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ABSTRACT 

In this thesis, the influence of mobile line disloca­

tions, anchored to slip planes in an otherwise isotropic 

elastic matrix, on the quasi-static linear elastic response 

of an idealized polycrystalline aggregate of close-packed 

crystals, is discussed. The formulation incorporates the 

inactivated Frank-Read source as its fundamental mechanism 

and examines its effect on the response characteristics, 

through the use of statistical correlation theory. The in­

dependent parameters used in the correlation analysis are the 

slip plane orientation and the direction of the dislocation 

line segments which differ from crystal to crystal in a ran­

dom fashion. The relation between this linear theory derived 

on the basis of the conservation of energy in the absence of 

dissipation, and its extension into non-linear ranges of re-

sponse, along with its relation to other theories currently 

being discussed in the literature, are investigatedo 

C. :-0'-V 0--. r. •• "." -. ~.-' l~-r: 
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SUMMARY 

In this thesis, the influence of mobile line dislocations, 

anchored to slip planes in an otherwise isotropic elastic ma­

trix, on the quasi-static linear elastic response of an ideal­

ized polycrystalline aggregate of close-packed crystals is 

discussed. The dislocation mechanisms are discussed in Chap­

ter II. The formulation incorporates the inactivated Frank­

Read source, discussed in Chapter III, as its fundamental me­

chanism and examines its effect on the response characteristics 

through the use of statistical correlation theory. The inde­

pendent parameters used in the correlation analysis are the 

slip plane orientation and the direction of the dislocation 

line segments, which differ from crystal to crystal in a ran­

dom fashion. The relation between this linear theory, derived 

on the basis of the conservation of energy in the absence of 

dissipation is discussed in relation to four cases frequently 

encountered in the current literature. This is shown in Chap­

ter v. 

The present work is considered an important step in the 

redefinition of certain basic concepts pertaining to the pro­

per use of materials since it leads to a specification of the 

limitations on the linear elastic response of polycrystalline 

metals containing dislocations. 
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CHAPTER l 

INTRODUCTION 

Metals are made up of crystals separated from each 

other by boundaries. Each crystal is a three-dimensional 

network of atoms, arranged in unit cells possessing an order 

which tends to reduce their volume to a minimum. A perfect 

crystal is one in which these unit cells are arranged on a 

periodic space lattice throughout the macroscopic volume. 

Due to reasons as yet not fully understood, the lattices of 

actual crystals are never perfect, being disturbed by the 

presence of vacancies, line imperfections, such as disloca­

tions in addition to the grain boundaries which are themselves 

surface defects. Further, impurity atoms frequently pene­

trate the lattice structure causing further distortions in 

it. Apart from these geometrical defects, lattice vibrations 

cause additional unaccountable deviations of the observed 

response characteristics in comparison with those theoret­

ically predicted by assuming that the crystal lattice is 

perfecto 

The scatter frequently encountered in experimental 

data is, to a great extent, due to inadequacies in the 

phenomenological laws and theories pertaining to elasticity 
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and plasticity. These laws either neglect non~linear effects 

on the response of a solid or are designed to smooth them out 

over macroscopic regions of the material specimen. In this 

manner local mechanisms and their effects on the theoretical 

response are not taken into account. Extensions and modifi­

cations of the classical continuum the ory known as higher 

order continuum theories have been developed for the purpose 

of accounting for such nonlinearities in the response behaviour 

of metals. However, these theories are frequently too vague 

and ill-defined to be of use in the solution of problems for 

which they were formulated. Moreover such an approach fre­

quently obscures the physical phenomena involved and requires 

a special formulation for each. However, as defects exist in 

crystal lattices, their effects must be included in any formu­

lation which describes the material response. 

For this purpose, dislocations will be considered as 

the main mechanism for the description of the nonlinear response 

of solids. It is fortunate in this respect that dislocations 

have long range stress fields. Furthermore, beyond a few 

lattice vectors away from a dislocation line, the atomic dis­

placements are small compared with the inter-atomic distances. 

It becomes unnecessary therefore to deal directly with the 

a~omic structure of dislocations, hence allowing the use of 

linear elasticity for the description of their local effects, 
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i.e., the individual crystal is assumed to be made up of an 

isotropie elastic matrix observing the laws of perfect linear 

elasticity in which a three-dimensional network of disloca­

tions is embedded. Segments of this network, lying in slip 

planes, are anchored to inter-stitial atoms. From the analy­

sis of the deformation of these segments and that of the elas­

tic matrix, a quasi-static linear elastic response of the 

polycrystalline metal is then derived. In this way, the over­

aIl mechanical response will be correlated to the response of 

crystals containing dislocations. 

In order to introduce the subject matter of this 

thesis, a brief review of dislocation theory is given in 

Chapter II. Chapter III is concerned entirely with a discus­

ion of the Frank-Read mechanism due to its importance in the 

formulation of the proposed theory. The proposed mathematical 

model is then treated in Chapters IV and V, before certain 

conclusions are drawn in Chapter VI. 
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CHAPTER II 

DISLOCATION MECHANISM 

As already pointed out in the Introduction, disloca­

tions are of great significance in determining the mechanical 

response characteristics of solids. The existence of dislo­

cations was first conjectured as a means by which the magni­

tude of the yield stress in solids could be estimated. It was 

experimentally observed that,in general,yield stresses in 

crystals appeared in a scatter several orders of magnitude 

less than the theoretical stress calculated on the assumption 

that aIl atoms in a shear plane slip simultaneously. Since 

the shear stress is never uniformly distributed, and due to 

the visualization of the atoms to be flexibly coupled (linear 

chain model), the assumption of simultaneous slip had to be 

discarded. Instead of this assumption, it was then hypothe­

sized that a boundary separates the slipped from the unslipped 

regions. The line defining this boundary was then termed a 

diALoe~on line. See, for instance, A. H. Co~~eLL (1953). 

