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The Synthesis of Smooth Trajectories for 
Pick-and-Place Operations 

JORGE ANGELES, ANDREAS ALIVIZATOS 
AND PAUL J.  ZSOMBOR-MURRAY 

Ahtruct -A spline-based method of programming smooth trajctories 
for pick-and-place operations is introduced. Unlike continuous-path oper- 
ation*, which impose a unique Cartesian trajectoq, an infinite number of 
5niooth trajectories can be described between any given pick and its 
corresponding place configuration. The method presented here allows one 
the construction of a unique C2 -continuous pick-and-place trajectory with 
attractive features. The method begins with the mapping of the pick and 
the place configurations in Cartesian space into joint-coordinate space, 
using a general-purpose inverse kinematics package that handles singulari- 
tie* and redundancies. Next, a trajectory, composed of a C’-continuous, 
periodic cubic 5pline segment, is defined between the pick and the place 
configurations in the joint-coordinate space. It is demonstrated that 
C? -continuity will prevail in Cartesian space as well. The software imple- 
menting this method includes a graphics package, to render and animate 
the robot motion display, as well as an interface to an off-line program- 
niing system to realize the synthesis of the actual robot motion. Finally, 
details of the procedure are illustrated with a numerical example applied to 
a commercial industrial robot. 

I. INTRODUCTION 
Industrial robots are frequently used in manufacturing for 

pick-and-place operations (P&PO), e.g. in workpiece palletizing, 
machine-tool serving and assembly operations. The replacement 
of teach-mode programmed P&PO with computer-programmed 
operations is increasing. Teach mode is inaccurate and expensive. 
It often separates the robot from the production line for several 
weeks. Therefore, the expenditure of considerable effort to de- 
velop efficient methods for computer-programmed operations is 
quite understandable. Computer-programmed methods fall within 
the realm of trajectory planning, a subject of considerable inter- 
est [l],  [2]. The approach introduced in the foregoing references is 
one of defining piecewise interpolation polynomials over wide 
ranges of motion to represent the joint displacement functions of 
the manipulator. This approach, used by Shahinpoor and Abdel- 
Rahman [3] to synthesize third-and fourth-order polynomials, 
requires the solution of up to nine simultaneous linear equations. 
The problem of trajectory planning, as it pertains to P&PO, has 
been addressed by Brooks [4], who considered the problem of 
obstacle avoidance, by introducing the concept of freeways in 
both the Cartesian- and the joint-coordinate space, while avoid- 
ing the difficulties entailed by the find-path method proposed by 
Lozano-Perez [ 5 ] .  Proposed in this paper is an alternate approach 
to trajectory planning that is suited to P&PO. It is based on the 
concept of spline synthesis introduced in [6] and produces smooth 
trajectories in both the joint- and the Cartesian-coordinate space, 
whle considering end kinematic smoothness constraints. The 
method requires only two kinematic inversions, one at each end 
of the two prescribed end positions-the pick and the place 
positions. Since the programming takes place at the joint-coordi- 
nate level, and feasible mappings of obstacles into the joint-coor- 
dinate space are still under research, collisions are avoided by the 
introduction of a graphic display of the Cartesian trajectory, 
which is done using a graphics package for robot-motion anima- 
tion (71. 
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The reason why cubic spline functions are used here is mani- 
fold. First, the problem of producing a smooth motion between 
two specified positions of a body at rest is an old one, that has 
been studied extensively in connection with cam-follower mecha- 
nisms [SI. The usual approach to the synthesis of a smooth 
motion between two dwell positions of the follower in this type 
of mechanisms has been to resort to simple formulae for harmonic, 
cycloidal or polynomial motions. The drawback of the first two 
of those motion types is that they bear a very limited number of 
parameters allowing one to meet end conditions on position, 
velocity and acceleration. For instance, harmonic motions allow 
only for two parameters, namely, the amplitude and the phase, 
thereby making it impossible to satisfy conditions of zero velocity 
and acceleration at the end points. Cycloidal motions also con- 
tain two parameters, but have the property of allowing to meet 
end conditions of vanishing of both velocity and accelerations. 
Polynomial motions are defined as a single polynomial of degree 
n ,  on the independent variable- the angle of rotation of the cam 
disk in this case, thereby introducing up to n + 1 coefficients, 
which thus allow one to meet up to n + 1 independent conditions. 
This is a very attractive feature of polynomial motions, but the 
numerical problem of computing the aforementioned coefficients 
is very unstable (see, e.g., [9], for a discussion of this issue), as n 
increases. This drawback of polynomial-interpolation methods is 
the reason why current interpolation schemes are based on piece- 
wise polynomials of a rather low degree, which takes us naturally 
into the realm of splines. In fact, spline functions have been 
successfully applied in the optimization of cam mechanisms [lo]. 
Surprisingly, spline functions are not very popular in the domain 
of robot motion planning. In fact, the only references that the 
authors could find in this respect were [ll], [12]. However, the 
method proposed in the first of the aforementioned references is 
different from the one proposed here. Indeed, Edwall, Pottinger 
and Ho use cubic/quartic splines whereas the method proposed 
here requires only cubic splines, thereby reducing the computa- 
tional burden. Moreover, Edwall et al. require solving a system 
of equations every time they plan a trajectory. With the present 
method, no equation solving is required, for the trajectory is 
synthesized from scaling of a suitably defined normal spline. 
Furthermore, the said authors treated only positioning, whereas 
both positioning and orientation are treated here. On the other 
hand, Ein and Chang used a combination of X- and quartic 
splines to interpolate a trajectory in the Cartesian space. This 
requires, clearly, a kinematic inversion at each trajectory point, 
which, together with the nature of splines they used, amounts to a 
substantial increase in the underlying algorithm’s computational 
complexity. 

