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Statement of Originality 

This thesis contains original research and represents distinct contributions to knowledge in 

the field of aerosol science and environmental science as follows: 

Black carbon characteristics in urban cold climate settings and impact of COVID-19 

(Chapter 2). 

• First, we acquired the datasets of one-year real-time black carbon (BC) mass concentration 

by using photoacoustic extinctiometer (PAX) and co-pollutants including PM2.5, NOx, O3, 

and CO in Montreal, a cold-climate city. We found that BC mass concentration exhibited a 

bimodal distribution with a summer peak and a long winter peak, and the winter peak could 

last more than 3 months. Furthermore, A comparative study between two air pollution 

hotspots, downtown and the Montreal international airport, indicated that BC mass 

concentrations at the airport were over 400% higher, revealing the significant contribution 

of aviation to BC emission.  

• A case study of COVID-19 was carried out by comparing the emissions of BC and other 

air pollutants before, during, and after COVID-19 lockdown. The results demonstrated a 

sharp decrease of each pollutant except O3 during the lockdown, highlighting the 

significant impact of anthropogenic sources in urban regions.  

• This study offers the first long-term BC dataset in urban cold-climate regions where BC 

data are still scarce. This dataset is crucial for improving air quality and climate models 

and assessing health effects of BC. 

Black carbon and brown carbon in urban regions and impact of wildfires (Chapter 3). 

• In this work, we presented unique one-year observation data on the variations of BC, BrC, 

and their absorption coefficients from July 2022 to July 2023, covering the period of 

significant forest fires in the north of Eastern Canada. The bimodal seasonal trends of BC 

and BrC confirmed the summer and winter peaks. 

• During the summer of 2023, the record-breaking wildfires which occurred in North Quebec 

were analyzed. Our results confirmed that wildfires, as an important format of biomass 

burning, not only increased the concentration of BC, but also emitted a large amount of 

BrC which dominated the light absorption at short wavelengths. 
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• This study highlighted the significant impacts of wildfires which are expected to increase 

globally due to climate change. This study provides important datasets and insights into 

the complicated situation of air pollution in urban regions under the threat of wildfires.  

The application of data-driven modeling on simulating black carbon concentration (Chapter 

4). 

• We developed a machine learning model based on recurrent neural network and long short-

term memory algorithm to simulate the variation of black carbon. The input data included 

concentrations of PM2.5, NOx, O3, and CO, whereas the output data were concentrations of 

BC.  

• This study provides a method to estimate BC mass concentration in situations where BC 

data are unavailable but other common air pollutants are measured. It can enrich BC data 

for areas where BC measurement is still scarce and facilitate a comprehensive evaluation 

of BC mass concentration in urban environments and beyond.  
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Abstract 

Light-absorbing carbonaceous particles (LACs), consisting of black carbon (BC) and 

brown carbon (BrC), are a group of radiatively-active aerosols which could significantly impact 

the environment and climate by absorbing solar radiation, darkening snow/ice surfaces, and 

serving as cloud condensation nuclei or ice nuclei. Yet the climate and health effects of LACs 

remain uncertain because of insufficient measurements of their physicochemical properties. In 

urban areas, anthropogenic emissions are the predominant sources of LACs, but natural sources 

such as wildfires can also contribute to LAC emissions. Studying the seasonal trend of LACs in 

cities is crucial for developing targeted policies to mitigate air pollution and reduce exposure of 

residents to LACs. Furthermore, the occurrence of wildfires worldwide is rising sharply due to 

climate change. LACs emitted by wildfires could undergo long range transport from their origins 

to urban areas, complicating the understanding of urban air pollution. To systematically evaluate 

the total effects of LACs on the climate and human health, it is essential to conduct more thorough 

observation on the physicochemical properties and emission sources of LACs.  

This thesis presents the mass concentrations and absorption coefficients of BC and BrC, as 

well as their spatial-temporal variations in Montreal, a cold-climate city facing an increasing threat 

of wildfires, but the measurement of LACs is still scare. The first work used one-year real-time 

observation of BC and other co-pollutants to demonstrate a bimodal distribution of BC mass 

concentration, showing a winter peak lasting more than 3 months in addition to a summer peak. 

Comparisons between downtown Montreal and the Montreal internation airport revealed that 

average BC mass concentration near the airport was 4 times higher than the concentration in 

downtown Montreal. The COVID-19 pandemic lockdown caused a drastic drop of concentrations 
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of BC and other air pollutants by up to 72%, revealing the significant anthropogenic influence on 

urban air pollution.  

The second study presents one-year variations of LAC mass concentration and absorption 

coefficients during July 2022 to July 2023. We firstly demonstrated the seasonal trend of LACs in 

Montreal. Secondly, data from June and July 2023 revealed smokes from wildfire brought a large 

proportion of primary BrC and secondary BrC precursors and increased BC mass concentration 

by over 26% in Montreal. Although fossil fuel combustion is usually the major source of LACs in 

urban areas, when biomass burning became the predominant source, BrC could contribute over 

50% of total light absorption at 370 nm wavelength with secondary BrC accounting for more than 

20% of BrC absorption. This clearly demonstrates the significant importance of BrC on light 

absorption.  

In the third part of the dissertation, we developed a machine learning (ML) model to predict 

BC mass concentration based on common air pollutants including CO, NOx, PM2.5 and O3. The 

World Health Organization (WHO) has suggested that monitoring BC mass concentration is 

necessary, considering the unique health and climate effects of BC. However, purchasing new 

instruments for BC at each air quality station would require a large amount of budget, which makes 

it difficult to achieve. Thus, we developed a ML model based on recurrent neural network and long 

short-term memory algorithms which are good at capturing long term patterns and making more 

accurate prediction. We trained and tested our model with four years of data and demonstrated its 

high performance with one year of new data.  

This thesis contributes to the understanding of sources, variations and properties of LACs 

in Montreal, a cold-climate site where winter can last 5 months, and provided results that will help 

understand their effects on climate and human health. With increasing emissions from 
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anthropogenic sources and more frequent summer wildfires, keeping observations of LACs in 

urban regions will help to mitigate climate change and improve air quality, protecting people from 

potential hazards.  
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Résumé 

Les particules carbonées absorbant la lumière (LAC), composées de carbone noir (BC) et 

de carbone brun (BrC), sont un groupe d'aérosols radiativement actifs qui peuvent avoir un impact 

significatif sur l'environnement et le climat en absorbant le rayonnement solaire, en assombrissant 

les surfaces de neige/glace et en servant de noyaux de condensation des nuages ou de noyaux de 

glace. Cependant, les effets des LACs sur le climat et la santé restent incertains en raison de 

mesures insuffisantes de leurs propriétés physico-chimiques. Dans les zones urbaines, les 

émissions anthropiques sont les principales sources de LACs, mais des sources naturelles telles 

que les feux de forêt peuvent également contribuer aux émissions de LACs. Étudier la tendance 

saisonnière des LACs dans les villes est crucial pour développer des politiques ciblées visant à 

atténuer la pollution de l'air et à réduire l'exposition des résidents aux LACs. De plus, la fréquence 

des feux de forêt dans le monde augmente fortement en raison du changement climatique. Les 

LACs émis par les feux de forêt peuvent subir un transport à longue distance depuis leurs origines 

jusqu'aux zones urbaines, compliquant la compréhension de la pollution atmosphérique urbaine. 

Pour évaluer systématiquement les effets totaux des LACs sur le climat et la santé humaine, il est 

essentiel de mener des observations plus approfondies sur les propriétés physico-chimiques et les 

sources d'émission des LACs. 

Cette thèse présente les concentrations massiques et les coefficients d'absorption du BC et 

du BrC, ainsi que leurs variations spatio-temporelles à Montréal, une ville au climat froid 

confrontée à une menace croissante de feux de forêt, mais la mesure des LACs reste rare. Le 

premier travail a utilisé une année d'observation en temps réel du BC et d'autres co-polluants pour 

démontrer une distribution bimodale de la concentration massique de BC, montrant un pic hivernal 
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durant plus de 3 mois en plus d'un pic estival. Les comparaisons entre le centre-ville de Montréal 

et l'aéroport international de Montréal ont révélé que la concentration massique moyenne de BC 

près de l'aéroport était 4 fois plus élevée que la concentration au centre-ville de Montréal. Le 

confinement dû à la pandémie de COVID-19 a provoqué une baisse drastique des concentrations 

de BC et d'autres polluants atmosphériques jusqu'à 72%, révélant l'influence anthropique 

significative sur la pollution atmosphérique urbaine. 

La deuxième étude présente les variations sur un an de la concentration massique de LAC 

et des coefficients d'absorption de juillet 2022 à juillet 2023. Nous avons d'abord démontré la 

tendance saisonnière des LACs à Montréal. Ensuite, les données de juin et juillet 2023 ont révélé 

que les fumées des feux de forêt apportaient une grande proportion de BrC primaire et de 

précurseurs de BrC secondaire et augmentaient la concentration massique de BC de plus de 26% 

à Montréal. Bien que la combustion de combustibles fossiles soit généralement la principale source 

de LACs dans les zones urbaines, lorsque la combustion de biomasse devient la source 

prédominante, le BrC peut contribuer à plus de 50% de l'absorption totale de la lumière à une 

longueur d'onde de 370 nm, le BrC secondaire représentant plus de 20% de l'absorption du BrC. 

Cela démontre clairement l'importance significative du BrC sur l'absorption de la lumière. 

Dans la troisième partie de la thèse, nous avons développé un modèle d’apprentissage 

machine (AM) pour prédire la concentration massique de BC en fonction des polluants 

atmosphériques courants tels que le CO, les NOx, les PM2.5 et l'O3. L'Organisation Mondiale de la 

Santé (OMS) a suggéré que la surveillance de la concentration massique de BC est nécessaire, 

compte tenu des effets uniques du BC sur la santé et le climat. Cependant, l'achat de nouveaux 

instruments pour le BC à chaque station de qualité de l'air nécessiterait un budget important, ce 
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qui rend difficile sa réalisation. Ainsi, nous avons développé un modèle de AM basé sur des 

algorithmes de réseau neuronal récurrent et de mémoire à court terme long (MCTL) qui sont bons 

pour capturer les modèles à long terme et faire des prédictions plus précises. Nous avons entraîné 

et testé notre modèle avec quatre ans de données et démontré ses performances élevées avec une 

année de nouvelles données. 

Cette thèse contribue à la compréhension des sources, des variations et des propriétés des 

LACs à Montréal, un site au climat froid où l'hiver peut durer 5 mois, et a fourni des résultats qui 

aideront à comprendre leurs effets sur le climat et la santé humaine. Avec des émissions croissantes 

provenant de sources anthropiques et des feux de forêt estivaux plus fréquents, continuer à 

observer les LACs dans les régions urbaines aidera à atténuer le changement climatique et à 

améliorer la qualité de l'air, protégeant les personnes des dangers potentiels. 
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Chapter 1 Introduction 

1.1  Atmospheric Aerosols  

Aerosols are solid particles and/or liquid suspended in the atmosphere. Since aerosols are 

also interchangeable with particulate matter (PM) when focusing on particles suspended in the air, 

these two terms are used interchangeably throughout this thesis. Aerosols are emitted from a large 

variety of anthropogenic and natural sources, which contributes to the complex chemical 

compositions and various physicochemical properties of aerosols, such as size, morphology, 

optical properties, and hygroscopicity. The size of aerosols ranges from a few nanometers to 

several tens of micrometers, which strongly affects the properties, health effects, and climate 

effects of aerosols. Yet aerosols are short-lived relative to greenhouse gases, on the order of days 

to several weeks in the atmosphere, therefore their effects on the environment and climate tend to 

be mostly local or regional. The short lifetime brings significant uncertainty when evaluating the 

total impact of aerosols on human health and climate. Thus, the World Health Organization (WHO) 

and the Intergovernmental Panel on Climate Change (IPCC) have suggested to do thorough 

research on the physical and chemical properties of aerosols to comprehensively evaluate their 

impacts on climate change and human health (IPCC 2021; WHO 2021a).  

Depending on the formation process, aerosols enter the atmosphere directly as primary 

particles or indirectly as products of secondary particle formation by gas-particle conversion. 

Primary particles are emitted by anthropogenic and natural sources directly into the atmosphere. 

For instance, black carbon (BC) particles are emitted from vehicles and industries in urban regions 

or emitted by wildfires as product of biomass burning. Wind brings a large amount of mineral dust 

from soil and deserts to the earth’s surface every year. Sea-spray aerosols are directly ejected into 
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the atmosphere, which is another example of natural sources. In addition, biota also contributes 

bioaerosols such as bacteria and fungi as primary particles. Forests, especially rainforests, emit a 

large proportion of organic aerosols (OA), for example terpene and isoprene, which could undergo 

photochemical and heterogeneous reactions. Meanwhile, secondary particle formation includes 

oxidation of NOx and SO2 to generate nitrate and sulfate, and formation of secondary organic 

aerosol (SOA) from volatile organic compounds (VOC). It is noteworthy that primary particles 

and secondary particles are not isolated. Instead, aerosols are usually complex mixtures of both 

primary and secondary particles, and the mixtures can be internally mixed, externally mixed or 

both, which further complicates their physicochemical properties and impacts on the climate.   

As air pollutants, aerosols or PM have been proved to cause a series of adverse effects on 

human health. The WHO suggests that ambient air pollutant is estimated to have caused 4.2 million 

premature deaths worldwide per year by inducing heart disease, stroke, pulmonary disease, 

respiratory disease, and other chronic diseases (WHO 2021a). Unfortunately, 99% of the global 

population lives where air pollution levels are worse than the WHO air quality guideline suggested. 

There is abundant evidence showing the health effects of PM, especially PM2.5 (particulate matter 

with an aerodynamic diameter less than 2.5 µm) (Thornburg et al., 2021; Vreeland et al., 2016; 

Wen et al., 2023a; Wen et al., 2023b; X Zhang et al., 2023a). In addition, some anthropogenic OA, 

such as polycyclic aromatic hydrocarbons (PAHs), have been confirmed carcinogens (Fang et al., 

2021; Kitanovski et al., 2021; Lenssen et al., 2022).  

Apart from health effects, aerosols can impact the climate directly via aerosol-radiation 

effects, or indirectly via aerosol-cloud effects. Most aerosols, such as sulfate and most organic 

aerosols, scatter solar radiation in the atmosphere, cooling the Earth’s surface. However, BC, light-
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absorbing organic carbon which is also named “brown carbon” (BrC), and mineral dust could 

absorb solar radiation, which have warming effects on the climate.  

As for aerosol-cloud effects, aerosols can act as cloud condensation nuclei (CCN) upon 

which cloud droplets can be formed. An increase of aerosol concentrations will lead to an increase 

of CCN concentrations, and thus an augment of cloud droplet concentrations. An increase in cloud 

droplet concentrations results in smaller cloud droplets but increases the total scattering cross 

section, and therefore amplifies the cloud reflectivity and cloud lifetime, causing a cooling effect. 

Water-soluble aerosols, such as sulfate, nitrate, sea salt, and SOA, tend to be efficient CCN, making 

them play more important roles in aerosol-cloud interactions than water-insoluble aerosols such as 

BC and mineral dust. However, smaller cloud droplets will evaporate more quickly, which 

enhances the mixing of clouds and ambient dry air, leading to a warming effect. On the other hand, 

some aerosols are good ice nucleating particles (INPs) which can facilitate heterogeneous ice 

nucleation, forming ice clouds in the atmosphere. The aerosol-ice-cloud interaction is more 

complex and less understood, especially when considering the competing effects of homogeneous 

ice nucleation by liquid droplets and heterogeneous ice nucleation by INPs. An increase of INP 

concentrations in ice clouds could lead to either a warming or a cooling effect depending on which 

ice nucleation pathway dominates the formation of the clouds. Overall, the aerosol-cloud 

interaction contributes to a net cooling effect (IPCC 2021). 

 

1.2  Light absorbing carbonaceous particles (LACs) as a unique type of aerosols  

Light-absorbing carbonaceous particles (LACs), including BC and BrC, are one of the most 

important types of aerosols because they are one of the radiatively-active components in the Earth’s 
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atmosphere (Liu et al., 2020). LACs can absorb light from ultraviolet (UV) to near infrared (IR), 

darken the surface of snow/ice, act as CCN and INP, leading to warming effects on the climate 

system. LACs are ubiquitously emitted from anthropogenic and natural sources. They undergo 

various processes in the atmosphere, such as forming clouds and precipitation, and photochemical 

and heterogenous reactions which can alter the properties and lifetime of LACs. Meanwhile, it is 

likely that LACs will be transported great distances from the emission sources, termed “long-range 

atmospheric transport” (LRAT). During LRAT, LACs can be deposited on the Earth’s surface via 

dry or wet deposition. Wet deposition is the main deposition pathway of LACs. For instance, 

Serving as CCN or INPs to form cloud droplets or snow is one of essential wet deposition formats. 

Additionally, LACs that remain suspended in the atmosphere can be scavenged by precipitation 

like rain droplets or snowflakes. As for dry deposition, with the particle size and weight gradually 

increasing, it is more likely for LACs to be deposited by wind and gravity. Because of LRAT, 

LACs can be deposited in the remote cryosphere such as Arctic and Tibetan Plateau where both 

human activities and local emission sources of LACs are very limited, affecting regional and global 

climate in the end.  

In the following sections, “LACs” will be used when describing the common properties. 

“BC” and “BrC” will be used when discussing their own unique properties, respectively. 

 

1.2.1 Source of LACs 

BC is the by-product of fossil fuel combustion and biomass burning. Thus, BC is 

predominantly emitted from primary sources such as transportation, industry, and open burning of 

forests and savannas. The total global emission of BC is estimated to be 7.5 Tg/year in the year of 
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2000 with an uncertainty range of 2 to 29 Tg/year (Bond et al. 2013). Fig. 1.1A provides a summary 

of global BC emission sources. Among these sources, the largest is the open burning of forests, 

savannas, and agricultural residues, which contributes to around 2.7 Tg/year globally. The 

remaining emissions are from anthropogenic energy-related combustion. It is noteworthy that 

contributions from aviation and marine shipping emissions account for less than 9% of total BC 

emissions. However, since they usually occur at high altitudes and/or remote oceans, where BC 

emissions are scarce, they play a significant role in climate forcing and are therefore considered 

more climatically sensitive (Liu et al., 2020). In addition, the major BC emission source varies 

with location and tends to be region-specific. For example, the dominant sources of BC in Asia 

and Africa is combustion of residential solid fuels (e.g., coal and agricultural residues) which 

accounts for 60% to 80% of BC emissions. But in Europe, North America, and Latin America, 

about 70% of BC emissions come from diesel engines. It is evident that anthropogenic sources of 

BC emissions are correlated with the development of countries, reflecting the global inequality 

with respect to climate change contribution and impacts.  

 

Figure 1.1. (A) Global BC emission sources and (B) representative BrC components. 
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The sources of BrC are more diverse than BC. Although biomass burning is the 

predominant and primary source, BrC can also be generated by various secondary sources. Fig. 

1.1B demonstrates some representative BRC components and their sources. Depending on their 

origins, BrC particles demonstrate a large variation in optical and chemical properties. For example, 

Humic-like substances (HULIS) are one of major components of BrC which can be emitted from 

biomass burning or formed via secondary reactions from VOC (Wu et al., 2018). Anthropogenic 

sources in urban regions such as diesel engines primarily emit polycyclic aromatic hydrocarbons 

(PAHs) which are also considered as precursors of nitro-PAHs (a type of BrC) via heterogeneous 

oxidation with NO3 radical (Saleh, 2020). There is currently no systematic inventory of BrC 

emissions because the complex and varied nature of BrC makes it a difficult class to systematically 

define.  

 

1.2.2 Microphysical properties of LACs 

Most BrC components are amorphous and unstable under electron beams and high vacuum, 

exacerbating their characterization. Therefore, it is inappropriate to generally discuss the size and 

morphology of BrC particles. However, there is one prominent component of BrC, so-called “tar 

ball”, which is a large homogeneous particle and stable enough to be detected by transmission 

electron microscopy (TEM). As is shown in Fig. 1.2A, a single particle of tar balls is usually 

spherical with a diameter in the nanometer range. But tar balls could also group together to form 

agglomerates achieving micron size.   

As mentioned above, the emission sources strongly influence the properties of BrC 

particles. Herein we will treat BrC and BC particles based on their light absorption properties as 
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shown in Fig. 1.3. As the mass absorption cross-section (MAC) increases, the molecular size of 

BrC composing the particles becomes larger, and in return, the particles become more stable and 

more absorptive. In contrast, BrC particles with a smaller MAC show weaker light absorption and 

tend to be more volatile and more soluble in water or common organic solvents such as methanol 

and acetone. Tar balls and HULIS are regarded as two groups of strongly absorptive BrC particles 

(S-BrC), whereby tar balls are probably the most absorptive and most refractory BrC particles.   

Fig. 1.3 shows the transition from very weekly absorptive BrC (VW-BrC) to BC, and tar 

balls are closest to BC (Saleh, 2020). Indeed, BC is more refractory than tar balls with vaporization 

temperature approaching 4000 K. BC demonstrates strong light absorption from UV to near 

infrared, whereas BrC strongly absorb light with shorter wavelength but with negligible absorption 

above 500 nm. Furthermore, BC is insoluble in either water or organic solvents. BC exists as an 

aggregate of small spheres with diameters in tens of nanometers. However, the size and 

morphology of the aggregate varies as indicated by Fig. 1.2B, C, and D with size ranging from a 

few nanometers to 2 µm, peaking at 150 to 200 nm (Li et al., 2024). Thus, BC particles are 

considered as a subset of PM2.5. Freshly emitted BC aggregates tend to be chain-like. During LRAT, 

BC aggregates may servs as CCN or INPs, which can alter their morphology, making the 

aggregates more compact (Fig. 1.2D). In summary, these four properties make BC unique and 

distinguished from BrC and other aerosols. It is noteworthy that the microphysical properties of 

BC and BrC are not constant throughout their lifetime but will change during atmospheric 

evolution or so-called “aging process”. Aging mainly affects the chemical properties of BrC via 

photochemical reactions or heterogeneous reactions, which will be discussed further in Section 

1.2.4. Here we focus on how aging affects BC particles. 
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Figure 1.2. TEM and SEM (scanning electron microscopy) images of (A) BrC (tar ball) and (B, C, D) BC 

particles with diverse morphology. 

Freshly emitted BC particles are usually hydrophobic and externally mixed with other 

pollutants such as organic matters and metals. Aging will not only change the size and morphology 

of BC particles from chain-like aggregates to larger and more compact aggregates, but also alter 

their mixing state. The term “mixing state” is used to describe how aerosols are mixed with other 

aerosols, like internal mixing, external mixing, homogeneous mixing, or heterogeneous mixing. 

For BC, external mixing with hydrophilic aerosols such as sulfate, nitrate, and water-soluble OA 

will increase the hygroscopicity of BC particles, making it easier for water vapor to condense on 

A B

C D
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the surface of BC particles, therefore amplifying the likelihood of BC particles to serve as CCN 

and INPs (Bond et al. 2013; Liu et al., 2020; von Schneidemesser et al., 2015). Even when mixed 

with hydrophobic OA, aging can achieve the same goals via oxidizing these OA in the atmosphere. 

The mixing state will also affect the optical properties of BC, which will be discussed in the 

following section.  

 

Figure 1.3. Graphic representation of BrC classification based on the absorptivity. Two one-direction 

arrows indicate the increasing trends of the properties. "VW-BrC" means very weakly absorptive BrC. “W-

BrC” means weakly absorptive BrC. “M-BrC” stands for moderately absorptive BrC, and “S-BrC” indicates 

strongly absorptive BrC. “MAC” is mass absorption cross-section, “AAE” is absorption Ångström 

exponent. 

 

1.2.3 Optical property of LACs 

The optical properties of LACs are of great interest to researchers because these properties 

strongly affect the climate impacts of LACs. The absorption property of LACs is usually described 

by a power law (Equation 1):  

𝐵𝑎𝑏𝑠(𝜆) = 𝐾 ∙ 𝜆−𝐴𝐴𝐸 (1) 

where Babs (λ) is the absorption coefficient with the unit of Mm-1 (or 1/Mm, where M = 106) at the 

wavelength of λ (nm), and K is a constant related to light absorption. When it comes to 

BCS-BrCM-BrCW-BrCVW-BrC

Molecular size / Stability to photobleaching / MAC

Volatility / Solubility in common solvents / AAE
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measurement in ambient air, MAC (λ) can be acquired through Equation 2 if the mass 

concentration of LACs is known (Cmass): 

𝑀𝐴𝐶(𝜆) =  
𝐵𝑎𝑏𝑠(𝜆)

𝐶𝑚𝑎𝑠𝑠
 

(2) 

where MAC (λ) is with the unit of m2/g, and Cmass with the unit of g/m3. MAC (λ) can be used to 

describe the light absorption ability of LACs at specific wavelengths. For BC, this value at 550 

nm is measured as 7.5 m2/g (Bond et al., 2006), whereas for BrC, this value can vary from larger 

than 1 (S-BrC) to as low as 10-3 m2/g (VW-BrC) at 550 nm (Saleh, 2020). Thus, Equation 1 can 

be re-written in the format of MAC, which is used by some researchers: 

𝑀𝐴𝐶(𝜆) = 𝐾′ ∙ 𝜆−𝐴𝐴𝐸 (3) 

where 𝐾′ equals to K/Cmass. 

