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PREFACE 

This thesis builds upon previous work carried out in speech enhancement using a VectOl 

Quantizer as a means of signal detection or template matching. Specifically, Juang and 

Rabiner in 143) demonstrated the use of a Vector Qua~tizer as an integral )art of a signal 

restoration ~y~tem. Rather than e~timating the characteristics of the signal and/or the noise, 

the signal restoratioJ1 process was treated as a problem in signal detcction using a spectral 

mapping approach. The particular approach used by Juang and Rabiner cannot strictly be 

called a speech enhancement method in that the emphasis was on improving ;;;pectral 

matching, perhaps for further use in a separate speech recognition system, rather th an 

producing an output speech ~equence with an improved quantitative characteristic sllch as 

increased SNR or a subjective improvement in intelligibility. However, the system 

described by Juang and Rabiner was interesting in that it showed how a restricted parameter 

based sub-space could be used to choose an appropriate pattern in a degraded environment. 

The work carried out in this the!o.is is more clo~ely tied to the work carried out by 

O'Shaughne!o.sy 111 1441 in which a Vector Quanttzer lIbrary wnose codebook elements 

contained the coeffIcients for an autoregre!o.sive model was indexed by using a noise-robust 

fomlant-based template-matchmg distortion measure. The selected AR model was used in 

an LPC synthesizer which was driven by an excitatIOn source appropriate to the CUITent 

characteristics of the nOlsy speech. Since the speech was resynthesized using the LPC­

based autoregres:.ive model and a simplified set of excitation wavefonns, the output speech 

W;IS noise-free but had the buzzy or mechanical characteristic typical of LPC vocoders. 

However, the output speech was reported to be intelligible. In short, the enhancement 

system proposed in 1441 delnon~trated the utIlity of a Vector Quantizer in a practical speech 

enhancement system. 

This the sis differs from the work carried out in 144) in the enhancement approach used. 

Rather using a synthesis approach, the noisy speech is filtered using an adaptive filter 

whose characteri~tics are defined by the nonllalized AR model retrieved from the VQ library 

using a given template matching distortion mea~ure. 

For the remainder of thlS preface, 1 wou Id like to acknowledge the support of my CUITent 

employer. Stentor, \\'hich p.-ovided with the time and resources to perform the experimentai 

analysis and prcp..:re thls text. 1 wou Id aiso like to acknowledge the perseverance of my 

wife, Joann Leong-ZabawskYJ, who endureCl endless repetitions of certain phonetically 

balanced phrases and offered independent insight mto the perceived subjective quality of the 

enhanced speech signais during the simulated speech enhancement trials. 

1 
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ABSTRACf 

This thesis will examine a Vector Quantization-büsed system for speech enhancement. f{ l'y 

areas in this study will inclllde the optimum size for the veetor qUé.lIltiler library and the 

distance measures lIsed to index the vector quantizer library. ln additIOn, the robustness of 

the overall enhaneement process as a fllnctlOn C~· ihe vector quanti7er training seqlll'llCe 

(e.g., the number of speakers and the number of dl:-.simtlar phrases' will be explorcd. As 

speech enhancement is a diverse field, several other eontemporary ~pccch enhanCCIlll'Il! 

techniques will initially be examined in order to place the lesltlts of this sludy 111 a 

comparative light. 

Ce Mémoire exalllinera un système utili~ant la quantification vectorielle pour l'amtllOralion 

de la parole. Les principaux domaines d'intérêt de ce mémOire IIlclueront la dimension 

optimale de la hibliothèque de référence de quantification vecto!1elle ainsI que les ul1it~s de 

mesure utilisées pour indexer cette bibliothèque. De plus, la robu~tes~e du proces:-'lIs 

d'amélioration sera étudiée en fonction de la séquence d'entraînement pOlir la quantification 

vectorielle (i.e., le nombre d'interlocuteurs cl le nombre de phrasc" (lIsscmhlahles 

prononcées). Vu l'étendue du domaine de l'amélioration cie la parole, pluslcurs autres 

techniques seront brièvement étudiées afm d'établir une ha~e comparative pOUl l'analysc 

des résul ~at:-; . 

11 
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1. INTRODucnON 

Recent advanceli in . ..,peech coding and digital ~ignal processing have resuIted in extensive 

reductions JO the bandwidth nece~sary to transmit an intelligible speech ~ignal of good 

quality, and h..tvc abo increa~ed the relIabllIty and capacity of transmilislOn channels. Yet, 

despite thc~c aclvul1ce~, the corruption of a speech ~ignal by additive/intertenng background 

noi~c at the ~ourcc or ad(iItivc/multiplicauve transmis~ion noise in the communications 

t;lIannel has rcmulIlcd U major Impedllnent in many man-machine and man-man 

communication cllvlronment~. Any ~uch noi~e willm gcneral decrea~e bath the quality and 

the intelhgibllity of the degraded ~Ignal eompared to that of the original speech signal. One 

example of a degwded eOllllllllllleatlon environment is the conversation between a pilot and 

an air traffie control towcr. In thi~ cu~e the predominant ~ource of nOise is the background 

engine nOI~e plu .. pcrhap~ the II1terfenng cffect of background speakers at each end of the 

channel. 

ln an cffort to try to recluce or mil1llllize the effect ot the nOl~e source, ~everal speech 

enhancelllent tcchl1lque~ have been propo\ed. Figure 1.1 display~ a diagram of the overall 

speech cnhaneclllcnt problem. Enhancement algorithms typically try to increase the 

objective quality (e.g., SignaI to Noi~e Ratio - SNR) of the corrupted speech signal. 

Increasillg the objective quallty of the SIgnai, however does not necessarily imply a 

corresponcling increa~e in the intelliglbillty of the speech signal. Intelligibility is a 

subjective mcasllle and lI~ually reqlllre<; some wrt of comparative scoring method based on 

the subjective vtewpoint of ~evefL11 ~ubjects. 

Figure 1.1 - Overall Vlew of Speech Enhancement Problem 
(After O'Shaughnessy [1]) 

Estlmated Llstener 
Enhancement I-"'~ Speech 
Aigonthm Signai 

This thesis will examine a Vector Quantizatlon (VQ)-based speech enhancement system 

with the emphasis on inereasing objective quality measures which have been shown to have 

a fairly good correlation with acceptabtlity and intelligibility. Vector Quantization is 
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essentially a data compression method by which a sequelH:e 01 Vl'CtOl of variabks I~ 

mapped onto a reduced ~et of representatlve symbols. Wlth a fl'\\ l"CeptlOll!\, thl.' use of 

Vector Quantlzation has been Illnited to the cnding of speech ~Ignab and imagl.'~. 'l'hl.' 

appeal of vcctor ljllantIzatlOn in the fidd of cOliIng lIes 111 a n~-;lIlt of Illfnl111allllll thenry 

which state~ that an encoder wlllch uperate:-- on a ~elle ... of value ... wIll lheol dll'ally 

outperform a scal:tr encoder \'Ihlch operate!'> on the saille set of value ... III a sen.lI fa~III,)J1 

This increase in performance IS duc 10 the fact that Vl.'ctor Quantl/atlon l'an makI.' u<:c of 

four properlies in a glven vector of values. (1) IlIlear dependency. (2) nonl Ilcar 

dependency, (3) ndture of the probability dcn~ity functlon. and t4) the geometllc PIOI '1IIe~ 

of N -space - where 1 N' IS the number of vallle~ 11\ the wctnr. It IS thc~e plOpellIc", v. :lIch 

are utilized in the generation of a VQ encoder in speech codll1g. ThiS -;tudy WIll attelllpt to 

demonstrate how the~e same propertlcs may be abo lItilil.cd in a ~IK'ech enh.lI11'l'lIIcnt 

system. 

The second section will review a nllmber of commonly u,>cd obJcctlvc dl!\tortlol1 measlires 

and provide an indication of their correlation to the DiaglHl,>tIc Acceptahliity Mea~",urc wI1ll.:h 

in turn provldes a reliable indication of ~lIhJectlve acccptabIllty As ~pccch cnhancclllent 1:-' 

a diverse field, a <;tlldy of alternative methods :-.hollld he undcrtaken ln plan' the rc:-.ult ... of 

this the~is in a comparative IIght. Therefolc the t1md ,>ecllon WIll he (kvotcd to a dl\ClISW)Jl 

of several mature and contemporary ~pecch cnhancemcnt tccllllllllle:-. The 1'0111 th ~eCII(\1l 

will introduce Vector Quantizatlon 111 tcrm!'> of Ihe undeIlYll1g tlll':llry and leVICW .,cvel al 

different classes of Vector QlIantlzers. Section 5 wIll tiC the VectOl <)lIanti/allon concept to 

speech enhancemcllt and revlcw previou:-. WOI k donc III the field 01 VQ ba ... cd ~pl'ech 

enhancement. Section 5 will alsn introdllce the proposed speech enhancement \y!'>h'1ll and 

outline the experimental vaflable~ to be examllled Key alr:a'> tn be :-.llIdled includc the .,I/C 

of the vector quantizer IIbrary and the dl\tortlol1 mcasllre,> lI~ed tn IIldex the VQ Ilhrary. 

Finally, Section 5 will report the obJective rC~lIlt~ and :-.ubjectlvc ob,>ervati()J)<; lor ~,lIlllllatcd 

speech enhancement tllals . 

2 
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2. DISTORTION MEASURES USED IN SPEECH PROCESSING 

2.1 Introduction 

The ability to apply a procedure which will reliably provide an indication or measure of the 

sound quality, acceptability, and intelligibiIity of a speech signal in a repeatable manner is 

unque~tionably a key requirement in the design and analysis of any speech processing 

system. One means of fulftlling this requirement would he to use trained human listeners 

who would evaluatc the subjective quality of a speech signal using a standardized 

procedure. Subjective procedures involving human listeners generally provide a good 

indication of the subjective quality as they are based on human perception. However, the se 

tests tend to he expensive, difficult to administer, and suffer from the inherent non­

repeatabiltty of human responses. In addition, the labor and time-intensive nature of 

subjective procedures tend to timit the viability of subjective distortion measures to 

demonstrating the quality of a final speech processing system rather than as an integral 

e!ement of the design process. 

Objective or computable distortion measures provide relatively inexpensive and consistent 

results. Furthermore, the relative speed at which an objective distortion measure may be 

detennined enables its use not only in the design process of a speech processing system but 

as an integral part of the speech processing system itself. For an objective distortion 

measure to he useful in the context of speech processing, it must have three properties: (1) 

it must he analytically tractable, (2) it must be easy to compute, (3) it must he subjectively 

relevant to the process being considered. A distortion measure does not necessarily have to 

adhere 10 the more stnct requirements of a distance llIt:tric Lü be useful. That is, an 

objective distortion measure does not necessarily have to satisfy the following constraints: 

dC!,:~) = 0 

d(,r,l.) > 0 for J =1= ~ 

dC!,l.) = d(l.,J) 
(2.1) 

dü.,~) ~ d(:!.,;') + d(;,,~) 

where :l . ~ and ;, are speech signaIs. 

Although numerous objective distortion measures have been proposed, none have truly 

replaced subjective listening tests in providing an equivalent indication of the subjective 

3 
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quality of a given speech signal. 111is is not entirely .. urprising as an objective distortion 

measure would have to have knowledge of al1levels of human speech perception inc1uding 

psycho-acoustics, acoustic-phonetics, morphology. prosodics. syntax. semantics. 

linguistics, and pragmatics. Despite these limitations. their relative spced. case of 

implementation, and repeatability have enabled objective distortion measures to maintain 

their stature as the primary tool for quantitative evaluation in virtua11y a11 speech prncessing 

applications. 

This section will provide an overview of some selected distortion I1lcasures that are 

currently used in speech processing or have shown some use in Vector Quantizer design. 

The distortion measures to be covered can he c1assified into two broad categories - distance 

rneasures based on the k samples of the wavefonn and di~tance J11casures ba~cd on a set of 

k parameters provided by the transform of A' samples of the wavcform (A' may or may 

not be equal to k). One distortion measure which falls into the first catcgory IS Ihe 

Euclidean norm. Distortion measures which l'aH into the ~econd catcgory can be further 

c1assified by the transforl1l method u~ed. Thi~ section will look al \11easurcs based on the 

Fourier transfonn and Linear Prediction Coding (LPC) coefficients of the input wavcform . 

The problem that rel1lains, however, is in determining which of the numerous objective 

distortion measures which have been proposed provide the best mdication of the suhjective 

quality of a given speech signal. Quackenbu~h et al in 1381 provided an evaluatioli of the 

correlation hetween a wide assortment of objective di~tortion Illcasures and a subjective 

quality measure. The subjective quality mea~ure used ln the study was the Diagnostic 

Acceptability Measure (DAM). The DAM provides parametric, metametric, and i~()l1letnc 

subjective evaluations for a given speech signal. More speciflcal1y, the DAM evaluates a 

speech signal on sixteen separate scales from a range of 0 to 100 points. Parametric 

rneasures provide an indication of specific isolated features and may be further divldcd into 

parametric measures which provide a subjective opinion 011 the quality of the signal and the 

quality of the background. The DAM provides scven paral11ctric scales for signal quality 

which account for perceptual features such as 'Illufflcd-slllothcred' and 'f luttenng­

bubbling' and five parametric scales for background quality which account for pcrccptual 

features such as 'hissing-rushing' and 'buzzing-humming'. Two seales are provided for 

the metametric qualities of 'intelligibility' and 'plea~antnc~~'. hometric mcasurcs provide 

an indication of global quality and are indicated by the 'acceptahlhty' and 'composite 

acceptability' scales. The isometric composite acceptability measure i~ actually not direçt1y 

observed but is calculated as a weighted average of the other 15 mea~ured scales. The 

DAM has demonstrated to be a reliable and eon~istent measure of speech quality with an 

4 
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index ofreliability (R) equal to 0.96 and a standard deviation of error (O'e) equal to 3 

points on a scale of 0 to 100 The index of reliability provides an indication of the 

correlation between the outcomes of two independent runs of a test while the standard 
deviation (eTe) is related to R by the following expression: 

(2.2) 

where O'y is the variance of the subjective quality (composite acceptability) scores. 

Where possible, the performance of each objective distortion measure in providing a 

subjectively meaningful result will he commented on, baserl on the work carried out by 

Quackenbush et al in 1381. This section will conclude with a ~cction providing an overview 

of the relative (subjective) performance of the distortion measu,'es reviewed in this section. 

2.1 Simple Distortion Measures 

One of the simplest distortion measures used in speech processing is the k -dimensional 

Euclidean distortion measure based on the ~ noon: 

k 

dL2 (J,~) = (J - ~/ Cr -~) = 2, (x, - y,)2 = Il! - ~112 (2.3) 
,-=1 

where the T denotes the transpose operation. 

The Euclidean distortion meJsure is also a distance measure as it satisfies both the 

symmetry and triangle properties of a metric. 

A more general distortion measure based on the L, nonn is given by: 

t.. 

dL, (J,~) = L IXi - y,l' = Il! - ~II' (2.4) 
,=1 

The Euclidean distortion measure can be derived from (2.4) by simply substituting r = 2 

into the expression. Other popular values of r include r = 1 which derives the absolute 

error and ,. = 00 which derives the maximum error. The widespread use of the Euclidean 

distance measllre anlt its cOllnterparts is due to their computational and analytical simplicity. 

However, these distances have not generally proven to be subjectively meaningful in the 

majority of cases where tlley have been used. 

5 
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In the case of the Euclidean distortion measure, the performance of the system is typically 

measured by the Signal to Noise Ratio (SNR) which can he .lefined by: 

SNR = 10 log 10 !!:!f ") dB 
Il:!- ~l 

(2.5) 

where :! and ~ are the entire input and output sequences respectively. 

A variant of the Signal to Noise Ratio which has proven to be more subjectively mcaningful 

is the Segmental Signal to Noise Ratio or SEGSNR defined by: 

SEGSNR (2.6) 

where :!j and ~J are sequential segments of some fixed length eqllal to the total size of the 

input (or output) sequence divided by N. 

Another variant of the Euclidean distortion measure allows input-dependent weighting in 

order for the distortion measure to he more ~ubjectively relevant. This distortion mcasure is 

referred to as the Weighted Mean Square Error measure and is defined by: 

(2.7) 

where W is a k xk dimensional weighing matnx. 

If W = l or the identity matrix then the distortion measlire reverts back to dL2 C:~,~). One 

possible choice for W is the inverse of the covariance matrix r defined by: 

r = E[ Cr - K) Cr - xl l , K = El:! 1 . (2.8) 

A distance measure defined by this matrix is referred to as the Mahalanobis distance 1201. 

d () = (x_ - ~)T _r- I (x_ - ~) Malza/annb,~ :!,~ (2.9) 

2.2 Distortion Measures Based on Fourier Transform Coefficients 

For a given sequence of discrete values, the corresponding discrete Fourier Tran~form is 

defined by: 

6 
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X(w) = L x(n) e-Jnco (2.10) 
n=-oo 

where w is the frequency (in radians) and x(n) is the discrete time-sequence. 

The Fourier transfonn is fully specified over any range of frequencies (w) covering n 
radians in frequency for a real input sequence. The Fourier transfonn is typically evaluated 

at fixed intervals in the range 10 to nI. These analysis points are referred to as the Fourier 

coefficients. The frequer. ~y resolution of the Fourier transform is specified by n divided by 

the number of points in the range 10 to n). 

The Fourier Transform can be divided into its real and imaginary parts: 

X(w) = Real(X(w» + Imag(X(w» . (2.11) 

An alternative means of specifying the Fourier transform is via its magnitude and phase: 

IX(w)1 = ( Real(X(w»2 + Imag(X(w»2 )1/2 

-1 [Imag(X(w»] phase(X(co» = Tan . 
Real(X(w» 

(2.12) 

As the following distortion measures are ail based on the magnitude spectrum of a discrete­

lime sequence, the 1 ... 1 indication will be left out with the understanding that ail of the 

spectra are actually magnitude spectra. 

One of the easiesl spectral-based distortion measures is the lil/ear spectral distortion 

measure given by the L, norm of the arithmetic difference between the input and output 

magnitude spectra (38): 

where WI 

factor. 

(2.13) 

= ni , N is the number of Fourier coefficients, and r is a spectral weighing 
N 

A spectral-based distortion measure that relies on the difference between the logarithms of 

the magnitude spectra is referred to as the Log Spectral distortion measure and is described 

by: 

7 
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(2.14) 

A more general fonn of Log Spectral distortion measure is the a-form spectral distortion 

measure in which the individual Fourier coefficients are raised 10 the i) power bcfore the 

difference is evaluated: 

(2.15) 

As in the case of the distance measures of section 2.1, the most popular versions of the 

Fourier coefficient based distortion measures involve the LI' ~,and L"" nOJll1S giv i ng the 

mean absolute, root mean squar~, and maximum deviation distortion Il1casures respectlvc\y. 

The distortion measures which use the ~ nOl"ln tend to be the 1110st popular duc to the.r 

relative analytical tractability 1241. 

Utilizing the resutts of a study invulving the use of the Diagnostic Acceptahility Mcasure 

(DAM), Quackenbush [38J et al have indicated that the log spectral and t5-foJln distortion 

measures provided a better subjective indication of the dissimilarity betwcen two speech 

segments than the linear spectral distortion measure. Relative to one another, the 8 -fonn 

distortion measure and log spectral distortion measures perfonned almost eljually weil with 

the performance of the ô-form distortion measure being slightly better. The optimum 

values of the free parameters were found to be: r = l, r = 0 for the lincar spectral 

distortion measure, r = 2, r = 0.5 for the log spectral distortion l11easurc, and 

,. = 1, r = 0, 8 = 0.2 for the 8 -form distortion measure. 

Although the spectral based distortion measures of this section perform better from a 

subjective standpoint than the simpler di~tortion l11easure~ of section 2.1, thcir use has bcen 

limited due: to their computational complexity. The derivation of the magnitude spcctrum 

using (2.10), (2.11), and (2.12) alone involves a significant computational overhcad for 

even a modest-sized speech segment. A Fast Fourier Transform (FFf) can obtain the 

Fourier transform with O(N log N) linear operation~ (assuming the rcsults of the 

trigonometric functions have been stored beforehand). In the ca~e of the log spectral and 

8 -form distortion measures, there are computationally inten~lve nonhnear operation~ in the 

determination of the actual distortion measure. The computational overhead for Just 

distortion indication for Just a ~ingle frame have made the spectral measures mentioned in 
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this section unwieldy in many ~peech processing applications - especially those involving 

real time appl ications. 

The u~e of the Fourier coefficients given by (2.10) provides an additional problem. For 

voiced speech, the spectrum tends toward a line-like spectrum as speech segments of as 

small as 20 ms may contain several pitch penods. Even a small change in pitch may result 

in large distortion values even though the subjective differences are slight. Therefore a 

spectr~1 envelope would be preferred for the distortion determination step. One way of 

achieving this result is to perform the Fourier analysis exactly over one pitch penod. This 

would involve the use of a pitch detcctor and sorne degree of pitch period synchronization. 

A possible alternative is to simply smooth the spectrum using standard linear (filter) 

techniques. Yet another way involves the determination of the spe.ctral envelope using a 

small number of Linear Prediction Coding (LPC) coefficients. The relevance of the LPC 

coefficients with respect to the input spectrum will be covered in the next section on LPC 

based distortion measures. 

2.3 Distortion Measures Based on Linear Prediction Coefficients 

Linear Prediction analysis enables the fundamental attributes of a sequence of N discrete­

time samp]es to be expressed in just a few (p) coefficients. This subsection will overview 

many potentially useful distortion measures based on these coefficients. Initially, the basics 

of l inear Prediction analysis procedure will be discussed. 

2.3.1 Introduction to Linear Prediction Analysis 

The technique of Linear Prediction has become widespread in man y speech processing and 

coding applications. The main virtue of Linear Prediction analysis is that the technique has 

the abiIity to quant if y the significant features of speech production in just a few parameters 

via simple deterministic methods. These parameters are commonly referred to as Linear 

Prediction Coding (LPC) coefficients due to their widespread use in speech coding. Linear 

Prediction cannot model the speech process exactly as it assumes a stationary and linear 

model of speech production. These constraints do not usua]Jy impede the performance of a 

Linear Prediction based system to a great extent as they are reasonable approximations for 

the actuul speech production process. For examp]e, the stationary constraint can usually be 

approximated by using sufticiently short (-30 ms or less) segments of speech. Figure 2.1 

shows one possible model for 3 linear speech production process initially proposed by Flint 

l39). In figure 2.1, Ùle speech signal may be specified by: 
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S(z) = U(Z) G(z) V(z) L(z) (2.16) 

where U(z), G(z), V(z), L(z) represent the z-transforms of the excitation source, glottal 

model, vocal tract model, and lip radiation model respectively. 

Excitation 
Source 

Figure 2.1 - A Linear Speech Producti()n Model 

Llp 
Radiation K Glottal H-Vocal Tract L-.r 

Model MoclEl1 r ...... ___ ..l ____ .... __ ~ '--___ --' 

~P-l 

J 1 1 Pertodlc Impulses for vOlced speech 

or 

_ NOise source for unvolced speech 

The last three terms G(z), V(z), L(z) are usually gr0uped togethcr to fonn one gcncral 

model H(z) for the speech production process. In speech synthesis applications U (z) is 

typically modeled as having a fiat spectrum, with only one of two forms dcpcllding on 

whether the speech signal being produced or modeled is voiccd or unvoiccd. For soumis 

cQrresponding to voiced speech, u(n) is typically 1110deled by a periodic and impulsive 

waveform with a c01responding z-transfonn given by: 

00 

Uvolcet!(z) = G L (z-It (2.17) 
n=O 

where 1 is an integer equal to the pitch period divided by the sampling illtcrval. 

For sounds corresponding to unvoiced speech, U(II) is modelcd by a sequence of random 

bipolar pulses (random numbers) which has a simple z-transfonn given by: 

(2.1 H) 

These constraints on the form of the excitation source of the speech production model will 

tend to Iimit the accurate modeling of sounds such as voiced fricatives in which a 

combination of the two sources is required. 
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A given segment of sampled speech S(II), assumed to he stationary over the interval, can he 

represented as a combination of p pr evious output samples and q-l previous input samples 

11OJ: 

p q 

s(n) = L Ok s(n-k) + S L bl u(n-l) (2.19) 
k=l 1=0 

where u(ll) is the input sequence or driving signal, ak and bk are the LPC coefficients, and 

S is a gain factor. 

Taking the z-transform of (2.19), the transfer function H(z) defined as the z-transform of 

the output sequence over the z-transform of the input sequence is given by: 

H(z) = S(z) 

Vez) 
= S (2.20) 

where S(z) and V(z) are the z-transforms of the output (speech) and input (driving signal) 

sequence respectively. 

Looking at (2.20) it is apparent that the z-transform for speech can ideally be found by: 

A 

S(z) = Vez) H(z) . (2.21) 

In this context, the speech signai can interpreted as the result of an excitation source being 

modified by a shaping filter representing the vocal tract of speech production. In the 

majori':y of LPC analysis, the q zero's of the shaping filler are dropped and the vocal tract 

is modeled by an i.llitoregress;ve or AR model with p poles: 

H(z) = 
-/ z 

= 
S 

A(z) 
(2.22) 

A(z) in (2.22) is referred to as the inverse or predictor filter. The discrete-time version of 

the error signal is can be derived from (2.18) and (2.2 !) to give: 

11 



• 

• 

• 

p 

e(lI) = S(I/) - sC") = Sen) - L al. s(n -/..} . (2.23) 
~=l 

The LPC coefficients ak are chosen in order to minimize the energy of l'(II) given by (39): 

ni 00 p 

L [e(n)f L [s(n) - L " a = = a~ s(n - k) ]- (2.24) 
n=no 1/=-00 k=l 

ni P p 

= L L La, S(I/ - i) S(1I - j) a) , assuming ao = 1 (2.25) 
n=l/o ,=0 )=0 

where "0 and "1 define the beginning and end of the speech segment rcspectively. 

Inserting the covariance function given by: 

ni 

C,,) = L s(n - i) s(n - j) 

into (2.25) defines the energy error as 

p p 

a = L L a, c,,} aj . 
,=0 }=o 

(2.26) 

(2.27) 

The error energy may be minimized by setting the partial derivatives of a with respect to 
the LPC coefficients ak (k = 1, 2, ... , p) to zero. This results in p equations of the 

fonn: 

{J 

= 0 = 2 L ai Ci,k ' k = 1, 2, ... , p . 
;=0 

, 
Aceounting for the faet that ao is equal to 1 gives 

p 

l a, c"J. = - cO,k ' k = l, 2, ... , p 
;=1 

(2.2X) 

(2.29) 

There are two major deterministic methods of obtuining the LPC coefficients using (2.29) 

assuming that the speech segment is limited to N ~amples from s(O) to seN -1). They are 

referred h> as the covariance method and autocorrelation method. The covariance method is 
determined by setting "0 to p and "1 to N -1 in (2.25). When c,,} using these limits is 
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used in conjunction with (2.28), the energy a wi1l be minimized in the interval [p,N -1]. 

The autocorrelation method is defined by setting no to 00 and nI to -00 in (2.25). These 

limits and the fact that the speech segment being considered is of finite duration allow the 

covariance expre~sion of (2.29) to he simplified: 

00 

c,,} = L s(n-i) ~(fI-J) 
11=-00 

N-I-I'-lI 
= L S(II) s(n + li - jl) = r(li - jl) (2.30) 

11=0 

where r( ) is the autocûrrelation function. 

When (2.30) is used in conjunction with (2.29), the error energy will be minimized over 

the intelVal 10, p + M - 1). 

The gain term (J' can be determined using the derived LPC coefficients for either the 

autocorrclation method or the covariance method by the following expression: 

P 
(J'2 = 1 r(O) - L a/.. r(k) ) (2.31) 

/,,=1 

(J'2 is also referred to as the prediction error El' and is an indication of the residual energy 

obtained when the speech segment or input waveform is filtered by its corresponding 

predictor filter. 

The choice of whcther to use the autocorrelation or covariance method depenrls on the type 

of signal being considered and the type of analysis to be carried out usir~g the LPC 

coefficients. For voiccd speech, the autocorrelation method will only provide useful results 

if the analysis window covers several pitch periods. The covariance method is not bound 

by this constraint for voiced speech and may provide results for intervals at even less than a 

pitch period. Both methods give similar results when speech segments cover several pitch 
periods. This is due to the fact that the covariance coefficients C',j tend to he close in value 

to the autocorrelation coefficients R(i - j) when lhe number of sampI es is large (N)> p). 

The two methods also give similar results for unvoiced speech for periods greater than 

about 5 ms. However. the autocorrelation method is computationaHy less intensive than the 

covariance method and automatically provides a stable set of parameters given an 

appropriate degree of resolution is available for storing the LPC coefficients. 
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In the case of the autocorrelation method, the expressions required for the solution of the 

LPC coefficients can be expressed in matrix fon11: 

B. A = t:. (2.32) 

where R is the pxp matrix wlth elements r(i,k) = r(li - ,{I), A is a eolul11n veetor 

composed of LPC coefficients, and r is a column vcctor deflned by 

(R(1), R(2), ... , R(p)}. 

The LPC coefficients can therefore found by using: 

(2.33) 

where R-1 is the inverse matrix of R . 

The inversion of a general NxN matrix is a computationally intensive procedure. 

Therefore, several algorithllls have evolved whieh exploit certain charaeteri~tics of the 

autocorrelation matrix in order to solve for the LPC coeftïcicnts wuhout explicilly IIlverting 

the matrix. The autocorrelatlon matrix is symlllctric about its diagonal and is also a Toplitz 

matrix (clements depend only on their distance l'rom main diagonal). Severa! algonthills 

such as the Levinsonlllethod and the Roblllson I11cthod 1391 have u~cd these attrihutes of 

the llutocorrelation matrix to solve for the LPC coeffIcients in an efficient Illanner. 

Non-deterministic evaluations of the LPC coefficients arc abo possible 1391 Itakura and 

Saito considered the speech sampi es to be formed From a proces~ III which uncorrclaled 

noise was input into the ali-pole tilter specified by 1/ A(z). The input n()i~c was specified 

as stationary Gaussian noise with zero Illean and variance al" The \pccch' or output 01 

the filter could then he desclihed by: 

p 

L a, s(n- i) = e(lI) (2.34) 
1=0 

where e(n) is the uncorrelated Gaussian noise process. 

From 3.33, the output lIequence sen) can also be ~een to be a Gaus~ian process with zero 

mean and a correlation sequence given by EI.x(n)x(l)1 wlllch is a cOlllplex function of the 

LPC coefficients and the input variance al" With this information, the multlvariatc 

probability density functior. for an output sequence of a fixed length Illay be detcrmined. 

The maxilllullllikelihood principle may then be applied by taking the partaal dcrivatives of 
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the multivariatc probability dt'nsity function with re~pect to the LPC coefficients. The 

resulting cxpre~~lOn~ would be set to zero and solved for the LPC coefficients. 

Unfortunately, thi~ method i"i unwieldy for N > 2. Itakura and Saito proposed an 

approxllnate maximum likellhood solutIOn by showing that for the case where the number 

of points i~ much greater than the analysis order (N » p), that the joint probability density 

function can be given by: 

2 NI' e(-aI2/j/) p{s(O), .\'(1), ... , s(N -1)} = (2.7ae )- -

- [P ]2 
a = n,?;- ~ a, s(n - j) . 

(2.35) 

(2.36) 

Expres~ion (2.36) is equivalent to the error energy term defined earlier (least squares 

autocorrelation method). Maximizing p by taking the partial derivative of (2.35) with 
respect to al. il2 • ... , IIp and al' and setting them to zero will define the necessary 

expressions needed to ~olve for the LPC coefficients. It should be noted that maximizing 

p is equivalent to minimizing a and therefore the approximute maximum likelihood 

method is equivalent to the autocorrelation approuch discussed earlier. 

Although the selection of the anulysis method to be applied in order to obtain the LPC 

coefficients i~ a crucial step, there are a number of other key design issues which should be 

considered prior to any application of the Linear Prediction analysis method. Thesc include 

the order of the analysis to be performed, the type of windowing applied to the analysis 

frame, and whether pre-emphasis is reqlllred. 

ln Linear Prediction analysis the numbcr of coefficients indicates the number of poles in the 

speech production Illodel. The nlllllber of coefficients should be small to ease the 

computational overhead yet large enough to accurately model the spectral envelope of the 

speech signal. The fine ~pectral details provided by the discrete Fourier transform are not 

desired in many applications. Instead more general spectral characteristics such as formants 

and spectral roll-off due tn glottal and lip-radiation effects are adequate. As a rule of 

thumb. 2 pole~ are required to model a formant (or spectral peak) and an addition 2-4 poles 

are required to model gross spectral characteristics sllch as roll-off or perhaps a spectral 

zero. As the number of formants that will be encountered is a function of the sampling 

frequency. the order of the predictive filter is typically set to the sampling frequency in 

KHz plus 2 to 4 . 
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In the analysis methods described so far, at least the use of a rect~\I1gular \vindow is 1I1lpll~d 

in the derivation of the LPC coeffIcients, as only a block of N samplcs 

{x(O), x(1), ... , x(Il)} i~ utilized in the analysis. Whether an additional wIIldowlIlg 

function is required on the input data depend~ on the ~Ize of the allaly~l!'. wmdow and the 

analysis method to be used. If the covanance method is applted for analysls frall1c~ k~~ 

than a pitch period in length, then no additional wmdowing function ~hould he ,lppltcd on 

the input data. If the analy~is frame exceeds lWO pltch pel lods or the alltoconclallon I1lcthod 

is to be used, then some sort of tapered WIlldow IS recoIllmcmkd 1391 for lI!'.C 011 the IIlpllt 

data prior to the actual analy~is step. In the case of the autoconelallon Illl'thod. Mldden 

discontinuities between the frame boundanes (.\ (0) and .\ (N - 1)) and the ncighbon ng /.Cm 

values will result in ~ome degree of spectral dIstortion. Tlm eftcct wIll tend to deCleasl' 1'01 

larger analy~is frames. A tapered window whirh tend:-. toward:-. a ~1l1all value at the 

boundaries would minillllze this effect. A variety of window~ arc li ... led III the hleratllll' hut 

the most popular is the Hamml/lg wll1dow detïned by 1101: 
(2.37) 

WIUlmnllng(ll) = 0.54- 0.46 co~I(2nl/)/(N-1)I, 0 ~ 1/::;; N-I 

o , elsewhere . 

A window functlOn generally has the characteristic of a low pass filter. Siller the window 
is multiplied with the input sequence '\'1\'(1/)= s(l/) w(ll) the wlI1dow has a smearing or 

blurring effect on the fine spectral details of the IIlput ~elJuenre. a" multIplicalioll in the tlllle 

domain results in spectral convolution in the frequcncy domalll. A ... lhi~ IS an l1nde~irahlc 

effect in most instances, the wIlldow's spectrum ~hould therefOlc have a narrow central 

main lobe and peak sidelobe~ with ~mall relatIve amplitude". The ~pectr al charactemtlc of 

the Hamming window is generally ~upenor with re~pect to that 01 the rcrlangular wllldow 

given these reqllirements. Althollgh the wldth of the mamlobe for the Ilalllllllllg wlIldow is 

approximately double (Sn / N radian~) that of the rectangular wllldow ( 4n / N + 1), the 

sidelobes for the Hamming wmdow have a much ~lllaller relative amplItude (-41 dB) than 

in the case of the rectangular window (-13 dB). Other window~ and their characten~tic~ arc 

listed in 1401. 

Linear Prediction analysis ha~ a tendency to model ~pectral peaks netter than spcctral 

valleys [101. As a result, in the anaJy~i~ of voiced <'egment~ ot ~peech, the lir.,t formant 

tends to be modeled more accurately than the remallling formant~, which have a lowcr 

relative amplitude. The lower amplitude IS due to the ~pcctral rolloU cUl1~ed ny the 

combination of glottal and tip-radiation effects. In order to modd the hlgher frequcncy 

formants as weil as the first fonnant, the mput ~equence may be pre-empha.\lzed pnnr ln the 
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Linear Prediction analysis step. The pre-emphasis is performed by a simple single-zero 

tilter of the fonn: 

P(z) = 1 - Il z-l (2.38) 

The value of the pre-emphasis constant J1 is set in the range from 0.9 to 1.0. The pre­

emphasis filler will counter the spectral falloff to produce a relatively flat spectrum which 

will in tum pennit the fonnants of voiced speech to he modeled equally weIl. The output of 

a Linear Prediction based system using the pre-emphasis filter would have to he passed 

through a de-empha~is stage in order to regain the correct spectral shape. The de-emphasis 

stage is specitied by: 

D(z) = f3 
1 -

(2.39) 

The de-empha~is constant f3 is usually set to J1. However, a sm aIl mismatch sometimes 

leads to more pleasant-sounding speech [101. There appears to be no distinct advantage in 

applying the pre-emphasis stage prior to any potential windowing operation or after the 

windowing operation . 

2.3.2 Spectral Estimation Via Linear Predictor Coefficients 

Given p LPC coefficients aJ.. (k = l, 2, ... , p) and the prediction error Ep , the optimal 

(Ieast-mean squared) linear predictor tilter is given by: 

Predictor(;: ) = 
A(:) 

(2.40) 

It can be seen that from the above notation, the LPC coefficients can he taken as the impulse 

response for the predictor filler. One may therefore generate a N component vector with 

the following format 

U, (JI' ... a{1' 0, ... , Ol (2.41) 

and use it as the input sequence for the discrete Fourier transfonn defined by (2.10) to 

obtain the spectral estimate of Predictor· (co). This spectral estimate can he used to obtain 

the spectral estimate for the magnitude spectrum of X(w) by using the following 

expression: 
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(2.42) 

Note that the spectral estimate lX· (1O)1 could he used in any of the spectral-bascd distortion 

measures of section 2.2. The spectral estimate will generally only follow the coarse 

behavior of the actual magnitude spectrum IX(m)l. If the distortion mensures of 2.2 wcn-

to use the spectral estima te rather than the original discrete spectrul11. they would he more 

resistant to minor variations in the fine spectral details such as those due to a change in 

pitch. 

2.3.3 Simple LPC-Based Distortion Measures 

The lillear feedback [38] distortion measure is defined by: 

Ilr 

dllnear Jeedhacl.. (,!,~) = fi a,l (i) - ax.(i) l' 
;=1 

(2.43) 

where a,l and al. are the basic LPC coefficients for the:! and ~ vectors respectively, fJ 

represents the order of the Linear Prediction analysis as before. and r indicates the Lr 

nonn to he applied. 

The log feedback [38J distortion measure is defined by: 

(2.44) 

Although these distortion measures are the easiest of the LPC distortion measures to 

compute, they are poorly correlated with respect to the actual subjective difference between 
the speech segments:! and ~ [38]. In fact, the SNR distortion measure dcfined by (2.5) 

will give a better subjective indication of the di~tortion th an the best pos~ible configuration 

(using the Lt nonn) of either the linear feedback and log feedback distortion measures. 

2.3.4 Distortion Measures Based on Reflection Coefficients 

Reflectioll coefficients kl' are usual1y determined in conjunction with the standard LPC 

coefficients ap in a given algorithm such as Levinson's method. They may also he 
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determined from the following recursive relationships if only the LPC coefficients are 

known r 10J: 

(2.45) 

km- 1 = 0",-1 (m -1) 

with initial conditions km = al'(p) and ok = al'(k). 

The negative values of the reflection coefficients are also known as partial correlation or 

PARCOR coefficients. Both reflection and PARCOR coefficients are related to the studyof 

acoustic tube modeling in which acoustical tubes of varying length and area are joined 

together in order to approximate the speech process in the human vocal tract. Another 

pararneter which is related to the acoustic tube model is the area ratio given by: 

AR. = (1 + k,) 
, (1 - k,) 

(2.46) 

where k, are the retlection coefficients defined earlier . 

ln an analogous manner to the Iinear feedback and log feedback distortion measure defined 

eartier, the /il/ear PARCOR and lil/ear area ratio distortion measures can be defined by: 

p r l/r 

d/illl'llr PARCORC!,~) = L h:., - k~.jl 
,=1 

(2.47) 

anct 

l' r Ilr 

d/illL'ar Am' R{/I/O(J...~) = L IAR:!.; - ARl.,1 
,=1 

(2.48) 

white the log PARCOR and log area ratio distortion measures can be defined by: 

p r 1~ 

dlog PARCOR(J.,~) = L IloglO(k:!., / k~.;) 1 
,=1 

(2.49) 

and 
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fI I/r 

d10g Area Rtl"oC!.~) = L !loglO(AR,!., / AR~.,) /' 
1=1 

(2.50) 

where kt,. kv 1 are the retlection coefficients for the:! and y vectors respectively ,,"d 
-' ~~ -

AR x,i and ARy" are the area ratio coefficients for the :l and y vectors. - - -

The optimum norm for a!l of the distortion measures described by (2.47), (2.4N). (2.49). 

(2.50) appears to be the Lt nonnl381. Given lhat the Lt n~nn is uscd.thc lincar an~a ratio 

and the log PARCOR distortion measures perform no better than the SNR distortion 

measure from a subjective standpoint. The linear PARCOR distortion measure tends givc a 

better indication of the subjective dissimilarity between the two speech vectors than the 

linear area ratio and the log PARCOR distortion measures, but docs not pcrform as weil as 

the spectral-based distortion measures of section 2.2. The log area ratio distortion mcasure 

on the other hand performs as weil as the spectral-based dIstortIon mcasures of section 2.2 

in tenns of providing an indication of the subjective dissimilarity bctween the two vcctors. 

This is a significant result as the log area ratio distortion measure defincd by (2.50) is ahlc 

to give a distortion measure with approximately one order of magnitude les!. computation al 

overhead than the spectral distortion measures defined by (2.13) through (2.15) . 

2.3.5 ltakura-Saito Distortion Measure 

The ItaAura-Saito distortion measure is defined by: 

TC { X(m) X() } dlla~lIra-Sail(l(X(m).Y(m» = J Y(m) - In~ - 1 dm 
-TC Y(m) 

(2.51) 

where X(m) and Y(m) are the Fourier transfolllls of :l and ~ re~pectivcly. 

ltakura and Saito originally used the distortIon measure to demonstrate that the LPC 

coefficients produced via the approximate maximum likelihood Linear Prediction analysis 

method was equivalent to a minimum distortion mapping. Since Linear Prediction analysls 

has provided reasonable subjective quality in modeling the input (speech) waveform, one 

can argue that the Itakura-Saito distortion mea~ure will provlde a good !.ubJectivc mea~urc 

between two speech segments as minimizing the distortion measure is equlvalent to LPC 

analysis. Gray et al 137) have noted that thi~ as~umption i~ bascd on Itakura and Saito's 

maximum likelihood linear Prediction analysis method which had a few drawbacks from an 

inforrnation .. theoretic point of view such as a~suming the speech to be the result of a 

Gaussian autoregressive model. In 137 J, Gray et al provide a more rigorous dcvelopment 
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of the Itakura-Saito distortion measure. Specifica11y, they show that the Itakura-Saito 

measure is a spedal case of Kullback's minimum discrimination measure between a model 

and the sample a utocorrelation of the speech segment. This minimum is taken over a11 

possible probabilistic descriptions of the input with the sampled autocorrelation values. 

