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ABSTRACT

This thesis studies the behaviowr of mathematical models
in finite-dimensional optimization. The models are considered
as input-output systems where the input is a data vector (or
parameter?, and the output consists of the feasible set, the set
of optimal solutions, the optimal wvalue, and the Lagrange
multipliers. In particular we obtain various conditions which

guarantee continuity of the output.

SOMMAIRE

L 'obiet de cette these est 1 étude de modeles mathématigues
d'optimatisation en dimension finie. Nous considérons ces
madeles comme des systémes 4 entrées—sortises ob les entrées sont
des vecteurs de donnges {(ou des paramétres) et les sorties
consistent de 1 'ensemble des solutions acceptables, 1 ensemble
des solutions optimales, les valeurs optimales et les

multiplicatians de Lagrange. Nous obtenons en particulier

. diverses conditions gqui garantissent la continuité des sorties.
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Introduction

In this thesis we study the stability of mathematical
programming models. We work within the framework of input
gptimization, e.g. [111, [131, [141. Associated with each input
is the feasible set, the set of optimal solutions, the optimal
value, and sometimes the Lagrange multipliers. The latter four

will be considered the output. A model is locally stable with

respect to a fixed input vector e* and a region S(e*), i+ the

: * A
output changes continuously for all sequences an—ée ’ eni:bts Y.

The general form of the maodel is

Min 2(x,a)
X

s.t.
Fhix,e) 20, KEP 2 €1,---,m3,
e £ T

where fﬂ(x,a) is the objective function, the fk(x,e) kE¥ are

the constraint functions, ¥ is a finite index set, I is a convex

set in RP, and x ER™. MWe will stipulate further conditions on

the general model as needed. Some of the conditions include

convexity of fk(x,e) in ¥ for each fixed 8, pseudo—convexity of
the constraint functions, and joint continuity of the functions

in the variable (x,e).



The thesis is divided into three chapters. In Chapter 1 we
develop and study the notion of stability following the ideas of
£113, 121, 1331, and [14]1. In particular, we introduce two new
regions of stability. One of the main results is a new
necessary candition +or stability of convex models. In Chapter
I1I we extend the notion of stability to include the Lagrange
multipliers. We obtain conditions for upper semicontinuity of
the Lagrange multipliers over a region of stability. The main
results were recently published in [8]1. Chapter 111
demonstrates that under suitable conditions for a simplified
model we may obtéin an explicit representation of the Lagrange

multipliers which proves to be differentiable.



Chapter I Stability of Convex Models
1.1 Introduction to Stability

In this section we introduce basic ideas concerning the
stability of conveg mathematical programming models. The

general model is of the form

Min f7(x,a)
{x)

s.t.

X ix,87 =0 kep, sa€I, xER",

where the fk(x,e) are jointly continuous in (x,e) and convex in

x for fixed 8, KkEPU{0O}. The parameter vector (or data input),

e, is confined to some convex set 1, IEQRF. We will study the

behaviowr of such models when the parameter is perturbed in some

neighbourhood of a fixed e = e*. In particular, we will obtain
certain sets of parameters for which the optimal solutions and
optimal value of (F,s8) change ‘continuously”™ as functions of e.
These sets will have a reference point (usually denoted by e

= %) which determines the present state of the model.

Suppose the model is running with the parameter a = 8’3

then we have the following *“putput?”:



Fte*) = {x€R": f¥(x,0) 20 Kk EP} — the feasible set

¥8®) — an optimal solution

Fle*) — the set of all optimal solutions

- . : Q,~. *
f{g )} — the optimal value {i.e. T {(x{s ))).

With these we are able to define the concept of a gstable region

which was introduced and studied previously in, among others,

L1231 and [141.

Definition. The model (P,s) is stable in a region S&ERP at

e¥en if, for some neighbourhocod N(a®) of e*, both

(i) seENe® I Ns=F(e)+ 6 and

(ii) e EN(e* )NS5 and e—e* imply that the set Fie) is bounded

and all its accumulation points are in Fe®™). =

With the proviso that Fte*) # 0 and bounded, the set

#e®) = (aeRF : Fla®) SFle)?



©

is a region of stability at e*. Two more regions of stability
9

require the following definitions:

P (e) = (k: ff(x,8) = 0 ¥xEF(e)} — the minimal index set
of active constraints
P (s) = PP ()

Fota) = {x: ff(x,8) = 0 kEP (a)I. .

Again, provided Fea*) is nonempty and bounded, the sets

Vie*) = te: F (e¥) S F (8) and f¥(x,e) 20

YxEF(e®Y kePT e pTier:

Hia*) Fte®*) cF (e} and P (e) = P (o

Il

{e

are regions of stability at e*.. These setz have been examined

in [12]1. Each of these sets share the praoperty that they are

independent of the objective function. However, each of these
sets is restrictive in that they require either Fte®*) € F ta)
or Fle®) SF(e). As the next example indicates, it is possible

to have F (e®)NF te) = 8 for all ea#e*, yet the feasible set

seems well behaved?™.



©

Example 1.1. Consider the feasible set given by

flix,y,e) = y—e%x <0

) 2

f {x,y,8}) = —y+a“x =0

foi{x,y,8) = —y—x+1 Z0 @ € [0,m) 2 I

The feasible set i1s the one-dimensional ray

2 1
Fig)={({x,y): y=e“x, x 2 s 2.
8

The minimal index set of active constraints is constant,

and so the set F {(8) is easily determined:

F=(e) = {i{x,v) 2 v = 8°x3.

However, the regions of stability Vie®) and W(e™) are not useful

here since both contain only a single point:



for each ¥ €1 (note that F (a*) €F (e) for all ea#e"). VYet
F™(e) satisfies the following property: for every point

(Xes¥p? € F~(e*) and every € >0 there exists a ¢ >0 such that

le—8®N < & = 3 a point (x,y) € F (8) satisfying

H(x,y)-—(xo,yo)"{ £.

Thus every point in F=(e*) can be approached by a sequence of

points in F (8) as e—re®. To find regions of stability which
take into account the behaviour exhibited by Example 1.1, we
need some additional concepts. In particular, we need to

define the concept of continuity for sets.

1.2 A New Region of Stability

As promised at the close of the last section, we will now
develop regions of stability which are useful for cases such as
Example 1.1. To do so we need the following definitions taken

from L[31.



Definition. (i) The Apoint to set mapping M I——X is lower

semicontinuous at e, €I if for each open set acXx satisfying-
ar\F(eé);éﬁ, there exists a neighbourhood N(e,) of 8, such that

for each 8 in H(eé), ey Na+#0o.

{ii) The point to set mapping M I——>X is upper semicontinuous

at 85 €71 if for each open set 4, A< X and az=rf{e,) there exists

a neighbourhood KNle,) such that for each e € Nley), MNa)=ad. W

We will say the point to set mapping is continuocus at ¥

if it is both upper semicontinuous and lower semicontinuous at

o¥.

One may easily check that the point to set mapping

Meb»F (e) corresponding to Example 1.1 is lower semicontinuous

at each e = a*, a¥er = [Q,0). Interestingly enough, it is

upper semicontinuous nowhere on [0,m). The defirnition of lower
semicontinuity is unwieldy and so we prove the following

property étafed as a lemma.

Lemma 1.2. A point to set mapping T:I—=3X Is lower
semicontinucus at e € I if and enly If, given any sequence

N * . .
8,—>e and v El“(e*), there exists a sequence v €ElMle,) such



that vn—av*.

Proof. First suppose that T is lower semicontinuous at 8® and

we are given v¥erce® and a sequence en—%e*. Let u, be such
that
(1.1 u, —e™n = Mintz—v¥0: z€T e, )3, u,€F(e,) and suppose u

n does not converge to v¥*.  Then there exists ¢ >0 such that

N
e — I = ¢

faor infinitely many n. The open ball Béiv*} of radius £ cannot
satisfy the criterion given in the definition of lower
semicontinuity, for given anvy neighbourhood of 8* thers exists a

point 8, in this neighbourhood such that B_(v*)NI(s,) = & as

1
insured by (1.1) and our choice of €. By contradiction, we have

proved one direction of the implication.

