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ABSTRACT

Relations are studied in categories which have
finite products and (E,M) factorization systems. Relations
are the morphisms of a Bénabou's bicategory, provided that
pullbacks preserve E-class morphisms. More generally,
when there is assigned a full reflexive subcategory Hom'(A,B)
to each hom category, Hom(A,B), of a given bicategory, a
sufficient condition is obtained for Hom'(A,B) to be the
hom category in another bicategory. This is also applied
‘to obtain a bicategory whose morphisms are the pullback
spans.

Some properties of a relation R and its converse
R are investigated. A11 pullback relations are difunctional
(i.e. R= R o R o R). The main result in Chapter 2 is con-
cerned with the converse of this statement. Applications
are made to Barr's exact categories. Furthermore, some re-
sults known in algebraic categories are extended to exact
categories.

The last chapter deals with the problem in regular
categories when a pair of morphisms —9 5_Ff 3 can be

embedded in a pullback square.
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INTRODUCTION

Relations in special categories have been considered
by various authors, for example, in abelian categories by
MacLane [8], Puppe [10], and Hilton [3] and in algebraic
categories by Lambek [7]. We would like to study relations
in general categories, but our approach requires that these
must have finite products and factorization systems. Klein
[6] has obtained a condition for composition of relations
to be strictly associative. Here we consider the possibility
that associativity only holds up to a coherent isomorphism,
in other words, that the relations are the morphisms of a
bicategory in the sense of Bénabou [2].

In thapter 0, we investigate general properties
of factorization systems. Most of the concepts and results
in this chapter we learned from a talk by Kelly [4]. How-
ever, we believe that propositions(0.9) and (0.11) are new.

In Chapter 1, we look at a bicategory in which,
to each hom category, Hom (A,B), there is assigned a full
reflexive subcategory Hom' (A,B). We obtain a sufficient

condition for Hom' (A,B) to be the hom category in another



bicategory. This is applied to the situation in which

Hom (A,B) consists of all spans from B to A and Hom' (A,B)
consists of all relations from B to A. Klein's result [6]
is obtained as a special case.

In Chapter 2, we study the converse R of the
relation R and the relations R o R and R o R . The latter
are equivalence relations when R o Ro R =R , 1in which
case R is called difunctional. A11 pullback relations are
difunctional. Our main resu1t'(theorem (2.22)) is concerned
with the converse of this statement.

In Chapter 3, we apply the above result to the
exact categories of Barr. For exact categories we generalise
"the result known for algebraic categories which asserts that
every relation is difunctional if and only if a number ofv
interesting equivalent conditions hold, for example, that
every reflexive relation is an equivalence relation.

In Chapter 4, we obtain another application of
the sufficient condition in Chapter 1, where now Hom' (A,B)
is the category of all pullback spans from B to A. Under
certain conditions this bicategory is the same as Rel A in
Chapter 1.

In Chapter 5, we consider the problem when a pair

of maps - 9 5. f >+ can be embedded in a pullback. square.




Originally, this had been planned as an integral part of

the thesis, but at present it is unrelated to the other

chapters.



Chapter 0

(E , M) FACTORIZATION OF MORPHISMS

Let A be a category. The following definition is

due to Kelly [4].

DEFINITION 0.1. An (E,M) factorization system of

morphisms in A is defined as follows: there are two classes

E,M of morphisms in A satisfying the following:
1. Every isomorphism is both in E and M.

2. E is closed under composition and M

is closed under composition.

3. In the following commutative diagram,

¢,peE "and u,v €M,

<
™

v
< --==---Y

Ve



there exists a unique morphism y such that

vy=B8u and y ¢ =19 o.

4. For every morphism o in A there exists

a, € M and a € E such that o = a o, .

Clearly, (3) is equivalent to the unique diagonal

property: for any commutative diagram,

in A, with ¢ € E and ueM, there exists a unique y such

that vy ¢ = a and u vy =28.

PROPOSITION 0.2. If o € E, M thena is an iso.

Proof: Applying the unique diagonal property to

the commutative square

A\ 4

YV o




Definition (0.1) implies that the factorization

in (4) is unique; in fact, we have the following result.

PROPOSITION 0.3. Suppose A is a category with
two classes E and M of morphisms such that E and M are closed
under composition and with the property that every morphism
o in A is o o, where o € M and o, € E, then the fol-
lowing are equivalent:

(i) The factorization is unique, i.e. if o =o0a a, =

o' o where a €M and «a ‘e E then there exists a

m e e
!

. - - ’ _
unique isomorphism 6 such that #© Gy = Qg and ap & = op -

)
e :\
0 .
]
[ ' [
%e v %m
(ii) A has the unique (E,M) diagonal property.

Proof: (i) = (ii) Let 8 ¢ = p o with ¢ € E
and u € M. Suppose that Bm Be and oy % are the (E,ﬂ)

factorizations of B and o, respectively.



Then B ¢ =B, By ¢ = W oy o and by the uniqueness of (E,.M)

factorization of B¢, there exists a unique iso y such that

Y Be b = ag and u On Y = Bm. It follows that on Y Be ¢ =

o, 0o = O and o, Y Be = Bm Be = 8 . Thus oy Y Be is a

diagonal morphism. It remains to show its uniqueness.
Suppose x is another such diagonal map, i.e.

Xx ¢ =0 and wx=8. Let X, X be the (E,M) factoriza-

tion of x. Then Xp Xe ¢ = a, o and there exists a unique

iso & such that o 8 = Xp and 8 xo ¢ = 0q- Similarly

U Xy Xe = B Be and there is a unique iso o such that

U Xp 0= Bm and o Be = Xe- Hence o, = § Xe b =60 Be ¢
and By = W Xp O = M O s o. We recall that y is a unique
iso so that vy Be ¢ = og and p Op Y = Bm' Thus vy =6 0.

Therefore an Y Be = oy § o Be = Xp Xe — X-



. s . — = P ] 3 !
(i1) => (1) Let o=oa, o, =oa/ with o a/€EM

and ae,ae’e E. By the unique diagonal property, in the

commutative square

e N
Pl
‘7
7 /7
s 7
I} s 7
%e Yy s %m
/7 ’é
yard
/
//’
z/
4 Vv
a ! -
m

there exists unique morphisms y and § such that ¥y Ay = ae',

! = ! == = ' 3 s
o Y o ) g g and o ) O - We claim that y is

an isomorphism such that y § =1 and § y=1. It follows

I} — — ' 1 _ — !
from above that O Y § = % $ an and vy 6 g Y @ ag-

In the following commutative diagram

—
7
1 ) 7
Yé, '
OLe y, am
/
L’ \f
\;
o ! >
m

there is a unique diagonal morphism, 1. Hence vy 8§ = 1.

Similarly 6 y=1. «v is therefore an isomorphism. !



In the following we shall assume that A has an

(E,M) factorization system of morphisms.

PROPOSITION 0.4. E and M can determine each other

as follows:

{6 | ¢ —4u Vue M,
{u | ¢ —u V¢ e E},

(1)
(i1)

= |m
n n

where ¢ —— u means that for every commutative square

Y
7
/
//
o 'Y/ B
/
/7

Vi V

m rd

there exists a unique morphism y such that y ¢ = a and

uy = B.

Proof: By duality we need only to prove (i).
Suppose ¢ € E. Then by the unique diagonal property
Vie M, ¢ —u.

Now suppose that ¢ —u, Vu € M. We want to show
that ¢ € E. Let on e be (E,M) factorization of ¢.
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Then in the following commutative square

b5
7
/
/
¢eh 5/ 1
/
4 \
>
m

there exists a unique § such that ¢m6 =1 and 6§ ¢ = ¢e.

Hence ¢m 8 ¢m = ¢m and § ¢m ¢e = ¢e' Then ¢ ¢m is a

diagonal morphism in the following square.

q’e
Z
/
/
$e 6¢9/ ¢
V4
7/
vE& v
T >

By the unique diagonal property 6§ ¢m = 1, since 1 is also
a diagonal morphism in the above square. Hence ¢m is an

isomorphism and ¢ = ¢m ¢e € E. (]

PROPOSITION 0.5. Suppose that



11

Vv v

T —>

is a pullback and ¢& M. Then B e M.