Both Equation 1 and 3 show the wavelength dependence of light absorption of LACs, and 

AAE indicates how strong the dependence is. For BC, AAE is considered as 1. Therefore, BC 

demonstrates less dependence on wavelength, strongly absorbing from UV to near infrared. Yet 

for BrC, AAE ranges from 2 to as large as 8, indicating that the absorption of BrC drastically 

decays when λ increases. Furthermore, since K or K' is independent of wavelength, AAE can be 

determined via Equation 4, so long as Babs or MAC at two different wavelengths (λ1 and λ2) are 

measured: 

𝐴𝐴𝐸 (𝜆1 𝜆2⁄ ) =  
𝑙𝑛 [𝐵𝑎𝑏𝑠(𝜆1) 𝐵𝑎𝑏𝑠(𝜆2)]⁄

𝑙𝑛 (𝜆2 𝜆1⁄ )
=  

𝑙𝑛[𝑀𝐴𝐶(𝜆1) 𝑀𝐴𝐶(𝜆2)⁄ ]

𝑙𝑛 (𝜆2 𝜆1⁄ )
 

(4) 

LACs can not only absorb solar radiation, but also scatter it like other aerosols. The 

combined effect of absorption and scattering is called extinction, described by extinction 

coefficient (Bext) (Equation 5): 
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𝐵𝑒𝑥𝑡(𝜆) =  𝐵𝑎𝑏𝑠(𝜆) + 𝐵𝑠𝑐𝑎𝑡(𝜆) (5) 

where Bscat stands for scattering coefficient. The single scattering albedo (SSA) can thus be as the 

ratio of Bscat to Bext (SSA = Bscat/Bext). If the value of SSA of an aerosol is equal to 1, this aerosol 

will only scatter light. However, when the value is lower than 0.8, it means the aerosol may lead 

to a net warming effect.    

The above equations and parameters describe the common features of LACs’ optical 

properties. However, BC and BrC have their own unique characteristics when conducting 

measurement and research in real life.  

Absorption enhancement of BC particles (“lensing effect”). As mentioned, BC particles 

will undergo aging in the atmosphere once emitted, which brings two direct impacts: 1) most 

measurements based on light absorption are measuring BC-containing particles, instead of bare 

BC particles; 2) organic carbon (OC), whether transparent OC or light-absorbing OC (i.e., BrC), 

mixed with BC particles will lead to absorption enhancement of BC. The enhancement can be 

calculated by Eabs = MACobs/MACBC. MACobs describes the observed MAC of BC-containing 

particles, and MACBC refers to the reference value of bare BC particles. Only thickly-coated BC 

particles present strong absorption enhancement. Either thinly-coated or overly-coated BC 

particles exhibit little or no absorption enhancement (Lee et al., 2022). However, current models 

assume constant MACBC and enhancement for all coating situations, which can lead to 

overestimation of BC direct radiative effect (Liu et al., 2020).  

Light absorption measurement of BrC in real life. Hecobian et al., (2010) introduced a 

protocol for processing BrC aerosol samples which has been widely used. BrC samples are 

collected by depositing them on filters with a high-flowrate impactor. Then the filter will be 

immersed in water and sonicated for a few hours to extract water-soluble OC (WSOC), followed 
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by filtration to remove insoluble contents, and concentration if necessary. Thus, it is the water 

solution of BrC that will be measured. To distinguish from MAC(λ) which is used to describe 

particles, mass absorption efficiency (MAE(λ)) is used to indicate light absorption of BrC solution. 

According to Beer-Lambert law, the light attenuation can be calculated based on Equation 6: 

𝐼0

𝐼
= 𝑒𝐵𝑒𝑥𝑡(𝜆)𝑙 

(6) 

where l is the optical path length, and the logarithm format of I0/I (log(I0/I)) can be replaced by 

absorbance A which can be measured by a UV/vis spectrometer. Since the contribution of light 

scattering and reflection can be reduced by using a reference solution, Bext(λ) can be considered as 

Babs(λ). Babs(λ) and MAE(λ) can be acquired by Equation 7 and 8:  

𝐵𝑎𝑏𝑠(𝜆) = (𝐴𝜆 − 𝐴700) ×
𝑉𝑙𝑖𝑞

𝑉𝑎𝑖𝑟 × 𝑙
 × ln 10 

(7) 

𝑀𝐴𝐸(𝜆) =  
𝐵𝑎𝑏𝑠(𝜆)

𝐶𝑊𝑆𝑂𝐶
 

(8) 

where Aλ is the absorbance at λ, Vliq is the volume of the solution, Vair is the volume of air passing 

through the filter, CWSOC is the mass concentration of WSOC. The average absorbance between 

695 to 705 nm (A700) is utilized as a reference to minimize the impact of baseline drift, and BrC is 

assumed to have no contribution of light absorption within this wavelength range. The ratio of Vliq 

to Vair is to convert the light absorption of BrC in solution into the light absorption in ambient air. 

CWSOC can be acquired from a total organic carbon (TOC) analyzer and is used as an estimation of 

BrC mass concentration. In addition, the imaginary part (k) of particle complex refractive index 

(m = n + ki), which is responsible for light absorption can be determined once MAE is known: 

𝑘𝜆 =
𝑀𝐴𝐸(𝜆) × 𝜆 × 𝜌

4𝜋
 

(9) 
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where ρ (the density of BrC) is estimated as ρ = (12+H/C+16 × O/C) / (7 + 5 × H/C + 4.15 × O/C) 

(Kuwata et al., 2012). 

As is shown above, because of the complexity of BrC constitutions, it is temporarily 

impossible to directly measure light absorption of BrC aerosols. Thus, water extraction of aerosol 

samples is used instead. However, this prevalent method brings some uncertainties. For example, 

the optical properties of BrC particles probably differ from that of BrC solutions since dissolving 

BrC in water may alter the morphology of BrC. Furthermore, not all BrC components are soluble 

in water, like tar balls mentioned above, which could cause underestimation of BrC mass 

concentration. On the other hand, not all WSOC species can absorb light. The usage of CWOSC 

could lead to overestimation of BrC mass concentration. Consequently, the method described 

above is a compromise under the circumstance that light absorption measurement of BrC aerosols 

at a single-particle level is currently not available, which no doubt will contribute to the high 

uncertainty when modeling BrC direct radiative effect in the end. 

 

1.2.4 Reactions of LACs in the atmosphere 

BC is mainly composed of elemental carbon (EC), similar to graphite, which makes it 

chemically inert and stable on geologic time scales. Thus, during aging processes, the main 

component of BC particles (i.e., EC) will not be changed. It is those components mixed with BC 

particles that will evolve in the atmosphere, such as sulfate, nitrate, and OC (including BrC). 

However, BC can take part in atmospheric reactions as catalyst to facilitate the formation of other 

aerosols. For instance, Zhang F. et al. (2020) reported that BC can efficiently catalyze the oxidation 

of SO2, even at low SO2 level, with the presence of NO2 and NH3.  
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Unlike BC, BrC is chemically active in the atmosphere. Some transparent OA will become 

colorful through aging processes, serving as secondary sources of BrC. While some BrC species 

may suffer photobleaching, becoming transparent in the end. The formation of secondary BrC and 

photobleaching can take place simultaneously during daytime. For example, the light absorption 

of combustion-generated BrC mixtures tends to increase once BrC is emitted from the source, 

followed by the decay of absorption, indicating the competition between absorption enhancement 

and photobleaching (Saleh, 2020). Furthermore, depending on different phases, the formation and 

degradation of BrC has diverse pathways.  

Gas-phase reactions of BrC. Nitroaromatic compounds have been considered as an 

important source of secondary BrC because higher MAC values of both laboratory research and 

field campaigns on SOA are always attributed to the formation of nitroaromatic compounds (Hems 

et al., 2021). For example, catechol is a highly reactive VOC emitted from biomass burning. The 

reaction between catechol and OH or NO3 radical can lead to the formation of 4-nitrocatechol 

which is moderately absorptive (Fig. 1.4). PAHs like pyrene can also react with NO3 radical to 

generate nitro-PAHs through gas-phase reactions. More importantly, the formation of 

nitroaromatic compounds from BrC precursors correlates to the relative concentration of NOx, 

whereby higher concentration of NOx can facilitate the formation of nitroaromatic compounds, 

and the MAC values tend to be highest when nitroaromatic compounds are formed. Yet SOA 

formed from biogenic precursors, such as isoprene and monoterpene, exhibit less absorption and 

weaker dependence on the NOx concentration than nitroaromatic compounds.   
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Figure 1.4. The reaction mechanism for the formation of 4-nitrocatechol, proposed by Finewax et al., 2018. 

Aqueous reactions of BrC. Liquid water, such as cloud and fog droplets, suspended in the 

atmosphere, is an important medium where various aqueous reactions can take place, leading to 

the formation of secondary BrC. Nitroaromatic compounds can be formed not only via gas-phase 

reactions, but also through aqueous reactions. For example, 3-methylcatechol can react with nitrite 

in aqueous solution to form 3-methyl-4-nitrocatechol and 3-methyl-5-nitrocatechol with sunlight 

and without the presence of light, revealing a pathway of BrC formation during nighttime (Vidović 

et al., 2020). The photooxidation of Vanillin with nitrite in aqueous phase has been reported to be 

a significant source of atmospheric nitrophenols such as 4-nitroguaiacol and 5-nitrovanillin (Pang 

et al., 2019). These nitroaromatic compounds demonstrate stronger light absorption at visible 

wavelengths than their precursors. Besides nitration, it is possible for phenols to form dimers or 

oligomers through radical coupling reactions, which could contribute more absorption at longer 

wavelengths due to the extended π-conjugation. The formation of oligomers can also occur with 

iron as catalyst (Al-Abadleh, 2021), even if light is absent, which could be a source of secondary 

BrC during nighttime. Apart from nitroaromatic compounds, BrC can also be formed through 

reactions of α-dicarbonyls with reduced nitrogen compounds such as NH3, NH4
+ and amines. For 

example, glyoxal and methylglyoxal are water-soluble VOCs. They can react with ammonium 

sulfate or amines to form imidazole-based BrC compounds (Fig.1.5). This type of reactions in 
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laboratory research usually needs high concentrations and long reaction time. However, the 

evaporation of cloud and fog droplets can drastically accelerate the formation of BrC in the 

atmosphere (Hems et al., 2021; Laskin et al., 2015; Moise et al., 2015).   

 

Figure 1.5. Reaction pathways for imidazole formation in the glyoxal and ammonium sulfate system, 

proposed by Yu et al. (2011). Here shows an example of formation of imidazole. 

While many laboratory studies on aqueous reactions of BrC are conducted in bulk solutions, 

there is also some research on mimicking the reactions in cloud and fog droplets. Cloud and fog 

droplets suspended in the atmosphere may undergo evaporation which could drastically decrease 

the volume of water, leading to sharp increment of the concentrations of reactants, accelerating the 

reactions of forming secondary BrC (De Haan et al., 2017; Hawkins et al., 2018; Stangl and 

Johnston, 2017). But it is noteworthy that the evaporation of water droplets does not necessarily 

lead to higher concentrations of solutes. Some solutes such as glycolaldehyde may evaporate 

before reactions take place (Stangl and Johnston, 2017). In addition, the evaporation of water 

droplets could also achieve low pH, facilitating acid-catalyzed aldol condensation reaction and 

organosulfate formation (Fleming et al., 2019).  

Reactions of Particulate BrC. Like BC, BrC and its precursors can undergo internal or 

external mixing with other aerosols once emitted, forming submicron particles. Under such 

circumstances, reactions between BrC and O3, OH and NO3 radicals, or other compounds such as 

NH3 and SO2, usually take place on the surface of the particle. These heterogeneous reactions are 

constrained by not only reactants but also the viscosity of the particle, whereby the viscosity of a 
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particle is dependent on relative humidity (RH). For example, Wang Y., et al. (2018) reported BrC 

formation from the reaction between toluene-derived SOA and NH3 was slower when RH was less 

than 30%, whereas BrC generated from the reaction between isoprene-derived SOA and NH3 was 

not affected by decreasing RH.  

Furthermore, heterogenous NO3 oxidation is an essential pathway of BrC formation during 

nighttime, such as nitration of PAHs mentioned above. And BrC light absorption can be enhanced 

after a few hours of nighttime aging, which is attributed to the formation of secondary 

chromophores. However, due to this enhancement, BrC would be bleach faster during the daytime 

by photolysis (Li C., et al., 2020). These results are based on laboratory studies. Direct observation 

of nighttime aging of biomass burning is still scarce and needed to elucidate the effects of NO3 

nighttime aging. 

Degradation of BrC. The active chemical properties make BrC susceptible to 

photochemistry and oxidation. The formation of new BrC and the degradation of BrC are always 

competing after BrC and its precursors are emitted, which is demonstrated as absorption 

enhancement followed by photobleaching. The processes leading to loss of BrC absorption can be 

summarized as three pathways: photolysis, O3 oxidation, and OH oxidation. Photolysis usually 

takes place with the absence of oxidants, and it is the dominant photobleaching mechanism for 

molecules larger than 400 Da (Saleh, 2020). It can either cause fragmentation of functionalized 

BrC molecules (Henry and Donahue, 2012) or excite a molecule to its triplet state and then energy 

transfer to a less absorptive species (Feilberg and Nielsen, 2001).  

O3 is ubiquitous in the atmosphere, and it could react with unsaturated function groups. 

Compared with photolysis, O3 oxidation does not necessarily need light, which makes it possible 

for O3 to oxidize BrC during both daytime and nighttime. For example, Sareen et al. (2013) 



18 

 

reported SOA formation by the reaction between (NH4)2SO4 and methylglyoxal at dark condition 

followed by photolysis. They found O3 dark oxidation broke unsaturated carbon-carbon bonds to 

form carbonyls, which led to the loss of absorption at short wavelengths but an increase in 

absorption at visible wavelengths. O3 oxidation also caused fragmentation of SOA, forming small 

molecules such as formic acid and acetic acid. The importance of O3 oxidation is probably higher 

when wildfires happen. Wildfires can increase regional O3 concentration because of photochemical 

reactions of VOCs or NOx emitted from wildfires. Browne et al., (2019) found that O3 oxidation 

on primary BrC generated by biomass burning led to weaker light absorption at 405 and 532 nm 

when increasing the concentration of O3. But A fraction of BrC components were resistant to O3 

oxidation, which was attributed to the increasing viscosity of the particles which limited the 

diffusion of reactants from the bulk of the particles to the surface. Thus, more field measurements 

and laboratory studies are needed to evaluate the effects of O3 oxidation. 

Apart from directly serving as oxidant, O3 is also used as a source of OH radicals in 

laboratory studies on OH oxidation with the presence of light. OH oxidation, in contrast to 

photolysis, is the dominant mechanism for bleaching molecules smaller than 400 Da (Saleh, 2020). 

It can take place in gas phase, aqueous phase, and on the surface of particles. OH oxidation of BrC 

has been widely investigated in laboratory studies (). For instance, Sumlin et al. (2017) conducted 

controlled biomass burning experiments with OH exposure at different concentrations, finding that 

primary BrC particles underwent functionalization but accompanied by a sharp decrease in light 

absorption at 375 nm. Hems et al. (2020) found that OH oxidation of BrC in aqueous reactions led 

to a decrease at short wavelengths but an increase at 400 nm, indicating the fragmentation of 

unsaturated carbon-carbon bonds and the formation of new chromophores took place 

simultaneously in cloud. The research by Sareen et al. (2013) mentioned above also demonstrated 
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fragmentation caused by OH oxidation, but the change of light absorption was not reported. 

Although OH oxidation is usually considered to occur with the presence of light, it has been 

recently reported that photoinitiated OH oxidation can persist in the dark environment (Liu-Kang 

et al., 2022), indicating that OH oxidation may also play a role in degrading BrC during nighttime. 

 

1.2.5 Current measurement techniques of LACs 

1.2.5.1 Measurement of optical properties  

Since optical properties of LACs are of great interest, most measurement techniques are 

based on the absorption of LACs. Table 1.1 summarizes some common commercial instruments 

for LACs, mostly for BC because it is still difficult to measure BrC directly. The BC/BrC 

measurement methods can generally be divided into two groups: in-situ instruments and filter-

based instruments. They share the same underlying assumption that only BC can absorb laser 

radiation at wavelengths longer than 800 nm.  

Table 1.1. Common Commercial instruments used for measuring the optical properties of LACs. 

Instrument Principle Parameter measured Bias sources 

Photoacoustic 

Extincometer 

(PAX) 

Photoacoustic in-situ 

optical absorption 

Babs 

Bscat 

Could be affected by 

S-BrC like tar balls 

Single Particle 

Soot Photometer 

(SP2) 

Laser-induced 

incandescence 

Size distribution 

BC mass concentration 

BC number concentration 

Babs 

Bscat 

Missing information 

of BC particles 

smaller than 60 nm 

EC/OC Analyzer 

Thermal optical 

reflectance and 

transmittance by 

collection on filters 

EC mass concentration 

OC mass concentration 

Total carbon concentration 

Attributing less 

volatile OC to EC 

Aethalometer 
Optical absorption by 

collection on filters 

Babs 

BC mass concentration 

AAE 

Same as PAX, plus: 

aerosol scattering 
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and filter loading 

effect 

UV/vis 

spectroscopy 

Optical absorption by 

extraction in solvents 

Absorbance of soluble 

BrC 

Only soluble BrC 

can be measured 

  

In-situ instruments measure LACs as if they are aerosols. The measurement will not change 

the size and morphology of aerosol particles. In this way, the parameters acquired can be 

considered to represent the real situations in the atmosphere. Photoacoustic-based instruments such 

as PAX, photoacoustic soot spectrometer (PASS), and photoacoustic spectrometer (PAS), measure 

the change of air pressure caused by the heat transferred from LACs which heat up by absorbing 

laser radiation. Because of the accuracy and in-situ measurement, photoacoustic-based instruments 

are often used to calibrate filter-based instruments (Bond et al., 2013). PAX and PASS also have 

short-wavelength modules which can be used to measure and separate the absorption of BrC 

aerosols by Equation 4 introduced in Section 1.2.3. However, short-wavelength PAX or PASS 

cannot distinguish BrC from other absorbers such as mineral dust.  

SP2 is another in-situ instrument but is based on laser-induced incandescence. Briefly, a 

1064 nm laser is utilized to heat BC to the point of incandescence. The instrument measures the 

light emitted by heated BC particles to determine the mass, regardless of particle mixing state. And 

the scattering signals can be used to calculate the number and mass concentration of non-BC 

scattering aerosols. More importantly, SP2 can achieve single particle level detection, thus SP2 

can provide BC size distribution and number concentration as well. Although SP2 is a powerful 

tool and can provide abundant information about BC, it is unable to detect BC particles with a 

diameter smaller than 60 nm which may account for a large proportion of BC number 

concentration.  
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Filter-based instruments measure the change of light transmission caused by collecting 

LACs on filters. Seven-wavelength aethalometers such as AE33 and AE43 are widely used for 

long observation because of their stability and simple operation protocol. Aethalometers use seven 

wavelengths which span from 370 nm to 950 nm, and light absorption of BrC at short wavelengths 

can be separated from total absorption. Therefore, aethalometers are used to estimate the 

contribution of BrC by combing Equation 4 and Babs, total = Babs, BC + Babs, BrC (Bai et al., 2023; Q 

Wang et al., 2019). There are other commercial instruments working in a similar way as 

aethalometer, such as particle soot absorption photometer (PSAP) and multi-angle absorption 

photometer (MAAP). These filter-based absorption instruments are suffering the same problem: 

aerosol scattering effect and filter loading effect, which may lead to overestimation of BC mass 

concentration. Although AE43 incorporates the “DualSpot” measurement method to eliminate the 

filter loading effect (Drinovec et al., 2015), the aerosol scattering effect remains a source of 

uncertainty.  

EC/OC analyzer is also a filter-based instrument but mainly based on thermal-optical 

method. Basically, the samples collected on the filters will be heated in programmed temperature 

steps so that volatile OC can be separated from EC. Both OC and EC will then be combusted to 

generate CO2. Thus, the concentration of OC and EC can be determined respectively. But EC/OC 

analyzer may attribute low volatile OC to EC, leading to overestimation of EC. In addition, some 

OC may undergo pyrolysis when heating up, which could again cause overestimation of EC 

(Zhang Z. et al., 2023c).  

UV/vis spectroscopy is different from the measurements mentioned above. Aerosol 

samples need to be collected on filters first and extracted in solvents, as described in Section 1.2.3. 

Therefore, only soluble BrC components can be measured, which excludes BC and insoluble BrC. 
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Using soluble BrC as proxy of BrC will lead to underestimation of BrC mass concentration and 

absorbance. Furthermore, this measurement is conducted in bulk solutions where size and 

morphology of BrC may be altered, contributing another source of measurement bias. Thus, this 

method can only provide an estimation of BrC concentration.  

 

1.2.5.2 Measurement of chemical properties  

Due to the chemical and functional complexity of BrC, it is impossible to identify every 

species of BrC and predict light absorption from molecular levels. However, efforts have been 

made to characterize BrC components with mass spectroscopy (MS) in the past decades. High 

performance liquid chromatography-mass spectrometry (HPLC-MS) is one of the most popular 

techniques (Laskin et al., 2015), because water is widely used to extract BrC, especially to extract 

HULIS which is known to be water soluble. To acquire molecular ion peaks in HPLC-MS, soft 

ionization techniques such as electrospray ionization (ESI) are usually coupled with HPLC-MS. 

In addition, some BrC components such as imidazole are polar, which also makes ESI suitable for 

them, while less polar molecules like nitro-PAHs, atmospheric pressure chemical ionization (APCI) 

could be a readily available alternative. Besides HPLC-MS, gas chromatography-mass 

spectrometry (GC-MS) is also utilized by some researchers (Kuang et al., 2023; Soleimanian et al., 

2020; Wu C. et al., 2023). GC-MS is very suitable for volatile and semi-volatile BrC components 

such as PAHs and nitro-PAHs due to its high sensitivity and resolution. The choice of HPLC-MS 

or GC-MS depends on what types of molecules are of interest. But as discussed in section 1.2.2, 

the absorption of BrC gets stronger with volatility decreasing, which makes HPLC-MS preferable.  

Both HPLC-MS and GC-MS are traditional MS for offline analysis, which means aerosol 

samples must be collected and processed for analysis. To achieve real-time continuous 
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measurement, aerosol mass spectrometry (AMS) has been developed and extensively used. In 

addition to in-situ measurement, AMS can measure chemical composition of BrC at single particle 

level, and it can detect BC if coupled with the soot particle module (Shu et al., 2023).  

Apart from MS, TEM and SEM coupled with energy-dispersive X-ray spectroscopy (EDS) 

can be applied to characterize size, morphology, and chemical constitutions of BC and some BrC 

particles. As mentioned above, most BrC species are unstable under high vacuum environment and 

high energy electron beam, which limits the application of electron microscopy on BrC detection.   

 

1.3  Effects of LACs on Health and Climate 

1.3.1 LACs as Air Pollutants in Cold-climate Urban Regions 

Anthropogenic emission is the dominant source of LACs in urban regions, whereby 

industrial production, domestic fuel combustion, and transportation are major sources of LACs 

and PM2.5. Continuous measurement of BC and BrC specifically at urban air quality monitoring 

stations is not prevalent yet. Instead, BC and BrC are considered subsets of PM2.5. Therefore, most 

studies on health impacts are focused on PM2.5 as ensemble. But there are increasing number of 

studies on health concern of BC recently. For example, Zhang et al. (2023) reported that long-term 

exposure to BC could lead to chronic kidney disease. Rasking et al. (2023) pointed out that BC 

reached the kidney through inhalation and circulation in the body. Liu et al. (2023) detected BC in 

eye-washing fluid, indicating the ocular exposure risk. Additionally, long-term exposure to BC 

could also cause obesity (Yang et al., 2023), cardiovascular diseases (Wen et al. 2023) and large-

artery atherosclerotic stroke (Vivanco-Hidalgo et al., 2018). As for BrC, PAHs and its derivatives, 

and nitroaromatic compounds such as nitrophenols, have been widely investigated and identified 
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as carcinogens and damaging organs (Kitanovski et al., 2021; Samburova et al., 2016). The WHO 

has proposed to make systematic long-term measurements of BC as a complement to current 

routine PM2.5 measurements in the new guideline for air quality (WHO 2021a). However, it is 

difficult to continuously monitor BrC emissions due to instrumentation. Although AMS has been 

utilized by researchers in universities and research institutions, the high cost makes it hardly 

accessible for governments. Developing a stable and low-cost commercial instrument for BrC is 

still challenging but necessary. 

Furthermore, BC can lead to a “dome effect”, suppressing the development of the planetary 

boundary layer (PBL) (Ding et al., 2016). The development of PBL during daytime is due to rising 

temperature and can decrease the concentration of air pollutants. BC that is transported beyond the 

PBL can absorb solar radiation, heating up surrounding air which inhibits the height of PBL. The 

“dome effect” of BC has been proved to be associated with haze formation during winter (Li Z. et 

al., 2017; Zhang Y. et al., 2023b). This effect could even worsen the situation of air pollution during 

winter in cold-climate cities. Compared with warm-climate regions, winter spans longer in cold-

climate cities. For example, Canada is known to be a cold-climate country. According to 

Environment and Climate Change Canada (ECCC), winter in Canada usually starts on December 

1st, and lasts until April 20th. But the actual meteorological winter could even start earlier and end 

later. The long winter also brings extra sources of LACs such as wood or oil burning for heating. 