For the definition of a dislocation, consider a circuit 

drawn to pass through the atoms in a perfect lattice. It will 

be necessarily closed. However, if this circuit, also termed 

the 8UAge~~ ci~cui~, does not close by an amount equal to a 

lattice vector, called the 8UAge~ vec~o~, it is sa id to en­

circle a dislocation. The dislocation has everywhere the same 
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Burgers vector and can only end at the boundary of the crystal. 

If these dislocations end within the crystal, they have to 

form closed loops or three-dimensional networks. See H. G. 

van Bu~en [1960}. An elementary length of a dislocation 

loop of unit vector m and Burgers vector b lying in a slip 
~. N 

plane whose unit normal is ~ is said to move co~e~va~vely, 

if the direction of motion is n x m. See Figure 2.1. Two N _ 

distinct cases in this category can be discerned. In the 

first, the dislocation is called a ~c~ew d~~loca~on when the 

Burgers vector ~ lying in the slip plane ~ is parallel to the 

unit vector m. See Figure 2.2a. In the second case, the dis­

location is called an edge dL4loca~on when the Burgers.vec­

tor ~ lying in the slip plane ~ is perpendicular to unit vec­

tor~. See Figure 2.2b. Any dislocation of Burgers vector 

~ lying in the slip plane ~ can be decomposed into a screw 

and an edge dislocation. 

When a dislocation of Burgers vector ~ lying in the slip 

plane ~ moves such that the condition n.b = 0 is not satisfied, 

the motion is said to be non-con~~va~ve, since the density 

of the atoms in the slip plane does not remain constant. 

The ease with which a dislocation moves depends on 

its width, W. W is defined as the width of the transition 

between the slipped and the unslipped areas of the crystal. 
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Figure 2. 2b 
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See Figure 2.3. The force required to move a dislocation one 

Burgers vector in a slip plane is inversely proportional to 

its width. If the width is infinitely large, an infinitesimal­

ly small force is required due to the fact that Othe atomic 

displacements are infinitesimally small and occur in the inter­

atomic potential wells. The actual width of dislocations in 

real crystals is due to the balance between the ~omp~e~~lve 

ene~gy Ec in the top half of the crystal plus the ex~en~lon 

ene~gy Ee in the bottom half of the crystal and the ml~6l~ 

ene~gy Em across the slip plane. 

If a Burgers circuit, of radius r is drawn around a 

screw dislocation of Burgers vector È and magnitude b, the 

shear stress, obtained by multiplying the shear strain b/2wr 

by the shear modulus ~, is seen to be proportional to l/r. 

This indicates that dislocations have a long range influence 

and it is justifiable to use linear elasticity at large dis­

tances away from the core. The dependence of the stress on 

l/r is assumed invalid within a eut-off radius of about Sb 

from the core due to the fact that the displacements are 

large and linear elasticity will not apply. Accordingly, in 

developing the equations for the stress and strain fields of 

dislocations, the Navie~ equilibrium displacement equations 

of isotropie linear elasticity, in the absence of body forces 

can be used. These equations are: 
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l.l u. .. + (~+l.l) u· .. = 0 
~,JJ J,J~ 

(2.1) 

where ~ and l.l are the Lam~ coefficients, ui is the displace­

ment in the i-th direction, Latin indices have the range 

7, 2, 3, the summation convention applies, and a comma be-

fore Latin indices denotes differentiation with respect to 

the Cartesian coordinates indicated. The solution has to 

satisfy the condition that the forces opposing the relative • 

displacement of the atoms are periodic, with a period b, 

rather than increasing monotonically. 

Drawing a Burgers circuit around a straight screw 

dislocation whose unit vector ~ coincides with the z3 axis, 

the displacements are found to be multi-valued functions of 

position. The discontinuity b in the displacement is con­

stant in the z3 direction and the only linear strain compon­

ents Eij dependent on u 3 are EJ3 and E23 , whilst aIl other 

strains vanish. In polar co-ordinates the surviving component 

of the strain is Ee~ and is periodic with an increment of 2w. 

The simplest solution that satisfies Equation (2.1) is an 

inverse trigonometric function of the following form: 

= be /211' (2.2) 
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where zi are indicated in Figure 2.2a. From Equation (2.2) 

it may be seen that the displacement is evenly distributed 

around the dislocation line. It is then a matter of substi-

tution to write down the non-vanishing components of the 

stress and strain. Since aIl elastic deformations are accom-

panied by a corresponding strain energy, the ~el6-ene4gy ~ 

of a dislocation is defined as the energy stored in its 

elastic field per unit length, i.e.: 

~ = ~ 1 a.·f:.· 21Tr dr, 
d.} d.} 

(2.3) 

where aij is the stress tensor. Substituting for the stress 

and the strain into the above integral and integrating over 

the cy~indrical volume of radius r surrounding the dislocation 

line, an expression for the self-energy of a screw dislocation 

is obtained: 

(2.4) 

in which aga in ro is the eut-off radius within which the for­

mulation of linear elasticity fails. 

