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Abstract

The neuromuscular system interacts with the environment by generating forces that

cause motion about joints. The study of this interaction is termed joint dYllamics. If the

environment is controlled, as it is in experimental situations, then it is possible to draw

conclusions coneerning the nature of the intact neuromuscular system by studying the

nature of environmental interactions; Le., by studying joint dynamics. The properties of

the neuromuseular system, as manifested by the dynamic properties of Joints, vary

through time as a result of variations in the state of the physiological structures involved.

Identifying the time-varying dynamics of joints under controlled circumstances is an

important step in the development of a comprehensive model of the neuromuscular

system.

This thesis presents the results of applying a method of nonparametric time-varying

linear system identification to study the dynamics of the ankle joint as they vary during a

single twitch of the triceps surae muscle group. In accord with previous time-invariant,

and time-varying studies, the nonparametric results were charaeterized using a second

order mode!. Past studies have found that second-order models successfully characterize

joint dynamics under time-invariant conditions. Time-varying studies have, however,

found that second order models do not adequately characterize time-varying joint

dynamics. The results presented here confirm that. Furthermore, examination of the

reasons for this failure leads, with tentative analytic corroboration, to the conclusion that

a fourth order linear model is required to characterize the time-varying dynamics of

joints.
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Résumé

Le système neuro-musculaire interagit avec l'environnement extérieur en générant des

forces causant des mouvements autour des joints. On appelle dYIII/IIIÎ<I/lC dcs joillls

l'étude de ce type d'interaction. En contrôlant l'environnement, sous conditions

expérimentales, il est possible de tirer des conclusions concernant la nature intrinsèque du

système neuro-musculaire par l'observation des interactions environnement:lles: i.e.. par

l'étude de la dynamique des joints. Les propriétés du système neuro-musculaire, qui se

manifestent par l'entremise des propriétés dynamiques des joints, varient temporellement

dO aux variations d'état des structures physiologiques impliquées. L'identitication de la

dynamique des joints soumise à des variations temporelles, sous des conditions

controllées, est un prérequis important pouvant éventuellement mener fi l'élaboration

d'un modèle complet du système neuro-musculaire,

Cette thèse présente les résultats obtenus suite à l'utilisation d'une méthodologie

d'identitication non-paramétrique de systèmes linéaires des joints de la cheville. Et ce,

durant leurs variations faisant suite à un simple tic nerveux du groupe tricep surae, En

accord avec des études précédentes, à la fois er, conditions statiques et à variations

temporelles, les résultats sont caractérisés par un modèle de second ordre. Les études

sous conditions statiques ont démontré que les modèles de second ordre offrent une

bonne caractérisation de la dynamique des joints sous de telles conditions, Par contre, les

études sous conditions de variations temporelles démontre que les modèles de second

ordre ne caractérisent pas de façon adéquate la dynamique des joints soumise à des

variations temporelles, Les résultats présentés dans cette thèse contirment cette

conclusion. L'impossibilité d'utiliser le modèle de second ordre afin de earactériser les

résultats non-paramétriques, démontre qu'un modèle de quatrième ordre est requis pour

caractériser la dynamique des joints sous conditions de variations temporelles. Une

ébauche analytique qui tend à appuyer cette conclusion est offerte dans le présent

document.
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1 Introduction

The hasis of ail human motion is the interaction of two dements: the nellromllscular

systcm. and the environment.

The dynamic properties of many systems in what we cali the ellvirollllle11l are. for

practical pllrposes, weil understood, and the laws of physical science are largely

successful when applied a priori to model the dynamic properties of many of the systems

one may wish to understand. The desire to understand these systems stems l'rom the

practical benelits gained when one leums to manipulate them; and it is much easier to

manipulale a system that is understood than il is to manipulate one that is no!.

When we can't, or won't, manipulate the environment ourselves, humans build things

to do it for them: structures, mechanisms, circuits, devices. Ali these devices succeed

becalise we undersland how they inleract with the environmen!.

Understanding how the neuromuscular system behaves in the real world benetits l'rom

a similar approach - that is, developing an understanding of the nature of environmental

interactions. These interactions are described by a property of the neuromuscular system

referred to as joint dynamics. Complete understanding of the nature of the neuromusclliar

system as manifested by the dynamic characteristics of a joint requires more than a

morphological description of the system. It requires a model, like that used to describe a

del'ice, which predicts outputs given inputs. In the case of ajoint, the inputs and outputs

can be any combination of extemal (Le., environmental) forces applied to the joint,

passive internai forces resulting from the mechanical characteristics of tissue, active

internai forces generated by the contractile muscle tissue in response to neural activation,

and motion about the joint. A model of the dynamics of a joint describes the relationship

between force and motion about the joint and elucidates the function of, and relationship

between, ail the components of the neuromuscular system.

Dcvcloping such a model presents sorne difticulty because, unlike most of the devices

lIsed to construct physical systems, there does not exist a sufticient tirst principles

framcwork from which a comprehensive model of the neuromuscular system can be

constructcd.

Sorne characteristics of the neuromuscular system have been modeled successfully

lIsing empirical measures. For example Hill's force-velocity relationship (Hill, 1938) is
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an ~mpirical modcl that accuratcly d~scrib~s a singl~ prup~rty (lI' musdc - Ihe

r~lationship b~t\V~en force and shortening l'c1ucity.

ivIethods of system identitication have been applied sucl:essfully tu study lhe illlact

neuromuscu!ar system. Models of joint dynamics id~ntiti~d in this \Vay ar~. lik~ Hill's

relationship. essentially empiricalmodels that describ~ the behavior of thc syst~m undcr a

r~stricted circumstance - thlll under which the dala used to identify the syst~m \Vas

collected.

In l'articulaI'. nonparametric methods of system identilïcation l'l'ove uscrul b~cause

they require no (/ priori assumptions concerning the nature of the system other than thuse

demanded by the mathematical framework of the identification technique. This property

of nonparametric models is considered valuable when studying a system as complicated

as the neuromuscular system for which a complete tirst principles framewl1l'k. l'mm

which to develop a parametric model, does not exist (Kearney and Hunter. l 'J'JO).

Nonparametric system identification téchniques are broadly classitied by twu

characteristics: linearity, and time variance. Therefore, four types of models can he

identitied: linear time-invariant, linear time-varying, nonlinear time-invariant. ami

nonlinear time-varying.

Linear time-invariant models successfully model joint dynamics under time-invariant

conditions. Such models hold only when the state of the neuromuscular system is the

same as that under which the model was identified. ln this context, the state uf the

system is the position of the joint, and the mean level of voluntary muscle activution.

Linear time-varying models have been applied to study joint dynamics as the state of the

neuromuscular system varies through time. ln these scenarios the position of the joint, or

the level of voluntary activation, is intentionally varied.

Time-invariant conditions are the simplest to study, and the results are the simplest tu

interpret. Time-invariant results l'l'ovide a basis l'rom which to interpret time-varying

results. Comparing the results of time-invariant and time-varying slUdies leads to a better

understanding of the requirements of any theory that strives to characterize the

neuromuscular system accurately.

Nonparametric models are purely empirical descriptions of the neuromuscular system.

They are founded more on principles of mathematics, than on laws of physics. Because

of this, the results can be difficult to interpret, and if the results arc difficult to interpret

2
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Ihen il beeomes difficult to draw significant conclusions. For this reason it is necessarv- .
10 Iind an appropriate means to chafl/crerize the nonparametric findings. To draw

signilicant conclusions about a physical system it is helpful then to characterize the

results using sorne form of physical mode!.

Time-invariant studies conclude that a second-erder model (commonly used in almost

every brunch of physical science) is adequate to characterize the results of time-invariant

studies (Kearney and Hunter, 1990). Time-varying studies have, naturally, attempted to

characterize their results with the same type of model, but evidence suggests that when

thc state of the system varies a second-order model is no longer adequate to characterize

the results (e.g., MacNeil et al., 1992).

The time-varying studies conducted to date have studied the neuromuscular system

during imposed motion, and time-varying voluntary activation. Both of these paradigms

generute a response that incorporates the properties of passive tissues (Le., muscle and

connective tissue), active muscle tissue, voluntary activation, and involuntary activation

(Le., retlexive neural input).

lt is desirable to narrow the response of the intact neuromuscular system to just that of

the passive tissues, and active muscle tissue (Le., no voluntary or retlexive neural input).

This is possible by activating the muscle artificially. and is the course taken in the

experiments presented in this thesis. The response studied in this thesis is a single

electrically stimulated twitch of the triceps surae muscles. The state of the neuromuscular

system during the twitch is examined by identifying the time-varying dynamics of the

ankle joint during the twitch.

The motivation for perforrning such an experiment is not to answer a single

overwhelming question, or to seule a particular dilemma definitively. The motivation is

to build on a legacy of basic research that has considered basic questions to develop a

body of knowledge of sufficient scope to propose models of the neuromuscular system

which hold beyond the constraints of a particular experimental situation.

3
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The thesis is presented in six sections:

The Background section reviews the important aspects of musclc morphology anJ

mechanics, followed by a discussion of the neuromuscular mechanisms underlying motor

control and the stiffness regulation hypothesis. This leads to a discussion of joint

dynamics and a short discussion of one application that draws l'rom these areas of study.

that of functional neuromuscular stimulation.

The Theory section presents the analytical basis, and applications of, four techniques

available for the study of time-varying systems. These are: quasi-time-invariant

methods, adaptive methods, ensemble methods, and tinally functional expansion

methods. The remainder of this section focuses on discussion of the time-varying

convolution integral, and the ensemble method of solution.

The ExperimemaL Procedures and AnaLysis section explains the experimental

paradigm - identification of the dynamics of the ankle joint during a single electrically

stimulated twitch of the triceps surae muscles - and includes a detailed discussion of the

analysis. The analysis section is presented in two parts: the pre-processing steps rcquired

before application of the ensemble identification method, and post-processing performed

to interpret those results.

The ResuLts section presents and discusses the results of the analysis of four

experimental data sets. This section presents examples of the raw data, and how it was

transformed (Le., pre-processed) before application of the ensemble identitication

method. A complete set of results is presented for each set of experimental data.

The Discussion section considers the tindings presented in the results section and how

they reflect on previous related research. The discussion revolves around the use of

parametric models as a method of characterizing joint dynamics, and in particular, the

apparent failure of second order models under time-varying conditions. The discussion

concludes with evidence pointing to the need for a third or fourth order parametric model

to characterize time-varying joint dynamics.

Finally, the Conclusion section summarizes the results, and makes a concise

statement of future research directions pointed to by the tindings presented in this thesis.

4
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2 Background

Thcrc arc three types of human muscle: smooth, cardiac, and skeletal. Smooth

muscle is a major component of the museular internaI organs, cardiac tissue is the muscle

of the heart. and finally, skeletal muscle is that which is connected to the skeleton by

tendons and causes motion about joints. Although ail muscle types share the same basic

clements, such as the contractile proteins which are responsible for force generation, they

are ail morphologically different. The following material reviews the basic properties of

just one of these, skeletal muscle, and the neuromuscular systems which control it.

2.1 Muscle Morphology

Muscle exists as a hierarchy of physiologieal structures, whole muscle, existing on a

scale of up to several tens of centimeters in length, to the basic contractile proteins which

exists on a scale of just a few Ilm.

WllOle Skeletal Ml/scie

At the highest level of organization, muscle is composed of an outer sheath of

connective tissue, composed of collagen, that is continuous with the muscle's tendons and

connects the muscle to the skeleton. Attachment occurs across joints so that contraction

of skeletal muscle always produces torque about one or more joints. Connective tissue

serves to join and contain bundles of individual muscle fibers, and further, to join and

contain the collection of muscle fibers which make up the muscle.

Ml/scie Fibers

Muscle fibers are individual cells that can span the entire length of the muscle and

have diameters ranging from 10 to 100 Ilm. A muscle may contain from a few hundred

to several thousand fibers (Schauf, 1990). Muscle fibers are the level at which the

nervous system innervates skeletal muscle and are generally classified in three groups:

(i) slow oxidative fibers, (H) fast oxidative fibers, and (Hi) fast glycolytic (Schauf, 1990).

The classifications arc based on the fiber's contractile (fast/slow), and metabolic

(oxidative/glycolytic) properties, and, the distinctive properties of each fiber are pertinent

in explaining the manner in which the central nervous controls muscle activation

depending on task exigencies (see section 2.3).

5
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iHyofibriis and Sarcomeres

Muscle fibers are made up of long paralle! myolibrils which arc 1-2 ~lm in ùimlletcr.

When viewed under a microscope myotibrils present a bandcd struclure of repc:lting sub

units called sarcomeres. Individual sarcomeres ure recognized as the basic force

generating elements of muscle. A relaxed sarcomere is 1.5 to 2.0 Ilm. but as a muscle

eontracts the sarcomeres actively shorten. and as a muscle extends the sarcomcrcs

actively lengthen. This theory of force generation is known as the sliding Iilament

theory. The overall force generating properties of a muscle are the result of interaction of

the active properties of sarcomere. with the passive properties of the muscle's connective

tissue structures (Schauf. 1990; McMahon. 1984, Huxley. 1974).

Myofi/amellts and Colltracrile Proreills

Sarcomeres are composed of inter-digitating thin and thick filaments. collective!y

known as myofilaments. which interact to develop force and effect shortening of the

muscle. The sliding filament theory describes the mechanism by which the thick anù thin

filaments slide across one another to effect shortening of individual sarcomeres. It

postulates that the thick and thin filaments slide across one another by the action of

physical links that generate force during contraction. The force generating links between

thick and thin filaments are termed cross bridges, and come about by moleeular

interactions between the protein molecules of which the thin and thick tilaments arc

made.

