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PREFACE

This thesis builds upon previous work carried out in speech enhancement using a Vectol
Quantizer as a means of signal detection or template matching. Specifically, Juang and
Rabiner in [43] demonstrated the use of a Vector Quantizer as an integral part of a signal
restoration system. Rather than estimating the characteristics of the signal and/or the noise,
the signal restoration process was treated as a problem ir signal detection using a spectral
mapping approach. The particular approach used by Juang and Rabiner cannot strictly be
called a speech enhancement method in that the emphasis was on improving spectral
matching, perhaps for further use in a separate speech recognition system, rather than
producing an output speech sequence with an improved quantitative characteristic such as
increased SNR or a subjective improvement in intelligibility. However, the system
described by Juang and Rabiner was interesting in that it showed how a restricted parameter
based sub-space could be used to choose an appropriate pattern in a degraded environment.
The work carried out in this thesis is more closely tied to the work carried out by
O'Shaughnessy 1n [44] in which a Vector Quantizer library wnose codebook elements
contained the coefficients for an autoregressive model was indexed by using a noise-robust
formant-based template-matching distortion measure. The selected AR model was used in
an LPC synthesizer which was driven by an excitauon source appropriate to the current
characteristics of the noisy speech. Since the speech was resynthesized using the LPC-
based autoregressive model and a simplified set of excitation waveforms, the output speech
was noise-free but had the buzzy or mechanical characteristic typical of LPC vocoders.
However, the output speech was reported to be intelligible. In short, the enhancement
system proposed in [44] demonstrated the utility of a Vector Quantizer in a practical speech

enhancement system.

This thesis differs from the work carried out in [44] in the enhancement approach used.
Rather using a synthesis approach, the noisy speech is filtered using an adaptive filter
whose characteristics are defined by the normalized AR model retrieved from the VQ library

using a given template matching distortion measure.

For the remainder of this preface, I would like to acknowledge the support of my current
employer, Stentor, which provided with the time and resources to perform the experimental
analysis and prepare this text. 1 would also like to acknowledge the perseverance of my
wife, Joann Leong-Zabawskyj, who endured endless repetitions of certain phonetically
balanced phrases and offered independent insight into the perceived subjective quality of the
enhanced speech signals during the simulated speech enhancement trials.



ABSTRACT

This thesis will examine a Vector Quantization-based system for speech enhancement. Key
areas in this study will include the optimum size for the vector quantizer library and the
distance measures used to index the vector quantizer library. In addition, the robustness of
the overall enhancement process as a function ¢: the vector quantizer training sequence
(e.g., the number of speakers and the number of dissimilar phrases) will be explored. As
speech enhancement is a diverse field, several other contemporary speech enhancement
techniques will initially be examined in order to place the results of this study m a

comparative light.

Ce mémoire examinera un systeme utilisant la quantification vectorielle pour l'améhoration
de la parole. Les principaux domaines d'intérét de ce mémoire mclueront la dimension
optimale de la hibliotheéque de référence de quantitication vectoriclle ainsi que les unitds de
mesure utilisées pour indexer cette bibliotheque. De plus, la robustesse du processus
d'amélioration sera étudiée en fonction de la séquence d'entrainement pour La quantification
vectorielle (i.e., le nombre d'interlocuteurs el le nombre de phrases dissemblables
prononcées). Vu l'étendue du domaine de I'amélioration de la parole, plusicurs autres
techniques seront brigvement étudiées afin d'établir une base comparative pour l'analyse

des résuiats.

il




1. INTRODUCTION

Recent advances in speech coding and digital signal processing have resulted in extensive
reductions 1n the bandwidth necessary to transmit an intelligible speech signal of good
quality, and have also increased the reliability and capacity of transmission channels. Yet,
despite these advances, the corruption of a speech signal by additive/interfering background
noise at the source or additive/multiplicative transmission noise in the communications
channel has remained a major impediment in many man-machine and man-man
communication environments. Any such noise will n general decrease both the quality and
the intelligibility of the degraded signal compared to that of the original speech signal. One
example of a degraded communication environment is the conversation between a pilot and
an air traffic control tower. In this case the predominant source of noise is the background

engine noise plus perhaps the interfering effect of background speakers at each end of the

channel,

In an effort to try to reduce or minimize the effect ot the noise source, several speech
enhancement techniques have been proposed. Figure 1.1 displays a diagram of the overall
speech enhancement problem. Enhancement algorithms typically try to increase the
objective quality (e.g., Signal to Noise Ratio - SNR) of the corrupted speech signal.
Increasing the objective quality of the signal, however does not necessarily imply 4
corresponding increase in the intelligibility of the speech signal. Intelligibility is a
subjective measwe and usually requires some sort of comparative scoring method based on

the subjective viewpoint of several subjects.

Figure 1.1 - Overall View of Speech Enhancement Problem
(After O'Shaughnessy [1))

Speaker S Estmated | Listener
peech Communication Enhancement
Signal - Channel > Algorithm > gr;e:aclh >
Background Transmission
Noise Noise

This thesis will examine a Vector Quantization (VQ)-based speech enhancement system
with the emphasis on increasing objective quality measures which have been shown to have
a fairly good correlation with acceptability and intelligibility. Vector Quantization is



essentially a data compression method by which a sequence o1 vector of variables 1s
mapped onto a reduced set of representative symbols. With a few exceptions, the use of
Vector Quantization has been hmited to the coding of speech signals and images. The
appeal of vector quantization in the field of coding hes in a result of information theory
which states that an encoder which operates on a senes ot values will theorencally
outperform a scalar encoder which operates on the same set of values i a serial fashion
This increase in performance is due to the fact that Vector Quantization can make use of
four properties in a given vector of values. (1) hLinear dependency, (2)  nonl near
dependency, (3) nature of the probability density function, and (4) the gecometiic proj tties
of N-space - where 'N'1s the number of values in the vector. Ttis these properties winch
are utilized in the generation of a VQ encoder in speech coding. This study will attempt to
demonstrate how these same properties may be also utilized in a speech enhancement

system.

The second section will review a number ot commonly used objective distortion measures
and provide an indication of their correlation to the Diagnostic Acceptabihty Measure which

in turn provides a reliable indication of subjective acceptability  As speech enhancement s

a diverse field, a study of alternative methods should be undertaken to place the results off

this thesis in a comparative light. Therefore the third section will be devoted to a discussion
of several mature and contemporary speech enhancement techniques  "The fourth section
will introduce Vector Quantization m terms of the underlymg theory and review several
different classes of Vector Quantizers. Section S will tie the Vector Quantization concept to
speech enhancement and review previous worh done m the field of VQ bascd speech
enhancement. Section 5 will also introduce the proposed speech enhancement system and
outline the experimental variables to be examined Key areas to be studied include the size
of the vector quantizer library and the distortion measures used to index the VQ hibary.
Finally, Section 5 will report the objective results and subjective observations for simulated

speech enhancement trials.




2. DISTORTION MEASURES USED IN SPEECH PROCESSING

2.1 Introduction

The ability to apply a procedure which will reliably provide an indication or measure of the
sound quality, acceptability, and intelligibility of a speech signal in a repeatable manner is
unquestionably a key requirement in the design and analysis of any speech processing
system. One means of fulfilling this requirement would be to use trained human listeners
who would evaluate the subjective quality of a speech signal using a standardized
procedure. Subjective procedures involving human listeners generally provide a good
indication of the subjective quality as they are based on human perception. However, these
tests tend to be expensive, difficult to administer, and suffer from the inherent non-
repeatability of human responses. In addition, the labor and time-intensive nature of
subjective procedures tend to limit the viability of subjective distortion measures to
demonstrating the quality of a final speech processing system rather than as an integral

element of the design process.

Objective or computable distortion measures provide relatively inexpensive and consistent
results. Furtiermore, the relative speed at which an objective distortion measure may be
determined enables its use not only in the design process of a speech processing system but
as an integral part of the speech processing system itself. For an objective distortion
measure to be useful in the context of speech processing, it must have three properties: ( 1)
it must be analytically tractable, (2) it must be easy to compute, (3) it must be subjectively
relevant to the process being considered. A distortion measure does not necessarily have to
adhere to the more strict requirements of a distance meric (o be useful. That is, an
objective distortion measure does not necessarily have to satisfy the following constraints:

dx,2) = 0

d(x,y) > 0 fory=y
d(x,y) = d(y.x)

d(x,y) € d@,2) + dzy)

(2.1)

where A . v and : are speech signals.

Although numerous objective distortion measures have been proposed, none have truly
replaced subjective listening tests in providing an equivalent indication of the subjective




quality of a given speech signal. This is not entirely - urprising as an objective distortion
measure would have to have knowledge of all levels of human speech perception including
psycho-acoustics, acoustic-phonetics, morphology, prosodics, syntax, semantics,
linguistics, and pragmatics. Despite these limitations, their relative speed, ease of
implementation, and repeatability have enabled objective distortion measures to maintain
their stature as the primary tool for quantitative evaluation in virtually all speech processing
applications.

This section will provide an overview of some selected distortion measures that are
currently used in speech processing or have shown some use in Vector Quantizer design.
The distortion measures to be covered can be classified into two broad categories - distance
measures based on the & samples of the waveform and distance measures based on a set of
k parameters provided by the transform of A” samples of the waveform (A" may or may
not be equal to k). One distortion measure which falls into the first category 1s the
Euclidean norm. Distortion measures which fall into the second category can be further
classified by the transform method used. This section will look at measures based on the
Fourier transform and Linear Prediction Coding (LPC) coefficients of the input wavetorm.

The problem that remains, however, is in determining which of the numerous objective
distortion measures which have been proposed provide the best indication of the subjective
quality of a given speech signal. Quackenbush et al in [38] provided an evaluation of the
correlation between a wide assortment of objective distortion measures and a subjective
quality measure. The subjective quality measure used in the study was the Diagnostic
Acceptability Measure (DAM). The DAM provides parametric, metametric, and isometric
subjective evaluations for a given speech signal. More specifically, the DAM evaluates a
speech signal on sixteen separate scales from a range of 0 to 100 points. Parametric
measures provide an indication of specific isolated features and may be further divided into
parametric measures which provide a subjective opinion on the quality of the signal and the
quality of the background. The DAM provides seven parametric scales for signal quality
which account for perceptual features such as 'muffled-smothered’ and 'fluttering-
bubbling' and five parametric scales for background quality which account for perceptual
features such as 'hissing-rushing' and 'buzzing-humming'. Two scales are provided for
the metametric qualities of "intelligibility’ and 'pleasantness’. Isometric measures provide
an indication of global quality and are indicated by the 'acceptability’ and ‘composite
acceptability' scales. The isometric composite acceptability measure is actually not directly
observed but is calculated as a weighted average of the other 15 measured scales. The

DAM has demonstrated to be a reliable and consistent measure of speech quality with an

4




index of reliability (R) equal to 0.96 and a standard deviation of error (0,) equal to 3

points on a scale of 0 to 100 The index of reliability provides an indication of the
correlation between the outcomes of two independent runs of a test while the standard
deviation (@) isrelated to R by the following expression:

(6,/0,) =1- R 2.2)

where 0, is the variance of the subjective quality (composite acceptability) scores.

Where possible, the performance of each objective distortion measure in providing a
subjectively meaningful result will be commented on, baser on the work carried out by
Quackenbush et al in [38]. This section will conclude with a scction providing an overview
of the relative (subjective) performance of the distortion measu.es reviewed in this section.

2.1 Simple Distortion Measures

One of the simplest distortion measures used in speech processing is the k-dimensional
Euclidean distortion measure based on the L, norm:

‘ k
.y = @-p" @-p =Y w7 =y @3
1=1

where the T denotes the transpose operation.

The Euclidean distortion measure is also a distance measure as it satisfies both the

symmetry and triangle properties of a metric.

A more general distortion measure based on the L, norm is given by:
k
ey = Y -y ==y - (2.4)
=1

The Euclidean distortion measure can be derived from (2.4) by simply substituting r =2
into the expression. Other popular values of r include r =1 which derives the absolute
error and r = o which derives the maximum error. The widespread use of the Euclidean
distance measure and its counterparts is due to their computational and analytical simplicity.
However, these distances have not generally proven to be subjectively meaningful in the

majority of cases where they have been used.



In the case of the Euclidean distortion measure, the performance of the system is typically
measured by the Signal to Noise Ratio (SNR) which can be Jefined by:

SNR = 10 log ,me—zﬁz- dB @2.5)
LY

where x and y are the entire input and output sequences respectively.

A variant of the Signal to Noise Ratio which has proven to be more subjectively meaningful
is the Segmental Signal to Noise Ratio or SEGSNR defined by:

2
SEGSNR = 10 3 log |9 —ﬂé’-n——,_;— dB 2.6)
N 71 II'II_X,

where x; and y, are sequential segments of some fixed length equal to the total size of the

input (or output) sequence divided by N.

Another variant of the Euclidean distortion measure allows input-dependent weighting in
order for the distortion measure to be more subjectively relevant. This distortion measure is
referred to as the Weighted Mean Square Error measure and is defined by:

dumeY) = @ = 0" W@ -y 2.7)
where W is a kxk dimensional weighing matrix.

If W = [ orthe identity matrix then the distortion measure reverts back to sz (x,y). One

possible choice for W is the inverse of the covariance matrix T defined by:
Fr=EB@-HDG&-51.%=Elx. (2.8)
A distance measure defined by this matrix is referred to as the Mahalanobis distance [20).

dMahaIam)bls(-X.’X) = (l - _)_’)I E—l (£ - X) . (29)

2.2 Distortion Measures Based on Fourier Transform Coefficients

For a given sequence of discrete values, the corresponding discrete Fourier Transform is
defined by:




X@ = 3 xn) e (2.10)

n=—oo

where  is the frequency (in radians) and x(#) is the discrete time-sequence.

The Fourier transform is fully specified over any range of frequencies (w) covering 7
radians in frequency for a real input sequence. The Fourier transform is typically evaluated
at fixed intervals in the range [0 to 7). These analysis points are referred to as the Fourier
coefficients. The frequer. -y resolution of the Fourier transform is specified by 7 divided by

the number of points in the range [0 to 7].

The Fourier Transform can be divided into its real and imaginary parts:

X(w) = Real(X(w)) + Imag(X(w)) . (2.11)
An alternative means of specifying the Fourier transform is via its magnitude and phase:
IX(w)] = [ Real(X(w))* + Imag(X(w))* 12 (2.12)

Imag(X(w»]

. = i —]
phase(X(w)) Tan [ Real(X(w))

As the following distortion measures are all based on the magnitude spectrum of a discrete-
time sequence, the | ... | indication will be left out with the understanding that all of the

spectra are actually magnitude spectra.

One of the easiest spectral-based distortion measures is the linear spectral distortion
measure given by the L, norm of the arithmetic difference between the input and output

magnitude spectra [38]:

(2.13)

N-1 Ir
. Yo Xl [X(wp) - Y(wp)|
dlfm'ur spectral ('-‘-’X ) =

V@l

where w;, = —’Ii—ll , N is the number of Fourier coefficients, and 7 is a spectral weighing
factor.

A spectral-based distortion measure that relies on the difference between the logarithms of
the magnitude spectra is referred to as the Log Spectral distortion measure and is described

by:




(2.14)

- , (U
dios ormctra () =| ZZO‘IX(M)IY [201og0{ X (@)Y (0
g specltrai N> 7 .

" x|

A more general form of Log Spectral distortion measure is the d-form spectral distortion
measure in which the individual Fourier coefficients are raised to the d power before the
difference is evaluaied:

, (U
> x@) K@y’ - v’

- 2.1%
I,iol'x(wl)ly

d6 — form (1’ _—)1 )

As in the case of the distance measures of section 2.1, the most popular versions of the
Fourier coefficient based distortion measures involve the L, L,, and L., norms giving the
mean absolute, root mean square, and maximum deviation distortion measures respectively.
The distortion measures which use the L, norm tend to be the most popular due to therr

relative analytical tractability | 24].

Utilizing the results of a study involving the use of the Diagnostic Acceptability Measure
(DAM), Quackenbush [38] et al have indicated that the log spectral and d-form distortion
measures provided a better subjective indication of the dissimilarity between two speech
segments than the linear spectral distortion measure. Relative to one another, the & -form
distortion measure and log spectral distortion measures performed almost equally well with
the performance of the J-form distortion measure being slightly better. The optimum
values of the free parameters were found to be: r=1, y=0 for the lincar spectral
distortion measure, r=2, y=0.5 for the log spectral distortion measure, and

r=1, y=0, 6 =0.2 forthe &-form distortion measure.

Although the spectral based distortion measures of this section perform better from a
subjective standpoint than the simpler distortion measures of section 2.1, their use has been
limited due to their computational complexity. The derivation of the magnitude spectrum
using (2.10), (2.11), and (2.12) alone involves a significant computational overhcad for
even a modest-sized speech segment. A Fast Fourier Transform (FFT) can obtain the
Fourier transform with O(N log N) linear operations (assuming the results of the
trigonometric functions have been stored beforehand). In the case of the log spectral and
6 -form distortion measures, there are computationally intensive nonlinear operations in the
determination of the actual distortion measure. The computational overhead for just
distortion indication for just a single frame have made the spectral measures mentioned in



this section unwieldy in many speech processing applications - especially those involving

real time applications.

The use of the Fourier coefficients given by (2.10) provides an additional problem. For
voiced speech, the spectrum tends toward a line-like spectrum as speech segments of as
small as 20 ms may contain several pitch periods. Even a small change in pitch may result
in large distortion values even though the subjective differences are slight. Therefore a
spectrzl envelope would be preferred for the distortion determination step. One way of
achieving this result is to perform the Fourier analysis exactly over one pitch period. This
would involve the use of a pitch detector and some degree of pitch period synchronization.
A possible alternative is to simply smooth the spectrum using standard linear (filter)
techniques. Yet another way involves the determination of the spectral envelope using a
small number of Linear Prediction Coding (LPC) coefficients. The relevance of the LPC
coefficients with respect to the input spectrum will be covered in the next section on LPC

based distortion measures.

2.3 Distortion Measures Based on Linear Prediction Coefficients

Linear Prediction analysis enables the fundamental attributes of a sequence of N discrete-
time samples to be expressed in just a few (p) coefficients. This subsection will overview
many potentially useful distortion measures based on these coefficients. Initially, the basics

of I inear Prediction analysis procedure will be discussed.

2.3.1 Introduction to Linear Prediction Analysis

The technique of Linear Prediction has become widespread in many speech processing and
coding applications. The main virtue of Linear Prediction analysis is that the technique has
the ability to quantify the significant features of speech production in just a few parameters
via simple deterministic methods. These parameters are commonly referred to as Linear
Prediction Coding (LPC) coefficients due to their widespread use in speech coding. Linear
Prediction cannot model the speech process exactly as it assumes a stationary and linear
model of speech production. These constraints do not usually impede the performance ofa
Linear Prediction based system to a great extent as they are reasonable approximations for
the actual speech production process. For example, the stationary constraint can usually be
approximated by using sufficiently short (~30 ms or less) segments of speech. Figure 2.1
shows one possible model for a linear speech production process initially proposed by Fant

139]. Infigure 2.1, the speech signal may be specified by:



Siz) = U(z) G(z) V(z) L(z) (2.16)

where U(2), G(2), V(z), L(z) represent the z-transforms of the excitation source, glottal

model, vocal tract model, and lip radiation model respectively.

Figure 2.1 - A Linear Speech Production Model

Speech
Excitation Glottal - Vocal Tract - Lip >
Source Model Model Radiation
=P

=P~
I I I Perodic impulses for voiced speech /\MN\/\I

or

W Noise source for unvoiced speech

The last three terms G(2), V(z), L(z) are usually grouped together to form one general
model H(z) for the speech production process. In speech synthesis applications U(z) is
typically modeled as having a flat spectrum, with only one of two forms depending on
whether the speech signal being produced or modeled is voiced or unvoiced. For sounds
corresponding to voiced speech, u(n) is typically modeled by a periodic and impulsive
waveform with a coiresponding z-transform given by:

< , - G

Uisoiced(2) = G Z (z l)n e — (2.17)
n=0 “ ~ Z I

where [ is an integer equal to the pitch period divided by the sampling interval.

For sounds corresponding to unvoiced speech, u(n) is modeled by a sequence of random

bipolar pulses (random numbers) which has a simple z-transform given by:

Uimorced(2) = G . (2.18)

These constraints on the form of the excitation source of the speech production model will
tend to limit the accurate modeling of sounds such as voiced fricatives in which a

combination of the two sources is required.

10




A given scgment of sampled speech s(n), assumed to be stationary over the interval, can be
represented as a combination of p previous output samples and g-/ previous input samples
[10]:

P q
§n) = Y a Sn—k)+ 8 Y, b utn=0 (2.19)
k=1 =0

where u(n) is the input sequence or driving signal, a; and b, are the LPC coefficients, and

4 is a gain factor.

Taking the z-transform of (2.19), the transfer function H(z) defined as the z-transform of

the output sequence over the z-transform of the input sequence is given by:

. 1+ Y b 2
Hz) = 53 _ 5 L=l (2.20)
U@ 1 - i a z !
k
k=1

where S (2) and U(z) are the z-transforms of the output (speech) and input (driving signal)

sequence respectively.

Looking at (2.20) it is apparent that the z-transform for speech can ideally be found by:
S(z) = U(z) H@) . (2.21)

In this context, the speech signai can interpreted as the result of an excitation source being
modified by a shaping filter representing the vocal tract of speech production. In the
majorivy of LPC analysis, the ¢ zero's of the shaping filter are dropped and the vocal tract
is modeled by an uutoregressive or AR model with p poles:

5 _ &

, : 2.22)
1 i -1 A(z)
e a, z
A=1

H(z) =

A(2) in (2.22) is referred to as the inverse or predictor filter. The discrete-time version of

the error signal is can be derived from (2.18) and (2.2) to give:
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p
e(n) = sn) — §(n) = s(n) = Y, a s(n—4h) . (2.23)

k=1

The LPC coefficients a; are chosen in order to minimize the energy of e(n) given by [39]:

n oo p
a= YlemP =Y - a st-kb7 (2.24)
n=n, n=—oo k=1
&l p P
= z Z 2 a, s(n—i) s(n-j) a,, assuming ap =1 (2.25)
n=n, 1=0 y=0

where ny and #; define the beginning and end of the speech segment respectively.

Inserting the covariance function given by:

€y = 21‘ s(n=10) s(n-J) (2.26)

n=n,

into (2.25) defines the energy error as
pp
=) Yac,aq. (2.27)
1=0 y=0

The error energy may be minimized by setting the partial derivatives of a with respect to
the LPC coefficients a; (k = 1, 2, ..., p) to zero. This results in p equations of the

form:
P
ipg=0=2za,-c,.k,/c=1,2,...,p. (2.28)
3(lk i=0 :

Accounting for the fact that g is equal to 1 gives

P
Y oacy=-cop » k=12 ..,p. (2.29)

i=l

There are two major deterministic methods of obtaining the LPC coefficients using (2.29)
assuming that the speech segment is limited to N samples from $(0) to s(N —1). They are

referred to as the covariance method and autocorrelation method. The covariance method is
determined by setting ng to p and m to N —1in (2.25). When ¢, , using these limits is

12




used in conjunction with (2.28), the energy o will be minimized in the interval [p,N —1].
The autocorrelation method is defined by setting ny to e and n; to —oo in (2.25). These

limits and the fact that the speech segment being considered is of finite duration allow the

covariance expression of (2.29) to be simplified:

¢, = i s(n=i) s(n—-7)

n=-—oco

N-1-|i—|
Y, sn) s+ Ji—j) = rdi-jD (2.30)

n=0

where r( ) is the autocorrelation function.

When (2.30) is used in conjunction with (2.29), the error energy will be minimized over
the interval [0, p+ M —1].

The gain term o can be determined using the derived LPC coefficients for either the

autocorrelation method or the covariance method by the following expression:

14
ot =1r - Y aq rk)] . (2.31)
i=1

o? is also referred to as the prediction error E, and is an indication of the residual energy

obtained when the speech segment or input waveform is filtered by its corresponding

predictor filter.

The choice of whether to use the autocorrelation or covariance method depends on the type
of signal being considered and the type of analysis to be carried out using the LPC
coefficients. For voiced speech, the autocorrelation method will only provide useful results
if the analysis window covers several pitch periods. The covariance method is not bound
by this constraint for voiced speech and may provide results for intervals at even less than a
pitch period. Both methods give similar results when speech segments cover several pitch
periods. This is due to the fact that the covariance coefficients ¢, ; tend to be close in value
to the autocorrelation coefficients R(i — j) when the number of samples is large (N >> p).
The two methods also give similar results for unvoiced speech for periods greater than
about 5 ms. However, the autocorrelation method is computationaliy less intensive than the
covariance method and automatically provides a stable set of parameters given an
appropriate degree of resolution is available for storing the LPC coefficients.

13




In the case of the autocorrelation method, the expressions required for the solution of the
LPC coefficients can be expressed in matrix form:

RA=1r (2.32)

where R is the pxp matrix with elements r(i,k) = r(i—A[), A is a column vector

composed of LPC coefficients, and r is a column vector defined by
(R(D), R(2), ..., R(p)}.

The LPC coefficients can therefore found by using:

A=R"'r (2.33)

where R7! is the inverse matrix of R .

The inversion of a general NXN matrix is a computationally intensive procedure.
Therefore, several algorithms have evolved which exploit certain characteristics of the
autocorrelation matrix in order to solve for the LPC coetticients without explicitly mverting
the matrix. The autocorrelation matrix is symmetric about its diagonal and is also a Toplitz
matrix (eiements depend only on their distance from main diagonal). Severai algorithms
such as the Levinson method and the Robinson method [39] have used these attributes of

the autocorrelaticn matrix to solve for the LPC coefficients in an efficient manner.

Non-deterministic evaluations of the LPC coefficients are also possible [39]  ITtakura and
Saito considered the speech samples to be formed from a process m which uncorrelated
noise was input into the all-pole filter specified by 1/ A(z). The input noise was specified
as stationary Gaussian noise with zero mean and variance o,. The 'speech’ or output of

the filter could then be described by:

1
Y, a, s(n-i) = e(n) (2.34)
=0

where e(n) is the uncorrelated Gaussian noise process.

From 3.33, the output sequence s(n) can also be seen to be a Gaussian process with zero
mean and a correlation sequence given by E[x(n)x(/)] which is a complex function of the
LPC coefficients and the input variance o,. With this information, the muluvariate
probability density functior. for an output sequence of a fixed length may be determined.
The maximum likelihood principle may then be applied by taking the partial derivatives of
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the multivariate probability density function with respect to the LPC coefficients. The
resulting expressions would be set to zero and solved for the LPC coefficients.
Unfortunately, this method is unwieldy for N >2. Itakura and Saito proposed an
approximate maximum likelihood solution by showing that for the case where the number
of points is much greater than the analysis order (N >> p), that the joint probability density

function can be given by:

pUs0), s(1), ..., SIN=1)) = 270,2) N2 (o200 (2.35)
o0 14 2
o= Y (D astq-j| . (2.36)
n=-eo [ 1=0

Expression (2.36) is equivalent to the error energy term defined earlier (least squares
autocorrelation method). Maximizing p by taking the partial derivative of (2.35) with
respect to @, dy ..., d, and O, and setting them to zero will define the necessary
expressions needed to solve for the LPC coefficients. It should be noted that maximizing
p is equivalent to minimizing o and therefore the approximate maximum likelihood

method is equivalent to the autocorrelation approach discussed earlier.

Although the selection of the analysis method to be applied in order to obtain the LPC
coefficients is a crucial step, there are a number of other key design issues which should be
considered prior to any application of the Linear Prediction analysis method. These include
the order of the analysis to be performed, the type of windowing applied to the analysis

frame, and whether pre-emphasis is required.

In Linear Prediction analysis the number of coefficients indicates the number of poles in the
speech production model. The number of coefficients should be small to ease the
computational overhead yet large enough to accurately model the spectral envelope of the
speech signal. The fine spectral details provided by the discrete Fourier transform are not
desired in many applications. Instead more general spectral characteristics such as formants
and spectral roll-off due to glottal and lip-radiation effects are adequate. As a rule of
thumb, 2 poles are required to model a formant (or spectral peak) and an addition 2-4 poles
are required to model gross spectral characteristics such as roll-off or perhaps a spectral
zero. As the number of formants that will be encountered is a function of the sampling
frequency, the order of the predictive filter is typically set to the sampling frequency in
KHz plus 2 to 4.
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In the analysis methods described so tar, at least the use of a rectangular window is mphed
in the derivation of the LPC coefficients, as only a block of N samples
{x(0), x(1), ..., x(m)} is utilized in the analysis. Whether an additional windowing
function is required on the input data depends on the size of the analysis window and the
analysis method to be used. If the covartance method is applied for analysis frames less
than a pitch period in length, then no additional windowing function should be apphied on
the input data, If the analysis frame exceeds two pitch periods or the autocortelaton method
is to be used, then some sort of tapered window 1s recommended [ 39] for use on the input
data prior to the actual analysis step. In the case of the autocoriclation method, sudden
discontinuities between the frame boundanes (1 (0) and (N — 1)) and the neighborng zero
values will result in some degree of spectral distortion. This eftect will tend to deciease for
larger analysis frames. A tapered window which tends towards a small value at the
boundaries would mininuze this effect. A varicty of windows are listed in the hiterature but

the most popular is the Hamming window defined by [ 10]:
(2.37)
Whammng (1) = 0.54 = 0.46 cos [2an)/(N-D], 0 < n < NI

= 0, elsewhere

A window function generally has the characteristic of a low pass filter. Since the window
is multiplied with the input sequence s,,(n)= s(n) w(n) the window has a smearing or
blurring effect on the fine spectral details of the input sequence, as multiplication in the ime
domain results in spectral convolution in the frequency domam. As this 1s an undesitable
effect in most instances, the window's spectrum should therefoie have a narrow central
main lobe and peak sidelobes with small relative amplitudes. The spectial characteristic of
the Hamming window is generally superior with respect to that of the rectangular window
given these requirements. Although the width of the mamlobe for the Hamming window is
approximately double (87 / N radians) that of the rectangular window (47 /N +1), the
sidelobes for the Hamming window have a much smaller relative amphitude (-41 dB) than
in the case of the rectangular window (-13 dB). Other windows and their characteristics are
listed in [40].

Linear Prediction analysis has a tendency to model spectral peaks better than spectral
valleys [10]. As a result, in the analysis of voiced segments of speech, the first formant
tends to be modeled more accurately than the remaining formants, which have a lower
relative amplitude. The lower amplitude 1s due to the spectral rolloft caused by the
combination of glottal and lip-radiation effects. In order to model the higher frequency

formants as well as the first formant, the input sequence may be pre-emphasized prior to the
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Linear Prediction analysis step. The pre-emphasis is performed by a simple single-zero

filter of the form:

Pz) =1-p 2z, (2.38)

The value of the pre-emphasis constant g is set in the range from 0.9 to 1.0. The pre-
empbhasis filter will counter the spectral falloff to produce a relatively flat spectrum which
will in turn permit the formants of voiced speech to be modeled equally well. The output of
a Linear Prediction based system using the pre-emphasis filter would have to be passed
through a de-emphasis stage in order to regain the correct spectral shape. The de-emphasis

stage is specified by:

1

The de-emphasis constant § is vsually setto 4. However, a small mismatch sometimes
leads to more pleasant-sounding speech [10]. There appears to be no distinct advantage in
applying the pre-emphasis stage prior to any potential windowing operation or after the

windowing operation.

2.3.2 Spectral Estimation Via Linear Predictor Coefficients

Given p LPC coefficients ¢y (k=1, 2, ..., p) and the prediction error E,, , the optimal

(least-mean squared) linear predictor filter is given by:

Predictor(z) = ;‘:Z = b=l (2.40)

It can be seen that from the above notation, the LPC coefficients can be taken as the impulse
response for the predictor filter. One may therefore generate a N component vector with

the following format
{Loa...a,0 .., 0 (2.41)

and use it as the input sequence for the discrete Fourier transform defined by (2.10) to
. . . * . . .

obtain the spectral estimate of Predictor (w). This spectral estimate can be used to obtain

the spectral estimate for the magnitude spectrum of X(w) by using the following

expression:
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. E,
¥ @) = |Predicz;r‘(w)| ' @42

Note that the spectral estimate IX *(w)l could be used in any of the spectral-based distortion
measures of section 2.2. The spectral estimate will generally only follow the coarse
behavior of the actual magnitude spectrum |X (w)| . If the distortion measures of 2.2 were

to use the spectral estimate rather than the original discrete spectrum, they would be more
resistant to minor variations in the fine spectral details such as those due to a change in

pitch.

2.3.3 Simple LPC-Based Distortion Measures
The linear feedback [38] distortion measure is defined by:

1/r

Aincar Jeedback (i’X ) = (2.43)

1 r
Y| a,) - a0 |
i=l

where a, and a, are the basic LPC coefficients for the x and y vectors respectively, p

represents the order of the Lineur Prediction analysis as before, and r indicates the L,

norm to be applied.

The log feedback [38] distortion measure is defined by:

P
dlog Jeedback (-"—"X) = l Z

1=1

1r
logyo(a, )/ ay @) | l . (2.44)

Although these distortion measures are the easiest of the LPC distortion measures to

compute, they are poorly correlated with respect to the actual subjective difference between
the speech segments x and y [38]. In fact, the SNR distortion measure defined by (2.5)

will give a better subjective indication of the distortion than the best possible configuration
(using the L; norm) of either the linear feedback and log feedback distortion measures.

2.3.4 Distortion Measures Based on Reflection Coefficients

Reflection coefficients k,, are usually determined in conjunction with the standard LPC
coefficients a, in a given algorithm such as Levinson’s method. They may also be
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determined from the following recursive relationships if only the LPC coefficients are
known [10}:

Uy () + kn@p(m=0) vy (2.45)
1- k,2 ’

Am-1 (‘) =

km—l = am-—l(m_l)

with initial conditions &,, = a,,(p) and g, = a,,(k).

The negative values of the reflection coefficients are also known as partial correlation or
PARCOR coefficients. Both reflection and PARCOR coefficients are related to the study of
acoustic tube modeling in which acoustical tubes of varying length and area are joined
together in order to approximate the speech process in the human vocal tract. Another
parameter which is related to the acoustic tube model is the area ratio given by:

P = %—f——f—;— (2.46)

where &, are the reflection coefficients defined earlier.

In an analogous manner to the linear feedback and log feedback distortion measure defined
earlier, the linear PARCOR and linear area ratio distortion measures can be defined by:

p 1/r

dlincar PARCOR(X>Y) = ‘ Y

1=]

ke = k,_v,il 247)

and

p 1/r

r
dlim'ar Area Rul:o(&x) = l z |AR£.1' - AR:,:'

1=1

(2.48)

while the /log PARCOR and log area ratio distortion measures can be defined by:

p . tr
dlog I’ARCOR(LX) = Z I loglo(ki,l /kl'.l) | l (2.49)

=1

and
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1/r
4 r
dlog Area Ralm(LX) = ‘ 2 l loglO(ARl,l /AR‘,',) (2.50)
=1 -

where k, ., k,, are the reflection coefficients for the x and y vectors respectively and

AR, ; and AR, are the area ratio coefficients for the 1 and y vectors.