The concentration of BC and other air pollutants can maintain high values during the long winter 

months. Meanwhile the “dome effect” caused by BC can further deteriorate air quality in urban 

areas, demonstrating the necessity of measuring and regulating the emission of BC (and BrC).      
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1.3.2 Climate Effects of LACs 

Direct effects. As mentioned in section 1.1, atmospheric aerosols can affect the climate 

directly and indirectly. LACs, as a unique group of aerosols, are of great importance and interest 

for scientists because they can absorb solar radiation directly, warming the atmosphere. However, 

numerous studies have suggested various direct radiative forcing values of LACs, demonstrating 

the large uncertainty of evaluating the direct impacts of LACs. For instance, Bond et al. (2013) 

reported that global mean direct radiative forcing of BC is +0.88 W/m2 with an uncertainty of 

+0.17 to +1.48 W/m2, while the IPCC suggested effective radiative forcing of BC to be +0.11 

W/m2 with an uncertainty of -0.20 to +0.42 W/m2 in the AR6 report (IPCC 2021). Other 

researchers also reported different values such as +0.23 (+0.06 to +0.48) W/m2 (Myhre et al., 2013) 

and +0.15 ± 0.17 W/m2 (Thornhill et al., 2021). The physicochemical properties of BC discussed 

in section 1.2 such as size, morphology, mixing state, and MAC, as well as factors like lifetime 

and emission amount, all contribute to the high uncertainty when estimating direct radiative 

forcing of BC. As for BrC, to quantify its radiative forcing is even harder because of the complex 

composition of BrC components. Some efforts have been made to estimate the direct radiative 

forcing of BrC which ranges from +0.03 to +0.6 W/m2 (Feng et al., 2013; Jo et al., 2016; Saleh et 

al., 2015) although these simulation works are inevitably suffering the problem of 

oversimplification.  

In addition to absorbing radiation in the atmosphere, LACs deposited in the cryosphere 

could also exert positive radiative forcing, warming the climate. Snow and ice in cryosphere such 

as Arctic and Tibetan Plateau play essential roles in reflecting the solar radiation to cool the climate. 

Although there are very limited local emission sources of LACs in the cryosphere, anthropogenic 

LACs can undergo LRAT to reach these remote regions. Fossil fuel combustion in winter and 
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biomass burning in summer are the major sources of LACs deposited in the cryosphere (Liu et al., 

2020). LACs deposited on snow/ice can accelerate the melting by darkening the surface of 

snow/ice. As snow/ice ages, radiative forcing induced by LACs can boost from a few watts per 

square meter in fresh snow to hundreds of watts per square meter in aged snow, which strongly 

contributes to the acceleration of glacier melt (DeMott et al., 2010).  

Indirect effects.  LACs can serve as CCN and INPs as other aerosols to affect the climate 

indirectly by forming cloud and ice. Pure BC particles are not good CCN because they are 

insoluble and hydrophobic. But while BC particles age in the atmosphere, they can mix with other 

aerosols internally or externally, which allows them to become more hygroscopic and activated as 

CCN. While for BrC, it depends on specific components. Those hydrophobic BrC components 

may experience oxidation to become hydrophilic which allows for activation as CCN (Liu et al., 

2020).  

Besides forming clouds, the ice nucleation of LACs is also under debate due to their 

complexity. The heterogeneous ice nucleation of BC has been widely investigated in the past 

decades, and results from different studies often contradict each other. For example, researchers 

reported contradictory results during two field campaigns on mixed-phase clouds at the same 

observation site, indicating BC particles are either efficient INPs or unimportant for ice nucleation 

in mix-phase clouds (Cozic et al., 2008; Kamphus et al., 2010; Kupiszewski et al., 2016). While 

for laboratory experiments, the ice nucleation temperature of BC ranges from 213 to 258 K, 

demonstrating a large discrepancy (DeMott et al., 1999; Ikhenazene et al., 2019; Mahrt et al., 2020). 

One reason for this discrepancy is that researchers conducted experiments with different materials 

under different conditions. The diversities of size, morphology, and mixing state could contribute 

a large uncertainty when comparing results from different articles. As for the ice nucleation of BrC, 
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there are very limited studies. Knopf et al. (2018) summarized research on ice nucleation of various 

OC, which covered the components of BrC such as HULIS and PAHs. Chen et al. (2021) reported 

that HULIS entities were efficient ice nuclei under mixed-phase cloud conditions, which could 

demonstrate the potential of BrC particles in ice nucleation. There is no doubt that the complexity 

of BrC composition strongly inhibits research on BrC particles as INPs, and thus the estimation of 

the indirect climate effect of BrC.  

 

1.3.3 Looming Threat Due to Increasing Occurrence of Wildfires 

The occurrence of wildfires has been investigated in the past few years. Wildfires are 

thought to be more frequent and more severe due to climate change (Eck et al., 2023; Morawska 

et al., 2021; R Xu et al., 2023). As mentioned before, wildfires are important sources of LACs, 

which can emit a large number of LACs and their precursors. Wildfires which take place in high-

latitude regions such as northern Canada and Alaska would make it easier for LACs to deposit in 

cryosphere via LRAT, darkening the surface of snow/ice, accelerating the melting of glaciers due 

to the reduced snow albedo, further exacerbating global warming. Apart from climate effects, the 

increasing number of wildfires will also strongly deteriorate air quality in urban regions even a 

few hundred kilometers away through LRAT, which poses serious threats to human health. The 

challenges caused by surging wildfires would require governments to pay more attention to control 

the occurrence and spreading of intense wildfires in large areas. 
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1.4  Machine Learning in Environmental Pollution Research 

With the rapid advancement of modern science and technology, the quantity and the 

complexity of research data has been widely extended. Traditional data analytical tools may be 

insufficient to discover the potential relationships behind research data, calling for new powerful 

approaches to unveil the patterns or trends in data. As a result, machine learning (ML) is 

increasingly applied in environmental research.  

ML is the science of programming computers so that they can learn from data (Géron 2019). 

ML models rely on specific algorithms to learn from training instances or samples to make 

predictions or decisions although they are not programmed to do so, coupled with a corresponding 

performance measure to evaluate the outcomes. A significant difference between ML models and 

other physical or chemical models is that ML models do not rely on physical processes or chemical 

reactions behind the data to make predictions or decisions. Instead, ML models learn directly from 

data and results to establish the relationship between them, which may be able to reveal the 

significance of factors or processes, and give insight into physical or chemical processes. 

ML can be categorized into supervised learning, unsupervised learning, semisupervised 

learning, and reinforcement learning (Géron 2019). Supervised learning is the most prevalent ML 

used for training models (Zhu et al., 2023). In supervised learning, data are fed to the algorithm 

and are associated with true values, so that the performance of the model can be evaluated by 

comparing outcomes with true values. One typical task of supervised learning is regression 

(predicting values). This type of task is to predict target values (outcomes) by giving a set of 

features (variables, or inputs). Linear regression like y = ax + b is the simplest format of regression 

jobs. In environmental science, regression usually involve multiple features (x1, x2, x3, …), and the 

relationship between y and x may be something other than linear, such as polynomial. Another 
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supervised learning task is classification (predicting classes). As indicated by the name, 

classification is about assigning the data into distinct groups. For example, showing a picture of 

an animal to a computer vision model to see if it can place the animal in the correct classification. 

Unsupervised learning works with data without labels. Therefore, unsupervised learning is used to 

discover the potential pattern of data, such as clustering data or reducing dimensions of data to 

simplify the calculation process. Whereas semisupervised learning deals with data partially labeled, 

and reinforcement learning is less relevant to environmental research.  

Table 1.2. Examples of applying ML models in environmental studies. 

Task Algorithms Inputs Outputs Ref 

Identifying 

feature 

importance 

Random 

forest (RF) 

Mass concentrations 

from different sources 

Babs (355), MAE (355), 

Babs (365), MAE (365) 

 Hong et 

al., 2022 

Identifying 

feature 

importance 

RF, 

Aggregated 

boosted tree 

Concentrations of 13 

chemical species, 4 

trace gases, and 4 

meteorological 

variables 

The importance and 

relative influence of 

input parameters 

 Jiang et 

al., 2021 

Prediction RF 

8 fractions of PM2.5, 7 

gaseous species, and 4 

meteorological 

variables 

Number concentration 

of CCN 

 Nair and 

Yu, 2020 

Prediction RF 

5 time variables, 4 

meteorological 

variables, 6 

geographical variables, 

and 12 HYSPLIT 

trajectories 

Mass concentrations of 

OC, sulfate, nitrate, 

ammonium, chloride, 

and BC 

 Zhou et 

al., 2022 

Prediction 

Support 

vector 

regression 

(SVR) 

Distance to traffic 

routes, distance to 

coasts, percentage of 

land use, population, 6 

meteorological 

variables 

BC mass concentration 

 Abu 

Awad et 

al., 2017 
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Prediction & 

Classification 

RF, 

XGBoost, 

CatBoost 

PM2.5, PM10, CO, 

NO2, SO2, and O3, 8 

meteorological 

variables 

Concentrations of 

PM2.5 and O3, 

 Wang S. 

et al., 

2023 

Discovering 

new 

materials 

RF 

Polymer property data 

from literature and 

experiments, polymer 

features based on 

composition, 

configuration, 

topology, and polarity 

Target properties from 

candidate polymers 

 Pilania et 

al., 2019 

 

Table 1.2 listed some examples of the application of ML models in environmental studies.  

In the past decades, publications concerning ML methods have been exponentially increasing (Liu 

et al., 2022; Zhong et al., 2021), revealing the great potential of introducing ML methods to 

traditional environmental research. Compared with traditional statistical methods, ML methods are 

good at dealing with large datasets, features, and various data formats, discovering their 

correlations and patterns, especially for nonlinear relationships which are difficult for statistical 

methods to detect. Furthermore, ML models can be roughly divided into linear models, such as 

linear regression, principal component analysis, and positive matrix factorization, and nonlinear 

models, such as models based on artificial neural network (ANN) like recurrent neural network 

(RNN) and long short-term memory (LSTM), and random forest (RF). Some models can handle 

both linear and nonlinear relationships, such as support vector machine (SVM) and extreme 

gradient boosting (XGBoost). There is no single model which can solve all kinds of problems. One 

model can work better than other models for one type of task but perform poorly for another type 

of task. The choice of models should be determined based on specific questions to be investigated.  

Although ML demonstrates great potential to solve research problems, there are still some 

challenges which may lead to bad performance or inappropriate applications of ML models. First, 
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ML models rely on data for training. As such, the training dataset should be representative and big 

enough to demonstrate every aspect of the feature. Furthermore, the quality of the dataset should 

be high, with excellent coverage, precision, and accuracy. Obviously, the model trained by data 

filled with errors or outliers is impossible to perform well. After choosing good data, data 

preprocessing and splitting must be done before training. Real-world data are from diverse sources. 

Therefore, the range of data values sometimes spans a few orders. Data preprocessing like scaling 

data values into a smaller range (e.g., between 0 to 1) can facilitate the training process. Then the 

data should be split into a training set and a test set which are independent of each other so that 

data leakage can be avoided during the training. During the model training process, proper 

evaluation metrics shall be determined based on the type of task. For example, accuracy should be 

a good metric for classification tasks, while for prediction tasks, root mean square error (RMSE) 

and mean absolute error (MAE) are better metrics. Yet if the model achieves a perfect score on 

training set, it likely means the model has been “overfitted”. Overfitting indicates that the model 

learns so good on the training set that it cannot generalize well because it is impossible for the 

training set to cover all the situations in the real world. New instances outside of the training set 

are very likely to fail an overfitted model. Overfitting is a widely recognized problem in ML, and 

it can be lessened by measures such as cross-validation. Of course, there are more problems which 

are not mentioned in the application of ML models. Zhu et al. (2023) contributed an excellent 

review on common pitfalls appearing in current research articles and provided a comprehensive 

guideline for application of ML models.  

Apart from traditional problems mentioned above, model interpretability is an emerging 

problem as many ML systems are black boxes. Deep neural network models (or deep learning 

models) such as convolutional neural network (CNN) and RNN are especially suffering from the 
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problem of interpretability. For example, to predict concentrations of air pollutants is a complex 

task because of the physicochemical properties, the temporal and spatial distribution, and the 

diverse sources of air pollutants, and various atmospheric processes they undergo. Deep neural 

network models are quite suitable for this type of task, and they can achieve good results. However, 

it is difficult to understand what happens inside the model. Therefore, these models are regarded 

as “black box”. Simpler models such as RF, SVM, and XGBoost are easier to interpret, and thus 

they are preferred when complex deep learning models cannot outperform them (Liu et al., 2022).  

 

1.5  Outstanding Questions 

Despite the decades of research on emissions, optical properties, and chemical properties 

of LACs, and their lifecycle in the atmosphere, it is still difficult to clarify the climate effects and 

health impacts of LACs. Current satellite and remote sensing technologies are advanced, but they 

cannot sufficiently reflect emissions, physicochemical properties, and atmospheric processes of 

LACs. Thus, ground-based in-situ observations are essential and necessary to advance our 

knowledge of LACs and their effects in the real world and climate models. Therefore, this section 

summarizes the primary and long-term questions which this thesis works to explore: 

1. How big can anthropogenic sources contribute to the emission of LACs in cold-climate 

urban regions? And how human activities would affect the emission of LACs? 

2. The threat of wildfires is increasing. How would wildfires alter the physicochemical 

properties of LACs? What is the impact of wildfires on urban areas which are far away 

from the sources of wildfires? 
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3. The necessity of monitoring LACs emission is increasing, but the instruments are not 

prevalent. Is it feasible to develop a model to estimate the concentrations of LACs with 

other air pollutants? 

  

1.6  Structure of the Thesis 

This thesis is composed of three manuscripts each corresponding to a chapter of the thesis, 

except for Chapter 1 (Introduction) and Chapter 5 (Conclusion and Future Work).  

Chapter 2 was published as “Li, H., and Ariya, P. A. (2021). Black carbon particles 

physicochemical real-time data set in a cold city: Trends of fall-winter BC accumulation and 

COVID-19. Journal of Geophysical Research: Atmospheres, 126, e2021JD035265.” This 

manuscript focuses on one-year variation of concentrations of BC and other air pollutants, which 

covers the period of COVID-19 Pandemic. The lockdown due to COVID-19 provided an 

unexpected chance to directly observe the impacts of human activities and anthropogenic 

emissions of air pollutants in urban regions. This work presents Montreal BC mass concentration 

had a bi-modal distribution (summer and winter). Airport BC concentration was >400% higher 

than downtown. The concentrations of BC and co-pollutants decreased to 72% in the COVID-19 

period, pointing to significant anthropogenic emissions of BC and other air pollutants.  

Chapter 3 is a manuscript submitted to Atmospheric Chemistry and Physics as “Li, H., Pal, 

D., and Ariya, P. A. (2024). Seasonal Trend of Black Carbon and Brown Carbon in Montreal: 

Impacts of Canada Record-Breaking Wildfires in Summer 2023.” This manuscript first 

demonstrates the variations of BC and BrC for one year, confirming the dominant impacts of 

anthropogenic sources in urban regions discovered in Chapter 2. But the record-breaking wildfires 
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during the summer of 2023 strongly affected Montreal. This manuscript focuses more on the 

impacts of wildfires, showing that BC mass concentration increased more than 26% due to the 

wildfires. Additionally, secondary BrC light absorption accounts for 20 to 30% of BrC light 

absorption, whereby BrC light absorption at 370 nm accounting for more than 50% of total light 

absorption, indicating the enormous potential of BrC emitted from wildfires.  

Chapter 4 is in preparation for submission as “Li, H., and Ariya, P.A. (2024). Using 

Machine Learning Model to Derive BC Mass Concentration Based on Common Air Pollutants.” 

This manuscript describes a data-driven ML model used to estimate BC mass concentration. The 

model was trained with common air pollutants such as CO, O3, NOx, and PM2.5. The predicted BC 

mass concentrations were then compared with the measured ones to evaluate the performance of 

the ML model. This manuscript demonstrates a feasible and promising model for simulating BC 

mass concentration as a complement to current air pollution monitoring protocol.  
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Chapter 2 Black Carbon Particles Physicochemical real-time dataset in a Cold 

City: Trends of Fall-Winter BC Accumulation and COVID-19  

The importance of LACs has been discussed in Chapter 1. However, there is very limited 

observation coming from cold-climate regions where winter seasons usually last longer than those 

warm-climate regions. Since BC can accelerate snow melt by darkening the snow surface, BC 

might be able to affect cold-climate regions more than warm-climate regions. Furthermore, 

anthropogenic emissions of BC in cold-climate urban regions shall be evaluated, which was 

achieved straightforward in this manuscript due to the COVID-19 Pandemic. Here we present a 

valuable dataset of BC and other air pollutants in a cold-climate city, revealing the profound 

impacts from anthropogenic emissions in urban areas. 

Contribution of Authors 

I conducted the sampling and the experiments, analyzed the data, interpreted the results, 

prepared the figures, and wrote the original manuscript. I am the first author of this original article. 

Professor Parisa A. Ariya (supervisor) co-authored this paper and is the corresponding 

author. She provided continuous guidance and support, designed the studies, participated in 

interpreting results and discussions, provided insights into experiments, and edited the article. 

 

This Chapter consists of the following published article in peer-reviewed journals: 

Li, H., & Ariya, P. A. (2021). Black carbon particles physicochemical real-time data set in a cold 

city: Trends of fall-winter BC accumulation and COVID-19. Journal of Geophysical Research: 

Atmospheres, 126, e2021JD035265. https://doi. org/10.1029/2021JD035265.    
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Abstract 

Black carbon (BC) plays an important role in climate and health sciences. Using the 

combination of a year real-time BC observation (photoacoustic extinctiometer) and data for PM2.5 

and selected co-pollutants, we herein show that annual BC mass concentration has a bi-modal 

distribution, in the cold-climate city of Montreal. In addition to the summer peak, a winter BC 

peak was observed (up to 0.433 μg/m3), lasting over 3 months. A comparative study between two 

air pollution hotspots, downtown and Montreal international airport indicated that airborne average 

BC mass concentration in downtown was 0.344 μg/m3, whereas in the residential areas around 

Montreal airport BC mass values were over 400% higher (1.487 μg/m3). During the numerous 

snowfall events, airborne BC mass concentration decreased. HR-S/TEM-EDS analysis of the snow 

samples provided evidence that airborne black carbon particles or carbon nanomaterials were 

indeed transferred from polluted air to snow. During the COVID-19 lockdown, the BC 

concentration and selected co-pollutants, decreased up to 72%, confirming the predominance of 

mailto:parisa.ariya@mcgill.ca
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anthropogenic activities in BC emission. This first cold-climate BC dataset can be essential for 

more accurate air quality and climate modelling. As about the third of Earth’s land surface receive 

snow annually, the impact of this study on air quality, health and climate change is discussed. 

 

2.1 Introduction 

Aerosols or airborne particles have drawn great scientific interests in the past decades due 

to their essential roles in the nucleation of ice, clouds, formation, type and intensity of precipitation, 

radiation budget and climate change (Bond et al., 2013; de Oliveira Alves et al., 2015; Fuzzi et al., 

2015; IPCC, 2013; Knopf et al., 2018; McCluskey et al., 2014; Munoz-Alpizar et al., 2017; Murray 

et al., 2012; Nazarenko et al., 2017; Petters et al., 2009; Qian et al., 2014; Rangel-Alvarado et al., 

2019; Washenfelder et al., 2015). The Intergovernmental Panel for the Climate Change (IPCC) has 

thereby identified aerosols and aerosol-climate interactions as the major uncertainty in climate 

change (IPCC, 2013). The World Health Organization (WHO) has shown that aerosols have critical 

impacts on human health, contributing to over 8 million premature deaths per year, including 4.2 

million deaths attributed to ambient air pollution and 3.8 million deaths caused by indoor air 

pollution (WHO 2021b). 

Aerosol composition is diverse, originating from natural and anthropogenic sources such 

as organic, inorganic (including metallic) and biological particles (Bond et al., 2013; Hall et al., 

2020; IPCC, 2013; Rahim et al. 2019; Rangel-Alvarado et al. 2015; Rivas et al. 2020). Airborne 

black carbon (BC) is a type of aerosol that is formed as by-product of incomplete combustion of 

fossil fuel, accounting for 5% to 15% of the annual urban particulate matter concentration (Xu et 

al., 2020; Yang et al., 2011).  
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Like other aerosols, BC can impact climate directly by absorbing and scattering solar 

radiation (Bahadur et al., 2012; Bond & Bergstrom, 2007; Bond et al., 2013; Qian et al., 2014; Xu 

et al., 2019), and indirectly by serving as cloud condensation nuclei and ice nuclei (Brooks et al., 

2014; Fan et al., 2016; Kulkarni et al., 2016; McCluskey et al., 2014; Parent et al., 2016; Qian et 

al., 2014; Vergara-Temprado et al., 2018). BC is a significant component in climate change (Bond 

et al., 2013) and is estimated to be +1.1 W/m2 with 90% uncertainty bounds from +0.17 to +2.1 

W/m2, only second to CO2 (Bond et al., 2013). Yet the question of how BC affects climate change 

is still debated (Dou & Xiao, 2016; Grandey et al., 2018; IPCC, 2014; Malavelle et al., 2019) due 

to lack of knowledge of the physicochemical properties of BC.  

The lack of understanding of the BC’s physicochemical characteristics such as morphology, 

size and mixing state is the cause of the existing large uncertainty for an accurate evaluation of its 

radiative forcing (Bond & Bergstrom, 2007; Chakrabarty et al., 2014; Lack et al., 2014; Long et 

al., 2013). For instance, organic aerosols (OA) are commonly co-emitted with BC from biomass 

burning. The internal and external mixing of OA and BC have been suggested to strongly alter the 

optical properties of BC, increasing the absorption ability in a specific wavelength, causing a 

stronger climate warming effect (Cappa et al., 2012; Nakayama et al., 2014). Whereas the 

heterogeneous ice nucleation of BC under diverse environmental conditions shows contrasting 

results (Brooks et al., 2014; Fan et al., 2016; Kulkarni et al., 2016; McCluskey et al., 2014; Petters 

et al., 2009; Qian et al., 2014; Vergara-Temprado et al., 2018).  

BC is indeed linked to adverse health effects (Bove et al., 2019; Brown, 2013; Jia et al., 

2020). For instance, toxic compounds such as polycyclic aromatic compounds (PAHs) have been 

shown to be bound with black carbon. A large proportion of anthropogenic BC emissions occur in 

urban regions, home to most of the human population. The urban BC sources include industrial 
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production, transportation, electrical production, and heating systems (IPCC, 2013). Air traffic is 

a major transportation venue in the world (ICAO, 2016). The contribution of BC emission from 

airplanes has been rising because of the expansion of aviation in the last decades (ICAO, 2016). 

There are several studies on the air pollution characterizations at airports (Rahim et al., 2019; Rivas 

et al., 2020) and experimental research of BC emission from airplane engines (Abegglen et al., 

2016; Chen et al., 2019; Elser et al., 2019; Parent et al., 2016), revealing BC emission is even 

larger when airplanes are near or on the ground, in comparison with climbing and flying in the sky 

(ICAO, 2016). To our knowledge, there have been limited studies on in-situ real-time BC emission 

at the airport that are needed for a comprehensive assessment of the link between airplanes emitted 

BC and the health hazards of people living close to the airports. 

The importance of snow on atmospheric chemistry and physics of the urban regions has 

been reported (Ariya et al., 2018). Aerosols are known to promote the formation of ice nuclei that 

can ultimately lead to the precipitation of snow in the atmosphere (Rangel-Alvarado et al., 2015). 

During the snowfall, aerosols like BC can be scavenged by snowflakes (Ariya et al., 2018; Pal et 

al., 2020; Rangel-Alvarado et al., 2019; Wang et al., 2021). Furthermore, as snowpack is porous, 

it can adsorb combustion emitted gas and particles like BC and PAHs (Nazarenko et al., 2016, 

2017). BC has been suggested to change snow albedo, and affect the snow melting process (Bond 

et al., 2013). Snow organic compounds have been shown to undergo physicochemical processes 

including re-emission to air, upon melting (Nazarenko et al., 2016, 2017). Halogenated salts are 

commonly added as a de-icing agent in snowy cities, affecting the oxidation potential of the lower 

atmosphere (Hall et al., 2020; Pal et al., 2020; Rahim et al., 2019; Rangel-Alvarado et al., 2019).  

In this study, we aimed to develop real-time dataset on selected physicochemical 

characteristics of BC, in a model cold-climate city of Montreal, Canada (Nazarenko et al., 2017; 
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Pal et al., 2020; Rangel-Alvarado et al., 2015). Concurrently, selected air co-pollutants (such as 

particulate matters, CO, NOx) were analyzed. We herein evaluated BC’s distributions and 

accumulation in the boundary layer. We also explored whether the BC concentration close to urban 

hotspots in residential areas is drastically elevated in the cold climate to cause potential adverse 

health. Lastly, as there are limited data on the impact of COVID-19 pandemic lockdowns on 

pollutant emissions in cold-climate cities, we explored a suite of air pollutants prior to, during the 

lockdown and after partial re-openings, pointing to the significance of anthropogenic activities in 

air quality. 

 

2.2 Methodology 

2.2.1  Black carbon analysis 

A photoacoustic extinctiometer (PAX, Droplet Measurement Technologies, Inc.) with 870 

nm laser module is used to in-situ measure absorption coefficient (Babs) of BC from ambient air. 