Proof: Let By Be be the (E,M) factorization of
B. In the following diagram, since ¢ & M there is a unique

diagonal morphism y such that vy Bg = @ and ¢ vy =19 B

e
< - >
\6 /7
e\, Phd
-y
!/ -
B 7~ ¢
Bm
v V
]

Furthermore, by the pullback square, there exists a unique
§ such that o § =y and B § = Bm' It follows that

@8 By =Y By, =« and B & Be = B, Bg = B. By the unique-
ness property of the pullback square, § Be = 1. We shall
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also show that Be § = 1. By multiplying Be to the left

' of & B, =1 we have (Be 6)(3e = Bg- Also we know Bm(Be 5)

B 6 = B Thus in the commutative square

3]
€ >
B B
e BeG m
\L 1
V
S
E’m

e

both Bo and 1 are diagonal morphisms. Hence g_ 6 =1 and

B

e is an isomorphism. Therefore £ = B Bo € M.

COROLLARY 0.6. Suppose that A has products.
o : X » 'X',q;: Y - Y be both M-class morphisms. Then

o x P : XxY>X xy¥ is also in M.

Let

Proof: We shall show that the following square is

a pullback, where Ty » ny,,ﬂxl, and n’Y are projections. Then

b € M= ¢ X ]Y € M. We then apply this result twice to

obtain ¢ x y € M.
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™
X x Y X > X
Ty
¢ x ]Y Y ¢
Ty
Q/ v
x'x y . -5 X
Tx

Let ¢ o = nxle, where o : Z > X and B : Z » X'x Y. Then
there is a morphism n& B :Z Y., By the property of the
product X x Y, there exists a unique morphism vy : Z + X x Y
such that Ty Y=o and Ty ¥ = w? B = w& (o x TY) Y. But

we also have Ty'B=1¢0a=2¢myy= nxl(¢ X ]Y) y. Hence

B = (¢ x 1Y) Y. So we have a morphism y, such that Ty Y = o
and (¢ x IY) Yy = B. We only need to show its uniqueness.

Let § be a morphism such that Ty § =a and (¢ x 1Y) § = B.
Then Ty § =my y and (¢ x IY) § = (¢ x IY) vy. It follows
that m, & = n& (¢ x 1Y) § = w? (o x IY) Yy =7y v. By the

uniqueness property of the product XxY, § = y. ]

Suppose that o : A+ X and B : A ~»~ Y. Then we

denote the unique morphism A + X x Y by {a,B}.
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PROPOSITION 0.7. The following are equivalent:
1. For every A in A, {1,1} : A —>A x A€M,
2. E CEpis,

3. Regular monos C M .

Proof: (1) = (2) Let ¢ € E and o e =8 e.

Then we have the following commutative square.

o € <
7’
Pd
X 12
’ .
{e,el s {1,1}
/{1,1}
v R4
o X B

By definition (0.1), there exists a unique y such that
ye=oacec and {1,1} vy = (a x B){1,1}, i.e. "{y,y} = {a,B} .

Hence o =8 and € is an epi.

(2) = (3) For every commutative square
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with ¢ € E € epis and p a regular mono. [i.e. an equalizer
of a pair of morphism, say (p,'r)], there exists a unique vy
such that uw y =8, since p B =1 8. It follows that

LY ¢=8¢=unoa . We have Yy ¢ = a . Hence, by proposi-

tion (0.4), regular monos C M .

(3) = (1) "{1,1} 1is an equalizer of
1
A x A jA. Hence {1,1} € M.. |
P2 '

COROLLARY 0.8. If
A -L).X

B [

Y — ¢

is a pullback then {o,B} € M , provided that {1,1} € M .

Proof: {a,B} 1is a regular mono, since it is

the equalizer of

¢ Py

¥ P2

X xY Z

where p, : X x Y —> X and 'p2:XXY—.>Y are

projections. |
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PROPOSITION 0.9. Assume that pullbacks exist in

A. Then the following are equivalent:
(i) M € monos ,
(i) my=m&s €M and m€ M —>y =393,

(iii) o B € E=—> 0 € E .

Proof: (i) => (ii) trivial.

(ii) = (iii) Let o, og and By Be be the (E,M) factori-

zations of o and B, respectively. Then

o B =oap ag By Bg=opueB, €F

where u e 1is the (E,M) factorization of o, Bm. Thus

o B Ve Oy ¥
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by the unique factorization of o B, there is a unique iso

vy such that vy a B = ¢ Be and o, WY = 1. Hence

@, Wyoa =o &M and, since o € M, it implies that
By o) = 1. Thus o is an iso and has inverse u y.
We have therefore shown that o € E.
(iii) => (1) Let pe M and let (¢,¢) be its kernel
pair, i.e.
E >
¢ H is:a.pullback.
o' ?

By proposition(0.5) ¢.¢' € M. Since (¢59') is a kernel pair,
there is a unique x such that ¢ x =1 = ¢'X . Hence ¢ € E.
Thus ¢,¢' are both isomorphisms and x is their inverse.
Therefore x is an iso and (1,1) is the kernel pair of u.

Then it follows that p is a mono.

A morphism o is said to be a regular epi if it is

a coequalizer of some pair of maps. Kelly [5] pointed out
that regular epis in general are not closed under composition
and if o B 1is a regular epi, o is not necessarily a regular

epi. However, both Kelly [5] and Barr [1] show that if kernel
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pairs and coequalizers exist, then in the following,

(1) = (2), (3), (4):

1. A pullback of a regular epi is an epi.

2. Every map has a factorization of the form
¢ —» ¢+ >»——>» - where —>3> 1is a regular epi and
>——> 1is a mono.

3. If o B is a regular epi, so is a.

4. Regular epis are closed under composition.

COROLLARY 0.10. Assume that, in A, a pullback of a

regular epi is an epi. Then the following are equivalent:

1. E = the class of all regular epis,
2. M = the class of all monos.
Proof: (1) =>(2) By proposition (0.9), M C

mono.
Let u be mono and My Mo be the (E,M) factoriza-

tion of u. Then u is a mono and a regular epi. Hence

e

ue is an iso and p = p . u, is in M.

(2) = (1) Let € be an E-class map. Since
every map has a factorization of the form ¢ /D >,
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let e =u ¢ where u is a mono (€ M) and ¢ is a regular
epi. Then u € M and by proposition (0.9), u € E. There-
fore u is an iso and € is a regular epi.

Now let ¢ be a coequalizer of (y.,8), i.e., a regular
epi, and o %o De the (E,M) factorization-of ¢. Since
¢m is mono, ¢e_y = ¢e. §. Then there exists a unique o such
that o ¢ = - Hence ¢m o ¢ = ¢m ¢ = ¢. Therefore
cbm a=1. So ¢m is an iso and ¢ = q’m ¢e is an E-class

morphism. [

PROPOSITION 0.11. (i) o BE€ M and a e M —>B € M.

(ii) o B€ E and B€ E=—>ae E.

Proof: By duality we only need to show (i). Let
B Be be the (E,M) factorization of B. Then o Bme M. By
the uniqueness of (E,M) factorization of a B, there is a
unique iso y such that vy = B8, and « By ¥ = @ g as shown
in the following diagram.

9
4
7
/s
7
B Y a8
7
7
£ —>
aBm

Hence B, 1is an iso and g€ M. i
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Chapter 1

ON BICATEGORIES OF SPANS AND RELATIONS

Let A be a category with finite products, pullbacks
and (E,M) factorization system. Let A,B,R be objects of
A. According to Benabou [2], a -triple (R,a,B8) with mor-
phisms o : R—>A and B : R —>B 1is called a span from
B to A in A. We denote the morphism R —> A x B by {a,Bl}.

The span (R,a,B) 1is called a relation if {o,B} € M.

PROPOSITION 1.1. To any span (R,a,8) there cor-
responds a canonical relation (R+,ausﬁ obtained by taking

the (E,M) factorization of the morphism {a,B8}: thus

‘{asB} ='{a'98'} 8(R) ’
where

‘{ayB'} € M and e(R) € E. !

Suppose (R,a,B) and (S,y,8§) are both spans or
relations from B to A. A map from (R,a,8) to (S,y,8) is

a commutative diagram in A,



o
A
‘Sk\;\\\\\\\

such that y t = a and

PROPOSITION 1.

spans from B to A. The
(i) T : R—>S
(ii) T : R—>S

REMARK 1.3.
tions from B to A.
proposition (0.11) that
M-class morphism.

(R,a,B) and

21

§ T =28.