Thick filaments are about 1.5 J.lm long, 15 nm in diameter, and are composed of

several hundred myosi.n molecules. Thin filaments are comprised of helical strands of

globular actin molecules with sites approximately every 2.7 nm where myosin molecules

can bind. Under a complex series of biochemical reactions, initiated by an inrush of

calcium ions when a muscle fiber membrane depolarizes, the actin and myosin molecllies

go throllgh a cyclical reaction which first binds the molecllles, next passes them throllgh a

state transformation which causes relative motion between the thin and thick filaments,

and finally breaks the bond so that the process can repeat itself.

2.2 Muscle Mechanlcs

The study of muscle in vitro is the first step in understanding how the neuromuscular

system controls muscles to accomplish tasks. The fundamental reactions which describc

6
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a muscle behavior arc: (i) stretch in response to external loads. and (ii) coll/mction in

response to stimulation by the central nervous system (or in response to sorne artificial

cxtcrnal stimulus). These two responses are described in terms of two basic properties:

passive mcchanical properties. and active mechanical properties.

Passive Meclu/Ilics

The most basic mechanical property of muscle that can be measUied is its resistance

to an imposed stretch. In isolated muscle that is not undergoing any form of stimulation

(and therefore generating no active force) this resistance can only be due to the passive

structures of the muscle. As is the case with engineering materials, resistance to imposed

changes in length is termed stiffness. If an isolated muscle is stretched to a number of

constant lengths, and the force recorded, one finds that the curve relating displacement to

force grows steeper with increasing displacement.· The stiffness of the passive tissues,

therefore, increases with displacement; the passive tissues exhibit nonlinear elastic

properties. This behavior is characterized (in terms of force. F, and displacement, x) by

the differential equation (Winters, 1990):

• which has the solution:

dF
dx

2.1

2.2

•

Where Ki are constants. This empirical equation characterizes the e1astic properties

for many collagenous tissues including skin, tendon, passive cardiac muscle, and passive

skeletal muscle. However, as is the case with many areas of muscle mechanics, no

plausible derivation from first principles has yet been discovered (McMahon, 1984). This

relationship is shown in figure 2.2 and is termed the passive length-tension property.

Active Meclwnics

When the membrane of a muscle fiber is depolarized, that fiber's contractile

machinery activates to effect a single transient mechanical event. If isolated whole

muscle is stimulated electrically, a number of muscle fibers (in proportion to the strength

of the stimulus) will activate in synchrony to produce a twitch, such as that shown in

tigure 2.1.

7







• relationship between force and rale of contraction is more complex than this - it is a

matter of common experience, for example. that muscles shonen morc rapidly against

light loads than they do against heavy loads. Essenlially, a muscle can producc less force

when il is actively shortening than it can whcn it comracts isometricnlly (McMahon.

1984). A. V. Hill (1938) idenlilied an invcrse relationship between force :lIld shortenin~

velocity, and proposed equation 2.3, now known as Hill's equation (McMahon, 19[\4;

Winters, 1990), as an empirical description of this behavior.

(F + a) (v + b) = (Fo + a) b 2.3

Where F = muscle tensile force, Fu = tetanic isometric force, v = muscle shortening

velocity and, a and b are constants. The maximum shortening velocity, achieved under

zero load, is then delined by: v",,, = b 1'\'. Equation 2.3 can then be expressed in
a

dimensionless form as:

a b
where k = - = --. This relationship has been found to describe cardinc, smooth,

Fo vuw,

and skeletal muscle (McMahon, 1984). For most muscle k lies within the range

0.15<k<O.25 (McMahon 1984). The force-velocity relationship for k=O.25 is shown

in ligure 2.3,

v
Vmax

•
I__F

Fo--= --:-,:"",
1+..!._F

k Fo

2.4

•

During muscle lengthening the force-velocity relationship expressed by equation 2.3

does not hold. When muscle shortening speed is zero the muscle generatcs its maximum

force it is capable of for a given activation level. This is referred to as isometric

contraction. When the applied force is greater than the isometric forcc, the musclc will

lengthen (Le. negative shortening velocity) at a constant speed. The speed of \engthcning

under these conditions is much less than that predicted by Hill's forcc-vc\ocity

relationship. In fact, the slope of the force-velocity curve when muscle is \engthening is

approximately six times greater than for muscle shortening (McMahon, 1984).

10
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motoneuron can innervate hundreds. and cycn thous;mùs. of musclc lihcrs. For examplc

in the human medial gastrocnemius muscle the innervation ratio is approximatcly 1700

muscle libers to one motoneuron (McMahon. 1984). Muscles performing dclic:lle tasks.

such as those controlling the tingers. have motor units consisting of as l'el" as 2 or 3

muscle libers (Schauf. 1990). While a single motoneuron innervates many muscle libers.

the opposite is not true. a muscle liber is innervated by only onc motoneuron.

Motoneurons lie in the gray matter of the spinal cord and :ICt as major point of itllegralion

for ail motor signals directed at the motor unit. Each spinal motoneuron may reccive as

many as 15000 synaptic inputs (Schauf, 1990). Most of these inputs come l'rom spin:11

inter-neurons, but a small fraction come directly l'rom higher motor centers. The

motoneurons are referred to as (X motoneurons, and a group of motoneurons controlling a

single muscle group are generally referred as an (X-motoneuron pool.

Activatioll

Depolarization of a motoneuron causes an action potential to travel ùown the

motoneuron axon finally reaching a muscle liber, depolarizing the muscle liber's

membrane, causing the fiber to respond with a single twitch. Whole muscle is ll1:lde up

of an enorrnous number of muscle fibers controlled by a proportionally large number of

motoneurons, If individual motor fibers respond with a twitch, why then is motion sa

fluid? The reason is that, under normal conditions, the motor units are desynchronized so

that individual muscle fiber twitches sum to give smooth force development and l1uiù

motion.

The summation of muscle fiber twitches, which ultimately modulates the force

developed by a whole muscle, takes two forms: temporal summation, and recruitment.

Temporal summation refers to the frequency of action potentials in the axons serving

each active motor unit (Schauf, 1990), Force modulation of individual muscle libers by

temporal summation is conceptuully the same aS.thut in whole muscle lested in isolalion

and stimulated artificially - as shown in figure 2.1 - in which the forcc developed in

the unfused tetanus state is a function of the rate of stimulation. Recruitment rcrers ta

size and number of motor units activated (Schauf, 1990) and formalizes the notion lhal

not all of the motor units must be active over the full range of muscle force. Key 10 the

recruitment axiom is the size principle. The largest motor units in a muscle arc lhose

which have the largest number of muscle fibers, and in turn the largest moloneurons.

Similarly, the smallest motor units have the smallest number of muscle libers and lhe

smallest motoneurons. The level of stimulus required to depolarize a motoneuron is
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proportional to the size of the neuron. therefore. as the mOlOneuron pool stimulus

amplitude increases. small motor units are activated before large motor units. At low

stimulus levels small motor units are recruited resulting in lïne force resolution. as

stimulus levels increase larger and larger motor units are recruited with a concomitant

decrease in force resolution (McMahon. 1990). Together these mechanisms reconcile the

environmental requirement of tine control over force and movement at low force levels

with the requirement for powerful fast actions (requiring high force levels).

Muscle Proprioceptor.l'

One set of signiticant inputs to the motoneuron pool are those from muscle

proprioceptors. The two most signiticant muscle proprioceptors are the muscle spindles,

und Golgi tendon organs. These organs sense, respectively, muscle length, and muscle

force (Schauf 1990, McMahon 1984).

Muscle spindles are small receptors, sensitive to stretch, which are scattered

throughoutthe body of a muscle. They consist of a capsule surrounding moditied muscle

tibers, called intrafusal tibers, to which several sensory afferent nerve endings are

attached. Further, there are two types of intrafusal fibers: nuclear bag fibers, which have

primarily group la afferent nerve endings, and nuclear chain fibers, which have group la

and II afferent endings. The spindles operates in parallel ~ith the muscle 50 that changes

in muscle length cause corresponding changes in muscle spindle length. The spindles

respond to these changes in length. A phasic length change (e.g. a quick stretch)

provokes a response primarily from bag fibers, while a tonic change provokes a response

primarily from chain fibers (Schauf, 1990). Thus, muscle spindles avail the CNS of both

static and dynamic muscle length information.

Group la afferents from intrafusal fibers ascend to higher centers, and synapse with

spinal inter-neurons and directly with (X-motoneurons (Schauf, 1990). Intrafusal fibers

are themselves innervated by y-motoneurons, and will contract in response to

y-motoneuron activity. The y input controis the sensitivity of muscle spindles over the

entire range of muscle length. This is essential if contraction of the muscle is not to be

accompanied by slackening of the spindles. A common notion is that when

(X-motoneurons are active (and the muscle is shortening), y-motoneurons are coactive

(Schauf, 1990; McMahon 1984). This compensatory input shortens the intrafusal fibers

ensuring the muscle spindles remain loaded - the state they must be in to function

properly as length sensors.
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Golgi tendon organs exist in the tendons connecting muscle to the skcleton and

function as force sensors. Golgi tendon organ afferents do not synapse directly \Vith

a-motoneurons. instead they synapse with spinal inter-neurons which then project to the

motoneurons of the originating muscle. its synergists. and its antagonists. Activity in

Golgi tendon organ afferents acts to inhibit the motoneurons of the originating muscle

and its synergists. and excite the antagonist muscle motoneurons (Schauf. 1990). Early

thought restricted the role of tendon organs to a retlex that inhibited muscle activily "nly

when muscle force rose ta unsafe levels. More recent evidence established that tenùon

organs respond to less than 0.1 g of force applied directly to the base of the org.m capsule

(McMahon. 1984).

Reflex and Regl/latory MecilllllislIls

The efficacy of muscle spindles. and of the la synapses with a-motoneurons. is a

matter of common experience for ail those who have had their pateliaI' tendon tapped by a

physician. When the physician strikes the tendon the quadriceps muscle group is

stretched a tiny amount. This tiny stretch is sufficient to cause the muscle spindles to

lire, delivering a large input ta the a-motoneuron pool, ultimately bringing it to threshold

and causing the quadriceps muscle group to contract in response ta the stretch.

Tendon organs are thought ta be responsible for a less common but equally

conspicuous reflex, which is most clearly seen in a decerebrate preparation. known as the

clasp-knife-reflex. A decerebrate animal will exhibit an increase in muscle tone known

as decerebrate rigidity. In this state, flexing the limb of the animal requires a great deal

of force, but at a critically high level the limb will suddenly collapse. The rellex - in

l'espanse ta high force levels - is ostensibly the result of lb afferent discharges by the

Golgi tendon organs (MeMahon 1984). This rellex is evidence of the role of Golgi

tendon organs in protecting the system l'rom unsafe force levels, but does not characterize

their role in behavior at low force levels. At low force levels the tendon organs arc

thought ta have a raie in stiffness regulation (Nichols and Houk, 1975).

The Refle.t Stiffness Hypothesis

Nichais and Houk (1975), present a schematic illustrating the origins of mechanical

responses and reflex actions of the neuromuscular system. This is presented in ligure 2.4,

with adaptations by McMahon (1984) to include input l'rom higher centers and

y-motoneurons. This schematic illustrates the mechanisms l'rom which retlexes, such as
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Figure 2.5. Block structured representation of information flow in the peripheral neuromuscular
system (Kearney, 1990).

A Systems Approach

To understand how the disparate structures of the neuromuscular systcm comc

together to manifest joint dynamics, one must have a means of uniling thc individual

elements of the system. A logical approach is to build a block slructured model of the

system based on knowledge of how the underlying systems interact. Such a model is

presented in figure 2.5, which models the underlying structures of Ihe peripherul

neuromuscular control system.

Some of the structures represented in figure 2.5 can be modeled accurately l'rom el

priori models, for example the limb dynamics can be modeled accurately, and Wilh

contidence, by application of Newton's laws. Other structures such as rel1ex dynamics or

the two blocks labeled Melsele Mechanics cannot be accurately modeled el priori l'rom a

manageable set of first principles. These mechanisms can, however, be studied by

applying the principles of system identification to characterize, (i) the overall input

output properties of the system, and (ii) the properties of individual clements in the

system.
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Position and torque are the only important signais that can be directly measured and

manipulated in figure 2.5. (Neural input can be measured indirectly by measuring EMG.)

Given measurements of joint position and torque, the relationship between the two - the

joint dynamics - becomes a classic problem in system identification: obtain a model of

the system through analysis of the relationship between input (position or torque), and

output (torque or position) (Kearney and Hunter, 1990).

Stifflle.\'s Properties alld Lillear Systemldemifieatioll

Linear system identification methods have been used extensively to develop

descriptions of joint dynamics of the aüklc, wrist, elbow, jaw, and neck (Kearney and

Hunter, 1990). The ankle joint, in particular, has been examined extensively using linear

system identification by Gottlieb and Agarwal (1978), Kearney and Hunter (1982, 1990),

Hunter and Kearney (1982), and Weiss et al. (1986a, !986b, 1987). Gottlieb and

Agarwal identified the compliance properties of the ankle joint, while the remainder

identified, and considered in detail, the stiffness properties of the sarne joint. In general

these experiments involve application of a small stochastic position perturbation about

the ank!e while the neuromuscu!ar system is in ,li state defined by the experimental

paradigm. Measurement of thè torque generated in response to the position perturbation

permits identification of the input-output properties by computing the frequency domain

transfer function, or altematively the time domain impulse response function, relating the

two signais. Such a system mode! is termed a "stiffness" mode! because a position input

is transformed to a torque output, altematively a "compliance" mode! transforms a torque

input to a position output.

Note, that figure 2.5 is structured as a compliance model, but an equivalent stiffness

model couId he had by simple rearrangement of the blocks and connections. Aiso note,

that the stiffness referred to here is a full dynamic description of the relationship between

position and torque, not the clastic, or static, stiffness as is commonly used to model a

linear spring (Le. force =elastic stiffness x displacement). Elastic stiffness is the zero

order linear component of a system's dynamics (first and second-order terms would be,

for example in a springlmass/darnper system, darnping and inertia respectively). The

distinction made here - between elastie sti./fness, as the zero order term in the dynarnics,

and stiffiless, as the full dynamic stiffness of the system - is maintained throughout this

thesis.
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• Identiticalion of a linear sliffness model rcquires delerminalion of lhe lransli:r

funclion:

Tq(s) =
6(s)

H(s) 2.5

where Tq(s) is lorque, 6(s) is angular position. and H(s) is the stilTness transfer function.