The optimum norm for 2!l of the distortion measures described by (2.47), (2.48), (2.49),
(2.50) appears to be the L; norm [38]. Given that the L; nenm is used, the lincar area ratio
and the log PARCOR distortion measures perform no better than the SNR distortion
measure from a subjective standpoint. The linear PARCOR distortion measure tends give a
better indication of the subjective dissimilarity between the two speech vectors than the
linear area ratio and the log PARCOR distortion measures, but does not perform as well as
the spectral-based distortion measures of section 2.2. The log area ratio distortion measure
on the other hand performs as well as the spectral-based distortion measures of section 2.2
in terms of providing an indication of the subjective dissimilarity between the two vectors.
This is a significant result as the log area ratio distortion measure defined by (2.50) is able
to give a distortion measure with approximately one order of magnitude less computational
overhead than the spectral distortion measures defined by (2.13) through (2.15).

2.3.5 Itakura-Saito Distortion Measure

The Itakura-Saito distortion measure is defined by:

n
datura-Saite(X (@),Y (@) = j { ))f((((j)))) — In ))f((aa:)) - 1} do (2.51)

-

where X(w) and ¥(w) are the Fourier transforms of x and y respectively.

Itakura and Saito originally used the distortion measure to demonstrate that the LPC
coefficients produced via the approximate maximum likelihood Linear Prediction analysis
method was equivalent to a minimum distortion mapping. Since Linear Prediction analysis
has provided reasonable subjective quality in modeling the input (speech) waveform, one
can argue that the Itakura-Saito distortion measure will provide a good subjective measure
between two speech segments as minimizing the distortion measure is equivalent to LPC
analysis. Gray et al [ 37] have noted that this assumption is based on Itakura and Saito's
maximum likelihood linear Prediction analysis method which had a few drawbacks from an
information-theoretic point of view such as assuming the speech to be the result of a
Gaussian autoregressive model. In [37], Gray et al provide a more rigorous development
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of the Itakura-Saito distortion measure. Specifically, they show that the Itakura-Saito
measure is a special case of Kullback's minimum discrimination measure between a model
and the sample autocorrelation of the speech segment. This minimum is taken over all
possible probabilistic descriptions of the input with the sampled autocorrelation values.
This development did not specifically assume that the speech process was Gaussian in
nature and accommodated the addition of voicing and pitch information excluded in the
Itakura-Saito derivation. Furthermore, the development accounted for the use of the
distortion measure in both continuous and discrete estimation. The use of the distortion
measure in continuous estimation would be equivalent to LPC analysis (as initially
suggested by I*akura and Saito), while the use of the distortion measure in discrete
applications could involve coding or classification systems. As Vec or Quantization is
inherently a (discrete) classification system, there would now be ample reason to argue the
use of the Itakura-Saito distortion measure as an appropriate subjective measure for use in
Vector Quantizer systems. Quackenbush et al. in [38] indicated that based on the results of
a study involving the use of the Diagnostic Acceptability Measure (DAM), the subjective
performance of the Itakura-Saito distance measure was approximately equal to that of the
best spectral based distortion measures (the L, log spectral measure) or that of the log area
ratio distortion measure. The result indicating that the Itakura-Saito measure and L, log
spectral measure give roughly equivalent subjective results is interesting as analytically they

are proportional to each other for low distortions [24].

If we define Y(w) as the energy density spectrum for an all-pole (autoregressive) model of

the form:

14
YE) = —— , A = Y a ot 2.52)
A(2) k=1
where a, are LPC coefficients, then the hakura-Saito distortion measure can be expressed

as [22]:
(2.53)

dllakura—Smlo(X(w)’y(w)) = a/02 + ln(oz) - ln(aoo) -1
where « is defined by (2.24) as the prediction error E, or residual energy caused by

passing the signal a(n) through the predictor A(z). ¢ may also be described by:

a = E

17 2 2
) = 5o _J’”|X(w)| Y (@) do . (2.54)
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«.., is the one-step prediction error and can be obtained from (2.24) in the limit as p
approaches infinity. ., can also be expressed by [22]:

El_ fln [X(0)*dw
o, = limE, = ¢“" = (2.55)
p=yoo p

The Itakura-Saito distortion measure satistics a form of the triangle equality given by:

(2.56)
dltakura—Sallo (X (o), YM (@) = dllakura—S(um(X (w).Y(w))
+ dllakura—Sano(Y(w)v YM ((0))
where Y, is another p-order all-pole model given by:
P »
Yu(@ = ay /Ay . Ay@ = Y, ayq 2" . (2.57)
k=1

If Y(2) is only constrained to the set of all p-th-order autoregressive models and Y, (2) is
constrained to some subset of Y(z) (Yy(2) € Y(z)), then (2.56) can be interpreted as
saying that the total distortion is equal to the distortion of the identification step (LPC
analysis) plus the distortion due to the compression/classification step. Given that the
Linear Prediction order p is fixed, the distortion due to a compression system implied by
(2.56) can be minimized by only minimizing dj,1,ra—sato (Y (@), Yy (@)). This is due to

the fact that for fixed p

dlmkura—Smm(x(w)’Y(w)) = ln(Ep/am) . (2.58)

Note that this value tends to zero as p approaches infinity. The distortion due to the
compression step, dyuiura—saiio (Y (@),Y y(@)), can in turn be represented by:

T
day Ra E,
Aakura-Saio(X (@)Y (@) = LMO_—')_MI - ln( ,ZJ -1 (2.59)

M~ OMm

where ay, are the p LPC coefficients associated with Yj,(z) and R is the p+1 x p+1
autocorrelation matrix for x(n) with matrix elementsequal to r, , = r(ji - j]).

The matrix multiplication QMTB dyy can be reduced to a more computationally tractable

form given by:

P
ay'Ray = r©) r, (0)+ 2 3 r(nr,, ) (2.60)

n=|
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where r(n) is the autocorrelation sequence for x(n) and Ya, (n) is the autocorrelation
sequence for the LPC coefficients associated with Yy,(z). Specifically, ra, (n) is given

by:

M-n
P, = Y, ay®k) aytk+n) , n=0,1.., M . (261
k=0

The Itakura-Saito measure satisfies another relationship given by:

dllalmra—Saim(X(w)’ yM (w)) = dllaLura—Sau() (X(w)’ yN (w)) (2~62)
+ dllatura—Sauo (Ep1 02 )

where Y (w) is defined by (2.52) and Yy (@) is the normalized all-pole spectrum given by:

Yy = 1/A@2) (2.63)

This expression attempts to separate the distortion involved with the choice of the optimal

normalized filter from the distortion involved with the choice of the optimum gain. The
first term, d},r0-sa (X (@),Y (@) is totally independent of o. However, the second
distortion measure is a function of E,, which is related to the first expression via the choice

of the LPC coefficients of ¥ (z). The first term is also referred to as the gain-optimized

Itakura-Saito distortion measure.

Finally, an expression related to the Itakura-Saito distortion measure provided by (2.53) is
the ltakura or Energy Ratio distortion measure given by:

lay'R ay] . 2.64)

“ll(lkllr(l( A =
ALY) 2
=X Oy”

2.4 Distortion Measures Based on Aural Models of Speech Perception

[10] describes a critical band as a frequency range in psycho-acoustical experiments for
which perception abruptly changes as a narrowband sound stimulus is modified to have
frequency components beyond the band. Critical bands have been used to explain some
perceptual masking phenomena. For example, in the case of two narrow-band sound
signals with energies within the same critical band, the signal with the greater amount of
energy will dominate the perception and mask the weaker signal with the degree of masking
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being related to the amount of masker energy. The mechanism behind the critical band
phenomena appears to be a combination of auditory physiology (e.g., the tuning curves of
the auditory neurons) and higher order central neural processes. Relating the critical
bandwidth phenomena to the physiology of the ear, critical bandwidths correspond to 1.5-
mm spacings along the basilar membrane. This indicates that the upper limit to the number
of critical bands is approximately equal to 25. The following expression relates the
acoustical frequency scale to the 'bark scale’, in which one bark covers one critical
bandwidth [10]:

2

z =13 arctan(0.76—f—) + 3.5 arctan(;)— (2.65)
kHz 7.5 kH:z

where [ is the acoustical frequency.

Alternatively, one may rely on the results of psycho-ucoustical experiments to define the
center frequencies and bandwidths. One such table is provided by [38] and is duplicated

below:

Table 2.1: Critical band center frequencies and bandwidths

Filter Center Bandwidth Filter Center Bandwidth
Number | Freq. (Hz) (Hz) Number Freq. (Hz) (Hz)
o 1_%50 70 | 14 ’==%_T’_‘l 148 140
2 120 70 15 1288 153
3 190 70 16 1442 168
4 260 70 17 1610 183
5 330 70 18 1794 199
6 400 70 19 1993 217
7 470 70 20 2221 235
8 540 70 21 2446 255
) 617 86 22 2701 276
10 ~703 95 23 2978 208
11 708 105 24 3276 321
12 904 116 25 3597 346
13 1020 127

As can be seen in table 2.1, the bandwidths and center frequency intervals are non-uniform
and increase with acoustical frequency, roughly corresponding to a 1/6-octave filter bank.
The shape of critical band filters are described by | 10] as being nearly symmetric on a linear
frequency scale with very sharp skirts (65 dB/octave - 100) dB/octave) at low frequencies
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and less symmetric at high frequencies corresponding to a flattening of the lower-frequency

skirt of the critical band filter.

Critical band variants of the log spectral and 8-form distortion measure described by (2.14)

and (2.15) are given by:

L-1 _ \/r
Y. %@ Jlog X(@n)/T(@n)|
Aevitical band Iog(lv!)= n=0 LT ” (2.66)
Y [Xw.) ‘
m=0
L-1 3 5 .- sir 1/r
Y %@,y I(X(wm)) - (F(@,)) |
derincal band power(i"z) = [-z=0 LT y (2.67)
2 [f@,) )
m=0

where m is the critical band index, L is equal to the number of critical bands, X (w,)and

Y (w,,) are the positive square roots of the energies in critical band m for signal x and y

respectively.

Note that the logarithmic distortion measure will tend to accommodate Fechners's law
which states that the perceived intensity difference between two stimuli is proportional to
the ratio of the two intensities or Weber's law which states that intensity resolvability is
proportional to intensity. The &-power distortion measure, however, tends to reflect
psycho-acoustical experimental results which indicate that the perceptual intensity doubles

for a certain increase in dB.

Quackenbush et al in |38] indicated that both the critical band variants of the logarithmic and
d-power distortion measures performed significantly better than their non-critical band
counterparts. Relative to one another, the critical band logarithmic and & -power distortion
measures performed almost equally well with the performance of the critical band &-power
distortion measure being slightly better. The optimum values of r and y were found to be
2 and O respectively for the critical band logarithmic distortion measure while the optimum
values of r, ¥, and & were found to be 2, 0, and 0.2 respectively for the critical band & -

power distortion measure.
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2.5 Relative Performance of Objective Distortion Measures

The following table provides an overview of the relative (subjective) performance of the

distortion measures reviewed in this section,

Table 2.2 - Relative Performance of Objective Distortion Measures

. ~ 2 Applicable
Distortion Measure | Reference p o, Parameter Settings
SNR 2.5 O;Zﬁ L8 none
SEGSNR 2.6 0.77 5.7 none
Alincar spectral 213 0.38 9.1 r=1Ly=0
dlog spectral 2.14 0.60 7.9 r=2,y=0.5
d&—farm 2.15 0.61 7.8 r=2"y=]’5=()2
Ainear feedback 243 0.06 9.8 r=1
legfccdback 2'ﬁ 0.11 9.8 r=1
dlincar PARCOR 2.47 0.46 9.3 r=1
dlim’ar Area Ratio 2.48 0.24 9.6 r=1

. diog PARCOR 2.49 0.11 9.8 r=1
dlog Area Ratio 2.50 0.62 7.7 r=1
dlla&ura 2.64 0.59 7.9 none
deyucial band log 2.66 01 15 - r=2,y=0
Aerticial band power 2.67 0.721 - r=2,y=0,6=0.2
where
p = coefficient of correlation
_ D54 =5:)(0, -0,
- V) —. 172
2 2
[Z,6-50]" [Z,0a-00°]
(2.68)
6% = estimated standard deviation of error

= 62(1-p) .
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3. CONTEMPORARY SPEECH ENHANCEMENT METHODS

3.1 Introduction

Speech enhancement techniques can be divided into two broad categories - single channel
and multiple channel enhancement techniques. Multiple channel speech enhancement
algorithms typically involve adaptive noise cancellation techniques relying on the cross
correlation between two or more signals. One of these channels is typically specified as the
degraded channel in need of enhancement. The other channel(s) would typically contain
information on the noise or distortion introduced in the degraded channel (perhaps by
placing one or more microphones near the noise source). A simple two-channel technique
involving the temporal subtraction of the noise signal from the degraded waveform is
shown in figure 3.1. A similar frequency-domain system is possible where the magnitude
spectrum of the noise signal is subtracted from the magnitude spectrum of the degraded
waveform (multi-channel spectral subtraction). As indicated in the diagram, a time-adaptive
filter is usually required to account for differences in the noise waveforms in the two
channels. These differences could include echoes as well as temporal shifts and a variable
degree of attenuation depending on the relative placement of the microphones and the
ambient conditions. If the time-adaptive filter correctly transforms the reference noise
signal to closely match the noise present in the degraded channel, the output of the
enhancement system will essentially be noise free. However, the determination of an
appropriate time-adaptive filter is a non-trivial problem. One of the more popular methods
of determining the coefficients for the filter is the Least-Mean-Square method [16] [17].
Assuming that a proper time-adaptive filter can be found, multi-channel enhancement
techniques appear to offer a complete solution for the speech enhancement problem as the
systems inherently require little or no a priori knowledge of the signal or noise
characteristics. However, use of multi-channel techniques in practice has been limited
because the installation of an additional reference channel is usually either impractical or
impossible as in the case of random transmission noise induced in a communications
channel. The remainder of this section will only refer to single channel enhancement

techniques.
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Figure 3.1 - A simple Multichannel Speech Enhancement System
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Single-channel noise enhancement techniques are diverse and numerous. The remainder of
this section will overview a representative sample of mature speech enhancement techniques
as well as several contemporary and perhaps more promising enhancement methods. The
mature speech enhancement techniques include spectral subtraction and Wiener filtering.
The use of these older enhancement methods are widespread due to their relative simplicity
and ease of implementation. The effectiveness of these older enhancement techniques is
limited as they generally assume stationarity in the noise and speech signal or require a
priori knowledge of the noise signal characteristics. Two contemporary adaptive filter
systems will be reviewed which potentially alleviate the problems of the earlicr Wiener
filter. The Kalman filter-based enhancement system accounts for non-stationarity of speech
and the 'Forward/Backward' filter offers potentially better performance by breaking the
causality constraint, Recent developments in speech enhanceiment have paralleled
developments in speech recognition and speech synthesis, in that systems which acquire
knowledge of the speech process by training are being examined. Two popular systems are
based on ‘'neural networks' and Hidden Markov Models (HMM's). Neural or
connectionist networks rely on a large number of interconnected simple computational
elements arranged in massively parallel structures to deal with complex decision criteria.
Hidden Markov Models assume a temporal and probabil:stic structure in speech to obtain an
optimur solution. Finally, the section will take a look at enhancement by the method of
resynthesis. Resynthesis using models based on Linear Predictor Coding coefficients will

be stressed.
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Where available, the reported effectiveness of each enhancement technique on improving a
reference speech signal by additive (Gaussian) noise will be reproduced in this section in

order to provide a basis for comparison.

3.2 Mature Speech Enhancement Methods

3.2.1 Spectral Subtraction

Speech Enhancement by means of spectral subtraction is an established method of speech
enhancement which is fairly straightforward in terms of the underlying theory [1] [2]. It is
typically used to enhance speech degraded by stationary wideband noise or interfering
speakers. Figure 3.2 depicts the standard single channel approach to the spectral
subtraction speech enhancement process. The typical algorithm first divides the noisy input
speech into short frames. A fourier transform operation is then performed on each speech
segment. A noise evaluator or separator (digital filter) estimates the spectral content of the
noise based on the magnitude spectrum of the noisy speech. The estimated magnitude
spectrum of the clean signal can then be determined by the following expression [2]:

IClean Speech(y@)| = [ |Noisy Speech(jw)|" - |Noise(jw)|” ] l/a (3.1)

where |Clean Speech( Jjw)| is the estimate of the enhanced speech magnitude spectrum,
while |Noisy Speech(y@)| and |Noise(yw)| are the magnitude spectra of the input noisy

speech and estimated noise respectively.

Figure 3.2 - Spectral Subtraction

Noise Evaluator |
(Digital Filter)

Noisy Amphitude y Output
Speech Founer + 1 |nverse Speech
—— + Founer e -
Transform Phase
1 Transform

(1/ a) is a process-dependent parameter. Note that if ¢ is equal to one (which is generally
the case), the magnitude of the enhanced speech spectrum is found by simple subtraction
from the 'Noisy Speech’ spectrum by the estimated ‘Noise' spectrum. (Any resulting

negative values in the magnitude spectrum are set to 0.) Finally, the time-domain speech
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signal is reconstructed using the resulting estimate of the magnitude of the clean speech
spectrum and the original phase information of the noi<y speech.

The resulting enhanced speech waveform tends to have a certamn 'musical’ or 'warbling’
quality as some of the residual noisy energy will manifest itself as a number of minor
spectral peaks in the enhanced speech magnitude spectrum. Certain algorithms such as the
algorithm described by Berouti in [3] can reduce the musical artifacts by 'over-subtracting'
the magnitude spectrum of the estimated noise signal from the magnitude of the distorted
speech signal and a providing non-zero spectral floor to limit the depth of any spectral
valley.

3.2.2 The Wiener Filtering Method

Another basic speech enhancement method for speech degraded by stationary noise is the
Wiener Filtering method. The Wiener Filter method is based on the Minimum Mean Square
Error (MMSE) Finite Impulse Response (FIR) tilter first proposed by Norbert Wiener in
1949. The filter tends to have a 'combing’ effect [1] - selectively passing harmonics or
other components of the desired speech signal while suppressing the noise or other

unwanted signals found in between the harmonics of the desired speech signal.

The basic structure of a Wiener filter is shown in figures 3.3(a) and 3.3(b). Here we have
the error sequence e(n) as a function of the input /i(n) and the reterence output (desired

sequence) d(n) |5]:

M
e(n) = d(ny — Y, b h(n=k) (3.2)
k=0

where b, are the filter coefficients and M is the order of the filter.

Figure 3.3 (a) - The (Adaptive) Wiener Filter
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Figure 3.3 (b) - The FIR Filter
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The sum of squares of the error sequence will therefore be:
o0 M R

E =Y 1dn)~ Y b h(n-k) I* . (3.3)

n=0 k=0

If the error defined by E is minimized with respect to the filter coefficients then the
following linear equations are obtained:

M
Y borg k=0 =) , =0, 1,., M (3.4)
k=0
where
=", h(n) h(n 1) = the autocorrelation of h(n) (3.5)
n=0
and

3.6)

rag.) = Zd(n) h(n-1) = the crosscomrelation between d(n) and h(n).
n=0

The filter coefficients which satisfy (3.4) are optimal in the least squares sense.

In general it can be shown that if the FIR filter is to be an approximate inverse filter, then
(3.4) can be expressed in matrix form: (r4,(/)= h(0) for | =0, ry, (/) =0 otherwise)
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o

-lghh Q =C (37)
where
Fin (O) "hh(l) cee Ty (M)
rhlx(l) Fun (0) rhh(M - ])
Ehh -

rhh(M) rhh(M—l) ";,/,(0)
b = [ by, by, ..., by |
¢’ = [h0), 0,0,..,0].

Since R, is a Toeplitz matrix, there exists an efficient algorithm which can be used to
invert R, and hence determine b. Note that the above derivation has assumed that the
source is also stationary. Now that the Wiener filter has been defined, we look how the
filter is used to enhance speech. The actual use of the Wiener filter (using b determined by
(3.7)) in an enhancement speech process is depicted in Figure 3.3(c). Since an FIR hlter
with filter coefficients equal to b will be an approximate inverse filter for a ‘clean’ or noise-
free input signal, the output of the filter (y(n)) with a noisy input signal can be considered
to be the noise estimate. This noise estimate is then subtracted from the noisy speech to
obtain the estimated clean speech. (The FIR filter acting as an inverse filter will ideally
output a null or minimal output sequence due to a clean input signal.) Since the filter
coefficients themselves generally have to be determined from a noisy signal, the
effectiveness of this approach is limited - unless some additional information such as the

pitch period for a given speech frame is provided.

Figure 3.3 (c) - Use of the Wiener Filter in Enhancing Noisy Speech
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A typical algorithm [2] using the Wiener filter would divide the input noisy speech into
overlapping frames using a suitable ‘'window'. Each windowed frame would then be
passed through the Wiener filter (the filter coefficients may be updated for each windowed
frame) and the output would then be overlap-added to form the noise stream. The noise
stream will then be subtracted from the noisy signal data stream to obtain the enhanced

speech signal.
Although al! of the discussion regarding MMSE filtering has been in the time domain, the

enhancement process could also take place in the frequency domain [2]. In this case the
optimum Wiener filter can be shown to have the spectral density function given by [17]:

Py(w) + Py(w) '

Hw) =

where

P, (@) = power density spectrum of the speech

P,(w) = power density spectrum of the noise .

P (@) can be obtained from taking the fourier transform of the average of several 'silent’
frames of speech or more directly by assuming the distortion has some known structure.
P, (o) is not generally known and must be estimated from the noisy signal. One quick
method of determining P, (@) is to average the spectral density function of several noisy
frames and simply subtract the estimate of P,(w). Lim and Oppenheim discuss several

other methods for estimating P (&) and P,;(w)in [17] .

3.3 Neural Nets

3.3.1 Introduction to Neural Nets

Neural Nets are also called 'Connectionist Models' or 'parallel distributed processing
models'. In each case, the computation or processing takes place using a large number of
simple processing elements or 'neurons’. The processing is generally done in massively
parallel structures with information being transferred among the neurons via a dense
interconnect structure. The amount of information flow from one processing element to
another is specified by a 'weight'. These 'weights' are typically adapted during a
computation to improve the performance of the neural net. Unlike sequential von Neumann
computers (a typical digital computer), neural nets have the capability of exploring and
choosing among several competing hypotheses simultaneously. This processing
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philosophy is based on our own biological neural structure. The hope is that in imitating

. the biological structures, the artificial neural structures can attain human-like performance in
a noisy, non stationary environment such as speech and vision recognition. Several
different processing neurons, interconnect structures, and weight adaptation or training
algorithms have been proposed. A general overview can be found in [5].

3.3.2 Use of Neural Nets in Speech Enhancement

The ability for neural nets to choose hypotheses in a non-stationary and roisy environment
has spurred some research in the application of neural nets to the speech enhancement
problem. Recently Shin'ichi Tamura and Alex Waibel presented a paper on speech noise

reduction via the use of neural nets [6].

In this case, noise enhancement is seen as a mapping from a set of noisy signals to a set of
noise-free signals. This mapping ('F') is to be determined by a neural network. Figure
3.4(a) shows the general format of the neural speech enhancement method. Tamura and
Waibel used a four-layer feed-forward architecture in an attempt to achieve this mapping.

. Figure 3.4 (a) - Neural Net Speech Enhancement
(After Tamura et al [6])

Noise-free speech

Neural Network = Mapping 'F'

‘--.III.---I...--..-.-----.------»
Noisy Speech

. The following sections will detail the processing element, network architecture and
adaptation algorithm used.
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3.3.3 The Processing Element

The processing element used is the simple perceptron [3], [6] shown in figure 3.4(b). A
perceptron sums N weighted inputs plus some threshold or biasing value '@' and passes

this result through a non-linear sigmoid function:

fo) = 14" | (3.9)

Figure 3.4 (b) - The Perceptron (After Tamura et al [6])

W(i.i)

ofj) >

J-th Unit

J-th unit's output = f ( X, W(j,i) x o(i) + @(j) )

where f(x) = 1/( 1 + exp(x) ) is the sigmoid function
w(},i) is the link weight from the i-th unit to the j-th unit
o(i) is the output of the preceding perceptron unit

3.3.4 The Network Architecture

The single perceptron discussed in 3.3.3 can at best only classify the inputs as belonging to
either of two classes or states. In order to define an arbitrary decision surface, 3 or more
layers are required [5]. The network architecture used in the speech enhancement example
consists of 4 layers of 60 computational units each. Figure 3.4(c) describes the noise
reduction network architecture. Each layer of perceptrons is fully connected with the next
layer in a feed-forward fashion. The state of the network is modified as the information
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flow is passed synchronously from layer to layer. To simplify the interpretation of the
' input and output, the input and output are not modified by the sigmoid function.

Figure 3.4 (c) - Noise Reduction Network

(After Tamura et al [6])
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3.3.5 The Adaptation Algorithm

The algorithm used to 'train’ the neural network by adapting the weights was the back-
propagation algorithm, which is an iterative gradient algorithm designed to minimize the
mean-square error between a current output vector and a desired output vector given the

current weights and current input vector.

For the back-propagation algorithm, the neural network is typically initialized by sclecting
small random values as the weights. The weights of the network are then adjusted a layer
at a time, starting with the weights leading to the output ncuron, in order to minimize the
difference between the actual output vector (given the input vector) and the desired output
vector according to some perceived cost function. This process is repeated until the error or
cost has been reduced below some threshold value. In the case of the specch enhancement
trials, the input vector was a frame of 60 analogue data points corresponding to a sampled
noisy speech waveform. The reference or desired output was the corresponding noise-free
speech frame (also consisting of 60 analogue data points - see figure 3.3(a)).
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3.3.4 Reported Results

The data or noise-free speech used in the experiment consisted of 216 phoneme-balanced
Japanese words initially digitized at 20 kHz and then down-sampled to 12 kHz. The data
was stored using 16 bits per sample. The noise used in the experiment consisted of
background computer-room noise (non-stationary) and wide-band Gaussian noise sampled
at 12 kHz. Noisy speech was produced by adding the sampled noise to the sampled noise-

free speech in such a proportion to obtain a desired SNR.

The entire sequence of the noisy speech and reference noise-free speech was presented to
the neural model at a rate of 60 data points per frame in order to train the network. At about
200 passes of the sequence, the back-propagation algorithm reduced the error or cost to an

acceptable value.

This process is somewhat computationally intensive - the authors reported the training of

the neural net took a total of 3 weeks on an Alliant super computer!

Noisy word sequences not in the original training sequence were then presented to the
neural network in order to ascertain the speech enhancement performance of the neural net.

Speech corrupted by computer room noise and wideband noise were used in the analysis of

the neural net.

The following is the result of an auditory preference test between enhanced speech
produced by the neural net and enhanced speech produced by the spectral subtraction

method:

Table 3.1 - Reported Enhancement Results Using a Neural Net

Method Used Score
Power Spectrum Subtraction 43.4%
Connectionist model 56.6%

As can be seen in the table above, the enhanced speech produced by the neural net approach
was preferred over the spectral subtraction method in terms of sound quality. However,
the authors indicated that there was no perceivable increase in speech intelligibility.

The computational intensity of the training and marginal improvement over conventional
enhancement methods do not make the neural net approach a viable practical alternative at
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the present time. Further attention to network learning of acoustically important aspects of
speech may resu!* in a network that produces superior intelligibility results. This network
could then be repiicated in VLSI technology (ideally, no training or modification would be
required after the initial long training sequence) for use as a marketable speech enhancement
device.

3.4. The Kalman Filter

The Wiener Filter introduced in 3.2.2 was one form of an adaptive filter. However,
effective use of the Wiener filter in speech enhancement requires that the speech and noise
be stationary. Hence, the Wiener filter does not perform very well in practice as cither the
speech signal or noise or even both are usually non-stationary. This subsection and the
next will discuss two contemporary filiering techniques which either try to eliminate the
stationarity constraint (the Kalman Filter), or try to improve upon the performance of the
Wiener Filter in other ways (the forward-backwards adaptive filter).

3.4.1 The Basic Kalman Algorithm

The Kalman solution is an alternative means of formulating the least mean squares filtering
problem by means of state-space analysis [7]. The solution has two primary features: (1)
vector modeling of the random processes under consideration and (2) recursive analysis of

the noisy input signal.

The Kalman Filter is generally implemented as a recursive algorithm using the following

expressions [7]:
X, = (n x 1) process state vector at time
8, =(n x n) matrix relating x; to x,, (or astate transition matrix)

w; = (n x 1) vector - a white or uncorrelated
sequence with a given covariance structure

z; =(mx 1) vector measurement at time /;

H, = (m x n) matrix relating the ideal connection between the
measurement and state vector at time /;

Xy = X + Ky Czp = Hy X)) (3.10)
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where X, = updated estimate; X, = prior estimate

K. = P{ H' (H, Pt H+ R, )" (3.11)

where K, =blending factor

P, =(1l- K, H ) Eg (3.12)
Xeet = O X4 (3.13)
Proy = 8, P 6, + 0, (3.14)

Equations 3.10 through 3.14 embody the Kalman filter recursive algorithm. A
diagrammatic representation is shown in figure 3.5. More details on the general Kalman

algorithm can be found in [7].

Figure 3.5 - The Kalman Filter Loop
(After Brown [7])
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3.4.2 The Kalman Algorithm and Speech Enhancement

Speech can be considered an AR autoregressive sequence described by the following
expression:

s(K) = qysh-1) + ... + a,,s(k-p) + u(k) (3.15)
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where s(k) = noise-free speech sequence.

The above expression can also be considered as the output of a linear all-pole sequence
driven by some uncorrelated white noise sequence. Expression 3.15 can be represented n

a state-space format as follows:

stk—p+1) 0 1 0o ... 0 s(h = p) 0
stk—p+2) 0 0 I oo 0 {lsh-p+)) 0
= + u(h)
s(k) —(ll, —ap_l cee ees —al S(‘ — l) 1
or
XKk) = 0 X(k—-1) + G u(k) (3.16)

where X (k) = process state vector = x;
@ = state transition matrix = 8,
G = input matrix.

In general, however, we only can observe a degraded or corrupted process:

y(k) = stk) + n(k) = z(k) (from before) G.17)
where n(k) is the additional noise process.
This can be rewritten as:

yk) = H X(k) + n(k) (3.18)
where H = observation matrix.

Since u(k) and n(k) are uncorrelated and have zero mean (noise processes) and assuming

an initial unbiased estimate for X :
X0 = X,

Expressions (3.18) and (3.16) suggest that a Kalman filter can be found by using the
algorithm described by expressions (3.10) through (3.14). The resulting Kaliman filter
would give the best possible estimate for X(k) given the observations y(1), y(2), ..., y(k)

(k consecutive observations of the noisy speech signal).
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Like other adaptive filter techniques, application of Kalman filtering for speech

enhancement consists of two stages: (1) derivation of the AR coefficients
{ @), a, ... a; } as well as an estimate for the noise variances of u(k) and n(k) for a

specific speech segment and (2) the application of the Kalman filter using the values found
in the first stage in order to achieve the estimate of X(k). The last component of an

estimated process state vector is the Kalman filtered estimate of the clean speech signal:
Xy =1 stk=p+1) ... s(k) ] (3.19)

)?,, = §(k) = estimate of noise-free signal.

3.4.3 The Delayed Kalman Filter

The delayed Kalman filter is a modified version of the basic Kalman filter using an
additional p +1 observation points { y(k+ p+2) ... y(k) }. Consequently the estimate of
s(k) is delayed for p+1 observation points. This version of the Kalman filter ideally
provides a better estimate of s(k) than the basic Kalman filter.

3.4.4 Reported Results

In the experimental study, the ideal values for both the a, and noise parameters (n(k) and

u(k)) were used rather than the estimated values.

Xo (the initial state vector) was initialized to the first p data points

{ (D), ¥2), ..., y(p) }.

The following charts display the effectiveness of the Kalman and Dzlayed Kalman filters in
enhancing speech relative to the standard Wiener enhancement method. Note that a
modified Wiener filtering method which accommodates nonstationarity is also included in

the comparison. The authors did not specify the type of noise used.

Table 3.2 - Input SEGSNR vs. Output SEGSNR

Output SNR (dB)
Input SEGSNR Standard Nonstationary Kal'nan Delayed
(dB) Wiener Filter | Wiener Filter Filter Kalman Filter
0 -6.2 -1.1 3.5 4.2
5 0.5 2.8 5.5 6.9
10 4.8 5.5 8.1 9.2
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From the above table it can be seen that both the standard and Delayed Kalman filtering
methods are superior to the Wiener filtering methods, otffering a definite improvement in
terms of the Segmental SNR over a broad range of input noise. A comparison of the
Kalman filtering methods indicates that the Delayed Kalman filtering method offers
approximately a 1 dB gain over the standard Kalman filtering method over the same range
of input noise. The authors indicated that these objective results were reaftirmed by
informal subjective listening tests. However, the authors did not provide any further

description on the perceived subjective quality of the enhanced speech signals.

It should be noted that the speech enhancement algorithm used parameters obtiined from
clean speech or ideal parameters inserted directly by the authors. The effect of non-ideal
(estimated) parameters from noisy speech has yet to be determined. Small deviations from
optimum conditions may result in catastrophic effects on the Kalman filter speech

enhancement system.

3.4.5 Complexity of Kalman Filter Method

The matrices used in the computation of the Kalman filter are not Tocplitz matrices, and
hence there should be a jump from O(p) to O( pz) in terms of computational complexity.
However, Fast Kalman algorithms may bring down the computational complexity back
down towards O(p).

3.5 Forward Backward Adaptive Filtering

The forward-backward adaptive filter enhancement method is an extension of the standard
Wiener method in that it utilizes both future as well as past samples in order to estimate the
current sample. The resulting filter provides good enhancement results for both narrow-

band and wide-band noise sources [9].

3.5.1 Background Theory for Forward/Backward Filtering

The forward-backward filtering method can be thought of as using two adaptive filters, a
forward adaptive filter and a backward adaptive filter, in concert. Figure 3.6(a) shows the
block diagram of the overall forward-backward filter structure and 3.6(b) shows the details

of a particular adaptive filter.
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. Figure 3.6 (a) - Block Diagram of a Forward/Backward ADF
(After Kim et al [9])
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. Figure 3.6(b) - The Structure of the ADF

(After Kim et al [9])
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As in the other adaptive filter methods, we seek a method of minimizing the error which is
the difference between the reference output x,, and the filter output x;,:

e, = X, — X, . (3.20)

But the filter output is a sum of the output of the two adaptive filters:
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’

X, = x{, + 13, 3.20

It can be shown that the mean square error can be derived as follows:
Error = Elx,] = 2W] P, - WL P+ W] R W)
+ WY Ry Wa+ W '

where W, = coefficient matrix for the forward adaptive filter
=[ Wi Wiao s Wiy |

W, = coefficient matrix for the backward adaptive filter
= Wap Wag, s Woy |

X, = input vector for the forward adaptive filter

= | Xn-1y Xp-2+ oo s Xy |

[><

» = input vector for the backward adaptive filter

= | Xntlr Xne2s oo s XM l
R.1.1 » R,2 2 = autocorrelation matrices
I_i’z‘l“z = R, = cross-correlation matrices
B\l = E[.X,,XI]
P\Z = E[.\'"le

The error function is an elliptic parabolic function of W, and W, and thercfore a global
minimum can be determined. It can be shown that the following describes the optimum

values of the coefficients:

‘_V_l,opl = (Etl.rl)-l (Bll - K.xl,x?. wZ,npl) (32’;)

_ -1
W—2,0pl = (5\2.12) (.E.‘Z - Bl2.xl .-u—/l,npl)

In practice the steepest decent algorithm is used to determine the initial values of W, and
W, while the following procedure is used to update the coefficients:

Winm =Wy, + 1y X ¢ (3.24)

Wyt =Wy, + U Xy ¢,
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2
Maximum eigenvalue of R,

where 0 < y; <

2
Maximum eigenvalue of R,, >

O<ll2<

3.5.2 The Forward/Backward filter and Speech Enhancement

The Forward-Backward filter is used in a similar manner as the Wiener filter with respect to
speech enhancement. Typical usage of the Forward-Backward filter for speech
enhancement is shown 1n figure 3.7. The output of the filter with a noisy speech signal is
the estimate of the noise as the filter ideally adapts itself to become the inverse filter for the
noise-free speech signal. This noise estimate is subtracted from the noisy signal to obtain
an estimate of the noise-free speech. Note that a speech detector is needed for speech
enhancement in the case of narrowband noise (the filter adjusts its coefficients during
speech-free periods). Because of the need of a speech detector in the presence of narrow-
band noise, the authors proposed a modified forward-backward filter depicted in figure
3.8. The smoothing effect of this filter enables it to be applied for the enhancement of
speech in the presence of narrowband noise without the use of a speech detector.