The determination of the state of deformation of an 

edge dislocation is more involved due to the lack of radial 

symmetry. The strain field of an edge dislocation which lies 

along the z3 axis needs two co-ordinates for its description 
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since u3 : a and the der.ivatives u1 3 :u2 3 :. o. Jience , , 
the solution to be so~ht here ia one of plane defor.mation 

in which the spherical components of the stress and the shear 

component a'2 do not vanish. Thus all solutions of the equi­

librium equation aL/,i = 0, satisfyi~g the conditions of the 

deformation field around an e~ge dislocation are obtained 

from solutions of the Airy bi-potential equation for plane 

strain: 

(2.5) 

in such a way that the Airy stress function satisfies the 

following expression: 

a" = X ,22' 

a22 = X , JJ ' 
(2.6) 

a, 2 = - X , '2 !' 

For plane strain, the component a 33 i5: 

(2.7) 

where v is the Poisson's ratio. The Airy-stress function 

which satisfies the above condition is of the form: 
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x = KZ 2 ln r (2.8) 

where the value of K is given by: 

K = llb/21T(1-v) (2.9) 

A straight-forward substitution of Equation (2.8) into Equa­

tion (2.6) yields the stress field around the edge dislocation. 

The latter when substituted into the equations of the general­

ized Hooke's law yield the strain field relations. 

From the derivation of the stress and the strain 

fields, indicated above, and making use of Equation (2.3), the 

self-energy of an edge dislocation is given by: 

(2.10) 

The above form differs from that of a screw dislocation by 

the constant l/(l-v). 

A significant quantity in the present formulation is 

the force exerted by an external stress field on a dislocation. 

Equating the work done by the external stress 032 in causing 

a dislocation of Burgers vector b to move a distance d in a 

crystal of unit width, i.e., 032bd, to the work done in moving 
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the dislocation force per unit length F, caused by 032' the 

same distance d, i.e., IFld, it can be seen that the force on 

a dislocation is: 

(2.1l~ 

It has been assumed in the above relation (2.11) that the non-

linear contribution from the core can be neglected. 

The force F is equally the force exerted by the stress 

field of one dislocation on another dislocation in its neigh­

borhood. Accordingly, the force between two parallel screw 

dislocations has radial symmetry whilst that between two 

parallel edge dislocations has no radial symmetry since the 

condition of plane deformation implies dependence on z, and z2' 

In conclusion, the present chapter has dealt with the 

basic definitions and has given a brief exposition of the main 

characteristics of dislocations. It has been shown that ini_ 

spite of the discreet atomic structure of dislocations, they 

strongly interact with each other and with external mechanical 

fields because of their long range effects, thereby allowing 

the use of linear elasticity in the description of their behav­

iour. A synthesis of these effects is believed to be at the 

foundation of MOSt nonlinearities observed in the response of 
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solids. Certain of these nonlinearities wil1-be explained in 

terms of the Frank-Read source in the fo1lowing chapter. 
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CHAPTER III 

THE FRANK-READ SOURCE 

In po1ycrysta11ine solids, dislocations form three­

dimensiona1 networks random1y distributed within each crystal. 

Segments of each network are anchored to impurity atoms by 

the Cottre11 force A. H. Co~~~ell (1964). Since impurity 

atoms act as centers of dilatation, they on1y interact with 

edge dislocations which contain spherica1 components in their 

stress fields. When an externa1 stress field is app1ied to 

a crystal containing such a three-dimensiona1 network, a dis­

location of 1ength l 1ying in a slip plane will deform accord­

ing to the sequence 1, 2, 3, 4, 5, with an increase in the 

app1ied stress. See Figure 3.1. This topo1ogy was first 

proposed by F. C. F~ank and W. T. Read (J9S1) and is now 

known as the F~ank-Read ~o~ee. It was 1ater observed under 

the e1ectron microscope. 

The Frank-Read mechanism becomes very significant in 

the theory of p1asticity since it can act as a source from 

which an infinite number of dislocations can be generated. 

Its importance lies in the fact that its activation as a dis­

location multiplier is already possible at low stress levels. 

Previous to its introduction, the magnitude of plastic de­

formation at such low levels of stress estimated by consider­

ing the motion of existing dislocations could'not be recon-
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Figure 3.1 
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ciled with experimentally observed values. Prior to this 

mechanism, a model was considered in which multiplication 

occured by reflection from a boundary and would necessitate 

that the dislocations move at sonic speeds. However, it is 

not possible to reach such speeds because of the retardation 

force a dislocation encounters when it moves through a crystal's 

lattice. J. Wee~~man (1961). In order to accomplish this, 

stresses higher than the actual yield stress of the crystal 

would be required. Moreover, facts deduced from experimental 

observations show that the dislocations begin to multiply at 

speeds of the order of l/lOth of the sonic values. W. G. 

Johnh~on and J. J. Gilman (1959). 

If a number of equal, anchored dislocation segments 

having the same orientation are uniformly distributed in a 

slip plane, each of them will expand according to the sequence 

indicated in Figure 3.1, thus acting like sources for the 

multiplication of dislocation. Assuming that the slip plane 

is free from defects, which would have otherwise caused the 

dislocations to pile up, the head of a loop, which is a pos­

itive edge, upon meeting the ta il of the one just ahead of it, 

which ~s a negative edge, will annihilate each other. Simi­

larly, the right hand side of the loop, which is a positive 

screw, and the left hand side, which is a negative screw, of 

the neighboring dislocation will annihilate each other when 
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they meet. The locations where two dislocations of the same 

type, but of different signs, meet can be considered as sinks 

in which dislocations are annihilated. 

Frequently, several slip planes having the same 

normal are operative simultaneously. When the spacing between 

two such planes is small, dipoles form (K. Yazu (1968)) be­

tween the positive dislocations at the he ad of one loop and 

the negative ones at the tail of another. This dipole forma­

tion may give rise to micro-cracks. H. G. van Bue~en (1960). 

