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Abstract

The neuromuscular system interacts with the environment by generating forces that
cause motion about joints. The study of this interaction is termed joint dynamics. If the
environment is controlled, as it is in experimental situations, then it is possible to draw
conclusions concerning the nature of the intact neuromuscular system by studying the
nature of environmental interactions; i.e., by studying joint dynamics. The properties of
the neuromuscular system, as manifested by the dynamic properties of joints, vary
through time as a result of variations in the state of the physiological structures involved.
Identifying the time-varying dynamics of joints under controlled circumstances is an
important step in the development of a comprehensive model of the neuromuscular
system.

This thesis presents the results of applying a method of nonparametric time-varying
linear system identification to study the dynamics of the ankle joint as they vary during a
single twitch of the triceps surae muscle group. In accord with previous time-invariant,
and time-varying studies, the nonparametric resuits were characterized using a second-
order model. Past studies have found that second-order models successfully characterize
joint dynamics under time-invariant conditions. Time-varying studies have, however,
found that second order models do not adequately characterize time-varying joint
dynamics. The results presented here confirm that. Furthermore, examination of the
reasons for this failure leads, with tentative analytic corroboration, to the conclusion that
a fourth order linear model is required to characterize the time-varying dynamics of
joints.



Résumeé

Le systéme neuro-musculaire interagit avec I"environnement extérieur en générant des
forces causant des mouvements autour des joints. On appelle dyvaamique des joints
I'étude de ce type d’interaction. En contrdlant 1'environnement. sous conditions
expérimentales, il est possible de tirer des conclusions concernant la nature intrinstque du
systéme neuro-musculaire par I'observation des interactions environnementales: i.c., par
I’étude de la dynamique des joints. Les propriétés du systéme neuro-musculaire, qui se
manifestent par ['entremise des propriétés dynamiques des joints, varient temporellement
dil aux variations d’état des structures physiologiques impliquées. L'identitication de la
dynamique des joints soumise a des variations temporelles, sous des conditions
controllées, est un prérequis important pouvant éventuellement mener i 1'élaboration
d’un modele complet du systeme neuro-musculaire.

Cette thése présente les résultats obtenus suite A I'utilisation d'une méthodologic
d’identification non-paramétrique de systémes linéaires des joints de la cheville. Et ce,
durant leurs variations faisant suite & un simple tic nerveux du groupe tricep surae. En
accord avec des études précédentes, i la fois er conditions statiques et i variations
temporelles, les résultats sont caractérisés par un modale de second ordre. Les études
sous conditions statiques ont démontré que les modeles de second ordre offrent une
bonne caractérisation de la dynamique des joints sous de telles conditions. Par contre, les
études sous conditions de variations temporelles démontre que les modeles de second
ordre ne caractérisent pas de fagon adéquate la dynamique des joints soumise i des
variations temporelles. Les résultats présentés dans cette thése confirment cette
conclusion. L'impossibilité d’utiliser le modele de second ordre afin de caractériser les
résultats non-paramétriques, démontre quun modele de quatriéme ordre est requis pour
caractériser la dynamique des joints sous conditions de variations temporelles. Une

ébauche analytique qui tend 2 appuyer cette conclusion est offerte duns le présent
document.
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1 introduction

The basis of all human motion is the interaction of two elements; the neuromuscular

system, and the environment.

The dynamic propertics of many systems in what we call the environment are, for
practical purposes, well understood, and the laws of physical science are largely
successtul when applied a priori to model the dynamic properties of many of the systems
one may wish to understand. The desire to understand these systems stems from the
practical benefits gained when one learns to manipulate them; and it is much casier to
manipulate a system that is understood than it is to manipulate one that is not.

When we can't, or won't, manipulate the environment ourselves, humans build things
to do it for them: structures, mechanisms, circuits, devices. All these devices succeed

because we understand how they interact with the environment.

Understanding how the neuromuscular system behaves in the real world benefits from
a similar approach — that is, developing an understanding of the nature of environmental
interactions, These interactions are described by a property of the neuromuscular system
referred to as joint dynamics. Complete understanding of the nature of the neuromuscular
system as manifested by the dynamic characteristics of a joint requires more than a
morphological description of the system. It requires a model, like that used to describe a
device, which predicts outputs given inputs. In the case of a joint, the inputs and outputs
can be any combination of external (i.e., environmental) forces applied to the joint,
passive internal forces resulting from the mechanical characteristics of tissue, active
internal forces generated by the contractile muscle tissue in respunse to neural activation,
and motion about the joint. A model of the dynamics of a joint describes the relationship
between force and motion about the joint and elucidates the function of, and relationship
between, all the components of the neuromuscular system.

Developing such a model presents some difficulty because, unlike most of the devices
used to construct physical systems, there does not exist a sufficient first principles
framework from which a comprehensive model of the neuromuscular system can be
constructed.

Some characteristics of the neuromuscular system have been modeled successfully
using empirical measures. For example Hill's force-velocity relationship (Hill, 1938) is



an empirical model that accurately deseribes o single property of muscle -~ (e
relationship between force und shortening velocity.

Methods of system identification have been applied successtully to study the intact
neuromuscular system. Models of joint dynamics identified in this way are. like FLill's
relationship, essentially empirical models that describe the behavior of the system under a
restricted circumstance — that under which the data used to identify the system was
collected,

In particular, nonparametric methods of system identification prove useful because
they require no a priori assumptions concerning the nature of the system other than those
demanded by the mathematical framework of the identification technique, This property
of nonparametric models is considered valuable when studying a system as complicated
as the neuromuscular system for which a complete (irst principles framework, {rom
which to develop a parametric model, does not exist (Kearney and Hunter, 1990),

Nonparametric system identification techniques are broadly classificd by two
characteristics: linearity, and time variance. Therefore, four types of models can be
identified: linear time-invariant, linear time-varying, nonlincar time-invariant, and
nonlinear time-varying.

Linear time-invariant models successfully mode! joint dynamics under time-invariant
conditions. Such models hold only when the state of the neuromuscular system is the
same as that under which the model was identified. In this context, the state of the
system is the position of the joint, and the mean level of voluntary muscle activation,
Linear time-varying models have been applied to study joint dynamics as the state of the
neuromuscular system varies through time. In these scenarios the position of the joint, or
the level of voluntary activation, is intentionally varied.

Time-invariant conditions are the simplest to study, and the results are the simplest to
interpret. Time-invariant results provide a basis from which to interpret time-varying
results. Comparing the results of time-invariant and time-varying studies leads 1o a better
understanding of the requirements of any theory that strives lo characterize the
neuromuscular system accurately.

Nonparametric models are purely empirical descriptions of the neuromuscular system.
They are founded more on principles of mathematics, than on laws of physics. Because
of this, the results can be difficult to interpret, and if the results are difficult to interpret



then it becomes difficult to draw significant conclusions. For this reason it is necessary
to find an appropriate means to characrerize the nonparametric findings. To draw
significant conclusions about a physical system it is helpful then to characterize the
results using some form of physical model.

Time-invariant studies conclude that a second-crder model (commonly used in almost
every branch of physical science} is adequate to characterize the results of time-invariant
studies (Kearney and Hunter, 1990). Time-varying studies have, naturally, attempted to
characterize their results with the same type of model, but evidence suggests that when
the state of the system varies a second-order model is no longer adequate to characterize
the results (e.g., MacNeil et al., 1992).

The time-varying studies conducted to date have studied the neuromuscular system
during imposed motion, and time-varying voluntary activation. Both of these paradigms
generate a response that incorporates the properties of passive tissues (i.e., muscle and
connective tissue), active muscle tissue, voluntary activation, and involuntary activation
(i.e., reflexive neural input).

[t is desirable to narrow the response of the intact neuromuscular system to just that of
the passive tissues, and active muscle tissue (i.e., no voluntary or reflexive neural input).
This is possible by activating the muscle artificially, and is the course taken in the
experiments presented in this thesis. The response studied in this thesis is a single
electrically stimulated twitch of the triceps surae muscles. The state of the neuromuscular
system during the twitch is examined by identifying the time-varying dynamics of the
ankle joint during the twitch.

The motivation for performing such an experiment is not to answer a single
overwhelming question, or to settle a particular dilemma definitively. The motivation is
to build on a legacy of basic research that has considered basic questions to develop a
body of knowledge of sufficient scope to propose models of the neuromuscular system
which hold beyond the constraints of a particular experimental situation.



The thesis is presented in sixX sections:

The Background section reviews the important aspects of muscle morphology wnd
mechanics, followed by a discussion of the neuromuscular mechanisms underlying motor
control and the stiffness regulation hypothesis. This leads 10 a discussion of joint
dynamics and a short discussion of one application that draws from these arcas of study.,
that of functional neuromuscular stimulation.

The Theory section preseats the analytical basis, and applications of, four techniques
available for the study of time-varying systems. These are: quasi-time-invariant
methods, adaptive methods, ensemble methods, and finally functional expansion
methods. The remainder of this section focuses on discussion of the time-varying
convolution integral, and the ensemble method of solution.

The Experimental Procedures and Analysis section explains the experimental
paradigm — identification of the dynamics of the ankle joint during a single electrically
stimulated twitch of the triceps surae muscles — and includes a detailed discussion of the
analysis. The analysis section is presented in two parts: the pre-processing steps required
before application of the ensemble identification method, and post-processing performed
to interpret those results.

The Results section presents and discusses the results of the analysis of four
experimental data sets. This section presents examples of the raw data, and how it was
transformed (i.e., pre-processed) before application of the ensemble identification
method. A complete set of results is presented for each set of experimental data,

The Discussion section considers the findings presented in the results section and how
they reflect on previous related research. The discussion revolves around the use of
parametric models as a method of characterizing joint dynamics, and in particular, the
apparent failure of second order models under time-varying conditions. The discussion
concludes with evidence pointing to the need for a third or fourth order parametric model
to characterize time-varying joint dynamics.

Finally, the Conclusion section summarizes the results, and makes a concise
statement of future research directions pointed to by the findings presented in this thesis.



2 Background

There are three types of human muscle: smooth, cardiac, and skeletal. Smooth
muscle is 4 major component of the muscular internal organs, cardiac tissue is the muscle
of the heart. and finally, skeletal muscle is that which is connected to the skeleton by
tendons and causes motion about joints. Although all muscle types share the same basic
clements, such as the contractile proteins which are responsible for force generation, they
arc all morphologically different. The following material reviews the basic properties of
just one of these, skeletal muscle, and the neuromuscular systems which control it.

2.1 Muscle Morphology

Muscle exists as a hierarchy of physiological structures, whole muscle, existing on a
scale of up to several tens of centimeters in length, to the basic contractile proteins which
exists on a scale of just a few jm.,

Whole Skeletal Muscle

At the highest level of organization, muscle is composed of an outer sheath of
connective tissue, composed of collagen, that is continuous with the muscle's tendons and
connects the muscle to the skeleton. Attachment occurs across joints so that contraction
of skeletal muscle always produces torque about one or more joints. Connective tissue
serves to join and contain bundles of individual muscle fibers, and further, to join and
contain the collection of muscle fibers which make up the muscle.

Muscle Fibers

Muscle fibers are individual cells that can span the entire length of the muscle and
have diameters ranging from 10 to 100 um. A muscle may contain from a few hundred
to several thousand fibers (Schauf, 1990), Muscle fibers are the level at which the
nervous system innervates skeletal muscle and are generally classified in three groups:
(i) slow oxidative fibers, (ii) fast oxidative fibers, and (iii) fast glycolytic (Schauf, 1990).
The classifications are based on the fiber's contractile (fast/slow), and metabolic
(oxidative/glycolytic) properties, and, the distinctive properties of each fiber are pertinent
in explaining the manner in which the central nervous controls muscle activation
depending on task exigencies (see section 2.3).



Myofibrils and Sarcomeres

Muscle fibers are made up of long parallel myotfibrils which are 1-2 pm in diameter,
When viewed under a microscope myotibrils present a banded structure of repeating sub-
units called sarcomeres. Individual sarcomeres are recognized as the basic force
generating elements of mscle. A relaxed sarcomere is 1.5 to 2.0 pum, but as a muscle
contracts the sarcomeres actively shorten, and as 4 muscle extends the surcomeres
actively lengthen. This theory of force generation is known as the sliding filament
theory. The overall force generating properties of a muscle are the result of interaction of
the active properties of sarcomere, with the passive properties of the muscle's connective
tissue structures (Schauf, 1990; McMahon, 1984, Huxley, 1974).

Myofilaments and Contractile Proteins

Sarcomeres are composed of inter-digitating thin and thick filaments. collectively
known as myofilaments, which interact to develop force and etfect shortening of the
muscle. The sliding filament theory describes the mechanism by which the thick and thin
filaments slide across one another to effect shortening of individual sarcomeres. It
postulates that the thick and thin filaments slide across one another by the action of
physical links that generate force during contraction. The force generating links between
thick and thin filaments are termed cross bridges, and come about by molecular

interactions between the protein molecules of which the thin and thick filaments are
made.

Thick filaments are about 1.5 um long, 15 nm in diameter, and are composed of
several hundred myosin molecules. Thin filaments are comprised of helical strands of
globular actin molecules with sites approximately every 2.7 nm where myosin molecules
can bind. Under a complex series of biochemical reactions, initiated by an inrush of
calcium ions when a muscle fiber membrane depolarizes, the actin and myosin molecules
go through a cyclical reaction which first binds the molecules, next passes them through a
state transformation which causes relative motion between the thin and thick filaments,
and finally breaks the bond so that the process can repeat itself.