NMow suppose that for all sequences en—%e* and points v¥erce™

there exists a sequence of points VHE!“(an) such that Vn—%v*,

vet I" is not lower semicontinuous at e¥. Then there exists @

open such that anrie® %9 and @anrie) = @ for e arbitrarily



close to e*¥. Thus there exists a ball BJ(V*)SEG with center

v¥erie®) and radius ¢ >0, and a sequence {en} such that en—%e*
yvet
re )NB (v*) = &
Bn JV - -
Hence

*®, - _
iz —v = e for all z_€T7te_)
r: Fe Tt

and there cannot exist a sequence {v |ﬁ7EfWan) such that

400
ntn=1?

. ¥
¥_—2V

n y Contradicting our original hypothesis. This proves the

second hal+f of the implication and the lemmza. M

The preceding lemma deals with the property cited in Example
1.1. However, even if the point to set mapping Fral—>F (8) is

lower semicontinuous at e*, the model need not be stable. The

following example is evidence.

Example 1.3. Consider the convex mathematical program



Min f2(x,a) = x

s.t.
flix,8) = —x—1—e £ O
f2(x,8) = —a2x €T & [—1,11
around e* = Q. For e >0
P (o) = @ and so0 F (&) = R.
For e* = O,
P (a) = £22 and F (a®) = R.

Thus the mapping M:el—>F (e) is continuous at o* = 0, yet the

model is not stable. Observe that

[, 00) a ¥ O
Fla) =
{—1,0) @

i
<o

and

0 iIT a8 # 0O

4

o e I
F{a) = {x(e)} = £ ]
| ] -t ife=0



Obviously the optimal value experiences a jump at ¥ = 0 and

the model is not stable. We can conclude that the continuity of

the mapping T:el—3>F {(e) at e® does not guarantee stability at

a¥. However, the next theorem will present one set of

sufficient conditions. We need to consider the set

R(e®) = foa: P (8) = Pla™) .

To facilitate the proof we need the following lemma.

Lemma 1.4. Consider the mathematical model {(P,8). Suppose

that the mapping Fret—=>F (8) is lower semicontinuous at e¥.

. * * - ..
Then Taor any sequence e, e , aniER(e Y, and Tor each fixed

x, € Fle®) there exists a sequence of points v_£€ Fla_ ) such that
Y Y n

vn—%xo (in other waords, lowmer semicontinuity of the mappirng

Fr:el—*F (a) at &* impliexs lower semicontinuity of the mapping

*

et—>Fie) at 8™ on R(e™)).

Proaf. Let Xn be given and let e, be an arbitrary sequence

satistying anéiR(e*) for all » and Bn—%a*. We construct a

sequence which satisfies the claim stated in the lemma. Let

ynEF(en) be such that



Wxpg =yl = Min{llz —x5ll : Z € Fle, )3,

Note that the minimum exists since Xq is a fived point and
F(en) is closed (F(an) need not be compact). Suppose Yn does
not converge to Xny then there exists an € > and a subseguence,

Ynig): Such that

Xy

{2.1) By ¢y —¥plt 2« Y&y Vo) EF 000y

Choaose x € F~(e*) such that both

-

FR T o*y o - ol ® ~ . e
¥,8 )< 0 for kePie ), and lx —x 0l < €2

simultaneously. By the joint continuity.of the functions, there

exists a 4 >0 such that

Hix,e*) —(x,ad < &6 =3 FK(x,6) < O faor k€ P (s¥*).

By the lower semicontinuity at e*, there exists a ball of radius

, Bm(e*) such that for Y€ F te™) and each BliB”ie*) we may find

X(e) € F- (a8) satisfying



(2.2) Hx(e) —xll < Min{e 2,4 23.

If we choaose L EN sufficiently large then we have
(2.3) £2L==}Ilar!(£)—-a*ii<Hin{d‘/’E‘,w}.
Since
ll(?(en(!)),an(i))—(;,e*)lli’-ll.‘f(en(!))—;ﬂ+lien(g)—a*ﬂ
we may combine (2.2) and (2.3) to conclude
H(F o, (4)2908,(gy) — (¥,8 )< & for =L,
Buf 4 was chosen so that

- g PP <
“(xian(!)),en(!)) (x,@ < §=37"(x(e, (4y)18,.43,? <0 for

kEPS (*)

and thus for 2 =L the E(enig))EF:(en(g)) are feasible points.

Morecover, for 1 2L

— P ™ Fan
il —~ el = Hx —_ o — 5 e D £ =
x(en(!)) xuﬂ..ﬂx en(!)) xil + Ux A0H<%e,h-+t,h = g



which contradicts (2.1). Therefore, no such € exists and we

conclude that

Y € F(en) and yn—}xo

which praoves the lemma. B

It may not be cbvious where the assumption P (a) = P (e*) in the

reqion R(a¥) was used. The proof needs this assumption when
constructing feasible points since we are able to write the

feasible set as the intersection of two regions each with a

caonstant index set, namely F=(e*) and the region which we define

as

F (o) 2 {x: fR(x,8) <0 ked (a)r.

Then

Fla) = F'ie) NF ta).

Mow we are in a position to prove Theorem 1.5.



Theorem 1.5. Consider the convex model (P,s) at e*. Suppose
that Fle*) #@ and bounded. I¥ the mapping T : e—>F (8) is lower

. . *
semicontinuaus at e , then

P (e

R(e*) 2 ta: ¥~ (a)

is a region of stability at e¥.

Proof. We must show that for some *restricted? neighbourhood

of a* Na®)nRa®) both:

(i) Fle) is nonempty and bounded and

(ii) Biven e, €R{(e™), e, —»e", we have that x(s ) is bounded and

all its accumulation points are in Fea®™).

We start by proving (i1). First choose a particular optimal

selution at a*, say ;O(a*). Since F(e¥) is bounded {by

assumption), we may enclose it in a closed ball KER" with

surface 3K, such that



Suppose that (i) is not true. Then there exists a sequence of

@ points BHER(B*), en—.‘:e*, and a sequence of points x(e,) which

satisfy one of two properties: either

{a) There exist optimal solutions x{a, ) (at en) with

it

x(en)r)K g for all n; or

() x(e )NK =& and  (xte, ) e ) 2f(z, e ) for all z€K, far

all né€EN

{{a) in case the set of optimal solutions is unbounded, (b)) in

case there is no optimal solution).

In either case we may alsao find v(an)iEF(an) such that

u(an)—%;b(a*) by lemma 1.4. Then either of (a) or (h) will

imply

(2.4) tvie,),e,) 20 (x(e,),8,) for all n.

Since 3KNF(a*) = &, there exists N such that for all sz N

v(en) € K.

) - 20 -



By convexity, Avie,) + (1-X)x(e,) € Fle, ) for all A, O=A=1. For

each n Z N we may choose }n such that
knv(en) + (1—1n)x(9n) € 3K,

i.e. lies on the surface of #. Eqguation (2.4) and the convexity

af foix,e) then lead to the following conclusion:
O -
(2.5 T (knv(an)<+(l—k)x(sn),an)::fo(v(en),en)

for all n, nE=N. The surface 9K is compact and so there exists

a convergent subsequence

TS PAALIYT DRI Bk S T PR AL AT IR brwroncdie I LE

The continuity of f7(x,e) vields

(2.6 izg,0%) 79X, (e®r, 0%,

Moreover, the continuity of the constraints guarantees that the

limit point Ty is a feasible point at a¥. By construction,
akNF(e®) = 8. Since T € 8K, it cannot be an optimal solution.

However, we have already deduced that Zp is a feasible point and



(Z2.6) necessitates that it is an optimal solution as well. This

vields the desired contradiction and (a) is proved.

To prove (b), we krnow that given any en—%e*, eniiR(e*), ;{Bn) is

bounded by part (a). Thus ;(Bn) has an accumulation point which

we denote by Xpye Since Xp is an accumulation point, there

exists a subsequence of §(en), ;(Bn(!)) such that

xien(l))—%xg as §—»m.

By the joint continuity of the constraints, x; must be a

+easible point at a¥. Letting ;O(B*) denote a particular

optimal saolution at 9*, we then have .
(2.7) ixg.0%) 2703 0™y, %) = Fre¥),

Recalling Lemma 1.4 we have that there exits a sequence of

feasible points =satisfying both
L,
u(en(!))EF(en(g)) and v(en(g))—-—;xoia ).
But we must have



O tvie, gytr8, gy 2R e, (3018, (40

Taking the limit as § tends to o we get

(2.8) C Oxg, 6™ = Uik ¥, %),

(2.7} and (2.8} imply that

79 fO(;ﬁ(a*),a*).