Finally, the synthesized trajectory is realized on an actiial 
robot using an interface to an off-line programming system [13]. 
This interface is so designed that the user receives a failure 
message whenever the synthesized trajectory violates the position 
and speed limits on the joint motions. Moreover, for given 
trajectory and robot data, the interface computes the minimum 
time that is physically possible, given the joint-rate limits. 

11. PROBLEM FORMULATION 
Let the n joint coordinates of any given robot manipulator be 

the components of the n-dimensional vector 0 and let the Carte- 
sian coordinates be components of vector x. Note that, contrary 
to the common practice of defining x as a six-dimensional vector 
for the most general case of three-dimensional rigid-body mo- 
tions, a seven-dimensional vector representation is adopted, whlch 
is numerically more stable than its six-dimensional counterpart. 
In fact, the rotation of a rigid body in three-dimensional space is 
uniquely defined by the two linear invariants of the associated 
rotation tensor Q, namely, its vector and its trace, henceforth 
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represented by vect ( Q )  and tr( Q) ,  respectively. If the unit vector 
parallel to the axis of rotation and the angle of the said rotation 
are denoted by e and +, respectively, the foregoing invariants are 
given by 

vect( Q )  = e  sin+ (14 
tr(Q) =1+2cos$1. (1b) 

Alternatively, the four invariant Euler parameters could have 
been used, but they are quadratic functions of Q, and hence they 
are more expensive to compute. The remaining three scalar 
components of vector x are simply the Cartesian coordinates of 
one particular point P of the end effector. Of the seven compo- 
nents of vector x defined in the foregoing, the first four define 
the orientation, whereas the remaining ones define the position of 
one representative point of the end effector. The Cartesian trajec- 
tory sought is that defined by an ordered set of values of x, 
where the ordering parameter is the real variable t ,  denoting 
time. Moreover, t will be arbitrarily defined as zero at the initial 
or pick configuration, while t = T at the final or place configura- 
tion. It is assumed that T is known, additionally. The values of 
x( t )  at t = 0 and t = T will be denoted by x, and x F ,  respec- 
tively, and are assumed to be known as well. Thus 

x(0) = X I ,  x ( T )  = x F .  ( 2 4  
The trajectory sought is required to satisfy the smoothness end 

conditions given by 

I(0) = I( T )  = 0, x(0) = x( T )  = 0. (2b) 
The problem thus can be stated as: Find a trajectory in the 

joint-coordinate space, 6' = O ( t ) ,  which will produce a smooth 
Cartesian trajectory x ( t )  and satisfies (2a) and (2b). 

The solution to the foregoing problem is described in the next 
section. 

111. PROPOSED SOLUTION 
The solution proposed here is based on the following: where 

and when the joint velocity and acceleration vectors, 4 and 8, 
vanish so do the Cartesian velocity and acceleration vectors, I 
and x. 

The foregoing result is readily verified. Let J ( e )  denote the 
Jacobian matrix relating the Cartesian and the joint velocities, 
i.e., 

k =  J O .  ( 3 )  
Upon differentiation of (3) with respect to time, the following 

is obtained: 

x= J e + J e .  ( 4) 
From (3) and (4) it is apparFnt that d = 0 implies that I = 0, 

whereas 2 = 0 is implied by 0 = 0 and 0 = 0. It is emphasized 
that the foregoing relations hold even when J is rank deficient, 
i.e., these relations hold even at singular configurations. 