2.2 Muscle Mechanics

The study of muscle in vitro is the first step in understanding how the neuromuscular
system controls muscles to accomplish tasks, The fundamental reactions which describe



a muscle behavior are: (i) stretch in response to external loads, and (ii) contraction in
response to stimulation by the central nervous system (or in response to some artificial
external stimulus). These two responses are described in terms of two basic properties:
passive mechanical properties, and active mechanical properties.

Passive Mechanics

The most basic mechanical property of muscle that can be measured is its resistance
to an imposed stretch. In isolated muscle that is not undergoing any form of stimulation
(and therefore generating no active force) this resistance can only be due to the passive
structures of the muscle. As is the case with engineering materials, resistance to imposed
changes in length is termed stiffness. If an isolated muscle is stretched to a number of
constant lengths, and the force recorded, one finds that the curve relating displacement to
force grows steeper with increasing displacement. The stiffness of the passive tissues,
therefore, increases with displacement; the passive tissues exhibit nonlinear elastic
properties. This behavior is characterized (in terms of force, F, and displacement, x) by
the differential equation (Winters, 1990):

d—F = KF + K, 2.1
dx

which has the solution:
F = K,;(e“*-1) 2.2

Where K; are constants. This empirical equation characterizes the elastic properties
for many collagenous tissues including skin, tendon, passive cardiac muscle, and passive
skeletal muscle. However, as is the case with many areas of muscle mechanics, no
plausible derivation from first principles has yet been discovered (McMahon, 1984). This
relationship is shown in figure 2.2 and is termed the passive length-tension property.

Active Mechanics

When the membrane of a muscle fiber is depolarized, that fiber's contractile
machinery activates to effect a single transient mechanical event. If isolated whole
muscle is stimulated electrically, a number of muscle fibers (in proportion to the strength
of the stimulus) will activate in synchrony to produce a twitch, such as that shown in
figure 2.1.









refationship between force and rate of contraction is more complex than this — it is
matter of common experience, for example, that muscles shorten more rapidly against
light loads than they do against heavy loads. Essentially, a muscle can produce less force
when it is actively shortening than it can when it contracts isometrically (MceMahon,
1984). A. V. Hill (1938) identified an inverse relationship between force and shortening
velocity, and proposed equation 2.3, now known as Hill's equation (McMahon, 1984
Winters, 1990), as an empirical description of this behavior.

(F+a)(v+b)=(F +a)b

!J
[

Where F = muscle tensile force, F, = tetanic isometric force, v = muscle shortening
velocity and, a and b are constants. The maximum shortening velocity, achieved under

) bE . .
zero load, is then defined by: v, =—=. Equation 2.3 can then be expressed in
a

dimensionless form as:

- E

Vo h 2.4
V ax l-{--l-i
KF,

i

a b . . . . .
where k 5= . This relationship has been found to describe cardiac, smooth,
0 vlt'l&ll

and skeletal muscle (McMahon, 1984). For most muscle k lies within the range
0.15 <k <0.25 (McMahon 1984). The force-velocity relationship for k =0.25 is shown
in figure 2.3,

During muscle lengthening the force-velocity relationship expressed by equation 2.3
does not hold. When muscle shortening speed is zero the muscle generates its maximum
force it is capable of for a given activation level. This is referred to as isometric
contraction. When the applied force is greater than the isometric force, the muscle will
lengthen (i.e. negative shortening velocity) at a constant speed. The speed of lengthening
under these conditions is much less than that predicted by Hill's force-velocity
relationship. In fact, the slope of the force-velocity curve when muscle is lengthening is
approximately six times greater than for muscle shortening (McMahon, 1984).
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motoneuron can innervate hundreds, and even thousands. of muscle fibers. For example
in the human medial gastrocnemius muscle the innervation ratio is approximately 1700
muscle fibers to one motoneuron (McMahon, 1984). Muscles performing delicate tasks,
such as those controlling the fingers, have motor units consisting of as few as 2 or 3
muscle fibers (Schauf, 1990). While a single motoneuron innervates many muscle fibers,
the opposite is not true, a muscle fiber is innervated by only one motoneuron.
Motoneurons lie in the gray matter of the spinul cord and act as major point of integration
for all motor signals directed at the motor unit. Each spinal motoneuron may receive as
many as 15000 synaptic inputs (Schauf, 1990). Most of these inputs come from spinal
inter-neurons, but a small fraction come directly from higher motor centers. The
motoneurons are referred to as oo motoneurons, and a group of motoneurons controlling
single muscle group are generally referred as an ¢-motoneuron pool.

Activation

Depolarization of a motoneuron causes an action potential to travel down the
motoneuron axon finally reaching a muscle fiber, depolarizing the muscle fiber's
membrane, causing the fiber to respond with a single twitch. Whole muscie is mude up
of an enormous number of muscle fibers controlled by a proportionally large number of
motoneurons. If individual motor fibers respond with a twitch, why then is motion so
fluid? The reason is that, under normal conditions, the motor units are desynchronized so

that individual muscle fiber twitches sum to give smooth force development and fluid
motion.

The summation of muscle fiber twitches, which ultimately modulates the force
developed by a whole muscle, takes two forms: temporal summation, and recruitment.
Temporal summation refers to the frequency of action potentials in the axons serving
each active motor unit {(Schauf, 1990). Force modulation of individual muscle fibers by
temporal summation is conceptually the same as.that in whole muscle tested in isolation
and stimulated artificially — as shown in figure 2.1 — in which the force developed in
the unfused tetanus state is a function of the rate of stimulation. Recruitment refers to
size and number of motor units activated (Schauf, 1990) and formalizes the notion that
not all of the motor units must be active over the full range of muscle force. Key to the
recruitment axiom is the size principle. The largest motor units in a muscle are those
which have the largest number of muscle fibers, and in turn the largest motoneurons.
Similarly, the smallest motor units have the smallest number of muscle fibers and the
smallest motoneurons. The level of stimulus required to depolarize a motoneuron is

12



proportional to the size of the neuron, therefore, as the motoneuron pool stimulus
amplitude increases, small motor units are activated before large motor units. At low
stimulus levels small motor units are recruited resulting in fine force resolution, as
stimulus levels increase larger and larger motor units are recruited with a concomitant
decrease in force resolution (McMahon, 1990). Together these mechanisms reconcile the
environmental requirement of fine control over force and movement at low force levels
with the requirement for pbwerful fast actions (requiring high force levels).

Muscle Proprioceptors

One set of significant inputs to the motoneuron pool are those from muscle
proprioceptors. The two most significant muscle proprioceptors are the muscle spindles,
and Golgi tendon organs. These organs sense, respectively, muscle length, and muscle
force (Schauf 1990, McMahon 1984).

Muscle spindles are small receptors, sensitive to stretch, which are scattered
throughout the body of a muscle. They consist of a capsule surrounding modified muscle
fibers, called intrafusal fibers, to which several sensory afferent nerve endings are
attached. Further, there are two types of intrafusal fibers: nuclear bag fibers, which have
primarily group Ia afferent nerve endings, and nuclear chain fibers, which have group [a
and II afferent endings. The spindles operates in parallel with the muscle so that changes
in muscle length cause corresponding changes in muscle spindle length. The spindles
respond to these changes in length. A phasic length change (e.g. a quick stretch)
provokes a response primarily from bag fibers, while a tonic change provokes a response
primarily from chain fibers (Schauf, 1990). Thus, muscle spindles avail the CNS of both
static and dynamic muscle length information.

Group [a afferents from intrafusal fibers ascend to higher centers, and synapse with
spinal inter-neurons and directly with o-motoneurons (Schauf, 1990). Intrafusal fibers
are themselves innervated by 7y-motoneurons, and will contract in response to
y-motoneuron activity. The ¥ input controls the sensitivity of muscle spindles over the
entire range of muscle length. This is essential if contraction of the muscle is not to be
accompanied by slackening of the spindles. A common notion is that when
o-motoneurons are active (and the muscle is shortening), y-motoneurons are coactive
(Schauf, 1990; McMahon 1984). This compensatory input shortens the intrafusal fibers
ensuring the muscle spindles remain loaded — the state they must be in to function
properly as length sensors.
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Golgi tendon organs exist in the tendons connecting muscle to the skeleton aund
function as force sensors. Golgi tendon organ afterents do not synapse directly with
c-motoneurons, instead they synapse with spinal inter-neurons which then project to the
motoneurons of the originating muscle, its synergists, and its antagonists.  Activity in
Golgi tendon organ afferents acts to inhibit the motoneurons of the originating muscle
and its synergists, and excite the antagonist muscle motoneurons (Schaut, 1990). Eurly
thought restricted the role of tendon orguns to 4 reflex that inhibited muscle activity only
when muscle force rose to unsafe levels. More recent evidence established that tendon
organs respond to less than 0.1 g of force applied directly to the base of the organ capsule
(McMahon, 1984),

Reflex and Regulatory Mechanisms

The efficacy of muscle spindles, and of the la synapses with a-motoneurons, is a
matter of common experience for ail those who have had their patellar tendon tapped by a
physician, When the physician strikes the tendon the quadriceps muscle group is
stretched a tiny amount. This tiny stretch is sufficient to cause the muscle spindles to
fire, delivering a large input to the a-motoneuron pool, ultimately bringing it to threshold
and causing the quadriceps muscle group to contract in response to the stretch,

Tendon organs are thought to be responsible for a less common but cqually
conspicuous reflex, which is most clearly seen in a decerebrate preparation, known as the
clasp-knife-reflex. A decerebrate animal will exhibit an increase in muscle tone known
as decerebrate rigidity. In this state, flexing the limb of the animal requires a great deal
of force, but at a critically high level the limb will suddenly collapse. The retlex — in
response to high force levels — is ostensibly the result of Ib afferent discharges by the
Golgi tendon organs {McMahon 1984). This reflex is evidence of the role of Golgi
tendon organs in protecting the system from unsafe force levels, but does not characterize
their role in bebavior at low force levels. At low force levels the tendon organs are
thought to have a role in stiffness regulation (Nichols and Houk, 1975).

The Reflex Stiffness Hypothesis

Nichols and Houk (1975), present a schematic illustrating the origins of mechanical
responses and reflex actions of the neuromuscular system. This is presented in figure 2.4,
with adaptations by McMahon (1984) to include input from higher centers and
y-motoneurons. This schematic illustrates the mechanisms from which reflexes, such as
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Figure 2.5. Block structured representation of information flow in the peripheral neuromuscular
system (Kearney, 1990).

A Systems Approach

To understand how the disparate structures of the neuromuscular system come
together to manifest joint dynamics, one must have a means of uniting the individual
elements of the system. A logical approach is to build a block structured model of the
system based on knowledge of how the underlying systems interact. Such a model is

presented in figure 2.5, which models the underlying structures of the peripheral
neuromuscular control system.

Some of the structures represented in figure 2.5 can be modeled accurately from «
priori models, for example the limb dynamics can be modeled accurately, and with
confidence, by application of Newton's laws. Other structures such as reflex dynamics or
the two blocks labeled Muscle Mechanics cannot be accurately modeled a priori from a
manageable set of first principles. These mechanisms can, however, be swdicd by
applying the principles of system identification to characterize, (i) the overall input-

output properties of the system, and (ii) the properties of individual elements in the
system.
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Position and torque are the only important signals that can be directly measured and
manipulated in figure 2.5. (Neural input can be measured indirectly by measuring EMG.)
Given measurements of joint position and torque, the relationship between the two — the
joint dynamics — becomes a classic problem in system identification: obtain a model of
the system through analysis of the relationship between input (position or torque), and
output (torque or position) (Kearney and Hunter, 1990).

Stiffness Properties and Linear System Identification

Linear system identification methods have been used extensively to develop
descriptions of joint dynamics of the aakle, wrist, elbow, jaw, and neck (Kearney and
Hunter, 1990), The ankle joint, in particular, has been examined extensively using linear
system identification by Gottlieb and Agarwal (1978), Kearney and Funter (1982, 1990),
Hunter and Kearney (1982), and Weiss et al. (1986a, 1986b, 1987). Gottlieb and
Agarwal identified the compliance properties of the ankle joint, while the remainder
identified, and considered in detail, the stiffness properties of the same joint. In general
these experiments involve application of a small stochastic position perturbation about
the ankle while the neuromuscular system is in a state defined by the experimental
paradigm. Measurement of thé torque generated in response to the position perturbation
permits identification of the input-output properties by computing the frequency domain
transfer function, or alternatively the time domain impulse response function, relating the
two signals. Such a system model is termed a “stiffness” model because a position input
is transformed to a torque output, alternatively a “compliance™ model transforms a torque
input to a position output.

Note, that figure 2.5 is structured as a compliance model, but an equivalent stiffness
model could be had by simple rearrangement of the blocks and connections. Also note,
that the stiffness referred to here is a full dynamic description of the relationship between
position and torque, not the clastic, or static, stiffness as is commonly used to model a
linear spring (i.e. force = elastic stiffness x displacement). Elastic stiffness is the zero
order linear component of a system's dynamics (first and second-order terms would be,
for example in a spring/mass/damper systemn, damping and inertia respectively). The
distinction made here — between elastic stiffness, as the zero order term in the dynamics,
and stiffness, as the full dynamic stiffness of the system — is maintained throughout this
thesis.
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Identification of a linear stiffness model requires determination of the transier
function:

t
—
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where Tq(s) is torque, 8(s) is angular position, and H(s) is the stiffness transfer function.