Figure 3.7 - Enhancement of Speech Corrupted with Narrow-Band
Noise with a Forward/Backward Adaptive Fiiter
(After Kim et al [9])
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Figure 3.8 - Block Diagram of a Modified Forward/Backward Adaptive Filter
(After Kim et al [9)])
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3.5.3 Reported Results

In the experimental analysis, the noise-free signal consisted of real speech sampled at 8
kHz. The noise source consisted of a Gaussian random noise source with zero mean.

The following charts display the effectiveness of the Forward/Backward and modified
Forward/Backward adaptive filters in enhancing speech quality relative to the Wicner
filtering method.

Table 3.3 - Input SNR vs. Output SNR

Output SNR (dB)

Input SNR (dB) Wiener Filter Normal Forward/ |Modified Forward/
Backward Filter Backward Filter

. 28 6.40 6.50
5,73 8.09 9.00 [0.41
10.75 11.84 10.87 3.4
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Table 3.4 - Input SEGSNR vs. Output SEGSNR:

Output SEGSNR (dB)
Input SEGSNR Wiener Filter Normal Forward/ [Modified Forward/
(dB) Backward Filter Backward Filter
2.67 4.08 _5.41 5.30
4.1 6.27 7.20 7.70
7.81 8.68 8.90 9.90

Both the Forward/Backward and the Modified Forward/Backward filters show a significant
increase in SNR and SEGSNR for very noisy input signals The performance of the
modified forward/backward filter is particularly impressive, offering a clear advantage over
the Wiener filtering method even at high input SNR's. However, the authors did not offer
any subjective comments with respect to any perceived improvement in the acceptability or
intelligibility of the enhanced speech signal.

3.6 Hidden Markov Models
3.6.1 Hidden Markov Model Basics

|11} defines a Hidden Markov Model as a doubly stochastic process with an underlying
stochastic process that is not observable (hidden), but can be observed indirectly through
another set of stochastic processes that produce the sequence of output symbols (values).

All discrete HMM's have a few basic qualities:

(1) A finite number of states = M

(2) A state transition probability distribution (can be represented by a 2D matrix)
which states the probability of a state transition given the previous state (a Markov
process) = g, , = Pr(q, at t+1] g, at 1)

(3) Each state will have its own probability distribution for observing a particular
output symbol while the process is at that particular state = b ;(k) = probability of

symbol & at state j.
(4) A set of (finite) discrete output symbols. (number = §)
(5) An initial state distribution = 1.

(6) States are only allowed to change at finite intervals of time = T.
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Using the above definitions, a discrete HMM can be described by a

1°

QJ(A). and x. This
set is typically referred to by a single reference - say A.

The continuous HMM is similar to the discrete HMM except that the discrete symbol
probability is replaced by a continuous distribution. Two popular forms of the continuous
distribution include the Gaussian M -component mixture densities of the form:

M
b,(x) = E ce NLx uy, Uy | (3.29)

where ¢, = mixture weight

N = normal density

‘—‘jk = mean vector

U *= covariance matrix for state j. mixture k

and the Gaussian autoregressive M -component mixture densities of the form:
M
b(x) = Y ¢y by (3.26)
k=1

-b(x;a 4.)/2
. )/

where b, (x) = -
Jk ek /2

P
bx;ay) = r,0) ry©)+ 2 Y r,) @)

=1
= standard LPC distance between a vector x with
autocorrelation r, and a LPC

vector with autocorrelation r,, .

Given the HMM structure above, we may want to (1) evaluate the probability of observing
a given sequence given A, (2) determine the optimum state sequence given an observation
sequence, and (3) optimize the parameters referred to by A in an effort to have the HMM
emulate a given process. Algorithmic solutions exist for all of the 3 above problems and
are discussed in [11]. The titles of the solutions will only be presented here: (1) -> the
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forward-backward algorithm, (2) -> the Viterbi algorithm, and (3) -> the Baum-Welch re-

estimation formulas.

A typical Markov state diagram for speech (a phoneme or word) is shown in figure 3.9(a).
Note that there is a definite temporal structure as state transitions are only allowed to loop
back or proceed to the right. This will also make the state transition matrix upper triangular.
Each state is typically associated with a specific sound or acoustic event - so if figure 3.9(a)
represents a word the first state may represent the beginning phoneme while the last state
may represent the ending phoneme [10]. To accommodate for variability amongst different
speakers, coarticulation effects etc., each state needs to be represented by a probability of
spectra. This can be accommodated by the Gaussian mixture expressions indicated by

(3.26) and (3.26).

Figure 3.9 (a) - A Typical Markov Process for Speech

3.6.2 Hidden Markov Models and Speech Enhancement

In {12] and |42] the HMM was used to model clean speech with mixtures of Gaussian

autoregressive (AR) output processes.

Given the parameter set A, for the clean speech signal, the enhancement problem can be

given as maximizing the sequence y (noise-free speech) in:

max In[p; ; (y,2) ] = max I“ZZPA)L (x,h,y,2) (3.27
y sty y sy

x h

where p;, = pdf of clean speech HMM
p;, = pdf of model for noise process
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A = parameter set for clean speech

A, = parameter set for AR noise process
y = clean speech sequence

v = noisy sequence

x = sequence of states {1..M)

h = sequence of mixtures {I..L}

z = y + v =noisy speech sequence
= observable data

Pas(2) = py ) Py ) = py, ) Py (2=
(since the noise is additive and statistically independent
of the signal)

Also, since Pia, (2) = JI’A,A (v,2) dy is independent of y, the MAP estimation
procedure indicated by (3.27) is equivalent to:
max In[p; Ol 1 . (3.28)
y
The approximate MAP procedure used in [12] assumes that the double sum in (3.27) 1s

dominated by a unique sequence of states and mixture components. The clean speech
vectors may then be estimated (along with the most likely sequence of states and mixture

components) by:
max In[p; ; (x,h,y,2) | (3.29)
x,h,y s

where

Paa, (Ghy,2) = py (z=y) py (X, h, y)

(as x and A are statistically independent of y and z) .
Similarly to (3.28), the estimation procedure indicated by (3.29) can be found to be
equivalent to:

max In[p; 5 (hyl2) | . (3.30)
iy sy

In [12] the HMM parameter set for the clean speech, 4,, was determined using the
segmental k-means algorithm (an approximation to the Baum algorithm) which jointly
estimates the parameter set of the (clean speech) model as well as the sequence of states and
mixture components which maximize the likelihood function of the clean specch. More
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specifically, A, was determined by alternatively maximizing the log likelihood function
In p; (x,h,y), once over (x,h) assuming that A, is given, and then over A, assuming
that (x,h) is known - generating a sequence of models with increasing likelihood. The
procedure was terminated once the value of the log likelihood function in two successive

iterations was smaller or equal to than a preset threshold. In [42] the HMM parameter set
for the clean speech, A,, was determined by using the Baum reestimation algorithm. More

specifically, A, was determined by maximizing the likelihood function
In p; (y)= z:/:l Inp; (y r,) (T, being a time index) utilizing an auxiliary function
subject to a number of constraints. The procedure was terminated once the value of the
likelihood function in two successive iterations was smaller or equal to than a given
threshold. The initial value or estimate of 4, used in both of the iterative processes was
derived from a procedure in which the entire training sequence was clustered into M X L
AR (autoregressive) models using the Lloyd clustering algorithm used in AR model vector
quantization (see section 3.3). This was achieved by first designing an M -sized AR state
codebook using the Lloyd clustering procedure and then dividing (decoding) the entire
training sequence into one of M states defined by the M-level AR codebook. Secondly,
an L-sized mixture AR codebook was designed for each of the M states by repeatedly
splitting the AR codeword representing the state (see section 3.3) using the sub-training
sequences assigned to the given state. The resulting M x L AR (autoregressive) models
were used to derive the initial parameter set for the HMM. For example, the initial values
for the mixture weights, C?’lﬂ’ were obtained by decoding the sub-training sequence
corresponding to the f-th state codeword using the L mixture codewords and then simply

observing the relative frequency of appearance of each L 'mixture’ codeword.

Note that the initiall M x L codebook containing the AR models may itself be viewed as
an HMM with equiprobable imitial and state transition probabilities with either one state and
equiprobable mixture components or with as many states as codewords with one mixture

component per state. Alternatively, the HMM model derived using the iterative k-means or
Baum algorithms (and defined by the parameter set A1) may be viewed as an M X L

Vector Quantizer codebook with a number of temporal constraints being placed on the

selection of a given VQ codebook element.

In {12] the actual speech enhancement algorithm uses the expression provided by (3.29) to

enhance speech in a two stage process. First, the most probable sequence of AR models is
determined by maximizing the likelihood function p; (x, h, z, y) of noisy speech over

(x. h) (all sequences of states and mixture components) assuming that the clean speech
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vectors are given. This is performed using the Viterbi algorithm. The end result of this
maximization is a sequence of (most probable) AR models which are linked with the current
estimate of the vectors of the noise-free speech signal. Secondly, the likelihood function
7% (x, h, y) isthen maximized over all of the original noisy speech vectors using the most
probable sequence of states and mixture components (x, A). This is accomplished by
utilizing the sequence of most probable AR models determined in the first step to construct
a sequence of Wiener filters which are applied on the noisy speech vectors in order to
estimate the most likely sequence of clean speech vectors. This iterative procedure
continues until the difference in the likelihood function over two successive iterations is

smaller than some preset threshold.

Figure 4.9(b) - Speech Enhancement Based on Hidden Markov Modeling

m " o VoD Determine Markowian modal
olse free ector ibrary using K Means or Baum algorithm
speech by ——] Quantizer |—@m=-| containing M x L —] (¢ g transitional probabihes
various speakers Clustering AR models between AR Models)

AR Noise

Process

Undistorted
Speech

interation = 1
/ Given the Markovian model,

e O—y—————pp| determine Optimum AR
Model using Approx -MAP
or Exact MAP estimate

/
Interation > 1 +

- Wiener
Filter

Enhanced
Speech

In [42] the speech enhancement process uses the expression provided by (3.27) to derive
an exact MAP estimation for the clean speech vectors given the sequence of noisy speech
vectors. The actual MAP estimation process is carried out using the EM (Estimation-
Maximization) algorithm. The algorithm locally maximizes the conditional pdf of the clean
speech signal given the noisy speech signal by generating a sequence of speech sample
functions with non-decreasing likelihood values. The maximization of the likelihood
function in each iteration is actually carried out by maximizing an appropriately defined
auxiliary function. This iterative procedure continues unul the difference in the likelihood

function over two successive iterations 1s smaller than some preset threshold.




The overall speech enhancement process using Hidden Markov Modeling techniques is

depicted in figure 3.9(b).

3.6.3 Reported Results

In both [12] and [42], 100 sentences of clean speech spoken by 10 speakers were used to
train an HMM for clean speech. In [12] the testing sequence consisted of 2 sentences
spoken by 2 people not in the original training session while in [42] the testing sequence
consisted of 8 sentences spoken by 4 people not in the original training session. The AR
model for the noise was estimated for the actual noise sample and added to the clean speech
to produce the noisy speech signal. (The noise process was modeled as a sequence of
stationary and statistically independent Gaussian autoregressive vectors.) The test sequence
was then sampled at 8 kHz and broken into frames of 128 samples with 64 sample overlap.
The order of the autoregressive noise process and the autoregressive output process was set
to 4 and 10 respectively. In both [12] and [42], the enhancement of the distorted speech
signal was done simultaneously in that for each iteration the most probable sequence of
states and mixture components corresponding to the entire speech signal was found and
then the Wiener filters were applied to the entire distorted speech signal to obtain the
estimate of the enhanced speech signal. The individual processed speech frames were
combined into a continuous enhanced speech signal using the short time Fourier transform

overlap and add technique.

In [ 12], the optimum number of states (M) and number of mixture components (L) were
empirically determined to be 32 and 8 respectively. The following table describes the
improvement in quality at 4 input SNR values for the approximate MAP HMM
enhancement process with M=32 and L=8:

Table 3.5 - Reported enhancement results using an approximate MAP HMM with

M=32 and L=8
Input SNR in dB Output SNR indB
M=32, L=8
5.0 11.0
10.0 14.7
15.0 17.1
20.0 20.6
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The above table indicates that the approximate-MAP HMM enhancement method used in
[12] produced a significant signal quality improvement of approximately 5 dB at input
SNR's of less than 10 dB. The paper further reports that enhanced speech was “crisp" but
accompanied by noise which sounded like a combination of wideband noise and musical
noise (similar to but significantly lower in perceptual magnitude than spectral subtraction).

[42] provided a more detailed discussion on the selection of the number of states (M) and
the number of mixture components (L). Specifically, the optimum values of M and L
were determined experimentally by examining the enhanced speech signal as M and L
were varied for a fixed input SNR of 10 dB. The following table illustrates the range of
output SNR's for different values of M and L for a number of enhancement processes
which used various degrees of HMM muodeling as part of the speech enhancement process.

Table 3.6 - Enhancement results for various levels of Hidden Markov Modeling and
different values of M and L

VQ-CLN (dB) | SEG-CLN (dB) [SEG-AMAP (dB)

ML-MAP (dB)

3/3 14.73-16.45 14.72-16.44 14.25-15.95 14.25-15.95
8/4 14.75-16.51 14.75-16.50 14.26-15.75 14.26-15.75
16/8 15.04-16.72 15.04-16.70 14.16-15.82 14.16-15.82

VQ-CLN indicates a speech enhancement process in which the AR output model for a given
noisy speech segment was selected from the initial M x L Vector Quantizer codebook
using the nearest neighbor rule according to the Itakura-Saito distortion measure (see
expression (2.51)), using the clean speech segment corresponding to the noisy input
segment. SEG-CLN indicates a speech enhancement process in which the AR output
model for a given noisy speech segment was selected from a HMM with a parameter set
defined by the segmental k£ -means algorithm and using the approximate MAP approach on
the clean speech signal. Note that the difference between VQ-CLN and SEG-CLN was that
the SEG-CLN enhancement process incorporated Markovian memory. SEG-AMAP
indicates a speech enhancement process in which the AR output model for a given noisy
speech segment was selected from a HMM with a parameter set defined by the segmental
k -means algorithm and using the approximate MAP approach on the noisy speech signal.
Finally, ML-MAP indicates a speech enhancement process in which the AR output model
for a given noisy speech segment was selected from a HMM with a parameter sct defined
by the Baum algorithm and using the exact MAP approach on the noisy speech signal. In
all of the enhancement processes, the noisy speech signal was filtered using an adaptive
Wiener filter based on the selected AR model. This was done in an iterative fashion until
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the likelihood value in two successive iterations was less than or equal to a preset threshold
‘ value - with the exception of VQ-CLN in which the nearest-neighbor selection was used

without any further iterations.

A number of observations may be made given the experimental results listed in table 3.6.
First, by comparing the results for VQ-CLN and SEG-CLN, it is apparent that Markovian
memory or the use of temporal constraints on the selection of the selected VQ AR model
codebook element is not important given that access to the clean speech signal is provided.
Second, as the best results were obtained at low values for the number of states and mixture
components, it demonstrates that only coarse versions of the power spectral density are
required in the speech enhancement process. Apparently, the higher order state-mixture
HMM models tend to produce a greater number of gross estimation errors which in turn
result in decoding errors and incorrect filter selection. Finally, table 3.6 illustrates the
importance of the AR model selection process for the speech enhancement process. The
SEG-AMAP and ML-MAP enhancement processes have been demonstrated to be fairly
robust in the presence of noise with a resultant reduction of 0.5 dB in SNR when compared
to VQ-CLN and SEG-CLN. Although the SEG-AMAP and ML-MAP enhancement
methods provided similar objective results, the authors indicated that the ML-MAP

‘ enhancement method provided slightly better subjective results in informal listening tests.
However, the authors did not elaborate with detailed subjective comments.

The following table describes the range of improvement in quality at 4 input SNR values
for the exact-MAP (ML-MAP) HMM enhancement process with M =5 and L=5. Note that
the minimum and maximum number of iterations used in the enhancement process are also

shown:

Table 3.7 - Enhancement Results for ML-MAP process for various input

SNR's
Input SNR in dB Output SNR in dB Iterations
M=5, L=5
5.0 10.50-11.96 10-19
10.0 14.10-15.84 10-17
15.0 18.24-19.61 10-13
20.0 22.53-23.63 11-21

As in the approximate-MAP enhancement method, the above table indicates that the exact-

. MAP HMM enhancement method used in [42] produced a significant signal quality
improvement of approximately 5 dB at input SNR's of less than 10 dB. The paper further

55



reports that the crispness and naturalness of the original speech were well preserved. At 5
dB input SNR, the exact-MAP enhancement process produces mixed subjective results -
effectively reducing the effect of added noisc in some utterances while inttoducing
noticeable distortions in other utterances. At the higher input SNR values of 15 and 20 dB,
the enhanced speech signal was described as "very good" - but no further detailed
subjective comments were provided.

3.7 Multipulse-Excited Linear Prediction Enhancement

3.7.1 Basics of Enhancement by Resynthesis

This subsection will examine an alternative to the techniques described thus far which
attempt to lessen the effect of the noise by modifying the noisy input spectrum directly in
the frequency domain or indirectly in the time domain by adaptively filtering the noisy
waveform. This alternative is based on the premise that the speech can be completely
regenerated by obtaining a model for human speech represented by an excitation signal and
a filter corresponding to the response of the vocal tract. A popular method of representing
the human speech model is based on the all-pole or autoregressive (AR) model specified by
(2.22).

The excitation of the vocal tract filter of 3.31 is usually accomplished with: 1) a periodic
and impulsive waveform which would correspond to the glottal pulses of voiced speech, or
2) random bipolar pulses which would correspond to the noisy sounds of unvoiced speech.
A voicing decision based on the analysis of the input speech frame would be required to
choose between the two excitation waveforms. In the case of a voiced decision, the period
of the impulse waveform would also have to be obtained from the input speech waveform,
The speech enhancement method utilizing Linear Predictive Codiag analysis and
resynthesis is depicted in figure 3.10.

Naturally, the constraints on the speech model will also place a constraint on the output
quality of the LPC based synthesizer. The LPC based synthesizer is only capable of
synthetic quality speech which tends to have a mechanical and warbling quality ¢ven if the
necessary parameters for the synthesizer are obtained from noise-free speech. This is due
to a number of factors including the loss of phase information in the excitation signal, the
lack of zeros in the vocal tract which are important in nasal sounds, and the simplistic
modeling of the source excitation. All of these problems are further aggravated in the
application of LPC based resynthesis for speech enhancement. Algorithms which can
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accurately determine the LPC coefficients for clean speech tend to do poorly with the
addition of noise. Voicing decisions and pitch estimation are similarly degraded in the
presence of a noisy speech signal. The net effect of the added degradation of the necessary
parameters and the already imperfect performance of the LPC based resynthesizer for clean
speech has led to less than satisfactory results in the use of this enhancement technique.

Figure 3.10 - Enhancement via Resynthesis Using Basic

LPC Analysis Methods
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3.7.2 A Proposed Multipulse Linear Prediction Enhancement Method

The basic LPC resynthesis technique discussed in 3.6.1 has a number of deficiencies which
limits its use in speech enhancement. Paliwal in [13] introduced a number of modifications

on the basic LPC-based resynthesis procedure which corrects some of these deficiencies.

One of the modifications hes in the excitation source used. A multi-pulse linear prediction
system initially proposed by Atal and Remde [ 14] for medium bandwidth speech coding is
used as the excitation source for the vocal tract filter. In the multi-pulse LPC system, the
residual signal (the signal resulting after passing the speech signal through the inverse vocal
tract filter) is modeled by a small number of bipolar impulses. The exact number of pulses
used may vary according to computational or timing considerations, but typically they
comprise a small fraction of the number of samples in the speech frame. The amplitude,
polarity, and location of the pulses are obtained by an iterative analysis-by-synthesis
procedure depicted in figure 3.11. The pulse determination process is governed by the
requirement to lower the error signal or the energy difference between the original and
resynthesized speech. As shown in figure 3.11, the pulse determination process as
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originally proposed by Atal and Remde is governed by a perceptual-weighting filter. This
filter improves the subjective quality of the output speech by weighting the perceptually
important regions such as the formant frequencies.

Figure 3.11 - Analysis-by-Synthesis Procedure for Multi-Pulse LPC
(After Atal et al [14])
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The multi-pulse method of modeling the excitation source has a number of advantages over
the simple impulsive or random noise sources described earlier.  Phase mformation is
preserved in the multi-pulse process rather than discarded as in the basic LPC resynthesis
method. Also, pitch and voicing decisions are no longer necessary as these elements are an
intrinsic part of the modeled residual signal. In the context of speech enhancement, the
multi-pulse extraction procedure alone can be considered as a noise reduction filtering
process. Ideally, a noisy residual signal would be input to the multi-pulse extraction
process and the output would consist of those elements corresponding to the residual of

perceptually-weighed clean speech.

The second improvement suggested in [13] lies in the algorithm used to obtain the Lincar
Predictor Coding coefficients for the AR (all pole) model. As already indicated, standard
algorithms based on the autocorrelation or covartance function perform poorly n the
presence of noise. Paliwal indicated that a modified version of Cadzow's method could be
used in obtaining reasonable values for the LPC coefficients in the presence of noise The
algorithm utilizes p forward and backward autocorrelation coefficients to estimate an over-

determined set of high-order (¢ > p) Yule-Walker equations which are n turn used to

determine the current set of AR coefficients.

3.7.3 Reported Results

The speech enhancement system utilizing the multi-pulse exited linear prediction system is
shown in figure 3.12. Paliwal indicated that the enhancement system worked best when

there was no perceptual weighting. The speech samples were sampled at 8 kHz with 16
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bits accuracy. White gaussian noise with zero mean was used to simulate the distortion of
the speech signal. The following table describes the output of the speech enhancement
system in terms of SNR for clean speech and two noise levels. Paliwal indicated that these
objective results were reaffirmed by informal subjective listening tests. However, Paliwal
did not provide any further description on the perceived subjective quality of the enhanced

speech signals.

Table 3.8 - Reported Results for Enhancement Process using Multi-Pulse LPC
Analysis Methods

Output SNR in dB

Input SNR in dB

Output SNR in dB
LP. coefficients derived

LP. coefficients derived

from clean sEech from noisx sEech
oy 8.20

11.14
10 10.29 8.32
0 5.49 3.43

Note that the system offers an improvement in SNR over the input speech signal only
below a certain SNR (below 10 dB). This may be due to constraints placed on the vocal
tract mode! which 1s currently specified as an all-pole filter. A system which incorporates a
pole-zero model of the vocal tract may improve the performance of the system. Also note
that the output SNR could theoretically be improved by approximately 2 dB by employing
an improved noise-robust method of a spectral (linear prediction coefficient) estimation

procedure.

Figure 3.12 - Speech Enhancement Using Multi-Pulse
Excited LPC Analysis (After Paliwal [13])
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4. VECTOR QUANTIZATION

4.1 Introduction to Vector Quantization

Vector Quantization is fundamentally a means of data compression. As such, the majority
of applications using Vector Quantization have involved speech or image coding. The
primary interest in Vector Quantization with respect to this thesis lies in its pattern-
recognition or classification capabilities. However, as pattern matching is an inherent
characteristic utilized in the overall Vector Quantization coding system, this section will
introduce Vector Quantization as a coding technique to provide a more comprehensive

picture of the possible uses of Vector Quantization.

The essence of much of the theory involving Vector Quantization can be traced to a result of
Shannon's work in rate-distortion theory that implies that the performance of a coder can be
improved if a serics of scalar measurements is treated in groups or vectors. This result
holds true even if the scalar measurements are taken from a memoryless source |19].
Vector Quantizers can achieve this increase in performance by exploiting four possible
correlations in a given vector of values: (1) linear dependency, (2) nonlinear dependency,
(3) the nature of the probability density function, and (4) the geometric properties of 4 -
space - where k is the number of values in the vector [20]. The use of these properties in
Vector Quantization will be elaborated in section 4.4.1. A summary of some of the known
theoretical and experimental performance bounds for Vector Quantizers will be presented in
sections 4.4.2 and 4.4.3 respectively.

Vector Quantization (VQ) can be considered as a mapping of a high number (perhaps
infinite) number of k-dimensioral input vectors x = [ X, X, ..., Xx; ] into a fimte
number of M representative output vectors. This mapping or quantization operation may
be identified as

y = q(x) 4.1

where ¢ is the mapping operation. The output vectors which are also referred to in the
literature as reconstruction vectors, reference patterns, and reference templates typically
have the same dimension as the input vector (although there is no firm requirement for the
output vectors to be of the same dimension as the input vectors). The set of M output
vectors C ={y ,1< i < M} wherey =1y y, .., yy | 1sreferred to as the
VQ codebook. Assuming that the output vectors and input vectors have the same
dimension, the VQ codebook can be interpreted as a division of & -dimensional space into
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M non-overlapping regions {S, , 1 < i £ M} associated with the M corresponding

output vectors. Using this geometrical interpretation, the selection of the appropriate output
vector from the VQ codebook can be seen as the determination of the region (S,) that the

given input vector maps into. Using the notation of (4.1) this process can be written as:

y, = q) if x €S, . (4.2)

Figure 4.1 shows a simple 2-dimensional space segmented into 16 regions/codewords.
Note that the regions associated with the codewords may have different shapes. This
degree of freedom in the geometric shape of a given cell is a property inherent in the
codebooks associated with the algorithmic approaches to codebook design to be discussed
in section 4.3. Although the geometrical selection process indicated by (4.2) is easily
understood, a more numerically tractable method of output vector selection is required.

Figure 4.1 - Example Partitioning of 2-Dimensional Space
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This role is fulfilled by a distortion measure d(x,y). The distortion measure gives an

indication of the dissimilarity or distance between a codebook (output) vector and the given

input vector. Ideally the distortion measure should be analytically and computationally
tractable as well as subjectively meaningful. Large and small values of d(x.y) should
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correspond to bad and good subjective quality respectively. Also d(1,y) does not
necessarily have to be a 'distance measure' in the strict sense requiring both symmetry
(d(x,y) = d(y,1))and the triangle inequality (d(x,y) < d(a,1) + d(1.y)) to be useful
in Vector Quantizer design. The only necessary requirement beyond those already
mentioned is that the distortion measure be nonnegative (d(x, » 2 0)and equal to zero
when the two vectors are identical (d(x,y) = 0 if 2 = y) [24]. Section 4.2 will
discuss a number of distortion measures which could be used in Vector Quantizer design.
The determination of the codebook and the corresponding partitioning of A -space using a
given distance measure is a key design step in Vector Quantization and will be dealt with in
section 4.3.

Referring back to the probletn of output vector selection given a codebook and a distortion
measure, the distortion measure can be seen to be an alternative means of dehineating the
codebook partitions of k-space. The correct output vector can thetefore be selected by
choosing the codebook entry corresponding to the minimum distortion value. The mapping
operation of (4.2) can therefore be represented by:
y, = mlin (1(._\_',2/) ,J=1.. M. 43

Figure 4.2 shows the use of the Vector Quantizer as a coding technique. The input vector
may be comprised of a set of direct samples of a waveform or a set of parameters obtained
via some transformation technique. In the encoder, the A -dimensional input vector is
compared with the M entries of the codebook using a given distortion criterion. The index
corresponding to the minimum distortion according to (4.3) 1s transmutted along a channel
using R = log , M bits, giving the Vector Quantizer an effective rate of R/ 4 bits per
symbol. The decoder receives the transmitted index element and selects the corresponding
reconstruction vector from an identical VQ codebook. In the case of wavetorm coding,
where the codebook contains waveform patterns, the reconstruction vector 1s output
directly. If the codebook contains a sct of parameters, then these parameters in turn feed
into an appropriate inverse transform system. The use of Vector Quantization in a simple
pattern classification system is similar to the system described above - the fundamental
difference being the lack of a decoder and communications channel (the selected codebook
entry in the 'encoder’ would be used directly). Note that the compression of information
for the Vector Quantizer-based coding system comes at a cost of complexity in the encoder.
The computational complexity in the encoder 15 a function of the size of the codebook or

M. As the distortion decreases with increasing M, the size of the codebook is a key
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design parameter for any Vector Quantizer system. The computational complexity of many

popular Vector Quantizer systems will be elaborated upon in section 4.6.

Figure 4.2 - Use of a Vector Quantizer in Coding
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The average distortion of the vector quantizer system for a sequence of L input vectors can

be given by:

D

ve

1 L

= — d(x,,9; )

L n=1

oras L tends to infinity,

D,

ave

where y indicates the codebook vector with the minimum distance according to (4.3) at

L—e= n=}

the frame or time index of n.

Note tha* the average distortion measure implied here is different from those associated with
scalar quantizers as the distortion measure is based on a set of M representative
reproduction vectors. The codebook vectors may consist of sets of parameters representing
ideal models or sets of values representing noise-free segments of some waveform. As
these 'ideal' codebook values are used in the output sequence, the average distortion is a
measure of the average difference between the physical entities represented by the input
vectors and the physical entities represented by the chosen codebook reproduction vectors.
The degree of dissimilarity is given by the distortion measure which ideally gives a good

1
= lim Z Z d('{"’zl.n)

DECODER

indication of the subjective similarity between the two vectors.
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If the process which generates the input sequence is stationary and ergodic, the average
distortion given by (4.5) will tend to the expectation of the distortion function given by
[20]:

D. = El d(xy) |

L
=Y Puxes) [dxy) p) d (4.6)
i=l1

1€S,

where P (x € S§,) is the discrete probability that x is in S, and p(x) is the k -dimensional

probability density function of x.

4.2 An Algorithmic Approach To Codebook Design
4.2.1 The Linde, Buzo, Gray Algorithm

The goal of codebook design is to generate a set of M codewords such that the average
distortion of (4.4) is minimized. As indicated in section 4.1, the average distortion will
tend towards the expectation of the distortion measure for a sufficiently long sequence if the
source is stationary and ergodic. The mathematical expectation could ideally be used as an
aid in the search for an optimal codebook given the probabilistic nature of the source.
Unfortunately in cases such as natural speech and image data, there are no good
probabilistic models available for the source. One possible alternative approach which does
not rely on having knowledge of the underlying source model is to generate the codebook
based on a long training sequence of actual data produced from the source. The codebook
would be optimized by minimizing the average sample distortion given by (4.4) over the
training sequence. Once the codebook has been determined, the codebook could then be
applied on samples outside the original training sequence with hopefully little increase in
distortion. This 'Monte Carlo' approach to codebook design assumes that the training
sequence will be of sufficient duration to adequately represent the source signal. The only
restriction on the source signal 1s that 1t must at least be asymptotically mean stationary [ 19)
- it is not necessary for the source to be strictly stationary and ergodic. As natural speech
falls into the less restrictive category, the algonthmically defined codebook should be

appropriate for speech.

Lloyd developed the algorithmic technique for determining the quantizer codebook given a
training sequence for the scalar (single dimensional) case. The algorithm is based on the
observation that the optimal quantizer will have two fundamental properties. The first
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condition is that the optimal quantizer must choose the codeword associated with the
minimum distortion:

y‘ = min d(l,yj) , J =1.. M . 4.7)
Z ) z
(same as (4.3)

In the event of a tie, some arbitrary decision is made such as choosing the codeword with
the smaller index. The second condition is that the codeword y; must be chosen in order

to minimize the average distortion associated with the cell §;:

min D,(X‘) = Z d(g,x) . 4.8)

X€S,

The minimum can be determined by setting y, to the conditional mean of all of the input
vectors which mapped into the partition S,

= Elx|xesS}. 4.9

=t
This conditional mean is sometimes referred to as a centroid and is indicated by:

y, = cent(h € S,) . 4.10)

The actual determination of the centroid depends on the distortion measure used. In the
case of the Euclidean distortion measure of (2.3), the centroid is determined by the simple
arithmetic mean of the vectors which mapped into §;:

1
e GZ 4.11)

A
where N, are the number of vectors which mapped into §,.
In the case of the Itakura-Saito distortion measure of (2.53), the centroid is found by first

determining the mean of the autocorrelation sequences corresponding to the vectors which
mapped into §,

1
L= — Z (4.12)
"y, N, <

X

and then determining the LPC coefficients corresponding to the mean autocorrelation
sequence with some appropriate algorithm. Generally there are no restrictions on the
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distortion measure used as long as the distortion measure is computable in the tirst place
and the centroid can be found using (4.8) and (4.9).

The processes indicated by (4.9) and (4.10) lead to an iterative algorithm for Vector
Quantizer codebook design. The algorithm is referred to as the LBG algorithm after the
authors Linde, Buzo, and Gray [21}. The basic algorithm can be described by the
following:

The LBG Algorithm

[1]1 Initialization (m=0)
Given the training sequence and an initial codebook with M elements and a
distortion measure, set the average distortion measure to some high value
D(-1) = +oo,

[2] Classification
Encode the entire training sequence using the present codebook using the

nearest neighbor rule of (4.7). Determine the average distortion D(m) for the

training sequence using the present codebook.

[3] Update Codebook
Update the codewords by computing the centroid of the training vectors which

mapped into each partition using (4.7) and (4.9). Increment m.

[4] Termination Test
See if the decrease in distortion D(m — 1) —D(m) was below a certain

threshold. If not, then go to step [2] otherwise stop.

Iterating between [2] and [3] will provide a non-increasing distortion and the algorithm will
eventually converge to a stationary point. Unfortunately, the stationary point is only
guaranteed to be a local optimum for the multidimensional case. Trushin indicated that a
quantizer specified by (4.7) and (4.8) would provide sufficient conditions for a global
optimum for the scalar case and a distortion measure of the form d(x, y)= f (x,x-y), but
no such conditions have been specified for the determination of a global optimum for 4 > |
[32]. Also, the solution provided by the LBG algorithm will not generally be unique fora
given training sequence and distortion measure [32]. Different iniual codebooks will
generally provide different locally optimal codebooks which may or may not perform well
in a Vector Quantizer based system. The selection of the initial codebook is therefore
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critical in the design of a good final codebook. The generation of the initial codebook will

be discussed in the next section (4.2.2).

There are two possible approaches in attempting to determine the approximate global
solution for the codebook. The first approach, as already suggested, is to determine a
'good’ initial codebook via some unspecified method. Unfortunately, there are no firm
guidelines as what constitutes a good initial codebook. Therefore, the algorithm is usually
run on several different initial codebooks. The codebook with the lowest average distortion
measure is then selected as the approximate globally optimum solution. A different
approach utilizes the concept of simulated annealing to generate optimum codes [33]. The

concept can be described as follows:
[{0] Given an initial codebook and an initial noise or ‘temperature’ level.

[1}] Determine the new codebook at the noise or temperature level.