. *
(xﬂ,e }

This, taken with the fact that xoiEF(e*) {again by the
continuity of the constraints in {(x,8)), vields the result

xO(E?(e*) and completes the proof of (b} and the theorem. H

Corollary 1.6. IT Fte®*) # 0 and bounded Tor praoblem {(P,e) and

*

2

er's condition holds at a

o+

Sla {i.e., there exists a paint x

such that ¥(%,e™)< 0 k€9), then the model is stable in a

neighbourhood of ¥,
Proof. F (e*) = FS(e) = R” in some neighbourhood of e* (since
P (e®) = @. Hence the mapping C:el—F (a) is lower

semicontinuous at a*, and the joint continuity of the

{

-2

L



constraints implies that P (e) = § in a neighbourhood of e*.

Thus Theorem 1.5 applies and the proof of the corollary is

complete. W

Corollary 1.7. Suppose that for model (P,8), Fte*) =9 and

bounded. Then the region

Hie®) = (a: P (e) = P (a™), F(a¥) SF (a)?
Is stakble.

Proof. We need only observe that the condition

implies that the mapping Fel—F (8) (restricted to Wia*)) is
lower semicontinuous at e'. The hypotheses of Thearem 1.5 are

satisfied (restricted to W(e™)) and the corallary follows. B

What is peculiar about the preceding theorem is that it doesn’t
make any use of upper semicontinuitv. In general, even

relatively simple mappings need not be upper semicontinuous. In

particular, rotations in RE are not generally upper



semicontinuous as the following example demonstrates.

Example 1.8. Consider the feasible set described by the

failowing function:

flix,v,8) = ly—exlt —(v—ex) S0 o€ 2 [1,m).

I+ (y—ex) < 0 then fltx,y,a)Z}O and so the point (x,v) is not

feasible. I+ (v —ex) =0 then fl(x,y,e) =0 and {(x,y) is a

feasible point. Thus the feasible set is

Fla) = {{x,v): v Zeax?}.

At a fixed 8 every feasible point {xn,¥5) satisfies the

condition flixc,yO,a) = 0, so we have P (e) = {1} and

F=(e) = F(a) = {{x,v) = v Zax?.

We now show that the mappirg T:el—>F (e) is not upper

. . * - o .
semicontinuous at any e € I. To do so consider the open set

Ale,e) £ int(F (8) +{(0,—e)})

where int(G) dencotes the interior of the set G, “+" denotes the



Minkowski sum of two sets, i.e.

G+E 2 {z:z = x+vy for some xX€G, YEEI,

and € iz some specified scalar strictly greater than zero.

Suppose we are given € * 0 and o* ¢ I, then

ate®,e) 2Fte™).

* .
However, for any e e we can find an x such that

*E€F (e) but x €ale™, ).

Without loss of generality suppose 8 e®*. Then choose e 20

such that

*
M. eig — T e
X le a )< —¢,

The point (xg,ex;) € F (8) but (x,,0x5) £aie®, g3, I it were

then there would exist (x‘l,yi) € FT(e™) such that

(.xl,yl) + {0,—) = (xo,axc).



But this implies x; = x,. Since (x;,y;) must satisfy yléaa*xl,

* * . . * -
we have 29 x4y = 8 x~ which in fturn means 8 x- —€ = 8x,.
1 1 G O O

Regrouping vields
xo-(e-—e*) s -

contradicting {(2.9). Thus the mapping is not upper
semicontinuous at any e¥e 1. fgain, as in Example 1.1, the
mapping T:el—F (@) ic lower semicontinuous at every e €I. To
substantiate this claim consider any e* €1 and any open set 6

satisfying GNF (e®) #8. Because F (e¥) is a halft plane we
have

GNF (e®*) %8 =3 G6Nint(F () =2,

Since GNint{(F {s*3) is open and nonempty, there exists an open

ball of radius § and center (¥,y)#{0,0), B (¥,y), such that
By (¥, %) S6Nint(F-(a™)),

This requires that



Obviously, if le—e%| < §/1%] for *x#0, or le—e*} <w for x = O,

we have that the point (;,;)€EF=(9) {because ;@Ee§) and since

(X.%) €6,
GNF (8) #&.

G was arbitrary and this completes the proof of the claim. B

The problem in the preceding example is that F=(8) is
unbounded. As in Example 1.1, the set does not seem “badly?®

behaved and we want to characterize such simple sets. If we
restrict ourselves to a bounded region, and if P (a) is constant
*

in a neighbourhood of 8, then it tuwrns out that we get the

upper semicontinuity at ¥ automatically. This result is stated

explicitly in the follawing thecrem.

Theorem 1.9. Suppose that the canstraints of problem (P,8) are

jointly continuous in (x,e8) and P (a) = P (8*) in a

LAy
I
pi)
2
ﬂ-
~r
1]

; . * . '
neighbhourhood of 8 . Then given any compact set

mapping Tiebl—>F () NK is upper semicontinucus at ™.

Proof. Assume not. Then there exists @ open, K compact

{closed and bounded) such that

Q - 28 -



A2F (e*)NK yet AZF (a)NK

for 8 arbitrarily close to e*. Thus there must exist SequUences

e and xf{a_ ) such that
] o

and :;"f.er,> €F (e NK for all re,

there 3" denates the comolement of 4Y. However,

Y(Bn)€EF=ie)f1E and i therefore hournded, This wieﬁ7 has 2

convergent subsequencs s&rd we msy assume, atter 2 relabelling,

that

n—>on,

—
[
)
ot
o
£

Dimre

Tivia Y,e ) = 0 for kE€Pla) = Pla’).

By continuity of the constraints,

0 = *exta )8 )3F5(%,8%) = 0 as n—m for ke€P(a®).



This implies that X € F (e®*) NK which is a contradiction (since
then ;tia as well). Hence no such @ exists and in fact the

mapping Melb—F (a)NK is upper semicontinuous at e® for each X

compact. H

1.3. A Necessary Condition For Stable Perturbations

The situation is considerably more complicated when the minimal
index set of active constraints is not constant, partiﬁularly
when we do not take into account the behaviour of the objective
function. In general, the minimal index set of active
constraints may decrease over a region and the model may be

stable regardless of the cobiective function. 66n example of such

a region would he Mia®) or via®). However, we open this section
by showing that there do not exist any stable reqions
independent of the objective function which experience an
increase in the minimal index set of active constraints. More
precisely, given a path connected region =satisfying the property

P(a) 2P (™) in every neighbourhood of o*

y One can always
praoduce an objective function for which the model is unstable.

This is summarized in the following theorem.



Theorem 1.10. Suppose we are given the model (P,e) and a path
connected region ste®*) such that P (e) P (e™) in every
restricted” neighbourhood Na®)ynse®). Then there exists an

obiective function fg(x,a) for which the model iIs unstable.

Proof. We may assume that P (e®) %P since the result is trivial
in this case. We may also assume that 5(e¥) contains more than

one point, for i+ not, the proof is again triwvial. Since s(e™)

is a path connected region with more than one point and since

€ 5¢e®), a point ¥ € F(e™

?=(e*)¢¥h there exists a sequence, e, €

and an index t satisfying the following:

(i) e, —e™ and flix,e,) =0 VxEF(e)

and
iy X, e®r <o YerFa®.

Thus & EXﬁ(e*)Rﬂ{(en) for all n. Now we claim that there sxists

a ball with radius € >0 centered at ¥ such that

Bé(x)iWF(Bn) = g
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for all but a finite number of n. If not then for every € >0
there exists feasible points in the ball Be(Q) faor infinitely
many n. We can then construct a sequence of feasible points v

n

such that

- *
V_—3*X as 8_—>8 .
n T

But (i) implies that fg(un,en) = 0O for all n. The joint
continuity of the constraints then implies that the limit point

- .
x satisfies

A%, 6% = 0,

which i1s a contradiction. Hence there exists an € > 0 such that
Bei;)ITF(an) = g for all but a finite number of n. This is

essentially the end since we may now choose the obijective

function
- “(.} - 2
(3.10)  {x,8) = [fx—x}
which is uniquely minimized at e* by ¥(e*) = X. The model with

the aobjective function (3.10) must experience a jump in the



optimal value at a*. =

One should also note that the only assumption on ¥ is that

Rz, 61 <0 kep (e®).
In +act, the condition P=(a)£¥f79*) in a neighbourhood of o

indicates a high degree of instability since we cannot get near

any feasible point which satisfies the condition

fRix,e®r <0 ker(a®).