PAX samples air with a 1 L/min flow rate. When air is drawn into the sampling chamber of PAX, 

the 870 nm laser will heat up BC particles in the air since few aerosols, except BC, can absorb 

light at 870 nm wavelength. Subsequently, the heated BC particles transfer heat to the surrounding 

air, generating pressure waves which can be detected by a sensitive microphone inside the chamber 

to get Babs (Mm-1) of the sample in one-second resolution: 

𝐵𝐶 𝑀𝑎𝑠𝑠 (𝜇𝑔/𝑚3) =  𝐵𝑎𝑏𝑠 (𝑀𝑚−1) 𝐵𝐶 𝑀𝐴𝐶 (𝑚2 𝑔⁄ )⁄  (1) 

The calibration of PAX was performed by using manufacturer-recommended material, 

glassy carbon spheres (GCS). GCS were nebulized by an aerosol generator and then passed 

through PAX to generate Babs values which were greater than 5000 Mm-1 for 30 to 60 seconds. BC 



41 

 

mass concentration was calculated directly by using Babs and literature and manufacturer’s 

recommended mass absorption cross-section (MAC) (4.74 m2/g at 870 nm) at ambient temperature 

and pressure (Bond & Bergstrom, 2007; Selimovic et al., 2019), as is shown in equation (1). It 

should be noted that BC MAC can increase depending on the BC mixing state.  

PAX also provides a scattering coefficient (Bscat). Bscat is measured by a nephelometer 

inside the chamber, and respond to all kind of particles regardless the size, morphology, and 

chemical compositions. (NH4)2SO4 was used to calibrate Bscat as it can scatter light, yet it can 

hardly absorb it. (NH4)2SO4 solution was aerosolized to pass through PAX to generate Bscat values 

which were greater than 5000 Mm-1 for 30 to 60 seconds.  

𝐵𝑒𝑥𝑡 = −
1

0.354
ln

𝐼

𝐼0
∙ 106 [𝑀𝑚−1] 

(2) 

The calculation of the calibration process is shown in equation (2), where Bext is the 

extinction coefficient which can also be calculated by summing up Babs and Bscat (Bext = Bscat + 

Babs). I0 is the average laser power before and after calibration, and I is the laser power during 

calibration. To calibrate Bscat, Bext must be calculated based on Equation (2), then plot calculated 

Bext with measured Bscat to gain the correction factor (the slope of the linear regression) since Babs 

of (NH4)2SO4 can be negligible. Yet to calibrate Babs, (Bext – Bscat) should be plotted against Babs 

because the scattering of GSC cannot be neglected. It should be noted that the calibration process 

assumes a linear response of the instrument up to the calibration absorption values.  

The systematic error of PAX on BC Mass mainly comes from the value of BC MAC (mass 

absorption cross-section). The value of BC MAC used in this study is 4.74 m2/g. This value is 

calculated based on two reasons: (1) Bond and Bergstrom (2007) recommended the value of BC 

MAC at 550 nm is 7.5±1.2 m2/g; (2) BC MAC is inversely related to wavelength. Yet, Bond and 
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Bergstrom (2007) noted that BC MAC can increase with the mixing state. For thickly coated 

particles, the absorption enhancement can be up to 50% for BC aggregates (Bond & Bergstrom, 

2007). BC MAC varies from 4.74 m2/g to 7.11 m2/g. Thus, BC Mass reported in this work can be 

overestimated if BC particles are more coated than the value of 4.74 m2/g. 

Both BC Mass and Bscat are reported in the format of average values adding or subtracting 

standard errors.   

 

2.2.2  High-resolution electron microscopy 

The details of HR-S/TEM-EDS were described elsewhere (Pal et al., 2020; Rahim et al., 

2019; Rangel-Alvarado et al., 2015). The TEM SiO2-membrane grids were analyzed using a high-

resolution FEI. Tecnai G2F20 S/TEM microscope with a field emission gun. Images were acquired 

using an Advanced Microscopy Technique, Corp. (AMT) XR80C CCD Camera System, which 

was previously used for snow samples (Rangel-Alvarado et al., 2015). The AMT was adapted for 

collecting aerosols directly on the grid to further analyze the size, morphology, and chemical 

compositions of aerosol samples with high resolution.  

 

2.2.3  Sampling Sites, observation, and snow collection 

Air sampling is continuously conducted in downtown Montreal. The instruments are placed 

inside the laboratory of Otto Maass Building (45°30'N 73°34'W), with direct ambient air inlets, in 

the heart of downtown Montreal at McGill University (Pal et al., 2020; Rahim et al., 2019). The 

laboratory maintains a constant temperature, pressure, and relative humidity to ensure the 

instruments work optimally. Whereas particle observations near the Montreal-Pierre-Elliott-
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Trudeau International Airport (Quebec, Canada) were performed at a public part (Westwood Park; 

45°27'N 73°45'W) which is only 200 meters away from the airport runway and in the residential 

areas. The BC observations were conducted on the weekends prior to the COVID-19 shutdowns, 

during the total closure and after partial reopening in Montreal.  

 

2.2.4  Aerosol and snow collection 

A Micro Orifice Uniform Deposit Impactor (MOUDI, model 100-R, MSP Corp., 

Shoreview, MN, USA) was used to collect size-fractionated aerosol samples. MOUDI was 

operated on the roof with an inlet flow rate of 30 L/min and set up for 12-hour runs starting from 

8 am. Teflon quartz substrate with TEM grids attached was used to make sure the samples can be 

used in TEM based on the method our group developed (Hudson & Ariya, 2007).  

Snow samples were collected at Westwood Park by following the procedures described in 

detail elsewhere (Rangel-Alvarado et al., 2015). Generally, snow samples were collected during 

the snow precipitation events from the top 2 cm of the surface, and the aged snow taken at least 5 

cm beneath the snowpack surface with sterile equipment and clean suits. All samples were kept in 

pre-sterilized amber chambers, frozen immediately after collection at –10 ± 2 ℃, like ambient 

temperature during sampling. Small amounts of collected samples were transferred to a centrifuge 

tube with sterilized spoon under clean conditions. The centrifuge tube was kept frozen for high-

resolution scanning/transmission electron microscopy (S/TEM) with energy dispersive X-ray 

spectroscopy (HR-S/TEM-EDS) analysis. 
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2.2.5  Other air co-pollutant data analysis 

The hourly-averaged concentrations of fine particulate matter (PM2.5), carbon monoxide 

(CO), nitrogen dioxide and monoxide (NOx) and ozone (O3) are obtained from The Air Quality 

Monitoring Network (RSQA), conducted by Environmental and Climate Change Canada (ECCC) 

and City of Montreal, which provides data from the monitoring stations on the Island of Montreal 

including stations both in downtown and near the Montréal-Pierre-Elliott-Trudeau International 

Airport (YUL Airport) (NAPS, 2021). The PM2.5 continuous measurements are done by a 

synchronized hybrid ambient real-time particulate monitor (SHARP 5030). A CO Analyzer 

(Thermo 48i) is used, which utilizes the gas filtration correlation technology. A chemiluminescence 

NO-NO2-NOx Analyzer (Thermo 42i) is used for the quantification of NOx. O3 is measured by a 

UV-photometric Ozone Analyzer (Thermo 49i) (Hall et al., 2020). All the data are provided in 

hourly averages with 24 data points per day. The unit of CO, O3 and NOx is ppb, while the unit of 

PM2.5 is μg/m3, as is shown in Table 2 to Table 5. All the concentrations are reported in the format 

of average values adding or subtracting standard errors. 

The back trajectory analysis was performed on internet based HYSPLIT model provided 

by Air Resources Laboratory (Rolph et al., 2017; Stein et al., 2015). 

 

2.3 Results and Discussions 

2.3.1 BC and selected co-pollutants emission in a cold-climate city 

Montreal is a typical cold-climate city (Järvi et al., 2014) where winter lasts for 5 months 

(spanning from December 1st to April 20th, according to ECCC), receiving about 209 cm of snow 

per year. The long winter and low temperature lead to the need for additional heating, such as the 
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heating system of buildings in the whole city and car idling, increasing the usage of fuels and, 

thereby, emission of BC (Bond et al., 2013).  

Previous observations have shown that the highest number density of airborne 

nanoparticles in City of Montreal occurs during the winter (Pal et al., 2020). Hall et al. (2020) have 

shown the high oxidation potential from anthropogenic photolabile chlorine in the photochemical 

process is due to de-icing salts during winter. In this study, we explored whether the mass 

concentration of BC showed a similar trend to what was previously observed for nanoparticles 

(Pal et al., 2020) and chlorine (Hall et al., 2020), i.e., a maximum peak for BC Mass during the 

long winter in this cold-climate city and whether the existence of the snow affects the black carbon 

distribution and snow physicochemical properties. 

To test this hypothesis, BC Mass from July 2019 to June 2020 (except October 2019) is 

shown in Figure 2.1A. The real-time Babs data is also presented in the supplementary information 

(Figure A5). Although data of October were absent because of repairing the instrument, BC Mass 

in downtown Montreal showed a bimodal variation. BC emissions reached a peak before or in July 

(0.365 ±  0.007 μg/m3), yet decreased through summer and autumn, and showed another peak 

during the winter (0.433 ± 0.013 μg/m3), then decrease again until next spring. The long duration 

of sunshine in summer has been suggested to promote the photochemical reactions of organic 

carbon internally or externally mixed with BC, increasing the hygroscopicity of BC, and 

accelerating the wet deposition of BC in the atmosphere (Bond et al., 2013; Brooks et al., 2014; 

Zhang et al., 2019). Summer rainfalls may facilitate frequent wet deposition of BC. However, the 

BC fate in winter in the cold climate is indeed complex. More snowfalls in long winter can decrease 

BC Mass by ice nucleation and wet deposition (Hadley et al., 2010; Liu et al., 2020), yet the 
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application of the heating system and increasing consumption of fuels because of low temperature 

contribute to an extra BC emission.  

Cold air has a higher density than warm air, the height of the boundary layer is thereby 

lower and thus more compact in the winter in contrast to the summer. Figure S6 shows HYSPLIT 

modeling results on two typical days in summer and winter, Jan. 20th, 2020 (winter) and Jun. 28th, 

2020 (summer). It has already been shown that the height of the atmospheric boundary layer is 

higher in summer than in winter (Chan et al., 2013). Figure S6 demonstrates that BC entrapment 

is more important, and air dilution is less pronounced in cold seasons in comparison with warmer 

seasons, which can also partly explain the decreasing tendency from July 2019 to September 2019. 

Since snow is a ubiquitous feature of cold-climate, airborne BC particles can also be deposited on 

snowpack, following multiple cycles of melt and precipitations and release to the atmosphere, 

hydrosphere, and lithosphere (Ariya et al., 2018; Nazarenko et al., 2016, 2017). Such processes 

may explain the peaks observed between December 2019 to February 2020.  

Due to the COVID-19 Pandemic in winter 2020, a lockdown was implemented from March 

16th to May 25th in Montreal, which restricted most the non-essential human activities, and led to 

a significant reduction of BC emission from March to May (Figures 2.1 and A1). The sharp 

increase in June 2020 can be attributed to the partial reopening of the city. After a long term of 

lockdown, human activities gradually increased, which led to the increment of BC emission in the 

end. 

The impact of photochemistry can be reflected in Figure 2.1B and Figure A1. Daytime is 

set from 9 am to 6 pm, whereas Nighttime is from 10 pm to 5 am. In this way, the variation of 

sunlight hours induced by seasons can be excluded. BC Mass at night is more than, or close to BC 
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Mass during daytime. BC Mass during daytime decrease is due to photochemistry. Nighttime BC 

emission in the atmosphere sustained for a relatively long time due to the lack of sunlight.  

Figure A1 shows the diurnal variation of BC Mass based on all-year data, indicating the 

net effects of emissions due to anthropogenic activities. Like other aerosols (Pal et al., 2020; Rahim 

et al., 2019), BC has two peaks during the traffic rush hours. BC emission reached the maximum 

at 7 am to 8 am when citizens begin to commute to their workplaces on workdays. Around noon, 

it has been shown that BC Mass gradually decreases likely due to the variation of the atmospheric 

boundary layer (Begam et al., 2016). The height of the atmospheric boundary layer gradually 

increases and then peaks value at noon, causing the dilution of BC in the atmosphere (Begam et 

al., 2016). Later in the afternoon, BC emission increases again due to vehicle traffics and a decrease 

in the height of the boundary layer. Whereas at night, with less traffic and industrial production, 

the BC concentration variation remains steady unless strong wind or precipitation takes place. In 

brief, the diurnal variation, besides natural processes, also reveals the important role of human 

activities such as commute and transportation in BC emissions in urban areas (Bond et al., 2013; 

Jia et al., 2020; Liakakou et al. 2020).  

The comparisons of BC Mass with concentrations of O3, PM2.5, CO, NO2 are shown in 

Figure 2.1C, D, E and F. BC is one of the anthropogenic pollutants in this urban area. PM2.5, CO 

and NO2 in city are also mainly originated from human activities. Pearson correlation analysis was 

performed between BC Mass and concentrations of O3, PM2.5, CO, NO2, NO and SO2 respectively 

for each month (Table S5).  

The results indicate a positive correlation between BC Mass with PM2.5, CO, NO2 and a 

negative correlation between BC Mass with O3. BC consists of particles of various sizes. BC 

particles whose sizes are smaller than 2.5μm accounts for part of PM2.5, which can confirm the 
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positive correlation between BC Mass and concentrations of PM2.5. The positive correlation 

between BC with CO and NO2 can be explained by anthropogenic activities including transport 

sector emissions. PM2.5, CO and NO2 are common anthropogenic pollutants. The positive 

correlation coefficients with these air pollutants confirms that BC emission in an urban area is 

mainly from anthropogenic sources. Whereas O3 plays an essential role in photochemical 

processes, which oxidize organic carbon internally or externally mixed with BC in the atmosphere, 

facilitating the wet deposition of BC (Bond et al., 2013; Brooks et al., 2014; Zhang et al., 2019), 

and decreasing the atmospheric BC Mass, likely indicating a negative correlation between O3 and 

BC. 

 

2.3.1.1 Meteorological winter in a cold climate: Up to 5 months 

Although the variation of BC Mass shows a peak during winter, it should be noticed that 

BC Mass in warm-climate cities, like Nanjing (Tan et al., 2020), Athens (Liakakou et al. 2020) and 

Czech (Mbengue et al., 2020), is greatest during winter as well, which indicates large BC Mass 

during winter is prevalent. Yet winter in the cold-climate sites lasts longer, comparing with warm-

climate sites where winter usually ends in February. The 5-month winter in Montreal, a cold-

climate city, makes it possible that the duration of large BC Mass is longer than warm-climate sites. 

Although this speculation cannot be fully examined directly because of the lack of BC Mass data 

from January 2019 to May 2019, the increase of CO in fall and winter can be used as BC proxy, 

indirectly (Rahim et al., 2019). Furthermore, according to the results illustrated above, CO shows 

a positive correlation with BC, with Pearson correlation coefficients varying from 0.2909 to 0.9194 

(Table A5). Consequently, CO can be used to estimate the variation of other anthropogenic 

pollutants like BC.  
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Table A2 shows the variations of CO from January to June in the last four years. Table A3 

illustrates the results of t-test between January with the other five months respectively. The values 

in the bracket of March 2020 are obtained by using data of the first 15 days of March 2020 (before 

lockdown). There is no significant difference between January with February and March (except 

for March 2018) in the past four years. It accounted for high concentration of CO maintaining until 

April, that is still meteorological winter in Montreal. As such, it is logical to speculate that the 

duration of large BC Mass can also maintain from December to the end of March, showing the 

uniqueness of cold-climate sites. The longer duration of large BC Mass in cold-climate sites may 

cause more health hazards to human health.     

 



50 

 

 

Figure 2.1. Monthly mean values of BC Mass (A), Day-Night comparison of BC Mass in each month (B), 

comparison of BC with O3 (C), PM2.5 (D), CO (E) and NO2 (F). The error bars in A and B indicates the 

standard deviations.  

 

2.3.2 COVID-19 Pandemic and impacts on the urban environment 

SARS-CoV-2 causing COVID-19 disease was first reported in Wuhan, China in December 

2019. Since then, the World Health Organization (WHO) declared it to be a worldwide pandemic, 

infecting about 150 million people around the world, causing over 3 million deaths all around the 

world, and it is still counting (WHO, 2021c). During the COVID-19 lockdowns, several 
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researchers have shown a decrease of air pollution around the city worldwide (Bao & Zhang, 2020; 

Gautam, 2020; Kanniah et al., 2020; Lee et al., 2020; Lian et al., 2020; Liu et al., 2020; Mahato et 

al., 2020; Mandal & Pal, 2020; Nakada & Urban, 2020; Zhang et al., 2020; Briz-Redón et al., 2021; 

Liu et al., 2021; Park et al., 2021; Putaud et al., 2021). 

As the lockdown policy obviously constrain the spread of COVID-19 among citizens, 

many countries complied with it. to protect their people. COVID-19 not only changes the world 

profoundly but also provides an opportunity for scientists to observe and evaluate anthropogenic 

impacts on the environment during the lockdown period when almost all unnecessary economical 

activities are stagnant. Earlier in China and Italy, the sharp decreases in CO2, NOx and particulate 

matter (PM2.5, PM10) emissions were immediately reported (Bao & Zhang, 2020; Gautam, 2020; 

Liu et al., 2020; Zhang et al., 2020; Putaud et al., 2021). Similar phenomena were found in India, 

Brazil, and Southeast Asia (Kanniah et al., 2020; Mandal & Pal, 2020; Nakada & Urban, 2020). 

The decrease of air pollutants including CO, NOx, PM2.5, and the increase of O3 has been widely 

reported (Table 2.1). 

It is noteworthy that in urban air quality both meteorological variability and anthropogenic 

emission change impact urban air pollutant concentrations and should be thus considered together. 

In this study, we consider bi-modal distribution of BC Mass based on two points: (1) decreasing 

trend from July 2019 to Sept 2019; (2) peaking trend during wintertime (January 2020). BC 

emission during these two periods was not impacted by the COVID-19 Pandemic. Furthermore, 

BC Mass peaking in January has been widely reported in cities around the world (Liakakou et al. 

2020; Mbengue et al., 2020; Tan et al., 2020). Accordingly, we believe the conclusion on bi-modal 

distribution is likely reliable in this study. 
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Table 2.1. Selected variations of air pollutants during lockdown all over the world. 

Location Pollutant Variation Comments Reference 

California, 

US 

NO2 

CO 

PM2.5 

O3 

PM10 

-38% 

-49% 

-31% 

+14% 

+10% 

Mar 19th ~ May 7th, 2020, 

compared with Jan 26th ~ Mar 18th 

2020 

Liu et al., 2020 

Seoul, 

Korea 

NO2 

CO 

-39.91% 

-15.25% 

March 2020 compared with March 

2019 

Park et al., 

2021 

Barcelona, 

Spain 

CO 

NO2 

O3 

PM10 

SO2 

< -35% 

< -35% 

+15% ~ 25% 

-35% ~ -25% 

< -35% 

April 2020, compared with April 

2019 

Briz-Redón et 

al., 2021 

UK 
NO2 

O3 

-42% 

+11% 

Mar 23rd ~ May 31st, 2020, 

compared with the same period 

2015-2019 

Lee et al., 

2020 

Wuhan, 

China 

PM2.5 

NO2 

O3 

PM10 

CO 

SO2 

-36.9% 

-53.3% 

+116.6% 

-40.2% 

-22.7% 

-3.9% 

Jan 24th ~ Feb 23rd, 2020, 

compared with Dec 24th, 2019 ~ 

Jan 23rd 2020 

Lian et al., 

2020 

NCT Delhi, 

India 

PM10 

PM2.5 

SO2 

NO2 

CO 

O3 

-51.58% 

-53.11% 

-17.97% 

-52.68% 

-30.35% 

+0.78% 

Mar 25th ~ Apr 14th, 2020, 

compared with Mar 2nd ~ Mar 21st 

2020 

Mahato et al., 

2020 
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NH3 -12.33% 

São Paulo, 

Brazil 

CO 

PM10 

PM2.5 

NO 

NO2 

O3 

-29.8% 

+7.7% 

-0.3% 

-40.4% 

-21.5% 

+10.8% 

Mar 24th ~ Apr 20th, 2020, 

compared with Feb 25th ~ Mar 

23rd 2020 

Nakada & 

Urban, 2020 

Northern 

China 

SO2 

PM2.5 

PM10 

NO2 

CO 

-6.76% 

-5.93% 

-13.66% 

-24.67% 

-4.58% 

Jan 28th ~ Mar 21st, 2020, 

compared with Jan 1st ~ Jan 27th 

2020 

Bao & Zhang, 

2020 

Malaysia 

PM10 

PM2.5 

NO2 

SO2 

CO 

-26% ~ -31% 

-23% ~ -32% 

-63% ~ -64% 

-9% ~ -20% 

-25% ~ -31% 

Mar 18th ~ Apr 30th, 2020, 

compared with the same period in 

2018 and 2019 

Kanniah et al., 

2020 

Ispra, Italy 

SO2 

O3 

NO 

NO2 

-29% 

+21% 

-44% 

-49% 

Mar 9th ~ May 4th , 2020, 

compared with Feb 17th ~ Mar 8th 

2020 

Putaud et al., 

2021 

 

The first lockdown in Montreal started on March 16, 2020 and lasted for more than two 

months. The city partially reopened starting from May 25, 2020. During the lockdown, most the 

unnecessary activities were restricted. Transportation and industrial production decreased 

dramatically. With restricted human activities, emissions of BC and other air pollutants from 

anthropogenic sources thereby decreased.  
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BC Mass variation before the lockdown, during the lockdown and partial reopening in 

downtown Montreal, is shown in Figure 2.2A and Figure A4A. The average BC Mass were 0.340 

± 0.014 μg/m3, 0.268 ± 0.004 μg/m3 and 0.551 ± 0.012 μg/m3 respectively. The statistical analysis 

showed that there was a significant difference when comparing BC Mass during the lockdown 

with BC Mass before the lockdown or partial Reopen (Table 2.3). Since the lockdown spanned 

from mid-March to the end of May, the seasonal change effect on BC Mass distribution was 

considered. To exclude the impacts from seasonal changes, the statistical analysis was conducted 

for BC Mass from Mar 1st to Mar 15th (before lockdown) with BC Mass from Mar 16th to Mar 31st 

(during lockdown) and BC Mass from May 1st to May 24th (during lockdown) with BC Mass 

during May 25th to Mar 30th (partial reopening). As shown in Table A1, significant differences 

between these time periods were observed. The results were not surprising as BC is generated by 

anthropogenic sources in urban areas. When the lockdown policy restrained the BC emissions, BC 

Mass certainly decreased too.  
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Figure 2.2. Diurnal variation of the concentrations of BC (A), O3 (B), PM2.5 (C), CO (D), NO2 (E) and NO 

(F) in downtown Montreal before lockdown (black line) and during lockdown (red line). The period of 

“Before lockdown” is set from Feb. 1st to Mar. 15th, and the period of “During lockdown” spans from Mar. 

16th to May 24th. 
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The impact of COVID-19 on other air pollutants, rather than only BC were illustrated in 

Table 2.3 and Figure 2.2. The concentrations of PM2.5, CO, NO and NO2 decreased from ~ 26% 

and up to 72%. Yet, the concentration of O3 increased by about 30% likely due to the declining 

emission of other photochemical-related pollutants including CO and NOx. Fan et al. (2021), 

Huang et al. (2021) and Putaud et al. (2021) attributed the increment of O3 to the decline of NOx 

emission during the lockdown. As NO emission decreased, the number of NO2 converted by NO 

decreased. Additionally, since there was less NO titrating O3, the concentration of O3 increased 

correspondingly. Yet, Fan et al. (2021) and Huang et al. (2021) observed enhanced secondary 

pollution in China, which was not observed by Putaud et al. (2021) in northern Italy and this work 

in Montreal, Canada, which may be due to a lack of data on volatile organic aerosols and PM10 in 

Montreal, or because of regional disparity. Although BC itself is photochemical inert, organic 

carbon internal or external mixed with BC can be oxidized by O3. Thus, the decreasing emission 

of BC also contributes a part to the increment of O3. However, the situations in the period of partial 

Reopen are more complex. The partial reopening was a gradual process during which the 

restrictions were gradually and selectively lifted. Not all urban activities were fully recovered. 

Consequently, the recovery of O3, CO, NO and NO2 emissions was not as clear as during the 

complete lockdown (Figure A4). The recovery of BC and PM2.5 emissions was statistically clearer, 

as shown in Figure A4. With the restrictions removed gradually, a sharp increase of mass 

concentrations of BC and PM2.5, notwithstanding the impact of seasonal changes should be also 

considered.  

As depicted in Figure 2.1A, BC Mass decreased since July 2019, indicating the existence 

of another peak around July 2019. During the partial reopening period from May 25th to June 30th, 

2020, the BC trend was in accordance with BC values in 2019. The recovery of PM2.5 was less 
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pronounced than BC. It can be explained partly by the fact that PM2.5 contains not only part of BC 

but also other non-BC particulate matter emitted by anthropogenic sources (Rahim et al., 2019). 

The observation of low concentrations of CO, NO and NO2 are in accordance with transportation 

and industries which gradually recovered since June 2020. 