This development did not specifically assume that the speech process was Gaussian in 

nature and accommodated the addition of voicing and pitch information excluded in the 

Itakura-Saito derivation. Furthermore, the development accounted for the use of the 

distortion measure in both continuous and discrete estimation. The use of the distortion 

measure in continuou~ estimation would be equivalent to LPC analysis (as initially 

suggested by Itakura and Saito), white the use of the distortion measure in discrete 

applications could involve coding or classification systems. As Ve( ~r Quantization is 

inherentlya (discrete) classification system, there would now be ample reason to argue the 

use of the Itakura-Saito distortion measure as an appropriate subjective measure for use in 

Vector QlIantizer systems. Quackenbush et al. in 138J indicated that based on the reslilts of 

a study involving the lil\e of the Diagnostic Acceptabitity Measure (DAM), the subjective 

performance of the Itakura-Saito distance measure was approximately equal to that of the 

best spectr:.!I based distortion measures (the ~ log spectral measure) or that of the log area 

ratio distortion measure. The result indicating that the Itakura-Saito measure and y. log 

spectral measlire give roughly equivalent subjective results is interesting as analytically they 

are proportion al to each other for low distortions [24]. 

Ifwe define Y(w) as the energy density spectrum for an ali-pole (autoregressive) model of 

the fonn: 

Y(z) = cr 
, A(z) 

A(z) 
(2.52) 

where Ok Jre LPC coefficients, then the hakura-Saito distortion measure can be expressed 

as 1221: 
(2.53) 

where a is defined by (2.24) .!s the prediction error Ep or residual energy caused by 

passing the signal .\(1/) through the predictor A(z). a may also be described by: 

(2.54) 
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aco is the olle-step prediction error and can be obtained from (2.24) in the limit as p 

approaches infinity. a co can also be expressed by [221: 

1 Ir 2 - J ln IX(lO)1 deo 
a"" = lim E = e 21f -TC 

p~co P 
(2.55) 

The ltakura-Saito distortion measure satisti~s a fonn of the triangle equality given by: 

(2.56) 

dllakllra-SWIO(X(W),Y M(w» = dllaAlIfll-Smlo(X(w),Y(w» 

+ d Ilakllra-Sallo (Y (w), y M (w» 

where Y M is another p-order ail-pole model given by: 

l' 

Y M(Z) = aM / AM(z) , AM(z) = LaM,/" 
/,.=1 

-/,. z (2.57) 

If Y(z) is only constrained to the set of ail p-th-order autoregressive models and)' M (z) is 

constrained to sorne subset of Y(z) (Y M(z) E Y(z», then (2.56) can he interpretcd as 

saying that the total distortion is equal to the distortion of the identification step (LPC 

analysis) plus the distortion due to the compression/classification step. Given that the 

Linear Prediction order p is fixed, the distortion due to a compression system implicd by 

(2.56) can be minimized by only minimizing d11a/"lIra-Smlo(Y(w),YM(w», This is due to 

the fact that for fixed p 

d11a/"lIra-Smlo(X(w),Y(W» = In(E" / u"") . (2.5R) 

Note that this value tends to zero as P :lpproaches infinity. The distortion due to the 

compression step, d11a/"lIra-Smlo(Y(W),Y M(w», can in turn he represented by: 

(2.59) 

where aM are the p LPC coefficients associated with Y M (z) and B. is the p + 1 x P + 1 
autocorrelation matrix for x(n) with matrix elements equal to r,.) = r(li - JI). 

The matrix multiplication fl.MTB. {lM can he reduced to a more computationally tractable 

form given by: 

p 

fl.MTR Ç!M = r(O) r
aM 

(0) + 2 ~ r(n)raM (0) (2.60) 
n=1 
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where r(n) is the autocorrelation sequence for x(n) and ra (n) is the autocorrelation 
M 

sequence for the LPC coefficients associated with Y M(z), Specifically, l'aM (n) is given 

by: 

M-n 

rUM(n) = L aM(k) aM(k+n) , n = 0, l, ...• M . 
k=O 

The ltakura-Saito measure satisfies another relationship given by: 

d'/at..llra-Sai/o(X (w),Y M (m» = d/lat..ura-SQlIO(X(m), y N (m» 

+ d'tat..llra-SQlto(Ep,rr2) 

(2.61) 

(2.62) 

where Y(w) is defined by (2.52) and Y N(w) is the norrnalized alI-pole spectrum given by: 

YN(Z) = 11 A(z) . (2.63) 

This expression attempts to separate the distortion involved with the choice of the optimal 

normalized filler from the distortion involved with the choice of the optimum gain. The 

first tenn, d'/Clt..llrtI-Satlo(X(m), y N(m» is totally independent of (J. However, the second 

distortion measure is a function of El' which is related to the first expression via the choice 

of the LPC coefficients of Y N(z). The first term is also referred to as the gain-optimized 

Itak"ra-Saito distortion measure. 

Finally, an expression related to the Itakura-Saito distortion measure provided by (2.53) is 

the Itak"ra or Ellergy Ratio distortion measure given by: 

(2.64) 

2.4 Distortion Measures Based on Aurai Models of Speech Perception 

r 101 describes a critical band as a frequency range in psycho-acoustical experiments for 

which perception abruptly changes as a narrowband sound stimulus is modified to have 

frequency components beyond the band. Critical bands have been used to explain sorne 

pel'ceptual masking phenomena. For example, in the case of two narrow-band sound 

signais with energies within the same critical band, the signal with the greater amount of 

energy will dominate the perception and mask the weaker signal with the degree of masking 
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being related to the amount of masker energy. 111e mechanism behind the critical band 

phenomena appears to be a combination of allditory physiology (e.g., the tUlling curves of 

the auditory neurons) and higher order central neural processes. Relatillg the criticill 

bandwidth phenomena to the physiology of the ear, critical bandwidths correspond to 1.5-

mm spacings along the basilar membrane. This indicates that the upper Iimit to the Humber 

of critieal bands is approximately equal to 25. The following expression reliltes the 

aeoustieal frequency scale to the 'bark seale', in which one bark covers one critkill 

bandwidth [10]: 

z = 13 arctan(0.76L) + 3.5 aretan( f )2 
kHz 7.5 kHz 

(2.65) 

where / is the acoustieal frequency. 

Alternatively, one may rely on the results of psyeho-acoustical experiments to define the 

center frequencies and bandwidths. One such table is provided by 13R 1 and is dllplicatcd 

below: 

Table 2.1: Critieal band center frequellcies and bandwidths 

Fil ter Center Bandwidth Filter Center Bandwldth 
Number Freq. (Hz) (Hz) Number Frcq. (Hz) (Hz) 

1 50 70 14 1148 140 
2 120 70 15 1288 153 
3 190 70 16 1442 16R 
4 260 70 17 1610 IR3 
5 330 70 IR 1794 199 
6 400 70 19 1993 217 
7 470 70 20 2221 235 
8 540 70 21 2446 255 
9 617 86 22 2701 276 
!O 703 95 23 2978 29~ 
11 798 105 24 3276 321 
12 904 116 25 3597 J46 
13 1020 127 

As can be seen in table 2.1, the bandwidths and center frequeney intcrvals are non-uniform 

and inerease with acoustieal frequency, roughly corre~ponding to a 1/6-octavc fllter bank. 

The shape of eritieal band fiIters are described by 1101 as being nearly symmetric on a linear 

frequency seale with very sharp skirts (65 dB/octave - 100 dB/octave) at low frequencies 
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and less symmetric at high frequencies eorresponding to a flattening of the lower-frequency 

skirt of the eritieal band filter. 

Critical band variants of the log spectral and 8-fonn distortion measure deseribed by (2.14) 

and (2.15) are given by: 

(2.66) 

L l/r 

.#.Ix(m .. f ~x(m .. »)8 -(Y(mm)n 
L-I 

L /x(mm)/Y 
(2.67) 

m=O 

where m is the eritieal band index, L is equal to the number of eritieal bands, X(w",)and 

Y(mm) are the positive square roots of the energies in eritieal band m for signal:! and ~ 

respeetively. 

Note that the logarithmie distortion measure will tend to aeeommodate Feehners's luw 

which states thal the pereeived intensity differenee between two stimuli is proportional to 

the ratio of the two intensities or Weber's law whieh states that intensity resolvability is 

proportion a 1 to intensity. The 8 -power distortion measure, however, tends to refleet 

psyeho-aeoustical experimental results whieh indicate that the pereeptual intensity doubles 

for a certain inerease in dB. 

Quaekenbush et al in 138) indieated that both the eritieal band variants of the logarithmie and 

a-power distortion measures performed signifieantly better than their non-eritieal band 

eounterparts. Relative to one allother, the eritieal band logarithmie and 8 -power distortion 

measures perfonned almost equally weil with the perfonnanee of the eritieal band 8-power 

distortion measure beillg slightly better. The optimum values of ,. and r were found to be 

2 and 0 respectively for the critieal band logarithmie distortion measure white the optimum 

values of ", r, and a were found to be 2, 0, and 0.2 respectively for the eritieal band 8-

power distortion measure. 
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2.5 Relative Perfonnance of Objective Distortion Measures 

The following table provides an overview of the relative (subjective) performance of the 

distortion measures reviewed in this section. 

Table 2.2 - Relative Perfonnance of Objective Distortion Measures 

~ ~ Applicable Distortion Measure Reference p (11! 
Parameter Settings 

SNR 2.5 0.24 S.8 none 
SEGSNR 2.6 0.77 5.7 none 

d linear spectral 2.13 0.38 9.1 r = 1. r = 0 

d10g spectral 2.14 0.60 7.9 ,. = 2, r = 0.5 

da-form 
2.15 0.61 7.8 ,. = 2, r = l, c5 = n. 2 

dllnear feedbacf.. 2.43 0.06 9.8 r = 1 

dlogfeedback 
2.44 0.11 9.8 r = 1 

d/inear PARCOR 2.47 0.46 9.3 r=1 

d linear Area RatIO 2.48 0.24 9.6 r=l 

d10g PARCOR 2.49 0.11 9.8 r=1 

d10g Area RatIO 2.50 0.62 7.7 r=1 

d/ICl f..llra 2.64 0.59 7.9 none 

dclllc/Cll band log 2.66 0.715 - r = 2, r = () 

dcrtlcial band power 2.67 0.721 - ,. = 2, r = n,c5 = 0.2 

where 

~ 

p = coefficient of correlation 

= 

(2.68) 

fI 2 = estimated standard deviation of error 

= ~ 2 (1 A) (J~ - p . 
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3. CONTEMPORARY SPEECH ENHANCEMENT METHODS 

3.1 Introduction 

Speech enhancement techniques can be divided into two broad categories - single channel 

and multiple channel enhancement techniques. Multiple channel speech enhancement 

algorithms typically involve adaptive noise cancellation techniques relying on the cross 

correlation between two or more signaIs. One of these channels is typically specified as the 

deg!'aded channel in need of enhancement. The other channel(s) wou Id typically contain 

information on the noise or distortion introduced in the degraded channel (perhaps by 

placing one or more microphones near the noise source). A simple two-channel technique 

involving the temporal subtraction of the noise signal from the degraded waveform is 

shown in figure 3.1. A similar frequency-domain system is possible where the magnitude 

spectrum of the noise signal is subtracted from the magnitude spectrum of the degraded 

wavefonn (multi-channel spectral subtraction). As indicated in the diagram, a time-adaptive 

filter is usually required to account for differences in the noise waveforms in the two 

channeJs. These differences could include echoes as well as temporal shifts and a variable 

degree of attenuation depending on the relative placement of the microphones and the 

ambient conditions. If the time-adaptive filter correctly transforms the reference noise 

signal to closely match the noise present in the degraded channel, the output of the 

enhancement system will essentially be noise free. However, the determination of an 

appropriate time-adaptive filter is a non-trivial problem. One of the more popular methods 

of determining the coefficients for the filler is the Least-Mean-Square method [16] [17]. 

Assuming that a proper time-adaptive filter can be found, multi-channel enhancement 

techniques appear to offer a complete solution for the speech enhancement problem as the 

systems inherently require little or no a priori knowledge of the signal or noise 

characteristics. However, use of multi-channel techniques in practice has been limited 

because the installation of an additional reference channel is usually either impractical or 

impossible as in the case of random transmission noise induced in a communications 

channel. The remainder of this section will only refer to single channel enhancement 

techniques . 
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Figure 3.1 - A simple Multichannel Speech Enhancement System 
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Single-channel noise enhancement techniques are diverse and 1l1lll1erOllS. The remainder of 

this section will ovelView a representative sample of mature speech enhanccll1ent techniqucs 

as well as several contemporary and perhaps more promising enhanccment methods. Thc 

mature speech enhancement techniques inclllde spectral subtraction and Wiener flltcring. 

The use of these older enhancement methods are widespread due to thcir relative simphcity 

and ease of implementation. The effectiveness of these older enhancement techniques is 

limited as they generally assume stationarity in the noise and speech signal or reqlllrc a 

priori knowledge of the noise signal characteristics. Two contemporary adaptive rlltcr 

systems will be reviewed which potentially alleviate the problems of the carlier Wiener 

filter. The Kalman filter-based enhancement system accounts for non-stationanty of speech 

and the 'ForwardlBackward' fil ter offers potentially better performance by breaking thc 

causality constraint. Recent dcvelopments in speech enhancement havc paralleled 

developments in speech recognition and speech synthesis, in that sy~t('ms which acquire 

knowledge of the speech process by training are being examined. Two popular ~y~tems arc 

based on 'neural networks' and Hidden Markov Models OIMM's). Neural or 

connectionist networks rely on a large number of interconnectcd ~ill1plc computational 

elements arranged in massively parallel structures to deal with complex decl~ion criteria. 

Hidden Markov Models assume a temporal and probabiJ:~tic ~tructure in ~peech to obtain an 

optimum solution. Finally, the section will take a look at cnhancemcnt by the method of 

resynthesis. Resynthesis using models based on Linear Predictor Coding coeflï<':lcnts will 

be stressed. 
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Where available, the reported effectiveness of each enhancement technique on improving a 

reference speech lIignal by additive (Gaussian) noise will he reproduced in this section in 

order to provide a basis for comparison. 

3.2 Mature Speech Enhancement Methods 

3.2.1 Spectral Subtraction 

Speech Enhancement by means of spectral subtraction is an established method of speech 

enhancement wlllch is fairly straightforward in terms of the underlying theory [1] [2]. It is 

typically used to enhance speech degraded by stationary wideband noise or interfering 

speakers. Figure 3.2 depicts the standard single channel approach to the spectral 

subtraction speech enhancement process. ll1e typicaJ algorithm first divides the noisy input 

speech into short frames. A fourier transform operation is then performed on each speech 

segment. A noi~e evaluator or separator (digital filter) estimates the spectral content of the 

noise ba~ed on the magnitude spectrum of the noisy speech. The estimattd magnitude 

spectrum of the dean signal can then be detennined by the following expression [2]: 

le/l'ail Speech(jw)1 = 1 INoisy Speech(jw)l lI - INoise(jwt J 1/(/ (3.1) 

where IC/eall Speech(jw)1 is the estimate of the enhanced speech magnitude spectrum, 

while INoisy SjJl'ech(}w)1 and INoi,\e{jw)1 are the magnitude spectra of the input noisy 

speech and estimated noise respectively. 

Figure 3.2 - Spectral Subtraction 

1 
NOise Evaluator J-.---. 
(Digital Fllter) 

---1 

NOIsy r-==~-,.2Arn~p~h~tu~de~_L_ 
Speech... Founer ---i~ 

Transform Phase + 
}---~ Inverse 

Fauner 
Transform 

Output 
Speech 

(l / a) is a process-dependent parameter. Note that if a is equal to one (which is generally 

the case), the ll1ugnitude of the enhanced speech spectrum is found by simple subtraction 

from the 'Noisy Speech' spectrum by the estimated 'Noise' spectrum. (Any resulting 

negative values in the magnitude spectrum are set to O.) Finally, the time-domain speech 
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signal is reconstructed using the resulting estimate of the magn itude of the clean speech 

spectrum and the original phase infonllution of the noi"y speech. 

The resulting enhanced speech waveform tends 10 have a certalll 'musical' or 'warhhng' 

quality as sorne of the residual noisy energy will malllfcst itself a!> a Humher of minor 

spectral peaks in the enhanced speech magnitude spectrum. Certain algorithms sud1 as the 

algorithm descnbed by Berouti in r 3 Jean reduce the musical artifacts hy 'over-suhtractlllg' 

the magnitude spectrum of the e!>timated noise signai from the magnitude of the distorted 

speech signal and a providing non-zero spectral tloor to limit the depth of any spectral 

valley. 

3.2.2 The Wiener Filtering Method 

Another basic speech enhancement method for speech degraded hy stationary noise is the 

Wiener Filtering method. The Wiener Filter method is ba!'>cd on the Minimum Mean S'-lliare 

Error (MMSE) Finite Impulse Response (FIR) tllter fir!'>1 propo~ed hy Norbert Wiener 111 

1949. The filter tends to have a 'comblllg' effect Il J - \eleetivcly pas~ing harmonie!> or 

other components of the desired speech signal while !'>lIppres!'Ilng the nOise or other 

unwanted signais found in between the hannonies of the dC!'Ilred ~pecd1 signal. 

The basic structure of u Wiener filter i\ shawn in figures 3.3(a) and 3.3(b). Ilere we have 

the error sequence e(n) as a function of the inpllt h(ll) and the rclcrcncc output (dc!'>ircd 

sequence) den) [5]: 

M 

e(ll) = den) - L b" h(n- k) 0.2) 
"=0 

whel'eb" are the filter coefficients and M is the arder of thc filter. 

Figure 3.3 (a) - The (Adaptive) Wiener Filter 
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Figure 3.3 (b) - The FIA Filter 

YIn) 

Sen) 

The sum of squares of the error sequence will therefore be: 

co M 
E = L f den) - L bl. h(n-k) f (3.3) 

n=O '=0 

If the error defined by E is minimized with respect to the filter coefficients then the 

following linear equations are obtained: 

M 

L h, r",,(k -1) = rd,,(1) , 1 = 0, 1, ... , M (3.4) 
1.=0 

where 

"" 
r",,(1)= L 11(11) 11(11-/) = the autocorrelation of h(n) (3.5) 

11==0 

and 
(3.6) 

r,II,(I) = L de,,) h(II -1) = the crosscorrelation between den) and h(n). 
,,==0 

The tilter coefficients which satisfy (3.4) are optimal in the least squares sense. 

ln general it can be shown that if the FIR tilter is to be an approximate inverse filter, then 

(3.4) can be expressed in rnatrix fonn: (rdh(l) = 11(0) for 1 = 0, rd,,(l) = 0 otherwise) 
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E"" Il. = f (J.7) 

where 

1'",,(0) l'"" (1) r",,(M) 

R/,h 
1'",,(1) 1',," (0) r",,(M -1) 

= 

rhlz(M) r",,(M -1) l'"" (0) 

!l = r ho, q, ... , bM ] 

f} = [ h(O), 0, 0, ... , 0 ] . 

Since R hl! is a Toeplitz matrix, there exists an efficient algorithm which can be used to 

invert R hl! and hence detennine !l.. Note that the above derivation has assull1cd that the 

source is also stationary. Now that the Wiener filter has been dcfmed, wc look how the 

filler is used to enhance speech. The actualuse of the Wiener filter (using !l determined by 

(3.7» in an enhancement speech process is depicted in Figure J.J(c). Since un FIR fll~cr 

with filter coefficients equal to !!. will be an approximate inverse fllter for a 'clcan' or noise­

free input signal, the output of the fi her (Y(I/» with a noisy input signal can he considcred 

to be the noise estimate. This noise estimate is then subtracted from the noisy speech to 

obtain the estimated c1ean speech. (The FIR filler acting as an inver~e filtcr will ideally 

output a null or minimal output sequence due to a dean input signal.) Since the tiller 

coefficients themselves generally have to be determined from a noisy signal, the 

effectiveness of this approach is limited - unless some additional information sllch as the 

pitch period for a given speech frame is provided. 

Figure 3.3 (c) - Use of the Wiener Filter in Enhancmg Noisy Speech 
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A typical algorithm 121 using the Wiener filter would divide the input noisy speech into 

overlapping frames using a suitable 'window'. Each windowed frame would then be 

passed through the Wiener filter (the filter coefficients may he updated for each windowed 

frame) and the output would t~en be overlap-added to form the noise stream. The noise 

stream will then be subtracted from the noisy signal data stream to obtain the enhanced 

speech signal. 

Although ail of the discussion regarding MMSE filtering has been in the time domain, the 

enhancement process could also take place in the frequency domain [2]. In this case tht': 

optimum Wiener fil ter can be shown to have the spectral density function given by [17]: 

(3.8) 

where 

p.I (m) = power densi ty spectrum of the speech 

Pl/(m) = power density spectrum of the noise . 

Pt/(m) can be obtained from taking the fourier transform of the average of several'silent' 

frames of speech or mor~ directly by assuming the distortion has sorne known structure. 
P~ (m) is not generally known and must be estimated from the noisy signal. One quick 

method of determining p.I (m) is to average the spectral density function of several noisy 

frames and simply subtract the estimate of Pt/(m). Lim and Oppenheim discuss several 

othermethodsforestimating P~(w) and Pd(m)in [17]. 

3.3 Neural Nets 

3.3.1 Introduction to Neural Nets 

Neural Nets are also called 'Connectionist Models' or 'parallel distributed processing 

models'. In each case, the computation or processing takes place using a large number of 

simple processing elements or 'neurons'. The processing is genera]]y done in massively 

parallel structures with information being transferred among the neurons via a dense 

interconnect structure. The amount of information f10w from one processing element to 

another is specified by a 'weight'. These 'weights' are typically adapted during a 

computation to improve the perfonnance of the neural net. Unlike sequential von Neumann 

computers (a typical digital computer), neural nets have the capability of exploring and 

choosing among several competing hypotheses simuItaneously. This processing 
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philosophy is based on our own biological neural structure. The hope is that in imilaling 

the biological structures, the artificial neural structures can attain human-like perfonnance in 

a noisy, non ~tationary cnvironment such as speech and vision recognition. Several 

different processing neurons, interconnect structures, and weight adaptation or training 

algorithrns have been proposed. A general overview can he found in 151. 

3.3.2 Use of Neural Nets in Speech Enhancernent 

The ability for neural nets to choose hypotheses in a non-stationary and noisy environmcnt 

has spurred sorne research in the application of neural nets to the speech enhanccment 

problem. Recently Shin'ichi Tamura and Alex Waibel presented a paper on speech noisc 

reduction via the use of neural nets (6). 

In this case, noise enhancernent is seen as a mapping from a set of noisy signaIs 10 a set of 

noise-free signaIs. This mapping ('F') is to be detennined by a neural network. Figurc 

3.4(a) shows the general format of the neural speech enhanccment method. Tamura and 

Waibel used a four-layer feed-forward architecture in an attempt to achleve this mapping . 

Figure 3.4 (a) - Neural Net Speech Enhancem',mt 
(After Tamura et al [6]) 

NOlse-free speech 

~ •.•............................. -.. 
NOIsy Speech 

The following sections will detail the processing element, network architecture and 

adaptation algorithrn used. 
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3.3.3 The Processing Element 

The processing element used is the simple perceptron [5J, [61 shown in figure 3.4(b). A 

perceptron sums N weighted inputs plus sorne threshold or biasing value' 9' and passes 

this result through a non-linear sigmoid function: 

f(x) = 1 l+e-~ rI (3.9) 

Figure 3.4 (b) - The Perceptron (After Tamura et al [6]) 

c(j) 

J-th unit's output = f ( l::, W(j,i) x o(i) + o(j) ) 

where f(x) = 1 / ( 1 + exp(-x)) is the sigmoid function 

3.3.4 The Network Architecture 

w(),i) is the Iink welght from the i-th unit to the j-th unit 

o(i) is the output of the preceding perceptron unit 

The single perceptron discussed in 3.3.3 ran at best only c1assify the inputs as belonging to 

either of two classes or states. In order to define an arbitrary decision surface, 3 or more 

lay~rs are required 15). The network architecture used in the speech enhancement example 

consists of 4 layers of 60 computational units each. Figure 3.4(c) describes the noise 

reduction network architecture. Each layer of perceptrons is fully connected with the next 

layer in a feed-forward fashion. The state of the network is modified as the information 
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flow is passed synchronously from layer to layer. To simplify the interpretatioll of the 

input and output, the input and output are Ilot modified by the sigmoid functioll. 

Output 
Layer 

Two 
Hidden 
Layers 

Input 
Layer 

Figure 3.4 (c) - Noise Reduction Network 
(After Tamura et al [6]) 
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3.3.5 The Adaptation Algorithrn 

4 

3 

2 

60 

The algorithm used to 'train' the neural Iletwork by adapting the weights was the back­

propagation algorithrn, which is an iterative gradient algorithm designcd to minimize the 

mean-square eITor between a CUITent output vector and a desired output vector given the 

CUITent weights and current input vector. 

For the back-propagation algorithm, the neural network is typically initialized by ~clecting 

small random values as the weights. The weights of the network are then adjuslcd a layer 

at a lime, starting with the weights leading to the output neuron, in order to Illinimize the 

difference between the actual output vector (given the input vector) and the de~ircd output 

vector according to sorne perceived cost function. This proccs~ i~ repeated until the crror or 

co st has been reduced below sorne threshold value. In the case of the speech enhanccment 

trials, the input vector was a frame of 60 analogue data point~ corresponding tn a samplcd 

noisy speech waveform. The reference or de~ired output was the corresponding noise-free 

speech frame (also consisting of 60 analogue data points - ~ee figure 3.3(a» . 
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3.3.4 Reported Results 

The data or noi~e-free speech used in the experiment consisted of 216 phoneme-balanced 

Japanese words initially digltized at 20 kHz and then down-sampled to 12 kHz. The data 

was stored using 16 bits per sample. The noise used in the experiment consisted of 

background computer-room noise (non-stationary) and wide-band Gaussian noise sampled 

at 12 kHz. Noisy speech was produced by adding the sampled noise to the sampled noise­

free speech in such a proportion to obtain a desired SNR. 

The entire sequence of the noisy speech and reference noise-free speech was presented to 

the neural model at a rate of 60 data points per frame in order to train the network. At about 

200 passes of the sequence, the back-propagation algorithm reduced the error or co st to an 

acceptable value. 

This process is somewhat computationally intensive - the authors reported the training of 

the neural net look a total of 3 weeks on an Alliant super computer! 

Noisy word sequences not in the original training sequence were then presented to the 

neural network in order to ascertain the speech enhancement perfonnance of the neural net. 

Speech corrupted by computer Toom noise and wideband noise were used in the analysis of 

the neural net. 

The following is the result of an auditory preference test between enhanced speech 

produccd by the neural net and enhanced speech produced by the spectral subtraction 

method: 

Table 3.1 - Reported Enhancement Results Using a Neural Net 

Method Used Score 

Power Spectrum Subtraction 43.4% 

Connectionist model 56.6% 

As can he seen in the table above. the enhanced speech produced by the neural net approach 

was preferred over the spectral subtTaction method in terms of sound quality. However, 

the authors indicated thm there was no perceivable increase in speech intelligibility. 

The computational intensity of the training and marginal improvement over conventional 

enhancement methods do not make the neural net approach a viable practical alternative at 
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the present time. Further attention to network learning of acoustically important aspects of 

speech may resuJf in a network that produces su peri or intelligibility results. This network 

could then be repitcated in VLSI technology (ideally, no training or modification wou Id he 

required after the initial long training sequence) for use as a marketable speech enhancemcnt 

device. 

3.4. The Kalman Filter 

The Wiener Filter introduced in 3.2.2 was one form of an adaptive filter. lIowever, 

effective use of the Wiener filter in speech enhancement requires that the speech and noise 

be stationary. Hence, the Wiener filter does not perform very weil in practice as cither the 

speech signal or noise or even both are usually non-stationary. This subsection and the 

next will discuss two contemporary fihering techniques which either try to climinate the 

stationarity constraint (the Kalman Filler), or try to improve upon the performance of the 

Wiener Filter in other ways (the forward-backwards adaptive filter). 

3.4.1 The Basic Kalman Algorithm 

The Kalman solution is an alternative means of fonnulating the least mean squares filtering 

problem by means of state-space analysis (71. The solution has two primary fcaturcs: (1) 

vector modeling of the random processes under consideration and (2) recursivc analysis of 

the noisy input signal. 

The Kalman Filter is generally implemented a~ a recursive algorithm using the following 

expressions [7]: 

J..~ = (n x 1) process state vector at time 1" 

flk = (n x n) matrix relating x" to X~+l (or a state transition matrix) 

Wk = (n x 1) vector - a white or uncorrelated 
sequence with a given covariance structure 

~~ = (m x 1) vector measurement at lime 1" 

H k = (m x n) matrix relating the ideal connection between the 

measurement and state vector at time 1 k 
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where i k = updated estimate; i; = prior estimate 

where K k = blending factor 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Equations 3.10 through 3.14 embody the Kalman filler recursive algorithm. A 

diagrammatic representation is ~hown in figure 3.5. More details on the general Kalman 

algorithm can be found in 17). 

ProJecI Ahead 

Figure 3.5 - The Kalman Filter Loop 
(After Brown [7]) 

Enter prlor estimate Xk and 
rts error covariance Pk 

Compute Kalman 
Gain 

Compute error 
covariance for 
updated estimale 

3.4.2 The Kalman Aigorithm and Speech Enhancement 

Speech can be considered an AR autoregressive sequence described by the following 

expression: 

(3.15) 

39 



• 

• 

• 

where s(k) = noise-free speech sequence. 

The above expression can also be considered as the output of a linear ail-pole sequence 

driven by sorne uncorrelated white noise sequence. Expression 3. 15 can he reprcsentcd JJ1 

a state-space format as follows: 

or 

~(k - p+ 1) 

s(k - p+2) 

s(k) 

= 

o 
o o 

~(k) = f!. X(k -1) + G u(k) 

where X (k) = process state vector = J." 

!l = Sl:ate transition matrix = !l" 
G = input matrix. 

o 
1 

o 
o 

s(A - p) 

s(A - p + 1) 

s(A -1) 

In general, however, we only can observe a degraded or corrupted process: 

+ 

() 

() 

(3.16) 

~'(k) = ~(k) + !l(k) = ;.(k) (from before) (3.17) 

where !l(k) is the additional noise process. 

This can be rewritten as: 

~(k) = H X(k) + !l(k) (3.1 X) 

where H = observation matrix. 

u(A) 

Since f:!.<k) and !l(k) are uncorrelated and have zero mean (noise processes) and assuming 

an initial unbiased estimate for X: 

A 

X(O) = Xa 

Expressions (3.18) and (3.16) suggest that a Kalman filler can be found by using the 

algorithrn described by expressions (3.10) through (3.14). The resulting Kalman filler 

would give the best possible estimate for X(k) given the observations y(1), y(2), ... ,y(k) 

(k consecutive observations of the noisy speech signal) . 
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Like other adaptive filler techniques, application of Kalman fiItering for speech 

enhancement consi~ts of two stages: (1) derivation of the AR coefficients 

( al' a2' ... ak ) as weil a'i an estimate for the noise variances of y'(k) and !J.<k) for a 

specifie speech segment and (2) the application of the Kalman filter using the values found 

in the first stage in order to achieve the estimate of X(k). The last component of an 

estimated process ~tate vector is the Kalman filtered estimate of the clean speech signal: 

xo..) = 1 s(k-p+l) .... s(k) ) (3.19) 

Xp = s(k) = estimate of noise-free signal. 

3.4.3 The Delayed Kalman Filter 

The delayed Kalman filler is a modified version of the basic Kalman fiIter using an 

addition al p + 1 observation points ( y(k + P + 2) ... y(k) }. Consequently the estimate of 

s(k) is delayed for p + 1 observation points. This version of the Kalman filter ideally 

provides a better e~til11ate of s(k) than the basic Kalman filter. 

3.4.4 Reported Results 

ln the expcrimentul study, the ideal values for both the a, and noise parameters (li(k) and 

y'(k» were used rather than the estimated values. 

Xo (the initial state vector) was initialized to the first p data points 

( y(l), y(2), ... ,y(p) }. 

The following charts display the effectiveness of the Kalman and Delayed Kalman filters in 

enhancing speech relative to the standard Wiener enhancement method. Note that a 

modified Wiener filtering method which accommodates nonstationarity is also included in 

the comparison. The authors did not specify the type of noise used. 

Table 3.2 - Input SEGSNR vs. Output SEGSNR 

Output SNR (dB) 
Input SEGSNR Standard Nonstationary Kal'nan Delayed 

(dB) Wiener Filter Wiener Filter Fiher Kalman Filter 
0 -6.2 -1.1 3.5 4.2 
5 0.5 2.8 5.5 6.9 
10 4.8 5.5 8.1 9.2 
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From the above table it can be seen that both the standard and Dc1ayed Kalman filtering 

methods are superior to the Wiener filtering methods, offering a definite improvcl11cnt in 

terrns of the Segmental SNR over a broad range of input noise. A comparison of the 

Kalman filtering methods indicates that the Delayed Kalman filtering mcthod offers 

approximatelya 1 dB gain over the standard Kalman filtering method over the sa me range 

of input noise. The authors indicated that these objective reslIlts were reaftmned hy 

informai subjective listening test~. However, the authors did Ilot provlde any fmther 

description on the perceived subjective quality of the enhanced speech !\ignals. 

Il should he noted that the speech enhancement algorithm used paramctcr~ ohtalllcd l'rom 

cIe an speech or ideal parameters inserted directly by the authors. The effect of non-idcal 

(estimated) parameters from noisy speech has yel ro he dctcnllincd. Small dcvlatlOns t'rom 

optimum conditions may result in catastrophic effects on the Kalman filtcr spcech 

enhancement system. 

3.4.5 Complexity of Kalman Ftlter Method 

The matrices u~ed in the computation of the Kalman filter are not Toeplitz matrices, and 

hence there should be a jump from O(p) to O(p2) in tenus of computational complcx ity . 

However, Fast Kalm.m algorithms may bring down the complltational complcxity hack 

down towards O(p). 

3.5 Forward Backward Adaptive Filtering 

The forward-backward adaptive filter enhancement method is ail extension of thc standard 

Wiener method in that it utiIizes both future as weil as past samples in ordcr to cstimatc the 

current sample. The resulting filter provides good enhancemcnt results for hoth narrow­

band and wide-band noise sources 19). 

3.5.1 Background Theory for ForwardlBackward Filtering 

The forward-backward filtering method can be thought of as using two adaptive filters, a 

forward adaptive filter and a backward adaptive filter, in concert. Figure 3.6(a) shows the 

block diagram of the overall forward-backward filter structure and 3.6(b) shows the details 

of a particular adaptive fiIter . 
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Figure 3.6 (a) - Block Diagram of a Forward/Backward ADF 
(After Kim et al [9]) 

ADF2 'x~.n 
Forward 
Filler 

+ 

Figure 3.6(b) - The Structure of the ADF 
(After Kim et al [9]) 

Output 

As in the other adaptive filter methods, we seek a method of minimizing the error which is 

the difference between the reference output x" and the filter output x~: 

, 
e" = x" - x" . 

But the filter output is a sum of the output of the two adaptive filters: 
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,.f _ .\.f + ,.f 
"n -]" "2" (.1.21 ) 

It can be shown that the mean square error can be derived as follows: 
(.l22) 

Error = Elx~J - 2W{ f.1l - 2w1 f.\2 + W(" 8.d.\2 W1 

T r r + W2 R\2.d W2 + W] Ed . d WI + WI E\2.\2 W1 

where w.:1 = coefficient matrix for the forward adaptive tiller 

= 1 WI,I. WI.2' ...• WI•M 1 

W 2 = coefficient matrix for the backward adaptive tilter 

= l W2•1• W2•2 • ..•• W2•M 1 

XI = input vector for the forward adaptive tilter 

= 1 Xn-I' .\',,-2' .... X,,-M 1 

X 2 = input vector for the badward adaptive fllter 

= 1 xn+l' x,,+2' ... , x,,+M 1 

R \ 1. \ l ' 8.., 2. \ 2 = autocorrelation matrices 

Er·l. \ 2 = E \ 2. \ 1 = cross-correlation matrices 

p = -.\2 

The error function is an elliptic parabolic function of W 1 and W 2 and thercfnrc a global 

minimum can be determined. Il can be shown that the fnllowing describes the optimulll 

values of the coefficients: 

(3.23) 

In practice the steepest decent algorithm is used to determine the initial values of W 1 and 

W 2 while the following procedure is used to update the coefficients: 

0.24) 

W2•n+1 = W2•n + J..l2 X2 en 
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2 
where 0 < 111 < --.---------­

Maximum eigelll'aiue of Ed . fI 

o < 112 < 
Maximum eigellvalue of E.'2.x2 

2 

3.5.2 The ForwardlBackward fiIter and Speech Enhancement 

The Forward-Backward fiIter is used in a similar manner as the Wiener filter with respect to 

speech enhancernent. TypicaJ usage of the Forward-Backward fi]ter for speech 

enhancernent is shown In figure 3.7. The output of the fiher with a noisy speech signaJ is 

the estirnate of the noise as the fiher ideally adapts itself to becorne the inverse filter for the 

noise-free speech signaI. This noise estimate is subtracted from the noisy signal to obtain 

an estimate of the noise-free speech. Note that a speech detector is needed for speech 

enhancernent in the case of narrowband noise (the filter adjusts ilS coefficients during 

speech-free periods). Because of the need of a speech detector in the presence of narrow­

band noise. the authors proposed a modified forward-backward filter depicted in figure 

3.8. The smoothmg effect of lhi!l filter enables it to be applied for the enhancernent of 

speech in the presence of narrowband noise without the use of a speech detector. 

NOIsy 
Speech 

Figure 3.7 - Enhancement of Speech Corrupted with Narrow-Band 
Noise with a Forward/Backward Adaptive Fiiter 
(After Kim et al [9]) 

+ 

t---------..... ~ Forwardl8ackward t----.... 
AdaptlVe Filter 

Speech 
Detector 
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Figure 3.8 - Block Diagram of a Modified Forward/Backward Adaptive Filter 
(After Kim et al [9]) 

Xn + 

Adaptlve Fllter 

3.5.3 Reported Results 

In the experimental analysis, the noise-free signal consisted of real speech sampled at X 

kHz. The noise source consisted of a Gaussian random noise source with zero Inean. 

The following charts display the effectivene~s of the Forward/Backward and modificd 

ForwardIBackward adaptive filters in enhancing speech quality relative lo the Wiener 

filtering method. 

Table 3.3 - Input SNR vs. Output SNR 

Output SNR (dB) 
Input SNR (dB) Wiener Filter Nonnal Forward/ Modified Forwar<V 

Backward Pilter Backward Filter 
0.71 2.28- 6.40 6.50 
5.73 8.09 9.00 1 U.41 
10.75 11.84 10.87 I:L4 
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Table 3.4 - Input SEGSNR vs. Output SEGSNR: 

Output SEGSNR (dB) 
Input SEGSNR Wiener Filter Nonnal Forwardl Modified Forward/ 

(dB) Backward Filter Backward Filter 
2.67 4.08 5.41 5.30 
4.91 6.27 7.20 7.70 
7.81 8.68 8.90 9.90 

Both the Forward/Backward and the Modified ForwardIBackward filters show a significant 

increase in SNR and SEGSNR for very noisy input signais The performance of the 

modified forwardlbackward filter is particularly impressive, offering a c1ear advantage over 

the Wiener filtering method even at high input SNR's. However. the authors did not offer 

any subjective comments with respect to any perceived improvement in the acceptabilityor 

intelligibility of the enhanced speech signal. 

3.6 Hidden Markov Models 

3.6. t Hidden Markov Model Basics 

1111 defi nes a Hidden Markov Model as a doubly stochastic process with an underlying 

stochastic process that is not observable (hidden), but can he observed indirectly through 

another set of stochastic processes that produce the sequence of output symbols (values). 

Ali discrete HMM's have a few basic qualities: 

(1) A finite number of states = M 

(2) A state transition probability distribution (can he represented by a 2D matrix) 

which states the probability of a state transition given the previous state (a Markov 
process) = {l,., = Pr(qj at t + t 1 q, at t). 

(3) Each state will have its own probability distribution for observing a particular 
output symbol while the process is at that particular state = Qj(k) = probability of 

symbol k at state.i. 

(4) A set of (finite) discrete output symbols. (number = S) 

(5) An initial state distribution = 1r. 

(6) States are only allowed to change at finite intervals of time = T . 
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Using the above definitions, a discrete HMM can be described by {l,." Q)O.), and !!. This 

set is typically referred to by a single reference - say À.. 

The continuous HMM is similar to the discrete HMM except that the discrete sYl11bol 

probability is replaced by a continuous distribution. Two popular fonns of the continuous 

distribution include the Gaussian M -component mixture densities of the fonn: 

M 

b/J.) = L Cjk N[ J., H)/.., V J/.. 1 (3.25) 
Â=1 

where cJk = mixture weight 

N = nonnal density 

y. j/.. = mean vector 

V Jk = covariance matrix for state j. mixture k 

and the Gaussian autoregressive M -component mixture densities of the fonn: 

M 

bl (J.) = L cJ/.. bJÂ (J.) 
k=1 

where b jk C!:) = 

-b(J.;q jk) /2 
e 

fi 

b(J.;(lj/..) = r!/O) 1'1(0)+ 2 L r!!.(i) l'l(i) 
1=1 

= standard LPC distance between a vector x with 
autocorrelation l':! and aLPe 

vector with autocorrelation l' q • 

(3.26) 

Given the HMM structure above, we may want to (1) evaluate the probability of ohscrving 

a given sequence given Â., (2) determine the optimum ~tate sequence given an observation 

sequence, and (3) optimize the parameters referred to by Â. in an effort to have the HMM 

emulate a given process. Aigorithmic solutions exist for ail of the 3 above problems and 

are discussed in III J. The titles ·Jf the solutions Will only be presented here: (]) -> the 

48 



• 

• 

• 

forward-backward algorithm, (2) -> the Viterbi algorithm, and (3) -> th~ Baum-Welch re­

estimation fonnulas. 

A typical Markov !ltate diagram for speech (a phone me or word) is shown in figure 3.9(a). 

Note that there i~ a definite temporal structure as state transitions are only allowed to loop 

back or proceed to the right. This will also make the state transition matrix upper triangular. 

