterized proteins, respectively, clearly indicating that function-specific short 

motifs can predict the functions of a large number of proteins for which homology-based 

approaches fail. 

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplementary%20Table%20S2.xlsx�
http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplementary%20Table%20S2.xlsx�
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Since GO categories have different levels of information, the predictions that are made 

are not informative at the same level; while some predictions are highly informative of 

the function of the protein, such as those for ATP-dependent RNA helicase activity 

(GO:0004004), some others are very general and cover a wide range of activities, such as 

the predictions for catalytic activity (GO:0003824). Nonetheless, the low-information 

predictions can also contribute to the annotation of T. brucei proteins and guide future 

studies. For example, we have predicted a total of 152 previously uncharacterized 

proteins to have catalytic activity with a precision of 0.65. This represents a repertoire of 

T. brucei enzymes that can potentially fill the many “pathway holes” [239] that are 

present in the metabolism map of this organism. The precision of predictions for these 

potential enzymes can be greatly improved by incorporating orthogonal information, such 

as protein structure. We found that there is a much higher chance of having catalytic 

activity if the protein has at most five transmembrane helices. Among proteins that were 

predicted based on short motifs to have catalytic activity, only five true positives had 

more than five transmembrane helices, while 110 true positives had five or fewer 

transmembrane helices. On the other hand, 22 false positives contained more than five 

helices. Therefore, simply by filtering out the proteins that had more than five helices, we 

were able to remove a considerable number of false positives and improve the precision 

of our predictions to 0.74 without a notable decrease in sensitivity (Figure 6-3B). This 

improved set of predicted enzymes contains 145 previously uncharacterized proteins 

(online Supplementary Table 5 

at http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplemen

tary%20Table%20S5.xlsx). 

The function-specific short motif catalogue that we presented in this study can be 

expanded by considering motifs of various lengths and a wider range of possibilities for 

the number of degenerate sites. Furthermore, the motif definitions can be refined by using 

more detailed regular expressions such as those used by PROSITE; in contrast to 

PROSITE, HyperMotif only considers non-degenerate or completely degenerate residues 

at the moment. In addition, classifiers that use more sophisticated structures than naïve 

Bayesian networks may result in better classification performance, as the redundancy of 

the motif catalogue can be more accurately modeled in the structure of those classifiers. 

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplementary%20Table%20S5.xlsx�
http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20110810/Tables/Supplementary%20Table%20S5.xlsx�
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Nonetheless, our short motif catalogue should be readily able to predict the molecular 

functions of many previously uncharacterized proteins in different organisms. These 

motifs will also guide biochemical studies by pointing to the functional sites that are 

directly involved in the predicted function of each protein. 
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6.4 Supplementary Figures 

 

Supplementary Figure 6-1. Calculating the p-value of association of a particular motif with a 

particular protein category – The overlap of the set of proteins that are in category X with the set of 

proteins that have the motif M is evaluated by a hypergeometric test. This toy example shows a gold 

standard positive set of seven proteins and a gold standard negative set of 9 proteins (i.e. seven proteins 

have the molecular function of interest and nine proteins do not have that molecular function). Of these 16 

proteins, eight have at least one instance of motif M, six of which being in the positive gold standard set 

(the motif instances are shown by the blue squares). On the right side of this figure, the corresponding 

contingency table is shown, along with the calculation of the p-value based on assumption of 

hypergeometric distribution. 
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Supplementary Figure 6-2. Evaluating the performance of a classifier at 0.8 precision – For each 

classifier (corresponding to a particular molecular function), a p-value is calculated, representing the 

significance of the classifier sensitivity at 0.8 precision. First, the cutoff point that results in 0.8 precision is 

found. Then, the number of true positives (TP) and false positives (FP) that are above or below this cutoff 

point are determined, resulting in a contingency table as shown in this figure. The overlap of the set of true 

positives and the set of proteins that are above the cutoff is evaluated using a hypergeometric test, as 

formulated here. This figure shows the example of inorganic cation transmembrane transporter activity 

(GO:0022890). 

 

 

Supplementary Figure 6-3. Size distribution of PROSITE patterns – PDF stands for probability density 

function. 
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A 

 

E-value: 0.04 

B 

 

Supplementary Figure 6-4. Motifs identified by MEME and FIRE-pro in adenyl ribonucleotide 

binding proteins – MEME identified one motif with an E-value smaller than 1.0 (A), while FIRE-pro 

identified several highly degenerate short motifs (B). The motif that is discovered by MEME as well as the 

third motif discovered by FIRE-pro resemble the ATP-binding Walker A motif. In panel (B), cluster 0 
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represents proteins that do not have adenyl ribonucleotide binding activity, and cluster 1 represents adenyl 

ribonucleotide binding proteins. For more information on how to interpret this figure, see Ref. [238]. For 

MEME, we used the exact same set of adenyl ribonucleotide binding proteins used by HyperMotif after 

removal of homologs for motif discovery in the zero-or-one-per-sequence (zoops) mode. For FIRE-pro, we 

used this set as cluster 1, and the exact same set of negative gold standards that HyperMotif used for adenyl 

ribonucleotide binding activity (after removal of homologs) as cluster 0. 

 

A 

 

 

E-value: 7.8×10-9 

 

 

E-value: 0.012 

 B 

 

 

Supplementary Figure 6-5. Motifs identified by MEME and FIRE-pro in methyltransferases – 

MEME identified two motifs with E-values smaller than 1.0 (A), while FIRE-pro identified one short 

motifs (B). The first motif that is discovered by MEME resembles the DXGCG motif discovered by 

HyperMotif, which directly interacts with the methyl donor substrate of methyltransfersases. 
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7 An overview of methods for sequence-based functional 

annotation 

In chapters 3-6, we presented several methods for homology-independent gene function 

prediction, including methods for prediction of biological processes as well as a method 

for prediction of protein molecular functions. Before we move on to sequence-

independent methods for function prediction, we may take a look back at the sequence-

based methods that we described. This chapter, which was published as an opinion article 

in Trends in Parasitology in 2010 [4], summarizes the most prominent methods for 

prediction of pathways and biological processes, and conceptually compares them to our 

novel methods in the context of annotation of trypanosomatid genomes. The critical 

evaluation of the current state of annotation of parasitic genomes that is presented in this 

chapter endorses the need to exploit homology-independent computational methods, 

which can identify protein functions, potentially including essential genes, and provide a 

plethora of valuable information on interaction networks and regulatory elements. 
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7.1 Genome annotation of trypanosomatids and its limitations  

Trypanosomatid pathogens are responsible for serious human and animal diseases, with a 

very high mortality rate if untreated. There are no vaccines for these pathogens, the 

available drugs are toxic with limited effectiveness, and drug resistance is emerging. 

Although the genome sequences are available for the most prominent trypanosomatids, 

Trypanosoma brucei, T. cruzi, Leishmania major, L. infantum and L. braziliensis [25, 26, 

28, 29, 240], a high percentage of their genes are non-annotated, limiting the available 

drug targets to the subset of genes whose functions are known or can be inferred from 

homology. The focus on three species, (i.e. T. brucei, T. cruzi and L. major - collectively 

called TriTryps) has led the EuPath Project Team to launch TriTrypDB 

(http://TriTrypDB.org) with the aim of providing an integrated genomic and functional 

database for trypanosomatids. Although this database offers a wealth of resources to 

query TriTryp genomes, it still lacks a comprehensive functional annotation of their genes 

in that homology-based genome annotation in trypanosomatids is limited by the poor 

sequence similarity between the genomes of trypanosomatids and the genomes of other 

sequenced organisms, particularly eukaryotes such as human, yeast and Caenorhabditis 

elegans in which gene functions are extensively studied. For example, out of about 9100 

predicted and validated genes in T. brucei, about 4900 have no reliable homologs in the 

sequenced genomes of non-trypanosomatid organisms (BLAST-P, E-value ≤ 1×10 -6). Not 

all the remaining ~4200 genes can also be assigned a function, because some only have 

homologs that are uncharacterized too. In fact, about 35% of these conserved genes are 

annotated just as ‘hypothetical’. Currently, only about 3400 T. brucei genes have any 

annotation other than hypothetical (Figure 7-1). 

However, current and developing methods for computational prediction of gene function 

hold a great promise to facilitate the functional annotation of trypanosomatid genomes. 

Methods other than homology-based transfer of annotations can help to annotate these 

genomes (see below). Many methods have emerged recently that can predict the likely 

functions and interactions of genes independent of the presence of homologs in other 

organisms. Using these methods in combination with homology-based approaches, it 

http://tritrypdb.org/�
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seems very likely that a considerable number of currently hypothetical genes can be 

readily assigned to biological functions. 

 

 

Figure 7-1. Only a small fraction of trypanosomatid genes currently have functional annotations. In 

this figure, T. brucei proteins are compared to T. cruzi and L. major proteins as well as the proteins of all 

other organisms with available genome sequences (blastp, E-value ≤ 1×10-6). The fraction of T. brucei 

ORFeome that is conserved in T. cruzi is bordered by the blue curve. The red curve borders the proteins that 

are conserved in L. major, and the green circle indicates conservation in any of 1019 non-trypanosomatid 

organisms with available ORFeome sequences on KEGG database. Of about 6300 genes shared among T. 

brucei, L. major and T. cruzi, about 4000 can also be found in non-trypanosomatid organisms with known 

genome sequences, of which less than 65% currently have any functional annotation (see the color legend 

above the figure). The relatively high percentage of annotation of T. brucei-specific genes (the top fraction) 

owes to the large number of variant surface glycoproteins (there are more than 1000 T. brucei-specific 

variant surface glycoprotein genes in the current release of T. brucei genome). 
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7.2 Computational annotation of the genome 

In addition to the direct search for characterized homologs of a gene (i.e. through 

BLAST), other methods have been established by which gene functions can be inferred. 

Network-based approaches exploit the observation that proteins with related functions 

usually interact with each other, and thus cluster together in the network of protein-

protein interactions. Several different approaches have been used to assign functions 

based on: (i) protein–protein interactions (reviewed in Ref. [241]),  (ii) the clustering of 

genes according to expression patterns [242] (genes with similar expression patterns have 

related functions [74, 243, 244]), or (iii) the presence of conserved motifs within protein 

sequences. The combination of these three (i.e. interaction networks, expression patterns 

and protein motifs) has been shown to be superior to any of them alone, but interaction 

networks claim the major share, contributing to about 85% of predictions [77]. As the 

genome-wide interaction network is the most informative indicator of functional linkages 

between proteins, it is crucial to obtain such a network. In the absence of experimental 

data, several computational methods have been used to predict protein-protein 

interactions [245]. Combination of these methods has proved powerful for computational 

modeling of interaction networks and functional linkages [81, 246, 247]. However, many 

of the prominent current methods rely on the presence of homologs in other species [82, 

85, 248-251], limiting their application to only a subset of genes for use in 

trypanosomatids. 

 

7.3 Use of a novel approach based on codon usage for genome 

annotation  

A recent method, called PIC (Probabilistic-Interactome using Codon usage, Ref. [252]), 

has been shown to be able to predict functional linkages and/or physical interactions of 

proteins based on similarity of codon usages of their corresponding genes. Because this 

method does not rely on cross-species homology, it can be used for detection of linkages 

between any protein pairs. This method was initially shown to work for Saccharomyces 
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cerevisiae, Plasmodium falciparum and Escherichia coli [252], especially when 

combined with other approaches (see below). Later, a large scale analysis of all 

sequenced genomes showed that codon usage and gene function are two correlated 

properties in almost all organisms [253], including trypanosomatids. Based on this 

observation, an improved algorithm was developed that could directly predict the function 

of a gene based on its codon usage. As an example, this algorithm was able to find T. 

brucei genes that are involved in inositol phosphate metabolism with >99% specificity at 

sensitivities up to 7% (see Ref. [253]). Other examples included ribosome, benzoate 

degradation via CoA ligation, and phosphatidylinositol signaling system. Although this 

sensitivity on its own is not very exciting, it suggests that the combination of this method 

with other homology-independent methods can build a powerful classifier, as discussed in 

the next section. 

 

7.4 Use of regulatory elements in genome annotation 

Genes in trypanosomatids are transcribed as polycistronic mRNAs, which are further 

processed via trans-splicing, involving a polypyrimidine tract as the signal for spliced-

leader site [254].  This feature can be used for prediction of splice sites and, less 

confidently, polyadenylation sites from the genomic sequence, giving reasonable 

estimates for the mature mRNA ends. Regulation of gene expression in trypanosomatids 

is mainly at the post-transcriptional level by either regulation of mRNA stability or 

translation [31, 32]. However, a few regulatory elements have been identified, all of 

which are in the 3’ UTR of developmentally regulated genes [255-278]. Some hints 

suggest that elements in regions other than 3’ UTRs may also play roles in developmental 

regulation of expression [266], but none has yet been identified. 

In a recent study [3], a computational analysis of T. brucei genome was conducted to 

identify statistically reliable function-specific sequence motifs. This study also presented 

a method to predict gene function based on these potentially regulatory elements [3]. 

Regulatory motifs within 3’ and 5’ UTRs of functionally related genes were predicted 

using FIRE, a method that had been previously designed and applied successfully for 

finding informative regulatory elements [279]. This resulted in 15 function-specific motifs 
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in 5′ UTRs of T. brucei genes and 21 function-specific motifs in their 3′ UTRs, with an 

overall estimated precision of 75.3% for discovering function-specific 5′ UTR m otifs and 

84.8% for 3′ UTR motifs [3]. The found regulatory motifs covered a wide range of 

different pathways from glycolysis to DNA replication. Once experimentally validated, 

these motifs can provide new insights on the regulatory mechanisms of trypanosomatids 

and possible developmental regulation of genes. 

 

 

Figure 7-2. Inositol phosphate metabolism pathway and its known components in Trypanosoma 

brucei –Each box represents one of the enzymes of the consensus inositol phosphate metabolism pathway, 

as determined by KEGG. Some genes are represented by more than one box as they encode enzymes that 

can catalyze several reactions. Light green boxes represent enzymes for which at least one homolog is 

known in T. brucei. Question marks indicate enzymes that lack an obvious homolog in T. brucei. For 

example, although the enzyme that converts 1D-myo-inositol-1P to 1D-myo-inositol is known, no enzyme 

for generation of 1D-myo-inositol-1P has been found in the genome of T. brucei. Light green boxes that are 

marked by black circles show conserved enzymes whose participation in inositol phosphate metabolism can 
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also be predicted by the combination of codon usage and regulatory motifs, i.e. the overlap of KEGG 

annotations and our predictions. This figure is drawn based on KEGG Pathway “tbr00562”. 

 

Although these motifs have not been experimentally confirmed yet, it is shown that a 

naïve Bayesian network can effectively predict many gene functions in T. brucei using 

the pattern of presence or absence of these predicted regulatory motifs [3]. For example, a 

sensitivity of 20% could be reached at a specificity of ~99% for predicting proteins 

involved in the inositol phosphate metabolism pathway (precision: 55%). This prompted 

us to test whether a combination of codon usage (see the previous section and Ref. [253]) 

and regulatory motifs [3] could make a robust gene function predictor for this particular 

pathway. We found out that such a combination via a simple naïve Bayesian network can 

achieve up to 50% sensitivity with >60% precision in identification of genes involved in 

inositol phosphate metabolism (Figure 7-2). We also found that the results of this 

combination, for genes that are not trypanosomatid-specific, are consistent with results 

from homology-based mapping of protein-protein interactions, which underpins the 

method (unpublished data). 

 

7.5 Other possibilities for homology-independent annotation of 

genomes  

In the previous section, we explained the possibility of using function-specific regulatory 

nucleotide motifs for function prediction. A less explored possibility, however, is the use 

of a similar approach for identifying function-specific ‘linear protein motifs’. Proteins 

with related biological functions are in many cases regulated post-translationally via 

similar peptide patterns; these post-translational modifications are widely used in parasitic 

cells (see Ref. [280] for a review of post-translational modifications in Plasmodium). 

Proteins with similar molecular functions may also share common peptide patterns that 

represent their active sites [281]. In addition, functionally linked proteins may interact 

with a common interacting partner via similar peptide patterns [281]. All of these 

premises strongly suggest that function-specific protein motifs may also be exploited for 
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predicting protein functions. Development of a tool for discovering function-specific 

protein motifs with a near-zero false positive rate, similar to what FIRE can do for 

nucleotide motifs, can be a great step for computational annotation of proteins. 

Genome-wide expression profiling of genes has recently opened other ways for gene 

function prediction, yet based on experimentally derived expression patterns. For 

example, it has been shown recently that an in-depth analysis of mRNA levels in T. 

brucei during differentiation process can reveal function-specific variations among the 

expression patterns of genes [164]. Genes can then be clustered based on their expression 

patterns, often resulting in groups of biologically related genes. Each group may have a 

mixture of characterized and uncharacterized genes; the functions of the latter can thus be 

predicted based on the functions of the characterized genes within the same group. 

Combining the results of such genome-wide experiments with sequence-based 

computational approaches that are described here will secure a more accurate and more 

complete functional annotation of the genome. 

 

7.6 Homology-based identification of physical interactions 

Rosetta stones [82], interolog mapping [248] and phylogenetic profiling [250] are among 

the most prominent methods used for homology-dependent prediction of physical 

interactions. Interactions predicted using these methods are detected solely among 

conserved proteins; however, the results of these methods can be combined with the 

results of homology-independent annotation methods to include trypanosomatid-specific 

proteins as well. These methods can be combined by several means such as naïve 

Bayesian networks. This not only enables us to predict interactions among non-conserved 

genes, but also reduces the number of false positives and enhances the sensitivity of 

prediction for conserved genes. 
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7.7 Concluding remarks and future directions 

The availability of genome sequences of several trypanosomatid parasites has boosted the 

hope of finding novel drug targets by computational analysis of these genomes. However, 

genome annotation of trypanosomatids is far from complete. A significant increase in the 

genome-wide functional annotation of trypanosomatid proteins can lead to better 

understanding of the biology of trypanosomatids and to the identification of novel targets 

for therapeutics against trypanosomatids. The robust methodology that is described here 

can be adapted for functional annotation and drug target prediction in other parasites. 

Pipelining the tools reviewed here in a single completely automatic platform, in which the 

output of each module can act as the input for downstream modules, will vastly expand 

the power and ease of use of the proposed analyses, making them available to every 

researcher with access to even limited computational facilities. The main input of this 

pipeline will be the genome sequence of the parasite. It will be able to generate gold-

standard training sets automatically from the submitted genome sequence (i.e. based on 

known interactomes in other well-studied organisms) for in situ training of each of its 

different computational modules. Alternatively, users can submit their own training sets 

at desired steps (i.e. based on experimental data).  Using both automatically generated 

gold-standard training sets and user defined training sets, a catalog of computationally 

predicted functional data can be created for all available parasite genomes, providing 

researchers with one of the most comprehensive databases specialized in parasite 

genomics. 
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8 Functional genome annotation by combined analysis across 

microarray studies of Trypanosoma brucei 

Gene expression profiles have been widely used for identification of co-regualted genes, 

which are usually involved in the same biological processes and pathways. However, 

when we started this project, no genome-wide measurements of mRNA abundance was 

available for T. brucei, which made us focus on sequence-based methods. In year 2010, 

several studies were published that described expression profiling of T. brucei genes 

using oligonucleotide microarrays. Soon after these publications, we performed a 

combined analysis of the released data in order to identify co-expressed genes, and to 

examine their functional linkages in T. brucei. In this chapter, which was published as an 

article in PLoS Neglected Tropical Diseases [5], we show that functional linkages among 

T. brucei genes can be identified based on gene coexpression, leading to a powerful 

approach for gene function prediction. These predictions can be further improved by 

considering the expression profiles of orthologous genes from other trypanosomatids. 

Furthermore, gene expression profiles can be used to discover potential regulatory 

elements within 3′ untran slated regions. These results suggest that although 

trypanosomatids do not regulate genes at transcription level, trypanosomatid genes with 

related functions are coregulated post-transcriptionally via modulation of mRNA stability, 

implying the presence of complex regulatory networks in these organisms. Our analysis 

highlights the demand for a thorough transcript profiling of T. brucei genome in parallel 

with other trypanosomatid genomes, which can provide a powerful means to improve 

their functional annotation. 

  



 135 

8.1 Background 

Trypanosoma brucei, the causative agent of human sleeping sickness, is one of the major 

disease-causing trypanosomatids whose genome sequences have been determined for 

about five years [26]. However, the functions of most of the genes of this parasite still 

remain unknown, mainly because of the poor similarity between their sequences and the 

sequences of characterized genes from other organisms. This highlights the need for 

employing homology-independent approaches to improve the functional annotation of T. 

brucei genome. Since co-expressed genes tend to share similar functions, belong to the 

same pathways, or participate in the same processes [282], the function of a gene can 

often be predicted based on the functions of the genes it is co-expressed with [283]. This 

provides a powerful homology independent method for functional annotation of a 

genome. 

In T. brucei, most genes are not transcriptionally regulated [31, 32]. Instead, genes are 

transcribed as polycistronic mRNAs [93] that heavily depend on post-transcriptional 

processes for maturation and regulation. Some reports suggest that this lack of 

transcriptional regulation results in limited responsiveness of T. brucei transcriptome to 

altered environment and genetic background [208], thus, preventing the construction of 

an informative coexpression network. Nevertheless, recent studies have reported that 

mRNAs of T. brucei genes with related functions share similar sequence motifs in their 

untranslated regions (UTRs), suggesting that they are coregulated at post-transcriptional 

level via common sequence-dependent mechanisms for regulation of mRNA stability 

and/or translation [3]. 