The latter may also form when the dislocations emitted from a 

Frank-Read source pile up against the crystal boundary or 

against a sessile dislocation. Microcracks induced by these 

two mechanisms act to relieve the local stress concentration. 

After the removal of the applied stress causing a 

pile-up of dislocations, aIl loops would collapse back to the 

source if no opposing forcesresist to their motion. However, 

due to the existence of Peierls barriers (R. Peie~t~ (1940)), 

the collapse would only be partial, i.e., the loops would move 

just enough to balance the repulsive forces between the dis­

locations and the opposing forces. The loops would totally 

collapse upon the application of a reverse stress. The reverse 

stress is smaller than the forward stress which caused the pile­

up by an amount equal to the stress produced by the latter. 

Accordingly, the reverse strain is larger than the forward 
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strain and a hysteresis loop developes in the plot of the 

stress-strain curve. This phenomena is the well-known 

.Ba~ch~nge~ e66ec~ and constitutes one of the main dissipa­

tive mechanisms in solids. 

Closely related to the Bauschinger effect is the fri­

ction in solids due to rapid reversaI of loads at stress levels 

srnaller than those required to cause the dislocations to mul­

tiply. J. S. Koehie~ (1952) and A. V. G~anatc (1968). The 

anchored segments of the mobile dislocations oscillate back 

and forth on their slip planes, causing part of the input 

mechanical energy to be dissipated in the form of heat. These 

oscillations leave the solid's structure intact as long as 

heat is allowed to be conducted away from the slip planes. On 

the other hand, if adiabatic conditions predominate, diffusion 

of the pinning points occurs, causing permanent changes in the 

solid!s structure. R. Buiiough and R. C. Newman (1970). 

The very important phenomena of fatigue failure is due 

to aIl of the above mentioned effects. It involves, in general, 

slip bands, dipoles and dislocation pile-ups leading to the 

formation of micro-cracks. It also involves energy dissipation 

due to the Bauschinger effect or to internaI friction. T,ese 

effects lead to permanent changes in the crystalline structure 

resulting in eventual failure, i~pite of the fact that the 



22 

applied external stress is macroscopically still within the 

domain of linear elasticity. W. J. Plumb~idge and V. A. Ryde~ 

(1969'. 

In deriving the quantitative equations pertaining to 

the activation of the Frank-Read source, it has been observed 

that the magnitude of the Burgers vector of a dislocation 

loop remains constant throughout the expansion of the anchor­

ed segments in the slip plane. 

There exists therefore a line tension tending to de­

crease the total self-energy of the dislocation. N. F. Mo~~ 

(1952'. Accordingly, in the first phase of deformation, a 

dislocation segment behaves like a string fixed at two ends. 

The string tension is obtained by dividing the increase in the 

dislocation self-energy by the corresponding increase in its 

length. See Figure 3.2. 

Approximating the curve in the bowed out configuration 

by two straight segments pulled at the mid-span to an angle 

~ measured from the base line, it is seen that the line tension 

is to a first approximation equal to the self-energy per unit 

length of the dislocation. Substituting r = 10 5 b, correspond­

ing to the radius of a typical crystal and choosing the cut­

off radius r = Sb into Equation (2.10), the 1ine tension T is: o 
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where ln 2.10~ has been approximated by n 2 • From this line 

tension the minimum value of the applied stress required to 

activate a Frank-Read source can be obtained by consîdering 

the equilibrium of forces acting on a semi-circular disloca-

tion loop. Hence: 

(3.2) 

Substituting for T from Equation (3.1), it is observed that 

for linear elastic response, no stresses within the polycry-

stalline solid may exceed the value: 

(3.3) 

Configuration 2 shown in Figure 3.1 corresponds to this stress. 

The reason for this limitation is that by neglecting the de-

pendence of the line tension on the radius of curvature, the 

area swept by the dislocation 1ine is proportiona1 to the 

applied stress. This is shown by solving the differential 

equation expressing the balance between the line tension and 

the force exerted by the external stres~ neglecting the Peierls 
'- . 

stress. The resulting equilibrium equation can be written as 

follows: 
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(3.4) 

where ~ is the displacement of the string in the z2 direction, 

measured from the equilibrium position. Solving for ~ from 

(3.4), the average displacement ~ expressed in terms of the 

strain component E 32 is as follows: 

t 
~ = lIt I~dzl = 2(1-v)t 2 /3nb E32 (3.5) 

0 

where use has been made of Equation (3.1). 

Although the effects of activating the Frank-Read sources 

and of the damping induced by the retardation forces encount­

ered by moving dislocations are beyond the scope of the pre-

sent thesis, they have been discussed in this ehapter in order 

to indieate possible extensions of the above linear response 

into nonlinear domains. Henee, in what follows, only the lin-

ear relation between the dislocations displacement and the 

applied shear stress, given by Equation (3.5), will be used 

in the derivation of the equilibrium equations deseribing the 

quasi-statie linear elastic response of polycrystalline metals. 
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CHAPTER IV 

PROPOSED ANALYTICAL MODEL 

The mechanical response of a polycrystalline aggregate 

is different from, although dependent on the response of its 

individual crystals. This behaviour of the aggregate is 

mainly due to the presence of defects whose mobilities are 

impeded either by grain boundaries or by restricted direc­

tions of motion. It is essential to correlate the mechanical 

response of the aggregate to the response of the individual 

crystals so that the important modes of deformation on the 

crystalline level can be identified. An approach of this 

kind can then lead either to a refinement of the phenomenolog­

ical laws describing the microscopie response of the aggregate, 

hence leading to reliable predictions of its physical char­

acteristics, or to the elimination of undesirable modes through 

the design of new materials. However, without certain assump­

tions it is inconceivable that these modes can be identified 

due to the seemingly incoherent structure of real polycrystal­

line solids. 