In the one dimensional case this indicates a virtual collapse of

the feasible set outside of e®. Also note that the path

.

caonnected assumption was used only to insure the existence of a

sequence 8 such that en—ée*, with en;ée* for an infinite number

n

aof n.

fnother way of stating Theorem 1.10 is that if we have a region

of stability 5(e™) which is independent of the objective

function, then a necessary consequence is the existence of a

neighbourhood #(e®) such that

P (a)SP (a®) for all e € Nie™).



As we shall see in the next section, the requirement that the
mapping Mel—*F"(s) be lower semicontinuous at e® alsoc implies

the condition P (8) £EP (e*) in some neighbourhood of e¥.

1.4. More on the Mapping M:el—F (e)

At this point one might suppose that the lower semicontinuity

condition on the mapping T:el—3F (e) might be a necessary
condition for stability. This need not be the case even for
regions which remain stable for all jointly continuous objective

functions. The next example serves as proof.

Example 1.11. Consider the feasible set determined by

flix) = =x 2 0
F2Ux) = x—1 € O
o O for x| =1
o i{x,8) = bl
el(lx| —1? for x| > 1
a € I & [0,11]
around a¥ = 2. For all e € I we have



and so the model is stable for all jeintly continuous objective

functions. However

n
|
Pt
1A
®
1
-
v

F=te®*) = R and F (8) = {x

for e?‘-‘e*, s € I. The mapping I: al—F {(e8) is clearly not lower

semicontinuous at e = 0. For instance, one may take &

-

2 {x: 24 x< 4} and observe that

6NF (e*) = 6 yet GNF (8) = B.

for all a#e*, proving the claim. B

The lower semicontinuity condition may not be a necessary
condition for stability but it does provide some properties
which we will scon exploit. One of these is stated in the next

l1emma.

Lemma 1.12., For the model (P,s) suppose the mapping

Fre—>F (8) is lowmer semicontinuous at er. Then p<(e)§2P{(e*)

for a sufficiently small nreighbourheod of ¥,



Proof. uWe may construct a point ; with the following property:
Rix, 61 <0 keP (e*) and x € Fle®).

By the joint continuity of the constraints there exists a 81 >0

such that
(4.1)  Hix,e) — (x,e®), 28, =2rX(x,0)<0 keP (%),

By the lower semicontinuity condition at a*, there exists a

62 >0 s.t.

(4.2) lle-a*llzfi by = I¥(e) s.t. X(e) EF (a)

and Ix(e) — Xl < &,./2.

Thus for any e satisfying ua-e*uz:shin{ijz,JE} we may +ind

x({e) satisfying (4.2). Since

N(x(a) 80 — (X, 0% )i, S WX(e) — ¥l + o — o™l = 6,2 + §,72 = 4,

we must have f¥(X(8),e)<0 k€¥P (e*) by (4.1). Finally, since

¥(e) EF (a), x{(8) is a feasible point, and the lemma is proved.



The preceding lemma tells us that the lower semicontinuity
condition at e* is sufficient to guarantee the existence of a

. ' * . == * = < < *
neighbourhood N{e ) such that ¥ (e ) 2¥ (e) or F {(e)2¥ (a8 ) for

e € Nte¥). We will use this property in connection with the set
Vyte®) = e €RP: fRix,0) 20 vxeFTte) kP (erp (™).

The proof of the following theorem is in Appendix BR.

Theorem 1.13. Consider the model (Pye). Suppose Fte*) #6 and

bounded and the mapping Meeb—F (8) is lowmer semicontinuous at

e*. Then the set

Vite®) = e €RP: ¥F(x,0) 20 YxEF (e kEP ()P (%)

Is a region of stability at a*. m

We will return to the set Vl(a*) in the next chapter where it

assumes more importance.

We close this chapter by organizing the results into a diagram.

Let
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A 2 {models which are stable at e = 8% independent of the
objective functionl

{models for which P (e) 2 P (e¥)3

34
lie

C & {models ftor which the mapping Mael—¥F {8) is lower

. . *
semicontinuous at e .

Then A, B and C share the following relationship:

U S ————

"y s




Chapter 2. Continuity of the Lagrange Multipliers over Stable

Regians
2.1 The Saddlepoint Inequality
In this section we investigate the continuity of the Lagrange

multiplier function. The model we will work with is the same as

that stated in Chapter 1:

Hin fO(x,a)
{P,a)
s.t.
R(x,0) €0 keEPRLL, -+,n3}
s €1 CR”,
where a8 = (91-) ERP is the parameter vector, x = (xl-) ER" is the

vector variable; the functions fk(x,a) are jointly continuous

in (x,8) and convex in x for each fixed e3; I&RP is a convex

set.

We express the optimality of a point for a fixed e in terms of

the restricted Lagrangian



(2. 1) L<(x,m;a) = fo(x,e) + E mkfk(x.,e)
kEP® (8)

We will denote the cardinality of the set P (e) by g{e), and

the nonnegative octant of RY by RY. Then for a fixed e, a point
¥ is an aptimal solution of (P,a) if, and only if, there exist
nonnegative multipliers iuj),iiipi(e) which satisfy the

restricted saddle point inequality

(2.2) L5, v,0) = L5(%,u,0) £ L% (x,u,8)

for every vERi(e) and every x€F (e). See, e.g. [131.

One might suppose that the saddle point inequality would hold
for some generalized convex function. However, it turns out
that (2.2) may not even hold for so—called pseudo—convex

functions.

Definition. A differentiable function F:R"™——R is pseudo-

convex if

(2.3 VFix)(y —x)20 =3 F(y)=Ffix).



The following example uses a convex obiective function with a

pseudo—convex constraint function.

Example 2.1. Consider the mathematical program

s.t.
gix) = 0
j - 2x if x =0
glx) =< —(x+1)% + 1 if 0 £ x =1
| X2 —bx +2 if 1< x

The function g{x} has been pieced together so as to be
differentiable on R. To verify that gi{x) is pseudo—convex we

use (2.3). For x€ (—m,3) dg-sdx{x) < O and so

d
d—‘(x)-(y—x) 20 == y = x.

Since g 1s monotonically decreasing on (—m,3),

yEx =3 gly)z2glx).
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When combined with the earliér implication we have

da
—{x){y—x) 20 = giy) =gix}
X

and (2.3) holds on (—w,3). 0On the interval [(3,m), g{(x)

= x2—6x+2 and this function is convex, hence pseudo—convex. We
will now show that there are no nonnegative multipliers which

satisfy the saddle—point inequality (2.2). Suppose that they do
exist. The optimal solution is ¥ = 0 and so there exists UIEEQ

such that

o = x=x+u;-gix) for all x€R.

For x £0 we have

0

x + ty - (—2x) == uy =12,

But this is impossible. For example, when ¥ = Sy g@ix)y = -7 and

the saddle point inequality becomes



which contradicts our earlier inequality,tq_ilx?. |

Thus, for the remainder of this chapter we will focus an the

problem (P,s).

Since the Lagrange multipliers are not necessarily unigue, we

cannot talk about continuity in the normal sense. Furthermore,

since inequality (2.2) depends on the index set P{(a), we want

to be sure that in any discussion of the Lagrange multipliers as
functions of a parameter the set of indices we refer to remains
fixed. This leads to the main result of this chapter, contained

in the following section. W

2.2 Continuity of the Lagrange Multiplier Function.

The closing remarks in the last section suggest that we must

exercise caution in defining the Lagrange multiplier function.
Indeed, we will insist that the mapping Ti:ebl—2>F {(8) bes lower
semicontinuous at e = a* so as to insure that there exists a

neighbourhood N(e*) of & where P<(e*)55p<(e). Now we can make

the following definition.