Now let 8, and OF be the values attained by the joint-coordi- 
nate vector 6 at the end points of the Cartesian trajectory sought, 
].e., 

Treating 0 as a function of time, (5) can be rewritten as 

The computation of 8, and e,, for given values of x, and x F ,  
is known as the inverse kinematic problem. Its solution requires 
finding the roots of a nonlinear algebraic system, which is possi- 
ble to do explicitly only for certain types of manipulators [I], 
[14], [15]. More recently, numerical schemes applicable to mani- 
pulators of arbitrary architecture have appeared in the literature 
[16]-[20]. Thus, there is no particular difficulty in computing 6' at 

(b) 

Fig. 1. (a) Normal spline and its first-time derivative. (b )  Second- and 
third-time derivatives. 

the end points of the desired trajectory. The problem of interest 
can now be restated as follows: Determine a smooth joint trajec- 
tory O ( t ) ,  for t E [0, TI, which verifies (6) as well as the given 
smoothness conditions 

O(0) = e (  T )  = 0 ,  8(0) = 8( T )  = 0. (7) 
This problem is purely geometric, viz. to determine a smooth 

curve joining the lines 0, = B,(O)  and 0, = B,(T),  which is tangent 
to these lines, and joins them with zero curvature, at points 
(0, ei(0)) and ( T ,  O,(T)), in the t - B,-plane, for I = 1,. . , n .  The 
foregoing geometric problem is solved by representing the said 
curve as a segment of a periodic cubic spline function. In fact, 
the arising cubic spline has the optimality property of minimizing 
the Euclidean norm, F,  of its second derivative, among all 
smooth functions that interpolate a set of points { t ,  , 0, } y ,  in the 
t-8 plane. The said norm is defined as 

F = J 7 8 2 (  t )  dt 
0 

The aforementioned optimality property has' the following 
kinematic interpretation: Among all curves passing through a set 
of points PI, P2; . ., Phi in the t-B plane, the cubic spline is the 
one containing the minimum acceleration magnitude. However, 
in the context of this problem, only P, and P,v are known, the 
intermediate interpolation points being, as yet, undetermined. 
These are found, in turn, by prescribing a harmonic distribution 
of O , ( t )  at the sample instants t l , t z , . . . , t , ,  based on a proce- 
dure described in detail in [6]. The determination of each B,(  t )  is 
simplified via the introduction of the normalized spline s( t ' ) ,  
which is shown in Fig. 1. This normal spline satisfies the condi- 
tions 

s(0) = 0, s(1) =1, {Xa) 

(8b) 9 = 9 (  1) = 0, i(0) = i( 1) = 0 ,  
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1 4 1 0 . . .  0 
0 1 4 1 . . '  0 

0 0 . . .  1 4 1  

. .  . .  
A = 7  . . . . .  . . .  

where the argument t '  is defined as 

t ' =  t / T .  ( 8c) 
Hence, each O , ( t )  is obtained by a simple scaling of s ( t ' )  and 

its argument, namely as 

8, ( Tz ' )  = 8, (0) + [ 8, ( T )  - 8,(0)] S( t ' ) .  ( 9) 
The smoothness of the trajectories thus produced is guaranteed 

by that of the normal spline. This is apparent from the plots of 
the derivatives of the normal spline that appear in Fig. 1. 

Once the joint coordinate histones 8 , ( t ) ,  for 0 < t < T are 
obtained, the Cartesian trajectory x is readily computed as the 
solution to a direct kinematic problem. 

Iv. THE SkTJTHESIS OF PERIODIC SPLINES 

This is a short account of the procedure used to compute the 
normal spline s ( t ' ) .  For brevity, the prime superscript of t will 
be dropped in what follows. The spline is represented by 

s (  t )  = a , (  t -  t , ) 3 +  b,( t -  t , )*+ c , ( t -  t , ) +  d, ,  t ,  d t d 

(16b) 

for i =1;. ., N -1. A spline s ( t )  is sought that meets (8a) and 
(8b). Conditions (Sa) present no difficulty, but (8b) represents 
conditions that are not inherent to all cubic splines. However, by 
extending the domain of the spline to t = 2, by assigning to it a 
periodcity of 2, and by defining it to be an odd function of time, 
1.e. 

