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ABSTRACT 

This thesis studies the behaviour of mathematical models 

in finite-dimensional optimization. The models are considered 

as input-output systems where the input is a data vector <or 

parameter), and the output consists of the feasible set, the set 

of optimal solutions, the optimal value, and the Lagrange 

multipliers. In particular we obtain various conditions which 

guarantee continuity of the output. 

SOMMAIRE 

L'objet de cette these est l'etude de modeles mathematiques 

d'optimatisation en dimension finie. Nous considerons c:es 

modeles comme des systemes a entrees-sorties ou les entrees sont 

des vecteurs de donnees (ou des parametres> et les sorties 

consistent de 1 'ensemble des solutions acceptables, l 'ensemble 

des solutions optimales, les valeurs optimales et les 

multiplications de Lagrange. Nous obtenons en particulier 

diverses conditions qui garantissent la continuite des sorties. 
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Introduction 

In this thesis we study the stability of mathematical 

programming models. We work within the framework of input 

optimization, e.g. [lll, [13J, £14J. Associated with each input 

is the feasible set, the set of optimal solutions, the optimal 

value, and sometimes the Lagrange multipliers. The latter four 

will be considered the output. A model is locally stable with 

respect to a fixed input vector e* and a region S<e*>, if the 

output changes continuously for all sequences e 7,~e*, aTI E S<e*). 

The general form of the model is 

s .. t. 
fk(ll:·,e> :50, 

B E I 

~EP .a {1,···,a}, 

the constraint functions, P is a finite index set, I is a convex 

set in RP, and xERn. We will stipulate further conditions on 

the general model as needed. Some of the conditions include 

convexity of fk<x,e> in x for each fixed e, pseudo-convexity of 

the constraint functions, and joint continuity of the fltnctions 

in the variable Cx,e). 
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The thesis is divided into three chapters. In Chapter I we 

develop and study the notion of stability followin~ the ideas of 

[11J, [12J, [13J, and [14J. In particular, we introduce two new 

regions of stability. One of the main results is a new 

necessary condition for stability of convex models. In Chapter 

II we extend the notion of stability to include the Lagrange 

multipliers. We obtain conditions for upper semicontinuity of 

the Lagrange multipliers over a region of stability. The main 

results were recently published in [8J. Chapter III 

demonstrates that under suitable conditions for a simplified 

model we may obtain an explicit representation of the Lagrange 

multipliers which proves to be differentiable. 
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Chapt•r I Stability of Conv•M Mad•l• 

1.1 Introduction to Stability 

In this section we introduce basic ideas concerning the 

stability of convex mathematical programming models. The 

general model is of the form 

,..() 
Min T <x, a) 
(.:1() 

s.t. 
fk Llt, a) :i 0 kEP, aEI., xERn, 

where the fk(.l(,a) are jointly continuous in (x,a) and convex in 

x for fixed a, k E P U {0}. The parameter vector (or data input), 

a, is confined to some conve>~ set I, I£ RP. We wi 11 study the 

behaviour of such models when the parameter is perturbed in some 

neighbourhood of a fixed a * = e . In particular, we will obtain 

certain sets of parameters for which the optimal solutions and 

optimal value of <P,a> change "continuously" as functions of e. 

These sets will have a reference point (usually denoted by a 

=a*) which determines the present state of the model. 

Suppose the model is running with the parameter a 

then we have the following "'output": 
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F<e*> = {x€Rn: "fk<x,e> :fO k€P}- the feasible sat 

0 
- * x<e > -- an optimal solution 

... * F<e > -the set of all optimal solutions 

- * f(e > --the optimal value (i.e. 

With these we are able to define the concept of a stable region 

which was introduced and studied previously in, among others, 

[12J and [14J. 

Defi ni ti on. The model <P, e > is stable in a region S £RP at 

a* € S if, for some neighbourhood toi<a*> of e*., both 

(i) * .... e € H ( e ) n S =+ F < e > :1:- 6 and 

* * "' e E N<e ) n S and e___,.e imply that the set F<e> is bounded 

and all its accumulation points are in Fee*>. • 

"" * With the proviso that F<e > :1:-B and bounded, the set 

H<a*> = { e E RP : F < e * > S F ( e > } 

0 - 7 -
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is a region of stability at e*. Two more regions of stability 

require the following definitions: 

p=(e) = {k: fk<x,e> = 0 'VxEF<e>}- the minimal index set 

of active constraints 

F= (e) = { x : _,k ( x, a) = 0 k E p= <a> } • 

Again, provided F<a*> is nonempty and bounded, the sets 

V ( a*) = {a : F= ( a*) S F= < a ) and _,k ( x, a > $ 0 

are regions of stability at * a •. These sets have been examined 

in [12J. Each of these sets share the property that they are 

independent of the objective function. However, each of these 

sets is restrictive in that they require either F=<e*> S (e) 

or F<a*> S F<e>. As the next example indicates, it is possible 

to have F=< a*> t1 F=< a> = fJ for all e :Fa*, yet the feasible set 

seems ''well behaved". 
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Ex•mpla 1.1. Consider the feasible set given by 

1 "f <x,y,e> = y- e2 x so 

2 f <x,y,e) = 
..... 

- y + e"x $0 

f3<x,y,e> = -y-x+l $0 e € CO,oo) ... I == 

The feasible set is the one-dimensional ray 

F <e)={ (.~·, y > 
,., 

: y=e"'" .lt"' 
1 

l+e2 }. 

The minimal index set of active constraints is constant, 

and so the set F=(e) is easily determined: 

{(x,y> 
,., 

: y = eL.x}. 

However, the regions of stability V<e*> and J,l(e*> are not useft..ll 

here since both contain only a single point: 

0 - 9 -



for each e* E I <note that F=<•*> Sf; F=(e) for all e:j.:e*>. Yet 

Q r<e) satisfies the following property: for every point 

- * (x0 ,y0 > E F-<e > and every E > 0 there exists a o > 0 such that 

lle-e*ll< o=::it 3 a point <x,y)EF*<e> satisfying 

Thus every point in F=<e*'> can be approached by a sequence of 

- * points in F-(e) as e~e • To find regions of stability which 

take into account the behaviour exhibited by Example 1.1, we 

need some additional concepts. In particular, we need to 

define the concept of continuity for sets. 

1.2 A New Region of Stability 

As promised at the close of the last section, we will now 

develop regions of stability which are useful for cases such as 

Example 1.1. To do so we need the following definitions taken 

from [3]. 

0 - 10 -
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Definition. <i> The point to set mapping r:I~X is lower 

semicontinuous at e0 E I if for each open set as; X satisfying 

a() r ( e0) '#:. ff, there exists a neighbourhood H ( e 0 ) of e 0 such that 

for each e in H < e0 >, r < e > n a '#:.e .. 

(ii) The point to set mapping r:r~x is upper semicontinuous 

at e0 e I if for each open set a, as;.x and a2r<e0 > there exists 

a neighbourhood H<e0 > such that for each e € H<e0 >, r(e) s;. a. • 

We will say the point to set mapping is continuous at e* 

if it is both upper semicontinuous and lower semicontinuous at 

* e • 

One may easily check that the point to set mapping 

r:eJ---;;.F=<a> corresponding to Example 1.1 is lower semicontinuous 

* * at each e = e , e € I = CO,oo). Interestingly enough, it is 

upper semicontinuous nowhere on CO,oo). The definition of lower 

semicontinuity is unwieldy and so we prove the following 

property stated as a lemma. 

Lemma 1.2. A point to set mapping r:I~X is Io~er 

semicontinuous at e*e I if and only if_, given any sequence 

- 11 -
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P~oof. First suppose that r is lower semicontinuous at e* and 

we are given v* E r<e*> and a sequence en---7e*. Let un be such 

that 

n does not converge to * V • Then there exists E > 0 such that 

for infinitely many n. The open ball BE<v*> of radius E cannot 

satisfy the criterion given in the definition of lower 

semicontinuity, for given any neighbourhood of e* there exists a 

point e
0 

in this neighbourhood such that BE<v*> nr<e
0

> = ff as 

insured by (1.1) and our choice of E. By contradiction, we have 

proved one direction of the implication. 

