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Abstract 

 

 Over the last several decades, much progress has been made in understanding 

how neurons in visual cortex encode various stimuli. However, it is still unclear how their 

neural response underlies visual perception. The aim of this thesis is to build upon our 

current understanding of how visual motion perception is generated by sensory neural 

activity. 

 

 Many interpretations on how sensory neural activity is combined to form 

perceptual decisions rely upon the often-observed correlation between neural activity and 

behavior. Due to its importance, it is critical that we understand whether this correlation 

is an inherent feature in forming perceptual decisions, or whether it is the result of factors 

outside the brain. We found that microsaccades, which are small, involuntary eye 

movements, contribute a small but significant amount to this correlation. This result 

reinforces the view that the correlation is inherent in forming percepts, but its value has 

been overestimated in several studies.  

 

Given that this correlation between neural activity and behavior is genuine, on 

what timescales can it operate? We found that the correlation between neural activity and 

behavior can exist on a timescale of about ten milliseconds. Although our results do not 

say anything about how visual cortex encodes motion in general, it does suggest that the 

brain is capable of extracting information from neural responses on fast timescales.    
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If neural activity can be correlated with behavior on fast timescales, can electrical 

microstimulation be used to demonstrate causality on this temporal regime? By 

comparing the temporal effects of microstimulation on behavior to an equivalent visual 

stimulus, we found that microstimulation has a significantly weaker and longer effect. 

This result raises doubt that microstimulation has the necessary temporal precision to 

probe causality on fast timescales, or perhaps even serve in sensory neural prosthetics.   

 

Finally, the correlation between neural activity and behavior provides an 

indication of how influential a neuron is in forming perceptual decisions. We found that 

spatial attention modified the relationship between how informative of the stimulus a 

neuron was and its influence in forming decisions. This leads to several hypotheses on 

the role of attention in visual processing.     
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Résumé 

 

Pendant les quelques dernières décades, beaucoup de progrès a été fait dans notre 

compréhension à savoir comment les neurones, dans les cortices visuelles, encodent 

différents stimulus. Toutefois, il n'est toujours pas clair comment les réponses neurales 

forment la base de la perception visuelle. 

 

Le but de cette thèse est d'ajouter à notre compréhension concernant comment la 

perception de mouvement visuel est générée par l'activité neurale sesnsorielle. 

 

Plusieurs interprétations, concernant comment l`activité neurale sensorielle est jointe 

pour former des décisions perceptuelles, comptent sur la corrélation souvent observée 

entre l'activité neurale et le comportement. 

 

À cause de son importance, il est crucial de comprendre si cette corrélation est un trait 

inhérant dans la formation des décisions perpceptuelles ou si c'est le résultat de facteurs 

non reliés au cerveau. Nous avons trouvé que les microsaccades, qui sont de petits 

mouvements involontaires des yeux, font une petite, mais significante, contribution à 

cette corrélation. Ce résultat renforce l'opinion que la corrélation est inhérente dans la  

formation des perceptions, mais sa valeur a été surestimée dans plusieurs études. 

 

Étant donné que cette corrélation entre l'activité neurale et le comportement est 

authentique, sur quelle période de temps peut-elle opérer? Nous avons trouvé que la 
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corrélation entre l'activité neurale et le comportement peut exister dans une période de 

temps d'environ 10 millisecondes. 

 

Bien que nos résultats ne disent rien concernant commnet le mouvement visuel est 

encodé en général, ils suggèrent que le cerveau est capable d'extraire des informations des 

réponses neurales dans une période de temps rapide. 

 

Si l'activité neurale peut être corrélée avec le comportement dans une période de temps 

rapide, est-ce q'une microstimulation éléctrique peut être utilisée pour démontrer une 

causalité sur ce régime temporel? 

 

En comparant les effets temporels de la microstimulation sur le comportement, à un 

stimulus visuel équivalent, nous avons trouvé que la microstimulation a un effet 

beaucoup plus faible et plus long. Ce résultat soulève des doutes que la microstimulation 

a la précision temporelle nécessaire pour sonder la causalité dans une période de temps 

rapide, ou peut-être même pour servir dans la prothétique neurale sensorielle? 

 

Finalement, la corrélation entre l'activité neurale et le comportement nous fourni une 

indication comment influent un neurone est dans la formation des décisions perceptuelles. 

Nous avons trouvé que l'attention spaciale modifie la relation entre comment informatif 

le stimulus d'un neurone fût et son influence dans la prise de décisions. Ceci mène à 

plusieurs hypothèses sur le role de l'attention dans la computation visuelle. 
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Chapter 1 


Introduction
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Nearly all organisms, from bacteria to humans, possess the ability to sense and 

react to the environment. In its most basic form, sensory systems such as chemoreception 

allow the organism to sense the chemical nature of its environment without the need of a 

nervous system. However, the sensory systems have evolved tremendously, allowing 

some animals to recognize familiar faces by the pattern of photons falling on the retina, 

electric fish the ability to detect prey by disturbances in self-generated electric fields, and 

bats the ability to gauge distance by incoming waves of air pressures, to name a few. 

While much progress has been made into how neurons in these various sensory systems 

encode stimuli, it is still poorly understood how perception is built upon neural activity. 

Current understanding of how neural activity underlies visual perception 

By 1989, neuroscientists had established some of the basic tenets of neural coding 

in visual cortex. Seminal work by Hubel and Wiesel first showed that neurons in primary 

visual cortex (V1) were selective for different visual features, such as orientation (1962), 

and that neurons with similar preferences were grouped together in a columnar 

organization (1968; 1974). Additionally, it was know that different areas in visual cortex 

were selective for different types of visual features. In the dorsal stream, it was 

discovered that neurons in areas middle temporal (MT) and medial superior temporal 

(MST) responded preferentially to motion stimuli of certain directions, speeds and 

complexity (Albright, 1984; Maunsell and Van Essen, 1983; Mikami et al., 1986; Saito et 

al., 1986; Zeki, 1974). In the ventral stream, neurons in V4 were selective for objects of 

various forms (Desimone and Schein, 1987) while those in inferior temporal cortex (IT) 
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were also selective for forms, but of increased complexity (Gross et al., 1972; Perrett et 

al., 1982). Thus, while it was know that neurons in visual cortex were specialized to 

encode different aspects of a visual stimulus, the relationship between their activity and 

the perception they supposedly generated was still unknown. 

It was not until studies that recorded both neural activity and behavior 

simultaneously did a basic picture emerge. Newsome et. al. were one of the first groups 

to perform such an experiment where they recorded neural activity from area MT of a 

monkey while it performed a motion discrimination task (Britten et al., 1996; Britten et 

al., 1992; Newsome et al., 1989; Zohary et al., 1994a). The task was for a monkey to 

report the direction of coherent motion that occurred in a random dot patch and lasted for 

two seconds. The motion could only move in one of two opposite directions and the 

strength of the coherent motion (the ratio of dots moving in the coherent direction to all 

others) was varied. During this task, they recorded from neurons in area MT that were 

selective for one of the two directions of motion. Both lesion studies (Baker et al., 1991; 

Hess et al., 1989) and microstimulation studies (Salzman et al., 1990; Salzman et al., 

1992) demonstrated that neural activity in area MT is causally linked to motion 

perception. 

These studies made surprising conclusions regarding how informative neurons 

were of the stimulus and their correlation with behavior. These terms appear often 

through out the thesis, so it is worthwhile to clarify their meaning. A neuron is 

informative of the stimulus if given some measure of its neural response, one can predict 
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the stimulus that was presented to the neuron. One method to calculate how informative a 

neuron was of the stimulus is to compare the neural response before and after a stimulus 

change. For example, the neuron in Figure 1A appears more informative than the neuron 

in Figure 1B since there was larger increase in neural activity after the motion stimulus 

started moving in a coherent fashion. This measure can be quantified by comparing the 

distributions of spike counts from each trial that occurred during 0% coherent motion 

(right panel, red bars) to the spike counts that occurred during coherent motion (right 

panel, blue bars). The larger the separation between the two distributions, the more 

informative the neuron was of the stimulus. Later on, this measure will be referred to the 

neurometric. Similarly, the correlation between neural activity and behavior is measured 

by comparing the neural response to the stimulus from trials where the subject made the 

correct decision to the neural response from trials where the subject made an incorrect 

decision. For example, the neuron in Figure 1C appears more strongly correlated with 

behavior than the neuron in Figure 1D since there existed a larger difference in the neural 

response to coherent motion between correct (blue curve) and failed (red curve) trials. As 

above, this measure is quantified by comparing the distribution of spike counts in 

response to the coherent motion between correct and failed trials. Later on, this measure 

will be referred to as the choice or detect probability. 

The first surprising conclusion of these studies by Newsome et. al. was that the 

subject’s behavioral responses were no more informative of the true motion direction 

than the activity of single MT neurons (1989). Given that the subject supposedly has 

access to the information from many MT neurons, one must have believed that the 
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Figure 1 Four example MT neurons. (A&B) The left column shows the average spike 

rate, smoothed with a Gaussian filter with standard deviation of 20 ms. The neuron is 

responding to 0% coherent motion until time zero, after which coherent motion in the 

neuron’s preferred direction and speed is displayed. The right column shows the 

distribution of spike counts from all trial counted from 50 to 150 ms after coherent 

motion onset (blue bars) and from 0 to 100 ms prior to coherent motion onset (red bars). 

The neuron in (A), which showed a clear change in neural activity after coherent motion 

onset, would be considered informative of the stimulus. The neuron in (B), which showed 

little change in neural activity after coherent motion onset, would not be considered very 

informative of the stimulus. (C&D) Left column is same as above, except average spike 

rates are divided into correct (blue curve) and failed (red curve) trials. The right column 

shows the distribution in spike counts for correct (blue bars) and failed (red bars) trials, 

collected from 50 to 150 ms after coherent motion onset. The neuron in (C), which 

showed a larger separation in spike rate in response to coherent motion between correct 

and failed trials than the neuron in (D), was more correlated with the behavior. 
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subject’s behavioral choices would have been more informative of the stimulus than 

single neurons. The second surprising finding was that for trials with identical stimuli, the 

activity of single neurons was significantly correlated with the subject’s behavioral 

response. At face value, significant correlations between the activity of single neurons 

and behavior would suggest that each neuron played a significant role in forming the 

decision, implying that few neurons were involved. 

Another discovery around this time partly explained these two surprising 

observations. Recordings in the visual cortex of anesthetized cats (van Kan et al., 1985) 

and in the awake monkey (Gawne et al., 1996a; Gawne and Richmond, 1993) revealed 

that the neural response to various types of visual stimuli was correlated between 

neurons. Positive correlations limit the benefit of averaging the activity of many neurons 

when forming a decision (Zohary et al., 1994b). Additionally, correlated firing between 

neurons helped explain why the activity of single neurons was correlated with the 

behavioral outcome of the trial: if the activity of a neuron is correlated with the rest of the 

population response, and if the population response drives the perception, then the 

activity of a single neuron would be then correlated with the perception (Zohary et al., 

1994b). 

From these results, several groups have attempted to model how sensory 

information is combined to form a behavioral response (Bair et al., 2001; Schoppik et al., 

2008; Shadlen et al., 1996; Zohary et al., 1994b). The conclusions of these models have 

not always been in accord in other known results. It was proposed that correlations 
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between neurons limited the benefit of pooling across a large population, reducing the 

capability of the subject (Bair et al., 2001; Shadlen et al., 1996; Zohary et al., 1994b). 

However, theoretical results have shown that correlations do not always have to be 

harmful (Abbott and Dayan, 1999). This is somewhat intuitive given that correlations 

reduce the entropy of the noise of neural responses. An example where correlations could 

increase the capabilities of a neural population was confirmed experimentally (Romo et 

al., 2003). It was also proposed that the activity of neurons that responded optimally and 

sub-optimally to the stimulus was combined equally when forming a decision. This was 

also proposed to explain why the subject performed no better than individual neurons. 

However, this proposal contradicted many other studies that suggested that the more 

informative neurons are also more influential in forming a decision (Britten et al., 1996; 

Dodd et al., 2001; Jazayeri and Movshon, 2007a; Jazayeri and Movshon, 2007b; Law and 

Gold, 2008; Parker et al., 2002; Purushothaman and Bradley, 2005; Uka and DeAngelis, 

2004). In short, it is poorly understood how the activity of sensory neurons is combined 

when forming a behavioral response. 

Perhaps one of the more important realizations in recent years has been that there 

is no single way that neural activity is combined when forming perceptual decisions. For 

example, it is well known that top-down signals can modulate how sensory neurons 

encode stimuli (for reviews, see Desimone and Duncan, 1995; Engel et al., 2001; 

Maunsell and Treue, 2006). The simplest example of such top-down modulation is the 

widely reported result that spatial attention increases the gain of the neurons without 

changing its sensitivity (e.g. Cook and Maunsell, 2004; McAdams and Maunsell, 1999b; 
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Treue and Martinez Trujillo, 1999). Moreover, top-down signals can change the aspect of 

the stimulus that is encoded by the neuron (Freedman and Assad, 2006; Lamme et al., 

1998; Li et al., 2004; Pack et al., 2001), suggesting that top-down signals can modify how 

inputs to a neuron are combined when forming a neural response. Thus, although it is still 

unclear how neural activity is combined when forming a perceptual decision, it appears 

that the rules are not fixed.  

When attempting to infer how neural activity is pooled to form perceptual 

decisions, an important consideration is the timescale of both the stimulus and the neural 

response. One potential caveat with many past studies was that constant stimuli were 

presented for hundreds of milliseconds and that neural activity was usually averaged over 

similar time periods. Unlike the stimuli used in many of these past studies, natural stimuli 

can be highly dynamic. Furthermore, animals have the ability to react very quickly to 

their environment (Rieke et al., 1999), suggesting that the brain is capable of forming 

decisions based on brief neural responses. In the next section, we review some of the past 

debate on the temporal nature of a neural response and whether perception can be 

correlated with neural activity on fast timescales. 

The spike rate versus spike timing debate 

How is information encoded in the spiking activity of neurons? This has been a 

highly contentious issue, with one group proposing that information is encoded in the 

mean firing rate of neurons while the other group favoring the notion that the precise 
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timing of actions potentials conveys information. These two ideas are not mutually 

exclusive, and there exists truth in both arguments. 

The idea that information is encoded in the mean firing rate of neurons is based on 

the observation that cortical neurons can respond very differently to repeated 

presentations of similar stimuli (Britten et al., 1993; Snowden et al., 1992). It was argued 

that this variability was because cortical neurons can receive synaptic inputs from 

thousands of other neurons (Peters, 1987), out of which only a small number of excitatory 

inputs are required to depolarize the neuron sufficiently to emit an action potential 

(Mason et al., 1991; Matsumura et al., 1988; Otmakhov et al., 1993). To prevent these 

thousands of excitatory inputs from saturating the neuron, it was proposed that cortical 

neurons receive balanced excitatory and inhibitory input, preventing the neuron from 

being overwhelmed (Shadlen and Newsome, 1998). Although an increase in excitation 

would always be matched by an increase in inhibition, the firing rate would still increase 

because of increased variability in the number of synaptic inputs. Intuitively, if the 

neuron’s membrane potential is normally distributed, then balanced excitation and 

inhibition would keep the mean constant, but increased excitation and inhibition would 

increase the standard deviation, leading to more threshold crossings. Thus, the 

consequence of balance excitation and inhibition would be inherent variability in the 

spiking response. It was for this reason that many proposed that variability in neural 

responses were too large for information to be transmitted by precise timing of action 

potentials (Mazurek and Shadlen, 2002; Rudolph and Destexhe, 2003; Schaette et al., 

2005; Shadlen and Newsome, 1998; Zoccolan et al., 2002). By default, it was suggested 
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that information must be carried by the mean spiking activity of neurons, averaged over a 

period of tens or hundreds of milliseconds. 

 Recently, the claim that a state of balanced excitation and inhibition simply leads 

to increased variability in the neural response has been challenged. As both the level of 

excitation and inhibition increase, the conductance of the neuron increases as well. 

Several experimental studies in awake animal preparations have shown that neurons 

operate in a state of much higher conductance than do in anesthetized, or in vitro 

preparations (Baranyi et al., 1993; Matsumura et al., 1988; Pare et al., 1998; Steriade et 

al., 2001). A high-conductance state has important implication on how synaptic inputs are 

integrated by the neuron (for a review, see Destexhe et al., 2003). Specifically, a 

conductance increase results in a decrease in the membrane time constant (Azouz and 

Gray, 2003; Prescott et al., 2006) as well as the activation of voltage-dependent channels 

that hyperpolarize the neuron (Prescott et al., 2006). As a result, the neuron becomes less 

sensitive to slow changes to the membrane potential and becomes more sensitive to rapid 

fluctuations caused by synchronously arriving inputs. Because of this, the transition has 

referred to as the neuron going from an “integrator” to a “coincidence detector”. 

The claim that the responses of cortical neurons are highly variable has also been 

revisited. Studies that suggested that the neural responses were too variable for precise 

timing to play a role used slowly varying or static stimuli (Britten et al., 1993; Newsome 

et al., 1989; Snowden et al., 1992). As other have pointed out, natural stimuli are much 

more dynamic (Rieke et al., 1995; Schwartz and Simoncelli, 2001), and perhaps highly 
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dynamic stimuli are behaviorally more significant for the organism (Rieke et al., 1999). 

Thus, there was much interest in the reliability and precision of neural responses to 

dynamic and more natural stimuli. These studies found that the neural response can be 

extremely reliable with precision on the order of milliseconds (Butts et al., 2007; de 

Ruyter van Steveninck et al., 1997; Gur et al., 1997; Mainen and Sejnowski, 1995; 

Reinagel and Reid, 2000). This reliability at such a fine temporal scale allows for 

information to be transmitted in the precise timing of action potentials (de Ruyter van 

Steveninck et al., 1997). Does this mean that information is always carried by highly 

precise action potentials? Not necessarily; a recent study has proposed that the temporal 

precision of the neural response is dependent on the timescale of the stimulus (Butts et 

al., 2007). They put forward the hypothesis that the temporal precision is only as high as 

what is required to accurately encode the stimulus. This would explain past results that 

found highly variable neural responses to slowly changing or static stimuli; the neural 

responses lacked temporal precision because temporal precision was not required to 

describe the stimulus. 

These results suggest that the nervous system is capable of encoding stimuli 

through a temporally precise neural response. This does not imply that the slowly varying 

average rate of the neural response is uninformative. On the contrary, many studies have 

shown the average rate to be both informative of the stimulus as well as correlated with 

the perception of the subject (Britten et al., 1996; Cook and Maunsell, 2002b; Dodd et al., 

2001; Huk and Shadlen, 2005; Liu and Newsome, 2005; Purushothaman and Bradley, 

2005). However, in an environment where highly dynamic sensory stimuli are be 
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prevalent as well behaviorally important (Rieke et al., 1999), it is important to know that 

sensory systems are capable of the temporally precise encoding necessary to represent 

these dynamic stimuli. 

Different methods of temporal encoding and decoding 

If the nervous system is capable of transmitting information in the timing of 

action potentials, then what are the strategies sensory systems use to temporally encode 

information? Alternatively, how would information contained in the timing of spikes be 

decoded? Strategies employing temporal encoding can be broken up into three, 

overlapping categories: information can be transmitted by the relative timing between 

spikes from different neurons, the coincident timing of spikes from different neurons, and 

the timing of spikes relative to a global signal (usually oscillations in the local field 

potential). Categories one and two appear redundant, but we shall see these two encoding 

schemes are decoded in separate ways. 

Encoding with the relative timing between spikes 

The first scheme, in which the temporal offset of spikes from different neurons 

conveys information, has been proposed as a method to very quickly transmit information 

(Thorpe et al., 2001; Van Rullen and Thorpe, 2001). Encoding information in the relative 

timing of spikes has been considered only applicable to transient stimuli, or to the initial 

part of a neural response. This is because it is difficult to determine any sense of order 

13



 

 

 

 

between spikes during an ongoing neural response. However, in Chapter 3 we discuss a 

possible exception, which was only possible given the special nature of the neural 

response. 

The basic idea behind this encoding scheme is that neurons whose preferences 

best match that of the stimulus will be driven to threshold first, spiking before other 

neurons. Thus, the time required for the neuron to first respond to the stimulus, known as 

the neural latency, can be informative of the stimulus. This has been shown true through 

out the visual system (Celebrini et al., 1993; Gawne et al., 1996b; Gollisch and Meister, 

2008; Konig et al., 1995; Masse and Cook, 2008; Maunsell et al., 1999; Raiguel et al., 

1999). Downstream areas will probably not have access to the neural latency, but only to 

the relative latency between neurons. Additionally, this relative latency can be made 

more precise by the fact that neural latency can be correlated between neurons (Chase 

and Young, 2007; Gollisch and Meister, 2008).  

Several models of the neural structure required to decode relative timing have 

been proposed (Delorme, 2003; Thorpe et al., 2001). Both models involve upstream 

neurons with feed-forward connections with inhibitory neurons and a target neuron. A 

target neuron must receive inputs with short latencies from upstream neurons that it forms 

strong synaptic connections with, before feed-forward inhibition arrives. Several studies 

have found that a neuron’s tuning is partly driven by decoding the relative timing 

between inputs. It was demonstrated that the neural tuning for different whisker 

directions in rat barrel cortex is governed by the temporal offset between excitatory and 
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inhibitory inputs (Wilent and Contreras, 2005). This is also true for direction selectivity 

in the cat primary visual cortex (Priebe and Ferster, 2005). 

Encoding with synchronized spiking 

Slightly different than the first scheme, another method to temporally encode 

information is through the simultaneous generation of action potentials. The scheme 

works on the principal that simultaneously arriving inputs can be much more effective at 

driving a target neuron than temporally spread out inputs. Such an encoding scheme is 

believed by many to solve the binding problem (Engel et al., 1990; Gray et al., 1990), in 

which different visual features must be combined to form a coherent object. However, 

many believe that synchronized spiking does not underlie binding of visual objects into 

coherent percepts (Shadlen and Movshon, 1999). If simultaneous spikes from distant 

neurons are to encode information, then some sort of global signal is needed to coordinate 

their activity. Oscillations in the local field potential, which can be coherent across 

different cortical areas (Destexhe et al., 1999; Donoghue et al., 1998; Engel et al., 1990), 

could act as the necessary timing device. 

This scheme is nicely exemplified by the locust and zebrafish olfactory system. 

Neurons in the antennal lobe, one synapse away from the primary olfactory receptors, 

respond very broadly to odors. Neurons in the mushroom body, one of two targets of the 

antennal lobe and also an area associated with memory, respond in a very sparse fashion. 

Through a series of well-designed experiments (Friedrich et al., 2004; Perez-Orive et al., 
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2002), it was shown that different subsets of neurons in the antennal lobe phase-lock their 

spiking to oscillations in the local field potentials in response to different odors. 

Downstream in the mushroom body, oscillations in the local field potential only provide a 

small window during each cycle for inputs to have an impact. Additionally, each EPSP 

depolarizes the target neuron very little, thus many spikes from the antennal lobe must 

arrive within a very short temporal window in order to sufficiently depolarize the neuron 

to spike. Thus, neurons in the mushroom body will only fire if they are synaptically 

connected to most of the subset of neurons in the antennal lobe that phase-locked their 

firing in response to the odor. In contrast, the anatomically similar olfactory system of 

Drosophila does not employ an oscillating local field potential to transform the broad 

responses of the antennal lobe in the sparse responses of the mushroom body (Turner et 

al., 2008).This raises the bigger question of why similar nervous structures under similar 

constraints have evolved to solve similar problems in completely different manners. 

Encoding with the phase of spikes 

Lastly, the phase of a spike relative to the oscillation in local field potential can 

also serve to encode information. The most prominent example are place cells in the 

hippocampus, where the phase of spiking encodes the location of the animal relative to 

the neuron’s place field (O'Keefe and Recce, 1993). Such an encoding scheme has also 

been proposed for the olfactory system (Hopfield, 1995) and for the visual system (Fries 

et al., 2007; Montemurro et al., 2008), however, there is relatively little evidence for their 

existence. In single-unit recordings in area MT, we found no evidence to suggest that any 
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motion information was encoded by the phase of the spiking (personal unpublished 

observation; personal communication with Paul Kayhat). 

Regardless of whether such an encoding scheme works outside the hippocampus, 

decoding the phase of the spike would not be difficult. This is because the phase of 

subthreshold oscillations in the membrane potential of a neuron modulates the strength of 

post-synaptic potentials (Lampl and Yarom, 1993; Schaefer et al., 2006). Such a scheme 

would require that the oscillations in the local field potential are coherent between 

upstream and downstream regions, which can exist (Destexhe et al., 1999; Donoghue et 

al., 1998; Engel et al., 1990).   

Does the brain actual use temporal encoding? 

Given the large amount of evidence that the temporal structure of a neural 

response can be informative, it is surprising that very few studies have examined whether 

the brain is capable of extracting temporally encoded information. None of these studies 

listed above have demonstrated that information in the temporal structure of the neural 

response was correlated to the behavior of the subject. 

Only two studies that the author is aware of have attempted to demonstrate the 

temporally encoded information is relevant to the organism. One study was performed in 

the olfactory system of honeybees, which is similar to that of the locust and zebrafish. In 

this system, oscillations in the local field potential synchronize spiking activity across 
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different combinations of neurons (Stopfer et al., 1997). They chemically blocked 

GABAA receptors, which disrupted the odor-induced oscillations in the local field 

potential. The result was that the honeybees were impaired in performing fine odor 

discrimination tasks. The obvious concern over such a result is that it is difficult to know 

what other effects that picrotoxin, the GABAA antagonist, might have had on the neural 

response of the olfactory neurons. 

In another study, the phase-locking of V4 neurons to the gamma range of the local 

field potential was correlated to the behavior on a trial-by-trial basis (Womelsdorf et al., 

2006). They found that increased phase locking was correlated with faster reaction times 

in the detection of a change in a visual stimulus. Selectively attending to a target, which 

would also decrease reaction times, is also associated with increased phase locking to the 

gamma range of the local field in area V4 (Fries et al., 2001; Fries et al., 2008). Thus, it is 

difficult to ascertain whether increased phase locking had a direct effect on behavior or 

whether it was simply a correlate of greater attention. Regardless, it does suggest that 

attention does not simply modulate how sensory neurons integrate information, but that 

attention can alter how sensory activity is coordinated with the rest of the brain. 

One limitation of many of these studies was that they simply correlated neural 

activity with behavior, and did not show that temporally encoded information was 

causally linked with the perceptual decision. To demonstrate such a causal link, one must 

turn to methods used to perturb neural activity. 
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Stimulation of neural tissue 

The manipulation of neural activity is a well-established tool in neuroscience 

research, made famous by Penfield’s pioneering work (Penfield, 1958; Penfield and 

Welch, 1949). There are two main applications for stimulating neural tissue: establishing 

causality between neural activity in an area of the brain and behavior and serving in 

sensory neural prosthetics. One classic example of the former was a set of experiments 

that unequivocally demonstrated that motion perception is at least partially based on the 

activity of neurons in area MT (Salzman et al., 1990; Salzman et al., 1992). In these 

experiments, a monkey discriminated between motion in one of two opposing directions, 

while neurons in area MT preferring one of these two directions were electrically 

stimulated in a subset of trials. Electrical stimulation was applied, as in many other 

experiments, by simply lowering a recording electrode into the desired location and 

passing through biphasic current at the desired current level and frequency. During trials 

where electrical stimulation was applied, the subjects reported observing the stimulus 

move in the direction matched to the preference of the stimulated neurons more often. 

This was one of the first examples that demonstrated that perception can be biased in a 

predictable fashion by stimulating sensory areas. 

Several other experiments have used this same approach to establish causality in 

both sensory and motor areas of the brain. For sensory areas, it was used to demonstrate 

causality between the activity in area MT and speed perception (Liu and Newsome, 

2005), MST and motion direction (Celebrini and Newsome, 1995), primary 
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somatosensory cortex and frequency discrimination (Romo et al., 2000), V1 and 

phosphene perception (Tehovnik and Slocum, 2007). For motor areas, it was used to 

establish causality between motor and pre-motor cortex with various body and limb 

movements (Graziano et al., 2002; Luppino et al., 1991; Preuss et al., 1996; Stepniewska 

et al., 2005), and the superior colliculus, frontal and supplementary eye fields with 

various types of eye movements (Gottlieb et al., 1993; Harris, 1980; Schlag and Schlag-

Rey, 1987; Shibutani et al., 1984). Needless to say, the use of electrical stimulation to 

establish causality has proved to be an important research tool. 

Secondly, there has been much interest in electrical stimulation of neural tissue 

for use in sensory neural prosthetics. These devices are meant to restore sensory function 

to patients who have lost a sense due to disease or injury. They work by electrically 

transmitting sensory information directly to functioning neural tissue, bypassing damaged 

areas. Currently, the most successful of such devices has been the cochlear implant, 

which restores a limited sense of hearing by directly stimulating auditory nerves in the 

cochlea (Middlebrooks et al., 2005; Rieke et al., 1995). Visual neural prosthetics, by 

comparison, are still in their infancy. Most of the focus has been placed on developing 

visual prosthetics that stimulate retinal cells (Eckmiller et al., 2005; Hetling and Baig-

Silva, 2004; Palanker et al., 2005). However, there has been research into whether 

stimulating the lateral geniculate nucleus (Pezaris and Reid, 2007) or visual cortex itself 

(Fernandez et al., 2005) could also work.  
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The main drawback with electrical microstimulation is that it is neither spatially 

nor temporally precise. Most of these studies listed above that established causality 

between the neural activity and behavior have stimulated cortical areas with columnar 

architecture. This helped ensure that the spatial spread affected mostly neurons with 

similar preferences. In contrast, for an experiment involving speed perception, in which 

neurons in MT with similar speed tuning do not cluster, the effect of microstimulation 

was much less robust (Liu and Newsome, 2005). Even when performing 

microstimulation experiments with visual features that form columnar architecture, one 

must still be careful. Using too strong a current can activate multiple columns, effectively 

adding noise into the subject’s visual perception (Murasugi et al., 1993). 

Several studies have attempted to accurately measure the extent of spatial spread 

when microstimulating neural tissue. In a technically challenging experiment, Tolias et. 

al. (2005) microstimulated primary visual cortex of a macaque monkey while performing 

functional magnetic resonance imaging (fMRI). Although the blood oxygen level 

captured by fMRI is only an indirect level of neural activity, they reported that even low 

current levels of 10 micro amps applied for four seconds can perturb activity over 5 

millimeters away from the electrode. In a more direct study, Butovas et. al. recorded the 

effect of a electrical stimulation on neural activity using standard multi-electrodes in both 

anaesthetized rat (Butovas and Schwarz, 2003) and awake mouse (Butovas et al., 2006). 