Before enumerating the basic assumptions which are neces­

sary to bring some order into the description of the aggregate's 

structure so that an analytical approach may be considered, 
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the three scales of crystalline structure introduced by 

V. R. Axet!La.d (7911) for the description of the deformat.ion 

of heterogeneous media are incorporated. See Figure· 4.1. 

The mic!Lo~copic !Legion, which in Axelrad's notation 

corresponds to the smallest or micro-element to be dealt with 

in the heterogeneous medium, is taken to represent the indi­

vidual crystal. The crystal has a volume ua, a dislocation 

density pa, and slip direction n1j, where a designates the 

crystal and the superscript k identifies the particular slip 

direction interior to a. In the undeformed configuration, 

the center of mass of each microelement ua is denoted by a 

position vector ~a, referred to a fixed Euclidean frame of 

reference. 

The me~o~copic !Legion contains a large number of close 

packed crystals so that a formulation similar to that of 

statistical mechanics can be employed. The number of crys-

tals or micro-systems is n and hence a = l, .. , n. The meso-

scopic domain may be considered in the same sense as the 

Gibb6ia.n !Lep!L~en~a.~ve e~emble of statistical mechanics. 

The ma.c!Lo~copic !Legion corresponds to the total solid 

of volume V. On the boundary of the macroscopic region, the 

tractions and deformations are considered specified for a par-
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Figure 4.1 
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ticular boundary value problem. 

Using this type of ordering of the polycrystalline aggre­

gate the following assumptions are made pertaining to the 

microscopie element: 

i) The crystal matrix whether free from or"-containing 

defects such as impurity atoms or sessile dislocations, 

responds to an applied stress according to the con­

stitutive equations of a linear isotropie elastic 

material. These relations contain only two indepen­

dent constants, i.e., the Lamé coefficients À and ~. 

ii) Since in the case of metals, a crystal has a prefer­

ence to grow in the forro of a close-packed 'structure 

tending to reduce its surface potential to a minimum, 

it follows that for an isotropie sOlid, crystals will 

grow spherically around nucleation points in the melt. 

Hence in the growth stage of a crystal around its nu­

cleaticn point from a radius r to a radius r + dr, the 

difference ~S = 8nrdr, called the mi~6i~ a~ea, is 

filled up with additional rows of atoms corresponding 

to dislocation lines. See Figure 4.2. From such geo­

metrical consideration, the total misfit area Sa of 

an individual crystal of average radius ra will be to 
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a first approximation 4~(rB)2. The -density of dis­

locations pB per unit volume of the crystal is then 

equal to the total length AB = 2SB/b of the disloca-

tion line divided by the crystal's volume, i.e.: 

(4.1) 

Thus the density c= the dislocations pB in the B-th 

crystal can be expressed in terms of its volume UB. 

iii) The dislocation density pB does not vary from crystal 

1
. B to crysta , ~.e., p = p. This implies, in conjunc-

tion with ii), that the micro-element's radius r B 

d o 1 BoB d an ~ts vo ume u are constant, ~.e., r = r an 

= u. By introducing this assumption, the effect 

of the density fluctuation on the solid's response is 

neglected and the individual crystal is considered as 

the unit element. 

iv) A certain ratio L of the dislocations within the crys-

tal lie anchored to impurity atoms on crystallographic 

planes. A typical crystal of radius r = l05b will 

have an average dislocation density p of the order 

of lOllcm/cm 3 as estimated from expression (4.1) given 

in assumption ii). The density of mobile dislocations 



v) 

vi) 

32 

estimated from internaI friction experiments is of 

the order 10'cm/ cm3. A. V. G4ŒnŒ~o (1968). Thus, 

the ratio of the density of mobile dislocations to 

the total density in the crystal will be of the order 

10 -It • 

fta Out of the numerous possible slip systems O .. , there 
.(.j 

. 1 1" d" " nIa - a ~s on y one s ~p ~rect~on Uij - wei e = 2,3, for 

the motion of mobile dislocations. Furthermore, the 

anchored segments of the mobile dislocations lie par­

allel to the z~-axis of the co-ordinate system z~ 

attached to the a-th crystal's center of masse The 

z~-axis of this system whose direction cosines with 

respect to the reference Euclidean frame xi are w~i' 

is the normal to the slip plane, while the 'dislocation 

segments bow-out in the z2 direction wh0ge direction 

cosines are w~i' 

a 
The direction cosines of the co-ordinate system z . 

..(.. 

are randomly distributed. 

vii) Finally, dislocations will only interact with an ex-

ternally applied stress field, i.e., the second order 

contributions, caused by the bowed-out dislocation 

segments, to the force exerted by the external stress 
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field on a dislocation segment will- be neglected. 

In summary, the model proposed for the study of the lin­

ear response characteristics of a polycrystalline aggregate 

consists of a large number of close-packed micro-elements of 

equal volume. Each micro-element in turn contains the same 

density of anchored semi-mobile dislocation segments which 

can only bow-out in one prefered slip direction differing 

from one crystal to another in a random fashion. Nonlinear 

contributions due to the interaction between these dislocation 

segments are neglected. 