Three recent studies have provided genome-wide expression profiles for procyclic form 

(PF) and bloodstream form (BF) T. brucei during differentiation [34, 35, 164]. Here, we 

demonstrate that while the data from each of these individual studies is not significantly 

informative about gene function, their collection can be used to construct a coexpression 

network that reflects the functional linkages among genes. We have used this 

coexpression network to predict the broad functions of several currently uncharacterized 

T. brucei genes, and have expanded our predictions by considering coexpression 

relationships that are conserved between T. brucei and Leishmania infantum. Finally, we 
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show that by combining the expression data from the microarray studies of T. brucei, we 

can cluster the genes based on expression profiles and use these clusters to identify 

potential regulatory elements within mRNA untranslated regions. 

 

8.2 Methods 

The methods that we have used in this study are summarized in this section. The details 

of the methods are provided in Supplementary Methods. 

8.2.1 Data sources 

We used T. brucei mRNA expression data from three recent publications [34, 35, 164]. A 

set of 7488 T. brucei genes was shared by these three studies, each gene represented by a 

total of 17 expression values: four from ref. [34], eight from ref. [164] and five from ref. 

[35]. The functional annotations of T. brucei genes were obtained from KEGG pathway 

database [284] and TriTrypDB [285]. The sequences of 3′ UTRs were extracted based on 

previous splice-site predictions [47]; sequences were either used completely or truncated 

to contain only the first 1000nt in the 5′ end of the 3′ UTR. For identification of 

conserved coexpression, we used a collection of Leishmania infantum gene expression 

profiles from three different studies [286-288]. Orthologous genes between T. brucei and 

L. infantum were identified based on their protein sequences, obtained from KEGG [284]. 

8.2.2 Construction and evaluation of a coexpression network based on T. brucei 

microarray studies 

The coexpression values for ~2.8×107 T. brucei gene pairs, measured as Pearson 

correlation coefficients across several experiments, were obtained using different 

experiment sets: (i) a set of four experiments from ref. [34], (ii) a set of eight experiments 

from ref. [164], (iii) a set of five experiments from ref. [35], (iv) the set of all the 17 

experiments from these three studies, and (v) a selected subset from the 17 experiments; 

this subset was chosen so as to maximize the accuracy and coverage of predicting 

functional linkages, as explained in the next section. Gene pairs with correlation 

coefficients greater than a specified threshold were used to construct the coexpression 



 137 

networks. This threshold was chosen so that at least 75% of linkages in the coexpression 

network would represent functional linkages according to KEGG (in other words, the 

coexpression network would have a precision of 75%). 

8.2.3 Selecting an optimum subset of microarray experiments for identification of 

functional linkages 

Different microarray studies may present data that do not equally correlate with 

functional linkages; inclusion of experiments that do not reflect the functional 

relationships among genes may have a negative effect on the accuracy of function 

predictions. Furthermore, some experiments may be redundant; e.g. replicate the same 

biological condition or show little differences in terms of the transcriptome profile. 

Therefore, it is necessary to trim the dataset that is used for construction of the 

coexpression network in order to remove redundant and uninformative experiments. To 

this end, we used a heuristic algorithm for selection of the best subset. This algorithm 

tries to iteratively find experiments whose exclusion can actually improve the accuracy 

and coverage of the coexpression network. It should be noted that although these 

‘excluded’ experiments may have a negative effect on the ‘overall’ accuracy of function 

predictions, they may provide specific information for particular pathways, as we will 

show in the results. 

8.2.4 Gene function prediction based on the coexpression network 

The functions of currently uncharacterized genes can be predicted based on their 

association with genes of known functions in the coexpression network. Briefly, if a 

particular gene is coexpressed with several genes that have a shared function, that gene is 

also most likely involved in the same function. We calculated a p-value for each gene-

pathway pair, so that a small p-value would reflect a significant association between the 

gene and the pathway. Uncharacterized genes were assigned to biological pathways if 

their association had a p-value that corresponded to at least 80% precision, meaning that 

at least an estimated 80% of the predictions are correct. 
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8.2.5 Identification of conserved coexpression linkages among genes 

Genes with related functions have usually conserved their coexpression through 

evolution. Thus, if two genes are coexpressed in more than one organism, there is a 

higher chance that these genes are functionally related [283]. We identified 5300 

orthologs of T. brucei genes in the closely related organism Leishmania infantum based 

on reciprocal best BLASTP hits with e-values <1×10-6. The coexpression value in L. 

infantum was calculated for gene pairs based on a collection of previously reported data 

from three different studies [286-288]. Each pair of conserved genes could then be 

assigned two values: their Pearson correlation coefficient based on T. brucei microarray 

data, and their Pearson correlation coefficient based on L. infantum microarray data. Two 

genes have a conserved coexpression relationship if both of these values are greater than 

specified cutoffs (different cutoffs can be used for each organism). The cutoffs were 

chosen so that the conserved coexpression network would have maximum coverage of T. 

brucei proteins with a precision of at least 50%. 

8.2.6 Identification of potential regulatory motifs in UTRs 

We used a previously reported regulatory element discovery method, FIRE, which has 

been shown to have a close-to-zero false discovery rate and provides a wealth of 

information about each of the discovered motifs [168]. T. brucei genes were clustered 

based on the data of the three microarray studies [73], and the gene clusters along with 

either complete or truncated 3′ UTR sequences were submitted to FIRE w ith default 

parameters. We only discuss the results of running FIRE on truncated sequences in this 

paper; the complete set of results can be found 

at http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20100109/index.htm. 

 

8.3 Results and Discussion 

8.3.1 A coexpression network of T. brucei genes 

We calculated the pairwise correlation coefficients of mRNA expression profiles for 

~2.8×107 gene pairs in each of the three T. brucei microarray datasets as well as in a 

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20100109/index.htm�
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combined dataset. As Figure 8-1A shows, if each dataset is considered separately, only a 

minor enrichment of functionally associated genes can be observed at high correlation 

coefficients. Nonetheless, when the three datasets are merged, the enrichment ratio of 

functional linkage between coexpressed genes increases drastically, reaching as high as 

~20 for gene pairs with correlation coefficients >0.90. This can be further improved by 

objectively selecting the set of experiments that are used for calculating correlation 

coefficients: removing all the experiments from ref. [34], three out of eight experiments 

from ref. [164] and one of the five experiments from ref. [35] could increase the 

enrichment of functionally associated genes up to three-fold for gene pairs with 

correlation coefficients >0.95 (Figure 8-1A). This also significantly improved the 

accuracy of predicting functionally associated gene pairs (Figure 8-1B). However, as we 

will show later, while the trimmed dataset is generally more successful in identification of 

functionally associated genes, the non-trimmed dataset can better identify genes of 

particular functions, such as oxidative phosphorylation. 

Using the combined microarray datasets, we constructed two coexpression networks of T. 

brucei each with an estimated precision of 75% (Figure 8-1C and D). We call the network 

that is obtained from all microarray experiments CoExp1
Tbr and the network that is 

obtained from the selected subset of experiments CoExp2
Tbr. These networks encompass 

1280 and 10247 connections among 799 and 4148 T. brucei genes, respectively. Most of 

these genes have no known function (49% in CoExp1
Tbr and 59% in CoExp2

Tbr are 

annotated as hypothetical proteins). 

The CoExp1
Tbr network consists of two main clusters, one with a large number of 

bloodstream form (BF)-specific genes and one with mostly procyclic form (PF)-specific 

genes. Some protein complexes and functional modules can be readily distinguished in 

the sub-network that has most of the PF-specific proteins, as shown in Figure 8-1C. This 

modularity of the network should allow us to predict the functions of currently 

uncharacterized genes. For example, Tb927.10.4880 (formerly identified as 

Tb10.70.2320), which is currently annotated as “hypothetical conserved”, is located 

within a complex that corresponds to cytochrome c oxidase. This is congruent with the 

recent reports showing that this protein co-purifies with cytochrome c oxidase complex 

[289]. 
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Figure 8-1. Integration of microarray data for identification of functional linkages among genes – (A) 

The correlation coefficients between genes were calculated for each T. brucei dataset separately, for the 

combination of the three datasets, and for a selected subset of the experiments. The probability density 

function (PDF) of correlation coefficients among functionally associated and non-associated genes is shown 

by blue and red, respectively. It can be seen that the data from the work by Kabani et al. [34] are poorly 

correlated with functional linkages. This is while the other two datasets from Queiroz et al. and Jensen et al. 

[35, 164] can discriminate functionally linked gene pairs based on the higher correlations of their 
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expression profiles. Consequently, the procedure that we used for selection of the best subset of the 

experiments automatically excluded the data from Kabani et al. [34], while retaining most of the 

experiments from the other two datasets (the right panel). The enrichment of functional linkages at a given 

correlation coefficient, shown by the thick black line, was calculated by dividing the values of the two 

PDFs. (B) Precision (positive predictive value, PPV) vs. ORFeome coverage for prediction of functional 

linkages based on coexpression is shown in this graph. ORFeome coverage is defined as the fraction of 

ORFs (open reading frames) with associated expression profiles that are coexpressed with at least one other 

ORF. By decreasing the threshold for identification of coexpressed pairs, more ORFs are included in the 

network, but the fraction of coexpression relationships that reflect functional linkages (i.e. precision) 

decreases. At a precision of 0.75, CoExp1
Tbr and CoExp2

Tbr include 10.7% and 55.4% of T. brucei 

ORFeome, respectively. The correlation coefficient cutoff for CoExp1
Tbr is 0.94 and for CoExp2

Tbr is 0.957. 

(C) In CoExp1
Tbr, functionally related genes cluster together. A global view of CoExp2

Tbr is also provided in 

panel (D). Stage-specific expressions are shown by node colors, with yellow for PF-specific and blue for 

BF-specific proteins. These two networks can be downloaded 

at http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20100109/index.htm. 

 

Based on visual inspection, the sub-network with BF-specific proteins has notably less 

modularity compared to the PF-enriched sub-network. Although several functions are 

enriched among BF-specific genes (Supplementary Figure 8-1), they are not represented 

adequately in this coexpression network due to its low coverage. However, as expected 

from the higher coverage of CoExp2
Tbr, this network contains more BF-specific genes.  It 

can be anticipated that upon the availability of more microarray data, both the coverage 

and the precision of the coexpression network will be even further improved and, 

consequently, a more modular and thorough coexpression network will emerge. 

Nonetheless, the current networks can be used to predict the functions of many currently 

hypothetical T. brucei genes, as explained in the next section. 

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20100109/index.htm�
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8.3.2 Pathways can be predicted based on coexpression networks of T. brucei 

As Figure 8-1C shows, genes of different functions are clustered together in the 

coexpression network of T. brucei. We used this functional relatedness of coexpressed 

genes to predict functions of uncharacterized genes within the obtained networks. As 

shown in Figure 8-2, each of the CoExp1
Tbr and CoExp2

Tbr networks are more successful 

in finding new genes for different pathways: CoExp1
Tbr can successfully assign new genes 

to ribosome, oxidative phosphorylation and purine metabolism, while CoExp2
Tbr can 

identify genes that are involved in ribosome, glycolysis, inositol phosphate metabolism 

and phosphatydilinositol signaling system (the genes involved in the latter two pathways 

considerably overlap, according to KEGG pathway annotations). 

 

Figure 8-2. Function prediction based on T. brucei coexpression networks – Precision-recall curve for 

each function is plotted separately. Recall or sensitivity for a particular pathway is defined as the fraction of 

genes of that pathway within the coexpression network whose function is correctly predicted. Precision 

indicates the fraction of the predictions that are correct. The CoExp1
Tbr network can successfully predict 

ribosome, oxidative phosphorylation, and purine metabolism genes (A), while CoExp2
Tbr is best at 

predicting ribosome, inositol phosphate metabolism, phosphatidylinositol signalling system, and glycolysis 
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genes (B). The p-value thresholds were chosen to be at most 0.05 and result in a precision of at least 0.8. 

See Supplementary Table 8-1 and Supplementary Table 8-2 for complete sets of predictions. 

 

We found that many of the genes whose functions are predicted based on our analysis, 

although having no annotation in KEGG pathway database, are already annotated in 

TriTrypDB [285]. These annotations are considerably congruent with our predictions, 

highlighting the reliability of our approach in predicting gene functions. Examples 

include several cytochrome c oxidase subunits that are correctly assigned to oxidative 

phosphorylation and many 40S and 60S ribosomal proteins that are correctly assigned to 

ribosome. While this provides a proof of concept for the method, it also underpins the 

limitations of KEGG pathway database as the gold standard for construction of the 

functional linkage network and subsequent function prediction. For example, the gene 

Tb927.10.4880, which we mentioned in the previous section, cannot be assigned to any 

function using KEGG pathway information, since none of its neighbors in the 

coexpression networks are annotated in KEGG. However, if we manually add the known 

cytochrome c oxidase subunits of T. brucei to the oxidative phosphorylation pathway in 

the gold standard set, our approach can successfully predict that Tb927.10.4880 is 

involved in oxidative phosphorylation (p<0.001). 

Nonetheless, based on the coexpression networks, we can readily predict the likely 

pathways and biological processes for many of the currently hypothetical proteins. Some 

of these predictions are also corroborated with available literature. For example, 

Tb927.10.9830 (formerly identified as Tb10.6k15.0480), which, based on CoExp1
Tbr, is 

predicted to be involved in oxidative phosphorylation, has been previously reported to be 

associated with ATP synthase complex [290]. Tb927.4.4020 and Tb927.10.7090 

(formerly known as Tb10.6k15.3640) which are coexpressed with purine metabolism 

genes have several copies of putative regulatory elements that have been previously 

reported as purine metabolism-specific 3′ UTR motifs [3]. Also, Tb927.6.2330, which, 

based on CoExp2
Tbr, is predicted to be associated with ribosome, has an RGG domain 

which has been shown to interact with several ribosomal proteins [291]. The complete list 

of our predictions based on CoExp1
Tbr and CoExp2

Tbr along with literature information 
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that either support or oppose these predictions can be found in Supplementary Table 8-1 

and Supplementary Table 8-2. The distribution of these genes in the coexpression 

networks is shown in Supplementary Figure 8-2. 

We have also used the coexpression networks CoExp1
Tbr and CoExp2

Tbr to predict the 

likely biological processes, molecular functions, and cellular compartments of T. brucei 

genes based on GO annotations of TriTrypDB (Supplementary Table 8-3 to 

Supplementary Table 8-8). The analysis of GO annotations complements the KEGG 

dataset by expanding the predictions of metabolic pathways and also by providing 

predictions for other categories. For example, we were able to predict novel genes that are 

potentially involved in antigenic variation, protein folding, and microtubule-based 

movement. Also, this analysis showed that many proteins within the same cellular 

compartments are coexpressed, which is not surprising as cellular compartmentalization 

loosely reflects functional compartmentalization of proteins. This allowed us to predict 

the likely localization of many proteins; most notably we were able to find potential 

membrane proteins, intracellular proteins, and proteins associated with dynein complex 

(Supplementary Table 8-5 and Supplementary Table 8-8). 

8.3.3 Conserved coexpression: a closer look 

Conservation of coexpression is a much stronger indicative of functional linkages among 

genes, compared to coexpression in a single organism [283, 292]. Thus, we searched for 

coexpression associations that were conserved between T. brucei and its close relative, L. 

infantum. As Figure 8-3A shows, in the subset of genes whose orthology between T. 

brucei and L. infantum can be unambiguously established, gene pairs that are coexpressed 

in both T. brucei and L. infantum are considerably enriched with functional linkages. This 

property can be used for a more accurate prediction of functional linkages, as shown in 

Figure 8-3B: while neither the microarray data of T. brucei nor those of L. infantum alone 

can reach a precision higher than 40% for identification of functional linkages among the 

conserved subset of genes, their combination can yield a wide range of precision and 

sensitivity values (note that the lower precision of T. brucei-only data compared to 

CoExp1
Tbr reflects the absence of most of ribosomal proteins from the subset of genes 

with unambiguous orthologs; see Supplementary Figure 8-3). 
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Figure 8-3. Prediction of functional linkages based on conservation of coexpression – (A) Gene pairs 

that are functionally related are coexpressed in both T. brucei and L. infantum. Therefore, an enrichment of 

functional linkages can be observed where correlation coefficients are high for both T. brucei and L. 

infantum (the x-axis represents the correlation coefficients of gene pairs in L. infantum, while the y-axis 

represents that correlation coefficients in T. brucei). (B) By considering the conservation of coexpression 

between T. brucei and L.infantum (red), we can more accurately predict functional linkages, compared to 

predictions that are based solely on T. brucei data (yellow) or L. infantum (light blue). About 50% of gene 

pairs whose expression profiles have correlation coefficients greater than 0.89 in T. brucei and 0.56 in 

L.infantum are estimated to be functionally related (black circle). These gene pairs cover ~11.9% of all T. 

brucei genes with unambiguous L. infantum orthologs. The resultant conserved coexpression network can 

be downloaded at http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20100109/index.htm. (C) 

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20100109/index.htm�
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Ribosome, proteasome and oxidative phosphrylation genes can be identified based on the conserved 

coexpression network. See Supplementary Table 8-9 for complete set of predictions. 

 

We chose our criteria for identification of conserved coexpression relationships so that at 

least 50% of these relationships reflect functional linkages among genes. This resulted in 

a conserved coexpression network with 1110 associations among 632 T. brucei genes 

whose orthologs in L. infantum could be unambiguously identified. Based on this 

network, many new genes could be mapped to KEGG pathways (Figure 8-3 3C, 

Supplementary Figure 8-2). This conserved coexpression network was particularly 

successful in assigning currently uncharacterized genes to oxidative phosphorylation 

(Supplementary Table 8-9). For example, from 17 hypothetical conserved genes that 

based on this network were predicted to be involved in oxidative phosphorylation, seven 

genes have been previously identified as potential associated partners or subunits of ATP 

synthase complex [290]; five others have been reported as mitochondrial proteins, one of 

which is specifically identified as a mitochondrial membrane protein [293, 294]; and 

three proteins have a potential regulatory element in their transcript that is also found in 

the transcripts of many cytochrome c oxidase subunits [61]. This conserved coexpression 

network could also be used for predicting the likely GO associations of a few T. brucei 

genes (Supplementary Table 8-10). 

These results suggest that functionally related genes are coregulated at mRNA level, most 

probably through post-transcriptional processes, in different trypanosomatids including 

both Trypanosoma and Leishmania genera.  Furthermore, this analysis highlights the 

parallel expression profiling of trypanosomatids as a promising approach that can 

significantly enhance the functional annotation of all trypanosomatid genomes, including 

T. brucei. 
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Figure 8-4. Finding potential regulatory elements based on a combined microarray dataset – (A) T. 

brucei genes were grouped into 19 clusters based on their expression profiles (top panel; red: high 

expression, blue: low expression). FIRE [168] was used to find potential regulatory motifs in the 3′ UTRs 

(lower panel; yellow and blue represent over-representation and under-representation of a motif within a 

cluster, respectively). (B) The motif [AC]U[AU]UUAAC occurs preferably between nucleotides 40 and 

100 downstream of the stop codon in clusters 16 and 19, while its position is random in other clusters, such 

as cluster 1. Interestingly, both clusters 16 and 19 are enriched with genes involved in interspecies 



 148 

interaction (mostly surface antigens). (C) Some motif pairs co-occur in the 3′ UTRs. In this symmetric heat 

map, each row and each column corresponds to a predicted motif. Light color indicates that the presence of 

a motif in a 3′ UTR implies the presence of another motif within the same UTR. Significant spatial co-

localization between pairs of motifs is shown by “+”. The full set of results along with additional analyses 

can be found at http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20100109/index.htm. 

 

8.3.4  Cis-regulatory element discovery based on clusters of coexpressed genes 

Having a collection of microarray datasets, we can study the underlying mechanisms of 

gene regulation in T. brucei. To this end, we first clustered the T. brucei genes based on 

their expression profiles into 19 distinct coexpression groups. The expression patterns 

within each of these clusters were consistent, and different clusters had unique signatures 

distinguishing them from each other (Figure 8-4A). Eight out of the 19 clusters 

significantly overlapped with at least one Gene Ontology (GO) category, including 

biological processes, molecular functions, and cellular compartments (p<0.05 with 

Bonferroni correction for multiple comparisons; all GO terms at all levels were analyzed). 

We next used FIRE [168] to find potential regulatory motifs in 3′ UTRs across these 

clusters. FIRE was able to find 14 statistically significant RNA motifs, each over-

represented in different gene clusters (Figure 8-4A). Interestingly, some of these motifs 

showed a position bias in the clusters in which they were over-represented. For example, 

the motif [AC]U[AU]UUAAC, which is over-represented among genes that are involved 

in the interaction of parasite with host, occurs mostly between the 40th and 100th 

nucleotide after the stop codon of these genes, while showing no position preference in 

UTRs of genes of other clusters (Figure 8-4B). Furthermore, many of the found motifs 

seem to co-occur within the same UTR (Figure 8-4C). This suggests that they may 

represent the most conserved parts of a larger, probably structural, RNA motif. This is 

especially the case for predicted motifs that not only co-occur with each other, but also 

co-localize at the same part of the 3′ UTR.  