Even low current strength applied for less than a millisecond perturbed neural activity 

one to two millimeters away from the electrode tip. 
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These two studies by Butovas et. al. (2006; 2003) also measured the temporal 

profile that microstimulation had on the nearby neural activity. Perhaps more problematic 

than the large spatial spread, they found that even millisecond-long pulses of 

microstimulation had very long-lasting effects on neural activity. They reported that 

microstimulation initially induced a brief excitatory response, followed by a long a period 

of inhibition (over 100 ms). The observation that microstimulation leads to relatively long 

periods of suppressed neural activity has been previously reported is several studies 

(Berman et al., 1991; Chung and Ferster, 1998; Contreras et al., 1997; Shao and 

Burkhalter, 1996; Shao and Burkhalter, 1999). In a knockdown experiment, Butovas et. 

al. (2006) established that GABAB receptors mediated the inhibition underlying the long 

lasting suppression caused by microstimulation. The long-lasting effect of 

microstimulation on neural activity raises questions of the temporal precision of 

microstimulation that may be of concern for applications such as sensory neural 

prosthetics. 

Recently, there has been much interest in a new method of stimulating neural 

tissue that greatly improves upon the spatial and temporal precision of electrical 

microstimulation. The method relies upon expressing the light gated ion-channel 

channelrhodopsin, usually found in green algae, in targeted neurons (Boyden et al., 2005; 

Li et al., 2005; Nagel et al., 2002; Nagel et al., 2003). Stimulation using light of a certain 

frequency opens the channel, rapidly depolarizing the neuron. This technique permits the 

manipulation of neural activity with temporal precision on the order of milliseconds 

(Boyden et al., 2005). In addition, by expressing the protein only in the desired types of 
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neurons, the spatial spread is known. Recent experiments have demonstrated that 

behavior in transgenic mice (Huber et al., 2008) and Drosophila (Suh et al., 2007) 

expressing the ion-channel can be altered in a predictable manner by photo-stimulation. 

Although this technique holds much promise for preparations involving lower organisms, 

it is currently off-limits to animals where it would be impractical to develop transgenic 

versions, such as primates. Thus, for the moment, electrical stimulation is and will be the 

method of choice to perturb neural activity in primates for the foreseeable future. 

Top-down effects 

To understand how neural activity underlies perception, it is insufficient to 

consider visual processing as a static, bottom-up computation. It is becoming clear that 

the visual system is highly adaptive (Brenner et al., 2000; Kourtzi and DiCarlo, 2006), 

and top-down signals play an important role in shaping our perception (Churchland et al., 

1994; Engel et al., 2001). The most probable reason why top-down signals are required is 

that the visual environment simply contains too much information, and the brain is unable 

to efficiently process it all (Atick, 1992; Van Essen et al., 1992). This has led to a view 

that attention acts to filter non-attended stimuli, while allowing the attended stimulus to 

pass (Chun and Marois, 2002; Chun and Potter, 1995; Verghese and Pelli, 1992). As 

explained below, this view of top downs signals might be over simplistic. The role of the 

visual system is not simply to transmit stimuli through the different stages of cortex, but 

rather to extract useful information from the visual scene; top-down signals determine 

what functions are used to extract this information. 
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Attention and stimulus encoding 

Perhaps the simplest form of top-down processing is spatial attention. Although 

one’s eye might be directed towards one location in visual space, attention can be 

covertly directed to another location. Behavioral performance in a variety of visual 

paradigms is improved when attention is directed towards the location of the stimulus 

(Balz and Hock, 1997; Bashinski and Bacharach, 1980; Carrasco and Yeshurun, 1998; 

Cook and Maunsell, 2002a; Downing, 1988; Muller and Humphreys, 1991). There still 

exists a debate as to whether spatial attention changes how a neuron represents a visual 

stimulus. Many past studies have found that when attention is directed inside the 

receptive field, the neural response is scaled in multiplicative manner, without changing 

the sensitivity of the neuron (Cook and Maunsell, 2004; McAdams and Maunsell, 1999a; 

Treue and Martinez Trujillo, 1999; Treue and Maunsell, 1999). Spatial attention in this 

case can be though of simply turning up the volume of neurons inside the locus of 

attention. 

Other studies have proposed that spatial attention can affect how neurons integrate 

incoming signals (Desimone and Duncan, 1995; Moran and Desimone, 1985; Reynolds et 

al., 1999). More specifically, neurons spike in response to postsynaptic potentials of 

different amplitudes; the proposal is that top-down signals can change these amplitudes 

by different amounts amongst the various input sites. This is consistent with past results 
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that have shown that dendrites can integrate postsynaptic potentials in different fashions 

depending on the context (Gasparini and Magee, 2006; Spruston, 2008).  

In these attention studies mentioned above (Desimone and Duncan, 1995; Moran 

and Desimone, 1985; Reynolds et al., 1999), two stimuli were presented inside a neuron’s 

receptive field, one that was effective at driving the neuron and one that was not. 

Attending to the effective stimulus resulted in a strong neural response, while attending to 

the ineffective stimulus caused a sharp decrease in the response. Thus, it was proposed 

that attention biases the neuron to respond to only one of the two stimuli. This implies 

that attention can alter which inputs a neuron will integrate. However, it was pointed out 

that these results could also be explained by a model in which spatial attention changed 

the gain of upstream neurons encoding the two stimuli (Ghose and Maunsell, 2008). 

Thus, it is still not clear from these studies whether attention can simply affect the gain of 

a neuron or whether it can alter how incoming information is integrated. 

Behavioral context and stimulus encoding 

Another perspective on this issue has been provided by studies that compared 

neural responses between awake and anesthetized subjects, in which top-down signals are 

possibly reduced or eliminated (Lamme et al., 1998; Pack et al., 2001). Both studies 

employed stimuli in which the percept does not match what a neuron would observe 

inside its receptive field. In a study by Lamme et. al. (1998), one stimulus used was a 

random dot field, where for 30 ms, dots inside a square patch (no actual square was 
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shown) would move in one direction and dots outside the square patch would move in the 

opposite direction. This brief movements caused the subject to perceive a square figure 

separated from the background, lasting several hundred milliseconds. Neurons of both 

awake and anesthetized subject’s whose receptive field fell outside the square both 

responded to the transient motion. However, for awake subjects, the response for neurons 

inside the receptive field was much stronger and longer. For anesthetized animals, the 

neural response was the same for neurons inside and outside the square. Thus, anesthesia 

affected how neurons encoded a stimulus if it formed part of a non-local percept. A 

similar result was found by Pack et. al. (2001) in a study on the response of MT neurons 

to plaid and grating stimuli. A grating stimulus is simply a collection of parallel bars that, 

when moving, produce a percept of motion in the direction perpendicular to the bars. A 

plaid stimulus consists of two overlapping grating stimuli at different angles. A moving 

plaid stimulus can produce a motion percept in any direction regardless of the orientation 

of the bars. However, inside an MT neuron’s receptive field, it will see motion in two 

directions, both perpendicular to the orientation of the two sets of bars. MT neurons in 

both awake and anesthetized subjects will respond in a similar fashion to a grating 

stimulus. However, in awake subjects, the MT response to a plaid stimulus will shift from 

encoding the two local directions of motion inside its receptive field to the direction of 

the grating as a whole. This change does not happen for neurons in an anesthetized 

subject. Taken together, these two studies showed that anesthesia could change which 

visual feature is encoded by the neuron if the stimulus formed part of a coherent percept. 

This cannot be explained by a change in gain, and implies that top-down signals can alter 

how neurons integrate incoming neural activity. 
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Further evidence that top-down signals can alter how neurons integrate incoming 

neural activity came from two studies that investigated how a sensory neural response 

was affected by the behavioral demands of the task. In the first, a monkey was cued to 

perform one of two behavioral tasks while neurons in V1 were recorded (Li et al., 2004). 

Neural responses to the same stimulus depended on the task cued to the monkey. 

Additionally, the neural responses became more informative of the behavioral relevant 

aspect of the stimulus. In a similar study, Freedman and Assad (2006) trained a monkey 

associate the direction of a motion stimulus with one of two categories while neural 

activity from MT and LIP was recorded. The neural response of LIP neurons was poorly 

modulated by the motion direction, but strongly modulated by which category the motion 

direction belonged to. The response of MT neurons, on the other hand, was mostly 

modulated by motion direction. After retraining the monkey to associate different motion 

direction with the two categories, the response of LIP neurons adapted to reflect the new 

categories. Once again, these results cannot be explain by a gain change, but can only be 

explained by the behavioral context affecting how neurons integrate incoming activity.    

Furthermore, it must be assumed that top-down signals are required to relay this 

behavioral context to sensory neurons. 

 Finally, additional evidence that top-down signals can modulate how neurons 

integrate information has come from studies involving simple perceptual decisions, not 

necessarily related to attention or top-down signaling. These studies found that the 

neurons most capable of encoding the stimulus given the demands of the task were the 
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neurons most correlated with the perceptual decision (Britten et al., 1996; Dodd et al., 

2001; Law and Gold, 2008; Parker et al., 2002; Purushothaman and Bradley, 2005; Uka 

and DeAngelis, 2004). The popular interpretation of this result is that the neurons more 

informative of the stimulus given the task demands are more influential in forming 

decisions during the task. A modeling study has suggested that weighting the neurons 

differently depending how well they encode the stimulus is necessary to be optimal 

(Jazayeri and Movshon, 2006). Additionally, results from psychophysical showed that 

percept a stimulus is dependent on task demands have provided further evidence for such 

a weighting scheme (Jazayeri and Movshon, 2007a; Jazayeri and Movshon, 2007b). The 

more informative neurons given the task are not innately more heavily weighted, but are 

only properly weighted after extensive training (Law and Gold, 2008). Thus, as the 

performance of the subject improves through out training, the correlation between neural 

sensitivity and its influence in forming the decision increases. Since the more informative 

neurons are obviously dependent upon the behavioral task, top-down signals would most 

likely be required to mediate this weighting scheme. These results build upon the 

proposal of the preceding paragraph in that top-down signals can change how information 

is transformed between cortical areas. 

This thesis, along with many of these past studies mentioned above, rely upon the 

correlation between neural activity and perception to infer how neural activity is pooled 

to form decisions. Because of the importance of this correlation, we proceed in Chapter 2 

to examine whether the correlation is truly an inherent feature in forming perceptual 

decisions, or whether other factors play a role. 
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Chapter 2 


The effect of microsaccades on the correlation between neural 

activity and behavior in areas MT, VIP and LIP 
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Abstract 

It is widely reported that the activity of single neurons in visual cortex is 

correlated with the perceptual decision of the subject. The strength of this correlation has 

implications for the neuronal populations generating the percepts. Here we asked whether 

microsaccades, which are small, involuntary eye movements, contribute to the correlation 

between neural activity and behavior. We analyzed data from three different visual 

detection experiments, with neural recordings from the middle temporal (MT), lateral 

intraparietal (LIP) and ventral intraparietal (VIP) areas. All three experiments used 

random dot motion stimuli, with the animals required to detect a transient or sustained 

change in the speed or strength of motion. We found that microsaccades suppressed 

neural activity and inhibited detection of the motion stimulus, contributing to the 

correlation between neural activity and detection behavior. Microsaccades accounted for 

as much as 19% of the correlation for area MT, 21% for area LIP and 17% for VIP. 

While microsaccades only explain part of the correlation between neural activity and 

behavior, their effect has implications when considering the neuronal populations 

underlying perceptual decisions. 
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Introduction 

Microsaccades are small, involuntary eye movements thought to counteract drift 

of the eyes (Cornsweet, 1956) and visual fading (Martinez-Conde et al., 2006), as well as 

to improve discrimination of high spatial frequencies (Bridgeman and Palca, 1980; Rucci 

et al., 2007). Microsaccades may also increase visual detection thresholds (Ditchburn, 

1955; but see Krauskopf, 1966; Beeler, 1967; Sperling, 1990). In parallel, microsaccades 

have been shown to affect neural activity in the visual system, including in the lateral 

geniculate nucleus (Martinez-Conde et al., 2002), V1 (Leopold and Logothetis, 1998; 

Martinez-Conde et al., 2000; Snodderly et al., 2001), and extrastriate cortex (Bair and 

O'Keefe, 1998; Leopold and Logothetis, 1998). Behavioral and neuronal effects of 

microsaccades have not been examined in the same experiment—but if microsaccades 

can affect both perception and neuronal activity, it is possible that microsaccades could 

contribute to apparent correlations between the two. 

Increasing evidence suggests that the activity of single neurons in visual cortex 

can be correlated with behavioral performance on a trial-by-trial basis. First observed in 

neurons located in the middle temporal (MT) area (Britten et al., 1996), this finding has 

been replicated in a multitude of sensory cortical areas under various experimental 

paradigms (for reviews, see Parker and Newsome, 1998; Romo and Salinas, 2001). The 

strength of the correlation between neural activity and behavior has been termed choice 

probability (CP) for discrimination tasks (Britten et al., 1996) or detect probability (DP) 

for detection tasks (Britten et al., 1996; Cook and Maunsell, 2002b). This correlation has 
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been used to identify which cortical areas are involved in a perceptual decision (Britten et 

al., 1996; Cook and Maunsell, 2002b; Grunewald et al., 2002; Williams et al., 2003; de 

Lafuente and Romo, 2005; Liu and Newsome, 2005; de Lafuente and Romo, 2006; Gu et 

al., 2007), the number of neurons involved or more importantly, correlations between 

these neurons (Shadlen et al., 1996; Bair et al., 2001; Dodd et al., 2001; Schoppik et al., 

2008), how the activity of different neurons are weighted to form the decision (Britten et 

al., 1996; Purushothaman and Bradley, 2005; Uka et al., 2005; Gu et al., 2007) and how 

different phases of neural activity are correlated with detection (Masse and Cook, 2008).  

According to this interpretation, trial-by-trial variation in a neuron’s response to a 

repeated stimulus is assumed to be due to noise. The observation that this variability is 

correlated with the animal’s choice suggests that the brain is “listening to” that neuron (or 

a population of neurons with correlated noise) in order to make the choice. However, one 

must be careful to rule out other sources of correlation between neural activity and 

behavior. For example, trial-by-trial variability in the stimulus could cause correlation 

between activity and behavior (Cook and Maunsell, 2002b). Because microsaccades can 

likewise affect both behavior and neuronal responses, they are another potential source of 

correlation. In this study, we addressed whether microsaccades contribute to the choice-

related correlation in visual and parietal cortex during detection tasks. 

We examined the simultaneous effects of microsaccades on behavior and 

neuronal responses, in three different visual detection paradigms, covering areas MT, LIP 

and VIP, and involving seven macaque monkeys. Examining the effects of microsaccades 
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on both behavior and neuronal responses allowed us to test the hypothesis that the 

correlation between neural activity and perceptual behavior is wholly or partly produced 

by microsaccades. We found that microsaccades inhibited the monkeys’ ability to detect 

the visual stimuli in our three experimental paradigms. We also found that 

microsaccades, on average, suppressed neural activity across the cortical areas examined 

in our study, consistent with past results (Bair and O'Keefe, 1998; Leopold and 

Logothetis, 1998). The effect of microsaccades on detect probability was somewhat 

variable and depended on the brain area and task design. On average, the contribution of 

microsaccades to detect probability ranged from 7 to 19% for area MT, 21% for area LIP 

and 0 to 17% for area VIP depending on the time points analyzed. 
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Methods 

To investigate the effect of microsaccades on neural activity and visual perception, 

we analyzed data from three different motion-detection experiments, all employing a 

random dot stimulus. In the first experiment, two monkeys were trained to respond to a 

transient increase in speed while neural activity was recorded from areas MT and LIP. In 

the second experiment, two monkeys were trained to detect a coherent motion step while 

neural activity was recorded from MT and VIP. In the third experiment, three monkeys 

were trained to detect a brief pulse of coherent motion in two slightly different 

paradigms. Neural activity was recorded from area MT in two of the monkeys. All four 

paradigms (the third experiment had two variations) are outline in Fig. 1. 

Behavioral task for the speed-pulse experiment 

Two monkeys (Macaca mulatta) were trained to perform a spatially cued speed-

pulse detection task. At the beginning of a trial the stimulus consisted of a central fixation 

spot and two annuli, one red and one green, in opposite hemifields at equal eccentricity 

(Fig. 1A). The monkey had to maintain gaze within a fixation window throughout the trial 

(2˚ x 2˚ square, centered on a fixation spot). After the monkey fixated, there was a 500-

ms delay before two fields of coherently moving random dots appeared within the annuli. 

The monkey’s task was to detect a transient increase in the speed (53 ms, 4 video frames) 

of either dot patch and respond by releasing a touch bar within a requisite time window 
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(200 – 600 ms). The color of the fixation point (red or green) cued the monkey as to 

which patch (surrounded by red or green annulus) was more likely to contain the motion 

pulse (85% valid cues, 15% invalid cues). On 40% of trials the fixation point color cue 

switched at an unpredictable time during the trial to indicate that the likely motion pulse 

location had switched. Each trial had at most one cue switch. After an initial fixed delay 

of 400 ms, additional delays until motion pulses and cue switches, as well as between cue 

switches and motion pulses, were selected randomly from an exponential distribution 

(mean = 1 s). This main purpose of the study was to examine effects of switching spatial 

attention, but those results are not relevant to the questions examined here. 

For the analysis of the correlation between microsaccades and behavior (Fig. 3A) 

we only used trials with valid cues. For the analysis of the neural response to coherent 

motion (Fig. 4A-B) or the correlation between neural activity and behavior (Fig. 5A-B) 

we only used trials in which the speed pulse was validly cued to occur inside the neuron’s 

receptive field. 

Visual stimulus for speed-pulse experiment 

Stimuli were presented on a computer monitor positioned 57 cm in front of the 

animal (40˚ x 30˚, 75 Hz refresh, 1152 x 870 resolution). Background luminance was 

near black (0.001 cd/m2). The fixation point was a 0.4 degree diameter red or green circle 
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(luminance in cd/m2: monkey M, red: 2.7, green: 3.0; monkey B, red: 2.4, green: 5.2). 

Dot-patch stimuli consisted of 100% coherently moving, unlimited-lifetime, random dots. 

Dots were squares with 0.1-degree sides, at a density of 7 dots/degree2 and moving at 12 

degrees/second. Dot luminance was 0.01 cd/m2. Annuli surrounding the moving dot 

patches were 0.5 degrees thick and separated from the perimeter of the dot patches by 0.5 

degrees. 

Where possible, dot patches were placed in the center of the receptive field of the 

recorded neuron. The dot-patch motion in the receptive field was set in the neuron’s 

preferred direction as determined by a direction-mapping task that we ran before the main 

task for each neuron. The other dot patch was always placed at the equivalent position 

reflected across the fixation point and had the opposite direction of motion. The size of 

the dot patches was scaled with eccentricity (ranging from 4.5 to 9.4 degrees in 

diameter). The magnitude of the speed pulse was chosen to maintain valid correct 

performance in the target range (65 – 75% correct) and varied from session to session 

(range for monkey B: 1.6x to 2.5x, range for monkey M: 1.35x to 1.7x). 

Data collection for the speed-pulse experiment 

The recording chamber was placed at stereotactic coordinates P3 L10, which 

allowed a dorsal approach to areas MT and LIP. The chamber was outfitted with a guide-
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tube/grid system (Crist Instrument). MRI was used to confirm sulcal anatomy and 

chamber placement. Single unit recordings were conducted using tungsten 

microelectrodes (Frederick Haer & Co, 75 µm diameter, 5 MΩ impedance). Single unit 

action potentials were isolated using a dual window discriminator (Bak Electronics) and 

recorded at 1-ms resolution. Horizontal and vertical eye position were monitored using a 

scleral search coil (Riverbend Instruments) and recorded at 200 Hz. Spike and eye-

position recording, stimulus presentation and task control were handled by a Macintosh 

computer running custom software with a computer interface (ITC-18, Instrutech 

Corporation). 

MT and LIP cells were identified by reference to sulcal anatomy and 

characteristic physiology. MT cells were characterized by highly direction-selective 

receptive fields with diameters roughly equal to eccentricity (Maunsell and Van Essen, 

1983, 1987). LIP cells were characterized by robust, spatially-tuned responses in a 

memory delayed saccade task (Colby et al., 1996). Additionally, cells were considered 

within the target area if they were encountered between cells with characteristic 

properties. All such stably isolated units were recorded. In all, we recorded from 118 LIP 

neurons and from 67 MT neurons. 

Behavioral task for the motion-step experiment 
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The data set analyzed for this study comes from several previous studies (Cook 

and Maunsell, 2002b, a, 2004; Masse and Cook, 2008). Two monkeys were trained to 

perform a spatially cued motion detection task (Fig. 1B). The monkey initiated the trial 

by depressing a lever and fixating upon a central point. The monkeys were trained to 

release a lever when coherent motion began in one of two random dot patches 

diametrically opposite of the fixation point. After the cue was presented, 0% coherent 

motion began in the two patches followed by coherent motion occurring in one of the two 

patches at a random time (flat hazard function) 500 to 8000 ms afterwards. The location 

of the coherent motion was cued to the monkey at the start of the trial with static dots and 

this cue was valid on 80% of the trials. The strength of coherent motion was varied 

between three levels (low, medium and high) with the monkey correctly detecting the 

coherent motion 50%, 90% and 99% of the time for the three levels. The analysis of the 

behavioral effect of microsaccades (Fig. 4B) only used trials with low-level coherent 

motion. Analysis of the effect of microsaccades on neural activity during 0% coherent 

motion used only trials where the monkey was cued to attend inside the neuron’s 

receptive field (Fig 5C-D, left panel) used only used trials where the monkey was cued to 

attend inside the neuron’s receptive field. Analysis involving the neural response to 

coherent motion (Fig. 5C-D, right panel) or the partial correlation analysis (Fig. 6C-D) 

only involved trials using low-level coherent motion that was validly cued to occur inside 

the neuron’s receptive field. 

In all experimental sessions, the direction and the speed of the coherent motion 

were matched to the preferred direction and speed of the neuron under study. The 
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coherent motion lasted 750 ms and the monkey had to release the lever from 200 to 750 

ms after the onset of coherent motion to obtain a reward. Trials where the monkey failed 

to release the lever or released the lever too late were deemed missed trials. Only correct 

and missed trials were included in the analysis. Trials where the monkey released the 

lever too early or was unable to maintain fixation were discarded from the analysis. 

Visual stimulus for the motion-step experiment 

The animal sat 62 cm from a computer monitor (+/-17° × +/-13° of visual angle; 

1600 × 1200 pixels; 75 Hz refresh). The stimuli consisted of two patches of white dots 

(each dot 0.25° diameter; 78 cd/m2) on a dark gray background (12 cd/m2) with a dot 

density of 2.1 dots/degree2. Each patch of dots was updated on every other video frame 

(approximately every 27 ms) using the following procedure. The dots in each patch were 

evenly divided into two groups. On each update, one group was replaced with new, 

randomly positioned dots, whereas dots in the other group were displaced by a fixed 

distance. The dots in this latter group determined the motion coherence. For 0% 

coherence, all the dots in this group moved a fixed distance in a random direction. For 

coherent motion greater than zero, a proportion of the dots moved with a fixed distance in 

the same direction. This proportion determined the strength of the coherent motion. On 

the next update (27 ms later), the groups were switched. This arrangement insured that all 

the dots had a lifetime of four video frames (i.e., two stimulus updates) before they were 

replaced. 
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Data collection for the motion-step experiment 

Recordings were made from well-isolated single neurons in area MT and VIP in 

both animals, using standard extracellular recording techniques (Gibson and Maunsell, 

1997). After a neuron was isolated, the receptive field (RF) was mapped using a manually 

controlled bar while the animal fixated on a central spot. The preferred speed was also 

judged using a bar moved by hand. The animals were trained to perform the task at slow 

or moderate motion speeds, so neurons with a preferred speed between 4 and 12°/sec 

were usually selected. Once the RF location, size, preferred direction, and speed were 

determined, the motion detection task was then run, and the neuron was recorded from 

for as long as possible. The number of completed trials per coherence level for the motion 

detection task ranged from 15 to 175 (median, 35). The monkey’s performance varied 

with patch location, size, and motion speed, which were determined by the response 

properties of the neuron under study. Consequently, different neurons were tested with 

different coherence levels. The animal’s eye position was measured every 5 ms using a 

scleral search coil (Robinson, 1963; Judge et al., 1980) and the times of action potentials 

were recorded to the nearest millisecond. In total, 93 MT and 104 VIP neurons were 

recorded in two monkeys. 

Behavioral task for the motion-pulse experiment 

Data from two different experimental paradigms, both involving the detection of 
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transient motion, were combined for the purpose of this analysis. In the first (Fig. 1C), 

two monkeys were trained to detect a 50 ms coherent motion pulse that occurred in one 

or both random dot patches. Monkeys fixated on a central point and depressed a lever to 

initiate the trial, after which motion in two random dot patches started moving with 0% 

coherence. Dots could either move in the neuron’s preferred or null direction, always by 

the same distance. Coherent motion would then appear in one or both random dot patches 

at a random time (flat hazard function), anytime from 500 to 10000 ms after the start trial. 

The coherent motion lasted 50 ms and was of a consistent strength for each random dot 

patch throughout the experimental session. The ratio of trials with motion in two patches 

to motion in one patch was varied between two to one and four to one. The monkey was 

rewarded with a drop by releasing the lever from 200 to 800 ms after the start of coherent 

motion. 

In the second experiment, a single monkey was trained to detect a 33 ms coherent 

motion pulse in a single random patch. As above, coherent motion would begin at a 

random time from 500 to 10000 ms after the start of the trial, and the monkey had to 

release the lever from 150 to 650 ms after the motion pulse to receive a reward. This 

experiment was used for a microstimulation study, and some trials also contained a 33 ms 

probe of subthreshold microstimulation to area MT or a 33 ms probe of subthreshold 

motion coherence at various times relative to the main motion signal. For the purpose of 

this study, all trials were considered the same for this analysis. 
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Visual stimulus for motion-pulse experiment 

Stimuli were presented on a computer monitor positioned 57 cm in front of the 

animal (120 Hz refresh, 1600 x 1200 resolution). Random dot patches consisted of white 

dots moving in either the preferred or null direction of the neuron, by always the same 

distance. In the first motion-pulse experiment, dots were assigned a probability of moving 

in the preferred direction for each frame, whereas in the second motion-pulse experiment 

the total number of dots moving in the preferred direction was controlled for each frame. 

For example, during 0 % coherent motion, each dot has a 50% probability moving the 

preferred direction whereas in the second experiment, exactly 50% of the dots each frame 

would move in the preferred direction. For both experiments, the direction that a dot 

moved in one frame was not related to its direction for any other frame. If a dot moved 

outside the random dot patch, it would be randomly replotted anywhere in the opposite 

hemifield of the random dot patch. Dots were circles with 0.15-degree radius, at a density 

of 10 dots/degree2. 

Data collection for the motion-pulse experiment 

Recordings were made from well-isolated single neurons in area MT animals 

in the first motion-pulse experiment and from multi-unit activity in area MT in the second 

motion-pulse experiment. The RF was mapped using a manually controlled bar while the 

animal fixated on a central spot. The preferred speed and direction by recording activity 

in response to 100% coherent motion in various speeds and directions while the monkey 
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fixated. Once the RF location, size, preferred direction, and speed were determined, the 

motion detection task was then run, and the neuron(s) was recorded from for as long as 

possible. The monkey’s performance varied with patch location, size, and motion speed, 

which were determined by the response properties of the neuron under study. 

Consequently, different neurons were tested with different coherence levels. The animal’s 

eye position was measured every 5 ms using video-tracking system (ASL 6000, Applied 

Science Laboratories or Eyelink 1000, SR Research). 

Microsaccade detection 

We detected microsaccades in the eye-position records using an adaptation of a 

previously described technique (Martinez-Conde et al., 2000). Since eye positions were 

captured by different methods for each experiment, the parameters used for microsaccade 

detection were adjusted slightly to each one. In all experiments, horizontal and vertical 

eye positions, sampled at 200 Hz, were used to calculate an instantaneous eye velocity. 

The velocity vectors were smoothed by a 25 ms boxcar for the speed pulse and the 

motion-step experiments. The velocity vectors for the 33 ms motion-pulse experiment 

was only smoothed by a 15 ms boxcar since eye positions were filtered with a 100 Hz 

low-pass Butterworth filter during the course of the experiment. The velocity vectors for 

the 50 ms motion-pulse experiment were not smoothed since eye positions were already 

filtered with a 20 Hz low-pass Butterworth filter during the course of the experiment. 
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Instances where the eye speed crossed 8 degrees/second for the motion-step and 

33 ms motion-pulse experiment and 10 degrees/second for the speed pulse and 50 ms 

motion-pulse experiment were considered possible microsaccades. The reason for the 

difference in threshold was that the eye position signal for the motion-step and 50 ms 

motion-pulse experiments was less noisy than the others, and thus microsaccades could 

be detected with greater confidence. 

To be considered a microsaccade, the eye movement had to last at least 10 and no 

more than 300 ms, could not have started within 20 ms of a previous microsaccade, was 

at least 0.05˚ in length, and the eye direction could change no more than 30 degrees every 

5 ms for the duration of the microsaccade. Only events that satisfied all the criteria above 

were deemed microsaccades, and the starting time of the microsaccade was used in all 

further analysis. Accuracy of the saccade algorithm was further confirmed by visual 

inspection of raw eye movement traces for a subset of the data. 
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Results 

We wanted to examine the effects of microsaccades on behavioral choice and 

neuronal firing in visual and parietal cortex, and to determine the extent to which 

microsaccades contributed to the correlation between the two. Our analysis was based on 

three different visual detection tasks. Fig. 1 is a schematic comparing the three tasks. All 

three used random-dot motion as a stimulus; one involved detecting a change in speed 

and two involved detecting a change in motion coherence. Data were collected from three 

different laboratories, using a total of seven macaque monkeys as subjects.

 In the first experiment (speed-pulse experiment, Fig. 1A) (see Methods), the 

monkey had to release a lever in response to a transient (53 ms) increase in speed in one 

of two, 100% coherently moving random dot patches. In the second experiment (motion-

step experiment, Fig. 1B) the monkey had to release a lever in response to the onset of 

coherent motion in one of two, initially 0% coherent, moving random dot patches. The 

third experiment (motion-pulse experiment, Fig. 1C-D) was a combination of two, 

slightly different motion-pulse detection tasks. In the first, the monkey had to release a 

lever in response to a transient (50 ms) pulse of coherent motion in one of two, initially 

0% coherent, moving random dot patches. In the second, the monkey detected a 33 ms 

pulse of coherent motion in a single random dot patch. 