 The size of BC particles spans from nano-size to micro-size (Chakrabarty et al., 2014; 

Long et al., 2013). As such, BC particles greater than 2.5 μm are not included in PM2.5 values. The 

variations of BC and PM2.5 are not expected to be identical, as herein confirmed. It is to note that 

Bscat values may reflect the variation of particulate matters in wider size distribution, as the 

scattering chamber used in this study, responds to all particles, regardless of their size, morphology, 

and chemical composition.  

As is shown in Table 2.3 and Figure A2A, Bscat decreased from 11.30 ±  0.39 Mm-1 to 

5.60 ±  0.08 Mm-1 because of COVID-19 but increased back to 12.12 ±  0.52 Mm-1 during the 

partial Reopen period, almost at the same levels to Bscat before lockdown. Yet, seasonal changes 

are likely play a role. As shown in Figure A3, an increase of Bscat in June 2019 was observed, 

coinciding with solar radiation hinting to the importance of seasonal changes. Yet, in addition to 

photochemistry, the recovery of Bscat can also be in part, due to the reopening period in June 2020. 

Table 2.2, and Table A4 provide detailed information for a suite of air pollutants. The 

impact of COVID-19 lockdown is statistically clear. Moreover, the variations of BC Mass, PM2.5, 

CO, NO2 and Bscat showed the lockdown not only decreased average concentrations of certain 

pollutants but also median values, 99th percentile values and 75th percentile values. 
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Table 2.2. The averages, standard deviations, median values, 99th percentile values, 1st percentile values, 

25th percentile values and 75th percentile values for BC Mass, O3, PM2.5, CO, NO, NO2 and Bscat from 

January 2020 to June 2020.  

  Average Std Median 99% 1% 25% 75% 

  BC Mass (μg/m3) 

Jan-20 0.433 0.252 0.418 1.09 0.060 0.248 0.569 

Feb-20 0.336 0.226 0.320 0.991 0 0.173 0.447 

Mar-20 0.310 0.269 0.280 1.18 0 0.152 0.401 

Apr-20 0.245 0.170 0.244 0.743 0 0.127 0.334 

May-20 0.343 0.251 0.301 1.12 0 0.186 0.466 

Jun-20 0.563 0.275 0.525 1.42 0.102 0.367 0.714 

 

  Average Std Median 99% 1% 25% 75% 

  O3 (ppb) 

Jan-20 18.6 8.6 19.3 34.4 1.1 12.4 25.4 

Feb-20 24.2 9.4 26.5 42.5 0.8 19.2 30.1 

Mar-20 30.0 7.9 31.3 43.3 3.7 25.8 35.4 

Apr-20 33.4 7.4 33.9 48.6 10.8 29.3 38.7 

May-20 33.4 9.8 32.5 59.8 10.7 26.9 39.3 

Jun-20 31.3 12.4 30.6 59.7 6.8 21.4 39.4 

 

  Average Std Median 99% 1% 25% 75% 

  PM2.5 (μg/m3) 

Jan-20 8.6 7.2 7.3 37.2 0.7 3.8 10.5 

Feb-20 10.0 8.8 7.1 41.9 1.1 4.4 12.7 

Mar-20 6.5 5.0 5.2 25.3 0.7 3.3 8.0 

Apr-20 5.2 2.7 4.5 13.5 0.8 3.2 6.7 

May-20 5.3 3.0 4.7 13.9 0.4 3.2 6.8 

Jun-20 7.7 7.5 6.4 31.9 1.1 4.2 9.2 
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  Average Std Median 99% 1% 25% 75% 

  CO (ppb) 

Jan-20 240.3 75.1 225.8 545.6 134.5 191.8 262.5 

Feb-20 243.5 91.2 215.4 583.5 139.2 188.1 258.2 

Mar-20 203.5 54.2 193.8 397.1 146.2 172.6 219.2 

Apr-20 166.8 23.1 163.6 239.6 130.9 150.4 180.3 

May-20 166.2 34.2 161.9 274.5 107.2 141.9 183.0 

Jun-20 161.4 39.7 158.3 276.5 96.4 134.5 179.4 

 

  Average Std Median 99% 1% 25% 75% 

  NO (ppb) 

Jan-20 6.0 7.5 3.9 42.9 0.7 2.4 6.5 

Feb-20 6.1 11.4 3.2 54.5 0.6 1.8 5.7 

Mar-20 3.0 6.2 1.8 36.4 0.1 0.9 3.2 

Apr-20 1.4 2.0 0.8 9.8 0.0 0.4 1.5 

May-20 1.2 2.0 0.6 10.5 0.0 0.3 1.2 

Jun-20 1.4 3.1 0.5 15.4 0.0 0.2 1.3 

 

  Average Std Median 99% 1% 25% 75% 

  NO2 (ppb) 

Jan-20 17.5 8.7 16.0 43.1 4.9 11.3 22.1 

Feb-20 17.1 9.9 13.9 45.5 4.9 9.8 21.0 

Mar-20 11.3 6.9 9.8 36.9 3.0 6.4 14.5 

Apr-20 6.8 4.8 5.8 27.1 1.8 3.6 8.3 

May-20 5.5 3.9 4.6 19.6 0.9 2.8 7.0 

Jun-20 6.6 4.0 5.5 21.9 1.6 3.9 8.0 

 

  Average Std Median 99% 1% 25% 75% 

  Bscat (Mm-1) 
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Jan-20 10.84 8.68 9.15 46.91 1.47 4.28 14.39 

Feb-20 12.50 7.82 11.15 33.51 1.70 6.48 18.11 

Mar-20 8.45 6.82 6.74 37.60 0.99 4.23 10.47 

Apr-20 5.31 2.87 4.86 13.45 1.17 3.16 7.05 

May-20 6.90 5.84 5.11 24.73 0.81 3.08 8.25 

Jun-20 12.13 14.26 9.17 74.93 1.87 5.82 13.51 

 

2.3.3 Case study: YUL Airport BC in comparison to Montreal downtown 

Aviation is one of the domains that suffered a lot because of the COVID-19 Pandemic 

(ICAO, 2021). The worldwide lockdown, restrictions on international travel and high risk of 

infection in airplanes drastically reduced the number of travelers and flights, which in the end 

caused the big decline of aviation in the world (ICAO, 2021). Moreover, previous studies have 

shown that up to 97% of airborne particles, including PM2.5 which includes significant black 

carbon particles, are being released within airport regions (Camero, 2019; Mazaheri et al., 2011). 

YUL Airport is one of the third busiest airports in Canada with more than 236 thousand flights in 

2019. It is a good place to show the impact of COVID-19 on aviation and the difference between 

urban areas (downtown Montreal) with the airport.  

 

Table 2.3. Air pollutants concentrations with standard deviations in downtown Montreal during COVID19 

Pandemic. The first column of P value shows the p values between the concentrations before lockdown and 

the concentrations during lockdown. And second column of P value shows the p values between the 

concentrations during lockdown and the concentrations after partial Reopen. The period of “Before 

lockdown” is set from Feb. 1st to Mar. 15th. The period of “During lockdown” is set from Mar. 16th to May 

24th, and the period of “Partial Reopen” spans from May 25th to Jun. 30th. 

 Downtown Montreal 

 
Before 

lockdown 

During 

lockdown 

Partial 

Reopen 
P value 
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BC Mass 

(μg/m3) 
0.340 ± 0.014 0.268 ± 0.004 

0.551 ± 

0.012 

P < 

0.001 

P < 

0.001 

PM2.5 

(μg/m3) 
9.19 ± 0.25 5.12 ± 0.06 7.50 ± 0.24 

P < 

0.001 

P < 

0.001 

CO 

(ppb) 
232.8 ± 2.6 171.6 ± 0.7 165.0 ± 1.4 

P < 

0.001 

P = 

0.003 

O3 

(ppb) 
25.8 ± 0.3 33.2 ± 0.2 31.2 ± 0.4 

P < 

0.001 

P = 

0.226 

NO 

(ppb) 
5.4 ± 0.3 1.5 ± 0.05 1.4 ± 0.1 

P < 

0.001 

P = 

0.755 

NO2 

(ppb) 
15.6 ± 0.3 7.0 ± 0.1 6.4 ± 0.1 

P < 

0.001 

P = 

0.192 

Bscat 

(Mm-1) 
11.30 ± 0.39 5.60 ± 0.08 12.12 ± 0.52 

P < 

0.001 

P < 

0.001 

 

Table 2.4. Air pollutants concentrations with standard deviations near the YUL Airport during COVID-19 

Pandemic. The period of “Before lockdown” is set from Feb. 1st to Feb. 29th. The period of “During 

lockdown” is set from May 1st to May 24th. 

 YUL Airport 

 Before lockdown During lockdown P value 

BC Mass 

(μg/m3) 
1.487 ± 0.148 0.347 ± 0.045 P = 0.007 

PM2.5 

(μg/m3) 
9.42 ± 0.30 4.80 ± 0.08 P < 0.001 

CO 

(ppb) 
238.7 ± 3.6 160.9 ± 0.9 P < 0.001 

O3 

(ppb) 
26.3 ± 0.3 34.4 ± 0.2 P < 0.001 

NO 6.0 ± 0.5 0.9 ± 0.1 P < 0.001 
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(ppb) 

NO2 

(ppb) 
13.7 ± 0.4 5.0 ± 0.2 P < 0.001 

Bscat 

(Mm-1) 
7.68 ± 0.96 3.64 ± 0.15 P = 0.003 

 

Table 2.5. Comparisons of concentrations of air pollutants in downtown Montreal with near YUL Airport 

during COVID-19 Pandemic. The period of “Before lockdown” is set from Feb. 1st to Feb. 29th. The period 

of “During lockdown” is set from May 1st to May 24th. 

 Before lockdown (February) 

 Downtown Airport P value 

BC Mass 

(μg/m3) 
0.344 ± 0.016 1.487 ± 0.148 P = 0.005 

PM2.5 

(μg/m3) 
10.0 ± 0.3 10.5 ± 0.4 P = 0.188 

CO 

(ppb) 
243.5 ± 3.4 250.8 ± 4.7 P = 0.212 

O3 

(ppb) 
24.2 ± 0.4 23.7 ± 0.4 P = 0.622 

NO 

(ppb) 
6.1 ± 0.4 6.9 ± 0.7 P = 0.466 

NO2 

(ppb) 
17.1 ± 0.4 15.3 ± 0.5 P = 0.090 

Bscat 

(Mm-1) 
12.50 ± 0.58 7.68 ± 0.96 P < 0.001 

    

 During lockdown (May) 

 Downtown Airport P value 

BC Mass 0.290 ± 0.008 0.347 ± 0.045 P = 0.079 
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(μg/m3) 

PM2.5 

(μg/m3) 
4.9 ± 0.1 4.5 ± 0.1 P = 0.054 

CO 

(ppb) 
162.0 ± 1.1 146.5 ± 1.1 P < 0.001 

O3 

(ppb) 
34.1 ± 0.4 34.9 ± 0.3 P = 0.583 

NO 

(ppb) 
1.2 ± 0.1 0.5 ± 0.03 P = 0.006 

NO2 

(ppb) 
5.5 ± 0.2 3.3 ± 0.2 P < 0.001 

Bscat 

(Mm-1) 
5.17 ± 0.15 3.64 ± 0.15 P < 0.001 

 

The atmospheric impacts of COVID-19 lockdown are shown in Table 2.4, Table 2.5, Figure 

2.3, and Figure A2B. Similar to downtown Montreal, BC Mass, Bscat and concentrations of PM2.5, 

CO, NO and NO2 significantly decreased when lockdown started, in contrast to the concentration 

of O3 significantly which was increased. It should be noticed that before lockdown, the 

concentrations of all these pollutants, except BC, are not distinct between downtown and the 

airport (Table 2.5). Notwithstanding than in previous studies, where the nanoparticles were 

measured, there was a clear increase close to the airport in comparison to the downtown (Rahim 

et al. 2019).  

The trend for BC is different from other measured pollutants as shown in Table 2.5. BC 

Mass at the airport is significantly greater than that in downtown Montreal before lockdown. The 

relatively smaller Bscat at the airport indicates the particles at the airport intend more to absorb light, 
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instead of scattering light, revealing the higher proportion of BC in the air at the airport, compared 

with downtown Montreal.  

Yet during the lockdown, there is no significant difference between these two regions in 

BC Mass, as most flights were stopped, and other anthropogenic activities were decreased 

concurrently. Furthermore, the change of Bscat also gives clues to the BC trends at the airport.  

The comparison of BC Mass between downtown and the airport not only reflects the great 

impact of COVID-19 on aviation but also reveals the high concentrations of BC in the ambient air 

at the airport during the normal operation, which may pose a potential threat to the health of 

workers and nearby residents, living a few meters away from the airport.  

 

2.3.4 Evidence for airborne black carbon deposition in snow 

The HR-S/TEM-EDS results (Figure 2.4) on the snow samples, both freshly falling and 

aged snow, collected from the airport illustrate several black carbon-types particles and carbon 

nanostructures in snow. There are several processes that can explain the existence of these black 

carbon type and carbon nanostructures, which have been observed previously in the air (Rahim et 

al. 2019), and herein observed, in freshly falling and aged snow. It is noteworthy that previous 

studies have demonstrated that common BC structure, like those in Figure 2.4, can integrate and 

form aggregates of carbon spheres (e.g., Bond et al., 2013). These combustion-related particles are 

likely scavenged by snow crystals as it falls. The large surface areas of snowflakes may facilitate 

the partitioning between snow and particles or chemicals in the atmosphere, making snow an 

excellent scavenger when it falls (Lei & Wania, 2004). Furthermore, both wet and dry deposition 

processes of anthropogenic particles on snow have been previously observed (Hadley et al., 2010; 
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Liu et al., 2020). Upon the multiple precipitations and melt- processes, several black carbon 

particles or aggregates were observed in the snowpack, confirmed by HR-S/TEM analysis (Figure 

2.4). 

Several researchers have indicated that black carbon can serve as effective ice nuclei 

(Brooks et al., 2014; DeMott et al., 1990; McCluskey et al., 2014; Murray et al., 2012). The 

importance of BC on atmospheric ice nucleation processes and the magnitude of the radiative 

forcing due to BC on snow, are still being debated (Brooks et al., 2014; Fan et al., 2016; Kulkarni 

et al., 2016; McCluskey et al., 2014; Petters et al., 2009; Qian et al. 2014; Vergara-Temprado et al., 

2018). BC particles in the snow might likely have different origins, configuration, composition, 

and other physicochemical properties (Bond et al. 2013; Brooks et al., 2014; Dou & Xiao, 2016; 

Lack et al., 2014; Liu et al., 2020; McCluskey et al., 2014; Qian et al., 2014). As such, air-snow 

partitioning is expected to occur both on the surface of snow and on particle interfaces (Lei & 

Wania, 2004). Recently, there are increasing evidence that several types of anthropogenic particles 

that are found in snow can alter the ice nucleation of BC and its radiative forcing (Ganguly & 

Ariya, 2019; Ming & Wang, 2021).  

Externally or internally mixed organic pollutant particles like PAHs, a known health hazard 

associated with the BC-type particles, also undergo physicochemical processes (Nazarenko et al., 

2016, 2017). For instance, after snow melts, the aggregated BC particles may be dissolved in 

meltwater or released into the air. As snow ages, the partitioning coefficient of particles and 

compounds in snow is expected to vary, leading to the re-emission (Hansen et al., 2006). 

Furthermore, as the wind blows across the surface of the snowpack, the decreased pressure on the 

surface can induce the re-emission of particles from snow surfaces too (Hansen et al., 2006). Due 
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to the high importance of BC in ice nucleation, radiation as well as human and ecosystem health, 

further targeted physicochemical research is recommended. 

 

2.3.5 Airborne black carbon decrease during the snowfall 

Table A6 shows the impacts of snow on airborne BC Mass values, using one snowfall event. 

Snow precipitation reported values are averaged over 24 hours. This snowfall event occurred in 

part of the December 31, 2019 with less intensity and continued to much higher precipitation 

intensity on January 1, 2020, whereas January 2, 2020 received no precipitation. The average daily 

temperatures over 3 days are nearly constant around the freezing point. During the snow fall events, 

BC values decreased, particularly when snow fall intensified, whereas during the snow free day of 

January 2, 2020, BC Mass values recovered to the highest levels on three days. Thereby snowfall 

scavenged BC particles bringing it to the surface. This observation is in accordance with the results 

from Hadley et al. (2010) who also found the evidence that snow could scavenge BC and decrease 

BC Mass in ambient air. Hadley et al. (2010) have performed their statistical analysis and drew 

conclusions based on the data of several snow events at three different sites. In this study, we 

lacked enough data for snow events during the winter of 2019-2020 to draw a statistically valid 

estimation of scavenging processes, yet it should be considered in future studies. 

Beside BC, other emerging contaminants are found in snow, including carbon 

nanostructure (Rangel-Alvarado et al., 2019), microplastics (Wang et al., 2020), nanoparticles (Pal 

et al., 2020; Rahim et al., 2019; Rangel-Alvarado et al., 2015) and halogen compounds (Hall et al., 

2020). More importantly, recent research reveals that microplastics in snow may cause an 

overestimation of BC and its effects on the climate since several analytical equipment for BC 
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detection are unable to distinguish microplastics from BC (Ming & Wang, 2021). This finding 

indicates the questions of whether and how BC will interact with other emerging contaminants, 

for instance, toxic nano-metals such as Ni and Cr, as observed in this study (Figure A7). Since BC 

has been shown to contain both organic and inorganic compounds, and various organic compounds 

are known to interact on particles (Eltouny & Ariya, 2012; Canagaratna et al., 2015). Potential 

effects upon the photochemical or heterogeneous chemical transformation of a wide range of 

particles should be understood. Future research on these topics is thus recommended.  
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Figure 2.3. Comparisons of concentrations of BC (A), O3 (B), PM2.5 (C), CO (D), NO2 (E) and NO (F) in 

downtown Montreal (cyan) with near YUL Airport (black) in COVID-19 Pandemic. For A, the period of 

“Before lockdown” is set from Feb. 1st to Feb. 29th, and the period of “During lockdown” is from May. 1st 

to May 24th. For B to F, the period of “Before lockdown” includes Feb. 1st to Mar. 15th, and the period of 

“During lockdown” spans from Mar. 16th to May 24th.  
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Figure 2.4. HR-S/TEM-EDS results of the aged snow samples collected from the airport. D and F are EDS 

results for C and E, respectively.   
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2.3.6 Potential added values of this BC data for cold-climate modelling  

This work provides data of both BC Mass and Babs in a cold-climate model city of Montreal, 

which is beneficial for present models of radiative forcing based on anthropogenic BC emissions 

in urban areas. Data on number density, size, refractive index, mass concentration and absorption 

coefficient of BC have been identified as key inputs to evaluate the concentrations and radiative 

forcing of BC in most modelling (Bond et al. 2013). Such data are rare for cold-climate cities. 

Considering the long winter and long duration of high BC Mass in cold urban regions, as discussed 

above, it is greatly recommended for future work in developing regional cold-climate models to 

evaluate urban air quality and climate impacts.  

 

2.4 Concluding remarks 

We herein present one-year real-time data on mass concentration of BC, together with key 

air co-pollutants, in a model cold-climate city of Montreal, which is crucial for various atmospheric 

modelling. Annual BC mass concentration exhibited a bi-modal distribution and BC winter peak 

lasts longer than 3 months in comparison to mild or warm-climate cities, due to distinct cold-

climate meteorology. During the snow episodes, airborne BC mass concentration decreased, while 

black carbon particles or carbon nanomaterials appeared in the snow, indicating air-snow 

interaction of anthropogenic pollutants took place. Furthermore, we demonstrated that airborne 

BC mass concentration in the residential areas around the airport is over 400% higher than an 

already in a polluted downtown. During the COVID-19 lockdown period, the emission of BC and 

other co-pollutants decreased significantly, yet they recovered as partial opening implemented. A 

large part of the planet experiences cold temperatures and frozen participation every year, and it is 

important to implement an air quality management system, which considers the effects of the cold 
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climate urban sites. The emission reduction of airborne BC and selected co-pollutants in the 

airports and surrounding areas, which may pose threat to the health of airport workers and residents 

should be tailored to different urban climates. Future research on BC sources, physicochemical 

characteristics at different environmental conditions are recommended. Ice nucleation 

microphysics of BC and interactions with brown carbon should also be further studied, to 

accurately evaluate the impact of BC in air quality, climate change and health research.  
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Chapter 3 Seasonal Trend of Black Carbon and Brown Carbon in Montreal: 

Impacts of Canada Record-Breaking Wildfires in Summer 2023 

We have evaluated the concentration of BC in urban regions, especially during wintertime. 

Here we present the variations of not only BC but also BrC to comprehensively evaluate the 

impacts of LACs as an entity. In addition, as discussed in Chapter 1, fossil fuel combustion and 

biomass burning are the two major sources of LACs. In Chapter 2, we covered anthropogenic 

sources (fossil fuel combustion) of BC in urban regions. In this Chapter, we are going to present 

the huge impacts from a type of biomass burning, wildfires, which bring a large amount of BC and 

BrC. We will also demonstrate the light absorption of BC and BrC, showing how BrC can play an 

essential role in light absorption at short wavelengths. 
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Synopsis: Wildfires are thought to be more frequent and more severe due to climate change. This 

research focuses on the additional emission of black and brown carbon due to record-breaking 

wildfires in northern Canada in 2023 and their impacts on the metropolitan of Montreal with 

implications for human health.  

 

Abstract 

Light-absorbing carbonaceous particles (LACs), including black carbon (BC) and brown 

carbon (BrC), are crucial components of air pollution and climate change. This study presents one 

year of observational data on BC mass concentration, Babs (370), Babs (870), and Bscat from July 

2022 to July 2023. We analyzed seasonal trends in BC and BrC in an urban area Montreal and 

conducted a detailed case study of 2023 summer wildfires. Our results reveal that wildfire smoke 

significantly contributed to a large proportion of primary BrC and secondary BrC precursors by 

mailto:parisa.ariya@mcgill.ca
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combining the datasets of PM2.5 and CO from MERRA-2 reanalysis data and back-trajectory 

analysis. Although most of the time, fossil fuel combustion is the primary source of BC and BrC 

in urban regions, when biomass burning became the predominant source of LACs, BrC may 

contribute more to light absorption at short wavelengths as BrC accounts for more than 50% of 

total light absorption at 370 nm, with primary BrC accounting for 70 ~ 80 % and secondary BrC 

accounting for 20 ~ 30%. Wildfires increased the BC mass concentration by over 26% and caused 

a significant rise in PM2.5 by more than 300%. During the wildfire events, the daily average 

concentration of PM2.5 exceeded the WHO guidance limits. As climate change will likely increase 

wildfire frequency and intensity, the affected cities need solid and resilient air quality plans to 

mitigate human exposure. 

 

3.1 Introduction 

Light-absorbing carbonaceous particles (LACs) have drawn growing interest in the past 

decades because they are one of the most critical radiatively active components in the atmosphere 

(IPCC 2013; Liu et al., 2020). LACs include black carbon (BC) and light-absorbing organic carbon, 

or so-called “brown carbon” (BrC), which can absorb solar radiation and warm the climate. BC 

strongly absorbs light from UV to near-infrared wavelengths, whereas BrC demonstrates strong 

wavelength dependence. The light absorption of BrC sharply decreases with the wavelength 

increases from UV to visible light. In addition to directly affecting the climate by absorbing solar 

radiation, LACs could impact the climate indirectly by serving as cloud condensation nuclei and 

ice nuclei, leading to either warming or cooling effects in the atmosphere, which is one of the 

sources of uncertainty in simulating the total impacts of LACs in climate models (Bond et al., 

2013).  
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BC and BrC originate from both sources: anthropogenic sources, such as vehicles, 

industries and agricultural burning, and natural sources, including wildfires and volcanos (Bond et 

al., 2013). BC particles are mainly emitted from incomplete combustion of fossil fuels and biomass 

burning (Bond et al., 2013), with anthropogenic sources being predominant in urban areas (Li & 

Ariya, 2021; Liu et al., 2021; Meng et al., 2023). Meanwhile for BrC, the sources are more varied. 

The primary and predominant source of BrC emission is biomass burning, such as wildfires. Yet 

BrC can also be formed by aging processes in the atmosphere, such as heterogeneous and 

photochemical reactions. Some organic aerosols which are originally colorless and scatters light 

would undergo reactions with other components such as NOx, O3 or NH3 to form chromophore 

function groups, becoming BrC in the end (Laskin et al., 2015). Additionally, aging processes 

would transform BrC into colorless organic carbon by photobleaching (Laskin et al., 2015). The 

diverse sources and transformation processes lead to complex matrices of BrC components in the 

atmosphere and make it challenge to simulate the fate and impacts of BrC in the atmosphere.  

The health concerns caused by LACs have been widely reported. For example, long-term 

exposure to BC could lead to chronic kidney disease (Zhang et al., 2023), obesity (Yang et al., 

2023) and cardiovascular disease (Wen et al., 2023). Moreover, Rasking et al. (2023) reported that 

ambient BC reached the kidney after inhalation and circulation in the body, which might exert 

adverse effects on kidney function. Liu et al. (2023) detected BC in eye-washed fluid, revealing 

the ocular exposure risk. Meanwhile, for BrC, the health impacts are usually reported with specific 

components like PAHs (Sedlacek et al., 2022). Due to the health concerns caused by BC, WHO 

has published new guidelines for air quality and proposed to make systematic measurements of 

BC to complement current PM2.5 measurements in urban areas (WHO 2021). However, continuous 

real-time measurements of BrC are much more difficult because of the complexity of BrC 



77 

 

components. Although aerosol mass spectrometer (AMS) has been utilized for online measurement 

of organic aerosols, including BrC (Jiang et al., 2023; Lei et al., 2023; Tasoglou et al., 2020; Zhong 

et al., 2023), the high cost of the instrument makes it hard to use AMS for long-time continuous 

measurements prevalently. Developing a stable and low-cost commercial instrument for BrC is 

still challenging but necessary.  