Alternatively, the time domain impulse response tunction:

Tq(t) = [h(D)(t-T)d 2.6

can be solved given input-output records 6(t), and Tq(t). The solution of equation 2.5 is
discussed in detail by Bendat and Piersol (1986), the solution of equation 2.6 is discussed
in detail by Hunter and Kearney (1983a).

Major Results

Kearney and Hunter (1990) have demonstrated that linear models provide an excelient
description of joint dynamics provided that the state of the system (i.e. activation level,
and mean position) remains constant over the period during which the dynamics are
estimated. When the system is in a different state a linear model can still be identified
but the identified model will not necessarily be the same. For example, dramatic changes
in joint dynamics are apparent with variations in mean torque (i.e. activation level). This
is illustrated in figure 2.6a which shows ankle stiffness transfer functions identified over a
range of mean torques (activation levels). In this figure, increasing low frequency gain
and increasing resonant frequency are clearly visible as mean torque increases.

The stiffness transfer functions presented in figure 2.6a can be numerically inverted 10
obtain compliance transfer functions. [n this form individual gain curves bear
resemblance to the classic second-order transfer function:

sy _ G o}
Tq(s) s° + 2Los + O]
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impulse response function (IRF, time domain representation of equation 2.7) to the
nonparametric compliance IRF representing the dynamics of the ankle joint. Generally
the parametric second-order compliance IRF represents the nonparametric compliance
IRF very well (e.g., accounts for as much as 97% of the variance of the nonparametric
IRF; Kearney and Hunter, 1990). Thus, equation 2.7 provides a parsimonious, casily
interpreted, description of ankle joint dynamics under steady state conditions.

Weiss et al. (1986a, 1986b, 1988) investigated ankle stiffness over the [ull range of
ankle position, and activation levels and presented the results in terms of the variation of
second-order parameters with joint position and mean torque (i.e. activation level).
Figure 2.6b is a representative result showing the variations of elastic stiffness with mean
torque. The elastic stiffness varies considerably over the full range of activation, varying
(in figure 2.6b} linearly from 40 Nm/rad at rest (0 Nm mean torque) to over 750 Nnvrad
at maximum contraction (75 Nm mean torque). In contrast, the damping parameter, G,
does not change significantly over the same range of activation, having a value of
approximately 0.4 throughout. The natural frequency, @,, is related to elastic stiffness by
the relation @, = K/, where K = elastic stiffness, and I = inertia. The inertia of the
joint does change with activation level or position, therefore, , varies in proportion to
the square root of elastic stiffness.

While it is intuitive that joint stiffness increases with contraction level, the linear
relationship could not have been assumed a priori. A further significant property of the
neuromuscular system which is not necessarily intuitive is that joint stiffness can, in fact,
be controlled over a range of activation levels, such that the joint can present significant
stiffness while at the same time presenting negligible torque. This behavior has potential
functional significance which was recognized by Hogan (1984, 1985) who hypothesized
that simple position or force control is not adequate to controf dynamic interaction with
the environment, and that one practical strategy is for the CNS to moduiate the dynamic
response (i.e. properties) of a joint, and by Lan et al. (1991a, 1991b), Crago et al. (1990,
1991) and Ning et al. (1991), who consider the application of stiffness regulation in
functional neuromuscular stimulation as an effective strategy to control force and position
in situations when transitions from position to force control, or vice versa, are required.

Open Questions

There are many situations in joint dynamics research when equation 2.6 is, however,
not appropriate. The properties just discussed were the result of identification of joint
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dynamics based on the application of small position perturbations to excite the system
while it was in a steady state. Identification of equation 2.6 under these conditions is
essentially linearization, at distinct operating points, of a system which is in general
nonlinear and time-varying.

That the system is nonlinear is apparent if one identifies the linear dynamics using a
series of position perturbations of varying amplitude. A linear system would yield the
same estimates independent of perturbation size because the principle of superposition
holds. Conversely, application of perturbations of varying amplitude to a nonlinear
system will not yield identical linear estimates of the system dynamics. Such behavior
has been observed in joint dynamics studies (Kearney and Hunter, 1982) and is a clear
sign the underlying system in nonlinear. To identify such nonlinear properties a new
class of system identification techniques must be brought to bear on the problemn. Such
techniques are not considered here. There are, however, quite active research efforts in
the area (e.g. Hunter and Korenberg, 1986; Kearney and Hunter, 1988; Westwick and
Kearney, 1990).

Equation 2.6 is also inappropriate for the identification of systems which vary through
time. For example, if elastic stiffness varied quickly through time, equation 2.6 could not
model the system even if it was completely linear. This is significant because even the
simplest of natural motions involve continual changes in the state of the neuromuscular
system, and hence time variations in joint dynamics. Appreciation of these variations is
important in understanding fundamental properties of motor control, and in practical
applications such as functional neuromuscular stimulation (FNS), which is discussed in
the next section. Some results of the application of time-varying linear system
identification techniques to problems in neuromuscular dynamics are discussed in section
3.1.2.

2.5 Functional Neuromuscular Stimulation

The significance of stiffness regulation by the neuromuscular system is apparent
when one considers conclusions drawn in the study of FNS. The goal of FNS research is
to restore motor function to individuals with neuromuscular injuries by direct activation
of the paralyzed muscle. A FNS systemn is faced with the task of mimicking the
neuromuscular system's behavior in a manner that produces natural motion, force
regulation, and compliant interaction with the environment (Crago, 1983).
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Lan (1990) added the feed forward clement to the controller and referred to the
controller us a perturbation controller. The feed forward element sets the controllers
quiescent point, while the two feedback loops control against perturbations around that
point.

Control systems theory provides a wealth of powerful techniques to optimize the
design of a controller such as this, but all these tools require an adequate system model to
predict the behavior of the overall system. The system elements of the controller which
must be modeled are the muscle and limb dynamics. The limb dynamics are modeled
using Newton's laws and, while perhaps not trivial, present no fundamental problems.
For example, if the system is described in joint coordinates, i.e. P, =0, then the limb

dynamics can be written as:

T, = 1(8,)8, +¢(8,.8,)8, +5(8,) +p(E,) 2.8

where, 1(8,) is the inertial matrix, c(Bn,én) represents the coupling between Coriolis and
centrifugal forces, g(8,) is the gravitational vector, and p(F,) represents the perturbation
forces due to interaction with the external load. This dynamic model is the same as that
used in the study of robotics (Craig, 1989). Given the nominal trajectory, 6, the joint
torques T, can be computed. Equation 2.8 represents the inverse limb dynamics
component of the feed forward controller. The forward version of this equation could
also be used in the forward limb dynamics block as part of the design process.

Muscle activation dynamics pose a more fundamental problem. The primary
impediment to the development of muscle activation dynamics models is that muscle is a
highly nonlinear, time-varying system. Add to this the lack of fundamental
understanding that prevents development of an a priori model from first principles
(Kearney 1990), and the problem becomes even more difficult. Empirical system models
based on the force-velocity, and length tension relationships can be developed to cope
with the problem. For example, Lan (1990) used a discrete time parametric model of
muscle dynamics which is the product of three factors: a linear autoregressive model of
activation dynamics, a linear approximation of length-tension properties, and a piecewise
linear function force-velocity model (presented in greater detail by Bernotas, 1986, 1987).
This was deemed successful by Bernotas, but such a model considers only the dynamic
properties of the muscle activation.



A potential enhancement to such modeling techniques comes in the recognition that
force-velocity, and length-tension are not, by their nature, dynamic, and do not capure all
the complexities of muscle in vivo — a system with significant dynamic components, and
properties more complex than those modeled by the force-velocity and length-tension
models (as discussed in section 2.4)., Further, the parametric model presented by
Bernotas can only capture time-varying system properties by implementation of an
adaptive parametric identification scheme (discussed section 3.1.1),

The use of the force-velocity, and length tension models, along with adaptive
parameter estimation was a practical approach — perhaps the only logical approach —
given the constraints of application, but fundamental questions remain concerning the
dynamic properties of muscle, in vivo, subject to electrical stimulation, This is a
motivation for the work presented in this thesis — the application of tme-varying system
identification tools to gain a better understanding of the dynamic mechanical properties of
electrically stimulated muscle.
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3 Theory

3.1 Time-Varying System ldentification

Section 2.4 alluded to the classic system identification problem, identification of the
transfer function H(s):

H(s) = —— 3.2

Which transforms system input, x(t), to system output, y(t). In the time domain this is
expressed as the convolution integral:

y(t) = j h(T)x(t- T)dt 33

Where h(7) is the system's impulse response.

Given appropriate input-output records x(t) and y(t), equations 3.2 and 3.3 can be
solved without making any a priori assumptions about the structure of the system. In
solving equations 3.2 and 3.3 it is possible to solve for the function H(s) or h(t) rather
than identifying parameters of a system model developed a priori. This is important in
neuromuscular control research because there are few guiding suppositions on which a
tructable parametric system model can be developed from first principles.

Equation 3.2 can be solved directly using correlation techniques if x(t) has the
following autocorrelation (Bendat and Piersol, 1986):

Ix(t)x(t-t) = DH(T) 34

Where 8(1) is the delta function (8(t) = 1 if T =0, and 8(t) = 0 if T # 0). In other
words, the input must be uncorrelated white noise. If this condition cannot be met
strictly, then a least square solution of equation 3.3 is possible (Hunter and Kearney,
1983a). The least square solution makes no formal demands on the input signal other
than that the input must be rich enough to excite the system at the frequencies over which
the system dynamics are to be identified. These solutions, and equation 3.3 itself, are,
however, not appropriate for the study of time-varying systems. To study time-varying
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systems new techniques must be employed. Four techniques are considered in the
following section, these are: quasi-time-invariant methods, adaptive methods, ensemble
methods, and finally functional expuansion methods.

3.1.1 Survey of Theoretical Techniques

Quasi-Time-Invariant Methods

In one special case equation 3.3 can be applied to a system which varies in time, that
is when the state of the system varies very slowly with respect the length of the system
impulse response function, h(t). In this case equation 3.3 can be expressed as (Hunter
and Kearney, 1987):

y(t) = -J‘h(‘l‘.‘,a)x(t-‘t)d‘t 35

Where o is the mean state (e.g. in a joint dynamics experiment o. would be the mean
activation level or joint position).

If o is permitted to vary continuously throughout an experiment (i.e. o = a(t)) then a
series of piece-wise time-invariant analyses may be undertaken by solving equation 3.3
over a series of time intervals of length sufficient to permit solution of the equation. This
is only valid if the variations in ¢ are not significant over the chosen time interval. In
general, the length of the time interval required to solve equation 3.3 is at least 2T
(greater when noise rejection properties are considered), where T is the length of the
system's impulse response function (Hunter and Kearney, 1987).

The compliance impulse response function for the human ankle joint is approximately
T=200 ms in length, therefore, the time interval required to solve equation 3.3 is at least
2T=400 ms. If the quasi-time-invariant method is applied to human ankle joint
dynamics, the system state must not change significantly over a time interval of 400 ms.

Muscle activation levels can vary over a wide range in less than 400 ms (Hunter and
Kearney, 1987), and a single muscle twitch is completely finished in 400 ms (see figure
5.1), therefore, this technique is of no value in the identification of the variation of system
dynamics during a event as fast as a single twitch.
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Adaptive Methods

Adaptive methods are classified here into two related categories: recursive least
square estimation, and Kalman filtering.

Recursive Least Square

The recursive least square method does just what its title states, it implements a least
squares parameter estimator recursively with the added proviso that past input-output data
is exponentially weighted so that parameter estimates are a function of only the most
recent data and, therefore, are free to vary with time.

The recursive least square method (Ljung, 1987) operates on the linear system:
y(t) = ¢7(VO() 3.6
y(t) = ¢T(8+2(t,6) 3.7

where ¢(t) is the input vector (or matrix), y(t) is the output vector, 0(t) is the parameter
vector, B(t) is the estimated parameter vector, and €(t,0) is the error in the output
estimate given the parameter estimate 6(t).

The recursive algorithm weights previous samples by a weighting function given by:
Blt,k)=A* 0<k<t-1 3.8

where B(t,k) is the weighting function applied to calculate the parameter estimate at time

t, weighting previous data at times k. So that, for example, the most recent datum (k = t)
is weighted by B(t,t) = 1, the second most recent datum (k = t-1) is weighted by B(t.t-1) =
A, the third most recent datum (k = t-2) is weighted by B(t,t-2) = A2, etc. A is termed the
forgetting factor.

The parameter estimate, 8, which minimizes Zez(t,é) is then given by (Ljung,
1987, equation 11.9):

8t +1)=8(t)+R" (0®]y(r)-¢"8(1)]
R(t)=AR(t-1)+¢" (1)0(t-1) 39

If the forgetting factor is A = 1, then all previous data is weighted equally and the
method becomes 2 regular least square method. If A < | equation 3.8 decays
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exponentially to zero and only the most recent data is reflected in the parameter estimate,
B(t). Hence the method is capable of tracking variations in the mode! parameters.

