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ABSTRACT 

Relations are studied in categories which have 

finite products and (I,~) factorization systems. Relations 

are the morphisms of a Bénabou's bicategory, provided that 

pullbacks preserve I-class morphisms. More generally, 

when there is assigned a full reflexive subcategory Hom'(A,B) 

to each hom category, Hom(A,B), of a, given bicat~gory, a 

sufficient condition is obtained for Hom'(A,B) ta be the 

hom category in another bicategory. This is also applied 

·to obtain a bicategory whose morphisms are the pullback 

spans. 

Sorne properties of a relation Rand its converse 

Rare investigated. All pullback relations are difunctional 

(i.e. R ~ R 0 R 0 R). The main result in Chapter 2 is con

cerned with the converse of this statement. Applications 

are made ta Barris exact categories. Furthermore, sorne re

sults known in algebraic categories are extended ta exact 

categories. 

The last chapter deals with the problem in regular 

categories when a pair of morphisms g) f) can be 

embedded in a pullback square. 
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INTRODUCTION 

Relations in special categories have been considered 

by various authors, for examp1e, in abe1ian categories by 

Maclane [8], Puppe [10], and Hilton [3] and in aJgebraic 

categories by lambek [7]. We wou1d 1ike to study relations 

in genera1 categories, but our approach requires that these 

must have finite products and factorization systems. Klein 

[6] has obtained a condition for composition of relations 

to be strict1y associative. Here we consider the possibi1ity 

that associativity on1y ho1ds up to a coherent isomorphism, 

in other words, that the relations are the morphisms of a 

bicategory in the sense of Bênabou [2]. 

In Chapter 0, we investigate. general properties 

of factorization systems. Most of the concepts and resu1ts 

in this chapter we learned from a talk by Kelly [4]. How

ever, we be1ieve that propositions(0.9) and (0.11) are new. 

In Chapter 1, we look at a bicategory in which, 

to each hom category, Hom (A,B), there is assigned a full 

ref1exive subcategory Hom l (A,B). We obtain a sufficient 

condition for Hom l (A,B) to be the hom category in another 



2 

bicategory. This is applied to the situation in which 

Hom (A,B) consists of all spans from B to A and Hom l (A,B) 

consists of all relations from B to A. Kleinls result [6] 

is obtained as a special case. 

In Chapter 2, we study the converse R of the 

relation R and the relations R 0 Rand R 0 R. The latter 

are equivalence relations when R 0 R'o R ~ R, in which 

case R is called difunctional. All pullback relations are 

difunctional. Our main result (theorem (2.22)) is concerned 

with the converse of this statement. 

In Chapter 3, we apply the above result to the 

exact categories of Barr. For exact categories we generalise 

·the result known for algebraic categories which asserts that 

every relation is difunctional if and only if a number of 

interesting equivalent conditions hold, for exam~le, that 

every reflexive relation is an equivalence relation. 

In Chapter 4, we obtain another application of 

the sufficient condition in Chapter 1, where now Hom l (A,B) 

is the category of all pullback spans from B to A. Under 

certain conditions this bicategory is the same as Rel A in 

Chapter 1. 

In Chapter 5, we consider the problem when a pair 

of maps· g:> • f ~. can be embedded in a pull back· .sq uare. 



Originally, this had been planned as an int~gral part of 

the thesis, but at present it is unrelated to the other 

chapters. 

3 
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Chapter 0 

(I , M) FACTORIZATION OF MORPHISMS 

Let A be a category. The fo110wing definition is 

due to Kelly [4]. 

DEFINITION 0.1. An (E,M) factorization system of 

morphisms in A is defined as fol10ws: there are two classes 

I,M of morphisms in A satisfying the fo110wing: 

1. Every isomorphism is both in E and M. 

2. E is c10sed under composition and M 

is c10sed under composition. 

3. In the fo110wing commutative diagram, 

<fi, l/J E I . and 'Il, '\) € M, 

cp 
). Il ) 

1 

• 
1 

Cl Iy 
1 
1 

V ) 
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there exists a unique morphism y such that 

"y f3 l.l and y cp = t/J a . 

4. For every morphism a in A there exists 

am E M and ae E ~ such that a = amae . 

Clearly, (3) is equivalent to the unique diagonal 

property: for any commutative diagram, 

cp 
> 

/ 
/ 

/ 
a /y f3 

/ 
/ 

~ 

~ 
l.l 

in A, with cp E ~ and l.l E M, there exists a unique y such 

tha t y cp = a and l.l y = f3 • 

PROPOSITION 0.2. If a e ~"M then a is an iso. 

P~oof: Applying the unique diagonal property to 

the commutative square 

) 

1 1 

1 
) 
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Definition {O.l} implies that the factorization 

in {4} is unique; in fact, we have the following result. 

PROPOSITION 0.3. Suppose A is a category with 

two classes E and M of morphisms such that E and Mare closed 

under composition and with the property that every morphism 

a ln A is where and ae E l' th en the fol-

lowing are equivalent: 

Ci) The factorization is unique, i.e. if a = a a m e 
1 1 1 1 am ae where am E M and ae ~ E then there exists a 

unique isomorphism a such that and = a • m 

{ii} A has the unique {I,M} diagonal property. 

ppoof: {i} ~ {ii} Let a $ = v a with ~ E I 

and v E M. Suppose that and are the {I,M} 

factorizations of a and a, respectively. 
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~_.:t __ _ 

Then S ~ = Sm Se ~ = ~ am ae and by the uniqueness of (I,M) 

factorization of S cp, there exists a unique iso y such that 

It follows that a 'V S '" = m'e '1' 

am ae = a and ~ am y Se = Sm Se = S. Thus am y Se i s a 

diagonal morphisme It remains to show its uniqueness. 
r 

Suppose X is another such diagonal map, i.e. 

X ~ = a and ~ X S. Let Xm Xe be the (I,M) factoriza-

tion of X· Then Xm Xe cp = am ae and there exists a unique 

iso cS such that am cS = Xm and cS Xe cp = ae • Similarly 

~ Xm Xe = Sm Se and there is a unique iso cr such that 

~ Xm cr = Sm and cr Se = Xe· 

and Sm = ~ Xm cr = ~ am cS cr. 

iso so that 'V Q '" - a 1 f.>e '1' - e 

Hence ae = cS Xe cp = cS cr Se cp 

We recall that y is a unique 

Thus y = cS (J. 



(ii) ~ (i) 

and ae,ae'€ r. By the unique diagonal property, in the 

commutative square 

a ' m 

> 

> 
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there exists unique morphisms y and ô such that y ae = ae' , 

a~ y = am ' Ô ae' = ae and am ô = am'. We c1aim that y is 

an isomorphism such that y ô = 1 and ô y = 1. It fo11ows 

from above that an: y ô = am ô = am' and y Ô ae' = y ae = ae'. 

In the fo11owing commutative diagram 
a ' e 

a ' m 

a ' m 

there is a unique diagonal morphism, 1. Hence y ô 1. 

Simi1ar1y ô y = 1. Y is therefore an isomorphisme 1 



In the following we shall assume that A has an 

(I,M) factorization system of morphisms. 

9 

PROPOSITION 0.4. E and M can determine each other 

as follows: 

(i ) E = {</> </> III \:IllE !:!}, 

(i i ) M = {ll </> III V</> E I} , 

where </> III means that for every commutative square 

</> 
~ 
/ 

/ 
/ 

Cl y/ 
:/ 

13 

/ 
/ 

~ :> II 

there exists a unique morphism y such that y</>= Cl and 

lly=l3. 

proot.: By duality we need only to prove (i). 

Suppose </> E I. Then by the unique diagonal pro pert y 

\/ll E M,</>-Ill. 

Now suppose that </> --Ill, \:Ill E M. We want to show 

that </> E E. Let </>m </>e be (I,M) factori za t i on of </> • 



Then in the fo11owing commutative square 

there exists a unique ô such that ~mô = 1 and ô ~ = ~e. 

Hence ~m ô ~m = ~m and ô ~m ~e = ~e· Then ô ~m is a 

diagonal morphism in the fo11owing square. 

~e 

* / 
/ 

~e ô <1>, / ~m 

/ 

t: 
q>m 

10 

By the unique diagonal property ô ~m = 1, since 1 1s a1so 

a diagonal morphism in the above square. Hence ~m is an 

i somorph i sm and ~ = <l>m ~e E f· 1 

PROPOSITION 0.5. Suppose that 
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> 

cp 

w , 
1IJ 

~ 

is a pullback and cpe M. Then 13 E M. 

ppoof: Let I3 m Se be the (I~M) factorization of 

S. In the following diagram, since cp E M there is a unique 

diagonal morphism y such that y l3 e = a and cp y = 1IJ Sm. 

Furthermore, by the pull back square, there exists a unique 

cS such that a ô = y and S ô I3 m· It follows that 

a ô l3 e = y 13 e = a and 13 ô l3 e I3 m l3 e S. By the unique-

ness property of the pullback square, ô l3 e = 1. We shall 
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a1so show that ~e Ô = 1. By mu1tip1ying ~e to the 1eft 

of ô ~e = 1 we have (~e ô)~e = ~e. A1so we know ~m(~e ô) 

~ ô ~m. Thus in the commutative square 

,both ~e ô and 1 are diagonal morphisms. Hence ~e ô 

~e is an isomorphism. Therefore ~ = ~m ~e E M. 