Wildfires, as a format of biomass burning, can be an essential source of LACs, organic 

aerosols, and other air pollutants, including PM2.5, O3, NOx, and CO, which not only deteriorate 

local air quality and visibility but also undergo long-range transport to affect areas far from the 

sources. For example, the smoke produced by wildfires in Quebec, Canada, reached New York 

City in the US after long-range transport, causing severe air pollution in June 2023 (CNN 2023). 

This “record-breaking” wildfire event, during which 4.5 million hectares of forest burned, 

including 1.1 million in inhabited areas. Megacities such as Montreal suffered severe air pollution 

problems due to the forest-burning events from several hundred kilometres away. The occurrence 

of wildfires in the world is estimated to increase gradually due to climate change (Eck et al., 

2023; Jolly et al., 2015; Xu et al., 2023). It is necessary to research how the combination of wildfire 

emissions and local anthropogenic emissions affect cities to systematically evaluate the impacts of 

BC and BrC in urban areas.    

This study provides a year-long continuous measurements on LACs in Montreal, Canada, 

focusing on the summer of 2023, when most wildfires occurred. By combining the datasets of 

PM2.5 and CO acquired from MERRA-2 reanalysis data and performing cluster back-trajectory 

analysis, we elucidate local and wildfire-induced BC and BrC concentrations. 
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3.2 Methods 

3.2.1 Photoacoustic Extintiometer (PAX) 

A PAX (Droplet Measurement Technologies (DMT), Inc., US) with an 870 nm laser 

module was used to continuously measure the scattering coefficient (Bscat) and absorption 

coefficient (Babs) of ambient air. Generally, PAX draws air samples into the measurement chamber 

with a 1 L/min flow rate by an internal vacuum pump. The airflow will be split into the reciprocal 

nephelometer and the photoacoustic cell to measure Bscat and Babs simultaneously. The absorption 

measurement uses in-situ photoacoustic technology and assumes that only BC particles can absorb 

the laser at 870 nm. Then, BC particles will transfer heat to the surrounding air, generating pressure 

waves that can be detected by a sensitive microphone attached to the chamber to calculate Babs in 

one-second resolution. Meanwhile, the nephelometer can measure Bscat and respond to all aerosols 

regardless of size, morphology, and chemical compositions. A more detailed description can be 

found in the user manual of PAX provided by DMT (DMT 2020). The Bscat and Babs data reported 

in this manuscript are hourly averaged. The absorption coefficients from PAX were reported as 

Babs (870) to distinguish the data obtained from the aethalometer described below. 

 

3.2.2 Aethalometer (AE43) 

A seven-wavelength aethalometer (AE43) was used to measure ambient BC mass 

concentration and absorption coefficients Babs. AE43 continuously measures light attenuation of 

aerosol samples at wavelengths of 370, 470, 520, 590, 660, 880 and 950 nm by drawing aerosols 

to deposit on the quartz filter tape. AE43 reports BC mass concentration in one-minute resolution 

with the data obtained at 880 nm wavelength because BC is assumed to be the only light absorber 
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at 880nm. The data at the other wavelengths were used for source appointment by calculating the 

absorption Ångstrom exponent (AAE). Since Drinovec et al. (2015) adopted “DualSpot” 

measurement method for Model AE33 and AE43 to compensate the filter scattering effect and the 

loading effect, the absorption coefficients at 7 wavelengths are assumed to be in-situ Babs. Thus, 

the absorption coefficient of BrC (Babs(λ)BrC) at wavelength of λ can be acquired by the Equations 

(1) to (3): 

𝐵𝑎𝑏𝑠 (880) = 𝐵𝐶 𝑀𝑎𝑠𝑠 𝐶𝑜𝑛𝑐𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑀𝐴𝐶(880) (1) 

𝐵𝑎𝑏𝑠(𝜆) = 𝐵𝑎𝑏𝑠(𝜆)𝐵𝐶 + 𝐵𝑎𝑏𝑠(𝜆)𝐵𝑟𝐶  (2) 

𝐵𝑎𝑏𝑠(𝜆)𝐵𝐶

𝐵𝑎𝑏𝑠 (880)
= (

𝜆

880
)

−𝐴𝐴𝐸𝐵𝐶

 (3) 

where Babs (λ) is the total absorption coefficient at λ, and MAC (880) is BC mass absorption cross-

section at 880 nm. AAEBC is assumed to be 1. In this work, Babs (370) is used as an indicator of 

BrC. Whereas AAE values were calculate based on Equation (4):  

𝐴𝐴𝐸 (470 950⁄ ) =  
𝑙𝑛[𝐵𝑎𝑏𝑠(470) 𝐵𝑎𝑏𝑠(950)]⁄

𝑙𝑛(950 470⁄ )
 (4) 

BC mass concentration, Babs (370) and AAE values were calculated into hourly averages 

for further analysis. 

For the source appointment method based on aethalometer (Magee Scientific 2021), the 

following equations were used: 

𝐵𝑎𝑏𝑠(470)𝑓𝑓

𝐵𝑎𝑏𝑠(950)𝑓𝑓
= (

470

950
)

−𝐴𝐴𝐸𝑓𝑓

 (5) 

𝐵𝑎𝑏𝑠(470)𝑏𝑏

𝐵𝑎𝑏𝑠(950)𝑏𝑏
= (

470

950
)

−𝐴𝐴𝐸𝑏𝑏

 (6) 
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𝐵𝑎𝑏𝑠(470) = 𝐵𝑎𝑏𝑠(470)𝑓𝑓 + 𝐵𝑎𝑏𝑠(470)𝑏𝑏 (7) 

𝐵𝑎𝑏𝑠(950) = 𝐵𝑎𝑏𝑠(950)𝑓𝑓 + 𝐵𝑎𝑏𝑠(950)𝑏𝑏 (8) 

𝐵𝐵(%) =
𝐵𝑎𝑏𝑠(950)𝑏𝑏

𝐵𝑎𝑏𝑠(950)
 (9) 

where AAEff is 0.9 and AAEbb is 1.68 (Lepisto et al., 2023; Zotter et al., 2017), which are different 

from the values used in the instrument. The case when the value of BB% is larger than 50% is 

considered as biomass burning (BB) dominated, whereas when BB% is smaller than 50%, it is 

fossil fuel combustion (FF) dominated.   

To separate the contribution of secondary BrC from total absorption coefficient, the 

minimum R-square (MRS) method was applied (Wang et al., 2019; Wu et al., 2018; Wu et al., 

2023). Thus, absorption coefficients from secondary BrC can be acquired by combing Equation 

(10) to (13): 

𝐵𝑎𝑏𝑠(𝜆) = 𝐵𝑎𝑏𝑠(𝜆)𝑝𝑟𝑖 + 𝐵𝑎𝑏𝑠(𝜆)𝑠𝑒𝑐 = 𝐵𝑎𝑏𝑠(𝜆)𝑝𝑟𝑖 + 𝐵𝑎𝑏𝑠(𝜆)𝐵𝑟𝐶,𝑠𝑒𝑐  (10) 

𝐵𝑎𝑏𝑠(𝜆)𝑝𝑟𝑖 = 𝐵𝑎𝑏𝑠(𝜆)𝐵𝐶 + 𝐵𝑎𝑏𝑠(𝜆)𝐵𝑟𝐶,𝑝𝑟𝑖 (11) 

𝐵𝑎𝑏𝑠(𝜆)𝐵𝑟𝐶 = 𝐵𝑎𝑏𝑠(𝜆)𝐵𝑟𝐶,𝑝𝑟𝑖 + 𝐵𝑎𝑏𝑠(𝜆)𝐵𝑟𝐶,𝑠𝑒𝑐  (12) 

𝐵𝑎𝑏𝑠(𝜆)𝐵𝑟𝐶,𝑠𝑒𝑐 = 𝐵𝑎𝑏𝑠(𝜆) − 𝐵𝑎𝑏𝑠(𝜆)𝑝𝑟𝑖 = 𝐵𝑎𝑏𝑠(𝜆) − (
𝐵𝑎𝑏𝑠(𝜆)

𝐵𝐶
)

𝑝𝑟𝑖
× [𝐵𝐶] (13) 

where [BC] is BC mass concentration, and (Babs (λ)/BC)pri is the ratio of absorption coefficient of 

primary particles to BC mass concentration from primary sources. If the value of Babs(λ)BrC, sec is 

less than zero, the contribution from secondary BrC is considered as zero. The primary sources 

here are considered as combustion sources. The non-combustion primary sources of BrC are 
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biogenic sources, but biogenic primary BrC has weak absorption (Peng et al., 2016; Perrino 

&Marcovecchio, 2016), which means the absorption of biogenic primary BrC is negligible. 

 

3.2.3 Electron Microscopy   

A Micro Orifice Uniform Deposit Impactor (MOUDI, model 100-R, MSP Corp., 

Shoreview, MN, USA) with an inlet flowrate of 30 L/min was used to collect aerosol samples on 

quartz fibre filters with transmission electron microscopy (TEM) grids attached for 12 hours. A 

Thermo Scientific Talos F200X G2 (S)TEM with X-FEG High Brightness Schottky Field 

Emission Source and Ceta 16M 4k x 4k CMOS Camera was used to analyse the size, morphology, 

and chemical composition of aerosol samples. A FEI Quanta 450 Environmental Scanning 

Electron Microscope (FE-ESEM) with EDAX Octane Super 60 mm2 SDD and TEAM EDS 

Analysis System was used to provide more morphology information in 3 dimensions.  

 

3.2.4 The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model 

The registered desktop version of the HYSPLIT model from the Air Resources Laboratory 

(ARL) (Stain et al, 2015; Rolph et al, 2017) was used to analyze the origin of air masses and 

establish source-receptor relationships through back-trajectory analysis. Our investigation focused 

on estimating air mass movement through integrated trajectory clustering, particularly during June 

and July of 2022-2023, which coincided with the forest fire season in Quebec, and the month of 

October from 2021-2023 in Montreal (45°30'17.070" N, 73°34'45.000" W). The cluster analysis 

enabled us to examine the percentage of air mass back-trajectories reaching the study area, 

providing insights into long-range transport pollution source regions. The total number of back-
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trajectories observed for each case study were as follows: 116 in June, 125 in July, and 121 in 

October, with trajectories occurring at four different times per day (00 Z, 06 Z, 12 Z, and 18 Z), 

resulting in four trajectories per day. During each season, 2-day back-trajectories from HYSPLIT 

were generated at a fixed atmospheric height of 5 km. Clustering of 24-hour trajectories was 

performed using a 30 percent change criterion, resulting in 20 hours of back-trajectory results per 

cluster. To maintain consistency in the analysis, approximately four clusters were displayed. Our 

observations revealed very distinct air mass movements, with more stagnant air masses observed 

during October 2022. 

3.2.5 Ancillary data 

The hourly averages of PM2.5, O3, and CO were acquired from the MERRA-2 reanalysis 

data (GMAO 2015a, 2015b). Since the resolution of MERRA-2 is 0.5° ×  0.625°, the 

concentrations of PM2.5, CO, and O3 at 45.5° N, 73.750° W were selected to compare with Babs 

and Bscat. The hourly averages of temperature (T) and relative humidity (RH) were acquired from 

the meteorological station at the downtown campus of McGill University (45°30'17.070" N, 

73°34'45.000" W) conducted by the Environment and Climate Change Canada (ECCC) which is 

about 400 meters away from our sampling site (45° 30' 17.449” N, 73° 34' 26.555” W).   

 

3.3 Results and Discussion 

3.3.1 Seasonal Trend of BC and BrC Emissions in Montreal 

Montreal is a cold climate city that receives about 2.1 m of snow yearly. According to the 

ECCC, a year in Montreal is divided into winter (December 1st to April 20th), spring (April 21st to 

June 20th), summer (June 21st to September 20th), and fall (September 21st to November 30th). In 



83 

 

this work, Spring 2023 spans from April 21st to May 31st. June and July 2023 are considered 

wildfire months and will be discussed separately. 

Fig. 3.1 and 3.2 display variations of BC mass concentration, Babs (370), Babs (870), and 

Bscat during July 2022 to July 2023. BC mass concentration reached the peak value (0.33 ± 0.30 

µg/m3) in October 2022, instead of the wildfire-affected month, i.e. June 2023 (0.27 ± 0.25 µg/m3) 

(Table 3.1). Considering the possible bias due to noncontinuous sampling of AE43, Babs (870) was 

used to compare with BC mass concentration (Fig. 3.2). And the result shows that the variation of 

Babs (870) was consistent with BC mass concentration for most of time. Babs (870) followed a 

similar trend, with a peak value (2.19 ± 2.76 Mm-1) in October 2022, compared to 1.47 ± 1.77 Mm-

1 in June 2023 (Table B1). However, the main discrepancy between BC mass concentration and 

Babs (870) appeared during December to April, the winter. The variation of Babs (870) demonstrated 

a similar seasonal trend described in Li et al. (2021) that BC maintained a relatively high 

concentration during the long winter, which was not observed by AE43. One possible reason is 

that a PM2.5 cyclone inlet was attached to AE43 which constrained the size of particles sampled by 

AE43, whereas PAX had no such a restriction. It is also likely that AE43 did not sample as many 

days as PAX did, which brought sampling bias, causing the overestimation of BC mass 

concentration among Summer and Fall 2022. It is noteworthy that both BC mass concentration 

and Babs (870) can only demonstrate the variation of BC. The contribution of BrC was not included 

in these variables. Instead, the largest values of Babs (370) and Bscat which include the contribution 

from both BC and BrC, are 9.18 ± 16.30 Mm-1 and 20.52 ± 38.39 Mm-1 respectively (Fig. B1, 

Table 3.1, Table B1), in June 2023 when the record-breaking wildfires took place in north Quebec. 

The high BC mass concentration in October 2022 may be attributed to local emission sources as 

suggested by wind pattern analysis. Monthly cluster analysis was performed to identify the wind 
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pattern at Montreal (Fig. B2) which shows that stagnant local air mass accounts for about 62% in 

October 2022, larger than its proportion in 2021 (46%) and 2023 (34%). This result suggests that 

the high BC mass concentration was associated with local emission sources. AAE (470/950) 

increased from summer of 2022 to winter, and then decreased after the winter, indicating the 

proportion of BrC gradually increased until the winter. However, AAE (470/950) remained 

between 1.2 and 1.4, suggesting BC still contributed significantly to light absorption.  

Fig. 3.3 and Fig B2 show the diurnal variation of BC mass concentration, Babs (370) and 

Babs (870) in different seasons and wildfire months. No matter which season, the significant impact 

of anthropogenic sources in urban areas can be reflected by the clear “rush-hour” peak at around 

8 am. The concentration of BC (and probably BrC) reached its maximum at 8 am due to 

transportation to workplaces. Then, with the development of the planetary boundary layer during 

daytime, along with less traffic, the concentration of BC was diluted, leading to the decline until 

evening. BrC, influenced by photochemical reactions and photobleaching, shows more complex 

diurnal behavior, which can be indicated by Babs (370). Additionally, BrC could also be reduced 

through photobleaching processes, causing the decrement of Babs (370). The results of these effects 

are present in the end as Babs (370) decreases until evening. BC mass concentration and Babs (370) 

increased again during nighttime (10 pm to 5 am) because the planetary boundary layer became 

lower at night, concentrating BC and BrC particles in the air. Furthermore, BrC could be generated 

by heterogenous reactions from BrC precursors (Huang et al., 2021), which could contribute to the 

increment of Babs (370).  
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Figure 3.1. Time series hourly averages of (A) BC mass concentration and Babs (370), (B) Babs (870) and 

Bscat. The shadow area indicates the wildfire months (June and July) in 2023. 
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Figure 3.2. Monthly averages of (A) BC mass concentration and Babs (870), (B) Babs (370) and AAE 

(470/950). The error bars indicate the standard errors for BC mass concentration, Babs (870), and Babs 

(370) respectively for each month.  
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Figure 3.3. Diurnal variation of BC mass concentration (Panels A, B) and Babs (370) (Panels C, D) in 

different seasons. Panels C and D indicate the wildfire months (June and July 2023), and the error bars on 

blue lines represent the standard errors.  

 

Table 3.1. Statistic description of monthly variation of BC mass concentration and Babs (370) from 2022 to 

2023. “Mean” is the arithmetic average. “Std” is the standard deviation. “25%” and “75%” represent 

quantile values.  

 BC Mass Concentration (µg/m3) 

Month Mean Std Min 25% Median 75% Max 

Jul-22 0.19 0.14 0.03 0.09 0.15 0.26 0.93 

Aug-22 0.28 0.18 0.03 0.17 0.25 0.35 1.34 

Sep-22 0.15 0.11 0.01 0.06 0.11 0.23 0.54 

Oct-22 0.33 0.30 0.01 0.15 0.24 0.42 1.98 

Nov-22 0.17 0.14 0.01 0.07 0.14 0.24 1.40 

Dec-22 0.11 0.07 0.01 0.07 0.10 0.14 0.53 

Jan-23 0.13 0.09 0.01 0.06 0.10 0.17 0.56 

Feb-23 0.09 0.06 0.02 0.05 0.08 0.12 0.45 

Mar-23 0.08 0.05 0.02 0.04 0.07 0.10 0.42 

Apr-23 0.09 0.08 0.01 0.05 0.07 0.12 0.88 

May-23 0.13 0.10 0.01 0.06 0.11 0.16 0.94 

Jun-23 0.27 0.25 0.03 0.13 0.18 0.30 1.98 

Jul-23 0.24 0.15 0.03 0.14 0.21 0.31 0.88 
        
 Babs (370) (Mm-1) 
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Month Mean Std Min 25% Median 75% Max 

Jul-22 4.42 3.10 0.71 2.16 3.61 6.04 21.48 

Aug-22 6.75 4.38 1.00 3.97 5.79 8.10 34.14 

Sep-22 3.64 2.53 0.19 1.60 2.66 5.46 12.50 

Oct-22 8.66 8.49 0.49 4.10 6.58 10.57 85.19 

Nov-22 4.42 3.28 0.22 1.93 3.61 6.20 28.81 

Dec-22 2.87 1.66 0.09 1.78 2.51 3.61 12.46 

Jan-23 3.39 2.37 0.15 1.60 2.66 4.79 15.05 

Feb-23 2.58 1.81 0.44 1.31 2.05 3.19 10.58 

Mar-23 2.05 1.27 0.26 1.16 1.80 2.65 9.48 

Apr-23 2.45 1.93 0.36 1.16 2.06 3.25 18.69 

May-23 3.18 3.06 0.26 1.46 2.55 4.18 51.16 

Jun-23 9.18 16.30 0.68 3.07 4.46 7.53 125.91 

Jul-23 5.62 3.34 0.81 3.29 4.81 7.18 19.01 

 

3.3.2 Case Study: Quebec Wildfire Events during Summer 2023 

The wildfires in Canada during the summer of 2023 have been widely reported as record-

breaking (CWFIS 2023). Since May 2023, wildfires occurred more than 400 times, burning more 

than 3.8 million-hectare areas in Quebec, Canada, breaking the record of the past ten years (Table 

B2, acquired from SOPFEU 2024). The wildfire smoke caused severe haze in New York City in 

early June after long-range transport from north Quebec (CNN2023; Fig. B4). The City of 

Montreal is one of Canada's most significant metropolitan areas, located between north Quebec 

and New York City. Although burning regions were far away from Montreal, and Montreal was 

not affected by wildfires directly, like New York, smoke emitted by wildfires underwent long-

range transport, reaching Montreal and leading to severe air pollution during the summer of 2023. 

The cluster back-trajectory analysis was also performed for June and July 2023 (Fig. B5 A and B), 

showing that in June 2023, about 44% of air masses came from the north, which brought a large 

amount of smoke. Although this number reduced to about 18% in July 2023, much less than June, 

the smoke from the north still led to severe air pollution in Montreal, compared with July 2022. 

Further wind rose data suggested that the Montreal becomes centre and mixed air coming from 
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both northern Quebec along with Ontario, Canada and New York State, US, affecting the Montreal 

air quality and enhancing the BC and BrC concentrations (Fig. B5 C). 

3.3.2.1 Observation of wildfire impacts on urban areas 

Figure 3.4 shows that BC mass concentration and Babs (370) reached the highest values 

from June 25th to June 26th, where BC mass concentration was 1.98 µg/m3 and Babs (370) was 

125.91 Mm-1. The back-trajectory analysis confirmed that it was caused by the smoke from north 

Quebec, where wildfires had taken place (Fig. B6). Then, in July 2023, BC mass concentration 

maintained relatively high values compared with the previous months, with a maximum 

concentration of 0.88 µg/m3, much lower than the maximum in June. Both coefficients from PAX 

indicate July 2023 was impacted by wildfires longer than June 2023, which elevated the monthly 

average in July. Considering possible bias from those missing days in June, Babs (870) and Bscat 

from PAX measurement could be regarded as a reference when comparing monthly averages. 

Temperature and RH did not demonstrate noticeable changes in the variation patterns, 

which indicates that regional climate can hardly contribute to the high BC and BrC values (Fig. 

3.4). In addition, although the concentrations of PM2.5 and CO are acquired from MERRA-2 

reanalysis data, the variation of PM2.5 is in accord with the variation of BC mass concentration and 

Babs (370). Yet CO did not show a similar variation with PM2.5. Since CO is regarded as a tracer 

of local anthropogenic pollution in urban regions, the sharp increments in BC, Babs (370) and PM2.5 

during these two months should be attributed to the smoke emitted by wildfires in north Quebec.  

To further demonstrate the significant impact of wildfires, July 2022 was chosen to 

compare with July 2023. June 2022 was not included because AE43 was received and installed by 

the end of June 2022. Furthermore, as is shown in Table B2, 2022 was least affected by wildfires 
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among the last 5 years. Thus, the measurements in July 2022 could present the concentrations of 

BC, BrC, and PM2.5 from urban anthropogenic sources, with less influence from wildfires. The 

average BC mass concentration in July 2022 was 0.19 µg/m3 but increased to 0.24 µg/m3 in July 

2023. The increment was more than 26%. And for Babs (370), the increment was over 27%, 

increasing from 4.42 Mm-1 to 5.62 Mm-1 (Table 3.1). As a reference, Babs (870) was 0.99 Mm-1 in 

July 2022 but became 1.34 Mm-1 in July 2023. The increment was more than 35% (Table B1).  

Although BC mass concentration and Babs (370) were not available for June 2022, it can 

be speculated that the increment of BC mass concentration in June would not be less than that in 

July as Babs (870) increased from 1.08 Mm-1 in July 2022 to 1.47 Mm-1 in July 2023, more than 

36%. Since it is usually assumed that BC is the only component which absorbs radiation with 870 

nm wavelength, and the contribution to Babs (370) from BrC is compatible with BC, the increment 

of Babs (370) cannot be reflected by Babs (870). However, Bscat may give a hint to that. Bscat was 

4.63 Mm-1 (June) and 8.38 Mm-1 (July) in 2022. These numbers sharply increased to 20.52 Mm-1 

(June) and 18.54 Mm-1 (July) in 2023 (Table B1). The increment as high as 343% in June 2023 

indicates that wildfire smoke brought a tremendous number of particles which include not only 

BC but also primary BrC, secondary BrC and probably secondary BrC precursors. This could be 

further supported by the variation of PM2.5. The averages of PM2.5, CO and O3 in June and July 

during the past 10 years are summarized in Table B3. The variation of PM2.5 shows the increment 

was about 349% in June and 74% in July when comparing 2023 with 2022 (Table B3). In contrast, 

whereas for the other years, the variations of PM2.5 compared with 2022 were not as dramatically 

high as 2023. Table B3 confirms again that 2022 was the least impacted by wildfires in the past 5 

years because the concentration of PM2.5 was lowest, compared with 2019 to 2023. However, O3 

and CO did not show similar variations.   
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Figure 3.4. Hourly averages of (A) Temperature and RH, (B) BC mass concentration and Babs (370), (C) 

Babs (870) and Bscat, and (D) concentration of PM2.5 and CO during June 1st, 2023, to July 31st, 2023. 
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3.3.2.2 Secondary BrC absorption and difference between fossil fuel combustion and biomass 

burning cases 

To investigate the contribution of BrC (both primary and secondary BrC) to light 

absorption during the wildfire period, the MRS method mentioned in Section 3.2.2 was utilized to 

separate secondary BrC from primary BC and BrC. The result is shown in Fig. 3.5. Although BC 

is the predominant component of light absorption in most of days, it is obvious that during June 

25th to 26th, when the impact from wildfire smokes was tremendous, the contribution from BrC 

was not negligible but as high as twice the BC absorption at 370 nm. This indicates the great 

potential of BrC emitted by wildfires to play a crucial role on absorption of short-wavelength 

radiation. 

 

Figure 3.5. Hourly average absorption coefficients of BC, primary BrC (BrC pri), and secondary BrC (BrC 

sec) at 370 nm. The small figure on the top-right area shows the zoom-in plot of July 2023. 