Now suppose that for all sequences a,----:;.e* and points ~-* E r<e*> 

* there exists a sequence of points "r, E r<en> such that vn---7v , 

yet r is not lower semicontinuous at e*. Then there exists a 

open such that anr<e*) #-0 and anr<e> = 0 for e arbitrarily 

- 12 -



close to e*. * Thus there exists a ball B0 <v > s; a with centar 

* * e,---:~' e* v E r<e ) and radius o > 0, and a sequence {e,l such that 

yet 

Hence 

* 11 z Tl - V 11 ;:- E f or a 1 1 z n E r ( e Tt } 

and there cannot exist a sequence {V n }~=1 ' ~~ n E r (en) such that 

v,~v*, contradicting our original hypothesis. This proves the 

second half of the implication and the lemma. • 

The preceding lemma deals with the property cited in Example 

1.1. However, even if the point to set mapping r:e~F=(e) is 

lower semicontinuous at a*, the model need not be stable. The 

following example is evidence. 

Example 1.3. Consider the convex mathematical program 

( 
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Min r0<x,e) = x 

s.t. 
rl<x,e} = -x-1-e S 0 

7 2 ( x, e > = -e2 x e E I ~ [ -1 , 1 l 

around e* = 0. For e > 0 

p=(e) = 0 and so ~(e) = R. 

For e* = 0, 

Thus the mapping r:e~---?F=<e> is continuous at e* = 0, yet the 

model is not stable. Observe that 

F(e) = { 

and 

[0' 00} 

(-1 ,oo> 

r 
I 

l 

e ::/= 0 

B = 0 

0 if B ::/= 0 

-1 if B = 0 

- 14-



Obviously the optimal value experiences a jump at e* = 0 and 

the model is not stable. We can conclude that the continuity of 

the mapping r:e~F=<e> at e* does not guarantee stability at 

e *. However, the next t.heorem wi 11 present one set of 

sufficient conditions. We need to consider the set 

R < e * > = { e : p= ( e > = P < e * > } • 

To facilitate the proof we need the following lemma. 

Lemma 1.4. Consider the Dathematical •odel <P,a>. Supp<Jse 

that the •apping r:e~F=<a> is lower semicontinuous at e*, 

* * Then for any sequence en~a,. e,ER<a >,.and f<-,r each fixed 

x0 E F<e*> there exists a sequence of points v,, E F<en) such that 

"n~x0 (in other words .• loNer semicontinuity of the mappir1g 

r: e t--:J>F= (e) at e * imp 1 i es I m<~er semi continuity of the mapping 

Proof. Let x 0 be given and let en be an arbitrary sequence 

* satisfying enER<e) for all r, and .. * Bn-?B • We construct a 

sequence which satisfies the claim stated in the lemma. Let 

Y r, E F< a,) be such that 
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Note that the minimum e>dsts since x0 is a fixed point and 

F(an) is closed <F<an> need not be compact>. Suppose Yn does 

not converge to l(0 , then there exists a.n E > 0 and a subsequence, 

Yr:( & ) , such that 

(2.1) 

A - * Choose x E F- (a ) such that both 

k·""' * <' * A f <x,a > < 0 for k E P' (e >., and llx-x0 n < E/2 

simultaneously. By the joint continuity.of the functions, there 

exists a l > 0 such that 

A * k < * 11 ( x, a ) - ( x, e ) 11 < l =+ f < x, e ) < 0 for k E P ·· ( e > • 

By the lower semicontinuity at * a ' there exists a ball of radius 

,.,, B,.,<a*> such that for ; E F=(a*) and each a E B,.,<a*) we may find 

i'<e> E F=(a) satisfying 

- 16 -



(2.2) 

If we choose L € N sufficient! y large then we have 

(2.3) 

Since 

A*--- _,.•.... * 
ll<x<en<t>>,en(l))- <x,e )11::::: llx(en(!}) -.><11 + llen<t> -e 11 

we may combine (2.2) and (2.3> to conclude 

But d' was chosen so that 

and thus for l 2:! L the x< en ( 1 ) > E F= <en ( t)) are feasible points. 

Moreover, for t ~ L 
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which contradicts <2.1). Therefore, no such E exists and we 

conclude that 

which proves the lemma. • 

It may not be obvious where the assumption p=(e) = p=(e*> in the 

region R<a*> was used. The proof needs this assumption when 

constructing feasible points since we are abie to write the 

feasible set as the intersection of two regions each with a 

constant index set, namely F=<e*> and the region which we define 

as 

Then 

Now we are in a position to prove Theorem 1.5. 
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Consider the convex •odel <P,e> at 

se•icontinuous at a*~ then 

is a region of stability at * a -

* a • Suppose 

Proof. We must show that for some 'Testricted" neighbourhood 

of a* N<a*> f!R<a*> both: 

(i) F(e) is nonempty and bounded and 

* * -(ii) Given e
7
, ER(e >, •n~e , we have that lr:(ert) is bounded and 

all its accumulation points are in F<e*>. 

We start by proving (i). First choose a particular optimal 

solution at * - * e ' say xo<e }. ... * Since F<e ) is bounded (by 

assumption), we may enclose it in a closed ball J( £ Rn with 

surface aK, such that 
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Suppose that (i) is not true. Then there exists a sequence of 

points en E R<e*>, en---::te*, and a sequence of points x(en> which 

satisfy one of two properties: either 

(a) There exist optimal solutions x<e,.,) <at e,.,> with 

X ( en ) n K = e for a 1 1 Tl; or 

all nE N 

((a) in case the set of optimal solutions is unbounded, (b) in 

case there is no optimal solution>. 

In either case we may also find v<e-.,) E F(e ) such that ,, n 

. ... * v ( en ) ----:'" x0 ( e > by 1 emma 1 • 4 • Then either of (a) or (b) will 

imply 

<2.4} 

Si nee aK n F ( e *) = £1, there exists M such that for all rt :;:- H 

- 20 -



each n ~ N we may choose ).n such that 

i.e. lies on the surface of K. Equation (2.4) and the convexity 

of fO<x,e) then lead to the following conclusion: 

(2.5) 

for all n, n ~N. The surface &K is compact and so there exists 

a convergent subsequence 

A Tt ( t ) v ( e n ( i ) ) + ( 1 - ). n ( t ) ) x ( e n ( t ) ) t -7oo 

The continuity of t"0 <x,e> yields 

(2.6) 0 *-0"' * * f < z 0 , e > ::::: f < x0 < e >, e >. 

Moreover, the continuity of the constraints guarantees that the 

limit point z0 is a feasible point at e*. By construction, 

~Kf'IF(e*> =H. Since z0 E ~K, it cannot be an optimal solution. 

However, we have already deduced that z 0 is a feasible point and 
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(2.o) necessitates that it is an optimal solution as well. This 

yields the desired contradiction and (a) is proved. 

To prove <b>, we know that given any ' * e,--:1e , * -enER(e >, x<e,> is 

-bounded by part (a). Thus x(en) has an accumulation point which 

we denote by x0 • Since x0 is an accumulation point., there 

exists a subsequence of x<a,.,>, x(en(t)) such that 

By the joint continuity of the constraints, x0 must be a 

feasible point at a*. .... * Letting x0 <a > denote a particular 

optimal solution at a*, we then have • 

(2.7) 0 * ...0 ...... * * f' ( XO, a ) 2: 1'. ( XQ ( 8 ) ., 8 ) = 

Recalling Lemma 1.4 we have that there exits a sequence of 

feasible points satisfying both 

... * v < an < 1 > > E F < an ( 1 > > and v ( e Tt ( t ) >---;; x0< e > • 

But we must have 

- 22 -



Taking the limit as t tends to oo we get 

<2.8) 

<2.7) and (2.8> imply that 

0 * .0"' * * f < "'o., e > = 1' • < x 0 < e >, e >. 