1 and 

COROLLARY 0.6. Suppose that A has products. let 

cl> X -+- X', 1IJ: y -+- yi be both M-c1ass morphisms. Then 

cl> x 1IJ : X x Y -+- X' X yi i s al soi n M. 

1 

ppoof: We shal1 show that the fo11owi~g square is 

a pull back, where 7T X' 7T y ' 7T X
/ , and 7T

/
y arè projecti ons. Then 

cl> é M ~ cl> x ly E. M. We then app1y this result twice to 

obtain cf> x 1IJ e M. 



x x y 
7T X 

--------------~) X 

cp x 1y 

/-
y 

XiX Y ~ X 
7T X' 

13 

1 
Let cp a = 7TX/~' where a: Z ~ X 

1 

and S : Z ~ X x Y. Then 

there is a morphism 7Ty S : Z ~ Y. By the property of the 

product X x Y, there exists a unique morphism y . Z ~ X x . 
such that 7T X y = a and 7Ty 

1 1 y = 7T y S = 7Ty (cf> x 1y) y. But 

we also have 'Ir 1 S = X cp a = cp 7T X y = 7T X' (cp x ly) y. Hence 

S = (cf> x ly) y. So we have a morphism y, such that 7T X y = a 

and (cp x ly) y = S. We only need to show its uniqueness. 

Let ô be a morphism such that 7TX ô = a and (cp x ly) ô = S. 

Then 7T X ô = 7T X y and (cp x ly) ô (cp x l y) y. It follows 

that ô 
1 (cp x l y) ô = 7Ty (cp x ly) y = 7Ty y. By the 7Ty = 7Ty 

uniqueness pro pert y of the product XxY,ô=y. 1 

Suppose that a: A ~ X and S: A ~ Y. Then we 

denote the unique morphism A ~ X x Y by ·{a,S}. 

Y 
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PROPOSITION 0.7. The following are equivalent: 

1. For every Ain A, ° {l ,1} : A -~~ A x A E M , 

2. E C Epis, 

3. Regular monos C M • 

p:rooof: (l) ~ (2) Let € E f and a € a €. 

Then we have the following commutative square. 

a € 
) 

\ ... V ... ., 

. {<,El ./..... n,1l 

1{l,1} 

) 
a x a 

By definition (0.1), there exists a unique y such that 

y € = a € and O{l,l} y = (a x a){l,l}, i.e. O{y,y} =O{a,a} • 

Hence a = a and € is an epi. 

(2) ~ (3) For every commutative square 

cp 
~ 

/ , 
a y/ 

/ a 
/ 

/ 
le 

II 
) 
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with • E E C epis and ~ a regu1ar mono' (i.e. an equa1izer 

of a pair of morphism, say (P,T»), there exists a unique y 

such that ~ y = a, since P a = T a. It fo11ows that 

~ y • = a • = ~ a. We have y. = a. Hence, by proposi

tion (0.4), regular monos CM. 

(3) ~ (l) '{l, l} is an equalizer of 
Pl) 

A x A ---J» A. Hence' {l , l} E M, • 1 
P2 

COROLLARY 0.8. If 

A «- ),X 

~1 l' y 
\fi 

)Z 

is a pu11back then '{a,a} é M , provfded that '{l,l}E M 

Prooi: '{a,a} is a regular mono, since it is 

the equalizer of 
~ p 1 ~ 

X X Y 
) 

z 
tP P2 

where Pl . X X Y ) X and P2 . X X Y ) Y are . . 
projections. 1 
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PROPOSITION 0.9. Assume that pu11backs exist in 

A. Then the following are equivalent: 

(i) M C monos , 

(ii) m y = m ô E M and m E M ~y = ô , 

(iii) a a E ~==+ a E E . 

PX'oof: (i) ~ (ii) trivial. 

(ii) ==+ (iii) 

zations of a and a, respectively. Then 

where 1.1 e: is the (~,M) factorization of ae am . Thus 

e: ae 
) 

;f 
/ 

/ 
~ 

a a /y am 1.1 
/ 

/ 
/ 

/ 

1 
) 
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by the unique factorization of a S, there is a unique iso 

y such that y a S = € Se and am II y = 1. Hence 

am II y a = m am E !1 and, since am E M, it implies that 

II y a = m l • Thus am is an iso and has inverse II y • 

We have therefore shown that a E E. 

(ii;) ===> (i) Let II E M and let ($,f) be its kernel 

pair, i.e. 

) 

i S" a· pull back. 

) 

By proposition (0.5) $,$' E M. Since ($,$') is a kernel pair, 

there is a unique X such that 
, 

$X=l=$ x. Hence 

Thus $,$' are both isomorphisms and X is their inverse. 

Therefore X is an iso and (1,1) is the kernel pair of ll. 

Then it follows that II is a mono. 

A morphism a is said to be a regular epi if it is 

a coequalizer of sorne pair of maps. Kelly [5] pointed out 

that regular epis in general are not closed under composition 

and if a S is a regular epi, a is not necessarily a regular 

epi. However, both Kelly [5] and Barr [1] show that if kernel 
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pairs and coequa1izers exist, then in the fo110wing, 

(1) ~ (2), (3), (4): 

1. A pu11back of a regular epi is an epi. 

2. Every map has a factorization of the form 

• ---ll)~~. >~--~). where ----~)~~ is a regular epi and 

> ) i s a mono. 

3. If a a is a regular epi, so is a. 

4. Regular epis are closed under composition. 

COROLLARY 0.10. Assume that, in A, a pullback of a 

regular epi is an epi. Then the following are equivalent: 

1. E = the class of all regular epis, 

2. M = the class of all monos. 

ppoof: (1) ~ (2) By proposition (0.9), M C 

mono. 

Let ~ be mono and ~m ~e be the (I,M) factoriza

tion of~. Then ~e is a mono and a regular epi. Hence 

~e is an iso and ~ = ~m ~e is in M. 

(2) ~ (1) Let E be an E-class map. Since 

every map has a factorization of the form • -----2)~~ • >>---~) • , 
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let € = 1..1 <P where 1..1 is a mono (E M) and <P is a regu1ar 

epi. Then 1..1 E M and by proposition (0.9), 1..1 E ~. There-

fore 1..1 is an iso and € is a regu1ar epi. 

Now let <P be a coequa1izer of (y,ô) , i.e., a regular 

epi, and' <Pm <Pe be the (~,M) factorization'of <p. Si nc"e 

~ is mono ~ y - ~ ô Then there exists a unique a such ~m ' ~e - ~e . 

that a <P = <Pe' Hence <Pm a <P = <Pm <Pe = <p. Therefore 

<Pm a = 1. 50 <Pm is an iso and <P = <Pm <Pe is an E-c1ass 

morphisme 1 

PROPOSITION 0.11. (i) a r3 E: M and a é M ~ r3 é!:t. 

(ii) a r3~ E and r36 ~~aG E. 

Proof: By dua1ity we on1y need to show (i). Let 

r3 m r3 e be the <.~,M) factorization of r3. Then a r3 m E. M. By 

the uniqueness of (~,M) factorization of a r3, there is a 

unique iso y such that y = r3 e and a r3 m y = a r3 as shown 

in the fo110wing diagram. 

/ 
", 

~ 

Hence is an iso and 

1 

Y / 
Y 

/' 
/' 

,-

ar3 

> 

1 
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Chapter l 

ON BICATEGORIES OF SPANS AND RELATIONS 

Let A be a category with finite products, pullbacks 

and (E,M) factorization system. Let A,B,R be objects of 

A. According to Benabou [2], a ··triple (R,a,a) with mor-

phi sms a: R ~ A an'd a R ~ Bis call ed a !.E..!!!. from 

B to A in A. We den ote the morphism R ~ A x B by '{a,a}~ 

The span (R,a,a) is called a relation if '{a,a} E M. 

PROPOSITION 1.1. To any span (R,a,a) there cor

responds a canonical relation (R~ ~,~) obtained by taking 

the (I,M) factorization of the morphism '{a,a}; thus 

where 

1 

Suppose (R,a,a) and (S,y,ô) are both spans or 

relations from B to A. A ~ from (R,a,a) to (S,y,ô) is 

a commutative diagram in A, 
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R 

A 'r B 

~/. S 

such that y T = a and Ô T = a. 

PROPOSITION 1.2. Let (R,a,a) and (S,y,ô) - be 

spans from B to A. The fo11owing are equiva1ent: 

(i) T R -~) S such that y T = a and ô T = a , 

(ii) T R -~) S such that '{y ,ô} T =' {a,a} . 1 

REMARK 1.3. Let (R,a,a) and (S,y,ô) be rela

tions from B to A. It fo11ows from (ii) in the above and 

proposition (0.11) that T : (R,a,a) 

M-class morphisme 

-~) (S,y,ô) is an 

(R,a,a) and (S,y,ô) are said to be isomorphic 

if and only if T is an isomorphisme 
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In this chapter we sha11 assume that '{1,1} E M. 