The quantitative description of this model will be given 

in the following chapter. 
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THE EFFECT OF DISLOCATIONS ON THE LINEAR 

ELASTIC RESPONSE OF POLYCRYSTALLINE META'LS 

The mechanisms for dislocations and the proposed analy­

tical model discussed in the previous chapters'will now be 

used to study the effect of dislocations on the quasi-static 

linear elastic response of polycrystalline solids. The re­

tardation forces are neglected so that the response of the 

aggregate can be deduced using the equilibrium equations of 

linear elasticity and the dislocation string model discussed 

in Chapter III, implying that the deformation is completely 

reversible. 

Within the framework of the above assumption and those 

given in Chapter IV, the total free energy Un stored in a mes­

oscopic region of the solid due to an applied external load 

is equal to the sum of the strain energy stored in the elastic 

matrix and the increase in the self-energy of the anchored 

dislocation segments in each crystal summed up over the total 

number n of crystals in the polycrystalline aggregate. This 

may be expressed as follows: 

(5.1) 
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where: 

(S.2) 

is the fourth order isotropie tensor, Ô~j = 1 if ~ = j and 

ôij = 0 if i ~ j is the Kronecker delta, and: 

(S.3) 

~jkl (S.4) 

It should be noted that the second term on the right hand 

side of Equation (S.l) describes the influence of the defor-

mation of the anchored dislocations on the work done by an 

external field. It is the product of the work done by the 

force IFll = ~blE~2 acting on a dislocation segment of length 

1 to displace it a distance ~a, defined by Equation (3.S), 

and the number of mobile dislocation segments u~p/l in the 

crystal. The transformation of the strain components E~2 

from the zi to the x~ co-ordinate system introduces the fourth 

a order orientation tensor r~jkl of Equation (S.4). 

When expression (S.l) is differentiated with respect to 

a 
UE .. the stresses in the a-th crystal are obtained, i.e.: 

~J 
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a a .. = 
-<'J 

(5.5) 

(5.6) 

(5.7) 

where: 

ta = a'!. -a . . -<'J -<'J 
(5.8) 

and use has been made of relation (502). It can be seen from 

Equation (5.5), that due to the presence of dislocations, 

both the spherical components a~m as weIl as the deviatoric 
, 

components a~j of the stress tensor aij contain the epherical 

and the shear components of the isotropie strain tensor. 

In the present formulation, the strains E~. and the ,(.J 
a a .. 
,(.J 

~rtaining to the a-th microelement are assumed to be random 

variables dependent on the orientation tensor rijkto These 

random quantities can be expressed in terms of an average, 

denoted by <0>, taken over the mesoscopic region, and a fluc­

tuating component, denoted by ~, where by definition <~> = o. 
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According1y, when 

a <r . (lot'> + *a 
r.ijkl = r· ·u, LJ LJ (5.9) 

a = <e; .. > + *a 
E •• E •• , .(.J .(.J .(.J (5.10) 

and 

a *a o .. = <cr •• > + cr •• , .(.J .(.J .(.J (5.11) 

are substituted into Equation (5.5), the expression for the 

average and the f1uctuating components of the stress tensor 

o~. are given by: .(.J 

(5.12) 

(5.13) 

*a It is important to note the dependence of <o .. > and o.· on 
-<'J -<'J 

the dislocation density, when n = 0, the stresses and the 

strains are on1y re1ated through the isotropie materia1 con-
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stant tensor CLjkl . On the other hand, when the fluctuating 

components of r~j~l vanish, the average stresses depend in 

addition on the only preferred macroscopic direction of slip. 

The third term shows that due to the assumption made, there 

exists a correlation between the possible orientations and 

the strains defined as follows: 

/N+l. (5.14) 

Similar remarks can be made concerning the fluctuating com­

* ponents a~j' given by Equation (5.13). 

At this stage of the formulation, Axelrad's probabilistic 

concepts concerningthe existence of a stress correlation fun-

ction, i.e., a second order moment for the distribution, be-

tween two crystals in different stages of deformation is in-

troduced. V. R. Axe~ad and L. G. Jaeg~ (1910). The cor-

relation theory, following Yaglom, hypothesises that for the 

description of a random process, its Mean and correlation 

function havè to be estimated. A. M. Yaglom (J962). How-

ever, it turns out that for a random function to be uniquely 

specified by the first and second moments, it is necessary 

as weIl as sufficient that its distribution be Ga~~ian. 

Thus, due to the lack of evidence to the contrary, and since 
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~andom processes occuri~g in nature are oft~n observed to be 

Gaussian, the independent variable r~jkl' as weIl as the de­

pendent variables e~j and a~j , will be assumed normally dis­

tributed. J. W. P~ovan (1971J. 

In a manner similar to the definition of the correlation 

given by Equation (5.14), the stress correlation may be approx-

imated since the number n of crystals is finite in a mesoscopic 

region, as follows: 

* a * a = <a • • (x )a&.D(x +'{'» , 
~j - ~~ - -

(5.15) 

where '{' is the vectorial distance between the centers of mass 

of the a-th crystal and the crystal at ~a +!. By analogy to 

the definition of the stress correlation tensor given in 

Equation (5.15), the correlation functions between the fluc-

tuation components of the strain and orientation tensors are 

defined in the following manner: 



R.ijk.t.mn(~:r;!) 