2. Let (R,0,B) and (S,y,8)- be

following are equivalent:

such that y tT=a and 6§ T =8 ,
such that {y,8} T = {a,B}. i
Let (R,a,B) and (S,y.§) be rela-

It follows from (ii) in the above and

t : (R,a,B) —> (S,Y,8) is an

(S,y,8) are said to be isomorphic

if and only if T is an isomorphism.
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In this chapter we shall assume that "{1,1} € M.
Then for each object A of A, (A,1,1) is a relation and is

called the identity relation on A.

Let Span (A,B) and Rel (A,B) denote the categories
of spans and relations from B to A, respectively. Thus
Rel (A,B) is a full subcategory of Span (A,B). We will show
that the object function T oof proposition (1.1) can be ex-
tended to a functor from Span (A,B) to Rel (A,B), in fact
the 1eft adjoint of the inclusion functor.

Suppose (S,y,8) € Span (A,B), (R,a,8) € Rel (A,B)
and f : (S,v,8) — (R,a,B8). Let f* be the diagonal morphism

in the following square, which commutes by proposition (1.2).

+ ‘{'Yls‘s'}

S > A x B
VRN N
N
N
N
N *
e (S) N {a,B8}
N
N
N
N
N
S r —> R

(see definition (0.1)).
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By proposition (1.2), f* is also the unique map

(s*,y',8') —> (R,a,8) such that f e(S) = f.

+
(STay's8")

e (S) N

(SsYs(S) >(Ra OC,B)

Given any map ¢ : (S,y,8) —> (T,t,a) in Span
(A,B) we let ¢+ be the unique map (S+,y',6') >
(T*.c',0) such that o% e(S) = e(T) ¢, i.e., o*=(e(T) &) .
*
[em o]
st————— -2
N '

e(S) e(T)
e(T) ¢

We have thus proved the following.
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PROPOSITION 1.3. Rel (A,B) is a full reflexive
subcategory of Span (A,B) with reflector + . i

We recall the notion of a bicategory in the sense

of Bénabou [2]. Bénabou himself gave as an example the bi-
category Span A with objects those of A, with morphisms
A ——>B the spans from A to B, and with cells the maps

between spans. Composition of spans is defined thus:

(R,0,8) * (S,¥,8) = (R* S,a u,8 V)

where R&E—R * S —2—>S is the pullback of
R —B 5 B &X— 5.

A

A
o

R —8 s
A
U Pb Y
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The question now arises whether one can similarly
obtain a bicategory Rel A. We define composition of rela-

tions thus:

(Rya,B) o (S.y.8) = [(R * $), (o ), (6 v)']
where

{o 1,8 v} = {(a u)',(6 v)'} (R %= S)

is the (E.M) factorization of R * S ——> A x C. We may
abbreviate (R * S)+ as R o S. Unfortunately this composi-
tion is not necesSari]y associative, as was already observed
by Klein [6]. He pointed out that it is associative under

a certain condition. We shall generalize his result.

PROPOSITION 1.4. Suppose X is a bicategory with
composition functor * between morphisms and between cells
and to each category HomX (A,B) with A,B objects in X, we
assign a full reflexive ;hbcategory Homx.(A,B) with
reflector © and adjunction n(S) : S ———$:§+. Then L' is
also a bicategory with composition o between morphisms and

between cells defined by S o T = (S * T)+, ¢ oy = (¢ * ¢)+
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provided there exists a natural isomorphism
. + __- + +*
g(S,T) : (S + T)" ——> (St » Tt)

whenever S : B —» A , T : C — B , in particular, if
+ .
[n(S) * n(T)] is an iso.

Proof: X is a bicategory with composition % between
morphisms and between cells. Hence * is a functor. Since
o o= (¢ % w)+ where ¢,y are maps in Homy (A,B), o is
also a functor. Let S,T,U,V be objects of cziegories
Homx (A,B), Hom, (B,C), Homy (C,D) and Homy (D,E), respectively.

Then there are natural isomorphisms:

a(S,T,U) : (S *T) *+ U —>S * (T % U)

£2(s) : I, * § —— 8§

A
r(s) : S x Ip — S

such that they satisfy the following coherence conditions:
(1)  a(S,T,U%V) a(S*T,U,V) — [Ids * a(T,U,V)]-a(S,T*U,V) :

(ats.7.0) = 19y).

(1) v(s) % Tap = [1dg * £(T)]-a(s,15,T).
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We need to show the same in X'. We note that *

preserves natural isomorphisms. Let S,T,U,V be objects of
categories Homx.(A,B), Homx.(B,C), Homx.(C,D) and Homx.(D,E),

respectively. Then

(soT)ol = (s*T) ou = [(S*T)+*U]+G 1(S~T u)>
g=1(S*T,

[(S*T)*U]+ TR [S*(T*U)]+ m [s*(wu)“]+ -

[S*(ToU)]+ = So(Tod) .

Hence, o(S,T#U) at(S,T,U) o=1(S*T,U) : (SoT)oU —> So(Tol)
is a natural isomorphism.
Similarly, we have natural isomorphisms £+(S)
I, 0 S —=>5 and r'(S) : S o Iy —=>s.
Before proceeding to check the coherence conditions,
we introduce abbreviations for the following natura]_iso- |

morphisms.
( v+

[N

¢ \ 7 + ¢
Ty = 073 [(S*T)*U,V Lc"‘(S*T,U)*IdV]: (SoT)ou]ov —> (S*T)*U]*V
L P, LL )
b rr 1+
So(Tol)]|oV —» S*(T*U)]*V
o LL j

r

L

,

+
-l .
Lc (S,T*U)*Idv].

4

T2 = O"ILS*(T*U),VT
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.
e = o=1(S*T, U*T) : (SoT)o(UoV) —> [(sm R (U*V)]
Ty =_[IdS*G'I(T,U*V)]+O'1[S,T*(U*V)]: So[To(UéV)]—% ls*[T*(U*V)]]+
Ts = [Ids*o-l(T*u,V)]+o-1[s,(T*u)*v]:50[(Tou)ov]-—> lS*[(T*U)*V]]+.

The required coherence conditions are the following:

(1)
Tz_l{a(s,T,U)*Idv]+T1 .
[(SoT)oU]oV ’ )[So(ToU)]oV
T~ tat(S*T,U,V) T, s~ tat(S,T#U,V) T2
(SoT) o (UoV) S oA[(TqU)o v]

N /o
Tu-l[ld * a(T,U,V)] Ts

ru-t at(S,T,U*V) T3 S

N4

So[To(UoV)]
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This commutes, since by applying coherence condition (i) of

the bicategory X, we obtain

+ ' +
Tu'l[lds*a(T,U,V)] Ts T5‘1a+(S,T*U,V)Iz Tz'l[a(S,T,U)*Idv] Ty

+ +
= Tq'l[lds*a(T,U,V)] a+(S,T*U,V) [a(S,T,U)*IdV] T1

= 1,=% at(s,T,uxv) at(s*T,u,V) 1,

o=t at(S,T,U%V) 75 1s-% at(S*T,U,V) 1,

(i)
*(s,1g,T
(Solg)oT 2 (5.18.T) > S o (IB o T)

r*(S) o Id; Idg o £7(T)

SofT
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This commutes by using coherence condition (ii) of the bi-
category X.

Thus X' is also a bicategory. i

We now return to Rel A. In the following we assume
that A is a category with finite products, pullbacks and an
(E,M) factorization system. We abbreviate the span (S,y,8)

from B to A by S whenever there is no ambiguity.

LEMMA 1.5. If pullbacks preserve E-class morphisms,
then

o(S,T) = [e(S) * s(T)]+: (S * ) — (st * T"‘)+

is an isomorphism, where S and T are spans from B to A and

Cc to B, respectively.

Proof: MWe recall that e(S) : (S,y,d) —> (st,y',8")
and e(T) : (T.p,t) — (THh o v'). st * 17 and s+ 7T are

1
obtained by pullbacks of S 8 5Bt — 7t and

S § >B<L— T, respectively, as shown in the following

diagram:
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A
N
,YI
e(S 6!
S () > st > B
/N
o! o p!
M —D—start— X5 ¢t LAY
z! z e(T)
S * T > N > T

where v'e(S) = v, 8'e(S) =6, p'e(T) = p, 1'e(T) =t and
all squares are pullbacks.
Now €(S), e(T)€ E. Hence n : M —>S+*T+,
z : N—>ststhe E and n': S*aT —> N,z': S*T —> M € E.
since st <% stett X 5 1* s a pullback, there-
fore there is a unique map &(S) * e(T) : S*T —>st1t such
that c[e(S) x e:(T)] ~ e(S) o' z' and x‘[e(S) * e(T)] -
e(T) x' n' . Clearly then &(S) * €(T) =n ¢' and therefore
an E-class morphism.