[2] Decrease the noise or temperature level.
[3] If the noise level is greater than some level then go to step [1].

This process was briefly alluded to in [21] where Gaussian noise was added to the training
sequence samples in successively decreasing amounts in order to obtain the global
optimum. Initially, the noise was set to a high level so that the LBG algorithm converged
to the single local and global optimum indicated by the noise. As the noise level was
gradually decreased, the global optimum shifted slightly towards the optimum codebook of
the training sequence. The LBG algorithm using the codebook from the last noise level
was able to track the new optimum codebook even though new local optimum points were
introduced. The mamn drawback of the simulated annealing process is the computational
overhead required as each drop in noise level requires an additional run of the codebook
generating algorithm. Although this process shows some promise, the work done in this
field with respect to code generation has been limited and few results are available.

4.2.2 Initial Codebooks

42.2.1 'Random’ Initial Codebooks

There are several methods of defining the random codebook. The simplest would be to
choose M vectors from the training sequence at random as the initial codebook. Another

method would be to choose M evenly spaced vectors from the training sequence. In this
case the vectors should be chosen widely enough apart so that the sequential choices are not
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highly correlated. Random initial codebooks offer the advantage of having little or no
computational cost associated with the selection procedure. The main disadvantage of
using random codebooks is that the 'randomness’ inherent in the procedure leads to a
corresponding degree of uncertainty as to the quality of the final codebook produced using
the random initial codebook. The degree of uncertainty is decreased somewhat tor large
codebooks and large training sequences. As a rule of thumb, if random codebooks are
used, several initial codebooks are usually run through the LBG algorithm in order to
achieve a degree of confidence in the best codebook generated.

4.2.2.2 Product Initial Codebooks

Product initial codebooks can be interpreted as the repeated application of an L-level scalar
quantizer. If the scalar quantizer is applied £ times, A -dimensional space can be seen as
being partitioned into grids defined by the scalar quantizers. If the scalar quantizer 1s
uniform, the initial codebook consists of a 4-dimensional cubic lattice-like structure.
Knowledge of the source or training vector can aid in the design of the product-mitial
codebook by setting the range on the basic scalar quantizer or by using a non-uniform
quantizer better suited for the source in question. For example, in the case of LPC
coefficients, the basic scalar quantizer would range from -1 to 1. As the repeated
application of the L-level quantizer will potentially result in I} codewords, some pruning
may be in order to bring the number of initial codewords down to M. Again, knowledge
of the source distribution may aid in the pruning process. The main advantage to product-
initial codebooks is that they are perceptually simple and have no little or no computation
overhead in the generation of the initial codebook. The main disadvantage is that the
training sequence is not directly used in generating the initial codebook - other than some
rather general a-priori knowledge of the source which may be incorporated in the scalar

quantizer.

4.2.2.3 Initial Codebooks by Splitting

The method of generating an initial codebook by splitting consists of generating a series of
intermediate codebooks of fixed dimension and increasing rate log, M’
©, 1, .., logop M') where M' is the size of the intermediate codebook. The basic

procedure can be described as follows:

[0] Set M' = 1. Determine the zero-rate codebook. This is equivalent to

determining the centroid for the entire training sequence.
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[1] Generate an initial rate log,(2M') codebook by doubling the size of the
codebook. This is done by splitting the codebook with a fixed or random
perturbation vector. The old codebook is usually retained as half of the new
codebook to ensure that the average distortion measure will not increase. This

process can be described by:
y 2y .y+te,i=412..,M (4.13)
M=2M

where € is the perturbation vector.

[2] If M' isequal to M then stop. If not, then run the LBG algorithm on the size
M' codebook using the training sequence in order to produce a good rate
log, M' codebook and then go to step [1].

Figure 4.3 demonstrates the process where the method of spitting is used to generate an
initial rate 2 (size 4) codebook and then the LBG algorithm is run one last time to obtain the
final rate 2 codebook. The main advantage of this procedure is that the training sequence is
utilized to create initial codebooks which tend to have a relatively consistent behavior
(performance) when compared to the other methods of generating an initial codebook. The
intermediate codebooks generated in the process listed above may also be used as part of a
binary search procedure to be elaborated upon in section 4.6. The main disadvantage to the
method of splitting is the computational overhead involved in generation of the intermediate
codebooks. The size of the codebook is also restricted to powers of 2 (usually not a
problem). The method of splitting is predominantly used where knowledge of the

probabilistic nature of the source process is limited - such as with natural speech.

4.3 Vector Quantizers based on Lattice Structures

Although the LBG algorithm is only guaranteed to generate locally optimum solutions, it is
the only method available for generating a codebook for a process with an arbitrary and
perhaps unknown probabilistic distribution. Its use, therefore, has become almost
universal in most practical Vector Quantizer based systems. In this section, Vector
Quantizer codebooks based on geometric or lattice structures will be explored. These
structures assume a known, usually uniform source distribution, and therefore are not
really appropriate tor use with more realistic source processes. Lattice structures, however,
provide us with a better understanding of the basic structure of a Vector Quantizer

codebook and are used to derive theoretical bounds on the performance of Vector Quantizer
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Figure 4.3 - Generating an Initial Codebook by the Method of Splitting
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codebooks. Some of these bounds will be discussed in section 4.4. This section will
provide an introduction to the basic concepts and terminology associated with Lattice Vector

Quantizers.

The basis of a lattice structure lies in the structured partitioning of k-dimensional space.
For the scalar or one-dimensional case, the partition is simply the one dimensional segment
of the real line. The optimum quantizer (one with a uniform output distribution) can
therefore be deternuned by altering the interval of each segment according to the source
distribution and the given distortion function. The problem of correctly configuring the
partitions in A-dimensional space is more complex due to two reasons. First, there is an
infinite variety of A -dimensional partitions or polytopes (a k-dimensional object defined
by a number of & —1 dimensional hyperplanes) which may be used to partition & -space.
Secondly, the relationship between the source probability density function (pdf) and the
distortion measure 1s not usually well defined in k -space. For these reasons the design of
geometrically structured codebooks usually consists of a trial-and-error approach in which a
variety of polytopes are tried given a uniform input distribution and a Euclidean distortion

measure of the form given by (2.3).

A lattice in k dimensions, €, is formally defined by the set of all vectors that satisfy [27]

[28]:

n—-1
Q:y=3be 4.14)
=0

where n < k, b, are integers, and the set {ey, e, ... , €,_1} are linearly independent k-

dimensional basis vectors.

The set of points generated using (4.14) will form an array of regularly spaced points in k-
space. A lattice quantizer is simply a quantizer whose codewords form a subset of the
entire lattice. Assuming that the lattice extends throughout k-space, a given lattice will
have the property of appearing to be structurally invariant regardless of the lattice point
from which the lattice is being viewed. The lattice points can therefore be seen as the
vertices of a set of congruent and space-filling cells. A given distortion measure, usually
the Euclidean distance measure, can define a nearest-neighbor region around each lattice
point. These regions are also referred to as Voronoi regions or Dirichlet regions. Note that
the nearest-neighbor region detined here is equivalent to the distortion based partitions of
the general Vector Quantizer discussed in section 4.1. Due to the regular structure of the
lattice, the Voronot regions of all the lattice points will consist of a set of translated
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congruent cells or polytopes. Note that these polytopes will necessarily be convex in 4 -
space if the distortion measure is the Euclidean distance measure |26].

The basis set of vectors ¢, (kK = 1, 2, ..., n} determines the nature of the lattice and the
Voronoi regions. Conway and Sloane [28] have shown that the Voronoi region for a given
lattice point can be bounded by the hyperplanes defined by the perpendicular bisectors
Joining the lattice point in question to all of its nearest neighbors in the lathice. Under
certain circumstances the Voronoi region is simply a scaled variation of the polytope with

vertices defined by the basis set of vectors.

A lattice quantizer of a given dimension can be described by three quantitative attributes
[27]: the packing density, the kissing number, and the normalized moment of inertia. The
packing density of a lattice quantizer is the fraction of space that can be encompassed by
non-overlapping k-dimensional spheres centered at cach lattice point. Given the same
conditions, the kissing number is defined as the number of contact points a given sphere
will have with the surrounding nonoverlapping spheres. The packing density and the
kissing number give an indication of how suitable a lattice structuse is for the quantization

process. The normalized moment of inertia is defined for a specific polytope by |26]:

(4
o Jpl=ildx
SRNTTC

(4.15)

where X is a lattice point, Pt signifies the & -dimensional poiytope, VPt signitics the

volume of the & -dimensional polytope.

The normalized moment of inertia gives an indication of the performance of the lattice
quantizer where the lower the value derived by using (4.15) - the better the theoretical
performance of the lattice quantizer. Better performance in this case implies a lower output
distortion for a given dimension. The search for optimal lattice quantizers can therefore be
interpreted as a search for an admissible polytope which will mimmize (4 15).  Gersho
[26], Conway and Sloane [28] list a number of possible lattice structures and their
corresponding quantitative attributes for dimensions up to & =24, ‘The performance of

lattice quantizers will be elaborated upon in section 4.4.

A portion of the interest in lattice quantizers is due to the low memory requirements of the

vector quantizer and the potentially low computational overhead 1n encoding a given input
vector. The low memory requirement can be seen from (4.14) as the sct ¢, consisting of

n < k basis vectors completely specifies the structure of the lattice quantizer. The encoding
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process given the set of basis vectors consists of determining the set of integers
b, by, ..., b,. Conway and Sloane in [29] demonstrated how that, for a certain class of

lattice quantizers, the encoding complexity could be as little as & to k2 logk operations -
depending on the lattice structure. Saywood et al in [34] introduce a more general lattice
quantizer encoder which is independent of the particular lattice structure but is less

efficient. The algorithm is given by the following steps:

[0 m=0,
Givenabasisset S € le;, e, ..., e,} and the input vector x°. Initialize 8°

to O (the origin). Determine the set of points C that determine the Voronoi
region about the origin. Define m, be the magnitude of the vector x™ and m,
the distance of the farthest point in the group C”. Let M = m, div m.. If

M is equal to zero then the codeword is the origin (stop) else proceed to step

1]

(1] m=m+l.
Let x* = A™7'/M. Determine the basis vector ¢ that minimizes the

distortion measure (1’(1*,(_’,). 0" = 8" ' + M ¢ (also alattice point).

2] Determme d,, = "1 - Qm”.
If d,, £ mythenset C" = C™! + @™ (also a subset of the lattice). If

d, > mythen ™ = 1" 4+ g™,

[3] 1If d, < my thenstop, else determine M = m, div m,

and go to step [ 1].

These results have to be placed in the context of the general (unstructured) Vector Quantizer
introduced in section 4.1 and generated by the LBG algorithm of section 4.2 which requires
a set of M >>4 basis vectors to be stored and a series of M, sometimes complex,

distortion measures to be determined according to (4.3) for each input vector.

4.4 Performince Bounds for Vector Quantization

This section will discuss the known performance bounds for Vector Quantization. It has
been mentioned that a Vector Quantizer can approach the rate distortion limit for a given
source assunung a sufticient degiee of complexity m the encoder. Section 4.4.1 will

demonstiate just how a Vector quantizer system can achieve this limit by utilizing the
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possible correlations in a given input vector. Section 4.4.2 will detail the known theoretical
bounds for Vector Quantizers. Finally, section 4.4.3 will discuss some experimental
results and observations for Vector Quantizers optinized for some basic source processes.

4.4.1 Use of Possible Correlations within a Vector of Values

There are four possible correlations which can be utilized in a given vector of values: (1)
linear dependency, (2) nonlinear dependency, (3) the geometric properties of & -space, and
(4) the shape or characteristics of the source probability density (pdf) function  Some of
these properties are interrelated. For example, hinear and nonlinear dependencies withm the
vector of values are characterized by the A -dimensional source pdf. A Vector Quantizer
has two means of exploiting these correlations in 4-dimensional space - cell placement and
cell shape. Cell placement refers to the individual geometric location m A -space of the M
codewords as well as their relative displacement from one another. Cell shape 1eters to the
distortion-based nearest-neighbor or Voronoi partitton associated with cach codeword. ¢'ell
placement and cell shape are interrelated properties as one mherently detines the other
However, for the purposes of the following discussion, one aspect of Vector Quantization
will be stressed over another - depending on the data corelation property being ¢ xammed.
The following subsections will demonstiate how the two aspects of Vector Quantization
utilize the possible dependencies in the input data vector to achieve the theotetical
performance limits one correlation property at a time. The goal will be to provide an
intuitive feel for the processes at work via simple examples (2-dimensional whenever

possible). A more mathematical treatment of Vector Quantization will be given in 4.4.2,

4.4.1.1 Linear Dependency

Linear dependency is also referred to as correlation. The correlation between two z¢10-
mean variables x; and 1, can be determined by secing if the expectation of the product of

the two pdf's is equal to zero:
uncorrelated: E[x; A,] = 0 4.16)
where E denotes the expectation operator.
Note that if 1 and x5 were statistically independent -
independent: p(xy,x3) = p(xy) plxy) , for all x; and 1, (4.17)

where p( ) represents the pdf
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then the variables are automatically uncorrelated or linearly independent as
EIXI X2| = E[X]l EIX?_] = 0.

Figure 4.4(a) shows a joint 2-dimensional probability density function for two correlated
zero mean variables x; and x,. The pdf is uniform and constant within the rectangle.

Given that the sides of the rectangle are given by « and b, the joint pdf in this case is simply

plx;,x) = 1/ab , x; and x, within the rectangle (4.18)

= () elsewhere.

Figure 4.4 (a) - Correlated Input Data (After Makhoul et al [20])
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The margnal pdf's for each singular variable are also shown. If a simple uniform scalar
quantizer with quantization interval equal to d is available to encode each variable, then a
total of («+ 0/ (52"2) levels will be required for the scalar quantizer. This corresponds
to arate of log>((a +0)/ (82" %)) bits per input variable. Furthermore, since the quantizer
will have to be applied sequentially for each variable, twice as many bits or
2Iog3((u+h)/(62”2)) = lugz((u+h)2/(52”2)) bits will be required to encode the
mput vector. It ¢ =60 and b =30 then the encoding rate will be equal to 5.34 bits. Note
that this 1s equivalent to encoding the entire space detined by the dashed rectangle. Since a
stgmiticant portion of the region has zero probability of occurring, the sequential scalar

coding of the vanables is netficient. This type of encoding process where a given scalar
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quantizer is used repeatedly to encode a set of variables is also referred to as a product
encoder (see section 4.2.2.2).

Also shown in figure 4.4(a) within the non-zero probability region is an example placement
of 2-dimensional codewords. The codewords are separated by § units along cach mayor
axis of the rectangle. The Voronoi regions consist of a simple § 1 § square centered on
each codeword. Note that this is not necessarily the best possible partition which could be
used to encode the region within the rectangular pdf - the simple square Voronoi region was
chosen to demonstrate how even a simple sub-optimal codebook could increase the
performance of the encoding process. The number of bits required to encode the 2-
dimensional codebook is equal to log,(ub / 5%). Assuming a =64 and b =33 as before,
the encoder rate is equal to logy(18) or 4.17 bits. In general, any correlated variables can
be decorrelated througn some sort of transtormation. Figure 4.4(b) shows a transformed
version of the figurc of 4.4(a) in which a simple rotation on the two variables a; and 5.
now leads to two decorrelated and independent varables v, and v, since
p(x.x2) = p(x) p(xr). Note that the relative placement of the 2-dimensional

codewords within the rectangle are unchanged. A sequential scalar encoding operation in

Figure 4.4(b) - Decorrelated Input Data (After Makhoul et al [20])
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the situation presented by figure 4.4(b) will lead to a total ratec of
logy(a /&) + logy(b/ ) = log,(ab/87) bits being required. This 1s equivalent to the
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rate produced by the 2-dimensional codebook in the earlier pre-transformed state.
Therefore, assuming that the appropriate codebook can be generated, Vector Quantization
can be seen to have an inherent decorrelating property. The assumption concerning
codeword placement is not unreasonable as any standard codebook generating algorithm
such as the LBG method will only assign codewords where there is a positive probability.

4.4.1.2 Nonlinear Dependencies

Two zero-mean variables x; and x, may be uncorrelated or linearly independent according
to (4.18) and still be statistically dependent. In this case the remaining dependencies

between the two vanables are terimed to be nonlinear dependencies.

Figure 4.5 shows a ring-like joint probability density function with a constant pdf inside the
ring equal to 1/(148°) - where & is the interval of the basic scalar quantizer as before.
The variables are uncorrelated; so no further rotation or transformation will produce an
optimal scalar encoder in this case. As can be scen from the marginal densities and the joint
density, the two variables are statistically dependent because the condition of (4.17) is not

satisfied and the variables are therefore nonlinearly dependent. If a simple scalar quantizer

Figure 4.5 - Nonlinear Dependencies ir. the Input Data
(After Makhoul et al [20])
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is used to encode each random variable sequentially, the total rate of the sequential encoding
process will be equal to log,(a/8) + logy(h/ &) =logs(3) + logy(6) = 4.17 bus. Note
that this rate is equivalent to the rate of the optimal encoder of figure 4 4(b) in which the

variables were uncorrelated and independent over the ¢ X b rectangular region.

Figure 4.5 also shows a proposed placement of a total of 14 codewords with square
& X & Voronoi regions as in the previous examples. Again, the simple square Voronoi
region is chosen purely for the purpose of demonstration - a codebook generating algotithm

may produce a better codebook distribution over the 2-dimensional region. The rate of the
2-dimensional encoder in this case is simply logy(14) or 2.21 bits.

By proper codeword placement, the Vector Quantizer is able to parttion 4 -dimensional
space to take advantage of the various random variable interdependencies and nature of the
Jjoint pdf to provide a superior encoder. Furthermore, the Vector Quantizer is itble to do this
without prior knowledge of the marginal and joint densities, because traming algonithms
such as the LBG method will at le~st provide a local optimum given a sutticiently long
training sequence. The sequential scalar quantizer in comparison may be able to account tor
linear dependencies assuming that an appropriatec transformation (which requites
knowledge of the random process) can be found - but it cannot optimally encode a set of

variables with non-linear dependencies.

4.4.1.3 Utilizing the Geometric properties of A -Space

In subsections 4.4.1.1 and 4.4.1.2, a squarc Voronoi region was utilized to partition 2-
dimensional space. This was done in order to have a basis of comparison with the
sequential (product) encoder. However, the cedewords and the corresponding Voronoi
regions of a Vector quantizer are only constrained to the set ot A -dimensional convex
partitions or polytopes. A Vector Quantizer therefore has considerably more freedom in
assigning a portion of A-space to a particular codeword. In comparnison, the regions
associated with the repeated use of a uniform scalar quantizer would be restircted to the set

of k-dimensional cubes (see section 4 2.2.2),

Figure 4.6 shows how two difterent basic geometric Voronoi regions can be used 1o
partition 2-dimensional space. The geometnic figures are the @~ ¢ unit square and the
regular hexagon with a side of length ». The joint densities are assumed to be umform and
indeperdent throughout 2-dimensional space. The square partition corresponds to the

equivalent product code which would result with the optimal use of a sequential scalar
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quantizer. The hexagonal partitions are typical of how a Vector Quantizer codebook would
partition space for the simple uniform distribution and the Euclidean distortion measure.
Note that these 2-dimensional partitions may be considered as lattice structures with basis

square lattice: eo =10,1),¢ = [1,0] 4.19)

hexagonal lattice: e = I3” 2, 0, =1, 2] . (4.20)
Figure 4.6 - Variations in 2-Dimensional Space Packing

codeword
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Assuming a Euclidean distance measure, the distortion associated with the square cell is

given by | 20]:

D = a /6 4.21)

square

while the distortion associated with the hexagonal cell is given by:

Dlu’ulg(m = 5( 31/21)4)/ 8 . (422)

The distortion implied here occuts in representing tae entire region by the centroid of the

cell assuming a uniform joint density throughout 2-space.
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. . 2 2 .

By equating the area of the hexagon given by Apervagon = Q772 b3)/2 A to the area of
. 2 . - . .

the square given by a~, the two quantizers in figure 4.6 will have the same encoding rate

since the same number of cells would be required to cover a given area. However, there 1s

a difference in the output distortion ussociated with the two quantizers at the same rate. The

ratio can be shown to be

Dhc\agnn/Dsquurc = 0.962 . (4.23)

The hexagonal-based quantizer will have a lower associated distortion at a given rate.
Correspondingly, the hexagonal based quantizer will have a lower encoding rate tor a

particular distortion.

From these simple examples, it can be seen that the additional treedoms i the 4 -
dimensional geometric structures which are allowed in Vector Quantization will 1esult i
more efficient use of k-space. This property of Vector Quantizers can be utilized
regardless of the linear and nonlinear dependencies i the input variables. In the specitic
example given m figure 4.6, the joint density was given as that of an uncorrclated and
independent source. By taking advantage of a more appropriate hexagonal structure, a
slight improvement in the encoder was still made even though the input vanables were

independent.

4.4.1.4 Utilizing the Characteristics of the Source Density Function

A property which has been alluded to in the previous examples is the property of the Vector
Quantizer to tailor itself to the source distribution function. In the previous examples, the
placement of the k-dimensional codebook was regular due to the uniform nature of the
probability density function. More realistic sources have non-unsform and complex
multivariate density functions. The general Vector Quantizer will place its codewords
where the overall average sample distortion for the source distiibution and distortion
function will be minimized. This process 1s usually accomplished via some sort of iterative
(LBG) algorithm on a representative trarming sequence.  Intwtively, this imphes that the
density of codewords will be greater (and the Voronoi regions smaller) m regions of 4 -
space where the multivariate probability density has a relauvely large magnitude
Correspondingly, the Vector Quantizer will only place a few or no codewords where the
multivariate density function is smaller or equal to zero. This property 1s illustiated 1n
figure 4.7. The diagram shows how a codebook generating algonthm may place a set of 9

codewords 1n 2-dimensional space given a representative series of trammg vectors frony a
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non-uniform density function. One other point to note from the diagram is that the
polytopes do not necessarily have to have the geometric structure throughout k -space. The
Vector Quantizer will assign both shape and size to each codeword Voronoi region as

required to reduce the overall distortion.

Figure 4.7 - Accommodating the PDF of the Input Data
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4.4.2 Theoretical Performance Bounds of Vector Quantizers

Many of the known theoretical performance bounds in communications theory have been
derived utlizing a ficld of communications known as information theory. Information
theory deals with the determination of the coding bounds of compacting and compression
codes as well as the potential throughput of a given communication channel. The theory
does not explicitly determune how to generate the eptimum codes for a given channel - but it
does mdicate that lower bounds do exist and are theoretically obtainable although the
resulting encoder may be impractically complex. Subsection 4.4.2.1 will introduce the
basic terminology and results of information theory and indicate how the Vector Quantizer
design problem is related to the underlying assumptions made in Shannon's third coding
theorem. Scction 4.4.2.1 will specifically deal with the known performance limits of

Vector Quantization,
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4.4.2.1 Relevant Aspects of Information Theory

Information theory is primarily concerned with the determination of coding bounds for a
given source process. These bounds are typically expressed in two related functions - the
rate-distortion function R(D) and the distortion-rate function D(R). The rate-distortion

function gives the highest achievable rate for a given distortion while the distortion-1ate

function gives the lowest distortion possible for a given rate,

The formal definition of the compression coding problem assumes that N discrete samples

are available from an independent or memoryless random process. The N samples may be
referenced by the vector x = {xy, v, ..., Y.}, A mapping, v=g¢(1), then transforms

the input vector into one of M discrete representative output vectors {¥g, ¥, ... » Yar 1}
The number of the representative vectors M may be infinite. The minimum average

distortion involved in the mapping operation will be given by:

D= minH dx,») ], 1 =01.., M-I (4.24)
¥, -

where E[ | is the expectation operator and () 15 a distortion measure between v and v .

The minimum average rate R required to transmit the index associated wity the output
vector is equal to H(y)/k bits per sample where H(v) denotes the entropy or information

content of the output process given by:

M-1
Hiy) = 3, p(y) logap(y) . (4.25)
=0

Now from [41], Shanuon's third coding theorem is given as:

For any finite alphabet memoryless source with hounded distortion measui e, it
is possible to find a block code of data compression of rate R such that the
average per-ittor distortion 1s less than D, provided R > R(D), and the block
length N is chosen sufficiently large.
As R(D) is the inverse relationship of D(R), the above 1s equivalent to saying that the
minimum distortion D(R) is attunable if the rate R is higher than some fixed value.
Relating this theorem to the above compression problem gives the distortion-rate function
as:

D(R) = lim D,(R) = min Eld(x,y)| , K 2 H(y)/hk (4.29)
kA —en ¥, - -
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Now the compression problem as described above is identical to the description of the
general Vector Quantizer outlined in section 4.1. Therefore, the coding performance of a
Vector Quantizer can potentially approach the coding limits derived for a particular
memoryless source if the dimension (vector length) of the vector quantizer is high enough.

The distortion-rate function D(R) is not easily obtained via analytical means for most

source distributions. Computational techniques such as Blahut's algorithm [41] may be
used to determine the rate distortion, or D(R) may be estimated for a given rate and

distribution by the following bound:

D.(R) < D(R) < Dg(R) . 4.27)

The upper bound, Dg;(R), is the distortion-rate function for the memoryless Gaussian

source with variance ¢ and is given by:
Dy(R) = 272k (4.28)

The lower bound is known as the Shannon lower bound, and is achievable for most
processes only in the limit as R approaches infinity. The Shannon bound is given for a

specific source process by:

D.(R) = 2—:u 222K (4.29)

where h(1) is the differential entropy of the memoryless source defined by:
W = - p) loga pQ) - (4.30)

The differential entropies of some memoryless source processes are listed in the following
table [20}:



“.3D

Table 4.1 - Differential entropies of some memoryless source processes

Source Process PDF of Source Ditterential Entiopy
g(x) h(x)
Gaussian 1 2,50 1
(V71207 —log.2meo’
27:0( 2 08, (27007)
Uniform 1 1 )
< —Jow 2ot
7o N s Ve Slog(120%)
0 . otherwise
Laplacizm 1 (-ﬁhl/o) 1 Yy )
= - —_ \ V-
\/50'( 2I053(,.l:)
Gamma 2 IV
_i/z_(,(“ﬁl‘l/lﬁ) ;l,—logz(4m'l o’ [3)
V87o| <
C = 05772

The Gaussian, Laplacian and Gamma distributions have been used as lust-order
approximations for the long term (several seconds), medium term (100 ms), and short term

(10 ms) probabilistic distributions of the speech process iespectively.

The determination of the distortion-rate function tor sources with memory 1s extiemely
difficult, and very few definitive results have been obtained  In the case of the Gaussian
distribution, it has been shown for the case of a correlated process (lincar dependency) and

for small distortions that the distortion-rate function can be given in terms of (4.28) by [20]

D(,‘urrz'lulud (}aln.sl(m(R) = ¢ D(:'tlll\\l(m(R) ’ (/) < (4-32)

where ¢ is the ratio of the geometric mean to the arithmetic mean of the spectral density of

x(n).

This result appears to carry over to other non-Gaussian distributions as well.  The
consequence of this result is the validation of the intuitive reasoning which suggests that the
performance of an encoder may be improved by utilizing the redundancies within the

sampled data.
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4.4.2.2 Known Bounds for Vector Quantizers

This subsection will list some of the known performance limits of Vector Quantizers.
Many of the expressions listed in this section are asymptotic limits assuming an infinite
number of Voronoi regions covering the entire expanse of a finite dimensional & -space or
an infimite dimensional Vector Quantizer with a finite number of Voronoi regions. Also, it
should be noted that the expressions listed here do not constrain the source process with

respect to any interdependencies which may exist in the samples of the input vector.

In [25] Zador showed that the minimum mean (L,) distortion for an optimal M -level

Vector Quantizer with a fixed dimension £ would approach:

(R+r)/k

oo

= lim A(.r) M’ J'p(g)“(“’)d_x (4.33)
Moo

—o0

d fived dimension h

and that the minimum distortion of an entropy-constrained (fixed entropy and unconstrained
number of dimensions) Vector Quantizer using the identical distortion measure would

approach:

= hm Bhr) AR SY (4.34)

d fixed entropy

where A(A,r) and B(k,r) are bounded by:

Ly < Bk S A S TA+ r7R) VTR (435)

A+r

where V; is the volume of a 4 -dimensional unit sphere, I'( ) is the gamma operator, H is

the fixed entropy, and /(1) is the differential entropy of the source process.

The lower bound s the sphiere bound created by the optimal packing of k-dimensional unit

spheres in & -space.

Oune important point to make about A(A,r) and B(A,r) is that they are independent of the
source density tunction. Thetefore both A(A,r) and B(k,r) may be determined using any

convenient density function over A -space such as the uniform density function.

From (4.33) and (4 3. a number of observations may be made for a Vector Quantizer

with infinite block length. One 1s that the upper and lower bounds will converge towards a

constant n the himit as & approaches intinity:



lim B(k,r) = lim Atk,r) = 1/Q2re) . +4.36)
koo A-—)m
The second observation that may be made is that for a stationary source | 261:

(2+r)/2
] > oMY .37

lim [ o(x)2 ) gy
fim | [ p¥ @y

Using (4.36), (437) and the Stirling approximation for a sphere bound in (4.35) will 1esult
in the distortion given by:

d = 1/Q2me) ¢ Ak~ A (4.38)

which is equivalent to the Shannon lower bound. This tends to support the hypothesis that
the description of the compression coding problem as stated for Shannon's thid coding
theorem and the description of the Vector Quantizer are one and the same. The denvation
above is again only valid for the , norm and for large M.

In [26] Gersho provided an alternative dervation ot the above results using a sceries o
arguments based on the lattice structure defined 1in section 4 1. Gersho's derivation is
based on the conjecture that, for every dimension 4, thete is an optimal & -dimensional

Voronoi polytope which will mimmize the normahzed inertia given by:

1py = vt [ e - o (4 39)

where P denotes the region of the polytope, V(p) 1s the volume of the polytope, and 1’ is

the centroid of the polytope.
The coefficien: of quantization can then be defined by:

Clhor) = (1/K) min I(P) . (4.40)
I)

Gersho used the coefticient of quantization in the heuristic derivation of the A -dumensional
analog to Bennett's distortion integral assuming an L, norm distorion measure. This
expression 1s valid in the asymptotic sense as the number of output vectors (M) must be
large for the approximations used in 1ts derivation to be valid. The & -dimensional analogue

{0 Bennett's formula is given as:
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p(y)

D, = M7 Ckr
L ( ) J T(:l’)r/A

dy 4.41)

where 7( ), the output point density function, mdicates the relative spacing of the output

codewords.

Using (4.41), Gersho was able to derive equivalent expressions for (4.33) and (4.34)
determined by Zador. Furthermore, Gersho demonstrated that the coefficient of
quantization, C(k,r), could be used interchangeably with A(A,r) and B(4,1) .

Gersho was also able to demonstrate two interesting structural properties of optimal Vector
Quantizers. One property was related to the result of a Vector Quantizer with constrained
dimension. The property is that the output point density function, 7( ), is proportional to
p(z)/@/(k+r)

approximate the magnitude of the multivariate pdf for the input sequence and (2) cach

. This implies for A >> r that (1) the density of the output codewords should

Voronoi or nearest-neighbor region will contribute an equal degree to the overall average
distortion measure of the Vector Quantizer. The other property was related to the result of a
Vector Quantizer with constrained entropy. In this case, the optimal vector quantizer was
shown to tend towards the uniform quantizer. From information theory, it 1s known that
the maximum entropy for a source process is achieved when the output vectors aie all
equiprobable with a probability of occurrence equal to 1/M [41]. In this case, a simple
fixed rate code is able to optimally encode the umform distribution at a rate of log, M bits

per vector.

Referring back to expressions (4.33) and (4.34), there is no explicit means of determining
A(k,r) and B(k,r) for a given dimension and L, norm for A >1. Gersho's method of
determining an optimal polytope for a given dimension is essentially a ‘Monte Carlo’
approach which will yield an upper bound to C(k,r) and hence an upper bound to A(k,r)
and B(k,r). Conway and Sloane in [28] and |30] detwil a number of possible lattice
structures and their corresponding C(4,r) values for dimensions up to 24. In the two-
dimensional case, an optimal value has been found for A(2,2). In this case the optimal
polytope is the regular hexagon. The hexagonal lattice structure is defined by (4.20). The
complete expression for the distortion measure of the optimal Vector Quantizer can then be

given by [26]:

Dy = —= M ( [] wx,x)'" dxy dry )2 . (4.42)
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Conway and Sloane in [30] also provide an alteinative lower bound to the sphere bound
originally given by Zador and Gersho. Although they do not provide a formal proof, the
lower bound does correspond well with known results for C(k,r). The Conway -Sloane

lower bound 1s defined by:

k+3-2H;,> 17k a/n £ 2n .
—21= (h+1 k! < Clk,r 4.43
ARG R+D)7 GYTT S, (k,7) (4.43)

n
where Z"_' =the harmonic sum,
=1 !
and f, (x) is Schlafli's function with the recursive definition:

L)y =1

fo(x) = arcsec(x)/x

1 ¢ (fra(x-2) 1 _
- e 1 dx
z ,,J:] (-\'(x“ ez )

il

f3(x)

;
Vé

4.4.3 Reported Performance of Vector Quantizers

This section will relate some observations on the performance of the basic Vector Quantizer
on some well known probabilistic sources. More detailed information can be found in

[ 191, 120], [32], and [35].