The correlation between neural activity and behavior has frequently been 

measured by employing motion-based stimuli and neural recordings from direction-

64



 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 1 Experimental paradigms. (A) Speed-pulse experiment. The goal of this task was 

to detect a brief speed change. The monkey fixated on a colored fixation spot and two, 

diametrically opposite, colored annuli appeared on the screen. After 500 ms, random dot 

patches with 100% coherent motion appeared inside the annuli. The monkey’s task was 

to release a lever in response to a transient (53 ms) increase in speed at either of the dot 

patches (the speed pulse). The color of the fixation point matched one of the annuli, 

indicating the likely location of the speed pulse. On 40% of trials the fixation point color 

would change mid-trial indicating that the likely speed-pulse location had changed (not 

shown). The monkey had to release a lever within 200-600 ms of the speed pulse to 

obtain a reward. (B) Motion-step experiment. The goal of this task was to detect the 

occurrence of a coherent motion step. The monkey fixated on a central point and a static 

random dot patch appeared indicating the likely position of the coherent motion step. 

Afterwards, two, diametrically opposite random dot patches began moving at 0% 

coherent, with one patch at the location of the static cue. 0% coherent motion was shown 

for a random amount of time between 500 and 8000 ms (flat hazard function), followed 

by a coherent motion step lasting 750ms. The monkey had to release a lever during the 

coherent motion step to obtain a reward. On 20% of the trials the coherent motion step 

occurred in the uncued patch. (C) Motion-pulse experiment #1. The goal was to detect a 

brief coherent motion pulse. After the monkey fixated, 0% coherent motion began in two 

random dot patches located in the same hemifield, each one matched to the preferences of 

two neurons simultaneously recorded. After a random amount of time between 500 and 

10000 ms (flat hazard function), a 50 ms pulse was shown in one or both patches. 

Afterwards, 0% coherent motion would resume. The monkey had to release a lever from 

200 to 800 ms after the start of the motion pulse to obtain a reward. (D) Motion-pulse 

experiment #2. The monkey initiated fixation, followed by 0% coherent motion for a 

random time between 500 and 10000 ms in a single random dot patch. The monkey had 

to release a lever from 150 to 650 ms after a 33 ms pulse of coherent motion. 
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selective neurons (Britten et al., 1996; Bair et al., 2001; Dodd et al., 2001; Cook and 

Maunsell, 2002b; Grunewald et al., 2002; Krug et al., 2004; Uka and DeAngelis, 2004; 

Liu and Newsome, 2005; Purushothaman and Bradley, 2005). By combining data from 

three experiments with different motion-based stimuli along with direction-selective 

neural activity from three cortical areas, we wished to determine the effects of 

microsaccades that may apply broadly to experiments of this nature. 

Microsaccade Properties 

We detected microsaccades in the eye-position records using an adaptation of a 

previously described technique (Martinez-Conde et al., 2000) (see Methods). To confirm 

the accuracy of our microsaccade-detection algorithm, we compared the properties of the 

microsaccades for our three experiments to those of past studies on microsaccades in 

non-human primates (Table 1, Martinez-Conde et al., 2004). Because past studies 

captured the eye position and analyzed the resulting data in different ways, there is 

substantial variability in the reported parameters. Nonetheless, the microsaccade 

parameters from our experiments were consistent with those previously reported. 

Previous studies have described a linear relationship between saccadic peak 

velocity and amplitude that is common to all saccades, including microsaccades (Zuber 

and Stark, 1965; Bahill et al., 1975). Microsaccades that obey this relationship are said to 

fall along the “main sequence”. Fig. 2 is a two-dimensional histogram showing the 

distribution of microsaccade peak velocities and amplitudes for all of the microsaccades 
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Table 1 Microsaccade properties across the three experiments. Maximum and minimum 

values were the extreme values from references collected by Martinez-Conde et. al. 

(2004). 
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Figure 2 Main sequence analysis of the microsaccades collected from the three 

experiments. A small percentage of the microsaccades did not appear within the 

boundaries of the graphs. The two-dimensional histogram of the peak velocity versus 

amplitude for each experiment is shown, with the number of microsaccades per bin 

indicated by grayscale values. Bins with zero frequency are plotted in white and the bin 

with the greatest frequency is shown in black. The two-dimensional histogram of the 

peak velocity (x-axis) versus the amplitude (y-axis) of each microsaccade collected 

during the speed-pulse experiment (A), motion-step experiment (B), 50 ms motion-pulse 

experiment (C), 33 ms motion-pulse experiment (D). The speed-pulse data after a 20 Hz 

low-pass filter was applied to the position signal in order to mimic the data from panel B 

(E). The value for the maximum bin is 100, 166, 216, 241 and 667 for A, B, C, D and E, 

respectively. 
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in each of the three experiments. The number of microsaccades falling in each bin is 

shown by the shade of gray—a bin with a frequency of zero is white and the bin with the 

highest frequency for that experiment is black. Microsaccades were detected by 

smoothing the eye velocity as described in the Methods, but the peak velocity was 

calculated from unsmoothed eye velocity. All three distributions showed a strong linear 

relationship between peak velocity and amplitude (Spearman’s rank correlation 

coefficients of 0.74, 0.73 and 0.77 for the speed-pulse, motion-step and 33 ms motion-

pulse experiments, respectively). However, the distribution of microsaccades for the 50 

ms motion-pulse experiment (Fig. 2C) showed a series of “bands”. These bands were 

separated based on the microsaccade duration, with microsaccades lasting 10 ms in the 

lowest band, those lasting 15 ms in the second lowest, etc. These bands are an artifact of 

filtering the data with a 20 Hz low-pass filter during that experiment (see Methods). They 

arose because the low-pass filtering rendered the eye velocity highly positively auto-

correlated at short time lags. This limited how large the velocity in any given time bin 

could be without the velocity in adjacent time bins crossing the 10 deg/s threshold. As the 

peak velocity increases, adjacent bins are dragged above the detection threshold, 

lengthening the saccade duration in 5 ms increments and leading to discontinuous jumps 

in the saccade amplitude. To confirm this we applied a 20 Hz low-pass filter to the eye 

position data from the speed-pulse experiment, and then detected microsaccades with no 

additional smoothing. The resulting distribution (Fig. 2E) closely resembled the banded 

distribution in Fig. 2C. 
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Although it was reassuring to find linear main sequences and microsaccade 

parameters that fell within previously observed ranges (Table 1), this does not exclude 

the possibility that our algorithm either missed microsaccades, misclassified non-

microsaccade events as microsaccades, or both, especially for the motion-pulse 

experiment. The potential effect of these errors on our results is addressed in the 

Discussion. 

Example trials 

Fig. 3 provides three example trials from the speed-pulse task that illustrate the 

hypothesis that microsaccades can affect behavior and neural activity and can contribute 

to the correlation between the two. Fig. 3A shows data from a long trial with a single MT 

neuron’s response to sustained motion in the preferred direction. The individual spike 

times are denoted by black dots and the instantaneous spike rate by the gray line. During 

this trial there were three microsaccades (asterisks) evident in the eye-speed trace (black 

line). For this neuron, each microsaccade was followed by a brief pause in the spike train. 

Fig. 3B shows data from a trial in which the monkey correctly detected the speed 

pulse, which occurred at the vertical dashed black line. The spike rate increased after the 

speed pulse, possibly contributing to the monkey’s correct detection. Fig. 3C shows data 

from another trial from the same experimental session. In this trial the monkey failed to 

detect the speed pulse. Notably, the monkey happened to make a microsaccade at nearly 

the same time as the onset of the speed pulse. Not only did the animal fail to detect the 
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Figure 3 Three example trials from the same speed-pulse experiment. (A) An example 

trial with three microsaccades (indicated by the asterisks). The black curve shows eye 

velocity that sharply peaks at the time of the microsaccades, while the neural activity is 

shown using both the raster (black dots) and the average spike rate (gray curve). Neural 

activity is suppressed following all three microsaccades. (B) An example correct trial that 

contained no microsaccades. Neural activity increased following the speed pulse (vertical 

dashed line). (C) An example failed trial from the same experimental session. A 

microsaccade was completed just after the speed pulse and resulted in a large reduction in 

neural activity. This example trial suggests a mechanism by which microsaccades might 

simultaneously affect both the neural response to a stimulus and the monkey’s ability to 

perceive the stimulus. 
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speed pulse, but the neural activity was suppressed after the microsaccade, as in panel A. 

If microsaccades inhibit a subject’s ability to detect visual stimuli and at the same time 

suppress neural activity, then it is possible that microsaccades may contribute to the 

detect probability. The goal of this paper is to examine this hypothesis in detail. 

The effect of microsaccades on behavioral performance 

We first determined what effect microsaccades had on the monkeys’ ability to 

detect the different types of visual stimuli employed in the three tasks. Previous reports 

have differed on whether microsaccades modulate visual thresholds, but to our 

knowledge, the effect of microsaccades on detecting motion or speed signals has not been 

examined. 

We measured the effect of microsaccades on the monkeys’ detection performance 

in two different ways. First (Fig. 4A-C, left panel), the microsaccade rate is shown 

relative to onset of the test stimulus (the speed pulse, motion step or motion pulse) for 

trials in which the monkey correctly detected the stimulus (blue) and trials in which the 

monkey failed to detect the stimulus (red). For the experiments employing a pulse 

stimulus (Fig. 4A&C, left panel), the microsaccade rate was higher on failed than correct 

trials for times immediately around the onset of the test stimulus. Similarly, for the 

motion-step experiment (Fig. 4B, left panel) the microsaccade rate was greater on failed 

than correct trials for times after the onset of coherent motion. 
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Figure 4 The effect of microsaccades on the monkeys’ perception. (A) In the left panel, 

the microsaccade rate for correct (blue curve), failed trials (red curve) and all trials (black 

curve) relative to stimulus onset are shown for the speed-pulse experiment. A greater 

number of microsaccades are completed around stimulus onset during failed trials. In the 

right column, the monkey’s ability to detect the stimulus given a microsaccade is 

completed at times relative to stimulus onset is shown. The panel shows that when a 

microsaccade occurs near stimulus onset, the ability to correctly detect the stimulus is 

reduced. (B) Same as above, but for the motion-step experiment. Microsaccades after 

stimulus onset are also associated with a reduction in performance. (C) Same as above, 

but for the motion-pulse experiments. 
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Second, we calculated the monkeys’ detection performance as a function of the 

time of microsaccades relative to the test-stimulus onset (Fig. 4A-C, right panel). That is, 

time 0 refers to trials in which a microsaccade occurred simultaneously with the onset of 

the test stimulus, -200 ms refers to trials in which a microsaccade occurred 200 ms prior 

to the onset of the test stimulus, and so on. For the two experiments employing pulse 

stimuli (Fig. 4A&C, right panel), the monkeys’ exhibited dramatically reduced 

performance when a microsaccade occurred near the time of the test-stimulus onset. In 

contrast, microsaccades occurring more than 200 ms before the test-stimulus onset had no 

effect on performance. For the motion-step experiment (Fig. 4B, right panel), the 

monkeys’ performance was reduced when a microsaccade occurred over period of 

hundreds of ms after stimulus onset. 

These results demonstrate that microsaccades can dramatically reduce 

performance on a range of motion-based visual detection tasks, especially tasks involving 

transient motion stimuli. Importantly, there was no abrupt change in the overall rate of 

microsaccades around the time of test-stimulus onset (thin black curve, Fig. 4A-C, left 

panel). Rather, performance was reduced on that subset of trials in which a microsaccade 

happened to occur, by chance, near the time of the test-stimulus onset. 

The effect of microsaccades on neural activity 

The effect of microsaccades on neural activity in the visual system is variable and 

not completely understood. Generally, studies have found that microsaccades increase 

78



 

 

 

 

 

 

neural activity in early stages of the visual system, including the LGN (Martinez-Conde 

et al., 2002) and V1 (Martinez-Conde et al., 2000; Snodderly et al., 2001), and decrease 

neural activity in later stages, including V2 and V4 (Leopold and Logothetis, 1998). 

However, clear exceptions exist (Leopold and Logothetis, 1998), and care must be taken 

when considering new paradigms. For example, the effect of microsaccades on neural 

activity may depend on the whether a stationary or moving stimulus was presented. In 

area MT, microsaccades have been reported to increase or decrease activity depending on 

the baseline firing rate and on whether the eye movement produced preferred or null 

direction motion (Bair and O'Keefe, 1998). 

We examined the relationship between microsaccades and neural activity for the 

three different tasks and cortical areas. The left column of Fig. 5 shows the average 

neural response aligned on the time of a microsaccade. The neural response for all cells 

was normalized so that average activity before the microsaccade was equal to one. 

Because the test stimulus usually changed the firing rate of the neurons, only 

microsaccades that occurred at least 300 ms before the onset of the test stimulus were 

included in the analyses shown in the left panels in Fig. 5.  

Microsaccades, on average, caused a large decrease in neural activity in the 

speed-pulse experiment for areas MT and LIP (Fig. 5A-B). In these experiments, the 

subjects were always viewing coherent motion in the neuron’s preferred direction. One 

possible reason why microsaccades produced large suppression in neural activity was that 

any eye movement away from the null direction would produce apparent motion in a non-
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Figure 5 The effect of microsaccades on neural activity. Averages were computed for 

each brain area and experiment type. The left column shows the average neural activity 

relative to each microsaccade completed before stimulus onset. Only the responses that 

occurred before the test-stimuli (speed or coherence change) were used. The neural 

response for each neuron was normalized so that its baseline rate was equal to one. The 

right column shows the average neural activity in response to the test stimulus separated 

by whether a microsaccade occurred near stimulus onset. The test stimulus was either a 

speed change (A and B) or a coherence change (C – E). The gray curve shows the 

average activity given a microsacacde occurred from 200 ms prior to 100 ms after 

stimulus onset for the pulse tasks, and from 100 ms prior to 200 ms after stimulus onset 

for the step task. The black curve shows the average activity for trials with no 

microsaccades completed in these windows. Only neurons with at least 10 trials with 

microsaccades completed in these windows and 10 trials without were included. (A) is 

the average response across LIP for the speed-pulse task; (B) average response for area 

MT for the speed-pulse task; (C) the average response for area MT for the motion-step 

task; (D) the average response for area VIP for the motion-step task; (E) the average 

response for area MT for the motion-pulse task. 
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optimal direction. In the other two tasks, microsaccades before the test-stimulus onset had 

either a smaller effect (MT in motion-pulse task, Fig. 5C) or no clear effect (VIP in 

motion-pulse task and MT in motion-step task, Fig. 5D-E). Unlike in the speed-pulse 

task, in these tasks the monkeys viewed 0% coherent motion that did not optimally drive 

the recorded neurons and therefore apparent motion induced by microsaccades had less 

net effect on the response. However, it is possible that microsaccades affect neural 

activity by other mechanisms. For example, the suppression in neural activity in LIP 

neurons (Fig. 5A) appeared to begin before the microsaccade which is not consistent with 

a response to a microsaccade-induced motion signal. 

Although microsaccades had little or no effect on neural activity for the tasks 

where the monkey viewed 0% coherent motion before the test-stimulus onset (Fig. 5C-E, 

left column), they may have had a stronger effect on the response to the test stimulus, 

which is the key parameter in determining detect probability. To examine the effect of 

microsaccades on the response to the test stimulus we used a different approach. In the 

right column of Fig. 5, we show the average neural responses aligned to the onset of the 

test stimulus. Trials were averaged separately depending on whether there was a 

microsaccade (grey curve) or no microsaccade (black curve) “near” the time of the test-

stimulus onset. To obtain an accurate measurement of the neural response, we only 

included neurons that had at least 10 trials with microsaccades near test-stimulus onset 

and 10 without. This condition was satisfied by 67 LIP and 47 MT neurons from the 

speed-pulse experiment, 28 MT and 29 VIP neurons from the motion-step experiment 

and 49 MT neurons from the motion-pulse experiment. For the two experiments with 
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transient test stimuli (the speed-pulse and motion-pulse experiments), the two trial types 

were separated based on whether a microsaccade occurred from 200 ms before to 100 ms 

after the test-stimulus onset. For the motion-step experiment the window was from 100 

before to 200 ms after test stimulus onset. These windows were selected based on the 

results in Fig. 4, and represent the time windows for each task in which microsaccades 

affected detection of the test stimulus. For all three experiments and cortical areas, we 

found that, on average, the neurons increased their firing rate in response to the test 

stimulus. Moreover, the neural responses to the test stimuli were greater when no 

microsaccade occurred near the time of the test-stimulus onset. 

To quantify the difference between the neural responses to the stimulus with and 

without microsaccades, we used an ROC analysis (Green and Swets, 1966). For the two 

experiments with transient test stimuli, we measured the spike count from 50 to 200 ms 

after test-stimulus onset. For the motion-step experiment, we extended this window from 

50 to 300 ms after test-stimulus onset. The area under the ROC curve provides a 

nonparametric index of the separation between the spike-count distributions for trials 

with microsaccades versus trials without microsaccades. Values above 0.5 indicate that 

the spike count is on average greater when no microsaccades occurred near stimulus 

onset. For all experiments and brain areas, the average AROC (area under the ROC 

curve) values were above 0.5, indicating that microsaccades were associated with a 

reduced neural response to the test stimulus (speed-pulse experiment: LIP, AROC = 

0.666, p < 0.001; MT, AROC = 0.602, p < 0.001; motion-step experiment: MT, AROC = 

0.546, p = 0.056; VIP, AROC = 0.568, p = 0.023; motion-pulse experiment: MT, AROC 

83



 

 

  

 

 

 

  

 

 

= 0.524, p = 0.048, all statistical tests two-sided t-tests unless otherwise specified). These 

results are consistent with the interpretation that at least some of the suppression in 

activity is the result of a less-preferred apparent motion signal caused by microsaccades 

(Bair and O'Keefe, 1998), but we cannot exclude the possibility that microsaccades 

affected neural activity through other mechanisms. 

The correlation between microsaccades, neural activity and behavioral performance 

We have shown that, on average, microsaccades decrease both detection 

performance and neural responses across three motion-based detection tasks. It follows 

that microsaccades may contribute some correlation between neural activity and 

behavior. To examine this, we calculated the partial correlation between behavioral 

performance, the presence of microsaccades and the neural response. Partial correlation 

provides a measure of the correlation between each pair of variables after removing the 

effect of the third. 

Each of our detection tasks had two measures of behavior: detection performance 

(correct or failed) and reaction time. For each measure of behavior, we computed the 

partial correlations between neural activity, microsaccade occurrence and behavior (Fig. 

6). We took the neural activity as the number of spikes that occurred in the 100 ms prior 

to each time point, and we took the number of microsaccades as that occurring from 100 

to 200 ms prior to each time point. The partial correlations were computed at 10 ms 

intervals relative to stimulus onset. 
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Figure 6 The partial correlations between microsaccades, neural activity, and perception. 

The partial correlation analysis was performed at 10 ms intervals relative to stimulus 

onset and averaged across all neurons for each condition. Perception was either measured 

as the behavioral response (correct = 1, failed = 0, shown in the left column), or the 

reaction time for correct trials (right column). The blue curve shows the partial 

correlation between neural activity and perception with the effects of microsaccades 

removed. The red curve shows the partial correlation between neural activity and 

microsaccades with the effect of perception removed. The green curve shows the partial 

correlation between microsaccades and perception with the effect of neural activity 

removed. The neural activity was the number of spikes in the previous 100 ms and the 

number of microsaccades from 100 to 200 ms prior to each point was used in the 

calculation. The horizontal black and grey bars give the windows used to count spikes 

and microsaccades, respectively, for Fig. 7 and the ROC analyses of the effect of 

microsaccades on neural activity. (A) Speed pulse – LIP; (B) speed pulse – MT; (C) 

motion step – MT; (D) motion step – VIP; (E) motion pulse – MT. 
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In the left column, the partial correlation between microsaccades and behavior 

(green curve) shows that the presence of microsaccades around the test-stimulus onset 

was negatively correlated with detection of the test stimulus, indicating that 

microsaccades were associated with reduced detection performance. In the right column, 

the presence of microsaccades around the test-stimulus onset was usually positively 

correlated with reaction times (Figs. 6C-E), indicating that microsaccades were 

associated with a delayed behavioral response. These results were consistent with the 

results of Fig. 4. 

The partial correlation between microsaccades and neural activity is shown by the 

red curve in Fig. 6. For the speed-pulse task, the partial correlation between activity and 

microsaccades was consistently below zero, confirming that microsaccades were 

associated with a strong decrease in activity independent of time relative to the test-

stimulus onset. For the other two experiments, this partial correlation was only 

marginally negative prior to stimulus onset. However, the value decreased after the onset 

of the test stimulus, when coherent motion was presented in the preferred direction for 

the neurons. This further suggests that the suppression of neural activity by 

microsaccades was stronger when the monkey was viewing a stimulus moving in the 

neuron’s preferred direction. There results are consistent with the results from Fig. 5. 

Lastly, we show the partial correlation between neural activity and behavior after 

removing the effects of microsaccades (blue curve). In all experiments, there remained a 
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robust positive correlation between neural activity and detection performance (left 

column) and a negative correlation between neural activity and reaction time (right 

column). Thus after removing the effects of microsaccades, greater neural activity is still 

associated with a correct behavioral response and shorter reaction times on a trial-by-trial 

basis. Although microsaccades affected both neural activity and detection, their effect 

cannot entirely account for the choice-related correlation between the two. This would 

suggest that while microsaccades might contribute to the detect probability, detect 

probability is not solely due to microsaccades. We confirmed this in the following 

analysis. 

The contributions of microsaccades to the detect probability 

Detect probability, which is similar to the AROC metric above, has been widely 

used to quantify the relationship between neural activity and behavioral outcome. 

Whereas the partial correlation analysis in Fig. 6 measures the strength of the linear 

relationship between spike rate and detection performance, the detect probability is a 

nonparametric measure of this relationship that corresponds to the probability that a 

randomly chosen spike rate from a correct trial is greater than a randomly chosen spike 

rate from a missed trial. We chose to compute detect probability to facilitate comparison 

with previous studies describing correlations between neural responses and behavior. 

However, using other metrics to express the link between neural activity and behavioral 

performance, such as d' or differences in median spike rate, produced very similar results. 
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To determine the effect of microsaccades on detect probability, we calculated the 

detect probability twice—with all trials included and with only those trials that did not 

have a microsaccade near the time of the test-stimulus onset (Fig. 7). We used the same 

windows to count spikes and microsaccades as those used in the ROC analysis of the 

effect of microsaccades on neural activity (see above). These windows are indicated by 

the black and grey horizontal bars in Fig. 6. Since the probability of a microsaccade in 

these windows was small on any given trial, we required a sufficient number of correct 

and failed trials to measure the effect of microsaccades on detect probability. Thus we 

only included neurons with at least 15 correct and 15 failed trials regardless of whether 

microsaccades occurred. 

To express the change in detect probability as a percentage, we first subtracted 0.5 

from both detect probability values to “zero” the detect probability. We were mindful that 

detect probability is limited to values between 0 and 1, and is consequently highly 

nonlinear for values near 1. However, over the range of detect probabilities in our data 

(0.55 – 0.65), the detect probability is linearly related to d' or difference in median spike 

rate and the percentage-change values reported here are equivalent for any of those 

metrics. 

In all three cortical areas and detection tasks, we found that removing trials 

containing microsaccades reduced the detect probability (Fig. 7). For the speed-pulse 

experiment, eliminating trials with microsaccades reduced the detect probability (DP) by 

19% for MT and by 21% for LIP (Fig. 7A-B, MT, all trials, mean DP = 0.558, trials 
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Figure 7 The detect probability with and without the effect of microsaccades. The 

histograms show the difference between the detect probabilities calculated using all trials 

and using trials with microsaccades near stimulus onset excluded. Detect probability was 

computed either using all trials or removing trials where a microsaccade was completed 

near stimulus onset. Only neurons with 15 correct and failed trials were included in this 

analysis. For the speed-pulse and motion-pulse experiment, trials were removed if a 

microsaccade occurred from 200 ms before to 100 ms after the stimulus onset. For the 

motion-step experiment the window was 100 ms before to 200 ms after for (C) and (D) 

and from 200 ms before to 50 ms after for (E). (A) Speed pulse – LIP; (B) speed pulse – 

MT; (C) motion step – MT; (D) motion step – VIP, late window; (E) motion step – VIP, 

early window ; (F) motion pulse – MT. 
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without microsaccades, mean DP = 0.547, p = 0.002; LIP, all trials, mean DP = 0.584, 

trials without microsaccades, mean DP = 0.566, p < 0.001). In the motion-step 

experiment, the decrease in detect probability was 19% in MT (Fig. 7C, all trials, mean 

DP = 0.588, trials without microsaccades, mean DP = 0.571, p = 0.016). However, using 

the windows defined above, we did not find any change in the detect probability for area 

VIP (Fig. 7D, all trials, mean DP = 0.632, trials without microsaccades, mean DP = 

0.633, p = 0.89). 

Given that microsaccades suppressed neural activity in VIP during coherent 

motion, we were surprised that eliminating microsaccade-containing trials did not alter 

the detect probability. VIP is known to exhibit strong responses correlated with 

perceptual choice, which may be due to feedback (Cook and Maunsell, 2002b). One 

possibility is that this feedback could have overwhelmed the effect of microsaccades on 

neural activity. We thus repeated the detect probability calculation for VIP using a spike 

window of 50 to 150 ms after motion onset and a microsaccade window from 200 ms 

prior to 50 ms after motion onset. We reasoned that truncating the spike window at 150 

ms would reduce the potential contribution of feedback on the detect probability. Using 

these new windows, eliminating trials with microsaccades reduced the detect probability 

in VIP by 17% (Fig., 7E, all trials, mean DP = 0.558, trials without microsaccades, mean 

DP = 0.548, p = 0.035). 

Lastly, in the motion-pulse experiment eliminating trials with microsaccades 

reduced the detect probability by a relatively smaller yet still significant 7% in area MT 
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(Fig. 7F, all trials, mean DP = 0.560, trials without microsaccades, mean DP = 0.556, p = 

0.002). 

One possibility is that the observed decrease in detect probability is solely the 

result of reducing the number of trials in the analysis, and not a specific effect of 

removing trials with microsaccades. In theory, reducing the number of trials should not 

bias the outcome one way or another, although it will reduce the reliability of the 

measurement. To confirm this assumption, we performed a resampling analysis. For each 

neuron, we calculated the detect probability after eliminating a set of random trials equal 

to the number eliminated in the original microsaccade elimination analysis. We repeated 

this calculation 10,000 times for each neuron and took the mean value. As expected, 

eliminating the trials did not bias our population estimate of detect probability for any of 

the experiments (range of mean change in DP, -2x10-5 to 4x10-4). 

The contribution of microsaccades to neuronal variance 

We have shown that the paired effect of microsaccades on neural activity and 

behavior can contribute up to 20% of the observed correlation between the two. This 

suggests that microsaccades are a significant source of behaviorally relevant neuronal 

covariance in our tasks. It does not necessarily follow, however, that microsaccades are a 

significant source of neuronal response variance in general. In fact, previous studies 

addressing this question have produced conflicting results (Gur et al., 1997; Bair and 

O'Keefe, 1998). To quantify the contribution of microsaccades to spike-rate variance we 
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calculated the variance-to-mean ratio (Fano factor) for correct trials with and without 

microsaccades. The time windows for detecting microsaccades and measuring the neural 

response were the same as those described above. For the speed-pulse task, elimination of 

trials with saccades produced a small but significant reduction in Fano factor for both MT 

(Fano factor ± SE, all trials, 1.27 ± 0.07, trials without microsaccades, 1.26 ± 0.06, paired 

t-test p = 0.015) and LIP (all trials, 1.213 ± 0.055, trials without microsaccades, 1.207 ± 

0.055, p = 0.002). For the motion-step task there was a small, but not significant change 

for MT (all trials, 1.30 ± 0.09, trials without microsaccades, 1.23 ± 0.08, p = 0.19) and for 

VIP (all trials, 1.49 ± 0.09, trials without microsaccades, 1.47 ± 0.09, p = 0.41). The 

result was similar for the motion-pulse task in MT (all trials, 1.73 ± 0.15, trials without 

microsaccades, 1.72 ± 0.15, p = 0.25). 
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Discussion 

We examined the effect of microsaccades on neural activity and behavioral 

performance in three motion-based detection tasks and estimated the contribution of 

microsaccades to the correlation between neural firing and behavior. We found that 

microsaccades were associated with significantly reduced detection performance for 

transient changes in speed or coherency or sustained changes in coherency. 

Microsaccades were also associated with slower response times. Additionally, in all three 

experiments, we found that microsaccades suppressed neural activity during stimulus 

presentation. All together, the dual effect of microsaccades on neurophysiology and 

behavior contributed 7–19% of the detect probability in area MT, 21% in area LIP, and 

up to 17% in area VIP, depending on the time windows used for the analysis. The 

observation that neural activity and behavior are correlated has profoundly shaped our 

view of visual system function. Our observation that microsaccades can account for up to 

one-fifth of this correlation between neural activity and behavior is surprising and may 

have implications for how these data are used to constrain neural models of the neural 

signals underlying sensory perception. 

Accuracy of microsaccade detection 

Low amplitude, brief events such as microsaccades are inherently difficult to 

detect and characterize. Although we believe our detection algorithm was robust, it is 

possible that some microsaccades went undetected or that non-microsaccade eye-
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movement signals were misclassified as microsaccades. Critically, neither type of error 

would be expected to produce our findings. For example, when calculating the detect 

probability we separated trials based on whether they contained a microsaccade near 

stimulus onset (Fig. 6). If the algorithm missed a microsaccade, and accidentally included 

the trial in the no-microsaccade group, the detect probability of that group should 

increase, reducing our estimate of microsaccades’ contribution to the detect probability. 

Alternatively, if the algorithm improperly classified an event as a microsaccade (akin to 

randomly eliminating a trial from the no-microsaccade group), this would not bias our 

estimate of the microsaccade-free detect probability in either direction, although it would 

make our estimate of the underlying value less reliable. Therefore, with respect to errors 

in microsaccade detection, our estimate of the contribution of microsaccades to detect 

probability could be considered a lower bound. 

On the other hand, we do not believe that we greatly underestimated the 

contribution of microsaccades to the detect probability. Our velocity thresholds for 

detecting microsaccades (between 8 and 10 degrees/second) were chosen to be consistent 

with past studies (Bair and O'Keefe, 1998; Leopold and Logothetis, 1998), and the rate of 

microsaccades in our three experiments (0.3 - 1.3 Hz) was in the range of previous 

observations (Table 1). However, we were curious to know what effect a higher 

microsaccade rate might have on the detect probability. Shifting these thresholds more 

than a couple of degrees/second only reduced the contribution that microsaccades made 

to the detect probability (data not shown). Therefore, we do not believe that we have 
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grossly underestimated the contribution of microsaccades to the correlation between 

neural activity and behavior. 

Variability of the effect of microsaccades on detect probability 

The effect of microsaccades on detect probability varied among the different 

experiments and cortical areas: we found the strongest effects for MT and LIP in the 

speed-pulse experiment as well as MT for the motion-step experiment, differing effects 

on VIP depending on which time windows were considered and a small effect for area 

MT in the motion-pulse experiment (Fig. 6). However, these apparent differences should 

be treated cautiously. Undoubtedly, a main source of variability is that the data were 

collected from different animals in different laboratories using slightly different 

methodologies. While this experimental diversity generally underscores the robustness of 

our findings, it likely accounted for some of the variability in the findings. For example, 

the smaller effect on detect probability that we found for the motion-pulse experiment 

may be because we used a video-tracking system to measure eye position. The system 

was not optimally calibrated to detect small, rapid eye movements, so we had less 

confidence in our ability to detect microsaccades for that experiment. Nonetheless, 

despite experimental differences, it is remarkable that microsaccades contributed a 

relatively consistent amount to the detect probability in all three cortical areas. 