We consider the following diagram:
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. + ‘
start > [S+*T+] tu,vd >A x C
A A
I
l
e(S)*e(T) | A 21
' ‘9
I +
SH*T — (e S+ T

where {p,v} e(S+*T+) and " {k,A} e(S*T) are (E,M) factori-
zations of morphisms S+=‘=T+ —> A x C. and S*T — A x (,
respectively, such that "{u,v} ,{x,A\} € M and e(S+*Tf),
e(S*T) € E.

Since we have shown that e(S) * e(T) € E, by com-
position e(S+* T+) [e(S)*‘e(T)] € E. By the unique (E,M)
factorization of S*T —>A x C, there exists an isomorphism

+ +
[e(S) x e(T)] L (s#T) —> (sTTY) . ]
From proposition (1.4) and lemma (1.5), we obtain:

THEOREM 1.6. If pullbacks preserve E-class morphisms,
then Rel A is a bicategory. i
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Of special interest is the situation treated by
Klein [6], where Rel (A,B) 1is not a category but a preordered
set. HWe shall regard a preordered set as a special kind of
category in which there is at most one morphism between any

pair of objects.-

PROPOSITION 1.7. The following three statements

are equivalent:

(1) Rel (A,B) is a preordered set for each pair (A,B),.
(2) Rel (A,Z) is a preordered set for each A, where 1 is
the terminal object of A,

(e) M C mono.

Proof: Since A has finite products, the "empty"
product, , is the terminal object of A. Clearly (1) = (2).
(2) = (3) We shall show that, for any objects
A,B and C in A, if f,g :C—>B and n : B —> A with
neM and nf=ng=méeM then f = g. Then by proposi-
tion (0.9), it follows that M is a class of monos.
Let t(B) : B —> 2. Then {n,t(B)} : B —> A xL eMN,
because A xf = A and n € M. Hence B can be regarded as

a relation [B, n, t(B)] from 7L to A. Similarly we have a
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relation [C, m, t(C)} from . to A, and therefore

f,g : [C, m, t(C)] O [B, n, t(B)]. But Rel (A,f1) is a
preordered set, Hence f = g¢.

(3) = (1) Suppose M consists of monos only.
We need to show that if there exists a map between two rela-
tions R,S from B to A, then the map is unique. Let
fs.g : R—> S, where n : R—>A xB and m:S —>A x B
are elements of M. By proposition (1.2), mf = n and
mg = n. Thus mf = mg. Since M € monos, m is a mono and

therefore f = g. 5

We remark that our result in theorem (1.6)
specializes to Bénabou's [2] when E = isos, M = all maps

since E is then invariant under pullbacks.
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Chapter 2
PROPERTIES OF RELATIONS

Let A be a category with finite products, pullbacks,
pushouts and (E,M) factorization system. Whenever we talk
about the bicategory of relations, it will be tacitly
assumed that pullbacks preserve E-class morphisms. We also
assume that a pullback of a regular epi is an epi whenever
"E = the class of all regular epis" is mentioned. We shall
investigate some properties of a relation from B to A in A.

To any relation (R,a,B) from B to A, there is a

converse relation (R,B,a), denoted by R, from A to B.

PROPOSITION 2.1. (i) R = R. (ii) RoS = SoR,

where (S,y.8) is a relation from C to B.

Proof: (i) Obvious.

(ii) The pullback of R —B—>B ¢«X— S is ReZ— R*S ——> .

We obtain the span (R*S, ao,6t) from C to A. Its converse,

R*xS is (R*S, 81, a o) from A to C.
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On the other hand, the composition S * R is
(S*R, 61,00), where §¢&+—T5 * R —2 >R is the pull-
back of § —Y 3B £ R,

We deduce R*S = S*R. By the uniqueness of

(E,M) factorization, Ro S =S o R. ]

We recall that when M C mono, Rel (A,B) i5 a pre-

ordered set (see proposition (1.7)).

PROPOSITION 2.2. Assume M € mono. Let (R,a,B)
be a relation from B to A. Suppose that "{1,1} € M, then

(1) RoRC I, if and only if B is mono.

(2) RoTR'QIA if and only if o € E.

Proof: (1) Let g be mono. Then (R*R, a, a)

is obtained from the following diagram:
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Let o, a, be the (E,M) factorization of o. Then {a .o,

is the (E,M) factorization of "{a,a}, since {a .o } =

}ae

{1,1} a, € M. Thus we obtain (R o 'ﬁ,am, ocm) and there is a
map, o, : R o R— Ips which belongs to M.
Conversely, suppose that R o RC IA. We note that

(R*R, ooy, 8) is obtained as follows:
A
a]
R —mmm
Y[

B
Pb
8

B
I
R

We have (R o R,u, v), where '{ﬁ, v}le is the (E,M) factor-

R* R

\

ization of {ay, o6} . Since there is a map T: RoOR —> I,
u=1=v. Hence o y=ue=ve=a-t6 and since B y=82¢
we have {a,B8} y = {a,8} 6. Now since {a,8} € M Cmono,
y = &. It follows that B8 is mono because its kernel pair

is (v,8).
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(2) Suppose a € E. (RoR, u,v) is obtained
from the (E,M) factorization of {ay, aé} in the following

diagram. That is, {ay, o 8}="{u,v} e where {u,v} €M

and ¢ € E.
A
o
| B
R —> B
Y Pb B
R¥R—2—> R —2—3 A

By the pullback square, there exists a A such that y x=1=23 A.
It follows that ue A=ayA=a=0a6 A =ved. Weobtain
{a,a} = {1,1} o = {u,v} € A, where {1,1}, {u,v} € M and

o € E. Hence by the diagonal property (see definition (0.1)),
there exists a unique T such that 7 o =¢ A and {u,v} 7=
"{1,1}. In other words, there exists a T : IA ——>RoR.
Conversely, suppose T : (IA,l,I) —> (Ro R, u,v).

Then pt=1=v 1t and therefore, by prbposition (0.9), u
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is an E-class morphism. From the construction of R o R,
oy =ue €E. Hence a is an E-class morphism (see proposi-

tion (0.9)). [

PROPOSITION 2.3. Assume E C regular epis. Let
(R,a,8) be a relation from B to A with both o and B in E.
Then the coequalizer of R o R ’_]J_SA is isomorphic to that
of RoR :‘f—:_gB. (Explicitly, (\l;,cp) = Coeq. (u,v) and (P,y) =

v
Coeq. (u',v') where A -2>p<¢¥ B is the pushout of

Ae2 R -£5B.)

Proof: In the fo]]owihg commutative diagram,
(y.6) and (y',68') are the kernel pairs of B and o, respec-
tively. Since o and B both belong to E, they are coequalizers
of (y',6') and (y,58), respectively. {u,vle and {u',v'} €
are (E,M) factorizations of {oay,ad8} and {By',8 &'},

respectively.
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7P
- 774
¢l// s/
- }\/ /
- \y /
ROR—.—_—_) A > P /.
AY) /u’
/
€ ) Po v,
/
Y < /
R * R . R B -> B
6 (4
6! Yl \)' ul

Let (P',¢') be the coequalizer of (u,v). Then
' ay=¢'nue=¢"'"ve=29¢"asé. Since B is the coequalizer
of (y,8), there is a unique ¢' : B —> P' such that
¥' B=2¢"' a. By the pushout in the above diagram, there
exists a unique A : P —> P! such that A ¢ =¢"' and
AY =09,

On the other hand, from A ¢ = ¢' we obtain

AYyB=x2da=2¢"'a=19y"' 8. Then ¢' =2Ay because B € E.
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A is therefore the unique map such that A ¢ = ¢' . Hence

(P,¢) = Coeq. (u,v) . Similarly (P,y) = Coeq. (p',v').

Later when we consider a situation in which R o R
and R o R are equivalence relations, this result can be

written as:

A/(R o R) = B/(R o R)

(compare with [7] proposition 1).