Alternalively, the lime domain impulse response function:

Tq(t) = Jh('t)6(t - 't)d't 2.6

•

can be solved given input-output records 6(t), and Tq(t). The solution of equation 2.5 is

discussed in detaii by Bendat and Piersol (1986), the solution of equalion 2.6 is discussed

in detail by Hunter and Kearney ( 1983a).

Major Resu/ts

Kearney and Hunter (1990) have demonstrated that linear models provide an excellent

description of joint dynarnics provided that the state of the system (i.e. activation level,

and mean position) remains constant over the period during which the dynamics are

estimated. When the system is in a different state a linear model can still be identilïed

but the identified model will not necessarily be the same. For example, dramatic changes

in joint dynamics are apparent with variations in mean torque (i.e. activation level). This

is illustrated in figure 2.6a which shows ankle stiffness transfer functions identilied over a

range of mean torques (activation levels). In this figure, increasing low frequency gain

and inereasing resonant frequeney are clearly visible as mean torque increases.

The stiffness transfer functions presented in figure 2.6a can be numerically inverted to

obtain compliance transfer functions. In this form individual gain curves bear

resemblance to the classic second-order transfer function:

•

8(s)

Tq(s)

G 0)2
= --=----=-=-'!!...--., 1" 's- + 2.,O),s + 0);
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impulse response function (IRF. time domain representation of equation 2.7) to the

nonparametric compliance IRF representing the dynamics of the ankle joint. Generally

the parametric second-order compliance IRF represents the nonparametric compliance

IRF very \Vell (e.g., accounts for as much as 97% of the variance of the nonparametric

IRF; Kearney and Hunter. 1990). Thus. equation 2.7 provides a parsimonious. easily

interpreted. description of ankle joint dynamics under steady state conditions.

Weiss et al. (1986a, 1986b, 1988) investigated ankle stiffness over the full range of

ankle position, and activation levels and presented the results in terms of the variation of

second-order parameters with joint position and mean torque (Le. activation level).

Figure 2.6b is a representative result showing the variations of elastic stiffness \Vith mean

torque. The elastic stiffness varies considerably over the full range of activation, varying

(in figure 2.6b) linearly l'rom 40 Nm/rad at rest (0 Nm mean torque) to over 750 Nm/rad

at maximum contraction (75 Nm mean torque). In contrast, the damping parameter, ç,
does not change significantly over the same range of activation, having a value of

approximately 0.4 throughout. The natural frequency, con' is related to elastic stiffncss by

the relation con = .[ifïï, where K = elastic stiffness, and 1= inertia. The inertia of the

joint does change with activation level or position, therefore, con varies ,n proportion to

the square root of elastic stiffness.

While it is intuitive that joint stiffness increases with contraction level, the linear

relationship could not have been assumed a priori. A further significant property of the

neuromuscular system which is not necessarily intuitive is that joint stiffness can, in fact,

be controlled over a range of activation levels, such that the joint can present signilicant

stiffness while at the same time presenting negligible torque. This behavior has potential

functionai significance which was recognized by Hogan (1984, 1985) who hypothesizcd

that simple position or force control is not adequate to control dynamic interaction with

the environment, and that one practicai strategy is for the CNS to modulate the dynamic

response (i.e. properties) of a joint, and by Lan et al. (1991a, 1991b), Crago et al. (1990,

1991) and Ning et al. (1991), who consider the application of stiffness rcgulation in

functionai neuromuscular stimulation as an effective strategy to control force and position

in situations when transitions l'rom position to force control, or vice versa, are required.

Open Questions

There are many situations in joint dynamics research when equation 2.6 is, however,

not appropriate. The properties just discussed were the result of identification of joint
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dynamics bascd on thc application of small position perturbations to excite the system

whiJe it was in a steady state. Identification of equation 2.6 under these conditions is

csscntially lincarization, at distinct operating points, of a system which is in general

nonlinear and time-varying.

That the system is nonlinear is apparent if one identifies the linear dynamics using a

serics of position perturbations of varying amplitude. A linear system would yield the

same estimates independent of perturbation size because the principle of superposition

holds. Conversely, application of perturbations of varying amplitude to a nonlinear

system will not yield identical linear estimates of the system dynamics. Such behavior

has been observed in joint dynamics studies (Kearney and Hunter, 1982) and is a clear

sign the underlying system in nonlinear. To identify such nonlinear properties a new

class of system identification techniques must be brought to bear on the problem. Such

techniques are not considered here. There are, however, quite active research efforts in

the area (e.g. Hunter and Korenberg, 1986; Kearney and Hunter, 1988; Westwick and

Kearney, 1990).

Equation 2.6 is also inappropriate for the identification of systems which vary through

time. For example, if elastic stiffness varied quickly through time, equation 2.6 could not

model the system even if it was completely linear. This is significant because even the

simplest of natural motions involve continuai changes in the state of the neuromuscular

system, and hence time variations in joint dynarnics. Appreciation of these variations is

important in understanding fundamental properties of motor control, and in practical

applications such as functional neuromuscular stimulation (FNS), which is discussed in

the next section. Sorne results of the application of time-varying linear system

identification techniques to problems in neuromuscular dynarnics are discussed in section

3.1.2.

2.5 Functlonal Neuromuscular Stimulation

The significance of stiffness regulation by the neuromuscular system is apparent

when one considers conclusions drawn in the study of FNS. The goal of FNS research is

to restore motor function to individuals with neuromuscular injuries by direct activation

of the paralyzed muscle. A FNS system is faced with the task of mimicking the

neuromuscular system's behavior in a manner that produces natural motion, force

regulation, and compliant interaction with the environment (Crago, 1983).
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• Lan (1990) added lhe feed forward clement to the controUer and referred lo the

comroUer as a pertllriJllIio/l comroUer. The feed forward element sets lhe controUers

quiescent point, white the two feedback Joops control against perturbations around that

point.

Control systems theory provides a weallh of powerful techniques to oplimize the

design of a conlroUer such as this, bUl ail these tools require an adequate system model to

predicl lhe behavior of the overall system. The system elements of the controller which

must be modeled are the muscle and Iimb dynamics. The Iimb dynamics are modeled

using Newton's laws and, white perhaps not trivial, present no fundamental problems.

For example. if the system is described in joint coordinates, Le. Pn= S", then the Iimb

dynamics can be written as:

2.8

•

•

where, [(S,,) is the inertialmatrix, c(Sn' lin) represents the coupling between Coriolis and

centrifugai forces, g(Sn) is the gravitational vector, and p(Fd ) represents the perturbation

forces due to interaction with the extema[ load. This dynamic model is the same as that

used in the study of robotics (Craig, 1989). Given the nominal trajectory. Sn' the joint

torques Tn can be computed. Equation 2.8 represents the inverse Iimb dynamics

component of the feed forward controller. The forward version of this equation cou[d

also he used in the forward Iimb dynamics b[ock as part of the design process.

Muscle activation dynamics pose a more fundamental problem. The primary

impediment to the deve[opment of muscle activation dynamics models is that muscle is a

highly nonlinear. time-varying system. Add to this the lack of fundamenta[

understanding that prevents deve[opment of an a priori model l'rom first princip[es

(Keamey [990), and the prob[em becomes even more difficu[t. Empirical system models

based on the force-ve[ocity, and length tension re[ationships can be deve[oped to cope

with the prob[em. For examp[e. Lan ([990) used a discrete time parametric model of

muscle dynamics which is the product of three factors: a Iinear autoregressive mode[ of

activation dynamics. a \inear approximation of [ength-tension properties. and a piecewise

\inear function force-ve[ocity mode[ (presented in greater detai[ by Bemotas, [986, [987).

This was deemed successfu[ by Bemotas, but such a mode[ considers on[y the dynamic

properties of the muscle activation.
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A potential enhancement to such mode1ing techniques comes in the rccognition Ihat

force-velocity, and length-tension arc not. by their nature, dynamic. and do not capture ail

the complexities of muscle in vivo - a system \Vith signilicant dynamic components, and

properties more complex than those modeled by the force-velocity and length-tension

models (as discussed in section 2.4). Further, the parametrie mode! presenled by

Bernotas can only capture time-varying system properties by implementalion of an

adaptive parametric identification scheme (discussed section 3.1.1).

The use of the force-velocity. and length tension models. along \Vith adaptive

parameter estimation \Vas a practical approach - perhaps the only logieal approach 

given the constraints of application. but fundamental questions remain concerning the

dynamic properties of muscle, in vivo. subject ta electrical stimulation. This is a

motivation for the work presented in this thesis - the application of tllue-varying system

identification tools ta gain a better understanding of the dYl1amic mechanical propel'ties of

electrically stimulated muscle.
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• 3 Tileory

3.1 Time-Varying System Identification

Section 2.4 alluded to the classic system identification problem, identification of the

transfer function H(s):

H(s) =
Y(s)

X(s)
3.2

•

•

Which transforms system input, x(t), to system output, y(t). In the time domain this is

expressed as the convolution integral:

y(t) = fh(t)x(t - t)dt 3.3

Where h(t) is the system's impulse response.

Given appropriate input-output records x(t) and y(t), equations 3.2 and 3.3 can be

solved without making any a priori assumptions about the structure of the system. In

solving equations 3.2 and 3.3 it is possible to solve for the function H(s) or h(t) rather

than identifying parameters of a system model developed a priori. This is important in

neuromuscular control research because there are few guiding suppositions on which a

tractable parametric system model can be developed from first principles.

Equation 3.2 can be solved directly using correlation techniques if x(t) has the

following autocorrelation (Bendat and Piersol, 1986):

-fx(t)x(t - t) =ct>(l( t) 3.4

Where (l(t) is the delta function «l(t) =1 if t =0, and (l(t) =0 if t ;li: 0). In other

words, the input must be uncorrelated white noise. If this condition cannot be met

strictly, then a least square solution of equation 3.3 is possible (Hunter and Keamey,

1983a). The least square solution makes no formai demands on the input signal other

than that the input must be rich enough to excite the system at the frequencies over which

the system dynamics are to be identified. These solutions, and equation 3.3 itself, are,

however, not appropriate for the study of time-varying systems. To study time-varying
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• systems new techniques must be employed. Four techniques arc considcred in the

following section, these are: quasi-time-invariant mcthods, adaptive methods, enscmblc

methods, and finally functional expansion methods.

3.1.1 Survey of Theoretical Techniques

Quasi-Time-Invariant Metlzods

In one special case equation 3.3 can be applied to a system which varies in time, that

is when the state of the system varies very slowly with respect the lcngth of the system
impulse response function, h('t). In this case equation 3.3 can be expressed as (Hunter

and Kearney. 1987):

y(t) = Jh('t,c:x)x(t-'t)d't 3.S

•

•

Where c:x is the mean state (e.g. in a joint dynamics experiment c:x would be the mean

activation level or joint position).

If c:x is permitted to vary continuously throughout an experiment (Le. c:x = c:x(t)) then a

series of piece-wise time-invariant analyses may be undertaken by solving equation 3.3

over a series of time intervals of length sufficient to permit solution of the equation. This
is only valid if the variations in c:x are not signilicant over the chosen time interval. In

general, the length of the time interval required to solve equation 3.3 is at least :!T

(greater when noise rejection properties are considered), where T is the length of the

system's impulse response function (Hunter and Kearney, 1987).

The compliance impulse response function for the human ankle joint is approximately

T=200 ms in length, therefore, the time interval required to solve equation 3.3 is at least

2T=400 ms. If the quasi-time-invariant method is applied to human ankle joint

dynamics, the system state must not change signilicantly over a time interval of 400 ms.

Muscle activation levels can vary over a wide range in less than 400 ms (Hunter and

Kearney, 1987), and a single muscle twitch is completely linished in 400 ms (see figure

S.l), therefore, this technique is of no value in the identilication of the variation of system

dynamics during a event as fast as a single twitch.
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• Adaptive Methods

Adaptive methods are classified here into two related categories: recursive least

square estimation, and Kalman filtering.

Recursive Least Square

The recursive least square method does just what its title states, it implements a least

squares parameter estimator recursively with the added proviso that past input-output data

is exponentially weighted so that parameter estimates are a function of only the most

recent duta und, therefore, are free to vary with time.

The recursive least square method (Ljung, 1987) operates on the linear system:

y(t) = cpT (t)9(t)

y(t) = cpT(t)â+E(t,â)

3.6

3.7

•
where CP(t) is the input vector (or matrix), y(t) is the output vector, 9(t) is the pararneter

vector, â(t) is the estimated pararneter vector, und E(t,â) is the error in the output

estimute given the parameter estimate â(t).

The recursive algorithm weights previous samples by a weighting function given by:

~(t,k) = À.,.k 0 S; k S; t-I 3.8

where ~(t,k) is the weighting function applied to calculate the pararneter estimate at time

t, weighting previous data at times k. So that, for example, the most recent datum (k = t)

is weighted by ~(t,t) = l, the second most recent datum (k = t-1) is weighted by ~(t,t-1) =
À., the third most recent datum (k =t-2) is weighted by ~(t,t-2) =À.2, etc. À. is termed the

forgelling factor.

The parameter estimate, â, which minimizes LE2 (t,â) is then given by (Ljung,

1987, equation 11.9):

â(t +1) = â(t) +R' I (t)CP(t)[y(t) -cpTâ(t)]

R(t) = À.R(t -1) +CpT(t)â(t -1) 3.9

•
If the forgelling factor is À. = l, then ail previous data is weighted equally and the

method becomes a regular (east square method. If À. < 1 equation 3.8 decays
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• ~xponentially to zero and only the most recent data is rellected in the parameter estimate.
8(t). Hence the method is capable of tracking variations in the model parameters.