For VIP during the motion-step experiment, microsaccades contributed almost 

nothing to the detect probability when counting spikes from 50 to 300 ms after the onset 
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of coherent motion, but contributed about 17% when spikes were only counted from 50 

to 150 ms. One possible explanation is that decision-related “feedback”, which is 

prominent in VIP (Cook and Maunsell, 2002b), might have overwhelmed any effect 

microsaccades had on the detect probability by providing a much stronger source of 

behaviorally correlated, neural activity. By limiting the window used to count spikes to 

immediately after test-stimulus onset, we likely reduced any potential role for feedback. 

Microsaccades, saccadic suppression and the reduction in detection performance 

Subjectively, we do not perceive the world to move during microsaccadic eye 

movements. This suggests that there are compensatory mechanisms to counter the motion 

signals that microsaccades generate (Murakami and Cavanagh, 1998, 2001). This 

compensatory mechanism might interfere with a subject’s ability to detect a motion 

stimulus near the time of the microsaccade, leading to the observed reduction in 

performance. However, studies of the impact of microsaccades on visual detection tasks 

have produced contradictory results, with some reporting increased detection thresholds 

(Ditchburn, 1955; Beeler, 1967) and others reporting no change (Krauskopf, 1966; 

Sperling, 1990). Unlike our experiments, these studies examined detection thresholds for 

flashed stimuli. It is possible that motion detection is specifically suppressed during 

microsaccades. This suppression could be particularly pronounced during the highly 

trained and difficult motion-detection tasks that we used in our study. It would be 

interesting to examine the effects of microsaccades on neural responses and behavior in 
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other visual tasks that do not employ a motion stimulus, or which do not require a 

difficult detection of a threshold motion stimulus.  

Another interesting question is whether our findings on microscaccades extend to 

saccades, which are larger, voluntary eye movements. Saccades produce full-field 

apparent motion of the visual scene, which is generally not perceived despite being well 

within the detection capability of our motion system. The perceptual suppression of 

saccade-induced motion, termed saccadic suppression, is thought to be secondary to a 

more general suppression of visual perception at the time of the saccade, though the 

neural mechanisms and functional significance of this phenomenon remain a matter of 

debate (Castet et al., 2001; Ross et al., 2001; Wurtz, 2008). Saccades are known to raise 

visual detection and discrimination thresholds for a variety of stimuli, with the strongest 

suppression for high luminance and low spatial frequency stimuli (Burr et al., 1982; Burr 

et al., 1994; Ross et al., 2001; Wurtz, 2008). Saccades also markedly impair motion 

perception (Bridgeman et al., 1975; Burr et al., 1982; Shioiri and Cavanagh, 1989; Ilg 

and Hoffmann, 1993; but see Castet and Masson, 2000). 

Saccades and microsaccades share a fixed relationship between saccadic peak 

velocity and amplitude (the main sequence), suggesting a final common neural pathway 

(Zuber and Stark, 1965). However, microsaccades are distinct in that they are 

involuntary, although trained subjects have a limited capacity to suppress them 

(Martinez-Conde et al., 2004). In addition, studies of saccadic effects on perception have 

employed saccades of at least several degrees in length. Findings for microsaccades, 
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which are usually less than a degree in length, may be quantitatively or qualitatively 

different. Nonetheless, it would be interesting in the future to examine if our findings for 

microsaccades extend to saccades. 

Extension of our findings to other paradigms 

We observed that microsaccades reduced detection performance and, on average, 

suppressed neural firing during our tasks. The two effects were correlated on a trial-by-

trial basis, so that microsaccades contributed positively to the magnitude of the 

correlation between activity and behavior. Minimally, our findings serve as a caution that 

microsaccades should be taken in to consideration when measuring correlations between 

neuronal activity and behavior. However, our specific results may not extend to all such 

experiments. For example, in our design, we used test stimuli that were chosen to match 

the recorded neuron’s preferred direction, and we thus expected the test stimulus to 

trigger an increase in the neuron’s response – which we found. Consider a hypothetical 

experiment in which motion in the preferred direction is followed by a test stimulus in a 

less-preferred direction. In such an experiment the neuron’s expected response would be 

a decrease in firing. If, as we observed, microsaccades suppressed neural firing and 

decreased behavioral detection, we would instead expect microsaccades to decrease the 

magnitude of the correlation between activity and behavior. 

There have been many studies with motion-based stimuli that measured choice 

probability in two-alternative forced-choice paradigms (e.g., Britten et al., 1996; Dodd et 
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al., 2001; Grunewald et al., 2002; Williams et al., 2003; Huk and Shadlen, 2005; Liu and 

Newsome, 2005; Purushothaman and Bradley, 2005). Could microsaccades have made a 

similar contribution to these results? Few previous studies have considered this issue. 

Dodd et al. demonstrated that the direction of microsaccades did not correlate with the 

animal’s choice, but did not assess whether they impact the animal’s behavior in other 

ways (by degrading accuracy, for example). As our values of detect probability were in 

the range of those reported for choice probability in these previous studies, even if 

microsaccades made a similar contribution it is unlikely that they would have 

significantly altered the main conclusions of these studies. In theory, microsaccades 

could have had a more significant impact in other studies that reported smaller choice-

probability values for V2 (Nienborg and Cumming, 2006) and V1 (Palmer et al., 2007). 

However, these experiments did not involve motion stimuli. Moreover, one of these 

studies (Nienborg and Cumming, 2006) examined the possible effect of microsaccades 

(although in different a manner than ours) and found no contribution. 

Thus it is not clear what impact microsaccades should be expected to have on 

choice probability. Although choice probability and detect probability are analogous 

quantities, there are critical distinctions in the associated paradigms. Consider a two-

alternative forced-choice task in which the monkey must report whether low-coherence 

motion was in one of two opposed directions. First, consider the case where there is no 

relation between the frequency or direction of microsaccades and the choice of the 

subject. For example, microsaccades, regardless of direction, may not bias the subject 

towards one choice or the other but simply result in more incorrect choices. In this case, 
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microsaccades would tend to decrease the measured choice probability by introducing 

spike-rate variance that was not correlated with behavioral choice. Alternatively, consider 

the case where the frequency or direction of microsaccades influences the subject’s 

choice. This would be the case if microsaccades produced a direction-specific neural 

response and a motion percept that biased the subject’s choice depending on 

microsaccade direction. In this case, microsaccades would tend to increase the measured 

choice probability (assuming the neural and perceptual effects were aligned). One could 

easily imagine other scenarios where the effect of microsaccades on choice probability 

would be task and stimulus dependent. 

The observation that single-trial responses from individual neurons are correlated 

with behavioral choice almost certainly requires that trial-by-trial variance in neural 

responses are correlated across many neurons (Shadlen et al., 1996), which has been 

demonstrated in a limited manner through paired recordings (Zohary et al., 1994). This 

correlation may arise from many possible sources including intrinsic properties of the 

neural networks, variance in the stimulus, feedback activity related to choice, fluctuations 

in attention or vigilance and, as we have demonstrated here, eye movements. The nature 

of the causal link between this correlated neural response variance and behavior is the 

critical question common to all choice- or detect-probability results. For example, in our 

experiments it is possible that microsaccades cause parallel, unrelated effects on detection 

behavior and neuronal firing. In this case the effect of microsaccades on detect 

probability might be described as “artifact”. It is also possible that behavioral effects of 

microsaccades are mediated in part or solely through the firing of neurons such as those 
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recorded in this study. In this case, microsaccades might be considered a bona fide source 

of noise that influences behavior by modulating the firing of those neurons. While our 

experiment did not address this issue directly, our partial correlation analysis suggested 

that at least some of the effect of microsaccades on behavior was independent of the 

firing of single neurons. These questions point to the importance of better understanding 

the sources of variation in sensory encoding that lead to variation in behavior. Our 

findings suggest that microsaccades may be one such source of variation. 
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Chapter 3 

The effect of MT spike phase on sensory encoding and correlates 

with behavior during a motion detection task 

. 
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Abstract 

Past studies have shown that sensory neurons that are the most informative of the 

stimulus tend to be the best correlated with the subject’s perceptual decision. We wanted 

to know if this relationship might also apply to short time segments of a neuron’s 

response. We asked if spikes that conveyed more information about a motion stimulus 

were also more tightly linked to the perceptual behavior. We examined single neuron 

activity in area MT while monkeys performed a motion-detection task. Due to a slow 

stimulus update (every 27 ms), activity in many MT neurons was entrained and phase-

locked to the stimulus. These stimulus-entrained neuronal oscillations allowed us to 

separate spikes based on phase. We observed a large amount of variability in how spikes 

at different phases of the oscillation encoded the stimulus, as revealed by the spike-

triggered average of the motion. Spikes during certain phases of the cycle were much 

more informative about the presence of coherent motion than others. Importantly, we 

found that the phases that were the most informative about the motion stimulus were also 

more correlated with the behavioral performance and reaction time of the animal. Our 

results suggest that the relationship between a neuron’s spikes, the stimulus and behavior 

can vary on a time scale of tens of milliseconds. 
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Introduction 

How is the activity of neurons in the sensory areas of cortex related to our 

perceptual abilities? This question is fundamental to the broader understanding of how 

the brain underlies behavior (for reviews, see Parker and Newsome, 1998; Romo and 

Salinas, 2001). Past studies have shown that the activity of many cortical sensory neurons 

covaries with the behavior of animal subjects performing perceptual tasks (Celebrini and 

Newsome, 1994; Britten et al., 1996; Dodd et al., 2001; Cook and Maunsell, 2002b; 

Parker et al., 2002; Uka and DeAngelis, 2004; de Lafuente and Romo, 2005; Nienborg 

and Cumming, 2006), but see (de Lafuente and Romo, 2005). Importantly, the correlation 

between neuronal activity and perceptual choice tends to be strongest for neurons that are 

the most informative about the stimulus (Celebrini and Newsome, 1994; Britten et al., 

1996; Cook and Maunsell, 2002b; Parker et al., 2002; Purushothaman and Bradley, 

2005). This result suggests that a subject’s perceptual choice is preferentially based on 

the activity of a subset of neurons that convey the most reliable task-related information. 

The link between perception and neural activity has typically been studied in the 

context of a neuron’s spike rate. However, many other possible stimulus-coding 

strategies have been examined. For example, different components of a neuronal 

response, such as the onset, sustained and offset portions, have been shown to encode 

different aspects of the stimulus (Lamme, 1995; Gawne et al., 1996; Friedrich and 

Laurent, 2001; Pack and Born, 2001; Reich et al., 2001; Bair et al., 2002; Shapley et al., 

2003; Hegde and Van Essen, 2004; Roelfsema et al., 2007). Furthermore, many studies, 
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both theoretical (Hopfield, 1995; Thorpe et al., 2001; Mehta et al., 2002; Chacron et al., 

2004; Guyonneau et al., 2005; Gutig and Sompolinsky, 2006) and experimental 

(Celebrini et al., 1993; O'Keefe and Recce, 1993; Konig et al., 1995; deCharms and 

Merzenich, 1996; Gawne et al., 1996; Victor and Purpura, 1996; de Ruyter van 

Steveninck et al., 1997; Mechler et al., 1998; Fries et al., 2001; Lu et al., 2001; Johansson 

and Birznieks, 2004; Chacron et al., 2005; Womelsdorf et al., 2006; Fries et al., 2007; 

Sadeghi et al., 2007) have proposed that the timing of action potentials plays a role in 

stimulus coding. These results raise the possibility that some spikes carry more 

information about a behaviorally relevant stimulus than others. Thus, if the most 

informative neurons exert greater influence on perceptual choice, do the most informative 

spikes also have a greater influence on perceptual choice? 

Addressing this hypothesis would seem challenging because estimating the 

sensory information contained in a single spike is not readily possible. However, we 

were able to approach this question using data from a motion detection experiment where 

the visual motion stimulus was updated at a slow enough rate (approximately every 27 

ms) to induce oscillations in the activity of Middle Temporal (MT) neurons. From these 

neuronal oscillations, we were able to group spikes based on phase and then ask if 

sensory and choice-related information varied as a function of phase.  

Using two measures of sensory encoding (spike-triggered average and 

neurometric value), we found that spikes encoded a motion stimulus differently 

depending on the phase of the neuronal response. Additionally, spikes that occurred 
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during the phases that were most informative about the motion stimulus were also more 

correlated with both the perceptual choice and reaction time of the animal. Our analysis 

suggests that the link between the activity of single neurons and perceptual choice can 

vary on a relatively fast timescale of tens of milliseconds. 
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Methods 

Behavioral task 

The data set analyzed for this study comes from several previous studies (Cook 

and Maunsell, 2002a, 2004). Monkeys (Macaca mulatta) were trained to perform two 

variants of a motion detection task. In the first set of experiments, the animals performed 

a spatially cued motion detection task (Figure 1A). The trial began when the monkey 

depressed a lever and fixated on a central point. The goal of the task was to release the 

lever when coherent motion began in one of two random dot patches diametrically 

opposite of the fixation point. After the cue was presented, 0% coherent motion began in 

the two patches followed by coherent motion occurring in one of the two patches at a 

random time (flat hazard function) 500 to 8000 ms afterwards. The location of the 

coherent motion was cued to the monkey at the start of the trial with static dots and this 

cue was valid on 80% of the trials. Trials with invalid cues were discarded for this 

analysis. The strength of coherent motion was varied between three levels (low, medium 

and high), with the monkey correctly detecting the coherent motion 50%, 90% and 99% 

of the time for the three levels. The coherence levels for each experiment were adjusted 

depending on the eccentricity, speed and radius of the random dot patch in order to 

produce the target performance. 93 MT neurons were recorded in two monkeys. 

The second set of experiments (Figure 1B) was similar to the first except that only 

a single random dot patch was presented and only two coherence levels (low and high) 
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were used. 25 MT neurons were recorded for this stimulus configuration in one monkey.  

The correlations between the neuronal response and the animal’s behavioral performance 

was not appreciably different between the single and double patch experiments (Cook 

and Maunsell, 2002b). 

In both sets of experiments, the direction and the speed of the coherent motion 

were matched to the preferred direction and speed of the neuron under study. The 

coherent motion lasted 750 ms and the monkey had to release the lever from 200 to 750 

ms after the onset of coherent motion to obtain a juice reward. Trials where the monkey 

failed to release the lever or released the lever too late were deemed missed trials. Only 

correct and missed trials were included in the analysis. Trials where the monkey released 

the lever too early or was unable to maintain fixation were discarded from the analysis. 

Visual stimulus 

The animal sat 62 cm from a computer monitor (+/-17° × +/-13° of visual angle; 

1600 × 1200 pixels; 75 Hz refresh). The stimuli consisted of two patches of white dots 

(each dot 0.25° diameter; 78 cd/m2) on a dark gray background (12 cd/m2) with a dot 

density of 2.1 dots/degree2. Each patch of dots was updated on every other video frame 

(approximately every 27 ms) using the following procedure. The dots in each patch were 

evenly divided into two groups. On each update, one group was replaced with new, 

randomly positioned dots, whereas dots in the other group were displaced by a fixed 

distance. The dots in this latter group determined the motion coherence. For 0% 
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coherence, all the dots in this group moved a fixed distance in a random direction. For 

coherent motion greater than zero, a proportion of the dots moved with a fixed distance in 

the same direction. This proportion determined the strength of the coherent motion. On 

the next update (27 ms later), the groups were switched. This arrangement insured that all 

the dots had a lifetime of four video frames (i.e., two stimulus updates) before they were 

replaced. Because half the dots are always randomly replotted regardless of the 

proportion of dots moving coherently, our motion had a maximum strength of 50% 

coherence. For example, at 25% coherent motion, half the dots are randomly replotted, 

one-quarter are moving with the same fixed distance and direction, and one-quarter are 

moving with the same fixed distance in a random direction. 

Data collection 

Using standard extracellular recording techniques (Gibson and Maunsell, 1997), 

recordings were made from well-isolated single neurons in area MT in both animals. 

When a neuron was isolated, the receptive field (RF) was mapped using a manually 

controlled bar while the animal fixated on a central spot. The diameter of the RFs ranged 

from 3.9 to 10.7° (median, 7.4). RF center eccentricities ranged from 3.9 to 11.1° 

(median, 7.9). The preferred speed was also judged using a bar moved by hand. The 

animals were trained to perform the task at slow or moderate motion speeds, so neurons 

with a preferred speed between 4 and 12°/sec were usually selected. Once the RF 

location, size, preferred direction, and speed were determined, the motion detection task 

was then run, and the neuron was recorded from for as long as possible. For some 
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neurons, a memory saccade task was also run, but these data were not used in this 

analysis. The number of completed trials per coherence level for the motion detection 

task ranged from 15 to 175 (median, 35). The monkey’s performance varied with patch 

location, size, and motion speed, which were determined by the response properties of the 

neuron under study. Consequently, different neurons were tested with different coherence 

levels. The animal’s eye position was measured every 5 ms using a scleral search coil 

(Robinson, 1963; Judge et al., 1980) and the times of action potentials were recorded to 

the nearest millisecond. 

Detect probability and neurometric value 

Detect probability (DP) expresses the ability to predict the behavioral outcome of 

a trial in a detection task given the neuronal response (Cook and Maunsell, 2002b). DP is 

analogous to the choice probability calculation used in discrimination tasks (Celebrini 

and Newsome, 1994; Britten et al., 1996). The neurometric value expresses the ability to 

predict which one of two stimuli was presented given the neuronal response. 

DP and neurometric value are formulated in the same way using traditional ROC 

analysis (Green, 1975). Briefly, given two random samples from different distributions, 

the DP and the neurometric value are the probabilities that one can correctly determine 

from which distribution the samples were drawn. In other words, it is a measure of how 

separate two distributions are from each other. Specifically, given two distributions of 

neuronal responses, p(x)  and q(x), the maximum probability that we could correctly 
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determine from which distribution a sample was drawn from is 

P(correct) = 
∞

∫ 
∞

∫ p(x)q(y)dydx , assuming that on average, a sample drawn from q(y) is 
0 x 

greater than a sample drawn from p(x) . 

For detect probability, q(y) corresponds to the distribution of spike rates for 

correct trials and p(x) for failed trials. For the neurometric value, p(x) and q(y) are the 

distribution of spike rates corresponding to the 0% and coherent motion, respectively. A 

DP of 1.0 indicates the neuronal distributions, p(x) and q(y), do not overlap and the 

behavioral outcome is completely predictable from the neuronal responses. Likewise, a 

neurometric value of 1.0 indicates the motion stimulus encoded (either 0% coherent or 

coherent) is completely predictable from the spike rate. A DP or neurometric value of 

0.5 indicates a chance prediction of the behavioral outcome or the state of the coherent 

motion, respectively. 

For the DP calculation, only neuronal responses occurring during low coherent 

motion trials from 50 to 150 ms after coherent motion onset were included. We only used 

the low coherent motion trials to compute DP because this was the only condition that 

produced similar numbers of correct and failed trials. For the neurometric value, we 

compared the neuronal response from 50 to 150 ms after coherent motion onset to the 

neuronal response from 100 to 0 ms before the coherent motion onset for all three 

coherence levels. The neurometric value was computed individually for each of the three 

motion coherences and then averaged. 

118



 

 

 

 

 

 

 

 

 

Reaction time correlation coefficient 

Reaction time (RT) correlation coefficients provide the correlation between the 

neuronal response and the reaction times. Given the neuronal responses and the 

respective RTs, the Pearson product-moment correlation coefficient is calculated between 

these two sets. Since neither the spike count distributions nor the reaction time 

distributions were normally distributed, the calculations were also performed using the 

Spearman’s rank correlation coefficient. The correlation coefficient (γ) for each of the 

three coherence levels was calculated individually and then a weighted (by the number of 

trials) average was taken. The RT correlation coefficient was computed using the 

neuronal response from 50 to 150 ms after coherent motion onset. 

Extracting global motion from the stimulus 

We reduced our random dot stimulus to a one dimensional time series of global 

motion strength along the neuron’s preferred/null axis (see Figure 4A). To estimate the 

net motion between two successive frames of random dots, we applied a previously 

described method (Barlow and Tripathy, 1997) that computed the correspondence 

between dots in two sequential frames. We calculated the motion vector between each 

pair of dots in successive frames. Thus, if our patch contained N dots, we computed N2 

motion vectors for each pair of successive frames, where the magnitude of the vectors 

represented the speed. We then scaled each vector by passing its magnitude through a 

speed-filter. The speed-filter was a Gaussian distribution in the log speed domain (Nover 

et al., 2005) centered at the preferred speed of the neuron (determined by sweeping a bar 
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through the receptive field) and with a standard deviation of 0.5 deg/sec. We filtered 

speed because speed-tuning profiles were not collected from the neurons, however, our 

results were insensitive to the parameters of the speed-filter. Each weighted motion 

vector was then projected onto the neuron’s preferred/null direction of motion axis. The 

sum of all the projected vectors was the motion strength at that time point. This 

calculation was repeated for every pair of successive random dot patches to create a time 

series of the motion strength in the preferred/null axis of the neuron. The resultant time 

series was normalized to have a standard deviation of one and then smoothed with a 

Gaussian filter with a standard deviation of 3 ms. 
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Results 

The goal of this study was to examine how the phase of stimulus-driven 

oscillatory activity in MT neurons was related to both the encoding of the motion 

stimulus and behavior. The results are based on the activity of single neurons recorded 

from two monkeys performing a motion-detection task (Figure 1 and Methods). 

In this task, the monkeys released a lever when a patch of random dot motion 

began moving in a coherent manner. The location and size of the stimulus was matched 

to the classical RF of the MT neuron under observation, and the direction and speed of 

the coherent motion step was matched to the neuron’s preferred tuning. Because we were 

interested in accurately correlating neuronal responses with behavioral outcome, we 

selected neurons for analysis based on a criterion of at least three correct and three 

missed trials for the low coherent motion condition. This resulted in 115 out of the 

original 118 MT neurons in this data set selected for analysis. 

Stimulus-driven oscillations of MT neurons 

Although the stimulus was presented on a monitor with a 75 Hz refresh rate, due 

to hardware limitations the dot locations in each patch were updated on every other 

refresh period. Because of this, many of our MT neurons demonstrated oscillatory firing 

with a frequency that matched the updates of the motion stimulus, which occurred once 

every 27 ms (every other frame). An example of this stimulus-driven oscillatory 
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Figure 1 Motion detection task. (A) The first set of experiments used two random dot 

patches and included 93 neurons. Once the animals fixated, a static cue was presented to 

indicate the most likely position of where the coherent motion would occur. Next, 0% 

coherent motion was presented in both the neuron’s RF and in a patch diametrically 

opposite. Coherent motion randomly began in one of the patches from 500 to 8000 ms 

with a flat hazard function. The coherent motion lasted for 750 ms and the animal had to 

release the lever from 200 to 750 ms after the coherent motion onset to order to obtain a 

reward. (B) The second set of experiments used only a single random dot patch and 

included 25 neurons. This paradigm was identical to the one above, except that only a 

single random dot patch that overlapped the RF of the neuron was used. 

122



Receptive
field 

(750 ms) 

0% coherent 

(500–8,000 ms) 

Static cue 

Fixation 
point 

Coherent motion
 in one patch 

A Two patches - 93 neurons 

B One patch - 25 neurons 
0% coherent Coherent motion

 in one patchStatic cue

Fixation 
point

Receptive
field (500–8,000 ms) (750 ms) 

Figure 1
	

123 



 

 

 

 

 

 

 

behavior is shown for an MT neuron in Figure 2A. The activity of the neuron was 

entrained with a fixed phase to the stimulus updates (vertical lines). The oscillatory 

behavior occurred during both the 0% coherent motion and the coherent motion step.  

Although a 27 ms separation between motion updates may not be optimal for MT 

neurons (Churchland and Lisberger, 2001), it was still sufficient to robustly drive our 

population of cells. 

To characterize the strength of the stimulus-induced oscillatory response, we 

collapsed the average spike rate during the 0% coherent motion to a single update, 

smoothed the curve using a Gaussian with a standard deviation of 1ms, normalized the 

area under the curve, and then centered the peak of activity at zero. For our example 

neuron, the neuronal response as a function of phase is illustrated in Figure 2B. The top 

panel of Figure 2B shows the neural activity as a function of phase aligned to the 

stimulus updates. As with Figure 2A, it also shows that neural activity tends to peak a 

few milliseconds before the next stimulus update. In the bottom panel of Figure 2B, the 

curve is shifted so that the peak in neural activity is aligned to the center and the phase is 

measured relative to this peak. All following plots of neural activity versus phase are 

shown in this manner. This response versus phase relation was computed for all neurons, 

and the oscillatory amplitude (i.e., the strength of the oscillations) was expressed as the 

maximum minus the minimum value. 

The distribution of oscillatory amplitudes for our population of 115 neurons is 

shown in Figure 3A. Our example neuron in Figure 2 had prominent oscillatory firing 
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Figure 2 Analysis of an example neuron. (A) Raster plot and binned response of an 

example MT. Motion stimulus updates are thin vertical lines. The monitor’s vertical 

refresh rate was 75 Hz or twice the stimulus update rate. The neural activity is locked to 

the motion updates and is greatest just prior to each motion update. Scale bar is 40 spikes 

per second . (B) The average spike rate during the 0% coherent motion as a function of 

phase for the same neuron. The data was smoothed with a 1 ms Gaussian filter and 

normalized so that the area under the curve was equal to one. In the top panel, the phase 

is relative to the stimulus updates. In the bottom panel, the curve is shifted so that the 

peak is aligned at the center, and the phase is given relative to this peak. The oscillatory 

amplitude (given in arbitrary units) is the difference between the maximum and minimum 

values of the curve. The black section of the curve (corresponding to 1 to 13 ms the left 

of the peak) is defined as the rising phase, and the gray section of the curve 

(corresponding to 1 to 13 ms to the right of the peak) is defined as the falling phase. (C) 

The STA for the rising (black) and falling (gray) phases of the example neuron. Positive 

amplitudes indicate motion in the neuron’s preferred direction (see Figure 4A). The STA 

was computed from the 0% coherent motion and was much larger for the rising phase 

than for the falling phase. (D) The neurometric value for the rising phase (black), falling 

phase (gray) and the entire cycle (white) of the example neuron. The neurometric value 

was calculated using ROC analysis applied to the responses 100 to 0 ms before the 

coherent motion step and 50 to 100 ms after the coherent step. Activity on the rising 

phase is more informative of the coherent motion step than activity on the falling phase. 

(E) The average spike rate for correct (solid) and failed (dashed) trials for the low 

coherence motion steps only. The spike rate for correct trials is greater on the rising phase 

but less than the spike rate for failed trials on the falling phase. (F) Detect probability 

(DP) using spikes occurring on the rising phase (black), falling phase (gray) and the 

entire cycle (white) of the low coherence motion. DP was calculated using the response 

50 to 100 ms after the onset of the coherent motion step. Activity on the rising phase is 

positively correlated with the animal correctly detecting the motion signal and is greater 

than the DP using all spikes. Activity on the falling phase is negatively correlated with 

the animal correctly detecting the motion stimulus.  
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and a corresponding high oscillatory amplitude of 0.11. Two other neurons with lower 

oscillatory scores are illustrated in Figures 3B and C. The average normalized spike rate 

as a function of phase for our population of neurons is shown in Figure 3D. 

The dependence of stimulus encoding on neuronal phase 

We first wanted to know whether action potentials at different phases of a 

neuron’s oscillatory response differed in how they encoded the motion contained in our 

random-dot stimulus. To make this question more explicit, we asked whether the spike-

triggered average (STA) of the motion stimulus occurring during the rising phase of the 

oscillatory cycle was different than the STA occurring during the falling phase of the 

oscillatory cycle. 

An STA with a large positive lobe indicates that, on average, highly coherent 

motion in the preferred direction preceded each spike, which implies that the neuron was 

very selective for coherent motion in the preferred direction. An STA that is relatively 

flat indicates that the neuron was not very selective for coherent motion. We wanted to 

know whether the STA was dependent upon the phase of the neuronal oscillatory 

response. If we assume a common model of a cortical neuron as a linear filter (which is 

estimated by the STA) followed by a static nonlinearity, known as the LNP model 

(Paninski et al., 2004), then the average input to the nonlinearity is equal to the area 

under the STA times the average motion strength. Thus, we used the area under the STA 

to quantify how informative spikes are about the motion strength. 
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Figure 3 Oscillatory neural activity for the population of neurons. (A) Histogram of the 

oscillatory amplitudes of the neural oscillations. For each neuron, we calculated the spike 

rate at each phase, the result was smooth with a Gaussian filter and then the amplitude 

was taken to be the maximum minus the minimum value. (B), (C) Average spike rate as a 

function of phase for an example neurons display medium and low-level oscillatory 

behavior, respectively. (D) Average spike rate as a function of phase for all 115 MT 

neurons. Dashed lines are SEM. 
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 To compute the STA we projected the motion in our random-dot stimulus onto 

the preferred/null axis as determined by the neuron’s directional selectivity (see 

Methods). Although a previous study had described the random-dot motion using the 

dimensions of direction, speed and time (Cook and Maunsell, 2004), we chose to use a 

reduced description of the motion time series because it improved the signal-to-noise 

ratio of our STAs. Given the motion time series and the corresponding spike train, the 

STA was calculated by averaging the motion stimulus (in the preferred/null axis) that 

preceded each spike (Figure 4A). Only the responses to the 0% coherent motion were 

used to compute the STA. 

The STAs for our example cell are shown in Figure 2C. We computed two STAs 

using either spikes occurring on the rising phase (black curve, 1 to 13 ms to the left of the 

peak in Figure 2B) or spikes occurring on the falling phase (gray curve, 1 to 13 ms to the 

right of the peak in Figure 2B). The rising and falling phases were always defined relative 

to the peak generated during 0% coherent motion. For this cell, the two STAs varied in 

size between the rising (black) and falling (gray) phases of the neuronal response. Spikes 

occurring on the rising phase were much more selective for coherent motion in the 

preferred direction than were spikes occurring during the falling phase. 