Each state is typically associated with a specifie sound or acoustic event - so if figure 3.9(a) 

represents a word the first state may represent the beginning phoneme while the last state 

may represent the ending phoneme 11OJ. To accommodate for variability amongst different 

spcakers, coarticulation effects etc., each state needs to he represented by a probability of 

spectra. This can he accommodated by the Gaussian mixture expressions indicated by 

(3.26) and (3.26). 

Figure 3.9 (a) - A Typical Markov Process for Speech 

3.6.2 Hiddcn Markov Models and Speech Enhancement 

In (121 and 1421 the HMM was used to model c1ean speech with mixtures of Gaussian 

autoregressive (AR) output processes. 

Given the parameter set À.\ for the c1ean speech signal, the enhancement problem can he 

givcn as maximizing the sequence y (noise-free speech) in: 

max InlfJÀ À (y,z)] = max lnLLPÀÀ,(x,h,y,z) 
v s v V S 1 

. \' " 
(3.27) 

where PÀ = pdf of clean speech HMM 
J 

P À = pdf of model for noise process 
" 
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Â. s = parameter set for clean speech 

Â. 1• = parameter set for AR noise process 

y = c1ean speech sequence 

l' = noisy sequence 

x = sequence of states {1.. M J 

h = sequence of mixtures (1.. LJ 

z = y + \' = noisy speech sequence 
= observable data 

PÂ). (y, z) = p). (y) p). (: Iy) = p). (y) P;. (z - y) 
J li s,' .J' 

(since the noise is additive and statistically independent 

of the signal) 

Aiso. since PÀ,Âv (z) = J P).,À, (y,z) cly is independent of y, the MAP estimation 

procedure indicated by (3.27) is equivalent to: 

max ln [p). Â (ylz) 1 
y , , 

(3.2X) 

The approximate MAP procedure used in [121 assumes that the double sum in (3.27) is 

dominated by a unique sequence of states and mixture components. The clean speech 

vectors may then he estimated (along with the most likely sequence of states and mixture 

components) by: 

where 

max 
x.II.y 

ln [p). Â (x,h,y,z) 1 , ,. 

P). À (x,h,y,z) = P). (z - y) PÂ (x, h, y) 
s v v.\ 

(as x and h are statistically independent of y and z) . 

(3.29) 

Similarly to (3.28), the estimation procedure indicated by (3.29) can be round to he 

equivalent to: 

max 
(.II.y 

ln [p). Â (x,h,y Iz) 1 . 
, v 

(3.30) 

In [12] the HMM parameter set for the c1ean speech, Â.,\, was determined using the 

segmental k-means algorithm (an approxImation to the Baum algorithm) which jointly 

estimates the parameter set of the (c1ean speech) model as weil as the ~equence of states and 

mixture components which maximize the likelihood function of the c1ean ~peech. More 
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specifically, Â.\ was determined by alternatively maximizing the log likelihood function 

ln p).. (x,h,y), once over (x,h) assuming that À-.1 is given, and then over À-s, assuming 
J 

that (x,h) is known - generating a sequence of models with increasing likelihood. The 

procedure was terminated once the value of the log Iikelihood function in two successive 

iterations was smaller or equalto than a preset threshold. In [42] the HMM parameter set 

for the c1ean speech, Â.\, was detennined by using the Baum reestimation algorithm. More 

specifically, Â.\ was determined by maximizing the Iikelihood function 

ln p)../y) = L~=llnp)..,(YTn) (Tn being a time index) utilizing an auxiliary function 

subject to a number of constraints. The procedure was terminated once the value of the 

Iikelihood function in two successive iterations was smaller or equal to than a given 

threshold. The initial value or estimate of Âs used in both of the iterative processes was 

derived from a procedure in which the entire training sequence was c1ustered into M x L 

AR (autoregressive) models using the Lloyd c1ustering algorithm used in AR model vector 

quantization (see section 3.3). This was achieved by first designing an M -sized AR state 

codebook u!\ing the Lloyd c1u~tering procedure and then dividing (decoding) the entire 

training sequence into one of M states defined by the M -Ievel AR codebook. Secondly, 

an L-sized mixture AR codebook was designed for each of the M states by repeatedly 

splitting the AR codeword representing the state (see section 3.3) using the sub-training 

sequences assigned to the given state. The resuIting M x L AR (autoregressive) models 

were used to derive the initial parameter set for the HMM. For example, the initial values 
for the mixture weights, Crlp • were obtained by decoding the sub-training sequence 

corresponding to the fJ -th state codeword using the L mixture codewords and then simply 

observing the relative frequency of appearance of each L'mixture' codeword. 

Note that the initial M x L codebook containing the AR models may itself be viewed as 

an HMM with equiprobable imtial and state transition probabilities with either one state and 

equiprobable mixture components or with as many states as codewords with one mixture 

component per state. Alternatively, the HMM model derived using the iterative k-means or 

Baum algorithms (and defined by the parame ter set À-s) may be viewed as an M x L 

Vector Quantizer codebook with a number of temporal constraints being placed on the 

selection of a given VQ codebook element. 

ln 1121 the actual speech enhancement algorithm uses the expression provided by (3.29) to 

enhance speech in a two stage process. First, the most probable sequence of AR models is 
detennined by maximizing the likelihood function l'À (x, h, z, y) of noisy speech over , 
(x. h) (ail sequences of states and mixture components) assuming that the clean speech 
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vectors are given. This is performed using the Viterbi algorithm. The end result of this 

maximization is a sequence of (most probable) AR models which are linked with the CUITent 

estimate of the vectors of the noise-free speech signal. Secondly. the likelihood function 
p;. (x, h. y) is then maximized over ail of the original noisy speech vectors using the most 

J 

probable sequence of states and mixtl:re components (x, Il). This is accomplished by 

utilizing the sequence of most probable AR models detennined in the fin:t step to construct 

a sequence of Wiener filters which are applied on the noisy speech vcctors in order to 

estimate the most likely sequence of clean speech vectors. This iterativc procedure 

continues until the difference in the likelihood function over two successive itcrations is 

smaller than some preset threshold. 

Figure 4.9(b) - Speech Enhancement Based on Hidden Markov Modeling 

NOise Iree Vector 
speech by t-..... Quantlzer 
vanous speakers Clustenng 

VQhbrary 
contalnlng M x L 
ARmodels 

Determine MarkoVian modal 
uSlng K Means or Baum algonlhm 
(e 9 transitionai probablhes 
between AR Models) 

GlVen the MarkovlSn model. 
Undlstorted 
Speech 

J--O() __ -o'"T"'--_~ determlne Optimum AR 

1 
Interatlon > 1 

Model uSlng Approx -MAP 
or Exact MAP estlmate 

In [42] the speech enhancement process uses the expression provided by (3.27) to derivc 

an exact MAP estimation for the c1ean speech vectors given the sequence of noisy speech 

vectors. The actual MAP estimation process is carried out using the EM (Estimation­

Maximization) algorithm. The algorithm locally maximizes the conditional pdf of the clean 

speech signal given the noisy speech signal by generating a sequence of speech sample 

funetions with non-deereasing likelihood values. The maximization of the likclihood 

funetion in each iteration is aetually carried out by maxirnizing an appropriately defined 

auxiliary funetion. This iterative procedure continues untll the differencc in the likelihood 

funetion over two successive iterations IS smaller than same preset threshald. 
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The overall speech enhancement process using Hidden Markov Modeling techniques is 

depicted in figure 3.9(b). 

3.6.3 Reported Results 

ln both 112) and 142). 100 sentences of clean speech spoken by 10 speakers were used to 

train an HMM for c1ean speech. In [12] the testing sequence consisted of 2 sentences 

spoken by 2 people not in the original training session while in [42] the testing sequence 

consisted of 8 sentences spoken by 4 people not in the original training session. The AR 

model for the noise was estimated for the actual noise sample and added to the clean speech 

to prodllce the noisy speech signal. (The noise process was modeled as a sequence of 

stationary and statistically independent Gaussian autoregressive vectors.) The test sequence 

was then sampled at R kHz and broken into frames of 128 samples with 64 sample overlap. 

The order of the autoregressive noise process and the alltoregressive output process was set 

to 4 and 10 respectively. In both 112] and [421. the enhancement of the distorted speech 

signal was do ne simultaneollsly in that for each iteration the most probable sequence of 

states and mixture components corresponding to the entire speech signal was found and 

then the Wiener filters were applied to the entire distorted speech signal to obtain the 

estimate of the cnhanced speech signal. The individual processed speech frames were 

combined into a continuous enhanced speech signal using the short time Fourier transform 

overlap and add technique. 

In 1121. the optimum number of states ( M) and number of mixture components (L) were 

empirically dctermined to he 32 and 8 respectively. The following table de scribes the 

improvemcnt in quality at 4 input SNR values for the approximate MAP HMM 

enhancement process with M=32 and L=8: 

Table 3.5 - Reported enhancement results using an approximate MAP HMM with 
M=32 and L=8 

Input SNR in dB Output SNR in dB 
M=32. L=8 

5.0 11.0 
10.0 14.7 
15.0 17.1 
20.0 20.6 
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The above table indicates that the approximate-MAP HMM enhancement method used in 

[12] produced a significant signal quality improvement of approximately 5 dB at input 

SNR's of less than 10 dB. The paper further reports that enhanced speech was "crisp" but 

accompanied by noise which sounded like a combination of wideband noise and musical 

noise (similar to but significantly lower in perceptual magnitude than spectral subtraction). 

[42] provided a more detailed discussion on the selection of the numbcr of states (M) and 

the number of mixture components (L). Specifically, the optimum values of M and L 

were determined experimentally by examining the enhanced speech signal as M '\I1d L 

were varied for a fixed input SNR of 10 dB. The following table illustratcs the range of 

output SNR's for different values of M and L for a number of enhancelllent proccsses 

which used various degrees of HMM modeling as part of the s~ech enhancement process. 

Table 3.6 - Enhancement results for various levels of Hidden Markov Mmkling and 
different values of M and L 

MIL VQ-CLN (dB) SEG-CLN (dB) SEG-AMAP (dB) ML-MAP(dB) 

5/5 14.73-16.45 14.72-16.44 14.25-15.95 14.25-15.95 
8/4 14.75-16.51 14.75-16.50 14.26-15.75 14.26-15.75 
16/8 15.04-16.72 15.04-16.7(; 14.16-15.82 14.16-15.82 

VQ-CLN indicates a speech enhancement process in which the AR output Illodel for a given 

noisy speech segment was selected from the initial M x L Vector QlIantizcr codebook 

using the nearest neighbor rule according to the Itakura-Saito distortion IllCaSllre (see 

expression (2.51)), using the c1ean speech segment corresponding to the noisy input 

segment. SEG-CLN indicates a speech enhanœment process in which the AR output 

model for a given noisy speech segment was selected from a HMM with a parameter set 

defined by the segmental k-means algorithm and using the approximate MAP approach on 

the c1ean speech signal. Note that the difference between VQ-CLN and SEG-CLN was that 

the SEG-CLN enhancement process incorporated Markovian memory. SEG-AMAP 

indicates a speech enhancement process in which the AR output model for a given noisy 

speech segment was selected from a HMM with a parameter ~et defïned by the segmental 

k -means algorithm and using the approximate MAP approach on the n()i~y speech signal. 

Finally, ML-MAP indicates a speech enhancement process in which the AR output mode1 

for a given noisy speech segment wa~ selected from a HMM with a paramcter ~et dcfined 

by the Baum algorithm and using the exact MAP approach on the noisy ~peech signal. In 

aIl of the enhancement processes, the noisy ~peech signal wa~ filtered using an adaptive 

Wiener filter based on the selected AR mode!. Thi~ was done in an iterative fashion until 
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the Iikelihood value in two successive iterations was less th an or equal to a preset threshold 

value - with the exception of VQ-CLN in which the nearest-neighbor selection was used 

without any further iterations. 

A numher of observations may he made given the experimental results listed in table 3.6. 

First, by comparing the results for VQ-CLN and SEG-CLN, it is apparent that Markovian 

memory or the use of temporal constraints on the selection of the selected VQ AR model 

codebook clement is not important given that acccss to the clean speech signal is provided. 

Second, as the best resuIts were obtained at low values for the number of states and mixture 

components, il de mon strates that only coarse versions of the power spectral density are 

required in the speech enhancement process. Apparently, the higher order state-mixture 

HMM models tend to produce a greater number of gross estimation errors which in turn 

result in decoding errors and incorrect filter selection. Finally. table 3.6 illustrates the 

importance of the AR model selection process for the speech enhancement process. The 

SEG-AMAP and ML-MAP enhancement processes have been demonstrated to he fairly 

robust in the presence of noise with a resultant reduction of 0.5 dB in SNR when compared 

to VQ-CLN and SEG-CLN. Although the SEG-AMAP and ML-MAP enhancement 

methods provided similar objective results, the authors indicated that the ML-MAP 

enhancement method provided slightly better subjective results in informallistening tests. 

Howevcr, the allthors did not elaborate with detailed subjective comments. 

The following table describes the range of improvement in quality at 4 input SNR values 

for the exact-MAP (ML-MAP) HMM enhancement process with M =5 and L=5. Note that 

the minimum and maximum nllmber of iterations used in the enhancement pl'Ocess are also 

shown: 

Table 3.7 - Enhancement Results for ML-MAP process for various input 
SNR's 

Input SNR in dB Output SNR in dB Iterations 
M=5, L=5 

5.0 10.50-11.96 10-19 
10.0 14.10-15.84 10-17 
15.0 18.24-19.61 10-13 
20.0 22.53-23.63 11-21 

As in the approximate-MAP enhancement method, the above table indicates that the exact­

MAP HMM enhancement method used in [42J produced a significant signal quality 

improvement of approximately 5 dB at input SNR's of less th an 10 dB. The paper further 
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reports that the crispness and naturalness of the original speech were well prcscrvcd. At 5 

dB input SNR, the exact-MAP enhancement process produces Illixed subjective rcslllts -

effectively reducing the effect of added noise in sOllle utterances white inuodllcing 

noticeable distortions in other utterances. At the higher input SNR values of 15 and 20 dB, 

the enhanced speech signal was described as "very good" - but no further detailcd 

subjective comments were provided. 

3.7 MuItipulse-Excited Linear Prediction Enhancement 

3.7.1 Basics of Enhancement by Resynthesis 

This subsection will examine an alternative to the techniques described thus far which 

attempt to lessen the effect of the noise by modifying the noisy input spectrul11 dircctly in 

the frequency domain or indirectly in the time domain by adaptively filtering the noisy 

waveform. This alternative is based on the premise that the speech can be completely 

regenerated by obtaining a model for human speech represented by an excitation signal and 

a filter corresponding to the response of the vocal tract. A popular melhod of repicsentlllg 

the human speech model is based on the aH-pole or autoregressive (AR) Il1cxiel specilied hy 

(2.22) . 

The excitation of the vocal tract filter of 3.31 is usually accomplished with: 1) il pcriodic 

and impulsive waveform which would corre!>pond to the glottal pulses of voked lipccch, or 

2) random bipolar pulses which would correspond to the noisy sounds of unvoiccd speech. 

A voicing decision based on the analysis of the input speech frame would bc rcquired to 

choose between the two excitation waveforms. In the case of a voiced decision, the perruel 

of the impulse waveform would also have to be obtaincd from the input speech waveform. 

The speech enhancement method utilizing Linear Predictive Codlilg analysl~ and 

resynthesis is depicted in figure 3.10. 

Naturally, the constraints on the speech model will also place a constraint on the output 

quality of the LPC based synthesizer. The LPC based synthesizer is only capable of 

synthetic quality speech which tends to have a mechanical and warbling quality even if the 

necessary parameters for the synthesizer are obtained from nOlse-free spcech. This is duc 

to a number of factors including the 1055 of phase information in the excitation signal, thc 

lack of zeros in the vocal tract which are important in nasal ~ounds, and the simpli~tic 

modeling of the source excitation. AlI of these problems are further aggravated in the 

application of LPC based resynthesis for speech enhancement. Algorithms which can 
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accurately determine the LPC coefficients for clean speech tend to do poorly with the 

addition of noise. Voicing decisions and pitch estimation are similarly degraded in the 

presence of a noisy speech signal. The net effect of the added degradation of the necessary 

parameters and the already imperfect performance of the LPC based resynthesizer for clean 

speech has led to less than satisfactory results in the use of this enhancement technique. 

Figure 3.10- Enhancement via Resynthesis Using Basic 
LPC Analysis Methods 
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3.7.2 A Proposed Multipulse Linear Prediction Enhancement Method 

Resynthesized 
Speech 

The basic LPC resynthesis technique discussed in 3.6.1 has a number of deficiencies which 

timits its use in speech enhancement. Paliwal in [13] introduced a number of modifications 

on the basic LPC-based resynthesis procedure which corrects some of these deficiencies. 

One of the modifications Iles in the excitation source used. A mllIti-pulse linear prediction 

system initially proposed by Atal and Remde (14] for medium bandwidth speech coding is 

lIsed as the excitation source for the vocal tract filler. In the muIti-plllse LPC system, the 

residual signal (the signal reslllting after passing the speech signal through the inverse vocal 

tract tiller) is modeled bya smalJ number of blpolar impulses. The exact number of pulses 

lIsed may vary according to computational or timing considerations, but typically they 

comprise a small fraction of the number of samples in the speech frame. The amplitude, 

polarity, and location of the pulses are obtained by an iterative analysis-by-synthesis 

procedure depicted in figure 3.11. The pulse determination process is governed by the 

requirement to lower the error signal or the energy difference between the original and 

resynthesized speech. As shown in figure 3.1 l, the pulse determination process as 
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originally proposed by Atal and Remde is governed bya pcrceptual-wcighting l'ilter. This 

filter improves the subjective quality of the output speech by weighting the pcrccptually 

important regions such as the fonnant frequencies. 

Figure 3.11 - Analysis-by-Synthesis Procedure for Multi-Pulse LPC 
(After Atal et al [14]) 
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The multi-pulse method of modeling the excitation source has a number of advanlagcs over 

the simple impulsive or randol11 notse sources described earliel. Phase IIlformation is 

preserved in the multi-pulse proccs~ rather than discardcd a~ 111 the basic LPC rcsynthesis 

method. Also, pitch and voicing decision~ are no longer ncce~sary as these clements arc an 

intrinsic part of the modeled residual signal. In thc context of speech cnhancclllent, the 

multi-pulse extraction procedure alone can bc con~idercd as a 11()I~e reduction liltering 

process. Ideally, a noisy residual signal would be input tn the mllltl-plll~e extlaction 

process and the outïJut would consist of those clements corre~ponding 10 the re~ldual 01 

perceptually-weighed c1ean speech. 

The second improvement suggested in 1131 lics in the algorilhm lIsed to ohtain the Linear 

Predictor Coding coefficients for the AR (aIl pole) mode!. A~ already indicated, standard 

algorithms based on the autocorrelation or covanance functlol1 perforll1 poorly III the 

presence of noise. Paliwal indicated that a modiflcd vcr~ion of Cadzow\ ll1ethod could he 

used in obtaining reasonable values for the LPC cocfflclent~ III the presence of nOise The 

algorithm utilizes p forward and backward autocorrelation cocfficicl1t~ 10 e~til1late an over­

determined set of high-order (q > p) Yule- Walker equatlon'l whlch arc III turn used to 

determine the CUITent set of AR coefficients. 

3.7.3 Reported Results 

The speech enhancement system utilizing tht multi-puhe exited lincar prediction system is 

shown in figure 3.12. Paliwal indicated that the enhancement sy~tem worked bcst when 

there was no perceptual weighting. The ~peech sample~ wcre ~amplcd at H kHz with ] fi 
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bits accuracy. White gau~~ian noise with zero me an was used to simulate the distortion of 

the speech ~ignal. The following table describes the output of the speech enhancement 

sy~tem in term~ of SNR for c1ean speech and two noise levels. Paliwal indicated that these 

objective rc~ults were reaffirmed by infonnal subjective listening tests. However, Paliwal 

did not provide any further description on the perceived subjective quaJity of the enhanced 

~peech signaIs. 

Table 3.8 - Reported Results for Enhancement Process using Multi-Pulse LPC 
Analysis Methods 

Input SNR in dB Output SNR in dB Output SNR ln dB 
LP. coefficients derived LP. coefficients derived 

from clean speech from noisy speech 
00 11.14 8.20 
10 10.29 8.32 
0 5.49 3.43 

Note that the sy~tem offers an improvement in SNR over the input speech signal only 

below a certain SNR (below 10 dB). This may be due to constraints placed on the vocal 

tract model which IS currently specified as an ali-pole filter. A system which incorporates a 

pole-zero model of the vocal tract may improve the performance of the system. Also note 

that the output SNR could theoretically he improved by approxlmately 2 dB byemploying 

an improved noi~e-robust method of a spectral (linear prediction coefficient) estimation 

procedure. 

~ 

Figure 3.12 - Speech Enhancement Using Multi-Pulse 
Excited LPC Analysis (After Paliwal [13]) 
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4. VEcrOR QUANTIZATION 

4.1 Introduction to Vector Quantization 

Vector Quantization is fundamentally a means of data compression. As such. the majority 

of applications using Vector Quantization have involved speech or image coding. The 

primary interest in Vector Quantization with respect to this thesis lies in its pattern­

recognition or classification capabilities. However. as pattern matching is ail inhell'nt 

characteristic utilized in the overall Vector Quantization coding system. this sectIOn Will 

introduce Vector Quantization as a coding technique to provide u more comprehensive 

picture of the possible uses of Vector Quantization. 

The essence of much of the theory involving Vector Quantizution eun he traccd to a re!'>uIt of 

Shannon's work in rate-distortion theory thm implies that the performance of a coder l'an he 

improved if a seri\!'i of scalar measurements is treated in groups or vectors. This result 

holds true even if the scalar measurements are taken from a mcmorylcss source 1191. 
Vector Quantizers can achieve this increase in performance by exploiting four possihle 

correlations in a given vector of value!'>: (1) linear dependency. (2) nonlinear dependcncy. 

(3) the nature of the probability denslty functlon, and (4) the geolllctric propel1ies of A -

space - where k is the number of values in the vector 1201. The lise of thcsc propertlcs in 

Vector Quantization will he elaborated in section 4.4.1. A summary of somc of the J...nown 

theoretical and experimental performance bounds for Vector Quantizer!'> Will he pre~cntcd in 

sections 4.4.2 and 4.4.3 respectively. 

Vector Quantization (VQ) can be con~idered a~ a mapping of a hlgh nUlllher (pclhap .. 

infinite) number of k-dimensior.:tl input vectors J. = 1 XI' x2' ... , xI.. 1 into a fll1lte 

number of M representative output vectors. This mapping or ljuanti7atIOn opcration Illay 

be identified as 

y = q(J.) (4.1) 

where q is the mapping operation. The output vector~ which arc al!'>o rcfcrrcd to III the 

literature as reconstruction vectors, reference patterns, and referencc templatc~ typlcally 

have the sa me dimension as the input vector (although therc i~ no fïnn reljlllrcment for thc 

output vector~ to be of the same dimension a,> the input vcctor~). The ~ct of M oulput 
vectors C = { y, ' 1 ~ i ~ M }, where y, = 1 YI. Y2 . ... , YM /, I~ rcfcrrcd to a,> the 

VQ codebook. Assuming that the output vector .. and mput vcctor~ have the ~ame 

dimension, the VQ codebook can he interpreted a~ a division of f... -dllncll'>ional ~pace mto 
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M non-overlapping regions {S, , 1 ~ i ~ M} associated with the M corresponding 

output vectors. U~ing this geometrical interpretation, the selection of the appropriate output 
vector from the VQ codebook can be seen as the determination of the region (S,) that the 

given input vector maps into. Using the notation of (4.1) this process can he written as: 

~, = q(JJ, if :! E S, . (4.2) 

Figure 4.1 shows a simple 2-dimensional space segmented into 16 regions/codewords. 

Note that the regions associated with the codewords may have different shapes. This 

degree of freedom in the geometric shape of a given cell is a property inherent in the 

codebooks associated with [he algorithmic approaches to codebook design to he discussed 

in section 4.3. Although the geometrical selection process indicated by (4.2) is easily 

under~tood, a more nllmerically tractable method of output vector selection is required. 

Figure 4.1 - Example Partitioning of 2-Dimensional Space 
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This role is fllifilled by a distortion measlIre d(J.,~). The distortion measure gives an 

indication of the dissimilarity or distance between a code book (output) vector and the given 

input vector. Ideally the distortion measure should be analytically and computationally 
tnlctable as weil as subjectively meaningfuI. Large and small values of d(~.y) should 
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correspond to bad and good subjective quality respectively. Aiso d(l,Y) dllCS not 

necessarily have to be a 'distance measure' in the strict sense rcquiring hOlh symmelry 
(dÜ,~) = d(~,J.» and the triangle inequality (d(J:.~) $ d(:l,y) + d(~,~)) ln he useful 

in Vector Quantizer design. The only necessary reLJuirement heyond those already 
mentioned is that the distortion rneasure be nonnegative (d(:r,~) ~ 0) and cqual to n'm 

when the two vectors are identical (d(J:,~) = 0 if l = L) 1241. Scction 4.2 will 

discuss a number of distortion rneasures which l'ould he used 111 Vector Quanlller dl'sign. 

The detennination of the codebook and the l'orresponding partitioning of f... -spacc u!.l11g a 

given distance rneasure is a key design step in Vector Quantization and will he deuil with III 

section 4.3. 

Referring back to the problem of output vector selection glven li codehook and a di!.tortion 

measure, the distortion rneasure l'an be seen to be an alternative mcans of dehncating the 

codebook partitions of k -space. The correct output vector l'an thcrcforc he sclccted hy 

choosing the codebook entry corresponding to the minimum dl!'.tortion value. The mapping 

operation of (4.2) can therefore be represented by: 

Y, = min d(:r,l.) , .i = 1 ... M . 
J 

(4 3) 

Figure 4.2 shows the use of the Vector Quantizer as a coding technique. The input vcctor 

may be comprised of a set of direct samples of a waveform or a set of paramctcrs ohtaincd 

via sorne transformation technique. In the encoder, the f... -dllnen!'.ional input vcctor is 

compared with the M entries of the codebook using a given distortion critcrion. The index 

corresponding to the minimum distortion according to (4.3) IS tran!.I11IUcd along a channel 

using R = log 2 M bits, giving the Vector Quantizer an effective ratc of RI/... hlts per 

symbol. The decoder receives the transmitted index element and selects the correspnnding 

reconstruction vector from an identical VQ codebook. In the ea ... c of waveform coding, 

where the codebook contains waveform patterns, the recon ... truetion veetor IS output 

directly. If the codebook contains a ~ct of paramctcrs, thcn the~e parameters ln tmn Ieee! 

into an appropriate inverse tran~forl11 system. The u~e of Veclor QuantiJ:atlon 111 a sllnple 

pattern classification sy~tem i~ similar to the ~y!.tcm dc~enbed above - the fundamcntal 

difference being the laek of a decoder and communication... channel (the ~elected codchook 

entry in the 'encoder' would be u~ed directly). Note lhat the compre ... ~i()n of information 

for the Vector Quantizer-based coding ~y~tem eomes at a eo!.t of eomplexity 111 the encoder. 

The computational complexity in the encoder I~ a funetion of the ~1J:e of the codchook or 

M. As the distortion decreases with increasing M, the !.ize of the codchook is a key 
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design parameter for any Vector Quantizer system. The computational complexity of many 

popular Vector Quantizer systems will he elaborated upon in section 4.6. 

Figure 4.2 - Use of a Vector Quantizer in Coding 

k dlmenslonal .....---------..., 
Input V9ctor - Determine minimum distortion 

measure Wlth respect to the 
M stored symbols 

ENCODER 

Channel 

" Selected Symbol 
Index {l Ml 

Get 
reconstrucbon 
vector based on 
reC9lved Index 

DECODER 

k'·dlmenslonal 
output vector 

The Ol'l'rage distortion of the vector quantizer system for a sequence of L input vectors can 

be given by: 

l L 
= L ~ dt!n'Y' ) ~ -I,n 

n=l 

or as L tends to infinity, 

= lim 
L40<l 

(4.4) 

where y indicates the codebook vector with the minimum distance according to (4.3) at =--1," 
the frame or time index of 1/. 

Note thu~ the average distortion measure implied here is different from those associated with 

scalar quuntizer~ as the distortion measure is based on a set of M representative 

reproduction vectors. The codebook vectors may consist of sets of parameters representing 

ideal models or sets of values representing noise-free segments of some waveform. As 

these 'ideal' code book values are used in the output sequence, the average distortion is a 

measure of the average difference between the physical entities represented by the input 

vcctors and the physical entities represented by the chosen codebook reproduction vectors. 

The dcgree of dissimilarity is given by the distortion measure which ideally gives a good 

indication of the subjective similarity hetween the two vectors . 

63 



• 

• 

• 

If the process which generates the input sequence is stationary and ergodic. the averuge 

distortion given by (4.5) will tend to the expectation of the distortion function given by 

[20]: 

Doo = El d(x,y ) ) 
- -1 

L 

= L P CI E S,) J d(J:.~,) p(J:) c/J. (4.6) 
;=1 

where P Ü E S,) is the discrete probabitity that 1 is in S, and p{JJ is the k -dimensional 

probability density function of 1. 

4.2 An Aigorithmic Approach To Codebook Design 

4.2.1 The Linde, Buzo, Gray Algorithm 

The goal of codebook design is to ger.erate a set of M codewords such that the average 

distortion of (4.4) is minimized. As indicated in section 4.1, the average distortion will 

tend towards the expectation of the distortion measure for a sufficiently long sequence if the 

source is stationary and ergodic. The mathematical expectation could ideally he used as an 

aid in the search for an optimal codebook given the probabilistic nature of the source. 

Unfortunately in cases such as natural speech and image data, there arc no gond 

probabilistic models available for the source. One possible alternative approach which does 

not rely on having knowledge of the underlying source model is to generatc the codchnok 

based on a long training sequence of actual data produced from the source. The codehook 

would be optimized by minimizing the average !tample distortion given hy (4.4) over the 

training sequence. Once the codebook has been determincd, the codehook COLI Id then he 

applied on samples outside the original training !tequence with hopcfully liule incrca!te III 

distortion. This 'Monte Carlo' approach to codcbook dc!tign a~~lImes that the training 

sequence will be of sufficient dllration to adequately representthe ~ource signal. The only 

restriction on the source signalls that It must at \ea~t be a!tymptotically mean stalionary 1191 
- it is not necessary for the source to be strictly slationary and ergodic. As natural speech 

falls into the less restrictive category, the algoflthmically defmed codebook :,hOllld be 

appropriate for speech. 

Lloyd developed the algorithmic technique for detcnmning the qllantizer codebook givcn a 

training sequence for the scalar (single dimensional) ca!te. The algorithm i~ based on the 

observation that the optimal quantizer will have two fllndamental properties. The first 
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condition is that the optimal quantizer must choose the codeword associated with the 

minimum distortion: 

y = min d(J.,Y ) 
-1 } -) 

j = 1 ... M . (4.7) 

(same as (4.3) 

ln the event of a tie, sorne arbitrary decision is made such as choosing the codeword with 
the smaller index. The second condition is that the codeword Yi must be chosen in order 

to minimize the average distortion associated with the cell Sj: 

min D, (~,) = L d(!,~) . (4.8) 
:!ES, 

The minimum can be determined by setting Y, to the conditional mean of all of the input 

vectors which mapped into the partition S,: 

~, = El J: 1 J. E S, J . (4.9) 

This conditional mean is !.ometimes referred to as a centroid and is indicated by: 

~, = cellt(J.. E S,) . (4.10) 

The actual determination of the centroid depends on the distortion measure used. In the 

case of the EucJidean distortion measure of (2.3), the centroid is determined by the simple 

arithmetic mcan of the vectors which mapped into S,: 

1 
~, = - ~! 

N, \ ES - , 

(4.11) 

where N, are the number of vectors which mapped into S,. 

In the case of the Itakura-Saito distortion measurc of (2.53), the centroid is found by first 

determining the mean of the autocorrelation sequcnces corresponding to the vectors which 

mapped into S, 

r\, = -, 
1 L rl 

N, lES, 

(4.12) 

and thcn determining the LPC coefficients corrcsponding to the mcan autocorrelation 

sequence with some appropriate algorithm. Generally thcre are no restrictions on the 
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distortion measure used as long as the distortion measure is computable in the first plal'C 

and the centroid can he fOl.lnd using (4.8) and (4.9). 

The processes indicated by (4.9) and (4.10) lead to an iterative algorithm for Vectnr 

Quantizer codebook design. The algorithm is referred to as the LBG algorithlll atkr the 

authors Linde, Buzo, and Gray 1211. The basic algorithm can be dcscribed by tl1(.' 

following: 

The LBG Aigorithm 

[1] Initialization (m=O) 

Given the training sequence and an initial code book with M clements and a 

distortion meaSlIre, set the average distortion measlIre to some high value 

D(-I) = +00. 

[2] Classification 

Encode the entire training sequence using the present codebook lIsing the 

nearest neighLor rule of (4.7). Detennine the avemge di~tortion D(m) for the 

training sequence using the present codebook . 

[3] Update Codebook 

Update the codewords by computing the centroid of the training vectors which 

mapped into each partition using (4.7) and (4.9). Increment ni. 

[4] Termination Test 

See if the decrease in distortion D(m -1) - D(m) was bclow a certain 

threshold. If not, then go to step 121 otherwise stop. 

Iterating between 12] and 131 will provide a non-incrcasing di~tortion and the algorithm will 

eventually converge to a stationary point. Unfortunately, the stationary point i~ only 

guaranteed to be a local optimum for the multidimen~ional case. Trushin imllcatcd that a 

quantizer specified by (4.7) and (4.8) would provide ~ufflclcnt conditions for a global 

optimum for the scalar ca~e and a dbtortion mea~ure of the fonn d(x,y) = j (x,x - y), but 

no such conditions have been speclfied for the detennination of a global optimum for /.. > 1 

[32]. Also, the solution provided by the LBG algorithm will not generally he unique for a 

given training sequence and di~tortion mea!\ure 1321. Different initiai codcbooh will 

generally provide different locally optimal codebooh whlch may or may not pcrform weil 

in a Vector Quantizer based system. The selection of the initial codcbook is thercfore 
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crhieal in the design of a good final eodebook. The generation of the initial codebook will 

he discussed in the next section (4.2.2). 

There are two possible approaches in attempting to determine the approximate global 

solution for the codebook. The first approach, as already suggested, is to determine a 

'good' initial codebook via sorne unspecified method. JJnfortunately, there are no firm 

guideline!' as what constitutes a good initial codebook. Therefore, the algorithm is usually 

l'un on several different initial codebooks. The codebook with the lowest average distortion 

measure is then selected as the approximate globally optimum solution. A different 

approach utilizes the concept of simulated allllealing to generate optimum codes [33]. The 

concept can he described as follows: 

10] Given an initial codebook and an initial noise or 'temperature' level. 

Il] Detennine the new codebook at the noise or temperature level. 

12] Decrease the noise or temperature level. 

13] If the noise level is greater than sorne lev el then go to step [1] . 

This process was briefly alluded to in 121] where Gaussian noise was added to the training 

sequence samples in successively decreasing amounts in order to obtain the global 

optimum. Initially. the noise was set to a high level so that the LBG algorithm converged 

to the single local and global optimum indicated by the noise. As the noise level was 

gradually decreased. the global optimum shifted slightly towards the optimum codebook of 

the training sequence. The LBG algorithm using the codebook from the last noise level 

was able to track the new optimum codebook even though new local optimum points were 

introduced. The mam drawback of the !.imulated annealing process is the computational 

overhead reqllired as each drop in noise level requires an additional run of the codebook 

generating &Ilgorithm. Although this process shows sorne promise, the work done in this 

field with respect to code generation has been limited and few results are available. 

4.2.2 Initial Codebooks 

4.2.2. t 'Random' Initial Codebooks 

There are several methods of defining the random codebook. The simplest would be to 

choose M vectors from the training sequence at randorn as the initial codebook. Another 

method wOllld he to choose M evenly spaced vectors from the training sequence. In this 

case the vectors should be chosen widely enough apart so that the sequential choices are not 
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highly correlated. Random initial codebooks offer the advantage of having liule or no 

computation al cost associated with the selection procedure. The main disadvalllagc of 

using random codebooks is that the 'randomness' inherent in the procedure leads ln a 

corresponding degree of uncertainty as to the quality of the final code book produced using 

the random initial codebook. The degree of uncertainty is decreased ~ol11ewhat for large 

codebooks and large training sequences. As a mie of thumb. if random codebooks arc 

used, several initial codebooks are usually run through the LBG algorithm in ordcr to 

achieve a degree of confidence in the hest codebook generated. 

4.2.2.2 Product Initial Codebooks 

Product initial codebooks can he interpreted as the repeated application of an L-level1>calar 

quantizer. If the scalar quantizer is applied k times. A -dimensional space can he scrn as 

being partitioned into grids defined by the scalar quantizers. If the scalar qllantizer IS 

uniform, the initial codebook consists of a A -dimensional cllbic lattice-like structure. 

Knowledge of the souree or training vector can aid in the design of the product-mitial 

codebook by setting the range on the basic scalar qllantizer or by using a non-uniform 

quantizer better sllited for the source in question. For example. in the case of LPC 

coefficients, the basic sealar quantizer would range from -1 to 1. As the rcpeated 

application of the L-level quantizer will potentially result in LA codewords, ~OI11e pruning 

may be in order to bring the numher of initial codewords down to M. Again. knowledge 

of the source distribution may aid in the pruning process. The main advantagc ln product­

initial codebooks is that they are perceptllally simple and have no liule or no computatIOn 

overhead in the generation of the initial codebook. The main disadvantage is that the 

training sequence is not directly used in generating the initial code book - nther than some 

rather general a-priori knowledge of the source which may be incorporated in the sealar 

quantizer. 

4.2.2.3 Initial Codebooks by Splitting 

The method of generating an initial codebook by splitting consi~ts of generating a sl~rics of 

intermediate codebooks of fixed dimension and increasing rate log2 M' 

(0, 1, ... , log2 M' ) where M' is the size of the intermediate code book . The ha~ic 

procedure can he described as follows: 

(0) Set M' = 1. Determine the zero-rate codebook. Thi~ is equivalent to 

• determining the centroid for the entire training sequence. 
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r t 1 Generate an initial mte log2 (2M' ) code book by doubling the size of the 

codebook. This is done by splitting the codebook with a fixed or random 

perturbation vector. The old codebook is usually retained as half of the new 

codebook to ensure that the average distortion measure will not increase. This 

process can he descri hed by: 

Y ~ y y + E i = 1, 2, ... , M 
-1 -1 '-1 -' 

(4.13) 

M' = 2 M' 

where ~ is the perturbation vector. 

121 If M' is equalto M then stop. If not, then run the LBG algorithm on the size 

M' codebook using the training sequence in order to produce a good rate 

log2 M' code book and then go to step [1 J. 

Figure 4.3 demonstrates the process where the method of spitting is used to generate an 

initial rate 2 (size 4) codebook and then the LBG algorithm is run one last time to obtain the 

final rate 2 codebook. The main advantage of this procedure is that the training sequence is 

utilized to create initiaI codebooks which tend to have a relatively consistent behavior 

(perfonnance) when compared to the other methods of generating an initial codebook. The 

intermediate codebooks generated in the process listed above may also he used as part of a 

binary search procedure to be elaborated upon in section 4.6. The main disadvantage to the 

method of splitting is the computational overhead involved in generation of the intermediate 

codebooks. The size of the code book is also restricted to powers of 2 (usually not a 

problem). The mcthod of splitting is predominantly used where knowledge of the 

probabilistic nature of the source process is limited - such as with natural speech. 

4.3 Vector Quantizers based on Lattice Structures 

Although the LBG algorithm is only guaranteed to generate locally optimum solutions, it is 

the only method available for generating a codebook for a process with an arbitrary and 

perhaps unlnown plObabilistic distribution. Its use, therefore, has become almost 

universal in most practical Vector Quantizer based systems. In this section, Vector 

Quantizer codebools based on geometric or lattice structures will he explored. These 

structures assume a known, usually uniform source distribution, and therefore are not 

really appropriate for lise with more realistic source processes. Lattice structures, however, 

provide us with a better understanding of the basic structure of a Vector Quantizer 

codebook and are used to derive theoretical bounds on the performance of Vector Quantizer 
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codebooks. Sorne of these bounds wi1l be dlscussed in section 4.4. This section will 

provide an introduction to the basic concepts and tenninology associated with Lattice Vector 

Quantizers. 

The ba~is of a laltice structure lies in the structured partitioning of k-dirnensional space. 

For the scalar or one-dirnensional case, the partition is simply the one dimensional segment 

of the real Ime. The optimum quantizer (one with a unifonn output distribution) can 

therefore be dctenmned by altering the interval of each segment according to the source 

distribution and the given distortion function. The problem of correctly configuring the 

partitions in '" -dirnensional ~pace is more complex due to two reasons. First, there is an 

infinite variety of "-dimensional partitions or polytopes (a k-dlmensional object defined 

by a nllmbcr of '" - 1 dimensional hyperplanes) which may be used to partition k -space. 

Secondly, the relationship between the source probability density function (pdf) and the 

distortion mea~lIre IS not lIsllally weil defined in k -space. For these reasons the design of 

geometrieally strllctured codebooks usually eonsists of a trial-and-error approach in which a 

variety of polytopes are tried glven a unifonn input distribution and a Euclidean distortion 

measllre of the fonn given by (2.3). 

A latticc 111 k dimensions, QA' is fonnally defined by the set of ail vectors that satisfy [27] 

1281: 

,,-\ 

nA y = L b, ~, 
1=0 

(4.14) 

where Il ~ k, h, are integers, and the set {eo, el, ... , en-l} are linearly independent k­

dimensional basis vectors. 

The set of points generated lIsing (4.14) will fonn an array of regularly spaced points in k­

space. A lattice qllantizer is simply a quantizer whose codewords form a subset of the 

cntire lattice. Assuming that the lattice extends throughout k -space, a given lattice will 

have the property of appcaring to be structurally invariant regardless of the latticc point 

from WhlCh the lattiee is bClI1g viewed. The lattice points can therefore he seen as the 

vertices of a set of congruent and space-filling cells. A given distortion rneasure, usually 

the Elldidean distance mcasllre. can define a Ilellrest-Ileighbor region around each lattice 

point. These regions are also referred to as Voronoi regions or Dirichlet regions. Note that 

the nearest-neighbor region defllled here is eqllivalent to the distortion based partitions of 

the general Veetor QlIanuzer disclIssed in ~eetion 4.1. Due to the regular structure of the 

lattiee. the Voronol regions of ail the lattIce pOll1ts wi Il consist of a set of translated 
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congruent cells or polytopes. Note that the se polytopes will necessarily he convcx in /...­

space if the distortion measure is the Euclidean distance measure 1261. 