In [32], Gray and Kamin demonstrated the existence of scveral distinct local optima for one
bit per sample, 2- and 3-dimensional Vector Quantizers optimized for a memoryless
Gaussian source. The Vector Quantizers were generated via the LBG algorithm using the
Euclidean distortion measure and a total of one million training samples. The specific local
optima encountered appeared to depend directly on the initial codebook selected at the
beginning of the LBG algorithm. These results tend to support the suggestion in section
4.2 which implied that only local optima were assured with the use of the LBG algorithm
on a given training sequence. The authors also indicated that at least a 3-dimensional
Vector Quantizer was required to outperform the reference Lloyd-Max scalar quantizer at
the 1 bit per sample rate. In |35], Fisher and Dicharry provided some results for a number
of Vector Quantizers optimized with respect to memoryless Gaussian, Gamma, and
Laplacian sources. The LBG algorithm was used in conjunction with a total of 10,000
training vectors per output syimbol in order to obtain Vector Quantizers of various rates
(codebook sizes) for the 2-dimensional case, and different dimensions for a fixed rate of 1
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bit per input sample. The Euclidean distortion measure was used in every case. The results
for the best locally optimum Vector Quantizers encountered by the authors are summarized
in the following table:

Table 5.2 - Sample average distortion for locally optimum Vector Quantizers

Size of Sample Average Distortion
Dirension Codebook Gaussian Laplacian Gamma
2 4 0.361 0.422 0.480
2 8 0.200 0.235 0.235
2 16 0.107 0.132 0.127
2 32 0.057 0.071 0.065
3 8 0.355 0.359 0.353
4 16 0.342 (0.345 0.289
5 32 0.335 0.332 0.240
6 64 0.329 0.316 0.221

The results show that the sample average distortion decreases with an increase n rate or
dimension, as expected. Although the 6-dimensional Vector Quantizer was the highest
dimensional quantizer that was attempted for each source, the results tend to suggest that an
(infinitely) large dimensional Vector Quantizer would tend towards a it in the asymptotic
sense. Furthermore, it seems reasonable that these limits would correspond to the
information-theoretic bounds for the sources in question at the specitied rate of one bt per
input sample. The information-theoretic bounds are 0.25, 0.22, 0.14 for the Gaussian,
Laplacian, and Gamma source respectively. The increase in performance duc to quantizing
vectors of samples at a time appears to depend on the probabilistic nature of the source. In
the case of the Gaussian source, the derived Vector Quantizers only gave a marginal
improvement 1n performance over a scalar Lloyd-Max quantizer. However, in the case of
the Laplacian and Gamma sources, the derived Vector Quantizers were able (o achicve a
performance gain of 2 dB and 4.5 dB respectively over a scalar Lloyd-Max quantizer. The
authors also performed a number of experiments on the robustness of a given Vector
Quantizer by mismatching sources with a codebook optimized for a different source
Robustness here implies the degree of performance dr gradation a given Vector Quantizer
codebook will experience in accommodating a source with different or varying
characteristics. A Vector Quantizer that will have a minimal sample average distortion over
a wide range of source signals is said to be robust. The authors determuned that the
codebook optimized for the Laplacian source was the most robust of the three at any given
rate or dimension. It should be noted that a Vector Quantizer optimized with a sufticiently
large set of training vectors from all of the sources in question would likely provide a

ielatively more robust Vector Quantizer.
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One recurring design problem in the literature which utilized the LBG algorithm ws the
specification of the number of training vectors required to adequately represent the source
signal. Ideally the training sequence should be large enough so that an independent
sequence of data not in the original training sequence would result in a minimal increase in
distortion. This would suggest a very long training sequence limited to perhaps only the
storage facilities available. However, computational constraints and a more pragmatic view
of available memory would recommend that the training sequence be as small as possible.
These opposing views result in a tradeoff between the performance and robustness of a
Vecter Quantizer and computational concerns. There are no firm guidelines on what
constitutes a reasonable performance tradeoff - but a few rules of thumb on the minimal
size of the training sequence appear to exist in the literature. The recommended size of the
training sequence appears to depend on the characteristics of the source signal. In the case
of a memoryless Gaussian, Laplacian, or Gamma source, 1,000 to 10,000 training
samples per output symbol are typically suggested as a minimal requirement for a good
Vector Quantizer [21] [32] [35]). For more complex signals such as speech, more training
samples are typically recommended. The training sequence should ideally be at least a few
minutes in duration and include all of the phonemes in all of the possible contexts.
Quantitatively, this usually works out to a minimum of 10,000 to 100,000 samples per
output symbol and appears to be sufficient for most applications [19]. If a degree of
robustness is required, the training sequence should include speech from several male and
female speakers. In transform or parameter-based speech coding where a set of
parameters, such as the LPC coefficients, represents a given vector of speech samples, 20-
100 parameter vectors per output symbol appears to be adequate for a wide range of

applications | 19] [20].

4.5 Other Classes of Vector Quantizers

With the exception of the Lattice Vector Quantizer, this section has concentrated on the
unstructured Vector Quaniizer introduced in section 4.1. The term 'unstructured' stems
from the observation that the optimum Vector Quantizer defined in section 4.1 partitions -
dimensional space 1n a manner which depends solely on the distortion measure used and the
characteristics of the multivariate density function of the source. Therefore, the resulting
placement of the codebook reproduction vectors and the corresponding Voronoi regions
may not necessarily have any geometric structure or symmetry within k-space. The
unstructured vector quantizer can theoretically approach performance limits established by
Shannon's coding theorem for any mean-stationary source. Unfortunately, the
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computational costs associated with the classification step of (4.3) and the memory required
to store the corresponding reproduction vectors may be impractically large for a Vector
Quantizer which approaches these performance limits.  Assuming a rate detned as
R =1log,(M / k) bits per vector clement, where M is the size of the codebook and 4 15 the
length of the vector as before, the size of the codebook may be determined by M =2 ¢
C represents the computational cost of a single distortion calculation, then the total
computational cost of determining the appropriate codebook symbol given an put vector 1s

equal to:

Complexity ynsiructned vo = C M = C 2*F (4.44)

and the total memory required to store the corresponding codebaok will be equal to

Memory,uetmed vo = & M = C 2" words . (4.45)

The exponential increase 1n both compctational cost and memory requirements with respect
to dimension and rate have limited practical implementations of the unstructured Vector

Quantizer to Vector Quantizers with rate-dimension products less than or equal to 14,

In order to overcome the limitation induced by the encoding complexity of the unstructured
Vector Quantizer, other Vector Quantizer schemes have been developed which erther
impose a geometric structure within A -space or a temporal structure by restricting  the
codewords which may be used at any given time. Depending on the structure assumed, the
alternate Vector Quantizer schemes may result in a decrease in the classificaton/encoding
complexity or a decrease in the memory requirements of the needed codebook(s) or a
decrease in both. A number of the more promising alternative Vector Quantizer schemes
will be discussed in the following subsections. A number of other Vector Quantizers

systems are described in [ 18], {191, [20].

Note that none of the following Vector Quantizer implementations will be able to
outperfcrm the basic unstructured Vector Quantizer m terms of the sample-average
distortion for a given rate-dimension product. In fact, the imposed geometrical or temporal
structure(s) tend to decrease the performance of the Vector Quantizer for a given rate-
distortion product. This result is due to the fact that the definition of the optimal
unstructured Vector Quantizer in section 4.1 is identical to the information-theoretic model
of the optimal encoder described in section 4.4.2.1 Therefore, any modification of the
unstructured Vector Quantizer scheme cannot possibly do better in terms of a lower average
encoding distortion. The following Vector Quantizer implementations can be therefore be
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seer: as trading a (hopefully smail) reduction in classification/encoding performance for a

reduction in computational and storage complexity.

4.5.1 Binary Tree Structured Vector Quantizers

The cone<iruction of a binary tree structured Vector Quantizer is similar to the method of
generating an initial codebook by splhiting described in section 4.2.2 [19]. Initially, a rate
0 codebook is determined from the centroid of the entire training sequence. This rate 0
codebook 1s then split using a perturbation vector in order to form an initial rate 1
codebook. The LBG algorithm is used to form a good (locally optimum) rate 1 codebooxk.
Each element of the rate 1 codebook may be considered as the optimal rate  codebook for
its respective partitton of £ -space. A locally optimal rate 1 codebook is then formed for
each corresponding partition of A -space using the input training vectors associated with the

corresponding Voronoi region. This successive partitioning of & -space and the traming

Figure 4.8 - Binary Tree Searched Vector Quantizer
(After Gray [19])
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sequence is continued in order to form the binary tree-structured Vector quantizer one layer
at a time - doubling the size of the layer at each successive iteration. The codewords
associated with each successive layer are kept as an intermediate codebook layer. This
process is continued until the total number of codewords in the final layer is equalto M.
For the binary tree, M is necessarily constrained to be a power of 2. Note that only the
final layer of the tree consists of actual reproduction codewords. The codewords of the
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preceding layers correspond to intermediate or searcn cedebook elements. A binary tree
-structured VQ with a final layer with 8 elements is depicted in figure 4.8.

The codewords at each successive layer of the tree-structured VQ may be considered as
nodes for the codewords of the next layer. The encoding or classification process using the
tree structure can be nterpreted as following a path along the tree which provides a (locally)

minimum distortion at each node until a node corresponding to an actual 1eproduction
codeword 1sreached. For example in figure 4.8, a given input vector y at node W, would

be compared against codewords W and W, respectively. The seaich would then proceed
along the path with the smallest resulting distortion. If W, happened tc have the smaller
distortion with respectto x, then A would then be compared against Wy and W, - and so
on until the reproduction codeword is selected. Note that at each node once a path 1s
discarded. the choices corresponding to that path are also discarded - resulting m a halving
of the possible reproduction cocewords at each level. The computational complexity of this

encoding process is equal to

Conlple-"itymnar_v tree VO T 2C lOgZ VM = 2CRk , (4.40)
while the memory requirement is equal to

Memoryyay 1ree vop = k CM — 1) . 4.47)

The binary tree structure results in a computational complexity that increases lincarly with
the rate-dimension product rather than exponentially as in the case of the unstructured
Vector Quantizer. However, this decrease in the computational complexity of the Vector
Quantizer comes at the expense of ar: increase in the memory requirement which s almost

double that of the unstructured Vector Quantizer.

One problem which may arise in the basic binary-tree structure Vector Quantizer described
above is the uneven distribution of the training sequence corresponding to cach node in a
given layer of the binary tree. Although normally this would not be a problem, tiere could
be instances where only a few oreven a single training vector(s) would be associated with a
given node. One method of avoiding this occurrence s via the use of a non-uniform bmary
tree [20]. Instead of generating a new rate 1 codebook for cach node in a given layer as in
the basic binary tree structure, a single rate 1 codebook s gencrated for the node with the
maximum total distortion. This process is repeated until the desired number of codebook
elements, M, is reached. The non-uniform binary tree structure has the additional

advantage of not having M to be constrained to be a power of 2. A 9-clement non-uniform
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binary tree structure is shown in figure 4.9. Note that the encoding complexity now
depends on the input vector - but in general it can be seen that the average encoding

complexity should be appioximately equal to that of (4.46).

The performance of the basic binary tree and non-uniform binary tree Vector Quantizer is
not optimal and will therefore be inferior to that of the unstructured Vector Quantizer for
two reasons. One, the successive partitioning of k-space results in a constraint with
respect to the positioning of the codebook elements at each succeeding layer. Secondly, the
reproduction vector is chosen as a result of a successive series of (locally) minimum
distortion choices rather than an exhaustive search of all of the nodes of final layer for the

best possible globally optimum codeword.

Figure 4.9 - Non-Uniform Binary Tree Based Vector Quantizer
(After Gray [19])
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Finally, although the preceding discussion has centered on a binary structure, the results

could be generalized to tree structures with more than 2 branches per node.

4.5.2 Multistage Vector Quantizers

Multistage Vector Quantizers rely on the sequential use of a series of Vector Quantizers of
small rate (small codebook size) in order to reduce both computational complexity and
memory requirements. There is no restriction on the type of Vector Quantizer used
although the following discussion will assume the use of the optimum unstructured Vector

Quantizer for comparison purposes. Further decreases in computational complexity would
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be realized at a subsequent reduction in performance if binary structured Vector Quantizers

were to be used.

A dual-stage Vector Quantizer is depicted in figure 4.10. In the diagram, an input vector 1s
input to an initial Vector Quantizer which has becn optimized n the sense that it has been
trained on a representative sequence of input vectors. The initial Vector Quantizer will
select one of m <M codebook elements. The index of the selected symbol is retaned and
the selected reprocuction vector is subtracted from the input vector to create an error ot
residual vector. This residual vector 1s then input to a second Vector Quantizer whieh has
been optimized in the sense that it has been trained on a representative sequence of residual
vectors. The secondary Vector Quantizer will select one of m” < M codebook elements. In
a coding application, the index of both symbols would be transmitted to the decoder where
the symbols would be used to retrieve the reproduction vectors from the corresponding
codebooks. The estimate of the input vector would be determined by simply adding the

two reproduction vectors together.

Figurc 4.10 - Multiple Stage Vector Quantizer (After Gray [19])
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The computational complexity of this system is:
. ’
Comple.rlty,,,,,,, stage VQ = C(m+ m) (4.4%)
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while the memory requirement of this system is:

Memory gl qage vo = k (m+ m’) . (4.49)

The dual stage Vector Quantizer of figure 4.10 can be equated to a single stage Vector
Quantizer of size M = mm’ which has been constrained to a particulzr structure. Although
the discussion has been limited 1o a dual stage Vector Quantizer, the process could be
extended to the case where the residual of the residual is quantized by a third Vector
Quantizer, and so on. The purpose behind this extended process would be to obtain a
better representation of the input vector via successively finer representations of the residual
vector. However, structural constraints imposed by the sequential use of the Vector
Quantizers tend to counteract any benefit that would be gained by further refinement of the
error signal and therefore the number of stages for Multiple-Stage Vector Quantization is
usually set at two. Also, interdependencies among the individuai vector elements and other
fundamental characteristics of the input vector would largely be accommodated within the
first one or two vector quaniizers and therefore little would be gained by additional

processing by a vector quantizer past the second stage.

4.5.3 Gain-Shape Vector Quantizers

The Gain-Shape Vector Quantizer is a specific form of a product Vector Quantizer. The
product Vector Quantizer is similar to the Multi-Stage Vector Quantizer in that two or more
small Vector Quantizers are used to reduce the coding complexity and memory utilized.
Again there is no restriction on the structure of the Vector Quantizer used - but the
following will assume the use of the unstructured Vector Quantizer for purposes of
comparison. The product Vector Quantizer uses separate Vector Quantizers to classify or
encode separate aspects of the source signal. The effectiveness or performance of the
product Vector Quantizer depends on the degree to which these different aspects of the
source signal arc statistically independent. The effectiveness of the product Vector
Quantizer increases with the degree of independence of the various aspects of the source
signal. The assumption that the source signal can be modeled utilizing a set of independent
characteristics places a restriction n the allowable reproduction model. This will in turn
impose a certain geometric structure in the product Vector Quantizer or the equivalent single

unstructured Vector Quantizer optimized for tae restricted model.

The specific case of the Gain-Shape Vector Quantizer assumes that the amount of energy or
'gain’ can be separated from a given source vector resulting in a gain-normalized 'shape’'
vector. A possible implementation of the Gain-Shape Vector Quantizer is shown in figure
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4.11. In the diagram, the input vector is imtially accepted by the shape Vector Quantizer.
The shape Vector Quantizer sclecis the best normalized shape from a 'shape codebook!
according to a shape-matching distortion measure. The index corresponding to the best
shape vector is then fed with the original mput vector into a scalar (single dunensional) gain
quantizer. The gam quantizer determines the optimum quantized gam given that the
optimum quantized shape has been selected. The optumum quantized gain may be selected
from a gain codebook as shown in diagiam <. 12 or can be deternuned via analytical means
In coding applications, the indices correspondig to the optimum shape and gamn are
transmitted to the decoder where they are fed into the corresponding codebooks, The
resulting normalized reproduction shape vector 1s then multiplied by the quantized

reproduction gain value to obtain the estimate of the origmal input vector.

Figure 4.11 - Gain-Shape Vector Quantizer (After Gray [19])
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The computational complexity of the described gain-shape encoding process is:
(4.50)
Comp lexity Gamnm-Shape VQ = Cor np lexity Encoding Shape + Con P lexity FEncoding Gan

Cm+ C' m

where C and C’ are the computational costs of a single shape-matching and gain-matching
distortion computation respectively, and m and m’ are the size of the shape and gain

codebooks respectively.
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The memory required for the described gain-shape Vector Quantizer is:

Memoryeun-shape vo = k m + m’ (4.51)

The gain-shape Vector Quantizer described would be equivalent to an unstructured Vector
Quantizer of size mm’ optimized with respect to the restricted (and therefore sub-optimal)

set of mm” possible gain-shape vectors

4.5.4 Adaptive Vector Quantizers

The previous Vector Quantizer systems have been based on the premise that the source
signal 18 essentially stationary and that the sequence of input vectors are largely independent
of each other and may therefore be quantized independently. However, many real signals
such as speech are only stationary in the local or short-term sense (10 - 20 ms) and are not
truly stattonary 1 the long tetm sense  Furthermore, these signals may exhibit a great
degree of mterdependence from one frame of samples to the next. Adaptive Vector
Quantizers are Vector Quantizer systems which account for these aspects of more realistic
signals by adaptively moditying the codebook to accommodate the current characteristics of
the source signal and use memory of one or moie previous input vectors to augment the
selection of the opiimum codebook symbol. Ideally the adaptive Vector Quantizer would be
able to modify its codebook continuously in order to accommecdate the changing
characteristics of the source signal. This class of adaptive Vector Quantizers 1s referred to
as Learmng Vector Quantizers The use of Learning Vector Quantizers has been limited due
to the computational overhead incurred by continuously modifying the codebook and the
large amount of side information which would have to be transmitted in coding applications
in order to update the decoder codebook. To alleviate the problems associated with
Leaming Vector Quantizers, simpler adaptive Vector Quantizer systems which incorporate a
set of static codebooks have been proposed. These adaptive Vector Quantizers may be in
turn classitied as forward adaptive and backward adaptive Vector Quantizers, Both of these
Vector Quantizer schemes utthze a set of N static Vector Quantizers optimized with respect
to N distinct temporal attributes ot the source signal. The size of the N individual static
codebooks th an adaptive vector Quantizer scheme would generally be smaller than the size
of a smgle Vector Quantizer optimized for all of the temporal aspects of the source signal.
However, the equivalent composite codebook of the N 1individual codebooks is typically
much larger than would normally be teasible for a single Vector Quantizer optinmized for all
aspects of the source signal.  Also, the individual codebooks may have identical or similar

reproduction vectors - that is, the individual codebooks may overlap in A -space. For

98




reasons of storage and computational efficiency, the overlap between the codebooks s hept
to a minimum. There is no constramt on the structure of the individual codebooks; so a
performance for speed trade-off may be made using any of the previously discussed non-

adaptive Vector Quantizer schenies.

The forward adaptive Vector Quantization may be interpreted as a vector extension of a
scalar adaptive quantizer with forward estimation.  One possible forward adaptive Vector
Quantizer scheme 1s shown in figure 4.12.

Figure 4.12 - Forward Adaptive Vector Quantizer (After Gray [19])
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The forward adaptive Vector Quantizer 1s shown to be comprised of two mam components:
the waveform encoder and the class encoder ‘The wavetorm encoder s simply the set of
N static Vector Quantizers discussed earlier. The class encoder determines which of the
N Vector Quantizers in the waveform encoder 1s best suted for the inputvector, The class
encoder typically determines the optimumn Vector Quantizer via some analytical method
based on the current statistics of the source signal  Frgure 4.12 shows that the class
encoder may also be a Vector Quantizer with the output symbol indicating the best Vector
Quantizer to use within the waveformencoder. The class encoder may also look forward to
future input vectors to aid in the selection of the optimum Vector Quantizer  In a coding
application the selection of the class encoder must be transmitted with the actual codeword
symbol from the waveform coder in order for the decoder to properly determine the

appropriate reproduction vector.
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The backward adaptive Vector Quantizer in turn may be seen as the vector extension of a
scalar adaptive quantizer with backward estimation. One possible backward adaptive
Vector Quantizer is shown in figure 4.13. The backward adaptive Vector Quantizer is
similar to the forward adaptive Vector Quantizer in that it is comprised of the two same
major elements: the waveform encoder and the class encoder. Unlike the forward
quantizer, the class encoder determines the optimum Vector Quantizer for the present input
vector based on one or more previous waveform encoder output symbols. The class
encoder can therefore be seen as a finite-state network in which a given state corresponds to
one of the N Vector Quantizer codebooks within the waveform encoder. The transitions of
the finite state nctwork are governed by a next-state function which operates solely on the
output symbols of the waveform coder. As the choice of the Vector Quantizer within the
waveform encoder is determined only by the output codeword symbols, the backward
adaptive Vector Quantizer has an advantage in coding applications in that additional side
information does not need to be transinitted in conjunction with the codeword symbols. In
this coding scheme, the finite state network in the decoder would have to be periodically
reset to the same state as the finite state network in the encoder to account for the possibility

of transmission errors.

Figure 4.13 - Backward Adaptive (Feedback) Vector Quantizer (After Gray [19])
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5. VECTOR QUANTIZATION AND SPEECH ENHANCEMENT

5.1 Introduction

This section will describe and provide experimental results for a proposed Vector
Quantizer-based speech enhancement system based on an adaptive filtering process.

Section 3 provided a limited cross-section of the diverse field of speech enhancement.
Contemporary single channel speech enhancement algorithms ditter in their approach to the
problem and their overall complexity of implementation. Yet the vast spectrum of speech
enhancement schemes have at best resulted with only limited success. The enhancement
algorithms discussed so far do yield a quantitative reduction in  ~se according to objective
quality measures such as the Signal-to-Noise Ratio (SNR). -lowever, as discussed in
section 2, a number of commonly used quantitative indicators o1 speech quality such as the
Signal-to-Noise Ratio are at best only weakly correlated with intelligibility or acceptability.
Consequently, the bulk of the speech enhancement schemes that have been tried to date
have produced marginal or no increases in intelligibility and therefore their usefulness in

many practical applications is questionable.

Figure 5.1 - General Vector Quantizer Based Enhancement Algorithm
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Vector Quantization was introduced in section 4 as a coding technique which took
advantage of the interdependencies in a given vector of values. An inherent component of
the Vector Quantization process was the classification step via a suitable distortion measure.
Ignoring the coding aspect, Vector Quantization can therefore also be interpreted as a
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nearest-neighbor pattern matching or speech production model detection technique. It is the
pattern matching aspect of Vec*or Quantization that is crucial to the successful operation of
the Vector Quantizer based speech enhancement system shown in figure 5.1.

The enhancement system has two major components: the M -level Vector Quantizer and the
adaptive enhancement process. The enhancement system has M modes of operation
corresponding to the M models of speech production which are retained in the codebook of
the Vector Quantizer. The mode of operation is selected by the Vector Quantizer based on
the input frame of degraded speech. The M codebook models of speech production only
form a subset of the set of discernible speech models. The operation of the enhancement
system may therefore be seen to be based on the conjecture that, by purposely restricting
the degree of freedom allowed in the speech model, a degre: of noise reduction may be

attained for a given degraded signal.

The Vector Quantizer codebook is optimized with respect to an undistorted training speech
sequence. As stated earlier in section 4.4.3, the training sequence should be large enough
so that a balanced selection of all the phonemes in different contexts is included. If a certain
degree of speaker independence is desired then, the training sequence should include
speech from a variety of male and female speakers. The size of the codebook is a key
design parameter that will directly influence the performance of the enhancement system.
The size of the codebook should be high enough so that the M corresponding models will
yield a sufficient composite representation of intelligible speech. Referring to the
terminology of section 4, this can also be interpreted geometrically as partitioning & -space
into M Voronoi regions. Here A -space represents the entire 'universe' of human speech
as defined by a set of & values or parameters and each individual Voronoi region represents
a specific model associated with a specific sound. Depending on the underlying model of
the speech production process, the composite model of the Vector Quantizer can be made to
match real speech within an arbitrary degree of closeness by increasing M. However, the
probabilistic nature of the noise present in the degraded speech signal will tend to create a
degree of uncertainty in the selected codebook symbol in a distortion measure-based
template-matching procedure. The detection of a hypothetical 2-variable (2-dimension)
speech production model in the presence of noise is depicted in figure 5.2.
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Figure 5.2 - Example of Signal Detection in « Noisy Environment
Using a VQ Codebook in 2-space
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This degree of uncertainty will increase if the Voronoi regions are decreased as the result of
increasing the size of the codebook. Therefore, the effect of increasing the resolution of the
model is countered by an increase in uncertainty of the selected symbol. The degree of
uncertainty may also be alleviated via a number of heuristic rules based on knowledge of

the speech production process.

As discussed in section 4, a distortion measure is required for both the design of the
codebook and in any subsequent search of the final codebook. In order to differentiate the
two distortion measures, the distortion measure used in the initialization of the codebook
will be referred to as the clustering distortion measure while the distortion measure used in
the search of the final codebook will be referred to as the template-matching distortion
measure. No differentiation was made between the two measures in scction 4, as they are
identical for coding applications. In the case of speecch enhancement, they may be difterent
as the clustering distortion measure may be sensitive to additional noise and rendered
ineffective for any useful speech enhancement application. A separate noise-robust
template matching distortion measure would then be required to determine the best match
between a given degraded speech frame and the M codebook templates. These two
distortion measures would tend to have different characteristics due to the different
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conditions of their use in the speech enhancement system. The clustering distortion
measure is to be used on undistorted speech and would ideally be well correlated to a
subjective opinion on the dissimilarity between two speech frames. The clustering
distortion measure must necessarily differentiate among minute spectral details and will
likely be relatively complex computationally. The template-matching distortion measure
deals with incoming degraded speech and a restricted set of speech models in the final
Vector Quantizer codebook. As the fine detail of the incoming speech signal may be
obscured by the noise, the template-matching distortion measure must necessarily rely on
coarser noise-resistant aspects of the incoming signal to obtain a match with the reference
codebook templates. Due to the fuadamental role of the distortion measures, the
determination of the two distortion measures is perhaps the most crucial design element of
the Vector Quantizer-based speech enhancement system. With respect to figure 5.2, it
should be noted that the template-matching distortion measure will affect the expected
variance of the noise-corrupted mput speech production model in & -dimensional speech

production spacc as well as define the Voronoi regions in & -dimensional speech production

space.

The nature of the adaptive enhancement process will determine many of the characteristics
of the output enhanced speech signal. There are three classes of enhancement process
which may be used in conjunction with the Vector Quantizer. The first would simply be a
memory look-up based on the received codebook symbol for an undistorted stored speech
segment with a length of £ samples. The enhanced speech would consist of the joined
sequence of these short A -sample speech segments. Although this process is the simplest
conceptually, there are a number of problems which will eliminate the process from further
consideration in this thesis. One problem would be the computational overhead in
determining an adequate Vector Quantizer library for speech segments of even moderate
length (corresponding to a high-dimensional Vector Quantizer). Another problem lies in the
frequent discontinuities which arise when the short library speech segments are joined
together to form the enhanced speech sequence. Although this problem could be alleviated
with a number of boundary smoothing operations, the small length of the joined segments
tends to work against any benefit gained from the smoothing operation. The second
enhancement process that may be considered is the enhancement by resynthesis procedure
discussed in section 3.7.1. The received codebook symbol would be used to obtain the
necessary parameters for the speech production model. Some of the other required
parameters such as amplitude and pitch would have to be obtained from the distorted speech
signal as well. As this is an enhancement-by-synthesis approach, the enhanced speech is
free from the original distortion but contains distortions due to inaccuracies inherent in the
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speech production model or to an inaccurate codebook selection. A enhancement-by-
synthesis approach will be reviewed in section 5.2. The third enhancement process is
based on an adaptive filter. In this case, the codebook symbol will contain the filter
coefficients appropriate for the current degraded input vector. Ideally, the resulting filter
will retain the speech energy and remove the majority of the noise energy. The concept of
using an adaptive filter for the removal of noise from degraded speech is not unusual and
several examples can be found in the third section. However, due to the nature of the
Vector Quantizer, the overall enhancement process which may also accommodate a number
of heuristic rules may be interpreted as an adaptive filter with o trained, a priori knowledge
of the speech process. Conceptually, this adaptive filter holds more promise in attaining the
goal of increased intelligibility than the previous adaptive filters which only operated on the

current attributes and statistics of the speech signal.

The previous use of Vector Quantizer-based enhancement systems will be discussed in
section 5.2. Section 5.3 will provide a description of the Vector Quantizer-based speech
enhancement systems to be explored in this thesis. Section 53 will also provide an
overview of the primary areas of interest including the optimal size of the Vector Quantizer
codebook, the optimum template-matching distortion measure, and the required training
sequence for the Vector Quantizer library. Section 5.4 will provide the observed results
from speech enhancement trials using the speech enhancement systems proposed in section
5.3. The observed results will include the output of a nuinber of objective distortion
measures as well as subjective comments. Finally, section 5.5 will provide a summary and

number of additional comments given the observed results provided in section 5.4.

5.2 Previous use of Vector Quantization in Speech Enhancement
5.2.1 Signal Restoration by Spectral Mapping

5.2.1.1 Overview of the Enhancement Process

Juang and Rabiner in |43] demonstrated the use of a Vector Quantizer as an integral part of
a signal restoration system. Rather than estimating the characteristics of the signal and/or
the noise, the signal restoration process was treated as a problem in signal detection using a

spectral mapping approach.

Given that the noise is additive, the sequence of the short-time spectra of the clean speech
and the short-time spectra of the distorted speech form a one-to-one correspondence. Note
that the spectra may be spectral estimates such as the all pole spectral estimates discussed in
section 2.3.2. This correspondence between the spectra of the clean speech and distorted
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speech is established by adding noise to a training clean speech sequence of finite length
and then calculating both the clean {X, },’;, and distorted {Y, },1;1 set of spectra. The entire
clean and distorted sets of spectra form the clean signal space X and distorted signal space
Y respectively. Given the short-time spectrum of a noisy speech segment not in the

original training sequence, the restoration process involves finding (detecting) the nearest
neighbor ¥, in Y and mapping back to X in order to retrieve the corresponding clean
spectral element X,. Figure 5.3 depicts this defection and restoration process in the case
that the number of allowed restoration spectra are limited only by the number of restoration
spectra in the original training sequence. This mapping process can be made more robust in
the presence of noise by limiting the set of allowed restoration spectra. Specifically, the
LBG algorithm of section 4.2.1 may be used to define a number M of representative
restoration spectra, {Z}y:, , from the original training sequence {X, },l‘:, . Using Vector
Quantization terminology, associated with each codeword spectra Z, is a Voronoi region

§; defined by:
S = (x]d(x,Z,) € d(x,Z) foralli} (5.1

where d( ) is a given distortion measure.

Figure 5.3 - lllustration of Basic Spectral Mapping Scheme
(Degrees of freedom limited only by training sequence)
(After Juang et al [43])
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Since each Voronoi region § j‘ in X is associated with a Voronoi SJ" region in 'Y such that
S jy ={Y|XeS§ ; }, a modified distortion measure may be defined by:

d'(,s)) = . Y, dr.y) (5.2)
2

where I; = {i|x;€ S} and | | denotes cardinality.

Using the modified distortion measure defined by (5.2), the nearest single neighbor

restoration spectrum is determined by finding the Voronoi region that satisfies:

min d’(Y,Sj"), j=1. M. $.3)
J
Figure 5.4 depicts the restoration process in the case that the number of allowed restoration

spectra are limited by a set of M representative restoration spectra and that the detection

process is carried out using expressions (5.2) and (5.3).

Figure 5.4 - lllustration of Spectral Mapping Scheme with Relatively
Limited Degrees of Freedom for the Restoration Spectrum

(After Juang et al [43])
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A region U(Y ) may be defined in Y such that:

U®) = { yld,y,) € d, forilX, €S} (5.4)
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where d, is the distortion threshold.

U(Y) may be used to further refine the subspace used in the distortion measure indicated by
(5.2). In particular, (5.2) may be modified as follows given a finite distortion threshold:

4", U)) = |7]— DRIAD (5.5)
s el

where /" ={i[X,eS) and ¥, eU(V)} .

In a similar manner to the approach indicated by (5.3), the distortion measures
d”(Y,$’;U(Y)) may be ordered and be used to selected the appropriate restoration

spectrum Z, . The 1-nearest-neighbor choice would be determined by:
P s

min d"(Y,S);UY)), j=1. M , (5.6)
J

while the n-nearest-neighbor selections would be determined by:

1"(Y;d" = {jld"(Y,SV;U(Y)) < d/') .7
where d,” is a present threshold.

The n-nearest-neighbor selections provided by (5.7) could then be used to generate a

compaosite restoration spectrum indicated by the following expression:

- 1
XW) = ——— z . (5.8).
" / (Y;dl ’) " IEI"(ZY;d,")‘

The distortion threshold in (5.4) may be set to give either a fluctuating or constant [U(Y)|
or 'noisy locality number’. In [43], the authors indicated the difference in spectral

distortion (as measured by the selected objective distortion measures) resuiting from the
restoration process using a fluctuating or constant |[U+Y)|| was not apparent. Therefore, a

fixed JU(Y)| . equal to N, was used in order to ease the implementation of the restoration
process. Similarly, |[/”(Y:d/")| in (5.8) was set to a constant equal to N,.
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Two template-matching distortion measures were proposed in [43], the likelihood ratio
distortion measure which is defined by:

1 1 T A ) do
d jo ’ = 7 ! 59
hkelihood m“((A(Z) A'(Z)) j ,A((D)I 2n ( )

-

14
where A(z) = Z a; *
=1

and the truncated cepstral distortion measured defined by:

L

1 1 o "2

dcc/;slral(A(z)va = 2:],(6': _Cz)q (5.10)
=

where L is the length of the truncated cepstrum and the cepstra ¢, and ¢/ may be
determined from the LPC coefficients «, and ] using the following recursion:

L{‘
~ic, — ia, = Y (i—k)},_a fori>0 . (5.11)

=1

Finally, given a distortion measure and that the clean speech and distorted specch spectra
may both be modeled by an all-pole spectral estimaie, it was surmised in [43] that the
processed all-pole model spectrs! estimate of a given noisy input vector will provide, on
average, an improved similarity to the original or clean all-pole model spectral estimate. In

particular, the following will hold:

d( 0,/A,2), Y(2)) > d( 6, [AL2) . 6,/A\2)) (5.12)

where the overbar denotes an average and Y (z) is the spectrum of the roisy input vector.

5.2.1.2 Reported Results

The effect of additive gaussian noise on the likelihood and cepstral distortion measures was
demonstrated by adding various levels of noise to 6 sentences with a 4 kHz bandwidth. It
was observed that the average distortion increased rapidly when the global SNR of the
speech decreased below 15 dB. However, the average observed distortion began to plateau
when the global SNR of the speech was decreased below -15 dB as the noise effectively

dominated the spectra at that point.
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The speech material for the training sequences was composed of 100 different sentences of
undistorted speech spoken by 15 male and 5 females (5 sentences per person) for an
accumulated duration of approximately 6 minutes. The test material was composed of 5
sentences spoken by 5 speakers for an accumulated duration of 19.5 seconds. Both the
sentences and the speakers used to generate the test material were different than the
sentences and speakers used to generate the training sequence. A total of 27310 training
vectors and 1562 testing vectors were generated from the training and testing speech
material respectively using an 20 millisecond analysis window which was applied with a
12.5 millisecond shift per application (frame rate of 80 times a second). Each vector
consisted of a set of 10 LPC coefficients which were determined using the autocorrelation
method (see section 2.3.1). The set of 10 PC coefficients would be used to approximate

the spectra of each training and testing speech segment using an all-pole model as per

section 2.3.2.

White gaussian noise with zero mean was added to the speech materal in order to achieve a
global SNR of approximately 14 dB. The sequence of short-time spectra (LPC vectors) of
the clean speech and the short-time spectra of the distorted speech were used to form a one-
to-one correspondence as an initial step of the spectral mapping procedure. The remainder
of the analysis consisted of observing the effect of the detection and spectial mapping
process with respect to a noisy testing sequence using the likelihood ratio and cepstral
distortion measures defined by (5.9) and (5.10). There were a total of 3 free experimental

parameters which could be modified as part of the analysis procedure:

(1) N, the number of nearest-neighbors
(i) N, the noisy locality number

(iii) M, the size of the restoration spectra VQ codebook

In particular the number of nearest-neighbors, N,, was allowed to vary among the values
of (N, = 1,2, 4,8 12, 16} while N, and M were allowed to vary among the
following paired values of {(N,,M) = (256,256), (128,256), (64,256), (16,256),
(64,64), (32,64)}.

The observed results using either the likelihood ratio or cepstral distortion measures were

similar and may be summarized as follows:

i) A definite reduction with respect to the likelihood and cepstral objective
measures defined by (5.9) and (5.10) was observed. The best observed
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improvement for the likelihood distortion measure indicated an effective
improvement of approximately 10 dB in SNR. The best observed improvement
for the truncated cepstral distortion measure indicated an eftective improvement

of approximately 8.5 dB in SNR.

ii)  In the case of the likehhood distortion measure, the observed distortion
decreased monotonically with increasing N, and began to platcau for
approximately N, equal to 8 or 12, In the case of the cepstral distortion
measure, the distortion was observed to decrease with increasing N, until N,
equaled 4. Beyond that pomt, the distortion began to increase with increasing
N,. The authors indicated that this was likely due to excessive averagimg

within the available 'noisy locality'.

ili)  Better observed distortion values were observed with smaller values of N, for

both distortion measures.

iv)  Given a fixed value for N,, the 256-spectrum codebook produced better results

than the 64-spectrum codebook.