Then for each object A of A, (A,l,l) is a relation and is 

ca11ed the identity relation on A. 

Let Span (A,B) and Rel (A,B) denote the categories 

of spans and relations from B to A, respective1y. Thus 

Rel (A,B) is a full subcategory of Span (A,B). We will show 

that the object function + of proposition (1.1) can be ex

tended to a functor from Span (A,B) to Rel (A,B), in fact 

the 1eft adjoint of the inclusion functor. 

Suppose (S,y,o) E Span (A,B), (R,a,a) ~ Rel (A,B) 

and f (S ,y,o) ~ (R,a,a). * Let f be the diagonal morphism 

in the fo110wing square, which commutes by proposition (1.2). 

e: (S) 

, {y l , Ol} 
S+ ----:....-:....---~> A x B 

"

" 

" " " 

'{a,a} 

~ 

S -------::'f---~) R 

(see definition (0.1». 



(S+,yl,Ô I ) 

* By proposition (1.2), f is also the unique map 

* -~> (R,a.,a) such that f E(S) = f. 

+ (S ,yl,Ô I )" 

E (S) 

" " 

" " " ~ 
(S,y,ô) ------->~(R, (l,a) 

f 

Given any map ~: (S,y,ô) ~ (T,T,cr) in Span 

> 
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(A,B) we let ~+ be the unique map (S+,yl,Ô I ) 

(T+ ,TI ,cr) such that ~+ E(S) = E(T)~, i.e., + * ~ = (E(T) ~) . 

JE(T) ~[ 
S+- - - - - ~ T+ 

S ---____ ~) T 

We have thus proved the following. 
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PROPOSITION 1.3. Rel (A,B) is a full ref1exive 
+ subcategory of Span (A,B) with ref1ector 1 

We reca11 the notion of a bicategory in the sense 

of B~nabou [2]. B~nabou himse1f. gave as an examp1e the bi

category Span A with objects those of A, with morphisms 

A >B the s pans from A to B, and wi th cel1 s the maps 

between spans. Composition of spans is defined thus: 

(R,a,a) * (S,y,ô) (R * S, a 1.1, ô v) 

where R (1.1 R * S 

R a) B (x S. 

v > Sis the pull back of 

A 

R 

Pb Y 

R * S --v--)~ S 
ô 

---~)C 
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The question now arises whether one can simi1ar1y 

obtain a bicategory Rel A. We define composition of rela

tions thus: 

(R,a,l3) 0 (S,y,ô) (R * S)+ ,(a 11)', (ô vf ) 

where 

is the (~,M) factorization of 

abbreviate (R * S)+ as RoS. 

R * S --~> A xe. We may 

Unfortunate1y this composi-

tion is not necessari1y associative, as was a1ready observed 

by Klein [6]. He pointed out that it is associative under 

a certain condition. We sha11 genera1ize his resu1t. 

PROPOSITION 1.4. Suppose! is a bicategory with 

composition functor * between morphisms ~nd between ce11s 

and to each category Homx (A,B) with A,B objects in !' we 

assign a full reflexive subcategory 

ref1ector + and adjunction n(S) : S 

Homxl(A,B) with 

-~) S+. Then Xl is 

a1so a bicategory with composition 0 between morphisms and 

S 0 T --.. (S * T)+, ~ 0 ••• = (~ * .•. )+ between ce11s defined by - ~ ~ ~ ~ 



provided there exists a natural isomorphism 

cr(S,T) : (S * T)+ -~) (S+ * T+)+ 

whenever S: B ~ A , T : C ~ B , in particular, if 

(n(s) * n(T»)+ is an iso. 
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ppoof: X is a bicategory with composition * between 

morphis~s and between cells. Hence * is a functor. Since 

~ 0 W = (~ * w)+ where ~,w are maps in Homx (A,B), 0 is 

also a functor. Let S,T,U,V be objects of categories 

Hom X (A,B), Hom X (B,C), HomX (C,D) and Homx (D,E), respectively. 

Then there are natural isomorphisms: 

a(S,T,U) 

tes) 

r(S) 

(S * T) * U "") S * (T * U) 

.... ) S 

.... ) S 

such that they satisfy the following coherence conditions: 

(i) a(S,T,U*V) a(S*T,U,V) = (IdS * a(T,U,V»)-a(S,T*U,V) -

(a(S,T,U) * IdV). 

(ii) r(S) * IdT = (IdS * t(T»)-a(S,IB,T). 
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We need to show the sarne in XI. We note that + 

preserves natural isornorphisrns. Let S,T,U,V be objects of 

categories Hornx,(A,B), Hornx,(B,C), Hornx,(C,D) and Hornx,(D,E), 

respectively. Then 

(S*(TOU»)+ = So(ToJ) . 

Hence, a(S,T*U) a+(S,T,U) a-1(S*T,U) 

is a natural isornorphisrn. 

(SoT)oU ~ So(ToU) 

Similarly, we have natural isornorphisrns l+(S) 

... ) S. 

Before proceeding to check the coherence conditions, 

we introduce abbreviations for the following natural iso

rnorphisrns. 

T, - a-' [ {S*Tl*U, V 1 [a-' {S*T ,UlddV r [{soT}OU 1 oV - ([ {S*Tl*ul*V r 
T. - a-'[S*{T*Ul,V) [a-'{S,hUl*ldvr [SO!TOUl)oV _ [[S*{T*Ul)*Vr 
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(SoT)o(UoV) 

The required coherence conditions are the following: 

(i) 

1 
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This commutes, since by applying coherence condition (i) of 

the bicategory !, we obtain 

(i i ) 
+ a (S,IB,T) 

(S olB) 0 T ----------+) S 0 (lB 0 T) 

SoT 
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This commutes by using coherence condition (ii) of the bi

category X. 

Thus XI is a1so a bicategory. 1 

We now return to Rel A. In the fo110wing we assume 

that A is a category with finite products, pu11backs and an 

(E,M) factorization system. We abbreviate the span (S,y,ô) 

from B to A by S whenever there is no ambiguity. 

LEMMA 1.5. If pu11backs preserve E-c1ass morphisms, 

then 

cr(S, T) = (E(S) * E(T»)+: (S * T)+ -~> (S+ * T+)+ 

is an isomorphism, where Sand Tare spans from B to A and 

C to B, respective1y. 

ppoof: We reca11 that E(S) : (S,y,ô) ~ (S+,yl,Ô I
) 

and E(T) (T ,p,'[') ~ (T+, pl, '['1). S+ * T+ and S * Tare 
+ ôl 1 + obta i ned by pull backs of S :> B < P T and 

S ô) B < PT, respective1y, as shown in the following 

diagram! 
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A 

IY' 
E(S) > S+ 

Ô 1 

S ) B 

al la ,p' 
11 ) s+ *T+ X ') r+ 

1 

M '[ ) C 

~l It !-(Tl 
S * T > N ') T 

11 1 Xl 

where yIE(S) = y, ÔIE(S) = ô, pIE(T) 

a11 squares are pu11backs. 

p, '[IE(T) = '[ and 

z;; N 

fore 

that 

Now E (S), E (T) € E. Hence + + 11 : M ~ S *T , 

~ S+*T+E E and 11 1
: S*T 

Since S+ ( a S+*T+ 

there is a unique map E(S) 

a(E(S) * E(T») = E(S) al z;; 1 

* 

~N,z;;I:S*T~MEI· 

X > T+ is a pu11back, there

E(T) : S*T ~ S+*T+ such 

and X(E(S) * E(T») = 

E(T) Xl 11 1 
• Clear1y then E(S) * E(T) = 11 Z;;I and therefore 

an E-class morphisme 

We consider the following diagram: 



5 * T -~--:--~~ (5 * T)+ e:(5*T) 7 
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where '{ll,V} e:(5+*T+) and' {K,À} e:(5*T) are (.[,M) factori-

zati ons of morphi sms 5+* T+ ~ A x C and 5*T ) A x C, 

respective1y, such that '{ll,:V} ; {K"À} E M and e:(5+*T+), 

e:(5*T) E E. 

5ince we have shown that e:(5) * e:(T) E .[, by com

position e:(5+* T+) (e:(5) * e:(T») ~ E. By the unique (.[,M) 

factorization of 5 * T ~ A x C, there exîsts an isomorphism 

(e:(5) * e:(T»)\ (5*T)+ ~ (5+*T+) +. 1 

From proposition (1.4) and 1emma (1.5), we obtain: 

THEOREM 1.6. If pu11backs preserve E-c1ass morphisms, 

then Rel A is a bicategory. 1 
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Of special interest is the situation treated by 

Klein [6], where Rel (A,B)is not a category but a preordered 

set. We sha11 regard a preordered set as a special kind of 

category in which there is at most one morphism between any 

pair of objects. 

PROPOSITION 1.7. The fo11owing three statements 

are equiva1ent: 

(1) Rel (A,B) is a preordered set for each pair (A,B),. 