The basis set of vectors~, (k = 1, 2, ... , n) determines the nature of the lalttce and the 

Voronoi regions. Conway and Sloane (28] have shown that the Voronoi reglOn fOI a given 

lattice point can be bounded by the hyperplanes defll1ed by thl' perpendtcular bi~ector~ 

joining the lattice point in question to ail of its neare~t ncigh bors \Il the lalttee. lJ nder 

certain circumstances the Voronoi regton is simply a scaled vanatlon of the polytope with 

vertices defined by the basis set of vectors. 

A lattiee quantizer of a given dimension can be desnibed by three quantitative altrihutes 

[27J: the packing density, the klssil/g numbl'l', and the 1/01 mali:edmomentolll/(.ltlll . The 

packing density of a lattice quantizer is the fraction of spacc that can be eneompas~l'd hy 

non-overlapping k-dimensional spheres ccntered at cach lattier pOint. CitVl'n the ~al1le 

conditions, the kissing numbcr is defllled as the number of contact points a glven sphere 

will have with the surrounding nonoverlapping spheres. l'hl' pading density and thl.' 

kissing number give an indication of how suitable a laltlce strlll:tllle i~ for the lIuantl/.atlOn 

process. The nonnalized moment of inertia is dctined for a specIfie polytope by 1261: 

(4.15) 

where g is a lattice point, pl.. signifies the k-dimen~ional polytope, VU''') sigllllics thc 

volume of the /.. -dimensional polytope. 

The normalized moment of inertia gives an indication of the performance of the lattiee 

quantizer where the lower the value deI ived by using (4.15) - the oetter the theoretH;al 

performance of the lattice quantizer. Better perfonnancc III thi:-. cac.,c Illlplies a /ower output 

distortion for a glven dlJnension. The search for optlmallî.1tticc ljuantll:erc., can therclore hc 

interpreted as a search for an admi:-.:-.ible polytope whlch WIll mll1lllllZC (4 15). (ic r:-.h 0 

[26], Conv,dY and Sloane (281 li~t a nllmber of pO:-':-'lolc latticc :-.trll<.:lurcc., alld thclr 

corresponding quantitative attnbute:-. for dlmen:-'lOm. up to k = 24. The performance of 

lattice quantizers will be elaborated lIpon in c.,cctlon 4.4. 

A portion of the interest in lattice quantizers is duc to the low mcmory rcqulrement:-. of thc 

vector quantizer and the potentially low computatlonal ovcrhcad III encoding a given input 
vector. The low memory requirement can be :-.een from (4.14) a:-. the :-.ct~, con~lc.,tlllg of 

n < k basis vectors completely specifie~ the :-.tructllre of the latticc quanti/cr. The cncoding 
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process given the ~et of basis vectors consists of determining the set of integers 

hl' ~, ... , hr/' Conway and Sloane in (29] dcmonstrated how that, for a certain cJass of 

lattlce quantlzer~, the encoding complexity couJd he as Iittle as k to e logk operations­

dcpending on the lattH;e ~tructure. Saywood et al in (34] introduce a more generallattice 

quantizcr encoder which is independent of the particular lattice structure but is Jess 

efficient. The algonthm is given by the following ~teps: 

(01 m =0. 
Glvcn a ba~is set S. E {el> e2' ... , en} and the input veetor JO. Initialize !l0 

to Q (Ihe origin). Detennine the set of points C that detennine the Voronoi 

reglOn about the origin. Define ml he the magnitude of the vector ~m and me 

the dislance of the farthest point in the group Cm. Let M = mx dÏ\' mC' If 

M i~ cqual to zero then the codeword is the origin (MOp) else proceed to step 

Ill. 

(li m=II/+1. 

Let 1* = llll-I/M. Detemlinethebasisvector!i. thatminimizesthe 

distortion mea~ure d(l ,l},,). !llll = em
- I + M ~ (also a lattice point) . 

121 Detcrll1l11e dlll = III - ft mil· 
If dlll ~ ml then ~et [nt = Cnt+1 + fim (also a subset of the lattice). If 

dm > 1111 then lm = 11//+1 + !y'. 

1 J 1 If dm < 11/1 then ~top, else determine M = 111 \ div me 

and go 10 step Ill. 

Thcsc n~~lIlt~ have 10 he placed in the context of the general (unstrllctured) Vector Quantizer 

introduccd in sectIOn 4.1 and generated by the LBG algorithm of section 4.2 which requires 

a set of M»" ba~is vectors to be stored and a series of M, ~ometimes complex, 

di~lortlOI1 Illea ... un:o; 10 be delcnnined according to (4.3) for each input vector. 

4.4 Performance BOllndo; for Vector Quanuzalion 

ThiS sccllOn will dl~cu~~ the J..nown performance bound ... for Vector Quantization. It has 

been Illclltloned that Li Verlor Quantlzcr can approarh the rate distortion limit for a given 

~ollrcc a~~\Illllng a ~llfrlClcnt deglee of complexity 111 the encoder. SectIon 4.4.1 will 

dCll10mtIate ,lll"t ho\\ a Vector quantIzer ~y~tel1l eun arhieve this limit by utilizing the 
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possible correlations in a given input vector. Section 4.4.2 wiIl detail the known thcOIetical 

bounds for Vector Quantizers. Finally, section 4.4 . .3 will discliss sOlne experimcntal 

results and observation~ for Vector Quantizers optinuzed for some basic source proccsscs. 

4.4.1 Use of Possible Correlations within a Vector of Values 

There are four possible correlations which l'an be lItilized III a glvell vectOl of valul's: (1) 

lineardependency, (2) nonlineardependency, (.3) the geometnc propcrties of ~ -spacc, and 

(4) the shape or characteristlcs of the source probability dcnsity (pdf) fUllclIon SOIllC of 

these properties are interrelated. For example, "near and Ilonlincar depclldcllClcs withlll the 

vector of values are characterized by the ~ -dimcn~lt)(1al source pdl. A Vertor ()utll\lli/l'r 

has two means of exploiting these correlations in f... -dlfnell~JOnal ~pacc - ccII placelllcllt and 

cell shape. Cell placement refers to the individual geollletnc locatIOn \Il ~ -~pacc ot the M 

codewords as weil as thclr relative di~placel11ent l'rom OIlC another. CcII ~hape rcfcl-; tn tlll" 

distortion-based nearest-neighbor or VorOIlOI partllion a~~()clatcd wlth cach c()(kword. t'l'II 

placement and ceIl ~hape are interrelatcd propertlc~ a ... onc IIlhCIClltly dclll1l'~ thc othcr 

However, for the purpo~es of the followlllg di~cll~\lon, onc a ... pcct of VcctOi ()uantl/alloll 

will be stres~ed over another - dependll1g on thc (lata corrclation propcrty hClllg cxarlllllcd . 

The following sllb~ections will demon~trate how thc two a"'pect~ of Vectur ()U:lntl/alloll 

lltilize the possible depelldencles in the input data vcctor to achlcvc the thcOlcllcal 

performance limits one correlation propcrty at a tllllC. The goal will he to provlde an 

intuitive feel for the proce~ses at work Via ~llllple cxamplc~ (2-dimcn:-'lOnal whcllcver 

possible). A more mathernatical treatmcnt of \'cctor QuantllatJon WIll bc glVCII in 4.4.2. 

4.4.1.1 Lillear Dependency 

Linear dependency i~ abo referred to a~ correlatioll. The correlation helwccn lwo ICIO­

mean variables XI and '\2 can be detcnnined by ~cc\llg If the cxpectation of the produl't I,)f 

the two pdfs i ... equal to zero: 

lIncorrclatcd: El x, .\ 21 = 0 (4.16) 

where E denote~ the expectatlOn opcrator. 

Note that if .\, and -\2 were :-.tatistically illdcpcndcnt-

(4.17 ) 

where p( ) represent~ the pdf 
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then the variables are automatically uncorrelated or linearly independent as 

Erxl x21 = Elxtl Elx21 = o. 

Figure 4.4( a) !lhow~ a joint 2-chmensional probability density functlOn for two correlated 

zero mean variables xI and x2' The pdf is uniform and constant within the rectangle. 

G iven that the !lide'i of the recUlngle are glven by a and b, the joint pdf in this case is simply 

P(XI ,x2) = 1/ ab , xI and x2 within the rectangle 

= 0 elsewhere. 

(4.18) 

Figure 4.4 (a) - Correlated Input Data (After Makhoul et al [20]) 

/' 

. , , 

[(a+b) 1 (23/2))2 

+- t. x t. voronol raglon of 2·0 codeword . 

~_-f-(_(X_'I =--------------
• 2 Dlmenslonal codeword 

Il Scalar quantlzer Interval 

The matglllal pdf\ for each singlilar variable are also shown. If a simple uniform scalar 

quanti/cr with ljllanttzatioll intcrvul clJuul to d is available to encode each variable, then a 

total of (cl + ,,) / (82 1
/
2

) Jcve b will he reqllired for the ~calar qllantizer. Thi.., cOiTesponds 

to a raIl' of log2«(/ + h) / (821,.2)) bit~ per input variahle. Flinhennore, since the quantizer 

will have ln be apphed ~eqllcntlally for each variable, twice U!l rnany bits or 

210g 2«(/+h)/(82 1/2
)) = log2«11+b).2 /(82 1

/
2

)) blt~ will be reqllired to encode the 

IIlpUI Vl'etor. Il il = 68 and h = 38 then the encoding rate will be eqllal to 5.34 bits. Note 

that thi:-- I~ cqulvaknt 10 l'Ilending Ihe entire :--pace dctll1ed by the da~hed rectangle. Since a 

:-'1 gl1\ticant pOillOIl of the reglon ha~ zero probability of occlirring, the sequential scalar 

l'oding of tht.' villlablcs i:-- IIlctflelcnt. TllIS type of encodll1g proce ... ~ where a given scalar 
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quantizer is used repeatedly to encode a set of variables is also referrcd to as a produl't 

encoder (see section 4.2.2.2). 

Also shown in figure 4.4(a) within the non-zero probability region is an examplc plal'ellu.'nt 

of 2-dimensional codewords. The codewords are ~eparated by J units along cadi maJor 

axis of the rectangle. The Voronoi regions consist of li simple J .\ J square l'entered on 

each codeword. Note that thi~ is not necessanly the best possible partition whkh cOllld he 

used to encode the region within the rectangular pdf - the simple square VOIonoi region was 

chosen to demonstrate how even a simple sub-optimal codehooJ.. could inl'fease the 

performance of the encoding process. The number of bits required to encode the 2-

dimensional codebook is equal to log2(ab / ( 2
). Assuming a = 6J and h = 38 as berme. 

the encoder rate is equal to log2(1~) or 4.17 bits. In gcneral. any corrclated variahle~ l'an 

be decorrelated througn some sort of transformation. Figure 4.4(b) shows a tran~forllled 

version ot the figure of 4.4(a) in which a slIllple rotatIOn on the Iwo variablc~ .\ 1 and .\ 2' 

now leads to two decorrelated and indcpendclll vaflahlc~ YI and \'1. ~Ince 

Note that the relative placement of the 2-dlmen~H)Jlal 

codewords withm the rectangle are ullchanged. A ~eqllential ~calar encodlllg opel al 1011 in 

Figure 4.4(b) - Decorrelated Input Data (After Makhoul et al [20]) 

X2 

X2 

a 

• • • 
P(X2) b A 

• • • 
a 

• • 

Il 

• • 

~ x li voronal raglon of 2 D cadeword 

/ 

p(x l.x;» .' 1/ (ab) 

• 2 Dlmenslonal c.odoword 

Il Scalar quan!lzar m!flrval 

the situation pre~ented by figure 4.4(b) will Icad to a total rate of 

logz (a / 8) + log2(!J /8) = logz (ab /82
) bit,> bClIlg reljuired. Thi~ I~ elluivalcnt to the 
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rate produced by the 2-dimensional codebook in the earlier pre-transformed state . 

Therefore, a~suming that the appropriate codebook can be generated, Vector Quantization 

can be seen to have an inherent decorrelating property. The assumption concerning 

codeword placement is not unreasonable as any standard codebook generating algorithm 

such as the LBG method will only assign codewords where there is a positive probability. 

4.4.].2 Nonlinear Dependencie~ 

Two zero-mean variables x) and x2 may he uncorrelated or linearly independent according 

to (4.] X) and sti Il be stati~tically dependent. In this case the remaining dependencies 

between the two vanables are tenned to be nonlinear dependencies. 

Figure 4.5 ~hows a rmg-hke Jomt probability density function with a constant pdf inslde the 

ring equal 10 1/ (1482
) - where Ô is the interval of the basic scalar quantizer as before. 

The variables are uncorrelated; ~o no further rotation or transformation will produce an 

optimal scalar encoder in this ca~e. As can he scen from the marginal densities and the joint 

dcnsity, the two vanables are statistically dependent because the condition of (4.17) is not 

satisficd and the variable~ are therefore nonlinearly dependent. If a simple scalar quantizer 

Figure 4.5 - Nonlinear Dependencies ir, the Input Data 
(After Makhoul et al [20]) 

a 

• 
b 
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is used to encode each random variable sequentially, the total rate of the sequentialt'ncoding 
process will beequai to log2(a/ 8) + logz(b/8) = log2(3) + log2(6) = 4.17 htls. Notl' 

that this rate is equivalent to the rate of the optimal encoder of figure 4 4(h) in whil'h the 

variables were uncorrelated and independent over the 11 x h rcctangular region. 

Figure 4.5 also shows a proposed placement of a total of 14 codcwonh wtlh squan.' 

8 x 8 Voronoi regions as in the previous examples. Again, the sllnplc slJuare VOIonoi 

region is chosen purely for the purpose of demonstration - a code book generating algollthm 

may produce a better codebook distribution over the 2-dimenslOnal rcgion. The rail' of the 
2-dimensional encoder in this case is simply log2(14) or 2.21 bits. 

By proper codeword placement, the Vector Quantizer is able to partition A -dilllen~i()nai 

space to take advantage of the variou~ random variable interdepcndencics and nature of the 

joint pdf to provlde a supenor encoder. Furthenllore, the Vector Quanti.ler is ahle to do thls 

without prior knowledge of the marginal and joint densities, becau~e trallling algOlllhms 

such as the LBG method will at Ie"~t provlde a local optImum glven a ~lIl1lcienlly long 

training sequence. The sequential scalar lJuantizcr in colllpari~on muy be ablc 10 accollnt 101 

linear dependeneies assuming that an appropriate tran~formatloll (whlch requlles 

knowledge of the random procc~s) l'an be round - but it CHnnot opllmally encode a ~el 01 

variables with non-linear dependeneics. 

4.4.1.3 Utilizillg the Geometrie propcrties of /.. -Spacc 

In subsections 4.4.1.1 and 4.4.1.2, a ~qllarc Voronoi region wa~ utili/.ed to paliltioll 2-

dimensional space. Thi~ was donc in orcier tn have a basi<; of C01l1pall~()n with the 

sequential (product) encoder. However, the cüdewOl(J\ and the conc~pol1dlllg Vorollol 

regions of a Vector quantizer are only con~trainecl to thc set 01 f... -dllllcn"'lonal convcx 

partitions or polytope~. A Vector QlIantlzer tltereforc ha~ c01l\Iderahly lllOle frecdom in 

assigning a portion of f... -~pace to a particlilar codcword. In cOlllpan",ol1, the rcglOn~ 

associated with the repeatcd u~c of a ul1lform ~calal qllantl/.cr would he re ... tllcted to the ~ct 

of k-dl1nen~lOnal eubes (~ee ~ectlon 42.2.2). 

Figure 4.6 ~how~ how two dlfterent ba~lc geolllctric Voronoi rcglOll\ can 1)(: lI,>cd 10 

partition 2-dimcn~lonal ~pacc. The geo11lctllc flgllrc~ arc the (J / (J unit "quare and thc 

regular hexagon with a ~ide of length b. Thc Joint dcmltlc ... alc a"",ullled to he 1I11tform and 

independent throughout 2-dllnen~ional ~pacc. Thc ... quarc partition corrc ... pond,> to the 

equivalent product codc which woulcl n;~lIlt with the optllllul u ... c of a ... equcnllal ~calar 
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quantizer. The hexagonal partitions are typical of how a Vector Quantizer codebook would 

partition space for the simple uniform distribution and the Euclidean distortion measure. 

Note that the~e 2-dimensional partitions may be considered as latticc structures with basis 

vectors: 

square lattice: go = 10 , 1] ,!il = [1 , 0] (4.19) 

hexagonal lattice: ~o = 131/2 
• 0], ~l = [l , 2] (4.20) 

Figure 4.6 - Variations in 2-Dimensional Space Packing 

codeword 

• • • ./ 

• • • • 

• • • • 
J Ir 

Dl o 
I--a---l t-b-i 

Usmg the square as the base polytope USlng the regular hexagon as the base polytope 

Assuming a Euclidean distance measure, the distortion associated with the square celI is 

given by 1201: 

D.I(///<IIl' 

') 

= 11~ /6 , (4.21) 

whilc the distortion associated with the hexagonal cell is given by: 

_ 1/2 4 
D

'
U'I<IXm1 - 5 (3 b) / S . (4.22) 

The distortion implicd here OCCllIS in representing t;le entire region by the centroid of the 

l'Cil asslIl11ing a lIniformjoint density throughout 2-space . 
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By equating the area of the hexagon given by A"t'\<lgo/l = (271
/
2 

,,2) /2 A 10 thr area ,1f 

the square given by a2
, the two quantizers in figure 4.6 will have the saille enl'oding ratr 

since the same number of cells wou Id be required to coyer a giwn area. lIowl'wl, there IS 

a difference in the output distortion associated with the two quantizers al the saille latc. The 

ratio can be shown to be 

(4.2]) 

The hexagonal-ba~ed quantizer will have a lower associated distortIon at a glwn ratc. 

Correspondingly, the hexagonal based qllantizer will have a lower encoding late for il 

particular distortion. 

From these simple examples, it ean be seen that thc additional trccdol1l<; III the ~­

dimensional geometric structures which are allowed III Vector Quantllation wlllleMIIt III 

more efficient use of ~ -spaee. This property of Veetot" Quantizcn. can he utlli/cd 

regardless of the !inear and nonlinear dependencies III the input variables. In the :-.pccillC 

example given 111 figure 4.6, the joint density was givcn a~ that of an lIncorrelated and 

independent source. By taking advantage of a more arpropnate hcxagonal structure, li 

slight improvement in the encoder was still made cvcn thollgh the input vallahlcs were 

independent. 

4.4.1.4 Utilizing the Charaeteristies of the Source DCJl:-'Jly FUl1etion 

A property which has been allllded to 111 the prcvloll~ cxall1plc~ i<; the property of the Veetor 

Quantizer to taîlor itself to the source distributIon fllnctlon. In the prevlOu<; eX:lI11ple~, tlll: 

placement of the f... -dimensional code book wa~ regular duc tn the lInJ!onn nature of the 

probability denslty fllnction. More realt~lic ~ourCC\ have 1l0Jl-UnIlOlIll and LOlIlplex 

multivariate density funetions. The genclUl Veetor Quantll:er wIll place It~ cot!eword., 

where the overall average ~ample dIstortIOn for the \ource dl\tr Ibutlon and dl..,tortloll 

fllnction will be Illinimizcd. Thi., procc~s I~ lI~lIally accolllpli.,hed vIa ~ollle ~ort of Itelative 

(LBG) algorithm on a repre~entatJve trallllllg sequcnce. IntllJllvely, tlw. lI11plles Ihat the 

density of codeword~ will be greater (and the VOroJlOI region\ ~ll1aJleI) III reglOlls 01 J...­

spaee where the t11l1ltivariate probabdlly dcn\ity ha.., a rclallvely I:llge magnItude 

Correspondingly, the Vector QlIantizer wdl only place a lew or no codCWOId\ whne the 

multivariate dell~ity functlon i\ <;maller or cqual to lero. '1'111\ pro pert y 1\ IlIu<,llated III 

figure 4.7. The diagram ~how~ how a codehook gelleraling algoflthm Illay place a ..,<.:t of 1) 

codewords 111 2-dimcn~lollal ~pacc glven a repre~clltative ~cne~ of trallllllV velll)J'" f rom a 
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non-uniform den~ity function. One other point to note from the diagram is that the 

polytopes do not nece~sarily have to have the geometric structure throughout k -space. The 

Vector Quantizer will a~~ign both shape and size to each codeword Voronoi region as 

requircd to reduce the ove rail distortion. 

Figure 4.7 - Accommodating the PDF of the Input Data 
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4.4.2 Theoretlcal Pelfonnance Bounds of Vector Quantizers 

Many of the J..nown theoretical perfonnance bounds in communications theory have been 

dcrived utilizlllg a field of comllllllllcations known as information theory. Information 

thcory drals wIth the dctermination of the codll1g bound~ of compacting and compression 

codes as weil a~ the potential throughput of a glven communication channel. The theory 

does not exphcttly dctenmne lIow to generate the optimum codes for a given channel- but it 

does mdlcale lhal lower houllds do CXI~t and are theoretically obtainable although the 

re~uIting ellcoder may be impractically complex. Subsectlon 4.4.2.1 will introduce the 

hasic tcnninology and rc',lIlt~ of infollnatlon theory and indlcate how the Vector Quantizer 

design problcm i~ related to thc underlying a~sul1lptions made in Shannon's third coding 

lheorclll. Section 4.4.2.1 will ~pecltïcally dcal with the known performance limits of 

Vectnr Qualltlzation . 
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4.4.2.1 Relevant Aspects of Information Theory 

Information theory is primarily concerned with the determination of coding hounlls for a 

given source process. These bounds are typically expresscd in two related rUlletlOns - Ihe 

rate-distortion function R(D) and the distortion-rate function D(R). The raIe-distortIOn 

function gives the highest achievable rate for a glven distortion while the di:-,tollion-late 

function gives the lowest distortion po~sible for a givcn rate. 

The fonnal definition of the compression coding prohlcm a~SUI1les that N discrete samplcs 

are available from an independent or memoryless randol11 proccss. The N samllies may hl' 
referenced by the vector l = {xo, Xl' ... , xJ.-d. A mapping, ~ = qU), then lransfmIlls 

the input veclor into one of M discrete represcntallve output veClors (Yo, Yt, ... , YM tl. 

The number of the representative vectors M may he intinite. The minimuI1l aVl'lage 

distortion involved in the mapping operation WIll he glven hy: 

DA = min El d{J..,I.) l , 1 = 0, l, ... , M-I (4.24) 
v, 

where Ellis the expectation operator and d( ) IS li distortion measurc bclwecn .I and ~, . 

The minimum average rate R required to transmit the II1dcx a~soclated Wlt , the output 
vector is equal to H(y)/I.. bits pel' sample where H(y) denotes the l'I/tropy or IIlt0l1l1ation 

content of the output proce~~ given by: 

M-l 

H(~) L p(!:.,) logz p(~,) (4.25) 
,=0 

Now from [411. ShaIlIIon's third cod1l1g theorcm is given a~: 

For al/y fil/ite alphabet memO/:v/l'.\S .\Ource wifl! houl/ded di.\forflOn /11l'lI.\/lI l', If 
is pos.\ible to fil/d a h!ocA code 01 data ('omprl'.\.\ÏfJ/l 01 ra fi' R .\IIch fhaf 'hl' 
a\'erage per-fou,',. distortlol/ /.\ /l'.\.\ th{1II D, pl O\'/ded R > R(I)), and fhl' hlod 
/ellgth N is chml'Il .\UffiC/l'I//ly large. 

As R(D) is the inver-;e rclation-;hlp of D(/?), the ah ove I~ equivalellt to ~ayiJlg that the 

minimum distortion D(R) i~ attalllablc if tht; rail; R i" hlgher than "Oille fixed value. 

Relating thi ... theorem to the above colllpre~~lon prohlcm give~ tht; dl~tortloll-rate fllI1l:tioll 

as: 

D(R) lim DI..(R) 
A---t'" 

= min Elder,y>! , R ~ I/(y)/ A ( 4.2 f }) 
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Now the compression problem as described above is identical to the description of the 

general Vector Quantizer outl ined in section 4.1. Therefore, the coding perfonnance of a 

Vector Quantizer can potentially approach the coding Iimits derived for a particular 

memory less source if the dimension (vector length) of the vector quantizer is high enough. 

The distortion-rate function D(R) is not easily obtained via analytical means for most 

source distributions. ComputatlOnal techniques such as Blahut's algorithm (41] may be 

used to determille the rale diMortlon, or D(R) may he estimated for a given rate and 

di~tribution by the following bound: 

DI (R) :::; D(R) :::; Dc;(R) (4.27) 

The upper bound, Dc;(R), is the di~tortion-rate function for the memoryless Gaussian 

source with variance a2 and i~ given by: 

(4.28) 

The lower bOllnd is known as the Shal/I/on /ower /JoUI/d, and is achievable for most 

procc~ses only in the limit as R approaches infinity. The Shannon bound is given for a 

specitïc sourcc process by: 

(4.29) 

whcrc h(.\) is the dijfcJrl'l/tial el/tropy of the memoryless source defined by: 

(4.30) 

The diffcrcntial entropies of some memoryless ~ource processes are listed in the foIlowing 

table /201: 
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Table 4.1 - DifferentiaI entropies of ~ol11e memol)'less source prxesscs 

Source Process PDF of Source DIfferentiaI Enuopy 
p(x) h(x) 

Gaussian 1 ,(-1 ~ /2a~) 1 , 

..J2na 
l -log, (2 Jrl'a-) 

2 -
Unifonn 1 

1·\ 1 -.fj(J 1 ) 

2.J3a 
, $ -log,(I2o:n 2 --- ,. -, 

0 , otherwise 
Laplacian 1 (-..JII 'I/a) 1 1 ) 

--e -log 1 (2('-a-) 
-fia 2 -

Gamma 'V3 1 1 
-

e( -.Jil 11/2a) -log.,(4m' ca: /.1) 

~Xnaj·\1 2 -

C = () 5772 

The Gaussian, Laplacian and Gamma dl~triblltiolls have hl'l'n u~ed a..; III ~t-onlcl 

approximations for the long term (severa! ~ecollds), mcdium tel III ( 1 ()O 11J~). and shO! t tl'llll 

(10 ms) probabili~tic distributions of the speech proce~s le~pl'ctlvely. 

The determinatiol1 of the distortion-rate fUllction lor ... ource ... wJth lllclllory 1 ... cXlll'mcly 

difficult, and very few definitive re~u1ts have bccll obtalllcd 111 thc ca~e of the C;au~:-.iall 

distribution, it has been shown for the ca~e of a corrclatcd proccss (1 i near depclldcncy) and 

for small distortion~ that the di ... tortlOn-rate fUllctlon l'an he glVl'1l III tCrlns of (4.2X) hy /201' 

(4.12) 

where ct> is the ratio of the geolllctnc mean to the arithl11ctic Illeun of thc ~pcctral dl'II"'lty 01 

x(n). 

This result appears to carry over to other 110n-(hlu:-..,ian di~trrblltlol1~ a~ wcll. The 

consequence of this result is the validation of the intuitIve rca:-,ol1l1lg which :-.ugge ... ts that the 

performance of an encoder may be improvcd hy utilillllg the redulldanclc:-, wlthin the 

sampled data. 
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4.4.2.2 Known Bounds for Vector Quantizers 

This ~ub~cction will li~t ~ome of the known performance limits of Vector Quantizers. 

Many of the cxprc~sions li~ted in this section are asymptotic limits assuming an infinite 

number of Voronol regiom eovering the entlre expanse of a finite dimensional k -space or 

an infJnltc dimcn~lOnal Veetor Quantizer with a finite number of Voronoi regions. Also, it 

should be noted that the expre~~ion~ li~ted here do not constrain the source process with 

respect to any mterdependeneles which may exi~t in the samples of the input vector. 

In (251 Zador ~howcd that the minimum me an (Lr) distortion for an optimal M-Ievel 

Vector Quantlzcr with a fixed dimension k would approach: 

[

00 ](J..+r)/f.. 

dfi\('d dlllll'f/I/OII f.. = lim A(~,,.) M'lf.. J p(JJ" I(J..+r) d;r. 
M-)oo 

-00 

(4.33) 

and that the minimum distortion of an entropy-constrained (fixed entropy and unconstrained 

number of dll11en~ions) Vector Quantizer using the identical dl~tortion measure would 

approach: 

, _ 1 B('·) -rlf..11I -hUJI ( lit(''' ('1I(I/lPV - 1111 1\,1 e 
f..-)oo 

(4.34) 

where A().,/") and B(~,,.) are boundcd by: 

_f.._ V" -III.. ~ B(k,r) $ A(k,r) $ r(1 + r / k) Vk -rI" (4.35) 
f..+r 

wherc Vf.. i~ the volume of a /.. -dimensional unit sphere, f( ) is the gamma operator, H is 

the fixed entropy, and hUJ is the differentlUl entropy of the source process. 

The lowcr bound IS the .\pl/(J/(J hOlllld created by the optimal packing of k -dimensional unit 

sphcrc ... III /.. -~pacl'. 

One illlpor tant pOint to maJ..c about A(f.., r) and BU, r) is that the y are independent of the 

source dcnslly funrtloll. Thclefore both A(f..,r) and B(/..,r) may be determined using any 

rOllvenient dell~lty function over f.. -space slIch as the unifonn den~lty fUllction. 

From (4.33) and H 34). a Ilulllher of ohservations may be made for a Vector Quantizer 

\Vith infinitL' hloü Icngth. Onc t~ that the upper ancllower bounds will converge towards a 

constant III the IlIllit a.-. k apptoache~ IIltïnlty: 
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lim B(k,r) 
~~oo 

lim A(k,r) 
J..~"" 

1j(27rc) . 

The second observation that may be made is that for a stationary sourer 1261: 

(4.37) 

Using (4.36), (437) and the Stirling approximation for a ~phere hound in (4.35) wilIll'sult 

in the distortion given by: 

d 2 1),-21 R - hCül ~ 1/( 1re) '- (4.JX) 

which is equivalent to the Shannon lowcr bound. This tends to support thl' hypothl'~I<; that 

the description of the compression coding problem a~ ~tatcd for Shannon'., thlld codlng 

theorem and the description of the Vector QlIantlll'r are one and the same. 'l'hL' dL'llvatioll 
above is again only valid for the IJ]. norm and fOl large fI;[. 

In (261 Gersho provlded an alternative dellvatloll 01 the ahovl' re~lIlts lI~lI1g a ~CIIC" Il 

argument~ ba~ed on the latticc ~tructurc deflllcd III scctlon 4 1. Cier~ho's denvatlon i .. 

based on the conJccture that, for every dllllension f..., thcle i~ an optimal /.. -dllllclI"lonal 

Voronoi polytope which willmillllnize the l/o/"mal12cd ÙWI/U/ given hy: 

I(p) = V(p)l+llJ.. J,JI - .\ 'II' dJ. (4 39) 

where P dellote~ the reglon of the polytope, V(p) 1 .. thc VOllll1lt.: 01 thc polytopt.:, and J.~ I!'> 

the centroid of the polytope. 

The coejficient q/ quontizatlOl/ can thcll be defi ned hy: 

C(L/") = (1/ f...) min I(P) 
p 

(4.40) 

Gersho lIsed the coefticient of <.jllantizatlon III the ht.:lIri!'>tic <!L:nvatlo/l of the /.. -dlllle/l.,loJlill 

analog to Bennett's di!'>tortion integral a~~ull1ing an L, nOrln di!'>torlloll lllt.:a!'>Ule. 'J'hi .. 

expre~sion I~ valtd in the asymptotic ~en!'>e a!'> the llulllhel 01 output veeto,.. ( M) mu.,t he 

large for the approxl/natlon~ u .. ed ln It .. dcnvatlon to bc valJ(1. The /.. -dllnclJ',HlIlal allalogue 

i:o Bennett\ fonnula i~ glven a .. : 
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DI. = M-r/J.. C(k,r) J( pey) ) ci)' 
r<.v{/J.. -

(4.41) 

where T(), the output point de ilS ity jill/ctio " , IIldicates the relative spacing of the output 

codewords. 

Using (4.41), Gersho was able to derive equivalent expressions for (4,33) and (4. ,4) 

deterrnined by Zador. Furthermore, Gersho demonstrated that the cocffH .. ient of 

quantization, C(k,r), could be used interchangeably with A(.Cr) and 8(/..,/) . 

Gersho was also able to demonstrate two interesting stmctural propcrtles of optll11al Vcctor 

Quantizers. One property was related to the result of a Vector Quantizcr wlth constJ'illl1ed 

dimension. The property IS that the output point density function, r( ), is proportional 10 

p(J.)"/(J..+r). This impl ies for J.. » r that (1) the density of the output codcwonb should 

approximate the magnitude of the mllitivariate pdf for the input ~equencc and (2) cach 

Voronoi or nearest-neighbor region will contnbute an cqual degrce to the ovcrall average 

distortion measure of the Vector Quantizer. The other property was rclated to thc result of a 

Vector Quantizer with constrained entropy. In this case, thc optimal vector quanti/cr was 

shown to tend towards the uniforrn qllantizer. From infonnation theory, il I~ known that 

the maximum entropy for a source process is achievcd when the output vectors arc ail 

equiprobable with a probability of occurrence equal to 1/ M 1411. In this case, a simple 

fixed rate code is able to optimally encode the unlfonn dl~triblltlon at a rate of log2 M hits 

per vector. 

Referring back to expressions (4.33) and (4.34), there is no explicit mcan<.; of dctcrmining 

A(k,r) and B(k,r) for a given dimension and Lr nOflll for "- > 1. Gersho's Illclhod of 

deterrnining an optimal polytope for a given dimen~lOn is c~scntial1y a 'Monte Carlo' 

approach which will yield an upper bound to C(/..,r) and hcncc an upper bound to A<Cr> 
and B(k,r). Conway and Sloane in 1281 and 1301 dctall a number of po~~ibk lattice 

structures and their corre~ponding C(A,r) values for dimen~iom up to 24. In the two­

dimensional case, an optimal value has been found for A(2,2). In thi~ ca~c the optimal 

polytope is the regular hexagon. The hexagonallattice ~tructurc is dcfincd by (4.20). The 

complete expression for the distortion measure of the optimal Vector Quantizcr can then he 

given by (261: 

5 -1 ( Jf 1/2 )2 36.J3 M (p(XJ ,X2) dxl dx2 . (4.42) 
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Conway and Sloane in 1301 aho provide an aItelnative lower bound to the sphere bound 

originally given by Zador and Ger~ho. AIthough they do not provide a formaI proof, the 

lower bound doe~ corre ... pond weil with known results for C(k,r). The Conway ·Sloane 

lower bound IS defined by: 

A+3-2H"+2 (A+I)I/J. (A!)4/n in2/n ~ C(k,r) 
4k(k + 1) 

nIl 
where L -:- = the harmonie sum, 

1=1' 

and in (x) is Sehlafli's funetion with the reeursive definition: 

II(x) = 1 

/',,(x) = arcsee(x)/x 

h(x) = J\ (In_;(X-2~ î dr 
7r x(.r- _1)1/- ,1 

n-I / 

4.4.3 Reported Perfonnanee of Veetor Quantizers 

(4.43) 

1ltis section will relate some observations on the perfonnance of the basie Vector Quantizer 

on sorne weil known probabili~tie sources. More detailed information can be found in 

1191,1201.1321, and 1351· 

1 n 1321, Gray and Karnin demonstrated the existence of several distinct local optima for one 

bit per sample, 2- and 3-dimensional Vector Quantizers optimized for a memoryless 

Gaussian source. The Vector Quantizers were generated via the LBG algorithm using the 

Euclidean distortion mcasure and a total of one million training samples. The specifie local 

optima encolllltered appeared to depend directly on the initial codebook selected at the 

beginning of the LBG algorithm. These resuIts tend to support the suggestion in section 

4.2 which implied that only local optima were assured with the use of the LBG algorithm 

on a given training sequence. The authors also indicated that at teast a 3-dimensional 

Veetor Quantizer was required to outperform the reference Lloyd-Max scalar quantizer at 

the 1 bit per sample rate. In 1351, Fisher and Dicharry provided sOllle resuIt!l for a number 

of Veetor QlIantizers optimized with respect to memoryless Gaussian, Gamma, and 

Laplacian sOllrce~. The LRG algorithm was used in conjunction with a total of 10,000 

training vertors per ompüt symbol in order to obtain Vector Quanti7.ers of various rates 

(codeboo).. sizes) for the 2-oimensional case, and different dimensions for a fixed rate of 1 
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bit per input sample. The Euclidean distortion measure was lIsed in every ca~e. The resulls 

for the best locally optimum Vector Quantizers encountered by the authors are sUl1lrnarilcd 

in the following table: 

Table 5.2 - Sample average distortion for localiy optimum Vector Quantilas 

Size of SarnDle Average Distortion --
Dimension Codebook Galls~lan Laplaclan Gamma 

2 4 0.361 0.422 OAXO 
2 8 0.200 0.235 0.235 
2 16 0.107 o.l.n n.127 
2 32 0.057 0.071 (U)65 
3 8 0.355 0.359 0.353 
4 16 0.342 0.345 0.2X9 
5 32 0.335 0.,332 0.240 
6 64 0.329 0.,3 16 0.221 

The results show that the sample average distortion decrea~c~ with an IIlcrease III rate or 

dimension, as expected. Althou;,;h the 6-dimensional Vector Qllantlzer was the highe~l 

dimensional quantizer that was attempted for each SOllr~e, the rC~lllt~ tend to suggcsllhal an 

(infinitely) large dim~nslonal Vector Quantizer would tend towards a Imut in the asymptollc 

sense. Furthermore, it seems reasonable that thesc limils would corre~polld to Ihe 

infonnation-theoretic bounds for the sources in ques\lon at the specif ied rate of one bu pCI 

input sample. The information-theoretic bOllnds are 0.25, 0.22, 0.14 for the Galls~ian, 

Laplacian, and Gamma source respectively. The increa~e in perfonnance duc 10 quantiling 

vectors of samples at a time appears to depend on the probabilistic nature of the source. In 

the case of the Gaussian source, the derived Vector QlIanlizcrs only gave a marglllai 

improvement 111 perfonnance over a scalar Lloyd-Max quantizer. lIowevcr, in the case of 

the Laplacian and Gamma sources, the derived "cctor QlIanllzcrs wcre able 10 achieve a 

performance gain of 2 dB and 4.5 dB re~pectively over a scalar Lloyd-Max tjllanlil.er. The 

authors also performed a number of experirnent~ on the ro/m.\IJI(J,\,\ of a given Veclor 

Quantizer by mismatching sources with a codebook ùpl1l11lzed fOI a diffcrent SOUfce 

Robustness here implies the degree of perfonnance df gradation a given Vector Quantil.er 

codebook will experience in a(:col11modatll1g a wurcc with diffcrent or varylllg 

characteristics. A Vector QlIantizer that Will have a minimal ~ample average di.,lortlon over 

a wide range of ~ource signais is ~aid to be robu~t. The authors (ictermlllcd that the 

codebook optimized for the Laplacian ~ourcc wa~ the mo~t robll~t of the thrce at any given 

rate or dimension. It sholiid be noted that a Vector QlIantizcr optll1111Cd with a ~lIftJcicntly 

large set of training vectors from ail of the sources in quc~tJon wOllld 1 ikcly providc a 

lelatively more robllst Vector Quantizer. 
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One recurring de~ign problem in the literature which utilized the LBG algorithm w \s the 

specification of the number of training vectors required to adequately represent the source 

signal. Idcally the trammg sequence should be large enough so that an independent 

sequence of data not in the original training ~equence would result in a minimal increase in 

distortion. This would suggest a very long trainmg sequence limited to perhtlps only the 

storage facilitles availablc. However, computational constraints and a more pragmatic view 

of available memory would recommend that the trainmg sequence he as small as possible. 

These opposing view~ result in a tradeoff between the performance and robustness of a 

Vectcr Quantizer and computational concerns. There are no firm guidelines on what 

constitutes a rea-;onable performance tradeoff - but a few mies of thumb on the minimal 

size of the training sequence appear to exi~t in the literature. The recommended size of the 

training sequence appear~ to depend on the charasteristics of the SO~lfce signal. In the case 

of a memoryles~ Gaussian, Laplacian, or Gamma source, 1,000 to 10,000 training 

samples per output ~ymbol are typlcally ~uggested as a minimal requirement for a good 

Vector Quantizcr 1211 13211351. For more complex signais such as speech, more training 

sample~ are typically recommended. The training sequence should ideally be at least a few 

minutes in duration and IIlclude aIl of the phonemes in aIl of the possible contexts . 

Qualltitatively, thl~ usually works out to a minimum of 10,000 to 100,000 samples per 

output symbol and appears to be slifficient for most applications (191. If a degree of 

robustness is required, the trainll1g sequence sholild inclllde speech from several male and 

female speakers. In transform or parameter-ba~ed spee,'h coding where a set of 

parameters, such as the LPC coefficients, represents a given vector of speech samples, 20-

100 parame ter vectors per output symbol appears to be adequate for a wide range of 

applications 11911201. 

4.5 Other Classes of Vector Quantizers 

With the exception of the Lattice Vector Quantizer, this section has concentrated on the 

/lf/structured Vector QuaniÎzer introduced in section 4.1. The term 'unstructured' stems 

from the ob~ervation that the optimum Vector Quantizer defined in section 4.1 partitions k­

dimensional space 111 a manner which depends solely on the distortion measure used and the 

characteristic!o. of the I11l1Itivanate density fllnction of the source. 7herefore, the resulting 

placement of the codebook reproduction vectors and the corresponding Voronoi regions 

may not nece~sarily have any geometric structUlC or symmetry within k-space. The 

unstructured "ector quantizer can theoretically approach performance limits established by 

Shannon's coding theorem for any mean-stationary source. Unfortunately, the 
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computatianal easts assaeiated \Vith the classification ~tcp of (4.3) and the l11emory Il'qll1red 

ta store the eorrespondmg reproduction vectors may be impractlcally large for a VCl'tor 

Quantizer whieh approaches these performance 1 imlts. As~ul11l1lg a rate dd IIlcd a~ 

R = log2(M / k) bits per veetor clement, wherc M il' the ~ILC of the eodchoo\... and A 1" the 

length of the veetor as before, the ~ize of the codebook muy be dcten11lllcd hy M = 2/..R . If 

C represents the computational cost of a single dl~tortlOn calculation, then the total 

computational co st of detenl1lnmg the appropriate code book symhol glven an mput wetm IS 

equal to: 

Comple.\ÎtYun.\lrllctl/ll'd \'Q = C M = C 2"R (4.44) 

and the total memory required to store the corresponding eodeooo'" wIll he l'quai to : 

MeI1101)IIIIIIIII/cIJlIl'd \'0 = f... M == C 2/..R words . ( 4.4.5) 

The exponential increase In both compt.tattonal l'ost and mcmory requircment" with respect 

to dimension and rate have limited practical lInplcmentations of the umlt lIcturcd Veetor 

Quantizer to Veetor Quantizers with rate-dimension products less than or equal to 14 . 