The particular approach used in [43] cannot strictly be called a speech enhancement method
in that the emphasis was on improving spectral matching, perhaps for fuither wse in a
separate speech recognition system, rather than producing an output speech sequence with
an improved quantitative characteristic such as increased SNR or a subjective improvement
in intelligibility. However, the system described in [43] 1s interesting i that it showed how
a restricted parameter based sub-space could be used to choose an appropriate pattern in a

degraded environment.

5.2.2 Enhancement by Resynthesis

5.2.2.1 Overview of Enhancement Process

The basics of enharcement-by-resynthests systems were discussed in section 3.7 (the
general system is shown in figure 3.10). These systems arc based on the assumption that
speech production can be entirely modeled by a process in which a simple source wavetorm
drives a filter corresponding to the vocal tract response. The signal source is usually
restricted to one of two types: 1) an impulsive periodic waveform which corresponds to the

glottal pulses of voiced speech and 2) a random bipolar pulse waveform which corresponds
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to the noisy source of unvoiced speech. The most popular method of representing the
speech production filter 1s by the all-pole autoregressive or AR model given by (2.22). The
p coetficients which determine the nature of the p-th order AR filter are obtained by the
Lincar Prediction analysis techniques discussed in section 2 3.1. A vector of these p LPC
coefficients can be seen to represent the autoregressive model of the speech production
process in p-dimensional space. As the individual parameters of the p-element vector are
only constrained by the numerical precision of the analysis procedure, a given vector is
essentially unrestricted 1n terms of placemert within speech production p-space. This

degree of freedom within p-space corresponds to a virtually infinite variety of possible

speech production models

Under the ideal conditions of undistorted speech, this degree of freedom 1s beneficial,
because normal speech s similarly unconstrained and may be well represented by the entire
expanse of p-space. Unfortunately, this degree of freedom is detrimental in the case of
degraded speech. As mdicated in section 3.7, the analysis techniques which may accurately
determune the LPC coefficients for clean speech tend to perform poorly under the less 1deal
conditions represented by degraded speech  This 15 due to the particular nature of Linear
Prediction analysis which tends to model spectral peaks more accurately than spectral
valleys. Noise will affect the basic characteristic of the speech spectrum. More importantly
from the standpoint of Linear Prediction analysis, a given noise source will generally affect
the spectral valleys and peaks to an uneven extent. For example, white noise will tend to
raise the spectral valleys and broaden the spectral peaks. Although the absolute value of the
spectral peaks waill also be raised somewhat with the addition of white noise, the increase
will be munor when compared to the increase in the spectral floors of the speech spectrum.
Since Lincar Prediction analysis is inherently sensitive to the rclative values of the spectral
peaks and values, a given Linear Prediction analysis techmque will tend to produce a set of
coefficients which correspond to a distorted version of the actual noise-free speech
spectrum. The distorted speech production model will in turn result in a relatively distorted
version of the output speech waveform than would otherwise be obtained if the noise-free
derived parameters were to be used. With respect to the geometric interpretation of speech
the production model in p-space, the distorted speech production model corresponds to a
shift or translation from the noise-free point in p-space. The degree of distortion in the
speech spectrum and the corresponding geometric shift in p-space will depend on the
characteristics of the noise present n the degraded signal and the particular Linear
Prediction analysis technique used. The simpler deterministic autocorrelation and
autocovariance algorithms discussed in section 2.3.1 will tend to do worse than more
complex algorithms which rely on probabilistic descriptions of the degraded spectrum (such
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as Cadzow's method [49]). The end result of a lack of a noise-robust Lincar Analysis
parameter extraction procedure is a less than satsfactory performance for the basie

enhancement-by-resynthesis approach when compared to other enhancement techniques

In [44], a Vector Quantizer-based enhancement-by-resynthesis procedure was proposed
which has the potential of improving the intelligibility of degraded specch without
specitically relying on a complex notse-resistant Linear Prediction analysts algorithm. The
overall system is shown n figure 55 The Vector Quanuzer-based system has two key
features stressed in section 4.1: 1) the degree of freedom in the speech production raodel 1s
limited to that of a finite set, 2) a nowse-robust formant template-matching distortion

measure is used to select the appropitate speech production model from the fine «

Figure 5.5 - Vector Quantizer Based Enhancement via Resynthesis Procedure
(After O'Shaughnessy [44])
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Limiting the number of speech production models 1s equivalent to imposing a geometric
restriction in the placement of points in speech production p-space. The density of posnts
in speech production space should be high enough to reasonably represent high quality
speech, yet low enough in order to hmit the computational cost of the scarch procedure and
degree of uncertainty mn the selected speech production model  The complete set of speech
production points comprises the vectors in the Vector Quantizer codebook or hibrary. The
precise placement of points in speech production space or the determination of the contents

of the library was accomphshed in [44] using the standard LLBG clustering algorithm on a
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training sequence of clean speech. More details of the creation of the Vector Quantizer

codebook will be given in section 5.2.2.2.1.

Each point in speech production space will have an associated nearest-neighbor or Voronoi
region as defined by a given distortion measure. Any mapping into a given Voronoi region
will result in that particular speech production model being used in the synthesis stage of
the system. A shift or translation from a given library point can be interpreted as a
degraded version of the noise-free library production model. Assuming that the noise
present in the input speech is not of too large a magnitude, a degraded speech segment will
be mapped into a Voronoi region of a library speech production model closely resembling
the production model of the original undistorted input speech segment. As the synthesis
section will utilize the noise-free production models in the Vector Quantizer library and a
simple excitation source, a noise-free ottput sequence is guaranteed. Note that the output
sequence is not guaranteed to match the corresponding undistorted speech segment exactly.
The autoregressive model and simple excitation source assume a particular structure for the
speech production process which only approximates the actual speech production process.
The finite number of allowed models in the Vector Quantizer library imposes a further
limitation in the accuracy of the synthesized speech segment with respect to the actual
undistorted input segment. However, as long as the mismatch between the chosen library
model and the onginal undistorted speech segment is not great, the output speech sequence
should be intelligible. As intelligibility rather than an exact waveform match is more
relevant in the majority of speech enhancement applications, the distortion in the output

speech sequence should be acceptable.

Necessary conditions for an intelligible output sequence include an adequate model for
speech production, a sufficiently long and varied training sequence, and a sufficiently large
Vector Quanuzer library. Although all of these elements of the enhancement system are
important, the production of an intelligible output sequence hinges on a noise-robust
template-matching distortion measure. In [44], it was recognized that many of the LPC-
based clustering distortion measures which could be utilized in generating the Vector
Quantizer library using a training sequence of clean speech could not reliably be used in the
search of the final Vector Quantizer library given a degraded speech frame. As already
discussed, this was primarily due to an inherent sensitivity in Linear Prediction analysis to
noise which would result in a distorted production model. A distorted production modei
would in turn likely result in an improper model match. Instead, in {44] it was proposed
that a formant-based distortion measure be used. This decision was based on the premise

that a given noise process will affect the high-amplitude spectral peaks to a lesser extent
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than other aspects of the input speech spectrum. The distortion measure utilized the
location of the first three formants or spectral peaks and their approximate bandwidths as
the noise-robust parameters. The enhancement process could have conceivably used these
formant-related parameters in the synthesis stage. However, as an LPC-based synthesis
stage was relatively easier to implement, the formant-based parameters were only used to
access the VQ library elements which consisted of the AR models which were actually used
in the resynthesis process. In [44] the template-matching distortion measure was
augmented by a number of additional heuristic rules. The formant-based distortion measure
will be discussed in greater detail in section 5.2.2.2.2 while the additional heuristic rules
will be described in section 5.2.2.2.3.

5.2.2.2 Experimental Details
5.2.2.2.1 Creation of the Codebook

The training sequence was composed of 65 seconds of speech low-passed filtered at 4.7
kHz and sampled at a rate of 10 kHz with 15 bits of resolution. The actual speech was
comprised of 10 phonetically-balanced sentences spoken by two adult males. The training
sequence was broken down into approximately 3250 twenty-millisecond frames. Each
frame of speech was preemphasized using the filter specified by (1 - 271 and then analyzed
by a Linear Prediction analysis algorithm in order to generate a sequence of t4 LPC
coefficients. The 14 LPC coefficients determined by the Linear Prediction analysis
procedure would define a 14-pole autoregressive model for the cortesponding speech
frame. The 14 LPC coefficients for each frame were retained for use by the clustering

procedure to be described next.

The LBG algorithm described in section 4.2.1 was used to cluster the 3250 LPC-based
autoregressive models into a 9-bit or 512-element Vector Quantizer library of representative
autoregressive models. It was indicated in [44] that the 512 representative 14th order
autoregressive models could more than adequately represent the steady state and transitional
aspects of speech and therefore could be used to recreate intelligible speech. Referring to
the terminology of section 4, the Vector Quantizer was of the optimal unstructured and
memoryless variety. No temporal restrictions or geometric restrictions were imposed on
placement in 14-dimensional speech production space defined by the 14 LPC cocfficients in
order to reduce computational costs in later searches of the completely defined codebook.
An initial 512-size semi-random codebook (see section 4.2.2) was defined by selecting
every sixth frame in the training sequence. The distortion measure used in the clustering
procedure was a modified form of the Itakura-Saito distortion measure defined earlier by
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(2.51) and (2.59). The specific clustering distortion measure used to generate the VQ

library in [44] was:

4
Y ARC(i) ALPC(i) (5.13)

1=1

1
dllu.su'r ;
where ARC() is the autocorrelation vector for a given input frame, ALPC() is the
autocorrelation vector for a given Vector Quantizer codebook vector of LPC coefficients,
and a is a normalization factor. Given the initial codebook and the distortion measure,
[44] indicates 4 cycles of the LBG clustering procedure were required to create the final
Vector Quantizer library. During this procedure, the average distortion was reduced from
1.67 for the initial codebook to 1.31 for the final codebook.

5.2.2.2.2 Proposed Formant-Based Distortion Measure

Following the clustering procedure, a separate set of peak-based index parameters were
determined for each of the 512 Vector Quantizer library elements by determining the
locations of 3 peaks in the spectral estimate for each VQ codebook AR model. Because the
enhancement system in [44] dealt only with male speech, the most important heuristic rule
specified that there should be a total of 3 formants below 3 kHz. When more than 3
candidate peaks were found in the range from 0 to 3 kHz, the peaks with the lowest
amplitudes were eliminated to obtain the 3 most prominent peaks. When only 2 candidate
peaks were found, a thi.d peak was determined by a minimum in the spectral slope. The
inflection, usually located between the 2 known peaks, was required to be at least 200 Hz
away from either of the known peaks. Given that the 3 peaks had been determined utilizing
the above procedure, the associated bandwidths were simply defined as the difference in
frequency between the two points on both sides of the peak (center) frequency which were

3 dB lower in terms of amplitude.

Correspondingly, the template-matching distortion measure for a given frame of distorted
speech was based on the determination of a set of parameters consisting of the three major
spectral peaks and their associated bandwidths. These parameters were chosen because a
given noise source would tend to have a minimal effect over those frequencies with the
greatest concentration of speech energy. These locations of greatest speech energy would
nominally be equivalent to the location of peaks or formants in a given spectrum. Note that
the noise-robust parameters are referred to as peaks rather than formants because the
selected spectral peaks did not always correspond to the formants of speech production.
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For the purposes of the following discussion, the two may be used interchangeably. The
selection of the spectral peaks was accomplished via a simplified version of the McCandless
method [45] in which the spectrum corresponding to a given fixed order autoregressive
model was scanned for a number of candidate peaks. The codebook element indexed by
the candidate peaks and corresponding bandwidths would be accepted or rejected given a
set of additional heuristic rules or continuity constraints.  There were no continuity
constraints applied to thc peak locations as suggested in the McCandless method. The
reasoning here being that a set of misaligned or skewed peass would not necessarily result
in an inappropriate choice from the Vector Quantizer library. A moderately shewed set of
parameters would likely result in a selected template which would be close to the optimal
choice given the correct peak information. Furthermore, the event that a given peak would
be grossly misaligned would tend to be limited to peaks of lower amplitude and therefore
lower perceptual significance.

The formant-based template-matching distortion measure was formally defined in [44] as:
(5.14)

3 3
Qiorman = | 3, FGR)=FGE| W) |+ | Y 1BGA =BG Wy(h)
A=1 k=1

where i is the input index, j is the codebook index, F( . k) is the A -th peak or formant
location for the corresponding entry, B( ., k) is the A -th bandwidth for the corresponding
entry, and W and W are the formant and bandwidth weights respectively.

The template-niatching distortion measure is thereiore a weighted sum of the absolute vilue
of the deviation given the reference set of parameters provided by the Vector Quantizer
library and a set of parameters determined from a given distorted input speech frame. The
formant and bandwidth weights were set so as to compensate for certan physical properties
of the speech spectrum. For example, the bandwidth weights were decreased with
increasing & to account for the increased bandwidth at the higher frequencies (peak-
locations were stored with increasing frequency). The weights also attempted to reflect the
relative perceptual importance of the formants and bandwidths. For sonorants it was

determined empirically that

Wr(1)=16, Wp(2)=10, Wr(3)=0.7

(5.15)
Wp(l) = 40, Wg(2)=25, Wy(3)=10

while for non-sonorants, the formant weights were identical and the bandwidth weights
were proportional to the corresponding value of the spectral peaks. The term 'sonorant’
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here implies a segment of speech whose major spectral peak or energy was below 2 kHz.
Note that the template-matching distortion measure is based on a speech production process
with 6 degrees of freedom as opposed to 14 in the LPC-based autoregressive model. The
formant-based speech production process associated with the template-matching distortion
measure appears to be coarser than that of the LPC-based autoregressive model to be used
in the synthesis stage. Intuitively this is appealing as the template-matching distortion
measure should ideally not be affected by the fine details of speech production but only be
affected by a change in a set of relatively robust and coarse speech production parameters.
It should also be noted at this point that the comparison in terms of degrees of freedom
between the two processes may not be representative of the relativ~ accuracy of the
corresponding processes, because the underlying models of the vocal tract filter are quite

different.

5.2.2.2.3 Heuristic Rules Applied in the Codebook Search

The template-matching distortion measure defined by (5.14) could have been used solely in
a nearest-neighbor context - picking the best reproduction template for a given input frame
according to a minimum distortion measure. However, given the degree of continuity
which normally exists in speech and a degree of knowledge of the speech process, [44]
indicated that the performence of the template selection procedure was enhanced by
augmenting the basic distortion measure with a set of heuristic rules. The template
corresponding to the lowest distortion measure was to be used - but now the selection was
made on the basis of a set of distortion values modified by a number of heuristic rules.

One heuristic rule increased the bandwidth weights in the event of a likely sonorant sound
in order to penalize library entries with large bandwidths. The assumption was that the
library entries with the larger bandwidth parameters tended to correspond to non-sonorant
sounds. Amplitude matching was also applied in the event that the parameters associated
with the input frame met certain requirements. If the first peak (formant) was greater than a
certain reference value, the absolute difference between the peaks in dB was scaled by 0.1
and added to the distortion measure. Continuity in speech was accounted for by reducing
the distortion measure for the previously selected template. The distortion measure was
scaled by the spectral distance between two successive frames. The spectral distance is
defined in [44] as the sum of the absolute difference in the spectral coefficients of the
discrete fourier transform which are in the range from 200 to 3000 Hz and above a certain

threshold.
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Although the heuristic rules described above aided in the search for the optimal (or
approximately optimal) template, there was still a possibility that the chosen template was
inappropriate for the current input frame. A poor template choice may have been due to a
lack of an appropriate template in the Vector Quantizer library, but would have more likely
been due to an overly corrupted set of model parameters. In this case the template
corresponding to the lowest distortion measure tor the current input frame was rejected
using a variable threshold. The chosen template was also rejected on the basis of some
other observations such as a dramatic shift in any of the formant-based parameters. If the
chosen template was determined to be a poor match, the enhancement process retained the
previous model parameters in the synthesis stage. In summary, the enhancement process
was biased towards continuity in the circumstance that there was inadequate knowledge
concerning the nature of the current input frame. The variable threshold used in [44] was
defined as

Threshold = 120 (m+1) (5.16)

where m specifies the number of times the chosen template was rejected. As the threshold
increased with the number of times a given template was reused, a new template was
eventually accepted although the corresponding distortion measure may have been rather

large.

5.2.2.3 Reported Results

The Vector Quantizer enhancement process was used on speech sequences corrupted by
additive white noise. The speech sequences consisted of complete sentences and isolated

consonant-vowel syllables.

Since the enhancement process utilized a synthesis procedure, objective comparisons such
as the SNR measure were not appropriate in this case. The output sequence could therefore
only be judged in terms of perceived intelligibility and any other subjective perceptible
qualities in the output speech. In general, good intelligibility was reported with input SNR
as low as 0 dB. Since the speech was resynthesized using the LPC-based autoregressive
filter model and a simplified set of excitation waveforms, the output speech was noise-free
but had the buzzy or mechanical characteristic typical of LPC vocoders. The primary cause
of a decrease in intelligibility with decreasing SNR was the increased frequency of
increasingly non-optimal reproduction template selections. One result of the degradation of
the template selection procedure included sudden shifts in successive output frames in terms

of their spectral characteristics.
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Sounds with weak energy, which would include the non-sonorants such as the fricatives
and obstruent consonants, tended to be degraded to a greater extent because the spectral
characteristic of white noise tended to obscure the relevant spectral cues (peaks) in these
cases. The opposite was true of sonorants such as vowels where spectral peaks could
readily be observed even in the presence of a significant amount of noise. Acoustic cues

such as transitional regions and stops were observed to aid in the intelligibility of

continuous speech.

5.2.2.4 Summary and Additional Comments

The enhancement system proposed in [44] demonstrated the utility of a Vector Quantizer in
a speech enhancement system. Specifically, the use of a nearest-neighbor rule in
conjunction with a restricted set of speech production muodels was shown to hold promise
of actually increasing the intelligibility of a degraded speech sequence. From [44] it is
apparent that the key to the successful use of a Vector Quantizer based system hinges on the

use of a noise-robust template-matching distortion measure.

The quality of the output speech sequence was constrained in that the resynthesis stage of
the enhancement process limited to that used in an LPC-based vocoder. The enhancement
process could therefore at best produce only unnatural and synthetic quality speech due to
the model assumed for the speech production process and a complete loss of phase
information. In the case of the enhancement process described in [44], the voicing decision
and the determination of the pitch in the event of voiced speech was carried out by the SIFT
algorithm [39]. As shown in diagram 5.2, the SIFT algorithm utilized the undistorted
speech signal. A practical application would require that the voicing decision and pitch be
extracted from noisy speech. Voicing decisions and pitch estimation would be expected to
be degraded in a noisy environment. The extent of the degradation would depend on the
exact method applied and the amount of noise present in the speech signal. What is unclear
from the work done in [44] is what effect the relatively imperfect voicing decisions and
pitch estimates would have on the intelligibility of the enhancement system. The added
effect of increasingly inaccurate voicing and pitch information with decreasing SNR on a
,ystem which at best produces synthetic quality speech under relatively ideal conditions
may render the enhancement system relatively ineffective at relatively low input SNR. As a
voicing decision tends to be more robust in the presence of noise than pitch estimation, one
solution would be to use one fixed fundamental frequency for the pitch. The resulting

speech would lack any variation in pitch and therefore a primary acoustical cue associated
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with points of stress in such an utterance would be lost. The resulting speech sequence
would be described as being increasingly mechanical or flat sounding.  Another possibility
for the excitation source is to remove the voicing and pitch estimation algorithms altogether
and excite the synthesis only with a pseudo-random number sequence corresponding to
white noise. The resulting speech would have a whispered quality. The only method of
piacing points of stress in an utterance would be by varying the energy in the noise process
according to the perceived energy in the degraded input sequence. This method would
initially appear to be inferior to the enhancement system which incorporates the pitch
extraction algorithm. However, according to informal listeming tests with LPC vocodets,
intelligibility is not significantly reduced with the removal of the impulsive source.
Reducing the degree of freedom of the excitation source n the synthesis stage may
counteract the effect of an increasingly inaccurate voicing and pitch estimation algorithm at

the expense of a further loss in speech naturalness.

Ideally, the Vector Quantizer speech enhancement system should largely rely on the
inherent characteristics of a speech production space defined by a noise-robust distortion
measure and in which the degrees of freedom are limted by a finite set of speech
production models. The number of heuristic rules may indicate that the size ot the Vector
Quantizer in [44] was too high or that a slightly different set of noise-robust index
parameters is required. In the former case, the over-specification of speech production
space may have resulted in many closely related alternative production templates. A high
number of closely related production models may have contributed to a pttering or fluttering
effect in the output sequence which may have in turn reduced the intelligibility of the
synthesized speech. The jittering effect would be due a number of small-scale spectral
shifts in the output sequence as the combined ncarest-neighbor and heuristic rules would
tend to repeatedly select from a small number of closely related templates for a relatively
steady portions of the noise degraded speech signal usually associated with a vowel

(sonorant).
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5.3 Proposed Vecior Quantizer-Based Speech Enhancement System

This section will introduce a Vector Quantizer-based speech enhancement system based on
a linear adaptive filtering process. Section 5.3.1 will provide a broad overview of the
proposed enhancement system and provide an indication of the key areas of investigation.
Section 5.3.2 will provide a relatively detailed overview of the key components of the
proposed speech enhancement system. Finally, section 5.3.3 will provide an indication of

the order of computational costs involved in the proposed speech enhancement process.
5.3.1 Overview of Proposed Speech Enhancement System

A high level depiction of the proposed Vector Quantizer-based enhancement system is

provided in figure 5.6.

Figure 5.6 - High Level Description of Proposed Enhancment Method
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The proposed speech enhancement system has M modes of operation corresponding to the
M library elements in the codebook of the Vector Quantizer. The VQ codebook consists of
M normilized LPC-based AR speech production models which may be indexed directly
via the AR LPC coefficients or indirectly via a separate set of peak-based index parameters.
The miode of operation is selected on the basis of a template-matching distortion measure,

Gemplate matching( )+ according to the following expression:
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Mode of operation = i = mj!n dtcmplale—malrlxing(ﬂvxj) S =1 M

where x is a given noisy speech segment and Y, the j-th AR model stored in the V@

library.

After a mode of operation is selected using (5.17), the normalized AR model corresponding
to the i-th mode of operation is applied to the noisy speech segment using an adaptive
linear filter. As indicated in figure 5.6, this process 1s equivalent to multiplying the spectral
estimate associated with the noisy speech segment by the spectral speech estimate
associated with the normalized AR model. That is,

E(w) = N(w) A(w) (5.18)

where E(w), N(w), and A(w) are the spectral estimates of the enhanced speech segment,

noisy speech segment, and normalized AR model respectively.

An example application of the spectral multiplication process using actual speech data is
shown in figures 5.7 (a) through 5.7 (g). Figures 5.7 (a) and 5.7 (%) depict the discrete
time representation and spectrum respectively for a speech segment corresponding to a
steady state vowel (/i/ as in 'heat’). Note that the spectrum was derived using a 256 point
Fast Fourier Transform (FFT).  Figures 5.7 (¢) and 5.7 (d) depict the discrete time
representation and spectrum respectively for the same speech segment which has been
corrupted by the addition of white gaussian noise. Figure 5.7 (e) depicts the spectral
estimate of the normalized AR model which will be applied to the noisy speech segment.
Note that in this case, the normalized AR. model was derived from the (preemphasized)
clean speech segment. Figures 5.7 (f) and 5.7 (g) depict the discrete time representation
and spectrum respectively of the filtered or enhanced speech segment. Comparing the
spectra of the initial clean speech, noisy speech, and enhanced specch segments
respectively, the spectral multiplication of the noisy speech and normalized AR model
spectra has resulted in an enhanced speech spectrum which closely corresponds to the
original clean speech spectrum in terms of the broad spectral envelope and formant
structure. Comparing the discrete time representations of the noisy and enhanced speech
segments, the noise level in the enhanced speech segment is visibly reduced compared to

that of the initial noisy speech segment.

123




1

(x 1874) 5.7 (a) - Clean speech segment

fr 'I"l, ntln }‘P% [ Wﬂ \ N H\; [ ﬁ[\ Ay M A
|

a ¥ L NN L S § ) T ™4 T \ 3 T
RYAY, / YAl ‘/ Yl ]/ VY W ¥ V ¥ U U V
'.] A If )
—1 “-B G 108 159 200 259 388 358 408 458 508
T 5.7 (b)) — FFT of clean speech frame
113 ﬁ fw w
i W\ﬂ
l |
g f \/’ \f M "’Wﬂ‘,‘*\ﬁ{m—w{w“"i m M"‘l N o
B T T T T T T T ¥ T T 1 L 1 1 T T 1 1 T I 1 T L 1 T T
e 20 48 &8 8a 189 126 140 1680 188 2608 226 2490
‘ (x 18?4) 5.7 (¢} — Noisy speech segnent
10T
) n | i NW‘ fJ. | ‘ M ‘ nt Iu 1
R it

200 258 388 358 409 458 500

5.7 (d) — FFT of wnoisy speech frame

)\“\(\A\,mwﬂ“\wv M bWV AL

T T T 1 ¥ i 1 1 1 1 1 U 1 1 T T 1 i 1 1 T 1 T 1 |

20 48 68 8 1680 120 1480 168 180 208 220 240

124



5.7 (e) - Normalized LPC—-based spectral estimate
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Given an objective distortion measure, d,y . v ( ), and assuming that the clean, noisy, and
enhanced speech segments may be adequately represented by an all-pole spectial (AR)
estimate (see section 2,3.2), it is surmised that the spectral estimate for the enhanced speech
segment will provide, on average, an improved similarity to the spectral estimate of the
clean speech segment than the spectral estimate of the noisy speech segment. In particular,

the following will hold:
(5.19)

el ARTE@)] 2 ARIC(@)]) = dopperare( ARIN(@)A@)] . ARIC(0)])
< Dyecrmel ARIN(@)T , ARIC(@)] )

where AR| | indicates the all-pole spectral estimation operation, C(®), N(w), E(w), and
A(w) indicate the clean, noisy, enhanced, and normalized AR model spectra respectively.

Note that (5.19) is not valid for undegraded speech and is only expected to hold for
degraded speech with an SNR or SEGSNR of less than approximately 15 dB and 10 dB

respectively.

As discussed in section 5.1, there are a number of key parameters or components which
must be specified for the Vector Quantizer-based speech enhancement system including the
size and underlying structure of the Vector Quantizer library and the nature of the template-

matching distortion measure used to index the Vector Quantizer library.

Two types of Vector Quantizer structures were investigated for their potential use as an
integral part of a speech enhancement system. The first type of Vector Quantizer which
was investigated was the memoryless unstructured Vector Quantizer introduced in section
4.1, Using the terminology of section 4, no temporal or geometric restrictions were
imposed on the partitioning of speech production space and the VQ codebook consisting of
the AR modcl coetticients was generated relying on the inherent characteristics of the
multivariate density function of the training sequence and the clustering distortion measure.
Thatas, an M-level VQ codebook was generated for all of speech production space and
included AR models associated with both voiced and unvoiced speech. The second type of
Vector Quantizer which was investigated was based on the Forward- Adaptive Vector
Quantizer introduced in section 4.5.4. One memoryless unstructured M-level VQ
codebook was generated for voiced speech and another memoryless unstructured M’ -level
VQ codebook was generated for unvoiced speech. In this case, a voicing discriminator

functioned as the class encoder or the mechanism by which the proper VQ codebook would
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be selected for a given speech segment. Figure 5.8 depicts a speech enhancement system
based on a combined voiced and unvoiced VQ codebook while figure 5.9 depicts a speech

enhancement system based on separate voiced and unvoiced VQ codebooks.

As indicated in figure 5.8, the primary areas of mvestigation given the combined voiced and
unvoiced VQ codebook included the size ( M) of the combined codebook and the nature ot
the template-matching distortion measure.  As indicated in figure 5.9, the primary arcas of
investigation given the separate voiced and unvoiced VQ codebooks included the sizes (M
and M) of the voiced and unvoiced v Q codebooks, the nature of the template-matching
distortion measure, and the training sequence used to generate the voiced and unvoiced VQ

codebooks.

Figure 5.8 - Vector Quantizer-Based Speech Enhancement using a Combined
Voiced+Unvoiced Vector Quantizer Library
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Figure 5.9 - Vector Quantizer-Based Speech Enhancement using Separate
Voiced and Unvoiced Vector Quantizer Libraries
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5.3.2 Detailed Overview of Selected Speech Enhancement Components

5.3.2.1 The Voicing Discriminator

Y

Enhanced
Speech

The voicing discriminator used was based on the work carried out by Krubsack and
Niederjohn n [47] and is depicted in figure 5.10. The voicing decision is based on three
features derived from the autocorrelation of a given low-pass filtered noisy speech signal

segment.

Noisy

Speech
-

Figure 5.10 - Block Diagram of Voiced-Unvoiced Discriminator

Voiced or
Unvoiced

Low Pass filter
(0 - 600 Hz)

Autocorrelation
function

Determine voicing
features {e', p', r}

Voicing
Decision

—>

128



The three features are derived, given the autocorrelation function, as follows:

1/2

256
» - RK) _ N
p = RO) ° R(K) = mjax R()Y, j=15..100 (5.20)
100 2 /2
oo | L E(R(z))
86 =\ R(0)

where R( ) is the autocorrelation function, ¢’ is the rms energy of the speech segment, p’
is the normalized maximum value of the autocorrelation function over the ‘pitch range' and
r’ is the rms value of the normalized autocorrelation function over the pitch range. Note
that the term ‘pitch range' had further meaning in {47] where a noise-robust pitch detection

algorithm was also examined.
Given e’, p’, and ', the voicing decision may be described by the following algorithm:

if ¢ < eposora 0 (05" + Flypegy — 1) > O then
speech segment is UNVOICED

else (5.21)
speech segment is VOICED

end if

where ¢y os1014>a00. Fiyyercep aT€ PrESet constants.

The algorithm provided by (5.21) stems from the observation that a plot of r’ versus p’
will form a region corresponding to voiced speech segments and another region
corresponding to unvoiced speech segments. If the SNR is high, the two regions are
easily discriminated as the voiced region will form well away from the origin while the
unvoiced region will form close to the origin. This situation (SNR = o dB) is depicted as
scenario (a) in figure 5.11. As the SNR decreases, the voiced region moves toward the
unvoiced region. This situation (SNR = 0 dB) is depicted as scenario (b) in figure 5.11 In
the case of very low SNR's of the order of -18 dB, the two regions will practically overlap.
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. Figure 5.11 - Voiced-Unvoiced Decision Criteria
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The voicing decision problem may therefore be seen as how to best place the voicing
discrimination boundary in the 1 - p’ plot. In [47], it was determined that the optimum

voicing discrimination boundary is a simple linear line with a slope of -0.5.

In experimental trials using ¢’, p’, and r’ derived as per (5.20) and the algorithm defined

by (5.21), it was empirically determined that the optimum values of €/y,.egho1 @04 Fpuercops »

with the SNR ranging from 25 to 0 dB, were 200 and 0.25 respectively. With ej,,.c014
and 70 ep S€t to these values, the percentage of voicing errors (voiced to unvoiced and

unvoiced to voiced), with the SNR ranging from 25 to 0 dB, was found to be less than 1-
2% for the entire length of a given phrase. Note that €., and r{,,,(.,ct,p, were set so as

to minimize voiced to unvoiced errors, which were found to be subjectively more

disturbing than unvoiced to voiced errors when the voicing discriminator was used as a
module in the speech enhancement algorithms. The authors in [47] indicated that the

However,

voicing-decision errors could be reduced using smoothing techniques.

smoothing techniques or continuity constraints on the voicing discriminator were not
considered as the algorithm defined by (5.21) performed adequately for the range of SNR's

covered in the speech enhancement trials.

The low-pass filter used was a 6-th order Butterworth filter with a cutoff frequency of 600
Hz. as suggested by [47]. The design of the low-pass filter was accomplished using the
PC-DSP Ver. 1.1 program provided with [48] and was implemented in software in direct 1]

or canonic direct form.
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Note that the voicing discriminator described in this section assumes that the noise is
additive and broadband in nature and is not intended for distortions such as impulsive noise
or distortions which may otherwise significantly distort the speech signal below 600 Hz.

5.3.2.2 Vector Quantizer Clustering Procedure

The training sequences used in the clustering procedure consisted of speech which had been
low-passed filtered at 4.5 kHz and sampled at a rate of 10 kHz with 16 bits resolution. The
actual speech was comprised of 30 different phonetically-balanced sentences spoken by two
males and one female (10 sentences each). The phonetically-balanced sentences are listed
in tables 5.1, 5.2 and 5.3. Periods of silence were automatically removed from the training
sequence using a procedure in which the speech was analyzed in 500 sample segments. If
none of the samples in the 500 sample segment were above an empirically determined
preset threshold of 100, then the frame was discarded as a silent frame. On completing the
silent frame discard procedure, 25.1 seconds of speech was retained for Male Speaker |,
26.6 seconds of speech was retained for Male Speaker 2, and 22.3 seconds of speech was

retained for Female Speaker 1.

Table 5.1- Text of Speech tor Male Speaker |1

Phrase 1 The goose was brought straight from the old market.
Phrase 2 The sink is the thing in which we pile dishes.
Phrase 3 A whiff of it will cure the most stubbcrn cold.
Phrase 4 The facts don't always show who is right.

Phrase 5 She flaps her cape as she parades the street.

Phrase 6 | The loss of the cruiser was a blow to the fleet.
Phrase 7 Loop the braid to the left and then over.

Phrase 8 Plead with the lawyer to drop the lost cause.

Phrase 9 Calves thrive on tender spring grass.

Phrase 10 Post no bills on this office wall.

q Table 5.2 - Text of Sgeech for Male Speaker 2
Phrase 1 The bark of the pine tree was shiny and dark.

Phrase 2 Leaves turn brown and yellow in the fall.
Phrase 3 The pennant waved when the wind blew.
Phrase 4 Split the log with a quick sharp blow.
Phrase 5 Burn peat when the logs give out.

Phrase 6 He ordered peach pie with ice cream.
Phrase 7 | Weave the carpet on the right hand side.
Phrase 8 Hemp is a weed found in part of the tropics.
Phrase 9 A lame back kept his score low.

Phrase 10 | We find joy in the simplest things.
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l Table 5.3 - Text of Sgeech for Female Sgeaker 1 I
P The slush lay deep along the street.

hrase 1
Phrase 2 A wisp of cloud hung on the blue air.
Phrase 3 A pound of sugar cost more than eggs.
Phrase 4 The thing was sharp and cut the clear water.

Phra: > 5§ The place seems dull and quite stupid.
Phrase 6 Bail the boat to stop it from sinking.

Phrase 7 The term ended in late June that year.
Phrase 8 Tusk is used to make costly gifts.
Phrase 9 Ten pins were set in order.

Phrase 10 | The bill was paid every week.

The speech from Male Speaker 1 was used as the unsegregated training sequence for the
combined VQ codebook. The voicing discriminator of section 5.3.2.1 was used to
segregate speech into separate voiced and unvoiced training sequences. Three sets of
voiced and unvoiced training sequences were generated using the voicing discriminator
using: (i) the retained speech from Male Speaker 1, (ii) the combined retained speech from
Male Speaker 1 and Male Speaker 2, (iii) and the combined retained speech from Male
Speaker 1, Male Speaker 2, and Female Speaker 1.