The RLS method imposes constraints on the dynamics of the parameter variations
which are related to the weighting function B(t,k). Essentially, the state of the system
cannot change significantly over the time period of previous samples which are heavily
weighted by B(t.k). Stability of equation 3.9 requires A to be close to one: typical choices
of A are in the range 0.98 to 0.995. If A is near one then the weighting function can be
estimated with (Ljung, 1987):

B(t,k) = ll-k = e(l-k)]ﬂgl o~ e-ﬂ-k"l-k) 3' IO

This means that measurements older than I/(1-A) samples are included in the
parameter estimate with a weight that is ¢’ = 36% of that of the most recent
measurement. So that:

|
T, = —— 31
= Th 1

can be termed the memory time constant of the weighting function. If the state of the
system remains approximately constant over T, samples, a reasoned choice of A can be
made from equation 3.11, or from the alternative point of view, if A is sclected before
hand then the maximum allowable rate of parameter variation can be estimated. For
example, if A is 0.99 then T, = 1/(1-0.99) = 100 samples. If the sample rate is 200 Hz

then the last 500 ms of measurements would be weighted significantly and, therefore, the
system must remain relatively constant over this time interval.

A more formal discussion of tracking ability is provided by Gerencsér {1991), who
has shown that the maximum tracking error of a slowly time-varying system is
proportional to $", and that the optimum value of A is proportional to $". Where $ is
the rate of change of the parameter variations (see equation 3.12). Formally, the slowly
time-varying condition is satisfied if:

CorplB(t+D) -8 =S <o 3.12

Gerencsér's results show that adaptive identification schemes will, unless there is no

parameter variation (i.e. $=0), always have tracking error, and that the error increases as
the rate of parameter variations increase,
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Kalman Filter

A related technique, Kalman filtering estimates the optimal state vector of a state
space system which is subject to input (process) and output (sensor) noise. By itself, this
is not sufficient to perform system identification since only the state vector of the system
is estimated, not the system that generated the state vector. However it is possible to
formulate a state space system for which the state vector is comprised of the coefficients
of a system model, and implement a Kalman filter which will estimate those model
parameters.

Kalman (1960), developed a methed for optimally (in a least squares sense)
estimating and predicting the state of a discrete state space system given previous output
measurements, and knowledge of the process and sensor noise covariance properties.
The Kalman filter, as it is referred to today, is much lauded in modern control theory
(Sorenson, 1970), and has application in system identification as well. The Kalman filter
operates on the system:

x(k+1)=F(k)x(k)+G(k)w(k)
y(k)=H(k)x(k)+ v(k) 3.13

where k = 1, 2, ..., the output is y(k); w(k) and v(k} are zero mean random processes, with
properties: E{w(k)] =0, E[v(k)] =0, and E[w(k)WT(j)] = Q(k)d,;, E[V(K)VT(j)] = R(k)éikj
(E denotes expected value).

The Kalman filter can provide the optimal state estimate, X(k), or the optimal one
step prediction, X(k+1). In what follows here, only the estimator is considered. The
optimal estimate of x(k) is (adapted from Sorenson, 1985):

X(k) = x(k - )+ K(k)y(k)-H(k)x(k-1)] 314
where K(k) is given by the recursive set:

K(k) = P(k-l)HT(k)[H(k)P(k-I)HT(k)-l-R(k)]-'
P(k) = [I - K(k)H(k)]P(k - 1) 3.15

The Kalman filter can be adapted to estimate model parameters by forming a system:

8(t+1) = O(t)
y(t) =9 ()B(t)+ v(t) 3,16
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which is simply equation 3.7 expressed in state space form, and equation 3,13 with
x(t) = 8(1), F(t) = I, H(t) = ¢7(t), and w(t) = 0. The Kalman (ilter can then be computed

from equations 3.14 and 3.15, and the estimated state will be the optimal parameter
estimate 6(t).

In this form, the Kalman filter cannot explicitly account for time-variations of B0, in
fact, Ljung (1987) shows that in this form the Kalman filter is equivalent to the RLS
method with the forgetting factor set to A=1, which is ordinary least square parameter
estimation. It is possible, however, to account for parameter variations if & model of
those variations is known a priori (1.e. F # I}, In which case, with parameter noise also
included, equation 3.16 becomes:

O(t+1}=F(t)0(t) +w(t)
y(t) = T (1)B(t)+ v(t) 3.17

This approach is used by Kitawaga and Gersch (1985), Moser and Grawupe (1989), and
Tsypkin and Bondarenko (1992), in an extended manner in which the parameter
variations are modeled in a general way as a linear sum of the n past estimates, Their
methods differ in some respects but have in essence the following approach.

The parameter estimate 6(t+1) is given by a linear combination of n past parameter
estimates:

o(t+1)=AB(t)+A,B(t-1)+...+A B(t-n-1) 318

where A, ... A, are constant nonsingular matrices which must be developed a priori.
This expression may be recast as the matrix equation:
at+DT [A, A, -~ A, o(t)
e(t) I 0 « « 0 a(t-1)
t-1}i=|0 I - 0l 9(t-2) 319

+

ot—=m| {0 - - 1 o0 feu-n-1

where I is a unit matrix of the same dimension as 0. If a new parameter vector &(t), and
transition matrix A, are defined, then equation 3.19 becomes:

E(t+1) = Ag(1) 3.20

The observation equation, 3.6, then becomes:
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yo=[6"@® 0 - 0w 3.21

In the presence of noise in the parameter law, equation 3.20, and observation law,
equation 3.21, an optimal time-varying parameter estimate would be determined by a
Kalman filter, and the time variations in 8(t) could be followed.

In general, adaptive methods are capable of identifying time-varying systems but
impose strict conditions on the system. In the RLS case the rate of change of the time
variations is limited, and, in the case of the Kalman filter, it must be possible to model the
parameter variations a priori. Both of these conditions are undesirable when one studies
the neuromuscular system because large rapid changes in the state of the system can be
expected, and because the underlying physiology is of sufficient complexity that a priori
system models inevitable contain many parameters and function relations which cannot
be measured directly (Kearney and Hunter, 1990).

Ensemble Methods

The limits imposed on the solution of equation 3.6 by adaptive methods can be
overcome by collecting an ensemble of experimental input-output records to generate a
set of realizations of equation 3.6 which can be solved simultaneously. The ensemble
data consists of a large number of repetitions of the same response with a stochastic
perturbation superimposed on top of each response to excite the system. The stochastic
perturbation makes each response independent of the others, therefore, if an ensemble of
m such input-output records is collected, equation 3.6 becomes a set of m independent
equations:

D
J

¥ (£) = 0p (1)B(t) 3,
k=1,2,..m

At each point in time, t, equation 3.22 then becomes a matrix ec':juation which can (as
long as m is greater than the number of parameters) be solved for 6(t), in a least square
sense, using matrix inversions techniques (Strang, 1980), or alternatively looked upon as
an ARMA model and solved accordingly (Ljung, 1987). The ARMA approach was used
by Bennet et al. (1990).

A parametric model is, however, not necessary for application of the ensemble
technique. In fact, the more general nonparametric impulse response function, equation
3.3, is directly extensible to model time-varying linear behavior by simply making the
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system's impulse response function, h(t). vary with time (Lawrence et al, 1977;
Soechting et al., 1981; Kearney et al., 1991):

y(t) = [h(LOx(t-1)d 323
The time-varying transfer function would be (Bendat and Piersol, 1986):
Y(s) 2
H(t,s)=—== | h(t,T)e™™dt 3.24
(t9)=3 [het.o

As is the case with equatton 3.3, equation 3.23 can be solved directly using
correlation techniques, if the input meets appropriaie criteria, or in a more general way
with a least square approach. The added requirement in the solution of equation 3.23,
over the time-invariant case, is the necessity to use an ensemble of input-outpul
realizations rather the single input-output realization sufficient to solve equation 3.3
Equation 3.23 can be solved if formulated as follows: begin by assuming h is zero
outside the interval T=-T,T so that,

.T
y(t)= [ h(t.T)x(t-v)de
T

3.25
converting to finite discrete form,
y(iy=AtY h(i, x(i-j) 3.26

j=.n

where n= %t'

Equation 3.26, by itself, is underdetermined, but is solvable if a minimum of 2n+|
independent input-output realization are obtained such that:

y(i.k) =AY b, jix(i- k) 327

j=-n

where k represents each realization of equation 3.26. Under these conditions equation
'3.27 is solvable, and the time-varying convolution kernel, h(i,j}, can be determined.

The important point of this section is not the solution of equation 3.27, but the
recognition that this method of time-varying system identification imposes no
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fundamental dynamic constraints on the identification — as do the quasi-time-invariant,
and adaptive methods — and that a direct solution of equation 3.27 is, in fact, possible.
For this reason, and because no constraints other than linearity are placed on the
identification, the ensemble method has ideal properties for studying systems, such as the
neuromuscular system, which are subject to rapid large variations in their dynamics
properties, and for these reasons, was used in this study. A complete discussion of the
ensemble method, and the solutions of equation 3,27, may be found in section 3.3.

Functional Expansion Methods

One further means of solving equation 3.23 is the functional expansion method of
Marmarellis (1981, 1987). This method addresses the modeling of a class of time-
varying systems, of which equation 3.23 is a member, through an extension of the
Volterra-Wiener approach (Marmarelis, 1978) and the use of a modified cross-correlation
technique that yields time-varying kernel estimates from single input-output data records.

In application to equation 3.23, the functional expansion method offers not a direct
solution, but identifies a representation given by the finite expansion:

k
h(t,7) =Y ¢, (DB, (1) 3.28
n=0

where P(t) is a set of orthogonal functions defined over the observation interval [0,R], and

satisfies;

1 _ )
= ! B..(t)B, ()dt = 8(m, n) 3.29

A Fourier set, for example, will satisfy this condition. The object of the identification
task is c,(1), and is given by (Marmarelis, 1987):

R
én(‘l:)=—-é-‘[[3n(t)y(t)x(t—‘t)dt 3.30
0
Given this the kernel estimate is:

R k
h(t, 7y =Y &,(0)B, (1) 3.31

=l
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Unlike the ensemble method this estimate can be made using single input-output
records, but suffers from the need to select, a priori, a basis function, B(t), which can
describe the unknown time-varying impulse response function.

The ensemble method requires no model structure be selected a priovi, and is
preferable if the increased experimental demand of collecting an ensemble of input-output
responses, rather than a single response, is tolerable.

3.1.2 Applications

Quasi-Time-Invariant Methods

An example of a situation for which quasi-time-invariant methods have been used is
the identification of joint dynamics during muscle fatigue (Hunter and Kearney, 1983b).
This study required subjects to maintain a constant 50% maximum voluntary contraction
of the tibialis anterior muscle over an 80 second period while a random perturbation was
applied about the ankle. Compliance impulse response functions were computed cvery
2.55 seconds so that changes in the mechanical properties of the joint (and therefore the
fatiguing muscle) would be evident as changes in the impulse response function as the
muscle fatigued. Fatigue onset at 50% maximum voluntary contraction occurred at a rate
which was slow with respect to the 2.55 second window over which the compliance
impulse response functions were estimated and the window was more than 10 times
longer than the length of the same compliance impulse response functions (which were
less than 200 ms). These are exactly the conditions (as discussed in section 3.1.1) under
which a quasi-time-invariant analysis is appropriate., Based on this analysis Hunter and
Kearney concluded that despite large increases in tibialis anterior EMG as the muscle
fatigued, there were no corresponding significant changes in the ankle joint dynamics.

Adaptive Methods

Bernotas et al. (1986) and Chia et al. (1991) have used recursive least square methods
to model the relationship between electrical stimulation intensity and force output of
electrically stimulated muscle. These models consist of a parametric static nonlinearity
followed by a second-order linear dynamic system, together expressed in a form
appropriate for application of an exponentially weighted recursive least square algorithm.
Such models are intended for real-time adaptive functional neuromuscular stimulation
control systems such as described by Bernotas et al. (1987). Adaptive controllers, such as
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that just described, represent the most common application of adaptive identification
techniques but such techniques have also been applied directly to the study of time-
varying joint dynamics,

Xu et al. (1991b, 1992) identified time-varying dynamics of the human elbow during
simple unconstrained motions using exponentially weighted recursive least square
methods. This work employed an actuation system capable of applying force
perturbations without constraining the forearm (Xu, 1991a) and identified the dynamics
of a second-order model:

1()8,(t)+B(1)8, (1) + K(1)O, (1) =T,(t) 3.32

where 1 is inertia, B is damping, K is elastic stiffness, 8, is perturbed joint angle, and 7, is

the perturbation torque. Xu et al. (1991a) manipulated this equation such that I(t), B(t),
and K(t) could be identified using a recursive least square algorithm which does not
require measurement of the higher order position derivatives 0,(t), and 8 (t). The

method, however, did not perform well when parameters varied faster than 0.5 Hz. The
technique was modified to include explicit measurement of Bp(t), and estimation of €,(t)
which permitted estimation of parameter variations up to 5 Hz, but experimental results
revealed unpredictable variations in the inertial parameter which should have remained
constant through time (Xu, 1992), thus calling the technique (or the validity of a second-
order model) into question.