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20100109/index.htm�
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8.3.5 Concluding remarks 

The analysis presented in this paper highlights whole-genome transcript profiling as a 

powerful tool for identification of functional and regulatory modules in T. brucei. A 

comprehensive and high-resolution analysis, however, needs tens to hundreds of different 

microarray experiments in order to capture the nuances between gene expression patterns 

of different modules. These experiments should encompass a variety of environmental 

and genetic conditions, including different stress-inducing culture media and various 

knockdown/knockout cells. Nonetheless, recent studies suggest that once a large 

collection of microarray data is available, regulatory and functional modules may be 

identified even in the absence of such environmental and genetic variations [295]. It 

should also be noticed that parallel transcript profiling of related organisms can 

potentially provide more information than excessively thorough transcript profiling of a 

single organism. 
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8.4 Supplementary Methods 

8.4.1 Construction of the coexpression networks 

Expression values in each microarray experiment, expressed as log ratios of the signal 

from experimental cDNA to the signal from reference cDNA, were normalized to have a 

mean of 0.0 and a standard deviation of 1.0. This was done by calculating the average (μ) 

and standard deviation (σ) for each experiment, and transforming each value by 

subtracting the average and dividing by the standard deviation: x=(x′- μ)/σ, where x′ is the 

original value and x is the transformed (normalized) value. Given two genes α and β from 

S (S is the set of all genes with associated expression profiles) and their normalized 

expression values across different experiments of the experiment set E, the coexpression 

value of α and β can be calculated as the Pearson correlation coefficient of XE
α and XE

β, 

where XE
α represents the measurements for α in the set E, and XE

β represents the 

measurements for β in the set E, as shown in the figure below: 
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The coexpression network GE
θ is the set of all gene pairs whose Pearson correlation 

coefficients, according to the experiment set E, are at least θ: 

GE
θ={(i,j)|ρ(XE

i,XE
j)≥θ}, 

where ρ is the Pearson correlation coefficient function. The set of nodes in the 

coexpression network GE
θ is denoted as NE

θ: 

NE
θ={i|∃j:ρ(XE

i,XE
j)≥θ} 

|NE
θ| therefore represents the number of nodes in the network GE

θ. The coverage of the 

network is defined as: 

fE
θ=|NE

θ|/|S| 

Thus, fE
θ indicates what fraction of all genes the network GE

θ represents. A higher 

coverage implies that the network can potentially be used for prediction of functions for a 

larger fraction of T. brucei genes with available expression profiles. 

The precision of a network in finding functional interactions is calculated by comparing 

the network to gold standard positive and negative sets. The gold standard positive set I 

consists of all gene pairs that share at least one function according to KEGG pathway 

database: 

I={(i,j)|Fi∩Fj≠Ø}, 

where Fi and Fj represent the set of functions for genes i and j according to KEGG. The 

gold standard negative set I′ includes all gene pairs that do not share any function, given 

that each gene has at least one annotation in KEGG pathway database: 

I′={(i,j)|Fi∩Fj=Ø,Fi≠Ø,Fj≠Ø} 

The term “tbr01100” (Metabolic pathways) was ignored in all analyses. 

 The limitations and incompleteness of both I and I′ need to be noted: not all T. brucei 

genes with known functions are represented in KEGG; therefore, I is far from complete. 

Furthermore, the annotations for genes that are present in KEGG may not be complete, 

meaning that two genes may actually share a pathway, but this information is missing 

from KEGG; therefore, I′ may contain some gene pairs that should actually belong to I 

but are mistakenly assumed as negatives. 

The positive predictive value (PPV, also referred to as precision) of the network GE
θ is 

defined as: 
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pE
θ=|GE

θ∩I|/(|GE
θ∩I|+|GE

θ∩I′|) 

Therefore, pE
θ estimates the fraction of gene pairs in GE

θ that are functionally related. We 

used the area under the curve (AUC) for pE
θ(θ) vs. fE

θ(θ) as an estimate of how well the 

experiment set E can reflect the functional linkages among genes. This AUC is here 

referred to as AE. 

In this study, we used different experiment sets: EK which is the set of four experiments 

from ref. [34], EQ which is the set of eight experiments from ref. [164], EJ which is the set 

of five experiments from ref. [35], EKQJ= EK+EQ+EJ , and Ë⊆EKQJ. Ë is chosen so as to 

result in the maximum AE
: 

AË≥AE ∀E⊆EKQJ 

Since all subsets of EKQJ could not be tested due to computational limitation, we used a 

heuristic approach to find Ë. A pseudocode for this approach is shown below: 

1. Set Ë=EKQJ 

2.  Create the list L={E′|E′⊆EKQJ, |E′|=|Ë|-1 ∨ |E′|=|Ë|+1} 

3.  Find the E in L that has the maximum AE  

4.  If AE>AË then set Ë=E and go to step 2 

5. Report Ë 

Using each of the experiment sets EKQJ and Ë, we defined a coexpression network by 

selecting the minimum value for cutoff θ that could result in pθ≥0.75 (i.e. precision of at 

least 75%). The selected value of θ for EKQJ was 0.94 and for Ë was 0.957. The resulting 

networks are referred to in the paper as CoExp1
Tbr and CoExp2

Tbr, respectively. 

8.4.2 Identification of conserved coexpression linkages among genes 

We identified 5300 orthologs of T. brucei genes in the closely related organism 

Leishmania infantum based on reciprocal best BLAST-P hits with e-values <1×10-6. The 

set of T. brucei genes whose L. infantum orthologs could be unambiguously identified is 

referred to as S′. The experiment set E′ for L. infantum was obtained from three different 

studies [286-288].  The conserved coexpression network GE,E′
θ,θ′ is the set of all gene 

pairs that are coexpressed according to both experiment sets E=EKQJ (for T. brucei) and E′ 

(for L. infantum): 

GE,E′
θ,θ′={(i,j)|i∈S′,j∈S′,ρ(XE

i,XE
j)≥θ, ρ(XE′

i′,XE′
j′)≥θ′}, 
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where ρ is the Pearson correlation coefficient function, i′ is the ortholog of i in L. 

infantum and j′ is the ortholog of j in L. infantum. To identify the best θ and θ′ values, we 

tried all pairs of values so that θ∈{-1,-0.99,-0.98,…,0.98,0.99,1} and θ′∈{-1,-0.99,-

0.98,…,0.98,0.99,1}. The pair of values that resulted in the maximum coverage of S′ and 

a precision of at least 0.50 was chosen. 

To examine the possibility of over-training of θ and θ′ values, we performed a leave -one-

out cross-validation, in which each time one gene pair (l,k) was left out, the best θ and θ′ 

values were determined using the remaining gene pairs, and the left out gene pair was 

evaluated using these values. If ρ(XE
l,XE

k)≥θ and ρ(XE′
l,XE′

k)≥θ′, the pair (l,k) was added to 

the cross-validation network Gx: 

1. Set Gx=Ø 

2. For all {(l,k)|l∈S′,k∈S′,(l,k)∈I∪I′} 

3. If (l,k)∈I then I=I–{(l,k)} 

4.  If (l,k)∈I′ then I′=I′–{(l,k)} 

5.  Find the values for θ and θ′ using the new I and I′ 

6.  If ρ(XE
l,XE

k)≥θ and ρ(XE′
l,XE′

k)≥θ′ then Gx= Gx+{(l,k)} 

7.  Restore I and I′ 

8. Report Gx 

 

The Gx was found to have a precision of 0.48 and S′ coverage of 0.113 which are very 

close to the values for the conserved coexpression network that is reported in the paper, 

implying that the procedure used to find the best values for θ and θ′ did not over -train 

them. 

8.4.3 Network-based prediction of gene function 

We evaluated the association of each gene with each KEGG pathway using a 

hypergeometric-based method: Assume that N is the set of nodes in the network G, Cα⊂N 

is the set of nodes that are connected to the node α (excluding the node α itself), and 

M⊂N is the set of nodes that have the particular function fM according to KEGG, again 

excluding the node α itself: 
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The null hypothesis H0 is that Cα is independent of M. To evaluate this hypothesis, we 

assume a hypergeometric distribution for |M∩Cα|: 

Pr(X≥xobs|H0)=Σx hypergeo(x;|N|,|M|,|Cα|), 

where xobs=|M∩Cα|≤x≤min(|M|,|Cα|) and “hypergeo” is the hypergeometric distribution 

function. If H0 is rejected, the node α is considered associated with M and, thus, with 

function fM. Since node α itself is not included in the calculation of the probability value, 

there is no need to cross-validate this procedure, as it naturally resembles a leave-one-out 

cross-validated procedure. 

We evaluated the performance of this procedure for each network and each pathway 

separately. The p-value cutoff for rejecting the null hypothesis was selected to be ≤0.05 

and to result in a PPV≥0.80, meaning that at least 80% of predictions are correct.  

8.4.4 Identification of potential regulatory motifs in UTRs 

T. brucei genes were clustered based on the normalized values of the experiment set EKQJ. 

We used different clustering approaches: Iclust [73] uses an information-based strategy to 

cluster the genes into a predefined number of clusters. By default, this number is √ | S|, 

where S is the set of all T. brucei genes with available expression profiles. Alternatively, 

we used the standard k-means algorithm with either an initial set of 100 means or an 

initial set of 30 means. The algorithm converged to 82 and 19 clusters, respectively. Gene 

clusters along with either complete or truncated 3′ UTR sequences were submitted t o 

FIRE [168] with default parameters. The truncated sequences contained the first 1000bp 

M Cα 

N 

M∩C

 

α 
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from the 5′ end of each 3′ UTR. Prior to identification of potential regulatory elements, 

FIRE removes homologous sequences. In the paper, we only discuss the results of 

running FIRE on the set of 19 clusters and the truncated sequences; the complete set of 

results can be found 

at http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20100109/index.htm. 

  

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Suppl/20100109/index.htm�
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8.5 Supplementary Tables 

 

Supplementary Table 8-1. Gene-function associations based on the coexpression network CoExp1
Tbr – 

Each gene was evaluated for its association with different KEGG pathways. The significant associations of 

genes that currently have no annotation in the KEGG pathway database are shown in this table. Old gene 

ids are brought in parentheses. Note that some of these genes, although not included in the KEGG pathway 

database, have functional annotations in TriTrypDB, most of which are congruent with the found 

association. An association with a pathway should be interpreted mainly as a functional linkage, meaning 

that the corresponding gene is either involved in that pathway, or has a function that is closely related to 

that pathway and, thus, requires synchronized expression. 
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Tb927.3.1410 *   Cytochrome oxidase subunit VII  

Tb09.160.1820 *   Cytochrome oxidase subunit V  

Tb927.5.1060 *   Mitochondrial processing peptidase, beta subunit  

Tb927.1.4100 *   Cytochrome oxidase subunit IV  

Tb927.10.9830 (Tb10.6k15.0480) *   Hypothetical protein, conserved a 

Tb927.10.13360 (Tb10.389.0070) *   Elongation factor Tu  

Tb927.5.2160 *   Hypothetical protein, conserved  

Tb927.4.720 *   Hypothetical protein, conserved b 

Tb927.10.11220 (Tb10.26.0790) *   Procyclic form surface glycoprotein  

Tb927.10.15220 (Tb10.61.1290) *   Hypothetical protein, conserved  

Tb11.01.1020 *   Hypothetical protein, conserved  

Tb927.10.15960 (Tb10.61.0320) *   Hypothetical protein, conserved  

Tb927.4.4020  *  Amino acid transporter c 

Tb927.5.630  *  Acidic phosphatase d 

Tb927.10.7090 (Tb10.6k15.3640)  *  Alternative oxidase e 

Tb11.02.2430   *** 60S ribosomal protein L17  

Tb11.01.5720   *** Ribosomal protein L18  

Tb927.8.1340   *** 60S ribosomal protein l7a  
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Tb927.6.5130   * 60S acidic ribosomal protein P2  

Tb11.02.4360   ** 40S ribosomal protein S21  

Tb09.211.0340   * 60S ribosomal protein L10  

 

* 1×10-4 < p-value ≤ 0.01  

** 1×10-7 < p-value ≤ 1×10 -4 

*** 1×10-14 < p-value ≤ 1×10 -7 

a  Tb10.6k15.0480 has been shown to be associated with ATP synthase complex [290]. 

b  Tb927.4.720 has been reported as a mitochondrial protein [293]. 

c  The metabolism of several amino acids, such as Ala, Asp, Glu, His, Gly, Ser and Thr is linked to purine metabolism 
pathway (KEGG pathway tbr00230). Also, the 3′ UTR of Tb927.4.4020 contains a copy of the motif 
[ACT]TAA[GT][AG][GT][CT][AC], which has been suggested as a potential purine metabolism-specific regulatory 
element [3]. 

d  Acidic phosphatases are involved in purine nucleoside phosphate catabolism. 

e  Alternative oxidases are strongly regulated by purine nucleotides (see [296] for an example). In addition, the 3′ UTR 
of Tb10.6k15.3640 has an instance of the motif [ACGT][AGT][AC]TGCC[AG][GT] and several instances of the motif 
[ACT]TAA[GT][AG][GT][CT][AC], both of which are suggested as potential regulatory elements specific to purine 
metabolism [3]. 

 

 

 
Supplementary Table 8-2. Gene-function associations based on the coexpression network CoExp2

Tbr – 

Pathways are defined according to KEGG. Refer to Supplementary Table 8-1 for more details. 
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Tb927.6.2330 *****    RGG protein a 

Tb927.8.1110 *    40S ribosomal protein S9  

Tb927.8.1340 *****    60S ribosomal protein L7a  

Tb927.7.2370 ****    40S ribosomal protein S15  

Tb11.01.5720 ****    Ribosomal protein L18  

Tb927.6.5130 *    60S acidic ribosomal protein P2  

Tb11.02.4360 *****    40S ribosomal protein S21  

Tb11.02.2430 ***    60S ribosomal protein L17  

Tb927.4.3660 ***    Hypothetical protein, conserved  

Tb11.01.1465 ***    Nascent polypeptide associated complex alpha  
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subunit 

Tb927.5.1110 *    60S ribosomal protein L2, 60S ribosomal protein 
L8  

Tb927.3.4360 **    40S ribosomal protein S15A  

Tb927.4.5030 *    Protein phosphatase 1  

Tb09.211.0340 ****    60S ribosomal protein L10  

Tb11.01.7730 *    Hypothetical protein, conserved b 

Tb09.211.3300 *    Peroxin 19 (inferred from mutant phenotype) c 

Tb927.7.3530  * *  Hypothetical protein, conserved  

Tb927.10.16170 
(Tb10.61.0090)  * *  Potassium voltage-gated channel d 

Tb11.01.3370   *  Glycosomal membrane protein e 

Tb927.7.4500    ** Hypothetical protein, conserved  

Tb927.4.4870    *** Amino acid transporter  

 

* 1×10-4 < p-value ≤ 0.01  

** 1×10-7 < p-value ≤ 1×10 -4 

*** 1×10-14 < p-value ≤ 1×10 -7 

**** 1×10-28 < p-value ≤ 1×10 -14 

***** p-value ≤ 1×10 -28 

a RGG domain has been shown previously to interact with ribosomal proteins [291]. 

b Tb11.01.7730 has been reported to be associated with transcription factor II H [297, 298]. 

c Tb09.211.3300 has several Pfam domains, such as Pex19 which is essential for peroxisome biogenesis, and LUC7 
which is U1 snRNA-associated protein. 

d The relationship between Inositol phosphate-mediated signaling and potassium channel activity has been reported 
in different studies [299-301]. 

e The 3′ UTR of Tb11.01.3370 contains the motifs [AT]CTTTT[GT]C[ACGT] and [ACG]AGAA[AC]A[AT][AGT]. Both of 
these motifs have been previously predicted as potential regulatory elements specific to inositol phosphate 
metabolism and phosphatidylinositol signaling genes [3]. 
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Supplementary Table 8-3. Prediction of GO biological processes based on the coexpression network 

CoExp1
Tbr –Although some of these predictions correspond to genes that, according to TriTrypDB v2.0, are 

already annotated, they have not yet been assigned to any GO biological processes. Each prediction should 

be interpreted as a functional linkage, meaning that the corresponding gene either belongs to the predicted 

GO category, or has a function that is closely related to that category and, thus, requires synchronized 

expression. 
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Tb927.1.4100 *      Cytochrome oxidase subunit IV  

Tb927.10.1560  *     Hypothetical protein 

Tb927.4.4790   *    Hypothetical protein 

Tb927.3.2520   *    Expression site-associated gene (ESAG) protein 

Tb927.3.2500   *    Hypothetical protein  

Tb927.3.520   *    Expression site-associated gene (ESAG) protein 

Tb927.3.3540    * ** ** Nucleoporin 

Tb927.7.5160     * * Deoxyuridine triphosphatase 

Tb11.02.0080      * Hypothetical protein  

Tb927.4.1010      * Hypothetical protein  

 

* 1×10-4 < p-value ≤ 0.01  

** 1×10-7 < p-value ≤ 1×10 -4 
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Supplementary Table 8-4. Prediction of GO molecular functions based on the coexpression network 

CoExp1
Tbr – Refer to Supplementary Table 8-3 for more details. 

 
N

uc
le

ic
 a

ci
d 

bi
nd

in
g 

A
TP

 b
in

di
ng

 

P
ro

te
in

 b
in

di
ng

 

U
nf

ol
de

d 
pr

ot
ei

n 
bi

nd
in

g 

TriTrypDB annotation (v2.0) 

 

Tb09.211.1040 *    Hypothetical protein 

Tb927.10.3910  *   Hypothetical protein 

Tb927.7.5160  *   Deoxyuridine triphosphatase 

Tb927.3.3540  * * * Nucleoporin 

 

* 1×10-4 < p-value ≤ 0.01  

  

Supplementary Table 8-5. Prediction of GO cellular component based on the coexpression network 

CoExp1
Tbr – Refer to Supplementary Table 8-3 for more details. 
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Tb09.211.1220 *     Hypothetical protein 

Tb927.3.1690 *     Hypothetical protein 

Tb927.10.14790 *     Aminopeptidase 

Tb927.7.5160  *    Deoxyuridine triphosphatase 

Tb11.02.4750   *   Hypothetical protein 

Tb09.211.3880   *   Hypothetical protein 
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Tb927.10.10000    **  Hypothetical protein 

Tb927.4.1670    *  Hypothetical protein 

Tb09.244.0640     * Variant surface glycoprotein (VSG 

Tb927.3.5690     * Hypothetical protein 

Tb11.01.7530     * Hypothetical protein 

Tb927.4.810     * Expression site-associated gene (ESAG) protein 

Tb927.10.6720     * Hypothetical protein 

Tb927.1.5160     * Hypothetical protein  

Tb927.10.5700     * Hypothetical protein 

Tb927.3.2520     * Expression site-associated gene (ESAG) protein 

Tb927.3.2500     * Hypothetical protein  

Tb927.5.310     * Hypothetical protein  

Tb927.5.1400     * Hypothetical protein  

Tb11.02.1564     * Leucine-rich repeat protein (LRRP) 

Tb927.3.1490     * Leucine-rich repeat protein (LRRP) 

Tb09.211.2060     * Hypothetical protein  

Tb927.8.5080     * Hypothetical protein 

Tb927.3.520     * Expression site-associated gene (ESAG) protein 

 

* 1×10-4 < p-value ≤ 0.01  

** 1×10-7 < p-value ≤ 1×10 -4 

 

 

Supplementary Table 8-6. Prediction of GO biological processes based on the coexpression network 

CoExp2
Tbr – Refer to Supplementary Table 8-3 for more details. 
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Tb927.5.4120 **     Hypothetical protein 

Tb09.160.2400 *     Hypothetical protein 

Tb927.2.4700 *     Hypothetical protein 
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Tb927.10.12330 *     Hypothetical protein 

Tb11.18.0014 *     Hypothetical protein 

Tb927.4.3660 **     Hypothetical protein 

Tb927.5.2520 *     Hypothetical protein 

Tb927.6.2330 *****     RGG protein 

Tb09.211.3300 *     Peroxin 19 

Tb11.02.0445 *     Hypothetical protein 

Tb927.4.1340 **     Cleavage and polyadenylation specificity factor subunit 

Tb11.01.8690 *     Hypothetical protein 

Tb927.4.5030 **     Protein phosphatase 1  

Tb927.6.2210 *     Hypothetical protein 

Tb09.160.3160 *     Hypothetical protein 

Tb927.7.640 *     Hypothetical protein 

Tb927.8.5990 *     Hypothetical protein 

Tb11.01.7730 *     Hypothetical protein 

Tb927.7.4120 *     Hypothetical protein 

Tb927.3.1370 ***     40S ribosomal protein S25 

Tb927.10.12310  *    Helicase-like protein  

Tb09.211.1270   *   Hypothetical protein 

Tb11.02.3880   *   Hypothetical protein 

Tb11.02.4120    **  Hypothetical protein 

Tb927.3.2180    **  Hypothetical protein 

Tb09.142.0310     * Expression site-associated gene (ESAG) protein 

Tb09.211.4820     ** Hypothetical protein 

Tb927.10.8980     *** Hypothetical protein 

Tb09.160.1440     ** Hypothetical protein 

Tb11.02.1470     *** Hypothetical protein 

Tb927.4.990     ** Hypothetical protein 

Tb11.38.0003     *** Variant surface glycoprotein (VSG) 

Tb927.3.5830     *** Expression site-associated gene (ESAG) protein 

Tb927.1.5030     ** Leucine-rich repeat protein (LRRP) 

Tb09.244.1950     *** Hypothetical protein  

Tb927.5.750     ** Hypothetical protein 

Tb927.3.2520     ** Expression site-associated gene (ESAG) protein 

Tb927.10.5700     * Hypothetical protein 

Tb927.5.390     ** 75 kDa invariant surface glycoprotein 

Tb11.01.7860     * Hypothetical protein  

Tb927.3.1870     ** Hypothetical protein 

Tb927.6.540     *** Gene related to expression site-associated gene 2 
(GRESAG2) 
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* 1×10-4 < p-value ≤ 0.01  

** 1×10-7 < p-value ≤ 1×10 -4 

*** 1×10-14 < p-value ≤ 1×10 -7 

**** 1×10-28 < p-value ≤ 1×10 -14 

***** p-value ≤ 1×10 -28 

 

Supplementary Table 8-7. Prediction of GO molecular functions based on the coexpression network 

CoExp2
Tbr – Refer to Supplementary Table 8-3 for more details. 
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Tb927.5.4120 **   Hypothetical protein 

Tb09.160.2400 *   Hypothetical protein 

Tb927.2.4700 *   Hypothetical protein 

Tb927.4.3660 **   Hypothetical protein 

Tb927.10.3970 *   Hypothetical protein 

Tb11.02.0445 *   Hypothetical protein 

Tb09.160.3160 *   Hypothetical protein 

Tb11.01.7730 *   Hypothetical protein 

Tb927.7.4120 *   Hypothetical protein 

Tb927.3.1370 ***   40S ribosomal protein S25 

Tb09.211.1270  *  Hypothetical protein 

Tb11.02.3880  *  Hypothetical protein 

Tb927.3.3690  *  Flagellar radial spoke protein-like 

Tb11.46.0005   ** Hypothetical protein 

 