This, taken with the fact that x 0 E F<e*> (again by the 

continuity of the constraints in Cx,e>>, yields the result 

... * .::('0 E F<e > and completes the proof of <b> and the theorem. • 

Corollary 1.6. If' F<e*> '#-fJ and bounded for problem <P,e) and 

,·~ 

Slater's condition holds ate* li.e.~ there exists a point l( 

k ""' * such that f' <x.,e ) < 0 k E P)~ then the 11odel is stable in a 

neighbourhood of' * e • 

Proof. F=ce*> = F=<e> = Rn in some neighbourhood of e* <since 

semicontinuous at e*., and the joint continuity of the 
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constraints implies that p=(e) = 0 in a neighbourhood of e* 

Thus Theorem 1.5 applies and the proof of the corollary is 

complete. • 

Corollary 1.7. .... * Suppose that -for lliodel <P,e>, F<e > :-F0 and 

bounded. Then the region 

U ( e *) = { e : p= ( e > = p= ( e * > , F= < e *) s;. F= ( e > } 

is stable. 

Proof. We need only observe that the condition 

implies that the mapping r:e~F=<e> <restricted to W<e*>> is 

lower semicontinuous at e*. The hypotheses of Theorem 1.5 are 

satisfied <restricted to V<e*>> and the corollary follows. • 

What is peculiar about the preceding theorem is that it doesn't 

make any use of upper semicontinuity. In general, even 

relatively simple mappings need not be upper semicontinuous. In 

..., 
particular, rotations in Rk are not generally upper 

- 24 -



semicontinuous as the following example demonstrates. 

0 
EMample 1.8. Consider the feasible set described by the 

following function: 

...-1 = , <x,y.,e} I y -ex I - ( y -ex) ::; 0 eEI~[l,oo>. 

If <y-ex> < 0 then f 1 cl(,y,e> >O and so the point <x,y> is not 

feasible. If ( y - ex> 2: 0 then f 1 ( x, y, e) = 0 and < x, y > is a 

feasible point. Thus the feasible set is 

F<e> = {(x,y): y 2: e.lof}. 

At a fi>~ed e every feasible point Llf0 ,y0 > satisfies the 

F=(e) = F(e} = {(x,y>: y 2: ex}. 

We now show that the mapping r:e~F=(e} is not upper 

semi continuous at any e* E I. To do so consider the open set 

where i nt < G> denotes the interior of the set G, ''+" denotes the 

- 25 -



Minkowski sum of two sets, i.e. 

0 
G + E ~ { z : z = x + y for some x E G, y € E}, 

and E is some specified scalar strictly greater than zero. 

Suppose we are given E > 0 and a* E I, then 

However, for any a :F-a* we can find an .>-: such that 

A - A * 
.1( E F- (a) but X e a ( 9 ' E ) • 

Without loss of generality suppose a> a*. Then choose :~;"() < 0 

such that 

(2.9) ( *> .. ,l(O • e - e • .. --e. 

The point c ... 0 ,ex0 > E F==<e> but <x0 ,ex0 > JCG(a*,E>. If it were 

then there would e>: i st ( x 1 , y 1 > E F= (a*) such that 
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But this implies x 1 = x 0 • 

Regrouping yields 

* Since <x1 ,y1 ) must satisfy Yt 2!: e x 1 , 

contradicting €2.9). Thus the mapping is not upper 

semicontinuous at any e* E I. Again, as in Example 1.1., the 

mapping r: e~F=(e) is lower semicontinuous at every e* E I. To 

substantiate this claim consider any a* E I and any open set G 

satisfying GnF=<e*> :;1:0. Because F=<e*> is a half plane we 

have 

Since G n int (F=<e*>) is open and nonempty, there exists an open 

A A A -
ball of radius I and center Cx,y) :;I: <O,O>, B1 <x,y>, such that 

This requires that 
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* ~ A * A Obviously, if le-e t < 4'/lxl for _,,:~:o, or le-e t < oo for x = O, 

A A - A ~ 

we have that the point ( x, y > E F- <e) (because y ~ ex> and si nee 

A. .... 

<x,y>EG, 

G was arbitrary and this completes the proof of the claim. • 

The problem in the preceding example is that F=(a) is 

unbounded. As in Example L1, the set does not seem u.badly" 

behaved and we want to characterize such simple sets. If we 

restrict ourselves to a bounded region, and if p=(e) is constant 

in a neighbourhood of a*, then it turns out that we get the 

upper semicontinuity at a* automatically. This result is stated 

explicitly in the following theorem. 

Theorem 1.9. Suppose that the constraints of problem <P,e> are 

jointly continuous in <x,a> and p=(e) = p=(a*> in a 

neiqhb<Jurhood o-f a*. Then given any -::ompact set .Ks;;.Rn the 

rtapping r:a~F=<a> nK is upper st:•icontinuous at e*~ 

Proof. Assume not. Then there exists a open, K compact 

(closed and bounded) such that 
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a 2 r ( e *) n K yet a # r < e) f) K 

for e arbitrarily close to * e • Thus there must e>~ i st sequences 

and :.,· (en i € F= ( e *} n I( for a 11 n, 

(here ac denotes the complement of 0). 

that 

~-~~ 

S; nrp 'T i. s; i ·""lserl ; " E tl'-. But 

~ * -:F · I \. t ~ .., ) J an i = 0 for k E P ( en } = 'P ( e ) • 

By continuity of the constraints, 

0 as rt-l'too for k € p=(e*>. 

- 29 -



c This implies that :;: E F=<e*> flK whith is a contradiction (since 

A 

then x E a as well> • Hence no such a exists and in fact the 

mapping r: e ~F= < e > fl K is upper semi continuous at e * for each I( 

compact. • 

1.3. A Necessary Condition For Stable Perturbation& 

The situation is considerably more complicated when the minimal 

index set of active constraints is not constant, particularly 

when we do not take into account the behaviour of the objective 

function. In general, the minimal index set of active 

constraints may decrease over a region and the model may be 

stable regardless of the objective function. An example of such 

a region would be H<e*) or V<a*>. However, we open this section 

by showing that there do not exist any stable regions 

independent of the objective function which experience an 

increase in the minimal index set of active constraints. More 

precisely, given a path connected region satisfying the property 

p= ( e ) sg p= < e * > in every neighbourhood of * e , one can always 

produce an objective function for which the model is unstable. 

This is summarized in the following theorem. 
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4C) Theorem 1.10. Suppose Ne are given the aodel <P,e> and a path 

connected region S<e*> such that p=(e) sgp=<e*> in every 

"restricted" neighbc,urh<wd H<e*> ns<e*>. Then there exists an 

objective function f 0 <x,e> for which the aodel is unstable. 

Praaf. We may assume that P=<e*> ~P since the result is trivial 

in this case. We may also assume that S<e*> contains more than 

one point, for if not, the proof is again trivial. Since S<e*> 

is a path connected region with more than one point and since 

- * * A * p-(e ) ~'P, there exists a sequence., en E S<e >, a point l( E F<e ) 

and an index i satisfying the following: 

(i) 

and 

(i i} i A * A * f <x.,e ><O xEF<e >. 

~-· * <"' Thus i E'P'(e )'\'P'(en> for all n. Now we claim that there exists 

a ball with radiu? E: > 0 centered at ; such that 

·"" BE(x) nF<en) = D 
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for all but a finite number of n. If not then for every E > 0 

..... 
there exists feasible points in the ball BE<x> for infinitely 

many n. We can then construct a sequence of feasible points vn 

such that 

continuity of the constraints then implies that the limit point 

..... 
x satisfies 

• .-.. * f <x.,e ) = 0, 

which is a contradiction. Hence there exists an E > 0 such that 

""· BE(x) nF<en) = iJ for all but a finite number of n. This is 

essentially the end since we may now choose the objective 

function 

(3.10) -n If x - x.h. u2 t- <x,e> = 11 

which is uniquely minimized at e* by x<e*> = ~- The model with 

the objective function <3.10) must experience a jump in the 
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optimal value at e*. • 

A 

One should also note that the only assumption on x is that 

k ..... * < * f(x,e><O k€¥'<e>. 