Definition. For the madel (P,e) suppose that the mapping

|
r -
1z
|



Frel—»F~(e) is lower semicontinuocus at a¥. Then we define the

Lagrange multiplier function to be the point to set mapping

Uled:reb—>{u (a): i €P (a™)i. W

Here {u;(8): i(EP{(e*)} is obtained by considering the set of

all Lagrange multipliers at e — {uj(a):.ieiﬂ(e)} and

looking at the u;{e) correspoinding to the index set P (e®).  uWe

will use square brackets to indicate a particular Lagrange

multiplier {(or truncated Lagrange multiplier);

[u;(e): i €P (e™)1€ fu;(e): i €P°

Note that [ui(a): ilEp{(e*)] is not necessarily a Lagrange

multiplier at s, however it will be if P (e) = P (a¥). Thus the

Lagrange multiplier function with respect to o* is obtained by

taking the set of Lagrange multipliers at s and removing those

multipliers whose indices are in P (a®). HNote that the uiia)

are all defined for i €% (a™) in a neighbourhood of e* since

< (8*)cv‘(a) by 1emma 1.12.
We will consider the continuity properties of Ufe) on several



regions of stability. First we show that stability of the
model (P,e) does not guarantee continuity of the Lagrange

multiplier function.

Example 2.2. Consider the model

Min fo(x) = x

s.t.
fl(x,e)=—-92x££)
2 2 -
f“{x,8)=—e" —-x IO
*
near 8 = 0, Here
< {23 if e=0
¥ ()=
{1,235 if e#0

and F (g) = R, for every e {(thus the mapping F:e—F {8) is

both upper semicontinucus and lower semicontinuous hence

continuous). Also Fl(e) =R, = [0,m) and the optimal solution is

¥{a) = 0 for all e.

The two regions of stability introduced in Chapter 1,
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Hie®*) and vie™) are given by

o

Hie*) = {a: Fle®*) & Fle)} =R

vie®)

fo: FF(e®*)SF (8), —e°x<0 for x20)3 = R.

For e #0, the saddle point inequality {(2.2) becomes

e 2 nr Low ] ~
x{a) +u1-( —8“x(a)} +u2-( —ac —x{8)}))

ne - Py "2 nr 2
Exi{e) = x+ujle)-({—e"x) +tusle)(—w —x)
for every uy =0, u220 and every x€F (8) = R. These
inequalities are uniquely satisfied by
~ ~3 ~r
uy(e) = 178 and uj,{e) = O.
However, at e* = 0, the saddle point inequality {(2.2) becomes
¥(a™) —us-(xte® 2 ¥e®r s x—ata™r-x
F .
for every u, 20 and every x€EF (e¥) = R. This inequality is

uniquely satisfied by
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ay¢e™) = 1.

The Lagrange multiplier function U(e) is then

{(One must remember that the function Uis) i1s defined according

to the index set P (e®) = {23). Thus U{e) need not be
continuous even on a stable region. However, the Lagrange
multiplier function is continuous on certain stable regions.

The trick is to characterize those constraints which are in the
index set P (a*) NP (8). If we assume that the mapping

Mel—=F (8) is lower semicontinuous at e*, then on the set
* = £ = p- K = - = e { = * L3
Vite ) = {a€RV : ¥ (x,8) SOV YEF (8) KEP (a)NP (0713

we have continuity of Ule) in the sense of Theorem 2.4. Betore

we prove the theorem, we need the foilowing lemma.



Lemma 2.3. Suppose Ffor the model (P,e) that the mapping
M:el—>F (e) is lomer semicontinuous at e*. Then given any
—_ %*. NP . *

X € F(e) and any sequence e,—>e with enG lll(e } for all n,

N
there exists a segquence of feasible paints x(en)GEF(Bn) such

that ;(en)—&? as n—>o.

Proof. Given x€ F(s®) we may find Y€ Fle*) arbitrarily close to

¥ such that

Since §15F=(e*) and the mapping Mel—F {8) is lower

. . * . # * .
semicontinuous at e, for e, —*8 enéivlte } there exists

v(e, ) € F te_ ) such that
1 Fe
vie )=y as n—w
by lemma 1.2. Moreover, the lower semicontinuity condition
quarantees the existence of a neighbourhood N(a®) of " such
that
P (e) 20 (a

)
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and so for n sufficiently large
(e ) 29 a*).

After a relabelling we may assume that Pi(en);?P{(a*) for all rn.
Now we look at the indices in #° (e, ) NP (e*) = #*(e*). Because

y(en) tends to ¥y as e, tends to e in the limit, the joint

cantinuity of the constraints implies
X - PR 4 *
Riyte, 1,0, < 0 KeP (6®)

for all but a finite number of r. But y(e, ) is also in F=(an),

and the condition
K - < NV AP o
i (y(an),en):o Kepg (an)x}? N

for entsvlte*), combined with the strict inequality

f’{fzf(er,>,er,> < 0 Kép‘:te*:', leads to the conclusion
y(an) EF(en)
for rn sufficiently large. Thus there exists a sequence of



feasible points Y(en)tiF(en) converging to ¥ as e, converges to

n

e*. Since ¥ can be chosen arbitrarily close to x (due to

convexity of the constraint functions), the same must be true

for x. This proves the lemma. ®

We note that the preceding lemma is critical in proving that

Vlta*) is a region of stability {(see Appendix BY. The proof of

Theorem 2.4 follows.

Theorem 2.4. Consider the model (P,a) at some 8 = e* and
suppose F(o®) #0 and bounded and that the mapping Tieb—F (a) is

lower semicontinuous at a*. Let Uis) = {u,{(e)uxep‘iia*)} be the

Lfagrange multiplier function. ITF BiEEVI{e*) and Bi—%a* then

=

(i} Any segquence drawn fraonm {uK(ej): KE€¥P (a®)> is bounded for

all sufficientliy large i;

&

(ii) The set of limit points of {ugie): KEP {e¥)I as e—a™ is

rnon—empty and every limit point is in {uK(a*): KiEP{(e*)}.
Proof. (i) Let X€ F{(e®) be such that



There exists € >0 such that
(2.7) iz, 612 —c<0 Kerta™.

- y * s * .
Given a sequence el—e . el € V1(9 }, we can construct a seguence

of feasible points x(el) € Fie!) such that
(2.8) *tely—=% as i—w

by lemma 2.3. From the saddle point inequality (2.2) we have

fo(x,ei)+ Y uﬁiai)fx(x,ai)+ ¥ uK(ei)fK(x,ei)§§¥(ai)
K€ (a®) KEP (e nd (sl

for every xWEF=(ei}. Now we will use (2.8} to show that any
sequence from {ug(e’): KEP (a3, 7 = 1, is bounded. I¥

not, then for at least one index L €9 a®) and a subsequence

el"! of a’, there exists a subsequence



Cugtelr 7y : k€P (6™)1%_, € Cupo®r Py KEP (a™13%,
such that

(2.10) ugtelr/)—>+m as j—rm.

After a relabelling we may assume that

(2.11) ugtel)—>+m as  i—sw.

By the definition of Vl(e*) and the fact that the Lagrange

multipliers are nonnegative, we must have

Y oagteirkixce®y, 6% <0,

Ker=(a®)yne (el

The inequality (2.9) becomes

Pty ehr+ TG, terirkxaty e 2 F ey
KEP“ (e®)



for all x € F=(ef). Recall by (2.8) that x(el)—=3X as i—>o.
Using this, {(2.11}, and taking the limit as I tends to infinity

vields

{Since VI(B*) is a stable region we must have ¥(Bi§—§¥(9*) as

I—w. See Appendix B.) This is absurd and proves that {(2.11)

must be false, hence (i) holds.

(ii) Let e! be an arbitrary sequence satisfvying both
i~ #* . I _* A
8” € V(e ) ¥or all I and e"—e a5 i-2m.

Maoreover, let Euk(ai): klEPite*)]?=1 be an arhbitrary sequence of
truncated Lagrange multipliers drawn from the sets

tuptel) s k€P°(e®)3%_ . Since each companent, u,(e’) is bounded
by part (i), there exists 2 subsequence of ai for which each

component converges. Thus the set of limit points of

{uk(e): kexﬁ(e*)} as s—=8% is nonempty.

MNow let ;k denote the kth component of a limit point of



{uk(ei): kEP (e¥)} as e—>e™. Then there exists el—s* and a
sequence of truncated Lagrange multipliers
(uk(aj)= ki§P<(9*)]?=1 such that

u tef)——u, for each k€9 (a®).