Across our population, the mean area of the STA from spikes from the rising 

phase was 11.6% greater than that of the falling phase, although the difference was 

marginally significant (two-sided t-test, p = 0.058). This is illustrated by the average 
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Figure 4 Phase-dependence of the spike-triggered average. (A) Diagram of the stages 

used to compute the STA of a neuron. From the successive random dot patches (top 

panel), we computed the time series of motion strength in the preferred/null axis of the 

neuron, smoothed by a Gaussian filter (middle panel). Given this time series, and the 

corresponding spike train (bottom panel), we could compute the STA. (B) Average 

aligned STAs for all 115 neurons for the rising (black) and falling (grey) phases. For each 

neuron, the time of the peak of the overall STA (the STA calculated using all spikes) was 

determined, and was defined as time zero. The STAs from spikes from the rising and 

falling phases were then aligned to this reference time. On average, there was little 

difference between the two STAs. Dashed lines are SEM. (C) Histogram of the 

percentage difference in areas between the STA from the rising phase and falling phase 

for the group of oscillatory neurons (see Methods). Many neurons possessed large 

difference between the STAs of the rising and falling phases. 
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STAs for our population of neurons (Figure 4B). Since neural latencies differ across 

neurons, we chose to align the STAs when calculating the average STAs of the 

population. Thus, for each neuron, we calculated the time of the peak of the overall STA 

(the STA calculated using all spikes), and this time was defined as time zero. The STAs 

from spikes from the rising and falling phases were then aligned to this reference time. 

Although the mean difference in area was not appreciably different from zero, we 

found a surprisingly large amount of variability in the size of the STA between the two 

phases, as shown in Figure 4C. This histogram illustrates the distribution of the 

percentage difference in the areas between the STAs from the rising and falling phases 

for our 115 neurons. There are several possible explanations for the variability in 

stimulus encoding (as measured by STA area) illustrated in Figure 4C. For example, the 

finite number of spikes from each cell may have introduced experimental noise that 

produced naturally variable STAs between the two phases of the neuronal oscillations. 

To test whether the variance in the difference between the two STAs was greater 

than expected by chance, we randomly assigned spikes with 50% probability to the rising 

or falling phases, recalculated the STAs for the rising and falling phases, and found the 

difference between the two. The population was simulated 1000 times to obtain an 

estimate of the amount of variance one would expect by chance. The variance in the real 

population was 3.1 times greater than the variance one would expect by chance (two 

sided z-test, p < 10-7). 
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Another possibility is that some phases of the neuronal oscillation encode the 

coherent motion more reliably than others. This second possibility is motivated by past 

studies that suggest the sensory information conveyed by a neuron can evolve over time 

(Lamme, 1995; Gawne et al., 1996; Friedrich and Laurent, 2001; Pack and Born, 2001; 

Reich et al., 2001; Hegde and Van Essen, 2004; Roelfsema et al., 2007). We addressed 

this second hypothesis more closely by using the behavioral data that was simultaneously 

collected with the neuronal recordings. 

Past studies have demonstrated that neurons conveying the most informative task-

related information tend to show the strongest correlations with behavior (Celebrini and 

Newsome, 1994; Britten et al., 1996; Cook and Maunsell, 2002b; Parker et al., 2002; 

Purushothaman and Bradley, 2005). We wanted to know if this hypothesis extended to 

the phases of our oscillatory activity. In other words, was the phase of the neuronal 

response that most reliably encoded the coherent motion also the phase that was most 

strongly correlated with behavior? This is an important question because it addresses the 

time-scale on which the relationship between neuronal activity and sensory perception 

can change. 

To answer this question, we first describe how we correlated the phase of the 

neuronal activity with behavior using standard ROC-based choice analysis. In addition to 

the STA described above, we introduce a second method for quantifying the phase-

dependent encoding of the coherent motion using an ROC-based neurometric analysis.  

Finally, we combine all these measurements to show that the phase of the neuronal 
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oscillation that most reliably encoded the coherent motion also tended to have the 

strongest correlation with behavior. 

Neurometric value and detect probability as a function of phase 

 The STA analysis above was based only on neuronal responses to the 0% 

coherent motion. The monkey’s task, however, was to detect the onset of a coherent 

motion step (Figure 1). Therefore, we wanted to know if the information in the neuronal 

response to the coherent motion step was phase-dependent. For this, we computed a 

neurometric value using ROC analysis (see Methods). The neurometric value was 

calculated using the neuronal response occurring during the 100 ms just before the onset 

of the coherent motion pulse compared with the neuronal response that occurred 50 to 

150 ms after the coherent motion pulse. A neurometric value of 1.0 indicates an ideal 

observer could discriminate the response to the coherent motion from the response to the 

0% motion with perfect reliability, while a value of 0.5 indicates chance performance. 

Figure 2D shows the neurometric analysis applied to our example cell. We 

computed the neurometric value using spikes from either the rising (black bar) or falling 

phases (gray bar). For this cell, the neurometric value is higher for the rising phase 

compared to the falling phase. As a result, spikes on the rising phase were better able to 

signal the presence of coherent motion than spikes on the falling phase in agreement with 

the phase-dependent STA for this cell shown in Figure 2C. 
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It is important to emphasize, however, that the neurometric value can be 

dependent on the number of spikes used in the analysis. Thus, Figure 2D also shows that 

the neurometric value using all the spikes combined from both phases provides the most 

informative signal for detecting the onset of the coherent motion (white bar). This 

suggests that if the monkey were behaving as an ideal observer, combining the spikes 

from both phases would be a better strategy for detecting the onset of the coherent 

motion. The neurometric value, however, does not provide any insight into how the 

monkey actually used the activity from this cell to detect the coherent motion. To 

address this question, we next turn to the ROC-based detect probability calculation. 

For our example cell, Figure 2E compares the average response (as a function of 

phase) for correct and failed trials from 50 to 150 ms after the onset of low-level coherent 

motion only. This particular cell demonstrated a phase dependent difference in response 

between correct (solid line) and failed trials (dashed line). Spiking activity associated 

with correct trials was greater than failed trials on the rising phase and became less than 

failed trials on the falling phase. 

To quantify how the neuronal response was correlated with the animal’s behavior 

as a function of phase, we computed detect probability (DP, see Methods). DP measures 

the ability to predict the behavioral outcome of a trial given the neuronal response. We 

calculated DP using the neuronal responses from 50 to 150 ms after coherent motion 

onset and only used responses from the low coherence trials (which produced 
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approximately 50% correct detections). DP is an ROC calculation that is analogous to 

the choice probability measure commonly used to express the correlations between 

neuronal activity and behavioral choice in discrimination tasks (Celebrini and Newsome, 

1994; Britten et al., 1996; Parker and Newsome, 1998; Uka and DeAngelis, 2004). A DP 

value of 1.0 indicates that an ideal observer could predict the behavioral outcome of a 

trial (either correct or failed) using the neuronal response. A DP of 0.5 indicates chance 

predictability.

 For our example cell, we found DP differed between the rising and falling phase 

of the neuronal response (Figure 2F). The DP analysis shows that activity of the rising 

phase is well correlated with behavior (black bar, DP = 0.64) and is even stronger than 

the DP from all spikes (white bar, DP = 0.57). On the falling phase (gray bar), activity 

was negatively correlated with behavior (greater activity was associated with failed 

instead of correct trials) producing a DP of 0.36. Thus, for this particular cell, the 

correlation between the neuronal response and behavior was asymmetric across neuronal 

phase. 

Population phase-dependence of motion encoding, signal detection and behavior 

For our example cell, the STA, neurometric and DP calculations suggest that there 

was a phase asymmetry in both how the coherent motion was encoded and the correlation 

with the animal’s behavior. We next wanted to know whether those relationships were 

observable in our population of neurons. 
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As discussed above, a large positive STA implies that the neuron is selective in its 

firing, and will more likely respond only to coherent motion in the preferred direction and 

speed. One would suspect that spikes that are more likely generated by preferred coherent 

motion would naturally be more predictive of whether the neuron is encoding 0% 

coherent or coherent motion in the preferred direction. Thus, in Figure 5A, we examined 

whether neurons with different STAs between the two phases would also have a 

corresponding difference between the neurometric values of the two phases. For our 

population of 115 neurons, the asymmetry between the STAs of the two phases is well 

correlated with asymmetry in the neurometric value (r = 0.55, p<10-9). The filled symbols 

are neurons whose STA satisfied a minimum signal-to-noise criterion of 2.75 (discussed 

in the next section). Thus, the phase with the larger STA (computed from 0% coherent 

motion) also tended to be the phase that most reliably signaled the onset of the coherent 

motion. 

It has generally been observed that the most informative sensory neurons also 

tend to show the best correlations with behavior. Thus, we wanted to know if the 

neuronal phase with the best neurometric value was also more correlated with behavior. 

In Figure 5B we show the relation between the asymmetry in the neurometric value 

between the two phases and the asymmetry in the DP. Consistent with this hypothesis, 

the phase of the cycle that is more capable of signaling the presence of coherent motion, 

whether it be the rising or falling phase, also tends to be more correlated with the 

behavior (r = 0.32, p = 0.0005). Thus, not only does the correlation between how a 
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Figure 5 Population phase-dependence of motion encoding, signal detection and 

behavior. (A) The relation between the percentage difference in the area of the STAs of 

the rising and falling phases (x-axis) and the difference between neurometric values for 

the rising and falling phases (y-axis) for our 115 neurons. The areas of the STA were 

computed in a 27 ms window centered at the peak of the STA from all spikes. The black 

dots represent neurons with STAs that satisfied the criterion of a SNR of at least 2.75 (see 

text for details). (B) The difference in neurometric value between the two phases (x-axis) 

versus the difference in the detect probability of the two phases (y-axis). (C) The 

relationship of the percentage difference in area between the STAs between and the two 

phases (x-axis) with the difference in the DP (y-axis). 
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stimulus is encoded (neurometric) and its relation to perceptual choice (DP) exist at the 

single cell level, but this relationship also seems to hold for certain spike times within a 

cell’s response. We also examined the correlation between the phase-asymmetry in the 

STA with the phase-asymmetry in DP (Figure 5C). Consistent with the above results, 

these two asymmetries were also weakly correlated (r = 0.25, p = 0.007). Similar results 

were also observed for other time windows used to compute neurometric value and DP as 

a function of phase. 

Taken together, this analysis suggests that the task-related information (as 

measured by STA and neurometric value) conveyed by the rising and falling phases of 

the neuronal response had a systematic relationship to the correlation between neuronal 

response and behavior (as measured by DP). A likely explanation of this result is that 

neuronal latencies varied depending on the strength of the pattern of moving dots in our 

stimulus. We examine this and other possibilities, such as possible biases induced by 

spike rate, below. 

One limitation of the analysis in Figure 5 was that it was based on all neurons in 

our data set regardless of their tendency to oscillate. In addition, the STA estimates were 

inherently noisy for many neurons. The goal of our next analysis was to overcome these 

limitations by focusing on a subset of neurons with the most robust STAs and 

oscillations. 

The strong- and weak-encoding phases 
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If one phase of the neuronal oscillation was more informative about the stimulus 

than the other, how much more correlated is that phase with behavior? To answer this, 

we grouped activity based on the size of the STA. We refer to the phase with the larger 

STA as the strong-encoding phase and the phase with the smaller STA the weak-

encoding phase. We then examined how the strong- and weak-encoding phases encoded 

the motion stimulus and were related to the formation of a perceptual decision. 

Since this calculation relies on an accurate measurement of the STA, we only 

included neurons whose STA satisfied a minimum signal-to-noise ratio (SNR). We based 

our SNR on a similar definition as used in a past analysis of this data (Cook and 

Maunsell, 2004). Our SNR was defined as the variance amongst the values of the STA in 

a 27 ms window centered at the peak (signal) divided by the variance amongst the values 

of the STA in the two 27 ms windows lying adjacent to this central window (noise). The 

idea was that the two adjacent windows represent the noise in our STA by capturing the 

chance correlations between the stimulus and neuronal response. We arbitrarily set the 

minimum SNR to 2.75, resulting in 30 neurons that satisfied the criteria. The STA of our 

example cell shown in Figure 2C had a robust SNR of 189.9. Figure 5 (filled symbols) 

illustrates that our 30 best cells with the most reliable STA spanned the range of our 

population with respect to asymmetries in the STA, neurometric and DP between the 

rising and falling phases. 
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In Figure 6A, we show the average STA from our 30 best neurons for the strong-

encoding and weak-encoding phases. Because the strong-encoding phase was defined as 

the phase with the larger STA, the strong-encoding phase was naturally more selective 

for motion in the preferred direction compared to the weak-encoding phase. As there was 

a correlation between the SNR of the STA and oscillatory amplitude (r = 0.55, p <10-9), 

our best neurons also demonstrated stronger oscillations in response to our 0% coherent 

stimulus compared to the overall population (Figure 6B). 

The prediction from Figure 6A is that the strong-encoding phase (i.e., phase with 

the largest STA) should also be the most informative phase about the onset of the 

coherent motion. Thus, we compared the neurometric values for the strong- and weak-

encoding phases of our subset of neurons with high SNR. It is important to note that the 

strong /weak classification was based on the response to the 0% coherent motion, while 

the neurometric value was based on both the 0% coherent and coherent motion. The 

neurometric value for the strong-encoding phase (mean: 0.65 +/- 0.02 SEM, black bar) 

was significantly greater than the average value for the weak-encoding phase (mean: 0.59 

+/- 0.01, gray bar) as shown in Figure 6C (pair wise difference two-sided t-test, p = 

0.009). The histogram on the right shows a shift in the distribution of the pair-wise 

difference in the neurometric value between the strong- and weak-encoding phases.  

Thus, the strong-encoding phase tended to be more informative about the onset of the 

coherent motion than the weak-encoding phase. Since activity on both phases (usually) 

increased during coherent motion, both provided information about the onset of the 
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Figure 6 The strong-encoding and weak-encoding phases. (A) The average STA for the 

strong-encoding (black) and weak-encoding (gray) phase from the group of 30 neurons 

whose STA had a SNR above 2.75 (filled symbols in Figure 5). The phase with the larger 

STA by area was designated the encoding phase. (B) The average spike rate as a function 

of phase for the 30 neurons. The oscillatory amplitude of this group was larger than the 

oscillatory amplitude of the entire population (Figure 3D). (C) The average neurometric 

of these 30 neurons using spikes from the strong-encoding phase (black), weak-encoding 

phase (gray) and the entire cycle (white). The associated histogram to the right shows the 

pair-wise differences between the strong-encoding and weak-encoding values for each 

neuron. The vertical arrow indicates the median value. (C) Same as (B), but showing the 

average DP. (D) Same as (B), but showing the average RT Pearson’s correlation 

coefficient. 
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coherent motion. Thus, using all the spikes provided a slight increase in the neurometric 

value (white bar, Figure 6C). 

We next examined how neural activity was correlated with perceptual choice for 

the strong- and weak-encoding phases. Figure 6D shows that the detect probability (DP) 

for the strong-encoding phase (0.56 +/- 0.02, black bar) was marginally greater than the 

DP from all spikes (0.53 +/- 0.02, white bar, pair wise difference, two-sided t-test, p = 

0.082). On the other hand, the DP for the weak-encoding phase was significantly below 

chance at 0.46 +/- 0.02. The associated histogram reveals that neural activity on the 

strong-encoding phase was more positively correlated with perceptual choice than the 

weak-encoding phase in 22 of the 30 neurons, and the mean difference between the two 

DPs was significantly greater than zero (pair wise difference two-sided t-test, p = 

0.0018). Thus, spikes occurring during the weak-encoding phase for our subset of 30 

neurons were significantly and positively correlated with the animal failing to detect the 

motion stimulus. Spikes in the strong-encoding phase, by comparison, were positively 

correlated with the animal correctly detecting the motion. This raises the possibility that 

the brain could combine activity from both phases by weighting them with positive and 

negative weights, respectively. However, since activity is correlated between subsequent 

phases (see below), this might not be advantageous. 

To further confirm that the strong-encoding and weak-encoding phases had 

different relationships with behavior, we also examined the (Pearson’s) correlation 

between the neuronal response and reaction time (γ, see Methods). In this analysis, a 
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negative value indicates that greater activity is correlated with faster reaction times. In 

Figure 6E, we show that activity on the strong-encoding phase had an average correlation 

coefficient (–0.130 +/- 0.023) that nearly matched the correlation coefficient using all 

spikes (–0.147 +/- 0.023). However, activity on the weak-encoding phase was less 

correlated with reaction time (Womelsdorf et al., 2006)(–0.064 +/- 0.021). The associated 

histogram illustrates that the RT coefficient for the strong-encoding phase is greater for a 

majority of the neurons and the mean difference of –0.066 was significantly less than 

zero (pair wise difference, two-sided t-test, p = 0.033). Since neither the spike count 

distributions nor the reaction time distributions were not normally distributed, we 

repeated our calculations using the Spearman’s rank correlation coefficient. The pair wise 

difference between the correlation coefficient of the strong-encoding and weak-encoding 

phases was –0.078, also significantly less than zero (pair wise difference, two-sided t-test, 

p = 0.024). 

Since it has been previously reported that gamma band synchronization between 

spiking and activity and the LFP prior to a stimulus change in a detection task is 

correlated with reaction times (Womelsdorf et al., 2006), we also calculated the Pearson’s 

correlation coefficient between neural activity and reaction time from 100 to 0 ms prior to 

coherent motion onset. Although there was a small difference between the correlation on 

the strong-encoding and weak-encoding phases (strong: –0.022 +/- 0.015; weak: 0.020 

+/- 0.022; overall: –0.008 +/- 0.021), the differences were not significant. 
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By analyzing our 30 best neurons based on the quality of their STA, we found a 

phase-dependent relationship between the encoding of the motion stimulus and how the 

neuronal activity was correlated with behavior. We next examine several potential 

mechanisms that may account for the observed phase-dependent encoding of motion 

information. 

Potential mechanisms 

One possibility is that the mean or variance in the number of spikes varied 

between phases, biasing our results. The correlation between the asymmetry of the 

neurometric and the asymmetry in the STA (Figure 5A) is because there was a greater 

increase in firing rate on the strong-encoding phase. For low-coherent motion (used for 

the DP analysis), the average spike count was 13% greater (pair wise mean) and the 

standard deviation was 10% greater for the strong-encoding phase than the weak-

encoding phase. To control for the difference in spike rate between phases, we calculated 

the difference in spike rate between the strong-encoding and weak-encoding phase during 

low coherent motion for each neurons. Based on this difference, we randomly removed 

spikes from the phase with greater activity in order to equalize the mean activity between 

the two phases. Each trial was simulated 100 times, and then we recalculated the 

correlations between the changes DP and the STA and NM. These new values are 

consistent with our previous results (change NM versus change DP: r = 0.30, p = 0.001; 

change STA versus change DP: r = 0.24, p = 0.010). We also performed the same 

calculation equalizing total spike count between the two phases, instead of spike rate. 
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Again, the results were left almost unchanged (change NM versus change DP: r = 0.32, p 

= 0.0006; change STA versus change DP: r = 0.24, p = 0.009). Since equalizing the spike 

rate and the spike count between the two phases when calculating the DP does not alter 

its significant correlation with the NM and the STA, we do not believe that the number of 

spikes was a major factor in the asymmetric relationship between the phase of stimulus 

encoding and behavior. 

Another possible reason for the observed asymmetry in the DP between phases 

could be due to stimulus variability. More precisely, if there was more coherent motion 

for correct trials than for failed trials, this could have produced more spikes during the 

strong-encoding phase as well increased the chance the animal detects the coherent 

motion. If this was the case, then the percentage difference between the amount of 

coherent motion in the preferred direction between correct and failed trials should be 

correlated with the difference in the DP between the strong-encoding and weak-encoding 

phases. However, we found no such correlation for the entire population of 115 neurons 

(r = –0.10, p = 0.30) or for the population of 30 neurons with high SNR STAs (r = 0.05, p 

= 0.80). Thus, we do not believe that stimulus variability was the reason for the 

difference in the DP between the strong-encoding and weak-encoding phases.   

A third possible explanation for our finding was that it was the result of 

correlations between the neural activity in each rising phase and the subsequent falling 

phase. For example, suppose activity on the rising and falling phases were negatively 

correlated, so that greater activity on the rising phase tended to reduce the amount of 
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activity on the subsequent falling phase. If the onset of coherent motion first increased 

neural activity on the rising phase, then activity on the falling phase would be suppressed, 

shifting the average phase of activity to the left. This possibility is somewhat similar to 

previous studies on how short-term plasticity can induce phase shifts in neural activity 

(Fortune and Rose, 2002; Fortune, 2006).     

To explore this possibility, we computed the correlation coefficient between the 

numbers of spikes in each rising phase with the subsequent falling phase (similar results 

were obtained using the spike count in each falling phase and the subsequent rising 

phase) during 0% coherent motion. Although the mean correlation coefficient for all 115 

neurons was quite weak (r = 0.039), most neurons possessed a significant (p < 0.05) 

correlation coefficient, with 39 having a negative correlation coefficient (32 significant) 

and 76 having a positive correlation coefficient (66 significant). 

This correlation between the activity in each rising and subsequent falling phases 

was associated with a phase shift in the neural activity towards the encoding phase when 

coherent motion occurred. This was revealed by the significant correlation (r = –0.20, p = 

0.030) between the correlation coefficient between activity on the rising and falling 

phases and the change in the neurometric value between the strong-encoding and weak-

encoding phases. This is fairly intuitive since the encoding phase was generally the phase 

with the shorter latency (see Discussion), and likely to be first affected by the onset of 

coherent motion. For a neuron with negative correlation between activity on the rising 

and falling phases, coherent motion would increase activity disproportionably more on 
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the encoding phase, resulting in a greater neurometric value on the strong-encoding phase 

compared to the weak-encoding phase. Although the correlation coefficient between 

rising and falling phases was correlated to the change in neurometric values between the 

strong-encoding and weak-encoding phases, no significant correlation existed with the 

change in DP between the two phases (r = –0.02, p = 0.82). Thus, while the correlation 

between the activity on the rising and falling phases might shift the neural activity, it does 

not appear to be the source of the asymmetry in the correlation with behavior. However, 

we cannot say what role it might play, if any, in encoding the motion stimulus. 

Although we cannot rule out the existence of other possible explanations for our 

observations (see Discussion), our result suggests that the spikes that convey more 

information about the presence of coherent motion are weighted more heavily in forming 

a perceptual decision. 
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Discussion 

In this study, the activity of many MT neurons in response to a random moving 

dot stimulus oscillated with the same frequency as the stimulus updates. This allowed us 

to investigate how neural activity at different phases was correlated with both the 

stimulus and the behavior. We found that neuronal phases that were more informative 

about the stimulus, both in terms of the STA and the neurometric value, were also more 

correlated with the animal’s detection performance and reaction time. Importantly, the 

asymmetry between stimulus encoding and behavior occurred on a relatively short time 

scale of a few tens of milliseconds. 

Encoding of the motion stimulus 

Oscillations seem to serve two broad, and possibly nonexclusive roles, in stimulus 

encoding. In the first, oscillations can synchronize ensembles of neurons to fire together 

(Gray et al., 1989; Singer, 1999; Usrey and Reid, 1999; Perez-Orive et al., 2002; 

Friedrich et al., 2004). Active conductances in dendrites can then sum these 

synchronously arriving spikes in a superlinear a manner, a term dubbed “coincidence 

detection” (Softky, 1994; Wang et al., 2000; Stuart and Hausser, 2001; Schaefer et al., 

2003). These oscillations in the local field potential thus act as a timing device, and since 

these oscillations can remain coherent across large distances (Engel et al., 1990; 

Donoghue et al., 1998; Destexhe et al., 1999), they are capable of synchronizing neural 

activity across different areas in the brain (Engel et al., 1991; Destexhe et al., 1999). This 
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mechanism is widely observed through out the brain, and thought to play a role in a wide 

range of systems (for reviews, see (Engel et al., 2001; Averbeck and Lee, 2004; 

Sejnowski and Paulsen, 2006). 

In the second role, the stimulus is encoded by the phase at which an action 

potential is generated. This is the encoding scheme used by place cells in the 

hippocampus, where the phase of the spike encodes the relative location of the animal 

inside the neuron’s receptive field (O'Keefe and Recce, 1993). There are two important 

properties for such a encoding scheme. First, in order for the phase of the spike to be 

meaningful downstream, oscillations must be coherent between the upstream and 

downstream areas. Second, incoming EPSPs must have different effects on an oscillating 

target cell depending on the phase of its arrival (Lampl and Yarom, 1993; Schaefer et al., 

2006). 

Unlike the encoding by synchronization scheme mentioned above, a phase 

encoding scheme as only been observed in the hippocampus. However, it has been 

proposed that a phase encoding scheme might be more prevalent, and serve as a more 

general encoding scheme through out the cortex (Hopfield, 1995; Fries et al., 2007). 

Although the oscillations we observed in our data were specific to the stimulus used, the 

results presented here suggest that a cortical phase encoding scheme may be possible.   

What are the mechanisms behind our observed phase encoding? One possibility is 

that spikes at phases that encoded stronger coherent motion were the same spikes 
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generated with a short latency. It has been shown that latencies are shortest in response to 

preferred stimuli (Bolz et al., 1982; Celebrini et al., 1993; Lagae et al., 1994; Gawne et 

al., 1996; Lisberger and Movshon, 1999; Maunsell et al., 1999; Raiguel et al., 1999; 

Johansson and Birznieks, 2004). If this is the case, then there should be a temporal offset 

between the STAs of the two different phases, with the peak of the larger STA occurring 

before the peak of the smaller STA. To verify this, we took the difference between the 

time of the peak of the STA from the rising phase minus the time of the peak from the 

falling phase. We then correlated the sign of this temporal difference with the sign of the 

difference of the area of the rising STA minus the area of the falling STA. There was 

significant negative correlation between the two sets (r = –0.254, p = 0.0061), indicating 

that the STA with a peak that occurred first was, on average, the STA with the larger 

area. This suggests that the variability in encoding between the phases was due, in part, to 

spikes produced with different latencies. 

It has been proposed that the visual cortex may encode aspects of the visual 

stimulus through its response latency. However, these past studies have usually 

considered latency as the first spikes produced by a step-change in a visual stimulus.  

Thus, a latency code usually only refers to the initial response of the neuron to a stimulus. 

Oscillations, by comparison, provide a reference point by which latency of a spike can be 

determined from the phase in the presence of ongoing activity. The idea that oscillations 

could provide a reference allowing for a continuous latency encoding scheme has also 

been recently proposed by Fries et al. (2007), and it bears many similarities to other 

studies proposing that oscillations may serve to convert signal strength into a phase code 
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(Hopfield, 1995; Thorpe et al., 2001; Mehta et al., 2002). Although the phase encoding 

observed in our study is the result of the long delay between motion updates, it is of 

interest whether oscillations of the local field potential in visual cortex would allow for 

this encoding scheme to work under more general conditions, as observed in the 

hippocampus (O'Keefe and Recce, 1993). Alternatively, the relative phase difference in 

firing between neurons with different stimulus preferences might allow for this phase 

encoding scheme to function without the need for coherent oscillations between MT and 

downstream areas (Konig et al., 1995; Thorpe et al., 2001). The idea is that during 

coherent motion, MT neurons tuned to the direction of the coherent motion will fire in 

advance of neurons tuned to other directions, with the biggest phase difference for 

neurons tuned to the opposite direction. If downstream neurons could detect the temporal 

differences between incoming EPSPs arriving from differently tuned neurons (as in the 

auditory cortx ((Carr and Konishi, 1990), then this might eliminate the need for coherent 

oscillations to exist between MT and downstream. 

Relation to the behavioral response 

It is well documented that the activity of a single sensory neuron can covary with 

perceptual report (Celebrini and Newsome, 1994; Britten et al., 1996; Dodd et al., 2001; 

Cook and Maunsell, 2002b; Parker et al., 2002; Uka and DeAngelis, 2004; de Lafuente 

and Romo, 2005; Nienborg and Cumming, 2006). Additionally, it has also been shown in 

several visual detection/discrimination tasks that the neurons that most reliably encode 

the stimulus are also the neurons most correlated with the behavior (Celebrini and 
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Newsome, 1994; Britten et al., 1996; Cook and Maunsell, 2002b; Parker et al., 2002; 

Purushothaman and Bradley, 2005). This had led to the hypothesis that perceptual 

decisions depend more on a small subset of highly influential neurons that carry the most 

reliable sensory information. 

In our study, certain spike times encoded the coherent motion more reliably than 

others. By comparing the difference in encoding between phases with the difference in 

the correlation with behavior between phases, we determined that the phase most 

informative about the motion stimulus was also more (positively) correlated with the 

perceptual behavior of the animal. This relation was present as early as 50 to 150 ms after 

the coherent motion onset and is unlikely that top-down attentional modulation of MT 

contributed to this result.  

There does exist evidence linking synchronous neural activity, as described in the 

first part of the Discussion, to behavioral performance in a discrimination task (Stopfer et 

al., 1997; Womelsdorf et al., 2006). However, to our knowledge, no one has shown 

phase-dependent neural activity to be correlated with behavior. 

Implications for decision models 

When we restricted our analysis to the 30 neurons with the best-defined STAs, we 

found that the difference between how well the two phases are correlated with behavior is 

large. In fact, our DP analysis showed that the activity on the phase with the smaller STA 
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is actually correlated with the animal’s failure to detect the coherent motion. This result is 

interesting because current models on how simple decisions are formed in the brain 

propose that evidence is accumulated towards one decision or another by integrating the 

spiking activity from sensory areas (Kim and Shadlen, 1999; Mazurek et al., 2003; Huk 

and Shadlen, 2005). In these models, spike times are irrelevant and the spike rate is the 

determining factor in decision-making. This implies that activity at any phase of the cycle 

should be positively correlated with the animal’s detection performance. It is unclear how 

our observation that activity during half the cycle of the oscillation can be correlated with 

the animal failing the trial is consistent with these integrator models. Further studies will 

be required to determine how oscillating sensory activity is temporally processed to form 

decisions. 
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Abstract 

Electrical stimulation of the brain is a valuable research tool and has shown 

therapeutic promise in the development of new sensory neural prosthetics. In spite of its 

widespread usage, we still do not fully understand how current passed through a 

microelectrode interacts with functioning neural circuits. Past behavioral studies have 

suggested that electrical stimulation of sensory areas of cortex produces percepts that are 

similar to those generated by normal sensory stimuli. In contrast, electrophysiological 

studies using in vitro or anesthetized preparations have shown that neural activity 

produced by brief electrical stimulation is radically different than normal responses. To 

help reconcile these two aspects of electrical stimulation, we examined the temporal 

properties that electrical stimulation has on visual perception. We found that brief 

application of subthreshold electrical stimulation in the Middle Temporal (MT) area of 

visual cortex produced smaller and longer lasting effects on motion perception when 

compared to an equivalent visual stimulus. 
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Introduction 

Electrical microstimulation of the brain is an important research tool for 

establishing causality between neural activity and behavior (for reviews, see Cohen and 

Newsome 2004; Romo and Salinas 1999) and serves as the basis for supplying sensory 

inputs in neural prosthetics (Bradley et al. 2005; Fernandez et al. 2005; Girvin 1988; 

McIntyre and Grill 2000; Middlebrooks et al. 2005; Normann et al. 1999; Tehovnik and 

Slocum 2007; Troyk et al. 2003). Both of these applications rely on the assumption that 

microstimulation can generate percepts that are reasonably similar to those produced by 

naturally occurring stimuli. 