(2) Rel (A, :4) is a preordered set for each A, where .11 i s 

the terminal object of A, 

(e) M C mono. 

ppoof: Since A has finite products, the "emp ty" 

product,1, is the terminal object of A. Clearly (1) ~ (2). 

(2) ~ (3) We sha11 show that, for any objects 

A,B and C in A, if f,g :C--) Band n : B ~A with 

n 6 M and n f = n 9 = m E M then f = g. Then by proposi

tion (0.9), it fol1ows that M is a c1ass of monos. 

Let t(B) : B ~ 1L. Then' {n,t(B)} : B ~ A x:o. 45 M, 

because A x 1 ~ A and n E M. Hence B can be regarded as 

a relation (B, n , t(B») from 11. to A. Simi1ar1y we have a 
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re lat ion [c, m, t ( C) ] from :il. to A, and therefore 

f,g : (c, m, t(C)] ) (B, n, t(B)] . But Rel (A ,11.) is a 

preordered set. Hence f = g. 

(3) ==+(1) Suppose M consists of monos only. 

We need to show that if there exists a map between two rela

tions R,S from B to A, then the map is unique. Let 

f,g R-~) S, where n: R ----?'~ A x Band m: S -~)AxB 

are elements of M. By proposition (1.2), mf = n and 

mg = n. Thus mf = mg. Since M C monos, m is a mono and 

therefore f = g. 1 

We remark that our result in theorem (1.6) 

specializes to Bénabou's [2] when .s = isos, M = all maps 

since E is then invariant under pullbacks. 
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Chapter 2 

PROPERTIES OF RELATIONS 

Let A be a category with finite products, pu1lbacks, 

pushouts and (I,M) factorization system. Whenever we ta1k 

about the bicategory of relations, it will be tacit1y 

assumed that pul1backs preserve I-c1ass morphisms. We a1so 

assume that a pul1back of a regu1ar epi is an epi whenever 

liE:; the class of all regular epis ll is mentioned. We shall 

investigate sorne properties of a relation from B to A in A. 

To any relation (R,a,a) from B to A, there is a 

converse relation (R,a,a), denoted ·by R, from A to B. 

PROPOSITION 2.1. (il R~ R. (ii) RoS ~ SoR, 

where (S,y,~) is a relation from C to B. 

PPOOt.: (i) Obvious. 

(i i ) The pu11back of R· a > B ( X S is R~ cr R*S '[' > S. 

We obtain the span (R*S, acr,~'[') from C to A. Its converse, 

R*S is (R*S , ~ '[', a cr) from A to C. 
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On the other hand, the composition 5 * if is 

(5 * if , Ô T , a cr), where 5 (T 5 * if cr > if i s the pull

back of 5 X) B E f3 if. 

We deduce R * S ~ S * if. By the uni queness of 

(~,M) factori zati on, RoS ~ 5 0 if . 1 

We recall that when M C mono, Rel (A,B) ;5 a pre

ordered set (see proposition (1.7)). 

PROPOSITION 2.2. Assume M C mono. Let (R,a,f3) 

be a relation from B to A. Suppose that '{l,l} é M, then 

(1) R o if C. lA if and only if f3 is mono. 

(2) R 0 if :::> lA if and only if a E E. 

Proo!: (1 ) Let f3 be mono. Then (R * if , a , a) 

is obtained from the following diagram: 

A 

al 
f3 

R > B 

11 Pb 
la 

R ~ R a >A 
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Let be the (~,M) factorization of a. 

is the (~,M) factorization of '{a,a}, since . {am,am} = 

. {1 ,l} am E M. Thus we obtain (R 0 R , am' am) and there is a 

map, am: R 0 R ) lA' which belongs to M. 

Conversely, suppose that R 0 R C lA. We note that 

(R*R, ay,aô) is obtained as follows: 

A 

BI 
R f3 ) B 

yi Pb ra 
R* R ô 

) R 
a 

~A 

.. 
We have (R 0 R , 1.1 , v), where . {1.1, v} € is the (~,!1J factor-

ization of '{ay, aô}. Since there is a map '1": RoR-~>IA' 

1.1 = '1" = v. Hence a y = 1.1 € = V € = a ô and since f3 y = f3 ô 

we have' {a,f3} y =' {a,f3} ô. Now since . {a,f3} ~ M C. mono, 

y = ô. lt follows that a is mono because its kernel pair 

is (y,ô). 
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(2) Suppose a tE~. (RoR, 11 ,v) is obtained 

from the (~,M) factorization of . {ay, a ô} in the following 

di~gram. That is, '{ay, aô}='{l1,V}e: where '{l1,V} E M 

and e: € E. 

A 

al 
R ) B 

YI Pb la 
R * R ô ) R a 

~ A 

By the pu11back square, there exists a ~ such that y. ~ = l = ô ~. 

It follows that 11 e:. ~ = a y ~ = a = a ô ~ = v e: A. We obtain 

'{a,a} ='{l,l} a ='{l1,V} e:. A, where '{1,1} ,"{l1,V} E M and 

a E~. Hence by the diagonal property (see definition (0.1», 

there exists a unique T such that T a = e: A and '{l1,V} T = 

·{1,1}. In other words, there exists a T: lA --~>RoR. 

Conversely, suppose T : (IA,l,l) -+ (Ro R, 11,V). 

Then 11 T = 1 = V T and therefore, by proposition (0.9), 11 
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is an ~-class morphisme From the construction of R 0 R, 
a y = ~ E E~. Hence a is an E-class morphism (see proposi-

tion (0.9». 1 

PROPOSITION 2.3. Assume ~ C regular epis. Let 

(R,a,a) be a relation from B to A with both a and a in E. 

Then the coequalizer of R 0 R ~ A is isomorphic to that 
v 

of R 0 R ~I~ B. (Explicitly, (P,~) = Coeq. (~,v) and (P,~) 
Vi 

Coeq. (~I, Vi) where A -4 P ~ Bis the pushout of 

A~R-4B.) 

ppoof: In the following commutative diagram, 

(y,ô) and (yl,Ô I
) are the kernel pairs of a and a, respec

tively. Since a and a both belong to E, they are coequalizers 

of (yl,Ô I ) and (y,ô), respectively. '{~,V}E and ·{~I,VI}EI 

are (~,M) factorizations of ·{ay,aô} and·{ay',a ôl}, 

respectively. 
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, 
? P 

CP' ........ -
,.. ........ ,,"-1\ 

~ À" 1 ........ 
:/ / Il ,.. 

) ........ cp /' 
R - > l, o R ~ A P 

el 
'V 

la I~ / 1 t/J 

Po 

y 

R * R > f3 / 
~ 

R > B 
ô 

d1l' v'll 
R * R )R 0 R 

e:' 

Let (P', cp') be the coequalizer of (~,'V). Then 

CP' a y = CP' ~ e: = CP' 'V e: = CP' a ô • Since f3 is the coequalizer 

of (y,ô) , there is a unique t/J' : B -----!) P' such that 

t/J' f3 = cp' a. By the pus hout in the above di agram, there 

exists a unique À : P ~ P' such that À cP = CP' and 

À t/J = t/J' • 

On the other hand, from À cP = CP' we obtain 

À t/J f3 = À cP a = CP' a = t/J' f3. Then t/J' = À t/J because f3 E ~. 
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À i s therefore the uni que map such that . À cp = cp 1. Hence 

(P,cp) = Coeq. (p,v). Similarly (P,lP) = Coeq. (pl ,Vi) • 

Later when we consider a situation in which R 0 R 

and if 0 'R are equivalence relations, this result can be 

written as: 

A/(R 0 if) = B/(R 0 R) 

(compare with [7] proposition 1). 

LEMMA 2.4. Let (R,a,a) be a relation from B to 

A. Then there is a canonical map from R to R 0 if 0 R which 

is an M-class morphisme 

ppoof: In the following diagram, we obtain 

(R * if * R ,a y p, a À T) by successive pullbacks. 
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A 

al 
R a 

) B 

YI 1 la 
M ô 

) R ex 
) A 

pl 3 

la 
2 la 

R*R*R 
a 

) N > R )B 
T À 

By the pullbacks (1) and (2), there exist unique n : R ~ M 

and z;; R ~ N such that y n = 1 = ô n and CI Z;; = 1 = À Z;;. 

Hence ô n = v Z;; = 1 and, by the pullback square (3), there 

exists a unique K: R ~ R * if * R such that p K = n 

and T K = Z;;. We thus obtain ex y p K = ex y n = ex and 

a À T K = a À Z;; = a. 
Let "{ex y p, a À T} =" {ll ,v} e: be the (.s,M) factori-

zation of the morphism "{ex y p, a À .r} : R * if * R -~'> A x B. 

Then we have e: K : R -~, R 0 if 0 R, whi ch i s an M-cl ass 

map (see remark (1.3». 1 
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We call a relation R difunctional if it satisfies 

R ~ R 0 if 0 R. In the fo11owing proposition, we give 4, 

sufficient condition for R to be difunctional. We shall 

assume '{l,l}E M in the fo11owing and define a pullback 

relation to be a relation which is a pullback of sorne pair 

of maps. We note that if a span (R,a,S) is a pullback of 

of sorne pair of maps, then it is a relation (see corollary 

(0.8» . 