In fact, the condition p=(e) )!P=<e*> in a neighbourhood of * e 

indicates a high degree of instability since we cannot get near 

any feasible point which satisfies the condition 

k * f <x,e ><O 

In the one dimensional case this indicates a virtual collapse of 

the feasible set outside of * e • Also note that the path 

connected assumption was used only to insure the existence of a 

sequence en such that en-::.e*, with en#: a* for an infinl. te number 

of n. 

Another way of stating Theorem 1.10 is that if we have a region 

of stability S<e*> which is independent of the objective 

function, then a necessary consequence is the existence of a 

neighbourhood N<e*> such that 
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As we shall see in the next section, the requirement that the 

mapping r:e~F=(e) be lower semicontinuous at 9* also implies 

the cond i t ion p= ( e ) S. p= < e *) in some neighbourhood of 8 *. 

At this point one might suppose that the lower semicontinuity 

condition on the mapping r:e~F=<e> might be a necessary 

condition for stability. This need not be the case even for 

regions which remain stable for all jointly continuous objective 

functions. The next example serves as proof. 

Example 1.11. Consider the feasible set determined by 

f 1 <.d = -x -5 0 
f2 (.~) = x-1 s 0 

f 3 <x,e> { 0 for I xl s 1 
= 

8 (I X I -1) for I xI > 1 

8 E I ::!: ro, 1 J 

around a* = 0. For all a E I we have 
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F (e) = <x : 0 :$ .1( :$ 1} 

and so the model is stable for all jointly continuous objective 

functions. However 

F= ( e* > = R and F= (e) = {x : -1 :$ x :$ 1} 

for e ::1: e*, e E I. The mapping r: e t-----:J>F= < e > is clearly not lower 

semicontinuous at e* = 0. For instance, one may take G 

,a {.1( : 2 < x < 4} and observe that 

G n F= ( e *) = G yet G n F= < e > = tif. 

for all e::l:e*, proving the claim. • 

The lower semicontinuity condition may not be a necessary 

condition for stability but it does provide some properties 

which we will soon exploit. One of these is stated in the ne~t 

lemma. 

Lemma 1.12. For the •odel <P,e) suppose the eapping 

r:e~F=(e) is loNer semicontinuous at * e .. 

for a sufficiently small neighbourhood of * a • 
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A 

Proof. We may construct a point x with the following property: 

' * A * k E 'P" < e ) and x E F ( e >. 

By the joint continuity of the constraints there exists a 1 1 >O 

such that 

(4. 1} ...... * -ll ( x , e ) - < x., e > n2 ~ o 1 

By the lower semicontinuity condition at 

(4.2) 

x<e> satisfying <4.2>. Since 

* e ' there exists a 

_ A * _ A * 
ll<x:<e>,el-<x,e >II ..... SUx(e)-J>·U....,+IIe-e II....,So1/2+o 1 /2 = .r

1 ~ ' L 

we must have fk<x<e>,e> < o < * k E 'P · (a > by <4. 1). Finally, since 

x<e> E r<e>, x<a> is a feasible point, and the lemma is proved • 

• 
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The preceding lemma tells us that the lower semicontinuity 

condition at a* is sufficient to guarantee the existence of a 

* * , ,.. * neighbourhood N ( e > such that p= ( e ) 2 p= (e) or P' ( e) 2 P' < e } for 

e E H<a*>. We will use this property in connection with the set 

The proof of the following theorem is in Appendix B. 

Theorem 1 .. 13. Cowsider the model <P,a>. ~ * Suppose F <a > ::#= 0 and 

bounded and the mapping r:a~F=<e> is lower semicontinuous at 

a*. Then the set 

V l (a*) = (a E RP : -rk ( x, e) ::i 0 'V x E p= (a) k E p< (a} ·,p< (a*)} 

is a region o-r stability at a*. • 

* We will return to the set v1 <a ) in the next chapter where it 

assumes more importance. 

We close this chapter by organizing the results into a diagram. 

Let 
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A ~ {models which are stable at e = e* independent of the 

objective function} 

B :& {models for which p< (e) 2P< <e*)} 

C :& {models for which the mapping r:e~F=(e) is lower 

semicontinuous at e*}. 

Then Ay B and C share the following relationship: 

B 
\ 

A 

r 
c 

I ! 
~----------------------~} 

~------------------------~1 
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Chapter 2. Continuity of the La~ran~• Multtpliars ovar Stabla 

Q Ragions 

2.1 The Saddlapoint Inequality 

In this section we investigate the continuity o~ the Lagrange 

multiplier ~unction. The model we will work with is the same as 

that stated in Chapter 1: 

<P, e > 

s.t. 

fk(x,e):!'fO k€P~{1,···,m} 

where e = ( e i) € RP is the parameter vector, x = L)( i; € Rn is the 

vector variable; the functions fk<x,e> are jointly continuous 

in <x,e> and convex in ;)(-for each -fixed e; I SRP is a convex 

set. 

We express the optimality of a point for a fixed e in terms o~ 

the restricted Lagrangian 
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(2. 1) L<<x,~;e> = t0cx,e> + ~ wkfk<x,e> 
kEP< (e) 

We will denote the cardinality of the set p<(e) by q(e), and 

the nonnegative octant of Rq by R~. Then for a fixed e, a point 

; is an optimal solution of <P,e) if, and only if, there exist 

nonnegati ve multipliers (u i), i E p< ( e > whi eh satisfy the 

restricted saddle point inequality 

<2.2) 

for every v E R~<e> and every x E F=(e). See, e.g. [13]. 

One might suppose that the saddle point inequality would hold 

for some generalized convex -function. However, it turns out 

that <2.2) may not even hold for so-called pseudo-convex 

functions. 

Definition. A differentiable funr.:tion 'f:R"~R is pset..cdo-

convex if 

(2.3) '\7fCx>·<y -x> ;:;o ==* fCy> ~f<x>. 
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The following example uses a convex objective function with a 

pseudo-convex constraint function. 

Example 2.1. Consider the mathematical program 

Hin .,O<x> = X 

s.t. 

g<x> ::f 0 

g<x> 1
-

= 

l 
-2x 

-<x+1>2 +1 

x 2 -bx + 2 

if )( :::;; 0 

if 0 :::;; X :::;; 1 

if 1 $ X 

The function g<x> has been pieced together so as to be 

differentiable on R. To verify that g<x> is pseudo-convex we 

use <2.3}. For xE<-oo.,3> dg/ddx><Oand so 

dg 
- ( X ) • ( y-x ) 2:; Q =-=* y 5,; X • 
d.ll( 

Since g is monotonically decreasing on (-oo,3>, 

ySx =} g(y)2:g(x}. 
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When combined with the earlier implication we have 

dQ 
--(.:d • ( y-x) ;;:; 0 ~ g < y) 2:: g ( x) 
dx 

and <2.3} holds on <-oo,3). On the interval [3,oo>, g<x> 

.., 
= ~-6x+2 and this function is convex, hence pseudo-convex. We 

will now show that there are no nonnegative multipliers which 

satisfy the saddle-point inequality <2.2). Suppose that they do 

exist. The optimal solution is x = 0 and so there exists u 1 ~0 

such that 

0 = x ::f x + u 1 • g ( x) for a 1 1 x E R. 

For x :::£0 we have 

But this is impossible. 
........ ~ ....... 

For example, when x = 3, g<x> = -7 and 

the saddle point inequality becomes 
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which contradicts our earlier inequality, u 1 ;;:: 1,./'2. • 

Thus, for the remainder of this chapter we will focus on the 

problem <P,e>. 

Since the Lagrange multipliers are not necessarily unique, we 

cannot talk about continuity in the normal sense. Furthermore, 

since inequality <2.2> depends on the index set p<(e), we want 

to be sure that in any discussion of the Lagrange multipliers as 

functions of a parameter the set of indices we refer to remains 

fixed. This leads to the main result of this chapter, contained 

in the following section. • 

2.2 Continuity of the Lagrange Multiplier Function. 

The closing remarks in the last section suggest that we must 

e>~erc:ise caution in defining the Lagrange multiplier function. 