Many past behavioral studies suggest that microstimulation of cortical sensory 

areas is equivalent to natural inputs in its ability to influence sensory perception (Bisley 

et al. 2001; Carey et al. 2005; Celebrini and Newsome 1995; de Lafuente and Romo 

2005; DeAngelis and Newsome 2004; Ditterich et al. 2003; Hanks et al. 2006; Liu and 

Newsome 2005; Murasugi et al. 1993; Nichols and Newsome 2002; Romo et al. 2000; 

Romo et al. 1998; Salzman et al. 1990; Salzman et al. 1992; Uka and DeAngelis 2006). 

In these experiments, however, microstimulation was usually applied for hundreds of 

milliseconds to seconds, which in many ways differs from the high temporal variability 

of natural sensory stimuli. 

In contrast to these behavioral studies, neural activity measured in response to 

microstimulation in both in vitro and in vivo preparations has usually been characterized 
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as a short excitatory response followed by a long period of inhibition (Berman et al. 

1991; Butovas et al. 2006; Butovas and Schwarz 2003; Chung and Ferster 1998; 

Contreras et al. 1997; Shao and Burkhalter 1996; 1999). Thus, microstimulation can 

produce a “temporal spread” of neural activity that is fundamentally different from 

normal neurophysiological responses. We do not know the extent to which the temporal 

spread of neural activity produced by microstimulation influences perception. If 

microstimulation is to be used to probe the causality between sensory activity and 

perception or supply sensory input for neural prosthetics, then it is important to 

understand how its temporal properties affect perception. In this study, we specifically 

ask whether microstimulation and visual inputs generate different percepts.  

To explore these differences, we measured the time course (i.e., the impulse-

response function) that brief microstimulation in area MT has on the perception of a 

motion stimulus. Importantly, we designed our experiment so that we could compare the 

temporal effect of microstimulation on behavior with that of a visual input of equivalent 

duration. We found the ability of brief microstimulation to influence the detection of the 

motion stimulus was weaker and decayed significantly more slowly compared to a 

control visual input. These results suggest that the temporal spread of microstimulation 

could place design challenges on its use in a cortical visual prosthesis and for probing the 

relationship between cortical activity and behavior on fast timescales. 
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Methods 

Behavioral task 

Two male monkeys (Macaca mulatta) were trained to detect coherent motion in a 

random dot patch. The trial began when the monkey depressed a lever and fixated on a 

central point. Eye movements were recorded with an eye camera system and the trial 

ended if the monkey’s eye position deviated by more than 1.5 degrees from the fixation 

point. After the lever was depressed, 0% coherent motion began in a random dot patch. A 

33ms coherent motion signal was presented to the monkey at a random time from 500 to 

10000 ms after the start of the trial (flat hazard function). For some trials, 33 ms of 

subthreshold coherent motion (visual probe) or 33 ms of electrical microstimulation 

(microstimulation probe) was also presented at various times relative to the motion signal 

(Figure 1A&C). The monkey was rewarded if he released the lever from 150 to 650 ms 

after the end of the motion signal or after the end of the probe. The strength of the 

coherent motion signal was adjusted for each experimental session so that the monkey 

detected the motion signal about 50% of the time and the strength of both the visual and 

microstimulation probes were set so that they were detected about 5% of the time. The 

strength of the signal and the probes were adjusted before data collection began by 

running probe only and signal only trials. The possible time intervals between the visual 

probe and the visual motion signal (given by the start of the visual motion signal minus 

the end of the probe) were 0, 25, 50, 75, 100, 150, 250, 350, or 450 ms. For the 
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microstimulation probe, the possible intervals were -100, –75, –50, –25, 0, 50, 150, 250 

or 350 ms. Negative values indicate the probe was presented after the signal. The length 

of the time between the visual motion signal and probe was denoted by τ (Figure 1C). 

Other trials consisted of only a visual motion signal or only a visual motion or 

microstimulation probe. In all, there were 21 possible trial types: 9 different 

microstimulation probe plus signal trials, 9 different visual motion probe plus signals 

trials, a microstimulation probe only trial, a visual probe only trial and a visual motion 

signal only trial. These 21 different trial types were presented to the subject in a random 

order with approximately equal proportions.    

Visual stimulus 

The monkey was positioned 62 cm from a computer monitor (34° × 26° of visual 

angle; 1600×1200 pixels; 120 Hz refresh). The stimuli consisted of a random dot patch of 

white dots (each dot 0.25° diameter) on a dark gray background with a dot density of 2.1 

dots/degree2. The location, radius, speed and direction of the random dot patch was 

matched to the preferences to the site in area MT that we were recording and stimulating 

for that experiment (Figure 1B). The preferred location and radius of the MT site were 

determined by manual mapping while the speed and direction were determined by 

recording multi-unit activity in response to 100% coherent motion in different directions 

and speeds. On every frame update, dots were assigned to either move in the preferred or 

null direction. The ratio of dots moving in the preferred and null direction determined the 

coherence level of the motion. Thus, for 0% coherent motion, an equal number of dots 
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moved in the preferred and null directions. All dots moved the same distance (preferred 

speed) each frame update. If a dot moved outside the receptive field, it was re-plotted in a 

random position in the opposite side of the receptive field. This stimulus constrained 

motion to the preferred/null axis. When 0% coherent motion was viewed, there was no 

net or transparent motion perceived. 

Electrical microstimulation 

All animal care and procedures followed guidelines set forth by McGill 

University’s Animal Care Committee and the Canadian Council for Animal Care. The 

monkeys received head-posts and recording chambers under aseptic surgeries following 

standard techniques (Cook and Maunsell 2002). Structural MRI brain scans (1.5 T) and 

the neurophysiological properties of the recording sites confirmed our electrode 

placement in area MT.   

Electrical microstimulation was delivered to an area of MT with low-impedance 

(250 to 1000KΩ at 1 KHz) tungsten microelectrodes using a constant-current biphasic 

stimulator (Bak Electronics, Mount Airy, MD). The microstimulation probe consisted of 

8 biphasic pulses (200 Hz with 40 µs pulse width) over a time of 33ms. The current 

amplitude was set at the beginning of an experiment so that the animal detected the 

microstimulation probe alone approximately 5% of the time. The current values used 

ranged from 3 to 50 µA with a median of 12 µA. 
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Determining the impulse-response functions  

The impulse-response functions were a measure of how well the monkey detected 

the signal plus the probe together compared to how well the monkey detected the signal 

as a function of τ. The impulse-response function is the best linear estimate of the effect 

of the probes on motion detection. Although we do not claim that the neural mechanisms 

of motion detection is a linear process, if the linear estimates of the effects of visual and 

microstimulation probes differ, than the underlying non-linear effects must also differ.  

During each experimental session, the monkey was presented with trials 

consisting of either a visual motion signal only, a visual probe only, a microstimulation 

probe only, a visual probe plus a visual motion signal or a microstimulation probe plus a 

visual motion signal (Figure 1C). The probability of a correct detection in these five 

conditions was denoted as:  

V Mpsignal , pprobe , pprobe , pτ 
V  and pτ 

M , respectively. 

For any correct trial, there was always a chance that the monkey simply guessed 

correctly instead of actually perceiving coherent motion. To account for this, we 

calculated the rate at which the monkey false alarmed (released the lever before the 

coherent motion signal occurred) for each experimental session to first modify the 

probability of a correct detection: 
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psignal → psignal − FA, 
V Vpprobe → pprobe − FA, 
M Mpprobe → pprobe − FA, 

pτ 
V → pτ 

V − FA(τ ), 
pτ 
M → pτ 

M − FA(τ ), 

where FA is the probability that the monkey would false alarm in a 500ms interval, which 

was the length of the response window. For a trial with a probe plus visual motion signal, 

the monkey was rewarded if he released the lever after the probe or after the signal. Thus 

the response window was adjusted according to τ. No value was adjusted below zero, and 

the mean FA was 2.8%. 

This modification was based on the assumption that a false alarm and correct 

signal detection are mutually exclusive events. Although this assumption is only an 

approximation, the modifications were small and were applied equally to both visual and 

microstimulation results, and the overall results were left unchanged if no adjustments for 

false alarm rates were performed. 

Next, we defined two values that were the probabilities of correctly detecting a 

signal or a probe assuming the two were independent: 

V V V =psignal | probe psignal + pprobe − psignal pprobe 
M M M = .psignal | probe psignal + pprobe − psignal pprobe 
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Although detecting the probe and detecting the signal are most likely not independent 

events, the differences approach zero as the probability of a probe detection becomes 

small and the same modifications are performed to both visual and microstimulation 

trials. 

Since a detection task results in a binomial distribution (correct/failed), we can calculate 

the means, 

V Vmsignal | probe = nsignal psignal | probe 
M Mmsignal | probe = nsignal psignal | probe 

mτ 
V = nτ 

V pτ 
V 

mτ 
M = nτ 

M pτ 
M , 

and the variances, 

V V Vssignal | probe = nsignal psignal | probe (1− psignal | probe ) 
M M Mssignal | probe = nsignal psignal | probe (1− psignal | probe ) 

sτ 
V = nτ 

V pτ 
V (1− pτ 

V ) 
sτ 
M = nτ 

M pτ 
M (1− pτ 

M ). 

Here, the variable n  refers to the total number of correct plus missed trials of each type. 

Given the mean and variances, the visual and microstimulation impulse-response 

functions were defined using the t-statistic based on the Student’s t-test: 

174



€

€ €

 

 

 

 

 

  

 

 

 

 

 

 

  

Vmτ 
V − msignal | probeIRFV (τ) = ,

V V(nτ 
V − 1)sτ + (nsignal −1)ssignal | probe ( 1 1 

V V + )
nτ + nsignal − 2 nτ nsignal 

Mmτ 
M − msignal | probeIRF M (τ) = ,

M M M(nτ 
M − 1)sτ + (nsignal − 1)ssignal | probe ( 1 1 

M E + )
nτ + nsignal − 2 nτ nsignal 

where IRFV (τ)  and IRF M (τ)  denote the visual and microstimulation impulse-response 

functions, respectively. 

Since there is a delay before visual motion signals reach area MT, we shifted the 

microstimulation impulse-response function to compensate for this delay. To compute the 

neural latency, we computed the average neural activity from multi-unit activity in 

response to only the visual motion signal. The neural response was smoothed with a 

Gaussian with a standard deviation of 4ms, and the latency was defined as the point in 

time where the average neural activity crossed 3 standard deviations above baseline 

activity after coherent motion onset. Since the neural response was smoothed with a non-

causal filter, this slightly lowered our estimate of the latency. 

Overall, the average latency was 53.6 ms with a standard deviation of 18.7 ms. To 

compensate for this latency, we shifted our microstimulation temporal effect 50 ms. Thus 

the original interval time between the microstimulation probe and the signal of –100, –75, 

–50, –25, 0, 50, 150, 250 and 350 ms were shifted to –50, –25, 0, 25, 50, 100, 200, 300 
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and 400 ms. We do not show the effect of the microstimulation probe at negative 

intervals, which corresponds to the visual motion signal reaching MT on average before 

the microstimulation probe. It should be noted that the effect of the microstimulation 

probe at negative intervals was excitatory but weaker than the effect of the probe at 0 ms. 

Significance tests for comparing the two probes 

The significance test for the strength of the probe for τ ≤ 50 was calculated using 

real, non-fitted data. For each experimental session, we averaged the effect of the probes 

at τ = 0, 25 and 50. We then performed a two-sided t-test between these averages for the 

microstimulation and visual probes. 

Bootstrap analysis was used to compute significance when comparing how 

quickly the effects of the probes decayed. It was performed on both fitted and un-fitted 

data. Given n experimental sessions in our population, we sampled at random n 

experimental sessions with replacement. We then calculated the decay rate in two 

different ways. In the first, we divided the effect of the probe averaged between τ = 50 

and 100 ms by the effect of probe averaged between τ = 0 and 25 ms. In the second 

method, we then fit the average effect of the probes at all time points with a single 

exponential function and determined its time constant. If one or both of these fits were 

poor, then both fits were discarded and new experimental sessions were resampled. These 

calculations were performed simultaneously for both electrical and visual probes so that 

both were calculated using the same n experimental sessions. These steps were then 
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repeated 20000 times. The average values reported in the text refer to the average of the 

20000 values calculated during the bootstrap. The p-value is the proportion of times that 

the microstimulation decay value was greater than the visual decay value calculated form 

the same sample set of n experimental sessions. 

Principal component analysis 

To demonstrate that the differences between the visual and microstimulation 

impulse-response functions were consistent on an experiment-by-experiment basis, we 

used principal component analysis. This was because individual experiments had 

considerable noise and thus could not be reliably fit by our single exponential function. 

Principal component analysis was used to reduce the noise by lowering the 

dimensionality of the data set.

 Since the time intervals (τ) used for the visual and microstimulation temporal 

effects did not perfectly match, we first interpolated missing quantities by averaging 

adjacent values to obtain an identical set of time intervals for both sets of temporal 

effects. The time intervals used were 0, 25, 50, 75, 100, 150, 200, 250, and 300 ms. From 

the population averages, there did not appear to be much difference between visual and 

microstimulation probes after 300 ms. Next, we computed the covariance matrix of all 

microstimulation and visual temporal effects combined together, and found the two 

eigenvectors with the two largest associated eigenvalues. We reconstructed the temporal 
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effects (from 2 to 9 dimensions) by multiplying the two-dimensional (row) vector with 

the 2 by 9 matrix of the two principal eigenvector 
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Results 

We first trained two monkeys (Rhesus macaque) to perform a simple motion 

detection task (Figure 1A). The visual stimulus was 0% coherent random dot motion and 

the monkey had to quickly release a lever after the occurrence of a brief (33 ms) coherent 

motion pulse. The selection of such a brief stimuli was important because it allowed us 

to easily determine how the motion information was integrated in time. The coherent 

motion (referred to as the signal) occurred at a random time and its strength was set to 

produce threshold performance of ~50% correct. 

We applied microstimulation to area MT because it has been shown to be highly 

selective for coherent motion (Albright et al. 1984; Maunsell and Van Essen 1983; Van 

Essen et al. 1981; Zeki 1974) and its activity is linked to motion perception (Salzman et 

al. 1990). The stimulus location, motion speed and motion direction were matched to that 

preferred by the location of MT containing the microelectrode (Figure 1B). In this way, 

the microstimulated region of MT would contribute to the monkey’s detection of the 

coherent signal (Bisley et al. 2001; Ditterich et al. 2003; Murasugi et al. 1993; Nichols 

and Newsome 2002; Salzman et al. 1992). To measure the temporal effect of 

microstimulation on behavior, we briefly microstimulated on some random trials for 33 

ms (referred to as the probe) at various times relative to the main visual motion signal 

(Figure 1C, top). We denote the time between the probe and the signal as τ . This 

experimental design is similar to the “two-pulse interaction” approach developed to 

psychophysically measure temporal integration of visual stimuli in humans (Rashbass 
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Figure 1 Experimental design and example result. (A) Two monkeys were trained to 

detect a brief (33 ms) coherent motion signal in a moving random dot patch. The coherent 

motion occurred at a random time and the strength of the motion was set to produce 

threshold detection performance. The animals had from 150 to 650 ms to release a lever 

once the coherent motion occurred. (B) Microstimulation was applied to a site in area MT 

whose preferred direction, speed, size and location matched the motion stimulus. It was 

assumed that neural activity in area MT was linearly integrated to support the animal’s 

detection of the coherent motion signal. (C) Some trials contained a probe that preceded 

the coherent motion signal. The probe was either 33 ms of subthreshold microstimulation 

or coherent motion. The separation between the signal and the probe is denoted by τ. 

Microstimulation consisted of eight 200 Hz biphasic 40 µs pulses with amplitudes that 

ranged from 3 to 50 µA. (D) Results from an example experiment. The animal’s 

probability of detecting the motion signal as a function of τ is shown on the vertical axis. 

Visual probe (blue) and microstimulation probe (red). Dashed black line is the monkey’s 

probability of detecting the coherent motion signal alone, and the dashed blue and red 

lines represent the probability of detecting the visual and microstimulation probes alone, 

respectively. 
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1970; Simpson 1994). It is important to point out that the animals were rewarded for 

responding to either the visual motion signal or probe. 

To determine how the effect of microstimulation differs from that of a normal 

visual input, on some trials we used a 33 ms probe of subthreshold visual coherent 

motion (Figure 1C, bottom). Comparing the animal’s ability to detect the coherent motion 

signal as a function of τ for both types of probes allowed us to reveal the temporal 

differences between microstimulation and visual motion. 

Trials containing visual and microstimulation probes were randomly interleaved 

and τ was shifted by 50 ms for the microstimulation probe trials to account for neural 

latency of MT. Although the neural latency varied between sites, our results were 

unaffected when we controlled for any differences in latency (see Supplementary Figures 

1&2). By comparing the probability that the monkey detected the visual motion signal 

and probe for each τ to the probability the monkey detected the visual motion signal only, 

we could estimate the underlying time course of the effect that each type of probe had on 

motion perception.     

Figure 1D shows the proportion of trials that the animal correctly detected the 

visual motion motion as a function of the separation between the probe and signal during 

a single experimental session. For this example, both microstimulation and visual probes 

presented just before the signal (small τ ) increased the monkey’s ability to detect the 

coherent motion signal compared to the trials where we presented only the signal. Probes 

further in time from the signal (large τ) had little or no effect on behavioral performance. 
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It was important that the strength of both the visual and microstimulation probe 

was the same. At the beginning of each experiment we adjusted both to be approximately 

equivalent by presenting trials consisting of only the probes. During the experiment we 

continued to monitor their strength by occasionally presenting probe only trials. Figure 

2A shows the pairwise difference between the probability of detecting the visual and 

microstimulation probes. These probabilities have been modified to account for the 

monkey detecting the probe by chance (see Methods). Although there was an appreciable 

amount of variability, on average, the animals detected the visual and microstimulation 

probes with similar probability (visual: 5.2 ± 0.6%; microstimulation: 4.5 ± 0.7%; p = 

0.37, all p-values are pairwise differences, two-sided t-tests). We do not believe that this 

variability was a factor in our results (see Supplementary Methods). The average reaction 

times (RT) for detecting the visual and electrical probe only trials were also similar after 

accounting for the 50 ms difference in latency (Figure 2B, visual: 390.3 ± 7.1 ms; 

microstimulation + 50 ms: 397.5 ± 10.0 ms; p = 0.55). Thus, the visual and 

microstimulation probes presented alone were weak (i.e., subthreshold) and produced 

relatively equivalent effects on behavior. 

In order to combine results across experimental sessions, we normalized the effect 

of the visual and microstimulation probes (see Methods). We first accounted for the 

probability of detecting the probes (red and blue dashed lines in Figure 1D) using the 

probe only trials. We then converted this probe-detect adjusted data to a t-score which 

indicated how effective a probe was at influencing the detection performance compared 
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Figure 2 Visual and microstimulation probes were of equivalent strength. (A) The 

histogram of the pairwise difference between the animal’s ability to detect the visual 

motion probe alone and the microstimulation probe alone. (B) The histogram of the 

pairwise difference between the animal’s reaction time to respond to the visual motion 

probe alone and the microstimulation probe alone. The difference is shifted by 50 ms to 

account for the neural latency of MT.  
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to the visual motion signal only condition (black dashed line in Figure 1D). Figure 3A 

shows the normalized data for our example experiment and illustrates that both the visual 

and electrical probes initially enhanced the detection of the visual motion signal for small 

τ but then had no or a slight inhibitory effect on behavior for longer τ. 

To compare the effects between visual and microstimulation probes, we averaged 

the normalized t-scores of the probes at each τ across all experiments (Figure 3B). We 

then averaged the effects of each type of probe to obtain its impulse-response function 

(IRF). The IRF is a linear approximation of the effect of the probe on motion perception 

across time. The IRF is by definition the output of a linear system given that the input is 

an impulse (a pulse of vanishingly small width in time). In our experiment, we 

approximated the impulse with a 33 ms probe, and the output of the system was the 

change in detecting the visual motion signal. We do not claim that motion perception is a 

linear system, but this method can still be used to obtain the best linear estimates of the 

temporal effects of the probes. 

Although somewhat similar, the IRFs of the microstimulation and visual probes 

on motion perception were significantly different in two ways. Firstly, the effect of the 

microstimulation probe was on average weaker than the effect of the visual probe for 

short τ ≤ 50 ms (p < 0.001, two-sided t-test, see Methods). Secondly, the decay rate of the 

microstimulation IRF was significantly longer than the visual probe. We compared the 

decay rate of the IRFs using bootstrap analysis on both fitted and un-fitted data. When 

fitting the IRFs with single exponentials, the time constant for the microstimulation probe 

186



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 The behavioral impulse-response function of MT microstimulation. (A) 

Example experiment from Figure 1D. The effect of the probes on the animal’s ability to 

detect the motion signal was normalized to a t-score (see Methods). Positive/negative 

values indicated that the probe enhanced/suppressed the monkey’s ability to detect the 

motion signal. (B) The average temporal effect of the probes on normalized performance 

(n = 53). Averages were fit with a single exponential. (C) Same as in (B), but using the 

probes effect on reaction time instead. 

187



A
 
Visual probe
μ-Stim probe 3

C
ha

ng
e 

in
 p

er
fo

rm
an

ce
(t-

Sc
or

e)
 

0 

0 200 400 

B
 

0 200 400 

Population 
average
(n=53) 

0 4000 

1

C
ha

ng
e 

in
 p

er
fo

rm
an

ce
(t-

Sc
or

e)
 

1.5 

0 

C
 
0 

 C
ha

ng
e 

in
 R

T 
(m

s)
 

0 200 400 

Population 
average
(n=53) 

0 400-1 

0 

–25 

Time between signal and probe (τ, ms) 

Figure 3 

188



  

  

 

   

 

    

  

   

 

 

was much longer (visual probe time constant: 61.5 ± 12.9 ms, microstimulation probe 

time constant: 170.9 ± 91.5 ms, p = 0.002, bootstrap, see Methods). The inset in Figure 

3B shows the fitted IRFs of the two probes normalized so that the value of the fit is set to 

unity at time zero. This clearly shows the difference in decay rates between the two IRFs. 

We also calculated the decay rate of the two types of IRFs from the non-fitted day. We 

compared the effect of the probe averaged between τ = 50 and 100 ms to the effect 

averaged between τ = 0 and 25 (see Methods). For the microstimulation probe, the effect 

averaged between τ =50 and 100 ms decayed to 68% from the effect averaged between τ 

= 0 and 25 ms. On the other hand, the effect of the visual probe for these same time 

points decayed to 35% (p = 0.002, bootstrap).  

The average effect of the probes on the animal’s RT for correct trials showed a 

similar trend (Figure 3C). Microstimulation probes were weaker for τ ≤ 50 ms ( p < 10-5 , 

two-sided t-test). The time constant for the microstimulation probe was marginally 

greater than the time constant for the visual probe (visual probe time constant: 174.1 ± 

23.2 ms, microstimulation probe time constant: 250.9 ± 64.2 ms, p = 0.089). The inset of 

the normalized fitted IRFs highlights this difference. Furthermore, the effect of the 

microstimulation probe averaged between τ =50 and 100 ms increased to 112% of the 

average effect from τ = 0 and 25 ms while the effect of the visual probe for these same 

time points decayed to 76% (p = 0.005, bootstrap). These differences between the two 

probes were consistent for both monkeys (see Supplementary Methods). 
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To further demonstrate that microstimulation had a weaker and longer lasting 

effect on behavior, we compared the IRFs of microstimulation to that of visual motion on 

a site-by-site basis using principal component analysis (see Methods). Principal 

component analysis is a widely used technique to extract the most salient features of the 

data. We chose this analysis because there was considerable variability within many of 

our experiments, and we were not able to reliably fit exponentials to each experiment 

individually. The IRF of either probe is measured at nine time points; we used principal 

component analysis to project these nine values down to two data points. In Figure 4A, 

we show the projections of the two IRFs from the example experiment shown in Figure 

1D and 3A. The coordinates of each projection are the dot product between the IRF and 

the two vectors (the eigenvectors) that capture the most variance out of all 

microstimulation and visual IRFs combined from all experimental sessions. We shifted 

both projections by equal amounts so that the projection of the visual IRF is at the origin. 

The microstimulation projection is above the visual projection, but the meaning of this 

difference is not evident from this two-dimensional representation. To reveal is meaning, 

we reconstructed IRFs from these two-dimensional projections (Figure 4B). The 

reconstructed IRFs are linear combinations of the two vectors (eigenvectors) that capture 

the most variance. Thus, the reconstructed IRFs will in general not be equal to the 

original IRFs. By comparing the constructed IRFs in Figure 4B to the originals in Figure 

3A, we observe that that the reconstructed IRFs are effectively smoothed versions of the 

originals. 
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Figure 4 Principal component analysis of an example experimental session. (A) The IRF 

of the microstimulation and visual probes shown in Figure 1D and 3A are projected upon 

the two eigenvectors that capture the most variance across all experiments. The 

projection of the microstimulation IRF is given by the red circle while the visual 

projection is given by the blue square. Both projections have been shifted by equal 

amounts so that the visual projection is at the origin. The method used to calculate the 

angle between the two projections used in Figure 5B&E is shown. (B) IRFs are 

reconstructed from the two projections. The reconstructed microstimulation IRF is shown 

in red while the visual reconstruction is shown in blue. The reconstruction is the sum of 

the eigenvectors weighted by the coordinates of the projection. 
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In Figure 5A, we project the microstimulation (red dots) and visual (light blue 

square) IRFs of each experimental session and then shift the values so that the projection 

of the visual IRF is at the origin. Hence, all light blue squares overlap at the origin. For 

most experimental sessions, the microstimulation projections were to the right of the 

visual projections. This is quantified by the histogram of angles between the visual and 

microstimulation projections (Figure 5B), where the angle is calculated according to 

Figure 4A. The blue-to-red line gives the average direction between the microstimulation 

and visual projections. The distribution of angles between the visual and 

microstimulation projections (Figure 5B) was significantly different from uniform 

(Rayleigh test for non-uniformity, p = 0.0032). This implies that there was a consistent 

difference between the visual and microstimulation impulse-response functions, although 

this difference is not clear in this two-dimensional representation.  

To understand the meaning of this difference between microstimulation and visual 

projections, we reconstructed IRFs as done in Figure 4B. We reconstructed IRFs (shown 

in Figure 5C) from points along the blue-to-red line in Figure 5A that points in the 

average direction between the two types of projections. Points along the blue-to-red line 

in Figure 5A are reconstructed to the IRF of matching color in Figure 5C. As one moves 

from blue to red along the line in Figure 5A, the reconstructed IRFs in Figure 5C become 

weaker and decay more slowly. This shows that moving rightward in the two-

dimensional representation in Figure 5A corresponds to IRFs becoming weaker at short τ 

and decaying more slowly. Since most microstimulation projections are in the rightward 
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Figure 5 Principal component analysis of all experimental sessions. (A) 

Microstimulation (red dots) and visual temporal effects (light blue square) for each 

experiment were projected onto the first two eigenvectors. Each pair of microstimulation 

and visual projections from the same experimental session was shifted so that the visual 

projection was always centered at the origin. The line changing from blue to red line 

indicates the average direction between the visual and microstimulation projections. (B) 

Distribution of the angles between the projections of visual and microstimulation 

impulse-response functions from the same experimental session. (C) Reconstruction of 

the impulse-response functions from the projections. The dark red and blue lines are the 

reconstruction (see Methods) of the projections of the average microstimulation and 

visual impulse-response functions, respectively. The light blue-to-red lines are the 

reconstructions of the projections of points along the blue-to-red line in (A) of matching 

color. Thus, as one moves along the average direction going from visual to 

microstimulation projections, the reconstructed temporal effects becomes weaker at short 

time intervals and decays more slowly. (D-F) Same as above, except that the probes’ 

effects on reaction times are used instead of the effect on detection performance. 
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direction (Figure 5B), microstimulation IRFs are consistently weaker at short τ and decay 

more slowly. 

We repeated this calculation for the effect of the probes of the RT and found 

similar results (Figure 4D-F). The distribution of directions between the microstimulation 

and visual projections is shown in Figure 4E and was also significantly different from 

uniform (p = 0.0003). All together, the analysis in Figure 4 confirms the main finding in 

Figure 3 that the effect of microstimulation on behavior was weaker and lased longer 

compared to an equivalent visual stimulus. 

Our analysis so far suggests that the visual and microstimulation probes had 

different effects on the behavioral detection of the motion signal. We next wanted to 

examine the mechanism of how the probe enhanced detection performance. One 

possibility is that the temporal effects of the probe was due to the integration of MT 

activity as illustrated in Figure 1B and proposed in many neural models of decision-

making (Cook and Maunsell 2002; Huk and Shadlen 2005). An alternative possibility is 

that there was no integration of MT activity and the temporal effects of the probes was 

simply because the probes altered how area MT responds to the motion signal. To 

differentiate between these possibilities, we recorded multi-unit activity in area MT in 

response to the visual probes and signal in 47 out of 53 experiments. Because we could 

not record and stimulate simultaneously, this was done before we began the main 

microstimulation component of the experiment. 
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In Figure 6, we show the average normalized neural response to the motion signal 

when preceded by the different visual probes. Responses were normalized to the neural 

activity produced by the motion signal alone and expressed as the mean from 40 to 90 ms 

after the onset of the coherent motion signal (the peak neural response occurred 65 ms 

after stimulus onset). When the visual probe was adjacent the signal (τ = 0 ms), the neural 

response to the motion signal was significantly greater (p = 0.01). However, the rest of 

the probe times did not consistently change the neural response in area MT to the motion 

signal (all other probe times, p > 0.3). The time constant of decay as a function of the 

separation between the probe and signal in Figure 6 was 26.4 ms and much shorter than 

the behavioral time constants in Figure 3B and C. Thus, the temporal effects of the 

probes on behavior cannot be solely explained by their effect on the neural responses to 

the motion signal. We conclude that the behavioral effects of both types of probes are at 

least partly due to the integration of MT activity, which then forms the basis of the 

decision to release the lever (illustrated in Figure 1B). 
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Figure 6 The time course of neural activity. In a subset of experiments (n = 47), multi-

unit activity in area MT was recorded in response to the motion signal and visual probes. 

The neural response was defined as the average spike count within 25 ms of the peak 

neural response to visual motion (which had an average latency of 65 ms). The spike 

count to the motion signal only is assigned a value of 1 and all other values are relative to 

this baseline. 
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Discussion 

We measured the behavioral impulse-response function of brief microstimulation 

in area MT. An important aspect of our experimental design was matching the strength 

of visual and microstimulation probes, which allowed us to compare the impulse-

response function of the microstimulation to that of an equivalent visual stimulus. We 

found that the effect of the microstimulation probe on motion perception was weaker and 

decayed more slowly compared to the effect of the equivalent visual probe. Given that 

future applications of microstimulation may require high temporal precision, this study 

raises the possibility that cortical microstimulation is ill suited to generate the required 

temporally precise percepts. 