THEOREM 2.5. Let:MC- Monos.' ,Assume that (R,.Q/~) 

is à pullback rëlation from 'B ~toA,: 'Theo the ~anonical map frOIn 

ft to;:; R 0 R 0 R is anisomO'rphism. 

pzaoof: As is we11-known, A< a R S) S is a 

pu 11 back of i ts own pus hout A cf» c ( l/J S, i.e. 

A----~) C 

(2.6) 

R--~~) S 

is bicartesian (that is, both a pullback and a pushout square). 
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In the followi~g diagram, (R * if * R, a. y p, a À T) 

is obtained by successive pull backs. 

A 

ai 
R 

a 
) 

. tP 
B -- - - ~ c 

yI la 

À\ 
1 

Icp 
1 

M 
ô a. 

) R ) A 

pi ia la 
R*R*R 

T 
) N À 

) R a ~ B 

By composition of pullbacks, we obtain the pullback 

square 

R 

(2.7) y p 

------~) R 
À T 



We c1aim that the following is almost a pullback square. 

A -------p~----_7> C 

(2.8) r:x.y p 

R*R*R --------~) B 

ln. l' 

It commutes since, <pr:x.y p =,p {3y p = cpr:x.À l' =,p (3À 'T'. Suppose there 

are x: X ~A and y: X ~B such that <px =,py. By the pull-

back square (2.6), there exists a unique z such that r:x.z =x and 

{3 z = y. Hence cpr:x. ~ = l/J (3 z and, by the pullback (2.7), there exists 

a unique w such that y p w = z and À l' W = z. We thus obtain 

r:x.ypw=r:x.z=x and ~À1'w=~z=y. Itfollows thatthe square (2.8) 

is almost a pullback. 

Take X = R . Since R i§ a pullback, there exists 9 such that 

r:x.9=r:x.yp and {39={3~1', hence r:x.9w=r:x.ypw and ~9w={3À1'w. 

45 

Since R is a pullback, 9 w ~ 1. Therefore 9 EE (see proposition (0.9». 

- - + Hence R oR oR '!! (R*R*R) ~ R. 
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We shall extend the notion of mono and epi to bi

categories: R will be called mono if RoS· ~ RoT implies 

that S~T and~if SoR~ToR impliesthat S·~T. 

R is called an eguivalence if there exists an S such that 

RoS ~ land SoR ~ l • 

Clearly, from proposition (2.5) we obtain the 

following: 

. 
COROLLARY 2.9. Assume that (R,a,a) is a pul1back 

relation. Then the fo11owi~g are equivalent: 

(i) R is mono, 

(ii) if is epi, 

(iii) if 0 R ~ 1. 1 

Hence a pu11back reJation is an equivalence if and 

only if it is a mono and an epi. We shal1 describe monos and 

epis in Rel A. 

PROPOSITION 2.10. Let (R,a,a) be a relation. 

The fo11owing are equivalent: 
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(i) if 0 R ~ 1 and' {a, jn i s mono , 

(ii) a is mono and f3 E E. 

Ppoof: (i) ~ (ii) (if * R , a y, a ô) i sas pan 

obtained as indicated in the fo110wing di~gram. We note 

that a y = a ô. 

B 

~I 
R 

a 
) A 

yI Pb la 
R*R ) R 

a 
) B êS 

Si nce if 0 R ~ 1 , f3 Y = a ô E E. We thus have 

'{a,a} y ='{a,a} ô and hence y = ô. Since (y,ô) is the 

kerne1 pair of a with y = ô, a is mono. Without 10ss of 

genera1ity we can take y = ô 1. Therefore a = a y E ~. 

(ii) ==+ (i) Assume that ais mono and a E ~. 

Since is a pu11back, we have the 
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span Cif * R , a , a). Sut the (~,M) factorization of 

{a,a} : R * R ----+ S x S is just {1 ,1} a, since a é E. We 

thus obtain the relation CR 0 R, 1 ,1) and hence if 0 R ::! IS. 

C1ear1y, here {a,a} is mono because a is mono. 1 

We note that if (R,a,a) is a pu11back relation, 

then {a a} is mono. From coro11ary (2.9) and proposition 

(2.10), we have 

PROPOSITION 2.11. Assume that (R,a,a) is a 

pu11back relation. Then the fo11owing are equiva1ent: 

(i) Ris mono, 

(i i) Ris epi, 

( i i i ) R oR::! 1, 

(iv) a is mono and a 6 E. 1 

We sha11 now show that pu11back relations can be 

factored canonica11y whenever M = the c1ass of a11 monos. 

We sha11 first prove the fo11owing 1emmas. 
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LEMMA 2.12. Suppose that (R,a,a) is a relation 

from B to A. Then (R,ae,ae ) is a relation from BI to AI, 
a a a a 

where R e ) AI m)A and R e > BI m> B are (l,M) 

factorizations of a and a, respective1y. 

PX'oof: We have {a,a} = (am x am) {ae,ae}· By 

coro11ary (O.6), am x a m é M and since {a,a} f M, so does 

{ae,ae} {see·proposition (O.ll». 1 

LEMMA 2.13. Assume that M C mono. If (R,a,a) is 

a pu11back relation, so is (R., ae,ae), where am ae and 

am ae are (l,M) factorizations of a and a, respective1y. 

PX'oof: Let cp )( l/J be a pushout of ( a a ). 
Then 

) 

1 

) 

is bicartesian. We take n > < 1; to be a pushout of 
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Hence there exists a unique. À such that 

À n = $ am and À ~ = $ am' as fo11ows: 

) 

We need to show that the square (2) is a pullback. Suppose 

that n x = ~ y. We then have $ am x = À n x = À ~ y = 

$ am y. By the pu11back square (1 ), there exists a unique 

z such that a z = am x and a z = am y, i • e. am a z = e am x 

and Sm ae z = am y. Since am and am are both mono, we 

obtain ae z = x and Se z = y. Since {ae,Se1 é M c:: mono, 

it fo11ows that there exists a unique z such that a z = x e 
and Therefore is a pu11back relation •• 

The converse of 1emma (2.13) is not a1ways true. 

We sha11 give the necessary and sufficient condition in the 



next proposition. We need the resu1ts of the fo11owing 

1emmas. 

51 

LEMMA 2.14. Suppose that the right square in the 

fo11owing di~gram is a pu11back and (y,ô) , (yi, 6 1
) are 

kerne1 pairs of ~ and a, respective1y. 

y 
) ~ 
) 

) 

pI 
6 

al i~ Pb 

yi 
) 

) 
) 

Ô 1 

Then the 1eft squares are both pull backs. 

Proof: In the fo11owing diagram a11 squares are 

pu11backs: 

) 
a 

) 



But ~ a = ~ a and a ô' = ô p. Hence the composite of 

the following squares is a pullback. 

) ) 

p 
) 

ô 
) 
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Here the right is a pullback square and therefore so is the 

left. Similarly, 

) 

Ô • ô 

p ) 

is a pullback. 1 



53 

LEMMA 2.15. Assume that a pu11back of a regu1ar 

epi is an epi. Suppose that 

) 

E Pb 

) ) 

is a pu11back with ~ mono and E regu1ar epi. Then $ is a 

mono. 

ppoof: Since ~ is mono, (1,1) is its kerne1 pair. 

Let (y,ô) be the kerne1 pair of $. Then there exists a 

unique p such that y p = E and ô p = E • 

y 
) $ ) 
) ô 

P E Pb 

1 
) > ) 

~ 
1 > 
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By 1emma (2.14), the 1eft squares are pu11backs. Hence p 

is epi. Since y p = e: = ô p, we obtain y = ô. Therefore 

~ is a mono. 1 

PROPOSITION 2.16. Assume ~ = the c1ass of a11 

regu1ar epis. Let (R,a,a) be a relation from B to A. Then 

the fo110wing are equiva1ent: 

(i) If (R,ae,ae) is a pu11back relation, so is 

(R,a,a) . 

(ii) Any pair of morphisms ( }l ( a > wi th 1.1 mono 

is a pu11back of sorne pair of morphisms. 

P~oof: (i) ==) (ii) Take II = a m and 1 = ae • 

(R , 1 , ae) is a pu11back relation. Therefore, so is 

(R,a,a) , which is (R,1.1,a) in this case. 

(ii) ==+ (i) 

i ts own pus hout ( cp • 

Let (R,ae,ae ) be the pu11back of 

W ). By the dual of proposition 

(0.5), ~ and $ both be10ng to E. Hence we can complete the 

pu11back squares in the fo11owing diagram because by coro11ary 

(0.10) and 1emma (2.15), al 
m and ami are both mono. 



- - - ~ 0- - - --7 
i t 
la~ Pb 1 
1 1 

Pb 

cf> A amI 1 
--~>~~ >- - -- ~ 

t 
Bi Pb 1 

1 

______ ~>~) >~----~>I 
ae 
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Thus the composite large square is a pu11back and (R,a,a) 

is a pu11back relation. 1 

We now return to show that pu11back relations can 

be factoredcanonica11y. We remark that {a,a} is mono 

whenever one of the a and a is a mono. Thus when M = al1 

monos, (R,a,a) is a relation if one of the a and a is mono. 