The hourly averages of Babs (370) were then divided into FF-dominated cases (77%) and 

BB-dominated cases (23%) based on the method described in Section 3.2. Table 3.2 shows the 

summary of daytime and nighttime average absorption coefficients. For FF-dominated cases, BC 

accounts for 80% of Babs (370), and there is no apparent difference between daytime and nighttime. 
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Primary BrC contributes to most of BrC absorption, indicating that very limited secondary BrC 

was formed. Yet for BB-dominated cases, the absorption of BrC became compatible with the 

absorption of BC, even more than BC. More interestingly, the formation of secondary BrC was 

promoted, especially during the daytime. It is widely known that photochemical reactions could 

lead to both photobleaching, reducing the absorption of BrC, and facilitating the formation of 

secondary BrC from BrC precursors, increasing its absorption of BrC (Laskin et al., 2015). Thus, 

one possible reason that Babs, BrC sec (370) could account for 25% of BrC absorption is that the 

formation of secondary BrC was more favoured during daytime for BB-dominated cases. Whereas 

during nighttime, heterogeneous reactions are possibly primary pathways to generate secondary 

BrC (Huang et al., 2021). However, this need to be further investigated once air pollutant data in 

2023 are available from the City of Montreal. 

Table 3.2. Daytime and nighttime averages (with unit of Mm-1) of Babs (370), Babs, BC (370), Babs, BrC (370), 

Babs, BrC pri (370), Babs, BrC sec (370), and Babs, pri (370) for all data, FF-dominated cases, and BB-dominated 

cases. The percentage values for Babs, BC (370) and Babs, BrC (370) indicate proportions of BC and BrC to Babs 

(370) respectively. The percentage values for Babs, BrC pri (370), Babs, BrC sec (370) represent the proportions of 

primary BrC and secondary BrC to Babs, BrC (370) respectively. And the percentage values for Babs, pri (370) 

shows the contribution from primary sources.  

 Babs (370) 
Babs, BC 

(370) 

Babs, BrC 

(370) 

Babs, BrC pri 

(370) 

Babs, BrC sec 

(370) 
Babs, pri (370) 

Total 
Day 7.41 4.99 (67%) 2.42 (33%) 1.99 (82%) 0.43 (18%) 6.98 (94%) 

Night 6.19 4.16 (67%) 2.03 (33%) 1.66 (81%) 0.37 (19%) 5.82 (94%) 

FF 
Day 5.78 4.70 (81%) 1.08 (19%) 1.01 (93%) 0.07 (7%) 5.71 (99%) 

Night 4.92 3.93 (80%) 0.99 (20%) 0.86 (87%) 0.13 (13%) 4.79 (97%) 

BB 
Day 15.64 6.42 (41%) 9.22 (59%) 6.96 (75%) 2.26 (25%) 13.38 (86%) 

Night 8.92 4.65 (52%) 4.27 (48%) 3.39 (79%) 0.88 (21%) 8.04 (90%) 

 

Table 3.3 presents the wavelength dependence of light absorption of BC and BrC. BrC 

shows a strong wavelength dependence with the most significant contribution (33%) at 370 nm. 

And BrC still accounts for more than 10% absorption at 590 nm. The importance of BrC on light 

absorption could be better demonstrated if biomass burning is the predominate source of BrC (Fig. 
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3.6, Table B4). At 370 nm, the contribution from BrC can be more than 50%. Even at 660 nm, the 

proportion of BrC absorption is 10%. While for the FF-dominated case, BrC always accounts for 

less than 20% light absorption at all these wavelengths. This could be useful for future modelling 

work. When modelling the impacts of wildfires, the contribution from BrC could be treated as 

large as BC at short wavelengths. Whereas for fossil fuel combustion FF-dominated scenarios, 

such as urban areas in most of time, the contribution from BrC should be considered as less than 

20% as suggested by previous research (Wu et al., 2023). 

Fig. 3.7 depicts the typical morphology and EDS results of aerosol samples collected on 

Jun. 25th when Babs (370) reached the highest value during the whole wildfire months. Fig. 3.7A 

shows the prevalent particles observed by TEM and SEM, which are nano-size spheres coated by 

organic matters to form micron-size particles. Fig. B7C and D prove that the thin coatings were 

organic matters. Under most circumstances, there was only one particle inside each coating. 

However, two or more particles in the same coating were also observed (Fig. B7A). The high 

abundance of potassium in the particles reveals that the source of the aerosol samples was biomass 

burning, i.e. wildfires in this manuscript. Fig. 3.7C demonstrates a micron-size tar ball, a known 

example of BrC particles, which contain mainly carbon, but the small proportions of nitrogen and 

oxygen (Fig. 3.7D) distinguish it from BC. All the tar balls observed by TEM were at micron sizes 

without any coating outside. Fig. 3.7E shows a chain-like BC aggregate. Fig. 3.7F confirms that 

the BC aggregate was mixed with some organic carbon and silicon. Besides, the SEM image 

demonstrates how BC particles could grow from spheres with diameters less than 50 nm to 

submicron-size aggregates shown in Fig. 3.7E to micron-size agglomerates (Fig. B7B).   

Table 3.3. Averages (with unit of Mm-1) of Babs (λ), Babs, BC (λ), Babs, BrC (λ), Babs, BrC pri (λ), Babs, BrC sec (λ), 

and Babs, pri (λ) at different wavelengths. The percentage values for Babs, BC (λ) and Babs, BrC (λ) indicate 

proportions of BC and BrC to Babs (λ) respectively. The percentage values for Babs, BrC pri (λ), Babs, BrC sec (λ) 
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represent the proportions of primary BrC and secondary BrC to Babs, BrC (λ) respectively. And the percentage 

values for Babs, pri (λ) shows the contribution from primary sources. 

Wavelength Babs (λ) Babs, BC (λ) Babs, BrC (λ) Babs, BrC pri (λ) 
Babs, BrC sec 

(λ) 
Babs, pri (λ) 

370 6.90 4.64 (67%) 2.26 (33%) 1.85 (82%) 0.41 (18%) 6.49 (94%) 

470 4.73 3.65 (77%) 1.08 (23%) 0.92 (85%) 0.16 (15%) 4.57 (97%) 

520 3.96 3.30 (83%) 0.65 (17%) 0.56 (85%) 0.10 (15%) 3.86 (98%) 

590 3.29 2.91 (89%) 0.38 (11%) 0.32 (85%) 0.06 (15%) 3.23 (98%) 

660 2.75 2.59 (94%) 0.16 (6%) 0.13 (80%) 0.03 (20%) 2.72 (99%) 



96 

 

 

Figure 3.6. The proportion of BC, primary BrC (BrC pri), and secondary BrC (BrC sec) to absorption 

coefficients at seven wavelengths (370, 470, 520, 590, 660, 880, and 950 nm). Panel A shows the BB-

dominated case, and Panel B shows the FF-dominated case.  
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Figure 3.7. TEM images with corresponding EDS results of typical particles deposited on the grids. Panel 

B, D, and F indicate the EDS results of Panel A, C, and E, respectively.  
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3.4 Conclusion 

This study presents over one-year observation data of LACs (BC and BrC) and their 

analysis in Montreal from Summer 2022 to Summer 2023, including the record-breaking wildfire 

events in Canada. We observed that BC in winter still demonstrated a high mass concentration, 

lasting during the long winter, consistent with previous research (Li & Ariya, 2021). We also 

presented an observation of LACs emitted by wildfires in Montreal, revealing, for the first time, 

how Canadian wildfires in the Summer of 2023 indirectly affected urban areas with ground-based 

observation. The significant wildfires in 2023 raised the BC mass concentration by more than 26% 

and caused a sharp increment of PM2.5 by more than 300%. Besides, as an essential type of biomass 

burning, wildfires revealed the potential of how BrC could contribute to light absorption at short 

wavelengths as BrC could account for more than 50% total light absorption at 370 nm, with 

primary BrC accounting for 70% ~ 80% and secondary BrC accounting for 20% ~ 30%. As 

wildfires become more frequent and intense due to climate change, understanding BrC’s role in 

light absorption and its broader impacts is crucial. Enhanced ground-based BrC observations and 

precise modeling are essential for comprehensive evaluation and policy adaptation. 

Furthermore, snow is a ubiquitous feature of Canada and other Nordic countries, with 

meteorological winter lasting up to five months. This suggests that wildfire pollutants may travel 

long distances over frozen surfaces or deposit into the lithosphere, hydrosphere, biosphere, and 

cryosphere, interacting with the atmosphere (Ariya et al., 2018; Rangel-Alvaraz et al., 2019). 

Notably, there are record numbers of fires burning underneath the snow in some Canadian 

provinces (Alberta Wildfire 2024). Under the right conditions, these fires can re-emerge in the 

spring as wildfires and create additional sources of BC and BrC that can affect not only the vicinity 



99 

 

of the fires but also cities at long distances away, affecting human lives and damaging the 

ecosystem. Air quality policy should be updated for better adaptation to climate change. 
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Chapter 4 Using Machine Learning Model to Derive BC Mass Concentration 

Based on Common Air Pollutants 

Although we have achieved continuous measurements on LACs in our laboratory, it is 

necessary to make the monitoring of LACs emissions more prevalent in a city so that researchers 

can better understand the impacts of LACs on local or regional climate and air quality. However, 

purchasing new instruments for measurement can be difficult for governments due to insufficient 

budgets. Thus, we developed a machine learning model to simulate the variation of BC in Montreal 

by using the concentrations of common air pollutants which are already continuously measured. 

This model could provide a feasible alternative to places where the information of BC is still rare. 

In the future work, we can even expand the usage of this model to estimate BrC emissions and 

source appointment if enough reliable data are available. 
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Abstract 

BC has drawn great interest in the past decades because of its importance on climate change, 

air pollution and human health. The World Health Organization (WHO) has suggested monitoring 

BC mass concentration is necessary as a complement to current measurement of PM2.5. However, 

purchasing new instruments for BC at each air quality monitoring station would require a large 

amount of budget, which makes it difficult to achieve. Thus, we developed a machine learning 

(ML) model based on recurrent neuron network (RNN) and long short-term memory (LSTM) 

algorithms which are good at capturing long term patterns and making more accurate predictions. 

We used the concentrations of common air pollutants (CO, NOx, PM2.5, and O3) and time variables 

including “Day of Year”, “Hour of Day”, and “Day of Week” as inputs of the model, and the model 

achieved a relatively good performance on predicting BC mass concentrations.  
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4.1 Introduction 

Black carbon is the by-product of incomplete combustion of fossil fuels and biomass 

burning. It is of increasing interest because of its essential role in climate change and air pollution. 

BC can strongly absorb solar radiation from UV to near infrared in the atmosphere, warming the 

climate. The climate forcing of BC is estimated to be +1.1 W/m2 with 90% uncertainty bounds of 

+0.17 to +2.1W/m2, only second to CO2 (Bond et al., 2013). Besides, BC can also serve as cloud 

condensation nucleus and ice nucleus, forming cloud and snow, leading to either warming or 

cooling effects, which brings large uncertainty for modeling the overall effects of BC in the 

atmosphere. Apart from its role in climate change, BC is one of the common air pollutants in urban 

areas. There are many studies indicating the adverse effects of BC on human health (Liu et al. 

2023; Rasking et al. 2023; Sedlacek et al., 2022; Wen et al., 2023; Yang et al., 2023; Zhang et al., 

2023). Although anthropogenic emissions are the predominant sources of BC in urban regions, 

natural sources such as wildfires could contribute to a large increment of BC mass concentration, 

especially when wildfires last for a lengthy period (Ref), which even complicates the situation of 

urban air pollution. Thus, WHO has suggested it is necessary to make systematic measurements 

of BC mass concentration as an addition to current prevalent air pollutant measurements (WHO, 

2021). To improve the availability of BC data, modeling methods could be used to simulate the 

variation of BC mass concentration, considering the big budget of purchasing new diverse 

instruments for BC. 

Data-driven machine learning (ML) models have been widely used in environmental 

science to predict concentrations of air pollutants. Although there are various process-driven 

chemical transport models (CMTs), such as NASA Goddard Earth Observing System (GEOS)-

Chem and Weather Research and Forecasting model coupled to Chemistry (WRF-Chem), which 
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can predict concentration of air pollutants, the high computation cost and the dependence on 

regional or global emission inventories make CTMs inaccessible for most of places in the world. 

However, compared with CTMs, ML models are more flexible. ML models do not rely on physical 

or chemical processes to simulate the variations of air pollutants. If historical data are provided, 

ML models can be trained to predict future concentrations for one site, regions, or the globe.   

Land use regression (LUR), support vector machine (SVM), (more specifically, support 

vector regression (SVR)), and tree-based methods such as random forest (RF) and extreme 

Gradient Boosting (XGBoost) are popular ML algorithms for regression tasks, such as predicting 

concentrations of air pollutants, because they perform well. More importantly, models based on 

these algorithms are more interpretable. It is technically feasible to explain how features (input 

factors) affect the outcome of these models, which could indicate physical and chemical processes 

that air pollutants undergo in the atmosphere. For example, Xu I. et al. (2020) employed XGBoost 

methods to predict ultra-fine particle concentrations. Zhou et al. (2022) used the RF algorithm to 

decouple the effects of meteorological factors on the variation of PM2.5 during COVID-19. Men 

et al. (2023) used a RF regression method predicted the concentration of PM2.5 indoor. There are 

also other researchers who compared the results from multiple algorithms to evaluate performance 

and interpretability of their models (Fung et al., 2021; Rovira et al., 2022; Sun et al., 2022; Wang 

A. et al., 2020a). When it comes to long-term events, the recurrent neural network (RNN) has 

drawn more interest because RNN could capture nonlinear relationships of physical and chemical 

processes better and provide higher accuracy for time series data. The Long short-term memory 

(LSTM) models are based on RNN but with LSTM cells to overcome the problem of losing 

information during the training process. As such, LSTM models perform much better for 
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processing and predicting very long time series patterns. Indeed, LSTM has been utilized 

successfully to predict air pollution (Tsai et al., 2018; Wang J. et al., 2020b; Yan et al., 2021).   

In this work, we applied a LSTM model to predict BC mass concentration based on the 5-

year hourly concentrations of common air pollutants including CO, NOx, PM2.5 and O3 from an air 

pollution monitoring station which is the only site where data of BC mass concentration are 

available from 2018 to 2022 in Montreal, Canada. The input data are the concentrations of above 

air pollutants except BC, plus three time variables and the output of the model are predicted values 

of BC mass concentration at the same hour. The observation data of BC were used for comparison 

with predicted values to evaluate the performance of the LSTM model.  

 

4.2 Methodology 

4.2.1 Data acquisition and preprocessing 

The hourly average concentrations of CO, NO, NO2, PM2.5, O3, and BC were acquired from 

the air pollution monitoring station conducted by City of Montreal and Environment Canada and 

Climate Change (ECCC) (RSQA 2024). The station is located at 45.651722° N, 73.573896° W, 

and the station number is 55. The hourly average concentrations of NOx were calculated as the 

sum of NO and NO2. The station started to measure BC mass concentration in 2018. And the most 

recent updated data is till 2022.  

 Since these air pollutants are measured by several different instruments, there are some 

cases where the concentrations of at least one type of air pollutants were not recorded. All the data 

at these hours were removed from the datasets. In the end, the train/test/new datasets contain all 

the information of these air pollutants simultaneously. The data from 2018 to 2021 was used for 
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training and testing the model, which contained 28927 hours (28927 samples). And the data of 

2022 (from January to June) was used to compare with the model prediction. There are 4745 hours 

recorded in 2022 but with 4189 hours recorded during January to June and the rest hours recorded 

in December. Thus, only the first 4189 hours (samples) were used for comparison. Furthermore, 

the outliers for each pollutant were also removed following the same manner of removing missing 

values. In the end, data used for training the model contained 25242 samples (22717 samples in 

train set and 2525 samples in test set), and the data for comparison (new data set) contained 3596 

samples. 

 

4.2.2 The LSTM model 

LSTM was first proposed by Hochreiter and Schmidhuber in 1997 (Hochreiter and 

Schmidhuber, 1997) and was gradually improved over the years to tackle the problem of long-

term memory. The common architecture of LSTM consists of a memory cell with the cell state 

(short-term state h(t) and long-term state c(t)) and three regulatory gates: the input gate (i(t)), the 

forget gate (f(t)), and the output gate (o(t)). The cell state enables the transmission of information. 

The input gate controls which part of information should be added into the long-term state. The 

forget gate controls what should be discarded from the long-term state. The output gate determines 

which parts of the long-term state should be output to the short-term state and the predicted result 

(y(t)) at the timestamp t. The activation function of these three gates is the logistic sigmoid function 

(σ) whose output ranges from 0 to 1. The computation equations are listed below:  

𝑖(𝑡) =  𝜎(𝑊𝑥𝑖
𝑇𝑥(𝑡) + 𝑊ℎ𝑖

𝑇ℎ(𝑡−1) + 𝑏𝑖) (1) 
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𝑓(𝑡) =  𝜎(𝑊𝑥𝑓
𝑇𝑥(𝑡) + 𝑊ℎ𝑓

𝑇ℎ(𝑡−1) + 𝑏𝑓) (2) 

𝑜(𝑡) =  𝜎(𝑊𝑥𝑜
𝑇𝑥(𝑡) + 𝑊ℎ𝑜

𝑇ℎ(𝑡−1) + 𝑏𝑜) (3) 

𝑔(𝑡) =  𝑡𝑎𝑛ℎ(𝑊𝑥𝑔
𝑇𝑥(𝑡) + 𝑊ℎ𝑔

𝑇ℎ(𝑡−1) + 𝑏𝑔) (4) 

𝑐(𝑡) =  𝑓(𝑡) ⊗ 𝑐(𝑡−1) + 𝑖(𝑡) ⊗ 𝑔(𝑡) (5) 

𝑦(𝑡) =  ℎ(𝑡) = 𝑜(𝑡) ⊗ 𝑡𝑎𝑛ℎ(𝑐(𝑡)) (6) 

where g(t) is the candidate to be added into the long-term state. Wx and Wh are the weight matrices 

corresponding to the input vector x(t) and the short-term state h(t), respectively. “T” in superscript 

represents transpose of matrix. “b” is the bias term.   

In this work, we used hourly average concentrations of CO, NOx, PM2.5, O3, “Day of Year”, 

“Hour of Day”, and “Day of Week” as inputs data which were then scaled to within 0 to 1 for 

training. BC mass concentrations were outputs of the model. Adaptive momentum (“Adam”) was 

used as the optimizer to minimize the loss function. Mean square error (MSE), root mean square 

error (RMSE), and correlation coefficient (R2) were used to evaluate the performance of the model.  

 

4.3 Results and Discussion 

4.3.1 The variation of air pollutants in Montreal 

Fig. 4.1 shows the diurnal variations of air pollutants averaged over the 5-year dataset. All 

the pollutants, except O3, demonstrated an obvious “rush-hour” peak during the morning, 

indicating the anthropogenic sources (transportation) of these air pollutants. With the development 

of planetary boundary layer (PBL) during daytime, the concentrations of CO, NOx, PM2.5, and BC 
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decreased, while the concentration of O3 increased because of daytime photochemistry. The 

concentrations of CO, NOx, PM2.5, and BC gradually increased since afternoon and reached another peak 

during nighttime, because there was an evening “rush-hour” effect and PBL became lower at night. The 

variation of PM2.5 was slightly different from CO, NOx, and BC, indicating that there were probably other 

emission sources during nighttime. Considering the station is near a park, heterogeneous formation of SOA 

during nighttime could contribute to the increment of PM2.5.  

 

Figure 4.1. Diurnal variations of air pollutants including O3 (A), CO (B), NOx (C), and PM2.5 (D), and 

comparison with BC. The shadow areas indicate standard errors. 

Fig. C1 and Fig. 4.2 demonstrate the seasonal variations of BC and comparison between 

O3, CO, NOx, PM2.5, and with BC respectively. The seasonal variations of CO, NOx, PM2.5, and 

BC demonstrate a winter peak, whereas PM2.5 and BC sometimes show another peak around 

summer or fall, which could be due to wildfires as discussed in Chapter 3. The concentration of 

O3 reaches peak values during summer, as a result of photochemistry. 

A

C

B

D
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The similar variations of CO, NOx, PM2.5, and BC and the opposite variation between O3 

and BC can be confirmed by Fig. 4.3. CO, NOx, PM2.5, and BC show strong positive correlation 

coefficients, indicating a large proportion of these air pollutants come from some common sources. 

It is noteworthy that NO and BC are only moderately correlated. NO2 and BC show stronger 

correlation. But the correlation between NOx (NO+NO2) and BC is even stronger, which is why 

NOx, instead of NO or NO2, was chosen as an input feature of the model. The correlation 

coefficients and the variations of these air pollutants are similar to the results that were also 

observed in Montreal (Li & Ariya, 2021). Thus, the datasets here are considered representative. 
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Figure 4.2. Hourly average concentrations of O3 (A), CO (B), NOx (C), and PM2.5 (D), and their comparison 

with BC during 2018 to 2022. 

A

B

C
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Figure 4.3. Correlation coefficients between each feature of the model. 

 

4.3.2 Evaluation of the LSTM model performance 

Table 4.1 demonstrates the performance of the model on different datasets with or without 

outliers included. If outlier data are included, the overall performance of the model is not so good, 

with R2 is around 0.75. More importantly, if including outliers, all the metrics of the train set are 

worse than that of test set, which may indicate a underfitting of the model because the model was 

trained with the train set. Once removing outliers before training the model, the performance 

improved on all three datasets. The RMSE and MSE of the train set and the test set are close, 

showing that the model can generalize in a good way, which is also confirmed by the new data set. 

Fig. 4.4 provides the visualization of the modeling results by comparing measured values with 

predicted values. It is noteworthy that the performance of the model on the test set was worse than 

the others, which is possibly due to the small size of the test set. Furthermore, the scatter plots 
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show that the model performance is better when BC mass concentration is low, given that the data 

dispersion is more obvious when BC mass concentration is larger than 0.4 µg/m3 in Fig. 4.4C and 

4.4D. But it is clear the performance of the model can be further improved by adjusting the model 

such as adding more LSTM layers and attributing more samples to the test set.     

Table 4.1. Performance of the model on different datasets with or without outliers included in the datasets. 

 Dataset RMSE MSE R2 

With  

outliers 

Train set 0.231 0.053 0.738 

Test set 0.171 0.029 0.748 

New data set 0.558 0.311 0.759 

Without 

outliers 

Train set 0.097 0.009 0.823 

Test set 0.102 0.010 0.791 

New data set 0.284 0.081 0.806 
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Figure 4.4. The comparison between predicted BC and measured BC in (A) the whole dataset, (B) the train 

dataset, (C) the test set, and (D) the new data set. 

The performance of the model on various subsets divided based on different periods was 

also evaluated and shown in Table C1. Compared with all data, the model performs good during 

winter months but slightly worse during summer. One of the possible reasons is that the size of the 

summer dataset is small, compared with the winter dataset (Table 4.2), which constrains the 

performance of the model. Additionally, the winter dataset contains 12284 samples, while the 

summer one contains 4998 samples. The ratio of winter samples to summer samples is about 2.5, 

A B

C D
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but the ratio of winter days (140) to summer days (92) is only about 1.5, indicating the possibility 

of sampling bias during summer months. Another potential reason is that wildfires during summer 

contributed to large mass concentrations of BC and PM2.5, which were then removed as outliers 

before training the model. The performance on the daytime dataset and the nighttime dataset 

demonstrates no evident differences, and the ratio of sample numbers of these two subsets are also 

in accordance with the ratio of the number of hours, indicating no sampling bias between these 

two subsets.  

 Table 4.2 and Fig. 4.5 show statistical comparisons between measured and predicted BC 

mass concentrations on different subsets. The mean and median values of measurement data and 

prediction data are only slightly different, but the standard deviations demonstrate obvious 

differences, indicating that the measurement datasets show larger variances than the prediction 

datasets. Furthermore, the model cannot predict extreme values such as minimum and maximum, 

indicating that the performance of the model will drop when it approaches the boundary of datasets. 

However, even within the range of minimum and maximum, the performance of the model also 

varies as suggested by 25% values and 75% values. It is likely that the model performs well on 

values larger than median value but less than maximum, while the performance drops between 

minimum and median. In summary, the model tends to overestimate BC mass concentrations when 

they are smaller than 0.25 µg/m3 but underestimate when they are larger than 1 µg/m3. Thus, the 

predicted values tend to be more concentrated towards mean and median values. 

Table 4.2. Statistical comparisons of measured and predicted BC mass concentrations on different subsets. 

Winter is set from December 1st to April 20th. Summer spans from June 21st to September 20th. Daytime is 

from 9 am to 6 pm, whereas nighttime is from 10 pm to 5 am. “Std” means standard deviation. “25%” and 

“75%” are first and third quartiles. 