LEMMA 2.4. Let (R,a,8) be a relation from B to
A. Then there is a canonical map from R to R o R o R which

is an M-class morphism.

Proof: In the following diagram, we obtain

(R*R*R,aypsB A T) by successive pullbacks.
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A

p

o

R —E 5

/ s

Y 1 B

8 o
M —> R —> A
4

o] 3 o 2 o

— B
R*R*R - > N A>R———>B

By the pullbacks (1) and (2), there exist unique n : R — M
and ¢ : R—>N such that y n=1=6n and cz=1=12xr¢.
Hence 6§ n=e¢ ¢ =1 and, by the pullback square (3), there
exists a unique k : R—>R * R * R such that p k = n
and 1 k = ¢. We thus obtain aypk=ayn=a and
BATk=82A17T=B8.

Let {a vy p,B A 1} = {u,vle be the (E,M) factori-
zation of the morphism {a y p,B8 A Tt} : R*R* R —>A x B,
Then we have e x : R——> R o R o R, which is an M-class

map (see remark (1.3)). |
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We call a relation R difunctional if it satisfies

R=RoRoR . In the following proposition, we give &
sufficient condition for R to be difunctional. We shall

assume {1,1} € M 1in the following and define a pullback
relation to be a relation which is a puliback of some pair
of maps. We note that if a span (R,a,B) is a pullback of
of some pair of maps, then it is a relation (see corollary

(0.8)).

THEOREM 2.5. TIet I\_/L C. Monos. . Assume that (R, ¢,"B)
is a pullback rélation from B7to A% Then the cahonical map from

R to R.R.R is anisomdrphisin.

Proof: As is well-known, A <«%— R —E 5B is a
pullback of its own pushout A ¢ 5¢ ¢ L B, i.e.
¢
A > C
(2.6) ;[ 2
—_—
R g B

is bicartesian (that is, both a pullback and a pushout square).
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In the following diagram, (R * R * R,a vy p,B A T)

is obtained by successive pullbacks.

A
OLI i
R — B---¢->C
' A
YI B ¢
v — s R ~—>

v

= ————
- Q
) ——;—e> P

-
*
=i
*
=
¥
>

By composition of pullbacks, we obtain the pullback

square :

R T"B > C
N N

(2.7) Y P ¢ a
R*R*R > R

B
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We claim that the following is almost a pullback square.

A @ > C
4\ N
(2.8) oyp )
R*R*R > B
BAT

It commutes since, @ayp=yByp=@alT =y BrT. Suppose there
are x:X—>A and y:X —>B suchthat ¢x=yy. By the pull-
back square (2.6), there exists a unique z such that g¢z=x and
Bz=y. Hence @az=yfz and, by the pullback (2.7), there exists
a unique @ such that ypw=2z and \Tw=2z. We thus obtain
aypw=az=x and BATw=Bz=y. It follows that the square (2.8)
is almost a pullback.
Take X=R. Since R ig a pullback, there exists @ such that
ab =a"yp and B0 =ﬁ§.r, her;cé abw=aypw and BOw=BATW.
Since R is a pullback, Bw=1. Therefore 6 E€E (see proposition (0.9)).

Hence R.R.R & (R¥R#R)'~R.
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We shall extend the notion of mono and epi to bi-
categories : R will be called mono if R o S =R o T implies
that S =T and epi if SoR =T o R implies that S = T.

R is called ah equivalence if there exists an S such that

RoS=1 and SoR=1,
Clearly, from proposition (2.5) we obtain the

following:

"COROLLARY 2.9. Assume that (R,a,8) is a pullback

relation. Then the following are equivalent:

(i) R is mono,
(i)

(iid)

|

is epi,

|

oR=1. [

Hence a puliback rejation is an equivalence if and
only if it is a mono and an epi. We shall describe monos and

epis in Rel A.

PROPOSITION 2.10. Let (R,a,B8) be a relation.

The following are equivalent:
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(i) RoR =1 and "{a,B} is mono ,

(ii) o is mono and B € E.

Proof: (i) = (ii) (R*R,By,B 8) is a span
obtained as indicated in the following diagram. We note

that o y = a 6.

R*R 5 >

Since RoR=1,8y=p88€& E. We thus have

"{0,B8} vy = {a,8} § and hence §. Since (y,8) is the

<
i

kernel pair of o with y =6, o is mono. Without loss of

~generality we can take y =8 = 1. Therefore B8 =8 y € E.

(ii) = (1) Assume that o is mono and B ¢ E.
Since — is a pullback, we have the
1 a
—_—
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span (R = R,B,B8). But the (E,M) factorization of
{8} : R* R —> B x B is just {1,1}8, since Be E. MWe
thus obtain the relation (R o R,1,1) and hence Ro R = Ig.

Clearly, here {o,8} is mono becausé a is mono. §

We note that if (R,a,8) 1is a pullback relation,
then {o B} is mono. From corollary (2.9) and proposition

(2.10), we have

PROPOSITION 2.11. Assume that (R,a,B) 1is a
pullback relation. Then the following are equivalent:
(i) R is mono,
(ii) R is epi,
(iii) Ro R =1,

(iv) o is mono and 8 € E. 1

We shall now show that pullback relations can be
factored canonically whenever M = the class of all monos.

We shall first prove the following lemmas.
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LEMMA 2.12. Suppose that (R,d,B) is a relation

from B to A. Then (R,ae,Be) is a relation from B' to A',
%a m e B
where R > A* »>A and R > B! > B are (E,M)

factorizations of o and B, respectively.

Proof: We have {a,8} = (am x Bm) {ae,Be}. By
corollary (0.6), o, x 8, € M and since {a,8} € M, so does

{ae,Be} (see proposition (0.11)). |

LEMMA 2.13. Assume that M € mono. If (R,a,B) is
a pullback relation, so is (R, ae,Be), where o o4 and

Bm Be are (E,M) factorizations of a and B, respectively.

Proof: Let 9 5 be a pushout of < 2 BA>.
Then
s
N A
o 1 P
2 >
is bicartesian. We take N5t to be a pushout of
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% PFe
3 > . Hence there exists a unique A such that
An=¢ o and Az =19 B, , as follows:
; >
T 21
/
m A/
n /
A
Co 2 z
—> >
Be B

We need to show that the square (2) is a pullback. Suppose
that n x =1tz y. We then have ¢ a, X = AnXxX=Agy=
v B, ¥. By the pullback square (1), there exists a unique

z such that o z = o, X and B z = Bm y, i.e. a0, Z= 0

and Bm Ba 2 = B Y- Since o and B, are both mono, we

obtain o, z=x and B, z=y. Since {ue,se} € M € mono,

it follows that there exists a unique z such that ag 2 =X

and Be z =Y. Therefore (R,ae,Be) is a pullback relation. !

The converse of lemma (2.13) is not always true.

We shall give the necessary and sufficient condition in the
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next proposition. We need the results of the following

Temmas.

LEMMA 2.14. Suppose that the right square in the
following diagram is a pullback and (v,8) , (v 8') are

kernel pairs of ¢ and B, respectively.

Y s .
5 i
0 o Pb P
1
LA .
57 > B -

Then the left squares are both pullbacks.

Proof: In the following diagram all squares are
pullbacks:
B S w =N
A '1\ A
v! 8 ¢
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But ¢y B=¢ o and o &' =6 p. Hence the composite of

the following squares is a pullback.

N
A\ 4

v
o
¥

Here the right is a pullback square and therefore so is the

left. Similarly,

\.\/

§! $

°
4

is a pullback. ]
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LEMMA 2.15.

Assume that a pullback of a regular
epi is an epi.

Suppose that

N7

Y

v

is a pullback with p mono and ¢ regular epi. Then ¢ is a
mono.

Proof: Since u is mono, (1,1) is its kernel pair.
Let '(Y,s) be the kernel pair of ¢. Then there exists a
unique p such that vy p=¢ and & p =€

> ¢ .
S, rd
A > A 2
p € Pb P
] N
K N o~
> 0
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By lemma (2.14), the left squares are pullbacks. Hence p
is epi. Since y p=¢e =68 p, we obtain y = 6. Therefore

¢ is a mono. J

PROPOSITION 2.16. Assume E = the class of all
regular epis. Let (R,a,B) be a relation from B to A. Then

the following are equivalent:

(i) 1If (R,ae,Be) is a pullback relation, so is

(R’a’B)'

(ii) Any pair of morphisms <-%*—~ —B s with u mono

is a pullback of some pair of morphisms.