PROPOSITION 2.17. Assume that M = the c1ass of a11 

monos and suppose that (R,a,a) is a pul1back relation. Then 
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there is a canonical factorization R ~ M 0 E where 

(M, am' n) and (E,~, am) are relations with am' am é M 

and n, ~ E ~. 

ppoof: In lemma (2.13) we have shown that the 

square in the following diagram is bicartesian. 

A 

ami 
M=AI n 

) 

ael Bi 

R ) BI > B ae 

" 
am 

E 

Since ae ' ae E ~, by the dual of proposition (0.5), we have 

n , ~ E E. Hence (M, am n) and (E, ~, am) are both rela-

tions with am' am é M = mono and n , ~ E: E. We reca 11 the 

composition of spans and hence R ~ M * E. But (R,a,a) is 

already a relation, thus R ~ M 0 E. 1 
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PROPOSITION 2.18. Suppose that R ~ M 0 E, where 

(M, p, n) and (E,~, v) are relations with p,v bei~g 

mono and n, ~ e~. Then R is difunctiona1 (i .e. R ~ RoRoR). 

P~oof: By proposition (2.1), we obtain: 

R 0 R 0 R ~ M 0 E 0 (M 0 E) 0 M 0 E ~ M 0 E 0 E 0 M 0 M 0 E . 

Since E 0 E ~ 1 and M 0 M ~ 1 {see proposition (2.10», 

we have R 0 R 0 R ~ M 0 E ~ R. 1 

We can write a relation (R,œ,f3) as Ml o RI o M2 

whenever M Co mono, where Ml = (Ml, œm ' 1) , M2 = (M2' f3 m, 

and RI = (R, œe ' 13 e) • Here œm œe and f3 m f3 e are (~,!1) 

factorizations of œ and 13, respective1y. We therefore have 

the fo11owing 1emmas. 

LEMMA 2.19. Assume that M C mono. Let (R,a,f3) 

be a relation. Then R is difunctiona1 if and on1y if RI is, 

where RI = (R, ae ' f3 e) • 

1 ) 



Proo!: We write R = Ml 0 RI 0 M2' where 

Ml = (M 1 , am ' 1) and M 2 = (M 2 , Sm' 1) . The n 
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since, by proposition (2.10), M2 0 M2 ~ 1 and Ml 0 Ml ~ 1. 

(i) Suppose that R 0 R 0 R ~ R. Then, 

Ml 0 RI o RI 0 RI, 0 M2 ~ R ~ Ml 0 RI 0 M2 • 

Since Ml 0 Ml ~ 1 and M2 0 M2 ~ 1 , we 

obtain RI ~ RI 0 RI 0 RI. 

(ii) Conversely, suppose that RI ~ RI 0 ~ 0 RI. Then 

R 0 R 0 R ~ Ml 0 RI 0 RI 0 R' 0 M2 ~ Ml 0 R' 0 M2 ~ R. 

We note that, whenever RI = (R, ae ,Se) ~ MI 0 E' 

with M' = (MI; ~ ,n) and El (El, z; ,v), in which ~,v 

are mono and n, Z; E É.., then ~,v are isomorphisms. With

out 10ss of generality, we can take M' = (MI, 1 ,n) and 

E' = (El, Z; , 1) 

1 
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C1ear1y, (M, am' n) = Ml 0 MI and (E, z;, am) = 

El 0 M2 , where Ml (M, am' 1), MI =' (M,l, .n), El =' (E, Z;, 1), 

and M2 = (E, am' 1). Since R ~ Ml 0 RI 0 M2' we th us 

obtain: 

LEMMA 2.20. R ~ M 0 E if and on1y if RI ~ MI 0 EI~ 1 

In the fo110wing we sha11 consider main1y the rela

tion (R,a,a) with a,!3 E I. We define a relation (R,a,!3) 

as an E-re1ation whenever both a, a E I. We sha11 first 

show the converse of proposition (2.17) for f-re1ations. 

LEMMA 2.21. Let (R,a,!3) be an E-re1ation and 

assume that R ~ M 0 E, where M = (M,l, n) and E = (E, Z;,1). 

Then (R,a,!3) is a pul1back relation. 

P~oof: (R,a,!3) M * E is just a pu11back of 

n >< Z; 1 

PROPOSITION 2.22. Suppose that (R,a,a) is a 

difunctiona1 E-relation from B to A. Assume that every equiva-

1ence relation is a kerne1 'pair and I = the c1ass of a11 



regu1ar epis. Then (R,a,S) can be expressed as 

(M,l, ~) 0 (E, W, 1). 

praool.: R 0 if is an equiva1ence relation on A, 

because 1eR 0 if (see proposition (2.2», -R 0 R ~ R 0 

and (R 0 if) 0 (R 0 if) ~ R o if 0 R 0 if~ R 0 if. Then 
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if 

R 0 if Q ~ A is a kerne1 pair, say, of its own coequa1izer • T 

~. We note that 

is a pullback. 

~ E 

A 

p 

E and 

~ 
------------~) C 

R 0 if--------+) A 

Therefore we can write R 0 if ~ M 0 M, where 

M = (A, 1,~) is mono in Rel A. We obtain that R 0 if 0 R ~ 

M 0 MoR. 

We reca11 the relation (R 0 if, p, T) which is 

obtained by (~,M) factorization of the morphism 



R * R {a. X t a. ô}) A x A in the followi",g diagram, i.e. 

{a. y, a. ô} = {p, orle:, where {p, or} E M and e: E E. 

A 

af 
(3 

R > B 

YI Pb r~ 
a. 

R*R ô ) R )A 
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Since (3 is a regu1ar epi (E ~), it is a coequa1izer of 

its kerne1 pair, (y,ô). But ~ a. y = ~ p e: = ~ 'r e: = ~ a. ô. 

y 

R *R 
) 

R > B 
) 

Ô 1 

'$ 
1 
1 

W 
C 

Hence there exists a unique morphism $ such that $ a = ~ a.. 
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We now return to R 0 if 0 R ~ M 0 Mo R which we 

obtained earlier, and note that M * R is (R, 4> a, a) as 

follows: 

C 

$1 
l 

M=A ) A 

al Pb la 
R R 

a 
) B ;) 

l 

MoR is thus obtained by the (É,.,!:1.) factorization of {4> a, a}, 

which is: {4> a, a} = {l/J a, a} = {l/J, l} a, where {l/J, l} é M 

and a E E. We denote MoR by E and therefore, obtain the 

relation (E, l/J, 1). Thus, R ~ R 0 if 0 R ~ M 0 MoR can be 

expressed as (M,' l, 4» 0 (E, l/J, 1). 

As a consequence of lemma (2.21) and the above 

proposition, we obtain the converse of theorem (2.5) for E

relations. 

1 
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THEOREM 2.23. Suppose that (R,a,S) is a difunc

tional E-relation from B to A. Assume that every equivalence 

relation is a kernel pair and S = the class of all regular 

epis. Then R 'is a pullback relation. 1 

Proposition (2.16) gives the necessary and suffic

ient condition for any difunctional relation to be a pullback 

relation. 
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Chapter 3 

APPLICATION TO EXACT CATEGORIES 

We sha11 discuss relations in an exact category in 

the sense of Barr [1], since it inc1udes a wide scope of 

examp1es and our assumptions in the previous chapters are 

satisfied by this category. Barr has given the definition 

and examp1es of exact categories in his paper. Here we sha11 

provide the definition for the sake of comp1eteness. 

DEFINITION 3.1. Let A be a category. We say that 

A is regu1ar if it satisfies (EX 1) be10w and exact if it 

satisfies (EX 2) in addition. 

(EX 1) The kerne1 pair of every morphism exists 

and has a coequa1izer; moreover, every pair • -~)~> . ~<--

has a pu11back of the form 

• 



-... - _. -.-. ------_ .. _----- ... _------- ----
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(EX 2) Every equiva1ence relation is a kerne1 

pair. 

Throughout this chapter, A denotes a regu1ar cate-

. gory wi th fi ni te products, >>---~') a mono and 

regu1ar epi. Barr estab1ished that every morphism has a 

factorization of the form • -~>~> · >~-~> .. Thi s factori-

zation satisfies our definition (0.1) and is therefore an 

(f,M) factorization where M = the c1ass of a11 monos and 

E = the c1ass of a11 regu1ar epis. 

Since A satisfies the assumption in theorem (1.6), 

we thus obtain: 

PROPOSITION 3.2. Rel A is a bicategory. 1 

We can sum up the results obtained in Chapter 2 

as fo11ows: 

THEOREM 3.3. Let A be an exact category with 

finite products and pushouts. Suppose that R = (R,a,a) is 

a relation and RI = (R,ae,ae) is the canonical E-relation of 

R. Then the following are equiva1ent: 



(1) RI is a pullback relation, 

(2) R is difunctional, 

(3) RI is difunctional, 

(4) R = M 0 E ,where M =' (M,am,<I» and 

E= (E,l/J,l3m) with <I>,l/JE.[, 

(5) RI = MI 0 El . 1 

Another equivalent statement is 

(6) R is a pullback relation, 
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provi ded tha t every pair • ~<-----'f;<. --~>. in A is a pull-

back. This is the case for categories of se~s, M-sets but 

not for the category of groups. The following lemma gives 

the proof for the category of ~M. 