The unsegregated and voiced training sequences were preemphasized using the filter
specified by (1-0. 9527") while the unvoiced training sequences were not preemphasized.
A 25.6 millisecond hamming analysis window was then applied at a frame rate of 156.25
times per second (6.4 millisecond time shift per application) to all the training sequences in
order to generate the training speech segments. 3921 training segments were generated
from the unsegregated training sequence while the following number of voiced and
unvoiced training segments were generated for the 3 segregated training sequences: (i)
voiced-2541, unvoiced-1379, (ii) voiced-5294, unvoiced-2782, (iii) voiced-7653,
unvoiced-3907. A 15th order autocorrelation sequence was generated for each
unsegregated and voiced training segment while a 6th order autocorrelation sequence was

generated for each unvoiced speech segment.

The LBG algorithm described in section 4.2.1 was used combined with the method of
generating initial codebooks by splitting described in section 4.2.2.3 in order to cluster the
(autocorrelation) training sequences into VQ codebooks of various sizes. The clustering
distortion measure used for all the codebooks was derived from the Itakura-Saito distortion
measure defined by expressions (2.59), (2.60), and (2.61) and is reproduced here in a

slightly modified format as:
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p
"a(o)"y 0 + 2 2 rl(m)rl. (m)

dcluslar(lvzl) = Gm:l + log(o, ) (5.22)
v i

-t

where x indicates a training segment, y, indicates the i-th VQ codebook entry consisting
of an AR model, r(x) is the autocorrelation sequence for the traming segment, r(y ) is the

autocorrelation sequence for the LPC coefficients corresponding to the /-th VQ AR model,

oy is the LPC gain for the i-th VQ AR model, and p is the order of the AR mudel.

Following each clustering procedure specified by the LBG algorithm, Durbin's recursion
[38] was used to determine the 15-th order AR models for the unsegregated and voiced VQ
codebooks and the 6-th order AR models for the unvoiced VQ codebooks. The LBG
algorithm was allowed to reiterate until the average clustering distortion in two successive

iterations decreased below 0.00001.

32, 64, and 128-element VQ codebooks were generated using the unsegregated training
sequence. 8, 16, 32, 64, 128, and 256-element VQ codebooks were generated using the (i)
segregated voiced training sequence while 4, 8, 16, 32, 64, and 128-element VQ
codebooks were generated the (i) segregated unvoiced training sequence. 32 and 64-
element VQ codebooks were generated using the (iiy and (i1i) segregated voiced training
sequences while 16-element VQ codebooks were generated the (ii) and (iii) segregated

unvoiced training sequences.

For all of the combined and segregated VQ codebooks, a normalization factor was
determined for each AR model stored in the VQ codebook. The normalization factor used
was the inverse of the total energy in the AR model's response to the impulse function.
Although other normalization factors were tried such as the inverse of the LPC ( ay) gain
and the inverse of the highest peak in the AR model spectral estimate, the inverse of the
total energy to the AR model's response to the impulse function resulted in the best
subjective 'loudness matching'. That is, the perceived loudness of the enhanced speech

was roughly equal to the loudress of the input noisy speech.
For the combined and segregated voiced VQ codebooks, a separate set of peak-based index

parameters was generated by determining the locations of the first 3 peaks in the spectral
estimate of the AR model in the range from 150 to 3400 Hz.
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5.3.2.3 Template-Matching Distortion Measures

The following template-matching distortion measures were examined for their potential use
as a noise-robust means of indexing the VQ codebooks generated per section 5.3.2.2:

I
(l) dlog Area R(mn('_’vzl) = 2 ‘ logIO(AR_rg,m /ARZ‘ ,m) (523)

m=l

where AR, ,, and AR, ,, are the area ratio coefficients for the noisy speech segment (1)

and i-th VQ AR model ( _y_‘) respectively.
(5.24)

p
ry@ry (0) + 2 Y r,(m)ry (m)

.. _ =1
() dnaara-sao (ﬂvZ‘) = p 2 + Iog(O'Z’ )
y

-1

where r(n) and r( y,) are the autocorrelation sequences for the noisy speech segment (1)
and i-th VQ AR model ( X,) respectively, o, is the LPC gain for the i-th VQ AR model,
and p is the order of the VQ AR model.

p
Gi))  dpaura(.y;) = 1 O)r, (O) + 221‘2(m)r!' (m) (5.24)

m=]

where r(n) and r(y ) are the autocorrelation sequences for the noisy speech segment (1)
and i-th VQ AR model (y, ) respectively, and p is the order of the VQ AR model.

3
(IV) dpt’uk—hu‘\c'd(ﬂ’X,‘) = 2 l F(!_’.J‘) - F(X"A) Wﬂ(l\) (5'25)
k=1

where F(n,k) and F (X,’k) are the k-th peak (formant) locations for the spectral estimates
of the noisy speech segment (2) and i-th VQ AR model ( X:) respectively, and W, (k) is

the magnitude in dB of the £-th peak in the spectral estimate of the noisy speech segment.

Note that unlike (5.14) which was used in [44], the peak-based distortion measure of
(5.25) does not use peak or formant bandwidth information. Bandwidth information was
not used since it was empirically determined that the peak or formant bandwidths tended to
be poorly correlated with the actual (noise-free) bandwidths at high input noise levels.
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5.3.2.4 Applied Continuity Constraints

No continuity constraints were applied for the dy,, 4,., Ratio ¥ ) giipa-sao (1Y)
Ayarura(:Y ) and dpy i _pagea (Y ) template-matching distortion measures. That is, the

mode of operation for the speech enhancement system was sclected using the expression

specified by (5.17) without consideration of the previouzly selected mode(s) of operation.

However, in the case of the d .. _pqsea(8.y ) template-matching distortion measure, the

peak locations determined from the noisy speech segments were subject to continuity
constraints induced by a formant tracking algorithm. The premuse here was that the
locations of spectral maxima should not change dramatically from one speech segment to
the next since the locations of the spectral maxima were a function of the location of the
vocal tract articulators (e.g., tongue, lips etc.) which were restricted in their motion within a
6.4 millisecond timeframe. The remainder of this section describes the formant tracking

algorithm used in the proposed speech enhancement process.

5.5.2.4.1 The Formant Tracking Process

The formant tracking algorithm used in the speech enhancement trials was based on the
work carried out by McCandless in [45] and is depicted in figure 5.12.

Figure 5.12 - Block Diagram of Peak (Formant) Tracking Process
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Formants may be described as vocal tract resonances which manifest themselves as peaks
in spectral estimates. The frequencies at which the formants occur depend on the shape of
the vocal tract which is in turn determined by the positions of the articulators (tongue, lips,
jaw, etc.). Normal continuous speech is accomplished by moving the positions of the
articulators with time, which will in turn correspond to a change in formant frequencies.

The first 3 formant frequencies are considered an important cue in the characterization of

speech sounds.

In the following description of the formant tracking algorithm it is important to note that the
selected 'formants' do not necessarily correspond to the actual formants of speech
production. That is, it is more precise to say that the following text provides on overview
of a peak tracking algorithm rather than a formant tracking algorithm. For example, no
attempt was made to determine if a given spectral peak was actually a formant, or
alternatively, the result of two formant mergers. This fact should be noted in the context of
how the output of this algorithm is to be used. That is, the output of this algorithm would
be used as a means of indexing a VQ library in which the library elements which were
composed of AR models, were also associated with a corresponding set of peak-based

index data.

The formant tracking algorithm estimates the frequencies of the first three formants based
upon the raw peak data. The raw peak data is obtained from the available peaks in linear
prediction spectra (see section 2.3). For the peak picking process depicted in figure 5.12,
the pertinent parameters include a preermphasis factor of (1 — 0.9:° 1), a analysis window of
256 samples in length which was applied at a rate of 156.25 times per second (6.4
millisecond time shift per application), the order of the LPC analysis which was set to 15,
and the size of the FFT analysis window which was set to 512 (the analysis window was
padded with 256 zero's) which in turn provided a frequency resolution of 20 Hz for the

spectral peak or formant locations.

Given the raw peak data, the tracking process begins at points of relatively high energy
within voiced segments where the formant estimates are most likely to be accurate. These
points of high speech energy are called anchor points. In the case of a short voiced speech
segment, surrounded by unvoiced frames, the location of the maximum value of the speech
energy function within the voiced segment was selected as the anchor point. In the case of
a long voiced segment with considerable formant variation, two or more anchor points
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would be selected by detecting a valley in the speech energy function. The valley was
defined as a minimum in the energy function with a value equal to less than one half of the
higher of the adjacent energy maxima. Processing or tracking of the raw peak data
branches out from the anchor point in both directions, using the most recent formant
frequency estimates as the next reference. This process is depicted in figure 5.13.

Figure 5.13 - Flow Chart of Anchor Point Scheme
(After McCandless [45])
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Processing of the backward branch begins at the next anchor point and continues until an
unvoiced frame is encountered, or a frame corresponding with the previous forward branch
is encountered. Then the forward branch from the same anchor point begins and continues
until an unvoiced frame is encountered, or until a frame corresponding with the next
backward branch is encountered. At this point, processing jumps to the next anchor point,
and begins again with a backward branch, and so forth, unul the processing of the speech

signal is complete.

The following outlines the specific steps which were used for processing raw peak data in a

noisy environment:

Step 1:  Fetch Peaks. Find the frequencies of up to four peaks in the region from
140 to 3400 Hz.

Step 2. Fill Formant Slots. Assign the raw peak data into the formant slots directly.
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The following steps are applied at anchor points only:

Step 3a:

Step 4a:

Step 5Sa:

Step 6a:

Remove False 2nd Formant due to Noise. If all four formant slots were
filled in step 2 and if the peak in the 2nd formant slot is the smallest in
magnitude of the four peaks and if the peak in the 2nd formant slot is
also less than one half of the magnitude of the peak in the 3rd formant
slot, then remove the peak from the 2nd formant slot and move the peaks
in the 3rd aad 4th formant slots down into the 2nd and 3rd formant slots

rzspectively.

Fill Unassigned Slots: If any of the formant slots are empty, then fill the
empty formant slot(s) with a corresponding initial formant estimate
defined as follows for the anchor point: F1=300 Hz, F2=1500Hz,
F3=2500Hz, and F4=3200Hz.

Reset Corrupted Formants. 1f the difference in frequency between a
given peak location assigned to a formant slot and the initial formant
estimate is greater than a preset threshold, f,,..;» then the peak location

in the corrupted formant slot is reset to the initial formant estimate. The
threshold, f,,,,..» being 800 Hz.

Update Formant Estimate. Accept formant slot contents as the formant
estimate for the anchor point. Also, retain formant slot contents as the

initial formant estimate for the next frame. Set the energy threshold,
Curesholds €qual to half the value of the speech energy at the anchor point.

The following steps were followed as part of the general peak tracking process at

frames outside the anchor point:

Step 3b:

Step 4b:

Check Energy Level. If the energy level of the speech signal for the
current frame is greater than or equal to €,,.¢.014- then proceed to step

4b. Otherwise, proceed to step 7.

Fill Unassigned Slots: If any of the formant slots are empty, then fill the
empty formant slot(s) with the initial formant estimate.
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Step Sb:  Deal with Large Jumps In Frequency 1t the difference in frequency
between a given peak location assigned to a formant slot and the initial
formant estimate is greater than a preset threshold, £, o Jjump then the

peak location 1n the corrupted formant slot is reset to the mitial formant
estimate. The threshold, f),,00y jump. 18 240 Hz.

Step 6b:  Update Formant Estimate. Accept formant slot contents as the formant
estimate for the current frame. Also, retain formant slot contents as the

initial formant estimate for the next frame. Go to step 1.

Step7: Maintain Formant Estimate. Maintain the last formant estimate as the
formant estimate for the current frame until an unvoiced segment is

encountered or until the next backward/forward branch is encountered.

Relative to the steps outlined in McCandless in [45], the above steps stressed the
importance of the avatlable peak information at the anchor points in a noisy environment.
Another key difference between the steps outlined above and the McCandless method, was
that via steps 3b and 7, the formant tracking process was allowed to stall (the formant
estimates were not allowed to change) when the energy of the voiced segment along ecither
the forward or backward branch dropped below a threshold equal to half the energy of the
speech signal at the anchor point. This last step was implemented, since 1t was observed
that the raw peak data tended to be overly corrupted by the noise when the energy of the
speech waveform dropped below approximately half the energy of the energy at the anchor
point, which in turn led to poor formant tracking results.

Given the above formant tracking steps, it 1s still possible that a formant slot may be
severely misaligned in one or several frames. The following steps outlined by McCandless

in [45] were used to smooth the formant tracks:

Step 1: If a single formant slot is empty, fill its frequency and amplitude with the

average of the values in the previous and following frames.
Step 2: If a formant is grossly out of line or missing in one, two, or three frames,

but well aligned in the two previous and two following frames, the

misaligned frames are corrected by interpolation as follows:
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Let the frequency location of a formant in the n-th frame be L,. Also,
define D,,, = L, — L, asthe measure of alignment for a given frame. If
D, ,-; < 0, where 0 is equal to 240 Hz, then frame n is considered to

be smooth. If D, ,_; > @,then frame n is considered misaligned and an
attempt is made to smooth frame » if the one of the following conditions is

true:

a) One misaligned frame.
If Dyypn2 < 6, Dyyypy < 6,andD,.5,, < 6 then replace

L, with (L, + L,_)/2 and move to frame n+1.

b) Two misaligned frames.
If Dn—].n—Z < 8, Dn+2,n—l < 6, and Dn+3,n+2 < 6 then replace
L, with (L,,,» + L,_;)/2 and move to frame n+1.

¢) Three misaligned frames.
If D, ,.» < 6, D3, < 6,andD, 4,,3 < 6 thenreplace

L, with (L, 3 + L,_;)/2 and move to frame n+1.

Where the new L, is used to analyze frame n+1.

Step 3:  Smooth each formant track twice using the following (zero-phase) filter:
F/(n) = 0.25F,(n—=1) + 0.5F,(n) + 0.25F,(n+1).

The overall performance of the formant tracking procedure presented in this section is
demonstrated for Phrase 1 from Male Speaker 1 (‘'The Goose was brought straight from the
old market.") in figures 5.15 (a) through 5.15 (d) for global SNR's equal to =, 15.2, 6.7,
and 1.8 dB (SEGSNR's equal to o, 6.1, 0.0, -7.3 dB) respectively. Note that the width
of the figures corresponds to the duration of the phrase which is equal to 2.4 seconds. The
figures are composed of 3 parts. The top part of each figure is titled 'Formant Tracking
Input', and indicates the input into the formant tracking process including the raw peak data
(top) followed by the speech energy function (note that the energy function has been
smoothed with a zero phase filter), which is in turn followed by the output of the voicing
discriminator depicted as a horizontal bar. The darker intensity in the voicing discriminator
bar signifies voiced speech, while the lighter intensity signifies unvoiced speech. The 2nd
or middle portion of each figure is titled 'Formant Tracking Output' und corresponds to the
output of the formant tracking process before the final smoothing processes are applied.
The vertical bars indicate the location of the anchor points. The third or bottom portion of
each figure is titled 'Final (Smoothed) Formant Tracking Output' and indicates the final,
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smoothed output of the formant tracking algorithm. The output of the formant trackhing
process may be compared with the spectrogram of the same phiase which is depicted in
either figure 5.27 (a) or figure 5.39 (a).

In comparing these figures, it can be seen that all three formant tracks were relatively
unaffected at the moderate noise level of 15.2 dB SNR. At 6.7 dB SNR, 3 experienced
moderate degradation while the F2 formant track experienced slight degradation. At the
relatively high input noise level of 1.8 dB SNR, the F3 formant tiack eaperienced severe
degradation, while the F2 formant track experienced moderate degradation. The Fl
formant track, on the whole, was telatively unaftected at all the encountered noise levels
Also, note that the degree of degradation of a given formant track was related (nversely

proportional) to the energy level of the voiced segment at any given noise level

The performance of the fermant tracking algorithm could be improved with the use of a
relatively comphcated set of heuristic rules and continuity constramts i the tormant
tracking process. The performance of the tormant tackmg algotthm could also be
improved with the use of a relatively noise-robust peak picking algorithm based on
improved spectral analysis techniques such as the Zero-Crossing method or varations of
the Singular Value Decomposition methods (e.g., Cadzow's method) outhned by Sieenivas
and Niederjohn in [49]. However, it should alse be noted that the authors in [49] indicated
that the other improved spectral analysis techniques provided only a marginal to moderate
improvement in the context of providing reliable peak/formant estimates for noise degraded
speech at greater computational cost. To conclude this section, it was determuned that the
performance of the formant tracking process outlined n this section was adequate in terms

of demonstrating its utility as part of the speech enhancement process.
5.3.2.5 The Analysis Window

The analysis window used was the Hamming window defined by (2.37) and reproduced

here:
(5.26)
Wiamming () = 0.54 = 0.46 cos [2an)/(N=1], 0 £ n £ N-1

= (0, elsewhere
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Figure 5.15 (a) - Formant Tracking Process for clear speech
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Figure 5.15 (b) - Formant Tracking Process at 15 dB SNR
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Figure 5.15 (c) - Formant Tracking Process at 7 dB SNR
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Figure 5.15 (d) - Formant Tracking Process at 2dB SNR
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A Hamming window of 256 samples in length was applied to the simulated noisy speech at
a frame rate of 156.25 times a second corresponding to a time shift of 6.4 inilliseconds per

application.

The content of the analysis frame was used as the basis for determining the required set of
coefficients or parameters used by the template-matching distortion measures. For
example, in the Itakura template-matching distortion measure of (5.24), a p-th order
autocorrelation sequence was calculated for the analysis frame (where p is the order of the

normalized AR model selected).

After a VQ codebook entry was selected using a given template-matching distortion
measure, the pre-windowed speech segments corresponding to the middle 64 samples in

the analysis frame were provided to the adaptive filter for processing.

5.3.2.6 The Adaptive Filter

The normalized AR model selected from the VQ codebook(s) using the template-matching
distortion measure was applied to a given noisy speech segment using an adaptive filter.
The adaptive filter was implemented using the LPC coefficients and Normalization factor

retrieved from the VQ codebook in direct form and 1s depicted in figure 5.16.
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Figure 5.16 - Adaptive Filter Used in the Enhancement Process
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During informal listening tests involving continuous and unrestricted speech, it was
empirically determined that the acceptability of the enhanced speech signal would be greatly
improved (made less fatiguing) without a noticeable decrease of intelligibility by attenuating
the enhanced speech associated with unvoiced speech signals. The following unvoiced
attenuation factor was empirically determined to provide the most acceptable speech signal
without making the speech irregular or decreasing the intelligibility of the enhanced speech
signal.
(5.27)

. . . . 2
Unvoiced Attenuation Factor = (energy in unvoiced .wgment)” /4

Although the unvoiced attenuation factor would tend to decrease the energy level of speech
segments of certain phonemes such as constants, the intelhigibility of the overall speech
signal was maintained through acoustic cues such as the formant tansitions in adjacent

voiced speech segments (vowels).

The LPC coefficients and normalization factor were applied instantaneously at the analysis
window frame rate of 156.25 times per second. Subjectively, this resulted in occasional
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minor clicks or pops in the perceived enhanced speech signal. Although this could have
been alleviated via the use of an overlap-add or overlap-save technique or perhaps by a
gradual transition of the LPC coefficients from one frame to the next, it was determined that
the simple instantaneous application of LPC coefficients and the normalization factor was
sufficient to demonstrate the utility of the overall speech enhancement process.

5.3.3 Computational Requirements for the Proposed Enhancement Process

The purpose of this section is to review the computational requirements for the proposed
enhancement process. The following table summarizes the primary sources of
computational load which would be encountered on a per analysis frame basis for the major

algorithms or components used within the proposed speech enhancement process:

Table 5.4 - Computational Load for Proposed Enhancement Process

Algonthm or _ [Order of Computational]

Component Load Remarks

Input Analysis | O(n) Noisy speech signal is segmented via a

Window hamming analysis window.

Voicing 2 x O(nlogn) The complete autocorrelation sequence

Discriminator for a given noisy speech segment may
be obtained by using two FFT
operations.

Formant 2 ’ ~ | A spectral estimate 1s obtained for each

Tracking O + O(n’logn’y noisy speech segment by first obtaining

Process a series of LPC coefficients using

Durbin's recursion and then applying an
FFT on the LPC coefficients as per
section 2.3.1. Note that the
autocorrelation sequence required for
Durbin's recursion may be obtained as a
by-product from the voicing
discriminator.

Selection of AR O(pM) or O(3M) | 3 here refers to the 3 peaks in the peak-

model from VQ based template matching distortion

codebook. measure.

Adaptive Filter | 0(64p) Frame rate was 156.25 times per
second.

where n is the size of the input analysis frame, »n" is the size of the peak-picking FFT
frame (equal to 2 ), p is the otder of the AR model selected from the VQ codebook, and

M is the size of the VQ codebook.
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5.4 Observed Results for the Proposed Speech Enhancement System

This secdon will provide the observed results for the proposed speech enhancement system
in simulated speech enhancement trials. Section 5.4.1 will provide additional
implementation details not covered in section 5.3. Section 5.4.2 will overview the
objective distortion measures used to measure the quality of the enhanced speech signal.
Section 5.4.3 will provide the actual observed results for the simulated speech enhancement

trials.

5.4.1 Additional Implementation Details

5.4.1.1 Testing Sequences Used in the Speech Enhancement Trials

The testing sequences used in the speech enhancement trials consisted of speech which had
been low-passed filtered at 4.5 kHz and sampled at a rate of 10 kHz with 16 bits resolution.
The following outlines the text of the speech for which the observed enhancement results

are reported in section 5.4.3:
(5.28)

Male Speaker 3
The goose was brought straight from the old market.

Test Phrase 1

Male Speaker 2
Test Phrase 2 | Leaves turn brown and yellow in the fall.
Female Speaker 1
Test Phrase 3 | A pound of sugar cost more than eggs.

The designation of the speakers (e.g., Male Speaker 3) 1s in reference to the training

sequences used to generate the VQ codebooks in section 5.3.2.2.

5.4.1.2 Noise Source Used in the Speech Enhancement Trials
The simulated noise source was a white gaussian noise source with zero mean. The white

gaussian noise source was actually derived from a uniform noise source with a uniform
probability distribution function from -1 to 1 according to the following algorithm:
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(5.29)
r = (uniform noise sample 1)2 + (uniform noise sample 2)2

if r > 1 then

. . . . ~2log, r/?
gaussian noise sample = (standard deviation)(uniform noise sample l)(———g2 )
’

else
discard r, get another r value
end if

5.4.1.3 The Hardware and Software Platforms Used

The proposed speech enhancement system was implemented on a micro-computer system
based on an Intel 50 MHz 486 processor using MS-DOS Ver. 5.0 as the operating system.
The programming language used to implement the speech enhancement system was
Microsoft Quickbasic Ver. 4.5 which offered a structured programming environment
similar to Fortran with the additional benefit of (relatively) instantaneous compilation time.

The subjective analysis of the enhanced speech files was accomplished by compressing the
enhanced 16-bit files to an 8-bit format compatible with an ATI Stereo-FX™ sound card.
For the purposes of the speech enhancement trials, the distortion introduced by
compressing the 16-bit speech samples to 8-bit samples was not perceptually discernible.
The output of the sound card was fed to the input of a JVC PC-V2C/] portable stereo
system which included speakers with an effective output frequency range of 30-15000 Hz.

5.4.2 Objective Distortion Measures Used in Analyzing the Enhanced Speech
5.4.2.1 Definition of Objective Distortion Measures Used

The following 6 objective distortion measures were used in determining the objective

quality of the enhanced speech signal:

P
(l) dlog Area Ratw(‘_'v.‘:) = Z | loglO(AR(_'.i / ARg.l) I (530)

=1
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where AR, and AR, are the i-th area ratio coefficients for the clean speech segment (¢)

and enhanced speech segment (¢) respectively.

(i) ds_form(C.©) (5.31)

1o IC@)

N-1 0.2 02
i ’ Y @] [c@p® - Eqay)
where C(w;) and E(w,) are the magnitudes of the spectrum at frequency @, for the clean

speech segment (¢) and enhanced speech segment ( ¢) respectively.

L-1 SV
Y |z C@n)/Ew,)| (5.32)

m=0

(“l) dcrui(‘al band log (§v€)=

where é(w,,,) and E(w,,) are the positive square roots of the energy within critical band
w,, for the clean speech segment (¢) and enhanced speech segment (¢) respectively.
(5.33)

2 1/2

(iv) dcrmml band pmw-r(g’g) =

L1, . 02 - 02
Z ' (C((l),,, )) - (E((Um ))
m=0 !

where C (w,,) and E(a),,,) are the positive square roots of the energy within critical band
@), for the clean speech segment (¢) and enhanced speech segment (¢) respectively.

2
re(O)r 0) + 2 r, (r (i)

v) dllakura—S{ulo(g’g) = 0-21:! + 108(0}_2) (5.34)
¢

where r_(i) is the i-th autocorrelation for the LPC coefficients for the clean speech segment
(¢), r (i) is the i-th autocorrelation for the enhanced speech segment (¢), and @, is the
LPC gain for the clean speech segment.

14
VD) dpakura(©€) = r (O 0) + 2 r (m)r (m) (5.35)

m=|

where r_(i) is the i-th autocorrelation for the LPC ccefticients for the clean speech segment
(¢)and r,(i) is the i-th autocorrelation for the enhanced speech segment (¢).
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The above objective distortion measures were determined on the basis of speech segments
which were obtained by applying a Hamming window of 256 samples in length at a frame
rate of 78.125 times per second (12.8 milliseconds time shift per application of window).
Durbin's recursion was used n order to determine a series of 16(p) LPC coefficients for
each speech segment. In the case of (5.31), a normalized spectral estimate was obtained
according to the procedure outlined in section 2.3.2 using the LPC coefficients derived by
Durbin's recursion and setting the LPC gain to 1. Note that a normalized spectral estimate
was used as it was indicated in |38] that the overall level did not have a large impact on
perception. In the case of (5.32) and (5.33), the normalized spectral estimate was also used
to determine the critical band energies according to the critical band center frequencies and
bandwidths listed in table 2.1. The length of the spectral estimate was 512 (= L) which

corresponded to a frequency resolution of 9.8 Hz (FFT size of 1024).

5.4.2.2 Effect of White Noise on the Objective Distortion Measures

The effect of additive gaussian noise on the 6 objective distortion measures was determined
by applying various levels of gaussian noise to the 10 sentences spoken by Male Speaker 1
(table 5.1). The results are listed in table 5.5.

Table 5.5 - Effect of Additive White Noise on Objective Distortion Measures

SNR Seg- Log Area

SNR (6 - form)| Band Band

Delta Hz |l.og Cnitical[Power Cerit. Itakura Ttakura-Saito

Act | Act | Act Norm| Act INorm| Act INorm] Act INorm| Act Eﬁorm Act {Norm

oo oo .00 .00] .007 .00] .00] .00] .00} .00]5.45E6] .00][2.00E0] .00
20.1] 20.7(2.54] 47| .18 .36] .431 .33| .16! .35|691E6! .01]|5.84E1f .00
23.0| 14.6[3.45] .64] .261 .51] .64] .49 .23F .51|1.36E7¢ .02]|2.36E2} .01
17.0] 8.62[4.16] 78] 337 65| .83 64| .20 .65|421E7} .05]|9.47E2} .04
13.5] 5.10]4.57] 85| 381 .75] 961 .74| .33 .75[8.82E7} .10]2.13E3} .09
I1.0] 2.60[4.827 90] .41} .§1[1.05] .81| .36} .82|1.53EQ} .17]3.80E3} .16
9.06] 0.66[5.00] .93 .44t 86[1.11] .86| .38! .87|2.35E8F .25[5.93E3} .25
7.471-0.92[5.11] .95 .46; 90|1.16] .89] .40 .90|3.37E8; .36|8.55E3} .36
6.13[-2.26(5.201 97 .47t 93{1.21{ 93| 41 .94|45/E8: .49|1.16E4] .49
4.981-3.42]5.27] 98] .48 .96]1.24] 96] .43: .96[5.95E8} .64|1.52E4] .64
395[-4.45[5.32] .99] 507 98]1.27{ 981 .44f 98|7.51E8f .81|1.92E4} .81
3.041-5.3615.3711.00] .51:1.00|1.30]1 1.00| .44} 1.00{9.26E81.00[2.37E4} 1.00

(Act = actual observed distortion value, Norm = normalized observed distortion value)

The normalized average objective distortion values are also plotted as a function of
Segmental SNR in figure 5.17. The term average refers to the average frame distortion.
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Also, not. that the average objective values were normalized with respect to the
. corresponding highest average distortion measure obtained at the lowest SEGSNR.

Figure 5.17 - Effect of Additive White Noise on Objective Distortion Measures
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Referring to figure 5.17, the Itakura and Itakura-Saito distortion measures increase rapidly
below a SEGSNR of about 5 dB. The other distortion measures are virtually a lincar
function of SEGSNR with the exception of the L.og-Area distorion measure which appears
to be leveling off below a SEGSNR of about 5 dB. Also note that the plot of the
normalized Itakura distortion measure 1s comncident with the Itakura-Sato distortion
measure while the plots of the normalized Delta Hz (6 — form) and Log Critical Band

distortion measures are coincident with the Power Critical Band distortion measure.
5.4.3 Observed Results for the Proposed Speech Enhancement Systems

This section will provide the actual obscrved results for the simulated speech enhancement
trials. The observed results will be relayed via the use of the objective distortion measures
. introduced in section 5.4.2. Subjective comments on the enhanced specch signal based on

informal listening tests will also be provided for two levels of noise - (i) at a moderate input
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noisc level of SEGSNR = 10 dB and (ii) at a relatively heavy input noise level of SEGSNR

‘ = 010-5 dB.

5.4.3.2 Observed Results - Combined VQ Codebook

Observed results are provided for a VQ-based speech enhancement system using combined
VQ codebooks and various template-matching distortion measures. Note that the Vector
Quantizer codebooks were generated using speech from Male Speaker 1 (see section

5.3.2.2) while the test phrase was from Male Speaker 3.

5.4.3.2.1 Effect of Additive Gaussian Noise on Test Phrase 1

The effect of additive gaussian noise on the 6 objective distortion measures for Test Phrase
I was determmed by applying various levels of gaussian noise. The results are listed in
table 5.6. The normalized average objective distortion values are also plotted as a function
of Segmental SNR in figure 5.18. Note that the average objective values were rormalized

with respect to the corresponding highest average distortion measure obtained at the lowest

¢ SEGSNR.

The observed objective distortion measures for the enhanced speech trials involving Test
Phrase 1 were also normalized to the same corresponding highest average distortion

measure obtamed for additive white gaussian noise at the lowest SEGSNR.

Table 5.6 - Observed Distortion Values for Test Phrase 1 for Various Levels of White

Noise.

. Seg- s Areq | DPeltaHz M og Critical|Power Crit. , , Qs

SNR SNLR Log Area (85— form) EBun d Band Itakura | Itakura-Saito
Act | Act | Act Nomﬁ Act iINorm| Act lNorm Act iNorm| Act ENorm Act iNorm
24.7] 15.6] 3.36] 0.57] 0.21] 0.41] 0.57] 0.49 0.1% 0.42] 3.34E7; 0.01] 2.42E2% 0.01
18.7]1 9.59( 4.25 0.73 0.29 0.57] 0.79 0.58 0.26] 0.58 1.23E8 0.02] 9.81E2 0.02
15.2] 6.06] 4.07] 0.80 0.34 0.67] 0.92] 0.67] 0.31t 0.69 2.73E8 0.05] 2.21E3 0.05
12.71 3.56] 4.99] 0.85 0.38 0.75] 1.01; 0.74] 0.34¢ 0.76] 4.83E8 0.08] 3.93E3! 0.08
9.14]1 0.047 5.35] 0.91] 0.42 0.82] 1.14{ 0.83] 0.38; 0.84 1.08E% 0.18f 8.85E3; (.18
6.65]-2.46] 5.56 ().95+ 0.46. 0.9 1.22 0.89 0.40: 0.89 1.92E% 0.33] 1.57E4! 0.33
4.711-4.3915.70{ 0.97] 0.48 0.94 1.28 0.93] 0.42 0.93{ 3.00E% 0.51] 2.46E4 0.51
1.78[-7.32]5.851 .00y 0.51t 1.00y 1.37 1.00] 0.45; 1.00| 5.87E% 1.0 4.8254 1.00

(Act = actual observed distortion value, Norm = normalized observed distortion value)
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Figure 5.18 - Observed Distortion Values for Test Phrase | for Various Levels of White
Noise.
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5.4.3.2.2 Using the Peak-Based Distortton Measure

The observed normalized objective distortion values as a function of Segmental SNR are
shown in figures 5.19, 5.20, and 5.21 for a combined 32-clement, 64-clement, and 128-

element Vector Quantizer respectively.

Subjectively, the enhanced speech was slightly muffled and had a distinct fluttering or
bubbling quality at a moderate input noise level for the enhancement system which was
based on the combined 32-element VQ codebook. The background wideband noise was
noticeably reduced. With an increase of the VQ codebook size to 64 clements, the
perceived speech still had a distinct fluttering or bubbling quality, but the speech was more
crisp. There was no difference in the percerved quality of the enhanced speech signal with

an increase of the VQ codebook from 64 elements to 128 clements.

For high levels of input noise and a 32-element VQ codebook, the fluttering/bubbling etfect
was more apparent and was accompanied with a greater level of wideband noise. When the
size of the VQ codebook was increased to 64 elements, the level of background wideband
noise was reduced slightly, but there was no perceived reduction in the fluttering/bubbling
quality. There was no difference n the perceived quality of the enhanced speech signal

with an increase of the VQ codebook from 64 elements to 128 clements
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Overall, the acceptability and intelligibility of the enhanced speech signal was roughly equal
to that of the input noisy speech signal for moderate input noise levels and was less than

that of the input noisy specch for heavy input noise levels.

The subjective fluttering/bubbling quality of the enhanced speech signal was primarily due
to a high number of nappropriate AR model selections from the VQ codebook.
Specifically, the peak-based template matching distortion measure tended to select AR

models associated with voiced speech and unvoiced speech with equal preference for a

given speech segment.

Figure 5.19 - Observed Results for Combined 32-Element VQ Codebook indexed by the
Peak-Based Template-Matching Distance Measure
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Figure 5.20 - Observed Regilis for Combined 64-Element VQ Codebook indexed by the
Peak-Based Template-Matching Distance Measure
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Figure 5.21 - Observed Results for Combined 128-Element VQ Codebook indexed by the
Peak-Based Template-Matching Distance Measure
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5.4.3.2.3 Using the Itakura Distortion Measure

The observed normalized objective distortion values as a function of Scgn.cntal SNR are
shown in figures 5.22, 5.23, and 5.24 for a combined 32-element, 64-clement, and 128-

element Vector Quantizer respectively.

Subjectively, the enhanced speech was slightly muffled and also had a moderate warbling
quality at 2 moderate input noise level for the enhancement system which was based on the
combined 32-element VQ codebook. The background wideband noise was noticeably
reduced. With an increase of the VQ codebook size to 64 elements, the percerved speech
was slightly more crisp, but now had a distinct warbling quahty. There was no ditference
in the perceived quality of the enhanced speech signal with an increase of the VQ codebook

from 64 elements to 128 elements.

For high levels of input noise and a 32-element VQ codebook, the warbling effect was
more apparent and was accompanied with a greater level of wideband noise which also had
a thumping quality. When the size of the VQ codebook was increased to 64 elements, the
level of background wideband noise was reduced slightly  However, the perceived
warbling effect was greater. There was no difference in the perceived quahty of the
enhanced speech signal with an increase of the VQ codebook from 64 elements to 128

elements.
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Overall, the acceptability and intelligibility of the enhanced speech signal was roughly equal
to that of the input noisy speech signal for moderate input noise levels and was less than

that of the input noisy speech for heavy input noise levels.