Ensemble Methods

The ensemble method has been applied by Bennet (1990,1993) to identify a
purametric time-varying model of essentially the same system as described by Xu (1991a,
1992). In this work subjects were instructed to move their arm repeatedly between two
targets while a force perturbation was applied to the forearm. Time-varying inertia,
damping and elastic stiffness parameters of the elbow joint where identified by solving, at
cach point in time, a discrete version of equation 3.32 expressed in ensemble form
{(equation 3.22). The inertia parameter was found to be invariant with time (as would be
expected), the elastic stiffness was found to increase at points of highest acceleration (at
the targets). The damping, however, presented no repeatable trend across subjects.
Similar studies were conducted out by Lacquaniti et al. (1981, 1993). The authors do not
discuss how much of the measured data is accounted for by the identified model.
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Nonparametric ensemble methods have been applied to joint dynamics by Soechting
et al. (1981), MacNeil et al. (1992), and Kirsch and Kearney (1991).

Soechting et al, (1981) examined the properties of the forearm (elbow joint), and the
biceps and triceps muscles under various conditions using a correlation based solution of
equation 3.27. Torque perturbations were used to excite the system while subjects carried
out tasks involving transitions from resist (i.c., resist the perturbation) to not resist,
tracking a ramp position change, and “ballistic” movement tasks. In addition to
identifying the clbow time-varying joint dynamics under these conditions, the authors
also considered the time-varying activation dynamics of the biceps and triceps muscles by
computing the time-varying impulse response function between torque and EMG.

MacNeil et al. (1992) and Kirsch and Kearney (1991, 1993) examined the time-
varying properties of the ankle joint by applying position perturbations while subjects
carried out a step change in voluntary activation (MacNeil, 1992}, and the response due to
an imposed movement (a stretch of triceps surae muscles). Both studies identified the
time-varying stiffness impulse response function (TVIRF) of the ankle joint under these
conditions. These papers, unlike Soechting et al, (1981), also present the variunce of the
output accounted for by the identified TVIRF's, MacNeil et al. (1989) found the stiffness
TVIRF accounted for approximately 90% of the output variance before, during, and after,
the step change in activation. Kirsch and Kearney (1991) found the stiffness TVIRF
accounted for was 75-80% before the stretch, but dropped to 50-60% after the stretch.

3.2 Interpreting the Time-Varying Convolution Integral

Among the possible time-varying system identification approaches offered in section
3.1 the one considered most appropriate for the identification of the large rapid variations
expected during a twitch, was the ensemble method which provides a solution of the
time-varying convolution integral:

y() = [hox-1)de 3.33

Equation 3.33 is the most direct —but as shall be demonstrated, not the only—
time-varying extension of the standard time-invariant convolution integral:
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weighting function must be 4 mirror image of the impulse response. In either case, both
operations are neatly described by equation 3.3+ as long as h does not vary with time,

This distinction between impulse response function and weighting function represent
nothing new in the theory of time-invariant systems, and is normally not even noted in
texts, but is an important consideration if equation 3.34 is modified w0 include
time-varying dynamics.

If a system'’s response to an impulse varies with time, then the component of the
output at time t due to excitation by an impulse applied at time t=t-t will be
B (1), TIXCE ) = 1y (8- T, T)X(E =T}, and the total output at time t will be the sum of

excitation over all times T, which is expressed by the convolution integral:

el
(/]

y(t) = [, (- T Ox(1- D)t 3

If the weighting function varies with output time, (, then the component of the output
at time t due to excitation applied at time t;=t-t will be h(t,T)x(t,} = h(t, T)x{t - T) and the
output at time t will be the weighted sum of input over all times t. This leads to equation
3.33.

The convolution kernel of equation 3.33 is referred to as the time-varying weighting
function (TVWF) and is symbolized as "h", or for the purposes of the following
discussion, as “h,”. The convolution kernel of equation 3.35 is referred to as the
time-varying impulse response function (TVIRF) and is symbolized here as “h,,,".

The time-varying impulse response function versus the time-varying weighting function.

Although h,, and h,,,, are not equivalent, there is a relationship between the two.

Equations 3.33 and 3.35 perform the same operation (convolution) on the sume input,

x(t), to generate the same output, y(t), therefore, the convolution kernel parts of the two
integrands must be equivalent:

h(t-T.T)=h,(1,T) 3.36
Applying the variable transformation, t, =t —T:

Ny (4, T = (4, +T,7) 3.37
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So that given the TVWF, h, the system’s TVIRF, h
TFWF diagonal: h_(t, +1,7).

imps 4L any time t; lies along the

To understand the relationship between h, and h, = consider what happens if the

imp

state of the system is frozen (i.e. stops varying with time) at time t,. In that case the
impulse response at all times after t; is the same as the impulse response at time t,. If all
time after time t, is denoted by t,+7 then (with prime indicating the state if the system is
frozen):

B (1, T) = hi (4 +7,7) 3.38
Which implies (under the same conditions):

hiyp (6 + T, T)=hi(t, +T,7) 3.39

or,

hi'mp(t,‘t) =h (t,1) 3.40

Equation 3.40 formalizes what would be expected if the state of the system was
frozen — that the TVIRF and the TVWF would be equivalent since the system would no
longer be varying through time. Equation 3.40 also provides a formal means of
interpreting the TVWF. That is, at each point in time t, the weighting function, h(t), is
equivalent to the impulse response of a time-invariant system with the instantaneous
properties of the time-varying system at time t.

Note, this short section has made explicit distinction between weighting function, and
impulse response function; this was done to ensure clarity in the argument. Generally,
however, the term time-varying impulse response function is used generically, without
regard for the distinction drawn here. This is the case in the rest of this thesis. The
context of the presentation should be examined if the reader wishes to distinguish
between time-varying weighting function and time-varying impulse response function as
described here (i.e. results derived from equation 3.34 are weighting functions, results
derived from equation 3.35 are impulse response functions, the results presented later in
this thesis are derived from equation 3.34)
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3.3 Solution of the Time-Varying Convolution Integral

Section 3.1 (ensemble methods) discussed the conditions under which the
time-varying convolution integral could be solved directly, The solution is based on
collecting an ensemble of input-output trials (k = 1, 2, ... m) sufficient in number to solve
the set of simultaneous equations represented by equation 3.27, repeated here:

y(i.k) = AtY hi, j)x(i-j.k) 341

j=n

Given an ensemble of input-output data the time-varying convolution integral can be
solved using variations on the correlation and matrix inversion techniques used to solve
the time-invariant convolution integral.

3.3.1 Correlation Based Solution

The correlation based solution proceeds as follows, beginning with equation 3.41 (for
clarity, the explicit sum bounds are excluded):

y(i, k)= At Y h(i, j)x(i-j.k) 3.42
i

for an ensemble of realizations, k=1, 2, ..., m.

If h was not time-varying (with respect to discrete time i), fumiliar correlation
techniques could be used to solve this equation. In the time-varying case, a variation of
this technique can be used to solve for h. To begin let the input be:

x(i,k)=X(i+k) 343
therefore, each realization the input, x(i,k), is X shifted forward k samples.
Now multiply 3.42 by x(i-k,k)

y(i,k)x(i-k.k) = At Y h(i, x(i- j.k)x(i- k. k) 3.44
i

and sum over k, then substitute equation 3.43 and simplify:

Yy k)x(i-k.k) = Aty (i, j) X x(i- j,k)x(i-k.k) 3.45
k i k
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Yy KX -k+k) =AY h(i,)Y X(i-j+k)X(i-k+k) 3.46
\ i X
Dy k)X () =AY h(i, )Y X(i- j+K)X(i) 3.47
k i K

If X is a zero mean random signal then the following is true:

> X(i-j+k)X(i)= ®S(k- ) 3.48
k

where 8(k-j) is the delta function and equals one when k=j, zero otherwise, Substituting
equation 3.48 into equation 3.47 gives:

3 y(i, k)X (i) =AY h(i, ) DS(k - j) 3.49
k i

Because &(k-j) has a non-zero value only when j=k:

¥ y(i.k)X(i) = Atdh (i, k) 3.50
k

Thus the final result is:

R R < .
h(i, k) = e ;y(l.k)X(l) 3.51

Suitability of the correlation approach.

As evidenced by the results of Soechting et al. (1981), and Lawrence and Dawson
(1977), the correlation based solution offers a viable solution of the TVWF but does
impose restrictions on the input signal. These are: i) the input must be uncorrelated
white noise, and ii) equation 3.43 must hold from one input to the next. Requirement (i)
does not seem unduly harsh given that all the identification methods discussed so far
depend on some sort of random signal; it is, however, very difficult in practice to
generate a signal which is perfectly white (Keamey and Hunter, 1990). Requirement (ii)
can present a considerable problem because it requires the physical response under study
to be synchronized in some way with the input signal. This imposes experimental timing
requirements which may, in practice, be difficult to meet. Fortunately, the pseudo-
inverse solution makes no formal restrictions on the “whiteness” of the test signal, and
makes no demands of the nature of requirement. (ii).
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3.3.2 Pseudo-inverse Solution

The pseudo inverse solution proceeds by forming a matrix equation from ecquation
341, given input-output realizations k = 1, 2, ... m. Equation 3.41 is recast in matrix
form:

y(L,L1) = At[h(i,-n} x(i+n.1} + ... + h(i,n) x(i-n. )]

y(i,m) = At [h(i,-n) x(i+n,}11) + ... + h(i,n) x(i-n,m)}
Y, =At X, H, 3.53

Where Y, is a m by | vector, X; is an m by 2n+1, and H; is a 2n+1 by 1 vector. The
problem now becomes the solution of equation 3.53. This is a standard problem in matrix
algebra, the solution of which proceeds as follows. First convert to the simpler notation:

Ax=b 3.54

where A=AtX,,b=Y,,and x=H,.

If m =2n+! (i.e., the number of realizations, m, equals the number of points in the
impulse response function, 2n+l) then the solution is the ordinary matrix inverse,
x = A’'b. This condition, however, will only yield the correct solution if the system is
noise free. When m = 2n+1, b is necessarily in the column space of A and the solution, x,
has no freedom to reject noise because it lies also in the column space of A. If
m>2n+1, Ax must still be in the column space of A, but b is free to lic outside that
space, and a solution can be developed to minimize the error |Ax - b|. All responses
which can be modeled by A (i.e. the system model) lie in colurn space. When b lies
outside of this space it is because: 1) b contains random noise which naturally cannot be
modeled, ii) b contains components due to unmodeled behavior, or tii) b contains
components to inputs which have not been considered.

From a geometric perspective, the error function € =|AX - b| is the distance between
b and the solution vector Ax. This function is minimum when Ax is the orthogonal
projection of b into the column space of A, which means Ax-b is perpendicular to the
column space of A. Given a vector Ay (where y is a 2n+1 by I vector) which represents
any vector in the column space of A, then Ax-b will be perpendicular to Ay when the
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dot product between the two is zero. This is expressed in equation 3.55, which simplifies
to equation 3.57.

(Ay)' (AX - b)=0 3.55
y"AT(Ax-b)=0 3.56
y (ATAx-ATb)=0 3.57

A nontrivial solution of equation 3.57 requires y # 0, therefore, the vector, X, which
minimizes € = |Ax-b| is the solution of:

ATAx-ATb=0 3.58
or,

x=(ATA)'ATb 3.59

The expression (ATA)'AT is termed the pseudo-inverse of A, and notated:

A*=(ATA) AT 3.60

such that:
x=A"b 3.61

Singular value decomposition applied to the pseudo-inverse.

This solution is a useful theoretical result, but suffers numerically due to the extreme
rank instability of ATA. (That is to say, the existence of (ATA)"! is not guaranteed.) The
singular value decomposition remedies this (Strang, 1980).  Singular value
decomposition decomposes A into:

A=QXQ;

[
=
2

Where Q, is a m x m orthogonal matrix, and Q, is a n x n orthogonal matrix, and X is
a m X n matrix which has special structure and properties, discussed further on, which
remedy the rank instability problem. Substitute equation 3.62, into equation 3.60 to
obtain:
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A*=((QZQN Q) (QzQl) 163

[

Which reduces, due to the orthogonal properties of Q, and Q,, to:
+ Tt TAT
A*=0Q,(z"z) =7Q] 3.64
A" =Q,Z2'Q 3.65

Z", the pseudo-inverse of Z, is a n x m diagonal matrix of inverse singular values
(Golub, 1983):

It =diag(y;,....n0;",0,....0) & R 3.606

where r is the rank A.

In practice, this form of the pseudo-inverse is preferable to equation 3.60 because the
rank deficiencies which arise due to dependent columns of ATA become evident as very
small singular values y;. These singular values can be set to zero before inverting the
singular value matrix so that the pseudo-inverse remains stable (Strang, 1980),

The least square solution to equation 3.41 at discrete time i is finally:

H; =‘I—eri 3.67
At

Suitability of the pseudo-inverse approach.

The pseudo-inverse solution has the essential favorable property that it makes none of
the strict requirements on the input signal, or experimental protocol, that the correlation
based solution does. The trade off for these relaxed experimental requirements are the
substantial computational requirements, When implementing un experimental protocol
the relaxed experimental requirements of the pseudo-inverse solution fur outweigh any
computational disadvantage. For this reason, the pseudo-inverse approach has been
selected for the analysis presented in the following sections.



4 Experimental Procedures and Analysis

4.1 Paradigm

The experiments involved fixing the subject’s left foot to a mechanical actuator which
applied a small position perturbation while, at the same time, an electrically stimulated
twitch was elicited from the triceps-surae muscle group. The electric stimulus was
applied vsing a surface electrode held underneath the knee. The stimulus was applied at
random intervals so that subjects could not anticipate it. Ankle position, torque generated
about the ankle, and soleus EMG where measured and recorded during each twitch

response. Typically, several hundred responses were recorded for each subject.