Period Data Type Count Mean Std Min 25% Median 75% Max 

All data 
Measurement 28840 0.312 0.226 0.000 0.134 0.253 0.433 1.148 

Prediction 28840 0.317 0.203 0.037 0.154 0.259 0.441 1.018 
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Winter 
Measurement 12284 0.283 0.198 0.000 0.128 0.232 0.392 1.146 

Prediction 12284 0.289 0.179 0.052 0.145 0.236 0.395 0.902 

Summer 
Measurement 4998 0.392 0.254 0.002 0.193 0.334 0.545 1.148 

Prediction 4998 0.393 0.218 0.039 0.211 0.349 0.544 1.012 

Day 
Measurement 12348 0.285 0.203 0.001 0.130 0.227 0.389 1.145 

Prediction 12348 0.293 0.187 0.041 0.147 0.235 0.397 0.972 

Night 
Measurement 9532 0.315 0.243 0.000 0.120 0.252 0.451 1.148 

Prediction 9532 0.322 0.211 0.037 0.148 0.261 0.454 1.012 

 

 

Figure 4.5. Comparison of the distributions of measured and predicted BC mass concentrations on different 

subsets. The squares inside the boxes show averages of the datasets, while the horizontal line inside the 

boxes indicate the median values of the datasets. The upper boundary and lower boundary of the box are 

the third quartile (75%) and the first quartile (25%). The ranges between horizontal bars and boundaries of 

the boxes indicate 1.5IQR (interquartile ranges). The black points outside horizontal bars are considered 

outliers of the datasets.   

 

4.4 Conclusion and future work 

We developed a ML model based on the LSTM algorithm to predict BC mass concentration 

by using common air pollutants (CO, NOx, PM2.5, and O3) and time variables including “Day of 

Year”, “Hour of Day”, and “Day of Week” as inputs of the model. We evaluated the performance 

of the LSTM model and found that the model performed well on moderate values but with 

overestimation when actual BC mass concentrations was lower than 0.25 µg/m3, and 

underestimation when actual BC mass concentrations was larger than 1 µg/m3. Future work should 
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be focused on adjusting other hyperparameters to further improve the performance of the model. 

Adding more LSTM layer to achieve better performance could also be a choice, but it will make 

the model to be less interpretable. Developing models based on other algorithms such as RF and 

SVR could also be considered to compare with the LSTM model. 
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Chapter 5 Conclusions and future work 

5.1  Conclusions 

The scope of this dissertation work is aimed to characterize the physicochemical properties 

of LACs in urban regions and demonstrate how various sources of LACs could affect their 

physicochemical properties and variations. The distinct contributions of this dissertation includes: 

1) demonstrating the seasonal trends of LACs concentrations and the impact of human activities 

in cold-climate urban areas; 2) understanding the change of light absorption of LACs due to 

wildfires, revealing the great potential of BrC to be a strong absorber in the atmosphere; 3) 

developing a data-driven ML model to estimate BC mass concentration, providing a feasible and 

cost-efficient method to make LACs measurement more accessible, thereby reducing the bias in 

current climate models.   

In Chapter 2, we reported one-year measurements of BC mass concentration, along with 

common air pollutants, in the cold-climate city of Montreal. This dataset is beneficial for future 

modeling work. We discovered a bimodal distribution in the variation of BC, with one summer 

peak and one winter peak. The summer peak was attributed to wildfires and was further analyzed 

in Chapter 3. While the winter peak can last more than 4 months due to the long-winter 

meteorology of cold climate, highlighting the potential health impacts caused by BC in cold urban 

settings. Our measurements also covered the period of COVID-19 Pandemic. A lockdown was 

applied during the pandemic, which strongly constrained most of human activities in the city of 

Montreal, providing an unexpected opportunity to reveal the huge anthropogenic impacts on the 

environment. The lockdown led to a decrease up to 72% of all the air pollutants. Additionally, we 

found that BC mass concentrations near the Montreal international airport were 400% higher than 

in downtown Montreal, which may pose threat to the health of airport workers and residents nearby, 
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calling for betterment of current air pollution regulatory policy, with the expansion of aviation in 

the world. 

In Chapter 3, we first confirmed the long-winter BC peak discovered in Chapter 2. The 

observation was expanded to BrC to demonstrate the variation of the whole LACs, and focused on 

the record-breaking wildfires in Canada, in the summer of 2023. We confirmed that the summer 

peak observed in Chapter 2 was due to summer wildfire events. Although the wildfires took place 

a few hundred kilometers away from the city of Montreal, this metropolitan area was still strongly 

affected by the wildfires indirectly. The concentration of PM2.5 was elevated by more than 300%, 

whereas BC mass concentration increased more than 26%. Moreover, as the dominant sources of 

BrC, the wildfires brought a large amount of primary BrC and secondary BrC precursors. The 

latter were then transformed into secondary BrC during the long-range transport from the sources 

to urban areas of Montreal. Although the light absorption of BrC decays sharply with increasing 

wavelengths, BrC demonstrated strong absorption at short wavelengths like 370 nm, accounting 

for more than 50% of total light absorption, which surpassed the contribution of light absorption 

of BC at this range. Since wildfires are estimated to take place more frequently because of climate 

change, BrC gradually become more essential for comprehensively evaluate both global and 

regional impacts of wildfires, which necessitates more ground-based observation of BrC as a 

complement to measurement of BC for more precise modeling work in the future.  

The measurements of BC are now more rely on laboratory research, and less prevalent in 

municipal air pollution monitoring networks. One of the important reasons is the insufficient 

budget for purchasing instruments specifically for BC. Thus, in Chapter 4, we developed an ML 

model to estimate BC mass concentrations based on the concentrations of other air pollutants, 

including PM2.5, O3, NOx, and CO, which are now continuously measured. Our model achieved 
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good performance on the 5-year datasets, showing promising capability to generalize on more data. 

More importantly, since this model does not rely on historical observation of BC, it can be used to 

estimate historical BC mass concentrations as long as the concentrations of the aforementioned air 

pollutants are available. This can greatly benefit modeling research by providing constraints on 

historical impacts of BC.  

 

5.2  Future work 

This thesis mainly focuses on light absorption properties of LACs, with some offline 

chemical characterization such as TEM and SEM coupled. The properties of LACs are correlated 

with each other. A combination of information about size, morphology, mixing state, chemical 

composition, and light absorption of LACs would be beneficial for evaluating both climate effects 

and health effects of LACs. Thus, one of advancements can be done based on this work is to 

measure the size distribution, light absorption, and chemical compositions simultaneously, which 

can be achieved by coupling size scanner or SP2, multiwavelength photometer or aethalometer, 

and AMS. Although HPLC-MS or GC-MS could also provide chemical information of LACs, the 

advantage of AMS is that it can measure LACs in-situ. AMS will not change the size or 

morphology of particles, which is closer to real situations in the atmosphere.  

Furthermore, there are studies about ice nucleation of BC but with contradictory results, 

while the research on ice nucleation of BrC is still limited. To better understand the indirect climate 

effects of LACs, it is necessary to do more laboratory research on ice nucleation of LACs. More 

importantly, the occurrence of wildfires is estimated to increase. Wildfires can emit smoke with 

BC and BrC directly into the atmosphere, and it is very likely that BC and BrC exist as mixtures 
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in smokes of wildfires. A better way is to study the ice nucleation of the mixture of BC and BrC, 

instead of each single part respectively, in laboratory research, to elucidate the indirect climate 

effects of LACs. 

Data-driven machine learning models can be widely developed and applied in research 

based on specific research topics, such as predicting light absorption properties of BrC. The model 

we present in this work is based on air pollutants which are correlated with BC. Thus, the example 

we demonstrated is based on correlation inference, instead of causal inference. If data of BC 

sources are available, a more reliable ML model can be developed based on causal inference. The 

International union of pure and applied chemistry (IUPAC) has nominated large language model 

in chemistry as one of 2023 top ten emerging technologies in chemistry (IUPAC 2023), indicating 

wider application of ML models as promising methodology to help research in chemistry in the 

future.  
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Appendix A 

 

A Chapter 2 Supplementary Information 

A.1 Supplementary figures 

 

Figure A5.1. The annual arithmetic means and geometric means of BC Mass. 

 

 

Figure A2. Diurnal variation of Bscat in downtown Montreal before lockdown (black line, Feb. 1st to Mar. 

15th), during lockdown (red line, Mar. 16th to May 24th) and partial Reopen (green line, May 25th to Jun. 
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30th) (A); Comparisons of Bscat in downtown Montreal (cyan) with near YUL Airport (black) in COVID-19 

Pandemic (B). 

 

 

Figure A3. Monthly mean values of Bscat. The error bars indicate standard deviations. 
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Figure A4. Diurnal variation of the concentrations of BC (A), O3 (B), PM2.5 (C), CO (D), NO2 (E) and NO 

(F) in Montreal before (black) and during lockdown (red), and partial Reopen (green line). The period of 

“Before lockdown” is set from Feb. 1st to Mar. 15th. The period of “During lockdown” is set from Mar. 16th 

to May 24th. And the period of “partial Reopen” spans from May 25th to Jun. 30th. 
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Figure A5. Monthly mean values of Babs. The error bars indicate standard deviations. 
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Figure A6. HYSPLIT back trajectory modeling results on a winter day (Jan. 20th, 2020) and on a summer 

day (Jun. 28th, 2020). 
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Figure A7. HR-TEM-EDS results of the aged snow samples collected from the airport, indicating the 

existence of emerging metal contaminants. 

 



126 

 

A.2 Supplementary tables 

Table A5.1. P values of the statistics analysis within March and May. 

MONTH 
BC 

MASS 
PM2.5 CO O3 NO NO2 BSCAT 

MAR 0.001 <0.001 <0.001 0.01 0.002 <0.001 <0.001 

MAY <0.001 <0.001 <0.001 0.11 0.49 0.89 <0.001 

 

 

Table A5.2. Concentrations of CO during January to June from 2017 to 2020. The number in the bracket 

of March 2020 indicates the average concentration of CO within Mar. 1st to Mar. 15th, 2020. 

TIME 2017 2018 2019 2020 

JAN 242.9 271.4 247.7 240.3 

FEB 248.2 262.9 239.1 243.5 

MAR 253.7 230.9 231.4 
203.5 

(212.1) 

APR 208.4 214.0 201.0 166.8 

MAY 179.8 201.2 181.1 166.2 

JUN 164.8 172.1 181.9 161.4 

 

Table A5.3. P values of the statistical analysis between January with February, March, April and May in 

the year of 2017 to 2020, respectively. The number in the bracket of March 2020 indicates the P value based 

on the average concentration of CO within Mar. 1st to Mar. 15th, 2020. 

TIME 2017 2018 2019 2020 

FEB 0.827 0.494 0.526 0.467 

MAR 0.498 0.014 0.283 
0.003 

(0.094) 

APR 0.002 0.001 P < 0.001 P < 0.001 

MAY P < 0.001 P < 0.001 P < 0.001 P < 0.001 
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Table A5.4. The averages, standard deviations, median values, 99th percentile values, 1st percentile values, 

25th percentile values and 75th percentile values for BC Mass, O3, PM2.5, CO, NO, NO2 and Bscat for March 

2020 and May 2020. 

  Average Std Median 99% 1% 25% 75% 

  BC Mass (μg/m3) 

3.1 ~ 3.15 0.342 0.344 0.280 2.25 0 0.146 0.445 

3.16 ~ 3.31 0.285 0.187 0.276 0.769 0 0.156 0.385 

5.1 ~ 5.24 0.290 0.188 0.270 0.870 0 0.171 0.395 

5.25 ~ 5.31 0.501 0.335 0.498 1.70 0 0.273 0.674 

        

  Average Std Median 99% 1% 25% 75% 

  O3 (ppb) 

3.1 ~ 3.15 28.8 8.5 30.8 41.0 2.5 23.9 34.7 

3.16 ~ 3.31 31.2 7.1 31.7 44.2 11.9 27.3 36.4 

5.1 ~ 5.24 34.1 8.8 33.0 59.2 16.0 28.2 39.6 

5.25 ~ 5.31 30.9 12.3 29.1 60.2 6.4 22.4 38.7 

 

  Average Std Median 99% 1% 25% 75% 

  PM2.5 (μg/m3) 

3.1 ~ 3.15 7.5 6.3 5.5 30.4 0.7 3.4 10.1 

3.16 ~ 3.31 5.5 3.1 4.7 13.7 0.7 3.2 7.0 

5.1 ~ 5.24 4.9 2.2 4.6 11.7 1.3 3.3 6.0 

5.25 ~ 5.31 6.9 4.6 7.5 18.1 0.0 2.8 10.0 

 

  Average Std Median 99% 1% 25% 75% 

  CO (ppb) 

3.1 ~ 3.15 212.1 69.9 196.9 489.4 145.7 173.1 223.9 

3.16 ~ 3.31 195.4 31.0 190.0 277.3 147.5 171.8 212.7 

5.1 ~ 5.24 162.0 26.7 159.6 243.3 120.7 142.1 175.9 

5.25 ~ 5.31 180.7 49.8 177.1 310.3 102.3 140.3 214.4 

 

  Average Std Median 99% 1% 25% 75% 

  NO (ppb) 

3.1 ~ 3.15 4.0 8.4 2.1 44.8 0.4 1.3 3.7 

3.16 ~ 3.31 2.0 2.0 1.4 10.1 0.1 0.8 2.7 

5.1 ~ 5.24 1.2 2.0 0.6 11.0 0.0 0.3 1.3 

5.25 ~ 5.31 1.0 1.7 0.5 8.8 0.0 0.2 0.9 

 

  Average Std Median 99% 1% 25% 75% 

  NO2 (ppb) 

3.1 ~ 3.15 12.8 7.9 11.1 40.6 3.1 6.9 15.6 

3.16 ~ 3.31 9.9 5.4 9.0 27.2 2.9 5.8 12.8 

5.1 ~ 5.24 5.5 3.6 4.7 19.3 1.4 2.9 6.8 

5.25 ~ 5.31 5.6 4.6 4.2 19.5 0.6 2.3 7.3 

 

  Average Std Median 99% 1% 25% 75% 

  Bscat (Mm-1) 

3.1 ~ 3.15 10.53 8.73 7.76 44.78 1.64 4.80 13.27 
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3.16 ~ 3.31 6.80 4.09 6.26 20.22 0.72 3.81 8.63 

5.1 ~ 5.24 5.17 3.29 4.41 18.49 0.97 3.02 6.28 

5.25 ~ 5.31 12.09 8.26 12.28 34.92 0.62 3.72 18.17 

 

Table A5.5. Pearson correlation analysis of BC Mass with Co-pollutants. 

Month O3 NO NO2 SO2 CO PM2.5 Bscat 

Jul 2019 -0.5703 0.1156 0.6057 0.2873 0.5219 -0.2766 -0.2035 

Aug 2019 -0.9093 0.5834 0.8538 0.6529 0.3627 0.8007 0.2657 

Sep 2019 -0.7455 0.0793 0.7749 -0.7992 0.5715 0.7007 0.0441 

Nov 2019 -0.8318 0.1361 0.8095 -0.6536 0.2909 0.1761 0.1969 

Dec 2019 -0.7035 0.2595 0.8300 -0.2211 0.4735 0.2113 0.2715 

Jan 2020 -0.5131 0.2801 0.5910 -0.1353 0.7136 0.5242 0.1351 

Feb 2020 -0.4394 -0.2508 0.6159 -0.5894 0.3738 0.2787 0.4484 

Mar 2020 -0.2592 0.2064 0.6544 -0.1021 0.6280 0.5615 0.7366 

Apr 2020 -0.8875 0.1121 0.9329 0.2095 0.9194 0.8141 0.5623 

May 2020 -0.5137 -0.0780 0.6516 0.2573 0.5782 0.5250 -0.2554 

Jun 2020 -0.6505 0.8211 0.7703 0.9008 0.6290 0.6555 0.9652 

 

 

Table A5.6. An example snow event during Dec. 31st 2019 to Jan. 2nd 2020 was analyzed. The average 

and median values of BC Mass, total snow precipitation, snow on the ground and average temperature are 

given above. 

Snow event 
Total 

precipitation 

Snow 

(ground) 
BC Mass (μg/m3) T 

 mm cm Average Median ℃ 

2019/12/31 11.3 13 0.481 0.417 -0.5 

2020/1/1 3 19 0.251 0.240 0.3 

2020/1/2 0 19 0.549 0.450 1.3 
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Appendix B 

 

B Chapter 3 Supplementary Information 

B.1 Supplementary figures 

 

Figure B1. Monthly averages of Babs (370) and Bscat. The error bars indicate the standard errors for Babs 

(370) and Bscat for each month. 
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Figure B2. Monthly cluster back-trajectory analysis for October in 2021 (A), 2022 (B), and 2023 (C). 
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Figure B3. Diurnal variation of Babs (870) in different seasons. Panel B indicates the wildfire months (June 

and July 2023), and the error bars on blue lines represent the standard errors. 
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Figure B4. Back trajectory analysis on the source of smoke in New York City at 5 pm (EST) on June 7th, 

2023 (Stain et al, 2015; Rolph et al, 2017). 
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Figure B5. Monthly cluster back-trajectory analysis for June (A) and July (B), and wind rose plots for July 

(C), in 2023.  

 

Figure B6. Back trajectory analysis on the source of smoke at the largest Babs (370) moment (8 am EST) in 

Montreal during June 25th to June 26th, 2023 (Stain et al, 2015; Rolph et al, 2017). 
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Figure B7. SEM images of aerosol samples (A) and BC agglomerates (B). Panel C shows the TEM image 

of particles with the coating. Panel D shows the EDS result of the coating at the site labelled with “12-eds”.   
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B.2 Supplementary tables 

Table B1. Statistic description of monthly variation of Babs (870) and Bscat from 2022 to 2023. “Mean” is 

the arithmetic average. “Std” is the standard deviation. “25%” and “75%” represent quantile values. 

 Bscat (Mm-1) 

Month Mean Std Min 25% Median 75% Max 

Jun-22 4.63 3.10 0.28 2.24 3.93 6.25 15.60 

Jul-22 8.38 6.28 0.76 3.60 6.23 11.50 32.78 

Aug-22 9.06 5.05 1.67 5.74 8.01 11.33 32.18 

Sep-22 5.62 3.83 0.71 2.75 4.69 7.30 23.90 

Oct-22 8.95 12.03 0.78 4.64 7.05 10.04 198.58 

Nov-22 7.36 4.33 0.58 3.64 6.56 10.25 21.48 

Dec-22 7.57 5.04 0.83 4.03 6.17 9.64 27.73 

Jan-23 9.18 7.67 1.28 3.95 7.09 11.90 53.33 

Feb-23 7.43 4.81 1.59 3.77 6.52 9.45 27.45 

Mar-23 7.64 3.93 1.17 4.68 7.19 9.73 23.90 

Apr-23 7.59 5.60 0.87 4.30 6.10 9.24 48.60 

May-23 8.49 7.52 1.61 4.42 6.79 11.09 104.84 

Jun-23 20.52 38.39 0.44 2.65 5.43 19.33 324.62 

Jul-23 18.54 20.30 1.04 6.16 10.55 22.15 121.07 
        
 Babs (870) (Mm-1) 

Month Mean Std Min 25% Median 75% Max 

Jun-22 1.08 1.33 0.02 0.40 0.77 1.34 16.09 

Jul-22 0.99 0.77 0.02 0.50 0.79 1.27 5.88 

Aug-22 1.26 1.00 0.01 0.65 1.01 1.63 8.32 

Sep-22 1.10 0.88 0.01 0.46 0.88 1.45 5.96 

Oct-22 2.19 2.76 0.01 0.91 1.55 2.53 41.39 

Nov-22 1.38 0.99 0.02 0.64 1.20 1.80 7.11 

Dec-22 1.30 0.93 0.07 0.61 1.03 1.69 7.38 

Jan-23 1.48 0.90 0.14 0.81 1.27 2.01 5.92 

Feb-23 1.54 0.86 0.15 0.92 1.35 1.98 5.29 

Mar-23 1.27 0.79 0.17 0.77 1.12 1.52 6.95 

Apr-23 1.27 1.20 0.11 0.70 1.05 1.52 22.49 

May-23 1.18 0.96 0.10 0.56 1.01 1.48 8.52 

Jun-23 1.47 1.77 0.00 0.47 0.92 1.72 22.28 

Jul-23 1.34 1.00 0.03 0.68 1.08 1.68 5.92 

 

Table B2. Wildfire occurrence and burning areas (unit: hectare) in Quebec during the last 5 years. 

COUNT 2019 2020 2021 2022 2023 

JUNE 58 173 160 22 307 

JULY 119 105 37 47 109 
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TOTAL 177 278 197 69 416 

AREA 2019 2020 2021 2022 2023 

JUNE 5000.8 51692.4 10664.8 29282.9 2573724.9 

JULY 4549 7338.6 36797.1 77.1 1238908.4 

TOTAL 9549.8 59031 47461.9 29360 3812633.3 

 

Table B3. Monthly average concentrations and standard deviations of PM2.5, CO, and O3 in the past 10 

years acquired from MERRA-2 reanalysis data. 

Year 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 

 Monthly average concentrations of PM2.5 (µg/m3) 

June 8.00 8.97 8.08 8.48 8.42 10.33 9.50 10.30 8.78 39.41 

July 11.81 14.37 8.53 9.45 9.68 12.82 10.33 15.11 9.81 17.04 

 Standard deviation 

June 4.37 7.36 4.99 3.84 4.08 8.85 4.14 5.56 4.05 80.14 

July 6.74 9.76 3.76 5.62 4.73 7.04 5.60 14.60 5.19 13.02 

 Comparing with 2022 

June -9% 2% -8% -3% -4% 18% 8% 17%  349% 

July 20% 46% -13% -4% -1% 31% 5% 54%  74% 

 

 Monthly average concentrations of CO (ppbv) 

June 283.50 265.90 246.68 255.95 260.39 278.47 274.17 424.83 483.86 653.82 

July 276.79 301.37 264.73 289.87 272.80 293.56 278.82 481.39 453.68 633.16 

 Standard deviation 

June 131.50 111.92 110.36 97.08 109.73 140.57 137.90 193.87 256.54 317.16 

July 106.36 130.51 110.40 123.57 123.50 130.78 134.60 271.48 238.21 293.68 

 Comparing with 2022 

June -41% -45% -49% -47% -46% -42% -43% -12%  35% 

July -39% -34% -42% -36% -40% -35% -39% 6%  40% 

 

 Monthly average concentrations of O3 (DU) 

June 329.68 348.22 337.43 342.40 328.65 354.77 330.61 333.08 340.90 341.19 

July 328.63 338.30 322.03 328.72 319.63 322.77 313.05 333.49 335.63 324.16 

 Standard deviation 

June 13.66 21.59 22.58 29.25 20.59 25.00 22.62 26.40 27.49 19.93 

July 16.44 19.68 19.08 18.06 19.94 20.85 15.78 17.23 16.31 17.58 

 Comparing with 2022 

June -3% 2% -1% 0% -4% 4% -3% -2%  0% 

July -2% 1% -4% -2% -5% -4% -7% -1%  -3% 

 

 

Table B4. Averages (with unit of Mm-1) of Babs, BC (λ), Babs, BrC (λ), Babs, BrC pri (λ), Babs, BrC sec (λ), and Babs, pri 

(λ) at different wavelengths. The percentage values for Babs, BC (λ) and Babs, BrC (λ) indicate proportions of 

BC and BrC to Babs (λ) respectively. The percentage values for Babs, BrC pri (λ), Babs, BrC sec (λ) represent the 
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proportions of primary BrC and secondary BrC to Babs, BrC (λ) respectively. And the percentage values for 

Babs, pri (λ) shows the contribution from primary sources. 

 BB dominated FF dominated 

wavelength 
Babs, BC 

(λ) 

Babs, BrC 

(λ) 

Babs, BrC 

pri (λ) 

Babs, BrC 

sec (λ) 

Babs, BC 

(λ) 

Babs, BrC 

(λ) 

Babs, BrC 

pri (λ) 

Babs, BrC 

sec (λ) 

370 
5.42 

(46%) 

6.39 

(54%) 

4.93 

(77%) 

1.46 

(23%) 

4.42 

(81%) 

1.04 

(19%) 

0.95 

(91%) 

0.09 

(9%) 

470 
4.27 

(64%)  

2.44 

(36%) 

1.89 

(77%) 

0.55 

(23%) 

3.48 

(84%) 

0.68 

(16%) 

0.63 

(93%) 

0.05 

(7%) 

520 
3.84 

(73%) 

1.42 

(27%) 

1.09 

(77%) 

0.33 

(23%) 

3.14 

(88%) 

0.43 

(12%) 

0.40 

(93%) 

0.03 

(7%) 

590 
3.40 

(80%) 

0.80 

(20%) 

0.61 

(76%) 

0.19 

(24%) 

2.77 

(91%) 

0.26 

(9%) 

0.24 

(92%) 

0.02 

(8%) 

660 
3.02 

(90%) 

0.34 

(10%) 

0.24 

(71%) 

0.10 

(29%) 

2.47 

(96%) 

0.10 

(4%) 

0.09 

(90%) 

0.01 

(10%) 

880 2.27 0 0 0 1.86 0 0 0 

950 2.08 0 0 0 1.73 0 0 0 
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Appendix C 

 

C Chapter 4 Supplementary Information 

C.1 Supplementary figures 

 

Figure C1. Variation of hourly averages of BC mass concentration during 2018 to 2022. 

 

C.2 Supplementary tables 

Table C1. Performance of the model on different subsets. Winter is set from December 1st to April 20th. 

Summer spans from June 21st to September 20th. Daytime is from 9 am to 6 pm, whereas nighttime is from 

10 pm to 5 am. 

Period RMSE MSE R2 

All data 0.096 0.009 0.819 

Winter 0.083 0.007 0.825 

Summer 0.117 0.014 0.789 

Day 0.089 0.008 0.809 

Night 0.101 0.010 0.829 
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