* 1×10-4 < p-value ≤ 0.01  

** 1×10-7 < p-value ≤ 1×10 -4 

*** 1×10-14 < p-value ≤ 1×10 -7 
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Supplementary Table 8-8. Prediction of GO cellular component based on the coexpression network 

CoExp2
Tbr – Refer to Supplementary Table 8-3 for more details. 
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Tb11.02.0445 *      Hypothetical protein 

Tb927.5.4120 ** **     Hypothetical protein 

Tb09.160.2400 * *     Hypothetical protein 

Tb927.2.4700 * *     Hypothetical protein 

Tb927.3.3570 * *     Hypothetical protein 

Tb927.4.3660 ** **     Hypothetical protein 

Tb927.6.2330 ***** *****     RGG protein 

Tb927.10.3970 * *     Hypothetical protein 

Tb927.6.1130 * *     Hypothetical protein 

Tb09.211.4690 * *     Hypothetical protein 

Tb09.160.3160 * *     Hypothetical protein 

Tb927.8.6250 * *     Hypothetical protein 

Tb11.01.7730 * *     Hypothetical protein 

Tb927.10.160 * *     Hypothetical protein 

Tb11.01.1570 * *     NUDIX hydrolase 

Tb927.7.4120 * *     Hypothetical protein 

Tb927.3.1370 *** ***     40S ribosomal protein S25 

Tb11.55.0016  *     Hypothetical protein 

Tb927.7.6280  *     Hypothetical protein 

Tb927.7.3530  *     Hypothetical protein 

Tb927.7.3580  *     Protein kinase 

Tb09.244.2390  *     Hypothetical protein  

Tb11.02.0450  *     Hypothetical protein 

Tb927.10.12100  *     RNA-binding protein 

Tb927.3.3880  *     Hypothetical protein 

Tb927.4.3830  *     Hypothetical protein 
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Tb927.10.9050  *     Hypothetical protein 

Tb09.211.4180  *     Hypothetical protein 

Tb927.5.4010  *     Hypothetical protein  

Tb11.01.3530  *     Hypothetical protein 

Tb927.4.2570  *     Hypothetical protein 

Tb927.2.5440  *     Hypothetical protein 

Tb09.244.2710  *     Hypothetical protein 

Tb09.160.2900  *     PRP3 

Tb11.01.6000  *     Hypothetical protein 

Tb11.02.4790  *     ATG16/SAP18/CVT11/APG16 

Tb09.211.0500  *     Hypothetical protein 

Tb927.10.16140  *     Adenylate/guanylate cyclase 

Tb927.3.2470  *     Pumilio RNA binding protein 

Tb927.7.5150  *     Hypothetical protein 

Tb927.10.9180  *     Hypothetical protein 

Tb927.1.1400  *     Hypothetical protein 

Tb11.01.1910  *     Hypothetical protein 

Tb927.7.1450  *     Hypothetical protein 

Tb927.6.1180  *     Hypothetical protein 

Tb927.4.1980  *     Hypothetical protein 

Tb927.1.2200  *     Hypothetical protein 

Tb927.8.3090  *     Hypothetical protein 

Tb927.5.1770  *     Hypothetical protein 

Tb927.8.2000  *     Cyclophilin type peptidyl-prolyl cis-trans isomerase 

Tb11.01.6835  *     Hypothetical protein 

Tb927.2.2450  *     Ribosomal RNA methyltransferase 

Tb927.7.640   **    Hypothetical protein 

Tb09.160.2090    *   Hypothetical protein 

Tb927.5.2570    *   Translation initiation factor 

Tb09.211.1360    *   Hypothetical protein 

Tb09.211.0690    **   Hypothetical protein 

Tb927.10.14790    *   Aminopeptidase 

Tb09.244.2190     *  Hypothetical protein 

Tb09.v1.0820     *  Hypothetical protein 

Tb927.5.3100     *  Hypothetical protein  

Tb927.10.9510     ***  Hypothetical protein  

Tb09.211.4820     *  Hypothetical protein 

Tb09.160.5350     *  Variant surface glycoprotein (VSG)-related 

Tb09.142.0320     *  Hypothetical protein  

Tb11.02.1564     *  Leucine-rich repeat protein (LRRP) 

Tb927.10.1770     **  Hypothetical protein  
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Tb11.02.3710     *  Hypothetical protein 

Tb11.02.1565     *  Hypothetical protein  

Tb927.10.6740     *  Hypothetical protein 

Tb927.1.5160     ***  Hypothetical protein  

Tb927.1.5180     *  Hypothetical protein  

Tb927.3.580     **  Leucine-rich repeat protein (LRRP) 

Tb11.02.1640     *  Kinetoplastid-specific dual specificity phosphatase 

Tb11.01.6210     *  Procyclin-associated gene 2-like protein 

Tb927.3.2590     *  Hypothetical protein  

Tb927.3.570     *  Expression site-associated gene (ESAG) protein 

Tb09.244.0640     ***  Variant surface glycoprotein (VSG 

Tb927.10.8980     **  Hypothetical protein 

Tb11.01.6140     *  Hypothetical protein 

Tb927.1.1850     *  Hypothetical protein 

Tb09.160.1440     *  Hypothetical protein 

Tb11.02.1470     **  Hypothetical protein 

Tb927.10.1230     **  Hypothetical protein 

Tb927.3.3980     *  Hypothetical protein 

Tb927.10.14770     *  Protein kinase 

Tb927.8.7540     *  Hypothetical protein  

Tb927.4.4790     *  Hypothetical protein 

Tb927.10.3360     *  Hypothetical protein 

Tb11.01.6220     *  Procyclin-associated gene 4 (PAG4) protein 

Tb927.10.1040     *  Serine carboxypeptidase III precursor 

Tb927.4.990     *  Hypothetical protein 

Tb927.7.380     *  Hypothetical protein 

Tb11.38.0003     **  Variant surface glycoprotein (VSG) 

Tb927.6.1730     *  Hypothetical protein 

Tb927.10.8860     *  Hypothetical protein 

Tb09.160.4760     *  Hypothetical protein  

Tb927.3.5830     ***  Expression site-associated gene (ESAG) protein 

Tb927.1.5030     *  Leucine-rich repeat protein (LRRP) 

Tb927.10.9450     **  Hypothetical protein  

Tb927.5.1440     *  Hypothetical protein  

Tb927.10.530     *  Hypothetical protein 

Tb927.7.190     *  Thimet oligopeptidase A 

Tb927.4.1110     *  Hypothetical protein 

Tb927.5.3600     *  ATP-dependent DEAD/H RNA helicase 

Tb09.244.1950     ***  Hypothetical protein  

Tb09.160.0360     *  Hypothetical protein 

Tb11.01.7380     *  Hypothetical protein 



 167 

Tb927.3.1490     *  Leucine-rich repeat protein (LRRP) 

Tb11.01.7530     *  Hypothetical protein 

Tb927.8.980     *  Phosphoacetylglucosamine mutase 

Tb927.1.5060     *  Variant surface glycoprotein (VSG)-related 

Tb927.5.750     *  Hypothetical protein 

Tb927.4.810     *  Expression site-associated gene (ESAG) protein 

Tb927.10.1780     *  Hypothetical protein  

Tb927.3.2520     **  Expression site-associated gene (ESAG) protein 

Tb927.3.5720     *  Hypothetical protein 

Tb927.5.4600     **  Expression site-associated gene (ESAG) protein 

Tb927.5.1400     ***  Hypothetical protein  

Tb927.3.560     **  Expression site-associated gene (ESAG) protein 

Tb927.10.15440     *  Hypothetical protein 

Tb927.3.980     **  Hypothetical protein 

Tb927.10.5710     *  Hypothetical protein 

Tb927.10.5700     *  Hypothetical protein 

Tb927.5.1390     *  64 kDa invariant surface glycoprotein  

Tb927.7.6860     *  Expression site-associated gene (ESAG) protein 

Tb927.3.2500     *  Hypothetical protein  

Tb927.8.4360     *  Hypothetical protein 

Tb927.3.5680     *  Variant surface glycoprotein (VSG)-related 

Tb11.01.7860     *  Hypothetical protein  

Tb927.3.1870     **  Hypothetical protein 

Tb927.2.3340     **  Hypothetical protein  

Tb927.8.6720     *  Hypothetical protein 

Tb927.8.5080     *  Hypothetical protein 

Tb927.8.7330     **  Hypothetical protein  

Tb927.3.520     **  Expression site-associated gene (ESAG) protein 

Tb927.3.5690     ***  Hypothetical protein 

Tb927.8.7310     *  Hypothetical protein  

Tb927.6.540     **  Gene related to expression site-associated gene 2 
(GRESAG2) 

Tb927.1.2600      * Pumilio/PUF RNA binding protein 9 

Tb09.160.0720      * Hypothetical protein 

Tb11.01.5260      * Radial spoke protein RSP11 

Tb927.1.2760      * Hypothetical protein  

Tb09.244.2050      * Hypothetical protein  

Tb09.244.1650      * Hypothetical protein  

Tb11.01.6390      * Hypothetical protein 

Tb927.3.4510      * Hypothetical protein 

Tb927.10.8780      * Hypothetical protein 
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Tb927.1.4310      * Hypothetical protein 

Tb11.02.3880      ** Hypothetical protein 

Tb927.3.3300      * Hypothetical protein 

Tb11.02.4640      * Tubulin-tyrsoine ligase-like protein 

Tb927.3.3110      * Hypothetical protein 

 

* 1×10-4 < p-value ≤ 0.01  

** 1×10-7 < p-value ≤ 1×10 -4 

*** 1×10-14 < p-value ≤ 1×10 -7 

**** 1×10-28 < p-value ≤ 1×10 -14 

***** p-value ≤ 1×10 -28 

 

Supplementary Table 8-9. Gene-function associations based on the conserved coexpression network 

CoExpTbr×Lif – Pathways are defined according to KEGG. Refer to Supplementary Table 8-1 for more 

details. 
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Tb927.10.6800 (Tb10.6k15.3970) *   Developmentally regulated GTP-binding protein  

Tb927.5.1520 *   Heat shock protein HslVU, ATPase subunit HslU  

Tb927.7.4870 **   Hypothetical protein, conserved  

Tb09.160.0740  *  Hypothetical protein, conserved  

Tb927.10.9830 (Tb10.6k15.0480)  *  Hypothetical protein, conserved a 

Tb927.10.8320 (Tb10.6k15.2180)  *  Cytochrome oxidase subunit IX   

Tb11.02.4120  **  Hypothetical protein, conserved a  

Tb09.160.1820  *  Cytochrome oxidase subunit V  

Tb927.10.5050 (Tb10.70.2155)  *  Hypothetical protein, conserved b 

Tb927.10.4240 (Tb10.70.3010)  **  Hypothetical protein, conserved c,d 

Tb927.3.1410  *  Cytochrome oxidase subunit VII  

Tb927.3.700  *  Hypothetical protein, conserved  d 

Tb927.4.3450  *  Hypothetical protein, conserved b,d 

Tb927.8.5120  *  Cytochrome c  

Tb927.10.520 (Tb10.70.7760)  *  Hypothetical protein, conserved a  
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Tb927.5.1060  **  Mitochondrial processing peptidase, beta subunit  

Tb927.5.2930  **  Hypothetical protein, conserved a  

Tb927.4.1360  *  Hypothetical protein, conserved e 

Tb11.47.0022  *  Hypothetical protein, conserved a  

Tb927.6.590  *  Hypothetical protein, conserved b 

Tb927.7.3500  *  Glutathione-S-transferase/glutaredoxin  

Tb927.7.840  *  Hypothetical protein, conserved a 

Tb927.5.3090  *  Hypothetical protein, conserved a  

Tb927.10.15960 (Tb10.61.0320)  *  Hypothetical protein, conserved  

Tb927.4.720  *  Hypothetical protein, conserved b 

Tb927.3.920  *  Hypothetical protein, conserved  

Tb927.5.590   * Protein phosphatase 1, regulatory subunit f 

Tb11.01.5720   * Ribosomal protein L18  

Tb11.55.0002   * Protein phosphatase 2C  

Tb927.4.3660   * Hypothetical protein, conserved  

 

* 1×10-4 < p-value ≤ 0.01  

** 1×10-7 < p-value ≤ 1×10 -4 

a These proteins have been shown to be associated with ATP synthase complex [290]. 

b These proteins have been reported to be mitochondrial [293]. 

c These proteins have been reported to be associated with mitochondrial membrane [294]. 

d The mRNA of these proteins have the UAG(G)UA(G/U) element, which is also found in the transcripts of many 
cytochrome c oxidase subunits [61]. 

e Tb927.4.1360 is suggested as a PF-specific glycosomal protein [302]. 

f Protein phosphatase 1 is known to regulate the activity of ribosomal protein S6 [303]. 
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Supplementary Table 8-10. Prediction of GO terms based on the conserved coexpression network 

CoExpTbr×Lif – Refer to Supplementary Table 8-3 for more details. 
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Tb11.46.0009 ** **  **  Hypothetical protein 

Tb927.3.1940   *   Hypothetical protein 

Tb927.5.3090   *   Hypothetical protein 

Tb927.1.1390   *   Hypothetical protein 

Tb927.5.590     * Protein phosphatase 1 

 

* 1×10-4 < p-value ≤ 0.01  

** 1×10-7 < p-value ≤ 1×10 -4 

  



 171 

8.6 Supplementary Figures 

 

 

 

 

Supplementary Figure 8-1. Functions that are over-expressed in PF or BF T. brucei –Each row 

indicates a particular category according to either GO or KEGG, and each column represents a set of genes, 

whose relative expression in PF and BF cells is indicated in the graph above. Red and blue colors indicate 

over-representation and under-representation, respectively. Over- and under-representation were calculated 

based on hypergeometric distribution assumption for the overlap of each functional category with each 

expression bin. Some categories such as proteins that are intrinsic to membrane or proteins that are involved 

in antigenic variation are enriched in both PF-specific (left) and BF-specific (right) genes, while 

metabolism and transport of purines and adenylate cylase activity are mainly over-represented among BF-

specific genes, and oxidative phosphorylation is expressed only in PF. 
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Supplementary Figure 8-2. Distribution of different KEGG pathways in T. brucei coexpression and 

conserved coexpression networks –(A) oxidative phosphorylation (tbr00190) proteins in CoExp1
Tbr; (B) 

purine metabolism (tbr00230) proteins in CoExp1
Tbr; (C) ribosome (tbr03010) proteins in CoExp1

Tbr; (D) 

glycolysis/gluconeogenesis (tbr00010) proteins in CoExp2
Tbr; (E) inositol phosphate metabolism (tbr00562) 

proteins in CoExp2
Tbr; (F) phosphatidylinositol signaling system (tbr04070) proteins in CoExp2

Tbr; (G) 

ribosome (tbr03010) proteins in CoExp2
Tbr; (H) oxidative phosphorylation (tbr00190) proteins in 

CoExpTbr×Lif; (I) ribosome (tbr03010) proteins in CoExpTbr×Lif; (J) proteasome (tbr03050) proteins in 

CoExpTbr×Lif. (K) This graph shows the number of proteins that are annotated in KEGG, or whose 

annotation is predicted, in each network. Only KEGG pathways that could be predicted with at least 80% 

precision are shown. Note that for some of these pathways no new gene could be predicted. 
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Supplementary Figure 8-3. Distribution of conserved proteins in CoExp1Tbr –The orthologs of many 

T. brucei proteins with known KEGG pathways cannot be unambiguously identified in L. infantum; this is 

particularly the case for ribosomal proteins whose sequence similarity to each other prevents unambiguous 

identification of orthologous partners. Proteins whose L. infantum orthologs can be unambiguously 

identified are shown by red nodes. 

 

  

ribosom
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9 Global identification of conserved post-transcriptional 

regulatory programs in trypanosomatids 

In the previous chapter, we showed that based on expression patterns across different life 

stages, biological processes and pathways can be predicted in T. brucei. In other words, 

while the expression patterns of genes that are in the same pathway are similar to each 

other, expression patterns of different pathways are different. This suggests the presence 

of a complex post-transcriptional regulatory network in T. brucei, which is capable of 

producing the observed variability in the expression patterns of different genes. In this 

chapter, we present a comprehensive analysis of T. brucei 3’ UTRs for identification of 

conserved cis-regulatory elements. We have developed a new statistical framework that 

uses the notion of network-level conservation for identification of conserved regulatory 

programs across multiple species. This framework provides us with an alignment-free 

method for identification of conserved cis-regulatory elements, and in particular is able to 

integrate structure and sequence information in order to identify potentially structural 

RNA motifs. We present a thorough analysis of available microarray and RNA-seq data 

in order to validate these conserved motifs, and propose potential trans-acting proteins 

that can bind to and modulate the mRNAs that contain these motifs. This study provides a 

universal framework for identification of conserved regulatory programs across multiple 

species, and introduces the first global map of post-transcriptional regulation in 

trypanosomatids. 
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9.1 Background 

 

Identification of the mechanisms that regulate cellular processes is crucial to 

understanding the cell development and behavior. Regulatory networks are considerably 

more complex in eukaryotes than in prokaryotes, consisting of myriads of regulatory 

interactions among proteins, RNA molecules, and genomic DNA. Markedly, post-

transcriptional events play a major role in the regulation of eukaryotic genes. While 

transcriptional regulation of gene expression has been the subject of many studies over 

the years [74, 304], the widespread role of post-transcriptional events in gene regulation 

has rather recently come to light [305-308]. Post-transcriptional regulation primarily 

involves the interaction of a cis-regulatory RNA element and a trans-acting element, 

which is usually either a microRNA (miRNA) or an RNA-binding protein. 

Unlike the cis-acting elements that are involved in transcriptional regulation, most cis-

acting post-transcriptional regulatory elements are located in the mRNA untranslated 

region (UTR), many of which form distinct secondary structures that are specifically 

recognized by their trans-acting binding partners [309-311]. Several studies have used 

computational methods to address the problem of identifying the structural RNA motifs 

that are involved in post-transcriptional regulation. These methods identify structural 

RNA regulatory elements based on commonality in a set of related sequences [312], the 

ability to explain expression data [313], or conservation across species [314-317]. Many 

conservation-based methods require an aligned set of RNA sequences that contain the 

putative regulatory element(s) [318]. These methods have limited applicability when the 

sequences are highly divereged and cannot be aligned reliably. In contrast, methods that 

identify structural RNA motifs from unaligned sequences assume that, in homologous 

sequences, similarity is limited to functional parts, such as regulatory elements [314]. 

Therefore, these methods can identify structural motifs even within sets of sequences that 

cannot be aligned. Nonetheless, these methods consider only the conservation of cis-

regulatory elements, discarding the useful information that the conservation of the 

regulatory “network” provides. 
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“Network-level” conservation of regulatory programs implies that if A and Á are two 

orthologous trans-acting regulatory elements in two different organisms, the target genes 

of A (i.e. the genes that are bound and regulated by A) are mostly the orthologs of the 

target genes of Á. Network-level conservation, combined with the observation that the 

binding preferences of trans-acting regulatory elements are conserved across species, has 

been successfully used to identify conserved linear cis-regulatory motifs in pairs of 

organisms [319, 320]. 

Here, we introduce a general framework for identification of linear and structural motifs 

based on network-level conservation across multiple species. We employ this framework 

in order to identify conserved post-transcriptional regulatory programs in 

trypanosomatids, a group of organisms in which gene regulation is mainly at the post-

transcriptional level. The responsiveness of this regulatory network to developmental 

events as well as external and internal stimuli indicates that trypanosomatid genes are 

modulated by a complex set of cis- and trans-regulatory elements at the post-

transcriptional level within and across different life stages. 

 

9.2 Results and Discussion 

 

9.2.1 Identification of linear and structural regulatory motifs that are conserved at 

the network level 

The statistical framework that we have developed allows us to measure the network-level 

conservation of potential regulatory motifs across multiple species (Supplementary Figure 

9-1). Using this approach, we searched in a set of about ~4.7×106 linear and structural 

motifs (see the Methods section) in order to identify 3’ UTR regulatory elements that are 

conserved at the network level across different species of the genus of Trypanosoma, 

including T. brucei, T. cruzi, T. congolense, and T. vivax. These organisms are known to 

regulate their genes post-transcriptionally, using cis-regulatory factors that are mainly 

located in the mRNA 3’ UTRs [3, 5, 321, 322]. 
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Figure 9-1. Network-level conservation identifies RNA motifs with structural and sequence 

information – We identified 388 linear and structural non-redundant motifs with significant network-level 

conservation across the genus of Trypanosoma. (A) When the structural information is discarded, 222 

motifs remain significant for their network-level conservation (blue), while the conservation scores of 166 

motifs drop below the significane threshold (red). The latter motifs are deemed to have indispensible 

structural information. (B) Almost all motifs are exclusively conserved in the forward strand, and not in the 

reverse strand. The few motifs whose p-values are similar in the forward and reverse strand (blue) contain 

palindromic sequences. (C) Of the 388 motifs that are conserved in the genus of Trypanosoma, 237 are also 

conserved in the genus of Leishmania (red). For visualization purposes, the main graph displayes motifs 

whose p-values in Leishmania are greater than 10-30; the inset graph represents all motifs. Note the reverse 

order of p-values in the graphs, with smaller (significant) p-values toward the right/top of each chart. 