R. 'k D (e:f2;'f) 
-<'J -Lmn - - -

R, 'k D (e 2 :r 2 ;'I') 
-<'J -L - - -
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le a le a = <E ... (X )E .. (X +'i'», 
-<'J - -<'J - -

le ~ le a = <r, '",o(X)r (x +'1'», 
.t.J~-L - mnpq - -

le a le a = <e .. (X )f"'D (x +'1'», 
.t.J - I<'-Lmn - -

(5.16) 

le a le a le a = <e .. (x)e (x +'f)f ko (x », 
.t.J - mn - - -Lmn 

= 

<:pq(xa):mn(~a+!)~.ijpq(~a)~k.t.mn(~a+!», 

Using, for instance, Equation (5.13) the stress correla­

tion tensor given by Equation (5.15) can be expressed in terms 

of the orientation and the strain correlations and their pro-

duct moments given by Equations (5.16) in the following way: 
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+ B R (o·r2.~) pqmn ~jklpqmn 0- ,_ 

(5.17) 

where: 
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A"r...o = (C··t.o+n<r .. »(Cr...o +n<r LO », 
~J~~pqmn ~J(~ ~Jpq ~mn ~~mn 

c . 't. 0 
~J[(.~mn 

V.i.jkl 

E. , 
~J 

= 2n (C 0. 01. o+n<r • 'r... 0> )<e: >, 
~J[(.~ ~J[(.~ mn 

= 2nC. 'r... 0 , 
~J~ 

(5.18) 

Implicit in the above derivation is the assumption of 

6~a~.i.~~.i.eat homogen~~y, ioe., independence of the specifie 

position ~a, according to which the following relations were 

substituted: 

* a * a <cr .. (x >rl. D (x» 
~J - ~~mn 

* a * a = <cr •• (x +'l')rI. D (x +'1'» 
~J - - [(.~mn - -

(5.19) 



43 

Thus, Equation (5.17) represents the general expression 

for the stress correlations, for the case where the stresses 

and the strains are dependent on the orientations. In this 

context it is important to note that once the strain and the 

orientation correlation tensors as weIl as their product mo­

ments have been experimentally determined, the stress cor­

relation tensor can be obtained from expression (S.17).,which 

in addition to the mean value, given by Equation (5.12), will 

uniquely specify the probability distribution of the stresses 

in the polycrystalline aggregate. An experimental determina­

tion of the displacement of crystals in a model of a two phase 

structure has been shown to be possible using stress holograph­

ie interferometry. J. Kalo~ek (1971). 

In discussing the general expression for the stress cor­

relation tensor given in Equation (5.17) four cases that de­

monstrate the implications of sorne of the underlying assump­

tions concerning the linear response characteristics of solids 

may be discerned: 

i) The crystal orientations have a uniform random dis­

tribution, thus implying statistical isotropy in 

addition to the statistical homogeneity. The case 

of isotropie homoeneity has been dealt with by 

Barenblatt and Gorodtsov in their discussion of the 
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random field of microstresses in the steady plastic 

flow of polycrystalline sOlids, G. 1. 8a4enbla~~ 

and V. A. G04od~ov (1963). However, these authors 

did not include in their formulation the dependence 

of the stresses on either the crystals orientation 

or the dislocation density. In the present analysis 

so that the condition of statistical isotropy of 

the stress correlation tensor holds, the correla-

tions and the product moments given in Equations 

(5.15) and(5.l6) are redefined, for example, as 

follows: 

n p * a *y a 
l/n+l ~ {l/p ~ E .. (x )Ekl(x +~)}, 

a=l y=l "-J - -

(5.20) 

where the scalar , = I!I has replaced the vector 

~. ~ may be visualized as representing the radius 

of a sphere centered at xa on the surface of which 

lie the centers of mass of p crystals. Since the 

influence on the a-th crystal's state of stress by 

that of the neighboring crystals decreases with in­

creasing " it may further be conjectured that p is 

the number of crystals in direct contact with the 

a-th crystal. It should be noted that the assump-
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tion of isotropie homogeneity is frequently made 

in the analysis of turbulence in fluids. 

ii) Under the assumption that the strains are indep-

endent of the orientations, the terms on the right 

hand side of Equation (5.17) which conta in second 

and third or der product moments will vanish, 

v. S. Pugachev [!~65). Moreover, the last term in 

this equation will be expressed as the product of 

the orientation and the strain correlation tensors. 

Hence, the expression for the stress correlation 

tensor will become: 

R- _&..D~2 :0;'1') = 
..{.J K..(.. - -

A R (E 2 ·0-'V) ijktpqmn pqmn _ . '-

+ 8 R (0·r 2 .'V) pqmn ijk.tpqmn .- '-
-

+ 

(5.21) 

It follows therefore that the strain and orienta-

tion correlations represent the only quantities 

required to be experimenta11y determined for the 

unique specification of the stress state. 
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In the work by J. S. Koehle~ (1952) and A. V. 

G~anazo (19681, dealing with the internaI friction 

in solids; it is implied in the derivation of the 

equations of motion that the distribution of the 

orientation tensor is a delta-function, i.e., that 

aIl mobile dislocations in a mesocopic region are 

constrained to move in slip planes having the same 

normal. Furthermore, this is equally the same 

assumption made by H. Zo~~k~ (1968) in his deriva-

tion of the equations of motion of a compound med­

ium made up of an elastic matrix and a dislocation 

fluide If this assumption is adopted, the stress 

correlation tensor can be written as follows: 