[—*0m

Let ;(aj) be optimal solutions chosen +rom ?iei). Since Vlte*)
is a stable region and aiifvlie*) for all i, we conclude that

;iei) is bounded and has a convergent subsequence with a limit

point which we denote by x(s™). fAgain, since VI(B*) is a stable

region, ¥(e®) € F(e®) (hence our notation is consistent). Taking

a subsequence of uk(aj) +ar which ?(aj) converges to ;(a*), then

taking the corresponding subsequence of uk(ai} and relabelling

this subsequence so as to have single superscripts, we may

1 *

assume a —3»g , e‘ievi(a*) and

y . s ; -."': ¥» . .
uk(al)—vuk and x(el)—3xi{8") as i—rw.

To complete the proof we must show that [Sk: kéip{(e*)] 1 in

*

<
{uk(e*): k€¥P {e ). We use the saddle point inequality (2.2)



v to abtain
2.12) P Geh,ehr+ ¥ v RRey, ey 76’
k€9P (al)

for every v, 20, k€¥ (a?) and

-

(2.13) Fal) 2 %x,0t0+ ¥ uk(_ei)fk(,x,alc
ke el

for every x € F-(el). By specifying
=0, kP (alrnp" (™

in (2.12), we can change the summation index to P{(a*). In the

limit as el—e¥®,

{2.12) becomes

k™, e+ T v, rRxe®), 6™ £Fe™
k€05 (a8™)

for every V20 ktiﬂi(a*). This is the left hand side of the

saddle paint inequality (note that we need not concern

ourselves with the set F (s®) vet). We now prove the other side

of the inequality.

|
i
|

|



The term on the right hand side of the saddle point

inequality given hy {(2.13) can be reduced. Since

Rix, 8510 keP ()P (e®) wxEFT(hH

{again by the definition of Vlis*)} we conclude

z uk(aiifk(..\f,ei)ii) ¥ x EF

{8}
kP (ainpt (a®)

and so

for every x € F (al), Finmalilv,

. D mde s =, .
Sifoe every rmInr 1o o Fole ) 18 a

Timit neint of points o

~=, 1 - - R S 2 ..
‘r FTia’) and since f(e?)—»f{a”) as i—kwm,
we o must have
-4 APUE N o * -~ *
R R Fie™)y T n,8" )+ ¥ uktk(x,e )
-,
k€EP (a)

for every xifF=(e*). Recall Ek denotes the limit point of

u teld)y k€¥ (a®). This praves the right hand side of the saddle
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point inequality for the point (;(a*),a). |

One shculd note the importance of the condition fk(x,a):SO

YxEF (a) kEP (a)NP (a™). In example {2.2) the Lagrange
multipliers are bounded and so have a convergent subsequence.

However, the lack of this additional condition results in the

limit point not being a Lagrange multiplier at o*. We now prove

a number of corollaries.

Corollary 2.5. Consider the convex model (P,8) at e* and
suppase Fte®) £ 0 and bounded. In addition suppose that the
mapping Tiel—3F (9) is lower semicontinuous at e*. Then the

Lagrange multiplier function Ule) = {uk(a): kEP (™1} is upper

semicontinuous on Vl(e*).

Proof. 1If not then since Wle®) is bounded, there exists an open

set A2 U(e™) but AZU{e) in any neighbourhood of ¥

I

*‘. I

~ - ¥
cvlia Yy, 8°—>2a

H(a*)fﬁvlta*). Thus there exists a sequence s

and a sequence of Lagrange multipliers u(ai)flh The sequence
utel) is bounded by the first part of Theorem (2.4) and so has

a limit point which must be in AS. Since A NU(e®) = §, Theorem



{2.4) is contradicted and the corollary is pra#ed. |

*

Corollary 2.6. Consider the convex model (P,e) at some @ = &8 .
Assume that F(e®) #£8 and bounded and that Slater’'s condition
holds at e = e*. If the Lagrange aultipliers are unique Tor all

e In some neighbourhood of a*, then Ule) is contirnuous Iin the

*
usual sense at o .

Proof. We first note that when Slater 's condition holds, i.e.

« 3% such that FX(¥,e®*) <0 kepn

then P (e*) = @ and F-(e®) = R". The Lagrangian L<(x,u,a)

becomes the more familiar Lagrangian

Lixyu,8) = o ex,00 + ¥ u, ¥(x,0).
keP

More importantly, Vlia*) reduces ta a neighbourhood N(a®) and

the lower semicontinuity condition is satisfied triviallvy.

Since the Lagrange multiplier function is unique we must have

utely—=uta®) as i—w



by Theorem {(Z.4). R

The above result was previously obtained by Golstein (see [41]),

Eremin and Astafiev [2].

One might suppose that the conditions on Vlte*) would lead to
some stronger properties of the Lagrange multiplier function

U(e) around e¥, In particular, the possibility of U{s) being

lower semicontinuous might be studied. However, the next

example proves that the conditions on VI(B*) and on Theorem

(2.4) do not guarantee the lower semicontinuity of U(e) at e*.

bf Example 2.7. Consider the convex model

Min fO(x,a) = x
s.t.
fltx,e) = — x — g2 £ 0
1 XE x 20 _
frix,0) = = 0
0 x =0
around e* = 0. For every B‘ERI, F (@) = R, P (a) = {13. Thus

the mapping Mel—3F (&) is lower semicontinuocus at e*; and
Vlta*) = R. For every & we have x{e) = 0. For e#0 the right

hand side of the saddle point inequality is



0 =Xe)Ex+u "(—x—82) VxEF (a) =R,
which is satisfied uniquely by uy = 0. However, at e* = 0 the

right hand side of the saddle point inequality becomes
0= x(eM)Tx+tu;t(—x) Vx€EF (8") =R,

which is satisfied for u; € [0,11. The point 4y =1 at e¥ is not

the 1limit point of any Lagrange multiplier as si—%e* (ai;ﬁe*).
Therefore U{e) is not lower semicontinuous at_a* (recall U{e’) is

defined with respect to e® as well). =

2.3 Connection with Input Optimization.

In this section we establish the connection between the

Lagrange multiplier function of Section 2.2 and the Lagrange
multiplier function which exists for a locally optimal input.

First we recall the idea of a locally optimal input from [12].

Definition. Consider the convex model (P,e). An input
e*e5(e™) is a locally optimal input over the region of

stability S(e®) if both



ti) Fte*) 6 and bounded, and

{(1i) there exists a neighbourhood N(e®*) of 8 such that

Fle)2T(e™) for every e€ H(e®) N5(e™). W

Characterizing an optimal input was done in [12] where it was

required F (e*) €F (e). Under a suitable constraint
qualification a necessary condition was found in terms of the

Lagrangian

Li(x,u,e) = fO(x,B)+ Z quK(X,B).
KEP (a®)

Note that this Lagrangian is different from the one defined at

the beginning of this chapter since the summation is restricted

to P{(e*). The theorem follows.

Theorem 2.8. Cansider the model iP,8). Let e be a locally
apfimal Input over the region of stability 3(9*), and let

* o=, * . . * *

x €F{e ). Then there exists a neighbourhood N{(e” ) of e and a

nonnegative vectar function li: N(e*)f\S(e*)———%Riie*) such that

whenever a € N(a*)n S(a*),



Fel

Liax®,v,e®) 2 05x*, lte™),0®) £ 15 tx,lite), 0

for every VERE(B*) and every xEF (a®). B

Since F (a®) S F (a) implies that the mapping Frrel—F (a) is

. . *
lower semicontinuous at e, we can strengthen the statement of

Theorem (2.8} considerably on the region of stability Wie®):
Wie*) = (a ERP:F (e™) S FT(0) and P (a) = P(a™)3.

{This region was introduced in [143.) Wie*) is a subset of

Vl(a*) and as one would expect, the nonnegative vector {function

in Theorem {(2.8) can be identified as the Lagrange multiplier

function of Theorem 2.4. The proof of this is trivial as one

need only note that in the event P (s8) = P (s*), the Lagrangian
of theorem (Z2.8) and that of Theorem f2.4) coincide. As a

consequence one may assume that the nonnegative vector function

in Theorem (2.8) is continuous at s¥.