 

After removal of redundant motifs, our search resulted in 388 putative regulatory 

elements that were highly conserved in the Trypanosoma genus with an estimated false 

discovery rate (FDR) of ~0.01 (Supplementary Table 9-1). The structural information of 

166 of these motifs is indispensable, meaning that if the structural information was 

discarded and only the sequence information was retained, these motifs would not be 

identified as conserved anymore (Figure 9-1A). Furthermore, as expected from RNA cis-

regulatory elements, almost all of the identified motifs are only conserved on the forward 

strand of the DNA, and show little or no network-level conservation when the reverse 

strand is considered (Figure 9-1B). We also found that the motifs that we identified are 

conserved not only within the genus of Trypanosoma, but also within another branch of 
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trypanosomatids, namely the genus of Leishmania, which includes parasitic species such 

as L. major, L. infantum, L. braziliensis, and L. mexicana (Figure 9-1C). This suggests 

that these motifs have conserved their function beyond the Trypanosoma genus, and that 

the corrsponding regulatory network is conserved at least across the order of 

Trypanosomatida. Also, functional interactions among several motifs of this network 

suggest modularity (Supplementary Figure 9-2), which has been proposed to confer 

robustness and rapid responsiveness [323]. 

Several of the motifs that we identified match already known cis-regulatory elements that 

are involved in post-transcriptional regulation of different transcripts in many organisms, 

including trypanosomatids. For example, the most conserved motif, CAUAGAN, matches 

the known binding site of the trypanosomatid cycling sequence binding proteins (CSBPs), 

which determine the stability of S phase-specific transcripts [324]. Also, we were able to 

identify a structural motif that matches the well-studied histon 3’ UTR stem-loop, 

consisting of a six-base pair stem and a four-nucleotide loop with the consensus 

sequence NGCUNUUNNNRNRGYN

325

 (the stem region is underlined). This motif is 

involved in transport and regulation of histon transcripts [ ]. As another example, we 

identified a highly conserved linear motif with the consensus sequence AUGUAN. This 

motif contains the core binding sequence of the PUF family of RNA-binding proteins 

[326]. A similar motif has been previously reported to be over-represented among several 

groups of co-regulated transcripts in trypanosomatids [327]. 

These few examples suggest that our statistical framework can successfully identify 

conserved regulatory elements that are involved in post-transcriptional gene regulation. In 

order to systematically validate the discovered motifs, we further analyzed them by 

examining their profile across several microarray and RNA-seq experiments, as described 

in the next section. 

9.2.2 The conserved post-transcriptional regulatory network of trypanosomatids is 

correlated with mRNA abundance 

T. brucei is one of the major disease-causing trypanosomatids, responsible for the deadly 

human African trypanosomiasis, also known as sleeping sickness. The life cycle of T. 

brucei mainly consists of the insect stage, dominated by procyclic form (PF) parasites, 
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and the mammalian stage, dominated by bloodstream form (BF) parasites. The 

transcriptome of T. brucei has been profiled through the life cycle as well as in different 

genetic backgrounds. By Analyzing available microarray and RNA-seq data of T. brucei, 

we found that several of the conserved RNA motifs that we have identified are potentially 

involved in regulation of genes through the life cycle of this organism. Specifically, 22 

motifs show significant up-regulation or down-regulation in at least one experiment 

(Figure 9-2).  For example, the AU-rich element AUUUAUU, designated in this article as 

Ptrm1970 (post-transcriptional regulatory motif 1970), is highly enriched among 

transcripts that are up-regulated in the stationary-phase in vitro-cultured PF T. brucei as 

well as in transcripts that are down-regulated in the stumpy and slender BF T. brucei. On 

the other hand, transcripts that contain the highly conserved linear motif UYGCNGA 

(Ptrm23) are down-regulated in the stationary-phase PF and up-regulated in the slender 

BF parasites. Such motifs may be involved in the progression of life cycle and 

differentiation of the parasite as well as regulating the biological processes that are 

specifically required in each life stage. However, this may not necessarily be the case for 

all these motifs. For example, up-regulation of the CAUAGAN motif (Ptrm1) in the log-

phase PF cells may simply reflect the high cell growth rate and thus the high abundance 

of S phase parasites at the log phase, leading to the domination of the extracted mRNA 

pool by S phase-specific transcripts that contain this motif. Therefore, although analysis 

of the expression data supports these motifs as genuine cis-regulatory elements, 

interpreting the biological role of these regulatory elements based on the expression data 

is not a trivial task and needs orthogonal information. 

In addition to analyzing individual microarray/RNA-seq experiments, we analyzed the 

expression profiles of T. brucei transcripts across different experiments in order to 

identify conserved motifs that occur in sets of co-regualted mRNAs. We identified 24 

motifs that had significant local enrichment in the gene expression hyperspace of T. 

brucei (Figure 3), eight of which could only be identified by this cross-experiment 

analysis and not by the enrichment analysis of single experiments. 
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Figure 9-2. Conserved RNA motifs correlate with available microarray and RNA-seq data of T. 

brucei – Based on Mann-Whitney U test, 23 RNA motifs are significantly up-regulated (yellow) or down-

regulated (blue) in at least one available expression dataset of T. brucei. The motif name along with the 

structure/sequence is shown on the left, with each column representing one expression dataset. A motif is 

deemed structural if combination of sequence and structure results in a better conservation p-value 

compared to sequence alone; otherwise the motif is deemed linear. A yellow square indicates significant up-

regulation of the corresponding motif in the respective expression dataset, while a blue square indicates 

significant down-regulation. The letters in brackets correspond to the reference publications that describe 

each experiment: A: [35], B: [38], C: [37], D: [33], E: [34]. 
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Figure 9-3. Transcripts that contain similar conserved RNA motifs are co-regulated across different 

conditions and life stages – T. brucei genes (blue dots) are mapped on the first two principal components 

of 22 previously published expressoin datasets [33-39]. Local enrichment of motifs were examined in 

different regions of the expression hyperspace (see the Methods section). Regions with significant local 

enrichment for motifs are highlighted in this figure by the circles. Larger/red circles represent higher 

enrichment z-scores. Seven novel motifs were validated using this analysis in comparison to single-array 

analysis, the sequence/structure of which is shown on the right. 

 

9.2.3 A high-confidence gene regulatory network (GRN) suggests major regulatory 

role for two conserved cis-acting elements in Trypanosoma brucei 

We constructed a high-confidence GRN of T. brucei based on the assumption that the 

transcripts that carry true instances of the same cis-regulatory motif must be co-regulated 

across different conditions. Therefore, the true targets of a particular trans-regulatory 

element are transcripts that contain the corresponding cis-regulatory motif and are co-

expressed with other carriers of that motif. This high-confidence GRN contains 1012 

interactions between 917 genes and 12 unknown trans-regulatory elements (Figure 9-4). 

The trans-regulatory elements that bind to Ptrm17 (AUGUAN) and Ptrm1970 
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(AUUUAUU) dominate the regulatory interactions of this GRN, targeting 508 and 328 

genes, respectively. In the next sections, we examine the specific functions of these 

motifs. 

 

 

Figure 9-4. The high-confidence GRN of T. brucei – For each motif, a hypothetical unknown trans-

regulatory factor is assumed, shown by the yellow circles. A gene is a high-confidence target of a trans-

regulatory factor if it contains the corresponding motif in its 3’ UTR, and if its expression pattern across 

previously published expression datasets [33-39] significantly correlates with the expression patterns of 

other transcripts that contain that motif. Target genes are shown by blank circle, and the arrows demonstrate 

regulatory relationships. 
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Figure 9-5. AUGUA as the potential binding sequence of PUF4 and PUF7 – The frequency of 

AUGUAN (Ptm17) is (A) significantly higher in transcripts that are positively correlated with PUF4 

(Tb927.6.820, Mann-Whitney U z-score=7.12) and (B) in transcripts that are negatively correlated with 

PUF7 (Tb11.01.6600, Mann-Whitney U z-score=-8.46) across previously published expression datasets 

[33-39]. However, (C) the binding sites of PUF4 and PUF7 potentially contain additional nucleotides that 

confer specificity, as transcripts that are positively correlated with PUF4 are not necessarily the same as 

transcripts that are negatively correlated with PUF7. (D) AUGUAN has conserved its regulatory role across 

trypanosomatids including both the Trypanosoma genus and Leismania genus, as genes that are highly 

correlated in both T. brucei and L. major are more likely to have conserved their regulatory neighborhood. 

Two genes are assumed to have conserved their regulatory neighborhood if both of them contain the 
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AUGUAN motif in T. brucei as well as in L. major. To calculate the likelihood values, the set of such gene 

pairs were compared to a background set of gene pairs that are regulatory neighbors (i.e. both contain 

AUGUAN) in one organism, but have a broken regulatory neighborhood in the other organsm (i.e. only one 

of them contains AUGUAN). 

 

9.2.4 A potential PUF-binding motif with a conserved regulatory role in 

trypanosomatids 

As mentioned earlier, Ptrm17 contains the core binding sequence of PUF family of RNA-

binding proteins, suggesting a major role of PUF family proteins in regulating the 

transcript stability and abundance in T. brucei. Interestingly, we found that the level of 

mRNAs containing this motif in their 3’ UTRs shows very strong correlation or anti-

correlation with the expression level of several PUF family proteins in T. brucei. Most 

notably, this motif is highly enriched among mRNAs that are co-expressed with PUF4 

(Tb927.6.820) and among mRNAs that show strong anti-correlation with PUF7 

(Tb11.01.6600) (Figure 9-5A,B), suggesting that these proteins bind to AUGUA-

containing mRNAs and stabilize or destabilize them, respectively. However, the exact 

binding specificity and, therefore, target mRNAs of these two proteins may not be the 

same, as transcripts that are co-expressed with PUF4 are not necessarily the same as 

transcripts that are anti-correlated with PUF7 (Figure 9-5C). We also found that genes 

that have conserved instances of the AUGUA motif also have conserved expression 

patterns between T. brucei and L. major (Figure 9-5D), indicating that the regulatory 

function of this motif is highly conserved among trypanosomatids. 

9.2.5 An AU-rich element (ARE) with a central role in regulating mRNA stability 

Ptrm1970 is an AU-rich element (ARE) that contains the AUUUA sequence, which has 

been long known to be involved in regulation of mRNA stability in several eukaryotes 

[REF]. Different ARE-binding proteins have been characterized with a wide range of 

effects on target stability. While some ARE-binding proteins such as tristetraprolin 

(TTP), butyrate response factor 1 (BRF1) and AU-rich binding factor 1 (AUF1) 

destabilize their target transcripts [328], proteins of the ELAV-like family bind to AREs 
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and stabilize the mRNA [329], mainly by protecting deadenylated transcripts against 

degradative enzymes [330]. Congruent with the protecting function of ELAV-like 

proteins, and based on analysis of previously reported microarray data [33], we found that 

Ptrm1970-containing transcripts are protected from degradation in T. brucei cells that 

over-express the DEAD-box RNA helicase DHH1 (Figure 9-2). DHH1 is required for 

efficient decapping of deadenylated mRNAs, which is an essential step in deadenylation-

dependent decay pathway [331]. Also, we found that transcripts that have at least one 

instance of Ptrm1970 are over-represented in poly(A)+ mRNA content of T. brucei cells 

that over-express poly(A)-specific ribonuclease 1 (PARN-1) [37], suggesting that 

Ptrm1970-containing transcripts are also protected against deadenylation activity of this 

enzyme (Figure 9-2). This is in line with previous reports showing that ELAV-like 

proteins can simultaneously bind to the ARE and poly(A) tail [332], and thus possibly 

protect the poly(A) tail of ARE-containing transcripts. 

These observations suggest the presence of homologs of ELAV-like proteins in T. brucei, 

with a central role in regulation of mRNA stability via interaction with Ptm1970 and 

protection of the mRNA against deadenylation and/or deadenylation-dependent decay. It 

has been previously shown that the expression of human HuR, a member of the ELAV-

like protein family, in T. brucei results in stabilization of several ARE-containing mRNAs 

[333]. However, the counterparts of HuR or any other ELAV-like proteins have not been 

characterized in T. brucei. Using PSI-BLAST, we found three potential remote homologs 

of ELAV-like proteins in T. brucei, Tb927.8.6650, Tb927.3.2930 and Tb927.7.5380. 

Intriguingly, we found that all three proteins are strongly co-regulated with transcripts 

that contain at least one instance of Ptm1970 (Figure 9-6A-C), supporting their function 

as ELAV-like proteins that bind and stabilize AREs. 

As mentioned earlier, while ELAV-like proteins stabilize ARE-containing transcripts, 

other ARE-binding proteins may have an opposite effect. Exosome is a protein complex 

that is responsible for degradation of a wide variety of transcripts, and has been shown to 

directly interact with AREs and degrade ARE-containing transcripts [334, 335]. In search 

of proteins whose expression pattern is anti-correlated with Ptm1970, we found that the 

most significant anti-correlation belonged to the exosome subunit RRP45 (Tb927.6.670, 

Figure 9-6D). This protein has been previously suggested to have a role in initiation of 
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rapid degradation of the very unstable mRNAs in T. brucei [336]. Our analysis suggests a 

central role of exosomes in regulation of mRNA stability in T. brucei, and proposes the 

exosome as the rate-limiting factor in ARE-mediated decay (AMD) in this organism. 

 

 

Figure 9-6. AU-rich elements are potentially regulated in T. brucei by three novel ELAV-like proteins 

as well as by exosome – (A-C) Three novel ELAV-like proteins that are identified using PSI-BLAST show 

significant positive correlation with transcripts that contain the AU-rich motif AUUUAUU (Ptm1970). This 

is shown here by plotting the frequency of AUUUAUU-containing transcripts against their correlation with 

each of the ELAV-like proteins across previously published T. brucei expression datasets [33-39]. (D) 

Transcripts whose expression patterns are negatively correlated with exosome complex exonuclease RRP45 
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(Tb927.6.670) are more likely to contain AUUUAUU, suggesting destabilizing effect of exosome on a 

large number of AUUUAUU-containing transcripts. 

 

9.2.6 The GRN of T. brucei is responsive to external stimuli and internal 

perturbations 

Early studies of T. brucei transcriptome suggested limited responsiveness of its GRN to 

external and internal perturbations within the same life stage [208]. Consequently, most 

studies of T. brucei transcriptome have focused on developmental gene regulation across 

different life stages of this parasite. Here, we examined the responsiveness of T. brucei 

transcriptome within the PF life stage by perturbing specific biological processes or 

imposing altered environmental conditions on the parasite. Specifically, we targeted 

mitochondrial DNA replication, protein synthesis, calcium ion transport, and cell cycle, 

and created environmental stress conditions using several chemical compounds. 

Microarray analysis revealed widespread remodeling of T. brucei transcriptome in 

response to these perturbations (Supplementary Figure 9-3). Interestingly, we found that 

transcripts carrying our predicted motifs show specific and coordinated responses to the 

perturbations (Figure 9-7), suggesting critical roles for several of these motifs in sensing 

and adapting to stress conditions as well as regulating biological processes. For example, 

transcripts that contain Ptm1970 are up-regulated when mitochondrial DNA replication is 

perturbed using ethidium bromide, and are down-regulated when calcium ion transport is 

blocked by verapamil and also when the growth medium is acidified by HCl. The motifs 

that responded to our set of chemically imposed perturbations also included five potential 

regulatory elements that could not be validated using previously available microarray 

data. For example, the linear motif Ptm25 (UYCGNGA) is specifically up-regulated in 

acidic conditions, and the structured Ptm2447 (NNGANCCAYNN

Figure 9-7

) is specifically down-

regulated when protein synthesis is inhibited by hygromycin ( ). These 

experiments show that available microarray data of T. brucei are not representative of the 

complexity of its GRN, and suggest that the transcriptome remodeling should be 

examined in many different conditions and cell states in T. brucei in order to 
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comprehensively characterize the regulatory programs of this organism and to understand 

the mechanisms that help this parasite adapt and respond to the environment. 

 

 

Figure 9-7. The GRN of T. brucei is responsive to environmental changes and stress conditions – 

Treatment of PF T. brucei cells with different chemicals results in significant up-/down-regulation of 

several conserved RNA-motifs. In each panel, genes that are up-regulated are shown on the top, and down-

regulated genes on the bottom. Yellow indicates significant over-representation of motifs among genes with 

similar expression changes, and blue indicates significant under-representation of motifs. Over-/under-

representation scores are calculated as the logarithm base 10 of cumulative p-values based on the Poisson 



 189 

distribution, shown here by the yellow-black-blue color gradient. Motifs that are significantly up-regulated 

or down-regulated in each experiment (|Mann-Whitney U z-score| >3.62) are highlighted by the boxes. Five 

novel motifs were validated in this analysis, shown at the bottom. Ethidum bromide (EtBr) disrupts 

mitochondrial DNA replication and biogenesis in T. brucei [337]; DMSO has a wide range of effects on cell 

permeability and molecular interactions; hygromycin inhibits polypeptide synthesis in eukaryotes and 

prokaryotes [149]; and verapamil blocks calcium channels [338]. 

 

9.3 Conclusions  

 

The statistical framework that we have introduced here provides a robust means for 

identification of regulatory programs that are conserved across multiple species. Most 

importantly, it provides an alignment-free method for identification of conserved cis-

acting post-transcriptional regulatory motifs that contain sequence as well as structural 

information. This alignment-free framework allows identification of regulatory programs 

in genomes whose regulatory sequences have diverged extensively. Furthermore, in 

contrast to previous hypergeometric-based frameworks [320], our approach benefits from 

simultaneous analysis of multiple genomes, which leads to identification of motifs that 

are conserved in a large number of organisms. 

We applied our framework to the genomes of trypanosomatids, a group of parasites with 

major health implications, in which regulatory mechanisms are poorly understood. 

Trypanosomatids provided a suitable benchmark for testing our framework, as gene 

regulation in these organisms is primarily post-transcriptional. Also, regulatory regions 

are poorly conserved in these organisms, meaning that conventional alignment-based 

approaches have limited applicability. Our approach was able to capture a large number 

of non-redundant cis-regulatory motifs, and we were able to validate 35 motifs using 

available expression data as well expression data obtained from targeted perturbation 

studies (Supplementary Table 9-2). Our analysis provides the first global picture of post-

transcriptional regulatory programs in trypanosomatids, and identifies major regulatory 

roles for several new candidate cis- and trans-regulatory elements, including previously 
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unidentified ELAV-like proteins. Further characterization of these candidate regulatory 

elements will not only lead into a better understanding of the biology of these parasites 

and the diseases they create, but also may provide new targets for chemical therapeutics 

that affect and disrupt conserved key regulatory functions in these organisms. 

 

9.4 Methods 

 

9.4.1 Trypanosomatid sequences and orthologs 

Sequences of 3’ untranslated regions (3’ UTRs) for Trypanosoma brucei, T. cruzi, T. 

vivax, T. congolense, Leishmania major, L. infantum, L. braziliensis, and L. mexicana  

were downloaded from TriTrypDB v2.5 [339]. We defined the 3’ UTR as the 1000-

nucleotide region downstream of the stop codon, given that most 3’ UTR motifs are 

known to reside within this region. Although in some cases this region may also contain a 

part of the downstream coding sequence, it is presumed that such contaminating 

sequences do not have an effect on the analysis. 

Orthologous genes were identified based on OrthoMCL v4 [340]. Gene identifiers were 

converted to the most recent versions based on the list of gene aliases provided by 

TriTrypDB. Ortholog groups that contained several paralogs from the same organism 

were trimmed by randomly selecting one of the paralogs for each organism. 

9.4.2 Identification of linear and structural motifs with signifincant network-level 

conservation 

Supplementary Figure 9-1 schematically shows the statistical framework for 

identification of network-level conservation across multiple species, which is 

implemented in the software COSMOS 

(http://webpages.mcgill.ca/staff/Group2/rsalav/web/Software/COSMOS/index.htm). 

Consider N ortholog groups across M species with their associated regulatory sequences. 

We call an ortholog group a “keeper” of a motif if all M sequences that belong to this 

ortholog group have at least one instance of that motif. The number of these “keepers” 

http://webpages.mcgill.ca/staff/Group2/rsalav/web/Software/COSMOS/index.htm�
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determines the network-level conservation of the motif. COSMOS calculates the 

probability that a random distribution of the motif results in the observed number of 

keepers; small probability values indicate high conservation. The details of the 

calculations are as follows. 

Given a particular motif and its instances in the regulatory regions of N genes in M 

species, the probability of occurrence of this motif in each species i is calculated as: 

, 

where B(Si,j) is 1 if the sequence that belongs to species i in the jth ortholog group has at 

least one instance of the motif; otherwise B(Si,j) is 0. Thus, the probability of an ortholog 

group being a “keeper” under the null hypothesis of random distribution is: 

 

The probability of observing at least n keepers is then calculated based on the binomial 

distribution: 

, 

where f is the probability mass function of the binomial distribution, calculated as: 

 

COSMOS uses p(K≥n) as the conservation score for a motif, in which n is the number of 

keepers of that motif. 

In this work, we considered ~4.7×106 linear and structural motifs, including all possible 

linear motifs with a maximum length of 7 nt and maximum number of 6 non-degenerate 

bases, and all possible stem-loop motifs with a maximum stem length of 8 bp, loop length 

of 3-7 nt, and maximum number of 6 non-degenerate bases. COMOS calculated the 

conservation scores as well as the false discovery rate-adjusted p-values (q-values). 

Motifs with q-values ≤0.01 were retained. 
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9.4.3 Identification and removal of redundant motifs 

Consider the more conserved motif i and the less conserved motif j in the list of motifs 

that are sorted by ascending order of their conservation p-value (1≤i<j). Motif j is 

redundant given motif i if the instances of motif j in database D significantly overlap the 

instances of motif i. The overlap significance is calculated using the hypergeometric 

distribution as: 

, 

where Nj is the total number of sliding windows of length lj in database D (lj is the length 

of motif j), Oi is the number of sliding windows of length lj that overlap at least one 

nucleotide of at least one instance of motif i, nj is the total number of instances of motif j, 

oi,j is the number of instances of motif j that overlap at least one nucleotide of at least one 

instance of motif i, and f is the probability mass function of the hypergeometric 

distribution. Motif j is considered redundant if there is at least one motif i (i<j) so that 

. The denominator j is for Bonferroni correction of p-value, as each motif j is 

compared to j-1 motifs that are better conserved. In this study, we used the 3’ UTRs of T. 

brucei genes as database D in order to identify redundant motifs. 