Proof: (i) = (i1) Take u = o and 1 = G-
(R,1, Be) is a pullback relation. Therefore, so is
(R,2,8) , which is (R,u,B) 1in this case.

(ii) = (i) Let (R,ae,Be) be the pullback of

its own pushout ¢ ¢ . Y5, By the dual of proposition
(0.5), ¢ and y both belong to E. Hence we can complete the
pullback squares in the following diagram because by corollary

(0.10) and l1emma (2.15), am' and Bm' are both mono.
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R
, T
o Pb la,  Pb I
l l

A ¢ A B
N AP NN
N A IT\
g Bi ¥ Pb |
|
S —

Be By

Thus the composite large square is a pullback and (R,a,B)

is a pullback relation. |

We now return to show that pullback relations can
be factored canonically. We remark that {a,B} is mono
whenever one of the o and B is a mono. Thus when M = all

monos, (R,a,B) is a relation if one of the o and B is mono.

PROPOSITION 2.17. Assume that M = the class of all

monos and suppose that (R,a,B8) is a pullback relation. Then
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there is a canonical factorization R = M o E where
(M, aq» n) and (E, z, B,) are relations with ans B, € M

and n,z € E.

Proof: In lemma (2.13) we have shown that the

square in the following diagram is bicartesian.

A
%n
M= —
g Bi 4

R 58 —g B
e ! m

Since oy s By € E, by the dual of proposition (0.5), we have
nst € E. Hence (M, e n) and (E, z, Bm) are both rela-

tions with s Bm € M =mono and n,z e E. We recall the
composition of spans and hence R = M % E. But (R,a,B) s

already a relation, thus R = M o E. |
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PROPOSITION 2.18. Suppose that R = M o E, where
(M, v, n) and (E, z, v) are relations with wu,v being

mono and n,z € E. Then R is difunctional (i.e. R = RoRoR).

Proof: By proposition (2.1), we obtain:

RoRoR=MoeEo | oE)o_MoE=MoEoEoﬁoMoE.

Since EoE=1 and Mo M= 1 (see proposition (2.10)),
we have R o Ro R = Mo E = R. ']

We can write a relation (R,a,B) as M1 o R' o M,
whenever M C mono, where My = (Mi, a 1), Mz = (M2, 8, 1)
and R' = (R,a,,8,). Here o o, and B B, are (E.M)
factorizations of o and B, respectively. We therefore have

the following lemmas.

LEMMA 2.19. Assume that M € mono. Let (R,a,B)
be a relation. Then R is difunctional if and only if R' is,

where R' = (R, a,,8,) .
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Proof: We write R =M; o R' o M,, where
a,s 1) and My = (M2, B8_,1) . Then

R

(M o R* o M2) o (M1 o R* o M2} o (My o R' o M)

R

M10R'Oﬁ20M20ﬁ'Oﬁ],OM],OR'Oﬁz

[t]

Mi o R* o R* o R' o M5,

proposition (2.10), M, o Mz = 1 and My o My = 1.

Suppose that R o R o R = R. Then,
M, o R* o R* o R* o M, =R = M; o R' o M5 .
Since M; o M; =1 and M, o My = 1, we

obtain R! = R' o R' o R'.

Conversely, suppose that R' = R' o R' o R'. Then

RoRoR=M oR"oR" oR" oM, =M; oR" oM, =

We note that, whenever R' = (R, Gg s Be] = M' o E!

M' = (M'; u,n) and E' = (E', t,v), in which wu,v

are mono and n,z €& E, then u,v are isomorphisms. With-

out loss of generality, we can take M' = (M', 1,n) and

El

= (E',z,1)

- @ xg-
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Clearly, (M, oy .n) =M oM and (E,z,8,) =
m? ])3 M = (M’ 1"”)’ E' = (E: C» 1)s
and M, = (E, B 1). Since R = M; o R'o E} , we thus

E' o ﬁz » where M; = (M, o

obtain:

LEMMA 2.20. R =M o E if and only if R' = M' o E'. }

In the following we shall consider mainly the rela-
tion (R,a,B) with o,B € E. We define a relation (R,a,B)

as an E-relation whenever both o, B € E. We shall first

show the converse of proposition (2.17) for E-relations.

LEMMA 2.21. Let (R,0,8) be an E-relation and
assume that R = M o E, where M= (M, 1, n}) and E= (E, z,1).

Then (R,a,B) 1is a pullback relation.

Proof: (R,a,8) = M * E 1is just a pullback of
e | 1

PROPOSITION 2.22. Suppose that (R,a,B) is a
difunctional E-relation from B to A. Assume that every equiva-

lence relation is a kernel -pair and E = the class of all
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regular epis. Then (R,a,B8) can be expressed as

(M, 1, ¢) o (E, ¥, 1).

Proof: R o R is an equivalence relation on A,
because I C R o R (see proposition (2.2)), Ro R =R o R
and (RoR) o (RoR) *RoRoRoR=RoTR. Then
RoR—2—=A 1is a kernel pair, say, of its own coequalizer

T
¢. We note that ¢ e E and

A L > ¢

A A
p ¢
RoR . > A

is a pullback.
Therefore we can write R o R =M o M, where

M= (A, 1, ¢) 1is mono in Rel A. We obtain that R o Ro R =

We recall the relation (R o R, p, T) which is

obtained by (E,M) factorization of the morphism
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R+ RJ1%Y208bs a5 8 in the following diagram, i.e.

{ay,a 6} ={p,1le,where {p,t}€ M and ¢ e E.

B
___9 B
Y Pb B
- o
R¥R——5—> R > A

Since B 1is a regular epi

its kernel pair, (y,8). But ¢ oay=9¢pe=¢71Tc€e-=
Y . 8
R*R " R —mm> B
S 7 !
My

Hence there exists a unique morphism ¢ such that ¢ B

(e E), it is a coequalizer of

= ¢ o.
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We now return to R o Ro R = Mo Mo R which we
obtained earlier, and note that M+ R is (R, ¢ o, B) as

follows:

M=A—>A

P

v
v
(=]

M o R 1is thus obtained by the (E,M) factorization of {¢ o, Bl
which is: {¢ o, 8} = {v 8, B} = {v, 1} 8, where {y, 1} € M
and Be€ E. We denote M o R by E and therefore, obtain the
relation (E, ¢, 1). Thus, R =R o RoR=MoMoR can be
expressed as (M, 1, ¢) o (E, v, 1). |

As a consequence of lemma (2.21) and the above
proposition, we obtain the converse of theorem (2.5) for E-

relations.
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THEOREM 2.23. Suppose that (R,a,B) 1is a difunc-
tional E-relation from B to A. Assume that every equivalence
relation is a kernel pair and E = the class of all regular

epis. Then R'is a pullback relation. [

Proposition (2.16) gives the necessary and suffic-
ient condition for any difunctional relation to be a pullback

relation.
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Chapter 3
APPLICATION TO EXACT CATEGORIES

We shall discuss relations in an exact category in
the sense of Barr [1], since it includes a wide scope of
examples and our assumptions in the previous chapters are
satisfied by this category. Barr has given the definition
and examples of exact categories in his paper. Here we shall

provide the definition for the sake of completeness.

DEFINITION 3.1. Let A be a category. We say that
A is regular if it satisfies (EX 1) below and exact if it
satisfies (EX 2) in addition.

(EX 1) The kernel pair of every morphism exists
and has a coequalizer; moreover, every pair » —3> ¢« &
has a pullback of the form

>~
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(EX 2) Every equivalence relation is a kernel

pair.

Throughout this chapter, A denotes a regular cate-
~gory with finite products, >——> a mono and —>»> a
regular epi. Barr established that every morphism has a
factorization of the form + —>» «>—> + . This factori-
zation satisfies our definition (0.1) and is therefore an
(E,M) factorization where M = the class of all monos and
E = the class of all regular epis.