R. '&..D(02:0;'l') 
.(.j J(..(.. - -

= A R (E 2 ·0·'l') 
~j ktpqmn pqmn - . ,_ ' (5.22) 

i.e., the stress correlation is expressed in terms 

of the dislocation density, the average orientation 

and the strain correlation tensors. In the absence 

of dislocations, A~jktpqmn will only depend on the 

isotropie tensor C~jkt defined in Equation (5.2) 

iv) For completeness and although not directly related 

to the present analysis, an assumption is frequent­

ly encountered in literature dealing with the 
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plastic deformation of a po1ycrysta11ine meta1, 

according to which the strain in each crystal cor-

responds to macroscopic strain, i.e., if, for in-

stance, a uni-axial load is app1ied to a meta1, 

each crystal will deform as if it were under uni-

axial loading. J. F~ w. Bi~hop and R. Hill (1951a) 

and (1951bl. Assuming that this is the case, 

the f1uctuating components of the strain will 

vanish and the stress correlation tensor can be 

expressed as fo11ows: 

B R (o·r2.~) 
pqmn ijklpqmn .- '- (5.23) 

i.e., it is on1y dependent on the dislocation den-

sity, the average strains and the orientation cor-

relation tensor. If the dislocation density van-

ishes, the stress correlation tensor vanishes, too. 

Fina11y, a simi1ar relation expressing the strain corre-

lat ion tensor in terms of the stresses and the orientation 

correlation functions can be obtained in an ana1ogous manner 

to the derivation of Equation (5.17). However, such an ex-

pression wou1d not be of practica1 significance due to the 

conceptua1 difficulties encountered in eva1uating the stress 

distribution. On the other hand, Equation (5.17), at least 
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in principle, yields ideally to experimental techniques. 
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CHArTER VI 

SUMMARY AND CONCLUSIONS 

In studying the effect of dislocations on the linear 

elastic response of polycrystalline metals an ordering, in­

dispensable for any analytic approach to be successful, has 

been incorporated making use of the three size scales intro­

duced by Axelrad. It has been assumed that the close-packed 

crystals forming the heterogeneous aggregate are of equal 

volume each containing the same density of mobile dislocations 

anchored on their respective slip planes by impurity atoms. 

It has been further assumed that within a particular crystal 

the mobile dislocation segments have the same length and or­

ientation and lie in slip planes having the same normal. On 

the other hand the slip directions vary from crystal to crystal 

in a random fashion. 

The derivation of the equations pertaining to the equi­

librium of stresses using an energy argument in which the dis­

sipa~ion has been neglected, introduces a fourth order orien­

tation tensor appearing in conjunction with a term containing 

the dislocation density. Due to this orientation tensor the 

spherical as weIl as the deviatoric components of the stresses 

within a crystal were shown to depend on both the spherical 
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and shear components of the strain tensor. Furthermore, 

when the stresses and strains are assumed to be random 

variables, dependent on this orientation tensor, the average 

stresses have been found to depend on the averages of the 

strains and orientations throughout a mesoscopic region as 

well as the second order product moments of the strains and 

orientations. This is an extension over any continuum theory 

which, by definition, is totally incapable of including such 

a terme 

A stress correlation tensor has been obtained in terms 

of correlations and product moments of the strain and orien­

tation tensors assuming statistical hom~geneity. Once the 

mean value and the stress correlation tensor are determined 

the distribution of stresses within a mesoscopic region of 

the polycrystalline aggregate can be uniquely determined, un­

der the assumption that the strains and orientations through­

out the mesodomain are normally distributed. Tests are 

being conducted in the Micromechanics Laboratory of McGill 

University to test the validity of this assumption when applied 

to displacements in a two-phase material. 

Four cases pertaining to the evaluation of the stress 

correlation tensor have been discussed and, by indicating 

their connection to the general expression for the stress 
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correlation tensor, the implications of certain assumptions 

frequently encountered in the literature have been underlined. 

In the case where statistical isotropy is assumed it was 

shown that the dependence of the correlations on a vectorial 

geometric quantity could be relaxed to the dependence on a 

scalar representing the location of the centers of mass of 

crystals directly in contact with the one under consideration. 

The second dealt with the assumption concerning the indepen­

dence of the strain and orientation tensors, in which it was 

shown that the orientation correlations are the only necessary 

functions required for the estimation of the stress corre la-

tion tensor. The third case concerned the assumption of one 

common slip direction for aIl crystals in a mesoscopic region. 

It followed that the stress correlations only depend upon the 

strain correlation functions. Finally, corresponding to the 

assumption made in the study of plastic deformation in poly­

crystalline solids, the effect of assuming that the fluctua-

ting components of the strains vanish was examined. 

By estimating the stress correlations in accordance to 
-

the general expression or to any of the four cases previous-

ly discussed it is possible quantitatively to estimate the num­

ber of crystals in which the shear stresses will exceed the 

value required for the activation of the Frank-Read mechanism. 

Accordingly the study which bas been presented here may be 
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considered as an important step in the redefinition of certain 

basic concepts pertain~g to the proper use of material~ since 

it leads to a specification of the limitations on the linear 

elastic response of polycrystalline metals containing dislo­

cations. 

Now, since the model proposed in the present work is 

only related to linear effects, several extensions natural­

ly present themselves. The most obvious is to include dis­

sipative effects by taking into consideration the activation 

of the Frank-Read mechanism. This will automatically extend 

the range of study into irreversible response characteristics 

of polycrystalline materials as proposed in Chapter III. 

Furthermore, since no feasible extension can justifiably ig­

nore the interaction between ~wo or more activated Frank-Read 

sources, a possible technique which includes such influences 

is at present under review. Briefly, it involves concepts 

similar to those leading to the Boltzmann equation for rari­

fied gases where the dislocation interaction is analogous to 

the collision terms in the Boltzmannequation. 

It is hoped by investigating this phenomenon to eventually 

arrive at a formulation which quantitatively describes fatigue 

failure in polycrystalline aggregates. 
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