The subjective warbling quality of the enhanced speech signal was primarily due to a high
number of inappropriate AR model selections from the VQ codebook. Specifically, the
Itakura template matching distortion measure tended to select AR models associated with
voiced speech and unvoiced speech with equal preference for a given speech segment. This

effect was more pronounced at high input noise levels.

Figure 5.22 - Observed Results for Combined 32-Element VQ Codebook indexed by the
Itakura Template-Matching Distance Measure
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Figure 5.23 - Observed Results for Combined 64-Element VQ Codebook indexed by the
Itakura Template-Matching Distance Measure
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Figure 5.24 - Observed Results for Combined 128-Element VQ Codebook indexed by the
Itakura Template-Matching Distance Measure
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5.4.3.2.4 Using the Itakura-Saito Distortion Measure

The observed normalized objective distortion values as a function of Segmental SNR is
shown in figure 5.25 for a combined 64-element Vector Quantizer.

Subjectively, the enhanced speech was shightly muffled and the background noise was only
barely perceptible at a moderate input noise level for the enhancement system which was
based on the combined 32-element VQ codebook. With an increase of the VQ codebook
size to 64 elements, the muffled quality was effectively elimmated and the perceived speech
was very crisp. There was no difference in the perceived quality of the enhanced speech

signal with an increase of the VQ codebook from 64 elements to 128 clements.

For high levels of input noise and a 32-element VQ codebook, the perceived speech had a
high level of wideband noise which also had a chirping and fluttering quality. When the
size of the VQ codebook was increased to 64 elements, the level of background wideband
noise was reduced slightly. However, the perceived chirping and fluttering quality of the
background noise was increased. There was no difference in the perceived quahity of the
enhanced speech signal with an increase of the VQ codebook from 64 elements to 128

elements.
Overall, the acceptability and intelligibility of the enhanced speech signal was roughly equal

to or greater than that of the input noisy speech signal for moderate input noise levels and
was /ess than that of the input noisy speech for heavy input noise levels.
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The perceived high level of background noise at high input noise levels was primarily due
to a high number of inappropriate AR model selections from the VQ codebook.
Specifically, the Itakura-Saito template matching distortion measure tended to select AR
models corresponding to voiced speech independently of the voiced or unvoiced nature of
the noisy input segment at high noise levels. Furthermore, with increasing levels of input
noise, the set of selected VQ elements was increasingly reduced to those AR models which

allowed the greatest amount of speech and noisy energy to pass through the adaptive filter.

Figure 5.25 - Observed Results for Combined 64-Element VQ Codebook indexed by the
Itakura-Saito Template-Matching Distance Measure
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5.4.3.2.5 Using the Log-Area Distortion Measure

The observ~d normalized objective distortion values as a function of Segmental SNR is

shown in figure 5.26 for a combined 64-element Vector Quantizer.

Subjectively, the enhanced speech was slightly muffled and had a fluttering/bubbling
quality while the perceived background noise was only moderately reduced for the
enhancement system which was based on the combined 32-element VQ codebook. With an
increase of the VQ codebook size to 64 elements, the muffled quality was slightly reduced
while the fluttering/bubbling quality was increased. There was no difference in the
perceived quality of the enhanced speech signal with an increase of the VQ codebook from

64 elements to 128 elements,
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For high levels of input noise and a 32-element VQ codebook, the perceived speech had a
muffled and increased fluttering/bubbling quality and was also accompanied with a high
level of wideband noise. When the size of the VQ codebook was increased to 64 elements,
the muffled quality of the speech and the level of background wideband noise was reduced
slightly. However, the perceived fluttering/bubbling quality of the speech was increased.
There was no difference in the perceived quality of the enhanced speech signal with an
increase of the VQ codebook from 64 elements to 128 elements.

Overall, the acceptability or intelligibility of the enhanced speech signal was less than the
input noisy speech at all input noise levels. The perceived high level of background noise
at high input noise levels was primarily due to a high number of inappropriate AR model
selections from the VQ codebook for both voiced and unvoiced speech at all input noise

levels.

Figure 5.26 - Observed Results for Combined 64-Element VQ Codebook indexed by the
Log-Area Template-Matching Distance Measure
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5.4.3.2.6 Comparison of Spectrograms

The spectrogram for the undistorted version of Test Phrase 1 is shown in figure 5.27 (a).
The spectrogram of a noisy version of Test Phrase 1 with an SNR of 9.1 dB or SEGSNR
of 0.0 dB is shown as figure 5.27 (b). The spectrograms for the enhanced speech signals
processed using the enhancement system using a combined 64-clement VQ Codebook are
shown as figures 5.27 (¢), 5.27 (d), 5.27 (e) for the Peak-Based, Itakura, Itak ura-Saito,
and Log-Area template matching distortion measures respectively.

161




The spectrograms were created by applying a 128 sample Hamming analysis window,
padding the analysis window by 128 zeros, and then taking a Fast Fourier Transform of the
padded 256 sample analysis window. The Hamming analysis window was applied at a
frame rate of 156.25 times per second. This process resulted in an approximate spectral
resolution of approximately 310 Hz. The actual printed output consists of a 5 level
intensity representation of the magnitude of the FFT. The 5 intensity or gray levels vary
from white to black and correspond to 45 dB or lower, 45 to 63.3 dB, 63.3 to 81.7 dB,
81.7 to 100 dB, and 100 or greater dB respectively.

In general, for the spectrograms dealing with the enhanced speech signals, the background
noise 1s visibly reduced. However, the overall formant structure associated with voiced
speech has been distorted. In particular, the 2nd formant suffers from a moderate but
consistent degradation or attenuation while the 3rd formant is severely attenuated or
altogether absent. This would account for the 'muffled’ quality for the enhanced speech
signal which was frequently encountered during informal listening tests. Furthermore,
both the voiced and unvoiced regions of the spectrograms tend to exhibit a pattern of
vertical striations which would account for the fluttering or bubbling quality of the speech
and background noise encountered during informal listening tests. Examining 5.27 (e) in
particular, there is a fairly consistent set of bands across the voiced and unvoiced regions of
the spectrogram, indicating that the Itakura-Saito template-matching distortion measure was
selecting from a limited set of AR models associated with voiced speech independently of

the voiced or unvoiced nature of the input noisy segment.
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5.4.3.3 Observed Results - Segregated VQ Codebooks
5.4.3.3.1 Determining the Optimum Size of the Voiced VQ Codebook

The optimum size of the voiced VQ codebook was empirically determined by processing a
series of voiced speech segments which had been corrupted by a fixed level of additive
noise through a speech enhancement system based on VQ codebooks of varying sizes. The
voiced speech segments were derived from Test Phrase 1 using the voicing discriminator.
Note that the Vector Quantizer codebooks were generated using speech from Male Speaker
1 (see section 5.3.2.2) while the test phrase was from Male Speaker 3.

The observed normalized objective distortion values as a function of the VQ codebook size
are shown in figures 5.28, 5.29, 5.30, and 5.31 for the Peak-Based, Itakura, Itakura-
Saito, and Log Area template matching distortion measures respectively. The VQ size of
‘Ref.’ in these figures is actually an indication of the objective quality of the input noisy
sigual. Also, note that the observed objective distortion measures were normalized by the

same corresponding normalization factors for Test Phrase 1 according to section 5.4.3.2.1.

Comparing the observed objective results in figures 5.28, 5.29, 5.30 and 5.31, the
optimum size of the VQ codebook for voiced speech appears to be either 32 or 64. This
would imply that only coarse versions of the specch production process as modeled via the

AR process are required for the speech enhancement process.

Figure 5.28 - Observed results for noisy voiced speech processed using differently sized
VQ Codebooks and indexed by the Peak-Based distortion measure
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These observed objective results concur with informal listening tests. In general, with a
very small VQ size (e.g., 16) , the enhanced speech tends to have a greater muffled quality
and is accompanied with a greater degree of background noise. With larger VQ sizes (e.g.,
greater than 64), the voiced speech tends to have an increasing fluttering or warbling quality
while the background noise tends to be diminished but may also have a fluttering or

chirping quality.

Figure 5.29 - Observed results for noisy voiced speech processed using differently sized
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5.30 - Observed results for noisy voiced speech processed using differently sized

VQ Codebooks and indexed by the Itakura distortion measure
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Figure 5.31 - Observed results for noisy voiced speech processed using differently sized
VQ Codebooks and indexed by the Log-Area distortion measure
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5.4.3.3.2 Determining the Optimum Size of the Unvoiced VQ Codebook

The optimum size of the unvoiced VQ codebook was empirically determined by processing
a series of unvoiced speech segments which had been corrupted by a fixed level of additive
noise through a speech enhancement system based on VQ codebooks of varying sizes. The
unvoiced speech segments were derived from Test Phrase 1 usmg the voicing
discriminator. Note that the Vector Quantizer codebooks wete generated using speech from
Male Speaker 1 (see section 5.3.2.2) while the test phrase was from Male Speaker 3. Also,
note the unvoiced attenuation factor specified i section 5.3.2.6 was set to a constant setting

of 1 for the experimental trials involving only unvoiced speech.

The observed normalized objective distortion values as a function of the VQ codebook size
are shown in figures 5.32 and 5.33 for the Itakura and Itakura-Saito template matching
distortion measures respectively. The VQ size of 'Ref." in these tigures 1s actually an
indication of the objective quality of the input noisy signal. Also, note that the obscrved
objective distortion measures were normalized by the same corresponding normalization

factors for Test Phrase 1 according to section 5.4.3.2.1.

Comparing the observed objective results for the Itakura and Itakura-Saito distortion
measures 1n figures 5.32 and 5.33, the optimum size of the VQ codebook for unvoiced
speech appears to be either 8 or 16. The other objective distortion measures were relatively

static over the entire range of VQ sizes. This would tend to imply that the etffect of the VQ-
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based enhancement process on noisy unvoiced speech is at best only marginal. The
reduced observed Itakura and Itakura-Saito distortion values may suggest that the VQ-based
enhancement process using an Itakura or Itakura-Saito template matching distortion

measure may aid the perception of the unvoiced segment via some spectral shaping.

Subjectively, enhancement processes based on larger VQ codebooks sizes produced output
speech with a greater fluttering quality. Generally, there was no perceived change in
acceptability or intelligibility in the enhanced speech signals compared to that of the input
noisy speech signal.

Figure 5.32 - Observed results for noisy unvoiced speech processed using differently sized
VQ Codebooks and indexed by the Itakura distortion measure
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Figure 5.33 - Observed results for noisy unvoiced speech processed using differently sized
VQ Codebooks and indexed by the Itakura-Saito distortion measure
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5.4.3.3.3 Observed Results for Unrestricted (Continuous) Speech

Observed results are provided for unsegregated or continuous speech processed by the VQ-
based speech enhancement system using segregated VQ codebooks. Note that 1f an
unvoiced s; “>ch segment was detected, the unvoiced speech segment was attenuated by a
factor proportional to the detected energy level in the unvoiced speech segment (see section
5.3.2.6 - The Adaptive Filter). Also, note that the Vector Quantizer codebooks were
generated using speech from Male Speaker 1 (see section 5.3.2.2) while the test phiase was
from Male Speaker 3.

5.4.3.3.3.1 Using the Peak-Based Distortion Mcasure

The observed normalized objective distortion values as a function of Scgmental SNR e
shown in figure 5.34 for a VQ enhancement system based on segregated voiced and
unvoiced VQ codebooks with 32 and 16 elements respectively. The voiced VQ codebook
was indexed using the Peak-Based templatc matching distortion measure while the
unvoiced VQ codebook was indexed using the Itakura template matching distottion

measure.

Subjectively, the enhanced speech was crisp and the background notse level substantially
reduced at moderate noise levels. The fluttering and bubbling quality associated with
combined VQ codebooks was also effectively eliminated. For higher levels of input noise,
the enhanced speech was still crisp and slightly irregular while the back ground noise was
more apparent but still substantially 1educed when compared to that of the mput noisy
speech signal. The irregular nature of the voiced portons of the speech signal was
primarily due to failures in the Formant Tracking Process at high levels of mput nose.
Correspondingly, the irregular nature of the voiced portions of the speech signal tended to

be more pronounced with increasing levels of input noise.

Overall, the acceptability of the enhanced speech signal was better than the noisy input
signal for the range of input noise levels encountered as the enhanced speech stgnal was
less fatiguing to listen to due to a substantial reduction in background noise. The
intelligibility of the enhanced speech signal was at least equal to that of notsy input signal

for the range of input noise levels encountered.
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Figure 5.34 - Observed Results for Segregated VQ Codebooks, Voiced VQ Codebook has
32 elements and is indexed by the Peak-Based distortion measure
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The upper limit of performance for the enhancement process using the Peak-Based
distortion measure was determinei by providing the Formant Tracking Process with access
to the clean speech signal. The observed objective results as a function of Segmental SNR
are shown in figure 5.35 for a VQ enhancement system based on segregated voiced and

unvoiced VQ codebooks with 32 and 16 elements respectively.

Figure 5.35 - Observed Results for Segregated VQ Codebooks, Voiced VQ Codebook has
32 clements and is indexed by the Peak-Based distortion measure - Upper
himit of performance for the Peak-Based enhancement process
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Comparing figures 5.34 and 5 35, the greatest difference 1n the observed distortion values
occurs for a Segmental-SNR of less than approximately 0 dB. This would support the
premuse that a relatively noise-robust Formant Tracking Process would improve the utility
of a VQ-based speech enhancement system which used a Peak-Based template matching

distortion function. Subjectively, informal listening tests confirmed that the irregular
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nature of the enhanced speech was effectively eliminated for high levels of input noise
when the Formant Tracking Process had access to the clean speech signal.

5.4.3.3.3.2 Using the Itakura Distortion Measure

The observed normalized objective distortion values as a function of Segmental SNR are
shown in figure 5.36 for a VQ enhancement system based on segregated voiced and
unvoiced VQ codebooks with 32 and 16 elements respectively. Both the voiced and
unvoiced VQ codebooks were indexed using the Itakura template matching distortion

measure.

Subjectively, the enhanced speech was slightly muffled and had a slight flattering/bubbling
quality while the background noise level was substantially reduced at moderate noise levels.
Note that the fluttering/bubbling quality of the enhanced speech signal was gicatly
diminished when compared to that of the enhanced speech signals associated with
combined VQ codebooks. For higher levels of mput noise, the enhanced speech still had a
slight muffled and fluttering quality while the level of the background noise was more
apparent but still substantially reduced when compared to that of the input nowsy speech

signal.

Overall, the acceptability of the enhanced speech signal was better than the noisy mput
signal for the range of input noise levels encountered as the enhanced speech signal was
less fatiguing to histen to due to a substantial reduction 1 background noise. The
intelligibility of the enhanced speech signal was at least equal to that of noisy mput signal
for the range of input noise levels encountered.

Figure 5.36 - Observed Results for Segregated VQ Codebooks, Voiced VQ Codebook has
32 elements and 1s indexed by the Ttahura distortion measure
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5.4.3.3.3.3 Using the Itakura-Saito Distortion Measure

The observed normalized objective distortion values as a function of Segmental SNR are
shown in figure 5.37 for a VQ enhancement system based on segregated voiced and
unvoiced VQ cedebooks with 32 and 16 elements respectively. The voiced VQ codebook
was indexed using the Itakura-Saito template matching distortion measure while the

unvoiced VQ codebook was indexed using the Itakura template matching distortion

mceasure.

Subjectively, the enhanced speech was crisp and the background noise level was effectively
climinated at moderate noise levels. For higher levels of input noise, the enhanced speech
was still crisp but increasingly irregular while the background noise was more apparent and
also had a chirping and fluttering quality. The perceived high level of background noise at
high input noise levels was primarily due to a high number of inappropriate AR model
selections from the voiced VQ codebook. Specifically, with increasing levels of input
noise, the set of selected voiced VQ elements was increasingly reduced to those AR models

which allowed the greatest amount of speech and noisy energy to pass through the adaptive

filter,

Overall, the acceptability and intelligibility of the enhanced speech signal was equal to or
greater than that of the input noisy speech signal level for moderate levels of input noise and

less than that of the mput noisy speech signal for relatively high levels of input noise.

Frgure 5.37- Observed Results for Segregated VQ Codebooks, Voiced VQ Codebook has
32 elements and 1s indexed by the Itakura-Saito distortion measure
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5.4.3.3.3.4 Using the Log Area Distortion Measure

The observed normalized objective distortion values as a function of Segmental SNR are
shown in figure 5.38 for a VQ enhancement system based on segregated vorced and
unvoiced VQ codebooks with 32 and 16 elements respectively. The vorced VQ codebook
was indexed using the Log-Area template matching distortion measure while the unvoiced

VQ codebook was indexed using the Itakura template matching distortion measuie.

Subjectively, the enhanced speech was muffled and the bachground noise level was only
moderately reduced at moderate noise levels. For higher levels of input noise, the voiced
speech was increasingly irregular while the background noise was more apparent and also
had a chirping and fluttering quality. The perceved irregularity and the high level of
background noise at high input notse levels was primanly due to a high number of

inappropriate AR model selections from *he voiced VQ codebook.

Overall, both the acceptability and mtelhigibility of the enhanced speech signal were Iess

than that of the input noisy speech signal level for all levels on input noise.

Figure 5.38 - Observed Results for Segregated VQ Codebooks, Voiced VQ Codebook has
32 elements and is indexed by the Log-Area distortion measure
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5.4.3.3.3.5 Comparison of Specttograms

The spectrogram for the undistorted version of Test Phrase 1.s shown in figure 5.39 (a)
The spectrogram of a noisy version ot Test Phrase | with an SNR of 9 1 dB or SEGSNR
of 0.0 dB is shown as figure 5.39 (b). The spectrograms for 'he enhanced speech signals

processed using the enhancement system using segregated VO Codebooks are shown as
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figures 5.39 (c), 5.39 (d), 5.39 (e), and 5.39 (f) for the Peak-Based, Itakura, Itakura-
Saito, and Log-Area template matching distortion measures respectively. The size of the

voiced an unvoiced VQ codebooks were 32 and 16 elements respectively.

The spectrograms were created by applying a 128 sample Hamming analysis window,
padding the analysis window by 128 zeros, and then taking a Fast Fourier Transform of the
padded 256 sample analysis window. The Hamming analysis window was applied at a
frame rate of 156.25 umes per second. This process resulted 1n an approximate spectral
resolution of approximately 310 Hz. The actual printed output consists of a 5 level
intensity representation of the magnitude of the FFT. The 5 intensity or gray levels vary
from white to black and correspond to 45 dB or lower, 45 to 63.3 dB, 63.3 to 81.7 dB,
81.7 1o 100 dB, and 100 or greater dB respectively.

In general, for the spectrograms dealing with the enhanced speech signals, the background
noise 1s visibly teduced. The unvoiced regions of the spectregram exhibit a mild shaping
and a reduction m energy level as a result of the combined filtering effect using the
unvoiced AR model selected using the Itakura template-matching distortion measure and the
unvoiced attenuation factor. Also, in comparison to the spectrograms in figure 5.27, there

are no evident striation patterns in the unvoiced region of the spectrograms.

In the case of the vorced regions of the spectrogram, the overall formant structure shows
some improvement relative to the spectrograms associated with the combined VQ codebook
(figure 5.27). In particular, the 2nd formant 1s relatively well maintained. However, the
3rd formant generally sull suffers from severe attenuation. For the spectrograms associated
with the Peak-Based and Itakura distortion measures, there is no apparent vertical striation
pattern evident in the vorced region of the spectrogram. However, the vertical striations are
stll evidentan the spectiogram associated with the Log-Area distortion measure indicating
that the Log-Arca distorion measute s not particalarly noise-robust even provided with the
relatively restricted set ot vorced AR 1aodels to select from. Also, the horizontal banding
effects sull evident in the vorced regrons of the spectiogram associated with the Itakura-
Sarto distortion micasure, indicating that the Itakura-Saito distortion measure was
consistently selecting troma imited set of voiced VQ codebook elements independently of

the formant structure assoctated with the ipuat noisy speech segment.
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5.4.3.3.4 Robustness of VQ Codebooks Across Different Male Speakers

The robustness of the segregated VQ codebooks across different male speakers was
empirically demonstrated by observing the objective results for processing Test Phrase 2
(spoken by Male Speaker 2), degraded by various levels of mput noise, on the 'OLD' VQ
codebooks generated using training speech sequences from Male Speaker 1 and then on
'NEW' VQ codebooks generated using traiming speech sequences from both Male Speaker
1 and Male Speaker 2.

For the observed results listed in this section, the voiced and unvoiced VQ codebooks were

32 and 16 elements respectively.

5.4.3.3.4.1 Effect of Additive Gaussian Noise on Test Phrase 2

The effect of additive gaussian noise on the 6 objective distortton measutes for Test Phiase
2 was determined by applying various levels of gaussian noise. The results are listed in
table 5.7. The normalized average objective distortion values are also plotted as a function
of Segmental SNR 1n figure 5.40. Note that the average objective values were normalized
with respect to the corresponding highest average distortion measure obtamed at the fowest
SEGSNR. The observed objective distortion measutes for the enhanced speech tnals
involving Test Phrase 2 will also be normahzed to the same corresponding highest average

distortion measure obtained for additive white gaussian noise at the lowest SEGSNR.

Table 5.7 - Effect of Additive White Noise on Test Phrase 2
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Figure 5.40 - Effect of Additive White Noise on Test Phrase 2
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5.4.3.3.4.1 Varymg the Training Sequence for Male Speakers

Figures 5.41, 5.42, and 5.43 show the observed normalized objective distortion values as a
function of Segmental SNR for the case that (i) the OLD voiced VQ codebook is indexed by
a Peak-Based template-matching distortion measure, (1) the NEW voiced VQ codebook is
mdexed by a Peak-Based template-matching distortion measure, and (iii) the NEW voiced
VQ codebook is indexed by a Peak-Based template-matching distortion measure and the
Formant Tiacking Process has access to the clean speech signal. In all the cases the OLD

or NEW unvoiced VQ codebook is indexed by the Itakura template-matching distortion

measure.

Figures 5.44 and 5.45 show the observed normalized objective distortion values as a
function of Segmental SNR for the case that the OLD voiced VQ codebook is indexed by an
ltakura template-matching distortion measure and the NEW voiced VQ codebook is indexed
by an Itakuta template-matching distortion measure respectively. In both cases the OLD or
NEW unvoiced VQ cadebook 1s also indexed by the Itakura template-matching distortion

measure,

Comparmg tigure 5.41 with figure 5.42 and figure 5.44 with figure 5.45, the plots of the
notmalized objective distortion values associated with OLD and NEW VQ codebooks are
very similar, Informal listening tests confirmed that the subjective quality of the enhunced
speech signals produced by enhancement systems using the OLD or NEW VQ codebooks
were stnudar tor all levels of mput noise. However, a careful comparison of the enhanced

speech signals indicated that the enhanced speech signals processed by the enhancement
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system using the NEW VQ codebooks were slightly better in that the voiced speech wits
slightly more crisp and slightly less irregular while the background noise was slightly less
noticeable. Figure 5.43 when compared to figure 5.42 dicates the upper bound for the
performance of the enhancement process using a Peak-Based template matching distortion

measure assuming a noise-robust Formant Tracking Process is available.

Figure 5.41 - Observed Resuits for OLD Segregated VQ Codebooks, Voiced VQ
Codebook with 32 Elements indexed by the Peak-Based Distance Measute
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Figure 5.42 - Observed Results for NEW Segregated VQ Codebooks, Voieed VQ
Codebook with 32 Elements indexed by the Peak-Based Distance Meastie
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Figure 5.43 - Observed Results for NEW Segregated VQ Codebooks, Voiced VQ
‘ Codebook with 32 Elements indexed by the Peak-Based Distance Measure -
Upper performance limit of Peak-Based enhancement process
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Figure 5.44 - Observed Results for OLD Segregated VQ Codebooks, Voiced VQ
Codebook with 32 Elements indexed by the Itakura Distance Measure
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Figure 5.45 - Obscrved Results for NEW Segregated VQ Codebooks, Voiced VQ
Codebook with 32 Elements indexed by the Itakura Distance Measure
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5.4.3.3.5 Robustness of VQ Codebooks Across Speakers of Different Gender

The robustness of the segregated VQ codebooks across speakers of ditterent genders vvas
empirically demonstrated by observing the objective 1esults tor processing Test Phiase 3
(spoken by Female Speaker 1), degraded by various levels of mput noise, on the "OLD’
VQ codebooks generated using training speech sequences from Male Speaker |and then on
'NEW' VQ codebooks generated using traming speech sequences fiom Male Speaker 1,
Male Speaker 2, and Female Speaker 3.

For the observed results listed in this section, the voiced and unvoiced VQ codebooks were

32 and 16 elements respectively.

5.4.3.3.5.1 Effect of Additive Gaussian Noise on Test Phrase 3

The effect of additive gaussian noise on the 6 objective distortion measuwes for Test Phiase
3 was determined by applying vartous levels of gaussian noise. The tesults are hsted m
table 5.8. The normalized average objective distortion values are also plotted as a function
of Segmental SNR in figure 5 46. Note that the average objective values were normalized
with respect to the corresponding highest average distortion measure obtined at the lowest
SEGSNR. The observed objective distortion measutes for the enhanced speech tinals
involving Test Phrase 3 will also be normalized to the same conresponding highest average

distortion measure obtained tor additive white gaussian noise at the lowest SEGSNR

Table 5.8 - Effect of Additive White Noise on Test Phrase 3

Seg- s Aren | PelaHz L op CincallPower Crit Ak g Al rer .
SNR SNLR Log Area (S — form) EB:II](] B ltakura Nakura-Saito
Act | Act | Act INorm| Act ‘Norm| Act Norm] Act Norm| Act iINomm{ Ac iNorm
2407 15.97 305 058 02T 042 054, 043 018 044 1 417 0 02 3 351 0 O]
18.019.921393 075 0.3 0.60{ 075 060 025 0614 1T 005 1 3712 004
14.51 6.401 437 083 0.35 0700 089 071 029 071 86OET O 100 3121:20 009
12.01 3.90] 4 63] 088 0.39 078 008 O78 032 078 1 40FK O 7] 5 5%E.2( 0 16
8.431 0.381 4095 094 0.44 K& .11 O K& 030 0 KK 3 288 0 368 1 2613 0 30
5.041-2.12[5.13: 09K 047 0.94 119 094 0.39 ()95 95 79L& 0 64 22413 0 04
4.001-4.06] 5250 1.00] 05 1.OOf 126; 1001 041 100090218 1 008 350k 3 1 ()

(Act = actual observed distortion value, Norm = normiahized observed distortion value)

181



‘ Figure 5.46 - Effect of Additive White Noise on Test Phrase 3
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5.4.3.3.5 1 Varymg the Training Sequence for Female Speakers

Figures 5.47, 5.48, and 5.49 show the observed normalized objective distortion values as a
function of Segmental SNR for the case that (i) the OLD voiced VQ codebook is indexed by
a Peak-Based template-matching distortion measure, (ii) the NEW voiced VQ codebook is
‘ indexed by a Peak-Based template-matching distortion measuie, and (iii) the NEW voiced
VQ codebook 1s indexed by a Peak-Based template-matching distortion measure and the
Formant Tracking Process has access to the clean speech signal. In all the cases the OLD
or NEW unvoiced VQ codebook is indexed by the Itakura template-matching distortion

measue.

Figures 5.50 and 5.51 show the observed normalized objective distortion values as a
function of Segmental SNR for the case that the OLD voiced VQ codebook is indexed by an
Itakura template-matching distortion measure and the NEW voiced VQ codebook is indexed
by an Itakura template-matching distortion measure respectively In both cases the OLD or
NEW unvoiced VQ codebook 1s also indexed by the Itakura template-matching distortion

measure,

Comparing tigure 5.47 with figure 5.48 and figure 5.50 with figure 5.51, the plots of the
nornilized objective distortion values associated with NEW VQ codebooks are consistently
slightly lower than the objective distortion values associated with the OLD VQ codebooks
over the entire tange of mput noise values. Informal listening tests confirmed that the

. enthanced speech signals processed by the enhancement system using the NEW VQ
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codebooks were slightly better in that the voiced speech was shightly more crisp and slightly
less irregular while the background nowse was shghtly less noticeable and had less of a
fluttering quality. Figure 5.48 when compared to figure 5.49 idicates the upper bound for
the performance of the enhancement process using a Peak-Based template matching

distortion measure assunung a notse-robust Formant Tracking Process 1s available.

Figure 5.47 - Observed Results for OLD Segregated VQ Codebooks, Vorced V Q
Codebook with 32 Elements indexed by the Peak-Based Distance Measuie
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Figure 5.48 - Observed Results for NEW Segregated VQ Codebooks, Voiced VQ
Codebook with 32 Elements mdexed by the Peak-Based Distance Measwe
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Figure 5.49- Observed Results for NEW Segregated VQ Codebooks, Voiced VQ

Codebnok with 32 Elements indexed by the Peak-Based Distance Measure -
Upper performance limit of enhancement process
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Figure 5.50 - Observed Results for OLD Segregated VQ Codcbooks, Voiced VQ
Codebook with 32 Elements indexed by the Itakura Distince Measure
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5.51 - Observed Results for NEW Segregated VQ Codebooks, Voiced VQ
Codebook with 32 Elements indexed by the ltakura Distance Measure
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5.5 Summary and Additional Comments

The Vector Quantizer speech enhancement system based on separate voiced and unvoiced
codebooks outperformed the Vector Quantizer speech enhancement system based on a
combined voiced and unvoiced codebook both in terms of the ovserved objective measures
and in informal listening tests. In the case of speech enhancement systems based on the
combined VQ codebook, this was dae a high number of inappropriate codebook element
selections. In particular, the Peak-Based, Itakura, and Log Area distortion measures tended
to select AR models associated with voiced speech and unvoiced speech with equal
preference for a given speech segment. The Itakura-Saito distortion measure tended to
select from a hmited set of veoiced AR models independently of the voiced or unvoiced
nature of the input noisy speecl segment. The segregated codebooks combined with the
voicing decision greatly reduced the number of inappropriate codebook selections in the
casc of the Peak-Based and Itakura distortion measures. However, the additional
information provided by the voicing information only had a negligible effect on the Ttakura-
Saiio and Log-Area distortion measures at high input noise levels. In short, the act of
selecting the class of speech from a very small set oi aiternatives using a noise-robust
procedure and then enforcing a restriction on the AR model search procedure using the
class of speech mformation was beneficial to the proposed VQ based enhancement process.

The optimum size of the codebooks for voiced and unvoiced speech was empirically
determined to be in the range of 32-64 and 8-16 respectively. This would imply that only
coarse versions of the speech production process as modeled via the AR process are
required for the proposed speech enhincement process. This empirical result is in
agreement with the work carried out in [12] and [42] in which low state-mixture values
were found to provide the best performance for a speech enhancement process based on
Hidden Markov Models.

The optimum codebooks generated were demonstrated to be quite robust in that similar
objective and subjective results were obtained across a number of different speakers. In
particular the effect of including spoken text from a given male speaker not included in the
original male speaker based training sequence proved to be marginal with respect to
enhancing speech from the same given male speaker. The effect on enhancing noisy female
speech by including spoken text from the female speaker into the original male spes'er
based training sequence proved to be more evident but still fairly modest. For example, the
decrease in distortion in the case that female speech was included in the training sequence
resulted in approximately a 0.05 reduction in terms of the normalized
Aeriicar band powe (€:€) objective distortion measure throughout the range of input noise

€
levels.
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The codebooks were generated using the LBG algorithm specified in 4.2.1 which
inherently attempts to accommodate the multivariate properties of speech assuming that an
appropriate (AR) speech production model and a sufficiently fong 'raining sequence are
provided. However, a codebook which accommodates the properties of speech may not
necessarily be the optimum codebook tor the proposed speech enhancement process. That
is, a codebook couid be created which optimizes the division of speech-production space in
a manner that :mproves the codebook’s robustness to noise rather than accommodates the
probabilistic distribution of the training sequence. Such a codebook need not necessarily be
based on a Monte Carlo approach such as the LBG algorithm, but could be created o
tailored using an LBG produced codebook as a base using hnowledge of the speech
production process. The performance of the proposed enhancement system could also be
improved by designing or modifying filters corresponding to a given VQ codebook element
in order to take advantage of certain perceptual characteristics such as energy-frequency
masking. The filters would not necessarily be all-pole or AR filters.

The Itakura-Saito distortion measures provided the enhanced specch with the best
subjective and objective results for low input noise levels or Segmental SNR's greater than
approximately 12 dB. The Peak-Based distortion measure using the existing Formant
Tracking Process provided the best subjective and objective results at moderate input noise
levels or Segmental SNR's less than 12 dB and greater than -2 dB. The Itakura distortion
measure provided the enhanced speech with the best subjective and objective results for
high levels of inpat noise or Segmental SNR's less than -2 dB. However, when the
Formant Tracking Process had access to the clean speech, the subjective performance of the
Peak-Based distortion measure exceeded that of the Itakura distortion measure for high
levels of input noise. This indicates that the utility of the VQ based enhancement system
using the Peak-Based distortion measure could be improved with a relatively noisc-robust
Formant Tracking Process. The Log-Area distortion measure performed relatively poorly
at all input noise levels and indicated that a good objective measure of quality may not
necessarily be a good (noise-robust) template matching distortion measure.

The best objective and subjective performance was obtained for the VQ enhancement
system based on segregated codebooks. Usingthe d,, i bana power (€:€) as anindication
of objective speech quality, the VQ enhancement systems using segregated VQ codebooks
and the Peak-Based distortion measure were able to improve the quality of the noisy speech
signal by a factor equivalent to an increase in the Segmental SNR of approximatcly 3-8 dB
for a wide range of input levels.
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6. CONCLUSION

A proposed Vector Quantizer-based speech enhancement system based on an adaptive
filtering process was explored. A version of the proposed Vector Quantizer speech
enhancement which used segregated voiced and unvoiced VQ codebooks and a voicing
discriminator provided an improvement in objective quality equivalent to a 3-8 dB increase
in Segmental SNR over a wide range of input noise levels. Subjectively, informal listening
tests confirmed that the intelligibility of the enhanced speech signal for the best template-
matching distortion measure used to index the VQ codebooks was at least equal to if not
greater than the noisy input speech. The perceived acceptability of the enhanced speech
signal was also improved as a substantial portion of the background noise was effectively
removed without substantially distorting the underlying formant structure associated with

voiced speech.

The best template-matching distortion measure for a broad range of input noise levels was
the Peak-Based distortion measure. The performance of the Peak-Based distortion measure
may be improved for high input noise levels (Segmental SNR < -2 dB) assuming that an
improved noise-robust formant tracking procedure may be determined.

The codebooks used to analyse the speech enhancement system were generated using the
Linde, Buzo, and Gray algorithm which inherently attempts to accommodate the
multivariate properties of speech assuming that an appropriate (AR) speech production
model and sufficiently long training sequence are provided. Empirical results indicate that
the optimum size of the VQ codebook is quite small (32-64 elements for voiced speech)
implying that only coarse versions of the AR speech production model are sufficient for the
speech enhancement process. The speech enhancement process could be improved if the
means to index the codebook were designed in a non-Monte Carlo fashion using
knowledge of the speech production process while the corresponding filters were designed

to accommodate certain perceptual characteristics such as energy-frequency masking.
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