s ( t )  = s ( t + 2 ) , s ( r )  = - s ( - r ) ,  (11) 

the foregoing conditions can all be met. Moreover, it is desired 
that the second derivative i ( t )  be bounded within the whole 
interval of interest. For cubic splines, this derivative has a piece- 
wise linear distribution: hence, in order to have it bounded in 
[0,2], it is sufficient to assign its values at the supporting points 
1 ,  , t 2 , .  . . , t ,v .  These values will be denoted by i,, for i = 1,. . . , N .  
A suitable distribution of this discrete function is 

i, = A sinnt, , t ,  E [O,2] (12) 

where A is the amplitude of i,, a control parameter. The spline 
coefficients appearing in (10) are thus far undetermined. They are 
computed as [21] 

1 -2 1 0 . "  0 
0 1 -2 1 . . '  0 . 

1 -2 1 0 0 . "  
. .  

C = r '  . . .  

L 

(16c) 

d, =I,, ( 1 3 4  

At ,  = t ,+ - t ,  , AS, = s,+ 1 - S, , (13e) 

with 

s, being the ordinate value at t = t ) ,  Le., s, = s ( t , ) ,  and i = 

1; . ., N -1. Further definitions are 3, = i ( t , )  and 5, = i ( t , ) .  
Moreover, from the assumed periodicity of s( t ) ,  one has 

(14) 
. . .. .. 

s1 = S'V, s,v = SI, SN = SI 

where the third relation is indeed verified by the assigned values 
appearing in (12). Now, the ( N  - 1)-dimensional vectors s and 5 
are defined as 

s = [ s~;. ., s,.+~]', 5 =  [ i1;. ., i,.-,] '. (15) 

, 1 0 0 . ' .  1 - 2 ,  

' - 2  1 0 0 ' ' .  0 
1 -2 1 0 ' . .  0 
0 1 -2 1 ' . .  0 

. 

1 -2  1 
. .  

C = r '  . . .  

0 0 . . .  
0 0 0 ' . '  1 -2 

s = [ s2; . ' , s,J, i = [ S,; . . ; . S N - J  T .  

Hence, A and C are correspondingly reduced to ( N  - 2 
- 2)  matrices having the forms 

. (1Sb) 
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TABLE I 
HARTENBERG-DENAVIT PARAMETERS FOR PUMA ARM 

Joint a(degrees) d(mm) 4 m m )  

0 0 

d 

'1 / 

1 - 90 0 0 
2 0 0 431.8 
3 90 125.4 19.05 
4 - 90 431.8 0 
5 90 0 0 
6 0 0 0 

i 
01 a1 $4 /' 

TABLE I1 
CARTESIAN COORDINATES AT THE PICK- AND THE 

PLACE CONFIGURATIONS 

Coordinate Pick Position Place Position 

e, sin + 0.68 0.18 
e ,  sin + - 0.49 0.29 
e: sin+ -0.19 0.33 

P x  (mm) - 94.07 359.28 

P: (mm) -470.55 295.46 

cos + -0.52 -0.88 

P, (mm) 125.40 - 352.23 

TABLE I11 
COMPUTED JOINT COORDINATES AT THE PICK- AND THE 

PLACE CONFIGURATIONS 

Joint (degrees) (degrees) 
Pick Position Place Position 

0 
45 

200 
- 100 

30 
10 

150 
- 100 
- 10 
100 
- 70 
170 

0 0 

W I  

T I M E  IN SEC. 
Fig. 3. Computed time histories for last three Joint coordinates 

0 
I "1 

-+ . - ~ - .  - 71 7--1 
'0. 0 2.00 4.00 6.00 8.00 10.00 

T I M E  IN SEC. 
Fig 4 Computed Cartesian components of vect(Q) 

\ 

\\\ 
$ 1- .~ ~- 

0. 0 2.00 4.00 6.00 8.00 10.00 

T I M E  IN SEC. 
Fig 2 Computed time hstones for first three joint coordinates 

shown in Table 11. The joint coordinates producing the given 
Cartesian coordinates at the pick and the place positions were 
computed using the KINVERS package, which produces lune- 
matic inversions of robot manipulators of arbitrary architecture. 
It is based upon the Newton-Gauss method for nonlinear least- 
square solutions [19]. The results appear in Table 111. 