The RLS method imposes constraints on the dynamics of the parameter variutions

which are related to the weighting function ~(t,k). Essentiully, the stute of the system

cannot change signifieantly over the time period of previous samples which ure heavily

weighted by ~(t,k). Stability of equation 3.9 requires À. to be close to one; typical choices

of À. are in the range 0.98 to 0.995. If À. is near one then the weighting function can he

estimated with (Ljung, 1987):

3.\0

This means that measurements aider than 1/(1- 1..) samples are included in the

parameter estimate with a weight that is e·1 = 36% of that of the most reccnt

measurement. So that:

can be termed the memory time constant of the weighting function. If the stUle of the

system remains approximately constant over To samples, a reasoned choice of À. can he

made l'rom equation 3.11, or l'rom the alternative point of view, if À. is selected hefore

hand then the maximum allowable rate of parameter variation can be cstimated. For

example, if À. is 0.99 then To =1/( 1-0.99) =100 samples. If the sample rute is 200 Hz

then the last 500 ms of measurements would be weighted significantly and, therefore, the

system must remain relatively constant over this time interval.

•
1

(1-1..)
3.11

A more formal discussion of tracking ability is provided by Gerencsér (1991), who

has shown that the maximum tracking error of a slowly time-varying system is

proportional to S",, and that the optimum value of À. is proportional to S"'. Where S is

the rate of change of the parameter variations (see equation 3.12). Formally, the slowly

time-varying condition is satisfied if:

3.12

•
Gerencsér's results show that adaptive identification schemes will, unless there is no

parameter variation (Le. S= 0), always have tracking error, and that the error increases as

the rate of parameter variations increase.
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• Ka/mml Filler

A related technique, Kalman filtering estimates the optimal state vector of astate

space system which is subject to input (process) and output (sensor) noise. By itself, this

is not sufficient to perform system identification since only the state vector of the system

is estimated, not the system that generated the state vector. However it is possible to

formulate astate space system for which the state vector is comprised of the coefficients

of a system model, and implement a Kalman filter which will estimate those model

parameters.

Kalman (1960), developed a method for optimally (in a least squares sense)

estimating and predicting the state of a discrete state space system given previous output

measurements, and knowledge of the process and sensor noise covariance properties.

The Kalman filter, as it is referred to today, is much lauded in modern control theory

(Sorenson, 1970), and has application in system identification as weil. The Kalman filter

operates on the system:

where k = l, 2, ..., the output is y(k); w(k) and v(k) are zero mean random processes, with

properties: E[w(k)] =0, E[v(k)] =0, and E[w(k)wT(j)] =Q(k)~j' E[v(k)vT(j)] =R(k)15kj

(E denotes expected value).

•
x(k+ 1) = F(k)x(k)+G(k)w(k)

y(k) = H(k)x(k)+ v(k) 3.13

The Kalman filter can provide the optimal state estimate, x(k), or the optimal one

step prediction, x(k + 1). In what foUows here, only the estimator is considered. The

optimal estimate of x(k) is (adapted From Sorenson, 1985):

The Kalman tilter can he adapted to estimate model pararneters by fonning a system:

•

x(k) = x(k-I)+ K(k)[y(k)- H(k)x(k-l)]

where K(k) is given by the recursive set:

K(k) = P(k_I)HT(k)[H(k)P(k-l)HT(k)+ R(k)r

P(k) = [I - K(k)H(k)]P(k -1)

6(t + 1) = 6(t)

y(t) =cf (t)6(t) + v(t)
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• which is simply equation 3.7 exprcssed in Slate space l'orIn. and equation 3.13 with

x(t) =9(t). F(t) =1. H(t) =ljlT(t). and w(t) =O. The Kalman tiller can then he cl'mpulcd

l'rom equ,:uions 3.14 and 3.15. and the estimated slute will he the optimul parumeter

estimate 9(t).

ln this l'orm. the Kalman tilter cannot explicitly uccount for tillle-vurialions of êll). in

facto Ljung (1987) shows that in this form the Kalmun tiller is equinlent to the RLS

method with the l'orgetling factor set to À= l, which is ordimlry least square purallleter

estimation. Il is possible, however, to account for parallleter vuriutions if u modelaI'

those variations is known Cl priori (Le. F ;/: 1). In which cuse, with pununeter noise ulso

included, equation 3.16 becomes:

9(t + 1) = F(t)9(t) + w(t)

y(t) = ljlT (t)9(t)+ vtt) 3.17

•
This approach is used by Kitawaga and Gersch (1985), Moser and Gmupe (1989). and

Tsypkin and Bondarenko (1992), in an extended manner in which the pumllleter

variations are modeled in a general way as a linear sum of the n past estinmtes. Theil'

methods dil'fer in some respects but have in essence the following approach.

The pal'ameter estimate 9( t + 1) is given by a linear combination of n pust pamllleter

estimates:

9(t + 1) =A,9(t)+ A19(t -1)+... +A n9(t- n -1) 3.18

where AI' ... An are constant nonsingular matrices which must be dcveloped Cl priori.

This expression may be recast as the matrix equation:

9(t + 1) AI A2 An 9(t)
9(t) 1 0 0 9(t-l)

9(t -1) = 0 1 0 9(t;-2) 3.19

9(t- n) 0 1 0 9(t - n -1)

where 1 is a unit matrix of the same dimension as 9. If a new parameter vector ~(t), und

transition matrix A, are defined, then equation 3.19 becomes:

•
~(t + 1) = A~(t)

The observation equation, 3.6, then becomes:
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•

•

3.21

ln the presence of noise in the parameter law, equation 3.20, and observation law,

e4uation 3.21, an optimal time-varying parameter estimate would be determined by a

Kalman tilter, and the time variations in 8(t) could be followed.

ln general, adaptive methods are capable of identifying time-varying systcms but

impose strict conditions on the system. In the RLS case the rate of change of the time

variations is Iimited, and, in the case of the Kalman filter, it must be possible to modelthe

parameter variations a priori. Both of these conditions are undesirable when one studies

the neuromuscular system because large rapid changes in the state of the system can be

expected, and because the underlying physiology is of sufficient complexity that a priori

system models inevitable contain many parameters and function relations which cannot

be measured directly (Kearney and Hunter, 1990).

Ensemble Metlrods

The Iimits imposed on the solution of equation 3.6 by adaptive methods can be

overcome by collecting an ensemble of experimental input-output records to generate a

set of realizations of equation 3.6 which can be solved simultaneously. The ensemble

data consists of a large number of repetitions of the sarne response with a stochastic

perturbation superimposed on top of each response to excite the system. The stochastic

perturbation makes each response independent of the others, therefore, if an ensemble of

m such input-output records is collected, equation 3.6 becomes a set of m independent

equations:

Yk(t)=cjl~(t)8(t)

k=I,2, ... m

3.22

•

At each point in time, t, equation 3.22 then becomes a matrix equation which can (as

long as m is greater than the number of parameters) be solved for 8(t), in a least square

sense, using matrix inversions techniques (Strang, 1980), or a1ternatively looked upon as

an ARMA model and solved accordingly (Ljung, 1987). The ARMA approach was used

by Bennet et al. ( 1990).

A parametric model is, however, not necessary for application of the ensemble

technique. In fact, the more general nonparametric impulse response function, equation

3,3, is directly extensible to model time-varying linear behavior by simply making the
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• sYSlem's impulse response function. h(t). vary wilh time (Lawrence Cl al.. 1<)77:

Soechling et al.. 1981; Keamey et al.. 1991):

As is the case with equation 3.3, equation 3.23 can be solved directly using

correlation techniques, if the input meets appropriate criteria, or in a more general way

with a least square approach. The added requirement in the solution of equalion 3.23.

over the time-invariant case, is the necessity to use an ensemble of input·outpul

realizations rather the single input-output realizalion sufficient 10 solve equation 3.3.

Equation 3.23 can be solved if formulated as follows: begin by assuming h is zero

outside the interval 't = -T,T so that,

•

..
y(t) = fh(t. t)X(1 - t)dt

The time-varying transfer function wouId be (Bendat and Piersol. 1986):

Y(s) f "H(t,s) =X(s) = h(t, 't)e'j··"d't

·T

y(t) = Jh(t, 't)x(t -'t)d't
T

converting to finite discrete form,

"y(i) = ~tI.h(i,j)x(i - j)
j...n

where n= ~t.

3.23

3.24

3.25

3.26

Equation 3.26, by itself, is underdetermined, but is solvable if a minimum of 2n+ 1

independent input-output realization are obtained such that:

"y(i, k) = ~tI. h(i,j)x(i - j, k)
j.·n

3.27

•

where k represents each realization of equation 3.26. Under these conditions equation

3.27 is solvable, and the time-varying convolution kernel, h(i,j), can be determined.

The important point of this section is not the solution of equation 3.27, but the

recognition that this method of time-varying system identification imposes no
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• fundamental dynamic constraints on the identification - as do the quasi-time-invariant.

and adaptive methods - and that a direct solution of equation 3.27 is. in facto possible.

For this reason, and because no constraints other than Iinearity are placed on the

identification, the ensemble method has ideal properties for studying systems, such as the

neuromuscular system, which are subject to rapid large variations in their dynamics

properties, and for these reasons, was used in this study. A complete discussion of the

ensemble method, and the solutions of equation 3.27, may be found in section 3.3.

FlIIlctiollal Expa/lsio/l Methods

One further means of solving equation 3.23 is the functional expansion method of

Marmarellis (1981, 1987). This method addresses the modeling of a class of time

varying systems, of which equation 3.23 is a member, through an extension of the

Volterra-Wiener approach (Marmarelis, 1978) and the use of a modified cross-correlation

technique that yields time-varying kemel estimates from single input-output data records.

In application to equation 3.23, the functionai expansion method offers not a direct

solution, but identifies a representation given by the finite expansion:

• k

h(t, t) = ~:.c.(t)~.(t)
n=O

3.28

where ~(t) is a set of orthogonal functions defined over the observation interval [O,R], and

satisfies:

1 R

- J~m(t)~.(t)dt = li(m,n)
Ro

3.29

3.30

A Fourier set, for example, will satisfy this condition. The object of the identification

task is cn(t), and is given by (Marmarelis, 1987):

1 R
ê. (t) = - J~. (t)y(t)x(t - t)dt

Ro

Given this the kemel estimate is:

•
_ k _

h(t, t) =~:.c. (t)~. (t)
••0
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•

•

Unlike the ensemble method Ihis estimate can be made using singlc input-uutput

records. but suffers from the need to select. Il priori. a basis function. Ptt). which can

describe the unknown time-varying impulse response function.

The ensemble method requires no model structure be selected Il priori, und is

preferable if the increased experimental demand of collecting un ensemblc of input-output

responses. rather than a single response. is tolerable.

3.1.2 Applications

Quasi-Time-Invariallt Met/lOds

An example of a situation for which quasi-time-invariant methods have been used is

the identification of joint dynamics during muscle fatigue (Hunter and Kcurney. 1983b).

This study required subjects to maintain a constant 50% maximum voluntary contraction

of the tibialis anterior muscle over an 80 second period while a random perturbatiun was

applied about the ankle. Compliance impulse response functions were computed every

2.55 seconds so that changes in the mechanical properties of the joint (and therefore the

fatiguing muscle) would be evident as changes in the impulse response function as the

muscle fatigued. Fatigue onset at 50% maximum voluntary contraction occurred at a ratc

which was slow with respect to the 2.55 second window over which the compliance

impulse response functions were estimated and the window was more than 10 times

longer than the length of the same compliance impulse response functions (which were

less than 200 ms). These are exactly the conditions (as discussed in section 3.1.1) under

which a quasi-time-invariant analysis is appropriate. Based on this analysis Hunter and

Keamey concluded that despite large increases in tibialis anterior EMG as the muscle

fatigued, there were no corresponding significant changes in the ankle joint dynamics.

Adaptive Methods

Bemotas et al. (1986) and Chia et al. (1991) have used recursive least square methods

to model the relationship between electrical stimulation intensity and force output of

electrically stimulated muscle. These models consist of a parametric static nonlinearity

followed by a second-order linear dynamic system. together expressed in a form

appropriate for application of an exponentially weighted recursive least square a1gorithm.

Such models are intended for real-time adaptive functional neuromuscular stimulation

control systems such as described by Bernotas et al. (1987). Adaptive controllers, such as
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• that just described, represent the most common application of adaptive identification

techniques but such techniques have also been applied directly to the study of time

varying joint dynamics.

Xu et al. (1991 b, 1992) identified time-varying dynamics of the human elbow during

simple unconstrained motions using exponentially weighted recursive least square

melhods. This work employed an actuation system capable of applying force

perturbations without constraining the forearm (Xli, 1991 a) and identified the dynamics

of a second-order model:

3.32

•

•

where 1is inertia, B is damping, K is elastic stiffness, 9p is perturbedjoint angle, and 'tp is

the perturbation torque. Xu et al. (1991 a) manipulated this equation such that l(t), B(t),

and K(t) could be identified using a recursive least square algorithm which does not
require measurement of the higher order position derivatives Èip(t), and 8p(t). The

method, however, did not perform weil when parameters varied faster than 0.5 Hz, The
technique was modified to include explicit measurement of Èip(t), and estimation of 8p(t)

which permitted estimation of parameter variations up to 5 Hz, but experimental results

revealed unpredictable variations in the inertial parameter which should have remained

constant through time (Xu, 1992), thus calling the technique (or the validity of a second

order mode1) into question.

El/semble Methods

The ensemble method has been applied by Bennet (1990,1993) to identify a

parametric time-varying model of essentially the same system as described by Xu (1991a,

1992). In this work subjects were instructed to move their arm repeatedly between two

targets while a force perturbation was applied to the forearm, Time-varying inertia,

damping and elastic stiffness parameters of the elbow joint where identified by solving, at

each point in time, a discrete version of equation 3.32 expressed in ensemble form

(equation 3.22). The inertia parameter was found to be invariant with time (as would he

expected), the elastic stiffness was found to increase at points of highest acceleration (at

the targets). The damping, however, presented no repeatable trend across subjects.