Indeed, we will insist that the mapping r:e~F=<e> be lower 

semicontinuous at e = e* so as to insure that there exists a 

* * .(' * ~ neighbourhood H < e > of e where 'P' < e > ~ p<... <e) • Now we can make 

the following definition. 

Definition. For the model <P,e> suppose that the mapping 
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r:e~F=<e> is lower semicontinuous at e*. Then we define the 

Lagrange multiplier function to be the point to set mapping 

U< e): e ~{u i <e) : i € p< ( e* > }. • 

Here {ui(e): i € p< <e*>} is obtained by considering the set of 

all Lagrange multipliers at e - {ui(e): i € p< (e)} and 

~ * looking at the ui<e> correspoinding to the index set 'P~(e ). We 

will use square brackets to indicate a particular Lagrange 

multiplier (or truncated Lagrange multiplier>; 

[ u i ( e) i € p< ( e *) ] E { u i (e) : i E p< ( e *) } • 

Note that [ui<e>: i € p< <e*>J is not necessarily a Lagrange 

multiplier at e, however it will be if p<(e) = p<(e*>. Thus the 

Lagrange multiplier function with respect to e* is obtained by 

taking the set of Lagrange multipliers at e and removing those 

multipliers whose indices are in p=(a*>. Note that the u 1 Ce) 

are all defined for i E p< <e*> in a neighbourhood of e* since 

< * < 'P <e ) SP (e) by lemma 1.12. 

We will consider the continuity properties of U<e> on several 
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regions of stability. First we show that stability of the 

model <P,e> does not guarantee continuity of the Lagrange 

multiplier function. 

EMaMple 2.2. Consider the model 

= l( 

'f1 <x, e >=- e2 x ::f 0 
.,2 C>c, e)= - e2 - x ::f 0 

near a* = 0. Here 

{2} 

{1 ,2} 

if 

if 

e=O 
e:;t:O 

and F=<e> = R, for every e <thus the mapping r:e~F=<e> is 

both upper semicontinuous and lower semicontinuous hence 

continuous>. Also F(e) = R+ = ro,oo> and the optimal solution is 

K(e} = 0 for all e. 

The two regions of stability introduced in Chapter 1, 
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H<a*> and V<a*> are given by 

lf(a*> ={a: F<a*> SF<a)} = R 

V<a*> = <-) 

-a .... xSO for x~O)} = R. 

For a #:0, the saddle point inequality <2.2> becomes 

- r..s "'"" "' 2 S X (B) S X + U l (B) • ( - B.._ X) + u 2 (B) • ( - B - .)() 

for every u 1 ~ 0, u2 2 0 and every x E F=< e) = R. These 

inequalities are uniquely satisfied by 

However, at e* = 0, the saddle point inequality <2.2) becomes 

- * - * - * - * x ( e ) - u 2 • ( x ( e ) ) S x { e i S x - u 2 { e } • x 

- * for every u 2 ~0 and every x E F-(e ) = R. This inequality is 

uniquely satisfied by 
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The Lagrange multiplier function U(e) is then 

U<a> = ~~<a>= 
L 

for 

far 

a= e* = 0 

e ~a*. 

<One must remember that the function U<a> is defined according 

< * to the index set P·<a ) = {2}}. Thus U(a) need not be 

continuous even on a stable region. Howevert the Lagrange 

multiplier function is continuous on certain stable regions. 

The trick is to characterize those constraints which are in the 

index set p= ( a*> n :p< ( e > • If we assume that the mapping 

r:e~F=(e) is lower semicontinuous at e*, then on the set 

we have continuity of U<e> in the sense of Theorem 2.4. Before 

we prove the theorem, we need the following lemma. 
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Lemma 2.3. Suppose for the aodel <P,e> that the aapping 

r:e~F=<e> is loNer se•icontinuous at e*. Then given any 

-= E F.< e*> and any ' * · th E V ( *) "' 11 A sequence en-?e NI en 1 e ,or a n~ 

...... 
there exists a sequence of feasible points x<en> EF<en) such 

Proof. Given xE F<e*> we may find yE F<e*> arbitrarily close to 

x such that 

K E p< <e*>. 

Since yE F=<e*> and the mapping r: ei---'-F=<e> is lower 

semic:ontinuous at * e ' for ' * en-?e e 
7
, E V 1 < e *) there exists 

by lemma 1.2. Moreover, the lower semicontinui.ty conditj.on 

guarantees the existence of a neighbourhood N<e*> of e* such 

that 
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and so for n $Ufficiently large 

After a rel abell i ng we may assume that p< < e,., > 2 p< < e *) for all n. 

Now we look at the indices in p< <e ) np< <e*> = p< <e*>. Because n 

y<e,.,> tends to y as e,., tends to e* in the limit, the joint 

continuity of the constraints implies 

fK ( y ( en ) , en > < 0 ~~ E p< < e * > 

for all but a finite number of n. But y<e,.,> is also in F=<e,.,>, 

and the condition 

fK ( y ( en ) , en ) S 0 K E p< < en ) \,,p< C e *) 

* for e,., E V 1 { e >, combined with the strict inequality 

fK<y<e,.,>~en> < 0 KE:P<(e*>, leads to the conclusion 

y<e,.,> E F<e,.,> 

for rt sufficiently large. Thus there exists a sequence of 
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feasible points y<en> E F<en> converging to y as en converges to 

e*. Since y can be chosen arbitrarily close to x <due to 

convexity of the constraint functions>, the same must be true 

for x. This proves the lemma. • 

We note that the preceding lemma is critical in proving that 

v1 <e*> is a region of stability <see Appendix B>. The proof of 

Theorem 2.4 follows. 

Theorem 2.4. Consider the model <P,e) at some e = a* and 

* e • Let ll(e) 

Lagrange multiplier function. 

all sufficiently large i; 

(ii) The set of Ii•it points of {u;.,.(e): K E p< <e*)} as e~a* is 

non-e•pty and every 1 i•it point is in {uK<e*> : K E p< <e*> }. 

Proof. < i ) Let x E F ( e *) be such that 
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(2.6) 

0 

There exists .e.> 0 such that 

(2.7) K- * f ( x, e ) :=;; - E < 0 K E p< < e*> .. 

Given a sequence ei~e*, ei E v1 <e*>, we can construct a sequence 

of feasible points ;(ei > E F<ei > such that 

(2.8) as i~oo 

by lemma 2.3. From the saddle point inequality <2.2) we have 

(2.9) 
.I'J ( x, e i > + L u K ( e i ) fK < x, a i ) + L u K ( e i ) fK ( x, e i ) ~ f ( e i ) 

K E p< < e * > K E p= < e *) fl p< < e i > 

for every -'<-' E F= ( ai). Now we wi 11 use <2. 8} to show that any 

•. - <" * . . : I< E 'fJ · { a ) } , z = 1 ~ • • - 1. s bounded. If 

not, then for at 1 east one index t E p< ( e *) and a subsequence 

ai,j of ai, there exists a subsequence 
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< * 00 : K E P (a > } i=l 

such that 

(2.10) as 

After a relabelling we may assume that 

(2. 11) 

By the definition of V1 <a*> and the fact that the Lagrange 

multipliers are nonnegative, we must have 

The inequality <2.9l becomes 

.,0 <; (a i ) ' a i > + L ('; k (a i > f'k (; (a i > ' a i ) ;:: f (a i ) 

K E p< <a*> 
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Using this, (2.11>, and taking the limit as i tends to infinity 

yields 

... * f'(e > 5 eo. 

* - i ~ * <Since V1 <e >is a stable region we must have f(e )~f(e) as 

i~oo. See Appendix B.) This is absurd and proves that (2.11> 

must be false, hence (i) holds. 