In order to overcome the limitatIOn induced by the eneodlng eomplexlty of the lIn<.;tlllctllll'd 

Veetor Quantizer, other Veetor Quantlzer schemes h~lvc been devcloped whieh cllher 

impose a geometric structure within f... -~pace or a temporal structure by restriellng the 

codewords which may be used at any givl'n time. Dependlng on the ~tructurc a~"'lIll1ed, thc 

altemate Vector Qllantiz::-r ~chemes may re~lIIt 111 a dccrca~c in the c1a ... "iticallon/cncodlllg 

complexity or a decrease in the memory requirements of the nccded eodch()()J...(~) or a 

decrease in both. A number of the more promi~ing alternative Vector Quanti/cr schcmc,> 

will be disellssed in the following ~lIbseetiom. A number of othcr Vcetor QlIantizcr~ 

systems are de~eribed in 1181.1191, 1201. 

Note that none of the following Veetor Quantlzcr implemcntation~ will hc Jhlc to 

outperfcrm the basic lInstructured Vector Quantlzcr ln tcrl1l~ of the ~ampJc-avcragc 

distortion for a given rate-dimenSIon product. In faet, the impo ... ed geometneal or tcmporal 

strlleture(s) tend to decrease the performance of the Vector Quantiœr for a gl VCIl ratc­

distortion produet. This result i~ due to the fact that the dcfinition of the optimal 

llnstruetured Veetor Quantizer in ~eetlon 4. J i~ Idcntical to the information-thcorclH; modcl 

of the optimal encoder described in ~eetion 4.4.2.1 Thercfore, uny modification of thc 

unstruetured Veetor Quantizer scheme eannot po~~ibly do better in tcnn ... of a lower average 

eneoding distortion. The following Vector Quantizer implementation~ can he thcrefore he 
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seer. as trading a (hopefully smail) reductlon in classification/encoding performance for a 

reduction in computation al and ~torage complexity. 

4.5.1 Bmary Tree Structured Ycetor Quantizers 

The con~tructlOn of a binary tree ~tructured Veetor Quantizer is similar to the method of 

generating an initial code book by ~phttll1g descnbed in section 4.2.2 [19]. Initially, a rate 

() codebook is deterrlllned from the centroid of the entire training sequence. This rate 0 

codebook IS thcn ~plit u~ing il perturbation veetor in order to form an initial rate 1 

eodebook. The LBG algorithm is used to fonn a good (Iocally optimum) rate 1 eodebook. 

Each element of the rate 1 codebook may be considered as the optimal rate;j codebook for 

its respective partItIOn of t. -space. A locally optimal rate 1 eodebook is then formed for 

each corrc'>pondlllg partition of /... -space using the input traming vectors associated with the 

corresponding V oronoi region. This successive partitioning of k -space and the traminf. 

Figure 4.8 - Binary Tree Searched Vector Quantizer 

Input Vector 

-

(After Gray [19]) 

~---------­Intermedlate/Search 
Code Book Elements 

~ 
Reconstruction 
Code Book 

sequence is continued in order to form the binary tree-structured Vector quantizer one layer 

at a time - doubling the size of the layer at each successive iteration. The codewords 

assoclated with each slleces~ive layer are kept as an intermediate codebook layer. This 

process is continlled lIntil the total number of codewords in the final layer is equal to M. 

For the binary tree, M is necessarily constrained tu be a power of 2. Note that only the 

final layer of the tree consists of aetual reproduction eodewords. The codewords of the 
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preceding layers correspon~ to intermedlate or sear~h l:Gdebook clements. A binaly trcc 

-struculred VQ with a final layer with 8 elements is depicted in figure 4.X. 

The codewords at each successive lnyer of the tree-strllctured VQ may he considl'rcd as 

nodes for the codewords of the next layer. The cncoding or classifu.'allon process m-ing the 

tree structure can be II1terpreted as followmg a palh along the trec whlch provldl':-' li (hx:ally) 

minimum distortion at each Ilode until anode corresponding to an actll.t1 Il'productlon 
codeword IS reached. For example in figure 4.8, a given mput vcctor l at node W () would 

he compared against codeword~ W, and W 2 respcctively. The seulch would thl'Il plOceed 

a10ng the path with the smal1e~t resultmg dl:-.tortlOll. If W, happcned te have the !'.1l1alkr 

distortion with respect to J:. then l wOlild then be compared agaimt W 1 and W.1 - and so 

on until the reproduction codeword is selected. Note that at t>ach node once a path IS 

discarded. the choices corresponding to that path arc abo di~cardcd - re:-'llltll1g 111 a halving 

of the possible reproduction coc:ewords at each levcl. The computational compkxity of this 

encoding process is l'quaI to 

ComplexitYll/flllrv IrL'l' VQ = 2 C log2 W = 2C R k , (4.46) 

while the memory requirement is equal to 

MemOl:Vb/llary Irl'l' \'Q = k (2M - 1) . (4.47) 

The binary tree structure resuIts in a computation,,1 complexity that increa~es lincarly wolh 

the rate-dimension prodllct rather than exponentially as in the case of thc lInstrllctllrcd 

Vector Quantizer. However. thls decrease in the computational complcxity of the Ycctor 

Quantizer eomes at the expense of ar. increase in the me1l1or~' reqllirelllcnt which I~ almost 

double that of the unstructured Vector Quantizer. 

One problem which may arise in the baSIC binary-tree :-.trllcture V cetor QuaJltil.cr dc~crincd 

above is the une ven distribution of the trallllJlg sequence corre ... ponding to each node in a 

given layer of the binary tree. Although nOnllally thls would not he a prohlcm, titcre cou Id 

be instances where only a few or even a single trainmg vector(~) would he a\\oclatcd wlth a 

given node. One method of aVOIcltng this occurrence j\ Via the u!'.c of a non-unifonn nlnary 

tree [20]. Instead of genewting a new rate 1 codebook for each nodc III a glven layer a~ III 

the basic binary tree ~tructure. a single rate 1 coc\ebook l'i gencratcd for the node wllh the 

maximum total distortion. This proce\s i~ rcpeatcd untll the de ... ircd numbcr of codcnook 

elements, M, is reached. The non-uniform binary trce ~tructure ha ... the additlOllal 

advantage of not having M to he con~trained to he a power of 2. A 9-elcmcnt non-uniform 
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binary tree structure is shown in figure 4.9. Note that the encoding complexity now 

depends on the input vector - but in general it can be ~cen that the average encoding 

complexity should he ap;;loximately equal to that of (4.46). 

The performance of the ba~lc binary tree and non-uniform binary tree Vector Quantizer is 

not op~lInal and will therefore be inferior to that of the un3tructured Vector Quantizer fOI 

two reasons. One, the ~uccessive partitioning of k -space results in a constraint with 

respect to the po~itionmg of the codebook ele.nents at each succeeding layer. Secondly, the 

reproduction vector is chosen as a resuIt of a successiv~ series of (Iocally) minimum 

distortion choices rather th an an exhaustive search of ail of the nodes of final layer for the 

be~t possible globally optimum codeword. 

Figure 4.9 - Non-Uniform Binary Tree Based Vector Quantizer 

Input Vector .. 
1 

(After Gray [19]) 

16 

lx - Reconstruction Vectors 

Finally, although the preceding discussion has centered on a binary structure, the results 

could be generalized ta tree structures with more than 2 branches per node. 

4.5.2 Multistage Vector Quantizers 

Multistage Vector Quantizers rely on the sequentialuse of a series of Vector Quantizers of 

small rate (small codebook size) in arder to reducc both computational complexity and 

memory rcquirements. There is no restriction on the type of Vector Quantizer used 

although the following discussion will assume the use of the optimum unstructured Vector 

Quantizer for comparison purposes. Further decreases in computational complexity would 
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be realized at a subsequent reduction in performance if binary stnlctured Vcctor Quantill'rs 

were to be used. 

A dual-stage Vector Quantizer is depicted in figure 4.10. In the diagnull. an input wctor IS 

input to an initial Vector Quantizer which has bcen oplllnized 111 the sense that il has heen 

trained on a representative sequence of input vectors. The initial Vcctor Quanti/cr will 

select one of m < M codebook elements. The II1dex of the sekcted symbol is rctalllcd and 

the seIected reproduction vector is subtracted from the input vertor to creatc an l'ITOI 01 

residual vector. This residual vector IS then input to a second Vector Quantl7er whlch has 

been optimized in the sense that it has been trained on a repre~entatlve sequence of rl'sldual 

vectors. The secondary Vector Quantlzer will select one of m' < M codcboo,," c1ell1l'nt~. ln 

a coding application. the index of both symbols wou Id he transmitted to the decodcr whl'IC 

the symbols would be used to retrieve the reproduction vectors from the corre~pondlllg 

codebooks. The estimate of the input vector would be determined by simply adding the 

two reproduction vectors together. 

Figure 4.10 - Multiple StageVectClrQuantizer (AfterGray [19]) 
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{Yl Ym} 
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The computational complexity of this sy~tem is: 

Complexityd/lal _lIage VQ = C Cm + m') 
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whiJe the memory requirement of this sy~tèm is: 

MemorYdlla[ \I(1)1C VQ = J.. Cm + m') (4.49) 

The dual ~tage Veetor Quantizer of fIgure 4.10 ean he equated to a single stage Veetor 

Quantizcr of size M = ln m' which has been con~trained to a partieu!:!.r structure. Although 

the di~cu~sion has been limitcd to a dual !ltage Vector Quantizer, the process could be 

extended to the ca\c where the residual of the residual is quantized by a third Veetor 

Quantlzer, and ~o on. The purpose behind this extended process would be ta obtain a 

bctter repre~entatlon of the input vector via succes~lvely finer representations of the residual 

vector. However, ~tructural constraints illlposed by the sequential use of the Vector 

Quantlzer~ tend to counteract any benefit that would be gained by further refinelllent of the 

error ~Ignal and therefore the number of stages for Multiple-Stage Vector Quantization is 

usually set at two. AI<;o, interdependeneies alllong the 1I1divldual veetor elements and other 

fundamental charactenstlcs of the input vector would largely be aeeommodated within the 

first one or two vector quantizers and therefore little would be gained by additional 

processing by a vector quantizer pa~t the second stage. 

4.5.3 Gam-Shape Vector Quantizers 

The Gain-Shape Vector Quantizer is a specifie form of a product V~etor Quantizer. The 

prodllct Vector Quantizer is ~imilar to the Multi-Stage Vector Quantize[ in that two or more 

small Vector Quantizers are u~ed to reduee the coding complexity and memory utilized. 

Again there is no restrictIOn on the structure of the Vector Quantizer used - but the 

following will a~sllmc the use of the unstructured Vector Quantizer for purposes of 

comparison. The product Vector Quantizer uses separate Vector Quantizers to c1assify or 

encode separate a~pects of the source signal. The effectiveness or performance of the 

prodllct Veetor Quantlzer depcnds on the degree to which these different aspects of the 

source sIgnai arc ~tatistIcally independent. The effectiveness of the product Veetor 

Quantizer increase~ with the dcgree of independence of the various aspects of the source 

signal. The assumption that the source ~ignal can be modeled utiltzing a set of independ~nt 

charaeteristics ~Iaces a restriction 111 the allowable reproduction model. This will in turn 

impose a certain gcometnc structure in the product Vector Quantizer or the equivalent single 

Ullstructured Vector Quantlzer optimized for LIe restricted mode!. 

The specitïc case of the Gain-Shape Vector Quantizer assumes that the amount of energy or 

'gain' can he separated from a given source vector resulting in a gain-norrnalized 'shape' 

vector. A possible implementation of the Gain-Shape Vector Quantizer is shown in figure 
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4.11. In the diugram, the input veetor is illltially aecepted by the shakc VcctOI' Quanti/cr. 

The shape Vectùr Quuntizer selecis the hest normulized shape fJOm a 'shape codchont..' 

according to u shape-matching dl\tortlon measure. The Inde .... corrcspondl\1g to the best 

shape vector is then fcd wlth the onginall\1put vcrtnr 1I1tO a scalar (~lI1gk dlllll'n~ioJ\al) galll 

quantizer. The gU1I1 quantizcl determines the optimulll quantlll'd galll glvell th,lt thl' 

optimum quuntized shape has bcen selccted. The optllnlll11 qllantlled gain may he !'.dcctl'd 

from a gain codehook as ~hown 111 ctiagl<lm 4. 12 or ean he (kten1l1ned via an.llytlc.llllll'all!'. 

In coding applications, the IIldlt:eS corre~pondll1g 10 the optImUIll ~hapl' and ~'aln arc 

transmitted to the decoder whcre th~y are fed I\1to tile cOITl.::\pOndlllg codcbook \. The 

resulting normalized reproduction shape veetnr IS then Illultlplird hy the quantl/.Cd 

:eproduction gain value to obtalll the estÎmate of the origlllaimput veetol'. 

Figure 4.11 - Gain-Shape Vector Quantlzer (After Gray [19]) 

Encoder 

Shape Codebook 
IY, Yml 

Input Vector Shape Vector QUélntlzer 1" Choose besl shape syrnbol YI 
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.------......,~I 
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The computational complexity of the described gain-~hapc encoding process i~: 

(4.')() 

Complexitycmn_slz,lpe vQ = ComplexitYEt/(odm;.: .\'1U/fll' + Comp/exiIYEfllfIIltn;.: (;11/1/ 

= C m + C' m' 

where C and C' are the computation al costs of a single ~hape-matching ~md gall1-matching 

distortion computation respectively, and m and m'are the ~ize of tPc ~hape and gain 

codebooks respectively . 
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The memory requircd for the deseribed gaIn-~hupe Vect~r Quantizer is: 

MenlorY(;(//lI-SïWf!c VQ = J... m + m' (4.51) 

The gain-~hape Vector Quuntizer described would be eqUlvalent ta an unstructured Vector 

Quantizcr of siLe mm' aptlrnrzed with respect ta the restricted (and therefore sub-optimal) 

set of mm' pos~lble gain-"ihape vectors 

4.5.4 Aduptlve Vcctor Quuntizers 

The prey iou ... V~ctor Quantizer sy~tems have been based on the premise that the source 

signal I~ c~~elltlally ~tallonary and that the ~equenee of input vectors are largely independent 

of caeh othl'r and may ihercforc bc lj'.IantJ7cd independently. However, many real signais 

~uch as ~pceeh arc ollly ~tatlonary 111 the local or ~hort-tenll ~en~e (10 - 20 ms) and are not 

truly ~tatll)nary III the long telln :-,cn\c Furthermore. these signaIs may exllIbit a great 

degrec of 1I1tcrdepcndence l'rom one frame of ~ample~ to the next. Adaptive Veetor 

Quanti/cr ... ,IIC Vcctor QlIantIzer ~y ... tcm~ whleh account for the se a ... pects of more realistie 

signab by adaptively I11mhfying the codebook to accommodate the cllrrent characteristies of 

the source signaI and lI:-,e mcmory of one or mOle previolls mput vectors ta augment the 

selection of the opli mum code book. :-,ymbol. Ideally the adaptive Vector Quantizer would be 

able to rnodlfy lb code book contil1uoll~ly in order ta aceommcdate the changing 

characteri~tics of the source ~lgl1al. ThiS cla:-,s of adaptive Vector QlIantizers IS referred to 

as Ll'UlI//I1g Vcetor Quantlzers The ll~e of Leamll1g Veetor Quantizers has beel1limited due 

to the computatIOn al overhead lIlelirred by eontinuollsly modlfying the codebook and the 

large amollnt of side II1formation whieh wou Ici have to be tnUl~mitted in codlllg applications 

in order to updatc the decodt:1 codebook. To alleviate the problems assoelated with 

Learning Vector Quantlzt:r~. ~lIl1pler adaptive Vector Quantlzer systems whieh IIlcorporate a 

set of statie codt:books have bcen propO'ied. These adaptive Vector QlIantizers muy be in 

tum c1a:-,~itïed a:-, jonnml lIdllpril'f and bacA.ward adoptive Vector QlIantIzerr-. Both of these 

Vector QlIantll(~r ~eheme:-, utIlIœ a :-,ct of N static Vector QlIantizers optimized with respect 

to N dl:-,tinct tcmporal attnbutes ot the ~ource signal. The size of the N indivldual statie 

codcboo\...s in an adaptlvc \/cctor QlIantlzel ~eheme would ;enerally be smaller than the size 

of a :-'lIlgle V t:ctor QlIantIlcr optimiœd for ail of the temporal aspects of the source signal. 

Howewr. the eqUlvalcnt composite codebook of the N Individllal codebooks is typically 

much larger than would nonnally be feaslble for a slIlgle Vector Qllantizer optilTIlzed for all 

aspects of the souree signal. Abo, the individuul codebooks may have identical or similar 

reproduction vcctors - that is, the II1dividual eodebooks may overlap in k -space. For 
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reasons of storage and computational efficiency, the overlap between the codebook .. IS k.l'pt 

to a minimum. There is no constralllt on the ~tructure of the indlv Idllalcodchooks: ~o a 

performance for speed trade-off may be made lI~;!I1g uny of the prevlOlIsly th~ell,sl.'d nOIl­

adaptive Veetor QlIuntlzer schemcs. 

The forward adaptlve Vector Quantiwtlon may be interprett'd a~ a veetol l"~temion of a 

scalar adapttve quuntlzer with forwuld e~til1latlon. One po~slble forwanl adaptlvc Vector 

Quantizer scheme IS ~howl1 in figure 4. 12. 

Figure 4.12 - Forward Adaptlve Vector Quantlzer (After Gray [19]) 
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The forward adaptive Vector Quantizel I~ shoWI1 tn he c()ll1pri~ed of two llIam cOl1lpOnellt~· 

the wo\'(1orm encoder and the c/m.\' ('/lem/el The wavetorlll encoder IS simply the ~et 01 

N static Veetor QlIantizer~ dl~Cll~~ed earlIer. The c1as~ encodel detennlne~ whlch of the 

N Vector Quantlzers In the wavefolm encoder I~ hc~t ~lIlted for the IIlput vector. The c1a\~ 

encoder typlcally dctermll1e\ the optrillum Vectnr Quuntl.ler Via \Ollle analyllcal Illt:l!lod 

based on the CUITent statl:-.t1c\ of the :-'(/urCC \Ignat hgure 4.12 \how\ fhat thl" cl<1\:-' 

encoder may abo be a Vector Quantiœr wllh the output ~ymhollflllJcatlllg the he'.t V~ctor 

Quantizer to use wrthll1 the wavctorm encoder. The cla\~ encoder may aho look. lOI ward tn 

future input vectors to aid in the \electron of the optllnulll Ycclor Quanti/cr ln a cod ln!! 

applicatIOn the ~election of the cla\~ encoder mll~t be tran~mJtted wlth the actual (;odeword 

symbol [rom the waveform coder in orcIer for the decodcr tn propcrly dClcrmrne the 

appropriate reproduction vector. 
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The backward adaptlve Vector Quantizer in turn may he seen as the vector extension of a 

scalar adaptive quantizer with backward estimation. One possible backward adaptive 

Vector Quantizer i~ shown in figure 4.13. The backward adaptive Vector Quantizer is 

similar to the forward adaptive Vector Quantizer in that it is comprised of the two same 

major elements: the waveform encoder and the c1ass encoder. Unlike the forward 

quantizer, the class encoder detennines the optimum Vector Quantizer for the present input 

veclor based on one or more previous waveform encoder output symbols. Th~ class 

encoder can therefore be seen as a finite-state network in which a given state corresponds to 

one of the N Vector Quantizer codebooks within the wavefonn encoder. The transitions of 

the finite state network are governed by a next-state function which operates solely on the 

output symbols of the waveform coder. As the choice of the Vector Quantizer within the 

waveform encoder is determined only by the output codeword symbols, the backward 

adaptive Vector Quantizer has an advantage in coding applications in that additional side 

information does not need to be transIl1itted in conjunction with the codeword symbols. In 

this corling scheme, the finite state network in the decoder would have to be periodically 

reset to the saille state as the finite state network in the encoder lO account for the possibility 

of transmission errors . 

Figure 4.13 - Backward Adaptive (Feedback) Vector Quantizer (After Gray [19)} 
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5. VECTOR QUANTIZATION AND SPEECH ENHA NCEMENT 

5.1 Introduction 

This section will describe and provide experimental results for a proposed Vector 

Quantizer-based speech enhancement system based on an adaptive filtering process. 

Section 3 provided a limited cross-section of the diverse field of speech enhanccment. 

Contemporarj single channel speech enhancement algoritllllls differ in their app' oach to the 

problem and their overall complexity of implementation. Yet the vast spectrum of speech 

enhancement schemes have at best resulted wlth only limited success. The enhanccl11cnt 

algorithms discussed so far do yield a quantitative reduction in "Ise accordlllg to objectivc 

quality measures sllch as the Signal-to-Noise Ratio (SNR). . !owevcr, as discus~ed in 

section 2, a number of commonly used quantitative indicators 0\ speech quality such as the 

Signal-to-Noise Ratio are at best only weakly correlated with intelhgibility or acceptability. 

Consequently, the bulk of the speech enhancement schemes that have been tricd to date 

have prodllced marginal or no increases in intelligibihty and thereforc thcir uscfulncss in 

many practical applications is question able . 

Figure 5.1 - General Vector Quantizer Based Enhancement Algorithm 
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Vector Quantization was introduced in section 4 as a coding technique which took 

advantage of the interdependencies in a given vector of value~. An inherent component of 

the Vector Quantization proces~ was the c1a~~ification ~tep via a ~uitable di~tortion measure . 

Ignoring the coding aspect, Vector Quantization can therefore also be interprcted as a 

101 



• 

• 

• 

nearest-neighbor pattern matching or speech production model detection technique. It is the 

pattern matching aspect of Vec·or Quantization that is crucial to the successful operation of 

the Vector Quantiler based ~peech enhancement system shown in figure 5.1. 

The enhancement system has two major components: the M -lev el Vector Quantizer and the 

adaptivl' (Jllhalll'eml'lIt process. The enhancement system has M modes of operation 

corre~ponding to the M models of speech production which are retained in the code book of 

the Vector Quantizcr. The mode of operation is selected i'y the Vector Quantizer based on 

the input frame of degraded speech. The M code book models of speech production only 

form a subset of the set of discernible speech models. The operation of the enhancement 

system may thcrefore be seen to he based on the conjecture that, by purposely restricting 

the degree of freedom allowed in the speech model, a degre::.- of noise reduction may be 

attained for a given degraded signal. 

The Vector Quantlzer codebook is optimized with respect to an undistorted training speech 

sequence. As stated earlier in section 4.4.3, the training sequence should be large enough 

so that a balanced selection of ail the phonemes in different contexts is included. If a certain 

degree of speaker independence is desired then, the training sequence should include 

speech from a variety of male and female speakers. The size of the code book is a key 

design parameter that will directly influence the performance of the enhancement system. 

The size of the codebook should be high enough so that the M corresponding models will 

yield a sufficient composite representation of intelligible speech. Referring to the 

terminology of section 4, this can also p~ interpreted geometrically as partitioning k -space 

into M Voronoi regions. Here k -space represents the entire 'universe' of human speech 

as clefined by a set of k values or parameters and each individual Voronoi region represents 

a specific model associated with a specifie sound. Depending on the underlying model of 

the speech production proces~, the cOlnposite model of the Vector Quantizer can be made to 

match real speech within an arbitrary degree of closeness by increasing M. However, the 

probabilistic nature of the noise present in the degraded speech signal will tend to create a 

degrec of uncertainty in the selected codebook symbol in a distortion measure-based 

template-matching procedure. The detection of a hypothetical 2-variable (2-dimension) 

speech production model in the presence of noise is depicted in figure 5.2 . 
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Figure 5.2 - Example of Signal Detection in " Noisy Environment 
Using a va Codebook in 2-space 

• 

• 
• 
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This degree of uncertainty will increase if the Voronoi regions are deercascd as the rcsult of 

increasing the size of the codebook. Therefore, the effeet of inereu!o.ing the resolution of the 

model is countered by an increase in lIncertainty of the sclceted symbol. The dcgrce of 

uncertainty may also be alleviated via a number of hellristic rules based on knowledgc of 

the speech production process. 

As discussed in section 4, a distortion measure is re411ircd for both the design of the 

codebook and in any subsequent search of the final codebook. In order to dlf'ferclltiatc the 

two distortion measures, the distortion measllre lIsed in the i:1itrahzation of the eodebook 

will he referred to as the c/usterillg distortioll mea.\lIre while the dIstortion IllCaSlIre lIsed in 

the search of the final codebook wIll be referred to a~ the template-matdlÎllf.: distortioll 

measure. No differentiation was made between the two measurc!o. in <;cetion 4, as thcy are 

identical for coding applications. In the ca~e of ~pecch cnhanœmcnt, thcy may he differcnt 

as the cIlIstering distortion measllre may be ~ensitivc to addillonai noi!o.c and rcndercd 

ineffective for any li sefll 1 speech enhancement application. A separate noi<;e-robllst 

template matching distortion measure wOllld then be re4uired to detcrminc the beM match 

between a given degraded speech frame and the M codebook templates. Thcse two 

distortion measures would tend to have different characteristics duc to the diffcrent 
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conditions of theÎr use in the ~peech enhancement system. The clustering distortion 

measure b to be used on undistorted speech and would ideally be weil correlated to a 

subjective opinion on the dissimilarity between two speech frames. The c1ustering 

di~tortion mea~ure must nece~sarily d.fferentiate among minute spectral details and will 

likely he relatively complex computatlOnally. The template-matching distortion measure 

deals with incommg degraded speech and a restricted set of speech models in the final 

Vector Quantizcr codebook. As the fine detail of the incoming speech signal may be 

obscured by the no.~e, the template-matching distortion measure must necessarily rely on 

coarser noi~e-resistant aspects of the incommg signal to obtain a match with the reference 

codebook templates. Olle to the ftuldamental role of the distortion measures, the 

determination of the two distortion measures is perhaps the most crucial design element of 

the Vector Quant.zer-ba~ed speech enhancement system. With respect to figure 5.2, it 

should be noted that the template-matching distortion measure will affect the expected 

variance of the noi~e-cormpted II1put speech production model in k -dimensional speech 

production SpltCC as weil as define the Voronoi regions in k-dimensional speech production 

space. 

The nature of the adaptive enhancement process will detennine man y of the characteristics 

of the output enhanced speech signal. There are three cIasse~ of enhancement process 

which may be used in conjunction with the Vector Quantizer. The first would simply be a 

memory look-up based on the received codebook symbol for an undistorted stored speech 

segment with a length of k samples. The enhanced speech wou Id consist of the joined 

sequence of these short f... -sample speech segments. Although this process is the simplest 

conceptually, there are a number of problems which wil1 eliminate the process from further 

consideration in this thesis. One problem would be the computational overhead in 

determining an adequate Vector Quantizer library for speech segments of even moderate 

length (corresponding to a high-dimensional Vector Quantizer). Another problem lies in the 

frequent discontinuities which anse when the short hbrary speech segments are joined 

together to fonn the enhanced speech sequence. Although this problem could be alleviated 

with a number of boundary smoothing operations, the small length of the joined segments 

tends to work against any benefit gained from the smoothing operation. The second 

enhanccment process that may be considered is the enhancement by resynthesis procedure 

di~cussed in section 3.7.1. The received codebook symbol would be used to obtain the 

necessary parUlneters for the speech production model. Some of the other required 

parameters such as amplitude and pitch would have to he obtained from the distorted speech 

signal as weil. As this is an enhancement-by-synthesis approach, the enhanced speech is 

free from the original distortion but contains distortions due to inaccuracies inherent in the 
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speech production model or to an inaeeurate eodebook selectIOn. A enhancement-by­

synt!'!~sis approach will be reviewed in section 5.2. The third enhancement proccss is 

based on an adaptive filter. In this case, the codebook symbol will contain the hltt'I 

coefficients appropriate for the CUITent degraded input veetor. Ideally, the resulting nltrr 

will retain the speech energy and remove the majority of the noise enrrgy. The concept of 

using an adaptive fiIter for the removal of nOise from degraded speech is not llnusual .:nd 

several examples can be found in the third section. However, duc to the nature of the 

VeetoT Quantizer, the overall enhancement process which may also al'Collll11odate a number 

of heuristic rules may be interpreted as an adaptIve tilter with a trained, a priori knowlcdge 

of the speech process. Conceptually, this adaptive tilter holds more promise in attaining the 

goal of increased intelligibility than the prcvious adaptive tilters wl1lch only operated on the 

CUITent attributes and statistics of the speech ~ignal. 

The previous use of Vector Quantizer-based cnhancemcnt systems Will bc disclissed in 

section 5.2. Section 5.3 will provide a de~cTlption of the Vector QlIantlzer-ba~ed spn'ch 

enhancement systems to be explored in this thesis. Section 5:1 will also provide an 

overview of the primary areas of interest including the optimal size of the Vector Quanti/el' 

codebook, the optimum template-matching distortion measurc. and the reqlllrcd trainlllg 

sequence for the Vector QuantizeT library. Section 5.4 will pnWlde the observl'd rC~lIlts 

from speech enhancement trials using the speech enhanccment systems prop()~cd in scctlon 

5.3. The observed results will include the output of a nUinber of objective (llstOition 

meaSUTes as weIl as subjective comments. Finally, section 5.5 Will provide a ~UI11J1lill y and 

number of additional comments glven the observed results providcd in sectIOn 5.4. 

5.2 Previous use of Vector Quantization in Speech Enhancement 

5.2.1 Signal Restoration by Spectral Mapping 

5.2.1,1 Overview of the Enhancement Process 

Juang and Rabiner in /43) demonstrated the use of a Vector Quantizcr as an integral pmlof 

a signal restoration system. Rather than estimatmg the characteristics of thc ~ignal and/or 

the noise, the signal restoration process was treatcd as a problcm in signal dctcction using a 

spectral mapping approach. 

Given that the noise is additive, the sequence of the ~hort-tlme ~pcctra of the dean ~pcech 

and the short-time spectra of the distorted speech form a one-to-one correspondence. Note 

that the spectra may be ~pectral estimates ~uch as the ail pole ~pectral estimates di~clls~cd in 

section 2.3.2. This correspondcnce between the spectra of the dean ~pcech and distorted 
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speech is established by adding noise to a training clean speech sequence of finite length 

and then caJculating both the c1ean {X, If::] and distorted {Y, }~=I set of spectra. The entire 

c1ean and distorted sets of spectra fonn the clean signal space X and distorted signal spaœ 

y respcctively. Given the ~hort-time spectrum of a noisy speech segment not in the 

original training sequence, the restoration process involves finding (detecting) the nearest 

neighbor Y, ln Y and mapping back to X in order to rctrieve the corresponding clean 

spectral element X,. Figure 5.3 depicts this detection and restoration process in the case 

that the numbcr of allowed restoration speetra are limited only by the number of restoration 

spectra in the original training sequence. This mapping process can be made more robust in 

the presence of noise by Iimiting the set of allowed restoration spectra. SpecificaIly, the 

LBG algonthm of ~ection 4.2.1 may be used to define a number M of representative 

restoration spectra, {Z}~I , from the original training sequence {X, }~=I . Using Vector 

Quantization tenninology, associated with each codeword spectra Z, is a Voronoi region 

S/ defined by: 

S/ = (x Id(x,Z,) :=;; d(x,Z/) for aIl i } (5.1) 

where d( ) is a given distortion measure . 

Figure 5.3 - Illustration of Basic Spectral Mapping Scheme 
(Degrees of freedom limited only by training sequence) 
(After Juang et al [43]) 
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Since each Voronoi region S/ in X is associated with a Voronoi S)' region in Y such that 

SJ = {YIX E S/}, a modified distortion measure may be defined by: 

d'(Y,Sj) = _"II' L d(Y,Y,) 
IJ 'El) 

(5.2) 

where Ij = {i lx; E SJ\ } and" "denote~ cardinality. 

Using the modified distortion measure defined by (5.2), the nearest single neighbor 

restoration spectrum is detennined by finding the Voronoi region that satisfies: 

min d'(Y,Sn, j = 1 ... M . 
J 

(5.3) 

Figure 5.4 depicts the restoration process in the case that thr, number of allowed rcstoration 

spectra are limited by a set of M representative restoration spectra and that the detection 

process is carried out using expressions (5.2) and (5.3) . 

Figure 5.4 - Illustration of Spectral Mapping Scheme with Relatively 
Limited Degrees of Freedom for the Restoration Spectrum 
(After Juang et al [43]) 
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where d, is the di~tortion threshold . 

U(Y) may bc used to further refine the subspace used in the distortion measure indicated by 

(5.2). In particular, (5.2) may be modified as follows given a finite distortion threshold: 

d"(Y,S!;U(Y» = _11
1

.11 L. d(Y,Y,) 
IJ 'El) 

(5.5) 

where 1/ = ti/X, eS; and Y, eV(Y)} . 

In a similar manner to the approach indicated by (5.3), the distortion measures 

d"(Y,S;;V(Y) may be ordered and be used to selected the appropriate restoration 

spectrum Z) . The I-nearest-nelghbor choice would he detennined by: 

min d"(Y,S;;V(Y» , j = 1 ... M , 
) 

while the Il -nearest-neighbor selections would he detennined by: 

/"(Y;d() = {j Id"(Y,S; ;U(Y» < d;'} 

where d;' is a present threshold. 

(5.6) 

(5.7) 

The II-nearest-neighbor selections provided by (5.7) cou Id then be used to generate a 

compo:;ite restoration spectrum indicated by the following expression: 

~ 

X(Y) = 
11/"(Y;d;') Il 

(5.8). 

The distortion threshold in (5.4) may be set to give either a fluctuating or constant lIu(Y)11 
or 'noisy locality number'. In [431, the authors :ndicated the difference in spectral 

distortion (as measured by the selected objective distortion measures) resuiting from the 

restoration process using a tluctuating or constant IIUI,Y)II was not apparent. Therefore, a 

fixed IIV(Y)II • elluul to NIl' was used in order to ease the implementation of the restoration 

process. Similarly, 11/"(Y;d;,)11 in (5.8) was set to a constant ~qual to Na' 
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Two template-matching distortion measures were proposed in 143 J. the likelihood ratio 

distortion measure which is defined by: 

p 

where A(z) = La" z-k 
,,=\ 

= fIC IA'(m)1 dm _ 
-IC IA(m)1 27r 

and the tmncated cepstral distortion measured defined by: 

(5,9) 

(5.10) 

where Le is the length of the truncated cepstrum and the cepstra (', and cf may be 

detennined from the LPC coefficients a, and a; using the following recursion: 

Le 

-ic, - ia, = LU - k)c,_"a" for i > 0 . (5.11 ) 
,=\ 

Finally, given a distortion measure and that the c1can speech and distorted speech spcctra 

may both be modeled by an ali-pole spectral estimale, it was sUfmised in 1431 that the 

processed all-pole model spectml estimate of a given Iloisy input vector will provide. on 

average, an improved similarity to the origmal or clean ali-pole model spectral cstimate. In 

particular, the following will hold: 

(5.12) 

where the overbar denotes an average and Y(z) is the spectrum of the noisy input vector. 

5.2.1.2 Reported ResuIts 

The effect of additive gaussian noise on the likeIihood and cepstral distortion measures was 

demonstrated by adding various levels of noise to 6 ~entences with a 4 kHz bandwidth. ft 

was observed that the average distortIOn increased rapidly when the global S NR of the 

speech decreased below 15 dB. However, the average observed distortion began to plateau 

when the global S:!'JR of the speech was decrea~ed below -15 dB as the nobe effectively 

dominated the spectra at that point. 
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The speech material for the training ~equences was composed of 100 different sentences of 

undistorted speech ~poken by 15 male and 5 females (5 sentences per person) for an 

accumulated duration of approximately 6 minutes. The test material was composed of 5 

sentences spoken by 5 ~peaken, for an accumulated duration of 19.5 seconds. Both the 

sentences and the ~peakers lI~ed to generate the test matenal were different than the 

sentences and ~peakers u~ed to generate the training sequence. A total of 27310 training 

vectors and 1562 te~tIng vectors were generated from the training and testmg speech 

material respectIvely llsmg an 20 millisecond analysis wmdow which was applied with a 

12.5 milli~econd shift per applicatIon (frame rate of 80 times a second). Each vector 

con~isted of a set of 10 LPC coefficients which were determined using the autocorrelation 

method (sec -;ectlon 2.3.1). The set of 1 0 ~PC coefficients would be used to approximate 

the spectra of euch trallling and testir.g speech ~egl1lent using afl ali-pole model us per 

section 2.3.2. 

White gausslUll noise with zero mean was added to the speech matenal in order to achieve a 

global SNR of approximately 14 dB. The sequence of short-til1le spectra (LPC vectors) of 

the dean -;peech and the ~hort-ti1l1e spectra of the dlstorted speech were used to fonn a one­

to-one correspondenee a~ an initial step of the spectral mapping procedure. The rel1lainder 

of the analy~;s con~i~ted of observing the effeet of the detection and spectlal mapping 

proeess with respect to a noisy testing sequence using the likelihood ratio and cepstral 

distortion measures detïned by (5.9) and (5.10). There were a total of 3 free experimental 

parameters which could be modified as part of the analysis procedure: 

(i) NIl' the number of nearest-neighbors 

(ii) Nb, the noisy locahty Humber 

(iii) M, the size of the restoration spectra VQ codebook 

In particular the number of neurest-neighbors, Na' was allowed to vary among the values 

of (Na = l, 2, 4, X, 12, l6} while Nb and M were allowed to vary al1long the 

following paired values of (Nb' M) = (256,256), (128,256), (64,256), (16,256), 

(64,64), (12,64)}. 

The obselved results using either the likelihood ratio or cepstr.!1 distortion measures were 

simllar and may be summarized as follows: 

i) A definite reduetion with respect to the likelihood and cepstral objective 

measures defined by (5.9) and (5.10) was observed. The best observed 
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improvement for the lik.e1ihood distortion measure indlcated an effl'ctivl' 

improvement of approximatdy 10 dB III SNR. The bc<;t oh~elved improwment 

for the truncated cep~tral distortion measure indicated an eflective improvcllll'nt 

of approximately 8.5 .::Œ in SNR. 

ii) In the case of the likehhood dl.,tortlOll meaSllfl'. the observed distOl till!l 

decreased monotonically wlth increa<;ing Na and began to plateau fOI 

approximately Na equal to 8 or 12. In the case of the cepstral dlstnrtion 

measure. the distortion was obsetved to decrl'ase wlth IIlcn:aslllg Nil until Nil 

equaled 4. Beyond that pOlllt, the distortion began 10 IIlcrea:-.e wlth lIlCJ"easmg 

Na. The authors indicated that thls was lIk.cIy duc 10 exœs~ive averagmg 

within the avallable 'noisy locality'. 

iii) Better observed distortion values werc obselved with smaller values of Nb for 

both distortion measures. 

iv) Gi"Jen a fixed value for Nh , the 256-spectrum codebook produccd hetter rcsuIts 

than the 64-spectrum codebook . 

The particu)ar approach used 111 1431 cannot strictly be called a spcech enhancclllcnt Illcthod 

in that the emphasis was on 1I1lproving spectral matching, pcrhaps for Itll ther Il,C in a 

separate speech recognition system, ralher th an producing an output .. '>pecch scquence with 

an improved quantitative characleristic ~uch as increased SNR or a subJective lI11provclllcnt 

in intelligibility. However, the system de~cnbcd in 14311s IIltere~ting 111 that it ~howcd how 

a restricted parameter ba~ed sub-~pace could be lIsed to choo~e an approprjate pattern III a 

degraded environmcnt. 

5.2.2 Enhancement by Resynthesis 

5.2.2.1 Overview of Enhancement Process 

The basics of enharlcement-by-resynthe."ls sy:~tems were {h~cll~sed in ~cction J.7 (the 

general system is shown in figure 3.10). Thesc ~ystem~ arc bascd on the a~~umpti()n that 

speech production can be entirely modeled by a procc~~ III wlllch a ~lInplt; ~ourcc waveform 

drives a filter corresponding to the vocal tract re"pome. The ~ignal ~()lIrcc is u~ually 

restricted to one oftwo types: 1) an impubive periodlc wavefonn whlch corre~poJl(h to the 

glottal pulses of voiced ~peech and 2) a random blpo)ar pulse wavefonn whlch corrc~p()nds 
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to the nOl.,y ~ourcc of unvoicee! ~peech. The 1110<,t popular method of representing the 

~pt:cch production filtcr I~ by the ali-pole autoregres~ive or AR model given by (2.22). The 

p coefflclcnt~ which detcflmne the nature of the p-th order AR filter are obtained by the 

Linear Prediction analy~l~ tcchl1lque~ di~cu~~ed III ~ection 2 3.1. A vector of these p LPC 

coefflclcnt~ can be ~een to repre~ent the autoregres~lve model of the speech production 

proces~ III p-dil1len~lonal ~pace. As the indlvldual parameters of the p-element vector are 

only con<;trallled by the nUl11erical precision of the analysis procedure, a given vector is 

cssentlUlly unrc.,tnctcd III terlll~ of placemert wlthln speech production p-space. This 

degrre of freedolll withlll p-~pace corre~pond~ lo a virtually mfinite variety of possible 

speech production models 

Under the ideal conditions of undlstortee! speech, thls degree of freee!olll IS beneficial, 

becall~e normal :-.peech ;s ~imilady uncon~trained ane!may be weil represented by the entire 

expan~e of p-space. lJnfortunately, tlm dcgrce of freee!olll is detnmental in the case of 

degradcd ~peech. A:-. IIldlcated III section 3.7, the analysis techniques which may accurately 

detefllllne the LPC coefflclcnt~ for clean .,peech tend to perfonn poody under the less Ideal 

conditions representcd hy dcgl aded ~reech Thi~ IS due to the particular nature of Linear 

Prediction analy~is which tend:-. to model ~pectral peaks more accurately than spectral 

valleys. Noi~c will affect the ba:-.ic characteri.,tic of the speech spectrum. More importantly 

from the stalldpolllt of LlIlear Prediction analy~is, u glven nOIse ~ource will generally affect 

the spectral vallcys and pea"-~ to an uneven extent. For example, white noise will tend to 

1 aise the ~peclral valleys and broadell the ~pectral peaks. Although the absolute value of the 

spectral peal-.s will also be raised somewhat with the additIOn of white nOIse, the increase 

will be 11111101 when compared to the increase in the spectral tloors of the speech spectrum. 