Since A satisfies the assumption in theorem (1.6),

we thus obtain:

PROPOSITION 3.2. Rel A 1is a bicategory. ]

We can sum up the results obtained in Chapter 2

as follows:

THEOREM 3.3. Let A be an exact category with
finite products and pushouts. Suppose that R = (R,a,B8) is
a relation and R' = (R,ae,Be] is the canonical E-relation of

R. Then the following are equivalent:
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(1) R' is a pullback relation,
(2) R is difunctional,
(3) R* is difunctional,

(4) R=Mo E,where M= (M,am,cp] and
E = (E,IP,Bm) with ¢,1P€ _E_’

(5) R'=M'o E'. ]

Another equivalent statement is
(6) R is a pullback relation,

provided that every pair « ¢——<+ —>+ 1in A is a puil-
back. This is the case for categories of sets, M-sets but
not for the category of groups. The following lemma gives

the proof for the category of SM.

LEMMA 3.4. Let M be a monoid. Then in SM,

A e <B —L->C is a pullback of some pair of maps.

Proof: The pushout of Al <B —f—>C is
P=AUC / =, where = is the equivalence relation on P

such that for a, a*€ A and c, c'e C ,



(1) a =z a' & f(a) = f(a')
(2) az=c &= f(a)=c
(3) c=¢' & c=c¢

67

Let m' : ¢ —>P be defined by m'(c) = [c]

modulo = . Hence m' : C —>» P 1is mono. Let ¥

be defined by f'(a) = [a] .

fl
A > P
N N
m m'
A N
B - > €

fl ml .
Now the pullback of A > P < C is

{(a,c) | £'(a) =m'(c)} = {(a,c) | [a] = [cl}

= {(a,c) | f(a) =c} =B ]

: A—>P
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The following theorem generalises some results

known for algebraic categories.

THEOREM 3.5. In an exact category, the following

are equivalent:

(1) Every relation is difunctional,

(2) Every reflexive relation

equivalence relation,

is an

(3) The composite of two equivalence

relations is an equivalence

relation.

(4) Eo F=~F o E,where E and F are

equivalence relations.

Proof: (1) = (2) Let (R,a,B) be a reflexive

relation on A. Then I, CR. Let v :

IA ——>R . Then

«y=1=8y . Hence a,8 are both regular epis and € E .

R is therefore an E-relation. Since R =Ro RoR , by

theorem (3.3) R is a pullback relation.

be the pushout of A <>— R B 5B .

Let A —2 >x<® B

Then we obtain a
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bicartesian square ¢ o = ¢' B . By multiplying vy on the
right, we obtain ¢ = ¢' , because o y=1=8 v . Hence
(¢,8) 1is the kernel pair of ¢ and (R,a,B) 1is an equivalence

relation.

(2) == (3) Let E and F be equivalence relations

on A. Then I, S E and I, CF. Hence I, €I, oI, €EoF.

B
By (2) E o F 1is an equivalence relation.

(3) = (4) Let E and F be equivalence relations
on A, Then ECE, I €F and hence E=E oI €E o F.
Similarly F CE o F. We claim that E o F 1is the smallest
equivalence relation containing E and F. Suppose G is any
equivalence relation containing E and F. Then G = G o G 2.
E o F. We define the smallest equivalence relation containing
E and F to be Ey F. Here Eo F=E F. Similarly,
FoE=E,y,F. Thus we obtain E o F = F o E.

(4) = (1) Let (R,a,8) be a relation from B to
A and 7w , 7' be the projection morphisms from R x R to R.
We define (E,¢) and (F,y) to be the equalizers of
(o m,07w') and (B m, B '), respectively. Then (w ¢, 7' ¢)

and (m ¢ , 7' ¢) are kernel pairs of o and B, respectively.
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Hence (E, w ¢, m' ¢) and (F, w ¢,m' ¢) are equivalence
relations on R. Therefore E o F = F o E . We observe that
F*E=R#*R®*R (see the construction of R * R * R 1in
lemma (2.4)). It follows that F o E =R o Ro R . We only
need to show that E o F = R .

T ¢ 1 o
E > R E_ 58
¢
E* F—> F . > R d > B
) ™y

By the pullback (1) and (2), there exist unique
c :R—>E and p : R—>F such that 1 ¢ o =1=17"'" ¢ o
and m 9y p=1=a" 9 p . Then by the pullback (3), there

exists a unique T : R——> E *# F such that y Tt = 0¢ and
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§tT=p. Hence 7' ¢y T=1n'"do=1 and TP § =1

Let wo=7'"¢y=m7¢PS§. Then wt=1 . Hence w is a

regular epi. We note that c w=a 7 ¢y and Bw=87"'9¢Y § .

Thus w is a map from (E * F, am ¢ vy, B 7' ¢ §) to
(Rsos8) . Therefore E o F = R . We have thus proved that

R is difunctional. ]

From proposition (2.2), we obtain the following

proposition.

PROPOSITION 3.6. Let (R,a,B) be a relation in an
exact category. Then the following statements are equiva-

lent:
1. RoRCI, and RoR2I,,
2. B 1is an isomorphism ,

3. (R,(].,B)= (BsYs-I) . l

Thus (up to isomorphism of morphisms) we can re-

capture the original category A from Rel A.
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Chapter 4

ON THE BICATEGORY OF PULLBACK SPANS

To every span (R,a,B) from B to A, we may associate
a pullback span (Rx, o', B') from B to A and a map

p(R) : (R,a,B) ————%?(Rx, o', B') as follows:

¢ S
A > Q
1 A
al
o Y
X
w7 \\\\‘EL\55
<,
R” > B
B

where A —2 3qeL— B is the pushout of A<2—R B » B
and A <% R* —B' 5B is the pullback of
A —2o Q ¢ Y _B. Hence there is a unique p(R) : R — >R

such that a' p(R) =a and B' p(R) =8.
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Let Pull (A,B) denote the category of pullback
spans from B to A. We note that it is a preordered set.
We will show that the object function X can be extended to
a functor from Span (A,B) to Pull (A,B), in fact the left
adjoint of the inclusion functor.

Suppose n : (R, a, B) —> (P, v, 8) with
(R, a, B) € Span (A,B) and (P, v, §) € Pull (A,B) , we

want to show that there exists a unique map,

nt : (R, a', 8') ——> (P, v, )

such that n' o(R) =n.

(R*,a',

8' )\
(RN
N
N

o(R) J

N
N
!

(R,a,8) - > (P,y,8)
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Let A RN Q' € L B be the pushout of
AeXY _—p—S 5B, Then ¢' a=¢'yn=9'§n=2y" 8.

By the pushout A ¢ 5 Q(—‘P—— B there exists a unique
Kk : Q —> Q' such that « ¢ = ¢' and k p=1¢9¢'. It
follows that ¢' o' =k ¢ a' =k ¢y 8' =¢' B' . Hence, by

the pullback A€ Y P ) > B, there exists a unique
n' : RX ——> P such that y n' =4a' and §n' =28"

Again, by the pullback A X P S 58 , this n' is a

unique map such that n' p(R) =n .
Given any map ¢ ;' (Ry a, B) —> (S, t, o) in

Span (4,B), we let ¢x be the unique map

'(Rx, a', ') —> (Sx, ', ¢')

such that ¢ p{R) = p(S) ¢ » i.e. »* = [D(S] ¢]

| S
Rx — p(__)_d) - Sx
N N
p(R) o(S) ¢ p(s)
R —> S
¢

We have thus proved the following proposition. We

note that sz(S"')x since €(S) : S -——>S+ is epi.
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PROPOSITION 4.1. Pull (A,B) s a full reflexive
subcategory of Span (A,B) (also of Rel (A,B)) with
|

reflector X,

Then, by proposition (1.4), there is a bicategory
Pull A whose hom categories are Pull (A;B) with composi-
tion R B S = (R * S)*, provided that the map from (R * s)*
to '(Rx.* Sx]x is an iso. The following proposition gives

the conditions when this map is an iso.

PROPOSITION 4.2. Suppose that p(R) : R —> R*
is (regular) epi for any span (R,a,8) 1in A. Assume that a
pu11back of a (regular) epi is an epi. Then the map from

(R*s)* to (R* * sX)* s an iso.

Proof: As in the proof of proposition (1.5),
p(R) * p(S) : R* S —> R* # s* 4s an epi. Therefore the
pushouts of R * S and RX * s* are the same. Hence
(R * S)* and [Rx * Sx]x are pullbacks of the same pair of
maps and thus the map (R * s)X ———<>.[Rx * Sx]x is an

iso.
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COROLLARY 4.3. Under the conditions in proposition
(4.2 ), there is a bicategory Pull A whose objects are
those of A and whose hom categories are the categories

Pull (A,B). ]

PROPOSITION 4.4. Suppose E = the class of all

(regular) epis. The following are equivalent:

(1) For every span (R,a,B) in A,

o(R) : R —— R* s (regular)epi,

(2) Every relation is a pullback relation.