LEMMA 3.4. Let M be a monoid. Then in SM, 

A (m <B f > C is a pullback of sorne pair of maps. 

pzooof: The pushout of A ( m (B f ) C is 
• 

P = AUe / = , where is the equivalence relation on P 

such that for a, al ~ A and c, Cl é- C , 



modulo :: 
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(2) a:: c F(=~) f(a) = c 

(3) c - Cl F<=~) C = C 

Let ml : C ~ P be defined by ml (c) = [c] 

Hence ml: C ~ Pis mono. Let fi: A ~ P 

be defined by fl(a) = [a] • 

A -----~) P 

m 

B -----~) C 
f 

fi ml 
Now the pull back of A ---=~) P <; C i s 

{(a,c) fl(a) = ml(c)} = {(a,c) 1 [a] = [c]} 

= {(a,c) 1 f(a) = c} ~ B 1 



The fo110wing theorem genera1ises sorne resu1ts 

known for a1gebraic categories. 
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THEOREM 3.5. In an exact category, the fol10wing 

are equiva1ent: 

(1) Every relation is difunctiona1, 

(2) Every ref1exive relation is an 

equiva1ence relation, 

(3) The composite of two equiva1ence 

relations is an equiva1ence 

rel ati·on. 

(4) E 0 F ~ FoE, where E and Fare 

equiva1ence relations. 

ppoof: (1) ==7 (2) Let (R,a,a) be a ref1exive 

relation on A. Then lA CR. Let y : lA ~ R. Then 

a y = 1 = a y. Hence a,a are both regu1ar epis and E E • 

R is therefore an E-re1ation. Since R ~ R 0 R 0 R , by 

theorem (3.3) R is a pu11back relation. Let A '" '" 1 '1' >X ~<---'-~- B 

be the pushout of A ( a R a » B. Then we obtain a 
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bicartesian square ~ a = ~I a. By mu1tip1ying y on the 

right, we obtain ~ = ~I , because a y = 1 = a y. Hence 

(a,a) is the kerne1 pair of ~ and (R,a,a) is an equiva1ence 

relation. 

(2) ===) (3) Let E and F be equiva1ence relations 

on A. Then lA C E and lB ~ F. Hence lA C lA 0 lA c E 0 F. 

By (2) E 0 F is an equiva1ence relation. 

(3) ===) (4) Let E and F be equivalence relations 

on A. Then E C E, 1 C F and hence E ~ E 0 1 C E o F. 

Simi1ar1y FeE 0 F. We c1aim that E 0 F is the sma11est 

equivalence relation containing E and F. Suppose G is any 

equiva1ence relation containing E and F. Then G ~ GoG ::>. 

E o F. We define the sma11est equiva1ence relation containing 

E and F to be E v F. Here E 0 F ~ E v F. Simi1ar1y, 

F o E ~ E v F. Thus we obtain E 0 F ~ F 0 E. 

(4) ~ (1) Let (R,a,a) be a relation from B to 

A and ~ ,~I be the projection morphisms from R x R to R. 

We define (E,~) and (F,$) to be the equa1izers of 

(a ~ ,a ~I) and (a ~, a ~I) ,respective1y. Then (~~, ~I ~) 

and (~$ ,~I $) are kernel pairs of a and a, respective1y. 
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Hence (E, 1T cp, 1T 1 cp) and (F, 'If tIJ, 1T
1 tIJ) are equiva1ence 

relations on R. Therefore E 0 F~FoE. We observe that 

F * E ~ R * if * R (see the construction of R * if * R in 

lemma (2.4)). It follows that FoE ~ R 0 if 0 R • We only 

need to show that EoF~R. 

A 

al 
R 

a 
A > 

W $1 1 ra 
E ~ R f3 ) B 

yi 
1T

1
CP 

w~l la 
3 2 

E * F ~ F :;. R 
f3 ,B 

ô 1T
1 tIJ 

By the pu11back (1) and (2), there exist unique 

cr : R ~ E and p R ~ F such that 1T cp cr = 1 = 1T
1 cp cr 

and 1T tIJ P = 1 = 1T 1 tIJ p. Then by the pu11back (3), there 

exists a unique T: R --~) E * F such that y T = cr and 
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o T = p. Hence ~I ~ Y T = ~I ~ cr = 1 and ~ W 0 T = 1 . 

Let w = ~I ~ Y = ~ W o. Then W T = 1 • Hence w is a 

regu1ar epi. We note that a w = a ~ ~ y and a w = a ~I w 0 • 

Thus w i s a map from (E * F, a ~ ~ y , a ~ 1 W 0) to 

(R,a,a). Therefore E 0 F ~ R. We have thus proved that 

R is difunctiona1. 1 

From proposition (2.2), we obtain the fo1lowing 

proposition. 

PROPOSITION 3.6. Let (R,a,a) be a relation in an 

exact category. Then the following statements are equiva

lent: 

1. R 0 if C lA and if 0 R :> lB ' 

2. a is an isomorphism , 

3. (R,a,a)~ (B,y,l) . 1 

Thus (up to isomorphism of morphisms) we can re

capture the original category A from Rel A. 
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Chapter 4 

ON THE BICATEGORY OF PULLBACK SPANS 

To every span (R,a,a) from B to A, we may associate 

a pullback 

peRl : (R,a,a) 

span (R X
, al, al) from B to A and a map 

--7> (RX
, al, al) as follows: 

A --------------~) Q 

where A cp ) Q ( l/J B is the pushout of A ( a R 

and A < 
al 

RX a 1 
> B is the pullback of 

A cp ) Q ( 1/J B Hence there is a unique peRl R 

such that al peRl = a and a 1 peRl = a • 

a ) B 

) RX 



Let Pull (A,B) denote the category of pullback 

spans from B to A. We note that it is a preordered set. 

We will show that the object function x can be extended to 

a functor from Span (A,B) to Pull (A,B), in fact the left 

adjoint of the inclusion functor. 

Suppose n: (R, Cl, 13) -~) (p, y, ô) with 

(R, Cl, 13) E Span (A,B) and (p, y, ô) ~ Pull' (A,B), we 

want to show that there exists a unique map, 

such that 

ni 

ni p (R) = n • 

peRl 

-~> (p, y, ô) 

" ni 

" " " ~ 
(R,Cl,13)------------~)~(P,y,ô) 

n 
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Let A 
pl ) QI (. 

~I B be the pushout of 

A ( X P Ô » B . Then <p 1 a = <pl = 1/J 1 Ô n = 1/J1 13 y n . 
By the pushout A p > Q < ~ B there exists a unique 

K : Q --~) QI such that K <p = <pl and K 1/J = $1. It 

follows that <pl al = K <p al = K $ 131 = $1 131 • Hence, by 

the pull back A ( 'Y p ô > B, there exists a unique 

ni : RX -~> P such that y ni = al and ô ni = 131 • 

Again, by the pullback A< X P ô > B , this ni is a 

unique map such that ni p (R) = n 

Given any map <p :' (R, a, a) >' (S, T, cr) in 

Span (ll"B), we let <px be the unique map 

1 

RX - ~(s) -$1 -~ SX 

peRl p(S) 

R -------..,.> S· 

We have thus proved the following proposition. We 

note that SX ~ (S+)X since E(S) : S ) S+ is epi. 
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PROPOSITION 4.1. Pull (A,B) is a full ref1exive 

subcategory of Span (A,B) (a1so of Rel (A,B» with 

ref1ector x . 1 

Then, by propositton (1.4), there is a bicat~gory 

Pull A whose hom categories are Pull (A;B) with composi

ti on R 8 S =' (R * s) x, provi ded that the map from' (R * s}X 

to (Rx. * SX)X is an iso. The'fo110wi~g proposition gives 

the conditions when this map is an iso. 

PROPOSITION 4.2. Suppose that peRl : R ) RX 

is (regu1ar) epi for any span (R,a,a) in A. Assume that a 

pu11back of a (regu1ar) .epi is an epi. Then the map from 

(R * S) x to ( R x * S X) x i san i s 0 • 

ppoof: As in the proof of proposition (1.5), 

peRl * p(S) : R * S .. RX * SX is an epi. Therefore the 

pushouts of R * S and R
X * SX are the same. Hence 

(R * S)X and (RX * Sx]X are pu11backs of the same pair of 

maps and thus the map (R * S)X >' (RX * Sx]X is an 

iso. 1 
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COROLLARY 4.3. Under the conditions in proposition 

(4.2 ), there is a bicategory Pull A whose objects are 

those of A and whose hom categories are the cat~gories 

Pull (A,B). 1 

PROPOSITION 4.4. Suppose E = the c1ass of a11 

(regu1ar) epis. The fo11owing are equiva1ent: 

(1) For every span (R,a,S) in A, 

peRl : R ) RX is (regu1ar) epi, 

(2) Every relation is a pu11back relation. 