Since LlIleur Pledictlon ~Ulalysis is inherently sen~ltive to the rdatlve values of the spectral 

pea"-s and values, a given Linear Prediction analy~is techlllque will tend to produce a set of 

coefficients whlch correspond to a di~torted ver<;1011 of the actual noise-free speech 

spectrum. The dlst0I1ed speech productIOn modcl will in tum result in a relatively distorted 

version of the output speech waveform thun would otherwl~e be obtained if the noise-free 

derived parametcr~ were to be u~ed. With re~pect to the geometric interpretation of speech 

the production modcl III fJ -~pace, the dl~torted ~peech production model corresponds to a 

shift or trun~lation l'rom the noi~e-free point in p-space. The degree of distortion in the 

speech ~pcctrum and the corre~ponding geometric shift in p-~pace will depend on the 

characten~t1c:-. of the noise pre~ent 111 the degraded signal and the particular Linear 

PredictIon analysls technique used. The simpler deterministic autocorrelation and 

autocovariancc .t1gorithms discussed in sectIon 2.3.1 will tend to do worse than more 

l'ample\. algorithms which re1y on probabili~tic descriptions of the degraded spectrum (such 
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as Cadzow's method [491). The end result of a lad, of Li noise-rohust Linear Analysi~ 

parameter extraction procedure i~ a Iess than ~att~f4lctnry performance for the basIc 

enhancement-by-re~ynthe~is applOach when compared to other cnhancemcnt tl'chniql1e~ 

In r44], a Vector Quantizer-based el1hancemcl1t-by-rc~ynthe~ls plOccdure wa ... plOpo~ed 

which has the potentlal of improvlllg the intcliigibility of de!!raded ~pl'l'ch wIlhout 

specifïcally relying on a complex 1101~e-Ie~l~tant LlIleat Prediction an,lIy~l'" al!!onthm. The 

overall system is ~hown 111 figure 55 The Veclor QU4lntI7er-ba ... ed ~y~lcm h4l~ Iwo J...ey 

features stressed in section 4.1: 1) the degree of frecdom III thc "'1)L'cch production l.lOdl'! '" 

limited to that of a fmite set. 2) a nOlse-robmt 1'01 mant tcmplaie-matclllll)! dl~tol110n 

measure is used to ,;elect the appropllate speech production mode! l'tOm the fllll' 0.:/ 

u 
S 

Figure 5.5 - Vector Quantizer Based Enhancement via Resynthesis Procedure 
(After Q'Shaughnessy [44]) 

Two minutes 01 nOlse- Vector 
free speech by 2 ... Quantlzer 
speakers Clustenng 

White NOise LPC Spectrum 

ndlstorted ~ peech - + - LPC Analysis ... 
,Ir 

SIFT Pltch 
EstimatIOn 

512 Vpctors ... 01 LPC 
Copfflclents ,r 

Vector Quantlzur 
~Ilarch u~lng 

1-Formant based 
distortIOn measufll 

~p 
Flnd lrequencills nnd 
bandwldths 01 3 hlghllst 
spectral peaks 

1 

Gain _ 

LPC 
UnvOicedNolced (pltch) Information .. RfI~ynlhu~l~ 

+ EnhancHd 
(RH~ynthw>I',ed) 

SpuHch 

Limiting the number of speech production modds IS equlvalcllt to \Jllp{)~ing a geoll1etnc 

restriction in the placement of points in speech production p-<,pact'. The den!'.lty of pOlllt·, 

in speech production space sholiid be high ellollgh to rea<,onahly repre~ent hlgh ljuulity 

speech, yet low enough in arder to 1IIllIl the computatlOnal co<,t or the <,carch procedure and 

degree of uncertainty 111 the ~elected ... pccch ploductlon modcl The complete ... et 01 <'peech 

production point!'. comprise~ the vector~ 111 the Vector Quantll:er codehook or Ilhrary. The 

precise placement of p01l1ts in ~peech production ~pace or the determmation of the contcnt~ 

of the iIbrary wa~ accompli shed in /441 u~ing the ~tandard LBG dll,>tenng algonthm on a 
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training sequence of c1ean speech. More details of the creation of the Vector Quantizer 

codebook will he given in section 5.2.2.2.1. 

Each point in ~peech production space will have an associated nearest-neighbor or Voronoi 

region a~ dcfined by a given distortion measure. Any mapping into a given Voronoi region 

will rcsult in that particular speech production model being used in the synthesis stage of 

the sy~tem. A shift or translation from a given library point can be interpreted as a 

degraded ver~ion of the noise-free library production model. Assuming that the noise 

present in the input speech is not of too large a magnitude, a degraded speech segment will 

be mapped into a Voronoi region of a library speech production model closely resembling 

the production model of the original undistorted input speech segment. As the synthesis 

section will utilize the noise-free production models in the Vector Quantizer Iibrary and a 

simple excitation ~ource, a noise-free ortput sequence is guaranteed. Note that the output 

sequence is not guaranteed to match the corresponding undistorted speech segment exactly. 

The autoregres~ive model and simple excitation source assume a particular structure for the 

speech production proces~ which only approximates the actual speech production process. 

The finite numher of allowed models in the Vector Quantizer Iibrary imposes a further 

limitation in the accuracy of the synthesized speech segment with respect to the actual 

undistorted input segment. However, as long as the mismatch between the chosen library 

model and the onginal undistorted speech segment is not great, the output speech sequence 

should he illt(JlligibItJ. As intelligibility rather th an an exact waveform match is more 

relevant in the majority of speech enhancement applications, the distortion in the output 

speech sequence ~hould he acceptable. 

Necessary conditions for an intelligible output sequence include an adequate mode! for 

speech production, a ~ufficiel1t1y long and varied training sequence, and a sufficiently large 

VectoT Quantlzer library. Although ail of these elements of the enhancement system are 

important, the production of an inte11igible output sequence hinges on a noise-robust 

tcmplatc-matching distortion measure. In 144 J, it was recognized that many of the LPC­

bascd c1ustenng distortion llleaSlIres which could he utilized in generating the Vector 

Quantizcr library lIsing a training sequence of clean speech cOlild not reliably he used in the 

scarch of the final Vcctor Quantizer library given a degraded speech frame. As already 

discus!ocd, this was primarily due to an inhcrent sensitivity in Linear Prediction analysis to 

noise which would reslilt in a distorted production mode\. A distorted production modei 

would in tum likely result in an improper modelmatch. Instead, in 144] it was proposed 

that a fOfmant-b.lsed distortion measure he used. This decision was based on the premise 

thal a given noise process will affect the high-amplitude spectral peaks to a lesser extent 
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than other aspects of the input speech spectrul11. The distortion mcasure utitizcd the 

location of the first three formants or spectral peaks and thcir approximate bandwidths as 

the noise-robust parameters. The enhancement process could have conccivably uscd these 

formant-related parameters in the synthesis stage. However. as an LPC-based synthesis 

stage was relatively easier to implement. the fonnant-based parallleters were ouly used to 

access the VQ library elements which consisted of the AR models which wcrc actually used 

in the resynthesis process. In 1441 the template-matching distortion measure was 

augmented by a number of additional heuristic rules. The fonnant-based distortion Illcasun: 

will be discussed in greater detail in section 5.2.2.2.2 while the additional heuristic rules 

will be described in section 5.2.2.2.3. 

5.2.2.2 Experimental Details 

5.2.2.2.1 Creation of the Codebook 

The training sequence was composed of 65 seconds of speech low-passcd filtered al 4.7 

kHz and sampled at a rate of 10 kHz with 15 bits of resolution. The actual speech was 

comprised of 10 phonetically-balanced sentences spoken by two aduIt males. The training 

sequence was broken down into approximately 3250 twenty-milh~econd frames. Each 

frame of speech 'vas preemphasized using the filler specified by (1- z -1) and thcn analyzed 

by a Linear Prediction analysis algorithm in order to generate a sequence of 14 LPC 

coefficients. The 14 LPC coefficients determined by the Linear Prediction analysis 

procedure would define a 14-pole autoregressive modcl for the corresponding speech 

frame. The 14 LPC coefficients for each frame were retained for lISC hy the c1uslering 

procedure 10 be described next. 

The LBG algorithm described in section 4.2.1 was uscd to cluster the 3250 LPC-hased 

autoregressive models into a 9-bit or 5l2-element Veclor Quantizcr library of representative 

autoregressive models. It was indicaled in 144 J that lhe 512 rcpre~entative 14th ordcr 

autoregressive models could more than adequately repre~ent the ~teady ~latc and transitional 

aspects of speech and therefore cou Id be lIsed to recreate intelligihle ~pecch. Refcrring to 

the terminology of section 4, the Veclor Quanlizer was of the optimal unstructurcd and 

memoryless variety. No temporal restrictions or geometric reMficliom wcrc imposcd on 

placement in 14-dimensional speech production ~pace defined by the 14 LPC coefficients in 

order to reduce computational costs in later ~earches of the complctcly dcfined codcbook. 

An initial 512-size semi-random codebook (see ~eclion 4.2.2) was defincd by selecting 

every sixth frame in the training sequence. The distortion measure used III the c1ustering 

procedure was a modified form of the Itakura-Saito distortion measure defined eartier by 
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(2.5]) and (2.59). The specifie c1ustering distortion measure used to generate the VQ 

library in (44) was: 

p 

LARCU) ALPCU) 
a 1=1 

(5.13) 

where ARCO is the autocorrelation vector for a given input frame, ALPCO is the 

autocorrelation vector for a given Vector Quantizer codebook vector of LPC coefficients, 

and a is a normalization factor. Given the initial codebook and the distortion measure, 

(44) indicates 4 cycles of the LBG c1ustering procedure were required to create the final 

Vector Quantizer library. During this procedure, the average distortion was reduced from 

1.67 for the initial codebook to 1.31 for the final codebook. 

5.2.2.2.2 Proposed Fonnant-Based Distortion Measure 

Following the c1ustering procedure, a separate set of peak-based index parameters were 

determined for each of the 512 Vector Quantizer library elements by determining the 

locations of 3 peaks in the spectral estimate for each VQ codebook AR model. Because the 

enhancement system in 144) dealt only with male speech, the most important heuristic rule 

specified that there should be a total of 3 formants below 3 kHz. When more than 3 

candidate peaks were found in the range from 0 to 3 kHz, the peaks with the lowest 

amplitudes were eliminated to obtain the 3 most prominent peaks. When only 2 candidate 

peaks were found, a thid peak was detennined by a minimum in the spectral si ope. The 

innection, usually located between the 2 known peaks, was required to be at least 200 Hz 

away from either of the known peaks. Given that the 3 peaks had been determined utilizing 

the above procedure, the associated bandwidths were simply defined as the difference in 

frequency bctween the two points on both sides of the peak (center) frequency which were 

3 dB lower in tenns of amplitude. 

Correspondingly, the template-matching distortion measure for a given frame of distorted 

speech was based on the determination of a set of parameters consisting of the three major 

spectral peaks and their assoclUted bandwidths. These parameters were chosen because a 

given noise source would tend to have a minimal effect over those frequencies with the 

greatest concentration of speech energy. These locations of greatest speech energy would 

nominally he equivalent to the location of peaks or formants in a given spectrum. Note that 

the noise-robust parameters are referred to as peaks rather than formants because the 

selected spectral peaks did not al ways correspond to the formants of speech production. 
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For the purposes of the following discussion, the two may be used intcrchangeably. The 

selection of the spectral peaks was accompli shed via a simplitied version of the McCandlcss 

method [45] in which the spectrum corresponding to a given fixed order autorcgressive 

model was scanned for a number of candidate peaks. The code book clement indexed by 

the candidate peaks and corresponding bandwidths would be acceptcd or rejected givcn a 

set of additional heuristic rules or continllity constraints. There were no conti nuit y 

constraints applied to th<. peak locations as sllggested in the McCandless mcthod. The 

reasoning here being that a set of misaligned or skewed pea,;s would not necessanly result 

in an inappropriate choice from the Vector Qllantizer library. A moderately skcwcd set of 

parameters would Iikely result in a selected template which would he close to the optimal 

choice given th;,: correct peak infonnation. Furthennore, the event that a givcn peak would 

be grossly misaligned wou Id tend to be limited to peaks of lower amplitude and thercforc 

lower perceptual significance. 

The formant-based template-matching distortion measure was forl11ally defined in 1441 as: 
(5.14) 

dfnrmanl = [± IF(i,k) - F(j,k)1 W F(k)] + [i 18 (i,,{) - BU)I WII(O] 
J.=I ~=I 

where ; is the input index, j is the codebook index, F( . J) is the /.. -th peak or fonnant 

locatIon for the corresponding entry, B( . , k) is the /.. -th bandwidth for the corrcsponding 

entry, and W F and W n are the fonnant and bandwidth weights respectivcly. 

The template-nJUtching distortion measure is thereiore a weighted slim of the ah~nlllte valuc 

of the deviation given the reference set of parameters provided by the Vcctor Quantilcr 

library and a set of parameters determined from a given distortcd input speech frame. The 

formant and bandwidth weights were set so as to compcn~atc for certa1l1 physical propcrtics 

of the speech spectrum. For example, the bandwidth weights wcrc decreascd wllh 

increasing k to accollnt for the increased bandwJ(lth at the higher frequcncies (pcak­

locations were stored with increasing frequency). The wClghts abo attcmpted tn reflcct the 

relative perceptual importance of the formants and bandwidths. For sonorants il was 

determined empirically that 

WF (1) = 1.6, WF (2)=l.O, WF(3)=O.7 

Wn(1) = 40, W/l(2)=25, Wn(3)=l0 
(5.15) 

while for non-sonorants, the formant weights were identical and the bandwidth weights 

were proportional to the corresponding value of the ~pectral peah. The term '~onorant' 
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here implies a ~egment of speech whose major spectral peak or energy was below 2 kHz . 

Note that the template-matching distortion measure is based on a speech production process 

with 6 degrees of freedom as opposed to 14 in the LPC-based autoregressive model. The 

fonnant-based speech production process associated with the template-matching distortion 

measure appears to he coarser than that of the LPC-based autoregressive model to be used 

in the synthesis stage. Intuitively this is appealing as the template-matching distortion 

measure should ideally not he affected by the fine details of speech production but only he 

affecttd by a change in a ~et of relatively robust and coarse speech production parameters. 

Il should also be noted at this point that the comparison in terms of degrees of freedom 

between the twu processes may not be representative of the relath'~ accuracy of the 

correspondin~ processes, because the underlying models of the vocal tract filter are quite 

different. 

5.2.2.2.3 Heuristic Ruks Applied in the Codebook Search 

The template-matching distortion measure defined by (5.14) could have been used solely in 

a nearest-neighbor context - pickmg the hest reproduction template for a given input frame 

according to a minimum distortion measure. However, given the degree of continuity 

which normally exists in speech and a degree of knowledge of the speech process, [44J 

indicated that the perfortlwnce of the template selection procedure was enhanced by 

augmenting the basic distortion measure with a set of heuristic rules. The template 

cOiTesponding to the lowest distortion measure was to he used - but now the selection was 

made on the basi~ of a set of distortion val ues modified by a number of heuristic rules. 

One heuristic rule increased the bandwidth weights in the event of a likely sonorant sound 

in order to penalizc library entries with large bandwidths. The assumplion was that the 

library entries with the larger bandwidth parameters tended to correspond to non-sonorant 

sounds. Amplitude matching was also applied in the event that the parameters associated 

with the input frame met certain requirements. If the first peak (formant) was greater than a 

certain reference value. the absolute difference between the peaks in dB was scaled by 0.1 

and added to the distortion measure. Continuity in speech was accounted for by reducing 

the distortion measure for the previously selected template. The distortion measure was 

scaled by the spectral distal/ce between two successive frames. The spectral distance is 

defined in 1441 as the sum of the absolute difference in the spectral coefficients of the 

discrete fourier transfonn which are in the range from 200 to 3000 Hz and above a certain 

threshold . 
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Although the heuristic rules described above aided in the search for the optimal (or 

approximately optimal) template, there was still a posslbility that the chosen templatc was 

inappropriate for the CUITent input frame. A poor template choice muy havc been duc to li 

lack of an appropriate template in the Vector Quantizer library. but would have more liJ...e1y 

been due to an overly cOITupted set of model parameters. In this case the template 

cOITesponding to the lowest distortion measure for the CUITent input frame was rcjected 

using a variable threshold. The chosen template was al1\o reJectcd on the basis uf some 

other observations such as a dramatic shift tn any of the formant-ba1\cd parametcrs. If the 

chosen template was determined to be a poor match, the enhanccmcnt proccss retaincd the 

previous model parameters in the s ynthesis stage. In summary, the en hancement process 

was biased towards continuity in the circumstance that there was inadequate knowledge 

concerning the nature of the current input frame. The variable threshold lIsed in 1441 was 

defined as 

Threshold = 120 (m + 1) (5.16) 

where m specifies the number of times the chosen ternplate was rejected. As the threshold 

increasect with the number of times a given template was reused, a new tcmplate was 

eventually accepted although the cOITesponding distortion mea1\urc may have been rather 

large. 

5.2.2.3 Reported Results 

The Vector Quantizer enhancement process was used on speech sequences cOITupted by 

additive white noise. The speech sequencc:\) consisted of complete sentences and isolated 

consonant -vowel syllables. 

Since the enhancement process utilized a synthesis procedure, objective comparisons such 

as the SNR measure were not appropriate in this case. The output sequence could thercfore 

only be judged in tenns of perceived ;ntelligibility and any other subjective perccpuhlc 

qualities in the output speech. In general, good intelligibility was rcportcd wlth IIlput SNR 

as low as 0 dB. Since the speech was resynthesized using the LPC-ba~ed autorcgrc~sive 

filter model and a simplified set of excitation wavefonns, the output speech was noi1\c-frec 

but had the buzzy or mechanical characteri~tic typlcal of LPC vocodcrs. The primary cau~c 

of a decrease in intelligibility with decreasmg SNR wa~ the increa~cd frcquency of 

increasingly non-optimal reproduction template selections. One result of the degradation of 

the template selection procedure included sudden shifts in succe~~ive output frames in tenns 

of their spectral characteri stics. 
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Sounds with weak energy, which would include the non-sonorants such as the fricatives 

and obstruent consonants, tended to he degraded to a greater extent because the spectral 

characteristic of white noise tended to obscure the relevant spectral eues (peaks) in these 

cases. The opposite was true of sonorants such as vowels where spectral peaks could 

readily he ob~erved even in the presence of a significant amount of noise. Acoustic eues 

such as transltional regions and stops were observed to aid in the intelIigibility of 

continuous speech. 

5.2.2.4 Summary and Additional Comments 

The enhancement system proposed in 144J demonstrated the utility of a Vector Quantizer in 

a speech enhancement sy~tem. Specifically, the use of a nearest-neighbor rule in 

conjunction with a restricted set of speech production mùdels was shawn to hold promise 

of actually increasing the intelligibility of a degraded speech sequence. From [44J it is 

apparent that the key to the successfuluse of a Vector Quantizer based system hinges on the 

use of a noise-robust template-matching diMortion measure. 

The quality of the output speech sequence was constrained in that the resynthesis stage of 

the enhancement process limited to that used in an LPC-based vocoder. The enhancement 

process cou Id therefore at best produce only unnatural and synthetic quality speech due ta 

the model assumed for the !.peech production process and a complete loss of phase 

infonnatioll. In the ca~e of the enhancement process deseribed in 144], the voicing decision 

and the determination of the pitch in the event of voiced speech was carried out by the SIFT 

algorithm 1191. As shawn in diagram 5.2, the SIFT algorithm utilized the undistorted 

speech :.ignal. A practical application would requir~ that the voicing decision and piteh be 

extracted from nOlsy speech. Voicing decisions and pitch estimation would be expected ta 

he degraded in a noisy environment. The extent of the degradation would depend on the 

exact method applied and the amount of noise present in the speech signal. What is unclear 

from the work done in 144 J is what effect the relatively imperfect voicing decisions and 

pitch estimates would have on the intelligibility of the enhancement system. The added 

efreet of increasingly lIlaccurate voicing and pitch information with decreasing SNR on a 

,ystern which at best produees synthetie quality speech under relatively ideal conditions 

may render the enhancement system relatively ineffective at relatively low input SNR. As a 

voicing decision tends to he more robust in the presence of noise than pitch estimation, one 

solution would he to use one flxed fundarnental frequency for the pitch. The resulting 

speech wOllld lack any variation in pitch and therefore a primary acollstical eue associated 
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with points of stress in such an utterance would be lost. The reslilting speech sClIlIenœ 

wOlild be described as being increasingly mechal11cal or nat sounding. Another possihility 

for the excitation source is to remove the voicing and pitch estimation algorithms altogcthcr 

and excite the synthesis only with a pseudo-random number sequence corresponding to 

white noise. The resulting speech would have a whi~pered quality. The only method of 

piacing points of stress in an utterance wou Id be by varying the energy in the noise prOl'l'ss 

according to the perceived energy in the degradcd mput sequcnce. This Illcthod would 

initially appear to be inferior to the enhanccment system which incorporatcs the pitch 

extraction algorithm. However, according to informai listenlllg tests with LPC VOCOdCIS, 

intelligibility is not significantly reduced with the removal of the impulsiw source. 

Red1Jcing the degree of freedom of the excitation source 111 thc synthcsis stage may 

countera<..t the effect of an increasingly inaccurate voicing and pitch estimation algorithlll ut 

th~ expense of a further loss in speech natlll'ainess. 

Ideally, the Vector Q'Jantizer speech enhancemcnt system should largcly rely on the 

inherent characteristics of a speech production space defincd by a nOlse-robust distortion 

measure and in which the degrees of freedom are lllllltcd by a finite sct of speech 

production models. The number of heuristic rules may indicatc th"t the size ot the Vectnr 

Quantizer in [44] was too high or that a slightly differcnt set 01 noise-robu~l index 

parameters is required. In the former case, the ovcr-specllication of speech production 

space may have resulted in many closely related alternatIve production templates. A high 

number of closely related production models may have contributcd to a )Itlering or tlutlcrillg 

effect in the output sequence which may have in turn reduced the intelligibility of the 

synthesized speech. The jittenng effect would be due a numbel' of small-scale :-.pcctral 

shifts in the output sequence as the combined ncarcst-neighbor and hcuri \tic rules would 

tend to repeatedly select from a small number of c10sely rclatcd tell1platc~ for a rclativcly 

steady portions of the noise degraded speech signal usually as~ociatcd wllh a vowcl 

(sonorant) . 
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5.3 Proposed Vector Quantizer-Based Speech Enhancement System 

This section will mtroduce a Vector Quantizer-based speech enhancement system based on 

a linear adaptive filtering process. Section 5.3.1 will provide a broad overview of the 

proposed enhancement system and provide an indication of the key areas of investigation. 

Section 5.3.2 will provide a relatively detailed overview of the key components of the 

proposcd speech enhancement system. Finally, section 5.3.3 will provide an indication of 

the ordcr of computational costs involved in the proposed speech enhancement process. 

5.3.1 Overview of Proposed Speech Enhancement System 

A high level depiction of the proposed Vector Quantizer-based enhancement system is 

provided in figure 5.6. 

Figure 5.6 - High Level Description of Proposed Enhancment Method 
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The proposed speech enhancement system has M modes of operation corresponding to the 

M library elements in the code book of the Vector Quantizer. The VQ code book consists of 

M normalized LPC-based AR speech production models which may he indexed directly 

via the AR LPC coeftïcients or indirectly via a separate set of peak-based index parameters. 

The mode of operation is selected on the basis of a template-matching distortion measure, 
dlen/l'Idle I//Illclllng( ), according to the fo!lowing expression: 
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(5. 17) 
Mode of operation = i = min d,elllp/lIl,.-malch;ng(!l, Y

l
o) , j = 1 o •• M 

1 -

where J is a given noisy speech segment and Il the j-th AR model stored in the VI...! 

library. 

After a mode of operation is selected using (5.17), the nonnalized AR modd corrcsponding 

to the i -th mode of operation is applied to the noisy speech segment using an adaptive 

linear fiIter. As indicated in figure 5.6, this process IS equiva]ent to IlluItiplying the spectral 

estimate associated with the noisy speech segment by the spectral speech estilnate 

associated with the nonnalized AR model. That is, 

E(m) = N(m) A(m) (5. 18) 

where E(m), N(w), and A(w) are the spectral estimates of the enhanced speech segment, 

1I0isy speech segment, and nonnalized AR model respectlvely . 

An example application of the spectral multiplication process ulling actllal speech data is 

shown in figures 5.7 (a) through 5.7 (g). Figures 507 (a) and 5.7 ('"» depict the discJ'ete 

time representation and spectrum respectively for a speech segment corrcsponding 10 li 

steady state vowel (li/ as in 'heat'). Note that the spectrum was deriv<..d lIsing a 256 point 

Fast Fourier Transform (FFT). Figures 5.7 (c) and 5.7 (~) depict the discretc tllnc 

representation and spectrum respectively for the same speech segment which has bccn 

corrupted by the addition of white gaussian noise. Figure 5.7 (e) depicts the ~pectral 

estimate of the normalized AR model which will he applied to the noi~y speech segmcnt. 

Note that in this case, the nonnalized AR model was derived from thc (precmphasizcd) 

clean speech segment. Figures 5.7 (f) and 5.7 (g) depict the dlscrete tllne reprcllcntation 

and spectrum respectively of the filtered or enhanced ~peech segment. Comparing the 

spectra of the initial c1ean speech, noisy spec1.:h, and cnhanccd lIpecch scgmcntll 

respectively, the spectral multiplication of the noisy speech and normalized AR modcl 

spectra has resuIted in an enhanced speech spectrum whlch closely corre~ponds to the 

original clean speech spectrum in tenns of the broad ~pectral envclopc and formant 

structure. Comparing the discrete time representations of the noisy and enhanced speech 

segments, the noise level in the enhanced speech segment is vlllibly reduced comparcd to 

that of the initial noisy speech segment. 
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Given an o~icctive distortion measure, dObjl!cllve( ), and a~suming that the clean, noisy, and 

enhanced speech seg.nents may be adequately represented by an ali-pole spectl al (AR) 

estimate (~ee ~ection 2.3.2), it is sunni~ed that the spectral estimate for the enhanced speech 

segment will provide, on average, an improved sllnilarity to the spectral estimate of the 

clean speech segment th an the spectral estimate of the noisy speech segment. In particular, 

the following WIll hold: 
(5.19) 

dOhjl'(//VI!( ARIE(w») , AR[C(m»)) = dObjl'ctn'e( AR[N(m)A(w») , ARIC(w»)) 

< dObjl'ctll'l!( ARIN(w)) , AR[C(m)] ) 

where ARI 1 indicates the ali-pole spectral estimation operation, C(w), N(w), E(m), and 

A(w) indicatc the clcan, noisy. enhanced, and nonnalized AR model spectra re~pectively. 

Note that (5.19) is not valid for undegraded speech and is only expected to hold for 

degraded speech with an SNR or SEGSNR of less than approximately 15 dD and 10 dB 

respectively. 

As discussed in section 5.1, there are a number of key parameters or components which 

must be speciflcd for the Veetor Quantizer-based speech enhancement system including the 

size and underlying structure of the Vector Quantizer library and the nature of the template­

matching distortIon measure used to index the Vector Quantizer library. 

Two types of Vector Quantizer structures were investigated for their potential use as an 

integral part of a speech enhancement ~ystem. The first type of Vector Quantizer which 

was investigated was the memoryless unstructured Veetor Quantizer introduced in section 

4.1. Using the terminolog) of ~ection 4, no temporal or geometric restrictions were 

imposed on thl' partitloning of speech production space and the VQ eodebook consisting of 

the AR 1110dcl eoefficlèllts was generated relymg on the inherent charaeteristies of the 

11111ltivariate dcnsity fllnction of the training sequence and the c1ustering distortion measure. 

That IS, an M -Ievel VQ codebook was generated for aIl of speech production space and 

incllldcd AR models a~!\ociated with both voiced and unvoiced speech. The second type of 

Veetor QuantIzcr whieh was investigated was based on the Forward-Adaptive Veetor 

QlIantiœr introdllced in section 4.5.4. One memoryless unstructured M -level VQ 

codcbook was gcneratcd for voiced ~peeeh and another memoryless unstructured M' -Ievel 

VQ code book. wa~ gcncrated for unvOIced speech. In this case, a voicing discriminator 

functioncd as the c1ass encoder or the mechanism by which the proper VQ codebook wou Id 
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he selected for a given speech segment. Figure 5.8 depicts il speech cnhanccmcnt systt~1ll 

based on a combined voiced and unvoiced VQ code book white figure 5.9 dcpicts a speech 

enhancement system based on sl'parute voiccd and unvoiced VQ codebooks. 

As indicated in figure 5.8. the primary areas of II1vestlgation givcn the comhllled voiccd and 

unvoiced VQ codebook includcd the size (M) of the combined l'odehook and the nature 01 

the template-matching distortIon measure. A!\ II1dicated in tigure 5.9. the primary :lIea~ of 

investigation given the separate voiced and unvoi('t~d VQ codebook~ lIlc\uded the ~ill'S ( M 

and M') of the voiced and unvoiced ',Q codebooJ...s. the nature of the template-matching 

distortion measure, and the training sequence uscd 10 gcncrate the voiccd and unvoired VQ 

codebooks. 

Figure 5.8 - Vector Quantizer-Based Speech Enhancement using a Combined 
Voiced+Unvoiced Vector Quantizer Library 
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Figure 5.9 - Vector Ouantizer-Based Speech Enhancement using Separate 
Voiced and Unvoiced Vector Ouantizer Libraries 
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5.3.2 Dctailed Overview of Selected Speech Enhancement Components 

5.3.2.1 The Voicing Discriminator 

The voicing discriminator used was based on the work carried out by Krubsack and 

NiederJohn lJ1 147) and is depicted in figure 5.10. The voicing decision is based on three 

features derived from the autocorrelation of a given low-pass filtered noisy speech signal 

segment. 

Figure 5.10 - Block Diagram of Voiced-Unvoiced Discriminator 
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The three features are derived, given the autocorrelation function, as follows: 

e' = (R(O) )1/2 
256 

P I = R(K). R(K) = max R(J') J' = 15 ... 100 (5 2{) 
R(O) 'J •. 

where R( ) is the autocorrelation function, e' is the rms energy of the speech segment, p' 

is the normalized maximum value of the autocorrelation function over the 'pitch range' and 

r' is the rms value of the normalized autocorrelation function over the pitch range. Note 

that the term 'pitch range' had further meaning in 1471 where a noise-robust Ditch detcction 

algorithm was also examined. 

Given e', p', and r', the voicing decision may be described by the following algorithm: 

if e' < e;"mllOld or (-O. Sp' + r:ntl'fl'l'pt - r') > 0 Ihl'II 

speech segment is UNVOICED 

else (5.21) 

speech segmelll is VOICED 

end if 

where e;'lresl/Old ,and r;nlercept are preset constants. 

The algorithm provided by (5.21) stems from the observation that a plot of r' versus p' 

will form a region corresponding to vOlced speech segments and another regioll 

corresponding to unvoiced speech segments. If the SNR is high, the two regllllls are 

easily discriminatcd as the voiced region wIll form weil away from the origin while the 

unvoiced region will form close to the origin. This situation (SNR = 00 dB) i!\ depicted as 

scenario (a) in figure 5.11. As the SNR decreases, the voiced region move\ toward the 

unvoiced region. This situation (SNR :::: 0 dB) i~ depicted a!\ ~cenario (b) in figure 5.]] In 

the case of very low SNR's of the order of -18 dB, the two regiolls will practically overlap. 
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Figure 5.11 - Voiced-Unvoiced Decision Criteria 
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The voicing decision problem may therefore be seen as how to best place the voicing 

discrimination boundary in the r' - p' plot. In [47], it was determined that the optimum 

voicing discrimination boundary is a simple linear line with a slope of -0.5. 

In experimental trials lIsing e', p', and r' derived as per (5.20) and the algorithm defined 

by (5.21), it was empirically detennined that the optimum values of e;hres/wld and r;nlerCel'l' 

with the SNR ranging from 25 to 0 dB, were 200 and 0.25 respectively. With e;hre.\/wld 

and ";I/If'r(C'1'1 set to these values, the percentage of voicing errors (voiced to unvoiced and 

unvoiced to voiced), with the SNR ranging from 25 to 0 dB, was found to be Jess th an 1-

2% for the entire length of a given phrase. Note that e;"re.\//Oid and r;ntercepl were set so as 

to minimize voiced to unvoiced errors, which were found to be subjectively more 

disturbing than unvoiced to voiced errors when the voicing discriminator was used as a 

module in the speech enhancement algorithms. The authors in [47] indicated that the 

voicing-decision errors could be reduced using smoothing techniques. However, 

sl1100thing techniques or continuity constraints on the voicing discriminator were not 

considcred as the algorithm defined by (5.21) perfonned adequately for the range of SNR's 

covered in the speech enhancement trials. 

The low-pass filter used was a 6-th order Butterworth filter with a cutoff frequency of 600 

Hz. as suggested by 147). The design of the low-pass fiIter was accompli shed using the 

PC-DSP Ver. 1.1 program provided with [48] and was implemented in software in direct 1/ 

or CQI/(mic direct form . 
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Note that the voicing discriminator described in this section assumes that the noise is 

additive and broadband in nature and is not intended for distonions such as impulsive noise 

or distortions which may otherwise significantly diston the speech signal below 600 Hz. 

5.3.2.2 Vector Quantizer Clustering Procedure 

The training sequences used in the clustering procedure consisted of speech which had bccn 

low-passed filtered at 4.5 kHz and sampled at a rate of 10 kHz with 16 bits resolution. The 

actual speech was comprised of 30 dlfferent phonetically-balanced sentcnces spoken by two 

males and one female (10 sentences each). The phonetically-balanced sentences are listed 

in tables 5.1,5.2 and 5.3. Period~ of silence were automatically removcd from the training 

sequence using a procedure in which the speech was analyzed in 500 sample segmcnts. If 

none of the samples in the 500 sample segment were abovc an empirically dctcrmincd 

preset threshold of 100. then the frame was discarded as a silent framc. On completing the 

silent frame discard procedure. 25.1 seconds of speech was retained for Male Speaker 1. 

26.6 seconds of speech was retained for Male Speaker 2, and 22.3 seconds of speech was 

retained for Female Speaker 1 . 

Table 5.1- Text of Speech for Male Speaker 1 

Phrase 1 The goose was brought straight from the old market. 
Phrase 2 The sink is the thing in whlch we pile dlshes. 
Phrase 3 A whiff of it will cure the mo~t stubbc.m cold. 
Phrase 4 The facts don't always show who is right. 
Phrase 5 She flaps her cape as she parades the street. 
Phrase 6 The loss of the cruiser was a blow to the neet. 
Phrase 7 Loop the braid to the left and then over. 
Phrase 8 Plead with the lawyer to drop the lost cause. 
Phrase 9 Calves thrive on tender spring grass. 
Phrase 10 Post no bills on this office wall. 

Table 5.2 - Text of Speech for Male Speaker 2 
Phrase 1 The bark of the pine tree was shmy and dark. 
Phrase 2 Leaves turn brown and yellow in the fall. 
Phrase 3 The pennant waved when the wind blew. 
Phrase 4 Split the log with a qlllck sharQ blow. 
Phrase 5 Bum peat when the logs give out. 
Phrase 6 He ordered peach pie with ice cream. 
Phrase 7 Weavc the carpet on the right hand ~ide. 
Phrase 8 Hemp is a weed found in part of the troplCS. 
Phrase 9 A lame back kept his score low. 
Phrase 10 We find jo)' in the ~imple~t thmgs. 
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Table 5.3 - Text of Speech for Female Speaker 1 
Phrase 1 The sJush Jay deej) along the street. 
Phrase 2 A WISp of cloud hung on the bJue air. 
Phrase 3 A pound of sugar cost more than eggs. 
Phrase 4 The thing was sharp and cut the c1ear water. 
Phra' ; 5 The place seems dull and quite stupid. 
Phrase 6 Bail the boat to stop it from sinking. 
Phrase 7 The term ended in late June rhat--year. 
Phrase 8 Tusk is used to make costly gifts. 
Phrase 9 Ten pins were set in order. 
Phrase JO The bill was paid eveJ}' week. 

The speech from Male Speaker 1 was used as the unsegregated training sequence for the 

combined VQ codebook. The voicing discriminator of section 5.3.2.1 was used to 

segregate speech into separate voiced and unvoiced training sequences. Three sets of 

voiced and unvOiced training sequences were generated using the voicing discriminator 

using: (i) the retained speech from Male Speaker 1, (ii) the combined retained speech from 

Male Speaker 1 and Male Speaker 2, (iii) and the combined retained speech from Male 

Speaker 1, Male Speaker 2, and Female Speaker 1 . 

The u!1segregated and voiced training sequences were preemphasized using the filter 

specified by (1- O. 95z -1) while the unvoiced training sequences were not preemphasized. 

A 25.6 millisecond hamming analysis window was then applied at a frame rate of 156.25 

limes per second (6.4 millisecond time shift per application) to ail the training sequences in 

order to generate the training speech segments. 3921 training segments were generated 

from the unsegregated training sequence while the following number of voiced and 

unvoiced training segments were generated for the 3 segregated training sequences: (i) 

voiced-2541, unvoiced-1379, (ii) voiced-5294, unvoiced-2782, (iii) voiced-7653, 

unvoiced-3907. A 15th order autocorrelation sequence was generated for each 

unsegregated and voiced training segment while a 6th order autocorrelation sequence was 

generated for each unvoiced speech segment. 

TI;;:- LBG algorithm described in section 4.2.1 was used combined with the method of 

generating initial codebooks by splitting described in section 4.2.2.3 in order to c1uster the 

(autocorrelation) training sequences into VQ codebooks of various sizes. The c1ustering 

distortion measure used for ail the codebooks was derived from the Itakura-Saito distortion 

measure defined by expressions (2.59), (2.60), and (2.61) and is reproduced here in a 

slightly l110dified fonnat as: 
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p 

r.\ (O)"v (0) + 2 I, r\ (m),.v (m) 
- -1 -:.., 

m-J + 
(Iv 

(5.22) 

-. 

where :! indicates a training segment, y indicates the ;-th VQ codebook entry consisting 
-1 

of an AR mode!, rel) is the autocorrelation sequence for the traming segment. r(r.) is the 

autocorrelation sequence for the LPC coefficients corresponding to the i -th VQ ;\.R modc\. 
uy is the LPC gain fnr the ;-th VQ AR model, and p is the order of the AR mode!. -. 
Following each c1ustering procedure specified by the LBO algorithm, Durbin's recursion 

[38] was used to detennine the 15-th order AR models for the unscgregated and voiccd VQ 

codebooks and the 6-th order AR models for the unvoiced VQ codebooks. The LBG 

algorithm was allowed to reiterate until the average clustering distortion in two successive 

iterations decreased below 0.00001. 

32, 64, and 128-c1ement VQ codebooks were gcncrated using the unsegrcgated training 

sequence. 8, 16,32,64, 128, and 256-element VQ codebooks were generated llsing the (i) 

segregated voiced training sequence while 4, 8, 16, 32, 64, and 128-element VQ 

codebooks were generated the (i) segrcgated unvoiced training sequence. 32 and 64-

element VQ codebooks were generated using the (ii) and (Ïli) scgregated voiced training 

sequences while 16-element VQ codebooks were generated the (ii) and (iii) segregated 

unvoiced training sequences. 

For ail of the combined and segregated VQ codebooks, a normalization factor was 

determined for each AR model stored in the VQ codebook. The normalization factor uscd 

was the inverse of the total energy in the AR model's response to the impulse functlon. 
AIthough other normalization factors were tried such as the inverse of the LPC (Gy) gain -. 
and the inverse of the highest peak in the AR model spectral e~timate, the inverse of the 

total energy to the AR model's response to the impulse functlon re~ulted in the bcst 

subjective 'Ioudness matching'. That is, the perceived loudness of the enhanced speech 

was roughly equal to the loudress of the input noisy speech. 

For the combined and segregated voiced VQ codcbooks, a ~eparate set of peak-based index 

parameters was generated by detennining the location~ of the first 3 peah in the spectral 

estimate of the AR model in the range from 150 to 3400 Hz. 
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5.3.2.3 Template-Matching Distortion Measures 

The following template-matching distortion measures were examined for their potential use 

as a noise-robust means of indexing the VQ code books generated per section 5.3.2.2: 

(i) dlog Arl'a Ratw(!].,l:) = f IIog\O(AR!!.m / ARl.,.m) 1 

m=1 

(5.23) 

where ARn.m and ARy .nI are the area ratio coefficients for the noisy speech segment (t!) 
- -, 

and i -th VQ AR model (y ) respectively. -, 
(5.24) 

p 

r,,(O)rv (0) + 2 L. rn(m),.v (m) 
-:-1 -~, 

(ii) _____ --!n!!.:I-~l _____ + log(G'y) 
a y -, 

:.., 

where r(!].) and r(l:.j) are the autocorrelation sequences for the noisy speech segment (t!) 

and i -th VQ AR model (y ) respectively, a y is the LPC gain for the i -th VQ AR model, -, -, 
and p is the order of the VQ AR mode!. 

P 
= r,,(O)rv (0) + 2 L rn(m)ry (m) 

- -1 --1 

m=! 

(5.24) 

where r(!].) and r(l:.,) are the autocorrelation sequences for the noisy speech segment (l!) 

and i -th VQ AR model (~,) respectively, and p is the arder of the VQ AR model. 

3 

(iv) dpl'aJ..-ha.,l,t/(t!,l:.) = L 1 F(!!,k) - F(l:."k) 1 W!!(k) (5.25) 
I.=! 

where F(!].,/..) and F(~" k) are the k -th peak (formant) locations for the spectral estimates 

of the noisy speech segment (!].) and i-th VQ AR model (~,) respectively, and W!!(k) is 

the magnitude in dB of the k -th peak in the spectral estimate of the noisy speech segment. 

Note that unlike (5.14) whlch was used in [441. the peak-based distortion measure of 

(5.25) does not use peak or fonnant bandwidth information. Bandwidth information was 

not used since it was empirically detennined that the peak or fonnant bandwidths tended to 

be poorly correlated with the actual (noise-free) bandwidths at high input noise levels. 
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5.3.2.4 Applierl Continuity Constraints 

No continuity constraints were applied for the dIng A,l'C/ RC/I'(I(!!.'~,)' dllC/"WII-SIII/(l(!!.'~)' 

dllaJ,.lira(!!.'~')' and dPl'lI"-b(/sl'd(!1,~,) templatc-matching distortion measures. That is, the 

mode of operation for the speech enhancement system was selected using the cxpressio'l 

specified by (5.17) without consideration of the previou~ly selected molle(s) of operation. 

However. in the case of the dp('{/"-ha.\('dÜl,~,) templale-matching distortion measurc. the 

peak locations determined from the noisy speech segments were subject 10 conti nuit y 

constraints induced by a formant tracking algorithm. The prenllse here was that the 

locations of spectral maxima should not change dramatically from one speech segment 10 

the next since the locations of the spectral maxima were a function of the location of thl' 

vocal tract articulators (e.g .• tongue. lips etc.) which wcre restncled 111 thei .. motion witlull li 

6.4 miHisecond timeframe. The remainder of thts section dcscnbcs the formant trading 

algorithm used in the proposed speech enhancement process. 