To account for the dynamics of the actuator used to apply the position perturbation, a
calibration test was performed by releasing the subjects foot from the actuator, and
recording the torque generated by the actuator in response to the position perturbation
alone. The resulting torque and position signals were then used to identify the dynamics
of the actuator and fixation device so that their contribution to the recorded torque
responses could be removed before the analysis.

4.2 Apparatus
Mechanical Actuator, Torque and Position Measurement

The actuator used to apply the position perturbation was a rotary hydraulic motor
(Rotac 26R-2-1V, Ex-Cell-O Corp, Berne IN) controlled by a servo valve (Moog 73-233,
Moog Inc, East Aurora, NY). The actuator was controlled by a simple proportional
controller constructed from general purpose instrumentation amplifiers. Position was
measured with a precision potentiometer (Beckman 6273-R5K, Beckman Industrial,
Fullerton, CA) with a maximum nenlinearity of £0.2%. Torque was measured using a
torque transducer (Lebow 2110-5K, Eaton Corp., Troy NY) with a stiffness of 105
Nm/rad and @ maximum nonlinearity of £0.1%. Details of this actuator are described by
Kearney (1983).

The position perturbation signal was a 200 Hz pseudo random binary sequence
(PRBS) low pass filtered at 80 Hz with an 8 pole constant delay filter. The perturbation
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signal was approximately 3000 samples (i.c. 15 seconds) long and replayed cyclically
throughout the experiment.

The position and torque signals were conditioned and amplitied with general purpose
instrumentation amplifiers, low-pass (anti-alias) filtered at 250 Hz with 8-pole constant
delay filters, then sampled at 2000 Hz with 16 bit analog to digital converters with a
range of £10 V. The analog to digital converter ran continuously and was triggered. by
the same source which triggered the stimulator. One second of pre trigger data and 1.5
seconds of post-trigger data were collected for each response. Time zero (i.e. the time

domain origin) of the torque and position signals was defined to be the time of
application of the electrical stimulation.

Electrical Stimulation and EMG Measurement

Electrical stimulation was applied beneath the knee using a custom made ball
electrode which was attached to a custom made gimbal which allowed the electrode to be
positioned freely under the knee. The gimbal included a locking mechanism so that once
it was positioned it remained that way for the duration of the experiment. The gimbal
was attached to a half cast which was strapped to the subject's upper leg. A 4.5x4 ¢m

carbon rubber ground electrode was placed on the subject's upper leg just above the
patella.

The electric stimulus was a constant voltage 500 ;.ls monophasic square pulse. The
stimulation output current was limited to a maximum of 50 mA. Responses were
monitored by a custom made EMG amplifier which included a special input stage
designed to block the electrical stimulation transient. EMG was monitored throughout
each eaperiment to.ensure the stimulus response remained unchanged. A stimulus of
sufficient amplitude to elicit a large M wave and a small H wave was chosen so that the
response was due mainiy to direct activation of the triceps surae muscles with little reflex
activation, The stimulus amplitude required to achieve this varied from subject to subject
but was typically in the range of 40-60 volts.

Stimuli were applied at random intervals based on a Poisson distribution with a
minimum inter-pulse interval of 10 seconds, a maximum inter-pulse interval of 20
seconds, and an average inter-pulse interval of 13.33 seconds.

The electrical stimulator was custom made, but followed the design of a
commercially available stimulator (Digitimer DS2).
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Figure 4.1. Block diagram of the artifact suppression circuit used to record EMG during electrical
stimutation. The stimulator trigger (a) is delayed by 500 ps and passed on to the stimulator trigger
input (b}, at the same time a 2 ms pulse {d) is generated to activate the EMG amplifier
suppression circuit, The stimulation pulse (c) goes directly to the electrode.

Response to the stimulation was monitored by recording EMG of the soleus muscle.
EMG was measured by placing two Ag/AgCl electrodes (Electrotrace, Jason, Huntington
Beach, CA) on the belly of the soleus muscle, parallel to the muscle fibers, in a bipolar
configuration. A reference electrode (of the same type) was placed directly over the tibia.

The EMG amplifier was custom made and consisted of an instrumentation amplifier
(Analog Devices AD623), a passive single pole 1 Hz high pass filter, a stimulus artifact
suppression circuit, and an isolation amplifier. The artifact suppression circuit was
designed to isolate, and hold the state of, the 1 Hz high pass filter for a short interval
which overlapped the stimulus pulse. Without this, the artifact caused by excitation of
the 1 Hz filter would have overwhelmed the EMG signal (less than 50 ms to the end of
the H wave). The suppression circuit was set to come on 500 us before application of the
stimulation pulse (which itself was 500 {is long), and to remain oa for 2 ms. The M wave
appears approximately 5 ms after the stimulus is applied, therefore, the suppression
circuit did not interfere with the EMG measurement. Figure 4.1 shows schematically
how the artifact suppresser synchronized activation of the EMG artifact suppression
circuit and the onset of the actual stimulation pulse.
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The EMG signal was anti-alias filtered at 250 Hz with an 8-pole constant delay low-
pass filier and sampled at 2000 Hz with a 16 bit analog to digital converter with a range
of 10 V.

Experimental Control and Data Collection

The position perturbation, and stimulus trigger were both generated by an IEEE488
programmable D/A converter. The trigger signal was passed to the electrical stimulator
and to an IEEE488 programmable A/D converter which was configured to commence
data collection on that signal. The A/D converter was configured to save one second of
pre-trigger samples, and to continue sampling data for another 1.5 seconds. When
sampling was complete, the A/D converter interrupted a general purpose laboratory
computer which acted as the IEEE488 bus controiler. This computer downloaded the
position, torque, and EMG data from the A/D converter, and suved them tor laier
processing. The laboratory computer played no role in controlling the experiment other

than initial programming of the instruments, and downloading data from the A/D
converter.

4.3 Analysis

The raw data collected for each experiment consisted of an ensemble of position and
torque input-output records and calibration data consisting of a single input-output
record. Before applying equation 3.67 to identify the time-varying dynamics of the joint,
there are several preprocessing steps which were applied to the data. These are described
in the next section. After the time-varying joint dynamics were computed, several
post-processing steps were applied to generate resuits which are useful for interpretation.

4.3.1 Pre-processing

Resampling

The raw data was collected at 2000 Hz, but it proved not necessary, or wise, to
perform the analysis at such a high sampling rate. The number of operations required to
compute the pseudo-inverse (using singular value decomposition) increases exponentially
with the sampling rate of the data, therefore, it was desirable to use the lowest possible
sampling rate for the calculations. Proper selection of sampling rate at which to perform
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the analysis requires consideration of the power spectrum of the input signal used 1o
excite the system:

The position perturbation was a 200 Hz pseudo-random binary perturbation (PRBS)
which was low pass filtered at 80 Hz, and used to drive a position servo which had a
bandwidth of approximately 125 Hz. Therefore, there was no useful information in the
raw data at frequencies much greater than 80 Hz, and even less beyond 125 Hz. There is
little to be gained, therefore, by performing the computation at sampling rates which
reflect dynamics at frequencies significantly higher than this. In fact, going well beyond
the power bandwidth of the input only introduces noise which can have a detrimental
effect on the identification.

The data is resampled, or decimated by extracting every n'th point from the raw data,
where n is the decimation ratio. To avoid frequency aliasing the data must be
numerically filtered to remove power above the Nyquist frequency of the decimated data.
In this case the raw data was f{iltered at 0.8 times the Nyquist frequency using an 8'th
order Chebyshev type 1 digital filter with 0.05 decibels of ripple in the pass band, and
the data was filtered in both directions to give a result with zero phase shift. A
decimation ratio of 8 was selected to give a new sampling rate of 250 Hz. This decimated
signal therefore will have a bandwidth 0.8 times the Nyquist rate, or 0.8*(250/2) = 100
Hz, which is appropriate given the input signal bandwidth (80 Hz). This decimation
scheme was applied to all raw torque and position data.

The EMG signals were not resampled because they were not used as input to any
analysis procedures, just as qualitative feedback about the state of the muscle during the
twitch.

Remaval of Actuator Dynamics

The measured torque is a combination of torque produced about the ankle joint by
muscles acting at that joint, and torque produced by the actuator in response to the
position perturbation:

Tq measured = Tqanklc + Tqactuamr 4.1

Note, because the actuator, ankle fixation device, and position sensor are
mechanically linked by an extremely stiff link, the measured position, the position of the
ankle, and position of the actuator are equal:

49



Posnwu\urcd = Pos.mkir = Posacluatur 4:

The last step in each experiment was application of the same position perturbation
used throughout the experiment but without the subject's foot attached to ihe actuator.
These signals (called Tq,, and Pos, for calibration torque and position) were used to
identify the dynamics of the actuator. The dynamics of the actuator are described well by
the standard linear time invariant model:

Tqe = [, (t.T)Pos,, (L~ )T 4.3

h,., can be determined using well known techniques (Hunter and Kearney, 1987), and

the actuator's contribution to the measured torque can be removed to arrive at an estimate
of the ankle torgue:

TQunklc (t) = Tqmcmsurcd (t) - J‘hact ([' T)Postma\umd(l - T)d't 44

The actual calculations were, of course, done using discrete mathematics,

Equation 4.4 was applied to each measured position-torque pair in the ensemble. All

further analysis was done with Tq,,., and Pos_,,..

Trial Selection

The ensemble method requires an ensemble of identical responses to some stimuli. In
reality the ensemble will consist of a set of similar, but not identical responses. To
improve the identification a subset of the experimental responses were selected to give a
more uniform ensemble as input to the identification scheme.

There are two possible types of variations from one trial to the next. There can be
variation in the onset of the response —an alignment error— which would be a very
important consideration if the response was voluntary (Kearney et. al., 1991), and there
can be variations in the magnitude and time course of the response.

In this case the response was an electrically stimulated twitch to which the subject
responded involuntarily. The time domain of each torque and position record in the
ensemble was fixed with respect to the time the electrically stimulus was applied; the
instrumentation was configured such that the maximum error in establishing the time of
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application of the stimulus could be no more than one sample (i.e, 1/(2000 Hz) = 500 ps)
and on average would be half a sample, or just 250 us. This is insignificant compared to
the duration of the mechanical twitch response (which lasts approximately 500 ms) and is
only a small fraction (approximately 1%) of the duration of the EMG response (which
wis complete in approximately 50 ms). Therefore, no further consideration need be paid
to alignment of the position and torque records.

Small variations in the size and time course of the twitch from trial to trial do occur
and the analysis benefits by selecting a subset of the most similar responses. The
selection process was based on the torque response from 0.0 to 0.6 seconds (rather than
the full length of the recorded torque signal which extends from -1.0 to 1.5 seconds) since
the actual twitch response occurred over this interval.

The selection was done using the following algorithm:

set = ensembie of torque responses from 0.0 to 0.6 seconds
n = number of responses to select
m = number of responses in set
while {m > n)
ensemble average = ensemble average of set
for each response in set
squared error = (ensemble average - response)e
end
reject response with maximum squared error
decrement m
end

This algorithm computes the ensemble average of the entire set, then rejects the
response which deviates most from the average. This process is applied repeatedly until a
predetermined number of responses remain.

Removal of the ensemble mean.

The ensemble method determines time-varying dynamics by relating input-output
data across the ensemble as well as through time. This requires that the data be stationary
across the ensemble, and through time (i.e. through the time course of the twitch, in this
case). Because the ensemble consists of a set of like responses it is already stationary at
each point in time across the ensemble. Indeed, this is a basic requirement of the
ensemble method.

51



The responses are, however, not stationary through the time course of the twitch, The
torque response changes drastically through time as the triceps surae muscles respond to
the electrical stimulus, Successful application of equation 3.67 requires that this non
stationary response due to the electrical stimulation be removed. This is done by
subtracting the ensemble average from each response in the ensemble. This is done o
both the position ensemble and the torque ensemble. This procedure is essential to
successfully identify the dynamics of the system. Removing the cnsemble mean
effectively reduces the system from a two input single output (input: position perturbation
and electrical stimulus; output: sum of torque due to perturbation and stimulus), to a
single input single output system (input: position perturbation; output: perturbed torque
response).

4.3.2 Post-processing

After the preprocessing steps were applied to the raw data, a time-varying stiftness
impulse response function (TVSIRF) was computed using equation 3.67. The (irst step in
analyzing this resuit was to compute a measure of how well the TVSIRF modeled the
input-output data.

Variance Accounted For

The impulse response function computed with equation 3.67 is a least squire solution
of Y, = At X, H, (equation 3.53). The solution to equation 3.53 is the component of Y,
(i.e. - the output, in this case torque) which lies in the column domain of X; (i.c. - the
input, in this case position). The vector At X, H, is the component of Y, which lies in the
column domain of X;, if H; is computed using equation 3.67. If Y, lics outside the column
domain of X; there will no vector H, which perfectly models the system. This is a
constraint of the linear model chosen to represent the system's dynamics, As stated
before, there are several things which will cause Y; to lie outside the column domain of
X; , these include: noise, nonlinear effects, and unmodeled inputs. The magnitude of the
error vector containing these effects is |Yi - AtX, H, | The accuracy of the model can
thus be assessed at each point in time by comparing the magnitude of the error vector
with the magnitude of Y; itself. This is done by computing variance accounted for, at
discrete time i, using the equation:

| Yi - |§' xzi Hi |- 45

VAF = |1 -
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This compares the square ol the vector magnitudes rather than just the mugnitudes,
and is consistent with the definition of VAF used to assess time invariant system models,
with the cxception that the estimated and actual outputs are compared across the
ensemble rather than through time.