9.4.4 Processing and merging available expression data 

T. brucei microarray and RNA-seq data were obtained from multiple sources [33-39], and 

an expression compendium was compiled as follows. For E-MEXP-2025 and E-MEXP-

2026 [33], the log ratio of induced vs. non-induced expression was calculated. For 

GSE18065 [36], the reported values were first averaged separately for BF as well as for 

PF. Then, the average of BF and PF was calculated for each gene, resulting in a single 

average measurement for each gene. The log ratio of average BF to the overall average 

measurement and also the log ratio of average PF to the overall average measurement 

were then calculated. For GSE20593 [37], all reported log ratios from biological 

replicates were averaged. For GSE22571 [38], the following experiments were averaged, 

resulting in a single measurement for each gene: GSM560209, GSM560212, 

GSM560213, GSM560214. Then, the log ratio of each experiment to this overall average 
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measurement was calculated. Also, the log ratio of GSM560208:GSM560207 and the log 

ratio of GSM560211:GSM560210 were calculated. For GSE24275 [39], the total log ratio 

was used. The rest of the data were obtained from the supplementary information of the 

corresponding articles. Gene identifiers were converted to the most recent version 

according to TriTrypDB, and the datasets were merged into a single expression 

compendium. Genes that were present in only a subset of the datasets were included in 

the expression compendium; thus, the compendium contains missing values. Each 

experiment (column) was then normalized to have an average of zero and standard 

deviation of one across different genes, as described before [5]. It should be noted that 

this normalization does not affect single-array Mann-Whitney U-based analysis as 

described later, but is important for calculation of Pearson correlation coefficients across 

multiple experiments. 

L. major microarray data were obtained from three previous publications [146, 165, 341]. 

The following sets of experiments were averaged since they were biological replicates: 

[GSM98805, GSM98806, GSM98870]; [GSM99790, GSM99791, GSM99792]; 

[GSM99795, GSM99796, GSM99797]; [GSM99798, GSM99799]; [GSM251641, 

GSM251642, GSM251643, GSM251644]; [GSM251645, GSM251646, GSM251647, 

GSM251648]; [GSM291427, GSM291428, GSM291429, GSM291430]. Datasets were 

merged and normalized as above. 

9.4.5 Chemical treatment of PF T. brucei 

PF T. brucei cells were treated with different chemicals and drugs in order to perturb 

specific biological processes or create environmental stress conditions. Wild-type PF T. 

brucei cell line IsTat 1.7A [163] was grown in SDM-79 medium in 26 °C, while the cell 

count was kept between 1×107 and 3×107 cells/ml. The cells were treated with either 2.65 

μg/ml ethidium bromide, 3.1% (v/v) DMSO, 0.31% (v/v) HCl, 12.5 mM NaOH, 1.13 

μg/ml hygromycin, 1.9 μM verapamil, 1.13 μg/ml G418, 130 nM pentamidine, 2.5×10 -3 

% (v/v) Triton-X, 31 ng/ml of phleomycin, or 7.8 mM imidazole. The concentrations 

were chosen based on the EC50 values of these chemicals for inhibition of T. brucei 

growth, as determined by growing T. brucei cells in the presence of different 
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concentrations of chemicals. We chose the EC50 in order to ensure that the target 

biological process of each chemical is affected at the selected concentration. 

9.4.6 Microarray analysis of chemical perturbations 

T. brucei cells were collected 48 h after treatment, and total RNA was extracted using 

TRIzol Reagent (Invitrogen) and was further purified using RNeasy Mini Kit (Qiagen) as 

per manufacturers’ instructions. RNA quality was examined using Agilent 2100 

Bioanalyzer prior to cDNA preparation. 25 μg RNA was incubated with 9 μg oligo(dT) 

primer (dT23VN, where V is a mixture of A, C and G, and N is any nucleotide) at 70 °C 

for 10 min, and Cy5-labeled cDNA was synthesized using Superscript III Reverse 

Transcriptase (Invitrogen) in the presence of 10mM DTT, 0.5 mM of each of dATP, 

dGTP and dTTP, 0.05 mM dCTP, and 0.05 mM of Cy5-dCTP as per manufacturer’s 

instructions. Control cDNA from untreated PF T. brucei cells was prepared similarly 

using Cy3-dCTP. RNA was hydrolyzed by RNase A and RNase H, and cDNA was 

cleaned up using Qiagen PCR purification kit. Equal amounts of Cy3/Cy5-labeled cDNA 

were mixed and hybridized to version 4 of T. brucei microarrays from Pathogen 

Functional Genomics Resource Center as described before [164]. Microarrays were 

scanned using ScanArray Express (PerkinElmer) and the acquired images were quantified 

using ScanArray Express software with lowess normalization. The value for each probe 

was set to the binary logarithm of treated/control (Cy5/Cy3) median signal ratio, and 

different probes of each gene were averaged. Results of different chemical treatments 

were merged to obtain a matrix in which each row represented a gene and each column 

represented an experiment. Each column was then normalized to have an average of 0 and 

standard deviation of 1. Then, each row was normalized to have an average of 0. The 

latter normalization was aimed to neutralize the expression changes that represented a 

general response to stress and cell death, retaining only the expression changes that 

represented the specific response of the cells to the corresponding chemical treatment. 

Gene identifiers were converted to the most recent TriTrypDB version. 

9.4.7 Identification of up- or down-regulated motifs 

In order to identify motifs whose corresponding transcripts were significantly up- or 

down-regulated in previously published expression profiles or in our microarray data, we 
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used the standard Mann-Whitney U test. For each motif, we compared the distribution of 

values for motif-containing transcripts to the distribution of values for transcripts that 

lacked that motif. For each microarray/RNA-seq experiment, all transcripts were sorted in 

the descending order of their corresponding values, and for each motif the sum of ranks of 

the transcripts that contained at least one instance was calculated. The z-score was then 

calculated as: 

, 

where R is the sum of ranks, mR is the average expected R calculated as [n(n+1) +n×ń]/2 

(where n is the number of transcripts that have the motif and ń is the number of 

transcripts that do not have any instance of the motif), and σR is the standard deviation of 

R, calculated as: 

 

Positive z-scores indicate up-regulation, and negative z-scores indicate down-regulation. 

False discovery rate (FDR) at different z-score cutoffs was determined by performing the 

same analysis on 100 randomly shuffled motif occurrence profiles, setting the cutoff at 

FDR ≤0.1. 

9.4.8 Identification of motifs with local enrichment in the expression hyperspace 

In order to identify the motifs that occurred in co-regulated transcripts across the 

previously published microarray/RNA-seq datasets [33-39], we searched for regions in 

the expression hyperspace where motifs were significantly enriched. Each point in this 

hyperspace was expressed as a vector of size 22, representing the 22 measurements in the 

datasets from previous publications. For each point in the hyperspace, genes were first 

sorted by the descending order of their Pearson correlation with the vector that 

corresponded to that point, and the local enrichment of each motif was measured using 

Mann-Whitney U test. Significant positive z-scores were determined by shuffling the 

motif occurrence profiles across the transcripts and recalculating the z-scores as described 

in the previous section (FDR≤0.1). Using this method, we examined motif enrichment 
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around 8035 points in the expression hyperspace, each point corresponding to a T. brucei 

gene. By adapting this approach, we limited our search to regions in the hyperspace that 

were populated by genes, rather than deserted regions. This approach also identified 

genes whose expression profiles were highly correlated with certain motifs; this 

information was used to construct the high-confidence GRN of T. brucei. 
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9.5 Supplementary Tables 

 

Supplementary Table 9-1. All of the 388 non-redundant motifs identified in this study based on 

network-level conservation in the genus of Trypanosoma –For more details on motifs that were 

supported by microarray data, see Supplementary Table 9-2. 

Motif Sequence Structure 

Conservation p-

value (sequence and 

structure) 

Conservation p-value 

(sequence only) 

Ptm1 CAUAGAN ....... 2.12E-29 2.12E-29 

Ptm13 UNAUGGA (.....) 1.43E-19 1.43E-19 

Ptm15 UYGANGA ((...)) 1.64E-18 1.64E-18 

Ptm17 AUGUAN ...... 3.65E-18 3.65E-18 

Ptm23 UYGCNGA ((...)) 1.06E-17 1.06E-17 

Ptm25 UYCGNGA ((...)) 3.95E-17 3.95E-17 

Ptm32 AUGGGNRU ((....)) 2.03E-16 2.03E-16 

Ptm39 GCNCCNNNNGY ((.......)) 5.02E-16 5.02E-16 

Ptm53 NNUCAGCUNNN ((.......)) 4.05E-15 0.000291551 

Ptm60 UUYGNNNNCACGAA ((((......)))) 1.83E-14 1.83E-14 

Ptm69 GANUGGNNNNNRNUY ((((.......)))) 4.97E-14 1.59E-08 

Ptm80 NNCAGGANN (.......) 9.42E-14 9.54E-07 

Ptm121 AUGUCNNNNNRYRU ((((......)))) 8.60E-13 8.60E-13 

Ptm127 CNAAGGNNG (.......) 1.24E-12 1.24E-12 

Ptm131 NNUYNACAAGANN ((((.....)))) 1.42E-12 1.29E-06 

Ptm176 UGGCCNNNYYR (((.....))) 4.81E-12 4.81E-12 

Ptm185 NRYUNNNCAAGUN ((((.....)))) 6.86E-12 1.63E-07 

Ptm186 NYNCGCAAGN ((......)) 6.99E-12 1.81E-08 

Ptm198 NGNUUNNNNNANAANCN (((((.......))))) 1.09E-11 2.08E-05 

Ptm212 GGUNCANRYY (((....))) 1.38E-11 1.38E-11 

Ptm234 NAGGCNAUN ((.....)) 2.12E-11 6.33E-09 

Ptm264 NNUNNAGAACANN (((.......))) 3.54E-11 9.23E-07 

Ptm298 NYAAGAAGN ((.....)) 5.59E-11 1.12E-10 

Ptm306 NNUYGUNNACACGANN ((((((....)))))) 6.21E-11 1.86E-08 

Ptm307 GCUCAGNNNNNNYUGRGY (((((((....))))))) 6.21E-11 2.48E-10 

Ptm332 NNGRYNNNNNGUGUCNN (((((.......))))) 8.46E-11 0.000107675 

Ptm360 GGUNNANUACC (((.....))) 1.07E-10 1.07E-10 

Ptm384 NNNNRGRNNAAGUCUNNNN (((((((.....))))))) 1.24E-10 8.35E-06 

Ptm429 GNCUGGAC (......) 2.07E-10 2.07E-10 

Ptm444 NNGGGNNNNAAACCCNN (((((.......))))) 2.48E-10 1.39E-07 

Ptm445 NNGUAUCCNRURYNN ((((((...)))))) 2.48E-10 3.13E-07 
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Ptm446 GYGRGUNNNACUCGC ((((((...)))))) 2.48E-10 2.48E-10 

Ptm491 NNNNCAAGGANUGNNNN ((((((.....)))))) 3.11E-10 0.000201617 

Ptm495 NAGNUNCNNNNNRNYUN (((((.......))))) 3.20E-10 0.00403603 

Ptm505 GGYNNNNGAUGCC (((.......))) 3.46E-10 3.46E-10 

Ptm509 NNNRNNAUNCUNNN ((((......)))) 3.53E-10 0.00254345 

Ptm519 NUAUGAGNNNNYUYRURN (((((((....))))))) 3.73E-10 2.98E-09 

Ptm541 NNYNNUACGAGNN (((.......))) 4.37E-10 0.00119644 

Ptm580 ACUGGARGU (((...))) 5.46E-10 5.46E-10 

Ptm591 NRUNNNNCGCAUN (((.......))) 6.04E-10 2.72E-10 

Ptm594 GUGRNNUUCAC ((((...)))) 6.08E-10 6.08E-10 

Ptm636 GGNCAGCC ((....)) 7.87E-10 7.87E-10 

Ptm666 NCGGNUCNNNYYGN ((((......)))) 9.85E-10 1.58E-06 

Ptm670 NGGAGCUNNNNNGYUYYN ((((((......)))))) 9.94E-10 6.21E-08 

Ptm728 YUNAANCAG ((.....)) 1.23E-09 1.23E-09 

Ptm765 YGYUYUNNNNAGAGCG ((((((....)))))) 1.49E-09 1.49E-09 

Ptm776 NNNNNGRNCCNCUCNNNNN (((((((.....))))))) 1.49E-09 5.47E-06 

Ptm783 YNUACCAG (......) 1.62E-09 1.62E-09 

Ptm831 ANNUNGNNNNNNNYNRNNU ((((((.......)))))) 1.98E-09 1.37E-07 

Ptm836 NNNNYGRNNCNCUCGNNNN (((((((.....))))))) 1.99E-09 0.00409599 

Ptm866 GNUYUUNNNNAAGANC ((((((....)))))) 2.24E-09 4.17E-08 

Ptm906 CCGUCGNNGRYGG (((((...))))) 2.48E-09 2.48E-09 

Ptm918 RGYRGNNNCUGCU (((((...))))) 2.60E-09 2.60E-09 

Ptm926 NNAUNAACNNNRUNN ((((.......)))) 2.68E-09 6.93E-07 

Ptm947 NNCCGCAUYGGNN (((((...))))) 2.98E-09 1.21E-06 

Ptm986 GCGCCGNNNNYGGYGY ((((((....)))))) 3.35E-09 3.35E-09 

Ptm998 RNYUNNNNCGAGNU ((((......)))) 3.44E-09 2.13E-06 

Ptm1003 UGYYNNUGGCA ((((...)))) 3.50E-09 3.50E-09 

Ptm1016 CCAGGCNUGG (((....))) 3.73E-09 3.73E-09 

Ptm1018 NNNNGNNUCAAACNNNN (((((.......))))) 3.73E-09 0.00424737 

Ptm1019 NGUACGGNNNNNYGURYN ((((((......)))))) 3.73E-09 6.26E-08 

Ptm1032 NNNNNNACCUNGNNNNNNN ((((((.......)))))) 3.98E-09 0.000266377 

Ptm1043 NNAGCANAUNN (((.....))) 4.11E-09 0.00475076 

Ptm1081 NYYRRNNNNNAUUGGN (((((......))))) 4.51E-09 1.36E-08 

Ptm1091 NNGAUGCNCNN (((.....))) 4.70E-09 8.27E-10 

Ptm1139 NYYUNAAGGN (((....))) 5.42E-09 2.45E-05 

Ptm1188 NCGGGCUNNNNNYYYGN (((((.......))))) 5.96E-09 5.22E-08 

Ptm1192 UYNUGRNNNNNUCANGA ((((((.....)))))) 5.96E-09 1.88E-07 

Ptm1293 CGANCUNNNNNNGNUYG (((((.......))))) 7.45E-09 2.61E-07 

Ptm1311 NNNNGUGGAUNYRYNNNN (((((((....))))))) 7.83E-09 2.91E-07 

Ptm1359 UYNGGNNNGCCNGA (((((....))))) 8.94E-09 2.52E-07 

Ptm1363 NNNAUGGUGNNYRUNNN ((((((.....)))))) 8.94E-09 0.000576733 
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Ptm1369 NGRNYNGNNNNNNNCNGNUCN (((((((.......))))))) 8.94E-09 0.000644473 

Ptm1374 NUNUUNNCNAANAN (((((....))))) 9.19E-09 0.000425128 

Ptm1422 NNNNYGUNGAGNNNN (((((.....))))) 1.02E-08 4.17E-06 

Ptm1423 NNGANGCNNUYNN (((((...))))) 1.02E-08 3.46E-10 

Ptm1436 NNNNNNNGGCGANNNNNNNNN (((((((.......))))))) 1.04E-08 0.0287297 

Ptm1447 NYGNNNUNAACGN (((.......))) 1.07E-08 0.000887285 

Ptm1450 YYRRNNUUUGG ((((...)))) 1.07E-08 1.07E-08 

Ptm1455 NNYGNNAAGNCGNN ((((......)))) 1.10E-08 0.00144562 

Ptm1515 NNNYYGRNNNNCUCGGNNN (((((((.....))))))) 1.19E-08 5.83E-05 

Ptm1534 UGYYNNNNGGGCA ((((.....)))) 1.25E-08 1.25E-08 

Ptm1615 NGCCGUANNGGYN ((((.....)))) 1.49E-08 1.05E-06 

Ptm1617 CAUGGGNNNNYYYRUG ((((((....)))))) 1.49E-08 1.49E-08 

Ptm1618 CCNAUGNNNNNYRUNGG ((((((.....)))))) 1.49E-08 1.41E-14 

Ptm1663 NNUGGCACNNNNNGYYRNN ((((((.......)))))) 1.68E-08 1.77E-05 

Ptm1664 NNYGGNNNNNNAANCCGNN ((((((.......)))))) 1.68E-08 0.000171728 

Ptm1691 CCAUACNNNRUGG ((((.....)))) 1.79E-08 1.79E-08 

Ptm1694 NNNNGGNNNCANACCNNNN ((((((.......)))))) 1.79E-08 0.00366707 

Ptm1725 NNNNNGNUGGUGCNNNNN ((((((......)))))) 1.86E-08 0.0104629 

Ptm1727 URYGNGNNNNNNNCNCGUA ((((((.......)))))) 1.86E-08 4.93E-07 

Ptm1773 NYUURRNNNNNNNUUAAGN ((((((.......)))))) 2.01E-08 1.97E-06 

Ptm1810 NNRUUCNGAAUNN (((((...))))) 2.17E-08 8.21E-05 

Ptm1829 NCCGUUCNNNNYGGN ((((.......)))) 2.24E-08 1.20E-06 

Ptm1837 NNNNNGCUUCANNYNNNNN ((((((.......)))))) 2.24E-08 0.175109 

Ptm1882 NNGUNAAGAACNN ((((.....)))) 2.48E-08 1.40E-09 

Ptm1909 NNNNAGCNGGNGYUNNNN (((((((....))))))) 2.61E-08 4.54E-06 

Ptm1910 NNNNANCUNGNGNUNNNN (((((((....))))))) 2.61E-08 2.24E-05 

Ptm1934 NNNNGANGGCNNNNNUYNNNN (((((((.......))))))) 2.68E-08 0.00657004 

Ptm1950 GCNCAGNNNNNNYUGNGY ((((((......)))))) 2.78E-08 3.49E-07 

Ptm1953 GCNNAGNNNNNNYUNNGY (((((((....))))))) 2.80E-08 0.00845982 

Ptm1970 AUUUAUU (.....) 2.86E-08 2.86E-08 

Ptm2002 NNNCGUAAGGNNN ((((.....)))) 2.98E-08 0.00226332 

Ptm2004 NGUAUCCNNNRURYN (((((.....))))) 2.98E-08 3.49E-07 

Ptm2009 NCNCAGNNNNNNYUGNGN (((((((....))))))) 2.98E-08 0.0012397 

Ptm2010 NNYYRGYNNNNGCUGGNN (((((((....))))))) 2.98E-08 2.11E-05 

Ptm2239 NRGYNCGGGCUN ((((....)))) 4.17E-08 1.78E-06 

Ptm2240 NGAUAGGNNNRUYN ((((......)))) 4.17E-08 1.14E-06 

Ptm2279 AGUCGUNGRYU ((((...)))) 4.47E-08 4.47E-08 

Ptm2281 NNYGUNCACACGNN (((((....))))) 4.47E-08 2.99E-05 

Ptm2283 NGRYGNNNNGCCGUCN (((((......))))) 4.47E-08 1.05E-06 

Ptm2284 UGGAACNNNNNNUUYYR (((((.......))))) 4.47E-08 4.47E-08 

Ptm2335 GNGRGNNNNACUCNC (((((.....))))) 4.77E-08 2.85E-06 
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Ptm2405 NNUNAANCCANN (((......))) 5.29E-08 2.05E-05 