(ii) Let ei be an arbitrary sequence satisfying both 

. ... * CO 
Moreover, let Cuk(e 1 >: kEP'Cs )]i=l be an arbitrary sequence of 

truncated Lagrange multipliers drawn from the sets 

{uk (si> : k E p< ( e*) }~=t· Si nee each component, uk (si) is bounded 

by part (i), there exists a subsequence of ai for which each 

component converges. Thus the set of limit points of 

Now let uk denote the kth component of a limit point of 
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' * * : k E P._ < e ) } as e~e • - * Then there exists el~e and a 

sequence of truncated Lagrange multipliers 

for <"" * each k E 'P' < e ) • 

is a stable region and ei E v1 <e"""> for all i, we conclude that 

;<e 1 > is bounded and has a convergent subsequence with a limit 

- * * point which we denote by x(e ). Again, since v1 <e ) is a stable 

~ * "" * region, x< e ) E F < e ) (hence our notation is consi -;;tent). Taking 

taking the corresponding subsequence of uk(ei) and relabelling 

this subsequence so as to have single superscripts, we may 

assume 

To complete the proof we must show that [<Jk: k E ;:i< <e*>J is in 

{uk<e*): k E p< <e*n·. We use the. saddle point inequality <2.2> 
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to obtain 

<2. 12) .,0 (-; ( B i >., B i ) + I V k .,k (X ( B i ) ' B i ) $ f ( B i ) 

k E p< ( Bi} 

< . 
for every v k ;:: 0, k E P · < e 1 

) and 

(2. 13) 

for every x E F=(ei }. By specifying 

in ~~ * (2.12>, we can change the summation index to p~(a ). 

limit as ei~e*, <2.12> becomes 

.,-t) < x ( e * > ., e * ) + L v k ""fk ( x < e * ) , e * > $ 'i < e *) 

k E p< < e*> 

In the 

for every vk 2!:0 k E p< ea*>. This is the left hand side of the 

saddle point inequality (note that we need not concern 

ourselves with the set F= ( e *) yet) • We now pr·~ve the other si de 

of the inequality. 
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The term on th~ right hand side of the saddle point 

inequality given by <2.13> can be reduced. Since 

* (again by the definition of v1 <e )) we conch.tde 

and so 

E uk<ei>-fk<."<,ai> ::;o 
k E p< <e 1 }',;p< (a*> 

f ( e i) ::f l) ( ~, e i) + E u k ( e i) fk ( v, sa i I 

k F p< < 1i'1 *) 

" - ~= ( i} 1- or every }.: i:: ,.. , e . 

i.imit: f:JCint r::l-1= po:1rts r· r:=(9i) a.nd since f(ai)~f(a*> as i~oo, 

for every x E 

f ( 9 *) .f fO ( >:" _, B *) + r ~ k -fk (X, B *) 

k E p< (a*> 

<e*>. Recall uk denotes the limit point of 

uk<ai >, k E p< <a*>. This proves the right hand side of the saddle 
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point inequality TOr the point <;<e*>,u>. • 

One should note the importance of the condition fk ( x, e > s; 0 

V x € F= < e > k € p< < e > n p= ( e * > • In example (2.2) the Lagrange 

multipliers are bounded and so have a convergent subsequence. 

However, the lack of this additional condition results in the 

* limit point not being a Lagrange multiplier at e • We now prove 

a number of corollaries. 

Corollary 2.5. Consider the convex model <P,e) at e* and 

"' * suppose F < e > #:- rJ and bounded. In addition suppose that the 

mapping r: e!---4F=<e> is lower semicontinuous at e*. Then the 

Lagrange multiplier function U<e> = {uk<e>: k € p< <e*n· is upper 

Proof. If not then since U<e*> is bounded, there exists an open 

set A 2 U( a*> but A;;;!' U( e > in any neighbourhood of * e 

* * H<e>nv1 <eL Thus there exists a sequence a 1 E V 1 ( e *)., 

and a sequence of Lagrange multipliers u<ei) EA. The sequence 

u<ei> is bounded by the first part of Theorem (2.4) and so has 

a limit point which must be in Ac. Since Acnu<e*> = ~, Theorem 
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(2.4) is contradicted and the corollary is proved. • 

Corollary 2.6. Consider the convex model <P,e> at .. soae e = e • 

Assume that F<a*> ::;l:H and bounded and that Slater's condition 

holds at .. 
a = e • If the Lagrange multipliers are unique for all 

* e in soae neighbourhood of e ~ then U<e> is continuous in the 

usual sense at * e • 

Proof. We first note that when Slater's condition holds, i.e. 

"3:; such that fk (:;, e*> < 0 k E P" 

The Lag~angian L<cx,u,e) 

becomes the more familiar Lagrangian 

L<x,u,a> = .t)<x,e> + E ukfk(.l(,e). 

kEP 

* * More importantly, V1 <e >reduces to a neighbourhood N<e >and 

the lower semicontinuity condition is satisfied trivially. 

Since the Lagrange multiplier function is unique we must have 
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by Theorem <2.4). • 

The above result was previously obtained by Golstein (see [4J>, 

Eremin and Astafiev [2J. 

One might suppose that the conditions on V1 <e*> would lead to 

some stronger properties of the Lagrange multiplier function 

U< e > around e*. In particular, the possibility of U(e) being 

lower semicontinuous might be studied. However, the next 

example proves that the conditions on V1 <e*> and on Theorem 

(2.4) do not guarantee the lower semicontinuity of U(e} at 

bf Example 2.7. Consider the convex model 

around e * = 0. 

Mi n 1'.() ( x , e > = x 

s.t. 

0 

F - Rl or every et.: , 

X :s; 0 

the mapping r:e~F=<e> is lower semicontinuous at e*, and 

* e • 

Thus 

* -V1 <e > = R. For every e we have x<e> = 0. For e ~0 the right 

hand side of the saddle point inequality is 
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which is satisfied uniquely by u 1 = 0. However, at e* = 0 the 

right hand side of the saddle point inequality becomes 

"' * 0 = .de ) ::;; x +ut·< - x) 

which is satisfied for ut E [0.,1]. The point u 1 = t at e* is not 

. * . * the limit point of any Lagrange multiplier as e 1~e <e 1 :Fe ). 

Therefore U(e) is not lower semicontinuous at e* <recall U<e> is 

def.i ned with respect to e * as well > • • 

2.3 Connection with Input Optimization. 

In this section we establish the connection between the 

Lagrange multiplier function of Section 2.2 and the Lagrange 

multiplier function which exists for a locally optimal input. 

First we recall the idea of a locally optimal input from E12l. 

Definition. Consider the convex model <P,e). An input 

e* E S<e*> is a locally optimal input over the region of 

stability S<e*> if both 
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o. 

,.. * F(e ) p/iJ and bounded, and 

(ii) there exists a neighbourhood N<a*> of a* such that 

~ ~ * * * f < a > 2:: f < a > for every e E N ( a > n S < a ) • • 

Characterizing an optimal input was done in t12J where it was 

required r<a*> SF=<e>. Under a suitable constraint 

qualification a necessary condition was found in terms of the 

Lagrangian 

Li<x,u,a> = f 0 <x,a>+ L uKfK<x,a>. 
K E p< <a*> 

Note that this Lagrangian is different from the one defined at 

the beginning of this chapter since the summation is restricted 

to p<(a*>. The theorem follows. 

Theorem 2.8. Consider the model <P,a). * Let a be a locally 

opti•al input over the region of stability S<a*>, and let 

x* E F<s*>. Then there exists a neighbourhood N<a*> of a* and a 

normegative vector function U: H(a*>nS<a*>~Rq(a*) such that + 

~henever a € N<a*> n S<a*>J' 
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for every v E R~(e*) and every x E F=<e*>. • 

lower semicontinuous at * e , we can strengthen the statement of 
. 

Theorem (2.8> considerably on the region of stability V<e*>: 

<This region was introduced in [14].} V<e*> is a subset of 

* V1 <e >and as one would expect, the nonnegative vector function 

in Theorem <2.8> can be identified as the Lagrange multiplier 

function of Theorem 2.4. The proof of this is trivial as one 

need only note that in the event p=(e) = p=(e*>, the Lagrangian 

of theorem <2.8) and that of Theorem (2.4) coincide. As a 

consequence one may assume that the nonnegative vector function 

in Theorem (2.8) is continuous at e*. 