Similar studies were conducted out by Lacquaniti et al, (1981, 1993). The authors do not

discuss how much of the measured data is accounted for by the identified model.
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•

Nonparametric ensemble methods have been <lpplied to joint dyn<lmks hy Soechting

et al. (1981). MacNeil et al. (1992). and Kirsch <lnd Ke<lrney (1991).

Soechting et al. (1981) examined the properties of the forearm (clbow joint). <lnd the

biceps and triceps muscles under various conditions using a correlation b<lsed solution of

equmion 3.27. Torque perturb<ltions were used to excite the system while subjects c<lrried

out tasks invo1ving transitions l'rom resist (i.e.. resist the perturbation) to not resist.

tracking a ramp position change. and "ballistic" movement t<lsks. ln <lddition to

identifying the elbow time·varying joint dynamics under these conditions. the mil hors

also considered the time·varying activation dynamics of the biceps and triceps muscles by

computing the time-varying impulse response function between torque <lnd EMG.

MacNeil et al. (1992) and Kirsch and Kearney (1991. 1993) examined the time·

varying properties of the ankle joint by applying position perturbations while subjects

carried out a step change in voluntary activation (MacNeil. 1992). and the response duc to

an imposed movement (a stretch of triceps surae muscles). Both studies identilïed the

time·varying stiffness impulse response function (TVIRF) of the ankle joint under these

conditions. These papers, unlike Soechting et al. (1981). also present the variance of the

output accounted for by the identified TVIRF's. MacNeil et al. (1989) found the stiffness

TVIRF accounted for approximately 90% of the output variance hefore. during. and <lfler.

the step change in activation. Kirsch and Kearney (1991) found the stiffness TVIRF

accounted for was 75-80% before the stretch, but dropped to 50-60% afler the stretch.

3.2 Interpretlng the Tlme-Varylng Convolution Integral

Among the possible time-varying system identification approaches offered in section

3.1 the one considered most appropriate for the identilïcation of the large rapid variations

expected during a twitch, was the ensemble method which provides a solution of the

time-varying convolution integral:

-
y(t) = Jh(t,'t)x(t-'t)d't 3.33

•
Equation 3.33 is the most direct -but as shali he demonstrated. not the only

time-varying extension of the standard time-invariant convolution integral:
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• weighting function must be a mirror image of the impulse response. ln either case, hoth

operations are neatly deseribed by equation 3.34 as long 'IS h does not vary with lime.

This distinction between impulse response funetion and weighting funelion represent

nothing new in the theory of time-invariant systems. and is normally not even noted in

texts. but is an important consideration if equUlion 3.34 is modilïed III indlille

time-varying dynamics.

If a system's response to an impulse varies with time, then the component of Ihe

output at time t due to excitation by an impulse applied at time t,=t-T will he
h;mp(t,. T)X(t,) = h;onp(t-T, T)X(t -T), and the total output at time twill be the sum of

excitation over ail times T, which is expressed by the convolution integral:

~

y(t)= Jhimp(t-t.t)X(t-tldt .1.35

•
If the weighting function varies with output time, t. then the component of the output

at time t due to excitation applied at time t,=t-t will be h(t, t)x(t,) = h(t, t)x(t- tl and the

output at time twill be the weighted sum of input over alltimes t. This leads ta equation

3.33.

The convolution kemel of equation 3.33 is referred to as the time-varying weighting

function (TVWF) and is symbolized as "h", or for the purposes of the following

discussion, as "hw". The convolution kemel of equation 3.35 is rcferred 10 us Ihe

time-varying impulse response funetion (TVIRF) and is symbolized here us "hilllp",

The time-varying impllise response /tlllction verSllS tire time-varying lVeiglrting jill/ction.

Although hw and hionp are not equivalent, there is u relutionship between the Iwo.

Equations 3.33 and 3.35 perform the sume operation (convolution) on the same inpuI,

x(t), to generate the same output, y(t), therefore, the convolution kemel parts of the two

integrands must be equivalent:

3.36

•
Applying the variable transformation, t1 = t - T:

3.37
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•
So that given the TVWF, hw' the system's TVIRF, hilllP ' at any time tl lies along the

TFWF diagonal: hw(t l + 't, 't).

To understand the relationship between hw and hilllP consider what happens if the

slate of the system is frozen (Le. stops varying with time) at time tl' In that case the

impulse response at ail times after t l is the same as the impulse response at time tl' If ail

time after time t l is denoted by tl+< then (with prime indicating the state if the system is

frozen):

3.38

Which implies (under the same conditions):

3.39

•

•

or,

3.40

Equation 3.40 formalizes what would be expected if the state of the system \Vas

frozen - that the TVIRF and the TVWF would be equivalent since the system would no

longer be varying through time. Equation 3.40 also provides a formai means of
interpreting the TVWF. That is, at each point in time t, the weighting function, hw(t), is

equivalent to the impulse response of a time-invariant system with the instantaneous

properties of the time-varying system at time t.

Note, this short section has made explicit distinction between weighting function, and

impulse response function; this was done to ensure clarity in the argument. Generally,

however, the term time-varying impulse response fillletion is used generically, without

regard for the distinction drawn here. This is the case in the rest of this thesis. The

context of the presentation should be examined if the reader wishes to distinguish

between time-varying weighting function and time-varying impulse response function as

dcscribed here (Le. results derived from equation 3.34 are weighting functions, results

derivcd from equation 3.35 are impulse response functions, the results presented later in

this thcsis are derived from equation 3.34)
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• 3.3 Solution of the Time-Varying Convolution Integral

Section 3.1 (el/semble met!lotls) discussed the conditions lInùer which the

time-varying convolution integral could be solved directly. The solution is buseù on

collecting an enscmble of input-output trials (k = 1. 2. '" m) sufficient in number to solve

the set of simll!tuneous equations represented by equation 3.27. repellled here:

n

y(i. k) = ~t ~>(i.j)x(i - j. k)
j",.n

3.41

Given an ensemble of input-output data the time-vurying convolution integral can be

solved using variations on the correlation and matrix inversion techniques used to solve

the lime-invariant convolution Integral.

3.3.1 Correlation Based Solution

The correlation based solulion proceeds as follows. beginning with equation 3.41 (for

clarity, the explicit sum bounds are excluded):

• y(i,k) =~t~>(i.j)x(i - j. k)
j

for an ensemble of realizations, k =1. 2..... m.

3.42

If h was not time-vurying (with respect to discrete time il, familiar correlation

techniques eould be used to solve this equation. In the time-varying case, a variation of

this technique can be used to solve for h. To begin let the input be:

•

x(i. k) = X(i +k)

therefore. each realization the input, xCi,k), is X shifted forward k samples.

Now multiply 3.42 by xCi-k,k)

y(i, k)x(i - k, k) =~t~>(i,j)x(i - j, k)x(i - k, k)
j

and sum over k, then subslitute equation 3.43 and simplify:

Ly(i, k)x(i - k, k) =~t~>(i,j) L x(i - j, k)x(i - k, k)
k j k
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•
LY(i, k)X(i - k + k) = IltLh(i,j)LX(i - j+k)X(i - k + k)

l. J l

L y(i, k)X(i) = IltL h(i,j):I X(i - j + k)X(i)
k J k

1f X is a zero Inean randoln signal then the following is true:

3..+6

3.47

L X(i - j + k)X(i) = <l>ô(k - j) 3.48
k

where ô(k-j) is the delta function and equals one when k=j, zero otherwise. Substituting

equation 3.48 into equation 3.47 gives:

:I y(i, k)X(i) = Ilt:I h(i,j) <l>ô(k - j) 3.49
k j

Because ô(k-j) has a non-zero value only when j=k:

•
:Iy(i, k)X(i) = ~t <l>h (i, k)

k

Thus the tinal result is:

h(i,k)= __1 LY(i,k)X(i)
~t <1> k

SlIitabilily ofthe corre/atioll approach,

3.50

3.51

•

As evidenced by the results of Soechting et al. (1981), and Lawrence and Dawson

(1977), the correlation based solution offers a viable solution of the TVWF but does

impose restrictions on the input signal. These are: i) the input must be uncorrelated

white noise, and H) equation 3.43 must hold from one input to the next. Requirement (i)

does not seem unduly harsh given that all the identification methods discussed so far

depend on sorne sort of random signal; it is, however, very difficult in practice to

generate a signal which is perfectly white (Kearney and Hunter, 1990), Requirement (H)

can present a considerable problem because it requires the physical response under study

to be synchronized in sorne way with the input signal. This imposes experimental timing

requirements which may, in practice, be difficult to meet. Fortunately, the pseudo

inverse solution makes no formal restrictions on the "whiteness" of the test signal, and

makes no demands of the nature of requirement (H).

41



•
3.3.2 Pseudo-inverse Solution

The pseudo inverse solution proceeds by forming a matrix equation l'rom eqUalilln

3.41. given input-output realizations k = 1,2, .... m. Equation 3.41 is reeast in nultrix

form:

y(i,l) = ,lt [h(i,-n) x(i+n,l) + ... + h(i,n) x(i-n,l)]

3.52

y(i,m) = dt[h(i.-n)x(i+n,m) + ... + h(i,n)x(i-n,m)]

3.53

Where Yi is am by 1 vector. Xi is an m by 2n+l, and Hi is a 2n+ 1 by 1 vector. The

problem now becomes the solution of equation 3.53. This is a standard problem in matrix

a1gebra, the solution of which proceeds as follows. First convert to the simpler notation:

If m = 2n+1 (Le., the number of realizations, m, equals the number of points in the

impulse response function, 2n+1) then the solution is the ordinary mJtrix inverse,

x = A'lb. This condition, however, will only yield the correct solution if the system is

noise free. When m = 2n+l, b is necessarily in the column space of A and the solution, x,

has no freedom to reject noise because it lies also in the column space of A. If

m > 2n+ l, Ax must still be in the column space of A, but b is free to lie outside that

space, and a solution can be developed to minimize the error JAx - bl. Ali responses

which can be modeled by A (Le. the system model) lie in column space. When b lies

outside of this space it is because: i) b contains random noise whieh naturally cannot he

modeled, H) b contains components due to unmodeled behavior, or iii) b contains

components to inputs which have not been considered.

•
where A =dtX p b =Yi' and x =Hi'

Ax=b 3.54

•

From a geometric perspective, the error function E = jAx - bl is the distance between

b and the solution vector Ax. This function is minimum when Ax is the orthogonal

projection of b into the column space of A, which means Ax - b is perpendicular to the

column space of A. Given a vector Ay (where y is a 2n+1 by 1 vector) which represents

any vector in the column space of A, then Ax - b will be perpendicular to Ay when the
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• ùot proùuct between the IWO is zero. This is expressed in equation 3.55. which simplifies

10 equation 3.57.

3.55

3.56

3.57

A nontrivial solution of equation 3.57 requires y ;é 0, therefore, the vector, x, which

minimizes E = IAx - bl is the solution of:

•

or,

x = (ATAr' ATb

The expression (NA)"' N is termed the pseudo-inverse of A, and notated:

such that:

Sil/gll/Clr l'CI/Ile decompositiol/ Clpp/ied to the pselldo-il/verse.

3.58

3.59

3.60

3.61

This solution is a usefui theoretical result, but suffers numerically due to the extreme

rank instability of NA. (That is to say, the existence of (ATA)" , is not guaranteed.) The

singular value decomposition remedies this (Strang, 1980). Singular value

decomposition decomposes A into:

3.62

•

Where Q, is a m x m orthogonal matrix, and Q, is a n x n orthogonal matrix, and I: is

a m x n matrix which has special structure and properties, discussed further on, which

remedy the rank instubility problem. Substitute equution 3.62, into equation 3.60 to

obtuin:
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• Which reduces. due to the orthogonal properties of Q, and Q,.to:

A+ =Q,r:Q~ 3.bS

L+, the pseudo·inverse of L, is a n x m diagonal mmrix of inverse singular valucs

(Golub, 1983):

where r is the rank A.

~+ - d·· (.1 ., 0 0) CI""'"~ - mg fli ,... ,J.1. r • poo, E J'\ 3.66

•

In practice, this form of the pseudo·inverse is preferable to equation 3.60 because the

rank deficiencies which arise due to dependent columns of ATA become evidelll as very

small singular values Ili' These singular values can be set 10 zero before inverting the

singular value matrix so that the pseudo-inverse remains stable (Strang, 1980).

The least square solution to equation 3.41 at discrete time i is Iinally:

H. =_1 X~y.
1 Ât 1 1

SlIitabiiity ofthe pselldo-inverse approach.

3.67

•

The pseudo-inverse solution has the essential favorable property that il ll1akes none of

the strict requirements on the input signal, or experimental protocol, that the correlation

based solution does. The trade off for these relaxed experill1ental requirements arc the

substantial computational requirements. When implell1enting an experirnental protocol

the relaxed experimental requirements of the pseudo·inverse solution far outweigh any

computational disadvantage. For this reason, the pseudo-inverse approach has been

selected for the analysis presented in the following sections.
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•

•

4 Experimental Procedures and Analysis

4.1 Paradigm

The experiments involved fixing the subject's left foot to a mechanical actuator which

applied a small position perturbation while, at the same time, an electrically stimulated

twitch was elicited from the triceps-surae muscle group. The electric stimulus was

applied using a surface electrode heId underneath the knee. The stimulus was applied at

random intervals so that subjects could not anticipate il. Ankle position, torque generated

about the ankle, and soleus EMG where measured and recorded during each twitch

response. Typically, several hundred responses were recorded for each subjecl.

To account for the dynamics of the actuator used to apply the position perturbation. a

calibration test was performed by releasing the subjects foot from the actuator, and

recording the torque generated by the actuator in response to the position perturbation

alone. The resulting torque and position signais were then used to identify the dynamics

of the actuator and fixation device so that their contribution to the recorded torque

responses could be removed before the analysis.