Proof:. (1) => (2) Let (R,a,B8) be a relation
in A. Then, by remark (1.3), p(R)€ M. Therefore p(R)

is an isomorphism and R = R* s a pullback relation.

(2) == (1) Let (R,a,B) be a span from B to A.
We factor {a,8} : R——> A x B into {usv} € M followed

by a (regular) epi e, i.e.

7
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where (R*, u, v) 1is a relation, therefore a pullback rela-

tion. The pushouts of A ¢ B R¥ —2 5 B and

o . .
A ¢ R B > B are the same, because € is an epi. Hence

rRY =~ R* and p(R) 1is then a (regular) epi. i

It follows that

Pull A = Rel A

provided that p(R) : R ——>R*e E = (regular) epis for
every span (R,0,B) in A and a pullback of a (regular) epi
is an epi. In this case we can apply Hilton's treatment
[3] of category of correﬁpondences (corelations).

We shall now compare (1) in proposition (4.4) and
(2) in proposition (2.16) which is the condition for any

difunctional relation to be a pullback relation.

PROPOSITION 4.5. In the following, (1) implies
(2).

X

(1) p(R) : R ——=>R" 1is a regular epi

for any span (R,a,B) in A.
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(2) Any pair of morphisms A € L r—E 58

in A with p mono is a pullback of

some pair of morphisms.

Proof: Since u is mono, p(R) : R —> R* s a

mono. Hence it is an iso and R is a pullback relation. i

But the converse of proposition (4.5) is not true
in general. We recall lemma (3.4) in which (2) holds in
the category of sets but the following example shows that

(1) does not hold in the category of sets.

EXAMPLE. Consider R = {1,2,3} and a span,
{1, x} < {1.2,3} —£> {y, 3}

such that f (1) =1, f (2) = x, f(3) = x, g (1) =y, g (2) =y
and g (3) = 3.

Then R* = {(1,y), (1,3), (x,y), (x,3)} and
p(R) 1is not an epi.
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Chapter 5

PULLBACKS IN REGULAR CATEGORIES

Given a pair of morphisms
A—S 58 —F 5¢

in a regular category [1], we would 1ike to know whether

they form part of a pullback diagram as fo]]ows:+

fl
A > D
g g'
v v
B > C
f

Throughout this chapter, we use >——> to denote
a mono and ——>» to denote a regular epi. It will be

useful to make the following definition.

+I am endebted to Basil Rattray for mentioning the
solution of this problem for the category of sets.
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DEFINITION 5.1. Given three morphisms as follows:

u
A—-‘l—ns‘_—'E K,
\'J

we say that they have a common pullback

ul
pé——p sk

7
provided both

u' v'
P > A P —> A
h g and h g
§ l !

> —
u K v B

are pullback squares.

THEOREM 5.2. Let A be a regular category. A pair
of morphisms A —9 538 ———f—>C js part of a pullback if
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, U u_y
and only if the morphisms A —% 3B K with K B

~ —~
being the kernel pair of B ——£—9 C, have a common pullback
ul
— h . .
A — P ——> K such that (u',v') is a kernel pair.

v

We shall use the following properties of a regular

category [1]:
1. Every morphism has a kernel pair.

2. Every pair of morphisms has a

coequalizer.

3. Every morphism can be factored into

.—'——».)—-%.

4. In the commutative diagram

\

b
—
L
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let top and bottom rows be exact
(that is, at the same time a kernel
pair and a coequalizer). Then, if
one of the left squares is a pull-

back, so is the right square.

Proof: (i) ( =) See lemma (2.14).

. U
(ii) Let A . P ——ﬂ—9 K be the common pull-
vl
u
& .
back of A —3—> B K and assume that (u',v') is a
ST

kernel pair. Let e' be the coequalizer of (u'* ,v'). Since
fgu' =fuh=fFfvh=fgyv', there exists a unique g’

such that g' e' = fg. We claim that

—h
N\ 4

is a pullback.
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Let f = me be the factorization of f such that
m is a mono and e is a regular epi. Hence e is a coequalizer
of (u,v). Since e g u' =e g v', there exists a unique

morphism k such that k e' = e g. We obtain

mke' =meg=fg-=4g"'e',

and therefore m k = g'.

We have exact top and bottom rows in the following

diagram:
u' '
> e SN
Y > rdr 4
v
h g k
u < ,
\' g —> Vv N\ \
-~ e 77
V T4

Also the left squares are pullbacks. Hence by property 4
of a regular category, the right square is also a puliback.

It follows that
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>
/
/
/
ky
g / g'
/
7 X
e_ -~ A‘\rn
v -7 M\
f ”
is a pullback, since g' =mk, f=me and m is mono.
The proof is now complete. ]

COROLLARY 5.3. A pair of morphisms A —%—>B
>——£—> C with f mono forms part of a pullback.

Proof: The kernel pair of f is (1 , 1) and hence

the result follows. |

The proof of theorem (5.2) provides the necessary

and sufficient condition for a commutative square
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(5.5)
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SN
77

¥

f' regular epi to be a pullback square.

PROPOSITION 5.4. Let

fl
g 19!
v v
! ~ N

be a commutative square with f' regular epi. Let (u,v)

and

(u*,v')

be kernel pairs of f and f', respectively.
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> f!
. —_—
vt 7
(5.6) h g g'
v —Y% sV NP
— s T
\'J

Then (5.5) is a puliback if and only if one of the left

squares in (5.6) is a pullback. ]

It is of interest to know whether the pullback
constructed in theorem (5.2) is essentially unique. This

is the case whenever f is a regular epi.

PROPOSITION 5.7. Let A be a regular category.

Given a pair of morphisms A g9 58 —F ¢ in A, there is
.90

> C

f
an essentially unique pair of morphisms A O 5p

such that
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g g,
\L N7
B F —>C

is a pullback, provided that f is a regular epi.

Proof: From theorem (5.2), we constructed the

pullback square

h 4
v

where e' is the coequalizer of its kernel pair (u', v').

We also showed that if
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Y

Yy
v,

is a pullback, then (u' ,v') is also a kernel pair of fo'
Since, in a regular category, a pullback of a regular epi
is a regular epi, fo is a regular epi. Then fo is a
coequalizer of its own kernel pair (u' ,v'). Now both e’

and fo are coequalizers of (u' ,v'). Hence there exists

an iso 1 such that i e' = fo . Since g' e' =f g =g, fo’
we obtain g' e' = 9, i e', and hence g' =g, i. We have
thus proved proposition (5.7). ]

The foliowing example shows that we cannot drop

the condition that f is a regular epi.
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EXAMPLE. Let f be a mono and take g = 1. The

following squares give two different pullbacks which have

——J——> >—4£—9 as part of the squares:

Y ’ ’
1 f and 1 1
v v \ 4 %
td f r 4 * ' 4 f rd

By lemma (2.15), we have the following.

COROLLARY 5.8. Let >—™—> —%3» be part of a

pullback. Then the counter part of the pullback is

e' o . m o

>> > > , the factorization of em, i.e., the

pullback is

1
—
Y (
m m'
"4
A\ g \\\ |
77
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We remark that, in abelian categories, if —> —>>
is part of a pullback, then the canonical pullback con-

structed in theorem (5.2) is also a pushout.

However, in
regular categories, we have the following.

PROPOSITION 5.9. Let —I3> —F»> be part of a
pullback. Then the pullback is also a pushout.

Proof: By proposition (5.7), there is an essen-

tially unique puliback and by theorem (5.2) we have the
following pullback squares:

ul
> e' NN
~ Vil d
v! 4
h g g'
Y,
vV % Y LV
~ f Vard
v U d
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where (u,v) and (u',v') are kernel pairs of f and e',
respectively. Since pullbacks preserve regular epis, h is a
regular epi.

Let ___g_o_» «—-e—o— be a pushout of «& . 9,
Then there exists a unique k such that k.g0 = g' and

k e0 = f,

yyi
Y
[(*]
Q
/7
/7
/Z.
v
L
NN

Then, k is a regular epi and we have

Since h is a regular epi, e, U =e, v . Hence k is a mono

and it follows that k is an iso. [
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