Many examples point to the fact that near a locally optimal 

input there exist fixed nonnegative multipliers for which the 

right hand side of the inequality in Theorem 2.8 holds. That 

is, UCa> could be taken to be constant in a sufficiently small 
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neighbourhood of a locally optimal input e*. In fact, this 

c turns out to be false and a counterexample is given in Appendix 

A. 
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Models 

3.1 An Explicit Representation of the Lagrange Multiplier 

Function 

In this section the model is simplified and we assume that 

Slater's condition holds. Under a suitable hypothesis we will 

give an explicit representation of the Lagrange multiplier 

function and show that the function is continuously 

differentiable. We start by defining the Linear Model 

<L,t> Mi n < a0 < t), x> ( x> 
s. t. 

<a_i<t>,x>~b_;<t> _iEP~{l,···,m} 

where the a_i ( t >, _; E P U {0} are vector-valued functions of the 

scalar t whose ith component is 

{a-'<t)} . .!. 
l 

The bj<t> are differentiable functions of t (but not 

necessarily linear), and< , >denotes the Euclidean inner 

product. For a fi>:ed t = t 0 we have a 1 inear progra.m. Let 
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B<x<t>> denote the binding constraints at a feasible point x<t>. 

We begin by proving a simple lemma. 

Lemma 3.1. Consider the •odel <L,t> at so•e t = t 0 • Suppose 

the opti'llial soluti<m ;<t0 > is urtique and Slater's conditiort 

holds, Then given any e.> O:r there exists: a et> 0 such that 

for all optimal solutions at ;(t). 

Proof. If not, then there exists E. > 0 such that for some 

(3. 1) 

However, the model is stable at t 0 since Slater's condition 

holds (see Chapter 1; Corollary 1.6). Thus ;(tn) is bounded and 

has an accumulation point. Since the accumulation point must be 

in F<t0 > we have 
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0 This contradicts (3.1) and the lemma i.s proved. • 

Note that we use the stability of the model implicitly in <3.1) 

by assuming that there exists an optimal solution to the 

perturbed model • 

Now we are in a position to prove the main theorem of this 

chapter. First we recall that for differentiable conve>: 

mathematical programs, Slater's condition implies that the Kuhn-

Tucker multipliers and Lagrange multipliers coincide. 

Theorem 3 .. 2. Consider the lfl(ide I ( L, t) at t = t 0 • Suppose that 

the folloNing conditions hold: 

(i) x<to> is unique 

(]..1.) The ai<t
0

> ~· t th ~ corresponuzng o e binuing constraints are 

linearly independent, and that 

(iii) Slater's condition holds. 
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Then the Lagrange multiplier function is a differentiable path 

0 in Rq lq = card{B(;.<t0 ))}) in some neighbourhood of t 0 • 

Proof. Without loss of generality we may assume that the set of 

binding constraints is 

Consider those constraints which. are non-binding, that is, 

those belonging to the index set p·.._,B(;<t0 >>. Since the 

constraints are joint.ly continuous <this is not explicitly 

assumed but the claim is obvious from the form of (L,t>>, there 

exists s > 0 such that 

By Lemma 3. 1, the quantity 11;( t 0 > -:; < t > 11 can be made arbi trari 1 y 

small for all ';( t) E F< t) in a sufficiently small neighbourhood 

of t 0 • Combining this with <3.2> implies the existence of a 

neighbourhood H1 <to> such that 
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and so +or t E N1 < t 0 >, 

Now de.fine 

The gradients taken with respect to x are 

and depend only on t. Let G<t> be the matri>: o.f gradients 

corresponding to the binding constraints 

G<t> = [ 9xf
1 <x,t>,·~·,Vxfk<x,t> 

l I 

By the hypothesis o+ the theorem G<t0 > has .full rank <r<G<to>> 

.... = k = card{B<x <t0 n }) . By our knowledge of singular values 

<see, e.g. (9]) we know that +or su.fficiently small 
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perturbations about G<t0 >, G<t> will continue to have full rank. 

0 Since the elements in G(t) are continuous functions of t, we are 

guaranteed that these perturbations can be made ''small" in the 

Eucl idean operator norm, defined for A E Rkxrl as 

Sup !I Axil 
llxll=1 

where Uxll is the usual Euclidean norm llxll = <x,x>-1·/2 . The 

preceding remarks mean that there exists a neighbourhood N2 <t0 > 

such that 

Since Slater's condition holds,. we turn to the l<uhn-Tucker 

equations for convex constraint functio~s and convex objective 

function <see 1:10)). Thus for· every tin the smaller of the two 

neighbourhoods N1 (t0 > and H2 <t0 >~ the l<uhn-Tucker multipliers 

satisfy 

(3.3) 

where u<t> 2:'0. Recall that the Lagrange multipli"ers and l<uhn-

Tucker multipliers are identical for this model. One could 
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differentiate the system (3.3) as it stands to obtain u<t> <see 

[9J) but this form requires inverting matrices which depend on 

t. To get a better grip on the Lagrange multipliers u<t> we 

rewrite C3.3> in the following form: 

G< t 0 > has full column rank and so there e?d sts a PE Rnxn such 

that 

,-
1 

= l 
-

!..k_ J' 
0 

where Ik denotes the k;.:k identity matrh:~ Hence 

<3.4) 

But G<t> -G<t0 > has a very specific form. Recall that the it:h 

component of a.i<t> is ·~At +;rL Let AERnxk denote the matrix 
l l 

whose <i,j) entry is Then 
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0 

Let us denote the first k rows of P·A by the matrix H. 

Furthermore, denote the top k rows of P by the matrix Pk. 

Truncating the last <n- k) rows of (3.4> we get 

(3.5) 

Since H is a fixed matrix, ME Rkxk, IIHII < oo and so for 

It- t 0 t < 1,/111'111 we have 

(3.6) It - t 0 I 111'111 < 1. 

Here IIHII is the Euclidean operator norm. Thus the matrix on the 

left hand side of (3.5) is invertible and its inverse is given 

by 

(3.7) [lk+<t-t0 >nl-1 =I,,+ .,..oo <-l>_i<t-tr>>-'n.i. 
I( ..!... j=1 ·~ 

We let the S 0 <t> denote the partial sum 
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where ~ & Ik. The matrix Sn<t> can differentiated elementwise 

to obtain 

(3.8) S'= 
T1 

Tt 

r j(t-to>j-1(-l)j/"'j. 

i=l 

We may choose a neighbourhood N3 ( t 0 > such that for t E N3 < t 0 ) 

<3.6) holds (note it is valid for t in the closure of N3 <t0 >>. 

Thus there exists a fixed «< 1 such that 

We claim that both Sn<t> and S~(t) conv~rge uniformly <using the 

Euclidean operator norm> on H3 <t0 >. To 'Show this we prove that 

the sequences are uniformly Cauchy. Given E >O, choose HEN 

such that both 

and 
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0 

D . 
L « 1 < E 

j=zt 

si mul taneousl y for all 11, n ;;:: 1/. For the same H we use the 

triangle inequality and the bounds on It- t 0 1111111 to conclude 

n 

us~<t> -s~<t>ll s;; E .ill<t- t 0 >rtn-' s; I io.-' <E. 
}=m J=• 

for all t E H3 <t0 > and all m,n ;?:li. Thus the sequences Sn<t> and 

S~<t> are Cauchy. Since the space of k~<k matrices with the 

Eucl idean operator norm form a Banach space, s;, converges to a 

m"'trl· "• 1· n Rkxk. H t · 11 d t 1' th t th · · th a ft owever~ we s 1 o no ~now _ a ts 1s e 

matrix of derivatives of (3.7>. To verify that it is, we 

observe that 

IIFU ;:; ~ax. l F i 
1
·1 , 

( .l, J) 
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and so the <i,j} element of <<t-t0 >H> 1 satisfies 

Thus the elements of (3.8> converge uniformly, that is, the 

uniform convergence of S~<t> in the Euclidean operator norm 

implies that the elements of S~(t) converge uniformly as well. 