4.2 Apparatus

Meclu/Ilical Actllator, Torque and Position Measuremellt

The actuator used to apply the position perturbation was a rotary hydraulic motor

(Rotae 26R-2-IV, Ex-Cell-O Corp, Berne IN) controlled by a servo valve (Moog 73-233,

Moog inc, East Aurora, NY). The aetuator was controlled by a simple proportional

controller constructed from general purpose instrumentation arnplifiers. Position was

measured with a precision potentiometer (Beckman 6273-R5K, Beckman industrial,

Fullerton, CA) with a maximum nonlinearity of ±O.2%. Torque was measured using a

torque transducer (Lebow 2110-5K, Eaton Corp., Troy NY) with a stiffness of 105

Nm/rad and a maximum nonlinearity of±O.I%. Details ofthis actuator are described by

Kearney (1983).

The position perturbation signal was a 200 Hz pseudo random binary sequence

(PRBS) low pass filtered at 80 Hz with an 8 pole constant delay filter. The perturbation
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signal \Vas approximately 3000 samples (i.e. 15 seconds) long and replayeù cyclically

throughout the experimenl.

The position and torque signais \Vere conditioned and ampli lied \Vith general purpose

instrumentation ampliliers. 10\V-pass (anti-alias) tiltered at 250 Hz \Vith 8-pole constant

delay tilters. then sampled at 2000 Hz \Vith 16 bit analog to digital converters \Vith a

range of ±10 V. The analog ta digital converter ran continuously and \Vas triggered. by

the same source which triggered the stimulator. One second of pre trigger data and 1.5

seconds of post-trigger data \Vere collected for each response. Time zero (i.e. the time

domain origin) of the torque and position signais \Vas defined to be the time of

application of the electrical stimulation.

Electrical Stimulation and EMG MeaslIremelll

Electrical stimulation was applied beneath the knee using a custom made bail

electrode which was attached to a custom made gimbal which allowed the electrode to be

positioned freely under the knee. The gimbal included a locking mechanism 50 that once

it was positioned it remained that way for the duration of the experiment. The gimbal

was attached to a hall' cast which was strapped to the subject's upper leg. A 4.5x4 cm

carbon rubber ground electrode was placed on the subject's upper leg just above the

patella.

The electric stimulus was a constant voltage 500 Ils monophasic square pulse. The

stimulation output current was limited to a maximum of 50 mA. Responses were

monitored by a custom made EMG amplifier which included a special input stage

designed to block the electrical stimulation transient. EMG was monitored throughout

each ell.l'eriment to. ensure the stimulus response remained unchanged. A stimulus of

sufticient amplitude to elicit a large M wave and a small H wave was chosen 50 that thc

response was due mainly to direct activation of the triceps surae muscles with littlc rel1ex

activation. The stimulus amplitude required ta achieve this varied l'rom subject to subject

but was typically in the range of 40-60 volts.

Stimuli were applied at random intervals based on a Poisson distribution with a

minimum inter-pulœ interval of 10 seconds, a maximum inter-pulse interval of 20

seconds, and an average inter-pulse interval of 13.33 seconds.

The electrical stimulator was custom made. but followed the design of a

commercially available stimulator (Digitimer DS2).
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Figure 4.1. Block diagram of the arlifact suppression circuit used to record EMG during electrical
stimulation. The stimulator trigger (a) is delayed by 500 ilS and passed on to the stïmutator trigger
input (b), at the same time a 2 ms pulse (d) is generated to activate the EMG amplifier
suppression circuit. The stimulation pulse (c) goes directly to the electrode.

•
Response to the stimulation was monitored by recording EMG of the soleus muscle.

EMG was measured by placing two AgIAgCI electrodes (Electrotrace, Jason, Huntington

Beach, CA) on the belly of the soleus muscle, parallel to the muscle fibers, in a bipolar

configuration. A reference electrode (of the same type) was placed directly over the tibia.

The EMG amplifier was custom made and consisted of an instrumentation amplifier

(Analog Deviees AD625), a passive single pole 1 Hz high pass filter, a stimulus artifact

suppression circuit, and an isolation amplifier. The artifact suppression circuit was

dcsigned to isolate, and hold the state of, the 1 Hz high pass filter for a short interval

which overlapped the stimulus pulse. Without this, the artifact caused by excitation of

the 1 Hz filter would have overwhelmed the EMG signal (less than 50 ms to the end of

the H wave). The suppression circuit was set to come on 500 Ils before application of the

stimulation pulse (which itself was 500 Ils long), and to remain on for 2 ms. The M wave

appears approximately 5 ms after the stimulus is applied, therefore, the suppression

circuit did not interfere with the EMG measurement. Figure 4.1 shows schematieally

how the artifact suppresser synchronized activation of the EMG artifact suppression

circuit and the onset of the actual stimulation pulse.

•
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The EMG signal was anti·alias liItered at 250 Hz with an 8·polc constant del,IY low·

pass tïlter and sampled at 2000 Hz with a 16 bit analog to digital converler with a range

of±IO V.

Experilllelltai Colltro/ and Data Collection

The position perturbation, and stimulus trigger were both generated by an IEEE488

programmable DIA converter. The trigger signal was passed to the electrical stimulator

and to an IEEE488 programmable AID converter which was conligured to commence

data collection on that signal. The AlD converter was conligured to save one second of

pre-trigger samples, and to continue sampling data for another 1.5 seconds. When

sampling was complete, the AlD converter interrupted a general purpose laboratory

computer which acted as the IEEE488 bus controller. This computer downloaded the

position, torque, and EMG data l'rom the AlD converter, and saved them for lllter

processing. The laboratory computer played no raIe in controlling the experiment other

than initial programming of the instruments, and downloading data l'rom the AID

converter.

4.3 Analysis

The raw data collected for each experiment consisted of an ensemble of position and

torque input-output records and calibration data consisting of a single input·output

record. Before applying equation 3.67 to identify the time-varying dynamics of the joint,

there are several preprocessing steps which were applied to the data. These are described

in the next section. Al'ter the time·varying joint dynamics were computed, several

post-processing steps were applied to generate results which are usefui for interpretation.

4.3.1 Pre-processing

Resalllpling

The raw data was collected at 2000 Hz, but it proved not necessary, or wise, to

perform the analysis at such a high sampling rate. The number of operations required to

compute the pseudo-inverse (using singular value decomposition) increa.~es exponentially

with the sampling rate of the data. therefore. it was desirable to use the lowest possible

sampling rate for the calculations. Proper selection of sampling rate at which to perform
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the analysis requires consideration of the power spectrum of the input signal used to

excite the system:

The position perturbation was a 200 Hz pseudo-random binary perturbation (PRBS)

which was low pass filtered at 80 Hz, and used to drive a position servo which had a

bandwidth of approximately 125 Hz. Therefore, there was no useful information in the

raw data at frequencies much greater than 80 Hz, and even less beyond 125 Hz. There is

little to be gained, therefore, by performing the computation at sampling rates which

ref1ect dynamics at frequencies significantly higher than this. In fact, going weil beyond

the power bandwidth of the input only introduces noise which can have a detrimental

effect on the identification.

The data is resampled, or decimated by extracting every Il'th point from the raw data,

where Il is the decimatioll ratio. To avoid frequency aliasing the data must be

numerically filtered to remove power above the Nyquist frequency of the decimated data.

In this case the raw data was filtered at 0.8 times the Nyquist frequency using an 8'th

order Chebyshev type 1 digital filter with 0.05 decibels of ripple in the pass band, and

the data was filtered in both directions to give a result with zero phase shift. A

decimation ratio of 8 was selected to give a new sampling rate of 250 Hz. This decimated

signal therefore will have a bandwidth 0.8 times the Nyquist rate, or 0.8*(250/2) = 100

Hz, which is appropriate given the input signal bandwidth (80 Hz). This decimation

scheme was applied to ail raw torque and position data.

The EMG signals were not resampled because they were not used as input to any

analysis procedures, just as qualitative feedback about the state of the muscle during the

twitch.

Remova[ ofActllator DYllamics

The measured torque is a combination of torque produced about the ankle joint by

muscles acting at that joint, and torque produced by the actuator in response to Ihe

position perturbation:

4.1

•
Nole, because the actuator, ankle fixation device, and position sensor are

mechanically linked by an extremely stiff link, the measured position, the position of Ihe

ankle, and position of the actuator are equal:
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The last step in each experiment was applicution of the same position perturbutilln

used throughout the experiment but without the subject's foot attached to the actllator.
These signais (called Tqc.! and Posc.! for calibrClIiO/l torque and position) were IIsed tll

identify the dynamics of the actuator. The dynamics of the .lctuator arc described well by
the standard linear time invariant model:

-
Tq", = Jh", (t, t)POS"t (t - t)dt -1.3

•

•

h.c' can be determined using well known techniques (Hunter and Kearney, 1987), and

the actuator's contribution to the measured torque can be removed to arrive at an estinmte
of the ankle torque:

The actual calculations were, of course, done u~ing discrete mathematics.

Equation 4.4 was applied to each measured position-torque pair in the ensemble. Ali

further analysis was done with Tqonkle' and Pos.okl.'

Trial Selection

The ensemble method requires an ensemble of identical responses to sorne stimuli. In

reality the ensemble will consist of a set of similar. but not identical responses. To

improve the identification a subset of the experimental responses were selected to give a

more uniform ensemble as input to the identification scheme.

There are two possible types of variations from one trial to the nexl. There can he

variation in the onset of the response -an alignment error- which would be a very

important consideration if the response wa~ voluntary (Kearney el. al., 1991), and there

can be variations in the magnitude and time course of the response.

ln this case the response was an electrically stimulated twitch to which the subject

responded involuntarily. The time domain of each torque and position record in the

ensemble was fixed with respect to the time the electrically stimulus was applied; the

instrumentation was configured such that the maximum error in establishing the time of
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application of the stimulus could be no more than one sample (i.e. 1/(2000 Hz) = 500 Ils)

and on average would be half a sample, or just 250 ils. This is insignitïcant compared to

the duration of the mechanicaltwitch response (which lasts approximately 500 ms) and is

only a small fraction (approximately 1%) of the duration of the EMG response (which

was complete in approximately 50 ms). Therefore, no further consideration need be paid

to alignOlent of the position and torque records.

Small variations in the size and time course of the twitch from trial to trial do occur

and the analysis benelits by selecting a subset of the most similar responses. The

selection process was based on the torque response from 0.0 to 0.6 seconds (rather than

the fulliength of the recorded torque signal which extends from -1.0 to I.S seconds) since

the actual twitch response occurred over this interval.

The selection was done using the following algorithm:

set = ensemble 01 torque responses Irom 0.0 to 0.6 seconds
n= number of responses to select
m =number 01 responses in set
while (m > n)

ensemble average = ensemble average 01 set
lor each response in set

squared error = (ensemble average - response)2
end
reiect response with maximum squared error
decrement m

end

This algorithm computes the ensemble average of the entire set, then rejects the

response which deviates most from the average. This process is applied repeatedly until a

predetermined number of responses remain.

Removal oflhe ellsemble meC/il.

The ensemble method determines time-varying dynamics by relating input-output

Jata across the ensemble as weil as through time. This requires that the data be stationary

across the ensemble, and through time (i.e. through the time course of the twitch, in this

case). Because the ensemble consists of a set of like responses it is already stationary at

each point in time across the ensemble. Indeed, this is a basic requirement of the

ensemble method.
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The responses are. ilOwever. not stationary through the time eourse of Ihe {\\'iteh. The

torque response ehanges drastically through time as the tric.:ps surae muscles respond 10

the electrical stimulus. Successful application of equation 3.67 requires that this non

stationary response due to the electrical stimulation he removed. This is done by

subtracting the ensemble average l'rom each response in the ensemble. This is done to

both the position ensemble and the torque ensemble. This proeedure is essellliai to

successfully identify the dYilamics of the system. Removing the ensemble mean

effectively reduces the system l'rom a two input single output (input: position perturbation

and electrical stimulus; output: sum of torque due to perturbation and stimulus). to a

single input single output system (input: position perturbation; outpUl: perturhed torque

response).

4.3.2 Post-processing

After the preprocessing steps were applied to the raw data. a time-varying stiffness

impulse response function (TVSIRF) was computed using equation 3.67. The Iirst step in

analyzing this result was to compute a measure of how weil the TVSIRF modeled the

input-output data.

Variallce ACCollllted For

The impulse response function computed with equation 3.67 is a least square solution

of YI = ~t XI HI (equation 3.53). The solution to equation 3.53 is the componenl of Yi

(Le. - the output, in this case torque) which lies in the column domain of Xi (Le. - the

input, in this case position). The vector ~t Xi HI is the component of Yi which lies in the

column domain of Xi' if Hi is computed using equation 3.67. If Yi lies outside the column

domain of Xi there wiII no vector Hi which perfectly models the system. This is a

constraint of the linear model chosen to represent the system's dynarnics. As slated

before. there are several things which will cause Yi to lie outside the column domain of

Xi ' these include: noise, nonlinear effects, and unmodeled inputs. The magnitude of the

error vector containing these effects is IYi - ~t Xi Hi 1. The accuracy of the model can

thus be assessed at each point in time by comparing the magnitude of the error vector

with the magnitude of Yi itself. This is done by computing variance accounted for, al

discrete time i, using the equation:

4.5
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This compares the square of the vector magnitudes rather than just the magnitudes.

and is consistent with the delinition of VAF used to assess time invariant system models.

with the exception that the estimated and actual outputs are compared across the

ensemble rather than through time.

If the system is noise free and perfectly modeled by a time-varying Iinear mode! the

VAF will be one. If no clement of the system can be modeled by a time-varying Iinear

system the VAF will be zero (i.e. Yi is perpendicular to the column space of X).