PX'oof: _ (1) ~ (2) Let (R,a,S) be a relation 

in A. Then, by remark (1.3), peRl E: M. Therefore peRl 

is an isomorphism and R ~ RX is a pu11back relation. 

(2) ===> (1) Let (R,a,S) be a span from B to A. 

We factor' {a,S} : R -~) A x B into {ll,V} € M followed 

by a (regu1ar) epi e:, i.e. 
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where (R+, ll, v) is a relation, therefore a pullback rela-

tion. The pushouts of A < II R+ V > B and 

A ( a R f3 ) B are the same, because € is an epi. Hence 

R+ ::! RX and peRl is then a (regular) epi. 

It follows that 

Pull A = Rel A 

provided that peRl : R -~) RX 
é E = (regular) epis for 

every span (R,a,f3) in A and a pullback of a (regular) epi 

is an epi. In this case we can apply Hiltonls treatment 

[3] of category of correspondences (corelations). 

1 

We shall now compare (1) in proposition (4.4) and 

(2) in proposition (2.16) which is the condition for any 

difunctional relation to be a pullback relation. 

PROPOSITION 4.5. In the following, (1) implies 

(2) • 

(1) p(R): R -~> RX is a regular epi 

for any span (R,a,f3) in A. 



(2) Any pair of morphisms A (1.l <R (3) B 

in A with 1.l mono is a pu11back of 

sorne pair of morphisms. 
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PI'oof: Since 1.l is mono, peRl : R -~) RX is a 

mono. Hence it il an iso and R is a pu11back relation. 1 

But the converse of proposition (4.5) is not true 

in genera1. We reca11 1emma (3.4) in which (2) ho1ds in 

the category of sets but the fo11owing examp1e shows that 

(1) does not ho1d in the category of sets. 

EXAMPLE. Consider R = {1,2,3} and a span, 

{l, x} < f {1,2,3} g) {y, 3} 

such that f (1) = 1, f (2) = x, f(3) = x, 9 (1) = y, 9 (2) = Y 

and 9 (3) = 3. 

Then RX 
= {(l,y), (l,3), (x,y), (X,3)} and 

peRl is not an epi. 



Chapter 5 

PULLBACKS IN REGULAR CATEGORIES 

Given a pair of morphisms 

A 9 ) B f > C 

in a regular category [1], we would like to know whether 

they form part of a pullback diagram as follows: t 

fi 
A ----~) D 

9 gl 

B ----~) C 
f 
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Throughout th i s chapter, we use >>--~:> to denote 

a mono and ----7)~~ to denote a regular epi. It will be 

useful to make the following definition. 

t I am endebted to Basil Rattray for mentioning the 
solution of this problem for the category of sets. 
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DEFINITION 5.1. Given three morphisms as follows: 

A 

we say that they have a common pullback 

u l 

A ( P 
( Vi 

provided both 

h 

u l 

P--~-~~'A 

9 

K ----..:)0) B 
u 

are pullback squares. 

h > K 

and h 

Vi 
P----~')A 

K----~) B 
v 

9 

THEOREM 5.2. 

of morphisms A 9 ) B 

Let A be a regular category. A pair 

f ') C is part of a pullback if 



and on1y if the morphisms 

being the kerne1 pair of B 

A 9 > B ( u 
( v 

K with 

f ) C, have a common 
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u > 
K ) B 

v 
pu11back 

U 1 

A < P 
( VI 

h ) K such that (u l
, VI) is a kerne1 pair. 

We sha11 use the fo11owing properties of a regu1ar 

category [1]: 

1. Every morphism has a kerne1 pair. 

2. Every pair of morphisms has a 

coequa1izer. 

3. Every morphism can be factored into 

• ....:---»~:> • »--~> . . 

4. In the commutative diagram 

1> » 

) » >. 



let top and bottom rows be exact 

(that is, at the same time a kerne1 

pair and a coequa1izer). Then, if 

one of the 1 eft squares i s a pu11-

back, so is the r~ght square. 
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P~oof: (i) ( ~ ) See 1emma (2.14). 

A ( 
u l 

h ( i i ) Let P ) K be the common pu11-( yi 

9 > B ( 
u 

back of A K and assume that (u l , yi) is a 
(; y 

kerne1 pair. Let el be the coequa1izer of (u 1 , yi) • Since 

fg ul = f u h = f y h = fg yi, there exists a unique,gl 

such that ,gl el = fg. We c1aim that 

el 
» 

9 

f 
) 

is a pu11back. 
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Let f = m e be the factorization of f such that 

m is a mono and e is a regular epi. Hence e is a coequalizer 

of (u, v). Since e, 9 ul = e. 9 Vi , there exists a unique 

morphism k such that k el = e g. We obtain 

m k el = m e 9 = f 9 =. gl el , 

and therefore m k =, 9 1 • 

We have exact top and bottom rows in the followi~g 

di~gram: 

u l 

~ 

Vi ) 

el 
;» 

h 9 k 

u 
~ 

v 
) e 

Also the left squares are pullbacks. He~ce by property 4 

of a regular category, the right square is also a pullback. 

It follows that 



el 

9 

1 

1 
/ 

kt 
gl 

is a pullback, since gl = m k, f = m e and m is mono. 

The proof 1s now complete. 

COROLLARY 5.3. A pair of morphisms A 

> f) C with f mono forms part of a pullback. 

1 

9 > B 
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ppoof: The kernel pai r of fis (1, 1) and hence 

the result follows. 1 

The proof of theorem (5.2) provides the necessary 

and sufficient condition for a commutative square 
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fi 
» 

9 . 9 1 

f 
) 

with fi regular epi to be a pullback square. 

PROPOSITION 5.4. Let 

fi » . 

(5.5) 9 . 9 1 

f 
). 

be a commutative square with fi regular epi. Let (u, v) 

and (UI,V I ) be kernel pairs of f and fi, respectively. 



u l 
) fi 

) » 
Vi 

(5.6) h 9 gl 

U > )" 
)- f 

v 

Then (5.5) is a pu11back if and on1y if one of the 1eft 

squares in (5.6) is a pu11back. 1 

It is of interest to know whether the pu11back 

constructed in theorem (5.2) is essentially unique. This 

is the case whenever f is a r~gu1ar epi. 

PROPOSITION 5.7. Let A be a regu1ar category. 
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Given a pair of morphisms A g) B f > C in A, there is 

. 11 . . f h· A f 0 ... D - go > C an essentla y unlque ~lr 0 morp lsms 7 

such that 



fo 
A ----=-,-.;." +~ D 

9 

B f 

is a pullback, provided that f is a regular epi. 

proof: From theorem (5.2), we constructed the 

pullback square 

e 1 » " 

9 9 1 

f »" 
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where el is the coequalizer of its kernel pair (u l , Vi). 

We also showed that if 
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,. 

9 

f 
») 

is a pullback, th en (UI,V I ) is also a kernel pair of fo. 

Since, in a regular category, a pullback of a regular epi 

is a regular epi, fo is a regular epi. Then fo is a 

coequalizer of its own kernel pair ( u 1 , Vi) • Now both el 

and fo are coequalizers of ( u 1 , Vi) • Hence there exists 

an iso i such that i el = fo Since . 9 1 el = f 9 = go fo 

we obtain gl el =. go i el and hence . 9 1 = go i. We have , 

thus proved proposition ( 5 .7) . 

The following example shows that we cannot drop 

the condition that f is a regular epi. 

1 

, 



EXAMPLE. Let f be a mono and take 9 = 1. The 

followi~g squares. give two different pullbacks wh1ch have 

1 ) > f) as part of the squares: 

1 

1 
). 

. >.,...----~). 
f 

f and 1 

f . ').,...---~>. 

. >1'---=--~). 
f 

By lemma (2.15), we have the following. 

1 

COROLLARY 5.8. Let > m) e» be part of a 

pullback. Then the counter part of the pullback is 

el» > ml > , the factorizat1on of e m,i.e., the 

pullback 1s 
el 

m ml 

1 » . 
e 
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We remark that, in abel i an categories, if > 
is part of a pullback, then the canonical pullback con

structed in theorem (5.2) is also a pushout. However, in 

regular cat~gories, we have the following. 
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PROPOSITION 5.9. Let f » be part of a 

pullback. Then the pullback is also a pushout. 

ppoof: By proposition (5.7), there is an essen

tially unique pullback and by theorem (5.2) we have the 

following pullback squares: 

U 1 

> el 
i> > Vi 

h 9 9 1 

U 
'> » :> f 

v 



where (u , v) and (u l ,Vi) are kernel pairs of f and 

respectively. Since pull backs preserve r~gular epis, 

r~gular epi. 
. go e « el Let » « 0 be a pushout of 

Then there exists a unique k such that 

k eo = f. 

el 

9 

, 

» 

, k 
" , 

k 9 = gl . 0 . 

gl 

.. 
» 

Then, k is a regular epi and we have 

= e 9 u l = 9 el ul 
o . 0 

= 9 el Vi 
o 

and 

h 
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el, 

is a 

9 

Since h is a regular epi, e u = e v o o' Hence k is a mono 

and it follows that k is an iso. 1 

») • 
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