Ptm2447 NNGANCCAYNN (((.....))) 5.58E-08 0.194717 

Ptm2454 GCNAGUNNNRYUNGY ((((((...)))))) 5.59E-08 1.31E-06 

Ptm2469 NUCAGNUNNNNYUGRN ((((((....)))))) 5.74E-08 8.01E-05 

Ptm2534 YGGYNNGCGCCG ((((....)))) 6.21E-08 6.21E-08 

Ptm2553 UYGNNUACGA (((....))) 6.33E-08 6.33E-08 

Ptm2597 YGRGUNNNACUCG (((((...))))) 6.71E-08 6.71E-08 

Ptm2600 NNNGGCUGANNYYNNN (((((......))))) 6.71E-08 0.00566673 

Ptm2604 UGCGGGNNNNNNNYYYGYR ((((((.......)))))) 6.71E-08 6.71E-08 

Ptm2698 URNNGGNNNNNNNCCNNUA ((((((.......)))))) 7.61E-08 0.000169706 

Ptm2720 GYGGNAACCGC ((((...)))) 7.83E-08 7.83E-08 

Ptm2751 GUUUGANNNNNNNUYRRRY ((((((.......)))))) 8.05E-08 8.05E-08 

Ptm2843 GYYNGNNNACNGGC (((((....))))) 8.94E-08 7.21E-06 

Ptm2863 GUANUCNNNNGRNURY ((((((....)))))) 9.13E-08 7.38E-07 

Ptm2871 CAAAAC ...... 9.16E-08 9.16E-08 

Ptm2933 NNGGNUACNYYNN ((((.....)))) 1.01E-07 0.000316367 

Ptm2967 ACAUGGNNNNNRUGU ((((.......)))) 1.04E-07 1.04E-07 

Ptm2968 NNNUNNGGGCAANNN ((((.......)))) 1.04E-07 0.0102392 

Ptm3033 GACUACNUY ((.....)) 1.14E-07 1.14E-07 

Ptm3049 GYYGNNNNNUUCGGC ((((.......)))) 1.15E-07 1.15E-07 

Ptm3050 NNNNUGANGUNNUYRNNNN (((((((.....))))))) 1.15E-07 2.47E-05 

Ptm3064 NNUCNGCUNNNNYNGRNN ((((((......)))))) 1.17E-07 0.00544856 

Ptm3065 YYRRUNNNNNNNNNAUUGG (((((((.....))))))) 1.17E-07 6.69E-05 

Ptm3078 CGAUGUNNNNNYRUYG (((((......))))) 1.19E-07 1.19E-07 

Ptm3079 NNRUYNNNNAANGAUNN ((((((.....)))))) 1.19E-07 2.12E-05 

Ptm3102 NNACNAACNNGUNN (((((....))))) 1.22E-07 0.00835425 

Ptm3108 NNNNCGGNAUNNYGNNNN ((((((......)))))) 1.22E-07 0.00251532 

Ptm3146 NGNUACARNYN ((((...)))) 1.26E-07 2.00E-06 

Ptm3150 NNAUAGUUNNNRUNN ((((.......)))) 1.27E-07 0.000659621 

Ptm3163 NNNAGCUGNNGYUNNN ((((((....)))))) 1.28E-07 2.30E-05 

Ptm3209 GRRYRNNNNNAUGUUC (((((......))))) 1.34E-07 1.34E-07 

Ptm3227 UGRNUNAUCA (((....))) 1.36E-07 1.36E-07 

Ptm3296 CGUACUNNNNURYG ((((......)))) 1.43E-07 1.43E-07 

Ptm3359 UGGAUGNNNNNYRUYYR ((((((.....)))))) 1.52E-07 1.52E-07 

Ptm3368 GNRUYNNNNAGAUNC (((((.....))))) 1.53E-07 7.54E-06 

Ptm3378 NUGUAUCNNNURYRN (((((.....))))) 1.55E-07 4.07E-06 

Ptm3391 NNCAUCGUNUGNN ((((.....)))) 1.57E-07 0.000174799 

Ptm3393 NNYGUCNAACGNN (((((...))))) 1.57E-07 0.000232195 

Ptm3489 NAUGANANNNNNNUYRUN ((((((......)))))) 1.70E-07 0.000619992 

Ptm3558 NGUUUUGNRRYN ((((....)))) 1.82E-07 2.29E-06 

Ptm3596 NNURNNCCCUUANN ((((......)))) 1.86E-07 0.000238906 
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Ptm3708 AUCAAGNNNNUGRU ((((......)))) 2.09E-07 2.09E-07 

Ptm3709 YRUYGNNNNNGCGAUG (((((......))))) 2.09E-07 2.09E-07 

Ptm3762 NNAUUCAGNNN ((.......)) 2.17E-07 0.000242812 

Ptm3787 UGGYNNNNNGNGCCA (((((.....))))) 2.23E-07 8.28E-06 

Ptm3830 UGNCNUACA ((.....)) 2.31E-07 2.31E-07 

Ptm3880 NNNACUCCCNUNNN ((((......)))) 2.39E-07 0.0247597 

Ptm3907 YUUYRNNAUGAAG (((((...))))) 2.46E-07 2.46E-07 

Ptm3921 NNGGNNUANACCNN ((((......)))) 2.48E-07 0.000635673 

Ptm3926 NNNNUNNAACUNANNNN (((((.......))))) 2.50E-07 0.056462 

Ptm3981 CGNAUCNNNNNYG (((.......))) 2.61E-07 8.76E-06 

Ptm4080 NNYGUNNNNCCNACGNN (((((.......))))) 2.78E-07 0.000447124 

Ptm4119 CCGGUGNNNYYGG ((((.....)))) 2.86E-07 2.86E-07 

Ptm4197 UGYCNAGCA (((...))) 3.03E-07 3.03E-07 

Ptm4227 CGCGGUNYG ((.....)) 3.11E-07 3.11E-07 

Ptm4238 RUGGYNNNNNGCCAU (((((.....))))) 3.13E-07 3.13E-07 

Ptm4323 GCANGGNNNYYNUGY ((((((...)))))) 3.34E-07 9.20E-06 

Ptm4393 NNCUACCCNGNN (((......))) 3.52E-07 0.000401341 

Ptm4477 NGUNNNAGUUACN (((.......))) 3.76E-07 1.78E-05 

Ptm4479 UACGACNNYGUR ((((....)))) 3.76E-07 3.76E-07 

Ptm4485 NNNAGGACAUNNN ((((.....)))) 3.76E-07 5.19E-05 

Ptm4513 GAUUCUNNNRRUY ((((.....)))) 3.88E-07 3.88E-07 

Ptm4517 UGACNGA (.....) 3.88E-07 3.88E-07 

Ptm4559 RRRNNNGAGUUU (((......))) 3.99E-07 3.99E-07 

Ptm4625 NNGYNANGNGCNN (((((...))))) 4.20E-07 1.59E-06 

Ptm4628 CCCGUAGG ((....)) 4.21E-07 4.21E-07 

Ptm4688 NYUGNNNUCGCAGN ((((......)))) 4.35E-07 9.12E-06 

Ptm4715 NNNUNUGGAANANNN ((((((...)))))) 4.43E-07 7.44E-05 

Ptm4769 RUYUNNNNGGAGAU ((((......)))) 4.59E-07 4.59E-07 

Ptm4834 NGCGGNCNNNNYYGYN ((((((....)))))) 4.78E-07 0.000323415 

Ptm4889 NNAUACAANRUNN ((((.....)))) 4.92E-07 0.00139358 

Ptm4905 YUGYRNNCUGCAG (((((...))))) 4.97E-07 4.97E-07 

Ptm4909 NYUUNCACAAGN ((((....)))) 5.01E-07 4.09E-05 

Ptm4919 NNGGYNNGGNGCCNN (((((.....))))) 5.03E-07 0.000881915 

Ptm4923 NUUUGGCNNNNYYRRRN ((((((.....)))))) 5.03E-07 7.97E-06 

Ptm4928 NNNNNGCGGGCNNNN ((((.......)))) 5.07E-07 0.111492 

Ptm4983 NNNNGCUNGCNNGYNNNN ((((((......)))))) 5.22E-07 0.000349604 

Ptm5069 CAGGGNNNYUG (((.....))) 5.53E-07 5.53E-07 

Ptm5078 NNNNNNGNCCNCYNNNNNN (((((((.....))))))) 5.57E-07 0.0226062 

Ptm5103 NNNNGGCGANNNYYNNNN ((((((......)))))) 5.64E-07 0.345663 

Ptm5171 RUYYGNNNCGGAU (((((...))))) 5.84E-07 5.84E-07 

Ptm5227 NNNNGNNCCGNGCNNNN (((((.......))))) 6.01E-07 0.0282279 
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Ptm5228 UCCAGANNNNGGR (((.......))) 6.03E-07 6.03E-07 

Ptm5254 GYYYNNNCUGGGC ((((.....)))) 6.10E-07 6.10E-07 

Ptm5292 CUUUGGNNYRRRG (((((...))))) 6.20E-07 6.20E-07 

Ptm5409 NGUNNNAAGCACN (((.......))) 6.64E-07 4.50E-05 

Ptm5416 NGCANGGNNNYNUGYN ((((((....)))))) 6.68E-07 0.00033097 

Ptm5562 GYGNGNNNNNCNCGC ((((((...)))))) 7.24E-07 0.00113121 

Ptm5649 NNNNNNAUGAUGNNNNN (((((.......))))) 7.51E-07 1.51E-08 

Ptm5728 NGCGCNNNNNNNGYGYN (((((((...))))))) 7.83E-07 0.0217762 

Ptm5805 NUYUGCAAGAN ((((...)))) 8.14E-07 1.82E-05 

Ptm5827 NNYUYUNNUNAGAGNN ((((((....)))))) 8.29E-07 0.000224327 

Ptm5914 NAUGCGNNNNNYRUN ((((.......)))) 8.71E-07 0.000712759 

Ptm5939 NNNNNGUUACANNNN ((((.......)))) 8.79E-07 0.113111 

Ptm5987 NGRRNUACUUCN ((((....)))) 9.02E-07 4.28E-05 

Ptm6030 GRGNCACCUC (((....))) 9.22E-07 9.22E-07 

Ptm6126 NGGUNNCNCACCN ((((.....)))) 9.69E-07 5.03E-05 

Ptm6152 NCGUNGURYGN ((((...)))) 9.82E-07 2.96E-05 

Ptm6200 GYYRNNNNNAUGGC ((((......)))) 1.01E-06 1.01E-06 

Ptm6217 UNGYRYNNNNGUGCNA ((((((....)))))) 1.02E-06 2.23E-05 

Ptm6261 NYUUYNNNNNAUGAAGN (((((.......))))) 1.04E-06 1.70E-05 

Ptm6302 NNGUCNGNNNNNYNGRYNN (((((((.....))))))) 1.07E-06 0.0174916 

Ptm6345 NCAUCAUNNNRUGN ((((......)))) 1.09E-06 2.64E-05 

Ptm6362 GGYRNGAUGCC ((((...)))) 1.10E-06 1.10E-06 

Ptm6465 NRGRNNNNNCANUCUN (((((......))))) 1.14E-06 0.00259682 

Ptm6488 YRUYRYNNNNNNNGUGAUG ((((((.......)))))) 1.16E-06 1.16E-06 

Ptm6602 GCAUGGNRUGY ((((...)))) 1.22E-06 1.22E-06 

Ptm6650 NNNGAAUUGNYNNN ((((......)))) 1.25E-06 0.220239 

Ptm6693 NNNNAGACNANNN (((.......))) 1.27E-06 6.64E-05 

Ptm6763 NYRUYNNNUGGAUGN (((((.....))))) 1.31E-06 4.68E-05 

Ptm6764 NAGNNCANNNNNNGNNYUN ((((((.......)))))) 1.31E-06 0.0846544 

Ptm6864 CAUGCANNNNNGYRUG (((((......))))) 1.38E-06 1.38E-06 

Ptm6870 NGUNNAANNACN ((((....)))) 1.38E-06 0.0121621 

Ptm6871 NGACCGCUYN (((....))) 1.38E-06 0.000143047 

Ptm6887 NNGGACCACNN (((.....))) 1.39E-06 0.00276236 

Ptm7029 GUGGGGNNNYYYYRY ((((((...)))))) 1.47E-06 1.47E-06 

Ptm7127 AGUCNGNNNNRYU (((.......))) 1.53E-06 1.53E-06 

Ptm7129 YRUGNNNGACAUG ((((.....)))) 1.53E-06 1.53E-06 

Ptm7142 NNGYUNNGGNAGCNN (((((.....))))) 1.54E-06 0.00293888 

Ptm7200 GNCUCNAC (......) 1.57E-06 1.57E-06 

Ptm7359 NNUNCCGUAANN (((......))) 1.70E-06 0.00197858 

Ptm7443 NNGGNNNGNGACCNN ((((.......)))) 1.75E-06 4.54E-06 

Ptm7492 GUGNNNNCAGCAC (((.......))) 1.80E-06 1.80E-06 
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Ptm7495 NNYGNNUACACGNN ((((......)))) 1.80E-06 0.00230365 

Ptm7521 NGUNCGCCACN (((.....))) 1.82E-06 9.80E-05 

Ptm7549 NNNGNNNUGGGNCNNN (((((......))))) 1.84E-06 0.000137082 

Ptm7552 GUUYNNNNAGAAC ((((.....)))) 1.85E-06 1.85E-06 

Ptm7649 UAGGCGNNYUR (((.....))) 1.92E-06 1.92E-06 

Ptm7721 NNNNCAGUUNGNNNN (((((.....))))) 1.97E-06 0.000326218 

Ptm7809 NNNNYRNGANCUGNNNN ((((((.....)))))) 2.03E-06 2.77E-05 

Ptm7810 ANUGGUNNNNNNRYYRNU (((((((....))))))) 2.03E-06 1.15E-07 

Ptm7840 NRGURNNUNUACUN (((((....))))) 2.06E-06 6.20E-05 

Ptm7859 NNNNUGACANYRNNNN ((((((....)))))) 2.08E-06 0.0126455 

Ptm7914 RGRYNNNNNNNANGUCU (((((.......))))) 2.12E-06 6.69E-05 

Ptm7943 GGRNNNNCUCUCC (((.......))) 2.15E-06 2.15E-06 

Ptm7977 NCCUNGGNNNRGGN ((((......)))) 2.17E-06 0.000105933 

Ptm8019 NNGAUGCGNNUYNN ((((......)))) 2.21E-06 0.00283139 

Ptm8124 YGGNGGGCCG (((....))) 2.30E-06 2.30E-06 

Ptm8170 CUNAUUNNNNNNRUNRG (((((.......))))) 2.35E-06 3.87E-05 

Ptm8225 GRGNRRNNNUUNCUC ((((((...)))))) 2.41E-06 4.08E-05 

Ptm8241 CANCCANNNGNUG ((((.....)))) 2.42E-06 0.000188702 

Ptm8259 GRNUGCAUC ((.....)) 2.43E-06 2.43E-06 

Ptm8509 RRGYNNNNCAGCUU ((((......)))) 2.66E-06 2.66E-06 

Ptm8525 NGCAGCANUGYN ((((....)))) 2.67E-06 0.000162666 

Ptm8680 NNGGCNCCNNGYYNN (((((.....))))) 2.82E-06 0.0039588 

Ptm8756 NYRUNRNNUUNAUGN ((((((...)))))) 2.89E-06 0.00778467 

Ptm8941 CGAACNNNNUUYG ((((.....)))) 3.07E-06 3.07E-06 

Ptm8962 GUUAUUNNRRY (((.....))) 3.10E-06 3.10E-06 

Ptm9227 NAGNCUANNNNNYUN ((((.......)))) 3.38E-06 1.04E-05 

Ptm9289 NNACNGGUNNNGUNN ((((.......)))) 3.45E-06 0.00815134 

Ptm9336 NNANUUNGNNNNNRRNUNN (((((((.....))))))) 3.51E-06 0.000608797 

Ptm9505 GGNNCCGCCC ((......)) 3.71E-06 3.71E-06 

Ptm9518 RYYUYNNNNNNGAGGU ((((((....)))))) 3.73E-06 0.000212367 

Ptm9559 NNCUGGGUGNN (((.....))) 3.78E-06 0.0131605 

Ptm9654 YUUNGGCAAG (((....))) 3.90E-06 3.90E-06 

Ptm9676 YUGAGCAG ((....)) 3.93E-06 3.93E-06 

Ptm9692 UUCGCCNGRR (((....))) 3.95E-06 3.95E-06 

Ptm9710 NCGGACCNGN ((......)) 3.97E-06 0.000174403 

Ptm9751 NGGUCGCNNNRYYN ((((......)))) 4.01E-06 0.000143025 

Ptm9755 ANCGNGNNYGNU ((((....)))) 4.01E-06 0.00015403 

Ptm9862 NGAGGACYUYN ((((...)))) 4.18E-06 0.000154959 

Ptm9912 NNRNGGNNUCCNUNN ((((((...)))))) 4.28E-06 0.194017 

Ptm9966 NNGGAUAANNYYNN ((((......)))) 4.36E-06 0.0037179 

Ptm10028 RGUGNNNNCCACU ((((.....)))) 4.46E-06 4.46E-06 
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Ptm10064 AUNCGNNNNYGNRU (((((....))))) 4.51E-06 0.00132031 

Ptm10308 NGGACAUNNNNUYYN ((((.......)))) 4.83E-06 0.000113459 

Ptm10419 RUYNUCCGAU (((....))) 5.03E-06 5.03E-06 

Ptm10430 NCAAUGANUGN (((.....))) 5.05E-06 0.000183325 

Ptm10436 GYGAGACGC (((...))) 5.06E-06 5.06E-06 

Ptm10471 GNUGCANNNNNUGYRNY ((((((.....)))))) 5.10E-06 1.59E-08 

Ptm10472 UCGGCCNNNNYGR (((.......))) 5.10E-06 5.10E-06 

Ptm10555 CGNCCGNGNYG ((((...)))) 5.26E-06 0.00030061 

Ptm10574 YGGCCACCG (((...))) 5.30E-06 5.30E-06 

Ptm10592 NNUNUGGUCANN (((......))) 5.32E-06 0.012096 

Ptm10871 NNNNGRRNNNNANNUUCNNNN (((((((.......))))))) 5.72E-06 0.0547071 

Ptm10877 GUYNNNNGUGGAC (((.......))) 5.74E-06 5.74E-06 

Ptm10978 YUNGNNGGCNAG ((((....)))) 5.90E-06 0.000159964 

Ptm11049 NCCGNCUNNYGGN ((((.....)))) 6.02E-06 0.000263417 

Ptm11124 GYYRYNNNGGUGGC (((((....))))) 6.12E-06 6.12E-06 

Ptm11132 NYGNNNUCCCCGN (((.......))) 6.14E-06 0.000486648 

Ptm11205 GGAUNNNNNNNNNNNNNRUYY (((((((.......))))))) 6.26E-06 0.000331528 

Ptm11529 CUGGCUNYRG (((....))) 6.85E-06 6.85E-06 

Ptm11628 GRRUNNNCNAUUC ((((.....)))) 7.04E-06 7.04E-06 

Ptm11636 NNNNNNNNNCCCGNNNNNN ((((((.......)))))) 7.06E-06 0.00926905 

Ptm11698 GRYYNNGGGUC ((((...)))) 7.20E-06 7.20E-06 

Ptm11997 NYYRNYNNNNNNAGNUGGN ((((((.......)))))) 7.75E-06 0.00780217 

Ptm12076 NGYNNUNNNNNCANNGCN ((((((......)))))) 7.92E-06 0.39183 

Ptm12102 NNNNGRNANNAUCNNNN ((((((.....)))))) 7.97E-06 0.000565038 

Ptm12122 NUGYNNNGCAGCAN ((((......)))) 8.02E-06 0.000394556 

Ptm12343 NNNGUCNGANRYNNN (((((.....))))) 8.50E-06 4.11E-05 

Ptm12496 GUUNNNNNGNNAAC (((((....))))) 8.85E-06 6.72E-05 

Ptm12558 NNNNGAGNNGNYUYNNNN (((((((....))))))) 8.95E-06 0.00022996 

Ptm12631 YNGNNNUGCCNG (((......))) 9.10E-06 3.45E-08 

Ptm12697 AGACGGNNU (.......) 9.27E-06 9.27E-06 

Ptm12831 NGCUNUUNNNRNRGYN ((((((....)))))) 9.52E-06 0.00848764 

Ptm12841 GYUYNNNNAGGAGC ((((......)))) 9.56E-06 9.56E-06 

Ptm12948 UUGUUGNNNNNNNYRRYRR (((((((.....))))))) 9.80E-06 0.000306094 

Ptm12969 GYRRGNNNCUUGC (((((...))))) 9.84E-06 9.84E-06 

Ptm13050 NYNGAUACNGN ((((...)))) 1.00E-05 0.000196313 

Ptm13101 CGUGCUNNNNNYRYG ((((.......)))) 1.01E-05 1.01E-05 

Ptm13118 NNRYNAACAGUNN ((((.....)))) 1.02E-05 0.0156895 

Ptm13506 YGUNNNNGUCACG (((.......))) 1.12E-05 1.12E-05 

Ptm13522 AACNUANNNNGUU (((.......))) 1.12E-05 1.12E-05 

Ptm13677 NNNGAACUNUYNNN (((((....))))) 1.17E-05 0.188556 

Ptm13701 NNNNUCNAGURNNNN (((((.....))))) 1.17E-05 0.438242 
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Ptm13749 GACAACC (.....) 1.19E-05 1.19E-05 

Ptm13832 NAACAUGUUN (((....))) 1.21E-05 0.000352276 

Ptm14266 NGGUCAANYYN (((.....))) 1.31E-05 0.00053539 

Ptm14286 NGGANUCNNUYYN (((((...))))) 1.32E-05 0.0139244 

Ptm14482 NUYRNCAUUGAN ((((....)))) 1.38E-05 0.000442055 

Ptm14520 GYNNAGAAGC ((......)) 1.39E-05 1.39E-05 

Ptm14585 NCNAGNCUNGN ((((...)))) 1.41E-05 0.000249175 

Ptm14648 NNNAUNAGGNNUNNN ((((.......)))) 1.43E-05 0.0183699 

Ptm14683 NGCACUANNNGYN (((.......))) 1.44E-05 0.000342053 

Ptm14703 NNGGUNNCNNNNNRYYNN (((((((....))))))) 1.44E-05 0.0345405 

Ptm14755 NNURNNNGUCNUANN ((((.......)))) 1.46E-05 0.0203366 

Ptm14907 CAUGACRUG (((...))) 1.51E-05 1.51E-05 

Ptm14967 NYYNRYNNNNNCGUNGGN ((((((......)))))) 1.52E-05 0.00704939 

Ptm15195 NGAUCCNRUYN ((((...)))) 1.59E-05 0.000563353 

Ptm15269 NNYGUNNNNNCNNACGNN ((((((......)))))) 1.61E-05 0.046329 

Ptm15402 NNGNNCAGCGCNN (((.......))) 1.65E-05 0.022509 

Ptm15491 NNNGYRNNNNNGGUGCNNN ((((((.......)))))) 1.68E-05 0.034878 

Ptm15495 GYRRNCUUUGC ((((...)))) 1.68E-05 1.68E-05 

Ptm15588 YGNUNGAANCG ((((...)))) 1.70E-05 0.000693173 

Ptm15706 AAGGCNYUU (((...))) 1.73E-05 1.73E-05 

Ptm15809 ACUUNANNNRRGU ((((.....)))) 1.78E-05 1.78E-05 

Ptm15823 NURRYNANGUUAN (((((...))))) 1.78E-05 0.000617086 

Ptm15869 GUCGCANNNNGRY (((.......))) 1.79E-05 1.79E-05 

Ptm15987 NUGGACNNNNUYYRN (((((.....))))) 1.83E-05 4.20E-07 

Ptm15998 NUNCCGNCAN ((......)) 1.84E-05 0.00196215 

Ptm16101 NNACUUCANNUNN (((.......))) 1.87E-05 0.0719592 

Ptm16121 NNNNGAUUACNNN (((.......))) 1.87E-05 0.000141372 

Ptm16238 UANGACNNNNYNUR ((((......)))) 1.91E-05 0.000839546 

Ptm16614 NNRRNNNUGGAUUNN ((((.......)))) 2.06E-05 0.0189975 

Ptm16983 NNGUANCGNURYNN (((((....))))) 2.19E-05 0.0159233 

Ptm17098 AGCAGNNUGYU ((((...)))) 2.23E-05 2.23E-05 

Ptm17183 GYYNYYNNNNNNGGNGGC ((((((......)))))) 2.27E-05 0.000650286 

Ptm17203 NNYRNNNCAACUGNN ((((.......)))) 2.27E-05 0.0441853 

Ptm17349 NNNNNNUCUGNUNNNNN (((((.......))))) 2.33E-05 0.516376 

Ptm17370 AUCUCGRU ((....)) 2.33E-05 2.33E-05 

Ptm17476 AGUACANRYU (((....))) 2.38E-05 2.38E-05 

Ptm17656 UGYACGGCA (((...))) 2.45E-05 2.45E-05 

Ptm17670 NNNAANCNAUUNNN (((((....))))) 2.46E-05 0.159815 

Ptm17727 NNNANAGCCNNUNNN ((((.......)))) 2.48E-05 0.0304499 

Ptm17771 NCUGGCANNRGN (((......))) 2.50E-05 0.00110732 

Ptm17941 NNUUNNNGCGNAANN ((((.......)))) 2.58E-05 0.0302369 
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Ptm17945 NNNYYNGGUNGGNNN (((((.....))))) 2.58E-05 0.0639509 