SII/oothillg

The TVSIRF solution usually contains a large magnitude noise component at the

Nyquist frequency which must be removed by a tiltering operation. This noise results

because the solution allempts to model high frequency noise present in the input-output

ensembles. Since there is not sufficient power at the high end of the spectrum for system

identilication, the solution tends to be dominated by incoherent, large magnitude, high

frequency noise. These components of the solution must be explicitly removed by

individu~l\y lïltering each impulse response function in the ensemble.

The tilter used to remove this noise was a two sided, three point smoothing tilter.

This operation does not completely rid the impulse response functions of the undesirable

noise component, but does decrease its magnitude to the point where it does not dominate

the impulse response. The operation does not introduce any phase shift into the stiffness

IRF's (because the smoothing lïlter is two sided).

The smoothing operation was necessary but introduced one problem, which had to be

overcome. A stiffness impulse response function for a system which has no delay should,

theoretically, have just three non-zero points. These are at discrete lag time zero, and at

discrete lag times -l, and 1. Non-zero values outside these three represent a delay in the

system, tiltering of the impulse response, or are simple noise. The problem caused by the

averaging tilter is the introduction of lïltering transients which amplify noise at both ends

of the stiffness impulse response. These are highly undesirable and must be removed.

One plausible means of removing the transients is to simple truncate the stiffness impulse

responses. The problem with simple truncation is that the end values of the impulse

response aCter truncation may still have random non-zero values. A better approach,

which forces the transients to zero, without disturbing the important information around

lag zero. is to multiply the impulse response by a windowing function which is zero atthe
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cnds and one in the middle. A logical choice, gi\'cn that the impulsc rcsponsc function is

2n+ 1 points long, is the Hamming function:

i = -11,-11 + 1, .... 11 -l,Il

Frequellcy Respollse - Average Law Frequency Stifflless

The TVSIRF quantitatively describes the dynamics of the system at cach point in

discrete time through the time course of the twitch. However, stiffness impulse response

functions, while providing a sound mathematical description of a system's dynmnics, do

not yield well to direct interpretation. Part of this difficulty arises l'rom the non-causal

nature of the stiffness impulse response. Qualitative changes in the systcm's dynamies

can be observed in the changing shape of the impulse response functions, but quantitative

assessment requires further analysis of the TVSIRF itself. In short, the information in the

impulse response functions must be expressed in a form more amiable to interpretation.

The simplest transformation which provides for easier interpretation is to compute the

frequency domain transfer function as expressed in equation 3.24. Given the systems

time-varying transfer function a Bode plot (Le. magnitude and phase) is easily made. The

trunsfer function magnitude is particularly eusy to interpret because at low frequeney il is

representative of the elastie stiffness of the joint (keeping in mind the distinction, made in

section 2.4. between dynamic and elastic stiffness). Therefore, an estimate of the

time-variation in the elastic stiffness of the joint throughout the time course of the twitch

can be had by averaging the transfer function magnitude at low frequency. This measure

of elastic stiffness is termed lolVJrequency average stiffness and is expressed formally by:

n n

k, . =J..J Tq,(jro) dro=J..JIH(jro)ldro
OW.I il Pos, (jro) il 1

o 0

4.7

•

Where Hj(jro) is the Fourier transform of the stiffness impulse response at discrete

time i, and il is the frequency below which the transfer function magnitude is averuged.

To examine the relevance of low frequency average stiffness consider a second-order

system which Kearney and Hunter (1990) have demonstrated to dcscribes the dynamics
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If h d· . 1 . . 00 d \11 il ..1 e ImenSlOn ess quanlllles 'V = - ,an T = - arc delmed, then:
(On (J)n

'. ,k, If[" ']"~w = 'P (1- 'V. l" +(2Ç 'Vl" l d'V
o

This relationship is shown in figure 4.2 for various values of ç.

4.11
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Figure 4.2 clearly shows the expected result: as il~ 0, k,,,w ~ k, and, as il

increases k10w and k diverge. This figure proves useful in making a rcasoncd choice for
il if estimates of the darnping ratio, ç. and the natural frequency, 00" arc available. This

is considered further in the results section.

Fittillg a Secolld·Order Model- Comp/iallce [RF

The second-order pararneters, k, wn• and ç, are usefui to consider not only because a

second-order model has been shown to marIer time-invariant joint dynamics weil, but also

because such modeIs are common in many fields of engineering and applied science and

hence the parameters are widely understood and appreciated. To determinc a set of

time-varying second-order pararneters a second-order impulse response function can be

fit to each impulse response in the ensemble of time-varying impulse rcsponse functions.

The second-order pararneters were estimated by fitting an analytic second-order

impulse response function to each experimentally determined impulse response function

in the time-varying ensemble. However. a time domain expression for the second-order

stiffness impulse response function does not exist because the inverse Laplace transform

of a function with more zeros than poles (i.e. - the second-order stiffncss transfer

function. equation 4.8) does not exist. The inverse Laplace transform of the compliance

impulse response function does exist, however. and can he used to cstimate the

parameters of a second-order mode!. The expression for the second-order compliance

impulse response function is:
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To estimate the parameters of this expression the experimentally determined stiffness

impulse response functions must be individually inverted to get one sided compliance

impulse response functions. This was done numerically by simply filtering a white noise

input with each stiffness impulse response function to get an output signal, then

identifying a time-invariant one sided filter between the output and input signais (Le.

output becomes input, and input becomes output). This result is referred to as a

TVCIRF - time-varying compliance impulse response function.

The parameters of equation 4.12 were determined using the Levenberg-Marquardt

non-lïnear least square parameter estimation technique (Press, 1986). This technique

requires knowledge of the first partial derivatives, with respect to the parameters being

estimated, of the equation under consideration. Analytic expressions for these

derivatives, derived from equation 4.12, are presented in appendix one.
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Figure 5.1. Plot of a torque generated about ankle by a single twitch of the triceps surae muscle
group.

5 Results

The first group of figures in the this section. figures 5.1 to 5.7, are a collection of

views of the raw data used to identify the time TVSIRF's. The TVSIRF's and plots

relating directly to these follow in figures 5.8 to 5.14. The final set of results, tigures

5.15 to 5.19. are the TVCIRF's and the resultant second parameter estimates.

The data presented here were collected from three male subjects in their mid-twenties

with no known neuromuscular disorders. Data sets one, and two are from the same

subject. bU! collected on two separate occasions. Data sets, three and four are from the

other two subjects.

Single TlVitch

Figure 5.1 presents a single twitch - the torque generated about the ankle joint by

the triceps surae in response to stimulation of the anterior tibial nerve. The torque

response peaks in approximately 125 ms and is over in 500 ms. Time zero is the time of
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application of the stimulus. The small delay bet\\'ccn time zero. anù the onset of the

twiteh represents the time required for the action potential to trave! ùown the anterior

tibial nerve and depolarize the triceps surae muscles. Time zero has at most 500 ~s. ami

on average 250 ~s. of error (see section 4.3.1).

Perlllrbed Respollse

Figure 5.2 shows torque, position (perturbation), and EMG during a twitch. (Note.

the EMG is on a different time scale.) The EMG recording clearly shows the motor

activity occurring during the twitch. The first wave is a large M wave, begins at

approximately 5 ms after application of the stimulus and is approximatcly 20 ms long; a

sma11 H-wave fo11ows, it begins at approximately 35 ms and is approximatcly 10 IllS long.

The large M wave, in conjunction with a sma11 H wave, indicates that the responsc was

almost purely direct stimulation of the muscle (via the antericr tibial ncrve) with liule

reflex response. The EMG was monitored throughout each experiment to ensure the

effect of the electrical stimulation remained constant (Le., maintained as presenteù in

figure 5.2), but was not considered otherwise.
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rcsponscs with which lO continue the analysis. Fewer responses were collectcd In

expcriment one; therefore, no selection process was applied.

Table 5.1 also lists the rcsting position, and torque for each data set. The values

rcpresent the quiescent state of the system during the experiment. Note, the resting

torque is a function of resting position only and represents the state of the passive

structures of the joint and muscles. There is no active component in the resting torque;

subjects were asked to maintain a relaxed state at ail times during the experiments. This

resting position and torque were removed from each torque and position record before

any analysis was performed.

data set numberof numberof resting torque position perturbation

number responses. responses selected. (N.m) standard. dev. (rad)

1 190 190 -6.3 1.75x10·3

2 299 200 -7.0 2.75xlO-3

3 249 200 -7.7 3.00xlO-3

4 268 200 -10.5 4.25xlO·3

Table 5.1. Number of realizations of data for each experiment, the number of realization selected
to perlorm the analysis (note. no selection process was applied to data set number one), the
torque, and the standard deviation of the position perturbation.

The ensemble of torque and position records, for one data set, is shown in figure 5.6.

This ligure shows the ensemble mean plus and minus one standard deviation. The

ensemble mean and standard deviation were computed across the data set at each point in

time through the time course of the twitch. Solution of the time-varying convolution

integral using the pseudo-inverse approach (section 3.3) requires the ensemble of

input-output data he stationary through the course of the time-varying event. Figure 5.6

shows that this is clearly not the case during the twitch. The mean torque obviously

changes substantially during the twitch; indeed, it is the variation in the state of the

system during this non-stationarity which is of interest. The mean position also changes

(to a much lesser extent) due to the finite stiffness of the position servo used to apply the

position perturbation. Before proceeding. the ensemble mean must he removed from the

torque and position data. The result of removing the ensemble mean from these signais is

presented in figure 5.7.
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Time- Varyillg Srijflless ImplIlse ResprJ/lse FlIllcrio/lS

The pseudo-inverse identitication procedure described in section 3.3.2 W'IS applied 10

compute a time-varying stiffness [RF for each data set. Figures 5.8. 5.9. 5.10. and 5.11

present Ihe results for each data set; each ftgure shows the complele time-varying

stiffness IRF as a three dimensional plot. The individual impulse responses shawn bc1o\V

these correspond ta the instant the stimulus \Vas applied (0.0 seconds). mid-responsl'

(0.25 seconds), and after full recovery (0.75).

ln each case, the shape of the TVSIRF changes substantially between 0.0 and

approximately 0.5 seconds through the time course of the twitch. This change in shape

reflects the changing state of the system through the time course of the twitch. BcfOl'e

and al'ter this interval the TVSIRF maintains a roughly constant shape retlecting the

time-invariant state of the system before the application of the stimulus, and after l'ull

recovery.

In the absence of noise, a stiffness IRF has just three non-zero points. One positive

non-zero point atlag zero, and one negative non-zero point on either sizc of lag zero. The

magnitude of these points reflect the dynamic characteristics of the system. These

features are easily distinguished in the individual IRF's with the exception that these

IRF's are not noise free. The noise in the IRF's was reduced by multiplying eaeh IRF by

a Hamming window. The Hamming window forces the noise components ta zero at the

extents of the IRF (i.e., lag times -100 ms, and 100 ms) while having minimal affect in

the vicinity of lag zero where the important dynamic information exists. Changes in the

systems dynamics during the twitch are reflected in the magnitude of the IRF peaks

approximately in the -20 ta 20 ms region. The stiffness IRF's non-causal nature make

direct interpretation difficult beyond simple recognition of changes in magnitude in this

region.
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Figure 5.13. Relationship between the increase in standard deviation of the perturbed torque
response, and the drop in VAF during the twitch. The Iinear trend suggests the drop in VAF is due
ta the inter-trial variability rellected by the increased standard deviation of the perturbed torque
response.

5.2. and the increase in torque standard deviation is plotted in ligure 5.13. The Iinear

trend of the plot suggests the relationship expected if (i) is the primary cause for the drop

in YAF.

data set torque std. max. torque std. increase in YAFdrop

number before twitch during twitch torque std. during twitch

(N.m). (N.m) (N.m) (%)

1 0.80 1.35 0.55 28

2 1.40 1.50 0.10 8

3 1.35 1.50 0.15 13

4 1.55 2.0 0.45 16

Table 5.2. Standard deviation (std.) 01 perturbed torque belore and during the twitch, their
diflerence, and the magnitude 01 the drop in VAF during the twitch. Data in columns four, and five
are plotted in ligure 5.13.
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k
~w '" 1.0, in other words. at rest the low frequency average stiffness will he

approximately equal to the elastic stiffness. The c1astic stiffness identifieù as pan llf the

second-order analysis can. as a first approximation be e~pectcd to be close to the loI\'

frequency average stiffness.

Time- VaryÏllg Comp!iallce Impulse Respollse Fl/llcliolls

The next step in the analysis was to inven the time-varying stiffness IRF's to obtain

time-varying compliance IRF·s. Recall. this step is necessary to proceed with the seeond

order parametric analysis. Also. the compliance IRF provides a representation of the

dynamics which is much easier to interpret that the non-causal stiffncss IRF's. The

time-varying compliance IRF's are presented in figures 5.15 to 5.18.

As with the stiffness IRF's, these figures show, for each data set, the complete time

varying compliance IRF as a three dimensional plol. Below each of these are three

individual impulse responses extracted l'rom the time-varying compliance IRF al times

0.0, 0.25, and 0.75 seconds through the time course of the twitch. Again, these times

correspond to the instant the stimulus was applied (0.0 seconds), mid-response (0.25

seconds), and aCter Cull recovery (0.75).

76











•

1

•

Again. qualitative changes in the systems dynamics arc observable as changes in the

shape of the time-varying compliance impulse response functions during the time coursc

of the twitch. The individual compliance impulse response functions are easier to

interprct in this ease because they arc causal. Note. that as in the stiffness case. the

compliancc impulse responses at 0.0 and 0.75 seconds are very similar. reflecting the

constant state of the system before and after the twitch. but the compliance impulse

responses at 0.25 seconds through the time course of the twitch are distinctly different.

Before and after the twitch the IRF's have the characteristics of a second-order

under-damped system; however. during the twitch (Le.• at 0.25 second) the IRF is no

longer characteristic of a second-order under-damped system. The response at this time

is more like an under-damped oscillatory response on top of a slower over damped

component. This difference presents a key to determining what is happening to the state

of the system dllfing the twitch. and is explored in more detail in the next section.