Since each element of Sn<t> converges, we can conclude that 

(3. 9) lim si' <t> = n_,.oo n 
d ,- '\ 

<lims;­
d t \.n_,.m n 

For more on uniform convergence and differentiation of series, 

the reader is referred to [7). 

From <3.7) and (3.4) we have 

00 

<3.10) u<t> :::; c JK+ .L \-t>i<t-t0 >}HiJ PKa0 <t>. 
J=l 

valid fort in the smallest of the three neighbourhoods, N1 <t0 ), 
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Differentiating the product of a matrbc and a vector, both 

functions of t, is similar to the usual produce rule from 

single variable calculus. For A< t) E RkXk and v ( t) E Rk let 

<3. 11 ) 

Then 

Recall that a0 <t> is a vector-valued function whose ith 

() 0 component is «it + J3 i. Let 

o n t <« ••• a·> 1' ' fl , 

Then applying the differentiation result (3.11> to (3.10) we 

have 

(3.12) 

d r } ( 00 · • 1 ·'\ o o -.- '\ u ( t) =- I: j ( -1 ) J { t-t >1 - lf 1 J p ( t« +p ) 
dt '- '-j=l 0 K 
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which is an explicit representation o+ the derivative o+ the 

Lagrange multipliers. The representation is valid for t in the 

smallest of the three neighbourhoods H1 <t0 >7 H2 <t0 > and H3 <t0 >. 

This completes the proof of the theorem. • 

Note that once t 0 is specified, the representations (3.10> and 

<3. 12> depend only the quanti ties < t- t 0 >, Pk«O, .P k,o, HiP ka0 

and if.ipkf1°. The latter four are constants and can be formed 

ef+ic:iently by recursion, HjPkfJ.o = 11(11.1-lpkfJ.O) and 11ipk~O 

= H_<Hj-lpk,0 >, starting with the vectors Pk.a0 and Pk,o 

respectively. For computations where it is desired to determine 

the Lagrange multipliers in a neighbourhood of t 0 , this seems to 

be more efficient than inverting the matrix on the right-hand 

side of <3.3> repeatedly. The author is presently investigating 

the numerical possibilities associated with the representation 

(3.10) but the efficiency of using <3.10> and <3.12> compared to 

computing the Lagrange multipliers from scratch remains an open 

question. 

Finally we draw the reader's attention to the fact that the 

representations in (3.10} and (3.12) incorporate perturbations 

in the objective +unction, left hand side and right hand side 

simultaneously. Since these representations are explicit in the 

variable t, one can track and study the behaviour of the 
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Lagrange multipliers in a neighbourhood of the present model <t 

0 = to>-
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Appendix A. 

The example in this appendix disproves a conjecture concerning 

the nature of the nonnegative vector function associated with an 

optimal input. The model under consideration is the so called 

bi-convex model, a more restrictive model than <P,e> of Chapter 

1 since it also requires that the functions fk<x,e) kE {0}UJ' be 

convex in e for each fixed x. For this model, denoted by 

P<x,el, the following conjecture was proposed. 

~'Let P<x,e> be a perturbed bi-convex program. Let e* E I be such 

that F<e*> ::/:.0 and bounded with e* not being an extreme point of 

I. Suppose S<e*> is one of the three regions of stability, 

/f(e*>, V<e*>, or SHe*) and suppose S<e*> nN<e*> n I is convex. 

If e* is a locally optimal input over S<e*>, then there exists a 

fixed vector u* such that 

A.l L< ( * * ) - L< I * * *) ..... L< { * ) * x ,u,e :::: *'x ,u ,a :::: * x.,u ,e 

for e E S < e *) n H < e * > n I, all u ;:; 0, all :¥: E F= < e *) n J"l.., where 

Here, J"t is a convex set Sl. £; Rn. We wi 11 suppose below that the 
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Although the cohjecture is pretty, it is false, as the 

following example demonstrates. 

Example A.t. Consider the biconvex model 

Mi n -r..() < .1d =I .1t· + 1 I - 1 
(x) 
s. t. 

g(x,e>=Je<.¥-1 >I -e s;o 
I={e: 1/2~e::f2} 

around the point e* = 1. We leave it to the reader to convince 

himself that the model is bi-convex. Note that the feasible set 

is 

* for all e E I, thus /'He ) = I. Also note that every e in I is a 

locally optimal input since -'< = 0 E F<e> for all eEl and -t-) 
= I x+l I - 1 is mini mi. zed at .x = 0 over F ( e i. In addition this 

minimum is unique (note that ..,.-0 <x,e) >O for x>O>. Hence, for 

all e E I, 

- 79 -



0 
In particular, e* = 1 is a locally optimal input, and e* is not 

an extreme point of I. It will turn out.below that the 

Lagrange multipliers at e* are unique. For e* = 1 the problem 

becomes 

1'1in "t..Q <x>=lx + 11 - 1 ( x> 
s. t. 

I x-11 - 1 S 0 

We seek u * ;::: 0 such that 

(A.2> * *..- * * * * * L<x ,u,e ) :::: L<x ,u ,e ) :$ L<x,u .,e } 

<Slater's condition holds so we use the standard Lagrangian). 

... * Since x(e ) = 0 we have 

- * * .~ - * * g<x<a >,a i = 0 and "t~(x(e >,e > = 0. 

The saddle point inequality CA.2) becomes 

and then 

O+u·<O> SOS lx+11-1 +u*·(Jx-11-1> 
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= * which must hold for all >;;'ER since F <a ) = R, and all u 2::0. 

The left inequality holds trivially. Choosing first xE <0,1> 

and then x E <-1,0> in the right inequality leads one to the 

conclusion 

u* = 1. 

'If there exists u*;::o such that (A.U is to hold, it must be u* 

= 1. Now we seek a neighbourhood H<e*> such that 

holds for all x E F=<e*> and u 20. Replacing the Lagrangian with 

the appropriate quantities reduces the right hand side of <A.3) 

to 

<A. 4) 0 = 0 + 1 ·0 :5 I .)( + 1 l - 1 + 1 ·I e < .Y,- 1 ) I - e. 

We will now show that <A.4J cannot hold for all )( E F=<e*> and 

u ;:: 0. In particular, for >r = 1/'2, .Y, E F=<a*> = R we have 

0.:5 1~.-2 + I e/21 -e. 

For e > 1 this becomes 
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0 :::; ( 1 - B ]/2 { 0 

which is a contradiction. Hence there does not exist a fixed 

u*:;;:: 0 such that for the optimal input e* = 1 

* * * * *- * L<x .,u,e ) $ L(:l<' ,u ,a ) ::::: L<x,u ,e> 

for some neighbourhood of e*, N<e*> ns<e*> n I, and all 

In conclusion, the nonnegative vector function associated with 

an optimal input is generally a non-trivial function of e in 

some neighbourhood of e*. 
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Appendix B 

In this appendix we prove that the set 

is a region of stability whenever the mapping r: e~F=(e} is 

lower semicontinuous at e* and F<a*> is non-empty and bounded. 

The work for the proof has already been done and we only 

assemble the facts here. A review of Theorem 1.5 reveals that 

* none of the properties of R<e > are exploited. Instead, all 

that is needed is the property proved in Lemma 1.4: 

"Given any xEF<a*> and a sequence an~e*, there exists a 

sequence of feasible points vn E F<e,> such that v 0~x as 

n~oo., 

In other words, the mapping e~F(e) is lower semicontinuous at 

e* whenever the mapping r: e~F=<e> is lower semicontinl_tous at 

* e • 

The same property holds for V1 (e*) as demonstrated by Lemma 2.3 

in Chapter 2. Thus the same proof given in Theorem 1.5 is valid 
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0 
for proving the stability of V1 <e*> except that we replace Lemma 

1.4 with Lemma 2.3. We state this formally below. 

Theorem 1. 13. * e • Consider the model <P,a> at some e = 

- * * and that F(e ) is ~on-empty and bounded. Then the set v1 (a ) is 

a region of stability at * e • 

Proof. Replace lemma 1.4 with lemma 2.3 in the proof of Theorem 

1.5. • 
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