Ptm17951 NNACANCAGUNN ((((....)))) 2.58E-05 0.0522543 

Ptm18023 GGYNUANGCC (((....))) 2.61E-05 2.61E-05 

Ptm18026 NCAGGCNNNNYUGN ((((......)))) 2.61E-05 0.000754074 

Ptm18467 AGGCNGNNNGYYU ((((.....)))) 2.80E-05 2.80E-05 

Ptm18494 GCCUNUNNNNNRGGY ((((.......)))) 2.81E-05 2.81E-05 

Ptm18807 UNNAAGNNNNNNNYUUNNR ((((((.......)))))) 2.95E-05 0.0291851 

Ptm18974 GAAUUANNNNUUY (((.......))) 3.03E-05 3.03E-05 

Ptm19174 GUYRNNNNNAUGAC ((((......)))) 3.13E-05 3.13E-05 

Ptm19396 NNNNNRYNNNNANGGUNNNNN (((((((.......))))))) 3.23E-05 0.00321787 

Ptm19412 NAUGGCANRUN (((.....))) 3.24E-05 0.00105029 

Ptm19445 GURNNNNCANUAC ((((.....)))) 3.25E-05 0.000892911 

Ptm19544 NCNGAGCNNNNYNGN ((((.......)))) 3.30E-05 0.0406554 

Ptm19642 NUYNNGCGGGAN (((......))) 3.36E-05 0.00135465 

Ptm19982 NNYUNYNNNGNGNAGNN (((((((...))))))) 3.51E-05 0.0480054 

Ptm19983 NUAGUUGNNURN (((......))) 3.52E-05 0.00113791 

Ptm20057 URNCUACUA ((.....)) 3.56E-05 3.56E-05 

Ptm20588 NUGGUUCYYRN ((((...)))) 3.84E-05 5.93E-07 

Ptm20807 NUYNAGGUGAN (((.....))) 3.94E-05 0.00150963 

Ptm20879 NNRNAAGUCUNN (((......))) 3.98E-05 0.0332516 

Ptm20955 NNYGNAUCCGNN ((((....)))) 4.03E-05 0.0395853 

Ptm21104 GGNNNUAUUCC ((.......)) 4.12E-05 4.12E-05 

Ptm21126 ACAGGCNNGU ((......)) 4.13E-05 4.13E-05 

Ptm21293 NNNCNCAGCNNN (((......))) 4.23E-05 4.89E-07 

Ptm21328 NUUGCNNNNNNNNNNNGYRRN (((((((.......))))))) 4.24E-05 7.18E-05 

Ptm21454 YYRUNNNANAUGG (((((...))))) 4.33E-05 8.12E-07 

Ptm21561 GRRNNNAAGUUC (((......))) 4.39E-05 4.39E-05 

Ptm21745 NNGGUGCGNNNYYNN ((((.......)))) 4.49E-05 0.000836763 

Ptm22145 NNNAANAANNNNUNUUNNN (((((((.....))))))) 4.74E-05 0.0610512 
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Supplementary Table 9-2. Predicted motifs that are supported by analysis of previously published 

microarray/RNA-seq data or by microarray analysis of chemical perturbations reported in this study 

– The structure of a motif is shown only when the p-value of conservation is better with the structure 

compared to the sequence alone. Otherwise, the motif is shown as a linear sequence. 

Motif Sequence/structure 

Conservation 
p-value 

(sequence and 

structure) 

Conservation 
p-value 

(sequence 

only) 

Notes 

Ptm1  2.12×10-29 2.12×10-29 

• Known binding site for cycling 
sequence-binding proteins 

• Up-regulated in stationary-phase PF 
• Co-regulated across different 

experiments 

Ptm13  1.43×10-19 1.43×10-19 
• Down-regulated in stationary-phase 

PF 
• Co-regulated across different 

experiments 

Ptm15  1.64×10-18 1.64×10-18 

• Up-regulated in stumpy BF 
• Down-regulated in EtBr-treated PF 
• Up-regulated in HCl-treated PF 
• Co-regulated across different 

experiments 

Ptm17  3.65×10-18 3.65×10-18 

• Down-regulated in stumpy BF 
• Up-regulated in stationary-phase PF 
• Up-regulated in PARN1-

overexpressing PF 
• Up-regulated in EtBr-treated PF 
• Down-regulated in HCl-treated PF 
• Down-regulated in verapamil-treated 

PF 
• Co-regulated across different 

experiments 

Ptm23  1.06×10-17 1.06×10-17 

• Up-regulated in slender BF 
• Down-regulated in stationary-phase 

PF 
• Down-regulated in PARN1-

overexpressing PF 
• Down-regulated in EtBr-treated PF 
• Up-regulated in HCl-treated PF 
• Co-regulated across different 

experiments 

Ptm25  3.95×10-17 3.95×10-17 

• Up-regulated in HCl-treated PF 
• Co-regulated across different 

experiments 
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Ptm39  5.02×10-16 5.02×10-16 

• Down-regulated in stationary-phase 
PF 

• Down-regulated in PARN1-
overexpressing PF 

• Down-regulated in DHH1-
overexpressing PF 

• Down-regulated in EtBr-treated PF 
• Up-regulated in DMSO-treated PF 
• Up-regulated in HCl-treated PF 
• Down-regulated in hygromycin-

treated PF 
• Co-regulated across different 

experiments 

Ptm80 
 

9.42×10-14 9.54×10-07 

• Down-regulated in PARN1-
overexpressing PF 

• Down-regulated in EtBr-treated PF 
• Up-regulated in HCl-treated PF 
• Co-regulated across different 

experiments 

Ptm127  1.24×10-12 1.24×10-12 

• Down-regulated in DHH1-
overexpressing PF 

• Down-regulated in mutant DHH1-
expressing PF 

• Up-regulated in NaOH-treated PF 
• Co-regulated across different 

experiments 

Ptm176  4.81×10-12 4.81×10-12 • Co-regulated across different 
experiments 

Ptm234 
 

2.12×10-11 6.33×10-09 
• Down-regulated in in vitro-cultured 

BF 
• Co-regulated across different 

experiments 

Ptm360  1.07×10-10 1.07×10-10 
• Down-regulated in stationary-phase 

PF 
• Co-regulated across different 

experiments 

Ptm509 
 

3.53×10-10 0.002543 • Co-regulated across different 
experiments 

Ptm580  5.46×10-10 5.46×10-10 • Down-regulated in stationary-phase 
PF 

Ptm1374 
 

9.19×10-09 0.000425 

• Up-regulated in DHH1-
overexpressing PF 

 

 

 

 



 209 

Ptm1970  2.86×10-08 2.86×10-08 

• Down-regulated in stumpy and 
slender BF 

• Up-regulated in stationary-phase PF 
• Up-regulated in PARN1-

overexpressing PF 
• Up-regulated in DHH1-

overexpressing PF 
• Up-regulated in EtBr-treated PF 
• Down-regulated in DMSO-treated 

PF 
• Down-regulated in HCl-treated PF 
• Down-regulated in verapamil-treated 

PF 
• Co-regulated across different 

experiments 

Ptm2405 
 

5.29×10-08 2.05×10-05 • Down-regulated in slender vs. 
stumpy BF 

Ptm2447 
 

5.58×10-08 0.194717 • Down-regulated in hygromycin-
treated PF 

Ptm3907  2.46×10-07 2.46×10-07 

• Down-regulated in stationary-phase 
PF 

• Up-regulated in mutant DHH1-
expressing PF 

• Down-regulated in DMSO-treated 
PF 

• Co-regulated across different 
experiments 

Ptm3981 
 

2.61×10-07 8.76×10-06 • Co-regulated across different 
experiments 

Ptm4905  4.97×10-07 4.97×10-07 • Up-regulated in verapamil-treated 
PF 

Ptm5069  5.53×10-07 5.53×10-07 • Co-regulated across different 
experiments 

Ptm6152 
 

9.82×10-07 2.96×10-05 • Up-regulated in verapamil-treated 
PF 

Ptm7127  1.53×10-06 1.53×10-06 • Co-regulated across different 
experiments 

Ptm7200  1.57×10-06 1.57×10-06 • Up-regulated in HCl-treated PF 

Ptm7840 
 

2.06×10-06 6.20×10-05 
• Down-regulated in slender vs. 

stumpy BF 
• Co-regulated across different 

experiments 
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Ptm9676  3.93×10-06 3.93×10-06 • Co-regulated across different 
experiments 

Ptm9692  3.95×10-06 3.95×10-06 • Co-regulated across different 
experiments 

Ptm9755 
 

4.01×10-06 0.000154 
• Down-regulated in Alba3/4 RNAi in 

PF 
• Co-regulated across different 

experiments 

Ptm9912 
 

4.28×10-06 0.194017 • Down-regulated in DHH1-
overexpressing PF 

Ptm12631  9.10×10-06 3.45×10-08 • Down-regulated in stationary-phase 
PF 

Ptm15495  1.68×10-05 1.68×10-05 
• Up-regulated in slender BF 
• Co-regulated across different 

experiments 

Ptm20879 
 

3.98×10-05 0.033252 • Up-regulated in Alba3/4 RNAi in PF 

Ptm21328 
 

4.24×10-05 7.18×10-05 • Up-regulated in NaOH-treated PF 

Ptm22145 
 

4.74×10-05 0.061051 
• Up-regulated in stationary-phase PF 
• Co-regulated across different 

experiments 
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9.6 Supplementary Figures 

 

 

 

 

Supplementary Figure 9-1. Finding motifs with high network-level conservation – COSMOS 

(Conserved Structural Motif Search tool) uses a binomial distribution-based statistical framework in order 

to identify motifs that are highly conserved at network level, i.e. motifs that correspond to the binding sites 

of conserved trans-regulatory factors with conserved regulatory networks (top of the figure). Given a 

particular motif with sequence/structure information, COSMOS estimates the probability of occurrence of 

the motif in a regulatory region in each organism (p1, p2 and p3), and then uses them to predict the 

probability (p) of observing a “keeper” (shown by the check marks), i.e. an ortholog group in which all 

genes contain at least one instance of that motif in their regulatory region. Then, using the binomial 

distribution, COSMOS estimates the probability of the observed number of motifs under the null hypothesis 

of random motif distribution. Small probability values correspond to motifs that are highly conserved at 

network level. 
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Supplementary Figure 9-2. Regulatory modules in T. brucei. We identified 60 positive interactions and 

one negative interaction among 46 predicted conserved motifs in T. brucei. For each pair of motifs, 

functional interaction was identified based on the extent of overlap/exclusiveness of their carrier transcripts. 

The overlap of target genes was measured by hypergeometric distribution at Bonferroni-corrected p-value 

cutoff of 0.025. In this figure, red edges indicate positive interactions (significant overlap between the target 

sets of two motifs) and the blue edge represents negative interaction (an exclusive pair of motif). The 

overlap/exclusion p-value is shown by the thickness of the edges, with more significant interactions 

represented by thicker edges. The node size represents the number of functional interactions (degree) for 

each motif. Green nodes stand for motifs that were validated in this study based on previous expression data 

or based on microarray analysis of chemical perturbations. 
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Supplementary Figure 9-3. Expression profiling of chemical perturbations in T. brucei – Each row 

represents one gene, and each column one experiment. Columns are normalized to have an average of 0 and 

standard deviation of 1. Yellow and blue represent up- and down-regulation, respectively. For visualization 

purposes, genes with missing values are not shown here. Missing values were because of low signal-to-

noise ratio and, thus, unreliable measurements in all probes corresponding to a gene. 
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10 Concluding remarks and future directions 

As I write this last chapter of my thesis, 1738 complete genome sequences are available 

on NCBI [342], 468 genomes are in the assembly stage, 707 genomes are being 

sequenced, and UniProtKB [343] holds over 17,000,000 protein entries, of which more 

than 5,000,000 are simply named “Uncharacterized protein”. How are we going to deal 

with this massive amount of data? Computational methods to analyze and annotate 

nucleotide and protein sequences are now far behind the rapidly growing mass of 

sequence data, and methods to extract knowledge are even scarcer. The focus of my thesis 

has been on new methods for functional annotation of nucleotide and protein sequences. 

We have developed several methods that can predict the functions of genes based on their 

coding and translated sequences, as well as based on the sequences of their regulatory 

regions. These methods are aimed to be “homology-independent”, meaning that they can 

functionally annotate non-conserved genes. We have applied these methods to annotate 

uncharacterized proteins of Trypanosoma brucei, a parasite that causes the devastating 

human African trypanosomiasis and takes tens of thousands of victims every year: just in 

the year 2008, the first year of my PhD studies, 48000 people died of African 

trypanosomiasis [344]. 

Availability of the genome sequences of trypanosomatids [25-29], including T. brucei, 

has transformed the research on the rather neglected diseases that they create. At this 

moment, there are more than 600 scholarly articles and books that have cited the genome 

sequence of T. brucei, clearly showing the extent to which researchers are using these 

data to explore the biology of this parasite. Recently, high-throughput techniques for 

genome-wide identification of essential genes in T. brucei have been in the spotlight 

[345], which may prove the next major leap towards identification of drug targets and 

development of new therapeutics. Yet, we do not know the function of the majority of 

trypanosomatid proteins, and until we do, our options for drug targets are limited. 

This thesis has described a summary of our efforts towards functional characterization of 

T. brucei genes and proteins, and towards understanding how they are regulated within 

the cell. The scarcity of functional genomics data made us explore different possibilities, 
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such as using codon usage for function prediction, identification of function-specific 

regulatory elements without using expression data, and finding conserved regulatory 

programs when regulatory regions cannot be aligned. These developments have provided 

the material for creating a computational pipeline that enables us to functionally annotate 

genomes using the concept of homology-independent sequence-based annotation. The 

integration of different methods and conceptual advances that are presented in this thesis 

will be the next natural step towards building this computational pipeline. For example, 

Bayesian networks can provide suitable frameworks for integration of different 

computational methods. They have been previously used for integration of different 

datasets in order to predict protein-protein interactions [81], and we have also 

successfully used them to integrate codon usage and function-specific cis-regulatory 

elements in order to predict gene function [30]. As we proposed in Chapter 7, this 

framework should ideally create an automated pipeline for annotation of any newly 

sequenced genome. 

In addition to development of new computational tools, there is an obvious need for more 

comprehensive functional genomics data of T. brucei, i.e. data that uncover dynamic 

aspects of gene function in the cell, such as transcriptome and proteome profiles across 

different conditions as well as protein and genetic interaction networks. In Chapter 8 of 

this thesis, we analyzed the available gene expression datasets of T. brucei and L. 

infantum, and demonstrated the conserved co-expression of functionally linked genes in 

trypanosomatids. However, the co-expression network that we obtained was far from 

complete, and could only partially uncover functional relationships among genes. The 

low coverage of this network primarily stemmed from the very small number of 

expression datasets that were available at the time: we used 17 expression datasets, of 

which eight seemed to provide little useful information about functional linkages. 

Identification of co-expressed genes from such a small number of datasets is a 

challenging task, and results are often noisy and unreliable. Similar studies of co-

expression networks in organisms such as mouse, yeast and human [295, 346, 347] have 

used hundreds of genome-wide expression profiles, and researchers have even gone 

farther and have combined the data across multiple species to obtain a global view of 

conserved genetic modules [283].  
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Currently, the number of available non-redundant expression datasets of T. brucei has 

grown to about 25, a moderate growth compared to the 17 datasets that were available in 

2010. Furthermore, except for a very few, almost all these datasets have examined the 

developmental gene regulation in T. brucei, ignoring gene regulation within a life stage in 

response to environmental and internal stimuli. Our microarray analysis of chemical 

perturbations, presented in Chapter 9, clearly showed that T. brucei transcriptome 

remodels extensively upon perturbation of pathways and biological processes. Thus, a 

comprehensive analysis of different perturbations may prove very useful in identifying 

genetic modules and, subsequently, functionally related genes. For this purpose, one can 

use a wide spectrum of chemicals to perturb different biological processes, each 

perturbation triggering a specific transcriptome response, which will eventually reveal 

sets of co-regulated genes. This approach has been successfully used in the past to 

identify sets of co-regulated genes in yeast [347]. 

A complementary approach is to identify epistatic interactions among genes. Genes that 

are in the same pathway, in the same protein complex, or in parallel pathways often have 

genetic interactions, meaning that the function or effect of one gene depends upon or is 

modified by the function of another gene. Genetic interactions can be used to identify 

functional linkages among genes, leading to identification of pathways and biological 

modules [348]. Furthermore, changes that occur in genetic interactions, as a result of 

environmental modifications, are highly informative about the functions of genes [349]. 

Genetic interactions are conventionally reconstructed by analysis of a large number of 

double knockout/knockdown strains, with the aim of identifying pairs of genes whose 

double inhibition results in a phenotype that is significantly stronger or weaker than 

would be expected based on combined phenotypes of single gene inhibitions. In T. brucei, 

we have the unique opportunity of using the RNAi machinery for efficient inhibition of 

genes. Double gene inhibition can be easily achieved in this organism by using chimerical 

RNAi constructs that carry fragments from two different genes [350], making it possible 

to conduct focused genetic interaction studies in T. brucei. Also, combining high-

throughput sequencing with double RNAi libraries may provide us with necessary tools to 

construct a genome-wide genetic interaction map of T. brucei, which will lead us to a 

global picture of gene functions in this organism. A recent study has used high-
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throughput sequencing for massively parallel phenotyping of single RNAi libraries [345]. 

With minor modifications, the same approach can be adapted for massively parallel 

phenotyping of highly complex double RNAi libraries, especially that high-throughput 

sequencing technologies allow paired-end sequencing of DNA fragments. 

Lastly, I believe that the key to understanding the behavior of trypanosomatids is in 

understanding the mechanisms they use to regulate their genes and biological processes. 

T. brucei genome contains more than 220 RNA-binding proteins (RBPs), suggesting the 

presence of a complex post-transcriptional network in this parasite. Our computational 

analysis of conserved regulatory programs, as presented in Chapter 9, revealed potential 

cis- and trans-acting regulatory factors in this organism. However, this was just a first 

step towards characterization of the gene regulatory network of T. brucei, and should be 

followed by extensive experimental characterization of the many uncharacterized RNA-

binding proteins. Again, RNAi provides a unique opportunity for deciphering the 

regulatory code in T. brucei. Previously, it has been shown that RNAi-mediated inhibition 

of trans-acting post-transcriptional regulatory proteins has a measurable effect on the 

level of their target mRNAs [351]. Therefore, comprehensive RNAi-mediated inhibition 

of known and predicted RBPs followed by transcriptome profiling (e.g. using 

microarrays) can be used to identify the targets of RBPs, as well as to understand the 

stabilizing or destabilizing effect of the RBPs on their target transcripts. This is in 

contrast to alternative approaches such as RIP-chip and CLIP-seq [352, 353], which 

identify only the binding targets and not the effect of the RBPs on their targets. Such a 

comprehensive analysis of RBPs will also contribute significantly to prediction of gene 

functions in T. brucei, as we expect functionally linked genes to be regulated by a 

common set of regulatory elements [3]. 
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11 Contribution to knowledge 

This thesis presents a battery of novel computational and experimental approaches in 

order to discover the functions of uncharacterized genes, as well as to identify the 

regulatory mechanisms that regulate genes and pathways. We have applied these methods 

to characterize the functions and regulatory codes of genes in the parasitic protozoan 

Trypanosoma brucei. However, the methods that are presented here are not limited to this 

organism, and can be used to functionally characterize coding and non-coding sequences 

of all organisms. Accordingly, the contribution of this thesis to knowledge can be 

summarized as the following: 

1. Discovering a novel role for codon usage in dynamic regulation of protein 

expression; 

2. Introducing novel computational methods for sequence-based homology-

independent prediction of biological processes and pathways as well as protein 

molecular functions; 

3. Discovering the biological processes and pathways of more than 100 previously 

uncharacterized T. brucei genes; 

4. Discovering the molecular functions of more than 2600 previously 

uncharacterized T. brucei proteins; 

5. Introducing novel computational methods for global characterization of conserved 

post-transcriptional regulatory programs; 

6. Discovering and characterizing 35 novel cis-regulatory elements and four novel 

trans-regulatory elements in T. brucei. 
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