Many examples point to the fact that near a locally optimal
input there exist fixed nonnegative multipliers for which the
right hand side of the inequality in Theorem 2.8 holds. That

is, U{s) could be taken to be constant in a sufficiently small



neighbourhond of a locally optimal input ¥, In fact, this

turns out to be false and a counterexample is given in Appendix

A.



Chapter 3. Continuity of the Lagrange Multipliers for Linear

Models

3.1 An Explicit Representation of the Lagrange Multiplier

Function

In this section the model is simplified and we assume that
Slater's condition holds. Under a suitable hypothesis we will
give an explicit representation of the Lagrange multiplier
function and show that the function is continuously

differentiable. We start by defining the Linear Model

(L, t) Min <a%(tr, x>
{x?

5. ¢,

il

safcery,x» ity jEPRLL,---,m> x€R"

where the aj(t), JEPL{GF are vector—-valued functions of the

th

scalar ¢ whose I component is

f

¢ o o F g § J -
ity & ait-fﬁi X7y pj!:R.

The bi(t) are differentiable functions of + (hut not

necessarily linear), and < , > denotes the Euclidean inner

product. For a fixed ¢ = t, we have a linear program. Let



Bi{x(t)) denote the binding constraints at a feasible point x{(¥).

We begin by proving a simple lemma.

lLemma 3.1. Consider the model (L,t) at some t = to. Suppose

the optimal solution ;(to) Is unigque and Slater’'s condiltion

halds. Then given any ¢ >0, there exists a & >0 such that

OS It —t,] < 6= UX(E) —X(t )N < e

for all optimal solutions at x(t).

Proof. If not, then there exists ¢ >0 such that for some

sequence t"—%to, ;(tn)iif(tn) we have

(3.1) Bx(t) —x{t5ll 2 e

However , the model is stable at t- since Slater’'s condition

holds (see Cﬁapter 13 Corollary 1.46}. Thus ;(t") is bounded and
has an accumulation point. Since the accumulation point must be

in ?(to) we have

S?(tn)——:-}(to) as n—rom.



This contradicts {(3.1) and the lemma is proved. ®

Note that we use the stability of the model implicitly in (3.1)

by assuming that there exists an optimal solution to the

perturbed model.

Now we are in a position to prove the main theorem of this
chapter. First we recall that for differentiable convex
mathematical programs, Slater’'s condition implies that the kKuhn-

Tucker multipliers and Lagrange multipliers coincide.

Theorem 3.2. Conrsider the model (L,t) at t = ¢,

,»  Suppose that

the fallowing conditions hold:

(1) ;(to) Is unique

{tii) The aJ(toi caorresponding to the binding consztraints are

linearly Independernt, and that

(iii) Slater’'s condition holds.



Then the Lagrange nultiplier function is a differentiable path

in R? (g = card{B(;(tn))}) in some neighbourhood of t,.

Proof. Without loss of generality we may assume that the set of

binding constraints is

iy

Blxity)) = {1, -+, k3 kZoa.

Consider those constraints which are non-binding, that is,
those belonging to the index set P\B(;(tﬂ)). Since the

constraints are jointly continuous (this is not explicitly
assumed but the claim is obvious from the form of (L,t)?}?, there

exists ¥ » 0 such that

(3.2) My, 8) —(3(E,), b0 < ¥ =<al(tr,yr-blitr<a

_iexr\s&(to)).

By Lemma 3.1, the quantity H;(tn) —%x{#) !l can be made arbitrarily

small for all X(#) € F{¢) in a sufficiently small neighbourhaad

of 5. Combining this with (3.2) implies the existence of a

neighbourhood Hl(tﬂ) such that

tEN (ty) = <altt), X ()>~—pT(t) <o FEPNB(R(ty)).



and so fqr tENl(to),

B(;(t))EB(;(tO)).

MNow define

E- Y

Flie,t) 2 caltt),x»—bi(ty jeP.

The gradients taken with respect to x are

V Flix,t) = al(e)

.

and depend only on ¥. Let F{t) be the matrix of gradients

corresponding to the binding constraints

l | ’
olix, by, o0 rRux, ) | =
i l

G4

By the hypothesis of the theorem G(to) has full rank (r(G(tO))

= k = card{B(Q(tQ))}). By our knowledge of singular values

{(see, e.g. [?]) we know that for sufficiently small



perturbations about G(t,), G(¢) will continue to have full rank.

Since the elements in G(%) are continuous functions of %, we are

guaranteed that these perturbations can be made *small” in the

Euclidean operator norm, defined for AacRkRT 4o

SupitAxi
Hx“e=1

where ililxll is the usual Euclidean norm #xil = {x,x}I/E. The
preceding remarks mean that there exists a neighbourhoad Hzitﬁ7

such that

t Eﬁzita) =3 r{G{t)) = k.

Since Slater’'s condition holds, we turn to the Kuhn~-Tucker
equations {for convex constraint functions and convex objective
function {(see L[101). Thus for every ¢t in the smaller of the two

neighbourhoods NI(tQ) and Nzttﬂ), the FKuhn—Tucker multipliers

satistfy

(3.3 (6¢t ) ] wttr = =9 ) = —a%)

where u(t) 20. Recall that the Lagrange multipliers and Kuhn-

Tucker multipliers are identical for this model. One could



differentiate the system (3.3) as it stands to abtain u(?) (see

[92]1) but this form requires inverting matrices which depend on
t. To get a better grip on the Lagrange multipliers u(t) we

rewrite {3.3) in the following form:

—-a .

n M D
( G(tD) + {(G(t) — U(tﬁ)) J ult) = — fo ()

G(to) has full column rank and sno there exists a PiER”E" such

that

where Ik denotes the kxk identity matrix. Hence

[ )
(5]
(3.4) [ - 5*- ’ + PEGIE) — Glty)] | utt) = — P-a%(e).

&

But G(¢) —G(t,) has a very specific form. Recall that the it

component of al{¢) is qft-kpg. Let A‘ER"xk denote the matrix

whose (i,j) entry is af. Then
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Git) —Gity) = (t —ty1A.

Let us denote the first & rows of P-4 by the matrix M.

Furthermore, denote the top k rows of F by the matrix Pk'

Truncating the last (n— k) rows of {(3.4) we get

(3.5) [T, + (=t dMIutt) = —P.a%t).

Since M is a fixed matrix, HiEkak, IMil < 0 and sO0 for

lt-—t0l< 1/0H1 we have
(3.8) L — oM< 1.

Here Ml is the Euclidean operator norm. Thus the matrix on the

left hand side of (3.5) is invertible and its inverse is given

by

- R — 00 PN | - v Fapd
(3.7 CI +(t—tqiHY - = I, + E%9 (1 e =0,

We let the Sn(t) denote the partial sum

= Fy n — _i — j J
St & ¥ =Tt~ h



©

where H° £ Ik' The matrix Sn(t) can differentiated elementwise

to aobtain

H
r= ¥ ittt =ty -y It
=

D

d
.80 — (5,()] =2

We may choose a neighbourhood Msito) such that for t &€ H ()
{3.6) holds i{note it is valid for ¢t in the closure of NE(tO)).

Thus there exists a fixed a< 1 such that

tEN (T =2 It =, 10 Zad 1.

.

We claim that both S,(t) and 5. (¢} converge uniformly {using the
Euclidean operator norm) on Hzity). To show this we prove that

the seguences are uniforaly Cauvchy. Given € >0, choose NEN

such that both

7 i
5 jai Tl ¢ ¢
i=m

and



simultaneocusly for all =», nZ#. For the same N we use the

triangle inequality and the bounds on lt-—tolﬂﬁu to conclude

t n
- - i
HS (£) =S (IS F Mt —t M2 F alde
f=m i=nm
o 4]
S, (8) =82 ()€} it —t oMt £ ) jal< e
f=m I=m

for all ¢ €Hz(ty) and all a,n 2 N. Thus the sequences 5 {(¥) and
5,(t) are Cauchy. Since the space of k¥k matrices with the

Euclidean operator norm form a Banach space, &, converges to a

matrix in R¥7K, However, we still do not know that thiz is the
matrix of derivatives of {(Z.7). To verify that it is, we

observe that

-~ - o kxk
HFI = Max IF, . FER
(i, 1) il
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and sa the (i,J) element of ((t—to)ﬁ)! satisfies

yimRa .