If the system is noise free and perfectly modeled by a time-varying linear mode! the
VAF will be one. If no element of the system can be modeled by a time-varying linear
system the VAF will be zero (i.e. Y; is perpendicular to the column space of X;).

Smoothing

The TVSIRF solution usually contains a large magnitude noise component at the
Nyquist frequency which must be removed by a filtering operation. This noise results
because the solution attempts to model high frequency noise present in the input-output
ensembles. Since there is not sufficient power at the high end of the spectrum for system
identification, the solution tends to be dominated by incoherent, large magnitude, high
frequency noise. These components of the solution must be explicitly removed by
individuslly filtering each impulse response function in the ensemble.

The filter used to remove this noise was a two sided, three point smoothing filter,
This operation does not completely rid the impulse response functions of the undesirable
noise component, but does decrease its magnitude to the point where it does not dominate
the impulse response. The operation does not introduce any phase shift into the stiffness
IRF's (because the smoothing filter is two sided).

The smoothing operation was necessary but introduced one problem, which had to be
overcome. A stiffness impulse response function for a system which has no delay should,
theoretically, have just three non-zero points. These are at discrete lag time zero, and at
discrete lag times -1, and 1. Non-zero values outside these three represent a delay in the
system, filtering of the impulse response, or are simple noise. The problem caused by the
averaging filter is the introduction of filtering transients which amplify noise at both ends
of the stiffness impulse response. These are highly undesirable and must be removed.
One plausible means of removing the transients is to simple truncate the stiffness impulse
responses. The problem with simple truncation is that the end values of the impulse
response after truncation may still have random non-zero values. A better approach,
which forces the transients to zero, without disturbing the important information around
lag zero., is to multiply the impulse response by a windowing function which is zero at the
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ends and one in the middle. A logical choice, given that the impulse response function is
2n+1 points long, is the Hamming function:

(i+m)

2n

P |
hamming(i} =;—;cos(2n‘

4.6
i==n—-n+l,....n=1Ln

Frequency Response — Average Low Frequency Stiffness

The TVSIRF quantitatively describes the dynamics of the system at each point in
discrete time through the time course of the twitch. However, stiffness impulse response
functions, while providing a sound mathematical description of a system's dynamics, do
not yield well to direct interpretation. Part of this difficulty arises from the non-causal
nature of the stiffness impulse response. Qualitative changes in the system's dynamics
can be observed in the changing shape of the impulse response functions, but quantitative
assessment requires further analysis of the TVSIRF itself. In short, the information in the
impulse response functions must be expressed in a form more amiable to interpretation.

The simplest transformation which provides for easier interpretation is to compute the
frequency domain transfer function as expressed in equation 3.24. Given the systems
time-varying transfer function a Bode plot (i.e. magnitude and phase) is easily made. The
transfer function magnitude is particularly easy to interpret because at low frequency it is
representative of the elastic stiffness of the joint (keeping in mind the distinction, made in
section 2.4, between dynamic and elastic stiffness). Therefore, an estimate of the
time-variation in the elastic stiffness of the joint throughout the time course of the twitch
can be had by averaging the transfer function magnitude at low frequency. This measure
of elastic stiffness is termed low frequency average stiffness and is expressed {ormally by:

8]

kIuwi =LJ
TQ

0

Tq,(jw)
Pos; (jw)

Q
dm=zlij|l-l.,( jo)da 4.7
V]

Where H(jo) is the Fourier transform of the stiffness impulse response at discrete
time i, and Q is the frequency below which the transfer function magnitude is averaged.

To examine the relevance of low frequency average stiffness consider a second-order
system which Kearney and Hunter (1990) have demonstrated to describes the dynamics
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This simplifies to:

11 1y 3
k, 1 J" o) oY
e = e | - — + | 20—
" ) {an (Cu)) Jdw $.10
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If the dimensionless quantities W =— , and ¥ = — are defined, then:
ml‘l mll

k

T "
o =¢£[<1-w->-+(2cw]=dw 1

This relationship is shown in figure 4.2 for various values of { .

Figure 4.2 clearly shows the expected resul: as Q—0, k,, 2k, and, as Q
increases Ky, and k diverge. This figure proves useful in making a reasoned choice for
Q if estimates of the damping ratio, £, and the natural frequency, @, are available, This
is considered further in the results section.

Fitting a Second-Order Model — Compliance IRF

The second-order parameters, k, 0,, and §, are useful to consider not only because a
second-order model has been shown to model time-invariant joint dynamics well, but also
because such models are common in many fields of engineering and applied science and
hence the parameters are widely understood and appreciated. To determine a set of
time-varying second-order parameters a second-order impulse response function can be
fit to each impulse response in the ensemble of time-varying impulse response functions,

The second-order parameters were estimated by fitting an analytic second-order
impulse response function to each experimentally determined impulse response function
in the time-varying ensemble. However, a time domain expression for the second-order
stiffness impulse response function does not exist because the inverse Laplace transform
of a function with more zeros than poles (i.e. — the second-order stiffness transter
function, equation 4.8) does not exist. The inverse Laplace transform of the compliance
impulse response funciion does exist, however, and can be used to estimate the
parameters of a second-order model. The expression for the second-order compliance
impulse response function is:
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To estimate the parameters of this expression the experimentally determined stiffness
impulse response functions must be individually inverted to get one sided compliance
impulse response functions. This was done numerically by simply filtering a white noise
input with each stiffness impulse response function to get an output signal, then
identifying a time-invariant one sided filter between the output and input signals (i.e.
output becomes input, and input becomes output). This result is referred to as a
TVCIRF — time-varying compliance impulse response function.

The parameters of equation 4.12 were determined using the Levenberg-Marquardt
non-linear least square parameter estimation technique (Press, 1986). This technique
requires knowledge of the first partial derivatives, with respect to the parameters being
estimated, of the equation under consideration. Analytic expressions for these
derivatives, derived from equation 4.12, are presented in appendix one.
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Single Twitch
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Figure 5.1. Plot of a torque generated about ankle by a single twitch of the triceps surae muscle
group.

5 Results

The first group of figures in the this section, figures 5.1 to 5.7, are a collection of
views of the raw data used to identify the time TVSIRF's. The TVSIRF's and plots
relating directly to these follow in figures 5.8 to 5.14. The final set of results, figures
5.15to0 5.19, are the TVCIRF's and the resultant second parameter estimates,

The data presented here were collected from three male subjects in their mid-twenties
with no known neuromuscular disorders. Data sets one, and two are from the same
subject, but collected on two separate occasions. Data sets, three and four are from the
other two subjects,

Single Twitch

Figure 5.1 presents a single twitch — the torque generated about the ankle joint by
the triceps surae in response to stimulation of the anterior tibial nerve.  The torque
response peaks in approximately 125 ms and is over in 500 ms. Time zero is the time of
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application of the stimulus. The small delay between time zero, and the onset ol the
twitch represents the time required for the action potential to travel down the anterior
tibial nerve and depolarize the triceps surae muscles. Time zero has at most 500 us, and
on average 250 ps, of error (see section 4,3.1).

Perturbed Response

Figure 3.2 shows torque, position (perturbation), and EMG during a twitch. (Note,
the EMG is on a different time scale.) The EMG recording clearly shows the motor
activity occurring during the twitch. The first wave is a large M wave, begins
approximately 5 ms after application of the stimulus and is approximately 20 ms long: a
small H-wave follows, it begins at approximately 35 ms and is approximately 10 ms long.
The large M wave, in conjunction with a small H wave, indicates that the response was
almost purely direct stimulation of the muscle (via the antericr tibial nerve) with little
reflex response. The EMG was monitored throughout each experiment to cnsure the
effect of the electrical stimulation remained constant (i.e., maintained as presented in
figure 5.2), but was not considered otherwise.
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responses with which to continue the analysis. Fewer responses were collected in
experiment one; therefore, no selection process was applied.

Table 5.1 also lists the resting position, and torque for each data set. The values
represent the quiescent state of the system during the experiment. Note, the resting
torque is a function of resting position only and represents the state of the passive
structures of the joint and muscles. There is no active component in the resting torque:
subjects were asked to maintain a relaxed state at all times during the experiments. This
resting position and torque were removed from each torque and position record before
any analysis was performed.

data set | number of number of resting torque { position perturbation
number | responses. [responses seiected, (N.m) standard. dev. (rad}
l 190 190 -6.3 1.75%103
2 299 200 -7.0 2.75%10-3
3 249 200 -1.7 3.00x10-3
4 268 200 -10.5 4.25x103

Table 5.1. Number of realizations of data for each experiment, the number of realization selected
to perform the analysis (note, no selection process was applied to data set number one), the
torque, and the standard deviation of the position perturbation.

The ensemble of torque and position records, for one data set, is shown in figure 5.6.
This figure shows the ensemble mean plus and minus one standard deviation. The
ensemble mean and standard deviation were computed across the data set at each point in
time through the time course of the twitch. Solution of the time-varying convolution
integral using the pseudo-inverse approach (section 3.3) requires the ensemble of
input-output data be stationary through the course of the time-varying event. Figure 5.6
shows that this is clearly not the case during the twitch. The mean torque obviously
changes substantially during the twitch; indeed, it is the variation in the state of the
system during this non-stationarity which is of interest. The mean position also changes
(to a much lesser extent) due to the finite stiffness of the position servo used to apply the
position perturbation. Before proceeding, the ensemble mean must be removed from the
torque and position data. The result of removing the ensemble mean from these signals is
presented in figure 5.7.
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Time-Varying Stiffness Impulse Response Functions

The pseudo-inverse identification procedure described in section 3.3.2 was applied to
compute a time-varying stiffness IRF for each data set. Figures 5.8, 5.9, 5.10, and 5.11
present the results for each data set; cach figure shows the complete time-varying
stiffness IRF as a three dimensional plot. The individual impulse responses shown below
these correspond to the instant the stimulus was applied (0.0 seconds), mid-response
(0.25 seconds), and after tull recovery (0.75).

In each case, the shape of the TVSIRF changes substantially between 0.0 and
approximately 0.5 seconds through the time course of the twitch. This change in shape
reflects the changing state of the system through the time course of the twitch. Before
and after this interval the TVSIRF maintains a roughly constant shape reflecting the
time-invariant state of the system before the application of the stimulus, and after tull
recovery.

In the absence of noise, a stiffness IRF has just three non-zero points, One positive
non-zero point at lag zero, and one negative non-zero point on either size of lag zero. The
magnitude of these points reflect the dynamic characteristics of the system, These
features are easily distinguished in the individual IRF's with the exception that these
IRF's are not noise free. The noise in the IRF's was reduced by multiplying each IRF by
a Hamming window. The Hamming window forces the noise components to zero at the
extents of the IRF (i.e., lag times -100 ms, and 100 ms) while having minimal aftect in
the vicinity of lag zero where the important dynamic information exists. Changes in the
systems dynamics during the twitch are reflected in the magnitude of the IRF peaks
approximately in the -20 to 20 ms region. The stiffness IRF's non-causal nature make
direct interpretation difficult beyond simple recognition ot changes in magnitude in this
region.
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Figure 5.13. Relationship between the increase in standard deviation of the perturbed torque

response, and the drop in VAF during the twitch. The linear trend suggests the drop in VAF is due
to the inter-trial variability reflected by the increased standard deviation of the perturbed torque

response.

5.2, and the increase in torque standard deviation is plotted in figure 5.13. The lincar
trend of the plot suggests the relationship expected if (i) is the primary cause for the drop

in VAF.
data set | torque std. | max.torque std. | increase in VAF drop
number [before twitch| during twitch torque std. { during twitch
(N.m). (N.m) (N.m) (%)
0.80 1.35 0.55 28
2 1.40 1.50 0.10 8
3 .35 1.50 0.15 i3
4 .53 2.0 0.45 16

Table 5.2. Standard deviation (std.) of perturbed torque before and during the twitch, their

difference, and the magnitude of the drop in VAF during the twitch, Data in columns four, and five

are piotted in figure 5.13,
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—:“— =1.0. in other words. at rest the low frequency average stiffness will be
approximately equal to the elastic stiffness. The elastic stiffness identified as part of the
second-order analysis can, as a first approximation be expected to be close to the low
frequency average stiffness.

Time-Varying Compliance Impulse Response Functions

The next step in the analysis was to invert the time-varying stiffness IRF's to obtain
time-varying compliance IRF's. Recall, this step is necessary to proceed with the second-
order parametric analysis. Also, the compliance IRF provides a representation of the
dynamics which is much easier to interpret that the non-causal stiffness IRF's. The
time-varying compliance [RF's are presented in figures 5.15 to 5.18.