Secol/d-order AI/alysis

Figure 5.19 presents the results of fitting a second-order model to the time-varying

compliance IRF's. The procedure estimated the natural frequency, damping ratio. and

elastic stiffness «(J)n' ç, and k). The inertia, and dumping parameters were computed l'rom

(J)n' ç, and k.

The second-order analysis was undertaken because it is known to successfully model

joint dynamics under time-invariant conditions (Kearney and Hunter, 1990), and is,

therefore, worth considering as a model for time-varying joint dynamics. First

impressions of figure '5.19 may lead one to believe that the second-order model does not

fair too badly. For example, the variance of the second-order impulse response (which

indicates how closely the second-order parametric impulse response matches the

nonparametric compliance impulse response at the each point in time) is reasonably high,

dropping only to about 75% during the twitch. In addition the elastic stiffness rises

during the twitch, as expected, and the resting elastic stiffness is very close to the resting

low frequency stiffness. In these respects the second order model appears to successfully

characterize the nonparametric results.

The second-order model does not fair weil, however, when one examines how the

inertia parameter varies. There is no reason to expect the inertia of the joint to vary

during the time course of the twitch. Small fluctuations in the parameter estimates are

not disturbing; but the inertia estimate should at least remain stationary. In each case the
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6 Discussion

FI/cts I/I/lI Theories

A system as complex as the neuromuseular system presents significant challenge to

any identitïcation scheme bccausc it is both time-varying and nonlinear. The ensemble

timc-varying identification can successfully identify Iinear dynamics, and in the event the

underlying system is nonlinear, can linearize the system about a fixed trajectory as it

varies through time. The ensemble identification scheme does this weil. By placing no

constraint on the system other than that of Iinearity, and repeatability, the ensemble

identification scheme gives a concise reliable description of the system's dynamics for the

particular response under investigation. The next step in the identification process is one

of intcrpretation; one of drawing conclusions about the significance of the result.

At this point it is natural to tum to sorne sort of parametric system model which will

lead to a betler understanding of the mechanisms underlying the observed response. This

is a diftïcult step in the study of neuromuscular systems but is nevertheless important. As

Wilkie (1954) wrote (from McMahon, 1984):

FlIelS ami tlreories are natllra[ enemies. A 'heory ma)' sllcceed for Cl lime in
domesticating some facls, bill sooner or larer ;'le\·;tably the facts revert ta their predatory
\1'0.1'.1'. TIzeories deserve ollr sympmlzy, for tlzey are illdispellsable ill tlze deve/opmellt of
sc/ellce. 77leY systemati", exposillg re/miollslzip betweell facts tlzal seemed IIllrelaledo'
tlzey e.\·lablislz a .l'cale of va/Iles amollg }aCIS, SilOWillg olle 10 be more imporlallt IIzall
<llIOIIzer; IIzey ellaiJ/e liS 10 e.'lrapolate from IIze k,IOWIl 10 IIze IIllkIlOWIl. to predicl tlze
re.mll ofe.,perimems 1101 yel performedo' alld IIzey sllggeslwilicll Ilell' experimems may be
\l'orllz al/emplitlg. However, IIzeories are dallgerotls 100, for IIzey oftell filllClioll as
blillkers illslead of spectacles. Misplaced cOllfidellce ill a IIzeory cali effective/y prevem
Il.1' frolll seeillg facls as IIze}' real/y are.

Second-order models have been user'. to describe joint dynamics because they

faeilitate the first of Wilkie's points; they ;) stematize experimental results, tuming that

which is concise but difficult to interpret -in this case stiffness impulse response

functions- into that which is concise but easy to interpret - the parameters of a model.

ln this scenario, the facts are the nonparametric results, derived irom raw data with as

few biased constraints as possible, and the second-order model is the theory, potentially

biased due to contrary assumptions. The nonpararnetric results are the facts used to

verify the hypothesi:· that a second-order model is sufficient to characterize joint

dynamics.. Note, this is not to say that the second-order model is being considered as a

delïnitive representation of joint dynamics and the associated underlying mechanisms,
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rather. that it is simply an appropriate means of cilatacr{'rdllg time-varying joint

dynumics. However, while the second-order mode! has been successful in the study of

time-invariant joint dynamics it is disappointing whcn applied to thc study of

time-varying joint dynamics.

MacNeil et al. (1992). and Kirsch et al. (1991. 1993) used the ensemble identilÏc:ltion

technique to study the time-varying dynamics of the ankle joint. M:lcNeil studied the

dynamics during a voluntary change in activation kvel, while Kirsch examined ch:mges

during an imposed change in po~;tion. Both studies tried to nt second-arder mOllcls to

nonparametric results. MacNeil demonstrated that during the transient change in

muscular activation the dynamics were not weil modeled by a second-order system.

Similarly, Kirsch et al. found that during a transient imposed stretch the dynamÎCs of the

joint were not weil modeled by a second-order system.

Xu (1992), assumed a second-order model cr priori and used an adaptivc method to

identify the second parameters describing the dynamics of the e!bow joint during an

isometric change in activation level, and during movemcnt.. Xu's adaptive method was

considered successful under time-invariant conditions, und in simulation was rcportcd to

successfully identify the parameters of second-arder model when the variations wherc

less that 5 Hz, yet with reul data the results were considered inadequate. Xu found that

the inertiu parameter varied unpredictably, when it should have remained constant, thus

raising questions about the suitability of the second-arder model, or the sucees> of the

identification scheme. This leads one ta believe that, again, the second-order modcl Ims

failed under time-varying conditions.

Lacquaniti et al. (1981, 1993) used the ensemble correlation approach to study the

dynamics of the human elbow joint during a voluntary change in activation levcl, and

also used a second-arder modelto characterize the system's dynamics. Unrortunately, the

prediction accuracy of the second-arder model was not presented sa the sucees> of the

second-arder model couId not be properly assessed. The same is truc of Bennett ( 1990,

1993) who investigated elbow dynamics using a time-varying parametric identification

scheme ta estimate the parameters of a second-arder model, but again the prediction

accuracy of the second-arder model was not presented sa the validity of the second-order

model could not be properly assessed. These two examples represent, perhaps, a case of

(from Wilke, 1954): "Misplaced confidelzce in a rlzeory can effeclively prevenl liS j'rom

seeing facls as Ilzey really are. "
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Th~ r~sults of MacNeil ~t al. (! 992). Kirsch et al. (1991. 1993J. and Xu (1992 J. and

the results presented here ail indicate that the second-order model fails to ,\'yslelllari~e the

facts uncovered by nonparametric studies of time-varying joint dynamics. Careful

examination of the nonparametric results presented in this thesis do. however. give sorne

dues as to what is missing l'rom a model which aims to ,\'yslelll(l/i~e the results of

tim~-varyingjoint dynamics studies.

Fuels 10 Guide Waywurd Theories

To understand why a second-order model l'ails to model the time-varying joint

dynamics it helps to examine. qualitatively. a single compliance impulse response

~xtracted l'rom the time-varying compliance impulse response function at a time when the

state of the system was varying (which is also. of course. a time when the second-order

model was not successful). Such an impulse response is shown in figure 6.1. Inspecting

this impulse response leads to an obvious qualitative conclusion: the second-order model

cannot characterize this impulse response because its shape is more complex than second

order. What it seems like, in fact, is an oscillatory response on top of a slower response.

The oscillatory component couId minimally be an under-damped second-order system

(since that is the lowest order system which can oscillate). While the slower response

wouId minimally be a first order system. That would lead one to conclude that at least a

third order system is necessary to characterize this impulse response.

lt is possible to estimate the order of the system required to model the impulse

response shown in figure 6.1 by fitting progressively higher order systems to the impulse

response and observing the order at which the estimate no longer improved. This was

done using the method described by Ho and Kalman (1966), which fits astate model to a

nonparametric impulse response. To dete, mine how weil an n th order state model

characterizes the nonparametric impulse response, an impulse response was computed

from the state model and compared to the original nonparametric impulse response

function. The result of such an analysis is shown in figure 6.2 which compares

2"01 ,3,01 ,4'h, and 5'h order impulse response functions.
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Figure 6.1. Nonparametric compliance impulse response, showing the state of the system at 250
ms alter the onset of the twitch. This example is from data set three.
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Figure 6.2. The same nonparametric impulse response as shown in figure 6.1, compared to finile
order impulse response functions of progressively increasing order. .
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• Figure 6.2 shows. qualitalively. that a tinite order impulse response modds the

nonparametric impulse response better as the order of the impulse response inereases. Il

is deal' the second-order impulse response function does not capture the characteristics of

the nonparametric impulse response functions. The third order impulse response function

does better: it captures the under-damped second-order component. plus the slow tirst

order component of the response.

The fourth order impulse response dacs better still. and. signilïcantly. there is Iittle

observable difference between the fourth and lifth order impulse response funclions. This

laek of improvement l'rom fourth to tifth order leads 10 the tentaI ive conclusion thal a

parametrie system model of at least order four is required to characterize this

nonparametric impulse response function.

A quantitative estimate of syslem order is possible by choosing a measure of the

difference between order n, and order n+ 1 impulse response functions. A logical choice

for this function wouId be:

•
6.1

•

where hn(t) is the order Il estimate of the nonparametric impulse response at time 1

through the time course of the twitch, and the sum is over each point in the impulse

response.

This equation is simply 100 minus the variance accounted for between the lïnite order

Il impulse response, and the finite order 11+1 impulse response. If the two impulse

response functions were identical, the variance accounted for would be 100%. and

equation 6.1 would be tl.n= O. Therefore. one ean expect that as Il approaches the truc

system order, tl.n will approach zero.

It is a simple matter to compute tl.n for a range of system orders. n. at each point in

time through the time course of the twitch. Figures 6.3, 6.4, 6.5. and 6.6 show the result

of such an analysis. In each of these figures it is apparent that tl.. is the tirst point at

which tl.n(t) '" 0 for ail values of time (Le. through the entire time course of the twitch).

This is persuasive evidence to support a hypothesis which suggests a fourth order model

of joint dynarnics.
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Figure 6.3. Ll n versus n (system order) through the lime course of the twitch for data set one.
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Figure 6.4. Lln versus n (system order) through the time course of the twitch for data set two.

88





•

•

•

Further. ligures 6.3. 6.5. and 6.6 show that Cl~ »Cl, between approximately 0.0 (the

onset of the twitch) and 0.5 seconds (the point of near full recovery). These

characteristics suggest that the higher order dynamics only become signiticant during the

time the muscle is actively contracting. and explain why the second-order model is

successful under time-invariant conditions (i.e. before and after the twitch). but is less

able to model joint dynamics under time-varying conditions. It does not seem

unreasonable to suggest that this effect may aise explain the second-order results

presented by MacNeil et al. (1992). Kirsch et al. (1991. 1993). and Xu (1992) .
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7 Conclusions

S1I//l//lClry

The ensemble time-varying system identilication approach was sucœssful in

identifying the dynamics of the ankle joint as they varied through a single twitch of the

triceps surae muscle group. The ensemble method generates a nonparametrie result tlult

is not biased by any Cl priori nssumptions, other than that of linearity, about the structure

of the system under study. The stiffness impulse response functions prcsented in ligures

5.8, 5.9, 5.10, and 5.11 form the basis l'rom which study can continue with limited

concern that basic assumptions about the nature of the system are wrong.

Nonparametric results are, however, very difficult to interpret in isolation. To gain

further insight into the nature of the system, one approach is to characterize the results

'using parametric models. Parametric second-order models have been very successful in

characterizing time-invariant joint dynamics (Keamey and Hunter, 1990). Second-order

models have, however, met with [ess success in characterizing time-varying joint

dynamics. This was found in the studies carried out by MacNeil et al. (1992), Kirsch et al

(1991), and Xu (1992), and again in the work presented here.

Given the mounting evidence that a second-order linear model is not a useful me:ms

of characterizing time-varying joint dynamics, the question of what step to try next

should be addressed. The first question addressed in the discussion was: is there un

obvious renson why the second-order model l'ails during the time the system is varying

(Le., during the twitch). Simple visual examination of a single nonparametric compliancc

impulse response function representing the dynamics at a point in time when the system

was varying leads one to conclude that the second-order model l'ails because a slower

order dynamic becomes significant at this time. The impulse response remained

oscillatory, but the oscillation is superimposed on the slower dynamic compollent. This

implies that a system order higher than two is required to characterize joint dynamics

when the system is time-varying.

A simple system order analysis was performed to determine the minimum system

order required to characterize the nonparametric compliance impulse functions that

represent the ank1e joint dynamics at each point in time through the time course of the

twitch. This analysis leads to the tentative conclusion that a system of at least order four

is required to characterize the dynamics of the ank1e joint under time-varying conditions.
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Furthcr. the analysis also prcdicts that a system order of two is sufficient during the time

invariant periods before and after the twitch. This result is consistent with time-invariant

studies which have concluded that a second order model is sufficient to characterize joint

dynamics under time-invariant conditions, and at the same time explains why the second

order model fails under time-varying conditions.

FlIllIre Directions

System order is an important consideration in the development of a model to

characterize a system as complex as the neuromuscular system. Voluminous research has

demonstrated that second-order models are sufficient to characterize joint dynamics under

time-invariant conditions. The second-order model has, however, proved not wholly

successful at characterizing the neuromuscular system under time-varying conditions.

The conclusions presented here conceming system order are a basis for explaining the

faHurc. It would be interesting to determine if an order analysis applied to the

time-varying paradigms studied by MacNeil et al. (1992), and Kirsch et al, (1993) would

give the same estimate of system order.

No theory capable of characterizing time-varying joint dynamics has been suggested

in this thesis; developing such a theory is a formidable challenge, but the results do

tentatively suggest sorne of the properties such a theory must possess:

• The model must be at least third, perhaps fourth, order

• Under time-invariant conditions, components of order greater than two should not be

significant.

• Under time-varying conditions, components of order greater than two should become

signilicant.
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