The procedure presented here was applied to synthesize the 
joint-coordinate trajectory appearing in Figs. 2 and 3. with 
T=10 s. Fig. 2 shows the time histories obtained for the first 
three joint coordinates; Fig. 3 shows the remaining ones. A direct 
kinematic analysis produced the Cartesian coordinates appearing 
in Figs. 4-6. The three components of vector e sin cp 
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0 N 

"1 C 0 5 0  

Fig. 5. Computed time history of cos+. 

E 

Ln m 

TIME I N  SEC. 

Fig 6 Computed Cartesian components of position vector of P 

(c) ( 4  

Fig. 7. Graphical display of manipulator's synthesized pick-and-place trajectory (a) Manipulator in home position. (b) Pick 
configuration. (c) Place configuration. (d) Back to home position. 
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are shown in Fig. 4, and cos @ is shown in Fig. 5. Fig. 6 shows the 
three components of the position vector of point P of the end 
effector. The point P of the end effector that was chosen to 
define its position is simply the point of intersection of the three 
wrist axes. 

From the plots of Figs. 2 and 3, one can readily verify that the 
computed joint-coordinate histories lie within the range of mo- 
tion of the joint angles of the manipulator under consideration, 
namely [14] 
- MOOG e, G 1600, -2250 Q e2 Q 450, -450 G e, G 2250 

- 1700 G e, G 1700, - 1350 G e, G 1350, - 1700 G e, G 1700 

Finally, the Cartesian trajectory was rendered in graphical 
form using a robotics-oriented graphic simulator. A few frames 
of this rendering appear in Fig. 7. in which (a) is the robot’s home 
position, (b) is the robot’s pick configuration, (c) is the robot’s 
place configuration, and (d) is the robot on its way back to its 
home position. 

VI. CONCLUSION 
A method was presented that allows the synthesis of smooth 

trajectories for manipulators of arbitrary architecture, given the 
two sets of Cartesian coordinates defining the pick and the place 
positions. The method is based upon the concept of periodic- 
spline synthesis. Periodic splines proved to be readily implemen- 
table and applicable to solve the problem addressed in this paper. 
The procedure described here involves only two kinematic inver- 
sions, one at each end of the trajectory under study. Intermediate 
points of the trajectory are computed by direct kinematics, which 
is a rather simple task. The overall procedure, to be applicable in 
real time, requires, then, an efficient kinematic inversion, which 
does not appear to be a major problem, for most commercial 
robot manipulators allow an explicit inversion. More complex 
architectures will require an iterative inversion, like those re- 
ported in the literature, and listed in the references. Since no 
kinematic inversion is needed at intermediate points, singularities 
of the Jacobian matrix, if they ever appear, present no drawbck. 
Moreover, the procedure can be applied to redundant manipula- 
tors as well. The computer programming of P&PO using the 
method proposed here can be implemented in a matter of a few 
hours-less than one man-day of work, which represents consid- 
erable savings with respect to the teach-mode programming. 
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Fuzzy Petri Nets for Rule-Based Decisionmaking 
CARL G. LOONEY 

Abstract -The technique of fuzzy reasoning via transformatiom of 
fuzzy truth state vectors by fuzzy rule matrices i s  extended to Petri netr. 
The result is a new type of neural network where the Wansition bar5 serve 
as the neurons, and the nodes are conditions. Condition5 may be con- 
juncted and disjuncted in a natural way to allow the firing of the neuronc,. 
Such conjuncting of truths is executed as generalized ANriing. i.e., mxing. 
Modifications are made to the usual Petri model to allow fuzzy rule-bawd 
reasoning by propositional logic. First, fuzzy values are allowed for rule5 
and truths of conditions that appear in rules. Next, multiple copies, rather 
than the original, of the fuzzy truth tokens are passed along all arrow\ that 
depart a node or transition bar where the truth token resides. An algorithm 
is presented for reasoning via these networks, as well as a simple example 
for exercising the algorithm. Abduction may be done analogously by 
reversing all arrows and propagating truth tokens backwards. 

I. INTRODUCTION 
Mathematical models of the real world have a special place in 

the evolution of science and engineering. However, many people 
have become aware that the real world is not linear quadratic and 
that many situations can not be modeled accurately by mathe- 
matically tractable equations [5]. Expert systems, fuzzy control 
systems, and other types of smart programs that have evolved 
more recently use data-driven decisions to adapt by branching to 
alternate models and submodels. 

Fuzzy control systems [5J developed concurrently with expert 
systems and, in fact, are just small expert systems that reason 
forward to deduce the appropriate controls based on feedback 
data. These are designed to either replace, or work in conjunction 
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