As with the stiffness IRF's, these figures show, for each data set, the complete time-
varying compliance IRF as a three dimensional plot. Below each of these are three
individual impulse responses extracted from the time-varying compliance IRF at times
0.0, 0.25, and 0.75 seconds through the time course of the twitch, Again, these times
correspond to the instant the stimulus was applied (0.0 seconds), mid-response (0.25
seconds), and after full recovery (0.75).
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Again, qualitative changes in the systems dynamics are observable as changes in the
shape of the time-varying compliance impulse response functions during the time course
of the twitch. The individual compliance impulse response functions are easier to
interpret in this case because they are causal. Note, that as in the stiffness case, the
compliance impulse responses at 0.0 and 0.75 seconds are very similar, reflecting the
constant state of the system before and after the twitch, but the compliance impulse
responses at 0.25 seconds through the time course of the twitch are distinctly different.
Before and after the twitch the IRF's have the characteristics of a second-order
under-damped system; however, during the twitch (i.e., at 0.25 second) the IRF is no
longer characteristic of a second-order under-damped system. The response at this time
is more like an under-damped oscillatory response on top of a slower over damped
component. This difference presents a key to determining what is happening to the state
of the system during the twitch, and is explored in more detail in the next section,

Second-order Analysis

Figure 5.19 presents the results of fitting a second-order model to the time-varying
compliance IRF's. The procedure estimated the natural frequency, damping ratio, and
elastic stiffness (@, C, and k). The inertia, and damping parameters were computed from
®,, &, and k.

The second-order analysis was undertaken because it is known to successfully model
joint dynamics under time-invariant conditions (Kearney and Hunter, 1990), and is,
therefore, worth considering as a model for time-varying joint dynamics. First
impressions of figure 5.19 may lead one to believe that the second-order model does not
fair too badly. For example, the variance of the second-order impulse response (which
indicates how closely the second-order parametric impulse response matches the
nonparametric compliance impulse response at the each point in time) is reasonably high,
dropping only to about 75% during the twitch. In addition the elastic stiffness rises
during the twitch, as expected, and the resting elastic stiffness is very close to the resting
low frequency stiffness. In these respects the second order model appears to successfully
characterize the nonparametric results.

The second-order model does not fair well, however, when one examines how the
inertia parameter varies. There is no reason to expect the inertia of the joint to vary
during the time course of the twitch. Small fluctuations in the parameter estimates are
not disturbing; but the inertia estimate should at least remain stationary. In each case the
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6 Discussion

Faets und Theories

A system as complex as the neuromuscular system presents significant challenge to
any identification scheme because it is both time-varying and nonlinear. The ensemble
time-varying identification can successfully identify linear dynamics, and in the event the
underlying system is nonlinear, can linearize the system about a fixed trajectory as it
varies through time. The ensemble identification scheme does this well. By placing no
constraint on the system other than that of linearity, and repeatability, the ensemble
identification scheme gives a concise reliable description of the system's dynamics for the
particular response under investigation. The next step in the identification process is one
of interpretation; one of drawing conclusions about the significance of the result.

At this point it is natural to turn to sorme sort of parametric system model which will
lead to a better understanding of the mechanisms underlying the observed response. This
is a difficult step in the study of neuromuscular systems but is nevertheless important. As
Wilkie (1954) wrote (from McMahon, 1984):

Facts and theories are natural enemies. A theory may succeed for a time in
domesticating some facts, but sooner or later inevitably the facts revert to their predatory
ways. Theories deserve our sympathy, for they are indispensable in the development of
science. They systematize, exposing relationship berween facts that seemed unrelated;
they establish a scale of values among facts, showing one to be more important than
anvther; they enable us 1o extrapolate from the known to the unknown, to predict the
result of experiments not yer performed; and they suggest which new experiments may be
worth attempting. However, theories are dangerous too, for they often function as

blinkers instead of spectacles. Misplaced confidence in a theory can effectively prevent
us from seeing facts as they really are.

Second-order models have been user. to describe joint dynamics because they
facilitate the first of Wilkie's points; they. 53 stematize experimental results, turning that
which is concise but difficult to interpret‘-—in this case stiffness impulse response
functions— into that which is concise but easy to interpret — the parameters of a model.

In this scenario, the facts are the nonparametric results, derived 1rom raw data with as
few biased constraints as possible, and the second-order model is the theory, potentially
biased due to contrary assumptions. The nonparametric results are the facts used to
verify the hypothesiv that a second-order model is sufficient to characterize joint
dynamics. . Note, this is not to say that the second-order model is being considered as a
definitive representation of joint dynamics and the associated underlying mechanisms,
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rather, that it is simply an appropriate means of characterizing time-varying joint
dynamics. However, while the second-order model has been successtul in the study of
time-invariant joint dynamics it is disappointing when applied to the study of
time-varying joint dynamics.

MacNeil et al. (1992), and Kirsch et al. (1991, 1993) used the ensemble identification
technique to study the time-varying dynamics of the ankle joint, MacNeil studied the
dynamics during a voluntary change in activation level, while Kirsch examined changes
during an imposed change in position. Both studies tried to fit second-order models to
nonparametric results, MacNeil demonstrated that during the transient change in
muscular activation the dynamics were not well modeled by a second-order system.
Similarly, Kirsch et al. found that during a transient imposed stretch the dynamics of the
joint were not well modeled by a second-order system.

Xu (1992), assumed a second-order model @ priori and used an adaptive method o
identify the second parameters describing the dynamics of the elbow joint during an
isometric change in activation level, and during movement.. Xu's adaptive method was
considered successful under time-invariant conditions, and in simulation was reported to
successfully identify the parameters of second-order model when the variations where
less that 5 Hz, yet with real data the results were considered inadequate. Xu found that
the inertia parameter varied unpredictably, when it should have remained constant, thus
raising questions about the suitability of the second-order model, or the success of the
identification scheme. This leads one to believe that, again, the second-order model has
failed under time-varying conditions.

Lacquaniti et al. (1981, 1993) used the ensemble correlation approach to study the
dynamics of the human elbow joint during a voluntary change in activation level, and
also used a second-order model to characterize the systemr's dynamics. Unfortunately, the
prediction accuracy of the second-order model was not presented so the success of the
second-order model could not be properly assessed. The same is true of Bennett (1990,
1993) who investigated elbow dynamics using a time-varying parametric identification
scheme to estimate the parameters of a second-order model, but again the prediction
accuracy of the second-order model was not presented so the validity of the second-order
model could not be properly assessed. These two examples represent, perhaps, a case of
(from Wilke, 1954): "Misplaced confidence in a theory can effectively prevent us from
seeing facts as they really are."”

34



The results of MacNeil et al. (1992}, Kirsch et al. (1991, 1993), and Xu (1992), and
the results presented here all indicate that the second-order model fails to systematize the
fucts uncovered by nonparametric studies of time-varying joint dynamics. Careful
examination of the nonparametric results presented in this thesis do, however, give some
clues as to what is missing from a model which aims to systematize the results of
time-varying joint dynamics studies.

Facts to Guide Wayward Theories

To understand why a second-order model fails to model the time-varying joint
dynamics it helps to examine, qualitatively, a single compliance impulse response
extracted from the time-varying compliance impulse response function at a time when the
state of the system was varying (which is also, of course, a time when the second-order
model was not successful). Such an impulse response is shown in figure 6.1. Inspecting
this impulse response leads to an obvious qualitative conclusion: the second-order model
cannot characterize this impulse response because its shape is more complex than second-
order. What it seems like, in fact, is an oscillatory response on top of a slower response.
The oscillatory component could minimally be an under-damped second-order system
(since that is the lowest order system which can oscillate). While the slower response
would minimally be a first order system. That would lead one to conclude that at least a
third order system is necessary to characterize this impulse response.

It is possible to estimate the order of the system required to model the impulse
response shown in figure 6.1 by fitting progressively higher order systems to the impulse
response and observing the order at which the estimate no longer improved. This was
done using the method described by Ho and Kalman (1966), which fits a state model to a
nonparametric impulse response. To deteimine how well an n"™ order state model
characterizes the nonparametric impulse response, an impulse response was computed
from the state model and compared to the original nonparametric impulse response
function. The result of such an analysis is shown in figure 6.2 which compares
2™ 3" 4" and 5" order impulse response functions.
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Figure 6.1. Nonparametric compliance impulse response, showing the state of the system at 250
ms after the onset of the twitch. This example is from data set three.
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Figure 6.2. The same nonparametric impulse response as shown in figure 6.1, compared to finite
order impulse response functions of progressively increasing order.
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Figure 6.2 shows, qualitatively. that a finite order impulse response models the
nonparametric impuise response better as the order of the impulse response increases. It
is clear the second-order impulse response function does not capture the characteristics of
the nonparametric impulse response functions. The third order impulse response function
does better: it captures the under-damped second-order component, plus the slow first
order component of the response.

The fourth order impulse response does better still, and, significantly, there is little
observable difference between the fourth and fifth order impulse response functions. This
lack of improvement from fourth to {ifth order leads to the tentative conclusion that a
parametric system model of at least order four is required to characterize this
nonparametric impulse response function.

A quantitative estimate of system order is possible by choosing a measure of the
difference between order n, and order n+1 impulse response functions. A logical choice
for this function would be:

¥ (B, =, 1) -

3 (o))

where h (t)is the order n estimate of the nonparametric impulse response at time ¢

A, (1) = 6.1

through the time course of the twitch, and the sum is over each point in the impulse
response.

This equation is simply 100 minus the variance accounted for between the finite order
n impulse response, and the finite order n+/ impulse response. If the two impulse
response functions were identical, the variance accounted for would be 100%, and
equation 6.1 would be A, =0. Therefore, one can expect that as n approaches the true
system order, A, will approach zero.

It is a simple matter to compute A for a range of system orders, n, at each point in
time through the time course of the twitch. Figures 6.3, 6.4, 6.5, and 6.6 show the result
of such an analysis. In each of these figures it is apparent that A, is the first point at
which A (t) =0 for all values of time (i.e. through the entire time course of the twitch).
This is persuasive evidence to support a hypothesis which suggésts a fourth order model
of joint dynamics.
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Figure 6.3. A, versus n (system order) through the time course of the twitch for data set one.
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Figure 6.4. A, versus n (system order) through the time course of the twitch for data set two.
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Further, hgures 6.3, 6.5, and 6.6 show that A, >> A between approximately 0.0 (the
onset of the twitch) and 0.5 seconds (the point of near full recovery). These
characteristics suggest that the higher order dynamics only become significant during the
time the muscle is actively contracting, and explain why the second-order model is
successful under time-invariant conditions (i.e. before and after the twitch), but is less
ablc to model joint dynamics under time-varying conditions. It does not seem
unrcasonable to suggest that this effect may alsc explain the second-order results
presented by MacNeil et al. (1992), Kirsch et al. (1991, 1993), and Xu (1992).
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7 Conclusions

Summary

The ensemble time-varying system identification approach was successtul in
identifying the dynamics of the ankle joint as they varied through a single twitch of the
triceps surae muscle group. The ensemble method generates a nonparametric result that
is not biased by any a priori assumptions, other than that of linearity, about the structure
of the system under study. The stiffness impulse response functions presented in figures
3.8, 5.9, 5.10, and 5.11 form the basis from which study can continue with limited
concern that basic assumptions about the nature of the system are wrong.

Nonparametric results are, however, very difficult to interpret in isolation. To gain
further insight into the nature of the system, one approach is to characterize the results
using parametric models. Parametric second-order models have been very successful in
characterizing time-invariant joint dynamics (Kearney and Hunter, 1990). Seccond-order
models have, however, met with less success in characterizing time-varying joint
dynamics. This was found in the studies carried out by MacNeil et al. (1992), Kirsch et al
(1991), and Xu (1992), and again in the work presented here.

Given the mounting evidence that a second-order linear model is not a useful means
of characterizing time-varying joint dynamics, the question of what siep to try next
should be addressed. The first question addressed in the discussion was: is there an
obvious reason why the second-order model fails during the time the system is varying
(i.e., during the twitch). Simple visual examination of a single nonparametric compliance
impulse response function representing the dynamics at a point in time when the system
was varying leads one to conclude that the second-order model fails because a slower
order dynamic becomes significant at this time. The impulse response remained
oscillatory, but the oscillation is superimposed on the slower dynamic component. This
implies that a system order higher than two is required to characterize joint dynamics
when the system is time-varying.

A simple system order analysis was performed to determine the minimum system
order required to characterize the nonparametric compliance impulse functions that
represent the ankle joint dynamics at each point in time through the time course of the
twitch. This analysis leads to the tentative conclusion that a system of at least order four
is required to characterize the dynamics of the ankle joint under time-varying conditions.
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Further, the analysis also predicts that a system order of two is sufficient during the time
invariant periods before and after the twitch. This result is consistent with time-invariant
studies which have concluded that a second order model is sufficient to characterize joint
dynamics under time-invariant conditions, and at the same time explains why the second
order model fails under time-varying conditions.

Future Directions

System order is an important consideration in the development of a model to
characterize a system as complex as the neuromuscular system. Voluminous research has
demonstrated that second-order models are sufficient to characterize joint dynamics under
time-invariant conditions. The second-order model has, however, proved not wholly
successful at characterizing the neuromuscular system under time-varying conditions.
The conclusions presented here concerning system order are a basis for explaining the
faiure. It would be interesting to determine if an order analysis applied to the
time-varying paradigms studied by MacNeil et al. (1992), and Kirsch et al, (1993} would
give the same estimate of system order.

No theory capable of characterizing time-varying joint dynamics has been suggested
in this thesis; developing such a theory is a formidable challenge, but the results do
tentatively suggest some of the properties such a theory must possess:

o The model must be at least third, perhaps fourth, order

¢ Under time-invariant conditions, components of order greater than two should not be
significant.

« Under time-varying conditions, components of order greater than two should become
significant,
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