— 4 b
H{t—t, 40 Z(Max‘ i{e—t, iy

ig

Thus the elements of (3.8 converge uniformly, that is, the

,-;

uniform convergence of a;(t) in the Euclidean operator norm

fond

implies that the elements of 3 {¢) converge uniformly as well.

Since each element of S,{t) converges, we can conclude that

N _ 9 r -1 .3
ims = ey W+t =ty ) )f‘

For more on uniform convergence and differentiation of series,

the reader is referred to £71.
From (3.7) and (3.4) we have

. 00
(3.10)  wtt) = = [ Ig+ T -0 et ) pea i,
J=1

valid for ¢t in the smallest of the three neighbourhoods, Nl(tﬂi,

Nzito), and H3(t0).
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Differentiating the product of a matrix and a vector, both

functions of ¢, is similar to the usual produce rule from

single variable calculus. For A{#) € RK*K and vit) eR¥ 1et

d \ . o d - v e
{(3.11) g; {A(t)f 2 A(t) E; {V(t)/ = wit)

Then

d s . .
—5 (A v} = Aibven v acrice.

Recall that ao(t) is a vector—-valued function whose ith
. [8) 0
component is ait-ﬁpi. Let
0 G 0 Q a 3] §
a” = (aiv"'s“n)ti ﬁ) = (Pis"',?;)t'

Then applying the differentiation result (3.11) to {(3.10) we

have

- \ -m - - -\
il e 3 it—t13Fir— J—1 47 0, 0
| = {uttr} Liélxt D F et TP (£aP+6%)
(3.12) -
e T8 v iie—s v dawd ) )
(2,07t u7 ] Pra

18



which is an explicit representation of the derivative of the
Lagrange multipliers. The representation is valid for % in the

smallest of the three neighbourhoods N, (%,), N5{f5) and Nx(t,).

This completes the proof of the theorem. B

Note that once t, is specified, the representations (3.10) and

(3.12) depend only the quantities (t—tg), P.a”,.P.p", #/P, a”

and Hijpo. The latter four are constants and can be formed

efficiently by recursion, HijQO = Hiﬂj—lPkaQ} and HijpO

= #n/7lp %), starting with the vectors Pea? and PLe?

respectively. For computations where it is desired to determine

the Lagrange multipliers in a neighbouwrhood of to, this seems to

be more efficient than inverting the matrix on the right-hand
side of (3.3) repeatedly. The auvthor is presently investigating
the numerical possibilities associated with the representation
{3.10) but the efficiency of using (3.10) and (3.12) compared to
computing the lLagrange multipliers from scratch remains an open

question.

Finally we draw the reader’'s attention to the fact that the
representations in (3.10) and’(3.12) incorporate pérturhatians
in the objective function, left hand side and right hand side
simultaneously. Since these representations are explicit in the

variable t, one can track and study the behaviour of the



Lagrange multipliers in a neighbourhood of the present model (¢
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Appendix A.

The example in this appendix disproves a coniecture concerning
the nature of the nonnegative vector function associated with an
optimal input. The maodel under consideration is the so called

bi-convex model, a more restrictive model than (P,e) of Chapter

1 since it also requires that the functions fk(x,a) k€ {0YUYP be
convex in a8 for each fixed x. For this model, denoted by

Pi{x,e), the following conjecture was proposed.

M et Pix,8) be a perturbed bi—-convex program. Let e € I be such
that F(e*) #0 and bounded with &¥ not being an extreme point of
I. Suppose 5(e¥) is one of the three regioné of stability,

Mia*y, vie™), or Hi(e*) and suppose S(a*) nNHe®)I NI is convex.

If o¥ is a locally optimal input over 5(5*), then there exists a

fixed vector u¥* such that

<, * ®, - <, F ® ¥, 4 *
fi.1 Lylx"yuq 0" ) 2L {x"yu ,8 ) =L {x,u ,8)

for e € 5(e™)NN6®I NI, all uzG, all x€F (e®)NK, where

x*e ?(a*).”

Here, R is a convex set SLSRT. We will suppose below that the



set & is R”,

Although the conjecture is pretty, it is false, as the

following example demonstrates.

Example A.1. Consider the biconvex model

Min Aior=tx+11 -1
(x)
5.t
glx,0)=le{x—1)]| —8 O
i={p: 1/ 22>
around the point 8¥ = 1. We leave it to the reader to convince

himsel+f that the model is bi-convex. Mote that the feasible set

is
Fla) = {x: 0% x =23
for all e&g I, thus #(a*) = I. Also note that every 8 in I is a
locally optimal input since x = 0 € F(e) for all e € I and £2
= jx+1} —1 is minimized at x = G over Fial. In addition this

minimum is unique (note that ¥ {(x,e) >0 for x >0). Hence, for

all €1,

0
e

O (%e)) = 0, ¥{e)



In particular, e = 1 is a locally optimal input, and e* is not

an extreme point of 1. It will turn out below that the

LLagrange multipliers at o* are unique. For e* = 1 the problem

becomes

Min Fola={x+1] —1
{x)

{x—1{—-1=0

We seek u*;zO such that

* * _*
)

(A.2) Lix¥ u,e®) cex®,u®, 0% 2 Lix,u®,a

{Slater ‘s condition holds so we use the standard Lagrangian).

- b ¥
Since x{isa )} = 0O we have

gtxie®r,a®) = 0 and 2 (%(e¥),e*) = 0.

The saddle point inegquality (A.2) becomes

S N * o A \ * .
Y 20 +uy w):rjix,é*i+u*-g(x,e*l

O‘*G'(Q(X*,B

and then

O+u-(0)YLO0E |x+1}—1 +u¥eqjx—1}—1)

I



which must hold for all x€R since F {e') = R, and all u 0.
The left inequality holds triviaily. Choosing first x € (0,1}
and then x € {—1,0) in the right inequality leads one to the

conclusion

"If there exists u® =0 such that (A.1) is to hold, it must be u®

= 1. Now we seesk a neighbourhoad M(e*) such that

(A.3) Lex* u,0® 2 L™, u®, 8% 2 Lix,u¥, 8

halds far all x€ F (e*) and u=0. Replacing the Lagrangian with
the appropriate quantities reduces the right hand side of (&.3)

to

{A.4) O =0+4+1*0Z|x+1}—1+1-~la{x—1)| —s.

We will now show that (A.4) cannot hold for all x€ F (e®) and

0. In particular, for x = 1,2, x£F - {(e”) = R we have

0

1y

12 + [8/2] — a.

For a8 >1 this becomes



011 —-el/2<0

which is a contradiction. Hence there does not exist a fixed
u¥ =0 such that for the optimal input e* = 1

*

L(x*,u,e*):EL(x*,u ,B*):EL(x,u*,e)

for some neighbourhood of e, N(e®)NS(e® NI, and all

x€EF (%), uzo. A

In conclusion, the nonnegative vector function associated with
an optimal input is generally a non—trivial function of e in

some neighbourhood of a¥.



Appendix B

©

In this appendix we prove that the set

Ie

I/lv‘.a*) te: fXix,0) S0V x€EF (a) KEP (arpia®:
is a region of stability whenever the mapping [ = al—F"{(a) is

lower semicontinuous at e® and F(e®) is naon—empty and bounded.
The work for the prootf has already been done and we only

assemble the facts here. a8 review of Theorem 1.5 reveals that

none of the properties of R(a*) are exploited. Instead, ali

that is needed is the property proved in Lemma 1.4:

. - = * . * .
HGiven any ¥ € Fle ) and a sequence e,—»e , there exists a

sequence of feasible points vnEZF(aq} such that v'—%E as

T

In other words, the mapping ab—>Fi{e) ie lower semicontinucus at

* . —— . . . ’
8 whenever the mapping T: sb—F {8} is lower semicontinuous at

The same property holds for Vlie*) as demonstrated by Lemma 2.3

in Chapter 2. Thus the same proof given in Theorem 1.5 is valid
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for proving the stability of V1{9*> except that we replacé Lemma

1.4 with Lemma 2.3. UWe state this formally below.

Theorem 1.13. Consider the model (P,a) at some 8 = e®.

Suppose the mapping T : eF—=F (a) Is lcwer semicontinuous at a*

and that Fis®) is ron—enplty and bounded. Then the set Vlta*) is

a region of stability at s¥.

Proof. Replace lemma 1.4 with lemma 2.3 in the proof of Theorem

1.5. W
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