Understanding the temporal effects of microstimulation on behavior is important 

because the sensory environment, along with the perception it generates, is highly 

dynamic (Hegde 2008; Simoncelli and Olshausen 2001). Animals can perceive (Thorpe 

et al. 1996) and react to changes in their environment on very short timescales (Rieke et 

al. 1999) , and sensory perception itself evolves over time to even static stimuli (Hegde 

2008). Although highly informative, previous studies probing the causality between 

neural activity and perception have usually examined the effects of microstimulating for 

much longer periods of hundreds or thousands of milliseconds. Recent studies have 

begun to reveal how sensory areas encode natural stimuli (Butts et al. 2007; David et al. 

2004; Felsen et al. 2005; Lesica and Stanley 2004; Nemenman et al. 2008; Sharpee et al. 

2004; Simoncelli and Olshausen 2001) and it is useful to know the extent to which 
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microstimulation can be used to reveal the causality between sensory activity and 

perception on these fast timescales. Furthermore, microstimulation will be the basis for 

future advanced sensory neural prosthetics (Bradley et al. 2005; Fernandez et al. 2005; 

Girvin 1988; McIntyre and Grill 2000; Middlebrooks et al. 2005; Normann et al. 1999; 

Tehovnik and Slocum 2007; Troyk et al. 2003). Thus, it is imperative we understand the 

effects of microstimulation in the same temporal regime as natural sensory inputs. In 

addition to neural prosthetics, deep brain stimulation has shown therapeutic promise for a 

range of neurological conditions (Perlmutter and Mink 2006). Both of these applications 

will benefit from a precise description of how current injected from microelectrodes is 

translated into behavior and perception. 

Several past studies have previously examined the temporal spread of 

microstimulation on cortical activity, both in vitro (Shao and Burkhalter 1996; 1999) and 

in anaesthetized, in vivo preparations (Berman et al. 1991; Butovas et al. 2006; Butovas 

and Schwarz 2003; Chung and Ferster 1998; Contreras et al. 1997). These studies 

revealed that microstimulation induced long-lasting suppression in neural activity, 

mediated by GABAB-receptor synaptic inhibition (Butovas et al. 2006). It is likely that in 

our detection task, a microstimulation-induced reduction in the activity of neurons 

encoding the stimulus could have been used as evidence for the presence of the coherent 

motion signal. Since we do not fully understand the rules by which neural activity is 

transformed into behavior, we cannot claim that long lasting effects on neural activity 

translates into long lasting effects on behavior. However, these past electrophysiology 

201



   

 

 

 

 

   

 

 

 

studies combined with our behavioral study provide a consistent picture that 

microstimulation affects perception for several hundred milliseconds after it stops. 

There has been a great deal of effort to understand the spatial spread of cortical 

activity in response to microstimulation (Ranck 1975; Salzman et al. 1992; Stoney et al. 

1968; Tehovnik et al. 2005; Tehovnik et al. 2003; Tolias et al. 2005). Outside the 

electrophysiological studies above, few behavioral studies have investigated the temporal 

properties of microstimulation. In an elegant study, Brecht and colleagues demonstrated 

that eye movements produced by two stimulating electrodes in the superior colliculus 

were sensitive to temporal offsets of less than 10 ms (Brecht et al. 2004). In addition, in 

vivo results have demonstrated that the precise timing of stimulation pulses can result in 

measurable changes in neural plasticity (Baranyi and Feher 1981; Jackson et al. 2006). In 

agreement with our results, Tehovnik and colleagues showed that the effect of 

microstimulation on the latency of visually guided saccades decayed over a time course 

of about 200 ms (Tehovnik et al. 2004). However, their experiment could not determine 

if the long interaction time between microstimulation and saccade latency was due to the 

natural temporal integration of the cortex or due to the temporal properties of the 

microstimulation. This long integration time is perhaps best exemplified in a study that 

observed that weak 100 ms pulses of motion perturbed both motion perception as well as 

neural activity in area LIP, believed to integrate activity from MT, over a period of 800 

ms (Huk and Shadlen, 2005). By using a visual probe as a control, we are in a better 

position to show that the long interaction time is a result of the temporal spread of 
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microstimulation and cannot be fully explained by the natural temporal integration of 

cortex. 

We believe that the microstimulation used in our study only activated a single 

cortical column involved in encoding the motion stimulus. Although we could not test 

this assumption directly, past results clearly indicate that our microstimulation parameters 

(low amplitude and very short duration) likely produced activity that was tightly localized 

around the tip of our electrode (Murasugi et al. 1993; Salzman et al. 1992). The low 

detection rate (~5%) of the probes also suggests our microstimulation parameters 

produced subthreshold behavioral effects. Our amplitudes were similar to recently 

reported detection thresholds in MT (Murphey and Maunsell 2007), however, this other 

study used stimulation durations that were eight times longer.   

Although there is good reason to think our microstimulation activated a local 

cortical column in MT, the notion that we were always activating neurons representing 

“coherent motion” may be over simplistic. DeAngelis and Newsome suggest that 

stimulating areas in MT that are also strongly tuned to disparity can reduce the effect of 

microstimulation in a motion discrimination task (DeAngelis and Newsome 2004). Born 

and colleagues also showed that the effectiveness of microstimulation may depend on the 

center surround properties of the column surrounding the electrode (Born et al. 2000).  

That MT is not a homogeneous motion encoding area provides a likely explanation of 

why many studies have found behavioral thresholds for the amplitude of 

microstimulation vary from site to site. However, it seems unlikely that the particular 
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sensory representation of a cortical column in MT would influence how the effect of 

microstimulation spreads across time. 

This study is different than many previous studies that measure the effect of 

microstimulation on behavior in that we employ a detection paradigm, as opposed to a 

two-alternative forced choice or discrimination paradigm (Bisley et al. 2001; Celebrini 

and Newsome 1995; de Lafuente and Romo 2005; Ditterich et al. 2003; Hanks et al. 

2006; Liu and Newsome 2005; Romo et al. 1998; Salzman et al. 1990). Our motivation 

for this task design was to ensure the visual and microstimulation probes were equally, 

yet rarely detected because the probes could occur at any time during a 10 second period. 

Our detection task required the animals to adopt a low guess rate and allowed us to 

quickly measure the effects of the both types of probes (because the variance of a 

binomial distribution is smallest at the extremes). These constraints on our paradigm 

meant that we could not consider several variants of our experiment that might otherwise 

have been interesting. For example, it has previously been shown microstimulation in an 

area of MT that is not behaviorally relevant does not affect the perceptual decision of the 

subject (Salzman et al. 1992). However, since we rewarded the monkey for detecting 

either probe, the monkey could always use the microstimulation to help detect the visual 

motion, no matter its origin within area MT. 

Was the difference between the behavioral effects of the two probes the result of a 

difference in how they were processed by the brain? For example, the visual probe might 

have provided sensory evidence towards a coherent motion percept, while the 
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microstimulation probe might have acted to cue the subject to the upcoming motion 

stimulus. Past studies have shown that longer pulses of microstimulation to MT provide 

sensory evidence towards coherent motion perception (Ditterich et al. 2003; Nichols and 

Newsome 2002; Salzman et al. 1990). However, if microstimulation acted to cue the 

subject to the upcoming motion stimulus, then one must also believe that the visual 

motion probe must have done the same; both probes were subthreshold stimuli that 

generated neural responses in the same cortical area. Even if the visual system did not 

process the two probes in the same fashion, then this would only serve to strengthen the 

result that brief microstimulation is not equivalent to an equivalent sensory stimulus. 
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Supplementary Methods 

The variability in neural latency 

One possible explanation for the difference between the microstimulation and 

visual impulse-response functions could be the variability in neural latency of sites in MT 

we stimulated. Although our shift of 50 ms was very close to the average neural latency 

of 53.6ms, the variability in the latency could have smoothed our estimate of 

microstimulation impulse-response function, producing the weaker effect that we 

observed at short time intervals and increasing the decay time. 

To test this hypothesis, we repeated our calculation using only experimental 

sessions whose neural latency was between 43 and 57 ms inclusive (arbitrarily set to give 

us 30 experimental sessions). Overall, the fundamental differences between the visual 

and microstimulation temporal effects remained the same (Supplementary Figure 1A). 

On average, microstimulation probes had a weaker effect on performance for short τ (τ ≤ 

50: p = 0.060; τ ≤ 25: p = 0.005) and decayed more slowly (visual time constant: 54.2 ms, 

microstimulation time constant: 178.3 ms, p = 0.006, bootstrap). We also calculated the 

decay rate of the two types of probes from the non-fitted data. We compared the effect of 

the probe averaged between τ = 50 and 100 ms to the effect averaged between τ = 0 and 

25 (see Methods). For the microstimulation probe, the effect averaged between τ =50 and 

100 ms decayed to 67% from the effect averaged between τ = 0 and 25 ms. On the other 
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Supplementary Figure 1 Population averages for sites with similar neural latency. (A) 

The average temporal effects of the visual (red dots) and microstimulation (blue dots) 

probes for 30 sites with neural latency between 43 and 57 ms, inclusive. As in Figure 3B, 

all results are first normalized to a t-score before being averaged. Both averages were fit 

with an exponential of the form aexp(−bτ ). (B) Same as above, but using the probes 

effect on reaction time instead. 
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hand, the effect of the visual probe for these same time points decayed to 22% (p = 0.001, 

bootstrap). 

Similarly, the differences between the microstimulation and visual probes’ effect 

on reaction times did not change (Supplementary Figure 1B). Microstimulation probes at 

short τ had less effect than visual probes (τ ≤ 50: p = 0.006; τ ≤ 25: p < 10-3) and decayed 

more slowly (visual time constant: 150.4 ms, microstimulation time constant: 235.0 ms, p 

= 0.034, bootstrap). Using the actual data (not fitted by an exponential), for the 

microstimulation probe, the effect averaged between τ =50 and 100 ms increased to 

120% from the effect averaged between τ = 0 and 25 ms. On the other hand, the effect of 

the visual probe for these same time points decayed to 72% (p = 0.004, bootstrap).  

To confirm that these results were also consistent on site-by-site basis for these 30 

experiments, we repeated the principal component analysis on this reduced data set 

(Supplementary Figure 2). Both distributions of the directions were significantly different 

from uniform (Supplementary Figure 2B&E, change in performance: p = 0.011; change 

in reaction time: p = 0.043), indicating that the differences between the two impulse-

response functions were consistent across experimental sessions. Additionally, the 

reconstruction of the impulse-response functions (Supplementary Figure 2C&F) once 

again showed that the effect of microstimulation on performance and RT was initially 

weaker and decayed more slowly. All together, these results suggest that variability in 

209



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2 Principal component analysis for sites with similar neural 

latency. Same as Figure 4, except only 30 sites with neural latencies between 43 and 57 

ms were used for the analysis. 
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neural latency was not the reason for the difference between microstimulation and visual 

impulse-response functions. 

The variability in probe strength 

In order to make a fair comparison between the two probes, it was important to set 

the strength of the microstimulation probe so that it was approximately equal to that of an 

equivalent visual probe. To ensure this equality, we measured how often the animal could 

detect microstimulation and visual probes alone (Figure 2A&B). On average, the two 

types of probes were detected with low and almost equal probability. Although there 

was appreciable variability between the strength of the visual and microstimulation 

probes, we do not believe that this could have produced the observed differences between 

the temporal effects of the two types of probes. To check this, we recalculated the 

temporal effects of the probes on performance and RT for the case where visual probe 

only trials were detected more often than microstimulation probe only trials. The effect of 

the microstimulation probe was weaker than the effect of the visual probe at small τ ≤ 50 

ms (changed in performance: p = 0.033; change in RT: p < 10-4 , two-sided t-test, n=29) 

and time constant was longer for the microstimulation probe (change in performance: 

67.3 ms for visual and 295.7 ms for microstimulation, p < 0.001; time constant for 

change RT: 228.2 ms for visual and 363.2 ms for microstimulation, p = 0.27, bootstrap, n 

= 29). Using the actual data (not fitted by an exponential), for the microstimulation probe, 

the effect on the change in performance averaged between τ =50 and 100 ms decayed to 

78% from the effect averaged between τ = 0 and 25 ms while the effect of the visual 
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probe for these same time points decayed to 37% (p = 0.005, bootstrap). For the change 

in RT, the effect of the micrsotimulation probe averaged between τ =50 and 100 ms 

increased to 106% from the effect averaged between τ = 0 and 25 ms while the effect of 

the visual probe for these same time points decayed to 82% (p = 0.133, bootstrap). 

For the case when the microstimulation probe only trials were detected more often 

than visual probe only trials, the results were similar. The effect of the microstimulation 

probe was weaker the visual probe at small τ ≤ 50 ms (changed in performance: p = 0.02; 

change in RT: p = 0.039, two-sided t-test, n = 22) and time constant was longer for the 

microstimulation probe (change in performance: 62.5 ms for visual and 100.2 ms for 

microstimulation, p = 0.28; time constant for change RT: 175.8 ms for visual and 405.1 

ms for microstimulation, p = 0.004, bootstrap, n = 22). For the microstimulation probe, 

the effect on the change in performance averaged between τ = 50 and 100 ms decayed to 

51% from the effect averaged between τ = 0 and 25 ms while the effect of the visual 

probe for these same time points decayed to 28% (p = 0.111, bootstrap). For the change 

in RT, the effect of the microstimulation probe averaged between τ =50 and 100 ms 

increased to 117% from the effect averaged between τ = 0 and 25 ms while the effect of 

the visual probe for these same time points decayed to 78% (p = 0.022, bootstrap). 

Regardless of the strength of the probe, microstimulation probes had significantly 

weaker effect on visual perception at τ ≤ 50 than visual probes. Additionally, the decay 

time from both the actual and fitted data was longer for the microstimulation probes. 
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Although not all of the differences in decay time were significant, this was to be expected 

given that the population was split into two smaller subgroups. On the whole, the strength 

of the probe was not a factor in the differences between the visual and microstimulation 

probes. 

Individual analysis of both monkeys 

Both monkeys showed similar difference between the effects of the 

mcirostimulation and visual probes. For monkey W, who performed 30 experimental 

sessions, the microstimulation probe was weaker at τ <= 50 ms (change in performance: p 

= 0.034; change in RT: p = 0.009, two-sided t-test). The time constant from the fitted data 

was longer for the microstimulation probe (change in performance: microstimulation time 

constant = 45.5 ms, visual time constant = 202.0 ms, p = 0.077; change in RT: 

microstimulation time constant = 430.2 ms, visual time constant = 152.6 ms, p = 0.004, 

bootstrap). Additionally, there was less of a decay going from τ = 0 and 25 ms to τ = 50 

and 100 ms (change in performance: p = 0.015; change in RT: p = 0.009, bootstrap). 

For monkey G, who performed 23 experimental sessions, the same differences 

existed. The microstimulation probe was weaker at τ <= 50 ms (change in performance: p 

= 0.034; change in RT: p = 0.009, two-sided t-test). For the change in performance, the 

time constant from the fitted data was longer for the microstimulation probe while there 

was no significant difference for the change in RT (change in performance: 

microstimulation time constant = 86.5 ms, visual time constant = 167.2 ms, p = 0.008; 
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change in RT: microstimulation time constant = 147.3 ms, visual time constant = 210.4 

ms, p = 0.088, bootstrap). It should be noted that this calculation of the change in RT is 

noisy given it consists of only the correct trials from 23 exprimental sessions. Finally, the 

effect of the microstimulation probe decayed from τ = 0 and 25 ms to τ = 50 and 100 ms 

more slowly, although the difference was not as great as it was for monkey W (change in 

performance: p = 0.199; change in RT: p = 0.67, bootstrap). 
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Chapter 5 


The effect of spatial attention on sensory processing in area 
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Abstract 

Visual attention has been shown to increase behavioral performance in a variety 

of tasks. However, the neural mechanisms that underlie this improvement are poorly 

understood. We hypothesize that the increase in behavioral performance is not simply 

because attention modulates how visual neurons encode stimuli, but because attention 

affects how neural activity is transformed between cortical areas. We tested this 

hypothesis by recording direction-selective neurons from ventral intraparietal area (VIP) 

during a motion detection task. We found that the neurons more sensitive to the stimulus 

were also more influential in forming the perceptual decision only when spatial attention 

was directed inside their receptive fields. This suggests that attention increases visual 

performance by properly weighing sensory activity and that properly weighing activity 

represents a bottleneck in visual processing. Unrelated to this finding, we also observed 

that the top-down signal of attention does not simply modulate how bottom-up signals are 

integrated, but can strongly interact with other top-down signals. 
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Introduction 

Our environment contains an overwhelming amount of visual information 

(Jacobson, 1951); attention allows one to suppress irrelevant stimuli and focus on those 

that are behaviorally important. One form of attention is spatial attention, in which 

attention is directed towards a specific location in one’s visual field. It is well known that 

spatial attention lowers detection and discrimination thresholds for visual stimuli at the 

attended location (Bashinski and Bacharach, 1980; Downing, 1988; Muller and 

Humphreys, 1991; Balz and Hock, 1997; Carrasco and Yeshurun, 1998; Cook and 

Maunsell, 2002a). However, the neural mechanisms of attention that lead to this increase 

in performance are still unknown. 

At least two, non-exclusive mechanisms have been proposed to explain the 

increase in performance from attention. The first is the “noise reduction” or change in 

bias model, in which signals from attended locations are weighted more heavily than 

signals from non-attended locations (Dosher and Lu, 1998; Lu and Dosher, 1998; Morgan 

et al., 1998; Baldassi and Burr, 2000). This is supported by studies that have reported that 

neural activity is increased when the attended location matches the receptive field, and 

decreased when attention is outside (Treue and Maunsell, 1996; McAdams and Maunsell, 

1999; Treue and Maunsell, 1999; Cook and Maunsell, 2002a). However, psychophysical 

experiments performed under “noiseless” conditions have observed increased visual 

sensitivity at the attended location, suggesting that attention can also be modeled as a 
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“signal enhancement” (Bashinski and Bacharach, 1980; Yeshurun and Carrasco, 1999; 

Carrasco et al., 2000). This model proposes that the visual system can encode stimuli at 

the attended location with better sensitivity, leading to increased behavioral performance. 

However, most studies have found no increase in the signal-to-noise ratio of the neural 

response with attention (McAdams and Maunsell, 1999; Treue and Martinez Trujillo, 

1999), placing doubt on this hypothesis. Although experimental data has not ruled out the 

possibility that these two possible explanations serve a role in attention, it does suggest 

that our understanding of the neural mechanisms of attention is incomplete. 

Other studies, not necessarily related to attention, have asked how information 

from sensory neurons is combined when forming perceptual decisions. These studies 

suggest that the activity of sensory neurons is not treated equally, but is weighted 

depending on how informative the neural activity is of the stimulus given the task 

(Britten et al., 1996; Dodd et al., 2001; Parker et al., 2002; Uka and DeAngelis, 2004; 

Purushothaman and Bradley, 2005; Jazayeri and Movshon, 2006, 2007b, a; Law and 

Gold, 2008). The proper weighting of sensory activity is not innate, but is the result of 

training (Law and Gold, 2008). Since the neurons most informative of the stimulus are 

dependent on the task, it would suggest that top-down feedback would be required to 

properly weight the activity of sensory neurons. 

In this study, we ask whether the top-down signal of spatial attention properly 

weighs the activity of sensory neurons when forming a decision. We find that when 

spatial attention was directed inside VIP neurons’ receptive fields, the neurons more 
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informative of the stimulus were more correlated with the behavioral outcome of the trial, 

as previously observed in the studies mentioned above. However, this correlation is 

eliminated when attention was directed outside the neurons’ receptive fields. This change 

is at least partly because spatial attention increased the sensitivity of the neurons’ more 

correlated with the behavior. We hypothesize that spatial attention increases visual 

performance by properly weighing sensory activity. 

In an observation unrelated to the findings above, we found that many VIP 

neurons received strong feedback just prior to a correct response, even when no motion 

was present inside the neuron’s receptive field. However, when attention was directed 

outside the neuron’s receptive field, this feedback was significantly reduced. This 

suggests that the top-down signal of attention does not simply modulate a neuron’s 

response to incoming sensory stimuli, but can gait other top-down feedback, 

complicating our view of how attention functions. 
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Methods 

Behavioral task 

The data set analyzed for this study comes from several previous studies (Cook 

and Maunsell, 2002a, 2004). Two monkeys (Macaca mulatta) were trained to perform a  

spatially cued motion detection task (Figure 1). The trial began when the monkey 

depressed a lever and fixated on a central point. The goal of the task was to release the 

lever when coherent motion began in one of two random dot patches diametrically 

opposite of the fixation point. After the cue was presented, 0% coherent motion began in 

the two patches followed by coherent motion occurring in one of the two patches at a 

random time (flat hazard function) 500 to 8000 ms afterwards. The location of the 

coherent motion was cued to the monkey at the start of the trial with static dots and this 

cue was valid on 80% of the trials. Trials where the spatial cue was inside the neuron’s 

receptive field were termed attend in (Figure 1A) trials while those where the spatial cue 

was outside were termed attend out (Figure 1B). The strength of coherent motion was 

varied between three levels (low, medium and high), with the monkey correctly detecting 

the coherent motion 50%, 90% and 99% of the time for the three levels. Valid trials 

comprised of all three coherence levels, while only medium-level coherence was used for 

invalid trials. The coherence levels for each experiment were adjusted depending on the 

eccentricity, speed and radius of the random dot patch in order to produce the target 

performance. 93 MT neurons and 104 VIP neurons were recorded in two monkeys. 
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In all experimental sessions, the direction and the speed of the coherent motion 

were matched to the preferred direction and speed of the neuron under study. The 

coherent motion lasted 750 ms and the monkey had to release the lever from 200 to 750 

ms after the onset of coherent motion to obtain a juice reward. Trials where the monkey 

failed to release the lever or released the lever too late were deemed missed trials. Only 

correct and missed trials were included in the analysis. Trials where the monkey released 

the lever too early or was unable to maintain fixation were discarded from the analysis. 

Visual stimulus 

The animal sat 62 cm from a computer monitor (+/-17° ´ +/-13° of visual angle; 

1600 ´ 1200 pixels; 75 Hz refresh). The stimuli consisted of two patches of white dots 

(each dot 0.25° diameter; 78 cd/m2) on a dark gray background (12 cd/m2) with a dot 

density of 2.1 dots/degree2. Each patch of dots was updated on every other video frame 

(approximately every 27 ms) using the following procedure. The dots in each patch were 

evenly divided into two groups. On each update, one group was replaced with new, 

randomly positioned dots, whereas dots in the other group were displaced by a fixed 

distance. The dots in this latter group determined the motion coherence. For 0% 

coherence, all the dots in this group moved a fixed distance in a random direction. For 

coherent motion greater than zero, a proportion of the dots moved with a fixed distance in 

the same direction. This proportion determined the strength of the coherent motion. On 

the next update (27 ms later), the groups were switched. This arrangement insured that all 

the dots had a lifetime of four video frames (i.e., two stimulus updates) before they were 
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replaced. Because half the dots are always randomly replotted regardless of the 

proportion of dots moving coherently, our motion had a maximum strength of 50% 

coherence. For example, at 25% coherent motion, half the dots are randomly replotted, 

one-quarter are moving with the same fixed distance and direction, and one-quarter are 

moving with the same fixed distance in a random direction. 

Data collection 

Using standard extracellular recording techniques (Gibson and Maunsell, 1997), 

recordings were made from well-isolated single neurons in area MT in both animals. 

When a neuron was isolated, the receptive field (RF) was mapped using a manually 

controlled bar while the animal fixated on a central spot. The diameter of the RFs ranged 

from 3.9 to 10.7° (median, 7.4). RF center eccentricities ranged from 3.9 to 11.1° 

(median, 7.9). The preferred speed was also judged using a bar moved by hand. The 

animals were trained to perform the task at slow or moderate motion speeds, so neurons 

with a preferred speed between 4 and 12°/sec were usually selected. Once the RF 

location, size, preferred direction, and speed were determined, the motion detection task 

was then run, and the neuron was recorded from for as long as possible. For some 

neurons, a memory saccade task was also run, but these data were not used in this 

analysis. The monkey’s performance varied with patch location, size, and motion speed, 

which were determined by the response properties of the neuron under study. 

Consequently, different neurons were tested with different coherence levels. The animal’s 
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eye position was measured every 5 ms using a scleral search and the times of action 

potentials were recorded to the nearest millisecond. 

Detect probability, neurometric and spike ROC values 

Detect probability (DP) expresses the ability to predict the behavioral outcome of 

a trial in a detection task given the neuronal response (Cook and Maunsell, 2002b). DP is 

analogous to the choice probability calculation used in discrimination tasks (Celebrini 

and Newsome, 1994; Britten et al., 1996). The neurometric value expresses the ability to 

predict which one of two stimuli was presented given the neuronal response. The spike 

ROC value expresses the ability to predict whether an action potential was generated 

given the preceding motion stimulus and the STA. 

All three values are formulated in the same way using traditional ROC analysis 

(Green, 1975). Briefly, given two random samples from different distributions, the ROC 

value are the probabilities that one can correctly determine from which distribution the 

samples were drawn. In other words, it is a measure of how separate two distributions are 

from each other. Specifically, given two distributions of neuronal responses, p(x) and 

q(x), the maximum probability that we could correctly determine from which 

distribution a sample was drawn from is P(correct) = 
∞

∫ 
∞

∫ p(x)q(y)dydx , assuming that 
0 x 

on average, a sample drawn from q(y) is greater than a sample drawn from p(x) . 
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For detect probability, q(y) corresponds to the distribution of spike rates for 

correct trials and p(x) for failed trials. For the neurometric value, p(x) and q(y) are the 

distribution of spike rates corresponding to the 0% and coherent motion, respectively. For 

the spike ROC, q(y) corresponds to the distribution of dot-product between the STA and 

motion stimulus at times that spikes occurred and p(x) is the distribution of the same 

dot-product, but taken over all time points. 

For the DP calculation, only neuronal responses occurring during low coherent 

motion trials from 50 to 150 ms after coherent motion onset were included for the attend 

in condition (except for Figure 3A which used a sliding window for the DP). We only 

used the low coherent motion trials to compute DP because this was the only condition 

that produced similar numbers of correct and failed trials. For the attend out trials only 

consisted of medium-level coherent motion. The medium-level coherent motion trials 

during the attend out condition also produced roughly similar amounts of correct and 

failed trials. 

For the neurometric value, we compared the neuronal response from 50 to 150 ms 

after coherent motion onset to the neuronal response from 100 to 0 ms before coherent 

motion onset. Except for the value for the example neuron in Figure 2, the neurometric 

values for attend in conditions was calculated using low-level coherent motion trials. 

Attend out trials, by default, used medium-level coherent motion trials. 

The spike ROC values used the segment from 200 ms after the start of the 0% 

coherent random motion up until coherent motion onset for either attend in or attend out 
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trials. The motion stimulus was reconstructed from the dot positions (see below) which 

allowed for the STA to be calculated for both the attend in and attend out conditions. 

Two distributions were then computed for both the attend in and out conditions: the dot-

product between the STA and motion stimulus for all time points during 0% coherent 

motion, and the dot-product between the STA and motion stimulus only at times an 

action potential was generated during 0% coherent motion. The spike ROC was then 

calculated from these two distributions. 

Neuron selection criteria for Figure 3 

For Figure 3A, we required at least three correct and three failed trials for the 

attend in condition to accurately measure the detect probability. Additionally, we 

excluded neurons with baseline firing rates bellow 1 Hz for either attentional condition to 

accurately measure the spike ROC. For Figure 3B&C, where we compared correlations 

involving detect probability between attentional conditions, we required at least three 

correct and failed trials for both attentional conditions. As for Figure 3A, Figure 3C 

excluded neurons with baseline firing rates below 1 Hz for either attentional condition. 

There was no such restriction for Figure 3B, which measure the neurometric instead of 

the spike ROC. 

Extracting global motion from the stimulus and the linear-nonlinear cascade 
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We reduced our random dot stimulus to a one dimensional time series of global 

motion strength along the neuron’s preferred/null axis. To estimate the net motion 

between two successive frames of random dots, we applied a previously described 

method (Barlow and Tripathy, 1997) that computed the correspondence between dots in 

two sequential frames. We calculated the motion vector between each pair of dots in 

successive frames. Thus, if our patch contained N dots, we computed N2 motion vectors 

for each pair of successive frames, where the magnitude of the vectors represented the 

speed. We then scaled each vector by passing its magnitude through a speed-filter. The 

speed-filter was a Gaussian distribution in the log speed domain (Nover et al., 2005) 

centered at the preferred speed of the neuron (determined by sweeping a bar through the 

receptive field) and with a standard deviation of either 0.1, 0.2 or 0.5 deg/sec. The speed-

filter was used since speed-tuning profiles were not collected from the neurons. Spike 

ROCs (see above) were calculated for the three standard deviation for both the attend in 

and out conditions. The standard deviation that led to the largest spike ROC, for either 

attend in or out, was then used for all further calculations. Each weighted vector was then 

projected onto the neuron’s preferred/null direction of motion axis. The sum of all the 

projected vectors was the motion strength at that time point. This calculation was 

repeated for every pair of successive random dot patches to create a time series of the 

motion strength in the preferred/null axis of the neuron. All time point between every pair 

of successive dot patches was assigned the same motion strength. 
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Results 

The results of this analysis are based on a previously analyzed motion detection 

experiment (Cook and Maunsell, 2002b, a, 2004; Masse and Cook, 2008). Two monkeys 

were trained to detect a 750 ms coherent motion step in one of two diametrically opposite 

random dot patches (Figure 1). The likely location of the coherent motion step was cued 

to the monkey at the start of the trial. The cue was valid 75% of the time. One of these 

random dot patches was located in the receptive field of the neuron under study, and the 

direction and speed of the coherent motion were matched to the preferences of the 

neuron. Trials where the monkey was cued to the patch inside the neuron’s receptive field 

are termed “attend in” trials while trials where the monkey was cued to the other patch 

are termed “attend out” trials. 

The activity of 104 direction-selective neurons from ventral intraparietal area 

(VIP) and 93 neurons from middle temporal area (MT) was recorded. This study is 

primarily focused on the neural activity from VIP, however the results from MT will be 

discussed in the Discussion. VIP is a multimodal area located in the parietal cortex and is 

situated adjacent to the lateral intraparietal area (LIP). It receives strong inputs from area 

MT, and although it has not been causally linked to motion perception, its activity is 

strongly correlated to the perceptual decision in a motion detection task (Cook and 

Maunsell, 2002b) . 
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Figure 1 Motion detection task. The experiment used two moving random dot patches. 