5.3.2.4.1 The Formant Tracking Process 

The formant tracking algorithm u~ed in the speech enhancement trials was buscd on the 

work carried out by McCandless 111 1451 and is depicted in tigure 5.12. 

Noisy 
Speech 

Figure 5.12 - Black Diagram of Peak (Formant) Tracking Process 

~"""""""""""""""""""#""""""""""""""""""""""""""~ , , 
~ ~ , Pre-emphasls Determine LPC , 

--w'-~,.~ Filter Coefficients ' 

~ ~ 

~ ~~:I ~ Get max of 4 
~ Peak-P!CklOg Process peaks between 
; 150 and 3400 Hz 

, ~ 

~""""""~""""""""""""""""""""",,,",",,""""" """"""""~ 

VOlclng VOlclng DeCISion 
~-.... ~ Dlscnmlnator +-----------t~ 

Determine locations of 
'---~~ anchor pOints and valleys 

ln speech energy functlon 

Anchor POint 
Locallons 

Final peak 
(formant) tracks 

135 

R,IW Poak Daia 

Determine peak 
(formant) tracks per 
anchor pOint locatIOns 
and contlnUity 
constralnts 



• 

• 

• 

Formants may be described a~ vocal tract resonances which manifest themselves as peaks 

in ~pectral e~timates. The frequellcies at which the formants occur depend on the shape of 

the vocal tract which is in turn determined by the positions of the articulators (tongue, lips, 

jaw, etc.). Normal continuous speech is accompli shed by moving the positions of the 

articulators with time, which will in turn correspond to a change in formant frequencies. 

The fir~t 3 formant frequencies are considered an important eue in the characterization of 

speech sounds. 

ln the following de~cription of the fonnant tracking algorithm it is important to note that the 

selected 'formants' do not necessarily correspond to the actual formants of speech 

production. That is, it is more precise to say that the following text provides on overview 

of a peak tracking algorithm rather than a formant tracking algorithm. For example. no 

attempt was made to determine if a given spectral peak was actually a formant. or 

alternatively, the result of two fonnant mergers. This fact should be noted in the context of 

how the output of this algorithm is to be used. That is, the output of this algorithm would 

be used as a means of indexing a VQ library in which the library elements which were 

composed of AR models, were also associated with a corresponding set of peak-based 

index data. 

The formant tracking algorithm estimates the frequencies of the first three fonnants based 

upon the raw peak data. The raw peak data is obtained from the available peaks in linear 

prediction spectra (see section 2.3). For the peak picking process depicted in fig'.Jre 5.12, 

the pertinent par:uneten; inc1ude a preemphasis factor of (1- 0.9 Z -1), a analysis w:ndow of 

256 samples in length which was applied at a rate of 156.25 times per second (6.4 

millisecond time shift per application), the order of the LPC analysis which was set to 15, 

and the size of the FFT analysis window which was set to 512 (the analysis window was 

padded with 256 zero's) which in tum provided a frequency resolution of 20 Hz for the 

spectral peak or formant locations. 

Given the raw peak data, the tracking process begins at points of relatively high energy 

within voiced segments where the formant estimates are most Iikely to be accurate. These 

points of hlgh speech energy are called al/chor poil/ts. In the case of a short voiced speech 

segment. sUlTOllllded by unvoiced frames, the location of the maximum value of the speech 

energy function withm the voiced segment was selected as the anchor point. In the case of 

a long voiced segment with considerable formant variation, two or more anchor points 
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would he selected by detecting a mile)' in the speech energy function. The valley W.1S 

defined as a minimum in the energy function with a value eqllal to less than one hall' of the 

higher of the adjacent energy maxima. Processll1g or tracking of the raw peak data 

branches out from the anchor point in both directions. using the most recellt formant 

frequency estimates as the next reference. This process is depicted in figure 5.13. 

Figure 5.13 - Flow Chart of Anchor Point Scheme 
(After McCandless [45]) 
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Processing of the backward braneh begins at the next anchor point and ~ontinllcs 1I1ltil an 

unvoiced frame is encolllltered, or a frame corresponding with the previolls forward brandl 

is encountered. Then the forward branch from the same anchor point begins and continucs 

until an unvoiced frame is encountered, or until a frame corre!\pondlllg with the next 

backward branch is encountered. At this point, proce!\~ing .lumps to :he ncxt anchor point, 

and begins again wlth a backward branch, and so forth, unttl the proccssing of the speech 

signal is complete. 

The following outlines the specifie steps which were lIsed for processlI1g raw peak data in a 

noisy environ ment: 

Step 1: Fe/ch Pea/...s. Find the frequencies of up to four peah in the rcgion t'rom 

140 to 3400 Hz . 

Step 2: Fill Formant S/ofS. Assign the raw peak data into the fonnant slots directly. 
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The following steps are applied at anchor points only: 

Step 3a: 

Step 4a: 

Step 5a: 

Step 6a: 

RemoVt False 21ld Formal/t due to Noise. If ail four formant slots were 

filled in step 2 and if the peak in the 2nd formant slot is the smallest in 

magnitude of the four peaks and if the peak in the 2nd formant slot is 

also less than one half of the magnitude of the peak in the 3rd formant 

slot, then remove the peak from the 2nd formant slot and move the peaks 

in the 3rd ili1d 4th formant slots down into the 2nd and 3rd formant slots 

r,~spectively. 

Fill UI/assigl/ed stots: If any of the formant slots are empty, then fill the 

empty formant slot(s) with a corresponding initial formant estimate 

defined as follows for the anchor point: Fl=300 Hz, F2=1500Hz, 

F3=2500Hz, and F4=3200Hz. 

Reset COl'rupfed FOl'mallfs. If the difference in frequency between a 

given peak location assigned to a formant slot and the initial formant 

estimate is greater than a preset threshold, fln,tal t then the peak location 

in the cOITupted formant slot is reset to the illltiai formant estimate. The 

threshold, fm,tal' being 800 Hz. 

Update FOl'mallf Estimafe. Accept formant slot contents as the formant 

estimate for the anchor point. Also, retain formant s!ot contents as the 

initial formant estimate for the next frame. Set the energy threshold, 

ethre.\llOld' equal to half the value of the speech energy at the anchor point. 

The following ~teps were followed as part of the general peak tracking process at 

frames outside the anchor point: 

Step 3b: 

Step 4b: 

Check EI/ergy Lel'el. If the energy level of th(~ speech signal for the 

current frame is greater than or equal to etltresllOld' then proceed to step 

4b. Otherwise. proceed to step 7. 

Fill UI/assigl/ed Stofs: If any of the formant slots are empty, then fill the 

empty fonnant slot(s) with the initial fonnant estimate. 
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Step 5b: Deal with Large Jump.\ /11 F1NlilellCy If the difference in freqllcncy 

between a given peak location assigned 10 a formant slot and the initial 

formant estimate is greater than a preset thre~hold. t ftugt'\/ JIIIII/" then the 

peak location III the corrupted formant slot is resct to the lIlitial formant 

estimate. The threshold, f'argt'\/llifIl/" is 240 Hz. 

Step 6b : Update Formallt Estmlllte. Accept formant slot contents as the formant 

estimate for the CUITent frame. Also. rclain fonnant slot contents as the 

initial fonnant estimate for the next frame. Go to step 1. 

Step 7: Maintaill Forma"t Esfimafe. Maintam thc la~t formant estimate as the 

formant estimate for the current framc lIntil an lInvOlced segment is 

encountered or until the next backward/fol'ward branch is encollntcred. 

Relative to the steps outltned in McCandless in 1451. the above stcps Mresscd the 

importance of the avallable peak information at the anchor points in a noisy cnvironmcnl. 

Another key difference ~etween the steps outlined abovc and the McCandless mcthod, was 

that via steps 3b and 7, the formant tracking process was allowcd to stail (the formant 

estimates were not allowed to change) when the energy of the voiccd segment along either 

the forward or backward branch dropped below a thre~hold eqllal to half the energy of the 

speech signal at the anchor point. This last step was Implemcnted, ~incc Il was observed 

that the raw peak data tended to be overly corrllpted by the noi~e when the cncrgy of the 

speech waveform dropped below approximately ha If the energy of the energy at the andlOr 

point, which in tum led to po or fomlant tracking results. 

Given the above formant tracking steps, it IS still possible that a formant slot Illay be 

severely misaligned in one or several frames. The following ~tep~ outllllcd by McCandlcss 

in (45) were used to smooth the fonnant tracks: 

Step 1: If a single formant ~Iot i~ empty, flll ItS freq lIcncy and amplitude with thc 

average of the values in the previous and following frames. 

Step 2: If a formant is gros~ly out of IlIle or ml()~ing in one, two, or three frames, 

but weil aligned in the two previou() and two followlllg frames, the 

• misaligned frames are corrected by interpolatIOn as follows: 
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Let the frequency location of a formant in the Il-th frame be Ln. Also, 

define Da h = La - Lb as the measure of alignment for a given frame. If 

Dn n-I < 8, where 8 is equal to 240 Hz, then frame Il is considered to 

be smooth. If D" ,,_1 > 8, then frame Il is considered misaligned and an 

attempt is made to smooth frame Il if the one of the following conditions is 

true: 

a) One misalignej frame. 

If D n -I.I1-2 < 8, Dn+I.II-1 < 8, and Dn+2.11+1 < 8 then replace 

L" with (L,,+I + LII_ 1 )/2 and move to frame Il + l. 

b) Two misaligned frames. 

If D n -I,II-2 < 8, Dn+2.n-1 < 8, and D"+3.1I+2 < 8 then replace 

L" with (LI/+2 + LII _ 1 )/2 and move to frame 1/ + l. 

c) Three misaligned frames. 

If Dn-l.n-2 < 8, D,,+3.,,-1 < 8, and Dn+4.fI+3 < 8 then replace 

L" with (L,,+ 1 + Ln_1 )/2 and move to frame Il + l. 
Where the new Ln is used to analyze frame 11 + 1 . 

Step 3: Smooth each fonnant track twice using the following (zero-phase) filter: 

F;(Il) = 0.25F,(1l-1) + 0.5F,(Il) + 0.25F,(1/+1). 

The overall performance of the formant tracking procedure presented in this section is 

demonstrated for Phrase 1 from Male Speaker 1 ('The Goose was brought straight from the 

old market.") in figures 5.15 (a) through 5.15 (d) for global SNR'sequal to oo, 15.2,6.7, 

and 1.8 dB (SEGSNR's equal to 00, 6.1,0.0, -7.3 dB) respectively. Note that the width 

of the figures corresponds to the duration of the phrase which is equal to 2.4 seconds. The 

figures are composed of 3 parts. The top part of each figure is titled 'Formant Tracking 

Input', and indicates the input into the fonnant tracking process including the raw peak data 

(top) followed by the speech energy function (note that the energy function has been 

smoothed with a zero phase filter), WhlCh is in turn followed by the output of the voicing 

discriminator depicted as a hOrizontal bar. The darker intensity in the voicing discriminator 

bar signitïcs vOlced speech, while the lighter intensity signifies unvoiced speech. The 2nd 

or middle portion of each tïgure is titled 'Formant Tracking Output' und corresponds to the 

output of the formant trackmg process before the final smoothing processes are applied. 

The vertical bars indicate the location of the anchor points. The third or iJottom portion of 

each figure is titled 'Final (Smoothed) Formant Tracking Output' and indicates the final, 
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smoothed output of the formant tracJ. .. ing algonthm. The output of the formant trad.lIlg 

process may be compared wlth the spectrogram of the same plu ase whll'h is depicted in 

either figure 5.27 (a) or figure 5.39 (a). 

In comparing these fIgures, it can be seen that ail three formant trac\...s \Wle rclalivcly 

unaffected at the moderate noise level of 15.2 dB SNR. At 6.7 dB SNR, FJ expericllced 

moderate degradation while the F2 formant Irae\... expenenced sllghl degradation. At tlll' 

relatively 11lgh input nOI~e levc\ of I.X dB SNR, the F3 formanl tl ac\... cxpcriellccd !'>ol'Vl'rC 

degradation. whde the F2 formant trac\... expericllced modelale degladatlOn. The FI 

formant track, on the whole. was lelatively unaftectcd at ait Ihe ellcounteled nOise Icveb 

Also, note that the degree of degradation of a given formant trad. wa~ rclated (IIlver~dy 

proportion al) to the energy level of the voiced ~egmenl al any glVl'1l 1l01\e kwl 

The performance of the formant tracking algorithm could he lI11proved with Ihe u~e 01 li 

relatively comphcated ~et of heulïstic rule~ and cOlllllllllly con ... lrallll:-. 111 Ihl' 100manl 

tracking proces~. The performance of the lormant lIac\...lIlg algOlllhm could al ... o hl' 

improved with the u~e of a relatively nOI~e-rohll\t pca\... plC\...lI1g algorilhm ba\l'd 011 

improved spectral analysis techniqucs ~lIch a~ Ihe Zero-Cro ...... lIlg Illl'Ihod or valllllloll~ 01 

the Singular Value Decomposition mcthod~ (c.g., Cad/ow\ Illcthod) oulllllcd by Siceniva:-. 

and Niederjohn in 149). However, Il should abc, he Iloled Ih.l! the author~ 111 14911111llcall'd 

that the other imploved spectral analy~is tcchl1lque:-. provldcd only a marglllailo Illodelate 

improvement in the context of providing rehable peak/fOll1lanl e~t"nales lor nOI~e dC!!.1 aded 

speech at greater computational l'ost. To concllldc tlllS ~ecIIOIl, It wa~ delenlllllcd Ihal the 

performance of the formant tracking process outllllcd 111 tlm :-.ecllon was adequale III tcnm 

of demonstrating its utility as part of the ~peech enhancemcnt proccss. 

5.3,2.5 The Analysis Window 

The analysis window used was the Hammillg wmdow dctlllcd by (2.37) and rcproduccd 

here: 

W/Ulmnllng (Il) 

(5.26) 
0.54 - 0.46 cos 1(21Z"1l) / (N -1)1 , () ~ Il ~ N-I 

= 0 , elsewhere . 
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Figure 5.15 (a) , Fonnant Tracking Process for clear speech 
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Figure 5.15 (b) - Formant Tracking Process al 15 dB SNR 
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Figure 5.15 (c) - Formant Tracking Process at 7 dB SNR 
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Figure 5.15 (d) - Formant Tracking Process at 2 dB SNR 
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A Hamming window of 256 samples in length was app1ied to the simulated noisy speech at 

a frame rate of J 56.25 times a second corresponding to a time shift of 6.4 milliseconds per 

application. 

The content of the anaJysis frame was used as the basis for determining the required set of 

coefficients or parameters used by the template-matching distortion measures. For 

example, in the Itakura template-matching distortion measure of (5.24), a p-th order 

autocorrelation sequence was calculated for the analysis frame (where p is the order of the 

normalizcd AR model selected). 

After a VQ codebook entry was selected using a given template-matching distortion 

measure, the pre-windowed speech segments corresponding to the middle 64 samples in 

the analysis frame were provlded to the adaptive filler for processing. 

5.3.2.6 The Adaptive FiIter 

The nonnalized AR model selected from the VQ codebook(s) using the template-matching 

distortion measllre was applied to a given noisy speech segment using an adaptive fil ter . 

The adaptive t'liter was implemented lIsing the LPC coefficients and Normalization factor 

retrieved from the VQ codebook in direct fonn and IS depicted in figure 5.16 . 
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Figure 5.16 - Adaptive Filter Used in the Enhancement Process 

Noisy 
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Unvolced Anenuatlon Factor 

VOlcedva 
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Combln9d va 
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{al. a2'" ap} = LPC Coefficients 
retrleved 'rom 
VQCodebook 

During informaI listening tests involving cuntinuous and lInrestrictcd speech, it was 

empirically determined that the acceptability of the enhanccd speech signai would be greatly 

improved (made less fatiglling) without a notlceable decrease of intelhgibility by attenllating 

the enhanced speech associated with unvoiced speech signais. The following unvoiced 

attenuation factor was empirically detennined to provide the most acceptable speech signal 

without making the speech irregular or decreasing the intelligibility of the enhanccd speech 

signal. 

(5.27 ) 

Ullvoiced Attenuatio/l Facto,. = (elle,.~y in ul/voÏl'ed .\(JXml'llt) 1/2 /4 

Although the lInvoiced attenuation factor wou Id tend to decreasc the energy levcl of speech 

segments of certain phonemes such as con~tants, the intelligibility of the overall speech 

signal was maintained through acoustic eues such as the formant tl ansitlons in adjacent 

voiced speech segments (vowels). 

The LPC coefficients and normalization factor were applied instanlaneou~ly at the analysi~ 

window frame rate of 156.25 times per second. Subjectively, this resulted in occa~ional 
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minor clicks or pop~ in the perceived enhanced speech signal. Although this could have 

been allcviated via the u~e of an overlap-add or overlap-save technique or perhaps by a 

graduai tran~itJOn of the LPC coefficients from one frame to the next, it was determined that 

the simple instantaneous application of LPC coefficients and the normalization factor was 

sufficient to demonstrate the utility of the overall speech enhancement process. 

5.3.3 Computation al Requirements for the Proposed Enhancement Process 

The purpose of this ~ection is to review the computational requirements for the proposed 

enhancement process. The following table summarizes the primary sources of 

computational load which would he encountered on a per analysis frame basis for the major 

algorithms or components used within the proposed speech enhancement process: 

Table 5.4 - Computational Load for Proposed Enhancement Process 

Aigonthm or Order of Computationa Remarks Component Load 
Input Analysis 0(11) Noisy speech signal is segmented via a 
Window hamming analysis window . 
Voicing 2 x O(I/Iogll) The complete autocorrelation sequence 
Discriminator for a given noisy speech segment may 

be obtained by using two FFf 
operations. 

FOTlnant 1 A spectml esumate tS obtained for each 
Tmcking 

O{Jr) + O(Il'log,,') 
noisy speech segment by first obtaining 

Process a series of LPC coefficients using 
Durbin's recursion and then applying an 
FFT on the LPC coefficients as per 
section 2.3.1. Note that the 
autocorrelation sequence required for 
Durbin's recursion may be obtained as a 
by-product from the voicing 
discriminator. 

Selection of AR O(pM) or 0(3M) 3 here refers to the 3 peaks in the peak-
model from VQ based template matching distortion 
codebook. measure. 
Adaptive Filter 0(64p) Frame rate was 156.25 times per 

second. 

where " is the size of the input analysis frame, Il' is the size of the peak-picking FFT 

frame (equal to 2,,), p is the oHier of the AR model selected from the VQ codebook, and 

M is the size of dIe VQ code book . 
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5.4 Observed Results for the Proposed Speech Enhancement System 

This secdon will provide the observed results for the proposed speech enhancemcnt systcm 

in simulated speech enhancement trials. SectIon 5.4.1 will provide additional 

implementation details not covered in section 5.3. Section 5.4.2 will overvicw the 

objective distortion measures used to measure the quality of the enhanced speech signal. 

Section 5.4.3 will provide the actual observed reslilts for the simulated speech cnhancclllcnt 

trials. 

5.4.1 Additional Implementation Details 

5.4.1.1 Testing Sequences Used 111 the Speech Enhancement Trials 

The testing sequences used in the speech enhancement trials consisted of specch which had 

been low-passed filtered at 4.5 kHz and sam pIed at a rate of JO kHz with 16 bits resollitioll. 

The following outlines the text of the speech for which the observed cnhancemcnt rC~lIlts 

are reported in section 5.4.3: 

(5.2X) 

Test Phrase 1 

Male Speaker 2 
Test Phrase 2 1 Leaves tllm brown and yellow in the fall. 

Female Speaker 1 
Test Phrase 3 1 Apound of sugar co~t more than egg~. 

The designation of the speakers (e.g., Male Speaker 3) IS in rcfcrcncc to the training 

sequences used to generate the VQ codebooks in ~ection 5.3.2.2. 

5.4.1.2 Noise Source Used in the Speech Enhancement Trials 

The simulated noise source was a white gaussian noise source with zero mean. The white 

gaussian noise source was actually derived from a uniform noi~e source with a uniform 

probability distribution function from -1 to 1 accordll1g to the following algorithm: 
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r = (uniform noise sample 1)2 + (uniform noise sample 2)2 

if r > 1 then 

(5.29) 

(
-210g?r)1/2 

gaussian noise sample = (stal/dard deviatioll)(uniform noise sample 1) r-

else 

dÎ.\card r, Xet al/other ,. value 

end if 

5.4.1.3 The Hardware and Software Platfonns Used 

The proposed speech enhancement system was implemented on a micro-computer system 

based on an Intel 50 MHz 486 processor using MS-DOS Ver. 5.0 as the operating system. 

The programming language llsed to implement the speech enhancement system was 

Microsoft Qllickbasic Ver. 4.5 which offered a structured programming environment 

similar to Fortran with the additional benefït of (relatively) instantaneous compilation time . 

The subjective analysis of the enhallced speech files was accompli shed by compressing the 

enhanced 16-bit files to an 8-bit format compatible with an ATI Stereo-FXTM sound cardo 

For the purposes of the speech enhancement trials, the distortion introduced by 

compressing the 16-bit speech samples to 8-bit samples was not perceptually discernible. 

The output of the sound card was fed to the input of a JVC PC-V2C/J portable stereo 

system which included speakers \Vith an effective output frequency range of 30-15000 Hz. 

5.4.2 O~jective Distortion Measures Used in Analyzing the Enhanced Speech 

5.4.2.1 Definition of Objective Distortion Measures Used 

The following 6 obJective distortion measures were used in determining the objective 

quulity of the enhallced speech signal: 

p 

L IloglO(ARr,i / AR~.I) 1 (5.30) 
1=1 
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where ARr.., and ARr.., are the i -th area ratio coefficients for the clcan speech segmcnt (t) 

and enhanced speech segment UO respectively. 

(ii) dS-!orm(r.,g) = (5.3 l) 

where C(w/) and E(w/) are the magnitudes of the spcctrum at frequency (Ot for the c1ean 

speech segment ü:) and enhanced speech segment (~) respectivcly. 

L-l 1/2 

(iii) dCrl1ica/ baml log ([,~) = L Ilog C(w",)/ E(wm )1
2 

(5.32) 
",=0 

where C(co",) and E(wm ) are the positive square roots of the cncrgy within critlcal band 

wm for the c1ean speech segment (~) and enhanced speech segment (~) rcspectivcly. 

(5.33) 

(iv) da"".1 Ixm" p" •• ,(f,f) = ! 1 (ë( W m) l'l2 - (Ê( cu .. ) )'
12

1' 
1/2 

where C(wn,} and E(wn) are the positive square roots of the encrgy within critical band 

mm for the c1ean speech segment ([) and enhanced speech segment (~) re~pcctively. 

fi 

r[(O)rr(O) + 2 l r~ (i)r[(i) 
(v) dllakura-S(//Io(f.,~) = _____ -:::-?'=-=..!...I _____ + log(Œ( 2) (5.34) 

(J-
~ 

where rf.(i) is the i -th autocorrelation for the LPC coefficients for the dean speech segment 

(f), rr.(i) is the i -th autocorrelation for the enhanced speech segment (~), and (J~ is the 
LPC gain for the clean speech segment. 

fi 

(vi) dllakura(f.,g) = 1'[(O)rr.(O) + 2 L l'~ (m)rr(m) (5.35) 
m=1 

where rf.{i) is the i-th autocorrelation for the LPC ccefticients for the dean speech segment 

(f:) and J'f.(i) is the i-th autocorrelation for the enhanced speech segment (O . 
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The above objective di~tortion measures were detennined on the basis of speech segments 

which were obtained by applying a Hamming window of 256 samples in length at a frame 

rate of 7X.125 times per ~econd (12.8 milliseconds time shift per application of window). 

Durbin 's recursion wa~ used In order to determine a series of 16 (p) LPC coefficients for 

each speech ~egment. In the case of (5.31). a normalized spectral estimate was obtained 

according to the procedure outlined in section 2.3.2 using the LPC coefficients derived by 

Durbin's recur~ion and setting the LPC gain to 1. Note that a normalized spectral estimate 

was used as it wa~ indicated in (3X J that the overall level did not have a large impact on 

perception. In the case of (5.32) and (5.33), the normalized spectral estimate was also used 

to detennine the critlcal band energies according to the critical band center frequencies and 

bandwidth~ listed in table 2.1. The length of the spectral estimate was 512 (= L) which 

corresponded to a frequency resolution of 9.8 Hz (FFT size of 1024). 

5.4.2.2 Effect of White Noise on the Objective Distortion Measures 

The effeet of additive gaus~ian noise on the 6 objective distortion measures was detennined 

by applying various levels of gaussian noise to the 10 sentences spoken by Male Speaker 1 

(table 5.1). The results are li~ted III table 5.5. 

Table 5.5 - Effeet of Additive White Noise on Objective Distortion Measures 

SNR Seg- Log Area Delta Hz Log Critical Power Crit. Itakura Itakura-Saito SNR (8 - form) Band Band 

Act Act Aet NOnll Al1 Nonn Act /Norm Act !N'orm Act !N'orm Act Nonn 
00 00 .00 .00 .00 .00 .00 .00 .00 .00 5.45E6 .00 2.00EO .00 

29.1 20.7 2.54 .47 .1 X .36 .43 .33 .16 .35 6.91E6 .01 5.84El .00 
23.0 14.6 3.45 .64 .26 .51 .64 .49 .23 .51 1.36E7 .02 2.36E2 .01 
17.0 8.62 4.16 .78 .33 .65 .83 .64 .29 .65 4.21E7 .05 9.47E2 .04 
13.5 5.10 4.57 .85 .3X .75 .96 .74 .33 .75 X.X2E7 .10 2. I3E3 .09 
II.n 2.60 4.X2 .90 .41 .81 1.05 .81 .36 .82 1.53E8 .17 3.80E3 .16 
9.06 0.66 5.00 .93 .44 .X6 1.1 1 .86 .38 .87 2.35E8 .25 5.93E3 .25 
7.47 -0.92 5.11 .95 .46 .90 1.16 .89 .40 .90 3.37E8 .36 8.55E3 .36 
6.13 -2.26 5.20 .97 .47 .93 1.21 .93 .41 .94 4.57E8 .49 1. 16E4 .49 
4.98 -3.42 5.27 .98 .48 .96 1.24 .96 .43 .96 5.95E8 .64 1.52E4 .64 
3.95 -4.45 5.32 .99 .50 .98 1.27 .98 .44 .98 7.51E8 .81 1.92E4 .81 
.3.04 -5.36 5.37 1.00 .51 1.00 1.30 1.00 .44 1.00 9.26E8 1.00 2.37E4 1.00 

(Act = actual obscrved distortion value, Nonn = nonnalized observed distortion value) 

The normalized average objective distortion values are also plotted as a function of 

Segmental SNR in figure 5.17. The term average refers to the average frame distortion. 
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AIso, noL, that the average objective values \Vere normalized \Vith respect to the 

corresponding highest average distortion measure obtained at the lowest SEGSNR. 
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Figure 5.17 - Effect of Additive White Noise on Objective Distortion Measures 
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Referring to figure 5.17, the Itakura and Itakura-Saito di~tortion Illcasures increase rapidly 

below a SEGSNR of about 5 dB. The other distortion I11caSlIres arc virtually a linear 

function of SEGSNR with the exceptIon of the Lob-Area distortion Il1CaSlIIC which appears 

to be leveling off below a SEGSNR of about 5 dB. Abo note that the plot of the 

normalized Itakllra distortion measure IS cOIllcident with the Itakllra-Salto distortion 

measure while the plots of the normalized Delta Hz (8 - /OIm) and Log ('ritical Band 

distortion measures are coincident \VIth the Power entical Band di~tortJOn Illeasure. 

5.4.3 Observed Results for the Proposed Speech Enhancement Sy:-.tem~ 

This section will provide the actual ob~crved result~ for the "llllulated speech enhancement 

trials. The observed results WIll be relayed vIa the u:-.e of the obJcctive distortion mcasurcs 

introduced in section 5.4.2. Subjective comment~ on thc enhanced ~pcech signal ba~ed on 

inforrnallistening tests will also be providcd for two Icvcls of noi:-.c - (i) at a modcratc input 
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noise level of SEGSNR = 10 dB and (ii) at a relatively heavy input noise level of SEGSNR 

= () to -5 dB. 

5.4.3.2 Ob .. erved Rel>ults - Combined VQ Code book 

Obscrvcd results are provided for a VQ-based speech enhancement system using combined 

VQ codcbooh and various template-matehing distortion measures. Note that the Vector 

Qualltizer codcbooks werc generated using speech from Male Speaker 1 (see section 

5.3.2.2) while the test phra~e was from Male Speaker 3. 

5.4.3.2.1 Effeet of Additive Gaussian Noil>e on Test Phrase 1 

The efrcct of ad(lItive gaussian noise on the 6 objective distortion measures for Test Phrase 

1 was dctenmned by applying varioll~ levels of gaussian noise. The reslilts are listed in 

table 5.6. Thc Ilormalized average objectIve distortion values are also plotted as a function 

of Segmcntal SNR in figure 5.18. Note that the average objective values were r.onnalized 

with respect to the corresponding highest average di~tortion measure obtained at the lowest 

SEGSNR. 

The obscrvcd objective dIstortion meaMlres for the enhanced speech trials involving Test 

Phrase 1 wcre also normaltzed to the same corresponding highest average distortion 

measurc obtamcd for additive white gaussian noise at the lowest SEGSNR. 

Table 5.6 - Obsclved DisIOl1101l Values for Test Phrase 1 for Various Levels of White 
NOIse. 

SNR Seg- Log Area Delta Hz Log Critical Power Crit. Itakura ltakura-Saito 
SNR (8 - 1(,rl/1) Band Band 

Act Act Act Nonn Act Nonn Act Norm Act Norm Act Norrr Act NonT 
24.7 15.6 3.36 0.57 0.21 0.41 0.57 0.45 0.19ê 0.42 3.34E7 0.01 2.42E~ 0.01 
18.7 9.59 4.25 0.73 0.29 n.57 0.79 0.58 0.26 0.58 1.23E8 O.O:.! 9.81EL O.OL 
15.2 6.06 4.07 (UH O.34i 0.67 0.92 0.67 0.31 O.M 2.73E8 O.OS 2.21E3 0.05 
12.7 .~.56 4.99 0.85 0 . .38 0.75 1.01 0.7~ 0.34 0.71 4.83E8 0.08 3.93E3 0.08 
9.14 0.04 5.35 0.91 0.42 0.82 1.14 0.83 0.381 0.84 1.08E9 0.18 8.85E3 0.18 
6.65 -2.46 5.56 0.95 0.46· O.9{ 1.22 0.8~ 0.40[ 0.8S 1.92E9 0.33 1.57E"1 0.33 
4.71 · ... 39 5.70 0.97 0.48 0.94 1.28 0.93 0.42! 0.93 3.00EY 0.51 2.46EL1 0.51 
1.78 -7.32 5.85 J.()( 0.51. I.OC 1.37 1.0< 0.451 1.OC 5.87E9 1.00 4.82E"1 1.00 

(Act = actual obscrved dIstortion value, Nonn = nonnalized observed distortion value) 
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Figure 5.18 - Observed Distortion Values for Test Phrase 1 for Various LewIs of Whitl' 
Noise. 
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5.4.3.2.2 Using the Peak-Ba ... ed DistortIOn Measure 
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The observed normulized objective di..,tortion values as a fUllction of Segmental SNR arc 

shawn in figures 5.19,5.20, and 5.21 for a combined 32-elcment, 64-elcment, and 12X­

element Vector Quuntizer respectively . 

Subjectively, the enhanced speech was slightly Illuftled and had a distinct f1ulleling or 

bubbling quality at u moderate input noise Ievel for the enhalH.:ement "'ystem wlllch wa'i 

based on the combined 32-element VQ codebook. The baekgrollnd wldeband noi..,e was 

noticeably reduced. With an increase of the VQ codebook Sile to 64 clement.." the 

perceived speech still had a distinct f1uttering or bubblll1g LJuullty, but the speech was more 

crisp. There was no difference in the percelved 4uulity of the enhanccd spt,~ch :--ignal with 

an increase of the VQ codebook from 64 elemcnt.., to 12H clements. 

For high levels of input noise and a 32-element VQ eodebook, the flllttenng/hllbbllllg clfeet 

was more apparent and was accompanied with a greuter level of wldehand nOI..,e. When the 

size of the VQ eodebook wa.., inereased to 64 elements, the level of hackground wHlchand 

noise was reduced slightly, but there wa.., no perceived rcduetlon in the fluttenngjbllbbllllg 

quality. There wa~ no difference 111 the perccived <.)lIallty of the cnhanccd ..,pecch signai 

with an increase of the VQ codebook [rom 64 element.., to 12X clement:--
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Overall, the acccptability and intelligibility of the enhanced speech signal was roughly equal 

to that of the input noi.,y '>peech ~ignal for moderate input noise levels and was less than 

that of the input n()i~y "pccch for heavy input noise levels. 

The ~ubjcctivc fluttermg/bubbling quality of the enhanced speech signal was primarily due 

to a hlgh number of mappropriate AR model selections from the VQ codebook. 

Specifically, the peak-based template matching distortion measure tended to select AR 

modcb a.,.,ociatcd wuh voiced speech and unvoiced speech with equal preference for a 

givcn ~pecch ~cgl11ent. 

Figure 5.19 - Ob~crvcd Re~ult~ for Combined 32-Element VQ Codebook indexed by the 
Pca"'-Ba~ed Template-Matching Distance Measure 
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Figure 5.20 - Ob~clved Re~i1ts for Combined 64-Element VQ Codebook indexed by the 
Pcak-Based Template-Matching Distance Measure 
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Figure 5.21 - Observed Results for Combined 12S-Element VQ C'odcbook indexed by the 
Peak-Based Template-Matching Distance Mcasure 
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5.4.3.2.3 Using the Itakura Distortion Measure 

The observed normalized objective di~tortion values as a function of Scgn.",ntal SNR arc 

shown in figures 5.22, 5.23, and 5.24 for a combined 32·e1cmcnt. 64-clcmcnt. and 128-

element Vector Quantizer respectively. 

Subjectively, the enhanced speech was slightly l11uffled and aho had a l110dcratc warhling 

quality at:1 moderate input noise level for the enhanccl11cnt ~y~tcl11 wlllch was ba~cd on the 

combined 32-element VQ codebook. The background widcband nOlsc wa~ noticcahly 

reduced. With an increase of the VQ codebook size to 64 c1cmcnts. thc pcrcclvcd ~pccch 

was slightly more crisp, but now had a di~tinct warbhng ljuahty. Thcrc was no dltfcrencc 

in the perceived quality of the cnhanced ~pecch ~ignal wlth an inerca~c 01 the VQ codchooJ.. 

from 64 elements to 128 clements. 

For hig/l levels of mput noi~e and a 32-elemcnt VQ eodchool... the warhling clfcet wa~ 

more apparent and was aeeompanied with a grcatcr Icvcl of widchand n()i~e whieh abo had 

a thumping quality. When the size of the VQ codcbook wa,> incrca~ed 1064 c1emcnts. the 

level of background wideband noise wa~ reduced ~Iightly J Iowever, the perccived 

warbling effeet was greater. There wa~ no ditfercnœ in the pcrccivcd quallty of the 

enhaneed speech ~ignal wlth an increa~e of the VQ codcbook from 64 c1clTlcnt~ to 128 

elements . 
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Overall, the acceptability and intelligibility of the enhanced speech signal was roughly equal 

to that of the input noisy speech signal for moderate input noise levels and was less than 

that of the input noi~y speech for heavy input noise levels. 

The subjective warbling quality of the enhanced speech signal was primarily due to a high 

number of inappropriate AR model selections from the VQ codebook. Specifically, the 

Itakura tcmplatc matching di~tortion measure tended to select AR models associated with 

voiced ~peech and unvoiced speech with equal preference for a given speech segment. This 

cffect wa~ more pronounced at high input noise levels. 

Figure 5.22 - Ob~crved Results for Combined 32-Element VQ Codebook indexed by the 
ltakura Template-Matching Distance Measure 
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Figure 5.23 - Observed ResliIts for Combined 64-Element VQ Code book indexed by the 
Itakllra Template-Matching Distance Measllre 
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Figure 5.24 - ObselVed Results for Combined I2S-Element VQ Code book indexed by the 
ltakura Template-Matching Distance Measure 

.­-al C 
E .~ .. -o .. 
z.2 

III 

Q 

-5 

----

o 5 10 1 5 

Seg-SNR 

5.4.3.2.4 Using the Itakura-Saito Distortion Measurc 
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The obselVed nOfllilalized objective distortion values as a function of Segmental SNR is 

shown in figure 5.25 for a combined 64-element Vector Quantizcr . 

Subjectively, the enhanced speech was ~hghtly muftlcd and the background noise was only 

barely perceptible at a moderate input noi~e level for the enhancement sy~tcm which was 

based on the combined 32-element VQ codebook. With an increase of the VQ codchook 

size to 64 elements, the muffled quality was effectively elil11l11atcd and the pcrccived speech 

was very crisp. There wa~ no difference in the pcrceived quailly of the cnhanccd ~pccch 

signal with an increase of the VQ codebook l'rom 64 e1cl1lent~ to 12X clcl11clll~. 

For high levels of input noise and a 32-element VQ codchook, the perccivcd speech had a 

high level of wideband noi~e which al~o had a chirplllg and fluttering lIuahty. Whcn the 

size of the VQ codebook was increa~ed ta 64 elements, the Icvcl of background widchand 

noise was reduced slightly. However, the perceivcd chirpll1g and flultcnng quality of the 

background noise was increased. There was no differcncc in the percclved quallty of the 

enhanced speech ~ignal with an increa~e of the VQ codebnok from 64 c1ement~ to 12X 

elements. 

Overall, the acceptability and intelligibility of the enhanced ~pcech ~ignal wa, roughly C<jual 

to or greater than that of the input noisy speech ~ignal for moderate input noi~e Icvels and 

was Jess than that of the input noisy ~peech for heavy input noise levcls. 
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The perceived hlgh level of background noise at high input noise levels was primarily due 

to a high number of inappropriate AR model selections from the VQ codebook. 

Specifically, the Itakura-Saito template matching distortion measure tended to select AR 

models correspondmg to voiced speech independently of the voiced or unvoiced nature of 

the noisy input segment at high noise levell,. Furthermore, with increasing levels of input 

noise, the set of selected VQ elements was increasingly reduced to those AR models which 

allowcd the greate~t amount of speech and noisy energy to pass through the adaptive filter. 

Figure 5.25 - Observed Results for Combined 64-Element VQ Codebook indexed by the 
Itakura-Saito Template-Matching Distance Measure 
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5.4.3.2.5 Using the Log-Area Distortion Measure 
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The observ~d normalized objective distortion values as a function of Segmental SNR is 

shown in figure 5.26 for a combined 64-element Vector Quantizer. 

Subjectively, the enhanced speech was slightly muffled and had a fluttering/bubbling 

quality while the perceived background noise was onl} moderately reduced for the 

enhancemcnt system which was ba~ed on the combined 32-element VQ code book. With an 

illcrease of the VQ codcbook size to 64 elements, the muffled quality was slightly reduced 

white the fluttering/bubbling quality was increased. There was no difference in the 

perceived quality of the enhanced speech signal with an increase of the VQ codebook from 

64 e1ements to 128 elements . 
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For high levels of input noise and a 32-element VQ codebook, the perceived speech had a 

muffled and increased f1uttering/bubbling quality and was also accompanied with a high 

level of wideband noise. When the size of the VQ codebook was increased to 64 clements, 

the muffled quality of the speech and the level of background wideband nOIse was reduced 

slightly. However, the perceived f1uttering/bubbling qualtty of the speech was incrcascd. 

There was no difference in the perceived qualtty of the enhanced speel'h signal with an 

increase of the VQ codebook l'rom 64 elements to 128 elements. 

Overall, the acceptability or intelliglbility of the enhanced speech signal wa~ less than the 

input noisy speech at ail input noise levels. The perceived high level of background nOIse 

at high input noise levels was primarily due to a high number of inappropriatc AR mudc\ 

selections from the VQ codebook for both voiced and unvOlced speech at ail input noise 

levels. 

Figure 5.26 - Observed Results for Combined 64-Element VQ Codebook indexed by the 
Log-Area Template-Matching Distance Measure 
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5.4.3.2.6 Comparison of Spectrograms 

The spectrogram for the undistorted version of Test Phrase t is shown in figure 5.27 (a). 

The spectrogram of a noisy version of Test Phrase t with an SNR of 9. t dB or SEGSNR 

of 0.0 dB is shown as figure 5.27 (b). The ~pectrograms t'or the enhanced ~pccch signab 

processed using the enhancement sy~tem using a combincd 64-clcmcnt VQ Codehook are 

shown as figures 5.27 (c), 5.27 (d), 5.27 (e) for the Pcak-Ba'ied, Itakura, Itakura-Saito, 

and Log-Area template matching di~tortion mea~ure~ re~pectivcly . 
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The spectrograms were created by applying a 128 sample Hamming analysis window, 

padding the analysis window by 128 zeros, and then taking a Fast Fourier Transform of the 

padded 256 sample analy~is window. The Hamming analysis window was applied at a 

frame rate of ] 56.25 times per second. This process resuIted in an approximate spectral 

resolution of approxllnately 310Hz. The actual printed output consists of a 5 lev el 

intensity representatlon of the magnitude of the FFT. Th\.- 5 intensity or gray levels vary 

from white to black and correspond ta 45 dB or lower, 45 to 63.3 dB, 63.3 to 81.7 dB, 

81.7 to 100 dB, and 100 or greater dB respectively. 

In general, for the spectrograms dealing with the enhanced speech signaIs, the background 

noise IS visibly reduced. However, the overall formant structure associated with voiced 

speech has beell distorted. In particular, the 2nd formant suffers from a moderate but 

consistent dcgradation or attenuation while the 3rd formant is severely attenuated or 

aItogether absent. This would account for the 'muffled' quality for the enhanced speech 

signal which was frequently encountered during informaI listening tests. Furthermore, 

bath the voiccd and unvoiced regions of the spectrograms tend to exhibit a pattern of 

vertical striations which would account for the f1uttering or bubbling quality of the speech 

and background noise encountered dunng informaI listening tests. Examining 5.27 (e) in 

particular, there is a fairly consistent set of bands across the voiced and unvoiced regions of 

the spectrogram, indicating that the Itakura-Saito template-matching distortion measure was 

selectillg from a limited set of AR models associated with voiced speech independently of 

the voiced or unvoiced nature of the input noisy segment. 
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5.27 (d) - Filtered using Itakura distortion Measure 
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5.4.3.3 ObseIVed Results - Segregated VQ Codebooks 

5.4.3.3.1 Detennining the Optimum Size of the Voiced VQ Codebook 

The optimum size of the voiced VQ codebook was empirically detennined by processing a 

series of voiced speech segments which had bcen corrupted by a fixcd level of additive 

noise through a speech enhancement system based on VQ codcbooks of varying sizes. The 

voiced speech segments were derived from Test Phrase 1 uSlllg the voicing dlscriminalOl'. 