Once the animals fixated, a static cue was presented to indicate the most likely position of 

where the coherent motion would occur. Next, 0% coherent motion was presented in both 

the neuron’s RF and in a patch diametrically opposite. Coherent motion randomly began 

in one of the patches from 500 to 8000 ms with a flat hazard function. The coherent 

motion lasted for 750 ms and the animal had to release the lever from 200 to 750 ms after 

the coherent motion onset in order to obtain a reward. In 80% of the trials, the coherent 

motion would occur in the location spatially cued to the animal (A). In the other 20% of 

the trials, the cue would be invalid and the coherent motion would occur in the location 

not cued to the animal (B). 
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Previous analysis of this data revealed that attending inside VIP neurons’ 

receptive fields increased baseline neural activity by about 35%, significantly more than 

the approximate 15% increase in MT (Cook and Maunsell, 2002a). Additionally, by 

using ROC analysis to compare the neural response evoked by coherent motion to the 

neural response prior to coherent motion, it was found that VIP neurons were more 

sensitive to coherent motion when attention was directed inside the receptive field 

(Maunsell and Cook, 2002). The activity of an example VIP neuron, during both the 

attend in (Figure 2A) and attend out (Figure 2B) conditions, highlights these effects of 

attention. The black dots in the spike raster correspond to spikes during correct trials 

while the red dots are spikes from failed trials. The black curve just below gives the 

average response for correct and failed trials combined. Both figures show the neural 

response for trials where the same-strength coherent motion step was shown inside the 

neuron’s receptive field. 

Baseline activity for this neuron more than doubled during the attend in condition, 

which was not atypical for VIP neurons. Additionally, the neuron responded vigorously 

within 70 ms to the coherent motion step during the attend in condition, but barely 

responded within the first 150 ms after coherent motion onset during the attend out 

condition. We quantified the responsiveness of the neuron to the coherent motion step 

using the neurometric (NM) (see Methods). The neurometric is an ROC comparison 

between the spike count from 50 to 150 ms after coherent motion onset (light blue stripe, 

Figure 2A&B) to the spike count from 0 to 100 ms prior to the motion step (light gray 

stripe). Values above 0.5 indicate the neural response after motion onset was usually 
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Figure 2 Example VIP neuron. The neural response to medium-level coherent motion is 

shown for both the attend in condition (A), and the attend out condition (B). The black 

dots represent the time of action potentials that occurred during correct trials, while red 

dots are those from failed trials. The panels below the spike raster show the average 

neural response relative to coherent motion onset average over all correct and failed 

trials. The light blue (50 to 150 ms after coherent motion onset) and gray (0 to 100 ms 

prior) bars are the windows used to calculate the neurometric value. The light blue bar is 

also the window used to calculate the detect probability (except for Figure 3A which 

employed a sliding window for the detect probability). (C) The steps involved in 

calculating the linear-nonlinear cascade that was used to measure the neuron’s sensitivity 

to the motion stimulus. The calculation was performed separately for attend in and attend 

out trials. From the motion stimulus (see Methods) and the spike train (Box 1), the spike 

triggered average was calculated (Box 2). From there, two distribution were formed. The 

first was the dot product of the STA and motion stimulus performed at all time points 

(black curve, Box 3). The other was formed by taking the dot product between the STA 

and the motion stimulus only at times action potentials were generated (gray curve, Box 

3). The spike ROC was an ROC comparison between these two distributions (see 

Methods). Finally, dividing the two distributions gives the nonlinearity function, which 

maps the dot product between the STA and motion stimulus into the predicted spike rate 

(Box 4). (D) The nonlinearity for the both the attend in (blue curve) and attend out (red 

curve) conditions. 
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greater the spike count before onset. For this example neuron, the neurometric was 0.678 

for the attend in condition but only 0.537 for attend out. 

We wanted to know whether this increase in responsiveness was at least partly 

due to a change in how the neuron encoded the stimulus, rather than a change in 

feedback, arousal, etc. To determine whether this was the case, we modeled the relation 

between the motion stimulus and the neural activity as a linear-nonlinear cascade 

(Paninski et al., 2004; Pillow et al., 2005; Rust et al., 2006). The cartoon in Figure 2C 

gives the steps involved in the calculation. From the motion stimulus during 0% coherent 

motion and the spike train (Box 1), we calculate the average motion preceding each 

spike, termed the spike triggered-average (STA) (Box 2). From the STA and the motion 

stimulus, we can form two distributions (Box 3). One is formed by taking the dot product 

between the STA and motion stimulus at all time points (black curve, Box 3), and the 

other from the dot product between the STA and the motion stimulus only at times an 

action potential was recorded (gray curve, Box 3). The separation between the two 

distributions gives a measure of how sensitive the neuron was for motion that matched its 

STA. We calculated the sensitivity of the neuron by performing ROC analysis between 

these two distributions, which we termed the spike ROC. Finally, by dividing these two 

distributions, one obtains the nonlinearity, also known as the gain function (Box 4). The 

nonlinearity is a function that maps the dot product of the STA and motion stimulus (x-

axis) with the predicted spike rate (y-axis). Graphically, a greater slope indicates greater 

sensitivity. 
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These calculations were performed separately for the 0% coherent motion 

segment of the attend in and attend out trials. The nonlinearity of this example neuron is 

shown in Figure 2D for both the attend in condition (blue curve) and attend out condition 

(red curve). The slope of the attend in nonlinearity was much greater than the attend out 

nonlinearity, implying that sensitivity increased with spatial attention. In agreement, the 

spike ROC for the attend in condition was 0.572, compared to 0.539 for the attend out 

condition. This suggests that the greater neural response to coherent motion when 

attention was directed inside the receptive field was partly due to an increase in the 

sensitivity of the neuron. 

The result that some VIP neurons increased sensitivity to the motion stimulus 

during the attend in condition was not very surprising. VIP is a multimodal area, and if 

attention increased the strength of motion signals arriving from area MT, this could 

possibly explain the observed effect. We really wanted to know whether the attentional 

change in sensitivity was related to how the neuron was weighted in forming the 

perceptual decision. Unfortunately, there exists no way of directly measuring how the 

activity of a neuron was weighted. Instead, we can exploit the intuitive notion that the 

more influential the activity of a neuron is in forming a decision, the more correlated it is 

with the behavioral outcome of the trial. This notion that the most heavily weighted 

neurons are most correlated with behavioral outcome has been supported by theoretical 

studies as well as by neural and psychophysical data (Britten et al., 1996; Dodd et al., 

2001; Parker et al., 2002; Uka and DeAngelis, 2004; Purushothaman and Bradley, 2005; 

Jazayeri and Movshon, 2006, 2007b, a; Law and Gold, 2008). 

244



 

 

 

 

 

In Figure 3A, we looked at whether the attentional change in sensitivity of the 

neuron was related to its correlation with the perceptual decision. For each time point 

relative to the coherent motion onset, we measured the spike count in the preceding 100 

ms, and computed the ROC measure between correct trials and failed trials. This value 

has been termed the detect probability (Cook and Maunsell, 2002b), analogous to the 

choice probability used in discrimination tasks (Britten et al., 1996). If detect probability 

indicates how the activity of the neuron was weighted in forming the decision, then this 

calculation would show whether the attentional change in sensitivity was linked to how 

the neurons were weighted in forming the decision. The change in sensitivity was the 

spike ROC value for the attend in condition minus spike ROC of the attend out condition. 

Neurons had to have a minimum number of correct and failed trials to accurately measure 

the detect probability, as well as a minimum spike rate to measure the spike ROC (see 

Methods for the criteria used). 

If the detect probability was only correlated to the sensitivity during the attend in 

state, and not the difference between attentional conditions, this might result in a false 

positive. Thus, we took the partial correlation between the detect probability and the 

change in sensitivity between attentional states after removing the contribution of the 

neural sensitivity during the attend in state. We found that from around 100 to 150 ms 

after coherent motion onset, the detect probability was significantly correlated with a 

positive change in sensitivity from attend out to attend in (Figure 3A). Thus, the neurons 
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Figure 3 The relation between neural sensitivity and detect probability. (A) In the left 

column, the Spearman’s rank coefficient of the partial correlation between the detect 

probability and the difference in the spike ROC between attentional conditions given the 

spike ROC of the attend in condition. The spike ROCs were held fixed, while the detect 

probability compared total spike counts in the preceding 100 ms for each time point 

relative to coherent motion onset. (B) The associated P-value of the Spearman rank 

partial correlation coefficient. (B) The scatter plot of the neurometric value and the detect 

probability for each neuron for the attend in condition (left panel) and attend out 

conditions (right panel). The neurometric and detect probability values for the attend in 

condition used lo-level coherent motion trials while the attend out condition used 

medium-level coherent motion trials. The time windows used for these calculations were 

those given by the vertical bars in Figure 2A: 50 to 150 ms after coherent motion onset 

for the detect probability while the neurometric compared values from 50 to 150 ms after 

coherent motion onset to 0 to 100 ms prior. (C) The scatter plot of the spike ROC and 

detect probability values for the attend in (left panel) and attend out (right panel) 

conditions. The detect probability was calculated using the same windows and trials as 

stated above. The spike ROCs were calculated from the 0% coherent motion segment of 

all attend in or attend out trials. 
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more influential in forming the decision increased sensitivity when attention was directed 

inside their receptive fields. 

We next wondered how this change in sensitivity affected the relation between 

how informative the neuron was and how its activity was weighted in forming a decision. 

We used two metrics to quantify how informative the neuron was: the neurometric that 

measured the neural response to the coherent motion (Figure 3B), and the spike ROC, 

that measured the sensitivity during 0% coherent motion (Figure 3C). We compared both 

metrics to the detect probability calculated using spikes from 50 to 150 ms after coherent 

motion onset. Both metrics were significantly correlated with the detect probability 

during the attend in condition, but were not correlated during the attend out condition. 

Thus, only when attention was directed inside a neuron’s receptive field were the more 

informative neurons weighted more heavily. 

When calculating both the neurometric and the detect probability, we only used 

the neural response up to 150 ms after coherent motion onset. This was because many 

VIP neurons showed a strong increase in neural activity just prior to a correct response, 

and we wanted to minimize its effect on our measurements. This increase can be clearly 

seen in the example neuron in Figure 4A, which showed a large increase in activity 

before a correct response even when no coherent motion was presented inside the 

neuron’s receptive field. We quantified the strength of this increase by using ROC 

analysis to compare the spike count in a 100 ms window before lever release to the spike 

count from 100 to 200 ms after coherent motion onset. Although we cannot be totally 
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Figure 4 The increase in neural activity prior to a correct response. (A) An example VIP 

neuron showing all correct trials where coherent motion occurred outside the neuron’s 

receptive field. The neurons showed a large increase in activity just prior to the lever 

release. (B) This increase was quantified by an ROC comparison between the spike count 

in the 100 ms prior to lever release to the spike count from 100 to 200 ms after coherent 

motion onset. The scatter plot shows a significant negative correlation between the ROC 

value and the neurometric calculated for the attend condition. (C) An example VIP 

neuron where spatial attention did not affect this increase in activity between the attend in 

(left panel) and attend out (right panel) conditions. (D) and (E) are two more example 

neurons where the increase in activity prior to a correct response was largely eliminated 

when spatial attention was outside the neuron’s receptive field. (F) Histogram of the 

difference in this increase in activity prior to a correct response for medium-level 

coherence trials between the attend in and attend out conditions. The ROC value was 

calculated using the same windows described above. (G) The scatter plot of this increase 

in activity prior to a correct response when coherent motion was outside the neuron’s 

receptive field and the attention modulation of baseline activity. The modulation in 

baseline activity was calculated as (AI-AO)/(AI+AO) where AI and AO represent the 

average spike rate during 0% coherent motion during attend and attend out trials, 

respectively. 
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certain of the source of this increase (see Discussion), we will simply refer to it as 

feedback. Interestingly, the strength of this feedback was negatively correlated with the 

neurometric (Figure 4B). Thus, the neurons least informative of the stimulus showed the 

largest increase in activity prior to a correct response. 

Surprisingly, this feedback was significantly affected by the attentional state. 

Although attention did not affect this feedback in some neurons (Figure 4C), the feedback 

was all but eliminated for many neurons when attention was outside the receptive field 

(Figures 4D&E). Across the entire population, the feedback was significantly reduced 

during the attend out condition (Figure 4F). Additionally, the reduction was correlated 

with attentional modulation of the baseline spike rate (Figure 4G). Thus, the greater the 

increase in baseline neural activity during attend in, the smaller the feedback prior to a 

correct response during the attend out trials. 
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Discussion 

In this study, we examined the neural mechanisms that possibly underlie how 

attention increases behavioral performance. We found that when attention was directed 

inside VIP neurons’ receptive fields, the detect probability of the neuron was correlated 

with how informative the neurons was of the stimulus. This correlation was eliminated 

when attention was shifted outside a neuron’s receptive field. This suggests that spatial 

attention acts to properly weigh sensory neural activity when forming a perceptual 

decision. We propose this as a possible explanation why spatial attention increases 

behavioral performance in visual tasks. Unrelated to this conclusion, we also found that 

attention can gait other top-down signal, implying that attention does not simply modify 

how bottom-up signals are integrated. 

Results from area MT 

In this experiment, we also recorded neurons from area MT. The analysis used 

above was difficult to apply to MT because of the nature of the neural response generated 

by the motion stimulus. The dots in the random dot patch were updated at a fairly slow 

rate (about once every 27 ms), which led to oscillations in the neural response of many 

MT neurons. Furthermore, we found in a previous study that neural responses at different 

phases of the oscillation varied in how informative they were of the stimulus (Masse and 

Cook, 2008). Additionally, the correlation between the perceptual decision and neural 

activity was also highly dependent on the phase, with the more informative phases more 
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correlated with the behavioral outcome. Importantly, the more informative phases were 

more correlated with the perceptual decision during the attend in, but not during the 

attend out condition (data not shown). 

This variability in stimulus encoding and correlation with behavior across 

different phases made it difficult to determine how the activity was combined between 

phases. Thus, we were unsure whether our neurometric and detect probability 

calculations that count spikes over a period of 100 ms accurately reflects how activity is 

processed in the brain. Although the same argument can be made with the neural 

response from VIP, these motion-induced oscillations in the neural response were much 

less pronounced. Additionally, our results were invariant to small changes to our window 

or to whether spikes were convolved with a box filter or exponential filter. 

The various top-down signals 

Previous studies have found that, on average, spatial attention seemed to act in a 

multiplicative manner on the neural response, without affecting neural sensitivity 

(McAdams and Maunsell, 1999; Treue and Martinez Trujillo, 1999). What was surprising 

was that we could not find any correlation between the attentional modulation of neural 

activity in response to 0% coherent motion and any change in detect probability or 

neuronal sensitivity. We did however find a significant correlation between an increase in 

neural activity and a strong decrease in this feedback prior to a correct response a neuron 

receives during attend out trials. Thus, while the strength of this attentional modulation 
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on the firing rate affects other forms of top-down feedback, we do not know what role in 

plays, if any, in changing neuronal sensitivity or how activity is weighted downstream. 

In Figure 4, we showed that many VIP neurons increased neural activity just prior 

to a correct response, and that this increase was attenuated during the attend out 

condition. Since the occurrence of this increase in activity was time-locked to the lever 

release, and that the least informative neurons showed the greatest increase (Figure 4B), 

this suggested that this increase in activity was encoding a motor response. However, it 

would be hard to believe the motor response would be so affected by spatial attention. 

This suggests that the increase in activity prior to a correct response was the result of top-

down feedback. We do not know what functional role this feedback might serve. If 

feedback was the source of the increase, then either attending outside the neuron’s 

receptive field prevented this feedback from being sent to VIP, or the lack of attention 

gaited this feedback at the level of VIP. Either way, it might not suffice to think of 

attention as simply a top-down signal that modulates how sensory information is 

processed. 

Top-down signals, neural encoding and decoding 

Many have suggested that top-down signals can modify not just gain, but how a 

neuron encodes different visual features. Anesthesia, which likely reduces top-down 

signals to sensory areas, inhibits neurons from encoding global features of a stimulus 

(Lamme et al., 1998; Pack et al., 2001). The behavioral demands of a task, most likely 
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mediated through top-down signaling, modifies neural responses in V1 (Crist et al., 2001; 

Li et al., 2004). Additionally, attending to different stimuli within a neuron’s receptive 

field biases the neuron to selectively encode the attended stimulus (Moran and Desimone, 

1985; Reynolds et al., 1999).  

If top-down signals alter the relationship between the stimulus and the neural 

response, the one must assume that this change is accompanied by a change in how the 

neural response is decoded. Many studies have proposed that neural activity is weighted 

differently depending on how well the neuron encodes the stimulus given the demands of 

the task (Britten et al., 1996; Dodd et al., 2001; Parker et al., 2002; Uka and DeAngelis, 

2004; Purushothaman and Bradley, 2005; Jazayeri and Movshon, 2006, 2007b, a; Law 

and Gold, 2008). Since the most informative neurons are dependent on the demands of 

the task, these results imply that top-down signals are necessary to change how neural 

responses are decoded. Thus, it is not very surprising that attention can change both how 

sensory information is encoded and how the subsequent neural response is processed. 

Although we cannot be certain that the increase in behavioral performance during the 

attend in trials was the result of properly weighting sensory neurons, it has been shown 

that during training in a perceptual task, as performance improves, so does the correlation 

between the neuron’s sensitivity and its choice probability (Law and Gold, 2008). All 

together, the results of this study highlight the need to not just consider how attention 

modifies neural response, but how attention modifies how neural responses are 

transformed between cortical areas. 
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Attention and the bottleneck in visual processing 

It has been widely reported that subjects can only attend to so many objects before 

performance is compromised (Desimone and Duncan, 1995; Kastner and Ungerleider, 

2000). What is unknown is the nature of the bottleneck that prevents subject from 

processing information from multiple objects or locations. In our study, subjects were 

trained to respond to coherent motion whether it was validly or invalidly cued. Thus, one 

would believe it to be advantageous for the most informative neurons to be weighted 

accordingly regardless of where spatial attention was directed. Since this was not the 

case, one wonders whether this represented a bottleneck in visual processing. More 

specifically, perhaps the brain is not capable of properly weighing the neural activity 

representing information from multiple stimuli, especially if this neural activity all 

converges to a common downstream target. 

Possible mechanisms 

What might be the neural mechanism that allows spatial attention to properly 

match the neural sensitivity to its appropriate weight? Since it would necessarily involve 

coordinating activity across cortical regions, a mechanism involving oscillations in the 

local field potential, which can be coherent across separate cortical areas (Engel et al., 

1990; Donoghue et al., 1998; Destexhe et al., 1999), could serve as a possible 

mechanism. If incoming activity to a neuron that was highly informative of the stimulus 

was temporally offset from incoming activity that was less informative, oscillations in the 
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local field potential could serve to selectively increase the impact (or weight) of the most 

informative inputs. As a result, the spiking activity of that neuron would become more 

sensitive to the stimulus. Attention has already been shown to synchronize spiking 

activity to the gamma frequency range of the local field potential (Fries et al., 2001), and 

increase synchrony between parietal and frontal areas (Buschman and Miller, 2007). 

Thus, it would be interesting to know whether the degree of synchrony was related to 

how informative the neuron was of the stimulus given the task. 
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Understanding how the brain generates conscience perception has been arguably 

one of the most important, and hardest, problems in neuroscience. One approach that has 

yielded much success has been to record neural activity from sensory areas in behaving 

animals while they performed simple perceptual tasks. These tasks, which usually 

involve the animal trying to detect a stimulus or discriminate between two simple 

alternatives, provides a quantitative measure of the perception of the animal through its 

behavioral response. Importantly, both neural activity and the behavioral response are 

recorded simultaneously, allowing for a direct comparison between the two. These types 

of experiments led to the discovery that the activity of a single sensory neuron can be 

correlated to the perceptual decision of the animal (Britten et al., 1996). 

The finding that neural activity from sensory neurons can be correlated with 

perception is important for two reasons. Firstly, it places constraints on the neural 

population responsible for generating the perception (Bair et al., 2001; Zohary et al., 

1994): either the population size has to be relatively small or the response of neurons 

within the population must be correlated. Current evidence suggests that the later 

prediction is correct, but does not exclude the former. Secondly, this correlation between 

activity and perception provides a window on how the activity from a neuron is used by 

the brain in forming a perceptual decision. If the activity of a neuron is highly correlated 

with the decision, then it is assumed that the activity was highly influential, or heavily 

weighted, in forming the decision.  
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One of the main findings that resulted from this notion is that the neurons that are 

more informative of the signal are also more influential in forming a decision. This 

finding has been reported in several experimental studies (Britten, 1992; Celebrini and 

Newsome, 1994; Cook and Maunsell, 2002b; Purushothaman and Bradley, 2005; Uka 

and DeAngelis, 2004), and is supported by theoretical (Jazayeri and Movshon, 2006) and 

psychophysical work (Jazayeri and Movshon, 2007). At one level, this result is almost a 

truism. For example, it is known that neurons from auditory cortex would not influence 

visual perceptual decisions. However, this relationship holds amongst groups of neurons 

whose preferences match the properties of the stimulus. This suggests that the ability to 

properly weigh sensory neural activity can function on a fine level.  

It is in the author’s opinion that the ability to measure how neural activity from 

different neurons is weighted when forming a decision will play a key role in determining 

how neural activity underlies perception. In this thesis, the author has presented two 

examples (Chapters 3 and 5) of how this measure can help us understand the rules by 

which sensory neural activity is transformed into perception. Additionally, it also raises 

interesting questions on the mechanisms involved in properly weighing sensory activity. 

However, this all relies upon that the correlation between neural activity and perceptual 

decisions is an inherent feature in decision-making, and not simply an artifact. For 

example, measuring the correlation between activity and behavior requires using an 

equivalent stimulus across trials. However, since many studies employ stochastic stimuli, 

it is possible that the observed correlation between neural activity and perception is 

simply due to fluctuations in the stimulus. This was ruled out in one study (Cook and 
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Maunsell, 2002b), but other possibilities remain. In Chapter 2, it was examined whether 

small, involuntary eye movements termed microsaccades could explain the correlation 

between activity and perception. Consistent with past studies (Bair and O'Keefe, 1998; 

Martinez-Conde et al., 2000, 2004), it was found that microsaccades affect both visual 

motion perception and neural activity in three motion sensitive areas: MT, VIP and LIP. 

Consequently, microsaccades added a small, yet significant, amount to the correlation 

between neural activity and perception. This study revealed the importance of 

considering microsaccades when an accurate measure of the correlation between neural 

activity and perception is required. However, since microsaccades added a relatively 

small amount to this correlation, up to 20%, it strengthens the belief that the correlation is 

truly the result of how the brain transforms neural activity into perception. Thus, existing 

results that used the correlation between neural activity and perception are still valid. 

Given this, Chapter 3 is the first of two examples where the author uses the 

correlation between activity and behavior to further understand the neural basis of 

perception. Neural activity is not simply integrated across neurons when forming a 

decision, but is also integrated over time. Many past studies have shown that the 

information contained in a sensory neural response can change over time (Chacron et al., 

2005; de Ruyter van Steveninck et al., 1997; Osborne, 2004; Pack and Born, 2001; 

Sadeghi et al., 2007), however it is poorly understood whether the brain can extract this 

information contained in the temporal properties of the response. The study in Chapter 3 

examined data from a motion detection experiment in which the motion stimulus 

generated oscillations (one cycle = 27 ms) in the response of MT neurons. The study 

266



 

 

 

 

 

   

 

 

showed that different phases of the oscillation differed in how reliably they encoded the 

motion signal. Crucially, the phases in which the stimulus was reliably encoded were the 

same phases that were more correlated with the perceptual decision. This suggests that 

the brain is capable of recognizing a highly dynamic neural response, and weighing the 

response at different times accordingly. 

The conclusion of this study was supported by two recent studies (Engineer et al., 

2008; Gu et al., 2007). Given that it widely known that decision-making can occur on fast 

time scales (Thorpe et al., 2001; VanRullen et al., 2005), and that information can be 

contained in the temporal structure of the neural response, it is comforting to know that 

the brain is capable of properly weighing a dynamic response. The obvious question that 

this raises is what are the mechanisms that allow the brain to properly weigh information 

at different times. The role of oscillations in the local field potential, important in 

temporally coordinating activity across different brain areas in many systems (Donoghue 

et al., 1998; Fries et al., 2001; Gray et al., 1992; Perez-Orive et al., 2002), is poorly 

understood in area MT. Further experiments are obviously required to understand the 

mechanisms behind the results of this chapter and that of Chapter 5 (see below). 

One weakness of this study was that it simply measured correlation, and not 

causality, between information at different times (or phases in this case) in the response 

and the perceptual decision. To demonstrate causality, one requires tools such as 

electrical microstimulation to perturb the information contained in different times in the 
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response (Salzman et al., 1990). However, it is unknown whether electrical 

microstimulation has the necessary temporal precisions to probe causality on these 

timescales. In Chapter 4, we thus examined the time course of the effect of 

microstimulation on visual motion perception compared to an equivalent motion 

stimulus. We found that microstimulation in area MT has a much longer effect on motion 

perception compared to an equivalent visual stimulus, raising doubts as to whether 

microstimulation has the necessary temporal resolution to probe these timescales or to 

serve in cortical sensory prosthetics. However, new methods exists that could supplant 

microstimulation as the method of choice to perturb activity. Photostimulating neurons 

expressing the channelrhodopsin protein can achieve temporal and spatial precision 

significantly greater than microstimulating neural tissue (Nagel et al., 2002; Zhang et al., 

2006). However, its use is currently limited to those animals for which it is feasible to 

generate transgenic versions. Thus, it may become advantageous to study the neural 

mechanisms of decision-making in animals such as mice and Drosophila (see below). 

Finally, Chapter 5 explored the limits of how well the brain can properly weigh 

sensory neural activity. Given that the neurons that provide the most reliable signals can 

change from task to task, the brain must be capable of dynamically switching how it 

weighs sensory activity. This process may not be trivial, and the brain may only be 

capable of properly weighing a certain number of neurons or from only a few locations in 

the brain. We examined data from a motion detection experiment where the spatial 

attention of the animal was directed towards the location likely to contain the motion 

268



 

 

 

 

stimulus. In the past, studies on the neural correlates of attention have focused on the 

effect on the gain of the neural response (Cook and Maunsell, 2002a; McAdams and 

Maunsell, 2000; Treue and Martinez Trujillo, 1999). Instead, we examined whether the 

animal was able to properly weigh sensory activity from neurons focused on the attended 

and unattended location. Even though motion could occur in either the attended or the 

unattended location, we found that the brain was able to properly weigh VIP activity only 

when attention was directed inside the neuron’s receptive field. This suggests that the 

brain is limited in how it can weigh sensory activity, and may represent a bottleneck in 

visual processing. Furthermore, the ability to properly weigh sensory activity could 

explain the increased behavioral performance with attention. 

As with Chapter 3, the results of this chapter naturally lead to questions about the 

mechanisms involved. Obviously, the mechanism could occur downstream of sensory 

areas where sensory activity would be integrated Alternatively, sensory areas could 

encode sensory information differently so that the activity of the most informative 

neurons is maximally effective downstream. For example, it was discussed above and in 

the Introduction that the correlation between neural activity and perception is likely 

because neural activity amongst different sensory neurons is correlated. This may not be 

an artifact; correlations between different sensory neurons may serve to increase or 

decrease the impact of their activity in downstream targets. Synchronous firing between 

neurons is already known as one such a mechanism that accomplishes this (Azouz, 2003; 

Perez-Orive et al., 2002); however further experimental and theoretical studies would be 
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required to determine whether correlations between sensory neurons on longer timescales 

could serve the same purpose. 

Future directions 

How do we proceed to further understand how neural activity generates 

conscience perception? There are many reasons why primate electrophysiology will 

continue be an important part of the answer. As our closest relative, studies involving 

primates are our best hope of shedding light on human neural function. Secondly, it is 

possible to train primates in a larger variety of more complex behavioral tasks than would 

be possible lower species. This permits the simultaneous recording of neural activity and 

perceptual decisions under a much larger variety of behavioral states. Finally, new 

recording technology is allowing scientists to measure the activity of tens to hundreds of 

neurons simultaneously, allowing observation of how populations of neurons contribute 

to perception (Brown et al., 2004). 

However, certain question exists that may be difficult to answer using primate 

models. Experiments on primates are currently limited to one of two types: correlating 

cortical activity with perceptual choice, or perturbing cortical activity through electrical 

stimulation and measuring the effect on behavior. Although these studies have been very 

influential in shaping current thinking about decision making in the brain, they say 

relatively little about how this is implemented in neural hardware. The highly 

complicated nature of the primate cortex is undoubtedly a major stumbling block along 
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with the inability to selectively record or manipulate specific neurons within these 

circuits. 

To actually determine the neural mechanisms that lead to perception and 

behavior, it may be advantageous to turn to simpler models. We will discuss one model 

system that is relatively simple compared to primate models and allows for a wide range 

of experimental techniques: the olfactory system of Drosophila. This preparation allows 

for patch-clamp recording of targeted neurons (Wilson et al., 2004) as well as high-

resolution neural anatomy (Jefferis et al., 2007). These two methods are currently 

impossible to carry out in primates and may prove vital in understanding the neural 

computations that lead to perception. 

In the olfactory system of Drosophila, which bears remarkable anatomical 

similarities with both other insects and mammals, odors first activate olfactory receptor 

neurons, of which there are about 50 different classes in Drosophila. These send axons 

into the antennal lobe, where second-order neurons transmit the information to two 

different higher order centers: the mushroom body and the lateral horn. Several ablation 

studies have shown that the mushroom body is necessary for olfactory learning (Dubnau 

et al., 2001) while, by exclusion, the lateral horn appears to be required for more “innate” 

olfactory-generated behavior (Heimbeck et al., 2001). 

A perceptual decision is the product of two ingredients: bottom-up sensory 

information interacting with top-down signals of the behavioral state of the animal. While 
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much progress has been made understanding the bottom-up odor encoding (Turner et al., 

2008; Wilson et al., 2004), little is known about how these neural signals react with top-

down information. The ablation study above suggests that the lateral horn might be the 

first stage where bottom-up sensory information is converted into a behavioral response. 

To uncover how perceptual decisions are formed, one approach would be to keep 

the stimulus constant and modify the behavioral state (much like attention studies). For 

example, the male pheromone cVA could be presented to unmated (sexually receptive) 

and mated (unreceptive) females. cVA is produced by male flies and inhibits courtship by 

other males while increasing female sexual arousal (Kurtovic et al., 2007). This 

pheromone produces different behavioral responses in the two sets of females. In such a 

setup, it may be possible to isolate the top-down signals that transform sensory neural 

activity into a behavioral response. Although this is but one example, it highlights the 

possibility of using simple systems such as the olfactory system of Drosophila to uncover 

basic mechanisms involved in forming perceptual decisions. Whether the mechanisms 

uncovered in these organisms would be applicable to higher-order species would be 

another question. Even if the rules governing how top-down signals convert sensory 

information into a behavioral response are completely different amongst different 

species, then it is still important that we understand why. Regardless, it is highly likely 

that a multitude of different approaches will needed to understand how neural activity 

underlies perception. 
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