Note that the Vector Quantizer codebooks were generated using speech from Male Speaker 

1 (see section 5.3.2.2) while the test phrase was l'rom Male Speaker 3. 

The observed nonnalized objective distortion values as a functlon of the VQ codehook size 

are shown in figures 5.28, 5.29, 5.30, and 5.31 for the PeaJ..-Ba~ed, Itakura, Itakura­

Saito, and Log Area template matching distortion mca~ures re~pcctivc1y. The VQ slze of 

'Ref.' in the se figures is actually an mdication of the objective quality 01 the input noisy 

sig •• al. Also, note that the observed objective distortion mcasures werc nOllllalized by the 

same corresponding normalization factors for Test Phra~e 1 according tn ~ection 5.4.3.2.1 . 

Comparing the observed objective results in figures 5.2H, 5.29, 5.30 and 5.31, the 

optimum size of the VQ codebook for voiced speech appears to be either 32 or 64. This 

would imply that only coarse versions of the speech production proœss as lllodc1ed via the 

AR process are required for the speech enhancement process. 

Figure 5.28 - Observed results for noisy voiced speech processed uSlllg differently sized 
VQ Codebooks and indexed by the Peak-Based di~tortion mcasurc 
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These ob),erved objective results concur with informaI listening tests. In general, with a 

very small VQ ),ize (e.g., 16) , the enhanced speech tends to have a greater muffled quality 

and is accompamed with a greater degree of background noise. With larger VQ sizes (e.g., 

greater than 64), the voiced ),peech tends to have an increasing fluttering or warbling quality 

while the background noi),e tends to be diminished but may also have a fluttering or 

chirping quality. 

Figure 5.29 - Observed results for noisy voiced speech processed using differently sized 
VQ Codebooks and indexed by the Itakura distortion measure 
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Figure 5.30 - Observed results for noisy voiced speech processed using differently sized 
VQ Codebooks and indexed by the Itakura-Saito distortion measure 
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Figure 5.31 - Observed resuIts for noisy voiced speech processc(: lIsing diffcrcntly sllcd 
VQ Codebooks and indexed by the Log-Area distortion measlIre 
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5.4.3.3.2 Detennining the Optimum Size of the Unvoiccd VQ Codchook 

The optimum size of the lInvoiced VQ codebook. was empirically dctel111incd hy proccssing 

a series of lInvoiced speech ~egmenlS which had been corrllptcd hy a flxcd lev cl of addHlvc 

noise throllgh a speech enhancement system ba~ed on VQ codeboob of varying sif.cs. The 

unvoiced speech segments were derived from Tcst Phra~e 1 lISlIlg the vOlcing 

discriminator. Note that the Vector QlIantizer codehooJ...s WCll' ge/ll'ratcd lI\lIlg ~pcech hOIll 

Male Speaker 1 (see section 5.3.2.2) while the test phrase was l'rom Male Spl'aJ...cr 1. Abo, 

note the unvoiced attenllation factor ~pecifled 111 section 5.1.2.6 was sct to a cOII .... tant sl'tting 

of 1 for the experimental trial~ II1volvll1g only unvoiced speech. 

The observed nonnalized objective distortion values a~ a fllllctlO/l 01 the VQ codehook sil'c 

are shown in figures 5.32 and 5.33 for the Itakura and ItaJ...ura-Saito template matchlllg 

distortion measures respectively. The VQ ~ize of 'Ref.' III the ... e II/!lIre~ I~ actually an 

indication of the objective 4ualtty of the II1pllt nOlsy signal. AIsn, notc that the ()h~crved 

objective distortion measure~ were normaltzed by the ~aml' corrl' ... pondlng 1J00malil'atIOn 

factors for Test Phrase 1 according to section 5.4.3.2.1. 

Comparing the observed objective result~ for the ltaJ...ura and Itakllra-Salto di~tortion 

measures III figures 5.32 and 5.33, the optimum "'ll'e of the VQ codchook lor unvoic.:cd 

speech appears to be either 8 or 16. The other objective dl\tortlon mea\urc~ wcrc rclauvcly 

static over the entire range of VQ sizes. Thl~ would tcnd tn imply that the cffcct of the VQ-
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based enhancement process on noisy unvoiced speech is at best only marginal. The 

reduced ob<,erved Itakura and ltakura-Saito distortion values may suggest that the VQ-based 

enhanccment proces~ using an Itakura or Itakura-Saito template matching distortion 

measure may aid the perception of the unvoiced segment via some spectral shaping. 

Subjectively, enhancement processes based on larger VQ codebooks stzes produced output 

speech with a greater f1uttering quality. Generally, there was no perceived change in 

acceptabllity or intelligtbility in the enhanced speech signaIs compared to that of the input 

noisy speech signal. 

Figure 5.32 - Observed results for nOlsy unvoiced speech processed using differently sized 
VQ Code books and indexed by the Itakura distortion measure 
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Figure 5.33 - Observed resuIts for noisy unvoiced speech processed using differently sized 
VQ Codebooks and indexed by the ltakura-Saito distortion measure 
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5.4.3.3.3 Observed ResuIts for Unrestricted (Continllous) Speech 

Observed resuIts are provlded for lInsegregated or continuoll" speech proce~sed hy the VQ­

based speech enhancement system USl11g ~egregated VQ codebooJ..s. Note that If an 

unvoiced s~ '~ch ~egment was detected, the unvOlced speech ~egmellt wa~ alll'llllated hy a 

factor proportional to the detected energy leve/1l1 the unvOlccd speech "egment (~CC ~l'ctIOll 

5.3.2.6 - The AdaptIve FIlter). Also, note that the Vectnr Quanti/cr cOlkbooJ..s weIl' 

generated using speech from Male Speaker 1 (~ee sectIon 5.3.2.2) whlle the test phIa~e wa~ 

from Male Speaker 3. 

5.4.3.3.3.1 Using the Peak-8ased Distortion Mcasure 

The observed normalized objective dl!'>tonion values as a functÎon of Segmental SNR ail' 

shown in figure 5.34 for a VQ enhancemcnt ~yste1l1 ba!'>ed on segregated vOlced and 

unvoiced VQ codebooks with 32 and 16 clements respectively. The vOICt'd VQ cmkhoo"­

was indexed using the Peak-8ased templatc matchlllg dl~tortion IllCaMlle whik the 

unvoiced VQ codebooJ.. was IIldexed using the Ita"-ura template matching di!'>tOl tlOIl 

measure . 

Subjectively, the enhanced speech wa!'> crisp and the bad,grollnd n()I~C lcvel '>lIb,>tantlally 

reduced at moderate noi~e levels. The flutterrng and bubbllllg qualrty a:--~oclatcd wlth 

combined VQ codebooks was also effectively climl11ated. For hlghcr levcls 01 Input n()I~C, 

the enhanced speech was still cnsp and ),Iightly Irreglliar whlle the bac"-grolllld nOI~e was 

more apparent but still sub),tantrally led~lced when cOl1lpared to that 01 the Input nOI!'>y 

speech signal. The irregular nature of the vOlccd poilions 01 the ~peech ,>igllal wa~ 

primarily due to failures in the Forlnant Tracking Proce!'>,> at hlgh !cvel'> 01 Input IWI,>e. 

Correspondingly, the irregular nature of the vOlccd portion,> of the '>pel'ch '>Ignal tl'nded to 

be more pronounced with increa~lIlg leveb of input nOI~c. 

OveraIl, the acceptabrlity of the enhanced ~pccch \ignal wa~ bettcr than the nOlsy input 

signal for the range of inp:.Jt nOI~e leveb encountercd as the l'nhanccd ~pccch '>Ignal wa,> 

less fatiguing to It~ten to due to a ,>ub~tantIal rcducllon in background n()i~e. Th~ 

intelligibility of the enhanced ),peech signai was at Ica~t l'quai to th al of n()l~y input '>Ignal 

for the range of input noj),e leveb encoul1tered . 
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Figure 5.34 - Observed Re~u1ts for Segregated VQ Codebooks, Voiced VQ Codebook has 
32 element<; and i<; indexed by the Peak-Based distortion measure 
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The upper limlt of performance for the enhancement process using the Peak-Based 

distortion measure was oeterminr,j by providing the Formant Tracking Process with access 

to the clean ~pcech ~igllal. The ob~erved obJective reslIlts as a function of Segmental SNR 

are ~hown 111 figure 5.35 for a VQ enhancement ~ystem based on segregated voiced and 

lInvolced VQ codeboob with 32 and 16 elements re<;pectively . 

Figure 5.35 - Ob~erved Reslllt~ for Segregated VQ Codeuooks, Voiced VQ Codebook has 
32 clement ... and is mdexed by the Peak-Ba~ed distortion measure - Upper 
hmit of performance for the Peak.-Based enhancement process 
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Comparing t\g.ure<; 5.:H and 5 35. the greate,>t dlfference 111 the observed distortion values 

oCl'ur~ for a Scgmental-SNR of Ic~,> than approximately 0 dB. TIlis would support the 

prl'Il1I-.l' that a rdatlvely nOI' .. e-rohu,>t Formant Tr.ld.ing Proce~s would improve the utility 

of li VQ-ba-.cd '>pcce;, L'nhanecl11cnt '>ystem which med a Peak-Based template matching 

dl~tortlon fUI1l'tloll. Sub1cctlvely. informaI li"tening tl'St<., confirmed that the irregular 
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nature of the enhanced speech was effectively elil11inated for high levels of IIlput noise 

when the Fonnant Tracking Process had access to the cie an speech signal. 

5.4.3.3.3.2 Using the Itakura Distortion Measure 

The observed normalized objective distortion values as a function of Segmental SNR art' 

shown in figure 5.36 for a VQ enhancemcnt system based on segrcgaled voiced and 

unvoiced VQ codebooks wilh 32 and 16 elements respectively. 80th the voiced and 

unvoiced VQ codebooks were indexed using the Itak.ura templalc matching distortion 

measure. 

Subjectively, the enhanced ~peech \Vas shghtly mllffled and had a slight tlllllering/hubbllllg 

quality while the background nOl~e Ievel wa~ sllb~tanlially reducl"d al moderale noi ... e kvcl~. 

Note that the fluttenng/bubbling qualuy of the cnhanœd ~pecch signal wa ... glcatly 

diminished when compared to that of the enhanced ~peech ~Ignal-; a ... ~O(:iated wuh 

combined VQ codebooks. For hlgher leveb of IIlpllt nOl ... C, Ihe enhanced ~pccch ... tlll had a 

slight muffled and f1l1ttenng ljllality whlIe the \cvel of the backglound nOI~e wa~ lIlore 

apparent but ~till ~ub~tantially leduced whcn compared ln that of Ihe Inpuln()J~y ~pccch 

signal. 

Overall, the acceptability of the enhanced ... peech ~Ignal wa ... bellci th an the nOI ... y Input 

signal for the range of input noise leveb encountcred a ... the cnhanced ~pcl'ch ~Igllal was 

less fatigulllg to !J~ten to due 10 a ~lIb~tantJaI leductlOn III bac~gl OUIl(! n()i~l". The 

inteIliglbility of the enhanced ... peech ~ignaJ wa ... at Il"a\t l'quai tn that of 1l01 ... Y lllpllt \lgnal 

for the range of input noi\e level~ encountcred. 

Figure 5.36 - Ob~erved Re<.,ults for Segregated VQ C()deb()o~ \, VOlccd VQ ('odeb()()~ ha~ 
32 clemente., and l~ I!1dexed by the hakllra dl\tortlon lllCa\Ure 
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5.4.3.3.3.3 U:-.mg the Itakura-Saito DI:-.tortion Measure 

The oh~ervcd normaliJ;cd objective di:-.tortion values as a function of Segmental SNR are 

~hown in figure 5.37 for a VQ enhancement system ba:-.ed on segregated voiced and 

unvoiccd VQ cexlcboob wlth :U and 16 elemcnt:-. respectively. The voiced VQ codebook 

was IIldcxed u:-.mg the Itakura-Saito tcmplate matching distortion measure whilc the 

unvoiced VQ code book wa\ indexed u~lIlg the Itakura template matching distortion 

mca:-.ure. 

Sub,cctlvcly, the cnhanced speech was crisp and the background noise level was effectively 

clJminated at Illoderate noi~e Icvels. For higher levels of input noise, the enhanced speech 

wao; still cri~p hut incrca:-.mgly irreglliar while the background noise was more apparent and 

abo had a clmplllg and flllttering 411ality. The perceived high level of background noise at 

high input noi:-.c Icvcb wa~ primarily due to a high number of mappropriate AR model 

~clccti()m from thc voiced VQ code book. Speclfically, with Increasing levels of input 

Iloi:-.c, the :-.ct of ~c1ectcd voiced VQ elel1lent~ was II1crea~lI1gly reduced to those AR models 

which allowcd the grcatc:-.t amount of speech and nOisy energy to pass through the adaptive 

fil ter. 

Overall, the acceptabillty and illtelhgibility of the enhanced speech signal was equul to or 

greatcr than that of the IIlpllt nOlsy ~peech ~ignal level for mode:-ate levels of input noi~e and 

less than that of the IIlput nOI\y ~pccch ~ignal for relatively hlgh levels of input noise. 

Figure 5.37- Ob~ervcd Re~lllt:-, for Segrcgated VQ Codebooh, Voiced VQ Codebook has 
32 elemcnt~ and I~ II1dexcd by the Itak.ura-SUlto dl~tOllion measure 
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5.4.3.3.3.4 Usillg the Log Area Distortion Measure 

The observed Ilormalized objective di~tortlon values as a function of Segmental SNR are 

shawn in figure 5.38 for a VQ cnhancemcnt system hascd on segrcgated vOlced and 

unvoiced VQ codebooks with 32 and 16 e1cmcnts rcspectively. The vOIccd VQ codehook 

was indexed using the Log-Area template matchlllg distortIon \11eaSlIJ'e whi le tlll' llllvoict'd 

VQ code book was indexed using the Itakura tcmplate matchlllg di~t0\1\On 1l1CaMlle. 

Subjectively. the enhanced speech was muftled and the background n()i~e kwl \Vas only 

moderately reduced at moderate noise leveb. For 11Igher Icvcls of input 1l01~l'. tht' voiced 

speech was increasingly irregular while the background noise was more apparent and also 

had a chirping and fluttering quality. The pcrcclvcd irregulanty and thc IlIgh Icvcl of 

background noise at high input 1l01~C Icvcb \\-a~ prImaI I1y duc 10 a high IllIl11hcr of 

inappropriate AR model ~elections [rOll" the voiccd VQ codchook. 

Overall. both the acceptabJlity and IIltclllglbility of Ihe enhanced .... pel·ch signai weil' kss 

than that of the IIlput noisy speech ~Ignal IcvcI for ail Icvcls 011 IIlput noi~e. 

Figure 5.38 - Ob~crved Re~uIts for Segregated VQ Codchooks. VOIced V() Code book ha~ 
32 elcment~ and j" IIldcxcd by the Log-Arca dl~lorll()n tllca\lIrc 
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5.4.3.3.3.5 Compari~oll of SpectlOgraIm 

The spectrogram for the undi..,tortcd vcr<,ion of Tc~t Phra\e l ,<, \hown in fIgure S.11) (a) 

The spectrogr am of a noi~y ver~ion of TC~l Phra~e 1 wlth an SNR of 1) 1 dB or SE(jSNR 

of 0.0 dB i~ ~hown a~ figure 5.39 (b). The ~pcclr()grull1'" for 'he cnhanccd <,pccch <'Igllub 

proce~sect U\lI1g the cnhanccmcnt <,y\tcm lI<,lI1g <,cgregated VO ('o<lchook\ arc \hoWII a<, 
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figurc\ 5.39 (C), 5.39 (d), 5.39 (e), and 5.39 (0 for the Peak-Based, Itakura, Itakura­

Saito, and Log-Arca tcmplatc matchlng dl~tortion measures respectively. The size of the 

vOlccd an unvOlccd VQ codebooks were 32 and 16 elements re~pectively. 

The ~pcctrogram\ were created by applying a 12R ~ample Hamming analysis window, 

paddlng the analy~l~ wmdow by I2S zero~, and then taking a Fa~t Founer Transform of the 

padded 256 ~ample anaIY'I~ wllldow. The Hamming analysls window was applied at a 

frame rate of 156.25 tllne, per ~eeond. This process resulted ln an approximate spectral 

resolutlon of ar,proxll11ately 310 Hz. The actual printed output consists of a 5 level 

Inten~ity reprc~entatlon of the magnitude of the FFT. The 5 intensity or gray levels vary 

l'rom white to blae\.. and corre~pond to 45 dB or lower, 45 to 63.3 dB, 63.3 to 81.7 dB, 

X 1.710 1 (lO dB, and 100 or greater dB re~pcctlvely. 

ln gene/al. for the ~peetrogram, dealillg wlth the enhanced ~peech signaIs, the background 

noi.,e l, vl'>lbly leduccd. The lInvoiced reglOlls of the ~pectlt'gram exhiblt a mild shaping 

and a reducllon 111 energy level a~ a re~lIlt of the combined filtering effeet lIsing the 

unvoiced AR mode! ~eleeted lI~lI1g the lta\..lIra template-matehlllg distortion measure and the 

lInvoiced allenllatlon factor. Abo, 111 eompari~on to the spectrograms 111 figure 5.27, there 

arc no evident \tliatiol1 paltern~ in the 1I11voiccd region of the ~peetrograms. 

ln the ca~e nt the vOlced reg 10 Il'. of the ~pectrogram. the ove rail fonnant ~trueture shows 

sorne Improvement relative to the ~peelrogram~ a~~l1ciated wlth the combined VQ eodebook 

(figure 5.27). III particlIlar. the 2nd formant I~ relatlvely wellmatntained. I-iowever, the 

3rd formant genel ally ~tJlI .,lIffcr:-. l'rom ,l'vere attellllation. For the ~pectrogram~ associated 

wlth the Pea~-Ba~l'd and lta\..lII'a di~tortloll mea~lIrr~. there i~ no apparent vertical striation 

pattern l'Vident III the vOll'ed rcglOll of the ~pectrogral11. However, the vertical ~triations are 

~tJ!1 evidcnt III thL' ~pel'tJl)glal11 a\~oclated \Vith the Log-Arca di,tortlon measure indicating 

that the Log-AIL'a dl\tOItIOIl I11Ca~lIIe .~ not pal1lcLllaJ\y nOI~e-robu~t even provided with the 

rl'latlvL'ly rL'~lnL'tL'd ~L't 01 vOlced AR l~lodel., to ~L'lect l'rom. Abo, the horizontal banding 

d'l'ccl I~ ~tdll'VldL'llt III the VOl l'cd regJon~ of the \pecllOgram a~~ocJated with the Itakura­

Salto lh"tllltlOIl I1lCa~lllL'. IIHhcatlllg thal the Ita\..lIrJ-Saito di~tortion measure was 

L'on"",tcntly :-.ekcIlllg 110111 a Illnited ~el ot voiced VQ codeboolo.. element~ independently of 

thL' tOIIl1.lllt\lllICllllC a~MK'latL'd \\'Ilh the IIlput l1oi~y ~peech ~egment. 
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5.39 (a) - Clean speech 
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5.39 (d) - filtered using Itakura distance Measure 
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5.39 (e) - filtered using Itakura-Saito distance Measure 
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5.4.3.3.4 Robustness of VQ Codebooks Across Different Male Speakers 

The robustness of the segregated VQ codebooks acro~s different male ~pl'akers was 

empirically demonstrated by ob~erving the objective reslllt~ for pron'sslllg Test Phrasl' 2 

(spoken by Male Speaker 2), degraded by variolls leve\'; "f IIlpllt noi~e. on the 'OLD' V() 

codebooks generated using training speech ~CqllCI1CI:S from Male Speakl'r 1 and then on 

'NEW' VQ codebooks gencrated using trainmg speech sequence~ from hoth Mail' Speakel 

1 and Male Speaker 2. 

For the observed resuIts Iisted in this ~ection, the vOlced and unvolced VQ codebooks were 

32 and 16 elements respectively. 

5.4.3.3.4.1 Effect of Additive Gau<;<;lan Noi~e on Te~t Plll'a~e 2 

The effect of additive gUlISSla1l noi~c on the 6 objective distortion IllCaSlIlCS for Te~1 PIHase 

2 was detennined by applying vanou~ Ievcls of gau~~lan nOlsc. The le~ult~ ,IlC li~led in 

table 5.7. The normalized average objective di"itortH)Jl values arc abo plollcd a"i a IlInCliOll 

of Segmental SNR III figure 5.40. Note thal the average ObJlTtlVC valllc~ wert' ilollllalllcd 

with respect to the corrc~pondll1g highest avcrage distortion Illca"iurt' ohtalllcd at Ihl' lowc!\1 

SEGSNR. The observed objective di~tortlon IllCa<;UIC ... 101' the cnhanccd ... peee" tllals 

involving Test Phrase 2 will also he normallZl.:d to the ~aJllC cOlre!\pondlllg IlIghe~t avcla!!c 

distortion measure obtalllcd for additive white gall"'~lan I101 ... e at the I()wc~t SE(;SNR. 

Table 5.7 - Effect of Additive White N()i~c on Tc~t PI1I a~e 2 

SNR Seg- Log Area Delta Hl Log Critlcal Power ('nt Itaf...ula Itaf...llIa-Sallo 
SNR (8-101111) Band Band 

Act Act Act Nonll Act iNorm Act Norm Act !N or III Âcl lNorn Act NOl III 

26.1 20.7 3.16 0.55 0.21: O.3X () 53 () 3' (J l '); O.4( 2.24E7f 0.01 2.HEI () () 1 
20.1 14.7 4 14 0.72 0.311 0 56 () 77 () 5( () 27~ () ')7 7 55 E 71 (J ()il ').XOEII (J.Ot! 
16.6 11.2 4.67 O.XI O.3X; () 6lJ () lJ3 o 6X (J 13: 0 7( 1 641:X! 0 0') 2 2 "H:2! o 0' 
14.1 8.66 4.lJ9 (U~6 0.421 () 76 1.04 0.7 () (J .1() 077 2 XXL~L () 1 ( 1 ')')I·.2l () 1 ( 
10.6 5.14 5.40 0.93 O,4X, (J X7 1 19/ 0 X7 (J 41 o X7 (, 42LXI 0 ~( ') OOL2l o H 
X.05 2.64 5.63 0.97 o 52~ (J.95 1. 291 0 04 o 4~ () ()4 1 141:'1, () (l4 1 ()OJ: 11 () ()t! 
6.12 0,70 5 79! 1 O( 0.55: 1 . (J( 1 37! 1 O( (J.47. 1 (J( 1 7XI:'~ 1 (Hj 2')1I:{! 1 O( 

(Act = actual ob.,erved di ... tortion valllc, Norm = nonnalJ/ed ohv:rvcd dhtolllClIl valllL:) 
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Figure 5.40 - Effeet of Additive White Noise on Test Phrase 2 
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5.4.3.3.4.1 Varyll1g the Training Sequence for Male Speakers 

Figurcs 5.41, 5.42, and 5.43 show the ob~erved nonnal ized objective distortion values as a 

fUllction of Segmcntal SNR for the case that (i) the OLD vOlced VQ codebook is indexed by 

a Pca"'-Ba~ed tcmplatc-matchlllg dl~tortion mea~lIre, (11) the NEW voiced VQ codebook is 

IIldexcd hy a J>ea"'-Ba~cd tcmplatc-matchmg di~tortlon measure, and (iii) the NEW voiced 

VQ codchoo'" i~ indcxed by a Pcak-Ba~cd template-matching distortion measure and the 

Formant Tlac"'ing Proccs~ has accc~s to the clean ~peech ~ignal. In ail the case~ the OLD 

or NEW llllVOlccd VQ codcbook i~ indexed by the Itakura template-matching distortIOn 

ll1eaSll rc. 

Figurc!'> 5.44 and 5.45 ~how the observed normaltzed objective distortion values as a 

funclion of Segmental SNR for the case that the OLD vOlced VQ codebook is indexed by an 

Ita"-ura tcmplatl'-matchlllg dl~tol1ion I11Ca~lIre and the NEW voiced VQ codebook is indexed 

byan Ita"'lII:l tcmplate-mLltchlllg dl..,t0l1lOn mea~lIre re~pectJvely. ln both cases the OLD or 

NEW lInVOICCl l VQ codebook. I~ al..,o II1dexcd by the Itakllra template-matching distortion 

Jl1CLl~urc. 

Companng t Igure 5.41 wlth figure 5.42 and figure 5.44 with figure 5.45, the plots of the 

Ilollnali/cd obJeclive dl~tortlOi1 values a~~oclated with OLD and NEW VQ codebooks are 

wly sllllilar. Infol mal listening tc..,l~ confmlled that Ihe ~ubJective quality of the enhil!1ced 

~pl'l'ch ~Ignab plOduL'cd by l'nhancl'Illent ~ystl'm~ lISillg the OLD or NEW VQ codebooks 

Wl'IL' ~iJlldal 101 ail kVl'I, ot Input nOI~l'. 1 lowever, a careful companson of the enhanccd 

speech 'Ignal.., IIldicall'd Ihal the cnhanccd ~pl'cL'h ..,ignal.., proce~~ed by the enhullcement 
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system using the NEW VQ codebooks were slightly better in thm Ihe voiccd speech wa!\ 

slightly more crisp and slightly less irreglllar while the background noise was slighlly ll'!\s 

noticeable. FIgure 5.43 when compared to tigure 5.42 IIldicates the uppcr hound for tht' 

performance of the enhancement process lIsing a Peak- Ba!\ed Icmplatc matchlllg di!\tortlOll 

rneasure assuming a noise-robust Fonmlllt Trackll1g Process is avallahll'. 

Figure 5.41 - Observed Results for OLD Segregated VQ Codchooks. Voil.'l:d VQ 
Code book with 32 Elements indexed by the Peak-Bascd Di~tan(.'c Mcaslllc 
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Figure 5.42 - Obselved Reslllt~ for NEW Scgrcgatcd VQ Codchooks. VOIced VQ 
Code book with 32 Elcll1cnt~ indcxcd hy the J>eak-Ba~cd DI\lanCe MeLl\lIIC 
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Figure 5.43 - Ob~ervcd Results for NEW Se!:,'Tegated VQ Codebooks, Voiced VQ 
Codebook with 32 Elements indexed by the Peak-Based Distance Measure­
Upper perfonnance limit of Peak-Based enhancement process 
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FIgure 5.44 - Ob~erved Results for OLD Segregated VQ Codebooks, Voiced VQ 
Codebook with 32 Elements indexed by the Itakura Distance Measure 
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Figure 5.45 - Ob~clvcd Rcsults for NEW Segregated VQ Codebooh, Voiced VQ 
Codebook wlth 32 Elements IIldexed by the Itakura Distance Measure 
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5.4.3.3.5 Robu~tness of VQ Codebooks Acro!.s Speakers of Dlffelent Gender 

The robustness of the !.egregated VQ codebooJ.. ... acm!'.!'. ~pea\..a!'. of dt/klent !!L'nders '"as 

empirically demonstrated by observll1g the objectIve 1 l'!'. li Its tOI' proCl'!'.!'.lI1g 'l'CM Pill a~l' 3 

(spoken by Female Speaker 1), degraded by vartous lewl" of IIlput nOlM.'. on the 'OU)' 

VQ codebooks gencrated uSll1g training ~pecch sequences 1'1 nm Male Spea\..er 1 and then on 

'NEW' VQ codebooh generated using trall1ing ... peech ~eqllenrl'''' 1'10\11 Mail' Spl'aJ..L'r l, 

Male Speaker 2, and Female Spea\..el 3. 

For the observed results Iisted in thls !.cctlon, the vOIccd and unvOlcl'd VQ codehoo\.. ... WL'rL' 

32 and 16 elements respectively. 

5.4.3.3.5.1 Effect of Additive GUlIssian NOl!.\: on Test Phrase J 

The effect of additIve gau~."ian noise on thc 6 ob.Jectlve dl~tOltJOn Jl1l'aMlIl'S fOI Tl'~t l'Ill a~l' 

3 was determined by applyll1g vanoll~ kveb of gUlI~!'.lilll nOI~e. 'l'hl' lesult!-. aIl' II~ted III 

table 5.8. The normallzed average Ob/l'CliVe dIstortion value~ arc aho plo\led il'> il tUIlL'tioll 

of Segmental SNR in fIgure 5 46. Notc that the aWlage oh/ectlve vaille ... Wt'Il' lIoll11all/l'd 

with respect to the corre!.pondlllg highe~t average di"tortloJl Jl1l'a'>lIIl' ohtallll'd at thl' IOWl'''t 

SEGSNR. The ob~ervcd obJective di~toltlon mea~lIle!-. tOI the l'JlhallCl'd "pel'ch tll,lI" 

involving Test Phra~e 3 WIll abo he nonnalilcd tn the ~aJl1e c()"e~p()lIdlllt! hl)!he~t aVl'1 age 

di~tortion measure obtained for addItIve white gau!-.'>lall nOI'>e at the lowe"t SI:< iSNR 

Table 5.X - Effeet of AdditIve White NOl\e on Te ... t Phra'>e 3 

SNR Seg- Log Arca Delta f-L.t: Log ('''lIcal POWL'J Cllt Ita~lIra It il\.. 1II a -Sa Il Il 
SNR ( 0 - !orlll) Band Band 

Act Act Act NOlln Act :Nonn Act lNorm ACI NOl 111 Act !NO"1 Ali ! NO//II 
24.0 15.9 3.05 O.5X 021; 042 054 043 () 1 x: () ,1/1 1 41f:7! () 01 1 ~)I·.I! () Il 1 
18.0 9.92 393 075 0.3 O.6( 0.7') 060 () 25, () (,i 4 1 Il'.71 0 () ') 1 nL2j (J (),I 

14.5 6.40 437 o X3 0.35, 070 o X<J: () 7 1 () 2(), o 71 X (JOE71 0 1 ( 1 121'.21 () Il ( 

] 2.0 3.90 463 () XX 0.39 07X () 9Xj () 7 X OU on 1 il()I·.X~ 0 17 'l 'lX 1.21 () J( 

X.43 O.3X 495 () 94 0.44 () xx I.II!OXX o 1(J' o XX 1 2XI:XI 0 )( 1 2()/: '1 () H 
5.94 -2.12 5.13, 0 9X () 47' 0.94 1 1 ()! () 94 0.19 () ()') ") 7()J:Xt () ()il 2241-. {i (J (Jil 
4.(}() -4.06 5.251 1.00 () 5' 1 . ()O 1 26! 1 ()( 041 1 ()( () 02 J. X! 1 O( , ,)OI:~! 1 (J( 

(Act = actual oh"ervL'd dl,>tortlon value, NOrln = 1l0rlnall/L'd Oh'>l'/vl'd dl,>lor\lon Vaille) 
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Figure 5.46 - Effect of Additive White Nobe on Te~t Phrase 3 

II) 
G) 
::;, ,,­

G) al 
N> 

al C 
E 0 
~ -o ~ 

z.B 
II) 

o 

- 5 o 

--.-- Log Area 

-0-- Delta Hz 

--·--Log CS 

---0-- Power CB 

--.-- Ilakura 

5 1 0 1 5 20 --.116..--- Il-Salto 

Seg-SNR 

5.4.3.3.5 1 Varylllg the Training Sequence for Female Speakers 

Figurc~ 5.47, 5.4X, and 5.49 show the ob"erved nonnalized objective dIstortion values as a 

funcllon ot Segmcntal SNR for the ca~e that (i) the OLD vOlced VQ codebook is indexed by 

a Pcak-Ba~ed template-matchll1g di~tortlon mea~ure, (ii) the NEW vOlced VQ codebook is 

IIldexcd hy a Pcak-Ba~cd tCl11plate-matching dl~tortion meaSlllC, and (iii) the NEW voiced 

VQ codchook I~ IIldexcd by a Peak-Ba~ed tClllplate-lllatching di~tortion measure and the 

Formant TI ad.JIlg Proce~., ha~ acccss to the c1ean specch ~Ignal. In ail the ca~e., the OLD 

or NEW 1I1lvnlccd VQ codcbook i:-. II1dexed by the Itakura tClllplate-matching distortion 

l11ea~lII e. 

Figure~ S.50 and 5.51 ~how the observed norrllalized objective di~tortion values as a 

fllllction of Segmental SNR for the ca~e that the OLD voiced VQ codebook is indexed by an 

Itakura telllplate-matching dl~tortlOn measurc and the NEW vOlced VQ codebook is indexed 

hy an Itakllra template-matchlllg dl!-.t0l110n mca~lIre rc\pectlvely In both cases the OLD or 

NEW lInvolced VQ codebook I~ abo indexcd by the Itakura tcmplate-matchlilg di~tortion 

mca~ure. 

Comparing t iglllc SA7 \VIth figure SAX and figure 5.50 with figure 5.51, the plots of the 

normali/cd ot~JCCIIVC di~tortiol1 values associated with NEW VQ codebooks are consi~tently 

slightly lower than the obJcctive ll!:-.tortlOI1 value~ as:-,oclated wlth the OLD VQ code books 

over thl' l'ntlre lange nf IIlput Illmc value:-.. Informai li~tenlllg te~t:-. conflrmed that the 

Cnhanl'l'd :-.pel'ch :-'lgn,t1\ pnKl'\:-'l'd by the enhancl'Illcnt ~yqel11 u:-.ing the NEW VQ 
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codebooks were slightly better 111 that the voiced ~peech was sltghtly more lTisp and ~Iightly 

less irregular while the bad.ground I1lme wa~ ~hghtly Ie .. s Ilotll:eabk and had kss of a 

f1uttering quahty. Figure 5AS when compared to tïgurt.' 5.·N IIllhratc), the upper boulld for 

the performance of the enhancement proce~~ lISlllg a PeaJ...-Ba~l"(1 tl'Illplatl' l1lalrhlllg 

distortion measure assutnlllg a nOI),c-robw,t Formant Trad.mg Prol.'c~ ... I~ avadahk. 

Figure 5.47 - Observed Results for OLD Segregated VQ Codehoob. VOIcl'd VQ 
CodebooJ... with 32 Elemcnt~ indexed by the PcaJ...-Ba ... ed nl~t.IIlCl' ~kasllll' 
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Fi&ure S.48 - Ob~erved Rcsult), for NEW Segrcgatcd YQ Codeb(lob, YOJcl'd Y() 
Code book with 32 Elell1ent~ IIldexcd by the PcaJ...-Ba~ed DJ~lanL'C Mca"lllc 
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Figure 5.49 - Observed Results for NEW Segregated VQ Codcbooks, Voiccd VQ 
Codebook with 32 Elements indexed by the Peak-8ased Distance Mcasure -
Upper pertornml1ce limit of enhanccment process 
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Figure 5.50 - Observed Results for OLD Segregatcd VQ Codchoo"s, Voiccd VQ 
Codebook with 32 Elements indcxcd by the Itakura Di),t'lIH.:C Mcasurc 
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Figure 5.51 - Observed Results for NEW Segregated VQ Codcbooks, Voiccd VQ 
Codebook with 32 Elements indexed by the Itakura Distance Mcasure 
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5.5 Surnmary and Additional Comrnents 

The Vector Quantizcr ~pecch cnhancement system based on separate voiced and unvoiced 

codebooh olltpcrformed the Vector Quantizer speech enhancernent system base.J on a 

combincd voiccd and unvoiced code book both in terrns of the ooserved objective measures 

and in mformal li .. tcning te~ts. In the case of speech enhancernent systems based on the 

comblllcd VQ code book, this was ct'Je a high nUl1lber of inappropriate code book element 

selcction~. In particular, the Peak-Based, Itakura, and Log Arca distortion measures tended 

to select AR models associated with vOlced speech and unvoiced speech with equal 

preference for a given speech segment. The Itakura-Saito distortion rneasure tended to 

select from a 11I11itcd set of vC'iced AR models independently of the voiced or unvoiced 

nature of the input noisy speecl segment. The segregated codebooks combined with the 

voicing decision greatly reduced the nUl1lber of inapprop!"iate code book selections in the 

case of the Peak-Bascd and Itakura distortion mf'asures. However, tht., additional 

information provided by the vOlcing infonnation only had a negligible effect on the Itakura­

Saiio and Log-Arca di~tortion measures at high in~ ut noise levels. In short, the act of 

~elccting the class of ~peech from a very small set üf alternatives lIsing a noise-robusl: 

procedure and then enforcing a restriction on the AR model search procedure using the 

c1ass of ~peech IIlfonnatlon wa~ bcneficial to the proposed VQ based enhancement process . 

The optimulll ~ize of the codcbooks for voiced and unvoiced speech was empirically 

determined to be in the range of 32-64 and 8-16 respectively. This would imply that only 

CŒlTSe ver~ions of the speech production process as modeled via the AR process are 

required for the proposed speech enllt ncernent process. This el1lpirical resuIt is in 

agreement wllh the work carried out in 1121 and 142J in which low state-mixture values 

were fOlllld to provide the best perfonnance for a speech enhancement process based on 

Hidden Markov Model1>. 

The optlmUIll codebooks gellerated were dernollstrated to be quite robust in that similar 

objective and subjective reslllts were obtained across a 1l11l1lber of different speakers. In 

particular the cffect of including spokell text from a givell male speaker not included in the 

original male speaker based training sequence proved to be marginal with respect to 

enhanclllg spc':ch from the same given male speaker. The effeet on enhancing noisy female 

speech by including spoken text from the female speaker into the original male spe~'œr 

bascd training sC4uencc proved to be more evident but still fairly modest. For example, the 

decrcasc in distortion in the case that female speech was included in the training sequence 

resulted in approximately a 0.05 redllction in terms of the normalized 

dm/le/II /"md /'(111'('/ (~,~) objective distortion meas~re throughout the range of input no;se 

levels. 

185 



• 

• 

• 

The codebooks were generated usillg the LBG algorithm spccified in 4.2.1 which 

inherently attempts to accommodate the Tllultivariate properties of ~peech assul11mg that an 

appropriate (AR) speech production model und a sufflciently long ,~raining sequence arc 

provided. However, a code book whlch accomlllodates the propert\l~s of speech may not 

necessarily he the optimum code book for the proposed speech enhanœmcnt pIOCl'SS. That 

is, a codebook couid be created which optllllizes the dIvIsion of speech-prodlll'tion spacc in 

a manner that ;mproves the codebook's robustne~s to noi~e rather than accommodate~ the 

probabilistic distnbution of the trainlllg sequence. Such a codchook need not neccssari Iy be 

based on a Monte Carlo approach such as the LBG algorithm, but could be l'reated 0\ 

tailored using an LBG produced code book as a base uSlIlg knowlcdgc of the ~pel'l'h 

production process. The perf0n11anCe of the proposed rnhancement system could al~() be 

improved by designing or modifying fllters corresponding to a glven VQ codebook clement 

in order to take advantage of certul11 perceptual characteristlcs such a:-. energy-trequcill'y 

masking. The filters would not nece:-.sarily be ali-poil' or AR filtcrs. 

The Itakura-Saito dIstortion measures provlded the enhanced speech with the be:-.t 

subjective and objective re~;ults for low input noi~e \cvels or Segmental SNR'~ gleater than 

approximately 12 dB. The Peak-Ba~ed di:-.tortion mea~ure u:-.ing thc exi~ting Formant 

Tracking Process provided the be:-.t subjective and objectivc re:-.ult~ at moderate input noise 

levels or Segmental SNR's less th an 12 dB and greater than -2 dB. The Itakura dl:-.tortlOn 

measure provided the enhanced speech with the bc:-.t sub.lt:ctlvc and ohJective rcsult~ for 

high levels of inpl.lt noi~e or Segmental SNR'~ less than -2 dB. lIowcver, when the 

Formant Tracking Process had access to the clean ~peech, the MlhJcctlvC performance of the 

Peak-Based distortIOn measure exceeded that ûf the ItakllrLl di:-.tortlon lllea~l1re 1'01 high 

leve1s of input noise. ThIS illdicates that the utility of the VQ ha"p,d cnhancclllcnt :-.y~tC1l1 

using the Peak-Based distortion measure COli Id be improvcd with a rclattvcly nnt:-.c-rohll~t 

Formant Tracking Process. TIle Log-Area dIstortion Illcu\urc performed rclativcly pondy 

at all input nOIse leveb and indlcated that a good ohjective Illca:-.urc of tllIality may not 

necessarily be a good (noi~e-robu~t) tcmplate Illatchlllg dl~tortlon 1l1ca~ure. 

The best objective and subjective performancc wu:-. obta1l1cd for the VQ cnhancclllcl1t 

system based on ~egregated codebooh. U:-'lI1g the tl(fI/ual !J(/I/I/ !lOI-\'(,/c,r) a~ an indicatlOlI 

of objective speech quality, the VQ enhanv~lllent ~ysttm\ lI~ing ~egregated VQ codehooks 

and the Peak-8ased distortion mea~ure werc able to unprove the qllaltty of the noj~y :-.pccch 

signal by a factor equivalent to an increase tn the Seglllcl,tal SNR of approximatcly j-X dB 

for a wide range of input levels . 
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6. CONCLUSION 

A propo~ed Vector Quantizer-based speech enhancement system based on an aàaptive 

filtering process was explored. A version of the proposed Vector Quantizer speech 

enhancement whlch u~ed segregated voiced and unvoiced VQ codebooks and a voicing 

discriminator provlded an improvement in objective quality equivalent to a 3-8 dB increase 

in Segmental SNR over a wide range of input noise levels. Subjectively, informallistening 

te~ts confirmcd that the II1telligibility of the enhanced speech signal for the best template­

matchlllg di~tortion measure used to index the VQ codebooks was at least equal to if not 

greater than the noi~y input speech. The perceived acceptability of the enhanced speech 

signal was also improved as a substantial portion of the background noise was effectively 

removed without substantially distorting the underlying formant structure associated with 

voiced speech. 

The best template-matching distortion measure for a broad range of input noise levels was 

the Peak-8ased distortion measure. The performance of the Peak-8ased distortion measure 

may be improved for high input noise levels (Segmental SNR < -2 dB) assuming that an 

improved noise-robust fonnant tracking procedure may be d~termined . 

The codebooks used to analyse the speech enh:mcement system were generated using the 

Linde, Buzo, and Gray algorithm which inherently attempts to accommodate the 

multivariate properties of speech assuming th.1t an appropriate (AR) speech proJuction 

model and sufficiently long training sequence are provided. Empirical results indicate that 

the optimum size of the VQ codebook is quite small (32-64 elements for voiced speech) 

implying that only coarse versions of the AR speech production model are sufficient for the 

speech enhancement process. The speech enhancemcnt process could be improved if the 

means to index the codebook were designed in a non-Monte Carlo fashion using 

knowledge of the speech production process while the corresponding filters were designed 

to accolllmodate certain perceptual characteristics such as energy-frequency masking . 
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